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Announcement

THIRD INTERNATIONAL CONFERENCE ON
FIBONACCI NUMBERS AND THEIR APPLICATIONS

Monday through Friday, July 25-29, 1988
Department of Mathematics, University of Pisa
Pisa, Italy

International Committee

Horadam, A.F. (Australia), Co-Chairman
Philippou, A.N. (Greece), Co-Chairman
Ando, S. (Japan)

Bergum, G.E. (U.S.A)
Johnson, M.D. (U.S.A))

Kiss, P. (Hungary)

Schinzel, Andrzej (Poland)
Tijdeman, Robert (The Netherlands)
Tognetti, K. (Australia)

Local Committee

Robert Dvornicich, Chairman
Piero Filipponi
Alberto Perelli

Carlo Viola
Umberto Zannier

FIBONACCI’'S STATUE

Have you ever seen Fibonacci’s portrait? This photo is a close-up of the head of the statue of Leon-
ardo Pisano in Pisa, Italy, taken by Frank Johnson in 1978.

Since Fibonacci’s statue was difficult to find, here are the directions from the train station in Pisa
(about 8 blocks to walk): Cross Piazza Vitt. Em. 11, bearing right along Via V. Croce to Piazza Toniolo,
and then walk through the Fortezza. The statue is found within Fortezza Campo Santo off Lungarno Fib-
onacci or Via Fibonacci along the Arno River at Giardino Scotto (Teatro Estivo).

CALL FOR PAPERS

The THIRD INTERNATIONAL CONFERENCE ON FIBONACCI NUM-
BERS AND THEIR APPLICATIONS will take place at The University of Pisa, Pisa, Italy,
from July 25-29, 1988. This conference is sponsored jointly by The Fibonacci Association
and The University of Pisa.

Papers on all branches of mathematics and science related to the Fibonacci num-
bers and their generalizations are welcome. Abstracts are to be submitted by March 15,
1988. Manuscripts are requested by May 1, 1988. Abstracts and manuscripts should be
sent to G.E. Bergum (address below). Invited and contributed papers will appear in the
Conference Proceedings, which are expected to be published.

The program for the Conference will be mailed to all participants, and to those
individuals who have indicated an interest in attending the conference, by June 15, 1988.
All talks should be limited to one hour or less.

For further information concerning the conference, please contact Gerald Bergum,
The Fibonacci Quarterly, Department of Computer Science, South Dakota State University,
P.O. Box 2201, Brookings, South Dakota 57007-0199.
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MIXED PELL POLYNOMIALS

A. F. HORADAM
University of New England, Armidale, Australia

Bro. J. M. MAHON
Catholic College of Education, Sydney, Australia
(Submitted April 1985)

1. INTRODUCTION

Pell polynomials P, (x) are defined ([8], [13]) by

P ., (x) = 2P, (@) + P,(x)  Pylx) =0, Py(x) = 1. (1.1)
Pell-Lucas polynomials Q, (x) are likewise defined ([81, [13]) by
Qpyp (@) = 224, . (x) + @, (@) Qulx) =2, @;(x) = 2x. (1.2)

Properties of P, (x) and §,(x) can be found in [8] and [13], while convolu-
tion polynomials for P, (x) and @,(x) are investigated in detail in [9].

The k™ conmvolution sequence for Pell polynomials {P(x)}, n = 1,2,3,...,
is defined in [9] by the equivalent expressions

n
E (@) PE (@) k>l
10
PF(z) = 4 z P PYT P () POx) = P, (x) (1.3)
i PP =0
EPW(Wﬁjmm) 0<m< k-1
for which the generating function is
- k
(1 - 2ay - yz) (k+ 1) =nz: Pn(+)1(x)yn. (1.4)

The k'™ convolution sequence for Pell-Lucas polynomials {Q(nk)(x)}, n= 1,2,
3,..., is defined in [9] by

n
aP@ = L e, @e% P, @, k> 1, 60 = §,® (1.5)
=1
with similar equivalent expre851ons in (1.5) for Q(m(x) to those in (1.3) for

POy, [@F) = 0 if &k > 1; Q@) = 2.1

The generating function for Pell-Lucas convolution polynomials is

k+1
X Y
s e S N O (1.6)

Explicit summation formulas for the k" convolutions are

[(n=1)/2]
) B k+n-1-r\yn-1-»r "o - (1.7)
P (x) = P2 ( % )( ” >(2x) -l
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MIXED PELL POLYNOMIALS

and

”‘1(7<+ 1

(k) _ pk+1 k+1-rnk)
Q¥@) =2 r};{) : )x P® () (1.8)

where, in the latter case, the Pell-Lucas convolutions are expressed in terms
of Pell convolutions.

A result needed subsequently is:
np® (z) = 2k + 1){aB** @) + PP @)} . (1.9)
Some of the simplest convolution polynomials are set out in Table 1.

Table 1. Convolutions for Eﬁkkx),'ng(x), k=1,2; n=1,2,3,4,5

n=1 2 3 4 5
Py 1 4z 1222+ 2 3223 + 120 80" + 4822 + 3
QP@) 42 | 16x® +8x 48z + 40% + 4 12825 + 144x° + 32z 320x% + 448x" + 156x% + 8
PO (x) 1 62 2422+ 3 80x° + 24z 240z" + 12022 + 6
9P (=) 83 | 48x" + 24z? | 192x° + 168x° + 24 | 640z° + 7682" + 216x” + 8 | 1920z” + 2880z + 1220z° + 120x

Worth noting are the facts that
ckiiz) = i"P* V() (@ = V-1, (1.10)

n+1
where an(ac) is the Gegenbauer polynomial of degree n and order k [12], and

PR (@) = P, (2, @, -1, ~(k+1), 1), (1.11)

in which the right-hand side is a special case of the generalized Humbert poly-
mial P, (m, x, y, p, C) defined [3] by

(C - mxt + yt™P = E:Opn(m, Ty Y, Py CYL" (m> 1. (1.12)
e

Pell-Lucas convolution polynomials Qg}kx) can be expressed in terms of the
complex Gegenbauer polynomials by a complicated formula, but they are not ex-

pressible as specializations of generalized Humbert polynomials [cf. (1.6) and
(1.12)7].

Specializations of Zﬁk)ct) and di(x) of interest to us occur when x = 1,
giving the convolution sequences for Pell numbers and Pell-Lucas numbers. 1f
x is replaced by %r, the sequence of Fibonacci polynomial convolutions and the
sequence of ILucas convolution polynomials arise; in this case, putting x = 1
gives convolution sequences for Fibonacel numbers and for Lucas numbers.

The chief object of this paper is not to concentrate on Eékkx) and ng(x),
but to examine convolution polynomials when Eﬁka) and Qgﬂ(x) are combined to-
gether. This will lead to the concept of 'mixed Pell convolutions" and of a
convolution of convolutions.

2. MIXED PELL CONVOLUTIONS

Let us introduce the mixed Pell convolution W&LZﬂ(x) in which
(i) a+b =21

(i) 7 ) is not defined.
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MIXED PELL POLYNOMIALS

Let
- b (2z + 2y)P
£ @y - o @1
n=0 (1 - 20y - y*)
- 1 2x + 2y J
= (2 + 2y)P7 ,( )
Y (1 - 22y - yz)a+b—g 1 - 2xy - y2
= (22 + 2y)b_3<Zo,n_;a++lb'J»J)(x)yn>
=
e b—jb_’ s )
=Z%(Z(iJﬂMlewﬁQQ%%mﬁn
whence meh e
. b-d p~ 4 . .
» b _ ob-J b-J\ p-i- b-J,
m@ D (x) =2 iz;)( P L ARSI COP (2.2)
Put § = 1 in (2.2). Then
b-1
; - b-1 -1-1 -1,
L@ = 2f 11';0( o )xb ' lﬂgza:lb-ilsn(x) (2.3)

Special cases of (2.1) occur when a = 0, and when b = 0.

Thus, for b = 0, and a = k, (1.4) and (2.1) show that, with n + 1 replaced
by =,

1 O () = P&V (x), (2.4)
m 0 (z) = P (@) by (1.3), 179 @) = PP (x).
On the other hand, when ¢ = 0 and b = k, (1.6) and (2.1) yield
T @) = @Y @), (2.5
% Uy = g @) by (1.5), 1P (@) = @ ).
Now let J = 0 in (2.2). Hence, by (2.4), with n + 1 replaced by #,
(a,b) b 2 o/b b-ip(a+b-1)
TP @) = 2 ¥ (7) a? P D). (2.6)
1=0

An explicit formulation for WSLZﬂ(x) could then be given by substituting
for PE@*E-1(x) from (1.7).

From (2.1), with (1.4) and (1.6), it is seen that

T P@) = PP @eE R @ @21, b2 1), 2.7

1o
Pt} n+l-7

Let us differentiate both sides of (2.1) w.r.t. y. Then

o _ el l,b— . 00 s

) ”ﬂr(zi’lb)(m)yn 1 263 ﬂ;a:l ”(x)y” +@+h) ¥ 1T£lcz+127+ U(x)y”,
h n=0 n=0 n=0
whence

am (@B () = 2pmet P Dy 4 (g + by P Dy . (2.8)
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MIXED PELL POLYNOMIALS

From the identity
(2x + 2y)P

a+b

(2x + 2y)? _ (2x + 2y)

a+b b+a 2a+ 2b

(1 - 2xy - y?) (1 - 2xy - y?) (1 - 2zy - y?)

we derive a convolution of convolutions

(a+b a+bkx) 2: ﬂQZb)(x)W(i;nz(x)

So, when p =

n
T @) = B O @m? ().

From (2.9), when b =

me @) = B e O@n%? (x) = E SR COLRRNC))

. n+l-1 n+l-17
=1

on using (2.4) and (2.5). [Cf. (2.7) also for b = a.]
Putting b = g in (2.8) leads to
am® @ () = 2am@t e D) + 2am® T D ().
Comblnlng (2.9) and (2.12), we have
2a{TT(a+1 a—l)(x) + TT(a, a+l)(9c)} =5 ZW(Q’O)("C}W(O’Q) (x).
=1
Equations (2.5) and (2.6), in which ¢ = 0 and b = k + 1, give
k+1
k+1 -1
TT(ﬂo,kH)(x) - Q,(Zk)(x) - 2k+l-}:o( i )Pn(li)i(m)xk+l i

7
as in (1.8).

Next, put b = 0, a = k in (2.8) to get

m V@) = Lk @) = > PE D (@) | @) by (2.7)
=1

= % szk+'ll> () by (2.4)

= 20PF(z) + 2P, (x) by (1.9).

(2.9)

(2.

(2.

(2.

(2.

(2.

(2.

10)

11)

12)

13)

14)

15)

To exemplify some of the above results, we write down alternative expres-

sions for ﬂg’z)(x).’

We have
n®2 (@) = 4{z’PP (@) + 20PP (@) + PP (@)} by (2.6)
= PP@@P@) + PP@e @) + PP@gN@) by (2.7)
= 2{an® P (@) + 1P (%)} by (2.3)
{: 2{x(3/3)PP (@) + (2/3)P (%)} by (2.15)
= 7% @)n®? (@) + 12 (@ ? @ + 1Y @)1 ? (x)
. by (2.11)

= 160x" + 80x2 + 4
294
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MIXED PELL POLYNOMIALS

on using Table 1 and Pf3kx) =1, Pé”(x) = 8x, and Pg”(x) = 40x®> + 4. Observe
that the second and fifth lines of the chain of equalities above are the same,
by virtue of (2.4) and (2.5).

Some interesting results for particular values of a and b may be found.
For example, with ¢ = 0, b = 2, we have, by (2.5) and (2.8),

nQ{Y, @) = an® D (@) + 20 = 41 + M)V + 9P

on rearranging in another way the terms in the differentiation of (2.1). [For
instance, when n = 2, the common value is 90x“ + 80x? + 8 on using

Py = n3 Y (x) by (2.15),
and Table 1.]
Thus,
0P = 41 + 2H1PP @) - 1Y ().
Using
qul)(x) = nf;+l(x) = ;iifg(x)Qn+l_i(x), (2.16)
from (2.15) and (1.3), we find that the simplest values of WS"I)(x) are:

no @) = 2, 7P (@) = 822 + 2, w8 (x) = 2427 + 12

wfj’” () = 64x" + 4822 + &4, nﬁj’” (x) = 160x° + 1602® + 30x ...

Theoretically, one may obtain a Simson-type analogue for the mixed convo-
lution function ﬂ%“b)Cr). However, the task is rather daunting, so we content
ourselves with the Simson formula in the simple instance when a = b = 1.

Computation, with the aid of (2.16) produces
1Y @Y @ - 8P @) = D@ - D - Py @) (2.17)

(both sides being equal to -16z" - 8x% - 4 when, say, n = 2).

3. MISCELLANEOUS RESULTS

A. Pell Convolutions

Two results given in [3] are worth relating to convolution polynomials.
First, apply (1.11) to [3, (3.10)]. Then

Péiﬁ(x) = > P (x)P

. R . i3+ 1 Z,+1
11+12+---+7,J-=n * 2

(x) (x) (3.1)

ij+1
in our system of polynomials. Observe the restriction on the summation. Put-
ting k = 2 and n = 2, say, gives, on applying (1.3) the appropriate number of
times,

Pgm(x) PL(x)P,(x)P,(x) + Py(x)Py(x)Py(x) + Py (x)P, (x)Pq (x)
+ Py (x) Py (x)Py(x) + P (x)Py(x)P,(x) + Py(x)P, ()P, (x)

24z + 3

It

which is precisely the summation expansion in (3.1). We may think of the or-
dered subscripts in each three-term product of the sum as a solution-set of
x +y + 2 =5 for nonnegative integers.

1987] 295



MIXED PELL POLYNOMIALS

Second, suppose we wish to expand a given Fibonacci polynomial, say F (x),
in terms of Pell polynomials (an example of a well-known type of problem in
classical analysis—see [2]).

Using notation in [3, (6.9), (6.10)], we have

4

Fo(x) = a* + 32 + 1 = ¥ 4,x" (3.2)
=0
i.e., "
Ay =1, 4, =0, A, =3, A3 =0, 4, = 1, (3.3)
whence A
F (x) = Z%tgz;+l(x), (3.4)
n=
where .
[(4=n)/2] (_n—l-_J)
+ .
vo= Y (1) JL._ntl i (3.5)
=0 - n+1l+g gn+2]
(n + 2j>
Expanding (3.5) and using (3.3), we calculate
A A 4 A A 34
Vo= A, -+ =, V=—<—5——3>=o,v=—2—-”—,
0 0 4 8 1 2 4 2 4 16
yoo U
3= "8 =0 V=75

whence the right-hand side of (3.4) simplifies to (3.2) on using (l1.1) to ob-
tain appropriate Pell polynomials. Thus,

-3 9 1
Fs(x) =3 Pl(x) + 16 Pa(x) + 16 Ps(x).
Again,
PPx) = P (x) - 3P, (@) + 5P (x) (= 80x" + 48z% + 3)
on paralleling the calculations above.
Computations involving Pell convolution polynomials Eﬁkkx) for k 2 1 could
be effected in a similar manner.

B. Even and 0dd Pell Convolutions

Let us now introduce *Pén(x), the first convolution of even Pell polynomi-
als, i.e., of Pell polynomials with even subscripts.

Consider

N " _ 2x
ng%EEn+2(x)y 1 - @,y +y?’

(3.6)

where @, (x) = bx? + 2 [by (1.2)] and the nature of the generating function is
determined by the recurrence relation for the Pell polynomials with even sub-
scripts, which is obtained by a repeated application of (l.1), namely

P (x) = (4x® + 2)P _ (x) - P _, (x). (3.7)
Then

3 n z 4.’1,‘2
(ﬁé%lﬁn+z(x)y ) =11 - ROPETDE (3.8)
296 [Nov.
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MIXED PELL POLYNOMIALS

that is,
 sp (1) ba”
*p o= — s .
nzk n @)Y (1 -@q,@y + Uk (3-9)
where
14
2~(1)
*p(H () =L P @P, @) (3.10)
Some expressions for these convolutions are:
*p () = P, (0)P, (z) = 4a?
*Pé”(x) = P,(x)P,(x) + P, (x)P,(x) = 322" + 16x?
xp (1) =
P, Nx) = P,(x)P (x) + P, ()P, (x) + P, (x)P,(x)
= 1922° + 192" + 40x?
Properties similar to those given in [9; (4.3), (4.4), (4.5), ...] may be

obtained. Analogous to [9, (4.3)], for instance, we have the basic recursion-
type relation

@) - Q,@*P) (@) + *PY, (@) = P,@)P,, @). (3.1D

If we differentiate in (3.6) w.r.t. y and compare the result with (2.4), we
deduce the analogue of [9, 4.4)]:

maP,, ,, @) = @,@)*PM (@) - 2%B{Y (2) . (3.12)

(A

Experimentation has also been effected with convolutions of odd Pell poly-
nomials (i.e., Pell polynomials with odd subscripts), with convolutions for
Pell polynomials having subscripts, say, of the form 3m, 3m + 1, 3m + 2, and
generally with convolutions for Pell polynomials having subscripts of the form
rm + k.

