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THE SECOND INTERNATIONAL CONFERENCE 
ON 

FIBONACCI NUMBERS AND THEIR APPLICATIONS 

A MEMORY-LADEN EXPERIENCE 

HERTA T. FRE1TAG 
There I was—-alone on a strange campus, at the University of California at 

Berkeley, where the startling number of 39970 had gathered for ICM-869 The In-
ternational Congress of Mathematicians. Did someone just call my name? He had 
done it again!—Professor A. N. Philippou, Chairman of our First International 
Conference on Fibonacci Numbers and Their Applications two years ago at The 
University of Patras9 Greece, the man who at the time had "recognized11 me with-
out ever having seen me, now managed to "run into mef! amidst this "almost non-
denumerable" crowd. 

To encounter—just before our Conference—Professor Philippou9 the origina-
tor of the idea to set the stage for a meeting of "Fibonacci friends" on an 
international scale, was a very special omen to me. It was an appropriate and 
beautiful overture to our Second International Conference on Fibonacci Numbers 
and Their Applications, which was to begin two days later9 and convened from 
August 13-16 at San Jose State University. This site was befittingly chosen, 
as it is the home of The Fibonacci Quarterly* 

Professor Calvin Long, Chairman of the Board of The Fibonacci Associations 
and Professor Hugh Edgar, a member of the University?s Mathematics Departments 
participated in the Conference. This gave us the opportunity to express our 
appreciation of the fact that our Conference was co-sponsored by The Fibonacci 
Association and San Jose State University. 

Professor Gerald E. Bergum, Editor of The Fibonacci Quarterly and Chairman 
of the Local Committee, and Professor A. N. Philippou9 who chaired the Inter-
national Committee3 immediately earned our admiration and praise. So did the 
Co-Chairmen—Professors A. F. Horadam and Hugh Edgar, and5 Indeed, Professor 
Calvin Long and all the other helpers "on the stage" and "in the wings/' 

The organization of our Conference was exemplary. And the atmosphere was 
charged with that most appealing blend of the seriousness and profundity of 
scholarliness and the enthusiasm and warmth of personal relationships. This 
seems to be the trademark of "Fibonaccians"—mathematicians who are dedicated 
to a common cause: a deep and abiding fascination with "Fibonacci-type" mathe-
matics . 

Approximately twenty-five papers were presented by a group which came from 
some ten countries. There were several joint authorships. Some had resulted 
from a cooperation between authors separated by oceans—a situation which, pre-
dictably s poses many obstacles: one just has to "hover by the mailbox until the 
anxiously awaited response can possibly arrive." Many of the papers exhibited 
the phenomenon that one mathematical idea begot another, and yet another, maybe 
a generalization, and yet a further one, etc., the very development mathemati-
cians cherish so much. Our understanding of the goldmine that number sequences 
and the intricacies of their interrelationships constitute was enriched? and 
our appreciation of the value of such investigations was deepened. While the 
variety of topics was strliking» dedication to the beauty of mathematical pat-
terns and joy over the wealth of mathematical relationships provided the common 
bond. The Conference Proceedings will be published in the near future. 
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A small nucleus, just seven participantss were "second-timerssf! people who 
had previously experienced the unique pleasure of this kind of gathering on an 
international scale. Their friendships were welded together more meaningfully 
yet 5 and many newcomers were initiated. Many of us had accents buts in a very 
significant way5 we all spoke the same language. 

Professor Hoggattfs widow9 Herta Hoggatts most graciously invited our en-
tire mathematical community to convene at her charming home—outdoors5 amidst 
the beauty of flowers and trees. In a deeply touching way did the late Profes-
sor Verner E. Hoggatt5 Jr.9 thus participate in our thoughts, 

I believe that all of our Fibonacci friends—here and across the oceans— 
greatly valued the fact that the dream., first voiced in Greece, about continua-
tion of our international gatherings had been realized * Now* we confidently 
rejoice over the prospect: "Until we meet again...s in two years, in Italy0.*9 
maybe in Pisa!" 

•<>•<>• 
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A, F. HORADAM—AD MULTOS ANNOS 

A. G. SHANNON 
The New South Wales Institute of Technology 

Sydney, NSW 2007, Australia 

1. .INTRODUCTION 

"The sequence will involve a cumulative process of capital appreciation that 
will accrue to the benefit of the early rich and their heirs" [2], Though very 
much out of context, the quotation came to mind when I sat down to respond to 
the Editor's invitation to write a paper about Alwyn Horadam, an elder states-
man of The Fibonacci Association, on his retirement. As a former students or 
intellectual heir, of "Horrie" (as he was affectionately known to thousands of 
students), my life has been enriched by the appreciation of the capital of his 
early generalizations of the Fibonacci sequence. 

These attracted the attention of the Founding Editors of The Fibonacci Quar-
terly , Brother U. Alfred and Professor Verner E.'Hoggatt, Jr. He accepted their 
invitation to become a foundation sustaining member and to join the initial 
board of Assistant Editors for Volume 1, Number I, in February 1963. 

Of that initial Board, Alwyn is still serving, together with Maxey Brooke, 
Paul Byrd, Leonard Carlitz, Henry Gould, and D. E. Thoro, but Alwyn is the only 
non-American still on it twenty-four years later. This is no mean feat and is 
indicative of his great virtue as a correspondent—the prompt reply—an asset 
which was to serve him well during his forty years on the staff of the Univer-
sity of New England where more than half the graduates have studied externally 
at a distance from UNE. 

What follows is not a critical exposition of Alwyn!s work—I have been too 
closely involved with him for twenty years as student, colleague, and friend. 
Nor is it an obituary—no one who knows Alwyn can expect an idle retirement. 
It is, in the words of the Editor's invitation, a list of his professional ac-
complishments and a summary of some of his work. 

2. CURRICULUM VITAE 

Alwyn was born in 1923, son of a dairy farmer at Singleton,a small town in 
the Hunter Valley about 230 km north of Sydney, the capital of New South Wales. 
The original Horadams came from Wiesbaden in Germany in 1846 as "vine ten-
derers." (The Hunter Valley is a renowned wine-producing area of Australia.) 

It is of interest to note, in passing, that the other branch of the Horadam 
family emigrated to Texas, USA, and recently the two branches of the family 
have been in contact. A couple of years ago the Horadams had a family reunion 
on the original property, "Glendon," where there is a small church and ceme-
tery. 

Alwyn was educated at Maitland Boys' High School, which has a justifiably 
high reputation in Australia with many famous alumni. (Maitland is about 45 km 
southeast of Singleton, half way to the coastal city of Newcastle.) Alwyn dis-
tinguished himself at school, where he was Dux, Captain of the School, Captain 
of the Criket team, and a member of the Football team. 

In 1939, he went to the New England University College in Armidale at the 
other end of the Hunter Valley in the Northern Tablelands of the State. The 
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NEUC had only been founded the year before. It "was affiliated with the Uni-
versity of Sydney, and was Australiafs first experiment in the establishment of 
a university in a purely country area—an experiment that had been urged by 
some educationists since the closing years of the nineteenth century" [25]. 

The New England region is one of the finest sheep-raising areas of Austra-
lia, and it is fitting that a university which was to become a world leader in 
Rural Science and Agricultural Economics began with the munificence of local 
pastoralists who donated a mansion and farms to secure its foundation. NEUC 
obtained its full autonomy in 1954, and it now attracts students from overseas 
as well as from every State of Australia. Its rapid expansion in recent years 
has not been at the expense of its rural setting: its beautiful campus is an 
attraction for academics who visit Australia. 

Alwyn graduated as BA in 1942 at NEUC with first class honors awarded by 
the parent University of Sydney. During World War II, the University worked a 
four-term year, so he graduated in three years instead of four. 

After graduating, he served as a school teacher with the NSW Department of 
Education. His studies included Mathematics, Education, and English. These, 
together with his work in schools, helped to make him not only a gifted teacher 
of mathematics but also a practitioner skilled in writing and research. 

With further academic work, he completed the requirements for his Master of 
Arts, Diploma in Education, Doctor of Philosophy of the University of Sydney, 
and Bachelor of Education of the University of Melbourne. His Ph.D. was done 
under the supervision of Professor T. G. Room, FRS, a world-renowned geometer 
who was Head of the Department of Pure Mathematics at the University of Sydney 
for about thirty years. Alwynfs life-time interest in geometry culminated in 
the publication of his book on projective geometry [13]. His Ph.D. involved 
work with Clifford Matrices and showed the wide range of algebraic skills that 
he was later able to apply to number theory. 

Alwyn joined the staff of NEUC in 1947 as a lecturer, and his role in the 
development of the University can be seen from the following list of his con-
tributions to the university community. From the date of its independence in 
1954 until 1972, he served as a Member of the University of New EnglandTs Gov-
erning Council. He was elected to this position by the University Convocation, 
that is, by the full university community of graduates and staff. 

He has been Captain and President of the University Cricket Club, Vice-
President of the University Football Club, President of the Science Society, 
President of the University Union, Foundation Secretary of the UNE Teacherfs 
Association, Foundation Chairman of the UNE Alumni Association, and Foundation 
Fellow of Robb College (one of the residential colleges of UNE). 

He also has been a Governor of Robb, Duval, and Wright Colleges, and the 
University Esquire Bedell. More recently, he has been the University Ombuds-
man, a difficult role and the appointment to which is an indication of the es-
teem of the university community for his integrity. He was also the UNE Dele-
gate for the 13th Quinquennial Congress of British Commonwealth Universities 
in Birmingham (UK). 

Considering all this involvement, it is almost a surprise to learn that he 
had time to get married in 1950. He and Mollie have now been together for 37 
years and have three lovely daughters and two grand-daughters. Mollie is an 
engineer and number theorist with degrees BSc(Eng) (London), MA (Cambridge), 
Ph.D. (UNE), and, for many years was on the staff of UNE, which she continues 
to serve as a Member of Council and an Honorary Fellow in Mathematics. 

The three daughters are all married. Kathryn, with a Ph.D. in mathematics 
from the Australian National University, is now on the staff of the Royal Mel-
bourne Institute of Technology. Readers of Mathematical Reviews will thus have 
seen references to A. F., E. M., and K. J. Horadam at times. Actually, there 
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are five Dr. Horadams, because the other two daughters, Kerry and Alanna, have 
graduated as medical doctors! 

Other academic appointments have included Dean of the Faculty of Science, 
and, in recent years, Head of the Department of Mathematics, Statistics and 
Computing Science, the position from which he retires. Is it any wonder that 
in correspondence, the Editor agreed that Alwyn is an excellent role model for 
an academic? 

3- MATHEMATICS 

In commenting on Alwynfs contributions to mathematics, I must first take 
account of his teaching ability, for that is how I first came to know him. 

Since 1955, UNE has played a major role in distance-education through its 
Department of External Studies. Many school teachers of Mathematics took ad-
vantage of its facilities to upgrade their qualifications, and through them I 
had come to learn of Alwyn?s expository skills. For this reason, I wrote to 
UNE in 1966 and I was fortunate to be assigned to Alwyn?s care. 

With undergraduates he aimed at the educational ideals of humane and libe-
ral education through the medium of mathematics. With postgraduates, he en-
couraged optimism and a positive approach to research. I always found him 
cheerful but serious, able to ask the right questions and to resist the tempta-
tion to do too much for the novice researcher. 

He encouraged his Masterfs and Doctoral research students, of whom he has 
successfully supervised 49, to correspond with mathematicians around the world 
to avoid insular or parochial frames of mind. His own research has' been simi-
larly stimulated with periods at the Universities of North Carolina, Cambridge, 
Leeds, Liverpool, East Anglia, Reading, York, Exeter, Iceland, and Malaya (where 
he was seconded to advise on their mathematics curriculum). 

His influence on the teaching of mathematics at the high-school level in 
NSW has been threefold. First, as the NSW Universities1 representative on the 
Board of Secondary Schools Studies Mathematics Syllabus Committee for the last 
26 years. Second, as the co-author of a number of high school texts, of which 
[19] is an example. Finally, but not least significantly, through his help to 
high school mathematics teachers by his teaching of them, through his work for 
mathematics teaching associations, and through his writing of articles related 
to the teaching of mathematics. 

His undergraduate expositions, which were clear and effective, would no 
doubt have, in turn, influenced the teaching styles of many of his proteges. 
Two of his short teaching texts for external students exemplify this. They 
also illustrate his interest in combinatorics. Applied Combinatories [17] deals 
with graph theory, block designs, and enumeration techniques including recur-
rence relations and generating functions. Finite combinatorical structures and 
combinatorical circuits compose the two parts of his Combinatorial Mathematics 
[18]. He also co-authored a number of research papers which looked at combi-
natorial techniques for unravelling patterns (e.g., [21]). 

To return briefly to his teaching texts. These are amply illustrated with 
worked examples and historical allusions. A more neutral observer, the eminent 
Oxford mathematician W. L. Ferrar, has noted in his review of Alwyn?s Outline 
Course of Pure Mathematics [12]: "What a task!—and how well it has been carried 
out. The task? A unified treatment of the Algebra, Geometry and Calculus con-
sidered basic for the foundation of undergraduate mathematics.... Throughout, 
the author seizes every oppor^ aity to interweave the variety of topics he is 
handling.... The range of kiv fledge and detailed reference displayed by the 
author is most striking.... That the author is an experienced teacher is every-
where apparent; he knows all the pitfalls" [1]. 
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Alwynfs early research publications were in algebra and geometry [3-6, 8, 
11] but the two which were seminal and continue to be cited frequently were in 
number theory. The second of these [10] generalized the Fibonacci numbers and 
introduced useful notation by considering the sequence 

{Wn} = {Wn(a9 b; p, q)} 
defined by the second-order linear homogeneous recurrence relation 

Wn = PWn-l ~ A - 2 ' n > 2S 

with initial conditions W0 = a, W1 = b. Thus, the ordinary Fibonacci numbers 
{Fn} are given by {Wn(Q9 1; 1, -1)}. That paper, and a number which followed 
(e.g.» [9])9 developed the properties of this generalizations as he had done 
earlier for {Hn} given by {Wn(a, b; 1, -1)} [7]. These generalizations were 
not only elegant9 they also clarified the roles of the fundamental and primor-
dial sequences introduced by Lucas eighty odd years earlier [24]. 

By highlighting these two papers, I do not mean to do injustice to otherss 
but they had a big influence on mes and they have been utilized by many others 
as well. The algebraic and geometric influences in Alwyn ss research not sur-
prisingly recur from time to time, as do techniques from the special functions 
of mathematical physicss especially the Chebyshev polynomials (e.g., [15]). 
Recentlyj he has co-authored material on the Gegenbauer polynomials and Gaus-
sian Fibonacci numbers (e.g., [27]). There have also been numerous papers that 
deal with various properties of the Pell numbers {^n(0, 1; 2, -1)} and their 
generalizations and polynomials [22]. 

From time to time, too, there have been papers on other topics in number 
theory such as a proof of a problem posed by Morgan-Ward on the Staudt-Clausen 
theorem [23], Oresme numbers [14], and Wythoff pairs [16]. Surprisingly, since 
they were both number theorists, Mollie and Alwyn published only one paper to-
gether [20]. This dealt with finding the zeros of Fibonacci and Lucas polyno-
mials and connections among them. 

Among his many co-authors have been Stanley Collings (Open University, UK), 
Jamie Walton (Northern Rivers College), Brother Jim Mahon (Catholic-College of 
Education, Sydney), Peter Sekhon (NSWIT), Sharad Pethe (University of Malaya), 
Merv Dunkley (Macquarie University), I. W. Stewart (Mitchell College), Carl 
Chiarella (University of NSW), and Phil Loh (University of Sydney). Jamie, Jim, 
Peter, and the present writer are among his former Ph.D. students. 

As well as the references cited, he has published in journals in Portugal, 
India, Argentina, and Malaysia. He has also presented papers at Conferences of 
the Australian Mathematical Society, the New Zealand Mathematics Colloquium, 
the Australian and New Zealand Association for the Advancement of Science, and 
as a guest speaker at numerous universities. As readers will be aware, he has 
also served on the International Committee of the First (Patras) and Second 
(San Jose) International Conferences on Fibonacci Numbers and Their Applica-
tions. He was also Co-Chairman of the latter. 

k. CONCLUSION 

If this article has only skimmed Alwynfs work, it is because the job could 
not be readily tackled in a brief space because he is the author (sole, joint) 
of 8 books and more than 90 papers. The task would be more appropriate to a 
MasterTs dissertation. 

Nor have I gone into Alwyn?s personal characteristics, to avoid him embar-
rassment. One, however, deserves mention, and it is his loyalty to people and 
to causes. In any case, I associate much of what is best in Alwyn with team 
sports such as cricket—at which he excelled, and which is not now held in high 
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regard by some educationists: "The old idea of a healthy mind in a healthy 
body, the benefit which physical training gives to the character by its disci-
pline, the virtues of loyalty and self-abregation inculcated by team games, are 
all ideas which now evoke little but a faintly patronising tolerance or even 
contemptuous ridicule" [26]. 

I am very grateful for material supplied by Professor J. Hempel and Dr. 
E. M. Horadam of UNE to help me get started on this article. I apologize to 
readers and to Alwyn for any errors and inevitable omissions: it is difficult 
to write adequately about a living person without access to his files! I thank 
the Editor for the opportunity to honor a real university man, who has given 
much to mathematics internationally and, in a particular way, to the Fibonacci 
community. 
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THIRD ANNUAL CONFERENCE 
IS IN PLANNING STAGES 

The third International Conference on Fibonacci Numbers and Their Applications 
is in the planning stages. Currently, it looks like the place will be Pisa, Italy, from July 25 
to July 29, 1988. 

More details will follow in the August 1987 issue. Plan now for another great 
conference. 
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(Submitted March 1985) 

1. INTRODUCTION 

In [1] and [2], Byrd introduced a sequence of polynomials which we call 
Pell. These polynomials may be defined, in the first instance, thus; 

\pQ(x) = 0S p±(x) = 1, 
(1.1) 

{pn+1(x) = 2xpn(x) + pn_1(x), for n > 1. 
The polynomials cognate to these, the Pell-Lucas9 may be defined thus: 

f<700*0 = 29 q1(x) = 2x5 

j d.2) 
[qn + 1(x) = 2xqn(x) + qn_1(x)9 for n•> 1.. . 

These two sequences have been studied in more detail in [5]-[10]. The Binet 
formulas for the two sequences of polynomials are 

p (x) = n f- (1.3) 
and 

qn(x) = nn + ^n (.1.4) 

where n , ty a r e r o o t s of the equa t ion 

z/2 - 2xy - 1 = 0 . (1 .5 ) 
Hence, rj, ij; a r e given by 

ri = x + y/(x2 + 1 ) , ty = x - J(x2 + 1) . (1 .6 ) 
In [12]-[14], Walton, and Walton & Horadam have studied a sequence of gen-

eralized Pell polynomials. They are defined thus: 

(A0(x) = q, A1(x) = ps 

J (1.7) 
[An + 1(x) = 2xAn(x) -{- An_1(x) 9 for n > 1. 

Another sequence of generalized Pell polynomials or9 rather, a constellation of 
them is proposed here. 

2. FIRST ENCOUNTER WITH THE CONSTELLATION OF SEQUENCES OF 

GENERALIZED PELL POLYNOMIALS 

This constellation was first encountered in an effort to replicate for Pell 
polynomials what Gould [3] and others had done with a formula of Lucas. 

An important identity for p (x), easily proved from Binet formulas (1.3) 
and (1.4) is: 
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Pn+mM ~ <7m(*)P„(*> + (-)mpn_m(x) = 0 (2.1) 

This may be regarded as a generalization for (1.1). By repeated applications 
of (2.1), we get: 

Pn(x) (2.2) 

qm(x)pn_m(x) + (-)m-1pn-2m^) 
(q2

m(x) + (-)"?-1)pn.2m(x) + (-r-iqm(x)pn_3m(x) 

( ? » + 2{-)m-Xqm{x))pn_3m{x) + (-r-HqmM + {-T^)pn _km (x) 

iqlix) + 3(-)m-^(x) + (-)2^-1>)pB.ltm(«) + 
+ {-)m-Hqlm{x) + 2(-r-lqm(x))pn_Sm(x) 

We may present these lines thus: 

pn(x) (2.3) 

Pi. „(*)P„ <*) + (-)m'1Po,m^)Pn-m(^) 

P2,m(*>Pn-,» + H ^ V L . W P ^ - ^ W 

P a . ^ P n ^ O * ) + (-)'""1P2,m(^)Pn-3m(a;) 

= p5j m(x)P„-hm(*) + (-)m"1Pll,m(«)P„-5m(a;) 
where 

[Po.m0«0 = 0 (2.4) 

Pl.m^) = X 

IPz.m^) = <?«,(«> 
| p 3 , „ w = ?£(*) + (-)m_1 

(p5,m(*> = <7>) + 3(-)'"-1<7m(x) + (-)2^-^ 

The procedure followed in (2.2) and (2.3) may be continued indefinitely, when 
allowance is made for the first subscript to be negative. It is clear from 
(2.2) that 

Starting again9 we may define the sequence {p Or)} thus: 

(p0 (x) = 09 pljm(x) = 1, 
I (2.6) 
[Pn + l.mW = ̂ m^Pn.m^ + ^ ~ ^n -1, m (*) » f o r « > 1-

The defining equation gives rise to a constellation of sequences, one for each 
value of m. 

3. SOME IDENTITIES AND GENERATORS FOR THE SEQUENCE ip (x)\ 

The results in (2.4) may be used as the basis for a proof by induction of 
an explicit formula for p (x). It is: 

Un-l)/2] 

pnnw - z ( - ) ^ ( m - i ) ( n " i " > r 1 " 2 £ w (3.D 
i =0 ' 
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From t h i s we may show t h a t : 

[n/2] 
m 4"n l r j n - p + 1 pn + i r = 0 

- 2 r , 777 0*0 

The Binet formula, also proved by induction, is: 

p 0*0 T)r jkl 

(3.2) 

(3.3) 

where r\ and \p are as introduced in (1.6). If the Binet formula were used to 
define the sequence, negative integral values for n and 777 are easily intro-
duced. 

From (1.3) and (3.3), we have: 

p (x) = v (x)p (x) 

A determinantal generator for p (x) is 6n m (x) . 
order n and is defined thus: 

6nsW(x): 

r3 r +1 

qm(x) for v = 1, 2, . . . , n 
(-)m f o r r = 1, 2 n - 1 

1 for v = 2, 3, ..., n 

(3.3') 

The determinant is of 

(3.4) 

"-r, r-i 
dro = 0 otherwise 

where cZ^ is the entry in the Pth row and oth column of $n m (x) . One may prove 
by induction that 

«*.»>(*> = Pn + l.n^) f ° r n > X-
A matrix generator for pn m(x) is: 

~qm(x) (-r'1' 
1 0 

We can easily show, by induction again, that: 

g. 

