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Announcement
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FIBONACCI NUMBERS AND THEIR APPLICATIONS

Monday through Friday, July 25-29, 1988
Department of Mathematics, University of Pisa
Pisa, Italy

International Committee

Horadam, A.F. (Australia), Co-Chairman
Philippou, A.N. (Greece), Co-Chairman
Ando, S. (Japan)

Bergum, G.E. (U.S.A.)
Johnson, M.D. (U.S.A.)

Kiss, P. (Hungary)

Schinzel, Andrzej (Poland)
Tijdeman, Robert (The Netherlands)
Tognetti, K. (Australia)

Local Committee

Robert Dvornicich, Chairman
Piero Filipponi
Alberto Perelli

Carlo Viola
Umberto Zannier

FIBONACCI’S STATUE

Have you ever seen Fibonacci’s portrait? This photo is a close-up of the head of the statue of Leon-
ardo Pisano in Pisa, Italy, taken by Frank Johnson in 1978.

Since Fibonacci’s statue was difficult to find, here are the directions from the train station in Pisa
(about 8 blocks to walk): Cross Piazza Vitt. Em. II, bearing right along Via V. Croce to Piazza Toniolo,
and then walk through the Fortezza. The statue is found within Fortezza Campo Santo off Lungarno Fib-
onacci or Via Fibonacci along the Arno River at Giardino Scotto (Teatro Estivo).

CALL FOR PAPERS

The THIRD INTERNATIONAL CONFERENCE ON FIBONACCI NUM-
BERS AND THEIR APPLICATIONS will take place at The University of Pisa, Pisa, Italy,
from July 25-29, 1988. This conference is sponsored jointly by The Fibonacci Association
and The University of Pisa.

Papers on all branches of mathematics and science related to the Fibonacci num-
bers and their generalizations are welcome. Abstracts are to be submitted by March 15,
1988. Manuscripts are requested by May 1, 1988. Abstracts and manuscripts should be
sent to G.E. Bergum (address below). Invited and contributed papers will appear in the
Conference Proceedings, which are expected to be published.

The program for the Conference will be mailed to all participants, and to those
individuals who have indicated an interest in attending the conference, by June 15, 1988.
All talks should be limited to one hour or less.

For further information concerning the conference, please contact Gerald B:érgum,
The Fibonacci Quarterly, Department of Computer Science, South Dakota State University,
P.O. Box 2201, Brookings, South Dakota 57007-0194.
[Feb.



FIBONACCI AND LUCAS CURVES
A. F. HORADAM
University of New England, Armidale, Australia

A. G. SHANNON
N.S.W. Institute of Technology, Sydney, Australia

(Submitted February 1986)

1. INTRODUCTION

Define the recurrence-generated sequence {#,} for integers n by

H,, =H,,,+H,, Hy =2b, H =a+b n=20) (1.

1)

where a and b are arbitrary but are generally considered to be integers. Nega-

tive subscripts of H can be included in an extended definition if necessary.

Using [2], equation (§), we have, for the Binet form of this generalized

sequence, mutatis mutandis,

_ Aa™ - BB"

H, (1.2)
V5
where
1 +V5
o = 5
(1.3)
gol=V5_ _ .
2
are the roots of
A2 -x-1=0 (1.4)
and
A =a+b/5
_ (1.5)
B=a-b/5
From (1.2), it follows readily that
H, = aF, + bL, (1.6)
where
F, = (@" - BM/V5 (1.7)
and
L, =a™ + g" (1.8)
1988] 3



FIBONACCI AND LUCAS CURVES

are the nth Fibonacci and nth Lucas numbers, respectively, occurring in (1.1),
(1.2), and (1.6) when:
a=1, b
a=0, b

it

0 for F,;
1 for L,.

The explicit expressions (1.7) and (1.8) are the Bimnet forms of F, and L,.

Following an idea of Wilson [5], we set

z = {4a®" + B cos(n - L)mw}/V5an (1.9)
and

y = B sin(n - 1)m/V5an (1.10)

which we now regard as Cartesian coordinates in a plane (though Wilson [6] ex-
pressed his notion in terms of polar coordinates).

Certain geometrical features relating to circles and rectangular hyperbolas
were shown [3] to be consequences of (1.9) and (1.10). These features were
extended to Pell numbers and Pell-Lucas numbers in [4].

Here we examine (1.9) and (1.10) in a rather different geometrical context.

2. GENERALIZED BINET FORMS

First, we generalize (1.9) and (1.10) from an integer exponent n to a real

exponent 0:
xz = {40?® + B cos(0 - 1)w}/V500; (2.1)

B sin(®6 - 1)m/v5a®. (2.2)

Y

Expanding the trigonometrical components of (2.1) and (2.2), we find

x = {4a® - Ba®cos Om}/V5 (2.3)
and

-Ba®sin Ow/V5. (2.4)

Y

‘ We will be particularly interested in the Fibonacci and Lucas aspects of
(2.3). For the Fibonacci case a = 1, b =0, so A =B =1, and (2.3) becomes,
with (1.3),

-0
z = a® - acos bm _ {a® - (~1)%B8cos OT}/V5 (2.5)

V3

while for the Lucas case a = 0, b = 1, so 4 = -B = V5, and (2.3) reduces to

x =08+ (-1)°B%cos 6. (2.6)

L [Feb.



FIBONACC! AND LUCAS CURVES

When 8 is an integer 7, (2.5) and (2.6) simplify to the Binet forms (1.7) and
(1.8), respectively. Therefore, we are justified in referring to (2.5) and (2.6)
as the generalized Binet forms of F, and I, , i.e., the Binet forms of Fy and Ly .

It is the object of this paper to consider, inter alia, the locus generated
by the parametric equations (2.3) and (2.4). Efforts to express the equation
of this locus in Cartesian form, i.e., to eliminate the parameter 8, have not
met with success.

From (2.4) we have

a -0
a%-= B (log o sin 07 - 7 cos 0Om) (2.7)
V5
while from (2.3)
-9
%— =2 {40%%10g o + B(log o cos OT + T sin Om)} (2.8)
V5
whence
g% _ B(log o sin 67 — 7 cos 6m) -0 (2.9)
Aazelog o + B(log o cos 07 + 7 sin Om)
when
__m - .
tan Om Tog G (£ 6.53 to two decimal places) (2.10)
yielding
9r = 81°18'’ from tables, (2.11)
that is,
6 = 0.45 (2 26° in degree measure). (2.12)

Thus, the stationary points on the curve occur when

tan(® - m)m = 102 5 (m an dinteger), (2.13)
that is,
=1 —1f_T
6 = — tan (log oc>+ m. (2.14)

The nature of these stationary points, i.e., whether they yield maxima or
minima, can be determined by the usual elementary methods.

Next, we discover the locus of the stationary points.

Write
sin(® - m)m = km i.e., sin 6m = +k7 (2.15)
and
cos(6 -~ m)ym = k log o i.e., cos Om = *k log a, (2.16)

19881 5



FIBONACC! AND LUCAS CURVES

where

k = (m?2 + log2a) 12 (2 3.2). (2.17)

Because sin Om and cos Om (and therefore 6) now have specified numerical
values for the stationary points, we can eliminate 0° from (2.3) and (2.4).

Substitute from (2.15) and (2.16) in (2.3) and (2.4) to obtain

J5z. 7 BT _ AB’K’m?

¥ Bk log o
5y 5yt
2 m _ *ABkm?
Y log a ¥ =7 log a (2.18)
i.e., the branch in the first quadrant of the hyperbola,
> M " _ _ABkn®
Y " Tog o™ 5 1og o’ (2.19)
and the branch in the fourth quadrant of the conjugate hyperbola,
2 _ m ___.@k_ﬂz_
¥ Tog a ™~ "5 1log o (2-20)
Common asymptotes of these two hyperbolas are
=0 =71 (2.21)
Y ’ Y log o & )

The oblique asymptote y = x has gradient 81°18' (approx.) by (2.10)

and (2.11).

m
log o

Of course, there are infinitely many points on (2.18) which do not satisfy

(2.10), i.e., which are not stationary points. Therefore, the loci (2.18) are

lacunary.
Inflections on the parametric curve (2.1) and (2.2) are given by the van-
4z
ishing of z;%u Differentiating (2.9) a second time, we get
d*y _ d (dy\dd
- = = = .2
T = G\ (2.22)

_ [40®1og a(3m log o cos 6m + (n® - 2 log®n)sin 6m) + Bk21V50°

{40*®10g o + B(log a cos O6m + T sin om)}°

after some simplification.

Inflections are then given by those values of 0 for which
Ao®® log (3T log o cos 6m + (M2 - 2 log?a)sin Om) + Bnk? = 0.  (2.23)
To test for maxima and minima, use (2.15)-(2.17), keeping in mind that

T cos Om = log o sin OT.
6 [Feb.



FIBONACCI AND LUCAS CURVES

Then, at the stationary points (letting the variable 6 be replaced by constants

0), we find that the left-hand side of (2.23) is, after tidying up,
k?m{4a®*®1og o. * k™% + B} (2.24)

which becomes

k2m{tk %0%°1og o + 1} (2.25)
in the Fibonacci case, and
2
E—E{ik_auzelog a - 1} (2.26)
5

in the Lucas case.

If the numerical values of © are known, the nature of the turning points
may be determined from (2.25) and (2.26). Note that k—aaelog o is always posi-
tive.

No obviously derived differential equation satisfies (3.3) and (3.4) for
the curve.

Finally, if we rewrite (2.3) and (2.4) as

£(8) = (4a® + (-1)%7BR%cos Om) V5 (2.3)7

and

y(0) = e(-1)%"28% sin 7 (2.4)7

(on putting c = B//g temporarily), we can see from the tables that the recur-

rence relation (1.1) is, in effect, satisfied as

2(6)

x(6 - 1) + 2(0 - 2) 2.3
and

y(0) =y® - 1) +y(® - 2). (2.4)"

The proofs follow. We have

x(® - 1) = (APt + (-1)%2BB% lcos(0 - 1)M) V5
= (4’ + (-1)9"'BR® 1cos Om) V5

£(0 - 2) = (A2 + (-1)°7%BR% 2cos(6 - 2)mM) V5
= (402 + (-1)°"1BR% 2cos Om) V5

@ - 1) +2(0 - 2) = (4o’ 2 + 1) + (-1)°7*BB®72(B + 1)cos 6m) /V5
(4a® + (-1)9"1BR%cos 6m) /V5 = x(6)

as required, since o, B satisfy (l.4).

Similarly,
y(® - 1) = c(-1)%728% 1sin(0 - 1)1 = ¢(-1)® 1% 1sin on
y(0 - 2) =c(-1)%"38% 25in(6 - 2)7 = c(-1)9 2B 2sin or

1988] 7
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y(6 - 1) + y(0 - 2)

y(0).

e(-1)%"188-2(8 + 1)sin o7

e(-1)%"1p%gin o1

since R satisfies (1.4)

Thus, it has been demonstrated that the parametric forms (2.3)" and (2.4)"

do indeed satisfy recurrence relation (1.1).

We need this assurance to preserve the continuity of our curves in Figures

1, 2, and 3, which we now examine.

3. THE FIBONACCI

CURVE

Table 1 sets out the values of x in (2.5), and y in (2.2) where B = 1, for

the Fibonacci case ¢ = 1, b = 0, when we proceed to increase 6 by multiples of

0.2.
Table 1. The Fibonacci Curve

) x y 6 x Y
1 1 0
1.2 0.999799314 0.14755316 6 8.000000000 O
1.4 0.947653586 0.216839615 | 6.2 8.817334649 -0.013304890
1.6 0.901827097 0.196943249 | 6.4 9.721923304 -0.019552416
1.8 0.911232402 0.110549283 || 6.6 10.71685400 -9.96822E-03
2 1 0 6.8 11.80690074 -9.96822E-03
2.2 1.163587341 -0.091192868 || 7  13.00000000 O
2.4 1.375792509 -0.134014252 || 7.2 14.3076953 8.22286E-03
2.6 1.602274541 -0.121717622 || 7.4 15.744608 0.012084058
2.8 1.814640707 -0.068323214 || 7.6 17.32733182 0.010975271
$  2.000000000 O 7.8 19.07328767 6.18070E-03
3.2 2.163386655 0.056360292 8  21.00000000 O
3.4 2.328446095 0.082825363 | 8.2 23.12502995 -5.08200E-03
3.6 2.504101639 0.075225627 || 8.4 25.4665313 -7.46836E-03
3.8 2.725873109 0.042226069 | 8.6 28.04418582 -6.78309E-03
4  3.000000000 O 8.8 30.8801884 -3.80752E-03
4.2 8.326973997 -0.034832576 | 9  34.00000000 O
4.4 3.699238605 -0.051188889 || 9.2 37.43272525 3.14085E-03
4.6 4.10637618 -0.046491995 || 9.4 41.21113931 4.611570E-03
4.8 4.540518816 -0.026097146 | 9.6 45.837151764 4.19218E-03
5 5.000000000 O 9.8 49.953447608 2.35318E-03
5.2 5.490360652 0.021527716 || 10 55.00000000 O
5.4 6.022684699 0.031636473
5.6 6.610477819 0.028733633
5.8 7.266386925 0.016128923

Figure 1 shows the computer-drawn graph corresponding to the data in Table

1. We may call it the Fibonacei curve.

8
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FIBONACCI AND LUCAS CURVES

0.2 —

Y o0 y J//T\T\\N N P S— o

6 7 8 0 1 13 14 i%5 16 17 18 18 20 21 22

Figure 1. The Fibonacci Curve

Using (2.19) and (2.20) with 4 = B = 1 for the Fibonacci curve, we see that
the locus of the stationary points is the appropriate branches of the hyper-

bolas
2 _ W oo, km?
¥ log o Y= r 5 log o

From the observed stationary points on the plotted curve, one can visualize
the need for a slight deviation (about 8.3°) from x = 0 of the "vertical"
asymptote [refer to (2.11)and (2.21)]. The stationary points of the Fibonacci
curve approach y = 0 asymptotically at a very quick rate (of necessity, since,
in (2.2), a® » o rather rapidly as 6 =+ ),

It is interesting to compare details of our Table ! with similar figures
given by Halsey [1]. See Table 2, in which the numbers in the first column for
F, are Halsey's and those in the second column for F, are ours (to the same
number of decimal places).

Starting from a quantity nf™ (read "n delta-slash m'") which he defined for
integers m,7 2 1 and using the Pascal triangle generation of Fibonacci numbers
(the elements of the Pascal triangle being expressed in terms of nf" for vari-

ous n and m), Halsey [1] established the following nice results:

7 ny,
Fo= 3 -2of (G- 1<n<3) (3.1)
nﬁm - (n + Z - l); (3.2)
1 -1
" = [(n + m)f "L - x)mdr] H (3.3)
0

1988] 9




FIBONACC! AND LUCAS CURVES

m 1 -1
Fg = 2| (6 - k)/ 207211 - x)*d (g -1<m< Q). (3.4)
k=0 0 2 2
where 6 is real.
Table 2

0 Fy Fy
2 1 1
2.2 1.2 1.2
2.4 14 14
2.6 1.6 1.6
2.8 1.8 1.8
3 2 2
3.2 2.2 2.2
3.4 2.4 2.3
3.6 2.6 2.5
3.8 2.8 2.7
4 3 3
4.2 3.32 3.33
4.4 3.68 3.70
4.6 4.08 4.11
4.8 4.52 4.54
5 5 5
5.2 5.52 5.49
5.4 6.08 6.02
5.6 6.68 6.61
5.8 7.32 7.27
(] 8 8

To obtain the definite integral expressions, Halsey had recourse to basic
properties of Beta functions and Gamma functions. It might be noted, as Halsey
observed, that the Gamma function "extends the concept of factorials to numbers
that are not integers," e.g., (%)' = \/1;/2. In this spirit, he extended the

theory of Fibonacci numbers to noninteger values.

L. THE LUCAS CURVE

Table 3 lists the values of x in (2.5), and y in (2.2) where B = -5, for
the Lucas case g = 0, b = 1, when we increase 6 by multiples of 0.2.

