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(Submitted March 1985) 

1 , INTRODUCTION 

Following our description [6] of the properties of the ordinary generating 
functions of Pell polynomials Pn (x) and Pell-Lucas polynomials Qn(x) [3], we 
offer here a compact exposition of similar properties of the exponential gene-
rating functions of these polynomials. 

Earlier authors have written about the exponential generating functions of 
the Fibonacci numbers [2] and of generalized Fibonacci numbers [7]. 

Details of the main properties of the Pell-type polynomials may be found 
in [3] and [4], and will be assumed, where necessary. For visual simplicity, 
we will abbreviate the functional notation thus: Pn (x) E Pn 9 Qn(x) E Qn. 

Binet forms of Pn and Qn are 

= (an - 3n)/(a P- 3) 
and 

where 
= an + 6n, 

(a = x + Vx2 + 1 

(3 = x - Vx2 + 1 

(so a + 3 = 2x9 a3 

are the roots of 

X2 - 2xX ~ I = 0. 

Some symbolism we shall employ include: 

1, a - 3 = 2y/x2 + 1) 

V = 

vf = 
V(2) ; 

P = 

P71 = 

(1 - 2xz 

= (1 - Q 

(1 + 2xz 

z2Y 
z + (-l)^2)"1 

* 2 ) -

(= A in [6] with y replaced by z) 

i.e., V(1) E V 

i.e., replace z by -z in (1.5) 

A^2) in [6] with y replaced by z 

2x 
1 

P P 

P P 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1-9) 

(1.10) 

Usage of the matrix P (1.9) is to be found, for example, in [3], [4], [5], 
and [6]. Inevitably, some of the simpler results for Pell-type polynomials in 
the ensuing pages may have been obtained by other methods in our papers listed 
as references. 
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EXPONENTIAL GENERATING FUNCTIONS FOR PELL POLYNOMIALS 

2. BASIC MATERIAL 

Write 

and 
« * . » . < » - 4 ^ - £ „ ¥ 

QTyT 

Q(x9 y9 0) = eay + e** = £ - ~ 

3oth (2.1) and (2.2) satisfy 

d2t 3£ 2x 
3z/2 dy 

t = 0. 

From (2.1) 

whence 

P(x, i/, fc) = 3 - ^ P(x, z/, 0) = £ 
Pr + fe^ 

Also 

P(x, y9 n + 1) - 2xP(x9 y9 ri) - P(x9 y9 n - 1) = 0. 

Q(xs y9 k) = —r Q(x9 y9 0) = £ "^37—, 
d7/ r = 0 x ' 

whence 

$(a:5 z/9 n + 1) - 2xQ(x9 y9 ri) - Q(x9 y9 n - 1) = 0. 

Formulas (2.5) and (2.7) suggest the matrix representations: 

P(x9 y9 ri) 

P(x9 y9 n - 1)_ 

P(x9 y9 1) 

P(x9 y9 0)_ 

}(x9 y9 ri) 

\_Q(x5 y9 n - 1)J 

P(x9 y9 n) = [1 0]Pr 

Q(x9 y9 ri) = [1 0]Pr 

Q(x9 y9 1) 

Q(x9 y9 0)J 

>(*, z/, 1)" 

P(x9 y9 0)J 

^(x3 z/s 1) 

.«(#, z/, o ) j 

3. PROPERTIES OF EXPONENTIAL GENERATING FUNCTIONS 

First9 from (2.4) and (2.1) or by matricess 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

P(x5 y9 n + 1) -f- P(x9 ys n - 1) 
5»-ieei/ 

= £(x5 2/, ri) by (2.6) 

whiles similarly, 

1987] 
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EXPONENTIAL GENERATING FUNCTIONS FOR PELL POLYNOMIALS 

Q(x9 y9 n + 1) + Q(x9 y9 n - 1) = k(x2 + l)P(x5 y9 n). (3.2) 

Generalizations, with variations, of (3.1) and (3.2) are: 

P(x9 y, n + P ) + (-l)rP(x9 y, n - p) = £pP(ar, z/, n) (3.3) 

P(tf, 2/, n + P ) - (-l)rP(x, y9 n - p) = Pp£(x, z/, n) (3.4) 

« ^ y, n + p) + (-l)r«(a;, z/, w - P ) = QrQ(x9 y9 n) (3.5) 

Q(x9 y9 n + P ) - (-l)r£0£, 2/, « - p) = 4(̂ c2 + l)PrP(a;, y9 n) (3.6) 

An elementary property is, by (2.1), (2.6), and (2.4), 

P(x9 y9 n)Q(x9 y9 ri) = P(x, 2y 9 2ri)/2n. (3.7) 

Combining (3.3) and (3.4) with (3.7), we arrive at: 

P2(x9 y9 n + p) - P2(x, y9 n - r) = P P(x9 2y9 2n)/2n (3.8) 

" (#, i/, n + p) •(#, y9 n - r) = 4(x2 + l)P2pP(rrj, 2z/, 2n)/2n (3.9) 

For v a r i e t y , we use m a t r i c e s t o demons t ra te t h e Simson formula (3 .10) fo r 
P(x9 y9 ri) . D e t a i l s a r e : 

P(x9 y9n + l)P(x9 y9 n - 1) - P (x9 y9 ri) 

\P(x9 y9 n + 1) P ( J J , y9 ri) 

\P(x9 y9 n) P(x9 y9 n - I) , 

(3 .10) 

P n 
P(x9 y9 1) 

[PCc 2/, 0)J 

P(x9 y9 1) 

|_PGc» y> 0 ) J 
by ( 2 . 8 ) 

= ( - l ) r by (2 .8 ) [ Ip^"1] = ( - l ) "" 1 ] 

^ ) 2 } / ( a - B)s by (2 .1 ) 
and (2 .4 ) 

\P(x9 y9 2) PGc, z/, 1) 

\P(x9 y9 1) P(a;, 2/, 0) 

= ( - l ) n - 1 { ( a 2 e a ^ - B 2 e 3 y ) ( e a 2 ' - e ^ ) - ( a e a ^ -

= ( - l ) n _ : L { - ( a 2 + 3 2 - 2ag )e ( a + ^ } / ( a - 3 ) 2 

= {~l)ne2xy by (1 .3 ) 

L ikewi se , 

Q(x9 y9 n + l )S(a; , z/, n - 1) - Q2(x9 y9 ri) 

= ( - l ) n _ 1 4 ( x 2 + l ) e 2 x y . (3 .11) 
The clear similarity of the results in this section with the corresponding 

formulas for Pn and Qn is noticeable. 
Obviously, the number of relationships involving exponential generating 

functions themselves alone is extensive. Three such are, for example: 

P(x9 y9 n)P(xs y9 r + 1) + P(x9 y9n~ l)P(x9 y9 r) 
= P(x9 2y9 n + p)/2n + r; 

Q(x9 ys n)Q(x9 y9 v + 1) + Q(x9 y9 n - l)Q(x9 y9 P ) 
= 40r2 + l)P(x9 2y9 n + p)/2n + r; 

(3.12) 

(3.13) 

and 
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EXPONENTIAL GENERATING FUNCTIONS FOR PELL POLYNOMIALS 

P(x9 y9 n)Q(x9 y9 v + 1) + P(x9 y 9 n - l)Q(x9 y, r) 
= Q(x9 2y9 n + r)/2n + 2\ (3.14) 

Put r = n - 1 i n (3 .12) and (3 .13) t o g e t , in succes s ions 

P2(x9 y9 n) + P2(x9 y9 n - 1) = P ( x , 2z/, 2n - l ) / 2 2 n " 1 (3 .15) 
and 

Q2{x9 y9 ri) + Q2(x9 y5 n - 1) = 4 ( ^ 2 + l ) P ( x , 2z/9 2n - l ) ^ 2 * " 1 . (3 .16) 
F i n a l l y , 

P(x9 ys m)Q{x9 y5 ri) + P(x9 y5 n)Q(x9 y9 m) 
= P(x9 2y9 m + n)/2m + n-1 (3 .17) 

and 
# ( # , y9 m)Q(x9 y9 ri) + k{x2 + l ) P ( x , z/, m)P{x9 y9 ri) 
= S ( ^ s 2z/9 m + n ) / 2 O T + n - 1 (3 .18) 

Reve r t i ng now to t h e formulas r e l a t i n g e x p o n e n t i a l g e n e r a t i n g f u n c t i o n s to 
P e l l po lynomia l s , we may e s t a b l i s h , e i t h e r by means of t h e d e f i n i t i o n s or by 
t h e ma t r ix r e p r e s e n t a t i o n s , t h e f o l l o w i n g : 

P(x9 y9 n + r) = PrP(x9 y9 n + 1) + Pr_1P(x9 y9 ri) (3 .19) 

Q(x9 y9n+r)= PrQ(x9 y9 n + 1) + Pr_1Q(x9 y9 ri) 
= QrP(x5 y9 n + 1) + Qr_1P(x9 y9 ri) (3 .20) 

40 r 2 + l)P(xs y9 n + r) = QrQ(x9 y9 n + 1) + Qr_1Q(x9 y9 ri) (3 .21) 

Spec i a l ca ses of i n t e r e s t occur when v - n i n ( 3 . 1 9 ) - ( 3 . 2 1 ) . 
A l s o , 

P(x9 y9 n + v) = h{PrQ(x9 y9 ri) + QrP(x9 y9 ri)}, (3 .22) 

S (x , I/, « + r) = %{4(^2 + l)PrP(x9 y9 ri) + e r«(a?, y9 n)}, (3 .23) 

P ( # , z/, n + r ) P ( # , ys n - r) - P2(x9 y9 ri) 
= ( - l ) ^ - ^ + i p p 2 e

2 ^ , (3 .24) 

S O c z/, n + r)Q(x9 y9 n - v) - Q2(x9 y9 ri) 
= ( - l ) " - r 4 ( a ; 2 + l ) P p

2 £ 2 ^ . (3 .25) 
Results (3.24) and (3.25) are the generalized Simson formulas. 
Lastly, in this section, 

P(x9 y9 n)P(xs ys n + r + 1) - P(x9 y9n~ s)P(x9 y9 n + r + s + 1) 

= (-Dn-SPr+s + 1Pse2xv , (3 .26) 
and 

G(ff» 2/» n)Q{x9 y9 n + r + 1) - § ( x , y9 n - s)Q(x9 y9 n + r + s + 1) 
= ( _ 1 } n - s + i 4 ( x 2 + l )Pp + s + i P s e

2 ^ . (3 .27) 

4. SERIES INVOLVING EXPONENTIAL GENERATING FUNCTIONS 

Rearranging (2.5) and (2.7), and adding, we find 

n 
T,P(x9 y9 r) = {P(x9 y9 n + 1) + P(x9 y9 ri) 

- P(x9 y9 1) - P(x9 y9 0)}/2^ (4.1) 
and 

n 
Y^Q(X> y> r) = iQ(x* y* n + 1) + g(#, y9 ri) 

- Q(x9 y9 1) - Q(x9 ys 0)}/2x. (4.2) 
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and 

Bine t forms g ive us t h e d i f f e r e n c e e q u a t i o n s , 

P(xs y9 m{r + I) + k) - QmP(x9 y9 mr + k) 

+ (~l)mP(x9 y, m(r - 1) + k) = 0 

Q(x9 y, m(r + 1) + k) - QmQ(x3 y, mr + k) 

+ (~-l)mQ(x9 y9 m(r - 1) + fc) = 0. 

Using (4.3) and (4.4), we may derive 

n 
^2 P(%> y > mr + k) 

(4.3) 

(4.4) 

(4.5) 

P(x9 y9 m(n + l) + k) - P(xs y9 m + k) - (-l)m{P(x9 y9 mn + k) - P(x9 y9 k)} 
I - (-1)" 

and 

YtQ{x9 y9 mr + k) (4.6) 

= gfa» y, m(n+ 1) + k) - Q(x9 y9 m + k) - (~l)m{Q(x5 y9 mn + k) - Q(x9 y9 k)} 
Qm - 1 - (-D* 

Next, (2.8) and (3.19) used in conjunction with the matrix property 

P2 = 2xP + I 

yield 

~P(x9 y, 1)1 [P(x9 y9 1)~ 
= (2xP + I)n 

_P(x9 y9 0)J [_P(x9 y9 0)_ 

D2n 

and 

Equating corresponding elements, we obtain 

P(x9 y, In) = £ (Z)(2x)rP(x9 y9 r) 

and 

P(x9 y9 In + 1) = £ (")(2a?)rP(ar, z/5 r + 1). 
r = 0 X ' 

Similarly, 

Q(x9 y9 In) = £ (n
r)(2x)rQ(x9 y9 r) 

(x9 y9 In + 1) = £ P)(2x)r£(x, y9 r + 1) 
r = 0 U 7 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

Extensions of (4.10) and (4.11) to P(x9 y9 2n + j) and Q{x9 y9 2n + j) 
readily follow. 

Now let us consider a variation of the type of sequence being summed. 
Applying the Simson formula (3.10), simplifying, and summing, we derive 

j^PGc, y 
(-I)11-1

 = 1 / P(x9 y9 n) _ P(x9 y9 0)\ 
, ys r)P(x9 ys r + 1) e^^y (P(x9 y9 n + 1) P(x, y, I)) 

(4.12) 
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Similarly, 

,fx Q(x9 y9 r)Q(x9 y9 r + 1) 

i J gQc, y , n) __ g(xs .y, Q ) | 1 
(6(a?, z/, w + 1) g(xs I/, 1 ) / 4(^2 + 1} * ^ °  J; 

5. ORDINARY GENERATING FUNCTIONS OF EXPONENTIAL GENERATING FUNCTIONS 

Summing and using (2.5)5 

J^P(x9 y9 r)z* = (P(x9 y9 0) + P(x9 y9 -l)s)V (5.1) 
p= o 

where P(xs y 9 -1) is the primitive function of P(#, y 9 0) w.r.t. z/. 
Similarly, 

J^Q(x9 y9 r)zr = (Q(x9 y9 0) + S(x5 y9 -l)z)V9 (5.2) 
p=0 

f] (-1) P(x9 y 9 r)zr = (P(xs y s 0) - P(j?, y 9 -l)s)Vf9 (5.3) 
r = 0 

and 
f ^ - l ) 2 ^ * , 2/, r ) * * = («(*, y 9 0) - e(ar, z/, -l)s)Vf8 (5.4) 
r = 0 

More generally, 

£P(a?, y 9 mv + £c)sp - {P(a;, zy, fe) - (~l)mP(xs y 9 -m + k)z}V(my (5.5) 
p= 0 

and 

Y.Q(x9 y9 mr + fe)sr = {Q{x9 y9 k) - (-l)mQ(x9 ys -m + k)z}SJ{my (5.6)' 
r= 0 

I n d u c t i o n g ives 

and 
9n 

- E P ( ^ 9 y9 r)z? = « ! < * £ ( n + H p f e , z/, n - r ) s 4 v n + 1 ( 5 . 7 ) 
r = 0 ( r = 0 x x ' j 

I T ^ E ^ 2/. * ) * r = n l i i i ( n t X ) « ^ ^ 2/» " " 2 - ) a 4 v n + 1 (5 .8 ) 

wi th e x t e n s i o n s when r i s r e p l a c e d by r + m. 
Equat ing c o e f f i c i e n t s of zv in (5 .7 ) and (5 .8 ) y i e l d s , i n tu rn* 

P(x, y,n + r) J n f ( n \ > ( , , y,n - O P * \ _ < } / ( " ' + * ) ( 5 .9 ) 

« ( * . y, n + r ) = T £ ( n \ X)Q{x, y, n - i)P<»\_ \ / ( n + r ) , (5 .10) 

and 

s i n c e 
rjn + l _ \ - -nin) y pKn) zt 

t = o 
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EXPONENTIAL GENERATING FUNCTIONS FOR PELL POLYNOMIALS 

where {P™ }, i = 1, 2, 3, ... is the nth convolution sequence for Pell polyno-
mials [4] . 

Now, by (2.1) and (2.4), we can demonstrate that 

P2(x, y, r + 1) - Q2P2(x, y, r) + Pz(x, y, r - 1) = 2(-l)re2xy . (5.11) 

Using this as a difference equation, we obtain 

n 
n2 , £ P (*, y» r) = [P (x, y, n + 1) - P2 (x, z/, 1) (5 .12) 

r = 1 

- {P 2 (x , z/, n) - P2(x, y9 0 )} + 2 ( 1 - (~l)n)e2xy ] /4x 2 

and 
oo 

£ ? 2 ( x , y, r)zr = [P2{x, y, 0) + s{P2(x, y, 0) - P2(x, y, - 1 ) } (5 .13) 

P2(x, y, -l)z2 + 2 s e 2 ^ ] V ( 2 ) / ( l + z) 
r = 0 

by ( 1 . 8 ) . 
Furthermore, 

P2(x, z/, n + 3) - (4x2 + l)P2(x, z/, n + 2) (5.14) 

- (4x2 + l)P2(x, z/, n + 1) + P2(x, zy, n) = 0, 

t % T ^ = (a**""" - 3^e^)/(a - 3), (5.15) 
p = o z * 

and . 
oo P2yr 

S -̂ V = (̂  + ^ - 2e"^)/(a - 3) 2. (5.16) 

6. FURTHER APPLICATIONS OF EXPONENTIAL GENERATING FUNCTIONS 

Techniques employed for Fibonacci numbers in [1] are now cultivated for 
Pell polynomials. 

To illustrate the method, we show that 

r=0yi ' 

Consider 

A = {{e2axy - e2^ )ey}/(a - 3) (6.2) 
= {e(2ax+l)y _ e ( 2 3 ^ 1 ) y } / ( a _ g ) 

= (ea2y - e ^ )/(a - 3) by (1.3) 

oo P Q y" 

-Eifr- by (i.i). 
n = 0 ri ' 

However, also, 

(2*>"P„2/"', , -, y> 

n! 
{2xYP 

A =<Z Tl Z S by (6.2). and (1.1) (6.3) 

»?oh?o i!^ " *>: 
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By equating the coefficients of yn in (6.2) and (6.3), we get 

nl £Q il(n - 1)! ' (6s4) 

which is equivalent to (6.1). 
Observe that (6.2) and (6.3) lead to 

dyr n = o nl n = o\i = o i'-in + r - i ) ! 

where (n)r is the rising factorial. 
Hence, 

P2(n + r) = "Zo(n +
i
T){2x)iPi, (6.5) 

which is an extension of (6.4). 
Turning our attention to 

B = (gCH/ _ e$y)e-^y / ( a _ 3 ) , (6.6) 

we obtain, in a similar manner, 

(-Dn + 1Pn = t (".)(-2x)n-%. (6.7) 
i = 0 X u ' 

Likewise, from 

C = (ea2y - e^)e~y/(a - 3), (6.8) 

we derive 

WPn = £ ( J ) ( - 1 ) n _ f p
2 f <6-9> 

i = 0 
Next, consider 

D = (eumy - e^'y)(eamy + e^y)/(a - 3) (6.10) 

= ( e 2 0 ^ - e2Bmy)/(a - 3) 

- 2 H P - ^ = E - ^ T — ^ (1.1). 
w = 0 n' 

Now, also, 

so
 fl%?oi^i?o^%?oi?o^^^r- ( 6 ' U ) 

2"?^ = E ( ? ) ^ e m ( „ - o - ( 6 - 1 2 ) 

i = 0 

If we investigate 
E = (eamy - e^)(eamy - e3?^)/(a - 3) 2

S (6.13) 

we are led by the above process, eventually, to 
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2ne™, - 2Qn
m = 4 (x 2 + 1) Z (ly^^n-ry <6-1 4> 

r = 0 
S i m i l a r l y , 

2Qm +2Qn
m = t(n

v)QmrQm,n-P)- (6-15) 
r = 0 

Suppose now that 

F = {{ea"my - e^my)ey}/(a - 6) (6.16) 

' E ^1 by (1-1) a ^ (1.2). 
w = 0 ni 

But, also, 
P yn' 

F=ii:^T-KJ:^} by (6.16) and (1.1) (6.17) 
n = 0 n ' J (w = 0 ' 

Consequently, 

^ = 0 

Differentiating r times partially w.r.t. y the two expressions (6.16) and 
(6.17) for P, as we did earlier for A [cf. (6.5)], we obtain the extension of 
(6.18), namely, 

•i = 0 

Finally, consider 

G = {ea"v - es"y)/(a - 3) (6.20) 

= {e p »-^(e a P " y - e6 P"y)}/(a - g) 

= v 1 T m~'L "—^- \u* 

Also, 
oo P yn 

G = J] — by (6.20) and (1.1). (6.21) 
n = 0 
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Then 

p = y (n\pi p .pn~i = y ln\pn-ip pi 

whence 

and 

8 G = y • 
dyr n = o 

m(: n + P ) " 

m{n+r) /—< 
n + p 

ft = 0 ( £ =0 

\ p i p f t + p - i p 
)rmrm-± ri 

n + r(n + 1) PJP i-nn+r-i. 
r m m-± 

P. 

i\ (n + r - i)! 

(6.22) 

(6.23) 

(6.24) 

The presentation in this article of the properties of the exponential gen-
erating functions of Pell and Pell-Lucas polynomials suffices to give us some-
thing of their mathematical flavor. 

Important special cases of the Pell polynomials and Pell-Lucas polynomials 
are noted in [3] and may5 for variety and visual convenience, be tabulated as: 

X = 1 

x = h 

x -+ %x 

Pn 

Pell numbers 

Fibonacci numbers 

Fibonacci polynomials 

Qn 

Pell-Lucas numbers 

Lucas numbers 

Lucas polynomials 

Results given in this paper for exponential generating functions, and in 
[6] for ordinary generating functions, of Pn and Qn may clearly be specialized 
to corresponding results for the tabulated mathematical entities. 
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INTRODUCTION 

The division algorithm guarantees that when an arbitrary integer b is di-
vided by a positive integer a there is a unique quotient q and remainder 
r satisfying 

0 < r < a 

so that 

b = qa + r. 

We will assume that 0 < a < b in this paper, 

Euclid's algorithm iterates this division as 

b = q±a + P-L, 0 < v1 < a 

a = q2?3
1 + r2, 0 < rz < r1 

ri = ^3P2 + p
3> °  < rs < r2 

rn-3 = <?n-irn-2 + r„-1» °  < Vn -1 < Pn - 2 
p - q v + 0» 
n - 2 ' n n - 1 

Euclid's algorithm terminates when vn =0. What makes the algorithm useful 
is that Pn_! is then the greatest common divisor of a and b. The worst case, 
in the sense that the algorithm takes the longest possible number of iterations 
to terminate, is when the sequence 

a > r1 > r2 > ••• > vn = 0 

decreases to 0 as slowly as possible. The smallest pairs (b9a) for which this 
happens are found by choosing each quotient q^ to be 1 except the last one, 
where vn_2 - 2 and Pn_x = 1 forces qn = 2. This makes v

n-3 = r„_2 + Pn -1» 
^n-h ~ rn-3 + rn-2> anc^ so on» back until we have that a and b are consecutive 
Fibonacci numbers. Lame first noticed the connection between Fibonacci numbers 
and Euclid's algorithm in 1844 (see [3]). 

General results based on this insight include: 
1. If a < Fn , then Euclid's algorithm terminates in at most n - 2 steps, 

and the smallest pair (b9a) taking exactly n ~ 2 steps is (Fn9Fn^1) > 
2. If (bnsan) denotes the pair (2?,a) with smallest b for which Euclid's 

algorithm first takes n steps to terminate, then 

lim bn/an = lim Fn+2/Fn + 1 = (1 + 51/2)/2. 

The intermediate steps in Euclid's algorithm can be unwound to find inte-
gers x and y satisfying 

d = ax + by9 
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where d i s the greates t common divisor of a and b. A short BASIC program for 
i t e r a t i n g the divis ion algorithm i s given in Figure 1. 

6 0 P R I N T "WHAT TWO NUMBERS TO START W I T H " ? s INPUT B , A 
7 0 Q = I N T ( B / A ) s R = B ~ - Q * A 
SO P R I N T B / t = u i Q , " * " ? A . ? " - * - » » R 
9 0 B-AsA-=R 
1 0 0 I F A=0 THEN GOTO 1 2 0 
110 GOTO 7 0 
120 PRINT "AL60RITHM TERMINATES»H 

Figure 1. A BASIC Program for Euclidfs Algorithm 

The algorithm for radix conversion can also be written as a succession of 
divisions. Starting with b positive and a ^ 2, we can write 

b = qxa + PI 9 0 < P X < a 

q1 = qza + r2, 0 < r2 < a 

Vn-2 = ^n-ia + rn-l> °  < Vn -1 < a 

<?n-l = ^na + Vn> °  < Vn < a* 

In the ith steps qi = [b/a'l]3 so, using the natural stopping place qn = Os 
the algorithm takes n steps to complete, where an~1 < b < an. The value of 
this algorithm is that successive substitution gives 

b = r1 + aq± = r1 + a(r2 + a^2) = ••• 

= r± + a(r2 + a(r3 + a(...(rn_1 + arn)...))) 

