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A SHORT HISTORY OF THE FIBONACCI QUARTERLY

MARJORIE BICKNELL-JOHNSON
Santa Clara Unified School District, Santa Clara, CA 95052

This volume marks the 25" year of publication of The Fibonacci Quarterly,
prompting memories of just how it all started. As a long-time observer and
participant, I was asked to write a short history of the early organization.

In the beginning, the Fibonacci Association grew out of the bond of friend-
ship formed by those sharing an interest in the Fibonacci numbers. Professor
Verner E. Hoggatt, Jr., San Jose State College, had become interested in the
Fibonacci sequence in the late 1950s. Vern's colleague Dmitri Thoro introduced
him to Brother Alfred Brousseau, St. Mary's College, in the early 1960s. Vern
and Brother Alfred began a long friendship and met frequently to discuss Fibo-
nacci numbers and often sang songs, accompanied by Brother Alfred's accordion.
(I recall a ballad written by Brother Alfred, '""Do What Comes Fibernaturally!",
to the tune of "The Blue-Tail Fly.'")

As time went on, their intense interest in the Fibonacci sequence began to
take a more organized direction. Brother Alfred, for example, compiled a bib-
liography of more than 700 Fibonacci references, ranging from recreational to
serious research, to disseminate to interested initiates. Both took any and
every opportunity to lecture on the sequence, so much so that Vern soon became
fondly known as "Professor Fibonacci."

By December of 1962, the group also included Professor Paul Byrd, I. Dale
Ruggles, Stanley L. Basin, and Terrance A. Brennan. It was this group of men
who founded the Fibonacci Association to provide an opportunity for those who
shared an interest in the Fibonacci numbers to exchange ideas.

So much interest in the Fibonacci numbers was apparent to the "founding
fathers'" that they decided to publish The Fibonacci Quarterly, despite limited
support and all the other problems that beset a new venture. Vern and Brother
Alfred wanted a journal to provide rapid dissemination of the ever expanding
research on the Fibonacci numbers and to invite teachers and students to share
their enthusiasm for mathematics.

With a very small amount of money from subscriptions and donations, and a
large amount of volunteer labor from students, friends, and family, the first
issue of The Fibonacci Quarterly was published in February 1963, with Editor
Verner E. Hoggatt, Jr., and Managing Editor Brother U. Alfred.

Due to shoestring economics, the first issue was typed by Brother Alfred;
after that, several professional technical typists came and went. Keeping a
good typist almost caused Vern to have a nervous breakdown, until he met some-
one who needed him to complete a golf foursome and discovered a technical typ-
ist in the course of getting acquainted!

The first printer was a photocopy shop with a small press, but this proved
inadequate and costly. Then Brother Alfred approached William Descalso, who
had done printing for St. Mary's College since 1948, to take on the printing
of the Quarterly. Descalso had a large web press which could print 16 pages
at one time. (This explains why we had 80, 96, or 112 pages, but never 89.)
These signatures and the cover were put into a folding machine, and the journal
was assembled, stapled, and trimmed in one operation. Mr. Descalso took spe-
cial interest in the Quarterly for many years, and I suspect that he helped us
to continue by making personal sacrifices. Also, he used to deliver the Quar-
terly to Brother Alfred for mailing, then bring the reprints to Vern's home in
a big truck for stapling and mailing.

2 [Feb.



A SHORT HISTORY OF THE FIBONACCI QUARTERLY

At first, subscriptions came in slowly (59 on January 31, 1963), but with
some advertising and favorable notices in various magazines, especially Seien-
tific American (June 1963, p. 152), the tempo increased. As a result, by Sep-
tember 1963 there were 659 subscribers, and 915 subscribers by the end of the
first year of publication. From this point on, it was a matter of maintaining
the momentum. While researching this article, I found a handwritten page en-
titled "back-sliders" among Vern's notes; he had personally called every person
who failed to renew his or her subscription for the second year!

The Fibonacci Quarterly slowly began to draw attention. While at the first
meeting in December 1962, Professor Paul Byrd had wondered how we would obtain
enough material for such a specialized journal. Ironically, the problem, over
the years, turned out to be a superabundance of material. Vern answered all
of the many inquiries addressed to the Quarterly personally, in longhand.
Brother Alfred wrote and published the booklet, Fibonacci Discovery, as an aid
to beginners and as another source of income for the Association. Many arti-
cles were written especially to interest beginners in the study of Fibonacci
numbers. (Subsequently, these early articles were collected together and pub-
lished as A4 Primer for the Fibonacci Numbers.) The Fibonacet Quarterly was
mentioned in Martin Gardner's column in Seientific American in March 1969, and
Brother Alfred and Vern were interviewed in an article in Time, April 4, 1969,
pages 48 and 50. Vern was asked to write a series of articles for Math Log,
published by Mu Alpha Theta, and his book, Fibonacei and Lucas Numbers, was
published by Houghton Mifflin in 1969. (I know that he had to write two com-—
plete drafts of this book because I typed both versions!) With a little fame,
Vern was given a small grant by San Jose State College, and a semester-long
sabbatical leave.

In those early days, the Editor carried everyone's address, telephone num—
ber, and research paper in his head. Although carrying a full teaching load,
Vern still answered all correspondence personally, often writing more than 50
letters a week. He carried on such a prolific correspondence on Fibonacci mat-
ters that he frequently slept for only four hours a night. While I lived only
across town, I would receive two or three letters each week because Vern wanted
to put his thoughts on paper. Then he would call me for feedback, often before
I had received the letters! Vern put his family to work stapling reprints and
mailing them to the authors, and gave his graduate students proofreading, typ-
ing, and other tasks. I once spent many hours proofreading the first 571 Fibo-
nacci numbers (F has 119 digits) in an attempt to make the project perfect;

571
however, the printer's helper dropped the tray of lead characters, transposing
50 digits of Fg,, and F,,! Nevertheless, that article, which appeared in the

October 1962 issue of Recreational Mathematics Magazine, was a good source of
publicity for the soon-to-appear Fibonacci Quarterly. 1 also remember that he
had such a concern for struggling foreign authors that he asked me to do a bit
of ghost-writing because he didn't have the heart to reject their papers.

As Managing Editor, Brother Alfred kept track of all subscription and book
orders and the mailing list. He mailed everything from St. Mary's College and
soon had an entire basement devoted to storing Fibonacci magazines and books.
When the fifty pound boxes of magazines arrived from the printer, he had to
carry them to the basement and then haul them back upstairs to mail them. Be-
cause of the large volume of manuscripts, whenever the Association could raise.
extra money, they published an extra issue, so there were five or six issues a
year at times after 1966. Storage space kept filling up; when the back issues
and books were transferred to Santa Clara University in 1975, there were 257
boxes. (A Fermat number!)

Brother Alfred wrote a number of elementary articles to interest and stim—
ulate beginners, teachers, and students, and compiled several books of tables
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which are still available from The Fibonacci Association. He could generate
new pages for the books at such a prodigious rate that I found it difficult to
keep up with the proofreading. He gave lectures at nearly every meeting of
mathematics teachers in California for years. And, of course, all of this was
in addition to his teaching load.

Brother Alfred seemed always to have a new Fibonacci-related problem or a
new approach to present. He was interested in phyllotaxis and collected more
than 6000 pinecones, including cones from the twenty native pine trees of Cali-
fornia, because the Fibonacci sequence occurred in the spirals of the cones.
Vern once sent him a "Lucas" sunflower that exhibited Lucas numbers instead of

the expected Fibonacci sequence; Vern had grown the sunflower himself especial-
ly to count its spirals.

Verner E. Hoggatt, Jr., and Brother Alfred Brousseau

October 20, 1973
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In January 1968, the Board of The Fibonacci Association was formed to set
policy and to provide continuity for The Fibonacci Association and its publi-
cations. The members of the original Board of The Fibonacci Association were:
Brother Alfred Brousseau, Verner E. Hoggatt, Jr., G. L. Alexanderson, George
Ledin, I. Dale Ruggles, and myself. For many years, a research conference was
held annually, and a special conference for high school teachers and their stu-
dents was held at the University of San Francisco for five consecutive years.

By 1972, The Fibonacci Quarterly was listed regularly in both Mathematics
Reviews and Zentralblatt fiir Mathematik, and a fine article entitled "A Magic
Ratio Recurs Throughout Art and Nature" appeared in the December 1975 issue of
Smithsonian. Also, Vern was invited to write an article for the 1977 Yearbook
of Encyclopaedia Britannica, in ''Science and the Future," pp. 177-192.

Brother Alfred continued as Managing Editor for 13 years, until his retire-
ment in 1975, and Vern Hoggatt served as Editor for 18 years, until his death
on August 11, 1980. 1Tt is hard to imagine The Fibonacci Quarterly having been
published for so long if it had not been for the propitious meeting and endur-
ing friendship of two such talented men and their interest in an obscure math-
ematical sequence, 1, 1, 2, 3, 5, 8, .

The 1987 volume marks the twenty-fifth year of publication of The Fibonacci
Quarterly, which has evolved into a research journal with international sub-
scribers. (There are over 200 foreign subscribers, mostly from West Germany,
Canada, Japan, Australia, The United Kingdom, Greece, and Italy, but represent-—
ing 36 other countries as well.)

Long live Fibonaccti!

4060¢
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A SYSTEMATIC SEARCH FOR UNITARY HYPERPERFECT NUMBERS

PETER HAGIS, JR.
Temple University, Philadelphia, PA 19122
(Submitted January 1985)

1. INTRODUCTION

If m and ¢ are natural numbers, we say that m is a unitary hyperperfect
number of order ¢ if

m=1+¢t[c*m) -m - 11, (1)

where o* (m) denotes the sum of the unitary divisors of m. m is said to be a
hyperperfect number of order ¢ if

m=1+ tlo(m) -m - 1], (2)

where o is the usual divisor sum function. Hyperperfect numbers (HP's) were
first studied by D. Minoli & R. Bear [4], while the study of unitary hyperper-
fect numbers (UHP's) was initiated by the present author [3]. H. J.J. te Riele
[6] has found all (151) HP's less than 10° as well as many larger ones having
more than two prime factors. D. Buell [2] has found all (146) UHP's less than
10%. More recently, W. Beck & R. Najar [1] have studied the properties of HP's
and UHP's. One of the results they obtained was the following.

Proposition 1: If m is a unitary hyperperfect number of order ¢, then (m, %) =
1 and m and t are of opposite parity.

The purpose of the present paper is to develop a search procedure, differ-
ent from that employed by Buell, which can be used to find all of the unitary
hyperperfect numbers less than a specified bound with a specified number of
distinct prime factors (provided the necessary computer time is available).

2. THE GENERAL PROCEDURE

Suppose that m = arYs*, where r and s are distinct primes, YA # 0, and
(a, vs) = 1. If m is a unitary hyperperfect number of order ¢, then, since o*
is multiplicative and o* (") = 1 + »Y, it follows from (1) that
[a = t(c*(a) - a)lr's* - to*(a)[rY + s*] = 1 + t[o*(a) - 1].

Multiplying this equality by a - #(o*(a) - a) and then adding [¢0*(a)]? to each
side, we obtain

{la - t(c*(a) - a)lrY - to*(a)}Hla - t(0*(a) - a)ls* - to*(a)}
= [a - t(c*(a) - a)1[1 + t(o*(a) - 1)] + [to*(a)]?. (3)

If AB, where 1 < A < B, is the 'correct" factorization of the right-hand
member of (3), then we see that
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A SYSTEMATIC SEARCH FOR UNITARY HYPERPERFECT NUMBERS

»rY

[to*(a) + A1/[a - t(c*(a) - a)1,
(4)

sA [to*(a) + Bl/[a - t(c*(a) - a)l.

Since the steps just described are reversible, given values of g and ¢, Zf
a factorization AB of the right-hand member of (3) can be found for which the
right-hand members of (4) are distinct prime powers relatively prime to a, then
the integer arY¥Ys) is a unitary hyperperfect number of order . Of course, for
most values of g and ¢ the right-hand members of (4) will not both be integers,
let alone prime powers. It should be mentioned that the above derivation of
(4) is basically due to Euler via H.J. J. te Riele (see [5]).

3. THE CASE a =1

If,in (4), we set a = 1, then, since 0*(l) = 1, it follows that r»Y = ¢t + 4
and s* = t + B, where, from (3), 4B = 1 + ¢2. Suppose that ¢ is odd. Then
AB = 2 (mod 8) and it follows that 4 and B are of opposite parity. Therefore,
without loss of generality, r»=2 and, since 3|ts? (see Fact 1 in [3]), we have
proved the following result.

Proposition 2: If m = rYs* is a unitary hyperperfect number of odd order ¢,
then 2lm and either m = 273" or 3l¢.

Using the CDC CYBER 750 at the Temple University Computing Center, a search
was made for all unitary hyperperfect numbers less than 10'* of the form 2Y3%,
Only two were found:

23 (¢ =1) and 2°5-3% (¢t =7).
The search required less than one second.

We now drop the restriction that ¢ be odd.

Yol

Proposition 3: Ifm=r
then m > 4t2.

s = RS is a unitary hyperperfect number of order ¢,

Proof: RS = 1 + t(0*(RS) - RS - 1) =1+ t(R + 8). Therefore, R > t(1 + R/S).
Similarly, S > (1 + S/R), and it follows that

RS > t%(1 + R/S + S/R + 1) > 4t2.

From Proposition 3, we see that all unitary hyperperfect numbers less than
101° and of the form rYs* can be found by decomposing 1+ t?, for 1 < ¢ < 50000,
into two factors A and B and then testing ¢ + 4 and £ + B to see if each is a
prime power. This was done, and 822 UHP's less than 10'° with two components
were found. 790 were square-free and, therefore, also HP's. Of the remaining
32 "pure'" UHP's, all but one, 32+ 25 (¢ = 7), were of the form r's or rst. t
was odd for only ten of the 822 numbers, the two largest being

213 .33413 (¢ = 6579) and 2%°. 238037 (¢ = 28803).

The complete search took about five minutes of computer time.
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L. AN IMPORTANT INEQUALITY

In this section, we shall generalize the inequality of Proposition 3.

Proposition 4: Suppose that m is a unitary hyperperfect (or a hyperperfect)
number of order ¢ with exactly n prime-power components. Then m > (nt)".