(3.5) 

(3.6) 

& : • • 

n+ 1, m 

V 0*0 

(x) (-)n"1Pn,H,(«) 

(-)m"1p n (x) I 
v / r n - 1, m _J 

(3.7) 

The matrix £Pm has been employed to establish several identities. There are 
other matrix generators for the sequence. 

An algebraic generator is 

EPB + 1 > » W = !/(! -<?,/*>*/ + (->V>. 
rz = 0 

(3.8) 

and an exponential generator is: 

n = 0 l r 

The justification for regarding {p„ OT 0*0 } as a generalization for {p^(x)} 
is that, when we put 777 = 1 in the results given above and in others, we obtain 
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(4.1) 

the corresponding formulas for the Pell polynomials. First and foremost9 we 
have 

Pn,l fe) = P„(*>- (3-10> 
We mention, finally, in this section two identities which have been proved 

by using the matrix 0^ . They are the Simson formula and its generalization 
for p (x). 

p M1 {x)p n (x) - p 2 (x) = (-)w(n-1)+1 (3.11) 

p (x)p (x) - p2 (x) = (-)m("-r>+1p2 (x) (3.12) 

4. RELATIONS OF {pn m{x)} WITH CHEBYSHEV POLYNOMIALS 

In [1], [2], [5], [6], and [7] some relations of Pell and Pell-Lucas poly-
nomials with Chebyshev polynomials were explored. If we regard {p m(x)} a s a 

generalization of Pell polynomials, then we would also expect that it should 
have connections. However, we need to construct first a generalization for 
Chebyshev polynomials of the second kind [11]. These are {Un m(x)} defined in 
the following manner: 

UQim(x) = 1, Ul9m(x) = 2Tm(x), 

Un + lim(x) = 2Tm(x)Unim(x) - Un_lfm(x)9 for n > 1, 

where Tm(x) is the mth Chebyshev polynomial of the first kind [11]. 
With this definition, it is possible to prove by induction that 

[n/2] -tr, - n\ 
Un m(x) = £ (")J n J)(2Tm(x))n-1J, for n > 1. (4.2) 

j=0 \ d / 

Following from (4.2), we can prove that 

?„.„<*> = (-i>(""1>X-1>m(^)- (4-3> 
A hypergeometric representation for pn m (x) follows from (4.3). It is 

pn m(x) = n2F1(n + 1, -n + 1; 3/2; Ym)/i{n~1)m (4.4) 

where 

Jm = (2 - imqm{x))/l*. (4.5) 

Another explicit expression for p 0*0 maY also be derived from (4.3), 
namely, 

Pn.mW = E 2fc + 1)(^(-)/2)^1-^am/4)fe (4.6) 
k = o 

where Xm is the discriminant of the auxiliary equation of pn 0*0 » i.e., 

y2 - qm(x)y + (-)m = 0. (4.7) 

This means that 

Xm = ̂ (x) + 4 ( - ) m " 1 . (4.8) 

Starting from (2.5) and the identity below, easily established from Binet 
formulas, 

<7(n + i)m(*) - (<7£(*> + 4(")'""1)P„,m^) + (-)""1'7(n-i)fl,(a:) = 0, (4.9) 
we obtain other explicit expressions for p Off). They are: 

r n,m J 
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and 

P2„>W(X) ={ %(-^(2n V - *)*r-*}*„(*>. ^• i i ) 
These interesting and aesthetically appealing formulas for the constella-

tion of sequences {p (x)} are a sample of the large number that have been 
obtained. 
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1. INTRODUCTION 
Let the arbitrary real numbers as b, d and d be given. Construct two se-

quences {Xn} and {Yn} for which 

Z0 = as X1 = c, J0 = b, Ji = d, 

X-n + 2 = ^n + 1 n (1) 
(n > 0), 

Y„ Xn+1 + Xn 

Clearly, if we set a = b and c = d5 then the sequences {Xn} and {Yn} will 
coincide with each other and with the sequence {Fn(a, a)}* 

In 1985s K. T. Atanassov, L.C. Atanassova, & D.D. Sasselov [1] showed that 

Xn + 2 = flK+l + 3 
n + 2 

+ F 

Da + [Fn + 1 - 3 

+ n - 1 c + [F 

"n + 21 
L 3 J 

+ 3 _3_ 

+ n + lib 

- n + l)d 

and Yn(as b* cs d) = Xn(b5 a, d9 o) 5 for n > 0. 

2. THE GENERALIZATION OF THE FIBONACCI SEQUENCE 

Consider the generalized recursive form of (1), as follows: 

XQ = a, X1 = c, YQ = b5 Yx = d5 

(2) 

1 1 n + l 2An ^ 2 3 n + 1 T 2 i+^n 

Y = v Y + r Y + r X + r X 
n + 2 2 r n + 1 2 n 3 n + 1 2 ̂  n 

(3) 
(n > 0), 

where r^ is real. 
Define 

X. 

Y. 

v„ = x, 

X a + X b + X c + X d 
n, 1 n, 2 n, 3 n, h 

? n , i a + Y n , 2 h + Y n , 3 G + I n , , d 

Xn + ln = U„tla + UniZb + Uni3c + Vn>hd 

?n = V„tla + Vn>2b + 7 „ j 3 c + Vn^d 

then {Un} and {Vn} can be def ined by t h e r e c u r s i o n s : 
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U0 = a + b, U^ = a + d and Un+2 = (rx + r3)Un+1 + (r2 + rh)Un 

VB = a - b, Vx = a - d and Vn+2 

i.e. , 

Un = Wn(a + b, a + d; r1 + r 3 , -r2 - rh) 
(See [2, 3].) 

and 

\Vn = Wn(a - b, c - d; p]L - r3, vh - r2) 

Since 

Un(a, b, o9 d) = Xn(a, b9 a, d) + Yn(a, b, c, d) 

= Xn(a9 b, o, d) + Xn(b, a, d, c), by symmetrical property, 

= Xn(a + b, a + b, c + d, c + d) 

= *n>1(a + 2?) + Znj2(a + 2?) + Xn^(c + d) + Xn^{c + d) 

K ; ( a , b, c, d) = a w > 1 - xni2)a + a „ > 2 - xnil)b + a „ > 3 - xn>1+) 
+ Vn.'» ~ Xn,3^d> 

compare with the coef f i c ien t s of a, b, o, and d, we obtain: 

Un,l = Un,2 = ^nC1' 0; ^1 + ^3 > _ r 2 " T0 
[n/2] 

fc = 1 ? ("fc - I )<*! + ^ 3 ) n " 2 " ^ 2 + *\>* 

= lv7
n(0, 1; r 1 + r 3 , -r2 - r^) 

[(n+ l ) / 2 ] 7 x 

"<>2 + * \ ) fc-l 

(4) 

n/2] 

k ^ r ^ i 1 ) ^ - v - 2 * ^ - ^ 
^«,3 = - ^ , - . = M ° > ! ; r i - r3> ~rz + vO 

n'2k+1(r? - I O * " 1 

for n ^ 2. 
Hence, 

(Un = (a + &)£/„,! + (c + d)C/„f3 

|//„ = (a - fe)^>x + (c - d)V„t3. 

Since Vn = Xn + Yn and Vn = Xn - Yn, thus , 

[xn = (£/„ + 7„)/2 

Un = (£/„ - Vn)/2 
i s the solu t ion of (3) . 
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Example 1: Let r1 = r2 = 0 and r3 1. Thens we have: 

un,i = M L o 
MO, 1 
M L o 

Un,3 = M O , 1 

Vn,3 " M O . 1 

1. "I) = Fn-1 
1, -1) = F„ 

-1, 1) = [1, 0, -1] 

-1, 1) = [0, 1, -1] 

where [tlt t 2 , . .., tk] = tj if n = j (mod k). 
Hence, 

Xn - { ( F ^ + [1, 0, -l])a + ( F ^ + [-1, 0, l])b 
+ (FB + [0, 1, -l])e + (F„ + [0, -1, l])d}/2 (5) 

and Jn(a, £>, c, d) = Xn(b, a, d, c) is the solution of (1), where F^ is the ith 

Fibonacci number. Note that (5) is the simple form of (2). 

Example 2: Let r3 = r>h = 0 and r1 = 1. Then, we have: 

and 
ff.n.1 - Fn,l = M L 0; 1. "D -*„-i 

£/. n, 3 -7 w, 3 Wn(0, 1; 1, -1) 

Thus, 

K = Fn-lh +Fnd 
is the solution of (3) in [1]. 

Example 3: Let r1 = rh = 0 and P 2 = r3 = 1. Then9 we have: 

and 
Un>1 = V„(l, 0; 1, -1) = (-DnVn>1 

u„,3 = Mo. l; i. -i) = (-DX, 'ns3 " n v " ' *> "5 ~' v A / ' ns3 " 

Thus, 
Xn = {(1 + (~l)n)Fn_ia + (1 - (-l)n)Fn_^ + (i - (-l)n)Fnc 

+ (1 + (-l)n)Fnd}/2 
Fn_1a + ̂ n(i5 n even 

lFn-ib + Fnc> " odd 
and In(a9 b, e9 d) = Xn(b, a, d9 o) is the solution of (4) in [1]. 

Example k: Let r2 = ̂ 3 = 0 and P 2 = i\ = 1. Then9 we have: 
un,i = M L °; i . - i ) - * • „ - ! 

v 
= Wn(0, 1; 1, -1) = F„ 

B>1 = M L 0; 1, 1) = [1, 0, -1, -1, 0, 1] 

= M 0 . 1; 1. 1) = [0, 1, 1, 0, -1, -1] V 

Thus, 

X„ = i(Fn-i + [1. 0, -1, -1, 0, l])a + (F„_1 + [-1, 0, 1, 1, 0, -l])c 

+ (F„ + [0, 1, 1, 0, -1, -l])c + (F„ + [0, -1, -1, 0, 1, l])d}/2 

and JT„(a, b, a, d) = Xn(b, a, d, a) is the solution of (5) in [1]. 
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Example 5» Let r± = r 0, P 3 = 2 , and rk 

Un,l " M ^ 0 

' w , 3 

W , l 

7 n s 3 

Wn(0, 1 

J / n ( l , 0 

- Wn(0, 1 

2 - w , x 3 - *., ««« x k - 1. Then, we have : 

2 , - 1 ) = {(2 - / 2 ) ( 1 + / 2 ) n + (2 + ) /2 ) ( l - / 2 ) n } / 4 

2 , -1 ) - i /2{(l + / 2 ) n - (1 - >/2)*}/4 

- 2 , 1) - (n - D H ) " " 1 

- 2 , 1) - n C - l ) " " 1 

Thus, 

x n , 1 

^ n s 2 
Xn,3 
Xn,h 

Hence, 

= {(2 - / 2 ) ( 1 + i /2)n + (2 + >/2)(l - 7 2 ) " + 4(n - ^ ( - l ) " " 1 } ^ 

{(2 + v/2)(l + / 2 ) n + (2 + i /2 ) ( l - / 2 ) n + 4(n - l ) ( - l ) n } / 8 

J = {/2(1 + V^)n - >/2(l - V2)n + 4 n ( - l ) n } / 8 
J n + i, i = t i / 2 ( l + >/2)n - A/2(1 - 7 2 ) " + 4 n ( - l ) n " 1 } / 8 

n + l , 2 

and Jn(a9 &9 o9 d) = Xn(b9 a9 d9 o) is the solution of the following system: 

XQ = a9 X1 = <?, J0 = fc, J-L = d9 

(n > 0) 
Ln + 2 Ln + 1 

l^n + 2 2Xn + 1 4- Z„ 

By the five examples above and (4), we obtain the following formulas: 

fr;*:1)-'.-. 
lw/2] " / Z J /*» _ fc _ 1 \ 
E ( % . i )<-*>* - [i» 0 ' - i . - i . o . i ] - ( - D n [ i > o , - i ] 

n/2h 7 
1-2& _ 

3. THE TRIBONACCI SEQUENCE 

Let the arbitrary real numbers a, b9 c9 d9 e9 and h be given. Construct 
two sequences {Xn} and {Yn} for which 

\XQ = a9 X-L = b9 X2 = o9 IQ = d9 I± = e9 I2 h9 

ln + 2 + In + 1 + *» 
(w > 0) . 

l ^ n + 3 "* ^rc+2 + ^ n + 1 + %n 

Def ine : 

J „ = Y„3la + In,2b + yn,3a + Yn^d + Yn,5e + Yn<6h 

Un=Xn+ I 

V„ = X„ - Y 

Xn, i* + *n, £ + Xn, 3 C + Xn, ^ + * „ , 5e + Xn> sh 

Un.l«+Vn.2* + Un.3° un,»d+un,5e +Un,eh 

Vn,la + Vn,J> V
n,3° + Vn,Hd + Vn,se + Vn,eh 

(6) 

114 [May 



SOME PROPERTIES OF THE GENERALIZATION OF THE FIBONACCI SEQUENCE 

Then, we have: 

U 

uv 

u n, h 

ns 5 "n + 2, 1 

n, l 

n, 2 

-V = [1, 09 09 -1] 

uv = "n + 1 v„ 
-Vn.S 

\ 6 

[0, 1, 09 -1] 

[0, 09 1, -1] 

where {Un x} can be defined by the recursions (cf. the definition of the Tri-
bonacci numbers in [4] and [5])s 

U o, I 
1 , Ulfl - U2i ! = 0 , and Un+3j ± = Un+2j ± + Un + ls ± + Z 7 n > 1 , 

for n > 0. That is to say9 

U 
and 

1 , U 

= 2V 

1 , 1 = t / 2 s l = ° * ^ 3 . 1 " l s 

tfn>1 ( n > 0 ) 9 

0 , 1 

s i n c e a;3 - a;2 - a; - 1 i s a f a c t o r of a;1* - 2x3 + 1. Thus, we h a v e : 
Xn,l = ( y n , i + Vntl)/2 = ( J / „ s l + [ 1 , 0 , 0 , - l ] ) / 2 

*n ,2 = « / „ . 2 + ^ n , 2 ) / 2 = 0 ^ + 2,1 - i/B + l . l + [ 0 , 1, 0 , - l ] ) / 2 

* n , 3 = < ^ . 3 + ^ , 3 > / 2 = ^ n + 1 , l + [<>, 0 , 1 , - l ] ) / 2 

*» . . , - ( y n , ^ + 7 n > l t ) / 2 = W„. 1 + C"1' °» °> H ) / 2 

^ , 5 = ^ „ , s + 7 n > 5 ) / 2 = (U„ + 2 > 1 - y n + 1 ) 1 + [ 0 , - 1 , 0 , l ] ) / 2 
Xn,e = ( ^ , 6 + ^ , 6 ) / 2 = ^ n + l , l + [ 0 , 0 , - 1 , l ] ) / 2 

Hence, 

Xn = {(a + d) t f n f l + (c + ft - & - d)Un+l9l + <2> + <Z)tfn+2>1 

+ [ a - a ,
9 2 ? - c , c - f t 9 a ' + c + f t ~ a - 2 > - c ] } / 2 

and J n ( a 9 bs c 9 d9 c 9 ft) = Xn(d9 c 9 ft9 a9 bs c ) i s t h e s o l u t i o n of ( 6 ) . 

4. THE FIBONACCI-TRIPLES SEQUENCE 

Let the arbitrary real numbers a9 2?9 c9 ds c9 and ft be given. Construct 
three sequences {Xn}s {In}, and {Zn} for which 

J0 = a, X1 = 2>, J0 = c9 Jx = o\ Z0 = c9 Zx = ft9 

^n + 2 = ^n + 1 + Zw 

*n + 2 = Zn + 1 + *n (n > 0) . 

lZn + 2 = Xn + 1 + ^n 

The first ten terms of the sequences defined in (7) are shown below: 

(7) 

n 

0 
1 
2 
3 
4 
5 

%n 

a 
b 

d + e 
2h + a 
3b + 2c 
5d + 3e 

?n 

a 
d 

ft + a 
2b + c 
3d + 2e 
5ft + 3a 

Zn 

e 
ft 

b + c 
2d + e 
3h + 2a 
5b + 3e 

n 

6 
7 
8 
9 

1 10 

Xn 

8ft + 5a 
132? + 8c 
2Id + 13c 
34ft + 21a 
552? + 34c 

In 

8b + 5c 
13d + 8c 
2ih + 13a 
342? + 21c 
55d + 34c 

Zn 

Sd 4- 5c 
13ft + 8a 
212? + 13c 
34a7 + 21c 
55ft + 34a 
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Define 

Un = Xn + Yn + Zn = Untla + Uni2b + Un^o + Un^d + UHi5e + Una6h9 

then {Un} can be defined by the recursion 

U0 = a + c + e, U1 = b + d + h, and Un + 2 = Un+1 + Un, 

i.e., Un = Wn(a + c + e, b + d + h; 1, -1). 
Compare with the coefficients of a, b9 c, d, e, and h* We have: 

u 
Un,5 = M 1 ' 0; 1» - 1 ) 

w , «f u* Wn(0, 1; 1, -1 ) = ^ 

we have : 

Thus, 

Un = (a + a + e)Fn_1 + (b + d + h)Fn. 
Since Xn = J n + 2 - Zn + 1 and Xn = Zn + 1 - In 

\Xn - (Yn + 2 ~~ %ri-l)/2 
\In - (Zn+2 ~ Z n _ 1 ) / 2 
\Zn = Wn + 2 - X n _ 1 ) / 2 

Since J n = J n _x + Z n _ 2 and J n = Zn + 1 - Yn-i> w e o b t a i n : 

| J n = (Z„+i + Z n _ 2 ) / 2 

i j n = ( Z n + i + A n _ 2 ) / 2 

have : 
Since 4X ,q = 2 ( J _,q - J A J = (X ^ c + X _ ) 

n + 3 x n + 5 n + 2 7 v n + 6 n + 3 ' 
(* + xn) n + 6 X„* we 

Z n + 6 " 4 J n + 3 + Xn 

i^n+6 = 4 J n + 3
 + %n 

lZn + 6 ~ 4 Z n + 3 ~*~ % n 

When n E 0 (mod 3), taking n = 3m, we have: 

Z3(m + 2 ) = 4 X 3 ( m + 1 ) + J 3 m w i th XQ = a and J 3 = 2/z + a . 

L e t t i n g Vm - X3m9 we have : 

Vm + 1 = 4 7 w + 1 + Fw wi th V0 = a and Fx = 2fe + a . 

T h e r e f o r e , we g e t : 

y = 2h + (y/5 - l ) a ( 2 + ^ w + ( A + l ) a - 2/z(2 _ ^ m 

2y/E 2 /5 

by (l^)3 - 2 ± v5. 
F3m-la + ^ m ^ 

F a + F h. i . e . , X„ 

Using a s i m i l a r method, we have : J n 
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F n - 1 a + Fn/z, i f n = 0 (mod 3) 

Fn-ie + ^ ^ 5 i f n = 1 ^ m o d 3 ) 

Fn_1e + Fnd9 i f n = 2 (mod 3) 
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Yn(a9 b9 c9 d9 e9 h) = Xn(e9 h9 a9 b9 c9 d) 
and 

Zn(a9 b9 c9 d9 e9 h) = Xn(c9 ds e9 h9 a9 b) 
as the solution of (7). 

Numerous similar pairs of sequences can be constructed. However, the ones 
introduced here stand most closely to the very spirit of the Tribonacci sequence 
(or the Fibonacci-triples sequence) and its generalization rules. 

We would like to thank Professor Horng-Jinh Chang for his helpful comments 
and the referee for his thorough discussions. 
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INTRODUCTION 

The idea of the golden section is familiar to a wide audience. While many 
of the properties that arise from consideration of the golden section seem to 
be unique to it9 they may belong to a much wider class of "sections." This 
paper presents the golden section and certain related ideas as special cases of 
such a wider class. 

To provide the context for what follows and to introduce some notations we 
include here a quick reference to the golden ratio, (J). Let a line segment AB 
be given and9 for convenience, let its length AB = 1. If we determine a point 
C between A and B and such that AB/AC = AC/CBS we say the point C divides AB in 
golden section (see Fig. 1). 

x I- x 

Figure 1 

It is a simple matter to find the ratio (j) = AB/AC that belongs to the gol-
den section. If we set x = AC s then CB = 1 - x and we have the requirement 

<|> = l/x = x/(l - x)9 0 < x < 1. 

From this equations we infer that l/<j) = <)) - 19 or 

(J)2 - <f> - 1 = 0. (1) 

From the quadratic equation, and since x > 09 we have 

$ = (A + l)/2 = 1.61803. 

The number (f> has the interesting property that if we subtract the value 1 from 
it we obtain its reciprocal. 

As readers of this journal know wells the golden ratio bears a relation to 
the Pentagon of Pythagoras9 so much admired by the Greeks, to the golden rec-
tangle where it gives the ratio of adjacent sides, to the logarithmic spiral, 
and to the Fibonacci numbers. Specificallys if Fk denotes the kth Fibonacci 
number, then as n -*- °°9 Fn+1/Fn "* $• 

THE MODIFIED GOLDEN SECTION AND GOLDEN RATIO 

In what follows we will develop some ideas similar to those alluded to 
above and growing out of a generalization of the definition of the golden sec-
tion. So consider again a line segment AB of length AB = 1 and let C be a point 
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between A and B and such that AB/AC = a2AC/CB with a > 0, We can write this 
relationship as 

AB aAC , a > 0* 
aAC CB 

Set \\)a = AB/aAC and l e t AC = x . Then CB = 1 - xs ipa = 1/ac = a x / ( l - a;) , and 

(2 ) \b2 - - \b - 1 = 0 , 

which is the analogue of equation (1). For conveniences we let 3 represent the 
reciprocal of ipa: 

= l/i|>a = a^ 
Vl + 4a2 - 1 

2a 

Suppose now that we let a > 0 be chosen and construct a rectangle ABDF (see 
Fig. 2) whose sides are in the ratio \\)a = 1/8 = AB/BD* A few simple calcula-
tions show that if from such a rectangle we remove the rectangle ACEF whose 
sides AC and CE are in the ratio 1/a, i.e., AC = x = g/a and CS7 = 85 then the 
remaining rectangle BDEC has sides also in the ratio 

o^/(l - a;) = 8/(1 - x) = ipa. 

Thus, as in the case of the golden rectangle, the two rectangles ABDF and BDEC 
are similar and, by continuation of the process described here, we can construct 
an infinite nested sequence R1, i?2, R , . . . , i?n, . .. of rectangles, all of which 
are mutually similar. 

U, J) ̂ — ^ 

Figure 2 

By varying a, of course, we vary the value of 3 and so also the shape of 
the rectangles. Since 

1 • Q 1 • ^ + ^ " !• A 
lim 3 = lim = 0, 

It is clear that to small a there correspond small values of 8- Thus, as a ->- 0 
the rectangles tend toward "degenerate" rectangles, i.e., toward line segments. 
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From 

lim 0 = 1 , 

we infer that as a increases without bound the rectangles approach squares. We 
note also that for 0 < a < °°, 0 < 3 < 1. 

