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Announcement 
THIRD INTEMIHATIONAL CONFERENCE ON 

FIBONACCI NUMBERS AND THEIR APPLICATIONS 
Monday through Friday, July 25»29? 1988 

Department of Mathematics, University of Pisa 
Pisaf Italy 

International Committee 
Horadam, A.F. (Australia), Co-Chairman 
Philippou, A.N. (Greece), Co-Chairman 

Ando, S. (Japan) 
Bergum, G.E. (U.S.A.) 

Johnson, M.D. (U.S.A.) 
Kiss, P. (Hungary) 

Schinzel, Andrzej (Poland) 
Tijdeman, Robert (The Netherlands) 

Tognetti, K. (Australia) 

Local Committee 
Robert Dvornicich, Chairman 

Piero Filipponi 
Alberto Perelli 

Carlo Viola 
Umberto Zannier 

FIBONACCI'S STATUE 
Have you ever seen Fibonacci's portrait? This photo is a close-up of the head of the statue of Leon-

ardo Pisano in Pisa, Italy, taken by Frank Johnson in 1978. 
Since Fibonacci's statue was difficult to find, here are the directions from the train station in Pisa 

(about 8 blocks to walk): Cross Piazza Vitt. Em. II, bearing right along Via V. Croce to Piazza Toniolo, 
and then walk through the Fortezza. The statue is found within Fortezza Campo Santo off Lungarno Fib-
onacci or Via Fibonacci along the Arno River at Giardino Scotto (Teatro Estivo). 

CALL FOR PAPERS 
The THIRD INTERNATIONAL CONFERENCE ON FIBONACCI NUM-

BERS AND THEIR APPLICATIONS will take place at The University of Pisa, Pisa, Italy, 
from July 25-29, 1988. This conference is sponsored jointly by The Fibonacci Association 
and The University of Pisa. 

Papers on all branches of mathematics and science related to the Fibonacci num-
bers and their generalizations are welcome. Abstracts are to be submitted by March 15, 
1988. Manuscripts are requested by May 1, 1988. Abstracts and manuscripts should be 
sent to G.E. Bergum (address below). Invited and contributed papers will appear in the 
Conference Proceedings, which are expected to be published. 

The program for the Conference will be mailed to all participants, and to those 
individuals who have indicated an interest In attending the conference, by June 15, 1988. 
All talks should be limited to one hour or less. 

For further information concerning the conference, please contact Gerald Bergum, 
The Fibonacci Quarterly, Department of Computer Science, South Dakota State University, 
P.O. Box 2201, Brookings, South Dakota 57007-0199. 
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MIXED PELL POLYNOMIALS 

A. F, HORADAM 
University of New England, Armidale, Australia 

Bro. J. M. MAHON 
Catholic College of Education, Sydney, Australia 

(Submitted April 1985) 

1. INTRODUCTION 

Pell polynomials Pn (x) are defined ([8], [13]) by 

Pn+2(x) = 2xPn+1(x) + Pn(x) P0(x) = 0, P1(x) = 1. (1.1) 

Pell-Lucas polynomials Qn(%) are likewise defined ([8], [13]) by 
Qn + 2(oo) = 2xQn + 1(x) + Qn(x) Q0(x) = 2, Q1(x) = 2x. (1.2) 

Properties of Pn (x) and Qn(x) can be found in [8] and [13]s while convolu-
tion polynomials for Pn (x) and Qn(x) are investigated in detail in [9]. 

The kth convolution sequence for Pell polynomials {P^ \x)}9 n = 1,2,3,..., 
is defined in [9] by the equivalent expressions 

P«\x) = 

JlPAx)P^li{x) 

i = l 

E^r^Yw^) 
for which the generating function is 

k > 1 

P^\x) = Pn (x) 

P^\x) = 0 

0 < m < k - 1 

(1.3) 

(1 - 2xy -y2Y(k+1) = L P ^ ' W . 
n = 0 

,(k)/ 

(1.4) 

The kth convolution sequence for Pell-Lucas polynomials {Qn (x)}9 n = 1,2, 
3,..., is defined in [9] by 

i ( k ) / n(fe-D ( 0 ) , 
„'<*> = S fi{WCiW' 7< ^ l s S " ( ^ = Q n ^ ( 1 . 5 ) 

i = 1 

w i t h s i m i l a r e q u i v a l e n t e x p r e s s i o n s i n ( 1 . 5 ) f o r Q^ \x) t o t h o s e i n ( 1 . 3 ) f o r 
P$kHx). [Qlk\x) = 0 if k > 1; eju;Gc) =2.] 

The generating function for Pell-Lucas convolution polynomials is 

( 2x + 2.y )fe + 1 

\1 - 2 ^ - z/2J n = 0 a - 2x2/ - y2j 

Explicit summation formulas for the k convolutions are 

1987] 

[(n- l)/2],, , , 

p>>- ,?„ c+^i-)r"rr)(2x)—• 

(1.6) 

(1.7) 
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MIXED PELL POLYNOMIALS 

and 
n-l 

«?>(*> - 2k + 1 t (r y^'P^rM (1.8) 
r= 0 

where, in the latter cases the Pell-Lucas convolutions are expressed in terms 
of Pell convolutions. 

A result needed subsequently is: 

nP^ix) = 2{k + 1){XP«+1) (x) + P<*_+» (x)} . (1.9) 

Some of the simplest convolution polynomials are set out in Table 1. 

j(k) T a b l e 1 . C o n v o l u t i o n s f o r P n
w W , fifW, k = 1 , 2 ; n = 1 , 2 , 3 , 4 , 5 

P(
n

2Hx) 

n = 1 

1 

4a;2 

1 

8a;3 

2 

4a; 

16a;3 + 8a; 

6x 

48a;1* + 24a;2 

3 

12a;2 + 2 

48a;4 + 40a;2 + 4 

24a;2 + 3 

192a;5 + 168a;3 + 24a; 

4 

32a;3 + 12a; 

128a;5 + 144a;3 + 32a; 

80a;3 + 24a; 

640a;6 + 768a;4 + 216a;2+ 8 

5 

80a;4 + 48a;2 + 3 

320a;6 + 448a;4 + 156a;2 + 8 

240a;4 + 120a;2 + 6 

1920a;7 + 2880a;5 + 1220a;3 + 120a; 

Worth n o t i n g a r e t h e f a c t s t h a t 

CJtiix) = inP*r?(x) (i = ^ 1 ) , ( 1 . 1 0 ) 

where C„(x) is the Gegenbauer polynomial of degree n and order k [12], and 

P ^ W Pn(2, x, -1, -(fc+1), 1), (1.11) 
in which the right-hand side is a special case of the generalised Humbert poly-
mial Pn(m9 x9 y, p, C) defined [3] by 

(C - mxt + ytm) m\p £ Pn(m* x, y9 p, C)tn 

n = 0 
(m > 1) (1.12) 

Pell-Lucas convolution polynomials Qn (x) can be expressed in terms of the 
complex Gegenbauer polynomials by a complicated formula, but they are not ex-
pressible as specializations of generalized Humbert polynomials [cf. (1.6) and 
(1.12)]. 

Specializations of P^ \x) and Q„(x) of interest to us occur when x = 1, 
giving the convolution sequences for Pell numbers and Pell-Lueas numbers. If 
x is replaced by hx9 the sequence of Fibonacci polynomial convolutions and the 
sequence of Lucas convolution polynomials arise; in this case, putting x = 1 
gives convolution sequences for Fibonacci numbers and for Lucas numbers. 

The chief object of this paper is not to concentrate on P„ \x) and Qn (x)s 
but to examine convolution polynomials when P^k\x) and Q^\x) are combined to-
gether. This will lead to the concept of "mixed Pell convolutions" and of a 
convolution of convolutions. 

2. MIXED PELL CONVOLUTIONS 

Let us introduce the mixed Pell convolution TT„ \X) in which 

(i) a + b > 1 
(ii) l\n ' (x) is not defined. 
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MIXED PELL POLYNOMIALS 

Let 

AoL,b),.„n _ (2X + 2.V) E v{a>b)(x)yn = ^ ^ Ayr (? n 
»"0 " (1 - 2a# - y 2 ) a + fc 

= (2a; + 2y) b~ J i ( lx + 1V V 
(1 - 2xy - y2)a + i"J' U ~ 2 ^ " ̂ ' 

= (2̂  + 2 ^ - ^ E ^ - ^ x ) ^ ) 

= E lbE(blJ)(2^b'j-i2i^n
a
+

+
1

b_-i
J'J\x))yn 

£•«(*) = 2b-j £\bl3)xb-J-Xa
+

+
1
b-~/'J)W- (2-2) 

= S ( 
w = n > 

whence 
IT n-t i * ' 

i = 0 

Put j = 1 in (2.2). Then 

b-l 
*£•»><*> = 2*"1 .E (*T y - 1 - ^ 1 . ; 1 ' "(*) (2.3) 

Special cases of (2.1) occur when a = 0, and when £ = 0. 

Thus, for b = 0, and a = k9 (1.4) and (2.1) show that, with n + l replaced 
by n, 

TT^>°>0r) = P^-i) ( x ) 5 ( 2 > 4 ) 

i.e. , 

T T ^ O C ) =Pn(x) by (1.3), T42'0)(X) =P^1}(^). 
On the other hand, when a = 0 and b = k9 (1.6) and (2.1) yield 

Tr(„°-k)(*) = Q^-X)(x), (2.5) 
i.e. , 

^'X\x) = Qn(x) by (1.5), ^° '2)(x) = ^ ( a r ) . 

Now let j = 0 in (2.2). Hence, by (2.4), with n + l replaced by n, 

•n(
n

a>b)(x) = 2b £ ( J ) ^ - ^ ^ / - 1 ^ ) . (2.6) 

An explicit formulation for ir^a,b\x) could then be given by substituting 
for P^+P-Rx) from (1.7). 

From (2.1), with (1.4) and (1.6), it is seen that 

v(
n

a'b\x) = t Pf-1~>(x)Q^)_.{x) (a > 1, b > 1). (2.7) 

i = 1 

Let us differentiate both sides of (2.1) w.r.t. y. Then 
oo oo oo 

E n^bHx)yn-1 = 2bZv(X1
1'b-1\x)y* + (a + 2>) 5><a+'*+1>GrV, 

whence 

" T T ^ G c ) = 2&TT(„a+1-*-1)(x) + (a + bWZ'b+1\x). (2.8) 
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MIXED PELL POLYNOMIALS 

From the identity 

(2x + 2y)b (2a + 2y)a (2x + 2y) a + b 

(1 - 2xy - y2f + b (1 - 2xy - y2)b + a (1 - 2xy - y2)2a+2h 

we d e r i v e a convolution of convolutions 

^(a + b,a + b)(x) = Z ̂ f <*> 1Tf+'ia- • (*> • 
i = 1 

So, when b = a, 

TT{
n

2a>2a) (x) = E T T ^ ^ C ^ T T ^ (rn). 

£ = 1 

From ( 2 . 9 ) , when £ = 0 , 

£ = 1 i = 1 

on u s i n g ( 2 . 4 ) and ( 2 . 5 ) . [Cf. ( 2 . 7 ) a l s o f o r b = a . ] 

P u t t i n g b = a i n ( 2 . 8 ) l e a d s t o 
T (a , a) nir^^ix) = 2aTT' .(a+ 1, a - 1), '(x) + 2a7T (a , a + 1) 

(X). 

Combining (2.9) and (2.12), we have 

2a{^+1'a'1\x) + ^ ' a + l \ x ) } = n £ < ' 0 ) W ^ . W . 

i = 1 

Equations (2.5) and (2.6), in which a = 0 and b = /c + 1, give 
fc + l, 

as in (1.8). 

Next, put b = 0, a = k in (2.8) to get 

l-i 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.U) 

Ak.D (x) ^i^ix) = Eyr^^+i-t^ b y ( 2 - 7 ) 

•£ = 1 

A: TJ + 1 

,(fe) (fe) 2aP^;(x) + 2P?_\(x) 

by (2.4) 

by (1.9). 

(2.15) 

To exemplify some of the above results, we write down alternative expres-
sions for TA2, 2) (x) 

We have 

(x) = 4{x2P(3)(x) + 2xP{*\x) + P\3)(^)} by (2.6) 

= P^ixyQ^ix) + P(
2
1\x)Q(

2
1\x) + P(

3
1\x)Q[1)(x) by (2.7) 

by (2.3) 

by (2.15) 

= 2 { O T (
3
3 J 1 ) (X) + 7T(23,1) (X)} 

= 2{x(3/3)Pl2)(x) + (2/3)P^2;(x)} (2), 

(x)^° ' 2 ) (X) + TT(22'° } O r ) ^ (X) + T T ^ ( x ) T T ^ (X) 

2<$h 
= 160^ + 80x2 + 4 .. by (2.11) 

[Nov. 



MIXED PELL POLYNOMIALS 

on using Table 1 and P^3\x) = 1, P(
2
3\x) = 8x, and P(

3
3\x) = 40a:2 + 4. Observe 

that the second and fifth lines of the chain of equalities above are the same, 
by virtue of (2.4) and (2.5). 

Some interesting results for particular values of a and b may be found. 
For example, with a = 0, b = 2, we have, by (2,5) and (2.8), 

nQ^l^x) = 4^' 1 } (x) + 2«n(2) = 4(1 + x2)^'^ + Qf 
on rearranging in another way the terms in the differentiation of (2.1). [For 
instance, when n = 2, the common value is 90a:4 + 80a:2 + 8 on using 

P3(1)(a?) = iif'^ (x) by (2.15), 

and Table 1. ] 

Thus, 

Q(
n

2\x) = 4(1 +x2)7T(n2'1) (x) - T^1'1* Or)., 

Using 

TT^-" (x) = n?n+1(x) = t / i <*>«„+!_*<*)• (2-16> 

from (2.15) and (1.3), we find that the simplest values of TT̂ 1' (X) are: 

f-n*1'10 to) = 2x9 .Ttf'V (x) = 8a:2 + 2, TT̂ 1' 1} (X) = 24a:3 + 12a? 

[TT^1'^ (a:) = 64a:4 + 48a:2 + 4, TT^1'1} (a:) = 160a:5 + 160a:3 + 30a: ... 

Theoretically, one may obtain a Simson-type analogue for the mixed convo-
lution function i\^a'^(x). However, the task is rather daunting, so we content 
ourselves with the Simson formula in the simple instance when a = b = 1. 

Computation, with the aid of (2.16) produces 

Vnl¥ (x)Vn-1! (*) - (^'^ to))2 = ("l)n + 1 ( n 2 - 1) " Pn + I&) C2'1?) 

(both sides being equal to -16a:4 - 8a:2 - 4 when, say, n = 2) . 

3. MISCELLANEOUS RESULTS 

A. Pel 1 Convolutions 

Two results given in [3] are worth relating to convolution polynomials. 

First, apply (1.11) to [3, (3.10)]. Then 

Pnl\ to) = £ P^ + l ^)P + x (*) ' • • ̂ . + ! to) (3.1) 

in our system of polynomials. Observe the restriction on the summation. Put-
ting k = 2 and n = 2, say, gives, on applying (1.3) the appropriate number of 
times, 

P(
3
2\x) = P1(x)P2(x)P2(x) + P2(x)P1(x)P2(x) + P2(x)P2(x)P1(x) 

+ P1(x)P1(x)P3(x) + P1(x)P3(x)P1(x) + P3(x)P1(x)P1(x) 
= 24a?2 + 3 

which is precisely the summation expansion in (3.1). We may think of the or-
dered subscripts in each three-term product of the sum as a solution-set of 
x + y + z = 5 for nonnegative integers. 
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Second, suppose we wish to expand a given Fibonacci polynomial, say F (ic) , 
in terms of Pell polynomials (an example of a well-known type of problem in 
classical analysis—see [2]). 

Using notation in [3, (6.9), (6.10)], we have 

4 
F5(x) = xh + 3x2 + 1 = £ Anxn (3.2) 

n = 0 

whence 

where 

AQ = 1, Ax = 0, A2 = 3, A3 = 0, Ah = 1, (3.3) 

4 

M * > = £ FnPn+1(x), (3.4) 
n = 0 

>«-<Vi>- r"/"J )- " I I . - ^ . 
i = 0 / "I \ n + 1 + J 2n + 2j 

2j 

Expanding (3.5) and using (3.3), we calculate 

Az A^ (Ax A3\ A 3A 

^3 ^ 
Vs " -X = °' F* -16 

whence the right-hand side of (3.4) simplifies to (3.2) on using (1.1) to ob-
tain appropriate Pell polynomials. Thus, 

F5(x) = | P,(x) + ̂  P3(x) + ± P5(x). 

Again, 

P^1}(x) = P1(a:) - 3P3(a;) + 5P5 (#) (= 8 0 ^ + 48x2 + 3) 

on paralleling the calculations above. 

Computations involving Pell convolution polynomials Pn (x) for k ^ 1 could 
be effected in a similar manner. 

B. Even and Odd Pell Convolutions 

Let us now introduce *P„ (#), the first convolution of even Pell polynomi-
als, i.e., of Pell polynomials with even subscripts. 

Consider 

where Q2(x) = hx2 4- 2 [by (1.2)] and the nature of the generating function is 
determined by the recurrence relation for the Pell polynomials with even sub-
scripts, which is obtained by a repeated application of (1.1), namely 

Pn(x) = (4x2 + 2)Pn_2(x) - Pn_h(x)* (3.7) 

Then 

( Z/2n + 2 < ^ ) 2 " ( l - g 2 ( X + y ^ (3"8) 
296 [Nov. 



MIXED PELL POLYNOMIALS 

that is, 

>(!) {„\«.n - X̂ 
2 

where 

*P™(x) = E / 2 i W P 2 n + 2 . 2 i W . (3.10) 
^ = 1 

Some expressions for these convolutions are: 

*P<1)Cr) = P2 (x)P2 (x) = kx7-
*P^\x) = P2(x)Ph(x) + Pk(x)P2(x) = 32x4 + 16x2 

-P3(1)(x) = P2(x)P6(^) + Ph(x)Ph(x) + P6(x)P2(x) 

= 192x6 + 192^ + 40x2 

Properties similar to those given in [9; (4.3)9 (4.4)9 (4.5), . ..] may be 
obtained. Analogous to [99 (4.3)], for instances we have the basic recursion-
type relation 

*P?\x) ~ Q2(x)-P(
n
1\(x) 4- *P<1_)2(*) = P2(x)P2n(x) . (3.11) 

If we differentiate in (3*6) w.r.t. y and compare the result with (2.4) , we 
deduce the analogue of [9, 4.4)]: 

2nxP2n+2(x) = Q2(x)^P(
n
1)(x) - 2*P^_\(x)„ (3.12) 

Experimentation has also been effected with convolutions of odd Pell poly-
nomials (i.e.3 Pell polynomials with odd subscripts)9 with convolutions for 
Pell polynomials having subscripts, say9 of the form 3m, 3m + 19 3m + 29 and 
generally with convolutions for Pell polynomials having subscripts of the form 
rm + k. 

For the odd-subscript Pell polynomials9 the recurrence relation is of the 
same form as that in (3.7). Indeed9 x = 1 gives the recurrence 

P-n = 6Pn _ 2 ~ ~Pn„h* 
which is valid for sequences of Pell numbers with even subscripts or odd sub-
scripts. Compare the situation for sequences of Fibonacci numbers with even 
subscripts or odd subscripts for which the recurrence is 

^ n ~JJ- n-2 n - 4 9 

Other possibilities include convolving even and odd Pell polynomials, and 
powers of Pell polynomials. 

Generalizing the above work to results for n th convolutions is a natural 
extension. 

Of course, investigations involving Pell polynomials automatically include 
considerations of cognate work on Pell-Lucas polynomials9 and of a study of 
mixed convolutions of artibrary order, as for i\^,h\x) . 

C. Further Developments 

Among other possible developments of our ideas9 we mention the generation 
of p(k\x) and Q^(x) by rising diagonals of a Pascal-type array as was done in 
[8] for Pn(x) and Qn(x) . Work on this aspect is under way. 

A variation of this approach Is an examination of the polynomials produced 
by the rising (and descending) diagonals of arrays whose rows are the coeffi-
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cients of powers of x in P^k\x) , where n = 1,2, 3, . .., for a given k. Such a 
treatment as this has been done in [6], [7], and [10] for Chebyshev, Fermat, and 
Gegenbauer polynomials. 

Another problem which presents itself is a discussion of the convolutions 
of Pell polynomials and Pell-Jacobsthal 'polynomials which might be defined by 
the recurrence relation 

1. (3.13) Jn + 2&) = Jn + l(X^ + 2xJn(x) JQ (x) = 0, J 1(x) 

Evidently, one can proceed ad infinitum, ad nauseaml Convolution work on 
on Fibonacci polynomials and Jacobsthal polynomials, defined in [5] and [11], 
is summarized in [14]. The chapter on Convolutions in [14], a thesis dedicated 
to the mathematical research of the late Verner E. Hoggatt, Jr., contains much 
other information on convolution arrays for well-known sequences, such as the 
Catalan sequence, studied by Hoggatt and his associates. 

Case x 1 

Following procedures established in [1] and [4] for Fibonacci number con-
volutions, we may demonstrate inter alia the results: 

8p(D = (3n + l)Pn + 1 

8P<1} = nQn + 1 + 2Pn; 
(n + l)Pn. 

p(D = ApCD 
n+h Hn+3 

Q P U ) - O 

• 2P(1) - 4P(1) 
n + 2 Hrn + 1 

P(1)„ = 2Pn2; 

D(D. 

vn + l n-2 

p(D 
n + 3 

D(D 
n+2 

D(D 
' n+1 

" n 

D(D 
' n + 2 

D(D 
'n + 1 

DU) 

p(l) 
n+1 

p(D 
n 

D(D 

?(D 

(1) 
n-1 

(1) 
n-2 

• n-1 

' n-2 

• n - 3 

+ 1. 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

Clearly, all the work in this paper for kth convolutions of the Pell and 
Pell-Lucas polynomials can be specialized for Pell and Pell-Lucas numbers. 
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A GENERALIZATION OF FIBONACCI POLYNOMIALS AND A REPRESENTATION 
OF GEGENBAUER POLYNOMIALS OF INTEGER ORDER 

KARL DILCHER* 
Dalhousie University, Halifax, Nova Scotia B3H 3J5r Canada 

(Submitted September 1985) 

1. INTRODUCTION 

Various sequences of polynomials by the name of Fibonacci and Lucas poly-
nomials occur in the literature. For example, Doman & Williams [2] introduced 
the polynomials 

^ + 1 ( s ) • = £ Vm> (i) 
n + 1 x y <-" \ m I 

m = 0 
[n/2] 

n
 m~Q n - m\ m ) J 

for ?2 = 1,2, 3, . .., and FQ(z) : = 0, F1 (z) : = 1, £0(s) : = 2; [n/2] denotes the 
integer part of n/2. Several properties of these polynomials were derived in 
[2] and, more recently, by Galvez & Dehesa [3]. 

The Fibonacci and Lucas polynomials which occur, for example, in [4], are 
different from but closely related to the Fn (z) and Ln(z). The properties de-
rived in [4] and in the papers cited there can easily be adapted to the poly-
nomials defined in (1) and (2); they mainly concern zeros and divisibility 
properties. 

In [2], the connection to the Gegenbauer (or ultraspherical) and Chebyshev 
polynomials C®(z) and Tn(z) was given, namely 

C£03) = (2z)nFn + 1(~l/l>z2), 

Tn{z) = \{2z)nLn(-l/^z2). 

We also note that Cn(z) - Un(z) , the Chebyshev polynomial of the second kind. 
Because 2Tn(z) = riC®(z) (see, e.g., [1], p. 779), we now have 

Fn + 1{z) = (-s)w/2c£(l/2i/=S), (3) 

^Ln{z) = (-z)n/2C°n(l/2/^); (4) 

here and in the following the square root is to be considered as the principal 
branch. 

The purpose of this note is to use these identities as a starting point to 
define a wider class of sequences of polynomials which contains (1) and (2) as 
special cases, and to derive some properties. 