= r1 + ar2 + a2P3 + ».* + a""1^, 

which says that the remainders can be interpreted as successive digits (from 
right to left) in the expansion of b using the base a. 

The BASIC program used for Euclid?s algorithm works here as well with only 
minor modifications. Line 90 becomes 

90 B=Q 

and the test for completion in line 100 uses B instead of A. 
Whatever number is used for Z?, it is clear there is no value for a that can 

make the algorithm take longer to terminate than a = 2. With this choice for 
a9 the first b that makes the algorithm terminate in exactly n steps is 2n~ . 

In this paper we investigate ways in which the four numbers b9 a9 q5 and r 
of the division algorithm can be rearranged to give a terminating sequence of 
quotients q^ and remainders vi when the division algorithm is iterated. The 
combinatorial and number theoretic properties of some of the sequences so gen-
erated are of interest. 

ALTERNATE ALGORITHMS 

Line 90 of the BASIC program in Figure 1 provides the pattern for iterat-
ing the divisions in Euclidfs algorithm. The substitution made is that the old 
A becomes the new Bs and the old R becomes the new A. In the radix conversion 
algorithm, the old A never changes-, and the new B is the old QB We classify 
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possible algorithms by analyzing possible replacement lines for line 90 in the 
BASIC program. Naively, there are sixteen possibilities, summarized in Figure 
2, but ten of these are uninteresting in that their behavior is independent of 
the particular numbers a and b we start with. There is a single equation which 
repeats, a pair of equations which replace one another, or a sequence of equa-
tions that terminates to avoid a zero division. Of the six interesting cases, 
two are the radix conversion algorithm and Euclid's algorithm. The others are 
merely labelled in the table, and their analysis occupies the remainder of the 
paper. 

\ 
A = 

B 

A 

Q 

R 

B = 

\ 

B 

b = q a + 
b = 1 b + 
repeats 

b = q a + 
repeats 

b = q a + 
b = a q + 

r 
0 

r 

r 
r 

cycles once 
r < mi n (a 

I Algorithm 

»q> 

6 

A 

b = q a 
a = 0 b 
b = q a 
cycles 

b = q a 
a = i a 
repeats 

4-
+ 
+ 

+ 
4-

Algorithm 

Euclid's 
Algorithm 

r 
a 
r 

r 
0 

5 

Q 

b = q a + r 
q = 0 b + q 
0 = 0 q + 0 
terrni nates 

Radi >i 
Conversi on 

b = q a + r 
q = 1 q + 0 
1 = 1 1 + 0 
repeats 

Algorithm 3 

b = 
r = 

II 
I! 

lu O
 

q 
0 
1 
0 

R 

a. + r 
b + r 
r •+- 0 
r + 0 

terminates 

b = 
r = 
rep 

Alg 

b = 
r = 
rep 

q 
0 

a •+• r 
B -^ r 

s?ats 

Dr 3 

q 
i 

t h m 4 

& •*• r 

r + 0 
eats 

Figure 2. Possibilities for Line 90 

ALGORITHM 3 

Iterate the division algorithm as 

b = q a + r±9 0 < r± < a 

qx = q2r± + r2, 0 < r2 < r1 

^ 2 ^ 3 2 3 3 2 

<?n _ 2 % - lTn - + r> -1» °  < Tn~l < Vn 

4n-l = ^ n - l + 0» Vn = 0. 

Stretching the algorithm out as long as possible is accomplished by taking 

1, rn 2, 1. Then the smallest possible choices for 
the q. would be given by 
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qn_1 = 0 1 + 0 = 0 
qn.2 = 0 2 + 1 = 1 
qn.3 = 1 3 + 2 = 5 
qn_h = 5 4 + 3 = 23 

Rn-i = Qn-i+ii + l ~ l 

This implies that qn_i = ̂ - - 15 and hence a = n and b = nl - 1. Thus9 we ob-
tain 

Theorem 1: If b < nl - 15 then Algorithm 3 terminates in <n steps. Algorithm 
3 terminates in exactly n steps when b = nl - 1 and a = n. 

Back substituting in Algorithm 3 gives an interesting pattern for the r's 
in terms of the q's. We have 

p. >.-l Qn-l'tfn* 

V (qn„2 ~ (^n-i^n))^n-3 

n-3 = ^ n - 3 " <?„ - 2 " ( ^ n - 1 ̂  ^ n - 1 } '<?„ - 2 » 

and so on back in an inverted continued fraction expansion5 to 

a - (b - (<7l - (q2 - (••• - (qR_2 - (<7B.1/<7„)/<7„.1)/---/?2)/?1. 
As a one-line summary of Algorithm 3 more in the spirit of radix conversion, 
we have 

b = r1 + a^1 = r1 + a(r£ + ^±q2) = ••• 

= rx + a(p2 + ^ ( P 3 + r2(...(rn.2 + ^ _ 3 ( ^ _ 2 + rn-!^)) •••))) • 

In the worst case b ~ nl - I, a = n of Theorem ls we generate here a rep-
resentation in the factorial number system (see [2]). 

ALGORITHM k 

Here the division algorithm is iterated as 

b = q±a + rl9 0 < r± < a 

V2 = ? 3 * 2 + P 3 5 ° < r3 K <?2 

rn-2 = <7„-l<7«-2 + P n - 1 » ° < P n - 1 < ^ n - 2 
P n - 1 = °<7n-l + P n> ° < * n < <7„ - 1 • 

This time the algorithm terminates just before the first zero division* i.e.s 
when qn = 0. It could be considered the dual of Algorithm 3 in that the roles 
of the A and B assignments in line 90 of the BASIC program are reversed, 

We build backwards to see what the smallest possible values are for b and 
a to give a certain number of steps before the algorithm terminates. It is 
clear that the sequence of rfs is strictly decreasing until the next to last 
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term. If qn is the first quotient that is 0S the smallest possible choice for 
q 7 is 1. Since jv, < q ,, that forces j» = 0. Then 

LYl — 1 ri ifi — ± n 

rn-l = <7n<7n-l + ^ = 0 1 + 0 = 0 , 
and s i n c e q „ > P , » <7 = 1 i s t h e s m a l l e s t p o s s i b l e c h o i c e . Then 

rn-2 = <?n-l?n-2 + P n - 1 = 11 + 0 = 1, 

and qn_3 > ̂ n-2 give s <7n-3 = 2 as the smallest possible choice. We continue 
building the sequences of q's and pfs backward from their nth values by 

**n-i. ~ tfn-i + ltfn-i Tn-i+± 

q . , = r . + 1. 

Writing f(jri) = v _ , the sequence of rfs is described by the recurrence 
f (0) = /(I) = 0, 

/(w) = (f(m - 2) + l)(/(m - 1) + 1) + /(77Z - 1) for m > 1. 

Writing q _ - gim) = /(m - 1) + 1, we obtain the neater recurrence 

gin + 1) = g(n)(g(n - 1) + 1). 

This is summarized in 

Theorem 2: Define #(n) for n > 0 by 

gr(O) = 0, gr(l) = 1, 

gin + 1) = g(n)(g(n - 1) + 1) for n > 1. 

Then the pair (2?„, an) for which Algorithm 4 first takes n steps to terminate 
is given by 

bn = g(n + 2) - 1, an = gin + 1). 
The sequence b±9 2?2, 2?3, ... begins 

1, 3, 11, 59, 779, 47579, 37159979, ... 

and the sequence a±, a2, a3, ... starts out 

1, 2, 4, 12, 60, 780, 47580, ... 

Neither of these sequences, nor any of their more obvious variants, seems to 
occur in Sloane's Handbook [5]. 

lim bn/an = °°  for Algorithm 4, but 

lim In bv/ln an = (1 + 51/2)/2. 
7-2->oo 

This can be seen by n o t i n g t h a t 
l im In bn/ln an = l im ln(Z?n + l ) / l n an = l im In g(n + 2 ) / I n gin + 1) 

= l i m ( l n g(n + 1) + ln(g(n) + l ) ) / l n g(n 4- 1) 

= 1 + l/lim(ln g{n 4- l)/ln g(ri)), 

and this process can be iterated to produce as many convergents to the contin-
ued fraction for (1 + 51/2)/2 as desired. The limit has to be well behaved by 
the inequality 

2F*-i < gin) < 2i?«-15 
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which is easy to establish for n ^ 1 by induction. 

ALGORITHM 5 

Iterate the division algorithm as 

b = q±a + r±9 0 < r± < a 

a = q^q^ + r^ 0 < 2?2 < q± 

q± = q3q2 + r3, 0 < r3 < q2 

Vn-3 = ^n-l^n-2 + V n ^ °  < Tn -1 < <?n-2 

q o=0<7 ., -f r , 0 < r < q 

The iteration should end just before a zero division, i.e., when qn = 0. 
^l* (?29 ••• f ° r m a strictly decreasing sequence out to qn_29 so the algorithm 
is guaranteed to terminate. Choosing rfs and q* s so as to build the longest 
possible algorithm for the smallest possible b and a, we find qn = 0 and qn_1 = 
1 forces vn - 0S since rn < ^n_ls and then ^n_2

 = <7n<7n-i + rn = 0J which cannot 
happen. ^n = 0, qn_1 = 2, and rn = 1 gives ^ n „ 2 = 0 2 + 1 = 1. Now, rn_1 = 0 
gives no trouble, and qn_3 = Qn-i^n-i + * ,„_ 3

= s 21+0 = 2, and all the other 
2»Ts = 0 give the <̂ fs satisfying the recurrence 

with ^n = 0, qn_1 = 2. Thus, we obtain, in general, that 

with the (& - 2)t h Fibonacci number in the exponent. This is summarized in 

Theorem 3: Writing (bn, an) as the pair for which Algorithm 5 first takes n 
iterations to finish, we have, for n ^ 2, 

bn = 2Fn~1 and an = 2Fn~2 . 
Thus, 

lim In bn/ln an = (1 + 51/2)/2. 

Successive substitution provides a one-line summary of Algorithm 5: 

b = ̂ a + r± = r1 + ^1(r2 + ^2^1) = ... 

= r1 + ^ ( P 2 + q2(r3 + (73(...(pn_1 + ^.i^)...)))-

Multiply this out to obtain the "mixed radix expansion" of b relative to the 
sequence of quotients g s ^ , q , ... 

b = r1 + 3?2(t71) + r3(q1q^) + ... + rn {qYq2. --^.^ . 

The relationship between systems of numeration and the division algorithm 
is explored by Fraenkel (see [2]). 

ALGORITHM 6 

The last variation we consider is 

b = q±a + rl9 0 < r± < a 

b = q2r1 + P2, 0 < P 2 < P X 
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b = q3r2 + P 3 S 0 < P 3 < P 2 

b = q , r 0 + P . 0 < r < P 
^•n-l n-l n - i 3 n - 1 n - 2 

b = W l + °> rn = 0. 
If the sequence of rfs is chosen to decrease as slowly as possible so that 

rn = 0, T
n„x ~ *' rn-z = 2, ..., then Z? would satisfy the system of congruences 

b = 1 (mod 2) 

2? = 2 (mod 3) 

b = n - I (mod n). 

The smallest such b is clearly l.c.m. (2935 . . . 3 n) - ls with a - n* For n ̂ 4 , 
however, there are smaller values of b that provide an algorithm terminating 
after n steps. Table 1 summarizes "worst case" behavior up to n = 16. 

Table 1. bn9 an that First Make Algorithm 6 Run for n Steps 

n 

1 
2 
3 
4 
5 
6 
7 
8 

&n 

1 
3 
5 
11 
11 
19 
35 
47 

an 

1 
2 
3 
4 
7 
12 
22 
30 

n 

9 
10 
11 
12 
13 
14 
15 
16 

bn 

53 
95 
103 
179 
251 
299 
503 
743 

dn 

32 
61 
65 
115 
161 
189 
316 
470 

We bound the number of steps that Algorithm 6 can take in the next result. 

Theorem ki Given b9 no value for a makes Algorithm 6 take more than 2b + 2 
iterations to terminate. 

Proof: Given b9 form the sequence R1, R2, .. . s Rb of remainders associated 
with dividing b by each of the numbers ls 2, ..., b. Applying Algorithm 6 to 
a pair (b9 a) is equivalent to picking out the increasing subsequence 

0 = Rni < Rn2 < " ' < Rn^ = Ra 

satisfying 

The sequence R , i? , . .. , i?& has its last 2? - [b/2] elements decreasing by 1 
(corresponding to quotients 1 in the divisions)s preceded by [b/2]- [b/3] ele-
ments decreasing by 2S preceded by [b/3]- [b/k] elements decreasing by 35 and 
so on back. Most of the larger values for J have no elements between [b/j] and 
[£>/j+l]. Choose k ~ [b1/2]s and consider as a worst case that there could be 
an increasing subsequence with 
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Rni- 0, Rn2= 1, . . . , Rn[bi/ij + i = [b1/z] 

and working backward from the other end, 

i?„ one of the last b - [b/2] elements 

R one of the next to last [b/2] - [b/3] elements 
m - 1 

Rn , between [b/[b1/2]] and [b/([b1/2] + 1 ) ] . 
m- [b1/2] + i 

This would yield an increasing subsequence of maximum length 

[b1/2] + 1 + [b/[b1/2]] < 2b1/2 + 2. 

One would expect that the longest sequences would be obtained from pairs 
(JDy a) such that the sequence of quotients q±s a2, q3 , . .. grows as slowly as 
possible and the sequence of remainders vn , Tn_19 Pn_2, ... also stays as small 
as possible. Keeping the remainders small is achieved by choosing b to satisfy 
a number of low-order congruences. The quotients1 size is controlled by the 
relative sizes of b and a. 

Theorem 5: Let {(bn, an)} be any sequence of ordered pairs of integers with 
the property that for any positive integer m there exists an N such thats when 
Algorithm 6 is applied to (bn, an) for n> N9 q^ = i for i = 1, 29 . . . 9 m. Then 

l im bn/an = e/(e - 1 ) . 
n-+ °° 

Proof: A p a i r (bs a) w i th q± = 1 s a t i s f i e s b = la + r 1 , w i th r < a . Hence, 
b < 2a , so b/a < 2 ; 
q2 = 2 implies b = 2v1 + r2 < 3r1 = 3(2? - a), so 2?/a > 3/2; 

a3 = 3 implies b = 3r2 + P3 < 4i>2 = 4(2a - 2>) > so 2?/a < 8/5; 

qh = 4 implies & < 5(42? - 6a), so £/a > 30/19; 

q5 = 5 implies 2? < 6 (24a - 152?), so £ /a < 144/91. 

Continue this procedure to build a sequence of fractions 

if(n)/g(n)} = 2/1, 3/2, 8/5, 30/19, 144/91, 840/531, 5760/3641, ... 

satisfying 

f(2)/a(2) < /(4)/a(4) < ••• < b/a < ••• < f(3)/a(3) < f(l)/a(l). 

It is easy to establish that f(n) = (n + l)(n - 1)!. 

gin) arises as the sum of coefficients of b in the inequalities generated 
from the assumptions 

Vn+l = n + l a n d ^n = n» 

This sequence of coefficients, 

{cn} = 1, 1, 4, 15, 76, 455, ..., 

has arisen in the literature before in an analysis of the game of Mousetrap 
[6], and satisfies the recurrence 
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The analogy with subfactorials is compelling. See the note by Rumney and 
Primrose [4] for an analysis of the sequence {un}9 which satisfies 

^n-\ = f^ " 9M • 
A combinatorial interpretation of this sequence in terms of consecutive ascend-
ing pairs of numbers in permutation is given in [1], Properties of {un} can be 
used to establish the recurrences 

n-l 
g(n) = ng(n - 1) + £ (~lf+1g(n - i) 

i = 2 

= (n - l)g(n - 1) + (n - 2)g(n - 2) 

and the formula 

g{n) = (n + 1)(n - 1)!(1 - 1/2! + 1/3! - -.. + (-l)n+1/(n + 1)!). 

Since the sum is a truncated series expansion for 1 - 1/e, the theorem is es-
tablished. 

Examples of pairs (b, a) for which Algorithm 6 takes a relatively large 
number of iterations to terminate can be constructed by starting with two con-
secutive convergents alb and old in the continued fraction expansion of 

eUe - 1) = [1, 1, 1, 29 1, 1, 4, 1, 1, 6, ...] 

and then choosing positive integers x and y so that the numerator of the in-
termediate fraction 

{ax + cy) I (bx + dy) 

satisfies a number of low-order congruences. 
Algorithm 6 provides a weaker statement about divisibility than Euclid's 

Algorithm does. It is easy to show that, if Algorithm 6 ends at the nth step 
with b - qnrn_1 + 0, then gcd(Z>, a) divides Pn_19 which in turn divides b. 

The kth quotient qk is given in terms of b9 a, and earlier quotients by 

qk = [b/(b - qk_1{b - qk„2(b - •«• q2(b - q^a) •••)))]-

rn_1 = 1 is a sufficient condition for gcd(bs a)= 1. It is not necessary, 
because, for example, b = 9999 and a = 343 ends with rn.1 = 9 . 

The iterations in Algorithm 6 say that b = ^k+1 (mod rk). Thus, we are led 
to the following number theory problem: Given n, for each decreasing sequence 
of positive integers 

find the smallest positive number b satisfying 

b = x2 (mod xx) 

b = x3 (mod x2) 

b = xn (mod x n _ 1 ) , 

if a solution exists. A solution is guaranteed to exist if, for example, the 
numbers x19 x2S •..., xn_± are pairwise relatively prime. If a solution does 
exist, it is unique (mod lem {x±9 x2, . .., xn_1).) . What Is the smallest solu-
tion b among all possible decreasing sequences of n terms? It is the same b 
as first makes Algorithm 6 take exactly n steps to terminate. 
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In [1], Marshall Hall defined Un to be a divisibility sequence if Um\lJn 
whenever m\n. Well-known examples of such sequences include geometric sequen-
ces and the Fibonacci numbers and their various generalizations (see [2], [3], 
and the references therein). The purpose of this note is to prove the follow-
ing theorem. 

Theorem: Let Un be the sequence generated by the recurrence relation 

Un + 2 = aUn+l + hUn9 

with a, b nonzero integers satisfying a2 + kb = 0. Then Un is a nongeometric 
divisibility sequence if and only if UQ = 0. 

Proof: The Binet formula for the sequence Un is given by 

Un = (f) tel + ̂ 2n>-

If U0 = 0, then o1 - UQ = 0, Un = (a/2)nc2n9 and Un is a (nongeometric) divi-
sibility sequence. 

Conversely, suppose o± = UQ $ 0 and that Um\Un whenever m\n9 i.e., suppose 

\la\n~m i 
c1 + o2m (y ) (cx 4- c2n) whenever m\n. 

Replace m by O^QIV, n by c^on, and let a0 = a/2 and e = c-^a^n - c^a^m. Then 

c1 + c2c1<2Qm\aQ(c1 + c?1c?2a0n) whenever m\n. 

Therefore, 

1 + o2aQm\a^(l + <?2a0n) whenever 77?\n, 

If e < 0, then 

1 + a2a0??? | 1 + c2aQn 

is immediate, while if e > 0, since gcd(l + a2a0m9 aQ) - 1, we also have 

1 + c2aQm|l 4- o2aQn whenever m\n. 

Letting m = 1, n = 2, gives 

1 + <?2a0|l + 2c2a0 or 1 + c2aQ\c2a0. 

Since gcd(l + c2aQS c2aQ) = 1, it follows that 1 + 2c2aQ = ±1. Hence, either 
c2a0 = 0 or c2aQ = -2. If c?2a0 = 0, then c2 = 0, since aQ ^ 0 by assumption, 
and we have the geometric sequence o1(a/2)n . On the other hand, if c2aQ = -2, 
then we have 

1 - 2m\l - 2n whenever m\n, 

which is false for m = 2, n = 4, 
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1. INTRODUCTiON 

The Pellian sequence {xn9 n = 1, 2, 3, •••} is defined by the rule: xn is 
the least positive integer x such that nx2 + 1 is the square of an integer; if 
no such x exists, xn is taken to be 0. Briefly, xn is the least positive solu-
tion to the Pell equation nx2 + 1 = y2. The sequence behaves irregularly; the 
first few terms are 

0, 2, 1, 05 4, 2, 3, 1, 0, 69 3, 2, 180, 4, 

while x = 1766319049. It is easy to see that if n is a perfect square, then 
xn - 0. The converse is also true: it is shown in [2] that for positive non-
square n> if Vn has continued fraction expansion [aQS a19 , . . , <%%] 9 then the 
convergent p2^-1/^2^-1 provides a solution # = q2^-13 2/ ~ P2/C-1 to t^ie ^ e H 
equation nx2 + 1 = z/2 ([2] also serves as a good reference for terminology and 
facts about continued fractions used in Section 3 of this note) . It is also 
easy to show that xn = 1 if and only if n is one less than a square. In this 
note, a method will be described which produces all the occurrences of any in-
teger m > 1 in the Pellian sequence. 

2. POSSIBLE OCCURENCES OF m 

It is not difficult to restrict the possible occurences of m in the Pelli-
an sequence to a small list. The method as given in [1] is as follows: 

Suppose ?7? is an odd integer greater than 1 and that xn = m. Say run2 + 1 = 
y2 for a positive integer y. Since run2 = (y - 1) (y + 1) , and m is odd, while 
y - 1 and y + 1 share no common odd factors, there must be positive integers 
a, b with (a, b) = 1, m = ab9 and such that a2 \(y + 1) and b2 \(y - 1). Hence, 

n = (y2 - l)/m2 = ((z/ + l)/a2)(Qy - l)/b2)* 

If 77? is even, write m = 2eM with M odd. In this case, if run2 + 1 = y2, 
then z/ must be odd and so 

n22e'2M2 = {{y + l)/2)((z/ - l)/2). 

The factors on the right are consecutive integers. It follows that 

77!/2 = 2e_1M = ab 

with (a, b) = 1 and such that a2 \ (y + l)/2 and b2\ (y - l)/2. Thus, 

n = ((z/ + l)/2a2)((y - 1)/2Z^2). 

So the only possible occurrences of m in the Pellian sequence are found as 
follows: 

216 [Aug. 



A NOTE ON THE PELL EQUATION 

1. For odd 777 write m as a product ab with (a, b) = 1 in all possible ways. 
For even m write mil as a product ab with (a, Z?)= 1 in all possible ways. 

2. For each such factorization ab find the positive solutions to 

y E -1 (mod a2) 

z/ E 1 (mod b2) 

if 777 is oddj or to 

y E -1 (mod 2a2) 

y E 1 (mod 2b2) 

if m is even. 

Then m can occur in the Pellian sequence only for the numbers n = (y2 - I)/m2* 
For example, if m = 35, there are four systems to solve: 

1. y E -1 (mod l2) 2. y = -1 (mod 52) 
z/ E 1 (mod 352) z/ E 1 (mod 72) 

3. z/ = -1 (mod 72) 4. z/ = -1 (mod 352) 
z/ E 1 (mod 52) z/ E 1 (mod I2) 

The solutions are, respectively, 

1. y = 1 + 352t, 2. z/ = 99 + 352t, 

3 . z / = 1126 + 352£, 4, y = 1224 + 352t, 

each with t > 0. 
Each solution y proivdes a candidate n = (z/2 - l)/352

9 where xn = 35 is 
possible. These candidates for the four solution sets are, respectively (with 
t > 0), 

1. (2 + 352t)t = 0, 1227, 4904, ..., 
2. (4 + 72t)(2 + 52t) = 8, 1431, 5304, ..., 
3. (23 + 52t)(45 + 72t) = 1035, 4512, 10439, ..., 
4. (1 + t)(1224 + 352t) = 1224, 4896, 11019, .... 

In fact, xn is 35 for all the listed values of n except the 0 of solution 
1 (x0 is not even defined) and the 8 of solution 2 (xQ = 1 since 8 is one less 
than a square). Thus, while the method produces all possible occurrences of 77? 
in the Pellian sequence, some exceptional values of n can creep into the lists. 

3. EXCEPTIONAL VALUES 

When 777 is odd, the two trivial factorizations of 772, 

777 = (1)(777) a n d 777 = (777) ( 1 ) , 

give exceptional values of n which are easy to determine. For the first fac-
torization, the system to solve is 

y E -1 (mod l2) 
y E 1 (mod 77Z2) , 

wi th s o l u t i o n s y = 1 + 7772t, t > 0 , which y i e l d s c a n d i d a t e s 

n = (y2 - l)/m2 = (2 + m2t)t« 

Of course t = 0 gives an exceptional value of n. However, all other values of 
t are good. To see that is so, it must be shown for each t > 0 that, if x is a 
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positive integer and (2 + m2t)tx2 4- 1 = y 2
 9 then x > m. From (2 + m2t)tx2 + 1 

= z/2, it follows that 

2tx2 + I = y2 - (mtx)2 > (mtx + I)2 - (mtx)2 = 2mtx + 1, 
which shows x ^ 777. 

The same reasoning shows that the system 

y E -1 (mod ?772) 
2/ = 1 (mod l2) 

yields no exceptional values of n* 
Similarly, for even 77?, the factorization (1) (777/2) of 7?7/2 yields one excep-

tional value of n (namely, n ~ 0) , while the factorization (777/2) (1) gives no 
exceptional values. 