Suppose that, for some value of a, we let {Rn} be the associated sequence 
of rectangles obtained by the construction described above. Recall i?w-1 D R . 
Take the vertex A (see Fig. 2) to be the origin of a rectangular coordinate 
system with the side AB lying on the positive x axis. Cantor's nested set the-
orem then assures us that there is a point (X, Y) which lies in each rectangle 
Rn. Now each rectangle Rn has sides of length gn_1and 3n* with 3n_1 being the 
longer side. It is clear from Figure 2 that 

x = i - 3 2 + &k - e6 + ••• 
= 1/(1 - B2) [= a/(2a - 3)] 

and 

Y = 3 - 33 + 35 - 37 + ••• 

= 3* [= a3/(2a - 3)]. 

If we eliminate 3 from these equations, we find that 

^ . X - X . or (X- I / „ « - ( ! ) ' . 

Thus, the points (X9 Y) lie on a circle of radius 1/2 and having its center at 
(1/2, 0). As a •* 0, (X, I) -> (1, 0) along the circle, and as a •> «>5 (J, Y) -> 
(1/2, 1/2). Specifically, the points (J, J) lie on the quarter-circle shown 
in Figure 3. 

Figure 3 

The point (X, Y) can be found by a very simple geometrical construction. 
If Rn and Rn+1 are any two consecutive rectangles, then (J, Y) lies at the in-
tersection of corresponding (and orthogonal) diagonals of these rectangles. 
Figure 3 above illustrates the case when R1 and R2 are the given rectangles. 
The diagonals here are AD and BF. 
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We turn next to the logarithmic spiral associated with the rectangles Rn. 
Before doing so, however9 we mention briefly the so-called rectangular spiral 
constructed from the longer sides of the rectangles Rn (see Fig. 4). This spi-
ral "terminates," of course, at the point (X, 7) and has length (measured from 
the origin) 

1 + 3 + 32 + 

1/(1 - 3) 

2a 

2a - Vl 4- 4a2 + 1 

a(l + i|/a). 

r ~i 

! H 
hii 

J j 

Figure k 

By a translation, we can place the origin of our coordinate system at the 
point (X, J). Let Pn9 n = 1, 2, 3, — , be corresponding corners of the rec-
tangles Rn and so also corners of the rectangular spiral. The points Pn can be 
shown, after some calculation, to have the following representations in terms 
of the new coordinate system: 

= (-X, -Y) 
= (1 - X, - J ) 

= (1 - X, 6 - I) 
= (1 - g2 - X, 3 - B3 

r / e» -3"-1 \ 
\l + 62' 1 + 3 2 / 

/ 6 » - i B » x 

\ l + 3 2 ' 1 + 3 2 / 

( -P" e n + 1 \ 
\1 + 3 2 ' 1 + 3 2 / 

/ - 3 " - 1 -6" \ 

- I) 

i f n = kk 

i f n = i\k 

i f n = i\k 

A -p ™ /. i, 
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If we express these points in terms of the polar coordinates r and 85we obtain 
the cleaner expressions: 

pn = I , Arctan 3 + ([n/2] - 1)TTJ if n is odd,' 
V I + 32 / 

or 

pn = , "?•» Arctan(-1/B) + ([n/2] - 1)TT J if n is even. 
\vT~+~p" / 

Here [•] denotes the greatest integer function. 
A few additional calculations convince us that each of the points Pn lies 

on a logarithmic spiral r = aebe* The constants a and 2? are easily determined 
from the requirement that the spiral pass through, let us say9 P2 and P3 * That 
it passes through P2 implies that 

and 6 = Arctan(-l/3) = -Arctan(l/3). 
vTT~F 

Thus9 
g - ae-b Arctan(l/3)e ( 3 ) 

/l + 32 

That the spiral passes through P implies 

B2 
P - a r l ^ Q - Arctan 3» 

7l + 32 

Thus9 

g = ae* A r c t a n lK (4) 
/ I + 62 

Combining equations (3) and (4) yields 

g _ eb(Arctan B + Arctan( 1/3))# 

But the exponent here reduces to iinr/2. SO B S eb>n/2{ and £> = 2 In g/ir < 0 . Now 
from (4) we can conclude that 

Vl + P" exp(2 In 3 Arctan g/ir) 

and that 

f-ir19)-
2 

expl 
/ l + 32 exp(2 In 3 Arctan B/TT) 

Alternately, 
1 2(6 4- TT ™ Arctan g) 

r - — £ — 3 * (5) 
i/I + 32 

Figure 5 shows the spiral when a ~ 2. 
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Figure 5 

In the construction above, we have taken the points Pn to be at correspond-
ing corners of the rectangles Rn« The decision to use these corners was arbi-
trary . If P± is chosen to be any point within or on R± and P2, P3 to be 
the corresponding points of Rz, i?3, **., then the spiral passing through all of 
the points Pn would again be logarithmic * 

OTHER RELATED IDEAS 

We consider next some relationships which are analogous to those between 
the golden section, golden rectangles, and the Fibonacci sequence. Let a be 
given and consider the sequence {un}, where 

Jl 
_l f/l + Vl + 4q2\n _ /1 - Vl + 4a * \n1 

Readers familiar with the Fibonacci sequence will recognize that if a = 1, then 
the. last expression is the Binet formula and {un} is nothing more than the Fi-
bonacci sequence. To simplify calculations for the moment, set 

so that ut 

= vT+4o29 a - (1 + 3)/2, and b = (1 - z)/2 

(an - bn)/z» Then i t easily follows that 

( l /3) [ (a n - 1 - b"'1) + a2(an"2 - bn'2)] Un-1 + aX-2 
= (l/z)lan~2(a + a2) - bn~2(b + a2)], 

But a + a2 ~ a2 and b + a2 = b2» Hence, 

(6) 

This serves as the law of generation for: the sequence {un}. If a = 1, this 
reduces to the familiar law of generation for the Fibonacci sequence. 

Although we will not prove their validity, we list here a few of the rela-
tionships which are analogous to the relationships between terms of the Fibo-
nacci sequence• 
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1. un = (1 + 2a2)un_2.- a \ _ , 

2. u1 + w2 + u3 + • • • + un = (wn+2 - l)/a2 

3. u2 + w2 + • • • + U* = (1 - a2)[u1u2 + u2u3 + ••• + un^1un] + unun+1 

5. For any positive integer &s
 u

n\ukn* 

The first four of these relationships can be shown by an appeal to (6) and/or 
an induction proof. The fifth follows directly from the definition of w„. 
From the second of these relationships, we can infer that when a is an integer", 
then un = 1 mod a2. The table below gives values of un for some choices of a 
and of n. 

n = 

1 
2 
3 
4 
5 
6 

! 7 
! 8 
! 9 
! 10 

15 

1/3 

1 
1 
1.11111 
1.22222 
1.345679 
1,4814814 
1.6310013 
1.7956104 
1.9768328 
2.1763450 

1/2 

1 
1 
1.25 
1.50 
1.8125 
2.1875 
2.640625 
3.18145 
3.84765 
4.64453 

a = 
2 

1 
1 
5 
9 
29 
65 
181 
441 
1165 
2929 

325525 

3 

1 
1 
10 
19 
109 
280 
1261 
3781 
15130 
49159 

28607050 

4 

1 
1 
17 
33 1 
205 
833 
5713 
19041 
110449 
415105 

884773585 

Our next question is the obvious one; 

How does lim u /w relate to the ratio ip ? 
7-2 ->- oo n + J- 77, a 

From the definition of un* we can write 

1 - (b/a)n+1 n + l a n + 1 i^n + 1 
= a Un an - hn 1 - (b/a)n 

But \bla\ = |(1 - s)/(l + 2 ) | < 1, since z > 0 for all a. Thus, 

lim un+1/un = a = (1 + z) 12 = aipa. 

This relationship is the analogue of 

where {Fn} is the Fibonacci sequence and <J> is the golden ratio. 
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Two further interesting properties which belong to the Fibonacci numbers 
also belong to the "modified Fibonacci numbers11 un. If we form a matrix M of 
order m ^ 3 and whose entries, row by row, are m2 successive terms uk, uk + 1$ 
uk+2> ' ' ' > uk + m2-i9 then det M = 0. So, for example, if m = 3 and a = 2, and if 
we choose the nine successive terms of {un} to be 1,5, 9,29, 65, 181, 441, 1165, 
and 2929, then 

M = 
1 

29 
441 

5 
65 

1165 

9 
181 

2929 

That the determinant of M is zero follows from the fact that, in any matrix M 
the third column, U3 

u2 + cr£/i: where U1 and U, 
constructed as above from the successive terms 
garded here as a column vector) , is equal to 
the first and second column vectors belonging to M. 

Another interesting property relates to magic squares of order 3. 
lustrate this with an example. Thus, consider the magic square 

(re-
are 

We il-

8 

3 

4 

1 

5 

9 

6 

7 

2 

Summing along rows, columns, or diagonals yields the same result, 15. Now let 
a be given and determine the terms ul9 u2, u3, . . . , u3 of the sequence iun]. In 
the magic square above, replace the number k with the term Uy. to obtain the 
square 

ua 

U3 

U» 

"l 

u5 

Ug 

U6 

u7 

u2 

Then 
UQU^Ur + UJJLJUr, + U,UnUn o l b d o / 4 9 2 u u u + u u u + u u u . 

8 3 4 1 5 9 6 7 2 
For a = 3, the above square with the associated products and sums is: 
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3781 

10 

19 

718390 

1 

109 

15130 

1649170 

280 

1261 

1 

35380 

1058680 

1374490 

287470 

125 



SECTIONS, GOLDEN AND NOT SO GOLDEN 

More generally, let the magic square 

h 

k 

P 

i 

I 

q 

j 

m 

r 

be given, where 

h + -i + j =k+i+m=p+q+r=h+k+p =-i + l + q=j+m + r. 

Now, construct the corresponding square 

uh 

uk 

Up 

u i 

u l 

uq 

ui 

um 

ur 

whose entries are the modified Fibonacci numbers. 
Employing the notation of page 123 [un- (an - bn)/z], it is a simple matter 

to show that 

UfrUjUj + UkUzUm + UpUqUr = UhUkUp + Uj-UgUq + UjUmUr* 

The reader will quickly observe, for example, that the expansion of the expres-
sion u^u^Uj contains the term (l/z3)ah+'l' + J\ while the expansion of u^u^Up con-
tains the term (l/z3)ah+k + P. But h+i + j = h + k + p« Similarly, the expansion 
of UyUiUm contains the term (-l/s3)ak+^m9 while the expansion of UjUmur con-
tains the term (-l/s3)a«7+pZ?m. But j + r = k + £ so that the terms in question 
are equal, 

While the property alluded to here holds for any 3x3 magic square, it does 
not hold generally for larger magic squares. The reader may verify this by 
considering the 4x4 magic square: 

16 

5 

9 

4 

3 

10 

6 

15 

2 

11 

7 

14 

13 

8 

12 

1 
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CONCLUSION 

We have provided here only a few of the most significant relationships and 
properties arising from consideration of the ratio i/;a. Many others analogous 
to those arising from the golden ratio may be found. Indeed, what we have 
shown here places the golden section, the golden rectangles, the Fibonacci se-
quences and the properties pertaining to them within a continuum in which they 
appear as a part of the special case a = 1. 
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APPLICATIONS TO DISCRETE DISTRIBUTIONS 
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1. INTRODUCTION 

F i r s t , we c o n s i d e r some d e f i n i t i o n s and p r e l i m i n a r y r e s u l t s needed in t h i s 
s t u d y . Ahuja & Enneking [1] have def ined t h e a s s o c i a t e d Lah numbers Bin, r, k) 
by k 

B(n, r, k) = (n</kl) £ (-1)*" i ( ) )(n + ^ ~ X ) , ( 1 ) 

where 

Bin, r, k) = 0 fo r k > n, B(n9 r9 0) = 0 , 
Bin, r, 1) = r(r + l ) . . . ( p + n - 1 ) , Bin, v, ri) = vn 

and Bin, ls k) = \L(n9 k) | , 

t h e s i g n l e s s Lah numbers ( see Riordan [ 1 2 ] , p . 4 4 ) . 
Ahuja & Enneking have a l s o ob ta ined (see [2]) t he fo l lowing r e l a t i o n s for 

t he B(n9 r9 k)'s: 
Bin + 1, v9 k) = in + rk)B(n9 v9 k) + vBin, r, k - 1 ) , (2) 

and 
[Bin9 v9 k)]2 > Bin, v, k + l )5 (w, v, k - 1) f or fc = 2 , 3 5 . . . , n - 1. (3) 
We now introduce two other equivalent definitions of Bin9 v9 k). Firsts we 

write 

5(n, P, k) = [(tfr - J)Vn]]y-o^! & = X> •••> n>9 (4> 
where Efix) = fix + 1) and J is the unit operator. 

Second, we have 

Bin, v, k) = inl/kl) E ft (ni +J " M. (5) 

where X^ denotes the sum over all positive integral values of the n^s such 
that n1 + • • • + n^ - n and n = k, k + I, .. . . 

Equation (5) follows from the following combinatorial identity: 

i : ( . i ) * - * ( J ) ( » + « - 1 ) - 2 : n f " 1 ; - 1 ) , (6) 
i = i \ w \ n k i = i r^ 

where the summation in the right-hand member is extended over integral values 
of each n^ > 1 such that n1 + ••• + nk = n and n = k, k + 1, ... . 

Further, let R(n9 r, k) be a sequence of real numbers defined by 

Bin, r, k) = Bin + 1, P, k)/Bin, r, k), k = 1, 2, ..., n, (7) 

for given n. These numbers are useful in calculating probability functions in-
dependent of rapidly growing associated Lah numbers. 

Ahuja & Enneking [1] have introduced the generalized Lah numbers Lc^Tin, k) 
defined by: 
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k-r, kl 
y> I yt f yt I 

1 2 e + 2 " 
(8) 

in\/k\) £ (-1)' , . 
1 2 ' c + 2 ' 

x n 
J - 0 

? + ; • ' ) ] ' 2 ? ^ - 1 

for integral c > 09 and n = k(c + 1), fc(c + 1) + 1, ..., where the summation ex-

tends over all i>- > 0 such that H°.+2:r- = k* 
J j = l j 

Using the combinatorial identity 

j- -̂  1 *2 2 * " °  "/c + 2 * J =0 L J 

• E J^j+2 + PP1 " X 
J =0 

= E n ( ^ V 1 ) - < 9 > 
z i = i ^ 

for <? > 09 and n = k(a + 1) 9 /c(c+l) + l9...s where 53^ extends over all p. > 0 
such that L^ J,- = fe and LT, extends over all j;. > <? such that Z- ~x. = ns we 

j = 1 J K z ^ = l ^ 

find an alternative representation of the generalized Lah number as 

(w!/fc!) E II (Xi + / " X ) . (10) 

where J^K is extended over all ordered fc-tuples (x19 x2, . ..9 xk) of integers 
^ > c, £ = ls 29 ..., /c with ^x + x2 + • • • + xk = w-

Section 2 is devoted to the study of properties of associated Lah numbers. 
Section 3 is concerned with the properties of ratios of associated Lah numbers. 
Section 4 deals with a discrete probability distribution involving associated 
Lah numbers via a generalized occupancy problem. Section 5 contains the prob-
lem of estimating a parameter of the population discussed in the preceding sec-
tion. Section 6 discusses limiting forms of the discrete distribution studied 
in Section 4. Section 7 introduces an inverse probability distribution involv-
ing associated Lah numbers. Section 8 considers the definitions and properties 
of a conditional multivariate distribution involving associated Lah numbers. 
The last two sections deal with some applications of generalized Lah numbers. 

2. SOME PROPERTIES OF ff(n, r, k) 

We now investigate properties of B(ns r9 k) and their limiting forms. 

Property 1: 

(rx)[n] = E B(w, r9 k)(x)k, (11) 
k = i 

where (rx)M = rx(rx 4- 1) . . . (rx + n - 1) and (x)k = x(x - 1) — (x - k + 1)9 
x being any rea l number and r a pos i t ive in teger . 

Proof: (rx)[n] = [Er*y™]ym 0 = [{I + (Er - I)}xyM]yml 

- E (X
k)l(Er~ Dky[n% = 0 - E B(n, rs 

k=o y K / y k - i 
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However9 if x is a positive integer9 then 

)[n] 

Property 2 

(rco)ln] = E B(n, p9 k)(x)k. (12) 
fc = i 

l/(x - l ) k = £ £(n9 p 9 fc)/(p* + l ) I n ] . (13) 

?z = & 

This can be proved by induction on k» 
Property 3» 

B ( n 9 P , fe) = (1/fc)" E <*)*(* + r " X W n - *, r, fc - 1). (14) 

Property h: 

11m B(n9 r9 k)/r* = \s(n9 k)\9 (15) 

where |s(n, /c)| is the signless Stirling number of the first kind. 

Property 5» 

11m B(n9 r9 k)/rn = S(n9 k) 9 (16) 
•p-t- oo\ 

where ̂ (n, &) denotes the Stirling number of the second kind. 

3. SOME PROPERTIES OF R(n9 P, k) 

In this section we study the following properties of R(n9 r9 k). 

Property 1: The sequence (7) satisfies the recurrence relation 

R(ns r9 k) - (n + rk) 
= R(n - 1, r, fc - 1) - [(« + p£ - l)/i?(n - 1, r9 k)] (17) 

for 1 < H n and for all n9 where 

R(n9 P, 1) = in + p) and i?(w, p9 «) = [n(w + 1)(P + l)]/2. 

The relation (17) follows directly from (2). 

Property 2: The sequence (7) increases with k for given n and satisfies the 
inequality 

R(n9 rs k + 1) > i?(n9 p, fe)} for?: = 2, 3, ..., n - 1. (18) 
This follows immediately from (3) . 

Property 3' The sequence (7) satisfies the inequality 

R(n - 1,. r9 k) + 1 > R(n9 r9 k) (n = k + 1, k + 29 ...) (19) 

with equality only for k = 1» 
Relation (19) is observed from (17). It shows that the ratio R(n9 p, k) 

grows very slowly with w. 
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k. A DISCRETE PROBABILITY DISTRIBUTION INVOLVING ASSOCIATED LAH NUMBERS 

This section is devoted to the study of a discrete probability distribution 
involving the associated Lah numbers derived via the following generalized oc-
cupancy problem* 

Suppose n indistinguishable balls are distributed in P0 cells constituting 
0 groups of r cells each* Then the probability that k groups are occupied with 
n1 balls in one groups n2 balls in the second group9 ...» nk balls in the klth 

groups and the remaining (6 - k) groups are empty is 

Pr{K = k fl N1 = n1$ ..., Nk„± = nk_1\ns r9 9} 

= n!(9), h(ni \ r " l)/{(rQ)Mki}, (20) 

where (r0)^ = (P9)(P9 4- 1) .. . (rQ + n - 1) and nk = n - n^ - • - • - nk^1^ 
From (20), the probability that k different groups are occupied out of 0 

groups (without regard to frequencies) is 

Pr{K = k\n9 r, 9} = fK(k\n9 r9 9) 

= l(e)k/(rQ)M](nl/kl) E ft (** V " X ) ' (21) 

•i = 1 rii 
where the summation extends over all positive integral values of n19 .•-» n^-i 
subject to n > n1 + »*°  + nk„1« 

Now9using the definition of associated Lah numbers in (5), the probability 
function (pf) of the random variable K is 

fk(k\n9 rs 0) = B(ns v9 k) (B)k /(rQ)M 9 k = 1, ..., n, (22) 

From (11), it follows that 
n 
E fv(k\n9 r9 9) = 1, 
fc«i 

which verifies that /^(/c|n, r9 9) is a proper pf. 
In particularg if r = 1 in (22), 

fK(k\n5 9) = |L(n, fc)|(6)fc/ew, (& = 1, .... n), (23) 

where the \L(n9 k)| fs are the signless Lah numbers. 
The probability model (23) describes the distribution of K9 the number of 

occupied cells, when n indistinguishable balls are assigned to 9 cells. Anal-
ogously , it gives the distribution of K$ the number of occupied energy levels, 
if n like particles (e.g., protons^ nuclei* or atoms containing an even number 
of elementary particles for the Bose-Einstein system of physical statistics) 
are assigned to 9 energy levels. 

The pf (22) satisfies the recurrence relation 

fK(k\ns rs 9) = r(6 - k + l)fK(k - l|n, r9 Q)/[R(n9 r9k) - (n + rk)] (24) 
for k = 2S 39 .*., n9 where fK(l\n9 r9 9) = QrM/(rQ}[n]. 

Relation (17) seems to be quite useful in preparing a table for R(n9 r, k). 
The values of i?(w, P S fc) are necessary in computing the pf from (24). 

The mean and variance of K are given by^ 
E(K) = ei(rQ)W _ (P0 - r)M]/(re)[n]; (25) 

^(I(Z - 1)) = (9)2[(p9)w - 2(P9 - r)[n] + (P9 - 22»)Inl']/(r6)I"J; (26) 

Var(Z) = #(Z(Z - 1)) + E(K) - [#(Z)]2e (27) 
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5. ESTIMATION OF THE PARAMETER 8 OF THE PROBABILITY DISTRIBUTION 

OF THE PREVIOUS SECTION 

Suppose we have a population of Qr cells consisting of 0 groups of v cells 
each, in which v is known but 6 is unknown. Suppose n indistinguishable balls 
are randomly distributed in these cells and k groups are found to be occupied. 
Here K9 the number of occupied groups, has probability function (22). We wish 
to estimate the underlying parameter 0 based upon the observed k. 

First, following the arguments of Patil [10], we shall show that a uniformly 
minimum variance unbiased (UMVU) estimator of 0 based on the complete suffici-
ent statistic K does not exist. Second, we shall show that, in some special 
case, a suitable estimator of 0 is obtainable. Suppose we proceed heuristically 
to construct an unbiased estimator t(K.\n, r) of 0 based on K. Then the condi-
tion of unbiasedness 

E[t(K\n, P ) ] = 0 (28) 

yields 

t(k\n9 v) = [R(n9 r, k) - n]/v (k = 1, ..., n - 1) (29) 
and 

B(n9 r, n) = 0. (30) 

But, by definition, B(n9 r9 n) = rn
9 and we arrive at a contradiction. Hence, 

there is no unbiased estimator of 0. 
Here the relative bias of t(K\n9 r) satisfies 

E[t(K\n9 2 0 / 6 ] - 1 = - [ r n + 1 ( 6 ) n + 1 / { ( r 0 ) ( r 0 ) [ n ] } ] . (31) 

We observe that 

[rn+\Q)n+1/{(rQ)(rd)[n]}] < 1, 
thus the relative bias approaches zero for moderately large value of n. Fur-
ther, in practice, the probability of the maximum outcome may be negligibly 
small. So the use of (29) may often be justified in a special case where the 
bias of the estimator is not serious, and in such a case the estimate (29) of 
the parameter 0 is obtainable from the recurrence relation 

t(k\n9 v) - k (32) 

= [t(k\n - 1, r) - k][vt(k - l\n - 1, r) + n - l]/[rt(k\n - 1, r) + w - 1] 

where 1 < k < n with 

t(l|n, P ) = n + r + 1 and t(n\n9 r) = [n(n - l)(r + l)/2r] + n. 

