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lit Memoriain 

BROTHEE 
ALFRED BROUSSEAU 

February 17,1907-May 31,1988 

Brother Alfred Brousseau, F.S.C., 
founder of The Fibonacci Association and N 
aging Editor of the Fibonacci Quarterly f o: 
first thirteen years, died May 31 at the a& 
81. He was associated with Saint Mary's C 
lege, Moraga, California, since the 1930s, wl 
he was Chair of the School of Science for many years. He taught until he was 71, and then 
continued to attend mathematics meetings and give lectures to teachers. 

In the early 1960s, Brother Alfred became interested in Fibonacci numbers and 
their applications. He and Verner E. Hoggatt, Jr., got a group of people together in 1963 
and, as he said in Time, April 4, 1969, "just like a bunch of nuts, we started a mathemat-
ics magazine." Of course, twenty-five years later, the Fibonacci Quarterly continues to 
thrive. Brother Alfred's role in founding The Fibonacci Association in reported in our 
February 1987 issue. 

Brother Alfred was an avid botanist, naturalist, and photographer, and he has do-
nated his extensive collection of slides and wildflowers to Saint Mary's College. Also quite 
a hiker, he collected specimens of all twenty species of native California pine trees to study 
their growth patterns. He made a phyllotaxis exhibit, showing the spiral counts of the 
cones, to interest high school students in Fibonacci numbers. His exhibit was very popular 
at meetings of mathematics teachers as well. 

Brother Alfred was always a dedicated teacher, and wanted to interest young peo-
ple in mathematics. He wrote many articles especially for beginners in the Fibonacci Quar-
terly as well as six books still published by The Fibonacci Association. He gave countless 
lectures on Fibonacci Numbers and mathematical discovery to high school students and 
their teachers. He directed Saint Mary's College's joint program with the National Science 
Foundation which each year attracted hundreds of students to Saint Mary's College for a 
problem-solving competition. 

Besides these serious pursuits, Brother Alfred always had time to play his accordion 
after teacher meetings, and to cheer patients at convalescent hospitals. He approached all 
of life with great enthusiasm and energy. He will be missed. 

—Marjorie Bicknell-Johnson 
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LENGTH OF THE 7-NUMBER GAME 

ANNE L. LUDINGTON 
Loyola College, Baltimore, MD 21210 

(Submitted July 1986) 

1. INTRODUCTION 

The n-number game is defined as follows. Let S = (s.., s?, . .., sn) be an 

n-tuple of nonnegative integers. Applying the difference operator D we obtain 
a new n-tuple D(S) = (s'5 sr

9 . .., sr) by taking numerical differences; that 

is5 s I - Is. - s. , -, I . Subscripts are reduced modulo n so that sL = |s„ - s, I . 
If this process is repeated, a sequence of tuples is generated; that is, 

S9 DHS), D2(S), ...; 

this sequence is referred to as the n-numbev game generated by S. The n-number 

game has been studied extensively3 beginning with the 4-number game (see [5]5 

[6], [8], [9], [13], and [19]). 

As k =̂  °°, what happens to Dk(S)1 Is it possible to generate an infinite, 

never repeating sequence? The answer is clearly no. For, let \s\ = max(s^). 

Then \s\^ \D(S)\; since there are only a finite number of n-tuples with entries 

less than or equal to \S\9 eventually the sequence {Dk(S)} must repeat. When 

n = 2r, it is well known that, for every 5, the resulting sequence terminates 

with the zero-tuple (0, 05...,0). That this is not the case for other values 

of n is easily seen by considering the triple S = (4,5, 3). Applying the dif-
ference operator to this tuple gives the following: 

S = (4,5, 3) 
D1(S) = (1,2, 1) 
D2(S) = (1, 1, 0) 
D3(S) = (0, 1, 1) 
D\S) = (1,0, 1) 
D5(S) = (1, 1, 0) = D2(S) 

We call {D2(S), D3 (S) , Dh (S)} a cycle. When n is not a power of 2, there are 
always tuples that appear in such cycles; indeed, for odd n, (1,1, 0,0, ..., 0) 

is one such tuple. In an earlier paper this author characterized those tuples 

which can occur in a cycle. In particular, an n-tuple S is in a cycle only if 
all the entries in S are either 0 or |5|• Further, when n is odd, such tuples 
are in a cycle if and only if the number of nonzero entries is even [11]. 
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LENGTH OF THE 7~NUMBER GAME 

For any n-tuple S9 we say the game generated by S has length A if DX(S) is 

in a cycle but DX~1(S) is not. We will denote the length of this game by L (S) ; 

thus, in the example above, L(S) = 2. Note that we consider the zero-tuple to 

be in a cycle, namely the trivial one. There is no bound on the length of an 

n-number game. That is, for any A there exists an n-tuple S such that L(5)> A . 

We seek to characterize the upper bound of L(S) for all tuples S for which 

1̂ 1 ^ M. Only when n equals 4 or 2r + 1 has this question been answered [18], 

[12]. In all other cases, only partial results are known; a complete solution 

seems very difficult. In this paper we will resolve the question for n = 7. 

2. GENERAL RESULTS 

There are N = (M + l)n - Mn n-tuples with the property that \s\ = M. How-

ever, we may consider several of these tuples related to each other and hence, 

in actuality, the number of tuples that we need consider is far less than N. 

For S = (s19 s2, ..., sn) with \s\ = M, def ine m(S) as the n~tuple given by 

9TC(S) = (M - sl9 M - s 2 , ..., M - sn). 

Further, let £>n denote the dihedral group of a regular n-gon. Then we say two 

n-tuples S and R are related if either R - o(S) or R = a(9fll(5)) for some o e £>n-

If S and R are related, then we write S ~ R. It is easily seen that ~ is an 

equivalence relation. We now show that related tuples have the same length. 

Thus, in determining those tuples which give games of maximum length, we need 

only consider the question up to equivalence classes. 

Theorem 1: Suppose S ~ R, then L(R) = L(S). 

Proof: We may think of the entries of an rz-tuple as the vertices of a regular 

n-gon. Thus, if R - o(S), it* represents either a rotation, a flip, or a rota-

tion followed by a flip of the n-gon whose vertices represent S. Clearly, the 

entries in D(R) are the same as those in D(S). It is only their order that is 

changed, and that change may be represented by a member of 2)n. Since the en-

tries are unchanged at each step, the length of R is the same as that of S. 

Now, if R =911(5), then it is easily seen that D(S) = D(mt(S)) and hence the 

two tuples have the same length, m 

We will now turn our attention to those tuples which give games of maximum 

length. We first prove a lemma; the corollary that follows is then an immedi-

ate. consequence. 
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Lemma 1: Let S be an n-tuple with |5| = M. Suppose that S has a predecessor 

and that S is not contained in a cycle. Then \Dn~2(S)\ < M - 1. 

Proof: If 5 = (Af, Af, . . . , Af) , then |Z)(5) | = 0 and thus the conclusion holds. 

Otherwise, since 5 has a predecessor and is not in a cycle, there exists some 

si that is different from 0 and Af. Further, S has a predecessor if and only if 

there exist values 6 ^ G { - 1 , 1} such that H8isi = 0 [11]. Thus, S must have at 

least two entries that are different from 0 and Af. This implies that D(S) has 

at least three entries less than Af; for, if 0<s.<Af, then sr. _ <M and s!<M, 

where D(S) = (s ', s^, ..., s^). It follows that Dn~2(S) has n entries less than 

Af; i.e. , \Dn~2(S)\ < Af - 1. n 

Corollary 1: Let 5 be an n-tuple, |^| = Af, then L(5) < (n - 2) (Af - 1) + 1. • 

This corollary gives an upper bound for L(S) when \s\ ^ Af. For n = 2P + 1 , 

this upper bound is actually taken on by the n-tuple 

RM = (0, 0, . .., 0, M - 1, M) for M > 1 (see [12]). 

For other values of n the actual bound is less than that found in Corollary 1. 

In general, for a given n, the least upper bound for L(S) with |^| = M is not 

known. The main result of this paper will be to characterize L(S) when n = 7. 

In particular we will show that if S is a 7-tuple with \s\ < M and M is suffi-

ciently large, then 

r ( q , < (7(M - l)/2 if M is odd, 
^ ; ^ \l(M - 2)/2 + 4 if Af is even. 

This can be fairly easily proved for tuples S for which l ^ 7 ^ ) ! < Af - 2. Thus, 

we first determine the tuples for which IZ)7^)] = M - 1; note that by Lemma 1, 

\D7(S) I < M. 
3. TUPLES FOR WHICH \D7(S)\ = M - 1 

In the following discussion we will only consider tuples up to the equiva-

lence relation ~. Thus, for example, when we state in Lemma 4 that 

D2(S) = (1, Af, Af, Ms 1, 1, •)» 

we really mean D2 (S) ~ (1, Af, M, M, 1, 1, •) . 

By Lemma 1, if \D2(S)\ = M - 1, then \D7(S)\ < Af - 2. Thus, in determining 

tuples for which |Z}7(^)| = M - 1, we may restrict our attention to those with 

|Z^2(5)| = Af. First, consider an n-tuple R = (J31, r2, . . . , rn) with P(i?) = (rj , 
p 2 ' •••> r n ) ' Suppose P(i?) has some entry zv.' = M - 1. Then either p. = Af - 1 

and 2v.+ 1 = 0 or r. = Af and ri+1 = 1. Thus, in the case under consideration, we 
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must have, for some k, 2 < k < 6, 

\Dk(S)\ = M, Dk(S) « (M, 1, . , . , . , . , . ) , 

Z ) f e + 1(^) * (M - 1, ., . , . , . , ., . ) 9 and \D7(S)\ = M - 1. 

For the tuple Dk+1(S), we may have either \Dk+1(S)\ = M or |Z^ + 1(£)| = Af - 1. 

However, what must happen is that Dk(S) have enough consecutive A?Ts and l!s to 

yield a sufficient number of (Af-l)Ts and Ofs in Dk + 1\S) so that D7 (S) contains 

at least one M - 1. Thus, it is the Af - 1 and 0 terms in Dk+1(S) that are the 

important ones. These possibilities are illustrated by the following two exam-

ples: 

S± = (M, M, 0, M, 1, Af, 2) 
D 1 ^ ) = (0, Af, Af, M - 1, M - 1, M - 2, Af - 2) 
D 2 ^ ) = (Af, 0, 1, 0, 1, 0, M - 2) 
Z ) 3 ^ ) = (M, 1, 1, 1, 1, Af - 2, 2) 
Z^GS^) = (Af - 1, 0, 0, 0, M - 3, M - 4, M - 2) 
P 5 ^ ) = (M - 1, 09 0, Af - 3, 1, 2, 1) 
D 6 ^ ) = (Af - 1, 0, M - 3, M - 4, 1, 1, M - 2) 
Z } 7 ^ ) = (Af - 1, Af - 3, 1, Af - 5, 0, Af - 3, 1) 

£2 = (Af, Af, 0, Af, 1, Af - 2, 0) 
D1(S2) = (0, Af, M, M - 1, Af - 3, M - 2, M) 
Z)2(52) = (M, 0, 1, 2, 1, 2, M) 
Z?3(S2) = (M, 1, 1, 1, 1, M - 2, 0) 
Z^G^) = (Af - 1, 0, 0, 0, M - 3, M - 2, Af) 
£5(£2) = (Af - 1, 0, 0, M - 3, 1, 2, 1) 
£6(£2) = (M - 1, 0, M - 3, M - 4, 1, 1, Af - 2) 
P7(52) = (Af - 1, M - 3, 1, Af - 5, 0, Af - 3, 1) 

Note that in the examples above |DI+(5'1)| = Af - 1, while \Dh(S2)\ = Af. However, 

in both, it is the presence of five consecutive Af!s and lfs In D (S^) that gives 

rise to \D7(Si)\ = M - I. In general, then, if for a tuple S, we have |^| = Af 

and \D7 (S) | = Af - 1, we will denote by K(S) that step where the presence of 

consecutive Af!s and l's in D K(is\S) gives rise to \D7 (S) \ = Af - 1. Thus, in the 

examples above, K(51) = 3 and K(S2) = 3. In general, we must have 2 < K (S) < 6. 

The following lemmas characterize D (5) for various possibilities of K(S). 

Lemma 2: Suppose S is a 7-tuple with the properties that \s\ = M and |Z}7GS')| = 

Af- 1. Let k=K(S) and let I be the number of consecutive 1 *s and AfTs in Dk(S) , 

with £ as large as possible. Then I > 8 - k. 

Proof: It is easily seen that the number of consecutive 0Ts and (Af - l)!s in 

Dk+1(S) is I - 1 and, hence, Dk+1(S) has at most I - 1 consecutive terms that 

equal M - 1. Similarly, the number of consecutive 0's and (Af - l)*s in Dk + t(S) 

is I - t and, hence, Dk + t(S) has at most £ - t consecutive terms that equal 
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M - 1. Continuing, we find that Dk + Ji(S) has no terms that equal M - 1. Since 

\D7 (S) | = M - 1, we must have ?c + £ > 8 or O 8 - L n 

Lemma 3> Suppose S is a 7-tuple with the properties that \s\ = M and |Z)7(5)| = 

M - 1. Let fc = KCSO. Then Dk (S) = (1, ..., 1, M, . . . , M, 1, ..., 1, a, . .., b) 9 

where a and 2? are neither 1 nor M and the number of consecutive l?s and AfTs is 

at least 8 - k. 

Proof: By Lemma 2, all that we need show is that Dk(S) cannot have the form 

(Af, 1,...,1,M, c,...,d). Suppose Dk(S) = (M, l,Af, . . . ) . Then Z)^ 1^) must 

equal (0, Af, M - 1, 2Af - 1, ...) or (Af, 0, 1, Af + 1, . . .) , both of which are im-

possible because |5| = M. Similarly, we find that Dk(S) cannot equal (Af, 1, 1, 

1, M, . ..) or (Af, 1, 1, 1, 1, 1, Af, • ) • 

Now, if Dk(S) = (M, 1, 1, Af, . . . ) , then Dk~1(S) must equal (0, Af, Af - 1, A/, 

0, ...) or (Af, 0, 1, 0, Af, . . . ) , neither of which has a predecessor that con-

tradicts the hypothesis. • 

The above lemmas mean that it is possible that there is a 7-tuple S for 

which D**(S) = (1, Af, 1, 1, . ..) and \D7(S)\ = Af - 1. But there is no 7-tuple 

for which D3(S) = (1, Af, 1, 1, a, • , b), a ^ 1, a ^ Af, i ^ 1, b + M, and 

|£7(£)| = M - 1. 

Lemma 4: Suppose 5 is a 7-tuple with the properties that \s\ = Af, I^GS)! = 

Af - 1, and K(S) = 2. Then one of the following must hold: 

D2(S) = (M, Af, Af, M, Af, 1, •) D2(S) = (M, 1, 1, 1, 1, 1, -) 
£2(£) = (1, M, 1, 1, 1, 1, •) D2(S) = (1, M, Ms 1, 1, 1, .) 
D2(S) = (1, Af, Af, Af, 1, 1, -) 

Proof: It is easily verified that these five tuples give |P7(5')| = M - 1. On 

the other hand, suppose R is a tuple such that D2 (i?) = (1, ..., 1, Af, . . . , Af, 

1, ..., 1, a). By direct computation, it can be shown that |P7(i?)| < Af - 1; 

e.g. , if D2(R) = (1, 1, Af, 1, 1, 1, a) , then \D7 (R) \ < M - 1 unless a = 1. • 

Theorem 2: Suppose Af > 12 and S is a 7-tuple with the properties that \s\ = Af, 

\D7(S)\ = Af - 1, and K(5) = 2. Then S is related to one of the following: 

(1, 0, 0, Af, Af, 0, M - 1) (0, 13, 13, 12, 10, 7, 3) 

(0, 15, 15, 14, 12, 9, 5) 

Proof: We use Lemma 4, consider the various cases, and work our way backward 

to obtain S. We begin by assuming that D2(S) = (1, Af, Af, Af, 1, 1, •) and find 

possible tuples equal to D(S) by first setting each of its elements equal, in 

turn, to Af: 
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1. 
2. 
3. 
k. 
5. 
6. 
7. 