For the nontrivial factorizations of m, the exceptional values will be de-
termined by noting a peculiar feature of the continued fraction expansions of 
Vn for the candidate n values produced by each of the systems: the expansions 
all share common "middle terms.M For example, looking at the solutions to sys-
tem 2 in the example above, the following CFEs are found: 

x/8 = [2, TTT] = [2, 1, 4, 1, 4, 1, 4]; 

/1431 = [37, 1, 4,T, 4, 74]; 

v/5304 = [72, 1, 4, 1, 4, 1, 144]. 

To see why this is so, let us suppose m is odd and 777 = ab, with a, b > ls 
(a, b) = 1. Let J be the least positive solution of 

y E -1 (mod a2) 
,2/ E 1 (mod 2?2) , 

so t h a t a l l p o s i t i v e s o l u t i o n s a r e given by y = J + 77?27j, £ > 0 . For each £ ^ 
0 , put 

Tlt = ((J + 7772t)2 - 1)/77Z2, 

the tth candidate n. If it is observed that 

[y/n~t] = [ \ / (J + 7??2t)2 - I/772] = [W(Y + 77?2t)2 - i]/m] 

= [(Y + m2t - l)/777] = [J/777] + mt, 

where [•] denotes the greatest integer function, it is not difficult to verify 
that the sequence Vn7 ~ l^ntl » t = 0, 1, ... is monotone increasing and con-
verges to J/777 - [J/77?]. Thus, for all t > 1, we have 

v^" - [VnJ <V~t~ W~t] < Y/m - [J/772]. 

Now, x = 772, y = J is certainly a solution to the Pell equation n0x2 + 1 = 
2/2, and, consequently, Y/m must be a convergent of the CFE of VTIQ ; in fact, it 
can be said that 

v ^ 7 = iq0» <7i» • • • > ^ ' 2qoi> 
where k is odd, and qQ = [J/777], since [J/772] is the greatest integer in Vn^ and, 
finally , J/77? has CFE [q 0, q1, . .., ^ ] . The period of the expansion of Vn^ is 
not necessarily k 4- 1, but must be some divisor of k + 1. In addition, it is 
known that 2q is the largest integer appearing in the CFE of y/n^• 

So the CFEs of 
y/nl - [v̂ 2~] = [0, q19 ..., ̂ , ...] 

and 
J/777 - [J/777] = [ 0 , q19 . . . , <?fc] 
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are identical out to the entry qk . Since the numbers Vn7 - l^nt] are trapped 
between these two values, they also must have continued fraction expansions 
which begin with [0, ql9 q2, . .., qk ]. Furthermore, since x = m certainly pro-
vides a solution to the Pell equation ntx2+ 1 = z/2, it follows that the CFE of 
^/n^ has the form 

'[Q» q19 . - • » qk> 2Q]S where Q = [Vn7] . 

Since the values ql9 q2* > ^ * qk are all less than 2^0, and so certainly less 
than 2Qs it must be that the period of the CFE of Vrit is exactly k + 1; hence, 
m is the least positive x that satisfies the Pell equation n^x2 + 1 = y2

 9 which 
proves that m occurs in the Pellian sequence at every n-t excepts possibly, the 
value n0. 

In a similar fashion9 it is found for even 777 that each nontrivial factori-
zation of m yields at most one exceptional value of n9 namely the value 

n0 = (J2 - l)/m2s 

where J is the least positive solution for the system. 
Thuss the following theorem has been established. 

Theorem 1: For m > 1 odd9 write m = ab with (a, b) = 1, and let Y be the least 
positive solution of the system 

y = -1 (mod a2) m 

y = 1 (mod Z?2). W 

Then m = xn5 the rzth term of the Pellian sequences where n is given by 

n = ((J + m 2t) 2 - l)/m2, for all t > 1, 

and possibly for t = 0 as well. This accounts for all occurrences of m. 

For m > I evens write m/2 = a& with (a9 2?) = 1, and let I be the least 
positive solution of the system 

y E -1 (mod 2a2) ,«v 
y = 1 (mod 2Z>2). ^ j 

Then m = xnS the nth term of the Pellian sequence, where n is given by 

n = ((J + m 2£) 2 ~ l)/m2, for all t > 1, 
and possibly for t = 0 as well. This accounts for all occurrences of m. 

It is natural to ask exactly when t = 0 will yield an exceptional n. While 
a general solution of this problem appears to be difficult, for some particular 
nontrivial facotrizations ab of m (or m/2), the answer can be provided. For 
example, when m is odd, a factorization of the form a(a + 2) always gives an 
exceptional value of n (as was seen for the case 35 = 5 9 7 in the earlier exam-
ple). To see why this is true, suppose a = 2k + 1 and b = 2k + 3. The least 
positive solution to the system 

y E -1 (mod a2) 
y E 1 (mod b2) 

is 
J = (fc + 2)(2k + l)2 - 1 = &(2& + 3) 2 + 1, 

which provides 7 us wi th 

n = fc(fc + 2) = (fc + I ) 2 - 1, 

always one less than a square. Hence, xn = 1, and this n is exceptional. How-
ever, such factorizations do not account for all exceptional values of n. For 

1987] 219 



A NOTE ON THE PELL EQUATION 

77? = 1197 = 19 • 63, the least positive solution to 

y = -1 (mod 192) 
2/ = 1 (mod 632) 

is Y = 3970, which yields n = 11. But x1± = 3 and not 1197. Likewise, it can 
be shown that if m is even and 7??/2 is factored as (777/4) (2) (assuming-777 is a 
multiple of 4), then for the n produced, xn - 2, and not 772. Again there are 
other factorizations which yield exceptional values of n. 
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This note will generalize results obtained by Wyler [5] concerning periods 
of second-order recurrences. 

Let r ^ 2 and let (u) be an rLh-order linear recurrence over the rational 
integers satisfying the recursion relation 

un + r = alun+r-l ~ a2un + r-2 + • • • + ( - 1 ) CLTUn ( 1 ) 

with initial terms u0 - ux = ••• = ur_2 = 0, ur_1 - 1. Then (u) is called a 
unit sequence with coefficients al5 a25 -.., ar. For a positive integer AT, the 
primitive period of (u) modulo AT, denoted by K(M), is the least positive inte-
ger m such that un + m = un (mod AT) for all nonnegative integers n greater than 
or equal to some fixed integer n0. It is known that the primitive period mod-
ulo M of a unit sequence (u) is a period modulo M of any other recurrence sat-
isfying the same recursion relation (see [4], pp. 603-04). The rank of (u) 
modulo M, denoted by k(M), is the least integer m such that un + m - sun (mod AT) 
for some residue s and for all integers n greater than or equal to some fixed 
nonnegative integer nQ. We call s the principal multiplier of (u) modulo AT. 
If (ar, AT) = 1, then it is known from [1] that (u) is purely periodic modulo M 
and K(M) \k{M) . Furthermore, if (ar, AT) = 1, Carmichael [1] has shown that the 
principal multiplier s is a unit modulo M and K(M) /k(M) = fi^AT) is the exponent 
of the multiplier s modulo M. In this paper, we will put constraints on K(M) 
given k(M) and the exponent of av modulo AT. 

Our two main results are Theorems 1 and 2. Theorem 2 is a refinement of 
Theorem 1. 

Theorem 1: Let (n) be a unit sequence with coefficients al9 a2> ..., ar. Let 
M ̂  2 be a positive integer such that (ar, AT) = 1. Let 7z be the exponent of aP 

modulo AT. Let A: = A: (A?) and Z = K(M) . Let # be the least common multiple of In 
and k. Then #|z and z|i>#. 

Theorem 2: Let (w) be a unit sequence with coefficients a19 a2, ...9aP. Let 
M > 2 be a positive integer such that (ar, AT) = 1. Let 7z, fc, Z, and # be de-
fined as in Theorem 1. Let 

r = ft P% 
i = i ^ 

where the p. are distinct primes and a^ ^ 1. Let 

h = (ft p^)hf, k =(n pAkr
9 

*This note is based partly on results in the author's Ph.D. Dissertation, 
The University of Illinois at Urbana-Champaign, 1985. 
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where 3i > 0, yi > 0, and (/V, r) = (kr, v) = 1. Let j vary over all the in-
dices i, 1 < i < n, such that 3^ > yi . Let c = 1 if there is no subscript i 
such that 3i > Yi• Otherwise, let 

a = n ?y • 
Then 

and 
oH\K 

K\k(rH/k, $(M)), 

where (j)(Af) denotes Eulerf s totient function. 

To prove Theorems 1 and 2, we will need the following lemmas. 

Lemma 1: For the unit sequence (u) given in (1), define the persymmetric de-
terminant 

Then 

D{:\U) 

un + l 

Un + 2 

un+r-l 

D^\(u) = arDl'\u). 

Proof: This is Heymann's Theorem and a proof is given in [2, ch. 12.12], 

Lemma 2: Let k = k(M) • Suppose 

um ~ um+i = ••• = um+r-2 = 0 (mod M) 

and (apS Af) = 1. Then k\m* Furthermore, 

and for all non-negative integers n» 

uZ+r-! = a™ (mod Af). 

In particular, if s is the principal multiplier of (u), then 

sr = a\ (mod Af). 

Proof: Suppose m = tk + d} where 0 < d < k. Since (u) is purely periodic mod-
ulo Af, it follows that, for 0 < n < r ~ 2, 

(2) 

(3) 

0 um + n- k ~ s um + n- 2k 
L'Ud+n (mod A/) ., 

where s is the principal multiplier of (u) modulo Af. However, if d > 05 this 
is impossible since s is a unit modulo Af and, by definition, k is the smallest 
positive integer j such that u^.^ = 0 (mod Af) for 0 < n < r - 2. Thus, d = 0 
and /c|w. 

We now note that 

um + n E Wm+r-lM* (mod M ) ( 4 ) 

for 0 < ?z < r - 1. It follows from the linearity of the rth-order recursion 
relation defining (u) that (4) holds for all nonnegative integers n, and um+r_1 
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is a multiplier modulo My though not necessarily principal, of (u). By apply-
ing congruence (4) repeatedly, we obtain 

umi + n ~ Um + (m(i- l) + n) ~ Um + r-ium(i - 1) + n = Um + r- lUm+ (m(i - 2)+ n) 

= u^+r_1umii_2)+n = ... E ̂  + p _ ^ n (mod A/), 

and congruence (2) holds. 
To prove (3), we note that since um E um + 1 E -°> E um+r_2 E 0 (mod M), one 

easily calculates that 

Moreover, since u0 = u1 = ••• = uP_2 = 0 and ur_1= 1, 

By applying Lemma 1 m times, we now obtain 

D^\u) = (-l)J,(l'-1)/2<+2._1 E am<>(w) = <(-ir(*-1)/2 (mod M), 

and congruence (3) is seen to hold. Finally, noting that s = w, . (mod M), 
the lemma now follows, a 

We are now ready for the proofs of Theorems 1 and 2. 

Proof of Theorem 1: Note that uK _ E ur_. = 1 (mod M) . By Lemma 2, •£+*>- i - "-r-i 

UK+r-lE al E X (m° d M>« 
Thus, Z is a multiple of h. Since k\Ks K is also a multiple of #. On the other 
hand, by Lemma 2, 

and 
"rff+i-l E <+r-lE <** E 1 (mod M>°  

Hence, r# is a multiple of K and we are done. • 

Proof of Theorem 2: By Theorem 1, K\rH. Since K=kE{M) and #(M) | (J)(M) , it fol-
lows that 

K\k(rH/k5 cf>(A0). 

For a given index j, let Sj = a,j + 3j . Then it follows from the defini-
tions of c and H that 

p?J' ||c# and p?J ||r#, 

where p? || # means a: is the highest power of p- dividing #. Since H\K by Theo-
rem 1 and CH\FHS it suffices to prove that if p. is a prime dividing c, then 

K\ (rH/pd). 
By Lemma 2, we thus need to show that 

u(rH/p.)+r~l f l (mod /¥) • 

Note that Pjk\H since $j > Yj. Thus, rH/p. = kN for some integer N. Moreover, 

-3 
r 

r\N s i n c e k\H/p-. By Lemma 2 , 
U(vE/p. )+r-l = W W ! / + P - I = W£ + r - l W i > - l = ( % + P - I ) 

= ( ^ ) * / p E ( a* )^ 2 1 = aEJv* (mod M). 
Now, 

pBj'_1l (ff/p.), pMfc. 
J 7 7 
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Thus, 

U(rH/p-)+r-l E aVV" ? l (mod M} ' 
Consequently, K\ (rH/p.) and we are done. & 
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1. INTRODUCTION 

Let S(m) denote the sum of the digits of the positive integer m > 1 , and 
S (m) denote the sum of all the digits of all the prime factors of m. If k is 
a positive integer such that Sp(m) = kS(m), m is called a k-Smith number, and 
when k = 15 simply, a Smith number [5]. 

A powerful number is an integer m with the property that if p\m then p2 \m. 
The number of positive powerful numbers less than x > 0 is between ox1 - 3x1/s 

and ex1 , where <? ~ 2.173 (see [1]). By actual counts for example, there are 
997 powerful numbers less than 250,000. 

Precious little is known about the frequency of occurrence of Smith numbers 
or of their distribution. Wilansky [5] has found 360 Smith numbers among the 
integers less than 10,000, and we have shown [2] that infinitely many k-Smith 
numbers exist (k ^ 1). In this paper5 we investigate the existence of /c-Smith 
numbers in two complementary sets: the set of powerful numbers and its comple-
ment. A basic relationship between Sp(m) and the number N(m) of digits of m 
is first obtained. We then show (not surprisingly) that there exist infinitely 
many fc-Smith numbers (k ^ 1) which are not powerful numbers. Finally, we use 
the basic relationship to show that there exist infinitely many fc-Smith num-
bers (k > 1) among the integers in each of the two categories of powerful 
numbers: square and nonsquare. 

2. TWO LEMMAS 

Lemma 1: If b, k3 and n are positive integers, k < n, and 

t = ak!0k + • -. + ^10 + a0 

is an integer with 0 < a0 ^ 5 and 0 < ai < 5 for 1 < i < k, then 

S(t(l0n - l)2 • 10&) = 9n. 

Proof: If in the product of t and 102n - 2 • 10" + 1 we replace aQl02n by 

(a0 - l)102n + 9 • lO2""1 + •-. + 9 • 10n+1 + 10 • 10n, 

we obtain 

t ( 1 0 n - l ) 2 • 10* = [ak!02n + k + . . . + a1!02n + 1 + (a0 - l ) 1 0 2 n 

+ 9 • l O 2 " " 1 + . . . + 9 • 10n + / c + 1 

+ (9 - 2ak)lOn+k + • .. + (9 - 2a1)lOn+1 

+ (10 - 2a0)10* + ak!0k 4- ... + a0] • 10*. 

Each coefficient is a nonnegative integer less than 10; hence the digit sum of 
the product is 

(ak + • - . + a-L + a0 - 1) + 9(n - 1) 

+ 10 - 2(ak + ... + a0) + (a& + ... + a0) = 9n. 
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Let 77? = p1p2...pj3 with pl5 . .., pr primes not necessarily distinct. We de-
fine 

oi = 9N(pi) - S(Vi) - 9, for 1 < i < r, 
let 

A = {ci \ci > 0, 1 < i < r}, 

and let nQ be the number of integers in i4. 

Lemma 2: Sp (m) < 9N(m) ~ Y, ci ~ - 5 4 ( p " no>-

The proof involves partitioning the prime factors of 77? in accordance with 
their digit sums. Since the result is essentially a refinement of Theorem 1 in 
[2] (replacing c± by the number 1 yields that theorem), and the proof is simi-
lar, we omit it here. 

The above lemma is useful only if some, but not all, of the prime factors 
of m are known, or, if a lower bound (the higher, the better) on the number of 
factors of m is known. 

3- POWERFUL AND fc-SMITH NUMBERS 

Theorem 1: There exist infinitely many fc-Smith numbers which are not powerful 
numbers, for each positive integer k. 

Proof: Let n = 2u ^ 0 (mod 11). We have shown in [2] that there exists an 
integer b ^ 1 and an integer t belonging to the set {2, 3, 4, 5, 7, 8, 15} such 
that m = t(10n - 1) • 10& is a Smith number. Since 

102w - 1 = (102 - l)(102(w_1) + • .- + 102 + 1) 

= 9 • 11 • u (mod 11), 

it is clear that 11 \rn and \\l \ m% hence, m is not a powerful number. 

Theorem 2: These exist infinitely many square k-Smith numbers and infinitely 
many nonsquare powerful /c-Smith numbers, for k > 1. 

Proof: Let 77? = (10n - I)2 and n = 4w, u any positive integer. Since 10** - 1 
divides 104" - 1, ll2 • 1012J7??„ Setting P± = P2

 = l l a n d P3 = Vh
 = 101> w e n a v e 

Ci = c2 = 9 . 2 - 2 - 9 = 7 and o3 = ch = 9 • 3 - 2 - 8 = 16; 

thus, by Lemma 2, Sp(m) < 18n - 46. Let 7z = ISn - Sp(m) > 46. We define 

T± = {53, 2, 25, 55, 5, ll3, 23 • 53} 
and 

and observe that 

T = {3^ * 5 \ l 5 \ 5 2 f 2 ^ 22 . 32 . 1 7 2 ? 32 . ? 2 3 24 . 3 2 } j 

{Sp(t)\t e 2^} = {15, 2, 10, 25, 5, 6, 21} 
and 

{£p(i)|t e T2 = {22, 16, 10, 4, 26, 20, 14} 

are complete residue systems (mod 7). 
It follows that there exists an element t in either of T± and T2 such that 

Sp{t) = h + (k - 2) • 9n (mod 7), fe > 2. 

Since h + (fc - 2) - 9n > 46 and £p(£) < 26, we have 

Sp(t) = h + (k - 2) • 9n - 72?, for b > 2. 
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Let M = t(lOn - I)2 * I0b; M Is clearly a powerful number. Noting that the 
hypotheses of Lemma 1 are satisfied, we have S{M) = 9n. Thus, 

SPM = Sp(t) + Sp((lOn - I)2) + Sp(10b) 

= [h + (7c - 2) • 9n - lb] + (18n - h) + 72? 

= 9kn = kS(M). 

This shows that M is a powerful 7c-Smith number. Now, 77z = (10n - l)2 implies 
that 

Sv(m) = 2Sp((lQn - 1)) 

is an even integer. We observe that this implies that h is even, and, since 
n = 4w, that b is even. Since each element of T± contains an odd power of a 
prime, and each element of T2 is a square, it follows that M is a square if 
t e T2, and a nonsquare if t e T±. Q.E.D. 

4. SOME OPEN QUESTIONS 

It seems very likely that there exist infinitely many powerful Smith num-
bers, both squares and nonsquares, i.e., that Theorem 2 is true also when k = 
1. It would be interesting to know, too, whether there are infinitely many 7c-
Smith numbers which are nth powers of integers for n greater than 2. 

Several questions whose answers would provide additional insight into the 
distribution of k-Smith numbers, but which would appear to be more difficult 
to answer are also readily suggested: Are there infinitely many consecutive 
fc-Smith numbers for any k (or for every 7c)? Or, more generally, do infinitely 
many representations of any integer n exist as the difference of 7c-Smith num-
bers for any 7c? Does every integer have at least one such representation? Al-
though we have not examined an extensive list of Smith numbers, we have found 
among the composite integers less than 1000, for example, representations of n 
as the difference of Smith numbers for n = 2 , 3, 4, 5, 6, 7, and, of course, 
many larger values of n. We conjecture that every integer is so represent-
able. 

Powerful 7c-Smith numbers occur, of course, much less frequently. Among the 
integers less than 1000, there are ten: 4,27, 121,576, 648, and 729 are power-
ful Smith numbers, and 32, 361, 200, and 100 are powerful k-Smith numbers for 
k = 2, 2, 9, and 14, respectively. Unexpectedly, however, the frequency with 
which Smith numbers occur among the powerful numbers less than 1000 is nearly 
five times as great as the frequency of occurrence among the composite inte-
gers less than 1000 which are not powerful. Is this related to the smallness 
of our sample, or is there another explanation? Finally, in view of the fact 
that there exist infinitely many representations of every integer as the dif-
ference of two powerful numbers [3], we ask: "Which integers are representable 
as the difference of powerful k-Smith numbers?" 

Our thanks to the referee for his helpful suggestions. 
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1 . INTRODUCTION AND STATEMENT OF RESULTS 

1.1 Let / , g be functions suf f ic ien t ly d i f f e ren t i ab le . Put G(z) = f(zs)9 
where zz': = exp(s In z) (exp t\ - et

9 In 1 = 0 ) . If / i s the iden t i ty function, 
i . e . , if G(z) = zz, then (see [7 ] , p . 110) 

G{m\l) 

1 

(-D20! 

( -D31! 
(1) 
<-l>*0.(J) (I) 

. . 0 

. . 0 

,. 0 

( - l)«-i(O T-3)t C-Dm"2<OT- 4)!(OT
1
 2 ) {-l)m-\m-5)\(m

 2
2) . . . -1 

(-l)m(77z-2),! ( - i r ^ ^ - S ) ! ^ " 1 ) (-l)m-2(m-Ul(mll) - . . ( ^ : J ) 

(1) 

for m = 1, 2, 3, ... . A particular case of a result obtained in this article 
shows that (1) may be replaced by 

G(m)(i) = t £ (-D^On, k)ik-l{\), (2) 

and 

where S^im, k) is the sequence of Stirling numbers of the first kind, which may 
be defined by 

Sx(m9 1) = (m - 1)S, 

S^m, m) = 1, 
Si(m, fc) = (m - Y)Sx{m - 1, fc) + 5x(w - 1, fe - 1), 1 < k < m. 

Let us consider the sequence w (m9 k9 j) defined, for 0 < j < &, 1 < /c < m, 
in the following way: 

3 

J ' s = 0 
We have 

JIO) (». *. i): = (, !,)Z(-1)^>- e>"* + '. (3) 

(m, fc, 0) = (£)km-k, 
<(m, m, j) = ("?) 

since £ (-1) (J)(m - s) = j ! ; note that s(3 + l) = U + l)(g £ j 

and (see [3], II, p. 38) u(m, fc, fc) = S(m, k), 
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the sequence of Stirling numbers of the second kind, which may be defined by 

S(ms 1) = Sim, m) = 1 
and 

S(m9 k) = kS(m - 1, k) + S(m - 1, k - 1) , 1 < k < m. 
That kind of generalization of Stirling numbers has already been considered by 
Carlitz ([1]; see also [2] and [4]). In fact, we have (see [1], II, p. 243) 

0)(w, k, Q) = (-l)k + m(k ™ .)i?(w - k + J, J, -fc), 
where 

00 OT Ymu3 
E L *<ro, «7> W~fr~ = exp(X^ + y(e* - 1)), U l . 

m = 0 J = 0 

The combinatorial aspect of the sequence R(m9 j, A) and other related numbers 
have been studied in the aforesaid articles. We want, here, to give some com-
plements. To begin, we state the following theorem. 

Theorem 1: Suppose that G(z) is defined as above; we have 

m k i l 

GW(s) = £ £ £ £ {-l)k + mS1{m, k)Sa, r)m(k, I, s)zrz + 9-m\ln z)s f(r\zz). 
k= 1 1=1 P = 1 s= 0 

(4) 
If f(z) - z9 then £(2) = zz and (4) becomes 

m k I 
G(m\z) = £ £ £ (-l^ + ̂ C m , fc)o>(fc, £, s)s3 + ̂ -m(ln 2 ) S ; (5) 

fe= 1 £ = 1 s = 0 

we obtain (2) with z = 1. 
While proving (4), we shall obtain some identities relating two differen-

tial operators, denoted by f^3\ f^\ and defined by 

yf >: = /, A(3)(*) : = « P ( ^ - ) . 4(3)= = (/̂ i)?'. - > L (6) 
and 

tf > : " /> AW(«) : = e x P ( ^ f ) , f « : = </„<«) <*>, m > 1. (7) 
We shall in fact consider two well-known operators, denoted here by f^ \ fm , 
and defined by 

fo(1)= = /• /i"(8) : = /'(3),-4(1): = (fi^i)^. m > 1, (6') 
and 

f0(2): = /, /<2)(a> = - tf'OO. 4(2>: - (/^f, m > 1. (7') 
Those operators have been studied for a very long time. The operator f1 is 
the ordinary derivative of /; it is easy to verify that 

m 

4(2)(s) = Y,S(™> k)zkfk\z). 
k = l 

Of course In f ^ is nothing but the logarithmic derivative of /. The operator 
In f ^ l s useful in geometric function theory; for example, a function f(z)s 
holomorphic in the unit disk, is called starlike (see [6], p. 46) if 

l/J^s) I > 1 
in that disk. 
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1.2 A classical formula of Faa Di Bruno ([3], I, p. 148; [5], p. 177) says 
that if h(z) : = f(g(z)) then 

h™(z) = I : E o(k19 . . . , K) n (<7(J,)(3))*' - / ( k ) ( ^ ) ) (8) 

where IT (m, fc) means that the summation is extended over all nonnegative inte-
gers k±, . .., km such that k1 + 2k2 + ... + mkm = m and ?c1 + &2 + - - • + km = k; 
we have put 

/7 7 \ m ' 

k±l ... fc^dD*1 ... (m!)*" 
Formula (8) is equivalent to 

m m 

In h^\z) = Z E c(kl9 - . . , fcOT) II (gU)M)ki * I n / , ( 3 ) (<7(s)) . ( 8 f ) 
fe = l TT(m, fe) J = l * 

It can be proved in several ways; a simple proof is contained in [8]. We can 
prove the next theorem using only the principle of mathematical induction, 

Theorem 2: If h(z) : = f(g(z))s then we have the identities 

fcL2)(s> = E Z *(*!* •••» **> n (<7<2)(*»*' - Z ^ O O ) (9) 
fe=l TT(Wsfe) J = 1 J 

and 
m m 7 

In fc^s) = E E *(*!» •••» fem) II d n ^ O O ) * ' • In / < % ( * ) ) . (9') 
k = l TTfa.fc) J = l J 

Formula (9') may also be written in the form 

42)(*) = E E o(kl9 ..., few> n ( ^ ? ) u » ^ - f f V ^ ) , (9'o 
where #(3) : = /(exp(^(g))). 

