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Announcement 
THIRD INTERNATIONAL CONFERENCE ON 

FIBONACCI NUMBERS AND THEIR APPLICATIONS 
Monday through Friday, July 25-29f 1988 

Department of Mathematics, University of Pisa 
Pisa, Italy 

International Committee 
Horadam, A.F. (Australia), Co-Chairman 
Philippou, A.N. (Greece), Co-Chairman 

Ando, S. (Japan) 
Bergum, G.E. (U.S.A.) 

Johnson, M.D. (U.S.A.) 
Kiss, P. (Hungary) 

Schinzel, Andrzej (Poland) 
Tijdeman, Robert (The Netherlands) 

Tognetti, K. (Australia) 

Local Committee 
Robert Dvornicich, Chairman 

Piero Filipponi 
Alberto Perelli 

Carlo Viola 
Umberto Zannier 

FIBONACCPS STATUE 
Have you ever seen Fibonacci's portrait? This photo is a close-up of the head of the statue of Leon-

ardo Pisano in Pisa, Italy, taken by Frank Johnson in 1978. 
Since Fibonacci's statue was difficult to find, here are the directions from the train station in Pisa 

(about 8 blocks to walk): Cross Piazza Vitt. Em. II, bearing right along Via V. Croce to Piazza Toniolo, 
and then walk through the Fortezza. The statue is found within Fortezza Campo Santo off Lungarno Fib-
onacci or Via Fibonacci along the Arno River at Giardino Scotto (Teatro Estivo). 

CALL FOM PAPERS 
The THIRD INTERNATIONAL CONFERENCE ON FIBONACCI NUM-

BERS AND THEIR APPLICATIONS will take place at The University of Pisa, Pisa, Italy, 
from July 25-29, 1988. This conference is sponsored jointly by The Fibonacci Association 
and The University of Pisa. 

Papers on all branches of mathematics and science related to the Fibonacci num-
bers and their generalizations are welcome. Abstracts are to be submitted by March 15, 
1988. Manuscripts are requested by May 1, 1988. Abstracts and manuscripts should be 
sent to G.E. Bergum (address below). Invited and contributed papers will appear in the 
Conference Proceedings, which are expected to be published. 

The program for the Conference will be mailed to all participants, and to those 
individuals who have indicated an interest in attending the conference, by June 15, 1988. 
All talks should be limited to one hour or less. 

For further information concerning the conference, please contact Gerald Bergum, 
The Fibonacci Quarterly, Department of Computer Science, South Dakota State University, 
P.O. Box 2201, Brookings, South Dakota 57007-0194. 
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FIBONACCI AND LUCAS CURVES 

A. F. HORADAM 
University of New England, Armidalef Australia 

A. G. SHANNON 
N.S.W. Institute of Technology, Sydneyf Australia 

(Submitted February 1986) 

1. INTRODUCTION 

Define the recurrence-generated sequence {Hn} for integers n by 

Hn+2 = Hn+1 + En> H0 = 2 b » H l = a + *> (« > 0) (1.1) 

where a and & are arbitrary but are generally considered to be integers. Nega-

tive subscripts of H can be included in an extended definition if necessary. 
Using [2] 5 equation (6) 9 we have, for the Binet form of this generalized 

sequences mutatis mutandis, 

H„ = 
Aan -

where 

1 

1 

+ A 
2 
- A 

and 

•1/a 

are the roots of 

A2 - X - 1 = 0 

f A = a + b/S 

{B = a - &/5 

From (1.2), it follows readily that 

Hi* 

(1.2) 

(1.3) 

aF„ + £L„ 

where 

and 

Fn = (a" - B")/i/5 

a" + 3n 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 
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FIBONACCI AND LUCAS CURVES 

are the nth Fibonacci and nth Lucas numbers, respectively, occurring in (1.1), 

(1.2), and (1.6) when: 

a = 1, b = 0 for Fn ; 

a = 0, & = 1 for Ln» 

The e x p l i c i t express ions (1.7) and (1.8) a re the Binet forms of Fn and Ln. 
Following an idea of Wilson [ 5 ] , we se t 

x = {Aa2n + B cos(n - l)Tr}/i/5a" (1.9) 
and 

z/ = B s i n (n - l)iT/v/5an (1.10) 

which we now regard as Cartesian coordinates in a plane (though Wilson [6] ex-

pressed his notion in terms of polar coordinates). 

Certain geometrical features relating to circles and rectangular hyperbolas 

were shown [3] to be consequences of (1.9) and (1.10). These features were 

extended to Pell numbers and Pell-Lucas numbers in [4]. 

Here we examine (1.9) and (1.10) in a rather different geometrical context. 

2. GENERALIZED BINET FORMS 

First, we generalize (1.9) and (1.10) from an integer exponent n to a real 
exponent 9: 

x = {Aa2e + B cos(9 - 1)TT}/I/5OI0; (2.1) 

y = B s i n (6 - l )7 r / /5a e . (2.2) 

Expanding the t r igonomet r i ca l components of (2.1) and ( 2 . 2 ) , we find 

x = {AaQ - BcTecos 9TT}/V/5 (2.3) 
and 

y = -£oT e s in 0TT/V^. (2.4) 

We will be particular^ interested in the Fibonacci and Lucas aspects of 

(2.3). For the Fibonacci case a = 1, & = 0, so A = B = 1, and (2.3) becomes, 
with (1.3), 

x =
 a 9 -a~6<^Lil = {ae _ („i)e39cos e ^ } / ^ (2e5) 

while for the Lucas case a = 0 , b = 1, so A = -B = V5, and (2.3) reduces to 

x = ae + (-l)egecos 9TT. (2.6) 

k [Feb. 



FIBONACCI AND LUCAS CURVES 

When 0 is an integer n, (2.5) and (2.6) simplify to the Binet forms (1.7) and 

(1.8)5 respectively. Therefore, we are justified in referring to (2.5) and (2.6) 

as the generalised Binet forms of Fn and Ln , i.e., the Binet forms of FQ and D0 . 

It is the object of this paper to consider, inter alia, the locus generated 

by the parametric equations (2.3) and (2.4). Efforts to express the equation 

of this locus in Cartesian form, i.e., to eliminate the parameter 6, have not 

met with success. 

From (2.4) we have 

dy _ Bu~ 

while from (2.3) 

dx a 

-(log a sin 0TT - TT COS 0TT) (2.7) 

de A 
-Ua2elog a + B(log a cos 0TT + TT sin 0TT) } (2.8) 

whence 

when 

dy £ ( l o g a s i n 0TT - TT COS 0TT) 

; 4 a 2 e l o g a + 5 ( l o g a cos 0TT + TT s i n OTT) dx .20 
(2.9) 

TT 

tan 07T = -= (= 6.53 to two decimal places) (2.10) 
log a r / 

yielding 
07T = 81° 18f from tables, (2.11) 

that is, 

0 = 0.45 (= 26°  in degree measure). (2.12) 

Thus, the stationary points on the curve occur when 

TT 

tan(0 - m)i\ = •= (m an integer), (2.13) 

that is, 

0 = - tan-^-r-5— ) + m. (2.14) 

The nature of these stationary points, i.e., whether they yield maxima or 

minima, can be determined by the usual elementary methods. 

Next, we discover the locus of the stationary points. 

Write 

s i n ( 0 - m)n = ku i . e . , s i n 0TT = ±lo\ ( 2 . 1 5 ) 
and 

c o s ( 0 - m)i\ = k l o g a i . e . , co s 0TT = ±k l o g a , ( 2 . 1 6 ) 
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FIBONACCI AND LUCAS CURVES 

where 

k = (IT2 + l o g 2 a ) - 1 / 2 (= 3 . 2 ) . ( 2 . 1 7 ) 

Because s i n 8TT and cos 0TT (and t h e r e f o r e 6) now h a v e s p e c i f i e d n u m e r i c a l 

v a l u e s f o r t h e s t a t i o n a r y p o i n t s . , we can e l i m i n a t e a e from ( 2 . 3 ) and ( 2 . 4 ) . 

S u b s t i t u t e from ( 2 . 1 5 ) and ( 2 . 1 6 ) i n ( 2 . 3 ) and ( 2 . 4 ) t o o b t a i n 

/ r „ Bkn AB2k2i\2 _ D7 . 
VDX* + = — — + Bk l o g a 

J5y 5y2 ' 

2 ^ ±ABki\2 ,n 1 0 N 
y __ Xy - - ^ (2.18) 
^ log a y 5 log a \ / 

i.e.s the branch in the first quadrant of the hyperbolas 

^ _ _̂  Xy = . ^ (2.19) 
^ log a ^ 5 log a 

and the branch in the fourth quadrant of the conjugate hyperbola9 

2 TT ABk-n2 ,0 onN 
^ _ Xy = _ _ ^ o (2 .20) 
^ log a ^ 5 log a 

Common asymptotes of these two hyperbolas are 

y = 0> 2/ = i ̂  *• (2.21) 
^ ^ log a 

IT 

The oblique asymptote y = -z x has gradient 81°18f (approx.) by (2.10) 
and (2.11). 

Of courses there are infinitely many points on (2.18) which do not satisfy 

(2.10)5 i.e.9 which are not stationary points. Therefore, the loci (2.18) are 

lacunary. 

Inflections on the parametric curve (2.1) and (2.2) are given by the van-
d2y 

ishing of -jz« Differentiating (2.9) a second time9 we get 

dx2 d§\dx)dx KL* L) 

= U a 2 e l o g a(3Tr l o g a cos 0TT + (TT2 - 2 l o g 2 a ) s i n 6TF) + Bi\k2]/5aQ 

Ola 2 9 l o g a + 5 ( l o g a cos 0TT + ir s i n GTT)}3 

after some simplification. 

Inflections are then given by those values of 6 for which 

^a2elog a(37T log a cos 0TT + (TT2 - 2 log2a)sin 0TT) + B^k2 = 0 . (2.23) 

To test for maxima and minima, use (2.15)-(2.17), keeping in mind that 

TT cos 077 = log a sin 0TT. 
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Then, at the stationary points (letting the variable 0 be replaced by constants 

0 ) , 
we find t h a t the l e f t -hand s ide of (2*23) i s s a f t e r t i dy ing ups 

fc2Tr0la2elog a. ± k~3 + B} (2.24) 

which becomes 

k2rn{±k~3a2Qlog a + 1} (2.25) 

in the Fibonacci case, and 

— { ± f e - 3 a 2 0 l o g a - 1} (2.26) 
\/5 

in the Lucas case. 

If the numerical values of 6 are known9 the nature of the turning points 

may be determined from (2.25) and (2.26), Note that k~ a0log a is always posi-
tive. 

No obviously derived differential equation satisfies (3.3) and (3.4) for 

the curve. 

Finally9 if we rewrite (2.3) and (2.4) as 

x(Q) = (Aae + ( - l ) 8 " 1 B3 e cos 6TT)/I/5 ( 2 . 3 ) f 

and 
2/(6) = ^ ( - l ) 6 - ^ 6 s in TT (2.4) f 

(on putting c = B/v5 temporarily) , we can see from the tables that the recur-

rence relation (1.1) is9 in effects satisfied as 

x(Q) = x(d - 1) + x(Q - 2) (2.3)" 
and 

2/(6) = 2/(6 - 1) + 2/(6 - 2). (2.4)" 

The proofs fo l low. We have 

x(Q - 1) = 04a9-1 + ( - l ) e " 2 S 3 e " 1 c o s ( 6 - l)n)//E 
= 04a0-1 + ( - l ) e " 1 J53 e " 1 cos 0TT)/\/5 

x(0 - 2) = (AaQ~2 + ( - l ) 0 - 3 5 B 0 _ 2 c o s ( 0 - 2)TT)A/5 

= U a 8 " 2 + ( - l ) e " 1 SB e * 2 cos 0TT')/I/5 

x(Q - 1) + x(Q - 2) = a a e " 2 ( a 4- 1) + ( -1 ) 0 _ 1 £ 3 0 ~ 2 (3 + l ) cos 0TT) //E 
= (AaQ + ( - l ) e " 1 5B e cos 6TT)/I/5 = x(d) 

as required* s ince a3 3 s a t i s f y ( 1 . 4 ) . 
S imi l a r l y , 

2/(0 - 1) = a ( - l ) 0 " 2 3 0 ~ 1 s i n ( 0 - 1)TT = e ( - l ) e " 1 B 9 " 1 s i n 07T 
2/(0 - 2) - c ( - l ) 0 - 3 3 0 ~ 2 s i n ( 0 - 2)TT = e ( - l ) 0 - 1 3 0 _ 2 s i n 0TT 
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FIBONACCI AND LUCAS CURVES 

and z/(0 - 1) •+ z/(0 - 2) = tf(-l)e "^g9"2 (B + l)sin 07T 

= c(-l)0~13esin 07T since (3 satisfies (1.4) 

== 1/(0). 

Thuss it has been demonstrated that the parametric forms (2.3)" and (2.4)" 

do indeed satisfy recurrence relation (1.1). 

We need this assurance to preserve the continuity of our curves in Figures 

1s 2 5 and 3 s which we now examine. 

3. THE FIBONACCI CURVE 

Table 1 sets out the values of x in (2.5)9 and y in (2.2) where B = 19 for 
the Fibonacci case a = 1, b - 05 when we proceed to increase 0 by multiples of 

0.2. 
Table 1. The Fibonacci Curve 

0 x y 

1 1 0 
1.2 0.999799314 0.14755316 
1.4 0.947653586 0.216839615 
1.6 0.901827097 0.196943249 
1.8 0.911232402 0.110549283 

2 1 0 
| 2.2 1.163587341 -0.091192868 
2.4 1.375792509 -0.134014252 
2.6 1.602274541 -0.121717622 
2.8 1.814640707 -0.068323214 

3 2.000000000 0 
3.2 2.163386655 0.056360292 
3.4 2.323446095 0.082825363 
3.6 2.504101639 0.075225627 
3.8 2.725873109 0.042226069 

4 3.000000000 0 
4.2 3.326973997 -0.034832576 
4.4 3.699238605 -0.051188889 
4.6 4.10637618 -0.046491995 
4.8 4.540513816 -0.026097146 

5 5.000000000 0 
5.2 5.490860652 0.021527716 
5.4 6.022684699 0.031636473 
5.6 6.610477819 0.028733633 
5.8 7.266386925 0.016128923 

0 x y \ 

6 8.000000000 0 
6.2 8.817334649 -0.013304890 
6.4 9.721923304 -0.019552416 
6.6 10.71685400 -9.96822E-03 
6.8 11.80690074 -9.96822E-03 

7 13.00000000 0 
7.2 14.3076953 8.22286E-03 | 
7.4 15.744608 0.012084058 

, 7.6 17.32733182 0.010975271 
7.8 19.07328767 6.16O70E-O3 j 

8 21.00000000 0 
8.2 23.12502995 -5.08200E-03' 
8.4 25.4665313 -7.46836E-03 
8.6 28.04418582 -6.78309E-03 
8.8 30.8801884 -3.8O752R-0S 

9 84.00000000 0 
9.2 37.43272525 S.14085E-08 
9.4 41.21113931 4.611570E-08 
9.6 45.37151764 4.19218E-0S 
9.8 49.958447608 2.35318E-0S 

10 55.00000000 0 

Figure 1 shows the computer-drawn graph corresponding to the data in Table 

1. We may call it the Fibonacci curve. 
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FIBONACCI AND LUCAS CURVES 

y 0.0 

Figure 1. The Fibonacci Curve 

Using (2.19) and (2.20) with A = B = 1 for the Fibonacci curve, we see that 
the locus of the stationary points is the appropriate branches of the hyper-

bolas 

y2 - log a xy 
ku2 

5 log 

From the observed stationary points on the plotted curves one can visualize 

the need for a slight deviation (about 8,3°) from x = 0 of the "vertical11 

asymptote [refer to (2.11) and (2.21)]. The stationary points of the Fibonacci 

curve approach y - 0 asymptotically at a very quick rate (of necessity, since, 
in (2.2) 5 a0 •> °°  rather rapidly as 0 -*- °°) . 

It: is interesting to compare details of our Table 1 with similar figures 

given by Halsey[l]. See Table 2S in which the numbers in the first column for 

Fn are Halseyfs and those in the second column for Fn are ours (to the same 

number of decimal places). 

Starting from a quantity n^71 (read un delta-slash mu) which he defined for 
integers msn ^ 1 and using the Pascal triangle generation of Fibonacci numbers 
(the elements of the Pascal triangle being expressed in terms of n$m for vari-

ous n and m) 9 Halsey [1] established the following nice results: 

F„ = E (" - 2fc)£* (f - 1 < m < ~y, 
„m In + m - 1\ nit =( m ) ; 

(n + m) I xn'x{l - x)mdx\ 
Jo 

1988] 
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(3.2) 
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6̂ = £ 
k = o 

where 0 is real. 

FIBONACCI AND LUCAS CURVES 

(0 - k)f x^^-Hl - x)kdx\ (| 

Table 2 

1 < m < | ) . (3.4) 

0 

2 
2.2 
2.4 
2.6 
2.8 

3 
3.2 
3.4 
3.6 
3.8 

4 
4.2 
4.4 
4.6 
4.8 

5 
5.2 
5.4 
5.6 
5.8 

1 6 

^e 

1 
1.2 
1.4 
1.6 
1.8 

2 
2.2 
2.4 
2.6 
2.8 

3 
3.32 
3.68 
4.08 
4.52 

5 
5.52 
6.08 
6.68 
7.32 

8 

* e 1 
1 
1.2 
1.4 
1.6 
1.8 

2 
2.2 
2.3 
2.5 
2.7 

3 
3.33 
3.70 
4.11 
4.54 

5 
5.49 
6.02 
6.61 
7.27 

8 

To obtain the definite integral expressions, Halsey had recourse to basic 

properties of Beta functions and Gamma functions. It might be noted, as Halsey 

observed, that the Gamma function "extends the concept of factorials to numbers 

that are not integers," e.g., (-A\ = Vrr/2. In this spirit, he extended the 

theory of Fibonacci numbers to noninteger values. 

k. THE LUCAS CURVE 

Table 3 lists the values of x in (2.5), and y in (2.2) where B = -V5, for 
the Lucas case a - 0, b = 19 when we increase 0 by multiples of 0.2. 

Figure 2 shows the computer-drawn graph corresponding to the data in Table 

3. We may call it the Lucas curve, 
As in the case of the Fibonacci curve, the locus of the stationary points 

on the Lucas curve, for which A = -B = v̂5 » is the appropriate branches of the 
hyperbolas 

y 
10 

7T 
log a xy 

ki\z 

log a 
[Feb. 
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Table 3°  The Lucas Curve 

0 x 

1 0 
1.2 1.327375368 
1.4 1.803931433 
1.6 2.302721986 
1.8 2.718049012 

2 3 
2.2 3.16318597 

j 2.4 3.271099682 
2.6 3.405928737 
2.8 3.637105513 

3 4.000000002 
3.2 4.49056134 
3.4 5.075031117 
3.6 5.708650725 
3.8 6.355154527 

4 7.000000004 
4.2 7.653747312 
4.4 8.3461308 
4.6 9.114579464 
4.8 9.992260042 

5 11 
5.2 12.14430866 
5.4 13.42116192 
5.6 14.82323019 
5.8 16.34641457 

11 

0. 
-0.329938896 
-0.484868119 
-0.440378493 , 
-0.247195712 

0 
0.203913452 
0.299664977 j 
0.272168877 
0.152775352 

0 
-0.126025444 
-0.185203141 
-0.168209616 
-0.094420360 

0 
0.077888006 
0.114461836 
0.103959260 
0.058354992 

0 
-0.048137436 
-0.070741305 
-0.064250356 
-0.036065368 

0 

6 
6.2 
6A 
6.6 
6.8 

7 
7.2 
7.4 
7.6 
7.8 

8 
8.2 

1 8.4 
8.6 
8.8 

9 
9.2 
9.4 
9.6 
9.8 

10 

X 

18.00000002 
19.79805597 
21.76729273 
23.93780966 
26.33967462 

29.00000003 
31.94236463 
35.18845465 
38.76103987 
42.6870892 

47.00000006 
51.74042062 
56.95574739 
62.69884954 
69.02676384 

76.0000001 
83.68278528 
92.14420207 
101.4598894 
111.713853 

123.0000002 

y 

0 
0.029750572 
0.043720531 
0.039708904 
0.022289623 

0 
-0.018386864 
-0.027020774 
-0.024541452 
-0.013775745 

0 
0.011363707 
0.016699757 
0.015167452 
8.51388E-03 

0 ' j 
-7.02316E-03 
-0.010321017 
-9.37400E-03 
-5.26187E-03 

0 | 

Figure 2. The Lucas Curve 

Again, for the Lucas curve, the skewness (obliqueness) of the "vertical" 

asymptote is visually apparent. 
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FIBONACCI AND LUCAS CURVES 

Halsey [1] has no formulas for the Lucas numbers corresponding to those for 

the Fibonacci numbers, i.e., (3.1) and (3.4). This is because the Pascal tri-

angle generates the Fibonacci numbers but not the Lucas numbers. However, as 

is well known, 

•"n Fn + 1 ~*~ Fn • (4.1) 

for integers. This carries over to real number subscripts, e.g., from Tables 1 

and 3, 
F7.8 + F9.8 = 69.026763... (to 6 decimal places) 

On this basis, one could combine FQ + 1 and FQ_1 from (3.4) to obtain an in-

tegral expression for LQ. 

5. THE H CURVES 

Putting a = b = 1 (i.e., A = 2a, B = 23) in (1.5), we have, from (1.6), 

%n ~ Fn + Ln (5.1) 
Fn+i ~ Fn-i + Fn+i + Fn-i b^ definition of Fn and (4.1) 

n+ 1 

Hence, a composite curve for FQ + LQ is equivalent to the Fibonacci curve for 

2^e+ 1. This #-curve (a= 1, fe= 1) is drawn in Figure 3, where it is to be com-

pared with the Fibonacci and Lucas curves in Figures 1 and 2, respectively. 
0.4 f-

Figure J. H-Curve (a = 1, h = 1) 

Figure 3 might be taken as an illustration of the conclusion by Stein [5] 

regarding the intersection of Fibonacci sequences, e.g., 
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FIBONACCI AND LUCAS CURVES 

{Fn} n{Ln} = 1, 3 

{Fn}n{Fn + Ln} = 2 

{Ln}n{Fn + Ln} = 4 

Further, from (1.6), 

Hn = aFn + bFn.x + bFn+1 by (4.1) (5.2) 

= aFn + bFn_1 + bFn + bFn_1 by definition of Fn 

= (a + b)Fn + 2bFn_1 

where 

p = a + 2? 3 q = 2b 
^ H1 = H0 as in (1.1). 
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1. INTRODUCTION 

This note is an extension of the results of L. Carlitz [1] concerning the 

problem of the multiple generating functions of F^ and Lk, where F, and Lk are 

the kth Fibonacci and Lucas numbers, respectively. Our proofs are very similar 

to those given by Carlitz [1]. Notation and content of [3] are assumed, when 

required. 