*Supported by a Kill am Postdoctoral Fellowship. 
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OF GEGENBAUER POLYNOMIALS OF INTEGER ORDER 

2. THE POLYNOMIALS F™ (z) 

For k = -1, 0, 1, ..., we introduce 

F^\z) : = (-z)n/2Ck
n

 + 1a/2^~z); (5) 

by (3) and (4)9 we have the special cases 

F<°Hz) = Fn + 1(z) and F^x\z) = L„ (z) In. 

We now use the explicit expressions for the Gegenbauer polynomials (see, e.g., 
[1], P- 775): 

for a >.-l/2, a ̂  0, and 

1 T(a + n - m) _ (n+k -m)\ _ tn + k- m\/n + k- 2m\ 
r(a) ml (n-2m) I ~ klml (n - 2m) \ ~ \ m ) \ k ) 

The connection between (7) and (2) is immediate and, for a=k + 1 M , we have 

')c 
with (6) and (5), this yields the explicit expression 

*B
(k)(*> =[n£](n+k

m-m)(n+k
k-2my, (8) 

m = 0 

for k ̂  0. This could also serve as a definition of the F^k\z) , in analogy to 
(1). 

3- SOME PROPERTIES 

With (5) and the recurrence relation for Gegenbauer polynomials (see, e.g., 
[1], p. 782) , we obtain 

(n + 1)^(3) = (n + k + l)F?\z) + (n + 2k + l)zF«\(z) . (9) 

More properties of the F„ (z) can be derived, with (5), from the corresponding 
properties of the Gegenbauer polynomials. This includes generating functions, 
differential relations, and more recurrence relations; we just mention 

•j-z F^tz) = (k + l)F^(z) (for k>0), 

and 

fZ
L^Z) =nFn-l^> <10> 

which can also be verified directly using (8), (1), and (2). If we differen-
tiate the recurrence 

which, by (9), holds for Ln(z) and Fn(z)9 we get, with (10), 

(n + l)Fn(z) = nFn_1(z) + Ln_1(z) + (n - l)zFn_2(z); 

this, combined with (11), for Fn(z), yields 
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Ln_x{z) = 2Fn(z) - Fn_1(z). 

This last equation can also be derived from the corresponding well-known iden-
tity connecting the Chebyshev polynomials of the first and second kind. 

The following recurrence relation involves polynomials F^ (z) of different 
orders k ^ 1. 

0*> -^lOO -^n^) 'ft?™. 
which can be verified by elementary manipulations, using (8). 

k. THE F^k\z) AS ELEMENTARY SYMMETRIC FUNCTIONS 

We begin with the following 

Lemma: (a) For integers n ^ 0 and for complex z £ 1 and x, we have 

_ £ ( - D J > / " - ' ' > (*)*»-J = (a - i ) X + i ( ( g - i ) 2 ) (12> 

i if n is odd, 

(b) E (-i)^,(n"J'}(x) = 
^n/2 ^£ n ^g e v e r i e 

Proof: Let / (#, z) denote the left-hand side of (12). With (8) 5 we have 
' n 

f <*, *) = E (-DJ' fE] ( M " T " ^ v j ' 
[n/2] 

i 1 f ; - ) J ! : i iH,(-3 , - ' 
E,«-rr)"E"(-D'("V'")'=" n -2m - j 

which yields assertion (b) if we put 3 = 1 . For z £ 1, we have 

which proves (a). 

Proposition: For k = ls 2, ..., n, we have 

*f-*><*) = E <n)(*) ... 4°(*)5 
* 1<J-1<...<4<. Jl 

where * 
4n)0r) : = 1 + 2vQc cos JTF 
J v y * n + 1 

Proof: Because-C*(2) = Un (z) , we have, with (3) and the definition of 
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= (2co8_i" )""„ (cos_^L\. 
\ n + 1/ n\ n + 1/ 

Now cos(jTT/(n + 1)), for j = 1, 2, ..., n, are known to be the zeros of the 
Chebyshev polynomials of the second kind Un (z) . Furthermore, if n is odd, then 
cos (JTT / (n +1)) = 0 for j = (n + l)/2, in which case A. Or) = 1 for all x. So 
we have, by both parts of the Lemma, 

t (~DkFh
(n-k) (x)(A(n)(x))n-k = 0 

k = o k d 

for all J = 1, 2, . ..,n. But this means that the F^n~k)(x)9 k = 0, 1, . . . , n, 
with x held constant, are the elementary symmetric functions of the n roots 
Aj(x) of f(x9 z) = 0. This proves the Proposition. 

Finally, if we let x- l/2v-s, the proposition together with (5) yields the 
following representation of the ultraspherical polynomials of integer order. 

Corollary: If k > 1 is an integer, then 

Ck(x) = 2n E (x + cos J ^ - ) • ••• - U c o s - % V ) . 

In closing, we note that [5] and [6] deal with Gegenbauer polynomials from 
another (related) point of view. 
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1. INTRODUCTION 

For k = 09 1, 2, . .., let: Jk(z) be the Bessel function of the first kind. 
Put 

m „m 

and define the polynomial um(k; x) by means of 

klfk(xz)/fkW = Zum(k; x ) m l ( m
z

+ k ) l , (1.2) 

Certain congruences for wm(x) = um(0; x) and the integers wm = Wm(0) were de-
rived by Carlitz [3] in 1955, and an interesting application was presented. 

The purpose of the present paper is to extend Carlitzfs results to the 
polynomials um(k; x) and the rational numbers um(k) = um(k; 0). 

In particular, we show in §§3 and 4 that, if p is a prime number, p > 2k9 
and 

m = oQ + o±p + cjp2 + - - • (0 < cQ < p - 2k) 

(0 < oi < p for i > 0), (1.3) 
then 

um(k) = uCo(k) • wCiWC2 ... (mod p ) , (1.4) 

um(k; x) = uCo(k; x) • wCi(x) • w%2(x) ... (mod p) . (1.5) 

In §5, we prove more general congruences of this type. In §6, applications of 
these general results are given. Finally, in §7, we examine in more detail the 
positive integers un(l). 

2. PRELIMINARIES 

Throughout the paper, we use the notation Wm(x) - um(0; x) and wm = ZJOT(0). 

In the proofs of Theorems 1-6, we use the divisibility properties of bino-
mial coefficients given in the lemmas below. These lemmas follow from well-
known theorems of Kummer [4] and Lucas [5]. 

Lemma 1: If p is a prime number, then 

©M™) <~p>-
Also, if p - 2k > s ^ 0, then, for j = s + 1, s + 2 , . . . , p - l , 

,rvg +s +kunp + e + k\ B Q ( }> 
\rp + j + kl\ TV + j / r 
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Lemma 2: Suppose p is a prime number and 

n = nQ + n^p + ••- + n-p3 (0 < ni < p ) , 

p = P0 + Pxp + •.. + r^pJ (0 < vt < p)5 

If 5 for some fixed i, we have r- > n- and v. , > n-^ for y = l,...,t-l, 
then 

(£) ~ 0 (mod p*). 

Lemma 3: Let p be a prime number, p > 2fc. Then 

/n + /c\/n + fe\//n + k\ 
\r + &A r ) / \ k ) 

is integral (mod p) for v = 09 1, ... . , n. Also 

(^) / (7)MV) <-p>-

3- THE NUMBERS wm(fe) 

We first note that the numbers um(k) were introduced in [2], where Carlitz 
showed they cannot satisfy a certain type of recurrence formula. 

It follows from (1.2) that 

Thus , we have u0(k) = u±(k) = (kl)\ 

uAk) = (kl)2(k + 3)/(fc + 1), 

*3VAW - ^;2'7-2 -" °7- ̂  ^ / ^ - ^ 2 

and 

u3(k) = (k!)2(&2 + Sk + 19)/(fc + 1)2
S 

£<-l>r(ZtkT$k)u*™ - ' ° (/??>0)- (3-2) 

It follows from (3.2) and Lemma 3 that if p is a prime number9 p> 2k5 then 
the numbers um(k) are integral (mod p); in particulars un(0) and wn(l) are 
positive integers for n = 0 5 ls 25 ... . 

Theorem 1: If p is a prime number and if 0 ̂  s < p - 2k, then 
wwp + e(k) = u8(k) • wn' (mod p). (3.3) 

Proof: We use induction on the to t a l index np + s. If np + s = 0, (3.3) holds 
since U0 = 1. Assume (3.3) holds for a l l rp + j < np 4- s5 with j < p - 2fe. We 
then have, by (3.2) s 

, n w + s + i / s +• fe\ / 7 v -V*1 v- / i\J + r(s + ^ V s + k\(n\2
 n , 

+ wy^W(5:*)CJ*>.^«) 
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_ JO + (-l)n + S + 1 ( S + ̂ w^tfc) (mod p) if s > 0, 

i(-l)n + 1Wnuo(/c) (mod p) if s = 0. 
We see that (3.3) follows, and the proof is complete. 

Carollary (Carlitz): With the hypotheses of Theorem 1 and with m defined by 
(1.3) with k = 0, 

Wm = WaQ
Wc1^c2 • • • (mod p ) . 

Corollary: With the hypotheses of Theorem 1 and with m defined by (1.3), 

um(k) = uc (k) • wc w0 ... (mod p). 

Theorem 2: If p is a prime number, p > 2k9 then 

unp_k(k) = (-l)kuQ(k) • wn (mod p). 

Proof: The proof is by induction on n. For n = 1 we have, by (3.1), 

( - i ) k u p .^) , P E" o Vir( r ^)( p > r w/( | ) 

= uQ(k) = uQ(k) • wx (mod p ) . 

Theorem 2 is therefore true for n = 1; assume it is true for n = 1, ..., s - 1. 
Then 

+;?!<-i>--'(S)U'*K-«w>/m 

5 M,«)"E(-1)'( ° ) 2 » , 5 <-l)*"V(Ml>, (nod p). 
p = 0 V 

This completes the proof of Theorem 2. 

If 772 is defined by (1.3) with oQ = p - k9 and if ci = p - 1 for 1 < i < j - 1 
with Oj < p - 19 then Theorem 2 says 

wm(fe) = uCQ(k) «Wl + c.WCj + i Wc. + i ... (mod p ) . 

In particular, if p > 2/c, and n = pt - k9 

unW) = up_k(k) = (-l)kW(J(fc) = (~l)k(k\)2 (mod p). 
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k. THE POLYNOMIALS um(k; x) 

We now consider the polynomials um(k; x) defined by (1.2). It is clear 
that 

um(k; 0) = um(k)9 um(k9 1) = 0 (m > 0). 
Also, it follows from (1.1) and (1.2) that 

[ k )um(k; x) = £ (-1) (r + fc)( r )ur(k)x . (4.1) 

Theorem 3-' If p is a prime number and if 0 < s < p - 2fc, then 
w„p + s(fe; a?) = us(fc; a;) * wnp (#) (mod p). (4.2) 

Proof: The proof is by induction on the total index np + s. We first note that 

u0(k; x) = uQ(k; x) » wQ(x) (mod p ) , 

since WQ(x) = 1. 
Assume ( 4 . 2 ) i s t r u e f o r a l l rp + j < np + s w i t h 0 < J < p - 2k. Then, by 

( 4 . 1 ) and ( 3 . 3 ) , 

Is + k\„ (Vt ^ - nPYS (_-\>n- s-r(np + s + k\(np + s + k\ 
r=0 {*: "K„«; *> = "%\-ir'~*("p+r*k)(VXkh*™*"p*' 

?i iiVVNT+'jli)™""'^.,** np - rp + s - j 
-» IV J- / LA. i -• V t\. I 0~J 

j = o r - ( T rP + J A r p + J-

z ifflTJTIK"'"^^-'" j = 0 r = 0 J A J 

E ( S ^ )ws(fe; x ) » z ^ ( x p ) E (^ g )ws(fc; # ) • w„p (x) (mod p ) . 

T h i s c o m p l e t e s t h e p roo f of Theorem 3 . We n o t e t h a t Theorem 1 was u sed i n t h e 
p r o o f . 

C o r o l l a r y ( C a r l i t z ) : With t h e h y p o t h e s e s of Theorem 3 and w i t h m d e f i n e d by 
( 1 . 3 ) w i t h k = 0 , 

wm(x) E wc (X) • wv
Q (x) • wv

Q (x) . . . (mod p ) . 

Corollary: With the hypotheses of Theorem 3 and with m defined by (1.3), 
um(k; x) = UCQ (k; x) • w^ (x) * w^ (x) ... (mod p) . 

5. GENERAL RESULTS 

For each integer k > 0, let {Fn(k)} and {Gn(k)}, n = 0 , l,2,...5be poly-
nomials in an arbitrary number of indeterminates with coefficients that are 
integral (mod p) for p > 2k. We use the notation Fn(0) = Fn and Gn(0) = Gn, 
and we assume F - G = 1. For each m of the form (1.3), suppose 

Fm (k) = FCn (k) • F? • F**. . . (mod p) , (5.1) 

1987] 307 



THE RECIPROCAL OF THE BESSEL FUNCTION Jk(z) 

Gm(k) = GCQ (fc) • GP
Ci -G%2... (mod p ) . (5.2) 

For each integer k > 09 define Hn(k) and Qn(k) by means of 

(" ̂  >„<*> = i:o(-l)B-r(n J
 k)(r +

+ l)Fr^n-riK) (5-3) 
and 

(n J *)*„<*> = £ o ( - i > - T r *)(" t £)«,<*>*».,<*)• <^> 
Theorem k: Let the sequences {Hn(k)} and {§n(fc)} be defined by (5.3) and (5.4), 
respectively, and let Hj=Hj(0)9 $j- = Gj(0). If p is a prime, 0 <s <p - 2&, 
then 

Hnp + S(k) = Hs(k) *Hnp (modp). (5.5) 

If G0(k) ? 0 (mod p) , we also have 

Qnp + S(k) = Qs(k) • Qnp (mod p). (5.6) 

Proof: From (5.3), we have 

£,.„.«(.; *)(;+ *fc<»e..,<» • s<-.)"'(;)'« 7 / S + k\(S + fc\„ , 7 . N ^ /7.N . V* / 1\n + Vin\2TjP^P 
r 

= (S + *)*„(*> • Hl= (S + fc)ffs(fe) • Hnp (mod p ) . 

This completes the proof of (5.5). 

As for (5.6), we first observe that for n = 0 and 0 K s < p - 2k9 congru-
ence (5.6) is valid. Assume that (5.6) is true for all rp + j < np + s with 
0 < j < p - 2k. Then, from (5.4), we have 

- ( s + *)«,<*)<?„.(*>«» + ( s + fe)^p+s(fe)G0(« 

= (S +
s
 k)Fe(k) • FV

n - (S +
s
 k)Qs{k)G,{k)Ql 

+ (* s k)QnP + s(k)G0(k) (mod p ) . 

Now, s i n c e Fnp + S (k) = Fs (k) • Fnp (mod p ) , we have 

and t h e p roof i s c o m p l e t e . 

C o r o l l a r y ( C a r l i t z ) : Using t h e h y p o t h e s e s of Theorem 4 w i t h m d e f i n e d by ( 1 . 3 ) 
and k = 0 , 

Em =H0Q • < °H^ . . . ( m o d p ) , 
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Qm = Qao • < • QP
C2 • • • (mod p ) . 

Corol la ry : Using the hypotheses of Theorem 4 with m defined by ( 1 . 3 ) , 

Hm(k) = HCQ (k) • HP
C± • El] • * " (m o d P> • 

If £Q(fc) t 0 (mod p ) 5 we a l so have 

«*,<*> E «*,<*>•< ' « £ ••• (™dp). 

6. APPLICATIONS 

As an application of Theorem 4, for each integer k ^ 0 consider the expan-
sion 

4 (^i s ) "m fk^8Z^ n = 0
n n l ( n + k)l 

where fk(z) is defined by (1.1), r, s are arbitrary nonnegative integers, and 
the xi , z/£ are indeterminates (not necessarily distinct). By (1.1) and (3.1), 
Fn(k) is a polynomial and y±9 . .., z/s with coefficients that are 
integral (mod p) if p > 2fc. The following result may be stated. 

Theorem 5- If w? is of the form (1.3), then the polynonial Fm (k) defined by 
(6.1) satisfies 

Fm (fc) E FCQ (k) • *£ • F?o . . . (mod p) , 

where Î- = Fj (0) . In particular, if the x^9 y. are replaced by rational num-
bers that are integral (mod p), then 

Fm (k) = Fao (k) • FCi FC2 ... (mod p). 

As a special case of (6.1), we may take 

(feir^wr-Byft)nl(;+fc), 
Then the u^\k) are integral (mod p) if p > 2/c5 and they satisfy 

w^fc) = *<£(&) • M^(0) • «<£((>) . . . (mod p) 

for all v (positive or negative). 

7* THE NUMBERS w„(1) 

For n = 0,1,2,..., let Wn = wn(0) and let wn = wn(l). The positive inte-
gers wn were studied by Carlitz [3] and were shown to satisfy (1.4) (with k = 
0). Since the un are also positive integers, it may be of interest to examine 
their properties in more detail. The generating function and recurrence for-
mula are given by (1.1), (3.1), and (3.2) with k = 1. From them we can compute 
the following values: 

1 u5 = 321 
u6 = 3681 
u7 = 56197 
ua = 1102571 

u0 
u2 
u3 
uh 

= ux 
= 2 
= 7 
= 39 
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Suppose that p is an odd prime number and that m is defined by (1.3) with 
0 < c < p - 3. Then9 by Theorems 1 and 2, we have 

um = UCQWCIWC2 ... (mod p ) , (7.1) 

Wnp+(p-l) =~Wn+l (m° d P)- <7*2) 

The ease oQ = p - 2 is considered in the next theorem. This theorem makes 
use of the positive integers hn defined by means of 

{^wy/iJowy = i hn
 {Z'}]T (7.3) i2n 

n-^o ninl 

These numbers are related to the integers an defined by Carlitz [1]: 

an = 22nnl(n - l)!a2n(0), 

where a2 (0) is the Rayleigh function,. It can be determined from properties of 
an that a generating function is 

as well as 

y ^ u ^ v = f « „ + 1 ^ . (7.5) 

Now it follows from (3.1), (7.3), and (7.5) that 

n-l 

E 
r= 0 

hn = E ( " ) w r a w + 1 . r (n > 0 ) , (7.6) 

( - D n « „ + 1 = r E o ( - l ) r ( p ) 2 ? J - ( n > 0 ) . (7.7) 

^IXI iK"-^ 1 ^ ' (7-8) 

The f i r s t few values of 7zn a re /zQ = 09 h1 = 1, 7z2 = 8, h3 = 96, Tẑ  = 1720. 

In the proof of Theorem 6, we use the r e l a t i o n s h i p 

n - i 

£( 
which follows from (7.4). 

Theorem 6: If p is an odd prime number, then 

^np+(p-2)E u
p-2Wn " ̂  (mod P>» 

where /zn is defined by (7.3). 

Proof: The proof is by induction on n. The theorem is true for rc = 0, since 
hQ = 0 and W0 = 1- Assume that Theorem 6 is true for n = 0, ..., s - 1. Then 
by (3.2), (7.1), (7.2), and (7.8) we have 

r_n*-i„ - f Pv\-i^+^pP + P ~ l\(sP + P ™ MM 

(1) W s p + ( p- 2 )-^ o ^ Q ̂  ̂  ^ pp + j )[rp + j + l)Urp + j 

p = 0 j = p - 2 ^ ^ ^ ^ 
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•;?w^)^+;?w+,(;)u>«> 
= <-l)*-\.2», + (-1)**. + < - » - \ + l + (-D*a,„ 

s (-l)""1^,^, - hs) (mod p). 

This completes the proof of Theorem 6. 

Using (7.7) we can prove, for p > 2S 

n̂p + s = ̂ s
un (mod P) (0 < S < p - 2), 

hnp+(p-l)E hp-lWn + hn (mod P>-

Theorem 6 can be refined by means of these congruences. For example, if m is 
defined by (1.3) with cQ = p - 2 and c1 = 05 we have 

Ww E
 uo^o^cz ••• (mod P)-

The proofs in this section are not valid for p = 2. However, it is not 
difficult to show by induction that if 777 ̂  2 (mod 4) then um is odd. The proof 
is similar to the proofs of Theorems 1-6. If m = 2 (mod 4)9 we can write 

m = 4n + 2 = 2y+1j + 2y - 2 
for some v > 1. Using (3.2) and induction on n9 we can prove 

_ (0 (mod 2) if V is evens 
^m " \l (mod 2) if z; is odd. 

Thuss for p = 29 we have the following theorem. 

Theorem 7̂  If w = c0 + ex2 +. c222 + •••, with each e. = 0 or 13 then 

um = uc uc uc ... (mod 2), 

unless 772 = 2v + 1j + 2y - 2 with z; evens V > 2. 
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CHARLES R. WALL 
Trident Technical College, Charleston, SC 28411 

(Submitted September 1985) 

1. INTRODUCTION 

A divisor d of an integer n is a unitary divisor if gcd (d9 n/d) = 1. If 
d is a unitary divisor of n we write d\\n9 a natural extension of the customary 
notation for the case in which d is a prime power. Let o * (n) denote the sum 
of the unitary divisors of n: 

o*(n) = £ d. 

d\\n 

Then o* is a multiplicative function and G*(pe)= 1 + pe for p prime and e > 0. 
We say that an integer N is unitary perfect if o* (N) = 2#. In 1966, Sub-

baro and Warren [2] found the first four unitary perfect numbers: 
6 = 2*3; 60 = 223 - 5 ; 90 = 2 * 325; 87,360 = 263 • 5 • 7 • 13. 

In 1969s I announced [3] the discovery of another such number, 

146,361,936,186,458,562,560,000 
= 2183 • 5^7 • 11 • 13 • 19 • 37 • 79 • 109 * 157 • 313, 

which I later proved [4] to be the fifth unitary perfect number. No other uni-
tary perfect numbers are known. 

Throughout what follows, let N = 2am (with m odd) be unitary perfect and 
suppose that K is the largest odd component (i.e., prime power unitary divisor) 
of N. In this paper we outline a proof that, except for the five known unitary 
perfect numbers, K > 2 

2. TECHNIQUES 

In light of the fact that 0*(pe) = 1 + pe for p prime, the problem of find-
ing a unitary perfect number is equivalent to that of expressing 2 as a product 
of fractions, with each numerator being 1 more than its denominator, and with 
the denominators being powers of distinct primes. If such an expression for 2 
exists, then the denominator of the unreduced product of fractions is unitary 
perfect. The main tool is the epitome of simplicity: we must eventually divide 
out any odd prime that appears in either a numerator or a denominator. 

If p is an odd prime, then o*(pe) = 1 + pe is even. Thus, if some of the 
odd components of a unitary perfect number N are known or assumed, there is an 
implied lower bound for a, where 2a\\N9 since all but one of the 2fs in the nu-
merator of o*(N)/N must divide out. Another lower bound, useful in many cases, 
is Subbarao?s result [1] that a > 10 except for the first four unitary perfect 
numbers. 

*This paper was written while the author was Visiting Professor at The Uni-
versity of Southwestern Louisiana, Lafayette, LA. 
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A simple program was run on a microcomputer to find9 for each odd prime 
p < 2 1 5 , the smallest A for which 2A E ±1 (mod p). If 2A E 1 (mod p ) 9 then p 
never divides 1 + 2a. If 2A = -1 (mod p ) , then p divides 1 + 2 a if and only if 
a is an odd integer times A, and we refer to A as the entry point of p. 

If an odd prime p has entry point ̂  and p2l(l + 2^), it is easy to see that 
2 P _ 1 E 1 (mod p 2 ) . There are only two primes less than 3 • 109 for which this 
this phenomenon occurs, and they are 1093 and 3511. Then 1 + 2A would have a 
component larger than 106. Thus5 for the primes p < 2 1 5 under consideration 
here, either p never divides 1 + 2a or p||(l + 2A) or 1 + 2a has a component 
larger than 21 5. 

The odd primes less than 2 having entry points were ordered by entry 
point. Then it was a fairly easy procedure to consider algebraic factors and 
conclude that 1 + 2a has all components less than 2 1 5 for only a < 11 and the 
a shown in Table 1. 