1.3 If Z'"1 denotes the inverse function of / [i.e., 

t h e n ( see [ 3 ] , I , p . 161) , for m = 2 , 3 , 4 , . . . , 

(f-^^Hz) (10) 

m- 1 / i \fc E~ E ( i) (m+fe Di (fe ...9km)h (fu\rHz)))k* • ( / '(r1^)))-
fe=l ir^m.fc) m ' J - 2 

•m-k 

where TT1(TW, &) means t h a t t h e summation i s extended over a l l nonnega t ive i n t e -
g e r s k2, . . . , fcm such t h a t 2/c2 + • • • + ffzfc^ = m + k - 1 and k2 + • • • + km = k* 
Here , 

^ l ( ^ l > •••5 -̂,7?/ • ~°  ^ W ? ^ 2 5 . . . J K-m'* 

The same kind of reasoning which could be used to prove (9) or (9 0 will help 
us to verify the following theorem. 
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Theorem 3« If f ' 1 denotes the inverse function of f9 then the following iden-
tities are valid for m = 2, 3, 4, : 

( r l ) ( 2 ) = ^ ^ ^ ( y f c - l ) . K) (11) 
k=l -n1(m3k) m' x 

J-2 

m- 1 / nl( 

ft dn ffXr'-i*)))*' ' dn /J3)(/_1 (a)))"""*; 

ln(TX)i3,(«) = E E (_1) y ~ 1 ) !
 0l(fci.-.fc-> ("') 

m 

n ( / / ^ r ^ a ) ) ) ' • (.f^cr1 (2))rffl-/c; 
j - 2 J ! 

uKr̂ w-i:1 E (-^y1)! c^,...,^) di") 

• n dn f^c r 1 (*)>)*' - (in /<*>(/-*oo)rw"*. 
j = 2 J X 

It is to be noted that (11f) may be obtained from (11") by replacing f(z) by 
exp f(s) : also, if we replace f(z) by f(ez) in (11) , then we obtain (11"). The 
distinction between formulas (8) and (9) and formulas (10) and (11) is also to 
be observed. Finally, while the identity 

I n f r f S r = E OS*-"**) in O * ) 
v = n ^ *-' K 

MfW - t o o * l» '.-*•> 

_5 r (s ) \ (3 ) W 

k = 0 

is nothing but the Leibnitz formula, we have 

J703)\(4) w 
Z_̂  
fe = 0 

or, what is the same thing (see [5], p. 2 2 2 ) : 

(/(^(-))r-in(M2w:!v«). fe = o 

2. CQMPLEHENTARY RESULTS 

It follows from the recurrence relations for StirlingTs numbers that: 

Lemma 1: We have, for m = 1, 2, 3, ..., 

m 

4(2)oo = E so*. Wa* * A(1)(2) (i2) 
^ = 1 and 

**/„(*) = E (-D^^^, fc) -/^U). (120 
fc = i 

To obtain ( 4 ) , we shall also need the following lemma. 
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Lemma 2: The sequence a)(m, k, j), defined by (3), satisfies the following re-
currence relation: 

c o O , 1 , 0) = m, ^(m, ms j ) = yA ( 0 < j < m), 

b)(m, k, k) = S(m, k) ( 1 < k < m), 

and o)(ff?+ 1 , fcs 0 ) = /co3(777s &, 0 ) + a ) ( m 3 & - 1) , 0 ) + 03(7775 k, 1) s 1 < /< < m; 

0 3 ( ^ + 1 , k , j ) = ^03(W, k , j ) 4- (J+1)0)(77Z, A:, J + l ) ( 1 3 ) 

+ 03(777, fc- 1 , j - 1 ) + 00(7775 k- 1 , j ) , 1 < j < & < m. 

Proof: If 7?? = 1, then k = 1 and j = 0 or 1; in that case the relation (13) is 
trivial. Also, since 

and 
03 

(m, k, 0) =(m
k)km-k 

(m, k, 1) = (km-k+i- (k-ir-k+i)(k
m_ l ) , 

we h a v e i m m e d i a t e l y 

ktn(m, k, 0 ) + b}(m, k- 1 , 0 ) + ai(m, k, 1) = ta(m+ 1, k, 0 ) , 1 < k < m 

Now, f o r 1 < j < k, 

j ' ! [ few(m, fc, j ) + ( j ' + l ) a ) ( m , fe, J + 1 ) + w(m, fe-1, J - 1 ) + U)(m, fc-1, j ) ] 

" (fe!})E(-Ds(f)(fe-s)ra+1"fc + J'= JJ^m+l. fe. J')-

This completes the proof of Lemma 2. 

3. PROOFS OF THE THEOREMS 

The proof of Theorem 2 is similar to that of Theorem 3; it suffices to de-
fine the sequence corresponding to (11*) below in an appropriate manner. 

Proof of Theorem 1: Let us verify that if G(z) i = f(zz) then 

m k . 
G(

m
2)(z) = E E u(m, k, J)^(ln *)JA(2)(^). (14) 

It is sufficient to show that if we write 

m k 
£l2)(3) = E E w(^> ks «7)**(ln zy'f];2\z*) 

k=i j=o 
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then the sequence w(jny k* j) satisfies the same recurrence relation (13) as 
co(m, ks j) with the same initial conditions. Observe that 

(/ + g)f(z) = f[2\z) + g[2\z); 

i t fo l lows from ( 7 ' ) t h a t 

m k 

^ + i(s) = E S kw(m, k, j)^(ln z)jri2\zz) (15) 
k=i j = o 

m k . 

+ E E «7W(m, k, j ) * * ( l n s ) J " 2 f ( 2 ) ( ^ s ) 
fc«ij=o K 

m k . 
+ E E w(m, k, J ) ^ + I(ln gJ^V^a8) 

m k 

+ E E *>(/7Z, ^ j)**+ 1(ln zy'f£\(zz). 
k=l j = 0 

Relation (13) then follows immediately if we change, respectively, j to j + 1, 
j to j - 1 and k to k - 1, and k to k - 1 in the second, third, and fourth 
double summation of the right-hand side of (15). To see that w(m, k, j) sat-
isfies the same initial conditions as 0)(m, ks j) , we may use the observations 
made after the definition (3). 

Now, using (12') and (14), then (12), we obtain 

0*> = E (-if^S^m, k)z~mG[2\z) 
k= l 

m k I 
= Z lL Z (-Dk + mS1(m, k)a)(k,.£, •8)zl"nan z)s • f[2\zz) 

k=11=1s=0 

m k I £ 

= E E E E (-Dk + mS10n, fc)SU, r)oj(fe, A, s ) S
r a + ̂ m(ln a)a^1)(a*)-

7<=l £ = l s = 0 r = l 

Proof of Theorem 3: It remains only to prove (11). That formula is clear for 
m = 2. Suppose that it is satisfied for a given m > 2. Then 

tf"1)^*) = £ E ( -D ' W t " lJ- e^k,,...,^) (16) 

m l> 

n dn /.(3>(rx(2)))** 
i - 2 l 

£±i Mr, ^VrV,!^-1"-1-1 

? fei 77TT ( l n /i'V"1^)) 
J-2 " I n f^XFHz)) 

- E1 E <-D* ̂ r " 1 ^ ^ 
fe = l TTiCm, k) 

• n dn f^r1^)))**- in f'XrHz)) 

• (In ff'tf^a)))' 
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Let us put 

*? - < 

kU) - • 

and 

k(m) = • 
^ 

We have 

'k2 + 

k^, 

.°» 
ki, 

k j -

;vi 
\ki, 

[o, 

'K> 
K-m ~ 

I, 

1, 

1, 

+ 1 

1, 

£ 
2 

£ 

5 

2 

£ 
£ 

= 

< 

= 

2 

£ 
£ 

J 

£ 

< 

= 

= 

2 

£ 
77? 

< 

= 

= 

+ 

= 

£ 
w 

m 

< 

+ 

£ 

J 

J 

1 

m 

< 

+ 

m 

1, 

< J 

+ 1 

< £ < 77? 

+ 1,2* 

m 

1. 

and 

77? + 1 777 + 1 

£ ^ ^ = 777 + k + 1, E fcf} = & + 1, 
i=2 i=2 

777 + 1 

i = i 

(J) 
777 + 1 

ro + k, £ k(.J) = &> I < j < m. 
i = 2 ^ 

Identity (16) may thus be written in the form 

77? 7 7 7 - 1 

( f f t l (« ) = E E (, E <-n* (w+^,'1)! V*?'. 
J = 2 fc=l 7T(

1
J)(777+lsfe) 

777 + 1 

> ( J ) 

(11*) 

( J ) , ^ X j + D ^ V x d 7 ) 

n (in f.^tr1 (*)))** • dn /^(r1^))-1"^"1 
i = 2 
7 7 7 - 1 

E 
777 + 1 

E (-D' (m+fe)! ( ^ . . . . O - 2 ^ fc= 1 7T1
(1)(777+ 1 , fc+1) 

i = 2 

where i\* (m 4- 1, k) means that the summation is extended over the numbers k2 , 

.-.., k^\ related to the numbers k2, ..., km by (11*), satisfying 

2^J ) + + rrik (J) 777 + fc, fc<j; + • • • + k\d) = k, 1 < J < m; (<7) 

i\^ \m + 1 , /c + 1) means tha t 

2k™ + 77* ^ = 77? + & + 1 5 / ^ ^ + + & ( 1 ) + L 

We have put 

^ i ^ i 9 
,,U) ) : = 

k(f\ . . . k^\(2\)ki . . . (m!)' 
r r - , 1 < J < m. 
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(18) 

Replacing k by k - 1 in the last summation of (17), we readily obtain 

m + 1 7 , ^ 

• n dn / ( 3 )(f'(«)))' • in f°\r1{zm-m-k-1 

i = 2 % 1 

+ £ ^ (_1)k (w+fe-l)! (fcu>, ..., ̂  . 2fc(« 
fe=2 TT^Wl, k) 

. ^ d n /^(r1^)))^1 1 . dn f^cr'oo))-*-*-1. 
i = 2 ^ x 

Now, l e t (/<*, . . . , ^* + 1 ) D e a s o l u t i o n of t h e system 

2k* + . . . + (7W + l)fc*+ 1 = ?w + &, 

& * + • • • + fe*+1 = k9 

k* > 0, 1 < J < 777 + 1, (1 < fc < 777). 
J 

(i) If k\ + 0, then k* + 1 = 0 (otherwise, k* + 1 = 1 and 2K* + ••• + Trzfc* = 

& - 1 = k* + • • • + &*, which implies that /c* = • • • = fe* = 0) ; in that case, to 

each solution (&*, . .., &*, 0) there corresponds a solution (/c , ..., fcm , 0); 

it is possible, since the hypothesis k* 4" 0 implies that k = fc^1' - 1 = k* - 1 

> 0. Conversely, to each solution (fc(1), . .., % + .,)» there corresponds a solu-

tion (**, .... A:*, fe*+1 = 0 ) . 

(ii) Suppose that 1 < J < 77Z. If fc*+1 ̂  0 then £*+1 = 0; in that case, to 

each solution (k*} . . . , k* ), there corresponds a solution (& J , ..., fc = 0) ; 

it is possible, since k. , = k9\ - 1 = k* ̂  n - 1 > 0. 

(iii) If fc* + 1 ^ 0, then &*+1 = 1 and fe* = ••• =fe*=0, fe= 1. In that 

case, to the solution (0, ..., 0, k*+1 = 1), there corresponds the solution 

( o , . . . . o , k(
m

m)
+1 = i ) . 

Rearranging the terms in the summations of (18), we may thus write 

m m - 1 

(19) 

• "n'dn f}*\rHz)))kt • dn /1
(3)<r1(3)))-n-*-1 

+ E E (-i)fe ( " + ^ ~ ^ ! o (k*. . . . , k* ) • 2k* 

• " f f d n f^irHz)))^ • (In / ^ ( / - ' ( a ) ) ) ^ - * - 1 , 
i = 2 l 1 
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where 

and 

</(*<, + £7 _ 1 (2 ) ) ) ( k ) ( 2 = 0) 
f(k\z0 +g-Ho)) 

{g'{g-1{0))k 

whence 
- f(k\zn + g-x(0)) 

/ ( a . + g-Hz)) = E 

(20) 

2fe* + • • • + (m + D/c* + 1 = m + fc, fe* + • • • + k*+1 - fe, 

c ( * * , . . . , ** ) : = ^ - ± - ^ — - . 
1 1 m + 1 k* . . . k* ! (1!)** . . . ( 0 n + l ) ! ) * - i 

1 777+1 

In the first summation of (19) we may add the terms corresponding to k = m since 

2k* + ••• + (m + l)k* = 2ms k* + ••- + k* , = m imply 
2 m + 1 2 777 + 1 

(m - l)fe*+1 + ••• + 2fc* + fc* = 0, 

i.e., fc3 = 88S = ĉ* + i = 0- Similarly., we may add, in the second summation of 
(19), the terms corresponding to k = 1. Writing 

m 
E ( J + Dfe* = m + fc - 2fe*, 

3=2 J + 1 

we obtain 

k = l -n*(m+l,k) Vn ^ LJ ' 

• "ndn f^irHz)))^ • (in / f )(r1oo))~n,~1"*. 
i = 2 'l L 

This completes the proof of Theorem 3, 

4. SOME REMARKS AND EXAMPLES 

4.1 Remark on Taylorss formula: Let us write 

k = 0 K-

We have, in a neighborhood of s = s , (#(0) = 0 ) , 

ak = (f(z0 + £?-1(2))(/;)(S = 0). 

Put 

f (s0 + g'Ho)) 
/,(*„) : = a, = and /, : = (/,.,),, k > 1. (22) 

In order that a,. E f, (z 0), we must have 

= /( +a0 +?-1(0)V 
V'C^CO)) / 
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in a neighborhood of z = 0. It follows that if g is normalized by the condi-
tions 

g(Q) = G, g'(0) = 1 (24) 

then g(z)Ez* The unique function g, normalized by (24), for which the expan-
sion (21) is valid, where ak is the kth iteration of the operator induced by 
f1:=al9 is the identity function g(z) = z; in that case, f± - /', A similar 
argument may be made for expansions of the form 

» av i ~ \k « In ak «, In ak / \k 

,? .^( I B $ • »?.—<* - ••>>- & — ( i n t) • 
It is in fact easy to come down to the previous case. For the expansions (25) 
we have, respectively, f± = f&\ f± = ff\ f± = f™ [see (6), (7), and (7f)]. 

It is of interest to observe here that for expansions of the form 

f<a> - L E W * ) -ff(*0>>*' a0: = /(a0)5 (21') 

we have always that ak is the kth iteration of the operator induced by 

To see this, we may easily show that 

3"/fa"1(s + ̂ (s0))) 
4<*o> , fc = 1 , 2 , 3 , 

2 = 0 8s k 

4*2 ( i ) Let us take f(z) - ez
9 then g = 1, in (4) ; we obtains 

( e x p O s * ) ) ^ * = 1) = e t E E C - D ^ X ^ ' ^)S(£, p> ° ( p K ~ £ . (26> 

(ii) If #(3) = zz in (9?), then we obtain, using (14) and g^\z) = zzeJ'z, 
j = 0, 1, 2, . .., the identitjf 

m k 

E c(k19 ..., / c j n (s + J ) ** = E w ( m > k » ^ J ° * s G c» ^27> 
Note that we can deduce from (8) (see [5 ] , p . 191) the r e l a t ion 

^r kl ™ .k. im + k - 1 
n , ^ " ( mil X). ! < * < » • TT(OTS fc^i • • • * *-w j = 1 

(iii) Lagrange expansion [concerning a root of equations of the form z - a 
+ £<j>(2) 5 £ "*" 0] in conjunction with (8) may be used to prove the formula 

£ c(fel5 .... g n ( ( ^ ( a ) ) w - V ' = (I I })(r(a))(m-fc)5 (28) 

which implies that 

£<?<*!, .-•, fcm) O ((^(a))^'-1^ = e^^Me")0"'1*, (29) 

238 [Aug. 



ON THE DERIVATIVES OF COMPOSITE FUNCTIONS 

where 7r(m) means that the summation is extended over all nonnegative integers 
k1$ ...5 km such that k1 + 2k2 + •*• + mkm = m. 
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LEETTER TO THE EDITOR 

NOTE ON "REPRESENTING (2^ AS A SUM OF SQUARES" 

[Neville Robbins, The Fibonacci Quarterly 25, no. 1 (1987):29] 

In addition to the theorems Dr. Robbins presented, it is the case that 

^ = 0 

Proof: In general, the coefficients of terms in a polynomial that is the prod-
uct of two other polynomials is the convolution of the terms of the two-factor 
polynomials. In particular, the coefficients of the terms in the binomial ex-
pansion can be expressed by such a convolution: 

If we chose r = q = n, then p = 2n, and we get 

which is obviously equivalent to (1). 

Equation (2) is a rendering of the first form of the Vandermonde convolu-

tion (see [1]), with the term ( J replaced by 1. Equation (3) is a particular 

case of that, with the substitutions noted. 

Corollary: n\ can be written recursively not only as n(n - 1 ) ! , but also (for 
even ri) as 

In/2\z 

i (n/2)!2 £ (nll)\ (4) 

Proof: This is made clear by rewriting the summation according to (1) above: 

m = < M ' 2 > , 2 ( „ / 2 ) - (5) 

We then expand the combination ( jr) ) to give, 

m - WU1* (n/2) l (V- n/2) 1' (6) 

which is fairly obviously an identity. 

Reference 

1. John Riordan. Combinatorial Identities. New York: Wiley & Sons, 1968, p. 
15, Eq. (9), form 1. 

THOMAS H. HILDEBRANDT 
North Carolina State University 
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A NOTE ON A GENERALIZATION OF EULER#S 4> FUNCTION 

LASZLO TOTH 
3900 Satu Mare, str. N. Golescu 5, Romania 

(Submitted August 1985) 

P. G. Garcia and Steve Ligh [3] introduced the following generalization of 
the Euler function <j)(n) : For an arithmetic progression 

D(s, ds ri) = {s, s + ds ..., s + (n - l)d}, 

where (s, d) = 1, let (j)(s, ̂  ?0 denote the number of elements in D(s, d9 ri) 
that are relatively prime to n. Observe that (j)(l, 1, ri) = $(n) . 

Garcia and Ligh showed that <f>(s, d, ri) is multiplicative in n, i.e., for 
(m, ri) - 1, we have 

<()(S, <i, 77Zft) = (j)(s, d, 77?)(j)(s, 6?, n) 

(cf. [3], Theorem 1), and deduced the formula: 

ipk(l -£)> if V\d, 
(J)(SS d, Pfe) = < P (1) 

(P\ if P | d, 
(cf. [3], Lemma 2). 

The aim of this note is to establish an asymptotic formula for the summa-
tory function of $(s s d, ri) using an elementary method. 

Let y denote the Mobius function, I the Dirac function, for which 

Kn) /l, n = 1, 
(0, n > 1, 

and let Ĵ  be the arithmetic function defined by Id(n) = J((n, <2)) . We need the 
following result, which is the generalization of the familiar Dedekind-Liou-
ville evaluation of (J)(n) : 

<j)(n) = J2 V(e)v. 
er=n 

Lemma 1: <|>(s, d, n) = J^ \i(e)Id(e)r = Yl V{e)ve (2) 
er = n ev = n 

(e, d) = l 

Proof: The functions y, Id, and y• Jd are multiplicative [moreover, J^ is to-
tally multiplicative, i.e., Id(mn) = Id(m)Id(n) for arbitrary 777 and n] and so 
the right-hand sum, being the Dirichlet convolution of two multiplicative func-
tions, is also multiplicative. It has been noted that (f)(s, ds ri) is multipli-
cative; thus, it is enough to verify the above identity for n = pk« We have: 

(pk _ pk-i = pk(i _ I \ i f p)(d 

£ u(e)Id(e)r ={ V ' 
(pk, If p\d 

= <$>(s, d, pk) by (1). 
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Corollary 1: J] Jd(e)cf>(s, d9 r) = £ (f)(ss d, r) = n, (3) 
er = n ev = n 

(e, d)-l 

Proof: By Lemma 1 we have c()(s, <i, ri) ~ }l * Id * E9 where E{ri) = n and * deno tes 
t h e D i r i c h l e t c o n v o l u t i o n . Thus, 

Id * <t>(s9 d, n) = Id * v Id * E9 

and, using the distributivitjr property of the totally multiplicative functions 
(see, for example, [4], Theorem 1): 

Id * <|>(s, d9 ri) = I d ( U * y) * tf, 
where U(n) = 1 and (U*}i)*E = I * E = E* Hence, 

Id * <j)(s, d9 ri) ^ E 

and the proof is complete. 

Remark 1: The author thanks the referee for the following direct proof of (3); 

We write n as n = PQ, (P, 0 = 1 , where (P, d) = 1 and (Q9 d) > 1 or Q = 1. 
By the multiplicative property of <|)(s, d, ri) , 

(J)(s, d, n) = cf>(s, d, P)*(ss d, « = *(P)e 

(cf. [5], Lemma 2). Thus, 

YJ <f>(s, d9 r) = 2] 4>(e> d, jQ) = 2] <KS» ds j)<f>(s9 d9 Q) 
ev~n j\p j\p 

(e, d)-l 
= flE*W) = PQ = n. 

J\P 

Remark 2: Ligh and Garcia have obtained a formula for ]P f(s, d, r) (see [5], 
Theorem 2) . H" 

Let J"(n) denote the Jordan totient function of second order, 

J(n) = n2 n(l - \ ) (see [2], p. 147). 

(4) 

Proof: The series is absolutely convergent and the general term is a multipli-
cative function of n\ thus, it can be expanded into an infinite product of the 
Euler type (see [2], § 17.4): 

Lemma 2 ( c f . 

oo y< 

E -
n = l 

p\n x 

[ 1 ] , Lemma 

n)Id(n) 

9 

n 

V f 

5 . 1 ) : 

6d2 

n2J(d) 

E — = nf.i:-^-)=n(i^ 
n (i - \) 
n f i - - ^ ?<*vw> ^ ^ 
P M V P 

where £(s) is the Riemann Zeta function. 
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We s h a l l use t h e fo l lowing well-known e s t i m a t e s . 

2 
T2 

Lemma 3 : L n = T~ + 0 ( ^ ( 5 ) 

E ~ = °(los *) (6) 

n^x 

n> x n 
3d 2 

Theorem: £ * ( s 5 ^ n) = -•-—••—x2 + 0(x log a:). (8) 
n<x i\2J{d) 

Proof: Using (2) and ( 5 ) , we have : 

E ^ } d, n) = £ V(e)ld(e)r = £ y ( e ) J r f ( e ) £ * 

E y(,)xd(e) \^-2 + o(f)} = f i Z ^ ^ + ofxjj) 
e<a; { 2e ) e<x e x e<x / 

And now, by ( 4 ) , ( 7 ) , and ( 6 ) , 

x2 6d2 
J^ <j>(s, d9 n) = -y-° — — — + 0(#) + 0(x log x) 

3d2 

7F2e7((i) 
JJ2 4- 0(x log #) . 

6c?2 

C o r o l l a r y 2: The average order of $(s s d§ n) i s — n . 
TrV(d) 

Proof: From ( 8 ) , we have 
; E W s , ^ n ) ~ - £ / d ( " ) » where j ^ (n) = — — — n« 
X n<x X n<x T\2J(d) 

For d - 1, we reobtain Mertens1 formula: 

Corol lary 3: X <t>(n) = -™- ̂ 2 + 0(x log x). 
n^x ^ 
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FIBONACCI'S STATUE 
Have you ever seen Fibonacci's portrait? This photo is a close-up of the head of the statue of Leon-

ardo Pisano in Pisa, Italy, taken by Frank Johnson in 1978. 
Since Fibonacci's statue was difficult to find, here are the directions from the train station in Pisa 

(about 8 blocks to walk): Cross Piazza Vitt. Em. II, bearing right along Via V. Croce to Piazza Toniolo, 
and then walk through the Fortessa. The statue is found within Fortezza Campo Santo off Lungarno Fib-
onacci or Via Fibonacci along the Arno River at Giardino Scotto (Teatro Estivo). 