Consider the sequence of numbers Wn defined by the second-order recurrence 

relation 

Wn+2 = P^n + i " ^n* with WQ = a and W-^ = b9 (1) 

i.e. , 

Wn = Wn(a9 by p, q), 

where a, b9 p9 and q are real numbers, usually integers. 

From [2] and [3], we have 

Wn = Aan + B$n
9 (2) 

where 

I a = (p + d)/2, g = (p - d)/2, d = (p2 - 4<?)1/2, 
(3) 

A = (b - ap)/d, B = (aa - b)/d. 

Standard methods enable us to derive the following generating function for 

{Wn}, 
oo 

X Wnxn = {a + (b - ap)x}/(l - px + qx2) . (4) 
n = 0 
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2. MAIN RESULTS 

Define 

V x i > • • • ' xm> = 0 (1 - qxd)(l - V2x + q2x2.), 
m 

n 
3 = 1 

W1(x1, . . . , xm; k) = Aak • U (a + (b - ap)ax,)(l - g V . ) 
• 7 = 1 

+ B$k- n (a + (b - ap)$x-)(l - a2xAt 
J = l 

W2(x19 . e o 5 xmi k) = ak • n (a + (& - a p ) a # . ) ( l - $2%j) 
J = I 

+ $k ° n (a + (6 - ap )&c , ) ( l - a 2 * . ) , 
J = I 

where Fn = Wn(2, p ; p , 4 ) . That i s , VQ = 2S V± = p, V2 = p 2 - 2^5 

Theorem 1: £ ^ 1 + • . . + »m + *tf«1 ••• Km
xil ••• < m 

Kj, . . . , nm = 0 

— W -^\X -^ ) 0 o 0 5 Xffl j K) / U ̂ \X-^ 9 0 « » 5 ^ m' ' 

oo 

Proof: J ] V n i + . . . + „ B + x I / n i . . . ^ i 1 

£ Wa"1+-+"' . + fcj. c f i n i + • • • + "™+fe 

" , , . . . , «„-o 
"W . . . J/ a ^ . . . ^ " , by (2) 

Aak £ V . . . fi^ (ca^f 1 . . . (axm)n" 
nlt . . . , nm = 0 

OO 

+ B$k L W ... Wnn (fr^)*1 . . . ($xmf" 
n1, . . . , nm = 0 

m 

n Axfe • ft ( a + (& - ap)axj)/(l - V®Xj + qoi2xp 

11 (a + (b - ap)$x-)/(l - p$x, + q$2xj) , by (4) 
j - i 

= 4a* • II (a + (fc - ap)our . ) /{( l - a V . ) ( l - agar.)} 
J = I 

+ 56fe • n (a + (6 - a p ) & r , ) / { ( l - g V . ) ( l - a&fc,)}, by (3) 
J = I 

l ^ i 5 • • • > ^ m 5 K ) / C ^ { x ^ 9 » o «» s x m ) . 
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Using a method similar to that used for Theorem 15 we have 

00 

Theorem 2: £ V, + . . . + kW . . . W x? . . . <™ 
» i nm = 0 

Taking m = 2 in Theorems 1 and 2, we ob ta in 

00 

Corol lary 1: £ ^ m + n + f c ^ ^ ' V = ^ ( « » I/; k)/Cw(xs y) 

oo 

and Z Vm+n+kMmWnxmyn = J/ (a , y ; k)/C„(x, y) , 
m,n=0 

where 

C^Oc, y) = (1 - q x ) ( l - <72/)(l - F2^ + q2x2)(l - 72z/ + ? V ) » 

JZ-LGC, J/; fc) = a 2 ^ + a((fc - ap)Wk + 1 - a q 2 ^ _ 2 ) ( ^ + zy) 

- a(£ - ap)q2Wk_1(x + y)2 + ((& - ap)2R^+ 2
 + ^q^^^^xy 

+ (fc - a p ) ( a ^ V ^ _ 3 - (fe - a p ) q 2 ^ ) x z / ( ^ + z/) 
+ (fc - ccp)2qhWk_2x2y2, 

J/2(ar, yi k) = a2Vk + a((b - ccp)Vk+1 - a^2F? c_2)(x + z/) 

- a(6 - a p ) ? 2 ^ - ! ^ + */)2 + ((6 - ^ P ) 2 ^ + 2
 + ^VV^ 

+ (& - a p X a q ' V ^ g - (fc - ap)q2Vk)xy(x + y) 
+ (b - qp)2qhVk_2x2y2« 

Taking k = 0 in Co-rollary 1, we der ive 

Corol lary 2: J J ^ + ^ ^ a r V = W^x9 y\ 0)/Cw(x9 y) 

771,71=0 

oo 

and Z t U ^ m ^ V = Wz(x, y; 0)/Cw(x, y), 
m, n =0 

where 
W1(x, y; 0) = a3 + a{b2 - a 2 ( p 2 - <?))(# + y) + a(b - ap)2q(x + z/) 2 

+ ((fc - ap)2(bp - a?) + a ^ p 4 - 3p2q + q2) 
- a2b(p3 - 2pq))xy + aq(b - ap)(ap(p2 - q) 
- M p 2 - 2q))xy(x + y) + (6 - a p ) V ( a ( p 2 - (7) - bp)x2y2, 

W (x9 y; 0) = 2a2 + a(bp - 2a(p2 - q))(x + z/) - a(£> - ap)pq(x + y)2 

+ ((£ - a p ) 2 ( p 2 - 2q0 + a 2 ^ - 4p2^ + 2q2))xy 
+ ^(fc - a p ) ( a ( p 3 - 3p<?) - 2g(& - ap))xy(x + 2/) 
+ (6 - ap)2q2(p2 - 2q)x2y2. 
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Obviously, all formulas of §2 in [1] are special cases of Theorems 1 and 2 and 

Corollaries 1 and 2 since Fn = ¥n(05 1; 1, -1) and Ln = Wn(29 1; 1, -1). Note 

that (2.2), (2*3), and (2.8) of [1] are misprinted* 

Taking m = 3 and k = 0 in Theorems 1 and 2, we have 

Corollary 3: £ w
m+n+kWmKKkxmynzk = Wx(x9 y, z; 0)/Cw(x, y, z) 

m,ns k = 0 
oo 

and Y, Vm+n+*WmK\xmynzk = W> 2/> *'> 0)/Cw(x, y, z), 
m, n, k = 0 

where 
Cw(x9 y9 z) = (1 - ^ ) ( 1 - ?2/)(l - qz)(l - V2x + q2x2) (1 - F2z/ 

+ a22/ 2 ) ( l - 72£ + q 2 s 2 ) , 

W1(x9 y9 z; 0) = ah + a((£> - ap)W1 - aq2W_2)(x + y + z) + a((b - ap)2W2 

+ a2qhW_h) (xy + yz + zx) 4- ((b - a p ) 3 ^ 3 - a3qeW_6)xyz 
- a2q2(b - ap)W_1(x + y + z)2 + a2q(b - ap) 
• (JV3 - (b - ap)q)(x + 2/ + z) (xy + yz + zx) 
+ a(b - ap)2qhW_2(xy + yz + zx)2 ~ q2(b - ap) 
• ((& - a p ) 2 ^ + a 2 q 4 F _ 5 ) ^ s ( ^ + 2/ + g) + (& - ap)2 

• ((& - ap)J/_1 + aq2W_h)qhxyz(xy + yz + zx) 
- (b - ap)3q6W_3x2y2z2

9 

W2(x9 y9 z; 0) = 2a3 + a((b - ap)p - aV2)(x + y + z) + a((b - ap)2V2 

+ a2Vh)(xy + yz + zx) + ((b - ap)3V3 - a 3 F 6 ) #2/3 
- a2(b - ap)pq(x + y + z)2 + a2q(b - ap) 
• (73 - (b - ap)q)(x + y + z)(xy + yz + zx) 
+ aq 2 (£ - ap)2F2(xzy + z/s + 2x) 2 - q(Z? - ap) 
• ((fc - ap)2pq + a2Vs)xyz(x + y + z) + q2(b - ap)2 

• ((# - ap)pq + aVh)xyz(xy + yz + zx) 
- (b - ap)3qsV3x2y2z2. 

Obviously, a l l formulas of §3 in [1] are a l so s p e c i a l cases of Theorems 1 and 
2 and Corol lary 3 . Note t h a t ( 3 . 2 ) - ( 3 . 5 ) of [1*] are mispr in ted . 

Define 

W(k9 m) = Akam - (~B)k$m. 

From (2), (3), and the binomial theorem, we have 

k-l 
Lemma 1: d*"1^*, m) = £ (7< Mc-o?) V"'"1^,-; 
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Proof: dk~1Wik, m) = dk-1iAkam - (-B)k&m), by (2) 
= A^idA)*'1 + B^i-dB)*'1 

= Aamib - a g ) ^ 1 + Bgm(fc - a a ) * " 1 , by (3) 

= Aa"kt\k I ^ ( - a P ) ^ " " 1 - 1 + B^kf(k ~ l)(-aaYb 

k-^k - I 
r = 0 

^ / f e ~ 1 
p = 0 

Define 

fc - r - i 

t (k I 1 ) ( - a 9 ) 1 , i f c - r - 1 W a " , - 1 - + B g m - r ) , by (3) 

-%{k -r
l)i-mVb^-%_r^y i2). 

Dw(x, y, z) = dzH - V2x + qzxz)U - V2y + qzyz)H - V2z + qzz2) 

\w3tx, y, z-, k) = io(-q2y^{io(l)(-aqyt2-rw3k_2._ry 
where hj is the j t h elementary symmetric function of x$ y, and z. That is to 

say5 hQ = 1, h1 = x + y + s3 7z2 = xy + 2/3 + 3#, and h3 = xz/s. 

CO 

Theorem 3= £ ^m+n+fe ^n+ t+k ^t + m+k *"Vn2* = ^ 3 ( x ' I/» 3? k)/Dw(x, y, z) 
m,n, t = 0 

+ eqrfcd_2Z(Wfc - ^ 2 ^ . 2 a ) / { ( l - F2x + ?
2 x 2 ) ( l - qy) (I - qz)}. 

Proof: Y, Wm+n+kWn+t+kWt + m+kxmynZt 

m,n, t = 0 

XI (Aam+n+k + B$m+n+k)(Aan+t+k + B$n+t+k) 
m'"**~° .(Aat + m+k + B$t+m+k)xmynzt, by (2) 

= A3a3k/{(1 - a 2 « ) ( l - a2z/)( l - a 2 s ) + IAzBqkak/{(.l - a 2 x ) ( l - qy) 
• (1 - qz)} + TAB2qk8k/{(l - g2ar)(l - qy) (I - qz)} 
+ B 3 g 3 k / { ( 1 - e 2 a ) ( l - B2z/)(1 - 32s)}> by (4) 

= f(x, y, z; k)l (1 - V2x + q2x2)H - V2y + q2y2)H - V2z + q2z2) 
+ ABqkZ(Auk(l - B2x) + Bgk( l - a2x))/{(l - V2x + q2x2) 
• (1 - qy)(l - qz)} 

= d2 ' fix, y, z; k)/Dw(x, y, z) 
+ eqkd-2UWk - q2Wk_2x)/{(l - V2x + q2x2) (1 - qy) (1 - qz)}, 

where 
f(x, y, z; k) = A'a^il - g ^ ) ( l - Bzz/)(1 - $zz) 

+ B J 3 ' * (1 - azx)il - azy)il - azz) 
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j =o 

From Lemma 15 we obtain 

d2-f(x, y, z; k) =io(-q2)3'hj{jbQ(l)(-aqyb2-rW3k_2._r} 

= W3(xs y3 z\ k), 
which proves Theorem 3. 

Taking k = 0 in Theorem 3S we have 

oo 

Corol lary it: £ wn,+rfln + tVt+mxmyn*t " w
3(x> #> z> ° ) / V x > V> s> 

m,n,t = 0 
+ ed"2Z{a - q2W_2x)/{(l - V2x + q2x2) (1 - qy) (I - qz)} . 

Obviously, all formulas of §4 in [1] are special cases of Theorem 3 and Corol-

lary 4. 
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1. INTRODUCTION 

The Fibonacci numbers Fn are defined as FQ = 0, F1 = 1 with the successive 
numbers given by the recurrence relation Fn+2 = Fn+1 + Fn. 

Horadam[6] extended these numbers to the complex number field by defining 

them as F* = Fn + iFn+1. 

Taking a different approach, Berzsenyi [2] defined the set of complex num-

bers at the Gaussian integers and called them the Gaussian Fibonacci Numbers. 

He defined them as follows: Let n e TL and m be a nonnegative integer. Then, the 
Gaussian Fibonacci numbers F(n, rri) are defined as 

Fin, m) - ±{m
kyX-k, 

k = o 

where F- are the (real) Fibonacci numbers defined above. He proved that 

F(n, rri) = F(n - 1, rri) + Fin - 2, rri) 9 n > 2, 

This relation implies that any adjacent triplets on the horizontal line 

possess a Fibonacci-type recurrence relation. In a paper in 1981, Harman (see 

[4]) elaborated Berzsenyi!s idea and defined another set of complex numbers by 

directly using the Fibonacci recurrence relation. He defined them as follows: 

Let (n, rri) = n + im9 where n, me Z. The complex Fibonacci numbers denoted 

by G(n, rri) axe those which satisfy 

G(0, 0) = 0, G(Q5 1) = 1, G(l, 0) = i , G(l5 1) = 1 + i, 
and 

G(n + 2, in) = G(n + 1 , rri) + G(n, m) , 

G(n, m + 2) = G(n9 m + 1) + G(n, rri). 

The initial values and the recurrence relations are sufficient to specify 

uniquely the value of G(n9 rri) for each (n, rri) in the plane. It is easy to 

see that 
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G(ns 0) = Fn and £(05 m) = iFm . 

The advantage of Harmanfs definition over Berzsenyifs is threefold: 

1. While in Berzsenyifs definition, any adjacent horizontal triplets in 

the plane satisfy the Fibonacci recurrence relation, in Harmanfs defi-

nition , any adjacent horizontal and vertical triplets do the same. 
2. Horadamfs complex Fibonacci numbers F^ come as a special case for Bar-

man's. Indeed, F* = (7(1, m) . 
3. By obtaining a recurrence relation for G(n$ m) itself, Harman was able 

to prove some new summation identities for {Fn}. 

Pethe, in collaboration with Horadam, extended Harman1s idea to define Gen-

eralized Gaussian Fibonacci Numbers [10]. They again denoted these numbers by 

G{ns m) and defined them at the Gaussian integers (n, m) as follows: Let p1$ p2 

be two fixed nonzero real numbers. Define 

G(0, 0) = 0, £(1, 0) = 1, £(GS 1) = i, G(l, 1) = p2 + ip19 

with the conditions G(n + 2, m) = p^Giri +1,7??)- qxG(n> m) , and G(ny m + 2) = 
p2G(ns m + 1) - q2G(n, m) . 

With the help of this extension of Harman1 s definition, the authors were 

able to obtain a wealth of summation identities involving the combinations of 

Fibonacci numbers and polynomials, Pell numbers and polynomials, and Chebyshev 

polynomials of the second kind* Observe that these numbers and polynomials all 

have the first two initial values as 0 and 1. Consequently, it is natural to 

ask, as in Remark 4 of [10], if a further extension that would include numbers 

and polynomials whose first two initial values were other than 0 and 1 is pos-

sible. The positive answer to this question is precisely the object of this 

paper., 

Our main result is Theorem 6.1. With the help of a single equation, (6.1) 

of this theorem, various summation identities involving the product terms of 

Fermatfs numbers, Fibonacci numbers and polynomials, Pell numbers and polyno-

mials, Lucas numbers and polynomials, and Chebyshev polynomials of the first 

and second kinds are obtained. Besides these identities, (6.1) has the poten-

tial for obtaining many more by varying the values of m and n. The extension* 

first thought to be straightforward, did not turn out to be so. It still had 

to be formulated in terms of the Lucas fundamental sequence [9] whose first two 

terms are 0 and 1. 
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2. PRELIMINARIES 

Let {Un} and {Wn} denote the sequences defined as follows, 

UQ = 0, U1 = 1, Un + 2 = pUn + 1 - qUn9 n > 0, 

tf0 = a, ̂  = 6, ̂ n + 2 = PWn + 1 - ?*/„, w > 0, 

where a, Z?, p, and 7̂ are any real numbers, p, q ̂  0. The sequence {#„} is the 
fundamental sequence defined by Lucas and {Wn} is the one defined and exten-
sively studied by Horadam (see [9], [7], and [8]). Lucas's primordial function 

is the special case of {Wn} with WQ = 2 and W± = p. The relation between the 

terms of {Wn} and {Un} is given by 

Wn = bUn - aqUn _1. (2.1) 

Le t {Vn} be t h e complex -va lued v a r i a n t of Horadam1s s equence d e f i n e d by 

VQ = a , V1 = ib9 w i t h t h e r e c u r r e n c e r e l a t i o n Vn+2 = pVn+1 - qVn . 

As above 9 it is clear that 

Vn = ibUn - aqUn_ia ( 2 . 2 ) 

3. DEFINITION 

Let (n, m ) , n, m e Zs denote the set of Gaussian integers (n, m) - n + £m. 
Further, let 

G : (n, m) -*- ((;, 

where (£ is the set of complex numbers, be the function defined as follows. 

For fixed real numbers p and q> define 

(7(0, 0) = a, G{1, 0) = b, G(0, 1) = ib, G(l, 1) = pb(l + i) (3.1) 

with the following conditions: 

G(n + 2, m) = pG(n + 1, m) - ^ ( n , 772) , (3.2) 
and 

G(n, m + 2) = p£(n, 7?? + 1) - <?£(n, 7??). (3.3) 

Conditions (3.2) and (3.3) with the initial values (3.1) are sufficient to 

obtain a unique value for every Gaussian integer. 
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k. EXPRESSION FOR G(n, m) 

Lemma 4.1: We have 

G(n9 0) = Wn, G(09 m) = Vn. (4.1) 

Proof: The proof is simple and, therefore, omitted here. 

Remark: Observe that if a = 0 and b = 1, the definition for G(ns m) reduces to 
that of Pethe & Horadamfs "Generalised Gaussian Fibonacci Numbers" [10], where 

p1 = p2 = p and q = q2 = q. Further, if a - 0, b = 1, and p = 1, q = 1, this 
definition reduces to Harman's "Complex Fibonacci Numbers" [4]. 

Theorem 4.2: G(n9 m) is given by 

G(n9 777) = bUnUm+1 + aq1Un_1Um_1 + ibUn + 1Um. (4.2) 

Proof: We use induction for the proof. Suppose (4.2) holds for all integers 

0, 1, ..., n for the first number in the ordered pair (n, m) and for all inte-
gers 0, 1, . .., 77? for the second number. By (3.2), we have 

G(n + 1, m) = pG(ns m) - qG(n - 15 m). (4.3) 

Applying (4.2) t o the r i g h t s ide of ( 4 . 3 ) , we obta in 

G(n + 1, m) = p[bUnUm+1 + aq^n_xVm_x + iWn + 1Um] 

- qlbUn_xUm+l + aq2Un_zUm_x + ibUnUm] 

= b(pUn - qUn.1)Um + 1 + aq2(-pUn_1 - qUn_1)Um.1 

+ ib(pUn+1 - ql'n)Um. 

Therefore, by the recurrence relation of iUn}, we get 

G(n + 1 , 772) = bUn + 1Um+1 + aq2lJnJJm_x + ibUn + 2Um. ( 4 . 4 ) 

The r i g h t s ide of (4.4) i s exac t ly the r i g h t s ide of (4.2) with n rep laced 
by n + 1. S imi l a r ly , we prove t h a t 

G(n9 m + 1) = bUnUm+2 + aq2Un^Un + ibU^U^. ( 4 . 5 ) 

By ( 4 . 4 ) , ( 4 . 5 ) , and the induct ion p r i n c i p l e , (4.2) holds for a l l nonnegative 

i n t e g e r s . 

5 . RECURRENCE RELATION FOR G(n9 m) 

Theorem 5*1: For fixed n and m9 t he recur rence r e l a t i o n for G(n9 m) i s given 
by 
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2k 
G(n+2k+s9 m+2k+s) = bp(l + i) £ ( - D J (?) 2* ' ^ n + i + A + t/ + a (5 .1) 

j = i 

+ ^ 2 . i : ( - i ) J ( ? ) 2 Z : - ^ n + J . . 2 + A + i . 1 + s + ? 2 ^ ( ^ S ) m+a), 
j = i 

where s = 0 or 1. 

Proof: For the proof, we again use induct ion on k. F i r s t we find the expres -
s ions for £ ( n + 2 , 77?+2) and G(n + 3 , m+ 3) . By ( 4 . 2 ) , we have 

<?(n+2, m+2) = Wn + 2Um+3 + a q r ^ + A + i + MUn + 3Um+2 

= bUn + 2(pUm+2 - <?^+ 1) + a<72(p£/n - qUn_1)(pUm - qUm_1) 
+ tb(pUn + 2 - qUn + 1)Um + 2 

= 6p( l + i ) ^ + 2 ^ + 2 - bqUn+2Um+1 - ibqUn + 1Um + 2 

+ aq2(p2UnUm - pqUnUm^ - p ^ . ^ + ? X - A - i ) 

= i p U + ^ + A + j , - bq(pUn + 1 - qUn)Um+1 - ibqUn + 1(pUm+1 - qr^) 
+ a?2(p2f/nf/m - pqUnUm^ - pqUnmlUm + q2Vn^Vm^ 

= 6p( l + i ) t t U A + 2 - ^ n + i ^ + i ) + op2q2UnUm ~ apq^n.YVm 

- apq'U^^ + q2(WnUm + 1 + aq2Un^Um^ + ibUn+1Um) 

= 6 p d + i ) ( Z / n + 2 ^ + 2 - qUn+1Um+1) + apq2Un(pUm- qUm_1) 
- apq3Un_1Um + q2G(ns m). 