Table 1 

2a 
2 1 1 

2 1 2 

£13 

2 " 
215 

218 

2 2 1 

2 2 2 

1 + 2a 

3*683 j 
17*241 
3*2731 
5*29*113 
32*11*331 
5*13*37*109 
32*43*5419 
5*397*2113 

2 2 \ 
225 

226 

o3 0 

233 

234 

2k2 

246 

278 

97*257*673 
3*11*251*4051 
5*53*157*1613 
52*13*41*61*1321 
32*67*683*20857 
5*137*953*26317 
5*13* 29*113*1429*14449 
5*277*1013*1657*30269 
5* 132*53*157*313*1249*1613*3121* 21841 

In many of the proofs, cases are eliminated because under the stated con-
ditions o*(N)/N would be less than 2* A number n for which o*(n) < 2n is called 
unitary deficient (abbreviated "u-def"). Finally, we will write a - A • odd to 
indicate that a is an odd integer times A. 

3* PRELIMINARY CASES 

If Z = 3 , we have 3|a*(2a), so a is odd. But N is u-def if a > 3, so a = l ; 
hence, N = 2 e 3 = 6, the first unitary perfect number. 

If Z = 5, we immediately have 3\\N and a = 2 • odd. But N is u-def if a > 6, 
so a = 21 therefore, N - 223 m 5 = 60, the second unitary perfect number. 

Note that Z = 7 is impossible, because 7 never divides 1 + 2a. In general, 
the largest component cannot be the first power of a prime that has no entry 
point. 

If Z = 3 2 = 9, then 511/1/, and O*(5) uses one of the two 3fs. To use the other 
3, we must have 3|a*(2a), so a is odd. Now, 7/71/ or else 7|a*(2a)9 which is im-
possible. Then N Is u-def if a > 3, so a= 1; hence, N = 2 • 325 = 90, the third 
unitary perfect number. 

If K = 11, then li[a*(2a), so a = 5 odd; hence, 3|a*(2a). But 3la*(ll) as 
well, so 32ll/l/. Then 5la*(32), so 511/1/, and since 3la*(5) we have 33\N9 contra-
dicting the maximality of K. 

If Z = 13, we have 13|a*(2a), so a = 6 odd; hence, 5|a*(2a). Then 511/1/, so 
311/1/ because 32\\N would imply 52\NS a contradiction. Because 1311/1/, we have 711/1/, 
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but we cannot have ll\\N or else 32\N. But N is u-def if a > 189 so a - 6, from 
which it follows that N = 263 • 5 • .7 • 13 = 8793609 the fourth unitary perfect 
number. 

We have now accounted for the first four unitary perfect numbers. In light 
of SubbaraoTs results [1], we may assume that a > 10 from now on. 

Now suppose a = 78. Because 313- 1249la*(278) and the squares of these 
primes exceed 2 1 5 , we have 313* 124911/1/. But 1572 I a* (278 313) , so 1572\\N. How-
ever, 57la*(27815721249), so 57\N. But 57 > 2 1 5 , so a = 78 is impossible. 

At this stage, a table was constructed to list all odd prime powers which 
might be components in the remaining cases. For the sake of brevity, the table 
and most of the remaining proofs are omitted here. However, the table may be 
obtained from the author. The table was constructed to include: (1) the odd 
primes that appear in Table 1 (except for a = 78); (2) all odd primes dividing 
o*(q)9 where q is any other number also in Table 2 below; and (3) all allowable 
powers of primes also in Table 2. A "possible sources" column listed all com-
ponents of unreduced denominators in 0*(N)/N for which a particular prime might 
appear in a numerator; multiple appearances were also indicated. 

Insufficient entries in the "possible sources" column allow us to elimi-
nate some possible components,. For example, there are only two possible sources 
for 23, so 233 cannot occur. We eliminate: 233; 312; 313; 672 and hence 449; 
712 and hence 2521; 732; in succession, 792,3121, and 223; successively, 1012, 
5101, and 2551; successively, 1312 , 8581, 613, and 307; successively, 1392, 9661, 
4831, 1512, 877, and 439; successively, 1492, 653, 1092, 457, 229, and 232; and 
successively, 1812, 16381, and 8191. 

k. REMAINING CASES 

We have 11 ̂  a ^ 46, so there can be no more than 47 odd components. The 
smallest odd component must be smaller than 17 because a o*(N)/N ratio of 
1.926... occurs if N is the product of 2 1 1 and the following 47 prime powers: 

17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 61, 67, 73, 
79, 83, 97, 101, 109, 113, 121, 131, 137, 139, 149, 151, 157, 
169, 181, 191, 193, 199, 211, 241, 251, 257, 269, 271, 277, 
281, 313, 331, 337, 397, 421 

If 832\\N9 then 331 • 829l'ltf. If 829 is a component, then 1657 is also, and 
hence a ~ 46. Now, 331 is a component only if a = 15 or 6611171/, and since a = 
46, 66111/1/. But then 1321 \\N 9 so a = 30, a contradiction. Therefore, 832 cannot 
be a component. 

Suppose a = 46. Then 277 • 1013 • 1657 • 3026911/1/, so 139 * 829 • 100911/1/, hence 
83 • 101ll#. Therefore, 3^5572132 \N9 so 111121/, because there must be a component 
smaller than 17, and a*(11) contributes another 3 to the numerator of o*(N)/N. 
Now, either 55\\N or 56 \\N. If 55\\N9 then 5211171/ and we have, successively, 292, 
421, 211, and 53 as components; but then 310\N9 which is impossible. Thus, 
5S\\N9 so 601IW, hence 431/1/* But 431171/ or else there are too many 5fs. Now, 
731171/ .would force 432 \N9 and 7h \\N would force 12011171/, hence 60l2\\N9 so 75\\N; 
however, then ll2\N9 a contradiction. Therefore, we may eliminate a - 46. As 
a result, we may eliminate 277, 1657, 829, and 30269 as components, then 139 
and 1009, and then 101. 

For the sake of brevity, the other cases, except a = 24, are summarized in 
Table 2. 

314 [Nov. 



ON THE LARGEST ODD COMPONENT OF A UNITARY PERFECT NUMBER 

Table 2 

CASE 

2^2*173 

2"2*7 
2"t2 

2 2 6 

532 
234 
233 

412 

230*61 
230 

2 2 5 

2 1 1 

2 1 3 

1 2 1 5 

1 21!**292 

2lk 

ELIMINATED 

2^2*173 

2*2*7 
2"2; 1132; 1277; 71 
226 

532; 281; 472 

231*; 26317; 13159; 47 
23 3; 67 
412 

230*61 
230 
2 2 5 

2 1 1 

2 1 3 

2 1 S; 441; 83 
2 i ^ 2 9 2 

2 1 4; 113 

CASE 

212*ll" 
212*113 

2 1 2 

221*432 

221*5 
2 2 1 

612 

193 

222*192 

222 

218*372 

218*192 

! 218*53 

! 218*55 

, 218*56 

218 

ELIMINATED 

212*114 

212*113 

2 1 2 

221*432 

221*5 
2 2 1 

612; 1861 
193 

222*192 

2 2 2 

218*372 

218*192 

218*53 

218*55 

218*56 

2 1 8 unless N = W; 109 

The ordering of cases presented in Table 2 works fairly efficiently. The 
reader should rest assured that sudden departures from an orderly flow are de-
liberate and needed. The case a = 24 is especially difficult, and so is pre-
sented here. 

Suppose a = 24. We immediately have 257' 67311/1/, hence 337II/V, so 132\N. To 
avoid having N u-def, the smallest component must be 35 5, or 7. 

If the smallest component is 79 then 972\\N or else 97\\N and 721N. There-
fore, 94111/1/, so 19311/1/. Then 3211 • 1711/1/ or N is u-def. But 33la*(l7 • 257), so 
33\N> a contradiction. Thus, the smallest component is not 7. 

If the smallest component is 3, there are no more components = -1 (mod 3) 
as 3la*(257). Then we must have 7, 19, 25, and 31 as components or N is u-def. 
But then, no more than nine more odd components are allowable, and N is u-def. 
Therefore, the smallest component must be 5. 

Because 511/1/, we must have 4311/1/, since 52la*(432). We know that 132l/l/, so 
either 132\\N or 133ll/l/ or I3h \\N. 

Suppose 13h\\N. We cannot have 52 or 56 as components, so we must have 181 
and 173. Starting with 22tf5ll/l/, we have, successively, as unitary divisors, 
257 • 673, 337 • 43, 134, 173181 • 14281, and 192193. Because 192\\N, we must have 
3S37\\N. But 372la*(3913281) , contradicting 3711/1/. Therefore, 13^ is not a com-
ponent. 

Suppose 133\\N. Then 15711/1/ or else 1572\\N5 hence 52\N. Consequently, 7911/1/ 
and no more components = -1 (mod 5) are allowable. Then 9711/1/ or else 97 \\N9 
hence 52l/l/. If 73\\N$ then 432l/7, which cannot be, and if 7k\\N, then 120111/1/, so 
60111/1/, and again 432l/l/. Therefore, 75\\N9 so 191II/V. But then N is u-def. 

Hence, 132\\N9 so no more components = -1 (mod 5) are allowable. In parti-
cular, we must have 9711/1/ to avoid 972ll/l/, and then we must have 3373l/17. But 
then N is u-def, so a = 24 is impossible. 
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INTRODUCTION 

A natural bisection between the class of lattice paths from (09 0) to (2/7?, 
2m) having the property that, for each (x 9 y) in the path, (2m - x9 2m - y) is 
also on the path and the class of partitions of 2m2 into at most 2m parts, each 
part < 2m and the parts which are strictly less than 2m can be paired such that 
the sum of each pair is 2m, is shown. 

1. DEFINITION AND THE MAIN RESULT 

Describing the n-reflected lattice paths [paths from (0, 0) to (n9 ri) hav-
ing the property that, for each (x 9 y) in the path, (n - y, n - x) is also on 
the path] of the paper "Hook Differences and Lattice Paths" [1] as n(y 9 x)-
reflected, we define here n(x9 y)-reflected lattice paths as follows: 

Definition: A lattice path from (0, 0) to (n, ri) is said to be n(x9 y)-reflec-
ted if, for each (x9 y) in the path, (n - x9 n - y) is also on the path. 

Example: The two 2(x9 y)-reflected lattice paths are: 

In the present note we propose to prove the following. 

Theorem: The number of partitions of 2m2 into at most 2m parts each < 2m and 
the parts which are strictly less than 2m can be paired such that the sum of 

/2m\ each pair is 2m equals I ). 

2, PROOF OF THE THEOREM 

We describe a partition of 2m2 as a multiset 

y = \i(m) : = [al9 ..., as ] 

of s(e {1, 2, ».., 2mz}) positive integers a- (i = 1, 2, . . . , s) such that 

£ ai = 2m2 (conventionally, a± ^ a2 > *BO ^ as) 
i = 1 
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In this notation let §>{m) denote the set of all partitions y = [a19 a29 .-.J as] 
of 2m2 such that s < 2m 9 2m > a± ^ a2 ^ ••* ^ #s ; and, all of the <Zj for which 
aj < 2m can be paired such that the sum of each pair equals 2m. Further, let 
3(772) denote the set of all 2m(x, z/)-reflected lattice paths. To establish a 
one-to-one correspondence from §>(m) onto 3(7??), we represent any y = [a±9 a2, 
..., as] e §>(m) by its Ferrers graph in the coordinate plane as follows: 

We fit the leftmost node of the ith row of nodes (counted by a^) over the 
point (0, 2777 - i + 1) as shown in Graph A (in the graph, m = 3 and y = [6, 5, 
3, 3, 1]). 

(6, 6) 

* ® 
• # 

Graph A 

We now place crosses at one unit of length below every free horizontal node 
and at one unit of length to the right of every free vertical node. Through 
these crosses, we then complete the lattice path from (0, 0) to (27??, 2???), as 
shown in Graph B. 

1 * 

® 

® 

X 
X 

* 
X 
X 

® 

X 
X 
X 

x(6, 6) 
X 

Graph B 

We observe that each partition y corresponds uniquely to a 2m(x9 y)-re-
flected lattice path. It may be noted here that the corresponding path will 
not be 2m(x9 2/)-ref lected If 

s = 2TT? = ax. (1) 

For, in this case, (2777, 2??? - 1) belongs to the path, but (0, 1) = (2??? - 2TT?, 
2?T? - (277? - 1)) does not. Therefore, in order to prove that the correspondence 
is one-to-one and onto, we first rule out the possibility (1) under the condi-
tions of the theorem. There are only three possible cases: (i) a1 > a2. In 
this case, if (1) is true, then there are 2m - I parts, viz. a2, ...5 as , that 
are strictly less than 2TT?. Being odd in number, these parts cannot be paired; 
hence, (1) is false. (ii) a1 = a2 = • • • = ar> where r (> 1) is odd. In this 
case, if (1) is true, then the number of parts that are < 2??? is 2m-r. Again, 
since 2m-r is odd, the parts that are < 277? cannot be paired; hence, (1) is not 
possible. (iii) a± = a2 =••• = ar9 where r {> 2) is even. As in the previous 
case, if (1) is true, then the number of parts that are < 2TT? is 2m-v. But in 
this case, 2m-v is even. So the parts that are < 2??? can be paired. However, 
since the sum of each pair is 277?, the number being partitioned is: 
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2m • r + (2m - r) 2m 2m2 + mv > 2m2 . 

This is a contradiction since we are considering the partitions of 2m2. Thus, 
(1) does not hold true. 

We also note that each 2m(x, z/)-reflected lattice path uniquely splits km1 

into two identical partitions of 2m2, say, \(m) and y(m). (See Graph C, where 
m = 3 and A(3) = [6, 59 39 3, 1]). 

1 * 
( 0 , 0)^ 

r 

1 • 
I @ 
L © 
I © 

f X 
k x 
^ — e — 

X(3) 
• 
• 
• 
# 
x 
0 

— 0 — 

@ 
• 
X 
X 
X 
0 

-0— 

© 

® 

X 
0 
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0 

—0— 

® 

X 
X 
0 
0 
0 

—6— 

x ( 6 , 6) 
X 
0 
0 
0 V(3) 
0 

- 6 — - — ^ 

Graph C 

Now i f di ( i = 1, 2 , . . . , s) e A, and a^ < 2m, t h e r e must e x i s t 2?j ( j = 1, 
2 , . . . 5 s) e y , where bj < 2m, such t h a t a^ + Z?j = 2m. But s i n c e X and y a r e 
identical, Z?-j for some fc e {1, 2, . .., s}. Thus9 av + a*, = 2m. This is 
how the restriction "all of the CLJ for which a-j < 2m can be paired such that 
the sum of each pair equals 2mu enters into the argument. After establishing 
a one-to-one correspondence from § (m) onto 3(m), we use the fact that each 
2m(xs y)-reflected lattice path determines and is determined uniquely by its 
first half9 i.e., the nondecreasing path between (0, 0) to (m, m ) . Hence, the 
number of 2m(x9 y)-reflected lattice paths or the number of relevant partitions 

equals the number of paths between (09 0) to (m, m) 9 i.e.9 / J. This com-
pletes the proof of the theorem. 

As an example9 let us consider the case in which m = 3. We get the follow-
ing relevant partitions: 

36, 43^2, 423222, 4323, 53419 5422219 5432219 523212
9 524212

9 5313
9 

63*, 64Z2Z
9 643z29 653219 65zl2, 6Z3 )2429 62519 63

9 65421. 

We remark here that in all there are 58 partitions of 18 into at most 6 
parts and each part < 6 (see [2], p. 243, coefficient of q18 in the expansion 

of [g2]Y But 38 partitions, such as 65439 5339 5433
9 4332

9 6223
9 53219 etc., 

do not satisfy the condition "the parts which are < 6 can be paired such that 
the sum of each pair is 6." 
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1. INTRODUCTION 

An arithmetic function f is said to be multiplicative if 
f(m)f(n) = f{rrm) whenever (m9 n) = I. (1-1) 

It is a consequence of (1-1) that f is known if f(pr) is known for every prime 
p and v > 1. 

Definition: A pair {/, g] of multiplicative functions is called a "friendly-
pair" of the type a (a > 2) if, for n ̂  1, 

/(na) = g(n), g(n") = f(n) (1.2) 
and 

f(n)g(n) = 1. (1.3) 

Question: Do friendly-pairs of multiplicative functions exist? 

We answer this question in the affirmative. 

2. A FRIENDLY-PAIR 

We exhibit a friendly-pair of multiplicative functions by actual construc-
tion. As /, g are multiplicative, it is enough if we work with prime-powers. 

Let p be a prime and v ̂  1. 

We define / and g by the expressions: 

f(Pn = e x p ^ ^ J if v E k (mod (a + 1)) (2.1) 

g(pn = exp(^py) If r = k (mod (a + 1)) (2.2) 

We immediately deduce that 

«p") - -p( i ! f ! ) - -p (^) -»«") • 
Similarly, we obtain 

giP™) = /(pr). 

Therefore, we get 

f(na) = g(n) and g(na) = f(n) . 

Also, f(pa + 1) = ̂ (pa + 1) = 1. Thus, from (2.1) and (2.2), we obtain 

320 [Nov. 



FRIENDLY-PAIRS OF MULTIPLICATIVE FUNCTIONS 

fipr)gipr') = 1, r > 1. 
Or5 fin) and gin) are such that fin)gin) = 1. 

Example: For a = 29 we note that /, ̂  would form a friendly-pair satisfying 

fin2) = gin), gin2) = fin), and f(n)g(n) = 1, n > 1. 

In t h i s ease s / and ^ a re given by: 
(exp(27Ti/3) if r E 1 (mod 3) 

/ ( p p ) =^ exp(47ri/3) i f v = 2 (mod 3) (2.3) 
( 1 if P = 0 (mod ) 

(exp(-2TT^/3) if v E 1 (mod 3) 
g(pr) = <exp(-47T?73) if r = 2 (mod 3) (2.4) 

I 1 if r E 0 (mod 3) 
Before concludings we remark that there exist pairs {/, g} which satisfy 

(1.2) but not (1.3). This point is elucidated for the case a = 2. 

Let y(n) be the Mobius function. We define fin) and gin) as follows: 

fin) = E Mid), (2.5) 

where the summation is over the divisors d of n for which the complementary 
divisor n/d is a perfect cube. 

gin) = E U(d), 

where the summation is over the square divisors d2 of n for which the comple-
mentary divisor n/d2 is a perfect cube. 

We observe that / and g are multiplicative. Further, 

(-1 if v E 1 (mod 3) 
fipr) = < 0 if v E 2 (mod 3) (2.7) 

( 1 if r E 0 (mod 3) 

( 0 if v E 1 (mod 3) 
g(pr) = ;-i if r E 2 (mod 3) (2.8) 

( 1 if v E 0 (mod 3) 
It is easy to check that fin2) = gin) and gin2) - fin) for n ̂  1. However, 

rv v , N /I if n is a perfect cube, fin) g(n) = < ̂  ,, J v ./y\ / ^Q otherwise. 

This pair {/, g} is not a friendly-pair. 

•o#o* 
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VEDKATWN 

WhiZe I LOCU a graduate student at San Jo&e State, Untv entity, \)e)vn Hoggatt 
and I worked with &equencej> ol positive integer which we wette catting "genex-
aZized si-nacci numbeu." In thi& papeJtf I have. gathered home o^ ouA tizAuULtA 
concerning theAe AequenceA which I have renamed "the Hoggatt &zqumc&>." I 
would tike to dedicate tkib papefi to the memo/iy o{^ Pfio^eA&ox Hoggatt. 

M. A. 0. 

INTRODUCTION 

The Zeckendorf Theorem states that every positive integer can be repre-
sented as a sum of distinct Fibonacci numbers and that this representation is 
unique, provided no two consecutive Fibonacci numbers appear in any sum. 

In [2] the Zeckendorf Theorem is extended to a class of sequences obtained 
from the generalized Fibonacci polynomials; in particulars an analogous theorem 
holds for the generalized Fibonacci sequences. In Section 1, a collection of 
sequences called the Hoggatt sequences is introduced, and it is shown that 
these sequences also enjoy a "Zeckendorf Theorem"; in fact, the Hoggatt se-
quences share many of the representation and ordering properties of the gener-
alized Fibonacci sequences discussed in [2] and [3]. 

1. HOGGATT SEQUENCES AND ZECKENDORF REPRESENTATIONS 

For each fixed integer r with r ^ 2, the generalized Fibonacci polynomials 
yield a generalized Fibonacci sequence [2] which will be denoted {i?„}^=1. The 
generalized Fibonacci sequence associated with the integer r can be defined as 
follows [3]: 

R± - 1; 

R. = 2J'~2 for j = 2, 3, ..., r; 

Rk + r
 = Rk + r-l + Rk + r-2 + "* + Rk f o r a 1 1 P ° s i t i v e integers k. 

Note that with r = 2, 3, 4, and 5 we obtain, respectively, the Fibonacci num-
bers {Fn}, the Tribonacci numbers {Tn}, the Quadranacci numbers {§„}, and the 
Pentanacci numbers {Pw}. 

The Hoggatt sequence of degree r, where r is once again a fixed integer 
greater than 1, will be denoted {Rn} and can be obtained by taking differences 
of adjacent generalized Fibonacci numbers; more precisely, (Rn = Rn + 2~ Rn + i f o r 

all positive integers n. The defining properties of the sequences {Rn} and 
{(Rn} give rise to the following recursive description of the Hoggatt sequence 
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of degree r 

*3 (Rj = 2J'_1 for j = 1, 2, ..., r - 1; 

(5ir = 21'"1 ~ l = ®1 + ®2 + ••• +(Rr.1i 

% + r = ^k + r-i + ®-k+r~2 + * ° " + % f o r a 1 1 positive integers k. 
Note that the second-degree Hoggatt sequence coincides with the Fibonacci se-
quence; moreover, for r > 2 , the sequences {i?̂ } and {(Rn} differ in their ini-
tial (and subsequent) entries but share a common recursion relation. 

Identities similar (but not identical) to those developed for the general-
ized Fibonacci sequences in [3] can be obtained for the Hoggatt sequences. 

For v - 2 the Hoggatt sequence is the Fibonacci sequence {Fn }, and we have 
the two identities 

and 
r 2 T r h ^ ^ n In r2n+l L 

L3 x 5 ^ x 2 n + l L 2n + 2 

Let the third-degree Hoggatt sequence be denoted {3n}. Three identities 
arise in this case: 

(a2 + 33) + (35 + a6) + ••• ( 3 ^ + 33„) = s3n + 1 - 1; 
3, + (33 + 3,) + (36 + 37) + ••• + (33n + 33n+1) = 3 3 n + 2 - 1; 

32 + (3, + 35) + (3y + 38) + ••• + (33n + 1 + 33n+2) = 33„-+3 ~ 1-

In general, we have the following lemma. 

Lemma 1.1: For each integer r greater than 1, there arise r identities involv-
ing groupings of (p - 1) consecutive terms of the Hoggatt sequence of degree r. 

((R2 + (R3 + • • ' + ( M + (®r+2 + ®r + 3 + " " " + <*2r ) + 
+ (®-r(n-l) + 2 + ®r(n- l ) + 3 + ' ° ° + ®-rns ~ ®rn+l ~ •*• > 

CRX + ((R3 +(R, + • • • +(Rr + 1 ) + (<*r + 3 + CRp + , + • • - + ( R 2 p + 1 ) + . . -

+ ( m r ( n - l ) + 3 + ^ ( n - l ) + ^ + B O ° + ( R r ^ + l ) = ( R m + 2 " ^ 

(R1 + (R2 + ((R4 + (R5 + • • • + ( R r + 2 ) + ((Rp + If + ( R p + 5 + • • • + ( R 2 p + 2 ) + • • " 

+ ( ^ ( n - D + ^ + ^ C ^ - D + S + -° +(*rn + 2^ =(Rrn + 3 ' ^ 

(Rx + (R2 + (R3 + • • • + (R p _ 2 + ((Rp +(Rr + 1 + - • • + ( R 2 r _ 2 ) + • • • 

+ Wrn
 +(&rn + l + ""* + ®-rn + r-2' = ^rn+r-1 ~ *> 

(R2 + (H3 + (R̂  + • • • + ( R r - 1 + (<Rr+1 + (RP + 2 + • • • + (R2r _ x ) + 

+ «Rrn + l + ^ n + 2 + ' ' ' + ®rn+r-l) = ^ r n + r " *• 
Proof: For a fixed r, each of the identities can be verified by adding 1 to 
the expression on the left and applying the appropriate recursion relation. 