CALL FOR PAPERS 
The THIRD INTERNATIONAL CONFERENCE ON FIBONACCI NUM-

BERS AND THEIR APPLICATIONS will take place at The University of Pisa, Pisa, Italy, 
from July 25-29, 1988. This conference is sponsored jointly by The Fibonacci Association 
and The University of Pisa. 

Papers on all branches of mathematics and science related to the Fibonacci num-
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1988. Manuscripts are requested by May 1, 1988. Abstracts and manuscripts should be 
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All talks should be limited to one hour or less. 

For further information concerning the conference, please contact Gerald Bergum, 
The Fibonacci Quarterly, Department of Mathematics, South Dakota State University, 
P.O. Box 2220, Brookings, South Dakota 57007-1297.. 
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SOLUTION OF THE SYSTEM 
a2 = -1 (mod b), b2 = -1 (mod a) 

JAMES C. OWINGS, Jr. 
University of Maryland, College Park, MD 20742 

(Submitted August 1985) 

SNTRODUCTSON 
On page 64 of Introduction to Number Theory by Adams and Goldstein [1], 

problem number 7 asks: "Does x2 E -1 (mod 65) have a solution?" An obvious 
solution is x = 8, but if one first solves the congruences x2 = -1 (mod 5) and 
x2 E -1 (mod 13) and then applies the Chinese Remainder Theorem, one finds that 
x2 E -1 mod (5 • 13) <=^ x E ±5 ± ±3 mod (5 • 13). This leads to the following 
obvious question. For which pairs of numbers a, b do we have (±a ± b)2 E -1 
(mod ab)1 This is equivalent to ab\a2 + b2 + 1 which, in turn, is equivalent 
to the pair of conditions a\b2 + 1 & b\a2 + 1 (if the latter conditions hold, 
it is clear that a and b are relatively prime). 

Let 

JP = () J? = ] TP = p + TF TP - J? _ J? 

so that Fn , the' nth Fibonacci number, is defined for all integers n. Clearly 
(±a ± b)2 E -1 (mod ab) is equivalent to (a - b)2 E -1 (mod ab). We will show 
that (a - b)2 E -1 (mod a£>), where 1 < a < 2?, iff for some n ^ 0, a = ̂ 2n-i & 
£ = ̂ 2«+i- Thus, the solutions are (1, 1), (1, 2), (2, 5), (5, 13), (13, 34), 
(34, 89), (89, 233), (233, 610), . .. . Since we are also interested in the 
equation (a - b)2 E +1 (mod ab) , we shall carry out many of our calculations 
with ±1 in place of -1. 

1. EQUIVALENCE TO THE D10PHANTINE EQUATION z2 - (x2 - h)y2 = ±4 

Since (a - b)2 E ±1 (mod ab), we write (a - b)2 + 1 = rab, that is, 

a2 - (2 + r)ab + b2 + 1 = 0. 

Let k = 2 + r. If b and Zc are given, then there will exist an a satisfying 
a2 - kab + b2 ± 1 = 0 iff 

j-(kb ± V(k2 - l)b2 ± 4) 

is an integer. By examining the cases k even, b even, k and b both odd, we see 
that this is equivalent to (k2 - k)b2 ± 4 = s2, for some s. We let x = fc, z/ = b, 
and obtain the Diophantine equation 

s2 - (x2 - 4)z/2 = ±4. 

Every solution of this equation except for (z, a:, z/) = (0, 0, ±1) corresponds 
to two solutions of (a - b)2 ~ ±1 + (x - 2)ab? namely, 

7 xy ± z b = y3 a = - ^ . 

Here 4 corresponds to +1 and -4 corresponds to -1. 
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2. THE EQUATION s2 - (x2 - k)y2 = -4 

We now concentrate on the -1 case. Firsts we prove a useful lemma. 

Lemma 1 : z2 - (x2 - 4)z/2 = -4 is solvable in integers iff z2 - {x2 - 4)z/2 = -1 
is solvable in integers. One direction is easy, since z2 - (x2 - 4)z/2 = -1 im-
plies (2s2)- (x2 - 4)(2z/)2 = -4. So suppose z2 - (x2 - k)y2 = -4 is solvable. 
If x were even, then 4 would divide x2 - 4, so 2 would divide z9 and we would 
obtain 

(it - ((f)* - >>• • - • 
Since -1 is not a square (mod 4), y is odd. Thus, 

(|)2 = -1 + ((f)2 - l)y2 = (f)2 - 2 E 2, 3 (mod 4), 

which is impossible. Therefore, x is odd. 
Let (zQ9 y0) be a solution of z2 - (x2 - 4)z/2 = -4. Then z0 = y0 (mod 2). 

If 20 and y0 are both even, then 

m - <•• - »m - -
and we are done. Therefore, we assume that zQ9 yQ are odd. We now quote the 
following easy and well-known result. 

Multiplication Principle: If u\ - Dv\ = A and u\ - Dv\ = B9 then u\ - Z)^ = ^ 5 

where 
u2 + ^^2 = (uQ + }/DvQ)(u1 + VSi^) = ( u ^ + ^o^i) + y/5(u0v1 + w 1 ^ 0 ) . 

(#, ±1) are solutions of z2 - (x2 - 4)<y2 = 4 ; so, by the Multiplication 
Principle with D = x2 - 4, (s^, y^)9 i = ls 2, are solutions of 

s2 - (x2 - 4)z/2 = (-4) (4) = -16, 
where 

(zi9 yt) = (zQx + (-lYDy-9 xyQ + (-1)^). 

Since 421 16, it is clear that 4ls^ iff 4lz/̂ . Also, since a;, 30, yQ9 and £ are 
all odd, z19 y19 z2, and y2 are even. Also, 

s2 ~ zi ~ 2Dy0 E 2 (mod 4) and y2 - y1 = 2zQ E 2 (mod 4). 

So, for some i, s^ E z/̂. E 0 (mod 4). Hence, 

£ ) 2 - <•• - «(£) ' - -
and Lemma 1 is proved. 

Lemma 2: s2 - (x2 - 4)z/2 = -1 is solvable only when x = ±3. 

When x = ±3, we may take z - 2, z/ = 1. Suppose z2 - Gc2 - 4)z/2 = -1 is 
solvable. Then x is odd. Suppose x •> 0 and x ^ 3. Then a; > 3 since, other-
wise, 

s2 - Or2 - 4)z/2 > 0. 

Let (s*» z/*) be that solution characterized by 2* > 0, z/* > 0, and y* is mini-
mal (the so-called fundamental solution). Since x > 3, x2 ~ h is not a perfect 
square; so, by the general theory of Pell equations (see [1], p. 201, Theorem 
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106), if (s,z/) is any solution of s2 - (x2 - 4)z/2 = +1 with z > 0, 2/ > 0, then 

3 + Vic2 - ky = (3* + Vx2 - 4z/*)" , 

where n is an even positive integer. 
In order to arrive at a contradiction, we need to find a small solution of 

z2 - (x2 - 4)z/2 = 1 with x odd. We have two obvious solutions of 

z2 - (x2 - 4)2/2 = 4, 

namely, (x, 1) and (x2 - 2, x). Therefore, 

(x(x2 - 2) + (x2 - 4)x, x2 + (x2 - 2)) = (2(x3 - 3a?), 2(x2 - 1)) 

is a solution of z2 - (x2 - 4)zy2 = 16, by the Multiplication Principle. Since 
x is odd, x3 - 3x and x2 - 1 are even. Hence, 

Let 

(£i_^)2 _ (S2 _ 4)(<^f= 1. 

(4, B) = (** ~ 3a;, x 2 2 " * ) . 

04, B) is probably the fundamental solution of z2 - (x2 - 4)z/2 = 1, but we do 
not have a proof [William Adams has shown, using the theory of continued frac-
tions, that 04, B) is the fundamental solution]. In any case, 

A + Vx2 - kB = (z* + Vx2 - hy"k)n
 9 where n is even. 

Therefore, there exist positive numbers U and V such that 

A + vx2 - kB = (U + Vx2 - 47)2. 

Let D = Vx2 - 4. Then A = U2 + DV2
5 B = 2UV. Hence, 

\2 

L e t W •-

Thus, 

and 

A = U + ^Wj -
= £/2. Then 4J72 - bAW + Z>£2 = 0. So (2W -

0 /! + ] T3 - IT + 2 
2 4 

U = | Vx3 - 3x ± 2 = j - V(x + l)2(x ± 2) 

B x 2 - 1 x ± 1 
V r\jr ~ • 

• A)2 = A2 - DB: 

= *-%-± Vx ± 2 

2 _ 1, and 

2(x + l)Vx ± 2 2 V x ± 2 

It turns out that if 2W = A - 1, then £/2 - £72 = -1, while if 2W = A + 1, 
then £/2 - Z)72 = +1. We do not, however, need this information. We have shown 

Proposition: If z2 - (x2 - 4)z/2 = -1 is solvable in integers, then either 

x - 2 is a perfect square and Vx - 2|x - 1 
or 

x + 2 is a perfect square and vx + 2|x + 1. 

Suppose that x - 2. = t2 and t\x - 1. Then t\t2 + 1. So £ = 1. Therefore 
x = 3, a contradiction. Suppose that x + 2 = t2 and tix + 1. Then t\t2 - 1. 
So t = 1. Thus x = -1, a contradiction. This completes the proof of Lemma 2. 

Putting Lemmas 1 and 2 together, we see that z2 - (x2 - 4)z/2 = -4 is solv-
able in integers iff x = ±3. 

1987] 247 



SOLUTION OF THE SYSTEM a2 = -1 (mod b), b2 E -1 (mod a) 

3. SOLUTION OF a2 - 3ab + b2 = ±1 

In solving the congruence (±a ± b)2 E -1 (mod aZ?), it clearly suffices to 
find all solutions (a, b) with a, 2? ̂  1. Also, the equation is equivalent to 
(a - b)2 E -1 (mod aZ?) , i.e., (a-Z?)2 + l= paZ?, where, because a, & > 0, we 
know v > 0. By §2, 2 + r = k = ±3. Therefore, /c = 3 and r = 1. So, if a, Z? > 
1, the congruence (±a ± b)2 E -1 (mod aZ?) is equivalent to the equation 

a2 - 3aZ? + b2 = -1. 

Theorem: Let a and 2? be any two integers. Then 

1) a2 - 3ab + b2 = -1 iff (a, Z?) = ±(Fn, Fn± 2) where n is odd, and 

2) a2 - 3aZ? + b2 = 1 iff (a, Z?) = ± ( ^ 9 Fn±2) where n is even. 

Proof: We could reduce our equations to the Pell equation u2 - 5v2 = 1 using 
well-known methods. However, it is easier to apply the methods developed in 
[3]. Consider the equation a2 - 3ab + b2 = -1. The idea is that any solution 
(a, b) generates two other solutions (a, bf) and (ar, b) 5 where ar and bf are 
determined by the recurrences ar = 3b~a9br=3a-b. If we apply these re-
currences over and over, we develop a two-way infinite chain ...2?r ab ar... of 
integers in which any adjacent pair represents a solution. According to ([3], 
p. 56), every chain of solutions to our equation must contain an a-value in the 
set {0, ±1} or a Z)-value in the set {0, ±1}. The only solutions (a, b) having 
this property are ±(1, 1), ±(1, 2), and ±(2, 1). So, except for changes of 
sign, every solution lies in the single chain 

...34- 13 5_ 2 l_ 1 2 5 13 34..., 

where we have underlined the a-values. Since F_1 = 1 and F1 E 1, and since 

^n ~ Fn-2 = 2Fn + Fn-l = ?n + *"„ + l = *"„ + 2 
holds for every integer n9 we see that this sequence of numbers is 

...*•_5 F_3 F_x F, F3 F5... . 

Therefore a2 - 3ab + b2 = -1 iff, for some odd number n9 (a, b) - ±(Fn > ^ ± 2 ) * 
The equation a2 - 3ab + b2 = +1 is handled in a similar fashion. 

Corollary: If 0 < a ^ b9 then (±a ± b)2 = -1 (mod ab) iff, for some n ^ 0, 

(a, i) = (F2n_l5 F 2 n + 1 ) . 

4. DiSCUSSION OF (±a ± Z?)2 E 1 (mod ab) 

We shall briefly discuss the equation (±a ± b)2 E 1 (mod ab) , equivalent to 
{a - b)2 E 1 (mod aZ?) , which we rewrite as a2 - kab + b2 = 1. In §1 we showed 
that this equation is solvable iff z2 - (k2 - 4)z/2 = +4 is solvable. The lat-
ter equation has an obvious solution, namely {z9 y)= (k, 1) . So we have solu-
tions of a2 - kab + b2 = 1 for every k, not just fc = 3. When k = 3, we have 
only the solutions given by the Theorem of §3, but when k - 4 we have, for ex-
ample, (a, b) = (1, 4), and when k = 5 we have, for example, (a, Z?) = (5, 24), 
When k = 2, we get the infinite class (a, Z?) = (n9 n i l ) . Clearly, 

n2 - 2n(n ± 1) + (n ± 1)2 = 1, 

and if a2 - 2ab + b2 = 1, then Z? = a ± 1. A complete classification for all fc 
would be an interesting project. 
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5- WHEN a AND fc ARE PRIMES 

If a and b are distinct primes, or if one is an odd prime and the other is 
twice another odd prime, the congruence x2 E -1 (mod ab), if solvable, will 
have precisely four solutions.. Therefore, 

x2 = -1 (mod ab) <=> x = ±a ± 2? 

holds for the following pairs (a, 2?): 

(2, 5), (5, 13), (13, 34), (34, 89), (89, 233). 

However, it does not hold for the pair (233,610). There are eight solutions 
of x2 = -1 mod (233 • 610), four of which are ±233 ± 610 = ±377, ±843. The 
other four are ±121 • 233 ± 610 = ±27583, ±28803. Thus, the question arises: 
How many pairs of primes a, b are there satisfying (±a ± b)2 = -1 (mod ab)? 
Since n is prime whenever Fn is prime, if there are finitely many twin primes, 
there are only finitely many such pairs. However, it is generally believed 
that the set of twin primes is infinite. Nevertheless, based on separate 
probabilistic considerations, Daniel Shanks has conjectured that (89, 233) is 
the last such pair. 
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I. INTRODUCTION 

A number of different families of graphs have recently been proposed as 
possible interconnection models for computer networks. A tree is the cheapest 
interconnection, but has unacceptably poor connectivity properties. On the 
other hand9 the complete graphs Kn9 although most reliable and best connected, 
is prohibitively expensive (too many edges). A number of other graph families 
that lie between these two extremes have been proposed and analyzed for rele-
vant properties such as path lengths, connectivities, cost, reliability, poten-
tial congestions, throughput, etc. The search for "good11 interconnection 
graphs for various situations continues. This paper is an outcome of our 
attempt to find a class of graphs which satisfy certain desired properties. 

In Section II, we derive a family of adjacency matrices from Rencontres 
numbers, and call the corresponding graphs Rencontres graphs, which are con-
nected, undirected, bipartite graphs. In Section III, the connectivity of Ren-
contres graphs is explored. In that section, we also prove that the complete 
bipartite graph Ktit is a subgraph of the Rencontres graph of 2t vertices. An 
expression for the number of edges in a Rencontres graph in terms of the num-
ber of vertices is developed in Section IV. In Section V, it is shown that all 
Rencontres matrices of order other than 2 are singular. 

We have used standard graph theoretic terms, for which readers may refer 
to [3] or [4]. All logarithms are with respect to base 2. 

II. BASIC CONCEPTS AND DEFINITIONS 

A classical combinatorial problem, known generally by its French name, "le 
probleme des rencontres," is to find the number of permutations of n distinct 
elements (say, 1, 2, ..., n) such that no element is in its own position, or 
element k is not in the kth position, k = 1, 2, ..., n. It is also known as 
the derangement problem. Its solution by Montmort (1713) effectively uses the 
principle of inclusion and exclusion [1]. More generally, the derangement 
problem enumerates permutations of n distinct elements according to the number 
of elements in "their own positions." 

Let DHik be the number of permutations of n elements with exactly k of them 
not displaced. In particular, DUi0 is the number of permutations of n elements 
with all of them displaced, and Dntn is the number of permutations of n elements 
with none of them displaced. It has been shown in [1] that 

Dn,k = \]JDn'k'0' 

The numbers #ns£ for given n and k, 0 ̂  k K ns are called Rencontres numbers. 

*This work was supported by the United States Army Research Office under 
grant DAAG29-82-K-0107. 
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For n = 05 1, ..., 10 and k = 0S 1, . .., 10, the numbers Dnfkare given in Table 
1, henceforth referred to as the Rencontres table. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 

1 
0 
1 
2 
9 
44 
265 
1854 
14833 
133496 

Table 1. Rencontres Numbers Dn^ 

1 2 3 4 5 

1 
0 
3 
8 
45 
264 
1855 
14832 
133497 

1 
0 
6 
20 
135 
924 
7420 

66744 

1 
0 
10 
40 
315 
2464 
22260 

1 
0 
15 
70 
630 
5544 

1 
0 
21 
112 
1134 

6 7 8 9 10 

1 
0 
28 
168 

1 
0 
36 

1334961 1334960 667485 222480 55650 11088 1890 240 45 0 

The following results can be derived easily., 

Dn,n= (Jo,, 1 for all n > 0 

£ns0= nDn_U0+ (-l)n for all n > 1 

D , = 0 for all n > 0 
n + 1 , n 

nl '±o(l)Dn_kw0for a l l n > 0 

*>n.k= Dn-i,k-i + (" I V»-*.o f ° r a11 n > l &nA l <k < n 

D- • = 0 if either or both i and j are negative integers. 

Let us define a few terms used in this paper. 

Definition 1: An n x n symmetric binary matrix is called the Rencontres matrix 
RM{n) of order n if its principal diagonal entries are all 0?s and its lower 
triangle (and therefore the upper also) consists of the first n- 1 rows of the 
Rencontres table modulo 2. Let rmis j denote the element in the itn row and the 
j t h column of the Rencontres matrix. 

Definition 2: The simple, undirected graph with n vertices corresponding to 
RM(n) as its adjacency matrix is called the Rencontres graph RG(n) of order n. 

The matrix RM(10) is shown below followed (in Figure 1) by the first eight 
Rencontres graphs. 
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1 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

i 
(0 

i 
0 
1 
0 
1 
0 
1 
0 

U 

2 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

1 © 

1 « 

3 
0 
1 
0 
1 
0 
0 
0 
1 
0 
0 

4 
1 
0 
1 
0 
1 
0 
0 
0 
1 
0 

® 1 

5 
0 
1 
0 
1 
0 
1 
0 
1 
0 
0 

® 7 

•« 2 

6 
1 
0 
0 
0 
1 
0 
1 
0 
1 
0 

7 
0 
1 
0 
0 
0 
1 
0 
1 
0 
0 

8 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

9 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

10 
1 \ 
0 
0 
0 
0 
0 
0 
0 
1 
o ; 

RG(1) 

RG(2) 

RG(3) 

RG(4) 

RG{5) 

RG(6) 

L532 

RG(7) 

RG(8) 

Figure 1. Rencontres Graphs RG(ri) , 1 < n < 8 
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Definition 3: Let rtitj be the j t h element in the i t h row of the Rencontres 
table 5 where rows and their elements are numbered beginning with 0. 

Thus 5 by the definition of the Rencontres matrix, 

rm-itJ- = ^ i - 2 , j - i (mod 2) f o r i > j > 1 

= () _ l)r*i-j-i,o (mod 2) 
<i - 2\ 
VJ 

= (} I 1)rmi_j+l3l (mod 2 ) , 

Definitions 1-3 are similar to those in [5], in the context of Pascal graphs. 

Definition h: Let BS(M) denote the binary representation of a nonnegative in-
teger M; if q is the smallest integer such that 2q+1>M9 then q will be called 
the length of BS(M) . The pt h bit of BS(M) will be denoted as BSP(M), where the 
bits are counted from right to left and the rightmost bit is the 0t h bit* 

Definition 5- The B-sequenoe of a positive integer N is defined as the strict-
ly decreasing sequence B(N) = (p , p ? s ..., p„) of £ nonnegative integers such 
that 

N = L 2P*» 
i = l 

Note that the J9-sequence of any positive integer N gives the positions of l?s 
in the binary representation of N in decreasing order. Also, the S-sequence of 
zero is defined to be a null sequence. This definition is the same as in [6]. 

M S , CONNECTIVITY PROPERTIES OF THE RENCONTRES GRAPHS 

Lemma 1: Graph RG(n) is a subgraph of RG(n + 1) for all n > 1. 

Proof: This property is a direct consequence of the definition of the Rencon-
tres matrix. 

Theorem 1: All graphs RG(i), 1 < i < 79 are planar; all Rencontres graphs of 
higher order are nonplanar. 

Proof: Figure 1 clearly shows that all graphs RG(i) for 1 < i < 7 are planar. 
It is easy to see that Kuratowski?s second graph K3i3 is a subgraph of Rp(S). 
Thus3 by Lemma 19 all graphs of order 8 and higher are nonplanar. 

Theorem 2: (a) Vertex v± is adjacent to Vi+1 in the Rencontres graph for every 
i > 1. 

(b) Vertex v is adjacent only to all even-numbered vertices in the 
Rencontres graph. 

(c) Vertex i? is adjacent only to all odd-numbered vertices in the 
Rencontres graph. 

Proof: (a) By the definition of the Rencontres matrix, 

rmi3j- = rti_23J_1 (mod 2), i > j > 1. 

For all i > 1, rmi+lji = rti_ lsi _x (mod 2) = 1. Thuss vertex v^ is 
adjacent to V^+1 for all i ^ 1. 
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(b) Since vm2 L = Pt0, 0 (mod 2) = 1, so vertex v1 is adjacent to v2 

For £ > 3, rrrii^ l = ^ti_2i0 (mod 2) 

= (£ - 2)pti_3j0 + (-1)'"2 (mod 2) 

= (£ - 2)rmi_ltl (mod 2)+(~l)i_2 (mod 2) (mod 2). 

Now, if £ is evens 

(£ - 2) (mod 2) = 0 and (-l)i-2 = 1, 

so that vm^^Y = 1 for all even £ ̂  2. On the other hand, if £ is 
odd, 

(£ - 2) (mod 2) = 1 and (-l)i~2 = -1; 

also, since i - 1 is even, M^-i,! = 1- Hence, rmisl = 0 for all 
odd £ ̂  3. Thus, vertex v1 is adjacent to all even-numbered verti-
ces and to no others in the Rencontres graph. 

(c) Vertex v2 is obviously adjacent to v1. 

For £ > 3, rmii2
 = ( i )rmi-i,i (mod 2) 

= (£ - 2)rmi_l x (mod 2). 

Clearly, when £ is even, vm^ 2
 = 0. But, when £ is odd, vmi^2 ~ 1, 

since ^^i-i,} = 1 by Theorem 2(b). Therefore, vertex y is adjacent 
only to all odd-numbered vertices in the Rencontres graph. 

Corollary 1: Graph RG(n) , for all n ^ 2, is connected, and contains a Hamil-
tonian path [1, 2, 3, . .., n]. Moreover, for all even n ^ 4, graph RG(n) con-
tains a Hamiltonian circuit [1, 2, . .., n - 1, n, 1]. 

Corollary 2:* In graph RG(n) , degree (yx) = -r- , and degree (v2) = \ — \. 

Themrem 3- RG(n) is bipartite for n ^ 2. 

Proof: The proof consists of showing that neither two even-numbered nor two 
odd-numbered vertices in a Rencontres graph are adjacent. Let both £ and j be 
even integers, £ > j. Then* 

™iaj = (J I 5)*™w+i,i ( m ° d 2)' 

Since the integer £ - j is even, by Theorem 2(b) M ^ ^ ^ 1 = 0, and therefore9 
rm^}j = 0. Thus, no two even-numbered vertices in a Rencontres graph are adja-
cent. Similar argument shows that no two odd-numbered vertices in a Rencontres 
graph are adjacent. 

Corollary 3: Since i?£(4) is a 4-cycle, the girth of the Rencontres graph RG(n) 
is 4 for all n > 3. 

Theorem k: Vertex t;. is adjacent to v^+3 in the Rencontres graph iff £ is 
1 or 2 (mod 4). 

* \a~\ is the least integer greater than or equal to a. [a\ is the greatest 
integer less than or equal to a. 
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Proof: rm. + 3>. = (\ +_ })«n4j l (mod 2) 

i, + 1\ 
^ _ jj (mod 2), by Theorem 2(b) 

i(i + 1) , , 0, 
= « (mod 2) 

= 1, iff i is 1 or 2 (mod 4). 

