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A SHORT HISTORY OF THE FIBONACCI QUARTERLY 

MARJORIE BICKNELL-JOHNSON 
Santa Clara Unified School District, Santa Clara, CA 95052 

This volume marks the 25th year of publication of The Fibonacci Quarterly, 
prompting memories of just how it all started. As a long-time observer and 
participant, I was asked to write a short history of the early organization. 

In the beginnings the Fibonacci Association grew out of the bond of friend-
ship formed by those sharing an interest in the Fibonacci numbers. Professor 
Verner E. Hoggatt, Jr., San Jose State College, had become interested in the 
Fibonacci sequence in the late 1950s. Vern's colleague Dmitri Thoro introduced 
him to Brother Alfred Brousseau, St. Maryfs College, in the early 1960s. Vern 
and Brother Alfred began a long friendship and met frequently to discuss Fibo-
nacci numbers and often sang songs, accompanied by Brother Alfred*s accordion. 
(I recall a ballad written by Brother Alfred, "Do What Comes Fibernaturally!", 
to the tune of "The Blue-Tail Fly.") 

As time went on, their intense interest in the Fibonacci sequence began to 
take a more organized direction. Brother Alfred, for example, compiled a bib-
liography of more than 700 Fibonacci references, ranging from recreational to 
serious research, to disseminate to interested initiates. Both took any and 
every opportunity to lecture on the sequence, so much so that Vern soon became 
fondly known as "Professor Fibonacci." 

By December of 1962, the group also included Professor Paul Byrd, I. Dale 
Ruggles, Stanley L. Basin, and Terrance A. Brennan. It was this group of men 
who founded the Fibonacci Association to provide an opportunity for those who 
shared an interest in the Fibonacci numbers to exchange ideas. 

So much interest in the Fibonacci numbers was apparent to the "founding 
fathers" that they decided to publish The Fibonacci Quarterly, despite limited 
support and all the other problems that beset a new venture. Vern and Brother 
Alfred wanted a journal to provide rapid dissemination of the ever expanding 
research on the Fibonacci numbers and to invite teachers and students to share 
their enthusiasm for mathematics. 

With a very small amount of money from subscriptions and donations, and a 
large amount of volunteer labor from students, friends, and family, the first 
issue of The Fibonacci Quarterly was published in February 1963, with Editor 
Verner E. Hoggatt, Jr., and Managing Editor Brother U. Alfred. 

Due to shoestring economics, the first issue was typed by Brother Alfred; 
after that, several professional technical typists came and went. Keeping a 
good typist almost caused Vern to have a nervous breakdown, until he met some-
one who needed him to complete a golf foursome and discovered a technical typ-
ist in the course of getting acquainted! 

The first printer was a photocopy shop with a small press, but this proved 
inadequate and costly. Then Brother Alfred approached William Descalso, who 
had done printing for St. Mary's College since 1948, to take on the printing 
of the Quarterly. Descalso had a large web press which could print 16 pages 
at one time. (This explains why we had 80, 96, or 112 pages, but never 89.) 
These signatures and the cover were put into a folding machine, and the journal 
was assembled, stapled, and trimmed in one operation. Mr. Descalso took spe-
cial interest in the Quarterly for many years, and I suspect that he helped us 
to continue by making personal sacrifices. Also, he used to deliver theQuar-
terly to Brother Alfred for mailing, then bring the reprints to Vein's home in 
a big truck for stapling and mailing. 
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At first5 subscriptions came in slowly (59 on January 31, 1963), but with 
some advertising and favorable notices in various magazines, especially Scien-
tific American (June 1963, p. 152), the tempo increased. As a result, by Sep-
tember 1963 there were 659 subscribers, and 915 subscribers by the end of the 
first year of publication. From this point on, it was a matter of maintaining 
the momentum. While researching this article, I found a handwritten page en-
titled "back-sliders" among Vernfs notes; he had personally called every person 
who failed to renew his or her subscription for the second year! 

The Fibonacci Quarterly slowly began to draw attention. While at the first 
meeting in December 1962, Professor Paul Byrd had wondered how we would obtain 
enough material for such a specialized journal. Ironically, the problem, over 
the years, turned out to be a superabundance of material. Vern answered all 
of the many inquiries addressed to the Quarterly personally, in longhand. 
Brother Alfred wrote and published the booklet, Fibonacci Discovery, as an aid 
to beginners and as another source of income for the Association. Many arti-
cles were written especially to interest beginners in the study of Fibonacci 
numbers. (Subsequently, these early articles were collected together and pub-
lished as A Primer for the Fibonacci Numbers. ) The Fibonacci Quarterly was 
mentioned in Martin Gardner's column in Scientific American in March 1969, and 
Brother Alfred and Vern were interviewed in an article in Time, April 4, 1969, 
pages 48 and 50. Vern was asked to write a series of articles for Math Log, 
published by Mu Alpha Theta, and his book, Fibonacci and Lucas Numbers, was 
published by Houghton Mifflin in 1969. (I know that he had to write two com-
plete drafts of this book because I typed both versions!) With a little fame, 
Vern was given a small grant by San Jose State College, and a semester-long 
sabbatical leave. 

In those early days, the Editor carried everyone's address, telephone num-
ber, and research paper in his head. Although carrying a full teaching load, 
Vern still answered all correspondence personally, often writing more than 50 
letters a week. He carried on such a prolific correspondence on Fibonacci mat-
ters that he frequently slept for only four hours a night. While I lived only 
across town, I would receive two or three letters each week because Vern wanted 
to put his thoughts on paper. Then he would call me for feedback, often before 
I had received the letters! Vern put his family to work stapling reprints and 
mailing them to the authors, and gave his graduate students proofreading, typ-
ing, and other tasks. I once spent many hours proofreading the first 571 Fibo-
nacci numbers (F571 has 119 digits) in an attempt to make the project perfect; 
however, the printer's helper dropped the tray of lead characters, transposing 
50 digits of F521 and F522l Nevertheless, that article, which appeared in the 
October 1962 issue of Recreational Mathematics Magazine, was a good source of 
publicity for the soon-to-appear Fibonacci Quarterly. I also remember that he 
had such a concern for struggling foreign authors that he asked me to do a bit 
of ghost-writing because he didn't have the heart to reject their papers. 

As Managing Editor, Brother Alfred kept track of all subscription and book 
orders and the mailing list. He mailed everything from St. Mary's College and 
soon had an entire basement devoted to storing Fibonacci magazines and books. 
When the fifty pound boxes of magazines arrived from the printer, he had to 
carry them to the basement and then haul them back upstairs to mail them. Be-
cause of the large volume of manuscripts, whenever the Association could raise. 
extra money, they published an extra issue, SO there were five Or Six ISSlieS 3. 
year at times after 1966. Storage space kept filling up; when the back issues 
and books were transferred to Santa Clara University in 1975, there were 257 
boxes. (A Fermat number!) 

Brother Alfred wrote a number of elementary articles to interest and stim-
ulate beginners, teachers, and students, and compiled several books of tables 
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which are still available from The Fibonacci Association. He could generate 
new pages for the books at such a prodigious rate that I found it difficult to 
keep up with the proofreading. He gave lectures at nearly every meeting of 
mathematics teachers in California for years. And, of course, all of this was 
in addition to his teaching load. 

Brother Alfred seemed always to have a new Fibonacci-related problem or a 
new approach to present. He was interested in phyllotaxis and collected more 
than 6000 pinecones, including cones from the twenty native pine trees of Cali-
fornia, because the Fibonacci sequence occurred in the spirals of the cones. 
Vern once sent him a "Lucas" sunflower that exhibited Lucas numbers instead of 
the expected Fibonacci sequence; Vern had grown the sunflower himself especial-
ly to count its spirals. 

\ / 

•j%j*t 

Verner E. Hoggatt, Jr., and Brother Alfred Brousseau 

October 20, 1973 
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A SHORT HISTORY OF THE FIBONACCI QUARTERLY 

In January 1968, the Board of The Fibonacci Association was formed to set 
policy and to provide continuity for The Fibonacci Association and its publi-
cations. The members of the original Board of The Fibonacci Association were: 
Brother Alfred Brousseau, Verner E. Hoggatt, Jr., G. L. Alexanderson, George 
Ledin, I. Dale Ruggles, and myself. For many years, a research conference was 
held annually, and a special conference for high school teachers and their stu-
dents was held at the University of San Francisco for five consecutive years. 

By 1972, The Fibonacci Quarterly was listed regularly in both Mathematics 
Reviews and Zentralblatt fur Mathematik, and a fine article entitled "A Magic 
Ratio Recurs Throughout Art and Nature" appeared in the December 1975 issue of 
Smithsonian. Also, Vern was invited to write an article for the 1977 Yearbook 
of Encyclopaedia Britannica, in "Science and the Future," pp. 177-192. 

Brother Alfred continued as Managing Editor for 13 years, until his retire-
ment in 1975, and Vern Hoggatt served as Editor for 18 years, until his death 
on August 11, 1980. It is hard to imagine The Fibonacci Quarterly having been 
published for so long if it had not been for the propitious meeting and endur-
ing friendship of two such talented men and their interest in an obscure math-
ematical sequence, 1, 1, 2, 3, 5, 8, ... . 

The 1987 volume marks the twenty-fifth year of publication of The Fibonacci 
Quarterly, which has evolved into a research journal with international sub-
scribers. (There are over 200 foreign subscribers, mostly from West Germany, 
Canada, Japan, Australia, The United Kingdom, Greece, and Italy, but represent-
ing 36 other countries as well.) 

Long live Fibonacci! 
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A SYSTEMATIC SEARCH FOR UNITARY HYPERPERFECT NUMBERS 

PETER HAGIS, JR. 
Temple University, Philadelphia, PA 19122 

(Submitted January 1985) 

1. INTRODUCTION 

If m and t are natural numbers, we say that m is a unitary hyperperfect 
number of order t if 

m = 1 + t[o*(m) - m - 1], (1) 

where o* {m) denotes the sum of the unitary divisors of m. m is said to be a 
hyperperfect number of order t if 

m = 1 + t[a(7w) - m - 1], (2) 

where a is the usual divisor sum function. Hyperperfect numbers (HP's) were 
first studied by D. Minoli & R. Bear [4], while the study of unitary hyperper-
fect numbers (UHP?s) was initiated by the present author [3]. H. J.J. te Riele 
[6] has found all (151) HPTs less than 108 as well as many larger ones having 
more than two prime factors. D. Buell [2] has found all (146) UHPTs less than 
108. More recently, W. Beck & R. Najar [1] have studied the properties of HP's 
and UHP's. One of the results they obtained was the following. 

Proposition 1: If m is a unitary hyperperfect number of order t , then (m, t) = 
1 and m and t are of opposite parity. 

The purpose of the present paper is to develop a search procedure, differ-
ent from that employed by Buell, which can be used to find all of the unitary 
hyperperfect numbers less than a specified bound with a specified number of 
distinct prime factors (provided the necessary computer time is available). 

2. THE GENERAL PROCEDURE 

Suppose that m = arysx, where r and s are distinct primes, yX 4- 0, and 
(a, rs) - 1. If m is a unitary hyperperfect number of order £, then, since a* 
is multiplicative and o*(ry) = 1 + rY, it follows from (1) that 

[a - t(o*(a) - a)]rYsA - ta*(a)[pY + sx] = 1 + t[o*(a) - 1]. 

Multiplying this equality by a - t(o*(a)-a) and then adding [to* (a)]2 to each 
side, we obtain 

{[a - t(o*(a) - a)]ry - to*(a)}ila - t{o*{a) - a)]sx - to*(a)} 
= [a - t(o*(a) - a)][l + t(o*(a) - 1)] + [to*(a)]2. (3) 

If AB9 where 1 < A < B, is the "correct" factorization of the right-hand 
member of (3), then we see that 
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rT = [to*(a) + A]/[a - t(o*(a) - a)], 
(4) 

sA = [to*(a) + B]/[a - t(o*(a) - a)]. 

Since the steps just described are reversible, given values of a and t, if 
a factorization AB of the right-hand member of (3) can be found for which the 
right-hand members of (4) are distinct prime powers relatively prime to a, then 
the integer arysx is a unitary hyperperfect number of order t . Of course, for 
most values of a and t the right-hand members of (4) will not both be integers, 
let alone prime powers. It should be mentioned that the above derivation of 
(4) is basically due to Euler via H. J. J. te Riele (see [5]). 

3. THE CASE a = 1 

If, in (4), we set a = 1, then, since G*(l) = 1, it follows that ry - t + A 
and sA = t + B, where, from (3), AB = 1 + t2. Suppose that t is odd. Then 
AB E 2 (mod 8) and it follows that A and B are of opposite parity. Therefore, 
without loss of generality, r = 2 and, since 3\tsx (see Fact 1 in [3]), we have 
proved the following result. 

Proposition 2: If 77? = rysx is a unitary hyperperfect number of odd order t9 
then 2 IT?? and either 77? = 2Y3X or 3 It. 

Using the CDC CYBER 750 at the Temple University Computing Center, a search 
was made for all unitary hyperperfect numbers less than 10ltf of the form 2Y3 • 
Only two were found: 

2 - 3 (t = 1) and 25 • 32 (t = 7). 

The search required less than one second. 

We now drop the restriction that t be odd. 

Proposition 3'- If m = rysx = RS is a unitary hyperperfect number of order t9 
then m > 4t2. 

Proof: RS = 1 + t(o* (RS) - RS - 1) = 1 + t(R + S) . Therefore, R > t(l + i?/£) . 
Similarly, S > t(l + S/R)9 and it follows that 

RS > t2(l + i?/5 + S/i? + 1) > 4t2. 

From Proposition 3, we see that all unitary hyperperfect numbers less than 
1010 and of the form rysx can be found by decomposing 1+t2, for 1 < t < 50000, 
into two factors A and B and then testing t + A and t + B to see if each is a 
prime power. This was done, and 822 UHPfs less than 1010 with two components 
were found. 790 were square-free and, therefore, also HPfs. Of the remaining 
32 "pure" UHP*s, all but one, 32 * 25 (t = 7), were of the form rys or rsA. t 
was odd for only ten of the 822 numbers, the two largest being 

213 • 33413 (t = 6579) and 2 1 5 • 238037 (t = 28803). 

The complete search took about five minutes of computer time. 
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4. AN IMPORTANT INEQUALITY 

In this section, we shall generalize the inequality of Proposition 3. 

Proposition 4: Suppose that m is a unitary hyperperfect (or a hyperperfect) 
number of order t with exactly n prime-power components. Then m > (nt)n. 

Proof: Suppose first that n = 3 and 77? = paq&ry = PQR, where P > Q > R. From 
(1) [and (2)], it follows easily that 

PQR > t(PQ + PR + QR). 

If A = P/Q and B = P/R, then 

P > t(l + A + B), Q > t(l + B/A + 1/A), and R > t(l + A/B + 1/5). 

Therefore, 

m = PQR > t3(l + A + B)3/AB. (5) 

If F(xs y) = (I + x + y)3/xy, where x > 0 and y > 0, then 

ZF/dx = (1 + x + y)2(2x - y - 1)/x2y 
and 

8P/8z/ = (1 + x + 2/)2(22/ - x - l)/xy2. 

It follows easily that, if x > 0 and z/ > 0, then POr, y) > P(l, 1) = 33. From 
(5), we have m > (3t)3. 

Now suppose that n = 4 and 777 = paq$rysx = PQRS, where P > Q > R > 5. From 
(1) [or (2)], 

PQRS > t(PQR + PQS + PRS + QRS). 

If A = P/§, 5 = P/P, and C = P/£, then 

P > t(\ + ,4 + B + C), Q > t(l + B/A + C/A + l/A)9 

R > t(l + 4/B + C/B + 1 /5 ) , and S > t(l + A/C + S/C + 1/C). 

Therefore, 

tfz = P^P5 > th (I + A + B + C)h I ABC. (6) 

If G(x, y, z) = (1 + x + y + z)^/xyz, where x > 0, z / > 0 , 3 > 0, then 

3£ /3^ = (1 + x + z/ + s ) 3 ( 3 x - y - z - l)/x2yz, 

dG/dy = (1 + # + y + S ) 3 ( 3 T / - x - 2 - l ) / / y 2 x s 5 

and dGfdz = (1 + x + y + z)3 (3s - x - y - l)/z2xy. 

It follows that G(x, zy, s) has a minimum at (1, 1, 1) and that G(x> y, z) ^ 4 
if x > 0, z/ > 0, 3 > 0. From (6), we see that 777 > (4t)4. 

A similar argument can be used for any value of n that exceeds 4. 
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5- THE CASE a = pa 

If, in (4) and the right-hand member of (3), we set a = pa, then, since 
o* (pa) = pa + 1, it follows that 

ry = (to*(pa) + A)/(pa - t) and sx = (to*(pa) + B) / (p<* - t) (7) 
where 

AB = (pa - t)(l + £pa) + t2(pa + l) 2. (8) 

If m = papTsAis a UHP of order t such that 777 < 109, then it is easy to see 
that if pa is the smallest prime-power component of m3 pa < 1000. From Propo-
sition 4, t < 1000/3. All solutions of (7) and (8) (with A<B) were sought with 
2 < pa<997, 1 < t < 333, and parYsA<109. The search yielded nine UHP's less 
than 109. Five of these were given in [2]. The four new ones are: 

26 • 659 • 2693 (t = 57); 67 • 643 • 792 (t = 60); 

547 • 569 • 1259 (t = 228); 72 • 79 • 119971 (t = 30). 

The search required about thirty minutes of computer time. 

6. THE UHP's LESS THAN 109 

Let Mn denote the set of all unitary hyperperfect numbers m such that m < 
109 and 777 has exactly n distinct prime divisors. From Fact 2 in [3], M1 is 
empty and, from the searches described in Sections 3 and 5, M2 and M3 have 330 
and 9 elements, respectively. Since 2 • 3 • 5 • 7 • 11 • 13 • 17 • 19 • 23 • 29 > 109, 
we see that Mn is empty if n > 9. If n = 8 or 9, then, from Proposition 4, it 
follows easily that t = 1 so that, if m eMQ or m e Ms, then m is a unitary per-
fect number (o*(m) = 2m). Since there are no unitary perfect numbers less than 
109 with 8 or 9 prime-power components (see [7]), it follows that both MQ and 
M9 are empty. 

If 77? < 109, then, from Proposition 4, if n = 4, then t < 44, if n = 5, then 
t < 12, if n = 6, then t < 5, if n = 7, then t < 2. Subject to these restric-
tions on £, and with a restricted so that rY is greater than every prime-power 
component of a while arYsx < 109,a search was made for solutions of (4). This 
search required two-and-one-half hours of computer time, and it was found that 
Mk9 M6, and M7 are empty, while M5 has one element, 26 • 3 • 5 • 7 • 13 (t = 1) . 
Thus, there are exactly 340 UHP's less than 109. 

It should, perhaps, be mentioned that while Mh is empty, one UHP with four 
prime-power components was found: 59 °  149 * 29077 °  10991483959 (t = 42) is both 
a UHP and an HP (since it is square free). It does not appear in te Riele's 
lists of HP's and may be the smallest HP with exactly four distinct prime fac-
tors . 
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CYCLIC COUNTING TRIOS 

STEVEN KAHAN 
Queens College, Flushing, NY 11367 

(Submitted February 1985) 

In this paper, we extend the concept of mutually counting sequences dis-
cussed in [1] to the case of three sequences of the same length. Specifically, 
given the positive integer n > 1, we define three sequences, 

A: M O ) , a(l), ..., a(n - 1), 

B: M O ) , M l ) , .... b(n - 1), 

C: M O ) , M l ) , •-., c(n - 1), 

where a(i) is the multiplicity of i in 5, M j ) is the multiplicity of j in C, 
and M & ) is the multiplicity of k in 4̂. We call the ordered triple (A9B9 C) a 
cyclic counting trio, and we make some preliminary observations: 

(i) the entries in sequences A, B, and C are nonnegative integers less 
than n. 

(ii) if S(A) = "I] a(i)s S(B) = " E M J ) , and 5(C) = *£ <?(&)> then 
i=0 J = 0 & = 0 

5(4) = S(B) = S(C) = n. 

(iii) if (A, B9 C) is a cyclic counting trio, then so are (5, C, A) and 
(C, A, B) . Such permuted trios will not be considered to be differ-
ent . 

We say that the cyclic counting trio (A, B9 C) is redundant if A9 B, and C are 
identical. In what follows, we show that there is a unique redundant trio for 
each n ^ 7': 

M O ) = n - 4, M l ) = 2, a(2) = 1, a(n - 4) = 1, M i ) = 0 
for all remaining i . 

There are also two redundant trios when n = 4,. one when n = 5, and no others. 
Furthermore, we show that a nonredundant trio results only when n = 7: 

M O ) = 4, M l ) = 1, a(3) = 2, M 2 ) = M 4 ) = M 5 ) = a(6) = 0; 

M O ) = 3, M l ) = 3, M 4 ) = 1, M 2 ) = b(3) = i(5) = b(6) = 0; 

c(0) = 4, M l ) = M 2 ) = M 4 ) = 1, c(3) = M 5 ) = M 6 ) = 0. 

As a way to become familiar with the problem, we invite the interested 
reader to investigate the existence of cyclic counting trios when n < 7. We 
will therefore proceed under the assumption that (A s B9 C) is a cyclic counting 
trio and that n > 7. For future reference, we let 

n* = n - \~1 , 
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and note that 

ft - r . 

~TZ if ft is even, 
rr 

^n + 1 if ft is odd. 2 

Since n ^ 7, it follows that ft* ̂  4. 