The above relation follows from (17). 

6. TWO LIMITING DISTRIBUTIONS 

We now consider two limiting forms of the distribution (22) which are of 
much practical use. 

First, if P8 = (j) is constant and r + 0 in (22) , then fK(k\n9 r9 0) becomes 
the limiting distribution 

fK(k\n9 <f>) = |s(n, /c)|(f>Vcj)W (k = 1, ..., n) s (33) 

which has application in genetic studies (see Johnson & Kotz, [8], p. 246) and 
the distribution of the number of hearers directly from a source (see Bartholo-
mew, [4], p. 317). We observe that (33) is a special case of the power series 
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distribution (see [8], p, 85) . When <J> = 1, (33) reduces to 

fK{k\n) = |s(n, k)\/nl (k = 1, ..., n) (34) 

which has been used by Barlow et al. ([3], p. 143) in connection with some 
problems of testing statistical hypotheses under order restrictions. Equation 
(34) gives the probability that a permutation of n elements picked at random 
has k cycles. 

Seconds if r -> °°  in (22), we find 

fK(k\n5 0) = S(ns k)(Q)k/en (k = 1, .... n). (35) 

This is known as Steven-Craig1s distribution (see Patil & Joshi, [11], p. 
56) and sometimes called Arfwedsonfs distribution (see Johnson & Kotz, [7], p* 
251). It is a particular case of the factorial series distribution introduced 
by Berg [5]. It is also useful in the study of the ecology of plants and ani-
mals (see Lewontin & Prout, [9] and Watterson, [13]) and in some problems of 
sample surveys (see Des Raj & Khamis, [6]). In addition., it can be applied to 
finding the critical values of the empty cell test (sees e .g. , Wilks, [14], pp. 
433-37]. 

7- A PROBABILITY MODEL UNDER AN INVERSE SAMPLING SCHEME 

We introduce a probability model involving associated Lah numbers under an 
inverse sampling scheme. 

Suppose that, instead of n being fixed and k variable, random distribution 
of like balls, one at a time, is continued until a predetermined number ks say, 
of groups have been occupied,, Let the required size be n. Then we have a 
probability model under the inverse sampling scheme having the pf 

hN(n\k5 r, 0)= Pr{N = n\k9 r, 0} (36) 

It is seen from (13) that 

rB(n - 1, r, k - 1) (0)fc /(r0)[n], n = k9 k + 1, 

ZhN(n\k, rs 6) = 1. 
n = k 

The pf (36) is recognized as a special case of inverse factorial series 
distribution (see [8], p. 88). It satisfies the following recurrence relation: 

hN(n\ks rs 6) = [R(n - 2, r, k - l)/(z»6 + n - l)]hN(n - l\ks r, 6), (37) 

where the R(n9 p, k) satisfy (17). 
The mean and variance of N are obtained as follows! 

E(N) = -(re - 1)(6). A [1/(6 - l/r)k] (38) 
and l > -

E(N(N + 1)) = (r6 - l)(r6 - 2)(6)fc A2[l/(6 - 2/r)fc], (39) 
l/r 

where A f(Q) = f(Q + l/r) - /(e). 
I IT 

From (38) and (39), Var(tf) can be obtained easily» 

Here we note that N is a complete, sufficient statistic for 0. Making use 
of this statistic, we now consider the problem of estimations 

Arguing as in Section 5, we can show that the UMVU estimator of Q based on 
N does not exist. However, If we assume g(N) to be an unbiased estimator of 0S 

then we find that the relative bias of g(N) is: 
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E[g(N)/Q] - 1 = rk-\Q - l)k_2/(rQ)[k ~1]. (40) 

This relative bias does not depend upon n. Thus, it cannot be reduced by tak-
ing a large sample. Therefore, it is not possible to provide any usable esti-
mate of 0. 

8. A CONDITIONAL MULTIVARIATE DISTRIBUTION 

INVOLVING ASSOCIATED LAH NUMBERS 

We now investigate the properties of a conditional multivariate distribu-
tion whose pf can be obtained readily f_rom the associated Lah numbers. 

From (5), the joint distribution of ~N = (N1S . . . , Nk) (given N± + - • • + Nk + 
Nk+1 = n) is: 

_ k 

°\N = n | each n^ > 0, i = 1, . . . , &, n > Yl n£> & a n d r a r e positive integers> 

= (n\/(k + 1)!) ff(ni + / " l)/B(n, r, k + 1), (41) 

where the mass points (the sample points) of n" are defined by the set: 

<?̂ |each n^ > 0, n > X n£> ^ anc* p a r e fixed positive integers >. 

It represents the pf of N (the group frequencies), if n > r(fc + 1) indis-
tinguishable balls are put into v(k + 1) cells constituting k + 1 groups of r 
cells each with no group empty. 

To find the mean and variance of N^, we put, for convenience, 

A{n, r, k+l) = [r/B(n9 r, fe+l)]"E Ift+ *>~ l)B(n~ J > r> *0/(n - j - 1) ll . 
J = ILX J ' J(42) 

Then 
E(Ni) = n/(k + 1) (43) 

and 
Var(^) = [n2k/(k + I)2 ~ (n!/(fc + l)!)i4(w, r, k + 1)]. (44) 

Further, 

Cov(Ni9 Nj) = -(l/fc)Var(/^) (i ̂  j) (45) 
and 

Corr(^, /^) = -(1/fc). (46) 

The marginal distribution of 217 is: 
ifc + i 

(47) 
Pp<^1 = nAYL^i = n, ks r\ 

^ \i = 1 / 

= Mn (ni + P " ^BCn - n l 5 r , fc)/[(fc + l ) B ( n , r , fc + 1 ) ] , 
nx = 1, . . . 9 n - k-

The j o i n t d i s t r i b u t i o n of t he subse t (i7x, . . . , Nm) of t h e N i
 f s is: 

( l f e + 1 ) 
PiKil/, = n. , . . . , Nm = nm £ #7- = «» k, r> 

I x U-i ) (48) 
= (n)„ fl (ni + r " X)5(n - n0, r, k - m + l)/[(fc + l)m5(n, r9 k + 1)], 

where n0 = nx + ••• + nm9 each n^ being a positive integer. 
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The conditional distribution of N-9 where Nl9 . . . 9 N ^ 1
 a r e fixed, is: 

( I k+l x 
Pr<Nj = rij \N1 = nl9 . . . , Nj _± = n^ _x, 2 Z ^ = n s &> P being positive integersi 

( yt . -J- va — 1 \ 

<? n . )5(n-n 0 5 v9 k-j+l)/{(n-n0)l(k-j+2) 

x 5 ( n - n 0 + nJ-s r5 fc-j + 2)}, 

where n0 = nx + • • • + n^ and n^ = 1 s . . . , n - n0 + rij - k + J - 1. 

It is interesting to note that the distribution of the vector N in (41) is 
the same as that of the joint distribution of the independent random variables 
N19 . .., 'N^ + 19 each following a zero truncated negative binomial distribution 
with arbitrary parameters 0 (0 < 6 < 1) and v (a positive integer), subject to 
the condition N± + ••• 4- Nk+1 = n. 

9. AN APPLICATION OF L (n, fc) 

Let n > ok indistinguishable balls be distributed in rk cells constituting 
k groups of v cells each. Then the probability that j groups of cells are oc-
cupied with each group containing at least o + 1 balls is given by 

P c , r i t i I n) = ( k ) j L C 3 V ( n s j ) / ( r k ) [ n ]
9 (50) 

where (k)j = k(k - 1) ...(&- j + 1) and 

(rk)M = (rk)(rk + 1) . .. (rk + n - 1). 

Proof: The probability that j groups g19 . .., g- contain x19 . .., x^ ballss 

respectively, with a?1 + • • • + # • = n is given by 

Therefores the probability that the groups g19 , . , 9 g . are occupied each con-
taining at least c + 1 balls is given by 

j ^ x ^ - i ) ... ( ^ ^ - I J / ^ - H ^ - I J (52) 

where the summation is extended over all ordered j-tuples (x19 . .., #j) of in-
tegers a:̂  > c9 i = 19 . . . , j with ^cx + • • • + #j = n. 

Mows from (10)s (52), and noting that j groups out of k can be selected in 
/k\ 
I .) ways3 we obtain (50). 

10. A CONDITIONAL MULTIVARIATE DISTRIBUTION 

INVOLVING GENERALIZED LAH NUMBERS 

From (10) , the joint distribution of N= (N19 . . . , Nk) (given N± + • • • + Nk + 
Nk+1 = n) is 

( _ k 
Pr<N = njeach ni > o9 i = 1, . . ., fc5 n > J] n i ? 

* i = i 

fc5 c, and r are positive integersi 
k + l • 

= (n!/(fc + D!) n ( M i V " ) A 0 t P ( n . fe), (53) 
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where the mass points of n are given by the set 

in each n^ > cs n > ]T nis k* c, and r are fixed positive integers>. 

We note that (53) represents the joint distribution of k + 1 independent 
random variables N±s . . . , Nk + 1 each following a ^-truncated negative binomial 
distribution with arbitrary parameters 0 (0 < 0 < 1), r and c subject to the 
condition N± + °° • + N^ + i = n° 

Distribution (53) has properties analogous to those of distribution (41), 
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INTRODUCTION 

by 
In addition to the well-known Fibonacci sequence Fin), recursively defined 

1 
/ 5 

"l + / T 
2 

n 1 

" v5 
[l - A] 

2 
n 
I L(n) = "l + A" 

2 
n 

+ "I - vT 
2 

F(l) = 1, F(2) = 1, F(n + 1) = F(n) + F(n - 1), for n > 2S 

is the Lucas sequence L(n)9 similarly defined by 

L(l) = 1, L(2) = 3, L(rc + 1) = L(n) + L(n - 1). 

Although the difference Lin) - F{n) increases without bound, the ratio L(n)/F(n) 
tends to a limiting value of v5. This result follows from the two representa-
tions : 

F(n) 

For a given integer m ̂  39 we now consider the sequence Gm(n) defined by 

Gm(l) = 1, Gm(2) = m$ Gm(n + 1) = Gm(n) + Gm(n - 1). 

From this we have Gm{n) = L(n) + (jn - 3)F(n - 1) and, consequently, the ratio 
Gm(n) /F(n) has a limiting value of \/5 + (m - 3) (A/5 - l)/2. This relationship 
also holds for any integral m since the inequality m ̂  3 was not crucial to the 
validity of the statement. Indeed, the result is valid for all real m. 

For Fibonacci-type sequences that begin with a nonzero first term other 
than one, say, for example, the sequence Ea ^(n) defined by 

Ha>b(l) = a, Haib(2) = b, Hatb(n + 1) = Ha>b(n) + Ha,b{n - 1), 

each term of which is merely a constant multiple of a Gm sequence, namely, 

H a,b (n) aGb/a(n). 
This means that the ratio Ea^ {n)IF(ri) has a limiting value of 

a[/5 + (b/a - 3) (A - l)/2]. 

Finally, for real numbers a, bs e, and d with ao + 0, the ratio of Haii(n) to 
HCsd(n) has a limiting value shown by 

H a,b (n) _ Hajb(n)/F(n) 2 a V^ + (b • 3 a ) (̂  1) 
-(«) c3d in)/F{n) 2c/5 + (d - 3c) (V5 - 1) 

GENERALIZED SEQUENCES 

(1) 

Let us consider the more general case where a Fibonacci-type sequence F^ is 
recursively defined by the sum of the previous k terms. The first k terms are 
arbitrarily defined by Ffe(0) = als Fk(l) = a2, ...9 Fk(k ~ 1) = ak> and then 

i - 1 
Fk(t) = £ **(,?), for i > k. 

J = i-k 
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From the theory of recursion we know that F-, is generated by a finite k-sum of 
powers by 

Fk(n) = f^" + f2r- + ••- + fkr», 
where f. are constants (real or complex), and the p. are the zeros of the poly-
nomial 

k _ „k-i _ . . . _ . p(x) 1. (2) 

It is shown in [3] that the roots of p are all distinct9 and all lie within the 
unit circle in the complex plane except one root which is real and lies between 
1 and 2» For simplicity this real root will be labeled rk , and the others will 
be denoted by r, • fc-i' This means r • < 1 for i < k, and 1 < r, < 2. 

The graphs of p for various k help to illustrate the location of the roots, 
as well as the additional fact that rk -> 2 as k increases [2]. It is important 
to realize that these roots are determined as soon as k is known, and that they 
have nothing to do with the initial values given to Fk(0) 9 Fk(l). Fk(k~ 1). 

The constants f^ can be determined from the side conditions a^ - Fk (i - 1), 
and by applying Cramer's rule we get: 

l: = 
J c - 1 

i~l 

ofe-1 ,k-l 

1 

1°. 

„k-l „fc-i 

(3) 

Since the denominator of this expression is the k x k Vandermonde determi-
nants its value is given by 

k 
O ixi - r-). (4) 

i = 2 
i> 3 
Suppose we have two such Fibonacci sequences of the same types say Fk and 

Gk3 where 
Fk(i) = ai + 1 and Gk(i) = 2?i + 1 for 0 < i < £ - 1. 

Then there exist constants f , j , • • • » A » g^ > #2 » • • • s £7fe such that 

V n ) = E /i*V and cfc(«) = £ ^ r " 
i = 1 i = 1 

(5) 

and the r̂  are the roots to (2). The ratio Fk(n)/Gk(n) must then approach fk/gk 
as n increases. The problem then becomes one to evaluate fk and g which, in 
turns reduces to solving p(x) = 0. 
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TWO SPECIF C CASES

When k = 2, we have F 2(n) = + ���� and
ratio F2(n)/G 2(n) � f 2/g 2 where, from (3), we get

(n)

and (6)

Since r l , r 2 are the roots to - x-I = 0, with r 2 being the root of modulus
between 1 and 2, then r l = (1 - 15)/2. Thus, the ratio f 2!g2 reduces to

2a
2

- aIel - IS)

so then

a
l
r
l
r
2 - a 2 (r 1 + r 2) + a

f 3!g3
3

(8)b l r l 'P 2 b 2 ('PI + 'P 2) + b 3

The values for 'PI' r are determined by using Cardano's formula:
2

= i[2 - #19 + 3m - v!19 - 3m +

1'2 = i[2 - ./19 + 3m - .q!19 - 3m -
3i{.q!19 + 3m - .q!19 - 3m}J
3 i{f! 19 + 3m - ./19 - 3m }J.

This gives the approximate values 'PI -.4196433 + .6062906i and 'P 2 = 'Pl.
Consequently, the ratio f 3 /g 3 is real (since r I 'P 2 and 'PI + are real) with
the approximate value

.5436888a I + .8392866a 2 + a 3

f 3!g3 = .5436888b I + .8392966b 2 + b 3 • (9)

Evaluation of f k /gk for k > 3 ultimately rests on effectively computing
the complex roots to p(x) = O.

APPROXIMATING COMPLEX ROOTS

Among the many iterative numerical methods available for locating roots to
polynomial equations, probably the best known is Newton's method. Typically,
this method is employed to find real roots, butit can be generalized to the
complex plane [5]. To this end, we begin with a complex seed zo' and consider
the sequence {zn} of iterates, zn+l = zn - P(Zn)/p'(Zn). It appears, from data
gathered, that every complex seed generates a sequence that eventually converges
to a root of p(z) with, of course, varying rates of convergence. But an inter-
esting question, and one that was posed as far back as 1879 by Arthur Cayley
[4], is to determine the regions of the plane whose members generate sequences
that converge to identical roots of p (z) . The readers may wish to determine
the corresponding regions for a specific polynomial. The author gathered data
on Z3 - Z2 - Z - 1 = 0 and approximated the partitions of
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{ (x, Y) : Ix I � 1, IY I � I}.

The shaded regions in Figure 1 consist of those "seeds" that generate sequences
that converge to the root r 2 with r 2 = -.4196 - .6063i. Obviously there is no
reason to suspect that the points in the plane that generate sequences that
converge to the same root form a connected set. Likewise, statements concern-
ing symmetry of regions are not obvious to formulate. Instead, there is some
considerable disconnectedness to the regions, especially for this one in the
near vicinity of the x-axis, where one can find seeds that generate sequences
that converge to each of the three roots to the polynomial.

FIGURE 1. A region whose members generate the same polynomial root

It is of interest to point out that the associated notion of Julia sets (a
concept developed by Julia and Fatou at the turn of the century in regard to
the iteration of rational functions in the plane) is discussed in [4] and
accompanied by some excellent color computer graphics.

CONSECUTIVE FIBONACCI NUMBERS

Suppose we take a more careful look at the sequence of ratios of consecu-
tive Fibonacci numbers. For the standard Fibonacci sequence F(n), the sequence
of ratios F(n)/F(n - 1) alternates monotonically. Thus, setting

r(n) = F(n)/F(n - 1),
we have

r(2i) < r(2i + 2), r(2i + 1) > r(2i + 3), r(2i) < r(2i + 1), for all i.
But what happens if F(n) is replaced by the more general Fibonacci sequence
Fk (n), where

Fk(i) ai' for 1 � i � k,
i-I

Fk(i) =. � Fk(j), for i � k + 1.
J='l,-k

In this general setting the sequence of ratios rk(n) = Fk(n)/Fk (n- 1) does not
alternate monotonically, nor does it alternate in k-tuples. Patterns seem to
be haphazard at best. But one can make a statement about the maximum number

140 [May



RATIOS OF GENERALIZED FIBONACCI SEQUENCES

of ratios that form a consecutive monotone string. More specifically, this
means (monotone increasing is sufficient)

max{j:3i, i >k and Pk(i + 1) <Pk(i + 2) < ... <rk(i +j)} ��� (10)

This inequality will be established if we show that whenever

Fk (i + 1) Fk(i + 2) Fk(i + k)---< <... < (11)
Fk(i) Fk(i + 1) Fk(i + k - 1)

it follows that

Fk (i + k) Fk (i + k + 1)

Fi<. (i + k - 1) > F k (i + k)

Setting f j = Fk (i + j) to simplify notation, it follows that

f l f k - l < fofk , f 2 f k _l < f l f k , ••• , f k - l f k - l < f k - 2 f k ,
so summing gives

and then adding f k -11k to both summations yields

k k-l
f k+ l f k - l = 1: fifk - 1 < 1: fifk = fkfk ,i-I i-O

(12)

(13)

(14)

which establishes the desired result.
So for each given choice of k, each string of ratios of consecutive k-gen-

e1ralized Fibonacci numbers Fk (n) IFk (n - 1) will contain a maximum ofk consecu-
tive monotone terms. Consider the following example with k = 3.

TABLE 1. Generalized Fibonacci Numbers and Their Ratios

n F g (n) Fg(n)/Fg(n - 1)

1 1
2 1
3 2
4 4 2.00
5 7 1.75
6 13 1.85714
7 24 1.84615
8 44 1.83333
9 81 1.84091

Here we have the three consecutive monotone terms,

F 3 (6) F 3 (7) F 3 (8)
F
3

(5) > F
3

(6) > F
3

(7)

and:, of course, the next ratio reverses the monotonicity,
F 3 (8) F 3 (9)

F 3 (7) < F 3 (8) •

1987]
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(16)
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Data seem to indicate that this result is best, in the sense that every
Fibonacci sequence Fk contains a string of exactly k consecutive monotone
ratios. What we can prove here is the existence of a sequence, for each k,
which satisfies this conjecture. Thus, for k � 2, we define the sequence Fk by
Fk(n) = 1 for n < k and Fk(k) = k. Then

Fk(k + 1) 2k 1, Fk(k + 2) 4k - 3,
Fk(k + 3) 8k 7, Fk(k + 4) 16k - 15,

and the pattern continues up to

Fk (2k - 1) = 2k- 1 k - (2 k - 1 - 1) and Fk (2k)
The pattern breaks with the next term for

Fk (2k + 1) = (2 k+1 - 2)k - (2k+ 1 - 2 - k).
The ratios Fk (k + i) /F k (k + i-I) form an increasing sequence for i

k because the inequality

2nk (2 n - 1) 2n +1k (2n + 1 - 1)
������������������������������

2n - 1k - (2 n - 1 - 1) 2n k - (2 n - 1)

1, 2,

(18)

holds for all n � 1. Furthermore, the string of increasing ratios is then re-
versed with the next ratio because

Fk (2k) Fk (2k + 1)

Fk (2k - 1) > Fk (2k)
It is interesting to look at the similar question of finding a Fibonacci

sequence with k consecutive decreasing ratios. Unlike the previous example,
such a solution cannot be found by defining the initial k terms in the sequence
from among the elements 1, 2, ... , k. We need to choose from a larger set of
positive integers. Thus, for k � 2, we define the sequence Fk by

Fk (1) = 1, Fk (2) = 2, Fk (3) = 4, ... , Fk (k - 1) = 2k- 2
, and Fk (k) 1.

For values of i with 1 � i � k, the term Fk(k + i) has the value
Fk (k + i) 2k+(i-2) - (i - 1)2 i - 2 (19)

and, consequently,

Fk (k + i-I) >
Fk (k + i + 1)

( ) ' for i = 1, 2, ... , k - 1.
Fk k + i

(20)

Many other questions remain for the interested reader to investigate. Can
one predict when these monotone strings of ratios of length k will occur, or
how often they will occur? Are there strings of length i for each i less than
k for each given sequence? Are there as many increasing strings as decreasing
strings?
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1• I NTRODUCT ION

In what follows, lower-case letters will be used to denote natural numbers,
with p and q always representing primes. As usual, (c, d) will symbolize the
greatest common divisor of c and d. If cd = nand (c, d) = 1, then d is said
to be a unitary divisor of n. If (c, d)* denotes the greatest common unitary
divisor of c and d, then d is said to be a hi-unitary divisor of n if cd = n
and (c, d)* = 1. The notion of a bi-unitary divisor was first introduced by
Subbarao & Suryanarayana in 1971 (see [6]) ..

We shall symbolize by a(n), 0* (n), and 0** (n), respectively, the sums of
the (positive) divisors, unitary divisors, and hi-unitary divisors of n. It is
well known that a(pa) = (pa+1 - l)!(p - 1) and a*(pa) = (pa + 1) arid that both
a and a* are multiplicative functions. It is not difficult to verify that
a** (pa) = a(pa) if a is odd and 0** (pa) = - pa/2 if a is even and that
0** is multiplicative. It follows that 0** a(n) if every exponent in the
prime-power decomposition of n is odd and that 0** (n) 0*' if n is cube-
free. It is also immediate that a**(rt) is even unlessn = 2a or n = 1.

