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ELLIPTIC FUNCTIONS AND LAMBERT SERIES IN THE SUMMATION OF 
RECIPROCALS IN CERTAIN RECURRENCE-GENERATED SEQUENCES 

A. F. HORADAM 
University of New England, Armidale, Australia 

(Submitted July 1986) 

1. INTRODUCTION 
Consider the sequence of positive integers {wn} defined by the recurrence 

relation 

Wn+2 = PWn + l - Wn C1'1) 
with initial conditions 

wQ = a, w1 - b, (1.2) 

where a ̂  0, b > 1, p > 1, q ^ 0 are integers with p2 ^ kq. We first consider 

the "nondegenerate" case: p2 > 4q. 

Roots of the characteristic equations of (1.1), namely, 

X2 - pA + q = 0 (1.3) 

are 
(a = (p + /p2 - 4q)/2, 

(B = (p - /p2 - 4(7) /2. 

Note a > 0, B < 0 depending on q ^ 0. Then 

a + 6 = p, aB = q, a - B = Vp2 - 4<? > 0. (1.5) 

The explicit Binet form for un is 

w .A*l^|£ (1.6) 

(1.4) 

in which 

= fe - aB s 
1) - aa. ft: 

It is the purpose of this paper to investigate the infinite sums 

(1.7) 

00 -I 

L 7T (1-8) 
n = l wn 

00 -I 

E 7T- (1-9) 

E ^ 1 — • d . io) 
n = lw2n-l 
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ELLIPTIC FUNCTIONS AND LAMBERT SERIES 

Special cases of {wn} which interest us here are: 

the Fibonacci sequence {Fn}i a = 0 9 b = l 9 p = l s q = - l ; (1.11) 

the Lucas sequence {Ln}i a = 2, b = 1, p = 1, q = -1; (1.12) 

the Fell sequence {Pn}: a = Q, 2 ? = l , p = 2, q = -l; (1.13) 

the Fell-Lucas sequence {Qn}: a = 2 9 b = 2 , p=2, q=-l; (1.14) 

the Fermat sequence {fn}: a = 0S b = 1, p = 3, q = 2; (1.15) 

the "Fermat-Lucas" sequence ign}- a = 2, Z? = 3, p = 3, g = 2; (1.16) 

the generalised Fibonacci sequence {Un}: a = 0, b = 1; (1.17) 

the generalised Lucas sequence {Vn}: a = 25 b = p. (1.18) 

The Fermat sequence (1.15) is also known as the Mersenne sequence. 

Binet forms and related information are readily deduced for (.1.11)-(1.18) 

from (1.4)-(1.7). Notice that fn = 2n - 1, gn = 2n + 1, and, for both (1.15) 

and (1.16), a = 2, g = 1, in which case the roots of the characteristic equa-

tion are not irrational. 

Sequences (1.11), (1.13), (1,15), and (1.17), in which a = 0, b = 1, may be 

alluded to as being of Fibonacci type. On the other hand, sequences (1.12), 

(1.14), (1.16), and (1.18), in which a = 2, b = p, may be said to be of Lucas 

type. 

For Fibonacci-type sequences, we have A = B - 1, and the Binet form (1.6) 

reduces to 
_. n r> n 

(1.6) ' 

B = a - 35 we have the simpler 

n a - g ' 
whereas for Lucas-type sequences, in which A 

form 

wn = an + g\ 
From (1.6), 

(1.6)" 

lim 
n ->• oo _1_ 

W„ 
lim 

w„ 

lim 

lim 
4a" 

4an 

4 - 5 (!)" 

'(f)' w + 1 
< 1 

->n + l 

= — since < 1 

a > 1. 

(1.19) 

To prove this last assertion, we note that 2a = p + Vp2 - kq > 1 + 1 = 2. If 

p + Vp2 - 4(7 = 2, then q = p - 1; but q ^ 0, s o p ^ l = ^ p > l = » a > l . 
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ELLIPTIC FUNCTIONS AND LAMBERT SERIES 

Thus, 
oo . 

E — converges absolutely. (1,20) 
n= 1 Wn 

All the sequences (l.ll)-(l.18) satisfy (1.20). 

2. BACKGROUND 

H i stor ical 

The desire to evaluate 

t~ (2.1) 
n = i t n 

seems to have been stated first by Laisant [21] in 1899 in these words: 

"A-t-on deja etudie la serie 

1 I I 1 I 
1 1 2 3 5 •••' 

que fovrnent les inverses des termes de Fibonacci3 
et qui est evidemment oonvergentel" 

Barriol [3] responded to this challenge by approximating (2.1) to 10 deci-

mal places: 

L -~- = 3.3598856662... (2.1)' 

which concurs with that obtained by Brousseau ([6], p. 45) in calculating 

400 , 

E j - (2.1)" 
n = 1 n n 

to 400 decimal places. (Actually, in (2.1) f, the first decimal digit, 3, is 

misprinted in [3] as 2.) However, we find in Escott [11] the claim: 
uJfai calcule la valeuv de cette somrne avec quinze decimales 
et verifie les resultats a 1 * aide de la fovmule 

1 = _!__ _ 1 __ (-l)n 

Pn+ l<?n+ 2 

ou v est le n'Leme terme de la sevie de Fibonacci. 

Jfobtiens 3,3598856672-— qui differe du resultat de 
M. Barriol par le 10e chiffre«u 

For the Lucas numbers, the approximation corresponding to (2.1)" given by 

Brousseau ([6], p. 45) is 
400 1 

E ~~- = 1.9628581732... (2.2) 
n = 1 L>n 
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ELLIPTIC FUNCTIONS AND LAMBERT SERIES 

Catalan [9] in 1883, and earlier Lucas [24] in 1878, had divided the prob-

lem of investigating Y,™=1(l/Fn) into two parts, namely, 

00 , 

X) — s expressible in terms of Jacobian elliptic functions, (2.3) 
n = 1 hln-\ 

and 

X -p,—? expressible in terms of Lambert series. (2.4) 

«=1 In 

Landau [23] in 1899 elaborated on Catalanfs result in the case of (2.3) by 

expressing the answer in terms of theta functions. 
Moreover, Catalan [9] also obtained an expression for 

E r- (2.5) 
n = 1 Xj'in 

in terms of Jacobian elliptic functions. No mention in the literature avail-

able to me was made by Catalan for 

^ l (2.6) 
« = 1 L2n_1 

Results for Pell and Pell-Lucas numbers corresponding to those in (2.3)-(2.6) 

were obtained in [26] by Horadam and Mahon. 

For a wealth of detailed, numerical information on the matters contained 
j 

in, and related to, (2.3)-(2.6), one might consult Bruckman [7], who obtained 

closed forms for the expressions in (2.3) and (2.5), among others, in terms of 

certain constants defined by Jacobian elliptic functions. 

Observe in passing that in (2.5) the value n = 0 is omitted in the summa-
tion even though L = 2 (^0). We do this for consistency because, in the non-

Lucas type sequences, a - 0 (i.e., WQ = 0, so l/wQ is infinite). 
From (1.6), 

co 1 oo -j oo r>n 

E 77- = (a - 3) E = (a - B) £ - (2-7) (a -

(a -

(a -

3) E = 
n = 1 4 a n - 5 3 " 

on 
3) E § 

n = 1Aqn - B$2n 

n = 1 qn - (B/A)8 

(a - 3) E ~ 
n = 1Aan$n • 

by (1.5) 

2n 

- £3 2 n 

At this stage, we must pause. The algebra^ it appears, is too fragile tO 

bear the burden of both qn and B/A being simultaneously unrestricted, so some 
constraints must be imposed. 
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Clearly, the evenness or oddness of n is important since qn will alternate 

in sign if q < 0. Following historical precedent as indicated earlier, we find 
it necessary to dichotomize wn into the cases n even, n odd. 

Furthermore, the outcome of the expression on the right-hand side of (2.7) 

depends on whether B/A (or A/B) is >'0 or <0. 

For our purposes, two specific values concern us, viz., 

A 

S B 

= ±1. 

From (1.7), A/B = 1 means that 
b - aa = b - a& (a ̂  3), 

whence 

a = 0 
without any new restrictions on b, p9 or 

terion for (1.6) ; (i.e., b = 1), we have 
Combining this fact with the cri-

a = 0, 1 =>A = B = 1. 

Sequences satisfying the criteria a 
quences. 

B ' 

0, & 

(2.8) 

1 are the Fibonacci-type se-

In this case, (1.7) gives 

b - aa = -(b - a£>) 
ap 

b = by (1.5) 

= p if a - 2. 
Relating these criteria to (1.6)", we see that 

3. (2.9) a = 2, b=p=>A = -B = a 

Sequences which satisfy the criteria a = 2, b = p are the Lucas-type se-
quences. 

Having set down some necessary background information, we now proceed to 

the main objective of the paper, to wit, the application to our summation re-

quirements of Jacobian elliptic functions and Lambert series. 
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3. JACOBIAN ELLIPTIC FUNCTIONS 

In Jaoobian elliptic function theory* the elliptic integral constants (see 

[7], [18]) 

7, C'2 tit 
K = I (3.1) 

Jo Vl - k2 sin2 t 
and 

f77/2 At 
^ = J — : = - ( 3 . 2 ) 

J o Vl - k!2 s i n 2 t 
are related by 

k2 + kf2 = 1, (3.3) 

kf being the complement of k. 
Write 

v = g-̂ '71"̂  (0 < v < 1). (3.4) 

Jacobi?s symbol q [17] is here replaced by P to avoid confusion with the 

use of q in the recurrence relation (1.1). 

Two of Jacobi?s summation formulas [18] required for our purposes are 

2K_ = 4r 4P2 4P3 

TT 1 + p 2 1 + p^ 1 + p6 1 + T - ~ ^ + l-:i^TX + l - ^ X + ••' (3.5) 

and 
2kK 4Vp , 4Vp"3~ , 4v9s , ,0 ,. 
T~ = rT7 + T T ^ + I ~ T ¥ ? + ••• • (3.6) 

Now5 from (1.6). 

_ 1 _ = 9L^_§ (3.7) 

g2«-l 

= (a - g)- — ~ • if A = 5 = 1 
(a3)2n _ 1 - 3"n"2 

82n~2B = (a - g) • — ^ — — - — if q = -1 in (1.5) 
-1 - g^"2 

= (a - g) • VP • "~^—^"7 w i t h ( ̂  = g2 (g < 0) 
1 + 2?2'2"1 fv£ = -g, so 0 < V P < 1. 

Hence, V 

£ — — = (a - B) • i/r £ — (3.8) 
^ " »-l l + r2»-l 

= (a - 6) ••^••-^ from (3.6) 

/~2 T KK 
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Since the restrictions placed in W2n-i ^n (3.7) are A = B = 1 and q = -1, 
formula (3.8) applies to sequences such as the odd-subscript Fibonacci (2.3) 

and Pell sequences. Accordingly, 

^ yJ— = ̂ r by ( 1 - n ) (3-9) 
n- 1 E in - 1 

and 
J2kK ± —L_ = ̂ M by (1.13). (3.!0) 

Because p = 32 is different for {Fn} and {Pn}, the term fc£ is different in 

(3.9) and (3.10). 

Result (3.9) is not new and may be found in Catalan ([9], p. 13) while re-

sult (3,10), obtained by the author, appears in [26]. Bruckman ([7], p. 310) 

gave 
00 1 

E T ~ — = 1.82451515... (3.9)f 
n = l* 2n-l 

while Bowen [4] obtained 

L l = 1.24162540... . (3.10)' 

n = 1 F2n - 1 

Next, from (1.6) again 

1 a - B (3.11) 
'2« A(am __ (B/i4)g2«) 

Q2n 

(aB)zn + 

oln 

1 + &*» 

2n I nhn 
if A = -B = a - B [cf. (2.9)] 

if q = ±1 [cf. (1.5)] 

where ( r = B2 (B < 0 if q = -1) 
1 + p2n |v£ = 

whence 

£ 77- = |(lT ~ X) by (3.5). (3.12) 

Under the constraints imposed on W2n in (3.11), namelyA/5 = -1 and q = ±1, 
formula (3.12) applies to even-subscript Lucas (2.5) and Pell-Lucas sequences 

(with q = -1). Consequently, 

± i = i ( f - i ) (3.i3) 
and 

£ 1 1 ^ . ! ) , (3.14) 
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the K being different in the two cases, since r = £>2 is different for {Ln} and 

{Qn}. However, notice that K in (3,9) [(3.10)] is the same as that in (3.13) 
[(3.14)]. Excluded from the summations are l/LQ = l/Q0 = 1/2. 

Result (3.13) occurs in Catalan ([9], p. 49) while (3.14) is given in [26]. 

Using essentially the same method, but checking results by a different method, 

Bruckman ([7], p. 310) has calculated 

E 7^- = 0.56617767... (3.13)' 
n = lL2n 

and Bowen [4] found 

E 7T~ = 0.20217495... . (3.14) ' 
« = i y2n 

Microcomputer calculations recorded above, and subsequently, which are due 

to my colleague, Dr. E. W. Bowen, are acknowledged with appreciation. All his 

computations were obtained using the recurrence relations for the sequences. 

Some of the numerical summations were found manually, to a lesser degree of 

accuracy, by the author. 

Further standard information on Jacobian elliptic function theory may be 

found in Abramowitz and Stegun [1] and in Whittaker and Watson [29]. 

4. LAMBERT SERIES 

The first reference to the series known as the Lambert series occurs in 

Lambert [22]—hence the name. 

A "Lambert series" is a series of the type 

n= 1 l x 

Detailed information about Lambert series is to be found in Knopp [19] and 

[20], Interesting number-theoretic applications (to primeness and divisibil-

ity), depending on the value of an> and some basic theory, are given in Knopp 

[20]. 

More particularly, we speak of the Lambert series 

L(x) = ± - j - ^ - \x\ < 1. (4.2) 

A generalized Lambert series used in Arista [2] is 

L(a, x) = E 1 n \x\ < *> \ax\ < l> (4.3) 
n = 1 l "" ax 
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where the number a has nothing to do with the initial value in (1.2). The 

series in (4.2) and (4*3) may be shown to be absolutely convergent within the 

indicated intervals of convergence. 

(4.4) 

From ( 1 . 6 ) , we have 

1 a - 3 
W2n A(a2n - (£M)32") 

nln 
= (a - 3) E 

(a3)2n -
82" 

= (a - 3) • — • 
1 - 3"*" 

/ B2n 

- Co, - PM P 

3"n 

$kn ^ 

if A = B = 1 

if q = ±1 

>2n 

00 i I oo nln oo o4n I 

E 77- = (a - ex E —s E — >' (4.5) 
n=l win ^ = 1 1 - g2n n = l l _ ĝ n i 

= (a - B){L(B2) - MB")}. 

To obtain (4.4) it was necessary to impose the conditions A = B = 1 and q = 
±1. Accordingly5 we can apply (4.5) to the even-subscript Fibonacci (2.4) and 

Pell sequences (where q = -1). It follows that 

/5\ T(l - 3v/5> = V D | ^ 
In .f^-^KH^M^)] 

and 
00 -I 

L -=±- = 2v/2[L(3 - 2^2) - L(17 - 12/2)]. (4.7) 
n = l r 2n 

Formula (4.6) has been known for a long time (cf. Catalan [9]), while (4.7) 

appears in [26]. 

It is known [4] that 

00 1 
E -w— = 0.60057764... . (4.7) ' 
rc = l ^2n 

Brady [5] extended (4.6) to the summation E ~ = 1 (1/F2kn^ and exhibited the 

graph of the function y = L(x) for \x\ < 1. 

Let us now take a special case of {wn} which generalizes the Fibonacci se-
quence. Suppose in (1.1) we have p = l, g = -l,. and retain the initial values 

to be a and b. Call this sequence {Hn}9 i.e., HQ = a, H^ = b. We impose the 

further condition: b >'aa, where a = (1 + v5)/2. 
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Write 

H 
aa 

/ 1 + A/5 a 1 - v5\ 

Paralleling the argument in (4.4), we have 

1 _ (a - 3)32n -R o2n 

H 2n 4[(ag)2n 

75 
A(I/JH) I - (1/^)3 

(B/A)^n] A 
1 

so that 

n = 1 "-in Mi-
y/AB{n = 1 1 

/5 

(l/v^)B2n 

- d/V^)g: 

(1/5)3"" 

( 1 / ^ ) 3 ^ _ 
- (l/v£)32* 

f; (l/g)3"n 

« = 1 1 - (1/H)$kn 

(4.8) 

(4.9) 

(1/ff) ihn 

1 - (1/5)3^ 

(4.10) 

Jb* ah i f e 31 ~L^' ^} by (4-3)' 
wherein l/HQ has been omitted from the summation because a may be zero. 

In (4.10), the conditions imposed in (4.3) are met, since 

< 1 
and 

whence 
fr i b - a$ < l 

-0.618. 

(a > 0, (3 < 0, b > aa) 9 

< 1; also5 < 1, H B* < 1. 

Shannon and Horadam [28] obtained a variation of (4.10) by using a differ-

ent pair of specially defined generalized Lambert series, whereas Aristafs 

generalization (4.3) has been utilized in (4.10). 

Observe that VAB in (4.10) must be real, i.e., AB > 0. So (4.10) excludes 
Lucas-type sequences with a = 2, fc = 1, 2, or 3, for which a Jacobian elliptic 

expression is required in the answer. 

Suppose we introduce a generalized Pell sequence {Kn} in which p = 25 q = 
-1, b > aa, where a = 1 + v2. Then, by reasoning similar to that used to es-

tablish (4.10), we can determine a resolution of H™s=1(l/K2n) in terms of gen-

eralized Lambert series (4.3). 

Let us now revert to the odd-subscript series contained in {Ln} and {Qn}* 
More generally, from (l«6)"9 we have 

i _ i e2"-1 

w 2n-l (ag): 

for 
1988] 

ihn -2 
= -1 by (1.5), 

(4.11) 
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whence 
oo i oo o 2n - 1 

E 7~— = ~ E = -£(B) + 2L(32) - L(^), (4.12) 
n = l ^2n-l n=l Q „ g^"2) 

after some algebraic manipulation. 

Thus, for appropriate 3, expressions in terms of Lambert series as special-

izations of (4.12) are found for 

JL (n _ 1 - y/l\ 
n = 1 ^ 2n -1 

and 
^ 1 

I = 1 -^ o~ _ i \ l I 

(B = 1 - ^ 2 ) . (4.14) 
n = 1 ^ 2n - 1 

Bowen [4] ca l cu l a t ed 
00 , 

E 7; =0.58614901952408. . . (4 .14) f 

" = 1 H2n-\ 

Furthermore, it was computed in [4] that 

E 4- = 1.8422030498275... (4.15) 
n = 1 -̂ Vz 

and 
E TT = 0.7883239758197... . (4.16) 

Addition of (4.7)' and (3.10) ' verifies (4.15), while addition of (3.14) ' 

and (4.14)' leads us to (4.16). 

To complete this section, we revert to an extension of {Un} (1.17) which 

Arista [2] examined in some depth. In his investigation, Arista imposed no 

restriction on q other than that it is a positive or negative integer. To 

avoid confusion with our notation, we will designate the sequence studied by 

Arista as {un}, where uQ = 0, u = 1, q being a positive or negative integer. 
Further, we will retain the condition p2 > hqy to avoid complex expressions, 

along with p ̂  1. 

Changing to our notation, we record Arista's conclusions. 

22\h 

\q~) 
n=1 un fo = o 

1 - -

since < 1, < 1 [q = a3 (1.5)]. 

If q > 0, then (3/a > 0, and Arista showed that (4.17) is then expressible 
in terms of a complicated definite integral involving logarithmic and trigono-

metrical functions. 
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When q < 0, 

which again leads to a lengthy expression containing indefinite integrals of 

the kind mentioned above. 

Finally, the "degenerate" case in which the roots a, (3 are equal is con-

sidered as a limiting process to produce 

In the nondegenerate case (a 4- 3) Arista [2] also studied the consequences 
of x ->- 1, and of \a\ < 1. It is interesting to discern the usage made by him 

of the relevant researches of earlier and contemporary mathematicians, e.g., 

Cesaro [10], Schlomilch [27], and Catalan, intev alia. 
Lucas [25] undertook to give plus tard (analogous) formulas deduced from 

the theory of elliptic functions, "et, en pavticuliev, les sommes des -inverses 
des termes Un et de leurs puissances semblables". Writing a quarter of a cen-

tury afterwards, Arista [2] remarked a pvopos this undertaking: "... ma non 
esiste alcuna sua pubblicazione su questo avgomento"'. 

5. APPLICATION OF METHODS OF GOOD AND GREIG 

In this section we wish to develop some interesting techniques for summing 

reciprocals when the subscript of w (and of its specialized sequences) is not 
ns 2n, or In - 1, but is some related number. 

Following an approach for Fibonacci numbers due to Good [12], we establish 

the corresponding result for Pell numbers: 

E 4- =2 - p 2 - - i / p
2 » - ( 5 - 1 } 

777=0 ^2n 

Proof of (5-1): The proof is by induction. 

When n = 1, the result is obviously true, since 

Assume it is true for n = k. Then the validity of (5.1) for n = k + 1 requires 
that 

P IP - P IP = — - — . 
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This is readily demonstrated by using the Binet form for Pn [cf. (1.6) f and 

(1.13)]. Thus, (5.1) is proved. 

Now let n •* °°. If, temporarily, N = 2n, then lim(P„ ,/Pw) = 1/a = /2 - 1. 