Using the recur rence r e l a t i o n for {£7m} once again , we f i n a l l y obta in 

£ ( n + 2 , ??7+2) = 6p( l + i)(?/w + 22/m + 2 - qUn + 1Um+1) (5.2) 
+ apq2(UnUm+1 - qUn_iUm)+q2G(n9 m) , 

which i s the same as (5.1) when k = I and s = 0. 
Replacing n and ?77 by n + 1 and 777+1, r e s p e c t i v e l y , in (5.2) we have 

G ( w + 3 , 777+3) = 6 p ( l + £ ) ( t f „ + 3 ^ + 3 " 9 ^ + 2 ^ + 2) ( 5 ' 3 > 
+ a p q 2 ( ^ + 1f/m+2 - <7*7ntfw + 1 ) + ? 2 d ? ( « + l , 7 7 7 + 1 ) . 

Again, it is easily seen that (5.3) is exactly the same as (5.1) when k = 1 

and s = 1. Thus, (5.1) holds for the initial values k = 1, & = 0, and ?c = 1, 

s = 1. Suppose next that (5.1) holds for, and up to, some positive integer k. 

We will show, then, that it also holds for k + 1. First let s = 0. Now, al-

though n and 777 are assumed to be fixed in (5.2), it is clear that (5.2) is true 

for any positive integers n and 777. Therefore, we can write the expression for 

G(n + 2k + 2, 7?7 + 2k + 2) by replacing n and 777 in (5.2) by n + 2fe and m + 2k, 

respectively. Thus, we have 
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G(n+2k+2, m+2k+2) = bp(l + i) (Un + 2k+2Um+2k + 2 - qUn+2k+lUm+2k+1) (5 .4) 

+ aVq2(Un + 2kUm+2k + i-c[Vn+2k_xUm+2k)+qzG{n+2k, m+ 2k) . 

Using (5.1) for s = 0 in ( 5 . 4 ) , we get 

G(n+2k+2, m+2k+2) = bp(l + i) (Un + 2k + 2Um+2k + 2 - qUn + 2k+1Um+2k + 1) 
+ apq2(Un+2kUm+2k+1 - -?yn + 2 f c . 1 f / m + 2 f t ) 

2fe 
+ qz\bp(l + i) £ {-iy(q)2k-*Un + dUm+j 

+ apq2 £ ( - l ) J ( ^ ) 2 *"^„ + J - - 2 C!» + ; f - i + ?2*G(n, m)L 
J = l ' « 7 5 

Combining the first four terms on the right with the corresponding terms in 

the braces, we have 
2k + 2 

G(n+2k+2, m+2k+2) = 6p(l + i) £ (-DJ(^)2fc+2'^» +A + J - (5.5) 
j = i 

2fc + 2 

+ ^ 2 E (-DJ^)2 / C + 2"^ + l 7 - > 2 ^ + J--l + ^ + ^ ( n 3 HI). 
J = l 

Identity (5.5) shows that (5.1) with s = 0 is true if fc is replaced by & + 1. 
Similarly, we can show that (5.5) with s - 1 also holds if k is replaced by 
k + 1. Induction on fc then shows that (5.1) holds for all k when k is a posi-
tive integer. 

6. IDENTITY FOR THE SEQUENCE {wn| 

Equation (5.1) enables us to prove an important identity involving the 

product terms of the sequences {Wn} and {Un}. We prove 

Theorem 6.1: 

E P ( - I ^ + 1 ( ^ J ^ + A + i = <A^„+1 + < <6-D 
J = I ( - * U A + * + i * * e v e n -

Proof: Equating the real and imaginary parts of (5.1), we get 

2k 2k 

bP E ( - D ' ( ? ) a - ; W A + , - + . + o-pqz E (-i) J^)2"_ l 7 yn+ J--2 +A+ I ,--i+ s <6-2> 
J = 1 J = 1 

n + 2k + s m + 2k+l + s a$ n+ 2k -1 + s m+ 2k - 1 + s 

- q2k&Un + sUm+1+s + aq2Un_1+sUm_1 + s) 
and 

2k 
bpj:(-l)Hq)2k-JUn+d+sUm+j+s = bUn + 2k+l+sUm+2k + s - q2kbUn + 1 + gUm+s. ( 6 " 3 ) 

J = 1 
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Note that if a = 0 and b = 1, (6.2) and (6.3) reduce, respectively, to (5.1) 
and (5.2) of [10], where p2 = p± = p and q2 = q1 = q. 

To convert identity (6.2) to the one containing the terms of the sequence 

{Wn}, we proceed as follows. 
The left-hand side of (6.2) equals 

p2kt\-iy(q)2k-J(bUn + j + s - aqUn+._1 + s)Um+d+s ( 6 . 4 ) 
3 = 1 

+ bPUn+2k + sUn,+ 2k + S ~ aVqlk+1Un_1 + sUm + s . 

Using ( 2 . 1 ) i n ( 6 . 4 ) , we s e e t h a t t h e l e f t - h a n d s i d e of ( 6 . 2 ) e q u a l s 

2fe-l 

j = l 

+ Z>pUn+ zk + sUm+ 2k + s ~ aP^7 U-n-1 + sUm+s' 

Therefore, equation (6.2), after rearranging terms, becomes 

2 k ~ 1 n m • 

J = l 

= bUn+2k + sUm + 2k+l+s " bPUn+2k + sUm + 2k +s + aCi Un+ 2k -l + sUm+ 2k - 1 + s 

+ ap^+X_1 + A + s - aq2k+2Un-i + eVm-i + e ~ bq2kUn + sUm + 1+s 

= bUn+2k + s (Um+2k+l+ s ~ V^m + 2k + s) + a^Z ^z+ 2& - 1 + A + 2k - l + s 

+ aq2k+1Un_1 + s(PUm+s - ^ m . 1 + s ) - bq2kUn+sUm+1+s 

= M n + 2/c + s ( - ^ + 2 f c - l + S ) + ^ X + 2/<-l + A + 2 2 ; - l + s + aq2k+1Un~l + sUm+l + s 

- ba2kU U 
ULL un + sum+l + s 

= -q(bUn + 2k + s - aqUn + 2k-1+s)Um + 2k_1 + s - q2k(bUn + s - aqUn_1 + s)Um + 1 + s . 

T h e r e f o r e , 

2fc - 1 

D (-l)^ + W*~J"X + i + A + t/ + s < 6 - 5 > 
J - l 

= ^„ + 2fc + e^7z+2fe-l + s + <7 ^n + s^m + l + s* 

P u t t i n g s = 0 i n ( 6 . 5 ) , a d d i n g -pWn + zkUm+2k t o b o t h s i d e s of ( 6 . 5 ) , and t h e n 

u s i n g t h e r e c u r r e n c e r e l a t i o n f o r {Un}9 we g e t 

£ (-iy + 1pq2k-'Wn + JUm + j = -Wn + 2 f c Z / O T + 2 k + 1 + < 7 2 * ^ + i ' ( 6 ' 6 > 
J = l 

Replacing 2fc - 1 and 2k in, respectively (6.5) with s = 0 and (6.6) by tf, we 

finally obtain (6.1). 

26 [Feb. 



GENERALIZED GAUSSIAN LUCAS PRIMORDIAL FUNCTIONS 

7. APPLICATION TO SOME SEQUENCES 

7.1 Arithmetic Progression: Let p = 2 and q = 1. Taking UQ = 05 £7 = 1, and 

^0 = a, ̂ 2 = a + d, it is easily seen that {Wn} becomes an arithmetic progres-
sion {An} and {Un}, the sequence of nonnegative integers, where Un = n. Equa-

tion (6.1) reduces to 

N ( (m + NHn + N+1, N odd, 
Z 2(-iy + 1(m + j)An + j = (m + l)An + ̂  (7.1) 

<?= 1 {-(m + N + l)An + N, N even. 

7.2 Geometric Progression: Let p = q+ l, W0 = a, and ̂ x = aq. Consequently, 

the sequence {Wn} becomes the geometric progression with common ratio q and 
Wn = aqn

s and the sequence {Un} with UQ = 0 and 6̂  = 1 has the nth term £/„ given 

by 
n- 1 

L e t u s d e n o t e t h e g e o m e t r i c s equence {Wn} by {Gn } . E q u a t i o n ( 6 . 1 ) r e d u c e s t o 

«7 + 1) Z(-1)^+V-<X + J- - q°G™Vm^+l - ; — (7.2) 

7«3 Fermat's Sequence: Let p = 3, q = 2, Ĵ 0 = 2, and ^ = 3. Then {J/„} is 

Fermatfs sequence (see [7]). Let us denote it by {Mn}. With these values of 

p and q3 {Un} is easily seen to be the sequence given by Un = 2n - 1. Equation 

(6.1) reduces to 

» . + 1 _ , . ( Mn + N+Pm+N, N odd , 
3 E (-DJ + 1 2 f f "X + A + J " = 2 \ » » + 1 + < (7-3) 

<? = 1 r ^ ^ A x ^ T J N e v e n . 

Remark: I n f a c t , {Un} i s a l s o known a s F e r m a t f s s e q u e n c e . Mn and Un a r e 

g i v e n by 

Mn = 2 n + 1 and Z7n = 2 n - 1 . 

7.4 Fibonacci and Pell Polynomials: Next, let p = x and (7 = -1. Then, with 

WQ = 1 and A^ = #, {J7W} reduces to the Fibonacci sequence {Fn(x)}9 and with 

UQ = 0 and Z7X = 1, {Z7n} becomes the Pell polynomial sequence {Pn(x)}, see [5]. 

It is easy to see that for # = 1 and x = 2, {£/„} reduces to Fibonacci and Pell 
numbers, respectively, see [5]. Equation (6.1) becomes 

N (Fn + N+l(x)Pm + N(X)> N o d d > 

£^„+/*)^(*) = -FnWP
m+lW +) (7.4) 

Remark on Lucas Polynomials: If p = x9 q = -1, W0 = x9 and ^ = x2 + 2, {A/n} 

reduces to the Lucas polynomial sequence {Ln (x)} [5]. Since p, q and {Z7n} are 
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the same as in section 7.4 above, equation (6.1) reduces to (7.4), where Fn is 

changed to L n , that is 

* (Ln + N+l^Pm+NW> N o d d ' 
£xL n + J . (* )P m + J . (* ) = -Ln(x)Pm+1(x) +\ (7.5) 
i = i Un + j(aOP m +j + 1 (aO, N even. 

7«5 Chebyshev Polynomials: Now let p = 2x9 q = 1, £/0 = 1, and f/x = x . Then 

J/H(aO reduces to the nth Chebyshev polynomial Tn(x) of the first kind and Un(x) 
reduces to Sn(x), that of the second kind [1], where 

T„(x) = cos nQ9 Sy,(x) = —: -̂, and G = cos" 1 ^ . 
n n en n H sin 0 

From (6.1), we obtain 

w ( Tn+N+1(x)Sm + N(x), N odd, 
Y,2(-l)J + 1xTn+j(x)Sm+j(x) - Tn(x)Sm+1(x) + 1 (7.6) 

«?" = 1 {-Tn + BWSm+N+lW> N e V e n « 

8. SPECIAL NUMERICAL CASES 

Results of section 7 are more comprehensible and more interesting for some 

particular values of n and m. These are listed below. Some of these identi-

ties are known, and some appear to be new. 

(A) n = Q, m = 0 

B n ( \NA*+1> N o d d > 

E(-iy + 1 ^ =f+< ? (7.D* 
i = i !---(# + 1 ) ^ , # even, 

where Ad = a is the first term of the arithmetic progression -Un}. 

* ( Giql-xUia9 N odd, 

U f W * even, 

where a is the first term of the geometric progression {G„ }. Using the fact 

that G®} = aqn
9 we find that (7.2)* reduces to 

N . ( qVN» N odd, 
£ ( - l ) J + 1(<7 + D«/j = 1 + < 

i = i V-^+i> ^ e v e n° 
Observing t h a t i n (7.3) Un = 2n - 1, we see t h a t ( 7 . 3 ) , with n = 0, m = 0, 

reduces t o 
* .. I" ( (2* - DM„74_lS N odd, 
£ (-iy + 12N-J(2i - DM,- = i f + 1 + \ 

i = i J L l - ( 2 f + 1 - 1)M , N even;J 
(7 .3)* 

* \FN+l^PN^9 °dds 

S ^ . W ^ a : ) = -1 + < (7 .4 )* 
i = i I ^ 0 c ) ^ + 1 ( a 0 » even; 
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N (LN+1(x)PN(x) , N odd, 
£ xL.{x)I>. (x) = - +^ (7.5)* 

'̂ = 1 ^V^+i^' ̂  even; 

!

T S 
N+I N 
5 , 27 odd, 

* a (7.6)* 
5 il7 even. 

(B) " = 0 ' m = 1 ( ( J + 1 M , + I 

I ^ odd 
/!/ J 2 

I 5 21/ even; 

£(<? + 1)^-^1)^+1^V. + 1 = ? % ( ? + 1) +{ "^ N+1 (7.2) 

'MN+1UN+1 

}™JU , tf even; 
# tf+2 3 

-, ii7 Odd, 

** 

t (~iy+12N-JM.U.+ 1 = 2f f + 1 + < | _ M y (7.3) &* 

*& 

*& 

3 = 1 d d I JNuN+2 
— , N even; 

£ xFj (x)P (x) = -x + < (7.4) 
<?' = 1 {FN(x)PN+2(x), N even; 

ZxLj(x)Pj+1(x) = -x2 +1 (7.5) 
J-i {LN(x)PN+2(x) , N even; 

1 2 ' ̂  o d d > 

h-l^xTj(x)Sj+i(x) = * W_yff(x)^+2(a;) (7.6)-
I ~ —, N even. 

Remark: Obviously, various other identities may be obtained by other choices 

of n and m. This bears out the fact that this technique provides an abundance 

of identities by substituting suitable values for 777, n, p, and q is just one 
identity (6.1)! 

REFERENCES 

1. W. W. Bell. Special Functions for Scientists and Engineers. London: D„ 
Van Nostrand Co., Ltd. 

1988] 29 



GENERALIZED GAUSSIAN LUCAS PRIMORDIAL FUNCTIONS 

2. G. Berzsenyi. "Gaussian Fibonacci Numbers." The Fibonacci Quarterly 15, 
no. 3 (1977):233-36. 

3. Marjorie Bicknell. "A Primer for the Fibonacci Numbers: Part VII." The 
Fibonacci Quarterly 8, no. 4 (1970):407-20. 

4. C. J. Harman. "Complex Fibonacci Numbers." The Fibonacci Quarterly 19, 
no. 1 (1981):82-86. 

5. V. E. Hoggatt, Jr., & Marjorie Bicknell. "Roots of Fibonacci Polynomials." 
The Fibonacci Quarterly 11, no. 3 (1973):271-74. 

6. A. F. Horadam. "Complex Fibonacci Numbers and Fibonacci Quaternions." Amer. 
Math. Monthly 70 (1963):289-91. 

7. A. F. Horadam. "Generating Functions for Powers of a Certain Generalized 
Sequence of Numbers." Duke Math. J. 32 (1965):437-46. 

8. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Num-
bers." The Fibonacci Quarterly 3, no. 2 (1965):161-76. 

9. E. Lucas. Theorie des nombres. Paris: Albert Blanchard, 1961, Ch. 18, 

10. S. Pethe & A. F. Horadam. "Generalised Gaussian Fibonacci Numbers." Bull. 
Australian Math. Soc. (to appear). 

•••<>• 

The book, Applications of Fibonacci Numbers, containing the papers presented at the 
Second International Conference on Applications of The Fibonacci Numbers held in San 
Jose, Calif., in August of 1986 can be purchased for $47.40 (a 40% discount). 

All orders should be prepaid by cheque, credit card, or international money order. Order from: 

KLUWEE ACADEMIC PUBLISHERS 
190 OLD DERBY STREET 
HINGHAM, MA 02043 
U.S.A. 

if you reside in North America or Canada. Residents of all other countries should order 
from: 

KLUWER ACADEMIC PUBLISHERS GROUP 
DISTRIBUTION CENTRE 
P.O. BOX 322 
3300 AH DORDRECHT 
THE NETHERLANDS 

.«••.•vv^?"•••.'WW*.""!•"•••"•••!1.°"."V0J* W •••••""•••."".""••'"•""•"•n""."W"••%• VVV".""."V".*"«"%"%*VVV "••••"%"•••••• V V V V S " " . " •••••"••••••"•"•••".•"••••""••••"•••••"•" V V V " 
i A A t W i ? i A A A i V i A i V i A > W i A A A A A A A A A A A A A A A A i V i A A A i « i V « V « W i A i V A • • • • •• »« »» •>• •• •• •»« •• «<• »» ••%• ••"•• •« »«• ••"•• »• »s 

30 [Feb. 



ON PRIME DIVISORS OF SEQUENCES OF INTEGERS 
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The following problem appears on page 65 of Elementary Number Theory by 

David M. Burton: 

Show that 13 is the largest prime that can divide two successive integers 
of the form n2 + 3. 

In this note5 it will be shown that 13 is the only prime that will divide 

two successive integers of the form n + 3 , and these pairs will be determined. 

In addition, the following questions will be investigated: Is the prime 13 

unique? That is, if p is an odd prime, is there an integer a such that p is 
the largest prime that divides successive integers of the form n2 + a? And, 

under what conditions will the prime p be the only divisor? Finally, precisely 

which pairs of successive integers are divisible by p? 

The following theorem will answer these questions. The case p = 13 will be 

treated in a corollary following the theorem. 

Theorem: Let p be an odd prime. If p is of the form 4?c+ ls then p is the only 
prime that divides successive integers of the form n2 + k$ and p divides suc-

cessive pairs precisely when n is of the form bp + 2k9 for any integer b. If 

p is of the form hk + 3, then p is the largest prime that divides successive 

integers of the form n2 + (3k + 2), and p divides successive pairs precisely 

when n is of the form bp + (2k + 1) , for any integer b. Furthermore, p will be 

the only prime divisor if and only if p = 3. 

Proof: In both cases, substitution can be used to show that the prescribed di-

visibility will hold; hence, only the necessity of the indicated forms will 

need to be shown. 

Let p be of the form 4fc + 1, and suppose that q is any prime divisor of 
n2 + k and (n 4- I)2 + k. Since q divides the difference of these integers, q 
must divide In + 1. Now, 
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4(n2 + k) = (2n + l)(2n - 1) + (4fc + 1). 

Since g divides both n2 + k and 2n + 1, q divides p = 4fc + 1. Hence, q = p, 
and p is the only such prime divisor. Since p must divide 2n + 1, 2n + 1 = 0 

(mod p) . This congruence has the unique solution, n = (p - l)/2 (mod p) ; thus, 

n must be of the form bp + 2k, where b is any integer. 
Let p be of the form kk + 3, and suppose that (7 is any prime divisor of 

n2 + (3fc + 2) and (n 4- I)2 + (3fc + 2 ) . As before, q must divide 2n + 1. Now, 

4(n2 + (3k + 2)) = (2w+ l)(2n - 1) + 3(4fe + 3). 

As before, q must divide the last term 3(4fc + 3), but in this case q can be 3 
or p. If p = 35 then p is the only such prime divisor; if not, then p is simply 

the largest such prime divisor. (Of course, it should be noted that 3 does, in 

fact, divide some successive pairs in the case k > 0. This will be the case 

when n is of the form 3c + 1, c any integer.) Finally, the same argument used 

previously can be used to show that n must be of the form bp + (2k + 1), b any 
integer. 

Corollary: The prime p = 13 is the only prime that divides successive terms of 

the form n2 + 3 and does so precisely when n is of the form 132? + 6, where b is 
any integer. 

Proof: The first case of the Theorem applies with k = 3. 
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1. INTRODUCTION 

This paper is concerned with an interesting expansion of xm
9 where x and m 

are positive integers, and with the properties of its coefficients. One of the 

authors, Y. Imai, obtained expressions for 3 and 10 experimentally. 

36 is systematically expressed by the sum of products below. 

36 = - ^ ^ * 4 ° 5 « 6 ° 7 ° 8 + i ^ ° 2 ° 3 « 4 ° 5 * 6 « 7 
6! 6! 

302 302 
+ 4rr-°  1 « 2 » 3 ° 4 « 5 « 6 + ^ « 0 ' l « 2 e 3 - 4 ' 5 6! 6! 

+ -7T* (-D • 0 - l - 2 - 3 - 4 + - r T - (-2) • (-D 8 0 * 1 *
 2 * 3-

107 is systematically expressed by the sum of products below. 

107 = yy" 10 • 11 • 12 • 13 • 14 • 15 • 16 + -yy?-- 9 • 10 • 11 • 12 • 13 • 14 • 15 

+ ^Y~« 8 • 9 * 10 • 11 • 12 • 13 • 14 + ̂ yp °  7 * 8 • 9 • 10 • 11 • 12 • 13 

+ ^y7^-° 6 e 7 - 8 » 9 « 1 0 - l l * 1 2 + -yy^-« 5 ° 6 ° 7 ° 8 - 9 « 1 0 ° l l 

+ -yy° 4 • 5 • 6 • 7 * 8 • 9 • 10. 

To generalize the above expressions, we introduce a notion called the Z-
coefficient. We note that Z is a number-theoretic function. We also note the 

following. If m and x are positive integers, then xm can be expanded as fol-

lows : 

1988] 33 



AN EXPANSION OF xm AND ITS COEFFICIENTS 

^ = X (- J , • n (^ + ^ - 3?) • 
r = 1 \ "z • i = 1 / 

The numerator Z(/??, P) is a number-theoretic function (we call it the Z-coeffi-

cient) defined by 

Z(m, r) = £ (-l)r+fe- (m
r
+_ l

k)-k\ ( P = 1, .... m). 

Another construction method for Z-coefficients Z(m, P ) , r = 1, . .., m9 and 

their properties will be given. The Z-coefficients have properties similar to 

those of the Pascal triangle. 

2. PROPERTIES OF EXPANSIONS 

These expansions have the following four properties: 

1. In each case, the sum of these coefficients is equal to 1. That is: 

_L + 1Z. 4. ̂ 2 302̂  5 7, ±_ = -
6! 6! 6! 6! 6! 6! 

_1_ 220. , 1191 2416 1191 JJ20 1_ = 
7! 7! 7! 7! 7! 7! 7! 