For the odd-subscript Pell polynomials, the recurrence relation is of the
same form as that in (3.7). 1Indeed, x = 1 gives the recurrence

P, =6P,_, = FP,_y>
which is valid for sequences of Pell numbers with even subscripts or odd sub-
scripts. Compare the situation for sequences of Fibonacci numbers with even

subscripts or odd subscripts for which the recurrence is

F, = 3F, , - F

n n-u4°
Other possibilities include convolving even and odd Pell polynomials, and
powers of Pell polynomials.

th

Generalizing the above work to results for n'" convolutions is a natural

extension.

Of course, investigations involving Pell polynomials automatically include
considerations of cognate work on Pell-Lucas polynomials, and of a study of
mixed convolutions of artibrary order, as for ﬂg“b)(x).

C. Further Developments

Among other possible developments of our ideas, we mention the generation
of F%kkx) and Q%O(x) by rising diagonals of a Pascal-type array as was done in
[8] for P, (x) and Qn(x). Work on this aspect is under way.

A variation of this approach is an examination of the polynomials produced
by the rising (and descending) diagonals of arrays whose rows are the coeffi-
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MIXED PELL POLYNOMIALS

cients of powers of & in Zﬁkkx), where n = 1,2, 3, ..., for a given k. Such a
treatment as this has been done in [6], [7], and [10] for Chebyshev, Fermat, and
Gegenbauer polynomials.

Another problem which presents itself is a discussion of the convolutions
of Pell polynomials and Pell-Jacobsthal polynomials which might be defined by
the recurrence relation

Ty (@) = J, 1 (x) + 22, (x) Jo(x) = 0, J,(x) = 1. (3.13)

Evidently, one can proceed ad infinitum, ad nauseam! Convolution work on
on Fibonacci polynomials and Jacobsthal polynomials, defined in [5] and [11],
is summarized in [14]. The chapter on Convolutions in [14], a thesis dedicated
to the mathematical research of the late Verner E. Hoggatt, Jr., contains much
other information on convolution arrays for well-known sequences, such as the
Catalan sequence, studied by Hoggatt and his associates.

D. Case x =1

Following procedures established in [1] and [4] for Fibonacci number con-
volutions, we may demonstrate inter alia the results:

8P = 3 + P, -~ (n + P, _; (3.14)

8P7(11) = nQn‘f‘l + 2P71 H (3 N 15)

(1) - 1) 1) (1) (1),

Povw = 4P;+3 - 2Eﬁ+2 - AP - B (3.16)

1 @ _ 2,

Qn—lFﬁ Qn+1Pn-2 = 2P, (3.17)
(D (¢)) (1) (1)

Pn+3 Pn+2 Pn+1 Pn

P(l) P(l) P(l) P(l)
" n-1

n+2 n+1

+1. (3.18)
P(l) P(l) P(l) P(l)
n

n+1 n-1 n-2

(1) (1) (&Y} (1)
Pn Pn—l Pn-z Pn—a

Clearly, all the work in this paper for k" convolutions of the Pell and
Pell-Lucas polynomials can be specialized for Pell and Pell-Lucas numbers.
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A GENERALIZATION OF FIBONACCI POLYNOMIALS AND A REPRESENTATION
OF GEGENBAUER POLYNOMIALS OF INTEGER ORDER

KARL DILCHER*

Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada

(Submitted September 1985)

1. INTRODUCTION

Various sequences of polynomials by the name of Fibonacci and Lucas poly-
nomials occur in the literature. For example, Doman & Williams [2] introduced
the polynomials

[n/2]

(2) oy -y,
L, (2) : = mgo m( m )Z s (2)

forn =1,2,3, ..., and F (2) : = 0, F(8): =1, Lg(8) : = 2; [n/2] denotes the
integer part of »n/2. Several properties of these polynomials were derived in
[2] and, more recently, by Galvez & Dehesa [3].

The Fibonacci and Lucas polynomials which occur, for example, in [4], are
different from but closely related to the F, (2) and L,(z). The properties de-
rived in [4] and in the papers cited there can easily be adapted to the poly-
nomials defined in (1) and (2); they mainly concern zeros and divisibility
properties.

In [2], the connection to the Gegenbauer (or ultraspherical) and Chebyshev
polynomials CJ(z) and T,(z) was given, namely

Cy(z) = (2a)"F,,, (-1/4z"),

T (2) = 3(22)" L, (-1/45°) .

We also note that Ci(z) = U,(2), the Chebyshev polynomial of the second kind.
Because 27T, (z) = nC2(z) (see, e.g., [1l], p. 779), we now have

Fyoi(2) = (=) cl1/2/=z), (3)
;lZ—Ln(z) = (-2)"? 0 (1/2V-z); (4)

here and in the following the square root is to be considered as the principal
branch.

The purpose of this note is to use these identities as a starting point to
define a wider class of sequences of polynomials which contains (1) and (2) as
special cases, and to derive some properties.

*supported by a Killam Postdoctoral Fellowship.
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2. THE POLYNOMIALS 7% (z)

For k = -1, 0, 1, ..., we introduce
F®) 1= (=) ¢k (1/2/-z) s (5)

by (3) and (4), we have the special cases
F%G%) = F,,,(z) and FCY(z) =L, (3)/n.
We now use the explicit expressions for the Gegenbauer polynomials (see, e.g.,

[1], p. 775):

1 [n/2]

_m Lot - m n-2m
I'(a) m;o( D m! (n ~ 2m) ! (2)" 72", (6)

C(x)

for oo > -1/2, o # 0, and

[n/2]
0 = gy n-—m - ! n~-2m
c, (x) nz;o( 1) ml (1= 2m) ! (2x) . (7)
The connection between (7) and (2) is immediate and, for a=%k + 1 2 1, we have
I Mo +n-m _ n+k-m)! =<n+k—mxn+k—2m>
T(a) m!(n-2m)! kimt(n - 2m)! m k
with (6) and (5), this yields the explicit expression
PRy = [”Z/:Z] (n+k—m>(n+k—2m)zm @)
n \B) T = m k 4

for X 2 0. This could also serve as a definition of the Fém(z), in analogy to

).
3. SOME PROPERTIES

With (5) and the recurrence relation for Gegenbauer polynomials (see, e.g.,
[11, p. 782), we obtain

o+ DFP (5) = (n + k + DEF() + (0 + 2k + DaF (2). (9)
More properties of the Eﬁkkz) can be derived, with (5), from the corresponding

properties of the Gegenbauer polynomials. This includes generating functions,
differential relations, and more recurrence relations; we just mention

EZC'ZE FO (z) = (k + DF¥' () (for k > 0),
and
d -
Eg»Ln(z) = nE%_l(z), (10)

which can also be verified directly using (8), (1), and (2). 1If we differen-
tiate the recurrence

P (=) =P, (3) + &P _ (2) (1D
which, by (9), holds for L,(z) and F, (2), we get, with (10),
(n + l)E%(z) =nF,_ (&) +L, &)+ n - 1)zF,_,(2);

this, combined with (11), for F,(2), yields
19871 301
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L, () =2F,(3) - F,_,(3).

This last equation can also be derived from the corresponding well-known iden-
tity connecting the Chebyshev polynomials of the first and second kind.

The following recurrence relation involves polynomials Eﬁkkz) of different
orders k = 1.

F(k) (Z) _ F(k) (Z) _ ZF}ER)(Z) = F(k—l)(z),

n+2 n+1 n+2

which can be verified by elementary manipulations, using (8).

k. THE F¥(3) AS ELEMENTARY SYMMETRIC FUNCTIONS

We begin with the following

Lemma: (a) For integers n 2 0 and for complex z # 1 and x, we have

T IR @ - - 0 () (12)

0 if n is odd,

b) ¥ ("D (@) =
i=o0 J

n/2

x if n is even.

Proof: Let f, (x, 2) denote the left-hand side of (12). With (8), we have

v T (e

m=0 n-d

f, @, 2)

Fen (2" £ e (312

m=0

)> x”’(”% m) 7;5__:?(-1)%” —:jzm)z”'z’”'j,

m=0

which yields assertion (b) if we put z = 1. For z # 1, we have

[2/2] (/2] _
n (N~

FRCREDIESD M L TEIE D S CIE SHND)

m=0 m=0

which proves (a).

Proposition: For kK =1, 2, ..., n, we have
- ()
PR (2) = > AP @) e A7)
15, <+ <G <n “F k
where
Moy . - = Jm
Aj (x) : 1 + 2V-x cos e

Proof: Because Ci(z) = U, (3), we have, with (3) and the definition of Agﬂ(x),

() -2y - 2 _JT
P @@AP@ - D7) = F,, (<1/4 cos’ =)
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- <2 cos nif-l>_nUn<Cos nJI>1>'

Now cos(jn/(n + 1)), for g =1, 2, ..., n, are known to be the zeros of the

Chebyshev polynomials of the second kind U, (g8). Furthermore, if »n is odd, then

cos(jn/(n + 1)) =0 for j = (n + 1)/2, in which case A (2) = 1 for all x. So
J

we have, by both parts of the Lemma,

T DR @) P @) = 0
k=0

for all j =1, 2, ..., 7n. But this means that the Fén_k)(x), k=0, 1, ..., 7,
with x held constant, are the elementary symmetric functions of the » roots
Ag”(x) of f(x, 2) = 0. This proves the Proposition.

Finally, if we let x=1/2V-z, the proposition together with (5) yields the
following representation of the ultraspherical polynomials of integer order.

Corollary: 1If kK > 1 is an integer, then

k. n jlﬂ jnﬂ
C(x) =2 3 Q}+—cos > soee e (x + cos — .
" 1<7,< < g, <ntk-1 n+k n o+ k

In closing, we note that [5] and [6] deal with Gegenbauer polynomials from
another (related) point of view.
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THE RECIPROCAL OF THE BESSEL FUNCTION J, (z)
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1. INTRODUCTION

For k =0, 1, 2, ..., let Jy (2) be the Bessel function of the first kind.
Put
P _ k/2 _ ¥ (="="
£ (&) = 7, (2V2) /2 Y oo (1.1)
and define the polynomial u,(k; x) by means of
1 - 2"
klf, (xz)/f, (2) —nzijum(k, )T T )1’ (1.2)

Certain congruences for w,(xr) = u,(0; x) and the integers w, = w,(0) were de-
rived by Carlitz [3] in 1955, and an interesting application was presented.

The purpose of the present paper is to extend Carlitz's results to the
polynomials u,(k; x) and the rational numbers u,(k) = u,(k; 0).

In particular, we show in 8§83 and 4 that, if p is a prime number, p > 2k,

and
m=cy+ep+e,p’+ (0S¢, <p -2k
(0<¢; <p for ¢ >0), (1.3)
then
Up(k) = u, (k) *we we, ... (mod p), (1.4)
u,k; x) = uco(k; x) - wgl(x) -wgf(x) «e. (mod p). (1.5)

In §5, we prove more general congruences of this type. 1In §6, applications of
these general results are given. Finally, in 87, we examine in more detail the
positive integers u,(1).

2. PRELIMINARIES

Throughout the paper, we use the notation w,(x) = u,(0; x) and Wy = w,(0).

In the proofs of Theorems 1-6, we use the divisibility properties of bino-
mial coefficients given in the lemmas below. These lemmas follow from well-
known theorems of Kummer [4] and Lucas [5].

Lemma 1: If p is a prime number, then

(7p) = (7)) @ea -

Also, if p - 2k > s 2 0, then, for j =s +1, s +2, ..., p — 1,

np +s + ky\(np +s + k
(o )

rp + g +k rp + g ) =0 (mod p).

304 [Nov.
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Lemma 2: Suppose p is a prime number and
ny +mp + o +upd (0 <ny; < p),
r=r,t+rp+ - +rpl (0< 7 <p),

N
1

If, for some fixed 7, we have r, > n, and T, > n;,, forv =1,...,¢t-1,

then " ‘
()

Lemma 3: Let p be a prime number, p > 2k. Then
Gl O

is integral (mod p) for »r = 0, 1, ..., n. Also
lp 5 /%)
(2 /(%)

0 (mod pt).

i

11

(m ; 1) (mod p),
(

1) mod p).

3. THE NUMBERS u, (k)

We first note that the numbers u, (k) were introduced in [2], where Carlitz
showed they cannot satisfy a certain type of recurrence formula.

It follows from (1.2) that
Zm

{f%(Z)}_l =3 u, k) mim ¥ k)L (3.1)

m=0
Thus, we have

uy (k) = uy (k) = (k1)?,

u, (k) = (kN?(k + 3)/(k + 1),
u, (k) = (K1DZ (K> + 8k + 19)/(k + 1),
and
= r(m+ kx/m+ k .
TG e =0 >0, (3.2)

It follows from (3.2) and Lemma 3 that if p is a prime number, p= 2k, then
the numbers u,(k) are integral (mod p); in particular, u,(0) and u,(l) are
positive integers for n =0, 1, 2,

Theorem 1: If p is a prime number and if 0 < s <p - 2k, then
unp+s(k) Zu (k) *w, (mod p). (3.3)
Proof: We use induction on the total index mp + s. If wp +s = 0, (3.3) holds

since w, = 1. Assume (3.3) holds for all rp + j < mp + s, with § <p - 2k. We
then have, by (3.2),

(_1)n+s+1<8 +'k)unp+s(k) 51351 .53 (_1)j+r(§ : i)(s + k)(n)zufp+j(k)

s r=0 Jg=0 J r

F e B e (G L s
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i

T (e £ (S TR § o

s-1 )
v v Eeni(s LR 1

Ju; (%)
. {o + (-1 er(® ; k)wnus(k) (mod p) if s > 0,

(-1)""Yw u (k) (mod p) if s = 0.
We see that (3.3) follows, and the proof is complete.

Corollary (Carlitz): With the hypotheses of Theorem ! and with m defined by
(1.3) with k& = 0,

We, We, Ve, (mod p).

Corollary: With the hypotheses of Theorem 1 and with m defined by (1.3),
up(k) = uco(k) "W, We ... (mod p).

Theorem 2: 1If p is a prime number, p > 2k, then
Upp- 1 R) = (=D*u (F) *w, (mod p).

Proof: The proof is by induction on n. For n = 1 we have, by (3.1),

p-k-1

D7, 5 ) (D 0/ (F)

r=0

(=1)fu, 4 (k)

i

uo(k) = uo(k)~ W, (mod p).

Theorem 2 is therefore true for m = 1; assume it is true forn =1, ...,8 - 1.

Then
sptk-1

O, @ = T D7) (P /()

r=0

s-1
&, Y (rpsi k)(ig)”fp (k)/<87<p)
s-1

VE () s D)

r=1

1

s-1

T () o m, + E 7 (2)(ED ) Gom,

r

i

st \r(S)\? — s-1
4 () T 1" (3) wp = 177wy Gy (mod p)

This completes the proof of Theorem 2.
1f m is defined by (1.3) with ¢; = p - k, and if ¢; = p - 1 for 1<2<g-1
with ¢; <p - 1, then Theorem 2 says
Up(k) = uq, (k) - W4 g, Ve

J+1

We,,, (mod p).

In particular, if p > 2k, and n = pt - k,
U (k) = uy (k) = (~D*ug(k) = D*EDH? (mod p).
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L. THE POLYNOMIALS u, (k; x)

We now consider the polynomials u,(k; x) defined by (1.2). It is clear
that
u,(k; 0) =u,(k), wu,(k, 1) =0 (m>0).

Also, it follows from (l1.1) and (1.2) that

(m Z k)um(k; x) = Pé)(_l)m-r(?; I i)(m ;— k)ur(k)xm—z’. .1

Theorem 3: If p is a prime number and if 0 < s < p - 2k, then
Uppr o (K3 @) = ug (k5 @) * wyp (x)  (mod p). (4.2)

Proof: The proof is by induction on the total index wp+s. We first note that
uo(k; x) = uo(k; x) * wo(x) (mod p),
since w,(x) = 1.

Assume (4.2) is true for all rp + j < mp + s with 0 < jJ < p - 2k. Then, by
(4.1) and (3.3),

(S : k)unp+s(k; x) = f%;:(_1)n—s-r(np4;?4—k)(np;;?;—k>ur(k)xnp+s_p
SR TG ALA TSI ST A IO S
TR )G e T My g ere
j=0 r=
) jzi:o (8 ; k)(j i 2)(‘1)8”% (k)xs_j'é:o(Z)z(—l)n_rwpx”P—fp
= <s Z k)us(k; x) »w,(x?) = <S ;k)us (ks @) * w0y (@) (mod p).

This completes the proof of Theorem 3. We note that Theorem 1 was used in the
proof.

Corollary (Carlitz): With the hypotheses of Theorem 3 and with m defined by
(1.3) with k = 0,

W, (@) = w, (@) +wl (@) vl @ ... (mod p).

Corollary: With the hypotheses of Theorem 3 and with m defined by (1.3),

u, (ks x) = uco(k; x) 'ng(x). wf:(x) «e. (mod p).