In the first equation, note that 

1 + (R2 + <R3 + •• • + (Sir =(Rr + 1-

When the term (Rr + 1 is added to the next (r - 1) consecutive terms the result is 
(R2r+1, which can be added to the next (r - 1) consecutive terms; this process 
can be repeated until addition yields (Rrn + 1 ° 
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In general for the i th equation, where 2 < i < r - 1, note that 

1 + (Rx + (R2 + • •• + CRi_1 = 1 + 1 + 2 + + I1"2 = 2 i ~ 1 , = (Ri. 

Since the next parenthetic expression is 

the addition process described for the first equation can now be applied. 

The final identity follows by recalling that 1 + (R + (H + ••• + ^ - i = ^r 
and applying the addition process8 

In [1] a proof of a Zeckendorf Theorem for the generalized Fibonacci poly-
nomials is given;a consequence of this theorem is the existence and uniqueness 
of the Zeckendorf representation for positive integers in terms of the gen-
eralized Fibonacci numbers. A generalized Zeckendorf Theorem also holds for 
the Hoggatt numbers of degree r. That is, for a given rs every positive inte-
ger can be represented as the sum of distinct terms of the sequence {*Hn} pro-
vided no v consecutive terms of the sequence are used in the representation; 
however9 since the sum of the first (r - 1) terms of the sequence is (Rr9 in order 
to ensure uniqueness of the representation9 we must also require that no repre-
sentation use the first (r - 1) consecutive terms of {(Rn}. 

Theorem 1.2: For each fixed integer v ^ 2S every positive integer N has a 
unique representation in terms of {(Rn} of the form 

N = ii71(R1 + N2<R2 + ••• + i!^<Ri5 where ^ e {0, 1} for j = 1, 2 t, 

N±N2 Nr^ = 09 

and 
NkNk + 1 • ••• • Nk + r_1 = 0 for all positive integers k; 

i.e.., every integer has a unique Zeckendorf representation in terms of {<Rn}. 

Proof: Note that for r = 2, the Hoggatt sequence in question is the Fibonacci 
sequence and the Zeckendorf Theorem holds. 

The nature of the Inductive proof of the theorem can best be seen by con-
sidering a particular small value of p. We concentrate our efforts on the case 
in which v = 3« Suppose for some n every positive integer N < 3 3 n + 2 ~ * ̂ a s a 

unique Zeckendorf representation; it suffices to prove that every positive in-
teger N < 3 3 n + 3 ~ 1 ̂ a s a unique Zeckendorf representation. 

It follows from Lemma 1.1 that 

3 3 n + 2 - 1 = 3 ! + (33 + 3„) + (36 + 37) + ••• + (33n + 33 n + 1 ) s 

and this equation must give the unique Zeckendorf representation for 33n + 2~ ^ • 
Next* we note that the representation for 33n + 2 ~ i implies that the largest 
Integer which can be represented without using 33n+2

 o r a n Y succeeding term of 
{ 3 n } is 3 3 n + 2 - 1; therefore^ the term 33 n + 2 is itself the unique Zeckendorf 
representation for 3 ^ . 

Since 3 3 n + 1 - 1 < 33n + 2 ~ 1»
 tlae integer 33 + 1 - 1 has a unique Zeckendorf 

representation. Moreover, this unique representation Is given by the following 
identity from Lemma 1.1: 

33„+l - 1 = (32 + 33) + (35 + 36) + ••• + -C33M-i + 5 3 « ) ' 

An immediate consequence of the preceding observations is that 

33«+2 + ° 3n+l " * 

32i* [Nov. 



HOGGATT SEQUENCES AND LEXICOGRAPHIC ORDERING 

is uniquely representable by 

hn + 2 + (32 + 33) + (35 + 36) + ••• + (33n_! + 3 3 n ) . 

It also follows that, for any positive integer M less than 33n + 1, there is a 
unique Zeckendorf representation for 3 3 n + 2 +M consisting of adding 3 3 n + 2 to 
the unique Zeckendorf representation for M-. 

Finally, we apply the only remaining third-degree identity in Lemma 1.1. 
Since 33n - 1 < 33n + 2 - 1, the integer 33„ - 1 has a unique Zeckendorf repre-
sentation, and this representation is given by the identity 

33n - 1 = 32 + (34 + 35) + (37 + 38) + ••• + (a3„-2 + 33n-i). 

It follows immediately that 
33n+2 + 33 n + i + 33n - 1 

has the unique Zeckendorf representation 

3 3 n + 2 + 3 3« + l + f 3 2 + (\ + 3 5> + ( 3 7
 + 3 8> + • ' • + ( 3 3 „ - 2 + 3 3n - 1 > ^ ' 

It is also apparent that 3 3 n + 2 + M has a unique Zeckendorf representation for 
every positive integer M less than 3 3 n + 1 + 33n. 

Noting that 

33n+2 + a 3 n + l + 3 3n "" l 3 3 n + 3 " l 

concludes the proof of the theorem in the case v = 3. 

The only major difference between the proof for v = 3 and the proof for an 
arbitrary value of v is that in the general case all r identities appearing in 
Lemma 1.1 must be used. 

2. THE HOGGATT SEQUENCE OF DEGREE 3 

If v = 35 the associated Hoggatt sequence {3n } is defined by taking 

3X = 1, 32 = 2, 33 = 3X + 32 = 1 + 2 = 3 
and 

3i = 3*.,. + 3 i _ 2 + 3;-3 f o r ^ > 45 
the first seven terms of the resulting sequence are: 

31 32 33 3^ 35 36 37 

1 2 3 6 11 20 37 

By Theorem 1.2? every positive integer has a unique Zeckendorf representation 
in terms of the third-degree Hoggatt numbers. In the next theorem, we prove 
that the terms used in the Zeckendorf representation of integers give informa-
tion about the natural ordering of the integers being represented; in particu-
lar, we investigate lexicographic orderings which were defined and examined in 
[3] and [5]. We now define this kind of ordering as in [3]. 

Let the positive integers be represented in terms of a strictly increasing 
sequence of integers, {An}, so that for integers M and N, 

k k 
M = Z MiAt and N = E ^ , 

i = 1 i = l 

where the coefficients Mi and N^ lie in the set {0, 1, 2, . . . , q] for some fixed 
integer q; moreover, suppose m is an integer such that Mi = N^ for all i > m. 
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If, for every pair of integers M and N9 Mm > Nm implies M > N9 then the repre-
sentation is a lexicographic ordering* 

In [3], identities analogous to those in Lemma 1,1 are used to show that 
the Zeckendorf representation of the positive integers In terms of the Tribo-
nacci numbers is a lexicographic ordering; a similar proof is used in the fol-
lowing theorem. 

Theorem 2.1: The Zeckendorf representation of the positive integers in terms 
of the third-degree Hoggatt sequence {3n} is a lexicographic ordering. 

Proof: Let M and N be two positive integers expressed in Zeckendorf form in 
terms of the third-degree Hoggatt numbers; then, for some positive integer t9 

t t 
M = E M-iH and N = £ Ni3i, 

i = l i = 1 

where Mi, Ni e {0, 1}, M1M2 = N1N2 = 0 and, for all i9 

M,Mi + 1Mi + 2 = ^ ^ + 1 ^ + 2 = 0. 

Let 777 be a positive integer such that M^ = N^ for all i > 77?, and suppose that 
A/m > Wm. Then Mm = 1 and î OT = 0. In order to prove that M > Ny we consider 
the following truncated portions of M and Ni 

M* = 7 ^ 3 , + M 2 a 2 + . . . + « m _ 1 sm_1+ am > am 
and 

N* = N 3 + N 3 + - - • + iy a 
1 1 2 2 m-1 m-1 

It is clear from the nature of the Zeckendorf representation and the recursion 
relation for members of {3n } that in order to maximize N* we must have Nm_i = 
Nm„2 = 1. Let k be a positive integer so that 7?? = 3k + j, where j = 1, 2, or 
3. The three pertinent identities in Lemma 1.1 imply that, for any of the three 
possible values of j , the maximal possible value of N* Is 3m - 1. Consequent-
ly, N* < 3m < M*9 and it follows that N < M. 

In [3], it was demonstrated that the positive integers can be represented 
In terms of the Tribonacci numbers by means of a "second canonical form," and 
it was proved that this new representation also gives rise to a lexicographic 
ordering. Analogous results hold for the sequence {:3n}. We begin by develop-
ing the second canonical form for a representation. 

For each positive integer Ns let 3k be the least term of {3n} used in the 
Zeckendorf representation for N; of course, the subscript k depends on the par-
ticular integer N being examined. The uniqueness of the Zeckendorf represen-
tation implies it is possible to partition the positive integers into two sets 
as follows: 

and 

51 Is the set of all positive integers N such that 
k = 0 (mod 3) or k = 1 (mod 3), 

52 is the set of all positive integers N such that 
k = 2 (mod 3). 

Suppose the elements of the sets S1 and S2 are written In natural order, and 
let SiiYl denote the nth e 
ten entries in each set. 
let SiiYl denote the nth element in the set 57- for i= 1 or 2. We list the first 
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Table 1 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
3 
4 
6 
7 
9 
10 
12 
14 
15 

= 
= 
= 
= 
= 
= 
= 

: 
= 

Sl,n 

3l 
33 
33 + 
\ 
\ + 
3^ + 
\ + 
35 + 
35 + 
35 + 

31 

3l 
33 
33 
31 
33 
33 

+ 

+ 

31 

31 

2 
5 
8 
11 
13 
16 
19 
22 
25 
28 

= 
= 
= 
= 
= 
= 
= 

= 
= 

S2,n 

32 

33 + 
3h + 
35 
35 + 
35 + 
35 + 
3B + 

36 + 
36 + 

3 2 

3 2 

32 
33 
^ 
32 
33 
3-

+ 32 

+ 32 

+ 32 

+ 32 

Theorem 2.2: The sets S1 and S2 can be characterized as follows: 

Si is the set of all positive integers N which can be 
represented in the form 31 + N232 + ̂ 3^3 + •••» where 
each Ni e {09 1} and NiNi+1Ni + 2 = 0 if i > 1; 

52 is the set of all positive integers N which can be 
represented in the form 32 + N333 4- N^3h + • • * , where 
each Ni G {0S 1} and NiNi + 1Ni + 2 = 0 if i > 2, 

Moreover, every positive integer has a unique representation in one of the 
above two forms. 

Proof: Let N be a positive integer and let 3^ be the least member of {3n} used 
in the Zeckendorf representation of N in terms of {3n}a There are three cases 
to consider depending on whether k is congruent to 0, 13 or 2 modulo 3. 

If k E 0 (mod 3), then N is an element of S1 ands for some nonnegative in-
teger ms k = 3m+3o Using the identities in Lemma 1.1 and the Zeckendorf rep-
resentation for N9 the term 3y. can be replaced by 

(3, + 32) + (3, + 35) + ••• + (33m+1 + 3 3 m + 2 ) ; 

moreover, this is the only admissible representation for 3^. These observa-
tions and the uniqueness of the Zeckendorf representation imply the uniqueness 
of this new representation for N. 

If k = 1 (mod 3), again N lies in S± and, for some nonnegative integer m5 
k = 3m + 1. In this case, 3k must be replaced by 

3, + (32 + 33) + (35 + 36) + ••• + (33n_1 + 33 m). 

This illustrates the reason for permitting N1N2N3 = 1. Again, this new 
representation for N is the unique allowable representation. 

Finally, if k = 2 (mod 3), then N lies in S2 and, for some nonnegative in-
teger m9 k = 3m + 2. From Lemma 1.1, we have 

3k = 1 + 3, + (33 + 3„) + (36 + 37) + ••• + (33m + 33m+1) 

h = 32 + O3 + ^ ) + (36 + 37> + ••" + ^ + 33m + l)-
In this case, we see that N1N2N3 = 1 may be necessary in representing some in-
tegers. The uniqueness of this new representation for N follows as in the 
previous cases. 
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The preceding theorem suggests a definition for a second canonical repre-
sentation with respect to {3n}: a positive integer N is being represented in 
second canonical form in terms of the sequence {3n} if9 for some m, 

N = N131 + N232 + N333 + .-• + Nm3m, 

where (1) each Nj, G {0, 1}, 
(2) at least one of N2 and N2 is nonzero, 
(3) if N± = 1, then NiNi + 1Ni + 2 = 0 for all i > 1, 

and (4) if N2 = 1, then NiNi + 1Ni + 2 = 0 for all i > 2. 

The following corollary is an immediate consequence of Theorem 2.2. 

Corollary 2.3: Every positive integer can be uniquely represented in second 
canonical form in terms of the Hoggatt sequence of degree 3. 

In [3], it is noted that the representation of the positive integers in 
second canonical form with respect to the Tribonacci numbers is a lexocigraphic 
ordering. Although the second canonical form of a representation with respect 
to {3n} is not defined in the same way as the second canonical form with re-
spect to {Tn}, the two forms are similar and an analogous theorem holds for the 
third-degree Hoggatt numbers. 

Theorem 2.4: The second canonical representation of the positive integers in 
terms of the sequence {3n} is a lexicographic ordering. 

Proof: We begin as in the proof of Theorem 2.1. 

Let M and N be two positive integers expressed in second canonical form in 
terms of {3n}. There is some positive integer t such that, in second canoni-
cal form, 

t t 
M= "L^i^i and N= £ ^ 3 ^ . 

Let m be a positive integer such that M± = N^ for all i > m; further, suppose 
Mm = 1 and Nm = 0. Consider the following truncations of M and N: 

M* =Ml3l +M232 + ••• +Mm_13m_1 + 3 m 

and 
ff* = N^ +N232 + ••• +Nm_13m_1. 

Since M has been represented in second canonical form, either M1 or M2 is non-
zero; therefore, A/* ̂  3± + 3m > 3m. Again, in order or maximize N*, we must 
have Nm_± = Nm_2 = 1. Let K be a positive integer such that m=3k + j for some 
j = 1, 2, or 3. Conisder the three appropriate identities in Lemma 1.1, and 
the three possible values of j. 

If m = 3k + 1> then the maximum possible value of N* is 

33k+l " l + 31 = 33fc+l = 3™ ' 
I f m = 3k + 2 , t h e n t h e maximum v a l u e f o r N* i s 

33fe+2 - X = 3m - L 
F i n a l l y , ±fm=3k+3s t h e n t h e maximum p o s s i b l e N* i s 

3 3 f c + 3 * + 3 1 33k+3 = ^ » 

In any case, N* does not exceed 3m in value, and we have N* < 3^ < M*; conse-
quently, N < M. 
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Before proceeding to the generalizations of the preceding theorems in this 
section to degree r9 we note a special property of the third-degree Hoggatt 
sequence. 

Let S±9 S2, ..., Sn be nonempty sequences of positive integers such that 
every positive integer appears exactly once in exactly one of the sequences; 
in [1], such sequences are called complementary or a complementary system. In 
[3], properties of {Tn} and a theorem of Lamdek and Moser [4] are used to dem-
onstrate the existence of a pair of complementary sequences {Xn} and {Yn} in 
natural order with the property that {Xn + Yn] and {Yn - Xn} is another pair 
of complementary sequences of positive integers in natural order. In the next 
theorem, we prove the existence and uniqueness of {Xn} and {Yn}. 

Theorem 2.5: There exist exactly two sequences, {Xn}™=1 and {Jn}^= 1, of posi-
tive integers in natural order such that {Xn} and {Yn} are complementary se-
quences and the sequences {Xn + Yn] and {Yn - Xn} are also complementary se-
quences in natural order. 

Proof: We develop four sequences {X n] 9 {Yn}3, {Pn}, and {Qn} as follows: let 
X± = 1, P1 = 1, J1 = Zx + P± = 2, and Q± = X1 + Y1 = 3; in general, to find 
& n 5 ^n ' Yy,, and let 

(1) 
(2) 
(3) 
(4) 

Xn = the first positive integer not yet appearing as an X^ or a Yi , 
Pn = the first positive integer not yet appearing as a P. or a Q., 
Yn = Xn + Pn, and 
Q„ — X„ + Y„. 

The following array arises. 

Table 2 

ft 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

^n 

1 
3 
4 
6 
7 
9 
10 
12 
14 
15 

Pn 

1 
2 
4 
5 
6 
7 
9 
10 
11 
13 

7 

2 
5 
8 
11 
13 
16 
19 
22 
25 
28 

Qn 

3 
8 
12 
17 
20 
25 
29 
34 
39 
43 

Note that (l)-(4) guarantee that {Xn} and {Yn} are complementary sequences in 
natural order, as are {Pn} and {Qn}. From (3) and (4) it follows that 

{Pj = {Yn - X„} and {Qn} = {Xn + Yn}9 

as desired. Hence, the exixtence of the sequences {Xn} and {Yn} has been es-
tablished. 

To verify the uniqueness of the sequences {Xn} and {Yn}, we note that the 
method of generating the four sequences yields exactly one pair of sequences 
satisfying the conditions in the statement of the theorem; therefore, any other 
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pair of sequences satisfying these conditions must be obtained by some method 
other than that used to generate {Xn} and {Jn}. 

Suppose there is another pair of sequences, denoted {Xn} and {Yn}, satis-
fying the conditions of the theorem. Let {Qn} and {Pn} represent, respective-
ly, the sum and difference sequences {Xn + Yn} and {ln - Xn}'9 it follows that 
properties (3) and (4) hold for the four new sequences. Suppose property (1) 
does not hold. Then, for some n, Xn is not the first positive integer not yet 
appearing as an Xi or a Yi ; since {Xn} and {jn} are complementary and in natu-
ral order, Xn"> Yn . Consequently, Yn - Xn < 0 and ~Pn is not a positive inte-
ger, a contradiction. Therefore, property (1) is necessary to the solution of 
the problem; similarly, property (2) must hold. Hence, the method used to 
generate {Xn} and {Yn } provides the only pair of sequences satisfying the con-
ditions of the theorem. 

Consider the sets S1 and S2 defined earlier in this section. Recall that 
S1 and S2

 a r e written in natural order, and Si,n denotes the nth element of S^ 
for i = 1 or 2. We have seen that {S1 n} and {S2 n} are complementary sequences 
of positive integers in natural order. It has also been shown in [3] that 

are complementary sequences in natural order. It follows that {S± n} and {S2tYj} 
are the sequences {Xn} and {Yn} of Theorem 2.5. Therefore, the sets S± and S2 
can be generated by the method described in the proof of Theorem 2.5; no appeal 
to representations in terms of {3n} is necessary. 

3. THE HOGGATT SEQUENCE OF DEGREE v 

In this section, we note that the theorems of Section 2 involving lexico-
graphic ordering have analogs for the rth-degree Hoggatt sequence. Since the 
theorems of this section can be proved by using the same techniques as in Sec-
tion 2, only sketches of proofs are given. Recall that from Section 1 we have 
v identities involving the sequence {(Hn} and a unique Zeckendorf representa-
tion for every positive integer in terms of {&n}. 

Theorem 3-1: The Zeckendorf representation of the positive integers in terms 
of the Pth-degree Hoggatt sequence {(Rn} is a lexicographic ordering. 

Proof: Let M and N be two positive integers expressed in Zeckendorf form: 

t t 
M = £ Mi(Ri and N = £ il/^, 

i = l i = 1 

where Mi9 Ni e {0, l}, 

MXM2 Mr_± = N1N2 Nr_± = 0, 

and M-M. + 1 Mi+r_± = N,Ni + 1 Ni + r_± = 0 for all i . 

Let m be a positive integer such that M± = Ni for all i > m9 letMm = 1, and 
let Nm = 0. Consider the truncations M" and #* as in the proof of Theorem 2.1, 
and note that M* ̂  Glm. In order to maximize N*9 we must let 

N
m-1 = Nm-2 = ••• =^-(r-l) = !' 

From the r identities in Lemma 1.1, it follows that N* < (Rm < M* 9 and conse-
quently, N < M. 

330 [Nov. 



HOGGATT SEQUENCES AND LEXICOGRAPHIC ORDERING 

We next develop the second canonical form for a representation in terms of 

For a particular positive integer N9 let (Rk be the smallest term of {(Rn) 
used in the Zeckendorf representation for N. Using the uniqueness of the Zeck-
endorf representation, the positive integers can be partitioned into (r - 1) 
sets as follows: 

S± is the set of all positive integers N such that 
k = 0 (mod r) or k = 1 (mod r), 

and for integers i such that 2 ̂  i ^ v - 1, 

Si is the set of all positive integers N such that 
k = i (mod r) . 

Let the elements of the sets g., , 5o , ...,5 n be written in natural order. 
1 2 r - l 

Theorem 3«2: The sets £> > S2, . .., 6^ 1 can be characterized as follows: for 
j = 1, 2, ..., r - 1, 

Sj is the set of all positive integers which can be represented in 
the form N = (Rj + Nj+i(Rj + 1 + Nj + 2(Rj + z + ' ' ' » where each Nf e {0, 1} 
and NiNi + 1 î + r-i = 0 if i > j. 

Moreover, every positive integer has a unique representation in terms of {(Hn} 
in one of these (r - 1) forms. 

Proof: Let N be a positive integer and let (R̂  be the least term of {(Rn} used 
in the Zeckendorf representation of N. There are r cases to consider depending 
on whether k is congruent to 0, 1, 2, ..., or (r - 1) modulo r. In each of 
these cases, the uniqueness of Zeckendorf representations and one of the iden-
tities in Lemma 1.1 yield the desired representation for N; moreover, the new 
representation is unique. 

A positive integer N is represented in second canonical form in terms of 
the sequence {(Rn} if, for some m9 

N = N1(R1 + N2(R2 + . . . + Nm(Rm9 

where 

(1) each Nt e {0, 1}, 
(2) at least one of the coefficients N19 N2, ...*Nr-i i s nonzero, and 
(3) if N-j = 1, then NtNi + 1 h + r-i = 0 f o r a 1 1 i > J-

We immediately have the following corollary to Theorem 3.2. 

Corollary 3-3: Every positive integer can be uniquely represented in second 
canonical form in terms of the sequence {(Rn}. 

Finally, we have the analog to Theorem 2.4. 

Theorem 3»^: The second canonical representation of the positive integers in 
terms of the sequence {(Hn} is a lexicographic ordering. 

Proof: With notation as in the proof of Theorem 3.19 but with the representa-
tion in second canonical form, consider the truncations of M and Nt 

M* = M1(R1 + M2(RZ + •.. +Mm_1<Rm_1 +<Rm 
and 

N* = /V1(R1 + N2(R2 + ••• +N„_&m_1. 
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One of the coefficients M1, Af2 , . .., Mv_1 is nonzero; therefore, 

Af* > (R1 + (Rm > <Rm. 

In order to maximize N*9 we let 

Nm-1 = Nm-2 = ••• = ^-<r-i) = 1 

and note that the identities in Lemma 1.1 imply that the maximum possible value 
for N* is <Rm; therefore, Fv < (Rm < M* and N < M. 
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1. INTRODUCTION 

A divisor d of n is a unitary divisor if gcd (d9 n/d) = 1; in such a case, 
we write d\\n. There is a considerable body of results on functions of unitary 
divisors (see [2]-[7]). Let T*(ft) and 0*(n) denote, respectively, the number 
and sum of the unitary divisors of n. 

We say that a divisor d of n is a non-unitary divisor if (d9 n/d) > 1. If 
d is a non-unitary divisor of n, we write d\^n. In this paper, we examine some 
functions of non-unitary divisors, 

We will find it convenient to write 

n = n * n#, 

where n is the largest squarefree unitary divisor of n. We call n the square-
free part of n and n# the powerful part of ft. Then, if p is prime, p\n implies 
plift, while plft# implies p2\n« Naturally, either n or ft# can be 1 if required 
(if ft is powerful or squarefree, respectively). 