I. For each N > n*, a{N) = 0 or 1, b(N) = 0 or 1, and g(N) = 0 or 1 

If a(tf) > 2, then N appears at least twice in B. So 

n if n is even, 
ft = 5(B) > 2N > 2n* 

^n + 1 if n is odd, 

which is only possible when n is even. In this case, 

N = n* = y and afyj = 2, 

which implies that ft/2 appears exactly twice in B. Thus, 0 must appear exactly 
ft - 2 times in 5. Then 

a (0) = n - 2, a(-y) = 2, and the n - 2 remaining entries of A are 0 

=^> e(0) - n - 2, c(2) = 1, <?(n - 2) = 1, and the n - 3 remaining entries 
of C are 0 

=> M O ) = n - 3, M l ) = 2, bin - 2) = 1, and the ft - 3 remaining entries 
of B are 0 

=̂ >a(0) = n - 3, a contradiction. 

Conclude that a(#) = 0 or 1, and use a similar argument to show that b(N) = 0 
or 1 and c(N) = 0 or 1, 

11. q(j') = 1 for at most one j ^ ft* , Z?(/c) = 1 for at most one k > ft* , 

and g(£) = 1 for at most one & ̂  re*. 

Let # and N' be distinct integers, each ̂  ft*, and suppose that 

a(N) = a(/l/f) = 1. 

Then , . ,. 
n if n is even, ft = 5(5) > i!7 + N' > 2n* = < a contradiction. 

\n + 1 if n is odd, 

Conclude that there is at most one j > ft* such that a(j) = 1. Similarly, there 
is at most one k ^ n* such that M/c) = 1 anci a t most one £ > ft* such that o{l) 
= 1. Note that this result implies that 0 appears at least 

n - f t * - l = — - 1 •tt ] 
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times in A9 Bs and C9 so that 

a(0) > [f] - 1, HO) > [|] - 1, and M O ) > [f] - 1. 

111. If g(j) = 1 for some j > n* , then b(0) = j . 

Assume that a(j)= 1 for some j ^ n* . Then j appears exactly once in B, so 
that Mj*) = J for some integer j* . This means that j * appears j times in (7. 

r n if n is even, 
If j* > 2, then « = 5(C) > j*j > 2j > 2n* = < 

(n + 1 if n is odd, 

which is only possible when n is even, j* = 2, and j = n/2. Hence, 2 appears 
n/2 times in C, and since n = M O , it follows that 0 appears n/2 times in C as 
well. Thus, h(0) = n/2, b(2) = n/2, and the n - 2 remaining entries of B are 
0. This implies that a(0) = n - 2, a(n/2) = 2, and the 7^-2 remaining entries 
of A are 0, contradicting the assumption that a(j) = 1 for some j ^ n*. Thus, 
either j* = 1 or j* = 0 . 

Assume that j* = 1. Then M l ) = j, so that 

rz = S(B) > M O ) + M l ) > [f] ~ 1 + J > [f] - 1 + n* = n - 1. 

This t e l l s us that MO) + M l ) = n or MO) + M l ) = n~ l- I f MO) + M D = ^ , 
then 

M O ) = n - j s M l ) =J 9 and the n - 2 remaining entries of 5 are 0 

=> a(0) = n - 2, a(j) = 1, a(n - j) = 1, and the n - 3 remaining entries 
of A are 0 

[If n - j and j were equal, then a(j) = 2, a contradiction.] 

=^c(0) = n - 39 c(l) = 2, e(n - 2) = 1, and the n - 3 remaining entries 
of C are 0 

=>M1) = l. 

This means that j = 1, contradicting the fact that j > n* ^ 4. 
If M O ) + M l ) = n - 1, then 

M O ) = n - j - 1, M l ) = <7, 

one of the remaining entries of B is 1, and the other n - 3 remaining entries 
of £ are 0. If n - j - 1 = j, then a(j) = 2, a contradiction. If n - j - 1 = 
1 or 0, then M 0 ) = 1 or 0, contradicting the fact that 

M0) > [f] 1 > 2. 

Hence, the integers 0, 1, J, and n - j - 1 are all distinct. This means that 
1, j, and n - j - 1 each appear once in 59 and the n - 3 remaining entries of 
5 are 0. So 

a(0) = n - 3, a(l) = 1, a(n - j - 1) = 1, a(j) = 1, 
and the n - 4 remaining entries of ̂ 4 are 0 
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=> c(0) =?-2-45 c{\) = 3, c{n - 3) = 1, and the n - 3 remaining entries 
of C are 0 

=»Mi) = i. 

Once again, this means that j = 1, a contradiction. 
Therefore, j* ̂  1. Conclude that j * = 0 , so that if a(j) = 1 for some 

j > ft* , then Z?(0) = J . 

IV. If n > 7, there exists j ^ ft* such that a(j) = 1. 

Assume that a(N) = 0 for all N > n*. Since &(0) > y - 1, two possibil-

ities exist: either b(0) = y - 1 or b(0) = y when ft is odd. (if &(0) = 

— when n is even or if b(0) ) T , then a(/l/) ̂  0 for some N ^ n*. ) 

Suppose first that b(Q) = -y - 1. Then 0 appears exactly \— \ - 1 times 

in C9 so that there are ^ ~ ( y - 1 ) = n* + 1 nonzero entries in C. Conse-

quently, 

„ =S(A) > £ i =ra*(w*?
+ 1}. 

i = 0 Z 

If ft is even, then this inequality becomes 

n ^ ~ , which is false for even n > 6. 

If n is odd, then this inequality becomes 

(^iH1 + 0 
n > , which is false for odd n > 3. 

Suppose next that b(0) = y when n is odd. Then 0 appears exactly — 

times in C, so that there are n - y = ft* nonzero entries in C Therefore, 

^ ^ ^ ^ » (n* - l)n* \~~2 l)\T~~) 
n = S(A) > E ^ = ~ J~^— = 9 » 

i = o 

which is false for odd n > 7. 

The conclusion follows. 
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f n = 7, a(N) = 0 for all N > n* = 4, and b(0) = [j~\ = 3, then two cycl ic 

counting trios exist, one of which is nonredundant. (These represent the 

only set of circumstances that did not lead to a contradiction in IV.) 

Since b(0) = 3 and S(B) = 7, it follows that 

E Mfc) = 4. 
k = 1 

Furthermore, 5(C) = 7 implies that 

6 

T,kb(k) = 7, 
fc = i 

For convenience, we will let {fc15 fc2, k3, kh, k5, kQ} represent some permuta-
tion of {1, 2, 3, 4, 5, 6}. From II, we know that 

a(0) > [f] 1 = 2. 

a (0 ) = 2 =̂> Z?(^x) = b(k2) = b(k3) = b{kh) = 1, Z?(/c5) = b(kB) = 0 
=» 7 = /c1 + A:2 + k3 + fc > 10, a c o n t r a d i c t i o n . 

a (0 ) = 3 =^b(k±) = 2 , Z?(k2) = b(k3) = 1, Z?(^) = b(k5) = 2?(kG) = 0 

=> 7 = 2k± + k2 + k3 => k± = 1, k2 = 2, k3 = 3 

^b(l) = 2 , 2?(2) = M 3 ) = 1. M 4 ) = b(5) = b(6) = 0 . 

Recalling that b(0) = 3, we find that 

a(0) = 3, a(l) = 2, a(2) = a(3) = 1, a(4) = a(5) = a(6) = 0, 

which, in turn, implies that 

c(0) = 3, c(l) = 2, c(2) = c(3) = 1, c(4) = o(5) = c(6) = 0. 

This is the redundant trio predicted for n = 7. 

a(0) = 4 ^b(k±) + b(k2) = 4, b(k3) = b(kh) = b(k5) = b(k6) = 0. 

If b(k±) = b(k2) = 2, then 2k± + 2A:2 = 7, a contradiction. If b(k±) = 3 and 
b(k2) = 1, then 3k x + & 2 = 7» s o that either k1 = 2 and /c2 = 1 or /^ = 1 and 
k2 = 4. In the first case, 2?(0) = 3, b(l) = 1, ZP(2) = 3, and the four remain-
ing entries of B are 0 =^a(0) = 4, a(l) = 15 a(3) = 2, and the four remaining 
entries of A are 0 =^c(0) = 4, e(l) = 1, c(2) = 1, <?(4) = 1, and the three re-
maining entries of C are 0 =$>b(l) = 3, a contradiction. 

In the second case, b(0) = 3, b(l) = 3, 2?(4) = 1» and the four remaining 
entries of 5 are 0 =#> a(0) = 4, a(l) = 1, a(3) = 2, and the four remaining en-
tries of A are 0 ==> c(0) = 4, c(l) = 1, c(2) = 1, c(4) = 1, and the three re-
maining entries of C are 0. This is the nonredundant trio predicted at the 
outset for n = 7. 
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a(O) = 5 ^b(k±) = 4 , b(k2) = b(k3) = b(k^) = b(k5) = fc(k6) = 0 
=̂  4/cx = 7, a contradict ion. 

a(O) = 6 ̂ M ^ ) = Z?(fe2) = b(k3) = b{kh) = b(k5) = b(k6) = 0 
=> 0 = 4, a contradiction. 

If n = 7 and a(j)= 1 for some j > n* = 4, then it is easy to verify that j 
must be 4. The cyclic counting trios that subsequently result are permuted 
versions of the nonredundant one just found. As a results we may now continue 
under the assumption that n > 7. 

VI. a(n* - 1) = 0; o(0) > R~1 . 

Suppose that a(n* - 1) ̂  0. Then n* - 1 appears at least once in B. Since 
b(0) = j and since j > n* implies j ^ n* - 1, we find that 

n = S(B) > j + (n* - 1) > n* + (rc* - 1) 

( n - 1 if n is even, 
= 2n* - 1 = 1 

{ n if n is odd. 

This tells us that a(n* - 1) = 1, i.e., n* - 1 appears exactly once in B» 
If n is even, then some other entry of B is 1 and the n - 3 remaining en-

tries of B are 0. Therefore, 

a(0) = n - 3, a(l) = 35 and the n - 2 remaining entries of A are 0 

=^ c(0) = n - 2S <?(3) = 1? c(n - 3) = 1, and the n - 3 remaining entries 
Of C SLTB 0 

=>Z?(1) = 2, a contradiction. 

If n is odd, then the n - 2 remaining entries of B are 0» Therefore, 
a(0) = n - 2S a(l) = 2, and the n - 2 remaining entries of ̂  are 0 

=>c(Q) = n - 2, c(2) = 1, <?(n - 2) = 1, and the n - 3 remaining entries 
of C are 0 

=>2?(1) = 2, again a contradiction. 

Hence, we conclude that a(n* - 1) = 0 . Using this fact and the observation 

following II, we can now assert that 0 appears at least ("y ~ ^ ) + * = I?" 

times in A, so that o(0) ^ \— \. 
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VII. If c(O) = k L then the only cycl ic counting trio that results is the 

redundant one for n = 8. 

[!]>ic fo Since c(0) = T , i t fo l lows t h a t a(i) + 0 fo r 1 < i < n* - 2 . Thus, each 

p o s i t i v e i n t e g e r l e s s than or equa l to n* - 2 appea r s a t l e a s t once i n B. Re-
c a l l i n g t h a t j appear s once in B a s w e l l , we ge t 

n =S(B) >j +
 nZ2i>n*+

 (W* - 2)
2

(W* ~ 1 } , 
I = 1 

i . e . , 

( n * ) 2 - n* + 2 
n > 

If n is odd, then n* = (n + l)/2 and this inequality leads to n2 - Sn + 7 < 0, 
a contradiction for odd n > 7. If n is even, then n* = n/2 and this inequality 
leads to n2 - lOn + 8 ^ 0 , a contradiction for even n > 8. 

The case in which ?2 = 8 produces the redundant cyclic counting trio with 
a(0) = 4, a(l) = 2, a(2) = 1, a(4) = 1, and a(i) = 0 for all remaining i . 

VI II. If c(0) > [^1, then Z? (n* - 1) = 0 and a(0) > f"̂ l . 

The fact that c(0) > \~\ implies that o(0) > n*. Therefore, &(&) = 1 for 

exactly one integer k > n* and c(0) = A:. If b(n* - 1) ̂  0, then n* - 1 appears 
at least once in C. Since k appears in C as well, and since 

k + (n* - 1) > [|1 + (n* - 1) = n - 1, 

0 = -

c(0) = [?] + *' 
it follows from 5(C) = n that the n - 2 remaining entries of C must be 0 and 
that 

Thus, 

M O ) = n - 2, i(|"fl + l) = 1, M«* - 1) = 1, 
L̂ J ' and the n - 3 remaining entries of £ are 0 

=>a(0) = n - 3, a(l) = 2, a(n - 2) = 1, 
and the n - 3 remaining entries of ̂  are 0 

^c(O) = n - 3, c(l) = 1, c(2) = 1, c(w - 3) = 1, 
and the n - 4 remaining entries of C are 0, 
contradicting the fact that b(Q) = n - 2. 

As a result, we conclude that bin* - 1) = 0, so that (as in VI), a(0) > — [f] 

1987] 17 



CYCLIC COUNTING TRIOS 

IX. If a(O) = y , no cyclic counting trio can be produced; if a(0) > \~ , 

then c{n* - 1) = 0. 

The argument used in VII can be employed to show that no cyclic counting 

trio results when a(0) = I— . ( The only possibility, the redundant trio for 

n = 8, is disqualified because M O ) > y .J If a(0) > y , then a(0) > ft*. 

Thus, M £ ) = 1 for exactly one integer £ ^ ft*, and a(0)= £. As in VIII, we can 
conclude that c(n* - 1) = 0. 

At this point, we are left with one case to consider: 

a(j) = 1, M O ) = j; b(k) = 1, M O ) = k; 

c{l) = 1, a(0) = £, where j, fc, £ > ft*. 

X. j = k = £. 

For convenience, let us write j = f t - P , / c = f t . - s , and £ = ft - £, where 

1 < P, s, £ < [I]. 
If p = 1, then j = n - 1, so M O ) = ft - 1. This means that ft - 1 entries 

of (7 are 0, contradicting the fact that o(0) - k and c?(£) = 1 . If r = 2, then 
j = n - 2, so M O ) = ft - 2. Since M O ) = k and c?(£) = 1, all remaining entries 
of C must be 0. Then n = S(C) = k + 1, implying that k = ft - 1. Hence, M O ) = 
ft - 1, so that ft - 1 entries of A are 0, contradicting the fact that a(0) = £ 
and a(j) = 1. Therefore, P ^ 1 or 2. Similarly, s £ 1 or 2 and t ^ 1 or 2. 

Suppose that a(i) ^ 0 for some integer i ^ v - 1, where i # j. (Note that 
£ > 2.) Then 

ft = M S ) > £ + j + l > p - i + j + l = .p + j = ft, 

which implies that i = P - 1 and that the ft - 3 remaining entries of 5 are 0. 
Hence, 

a(0) = ft - 3, M l ) = U aU) = 1, M*1 - 1) = 1, 
and the ft - 4 remaining entries of A are 0 

=>c(0) = ft - 4 , c ( l ) = 3 , c(ft - 3) = 1, 
and the ft - 3 remaining e n t r i e s of C a r e 0 

=>M0) = ft - 3 , M l ) = 1» M 3 ) = 1, Z?(ft - 4) = 1, 
and the 7-2-4 remaining entries of B are 0 

=^ a(0) = ft - 4, a contradiction. 

Consequently, a(i) = 0 for all integers i > p - 1, where i £ j . In a similar 
manner, we can show that 

b(i) = 0 for all integers i > s - 1, where i ^ ks 

and 
M i ) = 0 for all integers i ^ t ~ 1, where i ^ £. 
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Thus, 

e(0) > ((n - 1) - (r - 1) + 1) - 1 = n - r, =>k> j 
a(O) > ((n - 1) - (s - 1) + 1) - 1 = n - s9 =» I > k 

b(0) > ((n - 1) - (t - 1) + 1) - 1 = n - t, =>j > I 

These three inequalities together imply that j = k = £. 

XI. A unique redundant cyclic counting trio exists for n > 7 . 

From X, we now know that for some J ^ n*, 

a(j) = bU) = eU) = 1 and a(0) = b(0) = c(0) = j. 

Since &(£) = 0 whenever i ̂  r - 1 and i ^ j, this accounts for n - r = j 
zeros in 5. Because a(0)=j, it follows that b(i) ^ 0 for 1 < i < v - 2. Then 

n = 5(B) = J + 1 + t Hi), 
i = l 

which implies that 

r- 2 
£ Z?(i) = n - j - l = r - l . 
i = 1 

If v - 3 5 then £>(1) = 2, so that B consists of one entry of j = n - 3, one en-
try of 1, one entry of 2, and n - 3 entries of 0. Therefore, 

a(0) = n - 3, a(l) = 1, a(2) = 1, a(n - 3) = 1, 
and the n - 4 remaining entries of A are 0 

=> c(Q) - n - 4, contradicting the fact that c(0) = J = n - 3. 

So P > 3. Then 

r-2 

E&(i) = r - 1 
i = l 

implies that one of the terms in the sum is 2 and each of the v - 3 others is 
1. Thus, B consists of one entry of j, one entry of 2, v - 2 entries of 1, and 
j entries of 0. Then 

a(0) = j, a(l) = v - 2, a(2) = 1, a(j) = 1, 
and the n - 4 remaining entries of A are 0, 

which implies that c(0) = ft - 4. 
If j / n - 4, then the resulting contradiction indicates that no cyclic 

counting trio can be produced; if j = n - 4 (i.e., if r = 4), we have 

a(0) = n - 4, a(l) = 2, a(2) = 1, a(n - 4) = "1, 
and the n - 4 remaining entries of A are 0 

=*><?(0) = n - 4, <?(1) = 2, c(2) = 1, c(n - 4) = 1, 
and the n - 4 remaining entries of C are 0 
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M O ) = n - 4, M l ) = 2, M 2 ) = 1, bin - 4) = 1, 
and the n - 4 remaining entries of B are 0. 

This is the previously mentioned cyclic counting trio for n > 7. 
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1, INTRODUCTION 

By defining certain matrices of order 2, we are enabled to derive fresh 
properties of Pell polynomials Pn(x) and Pell-Lucas polynomials Qn(x) addi-
tional to those obtained by us in [5], Our work, in summarized form, is an 
adaptation and extension of some ideas of Walton [6], based on earlier work by 
Hoggatt and Bicknell-Johnson [2].* 

The Pell and Pell-Lucas polynomials which are defined, respectively, by the 
recurrence relations 

and 
Pn + 2(oc) = 2xPn+1(x) + Pn(x), PQ(x) = 0, P1(x) = 1 

Qn + 2(x) = 2xQn + 1(x) + Qn(x)i QQ(x) = 2, Q^x) = 2x 

(1.1) 

(1.2) 

and some of their basic properties which will be assumed without specific ref-
erence, are discussed by us in [3]. 

To conserve space, we offer our results in a condensed form. This approach 
has the added virtue of emphasizing techniques. 

Convention: For visual ease and simplicity, we abbreviate the functional nota-
tion, e.g., Pn(x) = Pn5 Qn(x) = Qn. 

2. THE ASSOCIATED MATRICES J AND L 

Let 

J -P -P 
2 0 

(2.1) 

whence, by induction, 

Jn 

-Po -p„ 
(2.2) 

Equating corresponding elements in J m-j-n _ jirij-n J'"Jn gives 

P P 
2 2(m + n) 

P P 
2(m + l) 2n 

P P 
L 2m 2 ( n - l ) s 

(2.3) 

Walton was given a copy of the Hoggatt and Bicknell-Johnson paper while he 
was writing his thesis. This paper was only published in 1980. 

1987] 21 



PELL POLYNOMIAL MATRICES 

The characteristic equation of J is 

X2 - Ph\ + Pz = 0, 

so, by the Cayley-Hamilton theorem, 

J2 = P J - P2I. 
k 2 

Extending ( 2 . 5 ) , we have 

jln + j = _ p2J)njJj 

whence, by (2.2), 

From (2.5), 

p ; j n = ( J Z + p 2 j ) r 

Equating corresponding matrix elements and simplifying, we get 

Consider, with appeal to (2.5), 

Hence, 

(J + P2I)Z = (Ph + 2P2)J = Sx(xz + I) J. 

{8x(x2 + 1)}V = Z (2")P22n"^ 
r= 0 X ' 

Now equate corresponding elements. Simplification then yields 

In 

E 
Next write 

2n 0 

£(2w)po = 4"(x2 + 1)"P, . 