Proof: Suppose first that w = 3 and m = p"‘qsrY = PQR, where P> @ > R. From
(1) [and (2)], it follows easily that

PQR > £(PQ + PR + QR).
If 4 = P/Q and B = P/R, then
P>+l +A+B), > t(l + B/A+ 1/4), and R > t(1 + A/B + 1/B).
Therefore,
m= PR > t3(1L + A + B)*/4B. (5)
If FP(x, y) = (1 + o + y)g/xy, where > 0 and y > 0, then

F/0x = (1 +x + y)2Qx -y - 1)/z%y
and

3F/3y = (L+x+y)2Qy - x - 1)/xy?.

It follows easily that, if x > 0 and y > 0, then F(x, y) 2 F(1, 1) = 3%, From
(5), we have m > (3t)3.
Now suppose that n = 4 and m = p%PrYs? = PQRS, where P> @ > R > 5. From
(1) for ()],
PRRS > t(PQR + PQS + PRS + QRS).
If 4 = P/¢, B = P/R, and C = P/S, then
P>t(1+4+B+0C), > t(l +B/A+C/A+ 1/4),
R> ¢t(l +A/B + C/B + 1/B), and S > t(1 + A/C + B/C + 1/C).
Therefore,
m=PErRS > t"(1 + A + B + C)"*/ABC. (6)
If G(x, y, 2) = (L +x +y + z)*/xyz, where x > 0, y > 0, 2 > 0, then

G/ox = 1 +x+y +2)°0Bx -y -z - 1)/z%yz,
3G/oy = (1 +x +y + 2)3(3y - -2 - l)/yzxz,
and Gz = l+x+y+2)°%0Bz-2-y - 1)/zxy.

It follows that G(x, y, %) has a minimum at (1, 1, 1) and that G(x, y, 3) > 4"
if £ > 0, ¥y > 0, 2> 0. From (6), we see that m > (4)".

A similar argument can be used for any value of n that exceeds 4.

8 [Feb.



A SYSTEMATIC SEARCH FOR UNITARY HYPERPERFECT NUMBERS

5. THE CASE a = p©

If, in (4) and the right-hand member of (3), we set a = p*, then, since
o*(p*) = p* + 1, it follows that

rY

(to*(p*) + 4)/(p* - t) and s* = (tc*(p®) + B)/(p® - t) N
where

1]

AB = (p® - t)(1 + tp®) + t2(p® + 1)2. (8)

If m = p®rYs*is a UHP of order t such that m < 10%, then it is easy to see
that if p® is the smallest prime-power component of m, p® < 1000. From Propo-—
sition 4, t < 1000/3. All solutions of (7) and (8) (with A< B) were sought with
2 < p*<997, 1 < ¢ < 333, and p“rYSA<1109. The search yielded nine UHP's less
than 10°. TFive of these were given in [2]. The four new ones are:

2% +659 - 2693 (t = 57); 67 - 643 792 (¢ = 60);

547 + 569« 1259 (t = 228); 7%+ 79+ 119971 (¢ = 30).

The search required about thirty minutes of computer time.

6. THE UHP's LESS THAN 10°

Let M, denote the set of all unitary hyperperfect numbers m such that m <
10° and m has exactly n distinct prime divisors. From Fact 2 in [3], M, is
empty and, from the searches described in Sections 3 and 5, M, and M; have 330
and 9 elements, respectively. Since 2+ 3¢5« 7«11«13+ 17+19-23-29 > 109,
we see that M, is empty if n > 9. If n = 8 or 9, then, from Proposition 4, it
follows easily that ¢ = 1 so that, if m€My or m€ My, then m is a unitary per-—
fect number (0®*(m) =2m). Since there are no unitary perfect numbers less than
10? with 8 or 9 prime-power components (see [7]), it follows that both Mg and
My are empty.

1f m < 10%, then, from Proposition 4, if n = 4, then ¢ < 44, if n = 5, then
+ < 12, if n = 6, then ¢t < 5, if n = 7, then ¢ < 2. Subject to these restric-
tions on ¢, and with a restricted so that »Y is greater than every prime-power
component of a while ar¥s* < 10°, a search was made for solutions of (4). This
search required two-and-one-half hours of computer time, and it was found that
M,, Mg, and M, are empty, while Mg has one element, 20.3¢5.713 (¢ =1).
Thus, there are exactly 340 UHP's less than 10°.

It should, perhaps, be mentioned that while M, is empty, one UHP with four
prime-power components was found: 59 - 149 « 29077 < 10991483959 (¢ = 42) is both
a UHP and an HP (since it is square free). It does mnot appear in te Riele's
lists of HP's and may be the smallest HP with exactly four distinct prime fac-
tors.
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CYCLIC COUNTING TRIOS

STEVEN KAHAN
Queens College, Flushing, NY 11367
(Submitted February 1985)

In this paper, we extend the concept of mutually counting sequences dis-
cussed in [1] to the case of three sequences of the same length. Specifically,
given the positive integer n > 1, we define three sequences,

A: a(0), a(l), ..., an - 1),
B: b(0), (1), ..., b(n = 1),
C: c(0), c(l), «v.y cn = 1),
where a(Z) is the multiplicity of ¢ in B, b(j) is the multiplicity of § in C,

and ¢(k) is the multiplicity of k in A. We call the ordered triple (4,B, () a
cyclic counting trio, and we make some preliminary observations:

(i) the entries in sequences 4, B, and ( are nonnegative integers less
than 7.

n-1

1
Y a(i), S(B) = Y b(j), and S(C) =
Jg=0

=0

(ii) 1if S@4)

n-1
Y e(k), then
k=0

S(4) S(B) = S(C) = n.

(iii) 4if (4, B, C) is a cyclic counting trio, then so are (B, C, A) and
(C, A, B). Such permuted trios will not be considered to be differ-
ent.

We say that the cyclic counting trio (4, B, C) is redundant if 4, B, and C are
identical. 1In what follows, we show that there is a unique redundant trio for
each n 2 7:

a(0) =n -4, a(l) =2, a(2) =1, aln - 4) =1, a(Z) =0
for all remaining 7.

There are also two redundant trios when n = 4, one when n = 5, and no others.
Furthermore, we show that a nonredundant trio results only when n = 7:

]
1]
[
1]

a(0) 4, a(l)
b(0) = 3, b(l)
e(0) =4, c(l)

1, a(3) =2, a(2) = a(4) = a(5) = a(6) = 0;
3, b(4) =1, b(2) = b(3) = b(5) = b(6) = 0;
c(2) =c(4) =1, e¢(3) = c(5) =c(6) = 0.

]
]
]
I
1]
1]

As a way to become familiar with the problem, we invite the interested
reader to investigate the existence of cyclic counting trios when n < 7. We
will therefore proceed under the assumption that (4, B, C) is a cyclic counting
trio and that n = 7. For future reference, we let

* _|n
e [2]
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and note that

n . .
5 if n is even,
n* =
+
”21 if n is odd.

Since n 2 7, it follows that n* 2 4.

l. For each N2 n*, a(N) = 0or 1, b(N) = 0or 1, and ¢(N) = 0 or 1.

If a(N) 2 2, then N appears at least twice in B. So

n if n is even,
n =S8(B) =2 2N =2 2n* =
n

+ 1 4if n is odd,

which is only possible when 7 is even. In this case,

= % = ny _

N " 2 and a(z) 2,

which implies that #n/2 appears exactly twice in B. Thus, 0 must appear exactly
n — 2 times in B. Then

a(0) =n - 2, a(%) = 2, and the n - 2 remaining entries of 4 are 0
=c(0) =n -2, ¢c(2) =1, e¢(n - 2) =1, and the n - 3 remaining entries
of C are O
=b(0) =n - 3, b(1) =2, b(n - 2) =1, and the n - 3 remaining entries
of B are O
= a(0) = n ~ 3, a contradiction.

Conclude that a(¥) = 0 or 1, and use a similar argument to show that b(N) = 0
or 1 and ¢(WN) = 0 or 1.

Il. a(j) =1 for at most one § = n*, b(k) = 1 for at most one k > n*,

and ¢(2) = 1 for at most one { 2 n*.

Let N and N' be distinct integers, each 2 n*, and suppose that

alV) = a@') = 1.
Then

n=5B)2N+N >2n* =

n if n is even,
a contradiction.
"

+ 1 if »n is odd,
Conclude that there is at most one j 2 n* such that a(j) = 1. Similarly, there

is at most one k = »n* such that b(k) 1 and at most one % 2 n* such that c(%)
= 1. Note that this result implies that 0 appears at least

n—n*—l=[%]—1
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CYCLIC COUNTING TRIOS

times in 4, B, and (C, so that

a(0) > [g] -1, b(0) > [g] -1, and ¢(0) > [%] -1,

I1l. If a(j) =1 for some j = n*, then b(0) = j.

Assume that a(j) =1 for some j 2 n*. Then j appears exactly once in B, so
that b(j*) = J for some integer j*. This means that j* appears j times in C.

n if »n is even,
If j* 2 2, then n = S(C) =2 j*j =2 2§ 2 2n* = {
"n

+ 1 if »n is odd,

which is only possible when n is even, j* = 2, and j = n/2. Hence, 2 appears
n/2 times in C, and since n=S5(C), it follows that O appears »n/2 times in C as
well. Thus, b(0) = n/2, b(2) = n/2, and the n - 2 remaining entries of B are
0. This implies that a(0) =#n - 2, a(n/2) = 2, and the n - 2 remaining entries
of 4 are 0, contradicting the assumption that a(j) = 1 for some j = n*. Thus,
either j* =1 or j* = 0.
Assume that j* = 1. Then b(l) = J, so that
n=S(B)>b(0)+b(1)>[%] —1+j>|:%] S

This tells us that b(0) + b(1) =n or b(0) + b(1) =n-1. If bH(O) + b(l) =mn,
then

b)) =n - g, b(l) = g, and the n - 2 remaining entries of B are 0
=q(0) =n -2, a(j) =1, a(n - j) =1, and the n - 3 remaining entries
of A are O
[If n - j and j were equal, then g(j) = 2, a contradiction.]

=2c(0) =n -3, c(l) =2, e(n-2) =1, and the n - 3 remaining entries
of ¢ are O

=b(l) = 1.

This means that j = 1, contradicting the fact that j =2 »n* =2 4.
If b(0) + b(l) =n - 1, then

b(0) =n -4 -1, b(1) =4,
one of the remaining entries of B is 1, and the other n - 3 remaining entries

of Bare 0. Ifn - -1=j5, then a(§j) = 2, a contradiction. If n - j -1 =
1 or 0, then bH(0) = 1 or 0, contradicting the fact that

b(0)>[%] 13 0.
Hence, the integers 0, 1, j, and n — j — 1 are all distinct. This means that
1, j, and n - J§ - 1 each appear once in B, and the n - 3 remaining entries of

B are 0. So

a0) =n -3, a(l) =1, an -7 -1) =1, al@) =1,
and the n - 4 remaining entries of 4 are 0
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=c(0) =n -4, ¢(l) =3, ec(n - 3) =1, and the n - 3 remaining entries
of C are O
=5bH(1) = 1.
Once again, this means that j = 1, a contradiction.

Therefore, j* # 1. Conclude that j* = 0, so that if a(j) = 1 for some
J =2 n*, then b(0) = .

IV. If n> 7, there exists j 2 n* such that a(j) = 1.

Assume that a(lN) = 0 for all N 2 »*. Since b(0) 2 [%] - 1, two possibil-

ities exist: either b(0) = [%] - 1 or b(0) = [%J when # is odd. (If b(0) =
[%] when n is even or if b(0) > [%], then a(N) # 0 for some N > n*.)

Suppose first that bH(Q) = [E] - 1. Then O appears exactly [%J - 1 times

2
in C, so that there are n - ([%} - l) = »* + 1 nonzero entries in (. Conse-

quently,

n*(n* + 1)

‘Vl*
n=2S5U4 2 1=
=0 2

If »n is even, then this inequality becomes

%(%+ 1)
e

5 , which is false for even n > 6.

If n is odd, then this inequality becomes

(55 )

n 2 7 , which is false for odd n > 3.
Suppose next that bH(0) = [%] when » is odd. Then 0 appears exactly [%]
times in ¢, so that there are »n - [%] = »n* nonzero entries in (. Therefore,
n + 1 n+ 1
nat x - 1ypx ( - 1)( 2 )
n=s54)> T i-= (n Lyn* _ 2 )
=0 2 2

which is false for odd n > 7.

The conclusion follows.
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V. 1fn=7, al) =0 for all ¥ =2 »n*=14, and b(0) = [%] = 3, then two cyclic

counting trios exist, one of which is nonredundant. (These represent the

only set of circumstances that did not lead to a contradiction in IV.)

Since b(0) = 3 and S(B) = 7, it follows that
6
3 b(k) = 4.
k=1
Furthermore, S(C) = 7 implies that
6
S kb(k) = 7.
k=1

For convenience, we will let {k,, kos Kgs Kys ke ke} represent some permuta-—
tion of {1, 2, 3, 4, 5, 6}. From II, we know that

a(0) = [%] -1 =2.

a(0) = 2 =Db(ky) = b(k,) = Db(ky) = b(k,) =1, b(kg) = b(ke) =0
=7 = kl + k2 + ka + ku > 10, a contradiction.
a(0) = 3 =Db(ky) =2, b(ky) =b(ky) =1, b(k,) = b(ky) = b(kg) =0

=7 =2k +ky, +ky=>k, =1, k, =2, ky; =3

= b(l) =2, b(2) = b(3) =1, b(4) = b(5) = b(6) = 0.
Recalling that b(0) = 3, we find that
a(0) =3, a(l) =2, a(2) =a(3) =1, a(4) = a((5) = a(6) =0,
which, in turn, implies that
e(0) =3, e(l) =2, e(2) =c(3) =1, c(4) =c(5) =c(6) = 0.

This is the redundant trio predicted for n = 7.
a(0) =4 =b(ky) + b(k,) =4, b(ky) = b(k,) = b(kg) = b(kg) = 0.

1f b(k,) = b(k,) = 2, then 2k, + 2k, = 7, a contradiction. If b(k;) = 3 and
b(k,) =1, then 3k, + k, = 7, so that either k; = 2 and Xk, = 1 or k; =1 and
k, = 4. 1In the first case, b(0) = 3, b(l) =1, b(2) = 3, and the four remain-
ing entries of B are 0 = a(0) = 4, a(l) =1, a(3) = 2, and the four remaining
entries of 4 are 0 = ¢c(0) = 4, (1) =1, ¢(2) =1, ¢(4) =1, and the three re-
maining entries of ¢ are 0 =b(l) = 3, a contradiction.