A number n is said to be perfect if a(n) = 2n and to be multiperfect if
a(n) = kn, where k � 3. Perfect and mu1tiperfect numbers have been studied
extensively. Subbarao &Warren [7] have defined n to be a unitary perfect num-
'ber if a*(n) = 2n, and Wall [11] has defined n to be a bi-unitary perfect num-
ber if a**(n) = 2n. Five unitary perfect numbers have been found to date (see
[10]), while Wall [11] has proved that 6,60, and 90 are the onZy bi-unitary
perfect numbers.

If a*(n) = kn, where k � 3, n is said to be a unitary multiperfect number.
The properties of such numbers have been studied Harris & Subbaro ] and
by Hagis [3].. It is known that, if n is a unitary multiperfect number, then
n > 10102 and n has at least 46 distinct prime factors (including No uni-
tary multiperfect numbers have, as yet, been found.

We shall state that n is a bi-unitary multiperfect number if a**(n) = kn,
where k � 3. It is easy to show that every such number is even.

Theorem 1: There are no odd hi-unitary multiperfect numbers.

Proof: Suppose that a**(n) = kn, where k � 3, and
n = ������ •• e p:-, with 3 � PI < P2 < ... < psG

Suppose, also, tha t k = 2cM, where 2 f M and () � 0 Since
8

0** (n) = n 0** �����
i-I 1-

and since 21 0** ����� for i
1,..

144
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0** (n)/n � a(n)/n

< p. (p. - 1) < 28 � 2 a.@
1 1" 1"

This contradiction completes the proof

Using the CDC CYBER 750 at the University
was made for all numbers less

about 1.5 hours of computer time, and thirteen
with 3 and four with k = 4. with the
numbers, are listed in Table 1

Center a search
The search re-

were found, nine

The Bi-Unitary Perfect and Numbers Less than 10**

m and n are said to amicable numbers if
of these numbers may be found in [5 0* (m)
·are said to be unitary amicable numbers )
m and n are bi-unitary amicable numbers

m+n A
then m and n

say

n have theamicableaIf

Assume that m n is odd Then a** is , and
, n = Za, and .we have a contradiction.

m



BI-UNITARY AMICABLE AND MULTIPERFECT NUMBERS

Theorem 3: Suppose that (m; n) is a hi-unitary amicable pair and that m = ZaM
and n = 2bN where M :: N :: 1 (mod 2) and a < b. If w(M) =sand w(M) = t [where
w(L) denotes the number of distinct prime factors of L], then s � a and t � a.

Proof: If pcllM, then 210**(p C
), and we see that 2s I0**(m). But,

o**(m) = m + n = 2a(M + 2b - aN) = 2aK where K is odd,
and it follows that s � a. Similarly, t � a.

Corollary 3.1: If (2M; 2bN) , where b > 1 and M and N are odd, is a bi-unitary
amicable pair, then M = pC and N = qd.

Theorem 4.1: Suppose that (m; n) is a bi-unitary amicable pair such that m =
aM and n = aN where (a, M) = (a, N) = 1. If b is a natural number such that
o**(b)/b = o**(a)/a and (b, M) = (b, N) = 1, then (bM; bN) is a bi-unitary ami-
cable pair.

Proof: o**(bM) = 0** (b)o**(M) = a-1bo**Ca)0**CM) = a-1bo**(aM) = a-1b(aM + aN)
bM + bN. Similarly, o**(bN) = bM + bN.

The proofs of the next two theorems are similar to that of Theorem 4.1 and
are, therefore, omitted.

Theorem 4.2: Suppose that (m; n) is a unitary amicable pair such that m = aM
and n = aN where (a, M) = (a, N) = 1 and where M and N are cube-free. If

o**(b)/b = o*(a)/a and (b, M) = (b, N) = 1,
then (bM; bN) is a hi-unitary amicable pair.

Theorem 4.3: Suppose that (m; n) is an amicable pair such that m = aM and n =
aN where (a, M)= (a, N) = 1 and where every exponent in the prime-power decom-
position of M and N is odd. If

o**(b)/b = o(a)/a and (b, M) = (b, N) = 1,
then (bM; bN) is a bi-unitary amicable pair.

A computer search among distinct natural numbers a and b such that 2 � a,
b � 104 yielded 667 cases where o**(b)/b = o**(a)/a, 1325 cases where o**(b)/b
= o*(a)/a, and 673 cases where o**(b)/b = o(a)/a.

Examp1e 1: Since (8· 17 • 41 • 179; 8· 23 - 5669) is a bi-unitary amicable pair,
and since

0**(144)/144 = 0**(8)/8,
it follows from Theorem 4.1 that (144- 17- 41- 179; 144- 23- 5669) is also a
hi-unitary amicable pair.

Exampl e 2: Since (135 - 2 e 19 - 47; 135 - 2 - 29 I) 31) is a unitary amicable pair,
and since

0**(2925)/2925 = 0*(135)/135,
it follows from Theorem 4.2 that (2925" 2 .. 19 - 47; 2925 0 2 II 29 .. 31) is a bi-
unitary amicable pair.
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Example 3: Since (47· 7 • 19 In 2663; 45 11· 73 III 479) is an amicable pair, and
since

0**(450)/450 = 0(45)/45,
it follows from Theorem 4.3 that (450 0 7 19 e 2663; 450· 11 73 479) is a bi-
unitary amicable pair.

A search was made for all bi-unitary amicable pairs
and. m � 106 .. The search required about five minutes on
sixty pairs were found. These are listed in Table 2.

TABLE 2

n) such that m < n
CDC CYBER 750 and.

The Bi-Unitary Amicable Pairs with Smallest Member Less than 10**6

10. 10744:::: 2**3.17.79

11. 12285:= 3**3.5.7.13

13. 41360:= 2**4.5.11.47

14. 44772:= 2**2.3.7.13.41

18. 67095:: 3**3.5.7.71

5382 2 .. 3**2.13.23

6368 ::: 2**5.199

8496 :::: 2**4.3**2.59

13808 := 2**4.863

10856 := ������� .... w • .,J7

14595 := 3.5.7.139

49308 :: 2**2.3.7.587

83142:= 2.3**2 .. 31.149

71145 :: 3**3.5.17931

19. 67158:= 2.3**2.7.13.41 73962 :=

20. 73360:= 2**4.5.7.131

22. 79750 2.5**3.11.29

23. 105976 := 2**3.13.1019

25. 141664 := 2**5 19.233

26. 142310 := 2.597.19.107

97712 := 2**4.31.197

88730 := 2.5.19

153176:= 2**3.41.467
168730 :: 2.5.47.359
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TABLE 2--continued

28. 185368 = 2**3.17.29.47 203432 =2**3.59.431
29. 193392 = ��������������� 195408 = 2**4.3**2.23.59

30. 217840 = 2**4.5.7.389 ������� 2**4.5**2.719

31. 241024 = 2**7.7.269 309776 = 2**4.19.1019

32. 298188 = 2**2.3**3.11.251 306612 = 2**2.3**3.17.167

33. 308220 = 2**2.3.5.11.467 365700 =2**2.3.5**2.23.53
34. 308992 = 2**8.17.71 332528 = 2**4.7.2969
35. 356408 = 2**3.13.23.149 399592 = 2**3.199.251

36. 399200 = 2**5.5**2.499 419800 = 2**3.5**2.2099
37. 415264 = ������� 19.683 446576 = 2**4.13.19.113
38. 415944 =2**3. �������53.109 475056 = 2**4. 3iHt2. 3299
39. 462330 = 2.3**2.5.11.467 548550 = 2.3**2.5**2.23.53
40. 545238 = 2.3**3.23.439 721962 = 2.3**2.19.2111
41. 600392 = 2**3.13.23.251 669688 =2**3.97.863
42. 608580 = 2**2.3**3.5.7**2.23 831420 = 2**2.3**2.5.31.149
43. 609928 = 2**3.11.29.239 686072 = 2**3.191.449
44. 624184 = 2**3.11.41.173 691256 =2**3.71.1217
45. 627440 =2**4.5.11.23.31 865552 = 2**4.47.1151
46. 635624 = �������������� 712216 = 2**3.127.701

47. 643336 = 2**3.29.47.59 652664 = 2**3.17.4799
48. 669900 =2**2.3.5**2.7.11.29 827700 = 2**2.3.5**2.31.89

49. 671580 =2**2.3**2.5.7.13.41 739620 = 2**2.3**2.5.7.587
50. 699400 = 2**3.5**2.13.269 774800 = ����������������

51. 726104 =2**3.17.19.281 796696 z 2**3.53.1879

52. 785148 = 2**2.3.7.13.719 827652 = 2**2.3.7.59.167
':,;;

53. 796500 =2**2.3**3.5**3.59 1075500 = ������������������

54. 815100 = 2**2.3.5**2.11.13.19 932100 • 2**2.3.5**2.13.239

55. 818432 = 2**8.23.139 844768 = 2**5.26399

56. 839296 = 2**7.79.83 874304 = 2**6.19.719

57. 898216 = 2**3.11.59.173 980984 = 2**3.47.2609
58. 930560 = 2**8.5.727 1231600 = 2**4.5**2.3079
59. 947835 =3**3.5.7.17.59 1125765 =3**3.5.31.269
60. 998104 = 2**3.17.41.179 1043096 = 2**3.23.5669
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4. SI-UNITARY ALIQUOT SEQUENCES

The function s** is defined by s**(n) '= a**(n) - n, the sum of the bi-uni-
tary aliquot divisors of n. s**(l) = 0 and we define s**(O) = O. At-tuple
of distinct natural numbers (no n l ; ••• ; nt-I) with ni = s**(ni-I) for i = 1,
2, ... , t - 1 and s**(nt - I ) = n called'," a hi-unitary t-cycle. A bi-unitary
I-cycle is a bi-unitary perfect number; a bi-unitary 2-cycle is a bi-unitary
amicable pair. All of the bi-unitary t-cycles with t > 2 and smallest member
less than 10 5 are listed in Table 3.

TABLE 3

The Bi-Unitary t-Cycles with t > 2 and First Member Less than 10**5

t =: ��

(162;174;186;198), (1026;1374;1386;1494), (1620;1740;1860;1980),

(10098;15822;19458;15102), (10260;13740;13860;14940),

(41800;51800;66760;83540), (51282;58158;62802;76878)

t =: 6

(12420;16380;17220;23100;26820;18180)

t =: 13

(6534;8106;10518;10530;17694;11826;13038;14178;16062;16074;12726;

11754;7866)

It is not difficult to modify Theorems 4.1,4.2,4.3 so that one can obtain
"new" bi-unitary t-cycles from known t-cycles (see [1]), unitary t-cycles (see
[8] and [9]), and bi-unitary t-cycles. For example, since

0**(20)/20 = 0**(2)i2,
it follows from Table 3 that

(100980; 158220; 194580; lS102Q,) and (512820; 581580; 628020; 768780)

are bi-unitary 4-cycles.
The hi-unitary aliquot sequence {ni} with leader n is defined by

no = n, n1 = s**(no)' n 2 = s**(n1)' 0.' ni = s**(ni-1)' ... ·
Such a sequence is said to be terminating if nk = 1 for some index k (so that
ni = 0 for i > k). This will occur if nk -1 = P or p2 0 A bi-unitary aliquot
sequence is said to be periodic if there is an index k such that (nk; nk+1;
... ; nk + t - 1 ) is a bi-unitary t-cycle. A bi-unitary aliquot sequence which is
neither terminating nor periodic is (obviously) unbounded. Whether or not un-
bounded bi-unitary aliquot sequences exist is an open question. I would con-
jecture that such sequences do exist.

An investigation was made of all bi-unitary aliquot sequences with leader
n � 10 5 • About 2.5 hours of computer time was requiredo 69045 sequences were
found to be terminating; 15560 were periodic (6477 ended in I-cycles, 5556 in
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2-cycles and 3527 in t-cycles with t > 2); and in 15395 cases an nk > 1012 was
encountered and (for practical reasons) the sequence was terminated with its
behavior undetermined. The "first" sequence with unknown behavior has leader
no = 2160.. f'l306 = 1 51 301,270,618,226 is the first term of this sequence which
exceeds 10 12 •
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Problems associated with the of occurrence of runs of like ele-
ments in a series of trials have recently attracted uite a lot of
attentiono The reasons may possibly be traced not to the ����������� in-
terest they present as generalizing the usual binomial set ut also to the
practical value that any theoretical results in this direction would have with
regard to statistical testingo Feller [3] a series of
Bernoulli trials and concentrated on the relationship between the probability
distributions of the number of runs of l< successes n trials n) and the
������ of trials needed to get r runs of l< successes r) He that

P(Nk,n � r) = P(Tk,r � n) r = 0 1, ., [I]
and examined the asymptotic behavior of the of nand
Frechet [4] led the way in considering problem of deriving exact
tribution of Nk,n and 1 using his on the of the conjunc-
tion of even ts 0 More , Shane [21] and TurHer [23] obtained
for the probability distribution of 1 using the of
order k and the entries of the Pascal & Mu-
wafi [19] provided an alternative formula for this distribution in
terms of the multinomial coefficients@ Also, Uppuluri [24] gave an
explicit expression in terms of binomial that was impli-
cit in the work of Philippou et [16] Philippou et aZ [17] obtained the
exact distribution of r (r � 1) pointing out that can be represented
by the sum of r distributed variables whose
distribution coincides with 1 (see also Philippou [15])0 The exact
distributions of �������� the distribution
of order k" and of order k," Hirano [
and Philippou &Makri [18J the combinatorial of Philippou &
Muwafi [19] to derive the exact distribution of Nk,n which named Hthe
nomial distribution of order k Certain limiting cases and/or mixtures of the
above distributions have also been examined. Philippou et aZ. [17] showed that
the distribution of ,r - kr as r -+ +00 reduces to a form of
ized Poisson distribution examined in further detail by [14], who

A preliminary version of this paper was presented at the First International
Conference on Fibonacci Numbers and Their Applications, Patras, Greece, August
1984 ..
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ON SOME MIXTURES OF DISTRIBUTIONS OF ORDER k

C1" 1)0, 1, 2, ... ,P(X
where

names it "the Poisson distribution of order kIf (as being the limit of an "order
kIf distribution)" In addition, Philippou (in [14]) discussed a gamma compound
(mixed) Poisson distribution of order k" Aki et al" [1] derived a logarithmic
distribution of order k as the limiting distribution of the random variable

Tk,rl (Tk,r > kr) as r � 0
(see also the work of Hirano et al" [7] who gave figures of distributions of
order k)" Finally, Panaretos & Xekalaki [13] defined and studied some other
distributions of order k. These are the hypergeometric and the negative hyper-
geometric distributions of order k, a limiting case of the zero-truncated com-
pound Poisson distribution of order k (the logarithmic series distribution of
order k) as well as the Polya, the inverse Polya, and the generalized Waring
distributions of order k"

As is well known, the number of applications of the above-mentioned distri-
butions when k = 1 (ordinary binomial, geometric, or negative binomial distri-
butions) is vast" However, applying these distributions presupposes a constant
probability of success p which is a requirement that can hardly hold in prac-
tice. So, in many instances, combinations of different binomial, geometric, or
negative binomial distributions have been considered" That is, p is allowed to
vary from trial to trial according to some probability law thus giving rise to
compound (mixed) forms of these distributions. The particular case of a beta
distributed p gives rise to distributions belonging to the class of inverse
factorial series distributions that have played an important role in the medi-
cal and biological fields" Two such distributions are the beta-compound geo-
metric, also known as the Yule distribution (see [32]), and the beta-compound
negative binomial distribution, also known as the generalized Waring distribu-
tion (see Xekalaki [25])" Their applications, however, are not confined to
these fields" They have also been applied to fields such as accident, income,
or geographical analysis, linguistics, bibliographic research, and reliability.
A selection of their contribution to these fields can be found in Dacey [2],
Haight [5], Irwin [8, 9, 10], Kendall [11], Krishnaji [12], Schubert & Glanzel
[20], Simon [22], Xekalaki [26-30], and Xekalaki & Panaretos -[31].

In this paper we consider generalizations of beta-geometric and beta-nega-
tive binomial distribution. These are obtained in Sections 2 and 3 as mix-
tures of the Poisson distribution of order k, in a manner similar to the deri-
vation of the geometric and the negative binomial distributions as mixtures of
the ordinary Poisson distribution. Expressions for their probabilities and the
first two moments are given. In Section 4 it is shown that the Poisson and the
gamma-compound Poisson distributions of order k are limiting cases of the gen-
eralized beta-negative binomial so that the theory of those distributions that
are of negative binomial form is a particular case of that shown in Section 4.

Before providing the main results, let us introduce some notation and ter-
minology.

A nonnegative, integer-valued random variable (r"v,,) X is said to have the
beta-geometric (Yule) distribution with parameter e if its probability function
(pef.) is given by

x) = ex! > 0
(e + 1)CX+l)' c , x

aCe) rCa + S)/r(a), a > 0, S E R.

A nonnegative, integer-valued r.vo X is said to have the beta-negative bi-
nomial (generalized Waring) distribution with parameters a, b, e if its p.f. is
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P(Y = ^ °(b) a(x)h(x) J__ 
U X) (a + o){b) (a + b + G\x) xl (1«2> 

a, bs c > 0, x = 09 1, 29 . . . . 

Their probability generating functions (p.g.f.) are of the form 

2F1(a9 3; Y; s)/2F1(a9 3; Y; !)» 

where 2FX is the Gauss hypergeometric function defined by the series 

2 M * . B: Y; a) = £ ^ f ^ ff. (1.3) 

which is convergent for all |s| < 1 provided that Y > o, + $. 
In the sequel9 we will refer to the distribution with p.g.f. 

H, (a) = p r d - qsyr
9 v > i , ( i , 4 ) 

as the negative binomial distribution. For p = 1 the resulting distribution 
will be termed "the geometric distribution.If 

A continuous r,v. X will be said to have the beta distribution of the first 
kind with parameters a9 b [beta I (a, b)} if its probabillt}^ density function 
(p.d.f.) is given by 

f(x) = r^\t,??- xa'1(l - x)*-1, a > 09 b > 09 0 < x < 1. (1.5) 

Finally3 a continuous r.v. X will be said to have the beta distribution of 
the second kind with parameters as b [beta II (a, b)] .if Its p.d.f. Is given by 

h(x) = ̂ ^ ± 7 ^ - xaMl(l + x)'(a + b \ a9 2? > 0, x > 0. (1.6) 
l (a)l (&; 

2. THE BETA-GEOMETRIC DISTRIBUTION OF ORDER k 

As implied by its name, the beta-geometric (Yule) distribution defined by 
(1.1) is obtained as a mixture on p of the geometric distribution when p Is a 
beta r.v. In fact, that was the theoretical model on which Yule [32] derived 
this distribution. In particular, if 9 denotes the mixing with respect to a 
parameter 9 and ~ denotes equivalence, then 

beta-geometric (c) ~ geometric (p) - beta I (<?, 1). 

Since the geometric distribution arises as an exponential mixture of the 
Polsson distributions this model Is equivalent to 

beta-geometric (a) ~ Poisson (X) ̂  exponential {Ilb) g- beta II (1, o). 

The structure of the latter model reveals the possibility of extending the 
beta-geometric distribution by replacing the Polsson distribution by a gener-
alized Poisson distribution. 

Consider a r.v. X which, conditional on some other r.v. X (X > 0), has a 
generalized Poisson distribution. Then its p,g,fa is of the form 

Gxlx(s) = exp{)x(g(s) - 1) } 

where g(s) is a valid peg0fos or, equivalently (see Feller [3], p. 291) of the 
form 

/ k . \ 
Gxn (s) = exp{ E M * * - 1)K (2.1) 

«i k 
Xi = Xg(iH0)/ii, k e i ^ U {+«>}, 2J ^i < +c 

< 1 
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Assume that k < +°° and that X^ = Xj9 i i J, i9 j = 1» 2, . .., fc, i.e., that 
g(s) is the p.g.f. of the discrete uniform distribution on {l, 2, . .., k}* Then 
Gx\x(s) is the p.g.f. of the Poisson distribution with parameter X/k gener-
alized by the uniform distribution on {1,2, ..., k}, i.e., 

Gx\x <*> exp{!£OJ f - 1)}. (2.2) 

The probability distribution defined by (2.2) is known in the literature as the 
Poisson distribution of order k (Philippou et dl. [17]). Thus, we have shown 
that the Poisson distribution of order k with parameter X can be viewed as the 
distribution of I1 + I2 + ••• + XN9 where N is a Poisson (Xk) r.v. and X19 X29 
... are independent r.v.fs that are distributed on {1, 2 s ...» k} uniformly 
and independently of N. 

Suppose now that A has an exponential distribution whose parameter is it-
self a r.v. having a beta II (1, o) distribution, i.e., the p.d.f. of X is of 
the form 

f(X) = I - e~(1/^x (1 + m)-<c + 1)dm. Jo m 

Then the u n c o n d i t i o n a l d i s t r i b u t i o n of X has p . g . f . 

Gx(s) = of f m^il + m)~(o + 1)expLx(~ + k - £ sty dm dX 

of (1 + m)<c + 1)(l + m Ik - J2 sA) dm9 

G
x(^ = 7"TT 2Fi(x» !; * + 2; £ e * - fc + l). (2.3) 

For k = 1, (2.3) reduces to 

£j<» = ~Ti a^it1' 1; c + 2; s) 

which is the p.g.f. of the beta-geometric distribution. Hence, (2.3) is a gen-
eralized form of the beta-geometric distribution. In the sequel, we will refer 
to this distribution as the beta-geometric distribution of order k with param-
eter o. 

The first two factorial moments of the beta-geometric distribution of order 
k can be obtained using (2.3); thus, 

W> = F T T T T T ^ ( 2 > 2; e + 3; \)£i 

= g 1 ( g + 2 ) (2) fe(fe + 1) = k(k + 1) 
(c + 1 ) (a + 2) (c - 1) ( 2 ) 2 2 (c - 1) ; 

E(X(X- 1)) - ^ T - ( c +
4

2 ) ( 2 ) ^ ( 3 » ^a + ^ l ) { ^ 

(2.4) 

T T (C j 2) ^ ( 2 s 2; C + 3; X ) . ? i ( i " X) 

fe2(fe + l ) 2 fe(fe + l)(fe - 1) 
(a - l ) ( e - 2) + 3(e - 1) 

i - 2 
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Hence, the variance is 

irm = k2(k + 1) V k(k2 - l)(3fe + 2) 
* w 4(c - l)2(c - 2) + 36(c - 1) • U ^ ; 

Note that both the mean and the variance of the beta-geometric distribu-
tion are greater than or equal to the corresponding mean and variance of the 
ordinary beta-geometric distribution and do not exist when c ^ 1 and c ^ 2S 

respectively. 
Because of their simplicity, relationships (2.4) and (2.5) can be of great 

practical value as far as moment estimation of the parameter o is concerned, 
especially because of the complexity of the maximum likelihood method for gen-
eralized hypergeometric-type distributions. Thus, based on a random sample of 
size ns the moment estimator of o is 

c - * < * + l) + 1 (2.6) 
2X 

with variance 

7 ( c ) " n(a - 2) + 9nk(k + 1) ' (2-?) 

where X is the sample mean. 
Now, we shall show that if I" is a r.v. having the beta-geometric distribu-

tion of order k with parameter o > 0, its p.f. is given by 

^ = *> = ̂ E ( 1
 £!*°  E 7^-T) ^ ^ (2.8) 

£=0 *" Zia:*-* y° + i^(Za:i + £+l) * 

II X-! 
# = 0 , l s 2 , . . . . 