L = 
?3 ?1 

(so |£| = \J\ = -4x2), 

Then, by (2.2) and (2.13), 

JnL = P" 
P P 

2n+3 2rc+l 

-P -P 
2n+l In-1 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

whence 
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J2n + JL = £ {-iyln)pfpn
h-rjn-r + JLf ( 2 _ 1 5 ) 

r=0 X P / 

and so [cf . ( 2 . 7 ) ] 

P4n+2j + l = L C " 1 ) ( p ) ^ 2 P 2 n - 2 2 > + 2 j + l ° ( 2 . 1 6 ) 
p = 0 

From ( 2 . 5 ) , 

Vn
hJnL 

r=0 
Z (l)P?-2PJ*»L, ( 2 .17 ) 

whence, by ( 2 . 1 4 ) , 

t(l)Pfyr+1-Qn
2P2n+1- (2-18) 

i> = 0 x ' 

Equat ion (2 .10) l e a d s to 
(J + P2I)2nL = {8x(x2 + l)}nJnL, ( 2 .19 ) 

S ( 2
p

n ) P 2 , + i = ^ ( * 2 + D n P 2 n + 1 . (2 .20) 

from which 

In 

E 
p = 0 x 

Again from ( 2 . 1 0 ) , 
(J + P 2 J ) 2 n + 1 = {8x(x2 + l ) } V n ( J + P 2 J ) . (2 .21) 

Corresponding entries, when equated, produce 

" E 1 ^ > 2 r = 4"(x2 + l)"e2B + 1. (2.22) 
r= 0 x z ' 

Mul t ip ly both s i d e s of (2 .21) by L. In t h e u s u a l way, 

2%{2n+ > 2 r + 1 = 4*(*2 + l ) " « 2 n + 2 . ( 2 .23 ) 

Next, from (2.5), after some algebraic manipulation, 

{J - (4:c3 + 2x)l}2n = (4^)* • 4n(*2 + l)nJ, (2.24) 

so that 

E(-Dr(2,nW + l)>P^_2r = 0 (2.25) 
r = 0 x z ' 

and 

E V i r P ) ^ + lYPhn_2r+2 = Pf+1(s2 + 1) \ (2.26) 

Now multiply (2.24) by L. Consequently, 

L(-lf(2r)(2x2 + D r P t e . 2 r + 1 = * 2 * { 4 ( * 2 + 1 ) } " . (2 .27 ) 
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Next, multiply both sides of (2.24) by J - (4ar + 2a;)J. It follows that 

2n + 1 

E 
r=0 

*Z\-D'(2n+ 1 ) (2x 2 + D r P ^ . 2 r + 3 = k(2x)2n + Hx2 + l)n. (2.28) 

Other r e s u l t s f o r Pn, some of them q u i t e compl i ca t ed , may be found in [ 4 ] , 
e . g . , formulas ob t a ined by c o n s i d e r i n g Jns+J and JnsL. One such formula i s 

Ps P = y (S)PS+VPI> P 
2n 28 + 1 ^ \ r / 2 2 n - 2 . 2n(s -2*)+l ' 

Observe, in passing, that induction leads to 

Ln = p„-i 
n + 2 « 

3. THE MATRICES K AND M 

We are able to derive other identities by defining 

K 
P P 

-P -P , M 
P P 

-P -P 

and following the techniques used above. The results are listed: 

Rn = pn-l 
P P hn+h hn 
-p -p 

P P = P P - P P 
h h{m + n) h{m+±) hn hm * t (n - l ) 

Z2" = (P8Z - P 2 J ) n 

pnp = F r - n r f n , \ p n - p P p p 
2»= 0 

p w p = v r-i vp/n^pn"pprp 
^1^8*1+if ^ V ; \ p / 8 "tS(n + l-r) 

PnP = pn V | w ) p 
8 hn h £-* \ V I 8r 

y (2n\p = n2np 
,_ n \P / t+r 2 4n 

? + 1 . 
y I2n+ 1\ __ nm+ip 

p = 0 
2rc + 1 

p= 0 

KnM = P* 
P P 

iin+ 5 4 » + i 
-P - P 

(2 .29) 

(2.30) 

(3 .1 ) 

(3.2) 

(3.3) 

(3.4) 

( 3 . 5 ) 

(3 .6 ) 

(3 .7 ) 

(3 .8 ) 

( 3 . 9 ) 

(3 .10) 
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T (2n)p = 02nP 

V t 1 ( 2 n + 1 \ = Q2n+lp 
2rc + 1 

E 
r= 0 

M n = Pn_1 
P P 

~P„ -P 

(3.11) 

(3.12) 

(3.13) 

Additional information on the matrix K is given in Mahon [4]. 

h. THE MATRICES N AND U 

In like manner, by defining the matrices 

P P 

-P -P 
2 -2 

, tf 
p . 

-p - p 
3 -1 

(4.1) 

and again using techniques similar to those aboves we prove further identities 
which are listed: 

KnN = P 

In 

P P 
«m+6 hn+2 

-P -P 
hn+2 hn -2 

2(?K.,-< 
~ n \ v )rhv + : 

r = 0 

2n+ 1 

r = 0 ^72 +4-

P P 
4n+7 4n+3 

-P -P 
*m+3 4n-l 

2n+ 1 

E 
r= 0 

' "tn+ 5 

(4.2) 

(A.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

See [4] for further, more complicated results-

From what has been said in the above sections, it appears that there is a 
chain of matrices of the type given which would produce formulas of (perhaps)-
minor interest. 
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5. THE MATRIX W 

We now introduce a matrix having the property of generating Pell and Pell-
Lucas polynomials simultaneously* It was suggested by a problem proposed by 
Ferns [1], 

W 
2x 1 

_4(x2 + 1) 2x_ 

Induction leads to 

W7 
i,{x2 + l)Pn 

Then 

Now 

0 

_2_ 
= 2n P"l 

_«„_ 

7m+n _ 0m+n-l 

(\W\ = -4). 

4(^2 + l)Pw+n 
by (5.2) 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

4(x2 + D P , 4(^2 + l)Pn 
by (5.2) also. 

Corresponding entries give formulas (3.18) and (3.19) for Pm+n and Qm+ns 
respectively, appearing in [3]. 

The characteristic equation for W is 

A2 - kx\ - 4 = 0S 

whences by the Cayley-Hamilton theorem, 

Wz hxW - 4J = 0, 

W2n = kn{xW + T) n. 

(5.5) 

(5.6) 

(5.7) 

Algebraic manipulation, after multiplication by WJ, produces the formulas 
f o r pzn + j a n d Szn+y* (3.28) and (3.29), in [3], 

Inductions with the aid of (5.6), yields 

wn = 2
n'1(PnW + 2P„.1J). 

Considering Wns+J and tidying up, we have 

wna+j = 2(w-l)s V / s \p2'pe~2'2s"P^P + ji 

(5.8) 

(5.9) 

givxng 
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•w = 0 

i {Sr)KK:X+r (5-11) 
and 

r= 0 

Further, 
2n 
£ ( 2

p
n ) ( ^ ) P + J ' 2 2 n - p = (xW + 2I)2nWJ' 

= 0c2 J/2 + 4#J/ + 4J ) n ^ J ' 
= (x2 + l)ntf2n+^, by (5 .6 ) . (5.12) 

and 
2n 

Accordingly, 

2n 
C 
= 0 

2n 
r = 0 

From (5,12) , 
2n+ 1 

E 
and we deduce 

2n+ 1 

E 
p = 0 

and 
2w + 1 

•> = 0 

E( 2
r >^ + , = (*2 + l)"fl2 f > +^ (5.W) 

i + 1 
E ( 2 w + 1 ) ( x & 0 r 2 2 n + 1 - r = (x2 + l)nW2n(xW+ 21) (5.15) 

E ( 2 n
r

+ V ^ = ^ 2 + DBe2„+i <5-16) 

= 0 N ' 

E P + ^ ' O , = 2(x2 + D n + 1 P 2 B + 1 . (5-17) 
p = 0 ' 

Alsos from (5 .6 ) , 

(teW)n = (W2 - 4 J ) n , (5.18) 
whence 

and 
(2x)nPn = E ( - D r ( ; ) P 2 „ . 2 l . (5-19) 

r = 0 x ' 

(2*)*<3n = E ( - D r ( " ) « 2 n . 2 2 , . (5-20) 
T» = n x ' 2? = 0 

Let us revert momentarily to (5 .8 ) . 
Rearrange (5.8) and ra i se to the sth power to obtain 

2{n~l-)spsw8 = £ (-l)r(S) 2nrP* Wn(S~r) . (5.21)' 
r = 0 

I d e n t i t i e s such as 

P„\ = E ( - l ) ' ( r ) C l « n ( 8 . r , (5-22> 
r = 0 v ' 
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and 

PSP . = T (-l)r(S\pr P (5.23) 

flow from (5.21). 
The above information, together with complementary material in [5], offers 

some details of the finite summation of Pell and Pell-Lucas polynomials by 
means of matrices. Clearly, the topics treated are far from complete. For in-
stance, (5.1) extends naturally to 

W 
2m l 

f + 4( - i r 
[|^l= 4(-l)m], (5.24) 

from which new properties of our polynomials may be derived. Enough has been 
said, however, to indicate techniques for further development. 
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INTRODUCTION 

A well-known theorem of Lagrange [4, p. 302] states that every natural num-
ber can be represented as a sum of at most four squares. For each integer, k9 

such that 1 ̂  k ^ 4,let S% be the set of natural numbers, n, such that ( J is 

a sum of k (but not fewer) squares. We show that S1 is empty, S2 = {l, 3}, 
while S3 and S^ are both infinite. 

PRELIMINARIES 

Let p denote a prime. 

Definition 1: op(n) = k if pk\n, p \ n 

D e f i n i t i o n 2: tp(n) = £ ai i f n = • £ ^ P ' S wi th 0 < a^ < p fo r each -£. 
i = 0 i = 0 

£p(a&) = 0 p ( a ) + 0 p ( £ ) (1) 

n - tp(n) 
Opinl) = _ x (2) 

•(©. 
tp(7<) + kp(n - 20 - -tp(n) 

(3) 
P " 1 

tp(apj) = tp(a) for a l l a, j (4) 

0 2((2;)) -*2c„) (5) 

n ^ a 2 + £ 2 + £2 i f f n = 22/c(8w + 7) wi th k> 0, m> 0 (6) 

n ^ a2 + b2 iff there is a prime, p, such that 

p 'E 3 (mod 4) and op(n) is odd. (7) 

Remarks: (1) follows from Definition 1. (2) is [2, p. 131, Problem 7]. (3) 
follows from (1) and (2). (4) follows from Definition 2. (5) follows from 
(3) and (4). (6) is stated in [4, p. 311]. (7) is [4, p. 299, Theorem 366]. 
t2(n) is denoted #x(n) in [5]. 
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THE MAIN THEOREMS 

Theorem 1: If n ^ 1, 3, then there is a prime, p, such that p = 3 (mod 4) and 
n < p < 2n. 

Proof: Breusch [1] proved the conclusion for n ^ 7. If n = 2, then p = 3; if 
4 < n < 6, then p = 7. 

Theorem 2: ^ is empty; S2 = {1, 3}. 

Proof: If 2 < n < p < 2rc, then 2n < 2p , so op(( j) = 1. Therefore9 (7) and 
Theorem 1 imply 5X u S2 C {1, 3}. Since \\n// 

(J) = I2 + I2, arid-(|) = 4 2 + 2 2 , 

the conclusion now follows. 

Remark: That S± is empty also follows from the theorem of P. Erdos [3], which 

states that f -, J is not a power if k > 3. 

Definition 3: If n = 2ktfz, ft: > 0, m odd, then /(n) is the least positive resi-
due of m (mod 8) . 

Lemma 1: If m is odd, then f(m) = w (mod 8). 

Proof: The proof follows from the hypothesis and Definition 3. 

Lemma 2: If f(a) = f(b) (mod 8), then f(a) = /(fc) . 

Proof: The proof follows from the hypothesis and Definition 3. 

Lemma 3: f(ab) = f(a)f(b) (mod 8). 

Proof: Let a = 2°js b = 2dk, with o > 0, d > 0, jfc odd. Lemma 1 implies 

fUk) = jfe = fU)f(k) (mod 8). 

Now /(afr) = f(2°+djk) = /(jfc), while f(a)f(b) = f(j)f(k)s so 

/(ofc) = f(a)f(b) (mod 8). 

Lemma k: If /(2>) = 1, then f(ab) = /(a). 

Proof: The proof follows from the hypothesis and Lemmas 3 and 2. 

Lemma 5*. f(n2) = 1. 

Proof: If n = 2*m, fc > 0, m odd, then f(n2) = f(22km2) = j(m2)s Now, Lemma 1 
implies /(m2) = m2 = 1 (mod 8). But /(l)= 1, so we have /(n2) = /(l) (mod 8). 
Now2 Lemma 2 implies f(n2) =/(!)=!. 

Lemma 6: f((2^)) = f((2n)!) 

Proof: The proof follows from Lemmas 4 and 5, since (Jin) ! = ( n)(n!)2. 
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Definition k: Let gin) = f(nl). 

Table 1 lists g!(n) and t2(n) for each n such that 1 < n < 200. 

Table 1 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
81 
91 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

gin) 

1 
1 
3 
3 
7 
5 
3 
3 
3 
7 
5 
7 
3 
5 
3 
3 
3 
3 
1 
5 
1 
3 
5 
7 
7 
3 
1 
7 
3 
5 
3 
3 
3 
3 
1 
1 
5 
7 
1 
5 
5 
1 
3 
1 
5 
3 
5 
7 
7 
7 

V«) 
1 
1 
2 
1 
2 
2 
3 
1 
2 
2 
3 
2 
3 
3 
4 
1 
2 
2 
3 
2 
3 
3 
4 
2 
3 
3 
4 
3 
4 
4 
5 
1 
2 
2 
3 
2 
3 
3 
4 
2 
3 
3 
4 
3 
4 
4 
5 
2 
3 
3 

w 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

gin) 

5 
1 
5 
7 
1 
7 
7 
3 
1 
7 
3 
5 
3 
3 
3 
3 
1 
1 
5 
7 
1 
1 
1 
5 
7 
5 
1 
7 
1 
5 
5 
5 
7 
3 
7 
5 
3 
1 
1 
5 
7 
1 
5 
3 
5 
7 
7 
7 
5 
5 

t2(n) 

4 
3 
4 
4 
5 
3 
4 
4 
5 
4 
5 
5 
6 
1 
2 
2 
3 
2 
3 
3 
4 
2 
3 
3 
4 
3 
4 
4 
5 
2 
3 
3 
4 
3 
4 
4 
5 
3 
4 
4 
5 
4 
5 
5 
6 
2 
3 
3 
4 
3 

n 

101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 

gin) 

1 
3 
5 
1 
1 
5 
7 
5 
1 
7 
1 
7 
7 
7 
5 
1 
5 
7 
1 
7 
7 
3 
1 
7 
3 
5 
3 
3 
3 
3 
1 
1 
5 
7 
1 
1 
1 
5 
7 
5 
1 
7 
1 
1 
1 
1 
3 
7 
3 
1 

Vw> 
4 
4 
5 
3 
4 
4 
5 
4 
5 
5 
6 
3 
4 
4 
5 
4 
5 
5 
7 
4 
5 
5 
6 
5 
6 
6 
7 
1 
2 
2 
3 
2 
3 
3 
4 
2 
3 
3 
4 
3 
4 
4 
5 
2 
3 
3 
4 i 
3 
4 
4 

n 

151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 

I 190 
! 191 
192 
193 
194 
195 
196 
197 
198 
199 
200 

gin) 

1 
5 
5 
1 
3 
5 
1 
7 
1 
5 
5 
5 
7 
7 
3 
1 
7 
3 
3 
7 
5 
7 
3 
5 
3 
1 
1 
1 
3 
7 
3 
1 
7 
1 
1 
5 
7 
1 
5 
3 
5 
7 
7 
7 
5 
5 
1 
3 
5 
5 

t2(n) 

5 
3 
4 
4 
5 
4 
5 
5 
6 
2 
3 
3 
4 
3 
4 
4 
5 
3 
4 
4 
5 
4 
5 
5 
6 
3 
4 
4 
5 
4 
5 
5 
6 
4 
5 
5 
6 
5 
6 
6 
7 
2 
3 
3 
4 
3 
4 
4 
5 
3 
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Theorem 3: ( J + a2 + b2 + c2 iff t2(n) is even and g(2n) = 7. 

Proof: The proof follows from (5), (6), Lemma 6, and Definition 4. 

Theorem 4: Let k be a nonnegative integer. Then 

(a) 0r(8fc) =#(4k); (b) g(8k + 2) = #(4k + 1); 

(c) #(8k + 4) E 3#(4k + 2) (mod 8); (d) g(8k + 6) = 8 - #(4k + 3). 

Proof of (a): By Definition 4 and Lemma 4, it suffices to show that 

f(WM)= 1 for al1 k > °-
We proceed by induction on k. The statement is trivially true for k = 0. Now 

/(8(k + 1)!)\ /(8k + 8)!)\ = J (8k + 8)i(4k)i(8k)!\ 
J\(4(k + 1)!)/ J\(4k + 4)!)/ J\(8k)!(4k + 4)!(4k)!/ 

= r((8k + 8)!(4k)i\ 
J\(8k)!(4k + 4)!/ 

by i n d u c t i o n h y p o t h e s i s and Lemma 4 . But 

J(8k + 8 ) ! ( 4 k ) i \ 
J l ( 8 k ) ! ( 4 k + 4 ) ! / 

= fY<8fe + 8) (8k + 7) (8k + 6)(8k + 5) (8k + 4) (8k + 3) (8k + 2) (8k + 1 ) \ 
J \ (4k + 4) (4k + 3) (4k + 2) (4k + 1) / 

= f(2h(8k + 7)(8k + 5)(8k + 3)(8k + 1) = / ( 7 • 5 • 3 • 1) = / ( 1 0 5 ) = 1. 

Parts (b), (c), and (d) may be proved in similar fashion. 

' g(m) if 7W E 1 (mod 4), 
Theorem 5: g(2m) = < 

".8 - g(m) if 77? E 3 (mod 4). 

Proof: The proof follows from Theorem 4. 

Theorem 6: If either (i) 7?? E 1 (mod 4) and g(m) = 55 or (ii) 777 E -1 (mod 4) 
and g(m) = 3, then g(2m) = 5 and g(km) = 7. 

Proof: The hypothesis and Theorem 5 imply g(2m) = 5. Now m = 4r ± 1, so 

g(^m) = g(k(kv ± 1)) = g(8(2v) ± 4) = 3^(4(2r),± 2) = 3#(2(4r ± 1)), 

3̂ (2777) E 3 • 5 E 7 (mod 8), 

by Theorem 4(c). Therefore, g(km) = 7* 

Theorem 7' If m is odd and g(2m) = 5, then g(2km) = 7 for all k > 2. 

Proof: (Induction on k.) By Theorem 6S the statement is true for k = 2. If 
k > 2, then g(2km) = gr (8 (2^ ~ 3w)) = ̂ (4(2fe~3777)) = ̂ (2/c_17??) = 75 by Theorem 4(a) 
and the induction hypothesis. 
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Theorem 8: S3 is infinite, that is, there exist infinitely many n such that 

Proof: If m > 2, then t2(22m~1~- 1) = 2m - 1, and 22m~1 - 1 > 3, so that Theo-
rems 2 and 3 imply that 2 2 m _ 1 - 1 belongs to S3. 

Theorem 3: 6\ is infinite, that is, there exist infinitely many n such that 

Proof: By Theorems 3, 6, and 7, it suffices to find an 77? such that (i) t2(m) 
is even, and either (ii) m E 1 (mod 4) and gim) = 5, or (iii) m E 3 (mod 4) and 
#(/77) = 3- Examining Table 1, we find the following such m < 200: 

77? e {3, 15, 43, 53, 63, 147, 153, 175, 189}. 

Concluding Remarks: Let dn be the asymptotic density of Sn9 where 1 < n < 4. 
Since S1uS2 is finite, by Theorem 2, we have d1 = d2 = 0, so that d3 + dh - 1. 
If n is a randomly chosen natural number, let A be the event that t2(n) is 
even; let B be the event that g(2n) = 7. It is easily seen that Vr(A) = ̂ . 
Now dh = Pr(n e 54) = ¥r(A n B) < ?r(A) = h* Therefore, d3 > h* Table 1 sug-
gests that A and B are independent, and that Pr(5) = %. Therefore, 

Conjecture: c^ = 1/8, d3 = 7/8. 
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ON NONSQUARE POWERFUL NUMBERS 

R. A. MOLLIN1 and P. G. WALSH2 

University of Calgary, Calgary, Alberta, Canada T2N 1N4 
(Submitted March 1985) 

1. INTRODUCTION 

As introduced by Golomb in [l]s a powerful number n is a positive integer 
which has no prime appearing to the first power in its canonical prime decom-
position; i.e., if a prime p divides n, then p2 divides n. If n and m are 
powerful numbers, then n - m is said to be a proper difference of powerful num-
bers if g.Cod. (n, m) = 1. Golomb [1] conjectured that there are infinitely 
many integers which are not proper differences of powerful numbers. This was 
disproved by McDaniel in [3], wherein he gave an existence proof for the fact 
that every nonzero integer is representable in infinitely many ways as a proper 
difference of two powerful numbers. We provided a simple proof of this result 
plus an effective algorithm for finding such representations in [4]. However, 
in both our proof and McDaniel ?s proof one of the powerful numbers in such a 
representation is always a perfect square, except possibly when n = 2 (mod 4). 
Recently, Vanden Enyden [6] proved that also in the n = 2 (mod 4) case, one of 
the powerful numbers is always a square. We established in [4] that every even 
integer is representable in infinitely many ways as a proper nonsquare differ-
ence of powerfuls; i.e., as a proper difference of two powerful numbers neither 
of which is a perfect square. At this time, the only odd integer known to have 
such a representation is the integer 1 (see [7]). It is the purpose of this 
paper to complete the task; viz., to prove that every odd integer greater than 
1 (hence every integer) is a proper nonsquare difference of powerfuls, and to 
provide an algorithm for finding such representations. Therefore, this paper 
establishes the fact that every nonzero integer is representable in infinitely 
many ways as a proper difference of two powerful numbers where either one of 
the powerful numbers is a perfect square and the other is not, or neither one 
of them is a perfect square., 

For other work done on powerful numbers we refer the reader to our list of 
references, 

2. NONSQUARE POWERFUL NUMBERS 

To prove our main result, we will need the following lemma, which we state 
without proof since it is immediate from the binomial theorem. 

Lemma: If B is an integer which is not a perfect square and (T + UVB)Z = Tt + 
U^B, then 

?i = ZQky-?kU2kBk and U, - £ (?Ji , ) ^ ^ V * "V= -1, 

1This author's research was supported by N.S.E.R.C. Canada, grant ttA8484. 
2This author was a senior undergraduate mathematics student at the University 
of Calgary during the writing of this paper. 
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where ( ) denotes the binomial coefficient* 

We are now in a position to prove the main result. 

Theorem: Every nonzero integer is representable in infinitely many ways as a 
proper difference of two powerful numbers neither of which is a perfect square. 

Proof: For the case where n is even see [4], and for the case where n = 1 see 
[7]» This leaves the case where n ) 1 is odd. We break the proof down into 
two parts. We note that it suffices to prove the result for either n or -n. 

Case (i): n t 0 (mod 5) 

Let D = rs, where 

v = (n2 - In + 5)/4 and s = (n2 + In + 5)/4. 

Let T = (n2 + 3)/4, then T2 - D = -1. If (51 + V^)* = (^ + ^>/S), then 

Tl " ̂  = ±le 

Therefore, 

±n = nCZ7? - ZW?) = sF? - p ^ , 
where 

£ . = Ti + s ^ and Fi = ^ + P ^ . 