If we denote these coefficients by J(6, P) and T(7, P) , then 

6 7 
EK6, P) = 1 and £j(7, r) = 1. 
r= 1 r = 1 

2. The denominators of these coefficients are 6! and 7! in these cases, 

respectively. Denoting the numerators of these coefficients by Z(65 P ) , v = 1, 
..., 6, and Z(7, P ) 9 r = 1, ..., 7, we have 

J(6, P) = Z(6> V)- (P = 1, ..., 6), X Z(6S P) = 6!. 
°  • p = l 

J(7 , P) = M^Zl (p = ^ 7)j £z(7, P) = 7!, 
' * r= 1 

Z(6, P) and Z(7, P) are called Z-coefficients. 

3. In both cases, Z-coefficients systematically distribute, i.e., 

1, 57, 302, 302, 57, 1 and 1, 120, 1191, 2416, 2291, 120, 1. 

4. In the expressions for 36 and 107, the first members of each product 

except their coefficients are, respectively, 

3, 2, 1, 0, -1, -2 and 10, 9, 8, 7, 6, 5, 4. 
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As is easily seen, the first integers of these descending sequences are 3 (the 

base of 36) and 10 (the base of 107)e 

The question now arises; Can we generalize the above properties? 

3» THE COEFFICIENTS Z(m, r) AND THE THEOREM 

The answer to the question above is affirmative. We now have the following 

definition and theorem. 

Definition: Let m and r be integers. Z(m$ p) is defined by 

<m + V 

Z(ms v) = 0 for m < 0 or v < 0 or m < p. 

Kra, r) = £ (-l)r + k - ( ^ *l)-km> (m> I, r = I, ..., m), (1) 

Theorem: Let re and m be positive integers. Then 

Z(m, 1) - 7 7 7 

?7? 
x • (a? + 1) • (x + 2) (JJ + (m - 1 ) ) (2 ) 

+ Z ^ > 2 ) . (^ - 1) • a: (x + (TT? - 2 ) ) 

Twi—^° Or - fa - i ) ) • • • • • # 

r=i\ m° i = l / 

In order to prove the Theorem, we need the following Lemmas concerning the 

Z-coefficients. 

Lemma 1: Let Z(m9 p) be Z-coefficients. Then: 

Z(m + 1 , P ) = (TW - r + 2) • Z(ms p - 1) + P « Z(w, r ) ; (3) 

Z(???5 P ) = (77* - P• + 1) • Z(m - 1 , P - 1) + P * Z(m - 1 , r ) ; (4 ) 

Z(m + 1 , P + 1) = (77?. - P + 1) • Z(77?5 P ) + ( P + 1) • Z(7775 P + 1 ) . ( 5 ) 

Proof of Lemma 1: I t i s c l ea r t h a t ( 3 ) , ( 4 ) , and (5) are equiva len t t o each 

o the r . We prove ( 5 ) . By the d e f i n i t i o n of Z(m9 P ) , t he r igh t -hand s ide of (5) 

i s w r i t t e n in the form 

£((_!)*+*. ( m _ P + l)'(m
r
+_ D'fej +Zi((-ir+1 + k' ( r + 1) 

• ( , J J - fc) ' * m ) + (~1>2 r + 2 • ^ + D • C" J ' ) • <* + !)"• 
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A general term is expressed by the following: 

/ i\r+fc / , i\ (m + 1\ im , / n r + 1 + k / . i \ / 7 7 7 + 1 \ 7777 
( _ 1 ) . (OT _ P + 1) . ^ ^ fej . fc* + (_!) * ( P + X) * (p + 1 - fe) * ^ 

- c - i > p + f c + 1 - * " + 1 - ( r - I + i ) -
Therefore, the right-hand side of (5) is equal to 

%{^y+k+1'(rm-V+i)'Kn+1} 

k-

which is 

r + l/ 

1 
k-

By the definition of Z(m, v), the last expression is equal to Z(m + 1, r + 1). 
Hence, the proof is complete. 

Lemma 2: Let Z(m9 v) be Z-coefficients. Then: 

m 
J2 Z(m9 r) = ml, (m > 1, v = 1, ..., m) ; (6) 
r = l 

Z(TT7, r) - Z(m9 m + 1 - r). (7) 

Equation (7) shows that Z-coefficients distribute symmetrically, 

Proof of (6): By (4), the following equalities hold: 

Z(m9 1) = 77? • Z(m - 1, 0) + 1 • Z(m - 1, 1), 

Z(7775 2 ) = (772 - 1 ) • Z(77? - 1 , 1 ) + 2 • Z(777 - 1 , 2 ) , 

Z(777, 3 ) = (77Z - 2 ) • Z(77? - 1 , 2 ) + 3 ' Z(77Z - 1 , 3 ) , 

Z(m9 777) = 1 • Z(77? - 1 , 777 - 1 ) + 777 • Z (777 - 1 , 7 ? ? ) . 

From these equalities with Z(m - 1, 0) = 0 and Z(?7? - 1, 777) = 0, we have 

m 
J^ Z(m9 r) = 777° (Z(772 - 1 , 1 ) + • • • + Z(?77 - 1 , 777 - 1 ) ) 

p = l 

7 7 7 - 1 

= m 8 ^ Z(TTI - 1 , P ) . 

r = l 

Hence, by the d e f i n i t i o n of Z ( l , 1 ) , 
m 

Y, Z{m9 r) = 77? • (777 - 1 ) • ° * 9 • 2 * Z ( l , 1 ) = 7 7 7 ! . 
r = 1 
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Proof of (7): We prove (7) by induction on m. It is clear that (7) holds for 

m = 1. We assume that (7) holds for the positive integers not greater than m. 
We now show that (7) holds for m + 1, i.e., 

Z(m + 1, p) = Z(m + 1, m + 2 - p). (8) 

By (3)3 we have 

Z(m + 1, m + 2 - p) = p°  Z(m, m - p + 1) + (m + 2 - p) • ZO?, w + 2 - p) . 

By the induction hypothesis, 

Z(m, 7?? - v + 1) = Z(777, P) , Z(T77, m + 2 - r) = Z(7W, P - 1) . 

Hence, by (3), 

Z(m + l,m+2-r)=r* Z(m, p) + (m - P + 2) * Z(m, p - 1) 
= Z(m + 1, p)a 

Therefore, (8) holds, as required. 

Now, we return to the proof of the Theorem. 

Proof of Theorem: We shall prove the Theorem by induction on m. It is clear 

that the Theorem holds for m = 1. We assume that (2) holds for positive inte-

gers not greater than m. We shall prove that (2) holds for m + 1, i.e., 

-j w + l / m + 1 \ 

(yn , n . • E (Z(7W + 1, r) • II (ar + i - r)l. 
W7 + 1 

m+1 1 
X 

m+1 _ i . V \ 7fy» J- 1 v>\ » O r^. -I- j _ n ^ 1 ( 9 ) 

By (3), we have 

777 + 1 / WI + 1 7 + 1 / m+1 

E (z(w + i, p)# n (x + i - p) 
? = 1 \ i=l 

7 + 1 / 777 + 1 

E(0? " 3? + 2) • Z(m, P - 1) • H (x + i - v) 
?= I \ * -1 

m+l/ m+1 \ 

+ E [v • z(m> p ) e n (x + ^ - p ) ) -
r = 1 \ ^ = 1 / 

Since Z(m, P - 1) = 0 for p = 1 and Z(m, P) = 0 for r = m + 1, the right-hand 

side of the above is equal to 

m + l/ m +1/ ^ + 1 \ 

E o - p + 2) * z(m, p - i) • n o + i - *o) 
r = 2 \ ^ = 1 / 

m / rn + 1 \ 

+ E o® z(m* p ) e n o + £ - *o )• 
p = A £ = 1 / Changing p - 1 to P in the first term, we have 
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ml m+ 1 \ 
£ ( O H + 1 - r) • Z(/7z, r ) • I I (^ + i - r - 1)1 

p = I \ £ = i / 
771 / 7 7 7 + 1 \ 

+ X M p * ^m* p ) ° n (# + ^ - p)) 
m / 777 + 1 \ 

= (m + 1) • £ I Z(m9 r) • U (x + i - v - 1)1 
p = i \ ^ = i / 

W / / 777 + 1 W + l \ \ 

+ ]C p • z(m^ p) • ( n (^ + ^ - p) - n (# - i + ^ - 3?))) 
p= 1 \ \ i = l i = l / / 

W / 777+1 \ 
= (rn + 1) • E Z(77z, P ) • n (* + i ~ r - 1)1 

p = 1 \ i = l / 

+ (???+ i ) * j^ p • zo* p) • n o + ̂  - p)) 
p = l \ i = l I 
ml m \ 

= (m + 1) • x * E ( Z(m} r) * FI (a; + i - P ) ) . 
p= l\ i = l / 

By the induction hypothesis, the last expression is equal to 

(77Z + 1)! • xm + 1. 

Hence, (9) holds, as required. 

4. REMARKS 

4.1 If x and m (x < m) are positive integers, then (2) is reduced as fol-
lows: 

xm = lOR^Jl. # • (a; + 1) • • • • • (a? + (TTZ - 1) ) + - ( m ' t
 2)~ . ( a - 1) • ar • . - • 

(x + (m - 2)) + • • . + Z{jn\ X) * 1 • 2 w! 
777 

i / Z(m, P) * , ^ . A 
p = i 

4»2 C a l c u l a t i n g Z(TT2, P ) f o r 1 < m < 6 , P = 1, . . . , ms t h e f o l l o w i n g t r i a n -

g l e i s o b t a i n e d : 

m = 1 1 
m = 2 1 1 

m = 3 1 4 1 

77? = 4 1 1 1 1 1 1 

m = 5 1 26 66 26 1 

772-6 1 57 302 302 57 1 

Clearly, this triangle is obtained by simple calculation. For example, to get 
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Z(6, 3) = 302, write all the values of Z(5S r) (r = 1, 2, 3, 4, 5) in one line 
from left to right (see the line for m = 5). Next, write r as a left subscript 
for Z(5, p),i.e., PZ(5, P ) . Finally, write 5 - (a? - 1) as the right subscript 

for Z(5, r), i.e., Z(5, p)5_(l,_1)e Then, we obtain 

l15 226*t 3 6 6 3 4 2 6 2 5*1 

302 

Z(6 , 3) = 302 = 26 * 4 + 3 • 6 6 , which g i v e s e q u a t i o n ( 4 ) : 

Z(???, r ) = (777 - v + 1) * Z(w - 1 , r - 1) + r * Z(T?7 - 1 , r) . 

The symmetry of Z-coefficients is clear from the viewpoint of this construc-

tion method. The Pascal triangle is a special case of our triangle, i.e., the 

Pascal triangle is obtained by using 1 for all right- and left-hand subscripts» 

Let us call our triangle the ffJ-triangle.H 

4*3 By (6), it is clear that 

r = 1 r = 1 L-

k.k It is an interesting problem to find the relation between Z-coeffici-

ents and Stirling numbers of the second kind (see [1]). 
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INTRODUCTION 

In [3] Davison proved that 

l 
-, with a 

y 1 = 1 1 1 . , 1 + /5 
2 

where FQ = 0, F1 = 1, Fn + 2
 = ^n + i + ^ n > for n ^ ®> an(* L̂ -l is t^ie greatest in-

teger < x. In [1] the authors found the simple continued fraction for 

T(x, C) = (C - 1) E "T^T5 w i t h r e a l ^ > 1 and C > 1. 
n> 1 (7 

In this paper, we shall prove a new generalization of Davison?s Theorem 

(see Theorem 1). 

2. CONVENTIONS AND USEFUL THEOREMS 

Throughout this paper, make the following conventions: 

1 + 1/5 
a = ^ • 

Let Fn be defined for negative n by Fn+2 = Fn + 1 + Fn. 
Define Yn by: YQ and Y± are given real numbers such that Y0 + Y^ > 0, and 

all other values of Yn are defined by Yn + 2 = Yn+1 + Yn, n any integer. 
Also, throughout, let the Fibonacci representation of an integer K ̂  1 be 

written as 

K = FVi + FVi + .- + Fv , (1) 

where 2 < V1 <2 F2 <2 • • • ̂ 2 ^ anc* cc <2 b means that a + 2 < fcs 
Define the function e(K) 9 for X an integer > 0, by 

e(K) = 0 if Z = 0; 

otherwise, 

£(X) - Fv _ + F + e•• + F , where X has the representation (1). 
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In the paper [4], setting a = « gives 

e(k) = [(k + Da" 1 ], for k > 0. (2) 

The convergence ranges for the series in this paper can easily be justi-

fied by comparing the series to geometric series. Because of the limit passing 

below, the convergence ranges for the continued fractions are also justified. 

From [6]s we will use the Euler-Minding Theorem: 
Ap (s i C 2 6 3 Cp 

_ = i + -—- -_-. -—— _ s where \CV J is a sequence of nonzero real 

numbers for k ^ 1, then, 

Ap = 1 + 2_j Cy Cy • • • Cy $ 
n>l, 1<V,<2 ...<2Vn<P x 2 

and x 

Bp = 1 + 2~J ^y Cy . . . Cy . 
n>l, 2^V±<2 . . . <2Vn<P i 2 

Actually, all that is needed is the following corollary: 

Write A (Cl9 C29 . 8 , , Cp) = Aps then notice Bp = Ap_1(C29 C3, . .., Cp). 

Now, let P -*• °°  and we have: 
Cx C2 C3 _ AJC19 C2, , . . ) 

1 + FT TT i + - - . " AJC2, c3, . . .) • ( 3 ) 

Notice that the indices on the summation for Am will be: 

n > 1, 1 < V1 <2 F2 <2 . . . <2 Vn . 

?.(*) 

3 . THE MAIN THEOREMS 

1 v r 0 w + J ^ L n o T 1 ] 

W>1 J - l 1 1 
Theorem 1 : :— = C + 

y / I \ J i n + J ° [ n a _ X j ^ + ^ + c*2 + °Y" + ••' 
^ A ^ 7 ' where (7 > 1. 

P roof : Se t C„ = a^-1 bFn i n ( 3 ) , w i t h | a | , |&| < 1 , n o t b o t h 1 , t o g e t 

E F + . . . + p F + . . . + F 

a"'-1 " . - ' F ' v 

1 + 1 + . . . 

Tl>l, 1 < 7 ! < 2 . . . <2Vn 

Denote the numerator by F(a9 b) and the denominator by G(a9 b). 
Now, 

F(b9 ab) = l+ E aF°>'*"" + F<>"bFv* + 1+'" + Fv* + 1 = G(a, b) . (4) 

1988] in 



A NEW GENERALIZATION OF DAVISON'S THEOREM 

Hence, we have 
F(a, b) aF*bFl aF^bF* . 

^ + 1 _L 1 _I_ " W / F(b9 ab) 1 + 1 + 

From this, it follows that 

F(b9 ab) = + aFlbF2 aF*bF* 
F(ab9 ab2) l + I + ' - ' 

so we find t h a t 

F(a9 b) = F(b, ab) + bF(ab, ab2), (6) 

with |a|, |&| < 1, and not both 1. 

An expansion for F(a9 b) could now be reached by setting 

F(a5 b) = X kntmanbm , with n, m > 0, 

and equating coefficients in (6), but this route is tedious. Instead, notice 

that if in (4) the exponent of b is k, then the exponent of a will be e(k) and 
because of Zeckendorffs Theorem (see [2]), k will range over the integers > 0. 
Hence, 

F(b, ab) = 1 + £ ae(nV = £V(*V\ 

Thus, we also get 

F(a9 b) = ̂  a ^ e W ^ ) . 

Using (2), we have 

F(a, b) = ^^-Kn+ D a ^ J f c K n + D ^ J , ( 7 ) 

and 

F(b, o&) = £ aL(n+1)crV. (8) 

Let a = CA and b = CB in (7) and (8) to get 

F(CA CB) = Y CA('n" 1)+ (5_i4)LncrlJ (9) 
? 2 ^ 1 

and 
F((7B, <^ + z?) = L C B ( n - 1 ) + ̂ lna~lj. (10) 

n> 1 

Set i4 = J0 - I± and B = -Y0 in (10) to get 

\ ' n^ 1 

or set A = -Y0 and B = -J^ in (10) to get 

[W1'^)^1)-^^"'1^0^ w>1- (12) 
' n> 1 
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From (5)5 we see that 

F(CY°, cJn gy.+yx g v ^ v ; cv^y. 
F(CY\ c7»+^) 1 + 1 + i + . - . ' 0 < c < 1 -

I t i s e a s y t o show by i n d u c t i o n t h a t Yn = I0Fn_1 + IxFn, f o r i n t e g e r n ; h e n c e , 

F(CYl, CYo + Yl) 1 + 1 + 1 + 

R e p l a c i n g C w i t h i t s r e c i p r o v a l v a r i a b l e , 

' l \ y o / 1 \ V 
>W' • & 

' ( ( * > ' ' • ( * ) ' • " ' ) 
{77o6*~Jl C J o C y i C ~ J 2 C7lCl2C~Y* CYlCY^C~Yh 

CY° + C J l + C7* + C,y3 + • • • 

C > 1, 

(by the equivalence relation (3.1) of [7]) 

= 1 + - i - i , C > 1. 

Hence, 

w-m*-'-
(r-(r > 

^ + _1 1 1 1 , C > 1. 
_UJi /I\7o + M^-Ji ^ + ̂  + C + C + 

Substituting in (11) and (12) and simplifying yields the theorem. 

Theorem 2: £ C4("" X) + (B' 4)lna"lj = £ ^C*-i) + ̂ V C^"" 1) + BlBaJ, for \c\ < 1. 
n>1 «> 1 

Proof: Let a = C^ + 5 and b = ĉ "1"25 in (7) and simplify to get 

p,QA + B QA+2B\ _ y^ Q(A + B)(n- D+Blna'1} , ^ N 

rc> 1 

L e t a = C"4 and fc = CB i n (6) t o g e t 

F(CA, CB) = F ( £ 5 , CA + B) + CBF(CA + B, CA+2B)e (14) 

Now s u b s t i t u t e ( 9 ) , ( 1 0 ) , and (13) i n t o (14) and s i m p l i f y t o g e t t h e t h e o r e m . 

C o r o l l a r y 1: I f T = £ C 7 * n + ^ + 1 ^ , f o r C < 1, t h e n ^ + 2 = ^ - C ~ J * + 1 ^ + 1 , 
n> 1 

where & i s any i n t e g e r . 

P roo f : L e t A = ?k+2
 a n d # = ?k+3 i n Theorem 2 and s i m p l i f y . 
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Corollary 2: £ eFkn+**+lLwaJ, for C < 1, can be evaluated in terms of £ C1™1 and 

rational functions of C for any integer k. For example, 

X cn+2lnaJ = (i + c-^Zc1™1 - a + c)"1. (15) 

Proof: Put Yk = Fk in Corollary 1. Notice that 

T ± - ECn = 7 ^ and T. = £ ClWaJ-

Now Corollary 2 follows by induction using Corollary 1. For example, we find 

which is easily verified by Beattyfs Theorem (see [5]). Applying Corollary 1 

another time gives (15). 

Y ^ w + ^k+1Lnaj 
\ Corollary 3- £ \n) i s trancendental for integer k ? -1 and integer 

C > 1. 

Proof: From Corollary 2 we can see that the sum for k ^ -1 and rat ional func-

E l 1 \l"aJ 
^> i\7l which i s 

transcendental by set t ing a= (1 + v5)/2 in [1] . We can show by induction that 

E l 1 \Lwaj 
n^il?7) ^ s n o n z e r ° s bence, the cor-

ollary follows, 

Corollary hi If A and 5 are integers not both zero, then the number of times 

that any integer occurs in the sequence 

A{n - 1) + (B - A)[na'1\9 for n > 1, 

is equal to the total number of times that integer occurs in the following se-

quences: 

B(n - 1) +i4Lna"1J9 for n > 1, and A{n - 1) + B[na\, for n > 1. 

Proof: The proof follows immediately from Theorem 2. 
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1. INTRODUCTION 

It is the purpose of this paper to generalize the concept of Fibonacci 

primitive roots introduced by Shanks in [22], This work was motivated by 

attempts to prove a conjecture of S. Chowla on class numbers of certain real 

quadratic fields. The generalized Fibonacci primitive roots which we introduce 

are interesting in their own right. Moreover, it turns out that Chowlafs con-

jecture is more closely related to a generalized sequence of Fibonacci numbers 

which we introduce in §2 as a precursor to the generalized Fibonacci primitive 

roots. Thus, we first establish the generalized Fibonacci primitive roots and 

several of their properties in §2 before displaying the connection with the 

motivating work on Chowla's conjecture, at the end of the paper in §3. 

2. GENERALIZED FIBONACCI PRIMITIVE ROOTS 

Linear recurring sequences of the second order have been extensively ex-

plored since the last century. We have such sequences of integers {G^} defined 

by Gi = rnGi_1 + nGi_2 for i > 1, where GQ9 Gls m and n are given integers. 

There has more recently been a plethora of papers dealing with these sequences 

as generalized Fibonacci numbers. As evidence, the reader may consult any of 

[l]-[4], [6]-[17], [20]-[21], and [26]-[31]. However, heretofore, there has 

been no generalization of Fibonacci primitive roots in the literature. 

We consider the particular case of the Gt where m = 1 and n > 0. Set Gi = 

Fi(n) and let F0(n) = 1 and F1(n) = gs a positive integer. Thus, 

Fi{n) = Fi_1(n) 4- nFi_2(n), for i > 1. 

*The author's research is supported by N.S.E.R»C« Canada, grant #A8484« 
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Call {Fi (n)} the nth-Fibonacci sequence with base g (or simply the nth-FS base 

g) e The first Fibonacci sequence with base 1 is the ordinary Fibonacci se-
quence. Now let p be a prime and let g be a primitive root modulo p. We call 

g an nth -Fibonacci primitive root modulo p (or simply an nth -FPR mod p) if 

satisfies: 

x2 - x + n (mod p), (1) 

where g.c.d, (p, n) = 1. The n = 1 case yields the ordinary Fibonacci primi-

tive roots introduced by Shanks [22] and for which properties were developed 

in [23] and [24] which, among others, we will have occasion to generalize later. 

For the remainder of the paper we assume that p is an odd prime and n is a 
positive integer. 

Lemma 1: If the positive integer ^ is a solution of (1), then 

Fi(n) = gFi_1(n) = gl (mod p) 

for all positive integers i . 

Proof: We use induction on i . If i - 1, then F (n) = g - gFQ(n)B By defini-

tion of the nth-FS base g> we have that Fi{n) - F. _ An) 4- nF. __ An) for i > 1. 
By induction hypothesis: 

Fi_1(n) = gF^2(n) E g1'1 (mod p) . (2) 

Therefore, F.(n) = (g + ri)Fi_1(ri) (mod p) . Thus, from (1), we obtain: 

Fi(n) = g2Fi_2(n) (mod p) . 