5. GENERAL RESULTS

For each integer k = 0, let {F,(k)} and {G,(k)}, n =0, 1, 2, ..., be poly-
nomials in an arbitrary number of indeterminates with coefficients that are
integral (mod p) for p > 2k. We use the notation F,(0) = F, and G,(0) = G,,

and we assume FO =G, = 1. For each m of the form (1.3), suppose

F (k) =F, (k) F. -Eﬁj... (mod p), (5.1)
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Gn(k) = Go, (k) GE - GL ... (mod p). (5.2)
For each integer k 2> 0, define H,(k) and ¢,(k) by means of
n+ k _n _«n—r?’l‘i‘k n+ k
e - B s 5
an :
n+ k R wm-r(n + ky/n + k
(59700 = £ ot LR L E)e w06, 0. o

Theorem 4: Let the sequences {H,(k)} and {g,(k)} be defined by (5.3) and (5.4),
respectively, and let H; =H;(0), Qj=Qj(O). If p is a prime, 0 <s <p - 2k,
then '

Hopso(k) = Hy(k) ~ By (mod D). (5.5)
If Gy(k) # 0 (mod p), we also have

@pisk) = @,(k) g, (mod p). (5.6)

Proof: From (5.3), we have

(s ;—k) NG J‘_['o r}:o( I)MSH”(ZZ;) (s ; k)(j i ;z) Frpis GGy iy (KD

11

}i:o -1 S+J(S :; k><J >F (G, () - Z”: (_l)mr(@z&pai}_r

= (s +k)H (k) - anz (s +Z<>H (%) -

This completes the proof of (5.5).

H,, (mod p).

As for (5.6), we first observe that for n = 0 and 0 < ¢ <p - 2k, congru-
ence (5.6) is valid. Assume that (5.6) is true for all rp + J < np + s with
0<j<p-2k. Then, from (5.4), we have

‘7<S : k>Fw.p+s(k) = ] n+s+f’+j<”p)r (S ; k)( j i) Drpsj KIGrp = rpt s~ 7(K)

™
M

rp J

I
L0
~

R B, E e

- (7 F)e, g, 06F + (7 F ., toe, (0

i
T~
[va)
+

I E R L () IO LT

(8“;'7(

Now, since F, ., (k) = F, (k) *

+ )an+s(k)GO (k) - (mod p).

np (mod p), we have

Qpss®) 2 QG0+ Q) = Q (k) - (mod p),

9.
and the proof is complete.
Corollary (Carl itz): Using the hypotheses of Theorem 4 with » defined by (1.3)
and kK =
- P p?
H, =H, *H, *H, ... (modp),
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2

Q, =@, -, - e (mod p).

m ey e,
Corollary: Using the hypotheses of Theorem 4 with m defined by (1.3),
B,(k) = H, (k) - HE +HD ... (mod p).
If Gy(k) 2 0 (mod p), we also have
9, () =@, () -QF +QF ... (mod p).

6. APPLICATIONS

As an application of Theorem 4, for each integer k¥ 2 0 consider the expan-
sion
f%(xlz) cee f%(xrz) ©

= 2 F (k)

(k1)Fre-! ~'__Z_’"___T
w2 - 2 T nl(n + k)!

(6.1)

where f) (z) is defined by (1l.1), », s are arbitrary nomnegative integers, and
the x;, y, are indeterminates (not necessarily distinct). By (l.1) and (3.1),
F,(k) is a polynomial in &;s «+.s Tp> and y;5 ..., ¥ with coefficients that are
integral (mod p) if p > 2k. The following result may be stated.

Theorem 5: If m is of the form (1.3), then the polynonial F, (k) defined by
(6.1) satisfies
2
Fo(k) = F, (k) +F; +Fy ... (modp),

Cy

where F; = F;(0). 1In particular, if the x, y, are replaced by rational num-
bers that are integral (mod p), then

F,(k) = F, (k) *F, F, ... (mod p).
As a special case of (6.1), we may take

Z?Z

D" Hf (T = ;g%uﬁ”<k)%7?;—;—;y;-

Then the u%ﬁ(k) are integral (mod p) if p > 2k, and they satisfy
ul(k) = u(:o)(k) - u(0) - ug;><0) ... (mod p)

for all r (positive or negative).

7. THE NUMBERS u, (1)

For n = 0,1, 2, ..., let w, = u,(0) and let u, = u,(l). The positive inte-
gers w, were studied by Carlitz [3] and were shown to satisfy (1.4) (with k =
0). Since the u, are also positive integers, it may be of interest to examine
their properties in more detail. The generating function and recurrence for-
mula are given by (1.1), (3.1), and (3.2) with kK = 1. From them we can compute
the following values:

Uy = u; =1 ug = 321

y Up = 2 ug = 3681
Uy =7 u, = 56197
u, = 39 ug = 1102571
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Suppose that p is an odd prime number and that m is defined by (1.3) with
0 < c, < p - 3. Then, by Theorems 1 and 2, we have

U, = Ue,We, We, = «- (mod p), (7.1)

m

Unp+ (p-1) = W,y (mod p). (7.2)

The case ¢, = p - 2 is considered in the next theorem. This theorem makes
use of the positive integers %, defined by means of

2n
(7, () Y217, () }® = ): B, B2 (7.3)

nin!

These numbers are related to the integers a, defined by Carlitz [1]:
a, = 2""nt(n - 1)1o, (0),

where 0,, (0) is the Rayleigh function. It can be determined from properties of
a, that a generating function is

o 2 2n -1
HOVZNORES S LD (7.4)
as well as
o 2n
U, @) = % a,,, EE— (7.5)

n=1

Now it follows from (3.1), (7.3), and (7.5) that

h, = % (”)zwranu_p (n>0), (7.6)

- )’:_1;0 (-1)1”(?,)2;1? > 0). (7.7)

The first few values of h, are hy =0, h, =1, h, = 8, hy = 96, h, = 1720.

In the proof of Theorem 6, we use the relationship

g;( D ( >(T Z 1) 1 (—1)n+1an+1’ (7.8)

which follows from (7.4).

Theorem 6: 1If p is an odd prime number, then

Upps (p-2) = Up_o¥0, = h, (mod p),

where h, is defined by (7.3).

Proof: The proof is by induction on n. The theorem is true for = = 0, since
hy = 0 and wy = 1. Assume that Theorem 6 is true for n = 0, ..., 8 — 1. Then
by (3.2), (7.1), (7.2), and (7.8) we have

8 -3
~1)s-1 = _1yrti(sp tp - yep +p -1 ,
D" Ugpr -2y = 2 _;0( b rp + § )(rp +7 + 1)
5t +p -1 +p -1
FEE (P S E LT D e

r=0 j=p-2 rp +J
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= r‘zj“,()(—l)”(f,)zwp : :Z;i(j(-l)j(p PR A “p-zj,z;:;(‘”r(fz)z”r
A 1 P

1l

s-1 s s-1 s
(-1 up-zws + (1), + (-1) Ay (-1 As 41

i

(-1)3’1(“p-zws - hy) (mod p).

This completes the proof of Theorem 6.
Using (7.7) we can prove, for p > 2,
Puprs = hew, (mod p) (0K s<p - 2),

h = h,_w, +h, (modp).

np+ (p-1)

Theorem 6 can be refined by means of these congruences. For example, if m is
defined by (1.3) with ¢; = p - 2 and ¢, = 0, we have

Uy = Ug Wo W, «-- (mod p).

The proofs in this section are not valid for p = 2. However, it is not
difficult to show by induction that if m # 2 (mod 4) then u, is odd. The proof
is similar to the proofs of Theorems 1-6. If m = 2 (mod 4), we can write

m=tdn+ 2 =2"%17 4+ 27 -2
for some v > 1. Using (3.2) and induction on »n, we can prove

0 (mod 2) if v is even,
1 (mod 2) if v is odd.

um
Thus, for p = 2, we have the following theorem.

Theorem 7: If m = ¢, + ¢,2 + ¢,2* + +-+, with each ¢, = 0 or 1, then

Uu

m = Up Yo e, woe (mod 2),

unless m = 2°%1j 4+ 2Y - 2 with v even, v = 2.
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ON THE LARGEST ODD COMPONENT OF A UNITARY PERFECT NUMBER®
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1. INTRODUCTION

A divisor d of an integer n is a unitary divisor if ged (d, n/d) = 1. 1If
d is a unitary divisor of n we write dln, a natural extension of the customary
notation for the case in which d is a prime power. Let 0*(n) denote the sum
of the unitary divisors of n:

o*(n) = 3 d.
dlin
Then o* is a multiplicative function and o*(p¢)= 1 + p¢ for p prime and e > 0.

We say that an integer N is unitary perfect if o*(N) = 2N. 1In 1966, Sub-
baro and Warren [2] found the first four unitary perfect numbers:

6 =2¢3; 60 = 223+5; 90 = 2+ 3%5; 87,360 = 253+ 5+ 7« 13,
In 1969, I announced [3] the discovery of another such number,

146,361,936,186,458,562,560,000
= 218354711« 1319+ 37+ 79+ 109+ 157« 313,
which I later proved [4] to be the fifth unitary perfect number. No other uni-

tary perfect numbers are known.

Throughout what follows, let N = 2%m (with m odd) be unitary perfect and
suppose that X is the largest odd component (i.e., prime power unitary divisor)
of N. In this paper we outline a proof that, except for the five known unitary
perfect numbers, X > 2'°.

2. TECHNIQUES

In light of the fact that o*(p¢) =1 + p® for p prime, the problem of find-
ing a unitary perfect number is equivalent to that of expressing 2 as a product
of fractions, with each numerator being 1 more than its denominator, and with
the denominators being powers of distinct primes. If such an expression for 2
exists, then the denominator of the unreduced product of fractions is wunitary
perfect. The main tool is the epitome of simplicity: we must eventually divide
out any odd prime that appears in either a numerator or a denominator.

If p is an odd prime, then O*(pe) = 1 + pe is even. Thus, if some of the
odd components of a unitary perfect number N are known or assumed, there is an
implied lower bound for a, where 2%lIN, since all but one of the 2's in the nu-
merator of o*(V)/N must divide out. Another lower bound, useful in many cases,
is Subbarao's result [1] that a > 10 except for the first four unitary perfect
numbers.

*This paper was written while the author was Visiting Professor at The Uni-
versity of Southwestern Louisiana, Lafayette, LA.
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A simple program was run on a microcomputer to find, for each odd prime
p < 25, the smallest 4 for which 24 = *1 (mod p). If 24 =1 (mod p), then p
never divides 1 + 2%. 1If 24 = -1 (mod p), then p divides 1+ 2% if and only if
a is an odd integer times 4, and we refer to 4 as the entry point of p.

If an odd prime p has entry point 4 and p?l(1+2%), it is easy to see that
2P-1 = 1 (mod pz). There are only two primes less than 3 ¢ 10° for which this
this phenomenon occurs, and they are 1093 and 3511. Then 1 + 24 would have a
component larger than 10®. Thus, for the primes p < 215 under consideration
here, either p never divides 1 + 2% or pl(1 + 24) or 1 + 2% has a component
larger than 2%'5.

The odd primes less than 215 having entry points were ordered by entry
point. Then it was a fairly easy procedure to consider algebraic factors and
conclude that 1 + 29 has all components less than 2'° for only g < 11 and the
a shown in Table 1.

Table 1
24 1 4 2¢ 224 97%257%673
211 3%683 225 3%11%251%4051
212 17%241 226 5%53%157%1613
213 3%2731 230 52%13%41%61%1321
oLk 5%29% 113 283 32x67%683%20857
215 32x11%331 284 5%137%953%26317
218 5%13%37%109 | 242 5% 13%29% 113% 1429% 14449
221 3%2%43%5419 246 5%277%1013%1657%30269
222 5%397%2113 278 5%132%53%157%313%1249%1613%3121%21841

In many of the proofs, cases are eliminated because under the stated con-
ditions o* (V) /N would be less than 2. A number n for which 0*(n)< 2n is called
unitary deficient (abbreviated "u-def"). Finally, we will write a = 4 * odd to
indicate that g is an odd integer times 4.

3. PRELIMINARY CASES

If X=3, we have 310%(29), so a is odd. But N is u-def if g 2 3, so a=1;
hence, ¥ = 2+ 3 = 6, the first unitary perfect number.

If X=5, we immediately have 3|V and g =2 ° odd. But N is u-def if a = 6,
so g = 2; therefore, N = 223+ 5 = 60, the second unitary perfect number.

Note that K=7 is impossible, because 7 never divides 1 + 2¢. 1In general,
the largest component cannot be the first power of a prime that has no entry
point.

If X=32=9, then 5IV, and 0*(5) uses one of the two 3's. To use the other
3, we must have 3|0%(29), so a is odd. Now, 7f/N or else 7|0%*(2%), which is im-
possible. Then N is u-def if @ = 3, so a=1; hence, ¥ = 2+ 325=90, the third
unitary perfect number.

If ¥ = 11, then 11]0"(2%), so a = 5 odd; hence, 310%(2%). But 3lo*(11) as
well, so 3%IN. Then 5l0%(32%), so 5IV, and since 310%(5) we have 3°|N, contra-
dicting the maximality of X.

If X = 13, we have 13]/0%(2%), so g = 6 odd; hence, 5|0*%(2%). Then 5IN, so
317 because 321N would imply 52|N, a contradiction. Because 13lN, we have 7N,
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but we cannot have 11|V or else 3%IN. But N is u-def if a > 18, so a = 6, from
which it follows that ¥ = 253+ 5.7+ 13 = 87,360, the fourth unitary perfect
number.

We have now accounted for the first four unitary perfect numbers. In light
of Subbarao's results [1], we may assume that g > 10 from now on.

Now suppose a = 78. Because 313+ 1249[0*(27%) and the squares of these
primes exceed 2'%, we have 313« 1249|F. But 157210%(27°%313), so 157%l¥. How-
ever, 5710%(278157%21249), so 57IN. But 57 > 25, so g = 78 is impossible.

At this stage, a table was constructed to list all odd prime powers which
might be components in the remaining cases. For the sake of brevity, the table
and most of the remaining proofs are omitted here. However, the table may be
obtained from the author. The table was constructed to include: (1) the odd
primes that appear in Table 1 (except for a = 78); (2) all odd primes dividing
0*(q), where g is any other number also in Table 2 below; and (3) all allowable
powers of primes also in Table 2. A '"possible sources" column listed all com-—
ponents of unreduced denominators in o*(WN)/N for which a particular prime might
appear in a numerator; multiple appearances were also indicated.

Insufficient entries in the '"possible sources" column allow us to elimi-
nate some possible components. For example, there are only two possible sources
for 23, so 23% cannot occur. We eliminate: 23%; 31%; 31%; 67 and hence 449;
71% and hence 2521; 73%; in succession, 792, 3121, and 223; successively, 1012,
5101, and 2551; successively, 1312, 8581, 613, and 307; successively,1392, 9661,
4831, 1512, 877, and 439; successively, 1492, 653, 1092, 457, 229, and 23%; and
successively, 181%, 16381, and 8191.

L. REMAINING CASES

‘We have 11 S a € 46, so there can be no more than 47 odd components. The
smallest odd component must be smaller than 17 because a o*(NV)/N ratio of
1.926... occurs if N is the product of 21 and the following 47 prime powers:

17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 61, 67, 73,
79, 83, 97, 101, 109, 113, 121, 131, 137, 139, 149, 151, 157,
169, 181, 191, 193, 199, 211, 241, 251, 257, 269, 271, 277,
281, 313, 331, 337, 397, 421

If 832N, then 331 829l¥. 1If 829 is a component, then 1657 is also, and
hence g = 46. Now, 331 is a component only if a = 15 or 661IN, and since g =
46, 6611IIN. But then 1321V, so a = 30, a contradiction. Therefore, 832 cannot
be a component.

Suppose a = 46. Then 277 « 1013« 1657 » 302691, so 139+ 829 « 1009/, hence
83+ 101lN. Therefore, 3%5%72132%|N, so 11N, because there must be a component
smaller than 17, and o*(1ll) contributes another 3 to the numerator of o*(¥)/N.
Now, either 5°I¥ or 5°%|N. 1If 5°IN, then 521N and we have, successively, 297,
421, 211, and 53 as components; but then 3%y, which is impossible. Thus,
58N, so 601N, hence 43IN. But 43|IN or else there are toc many 5's. Now,
731 would force 43%|N, and 7%IN would force 12011W, hence 601%IN, so 7°IN;
however, then 112|N, a contradiction. Therefore, we may eliminate g = 46. As
a result, we may eliminate 277, 1657, 829, and 30269 as components, then 139
and 1009, and then 101.

For the sake of brevity, the other cases, except a = 24, are summarized in
Table 2.
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Table 2
CASE ELIMINATED CASE ELIMINATED
242*173 2’-}2*173 212*114 212*114
211-2*7 242*7 212*113 212*113
242 242, 113%; 1277; 71 212 212
226 226 221*432 221*432
532 5325 281; 472 221x5 2215
234 23%: 26317 13159; 47 221 221
233 233, 67 612 61%; 1861
412 412 193 198
230461 230461 222%19%2  222x19?
230 230 222 222
225 225 218*372 218*372
211 211 218*192 218*192
213 213 218*53 218*53
21% 215; 4415 83 218455 21845%
214*292 214*292 218*56 218*56
2% 2%, 113 218 2% unless N = W; 109

The ordering of cases presented in Table 2 works fairly efficiently. The
reader should rest assured that sudden departures from an orderly flow are de-
liberate and needed. The case a = 24 is especially difficult, and so is pre-
sented here.