Now we show that, for an appropriate choice of i, we can achieve E^ E 0 (mod p) 
and Fi E 0 (mod s) . To see this, we invoke the Lemma to get 

Et E ^ + siT1'1 (mod p) . 

Since n t 0 (mod 5 ) , p and s are relatively prime, so we may choose 

i E -^(s)" 1 (mod r) 

which guarantees that Z?̂  E 0 (mod p) . Similarly, by choosing 

i E -y(p)"1 (mod s) 

we guarantee F^ E 0 (mod s ) . 
In order to complete Case (i), it remains to show that Ei and Fi are rela-

tively prime. Suppose that there is a prime p such that: 

Ei = Ti + s ^ = p* (1) 

for some integer t9 and 

2^ = Tt + rUi = pw (2). 

for some integer u. Multiplying (1) by T± and (2) by st/^, then subtracting, we 
get 

±1 = T\ - rsUl = p{tTi - suU^ 

a contradiction. 
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Case (ii): n = 0 (mod 5) 

Let D = n2 + 1, T = n, U = -1, and (T + f/v/D)i = Ti + ^VS. Let Ai = Ti + 
t/̂Z? and B^ = T^ + U^ . Our plan of attack for this case is to show that for an 
appropriate choice of i we get A\ - B2D = n2 with (Ai ± n) 12 being powerful * 
First we observe that if Bi E 0 (mod 2D) and g.c.d. (̂ ^ n) = 1, then (^ ± n)/2 
are powerful. We prove g.c.d. (At, n) = 1 by contradiction. If there is a 
prime p such that A± = T± + UiD E 0 (mod p) and n E 0 (mod p) 5 then T^ + U^ E 0 
(mod p). Therefore, 

±1 = 51? - ^2D E 21? - U2 E 0 (mod p), 

a contradiction. Now, by choosing i E n (mod 2Z?) » we get by the Lemma that: 

Bi = Ti + ^ E Tf - i^"1 E 0 (mod 2D). 

Hence, we have shown that (Ai ± n) 12 are powerful. It remains to show that 
neither of these is a perfect square. To do this, we use the following fact. 
Since n E 0 (mod 5), D must contain, in its prime decomposition, a prime p > 2 
to an odd exponent; i.e. , D 4" 2d2 for any integer d* 

We observe that A\ - n2 = B\D = 25ef2, where e is odd. Therefore, which-
ever of (Ai ± ri)l2 is even cannot be a perfect square. It remains to show that 
(Ai + n) t 0 (mod 4p) and (Ai - n) ? 0 (mod 4p); i.e., whichever of (A i ± n)/2 
is odd cannot be a perfect square, since it contains the odd power of p. 

Suppose Ai + n E 0 (mod 4p) . Therefore, 2^ + Z/̂Z) + n E 0 (mod 4p), which 
implies 

Ti E nz E -n (mod p) . 

Hence, n1'"" E ~-l E n (mod p) , which implies 

<£ E 3 E n (mod 4). 

Now, by the Lemma, 2 ^ = 1 (mod 4) and U^ = 3 (mod 4). Thus, 

O E ^ + ^ Z J + n E 1 + 6 + 3 (mod 4), 

a contradiction. 
Finally, assume -4̂  - n E 0 (mod 4p) . Therefore, 2^ + UiD - n E 0 (mod 4p), 

which implies T^ E n^ E n (mod p), and so i E 1 E n (mod 4). Hence, 

0 E Ti + u-iD - n = l + 6 - l (mod 4 ) , 

a contradiction which secures the Theorem. 

We note that the proof of the Theorem yields an effective algorithm, via the 
choice of i, for Infinitely many representations of a given odd integer as a 
proper nonsquare difference of powerful numbers. The following examples Illus-
trate the process. 

Example 1: Let i = i (moa "f » ud /' <- < - V -- 7\ + U^IO. Thus, 

3 = 2(27i + Si/^)2 *• -fT, -̂  ?/ * 

with IZ7,: + 2 ^ E 0 (mod 5) i, * ;/ , ' ""• In particular, If i = 1, then 
3 = 27 - 53* 
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Example 2: Let i = 5 (mod 52) and (5 - y/IE)* = Ti + ^A/26. Then 

(̂  + 2 6 ^ ) 2 - 26(^ + ^ ) 2 = 25 

with (^ + 26£/̂  ± 5)/2 nonsquare powerful numbers. In particular, if £ = 5, 
then 5 = 72 - 133 - 27 • 292. 
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AN UPPER BOUND FOR THE GENERAL RESTRICTED 
PARTITION PROBLEM 

W. J. A. COLMAN 
North East London Polytechnic, Dagenham, Essex RM8 2AS 

(Submitted March 1985) 

The function p*(p19 p29 •••» pm I ri) is defined as the number of partitions 
of the integer n into at most m positive integers p19 p2, . . . , p ,• where the 
order is irrelevant. An upper bound for the number of partitions is given. 
This upper bound is then compared with two known particular cases. An upper 
bound for the function p*(pl9 p2, . .., pm;^n) is also given. This last func-
tion represents the number of partitions of all integers between 0 and n into 
at most m positive integers p., * p? , . . . , p . 

1. INTRODUCTION 

The number of partitions as defined above is equal to the number of solu-
tions of the Diophantine equation 

p1x1 + p2x2 + -•• + pmxm = n 

in integers xi ^ 0, where the pi are given positive integers which need not be 
distinct. If (pls p2,...,pm) = d > 1, then p*(p19 p2, ..., pm ; ri) = 0 unless 
d divides n, in which case the factor d can be removed from the above equation 
without altering the number of partitions. That iss 

p \d ' d ' " s d> d)9 

(Pi ?2 Pm\ 
\T9 T ' •••» ~d) = l w h e n d ' w -

P*(P1' P2> •••» Pml n ) 
where 

•v1 v 

Thus, we can assume that the equation is reduced and that (plS p2, ..., pm) = 1 
for the rest of this paper. We can also assume without loss of generality that 

p x < p 2 < p 3 < . . . < p r a . 

where there must be at least one strict inequality if (pl9 p2» •••» pm) ~ 1 un-
less px = p2 = ••• ~ pm = 1. The number of partitions of n into exactly the 
parts P±J P2y .--, p will be denoted by the function 

P(P1^ P2> •••» Pm; n). 

This is equal to the number of solutions of the equation 

p x + p x + • • • + pmx = n 
^ 1 1 2 2 m ^ 

in integers x^ > 1. 
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It is known that 

P(P±> P2* •-•» Vm\ n) = p*(pl9 p2, ..., pm; n - (Pi + p2 + ••- + p j ) 
(1.1) 

and that the function p*(p1, p 9 . . . 9 p ; n) satisfies the recurrence equation 

p*(p1> p 2 * •••» p m ; «) - p*(p x » p2» • • • . pffl; « - p m ) 
= p*(p±> P 2 > - - - . pm_Y\ «)» ( 1 . 2 ) 

where p*(pi> p 2 , . . . , p^ ; 0) = 1. 

2. PRELIMINARY RESULTS 

In order to determine an upper bound for p*(p±9 p2, ...5 pm; n) under the 
most general possible condition, which is (px, p2, ..., pm)= 1, we require some 
preliminary results, which will be stated without proof. The proofs are quite 
straightforward but in the case of (2.1) rather lengthy. The proofs have been 
omitted in this revised version to reduce the length of the paper. 

If (p1, p2) = a2 and (p±9 p2, p3) = a3, then, for n > 0, 

1^2pip2 _ V 3 \ V 

I f A > 0 and B > 0 and k i s an i n t e g e r > 2 , then 

Eur + B)«-i < ±(A(t + ±) + Bf . (2.2) 

The upper bound in (2.1) cannot be weakened, since it is actually attained 
under very special circumstances. If we consider p*(p±s p2, p3; n), where 

2pxP2 
(P±> P2> P3) = 1 and p; 

p * ( p l ) P 2 , p 3 ; n ) < ¥ ^ 7 l " + f l ^ ^ + - t A j ) • (2.1) 

a\ 

then a, = 1 and, for an arbitrary positive integer k, we have, using (2.1), that '3 

/ 2plP 2kp p \ 
P* Pi' P2' — ^ ; < i k + X) ' 

\ a2 a2 / 

But it can be shown that in this case we have 

/ 2p p 2kp p\ 
P*( P I . P 2 . - T - ; =(fc + D2 

\ a2 a2 / 

and the bound is attained. 
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3. THE MAIN RESULT 

We now state and prove the main result of this paper. 

Theorem: If (p15 p2) = a2, (p19 p2, p3) = a3, .. ., (px, p2, . .., pm) = aw, then 
for n ̂  0 and 777 > 3, 

p*(pl9 p2, ..., pm; H ) 
a 

(3.1) 

^1^2 ••• pm(m " 1 ) ! \ n 2 \ a2 

1 / ^1^2 2pnP9 a9 

— p + • • • + p 
a3

 p3 am ^ 

where, if the partition is reduced, am = 1. 

Proof: Assume the result correct if m = k (say), and consider 

P*(P±> P2> •••» Pk+1; « ) , where (p^ p£, ..., pfc+i) = 1. 

Writing 

n = ccpk + &, where a = 
l_p*+i. 

and 0 < & < pfc+1 - 1. 

•'• P*(?i' P2» ••" Pfc» P*+i5 w> " E P*(Pi« P2' •••' P,; *?*+! + & ) ' 
^ = 0 

using (1.2), since p*(piS p 2 , . .., Pfc+1; &) =?*(?!» P2> •••> Pfe ; &)» 

where (p , p , ..., p ) = afc. Now the sum is zero if a
k \ Wk+1

 + &• Consider 

^pfc+i + ^ E °  (mod afc)' where (p^+1, afc) = 1 

as (pl5 p29 . . . , p, , PT.+ 1 ) = 1- Thus, there is a unique solution 

i = i 0 (mod a f e ) , where 0 < i 0 < a f c - l . 

Hence, 

P*(Pi> P 2 ' • • " Pfc+i5 n ) 

a - ^^ afe < a i f a - i 0 > 0 . 

E P * ^ * P2> -••> Pfe; ^P f e + 1 + b) i f a - i 0 > 0 
•£ (as above) 

i f a - i j , < 0 

< E 
p1p2--pk(k ~ x ) ! 1 ) ! \ ^k+l 

l / 2 P ! P 2 <*2 
+ p + - • - + 

fe-i 

L ak J 

p 1 - p * « - i > , , . o . t : 2 . . . . ^ - W 9 + r a t ) + 6 + 

1 / 2 P , P , -'fc-i 
fc-1 
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Fir! 
Px-..pk(k - l ) 

p ffe _ n i £ Wr + B ) k _ 1 , where * = 
p ^ - . p ^ K 1 ^ - I , = 0 , l , 2 , . . . 

l / 2 P l P 2 

2 

a - ir 

& - i 

a^ 
> 0 

/ 2 p i p 2 a ^ \ 
and 4 - ^ + 1 a f c , 5 = Pk+1iQ + £ + y ^ — + ••• + - ^ P * j * 

l / 2 P r 2 a f c - l 

2 - + ••• + ^ r ^ , ' J ' u s i n § 2 - 2 ' 

1 / . , 1 / 2 P 1 P 2 a 2 

P l p 2 - - - p k + l f c 

NOW afcpfc+l* • Pfc+lafc 

+ — p , + 
a 2 a 3 ^3 

* * - i a , ^ * 
+ V ^ + T P*+i 

*a - ^„ 
<p f c + 1 (« - *„> 

P i P 2 

i / . . , i / 2 P i P 2 «fc \ V 

1 / l / 2 P l P 2 "Z «*- l 
n + 

P l P 2 - " P j : + l f e ! \ 2 V a 2 a 3 3 + — p , + • • • + 
m c 3 a k

 rfe + 1 Pk+i 

Thuss we have that if the result is correct for m = k then it is correct for 
m = k + I when ak+1 = 1. Now assume that (px, p2 ? oeo9 Pfc+i) = a& + i (say). 

Ifak+1](n9 then p*(plS . ..,pfc+1;n) = 0. If afc+1|n, then 

p*(p^ p2, . . . . p f c + 1 ; n) = p * ! , , 8 e o s ; 1, 
\ a k + i ak + i a f c + i ak+l/ 

( Pi Pk+i\ where I , . . . 9 • — 1 = 1 , and t h u s 
\ a k + i ak+if 

' 2 P i P2 

p*(pl9 «»*, pk+1; n) < 
J _ . . . ^ ± 1 fcl \ a * + 1 

n 11 afc+i afc+i afc+i P3 

2 1 a 2 a a k + 1 

xfc + i ^k + i *fc + i *fe+i 

a k + i pfc
 afe+i P * + I 

+ . . . 4. , . ; 1 , __ . 
ak ak+i ak+1

 ak + 1 

*fe + i Ak + 1 
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a fc+l / 1/^1^2 a 2 
n + — I + — p + • • • + p, 

PlP2---Pfc+l/c!\ 2 V a2 a3 3 a* + i k+1 

Thus, the result is correct for m = k + 1 if it is correct for m = k. But9 we 
know that the result is correct for 77? = 3, and hence the result is correct for 
77? ̂  3. This completes the proof. 

h. A COMPARISON WITH KNOWN PARTICULAR CASES 

(a) The upper bound given by Rieger [6] is 

p (n) < —77 r r r l ^ + ~"^—; f ° r ft > Qs TT? > 4 . 

We h a v e p (ft) = p * ( l , 2 , 3 , . . . , m; n - m) and a 2 = 1; t h u s , 

1 / 1 X"7"1 

p (ft) < —-7 - — ft - 77? + -TT(4 + 3 + 5 + • • • + 77?) 
rw ml (m - 1 ) ! \ 2V / / 

• ^ 1 . 1 / , 777(777 - 3) , l ^ " 1 , ^ Q 
Our r e s u l t = —77 m r l ^ + ~^—; + "̂  f o r m ^ 3 . 

777 ! (777 - 1) ! \ 4 2 / 
(b) H. Gupta [5] has given the following result for the particular case in 

which p 1 = 1: 

t n + m - l \ ln+p2 + p 3 + • • • + p \ 
V m " X ^ < p * ( l , p 2 , p , , . . . . p ; n ) < ^ ^ ^ ' 

For the upper bound, we have 

(ft + p. + • • • + p )! 
/ft + p2 + •• v + p; " • .+ p \ 

1 " J 7 7 7 - 1 / (77? - 1) ! (ft + p + • • • + p - (77? - 1 ) ) ! 

For l a r g e ft + p + • • • + p - (777 - 1) , 

(m- 1) i (n + Pz + . . . + P ( | i ) » + P 2 + . . . + P K + I . e . 

' ^ ~ '* , n + p 2 + - - « + p + -J- -(m- 1) 
(„ + p2 + . . . + p^ - (771- 1 ) ) P 2 P* 2 

(ft + p 2 + • ' • + p ^ - (77? - 1 ) ) W - 2
 g - ( m - l ) 

( ? 7 ? " 1 ) ! d „ (m - x> y+P2+--'+p,+\ 
\ ft + p + — + p m / 

m-1 (ft + p 2 + • • • + pm - (m - 1 ) ) 

(m - ijT * 

Thus, Guptafs result for the upper bound is asymptotic to 

1 , / 1 \ \Tn - I 
-. — 7 rrr(n + pn + pn + ° * ° + p - (m - 1)) 
1 . p . . .p (77? - 1 ) ! ^2 ^3 ^m 
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Our result with a2 = a3 = ••• = am = 1 as p± = 1 is sharper if 

2 + p 3 + ... +Pm _ (m _ 1} > | ( P2 + P 3 + ••• + P n - (m - 1) >j(2p, + P , + ••• + P m ) 
or 

P3 + P, + "•• + Pm > 2 W " 2* 

For arbitrarily large pi , this is obviously satisfied as E™_ p. will9 in gen-
eral , be much larger than 2m - 2. 

5. AN UPPER BOUND FOR p*(p1, p2 , ..., pw;< n) 

This function represents the number of solutions of the inequality 

r l l r2 2 ^m m 

in integers x^ ^ 0 for n ^ 0. Alternatively, this represents the number of 
lattice points within and on the hypertetrahedron bounded by the planes x^ = 0 
and the hyperplane 

ix + p x 
1 1 ^2 2 

We can assume that (p , p , ..., pm) = 1, and thus 

p*(Pi> p2> • ••> p ^ ; < ^ ) 

P l p 2 . . . p m ( ^ - i ) 

m-1 

1 1 / ^ 1 ^ 2 2 m-
n + + I + p + ... + r"1^) P l ^ V " ^ 1 \ 2 2 V a2 

for n ̂  0 and m ̂  3, using 2.2. 

6. NUMERICAL RESULTS AND ASYMPTOTICS 

Consider the example 

p*(60, 120, 150, 216, 243, 247; n), 

where a2 = 60, a3 = 30, a^ = 6, a5 = 3,anda6 = 1. It is clear that afe+1 must 
divide a^. 

It is known [4] that if (px, p2, . . . , pm) = 1 then p* (p1, p2, . . . , pm ; ri) > 0 
for sufficiently large n. This implies that there is a largest integer n for 
which p*(plS p25 . ..9p ; n) = 0 . This greatest integer is denoted by 

G(p±9 p2, ..., p m ) . 

The paper [4] gives some upper bounds for G(plS p2, ..., p^)9 Using these upper 
bounds and a numerical search, it can be found that 

£(60, 120, 150, 216, 243, 247) = 1541. 
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For larger n9 the partition function will be much smoother and the upper bound 
will become asymptotically better. 

We have9 for the previous particular numerical examples the following re-
sults. 

n 

1541 

6944 

19760 

39779 

44505 

60000 

490000 

P*(; n) 

0 

.11723* 105 

.19217x 107 

.61270x 108 

.11307x 109 

.49311x 109 

.16900x 1014 

Upper 
Bound 

136 
.24412x 105 

.25387x 107 

.70673x 108 

.12163x 109 

.52036x 109 

.17057x 10llt 

P*(; <n) 

7090 

.17050x 108 

.68932x 1010 

.42470x 1012 

.82616x 1012 

.48728x 1013 

.13817x 1019 

Upper 
Bound 

67396 

.34057x 108 

.89646x 1010 

.48535xlO12 

.93112x 1012 

.53274x 1013 

.13970x 1019 

CONCLUSION 

An upper bound has been determined for p*(plS p2, ...9 pm; n) and p*(plS 
p2, ..., pm;<n) for all n > 0 and m > 3. 
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1. INTRODUCTION 

The object of this paper is to investigate, by using a variety of methods, 
the properties of Pell polynomials Pn(x) and the Pell-Lucas polynomials Qn(x) 
[6] which are derivable from their generating functions. Brief acquaintance 
with the main aspects of [6] is desirable. 

In an endeavor to conserve space, we will generally offer only an indica-
tion of the potential developments with a minimum of results, so that just a 
representative sample of the material available is presented. Omitted informa-
tion will be happily supplied on request. Among the many facets of this expo-
sitions we find the sections numbered 4 and 5 especially appealing.. 

For visual conveniences the functional notation will be suppressed and an 
abbreviated notation used9 e.g., Pn(x) = Pn, Qn(x) = Qn. 

First, we introduce the notation 

P(j\ m9 k$ xs y) = E p£. + k y r > (1-1) 
r= 0 

Qti* rns k, x5 y) = £ e ^ + fc2/P- f1-2) 
r = 0 

Then3 for example, by difference equations [6], 

P(l, 1, 0, x9 y) = 2/A (1.3) 

or, equivalently, 

P(l, 1, 1, x9 y) = A = E Pr + 1yT* d-4) 
p = o 

and 

«(1, 1, 0, x9 y) = (2 - 2xy)k (1-5> 

or, equivalently, 

«(1, 1, 1, x9 y) = (2x + 2z/)A = E «r + 12/1,» ( l o 6 > 
p= 0 

in all of which 

A = (1 - Ixy - y2)-1 = A (a?, z/, 1, 1) [cf. (1.8)]. (1.7) 

Result (1.4), for example, may also be obtained using the method of column 
generators [1] with the aid of binomial coefficient expressions for Pn given 
in [7]. Matrices and Binet forms may also be utilized (see [7]) in establish-
ing (1.3)-(1.6). 
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Let us introduce the symbolism 

(7") 

A ^ = A Or, ys j, m) 

[cf. (1.13)] in which the superscript and subscript will be suppressed when j 
1 and/or m = 1, e.g., A ^ = A [cf. (1.7)] and 

1{m) (1 y + (-i)rV) = A(x9 2/, 1, m) 
whence (1.7) follows when m = 1. Replacing 2/ by -z/, we write 

A(fw) = A(ar, -y9 1, m). 

Furthermore, with m = 1, let 

(J) 
j+1 P(P+ i) 

E (~1) 2 {J + 1, r}y* 
r=0 

Aw' = A (a:, y9 j\ 1) 

where the symbol {a, 2?}, defined in [8] , is 

{a, 
a l i b \ / a-b 

Thuss in particulars from (1.10) and (1.11), 

A = (1 - Py - z/2)"1 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

as in (1.7) 
A(2) (1 - P3y - P3yz + J/3)" (1 .12) 
i<3> = 

More g e n e r a l l y , 

Aw = (1 - Phy - {P^PJP^Jy2 + py + 2 /V 1 

4«) 7 +1 r[m(r- 1) + 2] 
£ (-1) 2 {j + 1, 2>}mt/r 

in which 

ia^}m=UPim/(^ 

(1.13) 

(1.14) 

The case J = 1 occurs in (1.8) , while the case m = 1 occurs in (1.10)< 
Later, in (6.6), we refer to the case J = 3, i.e., to A((m). 

Some useful results from [7] are collected here for later reference: 

HnHv ? even, 

4(x2 + l)PnPr r odd. 

P2 - (hx2 + 2)P2 + P2 , = 2(-l)*. 
n+l n n-1 

Also important for our matrix treatment are (see [6]): 

~2x 1 

1 0 

(1.15) 

(1.16) 

(1.17) 

(1.18) 
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pn 
P P 

P„ P 
so \Pn\ = (~l)n0 (1.19) 

Consult [6]s [7], and [8] for details of some of the applications of P. 