Figure 2 shows the computer-drawn graph corresponding to the data in Table
3. We may call it the Lucas curve.

As in the case of the Fibonacci curve, the locus of the stationary points

on the Lucas curve, for which 4 = -B = V5, is the appropriate branches of the
hyperbolas
2
2 _ _ W _ 4 _KT
Y log o Y “log o’

10 [Feb.
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Table 3. The Lucas Curve
) x y 0 x Y
1 0 0 6 18.00000002 0
1.2 1.327375388 -0.329938896 6.2 19.79805597 0.029750572
1.4 1.803931433 -0.484868119 6.4 21.76729273 0.043720531
1.6 2.302721986 -0.440378493 6.6 23.93780966 0.039708904
1.8 2.718049012 -0.247195712 6.8 26.33967462 0.022289623
2 3 0 7 29.00000003 O
2.2 3.16318597 0.203913452 7.2 31.94236463 -0.018386864
2.4 3.271099682 0.299664977 7.4 35.18845465 -0.027020774
2.6 3.405928737 0.272168877 7.6 38.76103987 -0.024541452
2.8 3.637105513 0.152775352 7.8 42.6870892 -0.013775745
3 4.000000002 © 8 47.00000006 O
3.2 4.49056134 -0.126025444 8.2 51.74042062 0.011363707
3.4 5.075031117 -0.185203141 8.4 56.95574739 0.016699757
3.6 5.708650725 -0.168209616 8.6 62.60884954 0.015167452
3.8 6.355154527 -0.094420360 8.8 69.02676384 8.51388E-03
4 7.000000004 0O 9 76.0000001 O
4.2 7.653747312 0.077888006 0.2 83.68278528 -7.02316E-03
4.4 8.3461308 0.114461836 9.4 92.14420207 -0.010321017
4.6 9.114579464 0.103959260 9.6 101.4598894 -9.37400E-03
4.8 9.992260042 0.058354002 0.8 111.713853 -5.26187E-03
5 11 0 10 123.0000002 O
5.2 12.14430866 -0.048137436
5.4 13.42116192 -0.070741305
5.6 14.82323019 -0.084250356
5.8 16.34641457 -0.036065368

-
»

} s 2 s 0 1Wa 9 20 21 22
| x
- Figure 2. The Lucas Curve
for the Lucas curve, the skewness (obliqueness) of the

asymptote is visually apparent.

1988]
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FIBONACCI AND LUCAS CURVES

Halsey [1] has no formulas for the Lucas numbers corresponding to those for
the Fibonacci numbers, i.e., (3.1) and (3.4). This is because the Pascal tri-
angle generates the Fibonacci numbers but not the Lucas numbers. However, as

is well known,

L,=F,  +F, 4 (4.1)

n

for integers. This carries over to real number subscripts, e.g., from Tables 1
and 3,

F,o +Fqqa =69.026763... (to 6 decimal places)
L

8.8°
On this basis, one could combine Fy,, and Fy_, from (3.4) to obtain an in-

tegral expression for L.

5. THE H CURVES

Putting a = b =1 (i.e., 4 = 2a, B = 2B) in (1.5), we have, from (1.6),

H, =F, + L, (5.1)
=F,, -F _,+F,  +F _ bydefinition of F, and (4.1)
= 2Fn+l'

Hence, a composite curve for Fy + Ly is equivalent to the Fibonacci curve for

2F

0+1°
pared with the Fibonacci and Lucas curves in Figures 1 and 2, respectively.

This H-curve (a=1, b=1) is drawn in Figure 3, where it is to be com-

0.4 [-

0.3 -

0.2 -

I 1 J

0. ! . 1 I 1 L A ! 1 . : N L 1 2
y oo 1 3 S 7 8 9 0 17 12 13 14 15 16 8 19 20 2 22

Figure 3. H-Curve (a = 1, b = 1)

Figure 3 might be taken as an illustration of the conclusion by Stein [5]
regarding the intersection of Fibonacci sequences, e.g.,

12 [Feb.



FIBONACC! AND LUCAS CURVES

{Fn}m{Ln} =1, 3
{F,}n{F, + L,}
{Layn{F, + L} =

I
~

Further, from (1.6),

H, = aF, + bF,_, + bF, . by (4.1) (5.2)
aF, -+ bE, | + bF, + bF,_, by definition of F,

(a + B)F, + 2bF, _
pF, + qF

1

n-1

where

a+ b, g = 2b

= H, =7

S
1]

0 as in (1.1).
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1. INTRODUCTION

This note is an extension of the results of L. Carlitz [1l] concerning the
problem of the multiple generating functions of F} and L,, where F;, and L, are
the kP Fibonacci and Lucas numbers, respectively. Our proofs are very similar
to those given by Carlitz [l]. Notation and content of [3] are assumed, when
required.

Consider the sequence of numbers W, defined by the second-order recurrence

relation

W,,, = PW,., - gW,, with W, = a and W, = b, (1)

W, = Wq(a, b; s q),

where a, b, p, and q are real numbers, usually integers.

From [2] and [3], we have

W, = Aa™ + BR", . 2
where
a=(+d/2, B=(p-dJ/2,d=(p>- 4", "
3
A=(b-aB)/d, B = (ac - b)/d.

Standard methods enable us to derive the following generating function for

{w,},

i W = {a + (b - ap)x}/(1 - pz + qx”). (4)
n=0
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A NOTE ON THE GENERALIZED FIBONACCI NUMBERS

2. MAIN RESULTS

Define

[ O 2.2
Cw(xl, cees ) —-JEE_(I - qxj)(l - Véxj + q xj),

Wi (xys «uns &ps k) = Aok e _[mIl (@+ (b - ap)ox;) (1 - Bzxj)
J=
] + BR¥ - ,I""Il (a+ (b - ap)Bu;) (1l - a’x)),
Je

Wo(Zys ooy Ty k) = ock-jf[l (a + (b - ap)oz,;) (1 - B%x;)

- + k. ﬁl (a+ (b - ap)Bx;) (1 - oczxj),
i=

where V, = W,(2, p; p, ¢). That is, V, =2, V, =p, V, = p? - 2q,
Theorem 1: Z Mo tocitn +2Wn, +o- anxfl cee X
Nys eees Ny=0

= Wy(Xys wees Xy KY/Cp(zys oovs ).

n n
Proof: E Wnjtooitm e Wy oee Wy @yt oo X"

ny

™

(At ety gt Ry Ly w2l by (2)

=4k D Wy e Wy (o) .o (omy)"

o

+ B85 DL Wy .. W, (Bm) ... (B)

Ry enns iy =0
= Aok - _ﬁl (@ + (b - ap)ox;) /(1 - pax; + qa’x?)
Rt
+ 8%+ 11 (@ + (b - ap)Be) /(1 - pa; + qB%), by (4)
- Agk . j[':]l(a + (b - ap)az;)/{(1 - a’x,) (1 - oke;)}
¥ Bek-jfjl (a+ (b - ap)Be;)/{(1 - B%;) (1 - afe,)}, by (3)

=W, (Xys voes Xy k)/CW(xl, cees X))

1988]
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A NOTE ON THE GENERALIZED FIBONACC! NUMBERS

Using a method similar to that used for Theorem 1, we have

©

. n, n
Theorem 2: 2: Vit ooebn e iy woe Wy oyt ooy

= Wo(@ys wuns Xy K)/Cy(ys oovs ap) .

Taking m = 2 in Theorems 1 and 2, we obtain

Corollary 1: 2 Woy,sx W, W,2™y"
ol

m, 0

Wixs y3 K)/Cy(xs y)

Me

and v

m,,n
m+n+k Wman Y

Wz(xs Ys k)/Ow(x: y)’

m,n=0

N

where
Cylxs y) = (1 -qgo)(1 -~ g1 - Vyx + q*x®) (1 - V,y + q°y?),

Wo(x, y;3 k) = a’W, + a((b - ap)W,,, - aq®W, _,)(z + y)
- a(b - ap)q?W, (@ + y)* + ((b - ap) *W,, , + a’q*W, _,)ay
+ (b - ap)(aq*Wy .3 = (b = ap)q®W, )y (x + y)
+ (b - ap)quwk_znyZ’

W,(x, y3 k) = a’V, +a((b - ap)V,,, = aq®V, _,)(z + y)
- a(b - ap)q?V, (x + y)? + (b - ap) W, , + a’q*V,_ Dy
+ (b - ap)(aq*V, _, = (b = ap)g?*V)dxy(x + y)
+ (b - ap)2q"V, _,x’y*.

Taking X = 0 in Corollary 1, we derive

[

Corollary 2: 2. Wy W, W x™y"
gl

m+n"m
m,

. Wy(x, y3 0)/C,(xs y)

and 2 Vg Wy ™y

Wy(xs y3 0)/Cy(xs y)»

where
Wo(x, y3 0) = a® + a(b? - a?(p? - @))(x + y) + a(b - ap)?q(x + y)?
+ (b - ap)2(bp - aq) + > (" - 3p3q + ¢?)
- a’b(P® - 2pg))ay + aq(b - ap) (ap(P* - @)
b(p? - 2g))xy(x + y) + (b - ap)?q®(ap? - q) - bp)x?y?,

W,(x, y; 0) = 2a% + a(bp - 2a(p? - @))(x + y) - a(b - ap)pq(x + y)?
+ ((b - ap)?(p® - 2q) + a®(p* - 4p*q + 2¢°))xy
+ q(b - ap) (a(®® - 3pq) - 2q(b - ap))ay(x + y)
+ b - ap) 22 (% - 29)xy>.
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Obviously, all formulas of §2 in [1] are special cases of Theorems 1 and 2 and
Corollaries 1 and 2 since F, = ¥,(0, 1; 1, -1) and L, = W,(2, 1; 1, -1). Note
that (2.2), (2.3), and (2.8) of [1] are misprinted.

Taking m = 3 and k = 0 in Theorems 1 and 2, we have

Corollary 3: Z Wt sk Wl Wy ™y 2%
m,n, k=0

and 2:

m,n, k=0

I

Wo(x, y, 35 0)/Cylx, y, 2)

3

Vm+ n+k Wrn Wn kamynzk

]

Wo(x, y, 2 O)/Cw(x, Ys B),
where
Cw(x, y, 3) = (1 —qx)(1 - gy)(1 - ga)(1l - V,x + qzxz)(l - Yy
+ g%y A - V,z + g°z%),
Wo(x, ¥y, 235 0) = a® + a((b - ap)Wy - aq’W_,)(x +y + 2) + a((b - ap)?W,
+ a’q"w_) (wy + yz + zx) + (b - ap)*W, - a®q®W_g)xyz
- a?q*(b - ap)W_,(x +y + 2)? + a’q(b - ap)
s Wy = (b - ap)@)(x + y + 2)(xy + yz + 2x)
+alb - ap)?qW_,(xy + yz + z22)? - q*(b - ap)
((b = ap)?W, + a’q"W_Jayz(x +y + 2) + (b - ap)?
((b = apdW_, + ag®W_)q wyz(zy + yz + ax)

(b - ap)*q®W_,x%y?s?,
W,(x, y, 23 0) = 22 + a((b - ap)p - aV,)(x + y + 2) + a((b - ap)?V,
+a®v,) (xy + yz + zx) + ((b - ap)*Vy - a’Vy) ayz

a’(b - ap)pg(x + y + 2)% + a’q{b - ap)

(Vy - (b - ap)q)(x + y + 2)(xy + yz + z2x)

aq®(b - ap)*V,(xy + yz + zx)* - q(b - ap)

((b - ap)’pq + azvs)xyz(x +y+2) +q%h - ap)?

+

((b - ap)pg + aV)xyz(xy + yz + zx)
(b - ap)3q*V x%y?22.

Obviously, all formulas of §3 in [1] are also special cases of Theorems 1 and
2 and Corollary 3. Note that (3.2)-(3.5) of [l] are misprinted.

Define
Wk, m) = Akam - (-B)*B™.
From (2), (3), and the binomial theorem, we have

k-1 - r P
Lemma 1: d* YW(k, m) = > <k , 1)(—aq) pk- le-r.
r=0
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dk-takam - (-B)¥B™, by (2)
Ao (dA)* -1 + BR™(-dB)k 1
Aa™(b - aB)* "t + BR™(b - aa)*"1, by (3)

Proof: d* ‘w(k, m)

A eawrr s

- 1)(—aq)”bk‘”-l(Aam-1’+ BB™ "), by (3)

I
B
1
o
SN S
3

Y ag)"B* ", L, by (2).

r r

Define

Dy (z, y, 2) = d*(1

V,2 + q?z®) (1 - V,y + q°y*) (1 - V,z + q%z%)

3 2
j 2 -
Vs ys 55 00 = 3 a7 g B (5 )ean b W g b
= re
where %; is the Jth elementary symmetric function of x, y, and z. That is to
say, hy =1, hy =x+y + 2, h, = xy + yz + zx, and h, = xy3.

o

Theorem 3: S Wk Vs tak Woamer €YY = Wy, ys 25 K)/Dylx, Y, 2)

myn, t=0
k g-2 2 2,2
+ eq"d LW, - qW @) /[{(1 = Vo + g®x®)(1 - qy) (1 - qa)}.

L

. t
Proof: Z Wt ntk Wt t4k Weame 1 €Ty 2

myn, t=0
o

= Z (Aam+n+k + BBm+n+k)(AOLn+t+k + BBn+t+k)
my,n, t=0 -(AOLt+m+k + BBt+m+k)xmynzt, by (2)

= 3% /{(1 - a2x) (1 - a?y) (1 - a?z) + ZA%BgkaX/{(1 - o2z) (1 - qy)
« (1 - ga)} + ZAB*q*p*/{(1 - B%x) (1 - g (1 - ga)}

+ B33 /{(1 - B%x) (1 - B*) (1 - B%2)}, by (&)
e, ys 25 K/ (1 = Vyx + q%x®)(1 - V,y + ¢°y*)(1 - V,z + g%2%)
+ ABG*I(Ack(1 - B%z) + BRM(L - o2x))/{(1 - V,z + q°x?)

c (1 - g - ga)}
d* -« f(xs y> 35 k)/Dyxs ys 2)

+ eq*d 2z (W, - q*W, @) /{1 - V@ + ¢®x*) (1 - g (1 - ga)},

where
flx, y, 23 k) = A% (1 - B2x) (1 - By (L - B%z)
+ B3 (1 - a?x) (1 - a?y) (1 - o3z)
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3 .
= 3 (-g*) W3, 3k - 24).
J=0
From Lemma 1, we obtain
2 < 2yd 2 (2 ry2
° . = - . - -r
Sy 0 = Y Y m{ 2 (2)c-a)"s o ng oo}
=W, (x, ¥y, 35 k),
which proves Theorem 3.

Taking k¥ = 0 in Theorem 3, we have

o

Corollary kL: 2: W vl 4tV @™y 2% = Wy, y, 25 0)/D(x, y, 2)

myn, t=0

+ed?%(a - ¢*W_,x) /{1 - V@ + g’x®) (1 - qy)(1 - g&)}.

Obviously, all formulas of 84 in [1] are special cases of Theorem 3 and Corol-

lary 4.
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1. INTRODUCTION

The Fibonacci numbers F, are defined as Fy = 0, F; = 1 with the successive

numbers given by the recurrence relation F, , = F + F,.

n+1
Horadam[6] extended these numbers to the complex number field by defining
them as F¥ = F, + iF, .
Taking a different approach, Berzsenyi [2] defined the set of complex num-
bers at the Gaussian integers and called them the Gaussian Fibonacci Numbers.
He defined them as follows: Let n € Z and m be a nonnegative integer. Then, the
Gaussian Fibonacci numbers F(n, m) are defined as
m

F(n, m =;§§(Z)ikfk-k’

where E} are the (real) Fibonacci numbers defined above. He proved that
F(n, m) =Fn -1, m) + Fln -2, m), n= 2.