Hence, from (2) again, we get: 

Ft{n) = gFi_x(n) = g^ (mod p). Q.E.D. 

As an illustration of Lemma 1, we have: 

Example 1: Let n = 5, p = 101, and g = 42; 42 is a 5th-FPR mod 101. Moreover: 
FQ(5) = 1, 2^(5) = 42, F2(5) = 47 = 42 + 5 = 422, 

F3(5) = 257 = 47 + 5 • 42 = 42 • 47 = 423, 

F^(5) = 492 = 257 + 5 • 47 = 42 • 257 = 42\ 

F5(5) = 1777 = 492 + 5 « 257 = 42 • 492 = 425, 

etc. (where E denotes congruence modulo 101). 

The following observations will prove to be useful, and they generalize 

Shanks [23, A-D, p. 164]. 
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Remark 1: If g is an nth-FPR mod p, then either 

kn = -1 (mod p) or ((4n + l)/p) = 1 , 

where (*/*) denotes the Legendre symbol. This is verified from the observation 

that (2g - l ) 2 = 4n + 1 (mod p) if (1) is satisfied by g* 

Remark 2: If (-n/p) = -1, then there exists at most one nth -FPR mod p. To see 

this, we observe that the two solutions of (1) are 

g1 = (1 + A n + l)/2 and g2 = (1 - A n + l)/2; 

whence, £7-,£72 ̂  ~n (moc^ p) • Therefore, one of g1 or ̂ 2 is a quadratic residue 

and the other is not. Hence, there is at most one nth -FPR mod p. We now give 

examples of each case. 

Example 2: If n = 4 and p = 19, # = 13 is a 4th-FPR mod 19. Since (-4/19) = 

-1, g = 13 is the only 4th-FPR mod 19 by Remark 2. 

Example 3- If n = 1 and p = 3, then ((4n + l)/p) = (5/3) = -1, whence 3 has 

no 1st-FPR by Remark 1. 

Remark 3: If (~n/p) = 1, there may be two, one, or no nth-FPRfs mod p. The 

following examples illustrate the three cases. 

Example k: If n = 2 and p = 41, the solutions of (1) are g1 = 2 and g2 = 40, 

both of which are quadratic residues modulo 41. Hence, 41 has no 2n ~FPRfs. 

Example 5: If n = 3 and p = 13, g = 7 is a 3rd-FPR mod 13. However, 72 = -3 

(mod 13) and Ix = -3 (mod 13) has only one solution. Hence, there is exactly 

one 3rd-FPR mod 13. 

Example 6: If n = 6 and p = 7, then a = 3 and g2 = 5 are 6th-FPR!s mod 7. 

Remark 4: If two nth-FPRfs mod p exist, say g and ̂ 2 with 0 < gi < p for £ = 

1, 2, then ^ + ̂ 2 = 1 + p„ This follows from Remark 2. As an instance of 

this, see Example 6, where g + g2 = 8 = p + 1. 

In Remarks 2 and 3, we saw that it is possible that no nth-FPR!s mod p 

exist. We now provide a class of primes p for which an nth~FPR mod p always 

exists. First we need a preliminary result that generalizes an idea of Shanks 

and Taylor [24]. 
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Lemma 2: Suppose that either n = 1 or p > n > 2 and p = 1+ 2q where q is prime 

and n has order q modulo p9 If g is a solution of (1)5 then g is a primitive 

root modulo p if and only if g - 1 is one, 

Proof: If n = 1, then ^ ( ^ - 1) E 1 (mod p) implies that ^ and g - 1 have the 

same order modulo p. Now we assume p> n> 29 p= 2(7+ 13 and n has order q modulo 

p. Since g(g - l)En (mod p) from (1)3 we get gq = (g - l)~q (mod p) . If ^ is 

a primitive root modulo p5 then (g - l)q E -1 (mod p). We cannot have # - 1 E 

-1 (mod p) 3 whence ^ - 1 is a primitive root modulo p„ Conversely, if ^ - 1 is 

a primitive root modulo p5 then gq E -1 (mod p). If # E -1 (mod p), then from 

(1) we get that n E 2 (mod p), contradicting the hypothesis. Q.E.D. 

The following example illustrates the above. 

Example 7: Let p = 475 # = 20s and n = 4, 4 has order 23 modulo 475 20 is a 

primitive root mod 47s and g = 20 is a solution of (1)5 whence 19 is a primi-

tive root mod 47. 

Now* we provide a sufficient condition for the existence of an nth-FPR mod 

p. The following generalizes Mays?s [185 Theorems p. 111], We follow Mays!s 

reasoning in the initial part of the proof* 

Theorem 1: Suppose that n = 1 or p > n > 2, and ((4n + l)/p) = 1 where p = 1 + 

2q is a prime with q an odd prime. Furthermore, suppose that either n = 1 or 

n has order q modulo p« Then p has an nth-FPR6 

Proof: Since p = 3 (mod 4), at most one of a or -a is a primitive root modulo 

p for any a in the range 2 < a < (p - 1)/2 = q. But there are exactly 

<f>(p - 1) = <? - 1 = (P - 3)/2 

primitive roots modulo p3 so exactly one of a or -a Is a primitive root modulo 

pe Since ((4n + l)/p) = 1, there are two distinct solutions of (l)s namely, g 

and 1 - g (see Remarks 1 and 2) . It suffices to show that either g or 1 - g is 

a primitive root modulo p. Suppose that g is not a primitive root modulo p„ 

Then3 by Lemma 2S ^ - 1 is not a primitive root modulo p. Also, ^ - 1 f 09 ±1 

(mod p) because # satisfies (1) and n + 03 2. Consequently5 # - 1 E ±g (mod p) 

for some 3 satisfying 2 ^ 3 ^ ( p - l ) / 2 = ^ ; and so5 1 - g is a primitive root 

modulo pe Q.E.D* 

The following generalizes Shanks-Taylor [243 Theorem^ p* 159]. 
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Theorem 2: Suppose that either n = 1 or p > n > 2, and p = 1 + 2q, where q is 
an odd prime and n has order q modulo p. If g is an nth -FPR mod p, then g - 1 
and g - in + 1) are primitive roots modulo p. 

Proof: By Lemma 2, g - 1 is a primitive root modulo p. Therefore, since 

( ^ - l ) 2 E l - ^ + n (mod p), 

we get 

(g - l)2 + q E £ - (n + 1) (mod p). 

Since g.c.d. (2q, 2 + g) = 1, we see that g - (n + 1) is a primitive root mod-
ulo p. Q.E.D. 

Corollary 1: Suppose that n is a positive integer such that ((4n + l)/p) = 1, 
where p = 1 + 2q is prime, with q an odd prime. Further, suppose that either 

n = 1 or p > n > 2, where n has order q modulo p. Then, there is an nth -FPR 

mod p. If £7 is such an FPR, then g - 1 and g - (n + 1) are primitive roots 
modulo p. 

Proof: The proof follows immediately from Theorems 1 and 2. 

The following illustrates Corollary 1. 

Example 8: Let n = 3 and p = 23. Then, 

((4n + l)/p) = (13/23) = 1 = 311 (mod 23). 

Thus, the hypothesis of Corollary 1 is satisfied and 15 is the 3rd-FPR mod 23. 

Moreover, 1411 E -1 (mod 23) and ll11 E -1 (mod 23). 

We close this section with the observation that it is possible to give a 

more restrictive generalization of Fibonacci primitive roots, albeit a natural 

one. 

Let n be a positive integer and p a prime with p E 1 (mod n). Define g to 
be an nth-FPR modulo p whenever g has order (p - I)In modulo p and (1) is sat-

isfied by g. 

Example 9: If n = 3, p = 103, and g = 31, then 31 satisfies (1) and has order 
34 modulo 103. Hence, under the preceding definition, 31 is a 3th-FPR mod 103, 

but it is not one under the earlier definition. 
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Example 10: If n = 2 and p = 5, then 2 satisfies (1) but 2 is a primitive root 

modulo 5, so 2 is not a 2nd-FPR mod 5 under the preceding definition but it is 

one under the earlier definition. 

It would be of interest to see what developments would come out of a study 

of the latter definition, 

3. CLASS NUMBERS OF REAL QUADRATIC FIELDS 

In [5] S, Chowla conjectured that, if p = m2 + 1 is prime and m > 26, then 

h(p) > 1 where h(p) is the class number of §(Vp). In [19] we established that, 

if p = m2 + 1 > 17 is square free where either r is composite or m ^ 2q for an 

odd prime q, then h(r) > 1. Furthermore,, we showed that in the remaining case, 

h(r) = 1 for at most finitely many q. Also we established 

Theorem 3-' Let v = km2 + 1 be square free where m is a positive integer. Then 

the following are equivalent, 

(a) h(r) = 1. 
(b) p is inert in Q(yv) for all primes p < m, 

(c) f(x) = -x2 + x + m2 t 0 (mod p) for all integers x and primes p satis-
fying 0 < X < p < 777. 

(d) f(x) is equal to a prime for all integers x satisfying 1 < x < m. 

The following links §2 and §3 and provides a criterion for the solvability 

of (1). For conveniences we let F ̂ (n) = Fi in what follows. 

Theorem k: If n is a positive integer relatively prime to p, then ^ is a solu-

tion of (1) if and only if the nth -FS base g satisfies ^ + 1 ^ _ x - Fl (mod P) 

for some £ > 1. Moreover, if ^ is a solution of (1), then i ^ ^ ^ = F. (mod 

p) for all i > 0. 

Proof: By Horadam [12, (27), p. 440]: Fi+1Fi_1 - F\ = (-n)i'1(g + n - g2) for 

all £ > 0. The result follows. Q.E.D. 

Therefore, we have the following conjecture based on the preceding data. 

Conjecture: If n = q2, where q > 13 is an odd prime and 4(72 + 1 is prime, then 

there is an nth-FS base g2 {Fi(n)}s for some # satisfying Fi + 1Fi_1 = î? (mod p) 

for a prime p with 0 < g < p < g. 
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1 . The classical cuboid is a rectangular block with integral edges and face 

diagonals. If we consider the internal diagonal as well, then there are seven 

lengths in all* It is known [3] that any six of the seven lengths can be inte-

gral. We can call such cuboids semi-perfect. Semi-perfect cuboids fall into 

three categories such that there is no integral specification for: 

(1) the internal diagonal, 
(2) one face diagonal, 
(3) one edge. 

If all seven lengths were integral, then we would have what is known as a 

perfect cuboid. No such perfect cuboids are known; indeed, their existence is 

a classical open question. It is known [3] that there are an infinity of semi-

perfect cuboids in all categories, as certain parametric solutions are known. 

Unfortunately, none of these solutions is complete. Clearly, if perfect cuboids 

exist, they must fall into all three categories and so the complete determina-

tion of all semi-perfect cuboids in any one category would reduce the problem 

of perfect cuboids to the consideration of the seventh nonspecified length. It 

has been shown that some of these partial parametric solutions cannot be per-

fect (see [2], [3], and [4]). In this paper we shall determine a two-parameter 

solution for category (3) which is the generalization of a solution first given 

by Bromhead [1], and then show in a simple manner that this too can never give 

a perfect cuboid. 

2. It is instructive first to consider the smallest real solutions (with c?>0) 

in category (3) . If we measure the size of the cuboid by the length of the in-

ternal diagonal d (say) with edges a, b9 and vc, then Leech [3] has given the 

smallest solutions. The first four being 

a b 
520 576 618849 
1800 1443 461776 
1480 969 6761664 
124 957 13852800 

d 
1105 
2405 
3145 
3845 
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where a2 + b2, a2 + cs b2 + c, and a2 + b2 + a are all square. If Jc were it-
self integral, then of course the cuboid would be perfect. 

3* Following Bromheadfs solution [1], we have a2 + b2 square ands hences 
a = k(2uv) and b = k(u2 - v2). 

If we write a2 + c = p2 and £2 + e = <̂ 2
3 then p2 + b2 = ̂ 2 + a2

s and each is a 

square. Therefore,, p = fe1(2w1v1) or kx{u\ - ̂ 2) with kY(u\ - V2) = fc(u2 - v2) 
or fc1(2w1z;1) = k(u2 - v2) B Similarly, q = k2{u\ - V2) or k2(2u2V2); hence, 

k2(2u2v2) = &(2wy) or k2(u\ - v\) = k(u2 - z;2). 

Finally5 k1(u* + i?2) = k2{u2
2 + î 2) in all cases, 

Since we need only consider cuboids with (a2, b2, <?) = 1, we can reduce the 

problem to solving the systems: 

3.1 (1) kx{u\ + v\) = k2{u\ + v\) or (2) k^{u\ + i?2) = &2(uf + v\) 
kx{u\ - z;2) = k(u2 - T;2) fe1(2w1i;1) = k(u2 - i;2) 

k2(2u2v2) = k(2uv) k2(2u2v2) = k(2uv) 

in integers. Thus, we can say that all primitive semi-perfect cuboids in cate-

gory (3) must satisfy either system (1) or system (2). Of the four "smallest" 

real solutions listed above the smallest satisfies system (2) and the next 

three satisfy system (1). Bromheadfs one-parameter solution satisfies system 

(1) when k = k1 = k2S and the smallest solution with this condition is the 

fourth. 

4. We shall now determine a two-parameter solution of system (1) when k= k1 = 

k2« We have: 

4.1 u\ + v\ = u\ + v\i 
4.2 u2 - v2 = u2 - v2; 

4*3 U2V
2
 = UV° 

The general solution of 4.1 is 

4.4 (mp + nq)2 + imq - np)2 = (m<y + rcp) 2 + (wp - nq)2. 

Writing 4.2 as u2 + v2 = u2 + ?;23 its solution is: 

4.5 (w1p1 + n ^ ) 2 + (miqi - w ^ ) 2 = (m1p1 - n 1 ? 1 ) 2 + (TTZ^ + w ^ ) 2 . 

Putting mp + nq = m1p1 + ni<7i 

and mq - np = m
1
cl1

 + niPi> 

a rational solution is given by: 
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, , n(q + p ) m(q - p ) - 2npq 
4.6 p = q, q = p , m = — — , n = i — 

Therefore, 

4.7 w = (nq(q2 + 3p2) - nrp(q2 - p2))/q2 - p 2 , 

4.8 v = (np(3q2 + p2) - mg(q2 - p2))/q2 - p 2 . 

F i n a l l y , we r e q u i r e , from 4 . 3 , t h a t 

i n / J w N / n t7(^2 + 3 P 2 ) \ / np(3q2 + p 2 ) \ 
4.9 ( w + np)(mp - nq) - imp -— - f — } [ m q £—f f— 

\ q2 - p2 l\ q - V I 
Let n = X(q2 - p2)> then 

4.10 (mq + Xp(q2 - p2)) (mp - Xq(q2 - p 2 ) ) 
= (mp - Xq(q2 + 3p2))(mq - Xp(3^2 + p 2 ) ) . 

Mult iplying in (4.10) and s impl i fy ing , we have, 

2mpq = X(q2 + p 2 ) 2 ; 
t h e r e f o r e , 

A(c72 + p 2 ) 2 

2p<? 

Let X = 2pq, then 

n = 2pq(q2 - p2) and m = (q2 + p 2 ) 2 . 

Hence, we have a solution where: 

4.11 ux = p(q2 + p 2 ) 2 + 2pq2(q2 - p 2 ) = p(ph + 3qh) ; 
^ = ^ ( ^ 2 + p 2 ) 2 - 2 p 2 ^ 2 - p 2 ) = q(3pk + qh); 

u2 = c7(^2 + p1)1 + 2p2g(.72 - p 2 ) = ^ + 4q2p2 - p 4 ) ; 
z;2 = p(q 2 + p 2 ) 2 - 2pc72(c72 - p 2 ) = p(ph + kp2q2 - q 4 ) ; 

u = 2pq2(q2 + 3p2) - p(c72 + p 2 ) 2 = p(qh + kp2q2 - pk); 
v = 2p2c7(3q2 + p 2 ) - q(q2 + p 2 ) 2 = ^(p^ + 4p2q2 - qh) . 

This gives the s o l u t i o n : 

4.12 a = 2pq(plt + 4 p V - ̂ M q 4 + 4 p V - ph); 

b = p 2 ( ^ + 4 p V - ph)2 - q2(ph + 4 p V - q")2; 

a = 32p2q2(ph - ̂ )2(p8 + 14pV + <?8)°  

BromheadTs solution corresponds t o p = t + l , q = t . We need only consider 

values of p and q such that (p, q) = 1. If p = 2 and <7 = 1, we have: 

a = 124; fe = 957; o = 13852800. 
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The signs of a and b are, of course, irrelevant and so we will always take the 
absolute value. 

5. We know that if o itself is square, then the cuboid will be perfect. Look-

ing at the form given for o9 this requires that p8 + \l\phqh + q8 is twice a 

square. We shall now prove that this is not possible. Set 

5.1 p8 + H p V + q* = 2W23 where (p, q) = 1, 

then p and q must both be odd, and 

5-2 (p4 - ^ ) 2 + ( 4 p V ) 2 = 2w2. 

The general solution of 5.2 is known to be 

5*3 ph - qh = k(m2 - 2mn - n2) or /c(w2 + 2m - n2), 

5° ^ kp2q2 = k(m2 + 2mn - n2) or &(???2 - 2mn - n2) 
w = kirn2 + n2). 

From 5.3 and 5.4, 

p4 - qh + 4pV = 2k(m2 - n2). 

If 777 and n have the same parity, then 8|2/c(tf72 - n2) . However, 8^^ - ̂  + 

kp2q2 since S\ph - qh but not kp2q2. Therefore, m and n must have opposite 

parities, in which case m2 ± 2mn - n2 is odd. Hence, from 5.3, we have that 

S\k. From 5.4, it follows that 8|4p2^2, which is impossible because p and q 
are both odd. It also follows that c can never be square, so the semi-perfect 
cuboids generated by 4.12 can never be perfect. 
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1 . INTRODUCTION 

Let x be an n - d i g i t number expressed in base g; t h u s , 

n- 1 
x = X) ai(3i with 0 < ai < g and an_1 £ 0. 

£ = o 

Let k be a p o s i t i v e integer. . Then # i s ca l l ed fc-transposable i f and only i f 

to =nt2^9i + 1 + ^ - i ° (1) 
i = o 

Clearly, x is 1-transposable if and only if all of its digits are equal. Thus* 

we assume k > 1. 
Kahan [2] studied decadic fc-transposable integers. He showed that k must 

equal 3, that x± = 142857 and x2 = 285714 are 3-transposable, and that all 

other 3-transposable integers are obtained by concatenating xx or x2 m times, 
m > 1. 

In [1], this author studied &-transposable integers for an arbitrary base 

g9 Necessary and sufficient conditions were given for an n-digit, ̂ -adic num-

ber to be /c-transposable. 

When a fc-transposable integer is multiplied by k, its digits are shifted 

one place to the left with the leading digit moving to the units place. In 

this paper, we will generalize this shift of one place to a shift of j places, 
1 < j < n. 

2. TRANSPOSABLE INTEGERS WITH ARBITRARY SHIFTS 

We say that the n-digit number x = ^2 . =Qa.g^ is a fc-transposable, j-shift 

integer, or a (k, j)-integer for short, if and only if 

n- 1-j n- 1 

to = £ a ^ + J + £ o^-(n-j), for 1 < j < n and 1 < k < g. (2) 
i-0 i=n-j 

For example, again consider the decadic integers 142857 and 285714. Since 
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6(142857) = 857142, 

2(285714) = 571428, 

142857 is a (63 3)-integer, while 285714 is a (2S 2)™integer. 

We shall study (k, j)-integers for an arbitrary base g. Kahan [3] has de-

termined all decadic n-digit (fc, n - l)-integers. He called these ^-reverse 

transposable integers. 

Rearranging the terms in (2), we get 

(kgn-j - 1) E1 a^-^-n = {gi - ki'fa.gK (3) 
i = n- j -i = 0 

Let d be the greatest common divisor of kgn~d- 1 and gJ - k. Then the follow-

ing lemma is immediate. 

Lemma 1: Let x be an n-digit, (fe, j)-integer and let d = (kgn~^ - 1, gJ° - k) . 
Then d satisfies the following: 

(0 (g, d) 
0 0 (k, d) 

( i i i) fe < d 

= 1 

= 1 

(Iv) gn ~ 1 (mod d) 

The following theorem gives necessary and sufficient conditions for the 

existence of (k9 j)-integers. 

Theorem 1: There exists an n-digit5 (k9 j)-integer if and only if there is an 

integer d with the following properties: 

(?) (&, d) = 1 

(si) fc < d 
(ili) d\g$ - fe 

(iv) gn = 1 (mod <f) 

Proof: Lemma 1 shows that (i)-(iv) are necessary with d = (kgn~J - 1, ̂ J' - k) . 
Nows suppose there exists a d satisfying (i)-(iv). Note that <i divides 

kgn~3 - 1 since 

%n~<? - 1 = gJgn~J - i = g n - i = Q (mod d). 

We now construct (k9 j)-integers xt. Let 

n- 1 

** = £ bt,i9*> with * = 1 » 
i = 0 
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The coefficients bt n_l9 . .., bt n _ j are given by 

n~l a J - V 

We obtain (4) by dividing (3) by g3 - k and requiring that Y^n_ ^btilgv~{-n~ ^ be 
a multiple of ̂  7 , since d divides kgn"J' - 1. Note that the highest power 

of g which occurs on each side of (4) is j - 1, so the coefficients bt,i a r e 

well defined. Using (3) we find that bt 0 , . .., bt,n-j-l a r e t o De defined by 

n"i"J" . kan~i - 1 
£ &*.^ = g

 d ~t. (5) 

Equation (5) is also well defined, since kt ^ d. 

We note here that the proof of Theorem 1 is a constructive one. The digits 

of fc-transposable integers are found using (4) and (5) . We now show that all 

g have (k9 j)-integers. 

Theorem 2: If g = 5 or g ^ 7 9 then g has a (k, j)-integer for all j > 1. If 

g = 3., 4, or 6, then # has a (fe, j)-integer for j > 2. 

Proof: If # = 5 or g ^ 7, choose k satisfying the following: 

2 < k < g/2 and (fe, #) = 1. 

Then d = gJ' - k, j > 1, satisfies (i)-(iii) of Theorem 1; further, {d9 g) = 1. 
Hence, there exists n such that gn = 1 (mod d). By Theorem 1, g has a (fe, j)-
integer. 

For g = 3, 4, or 6, choose Zc such that 

2 < fe < # and (fe, #) = 1. 