M M - 1 -1 
M - 1 M 0 
1 0 M 
same as Row 2 
same as Row 3 
0 -1 M -
same as Row 3 

M -
M 
0 

1 -1 

1 -1 
0 
M 

M -

0 
1 

M -

1 M 

1 
0/2 

1 M - 2/M 

M - 1 

When more than one number appears, such as "0/2" in Row 29 it means that either 

number is possible at that stage. Rows 1 and 6 are not possible because nega-

tive elements and present. We now treat Rows 2 and 3 in the above fashion. 

Starting with Row 3, we find possible tuples for S when D(S) = (1, 0, M, 0, M9 

M - 1, M - 2), as follows: 

1a. 
2a. 
3a. 
4a. 
5a. 
6a. 
7a. 

M M + 1 M 
M - 1 M M 
same as Row 2a 
1 0 0 
same as Row 4a 
same as Row 2a 
2 1 1 

+ 1 1 
0 

M 

M + 1 

1 
0 

M 

M + 1 

M + 1 
M 

0 

1 

2 
1 

M 

M 

Rows la and 7a are impossible because of the presence of elements greater than 

M. Rows 2a and 4a are possible, but they are related. Row 4a is the first 

tuple listed in the theorem. Continuing with Row 3, we find that there are no 

predecessors when D(S) = (1, 0, M, 0, M9 M - 1, M) . Similarly, there are no 

predecessors for Row 2 if M < 12. 

We repeat this process for each of the other four conditions in Lemma 4 and 

find that D2(S) = (M, 1, 1, 1, 1, 1, •) gives rise to the other tuples for S 

listed in the theorem. • 

The other cases, with 2 < K(S), proceed similarly. 

Lemma $: Suppose S is a 7-tuple with the properties that |5| = M9 

M - 1, and 2 < K(S) < 6. Then one of the following must hold: 

|£7(£) 

D3(S) = (Af9 1, 1, 1, 1 
Z)3(£) = (M, M, M, 1, 1 
Dh(S) = (M, 1, 1, 1, . 
Z^(£) = (1, M9 1, 1, -
P5GS) = (M,M5 1, ., • 

D3cs) (M, M, 1, 1, 1 
Z?d(5) = (M, M, M, M, 1 
Dh(S) = (M, M, M, 1, . 
D5(S) = (M, 1, 1, . , . 

M 1. 

Z)b(5) = (M, 1, . , . , . 

Proof: It is easily verified that the above ten tuples give \D7(S)\ 

On the other hand, suppose R is a tuple not in the above list, such that D^iR) 

= (1,..., 1, A/,...,M, 1,..., 1, . . . ) , where the number of consecutive 1fs and 

Affs is at least 8 - k and there is at least one 1. Then it must be the case 

that 
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D3(R) = ( 1 , M, 1, 1, 1, 
D3(R) = ( 1 , M, M, M, 1, 
D\R) = (M, M, I, 1, , 
D5(R) = ( 1 , M, 1, . , . , 

•» • ) 
• , • ) 
- , • ) 
. , • ) 

D3(R) 
D3(R) 
D*(B) 

D3(R) = (1, Af, M9 1, 1, • , .) 
(1, 1, Af, 1, 1, . , .) 

D*(R) = (1, M9 Af, 1, . , . , .) 
1, .,.,., .) 

or, more precisely., Dk(S) must be related to one of these. By direct computa-

tion it can be shown that |Z)7(i?)| < M - 1. • 

Theorem 3-" Suppose Af > 12 and 5 is a 7-tuple with the properties that \s\ = Af, 

\D7(S)\ = M - 1, and 2 < K ( 5 ) < 6. Then S is related to one of the following 
tuples: 

D3(S) = (Af, 1, 1, 1, 1, ., «, . ) : 

(0, Af, 0, 0, M- 1, Af, 2) (0, Af, Q9 09 Af- 1, M- 29 0) 
(0, 0, M, 0, A/- 1, 2, Af- 4) (0, 0, Af, 0, Af- 1, 29 Af- 2) 
(0, 05 M9 09 M- 1, 29 Af) (0, Af, 09 09 M - 1, M9 0) 
(0, 09 M9 0, M- 1, 0, Af- 2) (0, 09 Af, 09 Af- 1, 09 M) 
(0, 12, 12, 12, 11, 8, 2) (0, 12, 12, 12, 11, 89 4) 
(0, 14, 14, 14, 13, 10, 4) (0, 14, 14, 14, 13, 10, 6) 
(0, 18, 18, 18, 17, 14, 8) (0, 209 20, 20, 19, 16, 10) 

D3(S) = (M, M, 1, 1, 1, •, - ) : 
(0, M9 0, 0, 0, 1, 2) (0, Af, 0, 0, 0, 1, 0) 
(0, M, 09 09 1, 4) 

D3(S) = (Af, M, M5 1, 1, -, • ) : 

(0, M9 0, 0, 0, M9 Af- 1) 

BHS) = (Af, 1, 1, 1, ., ., • ) : 

(0, 13, 13, 13, 13, 12, 8) (0, 15, 15, 15, 15, 14, 10) 

D\S) = (1, Af, 1, 1, . , . , . ) : 

(1, 0, 0, 0, 0, M9 1) (M- 1, 0, 0, Af, Af, Af, 1) 
(1, 0, Af, 0, 0, Af, Af- 1) 

B5{S) = (M, 1, 1, -, •, -, • ) : 

(0, Af, 0, M9 0, 0, Af- 1) (0, 0, 0, M9 0, Af, Af- 1) 
(0, M9 Af, M9 0, 0, 1) (0, Af, M, 0, M, M, Af- 1) 
(0, 0, 0, 0, Af, 0, 1) (0, M, 0, 0, Af, Af, 1) 

Proof: The proof proceeds as in Theorem 2; due to the number of cases, the cal-

culations are tedious. Although originally obtained by hand, these results were 

verified by computer. A copy of the program and/or output may be obtained from 

the author. • 

Theorem k: Suppose S is related to (1, 0, Af, M5 Af, 0, 0). Then, for Af > 6, 

\Dlk(S)\ < M - 4. 

Proof: By direct calculation, we find D12(S) = (Af-59 Af-6, 1, 1, 2, 0, 1) , so 

\D12(S) I < Af - 4 f or Af > 6 and thus \Dlk(S)\ < Af - 4. • 
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Theorem 5: Suppose S is a 7-tuple with the properties that |5| = Af, |Z?7(£)| = 

M - 1, and S is not related to (1, 0, M9 M, M9 0, 0). Then \D10(S)\ < M - 3 

whenever M > 12. 

Proof: Suppose that 5 is related to (0, 1, M, Af, 0, Af, Af) . Computing Dn (S) for 

1 < n < 10, we find Z)10^) = (1, 1, M - 6 , M - 4 , 0, 1, 1) and thus the conclu-

sion holds. Likewise, if S is related to (0, 2, 8, 11, 12, 12, 12), then D10(S) 

= (5, 3, 3, 3, 2, 2, 2) and thus |J910(5)| < 9. In a similar manner, the theorem 

can be verified by calculating D10(S) for each of the other twenty-nine tuples 

found in Theorems 2 and 3. m 

k. TUPLES WHICH GIVE LONGEST GAMES 

Theorem 6: Let T = (1, Af, 1, Af, Af, 0, Af) for M > 1. Then, for Af > 3, 

r r r N = P(M - l)/2 if M is odd, 
v w ; \7(Af - 2)/2 + 4 if Af is even. 

Proof: For Af ̂  3, it is easily seen by direct calculation that D7(TM) = TM_2. 

Since L(571) = 0 and L(T2) = 4, the result follows. • 

We will show that for Af > 8 the tuples TM , as defined above, give the games 

of maximum length. The following lemma is essentially a corollary of the pre-

vious theorem. 

Lemma 6: For the tuples TM defined as in Theorem 6, the following hold: 

7 + L(TM_2) = L(TM) 
10 + L(TM_3) < L(TM) 
14 + L(TM_h) = L(TM) 

Proof: First suppose that M is even. Then we have: 

7 + L(TM_2) = 7 + HM - 4)/2 + 4 = 7 (Af - 2)/2 + 4 = L(TM) . 
10 + L(TM_S) = 10 + 7(M - 4)/2 = 7(M - 2)/2 + 3 < L(TM) 
14 + L(TM_h) = 14 + 7(M - 6)/2 + 4 = 7 (Af - 2)/2 + 4 = L(TM) 

When Af is odd, the calculations are similar, except in that case 

10 + L(TM_3) = L(TM). m 

Theorem 7: If \s\ = M and M > 8, then L(5) < £(2^). 

Proof: It is easily verified by computer that the theorem holds for M - 8, 9, 

10, and 11. This verification is not as lengthy as it might first appear. As 

noted above, we need only consider one member of each equivalence class. Fur-

ther , note that if 5 = (s 1, s 2, . . . , sn) with all si > 1, then D(S) = D (T) , where 

T is defined by T = (s1- 1, s 2 - 1, ..., 8 - 1 ) . Thus, we need only consider 
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those tuples which have at least one zero entry. This significantly reduces 

the number of tuples that need to be checked. 

We have shown that the theorem is true for all tuples S for which \s\ < m 

with 11 < m < M. Consider a tuple S for which \s\ = M and \D7(S)\ < M - 2. 

Then we have, using Lemma 6, 

L(S) < 7 + L(D7(S)) < 7 + L(TM_2) = L(TM) . 

[Note that L(S) = 7 + L(D7(S)) so long as L(S) > 7.] If \D7(S)\ = M - 1, then 

by Theorems 4 and 5, either \D10(S)\ < M - 3 or |p1Lf (5) | < M - 4. Thus, by in-

duction and Lemma 6, either 

L(5) < 10 + L(D10(S)) < 10 + L e V 3 ) < L(^M) 
or 

L(£) < 14 + L(P14(5)) < 14 + L(TM_h) = LCTM) 

whenever M > 12. m 

5. FURTHER QUESTIONS 

Although showing that TM gives a game of maximum length was not difficult, 

there were many details to consider. Additionally, there were many special 

cases for small values of M. This indicates that verifying an upper bound for 

the length of the general n-game is likely to be difficult. As stated above, 

for n = 2r + 1, v ^ 1, games of maximum length are given by the tuples (0, 0, 

. . . , 0, M - 1, M) [12], That is, games of maximum length arise from tuples 

with identical form. Whether this happens for other n is not known. For ex-

ample, when n = 2 p - l , p ^ 4 , are games of maximum length given by tuples that 

are in some way similar in form to (1, M9 1, M9 Af, 0, A/)? 
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ON FOLYOMINOES AND FEUDOMINOES 
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1. INTRODUCTION 

In 1953 Solomon Golomb [1] "invented" polyominoes and gave them to the 

world in a talk to the Harvard Mathematics Club. Since then polyominoes have 

given pleasure to tens of thousands, not only through puzzle- and game-type 

activities carried out with them but also as a source of problems amenable to 

mathematical study. 

This year we contrived a creative project in combinatorics for a first-year 

University class. We took the polyominoes and added to them the integers of 

the Fibonacci sequence in a way to be described below. We christened the re-

sulting objects folyominoes and feudominoes, In the notes for the project, we 

wrote: "Thus we have acted as midwife to the birth of twins Folyomino and Feu-

domino, born of two venerable and well-loved parents, viz. Polyomino and Fibo-

nacci-sequence. We offer the twins to you, to rear, to nourish, and to study; 

to play with; to build ideas with; to create mathematics with." 

In this paper we define the objects of study and describe some of their 

properties. The linking of the two fields of mathematics will be seen to have 

given rise to a wealth of new problems, the solution of which can provide the 

basis for a new field of study. This field might be named integer sequence 

geometry. 
2. FOLYOMINOES AND FEUDOMINOES 

Polyominoes dwell amid the integer points of the Cartesian plane (see [1], 

[2]). They are formed by connecting unit squares into shapes, by fglueing1 one 

or more pairs of sides together. Thus, an n-omino is a shape consisting of n 

squares of a large chessboard, connected in such a way that a rook (a chess 

piece) could be moved from any square of it to any other square of it, in one 

or more valid rook moves. On the other hand, a pseudo n-omino has n unit squares 

joined together, but this time connection by fglueing' two vertices is allowed 

as well as by Tglueing1 two sides. In order to traverse all pseudo-polyominoes 
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with a chess piece, we would need to use a king (or a queen) which can make 

diagonal moves as well as row and column moves. 

Examples of both types of n-omino are given below for n = 1, 2, 3, and 4. 

• m R • • • • pi • * 
« 6 9 ft -4 • © • • 4 -ft 9 9 9 

r~m : m * • * i l % . 
6 a A a- i e 4 © a ® 4 • e e 
« 0 9 ©~ 1 m 9 e f f f ® f f 

a is a 1-omino (monomino) 
& is a 2~omino (domino) 
c is a 3-omino (tromino) 
d and e are 4-ominoes (tetromino) 
p is a pseudo-domino 
q is a pseudo-tromino 
p and s are pseudo-tetrominoes 

In order to derive folyominoes from polyominoes, we first place a pair of 

rectangular axes on the lattice and then assign Fibonacci integers to the unit 

squares of the positive quadrant by the following vute: 

Pfr,y) 

The square having the point P(x9 y) at its bottom 
left-hand corner receives the Fibonacci integer fi , 
where % = x + y + 1 and f-+z f-M-, + f-» w i t h 

We may call the result the Fibonacci lattice. 

Now if we construct a polyomino on this lattice, we may add up the integers 

in its cells. Let us call the total of the integers in a polyomino p the value 

V(p) of the polyomino. 

Definitions: 

(i) If the value of a polyomino is a Fibonacci integer, 
the numbered polyomino is a folyomino. 

(ii) If the value of a pseudo-polyomino is a Fibonacci integer, 
the numbered pseudo-polyomino is a feudomino. 

In the following diagram, we show the positive quadrant of the Fibonacci 

lattice, with three example folyominoes marked on it. 

The numbering of the lattice could be extended into the other three quad-

rants. Here, however, all our problems and discoveries will be confined to the 

positive quadrant. 
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m 
144 
89 

MS 
144 

t and so on 5 
34 55 89 144 

WA 
W: 

34 89 144 
ft',3/ft 34 55 89 144 

13 21 34 55 89 144 

m 13 34 55 89 144 
s^m 
M 

34 55 89 144 
V>$0* 13 

mni wA 
89 144 

34 55 89 
mi 2 Id 34 Ki3i > I 3 /K/ ,H 55 

a is a 2-folyomino (total 55 + 89 = 144 = f12) 
b is a 3-feudomino (total 13 + 21 + 55 = 89 = / 1 x) 
o is a 3-folyomino 
d is a 4-feudomino 
e is a 5-folyomino 

Note that a folyomino is also a feudomino (since a king as well as a rook 

can traverse a folyomino); but a feudomino with at least one vertex connection 

cannot also be called a folyomino9 since it cannot be traversed by a rook. 

3. FIRST CLASSIFICATION 

Tables 1 and 2 show all the folyominoes having n = 1, 2, 3, 4, or 5 cells, 

and the feudominoes with n = 1, 2S 33 or 4 cells. 