Hence, (5.1) yields 

f: ^— = 3 - / 2 . (5.2) 
m = 0 2m 

This might be compared with the corresponding value for Fibonacci numbers 

(Good [12]—-see also Gouldfs reference [13], p. 67, to Millin): 

m = 0 r 2m 

Next, following the method and notation of Greig [14] for Fibonacci num-

bers, adapted for Pell numbers, let us write b = 2m, B = 2n. Then we may show 

that 

t ~~= 0k ~ PkB^/PkB (n9-k> 1), (5.4) 
m= 0 ̂ kfo 

where 
((1 + Pv J/P, for fc even, 

Ck=\ ^ (5.5) 
1(1 + Pk-1)/^k + 2/P2A, for fc odd, 

i.e., Ck is independent of n. 

Proof of (5»^)^ Again, the proof is by induction. 

Assume (5.4) holds for a given n. Then its validity for n + 1 requires us 
to show that 

P2kBPkB - 1 " PkBP2kB -1 = PkB ( 5 ' 6 > 

or, more succinctly, on writing j = feB, 

p
2/i-i -p; p

2;-i - ( " 1 ) J p i - (5'6)' 

This may be demonstrated by appealing to the Binet form for Pn . 

[Alternatively, we may use 
•Ph + 1Pj + P . P . . , - Ph + i ih = -2J, P_n = ( -D" + 1 P n ) . ] (5.6) ' ' 

Put n = 1 in (5.4) . Then 

1 + P 
c » - ^ + - ^ r - (5'7> 

((1 + P X)/P, when /c is even, 

1(1 + Pk_1)lPk + 2/p
2k
 when fe is odd-

To obtain (5.7), we employ the Binet form in 

1 P2k-1 Pk-1 { ° ± f fe 1 S e V e T l 3 

^ - + _^_I_ J î = ) (5.8) 
^2?C ^2fc *fc ) _ £ - i f £ i s odd. f M 
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Our proof of (5.4) is now complete. 

The first few values of Ck are calculated from (5.7): 

Cx = 2, C2 = 1, C3 = § , CH = { , C5 = ̂ , ... . (5.9) 

Let n -> °oB Then (5.4) becomes 

£ = (7 _ s (5el0) 
w= 0 rk • 2m a 

since lim(-p^) = ̂  (j = kS = fc • 2n; a = 1 + i/2). 
j 

Observing from Gould [13] and Greig [14] that for k > 0, m > 0, (2fe + 1)2W 

generates each positive integer just once, we have (cf. [14]) that 

E ~ = E t~~= t (ck~~) (^ = — 1 — = ^ - iV (5.1D 
fc = l 777=0 Fkb k = l X K a / \ a 1 + Jo I 

k odd fc odd 

p 
n = 1 x 7-2 fe 

Summing the right-hand side of (5.11) as far as k = 15 (at which stage C15 -

1/a = 0.000005. . .) , we find the value to six decimal places to be 1.842202... 
20 

which concurs with the summation of J2 =1(1/Pn). From these computations, we 

can state that 

E ~ = 1.842202... (5.12) 
n = l ^n 

approximately to six decimal places. See (4.15) for a slightly more accurate 

value. 

One may observe that Ck -> 1/a as k -*• °°  on using the Binet form in (5.7), 
whence it follows that Ck + 2/Ck -> 1/a2 as k -> °°. This gives us an estimate for 

Ck+2 when Ck is known, which increases in accuracy as k increases in value. 
If one tries to parallel the above work for {Qn}, one finds that the pres-

ence of the plus sign (rather than a minus sign) in the Binet form [cf. (1.6)" 

and (1.14)] causes the straightforwardness of the treatment, e.g., at the stage 

(5.6), to collapse. A similar remark in relation to {Ln} is made by Gould in 

[13], p. 68 (wherein the relation to the Riemann zeta function and to sine and 

cosine expressions is discussed). 

Nevertheless, if we simply take a summation of reciprocals as far as n = 
20, we obtain £° ° =1(1/SW) correct to six decimal places, namely5 0*7883239^ as 

in (4.16). 

Generalizing the results produced above for the Fibonacci-type sequences 

{Fn} and {Pn} to results for {wn} can be accomplished without too much effort. 
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Induction (details of which are available on request) can be applied to 

generate the following chain of formulas: 

t 7 7 - = C - w Iw (5.13) 
m=0 w2m 2 ~1 2 

in which 

where 

and 

1 l + w i 
c-^ + -ur'' (5-u) 

£ ^ - c * - p * . 2 . - i / p * . 2 . {n-k>l) (5-15) 

, 1 + w , ( ( 1 + io> )/w, when A: i s even, 
C k = ± + w

2 k - 1 - \ ^ (5.16) 
k 27i ( (1 + wv_,)lwv + 2/w0V when Zc i s odd; 

m=0 Wfc.2ffl 

where a is given by (1.4) (q = -1). 

Note that, in (5.14), 

C = 3 for Fibonacci numbers, C = 2 for Pell numbers. 

For a generalization of (5.14) and (5.11), the reader might consult Greig 

[15]. Entries in row 2 of his table ([15], p. 257) give ratios of Pell numbers 

which are our 6T1, C2, C3, ... in (5.9). 

6. GENERALIZED BERNOULLI AND EULER POLYNOMIALS 

In this final section, it is desired to find a suitable form for the ex-

pression of w'^ and for the generating function of {w~n }. The results gener-

alize material in [26] which itself extends the work in [28]. 

First, we define the generalized Bernoulli polynomial B^(x) by 

and the generalized Euler polynomial E^(x) by 

XE?\xfc = -^-—. (6.2) 

When t = 1, Bp (x) = Bp(x) and E^(x) = Er(x) are the ordinary Bernoulli 

polynomial and Euler polynomial, respectively. Let 

C = -. (6.3) 
a 
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Temporarily write 

m = n log C (i.e., Cn = em). (6.4) 

From (1.6)', for Fibonacci-type sequences, 

~ - (3 ~ «)* • — — ^ (6.5) 
wn an*(C" - 1)* 

(3 - «)*•£** 

{Cxat)n{Cn - 1)* 

- (B - a) t 

mt{Cxat)n (em - 1)* 

introducing the variable x 

by (6.4) 

_ (3 - a)* v v(t),,mp 

= 1, Br («)~7 by (6.1), 

m (Cxa ) *-°  rl 

whence arises the generating function 

t ± y" - (3 - «)* t B^^f* t »*-*(-̂ -)B. (6-6) 
Putting t = 1 in (6.5) gives 

This expresses the reciprocal of appropriate wn in terms of the Bernoulli 

polynomial. 

A chain of results similar to (6.5)-(6.7) may be obtained from (1.6) and 

(6.2) for Lucas-type sequences. We then obtain an expression for the recipro-

cal of appropriate Wn in terms of the Euler polynomial. 
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1. INTRODUCTION AND GENERALITIES 

In the theory of functions of matrices [3] , the domain of an analytic func-

tion f is extended to include a square matrix M of arbitrary order k by defin-

ing f(M) as a polynomial in M of degree less than or equal to k - 1 provided / 

is defined on the spectrum of M. Then, if / is represented by a power series 

expansion in a circle containing the eigenvalues of M, this expansion remains 

valid when the scalar argument is replaced by the matrix M. Moreover, we point 

out that identities between functions of a scalar variable extend to matrix 

values of the argument. Thus, for example, the sum (sin M)2 + (cos M)2 equals 

the identity matrix of order k. 

The purpose of this article is to use functions of two-by-two matrices Q 

to obtain a large number of Fibonacci-type identities, most of which we believe 

to be new. 

To achieve this objective we generally proceed in the following way: 

First we determine a closed form expression of the entries a^-n- of any func-
"d 

tion f(Q) = A = [<Zij] based on a polynomial representation of the function it-

self. 

Then we consider a set of functions / such that f(Q) can be found by means 

of a power series expansion A = [&ij] - f(Q) and equate a— and a^ for some i 

and j, thus getting one or more Fibonacci-type identities. 

We shall only be concerned with some of the elementary functions, namely, 

the square root function, the inverse function, and the exponential, circular, 

hyperbolic, and logarithm functions. 

To illustrate the principles being used, we choose to proceed from the par-

ticular to the general, i.e., from use of the matrix Q defined in (1.3) to use 

of the more general matrix P defined in (2.7). 
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Throughout, we shall follow the usual notational convention that Fn and Ln 

are the nth Fibonacci and Lucas numbers, respectively. 

First we recall ([2], [3]) that, if M has m distinct eigenvalues ]lk (k = 1, 

2, ... 9 m)9 the coefficients o^ of the polynomial representation 

fQO 
m-l 

i - 0 
(1.1) 

of any analytic function f defined on the spectrum of M are given by the solu-

tion of the following system of m equations and m unknowns 

m-l 
E e.\x\ = f(Vv) (fc = 1, 2, ..., m). 

i = 0 
(1.2) 

Then we consider the well-known matrix (e.g., see [4]) 

"l l" 

1 0 
(1.3) 

Since the distinct eigenvalues of Q are a = (1 + >/5)/2 and (3 = (1 - Vo)/2, it 

follows from (1.1) and (1.2) that the coefficients oQ and o of the polynomial 

representation 

f(Q) = a0I + GlQ (1.4) 

(where I denotes the two-by-two identity matrix) 

of any function f defined on the spectrum of Q are given by the solution of the 
system 

f(a) 
/•(g). (1.5) 

In fact, from (1.5), we obtain 

(o0 = (of(3) - 8/(00) A/5 

\o1 = (/(a) - /(B))//5. (1.6) 

Therefore, from (1.4) and (1.6), we can write 

\P0 + cxf 

/(«) 4 = 
•5 

a/(a) - B/(8) /(a) - /(B) 

L f(«) " /(B) a/(B) - 3/(a)J 

It can be noted that the main property of the matrix Q, that is, 

Fyi + 1 "tt 

(1.7) 

(1.8) 

can be derived immediately from (1.7) by specializing / to the integral nth 

power. 
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2. THE SQUARE ROOT MATRIX 

In general, a two-by-two matrix possesses at least two square roots [3]. 

In the case of Qs the existence of a negative eigenvalue (3) implies that the 

entries a- of any square root A will be complex. Specializing/ to the square 
root, from (1.7) we obtain the following equations defining one square root of 

a1± = (cVa + -zVl/a3) //E 
ai2 == a2i = (̂* ~~ -ZVI/CO/A/5 

a29 = (/l/a + iv/a)A/55 

where i = v-1. 

An alternative way to obtain a square root of 

equation A2 = Q, that is* 

"l l" 

(2.1) 

is to solve the matrix 

a21 

a i 2 

a22 1 0 
(2.2) 

from which the following system can be written: 

a,-i -I î  LL-i o W - o i " 

axla12 + a12a22 = 1 

LA, — -. OC -i -i » Ou Q Q L/C /-j -| 

a2ia!2 + a22 

1 
(2 .3 ) 

>2 = 0 . 

From the second and third equations we can write 

a i 2 ( a i l + a 2 2 ) = SlKl + a 2 2 > 9 

from which the equality a12 = a21 is obtained (i.e., as expected, vg is a sym-

stric matrix). Therefore, from the fourth equation we get a = a2 ± â 22 
Substituting these values in the first and second equations and dividing the 

corresponding sides one by the other, we obtain a11 = (1 ± i)a22. Hence, the 

solutions of the system (2.3) are: 

a11 = (1 ± i)a22 

LL -> r\ LL r\ -i """ — Is LA, r\ n (2 .4 ) 

Since 

± / ( ^ l + 2 i ) / 5 . 

-1 + 2i = ySe^Cirtarctan 2) 

the complex entry a99 can be written as 

< - 2 2 
(1/5) 

22 
1/h i(i\ ±arctan 2)/2 +iki\ (k = 0, 1). 

The real part of a,, is 
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Re(a22) = ( - l )*( l /5) 1/4 i\ ± arctan 2 n _ . x 1 / 4 cos (k = 0S 1), (2.5) 

Since every square root of Q must satisfy (2,3)9 the matrix A defined by (2.1) 

does. Equating the real parts of a and 3 , and squaring both sides of this 

equation5 from (2.1) and (2.5) we have 

2 arctan 2 
l/(5a) '1/5 sin^ 

thus obtaining the trigonometrical identity 

1 /(/5 sin 
2 arctan 2> 

(2.6) 

Equating the imaginary parts of a and a , we obtain the equivalent identity 
22 3 

= V5 CO! 2 arctan 2 (2.6') 

The preceding treatment may be generalized in the following way: 

Let 

I 0_ 

whence5 by induction 

(2 .7 ) 

jpn 

where Un (n = 03 l s 29 . . . ) i s defined by the recurrence relat ion 
Un+2 =PUn+l + Un'> ^ " 0 , Z7, - 1 . 

(2.8) 

(2.9) 

When p = 19 we get the Fibonacci numbers Fn. When p = 29 the Pell numbers 

Pn result. 

Writing 

A = V^2 + 4 s (2.10) 

we find that the eigenvalues of P in (2.7) are 

a p = (p + A)/2, 3 P = (p - A)/2. (2.11) 

From (2.11) and (2.10)9 it can be noted that a pvp. = - 1 , i.e., - -1/ou. 

When p = 1, these eigenvalues are (1 ± /5)/2 as given earlier (namely, the 

= 6i)« If p = 2., these eigenvalues reduce to 

1 + / 2 and 6« = 1 - / 2 . 

values of a = a 1 and 

v 2 - • • - — ^ 2 

Paralleling the argument for Fibonacci numbers outlined above, we may de 

rive the identity corresponding to (2.6): 

. ,/. , 2 arctan(2/p)\ a p = 1/^A sinz •• y 1 , r / 1. 

Taking p = 2 9 we have the identity for Pell numbers: 
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a2 = 1/(2/2 
2 arctan 1 

)• (2.13) 

It must be noted that identity (2.12) may be verified directly. In fact, 

the identity sin2(x/2) = (1 - cos x)/2 implies 

X2 arctan(2/el m 1 - cos(arctan(2/p)) = Q _ p/^TTJ)/2 

= (1 - p/A)/2 = (A - p)/(2A) = -3P/A= l/(apA). 

sin 

3. THE EXPONENTIAL FUNCTION MATRIX 

The previous results follow for f(x) = vx. Other particular identities 

emerge for other choices of /. Specializing / to the exponential function, 

from (1.7) we obtains 

12 
(3.1) 

^22 (ae$ - &ea)//5. 

An alternative way of obtaining A = [S^-] = exp Q is (see [1], [5], [6]) to 
use the power series expansion 

exp Q = £ Jr-

n = 0 "•• 

From (1.8), it is easily seen that: 

(3.2) 

*n = £ 
rc + 1 

fc12 

n = 0 ^ ! 

n - 0 " • 

n = 0 

(3.3) 

Therefore, equating the corresponding entries of A and i4, from (3.1) and (3.3) 
we obtain the following known Fibonacci identities (see [4]): 

n - 0 ri • 

£ ~ = (ae« - ee6)/^ 
n = 0 " ! 

00 F , 

n = o n\ 
= (aee - gea)/\/5. 

Combining (3.5) and (3.6), we get 
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£ -y = e« + eK (3.7) 
n = 0 n ' 

It is evident that the above results may be generalized by using the expo-

nential of the matrix P. As an example, for p = 2, the following identity in-

volving Pell numbers, 

00 P r- r-

E 3T - e(e^ - e-^)/{2/2), (3.8) 

n = 0 n ' 

is obtained. Similar results to those in (3.5)-(3.7) readily follow. 
4. OTHER FUNCTIONAL MATRICES 

Let us consider the following power series expansions ([3], [6]): 

s i n e = t o ( - l ) * T ^ y r (4.D 

oo /0 2 n 

cose - £ ( - ! ) » - ^ (4.2) 
oo p2n + l 

S i n h g =
n ? 0 ( 2 n + l ) !

 ( 4 - 3 ) 

oo r)2.U 

c o s h e = n ? 0 ( ! o r (4-4) 

Using reasoning similar to the preceding, we may obtain a large number of 

Fibonacci identities, some of which are well known [6]. These identities have 

the following general forms, 

00 

E onFn = (/(a) - f($))//5, (4.5) 
n = 0 

E cnFn + 1 = (of(a) - 6/(3))/i/5, (4.6) 
n = 0 

E c ^ ^ = (a/(g) - ftf(cx))A/5, (4.7) 
n = 0 

where 

/ (y) = E <?nyn. 
n = 0 

A brief selection of particular cases is shown below: 

F 

t ("I)" , 7 „ T I M = ̂ S±n a " S±n ̂ /V^ (4e8) 
n = 0 (2n + 1) ! 

E (-Dn T^YT = <c o s a " cos ^/v^ (4'9) 
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z 
n = C 

oo 

£ 
w = 0 

n^0(2n + 1)! (sinh a - s inh 3 ) / / 5 

In 
(2w)! 

2n+ 1 

(cosh a - cosh 3)A//5 

£ /o \ • = (ot cosh a - 3 cosh 3)/^5 
n = o K^n) i 

°°  9 

S ,0 s . = (a cosh 3 - 3 cosh a)//5, 
n = o vznJ ! 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Combining some of the above-mentioned results, we may obtain analogous identi-

ties involving Lucas numbers. For example, combining (4.12) and (4.13) gives 

In 

*?o (2n)! = cosh a + cosh 3« (4.14) 

Again, we point out that these identities may be generalized by using circular 

and hyperbolic functions of the matrix P. In particular, we may obtain results 

for Pell numbers similar to these listed for Fibonacci and Lucas numbers. 

5. EXTENSIONS 

The results obtained primo impetu in Sections 3 and 4 may be extended using 

functions of the matrix 

k,x 
xQl 

xF. 

xFn, 
k+i xFk 

xF, k -l 
(5.1) 

where x is an arbitrary real quantity and k is a nonnegative integer. Since 

' k, x 
is a polynomial r(Q) in g, it follows that its eigenvalues are 

(X1(k9 x) = r(a) = xak 

LX9(fc, x) = p(3) (5.2) 

and f(Qk ) = f(r(Q)) derives values in terms of f(r(a)) and /(r(3)). Thus, 

any function / defined on the spectrum of Qk x can be obtained from (1.7) by 
replacing /(a) and /(3) with f(X1(k, x)) and f(X2(k, x)) 9 respectively. More-

over, from (5.1) and (1.8), it is easily seen that ' k, x enjoys the property 

£*= ^kr xnQkn 
xnF? 

xnF, kn 

XnF 

xnF-kn-l 
(5.3) 
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5.1 The Exponential Function of Q 
k, x 

Specializing / to the exponential function, from (1.7) and (5.2) we obtain 

the following values of the entries of the polynomial representation A^ x = 

[aio- (k, x)] of exp Qk^: 

|a_(fe, x) = (aexak - $ex&k)//5 
1 1 

a 1 2 ( k , x) = a Qi9 x) = (exak - exBk)//E 

a0Ak, x) = {aex^k - $exak)//5. 

C a l c u l a t i n g exp Q- by means of ( 3 . 2 ) , we h a v e 

n = 0 "" 

E q u a t i n g a^ (k9 x) and a^ Qi9 x) , from ( 5 . 5 ) , ( 5 . 3 ) , and ( 5 . 4 ) we o b t a i n : 

(5 .4) 

xnF^ 
kn+ 1 

n = 0 n 
( a e * a k - g e ^ " ) / ^ 

xnF, £ _£lL = (£*a* _ e ^ ) / ^ 
n = 0 

#nFn /en - 1 

rc = 0 n ! 
( a s * 3 * - $exak)//5. 

Combining ( 5 . 6 ) and ( 5 . 8 ) , we g e t 

«> xnL1 kn 

n = 0 n\ 
= eXQLk + ex 

(5 .5 ) 

( 5 . 6 ) 

( 5 , 7 ) 

( 5 . 8 ) 

( 5 . 9 ) 

The above r e s u l t s ( 5 . 6 ) - ( 5 . 9 ) may be g e n e r a l i z e d u s i n g t h e e x p o n e n t i a l of 

t h e m a t r i x xPk [ r e f e r t o ( 2 . 8 ) ] . 

5.2 C i r c u l a r and Hyperbo l ic Funct ions of Q 
k,x 

By means of a procedure similar to the preceding one, the use of sin fi^^,, 

cos Q1 , sinh Q, 9 and cosh Qv yields a set of identities having the fol-
K 3 X K, X K 3 X 

lowing general forms, 

£ anxnFkn = ( /Oca*) - f(x$k)) /&, 
n = 0 

f ) Gnx"Fkn+l = (af(xak) - &f(xfik))/^5, 
n = 0 

£ onxnFkn_x = (af(x$k) - $f(xak))/j5, 
n = 0 

where 
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/ ( y ) = E cnyn. 

n = 0 

A brief selection of particular cases is shown belc 

E 
n = 0 

E 
n = 0 

(-DM*2 
" &(2« + l) 

(2n + 1)! = (sinOrak) - sin(^cg^))/A/5 

2fcn 

(2n) ! 
,2W+1T7 

' fe(2n + l) 

n = 0 (2n + 1)! 

= (cos(rf) - cos(x$k)) /yf5 

(sinhOmk) - s±nh(x$k)) /Sb 

x2nF 2kn 

n = 0 (2n)l = (cosh(a;ak) - cosh(a;gk)) //5 

xzn£ 2fcn 
n=0 ( 2^) ! 

-— = cosh(^afc) + cosh(xg^), 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

The above-mentioned identities may be generalized using circular and hyper-

bolic functions of the matrix xPk [refer to (2.8)]. 