This relation implies that any adjacent triplets on the horizontal line
possess a Fibonacci-type recurrence relation. In a paper in 1981, Harman (see
[4]) elaborated Berzsenyi's idea and defined another set of complex numbers by
directly using the Fibonacci recurrence relation. He defined them as follows:

Let (n, m) =n + im, where n, m € Z. The complex Fibonacci numbers denoted

by G(n, m) are those which satisfy

G(0, 0) =0, G(O, 1) =1, G(1, 0) =%, G(1, 1) =1+ 2,
and

Gn+ 2, m
Gn, m+ 2)

Gn+ 1, m) + Gn, m),
Gn, m+ 1) + Gn, m).

The initial values and the recurrence relations are sufficient to specify
uniquely the value of G(n, m) for each (n, m) in the plane. It is easy to
see that

20 [Feb.



GENERALIZED GAUSSIAN LUCAS PRIMORDIAL FUNCTIONS
G(n, 0) = F, and G(0, m) = IF, .
The advantage of Harman's definition over Berzsenyi's is threefold:

1. While in Berzsenyi's definition, any adjacent horizontal triplets in
the plane satisfy the Fibonacci recurrence relation, in Harman's defi-
nition, any adjacent horizontal and vertical triplets do the same.

2. Horadam's complex Fibonacci numbers E? come as a special case for Har-
man's. Indeed, F: = G(1, m).

3. By obtaining a recurrence relation for G(»u, m) itself, Harman was able

to prove some new summation identities for {F,}.

Pethe, in collaboration with Horadam, extended Harman's idea to define Gen-
eralized Gaussian Fibonacci Numbers [10]. They again denoted these numbers by
G(n, m) and defined them at the Gaussian integers (#, m) as follows: Let p;, P,

be two fixed nonzero real numbers. Define
G0, 0) =0, G(1, 0) =1, GO, 1) =1, G(1, 1) = p, + ipl,

with the conditions G(n + 2, m) = p,G(n + 1, m) - q,G(n, m), and G(n, m + 2) =
p,Gn, m+ 1) - q,Gn, m).

With the help of this extension of Harman's definition, the authors were
able to obtain a wealth of summation identities involving the combinations of
Fibonacci numbers and polynomials, Pell numbers and polynomials, and Chebyshev
polynomials of the second kind. Observe that these numbers and polynomials all
have the first two initial values as 0 and !. Consequently, it is natural to
ask, as in Remark 4 of [10], if a further extension that would include numbers
and polynomials whose first two initial values were other than O and 1 is pos-
sible. The positive answer to this question is precisely the object of this
paper.

Our main result is Theorem 6.1. With the help of a single equation, (6.1)
of this theorem, various summation identities involving the product terms of
Fermat's numbers, Fibonacci numbers and polynomials, Pell numbers and polyno-
mials, Lucas numbers and polynomials, and Chebyshev polynomials of the first
and second kinds are obtained. Besides these identities, (6.1) has the poten-
tial for obtaining many more by varying the values of m and #. The extension,
first thought to be straightforward, did not turn out to be so. It still had

to be formulated in terms of the Lucas fundamental sequence [9] whose first two

terms are 0 and 1.
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2. PRELIMINARIES

Let {U,} and {W,} denote the sequences defined as follows,

=

Up =0, Uy =1, Upyp = pPUpyr = qUys 0,
0,

n #
Wy =a, W by W,,o =PWypqy = qW,s n 2

1

where @, b, p, and ¢ are any real numbers, p, ¢ # 0. The sequence {U,} is the
fundamental sequence defined by Lucas and {W,} is the one defined and exten-
sively studied by Horadam (see [9], [7], and [8]). Lucas's primordial function
is the special case of {W,} with W, = 2 and ¥, = p. The relation between the
terms of {W,} and {U,} is given by

W, = bU, - aqU, _;. (2.1)

Let {V,} be the complex-valued variant of Horadam's sequence defined by

Vo =a, V; = 1b, with the recurrence relation Viwo =0V, 0y = gV,

As above, it is clear that

v, = ibU, - aqU (2.2)

n-1°

3. DEFINITION

Let (n, m), n, m € Z, denote the set of Gaussian integers (n, m) = n + im.

Further, let
G: (n, m) ~ ¢,
where ¢ is the set of complex numbers, be the function defined as follows.
For fixed real numbers p and g, define
G0, 0) = a, G(1, 0) = b, GO, 1) =ib, G(1, 1) = pb(1 + ©) (3.1)
with the following conditions:

Gn + 2, m) pG(n + 1, m) - gG(n, m), (3.2)

and

Gn, m+ 2) pG(n, m+ 1) ~ qG(n, m). (3.3)

Conditions (3.2) and (3.3) with the initial values (3.1) are sufficient to

obtain a unique value for every Gaussian integer.
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4. EXPRESSION FOR G(n, m)

Lemma 4.1: We have
G(n, 0) = W,, GO, m) = V,. (4.1)
Proof: The proof is simple and, therefore, omitted here.

Remark: Observe that if ¢ = 0 and b = 1, the definition for G(n, m) reduces to
that of Pethe & Horadam's "Generalised Gaussian Fibonacci Numbers' [10], where
p, =p, =p and g, = q, = q. Further, if a =0, b =1, and p =1, g =1, this

definition reduces to Harman's '"'Complex Fibonacci Numbers' [4].
Theorem 4.2: G(n, m) is given by

G(n, m) = bU,U,,, + aq’U, _,U,

m=1

+ <bU, 1 U,. (4.2)

Proof: We use induction for the proof. Suppose (4.2) holds for all integers
0, 1, ..., n for the first number in the ordered pair (n, m) and for all inte-

gers 0, 1, ..., m for the second number. By (3.2), we have
Gn + 1, m) = pG(n, m) - qG(n - 1, m). (4.3)
Applying (4.2) to the right side of (4.3), we obtain

Gn + 1, m) = plbU,U,,, + aq’U,_,U,_, + ibU, U, ]

+1 n=1"m=1 n+l-m
- qlbU,_ U, + aq®U,_,U,_, + ibU,U,]

= b(pUn - qUn—l)UrrH—l + aqz(pUn_l - qUn—z)Um-l
+ 2b(pU, ., - qUDU,.

Therefore, by the recurrence relation of {U,}, we get

Gn+ 1, m) =bU,, U ., + aq’UU, _, + ibU, U (4.4)

n+l"m+1 n+2"m?*

The right side of (4.4) is exactly the right side of (4.2) with »n replaced

by » + 1. Similarly, we prove that

G(n, m+ 1) = bUU ., + aq’U, U, + ibU, U, .. (4.5)

By (4.4), (4.5), and the induction principle, (4.2) holds for all nonnegative

integers.

5. RECURRENCE RELATION FOR G(n, m)

Theorem 5.1: For fixed n and m, the recurrence relation for G(n, m) is given

by
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2% . .
G(n+ 2k+s, m+2k+s) = bp(1+i)jzzjl(—l)g(q)Zk'Jan+j+SUm+j+s (5.1)
2 2k J 2k -4 k
+ apq j;l(—l) (@ _JUn+j-2+sUm+j—1+s+q2 G(n+s, m+s),

where s = 0 or 1.

Proof: For the proof, we again use induction on k. TFirst we find the expres-

sions for G(n+ 2, m+2) and G(n+ 3, m+3). By (4.2), we have

Gn+2, m+2) = bU, Uy, 5 + aq’U, , U, + iU, U

+1"m+1 m+ 2

= bU,, ,(PUpyr = qUyy1) + aq®(pU, - qU, 1) (pU, - qU,_;)
+ ib(pUn+2 - qUn+1)Um+2

bp(]‘+7;)Un+2Um+2 - qun+ 2Um+1 - iqun+1Um+2
+ aq® (p?U, U, - pqU,U,_, - pqU, iUy + q°U, _1U, _;)

bo(A+ ) U, 4y Upyy = bGPV, 41 = qU Uy = 20qU, 4 (PUy sy = qUR)
+ aq*(p*U,U, - pqU,U,_y - pqU, Uy + q*U,_1U,_1)

b1+ %) (U, Uy = qU, 1 Unsy) + ap’q?U,U, - apq®U, .U,
- apq®U U, _, + q*(BU, Uy, + aq®U, _ U, _, + ibU,, U,)

]

bo(L+2) (Uyy Uy n = qUyy1Upiq) + apq* Uy (PUn~ qUy, -1)
- apq’V, Uy + q*G(n, m).

Using the recurrence relation for {U,} once again, we finally obtain

Gn+2, m+2) = bp(1+2) U,y 9Unso = QU4 1Ups1) (5.2)

n
+ a;goqz(UnUm+1 -qU,_1U.) +q%Gn, m,
which is the same as (5.1) when ¥ = 1 and s = 0.

Replacing #» and m by n + 1 and m + 1, respectively, in (5.2) we have

Gn+ 3, m+3) = bp(1+ %) (WUy43Unss = qQUysoUnss) (5.3)
+ apq? WUy i1Upsy = QU U, 1) + @°Gn+ 1, m+1).

Again, it is easily seen that (5.3) is exactly the same as (5.1) when k =1
and s = 1. Thus, (5.1) holds for the initial values Xk =1, s = 0, and k =1,
s = 1. Suppose next that (5.1) holds for, and up to, some positive integer k.
We will show, then, that it also holds for k + 1. First let s = 0. Now, al-
though # and m are assumed to be fixed in (5.2), it is clear that (5.2) is true
for any positive integers n and m. Therefore, we can write the expression for
Gn+ 2k + 2, m+ 2k + 2) by replacing » and m in (5.2) by = + 2k and m + 2k,

respectively. Thus, we have
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Gn+2k+2, m+2k+2) = bp(1+7) (U,

aqu(Un_,_zk Untok+1~ QUnyok ~1Unsoi) + q°G(n+ 2k, m+ 2Kk).

+2k+ 20n+okr2 ~ Uns ok 1Un+ 2k+1) (5.4)

+

Using (5.1) for s

0 in (5.4), we get

Gn+ 2k+ 2, m+ 2k+ 2) bp(1+ 1) (U,

2
aPq” WUy o Ut ok+1 = QU+ o1 -1Up s 22)

+ok+2Unsok+2 = QUnions1Unmsok+1)

-+

2k . .
+ qz{bp(l+i) 2 DI FE I,y U
Ji=1

2k . .

+apg® ¥ D@ Uy + @GO, m)}-
J=1

Combining the first four terms on the right with the corresponding terms in

the braces, we have

2k +2 . .
G(n+ 2k+ 2, m+2k+2) = bp(1+1) zl(-1)J(q)2’<+2‘JUn+ij+j (5.5)
=
2k+2

+ aqu ‘Zl (_l)j(q)2k+2—jUn+j—2Um+j—]_ + q2k+2G(7’L, m) .
i=

Identity (5.5) shows that (5.1) with s = 0 is true if k is replaced by k + 1.
Similarly, we can show that (5.5) with s = 1 also holds if k is replaced by
k + 1. Induction on k then shows that (5.1) holds for all k when k is a posi-

tive integer.

6. IDENTITY FOR THE SEQUENCE {Wn}

Equation (5.1) enables us to prove an important identity involving the

product terms of the sequences {W,} and {U,}. We prove

Theorem 6.1:
W U N odd
N . N-j n+N+1 m+N° ’
PIRACDEARIC) Wot jUnsj = Q"W + (6.1)
Jj=1 -, U N even.

n+N-"m+N+1°

Proof: Equating the real and imaginary parts of (5.1), we get

2k 2k . .
. o K -
bp Z (-1)° (@ * JUn+j+sUm+j+s + apq2 -Zl(_l)J(q)z JUn+j—2+sUm+.7'—1+s (6-2)
i=1 J=
_ 2
= DU, s Unronrrvs T 9 Vtop c1vsUniok 146

2k 2
-9 (bUn+sUm+1+s + aq Un-1+sUm—1+s)
and

2Kk
i 2k -4 _ 2k (6.3)
bpj§1(_1)g(q) JU"+J'+SU"1+J'+S - bUn+2k+1+sUm+2k+s -9 bUn+1+sUm+s'
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Note that if a = 0 and b

1, (6.2) and (6.3) reduce, respectively, to (5.1)
and (5.2) of [10], where p,

=p,=pandgq, =q, =q.
To convert identity (6.2) to the one containing the terms of the

sequence
{w,}, we proceed as follows.

The left-hand side of (6.2) equals

2k -1 .
P
P J'i;l (_1)J(q)2 J(bUn+j+s - aqUn+j—l+s)Um+j+s (6.4)
k
+ prrH— 2k+sUm+ 2k+s apqz +1U U

n-1l+s m+s*

Using (2.1) in (6.4), we see that the left-hand side of (6.2) equals
2k -1 s
D@

m+J+s
J

+ DPUps ok 45 Unsok+s = apq2k+lUn—1+sUm+s-

Therefore, equation (6.2), after rearranging terms, becomes
2k -1

J 2k -4
2 p(-D" (@ %+j+sUm+j+s
j=1
2
= bUn+2k+sUm+2k+1+s - prn+2k+sUm+2k+s + aq Un+2k-1+sUm+2k—1+s
k 2%+ 2 k
+ apq® +lUn—1+sUm+s - aq®™* Up-r46Un-1+s ~ bq® UpssUnsivs
2
= bUyysoxss Unsoks14s = PUnsok+s) + aQ°Upyop —146Unsok -1+
2k+ 1 2k
+ CZC[ * Un—1+s(pUm+s - qu-l+s) - bq g, U

n+s"m+l+s

2
= bV, 4 oirs CQUnyor 148 T 9Q U uop c146Unson -1+ T 49
- bg**u U

n+s m+l+s

2k+lU U

n-1+s"m+1l+s

~q(BUy s ok+s = AQUpiox -1+ 8)Untok-145 ~ q2k (BUy, s = aQUp-14+5)Unt1+s-

Therefore,
2k -1 o1 k-1
(_1)‘7 pq J Wn+j+SUm+j+s (6.5)
Jg=1
2k-1
= WypokreUnson-148 T 4 WywsUnt1+se

Putting s = 0 in (6.5), adding -pW,, U, ,,, to both sides of (6.5), and then
using the recurrence relation for {U,}, we get

2k

: k-g _ 2k
S DI g Iy Uy s = Wy Ungoker T QT W U (6.6)
Jg=1
Replacing 2k — 1 and 2k in, respectively (6.5) with s =

=0 and (6.6) by N, we
finally obtain (6.1).
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7. APPLICATION TO SOME SEQUENCES

/.1 Arithmetic Progression: Let p = 2 and g = 1. Taking Uy=0,0U, =1, and

Wog = a, W, = a+d, it is easily seen that {W,} becomes an arithmetic progres-
sion {4,} and {U,}, the sequence of nonnegative integers, where U, = n. Equa-

tion (6.1) reduces to

i _ (m+ M)A, pep N odd,
2(-1) (m + J)An+j = (m+ )4, + (7.1)

Jij
= -(m+ N + 1)An+1v’ N even.

J=1

7-2 Geometric Progression: Let p = gq+1, Wy = a, and W; = ag. Consequently,

the sequence {W,} becomes the geometric progression with common ratio g and
W,=aq", and the sequence {U,} with U, = 0 and U; = 1 has the ntP term U, given
b
7 n-1
U, = >, q, n=1, 2,
g=0

Let us denote the geometric sequence {W,} by {Gf)}. Equation (6.1) reduces to

(@)
N G U , NV odd,
i ~ i~(D @ n+N+1 m+N
(@ + 1) X (-1)I* "Dy o= q"6c 7y, + o (7.2)
J=1 -G U N even.

n+N m+N+1°

7.3 Fermat's Sequence: Let p =3, g =2, Wy =2, and W; = 3. Then {W,} is

Fermat's sequence (see [7]). Let us denote it by {M,}. With these values of
p and q, {U,} is easily seen to be the sequence given by U, = 2"-1. Equation

(6.1) reduces to

3 ZNZ DI U= 2 MU +{ e e 2 (7.3)
J=1 M, Unsne 1> N even.

Remark: In fact, {U,} is also known as Fermat's sequence. M, and U, are
given by

M,=2"4+1 and U, =2"-1.