Suppose a = 24. We immediately have 257 * 673IN, hence 337IN, so 132|N. To
avoid having N u-def, the smallest component must be 3, 5, or 7.

If the smallest component is 7, then 97%IlV or else 97IN and 7%|N. There-
fore, 941IN, so 193IN. Then 3?11+ 17IN or ¥ is u-def. But 3%lo*(17 - 257), so
33|V, a contradiction. Thus, the smallest component is not 7.

If the smallest component is 3, there are no more components = -1 (mod 3)
as 310%(257). Then we must have 7, 19, 25, and 31 as components or N is u-def.
But then, no more than nine more odd components are allowable, and N is u-def.
Therefore, the smallest component must be 5.

Because 5|N, we must have 43IV, since 5%10%(43%). We know that 132IN, so
either 13%IV or 13%I¥ or 13*IN.

Suppose 13%IN. We cannot have 5% or 5° as components, so we must have 181
and 17°. Starting with 22%5lV, we have, successively, as unitary divisors,
257 + 673, 337+ 43, 13%, 17%181 « 14281, and 197193. Because 19°llV, we must have
3%37018. But 37%10%(3°13281), contradicting 37IN. Therefore, 13* is not a com-
ponent.

Suppose 13%IN. Then 157IN or else 157217, hence 5°|N. Consequently, 79IN
and no more components = -1 (mod 5) are allowable. Then 97N or else 972N,
hence 5%IN. If 7°1N, then 43%IN, which cannot be, and if 7%I¥, then 1201IN, so
60115, and again 43%|N. Therefore, 7°IN, so 191IN. But then N is u-def.

Hence, 132l¥, so no more components = -1 (mod 5) are allowable. In parti-
cular, we must have 97N to avoid 972N, and then we must have 3%7%|N. But
then NV is u-def, so a = 24 is impossible.
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A. K. AGARWAL
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INTRODUCT ION

A natural bijection between the class of lattice paths from (0, 0) to (2m,
2m) having the property that, for each (x, y) in the path, (2m - x, 2m - y) is
also on the path and the class of partitions of 2m? into at most 2m parts, each
part < 2m and the parts which are strictly less than 2m can be paired such that
the sum of each pair is 2m, is shown.

1. DEFINITION AND THE MAIN RESULT

Describing the n-reflected lattice paths [paths from (0, 0) to (n, n) hav-
ing the property that, for each (x, y) in the path, (n -y, n - x) 1is also on
the path] of the paper '"Hook Differences and Lattice Paths" [1] as n(y, x)-
reflected, we define here n(x, y)-reflected lattice paths as follows:

Definition: A lattice path from (0, 0) to (n, n) is said to be n(x, y)-reflec-
ted if, for each (x, y) in the path, (n - x, n - y) is also on the path.

Example: The two 2(x, y)-reflected lattice paths are:

In the present note we propose to prove the following.

Theorem: The number of partitions of 2m? into at most 2m parts each < 2m and
the parts which are strictly less than 2m can be paired such that the sum of

each pair is 2m equals (iT).

2. PROOF OF THE THEOREM

We describe a partition of 2m* as a multiset

Wo=u0m = [ags «o.s ag]
of s(e{l, 2, ..., 2m?}) positive integers a; (£ =1, 2, ..., s) such that
S
'ziai = 2m?> (conventionally, a, Za, > - 2a,).
i
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In this notation let §(m) denote the set of all partitions U= [a;, Aps +vvs Q)

of 2m? such that s < 2m, 2m > ay 2 a, 2 +-+ 2 ag3 and, all of the a; for which

a; < 2m can be paired such that the sum of each pair equals 2m. Further, let

J3(m) denote the set of all 2m(x, y)-reflected lattice paths. To establish a

one-to-one correspondence from §(m) onto 3J(m), we represent any U = [al, Ays
.5 as] € §(m) by its Ferrers graph in the coordinate plane as follows:

We fit the leftmost node of the 7™ row of nodes (counted by a;) over the
point (0, 2m — 7 + 1) as shown in Graph A (in the graph, m = 3 and U = [6, 5,
3, 3, 11).

[} ® ° ) ® (6, 6)
® () ® ®
® [
° [
1
1
Graph A

We now place crosses at one unit of length below every free horizontal node
and at one unit of length to the right of every free vertical node. Through
these crosses, we then complete the lattice path from (0, 0) to (2m, 2m), as
shown in Graph B.

L ] @ X(6’ 6)

® L) ®

L] ® ® ® X X
® [ ] X X

® ® X

X X X

1 X
1
Graph B

We observe that each partition u corresponds uniquely to a 2m(x, y)-re-
flected lattice path. It may be noted here that the corresponding path will
not be 2m(x, y)-reflected if

s =2m=a,. (L)

For, in this case, (2m, 2m - 1) belongs to the path, but (0, 1)= (2m - 2m,
2m - (2m - 1)) does not. Therefore, in order to prove that the correspondence
is one-to-one and onto, we first rule out the possibility (1) under the condi-
tions of the theorem. There are only three possible cases: (i) a; > a,. In
this case, if (1) is true, then there are 2m - 1 parts, viz. a,, ..., ag, that
are strictly less than 2m. Being odd in number, these parts cannot be paired;
hence, (1) is false. (ii) a; =a, = +++ = a,, where r (21) is odd. 1In this
case, if (1) is true, then the number of parts that are < 2m is 2m-r. Again,
since 2m-r is odd, the parts that are <2m cannot be paired; hence, (1) is not
possible. (iii) a; =a, =+ = a,, where r (22) is even. As in the previous
case, if (1) is true, then the number of parts that are < 2m is 2m-r. But in
this case, 2m-7r is even. So the parts that are < 2m can be paired. However,
since the sum of each pair is 2m, the number being partitioned is:
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(2m - »r)

2 «2m = 2m® + mr > 2m>.

2me r +

This is a contradiction since we are considering the partitions of 2m?. Thus,
(1) does not hold true.

We also note that each 2m(x, y)-reflected lattice path uniquely splits 4m?

into two identical partitions of 2m?, say, A(m) and u(m). (See Graph C, where
m =3 and A(3) = [6, 5, 3, 3, 1]).
A3
® 0( )O ® ® )((6a 6)
® [} ® ® X X
e e X X X 0
® e x 0 0 O
X x x 0 0 0 u3
1 x 0 0 0 0 O
(0, 0)* © 6 4—F6 6 6
1
Graph C
Now if a; (¢ = 1, 2, ..., 8) € A, and g; < 2m, there must exist b; (j = 1,
2, «..5 8) € W, where b; < 2m, such that g; + b; = 2m. But since A and u are
identical, b; = a; for some k € {1, 2, ..., s}. Thus, a; + a; = 2m. This is

how the restriction "all of the g; for which a; < 2m can be paired such that
the sum of each pair equals 2m" enters into the argument. After establishing
a one-to-one correspondence from §(m) onto I(m), we use the fact that each
2m(x, y)-reflected lattice path determines and is determined uniquely by its
first half, i.e., the nondecreasing path between (0, 0) to (m, m). Hence, the
number of 2m(x, y)-reflected lattice paths or the number of relevant partitioms
equals the number of paths between (0, 0) to (m, m), i.e., (%T).
pletes the proof of the theorem.

This com-

As an example, let us consider the case in which m = 3. We get the follow-
ing relevant partitions:
3%, 43%2, 4%3%2%, 4323, 53%1, 547271, 543°21, 523217, 524217, 5313,
63%, 64222, 64322, 653%1, 65°1%, 6232, 6242, 6251, 6°, 65421.
We remark here that, in all there are 58 partitions of 18 into at most 6
parts and each part < 6 (see [2], p. 243, coefficient of qls in the expansion

of [tf]). But 38 partitions, such as 6543, 5%3, 5433, 4%3%, 6223, 5321, etc.,

do not satisfy the condition ''the parts which are < 6 can be paired such that
the sum of each pair is 6."
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1. INTRODUCTION

An arithmetic function f is said to be multiplicative if
fmfn) = f(mn) whenever (m, n) = 1. (1.1)

It is a consequence of (1.1) that f is known if f(p?) is known for every prime
p and r > 1.

Definition: A pair {f, g} of multiplicative functions is called a "friendly-
pair" of the type o (a = 2) if, for n = 1,

fn*) =gm, gn) =) (1.2)
and !
fgn) = 1. (1.3)

Question: Do friendly-pairs of multiplicative functions exist?

We answer this question in the affirmative.

2. A FRIENDLY-PAIR

We exhibit a friendly-pair of multiplicative functions by actual construc-
tion. As f, g are multiplicative, it is enough if we work with prime-powers.

Let p be a prime and r 2 1.

We define f and g by the expressions:

Fon = exp(ZEY 56 » = & (mod (@ + 1) 2.1
9@ = exp(ZE{) 1 v = &k (mod (@ + 1) 2-2)

We immediately deduce that

fe™) = eXP(éﬂik?) = eXp(;—sz—zf) =g@r).

Similarly, we obtain

g(er™) = f®n).

Therefore, we get

f(n* =gmn) and gn*) = fH).
Also, f(**") = g@**') = 1. Thus, from (2.1) and (2.2), we obtain
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femgp® =1, r 2 1.
Or, f(n) and g(n) are such that f(n)gn) = 1.

Example: For o = 2, we note that f, g would form a friendly-pair satisfying

Ffn*) =gm), gin®) = f(n), and f(n)g(n) = 1, n > 1.
In this case, f and g are given by:
exp(2m2/3) 4if r = 1 (mod 3)
fr) = {exp(4ﬂi/3) if » = 2 (mod 3) (2.3)
1 if » = 0 (mod )
exp(-2m2/3) if » = 1 (mod 3)
g(?) =<exp(-4mZ/3) if » = 2 (mod 3) (2.4)
1 if » = 0 (mod 3)

Before concluding, we remark that there exist pairs {f, g} which satisfy
(1.2) but not (1.3). This point is elucidated for the case a = 2.

Let u(n) be the MGbius function. We define f(n) and g(n) as follows:

fx) = X wd, (2.5)

n=de®

where the summation is over the divisors d of n for which the complementary
divisor n/d is a perfect cube.

gn) = 2 wd,

n=d*t?

where the summation is over the square divisors d? of n for which the comple-
mentary divisor n/d? is a perfect cube.

We observe that f and g are multiplicative. Further,
-1 4if » =1 (mod 3)
fr) = 0 if » = 2 (mod 3) (2.7)
1 if » = 0 (mod 3)
0 if » = 1 (mod 3)
g(?r) =q-1 4if r = 2 (mod 3) (2.8)
1 if » = 0 (mod 3)

It is easy to check that f(nz) = g(n) and g(nz) = f(n) for n =2 1. However,

_§1 1if n is a perfect cube,
Fmgm) = {0 otherwise.

This pair {f, g} is not a friendly-pair.

0600
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INTRODUCT I ON

The Zeckendorf Theorem states that every positive integer can be repre-
sented as a sum of distinct Fibonacci numbers and that this representation is
unique, provided no two consecutive Fibonacci numbers appear in any sum.

In [2] the Zeckendorf Theorem is extended to a class of sequences obtained
from the generalized Fibonacci polynomials; in particular, an analogous theorem
holds for the generalized Fibonacci sequences. In Section 1, a collection of
sequences called the Hoggatt sequences is introduced, and it is shown that
these sequences also enjoy a "Zeckendorf Theorem’; in fact, the Hoggatt se-
quences share many of the representation and ordering properties of the gener-
alized Fibonacci sequences discussed in [2] and [3].

1. HOGGATT SEQUENCES AND ZECKENDORF REPRESENTATIONS

For each fixed integer » with r 2 2, the generalized Fibonacci polynomials
yield a generalized Fibonacci sequence [2] which will be denoted {R,};.;. The
generalized Fibonaccei sequence associated with the integer r can be defined as
follows [31]:

R, =15
R; = 2972 for § = 2, 3, «v.s P}
Reyp = E%+r—1 R, t e + Ry for all positive integers k.

Note that with r = 2, 3, 4, and 5 we obtain, respectively, the Fibonacci num-
bers {F,}, the Tribonacci numbers {7T,}, the Quadranacci numbers {g,}, and the
Pentanacci numbers {P,}.

The Hoggatt sequence of degree v, where r is once again a fixed integer
greater than 1, will be denoted {R,} and can be obtained by taking differences
of adjacent generalized Fibonacci numbers; more precisely, &, = R, ., - B, for
all positive integers n. The defining properties of the sequences {R,} and
{®, } give rise to the following recursive description of the Hoggatt sequence
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of degree r:

®; = 2971 for Jd =1y 2y voauy v = 1;

Rp=2"""1 - 1=@ +@, + -+ +@

1 r-17?

Rpyrp=®pypn.y ¥R, + o +®&, for all positive integers k.

Note that the second-degree Hoggatt sequence coincides with the Fibonacci se-
quence; moreover, for r > 2, the sequences {R,} and {®,} differ in their ini-
tial (and subsequent) entries but share a common recursion relation.

Identities similar (but not identical) to those developed for the general-
ized Fibonacci sequences in [3] can be obtained for the Hoggatt sequences.

For » = 2 the Hoggatt sequence is the Fibonacci sequence {Fn}, and we have
the two identities

F, +F, + «++ +F, =T

2n 2n+1

and
F - 1.

Pyt Fot ooe v F, 0 =F 00

Let the third-degree Hoggatt sequence be denoted {3,}. Three identities
arise in this case:

(3, +3) + @ +a) + 0 (5, ., +3,)=3,,, "L
I+ By 3) + (G + 3) e (G, R 5y, 00) ST, -
3, + (3, + 3 + (3, +3) + e+ (3, I ) ST, T L

In general, we have the following lemma.
Lemma 1.7: For each integer r greater than 1, there arise » identities involv-
ing groupings of (r- 1) consecutive terms of the Hoggatt sequence of degree r.
@, + Ry + "+ ®p) + Ry + Rpyg + o0 + Ry ) + oo

F (Rpysr P Rpuoygs T 0t T Ryy) =Ry — L

R, + @Ry +®, + 20+ R, )+ Ry, R e R, )
+ (mr(n—1)+3 T Rp-nen T orn TR ) SRy, — 1

Ry +®R, + @, + R+ o AR, ) (@, FR g e FR, )
T @rnonyey TRe-n4s 0 T Qi) =®ppyy — L

(Hl + @&, + @Ry t+ o +R,_, T <(Hr +®R,,, oo +(R2r=—2) + e
+ <(Rz'n +mrn+l T +(Ry-n+r*--2) = (Rlﬂn+r—l 1;

Ry + Ry + Ry + o F Ry (R TRy, o Ry,

F Rppgr TRy + oo F Ry 1) =Ry - L
Proof: For a fixed r, each of the identities can be verified by adding 1 to

the expression on the left and applying the appropriate recursion relation.
In the first equation, note that

L+®, +®, + " +®, = @R, -

When the term ®,,; is added to the next (r~ 1) consecutive terms the result is
®,,.,1» which can be added to the next (r- 1) consecutive terms; this process

can be repeated until addition yields Rypye
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h

In general for the 7'M equation, where 2 < ¢ < r - 1, note that

L@ +®, + oo +®R;_, =1+ 1+2+ 0042072 =201 =@

-1 7
Since the next parenthetic expression is

Ripr T ®Riyp + o0 +®Rpyigs
the addition process described for the first equation can now be applied.

The final identity follows by recalling that 1 + R, +®; + =00 +®R,_, =@
and applying the addition process.

r

In [1] a proof of a Zeckendorf Theorem for the generalized Fibonacci poly-
nomials is given; a consequence of this theorem is the existence and uniqueness
of the Zeckendorf representation for positive integers in terms of the gen-
eralized Fibonaceci numbers. A generalized Zeckendorf Theorem also holds for
the Hoggatt numbers of degree r. That is, for a given r, every positive inte-
ger can be represented as the sum of distinct terms of the sequence {®,} pro-
vided no »r consecutive terms of the sequence are used in the representation;
however, since the sum of the first (r- 1) terms of the sequence is ®,,in order
to ensure uniqueness of the representation, we must also require that no repre-
sentation use the first (- 1) consecutive terms of {®,}.

Theorem 1.2: For each fixed integer r 2 2, every positive integer N has a
unique representation in terms of {®,} of the form

N=N® +DV,® + -+ +N;®;, where V; € {0, 1} for j =1, 2, ..., 12,

NINZ e ecess @ Nr—l = O’
and

MWy =m0 o

sr-1 = 0 for all positive integers k;

i.e., every integer has a unique Zeckendorf representation in terms of {®,}.

Proof: Note that for r = 2, the Hoggatt sequence in question is the Fibonacci
sequence and the Zeckendorf Theorem holds.

The nature of the inductive proof of the theorem can best be seen by con-
sidering a particular small value of r. We concentrate our efforts on the case
in which » = 3. Suppose for some n every positive integer ¥ < 3, ,, - 1 has a
unique Zeckendorf representation; it suffices to prove that every positive in-

teger N < 35, ., - 1 has a unique Zeckendorf representation.