2. THE SUM OF NON-UNITARY DIVISORS FUNCTION 

Let a* (ft) be the sum of the non-unitary divisors of m 

oHn) = E d. 
d\*n 

Now, every divisor is either unitary or non-unitary. Because ft and ft# are 
relatively prime and the G and O* functions are multiplicative, we have 

a#(?z) = a(ft) - a*(ft) = a(ft)a(ft#) - a*(ft)a*(ft#)-

But a(ft) = a*(ft), so 

oHn) = a(ft){a(ft#) - a*(ft#)K 

Therefore, 

oHn) = ( n (p + D 1 . j n p'+1 "il - n (pe + D I . 
I plln j I PeWn P - 1 p*||n ( 

Note that Q#(ft) = 0 if and only if n is squarefree, and that C# is not multi-
plicative. 

Recall that an integer n is perfect [unitary perfect] if it equals the sum 
of its proper divisors [unitary divisors]. This is usually stated as G(ft) =2ft 
[a*(ft) = 2ft] in order to be dealing with multiplicative functions. But all non-
unitary divisors are proper divisors, so the analogous definition here is that 
ft is non-unitary perfect if G#(ft) = ft. 
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Theorem 1: If 2P - 1 is prime, so that 2P~1(2P - 1) is an even perfect number, 
then 2P (2P - 1) is non-unitary perfect. 

Proof: Suppose n = 2P+1(2P - 1), where p is prime. Then 

oHn) = a(2p - l){o(2p+1) - a*(2p + 1)} 

= 2p[(2p+2 - 1) - (2p+ 2 + 1)] 

2P/2P+i 2) ,P+i (2p - 1) 

A computer search written under our direction by Abdul-Nasser El-Kassar 
found no other non-unitary perfect numbers less than one million. Accordingly, 
we venture the following: 

Conjecture 1: An integer is non-unitary perfect if and only if it is 4 times an 
even perfect number. 

If n# is known or assumed, it is relatively easy to search for n to see if 
n is non-unitary perfect. Many cases are eliminated because of having a#(^#)> 
n#. In most other cases, the search fails because n would have to contain a 
repeated factor. For example, if n # = 2252, then no n will work, for 

a#(2252) = 7 • 31 - 5 • 26 = 87 = 3 • 29, 

so 3* 29\n; but 225229lln implies 32ln, so 3ln is impossible. 

The second author generated by computer all powerful numbers not exceeding 
Examination of the various cases verified that there is no non-unitary 

perfect number n with n# < 2 1 5 except when n satisfies Theorem 1 [i.e., n = 
2P + i(2P _ 1 ) 5 w h e r e 2p _ 1 ± s p r i m e ] > 

More generally, we say that n is k-fold non-unitary perfect if o#(n) = kn9 
where k ^ 1 is an integer. We examined all n # < 2 1 5 and all n < 106 and found 
the k-fold non-unitary perfect numbers (/c>l) listed in Table 1. Based on the 
profusion of examples and the relative ease of finding them, we hazard the fol-
lowing (admittedly shaky) guess: 

Conjecture 2: There are infinitely many fe-fold non-unitary perfect numbers. 

Table 1. fe-fold Non-Unitary Perfect Numbers (k > 1) 

,15 

k 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 

n 

23325 • 7 = 2520 
23335 • 29 = 31 320 
23345 • 359 = 1 163 160 
273571 = 2 208 384 
24327 • 13 • 233 = 3 053 232 
273331 - 6 1 = 6 535 296 
25327 • 41 • 163 = 13 472 928 
25523 • 19 • 37 • 73 = 123 165 600 
273447 * 751 = 365 959 296 
2if34ll • 131 • 2357 = 4 401 782 352 
2103 • 5 • 7 • 19 • 37 • 73 = 5 517 818 880 
273252 • 7 • 13 • 71 = 186 076 800 
28345 • 7 • 11 -53 • 769 = 325 377 803 520 
2632725 • 13 • 19 • 113 • 677 = 2 666 567 816 640 
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We say that n is non-unitary subperfect if a#(n) is a proper divisor of n. 
Because a#(18) = 9 and a#(p2) = p if p is prime, we have the following: 

Theorem 2: If n = 18 or n - p 2
9 where p is prime9 then n is non-unitary sub-

perfect. 

An examination of all n* ^ 2 and all n ^ 106 found no other non-unitary 
subperfect numbers, so we are willing to risk the following: 

Conjecture 3- An integer n is non-unitary subperfect if and only if n = 18 or 
n = p2, where p is prime. 

It is possible to define non-unitary harmonic numbers by requiring that the 
harmonic mean of the non-unitary divisors be integral. If T#(n) = x(n) - T*(n) 
counts the number of non-unitary divisors, the requirement is that nT#(n)/a#(ft) 
be integral. We found several dozen examples less than 10 , including all Re-
fold non-unitary perfect numbers, as well as numbers of the forms 

2 • 3p2
9 p2(2p - 1), 2 • 3p2(2p - 1), 2P+13(2P - 1), 2P + 13 • 5(2P - 1), 

and 2p+1(2p - 1) (2P - 1), 

where p, 2p - 1, and 2P - 1 are distinct primes. Many other examples seemed to 
fit no general pattern. 

Recall that integers n and m are amicable [unitary amicable] if each is 
the sum of the proper divisors [unitary divisors] of the other. Similarly, we 
say that n and m are non-unitary amicable if 

o^(n) = m and o#(m) = n. 

Theorem 3: If 2P - 1 and 2q - 1 are prime, then 2P + 1(2^ - 1) and 2^+1(2p - 1) 
are non-unitary amicable. 

Proof: Trivial verification. 

Thus, there are at least as many non-unitary amicable pairs as there are 
pairs of Mersenne primes. Our computer search for n < m and n K 106 revealed 
only four non-unitary amicable pairs that are not characterized by Theorem 3: 

n = 252 = 22327 m = 328 = 2341 

n = 3240 = 233lf5 m = 6462 = 2 • 32359 

n = 11616 = 253 • ll2 777 = 17412 = 22 • 3 • 1451 

n = 11808 = 253241 m = 20538 = 2 •• 32 • 7 • 163 

3. THE NON-UNITARY ANALOG OF EULER'S FUNCTION 

Euler!s function 

Hn) = n n ( l - J ) = II (Pe ~ P""1) 
P\n x V ' pe\\n 

is usually defined as the number of positive integers not exceeding n that are 
relatively prime to n. The unitary analog is 

<p*w = n n (i - - V ) = n (pe - i ) . 
pe\\n V pe\\n 
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Our first task here is to give equivalent alternative definitions for (f and 
(f* which will suggest a non-unitary analog. In particular, we may define <p(n) 
as the number of positive integers not exceeding n that are not divisible by 
any of the divisors d > 1 of n. Similarly, <p*(n) may be defined as the number 
of positive integers not exceeding n that are not divisible by any of the uni-
tary divisors d > 1 of n. 

Recalling that 1 is never a non-unitary divisor of n9 it is natural in 
light of the alternative definitions of <p and (p* to define cp#(ji) as the number 
of positive integers not exceeding n that are not divisible by any of the non-
unitary divisors of n. By imitating the usual proofs for <p and cp* , it is easy 
to show that <p# is multiplicative, and that 

<pHn) = n<p{n$). (1) 

The following result neatly connects divisors, unitary divisors, and non-
unitary divisors in a, perhaps, unexpected way: 

Theorem ki £ <P#(d) = o*(n). 
din 

Proof: The Dirichlet convolution preserves multiplicativity, and <p# is multi-
plicative, so we need only check the assertion for prime powers. In light of 
(1), doing so is easy, because the sum telescopes: 

£ <p*(d) = <?#(i) + <p#(p) + (pHp2) + ••• + <p#(pe) 

= 1 + P + (p2 " P ) + ••• + (pS - p6'1) 

= I + pe = (J*(pe) . 

I t i s w e l l known t h a t 

£ <p(d) = n and £ <P*(d) = n , 
d\n d\\n 

and one might anticipate a similar result involving <p#. However, the situation 
is a bit complicated. We write 

E vHd) = £ ?*(d) - £ vHdy. (2) 
d l # n d\n d\\n 

Now, both convolutions on the right side of (2) preserve multiplicativity and, 
as a result, it is possible to obtain the following: 

Theorem 5: £ <P*(d) = o(n)fo*(n#) - U (pe ~ p6'1 + 1)1 
d\'n { Pelln* } 

Theorem 5 was first obtained by Scott Beslin in his Master's thesis [1], 
written under the direction of the first author of this paper. 

Two questions arise in connection with Theorem 5. First, is it possible to 
find a subset Sin) of the divisors of n for which 

£ <p*(d) = n? 
deS(n) 

It is indeed possible to do so. Let 0)(n) be the number of distinct primes that 
divide n. We say that d is an Ud-divisor of n if d\n and u>(d) = w(n), i.e., if 
every prime that divides n also divides d. Let ti(n) denote the set of all 03-
divisors of n. 
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Theorem 6: J2 <P^(d) = n. 
de Q(n) 

Proof: Trivial if 0)(n) = 0. But if oj(n) = 1, the sum is that in the proof of 
Theorem 4 except that the term V ( l ) = 1" is missing. Easy induction on 60(72) , 
using the multiplicativity of <p#, completes the proof. 

The other question that arises from Theorem 5 is whether it is possible to 
have 

Y, <P*(d) = n, n > 1. (3) 
d\n 

We know of ten solutions to (3), and they are given in Table 2, By Theorem 55 

if n satisfies (3), then 

o(n)/n = n#/|a*(n#) - H (pe - p e _ 1 + 1)1. (4) 
I p e \ \ n § ) 

This observation makes it easy to search for n if n# is known. The first eight 
numbers in Table 2 are the only solutions to (3) with 1 < n < 21 5. 

Table 2. Solutions to (3), Ordered by n# 

n 

18 
341 

1 018 
20 993 596 382 

357 

8 
6 

685 
863 
1 

887 
889 
174 

5 
3 

447 
773 
336 
562 
873 
932 
043 
165 

220 
960 
040 
440 
320 
880 
080 
160 
200 
248 

n# 

2232 

2332 

2632 

2732 

2832 

2733 

2332112 

2834 

283252 

21332 

n 

5 - 29 
5 • 11 
5 • 7 • 419 
5 • 7 • 167 
5 • 7 • 139 - 1667 
5 . 7 . 29 • 41 • 2377 
5 • 43 
5 . 7 . 19 . 37 . 1997 
7 • 19 • 2393 • 23929 • 
7 • 11 • 13 • 47 • 103 

47857 

It seems unlikely that one could completely characterize the solutions to 
(3). However, we do know the following: 

Theorem 7: If n > 1 satisties (3), then n # is divisible by at least two dis-
tinct primes. 

Proof: We must have n# > 1 because O(n) ^ n with equality only if n =_l-_ Sup-
pose n# = pe

s where p is prime and e > 2. Then, from (4), we have o(n)/n = p. 
If p = 2, then n is an odd squarefree perfect number, which is impossible. Now, 
n is squarefree, and any odd prime that divides n contributes at least one 
factor 2 to o(n) , and since p f 2, we have 2||n. Then n = 2q, where q is prime, 
and the requirement o(n)/n = p forces q = 3/(2p - 3), which is impossible if 
p > 2. 

We strongly suspect the following is true: 

Conjecture k: If n satisfies (3), then n# is even. 

If the right side of (4) does not reduce, then Conjecture 4 is true: If we 
suppose that n# is odd, then 4la*(n#)> as n# has at least two distinct prime 
divisors by Theorem 7. Then, it is easy to see that the denominator of the 
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right side of (4) is of the form 4fc - 1, and if the right side of (4) does not 
reduce, then n is of the form 4fc - 1, whence 4la(n), making (4) impossible. 
Thus, any counterexample to Conjecture 4 requires that the fraction on the 
right side of (4) reduce. 
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1. INTRODUCTION 

In 1982, M. Boscarol [1] gave a demonstration of the following property of 
binomial coefficients: 

E 2<n+i)(n +.l\ + j : 2<n+m-jin + m -j) = 2 (i) 

for each pair of integers n, m ̂  0. For instance, let m = 4 and n = 3, then 
we have 

i.e. , 

2"3 + 4 • 2"4 + 10 • 2"5 + 20 * 2"6 + 35 • 2"7 + 35 • 2"7 + 15 - 2~6 

+ 5 « 2 " 5 + 2"4 = 2. 

The purpose of this note is to present a generalization of (1). 

2. MAIN RESULTS 

Theorem*1: For each pair of integers n, m > 0 and r > 09 the following iden-
tity holds: 

Proof: For m = 05 we have 

(Z) - • - c ; ) 
from the definition. We now show that the formula for 777+1 follows from the 
formula for m. 

777 + 1 

0 "£- (J 

/n + /?? + 1\ / / n + 77? + 1\ 
V m + 1 / P (A 777 / 

+ O - 1) 23 P M ] )?5 by assumption 
7 7 7 - 1 

i = 0 

1987] 339 



n + m + 2 
m 

SOME PROPERTIES OF BINOMIAL COEFFICIENTS 

n + tfz + 1\ In + m + l\) 
m + 1 / V w /J 

, / -INJV^ + 77? + 1 \ . " t , 1 v + 1 / n + m -
+ (r ~ l)\\ m ) + 2>* + H n + 1 

v ^ = 0 

£ = - 1 

J = 0 

completing our proof. 

Theorem 2: For each pair of integers n, m > 0 and p > 0, define 

L(n, TT?; p) = £ pm M „• + E ^J
 w ' 

i = 0 \ 0 / j = 0 \ "/ / 

then L(n, TT?; P ) satisfies the following recursive form: 

L(n + 1, 7?? + 1; p) = L(n9 m + 1; p) + L(n + 1, 7??; p) 
and n 

L(0, n; P) = L(n, 0; P) = £ W + 1. 

Proof: By (3), we have 
n 

L(0, n; p) = L(n, 0; p) = £ r«7 + 1. 
j=o 

Using a dummy variable, we obtain 

L(n, m; p) = £ pm"{(n * M + E Pn-^(W * J') 
or 

L(n, m; p) = £ PM + E p J ( m • 
£ = 0 r i J = 0 v m ' 

Since 
m + l 

and 
A 7-/n + 7?7 + 1 - j \ , ^J;1 ,-/n + 7?? + 1 - j \ " + 1 n/n + m + 2 -

, ? / ( m+l ) + , ? / J ( m ) % ? 0
r ( m+l 

we have 

L(n + 1, 7??; p ) + L ( n 5 m + I; r) 

n + l 

j : 
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- m\^^in + m + 2 ~ M ^P- j(n+m + 2 - j \ 
-£0* V n + 1 ) + . ? 0

P 1 * + 1 ) = L ( W + 1 ^ + 1 ' *>• 
In fact, the reverse of this theorem is also true by the generating func-

tion method. 

Theorem 3: For each pair of integers ns m > 0 and v > 0, we have 

L(n, m; r) - f. (r - 1)<(» + » J *) + £ (r - !)*(« +»+!). (5) 
^ = 0 \ ifi u / j = 0 \ n - J / 

Proof: By (2) and the dummy variable, we have 

^ = 0 ^ = 0 

Repeating the above procedure, we obtain 

£**"-*(" V)' t c - D f m - (6) 

i = 0 \ I* I i = Q \ 77/ ^ / 

completing our proof. 

Corollary 1: For each pair of integers n9 m ̂  0, the following identity holds: 

E 2 ^ ( n ^ ) = E(n + ? + 1 ) - (7) 
T: = O X U ! i = o x ^ ; 

Proof: Taking v = 2 in (6), we have 

Corollary 2: For each pair of integers n, m > 0, we have 
L(n, m; 2) = 2n + m + 1. (8) 

Proof: L(n, m; 2) = £ 2ra-i(" + i ) + E 2^'(n + m ~ «?') 

= E 2w"7:(n t M + £ 2n-J'(m t J') 
^ = 0 ^ ^ ' j = 0 V J / 

£ = o ^ j = o x 7̂ / 

irrvTc'r1)-2*" -777 + 1 
_ \ 7, ; = z 

£ = 0 fc = w + 1 

n + m Dividing identity (8) by 2 , we obtain (1) 
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3. EXAMPLES 

Example 1: Take r = 3. We have the values of L(n, m; 3) as follows: 

0 
1 
2 
3 
4 
5 
6 
7 

0 

2 
5 
14 
41 
122 
365 
1094 
3281 

1 

5 
10 
24 
65 
187 
552 
1646 
4927 

2 

14 
24 
48 
113 
300 
852 
2498 
7425 

3 

41 
65 
113 
226 
526 
1378 
3876 
11301 

4 

122 
187 
300 
526 
1052 
2430 
6306 
17607 

5 

365 
552 
852 
1378 
2430 
4860 
11166 
28773 

6 

1094 
1646 
2498 
3876 
6306 
11166 
22332 
51105 

7 

3281 
4927 
7425 
11301 
17607 
28773 
51105 
102210 

Example 2: Take r = 4. We obtain the values of L(n9 m; 4) as follows: 

;?7 \ ^ 

0 
1 
2 
3 
4 
5 
6 
7 

0 

2 
6 
22 
86 
342 
1366 
5462 
21846 

1 

6 
12 
34 
120 
462 
1828 
7290 

29136 

2 

22 
34 
68 
188 
650 
2478 
9768 
389(54 

3 

86 
120 
188 
376 
1026 
3504 
13272 
52176 

4 

342 
462 
650 
1026 
2052 
5556 
18828 
71004 

5 

1366 
1828 
2478 
3504 
5556 
11112 
29940 
100944 

6 

5462 
7290 
9768 
13272 
18828 
29940 
59880 
160824 

7 

21846 
29136 
38904 
52176 
71004 
100944 
160824 
321648 

Example 3'- Take r = 5. We have the values of L(n, 777; 5) as follows: 

\. n 
77T\ 

0 
1 
2 
3 
4 
5 
6 
7 

0 

2 
7 
32 
157 
782 

3907 
19532 
97657 

1 

7 
14 
46 
203 
985 

4892 
24424 
122081 

2 

32 
46 
92 
295 
1280 
6172 
30596 
152677 

3 

157 
203 
295 
590 
1870 
8024 
38638 
191315 

4 

782 
985 
1280 
1870 
3740 
11782 
50420 
241735 

5 

3907 
4892 
6172 
8042 
11782 
23564 
73984 

315719 

6 

19532 
24424 
30596 
38638 
50420 
73984 
147968 
463687 

7 

97657 
122081 
152677 
191315 
241735 
315719 
463687 
927374 
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Over a c e n t u r y a g o , a c c o r d i n g t o Dickson [ 1 ] , H . J . S . S m i t h [3] showed t h a t 

( 1 , 1) . . . ( 1 , j ) . . . ( 1 , n) 

( £ , 1) . . . ( £ , j ) . . . ( i , n) 

( n , 1) . . . ( n , j ) . . . ( n , n) 

<P(1) <?(2) . . . <p(n), 

where (i, j) is the greatest common divisor of £ and j, and <p is Euler's func-
tion. P. Mansion [2] proved a generalization of Smith's result: If 

f(m) = £ ^(d), 
dim 

and we write /(£, j) for /(gcd(£, j))s then 

/(l, 1) ... f(l, j) ... /(I, n) 

/(* , 1) /(*» J) /(*» «) 

/(n, £) ... f(n9 j) ... f(ns n) 

g(l) g(2) ... #(n). 

Note that Mansion's result becomes Smith's when f(m) = m9 because 

m = £ ^W) • 
d\m 

In this paper, we present an extension of Mansion's result to a wide class of 
arithmetic convolutions. 

Suppose S(m) defines some set of divisors of m for each 777. If d\m> we say 
that d is an 5-divisor of m if dtSQn). We will denote by (£, j)s the largest 
common ^-divisor of i and j. 

Now 77? might or might not be an element of 5(77?) , as can be seen if we let 
S(m) be the largest squarefree divisor of 77?. Also, the property 

deS(i) nS(j) if and only if deS((i, j)s) 

might or might not be true. It is true if 0(777) consists of all the divisors of 

Written while the author was Visiting Professor at the University of South-
western Louisiana, Lafayette, Louisiana„ 
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m, but not if S(m) consists of all divisors d of m for which (d, m/d) > 1, for 
then 6 is the largest common 5-divisor of 12 and 24, and 2 is an 5-divisor of 
12 and 24, but not of 6. 

We come now to the promised generalization: 

Theorem: Let Sirn) and (-£, j)s be defined as above. If 

(1) meS(m) for each m9 

(2) deS(i) nS(j) if and only if deS((i9 j)s)9 and 

then 

(3) f(m) = £ £(<f), 

/((l, l)s) ... /((I, j)5) ... f((l, n)5) 

/((£, l)s) ... /((£, j)5) ... /((£, n)s) 

f((n, l)s) ... /((n, j)s) ... /((n, n)5) 

= 0(1) gin). 

Proof: Assume the hypotheses, and define 

Sia.b) ={1 «*e?<«>. 
(0 otherwise. 

Clearly, 5(a5 b) = 0 if 2? > a, and by (1) we have S(a> a) = 1 for each a. Now, 
5(£, d)S(j, d) is 0 unless 6? is an 5-divisor of both % and j, in which case the 
product is 1, and by (2) and (3) it is easy to see that 

/((£» J)5) = S(i, l)5(j, 1)^(1) + 5(£, 2)5(j, 2)^(2) 

+ ••• + S(i9 n)S(j, n)g{n) 
for each £ and j. Then 

[/((i» J)5)l = ̂  '5* 
where 

"""5(1, 1) 5(1, 2) ... 5(1, i) ... 5(1, n)~ 
5(2, 1) 5(2, 2) 5(2, i) ... 5(2, n) 

5(i, 1) 5(i, 2) ... 5(£, i) S(i9 n) 

5(n, 1) S(n, 2) ... 5(n, i) ... S(n9 n) 

1 
( 2 , 1) 

0 
1 

0 
0 

. . . 0 

. . . 0 

S(i, 1) S(i, 2) 

_S(n, 1) Sin, 2) ... 5(n, i) 
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and 

5(1, 1)0(1) 5(2, l)g(l) 
5(1, 2)^(2) 5(2, 2)^(2) 

Sti, 1)0(1) 
Stf, 2)0(2) 

S(l, J)0(J) 5(2, j)g(j) ... SU, j)g(j) 

S(n, 1)0(1) 
S(n, 2)0(2) 

S(n9 j)g(j) 

[_5(1, n)g(n) 5(2, n)#(n) ... S(j, n)g(n) ... S(n, n)g(n)_ 

'g(l) 5(2, 1)0(1) ... S(j9 1)0(1) ... 5(n, 1)0(1)" 
0 0(2) ... 5(j, 2)0(2) ... 5(n, 2)0(2) 

0(j) . .. 5(n, j)#C7) 

0 0 0 g(n) 

The theorem then follows from the observations 

det A = 1 and det B = 0(1) 0(2) ... g(n). • 

In particular, if 5(777) consists of all divisors of 77?, the theorem yields 
MansionTs result. Another special case of some interest arises if we let S(rn) 
consist of the unitary divisors of 77?: We say that d is a unitary divisor of 777 
if gcd (d, m/d) = 1. Let (i, j)* be the largest common unitary divisor of i 
and J. Also, let T*(7??) and 0*(m) be the number and sum, respectively, of the 
unitary divisors of 777. Then g(d) = 1 and g(d) = d9 respectively, yield 

|x*((i, J)*)| = 1 and |a*((i, J)*)| = nl 
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1. INTRODUCTION 

Stirling numbers and some of their generalizations have been investigated 
Intensively during the past several decades. Useful references for various 
results may be found in [1], [2, ch. 5],' [3], [6], [7], etc. 

The main object of this note is to show that the concept of a generalized 
Stirling number pair can be characterized by a pair of inverse relations. Our 
basic idea is suggested by the well-known inverse relations as stated explicit-
ly in Riordan's classic book [7], namely 

n n 
n-n = L S1{n9 k)bk> bn = £ S2(?i9 k)ak, 

k=0 k=0 

where S1(n9 k) and S2(n> k) are Stirling numbers of the first and second kind, 
respectively. Recall that S1(n9 k) and S2(n9 k) may be defined by the exponen-
tial generating functions 

(log(i + t))klk\ and (et - l)k/kU 
respectively, where 

f(t) = log(l + t) and g(t) = et - 1 

are just reciprocal functions of each other, namely f(g(t)) = g(f(t)) = t with 
f(0)=g(0) = 0. What we wish to elaborate is a comprehensive generalization of 
the known relations mentioned above. 