7.4 Fibonacci and Pell Polynomials: Next, let p = x and g = -1. Then, with
Wy =1 and W, = x, {W,} reduces to the Fibonacci sequence {F,(x)}, and with
Uy =0 and U, = 1, {U,} becomes the Pell polynomial sequence {P,(x)}, see [5].

It is easy to see that for x = 1 and x = 2, {U,} reduces to Fibonacci and Pell
numbers, respectively, see [5]. Equation (6.1) becomes

Eprns () By (@), N odd,
+; &) = -F (@)EF,,  (x) + (7.4)

Fﬂ+N(x)Pm+N+ 1(.%‘), even.

m

v
jglx["n np (x)P

Remark on Lucas Polynomials: If p ==z, g = -1, Wy, =2, and W, = x> + 2, {W,}

reduces to the Lucas polynomial sequence {L, (x)} [5]. Since p, g and {U,} are
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the same as in section 7.4 above, equation (6.1) reduces to (7.4), where F, is
changed to L,, that is

3 Ln+IV+1(x)Pm+1V(x): N odd,
2 %Ly j (@) B,y j(®) = L, (), (%) + (7.5)
Lyn@PE,  yiy,(x), I even.

Ji=1

7-5 Chebyshev Polynomials: Now let p = 2x, g =1, Wy =1, and W; = x. Then

W, (x) reduces to the nth Chebyshev polynomial T, (x) of the first kind and U, (x)
reduces to S,(x), that of the second kind [1], where
_ _ sin #n6 _ -1
T,(x) = cos nb, S,(x) = =in 0" and 6 = cos™ “x.

From (6.1), we obtain

- Jt+1 T 412Gy ()5 N odd,
2-1"" 2T, ;@) Sy, j(@) = T, (2)S,,,(x) + (7.6)
. =L, 0 (@) Sys gy 1(x) s N even.

J

8. SPECIAL NUMERICAL CASES

Results of section 7 are more comprehensible and more interesting for some
particular values of n and m. These are listed below. Some of these identi-

ties are known, and some appear to be new.

(A) n=0,m=0

1
N =NA R N odd,
_1)i*tlip. = & 27 *
2 (CDITgA; =S 49 (7.1)
Ji=1 ——2—(1\7 + 1)A;, N even,

where A, = a is the first term of the arithmetic progression {4,}.

(C)]
. _ , ¢y, N odd,
(_1)J+1qN—J(q + I)G;q)UJ = aq]V +{ + (7-2)*
j=1

i= N even,

(D
n }'

where a is the first term of the geometric progression {G Using the fact

that Gflq) = aq”, we find that (7.2)* reduces to

v PN qUIV’ N odd,
2D g+ DUy =1+
j=1 'Uzv+1’ N even.

Observing that in (7.3) U, = 2" - 1, we see that (7.3), withn =0, m =0,

reduces to

zﬂ: (_1).7'+121V-j(2j _ l)Mj - %[2N+1 +{

2% - )My, ., N odd,
o (7.3)*
jg=1

-(27*1 _ 1)M , N even;

Jij Fo. . (x)Py,(x), odd,
L aFy (@B (x) = -1 +{ e (7.4)%
i=1

Fy (x)PIH 1 (x), even;
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i LN+1(3C)PN (x), N odd,
> xL; (x)Pj (x) = - + (7.5)%
j=1 LN(x)PN+1(x), N even;
TIV+1SN
. — N odd,

—1)*t iy, , -1 *
j;l( D77 aly (2) 8 (x) = 5 + 1,5, (7.6)
5 N even.

(B) n=0, m=1 W+ D4,
s IV odd,
v ) 2 .
_ J+1lr L = *
jgl( 1) (g +1D4;=a+ —+ 2)AN (7.1)
I E— N even;
(@)
N G U > IV odd
. . q v+1“N+1 >
X (@ + D" iD= glalg + 1) +{ @ (7.2)**
Jg=1 _sz U s N even;
N+2
My 1Upia
v 3 , V odd,
_1V\d+ 19N _ oN+1 Kk
j};l( DIty o= 27+ ., (7.3)
3 N even;
v FN (x)P (x), N odd,
> @ ()P, (%) = -= +{ T (7.6)**
J=1 E}(x)?ﬁ+2(x), N even;
ij Ly @By, (x) N odd, xk
2wl ()P, (@) = -x? +{ (7.5)
J=1 LN(x)P”+2(x), N even;
Tyea ()5, () TV odd
o
i 2 g ’
1)+ T (x)S =z + 7.6)**
jz:,l( Il ()5, (@) =« 1 (25, , (@) (7.6)
T E— N even.

Remark: Obviously, various other identities may be obtained by other choices
of n and m. This bears out the fact that this technique provides an abundance
of identities by substituting suitable values for m, n, p, and g is just one

identity (6.1)!
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ON PRIME DIVISORS OF SEQUENCES OF INTEGERS
INVOLVING SQUARES

M. G. MONZINGO
Southern Methodist University, Dallas, TX 75275

(Submitted May 1986)

The following problem appears on page 65 of FElementary Number Theory by
David M. Burton:

Show that 13 is the largest prime that can divide two successive integers
of the form n” + 3.

In this note, it will be shown that 13 is the only prime that will divide

two successive integers of the form n?

+ 3, and these pairs will be determined.
In addition, the following questions will be investigated: Is the prime 13
unique? That is, if p is an odd prime, is there an integer a such that p is
the Zargest prime that divides successive integers of the form n? + a? And,
under what conditions will the prime p be the only divisor? Finally, precisely
which pairs of successive integers are divisible by p?

The following theorem will answer these questions. The case p = 13 will be

treated in a corollary following the theorem.

Theorem: Let p be an odd prime. If p is of the form 4k+ 1, then p is the only
prime that divides successive integers of the form n”> + k, and p divides suc~
cessive pairs precisely when »n is of the form bp + 2k, for any integer b. 1If
‘ p is of the form 4k + 3, then p is the Largest prime that divides successive
integers of the form n? + (3k + 2), and p divides successive pairs precisely
when n is of the form bp + (2k + 1), for any integer . Furthermore, p will be

the only prime divisor if and only if p = 3.

Proof: In both cases, substitution can be used to show that the prescribed di-
visibility will hold; hence, only the necessity of the indicated forms will
need to be shown.

Let p be of the form 4k + 1, and suppose that ¢ is any prime divisor of
n® + k and (n + 1)> + k. Since g divides the difference of these integers, q

must divide 2»n + 1. Now,
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Gbn? + k) = (2n+ D(2n - 1) + 4k + 1).

Since ¢ divides both n? + k and 2n + 1, g divides p = 4k + 1. Hence, g = p,
and p is the only such prime divisor. Since p must divide 2n + 1, 2Zn + 1 = O
(mod p). This congruence has the unique solution, n Z (p - 1)/2 (mod p); thus,
n must be of the form bp + 2k, where b is any integer.

Let p be of the form 4k + 3, and suppose that g is any prime divisor of

n? + (3k + 2) and (n + 1)? + (3k + 2). As before, g must divide 2n + 1. Now,
G+ Bk +2)) = 2n+ 1D(@2n - 1) + 34k + 3).

As before, g must &ivide the last term 3(4k + 3), but in this case ¢ can be 3
or p. If p = 3, then p is the only such prime divisor; if not, then p is simply
the largest such prime divisor. (Of course, it should be noted that 3 does, in
fact, divide some successive pairs in the case k¥ > 0. This will be the case
when »n is of the form 3¢ + 1, ¢ any integer.) Finally, the same argument used
previously can be used to show that »n must be of the form bp + (2k + 1), b any

integer.

Corollary: The prime p = 13 is the only prime that divides successive terms of
the form #n?+ 3 and does so precisely when n is of the form 13b + 6, where Db is

any integer.

Proof: The first case of the Theorem applies with k = 3.

®040¢
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1. INTRODUCTION

This paper is concerned with an interesting expansion of x™, where x and m

are positive integers, and with the properties of its coefficients. One of the

authors, Y. Imai, obtained expressions for 3% and 107 experimentally.

3% is systematically expressed by the sum of products below.

36=6 c3ebe5e6eTo 8+27-2-3~4-5-6-7
+3602-1-2 34405 6+36°2-o-1 2:3+4+5

1
2 (<) 012 3 bt gpe (- (-1 015203,

107 is systematically expressed by the sum of products below.
107 =-%—' 10+ 111213+ 14°15°16 + 120' 9°10°11°12+ 1314+ 15

2“6-7-8-9-10-11-12-13

+ 13389 10 11512413 14+
1oL 12+220.5.6.7-8-9-10-11

1
71 6°7°-8-9-10-11"- 71

+

+S-e4e5+6+78°9+10.

7!

To generalize the above expressions, we introduce a notion called the Z-

coefficient. We note that Z is a number-theoretic function. We also note the

following. If m and x are positive integers, then x™ can be expanded as fol-

lows:
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rm = Zm:<_z.(m_’.r_))..ifjl(x+i - _p))_

et m!
The numerator Z(m, r) is a number-theoretic function (we call it the Z-coeffi-

cient) defined by

- r 1 m
Z(m, r) = Jga(—l) tk, (Z f k) k™, (r =1, ..., m.

Another construction method for Z-coefficients Z(m, ), » =1, ..., m, and
their properties will be given. The Z-coefficients have properties similar to

those of the Pascal triangle.

2. PROPERTIES OF EXPANSIONS

These expansions have the following four properties:

1. 1In each case, the sum of these coefficients is equal to 1. That is:

1 57,302 . 302 . 57 . 1
erterter ter Terter- L

1 120 . 1191 2416 . 1191 120 1

S TR TR T T AR TR

If we denote these coefficients by I(6, r) and I(7, r), then
6 7
216, r) =1 and > I(7, r) =1.
r=1 r=1
2. The denominators of these coefficients are 6! and 7! in these cases,
respectively. Denoting the numerators of these coefficients by 7(6, »), r =1,

., 6, and Z(7, ¥»), r =1, ..., 7, we have

6
16, » =28 -1, L6, X6, v = sl
* r=1
7
1, » =2 a1, L, Y20, 0 =L
: r=1

Z(6, r) and Z(7, r) are called Z-coefficients.

3. In both cases, Z-coefficients systematically distribute, i.e.,

1, 57, 302, 302, 57, 1 and 1, 120, 1191, 2416, 2291, 120, 1.

4., 1In the expressions for 3° and 107, the first members of each product

except their coefficients are, respectively,

3, 2, 1, 0, -1, -2 and 10, 9, 8, 7, 6, 5, 4.
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As is easily seen, the first integers of these descending sequences are 3 (the
base of 3°%) and 10 (the base of 107).

The question now arises: Can we generalize the above properties?

3. THE COEFFICIENTS Z(m, r) AND THE THEOREM

The answer to the question above is affirmative. We now have the following

definition and theorem.

Definition: Let m and r be integers. Z(m, r) is defined by

& r+k (m+ 1\ . n S _
2Gn 1) = 3 (D) (Mr) xm m>1,2=1, ..., m, (1)
Z(m, ) = 0 for m< 0 or » <0 or m< r.

Theorem: Let x and m be positive integers. Then

_ Z@m, 1) |

- xe(x+1)e(x+2)eceee(x+ (m- 1)) (2)

xm

4 20m, 2) | (@ = 1) exe -2 (x+ (m-2))

m!
+ e + Zﬁ%ﬁJﬁl. (- (m=1)) ez
f(i(—”r’n,—r’l 1+ i - r)).
r=1 : =1

In order to prove the Theorem, we need the following Lemmas concerning the

Z—coefficients.

Lemma 1: Let Z(m, ») be Z-coefficients. Then:

Zm+ 1, ») = (m-r+ 2)*2Z(m, » = 1) + r° Z(m, r); (3)
Z(my )y =(m-2+1)Z(m-1, r-1) +r°Z(m -1, r); (4)
Zm+ 1, 7+ 1) =@m-r+1)2(m, v) + (r + 1)« Z(m, r + 1). (5)

Proof of Lemma 1: It is clear that (3), (4), and (5) are equivalent to each
other. We prove (5). By the definition of Z(m, r), the right-hand side of (5)
is written in the form

r

Z <(_1)r+k' (m-1p+ 1)+ (m + 1>. km) + £<(_1)r+1+k. (r + 1)
r -k k=1

k=1
S B PR R
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A general term is expressed by the following:

(_1)r+k cm-p+1)- (Z J_r ]1<) r+1+k m + i

CKT (D) r+1

- )

k

(m+ 1)!
m+1-r+Kk)! (r+1-k)!

_ _q\PHE+L, pme1, m+ 2
e ()

(_1)I‘+k . krn o

* (=k) = (m + 2)

Therefore, the right-hand side of (5) is equal to

r

D <(_1)r+k+1 .( m+ 2 ). km+1> F (D20 (p 1) - (m g 1). (r+ D",

=4 r-k+1
which is
r+1
_qyrHk+1 m + 2 . m+l
B (12 ) ),

By the definition of Z(m, r), the last expression is equal to Z(m + 1, r + 1).

Hence, the proof is complete.
Lemma 2: Let Z(m, r) be Z-coefficients. Then:
m
S Zmy, r) =m!, (mZ1l,r=1, ..., m; (6)
r=1

Z(m, ») = Z(m, m+ 1 - r). (7

Equation (7) shows that Z-coefficients distribute symmetrically.

Proof of (6): By (4), the following equalities hold:

Z(m, 1) =m*Z(m -1, 0) +12(m -1, 1),

Z(m, 2) = (m-1)s2z(m -1, 1) + 2 2(m -1, 2),
Z@m, 3) = (m-2)2Z(m-1, 2) + 3 Z(m -1, 3),
Z(m, my =1<Z2(m-1, m-1) +me2Z(m -1, m).

From these equalities with Z(m - 1, 0) = 0 and Z(m - 1, m) = 0, we have

iz(m, r) me (Zm - 1, 1) + -« + Z(m - 1, m = 1))
r=1

m=-1
me Y. Z(m -1, r).
r=1
Hence, by the definition of Z(1, 1),
m
S Z(m, ¥) =me (m - 1)+ 2e2(1, 1) =m!.
r=1
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Proof of (7): We prove (7) by induction on m. It is clear that (7) holds for
m = 1. We assume that (7) holds for the positive integers not greater than m.

We now show that (7) holds for m + 1, i.e.,
Zm+ 1, ») =Zm+ 1, m+ 2 - r). (8)
By (3), we have
Zm+ 1, m+2 -r)y =reZ(mm-r+1) + (m+ 2 -2)Z(m, m+ 2 - r).
By the induction hypothesis,
Z(my, m - r + 1) = Z(m, r), Z(my m+ 2 - r) = Z(m, » - 1).
Hence, by (3),

Zm+ 1, m+ 2 - r)

reZ(im, ) + (m - r + 2)2Z(m, » - 1)
Zm+ 1, »).

Therefore, (8) holds, as required.

Now, we return to the proof of the Theorem.

Proof of Theorem: We shall prove the Theorem by induction on m. It is clear
that the Theorem holds for m = 1. We assume that (2) holds for positive inte-
gers not greater than m. We shall prove that (2) holds for m + 1, i.e.,
2t =——1—-mz+:1<z(m+ 1 r)°mﬁl(x+7l - r)). (9)
(m + 1)! r=1 ’ =1
By (3), we have
m+1 m+1
_(Z(m+1, r) « Il (x+7,'—1ﬂ)>

r=1 1=1

m+1 m+1
Z((m-r+2)-z(m,r’—l)-H(x+7l—1ﬂ)>
r=1 =1

m+1 m+1 .
+ Z(r”Z(m, r’)-H(x+7,—r')>,

r=1 =1
Since Z(m, » - 1) =0 for » =1 and Z(m, r) = 0 for » =m + 1, the right-hand
side of the above is equal to

m

+1 m+1
((m—r+2)-Z(m,1ﬂ—1)°H(x+7l—r)>
r=2 =1

+ i((r- Z(m, r) ° mﬁl(x + 7 - r)).
r=1 =1

Changing » - 1 to » in the first term, we have
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m m+1
Z((m+1-—1~)-z(m, e @x+<-r- 1))
r=1 =1

s (-p- ZGm, )+ T (& + 4 - r))
=1

r=1

(m+ 1) - }Li[: (Z(m, ) -IT_’ITIl(x + 7 ~-r 1)>
=1

r=1

m m+1 m+1
+ Z (r-Z(m, r) -<I_]l(x+ 7z - r) - 'I_]l(oc -1+4+7 - r')))

r=1
1>>

+ (m+1)- i(r-z(m, r)-'Im] (x+7l—r)>
=1

r=1

m

(m+ 1) - Z(Z(m, ) 'njlii]::(ac + 7 -7

r=1

m

(m+1)+x- Z(Z(m, r) » _ﬁl(x+i - r)>.

r=1

By the induction hypothesis, the last expression is equal to
(m+ 1)« 2",
Hence, (9) holds, as required.