2. APPLICATIONS OF GENERATING FUNCTIONS 

Using (1.17) as a difference equation, we find eventually that 

P(l, m, k, x9 y) = [Pk + {-l)kPm_ky]^my (2.1) 

Similarlya 

Q(l} m, k, xs y) = [Qk + ("l)k"1eOT.k2/]A(OT). (2.2) 

The specializations given in (1.3) and (1.5) follow immediately. Numerous 
other specializations of some interest, e.g., those for 

P(l, 2, 0, x9 z/), P(l, 2, 1, x, 2/), P(l, 35 3S x, -y) 

and §(1, 2, 1, x9 -y), 

are listed in [7]. 
Differentiating (1.4) with respect to y9 we obtain 

X > P y1"1^ (2x + 2z/)A2 
p= o p + 1 

Likewise 

E ^ + 12/2"1= [4a;2 + 2 + te/ + 2z/2]/ 
r = 0 

(2.3) 

(2.4) 

Replacing y by -z/ gives generating functions of some importance. Results 
(2.3) and (2.4) may be extended if we differentiate (2.1) and (2.2) w.r.t. z/, 
but the process is somewhat algebraically messy. 

Now, (2.3) leads to an interesting summation. With (1.4) and (1.6) it gives 

r=0 Eo^^-H-

(r + DPr+2 = E p , e r + 2 . . . 

Equate coefficients of yr on both sides, thus obtaining 

r+ 1 

Next, differentiate (1.5) w.r.t. y. Then 

£(r + D C ^ ^ ' = (2x + 42/ - 2xz/2)A2. 
r = o 

(2.5) 

(2.6) 

(2.7) 

Combining (1.4) and (2.7), we find 
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£ ( r + DQr + 1yr - £ (r + 1) Pr + 2yr = J/(2 - 2a;j/)A2 (2.8) 
p = 0 r = 0 

by (1.3) and (1.5). 
Equate coefficients to get 

p= 0 I fP = 0 

(r + D(fir+1 - P r + 2) = EPfSr-i- (2-9) 
I = 0 

Differentiating in (1.3) w.r.t. 2/, then multiplying by y 9 we determine a 
generating function for rPr, namely, 

E ^ P f = z/(l + z/2)A2. (2.10) 

Similarly, 

E ^ f = (2xy + 4z/2 - 2x2/3)A2. (2.11) 
p = 0 

Generating functions may be used to derive already known properties of 
Pell polynomials, e.g., 

ZQun = (2 - 2xy)A by (1.5) 
n = 0 n 

= A + (1 - 2xy)A 

= E ^ , * / n + I > n ^ n by (1.4) and (2.1), 
n=0 n + i n*=0 

whence Qn = P n + 1 + Pn_>1 [6 , equa t ion ( 2 . 1 ) ] . 

Moreover, we may show that 

Q(l9 1, 1, xs y) + S(l, 1, -1, x, y) = 4(x2 + 1)P(1, 1, 0, x, y) 9 

whence Qn + 1 + Qn_± = 40r2 + 1)P„ [cf. (1.15)]. 

New, but less elementary, identities may also be established. For instance, 

n-o 

= [(2 - 2xy)Qm,1 + (2x + 2z/)§JA by (1.5) and (1.6) 

- [(2xQm+2Qm_1) + (2Cm- 2^_1)z/]A 

= 4(«2 + 1)(P„ + t/P^^A 

by (1.13) and the recurrence relation for Qm. 
Terms in y n being equated, we derive 

«A-i + « B + A = 4<*2 + 1 ) P — (2-12) 
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Following the technique of Serkland [9] for Pell numbers, we can also es-
tablish fresh identities involving Pell polynomials. See [7] for details. A 
representative result incorporating this process is 

w-l 
PuPvPw = ^*^P

u+v + w-kPk + l " Pu + k + lPv + w~kf° (2A3) 

F i n i t e s e r i e s may be summed us ing a g e n e r a t i n g f u n c t i o n . To i l l u s t r a t e 
t h i s c o n t e n t i o n 5 choose 

m oo a, 

Epry = Zpry* - LPr+m+1yr 

r = 1 r = 0 P = o 

= 2/{l ~ (p
m+1 + 2/Pm)}A by (1.3) and (2.1). 

Then, y = 1 gives equation (2.11) in [6]. 
Ideas of Hoggatt [2] in relation to Fibonacci and Lucas numbers may be ex-

tended to generators of Pell polynomials. For example, 

±^(x2 + l)kP2k+1y2k+1 (2 .14) 

= yP(l, 2, 1, x, 4 ( x 2 + l) ,y2) by (1 .1 ) 

= yz{l - 40c 2 + l)y2}<5(2) by (2 .1 ) 

and 

E 4 k 0 r 2 + DkQ2k + 2y2k+2 (2 .15) 

= y2Q(l5 2 , 2 , x, h{x2 + l)y2) by (1 .2 ) 

= z/2{(4^2 + 2) - 8y2(x2 + 1)}6( 2 ) by (2 .2 ) 

where , i n (2 .14) and ( 2 . 1 5 ) , 6(2) means A(2) w i th y r e p l a c e d by 4 (a?2 + l)y [cf . 
( 1 . 8 ) ] . 

Add (2 .14) and ( 2 . 1 5 ) . S impl i fy ing , we a r e l e f t wi th 

L 4 ^ 2
 + l ) * { P 2 k + 1 + , e 2 k + 2 } ^ + 1 (2 .16) 

k - 0 

y - 2y2 

1 - h{X2 + 1)2/ + 4(X2 + 1)2/' 

Further details appear in [7]. 

3, ELEMENTARY RELATIONS AMONG GENERATING FUNCTIONS 

Analogous relations to those among polynomials may be determined for gene-
rating functions. Consider, for instance, the derivation of the recurrence 
relation 
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P(l, 1, n + 2, xs y) = (Pn+ 2 + z/Pn+1)A by (2.1) (3.1) 

= (2^{Pn+1 + z/Pn} + Pn + 2/Pn-1)A by the definition 
of Pn 

= 2^P(1S 1, n + 1, x9 y) + P(l, 1, n9 x, y) by (2.1). 

Likewise, 

Q(l9 1, n + 29 x9 2/) = 2a#(l, 1, n + 1, ̂ 5 z/) + «(1, 1, n9 x, z/). (3.2) 

It might be noted that the direct generating function analogue of 

«„ = P n + l
 +Pn-1 

flows almost immediately from (2.1) and (2.2). 
Matrix representations of the generating functions are, in the notation of 

[8] for the matrix P9 

P(l9 1, n9 x, y) 

[_P(1S 1, n - 1, x, y)_ 

P(l9 1, 1, x, y) 

_P(15 1, 09 x9 z/)J 
(3.3) 

§(1, 1, n, x, y) 

Q(l9 1, n - 1, x, z/)J 

5(1, 1, 1, ̂ 9 y) 

_Q(19 1, 0, a:, i/)J 
(3.4) 

P(l, 1, n, x9 y) = [1 0]P" 
P(l, 1, 1, x9 z/) 

_P(19 1, 09 x, z/)J 
(3.5) 

«(1, 1, n9 x, z/) = [1 0]P" 
S(l, l, 1, x9 y) 

\_Q(l9 1, 09 x9 z/)_ 
(3.6) 

Now let us apply these matrices to obtain formulas for Pell and Pell-Lucas 
generating functions. First, 

>m + n- 1 Q(l, 1, m + n, x, y) = [1 0]P' 

= tpm
 P,-J 

6 ( 1 . 1, 1, a?9 2/) 

LG(1, 1, 0, ;r9 z/)J 

5(1, 1, n + 1, #9 z/) 

§(19 1, n, x9 y) 

by (3.6) (3.7) 

by (3.4) and 
(1-19) 

= PmQ(ls 1, n + 1, x9 y) + Pm_1Q(l9 1, n9 x9 y). 

A similar formula pertains to P(l, l9 m + n9 x9 y) 9 viz.9 

P(l, 1, w + n 9 ^ 9 y) = PmP(l9 1, n + 1 , a:, y) + P P(l, 1, n, x9 y) . (3.8) 
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Of course, (3.1) and (3.2) are special cases of (3.7) and (3.8) when m = 2. 
Representative of another set of results is 

P(l, 1, m + ns xs y) + (-l)nP(l, 1, m ~ ns x5 y) = «„P(1, 1, w, xs z/) 

Analogues of Sims on fs formulas can be established. Thus3 

P2(l2 1, n5 x5 y) - P'(l, 1, n + 1, a?, */)P(l, 1, n - 1, a;, z/) 

|P(1, Is n3 #, z/) P(ls 1? n + 1, x5 z/) I 

|P(1, 1, n - 1, xs y) P(l, 1, n§ #, z/) 

(3.9) 

(3.10) 

Pn 
P(l, 1, 1, a?s z/) 

_P(19 1, 05 xs z/)J 
pn by (3.3) 

by 
(1.18) 

P(l, 1, 1, x5 y)~ 

[P(l, 1, 0S as, y)_ 

|P(1, 1, 1, xs z/) 2xP(l3 1, 1, a?5 y) + P(l, 1, 0S x, y)\ 
= I P " - 1 I 

|P(1, 1, 05 x, z/) P(l, 1, 1, xs y) 

= (-l)n-1{P2(ls 1, 1, x, y) - P'(l, 1, 29 x, z/)P(l, 1, 0S x, z/)} by (3.1) 

= (-l)""^! - 2xy - z/2)A2 by (1.3), (1,4), and (2.1) 

= (-1)^-^(1, 1, 1, x9 y) by (2,1). 

Similarly, 

Q2(l5 1, «, x5 y) - 5(1, 1, n + 1, a?3 2/)S(l» 1, n - 1, xs z/) 

= 4(ar2 + 1)P(1, 1, 1, x, y). (3.11) 

More complicated algebra, with the use of the above method, produces the 
generalized Simson?s formula analogues, namely, 

and 

P2(l5 1, n, x, y) - P(l, 1, n + r3 x, z/)P(l, 1, w - r, a?, y) 

= (-l^-'P^Pd, 1, 1, x9 y) 

l(l, 1, n5 xs z/) - $(1, 1, w + r, x$ y)Q(l> 1» « ra 2% #» 2/) 

(3.12) 

(3.13) 

(»lf l4(*2 + 1)P2P(1, 1, 1, xs y). 

Other interesting results may be established by the methods exhibited, for 
example^ 

P(l, 1, In, x9 y) = j{PnQ(l, 1, n3 x3 y) + «„P(1, 1, n, x3 y)}. (3.14) 

The above information represents a small sample of knowledge available to 
us. However, the algebra becomes quite awkward when the more general generat-
ing functions (2.1) and (2.2) are exploited in that context. 
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k. SUMS OF GENERATING FUNCTIONS 

Let us now consider series whose terms are generating functions. 

Summing in (3.1) used as a difference equation and tidying up, we come to 

£P(1, 1, rs x9 y) = {P(l, 15 n + 1, x9 y) + P(l, 1, n, xs y) 
r= 1 

- P(l, 1, 1, x9 y) - P(l, 1, 05 x, y)}/2x. 

(4.1) 

For variations consider next a matrix approach. Accordingly, by (3.6) 
applied repeatedly, 

£ 6(1, 1, r, x, z/) 
p= l 

= [1 0][J + P + P2 + ••• + P""1] 

(4.2) 

6(1, 1, l, ̂ , y) 

_6(1, 1, 0, x, y)_ 

2x [1 0] 
P + P - 1 P + P n+l n « n-l 
P + P - 1 P + P - 2a; - 1 
n n-l n-i n-2 

l 11 g(i, i, i, x, y) 

_6(1, 1, 0, a?, z/)_ 

= {Q(l9 1, n + 1, x, z/) + <3(1, 1, n, x, z/) - 6(1, 1, 1, x9 y) 

- Q(l9 1, 0, x9 y)}/2x9 

by (3.7), (1.19), and [6, equation (2.11)]. 
Parallel treatments produce 

E(-1)PP(1, 1, rs x9 y) (4.3) 

{(~l)nP(l, 1, n + 1, x, y) + (-ly^Pd, 1, n, a;, z/) 

- P(l, 1, 1, xs y) + P(l, 1, 0, x9 y)}/2x 

and 

E (-l)P<g(l, 1, r9 x9 y) 
r= 1 

(4.4) 

= {(-l)n6(l5 1, n + 1, x, z/) + H f - ^ C l , 1, n, x9 y) 

- «(1, 1, 1, x9 y) + 6(1, 1, 0, x9 y)}/2x. 

Extensions of the above theory may be exhibited (see [7]) for 

P(l, m9 mr + k9 x9 y9 z) = £ P(l» ^> ?ra? + &, x9 y)zr 

p = 0 

(4.5) 

with a similar formulation for the Pell-Lucas generating functions. 
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5Q GENERATING FUNCTIONS FOR SECOND POWERS OF PELL POLYNOMIALS 

Exploiting (1*16) as a difference equation, we may demonstrate that, ulti-
mately 9 

(1 - Q2y +y2)tp*yr (5.1) 
2»= 0 

= -y + 2z/ - 2z/2 + 2y3 - ... + 2<-l)*-y + ... 

- v - y2 

i +y ' 
whence 

t PVV*- ^ - ^ , (5.2) 
r = 0 1 - (4a;2 + 1)2/ - (Ax2 + l)y2 + y 3 

that is, 

P(2, 1, 09 a;, y) = (y - z/2)A(2) by (1.12). (5.2) f 

Similarly, 

§(2, 1, 0, x9 y) = (4 - (12a;2 +.4)2/ - 4aj27/2)A(2). (5.3) 

One may also show that 

i > r + r P „ + 2 2 / r = 2xA(2) (5.4) 
p= 0 

and 
XX + A + 22/P = 2*{(te2 + 2) + 2(4*2 + 2)y - 2z/2}A(2}. (5.5) 

r= o 
Generalizations of (5.2) and (5.3) to expressions for P(2, 1, m9 x9 y) and 

g(29 1, m9 x9 y) are obtainable (see [7]). In particular, 

P(2, 1, 1, x9 y) - (1 - z/)A(2), (5.6) 

while 
Q(29 1, 2, a?, z/) = {(4a;2 + 2 ) 2 + (16^ + kx2 - 4)z/ - 4a;2z/2}A(2). (5.7) 

Note in passing the marginally useful result that 

P(2, 1, 1, x9 y) - P(2, 1, 0, a;, y) = (1 - z/)2A(2), (5.8) 

which has an application in some complicated algebra elsewhere [7]. 
The theory outlined above extends (though not easily) to P(29 1, m9 xs y) 

[and Q(29 1, ms x9 z/)],and more generally toP(2, m9 mr + ks xs y) . A differ-
ence equation resulting from this algebraic maelstrom, and which is useful in 
deriving fresh information, is 

P(2, 777, m + k9 x5 y) - QlmP(2$ m9 ks xs y) + P(2, m9 -m + k9 x9 y) (5.9) 

2(~l)kP2 

= 1 + 7 / * 
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6. GENERATING FUNCTIONS FOR CUBES OF PELL POLYNOMIALS 

With care, we may demonstrate the validity of 

Use this for summing to derive, first [cf. (1.9) and (1.12)], 

(1 - Q3y - y2) t Pjy* = y - 6*j/2A', (6.2) 
v = 0 

whence 

P(3, 1, 0, x, y) = (y - kxy1 - */3)A(3) (6.3) 

in which 

A(3)(l - Q3y - y1) = A'. (6.4) 

Similarly, 

3(3, 1, 0, x> y) = {8- (56#3 + 32x)y - (64^ + 48a;2 + 8)y2 

+ 8x3z/3}A(3). (6.5) 

Indulging in an orgy of algebra, we may construct (see [7]) a generaliza-
tion of (6.1) relating to P^+fe as leading term. Ultimately, we establish a 
formula for P(3, m9 ks x9 y) 9 the generating function for P^ + ^s although it 
it not a pretty sight. 

For possible interest we append the expression for A/3^, namely, cf. (1.13) 
also, 

A0) 
"i - iQ3m + (~DmQjy + (-Dm{QmQ3m + 2}y2 

•(-if{Q3m + (-ifQm}y3 +yh (6 .6 ) 

Obviously, the foregoing theory could be developed almost ad infinitum ad 
nauseam for P(j, m9 ks xs y)« Patience, skill, and motivation would be required 
for this task. 

7. GENERATING FUNCTIONS FOR DIAGONAL FUNCTIONS 

Rising diagonal functions Rn for {Pn} and vn for {Qn} were defined in [6]. 
Descending diagonal functions Dn and dn for these polynomials also exist (see 
[7]). Work on these types of functions, but for other polynomials, may be found 
in [3], [4], and [5]. 

Write 

D = D(x, y) = E V \ (7.1) 
n = i 

d = d(xs y) = £ dnyn-x
9 (7.2) 

n-2 

R = R(x, y) = Ei?/" 1, (7.3! 
n-l 
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r = r(x, y) = 1 + £ ^z/"- 1. (7.4) 
n=2 

Then9 following [3]-[5], we find 

D= l 

d = 

R = 

p = 
1 - 2xy - y3 

Furthermore, 

1 

1 

1 

- (2x + 

2^ + 2 
- (2x + 

1 
- 2xy -

i + y3 

Dys 

1)2/ ? 

y3' 

and 

^ i ^ n - l ^ 1 + (2x + 1)2Z/ ' 

P a r t i a l d i f f e r e n t i a t i o n y i e l d s 

(7 .5 ) 

(7 .6 ) 

(7 .7 ) 

( 7 .8 ) 

n = i 2»2/ i + (2 a ; + 1 ) 2 ^ ^ - y J 

£ ^ ^n_1 = 1 ^ ,„i^ „2..- (7.io) 

2y f - (2x + 1 ) ( | § - 2Z>) - 0, (7 .12) 

2 , - | - (2x + 3 ^ ) f - 0S (7 .13) 

2i/ | J - (2a: + 3 2 / 2 ) | | - 6 ( r - i?) = 0. (7 .14) 

8. CONCLUDING REMARKS 

Information provided above is merely "the tip of the iceberg." Much more 
lies to be discovered by effort and enterprise. 

Clearly, there exists a corresponding investigation involving exponential 
generating functions. 
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Thd nomlng^ o{ Pop&> AJ> a £>QAA.OUU> mattoA, 
It AJ>YI'£ juu>t om o£ you/i kotiday QCW\QJ>> 
I know you may tklnk I'm cu> mad OA a kcutteA, 
But I £>ay that a Popz muAt kavz two di^eJiznt name*. 

-—Apologies to T. S. Eliot and 
Old PoAAum1* Book oh P/iactlcal CatA 

The year 1978 saw three occupations of the Chair of St. Peter and the sec-
ond was the shortest reign of modern times. Luciano Albini was acclaimed as 
the successor to Paul VI but was fated to be Christ's Vicar on Earth for only 
a month. He nevertheless introduced a novelty. So impressed was he by his 
two predecessors that he chose the double appellation of John-Paul. The inno-
vation seemed to meet general approvals as it affirmed continuity in Church 
policy while paying tribute to the two previous pontiffs. However, it was a 
dangerous precedent and it was fortunate indeed that the present Bishop of Rome 
did not feel obliged to follow his predecessor's example, but prudently opted 
simply to extend the line of John-Pauls. Indeed, a moment's reflection will 
reveal that if John-Paul I had insisted that all his successors should follow 
his lead in this matter the effect on papal nomenclature would have been cata-
strophic, although of considerable mathematical interest. 

Disaster was averted, but let us look at the mathematics anyway. Suppose 
that John-Paul I had insisted that each future pope should take as his name the 
names of his two predecessors in chronological order. Commencing with Pope 
John XXIII, the "papal sequence," as we shall call it, would begin 

J, P, JP, PJP, JP2JP9 PJPJP2JP9 JP2JP2JPJP2JP, ..., 

where J9 P, and P2 have their obvious meanings. An impossible situation for 
the popes of the third millenium; each would spend a great deal of time trying 
to remember his own name. However, this same sequence should delight the heart 
of any lover of the Golden Ratio because it can be regarded as a Fibonacci se-
quence in two noncommuting generators, J and P. We shall study this sequence 
with an eye to finding an efficient algorithm to determine Pn , the name of the 
nth pope, where we shall take P1 to be Pope John-Paul himself. 

We shall begin with several simple observations. Denote the length of Pn 
by \Pn\ * a n d denote by \Pn\j and I^WIP t n e number, of occurrences of John and 
Paul, respectively, in Pn. We use Fn to denote the nth Fibonacci number. 

Lemma 1: In the papal sequence, for all n > 1, 

( ' ) \Pn\j = Fn9 \Pn\P = Fn + 1; 

( ' ' ) \Pn\ = Fn+2°> 
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(i i i) Pm ends in Pn for all m ̂  n; 

(iv) Pn does not contain two successive J1s nor three successive 
P's. 

Proof: Each of (i), (ii), and (iii) follow immediately from the definition of 
the papal sequence and induction. 

(iv). From (iii) with n = 1, it follows that Pm ends in JP for all m ̂  1. 
It is obvious, then, that J can never occur in the papal sequence. Next, ob-
seve that Pn begins with PJ or with JP, according as n is even or odd (again 
this is immediate by induction). Hence, no Pn begins nor ends in P , a fact 
that ensures that P3 never appears in our sequence. 

This lemma allows us to reformulate our problem. Denote the reverse of Pn 
by Pn. We associate with the papal sequence an infinite sequence A = (cci)ieN> 
in which each a^ is either J, P, or P2, by defining an to be the nth term in Pm 
(read as a word in J", P, and P2) for all m such that \Pm\ is sufficiently long 
for this to make sense. Part (iii) of Lemma 1 guarantees that A is well-defined 
(to be precise, we should take m such that the length of Pm, considered as a 
work in J, P, and P2, is at least n + 1). 