5.3 The Logarithm of Q for k Even and Particular Values of x 

The principal value of the function In Q can be calculated by (1.7), thus 

getting a complex matrix A. Unfortunately, since Q has a negative eigenvalue, 

the power series expansion of the matrix logarithm (see [3]) 

xn - 1 

In • t - ^ — « - *r 
n = l n 

(5.18) 

does not converge and a matrix A cannot be obtained in this way. On the other 

hand, the use of Q. , with k even, allows us to utilize this function. We 
k, x 

will show how, setting x equal to the reciprocal of the kth Lucas number, some 

interesting results can be worked out. 
First we define the two-by-two matrix 

Rk,x = ®k,x - J = X$k - X ( 5 ' 1 9 ) 

whence, using induction, it can be proved that, if n is a nonnegative integer, 

then 

R 1 
k,l/L, (~Vn + 1Fkn (-DnFkn+1 

(5.20) 

Incidentally, it can also be proved that 

~(-l)nF 
R 1 
2,1/2 (-l)n+1F 

(-l)n+1F 
(5.21) 
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Then replacing f in (1.7) with the function f(y) = ln{xyk), we have /(a) = 

ln(tfak), /(3) = lnOcpk), and we calculate the matrix 

which is real if and only if k is even and x > 0. In fact, we obtain 

k a1±(k9 x) = — In a + In x 

2k a (k9 x) = a (k9 x) = — In a 

S 
k aon(ks x) = In a + In x 

V5 

(5.22) 

where it can be noted that a12(fc, x) = a21(k9 x) is independent of x . 

Finally, since for k even the inequality 

|Xi<fe> l/Lk) - l| < 1 (i = 1, 2) 

holds [see (5.2)], we can calculate the function In 

power series expansion (5.18): 
*fc,l/Lk 

by means of the 

In 
k9 l/L = £ 

k n = 1 

(-D 
„ Ek,l/Lk = ^ , l / ^ = teii&> l ' L ^ - (5.23) 

Replacing x by 1/Lfc in (5.22) and equat ing a^(k, l/Lk) and a^Qi, l/Lk), from 

( 5 . 2 3 ) , ( 5 . 2 0 ) , and ( 5 . 2 2 ) , we ob ta in : 
13 

t , ~~yr = In Lv - 4 : In a (k = 0, 2, 4 , . . . ) 
n=l "£? / 5 

E - 7 * = — In a (fc = 0, 2, 4 , . . . ) 

J? 

f, - ^ = In Lk + ~ In a (fc = 0, 2, 4 , . . . ) . 
n = l nLk /5 

Combining (5.24) and ( 5 . 2 6 ) , we have 

£ ~ = In L\ (k = 0, 2, 4, . . . ) . 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

Using the matrix Q2 1/2 [see (5.21)], by means of the same procedure we ob-

tain 

and 

(5.28) 

£ -^ = In 4, 
n-i " 2 n 

(5.29) 

where the right-hand side of (5.28) was derived by setting k = 2 in (5.25). 
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We conclude this subsection by pointing out that, from the equality 

[directly derived from (5.19)] and from (5.20), the following identities can be 
obtained: 

_£ (J)c-D"-< % i = ( - i ) " % i 
i = 0 

j:lny_l)n-iLJf= (-1)"%. 

(5.30) 

(5.31) 

(5.32) 

5.4 The Inverse of I - Q 
k, a; 

Let us consider the two-by-two matrix 
sKx = ~Rk,x =i -Qv_„= I -*Qk 

For 

# ̂  

Jk, x 

ak
9 $k (k even) 

•a*, -$k (k odd), 

(5.33) 

(5.34) 

Sk admits its inverse 

S. = 1 
1 - xF 7 fc -i xF^ 

xFk l ~ xFk+i 
= A k , x = fcijfr* *)1. 

^ 2 

(5.35) 

where 

1} = (-l)*#z - xLk + 1. 

The inverse of S^ can be obtained from (1.7) by replacing f(a) and /(B) with 

1/(1 - ̂ afc) and 1/(1 - x$k), respectively. 

It is apparent that the inequality 

|X*(fc, «)| < 1 (i = 1, 2) 

holds for -oT^ < x < a~k [see (5.2)]. Under this restriction, we can calculate 
S71 by means of the power series expansion [3]: 

K, X 

s-k*x = n ? 0 « ; u -h,x- &i6&> *y- (5.36) 

Equating a^ (k, x) and a^{k, x) , from (5.36), (5.3), and (5.35), we obtain: 

t x"Fkn+i = (1 - xFt-J/D (-a-k < x < a~k) 
n = 0 

E xnF. = XFJD ( - cT k < x < a-k) 

(5.37) 

( 5 . 3 8 ) 
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n = 0 

Combining (5.37) and (5.39), we have 

f; xnLkn = (2 - xLk)/D (-a"k < x < a~k). (5.40) 

n = 0 

Setting k = 1 and # = 1/2 in (5.38)5 we obtain, as a particular case, 
00 F 

E ^= 2. (5.41) 

n = 0 z 

Setting fc = 1 and a: = 1/2, 1/3 in (5.40), we have L 

L 
n = 0 

and 

E ^ - 6 , (5-42) 
n = 0 2 

n = 0 ^ 

respectively 

£ — = 3, (5.43) 

6. CONCLUDING REMARKS 

While the authors know that a few of the results presented in this article 

have been established by others (e.g., [1], [5], [6]), they believe that most 

of them are original. Certainly, more possibilities exist than those developed 

here. 

It is possible that some of the work presented above could be extended to 

simple cases of three-by-three matrices. 

Acknowledgment is gratefully made to the referee whose very helpful advice 

has contributed to an improvement in the presentation of this paper. 
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ON THE NUMBER OF SOLUTIONS OF THE 

DIOPHANTINE EQUATION (*) = f^) 

PETER KISS 
Teacher's Training College, H-3301 Eger, Hungary 

(Submitted February 1986) 

It is well known that the binomial coefficients are equal in the trivial 

1 - Q - (o) • (i)- (l) - 1 " *)• - » - (Z) - (!) 
for any positive integers n, m9 and fc (<n). Apart from these cases, it is 

more difficult to decide whether there are infinitely many pairs of equal bi-

nomial coefficients or not. 

The problem of equal binomial coefficients was studies by several authors 

(e.g., Singmaster [6], [7]; Lind [4]; Abbot, Erdos, & Hanson [1]). Recently, 

in an article in this Quarterly, Tovey [8] showed that the equation 

has infinitely many solutions; furthermore, (1) holds if and only if 

» = F2i^F2i +F2i-0 ^ k = F2iF2i-l ~ 1 & = l> 2» • • • ) ' 

where F- denotes the j t h Fibonacci number. Another type of result was conjec-

tured by W. Sierpinski and solved by Avanesov [2]: There are only finitely many 

pairs (oc;y) of natural numbers such that («) = (^j- Avanesov proved that this 

holds only in the cases (x;y) = (3; 2), (5; 5), (10; 16), (22; 56), and (36; 120) . 

The purpose of this paper is to prove an extension of Sierpinskifs conjec-

ture. We shall show that the conjecture is true even if we exchange 3 for any 

odd prime. 

Theorem: Let p (^3) be a fixed prime. Then the Diophantine equation 

has only finitely many positive integer x9 y solutions. 

We need the following lemmas for the proof of our theorem. 

Lemma 1: Let m > 2 and n > 3 be rational integers and let a + 0, a , . .., a 
n n -1 0 

and b be rational numbers. If the polynomial 
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fix) = anxn + an_1xn"1 + ••• + a 0 

has at least 3 simple roots, then all integer solutions x9 z of the Diophantine 
equation 

f(x) = b • zm 

satisfy max(lxl, \z\) < C, where C is a number which is effectively computable 
in terms of a , ..., a _ 9 an, and b. 

Proof: The lemma is known if the coefficients of fix) are integers and b = 1 
(see, e.g.. Baker [3]). If b and the coefficients are rational numbers, then 
there is an integer d (̂  0) such that d • .f (#) is a polynomial with integer co-
efficients and d'b is an integer. Thus, our equation can be written in the 

form 

(bd^^d- f(x) = (bdz)m 

which, by the result mentioned above, has only finitely many integer solutions. 

Lemma 2: Let p ) 3 be a fixed prime number. Then all the roots of the polyno-

mial 

f(x) = xix - l)ix - 2) -.. Or - (p - 1)) + ^~ 
are simple. 

Proof: First, we assume that p > 3. We only have to prove that fix) and its 

derivative fTix) are relatively prime, since that implies the lemma. 

Let us consider the polynomial 

fxix) = xix - \)ix - 2) ... ix - (p - 1)). (3) 

It is a polynomial of degree p with leading coefficient 1; furthermore, the 

number of the solutions of the congruence 

fxix) = 0 (mod p) 

is p ix = 0, 1, ..., p - 1). So, as is well known, 

/ ix) E xp - x (mod p), 
that is,. f±ix) has the form 

f1 (x) =xv-x-itp^g1 ix) , (4) 

where g±ix) is a polynomial of degree less than p and has integer coefficients 

(see, e.g., Theorem 2.22 in [5]). 

Since p > 5, pl/8 is an integer and pi (p1/8); so, by (3) and (4), the poly-

nomial fix) and its derivative ffix) are of the form 

fix) = xp - x + p • gix) 
and 

/f(a0 = -1 + p • &(*), 

respectively, for some polynomials £7 0*0 and hix) with integer coefficients. It 
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follows that 

f(x) - x • ff (x) = xp + p • (g(x) - x • h(x)) 

= bpx? + bp_1xp~1 + ... + bQ5 

where the b^ s are integers. It can be easily checked that bp = 1 - p and that 

bQ = p!/8. Furthermore, p)(bp , p\bi , for i = 0, 1, . . . , p - 1 and p2\bQ. So, by 

Eisensteinfs irreducibility criterion, f(x) - x « fr (x) is an irreducible poly-

nomial over the rational number field. Hence, f(x) and ff(x) are relatively 

prime. This proves the lemma in the case in which p > 3. 

When p = 3, one can directly show that the roots of f(x) are simply, which 

completes the proof of Lemma 2. 

Proof of the Theorem: Let x and y be integers for which (2) holds. Then 

yiy - i) = /x\m 
2 \p/5 

thus9 the equation 

y2 ~ y - €) = ° \p) 
has a positive integer solution y. From this it follows that there is an inte-

ger z such that 

KP) + 1 = z2. 

Consequently, x and z satisfy the Diophantine equation 

f{x) = x(x - l)(x - 2) ... (x - (p - 1)) + ^- = ̂ -- s2. (5) 

However9 by Lemma 2, the roots of the polynomial f(x) are simple; therefore, by 

Lemma 1, (5) has only finitely many integer solutions x9 2, and the Theorem is 

proved. 
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The THIRD INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND THEIR 
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1. INTRODUCTION 

Recently The Fibonacci Quarterly has published a number of articles estab-

lishing for the Tribonacci sequence some analogs of properties of the Fibonacci 

sequence. 

It is well known that, for x2 - x - 1 = 0, the two roots are (1 + yfb)/2 and 

(1 - V/5)/2s and that 

2 / 2 

as well as 

n L„ ± /5F„ 
(1) 

' 1 ± y/5\n ^n ~ ¥ ~>Vn 

,Ln ± A F w y Lmn ± J5Fmn 

\ 2 J 2 , (2) 

where Ln are the Lucas numbers and Fn are the Fibonacci numbers with m and n 
integers. Identities (1) and (2) are called "de Moivre-type" identities [9]. 

The purpose of this article is to establish de Moivre-type identities for the 

Tribonacci numbers. 

2. DE MOIVRE-TYPE IDENTITIES FOR THE TRIBONACCI NUMBERS 

From references [1] and [2], we get the three roots of x3 - x2 - x - 1 = 0. 

(3) 

(4) 

(5) 

where X = \ / l 9 + 3 ^ and Y = ^ 1 9 - 3 ^ 3 3 . Us ing X • Y = 4 , and I 3 + I 3 = 3 8 , 

we h a v e 

j~3 + ~{X + Y) + | ( J 2 + J 2 ) l 

[7 + | ( j + J) + ~(xz + J2)1 , 
1988] 1 3 1 

They a re 
r1 = | ( 1 + X + Y), 

r2 = j [ l - f(Z + Y) + ^ i (X • 
and r y — 

-, - ll1 - h" + n - ̂ i « -
-r,]. 

2 = 1 
P i 3 

3 1 
P i 3 
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111 + ^-a + j ) + l a 2 + J 2 ) ] , 

and 

4 = _1[\ 
P i 3L * 3 v" ' " ' ' 3V 

r5
x = ^[21 + ^{X + J) + |(X2 + J2)] , 

r* = ~[39 + ^(X + I) + | ( J 2 + J2)] . 

The coefficients of the above equations are three Tribonacci sequences, which 

we denote by Rn, Sn3 and Tn, respectively. The first ten numbers of these se-

quences are shown in the following table. 

n 
Rn 

Sn 

Tn 

Un 

0 

3 

3 

1 

0 

1 

1 

2 

1 

1 

2 

3 

5 

2 

2 

3 

7 

10 

4 

3 

4 

11 

17 

7 

6 

5 

21 

32 

13 

11 

6 

39 

59 

24 

20 

7 

71 

108 

44 

37 

8 

131 

199 

81 

68 

9 

241 

366 

149 

125 

10 

443 

673 

274 

230 

By induction we establish that 
S. 

1 3[ n + - ^ a + Y) + - ^ a 2 + Y2) (6) 

Using the same method, we obtain 

and 
P3 = J^n ™ £[*„-!<* + Y) + Tn_2(J2 + Y2)] 

~ f f ^ n - 1 ^ " J> + ^ - 2 ^ ™ J 2 > ^ 

(7) 

(8) 

Hences we find that r™9 r2? and r™ can be expressed in terms of Rn, Sn_1, and 

T _ , so we have formulas equivalent to (1) for the Tribonacci numbers. 

3. BI NET'S FORMULA FOR Rn, Sn, AND Tn 

From Spickerman [2] and Kohler [3], we can obtain Binet?s formula for Rn9 

Sn, and Tn . That is, 

(9) 
and 

7? = y ? n 4- y > n 4- r> n 
X 1 n z l T j t 2 3 

£n = d^* + d2r » + d3r3w, (10) 

where S« = 39 5-, = 29 and 5, 
From (10), it follows that 

3P2P3 + 2r1 + 3 P1(3P1 - 1) 

(r1 - P2)(P1 - r3) (P1 - r2)(rx - r 3) s 
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3r3ri 4- 2P2 + 3 r2(3r2 - 1) 
2 " 0 2 " p

3)( p
2 ™ *\) ~ (r2 - P3)(^2 ™ 3?i)5 

3r r + 2r + 3 r (3r - 1) 
, 1 2 3 3 V 3 7 

a0 = 
and 

3 (r3 - ̂ 1)(^3 ™ r2) (r3 - ̂ ^(^3 - P 2 ) 9 

rn+2 rn+2 n+2 
1 2 3 

"n (PX " P2)(P1 - r3) ' (P2 - r3)(r2 - r1) + (r3 - P]_)(P3 - r2) * ( U ) 

Tn and i?n were originally discussed by Mark Feinberg [1] and Gunter Kohler 

[3]. Equation (11) was derived by Spickerman [2]. 

4. SOME PROPERTIES OF Rn9 Sn? AND Tn 

As Ian Bruce shows in [6], using the Tribonacci sequence definitions some 

interesting results can be derived. We have also found the following: 

Rn = Rn-1 +Rn-2 + Hn-3 ( 1 2 ) 

Sn = £ „ - ! +Sn_2 + 5 n . 3 ( 1 3 ) 

( 1 4 ) 

( 1 5 ) 

( 1 6 ) 

( 1 7 ) 

( 1 8 ) 

( 1 9 ) 

( 2 0 ) 

( 2 1 ) 

( 2 2 ) 

K + 4-i - i 
T0T1 + T±TZ + T2TS + TST, + ••• + Tn_xTn = 7 (23) 

T = T 

un = un. 
Un = ?n-
Rn = Tn-

+ T7 + T 
-1 ^ ^ n - 2 ^ n - 3' 
. ! + y n . 2 + z/„_3 

4- T7 

- 1 ^ ^n - 2 
- 1 + ^Tn - 2 + ^ n - 3 

Q = ^ T 7 _ iT 
u n J i n x n-\ 

n 

^ = 1 

n 

^ = 1 

n 

^= 1 

n 

i = 0 ^ 

T - 1 

2[/n + 2 + Un - 3 

3/7n + 1 + 2tf„ - /7n_x -

2 

^n + 2 + ^n + l " 1 

2 

- 2 

and 
^4n + l^ tn+-3 + ^ n + 2 ^ n + 4 ^ \ « + 3 ^ \ n + l 

372 a- r/2 _ 2C772 + T2) 
un + l ^ un-l ^y-i-n-i ^ ±n) 

(25) 

T2 - T2 = U • U ^ 2 6 ) 
1n 1n-l un+l un-l° 

1988] 133 



DE MQ1VRE-TYPE IDENTITIES FOR THE TRIBONACCI NUMBERS 

ACKNOWLEDGMENT 

The author is extremely grateful to the referee and to Mr. Hwang Kae Shyuan 

for their helpful comments and suggestions. 

REFERENCES 

1. M. Feinberg. "Fibonacci-Tribonacci. " The Fibonacci Quarterly 1, no, 1 
(1963):70-74. 

2. W. R. Spickerman.."Binet's Formula for the Tribonacci Sequence." The Fibo-
nacci Quarterly 20, no. 2 (1982):118-120. 

3. G. Kohler. "Generating Functions of Fibonacci-Like Sequences and Decimal 
Expansions of Some Fractions." The Fibonacci Quarterly 23, no. 1 (1985): 
29-35. 

4. W. R. Spickerman & R.N. Joyner. "Binet's Formula for the Recursive Sequence 
of Order Z." The Fibonacci Quarterly 21, no. 4 (1984):327-331. 

5. C.P. McCarty. "A Formula for Tribonacci Numbers." The Fibonacci Quarterly 
19, no. 5 (1981)^391-393. 

6. I. Bruce. "A Modified Tribonacci Sequence." The Fibonacci Quarterly 22, 
no. 3 (1984):244-246. 

7. W. Gerdes. "Generalized Tribonacci Numbers and Their Convergent Sequences." 
The Fibonacci Quarterly 16y no. 3 (1978):269-275. 

8. P. Lin. "The General Solution to the Decimal Fraction of Fibonacci Series." 
The Fibonacci Quarterly 22, no. 3 (1984):229-234. 

9. M. Bicknell & V. E. Hoggatt* Jr.5 eds. A Primer for the Fibonacci Numbers, 
Santa Clara, Calif.: The Fibonacci Associations 1972, p. 45s B-10. 

134 [May 
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Continuing the previous papers (see [l]and [2]), several new properties of 

binary trees, especially Fibonacci trees, have been found and will be shown in 

this note. For this, we shall occasionally need to refer to some of the nota-

tions , definitions, and results given in those papers. 

1. BINARY TREES WITH BRANCH COST 

Consider a binary tree with n - l internal nodes 1, 2, . .., n- 1 and n ter-

minal nodes (leaves) 1, 2, . .., n. An internal node has two sons, while a 

terminal node has none, A node is at level £ if the path from the root to this 

node has £ branches, When, as in [1] and [2], unit cost 1 is assigned to each left 

branch and cost c > 0 to each right, we say the tree is "(1, e)-assigned." The 

cost of a node is then defined as follows: The cost of the root node is 0, and 

the cost of the left [right] son of a node of cost b is b + 1 [b + c] •. Denot-

ing by a^ [bj] the cost of terminal node i [internal node j] , we have the rela-

tion: 

E ^ =nE bj + (w - D d + o). (i) 
i = l j = l 

This is proved easily by induction on n (see [1]). 

The sum on the left-hand side of (1) is called the total cost of the tree. 

Let us say that a binary tree is c-minimal (or c-optimal [2]) if, when (1, o)-

assigned, it has the minimum total cost of all the (1, c)-assigned binary trees 

having the same number of terminal nodes. 

2. BiNARY TREES WITH BRANCH PR0BAB1LSTY 

We may also assign, instead of cost, probability p (0 < p < 1) to each left 

branch and p = 1 - p to each right. We then say the tree is " (p, p") -assigned.!! 

The probability of a node is defined as follows: The probability of the root 

is 1 and the probability of the left [right] son of a node of probability q is 

pq [pq]. Let p. [q .] be the probability of terminal node i [internal node j]. 
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The (p , p") -assignment may be interpreted as a transportation of "nourish-

ment11 of unit amounts along paths from the root to leaves, with rates p and p" 

to the left and right branches at each internal node. The probabilities p. of 

terminal nodes, whose sum is of course 1, show the distribution of the nourish-

ment among leaves, and will be called the terminal distribution, 

We are especially interested in such trees that have terminal distribution 

as uniform as possible, given p and the number of terminal nodes. For fixed 

n, the uniformity of a probability distribution p l 9 . .., p can be measured 

appropriately by the entropy function 

H(plS ..., p j = - E p { log pi (log-base = 2), 

as will be seen in the following sections. 

A binary tree is called p-maximal if, when (p, p") -assigned, it has the max-

imum entropy of all (p, p)-assigned binary trees having the same number of ter-

minal nodes. 

3» ENTROPY FUNCTION 

The entropy function measures the uniformity or the uncertainty of the 

probability distribution (see [3], and also [1]). It is well known that H(pl9 

..•9 p ) attains its maximum value log n only in the case of the complete uni-

formness: 

Pi = ••• = Vn = 1/w-

The following lemma is a variant of the so-called "branching property" of the 

entropy. 