4, REMARKS

L,1 1If x and m (x < m) are positive integers, then (2) is reduced as fol-

lows:
x’”=ﬂnr%’-'—llwx°(x+ 1) eceee(x+ (m - 1)) +?—(n—;’72—)4-(x— 1)exe o-o
.(x+(m_2>)+..u+_Z_(_.727’;2’!_x)_.192-...¢m
= Z(Z(”:ns' 1”) . ﬁ (x+ 1: - p))_
r=1 : =1

4.2 cCalculating Z(m, ») for 1< m< 6, r =1,...,m, the following trian-

gle is obtained:

m=1 1

m= 2 1 1

m=3 1 4 1

m=4 1 11 i1 1
m=5 1 26 66 26 1
m=6 1 57 302 302 57 1

Clearly, this triangle is obtained by simple calculation. For example, to get
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Z2(6, 3) = 302, write all the values of Z(5, r) (» =1, 2, 3, 4, 5) in one line
from left to right (see the line for m = 5). Next, write r as a left subscript
for Z(5, r),i.e., ,Z2(5, r). Finally, write 5 - (» - 1) as the right subscript
for Z(5, r), i.e., Z(5, P)s—(r-l)' Then, we obtain

115 226k 3663 4262 511

N

302
72(6, 3) = 302 = 264 + 3 66, which gives equation (4):
Zmy r)y = (m-r+1)Zm-1, »r -1) +r72(m -1, r).

The symmetry of Z-coefficients is clear from the viewpoint of this construc-
tion method. The Pascal triangle is a special case of our triangle, i.e., the
Pascal triangle is obtained by using 1 for all right- and left-hand subscripts.

Let us call our triangle the "I-triangle."
4.3 By (6), it is clear that

Z(m, r) _

o 1.

;I(m, r) = Y

r=1
L. 4 Tt is an interesting problem to find the relation between Z-coeffici-

ents and Stirling numbers of the second kind (see [1]).
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1. INTRODUCTION

In [3] Davison proved that

L = 1 1 1 , with o = l—%TZE,

F F F
2°4+ 2+ 2%+ ...

n21 Zlna"

where Fy, =0, Fy =1, F,,, =F, . +F, , for n 2 0, and [x] is the greatest in-

teger < x. In [1] the authors found the simple continued fraction for

1 .
Tz, C) = (C - 1) 2 —m7» With real > 1 and C > 1.
nz1 (C
In this paper, we shall prove a new generalization of Davison's Theorem

(see Theorem 1).

2. CONVENTIONS AND USEFUL THEOREMS

Throughout this paper, make the following conventions:

_1+V5

5 .
Let F, be defined for negative n by F,,, = F,,; + F,.

Define Y, by: Y, and Y, are given real numbers such that Y, + Y,a > 0, and
all other values of Y, are defined by ¥, ,, = Y,,, + Y,, n any integer.

Also, throughout, let the Fibonacci representation of an integer X 2 1 be

written as

K=FV1+FV2+-'.+FV,1’ (1)

where 2 < V; <, V, <, ... <, V and a <, b means that a + 2 < b.

Define the function e(X), for K an integer = 0, by

e(X) = 0 4if K = 03
otherwise,

e(X)

]
3y
+
e

+ -+ + F _, where K has the representation ().
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In the paper [4], setting a = —‘/j—zii gives

e(k) = | (k + D)a"t], for k > 0.

fied by comparing the series to geometric series.

(2)
The convergence ranges for the series in this paper can easily be justi-

Because of the limit passing

below, the convergence ranges for the continued fractions are also justified.

From [6], we will use the Euler-Minding Theorem:

1f 3 = 1+ S ﬁ T —la , where {C;} is a sequence of nonzero real
o
numbers for k 2 1, then,
Ap = 1 + 2 Cy Cy Cy »
and w21, 1<7,<, ... <, ,<p b 2 "
B, =1+ ¢, C . C o
v
P w31, 2€V, ... U< 1 V2 Va

Actually, all that is needed is the following corollary:

Write 4 (Cy, Cys -5 Cp) = Ap, then notice By, = 4,_1(Cys C35 +v.5 Cp).
Now, let P + « and we have:
) c, 0, C, _A,X,(Cl, Cos ove)
TTF T T+ - TE(C,, Gy )"

Notice that the indices on the summation for 4., will be:

n>1, 1<V, <, 7, <, von <, 7,

3. THE MAIN TH:OREMS

)Y0n+ Y_qlna™t]

(3

> Y. 1 1 1 1
Theorem 1: = L —— = C 't 7 I 7 7 s

Z(l Yyn+Yolno ©§ CY + O+ 02+ O34 ..

ns1 0 where C > 1.

Proof: Set C, = a1 5™ in (3), with |a], |p| <1, not both 1, to get

1+ Z aF01—1+'”+Fv,,—1 bF”x+“'+FVn
afopfs ghpe n>1, 1<7,<, ... <

1 + = S 2 2 Ve
1+ 1+ ... F 4o+ F _F, .+ +F
1+ Z av1+ + va, v +1 v+l
nz1l, 1< 1<2...<2V,l

Denote the numerator by F(a, b) and the denominator by G(a, b).

Now,

F(b, ab) =1+ E aFv1+"'+Fv,.bF"1+1+"'+F”n+1 = G(a, B).

nz1, 1sS7,<, ... {7

1 n

19881
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Hence, we have

F(a, b) _ afopfr  gFaipFe
b, aby 't i 1w o (5)

From this, it follows that

F(b, ab) _ | , ab™ af2p's
F(ab, ab?)

1+ 1+ ---

so we find that

F(a, b) = F(b, ab) + bF(ab, ab?), (6)
with |a|, || < 1, and not both 1.

An expansion for F(a, b) could now be reached by setting
F(a, b) = 2k, na"d", with n, m > 0,

and equating coefficients in (6), but this route is tedious. Instead, notice
that if in (4) the exponent of b is k, then the exponent of a will be e(k) and
because of Zeckendorf's Theorem (see [2]), k will range over the integers > 0.
Hence,

F(b, ab) = 1 + 3. a®™@p" = 3 o°™p",

n=1 n=0
Thus, we also get

F(a, b) = ¥ a"=¢tpe®,
n20

Using (2), we have

- -1
F(a, b) = Z an—l(n+l)0L ljbl(y”-l)a J: (7)
>
and n20
F(b, ab) = ¥ al®* Ve hpr, ®
n20
Let a = C4 and b = C8 in (7) and (8) to get
- - -1
F(CA4, C'B) = 2 CA(n 1)+ (B- A4) lnu j’ (9)
21
and n
F(CB, cA*TE) = 2: CB(n-1)+Anm‘H. 10)
n21

Set A =Y, - Y, and B = -Y¥, in (10) to get

Y Y Yo(n- 1)+ (¥, -Y,)na™?
(@) @) = 5@ e >, an
nz1
or set A = -Y, and B = -Y, in (10) to get
Y, +Y Y. (n-1)+Y,|na"?
A3 (B)) - ()T el > (12)
nz1
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From (5), we see that

¥, ¥ Y0F0+‘Y1F1 Y0F1+Y1Fz Y0F2+Y1F3
Fe, ¢ 1+ ¢ T ¢ ¢ ,0< < 1.
F(Cyl, 0Y0+Y1) + 1+ 1+ .
It is easy to show by induction that Y, = Y,F,_, + Y, F,, for integer »; hence,
Y Y Y Y Y
F(cTe, C71) gt (72 c3
=1+ TF 13 T+ 0<c<1.

F(CYI, CY0+Y1)

Replacing ¢ with its reciproval variable,
(4. (2)7)
F((%)Yl ) (%>Y0+1’1>

¢ ¢ ¢

T+ 1+ T+ -+

-y -7,

1+ c>1

]

clogh chgtic ohiptepts phaptipT
+

=1 ,
cho+  chy c2+ Tt -
c>1,
(by the equivalence relation (3.1) of [7])
YO'Yl
=1+ ¢ 1 L 7 1 , C> 1.
cho+ ¢ cTow 0T 4+ .l
Hence,
]. YO 1 'Yl -y
F<<E> . (3) >C . . . .
=cT + - 5 , C > 1.
7 (l)yl (l)yo-i-}’l)c_yl C-Yu + Cyl + 072 4+ (073 4 -0
c > AL

Substituting in (11) and (12) and simplifying yields the theorem.

-1 -1
Theorem 2: 3, ¢AC - DHE-DITL _ gn pBlr= DFAIel | pd(e- DFBlnad | gor o] < 1,
n>1 n21

Proof: Let @ = C4" 8 and b = ¢4*?8 in (7) and simplify to get

F(CA+B, (AT2By - 2: C(A+B)m—1)+B1mr1k (13)

nzl

Let ¢ = C? and b = C? in (6) to get
F(CA, ¢B) = F(CB, ¢4+B) + CPp(cA+B, ¢4t %5y, (14)

Now substitute (9), (10), and (13) into (14) and simplify to get the theorem.

Corollary 1: If 7 = 3 chnthealml | eor 0 <1, then Ty, = T - ¢ e Trs1s
n21
where kX is any integer.

Proof: Let 4 = ¥ ,, and B = Y, , in Theorem 2 and simplify.
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Corollary 2: Y C¢f*Funall £0p ¢ < 1, can be evaluated in terms of > c!™ and
n=1 nzl

rational functions of C for any integer k. TFor example,

Sertirl o g oo™ o+ ot (15)
n21 nzl )
Proof: Put Y, = F, in Corollary 1. Notice that
c {no]
T . =) ("= and T = e,
-t n21 ¢-1 0 ngl

Now Corollary 2 follows by induction using Corollary 1. For example, we find

= ¢ lna®) _ c [ na)
T, = =Ty or 0l =atg - Y0,

nz1 nzl

which is easily verified by Beatty's Theorem (see [5]). Applying Corollary 1

another time gives (15).

1 Fyn+ Fy o lnaf
Corollary 3: 3 (—) is trancendental for integer k # -1 and integer

c>1 ST

Proof: TFrom Corollary 2 we can see that the sum for k # -1 and rational func-

. . - . R 1 \lmal
tion of ¢ added to a rational function of C multiplied by E:n>1<5)

transcendental by setting o= (1 + Jg)/Z in [1]. We can show by induction that
1

Lna |
the rational function which multiplies 2:n>1(5) is nonzero; hence, the cor-

which is

ollary follows.
Corollary 4: If A and B are integers not both zero, then the number of times
that any integer occurs in the sequence

A(n - 1) + (B - A)lna™t], for n > 1,

is equal to the total number of times that integer occurs in the following se-

quences:

B(n - 1) + 4lna" Y], for n > 1, and A(n - 1) + Blna], for n = 1.

Proof: The proof follows immediately from Theorem 2.
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1. INTRODUCTION

It is the purpose of this paper to generalize the concept of Fibonacci
primitive roots introduced by Shanks in [22]. This work was motivated by
attempts to prove a conjecture of S. Chowla on class numbers of certain real
quadratic fields. The generalized Fibonacci primitive roots which we introduce
are interesting in their own right. Moreover, it turns out that Chowla's con-
jecture is more closely related to a generalized sequence of Fibonacci numbers
which we introduce in §2 as a precursor to the generalized Fibonacci primitive
roots. Thus, we first establish the generalized Fibonacci primitive roots and
several of their properties in §2 before displaying the connection with the

motivating work on Chowla's conjecture, at the end of the paper in §3.

2. GENERALIZED FIBONACCI PRIMITIVE ROOTS

Linear recurring sequences of the second order have been extensively ex-
plored since the last century. We have such sequences of integers {G,} defined
by G, = mG;_; + nG;_, for 7 > 1, where G,, G;, m and n are given integers.
There has more recently been a plethora of papers dealing with these sequences
as generalized Fibonacci numbers. As evidence, the reader may consult any of
[11-[41, [61-[17], [20]-[21], and ([26]-[31]. However, heretofore, there has
been no generalization of Fibonacci primitive roots in the literature.

We consider the particular case of the G; where m = 1 and n > 0. Set G, =

E}(n) and let Fy(n) =1 and F;(n) = g, a positive integer. Thus,

Fi (n) = Fi—l(n) + ﬂFi_z(n), for 7 > 1.

*The author's research is supported by N.S.E.R.C. Canada, grant #A8484.

46 [Feb.



GENERALIZED FIBONACCI PRIMITIVE ROOTS

Call {F,(n)} the nth-Fibonacei sequence with base g (or simply the nth-FS base
g). The first Fibonacci sequence with base 1 is the ordinary Fibonacci se-
quence. Now let p be a prime and let g be a primitive root modulo p. We call

g an nth-Fibonacci primitive root modulo p (or simply an nth—-FPR mod p) if

satisfies:

x? = x + n (mod p), (1)

where g.c.d. (p, )y = 1. The n = 1 case yields the ordinary Fibonacci primi-
tive roots introduced by Shanks [22] and for which properties were developed
in [23] and [24] which, among others, we will have occasion to generalize later.

For the remainder of the paper we assume that p is an odd prime and »n is a

positive integer.

Lemma 1: If the positive integer g is a solution of (1), then
F,(n) =gF, _,(n) = gt (mod p)
for all positive integers <.
Proof: We use induction on Z. If ©Z = 1, then Fl(n) =g = gFD(n). By defini-

tion of the n'h-FS base g, we have that F,(n) = F,_,(m) +nF,_,(n) for 2 > 1.
By induction hypothesis:

F, ,(n) = gF,_,(n) = g""" (mod p). (2)

1l

Therefore, F, (n) (g + W)F,_,(®) (mod p). Thus, from (1), we obtain:
F.(n) = gzﬁé_z(n) (mod p) .
Hence, from (2) again, we get:

F,(n) = gF,_ (n) = g% (mod p). Q.E.D.

As an illustration of Lemma 1, we have:

Example 1: Let w = 5, p = 101, and g = 42; 42 is a 5th_FPR mod 101. Moreover:
F,(5) =1, F (5) = 42, F,(5) = 47 = 42 + 5 = 42%,

[]
11

F,(5) = 257 = 47 + 5 42 = 42+ 47 = 42°,
F,(5) = 492 = 257 + 5¢ 47 = 42+ 257 = 42°,
Fg(5) = 1777 = 492 + 5« 257 = 42+ 492 = 42°,

etc. (where = denotes congruence modulo 101).

The following observations will prove to be useful, and they generalize
Shanks [23, A-D, p. 164].




GENERALIZED FIBONACC! PRIMITIVE ROOTS

Remark 1: If g is an n'M-FPR mod p, then either
4n = -1 (mod p) or (n + 1)/p) =1,
where (*/*) denotes the Legendre symbol. This is verified from the observation

that (2g - 1)2 = 4n + 1 (mod p) if (1) is satisfied by g.

Remark 2: If (-n/p)

]

-1, then there exists at most one n'h-FPR mod p. To see

this, we observe that the two solutions of (1) are
g, = (1 +Vin + 1)/2 and g, = (1 - Van + 1) /2;

whence, g,g, = -n (mod p). Therefore, one of g, or g, is a quadratic residue
and the other is not. Hence, there is at most one nth _FPR mod p. We now give

examples of each case.