Again, let d = gj - fc, j ̂  2, and apply Theorem 1. For these g9 no (fc, 1)-

integers exist. 

For j fixed, we now show that up to concatenation there are only a finite 

number of (k, j)-integers. 

Theorem 3- Suppose x = Yli = Qa.gi- is a (k, j)-integer. Let d = (kgn~J' - 1, 
g'*7' - k) and let # be the order of g in Ud, the group of units of Zd. Then # 

equals some (k, j)-integer concatenated n/N times. 

Proof: Since gn E 1 (mod d), n is a multiple of N. Let 

ff- 1 

i =0 = 0 LA. J 
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be the tf-digit integers given by equations (4) and (5). 

i ^ . j ^ ^ " ^ ^ must be a multiple of # ^ K . Thus, for some 

SO 

an-i = bt,N-i> for i = 1, 808, j. 
Thus, 

n- I- j 

E 
i =0 

Note that &:£ < oL Now, since 

N-l-j 

E 
i = 0 

we must have 

£-W = (^^>, 

a «-i = bt,N-i> i = j + 1, ...» N. 
Further, 

>gn-B- i y _ /#J' - ^ . „ . | . j , (kg"-"-*- l 

Hence, 
rc-tf- 1 

i = n-N-j 
or 

E a^-0-»-*>-(*^*)*- E btig<-* 
1- N- 1 \ U I V = W - -J i=n-N-j x ^ / i=N-j 

Thus, an_N_i = bt}N„i5 i = 1, 8B3, j, and an„il/_i= bt}N_is i = j - 1, ..., tf. 

Continuing, we find that # equals #£ concatenated n/# times. 

3« (fc, 1)-!NTEGERS ARE ALSO (£, j)-INTEGERS 

In some cases (k9 1)-integers are also (£, j)-Integers. Consider the mul-

tiples of the decadic (3, 1)-integer y = 142857: 

2z/ = 285714; 4z/ = 571428; 5z/ - 714285; 6y = 857142. 

Thus, y is also a (2, 2), (4, 4), (5, 5), and (6, 3)-integer* We observe that 

y Is an (£, j)-integer when £ = 3J' (mod 7). Here 7 = d = (g - ks kg71"1 - 1), 

with g = 10, k = 3, and n = 6» We will show that this Is always the case when 

% is an n-digit number. The following lemmas will be useful. 

Lemma 2: Suppose x = 2^i=:0aig2- Is a (k9 1)-integer. Let d = (g - k, kgn°~ - 1). 
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Then 

^ = 7 7 T a n - i ^ n - ! ) • g _ 
<7 - fc 

Proof: Since d divides g - fe, d = - for some p. Thus, we have: 

n - 1 n - 1 dEa / -kg - kfZa.gi -± >z- 1 . n-2 . , 
E af<?l+1 - E ^ + 1 - a„ 

Li= 0 i = 0 

^n-l^"- D =jhlan-^n- iy 

yn- 1 
Lemma 3: Suppose # = S ^ Q ^ g ^ is a ^ s 1)-integer. Then, for j > 2, we have 

kjx = ^ a i ^ + E <
a i ? i ' ( " " J , ) + r j ( ? ' 1 - 1 ) ' 

£= 0 i = n- j where 

*V = £ (*„-* - fc^X-i)^^-
i= 2 

Proof: The proof is by induction. Since the initial step with J = 2 is simi-

lar to the induction step, we will do only the latter. Consider 

V+1x = k4nz\9i + 1 + a n - i ) = gk^t^iff1 ~ kjan-i(gn - 1) 

9 
n£a.g^o+ "jr a.gt-to-n+r.ig" - 1) 

L i = 0 i = n-j 
- k3an_^g" - 1) 

n-i-2 re - 1 

i=o i=n-j-1 

+ ( a n - j - i - fcJa„-i>Q7n - 1) + r ^ ( ^ n - 1) 
n- j - 2 n- 1 

= E a^i + J ' + 1 + E a f f f i " ( B " , , " 1 ) + r 7 . + 1 (0» - 1 ) . 
£ = 0 i= n-j- I 

Theorem 4: Suppose t h a t x = 5Z. = Qaigi i s a (fc, 1 ) - i n t e g e r . Let d = (g - k, 
kgn~ l - 1 ) . Suppose ikr i s an n - d i g i t number with £ < d. Then # i s an (£, j ) -
in tege r i f I ~ k^ (mod d). 

Proof: Since & = k° (mod d ) , £ = k3 - sd for some nonnegative in t ege r s . Then 
by Lemmas 2 and 3, 

t = 0 i = n-j * ff - ̂  ̂- l ) ^ 1). 

Since ikr is an n-digit number, v. - s v
 a

n~ i m u s t equal zero. Hence, x is 
an (£, j)-integer. 

g - k 
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While (k5 1)-integers give rise to (£5 j)-integerss an (£? j)-integer need 

not be a (ks l)-integer. For example, the decadic number 153846 is a (4, 5)~ 

integer, but it is not a (k, 1)-integer for any k. 
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INTRODUCTION 

It is well known that the ̂ -binomial (Gaussian) coefficients satisfy 

the "finite" Euler identity ([2], p. 101): 

n-1>i>0 n>r>1 
'&xr, 

and that their q-adic limits 

llmf"] = n (1 - ql) 
L J Y> ̂  1 ̂  1 

l\-l 

satisfy the "infinite" Euler identity ([1], p. 254; [2], p. 105): 

,^-1^(2) . n (1 + qlx) = 1 + E O (1 - q'TV2'*2 

i>0 r> 1 v>i>1 

In [5], we showed that the ̂ -polynomial coefficients " satisfy the gen-

eralized "finite" Euler identity: 

We now complete the analogy by showing that the q-adic limits of these ^-poly-

nomial coefficients G^ (for each m > 1) satisfy a recurrence relation which 

generalizes that satisfied by 

n (i - q1)-1, 

and the generalized infinite Euler identity: 

(i)xj\= 1 + TG^P. n E q13"*™**)-1 + E C ^ 2 ' ^ 

This paper is organized as follows. We begin in Section 1 by defining the 

basic graphical terms. We then make the first of two valuations of the digraph 

in Section 2. In Section 33 the recurrence formula for Gi" is proved. The 
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generalized infinite Euler identity is proved in Section 45 and Section 5 con-

tains a short discussion of the special cases m = 1 and m = 2. 
We recall here the definition of the ̂ -polynomial coefficients (see [4], 

[5], and [6]). Let (ml9 3se, mn) denote the multiset on {l, . . . , n} in which 
the multiplicity of i is mn» The number of elements in (m19 . . . , mn) is mx + 

••• + mn and is denoted by \(m19 . .., rnn)\. We abbreviate the multiset (m19 

eee? mn) in which mx = ••• = mn = m to (n.m) . A multisubset (a19 . .., a„) of 

(n.rri) satisfies â  < #7, for i = 1, s»es n3 and it uniquely determines a comple-
mentary multisubset (a^9 e**3 af

n) satisfying ai + a[ = m (i = 1, . . . , n). An 

inversion between the multisets (a15 *»«, an) and (Z^, * * „ 5 bn) , in that order, 
is a pair (•£, j), where i is an element of the multiset (a19 ..., an) and j is 

an element of (bl9 »»«9 bn) 9 and i > j. Let I(a19 . .., a„) denote the number 

of inversions between (a19 **«5 an) and (a', . .., a^), where (a , ».»5 an) is 

a multisubset of (n.m). The q-polynomial coefficient 
the generating function 

is defined to be 

n„m 
^r |(als ..., a„)| = P 

1. GRAPHS 

Let m be a fixed positive integer. We consider the digraph with vertices 

all the lattice points in the first quadrant of the plane 

and directed edges 

(£, j) -> (i + 1, j), (£, j) -> (£, j + l)(i, j > 0). 

We will call a vertex an m-vevtex if there is a nonnegative integer fc such that 

i + j = ton. We will call a path of the form 

(is j) •*(£ + 1, J) + •••-*(£ + a, J) 

->• (i + a, J + 1) •> ° se •*• (i + a, j + &), 

where (£, j) is an ̂ -vertex and a + b = m9 an m-arcs and we will denote it by 

(£, j) •+ + (i + a, j + b). 

An m-arc of the form (i, j) -> -> (£, j -I- 7??) will be called a vertical m-arc» 
A finite sequence of consecutive m-arcs beginning with the origin followed 

by an infinite sequence of consecutive vertical m-arcs is called an m-path. In 
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an m-path, if (r - a, s - £>)->- •> (r, s) s where a + b = m> is the last nonverti-

cal m-arc, (r, s) will be called the terminal m-vertex of the m-path. The part 

of an m-path between (0, 0) and its terminal m-vertex will be called the valu-
able part of the m-path. 

2. VALUATION 

Until Section 4, we will assign to all directed edges of the form {i, j) ->• 
(i + 1, j) the monomial q*7^ and directed edges of the form (i, j) -> (£, j + 1) 

the trivial monomial 1 (i, j ̂  0) . 

The product of all the monomials on the m-path p (m-arc) is then called the 

value of the m-path p (m-arc) and is denoted by v(p; q, x) . Clearly, the value 
of an m-path is completely determined by its valuable part. In fact, if (r, s) 
is the terminal m-vertex, and if 

(0, 0) •* -»- (a19 a[) -> -> (a1 + a2, a{ + a!
2) -* -*- • • • 

-*• -> (ax + - - - + an, a{ + • * • + afi = (r, s) 

i s the va luable p a r t of t he m-path, t h e value of the m-path p i s 

v(p; q, x) = qa2al + a3(ai + aD+ •'• + an(al+ '-' + an-Jxr9 

Observe that 

I(a19 ..., an) = a2a[ + a3(a^ + a2) + ••• + an{a[ + ••• + a?^_1). 

This shows i?(p; q, x) = qJ(a:i» • • • > a")cĉ . Hence, 

Lemma 1: ^ = X y(p; <7> 1)» where the sum is over all m-paths from (0, 0) 
to (p, nm - r). 

We note that J(a15 . .., an) is also equal to the number of unit squares 

(area) under the m-path p ([3], p. 13). 

Theorem 1: Keeping the above notation, we have 

I(al9 . . . , an) = I{af
n, . . . , a j ) . 

Proof: I(a^s . . . , a[) = a ^ ^ + < _ 2 ( a n + a n _ x ) + . . . + a ^ ( a n + - - - + a 2 ) 
= a2a[ + agCaJ + a p + • - - + an(a[ + . . . + a^_±) 
= -Z"(ai, . . . , an)„ Q.E.D. 
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3- RECURRENCE RELATIONS 

Let G(m'(q, x) denote the power series obtained from summing the value of 

all the 77?-paths. Writing in the ascending powers of xs 

G{m\q, x) = 1 + £ ff<"V, 
r> 1 

we see t h a t G^m) = E v(Pl Q* 1)> where the sum i s over the se t of ???-paths with 

t e rmina l 777-vertex on the l i n e x = r„ Lemma 1 now implies 

C o r o l l a r y 2: [~n 77? 

V 
-> G%"\ as n -> °o„ 

Theorem 3: Let G™ = 1, G^m) = 0 , i f P < 0. Then, for a l l v > 1, 

GW = (1 - <7™)-1( £ {r-i)(m-i)Gim) ( E <7 
\m>i> 1 

Proof: Let p be an 7??-path with terminal m-vertex on the line x = r. Choose 

the largest k such that (0, km) is an 777-vertex of p and let (i, (k + l)m - i) 

be the next 7?7-vertex, 1 < £ < 777. Then 

V(p; q, 1) = q>*»+lr-iHm-»vip,. q> 1} > 

where pf is the 777-path obtained by deleting the part from (0S 0) to (£, (fc + 

1)777 -- i) from p and then translating so that the starting point is at the ori-

gin. The sum of v(pr; q5 1) for all such pf is G^m\. Thus, 

GM = £ qrU ^ ?(r-i)(W-i)^)^ 

= (1 - qIW)~1( E q<*-»<m-»G™\. Q.E.D. 

4. IDENTITIES 

Now, we multiply an additional factor of qi to each monomial q^x already 

assigned to the directed edges between the lines x = i and x = i + 1. Thus, 

the total sum of the values of all the 7??™paths is clearly changed from 

1 + E d?** 
p> 1 

to 

1 + E G™q^x*. 
r>l 

On the other hand, the sum of the values of the m-axcs emanating from each m-

ver t ex ( r , s) s a t i s f y i n g r + s = im i s now uniformly equal t o 

E qidm+^)xdm 
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Since each m-path consists of a valuable part followed by an infinite sequence 

of consecutive vertical m-arcs the value of which is 1, and since the valuable 

part consists of a finite sequence of consecutive m-arcs starting with (0, 0) 

and ending at its terminal w?-vertex, the total sum of the values of the 777-paths 

is equal to 

n £ O^-^TJ 
i>0 \m>j>0 

Equating these two formal power series and invoking Corollary 2, we obtain 

as n -*- °°. Then they satisfy Theorem k: Let G™ be the q-adic limit of v 
£ qidm+&)xA= 1 + £ G™q®x* 
•C>0 J T>\ n 

i>0\m>j>0 

It should be noted that Theorem 4 also follows directly from Theorem 3. 

5. SPECIAL CASES 

The case m = 1 is, of course, the Euler identity: 

II (1 + qix) = 1 + E G^V2^, 
i > 0 v>l 

where £(
n
1} = 1, and £(1) = O (1 - ql)"1, i f r > 1. 

(2) When m = 2, the recurrence for £:, is 

where G(Q2) = 1, G ^ = 0. If we let v be > 1, ̂ ^ = (1 - g 2 r)" V _ 1 > and fcp_2 = 

(1 - q2r)~1
9 the recurrence can be written as 

°r " ar-lUr-l + ^ - 2 ^ - 2 ' 

Using this notation, we may write the infinite product identity for the case 

m = 2 as 

(1 + x + qx2)(l + q2x + q5x2) ... (1 + q2 x + q^4"1^2) ... 

,(2). 

(1) (2\ I3\ 
1 + a0q2,x + (a0al + bQ)qK2'x2 + (aQaxa2 + bQa2 + a^^q^'x3 

+ (.a0a1a2a3 + b^a2a% + a0b1a3 + aQa1b2 + b^b-^q 

+ •••+( £ a.a, ... ar .)q^'xp + ••• 

= 1 + (1 - q2)-xq{ll)x + {(1 - q^^qd - q4)"1 + (1 - q^'^q^x2 

(continued) 
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+ {(1 - q2)'xqa - q*)-xqHl - q")'1 + (1 - q V V a ~ q6)' 

+ (1 - q2)-X(l ~ q^-^q^x3 + ••• . 

Here, by the notation, 

E a0a2 ... ar_± 

we mean that the sum is over all possible products obtainable from a a . . . 
a
Y-x by replacing in it blocks of two consecutive a.a.n by &.. There are F„ 
(Fibonacci number) such formal terms in G^\ This can be seen, by induction, 

from 

G{2) = a G(2) + b £(2) 

v r - l p - 1 P - 2 P - 2 

L aca* ••• a-

r-3 r - 2 

— . ° 1 
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In June 1985, twenty-three other high school students and I trained for the 

International Mathematical Olympiad in a three-week session hosted by the U.S. 

Military Academy. There I, along with three classmates (John Dalbec, Jeremy 

Kahn, and Joseph Keane) and the two coaches (Professor Cecil Rousseau and Gregg 

Patruno) considered oo(n), defined as the number of possible outcomes in a race 

among n horses with multiple ties permitted. This sequence was first studied 

by A. Cayley [1] as the number of a certain type of tree having n + 1 terminal 
nodes. His results have been extended by the more recent papers of Gross [3] 

and Good [2]. 

Before uncovering these three papers, we independently proved eleven re-

sults which can be found in [1], page 113, [2], pages 11-14, and [3], pages 5-

8. Although we found that Good's statement (p. 13)s 

0)(tt) 

2(ln 2) n + l 
< ~ for all n < 16, (1) 

could be extended to n < 17, the only important new results were my proofs of 
Good's Conjectures 1-5. These conjectures are concerned with the behavior of 

the sequence modulo v. To prove these, we need the following lemmas. 

Lemma 1: If n, k ^ 1, and we define (JO(0) = 1, then 

2*u)(n) ^ 2k-'-13n + t fc'nVn - j) . (2) 
3 " 1 J - 0 W ' 

Proof of Lemma 1: We have, by equation (4) of [2], 

2feu)(» = 2k V" -^- + 2k V (i + k)" 
/ h 2

J' + 1 i - o 2i + k + 1 

= E 2*-'-\r + E E J
 i+1 

= £ 2 * - ' - 1 j n + E ^ ' ( " W - J) . 
j = 1 j . o V«/ ' 
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Note that, we we let k = 1 in Lemma 1, we obtain a relation derived by Cayley 

([1], p„ 113). Similarly, we can prove 

2-*o>(n) = -i,2*'-k-1(-jr + t i-ky(".Un - j) . (3) 
j = o j = i w / 

From Lemma 1, we have the following useful result, 

Corollary; If n, k > 1, then 

(2* - l)a)(n) = kZ2k-J-1jn (mod fc) . (4) 
J = I 

It is interesting to note that the corollary, along with Fermatfs Theorem, 

provides a simple proof of Theorem 5 in [2]. Now we shall use the corollary to 

prove another lemma. 

Lemma 2: For an odd prime p, let q = pm and r = pm+1 be consecutive powers of 

p. Suppose the sequence co(a) , oo(a 4-1), OB9 modulo r has period c, where <? is 

a multiple of <j>(<7-)- Then 

<7-i 
0 = E 2£?-fe-1[(^ + ^p) c - 1] (mod r) (5) 

fc = o 

for # = 1 , 2 , . . . , p - 1. 

Proof: From the corollary to Lemma 1, we find that, for all n ^ a, 

0 = (2r - l)[a)(n + c) - a)(n)] = E 2r-J'-1jn(j° - 1) (mod r) . 
j = i 

It follows that for any polynomial P(j) with integral coefficients, 

l:2r-t'1jnPti)tia - 1) = 0 (mod r). 
J = I 

Let P(j) = 1 - (j - ^ ) p _ 1 and let n be a multiple of <|>(r) greater than a. By 

repeated use of theorems of Fermat and Euler, we make the following sequence of 

observations concerning the terms of the sum that are nonvanishing (mod r) % 

j t 0 (mod p ) , on = 1 (mod r), j c - 1 = 0 (mod q), 

J = # (mod p ) , P(j) = 1 (mod p ) , P(j)Ua - 1) = J°  ~ 1 (mod P ) . 

Thus, the sum reduces to 

E 2r"^+^)-1[(^ + kVY - 1] = 0 (mod r). 
k = 0 

Now r - (g + kp) - l = q - g - k - l (mod p - 1). Also, since c is a multiple 

of <f>(<?)» we have [ (g + &p)c - 1] E 0 (mod q) . Thus, by Fermatfs Theorem, we 
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may substitute 2q""g'k~1 for 2r~{g+kp)~1 in the last equation. Finally, multi-

plying by 29, we obtain 

X 2q-k"1[(g + kpY - 1] = 0 (mod r) . 
k = 0 

Now we are ready to prove the theorems. 

Theorem 1: Modulo a prime p, the period of the sequence [oo(n)] is at least 

p - 1. This, along with Good*s Theorem 5, implies that the period is exactly 

p - 1. 

Proof of Theorem 1: For p = 2, the result is clear. If p > 3, let c be the 

minimum period. Applying Lemma 2 with a = 1 and q = 0, and with g a primitive 

root modulo p, we have 

0 = 2p-1-9(g° - 1) (mod p). 

However, 2P~ ~9 is not divisible by p, so g° - 1 must be. Since we chose ^ as 

a primitive root modulo p, we must have c ^ p - 1. 

Theorem 1 does not imply that, if oo(n) E 0 (mod p) , then n = 0 (mod p - 1) . 

[A counterexample is oo(3) = 0 (mod 13.] Proofs of three of Good?s conjectures 

in [1] depended on this result: 

GCF(o)(n), oa(n + 1)) = 1, GCF(oo(n) - 1, oo(n + 1) - 1) = 2, and n|o)(n), 

for all n. The first is false because oo(1090), oo(1091), and oo(1092) are all 

divisible by 1093. The second and third are still open. 

Theorem 2: If q = pm with p prime, then for all n ^ m, 

oo(n + <$>(q)) = co(n) (mod q), (6) 

where § is Euler's totient function. 

Proof of Theorem 2: Since n > m, the terms in the sum given by (4) with j di-

visible by p will drop out. The result then follows from jn+<$>W = j n (mod q) , 

which is Euler?s Theorem. 

Theorem 2 does not tell us that the period of the sequence {oo(n)} modulo q 

is exactly (J)(q) for g a power of a prime. We know only that the minimum period 

must be a factor of <$>(q) . Theorem 3 shows that, when q is the power of an odd 

prime, this fundamental period is no less than <j)(<7). To prove this, we need 

one more lemma. 
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Lemma 3: For an odd prime p5 let q = p m and v = pm + 1« Then, for any integer ks 

(1 + kp)^ - 1 = ~kq (mod r). 

Proof: By the binomial theorem* 

a + kp)*™ = ^(H.q))(kPy. 

Let /(n) denote the greatest integer d such that p^ divides n. Then 

/ft*^)?*) = 2 fU) - t fti) + i = /(*(?)) - /(*) + i9 
x x ^ 7 j = <K<7)-£+i j = i 

Since /(cf>(<7) - j) = /(j) for any j with 0 < j < (f)(q) . But if f(i) > 05 then 

i > pf(i) > 3f(i) > f(i) + 25 

so i - f(£) > 2 for all £ > 2. Also3 f($(q)) = 777-1, so if we look at the 

binomial expansion modulo i\ all but the first two terms drop out: 

(1 + kp)Hq) - 1 E 1 + <f>(q)(kp) - i = ~kq (mod r) . 