It should be noted that each folyomino is a representative of an infinite 

class, with any class, the members all have the same shape but differ in their 

values. For example, the 2-folyominoes ] | | form the class 

{ 1 h u 1 2 9 2 3 fi fi< _ } ; 

their values form the set {/i+2« i = 1» 23 . . .}. The same is true of most feu-
i • 2 

dominoes; however, there are some unique feudominoes. One example is i—H > 

we give other examples in Table 2. 

Notes: 

(I) A polyomino has size (i*ees the number of cells in it) and orientation 

in the plane. One can translate it from one part of the plane to another; one 

can rotate it through 9 0 % 180% or 270° ; one can flip it over; and it still 

remains the same polyomino unless one expressly forbids one or the other of 

these -transformations. 

A folyominos on the other hand^ also has a value (i.e., the total of its 

cell values); so, under any of the above transformations its value may change. 

Let us agree that, if the value remains the same after some rotations and/or 
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flippings, then the differently oriented folyominoes are equivalent. Other-

wise, they are inequivalent. (Recall that when we speak of a folyomino, we re-

fer to a representative of an infinite class of folyominoes having the same 

shape and orientation. We define all members of such a class to be equivalent, 

too.) 

n 
1 

2 

3 

TABLE 1. FOLYOMINOES UP TO n = 5 
Folyominoes 

m 
fi If 1*11 

^ 
fi fu,| 

I fi lfi+1 fi*2 
f i , 1 

f i*1 

fi+1 

f i+1 fi+2 

fi+2 

fi+1 

fi+2 

fi+1 

fu i 
fi+1 

Value 

fi 

f i + 2 

f i + 3 

fi+2 f- , 

fi+3 
fi+2 

fi+1 

fi+1 

f,+1 

fi+1 

f l+1 
f i fi+1 fi+2 fi+3 

f i fi+1 

fi+1 

f>+2 

fi+1 
fi 

fi+3 

f i + 1 

f i + 1 fi+2 
fi+1 

f i + 3 
fi+1 
f j 

fi+3 

f,+2 

fi+1 

fi+1 
f i fi+1 

fi+3 
f,+2 

f i + 2 

fj+1 

f ^ 
fi+1 

fi+1 f|+2 

fi+1 

fi+3 

fi+3 

fi+1 

f i f j + 
fi+1 

f j - l 

f i + 5 

(ii) Referring to Table 1, we see that the numbers of inequivalent foly-

ominoes, for n - 1, . .., 5, is as given in the table below. We give also the 

number of different n-polyominoes, for comparison. 

n 

# folyominoes 

# polyominoes 

1 

1 

1 

2 

1 

1 

3 

1 

2 

4 

2 

5 

5 

6 

12 
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TABLE 2. FEUDOMINOES UP TO n = 4 

Feudominoes 
(N.B. The Folyominoes in Table 1 are also Feudominoes) 

Values 

fi fi+i fi+i 

\& 

fi+i 

fi fw 

2,3 (un ique) 

5,5,8 (unique 

fi + 3 

f i + 4 

2 

1 

3 
2 2 3 

13 

r ^ 
1 

3 

1 

8,8,8,8,8,21 (un ique 

1 3 

fi.1 

f,.1 
fi h fi+i 

fi+i fi + 2 

fi+2 

fi+1 
PM 

f i + l l 

f i +1 fi+2 

f i 
f"M 

fi+3 

fi+1 
fi 

f i*3 

fi+1 

fi 

fi+3 

f u 3 | 
f i fi+1 

fi+3 

fi+3 fi+3 

fi+1 

f>+3 

fi fi+1 

fi+3 

fi+5 

fi+1 

f j 

fi+3 

fi+5 

f, + 5 

f j + 6 

) Combining the information of Tables 1 and 2 for n = 19 
aside the unique feudominoes, we get the following table: 

...9 4 5 and 
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n 

# feudominoes 

# p seudo -ominoes 

1 2 3 4 

1 1 3 7 

1 2 5 22 

(iv) Note that usually if a folyomino is not a square, it has one equiva-

lent f olyomino (it is always the case with the f eudominoes in Table 2) ; there 

are 5 exceptions in Table 1, for n = 3 and for n = 5. 

(v) All four 3-cell feudominoes have the same shape; but two different 

values occur. It never happens, among the folyominoes of Table 1, that two 

folyominoes have the same shape and have different values. We ask whether it 

is possible to construct such a pair of folyominoes. 

k. TILING PROBLEMS 

Many of the attractive problems concerning polyominoes involve finding how 

to use certain sets of them in order to fill a given shape exactly. For exam-

ple, there are just 12 different pentominoes, and one problem is to use a set 

of these to fill (i.e., to tile) a 6 x 10 rectangle. It has been shown that 

there are 2339 different ways of doing this (although it is surprisingly diffi-

cult to find even one of these, if one cuts the pentominoes out of cardboard 

and attempts a jig-saw approach to the problem!). 

With folyominoes, the number and types of possible tiling problem multiply, 

because not only can one aim to tile a given shape with them, but also one can 

aim to achieve certain kinds of total value for the shape (e.g., a Fibonacci 

number of a particular kind.) Further, one can aim to produce a sequence of 

shapes that have a given sequence of integer values; we discuss below, in Sec-

tions 5 and 6, two problems of this kind. 

First we discuss problems of tiling (i) squares, (ii) rectangles, and (iii) 

the quarter-plane. 

(i) Tiling an n x n square: Every l x l square is, of course, a folyomino. 

So, too, is every 2 x 2 square, since each has the following arrangement: 

MFui" 

[fi 
fi+2i 
fi+i 

which has value fi+li. It is worth noting here that if we were to create an r-

bonacci lattice, assigning integers from an r-bonacci sequence to the cells, 
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then every Vxr square would have a value that was an integer of the sequence. 

We give a tribonacci example"of this in Section 7. 

Therefore, when n is 1 or 2, the nxn square can be tiled with a single 

folyomino. A natural question to ask is: What is the minimal number, say (J), 

of feudominoes required to tile a given square? We have not yet found a gen-

eral answer to this question; however, the answers for small n may be found by 

inspection. A table, and example minimal tilings for n = 3, 4, 5 follow: 

n 

* 

1 

1 

2 

2 

3 

3 

4 

3 

5 

4 

^^^ 

Hi 

x>^>> 

< ^ 

ill 
\^< 
''Ji+zl 

Using the fact that / + • • • + fQ = fs + 2 ~ fr+is w e easily find the follow-

ing formula for the value of an n x n square which has f. in its least-value 

cell: 
Vnxn ~ Ji+ 2n + 2 ~ ^H + n+ 2 $i+2.° 

To find a solution for cf) for a given value of rz,we have to find a minimal par-

tition of Vnxn using Fibonacci integers as addends. 

(i i) Tiling an ni x n rectangl e: Rather than ask for the minimum number of 

feudominoes required to tile a given shape, as in (i) , we ask what is the 

total number that can be found in the shape, differing in any way. 

Let ^Tm be the total required for an m x n rectangle. It is easy to show 

that §ml = 2w - 1; but we have not yet found a formula for §m2s even when add-

ing the restriction that only folyominoes be counted. 

(til) Tiling the quarter-plane: Referring to the fpositive1, or ?north-eastf, 

portion of the plane only, simple tiling problems are: Tile the quarter-plane 

using only 

(a) even-valued folyominoes; 

(b) odd-valued folyominoes; 

(c) folyominoes with even-subscripted F-values; 

(d) folyominoes with odd-subscripted F-values* 
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We easily found solutions for (a), (b) , and (d); but for (c) our only solu-

tion so far uses a 5-feudomino of value / . The simplest solution for (d) uses 

the 2 x 2 squares, thus: 

T ' i 
- -

- -

- -

1 

- A -
1 
1 

- A -
1 1 

- A -
1 

A ! 

1 
1 
1 

- A i -
1 
1 

-fs~ 
1 
1 

- A -
1 i 
1 

1 
1 
1 

-As-
I 
L 

- A i -
l 
1 

- A -
I I 
1 

- -

- -

- -

Incidentally, this solution with odd-subscripted folyominoes suggests the 

following generalization. Defining a lolyomino to be a polyomino whose value 

is an integer of the Lucas sequence, {L^} = 1, 3, 4, 7, . .., the diagram above 

immediately gives a tiling in terms of even-subscripted lolyominoes. This fol-

lows from the fact that Li - fi_x + f^+1l s o placing two 2 x 2 squares side by 

1; and the required type of quarter-side gives a lolyomino. Thus,\f5 •C 
plane tiling, using 2 x 4 lolyominoes of even-subscript values, is immediately 

evident. 

We turn now to a new kind of tiling problem: Given any integer, does a shape 

(i.e., a combination of cells) exist whose total value equals the integer, and 

which can be tiled by distinct folyominoes? We shall call this the integer 

tiling problem; and, in view of Zeckendorf!s theorem on Fibonacci partitioning 

of the integers, it is easy to arrive at a solution. 

5j ZECKENDORF INTEGER TILINGS 

ZeckendorfTs theorem (see [4] for details) tells us that any integer can 

be partitioned into distinct Fibonacci integers in such a way that there is no 

gap larger than one in the sequence of f. -values used in the partition, with 

all sequences beginning with f = 1 or f = 2. 

We construct the required partitions recursively as follows: Let the par-

tition of 1, namely / , be written as a set P = {f2}; and the partitions of 

2 and 3 be written as P = {/ }, P = {/ , / }, respectively. Then the parti-

tions of the next three (= f ) integers are given by: 

P^P^if,}; P5=P2u{fk}; P 6 = P 3 u { / J . 

The partitions of the next five (= / ) integers are given by taking the union 

of {f } with each of Pn3Po9 P, , P . and P . in turn. For the next eight (= f ) , 
**5 Z d H - b b b 

we take the union {/6} of P^9P59 ..., Pll 9 in turn. And so on. 
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Using the same recurrence procedure, and with each union taking the corre-

sponding cells from the Fibonacci lattice, we can construct shapes which con-

stitute Zeckendorf tilings for each integer. The tilings for n = 1, ..., 7 are 

shown below: 

fu 

A E ] E ] \f*\f*\ E 
1 2 3 4 5 6 7 

Note that, for n = 6, two types of tile arise, viz: 

/,. 

f* 
and f. f> 

Therefore, the answer to the integer tiling problem is: for each integer, 

a Zeckendorf tiling can be constructed. Some integers have more than one type 

of Zeckendorf tiling (Z-tiling). 

Now that we have shown how to construct Zeckendorf integer tilings, we can 

classify the integers according to defined properties of their respective til-

ings. Four interesting properties are: 

(J) = minimal number of folyominoes in a Z-tiling; 
6 = number of diagonal connections in a Z-tiling; 
T = number of types of Z-tiling (different up to rotations and flippings of 

the shape only) of a given integer; 
a = size (i.e., number of cells used) of a Z-tiling. 

Remark: (j), 6, and a are invariant over tiling types, and 6 = 0 for n - f^ - 2 

and f. - 3, O 5. 

We will conclude this section by tabulating the four properties for the Z-

tilings of n - 1, ..., 19. A recurrence formula can be written down to gener-

ate the sequence of O values. 

Table 3- Properties of Z-Tilings 

! n: 

< ( > : 

6: 
T: 

a: 

1 

1 

0 

1 

1 

2 

1 

0 

1 

1 

3 

1 

0 

1 

2 

4 

2 

1 

1 

2 

5 

1 

0 

1 

2 

6 

2 

0 

2 

3 

7 

2 

1 

1 

2 

8 

1 

1 

1 

3 

9 

2 

1 

1 

3 

10 

2 

0 

2 

3 

11 

2 

0 

3 

4 

12 

3 

2 

1 

3 

13 

2 

1 

1 

3 

14 

2 

1 

2 

4 

15 

2 

2 

1 

3 

16 

2 

1 

1 

4 

17 

3 

1 

2 

4 

18 

2 

0 

3 

4 

19 

3 

0 

6 

5 
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6. LATTICE PATHS AND F-CHA1NS 

There is a large literature on the combinatoric theory of paths defined on 

rectangular lattices, and [3] gives a good review of this. It is natural that 

we should now combine the notion of folyomino with that of paths on a Fibonacci 

lattice. 

Definitions: 

(i) A simple path on a Fibonacci lattice is a sequence of distinct cells 

on the lattice, each cell arrived at being adjacent (horizontally, vertically, 

or diagonally) to the previous cell. In chess terms, then, a simple path is a 

king's tour with no repetitions of cells. Let us use the symbols c , c , ..., 
on to describe a simple path starting at c1 and ending at cell cn ; the sequence 

of cell values will be described by u ^ ^2, . . . , vn. The length of a simple 

path is the number of cells in it. The value of the path is 

Vn = t V. . 
i = 1 

The pth partial path is' e , e s .. . , cr , with 1 < r < n, having value 

v* = !>*• 
i = 1 

(ii) An F-chain is a simple path on a Fibonacci lattice such that all its 

partial paths are f eudominoes; that is, all the partial path values F1, V2, ..., 

Vn are Fibonacci integers. 
Counting theF-chains 

We will address the basic problem only, namely that of counting the number 

of F-chains that start at P(i;J j) , in the cell c1 having value ̂ +7-+1> and end 

at Q(r, s) , in the cell cn having value ̂ + s + 1- W e assume that 0 < i ^ r and 
0 < j < s. There are many cases to consider, if one looks at the different 

possible steps from cell to cell; if one does or does not allow unique steps 

[e.g., P(l, 1) to 0(0, 0), involving the value sum / 4- / ]; if one imposes 

boundaries that a path cannot cross. To keep this introduction short, we give 

solutions for just two cases. 

Case 1: Only steps in one of four directions i , ->, ̂ s \ (i.e., N, E, NW, 

SE) are allowed; and all the paths are to lie entirely within the boundary of 

the rectangle determined by the diagonal PQ. 

Solution: We refer to the example in which i = l , j = 2 , r = 5 , and s = 4; 
the inference to the general solution given at the end is elementary. 
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P ( l , 2) 

21 34 55 

13 

T 

3 ( 5 , 4 ) 
The F - c h a i n shown i n t h e d i a g r a m 
h a s p a r t i a l p a t h v a l u e s : 

3 , 8 , 1 3 , 2 1 , 3 4 , 5 5 , 8 9 , 144 

Note that the first two steps of all F-chains from P are forced to be either 

N, SE (giving partial value 3 + 5 + 5 = 13) or E, NW (again giving partial value 

13) . From there on, all paths can proceed by only N or E steps. To get from 

lower 5-cell to the 55-cell, starting with value 13, required two N-steps and 

three E-steps. The number of different ways of doing this is equal to the num-

ber of different arrangements of the symbols NN EE E, which is (9)» Similarly, 

to get from the upper 5-cell to the 55-cell requires one N-step and four E-

steps; the number of ways of doing this is (-, ) • Hence, the total number of F-

chains from P to Q is (̂ ) + Q ) = 15 • 

Generalizing, the number of F-chains from P(i, j) to Q(r9 s) is given by: 

') • O 
/ r + s - i - j - l \ / r + s - i - j 

\ s - j - 1 ' ^ s -j 

where m = (r + s) - (i + j) and n = s-j9m9n'>Q. 

The value of each F-chain is the same, namely / . This is remarkable, 

in that the value is independent of i and j. Thus, we can state the following 

proposition regarding F-chains. 

Proposition: Given Q(r, s), and any other point P(i, j) with 0 < i < v and 0 < 

j < s. All F-chains from P to Q9 with the conditions of Case 1, have the same 

value / r + s + 3 . 

Case 2: Only steps in one of the five directions t, •>, K, \, * (i.e., N, 

E,NW5 SE, NE) are allowed; i ^ 1 and j ^ 1; and no boundary conditions imposed. 