Lemma 1: Given a (p, p")-assigned tree, the entropy of the terminal distribution 

is given by 

H(p , .... p ) = H(ps p^tq^ (2) 
j = l J 

Proof: Our binary tree can be viewed as grown by n - 1 successive branchings, 

starting with the branching of the root node. The entropy is initially zero: 

#(1) = -1 log 1 = 0 . The entropy increase due to the branching of a node of 

probabilxty q: i 

-(pq)log(pq) - (pq)Iog(pq) - (-<? log q) = (>p log p - p log p)q9 (3) 

hence completing the proof by induction. • 
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It should be noted that the sum of the internal node probabilities is equal 

to the average path length for the terminal nodes: 

n- 1 n 

Heres Z^ is the level where terminal node i exists. This equality holds be-

cause each p . contributes to both sides exactly £• times» 
Lemma 1 can, therefore9 be interpreted as follows: "A terminal node can be 

reached from the root with £ g . branchings on the average, and the uncertainty 

produced per branching is H(p5p)s so the uncertainty of the terminal distribu-

tion should be H(p5 ~p)Y,q • « " 
Let us digress here to consider the following question: Suppose9 converse-

ly, that the following functional equation in the same form as (3) is given for 

some nonnegative function f(t) defined on 0 < t ^ 1: 

f(pq) + f(pq) ~ f(q) = (f(p) + f<jp))q> 0 < p < 1, 0 < q < 1. (4) 

Then, how well will / be characterized? 

Theorem 0: If f(t) is defined on 0 < t < 1 and satisfies (4), then 

f(t) = -at log t for some constant c ^ 0. 

Proof: Take q = 1, Then f(l) = 0. Let us put g(t) = f(t)/t. We have g(l) = 
0, and (4) becomes 

pg(pq) +pg(pq) - g(q) = pg(p) + pg(p). (5) 

Taking p = 2"1 gives g(2~1q) = g(2~1) + g(q). Repeating this gives g(2'Nq) = 

Ng(2'1) + g(q); hence, 

2'Ng(2'Nq) -> 0, N -* ™, (6) 

Rearrange terms in (5) to obtain: 

2 9(p) - g(pg) , -2 g(p) - g(pq) = / ( D - /(?) , i f o r q < x (7) 
p v - pq p p _ yq

 l ~ 9 v9 

Letting q -> 1 in (7) yields 
p2gf(p) =:p2gT(p) = -<?! (constant) . (8) 

Next, we take the integral I dq to both sides of (5). Then, 
J2-* 

fP #(*)<#; + fP • g(t)dt - f g(t)dt = (p<?(p) + p#(p))(l - 2'*). (9) 
J-2-^ i2^p J 2"* 

Differentiating (9) with respect to p, and then letting B go to infinity, we 
have, using (6), 

pgf(p) = fg'ip). (10) 
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From (8) and (10) , we have pgf(p) = -<?i* Hence, g(p) = -c1 In p + d. We must 

have d = 0 and cx > 05 because #(1) = 0 and #(p) ̂  0. Consequently, 

#(£) = -c log t on 0 < t < 1, for some constant o ^ 0. • 
(For a derivation of the entropy function under a more general condition, see 

[4].) 

k. DUALITY 

In this section, we present and prove the following theorem. 

Theorem 1 : Let c > 0 and 0 < p < 1 satisfy pc = "p. Then a binary tree is c-

minimal if and only if it is p-~maximal. 

Proof: Consider the infinite complete binary tree Too • Because of (1), a e-
minimal tree having n terminal nodes can be found in Tm by picking the n - 1 
cheapest nodes 1, 2, . . ., n - 1 to be internal, if the nodes of the (1, <?)-
assigned Tm are numbered 1, 2, ... such that 

b1 < fc2 < ... . (11) 

(Also see [1] in this respect.) The ordering (11) is equivalent to the order-

ing 
phi > pb* > ••• . (12) 

If node j is reached from the root by r left branches and s right branches, we 
have bj = v + so. Now, from the assumption p° = p, we have <7. = pr(p)s = p̂ J' 

in the (p,p")-assigned Too. Hence, because of Lemma 1, the tree thus found must 

be p-maximal.- .• 

A most interesting c?,p satisfying p° = ~p is o = 2, 
p = ij, = 0/5 - l)/2 (? - * 2 ) . 

5. FIBONACCI TREES 

We can now apply Theorem 1 to the Fibonacci trees (see [2]), The Fibonacci 

tree of order k3 denoted by Tk, is a binary tree having n = Fk terminal nodes, 

and defined inductively as follows: T and T2 are simply the root nodes only. 

The left subtree of Tk (k > 3) is Tk_1 and the right is Tkm>2. Here, Fk is the 

kth Fibonacci number: FQ = 0 , F± = 1, Fk = Fk^1 + Ffc_2. 

It was shown in [1] that Tk is 2-minimal for every k. Hence, by Theorem 1, 

Tk is ijj-maximal for every k» 
The following theorem was proved in [2]. 

Theorem 2: When 1 < o < 2, Tk (k > 3) is c?-minimal if and only if 
1 k < 2 + 3. 
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When a > 2, Tk (k > 3) is e-minimal if and only if 

+ 4* k < 2 1 
_p - 2__ 

{[x\ is the largest integer < x.) 

Translating this into its dual form by using Theorem 1, we have 

Theorem 3: For even k > 6, Tk is p-maximal if and only if 

For odd k > 5, Tk is p-maximal if and only if 

p^1+fc-3' < p < p^1 fc-3'. 

In [1] it was shown that the (1, 2)-assigned Tk has F-k_1 terminal nodes 

(called a-nodes in [2]) of cost k - 2 and Fk_ terminal nodes ((3-nodes) of cost 

k - 1. Since each a-node [g-node] has probability tyk~2 [i^-1] in the (ip, lf)-

assigned Tfe5 we have the following terminal distribution: 

Hences we have 

(F i^"2 ~ — ip"1 = 0.724, F if^-1 ~ — \p = 0.276.^ 

The entropy of the above terminal distribution is computed as 

~Fk-Jk'2 log ^k'2 ~ Fk_2i)k'1 log ij;*-1 

= (-log ip){(k - 2) + Fk_2i)k'1}. (13) 

By a numerical computation9 the ratio of this entropy and the entropy log Fk 

of the completely uniform distribution is approximately 1 - (0.05)/(k - 1.67). 

Finally, let us compute the entropy of the terminal distribution of the 

(p, p")-assigned Tk. Denote the entropy by Hk for simplicity. Then, trivially, 

H1 = H2 = 0 and H3 = H(p5£))« By Lemma 1 and by the recursive structure of the 

Fibonacci tree, the sum of the internal node probabilities of Tk is given by 

Hence, we have the "Fibonacci branching of the entropy": 

Bk = H3 + pEk.1 +pHk-2-
Putting tJlk = Hk - Hk_1, we have Mk = ~'pAHk_1 + H3; therefore, 
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u 

Mk =Y^{1 - <-P>*"2>« k > 3' 

777 = 3 Z F (̂  1 + p j 

When p = I(JS #^ becomes (13), as can be checked. The p that maximizes Hk 

approaches \\) as fe becomes large. This is because the maximization then almost 

becomes the maximization of the function 

F(P) " 2 - p ' 

and the maximum (= -log ip) of F(p) is attained only when p = if;. The maximiza-

tion of F(p) has already appeared in [1] in a closely related context. 
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1. THE THREE-NUMBER PROBLEM 

L e t 5 = (b1$ b2$ b3) r e p r e s e n t a column v e c t o r of t h r e e e l e m e n t s and d e f i n e 

t h e o p e r a t o r D3 on B a s 

D3(b15 b2, b3) = (\b1 - b3\s \b± - b2\s \b2 - 6 3 | ) . 

Given any i n i t i a l v e c t o r BQS we o b t a i n a s e q u e n c e {Bn} w i t h Bn = D3Bn_ie T h i s 

s e q u e n c e i s c a l l e d t h e " t h r e e - n u m b e r game" b e c a u s e of i t s s i m i l a r i t y t o t h e 

fou r -number game s t u d i e d by Webb [ 2 ] . 

D e f i n e vB = m a x ( | & 1 | 5 | i > 2 | 9 | & 3 | ) ° Then , vB > rD 3B w i t h e q u a l i t y o n l y i f 

D3B i s of t h e form B!
 9 where 

Bf e [(bF
s b \ 0 ) , ( 0 , b \ b')9 (b'9 09 6 ' ) ] , bf > 0 . 

Definition 1.1: The length of the sequence {Bn}9 denoted L(B) 9 is the smallest 

n such that Bn takes the form B!. 

The three-number problem is to determine L(B) given B, Note thats if b± = 

b2 = b3s Bf = 0 and L(B) = 1. 

Definition 1.2: If L(B) = L(C)9 B and C are said to be virtually equivalent 5 

B ~ C. 

Let CQ = P0B0, a vector in which the elements of BQ are rearranged, then 

Ci = PiBi9 i = 1, 2S . .., n9 where P̂- is some permutation matrix. Therefore, 

C0 ~ BQ and 

5'o ^ PoB0° C1-1) 

Definition 1.3: The vector B is said to be proper if B = (a, &9 0) + c[7, where 

a > 2? > 0, e is arbitrary,, and U = (19 19 1) . 

Note that either L(B) = 1 or B is virtually equivalent to a proper vector. 

If B is proper 5 then 

( (&, 2& - a , 0) + (a - &)£/ i f 2£- > a > 2? > 0 , 
^ 3 5 = S ( 1 - 2 ) 

{(a - b, a - 2b9 0) + bU If a > 2b. 
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In either case, D3B is virtually equivalent to a proper vector of the form 

(ar , br
 9 0) + c1Z7, where c1 = ar - br and is independent of c. 

If c' is arbitrary and B is proper, then 
B + c'U * B. (1.3) 

If fc is an integer and 5 is proper, D3kB = |fc|£>35; hence, 

kB ~ B. (1.4) 

The three-number problem can be solved, in general, by use of the above 

equations. If B is proper, it reduces to a solution of the two-number problem 
as shown below. 

2. THE TWO-NUMBER PROBLEM 

The two-number game has been studied by the author (see [1]). Let D2 rep-

resent an operator defined on a vector A = (a, b) 9 a ^ b > 0, by 

((&, a - b) 2b > a, 
D2A = < (2.1) 

((a -.£, b) a > 2b* 

Definition 2.1: The complement of A is defined as C(a9 b) = (a, a - &) . Then, 
"1 01 C = 
.1 - 1 

and i f a > & > 0 , 

Z)2C4 = Z?2i4. ( 2 . 2 ) 

Given any initial vector AQ9 we obtain a sequence {An} with ln = D2^n_1. 

This sequence is called the "two-number game." 

Definition 2.2: The length of the sequence {An}, denoted L2(A) or L2(a9 b) is 
the smallest n such that An = (a', 0) for some integer af > 0. 

It follows that L2(n, 1) = n and that 

L2(a, 2>) = [alb] + L2(&, a (mod b)) 9 (2.3) 

where [#] represents the greatest integer in the number x. 
The two-number problem has been solved for a ) i > 0 as the result of re-

peated applications of this formula. 

3. THE MAIN RESULT 

Theorem 3.1: If B = (a, b9 0) + oU is proper, then L(5) = L2(a, b). 

Proof: Comparing equations (2.1) and (1.2), we see that 

D3B0 «• (OT2^0, 0) + e1C/ or 

Bx * (CAl9 0) + ax[/, 

B2 * (CA2, 0) + c2Z7, etc., where ci is an integer. 
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For some n5 Bn = (bf, b \ 0) , cn = 05 Bw-1 ^ Sn, and L(50) = n5 but 5n ~ (CAn9 

0)s so ̂ n = (2?f, 0) . Since D2(br
9 0) does not exist, there is only one n such 

that An = (br
s 0) . It follows that, if B = 04 s 0) + cU is proper, then 

L(B) = L 2 W ) . • 
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1. INTRODUCTION 

The sequence {Fn} of Fibonacci numbers is defined by 

F0 = 0, Fx = 1, 

with the recurrence relation 

Fn+2 = Fn+1 + Fn • 

A number of identities for {Fn} are well known. Among them are 

V l * W l " FN = ("Dff a n d Vl̂  + 1 - ̂ - 2 ^ + 2 = ̂ " D " -

These identities were generalized by Harman in [1] by introducing the complex 

Fibonacci numbers. Similar generalized identities involving the combinations 

of the Fibonaccis Lucas, Pell, and Chebyshev sequences were obtained by this 

author (see [2]) by introducing the Generalized Gaussian Fibonacci Numbers de-

fined using Harman?s technique. 

This gave rise to a natural question: Is it possible to achieve similar 

results for the Tribonacci numbers? This paper gives the answer in the affir-

mative. To achieve this* we define in Section 3 the complex Tribonacci numbers 

at the Gaussian integers. Our main result is equation (5*1). 

2. TRIBONACCI NUMBER SEQUENCES 

Denote by {Sn} a sequence defined by the third-order recurrence relation 

given by 

$n+3 = PSn + 2 + Q^n + 1 + RSn. 

We consider the following particular cases of {Sn} and call them the fundamen-

tal sequences of third order. 

a. {Jn} where JQ = 0S J1 = 1, and J1 = P5 

b. {Kn} where ZQ = 1 , 1 ^ 0S and Z2 = 6S 
c. {Ln} where L0 = 09 L1 = 09 and L2 = R. 

If P = § = i? = 1, then {Jn}, {Kn} 9 and {Ln} will be called the special funda-

mental sequences and will be denoted by {J*} 9 {#*}» and {£*}s respectively. 
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The following relations are easily proved: 

Hn + 1 = pjn + K 9 n > 0; 
Kn + 1 = QJn + RJn_l9 n > 1; 
L„ , -, = P J„ , n > 0. 

(2.1) 

(2.2) 

(2.3) 

By (2,3)5 (2.2) can also be written as 

Kn+i = QJn + £*• (2.4) 

It is helpful to know the first few terms of the above sequences. We pre-

sent them in Table 2.1. These sequences have been studied by many researchers 

(see, e.g., Shannon [3], Shannon & Horadam [4], and Waddill & Sacks [5]). 

Table 2.1 

Un) 

{Kn} 

iLn] 

0 

0 

1 

0 

1 

1 

0 

0 

2 

P 

Q 

R 

3 

P2 + Q 

PQ + R 

PR 

4 

P3-t2PQ + R 

P2Q + PR+Q2 

P2R+QR 

5 

Pk + 3P2Q+2PR+Q2 

P3Q + P2R+2PQ2+2QR 

P3R + 2PQR + R2 

6 

P5 + hP3Q + 3P2R + 3PQ2 4- 2QR 

PhQ + P3R+ 3P2Q2 + hPQR+ Q3 + R2 

PkR-h 3P2QR+ 2PR2 + Q2R 

3. DEFINITION 

Let (n9 m) , ns 777 € Zs denote the set of Gaussian integers (n9 m) = n + im« 

Let £ : (n, 772) -> £9 where £ is the set of complex numbers, be a function defined 

as follows: 

For fixed real numbers P9 Q9 and R9 define 

(G(09 0) = 03 G(l, 0) = 1, G(2, 0) - P 

;o, 1) = i9 (7(1, 1) = P + iPs G(2, 1) - P2 + i(P2 + 6) (3.1) 

{G(0S 2) = iP 9 G( l , 2) = P 2 + C + i P 2 . ^ (2 5 2) = P3 + PS + i ( P 3 + P 0 
with the following conditions: 

G(n + 35 777) = P(7(n + 2S m) + §£(n + 1, 777) + P£(n, w) , (3 .2) 
and 

Girt, m + 3) - P£(n9 w + 2) + $G(w, 77? + 1) + RG(n9 m). (3.3) 
The conditions (3.2) and (3.3) with the initial values (3.1) are sufficient to 

obtain a unique value for every Gaussian integer with nonnegative values for n 

and 777. 

4. RESULTS CONCERNING G(n9 m) 

Lemma 4,1: G(n9 0) and £(0, m) are given by 

G(n9 0) = Jn9 and G(09 m) = ie7w: 

Proof: The proof is simple and hence omitted. 

(4.1) 
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Theorem 4.2: Gin, m) is given by 
Gin, m) = J J ,, + iJ _,nJ. (4.2) 

Proof: Although an elegant proof can be given by using the technique of mathe-

matical induction9 we give another below, which although not so elegant brings 

out more clearly the interaction. We have: 

Gin, rn) = PG(n - 1, m) + QG(n - 1, rn) + RG(n - 3, rn) 

= P{PG(n - 29 rn) + QG(n - 3, m) + RG(n - 4, m)} 
+ fiG(n - 2 , 777) + i?G(tt - 3, 77?) 

= (P2 + <2)G(n - 29 ???) + (P§ + R)G(n - 3, TT?) + PP£(^ - 4, TT?) 
= J3G(n - 29 TT?) + K3G(n - 3, TT?) + L3^(n - 4, m) 
= J3[PG(n - 3, TT?) + Q£(n - 49 m) + RG(n - 5, TT?) ] 

+ X3£(n - 3, m) + L3G(n - 49 TT?) 

= (PJ3 + K3)G(n - 3, TT?) + (QJ3+L3)G(n - 49 TT?) + RJ3G(n - 5, TT?) 

Now we make use of (2.1), (2.4), and (2.3) to set 

Gin, TT?) = JhG(n - 3, m) + KhGin - 4, m) + L ^ n - 5, TT?). 

Continuing this process, we finally get 

Gin, TT?) =e7n.1G(2, m) +£n-1G(l, TT?) + £^£(0, TT?) . (4.3) 

We apply the same technique for Gil, m) , Gil, m) , and £(Q, TT?) to get 

£(2, m) = Jm^G(29 2) + XW-1G(2, 1) + ̂ . ^ ( 2 , 0) , 

G(l» w) = e ^ . ^ d , 2) + ^ . ^ ( 1 , 1) + Lm_1G{l9 0 ) , 

and GiO, rn) =Jm_1GiO, 2) + Km^G(09 1) + L m _ ^ ( 0 9 0 ) . 

Then ( 3 . 1 ) g i v e s 

(Gil, 77?) = {P3 + PQ + HP3 + PQ)}Jm^ + [P 2 + HP2 + Q)]Km.1 + PLm.x, 

\Gi\, TT?) = (P 2 + Q + iP2)Jm.^ + (P + i P ) ^ . ! + A , - i > and ( 4 . 4 ) 

((7(0, m) = i P ^ . x + i Z ^ . 

S u b s t i t u t i n g t h e v a l u e s of £ ( 2 , m) , Gil, m) , and (7(0, TT?) from ( 4 . 4 ) i n t o ( 4 . 3 ) 

and s i m p l i f y i n g , we g e t : 

Gin, TT?) = { ( P 3 + P e ) J n _ 1 + (P 2 + « ) £ „ _ ! + i [ ( P 3 +PQ)Jn_1 
+ P Kn_1 + P L n _ 1 ] } J m _ i 

+ { P V n _ x + P Z n _ x + ^ [ ( P 2 + Q)Jn.1 + P Z n _ x + Ln- lHt f /n - l 

+ {PJ n + ZM n }Pm 1 
n-1 n-1 m - 1 

Using equations (2.1)-(2.4), we obtain: 
G(n, m) = Jm_x{P'lJn + QJn + i(P2Jn + PKn)} 

+ Km.x{PJn + i[PJ„ + Kn]} + Lm_1Jn 

+ iKn{PJm_x +Km_1} 
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Theorem 4*3: For fixed n, m (n, m = 0S 1, . . .) , the recurrence relation for 

G(n9 m) is given by the following: 

G(n + k, m + k) = (P + iP)ZQk~%+<Jm + j 
J' = I 

(4.5) 

+ P 

[fc/2] 
L j = i 

^ 2 + 2j - S^77+ 2j - 2 - S 

+ 
J = l 

} ^ - 2 j + l - s 
» + 2 j ' - 3 + s w + 2 j - 1 + < 

[&/2] 
+ E 

J = l 

[fc/2] + £ 

E 
. J = I 

1 k - 2 j + s 
Jn+ 2 j - 2 - s ^m + 2 j - s 

1k- 2j+ 1 - s 
X n + 2j - 1 + s"m+ 2rj - 3 + s 

nkjG(n9 m)9 if k is even 
^ }G(m9 n)9 If k is odd, 

where s • f O , i 
U, i 

if fc i s even 
f k i s odd and [/</2] denotes the greatest integer function. 

Proof: Fix n and m. From (4.2) , we have: 

G(n + l5 m + I) = Jn+1Jm+2 + iJn + 2Jm+1 

By algebraic manipulation and interchanging n and m In (4.2) , we get 

G<« + 1, m + 1) = (P + iP)Jn+1Jm+1 + RJn+1Jn^ 

+ iRJn.1Jm+1 + GGfa, w). (4.6) 

Similarly, we have 

G(n + 2, m + 2) = (P + iP) [Jn+2J"m+2 + ft7n + 1 J O T + 1 ] 

+ mjnjn+2 + QJn+1Jm-J + e 2 ^ > *)• < 4 - 7 ) 
(4.6) and (4.7) show that (4.5) holds for /c = 1 and k = 2. Now, suppose (4.5) 

holds for the first k positive integers. We prove that then it also holds for 
the integer k + 2. Now, although n and m are assumed to be fixed in (4.7), it 

is clear that (4.7), in fact, is true for any positive integers n and m. Thus, 

replacing n and m by n + k and m + k9 respectively, in (4.7), we get: 

G(n + k + 2, m + fc + 2) = (P + iP) [̂  + fe+2^z + fe+2 + &W+A+fe+J 

+ ^^n + k+2^m+k + QJt+k- l^m+k+J 

+ S2G(n + fc, m + fc) 

Substituting for G(n + k, m + k) from (4.5) , we get: 
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G(n + k + 25 m + k + 2) - (P + iP) [Jn + k+ 2Jm + k + 2 + QJn+k+lJm + k+i\ (4-8> 

+ i ? [ 4 2 + f e + 2 /̂77+A: + Q^n + k- l^m+k + J 

+ ii?[J„ + ^J"m + k + 2 + QJn + k+ xJm +k- \1 

k 
+ Q-UP + iP) EQk~%+jJn 

3-1 
jdm + j 

+ R 

[k/2 

[k/2] + s 7 o . 