From ( 2 . 3 ) 5 we have t h a t 
k 

ffy(s) ITT 2^1 d> 1; e + 2; £ si + 1 - A:), 

^ r»l / k V 

* v c + i r r 0 ( ^ + 2)(p) \ i - i / 1 n .Q^i (i - tfOs 
( p S ) 2 — / ^ ^ %~1 y WV y ( * \ 

a + 1 S?0(c + 2)(P) 4 + ^ . j . V r j , r 2 , . . . . rk, I) 
„ r ( (Er , + « ! ) 2 ( 1 - k)lsIir< 

S e t t i n g J 

k 
r. = # . , £ = 1 , 2 , . . . , 7<9 and r + E ( i - 1 ) ^ = x9 v % i = l 

we o b t a i n 
k \ \ 2 

(U *' + l)')' 
(p + 2 ) ( E E + 4 ) n xdi 

3 3 ' 1 
from which (2.8) follows. 
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.3- THE BETA-NEGATIVE BINOMIAL DISTRIBUTION OF ORDER k 

The beta-negative binomial distribution (or generalized Waring distribution) 
was considered by Irwin [9] in the context of problems in accident analysis. 
It was obtained from the theoretical mode] 

beta-negative binomial (a, b; c) ~ negative binomial (£>, p)g beta I (c* a) 

which is equivalent to 

beta-negative binomial (as b; a) ~ Poisson (A) ? gamma f—s b)^ beta II (a» o) 

Thens an extension of the beta-negative binomial distribution can be de-
fined by a slight modification of the latter mechanism., 

Let J be a r.v. such thats conditional on another nonnegative r.v., A has a 
Poisson distribution of order k with parameter A and p.g.f. given by (2.3). 
Assume now that A has a gamma distribution whose scale parameter is a beta II 
(a, o) r8v.s i se M assume that A has a p.d.f. of the form 

f(\) = r(q +_g) . Xb-1 ma-b-i(l , ,<a + c) -\/m fa 
J W T(a)T(b)T(a) A J0

 m u + m) e m° 

Then the final resulting distribution of X will have p.g.f. 

exp|-A ( i + k - £ stydX dm 

r( 
i . e . , 

^(S) = (a C+%(b) ^ ( a ' b; a + b + a'\t1
8i ~ k + X ) - (3>1) 

The above r e l a t i o n s h i p r e d u c e s , for k = 1, to 
°{b) 

Gr(s) =
 („ . „ \ — z

Fi(a> £* a + & + p ; s ) , 

i.e.s it coincides with the p.g.f. of the usual beta-negative binomial distri-
bution. Thus (3*1) defines a more general form of beta-negative binomial dis-
tribution in the framework of distributions of order k« We will refer to this 
distribution as the beta-negative binomial distribution of order k with param-
eters a5 bs and c; a5 b9 o > 0. 

The mean of this distribution can be obtained from (3.1) by differentiation 
at s = 1. 

Hb) a I" D + c i-i 

ab _ (b+ i 
(a + c)(b) a + b + c (c - 1)^) 

g(fr) o2> (a + °\b+\) k(k + 1) 

i.e., 

^ ( J ) " Uc - 1) • ^3'2> 
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The second f a c t o r i a l moment i s 

y [ 2 ] = E(X(X - 1)) 

°(b) a(2)^(2) ~(b) ^(2)~(2) / ^ ( K \ 2 

+ (a + e ) ( f c ) a + fc + C 2*1 ( « + L & + l ; . a + Z > + C + l ; l)£Ui - 1), 
i . e . 9 

i, = ah^a + D ^ + W & + !) , ccbUk2 - 1) 
Mt2] 4 ( e _ i)(0 _ 2 ) 3 (e - 1) • ^ J o J ; 

Hence9 we have9 for the variance, 

vfv\ - k ^ k + l ) 2 ^ ( g + g - l ) ( g + fc - 1) _,_ afefe(fe2 - l)(3fe + 2) , Q , , 
V{X) ~ 4 ( s - l ) 2 ( t f - 2) + 36(a - 1) * ( 3 e 4 ) 

Because application of the distribution will require estimation of three 
parameters (a, bs and <?)9 we also provide the third factorial moment. 

_ , g(g + l)(g + 2)Z^(^ + l)(fc + 2)k3 (k + I ) 3 

y[3] = E(X(X - 1)(X - 2)) - -s(o __ 1)(c _ 2)(e __ 3 ) 

g(g + !)£(£ + l)k2(fr2 - l)(/c + 1) 
2(e - 1)(<? - 2) 

. gftk(fr2 - l)(fe - 2) 
4(c - 1) 8 ^Jo3; 

Equations (3.2), (393)s and (3.5) can be used to develop estimators of the 
parameters g9 bs and c if a moment method of estimation is to be considered. 

Note that for k = 1 we obtain from equations (3.2)-(3.5) the corresponding 
moments of the usual beta-negative binomial distribution. Inspection of these 
formulas shows that y^j is expressed in terms of the first i factorial moments 
of the beta-negative binomial distributions i = 1 9 2 9 3. Hence y^j exists only 
If c > t, i = 15 2? 3. 

Let us now consider a nonnegative9 integer-valued r.v. X whose probability 
distribution is the beta^-negative binomial distribution of order k. We will 
show that the p.f. of X is given by 

P ( I ^ ) = 7 ^ E ^ E — ^ ^ ^ ^ . (3.6) 
(a + b + c) ( Z x . + £) H/^ 

j -1 

c(£) 

x = Q9 1, 29 

Setting c* - 7 • , x"\ - we have, from (3.1)9 

£x(s) - 0 * 2 ^ ^ , 2?; g + b + o; £ e* + 1 - /A 

a(r)b(r) Qc ** +1 - *y 
^0 (g + b + <?)(r) 
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a(r)hr) / r \ /-I 
° p^o(a + b + c)(r) t + ^ - r U» *V • ••> *V 

r a, 
= «*£ E E • 

r =0 £ = 0 Zvt = p - £ & 
(a + £ + )̂(Er, + £)̂ f Ilr-! 

J - l 
k 

Let x^ = p^ 9 £ = 1 9 2 9 . . . , fc9 and a? - p + ]T (£ - l ) r^ . Then t h e p . g . f . of J 
becomes ^ = 1 

GX(*) = <?*£ ^ E — T T " — E • —— 
(a + b + a)(lx. + i) n Xjl 

3 -1 

which leads to (3.6). 
It is interesting to observe that the beta-geometric distribution of order 

k defined in Section 2 and the beta-negative binomial distribution of order k 
defined in Section 3 are related in the same manner in which the ordinary beta-
geometric and beta-negative binomial distributions are related. In particulars 
the beta-geometric distribution of order k can be thought of as a special case 
of the beta-negative binomial distribution of order k for a - b = 1. 

4. SOME LIMITING GASES OF THE BETA-NE-GATJVE 

BINOMIAL DISTRIBUTION OF ORDER k 

It is known (see Irwin [8]) that the beta-negative binomial distribution 
can take a negative binomial or a Poisson form for certain limiting values of 
its parameters. So9 naturally one would inquire whether its generalization as 
defined in Section 3S i.e., the beta-negative binomial distribution of order k 
tends to a negative binomial or Poisson type of distribution of the same order. 
It can be shown that, indeed, this is the case. 

The Poisson distribution of order k and the gamma-compound Poisson distri-
bution of order k ••are obtained as limiting cases of the beta-negative binomial 
distribution of order k as indicated by the following theorems. 

Tiheorem 4.1: Let J be a nonnegative, integer-valued r.v. whose probability 
distribution is the beta-negative binomial of order k with parameters a$ b3 o* 
Then 

11-̂ (8) -exp^f^jS*-*)}. (4.1) 
where lim stands for limit as a •> +<»9 b •> +° °, c -> +°°  so that abI(a + o) < + °°  

H 
and a/(a + e) -* 0. 

The result of this theorem was not unexpected since^by its derivation^ the 
beta-negative binomial distribution of order, k can be regarded as a beta mix-
ture of the gamma-compound Poisson distribution of order k (studied by Philip-
pou [14]) with p.gof. 

G(s) = 11 + m(k - eE s*)) ' , m > 09 b > 0S (4.2) 

158 [May 



ON SOME MIXTURES OF DISTRIBUTIONS OF ORDER k 

which converges to a Poisson distribution of order k as demonstrated by the 
following theorem* 

Theorem 4.2: Let X be a r.v. having the gamma-compound Poisson distribution of 
order k with p.g.f. G(s) given by (4*2). Then, 

G(s) + exvbrib £.(8* - 1)1 (4.3) 

as m -> 09 b -*• +00 so that mb < + °°. 

Theorem 4.3: Let X be defined as in Theorem 4*1* Then* 

lip Gx{8) = (l + §(/c -£«*))"* . (4-4) 

where lim stands for limit as a -> +°°  and <? -*- +°°  so that a/(a + c) < + °o. 

Note that9 for fe = 1, relationships (4*1) and (4*4) yield the Poisson and 
negative binomial limit of the ordinary beta-geometric distributions respec-
tively s while (4.3) yields the Poisson limit of the ordinary negative binomial 
distribution. 
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For a f i n i t e sequence of nonnega t ive i n t e g e r s , A = { a l j - } s j = 1 , 2 , 3 , . . . , 
n , de f ine i t s s e t of a b s o l u t e d i f f e r e n c e s by the r e c u r s i o n r e l a t i o n 

aij = \ai-i, j - <Zi-i, j + i l » for t + j < n + l . 
We w r i t e A a long wi th i t s s e t of a b s o l u t e d i f f e r e n c e s in t h e n a t u r a l way i n d i -
ca t ed in t h e fo l lowing t a b l e and c a l l t he r e s u l t i n g t r i a n g u l a r a r r a y T{A). 

1 2 4 4 8 10 6 
1 2 0 4 2 4 

1 2 4 2 2 
1 2 2 0 

1 0 2 
1 2 

1 

If the left "column" of T(A) consists totally of l?s, we say that A is a 
good sequence.' There are a great many good sequences of length n5 ranging from 
the "smallest," {1, 0, 0, . ... 0}s to the "largest/1 {1, 2, 4, .... 2n~1}. Gal-
breath conjectured that the sequence {p^ - 1}, where p^ is the ith prime, is an 
infinite good sequence (see [1]). A natural question to ask is: How many good 
sequences are there of length nl In this paper, we shall answer this question 
for small n, and present a heuristic recursion relation, 

Let G{n) be the set of good sequences of length ns with g(n) = #G(n). If 
g € G(n), we note that each row of ^(gO is a good sequence. This observation, 
along with the obvious one that any initial subsequence of a good sequence is 
also good, leads to the following definitions. 

For g € G(n - 1), let e(g) = #{g* € G(n)9 with g an Initial subsequence of 
g*}9 and e* (g) = #{#* € G(n) 9 with # the second row of T^*)}. We say that e(g) 
is the number of ways to extend T(g) to the right, and e* (g) is the number of 
ways to extend it upward. 

Now, assume g € G(n - 2), and extend T(g) both to the right and upward, as 
in Figure 1. If we choose c so that \b - c\ - a, we will have a triangular 
array that is T(g*) for some g* € G(n). Since c can be chosen in either 1 or 2 
ways for a given a and 2?, based on their relative magnitudes, we have the fol-
lowing equality-

e*(g) ways 
9W> = E e(g)e*(g)8(g)9 \ \ °°» ~ ~ ••• b /^ 

•geG(n-2) \ _ _ ^ ^ 

where 1 < 3(a) < 2, \ . / / 

\ • / / e(@) ways 

FIGURE 1 
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The average value of both e(g) and e* (g) is g(n - l)/g(n - 2). Also9 since 
a and b are each the last elements of members of G{n- 1)9 we expect a^b about 
half the time* and vice versa. In other words9 we expect $(g) ~ 3/2 on aver-
age * By replacing e(g)5 e* (g) 9 and &(g) with these "averages" in the previous 
sum9 we have an "expected" asymptotic recursion relation9 

k 2 
gin) 3 (g(n - 1))-

2 g(n - 2) •» as H 

To test this relation, ̂ (n) was calculated for n ^ 10. Its values9 along 
with the values for 3(H) = g(n)g(n - 2)/(g(n - 1) 2

9 are presented in Table 1. 

TABLE 1 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

#(«) 

1 
2 
5 
17 
82 
573 

5*839 
869921 

i98909317 
6090139894 

3(n) 

— i 

-
1.250 
1.360 
1.419 
1.449 
1.458 
1.461 
1.461 
1.460 

The following questions naturally arise: 

Is there a formula for g(n)l 

Does lim g(n)g(n - 2)/(g(n - I))2 exist? If sos what is it? 

REFERENCE 
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CONVERGENCE OF TRIBONACCI DECIMAL EXPANSIONS 

RICHARD H. HUDSON 
University of South Carolina, Columbia, SC 29208 

(Submitted June 1985) 

1 , INTRODUCTION 

Let F^ denote t he F ibonacc i sequence def ined by 

F± = F2 = 1 , Fi = Ft_2 + Fi_19 f o r i > 3 ; 

that is9 1, 1, 2, 3, 5, 8, 13, 21, 34, ... . In 1953 Fenton Stancliff [5] ob-
served that 

LlO-^F; =^. (1) 
i = l o y 

Since 1953 a number of authors including Wlodarski [8] , Brousseau [l],Koh-
ler [3], Winans [7], Long [5], Hudson and Winans [2], and Pin-Yen Lin [4] have 
investigated the convergence of Fibonacci decimal expansions, 

£lO-w + 1 ) F a i , a > 1. 
i = 1 

Co F . Winans f i r s t observed t h a t 

E io- ( i + 1 ) F 2 i 

i = l 

appears to converge to 1/71 employing decimal approximation, since 

~j = .014084507... 

and 

Eio-(i+1-V2i = .01 (2) 
£-1 + .0003 

+ .00008 
+ .000021 
+ .0000055 
+ .00000144 
+ .000000377 
+ .0000000987 
4- .00000002584 
+ .000000006765 

.010408448305 

Convergence of (2) to 1/71 was proved in [2], as were 

ElO^+1>F2i = j , and El0-(i + 1)P3i = i -
£ = 1 Dy i = l JL 
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The purpose of this paper is to prove an analogous conjecture of Winans for 
tribonacci decimal expansions and to generalize this result to obtain conver-
gents in cases where Winans found that decimal approximation failed to give 
even a clue to the correct convergent. As in the Fibonacci case, the conver-
gents include coefficients that involve a fascinating, though more complicated, 
tribonacci-like recurrence relation; see Theorem 2 in Section 3. 

2. PROOF OF WINAN'S CONJECTURE 

Let Ti denote the tribonacci sequence defined by T0 = 0, T1= 1, T2 = 1, and 

Ti = T,_s + T,_2 +Ti_1, i > 3; (3) 

that is, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, ... . Employing decimal 
approximation, Winans conjectured the following theorem which we now prove. 

Theorem 1: Let Ti be defined as in (3). Then 

T,lO~k(i + 2)Ti = . (4) 
i - i i o 3 k - 102/c - 10k - 1 

Proof: Define f(z) by 

f(z) = flT.z^ (5) 
i = 1 

and note that since T1 = T2, T3 = T1 + T2, and Ti = Ti _± + Ti_2 + Ti_3 for i > 4, 
we have 

(1 - z - z2 - z3)f(z) = (1 - z - z2 - z3)(T±z + T2s2 + .-.) 

= T±z + (T2 - T±)z2 + (Ts - T2 - T±)z3 + (Th - T3 - Tz - T±)zh + ... 

+ (T„ - T - T 0 - T Jzn + •• • 
v n n-l n-2 n- 3 y 

= 2^2 + (̂g - T±)Z2 + (T3 - ̂  - ̂ ^ S 3 = Z. 
Therefore, 

/(*) = ZT.z- = - ^ F. (6) 
i=l 1 ™ Z - 3 - 2d 

Since |1 - z - z2 - z3 ! > 1 - \z\ ~ \z2\ - \z3\ > 0 if Is I < 1/2, the function 
f(z) is analytic in the disc {z € C i \z\ < 1/2}. Consequently, its power series 
expansion is absolutely convergent for all z with \z\ < 1/2 and (6) holds if we 
replace s by any complex number with modulus less than or equal to 1/2. 

In particular, if we let z = 10~fe with k ^ 1, we obtain 

2 > . 1 ( r ^ « _ 1 0 ^ = 1 0 ^ 9 ( 7 ) 
i « i i . io~fe - io~2fe - lO - 3 ^ 103fe - 102fe - 1 0 ^ - 1 

completing the proof of the conjecture of Winans. 

Remark: Define an n-ary Fibonacci sequence by the recurrence relation 

TUn = V-.-1,* + Ti-«-2,n + '•• + Ti-i,n > n> 2, i> n. (8) 
Using the same method given in the proof of Theorem 1, one obtains: 
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f^iQ-k(i + n-i)T = 1 ^ 
*-i 10nA: - 10 ( n " l)k - ... - 1 

This result was conjectured by Winans for tetrabonacci and pentabonacci expan-
sions . 

Numerical Examples: Analogous to ( 1 ) , observed by Stancliff, we have from ( 7 ) , 

"(i + D/TT = I = _1 

1 1000 - 100 

Moreover, by (9), we have 

A \ -1 1000 - 100 - 10 - 1 889 

El0"(i + 1¥. * l 
i = 1 'i,** 10000 - 1000 - 100 - 10 - 1 8889 9 

ands in general (with the dots denoting n - 1 eights), 

T,lO<i + 1)Ti n = 888. ..89 

for an n-ary Fibonacci decimal expansion. 

3. GENERALIZATION OF WINAN'S CONJECTURES 

For a ̂  2, Winans was unable to formulate a conjecture for the correct con-
vergents for YA0~kz Tai even for k = 1, a = 2. Once one establishes the correct 
convergent as we will in Theorem 3 of this section, one observes that El0~tT' 2i 
does converge fairly rapidly to 110/689. Indeed, 

10 

Eio" 
i = 1 

a n d 689 = 

'ZT • = .1 
+ .04 
+ .013 
+ .0044 
+ .00149 
+ .000504 
+ .0001705 
+ .00005768 
4- .000019513 

.159641693 

.159651699... . 

First, we require a theorem involving a recurrence relation for tribonacci 
numbers which is interesting in itself and essential to the goal of determin-
ing all convergents of 

Jtl0~HTais k > 1, a > 1. 
t = i 

Theorem 2: Let T0 = 0, T1 = 1, T2 = 1, and let ^ = Ti„3 + Ti.1 + Ti-1 for £ > 3. 

Define sequences {a^} and {2?^} by 

ai = a - L - l + ai-2 + a i-3 f ° r ̂  ^ 4 ; a i = l s a2 = 3 s a 3 = 7 s (10) 

1987] 165 



CONVERGENCE OF TRIBONACCI DECIMAL EXPANSIONS 

and 

*>i = bi-i +h-2 +fci-3 for i > 4 ; bx =b2 = 1, b3 = -5. (11) 
For every positive integer a ̂  1, 
T3a + i = "Jza+i + b«T« + i + Ti; i > 0 . (12) 

Proof: Let gls 32*
 an& 03 be the distinct complex roots of z3 - z2 - z - 1 = 0 

so that 

(z - 3x)(s - B2)(s - B3) = s3 - z2 - z - 1. (13) 

Then there are constants u1$ u2* and u3 such that 
Ti = Mi^i + w2^2 + ^303 for every £ > 0. (14) 
Define 

^a " B? * 62 + Bs* ^a = "[0102 + 010? + B?B?]» â « tf^s)"-

Nowj it is easily checked that 

(0?)3 - (0i + 05 + Ba
3)(0p2 + [(0x02)a + (0x0-3)°  + (0203)a]0i - (0i0203)a 

- B3a - B3a - 3*0f - 0^0f + 0° 0f + 0°ef°  + (02030!)a - (0!0203)a - 0^ 

and similarly for 3^ an^ 03? so that g", 3^* anc^ 03 are tne r° ots of the equa-
tion 

z3 - A a s 2 - Baz •- Ca = 0 . 

Using ( 1 4 ) , we o b t a i n 
T —AT. — B T- - CaS'i 0. (15) 
From (13), it follows that 
Ai = A i - i + ^ - 2 + A%-3 f o r e v e r y ^ ^ 1 (16> 

[S ince , for j - 1, 2 , 3 , B5 = 3 } " 1 + 0 5 " 2 + B ^ 3 <*+ B r 3 ( B ? - B2 - Bj - 1) = 0] 
and clearly 

Ci = 1 for every £ > 0. (17) 

In particular^ (13) implies that 0x02 03 = 19 so that 

Ba « -[6~a + B;a + 03aK (18) 
Replacing z by z'1 in (13), we obtain 

( i - »i)(i " B
2)(i " »s) - IF - (ex + e2 + e,>(£) 

+ ( g . g , + 6 ^ 3 + e 2 3 3 ) ( ^ ) - 6 x 6 2 6 3 , 

so that 6X + B2 + 63 = 1 and 6X62 + 6X63 + 6233 = -1. 
On the other hand, we have, as 6^263 = 1» 

VI " Jl)\l ~ 6l)\I " 6l) =iF• " (B7 + '62"+ 67)(p") 
+ fefe + A") + 6ifc)(a) " * 

= J_ + J _ + I _ ! 
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so that 1/B19 1/B2> and l/g3 are roots of (l/z)3+ (1/s)2+ (1/g) - 1 
evers 6263 = l/g19 g133 - l/g2, and 6182 = l/g3, so we have 

*~[&t+&)'*(*;)']• 
Consequently, 

if and only if 

Bi-i + B i - 3 ^ i > 3 

•[• 

which is true in view of the fact that l/g1§ 1/S2, 1/63 ar^ roots of 

0. 

0. How-

(19) 

.(£)*+ (£)" • iff 

- W"+af' • an-
But t h i s i s e q u i v a l e n t s s i n c e 3 X 3 2 + S>xS>s + $2^3 = ~*» t o 

W'+(tf-'+t£rjmf+iv)'-+® -1)))- 0,. 

Finally, checking initial values, we observe from (16), (17), and (19) that 
aa = 4a, £>a = Bas and Ca = 1 for every a> 1 completing the proof of Theorem 2. 