Solution: Allowing for the NE steps (which were not allowed in Case 1) and 

removing boundary conditions leads to many more possibilities for constructing 

F-chains from P(i, j) to Q(rs s) . We give the solution in terms of two coupled 

partial recurrence equations. To explain them, we must first define the fol-

lowing three counting functions. 

(i) A(i, j) is the number of F-chains from P(i9 j) to Q(r9 s), with all 

cells having their usual assigned F-values. 

(ii) B(i, j) is the number of F-chains from P to Q9 with the first cell in 

each chain having value /\ . and the others having their usual values. 
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(iii) C(i, j) is the number of F-chains from P to Q, with the first cell 

having value f. . „ and the others having their usual values. 

Now let us consider the first steps of F-chains from P(i, j) , beginning 

with the first cell-value f. ... There are two possibilities; namely, either 
•'t + j + i r ' J 

a step N leading to cell (i, j + 1) and partial value V2 = ^+7- + 2» o r e l s e a 

step E leading to cell (i + 1, j) , again with partial value F2 = ^ + -+2- We 

can, therefore, write down the equation: 

A(i, j) = £(£, j + 1) + B(i + 1, j) (1) 

Considering F-chains starting from P(i, j) with the first cell having value 

f'+ '+2' w e s e e t n a t three different first steps are possible, the first two be-

ing to cells (i - 1, j + 1) or (£ + 1, j - 1) in which cases the partial values 

V =* f. . are achieved; the third is to cell (£ + 15 J + 1) 5 achieving F = 

fi+j+k- From this information we can write down the equation: 

B(i9 j) = C(i - 1, j + 1) + C{i + 1, j - 1) + B(i + 1, j + 1) (2) 

Finally, we need an equation for C(i, j)- In fact, as explained above in 

Case 1, we can obtain a formula for it, thus, 

CH, J) = Q, (3) 
where 777 = (r + s) - (i + j) and n = s - j. (N.B. It is no accident that this 

number is precisely the same as the total for Case 1, as a moment's reflection 

on the two cases will show.) 

Putting formula (3) into equation (2) gives: 

B(i, j) - B W + 1 . J + ! ) + ( „ ! ! ) + ( n + l) W 

For any given pair of values of (r, s), we can use equation (4) to compute 

a table of values B(i, j); then, finally, using equation (1) with a particular 

pair (i, j) will give us the total A(i9 j ) , which is the object of the study. 

As mentioned earlier, there are many other problems we could pose about F-

chains, the solutions of which, we could seek by means of lattice-path counting 

methods; but we must leave them here. 

7. SUMMARY AND EXTENSIONS 

We have shown how an integer sequence can be assigned to a lattice, and be 

used to give values to polyominoes constructed on the lattice. We chose to use 

the Fibonacci sequence, and studied tiling and path problems related to the 

folyominoes which resulted. 
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Many interesting possibilities suggest themselves for varying and extending 

our studies. We end by briefly indicating some of these. 

Lucas polyominoes (lolyomfnoes) 

We have defined a tolyomino to be a polyomino whose value is a member of 

the Lucas sequence 1, 3S 4, 7, lls 18, ... . Examples of lolyominoes found on 

the Fibonacci lattice are: 

JTI rr 
2 3 3 1 2 | 3 

2 

We can study lolyominoes on the Fibonacci lattice. Likewise, we can use 

the Lucas sequence to produce a Lucas lattice: then we can study folyominoes on 

the Lucas lattice. It is clear that interesting comparisons and dual relations 

between the two systems will abound. 

Integer sequence geometry 

In Section 4(i), we noted a result concerning polyominoes defined on r-
bonacci lattices. To give one example of such a lattice, with r = 3 and the 
sequence 1, 1, 1, 3, 5, 9, 17, 31, ..., we show a portion of the lattice, and a 

few small-size tvolyominoes* 

o 1 

5 

3 

1 

1 

1 

9 

5 

3 

1 

1 

17 

9 

5 

3 

1 

17 

9 

5 

3 

17 

9 

5 

5 

3 

1 

5 

17 

Note that the 3 x 3 square is a trolyomino, as claimed in 4(i). Note also 

that only odd-sized trolyominoes are possible: this is easily proved true, for 

all single cells have an odd value, and any combination of an even number of 

them would have an even total value. Since all members of this tribonacci se-

quence are odd, an even-valued combination of cells cannot be a trolyomino. 

Finally, we do not have to stay with r-bonacci sequences. Generally, we 

can use the sequence s1$ s29 s3, ... to define an 5-lattice thus: Our defini-

tion of what constitutes an 5-polyomino (see the figure on the following page) 

will depend on whatever property or properties of the sequence {££*} we wish to 

3 5 8 

I 5 I 8 

5 

3 

1 

9 

5 

3 

17 

9 

5 
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highlight. Then our discoveries concerning the 5-polyominoes (or solyominoes) 
will constitute results in integer sequence geometry. 

• 

^ 3 

SZ 

5 ! 

°T 

• 

s> 

S 3 

S2 

• 

SS 

S, 

Sl 

Generalizations will take place when we compare results on solyominoes 

drawn from a class of ̂ -lattices, defined using a class of related integer se-

quences. An obvious candidate for such studies is a class of F-lattices, using 

the sequences F(a, b) defined by 

F1 = a, F2 = b9 Fi+2 = Fi + 1 + Fi9 (a, b) e Z x Z. 
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1. INTRODUCTION 

Eisenstein [3] proposed and Lord [8] solved elegant problems to the effect 

that the infinite continued fractions (in the preferred notation of Khovanskii 

[7]) 
(-Dn f-n» 

Ln - L - L - ••• = ° " ' ( 1 > 1 ) 

where Ln is the nth lucas number and a is the positive root of i2 - x - 1 = 0. 

The purpose of this note is to generalize (1.1), which we do in (4.2) for 

the sequence {wn} E {wn(a9 b; ps q)} (see Horadam[5]). This is defined by the 

initial conditions WQ = a, w1 = b, and the recurrence relation 

wn = pun-i - Vwn-2' ri > 2, (1.2) 

where p and q are arbitrary integers. 

2. NOTATION 

Following Horadam, we let a = (p + A p 2 ~ 4<?))/2, g = (p - / (p2 - 4q0) /2, 

with |g| < 1, be the roots of 

x2 - px + q = 0, (2.1) 

so that {wn} has the general term 

wn = Aan + B$n* (2.2) 

where A = (b - a$)/d, B = (aa ~ b)/d9 and AB = e/d1 in which g = pab - (7a2 - 2?2, 

d = a - $, p = a + g, and ^ = ag. Furthermore, for notational convenience, let 

(2.3) 

For example, for the sequence of Fibonacci numbers {Fn} - {Wn(09 1; 1, -1)}, 

S^= (-l)n + 1/5; for the Lucas numbers {Ln} E {wn(2, 1; 1, -1)}, §n = (-l)n ; and 

for the Pell numbers {P > E {w (0, 1; 29 -1)}, 0 = (-l)w/8. 
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3. THE CQNVERGENTS 

Let x = p lq be the kth convergent of the continued fraction (CF) 

CF(wn) = ... . (3.1) 
wn - wn -

pk p fc+l 
^ - Xk + 1 - — - = (p2 - P ^ P ^ ) / ^ ^ -

s ince p = <7fe+1 (Khinchin [ 6 ] ) . So, from equat ions (1.9) and (4.3) of [ 5 ] , 

xk "** + ! = « X ^ + i- (3'2) 

For further notational convenience, suppose we write 

Xk=xk+1 (3.3) 

so that (3.2) has the form 

Xk ~ Xk-1 = -tf'Wlc-l' <3"4> 

Replace k by fe + 1 in (3.4) to get 

If we add (3.4) and (3.5), then 

Xk+i " Jfc-i 
«'/ «n + 1 \ _ 

^ V ^ + i ^ - i / 

« " / ^ - l « n + W ^ k " 

<?A ^ + 1^ -1 

' » « » / ? * + A - 1 ' 

«;^-i«» + ^ + i \ 

<?A %+^k-i ) 

n *~1 \ r r r n m (L q \ I 
i L j-rom \^c. jj j 

Replace k by 2K, so t h a t 

X 2 K + 1 - * 2 X - 1 = •«>nQ2nX/<l2K-l<l2K + l- ( 3 ' 6 ) 

Now5 by ( 3 . 6 ) , 

X5 ~ X3 = -W„«i/<?3<75 

^ 2 ^ + 1 X2K-1 ~ Wn®n / < 7 2 X - l ' ? 2 X + l ' 

On adding, we get 

?2 e " 
x, , . , = w „d - ^ - - ^ — V — ' - ^ (3-7) 

L 2 X + 1 " n l _ ?1<73 <?3<75 < ? 2 * - l « 2 X + : 

s ince Zx = Wn - Qjwn. 
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Similarly, on replacing k by IK - 1, we obtain 

(3.8) X2K ' Wn 

ince X0 = wn. 
( " 

Q 

Z 0 ^ 2 

£ 
q q 
^ 2nh 

C-1 < 
q q 

2K-2^2K, 

With our notation adapted to Khovanskiifs treatments he established that 

when all the coefficients w and -Q are positive: 

(1) the convergents of odd order generate a monotonically increasing se-

quence with upper bound the even convergent w„ -Q„/w„9 that is, lim Xnv exists 
n n n K+°° 

and is smaller than each even convergent; and 

(ii) the convergents of even order generate a monotonically decreasing 

sequence with lower bound the odd convergent w 9 that is, lim Xov _ exists and 

is greater than each odd convergent. 

4. THE CONTINUED FRACTION 

In either case, the value of the limit is a root of the equation 

x = wn - Qn/x9 (4.1) 

which can be rewritten as 

0 = x2 - wnx + Qn 

= x2 - (Aan + B$n)x - ABan$n = (x - Aan) (x - B$n) . 

Since xk > wn - 19 we have 

(wn) = Aan. (4.2) 

For example , CF(L„) = an, CF(F n ) = an/d9 CF(P n ) = a * / 2 / 4 , and C¥(L±) = a ( s e e 

V o r o b f e v [ 9 ] ) 5 where a = (1 + \ / 5 ) / 2 and a x = 1 + / 2 . T h i s i s c o n s i s t e n t w i t h 

\Wn - Aan\ = 5 | 3 | n < B i f | 3 | < 1, o r | F „ - a n / J | < 1/2 and [Ln - an\ < 1/2 a s 

i n H o g g a t t [ 4 ] . 

S i n c e xn = W - Q /x1 , we h a v e — j - o r 

v = w p7 , - Q p7 • k > 2 , ( 4 . 3 ) 
rfc n^k-1 nrk -2 

with p = 1 and p = W since p = q . Note that (3.2) can also be expressed 

P?£ P & + 1 | = ̂ . (4.4) 

as v a - v Q = -Qk or, in determinantal form, as 
^k+l^k ^k^k + 1 n 
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Po 
P i 

p2 

p3 

= 1 
= wn 

= w2
n -

- < • 

- Qn 

- 2®nWn 

5. CONCLUDING COMMENTS 

It can be seen from the recurrence relation (4.3) and the initial conditions 

for p , that the numerators of the convergents, {p, } E {p, (1, wn; Wn 5 Sn)}» form 

a generalized Fibonacci sequence. The first few terms can be constructed as 

follows: 
P- = Wn ~ SQn< + Ql 

Pe -»l- 5«n< + 6«X ~ € 
Pi = < - *Qn< + 10«K " <"n 

It can be seen that the values of the numerical coefficients seem to satisfy 

the partial recurrence relation 

a.. - a. . - a. . 9 i ? j ^ 0 9 (5*1) 

with boundary conditions given by a • Q = 1 and a^3- = 0 if i < 0 or j < 0 or 
j > [i/2] (the integer part of i/2). (Note: i and j refer to row and column 

numbers, respectively.) 

To establish that the numerical coefficients satisfy (5.1)5 we first solve 

(5.1) and then show that the solutions in (5.3) can be used to generate p in 

(5.4). Following Carlitz [2], we set (formally) 

co [i/2] 

F(X> y) = E E ^ - a V . (5.2) 
i = i j = o 

and rewrite (5.1) using the boundary conditions on a ̂ Q 

[ i / 2 ] ._ oo [ i / 2 ] 

x; ai_1 .^~v - ^ E 
j = o ' d i = i 
[ i / 2 ] m , oo [i/2] 

F(X, y) = x f^ E ^ - i 7-**" V - x2y E E ^ _ 2 j - i ^ " V " 1 

i = 1 j = 0 i = 1 j = 0 

= x E E S : f x V ™ *2Z/ E E a^xty3 

i = 0 j = 0 i = 0 J = 0 

oo [ i / 2 ] . . « [ i / 2 ] . . 
= x + x E E aijxZyJ - x2y ~ x2y E E ^-^y3 

i = 1 j = 0 i = 1 j = 0 

= # + #F(tf, z/) - 5?22/ - x2yF(x, y) 

- (x - x2y)I'(1 ~ 5 : + x 2 2 / ) 

= x ( l - x z / ) ( l - ff(l " ocy))-1 

oo °° 

= £ xi + 1(l - xy)i+1 = £ **(1 - *y)* 
£ = 0 i » 1 

£ £ ("i)-7'̂  ^ J')*V' 
i = 1 j = 0 ^ 

whence9 on equating coefficients of xy * 

222 [Aug. 



GENERALIZED FIBONACCI CONTINUED FRACTIONS 

aa = (-D^; J ')- (5.3) 

So5 from equat ion (2,8) of Barakat [ 1 ] , 

[fc/2] . , 7 , . v . , . 

P. = E (-DJ ^ JK^k"2j. (5.4) 

and it can be confirmed by induction on k that (5.4) satisfies the recurrence 
relation (4.3). 
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Definition 1: We say that (a, b9 o9 d) is a Carlitz four-tuple iff a, b9 o, d 
are integers such that ab = 1 (mod o), ab = 1 (mod d), cd7 = 1 (mod a), and 

cd E 1 (mod b) . For convenience, we shall often write CFT instead of Carlitz 
four-tuple. 

As can easily be verified, <1, 6, 1, 1), (4,24, 5, 5), and <15, 90, 19, 19) 

are Carlitz four-tuples. More generally, for every integer a, (1, a, 1, 1), 

<a, a(a+2), a + 1, a+1), and (a(a+2), a(a+2)(a+3), a(a+3)+l, a(a+3)+l> 

are CFTs. The latter two of these are, in some sense (see the comments between 

Theorem 17 and Proposition 18), generated by (1, a, 1, l) and, in fact, (l, a, 

1, 1) generates not just these two CFTs but infinitely many CFTs. 

Both (4, 16, 7, 7) and (5, 20, 11, 11) are CFTs; more generally, for every 

integer a, (a, 4a, 2a - 1, 2a - 1) is a CFT. 

Carlitz proved in [1] that, if (a, b9 o9 d) is a Carlitz four-tuple, then 
either a = b or c = d. Thus, in the sequel, we shall only consider CFTs of the 

form (a, b9 c9_ a ). 
There are CFTs (a, b9 c9 e) for which a - b and for which a - -b. Some ex-

amples are: 

(a9 a, a+1, a+1); (a, a, a2-l, a 2 - l); (a, -a, a2+l, a2+l). 

Notice also that, if (a, &, c, c) is a CFT, then so are (b, a, e, c)9 {-a9 -b, 
c, e), (a, &, -<?, -c), and (-a, -2>, -e, - o ) . 

Definition 2: The Carlitz four-tuple (a, &, c, e) is -primitive iff there does 

not exist an integer m > 1 such that /-, h , c, c\ is a CFT. 

The CFTs (8, 12, 5, 5) and <30, 45, 199 19) are not primitive; for each of 

these we could choose m = 2. 
The following result shows that CFTs occur in pairs. 