The following theorem gives a necessary and sufficient condition for any 
two vertices to be adjacent in a Rencontres graph. 

Theorem 5: Vertex v^ is adjacent to Vj, where i > j and one is odd and the 
other even, iff there does not exist an integer p, 0 ̂  p < k9 such that 

BSp(i - 2) = 0 and 55p(i - 1) = 1, 

where k is the length of BS(j - 1). 

Proof: We have 

™i,j = 0 I 5)rmW+l,l (*°d 2), 
If one of i and j is odd and the other even, by Theorem 2(b) ™^_j + isi = 1-
Thus, we have to determine the condition under which 

\ ~ 2A (mod 2) = 1 
J - 1/ 

so that vertex v^ is adjacent to Vj. Let 

£5(£ - 2) = mqmq__1 . .. w ^ and 55 (j - 1) = nknk_1 ... n1nQ3 

where q ^ k. Following [2], we can write: 

DO ^ ^ 
iff ̂  > n^ , 0 < i < k 

iff 3p, 0 < p < k ^ mp < np, 
i.e. 5 wp = 0 and np = 1. 

Thuss rm^ • = 1 iff there does not exist an integer p, 0 < p < ks such that 

55p(i - 2) = 0 and BSp(j - 1) = 1, 

where k is the length of BS(j - 1) , and in that case vertex ŷ  is adjacent to 

Theorem 6: If t = 2^ + 1, where k > 1, then vertex ŷ  is adjacent to all even-
numbered vertices Vj, 2 < j < 2i, j ^ £. 

Proof: Let £ = 2 k + l , fc>l. Since £ is odd, j must be even, if vertex v± is 
adjacent to Vj . 

Case 1. 2 < j < £ 
(2k - 1\ /•2 - 1\ 
I . _ . J2TOi_1-+1 j (mod 2) = 1, by Theorems 2(b) and 5 . 
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Case 2. i < j < 2i 

rmitj = rmjti
 = \ ?k )rmi-j+i,i ^m o d 2^ = l s b y T n e o r e T n s 2 ( b ) 

and 5. 

Since, for all even j , 2 < j < 2i and j ̂  i, ™^,j ~ 1? vertex y^ is adjacent 
to all such ?;-• . 

Corollary k: If i = 2k + 1, k > 1, then degree (v^) = 2k~1 in graph RG(i) , and 
degree (i^ ) = 2k in graph i?£(2k + 1 ) . 

Theorem 7'- If i = 2fes where fc is a positive integer, then vertex v^ is adjacent 
to all odd-numbered vertices in the Rencontres graph. 

Proof: Let i = 2k, where fc > 1. Since i is even, j must be odd for adjacency. 
We have 

i2k - 2\ 
' _ i )1>mi- j + i, I (m° d 2) = 1, by Theorems 2(b) and 5. 

Since, for all odd j , 1 < j < i, vm^^ = 1, vertex y^ is adjacent to all such 

Corollary 5: If i = 2k, £ > 1, then 

(a) degree (i^) = 2 k _ 1 in graph RG(i), 

(b) degree (t^) = 2fc_:L + 1 in graph RG(2i). 

Proof: (a) Follows directly from Theorem 7. 

(b) Theorem 7 considers the adjacency of vertex v^ with y^, 1 < j < i. 
Here we also need to consider odd j such that i < j ̂  2i. In this 
case, 

*77Z„. -• = l.\ i)p?77j-i+i,i (m° d 2) = 0 except when j = 2k + 1, 7i,j \2k 

by Theorem 5. That is, for i < j < 2i, vertex y^ is adjacent to 
i^+1 only. Hence, degree (v>i) = 2*c~1 + 1 in graph RG(2i) . 

Theorem 8: I f i = 2?c + 2 9 ^ > 1 , then vertex t^ is adjacent to v , i> • , s an<3 
all odd-numbered vertices y•, i < j < 2k+1„ 

Proof: Let i = 2 4- 2, where /c is a positive integer. That v^ is adjacent to 
V1 and y^_x is evident by Theorems 2(a) and 2(b). 

/ 2k \ 
( . __ Tjrmi_J-+lil (mod 2) = 0 , by Theorem 5 . Thus, Vi i s 

Case 1. 1 < j < i - 1, and j is odd. 
2^ 

not adjacent to any odd-numbered vertex Vj , 1 < j < i - 1. 

Case 2. i < j < 2k+1, and j is odd. 

2 

Hence the theorem 

, J = (ofc + ])rmi~j+ l,i (mod 2 ) = ls ° y Theorem 5. 
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Corollary 6: If i = 2k + 2, k > 1, then 

(a) degree (vi) = 2 in graph RG(i), 

(b) degree (^) = 2 k _ 1 + 1 in graph J?G(2k + 1) . 

Proof: (a) Follows from Theorems 2(a), 2(b), and Case 1 of Theorem 8. 

(b) By Theorem 8, in graph RG(2k+1), vertex Vi is adjacent to v , yi_i' 
and 2 k _ 1 - 1 even-numbered vertices Vj 9 i < j < 2^+ 1. Therefore, 
degree (^) = 2 k ~ 1 + 1 in RG(2k+1). 

The following theorem identifies the subset of Rencontres graphs which 
contain complete bipartite graphs as subgraphs. 

Theorem 9: Complete bipartite graph Kttt is a subgraph of RG(2t) for all t > 1. 

Proof: By Theorem 3, RG(2t) is a bipartite graph with the following partition-
ing of its vertex set, 

vi = ^v2m + i\° < m < 2t~1} and 72 = {v2m | 1 < 777 < 2 t _ 1 } . 

Now, choose 7[1 c Vl9 and 7£2
 c 72 such that 

7 ' l = ^ l * U ^ 2 ^ + 1 1° < ^ < ri a n d F t2 = tV2i \l < i < t}. 
We shall prove by induction that Kt t is a subgraph of RG(2t), and consists of 
sets 7 ^ and 7^2. 

Basis. Graph Zx x is identical to RG(2) . Thus, the theorem is true for 
t = 1. 

Induction Hypothesis. Let the theorem be true for t = j ^ 1, i.e., &j,j is 
a subgraph of RG(2<]) , and the vertex sets 7? and 7' are well defined. 

Induction Step. To prove it to be true for t = j + 15 define 

7 ; + 1 , i - F i i u { y
2 i + i > M d ^ + i , 2 = 7 ; 2

 u { u 2 ^ - } -
Then, by Theorem 6, the vertex ^ 2J + 1 ^s adjacent to all even-numbered ver-
tices and, by Theorem 7, the vertex v2j+i is adjacent to all odd-numbered 
vertices in Kj j . Hence, we obtain the graph K-+1 •+ 1, which is a subgraph 
of RG(2j+1). 

The following connectivity properties are useful in the design of reliable 
communication and computer networks. From Theorems 2(b), 2(c), 6, and 7, we 
conclude that vertices V1 and i?2riogwi -1+1 always serve as two central vertices 
adjacent to all even-numbered vertices in graph RG(ji) ; and V2 is always the 
central vertex adjacent to all odd-numbered vertices in RG(n). Moreover, when 
n = 2k, k ^ 1, vertices v2 and r>n are centrally adjacent to all odd-numbered 
vertices in RG(n). 

Theorem 10: There are at least two edge-disjoint paths of length < 3 between 
any two distinct vertices in graph RG(n), n ^ 4. 

Proof: Let v^ and y^ be two vertices of graph RG(n), n ^ 4, i ^ j. 

Case 1. i = 1 and j = 2 

Two edge-disjoint paths are [̂ 19 ^ 2] and [vls V^s V3S V2]« 
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Case 2. i = 1 and j > 2 

Two edge-disjoint paths are [v19 Vj] and [v19 Vj + 29 Vj + 19 Vj] for 
j even; and [i^, V2? ^ ] and [y1, ̂ ._1} ^ ] for j odd. 

Case 3- i > 2 and j > 2 

If there is an edge between Vi and Vj 5 then it constitutes one 
path. Even if there is no such edges we have the following two 
edge-disjoint paths in different subcases. 

(i) i, even and j odd 

[ ^ s ^ i - i * v29 Vj] and [vi9 v19 Vj_l9 Vj] 

( M ) i odd and j even 

[vi9 vi_19 v19 Vj] and [vi9 v2, Vj_19 Vj] 

( M i ) i even and j even 

[vi9 v19 Vj] and [z; i s v2Uogn]_1+l9 Vj] 

( iv) i odd and j odd 
[Wi, U2, Vj] and [u. , y 2 r i o g n ) ) Vj] i f i and j < 2 r i o 8" 1 + 1 
or 

[Vi, V2, Vj] and [y,, V^^^, Vj] if i and j > 2n°^ + 3 

Theorem 10 implies that the edge-connectivity ^ 2 and that the diameter is 
3 for all RG(n)9 n > 4. 

IV. NUMBER OF EDGES IN RENCONTRES GRAPHS 

Since the cost of a communication network is proportional to the number of 
edges in the graph (these edges represent the full duplex communication lines 
among processors) , an estimation of the number of edges in graph RG(n) is im-
portant. In the following9 we derive an expression for the number of edges in 
RG(n) in terms of n9 the number of vertices in the graph. Before doing this9 
we need some lemmas. 

Lemma 2: If n = 2k+ i9 k > 1 and 1 < i < 2k
9 then d(n) = 2 • d(i)9 where d(n) is 

the degree of vertex vn in RG(n) and d(i) is the degree of vertex v^ in RG(i). 

Proof: Let i and j have different parity. For 1 < j < i9 we have 

™*.j = (} I J)™w + i,i (mod 2 ) 

= (t- 1 \) ^mod 2 ) * hy Theorem 2(b). 

Let q be the length of BS(j - 1). Then9 by Theorem 59 

dH) - E ft t) (mod 2)" 

= t h e number of j ? s , 1 < j < i , fo r which 

J9£p(£ - 2) > 5 5 p ( j ~ 1 ) , fo r 0 < p < q. 
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Now, let n = 2k-hi3k>l and 1 < i < 2k . Let 2k + i and r have different 
parity. Then, for 1 < v < n, we have 

*™«,r = (p I ? H « - P + I , I (mod 2) = (^ * - 1 2) (mod 2)' 
Clearly9 

d(n) = Z [(^/-V 2) (mod 2)" 

= 2 times the number of j!s, 1 < j < i, for which 

££p(£ - 2) > ££p(j - 1) for each p, 0 < p < q. 

This is because BSk{2k + t - 2) = 1 and BS^ (r - 1) can be 0 or 1, while 

BSk(i - 2) = BSkU - 1) = 0 (always). 

Thus* d(n) = 2 • d{i) for all i, 1 < i < 2* and k > 1. 

Corollary ?: If n = 2fc + 1 + t, for ft > 1 and 1 < i < 2k , then the degree d(n) 
of vertex fn in RG(n) is given by 

d(ri) = 2 - d(i + 1) 9 

where d("i + 1) is the degree of vertex V^ + 1 in BG(i + 1). 

Proof: This corollary is identical to Lemma 2 for all i, 9 1 < £ < 2k. Hence, to 
prove this corollary , we need to consider another case where i = 2k . In that 
case, n = 2k + 1 + 1, and by Corollary 4, d(n) = 2k and d(i + 1) = 2k~1. Thus, 
d(n) = 2 • d(i + 1) for all i such that 1 < £ < 2* and ft > 1. 

Lemma 3̂  Define e(n) to be the number of edges in the bipartite graph RG(n). 
Then 

(3» g(2/c"1) + 2fe"2, ft > 1 
e(2fe) = { (1) 

1 1 , ft = 1 

Proof: When k = 1, e(2) = 1 is obviously true. Let n = 2k
 5 k > 1. Then, 

e(2fc) = e(2 ) + the number of edges added because of the 
addition of extra 2 ~1 vertices, e.g., 
V (n/2) + l» V(n/2)+2> e 8 " 5 Vn 

- e{2 1) + the number of edges added because of the 
addition of vertices V(n/2) + 2» V(n/2) + 3> •••» vn 

+ the number of edges added because of the 
addition of vertex V2k-i + 1 

= e(2k~1) + 2 • e(2k_1) + 2k~2, by Lemma 2 and Corollary 4. 

Therefore, £(2fe) = 3 • e{2k~'1) + 2k~2
9 for A: > 1. 

Theorem 11: If n = 2k, ft > 1, then e(n) = 2 • 3k~1 ~ 2k~1 = | • nlog3 - |. 

Proof: We shall prove this theorem by solving the recurrence equation (1). Let 
n = 2k

 9 i.e., k = log n ^ 1. The homogeneous solution of (1) is e(n) = A • 3fe, 
where the arbitrary constant A Is to be evaluated from e(2). The particular 
solution of (1) is e(n) = -2 _1, so the general solution for e{n) is given by 
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e{n) = A • 3* - 2k~1. 

Since e{2) = 1 yields A = 2/3, we have 

e(n) = 2- 3l'-~l - 2*"1 = ~ - « l o s 3 - f . 

Corollary 8: The number of edges in graph RG{2k - 1) is 

e(2k - 1) = e{2k) - 2k~Y = 2 • 3k~1 - 2fe, for all k > 1. 

Proof: Follows from Corollary 5 and Theorem 11. 

Corollary 9: The number of edges in graph RG(2k + 1) is given by 

e(2k +1) = e(2k) + 2fe~1 = 2 • 3k-1, for k > 1. 

Proof: Corollary 9 can be proved easily using Corollary 4 and Theorem 11. 

Another proof can be given as follows: 

e(2k + 1) = e(2k~1 + 1) + the number of edges addes owing to 
the addition of extra 2V _ 1 vertices 

= e(2k~1 + 1) + 2 • e(2k~1 + 1), by Corollary 7 

= 3 • e(2k~1 + 1) 

= 3k~1 • e{3). 

Now, e (3) corresponds to the number of edges in graph RG(3) , which is 2; thus, 
e(2k +1) = 2 • 3fc_1. 

The expression for e(n), the number of edges in graph RG(n), is different 
for even and odd n* We prove this in the following theorem. 

Theorem 12: The number of edges in graph RG(n) is given by 

i 
Yl 2i • 3Pi ~ \ if n > 3 is odd 

e(?Z) U-l 
E 2"- • 3Pi l + 2£_ L, if n is even, 

. i - l 

where B(n - 1) = (p1, p , ..., p ) is the 5-sequence of n - 1. 

Proof: 

Case 1 . Let n > 3 be odd. Then n - 1 = n1 + n2 + • - - + r: £, where n^ = 2 £ 
with p^ > 1, 1 < i < £, Thus, 

e(n) = (sĈ ! + n2 + n3 + ••• + n£) 

= e(nx + 1) + the number of edges because of the 
addition of vertices vr +2, ..., v„ 
to i?C7(?23 + 1 ) 

= 2 • 3Pi ~ 1 + 2 • e(n2 + 1 + n3 + • • • + nz)9 

by Corollaries 7 and 9. 
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Repeating the process, we get 

e(n) = 2 • 3P^1 + 22 - 3P*~1 + 22 • e(n3 + 1 + nh + • - - + nz) 

2 • 3^~x + 22 • 3P* P2-1 + 2 a-1 . 3?£-i -1 + 2 £ . 3^-! 

i = l 

Case 2. Let n be even. Then, n - 1 = n1 + n2 + • • • + nz_1 + nl9 where n-c = 
2pt with pi > 1 for l < i < £ - l , p £ = o 5 and n£ = 1. Following 
the same procedure as in the proof of Case 1 of this theorem, we 
get 

e(n) = 2 • S^"1 + 2Z • 3^~l +••- + 2 P2-i >£-l 3^-

£- 1 
+ 2 £ _ 1 • e(nz + 1) 

X 2l • 3 ^ - 1 + 2£"1
5 since e(nz + 1) = e(2) = 1. 

i = 1 

In Section V we shall investigate the determinants of Rencontres matrices. 

V. DETERMINANTS OF RENCONTRES MATRICES 

Theorem 13' Let det(RM(n)) be the determinant of the Rencontres matrix RM(n) 
of order n. Then det(7?Af(n)) = 0 for all n > 1 except for n = 2 and det (i?Af (2)) 
= -1. 

Proof: det(i?M(l)) is obviously zero, and 

|0 ll 
det(i?M(2)) = 

1 0 
-1. 

For n > 2, there always exists k ^ 1 such that /c = [log n] - 1 and row 2^ + 1 
is identical to row 1 in matrix RM(n) by Theorem 6. Therefore, det (i?Af(n)) = 0 
for all n > 2. 

VI CONCLUSION 

We have defined Rencontres matrices, a new class of adjacency matrices con-
structed from the Rencontres number table modulo 2. The corresponding graphs 
are connected and bipartite with edge connectivity > 2, diameter 3, and girth 
4. The number of edges < (2/3) e nlo§3 - (n/2). Since the binary representa-
tion of a vertex number provides a great deal of information on its adjacencies, 
the situation may be exploited (1) in economic storage of these graphs and (2) 
in designing a routing algorithm between a pair of communicating vertices. 
These are some of the desirable properties; additional properties need to be 
studied to determine how well these graphs are suited for computer interconnec-
tion networks. 
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(Submitted August 1985) 

1 . INTRODUCTION 

Let H e a p o s i t i v e i n t e g e r . The n ~ d i g i t number x = an_1an_2 . . . axaQ i s 
c a l l e d / c - t r ansposab le i f and only i f 

KX = an„2
an~3 *"' aOan-l' (1) 

Clearly x is 1-transposable if and only if all of its digits are equal. Thus, 
we assume k > 1. 

Kahan has studied decadic fe-transposable integers (see [1]); that is5 num-
bers expressed in base 10. The numbers x± = 142857 and x2 = 285714 are both 
3-transposable: 

3(142857) = 428571 
3(285714) = 857142 

Kahan has shown that decadic 7<-transposable numbers exist only when k = 3. 
Further5 all 3-transposable integers are obtained by concatenating x1 or x2 m 
times5 m > 1 [1], In this paper we will study k-transposable integers for an^ 
arbitrary base g. 

2. TRANSPOSABLE INTEGERS SN BASE g 

Let x be an n-digit number expressed in base g; that is, 

n- 1 
x = E ai9l 

i =0 

with 0 < ai < g and an_1 + 0. Then x will be k-transposable if and only if 

te = n E % ^ + 1 + an,1. (2) 
i = 0 

Again we assume k > 1; furthers we can assume that k < gs since k ̂  g would 
imply that kx has more digits than x. By rewriting (2), we see that the digits 
of x must satisfy the following equation: 

(kg"'1 - 1)^., = (g - kSZa.gi. (3) 

i = 0 

Let <i be the greatest common divisor of. g - k and kg71'1 - 1, written 

*Fifor.fc on this paper was done while the author was a faculty member at Ham-
ilton College, Clinton, NY. She is grateful for the support and encouragement 
given her during the eleven years she was associated with Hamilton College. 
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Then the following lemma gives information about d. 

Lemma: Let x be an n-digit fc-transposable ^-adic integer and let 

d = (g - k, kg"1-1 - 1). 

Then d must satisfy the following: 

(i) (d, k) = 1 
(ii) k < d 

(iii) kn = 1 (mod d) 

Proof: Properties (i) and (iii) follow immediately from the definition of d. 

To show (ii), suppose d < k - 1. Then, in (3), (g - k) divides the left-
hand side (LHS) as follows: 

d divides kg"1'1 - 1 and ^—-— divides ccn_1» 

Thus, 
kg"-1 - 1 , (fe - l),?""1 ^ n-i , „, 
__i2— > _v ^U2 ^ ^ J- by t ] l e assumption. 

But 5 then, the LHS divided by g - k has a ̂ n"1 term, while the right-hand side 
(RHS) does not. Since (d, k) = 1, k < d* 

We are now able to determine those ^-adic numbers which are fc-transposable 
for some k-

Theorem 1: There exists an n-digit g-adic fc-transposable integer if and only 
if there exists an integer d which satisfies the following properties: 

(i) (d, k) = 1 
(ii) k < d 

(iii) d\g - k 
(iv) kn = 1 (mod d) 

Proof: If x is fc-transposable then, by the lemma, d = (g - k9 kg"'1 - 1) sat-
isfies (i)-(iv). 

To show the converse, we first observe that d divides kg"1'1 - 1: 

kg71'1 - 1 = kk71'1 - 1 = kn - 1 = 0 (mod d) . 

n- 1 
We now define x = ]T a t^^ whic n satisfies (3). Let 

£ = o 

Since k < d> (kg71'1 - l)/d has no ̂ n _ 1 term. Thus, &n_2 $ • ••» &0 are well de-
fined by the following equation: 

i =0 

Note that (5) is obtained by dividing (3) by g - /c = d((g - k)/d). 
For d satisfying (i)-(iv), we can actually find [d/fc] fc-transposable inte-

gers. We will define 
n- 1 
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Let btii be given by 

Kn-i = (SUI~)t (6) 
and 

'?>..<* - (*^)*- (7) 
i=0 x a ' 

Note that in (7) the RHS has no gn~Y term since kt < <i; thus9 the b t i i are 
well defined. 

We will shortly give an example to show how Theorem 1 is used to determine 
all fe-transposable integers for a given g. We note here that the proof of 
Theorem 2 is a constructive one. The digits of k-transposable numbers are 
found using (6) and (7). We now show that almost all g have k-transposable 
integers. 

Theorem 2: If g = 5 or g ̂  7S then there exists a ̂ -transposable integer for 
some k* No fc-transposable numbers exist for g = 29 3S 4S 6. 

Proof: Recall that k > 1. For the first part we must find k with the follow-
ing properties: 

2 < k < I 
(k, g) = 1 

If g i s odd9 l e t k = 2« O the rwise , i f g = 2/zs h ^ 4S choose 

'7z - 1 i f 7z i s even, 

h - 2 ±£ h Is odd. 

Now let d = g - k* Then* clearly, d satisfies (i)-(iii) of Theorem 1. Since 
(d, k) = I and k < ds there exists n with kn = 1 (mod <i) . Hence9 by Theorem 1, 
there is an n-digit ^-adic fc-transposable integer. 

It is a straightforward matter to check that there are no fc-transposable 
integers when g = 23 3* 4* 6. 

We now show that up to concatenation there are only a finite number of k~ 
transposable integers for a given k* and hence a finite number for a given g, 

n- 1 
Theorem 3- Suppose x - ^ a.g^ is a ̂ -transposable integer. Let 

i = 0 

d = (g - k, kg1""1 - 1) 

and let N be the order of k In Ud , the group of units of Zd. Then x equals 
some tf-digit /c-transposable integer concatenated n/N times. 

Proof: Since kn = 1 (mod d) 9 n is a multiple of N. Let 

N-l 
H = S ^t^gi-* t = l9 ... , 

i = 0 

be the #-digit integers given by equations (6) and (7). 
As shown in the proof of Theorem 1, (g ~ k)/d divides an_1 while d divides 

kg71"1 - 1. Thus, 

a - k an-i = ^~~7l—* ^ = btyN-i ^ o r some £ < 
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Now, 

Hence, 
E ai<3% (Mi n-N 

i = 0 

a n - i = bt,N-i> l = 2> 

iy . , ~ f ^ ) , • («̂ L)« 
, #, 

tf-2 

£ 
i = 0 

? * * . * * < - ( • v ^ 

But now we have 
yn-N 

F^)«- l^w-1 • F - 1> 

Thus, 

and 
o»-*-i - (iLirA)' 

i = 2, ..., /If. "n-N-i ~ ut,N -i> 

Continuing, we see that x equals xt concatenated n/N times. 

The il/-digit numbers xt are called basic fc-transposable integers, since all 
others are obtained by concatenating these. 

3. SOME EXAMPLES 

We show how to determine all /c-transposable integers for a given g by con-
sidering an example. By Theorem 3, we need only determine the basic /c-trans-
posable numbers. 

Before beginning the example, we note that we need only consider k < g/2. 
By Theorem 1, k < d and d\g - k; thus, k < g/2. Since (d, k) = 1, k f g/2. 

Let g - 9: the possibilities for k9 d, and N are given in the table. 

k 

2 
3 
4 

g - k 

1 
6 
5 

d 

1 
-
5 

N 

3 
-
2 

When k = 2, there are Ur = 3, 2-transposable integers. These are found using 
(6) and (7): lKJ 

b t , i ' 9 +*t,o = (i^i^)« 23£, £ = 1, 2, 3. 

Thus, the basic 2-transposable integers are 125, 251, 376. (Note that these 
numbers are expressed in base 9.) When k = 4, there is one 4-transposable in-
teger, namely, 17. 

It is possible that, for a given g and k9 there will be more than one d 
which satisfies (i)-(iii) of Theorem 1. We illustrate this with an example. 
Suppose g = 17 and k = 2. Since g - k = 15, d can equal 3, 5, or 15. The 2-
transposable integers for each case are given in the following table. 

266 [Aug. 



TRANSPOSABLE INTEGERS IN ARBITRARY BASES 

d 

3 
5 

15 

N 

2 

4 

4 

1 
2 

7 

5 IT 
3 6 13 TO 

( X 2 4 9 

< 2 4 9 1 
(3 6 TJ To 

x 

6 T3 To 3 
4 9 1 2 

5 TT 5 TT 
6 TT To 3 

7 15 14 12 

Note that the 2-transposable integers corresponding to d = 3S 5 are included 
among those for d = 15, except that 5 11 5 11 is not basic. 