2. A BASIC DEFINITION AND A THEOREM 

Denote by r = (T, +, e) the commutative ring of formal power series with 
real or complex coefficients, in which, the ordinary addition and Cauchy multi-
plication are defined. Substitution of formal power series is defined as usual 
(cf. Comtet [2]). 

Two elements / and g of T are said to be reciprocal (inverse) of each other 
if and only if f(g(t)) = g(f(t)) = t with /(0) = g(0) = 0. 

Definition: Let / and g belong to T, and let 

JY(f(t))k = £ A^n, k)~;, (2.1) 
n> 0 

jrv(9(t))k = EA2(n, k)^-. (2.2) 
n^ 0 
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Then A1(n9 k) and A2(n9 k) are called a generalized Stirling number pair, or a 
GSN pair if and only if / and g are reciprocal of each other. 

From (2.1) and (2.2), one may see that every GSN pair has the property 

A^n, k) = A2(n9 k) = 0 for n < k. 
Moreover, one may define 

i4i(0, 0) = A2(09 0) = 1. 

Let us now state and prove the following: 

Theorem: Numbers A1(n9 k) and A2(n, k) defined by (2.1) and (2.2) just form a 
GSN pair when and only when there hold the inverse relations 

n n 
an = E ^ i O ^ k)bk, bn = E A2(n, k)ak9 (2.3) 

k = 0 k = 0 

where n = Q, 1, 2, . .., and either {ak} or {bk} is given arbitrarily. 

Proof: We have to show that (2.3) <=> f(g(t)) = g(f(t)) = t with f(0) = g(0) = 0. 
As may easily be verified, the necessary and sufficient condition for (2.3) to 
hold is that the orthogonality relations 

ZA1(m9 n)A2(n9 k) = E A2(m, n)Ax{n9 k) = Smk 9 (2.4) 
n>0 n> 0 

hold, where Smk is the Kronecker symbol. Clearly, both summations contained in 
(2.4) consist of only a finite number of terms inasmuch as 

A1{m9 ri) = A2(m5 ri) = 0 for n > m« 
Let us prove =>. Since (2.4) is now valid, we may substitute (2.1) into 

(2.2), and by the rule of function composition we obtain 

i~(g(f(t)))k - E A2(n9 k) E ^ i ( ^ n)^ 

i m I \ JL/77 f k 

= E ^ E^O*' n)Az(n, k) = E ^T 6 ^ = ̂ 7°  

Thus, it follows that g{f(t)) = £. Similarly, we have f(g(t)) = £. This proves 

To prove «==, suppose that f(g(t)) = g(f(t)) = t5 /(0)=#(0) = 0. Substi-
tuting (2.2) into (2.1), we obtain 

1 1 i-m / 

± tk =-^T(f(g(t)))k = E h i Y,A2(m9 n)A^n> k) 

Comparing the coefficients of t on both sides, we get 

E A2Qn, n)A1(n9 k) = &mk. 

In a similar manner, the first equation contained in (2.4) can be deduced. Re-
calling that (2.4) is precisely equivalent to (2.3), the inverse implication 
<= is also verified; hence, the theorem. 

Evidently, the theorem just proved may be restated as follows: 
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Equivalence Proposition: The following three assertions are equivalent to each 
other. 

( i) {A1(n9 k) 9 A2(n9 k)} i s a GSN p a i r . 
(ii) Inverse relations (2.3) hold. 

(iii) {/, g] is a pair of reciprocal functions of T. 

3. EXAMPLES AND REMARKS 

Examples: Some special GSN pairs may be displayed as shown below. 

fit) 
l o g ( l + 
tan t 
s in t 
sinh t 
tanh t 
t/(t -

t) 

1) 

git) 

et - 1 
arc tan t 
arc s in t 
arc sinh t 
arc tanh t 
t/(t - 1) 

A1(n9 k) 

S1in9 k) 
T1(n, k) 

Sx(n, k) 
o1(n, k) 
Ti(n , k) 

(-l)n-kL(n9 k) 

A2in9 k) 

S2in9 k) 
T2(n9 k) 
s 2 ( n , k) 
o2(n9 k) 
T2(n, k) 

(~l)n-kL(n9 k) 

Note that L(n9 k) is known as LahTs number, which has the expression 

u»,k) = (- irff(^:;)-
In what follows, we will give a few brief remarks that follow easily from 

the ordinary theory about exponential generating functions. 

Remark 1: For a pair of reciprocal elements /, ̂ eF, write: 

CO 00 

fit) = Z^ktk/kl9 git) = £ $ktk/kl 
I I 

Making use of the definition of Bell polynomials (cf. Riordan [7]), 

(3.1) 

?nigf±> • • • > gfn) = E 
nig, 

(j) Ji 

fi 
v n \ 

f \J'n 

where (J) indicates the summation condition j ± + ••• + Jn = ^J lj1 + 2j2 + ••• 
+ njn - n9 k - \9 2, ..., n, one may obtain 

A^n, fc) = Ynifa19 ..., /a n), 42(n, fc) = Yn(f&19 .... f&n), 
where Ĵ. = 6^ (i = 1, . .., n) and 6^ is the Kronecker symbol. Consequently, 
certain combinatorial probabilistic interpretation may be given of A^(n9 k) 
ii = 1, 2). Moreover, for any given {a^}, the sequence {3fc} c a n be- determined 
by the system of linear equations 

7„(Balf .... 0an) = Snl in = 1, 2, . . . ) . (3.2) 

Remark 2: It is easy to write down double generating functions for Ai{n9 k), 

>(t9 u) E M"» fc> 
n , fe > 0 

tnuk 
exp[uf(t)] ; 
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rc*k>0 

Moreover9 for each i i ( n s fc) ( i = 1, 2 ) , we have the convolution formula 

\ + / 2 ) ^ ( n ' fei+fe2> = tQQYiti> fc!)^(n-J, fe2)9 (3.3) 

and5 consequently, t he re i s a v e r t i c a l recurrence r e l a t i o n for A^(n9 k), v i z . 9 

&4;("» fe) = W E ' n K C 7 ' » fe - l M i ( « - J . 1 ) . (3.4) 

where ^ x ( j s 1) = o^ and A 2 ( j 9 1) = 3j • A similar recurrence relation takes the 
form 

A An + 1, fe) = £ (^KW, & - l)^(rz - j + 1, 1). (3.5) 
f7- = o W / 

However, we have not yet found any useful horizontal recurrence relations for 
A ^ ( n 9 k) (i = 19 2 ) . Also unsolved are the following: 

Problems: How to determine some general asymptotic expansions for A ^ ( n 9 k) as 
k -*- °°  with k = o(n) or k = 0(n)l Is it true that the asymptotic normality of 
A 1 ( n 9 k) implies that of A 2 ( n 9 k)1 Is it possible to extend the concept of a 
GSN pair to a case involving multiparameters? 

4. A CONTINUOUS ANALOGUE 

We are now going to extend, In a similar manner, the reciprocity of the 
relations (2.3) to the case of reciprocal integral transforms so that a kind of 
GSN pair containing continuous parameters can be introduced. 

Let §(x) and \p(x) be real-valued reciprocal functions decreasing on [0, 1] 
with (f)(0) - iKO) = 1 a n d <1>(1) = ̂ H 1 ) '= 0, such that 

$d)(x)) = \\)(<t>(x)) = x (0 < x < 1). 
Moreover., <p(x) and \\J(X) are assumed to be infinitely differentiable in (0, 1) . 
Introduce the substitution x = e~t, so that we may write 

e~u = ((>(£-*)» e~* = i^(e""), £,u e [0, «,). (4.1) 

For given measurable functions /(s)6L(0, °°) , consider the integral equation 

F(u) : = rf(e)e'U8ds = f °° (̂s) OKe"")8 ) & , (4.2) 
Jo Jo 

where ̂ (s) Is to be determined,, Evidently, (4.2) is equivalent to the follow-
ing : 

G(t) : = I /(s)(<()(e"*))8ds = f g(s)g"tsds. (4.3) 
Jo Jo 

Denote G(t) = F(u) - F(-log (K^"*))- Suppose that G(£) satisfies the Wid-
der condition D (cf. [8], ch. 73 §6^ §17): 

(I) G(£) is Infinitely differentiable in (0, °°) with £(<») = 0. 

(II) For every integer m > 1, LWj x [£] = L m ? x [G( e) ] is Lebesgue integrable 
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on (0, °°) , where Lm X[G] is the Post-Widder operator defined by 

(4.4) 

(iii) The sequence {Lm X[G]} converges in mean of index unity, namely 

lim 
m, n -+c / ; \LmixWl [G] \dx = 0. 

Then by the representation theorem of Widder (cf. [8], Theorem 17, p. 318) one 
may assert the existence of g(s)^L(09°°) such that (4.3) holds. Consequently, 
the well-known inversion theorem of Post-Widder (loc. ait.) is applicable to 
both (4.3) and (4.2), yielding 

g(x) = lim I f(s)L r. )(e-(-)))s]&, 

fix) lim f°g(s)LmiX[(ii>(e-(-^y]dS! 

(4.5) 

(4.6) 

whenever x > 0 belongs to the Lebesgue sets of g and f9 respectively. 

In fact, the reciprocity (4.5) <=^ (4.6) so obtained is just a generaliza-
tion of the inverse relations for self-reciprocal integral transforms (in the 
case (j) E \\j) discussed previously (cf. [4], Theorem 8). 

Notice that A^(n9 k) (i w 1, 2) may be expressed by using formal deriva-
tives : 

A !<*, fc) = £(A)V(*)>* , A2(n9 fc) = Uitf(^t)y 
t = o 

Thus, recalling (4.4) and comparing (4.5) and (4.6) with (2.3), it seems to be 
reasonable to consider the following two sequences of numbers: 

A\(X9 y; m) = LmiX [ ^(e'^) )H , 

A*2(x, y; m) = L77.tar[OKe-(")))2/] dn = 1, 2, . . . ) , 

as a kind of GSN pair involving continuous parameters x9 y e (0, °°) . 

In conclusion, all we have shown is that the continuous analogue of the 
concept for a GSN pair is naturally connected to a general class of reciprocal 
integral transforms. Surely, special reciprocal functions §(x) and ^J(X) (0 ^ 
x ^ 1) may be found—as many as one likes. For instance, if one takes 

(p1(x) = 1 - x, cf)2(x) = cos — , <j)3(#) = log(e - (e - l)x) 9 

their corresponding inverse functions are given by 

2 
^i(tf) 1 x9 ty?(x) arc cos x9 ty~(x) = (e - ex) I (e - 1), 

respectively. Monotone and boundary conditions 

(^(0) = 4>i(0) = 1 and 0.(1) = 1^(1) = 0 

are obviously satisfied. 

(i 1. 2, 3) 
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1. INTRODUCTION 
Recently, these two authors proved a theorem involving necessary and suffi-

cient conditions on when a real ordinary differential expression can be made 
formally self-adjoint [1]. A differential expression 

£Q/) = E aAx)y^\x) 
k = o 

is said to be symmetric or formally self-adjoint if L(y) = L + iy)s where L+ is 
the Lagrange adjoint of L defined by 

^iy) = E (-l)k(ak(x)y(x))«\ 
k = 0 

# 
It is easy to see that if L = L+ then it is necessary that r be even. If L(y) 
is a differential expression and fix) is a function such that f(x)L(y) is sym-
metric, then fix) is called a symmetry factor for Liy) * In [2]5 Littlejohn 
proved the following theorem. 

Theorem: Suppose akix) € Ckil) , a^ix) is real valued, k = 0, 1, . .., 2n, a2w (or) 
^ 0, where I is some interval of the real line. Then there exists a symmetry 
factor fix) for the expression 

In 
Liy) = E <Zt(ff)2/(/c)0*0 

fc = 0 

if and only if fix) simultaneously satisfies the n differential equations 

Y. Y 2S ) 2S-2k+l\2 - J . , ( 2e -2k+ l - j ) f ( j ) . f = 0 
S.fc A \2fe"lA J / S-fe+1 B^-2k+2^2s T ^2k~lT 0» 

T O f-l iQ R a r n n n l 1 -J n n r o K o r - A a "F -f tn a A V\\T 
21 

2L_ = 2 _£ + y J± 
- 1 2 fa (2i)! 

However, these two authors have significantly improved the n equations that 
the symmetry factor must satisfy [1]. Directly from the definition of symmetry 
it is easy to see that fix) is a symmetry factor for (1) if and only if Ak+1 = 
0, k = 0, 1, ... (2n - 1), where 

Ak + 1 = *E i-l)k + j(k y)ifix)ak+.ix))U) - /0r)afe0r). 
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Littlejohn & Krall show that A k + 1 = 0, k = 0, 1, ... {In - 1) if and only if 

In 
'fc + l E (-D1 

-£ = 2£+ 1 

fc - 1 
£ J (<^ (*)/(*))' a -2k -i) = = o, (2) 

fe=0, 1, . . . ( n - l ) . I f we e x p r e s s t h e CVfs i n t e rms of t h e Av's3 we s e e 
t h a t : 

a n d , f o r 3 < fc < In - 1, 

1C, + 
J = 3 

k(k-j)(k-j- l ) ( f e - , 7 - 2 ) . . . ( f e - 2 j + 3) r u - 2 j + 2 ) 
( J - 1)! ' fc - i +1 

: ^ A - > 

where C. = 0 if & > n and [•] denotes the greatest Integer function. 

From the coefficients of these equations, we get the following array: 

1st 
2nd 
3rd 
4th 
5th 
6th 
7th 
8 th 
9 th 
10th 
11th 
12th 
13th 

row 
row 
row 
row 
row 
row 
row 
row 
row 
row 
row 
row 
row 

1 
1 
1 

0 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

0 
2 
5 
9 
14 
20 
27 
35 
44 
54 
65 

0 
2 
7 
16 
30 
50 
77 
112 
156 

0 
2 
9 
25 
55 
105 
182 

0 
2 
11 
36 
91 

0 
2 
13 

This array has many interesting properties, some of which we shall discuss 
in this note. 

2. PROPERTIES OF THE ARRAY 

If we add all of the entries in each row5 we arrive at the sequence 

1, 3, 4S 7, 11, 18, 299 47, 76, ... . 

A Fibonacci sequence! (Actually, this sequence is called the Lucas sequence.) 
From this, we can desily derive 

Theorem 1: For n ^ 3, 

m 
1 + n + Y. 

j = 3 

n(n- J)(n- j - 1) (n - j - 2) ... (n- 2j + 3) 
(J- 1)' 

H^r+(H^r 
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For n > 3 and j > 3, the number 

A = n(n~ J) (n- j - 1) . . . (n- 2j + 3) 

is the entry in the nth row and j t h column. Alternatively, i4Wfj is the v th 
element in the j th column where v = n ~ 2j + 4. We now show how to obtain any 
element in the j t h column by looking at the (j - l)s t column. Consider, for 
example, A11 h = 77, which is the seventh entry in the fourth column. Observe 
that we can also obtain 77 by adding the first seven entries in the third col-
umn: 

77 = 0 + 2 + 5 + 9 + 14 + 20 + 27. 

As another example, A13j 6 = 91, the fifth number in the sixth column can also 
be obtained by adding the first five numbers in the fifth column: 

91 = 0 + 2 + 9 + 25 + 55. 

From this, we get 

~n + 3" Theorem 2 : For n > 4 and 3 < j < 

n\^ • / • • , n / • -N / . o • . CN n ( n - j ) in- j - 1) . . . (n - 2 j + 3) X, i ( i - J + 1 ) ( ^ - J ) • . - O " 2 j + 5) = —* £LZ^ l * - L . m 
i = 2j - 4 j - 1 

Of course, this process can also be reversed; that is, we can obtain the 
entries in the (j - l)st column by looking at the j t h column. More specifi-
cally, by taking differences*of successive elements in the j t h column, we ob-
tain the entries in the (j - l)st column. The reason for this is the identity 

A • - A - A 

There are probably many other patterns appearing in this array; we list a few 
more: 

1 + n + ^ n + i j 3 + ^ n + 2,4 + ^n + 3, 5 + ""* + ^ 2n-l,n + l 

= 3- 2n"2, n > 2, (3) 

A2n,n = «*• W ) 

How many new patterns can you find? 

The first set of necessary and sufficient conditions for the existence of 
a symmetry factor [i.e., equation (1)] involve the Bernoulli numbers. We have 
shown that the second set of conditions [equation (2)], which are equivalent 
to the first set, involve the Fibonacci numbers. What is the connection between 
these two sets of numbers? 

ACKNOWLEDGMENTS 

The authors wish to thank the referee for many helpful suggestions as well 
as the refereeTs student who found a few more patterns in the array. If we add 
the entries on the (main) diagonals, we obtain the sequence 

1, 1, 3, 4, 5, 8, 12, 17, 25, 37, 54, 79, ... 

or an = ccn_1 + an_3, n ^ 4. Another interesting pattern is the following: 

o 
An,j = L*> An -2j+ 2k - i , k ' (->) 

k=l 
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where we adopt the notation that ̂ 0s l = 15 An k = 0 when n < 0 and An^k = 0 if 

7 v \n + 21 
2 — * 

For example5 

4li, 5 = A2, i + Ak, 2 + ^6, 3 + A s , if + ^io, 5 = 1 + 4 + 9 + 16 + 25 = 55. 
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1 . SNTRODUCTiON 

In 1921 , Humbert [8] d e f i n e d a c l a s s of p o l y n o m i a l s {II n ? m }™ = 0 by t h e g e n -
e r a t i n g f u n c t i o n 

(1 - mxt + tm)~x = f Hr
A

 m{x)tn. (1) 
n = 0 

These satisfy the recurrence relation 

(n + l)n£ + lsm(a;) - mx(n + X)Tl^m(x) - (n + mX - m + l)Iin-m+1, m (x) = 0. 

Particular cases of these polynomials are Gegenbauer polynomials [1] 

and Pincherle polynomials (see [8]) 

Later, Gould [2] studied a class of generalized Humbert polynomials 

Pn(m, x, ys p5 C) 

defined by 

(C - mxt + ytm)p = £ Pn(^, x9 y9 p, C)tn, (2) 
H = 0 

where TTZ ̂  1 is an integer and the other parameters are unrestricted in general. 
The recurrence relation for the generalized Humbert polynomials is 

CnPn - m(n - 1 - p)xPn_1 + in - m - mp)yPn_m
== 0» n > m > 1, (3) 

where we put Pn = Pn(m9 x9 y 9 p9 C) . 

In [6]j Horadam and Pethe investigated the polynomials associated with the 
Gegenbauer polynomials 

[n/2] (X) 

where (A)0 = 1, (X) n = X(X + 1 ) oee (A + n - 1), n = 1, 2, ... . Listing the 
polynomials of (4) horizontally and taking sums along the rising diagonals, 
Horadam and Pethe obtained the polynomials denoted by px(x). For these poly-
nomials , they proved that the generating function Gx(x9 t) is given by 

GX(x5 t) = E pX(x)tn~1 = (1 - 2xt + t 3 ) " A . (5) 
n = 1 
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Some special cases of these polynomials were considered in several papers (see 
[3]5 [4], and [7], for example). 

Comparing (5) to (1), we see that their polynomials are Humbert polynomi-
als for m = 3, with x replaced by 2x/39 i.e., p£+1(x) = II A (2#/3). 

2. THE POLYNOMIALS pA (x) 

In this paper9 we consider the polynomials {p* } defined by 

Plm (x) = Jlx
m(2x/m). 

Their generating function is given by 

Gx(x, t) = (1 - 2xt + tm)-x = f) p\ m(x)tn. (6) 
Yl = 0 ' 

Note that 

px (x) = C^(x) (Gegenbauer polynomials) 
and 

Pn 3^) = Pn + i(x^ (Horadam-Pethe polynomials). 

For m = 1, we have 

Gx(x, t) = (1 - (2x - l ) t r A = E p i Ax)tn 

n = 0 ' 
and ^ . 

P^G*) = (-ir(~n
x)(2x - vf -~zr(2x - D*. 

These polynomials can be obtained from descending diagonals in the Pascal-type 
array for Gegenbauer polynomials (see Horadam [5]). 

Expanding the left-hand side of (6), we obtain the explicit formula 

[n/m] (A) , _,. 7 

^w.m ^ 0 Ac! (n - mk) ! 

These polynomials can be obtained from (2) by putting C = y = 1, p = -A, 
and x : = 2x/m. Then we have 

px (re) = Pn(jn9 2x/m9 1, -A, 1). 

Also, if we put C = z/ = m/2 and p = -A, we obtain 

pA (x) = (-) PnQn9 x5 m/29 -A, mil). 

Then, from (3), we get the following recurrence relation 

np^m(x) = (A +n - l)2xpn_lim(x) - (n + m(X - 1) )pn _^m (*), (8) 

for n > m > 1. 

The starting polynomials are 

pA Or) = r- (2x)n
 s n = 0, 1, . . . s m - l . 
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Remark: For corresponding monic polynomials pA , we have 

px (x) = xpx (x) - b px (x), n ̂  m > 1, 

VX (x) = Xn
9 0 < Yl < 77? - 1 , 

• n , w? 

where 
, = (n - 1) ! n + 777 (X - 1) 
lDn (777 - 1 ) ! " 2 m (A + n - m)m ' 

The classes of polynomials WW} x = {pn m}n = o > m = 25 3, . .., can be found by 
repeating the "diagonal functions process,1' starting frompx (x). Listing the 
terms of polynomials horizontally, 

[n/rn] (-l)k(^)n_ fm-i)k 

Plm(*) ^ E ^ ^ f e X Z x ) - - * , <„<*) - kl(n-mk)l » 

and taking sums along the rising diagonals, we obtain px (x), because 

A k ^ n ~ k~ (m~ Vk. _ x 
an-k,m^ = (-1) kl(n ~ k - TTZfc)! = a ^ + l (^ ) e 

3- SOME DIFFERENTIAL RELATIONS 

In this section we shall give some differential equalities for the polyno-
mials p x . Here, D is the differentiation operator and p x (x) E 0 when k ̂  0. 

Theorem 1: The following equalities hold: 

2npx
>m (x) = 2xZ7p^m (x) - mDpx

n_m + lim(x) , (10) 

^ n + l.m^) = 2(W +777A)p£m(a;) + 2x (777 - l)DpX^(x)9 (11) 

2XPn,m(ar) = ^ « \ !,*<*> " 2 ^ , w <*> + ̂  -m + 1, m <*> ' <12> 

Proof: Using the differentiation formula (cf. [2, Eq. (3.5)]) 
DZPn+k(m> x> y> P> C^ = (-™)kkl(^)Pn(rn, x9 y9 p - k9 C) 

we obtain (9). 

To prove (10), we differentiate the generating function (6) w.r.t. x and t. 
Then, elimination (1 - 2xt 4- tm)~ _1 from the expressions, we find 

T, 2npx (x)tn = (2x - mt^"1) TtDpx (x)tn. 

Equating coefficients of tn in this identity, we get (10). 

By differentiating the recurrence relation (8), with n 4 1 substituted for 
n, and using (10), we obtain (11). 

Finally, by differentiating the generating function (6)w.r.t. x9 replacing 
Gm(x9 t) by its series expansion in powers of t9 and equating coefficients of 
tn+1, we obtain the relation (12). 
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k. THE DIFFERENTIAL EQUATION 

Let the sequence (fr)"=Q be given by fr = f(r)9 where 

in - t + m(A + t) f(t) = (n - t)[ -~ L) 
\ m lm-i 

Also5 we introduce two standard difference operators, the forward difference 
operator A and the displacement (or shift) operator E, by 

A4 =4+1 " fr and Efr
 = 4+Is 

and their powers by 

A X =fr, Ak/r =A(Afe"1/;)> Ekfr = fr+k-
Theorem 2: The polynomial x H- px (x) is a particular solution of the follow-
ing w-order differential equation' 

m 

y(m) + E asxsy{s) = 0, (13) 
s = 0 

where the coefficients as are given by 

as = ~ Asf0 (s = 0, 1, ..., m). (14) 

Proof: Let n = pm + q, where p = [n/w] and 0 < q < ??? - 1. By differentiating 
(7), we find . . 