Proposition 3: If (a, b9 c9 a) is a Carlitz four-tuple, then so is 
/ , ab - 1 ab - 1\ 
(a, 2>, — ^ — , — 5 — ) . 
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Proof: Let d = , which is an integer, since ab = I (mod c). Since cd = 

ab - 1 E -1 (mod [a, &]), 

1 E c2d2 = d2 (mod [a, 2?]). 

Since we also have that ab = cd + 1 E 1 (mod d), we see that 

/ , aZ? - 1 ab - l \ {a, b, — , — ) 

is also a CFT. m 

Given a Carlitz four-tuple (a, b9 c9 c) 9 we shall prove, after a lemma, a 

necessary and sufficient condition for this CFT to be primitive. Then, after 

another lemma, we shall prove that a\b for any primitive CFT (a, b, o, c). 

Lemma k: Let (a, b9 c9 c) be a Carlitz four-tuple and let 77? be an integer. We 

have that/—, bm9 c9 c\ is a Carlitz four-tuple iff m divides (a, — r — 1 . 

Proof: First, assume that (—, bm 9 c9 cj is a CFT. Thus, m\a and c2 E 1 (mod 
1 c2 - 1 / c2 - 1 \ 

ifc»77?) . Since m\a and m divides — r - — 9 m divides (a, — T — j . 
.2 

Conversely, assume that m divides ia9 — T - — ) . Thus, — is an integer. 

since (a, 2?, c, c) is a CFT, 

Now, 

— bm = ab - I (mod e) 
m \ J 

and c?2 = 1 (mod a). Hence, c2 - 1 (mod —J. Also, since 777 divides a z - 1 C2 E 

1 (mod bm) . T h e r e f o r e , / —, 2?7?7, c , c \ i s a CFT. / a_ 

Following directly from Lemma 4 is 

Theorem S- Let (a, Z?, es c) be a Carlitz four-tuple. We have that (a, Z?, c9 c) 
I o2 - 1\ is a primitive Carlitz four-tuple iff (a, — r — ) = 1. 

/ c2 - 1 \ 
Lemma 6: If (a, 2?, c, c) is a Carlitz four-tuple, then a divides b\a9 — r — ) . 

c2 - 1 Proof: Let e = — 7 . Since a divides c2 - 1 = £>e and a divides a&, a divides 

(aZ?, Z?e) = Ib I (a, e). 11 

Proposition 7: If (a, Z?, e5 c) is a primitive Carlitz four-tuple, then a\b. 

Proof: By Lemma 6 and Theorem 5, a divides b(a9 — r — j = b. m 

The converse of Proposition 7 is not true. A counterexample is 

<12, 24, 7, 7), 

which is a nonprimitive CFT. 

We shall now prove two propositions. Given a CFT, the first proposition 

will enable us to find the primitive CFT that, in some sense, generates the 
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given CFT. The second proposition does the opposite, i.e. , given a primitive 

CFT, this proposition will enable us to find all CFTs that are generated by the 

given primitive CFT. 

c2-l Proposition 8: If (a, b9 c9 a) is a Carlitz four-tuple and e = — T — 5 then b 
h(a, e), o9 c) 

\ (a, e)' 
is a primitive Carlitz four-tuple. 

Proof: By Lemma 4, (-. r-, b(a9 e) , c9 o) is a CFT. Since 

I a o2 - I \ _ / a e \ _ 
\(a, e)5 M a , e) I \(a, e)? (a, e)/ 

by Theorem 5, /-T-—~y, b(a9 e) 9 o9 o\ is a primitive CFT. m 

The converse of this result is false. For example, choose a - 75, b = 18, 
e2- 1 and a = 19. Thus, e = , = 20 and (a, e) =5. Now, 

-, M a , e)9 c, a) = <15, 90, 19, 19) 
\(a, e): 

is a primitive CFT but <a, M e, c) = <75, 18, 19, 19) is not a CFT. 

Proposition 3: Let (a> M c, c) be a primitive Carlitz four-tuple. We have 

that (aj 9 —, c9 c\ is a Carlitz four-tuple iff j \ 
^ d ' I 

Proof: First, assume that (aj 9 4, c, c\ is a CFT. By Lemma 6, Theorem 5, and 

without loss of generality, assuming j > 0, we see that aj divides 

b( . c1 - l\ b( . j(c2 - 1)\ w e2 - 1\ , 

Conversely, assume that aj\b. First, notice that 

aj — = ab E 1 (mod c) . 
V 

Since we have that o2 = 1 (mod b) , aj\b9 and -̂  

1 (mod aj) and c2 = 1 (mod —J. 

The next two theorems (Theorems 10 and 13) consider the cojnection between 

a CFT (a, b9 o9 a) and the equation ab + o2 - 1 = 2?c/c. 

Theorem 10: Let a, b9 a be integers. We have that (a, M <?, c) is a Carlitz 

four-tuple iff there is an integer k such that a\bk and ab + c2 - I = bok. 

Proof: First, assume that (a, b9 o9 c) is a CFT. Thus, fc divides ab + c2 - I 

and <3 divides ab + o2 - 1. Hence, since (b9 o) = 1, there is an integer k such 
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that ab + o2 - 1 = bck. Furthermore, since a divides ab + c2 - 1 = bak and 

(a, c) = 1, a divides bk. 

Conversely, assume that there is an integer k such that a\bk and ab + c2 -

1 = bck. Clearly, ab E 1 (mod c) and o2 E 1 (mod b) * Also, since a divides 

bck - ab = c2 - 1, c2 E 1 (mod a ) . 

The condition a|M in Theorem 10 cannot be deleted. For example, let a = 5, 

b = 8, c = 3, and fc = 2. Now 

a£> + c2 - 1 = 48 = bck, 

but <a, £>, c9 c) = (5, 8, 3, 3) is not a CFT, • 

Lemma 11: If a, b9 c9 and fc are integers such that ab + c2 - 1 = &cfc, then 

fa* r J divides k. 

I c2 - 1 \ £2 - 1 
Proof: Let d = (a, T J. Since a7 divides a H r = efe and (d7, c) = 1, 

d7 divides fc. n 

Proposition 12: Let a, &, c5 and fc be integers. If k\a9 a\bk9 and ab + e2 - 1 

= bck, then (V, M , c5 <?\ is a primitive Carlitz four-tuple and 

Proof: By Theorem 10, (a, b9 cs c) is a CFT. Since k divides both a and ok -
c2 - 1 / c2 - 1\ 

a - 9 ^ divides la, JT ). This implies, by Lemma 11, that 

By Proposition 8, (TTTT* b\k\ 9 cs c\ is a primitive CFT. Hence, ̂ 77, bk9 c9 c\ 

is a primitive CFT. 11 

The converse of this result is false. For example, choose a = 75, b = 18, 

c = 19, and fc = 5. 

As a special case of Proposition 12, we have 

Theorem 13- Let a, Z?5 c be integers. If a\b and a& + £2 - 1 = be, then both 

(a, J>, (5, c) and (a, 2?, b~c9 b - c) are primitive Carlitz four-tuples, and if 

a|i and a2? + £2 - 1 = -Z?c, then both (a, Z?5 <?, <?) and (a, &s H e , & + c ) are 

primitive Carlitz four-tuples. 

Proof: We shall just prove this result for ab + c2 » 1 = -&£; the proof for 

ab + c2 - 1 -be is similar. Since ab + c2 - 1 = -&<? and 

ab + (b + e)2 ~ I = ab + c2 - 1 + b2 + 2be = b(b + c), 
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by Proposition 12, (-a, -b 9 o9 o) and (a9 b9 b + o9 b+o) are primitive CFTs. 

Since {-a9 -b, o9 o) is a primitive CFT, so is (a, b9 o9 c). B 

The condition a\b cannot be deleted in Theorem 13. For example, for a = 7, 

b = 30, and o = 11, we see that 

ab + o2 - 1 = 330 = bo, 

but (a, b9 o9 c) = <7, 30, 11, ll) is not even a CFT. 

Corollary 14: If a and J> are integers greater than 1 such that a\b and b2 -

kab + 4 is a perfect square, then there is an integer o such that (a, b9 c9 c) 

is a primitive Carlitz four-tuple and 1 < o < -«. 

D ^ -rr -1 „ b - vb2 - kab + 4 , . . T - . - U . . ^ ^ i . . Proof: If we let e = , then it can easily be shown that ab + 

c2 - 1 = bo. Therefore, by Theorem 13, (a, Z?, c, o) is a primitive CFT. Also 

1 < a < |. m 

In the preceding corollary, we do need a\b; this is shown by considering 

a - 1 and b - 30. For assume there is an integer o such that (a, b9 c9 o) is 

a CFT. Thus, by Theorem 10, there is an integer k such that 

7(30) + o2 - 1 = 30ek. 

This implies that o \ 209, so c = 11 or c = 19. Neither of these is possible, 

since we must have o2 E 1 (mod 7). 

Using the following lemma, we shall find a connection between a diophantine 

equation and primitive CFTs. 

Lemma 15- For a9 b9 o9 q complex numbers with q = b/a9 we have that 

ab + c1 - 1 = be 
iff 

(b - 2o)2 - (q2 - kq)a2 = 4. 

Proof: Since b = aq, this result follows from the identity 

(Jb - 2e)2 - (q2 - hq)a2 = b2 - kbo + ko2 - (qa)2 + ha(qa) 
= b2 - kbo + ho2 - b2 + kab = h(ab + c2 - bo). 

Theorem 16: If q9 u9 v are integers such that u2 - (q2 - hq)v2 = 4, then both 

/ qv - u qv - u\ n / qv + u qv + U\ 
\v9 qv 9 — - — , -1—£—) and (v 9 qv , —^—, -1—2—) 

are primitive Carlitz four-tuples. 
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Proof: Let a = v , b = qv, and c = ^ U. Thus, a | Z? and 

(6 - 2c)2 - (q2 - kq)a2 = u2 - (q2 - 4a)z;2 = 4. 

Therefore, by Lemma 15 and Theorem 139 the proof is complete, m 

As we saw in the preceding theorem, there is a strong connection between 

primitive CFTs and the diophantine equation 

u2 - (q2 - kq)v2 = 4. 

For this reason, we shall now consider the diophantine equation 

u2 - Dv2 = 4, (1) 

where D is a natural number that is not a perfect square. Our discussion will 

be based on work by Trygve Nagell [2, pp. 3-4]. 

If u = u* and v = v* are integers which satisfy (1), then we say, for sim-

plicity, that the number u* + v is a solution of (1). From among all solu-

tions in positive integers to (1), there is a solution in whch both u and v 

have their least positive values; this solution is called the fundamental solu-

tion of (1). The following theorem [2, Theorem 1] states that from the funda-

mental solution of (1), one can generate all solutions in positive integers to 

(1). 

Theorem 17- We have that u + vvD is a solution in positive integers to (1) iff 

there is a positive integer n such that 

•|(w + vS) = \^(u1 + v1 D)\n , 

where u± + V 1^/5 is the fundamental solution to (1). 

For D = a2 - 4a, we can easily see that (a - 2) + VD is a fundamental solu-

tion to (1). Thus, by Theorem 16, (l, a, 1, 1) is a primitive CFT. In some 

sense, from a trivial solution to (1), we obtained a trivial CFT. It turns out 

though that from this trivial fundamental solution to (1), we can get some dis-

tinctly nontrivial primitive CFTs. 

Using Theorem 17 and doing some calculations, we see that two more solu-

tions to (1) are 

u2 + v/D = (a2 - 4a + 2) + (a - 2)JD 
and 

u3 + V3JD = (a - 2) (a2 - 4a + 1) + (a - 3) (a - 1)A/D, 

where D = a -4a. Using Theorem 16 and, for convenience, replacing a by a + 2, 

we see that u2 + V gives rise to 
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(a, a(a + 2), a + 1, a + 1) and (a, a(a + 2), a2 + a - 1, a2 + a - 1) , 

and w3 + v3V39 with a replaced by a + 3s gives rise to 

(a(a + 2), a(a + 2) (a + 3), a(a + 3) + 1, a(a + 3) + l) 
and 

(a(a + 2), a (a + 2) (a + 3), a(a + 1) (a + 3) - 1, a (a + 1) (a + 3) - 1> . 

Of courses using Theorems 17 and 16, we could continue to get infinitely many 

primitive CFTs from the fundamental solution (a - 2) + vD, where D - a2 - 4a. 

Notice also that, for any integer a, u = 2 and v = a is a solution to (1), 
where Z? = 42 - 4 * 4 = 0. This gives rise to the primitive CFTs 

(a, 4a9 2a - 1, 2a - 1) and (a, 4a, 2a + 1, 2a + 1). 

The preceding discussions gives 

Proposition 18: For all integers a, the following are primitive CFTs: 

(1, a, 1, 1) and (1, a, a - 1, a - 1); 

<a9 4a5 2a - 1, 2a - 1) and (a, 4a, 2a + 1, 2a + 1); 
(a9 a(a + 2), a + 1, a + 1) and (a, a(a + 2), a2 + a - 1, a2 + a - 1); 
<a(a + 2), a(a + 2)(a + 3), a(a + 3)+ 1, a(a + 3)+ l) and 
(a(a + 2), a (a + 2) (a + 3), a (a + 1) (a + 3) - 1, a(a + 1) (a + 3) - 1> . 

The next result relates CFTs to another diophantine equation, 

Proposition 13°. For a, b9 a integers, we have that ab + c2 - 1= be iff 

a2 + o2 + (Z? - c)2 - (b - a) 2 = 2, 

Proof: This result follows from the identity 

a2 + c2 + (fc - c) 2 - (b -a)2 

= a2 + a2 + b2 - 2£c + o2 - b2 + 2a& - a2 

= 2a2? + 2c2 - 2bc = 2(ab •¥ c2 - be) * m 

The following two results concern the relative size of a, b9 and c, where 

(a, 2?, <̂ , <?) is a Carlitz four-tuple* 

Lemma 20: Let ( a , i s c , c ) be a C a r l i t z f o u r - t u p l e . If 0 < a < a < £>, then 
aZ? + a2 - 1 = Z?c» 

Proofs Since 0 < a < o < &, 

0 < a& + c 2 - 1 < bo + Z?<? - 1 < 2bc. 

Furthermore, by Theorem 10, ab + o2 - 1 = bo* • 
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Theorem 21: Let <a, b9 e5 e) be a Carlitz four-tuple. If 0 < a < e < b9 then 

(a, b9 e9 o) is a primitive Carlitz four-tuple* 

Proof: By the preceding lemma, ab + a2 - 1 = be. Thus, 

/ a2 - I\ 
[a* — g j = (a, <? - a) = .(a, c) = 1. 

Thus, by Theorem 5, (a, i, e, c) is a primitive Carlitz four-tuple. n 

Theorem 22: Let a, b9 and e be positive integers such that a f b9 a > 1, and 
e ^ ab ~ 1. The following six conditions are equivalent. 

(i) If, for some integer k9 ab + a2 - 1 = bok and a divides c2 - 1, then 

/c|a. 

(ii) If (a 9 b9 e9 e) is a Carlitz four-tuple, then ab + a2 - 1 = be (a* e) , 
c2 - 1 where e = T- . 

(Ill) If (a3 &5 c, c) is a primitive Carlitz four-tuple, then 

ab + e2 - 1 = be. 
(Iv) If (a» b9 e9 e) is a primitive Carlitz four-tuple, then 

u2 - (q2 - kq)v2 = 4, 

where u = 2? - 2c, v = a, and a = b/a« 
(v) If (a, 2?5 e9 a) is a primitive Carlitz four-tuple, then 

0 < a < e < b* 
(vl) If (a9 b9 e9 e) is a primitive Carlitz four-tuple, then 

b2 - kab + 4 = (2? - 2c)2. 