REFERENCE 

1. Steven Kahan. "fc-Transposable Integers." Math. Magazine 49, no. 1 (1976): 
27-28. 
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1. INTRODUCTION 

Elsewhere in this journal [5], the sequence {Wn(a9 b; p, q)} has been in-
troduced and its basic properties exhibited. Here, we investigate the finite 
sum of W? (k from 0 to n - 1) and the properties of Wmn. Notation and content 
of [5] are assumed, when required. 

Particular cases of {Wn} are the sequences {Un}, {Vn}, {Hn}9 {Fn} 9 and {Ln} 
given by: 

Un(p, q) = Wn(l9 p; p, q) (1) 

Vn(p, q) = Wn(29 p; p, q) = pUn.±(p9 q) - 2qUn.2(p, q) (2) 

Hn(r9 s) = Wn(r9 r + s; 1, -1) = rFn+1 + sFn (3) 

Fn = Wn(09 1; 1, -1) = Hn(09 1) = ^ ( l , -1) (4) 

Ln = Wn(2, 1; 1, -1) = Hn(29 -1) = Vn(l9 -1) (5) 

Historical information about these second-order recurrence sequences can 
be found in L. Dickson [3]. Of course, {Fn} is the famous Fibonacci sequence, 
{Ln} is the Lucas sequence, {l/n} and {Vn} are generalizations of these, and 
{Hn}9 discussed in [4], is a different generalization of them, while {Wn} is 
the complete generalization of them. Chief properties of {Wn}, {Un}9 {Vn}, 
{Hn}, {Fn}, and {£n} can be found, for example, in V. E. Hoggatt, Jr. [3], A. F. 
Horadam [4], [5], {6], D. Jarden [7], E, Lucas [8], K. Subba Rao [9], A. Tagiuri 
[10], [11], and N.N. Vorobev [12]. 

Two interesting specializations of (1) and (2) are the Fermat sequences 

{Un(3, 2)} = {2n+1 - 1} and {Vn(3, 2)} = {2" + 1} 

and t h e P e l l sequences 

{Z7n(2, - 1 ) } and {Vn{2, - 1 ) } 
( see [ 1 ] , [ 6 ] , [ 8 ] ) . 

From ( l ) - ( 5 ) , i t fo l lows (See [ 4 ] , [ 5 ] , [6] ) t h a t (p 2 + 4c?), 

\w„ = {{b - a g ) a " + (aa - £ ) 3 " } / ( a - 3) (6) 
|Z7„ = ( a " + 1 - 3 " + 1 ) / ( a - 3) (7) 
, Vn = a" + 3" (8) 
JH„ = { ( r + s - r e 0 ) a g - ( r + s - ra0)$n

0}/JE (9) 
*"» = (a? - 3o)A/5 (10) 
Ln = a ? + B£ (11) 
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where 

a = (p + / p 2 - 4 ^ ) / 2 , 3 = (p - / p 2 - 4^ ) /2 

a0 = (1 + >/5)/29 and g0 = (1 - v 5 ) / 2 . 

In t he meantime* from [ 4 ] , [ 5 ] , and [ 6 ] , we have : 

\h/k + 1 = p ^ - ^ _ x 

^fc+i^fc-i = ^k + ec[k~1 ^ where g = aZ?p - a 2 q - Z?2 

^m + rUn-r-'l "" <7 ^m + r- fc^rc - r - A: - 1 = ^m + n-ft^£:-l 

fi^ + r^n-r " ^ m + r-lFn-r-k = ^bWm + n-k ~ aClWm + n-k-^Uk-1 

(12) 

(13) 

(14) 

(15) 

(16) 

n- 1 
2. THE FINITE SUM J ] ^ 

k = 0 

Define 

<?ko». J) - t ( " ) ^ ' * + 1 ( ^ - i ) r f + i + l ! 

we have i = o 

Lemma 1: ^ ( m 5 j ) = q3 + L (pWkT (W% + e ^ - 1 ) 3+1(-nU.\m(ljZ 4- ^ - l W + 1 

P ^ ' Z V ' * l)e3'-i+1qkti-i + 1) +iWm
k
+u 

(17) 

(18) 

(19) 

where g = a&p - a 2 g - Z?2. 

Proof: Gfc(m, J) = E ( • ) C " t + 1 ( ^ - 1 ) , t , t 1 ' b ? <1 7) 
i. = 0 

= ( ? ^ + i ^ k - i ) J + 1 ^Jc + i + ^ f c - 1 ) ™ > b y t h e b i n o m i a l theorem 

= qj+1(W2
k + eqk-1)j+1(Wk+1 + qWk_1)n, by (13) 

= qj + 1(W2
k + eqk'1):i + 1{pWk)m, by (12) 

j ' + i 

f"=n ' binomial theorem i = Q 

J + l 
y (J t )eJ"'i + V ( i _ U l ) •? 
i = 0 

Wk 

Consider a-j(t) satisfying the following recurrences 
ad + 1(t + 2) = aJ- + 1(t + 1) + aj(t)9 (20) 

subject to the initial conditions aQ(t) = 1 for t > 1, cij{2g) = 2 for j > 05 
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with a At) = 0 for j < 0 and j > [t/2]. It is easy to prove directly from (20) 
that 

a^it) = + * - J 
: ' ) 

The first few value of aj(t) are shown in Table 1. 

Table 1. The Values of a At) 

(21) 

Ix 
0 
1 
2 
3 
4 
5 
6 
7 

0 

2 
0 
0 
0 
0 
0 
0 
0 

1 

1 
0 
0 
0 
0 
0 
0 
0 

2 

1 
2 
0 
0 
0 
0 
0 
0 

3 

1 
3 
0 
0 
0 
0 
0 
0 

4 

1 
4 
2 
0 
0 
0 
0 
0 

5 

1 
5 
5 
0 
0 
0 
0 
0 

6 

1 
6 
9 
2 
0 
0 
0 
0 

7 

1 
7 
14 
7 
0 
0 
0 
0 

8 

1 
8 
20 
16 
2 
0 
0 
0 

9 

1 
9 
27 
30 
9 
0 
0 
0 

10 

1 
10 
35 
50 
25 
2 
0 
0 

11 

1 
11 
44 
77 
55 
11 
0 
0 

12 

1 
12 
54 
112 
105 
36 
2 
0 

13 

1 
13 
65 
156 
182 
91 
13 
0 

14 

1 
14 
77 
210 
294 
196 
49 
2 

15 

1 
15 
90 
275 
450 
378 
140 
15 

i - 1 
t - 1 

* \ , , t -
lt/2] 

Lemma 2: £ {,•) K l l ^ k - i ^ = E (-U3+ <*j ^ G
k <* " 2 j , J - 1 ) . (22) 

j - i 

Proof: " ^ ( I K ; ! ^ . / = E (, * iWrr^-i)^1' ^ a du i r any v a r i a b l e 

* i ff • ' K ^ - 1 ^ * . , ) " 1 -1(* I 3)E4(* : 4K+-r<*"*-i>i+2 
i = 0x i = 0 

t / t - 4\^6 ft - 6\T7t 
3\ 2 ) LQ(* ^ b ) ^ ; r 3 ( ^ - i ) ' + 3 - • • " . ̂  expansion 

[ t / 2 ] 

= E 
j = i 
[ t / 2 ] 

(-1)i+S-(*)r.EJ(t;2>*;l-
u-

l ( q l / f c . 1 ) J + l > , by summation 

= £ (~l)J+1aj(t)Gk(t - 2 j \ j - 1 ) , by ( 1 7 ) . 
j = 1 

Consider A(j 9 t; p3 q) = A(j $ t) satisfying the following recurrences 

A(j + 1, t + 2) = pA(j + 1, t + 1) - ̂ (j + 1, t) + A(j9 t) (23) 

subject to the initial conditions A(j» 2j) = 2 for j > 0, >4(0, 1) = ps with 
^(j, t) = 0 for j < 0 and j > [t/2]. It is easy to prove directly from (23) 
t h a t (tt/2]-i . + . ) 

AU, t) =p*-2^ T,Q CJJ)(-p-2<7)f<W*». (24) 

The first few values of A Qj , t) are shown in Table 2. Note that 

i^-ytf), where 7<* - ^ - . 
4(j'» t) ^ .t 
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Table 2. The Values of A(j9 t) 

;v 
0 
1 

2 

3 

4 

5 

6 

7 

0 

2 

P 
P 2 - 2 < ? 

p 3 - 3pq 

ph - kp2q+2q2 

p5 - 5p3q + 5pq2 

p 6 - 6phq+9p2q2 - 2q3 

p7 - 7p5q+ 14p3^2 - 7pq3 

1 

0 
0 

2 

3p 

4p2 - kq 

5p3 - lOpq 

6ph - 18p2^ + 6^2 

7p5 - 28p3q-\- llpq2 

2 

0 
0 

0 

0 
2 

5^ 

9p2 - 6q 

14p3 - 2lpq 

3 

0 
0 

0 

0 

0 

0 

2 

7p 

4 

0 
0 

0 
0 

0 

0 

0 

0 

and 

Now, de f ine 

L„(r, t) ="f;V*tf 
k = 0 

M - l 

k = 0 

(25) 

(26) 

where v and t a r e nonnega t ive i n t e g e r s ; then we have the fo l lowing lemmas and 
theorem. 

[ t / 2 ] 
Lemma 3: E ( ~ D J +V-(t)p^2^ £ e V \ f r + i, t - 2i) 

J = i i = l 
(27) 

[ * / 2 ] 
• 2 (-e)Ji4(«/, t)Lw(r + j , t - 2 j ) . 

j = i 

Proof: X (-1)J" + 1^(«P*"2J'< E (^V~%(^ + i s t ~ 2 i ) r 

^ ( ^ ^ ^ ( r + 1, * - 2) - a2(t)p^V E(^V%(^ + ^ * " 2*) 

+ a 3 ( t )p t ~ 6 < E ( ~ ° y V ~ % ( ^ + ^ t - 2 i ) [ ~ ° * 8 s by e x P a n s i o n 

e4(l, £)£ (2- + 1, t - 2) - e2A(2, t)LA/(r + 2, t - 4) 

+ e3^(39 t)Lw(r + 3, £ - 6) - • • • , by collecting terms in 
Lw(r + i9 t - 2i) for 
all positive integers i, 

[til] 
~ E (~e)JA(js t)Lw(r + j, £ - 2j'K by summation. 

J' = i 

1 i 7 
Lemma 4 : * £ qkrGk(t - 2j, i - 1) = P*~2 j ' i E ( ^ V ' ^ f r + i , * - 2 i ) 

fe = o U - o <"' j 

1987] 
(28) 
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n-l n - 1 
Proof: '^qkrGk(t - 2 j \ j - 1) = ' £"?**• {q* (pWk)* ~2j (fi£ + eq*'1)3'} 9 by (18) 

?< = o ^ = o 
rc- 1 

k = 0 

,t-2j 

i = 0 

£ qkr+j(pWk)t~2j < XI ( J . ) f / 2 j " ' 2 i ( ^ / £ " 1 ) i > , by the binomial theorem 

> t - 2 j P^ " } E (J) eV~%r(* + *. * - 2^)}> by (25). 

Consider £(£; ps q) - Bit) satisfying the following recurrences 

Bit + 2) = pB(£ + 1) - qB(t) + a^t)?**?, (29) 

subject to the initial conditions 5(0) = B(l) = 0. 

Let C(t) = 2?(£) - aQ(t)pt; then C?(t) satisfies the following recurrence, 

C(t + 2) = pC(£ + 1) - <?£(£) with C(0) = -2, t?(l) = -p, (30) 

i.e. , 

(31) 

(32) 

W ) = "P* { E (-p"2?)^*)^ 
j=o 

t/2] 

E 
J = I 

B(t) = -P* <! E (-p-2q)dad(t)\. 

Table 3- The Values of B{t) and C(£) 

£ 

Bit) 

C(t) 

0 

0 

-2 

1 

0 

"P 

2 

2q 

- p 2 + 2q 

3 

3pq 

- p 3 + 3p<? 

4 

4 p 2 ^ - 2 q 2 

- p 4 + 4 p 2 ^ - 2<?2 

5 

5p3q - 5pq2 

- p 5 + 5p3q~ 5pq2 

Lemma 5= E ' ^ < '£ { | K * + 1 <<7^- I> 1 

[* /2] 
= B(t)Lv<r, t ) - E ( - e ) J / l ( j , t)Lw(r + j , t - Zj). 

i = i 

n - 1 

(33) 

Proof: nZq**\ ± ( | W ; j (qWk _{? 
k=0 [i=1 

n-l (it/2] . ) 
= E <7kr< E (-D3 + 1aAt)Gk(t ~ 2 j , J - 1)>, by (22) 

fc = o ( j = i ) 

[*/2l . ( n - l 
= E ( - D ' ^ - t t W E < 7 ^ ( * ~ 2<7* J - 1) 

j = i ( k = o 
[ t / 2 ] . ( j . ) 

= £ ( - l ) J + 1 a 7 . ( t )p t -^"< £ ( f . ) e V " % ( ^ + i> t - 2 i ) L by (28) 
j - 1 ' [i = o X Z / 

J (continued) 
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[t/2] 

= B(t)Lw(r9 t) - ]C(-e)J4(<7* £ ) M P + 3> t - 2j), by (27) and (32). 
j = 1 

Theorem 1: Lw(r9 t) s a t i s f i e s t he fo l lowing r e c u r s i o n s 

{1 + q2r + t - aQ(t)p*qr + q^B(t)}Lw(r9 t) 

= qn-(qr + t^_± - Wl) - (qr + tW_\ - W*) 

( [ t /2 ] . ) 
+ qr< E (-e)°AU* t)Lw(r + j , t - 2 j )V, (34) 

for t > 1 or (t = 0 and r > 1). 

Proof: (1) When t = 0 and r > 1: 

M* 5 ' 0) ^ i : ^ , from (25). 
& = o 

Hence3 Lw(r9 0) s a t i s f i e s ( 3 4 ) . 

(2) When t > 1: Since 

p ^ ( r 5 *) = ^ ^ ( p ^ ) * , by (25) 
& = o 

= n E ^ O f y + i + A . i l S by (12) 
fe = o 

= *L < 7 ^ L i ^ t ' t ^ v i ) *>» b y t h e b inomia l theorem 

= ^ V W + 1 + < ? X - i + E ' t j K ^ ^ - i ^ i . ^ expansion 
k=o ( ^ = 1 J 

= { < r * V r , t ) + t ^ " 1 ^ ' - q-rW*} + ^ { q ^ v ( r , *) - q^W^ + J/.',} 

[t /2] 

+ 5 ( t ) L w ( r , *) - £ (-e)J4(«7» t)Lw(r + - j \ t - 2 j ) , by ( 3 3 ) , 

we have 

{q-r + ^ r + t _ p t + B ( t ) } £ ( / ( r , t) 

[t/2] 
+ £ ( - e / i i ( j . *)£„(*• + 3, t - 23). 

j ' - i 
Hence, 

{1 + <?2r+* - p V + <7rS(t)}Ls / ( r s t ) 
([t/2] 

+ qr \ E ( - e ) J ^ ( j » t)Lw(r +3, t - 2 j ) 

This completes t h e proof of Theorem 1, s i n c e a0(t) = 1 for t > 1. 
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Setting t = Os 15 2, and 3 in Theorem 1, we have the following four corol-
laries. 

Corollary 1: (1 - qr)Lw(r9 0) = 1 - qnr, for all r > 1 [cf. (25)]. 

Proof: Setting t = 0 in Theorem 1, we have 

(1 + q2r - aQ(0)qr + q^B(0))Lw(r9 0) = q^(qr - 1) - (qp - 1), 
i.e. , 

(1 - qr)Lw(r, 0) = 1 - q™9 since a0 (0) = 2. 

See also Proof (1) of Theorem 1. 

Coro l l a ry 2: (1 + q2r + 1 - pqr)Lw(r, 1) = <?nr(<f+ X - i " >^> ~ ( ^ " ^ - i ~ w
0^ 

Proof: S e t t i n g t = 1 in Theorem 1, we have 

(1 + q2r+1 - a0(l)pqr + qrB{l))Ly{v, 1) 

- ?"r(<7P+1J/B-i " ̂ ) " (<7r + 1 ^ ! " W0> -
completing the proof of Corollary 2. 

Corollary 3: (1 + ̂ 2J3 + 2 - p2qr + 2<f+ 1)Z^(p, 2) 

= q^iq'^Wn^ ~ W2
n) - (qr + 2 ^ 1 - ̂ ) - 2^L^(p + 1, 0) . 

Proof: S e t t i n g t = 2 in Theorem 1, we have 

(1 + q2r + 2 - a 0 ( 2 ) p V + qrB(2))Lw(r, 2) 

= q»Hqr + 2W2_1-W2)- <.qr + 2W2_1-Wl)-eqI,Aa, 2)L„(r + l, 0 ) , 
completing the proof of Corollary 3. 

Corollary h: (1 + q2r+3 - p3qr + 3pqr+1)Lw(r9 3) 

Proof: Setting t = 3 in Theorem 1, we have 

?Br(?P + 3 ^ _ 1 " &£) - (qr + 3 ^ ! - ̂ o) " Sep^Cr +1, 1). 

(1 + q2r + 3 - a 0(3)pV + <?rB(3))Lw(r, 3) 

= <7B'(?r + 3 ^ _ 1 - ^ ) - (qr+3W3_1-Wl)-eq1'A<.l, 3)Lw(r + 1, 1) , 

completing the proof of Corollary 4. 

Since C(t) = B{t) - aQ(t)pt
9 we have 

Theorem 1': Lw(r, t) satisfies the following recursion, 

{1 + q2r + t + qrC(t)}Lw(r, t) 

= q^iq^W^ ~ Wfr - (q-^W^ - W$) 

([*/2] . ) 
+ ?r{ E (~^y^U, t)Lw(r + j, t - 2j)V , (35) 

for O 1 or (t = 0 and r > 1). 

Setting p = 0 in Theorem 1f, we have 

Theorem 2: J/(£) satisfies the following recursion, 
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{1 + qt + C(t)}W(t) 
[t/2] 

= (q^n-l - Wn)~ (<7^i ~ < ) + S (^)^(J5 Wwti, t ~ 2j), (36) 
J = l 

for t > 1. 

Now, we have the following five formulas about W(t) for t9 respectively, 
1 to 5: 

(1 + q - p)tf(l) = (^^ - Wn) - (qW_± - WQ); (37) 

(1 + q2 - P2 + 2<?)tf(2) = (q*w*^-W*)- (q^2^ - W2
Q) - 2eLw(l9 0); (38) 

(1 + q3 - p3 + 3P<7)^(3) = (q3K-i~T4)- (q'W3^-W3
Q) - 3epLw(l, 1); (39) 

(1 + q* - p4 + 4p2<7 - 2<72)^(4) 

= (q^n-i~Wn)~ (qhWl:i~wl)~^e(p2~q)Lw(ls 2) + 2 g % (2 9 0); (40) 

(1 + q5 - p5 + 5p3q - 5pq2)^(5) 

= (q'w'^-W5^- (q5W5_l-Wp-5ep(p2-2q)Lw(l9 3) + 5e2pLw(2, 1) . (41) 

We note that (37) is the equivalent form of (3.5) in [5], (38) is the simple 
form of (4.16) in [5], and (39) is the simple form of (4.28), misprinted, in 
[5]. 

Finally, we consider the corresponding special cases of W(t)i 
n- 1 

\ (1) When a = r, b = r + s9 p = 1, and q = -1, then H(t) = 2 #/f(p* s ) n a s t n e 

following properties: k~° 

H(l) = Hn + #„_.,_ - r - s = #n + 1 - r - s, by (37); 

#(2) = H2
n - i^2.! - P 2 + s2 + (1- (-l)n)(r2 - rs - s 2), by (38) and Cor. 1; 

4#(3)=F3 + H3
 1 - v3 - s3 + 3(P2 - rs - s2){(-l)n + 1Hn_2 + r - s}9 

by (39) and Cor. 2; 
5#(4) = ̂  - Eh

n_l ~ rh + sh + 6n(r2 - rs - s2)2/5 
+ 8(P2 - rs - s2){(-l)n + 1(H2

n + H2^) + r2 + s2}/5, 
by (40) and Cors. 1, 3; 

11#(5) = El + ^ _ 1 - r5 - s5 + 25(r2 - rs - s2)2 (Hn + 1 - r - s)/4 
+ 15(P2 - rs - s2){(~l)n + 1(H3

n ~ H3
n ±) + r3 - s3}/4, 

by (41) and Cors . 2 , 4 . 

n - 1 
(2) When a = 0 , fc = p = 1, and q = - 1 , then F ( t ) - £ i ^ has the fo l lowing 

p r o p e r t i e s : k=0 

F(D =Fn+1 ~ 1 
F(2) = Fn

2 - ^ . x + ( -1)" = (F2n - F2
n)/2 

4F(3) = ?l + F*^ + 3 ( - l ) n F n - 2
 + 2 

5F(4) = Fh
n - ^ _ , + 8 ( - l ) " (F„ 2 + ^ . ^ / S + 6w/5 - 3/5 

11F(5) = F5
n + Fs

n_x + 15(~l)n(F3
n - F3

n^)/h + l^F^Jk - 111 

n-l t 

(3) When a = 2, b = p = 1, and q = - 1 , then L(t) = J2 ^y_ n a s t n e fo l lowing 
p r o p e r t i e s : * " ° 

i d ) = Ln + 1 - 1 
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L(2) = l \ - L\.x + 5 ( - l ) n + 1 + 2 

4L(3) = L3
n + Ll_x + 15(~l)n + 1Ln_2 + 38 

5L(4) = Lk
n - L^_1 + 8 ( - l ) n + 1 ( £ * + L2

n_x) + 30« + 25 
11L(5) = Ls + L5 . + 7 5 ( - l ) n + 1 ( £ 3 - L3 , ) / 4 + 625L ^Jh - 37/2 

K y n n-1 • / v n n~\J n+1 

3. THE PROPERTIES OF fi^ 

D e f i n e 
[(m- l ) / 2 ] - -

2W(?) = ̂  - E (w " Z " ^ ( - ^ C " 2 * " 1 . with Z0 - o, 
k=o v * ; 

where m and n are nonnegative integers. Then we obtain the following lemma. 
LerriJria 6: Lm satisfies the following recursion, 

4+2 = VnLm+1 - qnLm9 with LQ = 0 and Lx = 1. 

Using Lemma 6 and mathematical induction, we have 
Theorem 3: Wmn = LwJ/„ - a ^ L ^ . 

Proof: For m = ls we have J/„ = L1Wn - aqnLQ from the definition and from the 
formula. Similarly, the theorem is true if m = 2. We now show that the for-
mula for 772 + 1 follows from the formula for m and TT? - 1. 

W{m + l)n = VnWmn ~ < f ( / * - ! ) „ » ^ < 1 4 ) 

= Vn(LmWn - aq^lm_x) - qn&m_^n - a < 7 n V 2 > 

= £ m + 1 ^ n - aqnLm, by Lemma 6, 
complet ing t h e proof . 

In p a r t i c u l a r , we have the fo l lowing s i x c o r o l l a r i e s . 

C o r o l l a r y 5= Umn^ = LJJn^, i . e . , Un_1\Umn_1. 

C o r o l l a r y 6: Umn = LmUn - qn~Lm_x 

±o(-q»)kv:-*-fm-1- l)unVn - { m ~ \ - 2 y \ 

Corollary 1: Vmn = ~LmVn - 2q"ln^ = ̂  + £ ( ^ n ) * C 2 * a * < » » 
fc = l 

k = 0 

That i s to say , V \Vmr} i f 772 i s odd. 
z^rfi'K-rrvf 

Corollary 8: 5 m n ( r , s) = i m ( - l ) f l „ ( r , s ) - r{-\)nLn_x(-l) 

= | o ( - l ) < » + 1) tir«-J{(n " £ - ^VUr, s) 
+ r(-D" + 1 ( m ~ f c " 2 ) } -
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C o r o l l a r y 9 : Fmn = Lm(-l)Fn = ± (-ifn + Dk/m - k - l y ^ . ^ . ^ ^ ^ ^ 
k = 0 ^ 

Corollary 10: Lmn = Lm(-l)Ln - 2 ( - l ) " 2 ^ ( - 1 ) 

= £„m+ E ( - i ) ( " + 1 ) l £ ; - J * a i w 

= fcE(-l)(" + 1 ' k ^ -"- 2 { ( ' n - £ " 1 ) ^ + 2(-l)»+1(m " £ 

That is to say, Ln\Lmn if m is odd. 