It follows from Lemma 1.1 that
Jgpso — L =3, + (35 +3,) + (g +3,) + - + (35, + Jap41)s

and this equation must give the unique Zeckendorf representation for 3, , - 1.
Next, we note that the representation for 3j,,,,- 1 implies that the largest
integer which can be represented without using J;,,, or any succeeding term of
{3.} is 3,,,, - 1; therefore, the term 3, ,, is itself the unique Zeckendorf
representation for Jgto°

Since J,,,, - 1< 3,,,, - 1, the integer 3, ., - 1 has a unique Zeckendorf
representation. Moreover, this unique representation is given by the following
identity from Lemma 1.1:

Igpe1 = L = (3, +35) + (35 +3) + ¢o0 + (33,., +3,,).
An immediate consequence of the preceding observations is that

Sp42 T Jgp41 ~ 1
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is uniquely representable by
J3p42 + (T2 + J3) + (Fs + Tg) + o0 4+ (Tg,1 + J3,).

It also follows that, for any positive integer M less than 3,,,,, there is a
unique Zeckendorf representation for Jj,., + M consisting of adding 3Jj,4, to
the unique Zeckendorf representation for M.

Finally, we apply the only remaining third-degree identity in Lemma 1.1.
Since 34, - 1 < 33,4, - 1, the integer 3,;, - 1 has a unique Zeckendorf repre-
sentation, and this representation is given by the identity

I3 = 1 =3, + (3y + 35) + (37 + 3g) + +++ + (Fgy-2 + Tgy-1)-
It follows immediately that
Iap+2 T Jagpe1 + J3p — 1
has the unique Zeckendorf representation
ez T Tgppr F [0, + (3, +3) + (3, +35) + o= + (3, _, + 35, )],

It is also apparent that 3,,,, + M has a unique Zeckendorf representation for
every positive integer M less than Iagpe1r T Iy

J

Noting that

S3p420 F Tgpp1 T 95, ~ 1 =35, -1

concludes the proof of the theorem in the case r = 3.

The only major difference between the proof for » = 3 and the proof for an
arbitrary value of » is that in the general case all r identities appearing in
Lemma 1.1 must be used.

2. THE HOGGATT SEQUENCE OF DEGREE 3

If » = 3, the associated Hoggatt sequence {J,} is defined by taking

g =1, 3, =2, 3

1 ) =3, +3,=1+2=3

3
and

J; =13

: +3,

i for 7 2 4;

i-1 *t 33

the first seven terms of the resulting sequence are:
3, 3, 5, 35 35 I
2 3 6 11 20 37

By Theorem 1.2, every positive integer has a unique Zeckendorf representation
in terms of the third-degree Hoggatt numbers. In the next theorem, we prove
that the terms used in the Zeckendorf representation of integers give informa-
tion about the natural ordering of the integers being represented; in particu-
lar, we investigate lexicographic orderings which were defined and examined in
[3] and [5]. We now define this kind of ordering as in [3].

Let the positive integers be represented in terms of a strictly increasing
sequence of integers, {4,}, so that for integers M and N,

k K
M=3 MA;, and N = )} NA
=1

where the coefficients M; and N; lie in the set {0, 1, 2, ..., g} for some fixed
integer g; moreover, suppose m is an integer such that ¥; = N, for all © > m.
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If, for every pair of integers M and N, M,, > N, implies M > N, then the repre-
sentation is a lexicographic ordering.

In [3], identities analogous to those in Lemma 1.1 are used to show that
the Zeckendorf representation of the positive integers in terms of the Tribo-
nacci numbers is a lexicographic ordering; a similar proof is used in the fol-
lowing theorem.

Theorem 2.1: The Zeckendorf representation of the positive integers in terms
of the third-degree Hoggatt sequence {J,} is a lexicographic ordering.

Proof: Let M and N be two positive integers expressed in Zeckendorf form in
terms of the third-degree Hoggatt numbers; then, for some positive integer ¢,

t t
M = 2 M'L'Ji and N = E N’LJ’L"
=1 =1

where M;, N; € {0, 1}, MM, = N,N, = 0 and, for all %,
M.M. .M. =N.N., ,N. = 0.

1771+ 170+ 2 171+ 1%+ 2

Let m be a positive integer such that M; = N; for all Z > m, and suppose that
My > Np. Then M, = 1 and N, = 0. 1In order to prove that ¥ > N, we consider
the following truncated portions of M and N:

M* = M3, + M3, + -0 + M 3. +3, 2 3,
and

N*

NlJl +]\72£I2 + e +Nm—13m—l'

It is clear from the nature of the Zeckendorf representation and the recursion
relation for members of {3, } that in order to maximize N* we must have N,_; =
N,_.,=1. Let k be a positive integer so that m = 3k + j, where jJ =1, 2, or
3. The three pertinent identities in Lemma 1.1 imply that, for any of the three
possible values of j, the maximal possible value of N* is 3, — 1. Consequent-
ly, V% < 3, < M*, and it follows that N < M.

In [3], it was demonstrated that the positive integers can be represented
in terms of the Tribonacci numbers by means of a "second canonical form," and
it was proved that this new representation also gives rise to a lexicographic
ordering. Analogous results hold for the sequence {3, }. We begin by develop-
ing the second canonical form for a representation.

For each positive integer N, let J; be the least term of {J,} wused in the
Zeckendorf representation for N; of course, the subscript k depends on the par-
ticular integer N being examined. The uniqueness of the Zeckendorf represen-
tation implies it is possible to partition the positive integers into two sets
as follows:

S, is the set of all positive integers N such that
k =0 (mod 3) or Kk = 1 (mod 3),

and
S, is the set of all positive integers N such that
k = 2 (mod 3).

Suppose the elements of the sets S5, and S, are written in natural order, and
let S;,, denote the nth element in the set S; for ¢=1 or 2. We list the first
ten entries in each set.
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Table 1
n S1n So.n
1 1=Jl 2=32
2 3 = 3, 5=1735 +73,
3 b =13, + 3, 8 =13, +3,
4 6 =3, 11 = 34
5 7 =13, +3; 13 = 35 + 3,
6 9 =13, + 3, 16 = 35 + 35 + 3,
7 10 = 3, + 3, + 3, 19 =3, +3, +3
8 12 = 35, + 3, 22 =3, + 3,
9 14 = 3, + 3, 25 =3, +3, +3,
10 15 =3, + 3, + 3, 28 =3, +3, + 3,

Theorem 2.2: The sets S; and S, can be characterized as follows:

S, is the set of all positive integers N which can be
represented in the form 3, + N,3, + N335 + ..., where
each N; € {0, 1} and NN, N, ., =0 if < > 1;
S5, is the set of all positive integers N which can be
represented in the form 3, + N33, + N, 3, + -+, where
each V; € {0, 1} and NN, .IV =0 if 7 > 2.

T+ 177+2

Moreover, every positive integer has a unique representation in one of the
above two forms.

Proof: Let N be a positive integer and let J; be the least member of {3,} used
in the Zeckendorf representation of N in terms of {3,}. There are three cases
to consider depending on whether k is congruent to 0, 1, or 2 modulo 3.

If X = 0 (mod 3), then ¥ is an element of'S1 and, for some nonnegative in-—
teger m, k = 3m+ 3. Using the identities in Lemma 1.1 and the Zeckendorf rep-
resentation for /N, the term J; can be replaced by

(3, +3,) + (3, +3) + - + (5 + 3

3m+1 3m+2);

moreover, this is the only admissible representation for 3J;. These observa-
tions and the uniqueness of the Zeckendorf representation imply the uniqueness
of this new representation for V.

= 1 (mod 3), again N lies in S, and, for some nonnegative integer m,
k =3m + 1. 1In this case, J, must be replaced by

I+ (3, +3) + (35 +a) + o0+ (3, + 35D

This illustrates the reason for permitting N,N,N, = 1. Again, this new
representation for N is the unique allowable representation.

Finally, if kX = 2 (mod 3), then N lies in S, and, for some nonnegative in-
teger m, kK = 3m + 2. From Lemma 1.1, we have

e =1+ 3+ (33 +3,) + (3g +3,) + = + (I3, + Igp41)
I =3, + (3, +3,) + (3 +3,) + =o- + (T, + 33,.1)-
In this case, we see that N,N,V, = 1 may be necessary in representing some in-—

tegers. The uniqueness of this new representation for N follows as in the
previous cases.
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The preceding theorem suggests a definition for a second canonical repre-
sentation with respect to {3,}: a positive integer N is being represented in
second canonical form in terms of the sequence {3,} if, for some m,

N=N3, +N,3, + N3, + - + 1,3,
where (1) each V; € {0, 13},

(2) at least one of N, and N, is nonzero,

(3) if N, =1, then N;N;,,N;,, = 0 for all 7 > 1,
and (4) if N, = 1, then N;N; N;,, = 0 for all Z > 2.

The following corollary is an immediate consequence of Theorem 2.2.

Corollary 2.3: Every positive integer can be uniquely represented in second
canonical form in terms of the Hoggatt sequence of degree 3.

In [3], it is noted that the representation of the positive integers in
second canonical form with respect to the Tribonacci numbers is a lexocigraphic
ordering. Although the second canonical form of a representation with respect
to {J»} is not defined in the same way as the second canonical form with re-
spect to {T»}, the two forms are similar and an analogous theorem holds for the
third-degree Hoggatt numbers.

Theorem 2.4: The second canonical representation of the positive integers in
terms of the sequence {3,} is a lexicographic ordering.

Proof: We begin as in the proof of Theorem 2.1.

Let M and N be two positive integers expressed in second canonical form in
terms of {J,}. There is some positive integer ¢ such that, in second canoni-
cal form,

t
M= 3% M3, ad N= ) N;3,.
=1

Let m be a positive integer such that M; = N; for all ¢ > m; further, suppose

M, =1 and N,, = 0. Consider the following truncations of M and N:
M =M3 +M3, + -0 +M 3+ T

and
N® =N.3, +N,3, 4+ +N, _,5, ;-

Since M has been represented in second canonical form, either M; or ¥, is non-
zero; therefore, M* > J, +3, > 3,. Again, in order or maximize N*, we must
have N, _, = N,_, = 1. Let K be a positive integer such that m=3k+j for some
Jg =1, 2, or 3. Conisder the three appropriate identities in Lemma 1.1, and
the three possible values of j.

If m = 3k + 1, then the maximum possible value of N* is

Sgpsr ~ L H 30 = 3541 =3n-
If m = 3k + 2, then the maximum value for N* is
Sgpo — 1 =9 — 1.

Finally, if m = 3k + 3, then the maximum possible N* is

Igppy — L+ 33 = 35,5 =3p-

In any case, N* does not exceed J, in value, and we have N* < 3, < M*; conse-
quently, N < M.
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Before proceeding to the generalizations of the preceding theorems in this
section to degree r, we note a special property of the third-degree Hoggatt
sequence.

Let S;, 5,5 ..., Sn be nonempty sequences of positive integers such that
every positive integer appears exactly once in exactly one of the sequences;
in [1], such sequences are called complementary or a complementary system. In
[3], properties of {T,} and a theorem of Lamdek and Moser [4] are used to dem-
onstrate the existence of a pair of complementary sequences {X,} and {Y,} in
natural order with the property that {X, + Y,} and {Y, - X,} is another pair
of complementary sequences of positive integers in natural order. In the next
theorem, we prove the existence and uniqueness of {X,} and {Y,}.

Theorem 2.5: There exist exactly two sequences, {X,}; ., and {Y,};.,, of posi-
tive integers in natural order such that {X,} and {Y,} are complementary se-
quences and the sequences {X, + Y,} and {Y, - X,} are also complementary se—
quences in natural order.

Proof: We develop four sequences {X,}, {¥,}, {P,}, and {Q,} as follows: let

Xi =1, P1 =1, Yl =X, +P, =2, and Ql = X1 + Yl = 3; in general, to find
X, P,, Y,, and @,, let
(1) X, = the first positive integer not yet appearing as an X; or a Y,
(2) P, = the first positive integer not yet appearing as a P, or a Qi’
3 Y, =X, +P,, and
4) q,=Xx,+7,.
The following array arises.
Table 2
n XVZ P’Vl Y?l Q}’Z
1 1 1 2 3
2 3 2 5 8
3 4 4 8 12
4 6 5 11 17
5 7 6 13 20
6 9 7 16 25
7 10 9 19 29
8 12 10 22 34
9 14 11 25 39
10 15 13 28 43

Note that (1)~(4) guarantee that {X,} and {Y,} are complementary sequences in
natural order, as are {P,} and {@,}. From (3) and (4) it follows that

{Pn} = {.Yn - Xn} and {Qn} = {Xn + yn}’

as desired. Hence, the exixtence of the sequences {X,} and {Y,} has been es-
tablished.

To verify the uniqueness of the sequences {X,} and {Y,}, we note that the
method of generating the four sequences yields exactly one pair of sequences
satisfying the conditions in the statement of the theorem; therefore, any other
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pair of sequences satisfying these conditions must be obtained by some method
other than that used to generate {X,} and {Y,}.

Suppose there is another pair of sequences, denoted {Yn} and {Yn}, satis-
fying the conditions of the theorem. Let {§,} and {P,} represent, respective=
ly, the sum and difference sequences {X, + Y,} and {Y, - X,}; it follows that
properties (3) and (4) hold for the four new sequences.  Suppose property (1)
does not hold. Then, for some m, X, is not the first positive integer not yet
appearing as an Xi or a Yi; since {YH} and {Y,} are complementary and in natu-
ral order, X, > Y,. Consequently, ¥, - X, < 0 and 7, is not a positive inte-
ger, a contradiction. Therefore, property (1) is necessary to the solution of
the problem; similarly, property (2) must hold. Hence, the method used to
generate {X,} and {Y,} provides the only pair of sequences satisfying the con-
ditions of the theorem.

Consider the sets S, and S5, defined earlier in this section. Recall that
S, and S, are written in natural order, and S;,, denotes the nth element of S,
for £ = 1 or 2. We have seen that {5, ,} and {5, ,} are complementary sequences
of positive integers in natural order. It has also been shown in [3] that

{Slsn + 52,1’1} and {3237’1 - Sl,n}

are complementary sequences in natural order. It follows that {Slﬂﬁ and {Sz,n}
are the sequences {X,} and {Y,} of Theorem 2.5. Therefore, the sets S, and 3,
can be generated by the method described in the proof of Theorem 2.5; no appeal
to representations in terms of {J,} is necessary.

3. THE HOGGATT SEQUENCE OF DEGREE r

In this section, we note that the theorems of Section 2 involving lexico-
graphic ordering have analogs for the rth-degree Hoggatt sequence. Since the
theorems of this section can be proved by using the same techniques as in Sec-
tion 2, only sketches of proofs are given. Recall that from Section 1 we have
r identities involving the sequence {®,} and a unique Zeckendorf representa-
tion for every positive integer in terms of {®,}.

Theorem 3.1: The Zeckendorf representation of the positive integers in terms
of the rth-degree Hoggatt sequence {®,} is a lexicographic ordering.

Proof: Let M and N be two positive integers expressed in Zeckendorf form:
¢
and N =73 N, ®,
=1

where M., N; € {0, 1},

MM, > e M =N, s e e, =0,
and MM, ¢ ccc o My, =N;N;y ¢ ccc o Ny, =0 for all <.
Let m be a positive integer such that M; = N; for all < > m, letM, =1, and

let N, = 0. Consider the truncations M* and N* as in the proof of Theorem 2.1,
and note that M* 2 ®,. In order to maximize N*, we must let

N =N = «e. =J = 1.

m-1 m=2 m-(r-1)
From the r identities in Lemma 1.1, it follows that N* <®, < M*, and conse-
quently, N < M.
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We next develop the second canonical form for a representation in terms of

{®n}.

For a particular positive integer N, let ®; be the smallest term of {®,}
used in the Zeckendorf representation for N. Using the uniqueness of the Zeck-
endorf representation, the positive integers can be partitioned into (r - 1)
sets as follows:

S, is the set of all positive integers N such that
k =0 (mod ») or k = 1 (mod r),

and for integers 7 such that 2 S Z <» -1,

S; is the set of all positive integers N such that

k = 71 (mod r).
Let the elements of the sets Sl, Sz’ cees S;_l be written in natural order.
Theorem 3.2: The sets Sl, Sz’ e Sr~1 can be characterized as follows: for
Jg=1,2, «c., » -1,

S; is the set of all positive integers which can be represented in
the form ¥ = ®; + Nj+1®j+1 + Nj+2®Rj4+2 + -+, where each N; € {0, 1}
and N; N, e vre o Npypoy =0 if 22> 4.

181 +1

Moreover, every positive integer has a unique representation in terms of {®,}
in one of these (r» - 1) forms.

Proof: Let N be a positive integer and let ®; be the least term of {®,} used
in the Zeckendorf representation of N. There are » cases to consider depending
on whether k is congruent to 0, 1, 2, ..., or (r - 1) modulo r. In each of
these cases, the uniqueness of Zeckendorf representations and one of the iden-
tities in Lemma 1.1 yield the desired representation for N; moreover, the new
representation is unique.

A positive integer N is represented in second canonical form in terms of
the sequence {®,} if, for some m,

N=NG& +N,®R, + «+ + Np@Rp»
where

(1) each v; € {0, 1},
(2) at least one of the coefficients N;, Ny, ..., Npr_; is nonzero, and
(3) if Nj = 1, then N;N; q © =+« * N;ypy =0 for all ¢ > 4.