In the second case, b(0) = 3, b(l) = 3, b(4) =1, and the four remaining
entries of B are 0 = a(0) =4, a(l) =1, a(3) = 2, and the four remaining en-
tries of A4 are 0 = ¢(0) 4y ¢(l) =1, ¢(2) =1, e¢(4) =1, and the three re-
maining entries of ¢ are 0. This is the nonredundant trio predicted at the
outset for m = 7.

1]
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a(0) = 5=b(ky) =4, b(k,) = b(ky) = b(kq) = b(ks) = b(ke) =0
= 4k, = 7, a contradiction.
a(0) =6 = b(k,) = b(k,) = b(ky) = b(k,) = b(kg) = b(kg) =0

= 0 = 4, a contradiction.

If n =7 and a(j)= 1 for some J 2 n* = 4, then it is easy to verify that j
must be 4. The cyclic counting trios that subsequently result are permuted
versions of the nonredundant one just found. As a result, we may now continue
under the assumption that »n > 7.

Vi. aln* - 1) = 0; e(0) > [%]

Suppose that a(n* - 1) # 0. Then n* - 1 appears at least once in B. Since
b(0) = j and since j 2 »n* implies J # n* - 1, we find that

n=8B)=2J+ W ~-1)2n*+ (n* ~-1)
n ~ 1 if »n is even,
=2n* - 1=
" if n is odd.
This tells us that a(n* - 1)=1, i.e., n*¥ - 1 appears exactly once in B.

If n is even, then some other entry of B is 1 and the # -~ 3 remaining en-
tries of B are 0. Therefore,

a(0) =n - 3, a(l) = 3, and the n - 2 remaining entries of 4 are O
=c(0) =n-2, ¢c(3) =1, e¢(n - 3) =1, and the n - 3 remaining entries
of C are O
= p(l) = 2, a contradiction.

If n is odd, then the n - 2 remaining entries of B are 0. Therefore,

a(0) =n - 2, a(l) = 2, and the n - 2 remaining entries of 4 are 0
=ce(0) =n -2, ¢c(2) =1, e(n - 2) =1, and the n - 3 remaining entries
of C are 0
= p(l) = 2, again a contradiction.

Hence, we conclude that a(n*- 1) = 0. Using this fact and the observation

following II, we can now assert that O appears at least ([%] - 1) + 1 = [%]
times in 4, so that c(0) 2 [%].
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VIil. If c(0) = [%], then the only cyclic counting trio that results is the

redundant one for n = 8.

Since ¢(0) = [%}, it follows that a(Z) # 0 for 1 < ¢ < w* - 2. Thus, each

positive integer less than or equal to n* - 2 appears at least once in B. Re-
calling that jJ appears once in B as well, we get

(n* - 2)(n* - 1)
2 3

If n is odd, then n* = (n + 1)/2 and this inequality leads to n? - 8n + 7 < 0,
a contradiction for odd n > 7. If n is even, then n* = n/2 and this inequality
leads to n? - 10n + 8 < 0, a contradiction for even n > 8.

The case in which »n = 8 produces the redundant cyclic counting trio with
a(0) =4, a(l) =2, a(2) =1, a(4) =1, and a(Z) = 0 for all remaining <.

VItL. If e(0) > [%] then b(n* - 1) = 0 and a(0) > [%]

The fact that c(0) > [%} implies that ¢(0) 2 n*. Therefore, b(k) = 1 for

exactly one integer k 2 n* and ¢(0) = k. If b(n* - 1) # 0, then n*- 1 appears
at least once in (. Since k appears in C as well, and since

k+(n*—1)>[%]+<n*—1)=n—1,

it follows from S(C) = n that the w — 2 remaining entries of ( must be 0 and
that

k = c(0) = [%] + 1
Thus,
b(0) = n - 2, b([g] + 1) =1, b - 1) =1,
and the n - 3 remaining entries of B are 0
=q(0) =n -3, a(l) =2, aln - 2) =1,
and the n - 3 remaining entries of A4 are 0
=2c(0) =n -3, ¢(l) =1, ¢(2) =1, ec(n - 3) =1,

and the n - 4 remaining entries of (C are O,
contradicting the fact that b(0) =n - 2.

As a result, we conclude that b(n* - 1) = 0, so that (as in VI), a(0) = [%].
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IX. 1f a(0) = [%} , no cyclic counting trio can be produced; if a(0) > [%},

then e(n* - 1) = 0.

The argument used in VII can be employed to show that no cyclic counting

trio results when «a(0) = [%} . (The only possibility, the redundant trio for

n =8, is disqualified because c(0) > [%].) If a(0) > [%], then a(0) =2 n*.
Thus, c¢(f) =1 for exactly one integer £ 2 »n*, and a(0)=2. As in VIII, we can
conclude that e(n* - 1) = 0.

At this point, we are left with one case to consider:
1, b(0) =g; b(k) =1, c(0) = k;
1, a(0) = £, where J, k, £ 2 n*.

1]

a(g)
c(L)

For convenience, let us write Jj =#n - r, Kk =n - s, and & = n - t, where

1<7r, 8, t < [%].

If » =1, then J =n - 1, so b(0) =»n - 1. This means that n - 1 entries
of C are 0, contradicting the fact that ¢(0) = k and ¢(2) = 1. If r = 2, then
Jg=n-2, so b(0) =n - 2. Since ¢(0) = k and ¢(2) = 1, all remaining entries
of C must be 0. Then n = S(C) = k + 1, implying that X = n - 1. Hence, c¢(0) =
n - 1, so that n - 1 entries of 4 are 0, contradicting the fact that a(0) = 2
and a(j) = 1. Therefore, » # 1 or 2. Similarly, s # 1 or 2 and ¢ # 1 or 2.

Suppose that a(Z) # 0 for some integer © = r - 1, where 7 # j. (Note that
7 2 2.) Then

n=SB)2i1+j+12r-1+J+1=r+7=n,

which implies that ¢ = » - 1 and that the »n ~ 3 remaining entries of B are 0.
Hence,

CZ(O) =n - 3, a(l) = 13 a(j) = 1) Cl(l" - ]-> = ls
and the # - 4 remaining entries of 4 are O
=c0) =n -4, c(l) =3, ec(n - 3) =1,
and the n - 3 remaining entries of C are 0
=p(0) =n -3, b(1) =1, b(3) =1, b(n - 4) =1,
and the n - 4 remaining entries of B are 0
= q(0) =n - 4, a contradiction.
Consequently, a(Z) = 0 for all integers 7 2 » - 1, where 7 # j. In a similar

manner, we can show that

b(Z) = 0 for all integers 7 2 & - 1, where 7 # k,
and

c(z)

0 for all integers 7 2 t - 1, where 7 # 1.
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Thus,
c()z2((n-1)~-(r-D+1)-1=n-r, =k=j
a(0) 2 (n-1)-(-1)+1)-1=n-8, =42k
b)) Z2((n-1)-F-1D+1)-1=n-¢t, =522

These three inequalities together imply that j = k = L.

X1. A unique redundant cyclic counting trio exists for n > 7.

From X, we now know that for some J = n*,
a(d) =b(F) =c(d =1 and a(0) = b(0) =c(0) = 4.

Since H(Z) = 0 whenever 7 2 r — 1 and 7 # J, this accounts for n - r = J
zeros in B. Because a(0) =g, it follows that H(Z)# 0 for 1 < Z < r - 2. Then

r-2
n=80B)=4+1+ Y b(i),
i=1
which implies that

r-2
Sbh(i)y =n-4-1=»r-1.
i=1

If » = 3, then b(1) = 2, so that B consists of one entry of j =% - 3, one en-
try of 1, one entry of 2, and n - 3 entries of 0. Therefore,

a(0) =n -3, a(l) =1, a(2) =1, an - 3) =1,
and the n - 4 remaining entries of 4 are 0
= ¢(0) = n - 4, contradicting the fact that ¢(0) = 4 =n - 3.

So r > 3. Then

r-2
2b(E) =r-1
=1
implies that one of the terms in the sum is 2 and each of the r - 3 others is

1. Thus, B consists of one entry of j, one entry of 2, » - 2 entries of 1, and
J entries of 0. Then

a(0) =g, a(l) =r - 2, a(2) =1, a(j) =1,
and the n - 4 remaining entries of 4 are O,
which implies that ¢(0) =n - 4.
If j # n - 4, then the resulting contradiction indicates that no cyclic
counting trio can be produced; if j =n - 4 (i.e., if r = 4), we have

a(0) =n -4, a(l) =2, a(2) =1, aln - 4) =1,

and the n - 4 remaining entries of 4 are 0

2, ¢c(2)y =1, e(n - 4) =1,
and the n - 4 remaining entries of C are 0

= 2 (0)

i

n -4, c(l)

]
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b(0) =n - 4, b(l) =2, b(2) =1, b(n - 4) =1,
and the n - 4 remaining entries of B are O.
This is the previously mentioned cyclic counting trio for n > 7.
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1. INTRODUCTION

By defining certain matrices of order 2, we are enabled to derive fresh
properties of Pell polynomials P,(x) and Pell-Lucas polynomials @,(x) addi-
tional to those obtained by wus in [5]. Our work, in summarized form, is an
adaptation and extension of some ideas of Walton [6], based on earlier work by
Hoggatt and Bicknell-Johnson [2].%*

The Pell and Pell-Lucas polynomials which are defined, respectively, by the
recurrence relations

P (x) = 2xPn+l(x) + Pn(x), Po(x) =0, Pl(x)

n+2

1 (1.1)
and

Qpip(®) = 220, 1 () + @, (x), @y(x) =2, @, (x) = 2x (1.2)

and some of their basic properties which will be assumed without specific ref-
erence, are discussed by us in [3].

To conserve space, we offer our results in a condensed form. This approach
has the added virtue of emphasizing techniques.

Convention: For visual ease and simplicity, we abbreviate the functional nota-
tion, e.g., P,(x) = P,, €,(x) = @,.

2. THE ASSOCIATED MATRICES J AND L

Let

J = s (2'1)

P P
J” _ Pg_l 2n+2 2n (2.2)
—PZn _P?_n—z
Equating corresponding elements in J"*" = J"J" gives
P2P2(rn+n) = Pz(m+1)P2n - szpz(n_l)' (2.3)

*Walton was given a copy of the Hoggatt and Bicknell-Johnson paper while he
was writing his thesis. This paper was only published in 1980.
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The characteristic equation of J is
2 2 _
AS - PHA + P, =0, (2.4)
so, by the Cayley-Hamilton theorem,
J? =P J - P’I. (2.5)
" 2

Extending (2.5), we have

7 = (p,g - P2, (2.6)

whence, by (2.2),

o r(n n-r
P‘+"+2j _rgo(—l)(lﬂ) 2 Pzn—2r+2j' (2.7)
From (2.5),
PrJ" = (J° + PID)". (2.8)

Equating corresponding matrix elements and simplifying, we get

¥ (H>Pw =P, . (2.9)

r=0 r

Consider, with appeal to (2.5),

(J + P,I)? = (P, + 2P,)J = 8x(x® + 1)J. (2.10)
Hence,
2 n.on 2 (2 2n-rrr
{8x(x> + D}Y'J" = L (r)PZ g (2.11)
r=0

Now equate corresponding elements. Simplification then yields
2 on
= n 2 n
EO(P)PZP = 4" @+ D"P . (2.12)

Next write
L = (so Ll = |JI = -4x?). (2.13)

Then, by (2.2) and (2.13),

P2n+3 P2n+1

Ny _ pn
J"L =P} p , (2.14)

2n+1 2n -1

whence
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J2n+j[; - i (-D7 (VZ)PgnPn—rJn—r+jL’
r=0 r *
and so [cf. (2.7)]
n (N
— N = I
P4n+2j+1 - ZO(_I) (P>Q2 Pzn—2r+2j+1'
r=
From (2.5),
non i n 2n -2r 12
- n-2r r
pn = ¥ ()P,
r=0
whence, by (2.14),
LE n n
ré:o(r)Pkr+1 = P e

Equation (2.10) leads to
(J + P,D)?L = {8x(x? + D}Y'J"L,

from which

2n
2n
Z( >P21’+1

r=0T

42 + 1)'Py, -
Again from (2.10),
(7 + P,D)"* L = (8x(x? + 1)}'J™(J + P,I).

Corresponding entries, when equated, produce

2n+1
2n+1 2

Multiply both sides of (2.21) by L. 1In the usual way,

2n+1

2n+1 n n
};0( p >P2r+1 = 4% (x? + 1)@,

Next, from (2.5), after some algebraic manipulation,
{7 = (4a® + 22)T3%" = (4x™)* « 4™ (z® + "I,
so that
n r{2n
and

S =077 2z + 1)7P _pentlge L yn
r=0 (P >( o un -2r+2 T2 (z ) .

Now multiply (2.24) by L. Consequently,

yn -2r+1 ¥ {4 (@? + D}

2n
};é—l)r<%?>(2x2 + 1)7p
1987]

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
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Next, multiply both sides of (2.24) by J — (4x® + 22)7. It follows that

2n+1
(2”“ = L(2) 2 (02 + 17 (2.28)

o) )(2.x2 +1)7P

bn-2r+3

Other results for P, , some of them quite complicated, may be found in [4],
e.g., formulas obtained by considering J"°*7 and J"°L. One such formula is

S

s _ 8 S+rpr
P2nP23+1 —r‘éo(lp)PZ Pzn-zpzn(s—r)ﬂ‘ (2.29)

Observe, in passing, that induction leads to

n _ pn-1 n+2 n
L" = LA -E, ~P, (2.30)
3. THE MATRICES K AND M
We are able to derive other identities by defining
‘- Py P, - P, P 1)
-P, =P, |’ -P, ~P_, ’
and following the techniques used above. The results are listed:
P P
Kn - Pz_l le+L+ le (3.2)
TFun T un -n
PoPiutmany = PumryPun = PunLfum-1) (3.3)
K™ = (P - PID)" (3.4)
PP =317 (7)Prrete (3.5)
4 8n r-‘O(— ) r/ s 4 w(n-n) :
PP = f; -1y*("Ypr-rpTp (3.6)
L an4+ 4 »=0 ) 7 8 4 nn+l-r) :
PP =P”fj "p (3.7)
8 un 4 s \1r /" 8r :
r=0
$(2p. - ginp (3.8)
P=0(r) ur o Y2 Tun :
2n+1
2n+1 _ 241
r§0< r )le - Qz le+2 (3-9)
Punss  Punsr

n
KM = P75 (3.10)

P
hn+1l Ln -3
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2n 27 )
— n
IZ;O(I’>P4r+1 =@ P (3.11)
2n+1
n+1 _ pn+l
;;0( r )Phr+1 =9 P (3.12)
P P
n+y n
Mt =P p -P (3.13)
n n-h

Additional information on the matrix K is given in Mahon [4].