^ dn+2j - sdm + 
3 = 1 

2j - 2 - s 

4. V nk~23+l~sT T 
^ 2^ ^ e / " + 2 j - 3 + e e / m + 2 j - l + f J = l 

+ i P 

[k/2 

[k/2]+8 -, _ . 

E e""2j + 

L J = I 

-,&- 2 j + l - s j 

^ + 2 j - 2 - s^w + 2j - s 

+ S ^ J ^ + 2 j - l + s c 7 m + 2 f 7 - 3 + s 
J = l 

+ «' :
(G(n9 m) , 
V(m, n), 

k even ' 
fc odd i 

We observe the following on the right-hand side of (4.8): 

The coefficient of P + iP is 

^n + k+2^m+k+2 + ^n+k+l^m + k+l + E 
3 = 1 

n f c + 2 - j 
< î + j JT J°m + J 

k+ 2 

E-
J = I 

} k + 2 - j* 
Jn + j^m + j ' 

The c o e f f i c i e n t of i? i s 
[Zc/2] + s fc+2_2j-+s 

c 4 + k + 2 J m + £ + & ^ H - f c - l ^ n + f c + 1 + E 6 ^ + 2 ^ - 5 ^ + 2 ^ - 2 - 3 
J = l 

3 = 1 
^n + 2j - 3 + s^ra + 2j - 1 + s ' 

O b s e r v i n g t h a t , i f j = [fc/2] + 1 + s and j = [fe/2] + 1, 2j = k + 2 + s and 

fc + 2 - s , r e s p e c t i v e l y , where s i s a s d e f i n e d b e f o r e , we s e e t h a t : 

The c o e f f i c i e n t of R i s 

[k/2] + 1 + 8 
E Qk+2'2J' + S-

3 = 1 

+
 lTV—-., J - l 

^ + 2j ~ s^m +2j - 2- s 

'n + 2j - 3 + s m + 2j - l + s' 

S i m i l a r l y : 

The c o e f f i c i e n t of %R i s 
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SOME IDENTITIES FOR TRIBONACCI SEQUENCES 

[&/2] + 1 

^n +2j - 2- s^m+lj- s + 2 * 
J = l 

1k+3-2o~sJ T 

* dn + 2j - 1 + s^m + 2j - 3 + s ' 

The last term is 

(G(n9 m) , k even, 

{G(m9 ri), fc odd, 

These coefficients are exactly the same as those, respectively, on the right-

hand side of (4.5) with k replaced by k + 2. This completes the proof. 

IDENTITIES FOR M 
Equating the real parts of (4.5), and making use of (4.2), we get: 

PEQk~% + jJn 
J = l 

J m+ j + R 
~[k/2] + 

E 
. J = I 

^ - 2 j -
n+ 2j - s^m+ 2j - 2- s (5.1) 

[fc/2] 
+ E 

J = I 

-,£:- 2j'+ 1-s 
^w + 2j - 3 + s^m + 2j - 1 + i 

^n+k^m+k+l ' $ Jn+s^m+l-

Remark 1: Equation (5.1) gives the sum of 2k terms as that of just two terms. 

Note that equating the imaginary parts of (4.5) gives (5.1) with 777 and n inter-

changed and, therefore, effectively the same equation. 

We now consider some special cases. 

6„ SPECIAL CASES 

(A) m - n 

Putting s = 0 and s = 1, in turn, for k even and k odd, respectively, we 

readily observe that, for both even and odd k9 (5.1) reduces to a single equa-

tion given by 

J = 1 «/ = 1 

(B) m = n = 0 

With these values of m and n9 (6.1) reduces to 

JnJn+ 1 (6.1) 

0-1 J 1=1 

(6.2) 

(c) 1, m 

Equation (5.1) takes the following forms 

1988] 149 



SOME IDENTITIES FOR TRIBONACCI SEQUENCES 

{'|V-%-
r / c + l " ^ 

fc+l " RJk+lJk> 

• 2+2s [ S ^ 2 j - 1 - 2s 

if fc i s even9 

_2 if k i s odd. 

Remark 2: Various other identities may be obtained for other choices of m and 
n. Thus, equation (5.1) provides an abundance of identities. 

Remark 3- IfP~Q=R=l3 the identities in Sections 5 and 6 reduce to those 

for the "special fundamental sequences." It is interesting to compare these 

identities with similar ones for Fibonacci sequences. For examples for n - 0, 
m = 0, (6.2) becomes 

k 2 k 

£. Jd + £ ^ 2Jj = JkJk + 1 > 
J ~ ± J •*• 

and for n = 1, m = 0, (6.3) 

fc [k/2] 

( T*2 -

reduces to 

T T* 4 - 7 * 
• 2 + 2 s ld2j- 1 - 2s T e / 2 j + l - 2 e 

1, if fe i s even, 

Similar identities for the Fibonacci sequence are 

k 

and 
k iFk+i " 1» i f fc i s e v e n> 

*̂ = 1 J J + 1 l ^ + i ' if fe ^ odd. 
(See [1].) 

Remark hi If R = 0, the sequence {Jn} reduces to the sequence with second-order 
recurrence relation. If, in addition, P = p and Q = -q, {Jn} becomes Lucas's 
fundamental sequence [2]. If P = 1 and Q = 1, {Jn} reduces to the Fibonacci 

sequence. In these cases, equation (5.1) and the rest of the equations reduce 

to equation (5.1) and the others, respectively, of [2]. 

Remark 5- Define the initial terms as follows: 

G(0, 0) = 0, G(l, 0) = iQ9 £(2, 0) = i(PQ + R) 
G(0, 1) = «, G(l, 1) = 0, G(2, 1) = Q2 

G(0, 2) = PQ + R9 £(1, 2) = iC2, G(2, 2) = Q{PQ + R) + ig(P§ + R) 
Then, following a technique similar to that used in Theorem 4.2, we prove that 

G(n9 m) = KnKm+1 + iKn + 1Km. (6.4) 

150 [May 



SOME IDENTITIES FOR TRIBONACC1 SEQUENCES 

Since (6.4) is exactly the same as (4.2) with Ji replaced by Ki, it can be 

readily seen that with such a replacement all identities proved in Sections 5 

and 6 can be transformed into ones with {Kn} and {Z*}. The same is true for 
{Ln} and {L*}. 
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A. ZULAUF and J . C. TURNER 
University of Waikato, Hamilton, New Zealand 

(Submitted April 1986) 

I n t h i s p a p e r , F i b o n a c c i s e q u e n c e s of s e t s and t h e i r d u a l s a r e d e f i n e d and 

used f i r s t t o o b t a i n s h o r t p r o o f s of two we l l -known theo rems on t h e r e p r e s e n t a -

t i o n of i n t e g e r s a s sums of F i b o n a c c i n u m b e r s , and second t o p r o d u c e two s e t s 

of b i n a r y numbers t h a t r e s e m b l e C a n t o r f s t e r n a r y s e t . I t i s a l s o shown how 

F i b o n a c c i s e q u e n c e s of s e t s and t h e i r d u a l s can be r e p r e s e n t e d by s e q u e n c e s of 

t r e e s . 

Given any s e q u e n c e C = (cl9 c2, . . . ) of r e a l n u m b e r s , l e t t h e c o r r e s p o n d i n g 

F i b o n a c c i s e q u e n c e of s e t s and i t s d u a l be d e f i n e d by 

S0 = { 0 } , S± = {cx}, Sn = {x : (x - en) e (Sn_x u 5 n _ 2 ) } , (1) 
and 

Sf = { 0 } , Sf = {c } , Sr = {x : (x - c ) e (S u S u . . . u S ) } . ( l f ) 
0 1 l r c L V n 0 1 n - 2 

These d e f i n i t i o n s r e s e m b l e t h e r e c u r r e n c e r e l a t i o n s t h a t may be used t o d e f i n e 

t h e s equence F = (u19 u2* . « . ) of d i s t i n c t p o s i t i v e F i b o n a c c i number s , name ly , 

u0 = u± = 1 , un = un_1 + un_2; (2) 

u0 = u1 = 1, un = 1 + u 0 + u1 + • • • + un_2. ( 2 f ) 

The following lemmas are easily proved by induction. 

Lemma 1: x e Sn if and only if x is of the form 

n 
x = E ejQj* n > l9 (3) 

J =1 

where 
e- e {0, 1}, en = 1, e. + ej+1 + 0 if 1 < j < n. (4) 

There are exactly un distinct n-tuples (e±9 ..., en) satisfying (4). 

Lemma 1fi x e Sr if and only if x is of the form (3), where 

ed e {0, 1}, en = 1, ^ej+1 = 0 if 1- < j < n. (4') 

There are exactly wn_x distinct n-tuples (e1, ..., en) satisfying (4') if 

n > 1. 

Two special choices of (7 are of interest. The first choice, C = F, yields 

short proofs of two well-known theorems. 
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Theorem 1 (Brown [1]): Every positive integer has one and only one representa-

tion (the so-called Dual of the Zeckendorf representation) in the form 

n 
x = E ejuj> n > 1, (5) 

3 = 1 

where (el9 »ae, en) satisfies (4). 

Theorem 1f (Lekkerkerker [2]): Every positive integer has one and only one rep-

resentation (the so-called Zeckendorf representation) in the form (5) , where 

(e1$ S909 en) satisfies (4f). 

Proofs: Let C = F and let Sn and S^ be defined by (1) and (lf)°  It is seen, by 

induction on ns that 

and 
^n = iUn» Un + l3 Un + 29 ..., ^ + i - 1}, 

for n = l 9 2 5 3 3 . .. . Theorems 1 and lf now follow from Lemmas 1 and lf. 

The second choice of C is 6* = B 3 where 

B = ("2* 4"» ®° "* "7«» ...J. (6) 

We now show that this choice leads to two binary sets that resemble Cantor?s 

ternary set. 

Theorem 2: Let S be the set of all real numbers x whose binary expansion is 

x = 0 • s1^2 . .., ' where e* + £7- + 1 ^ 0' for all j ̂  1 if the expansion does not 

terminate, for 1 < j < n if the expansion terminates with the digit en = 1. 

Then £ is an uncountable closed set of measure 0. 

Theorem 2f : Let Sf be the set of all real numbers x whose binary expansion is 
x = 0 9 e^e . . . , where e.e. y ^ = 0 for all j > 1. Then Sf is an uncountable i 2 j j + i v 

closed set of measure 0. 

Proofs: Let C = B, defined by (6). Let Sn and S^ be defined by (1) and (lf)9 

Let 

w = 1 w = 1 

By Lemma 1 (Lemma lF)3 Sn (S f
n) contains exactly the binary fractions in S (S!) 

that terminate with the digit en = 1, and it is clear that S (Sf) is the clo-

sure of S OS")- Also5 it is easily seen that 

S C [I, l] and S^C [o, | ] . 

Now z € [1/49 1] - S if and only if z is a binary fraction of the form 
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0* exe2 ... en0 Qen+3 

where 0 • e1e2 . . . en e SnS n > 1, and em = 1 for at least one m > n + 3. It 

follows that the complement of 5 in [1/4, 1] is the open set 

[h c = f» i U U («, a; + 2'"-2). (7) 
w = 1 X E £ „ 

The intervals on the right of (7) are disjoint because their end-points belong 

to S? and their total length is 

3 
i n + 2 Uyi k 

n = 1 2 
by Lemma 1 and the well-known result 

^ n 1 .* I I / V^ - 1 
2^ M / " = 1 5- if \X\ < r . 

n^ 0
 n 1 - x - x2 ' ' 2 

It follows readily that 5 = [1/4, 1] - C has measure 0. 

While S is clearly countable, S is not. For, if 

°'ek.iek.2 ••• (fe = 1> 2, „.) 
is any countable list of elements of S in binary notation, consider 

x = 0 • ^ x e 2 ..., 

where (£3/c_25
 e

3k_1^ e
sk) = (1» °* 1) o r U » *» 1) according as 

(efc.3*-2' *fc,3*-i' e*.±fc> = (1> X> 1} 

or not; clearly, x belongs to S but does not occur in the list. 

Before proceeding to the proof of Theorem 2f,note that S can be written as 

the disjoint union 

S = £* u £**, 

where S** is the set consisting of all elements of S whose binary expansion 

terminates with 01, and where S* = S ~ S**. Clearly, S** is countable, and it 

is easily seen that S** consists of all the isolated points of S9 while S* con-

sists of all the limit points of S. Like S9 S* is, therefore, an uncountable, 

closed set of measure 0. Thus, Theorem 2r follows from Theorem 2, since x € Sf 

if and only if 1 - x € S*. However, it is interesting to note that, if x e S^9 

n• > 1, then 

[x - ^ 2"n, x} c CF
 s where C" = [0, || - ̂ S7. 

Conversely, suppose that z € Cf. Then g must be a binary fraction of the 

form 
z = e0 * e \ e 2 ' ' ' emem+l ' ' * ' 

where eQ
 e e1&2 ... e m e £^ and eOT+1 = 1. Let n be the largest subscript such 
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that 1 < n < m3 e 3n = 09 and en+1 = 1. This n exists because 

.. em < z < ~, 

Put x = eQ • £1&2 . en_1l. Then x e 5nf, n > 1, and 

z e (x - | 2"n, a;). 

It follows that the complement of ̂ " in [0, 2/3] is the open set 

C 09 Sf = U U (x - I 2"", x). OF) 

The intervals on the right of (7f) are disjoint because their endpoints belong 

to Sf3 and their total length is 

00 1 

«= 1 3 

which proves that 5f = [0, 2/3] - (7 f has measure 0. 

Equations (7) and (7'.) emphasize the similarity between the constructions 

of S and Sf and the construction of Cantor?s ternary set. There are further 

similarities: S and S1 are nowhere dense, 5f is a perfect set5 and the derived 

set S* of S is also perfect, 

The Fibonacci sequence of sets (S0, £,, 5 , . ..) may be represented graphi-

cally by a sequence of weighted, rooted trees (T , T , T2, ...) as follows: 

T0 ^ T2 T3 Tn (n > 2) 

For each of the un leaf-nodes of Tn , we may compute the total weight of the 

path to it from the root of Tn . The set of these un total weights is called 

"the shade of Tn" (cf. Turner [3]). The shade of Tn is obviously equal to the 

set Sn« A similar representation can be obtained for the dual of the Fibonacci 

sequence of sets by using the tree construction: 

rp rp f rp rp t 
1 o 9 2 1 11 9 ±n 

(n > 2) 

In particular, very pretty graphical illustrations of Theorems land lf can 

be obtained (cf. Turner [3]). 
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1 . INTRODUCTION 

Let (xn) s n = 1, 2, . . . be a sequence of r e a l numbers contained in [0, 1) . 

Let A([09 x); N) be the number of x„ s 1 < n < N9 t h a t l i e in the sub in t e rva l 

[0, x) of the u n i t i n t e r v a l . The number 

D(P) ' r l 

* * ;0 a 4([0, x ) ; 217) N 
P dx) , ..., (1) 

where l<p<° ° , is called the L -discrepancy of the given sequence ([2],:p. 97). 

As is well known, the notion of discrepancy is at the center of most theo-

ries in the area of • uniform distribution (and other types of distributions as 

well) and quantitative aspects of certain limit passages are expressed by esti-

mates of the discrepancy. 

The following relation was given by Koksma [1] and by Niederreiter [3]: 

1 1 N 

o -ikt + h^**-8^2- •••* (2) 

where 0 < x± < x2 < • • • < xn < 1 and sn - (2n - 1) /2N. 

In the following, we show (2) (for the sake of completeness) and consider 

the case p = 4. The proofs are given by elementary methods. Some sum formulas 

are established and only integration results are used. 

2. THE CASE p = 2 

To prove (2), the following lemma is useful. 

Lemma 1: £ £ maxOc„, xj = £ (2n - l)xn , where 0 < ̂  < ̂ 2 < ••- < xw < 1. 
n = 1 m=l n = l 

N N N / N \ A 
Proof: £ £ max(xn5 x j = E E maxOrn, xm) = E (2« - D # n , 

n = 1 OT=1 rc=l\m=l / n=l 

since for any n there are n values of m satisfying m <, n taking care of the In 

pairs (xn3 x±) , . .., (xn, xn) , (x1, ̂ ) , . .., (xn, x j , But {xn3 xn) is counted 
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twice3 so for any n there are 2n - 1 values of xn* 

(0(xn > t) 
L e t c(t9 xn) = < 5 0 < t < l . Then 

(l(xn < t) 

J*i/ N \2 r i ff if 

I E <?(£* # n ) J dt = \ E E c ( * > xn)c(t9 xm)dt 
0 \ n = 1 / ^ 0 « = 1 m = l 

= E E <?(£* max(x n S xm))dt. 
n=l m=lJO 

Now we show ( 2 ) . We haves 

(ND^y Y,a(t, xn) - Nt f 
Jo 
fl I N \ 2 f 1 N f 1 

= £ c(*> xn)\ dt ~ 2NI t X X * » #„)<*£ + 21/2 t 2 d£ 
JO \ n = l / Jo n = l Jo 
^ N f1 f1 ^ 1 

* E E °(t9 max(x n 9 a ; m ) ) d £ - 2 t f | tJ2c(ts xn)dt + -«il 
7 1 = 1 772=1 J O J O n > = l J 

Hence 5 

E E d " m a x ( x n s arOT)) - 2ZF E ^ d - x2
n) 4- ^ 2 

n = 1 m= 1. n = 1 ^ J 

^ ~ E E n iax(^ n 9 ^ ) - 71/ î  - £ re2 ) + ^ 2 

n = l m = I \ w -. 1 / J 

4 ^ 2 - E (2w - Dxn + i l / E ^ n (by Lemma 1 ) . 
•3 w = l n = 1 

v^m / = "3" "*" Jj 2^ y^n ~ ^ ^ n ) = "3 /j/ 4^-, ^ n "" 2snxn) N 3 N n V i \ n ff n / 3 

1 1 ^ 1 ^ 
~o" + /j7 2 ^ ( x n s n ) " jji L s n ' 
j i V n = l iV n = 1 

S i n c e 

we have 

* 2 A (In - 1 \ 2 1 ^ . x n 1 MZ^3 2A 

(2K2 = I ^ ( _ s2 , _ _ 1 _ 

and t h i s p r o v e s ( 2 ) . 

C o r o l l a r y 1: D(
N

2) > — ^ - ; Z^2) = - ^ — i f f ^ n = sn (n = 1, 29 . . . , N). 
2NV3 ' 2 ^ / 3 

C o r o l l a r y 2 : Z)£2) < — i f xn < 2 n " 1 in = 1, 2 , . . . , N) . 
/ 3 iV 
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Proof: {vf)2 = j + I £>„(*„ ™ T ^ ) 5 h e n C e s 

(£<2)) < I if xn < 2ny7" X ( n = l , 2 , ...5iP). 

3. THE CASE p = k 

We shall use the following lemma. 

Lemma 2: Let 0 < x± < x2 < -•• < xN < 1. Then9 

N N N N 
E E E m a x ( * n > ^ m » X £ > = E ( 3 n 2 - 3 n + l)x2« 

n=im=lZ=l n-\ 

N N N N N 
Proof : E E E m a x 2 0 * V Xm* Xi^ = E E ( 2 ^ - l ) m a x 2 0 r n § x m ) 

n = l m = l £ = l n = l m = l 

E N N N 
= 2 E E ^ max2(a:„ , m) - £ E m a x 2 ( ^ n S a^ ) . 

n = 1 m = 1 n = i m = l 

N N N 
N o W s E E niax2(^cn9 xOT) = E (2^ ~ l ) # n (by Lemma 1) . 

n = 1 m = 1 n = l 

E E ™ m a x 2 ( x n 5 xffl) = E [2{1 + 2 + • • • + (n - 1)} + n ] x 2 

n = 1 m = 1 n = l 

1 w 

4 E ^(3n - l )x 2 . 2 n t x 

Hence , we h a v e 

E E E m a x ^ n * ^m* ^ ) = E On2 - 3H + 1)X2, 
n = 1 m = 1 £ = 1 n = 1 

C o r o l l a r y of Lemma 2: 

N N N N 
E E E m a x ( * n , x ^ **) = E On2 - 3n + l)xn. 

n=l m=l 1=1 n~1 

Lemma 3: Let 0 < x± < x2 < • • e < % < 1. Then, 

N N W N N 
E E E I ^ x ^ , xm, a:^ a:„) = £ (4n3 - 6n2 + 4n - l)xn. 
n = l m = 1 £=1 w= 1 n = 1 

Proof: First we consider 

N N N I N \ 
E Em max(a;n, *m) = E ( E ™ max(*„, *m) ) . 

n=l m=1 n=l \m=l I 

Keeping n fixed, we have to take the pairs (x19 xn)9 . .., (xn, xn) 9 (xn, Xj^) , 

. .., (#n» ^n„x) into consideration; the maximums of the first set must be mul-

tiplied by n2
s those of the right set by 129 22

s B.e9 (n - 1)2
9 respectively. 

Hence, 
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E I E ^ 2 max(j;n9 a^) ) = E <T-(W - l)n(2n - 1) + n3\xn. 
n=l\m=l / « = n D / 

So we have 
N N N N 
E E E Ema*(Xn* Xm* xl> XJ 

n = ± m = i £ = 1 w= 1 

~ E E ( 3 ^ - 37?? + l)maxGE„, £Cm) (by t h e C o r o l l a r y of Lemma 2) 
n = 1 m = 1 

# # N N N N 
= 3 E E ^ 2 m a x ( x n , x m ) - 3 E E w m a x ( ^ n , x w ) + £ J ] m a x ( x n , # m ) 

n = l m = l n = l m = l n = l m = l 

= 3 E \ \ n fa ~ l ) ( 2w - 1) + n 3 U n - 3 E \n (3n - l ) x „ + E ( 2 w - l)a:n 
n = l ^ D ; n = l Z n = l 

IV 
= E (4n 3 " 6n 2 + kn - l)x . 

n = l 

Lemma k: I 3 + 2 3 + • • • + N3 = j N2 (N + 1 ) 2
5 

I 4 + 2h + • • • + ^ = ~^- tf (tf + 1) (2N + 1) (3N2 + 3N - 1) . 