We immediately have the following corollary to Theorem 3.2.
Corollary 3.3: Every positive integer can be uniquely represented in second
canonical form in terms of the sequence {®,}.

Finally, we have the analog to Theorem 2.4.

Theorem 3.4: The second canonical representation of the positive integers in
terms of the sequence {®,} is a lexicographic ordering.

Proof: With notation as in the proof of Theorem 3.1, but with the representa-
tion in second canonical form, consider the truncations of M and N:

M = MR, + MR, + -+ + M _®& + @,

m-1
and

N* = N®, + N,®, + o+ + N, _®,_,.
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of the coefficients My, My, «.., M,_; is nonzero; therefore,
M2 R, + Ry > Ry
In order to maximize N*, we let

Nm—l = ]Vm_2 = e e = Nm—(r’—l) = ]
note that the identities in Lemma 1.1 imply that the maximum possible value

N* is ®,; therefore, V* < &, < M* and N < M.
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FUNCTIONS OF NON-UNITARY DIVISORS
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1. INTRODUCTION

A divisor d of n is a wunitary divisor if ged (d, n/d) = l; in such a case,
we write dlln. There is a considerable body of results on functions of unitary
divisors (see [2]-[7]). Let T*(n) and 0*(n) denote, respectively, the number
and sum of the unitary divisors of . ’

We say that a divisor d of n is a non-unitary divisor if (d, n/d) > 1. If
d is a non-unitary divisor of n, we write d|'xn. In this paper, we examine some
functions of non-unitary divisors.

We will find it convenient to write
n=mnent,

where 7 is the largest squarefree unitary divisor of n. We call n the square-
free part of n and n' the powerful part of n. Then, if p is prime, pl# implies
pln, while plnt implies p?ln. Naturally, either 7 or n? can be 1 if required
(if n is powerful or squarefree, respectively).

2. THE SUM OF NON-UNITARY DIVISORS FUNCTION

Let o#(n) be the sum of the non-unitary divisors of n:
otm) = ¥ d.
dltn

Now, every divisor is either unitary or non-unitary. Because n and nt are
relatively prime and the 0 and 0* functions are multiplicative, we have

ot(n) = o) - o*(n) = c@omt) - c*M)o*(nt).
But 0(n) = o*(7), so
ot(n) = o {om*) - o*(nh)}.

Therefore,

petl _ 1
otn) = { IT @ +.1)} . I _— - I (pe + DHV.
plin z?T p p?T

Note that o#(n) = 0 if and only if »n is squarefree, and that of is not multi-
plicative.

Recall that an integer »n is perfect [unitary perfect] if it equals the sum
of its proper divisors [unitary divisors]. This is usually stated as o(n) =2n
[o*(n) = 2n] in order to be dealing with multiplicative functions. But all non-
unitary divisors are proper divisors, so the analogous definition here is that
n is non-unitary perfect if ot(n) = n.
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Theorem 1: If 2° - 1 is prime, so that 2p_1(2p - 1) is an even perfecﬁ number,
then 2°*1(2P - 1) is non-unitary perfect.
Proof: Suppose n = 2°*1(2P - 1), where p is prime. Then
of (n) = o(2P - D){o2P*h) - o*(2"* 1)}
2P[(2P*% - 1) - (2P*% + 1)]
2P — 2y = 2P (2P - 1) = 4.

it

A computer search written under our direction by Abdul-Nasser El-Kassar
found no other non-unitary perfect numbers less than one million. Accordingly,
we venture the following:

Conjecture 1: An integer is non-unitary perfect if and only if it is 4 times an
even perfect number.

If n# is known or assumed, it is relatively easy to search for n to see if
7n- is non-unitary perfect. Many cases are eliminated because of having o#(nt) >
n#. In most other cases, the search fails because 7 would have to contain a
repeated factor. For example, if n# = 2252, then no 7 will work, for

o#(2%5%) = 7+31 - 5+26 =87 = 3-29,
so 3+ 291n; but 225%291n implies 3%ln, so 3% is impossible.

The second author generated by computer all powerful numbers not exceeding
2'%, Examination of the various cases verified that there is no non-unitary
perfect number n with n# < 2'° except when n satisfies Theorem 1 [i.e., n =
2P*1 (2P - 1), where 2P - 1 is primel]. :

More generally, we say that n is k-fold non-unitary perfect if ot(n) = kn,
where k¥ > 1 is an integer. We examined all n# < 2?° and all »n < 10° and found
the k-fold non-unitary perfect numbers (k> 1) listed in Table 1. Based on the
profusion of examples and the relative ease of finding them, we hazard the fol-
lowing (admittedly shaky) guess:

Conjecture 2: There are infinitely many k-fold non-unitary perfect numbers.

Table 1. k-fold Non-Unitary Perfect Numbers (k > 1)

k n

2 2%8325.7 = 2520

2 2%3%5. 29 = 31 320

2 2%3%5.359 = 1 163 160

2 273%71 = 2 208 384

2 2%327 < 13+ 233 = 3 053 232

2 273331+ 61 = 6 535 296

2 25327« 41+ 163 = 13 472 928

2 25523+ 19+ 37+ 73 = 123 165 600

2 273%47 - 751 = 365 959 296

2 2%3%11 - 131 « 2357 = 4 401 782 352

2 293¢ 5.7¢19+37.73 =5 517 818 880
3 273252 .7+ 1371 = 186 076 800

3 283547« 11+53+769 = 325 377 803 520
3 2632725 .13« 19« 113+ 677 = 2 666 567 816 640
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We say that n is won-unitary subperfect if o?(n) is a proper divisor of n.
Because 0#(18) = 9 and o#(p?) = p if p is prime, we have the following:

Theorem 2: If n = 18 or n = pz, where p is prime, then » is non-unitary sub-
perfect.

An examination of all n# < 2% and all » < 10° found no other non-unitary
subperfect numbers, so we are willing to risk the following:

Conjecture 3: An integer » is non-unitary subperfect if and only if »n = 18 or
n = p?, where p is prime.

It is possible to define non—unitary harmonic numbers by requiring that the
harmonic mean of the non-unitary divisors be integral. If T#(n) = T(n) - T*(n)
counts the number of non-unitary. divisors, the requirement is that nttm)y/otn)
be integral. We found several dozen examples less  than 10%, including all k-
fold non-unitary perfect numbers, as well as numbers of the forms

2+3p%, p?(2p - 1), 2+ 3p2(2p - 1), 2P%13(2F - 1), 2P713. 5027 - 1),
and 2P%1(2p - 1)(2F - 1),

where p, 2p - 1, and 2P - 1 are distinct primes. Many other examples seemed to
fit no general pattern.

Recall that integers » and m are amicable [unitary amicable] if each is
the sum of the proper divisors [unitary divisors] of the other. Similarly, we
say that n and m are non-unitary amicable if

o*(m) =m and of(m) = n.

Theorem 3: If 2P - 1 and 27 - 1 are prime, then 2°%%(29 - 1) and 2771 (27 - 1)
are non-unitary amicable.

Proof: Trivial verification.

Thus, there are at least as many non-unitary amicable pairs as there are
pairs of Mersenne primes. Our computer search for n < m and n € 10% revealed
only four non-unitary amicable pairs that are not characterized by Theorem 3:

n = 252 = 22377 m = 328 = 2341

n = 3240 = 2%3"%5 m = 6462 = 2+ 37359

n = 11616 = 2°3« 11?2 m= 17412 = 22« 3« 1451

n = 11808 = 2°3%41 m = 20538 = 2¢ 3%« 7163

3. THE NON-UNITARY ANALOG OF EULER'S FUNCTION

Euler's function

v(n) = n [l (l - é) = I ¢ -p°™hH

pin pelin
is usually defined as the number of positive integers not exceeding » that are
relatively prime to »n. The unitary analog is
1

e*(m) =n I (1 -= )= JI (- 1).
an< p ) peln P

1987] 335



FUNCTIONS OF NON-UNITARY DIVISORS

Our first task here is to give equivalent alternative definitions for ¢ and
¢* which will suggest a non-unitary analog. In particular, we may define ¢(n)
as the number of positive integers not exceeding »n that are not divisible by
any of the divisors d > 1 of n. Similarly, ¢*(n) may be defined as the number
of positive integers not exceeding »n that are not divisible by any of the uni-
tary divisors d > 1 of n.

Recalling that 1 is never a non-unitary divisor of n, it is natural in
light of the alternative definitions of ¢ and ¢* to define ¢#(n) as the number
of positive integers not exceeding » that are not divisible by any of the non-
unitary divisors of n. By imitating the usual proofs for ¢ and ¢*, it is easy
to show that ¢# is multiplicative, and that

ot(n) = ne(nt). (1)
The following result neatly connects divisors, unitary divisors, and non-

unitary divisors in a, perhaps, unexpected way:

Theorem L4: Y. o#(d) = o*(n).
dln

Proof: The Dirichlet convolution preserves multiplicativity, and ¢# is multi-
plicative, so we need only check the assertion for prime powers. In light of
(1), doing so is easy, because the sum telescopes:

2 i)
dlpe

ot(1) + ¢t(p) + @t(P®) + -+ + ¢#(°)
L+p+ @2 -p) + -+ @°-p°™")
=1+ pe =0c*@p®).

It is well known that

2 ed =n and Y ¢xd) =mn,
din dlin

and one might anticipate a similar result involving ¢#. However, the situation
is a bit complicated. We write

Yoetd) =¥ efd) - % eHd). (2)
ditn din dlin

Now, both convolutions on the right side of (2) preserve multiplicativity and,
as a result, it is possible to obtain the following:

Theorem 5: 3 o#(d) = O(ﬁ)«{o*(n#) - IO @ -p° '+ 1)}
ditn pelfn”
Theorem 5 was first obtained by Scott Beslin in his Master's thesis [1],
written under the direction of the first author of this paper.

Two questions arise in connection with Theorem 5. First, is it possible to
find a subset S(n) of the divisors of n for which

T ofd) = n
deS(n)
It is indeed possible to do so. Let w(n) be the number of distinct primes that
divide n. We say that d is an w~-divisor of n if dln and w(d) = w(n), i.e., if
every prime that divides n also divides d. Let Q(n) denote the set of all w-
divisors of n.
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Theorem 6: Y. o#d) = =.
de Q(n)
Proof: Trivial if w(n) = 0. But if w(n) = 1, the sum is that in the proof of

Thgorem 4 except that the term "¢¥*1) = 1" is missing. Easy induction on w(x),
using the multiplicativity of ¢#, completes the proof.

The other question that arises from Theorem 5 is whether it is possible to
have

%;7 eMd)y =n, n> 1. (3)

We know of ten solutions to (3), and they are given in Table 2. By Theorem 5,
if n satisfies (3), then

o(m)/n n#/{o*<n#) - Il (& - pet + 1)}. (%)

pelin?

This observation makes it easy to search for n if »n# is known. The first eight
numbers in Table 2 are the only solutions to (3) with 1 < »n < 2%°,

Table 2. Solutions to (3), Ordered by nf

n nt n

5 220 27232
3 960 2332
8 447 040 2637
6 773 440 2732
18 685 336 320 2832
341 863 562 880 2733
1 873 080 2332117
1 018 887 932 160 2834
20 993 596 382 889 043 200 283252
357 174 165 248 21332

- 29

- 11

°» 7+ 419

° 7167

7+ 139 - 1667

e 79290 41+ 2377

= 43

719+ 37.1997

¢« 19« 2393 - 23929 « 47857
«11-13+47-103

~N Ut bt e
.

It seems unlikely that one could completely characterize the solutions to
(3). However, we do know the following:

Theorem 7: If n > 1 satisties (3), then n? is divisible by at least two dis-
tinct primes.

Proof: We must have n? > 1 because 0(n) 2 n with equality only if » = 1. Sup-
pose n# = p?, where p is prime and ¢ 2 2. Then, from (4), we have c(n)/n = p.
1f p = 2, then n is an odd squarefree perfect number, which is impossible. Now,
7 is squarefree, and any odd prime that divides » contributes at least one
factor 2 to o(n), and since p # 2, we have 21%. Then n = 2q, where g is prime,
and the requirement o(n)/% = p forces ¢ = 3/(2p - 3), which is impossible if
p > 2.

We strongly suspect the following is true:
Conjecture 4: If »n satisfies (3), then n# is even.
If the right side of (4) does not reduce, then Conjecture 4 is true: If we

suppose that n# is odd, then 4lo*(n#), as n# has at least two distinct prime
divisors by Theorem 7. Then, it is easy to see that the denominator of the
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right side of (4) is of the form 4k - 1, and if the right side of (4) does not
reduce, then 7 is of the form 4k - 1, whence 4lo(#), making (4) impossible.
Thus, any counterexample to Conjecture 4 requires that the fraction on the
right side of (4) reduce.
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1. INTRODUCTION

In 1982, M. Boscarol [l] gave a demonstration of the following property of
binomial coefficients:

é:oz—(n”)(n -Z @) +J§02—(m+m—j)(” +Z - j) = 2 (1

for each pair of integers n, m 2 0. For instance, let m = 4 and n = 3, then
we have

R A R R (PR

T i=0

=0

273 4+ 4.2 4 1027° +20227% 435277 +35277 4 15.27°
+5.27% +27% = 2.

The purpose of this note is to present a generalization of (1).

2. MAIN RESULTS

Theorem*1: For each pair of integers m, m 2 0 and »r > 0, the following iden-
tity holds:
m ; m-1 :
m-ifn + 1\ _ (m+m+1 _ fn+m-7 )
DR e e e R R s G L @

Proof: TFor m = 0, we have

ny\ _ _(n+ 1

<0>‘1"< o)
from the definition. We now show that the formula for m + 1 follows from the
formula for m.

1 . m . :
m+ POW+D—i<” f ¢> _ (n +m + 1> +.y»§:yﬂ‘l(” f %)
P 7 m+ 1 =0 7

_ (n ; z T 1> + P{(m + Z + 1)

m-1
+ -1 x|
1=0

n+m-

wo+ 1 $>}, by assumption
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_ {(n +m + 1) + (n +m + 1)
- m+ 1 m
n+m+1 "l oseym+mo- i
+ @ - l){< m ) +i§;or ( n+ 1 >}

ST e 0B 1)

SCTGIY T ez Y ),

completing our proof.

Theorem 2: TFor each pair of integers n, m 2 0 and » > 0, define

then L(n, m; r) satisfies the following recursive form:

ILin+ 1, m+1l; r) =LMn,m+1; ») + L(n + 1, my; »)
and n
L(0, n; ) = L(n, 05 ») =Y rd + 1.
=0

Proof: By (3), we have

n
L0, n; ) =L(n, 0; ) = Y rd + 1.
§=0

Using a dummy variable, we obtain

i Lo ms =§Or,m_i<n ; ) +j=£0rn-j<m + j) N
LGy ms ) :éiorl(n +Z - ’L) +j>§OPJ(n +Z - j>
y
ince ;H:ﬁ(n . :Z_ Lo )+§O”(H + " I i ~ 9
SR B )
B ) e ) 20 ),
we have

L(n+ 1, my ) +L(n, m+ 1; r)

m . _ s +1 - 4
={E’Orl<n +Zii a) +:§ON<n +m; 1 J)}

m+1l -7 4 . -7
BT g1
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m-=1 . .

> (n +m+ 2 - ”2”- +m+ 2 -

- OP’L( n+ 1 1)+- 01’“7(” Z-i— 1 J) =L+ lym+ 1 ).
7= J =

In fact, the reverse of this theorem is also true by the generating func-
tion method.

Theorem 3: TFor each pair of integers #n, m 2 0 and r > O, we have
i (m+m o+ 1 2 i(m+m+ 1
L(n, my = - 1)* . - 1) . .
R N R N S (5)

Proof: By (2) and the dummy variable, we have

i"orm_i<n + z) <n +m+ 1> + oo - l)ii;:}”(” +m - z)

]

7 m n+ 1

T

(" s e - 1)3};:;r<*”'1>'j(” " ; *t9).

Repeating the above procedure, we obtain

ECE) s R v, ©

completing our proof.