Using Theorem 2^ we can now easily establish our main Result, from which 
convergents of all tribonacci expansions of the form ElO" ra^ , a ̂  1, k ^ 1, 
may be calculated. Clearly, this contains Theorem 1 as the special case a = k 
= 1. However, we note that the proof of the following theorem does not appear 
to generalize trivially to n-ary Fibonacci expansions, n > 39 because of its 
dependence on Theorem 2. 

Theorem 3°  Let {T^}, {a^}, and {b^} be defined as in Theorem 2. Then 

Eio- •&£ i 

102k + (T0 a a T 0 ) . 10-

i = l 10 3fe 102k - ba • 10k - 1 
(20) 

iff the denominator is nonnegative. 

Proof" Define F(z) by 

F{z) 
1*1 

and observe that 

E Taizi, a > 1, (21) 

(1 - a a s - £ a s 2 - s 3 ) ( r a s + ^ 2 a s 2 + TBaz3 + • • • ) 
, 2 , / m _ /71 ^ _ /71 k \«3 ~ TZa

aa ~ 2a^a)s + terms of higher degree. 
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Using (12), it is easily seen that the coefficients of all powers of z 
greater than 2 vanish. Hence, 

.2 

F(z) 
Ta* + ^ 2 a «*To)*' 

1 bn,Z' 

Let yj, Y2» a n d Y3 b e the roots of 

1 - anz - bnz2 - z3 = 0. (22) 

We begin by showing that exactly one of the roots of (22) is real. Indeed, 
it suffices to consider the case a = 1. For, assume that one of yj, y®* Y?» 
say yl5 is nonreal and that all of y", y2, Y3 are real. Clearly, Q(ji) is a 
proper subfield of ^(yx), so that deg(Q(y®/Q)) < 3 and divides 3; that is, it 
is 1. Consequently, yj is an algebraic integer lying in Q. Indeed, it is a 
unit because it is a root of 1 - aaz - baz2 - z3 = 0, so that y" = ±1. Thus, 
y± is a root of unity, which is clearly impossible. 

It is now easy to show that (22) has exactly one positive real root when 
a = 1. Let f(z) = 1 - z - z2 2z 3zz < 0 
for all real z since f'\z) = -2 - 6z = 0 only if 2 = -1/3 and /'"(-1/3) < 0 so 
that fT(z) has a maximum at z = -1/3. However, /'(-1/3) < 0 so that f(z) is 
decreasing for all real z and, since f(l/2) > 0 and f(l) < 0, it is clear that 
f(z) = 0 has one real root z9 (1/2) <s < 1, and so must have two nonreal roots 
which are conjugate pairs. 

Now, let h(z) be the polynomial defined by 

Hz) = Taz + (T2a - aaTa)z2. 
Then, applying partial fractions, we have, as a = 1, 

F(z) 
Yi 

<r£( f f +T^(TT
 +T^(f)n)-

\ Y i n = o U l / Y 2 n = 0
v Y 2 / Y 3 n = o v Y 3 / / 

This converges i f < 1, < 1, and < 1. 

Now the denominator of F(z) can be written as 

(Yi " 2)(y2 - s)(Y3 - z) 
and if we let y± be the real root between 1/2 and 1 and note that 

(Y2 - s)(y3 - z) > 0, 

since y2 and y3 are complex conjugates, we see that, for real 2, 

1 2 - 2 ' > 0 if and only if y± - z > 0 or z < y1. (23) 

Clearly, then, as Y1Y2Y3 = 

\z\ < |y2| and \z\ 

completing the proof. 

1 and |y2| = |y3| = (l/^/y\) > 1, we also have 

< I Y 3 | . 
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Example 1: Let k = 3 and let a = 8. Then, by Theorem 3, 

44 » IP6 + 4 • IP3 44,PP4,PPP ElO"3iTfl T̂i 8i !09 ~ 131 • IP6 + 3 • IP3 - 1 869,PP2,999 * 

Note that this fraction is approximately equal to .050637..* and that with 

T8 = 44, T1B = 5768, T2h = 755476, 

we have 

ZlO" 3 1 ^ = .044 
*-i + .005768 

+ .000755476 
.050523476 

so that the series converges quite rapidly for k = 3 although it does not con-
verge at all for k = 2. 

Example 2: Listed in the table below are the convergents of 

QO 

Y,lO~kiTai f o r k = 1, 2 , 3 and a < 4 . 
•£ = 1 

a = 1 

a = 2 

a = 3 

a = 4 

k = I 

IPP 
889 
IIP 
689 
19P 
349 

None 

k = 2 

1P,PPP 
989,899 
IP,IPP 
969,899 
19,9PP 
93P,499 
4P,PPP 
889,499 

k = 3 

1,000,000 
998,998,999 
1,001,000 

996,998,999 
1,999,000 

993,004,999 
4,000,000 
988,994,999 
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We are concerned with finding the convergents Cj(a) = —̂ -, 
to a positive real number a that satisfy the inequality, v 

in lowest terms, 

la - CJ (a) I < 
r,q) 

o < e < i . ( i ) 

From Le Veque [3] or Roberts [4], we have the following theorems. 

Hurwitzfs theorem states that, if a is irrational and 3 = 19 there are in-
finitely many irreducible rational solutions to (1). 

Dirichletfs theorem states that, if 3=v5/2, then all rational solutions to 
(1) are convergents to a* 

Since l/v5 < 1/2, we note that the expression "irreducible rational solu-
tions11 in Hurwitzfs theorem may always be replaced by "convergents/1 

It is readily shown (see [4]) that if a = T = (1+ >/5)/2 (the Golden Mean) 
then there are only finitely many convergents to x which satisfy (1). In [5], 
van Ravenstein, Winley, & Tognetti have determined the convergents explicitly,, 

We now extend [5] by determining the solutions to (1) when a is equivalent 
to T5 which means the Noble Number a has a simple continued fraction expansion 
(a 0 2 I , 1, 1, ...) where the terms a-, ,, an are posi-
tive integers, an ^ 2 and a0 is a nonnegative integer, 

Using the notation of [5], with Cj replaced by Cj (a), and well-known facts 
[see Chrystal [1] and Khintchine [2]): 

CD Pj 

for j > 0, p_2 

Pi-2 + ajPj-i> 
fli-2 + a^j-i> 

0 and q^2 = p_x = 1; 

(ii) qj+1 > q6 > qjml > ••• > qQ - 1; 

(iii) p ? -P,.^..! - (-DJ'; 
F • 

(iv) C(x) = -4/-^, where F- is the j'th term of the 

(v) F< = 

Fibonacci sequence {1, 1, 2S 3S 5, ...}; 

T J+I - (1 - T)J' + 1 

A 

(2) 

It follows from (2(1)) that 
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C, (a) 
p. + a.p. 

7- P j-n- lrn-l 

, J = 0, 1, 2, . , n 

F. p 
3 - n L n 

3 L3 • 
+ F. 

and 
F. q + F. a ' 

j = n + l , n + 2 , .. ., 

(-D" 

(3) 

P + TPn 
a = lim CJ; (a) = — ; = C„ (a) + - , , N 

Using (2(111)), and (2(iv)) in (3), we see that, for j > n + 1, 

£. ,(T)p + p n 
J - n- l v y t r c c'w - 1 

C* = ~C- Al)q +q / 

^ • - n - l ^ ) = F 
3-n 

and 
j - n- 1 

I r ^ l ' T - C i - ^ - x ( T ) l 
| a " ° ' W | " ( ? „ . ! + < 7 „ T ) ( C 7 . . „ . 1 ( T ) < 7 B + < 7 n . 1 ) 

(4) 

Hence, for j ^ n + 1 , (1) reduces t o 

IT - C ^ ^ C O l < 
A F . 2 ,(C. . (T)a + a . ) 

j - n - l v Q-n-V- '^-n ^n-ly 

If j - n - 1 is e1 

[2 = 1 + T in (5) we seek nonnegative values of fc such that 

(5) 

3-n- 1v "J -

If j - n - 1 is even (j = n + 1 + 2fe, fc = 0, 1, 2, . . . ) 9 then using (4) and 

Using (2(v)), this reduces to 

fc < ln| 4 In x. (6) 
Vr'(l - S)(T?n +qn_1), 

Now nonnegative values of k in (6) exist only if 

> 0, In 
W - e)(T<7n +^_1) 

which means that 

lu < 3 < 1, where 3U = A 

If j - n - 1 is odd (j = n + 2 + 2fc, fe = 0, 1, 2, ...)> then (5) reduces to 

(F2k + 2 ~ ^ 2 k + 1 ^ F 2 k + 2% + F2k+1«n-J < ^ n - X + ^ ) -

Using (2(v)), this further reduces to 

T(-R7 . - q ) 
Ln -1 nn rhk+ 6 (1 - 3) < 

T<?n + < 7 n - l 

172 
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Since the left side is positive and the right side is negative, 

T < x - a« < 0, 

there are no nonnegative values of k which satisfy (7). 

This completes the solutions to (1) for j > n + 1. 

If j - n, then from (3) we have 

I a - Cn (a) I = — - , • r-, 
' a (TO + q n) 

and so (1) becomes 

1 < 6 

which means 3 > 
^n ^n - 1 

.nee T -However, since T - (q /q ) < 0, we have a "> TO , and this gives 
*w n-1 'n ln -1 

xa + q 
> l , 

which is not possible, Hence, Cn(a) does not satisfy (1). 
Consequently, there are no convergents that- satisfy (1) if g < 3W and j ̂  n. 
On the other hand, if 3 > 3̂ > then there are [5] + 1 convergents that sat-

isfy (1). They are given by 

F. p + F. p 
/-r/'N 3-rv-n j - n - l L n - l . - 0 . i . o r ^ i 
0, (a) = — , j = n + 1, n + 3, *.., n + 1 + 2 [5], 

t/ J? Q "T* x* . £7 
Q-rP-n j-tt-l^n-l 

where # (o) 
5 = lnl — 1/4 In x, 

Td(l - 3)(Wn H-^^) 

and [£] denotes the integer part of S» 
We note that if n = 0, then a = (a0; 1, 1, 1, . * .) > a0 > 2, and the result 

(8) reduces to that given in [5]. 
It does not appear to be possible to mal̂ e a precise statement as to which 

of the convergents C-j (a) for j = 0, 1, 2, . . ., n - 1 will satisfy (1) without 
knowing the values of aQ9 a19 -.., #n_i°  However, we have shown that, if 0 < 3 
< I, then there are only finitely many convergents to a which satisfy (l)o 
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JOSEPH W. CREELY 
31 Chatham Place, Vincentown, NJ 08088 

(Submitted July 1985) 

1 . INTRODUCTION 

Let D be an o p e r a t o r def ined on a p a i r of i n t e g e r s 

A = ( a l 9 a 2 ) , a 1 > a 2 > 0, 
by 

( (a29 a1 - a 2 ) , 2a2 > a±9 
D(al9 a2) = < (1.1) 

( (a1 - a29 a 2 ) 9 ax > 2a2. 

Given any initial pair AQ9 we obtain a sequence {An} with i4n = DAn_l9 n > 0. 
This sequence is called the "two-number game." 

Defini tIon 1.1: The length of the sequence {An}9 denoted L(A)s is n such that 
An = (a'9 0) for some integer a! > 0. 

Definition 1.2: The complement of A is CA = (al9 ax - a 2 ). 

It follows that C2^ = A and 

PGA = DA. (1.2) 

The effect of D on (al9 a2) is to reduce a\ by a2 and then arrange a\ - cc2 and 
a2 in order of decreasing magnitude to form P(als a 2 ). 

The number pair (a19 a2) may be replaced by a rectangle (ax . a2) of sides 
a1 and a2. In such a case9 £(#1 • a2) 9 C(a1 . a 2 ) 9 and L(ax . a2) may be defined 
as above9 but by replacing the comma with a dot. £(#1 . a2) and C(a1 . a2) are 
then rectangles. The length L(a1 , a2) is equal to the number of squares ob-
tained by removing the largest square (ax . a2) from an end of (a1 . a 2 ) 9 then 
the largest square from an end of the remaining rectangle, and so on5 until no 
squares remain. Therefores 

L(a19 a2) = L(a± . a 2). (1.3) 

For example9 

(5 . 3) = (3 . 3) + (3 . 2) = (3 . 3) + (2 . 2) + (2 . 1) 

= (3 . 3) + (2 . 2) + (1 . 1) + (1 . 1) 

from which L(5 . 3) = 4 . See Figure 1 on page 175. 

Replace (a±9 a2) by the vector A = ( A , and write Z) in matrix form: 
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1 2 1 1 

1 • 1 

J 2 [ — L _ 
1 

L_L_ L 
3 

8 

2 

2 

FIGURE 1 . L(5 . 3) = L ( 5 . 2) = 4 , C(5 . 3) = (5 . 2) 

DA 
VI - 1 I ' 4 9 ^ 2 ^ a i S 

(J > • ax ^ 2a2« 

Then £>k4 = kDA fo r fc > 05 and 

L{kA) = L M ) . 

I t fo l lows from the d e f i n i t i o n t h a t 

L / * i + M a 2 \ . „ + L g i ) , « > 0 . 

Choose c such t h a t a 2 | ( a 1 - c) and ax > a 2 > c > 0. Thens 

\ a 0 / 

^(a1 - o) 
a2 + e l 

and from ( 1 . 6 ) , 
a , - a 

LlaA = - i \a2l ar 
+ L 

( ' • ) • 

(1 .4 ) 

(1 .5 ) 

(1 .6 ) 

(1 .7 ) 
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Now, {a1 - o)/a2 is the greatest integer in a1/a2, since a2 divides a1 - o 
and a2 > c > 0, so 

where [x] represents the greatest integer function of x. Since c represents 
the quantity a (mod a )* Equation (1.7) may be written 

<::) + L J a2 
J\ax (mod a2)i 

This relation may be iterated as in the following example: 

K253H¥H§M§M!H-
Table 1 exhibits L( 1 j for a±9 a2 equal to 1, 2, . .., 15. 

=e:) TABLE 1 

(1.8) 

g 2 \ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

i !3 
i U 

15 

1 2 3 

1 2 3 
1 3 

1 

4 

4 
2 
4 
1 

5 

5 
4 
4 
5 
1 

6 

6 
3 
2 
3 
6 
1 

7 

7 
5 
5 
5 
5 
7 
1 

8 

8 
4 
5 
2 
5 
4 
8 
1 

9 

9 
6 
3 
6 
6 
3 
6 
9 
1 

10 

10 
5 
6 
4 
2 
4 
6 
5 

10 
1 

11 

11 
7 
6 
6 
7 
7 
6 
6 
7 

11 
1 

12 

12 
6 
4 
3 
6 
2 
6 
3 
4 
6 

12 
1 

13 

13 
8 
7 
7 
6 
8 
8 
6 
7 
7 
8 

13 
1 

14 

14 
7 
7 
5 
7 
5 
2 
5 
7 
5 
7 
7 

14 
1 

15 

15 
9 
5 
7 
3 
4 
9 
9 
4 
3 
7 
5 
9 

15 
1 

Let 

«•( ! * ) • ' - ( ! . ? ) . - * - « - ( J !)• 
From (1.4), we have two forms of D'1: Z?"1 = Q and Z)^1 = P. D~2 has 22 forms, 
namely Q2, §P, P§, and P2. Z?"n has 2n forms called £>~n which are the terms in 
the expansion of ( 
1, 2, ..., 2n - 1 

+ P ) n , where P and g do not commute. The 2n numbers j = 0, 
may be expressed uniquely in binary form using n digits so 

that each D -n may be paired with a distinct binary number. 

Defini t ion 1.3- We choose to define P"n as the product derived from the binary 
number j of n digits in which 0 is replaced by Q and 1 by P. 
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For example, if j = 35 n = 4, the binary form of j is 0 0 1 19 so that 
D~h = Q2P2. 

It follows that P~xP~n = D'71'1 and 

D^mD--n = D~k
m~n, where k = 2ni + J. (1.9) 

Note that D^m and D~-n do not commute. 

2. SEQUENCES OF VECTORS 

Def in i t ion 2.1: If a1^a2> A is said to be proper, and if a1 and a2 are rela-
tively prime, then A is said to be prime. 

We will assume henceforth that A is a proper prime vector. It follows that 
PA and QA are proper prime vectors, and hence D~nA in any of its forms is pro-
per and prime. 

Def in i tion 2.2: Let A(i9 j) represent the vector A of length i = L(A) as fol-
lows : 

A(l, 0) = DA(2, 0) = (|), 

A(2, 0) = D°A(2, 0) = (*), 

A(3, 0) = £"^(2, 0) = (2), 

4(3, 1) = P~^4(2, 0) = (̂ ) and if i > 2, j = 0, 1, 2, ..., 2 ^ 2 - 1, 

v4(i, J) = P / + 2 ^ ( 2 , 0). 

Consider the sequence {Xn = A (n + 2, j) , /? = 1, 2, ...}, where 

Xn = D'^d) and L(Jn) = n + 2. 

If j = 0, then 

*« = ^"(l) a n d Jn + 2 " Zn + i ~ Zn = °  f r o m t h e identity Q2 - Q - I = 0. 

This identity may also be applied to cases where j = 2n~ , 1, and 2n~ + 1 to 
yield the same recurrence relation. If j = 2n - 1, 

Xn = P n Q and Jn+2 - 2Xn+1 + Xn = 0 from the identity P2 - 2P + J = 0. 

This relation also holds for j = 2n~1 - 1, where Xn = ^P7 1 - 1^ 

Note that X is represented as a product of elements selected from the set 

(P, Q) and a vector (A . Then CTn is Jn in which its first matrix (P or Q) is 

replaced by its complement (Q or P). Zn and £Tn have the same recurrence rela-

tions. See Table 2. 
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TABLE 2. Sequences {Xn = ̂ (n + 2, j)} 

3 

0 

o n- 1 

1 

2n-l + ]_ 

2n - 1 

2 n - l _ x 

Xn 

QiD - [Fr:) 

p^-2p{\) - fe;)if - > i 

PiD - («• i 2 ) 

Recurrence 

Xn+2 ~ Xn+1 Xn = 0 

^ n + 2 ~ ^ n + 1 ~ Xn = ° 

^ n + 2 ~ Xn + 1 ~ Xn = ® 

rc + 2 n + 1 ft 

21 ^22 
L e t Z = ( ? u ' ^ 1 2 ) 9 Xi = ( ^ 1 ) , and Z I { = J i + 1 , i =0 , 1, 2, . . . , so that 

K X0 ~ Xn (2 .1 ) 

The characteristic equation for k is \yl - K\ = 0 or 

y2 - ftn + k21)y + | z | = o. 
By the Cayley-Harnilton theorem, 

K2 - (k1± + k22)K + \K\l = 0. 

Multiply both sides of this equation on the right by Kn~2XQ9 then 

KnX0 - (/clx + ^22)Zn_1Z0 + |z|Zn_2J0 = 0. 

From Equation (2,1), 

a recurrence relation for J„. We will assume here that 

(2.2) 

\x09) \b)' 

The sequences {xnl} and {xn2} have been described by Horadam [1] as 

{wn} = {wn(a, b; p, q)} : w0 = a5 w1 = 2?, z*?„ = pwn_1 - qwn_2, n > 2. 

In either sequences p = tr(/{), the trace of K, and (7 = |z| . 
We may substitute D~jr for K and ,4(2,0) for XQ in (2.1) to yield a sequence 

with the property L(Xn) = m + 2. Let PJ2" = 5 ^ ... Sr> where ̂  e (P, S) . 
Note that any 2 x 2 matrices /I and B have the property trG4B) = tr(M), so 
trCŜ S,, ... £r) = tr(£2£3 ... S ^ ) . 

Therefore, p is the same for K equal to any cyclic product of the S^. Since 

\P\ = 1 and \Q\ = -1, 

q = |Z| = (~l)ss where s represents the. number of Si equal to Q. Consider the 
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example: 

Dll = QPQPQ =(] I ) . 

There are five different cyclic products of the Sii j = 5595 10s 18, 20. These 
form the sequences 

{DJ5nA(2, 0) = Xn i n = 0, 1, 25 . ..} 

having the recurrence relation 

Xn = 9Xn_1 + Xn_ 2 

and satisfying L(Xn) = 5n + 2., These sequences are exhibited in Table 3. 

TABLE 3- Related Sequences 

i 

5 

9 

10 

18 

20 

D'o 

(I 
d 
(I 
(5 
(I 

5 

5) 
?) 
1) 
I) 
I) 

{Xn: n = 0 , 1, 25 . . . } 

{(D. c.'). ("/)• - } 
Hi). (?)• o - - } 
{ \ l / s V12/5 i l 0 9 / s • " • } 

{(?)• (!?)• O - •••} 
{(?)• do)' ('")• - } 

REFERENCE 

1. A. F. Horadam. "Basic Properties of a Certain Sequence of Numbers." The 
Fibonacci Quarterly 3S no. 3 (1965):161-76. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

Assistant Editors 
GLORIA C. PADILLA and CHARLES R. WALL 

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solu-
tion or problem should be on a separate sheet (or sheets). Preference will be 
given to those typed with double spacing in the format used below. Solutions 
should be received within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn + 2 = ̂ n+l
 + Fn> FV = °> *"l = 1 

and 

PROBLEMS PROPOSED IN THIS ISSUE 

B-592 Proposed by Herta T. Freitag, Roanoke, VA 

Find all integers a and b, if any, such that Fa Lb + F a _1Lb_1 is an integral 
multiple of 5. 

B-593 Proposed by Herta T. Freitag, Roanoke, VA 

Let A(n) = Fn+1Ln + FnLn+1. Prove that A(l5n - 8) is an integral multiple 
of 1220 for all positive integers n. 

B-59̂  Proposed by Herta T. Freitag, Roanoke, VA 

Let 

A ^ = Fn + iLn +Fn^n + 1 and B (n) = t i,A(k). 
j = 1 k = 1 

Prove that B(n) E 0 (mod 20) when n E 19 or 29 (mod 60). 

B-595 Proposed by Philip L. Mana, Albuquerque, NM 

Prove that 

±f<n-k)>z(»+
6*) + (»+

6l) N 5 ) . 
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B~596 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let 
m 

S(n9 k, m) = X Fni + k-
i = ± 

For positive integers a5 m, and k, find an expression of the form XY/Z for 
£(4a5 k, m), where Z9 J3 and Z are Fibonacci or Lucas numbers. 

B-597 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Do as in Problem B-596 for £(4a + 2, k3 2b) and for £(4a + 2, k, 2b - i), 
where a and 2) are positive integers. 

SOLUTIONS 

Fibonacci-Lucas Hyperbola for Odd n 

B-568 Proposed by Wray G. Brady, Slippery Rock University, Slippery Rock, PA 

Find a simple curve passing through all of the points 

(F19 £]_), (-c 3 s £3)5 °*«s (•c2n+l5 -^2n+l)9 ° 8 a * 

Solution by C. Georghiou, University of Patras, Greece 

It is easy to show that the given points do not lie on a straight line. 
However, 

L2n+l'F2n+l + A a s n -> °°, 
and It is also known that 

5 ^ + i - ^„ + i = 4. 
Therefore, the given points lie on a branch of the hyperbola with equation 

5x2 - y2 = 4. 