Theorem: Le t 0 < x x < x2 < * -» < #^ < 1. Then, 

< v « ln4{(^ - s^h + ̂ (x- - ^ ) 2 } + d W > w h 2n - 1 e r e s„ ; 
271/ 

P roof : F i r s t s we have 

N r1 r1 ^ 
-4il/3 E <?(£> ^ H 3 ^ = ~ ^ 3 E e(*> ^n)^3 ^ 

^ = 1 Jo Jo « = 1 
= -4/J3E t3 dt = -^3 E (1 - *£) 

n = 1 Ja:„ n = 1 

= " ^ + ^ 3 E ^ n -
n = l 

Second 5 we have 
N N r l N N 

max(x n , xm) 
6 i l / 2 E E t 2 c ( t 9 max(a;„, a?OT.))d£ = 621/2 E E 4 ^ 

n = l m = l J o n = l m = l ^ 

= 6N2Z E ( 4 - i ( m a x ( x n , ^ ) ) 3 = 6N2(\- - ^ E E ( * a x ( * n , * J ) 3 

IV iff 
= 2 ^ - 2 i l / 2 E E ' m a x 3 ( ^ n 5 x m ) . 

n = 1 m = 1 

Hence , 

(M^V = P i E c(t, ar„) - Nt\" dt 
• 'O l n - 1 I 

( c o n t i n u e d ) 
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- 1 / N \± 
I [ ( E e ( t , xn)Ydt - wCtl f c{t9 xjY dt - 4 / y 3 f V i > ( t s x„)c 

°>0 \niFl J JO \n = l J Jo n = i n 

+ 6N2f W £ o(t9 Xn)J dt + i l ^ f V dt 

N N N N f l N f1 

E E E E j <?(£» max(xnS xms ^ x u ) J t - 4/1/3 E I e(£> xn)t3 < 
w = l m = l £ = 1 w = l J o n = l J o 

+ 6/1/2 E E c ( t , max(xn5 xm))t2dt 
n = l m = 1 J o 

N N N s*l 
- 421/ E E E I £<?(£, maxOr , xm5 2%))d£ + — N 

n = l m = l 1 = 1J0 -> 

i IV N N 
j-N1* - N*+ + il/3 E ^n + 2 ^ ~ 2Z1/2 E E max3 (xn, xm) 
-* n = 1 n = 1 m = 1 

- 2Nh + 2NY, E L m a x 2 ^ , x„, a^) 
n = l m = i £ = 1 

IV tf IV IV 
+ ^ ~ E E E E max(#„, ^ ^ * #w) 

n = l m= 1 £ = i w = 1 

1 N N N 

c ^ + ^3 E 4 - 2^2 E E max3 (*„ , a?w) 
-̂  n = 1 n = 1 m = 1 

iff N N 

+ 2N E E E m a x 2 ( ^ n ' ^m' #*) 
n = l m = 1 £ = 1 

IV 17 N N 

- E E E E m a x ^ n > ^ **» *tt) 
n = 1 m = 1 £ = 1 w = 1 

jilT* + N3 E ^ - 2î 2 E (2n - l)x3 

-> n = l n = l 

IV IV 
+ 2N E (3n2 - 3n + l )^ 2 - E (4n3 - 6n2 + 4n - l)a;„. 

n = 1 n = 1 

Hence, 
N 

(T)CW - 1 + I v ( ^ _ j(2n - 1) 3 + 2(3n< - 3n + 1) 2 

4n3 - 6n2 + 4n - 1 
N3 

2 

, ) 
1 1 ^ / 1 ?\ I N / h Sn \ 

V ( » i. S" \ - V ((2n - !V + (2w - ! ) ^ 

i iV 

r E (16n4 - 32n3 + 32n2 - 16n + 3) 
1 6 ^ n = i 

^ „ 1 6 E ^ - 32 E ^ 3 + 32 E ^ 2 - 16 E ^ + E 3) 
16/1/ \ n = l n = l n = l n = l n = l / 
"7^ 
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1 /16 N* 5*)-

Finally5 

Corol l a r y 1 : D™ > — — ; D™ = — — i f f x„ = sn (n = 1 , 2 , . . . , N) . 
2N</5 2N</5 

CO <- _ i _ -.-f-, ^ 2n ~ 1 
C o r o l l a r y 2: D;4; < - ^ i f xn < 

Proof: < » " - i + I £{,„(,. - ^ ) ( , S . 1-jS x, + ̂ î tl)}. 
2n - 1 , 2n2 •- 2n + 1 / 2n - 1\2 , 4n2 - 4n + 3 ^ n Now, x„ xn + — = yxn — — j + — > 0. 

Hence , D™ < — 

n N ~n ' N2 Vn 2/1/ / ' 4il/2 

1_ 
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CURTIS N. COOPER and ROBERT E. KENNEDY 
Central Missouri State University, Warrensburg, MO 64093 

(Submitted April 1986) 

A Niven number is a positive integer that is divisible by its digital sum. 

That is, if n is an integer and s(n) denotes the digital sum of n, then n is a 

Niven number if and only if sin) is a factor of n. This idea was introduced in 

[1] and investigated further in [2], [3], and [4]. 

One of the questions about the set N of Niven numbers was the status of 

-. . Njx) 
lim —1—^5 
x->-<» X 

where Nix) denotes the number of Niven numbers less than x. This limit, if it 

exists5 is called the "natural density" of N. 

It was proven in [3] that the natural density of the set of Niven numbers 

is zero, and in [4] a search for an asymptotic formula for N(x) was undertaken. 

That is, does there exist a function fix) such that 

lxm „; : =1? 
*-•«, fix) 

If such an fix) exists, then this would be indicated by the notation 

Nix) ~ fix). 
Let k be a positive integer. Then k may be written in the form 

k = 2a5bt9 

where (£, 10) = 1 . In [4] the following notation was used. 

Nk = The set of Niven numbers with digital sum k. 

~eik) = The maximum of a and h. (1) 

e(k) = The order of 10 mod t . 

With this notation, it was then proven [4; Corollary 4.1] that 

Nkix) ~ c(log x)k
 9 (2) 

where o depends on L 

Thus, a partial answer concerning an asymptotic formula for Nix) was found 

in [4]. Exact values of the constant c can be calculated for a given k. But, 

as noted in [4], this would involve an investigation of the partitions of k and 

solutions to certain Diophantine congruences. In what follows, we give the 

exact value of the constant c for a given integer k. 
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Let k be a positive integer such that (fc, 10) = 1. We define the sets S 

and S as 

S = <(Xi) : E xi = k\, 
and > l ^ N 

_ ( e{k) e(k) . I 

£ = \(xi) l E *i = & and £ lO*"1^ E 0 (mod fc)>, 

I -=1 * = 1 ) 
where (tf̂ ) is an e(k)-tuple of nonnegative integers. Since (fc, 10) = 1, it 

follows that, for a positive integer n9 

(Xi)es i = l V^'IO 

where (^)in denotes the tth coefficient in the expansion of 

G(x) = (1 + x + x2 + --• + x3)n. 

That is, 

where G (0) is the tth derivative of GOc) at a; = 0. 

The expression given in (3) can be realized by noting that, for each 

the product 

n'U") 
is the number of Niven numbers y less than 10 with decimal representation 

ne(k) . 

j = i J 

such that 

^ = £ 2/ • * 
j=i (mod e(&)) «? 

Noting that G (0) ~ n* , and using (4), we have that 

'io £!" 
Hence, for a positive fc such that (k9 10) = 1, it follows from (3) that 

Nk(l0ne(k)) ~ nk £ — ^ fffl 

Therefore, 

which may be rewritten in terms of multinomial coefficients as: 

164 [May 



A PARTIAL ASYMPTOTIC FORMULA FOR THE NiVEN NUMBERS 

,ne{k)^ _ nk y , / k 

Let w be the fcth root of un i ty exp(2TTi//c) , and consider the 

tfkCio"«>) . 2 1 E L x
 K

 x • (5) 

£ - 1 

E /(*>*), 

where / i s the funct ion given by 

f(u) = (u + u10 + u 1 0 2 + •-• + w l o e ( ' ) _ 1 ) ^ (6) 

Then 
fc-i k-l/e(k)~i \k 
E /(*>') = E E <*>')10t 

g = 0 # = 0 \ -£ = 0 
k £ Z ( fe V w ^ + 1^+--- + 1°aW"la?-(fc) 
£ = 0 ( ^ ) £ 5 \ X 1 S ° ° ° 3 x e ( f e ) 

In order to make the notation more compact, we will let 

n x, + ICteo + • • • + I0e{k)~lxp(,, 
W(g, < ^ » = (w9) em 

Thus, a f t e r in terchanging the order of summation, (7) becomes: 

k k - l / 
)W(g, (Xi)) 

k--x' k E E L K
 x Jvig, (x,)) 

( ^ ) e 5 # = 0 \ x l ' a°°* ^e{k)/ 

+ E _ E ( k W« 
( i j ) e S - S g=0\xl> • • • ' xe(k)/ 

(xi)) 

= E _ ( fe ) E w(g, <^i>) 
( i ; ) e S \xl> •••> xe(k)/ g = o 

I k ) E &%, < * * » . 
\X1 , . . . , XeQC)] g- 0 

fc-1 
{x^eS-'S V ' l ' * * • ' 

(7) 

k - l 
But not ing t h a t £/(gs (%i)) i s equal to 1 when (x^eS and J2g = 0W(gs (oci)) = 0 
when (x^)eS - Ss we conclude t h a t 

EV(^) -* z (x
 &

 x ). 
Hence, from (5), the following theorem is immediate. 

Theorem 1: For any positive integer k9 relatively prime to 10, let f9 w9 and 

e(k) be given as above. Then 

where n is any positive integer, 
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Some specific examples using Theorem 1 are: 

ff3(10") ~ £, 

N7(l06n) ~ y ^ ( 6 7 - 6 ) , 

49 
^49 ( l o 4 2 " ) ~ 4 t !49< 4 2 4 9 " 6 ( 7 4 9 ) ) , 

and 

*31<10l5n> - l ^ k + i5((-1 + ( f ) 1 / 2 i ) 3 1
 + ( - i - ( 3 D i / 2 i ) 3 y 

where £(/c) = 1,6, 42, and 15 when k = 3, 7, 49, and 31, respectively. Note that 

i denotes the square root of -1 in the last formula. 

It is perhaps clear that the determination of such asymptotic formulas in-

volves sums of complex expressions dependent on the orbit of 10 modulo k9 and 

might be difficult to generalize. 

Finally, we can use the above development as a model to generalize to the 

case where k is any positive integer, not necessarily relatively prime to 10. 

Recalling (1), we see that, if (Zc, 10) ^ 1, then it follows that ~e(k) + 0. So 

S would be replaced by 

_ ( e(k) e(k) 
s = \(xim> yi) : E xi + E 2/i = k 

I i=i i=1 
and , N 

e(k) . _ e(fc) ) 
£ ^ l O ^ 6 ^ - 1 + E ^•lO"-1 = 0 (mod k)}9 

i=l i=l ^ J 

where z/̂  is a decimal digit for each i and where (a^; y . ) is the (e (k) + ~e (k) ) -

tuple 

Thus, similarly to (3), it follows that 

Vio-00*™)- E eff(;.) n\M • (8) 
But ( ) = 1 for each 1 < i < e(fc), so (8) may be rewritten as 

\vi M O 
e(k) 

N ,l0nem+^ = J; 'tit") 

e(k) 

Therefore, 

<Xi ; 0>€ 5 i = 1 V X i / 1 0 

and r e p l a c i n g f a s g i v e n i n (6) by 

f(u) = (**<*> + • • - +MS<*> + e(*>-l ) fc , 

166 [May 



A PARTIAL ASYMPTOTIC FORMULA FOR THE NIVEN NUMBERS 

we are able to state the following theorem-

Theorem 2: For any positive integer k, let /, w, e(k)9 and e(k) be given as 

above. Then 

ffk(io~<*)+»<*>> - f ^ s W ) , 
where n is any positive integer. 

If e(k) = 1, the following corollary is also immediate since f(w9) = 1 for 

each 0 < g < k - 1. 

Corollary: If fe is a positive integer such that e(k) = 1, then, for any posi-

tive integer ns 

Using Theorem 2, we can determine an asymptotic formula for Nk(x) for any 

positive real number x. This follows since there exists an integer n such that 

jQwe(fe) + e(fe) ^ x < X Q ( n + 1)e(A:)+^(/c) (9) 

Buts by Theorem 2, we have that 

Nk(IOne(k) + *(k)) ~ NkaO(n+l)e{k) + * ( k ) ) 

since nk ~ (n + l)k . Hence, 

and because (9) implies that 

n [log x] - e(k) _ log x 
e(k) e(k) 5 

we have, in conclusion. Theorem 3. 

Theorem 3̂  For any positive real number x and any positive integer k9 let /, 

W5 and e(k) be giĵ en as above. Then 

\k k- 1 

Thus, an explicit formula for the constant a referred to In (2) has been 

given* The determination of an asymptotic formula for N(x), however, is left 

as an open problem. 

w~k\lo££»*?0w9>' 
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In [1], Marshall Hall defined Un to be a divisibility sequence if Um\Un 

whenever m\n. If we let Un = An(eQ + c^n) for integers A9 cQ9 and c±9 then a 

corollary to the theorem in [2] is that Un is a divisibility sequence if and 

only if exactly one of the coefficients cQ or o equals 0. The purpose of this 

paper is to establish a similar result for Un = An (cQ + oxn + c2n2) . 

Theorem: Let Un = ;4"(<20 + c^n + £2n2) for integers A9 oQ9 ol9 and c2* Un is a 

divisibility sequence if and only if exactly two of the coefficients oQ9 c , 

and c2 are 0. 

Proof: It is easy to see that,' if exactly two of the coefficients cQ9 cl9 and 

c2 are 0S then Un is a divisibility sequence. Consequently, in what follows, 

we assume that Am(cQ + c1m + c2m1)\An {c 0 + o^n + c 2n2) if m\n9 and, without loss 

of generality, that A > 0. 

Case 1: c0 = 0 

Assume c1 £ 0 , f o r , o t h e r w i s e , we h a v e cQ = <? = 0 and e2m2A\c2n2A i f m\n9 

and we a r e f i n i s h e d * R e p l a c e m by ^772/4, n by c1nA9 and l e t £ = o^Aiyi - m) . 

Then we have (c2mA + c2<227722;42) \Ae (c2nA + c 2o2n2A2) i f m\n. C o n s e q u e n t l y , 

(jn + o2m2A)\Ae(n 4- o2n2A) i f ?7z|n. 

In p a r t i c u l a r , 
(1 + c2A)\Ae(n + c2n2A). 

I f e < 0 , t h e n (1 + o2A)\(n + c 2 n 2 ^ ) i s i m m e d i a t e , w h i l e i f e > 0 , s i n c e 

g c d ( l + c 2 4 , A e ) = 1, 

we a l s o have (1 + o2A) \ (n + o2n2A) . 

Se t n = 2. (1 + c2i4) | (2 + 4tf24) . S i n c e 2 +• 4c2,4 = 2 ( 1 + c2A) + 2c2A5 we 

h a v e (1 + c2A) \lo2A9 which i m p l i e s t h a t (1 + o2A)\2; h e n c e , 1 + e2i4 = ±1 or ±2 . 

X + c ? i 4 = 1 => e = 0 , and we a r e f i n i s h e d . 

1 + c2A = - 1 =» (777 - 2m2) | (n - 2n 2 ) i f w |n and 7?? i s odd , which i s f a l s e f o r 

m = 3 , n = 6 . 
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1 + c2A = 2 => c2A = 1=^(772+ m2) | (n + n2) if m\n9 which is false for 777 = 2, 

n - 4. 

1 + c2^ = -2=»i = l o r A = 3=» (777- 3m2) \Ae(n~ 3n2) if 777 |n, which is false 

for 777 = 5, n = 10, 

Case 2: c0 ^ 0 

R e p l a c e 777 by oQmA9 n by c0?z4, and l e t 0 = c0^4 (n - 77?) . T h i s g i v e s 

(cQ + e^/TzA + ( 3 2 c 2 m 2 l 2 ) | ^ L e ( c 0 + c^c^nA + ( ? 2 c 2 n 2 ^ 2 ) , 

which i m p l i e s t h a t 

(1 + o-jnA + c2cQm2A2)\Ae(l + oxnA + c2c0nzA2). 

As i n Case 1, t h i s l e a d s t o 

(1 + c^mA + c2oQm2A2)\(l + o^nA + c2oQn2A2) i f 77?|n. 

S e l e c t m = 1, n = 1 + c^A + c 2 c Q ^ 2 . Then (1 + Q A + c2cQA2)\l, i . e . , 

1 + o±A + o2cQA2 = ± 1 . 

Case a: 1 + c x A + c 2 c 0 A 2 = 1 

1 + cxA + a 2 c 0 ^ . 2 = 1 =>^(c?1 + a2o0A) = 0 =»c2^0^4 = -c1. Thus , 

(1 4- c1mA - c^A) I (1 + c1nA ~ o^A) i f 77?|n. 

Se t n = 2777. (1 + c1mA - c^m2^) | (1 + 2c1mA - kc^n2A) i f 77?|n, o r 

(1 + OjiriA - o1m2A)\ (1 + cjnA - c^m2A + ( ^ T M - S c ^ 2 ^ ) ) . 

Hence , 

(1 + c-jnA - c17772i4)|2(c1?7zA - Ic^A). (1) 

Se t n = 3TT7« I n a s i m i l a r manner t o t h e a b o v e , we g e t 

(1 + ojnA - e ^ 2 ^ ) ! (2cr77?A - So^A). (2) 

T o g e t h e r , (1) and (2) imply t h a t (1 + Q^rnA - c1m2A)\(2c1m2A) * 

Set 777 = 2 . We o b t a i n (1 - 2c? ^ ) | 8c ^ . But 8 ^ 4 = 4 - 4 ( 1 - 2 e 1 4 ) , so t h a t 

(1 - 2o1A)\h9 i . e . , 1 - 2oxA == ± 1 . 

1 - 2c XA - 1 => c?1 = 0 . S i n c e <?2<?0i4 = - c ^ , e i t h e r cQ = 0 o r o2 = 0 , and we 

a r e f i n i s h e d . 

1 - 2cxA = -!==> c2A = 1 =?> (1 + 777 - 7772) I (1 + n - n2) i f 777 | n , which i s f a l s e 

f o r 77? = 3 , n = 6 . 

Case b: 1 + ctA + c2cQA2 = -1 

1 + QXA + e2cQA2 = - 1 ^A(ol + o2oQA) = - 2 = ^ / 1 = I o r 2 , 
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Case i: A = 1, c± + c2e0 = -2 

If A = 1, then 

(1 + c±m + c2e0m2) | (1 + ^ n + c?2<?0n2) if w|ne 

Let m = 2 and replace n by 2n. Then 

(1 + 2o1 + 4<32<20)|(1 + 2cxn + 4c2c0?22)9 

Since c1 + c?2c?0 = "~̂ 3 w e ^av e 

(2c2^0 - 3)|(1 + 2c1n + kc2cQn2)e 

Let w = 2c2cQ - 3, Then (2c2cQ - 3) 11 => 2^2^0 - 3 = ±1. 

2c2c0 - 3 = 1 => c2c0 - 4 =» c2 = -4 => (1 - km + 2m2) | (1 - 4n + 2n2) if ???|ns 
which is false for m = 4S n = 8. 

2c2c0 - 3 = -1 => o2oQ = 1 ==> c1 = -3 => (1 - 3??? + ???2) | (1 - 3n + n2) if m\ns 

which is false for m = 49 n = 8. 

Case ii: A = 2, cx + 2c2c0 = -1 

If A = 2S then 

(1 + 2e1tf7 + kc2cQm2)\ (1 + 2c1n + 4<?2c0n2) if ???|ns 
Let m = 25 and replace n by 2ne Consequently, 

(1 + 4a1 + l6c2cQ)\(l + 4^xn + l6c2aQn2) . 

Since ^ + 2c2cQ = -1, we have 

(8<22c0 - 3)|(1 + 4̂-în + I6c2c0n2). 
Let n = 8c2c0 - 3. Then (8<?2^0 - 3) | 19 which is impossible. 

Remark: It is reasonable to conjecture that 

i = 0 

is a divisibility sequence If and only If exactly k of the c^s are 0. It ap-

pears that this general case cannot be proved using the methods In this paper. 
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INTEGRAL ^1 BY ll SKEW CIRCULANTS* 

WILLIAM C. WATERHOUSE 
The Pennsylvania State University, University Park, PA 16802 

(Submitted June 1986) 

1. INTRODUCTION 

A 4 by 4 skew circulant matrix is a matrix of the form 

V a b c d\ 
\ -d a b c 

-c -d a b 
\_~b -c -d a_\ 

and the determinant of such a matrix is called a "skew circulant." A pleasant 

article by I.J. Good [2] devoted to skew circulants contains, in particulars a 

study of the values such a determinant could take for integer entries a, b9 o, 

and d. The numerical evidence led him to two conjectures: 

Conjecture I. An odd prime p occurs as a value if and only if p E 1 
(mod 8). 

Conjecture II. A positive integer in general occurs as a value if and 
only if it is a power of 2 times a square times primes 
E 1 (mod 8). 