Corollary 1: For each pair of integers zn, m 2 0, the following identity holds:
{:Zm-i<n+i)=§:<n+m+l) 7
=0 v =0 v

Proof: Taking r» = 2 in (6), we have
2 —in+ 7 ofn+m+ 1 & mo+m o+l . .
() - 1 J= X (" ) -
1= J=

Z 1o m- 1 J

Corollary 2: For each pair of integers n, m = 0, we have

LOu, ms 2) = 20*mHL, (8)
Proof: L(n, m; 2) =i£;02m"1(n ) +-j§%2j(” )

_ ;§02m~i(n Z i) +jé;)2n—j<m ; j)

) }go(n oy +jé;)<n e 3

u n+m+1) THEEL ot m o+ 1\ ntmetd
i§%< i * L) =

k=m+1

n+m

Dividing identity (8) by 2 , we obtain (1).
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3. EXAMPLES

Example 1: Take r = 3. We have the values of L(n, m; 3) as follows:

NG 0 1 2 3 4 5 6 7
0 2 5 14 41 122 365 1094 3281
1 5 10 24 65 187 552 1646 4927
2 14 24 48 113 300 852 2498 7425
3 41 65 113 226 526 1378 3876 11301
4 122 187 300 526 1052 2430 6306 17607
5 365 552 852 1378 2430 4860 11166 28773
6 1094 1646 2498 3876 6306 11166 22332 51105
7 3281 4927 7425 11301 17607 28773 51105 102210

Example 2: Take » = 4. We obtain the values of L(n, m; 4) as follows:

> 7 0 1 2 3 4 5 6 7
0 2 6 22 86 342 1366 5462 21846
1 6 12 34 120 462 1828 7290 29136
2 22 34 68 188 650 2478 9768 38904
3 86 120 188 376 1026 3504 13272 52176
4 342 462 650 1026 2052 5556 18828 71004
5 1366 1828 2478 3504 5556 11112 29940 100944
6 5462 7290 9768 13272 18828 29940 59880 160824
7 21846 29136 38904 52176 71004 100944 160824 321648

Example 3: Take r = 5. We have the values of L(n, m; 5) as follows:

PN 0 1 2 3 4 5 6 7
0 2 7 32 157 782 3907 19532 97657
1 7 14 46 203 985 4892 24424 122081
2 32 46 92 295 1280 6172 30596 152677
3 157 203 295 590 1870 8042 38638 191315
4 782 985 1280 1870 3740 11782 50420 241735
5 3907 4892 6172 8024 11782 23564 73984 315719
6 19532 24424 30596 38638 50420 73984 147968 463687
7 97657 122081 152677 191315 241735 315719 463687 927374
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Over a century ago, according to Dickson [1], H.J. S. Smith [3] showed that

(I, 1) .. (1, §) <. (1, n)

(7;: 1) s e (7:: j) e (7/5 72) = <0(l) (0(2) “ee (p(?l):

(77, 1) e (Vl: J) LIRS (7’19 n)

where (7, J) is the greatest common divisor of 7 and j, and ¢ is Euler's func-
tion. ©P. Mansion [2] proved a generalization of Smith's result: If

fm) = dZ g,
Im
and we write f(Z, J) for f(gcd(Z, J)), then

F(, 1) oo £(1, §) oo £(1, )

£, 1) JCHED FE, 1) | = g(l) g@2) ... g&).

fn, 2) «oo f(n, g) «-. fn, n)
Note that Mansion's result becomes Smith's when f(m) = m, because

m= 2 ¢(d).
dlm

In this paper, we present an extension of Mansion's result to a wide class of
arithmetic convolutions.

Suppose S(m) defines some set of divisors of m for each m. If dlm, we say
that d is an S-divisor of m if d€S(m). We will denote by (Z, j),; the largest
common S-divisor of < and j.

Now m might or might not be an element of S(m), as can be seen if we let
S(m) be the largest squarefree divisor of m. Also, the property

deS(2) nS(j) if and only if d€S((Z, J)g)

might or might not be true. It is true if S(m) consists of all the divisors of

*written while the author was Visiting Professor at the University of South-
western Louisiana, Lafayette, Louisiana.

1987] 343



ANALOGS OF SMITH'S DETERMINANT

m, but not if S(m) consists of all divisors d of m for which (d, m/d) > 1, for
then 6 is the largest common S-divisor of 12 and 24, and 2 is an S-divisor of
12 and 24, but not of 6.

We come now to the promised generalization:

Theorem: Let S(m) and (7, j)s be defined as above. If
(1) meS(@n) for each m,
(2) deS(Z)nS(j) if and only if d€S((Z, J)g), and
(3) fm = ¥ g@,

des(m)
then

SO Dg) wvn UL, P)g) -0 £, 7))

FUZs Dg) von U@ Gg) -o0 FUES m)g) | = g) - g(n).

s, Dg) oo Fl(ns §)g) -ov Fln, n)g)

Proof: Assume the hypotheses, and define

_f1  if besS(a),
Sta, b) = {O otherwjse.

Clearly, S(a, b) = 0 if b > a, and by (1) we have S(a, a) = 1 for each g. Now,
S(Z, d)S(j, d) is 0 unless d is an S-divisor of both 7 and j, in which case the
product is 1, and by (2) and (3) it is easy to see that

7@, 9g) = 8@, DS, Dgl) + 5@, 2)SF, 2)g(2)
+ e+ 502, n)S(F, n)g)
for each 7 and j. Then
[f((?’ J)S>] =A-B,
where

[S(1, 1) S(1, 2) «vv S(1y 2) «v. S(1, 1) ]
5(2, 1) 5(25 2) vun 5(2, ) «ov S(2, n)

S 1) 8o 2) ven SGo L) onr S 1)

| S(na 1) 8020 2) .n. SO0y ©) .e. S(ns )

1 0 oo 0 ... 0
S(2, 1) 1 N 0 ... 0

S(Z, 1) 82, 2) ... 1 ... 0

_S(n; 1) S(n; 2) ... S(n; Z) ... i
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and

ANALOGS OF SMITH'S DETERMINANT

S(1, Dg(1) §(2, Dg(1)
S(L, 2)g(2) 5(2, 2)g(2)

S(1, Hg@) 52, Hg )

|51, mgm) 52, m)gn)

8, Dg (D)
. 5y 2)g(2)

- S80S Dg@@)

. S, m)g)

.. Sn, 1)g(1) ]
. S(n, 2)g(2)

.. S(ns J)g )

. S(ns m)gn)_|

[g(1) 82, g) ... 8¢, Dg) ... S, 1)g(1)]

0 g(2) . 8@ 2)g(©2) ... S(, 2)g(2)

=l 0 0 g(i) . St D)
6 6 ee 6 . g(%) J

The theorem then follows from the observations

det A =1 and det B =g(1) g(2) ... g(n). B

In particular, if S(m) consists of all divisors of m, the theorem yields
Mansion's result. Another special case of some interest arises if we let S(m)
consist of the unitary divisors of m: We say that d is a unitary divisor of m
if ged (d, m/d) = 1. Let (Z, j)* be the largest common unitary divisor of <
and J. Also, let T*(m) and 0*(m) be the number and sum, respectively, of the
unitary divisors of m. Then g(d) = 1 and g(d) = d, respectively, yield

[T (G, H*)] =1 and |o*((@, H*)] = n!
REFERENCES

1. L. E. Dickson. History of the Theory of Numbers. New York: Chelsea, 1952,

Vol. I, pp. 122-124.

2. P. Mansion. Bull. Acad. R. Sc. de Belgique (2), 46 (1878): 892-899; cited
in [1].

3. H.J.S. Smith. Proc. London Math. Soc. 7 (1875-1876):208-212; Coll. Papers
2, 161; cited in [1].

®060¢

1987] 345



GENERALIZED STIRLING NUMBER PAIRS ASSOCIATED WITH
INVERSE RELATIONS
L. C. HSU
Texas A&M University, College Station, TX 77843

(Submitted December 1985)

1. INTRODUCTION

Stirling numbers and some of their generalizations have been investigated
Intensively during the past several decades. Useful references for various
results may be found in [1}, [2, ch. 5], [3], [6], [7], etc.

The main object of this note is to show that the concept of a generalized
Stirling number pair can be characterized by a pair of inverse relations. Our
basic idea is suggested by the well-known inverse relations as stated explicit-
ly in Riordan's classic book [7], namely '

14 N
a, = 2 5,(n, K)by, b, = 3 8,(n, kK)a,,
K=0 K=o

where S;(n, k) and S,(n, k) are Stirling numbers of the first and second kind,
respectively. Recall that S;(#, k) and S, (n, k) may be defined by the exponen-
tial generating functions

(log(l + t))K/kY and (et - LY*/k!,
respectively, where
F(&) = 1log(l + t) and g(¢) = et -1

are just reciprocal functions of each other, namely f(g(¢)) = g(f(£)) = ¢ with
f(0)=¢g(0)=0. What we wish to elaborate is a comprehensive generalization of
the known relations mentioned above.

2. A BASIC DEFINITION AND A THEOREM

Denote by I = (I'y 4+, °) the commutative ring of formal power series with
real or complex coefficients, in which the ordinary addition and Cauchy multi-
plication are defined. Substitution of formal power series is defined as usual
(cf. Comtet [21).

Two elements f and
if and only if f(g (%))

of T' are said to be reciprocal (inverse) of each other
g(f(£)) = ¢t with £(0) =g(0) =0.

I Q

Definition: Let f and g belong to I', and let

1 t"
zj(f(t))k =7£5041(n, k)7 (2.1)
Lgunt = T a, @, i, ' (2.2)
k! ) n=0 2 n!
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Then A; (n, k) and 4, (n, k) are called a generalized Stirling number pair, or a
GSN pair if and only if f and g are reciprocal of each other.

From (2.1) and (2.2), one may see that every GSN pair has the property
Ay(n, k) =4,(n, k) =0 for n < k.
Moreover, one may define

141(0, 0) =A2(O, O) 1.

Let us now state and prove the following:

Theorem: Numbers 4,(n, k) and 4, (n, k) defined by (2.1) and (2.2) just form a
GSN pair when and only when there hold the inverse relations

a, =;<ZOA1(”’ K)bys by =kz A, (ny K)ag, (2.3)
= =0

where n = 0, 1, 2, ..., and either {ay} or {bx} is given arbitrarily.

Proof: We have to show that (2.3) <= f(g(¥)) = g(f(¢)) =t with £(0) =g(0) =0.
As may easily be verified, the necessary and sufficient condition for (2.3) to
hold is that the orthogonality relations

S A (my n)A, (s k) = T Ay (my )AL (s K) = S s (2.4)

nz20 nz0

hold, where §,; is the Kronecker symbol. Clearly, both summations contained in
(2.4) consist of only a finite number of terms inasmuch as

Ay(m, n) =A,(m, n) =0 for n > m.

Let us prove =>. Since (2.4) is now valid, we may substitute (2.1) into
(2.2), and by the rule of function composition we obtain
tm
2 Ay (ns k) LA (ms n)y

!
n=0 m20 m

2@ @M

t" £ tk
> *.( A, (m, )4, (n, k)> = X o7 Om =gy

m20 " \n20 m20

Thus, it follows that g(f(¢)) = t. Similarly, we have f(g(t)) = t. This proves
::@'

To prove <=, suppose that f(g(¥)) = g(f(£)) = t, f(0)=g(0) 0. Substi-
tuting (2.2) dinto (2.1), we obtain

m

B - e = T (T s )

1
k! m=0 =0

Comparing the coefficients of ¢ on both sides, we get
2 A, (my M)A (n, k) = S
n20

In a similar manner, the first equation contained in (2.4) can be deduced. Re-
calling that (2.4) is precisely equivalent to (2.3), the inverse implication
<= is also verified; hence, the theorem.

Evidently, the theorem just proved may be restated as follows:
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Equivalence Proposition: The following three assertions are equivalent to each
other.

(i) {4,(n, k), 4,(n, k)} is a GSN pair.
(ii) Inverse relatioms (2.3) hold.

(iii} {f, g} is a pair of reciprocal functions of I.

3. EXAMPLES AND REMARKS

Examples: Some special GSN pairs may be displayed as shown below.

F ) g(t) AL (n, k) A,(n, k)
log(l + t) et -1 S1(ms k) Sy (n, k)
tan t arc tan t T,(n, k) T,(n, k)
sin % arc sin ¢ s, (n, k) 5,(n, k)
sinh ¢ arc sinh ¢ 0, (n,s k) O, (n, k)
tanh ¢ arc tanh ¢ T,(n, k) Ty (1, k)
e/ =1 |t/ -1 | CORLm, k) G RL(, k)

Note that L(n, k) is known as Lah's number, which has the expression

b0 = 0 24 DY),

In what follows, we will give a few brief remarks that follow easily from
the ordinary theory about exponential generating functions.

Remark 1: For a pair of reciprocal elements f, ge&€Tl, write:
F@) = o tk/ke, g(®) = X By tk/k! (3.1)
1 1
Making use of the definition of Bell polynomials (cf. Riordan [7]),

fy\dn
@)

where (J) indicates the summation condition j,; + -+« + J

nlg, Fi\%:
Yo (gfys wevs ) =(JE) ﬁ(?)

n

=k, g, + 25, + -+

+nj, =n, k=1, 2, ..., n, one may obtain
Ay (s k) = Y, (foy, .oy fO,), Ay (ms k) = Y, (fBys .- B
where f, = ¢z; (¢ = 1, ..., n) and &;; is the Kronecker symbol. Consequently,

certain combinatorial probabilistic interpretation may be given of 4;(n, k)
(¢ =1, 2). Moreover, for any given {0}, the sequence {83} can be determined
by the system of linear equations

Yo (Bogs «vvy Ba,) =96, n=1,2, ...). (3.2)
Remark 2: It is easy to write down double generating functions for 4, (n, k),
viz.,
tnuk
O(t, u): = 3, A (ny, R)y—— = expluf()],
n, k20 n:
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"k
‘{/(t, u) . = Z Az(n, k) T = exp[ug(t)].
n, k>0 n:
Moreover, for each 4;(n, k) (¢ = 1, 2), we have the convolution formula
ki + k nooy . ]
< lkl 2>Ai(na kl + kZ) =j§o (j)Al(J’ kl)AL(n - Js k2)’ (3.3)

and, consequently, there is a vertical recurrence relation for A; (n, k), viz.,

n=lin . .
KA k) = T (5)AsGs k- DAzt - G, D, (3.4)
Jj=0
where 4,(j, 1) = a; and 4,(j, 1) = B;. A similar recurrence relation takes the
form
n
A;(n + 1, k) = 'EO<§)Ai(j, k- DA;(n -4+ 1, 1). (3.5)
i=

However, we have not yet found any useful horizontal recurrence relations for
A;(n, k) (¢ =1, 2). Also unsolved are the following:

Problems: How to determine some general asymptotic expansions for 4;(n, k) as
k > o with k = o(n) or k = O(n)? 1Is it true that the asymptotic normality of
Ay(n, k) implies that of A4,(n, k)? 1Is it possible to extend the concept of a
GSN pair to a case involving multiparameters?

4. A CONTINUOUS ANALOGUE

We are now going to extend, in a similar manner, the reciprocity of the
relations (2.3) to the case of reciprocal integral transforms so that a kind of
GSN pair containing continuous parameters can be introduced.

Let ¢(x) and Y(x) be real-valued reciprocal functions decreasing on [0, 1]
with ¢(0) = Y(0) = 1 and ¢(1) = P(l) = 0, such that

W (x)) = yY(px)) =« (0 <x < 1).

Moreover, ¢(x) and Y(x) are assumed to be infinitely differentiable in (0, 1).

Introduce the substitution & = e¢”%, so that we may write

e " = Cp(e_t)s eﬂt = w(e_u)s tou € [Oa 00)- (4'1)

For given measurable functions f(s) € L(0, ©), consider the integral equation

F(u) : = jﬂjf(s)e’“sds = jﬁmg(s)(w(e'“)s) ds, (4.2)
0 0

where g(s) is to be determined. Evidently, (4.2) is equivalent to the fellow-
ing:

G(t) : =f F(s) (e ®))¥ds =f g(s)e *°ds. (4.3)
0 0

Denote G(t) = F(u) = F(-log ¢(e‘t)). Suppose that G(t) satisfies the Wid-
der condition D (cf. [8], ch. 7, §6, §17):

(i) G(¢) is infinitely differentiable in (0, ) with G(«®) = 0.

(ii) For every integer m 2 1, L, . [G]1=L, ,[G(*)] is Lebesgue integrable
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on (0, »), where L, ,[G] is the Post-Widder operator defined by

RO e

(4.4)

t= (m/x) )

(iii) The sequence {I, ,[G]} converges in mean of index unity, namely

lim f |Ln. oG] = L, - [G]|de = 0.
my, n +x® 0

Then by the representation theorem of Widder (cf. [8], Theorem 17, p. 318) one
may assert the existence of g(s) € L(0, ) such that (4.3) holds. Consequently,
the well-known dinversion theorem of Post-Widder (Zoc. c¢it.) is applicable to
both (4.3) and (4.2), yielding

- ©

g() = 1imf?<s>Lm,x[<¢<e'<'>>>S]ds, 4.5)
m 0

fla) = 1imfg<s)Lm,m[<w<e-<->>>3st, (4.6)
m>e | o

whenever & > 0 belongs to the Lebesgue sets of g and f, respectively.

In fact, the reciprocity (4.5) <> (4.6) so obtained is just a generaliza-
tion of the inverse relations for self-reciprocal integral transforms (in the
case ¢ = ) discussed previously (cf. [4], Theorem 8).

Notice that 4;(n, k) (¢ # 1, 2) may be expressed by using formal deriva-
tives:

s s glE) o L ae v = FHE) e

t=0

t=0
Thus, recalling (4.4) and comparing (4.5) and (4.6) with (2.3), it seems to be
reasonable to consider the following two sequences of numbers:

Ay(@s ys m) = Lo, [(0(e™ Y],
Az, y3 m) = Ly o [(W(e )Y (m=1, 2, ...),
as a kind of GSN pair involving continuous parameters x, y € (0, «).