4. THE MATRICES N AND U

In like manner, by defining the matrices
N = ) U = s (4'1)

and again using techniques similar to those above, we prove further identities
which are listed:

p P
n Ln+6 bn+2

KW =Pl p _p (4.2)
bn+2 bn -2
n
2n 5
)» (ZV)PHr+2 = anPun+z (4.3)
r=0
2n+ 1
2n+1 _ on+1
r‘go( r )P‘H"'*'Z - QZ PLm+‘+ (4.4)
P P
KnU - P:L B bn+7 ) bn+3 (4.5)
bn+3 un -1
2n
n _ on
X (17>Pur+3 B Qz Pinss (4.6)
r=0
2n+1
2n+1 o+l
( bp+3 2n Pqn-;.s 4.7)
y:z=0 r P @

See [4] for further, more complicated results.
From what has been said in the above sections, it appears that there is a

chain of matrices of the type given which would produce formulas of (perhaps)-
minor interest.
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5. THE MATRIX W

We now introduce a matrix having the property of generating Pell and Pell-
Lucas polynomials simultaneously. It was suggested by a problem proposed by
Ferns [1].

2x 1
W o= (Wl = -4). (5.1)
4(x* + 1) 22

Induction leads to

DO
X

k
:U

(5.2)

&~
8
N
+
-
Ju
D
3

Then

A 1 Z"P" | (5.3)
2_[ ) )

Now B
Wm-l»n_ 2m+n—1 Qm+n Pm+n b /5 2) (5 4)
G(x2 + P, Quen| 7 :
[ @n Pnll@n P,

= 2m¥n-2 by (5.:2) also.

4(x* + )P, @, |{4&* + 1B, @,

Corresponding entries give formulas (3.18) and (3.19) for F,,, and @, >
respectively, appearing in [3].
The characteristic equation for ¥ is

A% = 4xX - 4 =0, (5.5)
whence, by the Cayley-Hamilton theorem,

W2 - b4oW - 4I = 0, (5.6)
SO .
Wt = 4 (W + I (5.7)

Algebraic manipulation, after multiplication by Wj, produces the formulas
for Py,y; and @up4,» (3.28) and (3.29), in [31.
Induction, with the aid of (5.6), yields

Wh=2""YP, W+ 2P, | I). (5.8)
Considering W9 and tidying up, we have

gt o pn-De f(S)P’”P"”’zs"”W“j (5.9)
A A n-1 ’

giving
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and r=0
_ d S rr8-1
Q”S*'j B Z (r)PnPn~lQr+j'
r=0
Further,
n 2n r+7n2 .
¥ (r )CEW) ig2n-r - (g + 21)2"7
=0 .
i = (2?W? + baW + 4D)"WY
= (z® + D'W?", by (5.6).
Accordingly,
2n M » _ 5 n
Y 1°)x Poyj = (@ + 1)°P,, .
r=0
and
2n 2 » _ 5 1n
z:o(rv)x Qr+j = (@ + 1) Q2n+j'
p=

From (5.12),

2n+1
v (2”;‘1)(xW)”22"+1‘* = (@2 + 1) (ol + 20)
r=0

and we deduce

2n+ 1

2n+1
z ( r )xrpr = J5(x? + l)nQ2n+l
r=0
and 2n+1
2n+1 _ 2 n+1
E: ( r )err =2+ D P2n+1'
r=0
Also, from (5.6),
(b)) = (W? - 4I)",
whence
n i r(n
(22)"P, = ):0(—1) (T)zgn_zr
r=
and
n = n
(2x) Qn = E (_I)Y’(P> QZn—-?_r'
r=0
Let us revert momentarily to (5.8).
Rearrange (5.8) and raise to the sth power to obtain
8
n-1)sps _ s n(s-r)
pn-Depeys - 2:(-1)r(r) 2"7Pr_ W .
r=0
Identities such as
8 < r( S r
Pan =2 (-1 (p) Pn—lQn(s—r)
r=0
19871

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)
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and

s 2 rf8 r
PPy ;= X D) ()P Pre ez (5.23)
flow from (5.21).

The above information, together with complementary material in [5], offers
some details of the finite summation of Pell and Pell-Lucas polynomials by
means of matrices. Clearly, the topics treated are far from complete. For in-
stance, (5.1) extends naturally to

2, 1

m =l g2 4 oacry-r g | [Fel=4GDm, (5.24)

m

from which new properties of our polynomials may be derived. Enough has been
said, however, to indicate techniques for further development.
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REPRESENTING (%?) AS A SUM OF SQUARES

NEVILLE ROBBINS
San Francisco State University, San Francisco, CA 94132
(Submitted March 1985)

INTRODUCTION

A well-known theorem of Lagrange [4, p. 302] states that every natural num-
ber can be represented as a sum of at most four squares. For each integer, k,
such that 1 < k < 4, let S; be the set of natural numbers, #n, such that (3?) is

a sum of k (but not fewer) squares. We show that 5, is empty, S, = {1, 3},
while S; and 5, are both infinite.

PRELIMINARIES

Let p denote a prime.

Definition 1: 0p(n) k if pk|n, Pk+lk n

r r
Definition 2: t,(n) = ¥ a; if n = 3 a,p?, with 0 < a; <p for each .
i=o i=0

op(ab) = op(a) + 0,(b) (1)
n - tp(?’l)
Op(n!) = ‘—‘p—_—l—‘ (2)

tp(k) + kp(n - k) - tp(n)

op<<Z)>~ = (3)

tp(apd) = t,(a) for all a, J (4)
02<(ff)> = t, () (5)
n#ta+b>+c?iff n=2%Gm+7) withk=>0,m>0 (6)

n # a® + b* iff there is a prime, p, such that

p = 3 (mod 4) and o,(n) is odd. (7))
Remarks: (1) follows from Definition 1. (2) is [2, p. 131, Problem 7]. (3)
follows from (1) and (2). (4) follows from Definition 2. (5) follows from

(3) and (4). (6) is stated in [4, p. 311]. (7) is [4, p. 299, Theorem 366].
t,(n) is denoted #,(n) in [5].
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2n

REPRESENTING (n

) AS A SUM OF SQUARES

THE MAIN THEOREMS

Theorem 1: If » # 1, 3, then there is a prime, p, such that p = 3 (mod 4) and
n<p<2n.

Proof: Breusch [1] proved the conclusion for n 2 7. If n = 2, then p = 3; if
4 <n<6, thenp = 7.

Theorem 2: S, is empty; S, = {1, 3}.

Proof: 1If 2 <n<p < 2n, then 2n < 2p, so Op((i?)) = 1. Therefore, (7) and
Theorem 1 imply S; u S, € {1, 3}. Since

) - ve it () e
(l =1° 4+ 17, and 3) = 4 + 22,
the conclusion now follows.

Remark: That S; is empty also follows from the theorem of P. Erdos [3], which

states that (Z) is not a power if k > 3.

Definition 3: If n = 2%m, k > 0, m odd, then Ff(n) is the least positive resi-
due of m (mod 8).

Lemma 1: If m is odd, then f(m) = m (mod 8).

Proof: The proof follows from the hypothesis and Definition 3.
Lemma 2: If f(a) = f(b) (mod 8), then f(a) = f(b).

Proof: The proof follows from the hypothesis and Definition 3.
Lemma 3: f(ab) = f(a)f(b) (mod 8).

Proof: Let a

2°5, b = 2%, with ¢ > 0, d > 0, jk odd. Lemma 1 implies

i

FGk) = jk = F(F)F(K) (mod 8).
Now f(ab) = f(2°*%jk) = F(jk), while F(a)f(b) = f(H)FK), so
flab) = f(a)f () (mod 8).
Lemma 4: If f(b) = 1, then f(ab) = f(a).
Proof: The proof follows from the hypothesis and Lemmas 3 and 2.
Lemma 5: f(»n?) = 1.
Proof: 1If n = 2%m, k > 0, m odd, then f(n?) = £(2%*n?) = f(m*). Now, Lemma 1
implies f(m®) = m? = 1 (mod 8). But f(1)=1, so we have Ff(n?) = F(1) (mod 8).
Now, Lemma 2 implies f(n2) = f(1) = 1.
Lemma 6 f((ff))= (2.

Proof: The proof follows from Lemmas 4 and 5, since (2n)! = (37)(n!}2.
\ %
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Definition 4:

Let g(n) = f(n!).

REPRESENTING (3?) AS A SUM OF SQUARES

Table 1 lists g/(n) and t,(n) for each n such that 1 < n < 200.

Table 1

n g(n) t,(n) n g(n) t,(n) n g(n) t,(n) n gn) t,(n)
1 1 1 51 5 4 101 1 4 151 7 5
2 1 1 52 1 3 102 3 4 152 5 3
3 3 2 53 5 4 103 5 5 153 5 4
4 3 1 54 7 4 104 1 3 154 1 4
5 7 2 55 1 5 105 1 4 155 3 5
6 5 2 56 7 3 106 5 4 156 5 4
7 3 3 57 7 4 107 7 5 157 1 5
8 3 1 58 3 4 108 5 4 158 7 5
9 3 2 59 1 5 109 1 5 159 1 6

10 7 2 60 7 4 110 7 5 160 5 2

11 5 3 61 3 5 111 1 6 161 5 3

12 7 2 62 5 5 112 7 3 162 5 3

13 3 3 63 3 6 113 7 4 163 7 4

14 5 3 64 3 1 114 7 4 164 7 3

15 3 4 65 3 2 115 5 5 165 3 4

16 3 1 66 3 2 116 1 4 166 1 4

17 3 2 67 1 3 117 5 5 167 7 5

81 3 2 68 1 2 118 7 5 168 3 3

91 1 3 69 5 3 119 1 7 169 3 4

20 5 2 70 7 3 120 7 4 170 7 4

21 1 3 71 1 4 121 7 5 171 5 5

22 3 3 72 1 2 122 3 5 172 7 4

23 5 4 73 1 3 123 1 6 173 3 5

24 7 2 74 5 3 124 7 5 174 5 5

25 7 3 75 7 4 125 3 6 175 3 6

26 3 3 76 5 3 126 5 6 176 1 3

27 1 4 77 1 4 127 3 7 177 1 4

28 7 3 78 7 4 128 3 1 178 1 4

29 3 4 79 1 5 129 3 2 179 3 5

30 5 4 80 5 2 130 3 2 180 7 4

31 3 5 81 5 3 131 1 3 181 3 5

32 3 1 82 5 3 132 1 2 182 1 5

33 3 2 83 7 4 133 5 3 183 7 6

34 3 2 84 3 3 134 7 3 184 1 4

35 1 3 85 7 4 135 1 4 185 1 5

36 1 2 86 5 4 136 1 2 186 5 5

37 5 3 87 3 5 137 1 3 187 7 6

38 7 3 88 1 3 138 5 3 188 1 5

39 1 4 89 1 4 139 7 4 189 5 6

40 5 2 90 5 4 140 5 3 190 3 6

41 5 3 91 7 5 141 1 4 191 5 7

42 1 3 92 1 4 142 7 4 192 7 2

43 3 4 93 5 5 143 1 5 193 7 3

44 1 3 94 3 5 144 1 2 194 7 3

45 5 4 95 5 6 145 1 3 195 5 4

46 3 4 96 7 2 146 1 3 196 5 3

47 5 5 97 7 3 147 3 4 197 1 4

48 7 2 98 7 3 148 7 3 198 3 4

49 7 3 99 5 4 149 3 4 199 5 5

50 7 3 100 5 3 150 1 4 200 5 3
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Theorem 3: (%?) # a®> + b? + % iff t,(n) is even and g(2n) = 7.
Proof: The proof follows from (5), (6), Lemma 6, and Definition 4.

Theorem 4: Let k be a nonnegative integer. Then

I

(@) g(8k) = g(4k); (b) g(8k + 2) = g(4k + 1);

(c) g(Bk + 4) = 3g(4k + 2) (mod 8); (d) g(8k + 6)

8 - g4k + 3).

Proof of (a): By Definition 4 and Lemma 4, it suffices to show that

(8k) 1)
f((Ak)!)

We proceed by induction on k. The statement is trivially true for kK = 0. Now

Bk + 1Y)\ _ ((8k + 8)1)\ _ ((8k + 8)!(4k) ! (8K)!
f((4(k + 1):)) = f(<4k ¥ 4)!)) = f((gk)z(ak + 4)!(4k)!)

) =1 for all k 2 0.

(8K + 8)!(4k)!
B f((sk)!(4k + 4)!)

by induction hypothesis and Lemma 4. But

(8% + 8) 1 (4k) !
f((8k)!(4k + 4)!)

_ f((sk + 8)(8k + 7)(8k + 6)(8k + 5)(8k + 4)(8k + 3)(8k + 2)(8k + 1))
- (4k + &) (4k + 3) (4k + 2) (bk + 1)

= f(2"(8k + 7)(8k + 5)(8k + 3)(8k + 1) = f(7+5+3+1) = £(105) = 1.

Parts (b), (c), and (d) may be proved in similar fashion.

11

g (m) if m 1 (mod 4),
Theorem 5: g(2m) =

8 - g(m) if m = 3 (mod 4).

Proof: The proof follows from Theorem 4.

)

Theorem 6: If either (i) m 1 (mod 4) and g(m) = 5, or (ii) m = -1 (mod 4)
and g(m) = 3, then g(2m) = 5 and g(4m) = 7.

Proof: The hypothesis and Theorem 5 imply g(2m) = 5. Nowm = 4r * 1, so
g(am) = g(4(br £ 1)) = g(8(2r) * 4) = 3g(4(2r) * 2) = 3g(2(4r £ 1)),
3g(2m) = 35 = 7 (mod 8),

by Theorem 4(c). Therefore, g(4m) = 7.