**Z?V (x) =T (~Dk a)n~(m~1)k (2x)n-mk 
x U pn,m Kx) ^ = o ^ l) kl (n - mk - s)\ K• x) 

a n d P-i (A) , „12m 

Dmv^ (x) = V (~l)k - n~{m-1)k (2x)n-m(k+l\ 
u Pn,m{x) ^ { l) kl(n - m(k + l))rX) 

where p when s ^ q * or = p - 1 when s > g. 

If we substitute these expressions in the differential equation (13) and 
compare the corresponding coefficients, we obtain the following relations: 

E (n ~mk)slas = 2mk(X + n - (rn - l)k)m ± (15) 
(k = 09 1, ..., p - 1) 

and 

E (" ;mP)s!as = 2mp(X + « - (m - D p ) ^ -

s = 0 N b ' 

Firsts we consider the second equality, i.e., 
q (H\£l A V = 2m ^ ^ l \ + a + - , . 

m lm-i Q = Asl m J o m \ H m In 

This equality is correct, because it is equivalent to 

(1 + A)V0 = EqfQ = fq = f(q). 
Equality (15) can be written in the form 

(16) 
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Since t »-> f{t) is a polynomial of degree m, the last equalities are correct; 
(16) is a forward-difference formula for / at the point t = n - mk> 

Thus, the proof is completed. 

From (14), we have 

2mn/n + mX\ 2mn m ' \ ^ ,. ^ . ... 

a0 ^—{——)m^ . — ^(n+mtt + i - 1)), 

a, = ̂  {<n - D(n~ 1+*^ + 1>) _ /^A| 
1 77Z l V 77? / m - i \ 777 /777 - 1 

Since 

/(£) = -( j tm + terms of lower degree, 

we f ind 

2m(m - If'1 

m m \ m 
For m = 1, 2, 3, we have the following differential equations: 

(1 - 2x)yf + 2ny = 0, 

(1 - x2)y" - (2X + l)xyf + n(n + 2X)y = 0, 

(l - | | X3)T/'" - -^(2A + 3)^2/" 

- Jy(3n(n + 2X + 1) - (3A + 2) (3A + 5))xz/' 

+ -~ n{n + 3A) (n + 3(A + l))y = 0. 

Note that the second equation is the Gegenbauer equation. 
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In [1] we s tudied the c l a s s of recurrence r e l a t i o n s 
k 

<V= Gn-1 + Gn-2 + E «7.WJ (1) 

with GQ = G± = 1. The main result of [1] consists of an expression for Gn in 
terms of the Fibonacci numbers Fn and ̂ n_13 and in the parameters a , ..., an. 

The present note is devoted to the related family of recurrences that is 
obtained by replacing the (ordinary or power) polynomial in (1) by a factorial 
polynomial; viz. 

with #0 = #! = 1, n̂ '} = n(n - 1) (n - 2) . . . (n - j + 1) for j > 1, and n(0) = 1. 
The structure of this note resembles the one of [1] to a large extent. 

As usual (cf. e.g., [2] and [4]) the solution Hn of the homogeneous equa-
tion corresponding to (2) is 

with (\>1 = h(l + J3) and <f>2 = %(1 - y/E) . 
Next we try as a particular solution 

^ = 0 

which yields 

E ^ n ^ - Efl;(«- l)(i) - E Bi(« - 2)(i) - E Yi«(f) = 0. 
i =0 i = 0 i = Q i = 0 

In order to rewrite this equality, we need the following Binomial Theorem for 
Factorial Polynomials* 

Lemma 1: <«+*)<»> = Z ( J ^ V " ^ -
k = 0 

Proof (A. A. Jagers ) : 

(x + y) 
nn x + y 

+ y)Wtx + y = tn — 
dtn 

(Leibniz f s formula) 

Cancel la t ion of tx+y y i e l d s the des i red e q u a l i t y . 
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Thus, we have 

E * f » ( i ) - E ( E B i ( o ) ( ( - D ( i - 4 ) + ( -2 ) ( M ) )» ( 1 ) ) - E Y ^ = o; 

hence, for each i (0 ̂  i ̂  k), 

k 
Bi - E ^ T A - Yi = 0 (3) 

77? = £ 

with, for m ̂  i, 

6im = (J)((-l)<*-*> + (-2)(w^>). 

Since (-^)(n) = (~l)n (x + n - i)(n ) and n(n) = n!, we have 

6iw= (^)(-l)m-M(/77 - i)! + (̂  - i + 1)!) 

= (^)(-l)'n"i(m - i + 2) (772 - £)! 

= (-l)m"̂ (77? - i + 2)m^-l\ 

From the family of recurrences (3), we can successively determine B^s ..*, 
BQi the coefficient B^ is a linear combination of y., . . . , y, . Therefore, we 
set 

k 
Bi = " E ^ J Y J 

(cf. [1]) which yields, together with (3), 

k k / k \ 
" E ^ i j Y j + E ^ J E m̂£Y£ ) - Yi = 0. 

J = i 777=i \ £ = 777 / 

Thus, for 0 < i < J < k9 we have 

& i i = l 

a 
E 5imz? . , if i < j , 

m = i + 1 

Hence, for the particular solution E^ of (2), we obtain 

*?}- - E E ^ - Y ^ - - E Y Y E & ^ A . 
^ = 0J = ̂  j =0 U = 0 / 

As in [1] the determination of C1 and C2 from H0 = H1 = 1 yields 

Therefore, we have 

Proposition 2: The solution of (2) can be expressed as 

Hn = (1 +Mk)Fn + y ^ . , - E ^ - T T ^ n ) , 
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where Mk is a linear combination of y0, „.., yk5 \\k is a linear combination of 
Yi 9 •••> Y^5 a n d for each j (0 < J < fc) * TTj (n) is a factorial polynomial of 
degree j : 

k k j 
Mr £ ^o,-Y, 3 yk = E 6wY7-. 7T.7 (n) = E *i,-w(i)-

J-0 
Oj 'J 

J = 1 i = 0 

Table 1 

7 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

77^ (n) 

1 

n(1)+3 

n(2) + 6 n ( D + 1 0 

n(3) + 9 n(2) + 3 0 n(i) + 4 8 

n(4) + 12n(3) + 60n(2) + 192n(1) + 312 

n(s) + 15n(4) + 100n(3) + 480n(2) + 1560n(1) + 2520 

n«) + i8n(s) + 15(^(4) + 960n(3) + 4680n(2) + 15120n(1) + 24480 

rc(7) + 21n(6) + 210n(s) + 1680n(4) + 10920n(3) + 52920n(2) + 171360n(1) + 277200 

n(8) + 24n(7) + 280n(6) + 2688n(s) + 21840n(4) + 141120n(3) + 685440n(2) + 
+ 2217600n(1) + 3588480 

n(9) + 27n(8) + 360n(7) 4- 4032n(6) + 39312n(5) + 317520n(4) + 2056320n(3) + 
+ 9979200n(2) + 32296320n(1) + 52254720 

Table 1 displays the factorial polynomials TTj (n) for j = 0, 1, ...s 9. 

The coefficients of y0, y1, y2> • • • i n
 Mk a n d of Yi» Y2 > • • • i n V1* are inde-

pendent of k; cf. [1]. As k tends to infinity they give rise to two infinite 
sequences M and y of natural numbers (not mentioned in [3]) of which the first 
few elements are 

M: 1, 3, 10, 48, 312, 2520, 24480, 277200, 3588480, 52254720, ... 

y: 1, 6, 30, 192, 1560, 15120, 171360, 2217600, 322963 , ... 

Contrary to the corresponding sequences A and A in [1], M and y obviously show 
more regularity. Formally, this is expressed in 

Proposition 3- For each i and j with 0 < i < j < k9 

1 bdo 
j u - % - i + 2 , i f i < J-

Consequently, 

M^ = Y0 + E 3^ y and y k = Y l + E ^ ^ + 1 Y 
j = 1 J J J " 2 

Proof: The argument proceeds by induction on j - i. 

Initial step (j - i = 1): ^ - i s J - = -&j-i,jbjj 

induction hypothesis: For all m with i < m < j 9 bmj = j(J~m)F_ 

(-1)1 • 3j • 1 

777 J ^ ^ J -777+2 

J(l)^3 
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3 J ~ 1 
I n d u c t i o n s t e p : b ^ = ~ E &imbmj = ~&ijbjj " £ 7̂77 fe777J 

7?7 == £ + 1 777 = i + 1 

J - 1 . 
= ( _ i ) j - i + i ( j - _ i + 2 ) j ( J " ^ + E (-l)m-i+l(m - i .+ 2)m{m"^bnd. 

m= i+ 1 

From t h e i n d u c t i o n h y p o t h e s i s , i t f o l l o w s t h a t 

•*>xj = J y " ° ( ( - l ) J " " £ + 1 ( J " * + 2 ) + E (-l)m-i+\m - i + 2)Fd_n+2j. 

As F 0 = F-L = 1, we may r e p l a c e j - i + 2 by F 0 + ( j - t + l ) - ^ * Adding 

3(j-i)({-l)j-i(F0 + Fx - Fz) 

+ ' E (-Dm-i+1(m - i + l)(F3._m + Fj_m+1 - Fd_m+2)) = 0 
777= i+ 1 / 

yields, after rearranging, 

Ui3 J K J-i j - i + l J J j-i + 29 

which completes the induction. m 

Clearly, Proposition 3 provides a different way of computing the coeffi-
cients CLJJ (and hence the elements of the sequences A and X) from [1]; viz. by 

i » 
ai3 = is(i,m)( ZKtSa.J)) (i<3)-. 

7 7 7 = l \ £ = 77Z / 

where s(i9m) and 5(£, j) are the Stirling numbers of the first and second kind, 
respectively. 
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N! HAS THE FIRST DIGIT PROPERTY 

SHARON KUNOFF 
CW Post Campus, Long Island University, Greenvale, NY 11548 

(Submitted March 1986) 

Observation of extensive collections of numerical data shows that the dis-
tribution of first digits is not equally likely. Frank Benford, a General 
Electric Company physicist hypothesized in 1938 that for any extensive collec-
tion of real numbers expressed in decimal form Pv(j = p) = log10(l + 1/p) or, 
equivalently, Pr(j < p) = log10p, where j is the first significant digit and p 
is an integer 1 < p < 9. Benford presented extensive data to back up his 
claim. Sequences that have this property are said to obey Benford?s law or to 
have the first digit property. 

One can certainly create data which does not obey Benford?s law. However, 
many "natural" collections do behave in this manner. It has been shown that 
the geometric sequence avn is a Benford sequence as long as v is not a rational 
power of 10, as is any sequence which is asymptotically geometric (see, e.g., 
[7]). The Fibonacci numbers Fk are asymptotic to (v/5/5)[(l + v/5)/2]fc , so they 
have the first digit phenomenon. 

R. A. Raimi [7] gives an extensive bibliography of work done in the field 
until 1976. More recently, others have considered the distribution of first 
digits in specific sequences of mathematical interest using both the natural 
density 

,̂ N ... (the number of elements in S < m) 
n(S) = lim 

777 ->- oo TH 

and other density functions (see, e.g., [1], [2], [6]). In this paper, I show 
that Nl obeys Benfordfs law using the natural density. 

Let Dp be the set of all members of i?+ written with standard expansion in 
terms of some positive integer base b whose most significant digit is an inte-
ger < p. Then, 

Dp = U U>n, (p + l)bn). 
Yl = -oo 

This set maps into Ep = [0, logfc(p + 1)) if we take logbDp (mod 1). Using the 
notation of [4] let (xn); n = 1, 2, ,.., be a sequence of positive integers in 
R+ written in base b and let ((log^xn)) be the sequence of fractional parts of 
(log, x ) . Note that b (logb:cn) has the same first digit as xn. Let 

A[S; N; (xn)] 

be the number of terms of (xn) , 1 < n < N9 for which xn G 5. Then 

A[Dp; N; (xn)] = A[Ep; N; ((log^)) ] . 

A sequence (xn) is said to be uniformly distributed modulo 1 (written u.d. mod 
1) if, for every pair of real numbers with 0 < a < Z ? < l , w e have 

A[[a9 b); N; ((xn))] 
lim = b - a» 
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Recall that Ep is simply [0, (p+1)) so that if ((logbxn)) is u.d. mod 1, then 
(xn) is Benford under the natural density. Hence, the problem is reduced to 
considering the sequence ((log,#n)) for any sequence (xn) 9 where b is the base 
in which the sequence is expanded. 

For convenience I will consider sequences written in decimal form and will 
write log x for log1Qx. 

Theorem: Let F = {Nl\N = 1, 2, 3, ...} and let 

Fk = {n\n G F and the first digit of n is K]. 

Then Nl is Benford; that is, 

(the number of elements in Fv < m) 
lim = log k + 1 
^oo (the number of elements in F < m) k 

This can be proven utilizing the following theorems from [4]: 

(a) If the sequence (xn) , n = 1, 2S . . ., is u.d. mod 1, and if (yn) is a 
sequence with the property 

lim(^ - yn) = a, 

a real constant, then (yn) is u.d. mod 1. 

(b) The Weyl Criterion: A sequence (xn) 9 n = 1. 
and only if 

2, i s u . d . mod 1 i f 

T . 1 T ^ 2i\ihxn 0 f o r a l l i n t e g e r s h i- 0 . 

(c) Le t a and b be i n t e g e r s w i t h a < b, and l e t / be t w i c e d i f f e r e n t i a b l e 
[ a , Z?) w i t h f" > p > 0 o r / " < - p f o r XG [ a , &) . Then, 

y e2i\if{n) 
n = a 

< (\f"(b) - f'(a)\ + 2) 
vn 

+ 3 

We observe that 

limI log [ (n/e)nV2Tm log n!I : 

2im(n/e) e with 1 l/(12n + 1) < r(n) < 1, 

so that 
lim log[(V2im(n/e)n]/nl)] = 0. 

Thus, if v2im(n/e)n is Benford, so is nl.. This is convenient for a statistical 
analysis because it is much simpler and faster to obtain the first digit of 
v2im(n/e)n than that of nl despite the fact that, today, programs are available 
to compute nl for very large n (see, e.g., [3]). Moreover, using (b) and (c), 
we can show that log(y/2jin(n/e)n) is u.d. mod 1 so that (log nl) is also, which 
means nl is Benford. Define f(x) = h(log [V2/nx(x/e)x ] ) . Then 

f"(x) = /2(loge10)_1[(2x - l)/x2] > h(N log^lO)"1 > h/3N for 1 < x < N. 

Substituting into Theorem (c) with p = h/3N yields: 

N 

n= 1 

2-nifW h(l - N) 
6N + log N + 2 4 J f + 3 
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Thus, 
I 1 N 

l±m\N 2 > 
2-nifin) 

' n = l 
= 0 

and fin) is u.d. mod 1, which implies V2wn(n/e)n is Benford and9 therefore, as 
indicated previouslys so is nl. 

Another interesting sequence to consider is apk where p, is the kth prime. 
It has been shown that the primes themselves do have the first digit phenomenon 
under some non-standard densities (see, e.g., [1]). In a chi-squared analysis 
at the 95% level for 8 degrees of freedom we would reject the Benford hypothe-
sis if chi-squared is greater than 15.5. Tallying the first digit of the se-
quence l^k for the first 65 primes gives a value of chi-squared of 9.8, while 
in an analysis of a random sequence of 56 primes less than 10000 a chi-squared 
value of 12.74 was obtained. Using a Kolmogorov-Smirnov analysis at the 95% 
level, in the first case, K = .072 compared to the table value of .16, and for 
the random sample, a K value of .14 was obtained, compared to .18 (for table 
values see, e.g., [5]). These results seem to indicate that 2pk or, more gen-
erally, a^k may be Benford under other than the natural density. However, this 
remains an open question. 
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THE Kth-ORDER ANALOG OF A RESULT OF LB CARLITZ 

JiA-SHENG LEE 
Graduate Institute of Management Sciences, Tamkang University 

and 
Taipei College of Business, Taipei, Taiwan, JR.O-.C. 

(Submitted March 1986) 

This note is an extension of the work of Carlitz [1] and of Laohakosol and 
Roenrom [2]. The proofs given here are very similar to those of Laohakosol and 
Roenrom as presented in [2]. ' 

Consider the kth-order difference equation 

E XI(-l)OT + *~J"(J)pVwW -f • (x) = xk~1f ^v (x) (1) 
• A n \m r k-jJ n + j — 777v y Jn+k-ly ' x / 

j = 0 m = 0 
for al l n = 0, 1, 25 . . . 5 with in i t ia l conditions 

/„(*) = fx(x) = • • • == fk_2(x) = 0, ^ ^ ( a : ) = 1, (2) 

and a = 1; a^ (i = 1, 25 ...5 &) are arbitrary parameters, where 

rSm) = n(n - 1) ... (n - m + 1) 

subject to the following three restrictions: 

I. p ̂  0, 

II. All k roots a^ (i = 1, 25 ..., &) of the equation (7(0, as fc) = 0 are 
distinct and none is a nonpositive integer, where 

k 
I 

j = 0 
£ 0 % a, fc) = _£ (-l)fc"Jafc_t7.p̂ (a + v + j - 1)(J'}. 

III. All A: - 1 roots r?- (*£ = 1, 2, • . . , fc - 1) of the equation L(p, a, fc) = 0 
are nonpositive integers, where a denotes any one of a15 a2, . .., OL^<_1 or a^ 
from II and 

Liv, a, fc) = {G(r, a, fc) - G(09 a, Zc)}/r. 

Let 

F(t):=F(x, t) = E fn(x)tn/(.nl) (3) 
n = 0 

be the exponential generating function for fn(x) . From (1)~(3), we have 

2(-l)k-«7(l - pt)J'ah .F^\t) = x ^ F ^ H t ) . 
j = o fc_J 

Nexts we define an operator 
k 

^ -J A: = E (-l)k~J'(l - p£)J'a. -£J' (where D = d/dt) . 
j=0 

Then our differential equation becomes 
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We expect k independent solutions of this differential equation to be of the 
form 

((>(£, a ) : = <()(£, a , x) = £ Tmxm(l - pt)~a-m
9 

rn = 0 

where a i s any one of a x , a2, . . . , afc. Thus, we must compute Tm = Tm ( a ) . 
Using a method s imi l a r to t ha t given in [ 2 ] , we der ive 

(a + ok - j + £ - l ) ^ - 1 ) 
VCfc -^ + i 

p J ^ Fl (rnk - m + £) 
\m = l 

rk-1 

L s = i 
777 + £ - P ) 

for a l l i = 0, 1, . . . , k - 2. 

Let Cn(a) : = Cn(x, a) be the coe f f i c i en t of tn/(nl) in (f)(t, a ) , then 

CnW = Z Tj{k_ 1}(a + jfc - J + n - 1)(WV 

Hence, we have the general so lu t ion of (1) as 

(n)^nxJ(k- 1)^ 

i = 0 
where 

z^ = wi(a1, a2, ..., afe) (i = 1, 2, ..., &) 

are to be chosen so that the initial conditions (2) are fulfilled, namely 

C • W = E 

where 

C0(a1) C0(a2) . . . C0(ak) 

C1(a1) C1(a2) . . . C1(ak) 

Ck-i(aO ck-i(a2^ ••• ck-i(ak^ 

, J7 = 

k*k 

W, 

wv 

, E 

k*i k * 1 

and det C £ 0. Using Cramer's rule, we obtain the solution of W. With these 
values, we have completely solved (1). Obviously, the difference equations of 
[1] and [2] are the special cases of (1). 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solu-
tion or problem should be on a separate sheet (or sheets). Preference will be 
given to those typed with double spacing in the format used below. Solutions 
should be received within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

F
n + 2 = Fn+1 + Fn> Fo = °> Fl = 1 

and 
Ln + 2 = Ln + 1 + Ln> LQ = 2 ' L l = l ' 

PROBLEMS PROPOSED SN THIS ISSUE 

B-604 Proposed by Heinz-Jurgen Seiffert, Berlin, Germany 

Let c be a fixed number and un + 2 = cun+1 + un for n in N = {0, 19 2, ...}. 
Show that there exists a number h such that 

Un+k = hUn+3 " hun+l + Un f o r n i n N' 

B-605 Proposed by Herta T. Freitag, Roanoke, VA 

Let 
n 

S(n) = £ L2n + 2i_1. 
i = l 

Determine the positive integers n, if any, for which S(n) is prime. 
B~606 Proposed by L. Kuipers, Sierre, Switzerland 

Simplify the expression 

£2+i + 2£ ,L M1 - 25F2 + L2
 1 . 

n + l n -1 n + 1 n n - 1 

B-607 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Let 

°" = £0\k)FkLn-k-

Show that Cn/2n is an integer for n in {0, 1, 2, ...}. 
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B-608 Proposed by Plero Filipponi, Fond. U. Bordoni, Rome,, Italy 

For k = {2, 39 ...} and n in N = {09 1, 29 . . . } , let 

, rc+ 7c- 1 

denote the quadratic mean taken over k consecutive Fibonacci numbers of which 
the first is Fn . Find the smallest such k > 2 for which Snak is an integer for 
all n in 71/. 

B-609 Proposed by Adina DiPorto & Piero Filipponi, 
Fond, U. Bordoni, Rome, Italy 

Find a closed form expression for 

k = i 

and show that Sn E n(-l)n (mod Fn) . 

SOLUTIONS 

Nondivisors of the Ly. 

B"580 Proposed by Valentina Bakinova, Rondout Valley, NY 

What are the three smallest positive integers d such that no Lucas number 
Ln is an integral multiple of dP. 

Solution by J. Suck, Essen, Germany 

They are 59 89 10. Since l\Lns 2\LQS 3\L2S 4|L3, 6|L6S l\Lh, 9|L69 it re-
mains to show that 5\Ln and 8J(Ln for all n - 09 1, 2, ... . This follows from 
the fact that the Lucas sequence modulo 5 or 8 is periodic with period 2, 19 3, 
4 or 2, 1, 39 49 79 39 29 59 794 s 3 97 9 respectively. 

Also solved by Paul S. Bruckman, L. A. G. Dresel, Piero Filipponi, Herta T. 
Freitag, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Lawrence Somer, and the 
proposer. 

Third Degree Representations for F 

B-581 Proposed by Antal Bege, University of Cluj, Romania 

Prove that, for every positive integer n9 there are at least [n/2] ordered 
6-tuples (a, b5 o5 x9 y3 z) such that 

Fn = ax2 -\- by2 - cz2 

and each of a, b9 c3 xs y3 z is a Fibonacci number. Here [t] is the greatest 
integer in t . 

Solution by Paul S. Bruckman, Fair Oaks, CA 
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We first prove the following relations: 

TP = TP TP 2 . L . TP TP ^ — TP jp 2 . / 1 \ 
2n r2s+lrn-s+l r2s n-s r 2s -1 n - s -1 ' v J 

F = F F 2 + F F 2 - F F 2 . (2) 
L2n+1 L2s + 2±n~s+l L2s + lLn-s ±2sLn-s-l9 v^ ' 

v a l i d f o r a l l i n t e g e r s s and n. 

Proof of (1) and ( 2 ) : We u s e t h e f o l l o w i n g r e l a t i o n s r e p e a t e d l y : 
FuFv = ^ F 2 v + u - (-V"F2v-u - H-lfFu), (3) 

which i s r e a d i l y p roven from t h e B i n e t f o rm u la s and i s g i v e n w i t h o u t p r o o f . 

M u l t i p l y i n g t h e r i g h t member of (1) by 5 , we a p p l y (3) t o t r a n s f o r m t h e 
r e s u l t a s f o l l o w s : 

(F2n+3 + F
2n-*s + i + 2 ( - D " - 8 F 2 8 + 1 ) + (F2n - F2n_h8 - 2(-l)n-sFZs) 

~ (F2n-3 + F2n^s-1 + 2(-l)"-SF2s_1) 

= (F - F + F ) + (F - F - F ) 
K 2n+3 2n-3 2n J v 2n-ks+l 2n-hs 2n-hs-lJ 

+ 2(-l)"-s(F2s + 1 -F2B - F 2 s _ x ) 
= ^3F2n+ Fz„) + 0 + 0 = 5F2n. 