We see that statements (ii)-(vi) in Theorem 22 are related to Theorem 10 

and also to the converses of Theorems 13, 16, and 21, and Corollary 14, respec-

tively. 

Proof: First, we show that (i), (ii), and (iii) are equivalent. We then show 

that (iii) is equivalent to each of (iv), (v), and (vi). 

Proof that (I) Implies (ill): Assume that (a, b9 e9 e) is a primitive CFT. 

Thus, by Theorem 10, for some integer k9 ab + e2 - 1 = bek« Hence, by (i), we 
e2 - 1 / e2 - 1 \ have k\a. Thus, k divides ek - a = T Hence, k divides fa, g J = 1 

by Theorem 5. Therefore, ab + e2 - 1 = bek = be. 

Proof that (III) implies (II): Assume that (a9 b* e9 e) is a Carlitz four-

tuple. By Propositions, (-T~̂ —T* b(a9 e) , es e\ is a primitive CFT. Thus, by 

(iii) , ab + e2 - 1 = be(a9 e). 

Proof that (II) Implies (I): Assume that a divides e2 - 1 and, for some 

integer k9 ab + e2 - 1 = bek. Since a|&cfc and (a, e) = 1, a|M* Thus, by 
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Theorem 10, (a, b9 o9 o ) is a CFT. Hence, by (ii) , ab + o2 - 1 = be (a, e) . 
Therefore, k = (a, e), so k\a. 

Proof that (iii) and (iv) are equivalent: This follows from Lemma 15. 

Proof that (iil) Implies (v): Assume that (a, b, c9 o) is a primitive CFT. 
Thus, ab + o2 - 1 = bo. 

First, assume o > b. Since e2- > be = ab + o2 - 1, we have the contradic-
tion that I ^ ab. 

Second, assume that a ^ c. Since ab ^ bo - ab + o2 - 1, we have the con-

tradiction that 1 > c2. 

Proof that (v) implies (iii): This follows from Lemma 20. 

Proof that (iii) and (vi) are equivalent: This follows from the identity 

(b - 2o)2-b2 + kab = h(ab + o2 - bo). m 

Based on some computer-genreated data, it seems reasonable to believe that 

Theorem 22(iii) is true. Hence, we make the following conjecture. 

Conjecture 23: The six statements of Theorem 22 are true. 
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1. INTRODUCTION 
In this paper, we introduce the notion of Fibonacci word patterns, and use 

these to construct Fibonacci binary sequences. Spaces of the binary sequences 

are defined, and many properties of the spaces and sequences are obtained., 

Suggestions are given for using word patterns to generate other types of number 

sequences. 

2. DEFINITIONS 

Suppose we are given a character set c = {c1, . .., ck} 9 whose members may 
be letters or digits. For example, if k = 2, and c± = 0 , c2 = 1, the character 

set is C = {0, l}, which is the binary set usually denoted by SB. 
Using the characters of c we can, by juxtaposing characters, form wordso 

Then, by juxtaposing words, we can form a pattern of words. A finite pattern 

of words we shall call a sentence. 

Definitions: 

(1) Given two initial words W1 and W2 (called seed words) 9 the follow-
ing recurrence defines an infinite sequence of words: 

K + 2 = KWn + i> n = 1, 2, ... . (1) 

(ii) The juxtaposition of the first i words generated by recurrence (1) 
is called a Fibonacci sentence of length i. 

(Ill) The name Fibonacci word pattern (or word sequence) will be used to 
denote the infinite juxtaposition W1W2WS . . . Ĵ  . .. . We shall often 
use letters A9 B for the seed words, and write F(A9 B) = F(W19 W2) 
for the Fibonacci pattern. With this notation, the first part of 
the pattern is ABABBABABBAB... , with W3 = AB 5 Wh = BAB 9 W5 = ABBAB 9 
and so on. The first four Fibonacci sentences in the pattern are: 

A9 AB9 ABAB9 and ABABBAB. 

(!v) If the character set used for the seed words W± and W2 is 

a= {o, i } 9 

the resulting word pattern is a (0, 1)-sequence which we call a Fi-
bonacci binary pattern (an FBP). 

1988] 233 



FIBONACCI WORD PATTERNS AND BINARY SEQUENCES 

3. A FIBONACCI BINARY PATTERN 

The following example of a Fibonacci binary pattern is the one whose dis-

covery motivated our development of a theory of such patterns. 

With 3S - {0, 1} as the character set, and seed words A = 0 and B ~ 10, we 
obtain the pattern: 

F(0, 10) = 0100101001001010010... . 

This particular FBP we have given the symbol oo, after Wythoff. Its inter-

est and importance arise from the following facts. 

(i) The positions of the 0fs in the sequence are 

1, 3, 4,6, 8, 9, 11, 12, 14, 16, 17, 19, ..., 

which is the sequence {an} = {[na]}, where n - 1,2, 3, ..., and where 
a = h(l + \/5) is the golden ratio. 

(ii) The positions of the l!s in the sequence are 

2, 5, 7, 10, 13, 15, 18, 20, 23, ..., 

which is the sequence {bn} = {[na2]}. 

It is well known (see [1], for example) that (a„, bn) are the Wythoff ipaivs, 
much studied in the literature on Fibonacci sequences. 

k. SPACES OF FIBONACCI BINARY PATTERNS (FBPs) 

Any FBP is determined by choosing two binary words W1 and W2 as seeds, and 

applying the recurrence (1), Let 3&'L be the set of all binary words of length 
£ (i.e., words having i characters, each character being either 0 or 1). The 
number of words in ̂ ?% which we shall denote by \g§'L\> is Z1 . Thus, for exam-

ples, ̂ x = ^ = {0, 1} has the two words 0 and 1, and 3S1 = {00, 01, 10, 11} has 

the four words shown. 

Suppose that we choose the seed W1 from SSm, and the second seed W2 from 

£gn. There are 2m x 2n = 2m+n ways of making this double choice; each choice 

determines an FBP, which we denote by F(W±5 W2) . We shall use the symbols^ 
to denote the set of all the possible 2m + n FBPs obtained in this way, and call 

the set the mn-FBP-space. Using set notation, the space is defined thus; 

&mn = {F(W19 W2); W± <E B m , W2 e B n } , (2) 
with 

\&mn\ = 2m + n. (3) 
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5. PROPERTIES OF FBP-SPACES 

The FBP-space with the fewest elements is €^11. We can list this space com-

pletely as follows (we give names to the members in the right-hand column): 

Table 1. The First FBP-Space 

FBP First 13 Characters . . . Name(s) 

F(09 0) 0000000000000 . .. 09 z 
\F(l9 0) 1010010100100 _ a 
F(09 1) 0101101011011 . .. a (complement, of a) 
F(l, 1) 1111111111111 ... 1, u9 ~z 

Note that the space contains the zeros sequence 0 (or z) 9 and its [09 1]-
component, the units sequence 1 (or u) . It is clear that every wn-FBP-space 

will contain 0 and 1, It is also clear that whenever an FBP-space contains an 

element F{A9 B) 9 it also contains the complement F(A9 B)9 since9 if (A9 B) be-
longs to 8§m x ̂ n

s so does (A 9 5 ) . Thus9 i n / 1 1 we find 0 and a9 together with 

their complements 1 and a. 

We now define equality of two FBPs as follows* 

Then F± = F2 if and only if bi = ci Mi. 

Proposition 5.1: Let F19 F2 € &mn\ then F± = F2 iff they have the same seed 

words. 

Proof: Trivial, m 

Thus, there are 2m + n different FBPs in the space Fmn% up to complementa-

tions however, there are 2m+n~1 different FBPs. 

One may note that9 if we define addition of two FBPs by 

F±®F2 = {b, +^}T=i, 

where the binary operation is addition modulus 2 [also known as "exclusive or 

(XOR)" or "ring sum" addition] , the set of elements in any FBP-space form a 

group under 0 . The details of this group for ^ l l are shown in the table and 

graph on the following page. 

All the properties noted so far are possessed by pairs of finite binary 

words of lengths m and n9 respectively. To determine something new, which is 

a property of infinite FBPs and which warrants further study9 we ask whether an 

FBP (other than 0 or 1) occurring in one &mn space also occurs in another &mn 
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space. The answer is "Yes"; every FBP occurs in an infinity of &mn spaces, as 

stated in the following theorem. 

Theorem 5.1: Let F(W1$ W2) e J?mn. Then F(W1, W2) is also a member of spaces 
&vs

9 where 

(r, s) e {(m + n9 m+ In) , (2???+ 3n, 3m + 5ri), ..., (p1^+ q n9 p m + q n).9 ...}, 

with the coefficients {pl9 ql9 p2> q2) being ordered sets of Fibonacci numbers 

of type {/\, f.+ 1, fi+1> f i + 2 } . 

Proof: We shall write A, B for W±9 W2, to avoid subscripts, and begin by prov-
ing a lemma. 

Lemma: F(A> B) = ABF(AB9 BAB), (4) 

This follows immediately from (1)5 since the recurrence generation of words 

produces Ws = AB 9 and then Wh = BAB; thus, F(W39 Wh) is the continuation of 

F{A9 B) after words A and B are juxtaposed. 

We shall now prove that 

F(A9 B) = F(AB9 ABB). (5) 

Using (4) on the left-hand side, we obtain 

F(A» B) = ABF(AB9 BAB) = ABx±9 x2, x39 . .., say; 

and the right-hand side of (5) is 

F(AB9 ABB) = y19 y29 y39 ..., say; where each xi9 y $ e {A9 B]. 

We have to show that y, = A9 y0 = B, y * = #-,..., z/. = x. _,... . To show 

that this is so, we shall replace the two ABs in the x seed words by C and C*, 
respectively, and those in the 2/ seed words by D and D*, respectively. Then 

the expanded sequences are 

a: FC4B, BAB) = F(C, 5C*) = C9 BC*, (75(7*, BC*CBC*, ...; 
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y : F(AB9 ABB) = F(D, D*B) = D9 D*B, ££*£, D*BDD*B, ... . 

Comparison of the elements of these two expansions completes the proof of (5). 

Note now that, if A e J"77, and B € # w , FC43, 4B£) € ̂ 0n + «)0n+2n); a n d ± f w e 

replace AB hy A* and ,455 by Bf, we can use the same proof to show that 

FC45, 455.) = F(A'B'9 A?B!Bf) = F(ABABB9 ABABBABB) e &T\ 

with p = 2m + 3n and s = 3m + 5n. 

Inductive argument establishes that this process can be continued indefi-

nitely, with r and s being Fibonacci integers as claimed. • 

Corol lanes: 

(i) From (5) we see that we can write F(A9 B)=F(5i9 Ti) , where (Si, Tt) 

are obtainable from the following double recurrence system: 

Si+i = SiTi9 with S± = A9 T1 - B, and T- + 1 = Si + 1T^ (6) 

Let us denote the length of a word W (i.e., the number of characters it con-

tains) by H(W) . Then, if I {A) = m and 1(B) = n, by Theorem 5.1 we have 

Thus, since ̂  is repeated infinitely often, the first (f^m + fi+±n) characters 

of the FBP, for i = 1, 2, . .., occur together infinitely often later in the 

sequence. 

Indeed, if we take any subsequence {£> •, i.+ , • ..» bk} of an FBP, and if we 

choose i large enough, the subsequence will be included in S^ * and hence will 

be repeated infinitely often. We call this property of FBPs the strong recur-

rence property. 

(II) Let us define scalar multiplication of a sequence of words thus: If 

a is a scalar, then a(W19 W2, . ..) = W1W1 ... W1W2W2 . * . W2 — , each word being 

taken a times before continuing the sequence with the next word. 

With this notation, repeated application of the lemma in Theorem 5.1 shows 

that 
F(W1S W2) = 2(W39 Ws9 .... W3i9 ...)» (8) 

where W3 = W±W29 etc. 

We may say that any FBP has a scalar factor of 29 with a meaning which is 

clear from (8). 

Now that we know any given FBP occurs in an infinite number of &mn spaces, 

we may ask how many new FBPs can be found in a given space ^mn
 9 new in the 

sense that they have not already occurred in an earlier space. To give meaning 
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to "earlier," we define an ordering of the FBP spaces by the following order-

ing of (m, ri) pairs: 

mx 
1 

2 

3 

• 

1 2 3 

( 1 , 1) -> ( 1 , 2) ( 1 , 3) -* 

( 2 , 1) * ( 2 , 2) * ( 2 , 3) * 
( 3 > 1 } : : 

• 

4 

( 1 , 4) . . . 

Using the symbol < for the order relation, we can now write 

Ĵ 11 < & 12 :21 < &51 < & 22 (9) 

At this point, we will add to the difficulty of determining how many new 

FBPs occur in a given & by defining "new" in a broader sense than "not equal 

to an earlier one." To do this, however, we need to introduce the concept of 

eventual equality. 
Consider the two sequences 

Fi = c1c2c3ch, and Fn <zyzc1c2csch 

where after xyz the sequence for F2 continues exactly as for F1. We shall say 

that F1 and F2 are "eventually equal." In general, we define eventually-equal 

sequences thus: 

Let F19 F2 be any two FBPs; if F1 = B ±F and F2 = B2F, where M s a FBP 
and B19 B2 are binary words (possibly empty), then F1 and F2 are even-
tually equal. We shall write this as 

„ ev „ 
F1 = Fz. 

We now define an equivalence relation for FBPs thus: 

Let F19 F2 be any two FBPs; then F1 = F2 if either Fx = F2 or F± =v Fz. 
Otherwise, F\ f F'2. 

With this notion of equivalence and inequivalence of FBPs, we can sort mem-

bers of FBP spaces into equivalence classes and attempt to count the classes. 

Examples: 

(1) F(l, 0) = 1, 0, 10, 010, 10010, ... 
= 1F(0, 10) 
= 10F(10, 010) etc. (by lemma, Theorem 5.1), 
= F(10, 100) 
= F(10100, 10100100) etc, (by Theorem 5.1); 

therefore, 

F(l, 0) E F(0, 10) E F(10, 010) E ... 
E F(10, 100) E F(10100, 10100100) = ••• . 
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(11) The following table lists the FBPs in the first five spaces, showing 
only the new ones that appear in each space. The [0, 1]-complements 
of the sequences are listed in bar-notation at the end of each space. 
Thus, a = F(l, 0) is described in full, but ô  = F(0, 1) is merely 
listed with all other complements at the end of the &11 section. 

Table 2. Inequivalent FBPs in the First Five Spaces 

717 = I <Smn\ - r>m + n 

Space 3r 
(777, Yl) 

1 (1, 1) 

ii7 = 4 

(1, 2) 

j N = 8 

(2, 1) 

\ N = 8 

(3, 1) 

\N = 16 

(2, 2) 

IN = 16 

Sequence F (A 9 B) 
(first thirteen characters) 

F(0, 0) = 
F(l9 0) = 

0, z = 
"a 

F(l9 00) = 

The other 

F(09 10) £ 

0000000000000 
1010010100100 
1111111111111 

= 1001000010010 

six in this space are 0, 

= a, F(09 01) e= a, and 

their complements. 

F(01, 0) = 
F(ll, 0) = 

Y* £ 
The other 
F(10, 0) = 

F(100, 0) 
F(011, 0) 
F(101, 0) 
F(lll, 0) 
c, n5 y, v 

The other 

F(010S 0) 

F(110, 0) 

F(00, 01) 
F(00, 11) 
F(0l9 10) 
F(0l9 11) 
F(01, 01) 
7T, p, G, T, 

F(00, 10) 

and their 

= 0100100010010 
= 1101100110110 

four in this space are 0, 
= Y* 1» Y-

- 1000010000100 
= 0110011000110 
= 101010100101a 
= 1110111001110 

eight in this space are 0, 
e=v F(001, 0). e=v ?, 

= n, and their complements. 