Theorem 7: If m is odd and g(2m) = 5, then g(2*m) = 7 for all k > 2.

Proof: (Induction on k.) By Theorem 6, the statement is true for k = 2. If

k > 2, then g(ka) = g(8(2k_3m)) = g(é(Zk'am)) = g(2k_lm) = 7, by Theorem 4(a)
and the induction hypothesis.
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Theorem 8: S, is infinite, that is, there exist infinitely many n such that

(2”> =a? + p? + c2.
14

Proof: 1If m =2 2, then t2(22m_l-l) =2m - 1, and 2°""1 - 1 > 3, so that Theo-
rems 2 and 3 imply that 22"°! - 1 belongs to Sy

Theorem 9: 5, is infinite, that is, there exist infinitely many # such that
(") #a® + 57 + c2
n
Proof: By Theorems 3, 6, and 7, it suffices to find an m such that (i) t,(m)
is even, and either (ii) m = 1 (mod 4) and g(m) = 5, or (iii) m = 3 (mod 4) and

g(m) = 3. Examining Table 1, we find the following such m < 200:

m e {3, 15, 43, 53, 63, 147, 153, 175, 189}.

Concluding Remarks: Let dn be the asymptotic density of S,, where 1 < n < 4.
Since S,uU S, is finite, by Theorem 2, we have dy=d, = 0, so that dy +d, =1

If n is a randomly chosen natural number, let 4 be the event that %,(n) is
even; let B be the event that g(2n) = 7. It is easily seen that Pr(4) = %.

Now dy, = Pr(n € §,) = Pr(4 n B) < Pr(4) = %. Therefore, dy 2 %. Table 1 sug-
gests that 4 and B are independent, and that Pr(B) = %. Therefore,

Conjecture: d, = 1/8, d; = 7/8.
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ON NONSQUARE POWERFUL NUMBERS

R. A. MOLLIN' and P. G. WALSH?
University of Calgary, Calgary, Alberta, Canada T2N 1N4
(Submitted March 1985)

1. INTRODUCTION

As introduced by Golomb in [1], a powerful number n is a positive integer
which has no prime appearing to the first power in its canonical prime decom-
position; i.e., if a prime p divides n, then p2 divides n. If m and m are
powerful numbers, then m-m is said to be a proper difference of powerful num-
bers if g.c.d. (m, m) = 1. Golomb [1l] conjectured that there are infinitely
many integers which are not proper differences of powerful numbers. This was
disproved by McDaniel in [3], wherein he gave an existence proof for the fact
that every nonzero integer is representable in infinitely many ways as a proper
difference of two powerful numbers. We provided a simple proof of this result
plus an effective algorithm for finding such representations in [4]. However,
in both our proof and McDaniel's proof one of the powerful numbers in such a
representation is always a perfect square, except possibly when n = 2 (mod 4).
Recently, Vanden Enyden [6] proved that also in the n = 2 (mod 4) case, one of
the powerful numbers is always a square. We established in [4] that every even
integer is representable in infinitely many ways as a proper nonsquare differ-
ence of powerfuls; i.e., as a proper difference of two powerful numbers neither
of which is a perfect square. At this time, the only odd integer known to have
such a representation is the integer 1 (see [7]). It is the purpose of this
paper to complete the task; viz., to prove that every odd integer greater than
1 (hence every integer) is a proper nonsquare difference of powerfuls, and to
provide an algorithm for finding such representations. Therefore, this paper
establishes the fact that every nonzero integer is representable in infinitely
many ways as a proper difference of two powerful numbers where either one of
the powerful numbers is a perfect square and the other is not, or neither one
of them is a perfect square.

For other work done on powerful numbers we refer the reader to our list of
references.

2. NONSQUARE POWERFUL NUMBERS

To prove our main result, we will need the following lemma, which we state
without proof since it is immediate from the binomial theorem.

Lemma: If B is an integer which is not a perfect square and (7 + UVE)i =T, +

Ui¢§, then

_ Z -2k 2k pk L= z >mi+zk+1 2k-1pk-1
T, -k}:‘,O(Zk)T y?*Bk  and U, E1<27<"V p?k-ipk-1,

lThis author's research was supported by N.S5.E.R.C. Canada, grant #28484.

2This author was a senior undergraduate mathematics student at the University
of Calgary during the writing of this paper.
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ON NONSQUARE POWERFUL NUMBERS

where ( ) denotes the binomial coefficient.
We are now in a position to prove the main result.

Theorem: Every nonzero integer is representable in infinitely many ways as a
proper difference of two powerful numbers neither of which is a perfect square.

Proof: For the case where #n is even see [4], and for the case where n = 1 see
[7]. This leaves the case where n > 1 is odd. We break the proof down into

two parts. We note that it suffices to prove the result for either n or —n.

Case (i): »n # 0 (mod 5)

Let D = rs, where
r=m>=-2n+5)/4 and s = (n®+ 2n + 5)/4.

Let T = (n® + 3)/4, then 72 - D = =1. If (I + VD) = (T, + U;VD), then
7?2 - U?D = %1,

z T

Therefore,

it

tn = n(TZ - DUZ) = sF? - vE%,

where

E.

A

T, + sU; and F, =T, +rU;.

T

Now we show that, for an appropriate choice of %, we can achieve F, = 0 (mod r)
and ¥; Z 0 (mod g). To see this, we invoke the Lemma to get

E, = T%+ sil* ! (mod r).

Since n # 0 (mod 5), r and s are relatively prime, so we may choose

-T(8)~ ' (mod »)

1l

7
which guarantees that E; = 0 (mod r). Similarly, by choosing
i = =T(»)~ ' (mod 8)

we guarantee F; = 0 (mod s).
In order to complete Case (i), it remains to show that F; and F; are rela-
tively prime. Suppose that there is a prime p such that:

E. =T

7

; +8U; =pt (1
for some integer ¢, and

F, =T, + rU; = pu (2)-

T

for some integer u. Multiplying (1) by T; and (2) by sU;, then subtracting, we
get
t1 = T7 - rsU; = p(¢T, - sul,)

2

a contradiction.
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Case (ii): # = 0 (mod 5)

Let D=n?+1, T=n, U=-1, and (T + WD)* =T, + U,YD. Let 4; =T, +
U;D and B; = T; + U;. Our plan of attack for this case is to show that for an
appropriate choice of 7 we get A% - BfD =n? with (4; * n)/2 being powerful.
First we observe that if B; =0 (mod 2D) and g.c.d. (4;, n)=1, then (4; * n)/2
are powerful. We prove g.c.d. (4;, n) = 1 by contradiction. If there is a
prime p such that 4;=7; + U;D = 0 (mod p) and n = 0 (mod p), then 7; + U; = O
(med p). Therefore,

111
(@]

1 =712 -UD =T - U’ (mod p),

a contradiction. Now, by choosing 7 = n (mod 2D), we get by the Lemma that:

I

B; =T, +U; =T% - 47*% = 0 (mod 2D).

Hence, we have shown that (4; * n)/2 are powerful. It remains to show that
neither of these is a perfect square. To do this, we use the following fact.
Since n = 0 (mod 5), D must contain, in its prime decomposition, a prime p > 2
to an odd exponent; i.e., D # 2d? for any integer d.

We observe that A% -n? = BfD = Zsefz, where ¢ is odd. Therefore, which-
ever of (4; * n)/2 is even cannot be a perfect square. It remains to show that
(A; +n) 2 0 (mod 4p) and (4; - n) # O (mod 4p); i.e., whichever of (4; * n)/2
is odd cannot be a perfect square, since it contains the odd power of p.

Suppose 4; + n = 0 (mod 4p). Therefore, T, + U;D +n =0 (mod 4p), which
implies
T. =nt Z -n (mod p).

1

-1

Hence, n = -1 = »? (mod p), which implies

7

11
(%)
1

= n (mod 4).

Now, by the Lemma, 7.

1

=1 (mod 4) and U; = 3 (mod 4). Thus,
0=T7T,+U;D+n=1+6+ 3 (mod 4),
a contradiction.
Finally, assume 4; - » = 0 (mod 4p). Therefore, T; + U;D - n = 0 (mod 4p),
which implies 7; = n? = n (mod p), and so 2 = 1 = n (mod 4). Hence,
0=T,+UD-n=1+6 -1 (mod 4),
a contradiction which secures the Theorem.
We note that the procf of the Theorem yields an effective algorithm, via the
choice of 7, for dinfinitely many vepresentations of a given odd integer as a

proper nonsquare difference of powerful numbers. The following examples illus-
trate the process.

Exampie 1: Let ¢ = 1 (mod 10) and (3 4+ =7, + U;v10. Thus,

3 = 2(T; + 5U,)% - 5(T;

with 7; + 2U; = 0 (mod 5) and 7, + 5U;
3 =27 -5%

In particular, if Z = 1, then

36 [Feb.



ON NONSQUARE POWERFUL NUMBERS

Example 2: Let © = 5 (mod 52) and (5 - v26)% = T, + U;VEE. Then

(T; + 26U;)% - 26(T; + U;)? = 25

with (7; + 26U; * 5)/2 nonsquare powerful numbers. 1In particular, if 7 = 5,
then 5 = 72+ 13% - 27 . 292,

N
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AN UPPER BOUND FOR THE GENERAL RESTRICTED
PARTITION PROBLEM

W.J. A. COLMAN
North East London Polytechnic, Dagenham, Essex RM8 2AS
(Submitted March 1985)

The function p*(p;, pys «+.» P, #) is defined as the number of partitions
of the integer n into at most m positive integers P1s Pos ceovs Ppo where the
order is irrelevant. An upper bound for the number of partitions is given.
This upper bound is then compared with two known particular cases. An upper
bound for the function p*(p,, p,> ...» P,;S7n) is also given. This last func-
tion represents the number of partitions of all integers between 0 and »n into
at most m positive integers p,, P, ««+s P, -

1. INTRODUCTION

The number of partitions as defined above is equal to the number of solu-
tions of the Diophantine equation

pyxy T o, ¥ oo Hpx, =0

in integers x; > 0, where the p, are given positive integers which need not be
distinct. If (py, p,s.--5p,) =d > 1, then p*(pys Pys ++-5 p,3 n) = 0 unless
d divides n, in which case the factor d can be removed from the above equation
without altering the number of partitions. That is,

pl p2 pm VL)
* . = pk|l— = —.
p(ply pza L] pm, 7’1) p(ds d’ LR ] d, s

where p p D
1 2 m
T g e :;> = 1 when d/n.
Thus, we can assume that the equation is reduced and that (pl, Pos oevs Pm) =1

for the rest of this paper. We can also assume without loss of generality that
P, SP, SP,S ... SP
where there must be at least one strict inequality if (p,, p,s --+sp,) = 1 un-
less p, =p, = **- =p, = 1. The number of partitions of n into exactly the
parts pP,s P,» ..., p, will be denoted by the function
P(Pys Pys =vvs Pps M)
This is equal to the number of solutions of the equation
p,x, + p2x2 L i

in integers x; 2 1.
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It is known that

P(pls Pos cees Pps n) = p*(pl, Pos eees Pps M= (pl +p2 4 e +pm))

(1.1)

and that the function p*(pl, DPys «+-sp,s n) satisfies the recurrence equation
p*(pl, Dos e D3 1) — p*(pl’ Dys +ovs Dy = Dp)

P¥(P s D,s wees Doy M) (1.2)

I

where p*(p,, p,s .5 p 3 0) = L.

m

2. PRELIMINARY RESULTS

In order to determine an upper bound for p*(p,, p,s ... Pp; %) under the
most general possible condition, which is (p;, p,s ..., p,) =1, we require some
preliminary results, which will be stated without proof. The proofs are quite
straightforward but in the case of (2.1) rather lengthy. The proofs have been
omitted in this revised version to reduce the length of the paper.

If (p,» p,) =0, and (p;> p,> P,) =0,, then, for n > 0,

O3 1 <2P1p2 Oszs> ’
*(p_, . D3 e—|n+= + (2.1
p*(@ys Pys Py 1) 20.0,0, < 2\ o, o )
If A> 0 and B> 0 and k is an integer = 2, then
t
k-1 <_1_ i k
r‘:\:o(/lr + B) < Ak(A(t + 2) + B) . (2.2)

The upper bound in (2.1) cannot be weakened, since it is actually attained
under very special circumstances. If we consider p*(pl, P,s Py n), where

20\P,
(Pys Pys Py) =1 and py =—7,

%

then 0, =1 and, for an arbitrary positive integer k, we have, using (2.1), that

2p,p, 2kp.p
p*<?1, p,s —— ——) < (k + 12,

2
a; o,

But it can be shown that in this case we have

2p,p, 2kp.p
p*(?l’ P, : 25 2 2) - (k + 1)?

2
Oy Oy

and the bound is attained.
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3. THE MAIN RESULT

We now state and prove the main result of this paper.

Theorem: If (py, p,) = 0y (Pys Pps P3) = Qgs eevs (Pys Pys «vvsP,) = Oy, then
for w 2 0 and m = 3,

P*¥(Pys Pys wvvs Dps 1) (3.1)

< o n + l. zplpz + Ei + omee 4 am—l "
= p.p, --- P, (m - 1! 2\ a, o, Ps Ay Em ’

where, if the partition is reduced, o, = 1.

Proof: Assume the result correct if m = k (say), and consider

p*(pl, Pys =ves Dy n), where (p > p,s «+-s pk+1) =1
Writing

n=apk+1+b,wherea=[ }and0<b<pk+1—l.

k+1
a

P*(ys Dys ees Dys Dyyqs ™) = .Zop*(pl’ D,s ++s D3 o, +b)s
i

using (1.2), since p*(P s P,» o5 Pppqs D) = P¥(Pys Pys -ovs D3 D)

where (P, p,> --+5> P,) = ;. Now the sum is zero if o, *ipk+1 + b. Consider

ipk+1 + b = 0 (mod ay), where (pk+l, a,) =1
as (pys Pys ++v» Dy > pk+1) = 1. Thus, there is a unique solution

z =1, (mod o), where 0 < 2, < 05 - 1.