Since our problem is now of more mathematical than religious interest, we 
shall dispense with J, P, and P2, replacing them by the symbols 0, 1, and 2, 
respectively. Since \Pn\ is known (up to the value of Pn + 2),the papal sequence 
can be reconstructed from our sequence A. Furthermore, A begins in 1, and part 
(iv) of Lemma 1 tells us that i is a sequence in which each 1 and 2 is preceded 
and followed by 0, while 00 never occurs. Therefore, A can be reconstructed 
from the sequence Bs which is obtained from A by deleting all the 0Ts (given 
that A begins in 1). 

Our problem, then, is to discover a good way of generating this sequence B, 
which begins 12122..., the first five numbers corresponding to Pg. 

We introduce a sequence of finite sequences B0, B1, B2* . .. (each of which, 
as we shall show, is an initial subsequence of its successor and of B). The 
sequence is defined recursively beginning B0= 1. We construct Bm+1 from Bm by 
replacing each 1 by 12 and each 2 by 122. The next few B^'s are 

£,: 12, 

B2: 12122, 

B3: 1212212122122, 

B^i 1212212122122121221212212212122122. 

Each B-i is an initial subsequence of its immediate (and hence of each) succes-
sor. Indeed, we can say more. 

Lemma 2: For n > 1, 

the product being concatenation of the sequences. 

Proof: We denote by Q the operation defined in the recursive definition of 
(Bz)iEN°> t h a t i s 

6(5i) = Bi+ 1, 1 = 0 , 1 , 2 , ... . 
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The result is evidently true for n = 2. For n > 3, we obtain 

Bn = Q(Bn_1) = Q(Bn_2Bn_3...B±2) by the inductive hypothesis, 

= Q(Bn_2)Q(Bn_2)Q(Bn_3) ... 6(B1)«(2) 

= Bn-lBn-lBn-2''-B
2
122 

= Bn-lBn-2' e -B 2 B 1 2 , 

Remark: We can regard members of the sequence (Bi)t<=No as a set of generators 
for a semigroup S, whose multiplication is defined by concatenation. The opera-
tor Q : S -> S is then seen to be an infective semigroup endomorphism. 

Henceforth, we shall regard Pn as a finite sequence in 0, 1, 2, and, more-
over, we shall agree to delete the 0fs (as Pn can be recovered even if the 0?s 
are deleted), but we shall denote this reduced version of Pn by the same sym-
bol. 

Lemma 3- For each n > 1, Bn is an initial subsequence of B. In fact, 

B = P n 2n + l 

Proof: The proof is by induction. We shall prove the two identities 

Bn = ?2n+l a n d S A - 1 " - B 1 2 = P2n ' P2n+1> n > l > 

where the product on the right-hand side is defined by concatenation, with the 
understanding that two adjacent 1! s_ are replaced by 2. __ _ 

For n = 1, we_ have B1 = 12 = P3 (as P3 is JP2JP)9 and B±2 = P2° P3s since 
B±2 = 122, while P2* Ps = 11 ® 12 - 122. Our inductive hypothesis is that 

JD — p 
Dm r2m + l 

and _ 
B B ,...5,2 = Pn • Pn _ for all 1 < m < n9 n > 1. m m-1 1 2m 2m + l 

Now, by Lemma 2, we have 

BB *.\B2=B2B ...B2B B ...52, n n-l 1 rc-1 n-2 1 n-1 n-2 1 

which, by the inductive hypothesis is equal to 

P; 

= 
= 

In - 1 # 

<P2n-
P • 
^ 2 n 

^ 2 n - 2 
o p 

- 1 ^ 2 n 

(P2n-

' p: 
- 2 ) 

P 
J r 2 n -

2n - l ) 

' (?2» 

- l ) = 

• (P; 

'. - 1 

P ' 

Zn - 2 

p r 2n -

* p 
• r 2 n 

- 2 ) * 
9 P 

2n + l 

- 1 ) 

p 
^ 2 n 

Hence, by Lemma 2, 

^-iB„-2"-Si2 

= P • (P • P ) = (P °P )*P 

= P ° P =B p 
•^2n i r 2 n - l r2n+l9 

as r e q u i r e d . 
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Result: Algorithm for constructing the papal sequence. 

Odd Case: Suppose n = 2m + I, m ̂  0. 

1. Calculate Bm = Qm(l). 

2. Write B m 9 the reverse of B m . 

3. Write 0 at the beginning and between each pair of symbols 
o£Bm. 

k. Replace each 0, 1, and 2 by J9 P, and P2, respectively. 

Even Case: Suppose n - 2rn9 m > 1. 

1. Calculate Bm = Qm(l). 

Suppos 
where 

2. Suppose Bm = b1b2^.bk3 say. Truncate Bm at B^ = b1b2 

t = i 

Replace bt = 2 by 1 in SJJ to give Bj{. 

3. Write B£. 

4. Insert 0 between each pair of symbols of B". 

5. Replace each 0, 1, and 2 by J9 P, and P 2 , respectively. 

Proof: The algorithm for the odd case is an immediate consequence of Lemma 3 
together with the observations made on the occurrences of J in P w , when n is 
odd. _ 

On the other hand, if n = 2m, then Bm = P 2 m + 1 1 But P^m+i e n d s i n ^im» anc* 
so some initial subsequence of Bm corresponds to P2m. The remaining problem is 
to determine the length of this subsequence. Now, by Lemma l ( i ) , 

IP I = F 

thus, we need to truncate Bm = b1b2..,bk at bt9 where t is the least integer 
such that 

% = I 

Finally, observe that Plm begins PJ, P2m-i ends in JP, whence bt ~ 2 and 

i = l 

The result follows from these observations. 

Example: P . Here, m = 2. 

1. S2 = «2(1) = «(12) = 12122. 
2- ^2w+i = ̂ s = 5* so ^2m+i + ! = 6. Hence, B[ = 1212. 
3. B'l = 1121. 
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4. 1121 -> 1010201. 

5- Ph is PJPJP2JP„ 

Example: P . Here, 777 = 3. 

1- £3 = S3(l) = Q2(U) = §(12122) = 1212212122122. 
2. 53 = 2212212122121. 

3. ~B3 + 02020102020102010202010201. 
4. P7 is JP2JP2JPJP2jP2JPjP2jPjp2jp2jpjp2jpe 
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RiCHARD T. BUMBY 
Rutgers University, New Brunswick, NJ 08903 

(Submitted April 1985) 

Consider t he numbers: 

A = \ll • 11 + 2V5 + y/E; 

B =\/ll + VTL1TH-\/(11 + 5) - VTI? + 2v6(ll - /U6), 

Although one feels that these numbers couldnft be equal, Shanks [2] assures us 
that they are. Indeed, Follin (as reported by Spohn [3]) points out that one 
may take 5, 11, and 116 as indetevrninates subject only to the identity 

5 = ll2 - 116 (1) 

(which certainly is true for the usual interpretation of these strings of deci-
mal digits). As we shall see, it is only the first 5 in A which needs to be 
given by the representation (1); the remaining 5?s may be treated as a separate 
indeterminate. The proofs of the equality of A and B given in [2] and [3] 
seem to be little more than appeals to the principles attributed to J. Little-
woods that "any identity, once written down, is trivial." 

Please ask yourself the following questions before reading further: 

1. Why does A = B seem so unlikely? 

2. Given that it is true that A = Bs how can it be proved? 

The answers to both questions can be traced to the same source. Book X of 
Euclid's Elements [1]. Indeed, in Proposition 42, it is shown that a number 
expressible as a sum of two incommensurate square roots of rational numbers 
has a unique such representation up to interchanging the order of the summands. 
This deals with question 1. 

Much of Euclidfs work deals with more complicated algebraic numbers,albeit 
only oonstruotible numbers. In this analysis, repeated use is made of the rule 

yfa + S = \/a + b + 2Vob, (2) 

which is employed forward and backward. That is, to take the square root of a 
quantity like 22 + 2\/S, one solves 

a + b = 22 
ab = 5 (3) 

to obtain a and b as 11 + VTL6 and 11 - /116. At this point, it is clear that 
our quantities A and B are the two different ways of associating 

1 - /ll? + A 

using (2) to express the first sum that one takes in each case. Q.E.D. 
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Equation (2) has led to puzzles before. You can discover one by using the 
method (3) to obtain another expression for 

\ll + iJl. 

One case where the method has a fairly satisfying answer is 

V5 + 2^. 

Finally, while it seems that, in the case of 

\/22 + 2i/55 

the method has caused the complication to ramify, it does not lead to prolif-
eration. To see this, find 

\/ll + 2̂ /29. 

Although Euclid!s study of algebraic numbers is full of detailed discussion 
of points which seem to us to be misguided, it is sobering to note that it can 
lead to a natural explanation of an identity that is not very close to the sur-
face in our modern theory of algebraic numbers. 
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AFTERTHOUGHTS 

Since composing the article, I have corresponded with Professor Shanks and 
others whose interest in this topic came to light in that correspondence. It 
seems that everyone has his own favorite proof of this identity, usually re-
flecting the individual's background in classical algebra. 

It also appears that different types of proofs have different gestation 
times, The proof in Spohn?s letter had multiple independent discoveries at 
that time, and a proof along the lines of my article was communicated to Shanks 
by J. G. Wendel of the University of Michigan in October 1984. 

In all proofs, two separate parts must be distinguished. First, the quan-
tities A and B can be shown to satisfy the same polynomial with rational coef-
ficients, i.e., to be algebraically conjugate. This is most susceptible to 
proof by Littlewood1s principle. To show that the numbers are actually equal 
as real numbers relies on special knowledge of the real roots of that polyno-
mial. This Is hidden in my proof because 1 need only distinguish the two 
square roots of a real number. Another tool which is used in my proof (but 
could be overlooked) Is the fact that the sum of algebraic numbers Is alge-
braic. 

Shanks also notes that his proof is really a means of discovery of such 
identities, and he refers the reader to his article [4]. 
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ADDITIONAL REFERENCE 
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Fields (From a Computational Point of View)." Proc. 7th SE Conference on 
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V^dLcot^d to thd mmofiy o£ Robzsut Arnold Smith 

1 . INTRODUCTION 

By an e x p o n e n t i a l d i v i s o r (or e - d i v i s o r ) of a p o s i t i v e i n t e g e r N > 1 wi th 
c a n o n i c a l form 

N-PI1 ••• ?;-, 
we mean a divisor d of N of the form 

d = p^1 ... ph/ , bi\ai5 i = 1, ..., r. 

The sum of such divisors of N is. denoted by o '(N) , and the number of such 
divisors by T^e\N) . By conventions 1 is an exponential divisor of itself, so 
that a(e)(l) = 1. The functions j(eXN) and o^eK^) were introduced in [1] and 
have been studied in [1] and [2], 

An integer N is said to be e-perfect whenever o^e\N) = 2N9 and g-multiper-
fect when o^e\N) = kN for an integer k > 2. In [1] and [2], several examples 
of e-perfect numbers are given. It is also proved in [2] that all g-perfect 
and all g-multiperfect numbers are even. 

Several unsolved problems are listed in [2], and one of them is whether or 
not there exists an e-multiperfect number. In this paper, we show that if such 
a number exists, it must indeed be very, very large. 

2. NOTATION AND SOME LEMMAS 

In all that follows, the positive integer N is assumed to be an g-multi-
perfect number, so that 

0(e)(N) = kN for some integer k > 2. (2.1) 

Note that if n is a square-free integer, then cre'(n) = n, so that if 
(n, N) = 1, then Nn is also e-multiperfect. Hence, we assume (as we may) in 
the future that N is powerful. Also note here that we have used the fact that 
O^ is a multiplicative function. 

Write 

N = 2h(q°i ... ̂ K P i 1 ... Pt
bt), (2-2) 

where the pfs and ^!s are distinct primes, and each a^ is a non-square integer 
> 2, and each bj is a square integer > 4. It follows then that each o^iq?*) 
is even and each o^e^(p. j) Is odd. 

Let k = 2WM, where M is odd and co > 0. 
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Lemma 2*3: N Is even, i.e., h > 2. 

This is a consequence of Theorem 2.2 of [2], 

Lemma 2.k: s < a) + h. 

Proof: The relation a(e)(N) = kN gives 

a(e)(2h) na(e)(?ao 
i = l ^ 

na(e)(pM 
J = 1 J . 

2a + nM(q^ ... ?£•)(?* *>i 

and 
Since the only even factors on the left side are o^iq**1), .. . 9 
since 2|a(e)(2/z)5 the result follows. 

•• p r } -

0(e)(qa
s°), 

< 

In what follows, the letter p represents a prime. 

Lemma 2.5: 

O (l +-T + -T) < d.27885) (l --T J ••• (l - \ V 

Remark: This is a stronger form of Lemma 2.1 of [2], where a similar result is 
proved with the multiplicative constant on the right being 27/16~ 1.6875. For 
our present purpose, we need the above stronger result. 

Proof of Lemma 2.5: 

KJ_ g(2)g(3) A _ _ L \ ... d _ J_\ 

on utilizing the result that 

1 1 1 
1 _ _ < 1, J = 1, .... S. 

L <^JL <7JJ 
Using 

£(2) < 1.64494, c(3) < 1.20206, and £(4) < 1.08232 

([3], p. 811), we obtain the proof of the lemma. 
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Lemma 2.6: 

1.27885 <(-?^)[('^)(.-^-(.^)(.-^ 
70l-2)/2 where 1 + 2Kn Z)/z is to be taken as 1 + ~ for h = 29 3 

Proof: 

g(g>(ff) g(e)(2^) n — a(e)(<7$') 

n 
We note first that, for any prime p5 we have 

^ = 1 + — s m = zs 3, 
pm p2 p 

A l so s fo r m ^ 2S 

a ( e ) (p m ) -77? , T~m/2 , -_ 777 / 3 (PW + P
W / Z + pm'3 + . . ' • + p ) / P " 

< 1 + — — + " + + 
777/2 777/2+1 777/2+2 

1 + 
^ ^ - ^ ( P " 1) 

Thus, 

a ( g ) (2») 1 o{e\2h) , 1 x l < x + _ ± fo r h > 4 ; - — ^ - ^ < 1 + •$, h = 29 3 , 

and 

Next:, 

a(fi)(<7?') i 

n 
i- 1 

a(e>(pa<) 

p ; 2>< 

V) < n—-1- = n (i +^ + rr 

< n (i + -7 + A) 
p*2, , , , . . . , ?8\ P 2 P V 

< (1.27885)11 

on us ing Lemma 2*5* The r e s u l t (2 .6 ) now f o l l o w s , 
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3. MAIN RESULTS 

Given k ^ 3, we shall estimate In and s as functions of k and show that 

lim In = lim s = °°. (3.1) 
k + oo k-*™ 

These follow from the results oo < log k/log 2 and 

h > s - co > [(1 - log(32/27)/log 2)log Zc 

- log((1.27885)(1.5))]/log(32.27). (3.2) 

To obtain (3.2), we utilize Lemmas 2.4 and 2.6. Thus, 

k 
< 1.27885 - ( 1 + l ) A ( 1 + £ ) ( 1 _ ^ ) - (3-3> 

If we take logarithms of both sides and use the estimate that, for all i, 

then, after carrying out routine calculations, we get (3.2) from (3.3). 
Actually, the estimate for In in (3.2) can be vastly improved as shown below. 

Let H0 = HQ(k)be the smallest value of In for which N, given by (2.2), is a 
solution of (2.1). Then we shall show that H0 increases exponentially with k. 
In fact, there is a function E(k) such that HQ(k) ^ H(k) and log log H ~ log k 
as k -*- °°. 

Let Q1 = 3, Q2 - 5, . . . be the sequence of odd primes. From (3.2), we have 

k 
1.27885 x , 

Now let H be the smallest integer satisfying (3.5). 

k H - 1 + t 

< ( i + — L - ) f l n W ( i + 7 r V i - J r V 

fe 
.27885 

fl + i 

It is clear that HQ(k) > H(k). 

Theorem 3.7: log log H ~ log k (k •+ °°). 

Proof: Taking logarithms and letting k •> °°  and noting that 

log(l + 2-(H"2)/2) < log(l + | ) = 0(1) ( # + - ) , 

and similarly for log(l + 2~ ( f f " 3 ) / 2 ), and using the result 

(3.6) 

Eiogfi - -V) = o(i), t -> °°, 

we get 
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+ OJ- 1 / 1 \ 

£ logh + — J + o(i) < log k + o(i; 

*+<* t 1 \ ( 3 ' 8 ) 

< L l o g ( l + 7 T ) + 0(1) . 
Note that as k ->• °°, # -> °°, and 

£ logfl + -~) ~ log log # (H -> oo), 

Thus, (3.8) gives 

log log(# + 03) ~ log & (A: -> ° °). 

Since a) = 0 (log &) , this gives 

log log # ~ log fe (k •*• ° °). (3.9) 

Explicit Lower Bounds for 21/ 

We shall now give some explicit lower bounds for N(k)5 the smallest value 
of N for given values of k that satisfies (2.1). 

First, we note the explicit values of H = H(k) for certain small values of 
k. 

Lemma 3-10: 

(i) H(3) = 4 (iv) ff(6) = 426 

(ii) #(4) = 41 (v) H(7) = 1382 

(ii i) H(5) = 135 (vi) H(8) = 4553 

Proof: We recall the definition of H and utilize its characterization given by 
(3.6). Then a computer calculation gives the above results. 

Lemma 3-11- Let P(x) denote the product of all the primes not exceeding x. 
Then 

(i) log P(x) > .84x for x > 101, 

(ii) log P(x) > .98a; for x > 7481. 

This follows from Theorem 10 of the estimates given by Rosser and Schoen-
feld [4]. 

Of course, the Prime Number Theorem gives the result that log P(x) ~ x. 

Theorem 3-12: 

N(3) > 2 • 107 (3.13) 

tf(4) > 108 5 (3.14) 

N(5) > 10 3 2 0 (3.15) 

71/(6) > 10 1 2 1 0 ; also N(k) > 1 0 1 2 1 0 for all even k for which (3.16) 

03 = b)(k) = 1 . 
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N(k) > 1052 7 0 for all odd k > 7. (3.17) 

N(k) > 101988lf for all even k > 8, for which u) = o)(fc) = 3. (3.18) 

Proof: We shall use the results of Lemmas 3.10 and 3-. 11. We shall illustrate 
the proof by considering only a few cases. 

Let 

G(H, u) = (l + — 1 — ) n (l + -M(l - ±). (3.19) 
\ 2(H~2)/2/ i = ±\ Qi/\ Q\l 

(') ^ = 3: Since 5(3) = 4, by Lemma 2.5 and (3.6), we should have 

£(3, u) > 3/1.27885. 

A computer run shows that the smallest value of u for which this inequality 
holds is u - 4. Hence, s ^ 4 and 

tf(3) > 2h U Q2 = 2k • 32 • 52 • 72 • ll2 = 21344400 > 2 • 107. 
i = 1 

(si) k = 7: Since 5(7) = 1382, (5 - 2)/2 = 691. We should then have 

^(7, u) > 7/1.27885,. 

A computer run shows that the smallest u that satisfies this is u = 1382. Thus, 

N(7) > 2 1 3 8 2 l O % 2 > 10527 0 

i = 1 'z-

on using Lemma 3.11. 

(iii) k odd > 1% Then 5(7<) satisfies 

fc/(l.27885) < (l + - ) n (l +7™Vl " -TV' 

Since 7/1.27885 < k/1.27885, we have H(k) > 5(7) = 1382. Hence, the value of u 
that satisfies 

G(k9 u) > Zc/1.27885 

is >1382, and N(k) > 1052 7 0 for all odd k > 7. 

(iv) k *= 8: We have OJ = 3 and 5 = 5(8) = 4553. Thus, (5 - 2)/2 = 2276.5 
and 

A computer run shows that the smallest value of u for which 

£(8, u) > 8/1.27885 

is u = 4556. Hence, s > 4556 and 
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N(8) > 2 4 5 5 3 n Q2 > 1 0 1 9 8 8 ^ 
i = l 

on using Lemma 3*11 and a computer calculation. 

(v) k even and > 8 and co = U)(k) = 3; We have 

8 k I 1 \H(k) + w * j \ / 1 \ 

TT27885 < T^7885< V +
 2 (H W- 2)/J ^ ^ + ̂ A 1 " £| J 

\ 2 (H^)» -2 ) /2 / / A \ QJ\ QIJ 

From thiss it is clear that E(k) > H(8) for all even & for which a) = CD(&) = 3. 

Remark 3»20: Though we are unable to prove this9 it is very likely that H(k) 
increases monotonically with k for all k ̂  3* , The numerical evidence supports 
this; therefore, we make the following conjectures. 

Conjecture 3*21: H(k) and HQ(k) are monotonic functions of k for k ̂  3. 

Conjecture 3*22: There are no e-multiperferfect numbers. 
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U INTRODUCTION AND MAIN RESULT 

In 1953, Fenton Stancliff [5] noted that 

-^r = .0112358 = £ !0<k + 1)Fk, 
8 9 13 k = 0 

21 

where Fk denotes the kth Fibonacci number. Until recently, this expansion was 
regarded as an anomalous numerical curiosity, possibly related to the fact that 
89 is a Fibonacci number (see Remark in [5]), but not generalizing to other 
fractions in an obvious manner. 

In 1980, C. F. Winans [6] showed that the sums £ 10"(/c + 1)Fa^ approximate 
1/71, 2/59, and 3/31 for a = 2, 3, and 4, respectively. Moreover, he showed 
that the sums £ lO~2 ( k + 1 )Fa k approximate 1/9899, 1/9701, 2/9599, and 3/9301 for 
a = 1, 2, 3, and 4, respectively. 

Since then, several authors proved general theorems on fractions that can 
be represented as series Involving Fibonacci numbers and general n-Bonacci num-
bers [1, 2, 3, 4]. In the present paper we will prove a theorem which includes 
as special cases all the earlier results. We introduce some notation in order 
to state our theorem. 