Example 2: If n = 4 and p = 19, g = 13 is a 4™ _FPR mod 19. Since (-4/19) =
-1, g = 13 is the only 4" -FPR mod 19 by Remark 2.

Example 3: If nw =1 and p = 3, then ((4n + 1)/p) = (5/3) = -1, whence 3 has
no 1°°-FPR by Remark 1.

Remark 3: If (-n/p) =1, there may be two, one, or no nth-FPR's mod p. The

following examples illustrate the three cases.

Example 4: If n = 2 and p = 41, the solutions of (1) are g, =2 and g, = 40,

both of which are quadratic residues modulo 41. Hence, 41 has no 2" _FPR's.

Example 5: If n =3 and p = 13, g = 7 is a 3"9-FPR mod 13. However, 7° = -3
(mod 13) and 7x = -3 (mod 13) has only one solution. Hence, there is exactly

one 3"¥-FPR mod 13.
Example 6: If n =6 and p = 7, then g, = 3 and g, = 5 are 6" ~FPR's mod 7.

. h_ . . ) -
Remark L4: 1If two n'h-FPR's mod p exist, say g, and g, with 0 < g, <p for 7
1, 2, then g, +g, =1 +p. This follows from Remark 2. As an instance of

this, see Example 6, where g, + g, =8 =p + 1.

In Remarks 2 and 3, we saw that it is possible that no n*h-FPR's mod p
exist. We now provide a class of primes p for which an nth-FPR mod p always
exists. First we need a preliminary result that generalizes an idea of Shanks

and Taylor [24].
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Lemma 2: Suppose that either n = 1 or p > n >2 and p = 1+ 2g where g is prime
and 7 has order g modulo p. If g is a solution of (1), then ¢ is a primitive

root modulo p if and only if g - 1 is one.

Proof: If n =1, then g(g - 1) 1 (mod p) implies that g and g - 1 have the

1

same order modulo p. Now we assume p>n> 2, p= 2g+ 1, and n has order g modulo
p. Since g(g - 1) =n (mod p) from (1), we get g9= (g - 1)"? (mod p). 1If g is
a primitive root modulo p, then (g - 1)? = -1 (mod p). We cannot have g - 1 =
-1 (mod p), whence g - 1 is a primitive root modulo p. Conversely, if g - 1 is
a primitive root modulo p, then g¢ = -1 (mod p). If g = -1 (mod p), then from

(1) we get that n = 2 (mod p), contradicting the hypothesis. Q.E.D.

The following example illustrates the above.

Example 7: Let p = 47, g = 20, and n = 4. 4 has order 23 modulo 47, 20 is a
primitive root mod 47, and g = 20 is a solution of (1), whence 19 is a primi-

tive root mod 47.

Now, we provide a sufficient condition for the existence of an nth —-FPR mod
p. The following generalizes Mays's [18, Theorem, p. 111]. We follow Mays's

reasoning in the initial part of the proof.

Theorem 1: Suppose that n = 1 or p > n > 2, and ((4n + 1)/p) = 1 where p = 1 +
2q is a prime with g an odd prime. Furthermore, suppose that either n = 1 or

n has order g modulo p. Then p has an nt"-FPR.

Proof: Since p = 3 (mod 4), at most one of o or -0 is a primitive root modulo
p for any o in the range 2 < a < (p - 1)/2 = g. But there are exactly
¢p(p-1)=qg-1 = (@ =-3)/2

primitive roots modulo p, so exactly one of a or -o is a primitive root modulo

p. Since ((4n + 1 /p) 1, there are two distinct solutions of (1), namely, g
and 1 - g (see Remarks 1 and 2). It suffices to show that either g or 1 - g is
a primitive root modulo p. Suppose that g is not a primitive root modulo p.
Then, by Lemma 2, g - 1 is not a primitive root modulo p. Also, g - 1 # 0, *1
(mod p) because g satisfies (1) and = # 0, 2. Consequently, g — 1 = *B (mod p)
for some B satisfying 2 S B < (p - 1)/2 = g; and so, 1 - g is a primitive root
modulo p. Q.E.D.

The following generalizes Shanks-Taylor [24, Theorem, p. 159].
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Theorem 2: Suppose that either n = 1 or p > n > 2, and p = 1 + 2g, where g is
an odd prime and n has order g modulo p. If g is an n'"-FPR mod p, then g - 1

and g - (n + 1) are primitive roots modulo p.

Proof: By Lemma 2, g - 1 is a primitive root modulo p. Therefore, since
(g-1D?*=1-g+n (mod p),
we get

(g - D?**"=g - (m+1) (mod p).

Since g.c.d. (2g, 2 + g) =1, we see that g - (n + 1) is a primitive root mod-
ulo p. Q.E.D.

Corollary 1: Suppose that n is a positive integer such that ((4n + 1)/p) =1,
where p = 1 + 2g is prime, with ¢ an odd prime. Further, suppose that either
n=1or p>n>2, where n has order g modulo p. Then, there is an n‘"-FPR
mod p. If g is such an FPR, then g - 1 and g - (n + 1) are primitive roots
modulo p.

Proof: The proof follows immediately from Theorems 1 and 2.
The following illustrates Corollary 1.

Example 8: Let n = 3 and p = 23. Then,
((4n + 1)/p) = (13/23) = 1 = 3*' (mod 23).

Thus, the hypothesis of Corollary 1 is satisfied and 15 is the 374 _FPR mod 23.
Moreover, 14! = -1 (mod 23) and 11'!' = -1 (mod 23).

We close this section with the observation that it is possible to give a
more restrictive generalization of Fibonacci primitive roots, albeit a natural
one.

Let n be a positive integer and p a prime with p = 1 (mod n). Define g to
be an n'*h-FPR modulo p whenever g has order (p - 1)/n modulo p and (1) is sat-

isfied by g.

Example 9: If n = 3, p = 103, and g = 31, then 31 satisfies (1) and has order
34 modulo 103. Hence, under the preceding definition, 31 is a 3®"-FPR mod 103,

but it is not one under the earlier definition.
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Example 10: If n = 2 and p = 5, then 2 satisfies (1) but 2 is a primitive root
modulo 5, so 2 is not a 2" —FPR mod 5 under the preceding definition but it is

one under the earlier definition.

It would be of interest to see what developments would come out of a study

of the latter definition.

3. CLASS NUMBERS OF REAL QUADRATIC FIELDS

In [5] S. Chowla conjectured that, if p = m* + 1 is prime and m > 26, then
h(p) > 1 where h(p) is the class number of Q(/E). In [19] we established that,
if r=m?+1>17 is square free where either r is composite or m # 2q for an
odd prime ¢, then A(r) > 1. Furthermore, we showed that in the remaining case,

h(r) = 1 for at most finitely many g. Also we established

Theorem 3: Let r = 4m®> + 1 be square free where m is a positive integer. Then

the following are equivalent.

(a) h(r) = 1.
(b) p is inert in Q(/r) for all primes p < m.

(c) flx) = x> + x +m?> £ 0 (mod p) for all integers x and primes p satis-
fying 0 < x <p < m.

(d) f(x) is equal to a prime for all integers x satisfying 1 <ax <m.

The following links §2 and §3 and provides a criterion for the solvability

of (1). For convenience, we let Fi(n) =F,. in what follows.

Theorem L4: If n is a positive integer relatively prime to p, then g is a solu-

tion of (1) if and only if the n*"-FS base g satisfies F, F. = Ff (mod p)
for some ¢ > l. Moreover, if g is a solution of (1), then F . F. , = Ff (mod
p) for all 7 > O.

Proof: By Horadam [12, (27), p. 440]: F; F,_; - Ff = (—n)i'l(g +n - gz) for

all © > 0. The result follows. Q.E.D.
Therefore, we have the following conjecture based on the preceding data.

Conjecture: If n = q°, where q > 13 is an odd prime and 4q2.+ 1 is prime, then
there is an n*"-FS base g, {F; (n)}, for some g satisfying Foo Fyq = Ef (mod p)

for a prime p with 0 < g <p <g.
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1. The classical cuboid is a rectangular block with integral edges and face
diagonals. If we consider the internal diagonal as well, then there are seven
lengths in all. It is known [3] that any six of the seven lengths can be inte-
gral. We can call such cuboids semi-perfect. Semi-perfect cuboids fall into
three categories such that there is no integral specification for:

(1) the internal diagonal,
(2) one face diagonal,
(3) one edge.

If all seven lengths were integral, then we would have what is known as a
perfect cuboid. No such perfect cuboids are known; indeed, their existence is
a classical open question. It is known [3] that there are an infinity of semi-
perfect cuboids in all categories, as certain parametric solutions are known.
Unfortunately, none of these solutions is complete. Clearly, if perfect cuboids
exist, they must fall into all three categories and so the complete determina-
tion of all semi-perfect cuboids in any one category would reduce the problem
of perfect cuboids to the consideration of the seventh nonspecified length. It
has been shown that some of these partial parametric solutions cannot be per-
fect (see [2], [3], and [4]). 1In this paper we shall determine a two-parameter
solution for category (3) which is the generalization of a solution first given
by Bromhead [1], and then show in a simple manner that this too can never give

a perfect cuboid.

2. It is instructive first to consider the smallest real solutions (with ¢> 0)
in category (3). If we measure the size of the cuboid by the length of the in-
ternal diagonal d (say) with edges a, b, and Ve, then Leech [3] has given the

smallest solutions. The first four being

c d
a b
520 576 618849 1105
1800 1443 461776 2405
1480 969 6761664 3145
124 957 13852800 3845
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2 2
where a® + b?, a® + ¢, b? + ¢, and a? + b2 + ¢ are all square. If Vo were it-

self integral, then of course the cuboid would be perfect.

3. TFollowing Bromhead's solution [l], we have a® + b? square and, hence,
a=k(2uv) and b = k@w?® - v?).

If we write a® + ¢ = p? and b* + ¢ = ¢°, then p? + b? = g% + a?, and each is a

square. Therefore, p = ky(2u;v,) or ky(ui - v}) with ky(u? - v2) = k@? - v?)

or kl(Zulvl) = k(u? - v?). Similarly, g = kz(ug - v%) or k,(2u,v,); hence,
k,(2u,w,) = k(2uv)  or  k,(ul - v3) = k(u® - v?).
Finally, kl(ui + vi) = kz(ug + Ug) in all cases.

Since we need only consider cuboids with (a2, b?, ¢) = 1, we can reduce the

problem to solving the systems:

3.1 (1) Ry + v} =kl +v3) or () kyui+vd) =k, (ui+vd)
kyu? - vd) = k@® - v?) kyQuv)) = k@? - v?)
k,(2u,v,) = k(2uv) k,(2u,v,) = k(2uv)

in integers. Thus, we can say that all primitive semi-perfect cuboids in cate-
gory (3) must satisfy either system (1) or system (2). Of the four "smallest"
real solutions listed above the smallest satisfies system (2) and the next
three satisfy system (1). Bromhead's one-parameter solution satisfies system
(1) when k =k, = k,, and the smallest solution with this condition is the

fourth.

L, We shall now determine a two-parameter solution of system (1) when k= %k, =
k,. We have:

2

2 2 _ .
b1 ul + vy = u, + U5
2 2 _ 2 .2,
L.2 uy - v =u vy
4.3 UV, = uv.
The general solution of 4.1 is
h.h (mp + ng)? + (mg - np)? = (mqg + np)? + (mp - ng) 2.
Writing 4.2 as ui + 02 =+ vi, its solution is:
2 2
.5 (mypy + 907 + (mqy = mp)® = (mpy - mq)" + (mgqy +myp)”.
Putting mp + ng = mp, + n,.q,
and mg - np =mqg, + nipys

a rational solution is given by:
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n(g® +p»  _mg® - p?) - 2npq

q° - p? 1 2 2

4.6 P, =q> q, =p>m = P

Therefore,

.7 u

(nq(q® + 3p®) - mp(q* - p*N/q*

I
<

4.8 v

(np(3q® + p?) - mq(q* - p*))/q* - p*.

Finally, we require, from 4.3, that

2 2 5 5
k.9 (mg + np) (mp - ng) = (mp _nq(@” + 3p ))(mq _ ﬁﬁﬁéﬁL_i;£L2>

q* - p? q° - p?

Let n = A(g® - p?), then

L.10 (mqg + Ap(q® - p*))(mp - A\qg(q? - p*))
= (mp - A\q(q% + 3p®)) (mq - W (3¢> + p?)).

Multiplying in (4.10) and simplifying, we have,

2mpq = Mq® + p®)?;

therefore,
_Mq® +p?H?
2pq

Let A

2pq, then

2 2)2

2pq(q® - p?) and m = (q

n +p

Hence, we have a solution where:

L.1

p(p* + 3¢%);
q3p"* +q");

p(g® + p*)? + 2pq*(q* - p?)
L =q@" +pH? - %q(q* - p?)

<
-
]

<
]

u, = q(q® + p*)? + 2p%q(q* - p*) = q(q* + 49°p* - p*);
v, = p(@* +p?* - 2p9°(q* - p*) = p(* + 4p?q® - ¢*);
u = 2pq*(q* + 3p?) - p(g® + p»)? = p(q* + tp?q® - p*);

-+

2p%q(3q> + p?) - q(g® + p*)? = q"* + 4p®q® - ).

This gives the solution:

4.12 a = 2pq(p"* + 4p%q® - q*) (" + 4p*q® - p*);
b =p>(g" + 4p?q* - p")?% - ¢* (" + 4p?q® - qM)?;
c = 32p2q2(p'+ - ql{»)Z(pa + ].4p’+ql’ + qB)o

Bromhead's solution corresponds to p =t + 1, ¢ = ¢. We need only consider

values of p and g such that (p, q) = 1. If p =2 and g = 1, we have:

a =124; b = 957; ¢ = 13852800.
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The signs of a and b are, of course, irrelevant and so we will always take the

absolute value.

5. We know that if ¢ itself is square, then the cuboid will be perfect. Look-
ing at the form given for ¢, this requires that p® + l4p“g* + q% is twice a

square. We shall now prove that this is not possible. Set
5.1 p® + l4p*q" + ¢® = 202, where (p, q) = 1,

then p and g must both be odd, and

5.2 (" - ¢M?% + (4p2g?H)? = 202,

The general solution of 5.2 is known to be

5.3 p* - g% = k(m® - 2mn - n?) or k(m® + 2m - n?),
5.4 4p2q® = k(m® + 2mn - n?) or k(m® - 2mn - n?)
w = k(m® + n?).

From 5.3 and 5.4,
p* - g + 4p3g® = 2k(m* - n?).

If m and n have the same parity, then 8[27((1712 -~ n?). However, 8*p“ - q“ +
4p2q? since 8|p* - g"* but not 4p?q®. Therefore, m and = must have opposite
parities, in which case m? + 2mn - n? is odd. Hence, from 5.3, we have that
8|k. From 5.4, it follows that 8|4p®g?, which is impossible because p and g
are both odd. It also follows that ¢ can never be square, so the semi-perfect

cuboids generated by 4.12 can never be perfect.
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1. INTRODUCTION

Let x be an n—digit number expressed in base g; thus,
n-1
x =) a,gt with 0 <a; < g and a,_; # 0.
=0
Let k be a positive integer. Then x is called k-transposable if and only if

. (1)

n-2 .
_ 1+1
kzx —'2%)aig +a,_,
i=

Clearly, x is l-transposable if and only if all of its digits are equal. Thus,
we assume kK > 1.

Kahan [2] studied decadic k-transposable integers. He showed that k must
equal 3, that x, = 142857 and x, = 285714 are 3-transposable, and that all
other 3-transposable integers are obtained by concatenating x, or x, m times,
mz1.

In [1], this author studied k-transposable integers for an arbitrary base
g. Necessary and sufficient conditions were given for an n-digit, g-adic num-
ber to be k-transposable.

When a k-transposable integer is multiplied by k, its digits are shifted
one place to the left with the leading digit moving to the units place. In

this paper, we will generalize this shift of one place to a shift of j places,
1 <4 <n.