T = 1Lgs Tg + Ogs Tg + 205 eoes Ty + [
Hence,

P*(Dys Pps wvvs Pryqs 1)

= by P¥(Pys Dys vvvs Dy TP, +B) ifa-2720
i (as above)
=0 ifa-172,<0
k-1
o 2p.p o Oy, =
k , 1 172 2 k¥l
< +b + 5 + — +
; PP, Py (k- 1)!\7’pk+1 b 2( o, s Py + Oy, k))
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(=]
o, — 2p.p
. 1 12
_ Z P . r +p .+ b +—< .
Pyp (= DT 7y \ T2 T Fea®o T\
o i k-1 .
_ . (4r + B)*™*, where t =|—| > 0
pl...pk(k 1)!r=0,1,2,... OLk
2p.p ¢
i . ) 1 172 k-1
and 4 = Pry 1% B =P 1ty t b+ §-< 5 U o 0
< o : Pra® (t " 1)
=X ° 2
pl..,pk(k - ! pk+1uk. k\k+l * ?
2p.p; ¢
) 1 175 k-1
+pk+17’0+b+5< Oy ot Oz
] . . ' , 1 2p,p, a, +
N Plpz...Pk+1k! Pr+ 1% Pre1to * +7 o, ¥ Oq be

a
Now QuDy 1T = Pry 1°‘k[ oy

1

"
plpz"'pk+1k!

v,p,
o

=__L__n+l<
plpz...pk+lk! 2 )

Thus,
m =k + 1 when o4,, = 1.
If Ogyy f 7, then p*(p,,

+——p
g 8

T, )
_*—-} < pk+1(a - 7’0)

. . 1
<apk+1 T Peato TPt T b +7(

o

k-1
Ok

+ oo+

cees Prans n) = 0.

&y

Px

p.p,

+ oo+

o

k
pk)> , using 2.2,

O

1

)

k
_*
+ 1 pk+1>) :

we have that if the result is correct for m = k then it is correct for

Now assume that (P, Pys ««e5 Prs1) = Oxye1 (say).

If Qpyeq [n, then

Py b, Prsa
7
p*(p,P, cees D ;n)=p*< s s o5 ;——)’
. 2 k+l 0‘k+1 Or+1 OLk+1 Or+1
b, Pren
where ( s eees = 1, and thus
k+1 Og 41
2p, P, o,
*( ) < 1 n_ 1 Or+1  Ok+1 N Og+1 P,
pt(Pys -5 P 5 M) S 5 °
! k+1? p, Prs1 Og4r 2 a, Oy Ok 41
Og+1 Or+1 Crs1 Opea
o
k-1 Ok
o p o p
k+1 k+1 k+1
+ e+ Kk .
Ox Og+1 Yes1 Y4
Or+1 O+
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_.i_wri(ipﬁJriz_ ey i
plpz...pka! 2 o, 0y by Oy tq P :

Thus, the result is correct for m = k + 1 if it is correct for m = k. But, we
know that the result is correct for m = 3, and hence the result is correct for
m 2 3. This completes the proof.

4. A COMPARISON WITH KNOWN PARTICULAR CASES

(a) The upper bound given by Rieger [6] is

m=1
p, (n) < m'(m]; 1),(n + m(mz: 3)> form 2 0, m 2 4.

We have p (1) = p*(l, 2, 3, ..., m; n = m) and a, = 1; thus,

< 1 1 m=-1
pm(n)\m<n—m+§(4+3+5+...+m)> .

B 1 mm - 3) 1yt S
Qur result = i = 1)!<n + i + 2) form 2 3.

(b) H. Gupta [5] has given the following result for the particular case in
which p, = I:

(n +m - 1)
m-1

P,Py+-D,

(TPt TR

p2p3° . 'pm

SP*(1, Pys Pys woes D3 1) S

For the upper bound, we have
(n+p, + " +p)!
(m-1Dtn+p, + - +p = (m - 1))!

(n + p2m+_-i- + pm)

For large n +p, + +++ +p - (m-1),

1
) (n+p, + one + Bﬂ)n+pz+"'+Pm+7. e=m-1)

T m - 1)

1
n+p2+--‘+pm+7 ~-(m-1)

n+p, +---+ p, - (m-1))

(n+p, + " +p ~(m- 1))"-1 o-m=1)

(m - 1)! (m - 1) )n+p2+---+pm+%
(1_n+p2+... +p

(n+p,+ o +p - (m- 1)1
(m - 1)!

Thus, Gupta's result for the upper bound is asymptotic to

1

1
1. P, -+ Dy (m - :

LT+ P, +p, + 4D, - (n - DD
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Our result with ¢, = a3 = --+ =0, =1 as p; = 1 is sharper if

1
p, *p,+ - +p - (m-1) >‘§(2p2 +tp, e tp)
or

Pyt p, + e +p, > 2m - 2.

For arbitrarily large p;» this is obviously satisfied as }::=3p_ will, in gen-
eral, be much larger than 2m - 2. ‘

5. AN UPPER BOUND FOR p*(p,, p,, «-., p,;<n)

This function represents the number of solutions of the inequality
<
px, + p,%, + +px, SN

in integers x; 2 0 for »n 2 0. Alternatively, this represents the number of
lattice points within and on the hypertetrahedron bounded by the planes x; = 0
and the hyperplane

p,®, + p,x, + 0+ px, = 7.
We can assume that (p,, p,> ---» P,) =1, and thus

P*(Dys Dys covs D3 ST

n 2p.p o a m-1
1 1 12 2 m- 1
< )3 + = +—p, + "+
DD, P, (m = 1)1 r=0(f 2 < O, oy Py 1 pm>>

2p.p Q o mn
g___l____'n_'_l.{_l(__]i_'___zp 4+ eee 4+ mlp
p,p,---p,m 22 Oy O, ©3 1 m

for n 2 0 and m 2 3, using 2.2.

6. NUMERICAL RESULTS AND ASYMPTOTICS

Consider the example
p* (60, 120, 150, 216, 243, 247; n),
where o, = 60, a, = 30, a, = 6, O
divide oy-
It is known [4] that if (py, P,s +--> Pp) =1 then p*(Pys Pysovesp,3 n) >0
for sufficiently large n. This implies that there is a largest integer n for
which p*(p;s Dys o v P, n) = 0. This greatest integer is denoted by

= 3,andoc6 = 1. It is clear that o, , must

4 5

G(pys Dys +ovs Pp)e

The paper [4] gives some upper bounds for G(Dys Pys v-ns pm)° Using these upper
bounds and a numerical search, it can be found that

G(60, 120, 150, 216, 243, 247) = 1541.
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For larger 7, the partition function will be much smoother and the upper bound
will become asymptotically better.
for the previous particular numerical example, the following re-

We have,

sults.

Upper Upper

n p* (G »n) Bound p*(;<n) Bound

1541 0 136 7090 67396

6944 .11723x 10° .24412 % 10° .17050 x 108 .34057 x 10°®

19760 .19217 x 107 .25387 x 107 .68932 x 1010 .89646 x 101°
39779 .61270x 10° .70673 x 108 .42470 x 1012 .48535x 10*2
44505 .11307 x 10° .12163 x 10° .82616 x 1012 .93112 x 10*2
60000 .49311x 10° .52036 x 10° .48728 x 1013 .53274 x 10*3
490000 .16900 x 10** .17057 x 10* .13817 x 10*° .13970 x 101°

CONCLUSION

An upper bound has been determined for p*(pl, Pys +++s Dy 1) and p*(pl,

Pys +++s PpsSn) for all m 2 0 and m 2> 3.
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ORDINARY GENERATING FUNCTIONS FOR PELL POLYNOMIALS

BRO. J. M. MAHON
Catholic College of Education, Sydney, Australia 2154
and
A. F. HORADAM
University of New England, Armidale, Australia 2351
(Submitted March 1985)

1. INTRODUCTION

The object of this paper is to investigate, by using a variety of methods,
the properties of Pell polynomials P,(x) and the Pell-Lucas polynomials @, (x)
[6] which are derivable from their generating functions. Brief acquaintance
with the main aspects of [6] is desirable.

In an endeavor to conserve space, we will generally offer only an indica-
tion of the potential development, with a minimum of results, so that just a
representative sample of the material available is presented. Omitted informa-
tion will be happily supplied on request. Among the many facets of this expo-
sition, we find the sections numbered 4 and 5 especially appealing.

For visual convenience, the functional notation will be suppressed and an
abbreviated notation used, e.g., P,(x) = P,, €,(x) = @,.

First, we introduce the notation

P(js my ks 2y y) = & B y” (1.1)
r=0

Q(j: m, K, x, y) = Z Q”{r,_'_kyp- (1.2)
r=0

Then, for example, by difference equations [6],

P(l, 1, 0, =, y) = yA (1.3)
or, equivalently,

P(l, 1, 1, 2, y) = A = > P, yTs (1.4)
and =0

Q(l, 1, 0, =, y) = (2 = 2xy)A (1.5)
or, equivalently,

Ql, 1, 1, z, y) = (2 + 2y)A = f:OQHlyP, (1.6)

e

in all of which

A=(l=-2xy -y>)™t =ACx, y, 1, 1) [cf. (1.8)]. (1.7)

Result (l.4), for example, may also be obtained using the method of column
generators [1] with the aid of binomial coefficient expressions for P, given
in [7]. Matrices and Binet forms may also be utilized (see [7]) in establish-
ing (1.3)-(l.6).
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Let us introduce the symbolism

A((‘Zﬂ)) Maxs ys §» m)

[cf. (1.13)] in which the superscript and subscript will be suppressed when J =
1 and/orm =1, e.g., AO& A [ef. (1.7)] and

By = (L = Gy + (-D)"y*)™" = Mex, y, 1, m) (1.8)
whence (1.7) follows when m = 1. Replacing y by -y, we write

A&n A, -y, 1, m). (1.9)
Furthermore, with m = 1, let

J+1 r(r+1) -1
[E -1y 2 {j+1, P}y”] ; (1.10)

A('j) = Ax, Y, gs 1) =

r=0

where the symbol {a, b}, defined in [8], is

{a, b} = ﬁ Pi/< ﬁ Pi><aflei> (1.11)
=1 =1 =1

Thus, in particular, from (1.10) and (1.1l1l),

A=(l-Py - yH L as in (1.7)
A® = (1 -Py - Py?+y®H)? (1.12)

A = (1 - Py - (PP, /P P,y% + Py’ +yH)?

More generally,

(J) j+1 rlm(r-1)+2] -1
Dy {Z( D 2z {j+1, r}myr} . (1.13)
in which
{a, b}, = II Pim/< m\( ) (1.14)
i /
The case jJ = 1 occurs in (1.8), while the case m = 1 occurs in (1.10).

Later, in (6.6), we refer to the case j = 3, i.e., to Aw
Some useful results from [7] are collected here for later reference:

@9, r even,
Qn+1ﬂ+Qn—r= (1.15)
4(x? + 1)B,P, r odd.

e

P2 - (4x? + 2)13?— + P2 = 2(-1)". (1.16)

n+l n-1
Z%(r+l)+k Enbmer + (= IJ m(r-1)+k = 0. (1.17)

Also important for our matrix treatment are (see [6]):

2x 1
p= ; (1.18)
! 0
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Pre=lp  p | s lE=CD (1.19)

Consult [6], [7], and [8] for details of some of the applications of P.

2. APPLICATIONS OF GENERATING FUNCTIONS

Using (1.17) as a difference equation, we find eventually that

P(1, my ks 5 y) = [B, + (-1)*B,_, Y1 (2.1)
Similarly,
QL my ks @y y) = (G + (-1D*71Q, 1y Am. (2.2)

The specializations given in (1.3) and (1.5) follow immediately. Numerous
other specializations of some interest, e.g., those for

P(la 2: 0, Xs y), P(l’ 2’ 1’ Xy y)s P(l, 3’ 3: Xy "y)
and Q(l, 2, 1, x, -y),

are listed in [7].
Differentiating (l.4) with respect to Yy, we obtain

EOTPP+1y”‘1= (22 + 2y)AZ2. (2.3)
P
Likewise
E:PQP+1yP'l= [42c2 + 2 + 4oy + 2y2]A°. (2.4)
r=0

Replacing y by -y gives generating functions of some importance. Results
(2.3) and (2.4) may be extended if we differentiate (2.1) and (2.2) w.r.t. ¥y,
but the process is somewhat algebraically messy.

Now, (2.3) leads to an interesting summation. With (1.4) and (1.6) it gives

o o o ®
LIPS {EOP,Hy"}{r?erHy”}. (2.5)
Equate coefficients of y?¥ on both sides, thus obtaining

(r + DB,

r+1
- LB, (2.6)

Next, differentiate (1.5) w.r.t. y. Then
rZ%(r + 1)@, ,y" = (2x + b4y - 2zy®) 0. (2.7)

Combining (l.4) and (2.7), we find
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Zo(r +1)Q,, y* - z_‘:o(r +1) P oy"=y(2 - 2ay)A? (2.8)

freolae
r=0 r=0

(® + 1)(@pyy = Pryy) = X PQ,_ ;- (2.9)
=0

by (1.3) and (1.5).
Equate coefficients to get

Differentiating in (1.3) w.r.t. y, then multiplying by y, we determine a
generating function for rP,, namely,

zoppryr = y(l + y?)n2. (2.10)
r=
Similarly,
Z%rerP = (2xy + 4y? - 2xy®)A®. (2.11)
r=

Generating functions may be used to derive already known properties of
Pell polynomials, e.g.,

Z%Qny” = (2 - 2xy)A by (1.5)
e
= A+ (1 - 2xy)h
= zopn+1yn + 2P _y" by (1.4) and (2.1),
ns= n=0
whence Qn = P;+1 + E%_l [6, equation (2.1)].

Moreover, we may show that

Q(l, 1, 1, =, y) + @1, 1, -1, x, y) = 4(x* + 1)P(L, 1, 0, x, y),

whence Qn+1 + Qn_l 4(x? + P, [ef. (1.15)].

New, but less elementary, identities may also be established. For instance,

ngo {Qan—l + Qn+1Qm}yn

[(2 - 2xy)q,_, + (2x + 2y)q,, 1A by (1.5) and (1.6)

[(22q, + 2@, ) + (2Q, - 20 _ylA

2
4z + 1)(P, + yP _)A
by (1.13) and the recurrence relation for &,.

Terms in y” being equated, we derive
(2.12)

- 2
98 | +8.,.0 =4@" + DBy,
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Following the technique of Serkland [9] for Pell numbers, we can also es-
tablish fresh identities involving Pell polynomials. See [7] for details. A
representative result incorporating this process is

w-1
PPy P, = kz;ﬁfl+u+w-kf%+l - Z:)u+k+lpu+w—k}' (2.13)

Finite series may be summed using a generating function. To illustrate
this contention, choose

m L ©
LBy = ERyT - LR

y{l - (P

m+1

+ yB,)}A by (1.3) and (2.1).