In conclusion, all we have shown is that the continuous analogue of the
concept for a GSN pair is naturally connected to a general class of reciprocal
integral transforms. Surely, special reciprocal functions ¢(x) and Y(x) (0 <
x £ 1) may be found—as many as one likes. For instance, if one takes

(@) = 1 =@, ¢,@) =cos o, ¢;(@) =logle - (¢ - Da),

their corresponding inverse functions are given by
P(x) =1 -2, Y,(x) = % arc cos x, Y (x) = (e - e®)/(e - 1),

respectively. Monotone and boundary conditions

$;(0) =¥;(0) =1 and ¢, (1) =7¢,;(1) =0 (Z =1, 2, 3)

are obviously satisfied.
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1. INTRODUCTION

Recently, these two authors proved a theorem involving necessary and suffi-
cient conditions on when a real ordinary differential expression can be made
formally self-adjoint [1]. A differential expression

L(y) = kZ a, @)y ®(x)
=0

is said to be symmetric or formally self-adjoint if L(y) = L*(y), where L* is
the Lagrange adjoint of L defined by

LG = B DM a@y@)®.

It is easy to see that if I = L* then it is necessary that r be even. If L(y)
is a differential expression and f(x) is a function such that f(x)L(y) is sym-
metric, then f(x) is called a symmetry factor for L(y). 1In [2], Littlejohn
proved the following theorem.

Theorem: Suppose ak(x)GECk(I), ay(x) is real valued, k = 0, 1, ..., 2n, a,, (x)
# 0, where I is some interval of the real line. Then there exists a symmetry
factor f(x) for the expression

n
L(y) = kZ a, @)y ®(x)
-0

if and only if f(x) simultaneously satisfies the n differential equations

no2s-2k+1 25 =2k+2
2s 28—2k+1 2 -1 (28 -2k+1-7 : _
sgi jé% (2k-—1>( J > STRT 1 DBes-2k+205s DfpD-ay f = 0’(1)
k=1, 2, ..., n, where B,, is the Bernoulli number defined by
. . & B, x’
—— =2 -2+ Y .
R A e T

However, these two authors have significantly improved the »n equations that
the symmetry factor must satisfy [1]. Directly from the definition of symmetry
it is easy to see that f(x) is a symmetry factor for (1) if and only if 4, , =
0, k=0, 1, ... 2n - 1), where

2n-k . s .
Apyr = &4 (‘1)k+J<k ; J)(f(x)ak+j(x))(‘7) - f@)ag(x).
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Littlejohn & Krall show that Ay =0, k=0, 1, ... (2n - 1) if and only if

yag R _ )
Cr = L D" TE T D@D <o, 2)

1=2k+1

k=0,1, ... (n-1). If we express the Ck's in terms of the Ak's, we see

C{ =A
n
02 + 20

]
S

and, for 3 < k< 2n -1,

k+ﬂ
2 . - . .
ic, +k¢&f)+ > k(k=g)(k=-g=-D(k=-g=2) ... %—2J+3)Cw-y+m:Aw

&, G-D! k-j+1

where Ck =0 if X > »n and [°] denotes the greatest integer function.

From the coefficients of these equations, we get the following array:

Ist row 1 0

2nd row 1 2

3rd row 1 3 0

4th row 1 4 2

5th row 1 5 5 0

6th row 1 6 9 2

7th row 1 7 14 7 0

8th row 1 8 20 16 2

9th row 1 9 27 30 9 0

10th row 1 10 35 50 25 2

11th row 1 11 44 77 55 11 0
12th row 1 12 54 112 - 105 36 2
13th row 1 13 65 156 182 91 13 0

This array has many interesting properties, some of which we shall discuss
in this note.

2. PROPERTIES OF THE ARRAY

If we add all of the entries in each row, we arrive at the sequence
1, 3, 4, 7, 11, 18, 29, 47, 76, ...
A Fibonacci sequence! (Actually, this sequence is called the Lucas sequence.)

From this, we can desily derive

Theorem 1: For n = 3,

n+3
L 4+n+ i]yl(n—j)(n—j—]_)(n.—j—Z)...(7/l—2j+3)
e G-D!
1+ V5\" 1 - V/5\»
=< 2 >+< 2 > "
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For w 2 3 and j 2 3, the number

o nn~JDmn~g-1)... (m-25+3)
>J G-

is the entry in the n*h row and j'® column. Alternatively, 4, ; is the ptP
element in the jth column where » = n - 2J + 4. We now show how to obtain any
element in the jth column by looking at the (j - 1)t column. Consider, for
example, All,q = 77, which is the seventh entry in the fourth column. Observe
that we can also obtain 77 by adding the first seven entries in the third col-
umn :

4y

77 =0+ 2+ 5+ 9 + 14 + 20 + 27.

As another example, 4,4 4 = 91, the fifth number in the sixth column can also
be obtained by adding the first fZve numbers in the fifth column:

91 =0+ 2+ 9 + 25 + 55.

From this, we get

Theorem 2: TFor n 2 4 and 3 < J < [ﬁ—%—é],
n-2 . . .
e .. . . n{n - n-g-1) ... m-25+3
Y -G+ (E~g) e (Gm2j45) = T D@D ... (12274 3)
i=2j-4 J-1
0f course, this process can also be reversed; that is, we can obtain the
entries in the (j - 1)%% column by looking at the jtBP column. More specifi~
cally, by taking differences’of successive elements in the jth column, we ob~-
tain the entries in the (j ~ 1)t column. The reason for this is the identity
An,j_An—l,jzAn—z,j—l'

There are probably many other patterns appearing in this array; we list a few
more:

L+n+A,41,3 Y4440, T AhAuia, s T F Ay 0,
=3:2""7%, n22, (3
Apnn = 1" @)

How many new patterns can you find?

The first set of necessary and sufficient conditions for the existence of
a symmetry factor [i.e., equation (1)] involve the Bernoulli numbers. We have
shown that the second set of conditions [equation (2)], which are equivalent
to the first set, involve the Fibonacci numbers. What is the connection between
these two sets of numbers?

ACKNOWLEDGMENTS
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the entries on the (main) diagonals, we obtain the sequence

i, 1, 3, 4, 5, 8, 12, 17, 25, 37, 54, 79,

or a, =a, ; ta,_ 4, 7" 2 4. Another interesting pattern is the following:

n =~ “%n

J
4, =k§iAn-2j+2k—1,k’ (5)
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where we adopt the notation that A; ; = 1, 4, 4 = 0 when n < 0 and 4,,; = 0 if

n+ 2

For example,

Ay1,8 =Ap, 1 H Ay, o + 46,3 T Ag,, Y A414,5 =1 +4+9+ 16 + 25 55.
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1. INTRODUCTION

In 1921, Humbert [8] defined a class of polynomials {Hism}:=o by the gen-
erating function

(1 - met + t™~* = fi N COTACH (1)
n=20

These satisfy the recurrence relation
(n + 1)H2+l,m(x) - mx(n + A)Hé’m(x) ~ n+mh -m+ 1)H2_m+1,m(m) = 0.
Particular cases of these polynomials are Gegenbauer polynomials [1]
Cr(@y =1 ()
and Pincherle polynomials (se& [8])
®,(x) = 1M ().
Later, Gould [2] studied a class of generalized Humbert polynomials
P, (m, x5 y> ps C)
defined by
(€ - mxt + yt™P = f;an(m, s Ys pPs OVE", (2)

n=0

where m 2 1 is an integer and the other parameters are unrestricted in general.
The recurrence relation for the generalized Humbert polynomials is—
enP, =mn -1 -p)aP, _, + n-m-mpyP, =0, n=2m=1, (3)

where we put P, = P,(m, x, y> p»> C).

In [6], Horadam and Pethe investigated the polynomials associated with the
Gegenbauer polynomials

A (n/2] P2 ()\>m-k ok
= (- (22} T2
'@ = T D e (4)
where (W), =1, (M) = XX+ 1) ... W+n -1, n=1, 2, ... . Listing the

polynemials of (4) horizontally and taking sums along the rising diagomals,
Horadam and Pethe obtained the polynomials denoted by pg(x), For these poly-
nomials, they proved that the generating function G*{(x, ¥) is given by

My t) = X pr@)t™Tt = (1 - 2wt + 37N (5)

n=1
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Some special cases of these polynomials were considered in several papers (see

[3], [4], and [7], for example).

Comparing (5) to (1), we see that their polynomials are Humbert polynomi-
als for m = 3, with x replaced by 2x/3, i.e., Phyq(x) = Hz 3(2:x:/3).

2. THE POLYNOMIALS pg m(x)

In this paper, we consider the polynomials {pz,m}:=o defined by
pl, @) =T, ,x/m).
Their generating function is given by
Gole, t) = (1 - 22t + ¢ = ¥ pb (@)e". (6)
n=0 ’
Note that
pé 2(ac) = Cﬁ(m) (Gegenbauer polynomials)
and ’
pl o (@) =pl (@ (Horadam-Pethe polynomials).

For m = 1, we have

s v = (- @z - DO = T pl @)

n=0
M),

T(Zx - l)n .

and

pl () = (—1)”(;A>(2x N

These polynomials can be obtained from descending diagonals in the Pascal-type
array for Gegenbauer polynomials (see Horadam [5]).

Expanding the left-hand side of (6), we obtain the explicit formula

(/] )
Pan @ = L

=0

x n-(m-1)k n-mk
_ _ n-imm )k . 7
D% 170 = w1 39 (7)
These polynomials can be obtained from (2) by putting ¢ =y = 1, p ==X,
and x: = 2x/m. Then we have
p* (@) = P, (m, 2x/m, 1, A, 1).

nsm

Also, if we put ¢ =y =m/2 and p = -, we obtain

NS
>
~
&
—~
]

(%)‘pn(m, xy /2, =N, m/2).

Then, from (3), we get the following recurrence relation

npg’m(x) = +n-D2ap, . (x) - (n+ m(\ - 1))pn_m’m(x), (8)
for n 2m=2 1.
The starting polynomials are
o,
Pgﬂn(x) =— 7 @)%, n=0, 1, ...om - 1.
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Remark: For corresponding monic polynomials ﬁ; n ve have
,

PY (@) =ap) (@) - b D (@), m=m=1,

n,m n-1,m ntn-m,m

p;,n(x) =z, 0Sn<m-1,

where
_(n - D! n+mA - 1)

b = Tm DI 2"+ n - my,

The classes of polynomials P, , = {pz’m}:=0, m =2, 3, ..., can be found by
repeating the '"diagonal functions process," starting from pz l(x). Listing the
terms of polynomials horizontally, ’

(/) (GO LCS PN
Prm @ = L ann(0 )" an (0 = —gre

and taking sums along the rising diagonals, we obtain pé m+1(m), because

M ek m- 12
B gn) = (DX T T = G () -

3. SOME DIFFERENTIAL RELATIONS

In this section we shall give some differential equalities for the polyno-
mials p? . Here, D is the differentiation operator and pgln(x)f 0 when k < 0.

Theorem 1: The following equglities hold:

DKp2 e @) = 2500, pA K@), (9)
2np) (%) = 2wDp) (%) = mDpy (@) (10)
mhp, 1, (@) = 2(n +mMp}  (x) + 2x(m - 1)Dp)  (x), (11)
2p) @) = Dpy,, (@) - 2xDp) (@) + D),y , @) (12)

Proof: Using the differentiation formula (cf. [2, Eq. (3.5)])
DEP, . (s s ys by ©) = (-m¥k!(D)P, 0ns @y ys p - Ky O)
we obtain (9).

To prove (10), we differentiate the generating function (6) w.r.t. x and ¢.
Then, elimination (1 - 2xt + tm)'x'l from the expressions, we find

Y 2mpr (@)t = (2x - mt"h) T opr  (x)t”™.
n=1 ™" n=0 "M

Equating coefficients of ¢” in this identity, we get (10).

By differentiating the recurrence relation (8), with n + 1 substituted for
n, and using (10), we obtain (11).

Finally, by differentiating the generating function (6) w.r.t. x, replacing
Gm(x, t) by its series expansion in powers of ¢, and equating coefficients of
t"*!, we obtain the relation (12).
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4. THE DIFFERENTIAL EQUATION

Let the sequence (f;);zo be given by f, = f(r), where

F@&) = - (AR

Also, we introduce two standard difference operators, the forward difference
operator A and the displacement (or shift) operator E, by

Afr = fr+l - fr and Efr =

and their powers by

- k _ k- k —
Aofr T Jr A fr = A(A lfr)’ Efr T Jr+k

r+1°

Theorem 2: The polynomial x H—pg m(x) is a particular solution of the follow-
ing m-order differential equation

m
y(m)-F 2: asxsy(® =0, (13)

s=0

where the coefficients a, are given by

2™ s .
as=3!mllfo (8 =0, 1, vovy m). (14)
Proof: Let n = pm + g, where p = [n/m] and 0 < g S m - 1. By differentiating
(7), we find

=8

m )
A - IRV n-(m-1k n- mk
2?Dpy () = kz% b kl'(n - mk - S)!(Zx)
and
p-1 M) 2m
N _ Nk n-(m~-1)k n-m(k+1)
Dmpn,m(x) —kgo( 1) k'(?’l - m(k + l))'<2x) E]
where [n - S] =p when s < ¢, or = p - 1 when s > q.

If we substitute these expressions in the differential equation (13) and
compare the corresponding coefficients, we obtain the following relations:

2"k(A +n - (m - k) (15)

m-=1

(k =0, 1, eooo p = 1)

si::o (n _s mk)s lag

and

2" +n - (m - 1p)

m-1"°

-~ (n - mpy oy
2:0< s )s.as

s =

First, we consider the second equality, i.e.,

T2y, = B2 g+ B2

This equality is correct, because it is equivalent to
L+ 0 =EF = f, = f@.
Equality (15) can be written in the form

> (" ‘Smk>ASf0 —f . k=0, 1, . p - D). (16)

s=0
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Since t » f(¢) is a polynomial of degree m, the last equalities are correct;
(16) is a forward-difference formula for f at the point ¢ = n - mk.

Thus, the proof is completed.

From (14), we have

m m, m-=1
Zﬁﬁ(ﬁ_i;ﬂi> _2n M o+mn+7i-1)),
m=1 =1

a, =
m m mm 4

i n-1+m\+ 1) n + m\

a, =, {(n 1)( - )m_l n( - )m_l}, etc.
Since
m_lm-l
) = —(*jg~—> t™ + terms of lower degree,
we find

AT S

Am = _7;< m ) :

For m = 1, 2, 3, we have the following differential equations:
(1 - 2x)y" + 2ny = 0,
(1 - x®)y" - 212 + Day' + nn + 2y = 0,

32 16, .,
(1 - §7rx3>y"’ - ?7(2é + 3)x2y”

- SGn0 4 2+ 1) = Gh+ 2)(Bh + 5)ay

+-§%—n(n + 30+ 300 + 1))y = 0.

Note that the second equation is the Gegenbauer equation.
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In [1] we studied the class of recurrence relations

K .
Gn-= Gn—l + Gn—z + Z a'nJ (1)
j=o0 ?
with G, = G, = 1. The main result of [1] consists of an expression for G, in

terms of the Fibonacci numbers F, and F,_,, and in the parameters Qgs wees Oy

The present note is devoted to the related family of recurrences that is
obtained by replacing the (ordinary or power) polynomial in (1) by a factorial
polynomial; viz.

K .
Hn = Hn—l + Hn—z + Z an(J) (2)
Jg=0

with #y =8, =1, n@ =nn - 1)(n=-2)... n =g+ 1) for j > 1, and n'¥ = 1.
The structure of this note resembles the one of [1] to a large extent.

As usual (cf. e.g., [2] and [4]) the solution Hg” of the homogeneous equa-
tion corresponding to (2) is

H;m = C107 + C,0;
with ¢, = %(1 +V5) and ¢, = 5(1 - V5).

Next we try as a particular solution
® _ & o @)
H' = 3 B;n'™,
=0
which yields

k , K . k . k .
LD - B0 -DP - LB 0-2-¥yn®=o0.
=0 =0 =0 =0

In order to rewrite this equality, we need the following Binomial Theorem for
Factorial Polynomials.

n
Lemma 1: (.’L‘ + y)(n) = E (Z)x(k>y(ﬂ-k).
k=0

Proof (A. A. Jagers):

n,x+y

n adt

(x + )(n)tm+y E
Y dg”

(Leibniz's formula)

n
tn Z <Z>x(k)tx_ky(n_k)ty_ H+k.
k=0
Cancellation of ¢%%¥ yields the desired equality. @
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Thus, we have

k . k 7 . . ] X .
,Z Bin@) -3 <7:E Bi(jyi)((‘l)(t_l) + (—2)“'“)74(2)) ,igonn(l) = 0;

1=0 =0

hence, for each 7 (0 < Z < k),
k
B; = 2 68uBp-Y; =0 (3)
m=1
with, form 2 <,
S = (1)(DTD 4+ (=)D,

Since (-z)™ = (-D)"(x + 7 - 1)@ and #n" = #!, we have

]

Sim (D(-l)”"‘((m DL+ (m-7+ DY

(?)(-1)’”“&(777 -1+ 2)m - i)}

- tm - 7 + 2)m" "D,

From the family of recurrences (3), we can successively determine By, ...,
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