= 0001000101000 
= 0011001111001 
= 0110011010011 
= 0111011111011 
= 0101010101010 
o19 0, 1 

=V 7TS F(10, 11) =V TS 

complements, 

De 

0, 
a, 
1, 

3* 

Y9 

e9 

c> 
ns 
u* 
v, 

TT, 

p9 

a, 
T, 
G i 

scriptive 
Names 

z9 zero 
alpha 
u, unity 

beta 

gamma 
epsilon 

zeta 
eta 
mu 
nu 

phi 1 
rho 
sigma 
tau 
, first cyclic 
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Notes: 

(i) The first cyclic FBPs are 0, 1, c19 ~c1* We show later that cyclic 
sequences can only occur when m = n. 

(il) The list count of "esentially new" (i.e., up to complementation) 
FBPs that are noncyclic grows by the following increments: 1, 1, 2, 
4, 4, ... as we proceed through the ordered FBP spaces. 

We have not yet found a general formula for these increments. However, we 

have a useful sequence parameter for determining whether or not two FBPs may be 

equivalent, namely the limit density of the words of the binary sequences. We 

describe this parameter next. 

6. THE DENSITY OF AN FBP 

Consider the FBP given by F(A9 B), where A9 B are binary seed words having 
weights (numbers of l?s) ud(A) = a and bd(B) = b9 respectively. Let the lengths 

(numbers of characters) of A9 B be 1(A) = m and 1(B) = n, respectively. Let 

F(A9 B) = W1WZW39 • • • 9 ^i s ••° 9 t*le ^i being the words generated by the Fibonacci 
recurrence. 

Definitions: 
WW.) 

(i) The density of word W^ is 6̂  = .,y . . 

(ii) The density of F(A9 B) is 6 = lim 6̂ , assuming such a limit exists. 
•i, -+• <» 

Theorem 6.1: The density of F(A9 B) is 

5 = 

where 

and 

—; = a 
m + n 

+ da, 

| ( 1 + / 5 ) , c = ~ 

m n 

n 777 + n 

a 

b 

2 2 
.= 777 - U 

n 

m + n 

+ 777n. A = 

Proof: The ith word ^ of the Fibonacci word pattern F(A9 B) contains fi_2 A's 
and fi_Y J3fs; this follows by induction from the recurrence construction of the 

pattern. Therefore, 

Dr and d 

o i . £ a + ba 
6 = lim oi = • , 

-i-̂ oo ^ m + na 
with a the golden ratio %(1 + >/5) . 

240 

Dividing numerator and denominator by /. and taking limits gives 
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Setting - = c + da9 algebra gives 
m + na fo 

a + ba = (em + dri) + a[cn + d(jn + n)]9 

using the fact that a2 = a + 1. 
Equating coefficients of a0 and a1 gives 

a = cm + dn and b = on + dim + ri) * 
Solving for os d by the method of determinants gives the formulas required, m 

Before presenting a table of densities for the first fifteen FBPs, we make 

three remarks and state a proposition on the density of a complement sequence * 

Remarks: 

(i) It is clear that if F± - F2, the densities of F1 and F2 are equal, 

because the limit is applied to W^ 5 and beyond certain points in both sequences 
all characters correspond. 

(il) It might seem a better procedure to define density by 

o)(^) 
6(F) = lim , 

where S^ is the Fibonacci sentence W±W2 . .. W^ . In fact, perhaps surprisingly, 

this limit is the same as the one derived above, which can be proved using the 

identity 
i 

r= 1 

(lii) From the definition of 6 it is evident that 0 < 6(F) < 1 for all F. 

Proposition: Let F E F(A9 B) have density 6(F) = a + da as in Theorem 6.1. 

Then the [0, 1]-complement sequence F = F(A9 B) has density 

6(F) = 1 - 6(F) « {m ~^+Jn -*>« = (i - 0) - da. (10) 
v ' x ' m + na 

Proof: The proof follows immediately from consideration of the composition of 

Wi- • 

We could say that 6(F) is a measure of the density of lfs in the sequence 

F9 and 6(F) is a measure of the density of 0fs in F. (See Table 3.) 

We have used the density parameter in two ways. Firsts when we checked for 

equivalence of two FBPs to produce Table 2. From Remark (i) above we know that 

two FBPs are inequivalent if they have different densities. However, the con-

verse is not true, as can be seen by scanning Table 3; r\ and y have equal den-
sities, as have O and ox« To distinguish between equal density pairs, one must 

compare their patterns of 0fs and lfs. Thus: 
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n = OllOOllOOOllO... and u = 1010101001010... 

are clearly distinct, since the former contains pairs of l!s while the latter 

does not. 

Similarly for a = 01100110... and o1 = 01010101... . 

Table 3- Densities of the First Fifteen FBPs 

Sequence 

0 = F(0, 0) 
a = F(l, 0) 
1 = F(l, 1) 

B = F(l, 00) 

| y = F(01, 0) 

, e = F(ll, 0) 

C = F(100s 0) 

n = F(OII, o) 

y. = F(101, 0) 

V = F(lll, 0) 

IT = F(00, 01) 

p = F(009 11) 

a = F(01, 10) 

T = F(01, 11) 

o1 = F(01, 01) 

m, 

1, 
1, 
1, 

1, 

29 

29 

39 

39 

35 

39 

29 

2, 

2S 

2, 

2, 

n 

1 
1 
1 

2 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

Parameter Values 
a, b o9 d 

0, 
1, 
1, 

1, 

1. 

29 

1, 

29 

25 

39 

09 

o9 

1, 

1, 

1, 

0 
0 
1 

0 

0 

0 

0 

0 

0 

0 

1 

2 

1 

2 

1 

09 

29 

1, 

-3, 

}(3, 

1(3. 

Tl(43 

f(4, 

fr(49 

fr(49 

2 9 

-1, 

1 
2 ' 

o9 
1 
2 s 

0 
-1 
0 

2 

-1) 

"1) 

~1) 

-1) 

-1) 

-1) 

-l 
2 

-1 

0 

1 
2 

0 

6 (to 3 d.p.) 

0 
0.382 
1 

0.236 

0.276 

0.553 

0.217 

0.433 

0.433 

0.650 

0.309 

0.618 

0.5 

0.809 

0.5 

Our second use of 6 was to study the question: "Given an FBP9 how many 

equivalent forms has it for a fixed m9 and for a fixed n (we have already seen 
that it has an infinite number of equivalent forms when m and n are allowed to 
vary)?'1. Again, we have no general answer to this question,, but examining the 

density of an FBP provides a useful start. We give one example. 

Example: Find all the equivalents of a = F(l, 0) in spaces ^mn
9 for 1 < m < 29 

1 < n < 4. 
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Solution: The parameters of a and 6 = 0.382 with Qn9 ft) = (1, 1), and (a, b) = 

(1, 0); therefore, any other FBP is a candidate for equivalence if 

0.382 = — l — = a + ha . 
1 + a m + na 

Equating coefficients of a0 and a1 gives conditions for a and b as follows: 

a = 2m - n \ 

b ~ m - n 
with 0 < ms 0 < n. (11) 

Thus 9 feasible solutions for (77?5 ft) are the lattice points on and between 

lines m - n and m For fixed m9 the values for n are #z, m + 1, . .., 2m. 

To solve our problem, we need only look at the following (777, ft)-points: 

(1, 1), (1, 2), (2, 2), (2, 3), and (2, 4). 

From (11) we compute the corresponding (a, b)-values; then we can write out 

all possible FBPs having the same density as a. Finally, we can check these 

for equivalences. Table 4 shows the FBPs with 6 = 6(a). 

Table 4. The FBPs with Density Equal to 6(a) = 0.382 

1 (m9 ft) 

! 1, l 
1, 2 

2S 2 
29 3 

2S 4 

Parameter 
a ~ 2m 

1 
0 

2 
1 

0 

Values 
- ft b = ft - m 

0 
1 

0 
1 

2 

Fibonacci Binary 
Patterns (FBPs) j 

F(l, 0) = a 
F(Q9 10), F(0, 01) | 

(both are = a) 

F(ll, 00) = 2a 
F(10, 100), F(01, 100) 
F(10, 010), F(01, 010) 
F(10, 001), F(01, 001) 
F(00, 1100), F(00, 0110) 
F(00, 0011), F(00, 1001) 
F(00, 1010), F(00, 0101) 

Combinatoric Formula: The total number of FBPs with density 6(a) is given by 

the formula 
m* 2m m* 2m 

w?i Sm^rn - ftXft - m) ^ n ? r (2m - n)l(n - m) I 5 (12) 

where m* is a given upper limit for m, and [n]m is the falling factorial 

ft (ft - 1) e * °  (ft - m + 1). 

Proof: We obtained the limits for m and n above. The binomial coefficients 

count the numbers of ways in which the a lTs and b lfs can be placed in the 

seed words A and Bs respectively. • 
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To complete the solution to our problem, we have to examine all the FBPs 

found, to check for equivalences. By inspection, we find the following set of 

inequivalent sequences which have 6 = 6(a) = 0.382, for 777 = 1, 2, w = 1, 2, 3 

4. 

{F(l, 0) = a, F(ll, 00) = 2a, F(01, 100), F(10, 001), 

F(01, 001), F(00, 1100), F(00, 1001), F(00, 1010)}. 

The cardinal number of this set is 8, which is half the total number of equal-

density FBPs found. 

7. GENERALIZATIONS, FURTHER PROPERTIES OF F(A, B); APPLICATIONS 

In this final section, we give density formulas, without proofs, for two 

new kinds of binary pattern; then we list propositions concerning run-lengths 

of A and B in the pattern F(A9 B). Details of these results may be found in 

[2] and [3]. We also indicate briefly how word patterns can be used to gener-

ate number sequences. Two ways of doing this are given; we are investigating 

others. We believe that studies of number sequences derived from word patterns 

will be very fruitful, in that they will provide classes of sequences with in-

teresting properties related to those of word patterns. Developing links be-

tween theories of word patterns and theories of number sequences will prove 

beneficial to both topics. 

(1) The density of an FBP with W± = rA and W 2 = sB 

Let W = AA . . . A (with A taken r times) and W2 = BB ... B (with B taken s 
times), with A , B being binary words. Then 

S(F(rA, sB)) = Va T SbC- • (13) 
v v rm + sna 

(2) Tribonacci binary patterns 

T(W s W , W ) is the tribonacci word pattern 

W,W^W0...W ....where W„ = W ^W W . 
1 2 3 n n n- 3 n-2 n-1 

If the seed words W , W , and W have the binary character set, we have a tri-

bonacci binary pattern (a- TBP) whose density is given by 

TOO + (T + 1)0) + T203 

6(20= — l , (14) 
Tl1 + (T + l)l2 + T2£3 

where T = 1.839 is the positive root of x3 - x1 - x - 1 = 0. It is clear that 

we can extend these definitions and formulas to give n-bonacci patterns and 

their densities. 
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(3) Further properties of F(A, B) = ABABBABBBBAB... 

The following propositions concerning runs within the pattern are easily 

proved: 

All A-TUUS have length 1; a l l £-runs have length 1 or 2 . (15) 
The number of A's in the ith word of the p a t t e r n i s fi„2\ 
the number of 5fs is f._15 with f_± = 1, /0 = 0. (16) 

The number of 5-runs of length 2 in W2i + 1 i s / 2 ( t : _ 1 ) 5 and 
in WH + 2 i s f2i_1 - 1, i = 1, 2, . . . . (17) 

The number of 5-runs of length 1 in W^ can be determined using (16) and 
(17) . 

Consider the ith Fibonacci sentence S^ = W1W2 . •• W^. The 
number of 5-runs of length 1 in S^ Is f^ _2+ I, of length 
2 is /.£_!- 15 and of either length is f^9 for £ > 1. (18) 

Define the chaos x • ° f ̂  to ^e t^ie n u m D e r of transpositions of adjacent 

letters required to set the word into the form AA. . .ABB. . .B. Then x,- satis-

fies the recurrence \ i - \i_2 - xi_1 = f/_3* V > 4, with xx -= X2 = X3
 = °-

(4) Two applications in number theory 

(I) Generation of r-tuple integer sequences 

In [2] we show generally how FBPs may be used to generate sequences 

of p-tuples of integers3 whose properties we have only begun to study. 

One simple example must suffice here, with r = 2. 
Suppose we use seed words W1 = a9 W2 = ba9 then consider the posi-

tions of a and b5 respectively, in the resulting Fibonacci word pattern. 

Thus, the word pattern is 

F(a9 ba) = abaababaaba.••, 
and the a-positions are 1, 3, 4, 6, 8, 9, 11, ... with the ̂ -positions being 

2 9 5 9 79 109 etc. Taking these in pairs, we get the 2-tuple sequence 

(1, 2 ) , (3, 5 ) , (4, 7 ) , (6, 10), etc. 

We see that F(a, ba) in this manner generates the Wythoff-pairs sequence. 

It is clear how we can generate 3-tuple sequences if we use charac-

ter set {a9 b5 a}; and so on. 

(II) The Fibonacci reals 

if we take any Fibonacci binary pattern and place a decimal point 

in front of it, we obtain a binary representation of a real number in the 

interval (0, 1). We believe the class of all such numbers, namely the 

Fibonacci reals to be worthy of study. 
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0. fNTRODUCTBON 

In some problems in the geometry of numbers and in the theory of diophan-

ting approximation, sequences of lattices play an important role. Especially9 

it sometimes is very useful to consider the sequence of lattices (TN (a)), N e ]N, 
where a is a real number and TN(a) is the two-dimensional lattice spanned by 

the vectors (l^) and ^ ) . See, for example, [2], [9], [10], 

It is easy to see that, if a is irrationals then the set of points of TN (a) 
in ]R will become more and more dense in 1 . We will explain this more exactly 

and define 

d(T) : = sup Inf d(x9 y) 9 

where d(x9 y) denotes the euclidean metric, the "dispersion" of the lattice T. 
(We do this in analogy to the notion of the dispersion of a point-sequenee in 

a metric space; see [4], [5].) Since, by Kroneckerfs theorem, the sequence ka 
is dense modulo one, if and only if a is irrational, it is easy to see that 

lim d(T (a)) = 0 

if and only if a is irrational -. An obvious question is, what can be said about 
the speed of convergence of d(TN(a)) for given a. (Similar questions regarding 

the dispersion of a sequence have been considered, e.g., in [1], [3]s [6], and 

[7].) 

It can be shown that the speed of convergence never can be faster than 

0(1/V50, and that d(TN(a)) = 0(1/VN) if and only if a has bounded continued 

fraction coefficients. This follows directly from obvious connections of our 

dispersion d with the dispersion of the sequence (k/N9 {ka}) , k = 19 2, ..., il/, 
in the unit square and from results on this dispersion in [1] and [3]5 for ex-

ample. Thus, it is obvious to ask for which a the value 

D(a) : = lim sup JN • d(TN(a)) 
#-»-oo 

is minimal. 
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We will find that this problem is quite interesting because it provides a 

new sort of something like a Markov-spectrum (compare especially with [5]) and 

a new extremal property of the Fibonacci ratio 5 = (1 + v5)/2. 

Theorem: inf D(a) = 1//2 
/— 1 + V5 D(a) = 1/V2 if and only if a is equivalent to 

JV3 - 1 1.024... J£ „. _. ^ _____._„.,___ __ 1 + v̂ 5 Z)(a) > /̂ = — '-^ if a is not equivalent to ? 

i/2 

(Here, "equivalent" is used in the sense of the theory of continued fractions. 