Then, y = 1 gives equation (2.11) in [6].
Ideas of Hoggatt [2] in relation to Fibonacci and Lucas numbers may be ex-
tended to generators of Pell polynomials. For example,

k§04k(x2 + %P,y (2.14)

yP(l, 2, 1, =, 4(@z® + Dy?) by (1.1)

=yl - 4@ + Dy®}s, by (2.1)
and

ki;ol‘k(xz + D Qe y " (2.15)

= y2Q(1, 2, 2, x, 4(x? + L)y?) by (1.2)

y2{(4x? + 2) - 8y*(@® + 1)}§,, by (2.2)
where, in (2.14) and (2.15), SQ) means AQ) with y replaced by 4(x? + Dy [cf.

(1.8)1.
Add (2.14) and (2.15). Simplifying, we are left with

< k k
k2-:0 G+ DIP,  + Yy, Ty T (2.16)

y - 2°
1 - 4 + 1)y + 4@ + Ly?
Yy

Further details appear in [7].

3. ELEMENTARY RELATIONS AMONG GENERATING FUNCTIONS

Analogous relations to those among polynomials may be determined for gene-
rating functions. Consider, for instance, the derivation of the recurrence

relation

1987] L9



ORDINARY GENERATING FUNCTIONS FOR PELL POLYNOMIALS

P(l, 1, n+ 2, 2, y) = (Byy, + yP, 1) Dby (2.1) (3.1)

(2x{P,,, + yP,} + P, + yP, _,)b by the definition
of P,
22P(1, 1, n+ 1, x, y) + P(1, 1, n, x, y) by (2.1).

1]

Likewise,

1]

Q(l, 1, n+ 2, x, y) =2x@(1, 1, n+ 1, x, y) + (L, 1, n, =, y). (3.2)

It might be noted that the direct generating function analogue of

Q, =P, +P,_

n n+1 1

flows almost immediately from (2.1) and (2.2).
Matrix representations of the generating functions are, in the notation of
[8] for the matrix P,

P(l, 1, n, x, ¥) 1 P(l, 1, 1, =, y)
= Pn_l s (3'3)

LP(1, 1, n -1, =, y)_| LP(1, 1, 0, x5, y)

Q(l, 1, n, x, y) Q(l, 1, 1, =, y)
= p*-1 . (3.4)

_Q(l, 1, n-1, x, y)_ _Q(la 1, 0, =, y)

P(1, 1, 1, =, y)
P(1, 1, n, =, y) = [1 o]lp*? , (3.5)
P(l, 1: 09 X5 y)_

(1, 1, 1, @, y) ]
Q(l, 1, n, x, y) = [1  o]p™? . (3.6)
1 @1, 1, 0, z, y)_|

Now let us apply these matrices to obtain formulas for Pell and Pell-Lucas
generating functions. First,

Q(l,. 1, m+n, x, y)

1 Q(la 1, 1, x, y)
[1 o]pm+r : by (3.6) (3.7)
Q 19 19 0, X, y)

]
o
oY

m m=-1

[Q(l, l,n+ 1, =, y) by (3.4) and
Ql, 1, n, 2, y) (1-19)

e, I, n+1, x, y) + B, _,Q(1, 1, n, x, y).
A similar formula pertains to P(1, 1, m + n, x, y), viz.,

P(l,1,m+n,x,y) = B,P(l, 1, n+ 1, =, y) + P%_lP(l, 1, ny, &5 y). (3.8)
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O0f course, (3.1) and (3.2) are special cases of (3.7) and (3.8) when m = 2.
Representative of another set of results is

P(la ]-s m + 7, X, y) + ('_l)nP(l, 1, m = M, &, y) = QHP(I’ 1, m, X, y)

(3.9)
Analogues of Simson’s formulas can be established. Thus,
P*(1, 1, ny x> y) = P(L, 1, m+ 1, @, y)P(1, 1, n - 1, x, y) (3.10)
P(l, 1, n, x, y) P(l, I, n+ 1, =, y)
P(ls 1, n -1, x, y) P(l, 1, n, x, y)
P(l, 1, 1, xz, y) |\ P(1, 1, 1, =, y)
= |pn-t L pn by (3.3)
P(l, 1, 0, =, y) |, P(1, 1, 0, =, y)
P(1l, 1, 1, x, y) 22P(1, 1, 1, =, y) + P(L, 1, 0, x, y) by
— n-1
= [P (1.18)
P(l, 1, 0, x, y) P(1, 1, 1, x, y)

i}

(-1)""Y{p2(1, 1, 1, ®, y) - P(L, 1, 2, =, y)P(l, 1, 0, =, y)} by (3.1)

(D" (1 - 22y - y?)A? by (1.3), (1.4), and (2.1)

D", 1, 1, x, y) by (2,1).
Similarly,

Q2(13 l, Ny Xy y) - Q(ly 1, n + l, Xy y)Q(19 ls n = ls XLy y)
4x? + 1)P(L, 1, 1, 2, Y). (3.11)

il

More complicated algebra, with the use of the above method, produces the
generalized Simson's formula analogues, namely,

P2(1, 1, n, 2, y) = P(l, 1, n+ 7, x, y)P(1, 1, n -~ r, 2, ¥) (3.12)
(-D)""TBIP(L, 1, 1, x, y)

0

and
QZ(IS 1’ Ny Xy y) - Q(l’ 13 n+r, x, y)Q(l’ ls n = r, X, y) (3'13)

= (-1 (x? + DBEIP(L, 1, 1, ©, y).

Other interesting results may be established by the methods exhibited, for
example,

1
P(l, 1, 2n, =, y) = E{E;Q(l, 1, n, x, y) + Q,P(1, 1, n, =, y)}. (3.14)
The above information represents a small sample of knowledge available to

us. However, the algebra becomes quite awkward when the more general generat—
ing functions (2.1) and (2.2) are exploited in that context.
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L. SUMS OF GENERATING FUNCTIONS

Let us now consider series whose terms are generating functions.

Summing in (3.1) used as a difference equation and tidying up, we come to
n
2P, 1, 7y 2, y) ={P(l, 1, n+ 1, 2, y) + P(1, 1, n, @, y) (4.1)
r=1
- P(]-: 1: ]-: Xy y) - P(]-a ]-’ 09 X y)}/z-’l?-

For variation, consider next a matrix approach. Accordingly, by (3.6)
applied repeatedly,

Z=:1Q(1, 1, r, 2, y) (4.2)
(L, 1, 1, x, y)j’

@(1, 1, 0, x, y)

10 o P,,+P -1 P +P -1 Q(l, 1, 1, =, y)
2x P + P -1 P + P -2x -1
n n-1 n-2

n-1 Q(ly ]-s 0, Xy y)

[1 OJ[I+P+P*+ --- +P”'1]{

@, I, n+ 1, 2, y) +Q(1, 1, n, =, y) - @1, 1, 1, =, y)
- Q(l’ 1, 0’ X5 y)}/zx’

by (3.7), (1.19), and [6, equation (2.11)].
Parallel treatments produce

g:l(_l)rp(]-, ]-a ry, X, y) (4.3)

= {(-D)'PQ1, 1, n+ 1, 2, y) + (-1)*"PQ1, 1, n, =, y)
Y Y
- P(1, 19 1; X y) + P(ls ]-’ Os Xy y)}/ZiC

and
;1(_1)TQ(1’ 1: r, X, y) (4.4)

={-D"Q, 1, n+ 1, x, y) + (-7, 1, n, x, y)
- Q(la 1, 1’ X y) + Q(l’ 1, 09 Xy y)}/Zx-

Extensions of the above theory may be exhibited (see [7]) for

P(l, my mr + k, 2, y, 8) = 2, P(L, my mr + k, x, y)z® (4.5)

r=0

with a similar formulation for the Pell-Lucas generating functions.
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5. GENERATING FUNCTIONS FOR SECOND POWERS OF PELL POLYNOMIALS

Exploiting (1.16) as a difference equation, we may demonstrate that, ulti-
mately,

(1 - @y + yz)ggoffy” (5.1)

-y + 2y - 2y2 + Zys - e+ 2(—1)T"1yr + e

Y-y
1+y”°
whence
- - y ~y?
- PI,Z;/P— 2 5 s (5.2)
r=0 1 - Gba® + Dy - (bx® + Ly? + 4°
that is,
P2, 1, 0, x, y) = (y - y>)A® by (1.12). (5.2)"
Similarly,
92, 1, 0, ¢, y) = (4 - (1202 +.4)y - 4xy?)A?, (5.3)
One may also show that
rZ%E;+1E;+2yP = 220A® (5.4)
and
S Qpi1@paoy? = 20{(4x? + 2) + 2(4x? + 2)y - 252}, (5.5)
r=0

Generalizations of (5.2) and (5.3) to expressions for P(2, 1, m, x, y) and
@(2, 1, my, £, y) are obtainable (see [7]). Imn particular,

P(2, 1, 1, , y) = (1 - 1)A?, (5.6)
while
Q2, 1, 2, @, y) = {4a? + 2)2 + (l6a* + 4a® - 4)y - 4w?y?}a?, (5.7)

Note in passing the marginally useful result that
P(2, 1, 1, =, y) - P(2, 1, 0, =, y) = (1 - y)2A%, (5.8)

which has an application in some complicated algebra elsewhere [7].

The theory outlined above extends (though not easily) to P(2, 1, m, x, y)
[and @(2, 1, m, x, y)], and more generally to P(2, m, mr + ks x5 y). A differ-
ence equation resulting from this algebraic maelstrom, and which is useful in
deriving fresh information, is

P2, mym+k, x, y) - q,, P2, my k, x, y) + P(2, my, -m + k, x, y) (5.9)

2(-1)kp?
1 +y
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6. GENERATING FUNCTIONS FOR CUBES OF PELL POLYNOMIALS

With care, we may demonstrate the validity of

3 3 3 - n
P - QP -P = (-1)"6xP, . (6.1)

n+1l n-1

Use this for summing to derive, first [cf. (1.9) and (1.12)],

(1 -9,y - yz)rgaffyr =y - 6xy?A', (6.2)
whence
P(3, 1, 0, , y) = (y - 4xy? - y*)A® (6.3)
in which
A1 - @y - y?) =4, (6.4)
Similarly,

Q(3, 1, 0, x, y) = {8- (56x® + 32x)y - (64x"* + 48x% + 8)y?
+ 823y 1AM, (6.5)

Indulging in an orgy of algebra, we may construct (see [7]) a generaliza-
tion of (6.1) relating to Fﬁr+k as leading term. Ultimately, we establish a
formula for P(3, m, k, x, y), the generating function for Eﬁ;+k, although it
it not a pretty sight.

For possible interest we append the expression for Ag%, namely, cf. (1.13)
also,

AC3) - {Qsm + (_1)QO}y + (_1)m{QmQ3m + 2}y2 o

(m) _(_]_)m{Qam + (_l)QO}yf‘) + yk (6-6)
Obviously, the foregoing theory could be developed almost ad infinitum ad

nauseam for P(j, m, k, =, y). Patience, skill, and motivation would be required
for this task.

7. GENERATING FUNCTIONS FOR DIAGONAL FUNCTIONS

Rising diagonal functions R, for {P,} and », for {Q,} were defined in [6].
Descending diagonal functions D, and d, for these polynomials also exist (see
[71). Work on these types of functions, but for other polynomials, may be found
in [3], [4], and [5].

Write
D =D, y) = E%L%yn-l’ (7.1)
n=
d = d(x, y) = Z%d;y""l, (7.2)
R = R(x, y) = ilR,,y"'l, (7.3
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rEr(x, y) =1+ 3% 7y (7.4)
n=2
Then, following [3]-[5], we find
_ 1
D=1 (22 + L)y~ (7.5)
d = 20 + 2
1-(Qz+ Dy’ (7.6)
_ 1
B=1T 20y - y3°’ (7.7)
p o= 1 +y3
1 - ny - y3 ° (7«8)
Furthermore,
- n-1 _ 20 + 1
gngzny Tl 4+ (20 + D2y (7.9)
and
< - 1
n-1 _
LD, ¥ T+ 2z + D2y " (7.10)
Partial differentiation yields
oD oD
2y 5 - (2 + 1)55 =0, (7.11)
ad (2 - ) - .
2y 5 (2 + D\5- - 2D) = 0, (7.12)
oR N
2y 5 (2x + 3y >8x = 0, (7.13)
2y 2 - oz + 3y?)E -~ 6(r - R) = 0 (7.14)
¥ Y Y o oo :
8. CONCLUDING REMARKS
Information provided above is merely "the tip of the iceberg." Much more

lies to be discovered by effort and enterprise.

Clearly, there exists a corresponding investigation involving exponential

generating functions.
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THE NAMING OF POPES AND A FIBONACCI SEQUENCE IN
TWO NONCOMMUTING INDETERMINATES

PETER M. HIGGINS

Deakin University, Victoria 3217, Australia
(Submitted April 1985)

The naming of Popes s a serious matter,

It isn't just one of your holiday games.

1 know you may think T'm as mad as a hatter,

But I say that a Pope must have two different names.

—Apologies to T. S. Eliot and
0Ld Possum's Book o4 Practical Cats

The year 1978 saw three occupations of the Chair of St. Peter and the sec-
ond was the shortest reign of modern times. Luciano Albini was acclaimed as
the successor to Paul VI but was fated to be Christ's Vicar on Earth for only
a month. He nevertheless introduced a novelty. So impressed was he by his
two predecessors that he chose the double appellation of John-Paul. The inno-
vation seemed to meet general approval, as it affirmed continuity in Church
policy while paying tribute to the two previous pontiffs. However, it was a
dangerous precedent and it was fortunate indeed that the present Bishop of Rome
did not feel obliged to follow his predecessor's example, but prudently opted
simply to extend the line of John-Pauls. Indeed, a moment's reflection will
reveal that if John-Paul I had insisted that all his successors should follow
his lead in this matter the effect on papal nomenclature would have been cata-
strophic, although of considerable mathematical interest.