Let arbitrary complex numbers AQ9 Al9 ..., Am, W0, Wl9 ..., Wm, and B be 
given. Construct the sequence W^ by the recursion 

m 
^n + m+ 1 ~ L ArWn + m_ r 

for n ^ 0 or, equivalently, by the formula 

m 

r = 0 

for any integer n where a)r (r = 0, 1, ...,777) are the zeros of the polynomial 

m 
q(z) = zm+l - E Arzm-r 

r=0 

and (A0, X1$ ..., Xm) is the unique solution of the system of m + 1 linear 
equations 

m 
E^r^r ~ ^n (n = 0, 1, . . . , 77?) 

p = 0 
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(see [2], p, 35). Finally., we introduces for any integer a, 

M(m) = fl (B - < ) . 
p= o 

Theorem: For integers a > 1, 3 > 0, and any complex 5 satisfying 

max I ud^/B I < 1, 

we have the formula 

oo m 

M(m) • L Z T ^ + 6 = 5 • E Aro>r - n ( 5 - O J " ) . 
^ = 0 P = 0 0 < ^ < 777 

Remark: In the above formula, M(m) and the right-hand side are in fact inte-
gers if B9 A Q 9 A 1 9 ..., A m , h\9 Wl9 ..., Wm are all integers.. 

Now we can comment on earlier results in more detail. In 1981, Hudson and 
Winans [1] handled the case of the ordinary Fibonacci sequence with 3 = 0? B = 
10n. According to [3] and [4], their result can be written as 

±10-n(k + l)F , ? 9 

*-i i02» - 10nLa - (-l)a 

where La denote the Lucas numbers. Also In 1981, Long [4] treated the case of 
the general Fibonacci sequence, i»es, m = 1 and arbitrary AQ9 A19 WQS W19 and 
Bs with the restrictions however, to a = 1, 3 = 0. In 1985, Kohler [2] gave 
the generalization for arbitrary ms A Q S A 1 9 . .., A m 9 WQ9 W1$ «»»s Wm$ B9 again 
with the restriction to a = I, g = 0. His result Is 

E B'kWk . = p(B)/q(B)9 

where p is a polynomial of degree m with explicitly given coefficients. Also 
in 1985, Lee [3] discussed the cases m = 1 and m = 2 of general Fibonacci and 
Tribonacci sequences with arbitrary a and g. The results of [3] will be deduced 
from our Theorem in Examples 1 and 2 below., For this purpose, we introduce the 
notation 

77? oo 

p= 0 k = 0 

Proof of Theorem: We have 

oo oo 7/7 - „ 

k=0 k=0 r=0 

r=0 \k-0 I r=0 5-0)" 

Convergence is guaranteed by the condition on B. In the same ways we obtain 
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Y,B'kwak+o = E U ' 
k=l r=Q 

Multiplying with M(m) yields the Theorem. 

Remark: Partial sums of the series in our Theorem can be expressed by these 
series, according to the formula 

B"- t B'kWak+6 = B». ± B-«Wak+e + E B-*Wak+(m^y 
k = 0 k=0 k = X 

2. EXAMPLES 

Example 1: The general Fibonacci sequence. Take m = 1. Then we have 

Wn + 2 ~ A^Wn + 1 + A1Wn, 

M{1) = (B - <^)(B - UJ«) = B2 - BSa + (-AJ*, 

t B~kwak+Z = U 0 < + S ( B - 0)«) + \^l+\B - o .p} /M( l ) 
fc = i 

= (BWa+B - (-A^W^/Md), 

£ B-kWak+B = B(B^ - ( - V X - a ) / W ) -
fc = 0 

As to t he p a r t i a l sums, we ge t 

£.Bn-\k = B"L(l)/M(l) - £ B-kWak + m+fi 
k=0 k=l 

BnL(l) -BWa(n+1) + & + (-Al)aWm+e 

B2 - BSa + C-Axf 

These formulas a r e equal t o Theorems 1-3 of [ 3 ] . 

Example 2: The genera l Tr ibonacci sequence . Take m = 2 . Then we o b t a i n 

Wn+3 = A0Wn + 2 + A,Wn+1 + A2Wn, 

M{2) = B3 - B2Sa + BAa
2S_a - A\, 

t^Wa+z = (B%+& + B(W2a+& - SaWa+B) + Aa
2W^)/M(2), 

tQB-kW^B = B{B2Wz + B(Wa+ii - SaWB) + Aa
2WB_a)M2), 

ZBn'kWak+& = BnL(2)/M(2) - t B-kWak + an+6 
k=0 k=l 

( con t inued) 
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*^<2> ~ BX<n+i) + B+B(SaWa(n+1) + &-Wa{n+2) + B)- Aa
2Wm+i 

B3 - B2Sa + BAa
2S_a - Aa

2 

These formulas are equal to (9) and Theorems 7 and 8 in [3], and a misprint in 
Theorem 7 in [3] is corrected. 

Example 3: The general Tetranacci sequence. Take m = 3. Then we have 

Wn + , = ^ + 3 + AlWn+2 + A2Wn + l + A 3Wn > 

M(3) = Bh - B3Sa + B2(S2 - S2a)/2 - B(-A3)aS_a + M 3 ) \ 

fc = 1 

+ 5 ( - 4 3 ) a ( 5 _ a ^ - ^ B _ a ) - (~A3)aWB}/M(3), 
oo 

ZB~kwak+Q = B{B% + B2(Wa+$ - SaW$) + B(2A/2a+6 - 25aA/a+6 
k = o 

+ (S2 " S2a)WB)/2 - (~A3)aW&_a}/M(3)5 

11 Bn Wak+3 - {BnL(3) - B3W0i(n+l) + B B2(Wa(n+2) + Q - SaWa(n+1) + Q) 

- B(~A3f (S.aWan + 6 - Wa(n+ 1) + B) + (-^3)a^+6}/M(3). 

Formulas for m ̂  4 can be obtained in a similar manner. 
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1. INTRODUCTION 

A Smith number has been defined by A. Wilansky [2] to be a composite number 
whose digit sum is equal to the sum of the digits of all its prime factors. 
Wilansky presents figures indicating that 360 Smith numbers occur among the 
first ten thousand positive integers, and asks whether there are infinitely 
many Smith numbers. Oltika and Wayland [1] have noted that relatively large 
Smith numbers are easily generated from primes whose digits are all 0's or l!s, 
but that only a small number of such primes are known. 

We show in this paper that infinitely many Smith numbers do exist, using an 
approach that does not depend upon the primality of the integers used in the 
construction. This approach shows that, in fact, a much more general result 
holds. 

Let 7?7 be a positive integer greater than 1. We denote the number of digits 
of m by N(m)9 the sum of the digits of m by S(m), and the sum of all the digits 
of all the prime factors of 777 by SpQn) . It may be noted that Sp(m) = 5(777) if 
7?7 is prime, and Sp(m) = Sp(m1) + Sp(m2) if m = 77717?72 (m19 m2 > 1). 

Definition: Let m be a composite integer and k be any positive integer, m is 
a fc-Smith number if Sp(m) = kS(m). 

An example of a 2-Smith number is 777 = 104 = 23 • 13: 

Sp(m) = 2 + 2 + 2 + 1 + 3 = 10 = 2 ( 1 + 0 + 4) = 2S(m). 

An example of a 3-Smith number is 402 = 2 • 3 • 67. Among the positive integers 
less than 1000, there are 47 /c-Smith numbers for k = 1 (see [2] for additional 
information on the distribution of Smith numbers), twenty-one for k = 2, three 
for k = 3, and one fc-Smith number for each of k - 7, 9, and 14. 

The principal result of this paper is that infinitely many Zc-Smith numbers 
exist for every positive integer k. 

2. SOME FUNDAMENTAL PROPERTIES 

First, we obtain an upper bound on Sp(m) which does not involve the speci-
fic prime factors of m. 

Theorem 1: If p , ..., pr are prime numbers, not necessarily distinct, and if 
171 = P1P2 ' " Pr > t h e n S.p(rn).< 9N(m) - .54r. 

Proof: Let bt = N{yt) - 1, i = 1, 2, ... , r, and b = hx + • • • + br. Now, the 
sum of the digits of a prime is not a multiple of 9, so 

Sip^) < 9N(Pi) - 1 = 9bi + 8. 
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We partition the prime factors of m into 9 disjoint classes by means of the 
following: Let Gi be defined by S(pi) = 9bt + c^, ci < 85 i = 1, 2, . . . , p, nQ 
be the number of integers i (1 < i < p) for which c^ is negative, and rij be the 
number of integers i (1 < % < p) such that ĉ  - j s for 1 ̂  J ^ 8. Then, 

£ = 1 i = 1 j = 1 

where this last sum is over the nQ values of i for which c^ < 0 (note that ĉ  ^ 
0 for any i). Since the last sum is less than or equal to -n0, we have 

8 

Sp(m) < 9b + £ jw. - rc0. (1) 
J = I 

Now, S(pi) = 9bi + c^ implies, for ci<0y that p. > I0hi , and, for 1 < ^ < 8, 
that 

p. > (c. + 1) * 10^ - 1 > (c. + 9/10) • 10^, if b, > 0 

(i.e., unless p. is one of the primes 2, 3, 5, or 7), and 

p. = cAQhi
 9 if b, = 0 . 

It follows that 

m = pxp2 ••• pr 

> (1.9)"1(2)"2 (3)"3 (4.9)n« (5)"5(6.9f6 (7)"7 (8.9)"8 • 10b. 

Rewriting 777 as a • 10 ", for some rational number 1 < a < 10, and taking 
logarithms, base 10, we have 

log a + N(m) - 1 > n1 log 1.9 + ••• + nQ log 8.9 + b, 
so 

9#0") > 9b + nx(9 log 1.9) + ••• + n8 (9 log 8.9) + 9(1 - log a). 

For each integer j (1 < J < 8), we find that the coefficient of rij is greater 
than J + .54. Hence, 

8 
9b + £ TT.(J + .54) < 9tf("0, 

J = 1 
that is, 

8 
9b + E JWj < 9il7(m) - .54CW! + ••• + n 8). (2) 

Combining (1) and (2), we have 

SpOw) < 9N(m) - .54(n0 + nx + ••• + nB) - .46n0 < 9N(m) - .54r. Q.E.D. 

We now state without proof a fact that is surely well known but which we 
have not found in the literature. The proof follows readily upon writing t as 

k 
Z a^Q1 (k < w). 

i = 0 
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Theorem 2: If 10n - 1 is multiplied by a positive integer t < 10n - 1, the 
digit sum of the product is 9n (n ^ 1). 

3- k-SMITH NUMBERS 

Theorem 3' Let a be any nonnegative integer. There exist infinitely many in-
tegers M for which Sp(M) = S(M) + c. 

Proof: Let m = 10n- 1, n > 2. Since 32 |tf?, 77? has at least three prime factors, 
so, by Theorem 1, Sp(m) < 9N(m) - 2 = 9n - 2. Let h = 9n - Sp(m) > 2. We de-
fine 

!T = {25 3S 4, 5, 8, 7, 15}, 
making 

{Sp(t)\t e T] = {2, 35 4, 5, 6, 7, 8} 

a complete residue system (mod 7). 

Since a nonnegative implies that h + c ^ 2, there exists an integer t E T 
such that Sp(t) = h +' c - lb for some nonnegative integer Z?. We now consider 
the product M = t(lOn - 1) • 10b. 

Noting that a power of 10 times a number has the same digit sum as the num-
ber, we have, by Theorem 2, S(M) = 9 . Hence, 

SP(M) = Sp(t) + Sp(lOn - 1) + Sp(lOb) 

= (h + Q - lb) + (9n - h) + lb 

= 9n + o 

= 5 M + c. 

This secures the theorem, since each n determines a unique M. 

Corollary: There exist infinitely many fc-Smith numbers for each positive inte-
ger k. 

Proof: Let k and n be positive integers, and M be defined as in Theorem 3. We 
need only choose c equal to (k - 1) • 9n = (k - l)S(M); thus, 

SpQd) = S(M) + (k - l)S(M) = kS(M). 

When k = 1, we have, of course, a Smith number for each integer n ^ 2 [ac-
tually, for n > 1, since ^(tClO1 - 1)) = 9 for each t e T]. 

The following algorithm for constructing /c-Smith numbers is implicit in the 
proofs of Theorem 3 and the Corollary, 

Algorithm: 

1. Let n > 2 and factor m = 10n - 1; 

2. Compute Sp(m) and set h = 9n - Sp(m); 

3. Solve x = h + (k - l)9n - lb, 2 < x < 8, 
and find t £ T such that Sp(t) = x. 

k. M = t(!0n - 1) • 10b is a k-Smith number. 
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Example 1: A Smith number (k = 1). 

Let m = 106 - 1 = 33 • 7 • 11 • 13 • 37 (n = 6 has been chosen arbitrarily). 
SP(m) = 32; h = 54 - 32 = 22, a; = 22 - 7£ implies that x = 8 and b = 2. £(£) 
= 8 implies £ = 15. Hence, M = 15(106- 1) • 102 = 1,499,998,500 is a Smith num-
ber. [SP(M) = 5p(3) + £P(5) + 32 + 14 = 54 = 5(/¥). ] 

Example 2: A 6-Smith number. 

Let m = 102- 1 = 32 • 11. 5P(w) = 8; /z. = 18 - 8 = 10. x = 100 - 7Z? implies 
that # = 2 and b = 14. £(£) = 2 implies £ = 2. Hence, M = 2(102 - 1) • 1014 = 
21 5 • 32 • 11 • 5lt+ is a 6-Smith number. [£P(M) = 30 + 6 + 2 + 70 = 108 = 6S(M).] 

4. SOME REMAINING QUESTIONS 

Thus far, it has become clear that there exist infinitely many integers m 
for which Sp(m) far exceeds S(m). Now, it is conceivable that the "opposite" 
relationship may also hold. If, in fact, one examines the composite integers 
77? < 1000, one finds that Sp(m) < 5(777) for approximately 37% of these values. 
We make the following definition. 

Definition: Let 77? be a composite integer and k be any positive integer. 777 is 
a A:""1--Smith number if Sp(m) = k~1S(m)» [That is, if kSp(m) = S(m).] 

There are nine £:_1-Smith numbers (&> 1) less than 1000—all 2-1-Smith num-
bers. The smallest is 88: 

Sp(88) = Sp(23 • 11) = 8 - kS(88)s 

and an example of a 3-1-Smith number is 19,998. The largest k for which we 
1 fc_1-Smith number is 6: 

32 - 11 • 101 • (100003)2 = 99,995,999,489,991 

is a 6_1-Smith number. 
The following argument shows that it is possible that fc_1-Smith numbers 

exist for larger integers k. 

Suppose that, for some integer n > 2, 10n + 1 is a prime (this implies that 
n is a power of 2 and n ^ 1024; see [3, p. 63]). 

Let ( ) be the largest binomial coefficient in the expansion of (10n+l)r
5 

t any integer such that (V\ < 10* - 1, and let 77? = 9999(10n+ 1)* . The restric-

tion on t assures that the coefficient of 10Jn (0 < j < t) in the expansion of 

777 has digit sum 36, by Theorem 2. Since 9999^10 J'n < 10(J'+1)n, S(m) = 36 (t + 

1), and it is clear that Sp(m) = 10 + It. Thus, for t = 1, 3, 7, and 13, 777 is 

a &_1-Smith number for k = 6, 9, 12, and 14, respectively. However5 at present 

no primes of the form 10n 4- 1, other than 11 and 101, are known. 

Accordingly, we pose the following questions: Is there a k~±-Sm±th number 
for every integer /c? If not, what is the largest k for which £c-1-Smith numbers 
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exist? Do there exist infinitely many 2" -Smith numbers? Do there exist in-
finitely many fe"1-Smith numbers for any k > 2? 

We conjecture that the answer to each of the last two questions is "yes." 
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We cons ide r the r e c u r r e n c e r e l a t i o n 

where G0 = G± = 1, and we exp re s s Gn i n terms of t he F ibonacc i numbers Fn and 
F n _ 1 5 and i n t he pa ramete r s a Q , « e o 5 afc9 

For i n t e g e r v a l u e s of k5 ctQ5 . . . , ak, t he r e l a t i o n 

^ = Gn-1 + ^ - 2 + £ a j * '"> <*> 

where £0 = £i = 1, forms a difference equation that can be solved by standard 
methods. In this note9 we provide such a solution for equations of this type* 
in which we treat a0 § • . . > cxfe as parameters. 

First5 the solution G^ of the corresponding homogeneous equation equals 

G(
n

h) = Crf? + C2<b», 

where ^ - h(l + A ) and cf)2 = ̂ (1 - A ) ; cf. eeg.s [1] and [3]. 
Seconds as a particular solution, we try 

which yields 
k k k k 

E ^ - E M* - D* - E ^(» - 2)1 - E afn* = o 
£ =0 t = 0 t -0 ' i»0 

£ V * - E ( E ^ ^ l )(-l)i_"(l + 2i"*)n1) - E af»* = 0. 

For each £ (0<-£<fc)swe have 

^ - £ B ^ - a< - 0. (2) 
m - i 

where, for m > i, 

3im - (J) C-D^-'CI + 2""<). 

From the recurrence relation (2), A%9 »ees A0 can be computed (in that or-
der): Ai is a linear combination of a^s oe@$ a^* However^ a more explicit 
expression for A^ can be obtained by setting 
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k 

J = Z 

(The minus sign happens to be convenient in the sequel.) Then (2) implies 

k k l k \ 
~ E aijaj + E Sim \ E Zml^l " a i = ° • 

j = i "i = ^ ^ £ = ?77 / 

Since 3 ^ = 2, we have, for 0 < i < fc, 

aij = ~ E $imamj> ±£ j > t-
m = i + 1 

Hence, 

( F ) & A . fe_ / J k K . K i d \ 

E E ct.ij^n-1 = - £ a J X) a i j ^ • 

F i n a l l y , we ought to determine C1 and C2: G0 = G1 = 1 imp l i e s 

C± + C2 = I - G(
0
P), (7,(1), + C2<f>2 = 1 - £<P). 

These equalities yield 

C1 = ((G<P) - 1)<)>2 + 1 - C ^ K ^ ) " 1 

= ((1 - G ^ ) ^ - G f + OC/5)- 1, 

C*2 = ((£<p) - 1)0, + G<p) - DCv^r1 

= -((1 - G(0P))^2 - G^ + Gfx/5)-1, 
and 

^n - (1 " GQ )Fn + ("̂ 1 + G0 >Fn-l + Gn ' 

Summarizing, we have the following proposition. 

Proposition: The solution of (1) can be expressed as 

k 
Gn = (1 + ^k)Fn + ^kFn-1 ~ E ajPj(^)> 

j =0 

where A^ is a linear combination of a0, ..., a^, X^ is a linear combination of 
a15 ..., afc, and for each j (0 ̂  j ̂  fc), p•(n) is a polynomial of degree j : 

k k / j \ J 

fc = . E « 0 j a j » xk = E ( E aijhj> Pj (n) = E ^ j ^ -A ^ _ „ _ _ _ . , „ „ _ „ 
J = 0 "• j = i \ i = i " " / " " £ = 0 

Remarks: 

(1) For j = 0, 1, ..., 8s the polynomials p. (ft) are given in Table 1. 

(2) No assumptions on a0, . . . , ak have been made; thus, they may be rational oi 
real numbers as well. 

(3) Changing G± = 1 into £ - c only affects A^; it has to be increased witl 
c - 1. 
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Table 1 

j 

0 

1 

2 

3 

4 

5 

6 

7 

8 

Pj(ri) 

1 

n + 3 

n2+ 6n + 13 

n3 + 9n2+ 39n + 81 

n4 + 12n3+ 78n2 + 324n + 673 

n5+ 15n4 + 130n3 + 810n2 + 3365n +6993 

n6+ 18n5 + 195n4+ 1620n3 + 10095n2 + 41958n + 87193 

n7 + 21n6+273n5 + 2835n4 + 23555n3 + 146853n2 + 610351n + 1268361 

n8 + 24n7 + 364n6 + 4536ns + 47110n4 + 391608n3 + 2441404n2 + 10146888n + 21086113 

(k) The coefficients of a0, a19 a2, ... in Ak and of ax, a2, ... in Xfe are in-
dependent of k. Thus3 they give rise to two infinite sequences A and A of 
natural numbers, as k tends to infinity, of which the first few elements 
are 

A: 1, 3, 13, 81, 673, 6993, 87193, 1268361, 21086113, ..., 

A: 1, 7, 49, 415, 4321, 53887, 783889, 13031935, ... . 

Neither of these sequences is included in [2]. 
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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

F « = F , , + F*. > F« = 05 F, = 1 n+ 2 n+1 n s 0 ' 1 
and 

Ln + 2 = Ln+1 + Ln> L0 = 2> L l = l ' 

PROBLEMS PROPOSED IN THIS ISSUE 

B-586 Proposed by Heinz-Jurgen Seiffert, Student, Berlin, Germany 
n 

Show that 5 X X F _ 7 = (n + l)F o + (n + 3)F . 
4—f k+ 1 n+ 1- k n+ 3 v ' n+ 1 

k = 0 

B-587 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 
Let y = £ Fnxn/n\ and 2 = £ Lnxn/n\ . 

n = 0 « = 0 

Show that y!t - y ! + y and 3" = 2 ' + 3. 

B-588 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Find the y and z of Problem B-587 in closed form. 

B-589 Proposed by Herta T. Freitag, Roanoke, VA 

The number N = 0434782608695652173913 has the property that the digits of 
KN are a permutation of the digits of N for K = 1, 2S . . . 9 m. Determine the 
largest such m. 

B-590 Proposed by Herta T. Frietag, Roanoke, VA 

Generalize on Problem B-589 and describe a method for predicting the left-
most digit of KN. 
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B-591 Proposed by Mihaly Bencze, Jud. Brasa, Romania 

Let F{x) = 1 + Y* ctnxn with each an in {09 l}. 
n = 1 

Prove that f(x) 4 0 for all x in -l/a < x < 1/a, where a = (1 + V/5)/2. 