2. TRANSPOSABLE INTEGERS WITH ARBITRARY SHIFTS

-1 . .
We say that the n-digit number x = 2::=0aigL is a k-transposable, j-shift
integer, or a (k, j)-integer for short, if and only if
n-1-3 L n-1 i X
kx = 3, a.g*ti+ 3 aigt'("'Jl for 1 < j<mnand 1 <k<g. (2)

=0 i=n-j

For example, again consider the decadic integers 142857 and 285714. Since
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6(142857)
2(285714)

857142,
571428,

il

142857 is a (6, 3)-integer, while 285714 is a (2, 2)-integer.

We shall study (k, j)-integers for an arbitrary base g. Kahan [3] has de-
termined all decadic n-digit (k, n - 1)-integers. He called these k-reverse
transposable integers.

Rearranging the terms in (2), we get

. n-1 . . . n-1-4 .
(kg" ™7 - 1) T a gt P =(gf - k) Y a.gt. (3)
i=n-4 i=0 °
Let d be the greatest common divisor of kg"~9-1 and g7 -~ k. Then the follow-

ing lemma is immediate.

Lemma 1: Let x be an n-digit, (k, J)-integer and let d = (kg”'j -1, gj - k).

Then d satisfies the following:

(ii) (k, &) =1
(iii) k<d

(iv) gr =1 (mod d)

The following theorem gives necessary and sufficient conditions for the

existence of (k, j)-integers.

Theorem 1: There exists an n-digit, (k, j)-integer if and only if there is an

integer d with the following properties:

(i) (k, & =1
(i1) k<d
(iii) dlgd - &

(iv) g7 =1 (mod d)

Proof: Lemma 1 shows that (i)-(iv) are necessary with d = (kg”'j -1, g7 - k).
Now, suppose there exists a d satisfying (i)-(iv). Note that d divides
kg”'j - 1 since

kgn-Jd - 1 = gign-d -1 2g" - 120 (mod d).

We now construct {%] (k, j)-integers x,. Let

Lo [
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The coefficients bt,n—l’ e bt,n—j are given by

n-1 ) L ogi -k

i=§-jbt’igl_(n_g) =Tt (4)
We obtain (4) by dividing (3) by g7 - k and requiring that z:zzébt{igi‘(”_j)be
a multiple of Qi?%—kg since d divides kg"~7 - 1. Note that the highest power
of g which occurs on each side of (4) is j - 1, so the coefficients b, ; are

well defined. Using (3) we find that b, 4, ..., bt,n-j-1 are to be defined by

j C ggn-d oo
S by gt = Kid—l— £, (5)

Equation (5) is also well defined, since kt < d.

We note here that the proof of Theorem 1 is a constructive one. The digits
of k-transposable integers are found using (4) and (5). We now show that all

g have (k, j)-integers.

Theorem 2: If g =5 or g 2 7, then g has a (k, j)-integer for all j = 1. If
g =3, 4, or 6, then g has a (k, j)-integer for j 2 2.

Proof: If g =5 or g 2 7, choose k satisfying the following:

2<k<g/2 and (k, g) = 1.
Then d = g7 - k, j > 1, satisfies (i)-(iii) of Theorem 1; further, (d, g) = 1.
Hence, there exists n such that g” = 1 (mod d). By Theorem 1, g has a (k, J)-

integer.

For g = 3, 4, or 6, choose k such that
2<k<g and (k, g) = 1.
Again, let d = gj -k, g 22, and apply Theorem 1. For these g, no (k, 1)-

integers exist.

For j fixed, we now show that up to concatenation there are only a finite

number of (k, j)-integers.

n-1

Theorem 3: Suppose x = z:izoaigi is a (k, j)-integer. Let d = (kg”‘j -1,
g7 - k) and let N be the order of g in Uz, the group of units of Z,. Then x

equals some (k, j)-integer concatenated »n/N times.

Proof: Since g” = 1 (mod d), n is a multiple of N. Let
N-1 ) d
= . z = —_—
x4 iz% bt,19 , t 1, .., [k]’
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be the N-digit integers given by equations (4) and (5).

n-1 . . J -
In (3), 2:i=n_jaigl‘(”"J) must be a multiple of ﬂ—?f—@. Thus, for some

t,

n-1 ., , J _ % N-1

—(n-4) _ e (-

2 aggtt = <ch““>t = 2 by gt @P

T=n-J 1=N-J
S0

Ay _y=byy_iss for 2 =1, ..., J.
Thus,

n-1-4 n- i N— 7 -
- EL”_:_1> - _N(kg J-1 g" —1>
2 agt = (g - gren(f = Ly (01,

Note that kt < d. ©Now, since

v-1-d . g"=i -
Z bt,igl = (k d 1>t’
=0
we must have
Ay =bey-gs 2=d+1, ooy I,
Further,
- / . oy
i"_ﬂ—_«l) =<9J—k el <1<ii_~;i
< d ¢ T )tg + E t.
Hence,
n-N-1 . i 4
PTG
i=n-N-j
or b1 .
S -m-g_ (99 = K -
. 2 ,“igl"(” v-39) = ( g )t = E: ,bt,igl -
i1=n-N-g LT
Thus, a, y_;=by y_gs © =1, ceoy Joand a,_ y_;=by y_yo ¢ =4 -1, ..., N.

Continuing, we find that x equals x, concatenated n/N times.

3. (k, 1)-INTEGERS ARE ALSO (£, j)-INTEGERS

In some cases (k, 1)-integers are also (&, J)—integers. Consider the mul-

142857:

tiples of the decadic (3, 1l)-integer y

2y = 285714; 4y = 571428; 5y 714285; 6y = 857142,

Thus, y is also a (2, 2), (4, 4), (5, 5), and (6, 3)-integer. We cbserve that
y is an (&, j)-integer when & = 379 (mod 7). Here 7 =d = (g - k, kg""* - 1),
with g = 10, ¥ = 3, and n = 6. We will show that this is always the case when
fy is an n-digit number. The following lemmas will be useful.

n-1

Lemma 2: Suppose x = Z;i=0aigi is a (k, 1)-integer. Letd= (g - k, kg"™* - 1).
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Then

de = - % an_l(g” - 1.

Proof: Since d divides g - k, d = g ; k for some r. Thus, we have:

n-1 . 1 n-1 . 1 n-1 P41 n=2 P41
d_zaigl = ?(9 - k) Z Cligl = ;[Z a.g - Z aig - an—l}

=0 =0 =0 =0

1 d
= _1; an—l(gn - 1) = g - k an—l(gn - 1)_
Lemma 3: Suppose x = E:Z;éaigi is a (k, 1)-integer. Then, for j 2 2, we have
; Vl—j—l . . n-1 . .
kip = .E: aigz+g + . E: gigt—(n-J)+ qj(g” -1,
=0 i=n-g

where

g . .
r; =,§: (a,_; - ki_lan—l)gg_l'

Proof: The proof is by induction. Since the initial step with j = 2 is simi-
lar to the induction step, we will do only the latter. Consider

n-~1

. [ n=2 X . R .
kI tte = k3< Yagttt + an_1> = gk? Yla.g* - klan_1(g” - 1)
=0 =0

n-g-1 n-1 . . .
g[ > oagtti+ 3 oagtt D+ (gn - 1)] - kia,_ (g" - D

=0 i=n-J

A = ; ;
_ T - - -
= Z a,g J + ‘ Z aigi (n-g-1)

=0 i=n-g-~1

+ (ap- -1 - kjan_l)(g” - 1) +rgl@"- 1)
n-g-2 o n-1 - 1)
—(n-j-

= E: aigl+J+1-+. 2: aigz J + r}+1(gn - 1.

=0 i=n-j-1

Theorem 4: Suppose that zx = E:Z;Saigi is a (k, 1)-integer. TLet d = (g - k,
kg" ! - 1). Suppose fx is an n-digit number with £ < d. Then x is an (%, J)-
integer if ¢ = k79 (mod d).

Proof: Since % = k9 (mod d), % = k¢ - sd for some nonnegative integer s. Then

by Lemmas 2 and 3,

n-d-t o nol e ) d
= 1+J 1-n-J - n o
Lz iz%) a,g +—i=%;jaig + <rj s - % an_1>(g 1).

d .
a must equal zero. Hence, x is

Since 2x is an »n-digit number, 13 - 8 g - % %1

an (R, J)-integer.
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GENERALIZED TRANSPOSABLE INTEGERS
While (k, 1)-integers give rise to (&, j)-integers, an (%, j)-integer need
not be a (k, 1)-integer. TFor example, the decadic number 153846 is a (4, 5)-

integer, but it is not a (k, l)-integer for any k.
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LIMITS OF g-POLYNOMIAL COEFFICIENTS
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INTRODUCT | ON

It is well known that the g-binomial (Gaussian) coefficients [Z] satisfy
the "finite" Euler identity ([2], p. 101):
r
I U+gix) =1+ 3 [”]q(z)xr,
n-12120 nzrzl
and that their g-adic limits
. " iy~ 1
llm[ ] = JI  -4g"H
el eziz 7
satisfy the "infinite" Euler identity ([1], p. 254; [2], p. 105):
: -1, (2)
Oa+qgix)=1+% I (-g)H g%
720 rzl rzizl

In [5], we showed that the g-polynomial coefficients [Wrm] satisfy the gen-

eralized "finite" Euler identity:

igm+(9) n.mi} (5)
8 > g 2gd) =1+ 3 [ ]q x?.
n-12i20\m=2520 wm2Zr21 r

We now complete the analogy by showing that the g-adic limits of these g-poly-

nomial coefficients Gr(,’”) (for each m 2 1) satisfy a recurrence relation which

generalizes that satisfied by

H (1 ‘qi)_ls

rziz1
and the generalized infinite Euler identity:
A r
3 3 qwm+(2)xa =1+ 3 Gfpm) q(Z)xI’.
izo\m=27520 rzl

This paper is organized as follows. We begin in Section 1 by defining the
basic graphical terms. We then make the first of two valuations of the digraph

in Section 2. 1In Section 3, the recurrence formula for Gz(,m) is proved. The
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LIMITS OF q-POLYNOMIAL COEFFICIENTS

generalized infinite Euler identity is proved in Section 4, and Section 5 con-
tains a short discussion of the special cases m =1 and m = 2.

We recall here the definition of the g-polynomial coefficients (see [4],
[5], and [6]). Let (my, ..., m,) denote the multiset on {l, ..., n} in which
the multiplicity of ¢ is m,. The number of elements in (my, ..., m,) is m; +
e+« +m, and is denoted by l(ml, cees mn)l. We abbreviate the multiset (m,
eeey, my) in which my = <.« =m, =m to (n.m). A multisubset (ay, -..5 ay) of
(n.m) satisfies a; < m, for ¢ = 1, ..., n, and it uniquely determines a comple-
mentary multisubset (a], ..., aj) satisfying a; +a/ =m (£ =1, ..., n). An
inversion between the multisets (a;, ..., a,) and (bl, «e.> b,), in that order,
is a pair (Z, j), where 7 is an element of the multiset (a;, ..., a,) and J is

an element of (b1, ..., b,), and © > j. Let I(ay, ..., a,) denote the number

?
1’

a multisubset of (n.m). The g-polynomial coefficient [nrm] is defined to be

of inversions between (a;, ..., a@,) and (a ..., a}), where (al, cees ) is

the generating function

n.m] _ Z I(ays «ovs ay)
= q °
[,'.V’ |[(ays vevsrap)|=r

1. GRAPHS
Let m be a fixed positive integer. We consider the digraph with vertices
all the lattice points in the first quadrant of the plane
(G, NIi, § =0}
and directed edges
(i, ) > (@ + 1, 3 (2, §) > (@, §+1(E, §20).

We will call a vertex an m-vertex if there is a nonnegative integer k such that

7+ J = km. We will call a path of the form

(G ) > G+ 1, ) > e > @ +a, D
> ta, g+ > > (G ta, i+ D),

where (4, J) is an m-vertex and a + b = m, an m-arc, and we will denote it by
(Z, Y>> +a, § +Db).

An m-arc of the form (<, J) > + (Z, § + m) will be called a vertical m-arc.
A finite sequence of consecutive m-arcs beginning with the origin followed

by an infinite sequence of consecutive vertical m-arcs is called an m-path. In
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LIMITS OF g-POLYNOMIAL COEFFICIENTS

an m-path, if (r - a, 8 -~ b)+ > (v, &), where a + b = m, is the last nonverti-
cal m-arc, (r, 8) will be called the terminal m-vertex of the m~path. The part
of an m-path between (0, 0) and its terminal m-vertex will be called the valu-

able part of the m-path.

2. VALUATION

Until Section 4, we will assign to all directed edges of the form (¢, J) =
(Z + 1, 7) the monomial qjx and directed edges of the form (Z, J) + (Z, J + 1)
the trivial monomial 1 (<, J 2 0).

The product of all the monomials on the m-path p (m-arc) is then called the
value of the m-path p (m~arc) and is denoted by v(p; g, x). Clearly, the value
of an m-path is completely determined by its valuable part. In fact, if (», s)
is the terminal m-vertex, and if

(0, 0)> > (a,, aj)>>(a; +a,, a] +a))>>---
> (a; + s +a,, al + 000+ a)) = (v, 8)
is the valuable part of the m-path, the value of the m-path p is
a,al+azlaj+al)+.--+a,(a]+ ---+a,§-1)xp.

v(p; g, x) = q

Observe that

I(ay, «vvs ay) = ajay +azla) +aj) + - +a,la] +--- +a)_ ).
This shows v(p; ¢, x) = g/(%> > agr, Hence,
N .
Lemma 1: [ » ] = }: v(p; g, 1), where the sum is over all m-paths from (0, 0)

to (v, wn - r).

We note that I(al, .e.s ay) 1s also equal to the number of unit squares

(area) under the m-path p ([3], p. 13).

Theorem 1: Keeping the above notation, we have

Ilay, ooy @) = Ia), «ous al).
Proof: I(a), ..., a)) =a)_ qa, +a) ,(a,+a,_ ) + - +al(a, +--- + a,)
= ’ r 4 4 o !
a,al + ag(al ta) + +a,(al + ta; )
= I(al, cees a,). Q.E.D.
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3. RECURRENCE RELATIONS

Let g™ (g, x) denote the power series obtained from summing the value of

all the m-paths. Writing in the ascending powers of z,

G(m)(q, o) =1+ Z Gim)xr’

rzl
we see that Grfm) = Z v(p; g, 1), where the sum is over the set of m-paths with

terminal m-vertex on the line x = r. Lemma l now implies

Corollary 2: [npm} > G;m), as n > o,

Theorem 3: TLet Gém) =1, Gyfm) =0, if » < 0. Then, for all » > 1,
G(\ZI) - (1 _ qHH)—1< Z q(r—i)(m—l)Gr(T)l>'
m2i21
Proof: TLet p be an m-path with terminal m-vertex on the line x = r. Choose
the largest k such that (0, km) is an m-vertex of p and let (¢, (k + I)m - )

be the next m-vertex, 1 < < < m. Then
v(py q, 1) = gt @Dy 001,

where p' is the m-path obtained by deleting the part from (0, 0) to (¢, (k +
1)m ~ 2) from p and then translating so that the starting point is at the ori-
gin. The sum of v(p’; ¢, 1) for all such p’ is Gp(rf)i. Thus,
e = % qum< > q(r"i)(m_i)Gfﬁ)i>
k20 m2k21
- - q”’”)‘l( 5 CI(P_Mm"i)GﬁT)i)' Q.E.D.
m

Zi21

bk, IDENTITIES

Now, we multiply an additional factor of g% to each monomial qjx already
assigned to the directed edges between the lines x = Z and x =7 + 1. Thus,
the total sum of the values of all the m-paths is clearly changed from

1+ 3 GI(,m)xI'
rzl

1+ 2 Gz(,'")q(g)x”.

rz1

to

On the other hand, the sum of the values of the m-arcs emanating from each m-
vertex (r, g) satisfying r + s = im is now uniformly equal to
AN
q7"jm+(2)xe7,

mzg=20
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Since each m-path consists of a valuable part followed by an infinite sequence
of consecutive vertical m-arcs the value of which is 1, and since the valuable
part consists of a finite sequence of consecutive m-arcs starting with (0, 0)
and ending at its terminal m-vertex, the total sum of the values of the m-paths
is equal to

n ( Z qijm+(‘72)xj>.