Theorem 3: Let p be an odd prime. Then, modulo p m , the sequence 

03(77?) , 03(777 + 1 ) , 03(77? + 1) , . .. 

has period exactly $(pm) ® 

Proof of Theorem 3°  Theorem 1 proved the case 777 = 1. Now suppose that Theorem 

3 holds for a certain m. We shall prove that it must also hold for 77? + 1. Let 
q = p m

3 let r = pm + 1
9 and let o be the minimum period of the sequence {o3(n)} 

modulo v. By the inductive hypothesis, §{q) is the period modulo qs so o must 
be a multiple of §(q) . By Theorem 2S o must be a factor of $(r) . But C()(P) = 

p§(q) , so c is either (j)(g) or M ^ ) • 

Suppose c = <J>(<?)• Applying Lemma 2 with a ~ m and g = I yields 

0 E*£ 2
q-k-1[{\ + kp)° - 1] E^V-*-1^) (mod r), 

£ = 0 £ = 0 

by Lemma 3, Evaluating this sums we obtain 

0 = (2q - q - 1)^ E -<7 (mod P ) (by Fermat!s Theorem), 

a contradiction, Thus3 a = $0?), an(i t n e induction is complete, 

We now proceed to consider the sequence modulo a power of 2* 

Theorem k: If 1 < m < n - 4, then 

03(n + 2m) E 03(TZ) + 2m + h (mod 2m4"5). (7) 
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Proof of Theorem h: Set k = 2m + 5 in the corollary of Lemma 1.. Then 2* - 1 = 

-1 (mod k), so 

a>(w + a) - 0)(n) = -^2k"d'1jnU° - D (mod fc) . 
j-i 

Now set o - 2m. The terms with even j drop out because 2k~^~1 is even and j n 

is divisible by 2m + \ The terms with odd j < k - 5 also drop out since 2k~J'~1 

is divisible by 2h and j° - 1 is divisible by 2m + 1 (by Euler's Theorem). Thus, 

our sum reduces to 

o)(n + o) - o)(n) 
= -22(fe - 3)n[(/< - 3)c - 1] - (fc - l)n[(/c - l)c - 1] (mod k) 
E -4(-3)n(3c- 1) (mod k). 

To show that this is congruent to 2m+k modulo 2m + 5, it suffices to prove that 

2 m + 2 is the highest power of 2 dividing 

3*™ _ i = o 2 " " ^ l)(32m_2+ 1) ... (3 + 1)(3 - 1). 

This is true since the second-to-last factor is 4 and each of the other m fac-
tors is congruent to 2 modulo 4. 

Theorem 5* If (A) (ft) is expressed in binary notation as 

an0 + 2anl + 2^n2 + ^anZ + •••> 

then the sequence a ^ , a(/7?+ ̂ ^ a(m+2)m$ "•• r u n s into a cycle whose lengths for 

#7 = 0, 1, 2, 3,... are, respectively, 1, 2, 2, 1, 2, 4, 8,... . From this, it 

follows that, modulo 2m, the sequence aj(m - 1), 00(777), 0)(T7? + 1 ) , ... has period 

1 when 777 = 1, period 2 when 2 < 77? < 4, and period 2m~h when 7?7 > 5. [We define 

o>(0) = 1.] 

Proof of Theorem 5- By Theorem 4 with m = 1, if n > 5, then 

oo(ft 4- 1) E a)(n) (mod 32) , 

so for 777 < 5, the sequence a5 , a6m, £7m5 ••• is periodic with period dividing 

2. [The period is 1 iff aSm = &6m> which we see holds iff 77? = 3, by observing 

the five least significant binary digits of a)(5) and oo(6) . ] Also, by observing 

the five least significant binary digits of 0)(0) , 0)(1), ..., 0)(4) , we see that 

the periodicity begins with amm instead of a5m for 77? < 5. 

If 777 P 5, then in the sequence arm 9 ci(m+i)m» a(m+2)m> ••• ° f z e r o s and ones, 

the terms are the opposite of what they were, after every 2m~h terms, by Theo-

rem 4. This implies that, after 2m~3 terms, the sequence repeats. Hence, the 
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sequence runs into a cycle whose length is a factor of 2m~3 but not of 2m~h. 

Thus, the period is exactly 2777-3. 

Finally, to summarize and extend our results, we have the follox^ing: 

Theorem 6: Let the prime factorization of r > 1 be 2mpm^pm^ . .. p m
k . If 

a = maxfe - 1, m^ m2, m^s ..., mk] 
and 

b = LCM(<KPiOTi), <Kp™0, ..., <Kp&W*)), 

then the period of the sequence 

oj(a), 03 (a + 1), a) (a + 2) , . .. modulo r 

is exactly 

2?, if m = 0 or 1, 
LCM(2, fe), if 2 < 77* < 4, 

LCM(2m'\ & ) , if 77? > 5. 

Note that the period of {o)(n)} modulo P is not the product of the periods 

modulo its prime power factors, but is, rather, their lowest common multiple. 

This implies that even when r is odd, the period modulo r is not necessarily 
<t*(r) 5 although it must be a factor of <f>(r). The smallest example of this is 

v = 15, in which case the period is LCM(cf)(3)5 (f)(5)) = 4 instead of (j>(15) = 8-

Proof of Theorem 6: Let o be the claimed period. If n ^ 77? - 1, then 

0)(n + a) = 0)(n) (mod 2m) 

by Theorem 5, since c is a multiple of the period of {&o(n)} modulo 2m. Also, 

if n ^ 777̂ , then 

03(n + <?) = oj(n) (mod p.7"1') 

by Theorem 3, since e is a multiple of (Kp!77*), for £ = 1, 2 S...,L Hence, if 

n > a, 
oo(n + c) = 0)(n) (mod P ) . 

If the actual period d of {oj(n)} modulo 3? were any smaller than c, then it 

could not be a multiple of all the necessary periods modulo 2m and pmt, since 

c is their LCM. Suppose rf is not a multiple of the necessary period modulo p?. 

Then, for some n > a, 0)(n + d) t oj(n) (mod p?) , so 

o)(n + d) f oj(n) (mod r) , 

a contradiction. Hence, the period given is minimum. 
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Now that we have finished proving the main theorems, we will conclude with 

a few applications of Theorem 6 and other miscellaneous results: 

(a) o)(12k) = b)(l2k + 3) = 0 (mod 13). 

(b) 59|o)(ll), so 59\b)(58k + 11). Dirichletfs Theorem implies that there 

are infinitely many primes of the form 58k + 1 1 , so there are infinitely many 

primes p for which co(p) is composite. 

(c) 9/̂ 0)(n) for any n, so there seems to be no generalization of p|o)(p - 1) 

([12]5 p. 23) to powers of odd primes. 

(d) For any prime p and any rn > 1, oo(pm) = 1 (mod p) , so if n|a)(n), n has 

at least two distinct prime factors. 

(e) For odd primes p and q, pq\b)(pq) iff p\u>(q) and q\u(p). There are no 

such primes less than 1700, but I conjecture on probabilistic grounds that such 

primes do exist. 

(f) For all n, GCF(oo(n) - 1, o)(n + 1) - 1) has no divisor less than 1700 

except 2. Yet, again on probabilistic grounds, I conjecture that there exists 

n for which GCF(co(n) - 1, o)(n + 1) - 1) + 2. 

(g) The only r for which the period of {oo(n)} modulo r is exactly (j)(p) are 

the numbers of the form pm and 2pm
9 where p is an odd prime, and 4. 
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1. INTRODUCTION 

In an earlier paper [2], a study was made of Fibonacci and Lucas curves in 

the plane, and their Laser-printed graphs were exhibited. These graphs were 

drawn from the equations of the curves, rather than from the tabulated lists 

of values of the Cartesian coordinates x and y9 which also served a purpose of 

their own. It is desirable to extend the work in [2] and so produce a more 

complete theory. 

Here, we present basic information about the corresponding curves associ-

ated with (i) Pell and Pell-Lucas numbers, and (11) Jacobsthal and Jacobs thai-
Lucas numbers, in our nomenclature. 

Curves associated with (i) will carry the generic name of Pell curves while 

those connected with (ii) will be designated Jacobsthal curves, There seems to 

be no theory related to (i) and (ii) which corresponds to the result of Halsey 

[1] for Fibonacci numbers. 

To avoid unnecessary duplication in our discussion, we will consider the 

numbers in (i) and (ii) (as well as the Fibonacci and Lucas numbers) to be spe-

cial instances of a general sequence {wn} whose relevant properties will be 
investigated. 

Thus, the Pell and Jacobsthal curves, as well as the Fibonacci and Lucas 

curves, may be thought of as members of a family of curves which we shall des-

ignate as w-curves. 
The two Pell curves and the two Jacobsthal curves resemble the Fibonacci 

and Lucas curvess so we will not reproduce them here* Instead, the reader is 

invited to compare them in the mind?s eye with the curves exhibited in [2]. 

2a GENERALITIES 

Let a, b, p, and q be real numbers, usually integers. 
Define the sequence {wn} by 

Wn+2 = PWn + l ~ ^n* W0 = 2 b > Wl = a + & (n > 0) B (2.1) 
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Extension to negative values of n may be made, but we do not require it here. 

The explicit Binet form for Wn is 

wn = (Aan - S3n)/(a - B), 

where a, B are the roots of the characteristic equation 

X2 - pX + q = 0, 

so t h a t 

and 

a = (p + Vp2 - 4<?)/2 
= (p - Vp2 - 4qr)/2 

^ a + B = p , a 6 = ^ 5 a B = v^2 - 4q 

The Fibonacci and Lucas sequences are well known. 

Some values for the other sequences are: 

{Qn} 

{J J 
{«/„} 

In what follows, q < 0. 

Write 

<? = -1 • 2> (r > 0) , 

so, by (2.4) 

n = 0 

0 

2 

0 

2 

1 

1 

2 

1 

1 

2 

2 

6 

1 

5 

3 

5 

14 

3 

7 

4 

12 

34 

5 

17 

5 

29 

82 

11 

31 

6 

70 

198 

21 

65 

7 

169 

478 

43 

127 . . . 

3 = -1 

Only the cases 

q = -1, 

78 

a 

i.e., r = 1 [cf. (2.5)-(2.8)] 

(2.2) 

(2.3) 

(2.4) 

(A = a + b - 2&B, 
\ B = a + 6 - 26a . 

S p e c i a l c a s e s of iwn] 

SEQUENCE 

{Fn}: F i b o n a c c i 

{Z/n}: Lucas 

{ P n } : P e l l 

{ $ n } : P e l l - L u c a s 

{ j n } : J a c o b s t h a l 

a r e : 

{jn}:Jacobsthal-Lucas 

P 

1 

1 

2 

2 

1 

1 

<7 

- 1 

- 1 

- 1 

- 1 

- 2 

- 2 

a 

1 

0 

1 

1 

1 

0 

b 

0 

1 

0 

1 

0 

1 

a 

(1 + i / 5 ) /2 

(1 + i /5 ) /2 

1 + 1/2 

1 + yfl 

2 

2 

(1 

(1 
1 

1 

g 

- i/5)/2 
- V5)/2 
- / 2 

- / 2 

- 1 

- 1 

( 2 . 5 ) 

( 2 . 5 ) 

( 2 . 6 ) 

( 2 . 7 ) 

( 2 . 8 ) 

( 2 . 9 ) 

( 2 . 1 0 ) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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and 

3 = -1, i.e., v = a (= 2) [cf. (2.9)-(2.10)] 

will concern us. 

3. THE w-CURVES 

For Cartesian coordintes xs y of a point in the plane, let 

x = ^ c t 0 - B(~) COS 0TrV(a - 3) 

and 

( 2 . 1 8 ) 

( 3 . 1 ) 

( 3 . 2 ) y = -£oT b s i n 9Tr/(a - 6 ) , 

where 0 i s r e a l , , 

Comparing ( 3 . 1 ) w i t h ( 2 . 2 ) 5 we may r e f e r t o ( 3 , 1 ) a s t h e genevdl'Lzed B-Lnet 

form of wn* When 0 = n , i n t e g e r , we have x = Wn by ( 2 . 2 ) and ( 3 . 1 ) . 

As 0 v a r i e s i n ( 3 . 1 ) and ( 3 . 2 ) , we o b t a i n t h e W-curves. 

Now, from ( 3 . 1 ) and ( 3 . 2 ) , we have 

and 

dy 
de 
dx 

Ba~Q ( l o g a s i n OTT - TT COS 0f r ) / ( a - 3) 

l o g a + 5 ^ ) " 0 | l o g ^ c o s 0TT + IT s i n 0TT| /(a - 3) , 

whence -f- = 0 i f 
dx 

t a n 0TT = 
( 6 . 5 2 8 f o r ( 2 . 5 ) , ( 2 . 6 ) — s e e [2] 

= < 3 . 5 6 5 f o r ( 2 . 7 ) , ( 2 . 8 ) 
( 4 . 5 3 8 f o r ( 2 . 9 ) , ( 2 . 1 0 ) log a 

yielding 

07T = 8 1 ° 1 6 f , 7 4 ° 2 1 f , 7 7 ° 3 4 f , 

r e s p e c t i v e l y , i . e . , 

( 0 . 4 5 
0 = < 0 . 4 1 

1 0 . 4 3 , 

respectively, for the three cases in (3.5). 

Write (3.5) as 

{si 
(CO 

i n QTI = ±ki\ 
cos Qn = ±k l o g a , 

i . e . , 

g i v i n g 

k = [TT2 + ( l o g a ) 2 ] ~ 1 / 2 

( 0 . 3 1 
k = < 0 . 3 0 

( 0 . 2 9 9 , 

respectively, for the three, cases in (3.5). 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.8)' 
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Eliminate 0 from (3.1) and (3.2) for the specific values of 0 covered in 

(3.5) for stationary points.* i.e., for 

tan(0 - m)TT = — (m an integer). (3.5) f 

With the aid of (3.7) , we find that the locus of the stationary points is gen-

erally given by 

y2 - T
JL—xy = ± ^ — ( A = a - g ) , (3,9) 

y log a ^ A2log a 

which represents the branches of two hyperbolas (a hyperbola and its conjugate 

hyperbola) in the first and fourth quadrants. 

Common asymptotes of these hyperbolas have equations 

y = 0 and y = — — — x 9 (3.10) 
y v log a 

the gradients of the oblique asymptote being given in (3.5). 
Inflexions on these curves are established in the usual way. When x and y 

are replaced by the functional notation x(Q) and z/(0), it may be demonstrated 

as in [2] that (3.1) and (3.2) do reproduce the w-type recurrence relations, 

namely, 

x(0) = px(Q - 1) - qx(Q - 2) (3.1) r 

and 
z/(9) = py(Q - 1) - qy(Q - 2) . (3.2)' 

h. PELL CURVES 

Consider the generalized Fell sequence {Rn} defined by (2.1) in which p = 2 

and q = -1, namely, 
Rn+2 = 2Rn + l + Rn> R0 = 2b> Rl = a + b (n > ° >• (4-1> 

From (2,2), we have the Binet form 

Rn = (Aan - B$n)/2/2s (4.2) 

where a, (3 are given in (2.7) [and (2.8)] and A and B in (2.5). 
For the Pell numbers Pn given in (2.11), and for the Pell-Lucas numbers Qn 

given in (2.12), we have 

Pn : a = 1, b = 0, A = B = 1 (4.3) 
and 

Qn : a = 1, b = 1, A = -B = 2^2. (4.4) 

Binet forms for Pn and S n are then readily obtained from (4.2). 

Substituting appropriately in (3.1) and (3.2), we derive 

x = ( a e - a" e cos 9TT)/2V/2 4 ( 4 . 5 ) 
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and 
y = _ a " 0 s i n 0TF/2V^ ( 4 . 6 ) 

f o r t h e P e l l c a s e s and 

x = a 6 + a"e cos 9TT ( 4 . 7 ) 
and 

y = a"6 s i n 0TT ( 4 . 8 ) 

for the Pell-Lucas case. 

Equations (4,5) and (4.7) are the modified Binet forms for Pn and Qn, re-
spectively. When 0 = n9 integer, we get the usual Binet forms for Pn and Qn, 
ise*3 x = Pn and x = Qn9 respectively* 

The locus given by (4.5) and (4.6) is the Pell curve. Its stationary points 

lie on the two appropriate branches of the hyperbolas 

y2 - i- 5— xy = ± —^—- (a = 1 + V2). (4.9) 
J log a y 8 log a v v ' 

Equations (4.7) and (4.8) yield the Pell-Lucas curve. Stationary points of 

this curve lie on the hyperbolic curves 

yz _ —2—xy = ± J 2 ! _ (a = i + ^2). (4.10) 
^ log a -7 log a 

In both (4.9) and (4.10), the value of k is given in (3.8) f. Asymptotes 

common to the curves in (4.9) and (4.10) are y = 0 and y = (ir/log a)#, whose 
gradient is given in (3.5). 

Suppose we put a = 3̂  b = 1 in (4.1) so that ,4 = 2a, 5 = 2$9 
Then (4.1) or the Binet forms for Pn$ Qn9 and Rn yield 

P* = 2Pn +.Qn (4.11) 

= 2Pn+1 since Qn = Pn+1 + Pn_1. 

Thus, a composite curve for 2P6 + Qs is equivalent to the Pell curve for 2PQ + 1. 

Furthermore, from (4.11) or the Binet forms, we deduce that 

Rn = (a - &)Pn + W „ (4.12) 

= (a-£)P„ + M P n + 1 +P„. 1) 

= (a + 2>)P„ + 2£P n v n n -1 

[= P* = 2P _,., when a = 3, & = 1, as in (4.11)]. 
n n +1 

5, JACOBSTHAL CURVES 

Next3 consider the generalized Jacobsthal sequence i^n} given by 

A + 2 = A + i + 2/n> / o " 2 6 » /ima + b &><>). (5.1) 
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From (2,2), we have the Binet form 

A = ^ m i (5.2) 

in which a (= 2), S (= -1) are already given in (2.9) and (2.10), and A, B are 
given in (2.5). 

Particular cases of (5.1) are the Jacobsthal numbers Jn given in (2.13) and 

the Jacobsthal-Lucas numbers j n given in (2.14) for which 

Jn i a = 1, b = 0, A = B = 1 (5.3) 
and 

j n : a = 0, b = 1, A = -B = 3. (5.4) 

Binet forms for Jn and j n then readily follow from (5.2). 

Appropriate substitution in (3.1) and (3.2) produces 

x = (2e - cos 9TT)/3 (5.5) 
and 

y = -2"e sin QTT/3 (5.6) 

for Jn 5 and 

x = 2e + cos 9TT (5.7) 
and 

y = 2"e sin 0TT (5.8) 

for j n . Note the effect of (2.18) on (3.1) in (5.5) and (5.7). 

Equations (5.5) and (5.7) are the modified Binet forms for Jn and j n 9 re-

spectively. Setting G = ns integer, we have the ordinary Binet forms for Jn 

and j„, i.e.5 x - Jn and x - j n 9 respectively. 

The locus given by (5.5) and (5.6) is the Jacobsthal curve. Its stationary 

points lie on the appropriate branches of the rectangular hyperbolas 

y (x±iLl|^) = T * E . (5.9) 

Equations (5.7) and (5.8) yield the Jacobs thai-Lucas curve. Its stationary 

points lie on the rectangular hyperbolic branches 

y(x ± k log 2) = +fe7T. (5.10) 

In both (5.9) and (5.10), the value of k is given in (3.8) '. 
Put a = 1, b = 1 in (5.1) so that A = -B = 4. 
Hence, as for the Pell case, 

Jn = Jn + Jn (5.11) 
= 2J Mn. 

n + 1 
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Thus, a composite curve for JQ + j Q is equivalent to the Jacobsthal curve 

Finallys 

A = aJn +
 bJn (5.12) 

= aJn + b{2Jn_1 + Jn + 1) since j n = Jn + 1 + 2Jn_± 

= (a + b)Jn + tt>Jn_x 

= AJn + 2M-1 b^ (5 >̂ 
[=/* = 2Jn + 1 when a = 1, 2? = 1 as in (5.11)]. 

Notice the formal similarity of the right-hand sides of (4,12) and (5.12). 

In choosing the expression for y in (3.2), we could have opted to pick a/r 

instead of a, both of which seem to be permissible as extensions of Wilson1s 

original idea [2] for Fibonacci curves. Choice of a/r, however, appears to be 

the less appropriate. 

Some obvious limits might be noted, and compared with similar limits for 

{Fn} and {Ln}B These are: 

liml-y-J = 3 liml—-— = liml—:—-

Our concluding comment is of a geometrical nature. If we consider sequen-

ces in which two terms have the same value, e.g., J1 = J2 = 1 and F1 = F2 = 1, 

we observe that, as 0 passes through the set of values giving these coincident 

numbers, the curve will necessarily have a node (i.e., a loop at a double-point) 

there. Thus, in (5.5), the Jacobsthal curve has a node at x = 1, as 6 lies in 

the range 2 < 6 < 3. Similarly, the Fibonacci curve has a node occurring when 

x = 1 and 1 < 6 < 2. 
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= 1 + /2: 

= 2. 

(5.13) 

(5.14) 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P* HILLMAN 

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solu-
tion or problem should be on a separate sheet (or sheets). Preference will be 
given to those typed with double spacing in the format used below. Solutions 
should be received within four months of the publication date. 

DEFINITIONS 

The Fibonacci numb ers Fn and the Lucas numbers Ln satisfy 

Fn + 2 " Fn+1 +F„, F0 - 0 , F^- 1 
and 

Ln + 2 = Ln + 1 + Ln* L0 = 2 * Ll = l s 

PROBLEMS PROPOSED IN THIS ISSUE 

B-610 Proposed by L. Kuipers, Serre, Switzerland 

Prove that there are no positive integers p9 ss t such that (Fp9 Fs , Ft) 
is a Pythagorean triple (that is, such that Fp + F* = F^). 

B-611 Proposed by Herta T. Freitag, Roanoke, VA 

Let 
n 

S(n) = E Lhk+i» 

fc = l 

For which positive integers n is S(n) an integral multiple of 3? 
B-612 Proposed by Herta T. Freitag, Roanoke, VA 

Let 

k = 1 

For which positive integers n is !F(n) an integral multiple of 7? 

B-613 Proposed by Piero Filipponi, Fond. U„ Bordoni, Rome, Italy 

Show that there exist integers a* 2>, and e such that 

Fn + P + Fn-p = 0Fn%2 + b(-l)PF* + C(-1)"F*. 
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B-614 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let L(n) - £ n „ 2 V A + A + 2 a n d *<*> = ̂ -2^-1^+1^+2- S h o w t h a t 

L(n) = F(n) (mod 8) 

and express [L(n) - F(n)]/8 as a polynomial in F„. 