Example 1: Setting m = 2S we have the following seven properties: 

W2n = VnK ~ ^ 
U2n-1 = Wn-1 ( S e e C 5 ^ [8]> 
Z72n = VnUn - qn 

V2n = Vl ~ 2qn ( see [ 5 ] ; [8] ) 
Hzn(r5 s) = LnHn(r, s) - r(~l)n 

F = L F 
x 2n nL n 

L2n = L2
n - 2 ( - l ) » 

Example 2: S e t t i n g m = 3 , we o b t a i n t h e fo l lowing seven p r o p e r t i e s : 
Wzn = ^l - qnWn - aqnVn 

£/3n-i = ^l ~ qn)Un_x (see [ 5 ] ; [8]) 

U3n = (V2 ~ qnWn ~ qnVn 

V3n = (V2 - 3qn)Vn ( see [ 5 ] ; [8] ) 

H3n(r, s) = (£2 - (-l)n)Hn(r, s) - r(-l)nLn 

F3n = (L2
n - i-Dn)Fn 

Example 3- S e t t i n g m = 4 , we have t h e fo l lowing seven p r o p e r t i e s : 

^ „ = <*£ - 2?")7„J/„ - «?«(7 2 - q») 

^ n = ( ^ " 2qn)V„Vn - qn(V2 - qn) 
V = V* - kq-Vl + 2q2" 
Hhn(r, 8) = (L2

n - 2(-l)n)LnHn(r, s ) - r(-l)nZ2
n + v 

Fhn = (L2 - 2(-l)n)LnFn = (£2 - 2 ( - l ) " ) ? 2 „ 

Lhn = 4 - 4( - l )*£ 2 + 2 
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4. THE POWER EXPANSION OF Wn 

. M L 0; p, q) = ̂ f (n " * " ̂ p*"2* (-*?)* 
Since 

) [(n+i)/2] 7 

'MO. i; P, ?> - z r p " - ^ 1 ^ / - 1 . 
we have 

/n - k\ /n - k - h 
p -- <^ ;

 _<^p' 

k = i 

Now, we consider the special cases of Wn(a, b; p , q): 

M«. 6; p. ?) = E p""* ( ^ ^ M f c I i) " < ft - i )}• 

n - /c - 1 
fc - 1 

Hn(r, s) = f; ip(n ik)+*(n~l~ l)\ = ^ + 1 + sFn 

in - k - 1 

Remark: B , n „ - £ ("J » ; . , ( - , » „ . , ) - < 

* - - ^ l " * " ) - ( " " * " ^ • " » ' - ' • 

i - 0 ^ ' 
& + £• 
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given to those typed with double spacing in the format used below. Solutions 
should be received within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 =Fn+l + Fn> F
0 = 0, ^ = 1 

and 
Ln + 2 = Ln+1 + Ln> L0 = 2* Ll = l e 

PROBLEMS PROPOSED IN THIS ISSUE 

B-598 Proposed by Herta T. Freitag, Roanoke VA 

For which positive integers n is (2Ln, L2n ~ 3S L2n - 1) a Pythagorean 
triple? For which of these nfs is the triple primitive? 

B-539 Proposed by Herta T. Freitag, Roanoke, VA 

Do B-598 with the triple now (2Ln, L2n + 1, L2n + 3). 

B-600 Proposed by Philip L. Mana, Albuquerque, NM 

Let n be any positive integer and 777 = n13 - n. Prove that Fn is an inte-
gral multiple of 30290. 

B-601 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let An,k = (Fn + Fn+1 + ••• + Fn+k_1)/k. Find the smallest k in {29 3S 4, 
...} such that An k is an integer for every n in {0, 1, 29 ...}. 

B-602 Proposed by Paul S. Bruckman, Fair Oaks, CA 

Let En represent either Fn or Ln. 

(a) Find a simplified expression for — -
%n Hn + 1 Hn + 2 

(b) Use the result of (a) to prove that 

t ~= 3 + 2± 1 
n = l ™n n = 1 ^2n -1^2n + 1-^2^ + 2 
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B-603 Proposed by Paul S. Bruckman, Fair Oaks, CA 

Do the Lucas analogue of B-602(b). 

SOLUTIONS 

Downrounded Square Roots 

B-57^ Proposed by Valentina Bakinova, Rondout Valley, NY 

Let <z19 a2, ... be defined by a1 = 1 and an + 1 = [vsn] , where s.n ~ a± 4- a2 + 
••• + an and [x] is the integer with x - 1 < [x] < x. Find cc 9 s , a , 
an d siooo' 

Solution by L. A. G. Dressel, University of Reading, England 

Starting with s± = 1, we have a2= a3 = a4= 1 and sk = 4. Suppose now that, 
for some integer h, h > 2, we have st = h2. Then, since (/z + l)2 = /z2 + 2/z + 1, 
we obtain 

at+i = at + 2 = a t + 3
 = h a n d st+3 = (/z + l)2 + /z - 1; 

further, 
at + 4 = at+5 = /z + 1 and st + 5 = (/z + 2 ) 2 + / z - 2 , 

and continuing as long as j < /z, st+2-+1 = (/z + j)"1 + /z - J, so that for j = A: 
we obtain st+2h + 1 ~ (2h)2. 

Since 5^ = 2 , it follows that whenever sn is a perfect square it is of the 
form 22i (i = 0, 1, 2, . . . ) , and that if 

st = 22i and st = 22(i + 1), 
vi vt +1 

then ti + 1 = t t + 2i + 1 + 1. 
Since s1 = 1, t = 1, and we can show that 

t i = 2i+1 + i - 1, for i = 0, 1, 2, ... . 

To find a100 and s100: we have t5 = 64 + 4 = 68, so that sQQ = (32)2, 

s99 = (32 + 15)2 + 32 - 15, a100 = 47, s10 0 = (47)2 + 64 = 2273. 

To find a1000 and s1QQQ: tQ = 29 + 7 = 519 and s519 = (256)2, 

s99 8 = (256 + 239)2 + 256 - 239, a999 = a100 0 = 495 
and 

siooo = (256 + 2 4 ° ) 2 + 2 5 6 " 2 4 0 = (496)2 + 16 = 246032. 

Also solved by Charles Ashbacher, Paul 5. Bruckman, Piero Filipponi, L. Kuipers, 
J. Suck, M. Wachtel, and the proposer. 

Summing Products 

B-575 Proposed by L. A, G. Dresel, Reading, England 

Let Rn and Sn be. sequences defined by given values R0, R19 SQS S± and the 
recurrence relations Rn + 1 = rRn + tRn_1 and Sn+1 = sSn + tSn_1, where r, s, t 
are constants and n = 1, 2, 3, ... . Show that 

(r + e)±RkSkt»-k = (i?n + 1 5 n + i ? A + 1) - t ^ S , + V , ) . 
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Solution by J. Suck, Essen, Germany 

This identity may be hard to dream up but is easy to prove by induction: 

For n = 1, the left-hand side is (r + s)R1S19 and the right-hand side is 

(rR1 + tR0)S± + R1(sS1 + tS0) - t(R±S0 + RQS^, 

i.e.3 both are the same. 

For the step from n to n + 1s we have to show that 

ttfn+lSn + RnSn+l) + (* + s)Rn+1Sn+1 

= (rRn + 1 + tRn)Sn + 1 + i?n + 1(s£n+1 + £S„), 

which5 after a little sorting, is seen to be true. 

Also solved by Paul S. Bruckman, L. Cseh, Plero Fllipponl & Adlna Di Porto, L. 
Kulpers, Andreas N. Phlllppou & Demetrls Antzoulakos, George Phlllppou, Bob 
Priellpp, H.-J. Selffert, Sahib Singh, and the proposer. 

Product of Three Fibonacci Numbers 

B-576 Proposed by Herta r. Freltag, Roanoke, VA 

Let A = L2m + z(kn + i) + (~^)m * Show that A is a product of three Fibonacci 
numbers for all positive integers m and n. 

Solution by Lawrence Somer, Washington, B.C. 

We prove the more general result that, if v ̂  1, then 

T, + f-n r + 1 = ^F F = F F F 

Note that, if 2v + 1 - 2m + 3(4n + 1), then 

m E v + 1 (mod 2) and (-l)m = (-l)r+1. 

By the Binet formulas and using the fact that a3 = -1? 
5FrFp+1 = 5[<ar - B1,)/A][(a1' + 1 - S^1)/^] 

= a2r+1 + £2r+1 - (a6)r(a + 3) 

and we are done. 

Also solved by Paul S. Bruckman, L..A. G. Dresel, Plero Fllipponl, George Kout-
soukellls, L. Kulpers, Andreas N. Phlllppou & Bemetrls Antzoulakos, Bob Prie-
llpp, H.-J. Selffert, Sahib Singh, J. Suck, and the proposer. 

Difference of Squares 

B-577 Proposed by Herta T. Freltag, Roanoke, VA 

Let A be as in B-575. Show that 4A/5 is a difference of squares of Fibo-
nacci numbers. 

Solution by Bob Priellpp, University of Wlsconsln-Oshkosh, WI 

Let m and n be arbitrary positive integers. We shall show that 
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4A/5 ~ Fm+6n+3 - Fm + 6 n « (*) 

•In our solution to B-576, we establish that 

A ~ 5Fm+ sn+2^m+Gn+ls 

Thus, 
^A/5 = 4Fm+6n + 2Fm + en+1« 

But it is known that hFkFk _1 = F£ + 1 - F£_ 2 [see (J36) on p„ 59 of Fibonacci and 
Lucas Numbers by Verner E» Hoggatt, Jr, (Bostons Houghton-Miff1in, 1969], so 
(*) follows. 

Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Fillpponif George Kout-
soukellis, Andreas N* Philippou •& Demetris Antzoulakos, #.-J. Seiffert, Sahib 
Singh, Lawrence Somer, J. Suck, and the proposer. 

Zeckendorf Representation for [dF ] 

B"578 Proposed by Piero Filipponi, Fond. U» Bordoni, Roma? Italy 

It is known (Zeckendorff s theorem) that every positive integer N can be 
represented as a finite sura of distinct nonconsecutive Fibonacci numbers and 
that this representation is unique* Let a = (1 + Vo)/2 and [x] denote the 
greatest integer not exceeding x„ Denote by f(N) the number of F-addends In 
the Zeckendorf representation for N. For positive integers n , prove that 
f([aFnl) = 1 if n is odd. 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

It suffices to show that, for each positive Integer n, i^zn-i^ ^s a Fibo-
nacci number. We shall show that, 

for each positive integer n, i^zn-i^ ~ ^ m ' 
Let n be an arbitrary positive integer, and let b = (1 - Vo)/2. It is known 
that, for each positive integer k9 aFk - Fk+1 - bk [see pe 34 of Fibonacci and 
Lucas Numbers by Verner E. Hoggatt, Jr. (Bostons Houghton-Mifflin, 1969]. So 
aF2„-i = F2n - b171-1 = F2n + (-Z?)2*"1. Since 0 < -Z> < 1, 0 < (-b)211'1 < 1. It 
follows that [oF2n„L] =F2n. 

Also solved by Paul 5. Bruckman, L. Cseh, L.A. G. Dresel, Herta T. Freitag, L„ 
Kuipers, Imre Merenyi, Sahib Singh, Lawrence Somer, J, Suck, and the proposer. 

Zeckendorf Representation., Even Case 

B-579 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy 

Using the notation of B-578, prove that f([aFn]) = n/2 when n is even. 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

Let n be an arbitrary positive integer. We shall show that the Zeckendorf 
representation for [aF2n] is F2+ Fh+ F^ +•• • . + F ln , which implies the required 
result. 

Let b = (1 - V^5)/2. It Is known that 

aF = F - b2n 

UJ- in . L 2n + l u 
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[see p. 34 of Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. (Boston: 
Houghton-Mifflin, 1969]. Since 0 < b2 < 1, 0 < b2n < 1. It follows that 

\aF 1 = F - 1. 
But 

^2n+l ~ 1 = F2 + Fk + Fs + • • • + F2n 

by (J6) (Ibid** p. 56). Hence9 the Zeckendorf representation for [aF2 ] is 

r 2 " r £ h - r r £ - r -r r 2 n 

completing our solution. 

^Iso solved by Paul S. Bruckman, L. Cseh, L.A„ G.. Dresel, Herta T. Freitag, L. 
Kuipers, Imre Merenyi, Sahib Singh, Lawrence Somer, J. Suck, and the proposer. 

Continued from page 278 

6. A. F. Horadam. "Special Properties of the Sequence Wn(a9 b; p, q) ." The 
Fibonacci Quarterly 5, no. 5 (1967):424-34. 

7. D. Jarden. Recurring Sequences, Jerusalem: Riveon Lematematika, 1958. 
8„ E. Lucas. Theorie des nombres. Paris: Blanchard, 1961, ch. 18. 
9. K. Subba Rao. "Some Properties of Fibonacci Numbers." Amer. Math. Monthly 

60, no. 10 (1953):680-84. 
10. A. Tagiuri. "Recurrence Sequences of Positive Integral Terms." (Italian) 

Period, di Mat., serie 25 no 3 (1901):1-12. 
11. A. Tagiuri. "Sequences of Positive Integers." (Italiam) Period, di Mat., 

serie 2, no. 3 (1901):97-114. 
12. N. N. Vorobev. The Fibonacci Numbers (tr. from Russian). New York, 1961. 

^o^o# 
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Edited by 
RAYMOND E. WHITNEY 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, 
PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, all solutions 
should be submitted on separate signed sheets within two months after publica-
tion of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-412 Proposed by Andreas N. Philippou and Frosso S. Makri, 
University of Patras, Patras, Greece 

Show that 

k-l 

L 
i = Q n19 ..., nk 

V1 V (ni +""- + n*\ = (n)5 k> 1, 0 <r<k - Kn, 

where the inner summation is over all nonnegative integers nls . . . , n^ such 
that n1 + 2n2 + • • • + kn^ = n - £ and n1 + • • * + n^ = n - v. 

H-41 3 Proposed by Gregory Wulczyn, Bucknell University (retired), 
Lewisburg, PA 

Let m9 n be integers. If m and n have the same parity, show that 

(1) (2m + l)F2n + 1 - (2w + l)F2m+1 = 0 (mod 5 ) ; 

(2) (2m + l)F2n+1 - (2n + l ) ^ 2 m + 1 = 0 (mod 25) if e i ther 

(a) 2m + 1 or 2n + 1 i s a multiple of 5, or 
(b) ?77EftEOor?77 = n = - l (mod 5) . 

If m and n have the opposite pa r i ty , show that 

(3) (2m + l ) F 2 n + 1 + (2w + l )F 2 m + 1 = 0 (mod 5) ; 

(4) (2m + l)F2n+1 + (2n + 1 ) ^ + 1 E ° (mod 2 5 ) i f either 

(a) 2m + 1 or 2n + 1 i s a multiple of 55 or 
(b) m E n = O o r m E n = - l (mod 5 ) . 

H-41k Proposed by Larry Taylor, Rego Park, NY 

Let j 9 ki m9 and n be integers. Prove that 

P J? = P P — P P (-.~\\m~^3 
rm + j L n + k IJm + k^n + j k -j n-m^ L' 
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SOLUTIONS 

A Wind from the Past 

H-307 Proposed by Larry Taylor, Briarwood, NY 
(Vol. 17, no. 4, December 1979) 

(A) If p E ±1 (mod 10) is prime, x E y/E and 

_ 2(x ~ 5) , , . a = x + 7 (mod P)> 

prove that a, a + 1, a + 25 a + 35 and a + 4 have the same quadratic character 
modulo p if and only if 11 < p E 1 or 11 (mod 60) and (-2x/p) = 1. 

(B) If p E 1 (mod 60)5 (2x/p) = 15 and 

. _ -2 Or + 5) f , N b = ^ _ ̂  (mod p) s 

then Z P 9 Z ? + 1 9 Z ? + 25ZP + 3 5 and b + 4 have the same quadratic character modulo 
p . Prove that (llab/p) = 1. 

Solution by the proposer 

(A) Let / E (# + l ) /2 (mod p ) . Then 

(a; + 7)a = 2x - 10 = - t o / " 1 

(x + 7 ) ( a + 1) E 3x - 3 E 6 / " 1 , 
0c + 7) (a + 2) E 4ic + 4 E 8 / , 
(a? + 7) (a + 3) = 5x + 11 = 2 / 5 , 
(* + 7) (a + 4) E 6x + 18 = 12/2 (mod p ) . 

But ( / "Vp) = (/ /p) = ( / 5 /p) and (4/p) = (f /p) = 1. Therefore, 

/ j w ^ J A = ($£l\ if and only if (~2x/p) = (3/p) ; 

? - i 
6 £ _ j = (*£\ if and only if (3/p) = 1; 

?5 8 £ \ = fe unconditionally; 
p ' 

2/5\ = /12/2 if and only if (6f/p) = 1, 
P / \ P / if and only if (3(x + l)/p) = 1. 

Thens the five consecutive residues have the same quadratic character modulo p 
if and only if 

(-2x/p) = ((x + l)/p) = (3/p) = 1. 

The following result is given in [1], page 24: 

fVp \ = /-2x(x + 1)\ 

Then (-2x/p) = ((x + l)/p) if and only if (Vp/5) = 1. But (v£/5) = (3/p) = 1 
is equivalent to p E 1 or 11 (mod 60), Since 

(V^/5) = 1 if (~2x/p) = ((x + l)/p) = 1 
and 

G/p/5) = 1 if (-2x/p) = ((x + l)/p) = -1, 
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it is necessary to include either (-2x/p) = 1 or ((x + l)/p) = 1 in the state-
ment of the criterion. 

Finally, if p = 11 and (-2x/p) = 1, then x E 4 and x + 7 E 0 (mod 11), so 
this result is not valid for p = 11. 

(B) The second part of this problem should have been stated more generally 
as follows: If p ^ 11 and 

b E^L±_5i (modp)> 

prove that (llab/p) = 1. 

Then 
7, _ (2(x - 5))(-2(.x + 5)) _ 0 „ ; i 1 ( . , ab = (x + 7 ) ( 7 _x) = 20/11 (mod p) 

and the result follows. 

Comment: There is a five-term arithmetic progression of Fibonacci-Lucas iden-
tities corresponding to this set of five consecutive residues having the same 
quadratic character modulo ps as follows: 

-2L • IF ' UF • F • 6F 
^ n - 1 s 3L n - 1 5 Hrn+1> n + 5 s u r n + 2 * 

The common difference is Fn + F
n+1 (i.e., -2Ln_1 + Fn + Ln + 1 = 3Fn __ 1, etc.). 

Reference 

1. Emma Lehmer. "Criteria for Cubic and Quartic Residuacity." Mathernatika 5 
(1958):20-29. 

Somethings Are Constant 

H-390 Proposed by M. Wachtel, Zurich, Switzerland 
(Vol. 23, no. 3, August 1985) 

For every ms 

2F2-mF5+m + (~l)W (FmFm + i + Fm+2) h a s t h e u n i q u e v a l u e 1 1 . 

F i n d a g e n e r a l f o r m u l a f o r a n a l o g o u s c o n s t a n t v a l u e s , w h i c h s h o u l d r e p r e s e n t 
t h e t e r m s of an i n f i n i t e s e q u e n c e . 

P r o v e t h a t no d i v i s o r of any of t h e s e t e r m s i s c o n g r u e n t t o 3 o r 7 modu lo 1 0 . 

Solution by Bjorn Poonen, Harvard College, Cambridge, MA 

an - bn r r~ 
S i n c e Fn = , 9 w h e r e a = (1 + v 5 ) / 2 and b = (1 - v 5 ) / 2 5 we h a v e : 

(a - b)2[2Fk_mFk+3 + m + (-ir+k(FmFm+1 + i ^ + 2 ) ] 

= 2(ak-m - bk-m)(ak+3+m - bk+i+m) + (-l)m+k[(am - bm)(am+1 - bm + 1) 
+ (am+z - bm+z)2} 

= 2(a2k+3 + b2k+3 - ak-mbk+3+m - ak+3+mbk-m) 
+ (-l)m+k[a2m+1 + b2n+1 - ambm+1 - am+1bm 

+ a2m + h + b2m + " - 2(ab)m+2l 

= 2{a2k+3 + b2k+3 - (ab)k-m(a2m+3 +b2m+3)] 
a2m+h + b2m + " 

( c o n t i n u e d ) 

+ (-l)k-m[a2m+1 + b2m+1- (ab)m(a + b) + a2n+k + b2m+h - 2 ( - l ) m + 2 ] 
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Thus, 

= 2(a2k+3 + b2k+3) - 2(-l)k-m(a2m+3 + b2m+3) 
+ (-l)k-m(a2m+1 + b2m + l) - ( - l ) f c - m ( - l ) m ( D 
+ (-l)k'm(a2m + '* + b2m+k) - 2 ( - l ) f e - m ( - I ) m 

= 2(a2k+3 + b2k+3) - ( - l ) f e - 2 ( - l ) f e + (-l)k-m(a
2m + l* - 2a2m+3 + a2m+1) 

+ (-l)k-m(b2m+,i - 2b2m+3 + b2m + 1) 

= [a2k+3 + b2k+3 - A(-l)k] + [a2k+3 + b2k+3 + ( -1)*] 
+ (~l)k-ma2m+1(a - l)(a2 - a - 1) + (-l)k -mb2m+l(b - 1 ) (b 2 - b - 1) 

= [a2k+3 + b2k + 3 - (ab)k(a3 + b3)}+ [a2k+3 + b2k+3 - (ab)k+1(a + b)] 
= (ak+3 - bk+3)(ak - bk) + (ak+2 - bk+2)(ak+1 - bk+1) 

- (a-b)2(Fk+3Fk +Fk+2Fk+i). 

2Fk_mFk+3+m + (-Dm + k(FmFm+1 + Fm\2) = Fk+3Fk + Fk+2Fk + 1, 

which yields the result given in the problem when k - 2. Now5 we wish to show 
that no divisor of Fk+3Fk + Fk+2Fk+1 is congruent to 3 or 7 modulo 10. Let x = 
Fk and y = Ffc+1- Then 

F
k+3F

k + Fk + zFk+i = [(% + y) + y]x + (x + y)y = x2 + 3̂rz/ + z/2. 

Suppose that x2 + 3a:z/ + y2 = 0 (mod p) for some prime p. Now9 x and z/ could 
not both be divisible by p because then all the Fibonacci numbers would be di-
visible by p. Then9 since the discriminant of the quadratic form x2 + 3xy + y2 

is 53 if p is not 2 or 5, we must have (5/p) = 1, but by the Law of Quadratic 
Reciprocity, this is true iff (p/5) = 1, which holds iff p E ±1 (mod 5). Now9 
suppose there were a factor d of Fk + 3Fk +

 Fk + 2Fk + i congruent to 3 or 7 modulo _ 
10. Clearly, <f has no factors of 2 or 5, so, by the above arguments, d is a 
product of primes congruent to ±1 modulo 5. But any product of this sort is 
itself congruent to ±1 modulo 5. Thus, d could not be congruent to 3 or 7 
modulo 10. 

Also solved by P. Bruckman, L, A. G. Dresel, and L. Kuipers. 

The Law of Exclusion 

H-391 Proposed by Lawrence Somer, Washington, D«C. 
(Vol. 23, no. 3, August 1985) 

For every n, show that no integral divisor of L2n is congruent to 11, 13, 
17, or 19 modulo 20. (This problem was suggested by Problem H-364 on p. 313 
of the November 1983 issue of The Fibonacci Quarterly.) 
Solution by L.A. G. Dresel, Reading, England 

Let NQ be the set of integers congruent to 1,3, 7, or 9 modulo 20, and let 
N± be the set of integers congruent to 11, 13, 17, or 19 modulo 20. Then, 
since the product of any two integers in NQ also belongs to N0, it follows that 
any integer in N± is either a prime or divisible by at least one prime belong-
ing to N1. Hence, it is sufficient to show that, for all n9 L2n is not divisi-
ble by any prime belonging to N1. 

For the case of primes congruent to 13 or 17 (rood 20), this has been proved 
by Paul Bruckman in his solution to H-364, this journal Vol. 23, no. 4 (1985): 
283-84. 

Thus, there remains the case of primes p congruent to 11 or 19 (mod 20). 
For these primes, we have L _ ± E 2 (mod p) and %(p - 1) is odd. We also 

have the identity 
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L\ = Lzt + 2(-l)t, 

so that putting t = hip " 1)9 we have 

Ll(p-D= ° ( m o d P> 
and, therefore, 

Lh(P-D E °  (mod P>* 
Then, if e denotes the entry point of p in the Lucas sequence, we have that e 
divides hip - 1) and, therefore, e is odd. Furthermore, Lk will be divisible 
by p only when k is an odd multiple of the entry point e9 and any such k is 
also odd. 

Hence, L2 is not divisible by any prime congruent to 11 or 19 (mod 20). • 

Also solved by P. Bruckman, B, Poonen, and the proposer. 

Editorial Note: The following problems are as yet unsolved: 

H-146, H-148, H-152, H-170, H-179, H-203s H-204, H-211, H-212, H-213, 
H-214, H-215, H-222, H-260, H-271, H-287, H-300, H-304, H-306, H-307, 
H-309, H-357, H-365. 

LET'S CLEAN UP SOME OF THESE OLDIES! 

ADDITIONAL PROBLEM PROPOSALS ARE NEEDED — PITCH IN AND HELP!! 

#0*0* 
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