In this note I shall prove that both conjectures are correct. This is not al-

together a new result, for (as Good later pointed out in [3]) there is work on 

the topic going back to Jacob!; as we shall note at the end of the paper, much 

more general results have been obtained using advanced methods of algebraic 

number theory. But it is possible to prove the two conjectures by elementary 

means, using hardly anything beyond the material available (for instance) in 

Hardy and Wright [4]. 

2. REFORMULATION IN TERMS OF ROOTS OF UNITY 

Following Good's paper, we begin by reformulating the question in terms of 

roots of unity. The point is that the particular matrix J with a = o = d = 0 

and b = 1 generates the skew circulant matrices, in the sense that an arbitrary 

*Work supported in part by the National Science Foundation, Grant No. DMS-
8400649. 
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one can be expressed as 

al + bJ + oJ2 + dJ3 (with Jh = -j). 

Thus, if j = exp(iri/4) = (1 + i)/\fl is a primitive 8th root of unity, then the 

map sending J to j induces an isomorphism (bisection preserving both sums and 

products) from the family of integral skew circulant matrices to the subring A 

of the complex numbers consisting of integral combinations of powers of j. The 

same would be true if we sent J to any one of the other primitive 8th roots of 

unity, which are j 3 , j 5 , and J7 = J~1» When we deal with elements of A5 we call 

these other values (obtained by replacing j by an appropriate power) the "con-

jugates" of the original element. Straightforward computation shows that the 

determinant is simply then the product of the element and its three conjugates, 

which in rings like this is usually called the "norma" Thus, our question is 

concerned with possible norms of elements. Worked out as a polynomial in a, 

£>, c, and d9 the norm N(a + bj + cj2 + djs) can be written as 

(a2 - c2 + 2bd)2 + (b2 - d2 - 2ao)2, or as 

(a2 + b2 + o2 + d2)2 - 2(ad - ab - be - ao)2, or as 

(a2 - b2 + c2 - d2)2 + 2(ad + ab - bo + ad)2. 

In particular, of course, the first expression shows that the norm is positive 

for nonzero elements of A. Furthermore, these three factorizations (arising 

originally from different ways of grouping the conjugates in the product into 

pairs) reflect three subrings that will play a role in our analysis: 

A1 = combinations of 1 and j 2 = i, 

A2 = combinations of 1 and /2 = j + j 7 , and 

A3 = combinations of 1 and i/l = j + j 3 . 

Note, at once, that a conjugate of a product of elements is the corresponding 

product of conjugates and, hence, the norm of a product is the product of the 

norms. Also note that a=b=l9c=d=Q gives N = 2. Hence, 2 and all its 

powers occur as norms; and if an odd number q occurs as a norm, so does every 

product 2rq* Thus, our main concern is with possible odd norms. 

3. BASIC FACTS ABOUT FACTORIZATION IN A 

The basic idea that we need was already suggested by the expression of the 

norm as a product: it is factorization. The facts involved are available in 

several texts, such as [4], and I shall state some of them here without proof. 
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The most important [4, p. 230] is that unique factorization holds for our ring 

A. That is 3 every element that is not a unit can be written as a product of 

primes, and this product is unique except for multiplication by units. Here a 

unit is an element of A that has an inverse in A9 and a prime is an element 

that cannot be factored except by allowing one of the factors to be a unit. 

Now, if an element x is a unit, then we have xy = 1 for some y in A. It 

follows that N(x)N(y) = N(1) = 1 and, hence, N (x) = ±1. But the first of the 

formulas for the norm above shows that norms are nonnegative; thus, any unit in 

A has norm 1. Conversely, whenever N(x) = 1, the product of x by its other 

conjugates is 1, and, of course, this shows that x has an inverse in A. Thus, 

we have the following lemma. 

Lemma 1: An element of A is a unit if and only if its norm is 1. 

The units of A have, in fact, been known at least since the time of Kronecker 

[5] and are listed in Good?s paper [3]: they are powers of j times (1 + Vz)p for 

integral r. 

Furthermore, since every (nonunit) element in A is a product of prime ele-

ments, every norm except 0 and 1 will be a product of norms of prime elements. 

Lemma 2: An integer larger than 1 occurs as a norm from A if and only if it is 

a product of integers that occur as norms of prime elements in A, 

We already know that 2 - N(I + j) occurs as a norm. Incidentally, this shows 

that 1 + j is a prime in A; for, if we have a factorization 1 + j = yz 9 then 

2 = N{1 + 3) = N(y)N(z), 
and, hence, either N (y) = 1 or N (z) = 1. Observe now that every prime element 

IT in A divides an ordinary integer, namely N(IT). But we can write this posi-

tive integer as the product of its ordinary integer prime factors. Since i\ is 

prime In A and divides this product, unique factorization shows that IT must 

divide one of the factors. Therefore, we have the following lemma. 

Lemma 3» Every prime of A divides some ordinary prime integer. 

Thus, we can determine the possible norms if only we can determine enough 

about how ordinary integer primes factor in A, 

4. PROOF OF THE CONJECTURES 

The next information we need [4, pp. 212-13] is that the rings A19 A2, and 

A3 also have unique factorization (though, of course, the elements that are 

174 [May 



INTEGRAL k BY k SKEW CIRCULANTS 

"prime" in them may factor when we allow the larger range of possible factors 

available in A). Furthermore, we know in detail just how the different odd 

integer primes p factor in these quadratic fields. (The integer 2 factors as a 

unit times a square of a prime in each of them, but we do not need that infor-

mation.) The factorizations of p are essentially equivalent to information on 

the representability of the prime p by suitable quadratic forms; thus, for in-

stance [4, p. 219]5 we can factor p nontrivially in A± iff it can be written as 

(a + hi){a - bi), which happens iff we can express p as a2 + b1* It is well 

known that this is possible iff p is congruent to 1 mod 4. Similar statements 

are true in the other two Ai: either p remains a prime in At or it factors into 

two primes, and the different behaviors depend only on p mod 8. (The result 

for A2 is worked out in [4,p« 221] 9 where it is remarked that A3 can be treated 

similarly.) In i 2, the primes congruent to 1 or 7 mod 8 can be factored into 

two prime factors, while those congruent to 3 or 5 remain prime; and in A3 , 

those congruent to 1 or 3 mod 8 can be factored, while the others remain prime. 

Now, first of all, this tells us at once that all squares of odd primes are 

norms from A. For, if (for instance) we have p congruent to 5 mod 8, then p 

factors at least as (a + bi) (a - bi) • We then have 

p4 = N(p) = N(a + bi)N(a - bi). 
Furthermore, a + bi and a - bi are conjugates. Thus, they both must have the 

same norm, namely p2. A simple congruence argument given by Good [2, pp. 55-

56] shows that p cannot itself be a norm, and an argument like that after Lem-

ma 2 shows then that a ± bi here are prime elements in A. Similarly, if p is 

congruent to 7 mod 8, then It factors as (a + 2?v2) (a - bv2) , and the factors 

have norm = p2 and are prime in A; while, if p is congruent to 3 mod 8, then it 

factors as (a + bv/l)(a - biJl) , and again the factors have norm = p and are 

prime in A . 

Of course, the primes p congruent to 1 mod 8 are the ones that deserve spe-

cial attention. We know that such a p factors into two factors in each of the 

rings A , and hence, as before, p2 occurs as a norm. But the existence of these 

different factorizations should lead us to suspect that we have not actually 

found the prime factors of p In A , and that is exactly what is true. We can, 

e.g., write p as (a + bi) (a - bi) ; we can also write p as (e + cbfl) (c - dV2) . 

If (say) c + dv2 is prime in A, then its conjugate c - dV2 is also prime, since 

the conjugations are isomorphisms. By unique factorization, the two nonunit 

factors a ± bi must be units times c ± d/2. But since we know the units in A9 

this gives 
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a ± bi = jk(l + SlY {o ± di/2). 

Thus, a ± bi would have to be j k times a real number. Such an equality can 

occur only when a = 0 or b = 0 or a = ±£>, all of which are impossible when 
a2 + b2 = p. Thus, the element c + d>/2 (of norm p2) must have nontrivial fac-

tors, and they can only have norm p. Hence, we have proved both conjectures. 

5. A SUBSIDIARY CONJECTURE 

There is one other conjecture made in Good's paper [2], but it is closer to 

familiar results and we can dispose of it quickly; it is worth noting, however, 

that unique factorization is again the main idea. We already know that there 

exists a solution of the equation p = a2 - 2b2 when p is congruent to 1 or 7 

mod 8, and the problem is then to determine all solutions. But one solution 

corresponds to a factorization p = (a + Z?v2) (a - bv2) in A2, and, hence, unique 

factorization shows that all other solutions must differ by units; and since we 

know the units (solutions of Pell's equation!), any other solution a, 3 must 

satisfy a + g/2 = ±(1 + Jl)v (a ± b\fl). By proper choice of signs for a and g, 

we can assume that a + 3v̂ 2 = (1 + y/2)r (a + bV2) . To get the product to come 
out equal to p rather than -p, we must have v even, or, in other terms, 

a + 3/2 = (3 4- lJl)s (a + hfl). 

Thus, the solutions are exactly those given by the recurrences in [2, p. 57]. 

6. GENERALIZATIONS 

We have shown that in the ring A generated by 8th roots of units, an odd 

prime p occurs as a norm iff p is congruent to 1 mod 8; along the way, we were 

reminded also that an odd prime p occurs as a norm from the ring A1 generated 

by 4th roots of unity iff p is congruent to 1 mod 4. The general fact is that 

essentially the same result holds in general, but the statement has to be modi-

fied because unique factorization usually fails to be true in the rings gener-

ated by higher roots of unity. This was the famous discovery of Kummer that 

set modern algebraic number theory on its way (cf. Edwards [1]). He introduced 

certain objects called "ideal prime factors" and he could prove that there was 

a unique factorization into them. Furthermore, when we take the ring generated 

over the integers by the nth roots of unity, an odd prime p (relatively prime 

to n) will be a norm of one of these "ideal" factors iff it is congruent to 1 

mod n. But these ideal primes correspond to actual single elements of the ring 

only when we have unique factorization, which holds in only finitely many cases 
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(which are all known; see [6] or [7, Chap. 11]). In particular it holds for 
n = 16 and for n = 32s but not for any higher powers of 2. 
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ON A RESULT INVOLVING ITERATED EXPONENTIATION 

R. M. STERNHEIMER 
Brookhaven National Laboratory? Upton, NY 11973 

(Submitted July 1986) 

In connection with recent work by M. Creutz and myself involving iterated 

exponentiation [1], [2]9 [3], e.g. , the function 

fix) = xx'' , (1) 

with an infinite number of x's, I have noticed an interesting property when 

only a finite number n of xfs is considered. 

I will now consider the bracketing a for n = 4. This is defined as 

F^a(x) = x ^ ^ = ̂  (2) 

In a Brookhaven National Laboratory Report [4], I have given a more extensive 

discussion of the present results (see, in particular5 Table 1 of [4]). Obvi-

ously , when x > 2S the function F4 a(x) has a large numerical value. As an 

example5 we consider 

F4>a(5) = 5 ^ = 5<>J,B>. (3) 

Now we find 

53125 ^ 102184.281 = 1 - 9 1 Q x ^ 2 1 8 ^ ( 4 ) 

where 
2184.281 - 55 log1Q5 = (3125)(0.69897). (5) 

From equations (3)-(5), one obtains 

p ( 5 ) = 5(10»«-H») = 5 1 . 9 1 0 x l 0 2 1 8 4
 ( 6 ) 

A seemingly paradoxical result is obtained if we express F4 (5) as a power 

of 10. Thus, we find the exponent 

log10[5(102184-281)] = io2184'28i iOg105 = 0.69897 x 1.910 x 102184 

- 1.335 x 102184 = 102184'125
9 (7) 

This manuscript has been authored under contract number DE-AC02-76CH00016 
with the U.S. Department of Energy. Accordingly, the U.S. Government retains 
a non-exclusive, royalty-free license to publish or reproduce the published 
form of this contribution, or allow others to do so, for U.S. Government pur-
poses . 
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which leads to the result 

(]C) 2184.125^ 

n,a(5) = 10(1°  }, (8) 

showing [by comparison with (6)] that the exponent in the parentheses is hardly 

changed in going from a power of 5 to a power of 10. 

To clarify this result, we consider the equation 

*ao*) = io(10^'\ (9) 

which defines y f, where in the present case x = 5 and y = 2184.281. To derive 

the relationship between y ? and y, we take the logarithms of both sides of (9). 

This gives 

10^ log10x = 10 ̂  (10) 

By taking the logarithms of both sides of this equation, we obtain 

y? = y + log10 log1Qx. (11) 

For the case discussed above, it can be readily verified that log10 log10 5 = 

-0.1555, leading to the results in (6) and (8), since 0.281 - 0,125 = 0.156, 

which is clearly consistent with the value of log10log105 = -0*1555 obtained 

above. It is of interest that the correction to y5 namely log10 log10 #, is in-

dependent of the value of y. 

To make the above results more believable, note that the vat-io of the two 

powers of 10 involved in (6) and (7) above is given by 

R = 1 0 2 1 8 4 . 2 8 1 / 1 0 2 1 8 4 . 1 2 5 = ' 1 0 0 . 1 5 6 = ^ 4 3 2 . ( 1 2 ) 

Thus, the very large exponent 102184-125 is multiplied by 1,432 in going from 

x - 10 to x = 5* This is a very considerable increase. As a result, we write 

5 1 . 432 x 102184.125 = 1 ( } 1 0 2 1 8 4 . 1 2 5 ^ ^ 

which is essentially correct because 51*432 = 10,02* (The small apparent dis-

crepancy of 0*02 is due to rounding errors.) 

As a final comment, I note that, if I had used # = 1 . 1 (instead of 5.0), 

with the correction log10 log10 1. 1 =-1.383, and i/' = 2184.125+1.383=2185.508, 

I would have obtained 

I O 1 0 2 1 8 4 . 1 2 5 = ^ ^ 0 2 1 8 5 . 5 0 8 ^ ( u ) 

s i n c e l O 1 ' 3 8 3 = 24 .15 and 1 . 1 2 4 " 1 5 ^ 1 0 . 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. H1LLMAN 

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solu-
tion or problem should be on a separate sheet (or sheets). Preference will be 
given to those typed with double spacing in the format used below. Solutions 
should be received within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn + 2 = Fn+1 +Pn- Fo = °> *1 = 1 

and 
Ln + 2 = Ln + 1 + Ln* L0 = 2 § Ll = l a 

PROBLEMS PROPOSED IN THIS ISSUE 

B-°616 Proposed by Stanley Rabinowitz, 
Alliant Computer Systems Corp., Littleton, MA 

(a) Find the smallest positive integer a such that 

Ln = Fn + a (mod 6 ) f o r n = ° * l> '" * 
(b) Find the smallest positive integer b such that 

Ln E F5n + b (m° d 5 ) f ° r n = 0 ' lj •" ' 

B-617 Proposed by Stanley Rabinowitz, 
Alliant Computer Systems Corp., Littleton, MA 

Let R be a rectangle each of whose vertices has Fibonacci numbers as its 
coordinates x and y. Prove that the sides of R must be parallel to the coor-
dinate axes. 

B-618 Proposed by Herta T. Treitag, Roanoke, VA 

Let S(n) = L2n + 1 + L2n + S + L2n + 5 + --- + L ^ ^ . Prove that S(n) is an in-
tegral multiple of 10 for all even positive integers n. 

B-619 Proposed by Herta T. Freitag, Roanoke, VA 

Let Tin) = F2n+1 + F 2n+^ + F2n + 5 +••• + Fhn.±' For which positive integers 
n is T(n) an integral multiple of 10? 
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B-62Q Proposed by Philip L. Mana, Albuquerque, NM 

Prove that F% + F^k + = 2F£ (mod 9) for all n and k in N = {0, 1, 
2, . . . } . 

B-621 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let n - 2h - 1 with /z a positive integer. Also, let K(n) = FhLh_ . Find 
sufficient conditions on Fn to establish the congruence 

FK¥* E 1 (mod F„). 

SOLUTIONS 

No Such Constants 

B-592 Proposed by Herta T. Freitag, Roanoke, VA 

Find all integers a and b* if any, such that FaLb + Fa_1Lb_1 is an integral 
multiple of 5. 

Solution by J.-Z. Leef Chinese Culture University and J.-S. Lee, National Tai-
pei Business College, Taipei, Taiwan, R.O.C. 

Since FaLb + Fa_1Lb_1 = La+b_1 and Ln = [2, 1, 39 4] (mod 5), i.e., Ln t 0 
(mod 5), Fa Lb + Fa_1Lb is not an integral multiple of 5 (for all integers a 
and b). 

Also solved by P. S. Bruckman, F. H. Cunliffe, P. Filipponi, G. Koutsoukellis, 
L. Kuipers, B. Prielipp, H.-J. Seiffert, S. Singh, L. Somer, G. Wulczyn, and 
the proposer. 

Multiple of 1220 

B"~593 Proposed by Herta T. Freitag, Roanoke, VA 

Let A(n) = F 1Ln + FnLn + 1. Prove that A(l5n - 8) is an integral multiple 
of 1220 for all positive integers n. 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

By Problem B-294 on p. 375 of the December 1975 issue of this journal, 

FnLk + FkLn = 2Fn+k' 

Thus, A in) = 2F2n + 1, so 

>1(15« - 8) = 2F3Qn_15 = 2F1 5 ( 2 n. i r 

Because 15 divides 15(2n - 1), 610 = F__ divides F . Thus, 2(610) = 1220 
divides 4(15n - 8). i5(2n-i) 

Also solved by P. S. Bruckman, F. H. Cunliffe, P. Filipponi, G. Koutsoukellis, 
L. Kuipers, J.-Z. Lee & J.-S. Lee, H.-J. Seiffert, S. Singh, L. Somer, G. Wulczyn, 
and the proposer. 
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Congruence Mod 60 

B-594 Proposed by Herta T, Freitag, Roanoke, VA 

Let A(n) = Fn + 1Ln + FnLn + 1 and B(n) = £ £ A(k) . 
J = 1 k = l 

Prove that B (n) E 0 (mod 20) when n E 19 or 29 (mod 60). 

Solution by Paul 5. Bruckman, Fair Oaks, CA 

Using the expression derived in the solution to B-593, we have: 

B(n) = t i2Fzk+1 = 2 ± Y,(F2k+2 -F2k) = 2 £ (F -+2 - F2) 
J = 1 fc = 1 J = 1 fe = 1 j=l ° 

= 2 n f : F 2 i - 2n = 2 " f (F . + 1 - f 2 j . . 1 ) - 2 n = 2 (F 2 n + 3 - i ^ ) - 2n, 
3 = 2 J = 2 

or 
5(n) = 2F2n + 3 -- (2n + 4). (1) 

Now (Fn (mod 4))^= 1 and (Fn (mod 5))^ = i are periodic sequences of periods 6 
and 20, respectively. Thus, (Fn (mod 20))~=1 has period equal to L.C.M.(6, 20) 
= 603 from which it follows that (F2n + 3 (mod 20))^=1 has period 309 as well as 
the sequence (2F2n+3 (mod 20))~=1, Also9 ((2n + 4) (mod 20))°°  has period 10, 
clearly. Therefore, (B(n) (mod 20))£=1 E ((2F2n+3- (In + 4)) (mod 20))^=1 has 
period 30. Inspecting the 30 possible values of this sequence, we find that 

B(ri) E 0 (mod 20) iff n = 0, 19, or 29 (mod 30), 

This is a stronger result than sought in the problem. 

Also solved by P. Filipponi, L. Kuipers, J.-Z. Lee & J.-S. Lee, B. Prielipp, 
5. Singh, G. Wulczyn, and the proposer. 

Convolution Congruence 

B-595 Proposed by Philip L. Mana, Albuquerque, NM 

Prove that £ k3(n - k)2 = (n \ 4 ) + (U £ l) (mod 5). 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

It is known that 

i£o*'(n-w-n') + 5(»n + jr;v(, ,n. 
(See p. 57 of "A Symmetric Substitute for Sterling Numbers" by A. P. Hillman, 
P. L, Mana, and C. T. McAbee in the February 1971 issue of this journal,) The 
desired result follows immediately, 
Also solved by P. S. Bruckman, P* Filipponi, H. T, Freitag, I, Kuipers, J,-Z. 
Lee & J»-S» Lee, S. Singh, G. Wulczyn, and the proposer. 
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X, Y, Z Affair 

B-596 Proposed by Piero Filipponi, Fond, U. Bordoni, Rome, Italy 

Let 
m 

S(n9 k, m) = X Fni + k-
i = l 

For positive integers a, m, and fe, find an expression of the form XY/Z for 
S(ha9 k9 m)9 where J, J, and Z are Fibonacci or Lucas numbers. 

Solution by Sahib Singh, Clarion University of Pennsylvania, Clarion, PA 

1 + y/l n 1 - VF 
2 

S(n9 k9 m) 

Le t a = ~ , 3 = « • Using t h e B i n e t form f o r F i b o n a c c i number s , 

m m . 
V rv^i + k _ V1 om + k 

T h u s , 

a _ B| E ani + * - E • 
F(m+l)n + fe " Fn + k " ^ a ^ ^ ^F^-+k " ^ 

Ln - 1 - ( a g ) n 

4 a ( m + l ) + ?c ~ 4a + /c ~ *~ 4am4- k ~~ k * 
£ ( 4 a , Zc, m) = r 

L4a " Z 

F L - F L 
2am 2am + ba + k lorn lam + k , ^ _ , 

= by T 1 6 and J 2 l f of H o g g a t t ' s 
5F2

2
a Fibonacci and Lucas Numbers 

F (5F • F ) F • F 
"- 2am w 2a 2am+2a + k J 2am 2am+2a+k XY 

where J, J, and Z are all Fibonacci numbers. 