B-615 Proposed by Michael Eisenstein, San Antonio, TX 

Let C(n) = Ln and an = C(C(n)). For n = 0, 1, . .., prove that 

an+3 ~ an+2an+l ~ an° 

SOLUTIONS 

Fibonacci Convolution 

B-586 Proposed by Heinz-Jurgen Seiffert, Student, Berlin, Germany 

Show that 5T.Fk+1Fn+1_k = (n + 1)F + (« + 3)* +1. 
fe = 0 

Solution by Bob Prielipp, University of Wi scons in-Oshkosh 

It is known that 

5(Vt-l + V t - 2 + ••• +^-2^2 + F£-1F1> 

[For a proof of this result, see (1.12) on p. 118 of "Fibonacci Convolution 
Sequences" by V. E. Hoggatt, Jr., and Marjorie Bicknell-Johnson, which appears 
in the April 1977 issue of this journal.] Thus, 

n 
5Zfk+1Fn+1-k = HF1Fn+1 +F2Fn + ^ . +FnF2 + F n + 1 F 1 ) 

- [(n + 2) - HF(n + 2 ) + i + [(n + 2) + H ^ ^ 
= (n + 1)F _,, + (n + 3)F ^, . 

x ' n + 3 v 7 n+1 

Also solved Jby Demetris Antzoulakos, Paul S. Bruckman, Laszlo Cseh, Russell 
Euler, Piero Filipponi & Odoardo Brugia, Herta T. Freitag, George Koutsoukel-
lis, L. Kuipers, Jia-Sheng Lee, Carl Libis, Sahib Singh, J. Suck, Nico Trut-
zenberg, Gregory Wulczyn, and the proposer. 

D. E. for Fibonacci Generating Function 

B-587 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 
<x> oo 

Let y = £ Fnxn/nl and z = £ Lnxn/nl . 
n = 0 w = 0 

Show that yn ~ y T + y and 3" = %'r + s. 
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Solution by Alberto Facchini, Universita di Udine, Udine, Italy 

Since 

V ' m toFH + 1xVnl . y" =±oFn + 2xn/n< and Fn+2 - F „ + 1 + Fn, 

the desired result follows. The proof for z is similar. 

Also solved by Demetris Antzoulakos, Charles Ashbacher, Pauls. Bruckman, Gab-
riel Ba Costa, Laszlo Cseh, Russell Euler, Piero Filipponi, L* Kuipers, J.-5. 
Lee, Carl Libis, Bob Prielipp, tf.-J. Seiffert, Sahib Singh, Lawrence Somer, 
and the proposer. 

Closed Form Exponential Generating Function 

B-588 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Find the y and z of Problem B-587 in closed form* 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh 

Let a = (1 + /5)/2 and b = (1 - ̂ 5)/2. Then, 

y = E ^ " / n ! = £ an " hn(xn/nl) = —(ea a ? - eh*) 
n = 0 n = 0 /5 /5 

and 
s = E Lnxn/n\ = E («n + 2>n)(a?*/n!) = e** + e**. 

n=0 n=0 

Also solved by Demetris Antzoulakos, Paul S. Bruckman, Laszlo Cseh, Russell 
Euler, Alberto Facchini, Piero Filipponi, Jia-Sheng Lee, Carl Libis, H.-J. 
Seiffert, Sahib Singh, Lawrence Somer, and the proposer* 

Periodic Decimal Expansions 

B"589 Proposed by Herta T. Freitag, Roanoke, VA 

The number N = 0434782608695652173913 has the property that the digits of 
KN are a permutation of the digits of N for K = 1, 2, . . . , m. Determine the 
largest such m. 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh 

The largest such 77? is 22. 

N consists of the 22 digits in the period (in base 10) for 1/23. As is 
easily checked, 23N is the 22-digit numeral each of whose digits is a 9. 

Dickson reports : "J.W. L. Glaisher . . . noted that if q is a prime such 
that the period for l/q has q - 1 digits, the products of the period for l/q 
by 1, 2, *.«, q .-' 1 have the same digits in the same cyclic order* This prop-
erty, well known for q = 7, holds also for^ = 17, 19, 23, 29, 47* 59* 61, 97, 
and for q = 72*!! [See Dickson, History of the Theory of Numbers* Vol* I, p. 
171 (New York; Chelsea Publishing Company, 1966).] 
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Also solved by Charles Ashbacher, Paul S. Bruckman, Plero Filipponi, L. Kui-
pers, Marjorie Johnson, Jia-Sheng Lee, Sahib Singh, Nico Trutzenberg, and the 
proposer* 

Leftmost Digit 

B-390 Proposed by Herta T. Frietag, Roanoke, VA 

Generalize on Problem B-589 and describe a method for predicting the left-
most digit of KN« 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh 

For the generalizations see the solution to B-589. 

Let q be a prime number such that the period for l/q has q - 1 digits. 
Also9 let M consist of the q - 1 digits in the period (in base 10) for l/q. 
To predict the leftmost digit of KM3 K = 1, 29 »e*9 q - 1, write the digits of 
M in increasing order with each digit appearing in the sequence SM exactly as 
many times as it appears in M. Then the leftmost digit of KM is the Kth entry 
in the sequence SM. This follows from the fact that the products KM have the 
same digits as M in the same cyclic order and increase as K increases. 

Example: For N$ SN = 09 09 ls l 9 2 9 2 9 3 s 3 9 3 9 4 9 4 9 5 9 5 9 6 9 6 9 6 9 7 9 7 9 8 9 8 s 9 9 9 . 
Thus9 the leftmost digit of 6N is 2 and the leftmost digit of 1221/ is 5. 

Editorial Note: Paul S* Bruckman gave the formula [lOK/q] for the leftmost 
digit of KN. 

Also solved by Paul S. Bruckman, Piero Filipponi, Marjorie Johnson, Jia-Sheng 
Lee, Sahib Singh, and the proposer. 

Interval With No Zeros 

B-531 Proposed by Mihaly Bencze, Jud» Brasa, Romania 

00 

Let F(x) = 1 4- £ a n x n with each an in {09 l}. 
n = l 

Prove that f(x) 4 0 for all x in - l/a < x < l/a, where a = (1 + V/5)/2. 

Solution by H.-J, Seiffert, Berlin, Germany 

If 0 < x9 then9 of course, F(x) > 0. Now assume that -l/a < x < 0. Then 

Fix) = 1 + t anxn > 1 + E ^fc-i*2*"1 

"-1 k-l 

> 1 + ± a?2*"1 > 1 - E d /a) 2 ' - 1 = ^ ^ ~ = 0. 
fe = i k = i a - 1 

Also solved by Pauls. Bruckman, Odoardo Brugia & Piero Filipponi, L. Kuipers, 
and the proposer. 

88 

•<>•<>• 

[Feb. 



ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
RAYMOND E* WHITNEY 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, 
PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, all solutions 
should be submitted on separate signed sheets within two months after publica-
tion of the problems. 

PROBLEMS PROPOSED' IN THIS ISSUE 

H"4l8 Proposed by Lawrence Somer, Washington, D*C« 

Let m> 1 be a positive integer. Suppose that m itself is a general period 
of the Fibonacci sequence modulo mi that is9 

Fn+m E Fn (mod w> 

for all nonnegative integers n. Show that 2^\m» 

H-419 Proposed by H.-J. Seiffert, Berlin, Germany 

Let PQ s P s ... be the sequence of Pell numbers defined by 

P0 = 0S P1 = 1, and Pn = 2Pn„x + Pn„2 for ne{2s 3, . . . } . 

Show that 

(a) 9ikFkPk = 3(n + D(^P„ + 1 + Fn + lPn) - Fn + 2Pn+2 - FnPn + 2, 

(b) 9±kLkPk = 3(« + D(LnPn + 1 + Ln + 1Pn) - Ln + 2Pn+2 - LnPn, 
k = 0 

(c) Fm + n + 2Pn+2 + Fm+nPn = 3in + 1)F„ + Lm (mod 9). 

<d> L
m + n + 2Pn+2 + Lm + rPn = 3 <" + ^Lm + 5Fm (™>* 9 ) . 

where n is a nonnegative integer and w any integer. 

H-42Q Proposed by Peter Kiss, Teachers Training College, Eger, Hungary and 
Andreas Na Philippou, University of Patras, Patras, Greece 

Show that 2 
n-i 2 2 " _ x 
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SOLUTIONS 

Editorial Note: H-307 was listed as an unsolved problem. Howevers the solu-
tion for H-307 was inadvertently placed in the same issue as the problem. 

Return from the Dead 

H-211 Proposed by S« Krishman, Orissaf India 
(Vol. 11, no. lf February 1973) 

A. Show that I J is of the form 2nzk + 2 when n is prime and n > 3. 

(2n - 2\ 3 2 
B. Show that I - J is of the form n k - 2n - n when n is prime. 

I . J represents the binomial coefficients ml / (jl (m - j) ! ) . 

Solution by Paul S. Bruckman, Fair Oaks, CA 

Consider the expansions 

(1) (x + 1) (x + 2) •9 * (x + n - 1) = xn~x + A xn~2 + • °  • + A n _ 2 + ̂ n_19 

where 4^ is the sum of the products of the k different members of the set 
1 j ^-S • » » 3 TL"m" X « 

If n > 3 is prime9 Theorem 113 in [1] states: 

(2) Ak = 0 (mod n ) 9 k = l 5 2 S 8 B . 9 n ~ 2 8 

Moreover9 Wolstenholme!s Theorem (Theorem 115 in [1]) states: 

(3) ^n-2 E ® (mod n2) 9 provided n > 3. 

Also9 Wilsonfs Theorem states: 

(4) A n _ 1 = (n - 1)1 = -1 (mod n). 

If n > 3 (and prime)5 thens by (4): 

(n!)2 = n2(an - I) 2 for some integer a. 

Also5 setting x = n in (1) and applying (2)> (3)5 and (4), we obtain 

(In - 1)! In\ = an - 1 + n * Z?n2 + n2 • en + dn3 = an - 1 + jrz3 

(for integers £>, £9 d9 and /; here ffaff is the same integer as in the previous 
statement). Therefore, 

(2n\ 2n (2n - 1) ! 2 / 1 , . 3, 
i J = —r- -—— :— z — = r-(an - 1 + fn) 
\n / n\ nl an - 1 J 

+ _̂ Al 2 + -J^J__ = 2 (mod 2n3) ; 
an - 1 s 

this proves part (A) of the problem. 
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Now 9 

(?--/) 2(2n l)\n); 

hence, agains if n is a prime greater than 39 

n(2 + 2kn3) a---!2) 
a---/)-

2(2n - 1) 

2\ _ n(kn3 + 1) 
2n 

(for some integer k), so 

E (/cn3 + l)(-n)(l + 2n) (mod n3) 

2n2 (mod n3); = -n 

this proves part (B). 

Reference 

1, G. H, Hardy & E, M. Wright, An Introduction to the Theory of Numbers* 4th 
ed. (Oxford: Clarendon Press, 1960), ppe 86-88. 

Another Ancient One 

H-213 Proposed by V. E« Hoggatt, Jr., San Jose State University, 
(deceased) (Vol. 11, no. 1, February 1973) 

A. Let An be the left adjusted Pascal triangles with n rows and columns 
and 0fs above the main diagonal. Thus*, 

A„ = 

T T 

Find An
 @ An5 where An represents the transpose of matrix An. 

Let 

1 
1 
1 

0 
1 
2 

0 
1 

• 
• 

0 . 

. . 0 

. . 0 

. . 0 

1 
0 
0 
0 

0 
1 
1 
0 

0 
0 
1 
2 

0 
1 0 

. . . 0 

. . . 0 
9 e 9 0 
. . . 0 

where the ith column of the matrix Cn is the ith row of Pascal fs tri-
angle adjusted to the main diagonal and the other entries are zeros. 
Find Cn • AT

n» 

Solution by Paul SB Bruckman, Fair Oaks, CA 

Part (A): We see that 

a id Q), 0 < i9 j < n - 1, 
with the convention that CL^A = 0 outside this range. Hence,, if B = AAT, and 
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m = min(£9 j), then 

'"•^•i.(3(S-,?i(3G^)-(<;J) 
(using Vandermondefs convolution), provided 0 < i5 j ^ n - 1. 

This is a symmetric matrixs whose rows (and columns) are the coefficients 
of powers of (1 - x)'1. 

Part (B): We see that 

a- • = ( . . b where 0 < .7 < i < 2j < 2n - 2S <?. • = 0 elsewhere. 

If £ = C^T9 and if u = [%(£ + 1)], then 

<*»-£*««**\?(i-fcX0-fc = u k = u 
Note that 

where the last sum is over nonnegative integers n1$ n2» n33 such that 

ni + n2 + n3 = «7» n i + 2n2 + 3n3 = £ + j . 

Thus 5 

j.. = y (ni + n2 + ns\ 

over the range indicated 9 for 0 < i9 j < n - 1 Wtj = 0 if i > 2j) . Hence, 
the columns of D = CAT are the rows of the Pascal trinomial triangle truncated 
after n terms. 

Some Operator 

H-397 Proposed by Paul S. Bruckman, Fair Oaks, CA 
(Vol. 24, no. 2, May 1986) 

For any positive integer n9 define the function Fn on C as follows: 

Fn(x) = (g* - l)(a;), (1) 

where ̂  is the operator 

g(x) E x2 - 2. (2) 

[Thus , F3 (x) = {(x2- 2 ) 2 - 2 } 2 - 2 - ar = ^ 8 - to6 4- 2 0 ^ - 16x2 - x + 2 . ] F ind 
a l l 2 " z e r o s of F n . 
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Solution by the proposer 

We find that the following substitution yields fruitful results^ 

x = 2 cos 0. (3) 

For then 

g(x) = 4 cos2e - 2 = 2 cos 20 s gz(x) = 2 cos(220), etc* 

gn(x) = 2ncos(2n0)s 

Hence, Fn (x) = 2 cos(2n0) - 2 cos 0. Setting Fn (x) - 0 yields: 

2n0 = ±0 +. 2fcir for all integers ft; 

since 

0 = 2kl\/(2n ± 1), 

we may restrict ft to the values 0S 1, ea.s (2n ± 1) - 1. 

We consider the two cases implied by the ± sign above separately. If 0 = 
2ftlT/(2n - 1), we may further restrict ft to the values 05 1, *e*9 2n~1 - 1; for 
if 2n~1 < ft < 2n - 23 then kf = 2n - 1 - ft satisfies 1 < ftf < 2""1 - 1, i0e»5 

ftf repeats the same values previously assumed by ft9 except for zero. More-
over ,, 

cos(2ftfTT/(2n - 1) - COS(2TT - 2ft7r/(2n - 1)) = cos(2ftTr/(2n - 1)); 

thus3) fte[09 2n~1 - 1] generates all zeros of Fn under this case. 

If 0 = 2ftn7(2n + l),we may restrict ft to the values 1, 2, e * e 9 2n~1; for 
if 2n"1 + 1 < ft < 2W, then k' = 2n + 1 - k satisfies 1 < ftF < 2*"1, i.e.5 ftf 

repeats the same values previously assumed by ft* Moreover3 as before, 

cos(2ftfTr/(2n + 1)) = cos(2ftir/(2n + 1)). 

Thus* all zeros of Fn are generated In this case by the values fc€ [1, 2 n ~ 1 ] 9 

The zeros of Fn found above are 2n In number, which is expected in an 
equation of degree 2n. Further, they are distinct, since (2n - 1) and (2n + 1) 
are relatively primes and all zeros In each of the two cases considered above 
are distinct. Thuss the zeros of Fn are as follows! 

2 cos{2(ft - l)TT/(2n ~ 1)} 
or 

2 cos{2ftiT/(2n + 1 ) } , fc = 1, 2 , . . . . 2n'1. 

For examples 
4 

F~ (x) = 0 ix - 2 cos(2( f t - l)i\/l)}{x - 2 cos (2ftlT/9)}. 
6 fc-i 

A P i e c e of P i e 

H-398 Proposed by Ambati Jaya Krishna, Freshman, Johns Hopkins University 
(Vol. 24, no, 2, May 1986) 

Let 

ct + b + c + d + e 
and 

( ? ( ^ r f 9l-B + 7 l - 2 B ) ) S 
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a2 + b2 + c2 + d2 + e2 = j ^ f w - \ 

a9 2?s <39 cZ, e e 3R. What are the values of a, b, c9 d9' and e if e is to attain 
its maximum value? 

Solution by Paul S. Bruckman, Fair Oaksf CA 

(t £u>$r+tiny - (—'© •-• -^))' 

Also, 

a + & + c + d + £ = T T / 1 6 . (1) 

£ ^~* = 5(4) = TTV90, 
I 

a2 + b2 + c2 + d2 + e2 = TTV1024 = (TT2/32)2. (2) 

To simplify the computations, we make the following substitutions: 

a = i\2/32x19 b = n2/32x29 . .., e = TT2/32^5. (3) 

We observe that e is maximized iff #5 is. Then, the equivalents of (1) and 
(2) are: 

S = £ xk = 2; (4) 
l 

« = E *2
k = i . (5) 

1 

This is an extremal problem with constraints. Such problems may be solved by 
using Lagrange's method of multipliers (see Angus E. Taylor, Advanced Calculus 
[Ginn & Co., 1955], pp. 198-204). We form the function 

u = u(xl9 x2, x3, xh, x5; X1, X2) = x5 + X±S + \2Q9 (6) 

where X1 and A2 are indeterminate "Multipliers." According to Lagrange's 
method, a 11 extremal values of x5, subject to the constraints given by (4) and 
(5), are provided as solutions of the equations 

~ - = 0, k = 1, 2, 3, 4, 5, together with (4) and (5). (7) 
°xk 

We then obtain: 

X1 + 2xkX2 = 0, k = 1 ,2 ,3 ,4; (8) 

1 + X1 + 2x5X2 = 0. (9) 
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We observe that we cannot have A2 = 0; for, if A2 = 0, then (8) implies 
X1 = 0* But then (9) would imply 1 = 05 clearly impossible. Since X2 $ 0S it 
follows from (8) that for any extremal solutions of the problem* we must have 
x± = x2 = x3 = xh« Let x denote the common value of the xk"s (fc = 1, 25 33 4), 
y the corresponding extremal value(s) of x5. We then obtain5 from (4) and (5): 

to + y = 2; (10) 

4a;2 + z/2 = 1. (11) 

We may readily solve (1) and (11), obtaining the two solutions 

(x, y) = (h» 0), or (3/10, 4/5). (12) 

Since this provides all extremal values y9 we see that x5 is maximized at y = 
4/5 iff x = 3/10. Returning to our original notation [i.e., using (3)], it 
follows that e assumes its maximum value of TT2/40 iff 

a = b = c = d^ 3TT2/320. 

Also solved by C. Georghiou, L„ Kuipers, J»-Za Lee & J.-5. Lee, and the pro-
poser . 

Rules, Rules., Rules 

H°"339 Proposed by M, Wachtel, Zurich, Switzerland 
(Vol. 24, no. 2F May 1986) 

The twin sequences: 
l + 6n 

2 

5 + 6n 

1 
— n i A — U a 14) 

1 
— = 5S 999 

2609 46745 8 

1785, 32039, and 
z 

are representable by infinitely many identities, partitioned into several 
groups of similar structure (see The Fibonacci Quarterly 24, no. 2 [May 1986], 
p„ 186 for details). Find the construction rules for Sn for each group. 

Solution by Paul S« Bruckmanf Fair Oaks, CA 

The Group I formulas for Sm are as follows: 

h(Lsn+3 + 2k _ 1) = h(Lsm-2 " l ) - ^6n -6m+5 + 2k ( 1 ) 
+ \A ( a

3 w ™ 1 - a - ( 3 m - l ) ^ a 6 n - 9 m + 6 + 2/c + a ~(6n - 9m +6+ 2k) ^ _ j_ J ̂  

where /c = -1 or + 1 , m = 1, 29 3s . . . . 

Depending on whether m i s odd or evens these may be expressed as fol lows: 

%(£6n+3+2fc - 1) ^ h(L6m^2- ^)LGn-6m+5 + 2k+hOF3m^1FSn^Sm + 6 + 2k " l ) » modd; ( l a ) 

= %(^6m»2 - 1 ) ^ 6 w - 6 m + 5 + 2fe + %(£3777 - 1^6*-9m + 6 + 2fc ~ 1) » ^ e v e n . 

The corresponding Group II and III formulas are as follows, with a similar 
dichotomy as indicated below: 

*$(L6n+ 3+zk - 1) = 'ZCLsm-i*- l ) ^ 6 n -6W+7+2& ( 2 ) 
+ 3 5 { ( a 3 W - 2 . a - ( 3 m - 2 ) ) ( a 6 n - 9 W + 9 + 2fe + a - ( 6 n - 9 m + 9 + 2 * ) ) _ l } ; 
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- h(Lem _!+ ™ l)Lsn -6m+7+2k + h(L3m _ 2^6n - 9m + 9 + 2k ~ 0 * m °&& > ( 2 a ) 

+ k(5F3m-2Fen~9m+9 + 2k ~ 1) » w e v e n ; 

= %(L 6 m _ 4 + l)L6n_6m+7+2/c (3) 
- ^ { ( a 3 ^ " 2 + a - ( 3 m - 2 ) ) ( a 6 n - 9 m + 9 + 27c - a ~ ( 6 n "9 w + 9 + 2 f e ) ) + 1 } ; 

= - i ( ^ 6 m - 4 + l ) - ^6n -6m+7 + 2k ~ ^(^-^3/7?-2^76n~9?7Z+9 + 2?c + 1) s ^ o d d ; ( 3 a ) 

- % ( L 3 m „ 2 ^ 6 n - 9 m + 9 + 2k + 1) > ^ e v e n * 

Proof of (1) : The r i g h t member of (1) s i m p l i f i e s as fol lows: 

^ ( L 6 n + 3+2k + L 6 n ~12m + 7 + 2k ~~I'6rc-6m+5+2k + ^6n - 6m+5 + 2k ~ L6n-12m+7+2k ~ 1) 

= %(L6 n+3 + 2k - 1 ) . Q.E.D. 

Proof of (2): The right member of (2) simplifies as follows: 

^ ( L 6 n + 3 + 2 k + L&n- 12m + 11 + 2k ~ L 6 n - 6m + 7 +2k + -̂ Gn -6m+7+2k ~ L 6 n - 1 2m+ 11+ 2k ~~ 1) 

= %(L6 n +3+2k - 1 ) . Q,E.D. 

Proof of (3): The right member of (3) simplifies as follows: 

^(L&n + 3 +2k + L&n - 1 2 m + l l + 2k + -^6n - 6m + 7+2k " ^6n - 6m + 7+2k ~" ^6n - 1 2m + 1 l + 2k ~ 1) 

= %(^6n+3 + 2k ™ 1 ) . Q*EeD, 

Also solved by J.-Z. Lee & J»-S* Lee as well as the proposer. 

Editorial Note: Might as well dedicate this issue to Paul S. Bruckman, 

•<>•<>• 
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