Also solved by Paul S. Bruckman, L. A. G. Dresel, Herta T. Freitag, L. Kuipers, 
J. Z. Lee & J. S. Lee, Bob Prielipp, Sahib Singh, Lawrence Somer, J. Suck, Tad P. 
White, and the proposer. 

Fibonacci-Lucas Hyperbola for Even n 

B-569 Proposed by Wray G. Brady, Slippery Rock University, Slippery Rock, PA 

Find a simple curve passing through all of the points 

(*V LQ), (F2, L2), . . . , (F2n, Lzn), . . . . 

Solution by J. Z. Lee, Chinese Culture University, Taipei, Taiwan, R.O.C. & 
J.S. Lee, National Taipei Business College, Taipei, Taiwan, R.O.C. 

A simple curve passing through all of the points (F2 * L2) * (F^9 L^), . .., 
(F2n> L2n), . . . is y2 - 5x2 = 43 since L2 - 5F2= 4(-l)n. 
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Also solved by Pauls. Bruckman, L*A„ G« Dresel, Herta r. Freitag, C. Georghlou, 
L. Kuipers, Bob Priellpp/ Sahib Singh, Lawrence Somer, J. Suck, Tad P. White, 
and the proposer, 

Fibonacci Squareroot Triangle with Fixed Area 

B-570 Proposed by Herta T. Freitag, Roanoke, VA 

Let a, bs and c be the positive square roots of F2n_ls ^in + i* an(^ ^in + s* 
respectively. For n = 1, 2, ..., show that 

(a + b + c) (-a + b + c) (a - b + o) (a + b - o) = 4. 

Solution by L.A. G. Dresel, University of Reading, England 

Let 

P = (a + b + c)(-a + b + o)(a - b + o)(a + b - c). 
Then, since 

(a + b + c)(a - b + c) = (a + e) 2 - &2
5 

and 
(a + & - a) (-a + £ + o) = b2 ~ (a - c)2

s 

we have 

P = (2a<? + a 2 + c2 - Z?2)(2ac - a2 - c2 + £2) 

= 4 a V - (a2 + o2 - £ 2 ) 2 

= 4F F - (F + F - F ) 2 

= 4F F - 4 F 2 

2n-l 2n+3 2n+l 
since 

^2n+3 = 3F2n+1 - F2n~l' 

Using the Binet forms, we find that F2n_1F2n+3 = F2n + 1 + 1; hence, P = 4. 
We note in passing that Heron's formula gives the area of a triangle of 

sides a, bs a as hvPs and therefore the area of a triangle whose sides are the 
positive square roots of F2n_l3 F2n+l9 and F2n+3 will be h for n= 1,2, 3, ... . 

Also solved by Paul S. Bruckman, Piero Filipponi, C. Georghiou, L. Kuipers, J. 
Z. Lee <£ J. 5. Lee, Sol? Prieiipp, Sahib Singh, Lawrence Somer, J. Suck, and the 
proposer. 

Weighted Rising Diagonal Sum 

B-571 Proposed by Heinz-Jurgen Seiffert, Student, Berlin, Germany 

Conjecture and prove a simple expression for 

[y3 n In - r\ 

where [n/2] is the largest integer m with 2m < n. 
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Solution by Philip L, Mana, Albuquerque, NM 

Let S be the given sum and q = [n/2]. Then 

r = 0 N 1 ' r = 0 n i \ i I n = 1 

~ ^ n + 1 "*" £ n ~1 = -̂  rc » 

using the rising diagonal formula 

q 

i 
r= 0 

2-> \ y, j n + 1 ' r 

Also solved by Paul 5. Bruckman, Oroardo Brugia & Piero Filipponi, L«A« G° Dre~ 
sel, Herta 2*. Freitag, C. Goerghiou, L. Kuipers, J. Z. Lee & J. S. Lee; F. S. 
Makri & D. Antzoulakos, Bob Prielipp, J, Suck, Tad P. White, and the proposer. 

Continued Fraction 

B-572 Proposed by Ambati Jaya Krishna, Student, Johns Hopkins University, 
Baltimore, MD, and Gomathi S« Rao, Orangeburg, SC 

Evaluate the continued fraction: 

2 
1 + 

3 + 
5 + 7 + 

Solution by C. Georghiou, University of Patras, Greece 

This is the same as Problem H-394 in this Quarterly (Vol. 24, no. 1 [1986], 
p. 88] proposed by the same authors. Its solution is as follows: 

From the theory of continued fractions, It is known that (See, for ex-
ample, Mo Abramowitz& A. Stegun, Handbook of Mathematical Functions [New York: 
Dover, 1970], p. 19): 

1 x , x2 , / 1 \« xU 
g (X) = -i- - -±— + — ^ - . . . + (-1)" 
<J n rr rr n rr rr rr aQ

 a
0

a i aQa1a2
 a o a i a 2 * * B an 

, a x a x a x 

Take a n = 2n + 2 and x = 1. Then, the n t h convergent of t h e given cont inued 
f r a c t i o n , / n , i s given by 

Since l im ^ = 1 - £~1 / 2
9 we ge t / = (e1/2 - l ) " 1 . 

Also solved by Paul 5 . Bruckman, L. Kuipers & Peter S» J* Shiue, J . Z. Lee <S J . 5 . 
Lee , and the proposer. 
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B-573 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

For all nonnegative integers n9 prove that 

k ? 0 ( f c ) ^ - * - * + 5
k ? 0 ( f c ) ^ - * -

Solution by Bob Prielipp, University of Wisconsin-Oshkoshr WI 

We shall show that 

S = ±o(n
k)(LkLn_k -5FkFn_k) = 4, 

which is equivalent to the required result. 

LkLn_k - 5FkFn_k = (ak + ^k)(an~k + $n~k) - (ak - e>k)(an~k - ^n~k) 

= 2a*B7,-k + 2gfean-fe. 
Thus, 

S = 2 £ lr!)ake>n-k + 2 £ (^)&kan-k = 4(a + 3)n [by the Binomial Theorem] 
k = 0\K./ k = 0^K/ 

= 4 . ln = 4. 

illso solved Jby Paul 5. Bruckman, L. A« G. Dresel, Piero Filipponi, Herta T. Frei-
tag, C. Georghiou, L. Kuipers, J. Z. Lee & J. S. Lee, Sahib Singh, J. Suck, Tad 
P. White, and the proposer. 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
RAYMOND E. WHITNEY 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, 
PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, all solutions 
should be submitted on separate signed sheets within two months after publica-
tion of the problems. 

PROBLEMS-PROPOSED IN THIS ISSUE 

H-409 Proposed by John Turner, University of Waikatof New Zealand 

Fibonacci-T Arithmetic Triangles 

The following arithmetic triangle has many properties of special interest 
to Fibonacci enthusiasts. 

1 
1 1 1 

1 2 2 2 1 
3 4 5 4 3 
7 10 11 10 7 
18 24 26 24 18 
46 58 63 58 46 

1 7 22 47 81 116 143 153 143 116 18 47 22 7 1 

Denote the triangle by T9 the ith element in the nth row by t? 9 and the sum 
of elements in the nth row by on. 

(i) Discover a rule to generate the next row from the previous rows. 

(ii) Given your rule, prove the Fibonacci row-sum propertys viz: 

on = 2"i;^ + *„" = F2„, for « = 1, 2, .... 
i = 1 

where F2n is a Fibonacci integer. 

(iii) Discover and prove a remarkable functional property of the sequence 
of diagonal sequences, {d^}: 

1 
7 

1 
6 
22 

1 
5 
16 
47 

1 
4 
11 
30 
81 

4 
11 
30 
18 

1 
5 
16 
47 

1 
6 
22 

1 
7 

d± = 1 
d2 = 1 
d3 = 1 
dh = 2 
d5 = 1 

1 
2 
2 
5 
4 

1 
3 
4 
10 
11 

1 
4 
7 
18 
24 

1 ... 
5 ... 
11 . .. 
30 ... 
46 ... 

(iv) Discover another Fibonacci arithmetic triangle which has the same 
generating rule and other properties but with row-sums equal to 
F2n-i> n = l5 25 ... . 
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(v) Show how the numbers in the triangle are related to the dual-Zecken-
dorf theorem on integer representations 9 which states (see [1]) that 
every positive integer N has one and only one representation in the 
form 

k 
N = E Hui> 

l 

where the ĝ  are binary digits and e^ + si + 1 ^ 0 for 1 < i < k, and 
{u^} = 19 2, 3, 5, . .., the Fibonacci integers. 

There are many interesting identities derivable from the triangle relating 
the t? with themselves, with the natural numbers and Fibonacci integers, and 
with the binomial coefficients. The proposer offers a prize of US $25 for the 
best list of identities submitted. 

A final remark is that Pascal-:?7 (see [2] and [3]) and Fibonacci-?7 triangles 
can curiously be linked to a common source. They both may be derived from 
studies of binary words whose digits have the properties of the e^ in part (v) 
above. 

References 

1. J. L. Brown, Jr. "A New Characterization of the Fibonacci Numbers." The 
Fibonacci Quarterly 3, no. 1 (1965):1-8. 

2. S. J. Turner. "Probability via the Nth Order Fibonacci-?7 Sequence." The 
Fibonacci Quarterly 17, no. 1 (1979):23-28. 

3. J. C. Turner. "Convolution Trees and Pascal-?7 Triangles." (Submitted to 
The Fibonacci Quarterly, 1986.) 

H-410 Proposed by H.-J. Seiffert, Berlin, Germany 

Define the Fibonacci polynomials by 

FQ(x) = 0, F±(x) = 1, Fn(x) = xFn_1(x) +Fn_2(x), for n > 2. 

Prove or disprove that, for n ^ 1, 

I Fn(x)dx =~{Ln - (-1)" - 1). 
Jo n 

H-411 Proposed by Paul S. Bruckman, Fair Oaks, CA 

Define the simple continued fraction 8(a, d) as follows: 

6(a, d) = [a, a + d, a + 2d9 a + 3d, . . . ] , a and d real, d + 0. (1) 

Find a closed form for 0(a, d). 

SOLUTIONS 

Acknowledgment Correction: 

H-377,H-379, and H-382 were solved by S. Papastavridis, P. Siafarikas, and 
P. Sypsas; H-381 was not solved by P. Siafarikas or P. Sypsas. 
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A Complex Problem 

H-386 Proposed by Paul 5. Bruckman, Fair Oaks, CA 
(Vol. 23, no. 2, May 1985) 

Define the multiple-valued Fibonacci function mF : C -> C as follows: 

1. mF(z) = —(exp Lz - exp L f' z) , z G C5 m €E Zs 

where L = log as a = %(1 + V5) , L' = (2777 + 1)£TT - L3 and "log" denotes the 
principal logarithm. 

a. Show that mF(n) = F„ for all integers 777 and n. 

b. Prove the multiplication formula 

2. n mF(k + -) = 5"%(n~ l)Fnk+r, where n, k3 r are integers with 0 < r < n. 
m=0 V ^/ 

c. With 777 fixed, find the zeros of F» 

Solution by the propeser 

Proof of (a) : mF(n) = 5~^{exp(nL) - exp[(277? + l)nii\ - nL]} 

= 5-^(01" - (_i)<2m + 1 >" a - " ) 

= 5 _ l s ( a" - ( - a ) " n ) = 5~h(otn ~ 3 n ) , 
where 3 = *s(l - A ) ; hence , mF(n) = Fn . Q.E*D. 

Proof of (b) : Let 03 = exp ( i i r r /n ) «, Then 

" i t mF(fc + r/n) = " r i V ^ e x p t f : + p /n)L 
m = 0 w = 0 - exp[(277? + l)(fc + r/n)in - (k + r / n ) L ] } 

m = 0 

= 5"!sna"fc + r " n 1 { l ~ ( - l ) k w 2 w + 1 c T 2 * - 2 r / n } . 
m = 0 

Since the solutions of the equation: zn •= (~l)r are given by a), co3 , co5, ...» 
co2""1, it follows that, for all x9 

(1 - sa))(l - xo)3) ••• (1 - xoo2""1) = 1 - Cm))n = 1 - (-l)rxn. 

There fo re 3 s e t t i n g x = (-l)ka~2k ~2r/n, we see t h a t 

nflmF(k + r/n) = 5-*nank + r{l - ( - l ) * k + r c T 2 n * ~ 2 r } 
m= 0 

= 5-Js"(a"k + r ~ 3nA: + r) = 5-,5(n"1)F„fc + r,. Q.E.D. 

Note that setting r = 0 in (2) yields F^ [using (a)]. 
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Sol ut ion of (c) : mF(z) = ( 2/V5 ) exp (??? + h)i-^z sinh zQmi where 

6^ = h(L - Lr) = log a - (m + h)ii\. 

Since exp uz vanishes for no complex u and z9 the zeros of
 mF are precisely the 

zeros of sinh zQm, namely, mF(zT^m) = 0, where 

L2 + (m + y2Tr2 

NOTE: Given w, ^F is one of the Riemann sheets which extend the Fibonacci num-
bers to the complex domain. 

Also solved by L. Kuipers. 

Non Residual 

H-387 Proposed by Lawrence Somer, Washington, D.C. 
(Vol. 23, no. 2, May 1985) 

Let {wn}n=Q be a second-order linear integral recurrence defined by the 
recursion relation 

Wn + 2 = aWn+l + bwn> 

where b ± 0. Show the following: 

(i) If p is an odd prime such that p \ b and u2 - wQW2 is a quadratic non-
residue of p, then 

vtwin f o r a n y n ^ 0-

(ii) If p is an odd prime such that (-£>) (w2 - WQW2) is a quadratic nonresidue 
of p, then 

Pi Lj2n + l f o r any w ^ °» 
(iii) If p is an odd prime such that -b is a nonzero quadratic residue of p 

and w1~wQW2 is a quadratic nonresidue of p, then 

p\wn for any n > 0. 

Solution by the proposer 

We first note that 

Wn ~ Wn-±Wn + l = ('b)n~1(wl - WQW2) (1) 

for n ̂  1. This identity can be proven by induction using the recursion rela-
tion defining {wn}. We now prove parts (i), (ii) , and (iii). 

(i) Suppose p\w2n for some n > 0. Then by (1), 

Wln + 1 " W2nW2n+l E Wln + 1 " ° E i'b)ln {w{ - WQW2) (mod p ) . 

However, this is contradicted by the fact that W2 - ZJQW2 is a quadratic non-
residue of p and -2? is a nonzero residue of p. The result follows. 

(ii) Suppose p\w2n+1 for some n > 0. Then by (1), 

W L + 1 " W2n + lW2n + 3 E W L + 2 " ° E (~b)ln+1{w\ - WQW2) 

E ( ~ £ ) 2 n [ ( - £ ) ( w 2 - w f l w 2 ) ] (mod p ) . 
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This is a contradiction, since (~b)(w\ - WQW2) is a quadratic nonresidue of p 
and the product of a nonzero quadratic residue and a quadratic nonresidue is a 
quadratic nonresidue. Hence, assertion (ii) must hold. 

(iii) This follows immediately from parts (i) and (ii). First* by (i), p can-
not divide w2n for any n > 0S since p \ b and w\ - WQW2 is a quadratic nonresi-
due of p. Also, by (ii), p cannot divide W2n+1 for any n > 0, since (-b)(w\ -
WQW2) is a quadratic nonresidue of p. This again follows, because the product 
of a nonzero quadratic residue and a quadratic nonresidue is a quadratic non-
residue. Thus, p \ wn for any n > 0, and we are done. 

Also solved by P. Bruckman, L. Kuipers, and T„ White. 

Across the Digraph! 

H-388 Proposed by Piero Filipponif Rome, Italy 
(Vol. 23, no. 2, May 1985) 

This problem arose in the determination of the diameter of a class of lo-
cally restricted digraphs [1], 

For a given integer n > 2, let Px = {p x 1? px 2, •..,plffe } be a nonempty 
(i.e. s &! ̂  1) increasing sequence of positive integers such that pj ^ ^ n - 1. 
Let P2 = {p2 is p2 2 s ' e s

 s &2 k.} ^e t*ie increasing sequence containing all non-
zero distinct values given by pl . + pl . (mod n) (£, j = 1, 2, ..., ki). In 
general let Ph = {p, - , ph 2 , . .*. ,p, ^ } be the increasing sequence containing 
all nonzero distinct'values given by 'p^„ls^ + p1 • (mod n) (£ = 1, 2, ..., ̂h-i» 
j = 1, 2, ..., fej). Furthermore, let Bm (m = 1, 2, . ..) be the increasing se-
quence containing all values given by 

m 

j= 1 

Find, in terms of w, pl j , ..., px fc , the smallest integer t such that 

Bt = {1, 2, ..., n - 1}. 

Remark: The necessary and sufficient condition for t to exist (i.e., to be 
finite) is given in [1]: 

gcd(n, pul , ..., plffci ) = 1. 

In such a case we have 1 < £ < n - 1. It is easily seen that 

fcj = 1 <=^ t = n - 1 

k1 = n - 1 <=̂ > £ = 1; 

furthermore, it can be conjectured that either t s « - 1 or 1 < t < [n/2]. 

Reference 

1. P. Filipponi. "Digraphs and Circulant Matrices." Rioeroa Operativa$ no. 17 
(1981):41-62. 

An Example 

n = 8 Fx = {3, 5} •> 5X - {3, 5} 

P2 = {2, 6} •* S2 = {2, 3, 5, 6} 

P3 - {1, 3, 5, 7} •> B3 = {1, 2, 3, 5, 6, 7} 

P^ =* {2, 4, 6} ->• Bh = {1, 2, 3, 4, 55 6, 7}; hence, we have £ - 4. 
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Comments (not a solution) by Paul S« Bruckman, Fair Oaks, CA 

The proposer?s conjecture may be refined to the following conjecture; 

1 < t < 
*i 

+ 1. (1) 

This seems to be true, but a more exact expression eluded me, as did the proof 
of (I). I first conjectured that t = t(n9 k±) was a function solely of n and 
k1» given by: 

t = 
n - 2 
*i 

+ 1. (2) 

Unfortunately, (2) is false; the first counter-example occurs with n = 8, ki = 
2. If we take Px = (5, 7), then P2 = (2, 4, 6), P3 = (1. 3S 5, 7)s so t = 3 in 
this case. On the other hand, if P1 = (1, 2), then P2 = (2, 3, 4), P3 = (3, 4S 

5, 6), P4 = (45 55 65 7), so t = 4 in this case. 
Thus t9 in generals depends on P. as well as on n and ?c1. It is conceiv-

able s however, that (2) would hold, provided some additional constraints on P 
are specified. Note that the expression given in (2) produces the correct 
values of t (for n ^ 2) if k1 = 1 or k1 = n - 1. It seems likely that the prob-
lem is more difficult than the proposer originally intended, at least in its 
general form, and that the true formula for t = t(n, kis Px) is more compli-
cated than some concise expression such as indicated in (2). 

Waiting for Success 

H-389 Proposed by Andreas N. Philippou, University of Patrasr Greece 
(Vol. 23, no. 3, August 1985) 

Show that 

^+"2°  = 2" ~ 2 ^ 1 + l/2> (n> 2i+ 1) 

for each nonnegative integer i9 where Pn+2^ i-s t n e n + 2 Fibonacci number of 
order n - £ [1] and F3(1) = 1. 

Reference 

1. A. N. Philippou & A. A. Muwafi. "Waiting for the kth Consecutive Success 
and the Fibonacci Sequence of Order /c." The Fibonacci Quarterly 209 no. 1 
(1982):28-32. 

Solution by S. Papastavridis, P. Siafarikas, & P. Sypsas, U. of Patras, Greece 

Setting (n - i) - k and (n + 2) = m9 the problem becomes 

pOO _ 2m~2 - 2m~k"2(l + m ~ ^ ~ k\ 
or 

^ ) = 2W"2 - 2m-k-\m - fc) (1) 

fo r fc+2<m<2fc+2. 
We shall prove (1) for & + 2<?77<2& + 2. From here on, we suppress (k) s 

since it is the same throughout. So we write Fm instead of F^k\ 
In the paper of Philippou and Muwafi ([1], p. 29, Lemma 2.1), it is proved 

that the sequence Fm satisfies the following recursion: 
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Fm = 
( 0 

"i^-l 
\2Fm-l -

i f m = 0 
i f m = 1, 2 
i f k + \m > 3 

- Fm-k-i if m > k + 2 

This clearly implies that the generating function J^ Fmtm equals 
m= 0 

t - t1 

nt) = Z ̂ t" 
1 - 2i + t&+1 

We are going to expand this generating function. Binomial expansion is all we 
need. Thus, we have: 

Fit) = —tj^i— = —tjzjl— : {t _ ±2) j - t i ( 2 _ tk)i 
1 - It + tk+1 1 - t ( 2 - tk) i=° 

a - t2)± ti-iy^y-h kj + i 
I = 0 j = 0 <J ' 

t E (-DJ'(5)2i-^w+i+1 - f; Y,(-^'(%i-jtkd+i+2 
i = 0 j = 0 ^ £ = 0 j = 0 ^ 

(in the first summation we set rn ~ kj + i + i $ and in the second summation 
we set m = kg + £ + 2) 

t ((""1>£k+1W(m-1,-&JV-i-^*» 

77=9 \ .7=0 X <7 / / m = 2 \ J = 0 

Thus9 since Fm is the coefficient of tm in the expansion of F(t)9 we get: 

(OT-l)/(fe+l) / -, 7,^\ 
F = y (™i)ji "" . " J ] 2

m ~ ' ( f e + 1 ) J ~ 1 

7=0 ^ ^ 
(2) 

(m-2)/(fc + l) , _ - .. 
E (-DJ"( ̂  "" ^\2*-<* + i^-2, for wz > 2. 

j=0 \ ^ / 

Formula (2) is a general closed expression of Fm , Let us look at the spe-
cial case that we have with the conditions 

(777 - l)/(k + 1) < 2 and (777 - 2)/(fc + 1) > 1, 

which i s e q u i v a l e n t to 

& + 3 < m < 2 £ ; + 2« 
In this case, the index j in the summations of (2) takes only the values j = 0 
and j = 1. So, we obtain (for this case) 

Fm = I™-1 - (777 - 1 - k)2m~/c-2 - 2m-2 + (777 - fc - 2)2m~^3 

= 2m~2 - 2m~k~3(m - k), 
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which is exactly what we had to prove. The remaining case of k + 2 - m is de-
duced similarly. The case of F^ is obvious. 

Reference 

1. A. N. Philippou & A. A. Muwafi. "Waiting for the kth Consecutive Success 
and the Fibonacci Sequence of Order &." The Fibonacci Quarterly 209 no. 1 
(1982):28~32. 

Also solved hy P. Bruckman, 23. Poonen, and the proposer. 
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