Disaster was averted, but let us look at the mathematics anyway. Suppose
that John-Paul I had insisted that each future pope should take as his name the
names of his two predecessors in chronological order. Commencing with Pope
John XXIII, the "papal sequence,'" as we shall call it, would begin

Js P, JP, PJP, JP2JP, PJPJP?JP, JP?JP?JPJP?JP, ...,

where J, P, and P? have their obvious meanings. An impossible situation for
the popes of the third millenium; each would spend a great deal of time trying
to remember his own name. However, this same sequence should delight the heart
of any lover of the Golden Ratio because it can be regarded as a Fibonacci se-
quence in two noncommuting generators, J and P. We shall study this sequence
with an eye to finding an efficient algorithm to determine P,, the name of the
nth pope, where we shall take P, to be Pope John-Paul himself.

We shall begin with several simple observations. Denote the length of P,
by !Pn|, and denote by an|J and IZQIP the number of occurrences of John and
Paul, respectively, in P,. We use F, to denote the nth Fibonacci number.

Lemma 1: In the papal sequence, for all n 21,
<i) 'PHIJ =F7L’ ,PnIP =Fn+1;

(ii) |p,| = F

n+2?
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(iii) P, ends in P, for all m 2 n;

(iv) P, does not contain two successive J's nor three successive
P's

Proof: Each of (i), (ii), and (iii) follow immediately from the definition of
the papal sequence and induction.

(iv). From (iii) with » = 1, it follows that P, ends in JP for all m = 1.
It is obvious, then, that J? can never occur in the papal sequence. Next, ob-
seve that P, begins with PJ or with JP, according as n is even or odd (again
this is immediate by induction). Hence, no P, begins nor ends in PZ, a fact
that ensures that P° never appears in our sequence.

This lemma allows us to reformulate our problem. Denote the reverse of P,
by P We associate with the papal sequence an infinite sequence 4 = (01)16N,
in whlch each aq; is either J, P, or P? , by defining a», to be the nth term in P
(read as a word in J, P, and p? ) for all m such that IP | is sufficiently long
for this to make sense. Part (iii) of Lemma 1 guarantees that 4 is well-defined
(to be precise, we should take m such that the length of P%, considered as a
work in J, P, and Pz, is at least n + 1).

Since our problem is now of more mathematical than religious interest, we
shall dispense with J, P, and Pz, replacing them by the symbols 0, 1, and 2,
respectively. Since ]Pnl is known (up to the value of F,,,),the papal sequence
can be reconstructed from our sequence A. Furthermore, 4 begins in 1, and part
(iv) of Lemma 1 tells us that 4 is a sequence in which each 1 and 2 is preceded
and followed by 0, while 00 never occurs. Therefore, 4 can be reconstructed
from the sequence B, which is obtained from 4 by deleting all the 0's (given
that 4 begins in 1).

Our problem, then, is to discover a good way of generating this sequence B,
which begins 12122..., the first five numbers corresponding to ?g.

We introduce a sequence of finite sequences By, By, By, ... (each of which,
as we shall show, is an initial subsequence of its successor and of B). The
sequence is defined recursively beginning B,=1. We construct B, ,, from B, by
replacing each 1 by 12 and each 2 by 122. The next few B;'s are

Blz 12,

B,: 12122,

B,: 1212212122122,

B,: 1212212122122121221212212212122122.

Each B; is an initial subsequence of its immediate (and hence of each) succes-—
sor. Indeed, we can say more.

Lemma 2: For n > 1,
2
Bn Bn an 2Bn 3° Blz’

the product being concatenation of the sequences.

Proof: We denote by ¢ the operation defined in the recursive definition of
(B;);eyos that is

Q(B;) =By,ys T =0, 1, 2,
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The result is evidently true for w = 2. For n = 3, we obtain

B, = Q(,_ 1) = Q(Bn 2B, gt .BIZ) by the inductive hypothesis,
Q(B,_.,)9(B,_,)4(B,_3) ... Q(B,)4(2)
= B, 1B, 1B, _,-..B,122

= B} _1By_p...B,B12.

n-1

Remark: We can regard members of the sequence (B;);ey® as a set of generators
for a semigroup S, whose multiplication is defined by concatenation. The opera-
tor ¢: S5 =+ S is then seen to be an injective semigroup endomorphism.

Henceforth, we shall regard P, as a finite sequence in 0, 1, 2, and, more-
over, we shall agree to delete the 0's (as P, can be recovered even if the 0's
are deleted), but we shall denote this reduced version of P, by the same sym-
bol.

Lemma 3: For each n 2 1, B, is an initial subsequence of B. In fact,

Bn = P2n+1‘

Proof: The proof is by induction. We shall prove the two identities

B,=P,, ~and BB  ...B.2=P P _.,n>1,

where the product on the right-hand side is defined by concatenation, with the

understanding that two adjacent 1' s are replaced by 2.
For n = 1, we have B =12 = P, (as P, is JP?JP), and B,2 = P, + Py, since

B,2 = 122, while P, * P 11- 12 = 122 Our inductive hypothes1s 1s that

B =P

m 2m+1
and

BB, _,.-:B2=P, *P, . for all 1 <m<n, n>1.

Now, by Lemma 2, we have

2
BB, ,...B2=B2 B . ...B2B B ,...B2,

which, by the inductive hypothesis is equal to

? n-1"° (P;n 2 Pzn 1) (P, an-2 PZn 1)

(fgn 1° Pzn z) (P an-1 Pzn 2) " Pyy

=Pyt Pyt Pypoa) = P, f2n+1'
Hence, by Lemma 2,
B, = Bi 1By_pee B2
=B, (B, 1B, ,---B;2)
=P, 1t Pyt Py ) = (P 1° Py )Py
=Py, ﬁ;n-l §£n+1’

as required.
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Result: Algorithm for constructing the papal sequence.
0dd Case: Suppose n =2m + 1, m 2 0.

1. Calculate B, = @"(1l).
2. Write B,, the reverse of B,.

3. Write 0 at the beginning and between each pair of symbols
of B,.

4. Replace each 0, 1, and 2 by J, P, and P?, respectively.
Even Case: Suppose n = 2m, m 2 1.

1. Calculate B, = Q™(1).
2. Suppose B, = blbz"'bk’ say. Truncate B, at B] = blbz"'bt’
where

t
b, =F + 1.

; T 2m+1
=1

Replace b, = 2 by 1 in B} to give Bj.
3. Write ?#.
Insert 0 between each pair of symbols of Eﬂ.
Replace each 0, 1, and 2 by J, P, and P2, respectively.
Proof: The algorithm for the odd case is an immediate consequence of Lemma 3

together with the observations made on the occurrences of J in P,, when n is
odd.

On the other hand, if »n = 2m, then B, = ?;m+1; But P,,,, ends in P,,, and
so some initial subsequence of B, corresponds to P,,. The remaining problem is
to determine the length of this subsequence. Now, by Lemma 1(i),

lPZm IP = F2m+1;

thus, we need to truncate B, = b,b,...b; at b, where £t is the least integer
such that

t
2:2” ZF e
=1
Finally, observe that p,. begins PJ, P, . ends in JP, whence b, = 2 and

t
b, =F + 1.

i1 A 2m+1
The result follows from these observations.

Example: P,. Here, m = 2.

1. B, = Q*(1) = q(l2) = 12122.

Fomyr =Fg5 =5, soF, . +1=6. Hence, B] = 1212.
?g = 1121.
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1121 - 1010201.

P, is PJPJP?JP.

Here, m = 3.

= @%(1) = @%(12) = Q(12122) = 1212212122122.
2212212122121,

02020102020102010202010201.

is JP?JP2JPJP2JP2JPIP2JPJP2JP2JPJP2JP.

w

vowW W W
¥
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INCREDIBLE IDENTITIES REVISITED

RICHARD T. BUMBY
Rutgers University, New Brunswick, NJ 08903
(Submitted April 1985)

Consider the numbers:

4 =V2+11 + 2/5 + V5;
B =11 + Vii6 + V(11 + 5) - V116 + 25(11 - V116).

Although one feels that these numbers couldn't be equal, Shanks [2] assures us
that they are. Indeed, Follin (as reported by Spohn [3]) points out that one
may take 5, 11, and 116 as indeterminates subject only to the identity

5 =112 - 116 (1)

(which certainly is true for the usual interpretation of these strings of deci-
mal digits). As we shall see, it is only the first 5 in 4 which needs to be
given by the representation (l); the remaining 5's may be treated as a separate
indeterminate. The proofs of the equality of 4 and B given in [2] and [3]
seem to be little more than appeals to the principle, attributed to J. Little-
wood, that "any identity, once written down, is trivial."

Please ask yourself the following questions before reading further:

1. Why does 4 = B seem so unlikely?

2. Given that it is true that 4 = B, how can it be proved?

The answers to both questions can be traced to the same source, Book X of
Euclid's Elements [1]. 1Indeed, in Proposition 42, it is shown that a number
expressible as a sum of two incommensurate square roots of rational numbers
has a unique such representation up to interchanging the order of the summands.
This deals with question 1.

Much of Euclid's work deals with more complicated algebraic numbers,albeit
only constructible numbers. In this analysis, repeated use is made of the rule

vVa + Vb =Va + b + 2Vab, (2)

which is employed forward and backward. That is, to take the square root of a
quantity like 22 + 2v5, one solves

+ b = 22
: ab = 5 (3

[

to obtain g and b as 11 + V116 and 11 - Vv116. At this point, it is clear that
our quantities 4 and B are the two different ways of associating

Vi1 + V116 + V11 - Vil6 + V5

using (2) to express the first sum that one takes in each case. Q.E.D.
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Equation (2) has led to puzzles before. You can discover one by using the
method (3) to obtain another expression for

V2 + 2/2.

One case where the method has a fairly satisfying answer is
V5 + 2/6.

Finally, while it seems that, in the case of

V22 + 25,

the method has caused the complication to ramify, it does not lead to prolif-
eration. To see this, find

V11 + 2/29.

Although Euclid's study of algebraic numbers is full of detailed discussion
of points which seem to us to be misguided, it is sobering to note that it can
lead to a natural explanation of an identity that is not very close to the sur-
face in our modern theory of algebraic numbers.
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AFTERTHOUGHTS

Since composing the article, I have corresponded with Professor Shanks and
others whose interest in this topic came to light in that correspondence. It
seems that everyone has his own favorite proof of this identity, usually re-
flecting the individual's background in classical algebra.

It also appears that different types of proofs have different gestation
times. The proof in Spohn's letter had multiple independent discoveries at
that time, and a proof along the lines of my article was communicated to Shanks
by J. G. Wendel of the University of Michigan in October 1984.

In all proofs, two separate parts must be distinguished. First, the quan-
tities 4 and B can be shown to satisfy the same polynomial with rational coef-
ficients, i.e., to be algebraically conjugate. This is most susceptible to
proof by Littlewood's principle. To show that the numbers are actually equal
as real numbers relies on special knowledge of the real roots of that polyno-
mial. This is hidden in my proof because I need only distinguish the two
square roots of a real number. Another tool which is used in my proof (but
could be overlcoked) is the fact that the sum of algebraic numbers is alge-
braic.

Shanks also mnotes that his proof is really a means of discovery of such
identities, and he refers the reader to his article [4].
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1. INTRODUCTION

By an exponential divisor (or e-divisor) of a positive integer N > 1 with
canonical form

ap

— al
N=p?*' ...p,
we mean a divisor d of N of the form

d=rph ... pfr, blag, i =1, ooy 2.

The sum of such divisors of N is denoted by OKQ(N), and the number of such
divisors by T®E(W). By convention, 1 is an exponential divisor of itself, so
that ¢(®)(1) = 1. The functions TEXW) and o()(W) were introduced in [1] and
have been studied in [1] and [2].

An integer N is said to be e-perfect whenever c@)(¥) = 2N, and e-multiper-
fect when o(XN) = kI for an integer k¥ > 2. 1In [1] and [2], several examples
of e-perfect numbers are given. It is also proved in [2] that all e-perfect
and all e-multiperfect numbers are even.

Several unsolved problems are listed in [2], and one of them is whether or
not there exists an e-multiperfect number. In this paper, we show that if such
a number exists, it must indeed be very, very large.

2. NOTATION AND SOME LEMMAS

In all that follows, the positive integer NV is assumed to be an e-multi-
perfect number, so that

o@(Wy = kN for some integer k > 2. (2.1)

Note that if »n dis a square-free integer, then 0@ ) = n, so that if
(n, N) =1, then M is also e-multiperfect. Hence, we assume (as we may) in
the future that N is powerful. Also note here that we have used the fact that
0¢) is a multiplicative function.

Write

p b b
No=2"gh oo gfPe e po)s (2.2)
where the p's and ¢'s are distinct primes, and each a; is a non-square integer
> 2, and each bj is a square integer > 4. It follows then that each O(”(qji)

is even and each G<”(pfﬁ) is odd.
Let k = 2°M, where M is odd and w = 0.
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Lemma 2.3: N is even, i.e., h 2 2.
This is a consequence of Theorem 2.2 of [2].
Lemma 2.4: s < uw + k.

Proof: The relation o‘®() = kN gives
s t
o<e>(2h)[nc<e)(qfi)][ I o<@)(p?%')} = 2Mu(gd ... gl (PP ... pPY).
i=1 ji=1 J

Since the only even factors on the left side are O(ekqil), cees O“”(qzs),
and since ZIO(@(ZH), the result follows.

In what follows, the letter p represents a prime.

Lemma 2.5:

1 (1+i2+l3><(1.27885)(1-~17>--- < -Lz>
P#2, 4y -nq,\ P2 D q a;

1

Remark: This is a stronger form of Lemma 2.1 of [2], where a similar result is
proved with the multiplicative constant on the right being 27/16% 1.6875. For
our present purpose, we need the above stronger result.

Proof of Lemma 2.5:

1 1 1 1
1+—+—)< I1 <1+—)(1+->
p%z’qp--qu P? PP/ p#2,4,...000, p? p3

T AT

P#2, Grsvnns

< [?<2>(1 -~;;>(1 “5?) o (1 _‘53)}

ARSI E)N SR Y UV RN
<y 2K (1 9’§> (1 )

on utilizing the result that
1 I .
[ —";jllil ——;} <l,g=1, ..., s.
;4 95

£(2) < 1.64494, £(3) < 1.20206, and £(4) < 1.08232

Using

([3], p. 811), we obtain the proof of the lemma.
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Lemma 2.6:

s < (e ) D) -5 (e ) -2
—— < |l + ——— 14+ =1 -—=)- - {1 +—= l—<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>