120 \m2j20

Equating these two formal power series and invoking Corollary 2, we obtain

Theorem 4: Let Ggm be the g-adic limit of [n;m] as n > ©, Then they satisfy

I ( > qij'”(g)xj) -1+ % 60l o,

=0 \m=2j5=0 r21

It should be noted that Theorem 4 also follows directly from Theorem 3.

5. SPECIAL CASES

The case m = 1 is, of course, the Euler identity:

r
IMa+gqix) =1+ 3 GS)q(Z)xP,

20 r>1
where G?) =1,and ¢ = 1 @ - qi)'l, if » 2 1.
r .
rz2i21

When m = 2, the recurrence for Gf) is

GS) = (1 - qzr)—lqr—lGS?l + (1 - qzr)—lGS?z’
where ¢ = 1, ¢%) = 0. If welet rbe >1,a,_ ., = (1 -¢*) %"}, and b,_, =

(1 - qzr)'l, the recurrence can be written as

¢® =q, ¢? +b, _,6?
r

r-1"r-1 r-2"r-2°
Using this notation, we may write the infinite product identity for the case
m= 2 as
(L+x+qge?)(A + g% +q%?) ... (1 +q%x+qg* 1 x?)

) 6)

3
1+ ayq?'z + (aja, + b)q?z* + (aya,a, + bya, + aobl)q(Z)x3

N
(2)_u
+ (aga,a,a, + ba,a, + aba; +agab, + byb))qg"x
r

+ oo+ (%aiz a&h...apd>42kr+ e

i+ll—*bi

1
1+ (1 - qz)'quJx + {1 - qz)_lq(l - q“)-l + (1 - q“)'l}q@)xz

(continued)
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+ {(1 _ q2)—lq(1 _ qh)-lq?_(l _ QG)-I + (1 _ q#)—IQZ(l _ qG)-l
3
+ (1 _ q2)-l(1 _ q6)*l}q(2)x3 + .
Here, by the notation,

’+baoal cee a,
z

A
we mean that the sum is over all possible products obtainable from Ag@y e

A4 by replacing in it blocks of two consecutive a;a; by b;. There are F,

(Fibonacci number) such formal terms in Gf). This can be seen, by induction,

from
¢ =a ¢® +p @
r-1 r-1 r-2 r-2
= <a<12:y+ba°al e ar_;>ar_l + < 2 aga; ... a, g \b,_,
%l T aa; |+ b,
= aa; ... a, .-
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In June 1985, twenty-three other high school students and I trained for the
International Mathematical Olympiad in a three-week session hosted by the U.S.
Military Academy. There I, along with three classmates (John Dalbec, Jeremy
Kahn, and Joseph Keane) and the two coaches (Professor Cecil Rousseau and Gregg
Patruno) considered w(n), defined as the number of possible outcomes in a race
among 7 horses with multiple ties permitted. This sequence was first studied
by A. Cayley [1] as the number of a certain type of tree having n + 1 terminal
nodes. His results have been extended by the more recent papers of Gross [3]
and Good [2].

Before uncovering these three papers, we independently proved eleven re-
sults which can be found in [1], page 113, [2], pages 11-14, and [3], pages 5-
8. Although we found that Good's statement (p. 13),

n!

— <l for all n < 16, (1)
2(1n 2)"

wn) - 5

could be extended to n < 17, the only important new results were my proofs of
Good's Conjectures 1-5. These conjectures are concerned with the behavior of

the sequence modulo ». To prove these, we need the following lemmas.

Lemma 1: If n, k 2 1, and we define w(0) = 1, then

k-1
2%0(n) = 3 2k-d 15 4 E kJ( )w(n -D. (2)
Jj=1 J=0
Proof of Lemma 1: We have, by equation (4) of [2],
k - = k (Z + k)
2 w(n) z=: + 2 ’LZO 2’L+k+l

AVLEE
S ey $ 3 (7)e" 7
i=1

=0 <o gt+1

_szJlJn""Zk‘j( )U\)(T’Z—J)
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Note that, we we let kX = 1 in Lemma 1, we obtain a relation derived by Cayley

([1], p. 113). Similarly, we can prove
k. n .
27w = = R 2TTEET 4 3 R - ). (3)
i=0 i1 J

From Lemma 1, we have the following useful result.
Corollary; 1If n, kK 2 1, then

k-1 )
(2% - Dw) = X 2577715" (mod k). (4)
J=1
It is interesting to note that the corollary, along with Fermat's Theorem,

provides a simple proof of Theorem 5 in [2]. Now we shall use the corollary to

prove another lemma.

Lemma 2: For an odd prime p, let g = p™ and » = p"*! be consecutive powers of
p. Suppose the sequence w(a), w(a + 1), ... modulo » has period ¢, where ¢ is

a multiple of ¢(g). Then
g-1
0= 2797%" (g + kp)® - 1] (mod ») (5)
k=0

forg=1, 2, ..., p - 1.

Proof: From the corollary to Lemma 1, we find that, for all n 2 q,
r-1 .
0= Q2" - Diwm+e) -wm] = 22777 "F° - 1) (mod 7).
j=1
It follows that for any polynomial P(j) with integral coefficients,

r-1 .
2" (G0 = 1) 20 (mod 7).
1

J
Let P(j) =1 - (J - g)p'l and let n be a multiple of ¢(r) greater than a. By
repeated use of theorems of Fermat and Euler, we make the following sequence of

observations concerning the terms of the sum that are nonvanishing (mod r):

Jd 20 (mod p), J" £ 1 (mod r), j¢ - 1 =0 (mod q),
J =g (mod p), P(j) =1 (mod p), P(J)(J° - 1) = J° -1 (mod 7).

Thus, the sum reduces to

0 (mod »r).

qg-1
k_zo 22”-(9+kp)—1[(g + kp)c _ 1]

Now » - (g+kp) -1 =2g-g-k=-1 (mod p - 1). Also, since ¢ is a multiple
of ¢(g), we have [(g + kp)° - 1] = 0 (mod ¢). Thus, by Fermat's Theorem, we
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may substitute 29797%"1 for 27-@*+*P)-1 4y the last equation. Finally, multi-

plying by 29, we obtain
qg-1
297 (g + kp)® - 1] =0 (mod 7).
k=0

Now we are ready to prove the theorems.

Theorem 1: Modulo a prime p, the period of the sequence [w(n)] is at least
p - 1. This, along with Good's Theorem 5, implies that the period is exactly
p - 1.

Proof of Theorem 1: For p = 2, the result is clear. If p > 3, let ¢ be the
minimum period. Applying Lemma 2 with a = 1 and ¢ = 0, and with g a primitive

root modulo p, we have
0= 2P"179(g° - 1) (mod p).

However, 2P"179 ig not divisible by p, so g¢ - 1 must be. Since we chose g as

a primitive root modulo p, we must have ¢ 2 p - 1.

11

Theorem 1 does not imply that, if w(n) 0 (mod p), then n = 0 (mod p - 1).

[A counterexample is w(3) = 0 (mod 13.] Proofs of three of Good's conjectures
in [1] depended on this result:

GCF(w(n), w(n + 1)) =1, GCF(w(n) - 1, w(n + 1) - 1) = 2, and n|w(n),

for all »n. The first is false because w(1090), w(1091), and w(1092) are all
divisible by 1093. The second and third are still open.

Theorem 2: 1If g = p™ with p prime, then for all n > m,

wx + ¢(q)) = w(m) (mod q), (6)
where ¢ is Euler's totient function.
Proof of Theorem 2: Since n 2 m, the terms in the sum given by (4) with J di-

visible by p will drop out. The result then follows from Jrre@ = jn (mod q),

which is Euler's Theorem.

Theorem 2 does not tell us that the period of the sequence {w(n)} modulo g
is exactly ¢(gq) for g a power of a prime. We know only that the minimum period
must be a factor of ¢(q). Theorem 3 shows that, when ¢ is the power of an odd
prime, this fundamental period is no less than ¢(g). To prove this, we need

one more lemma.
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Lemma 3: For an odd prime p, let ¢ = p™ and r = p"*'. Then, for any integer %k,
(L + kp)*@ - 1 = kg (mod r).

Proof: By the binomial theorem,

()
(1 + 1)@ = 3 (D) (e

1=0
Let f(n) denote the greatest integer d such that pd divides n. Then
o) ,
d(N . ; . & . . . .
I )et) = 2 ) - @ + i =1 - + 2,
<< i o > et jZJlf i = f(d(g)) - f(2) + <
Since f(¢(q) - J) = f(J) for any 4 with 0 < j < ¢(g). But if f(£) > 0, then
i 2 pf@ >3O > py 4 2,

so ¢ - f(£) 2 2 for all ¢ =2 2. Also, f(¢(g)) =m -1, so if we look at the

binomial expansion modulo ¥, all but the first two terms drop out:

(1 + kp)*@ - 1 =1+ ¢(q)(kp) - 1 = kg (mod »).

Theorem 3: Let p be an odd prime. Then, modulo p™, the sequence
w(im), wim+ 1), wm + 1),
has period exactly ¢(p™.

Proof of Theorem 3: Theorem 1 proved the case m = 1. Now suppose that Theorem
3 holds for a certain m. We shall prove that it must also hold for m + 1. Let
g =p", let » =p"", and let ¢ be the minimum period of the sequence {w(n)}
modulo ». By the inductive hypothesis, ¢(g) is the period modulo g, so ¢ must
be a multiple of ¢$(q). By Theorem 2, ¢ must be a factor of ¢(r). But ¢(r) =

p$(q), so ¢ is either ¢(g) or P(r).
Suppose ¢ = ¢(g). Applying Lemma 2 with a =m and g = 1 yields

025 297K 11 4 kp)® - 1] =% 297K (k) (mod ),
k=0 k=0
by Lemma 3. Evaluating this sum, we obtain
0= (27 - q - 1)q = -g (mod r) (by Fermat's Theorem),
a contradiction. Thus, ¢ = ¢(r), and the induction is complete. -

We now proceed to consider the sequence modulo a power of 2.

Theorem 4: If 1 < m<wn - 4, then
w + 2™ = wm) + 2" (mod 2"*5). (7
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Proof of Theorem 4: Set k = 2"*® in the corollary of Lemma 1. Then 2% - 1 =
-1 (mod k), so

k- )
wrn +c) - wn) = —E:lzk'a'lj”(jc - 1) (mod k).
i1

Now set ¢ = 2". The terms with even j drop out because 2k=7-1 j5 even and 4"
is divisible by 2"**. The terms with odd § < Xk - 5 also drop out since 2k-d-1
is divisible by 2" and j°-1 is divisible by 2"*' (by Euler's Theorem). Thus,

our sum reduces to

wn + e) - wn)
—Zz(k - 3D"[(k - 3)¢-1]1-(k - D*[(k - 1)°=1] (mod k)
-4(-3)"(3°=-1) (mod k).

2m+‘+ 2m+5

To show that this is congruent to modulo , it suffices to prove that

2"*2 is the highest power of 2 dividing

32" 1 =32+ DB R L. 3+ 13 - 1),

This is true since the second-to-last factor is 4 and each of the other m fac-

tors is congruent to 2 modulo 4.

Theorem 5: If w(n) is expressed in binary notation as

a + 2a,, + Zzan + Zaaln3 + ..y

no 1 2

then the sequence a,,, At 1ym® Hm+ 2)ms + -+ TUDS into a cycle whose lengths for
m=20,1, 2, 3,... are, respectively, 1, 2, 2, 1, 2, 4, 8, ... . From this, it
follows that, modulo 2™, the sequence w(m - 1), w(m), w(m + 1), ... has period
1 when m = 1, period 2 when 2 < m < 4, and period 2""Y% when m = 5. [We define
w() =1.]

Proof of Theorem 5: By Theorem 4 with m = 1, if n 2 5, then

wn + 1) w(n) (mod 32),

Hi

so for m < 5, the sequence Qg5 Agns Ayps «+. is periodic with period dividing

6m
2. [The period is 1 iff Qg = Qg,» Which we see holds iff m = 3, by observing
the five least significant binary digits of w(5) and w(6).] Also, by observing
the five least significant binary digits of w(0), w(l), ..., w(4), we see that
the periodicity begins with a,, instead of a,, for m < 5.

If m 2 5, then in the sequence a,,, AUm+ 1ym> Xm+ 2)m> +++ OFf zeros and ones,

2m—1+

the terms are the opposite of what they were, after every terms, by Theo-

rem 4. This implies that, after 2" % terms, the sequence repeats. Hence, the
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sequence runs into a cycle whose length is a factor of 2™~ % but not of 2™ %,

Thus, the period is exactly 2m=3,

Finally, to summarize and extend our results, we have the following:

Theorem 6: Let the prime factorization of r > 1 be ZmpflpZZ... pl. If

a = max{m - 1, My Mys Mys oess my }

3’
and

b

LeM(o(p ™) 5 ¢(P)2)s nns G(p™)),
then the period of the sequence

w(a), wla + 1), w(a + 2), ... modulo r

is exactly
b, ifm=0or 1,
LcM(2, b), if 2 <m < 4,

<
LeM(2™" ", b)Y, 4if m = 5.

Note that the period of {w(n)} modulo » is not the product of the periods
modulo its prime power factors, but is, rather, their lowest common multiple.
This implies that even when r is odd, the period modulo »r is not necessarily
$(r), although it must be a factor of ¢(r). The smallest example of this is
r = 15, in which case the period is LCM(¢(3), ¢(5)) =.4 instead of ¢(15) = 8.
Proof of Theorem 6: Let ¢ be the claimed period. If n 2m - 1, then

wr +e) = wm) (mod 2™
by Theorem 5, since ¢ is a multiple of the period of {w(n)} modulo 2". Also,
if n 2 m;, then

wn + ¢e) = wr) (mod pff)

by Theorem 3, since ¢ is a multiple of ¢(p:i), for 2 =1, 2, ..., k. Hence, if
n 2 a,
wm + ¢) = wn) (mod r).
If the actual period d of {w(n)} modulo r were any smaller than ¢, then it
could not be a multiple of all the necessary periods modulo 2" and pfi, since
¢ is their LCM. Suppose d is not a multiple of the necessary period modulo p9.

Then, for some n 2 a, w(n + d) # w(n) (mod p?), so
wn +d) £ wn) (mod r),
a contradiction. Hence, the period given is minimum.
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PERIODICITY OF A COMBINATORIAL SEQUENCE

Now that we have finished proving the main theorems, we will conclude with

a few applications of Theorem 6 and other miscellaneous results:

(a) w(12k) = w(12k + 3) = 0 (mod 13).

(b) 59|w(11), so 59|w(58k + 11). Dirichlet's Theorem implies that there
are infinitely many primes of the form 58k + 11, so there are infinitely many
primes p for which w(p) is composite.

(¢) 9fw(n) for any n, so there seems to be no generalization of plue - 1)
([12], p. 23) to powers of odd primes.

(d) For any prime p and any m = 1, w(p™ = 1 (mod p), so if n]w(n), 7n has
at least two distinct prime factors.

(e) For odd primes p and ¢, pqlw(pg) iff plw(q) and glw(p). There are no
such primes less than 1700, but I conjecture on probabilistic grounds that such
primes do exist.

(f) For all =, GCF(w(n) - 1, wm + 1) - 1) has no divisor less than 1700
except 2. Yet, again on probabilistic grounds, I conjecture that there exists
n for which GCF(w(n) - 1, wn + 1) - 1) # 2.

(g) The only r for which the period of {w(n)} modulo r is exactly ¢(r) are

the numbers of the form p™ and 2p™, where p is an odd prime, and 4.
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