SOLUTIONS 

Constant Modulo 5 

B-562 Proposed by Herta T. Freitag, Roanoke, VA 

Let cn be the integer in {05 1, 2, 3, 4} such that 

on = ̂ 2n + [w/2] - [(n - l)/2] (mod 5), 

where [x] is the greatest integer in x. Determine cn as a function of n. 

Solution by J. Suck, Essen, Germany 

cn = 3 for all n <E Z. From the very definition, we see that Ln ~ 2, 1, 3, 
4 (mod 5) for n = 0, 1, 2, 35 respectively, (mod 4). Hence 

2 for n even 
3 for n odd. 

But for n even, 

2 

and for n odd, 

[n 

n _ t 
2 2 i - t ? - 1 ) - 1 -

2J [ 2 J 2 
n - 1 0. 

So, 

£2* + 
"n" 
_2_ 

[n - r 
2 

(2+1, n 
(3+0, n 

even f v x 
,, = 3 (mod 5), odd 

Also solved 2?y Paul 5. Bruckman, Laszlo Cseh, L.A. G. Dresel, Piero Filipponi, 
C. Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee, Jmre Merenyi, Bob Prielipp, 
Heinz-Jurgen Seiffert, and the proposer. 

2 of 3 Are Multspies of h 

B-563 Proposed by Herta T. Freitag, Roanoke, VA 

n 
Let Sn = £ ^2i-hi^2i-z' F o r w n i c n values of rc is 5n exactly divisible 

by 4? i = 1 

Solution by J. Suck, Essen, Germany 

From the definition of the Lucas numbers we see that If k = 0, 1, 2, 3, 4, 
5 (mod 6), then Lk = 2, 1,3,0,3,3 (mod 4), respectively. Hence, if i E 1, 
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2, 0 (mod 3), then L2i + 1L2i_2 = 0-2 = 0, 3 - 3 = 1 , 1-3 = 3 (mod 4), respec-
tively, This, of course, implies that Sn = 0 (mod 4) if and only if n = 1 or 
0 (mod 3) and Sn = 1 otherwise. 

Also solved by Paul S. Bruckman, Laszlo Cseh, L.A. G. Dresel, Plero Fllipponi, 
C. Georghiou, L. Kuipers, J. Z. Lee & J, S> Lee, Bob Prielipp, Heinz-Jurgen 
Seiffert, and the proposer. 

Summing [aFk] 

B-564 Proposed by Laszlo Cseh, Cluj, Romania 

Let a ~ (1 + v5)/2 and [#] be the greatest integer in x* Prove that 

[oFJ + [oF2] + -.. + [oFn] = Fn+3 - [(n + 4)/2]. 

Solution by Paul S. Bruckman, Fair Oaks, CA 

First we note that aFk = 5"1/2 (ak + 1 - bk+1 + bk (b - a))= Fk+1 - bk. Since 
-1 < b < 0, thus [aF2k] = F2k+1 - 1, [aF2k + 1] = F2k+2, or [aFk] = Fk + 1 - ek, 
where ek is the characteristic function of the even integers. 

n 
Let Sn = J2 [aFk ] . Then 

fc = l 

Sn = t (Fk+1 - ek) = t (Fk+3 ~ ** + 2> ~ \f\ = Fn + s - F3 - [fl 
2> = 1 fc = 1 L ^ - J L ^-J 

Q.E.D. 

fc = l k = 1 
fn + 4 

= F 
n+ 3 

Also solved by Piero Filipponi, C. Georghiou, L. Kuipers, J. Z. Lee <£ J. 5. Lee, 
Jmre Merenyi, Bob Prielipp, Heinz-Jurgen Seiffert, J. Suck, and the proposer. 

Fibonacci-Pel 1 Products Summed 

B-565 Proposed by Heinz-Jurgen Seiffert, Student, Berlin, Germany 

Let P , P , . . . be the sequence of Pell numbers defined by PQ = 09 P1= 19 
and Pn = 2Pn° x ^Pn_2 for n £ {2, 3, . ..}. Show that 

9 X > ^ = Pn + 2Fn + P n + 1 F n + 2 + PnFn-l ~ Fn-lFn+l' 

k'O 

Solution by Paul S. Bruckman, Fair Oaks, CA 

Let Rn denote the r igh t member in the statement of the problem. Then 

R„ • (2P„ + 1 + Pn)Fn + Pn + 1(Fn+1 + Fn) + Pn(Fn + 1 ~ Fn) 

after simplification, this reduces to 

Rn = 3(Pn + 1Fn 4- PnFn + 1)« (1) 
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Therefore, 

A/?„ = Rn + 1 - Rn = 3(Pn + 2Fn + 1 - Pn + 1Pn + Pn + 1Fn + 2 - PnFn + l) 

= 3{(2Pn + 1 + Pn)Fn + l - Pn + 1Fn + Pn + 1(Fn + 1 + Fn) - PnFn+1], 

which reduces to 

Mn = 9Pn + 1Fn + 1. (2) 

On the other hand, let Sn denote the left member in the statement of the prob-
lem. Clearly, 

ASn = 9Pn+1Fn+1. (3) 

Since tSRn = ASn, this implies that 

Rn = Sn + e, n = 0, 1, 2, ..., (4) 

for some constant c (independent of n). Since P = F = 0, thus 

i?0 = 0 and S0 = 9P0FQ = 0. 

Setting n = 0 in (4), we find that 0 = RQ = S0 + c = c, i.e., o = 0. Therefore, 

Rn = Sn for all n. Q.E.D. (5) 

Also solved by L.A. G. Dresel, C. Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee, 
Heinz-Jurgen Seiffert, and the proposer. 

Lucas-Pell Products Summed 

B-566 Proposed by Heinz-Jurgen Seiffert, Berlin, Germany 

Let Pn be as in B-565. Show that 

9 £pkLk = Pn + 2Ln + Pn + 1Ln+2 + PnLn_x - Pn.xLn + x - 6. 

k = 0 

Solution by Paul S. Bruckman, Fair Oaks, CA 
The proof is similar to that of B-565. Using the same notation, we find, 

as before, that 

Mn = 9?„+A + 1 = A5n, (1) 
and 

Rn = Sn + c, n = 0, 1, 2, ..., (2) 
for some constant c (independent of n). 

Also, however, we have the following relation, which differs from (1) in the 
solution of B-565: 

Rn = 3(Pn + 1Ln +PnLn + 1) - 6. (3) 
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As before, S0 = 9P0LQ = 0; also, using (3), i?0 = 3(1 • 2 + 0 • 1) - 6 = 0. Set-
ting n = 0 in (2), as before, we find that c = 0. Thus, 

Rn = Sn for all n. Q.E.D. (4) 

Also solved by L.A. G. Dresel, C. Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee, 
J. Suck, and the proposer. 

Relatives of Hermlte Polynomials 

B-567 Proposed by P. Rubio, Dragados Y Construcciones, Madrid, Spain 

Let a0 = a1 = 1 and an + 1 = an + nan_1 for n in Z+ = {l, 2, . ..}. Find a 
simple formula for 

k = o Kl 

Solution by L.A. G. Dresel, Reading. England 

Putting Ak = ak/kl, we have 

fc = o 

where 40 = ̂  = 1 and (n + l)An + 1 = An + ̂ n - 1 for n = 1, 2S . . . . It follows 
that the series for G(x) is convergent and differentiable, and 

^ = Z(k + l)Ak+1xk = A1 + Z_(Ak + Ak_Jx* = ZjAkx* + Akxk + 1) 
dG = 

k~^0 - — - k—i - - fe—Q 

(1 + x)G 

Since G(0) = 1, we can integrate the differential equation for G to obtain 
l 2 

G(x) = e 2 . 

Also solved by Duane Brollne, Paul S. Bruckman, Odoardo Brugla& Plero Flllpponl, 
Darlo Castellanos, Laszlo Cseh, Alberto Facchlnl, J. Foster, C. Georghiou, L. 
K,ulpers, J. Z. Lee & J. 5. Lee, Imre Merenyl, Heinz-Jurgen Selffert, J. Suck, 
David Zeltlln, and the proposer. 

Editorial Note: Castellanos and Zeitlin pointed out that an = 2~ n ' 2 i n H n ( - i / V 2 ), 
where the Hn are the Hermite polynomials. Bruckman, Seiffert, and Zeitlin gave 
the explicit formula: 

[n/2] 

a = n l E (l/2k(n - 2k)\k\). 
k = o 

• 0404 
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PROBLEMS PROPOSED IN THIS ISSUE 

H-406 Proposed by R. A. Melter, Long Island University, Southampton, NY 
and I. Tomescu, University of Bucharest, Romania 

Let An denote the set of points on the real line with coordinates 1, 2, 
. .., n. If F(n) denotes the number of pairwise noncongruent subsets of An, 
then prove 

yi-2 + 2n/z _ 1 torn even, 

F(n) I 
+ 3 • 2(n_3)/2 - 1 for n odd. 

H-407 Proposed by Paul S. Bruckman, Fair Oaks, CA 

Find a closed form for the infinite product 

n ( 5 n + 2)(5w + 3) 
nV0 (5n + l)(5n + 4) ' u ; 

H-408 Proposed by Robert Shafer, Berkeley, CA 

a) Define uQ = 3, u1- 0, u2 = 2, and un + 1 - un_1 + un_2 for all integers n. 

b) In addition, let wQ = 3, w1 = 0, w2 = -2, and Mn + 1
 = ~Un„1 +

 w
n-2 f o r a 1 ^ 

integers n. 

Prove: up = Wp E 0 (mod p) and u_ = ~u_p = -1 (mod p) , where p is a prime 
number. 

SOLUTIONS 

Here's the Limit! 

H-383 Proposed by Clark Kimberling, Evansville, IN 
(Vol. 23, no. 1, February 1985) 
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For any x > 0, let 

1 " 
c1 = 1, c2 = xs and cn = - YaGicn-i for n = 3S 4, ... . 

i = 1 

Prove or disprove that there exists y > 0 such that lim zync = 1. 

n •+ oo n 

Solution by Paul S. Bruckman, Fair Oaks, CA 

We form the generating function 
u = f(z, x) = £ onzn, (1) 

n = l 
assumed valid for some disk of convergence C: \z\ < r (s complex). Under this 
assumption, 

^-y 00 

Note that from the defining recurrence and the condition x > 0 it follows that 
all cn

?s are positive. Within C9 the series defining f represents an analytic 
function of s, hence may be differentiated term by term. Thus*. 

n- 1 
w' = L ^ n s n _ 1 = 1 + 2̂ s + E nc^-1 = 1 + 2xs + £ sn_1 X>^ n _ f e 

n=l n=3 n=3 &=1 

n- 1 
= 1 + 2XZ - Z + E ^ " 1 E ^ . f c 

n=2 fe=i 

= i - (i - 2x)z + f; ^s^-1 E v n , 
k = 1 « = 1 

or 

w' = u2/s + 1 - azs (3) 
where 

a = 1 - 2x. (4) 

Note also the conditions 

/(O, x) = 0, / f(0, a?) = 1. (5) 

For reasons which will become clear subsequently, we make the initial restric-
tion x + 1/2, i.e., a + 0. We make the fortuitous substitutions; 

u = ~zvf/vs where v = ̂ (s, x), (6) 

z; = &?M), (7) 

w = 7z(9, a?), (8) 

6 = 2bz9 (9) 

2? = y/a. (10) 
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Upon transformation, we obtain the following differential equation: 

w" + (-1/4 + 1/266 + l/402)w = 0, (11) 

where differentiation in (11) is with respect to 0. 
Equation (11) is a special case of WhittakerTs Equation, given in 13.1.31 

of [1] in the following (paraphrased) modified form: 

u W + ( - | + | + l^pi)W-0. (12) 

Equation (12) possesses multiple-valued solutions, but we are not concerned 
with these; there exists a single-valued solution of (12) which meets all the 
necessary criteria. This is given by Whittaker's Function (13.1.32 [1]): 

Mk,v(Q) = e'1/26 e1 / 2 + y W / 2 + y - k9 1 + 2y, 6), (13) 

where M(A, B, Z) is the Kummer (or Confluent Hypergeometric) function defined 
by 

M(A, 5, Z) = E 7 m - 4 5 d4) 
n=o yti)n ni 

using Pochhammer's notation: (s)n = s(s + 1)(s + 2) . .. (s + n - 1). 
Note (11) is obtained from (12) by setting k= 1/22?, y = 0; the restriction 

b ^ 0 now becomes evident. We therefore obtain the solution of (11): 

where 
g(Q) = e~1,2e 01/2 M(o, 1, 0), (15) 

o-h~^. (16) 

Thus, using (6) and (7), 

v = g(z, x) = e~hzM(c, 1, 2bz). (17) 

To check that the boundary conditions in (5) are satisfied, we note that 

~^ M(A9 B, Z) = | M(A + 1, B + 1 , Z ) ; 

h e n c e , 
vr = e~hz{2bcM(C + 1 , 2 , 2bz) -bM(c, 1 , 2bz)}, 

v"=e~bz{2b2c(c~+ l)M(c + 2 , 3 , 2bz) - kb2cM(c + 1 , 2 , 22?s) 

+ b2M(c, 1 , 2 6 s ) } . 
S i n c e M(A, B, 0) = 1, t h u s , 

0 ( 0 , # ) = 1, g ' ( 0 , x) = 2 £ c - 2 ? = - 1 ) , 

g"(0, x) = 2b2e(c + 1) - 42?2c + 2?2 = b2 (2c - 2c + 1) 

= 1/2(2? - l ) 2 - bib - 1) + b2 = l/2(b2 + 1) = 1 - x. 

U s i n g ( 6 ) , / ( 0 , # ) = - ~ ^ - = 0 . A l s o , 

t -V(zVn + Vr) + Z(V')2 -ZV" V1 , . , , 2 
u1 = — = - — + z(vr/v)z; 

v2 V V ' 
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hence, 

f'(Q, x) = 0(1 - x)/l + 1/1 + 0(-l/l)2 = 1. 

Thus, the boundary conditions are satisfied. 
Using the divverential expression for vr obtained above and simplifying, we 

obtain as the (single-valued) solution of (3): 

u - /(,, *)-*»-«,- l), . ^ V y f 5 l . (18) 
provided x ^ 0. 

If 0 < x < 1/2, then 0 < a < 1, 0 < b < 1, o < 0. In this situation, it is 
known that M(os 1, 2bz) has a zero z0 of minimum modulus |s0| > 0. Since e~hz 

cannot vanish for any values of s, thus zQ is also a zero of g. Hence, from 
(6), 20 is a simple pole of /; moreover, there are no other singularities of / 
with smaller modulus than z . It follows from (2) that 

l™sn + i/en ' l2ol_1- d9) 

From a known result in analysis (Ex. 68.1 [2]): 

lim c1'" = |zn|- 1. (20) 

Now (20) implies 

llmjz0\nen = 1. (21) 

Hence, if 0 < x < 1/2, the original conjecture is true, with y = |s0|. If 
x > 1/2, then a < 0, b = ik = iv-a5 say, and o = 1/2 + i/2/c. Less seems to be 
known about the zeros of M(AS B5 Z) when A, Bs and Z are complex, in particular 
of the function 

M(l + ~Tk> ls likz)* 
it seems likely, however, that, in this case as well, there exists a nonzero 
zero of this function, which leads to (21), as before. Certainly, the numeri-
cal evidence suggests this conclusion; namely, that the conjecture is true for 
x > 1/2. 

Only the case x = 1/2 remains to be investigated. In this case, a = b = 0, 
but as x ->- 1/2", c -> -°°. To handle this case, we return to (3), which now be-
comes 

uF = u2/z + 1- (22) 

Making the substitution in (6), but with 

g(z, 1/2) = v = w = #(9, 1/2), where 6 = l/z* (23) 

we obtain the differential equation 

Qw!f + wf + 6w = 0. (24) 

The single-valued solution of (24) that satisfies the appropriate boundary con-
ditions is the Bessel function of order zero: 

H(Q5 1/2) = Jo(0). (25) 
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Therefore, V = g(z, 1/2) = «70 (2\/s) . Since -^ < 0̂(6) = -^(O), thus, 

Ĵ  JQ(lJ~z) = -z~1/2 J1(2/z~). 

Hence 

/Os, 1/2) = . (26) 
J0(2v^) 

The function e70(6) has a simple zero at 60 = 2.4048255577 (viz. 9.5 of [1]), 
which has the smallest modulus of any other zero. Therefore, reasoning as be-
fore, y = z0 = (G0/2)2 = 1.4457964906, and in this case also, 

lim yncn = 1. (27) 

Hence, the conjecture is certainly true for 0 < x ^ 1/2, and appears true for 
x > 1/2 as well. 

Note: The function M(-k9 B, Z) , where k is a positive integer, is a polynomial 
in Z; this leads to rational solutions of (3), when o is a negative integer. 
This occurs when x = xk = 2k (k + 1) / (2k + I)2, k = 1, 2, ...; letting uk, vk, 
c^\ and yk denote the appropriate quantities (previously denoted by u, V, on9 
and y), we find: 

vk(z) = exp(-z/(2k + 1)) M(-k, 1, 2s/(2^ + 1)), 
and 

s f2kM(-k + 1, 2, 2a/(2fe + 1)) + M(-k, 1, 2z/(2k + 1)) 
u ^ z ) 2k + 1 \ M(-k, 1, 2s/(2A: + 1)) 

This leads to algebraic values for c^ , which facilitate the task of finding 
the appropriate value of yk satisfying lim y^c^ = 1. 

For example, x1 = 4/9 yields: 

A/(-l, 1, 2g/3) = 1 - 22/3, z^Gs) = e~z/3(l - 2z/3), 

Ul(z) = s(l - 2z/9)(l - 2Z/3)-1 = | + 1 !2^/3 = f + ^ (2s/3)n 

= s + £ (2s/3)n. 

n = 2 

Thus, c<1} = (2/3)n, n > 2, which implies y1 = 1.5. Also, 

u2(s) = e~z/5M(-2, 1, 22/5) = e~z/5(l - 42/5 + 2s2/25), 

and 
"2<*> = S ( \ : ^ / f A ' f / ^ 2 - = * + £ (23/25)" (p« + **>> '2K J 1- 4s/5 + 2S2/25 n=2 

where p = 5(1 + 2~1/2), q = 5(1 - 2"1/2). Hence, c^2) = (2/25)n(p^ + qn) , n > 2. 
Since 0 < (7 < p, thus z/ = 25/2p = q = 1.4644661. Note that lim xk = 1/2, so 

lim Vy = 1.4457964906, 

the value obtained previously in connection with J0. 
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Sum Product! 

H-384 Proposed by Heinz-Jurgen Seiffert, Berlin, Germany 
(Vol. 23, no. 1, February 1985) 

J 
-2 

2 r 2n+ 1 

Show that for n = 0, 1, 2S 

Solution by the proposer 

Let F(as b; o; z) denote the hypergeometric function defined by 

where 

F(a, b; a; z) = 1 + E TJ zk> 

a (a 4- 1) (a + k - l)b(b 4- 1) (b + k - 1) 
k c(c + 1) SBO (c + k - 1) 

We take a = -n, 2? = n + 1, c = 1/2, and z .= -1/4. Then 

^ i; ̂  (2fc)!(w ~ fc)! 9 
so that 

F(-n, „ + 1; 1/2; -1/4) = 1 + ^ 7 ^ $ 4 $ } 

(1) 

'(-«, n + 1; {; --r) = ̂  *(n + j , -n - 2, 2, 4 )• (2) 

The hypergeometric function satisfies the following identity [see F.G. Tricomi, 
Vorlesungen uber Orthogonalreihen* Springer Verlag* p. 1519 formula (2,7)]: 

1 1 1 
t'\n + — 9 -n -

Again, by using the above definition^ we obtain 

where < * * = n ( 4 + «/) n ( n + 4 + J ) n H - • ? + '̂) 

H)'-4 
Now the statement easily follows from (1) and (2). Q.E.D. 

Also solved by P. Bruckman. 
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ADVANCED PROBLEMS AND SOLUTIONS 

Gotta Have a System 

H-385 Proposed by M. Wachtel, Zurich, Switzerland 
(Vol. 23, no. 2, May 1985) 

Solve the following system of equations: 

*• Uf(n) + VgU " 3'UfMVg(n) = 1; 

Solution by the proposer 

I. 1) Let Uf{n) = a, Vg{n) = b. Then, we have a2 + b2 - 3ab = 1. It follows: 

, 3a ± A a 2 + 4 
£ = n • , 

3F ±  V5F2 + 4 
In In 2) Now let a - F , which leads to 2 
72 . /, = r2 3) Using the identity, Hoggatt J , 5F + 4 = L , we obtain: 

=
 3F2n ± L2n 

^ 1 , 2 2 2n±2 

4) Hence, F 2
n + ^2n±2 ~ ^FinF2n±2 = -1-' w n i c n i s o n e o f t n e solutions of 

the more generalized identity 

Fl + F 2
0 - Ln Fo Fn + o = F2 , m = 1, 2, 3, . . . , if m = 1. 

2rc 2n±2m 2m In 2n±2m 2m 

II. 1) Let ̂ ( n ) = a, 7i(n) = b. Then, we have 3ab - (a2 + Z?2) = 1. Thus: 

, 3a ± /5a2 - 4 £ = — 
2 3F ± v̂ F2 ~ 

O N *T 1 7-7 1 . 1 - 1 1 l + 2n l + 2n 

2) Now let a = F , which leads to . 
y l+2n 2 

3) Using the i d e n t i t y , Hoggatt I12> ^ F 2
+ 2 n ~ ^ = ^i+2n' w e °t>tain: 

3F ± L 
2? = 1 + 2n ! + **- = F 

1, 2 2 ! + 2n ±2 * 

4) Hence, 3F o F - (F2 + F2 ) = 1, 
' l+2n l+2n±2 v l+2n l+2n±2 

which is one of the solutions of the more generalized identity 

L2mFl+2nFl+2n±2m ~ ^Fl+2n + Fl+2n±2m^ F1m' ̂  = * > 2 > 3 , . . . , 

if m = 1. 

Also solved by P. Bruckman. 
• 0404 
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