Also solved by P. S. Bruckman, H. T. Freitag, J.-Z. Lee & J.-S. Lee, tf.-J. 
Seiffert, G. Wulczyn, and the proposer. 

More X, Y, Z Relations 

B-597 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Do as in Problem B-596 for £(4a + 2, fe, 2b) and for £(4a + 2, fe, 2& - 1), 
where a and b are positive integers. 

Solution by Sahib Singh, Clarion University of Pennsylvania, Clarion, PA 

Using the result in B-596, we obtain: 

Case I 

0 - „ 7 N
 F 2 ( 2 a + 1)(22>+ l) + k ~ F2(2a+l)+k ~~ ^Fbb(2a+l)+k ~ Fk* 

£ ( 4 a + 2 , k, 2b) = —z 
^4a+2 l 

(F - F ) - \F - F 1 
yL 2(2a+l)(2b+l)+k 42>(2a+l)+fc' l 2(2a+l)+k kJ 

L2a+ 1 
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(2a + 1)(42? + l)+k 2a + 1 (2a + l + k)L2a + 1 

2a + 1 

F ( 2 a + 1)(42? + 1) + Zc " F 2 a + l + /< 

F 
2(2a + Db 

L2a+ 1 

(2a + 1)(22> + 

•^2a+ 1 

1) + /c 
9 

b y u s i n g J 1 8 , ?235 a n c ^ -^24 i n Hoggatt's Fibonacci and Lucas NiAmbers* 

Case 2 

o 7 i x
 F4(2a+l)2? + k " F 2 ( 2 a + l ) + k " ^F2 (2a + 1) (22? - 1) + k Fk * 

S (4a + 2 5 fcs 22? - 1) = 
Lte+2 " Z 

F - F - (F - F ) 
x 4(2a + 1)2?+ fc 2 ( 2 a + 1) (22? - 1) +k l 2(2a+l) + k kJ 

_ 
i j 2 a + 1 

r(2a+ 1) (42? - l) + k ^ 2a+ 1 2a + 1 +/< 2a + 1 
^ 2 a + 1 

^ ( 2 a + 1)(42?- 1) + k " ^ 2 a + l + fc 

L2a+ 1 

_ ^ 2 ( 2 a + D2?+ fe ( 2 a + 1) (22? - 1) 
L2a+ 1 

Also solved by P. S. Bruckman, H. T« Freitag, L8 Kulpers, J.~Z„ Lee & J , - 5 . Lee, 
H.-J. Seiffert, G. Wulczyn, and the proposer. 
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Edited by 
RAYMOND E. WHITNEY 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, 
PA 17745, This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration f all solutions 
should be submitted on separate signed sheets within two months after publica-
tion of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-421 Proposed by Piero Filipponi, Rome, Italy 

Let the numbers U (m) (or merely U ) be defined by the recurrence relation 

in 
Un + 2 -rnUn + l +Un; UQ = 0, tf, = 1, 

where meN = {1, 2, . . . } . 
Find a compact form for 

n-l 
S(ks ft5 n) = E Uk + j h U k + ( n „ l _ - ) h (fc, h, n€N)« 

3=0 

Note that, in the particular case 777 = 1, S (1, 1, ft) = F(1) is the nth term of 
the Fibonacci first convolution sequence [2]. 

References 

1. M. Bicknell. "A Primer on the Pell Sequence and Related Sequences." The 
Fibonacci Quarterly 13, no. 4 (1975):345-349. 

2* V. E. Hoggatt, Jr. "Convolution Triangles for Generalized Fibonacci Num-
bers." The Fibonacci Quarterly 8, no. 2 (1970):158-171. 

H-422 Proposed by Larry Taylor, Rego Parkf NY 

(A1) Generalize the numbers (2, 2, 2, 2, 2, 2 , 2) to form a seven-term arith-
metic progression of integral multiples of Fibonacci and/or Lucas numbers with 
common difference Fn . 

(A2) Generalize the numbers (1,1,1,1,1,1) to form a six-term arithmetic 
progression of integral multiples of Fibonacci and/or Lucas numbers with common 
difference Fn . 

(A3) Generalize the numbers (4, 4,4, 4,4) to form a five-term arithmetic 
progression of integral multiples of Fibonacci and/or Lucas numbers with common 
difference 5Fri • 
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(A4) Generalize the numbers (3,3 93 9 3) 9 ( 3 S 3 3 3 3 3 ) 5 (3,3,3,3) to form 
three four-term* arithmetic progressions of integral multiples of Fibonacci and/ 
or Lucas numbers with common differences Fn, 5Fn , Fn , respectively. 

(B) Generalize the Fibonacci and Lucas numbers in such a way that, if the 
Fibonacci numbers are replaced by the generalized Fibonacci numbers and the 
Lucas numbers are replaced by the generalized Lucas numbers, the arithmetic 
progressions still hold, 

SOLUTIONS 

Late Acknowledgment: C. Georghiou solved H™394„ 

A Simple Sequence 

H-400 Proposed by Arne Fransen, Stockholm, Sweden 
(Vol. 24, no, 3, August 1986) 

For natural numbers h9 k5 with k odd, and an irrational a in the Lucasian 
kh = akh + a~kh , define yk E Vkh . Put 

n 
yk = Y,eT W >> wlth k = 2n+l. 

ci2n+» J J 

, _ . I\n + 21 \n + 1 - p] where J = mini — , «— , r + 

(2w+ l)?,(2r+ 1) 

Prove that the coefficients are given by 

E 1 for v = n, 

- < - 1 > " - " < 2 " + ^ s r r r G V - W C ; - </-(i)"I}) *» ° < * < -
1 

Also, is there a simpler expression for c^~"+ '? 

Solution by Paul Bruckman, Fair Oaks, CA 

Let ah = eiQ , so that 

y = 2 cos ^0. (1) 

Examining the Chebyshev polynomials of the first kind (viz. 22*3*15 of [1]), 
we find the following relation: 

2^ (cos 0) = cos mQ9 m = 1, 2, 3, ..., (2) 

where (22*3.6, ibid.) 

Tmtx) = E im(-Dr V ^ T ^ ) ^ " - (3) 

r = 0 mi 
Substitute x = cos 9, m = k = In + 1 in (3). Then, from (2) and (1), 

(k 
( ~P) 

cos kQ = iyk = En*fe(-Dr \r_J y\'2r; r=0 

further substituting n - r for r gives 
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in + r\ in + r\ 
L f_i\n-r \ 2r J 2P+1 
— n } 2V + 1 y i yk - f c p E o ( - i ) n - ' ^ r - f J / r 1 . W) 

It follows that we have obtained the desired simple expression: 

Cr 2r + l{ } \ 2r ) ' K J 

Note the following: 

4 k ) = i- (6) 
Let the given alleged expression for c^ be denoted by bv. Thuss 

J-I 

**5 <-•>"-* .?„ F H " " i " x ; ! . -,M) • ° < - < - (7) 
Note that the conditions 2j ̂  ft - 1 - p9 j < r imply 3j ̂  ft - 1; hence9 

J - 1 = min([J(n - 1 - p)]3 r). 
After some manipulation, we obtain 

To sum (8)5 we use the following combinatorial identity (viz* 3.25 in [2]): 

l , ( 2 /+ 1)r+::r')-&vi)- <»> 
Let x = ft - r in (9). Note that terms for which n - r < 2j + 1 vanishs so j < 
[J(ft - 1 - P) ] ; also5 j ̂  p. Thus9 (9) becomes 

J --^-1 n - r \(n - 1 ~ j \ _ / ft + P \ (10) 
j : 

fc / 1 N n _p / f t + P 

y-r I n - r \ m - 1 ~ J \ _ / ft + P \ 
. ^ 0 \ 2 j + 1 A P - J / " \ 2 P + I T 

Comparison with (8) yields b™ = ̂ T ^ ' ^ ' ^ r V l ) » or 

br S2Fn^l) V 2P ) > 0 < ^ < ^ (U> 

Comparison of (5) and (11) yields the desired relation: 

b™ = cf\ 0 < P < ft,, Q.E.D. (12) 

References 

1. M« Abramowitz & I, A. Steguns eds. Handbook'of Mathematical Functions^ with 
Formulasj Graphs and Mathematical Tables. 9th printing. National Bureau of 
Standards, 1970* 

2* EL W. Gould. Combinatorial Identities. Morgantown9 West Virginia, 1972. 

Fibonacci in His Prime 

H-401 Proposed by Albert A. Mull in, Huntsville, AL 
(Vol. 24, no. 3, August 1986) 

It is well known that, if ft ̂  4 and the Fibonacci number Fn is prime9 then 
ft is prime. 
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(1) Prove or disprove the complementary result" If n £ 8 and the Fibonacci 
number Fn is the product of two distinct primes then n is either prime or the 
product of two primes, in which case at least one prime factor of Fn is Fibo-
nacci. 

(2) Define the recursions un+1 = FUn , u1 = FmJ m > 6. Prove or disprove 
that each sequence {un} represents only finitely many primes and finitely many 
products of two distinct primes. 

Solution by Lawrence Somer, Washington, B.C. 

(1) The result is true. It was proved in both [3] and [4] that Fn is the 
product of two distinct primes only if n = 8 or n is of the form p, 2p, or p2, 
where p is an odd prime. It is well known that if m\n9 then Fm \Fn . A prime p 
is called a primitive divisor of Fn if p\Fn9 but p|Fn for 0 < m < n. In [1], 
R. Carmichael proved that Fn has a primitive prime divisor for every n except 
n - 1, 2, 6, or 12. If n = 1, 2, 69 or 12, then Fn is not the product of two 
distinct primes. It thus follows that If n > 6 and n Is of the form 2p or p 2

5 

then Fn has at least two distinct prime divisors—one of the primitive prime 
divisors of Fp and one of the primitive prime divisors of Fn . Clearly, every 
prime divisor of Fp is a primitive divisor. Thus, if Fn is the product of two 
distinct primes and n - 2p or n = p2, then Fp must be a prime divisor of Fn. 
The result now follows. 

(2) As stated by the proposer, if n ^ 4, then Fn can be prime only if n is 
prime. Thus., it is conceivable that if p > 6, p is a prime, and u1 = Fp is 
primes then un is prime for all ns and {un} represents Infinitely many primes. 
However, if un is not prime for some n9 then we claim that, for any fixed posi-
tive integer k9 there exist only finitely many positive integers n such that un 
has exactly k distinct prime divisors. In particular, {un} represents only 
finitely many products of two distinct primes no matter what u1 Is. In fact, 
the following theorem and corollary are true. 

Theorem: Let {un} be defined by un+1 = FUn , u± = Fm9 m > 6. Let d(un) denote 
the number of distinct prime divisors of un, then d(un+1) > d(un). If d(un) = 
v > 3, then 

d(un + 1) > 2r - 3 > d(un). 

If <5(w„) = 2 and If It Is not the case that both n = 1 and un = F9 = 3 4 , then 
d(un + 1) > 3 > d(w„). If wn - F9 = 34, then n = 1 and d(un + i) = 2 = d(un) « If 
d(un) = 1 and wn = ps, where p Is an odd prime and s > 1, then 6̂ (wn + 1) >s. If 
d(un) = 1 and wn = 2s

 9 where s > 2S then d(un + 1) ^ s - 1. 

Corollary: Let t be the least positive Integer, if it exists, such that ut is 
not a prime. Then {un} represents exactly t - I primes and at most t Integers 
that are prime powers. If such a positive Integer t does not exist, then {un} 
represents infinitely many primes and only primes. For a fixed integer k > 3, 
{un} represents at most one Integer having exactly k distinct prime divisors. 
If u± + 34 = F9, then {un} represents at most one Integer having exactly two 
prime divisors. If u1 = 34 = F9, then {un} represents exactly two Integers 
having exactly two distinct prime divisors. 

Proof of the Theorem: By Carmichael fs result in [2] stated earlier, Fn has a 
primitive prime divisor If n i 1, 2, 6, or 12. Suppose d(un) = v > 3. Then un 
has 2r distinct divisors that are products of distinct primes or equal to 1. 
If k Is a divisor of un which Is the product of distinct primes and if k ^ 1, 
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2, or 6, then Fk\FUn and Fk has at least one primitive prime divisor. It thus 
follows that d(un+1) ^ 2r - 3 > d(un) = r. 

Now suppose d(un) = 2 and wn ̂  F9 = 3 4 . We claim that d(un+1) > 3. First 
we prove that if d(un) = 2, un $ F9 = 349 and w^ f F12 ~ 144, then l\un. If 
2|Fj, then it is known that 3|j. If j = 3i, where i > 5, then Fj is divisible 
by F3, F^ , and F3^ , each of which has a primitive prime divisor. Thus, F3i , 
i > 5, has at least three distinct prime divisors. The result now follows be-
cause F3 and F6 do not have exactly two distinct prime divisors. Thus, un has 
exactly two distinct odd prime divisors p and q. Then un+1 is divisible by Fp , 
Fq, and Fpq , each of which has a primitive prime divisor. Hence, we have 

d(un+1) > 3 > d(un) = 2. 

If un = F12 = 144, then un + 1 = Fli+if. By the table given in [1, p. 8], d(Flhh) 
= 11, and the claim follows. Now suppose un - F9 = 34. Since 9 is not a Fibo-
nacci number, we must have that n = 1. By the table given in [19 p. 2], 

un+i = F34 =5702887 = 1597.3571, 

and d(un+1) = 2 = d(un). 

Now consider the case in which d(un) = 1 and un = ps, where p is an odd 
prime and s > 1. Then wn + 1 is divisible by Fp^ for 1 < i < s, each of which 
has a primitive prime divisor. Hence, d(un+1) ^ s. Finally, suppose d(un) = 1 
and un = 2s, where s > 2. Then u n + 1 is divisible by F ± for 2 < i < s, each of 
which has a primitive prime divisor. Consequently, 

d(un+1) > s - 1. n 

Proof of the Corollary: This follows immediately from the proof of the Theorem 
above upon noting that un+1 > un and that Fn is a power of 2 only in the cases 
F3 = 2 and F6 = 8 = 23. m 

References 

1. Brother Alfred Brousseau. Fibonacci and Related Number Theoretic Tables. 
Santa Clara, Calif.: The Fibonacci Association, 1972. 

2. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms an + 
gn." Annals of Mathematics, 2nd Ser. 15 (1913):30-70. 

3. L. Somer. Solution to Problem B-456, proposed by A. A. Mullin. The Fibo-
nacci Quarterly 20, no. 3 (1982):283. 

4. L. Somer. Solution to Problem H-345, proposed by A. A. Mullin. The Fibo-
nacci Quarterly 22, no. 1 (1984):92-93. 

Also solved or partially solved by P. Bruckman, J. Desmond, and L. Kulpers. 

Just a Game 

H-k02 Proposed by Piero Filipponi, Rome, Italy 
(Vol. 24, no. 3, August 1986) 

A MATRIX GAME (from the Italian TV serial Pentathlon). 

For complete details of this very interesting problem, see pages 283-84 of 
The Fibonacci Quarterly 24, no. 3 (August 1986). 
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Solution by Paul S. Bruckman, Fair Oaks, CA 

Given n > 1, let \ n denote the set of 1 x n vectors (015 62, . .., 9„)s \f 

the set of n x 1 vectors (6i, 62, . .., On) f with 6̂  = 0 or 1 (chosen randomly)? 
Let Tn = Xn = Xn

n denote the set of all nxn matrices with entries either 0 or 
1. Let l n = (0, 0, ..., 0)GXn' ^n E (1. 1. ...» l)eXn5 likewise5 .6^ = (0, 0, 
•••» 0)'exi._£i = (1. 1, ...» D'exI- Let pn E {fin, £ n } , p^ = {££, e $; an = 
{An> AnJ » Tn = {§.«> -§L ?J * ^ e saY a matrix contains a vector if the vector is 
either a row or a column, as appropriate, of the matrix. 

Let An denote the subset of Tn containing at least one element of pn\jQr; 
Let Bn denote the subset of Tn containing at least one element of p ; 
Let Cn denote the subset of Tn containing at least one element of p r

n ; 
Let Dn denote the subset of Tn containing at least one element of p^, pf. 

We first observe that \Tn\ = 2"2» Moreover, 

Pn = \An\/\Tn\ = 2-nZ\An\. (1) 

By symmetry5 we see that \Bn\ = \Cn \ . Also, \An\ = \Bn\ + |C n \ - \Bn\9 so 

\An\ = 2\Bn\ - \Dn\. (2) 

To evaluate |#n|, we note that B* is the subset of Tn containing no elements 
of pn. Since each such (row) element of B* may be chosen in 2n - 2 ways, thus, 
\B*\ = (2n- 2 ) n

0 Hence, 

\Bn\ = 2nl - (2n- 2 ) n
e (3) 

To evaluate |#n|, we first partition Dn into the two (disjoint) sets Dn' 
and B^p3 defined as follows: Dn

0) is the subset of Tn containing an, D^ is the 
subset of Tn containing Tn» Note that no element of Tn can contain {_6.n9 JLn) or 
{j$/n» £.„}• BY symmetry9 |l^0)| = l^1^. Therefore, 

Kl = 2K}I* <4> 
To evaluate |Z?„ |,-we further partition D^ into the (disjoint) sets £„ & » k = 
1, 2, . .., n, where D^}

k is the subset of Z^0) with at least one 6_n, with 6_̂  in 
the kth column9 but with no S_f

n in any of the preceding columns „ Thus, 

|n(0)| = y |D(0) I /CN 

fc = 1 
Now, D,^0\ is the subset of Tn with at least one 6_n and with first column 

§_f
n; this is'equivalent to the set difference E-Fs where E is the subset of Tn 

with first column _6^, F is the subset of E containing no j5n* We enumerate E by 
considering the rows of any matrix in E. Each such row must have 0 as its first 
element, with the other elements random. This involves 2n~1 choices for each 
such row; hence, \E\ = 2(n~1)n* \F\ is enumerated similarly, except that each 
row of any matrix in F must also not be 6_n» This involves 2n~1 - 1 choices for 
each row of any matrix in F; hence, JFJ = (2n~1 - l)n . Therefore, 

\D«>\\ = 2(n"1)n - U*" 1 - l) n . (6) 

Next, we evaluate \Di0\\ » D^\ is the subset of Tn with at least one _6n, 
with the first column not §_r

n and with second column 6/w. Thus, BUi 2 is equiva-
lent to the set difference G - H, where G is the subset of Tn with at least one 
6 y, and second column 6', H is the subset of G where both first and second col-
~— — i i i (n} i i i 

umns are $_r
n« By symmetry, we see that \G\ = \B^ \ \ . To evaluate |^| , we see 

that H is the set difference J-Ks where J is the subset of Tn with both first 
and second columns 6_?

nJ and K is the subset of J containing no &_n» By similar 
reasoning, \j\ = 2<n-2>«, |z| = (2n~2 - l)n . Hence, |#| = 2<n"2)" - ( 2 n ~ 2 - l ) n , 
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and so 
|£)(°) I = 2^n~V}n - (2 n ~ 1 - l)n - {2(n"2)n - (2n~2~ l)n}. (7) 

A moment's reflection shows us where this general process leads us; first, 
however, we make the following convenient definition: 

^ = 2(n-k)n _ (2*-*- l ) n , k = 0, 1, 2, ..., n. (8) 

We then f ind: \D£\\ = a19 \D^9\\ = a1-a2 = -ka19 \D^\\ = a 1 ~ 2 a 2 + a3 = A2a15 
e t c . ; in gene ra l , we find 

\bn\\ = ( - l ) * " ^ * " 1 ^ , k = 1, 2, . . . , w. (9) 
Therefores by (5), |#(no)| = E ^ 1(-l)k" 1A k~ 1a 1. This expression can be slightly 
simplified as follows: 

t (-Dk~1^-1a1 = E ( - D ^ A ^ U + A)a0 
k=i fe-i 

= E (»l)fe"1Ak"1a0 - E (-DkAka0 = - ( - 1 ) ^ ^ " xa 0 I"*1 = a0 - (-l)nAwa0. 
fc = i fe = i I I 

In terms of the binomial expansion, 

I O "kt (£)C-D*-V dO) 
We may also express \Bn\ in (3) in terms of a19 since we see from (3) that 

\Bn\ = 2n(2("""1)n - ( 2 W " 1 - 1 ) W ) , i.e., 

\Bn\ = 2na1. (11) 

Using (2), (4)5 (10), and (11), we therefore obtain: 

K I = 2 ( 2 " ^ - f c | : i ( f e ) ( - i ) k ' 1 « k ) - (12) 

Finally, from (1), we obtain the desired exact expression: 

Pn =21-2(2"a1 - J ^ Q C - I ^ - X ) , (13) 

where the ak
%s are given by (8). 

After some computations, we obtain the following values from (13): P1 = 1, 
P2 = «875, P3 = 205/256 = .8008, as discovered by the proposer. However, we 
further obtain: Ph = 21,331/32,768 = .6510, P5 = 7,961,061/16,777,216 = .4745, 
P6 = 10,879,771,387/34,559,738,368 = .3166, P7 = .1978, P8 = .1215, P9 = .0680, 
and P1 0 = .0383, all of which values are different from those published in the 
statement of the problem. 

Nevertheless, the proposer's conjecture is correct, and is easily proved. 
Note, from (13), that Pn < 21'n22na1. Also, 

a± = 2nl~n - (2n~1~» l)n = 2n2~n{l - (1 - 21~n)n] 

= 2n2~n{l - 1 + n- 21"" - •••} < W 2"2-2 n + 1. 

Hence, Pn < 2
1+n~nl * n • 2 n 2 " 2 n + 1

s or 

P n < ^ . (14) 

Clearly, 11m 4n • 2""* = 0, Hence, 11m Pn = 0. Q.E.D. 
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