This proves (1). 
Likewise, multiplying the right member of (2) by 5 yields: 

(F - F + 2(-l)n~sF ) + (F + F - 2(-l)n~8F ) 
KL 2n + k L 2n-hs ^ ^K L) 2s + 2J ^ y 2n + l L 2n -ks -1 ^ V x / L 2s + lJ 

- (F2n-2 ~ F2i^-hs-2 + 2 ( - l ) " " F2s) 

= ^2n + h ~ &\n -2 + F2n+l) ~ (^2n -hs ~ ^'2n -hs - 1 ~ ^2n -ks - 2 / 
+ 2 ( - l ) " - e ( F 2 s + 2 - F2s+l - Fls) 

= (L,F2n+1 + F2n + 1) - 0 + 0 = 5F2n+1. 

T h i s p r o v e s ( 2 ) . 

We may combine (1) and (2) i n t o t h e s i n g l e f o r m u l a : 

F = F F2 + F F2 - F F2 , (4) 
n x 2s + l + on m -s + 1 2s + on m-s 2s -1 + on m -s -1 ' v ^ ' 

where 

m-= mm, 0 B E ( i . ( - i n / 2 . { J ; " ^ 
We see that the 6-tuples 

(a, b9 e, x9 y9 z) 

~ ^ 2S + 1+ on> 2s + on* 2s -1+ on' ^m-s+1* ^m-s9 ^m-s-1' ' ' 

are solutions of the problem3, as s is allowed to vary. For at least the values 
s = 0, 1, ...9m - 1, different 6-tuples are produced in (5). Hence, there are 
at least m = [n/2] distinct 6-tuples solving the problem, 

Also solved by the proposer. 
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Zeckendorf Representations 

B-582 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

It is known that every positive integer N can be represented uniquely as a 
sum of distinct nonconsecutive positive Fibonacci numbers. Let f(N) be the 
number of Fibonacci addends in this representation, a = (1 + v5)/2, and [x] be 
the greatest integer in x« Prove that 

f([aF2]) = [(n + l)/2] for n = 1, 2, ... . 

Solution by L. A. G. Dresel, University of Reading, England 

S i n c e 

F2 - F2
 0 = (F - F J (F + F ) = F L = F 

T r-2. v r v-zJK r v-2J v - \ v - \ 2 ( r - 1 ) 
we h a v e , summing f o r even v a l u e s v = 2£ , t = 19 25 . . . , 777, 

F2m 0 = F ^ _ 2 + Fhm _ 6 + e ° ° + F2 s 

and summing f o r odd v a l u e s r = 2 t + l 9 t = 1, 2 , . . . 5 / 7 ? , 

n 2m+l L r km ^ rhm-h ^ ^ rk9 

Let a = h(l + A ) and & = %(1 - >/5), t h e n 

a F 2 g = ( a 2 s + 1 - a Z ? 2 s ) / / 5 = F2g + 1 + (6 - a)b2s //5 = F2s + 1 - b 2s 

Applying the formula for F 2 , we obtain 

aF? = Fu , + Fu , + •••+ F - O ^ - 2 + Z^"6 + •'••+ £2) 
2m km -1 4m - 5 3 

and since 0 < (b2 + b6 + •• • + b^'2) < b21 (1 - £4) < 1, we have 

\oF 2 1 = F 4- F + • • • + F - 1. 

Putting F3 - 1 = F2 , we have a sum of 77? nonconsecutive Fibonacci numbers. Sim-

l l a r l Y S ^ 2 ^ = ^ + i + F | | w _ 3 + . . . + ^ + a _ ( ^ + . . . + Z , B + f c , ) f 

0 < (fc* + £8 + ... + fe^) < 6V(1 ~ i1*) < /32s 
and 1 < a - b2 < 2S 
so that 

[aF2 ] = F + F + • • • + F,, + F1 , 
L U i 2 m + l J 4 m + l 4m - 3 5 1 

which is the sum of (77?+ 1) nonconsecutive Fibonacci numbers. Finally, for n = 
1, we have 

[aF2] = 1 = F±. 

Thuss in all cases, we have 

f([aFn
2]) = [(n + l)/2], w = 1, 2, ... . 

Also solved by Paul S. Bruckman, L. Kuipers, J, Suck, and the proposer. 
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Recursion for a Triangle of Sums 

B-583 Proposed by Dorin Andrica, University of Cluj-Napoca, Romania 

For positive integers n and s, let 

' n s 

&n% s 
& ( " * ) • k = 

Prove that SniS+1 = n(Sn)S - Sn_la8). 

Solution by J.-J. Seiffert, Berlin, Germany 

S+ 1 ' 

Also solved by Paul S. Bruckman, L. A. G. Dresel, Russell Euler, Piero Filip-
poni & Odoardo Brugia , Herta T. Freitag, Fuchin He, Joseph J. Kostal, L. Kuipers , 
Carl Libis, Bob Prielipp, J. Suck, Nicola Treitzenberg, Paul Tzermias, Tad P. 
White, and the proposer. 

Product of Exponential Generating Functions 

B-584 Proposed by Dorin Andrica, University of Cluj-Napoca, Romania 

Using the notation of B-583, prove that 

s , 
Sm + n,s ~ ^ ( b I ^m,k^n, s-k' 

k = 0 v / w 

Solution by Heinz-Jurgen Seiffert, Berlin, Germany 

The stated equation is not meaningful if one uses the notation of B-583. 
(To see this, put s =0.) But such an equation can be proved for 

Sn,a:= £(£)*"> (1) 
with the usual convention 0°  : = 1. Consider the function 

Fix, n) : = £ Sn,s ~y . (2) 
s = 0 S-

Since 0 ̂  Sn,s ^ 2nns, the above series converges for all real x. Using (1), 
one obtains 

H*. n) = t E O ^ - E (I) ± ^ - E (£)«** 
s = 0 k = 0XK/ S' k = o V K / s = 0 s - k = 0^K/ 

or 
F(x, n) = (e* + l ) n , (3) 

which yields 

F(x9 m + n) = FGr, m)F(x, n). (4) 
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CauchyTs product leads to 

F(x, m)F(x, n) = Z L ~JT (s - k) I °° ( 5 ) 

From (2)9 (4), and (5), and by comparing coefficients, one obtains the equation 
as stated in the proposal for the Sn s defined in (1). 

Also solved by Paul S. Bruckman, Odoardo Brugla & Plero Filipponi, L. A. G. 
Dresel, L. Kuipers, Fuchln He, J. Suck, Nicola Treitzenberg, Paul Tzermias, 
Tad P. White, and the proposer. 

Combinatorial Interpretation of the F 

B-585 Proposed by Constant in Gonciulea & Nicolae Gonciulea, Trian College, 
Drobeta Turnu-Severin, Romania 

For each subset A of X = {Is 29 oe.9 n}9 let r(A) be the number of j such 
that {j, j + 1} c A. Show that 

A CX 

Solution by J. Suck, Essen, Germany 

Let us supplement the proposal by 

"and £ 2rW = F ." 
neJcX 2n 

We now have a beautiful combinatorial interpretation of the Fibonacci sequence, 
The two identities help each other in the following induction proof* 

For n = 1, A = 0 or X, r(A) = 0. Thus9 both identities hold here. Suppose 
they hold for k = 1, . . . , n. Consider Y 1 = {1, . . . 9 n9 n + 1}. If {n9 n + 1} c 
B c J9 r(B) = r(B\{n + 1}) + 1. If n t B c J9 r(5) = r(S\{n + 1}). Thus9 

E 2r(B) = E 2r(i4) + 1 + E 2rC4) ( t h e l a s t s u m i s l f o r 

n + U B c y n e ^ c i ^cz\{n} t h e s t e p 1 -> 1 + 1) 
= 2 ^ 2 n + F2(n-l) + l = F2n + F2n+1 = ^2(n + l )» 

and 
£ 2' ( B ) = £ 2^(B) + £ 2 ^ ) = f20i+i) + F2n+1 = P Z ( B + 1 ) x . 

j?cy n + i e s c y ^ c j 

Also solved by Paul S. Bruckman, L. A. G. Dresel, N* J. Kuenzi & Bob Prielipp, 
Paul Tzermias, Tad P. White, and the proposer. 

#<>•<>• 
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PROBLEMS PROPOSED IN THIS ISSUE 

H-415 Proposed by Larry Taylor, Rego Park, N.Y. 

Let n and w be integers with w odd. From the following Fibonacci-Lucas 
identity (Elementary Problem B-464, The Fibonacci Quarterly, December 1981, p. 
466) , derive another Fibonacci-Lucas identity using the method given in Prob-
lem 1: 

n + 2w n + w ~ ^w^n + w^n -w ~ ^n-w^n-2w = (^ 3w ~ 2Lw)in. 

H-416 Proposed by Gregory Wulczyn, Bucknell University (Ret.), Lewisburg, PA 

/ P N f-5(Vi + Vi> H l ( m o d P } ' 
(1) If K ) = 1, show that: { 

V (.5(Lp + 1 - Fp + 1) = 1 (mod p ) . 

/ D , ( - 5 ( i p - i +Fp-i) = ~1 (mod p ) , 
(2) If (%) = - 1 , show that { 

{•HLp + 1 - Fp + 1) = - 1 (mod p ) . 

H~417 Proposed by Piero Filipponi, Rome, Italy 

Let G(n9 m) denote the geometric mean taken over m consecutive Fibonacci 
numbers of which the smallest: is Fn . It can be readily proved that 

G(n9 2k + 1) (7< = 1, 25 . ..) 

is not integral and is asymptotic to Fn + p (as n tends to infinity). 

Show that if n is odd (even), then G(n9 2k + 1) is greater (smaller) than 
Fn+ks except for the case k = 25 where G(n« 5) < F for every n* 

SOLUTIONS 

Bracket Some Sums 

H-392 Proposed by Piero Filipponi, Rome, Italy [Vol. 23(4), Nov. 19851 

It is known [1], [2], [3], [4] that every positive integer n can be repre-
sented uniquely as a finite sum of F-addends (distinct nonconsecutive Fibonacci 
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numbers). Denoting by fin) the number of F-addends the sum of which represents 
the integer n and denoting by [x] the greatest integer not exceeding x, prove 
that: 

(i) f([Fk/2]) = [fc/3], (k = 3, 4, . . . ) ; 

([fe/4] + 1, for [fc/4] E l (mod 2) and k = 3 (mod 4) 
(ii) /([V3]) = i (̂  = 4, 5, ...) 

([fe/4], otherwise. 

Find (if any) a closed expression for f([Fk/p]) with p a prime and k such 
that Fk = 0 (mod p). 

References 

1. J. L. Brown, Jr. "Zeckendorf?s Theorem and Some Applications." The Fibo-
nacci Quarterly 2, no. 4 (1964):163-168. 

2. J. L. Brown, Jr. "A New Characterization of the Fibonacci Numbers." The 
Fibonacci Quarterly 3, no. 1 (1965):1-8. 

3. D. E. Daykin. "Representation of Natural Numbers as Sums of Generalized 
Fibonacci Numbers." J. London Math. Soc. 35 (1960):143-160. 

4. D. A. Klarner. "Partitions of N into Distinct Fibonacci Numbers." The 
Fibonacci Quarterly 6, no. 4 (1968):235-244. 

Solution (partial) by the proposer 

Proof (i): Let us put k = 3h + V iv = 0, 1, 2; h = 1, 2, . . .) . On the basis 
of the equalities 

(F3h/29 for v = 0 
^ + y/2] = \ 

1 (F3h + V ~ l)/2, for v = 1, 2 
the relations 

[̂ +U/2] = E ^ i + u-2 (" = °' !> 2) 
i = 1 

can be proven by induction on h. Therefore [Fk/2] can be represented as a sum 
of h = [fe/3] F-addends. 

Proof (ii): Let us put k = 4/z + v (v = 0, 1, 2, 3; h = 1, 2, . . .) . By virtue 
of the identity 

F = F F + F F (!) 

and of the congruence 

Fhh = 0 (mod 3), (2) 

the congruences 

_ i 1 (mod 3), for h even, ,^\ 
4^+1 ~ \2 (mod 3), for h odd, 

can be r e a d i l y p roven by i n d u c t i o n on h. From (1) and ( 2 ) , we can w r i t e : 

Fhhl3, f o r v = 0 , 
[ p /o i _ ; [ ^ f e + i / 3 ] , f o r y = 1, ( 4 ) 
L ^ + " / J J ~ )Fhh!3 + [ * \ h + 1 / 3 ] , f o r i; = 2 , 

, ^ / 3 + [2Ffyh+1/3], f o r z; = 3 ; 
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therefore, from (3) and (4), we obtain: 

[Fkh/3] = Fkh/3, \/h; (5) 

\F /31 = l(F^h+i ~ l^/3> f o r h e v e n ' (5') 
^ ^ + i/JJ \(F^h + l - 2)/3, for h odd; ^ ; 

\F /31 = i(F^+2 " ^ Z 3 ' f o r & e v e n ' r5'M 
L ^ + 2/JJ \ ( F ^ + 2 - 2)/3, for .ft odd; °  > 

rp /3i = i ^ + 3 " 2)/3, f o r h e v e n > rV'M 
L*^ + 3/JJ \ ( ^ + 3 - l)/3, for ft odd. ^ ; 

From (5), (5'), (5")» (5"')» and on the basis of (1) and of the identity 

the relations 

f ^ + !/3] = E ^ + y - , ( y = ° ' X» 2 ' 3? * e v e n > ( ? ) 
i = 1 

^,h + v'^ = f
M +i + E \ i + v (v = 0, 1, 2; ft odd) (7') 

i = 1 
(h + l)/2 

[ ^ + 3 / 3 ] = E ^87;-5 ft odd) (7") 
i = l 

can be proven by induction ©n h. As an example, we consider the case h even 
and v - 1, and prove that 

/z/2 

i = 1 

Setting h = 2, we obtain (Fg - l ) /3 = L5. Supposing the statement true for h9 
we have 

(h + 2)/2 h/2 + l 

X £ 8 i -3 = £ h i - 3 = ( ^ + i - D/3 + ^ + 5 
%-\ ^ = 1 

= ( ^ + i - D/3 + ^ + . + ^ + 6 

= C ^ + i - D/3 + 18F,, + 1 1 ^ . , 

= C3^„ + i + 2 1 ^ h - D/3 
= '(*V* + 9 - D/3 = (F„(,+2) + 1 - D / 3 . 

From (7), (7') , (7")» and (6), i t is seen that [i^/3] can be represented as a 
sum of h + 1 = [fc/4] + 1 F-addends in the case [fc/4] odd and A: = 3 (mod 4), and 
as a sum of ft = [&/4] F-addends otherwise. 

Also solved (minus a closed form) by L. Kulpers and B. Poonen. 

E Gads 

H-39̂  Proposed by Ambati Jay a Krishna, Baltimore, MD, and 
Gomathi S. Rao, Orangeburg, SC [Vol. 24(1), Feb. 1986] 

2 4 6 Find the value of the continued fraction 1 + — — — 

378 [Nov. 



ADVANCED PROBLEMS AND SOLUTIONS 

Solution by Paul S. Bruckman, Fair Oaks, CA 

Define on , the nth convergent of the indicated continued fraction, as fol-
lows: 

(1) cn = unlvn E 1 + 2/3 + 4/5 + ••• + 2n/(2n + 1), n = 1, 2, ...; 

c0 = 1 = 1/1. 

After a moment's reflection, it is seen that un and vn satisfy the common re-
currence relation: 

(2) wn = (2n+ l)wn_1 + 2nwn_2, n > 2, where wn denotes either un or vn9 
and 

(3) u0 = v0 = 1; w2 = 5, v± = 3. 

We now define the generating functions: 

(4) w(#) = zl un— , v(x) = Y* vn "T 5 w ^ ) denoting either w(x) or v(x). 
n = 0 n- n=0 n' 

The initial conditions in (3) become: 

(5) u(0) = v(0) = 1; u'(0) = 5, vr(0) = 3. 

The recurrence in (2) translates to the following differential equation: 

(6) {2x - l)w" + (2x + 5)wr + hw = 0. 

To solve (6), we find the following transformation useful: 

(7) g(x) = (2x - l)wr(x) + hw(x). 
Then, we find (6) is equivalent to the first-order homogeneous equation: 

(8) g' + g = 0, 
from which 

(9) g(x) ~ cce~x, for an unspecified constant a. 

Substituting this last result into (7), after first making the transformation: 

(10) W(x) = h(x) * (1 - 2x)~2, 

we find that hr(x) = -a(l - 2x)e~x, so 

(11) h(x) = -a(l + 2x)e~x + b, where b is another unspecified constant. 

Thus, 

(12) w(x) = (1 - 2x)~2{b - a(l + 2x)e~x}9 

where a and b are to be determined from (5), by appropriate differentiation in 
(12). Note that w(0) = b - a = 1. Also, 

wf(x) = 4Z?(1 - 2x)~3 - 2ae~x(l- 2x) ~ 3 (3-i-2x) + ae'x (1+ 2x){\- 2x)~2 , 

so w'(0) = kb - 5a = 4 - a. If &>(#) = w(x), then a = -1 and 2? = 0, while if 
w(x) = z;(x), then a = 1 and & = 2. Hence, 

(13) u(x) = (1 + 2a;) (1 - 2x)~2e~x, z;(x) = 2(1 - 2^)~2 - w(a;). 

Next, we use (13) to obtain expansions for u(x) and v (x) and, therefore, expli-
cit expressions for the un and vn originally defined in (1). We start with 
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(1 + 2x) ( l - 2x)~2 = (1 + 2x) E (n + l)2*a;" 
n = o 

00 00 00 

= E (" + l)2n^rn + E w2n#n = E (2n + l )2nxn ; 
ft=0 ft=0 n = 0 

t hus , 
w(x) = E (2n + 1)2W*W • E (~l)n ^T = E ^ n E - ^ ^ r - ( 2 n - 2fe + 1)2""* 

ft = 0 ft=0 n ' ft = 0 fc = 0 ^ " 

= E (2n + 1) (2x)n E "Sf- " 2 E (2^)" E 7f-^TTT ; 
l e t t i n g 

(14) r n = E \ T - > n = 0, 1, 2, . . . , 
k = o K-

we obtain 

u(x) = I ) (2n + l)(2a;)"r„ + £ (2x)*(r - I ^ ) 
n = 0 n = l \ Yl. I 

= 1 + £ {2(n + l)rn - ^ ^ } ( 2 x ) \ 
ft = 1 v n. ) 

or 
(15) M(:c) = £ {ln + 1(n + l)\rn - (-l)"|f^ . 

ft = o I ; " • 

It follows from comparison of coefficients in (4) and (15) that 

(16) un = 2n+1(n + l ) ! r „ ~'(-l)n, n = 0, 1, 2, . . . . 
Likewise, s ince i?(aO = 2(1 - 2x)~2 - u(x) 9 we find 

y(:c) = 2 E ( n + l)2»x" - ± un £ = £ (n + 1) !2« + 1 ^ - £ M„ f^ , 
ft = 0 ft = 0 ^" n = 0 " • « = () n ' 

so 
(17) i;n = 2n + 1(n + 1)! - u„ , 
or 
(18) vn = 2n+1(n + 1)!(1 - rn) + (-1)", n = 0, 1, 2, ... . 
We note that 
(19) lim r = e~h. 

ft->- CO ^ 

Therefore, 
( 2n+1(n + l)!r„ - (-1)" ) , r 

lim cn = llm(un/vn) = lim < — V = lim 
»"•- ( 2 " + 1 ( K + 1 ) ! (1 - r ) + ( -1)" ) " * " 

= e - - 7 ( l - e - » ) , 
or 
(20) lim cn = (eh - l ) " 1 = 1.541494083. 

ft-*- oo 

^iso solved by W. Janous, A, Krishna & G. Rao, L. Kuipers & P. Shieu, J.-S. Lee 
& J.-Z. Lee, F. Steutel, and the proposer. 
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Easy Induction 

H-395 Proposed by Heinz-Jurgen Seiffert, Berlin Germany 
[Vol. 24(1), Feb. 1986] 

Show that for all positive integers m and k5 

m~1 F2k(2n + 1) _k~lF2m (2j+l) 

n = 0 2n + l J = 0 2 j + l 

Solution by J.-Z. Lee & J.-S. Lee, Soochow University, Taipei, Taiwan, R.O.C* 

Define 
m-l 

n = 0 

Sz(m, k) =".EV2m(2[7-+1)/£2j-+1)-
j =0 

From the definitions of Fn and LnS we have 

Lemma 1: F
(<m + 2k)(2n+l) Fm(2n + 1) (m + k)(2n + l) k(2n + l)> 

m-l 

Lemma 2: £ F = F
2m(2k- i)/L2k -1 • 

n = 0 

We will prove, using the induction hypothesis, that 
S1(m, k) = S2(m9 k) (*) 

for all positive integers 777 and k> 

For k = I j we obtain 
m-l rn-l 

S^m, 1) = £ (F2(2n + l)/L2n + 1) = £ F2n + 1 = F2m = Sz(m, 1), 
n = 0 « = 0 

so O ) is true for k = 1. Suppose that (*) is true for all positive integers 
less than k9 then 

m-l 

S1(m9 k) = £ (^2k(2n + l ) / L 2 n + l ) 
n = 0 

m- 1 

= E ( ( ^ 2 ( k - i ) ( 2 w + i) + ^(2fe-l)(2. + l ) L 2 n + l ) / L 2 n + l ) ^ ^ L e m m a l 5 

w = 0 

m - l m - l 
= E (F

2(k-1)( 2n + l) /L2n+0 + E ^(2k - 1) ( 2n + 1) 
n = 0 » = 0 

fc-2 
= E (̂ 2m(2j + l)/^2j' + l) + F2m(2k ~1)'L?± - I s 

j = 0 
by t h e i n d u c t i o n h y p o t h e s i s and Lemma 2 3 

k - l 

= E ( ^ ( 2 ( 7 - + i ) / L 2 j + i ) = M ^ &); 
j = 0 
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therefore, (*) is true for all positive integers k. 

Also solved by P. Bruckman, L. A.G. Dresel, C. Georghiou, W. Janous, L. Kuipers, 
and the proposer. 

Another Easy One 

H-396 Proposed by M. Wachtel, Zurich, Switzerland [Vol. 24(1), Feb. 1986] 

Establish the identity: 
7? TP 7? 

™ i+n ~ i+n+l ~ i+n+2 

i = i a^ i = i a1 i = i av 

a = 2, 3, 4, . . . , n = 0, 1,'2, 3, ... . 

Solution by Paul S. Bruckman, Fair Oaks, CA 

The series defined as follows, 

00 

fix, m) = Z Fi + mxi, m e Z, (1) 
-i = 1 

is absolutely convergent, with radius of convergence 0 E %(v5 - 1) = .618. In 
fact, the sum of the series is readily found to be equal to 

m +1 m , , 

/ O , 777) = , \x\ < 0. (2) 
1 _ 2 

Since a~ <C 0 for a = 2, 3, 4, ..., each of the series indicated in the state-
ment of the problem is absolutely convergent. Hence, 

00 OO OO 00 • 

t = 1 ^ = 1 ^ = 1 ^ = 1 

This may also be demonstrated from (2), setting x = a"1: 

ccF ^ n + F aF , „ + F , 
n . -I . „, -i n + 1 n n+2 n + 1 

f(a \ n) + f(a \ n + 1) = + 
a 2 - a - l a 2 - a - l 
aF + F 
UJ-n+ 3 n + 2 n 

= = f(a-\ n + 2 ) . 
a2 - a - 1 

^Iso solved by L. A. G. Dresel, P. Filipponi, C. Georghiou, W. Janous, L. Kui-
pers, J.-Z. Lee & J.-S. Lee, R. Whitney, and the proposer. 

• 0*0# 
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