See Perron [8].) 

1. NOTATIONS 

The irrational number a is represented by the infinite continued fraction 

a : = [aQ; ax, a2, ...] and has best approximation denominators 1 = qQ < q1 < q2 

< -.- with qi+1 = a%^q% + ? £ _ i 5 

P- 4^ P- 6̂  
— + 7 • r- = a = — 4- with I 6,-1 < 1 and I <b. I > 1. 
q. q. • (q. + qi + 1) 4. q . • q. + 1 ' ̂  l^ 1 

(see [8].) Further we denote 

and, for a given fixed 2V» the index £ : = Z(N) 9 such that ^ , < N < <?j?(w) + i# 

We denote the distance of x to the nearest integer by ||#|| . For given N and 
for p e l , we define 

M{r) 1 = ( ( | ) 2 + ||pa||2) , 

and again, for given N9 we denote by X1 and X2 the successive minima of TN with 

respect to the euclidean norm, and also two linearly independent vectors in YN 

with length X± and A2. 

F is the parallelogram built by Xx and A2, and |i is the shorter diagonal, 

and also its length. 

5 = (1 + v5)/2 always is the positive Fibonacci ratio. 

a = 3 means that a is equivalent to 3. 

2. GENERAL RESULTS 

Lemma 1: d(TN) = j • X1 • A2 • y • N 

Proof: Every x e 3R2 lies in one fundamental parallelogram Fx of T. Let 

dx 1 = min d(x9 y), 
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then, by using the triangle inequality, it is easy to see that dx will be 

attained for a vertex y of F r In the triangle built by the vectors X± and A2 

and by y, the angle between Ax and A2 is between TT/3 and TT/2. 

The two other angles in the triangle are less than or equal to this angle. 

Therefore, the center of the circle through the vertices of this triangle is in 

the interior or on the boundary of the triangle and d(T) is equal to the radius 
of the circle. Thus, 

X1 • X2 • y A1 • X2 • y * N 
d(TN) = v = 

IF! 

Remark 1: Because of the approximation properties of the q., we obviously have 
for given N: X. = min M(k) = min M(q .) . 

Remark 2: For i j- j , the two vectors [(qi/N)s qjx - p£] and [(q^/N), q^a - pj] 

are always linearly independent. 

Lemma 2: If X± = M(g.) , then A2 = Af(fc) with k = tf.+ 1 - c • q^ and 0 < e < aj+i' 

Proof: If qm < k < ̂  with m ^ j, then M ( ^ ) < M(fe) and, therefore, k = qm. 
Further, we have 

— = IdetfA-, 9 A9) I = — * \p .qm - PmQ^ I ; 

thus, m = j + 1 or m = J - 1 (see [8], p. 14). 

If a. < k < Q. n and if £ is the largest intermediate convergent fs de-

nominator less than or equal to k9 or if t is q. _ x if qi _± ^ /c < qi _ 1 + qi 

(i.e., if t =(/.+ 1 - c 9 q. with a a with 0 < e < <Zj + 1) > then Af(t) < Af(fc) and, 
therefore, fe = t. • 

Lemma 3^ If lim sup ai > 4, then Z)(a) > — 1-1-f-. 

Proof: In the following, we will write dN instead of d(TN). Then we have 

N3/2 AxA2y x 
/ft » dN = > b e c a u s e X1 • A2 and Ax • y and ^ ^ . 

1 2/NX± 

F u r t h e r , , ^ 2 v , 2 

NXl = N • min M(q ) 2 < 2 « min max I - ~ , -f— ! = 2 •. max I - j S - f 

I f we choose 71/ = ^ • q > t h e n 71/ • A J < 2 ^ i ^ i + i ^ a n d s o 

^ + 1 . l / n — ; — ; — ; — ; r / 7 + / 2 £ ( a ) > l i m sup — • / -J^t± > — • / [ 4 ; 4 , 1, 4 , 1, 
**- 2/2 V £̂ 2/2 4 

1 . 0 2 5 . . . 

S2 
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Lemma k: If lim sup a^ < 39 then9 for every k ̂  2 and all Z large enoughs we 
have: 

a) «(qA.k) > M ( q £ ) ; 

b) M(q^+k) > M(qfL). 

Proof of a): It is sufficient to show that NM2(qi_k) > NM2(ql) with N = q2, 
since NM2 (q. ,) - NM2 (q ) is monotonically increasing in ff for q2 < ff < o2 

We always have q2 • ||q a||2 < 15 and so 

> (|)2 > 2 > 1 + q2 • U^all2 = q\ • M 2 ^ ) 

if aj, > 2 or if k > -2. 

If a^ = 1 and k = 2, then we have to show that 

* • * > 1 + 

because ||q£a|| = -—— (see [8], p. 36). 

If we write A : = ot£ + 1 and s : = si-i> then 

qi , , , _ i s__ _1_ _ A 
ql_2 * + i a£ + 2 s + 1 a^ 4 + 1 

and 

7 + 11 T? " e* = [1> 3j ls 3> •••] ~ £* < s, A < [3; 1, 3, 1, .•.] + ez 12 

+ e., -I(JI-) 
with an e0 with lim £0 = 0. 

So it remains to show that, for all A and s in the above region and all £ 
large enough, we have 

1 , (e + I)2 • (A + I)2 . (a + I)2 

(s + I)2 (s4 + s + ̂ ) 2 (s + Si4 + 4)2* 

and with r : = s + 1 and £> : = A + 19 this is equivalent to 

which is true for all 

b > - - r + V2r* - 1 = : /(r) . 

/ is monotonically increasing for p ̂  l/v2; therefore9 
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for £ large enough, and thus the Inequality holds. • 

e4< 

Proof of b): Analogous to a), it is sufficient to show that, with N = q2 , we 

have NM2(qz + k) > NM2(qz)» We can write 

q\+1 ' ll̂ all2 < 1 and j±~- = s£ + 2 - a, + 2; 
therefore, 2 2 

^£ + 1 ^£4-1 

3. THE CASE a = f 

Lemma 5- If a = ?, then, for every £ large enough, we have 

M(ql + 2) >M(qJL_1). 

Proof: It is sufficient to show NM2 (ql+2) > NM2(qi_1) with N = ̂ + 1 - In all 

that follows, £<,(£) a r e reals with lim £p(f) = G® 
* £-^00 * 

For every a = 5 3 we have 

5 + £ j L ( l ) and q% • | | ^ a | | - 1/ /5 + e £ ( 2 ) , ^£ + i 

^£ 

So, q^1^M2(qi + 2) > £2 + .1/5?2 - ££(3) > 1/?" + ^/5 + ££(3) > ?£+1 • ^ C ^ ) 

for £ large enough. • 

Remark: By Lemmas 2 and 4, X± and X2 (not necessarily in this order) will be 

attained by M(q%) and M{q%al) or by M(qt) and Af(^ + 1 ) . 

In the first case, then, we have for a = 5 an^ f° r & large enough (because 

q% + ^ - ! = q £ + i ^nd <?.£ ^ ? ^ i = <7 £ - 2 > : 

d, = |. minCMC^^) -M(^) - M ( ^ + 1 ) , M(^£„2) . M(q£ral) • M(<7£)). 

In the second cases by Lemma 5: 

Further, M(q%mml) • M(q£) • M(^£+1) < ^ ( ^ ^ * M(^£»i) * M ( ^£ ) and* therefore, in 

any case: 

Lemma 6: If a = ?, then 0(a) = 1/72. 
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Proof : We w r i t e Mk f o r M(qk) and s e t 

g(N) : = N3 • m i n ( « | _ 2 • «•[_, • M\, < _ , • Af| • Aff+1) = 4 M § . 

We have l iml max g (N) - max £7(aa g 2 ) | = 0 a n d , t h e r e f o r e , 

4 • (D (a) ) 2 = l i m sup max g (a • <72 ) 

Now 
0 -> oo 

1< °<m 
u ^ £ 1-2 £ - 1 l I \ rt1 * 

a2 a2 • \ / a 2 ( 7 2 e 

^ £ - 2 M \ / ^ £ - 1 H £ 
?£• 5^f_2y \ ^ . 5 ^ ^ 

, 2 ^ 2 . 
*£ + 

1 , ^ o A / 1 , g 2 a \ / l , a \ , 
f ^ + 5 ) • \& + 5 ) - ( a + 5") + £ ^ ( 4 ) 

V? 2 a 5 / V ^ V + 25 + 5 ^ 5 / * W 

= a:3 + x + £ £ ( 4 ) , 

w i t h x = x(o) = l /52cr + E>
2a/55, and q u i t e a n a l o g o u s l y we g e t : 

a - ^ 2 - M 2 _ x -M 2 - M 2
+ 1 = z/3 + y + e £ ( 5 ) w i t h 2/ = j / ( a ) = £ + | . 

C o n s e q u e n t l y , we h a v e ( w i t h E, : = gz + 1/Qi) : 

kD2 ( a ) = l i m sup max m i n ( ^ 3 + x + e p ( 4 ) , y3 + y + e £ ( 5 ) ) 

max m i n ( x 3 + # , z/3 + z/) = s 3 + 3 , 

with z - max min(x(a), zy(o)). 
K o q 2 

We have re (a) > 2/ (cr) if and only if a > v̂ 5/5 and, therefore, 

2 = maxf max re (a), max v(a)) = x(/5/E>) = 1, 

and so 25(a) = 1//2. H 

4. THE CASE a g % 

Lemma 7- If a) 777 = qn , 0 - c • an , , with 0 < e < aQ , . 

or b) m = ql - c * Qz_1 with 0 < <? < a£, 

then Af(m) > M(q ) . 

Proof of a): It is sufficient to show NM2 (m) > Mf2(q£) for N = ql+1-

( ^ - 2 - ^ £ + i ) 2 / *% \* / *£ 

w*> > ^, • ° - + w • ° * fe+' 
(continued) 
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Proof of b): It is sufficient to show the assertion for N = q2. We have: 

a i ~ c 

\\moL\\ =~* l l^£. .2a | | + — | | a £ a | | . 

We s e t a% = a , s^_1 = s , a £ + 1 = A, and we g e t : 

^ - M (m) > a£» ||m|| = [ - _ _ _ + _ - _ . _ 
S + aA + 1 ^ + as + 1 

I f c = 1, t h e n 

> cl > 4 > q 2 • M2{q9) i f c > 2 . 

2 „ ,,2 / l {as + 1) • (4a + 1) , a - 1 ( a s + 1) \ 
/ • 777Q, = I — • -^ ^ ^ ^ - _|_ • _ _ i 1 J 

•I \a (Aas + a + s ) a (Aas + a + s) ) (Aas + a + s ) / 5 

q £ W £ ; Was + a + s ) 2 ' 

and t h e i n e q u a l i t y q2 • II/77a II 2 > a 2 * M2 (q ) i s s t h e r e f o r e , e q u i v a l e n t t o 

(2,4a2 - 2,4a - 1) • s 2 + (4,4a - U) * s + Z4 > 0 . 

Since 1 = c < a£, we have a£ ̂  2 and, therefore, because of ,4 ̂  1, the last 

inequality holds, and the result is proved. • 

Remark: From all this we have that X± and A2 will be attained (not necessarily 

in this order) by q and q^_1 + GO with 0 ̂  c ^ &£ + 1-

/3/3 - 1 1.024... 
Lemma 8: inf D (a) > 

Proof: a ̂  E, iff lim sup a^ > 1. For lim sup a. > 4, the result follows from 

Lemma 3. 

First, let lim sup ai = 2 and a : = ai + 1 = 2 . Ax and A2 will be attained by 

q^ and a£_x + cq£ with c = 0, 1, or 2. Therefore, we have 

4 M 2 > min(Tl9 T2, T3, 2\) = : g(N) 

with 

rx = / V 3 M * _ I « 2 ( ^ - ^ - i ) « £ ' ^ = ^ 3 « i - A 2 » 2 ( ? £ + <7*-i). 

We write x : = Q /q 9 A = a , N = ̂ q2 then again we have 

e (6) < x < /3 - 1 + ££(6) 
/3 + 1 
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and 

2 + e (7) < 4 < i/3 + 1 + eA(7) with lim e£(6), el(7) = 0 
/3 + 1 *"*°°  

because, for example, 

[0; 2, 1, 2S 1, ...] - e£(6) < x < [0; 1, 2, 1, 2, ...] + e£(6). 

Further, 

1 < a < (-JLL±-J = (2 + x)2, 

and, for every a, 

4£>2(a) > lim sup g(oq2). 
£+00 

2 (1 + x) (x + A)2 
For every £, we choose a : = , _ i\ —5 thus, we have 

and 

1 < 2.7... < a < 3.47... < (2 + x)2 

T = / * ! . a^2 \ / ( l + ^r)2 a ( 4 + 1 ) 2 \ / 1 , a \ 
1 \ a (A + x)2/\ a U + x)1 l\o (x + A)*) 

= / / £ _ a4 \2 \ . / ( I - ^ ) 2 a (A + 1 ) 2 \ 
\ \ a (x+A)2) / \ a (A + x)2 ) 

8 1 (1 + x)(A - 1) + V 

* \ (1 + x){A - 1) + *) 

1 + / ( l + # ) (A - 1) 
/ ( I + x)(A - 1)" 

1 . 1 , ., / O N 3 / 3 - 1 
+ -1 ' 1 V3 + 1 

/ 3 + 1 
+ 

+ 1 - e £ ( 8 ) = " v " 2 - e £ ( 8 ) , 

And, q u i t e a n a l o g o u s l y , we g e t T2, T3* Th > « ~ £ £ ( 9 ) ; t h e r e f o r e , 
o./o" i 

£ ( a ) > 

If lim sup aj = 3 and a£ + 1 = 3, then kBd\ ^ m i n ^ , T2» Th, T5, T&) with 

T5 = N'MfMHq, + ^-!)M2(2% + ?,_1) = 2"3 
and 

Now: 
T6 -N'MlMH^ + ^ _ 1 ) ^ £

2
+ 1 = ?V 
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y~n ~ \ ~ e * ( 1 2 ) ^ x < — ^ 7 = ^ + E ^ 1 0 > 

and * + ^ 

I +\Jl " e i ( 1 1 > < ^ < 3 + - + e £ ( l l ) . 

2 V 12 

Therefore, in this case, D(a) > — '-JLJL-, and the Lemma is proved. • 
/2 

Finally, the Theorem follows from Lemma 6 and Lemma 8. 
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1. INTRODUCTION 

Let Fl = F2 = 1, Fn+2 = Fn+1 + Fn , n = 1, 2, . . . , be the Fibonacci numbers 

and let LQ = 2, L1 = 1, Ln+2 = Ln+1 + Ln, n = 0, 1, . . . , be the Lucas numbers. 

According to the Theorem of Zeckendorf (see, for example, [5, p. 74], [6], [1], 

[8]), every positive integer m has a unique "minimal" representation as a sum 

of distinct Fibonacci numbers F 2 , F3 , ... such that no two consecutive Fibonacci 

numbers are used. If we denote by f{m) the number of Fibonacci numbers in the 

representation of m, then Lekkerkerker [6] defined the average value 

and proved that 

i- *« 5 - / 5 n . 
lim — = —— . (1) ft-> oo n 10 

In [7] we gave a very simple proof of (1) and also proved a certain gener-

alization of this result. In order to state this generalization, we introduce 

some notations and terminology from [7]. Let 1 = a1 < a2 < ••• be a strictly 

increasing sequence of positive integers with the first element equal to 1. We 

call this an A- sequence. Suppose that 77? is a positive integer. We write 

777 = a(1) + a(2) + ••• + a(s), (2) 

where a ^ is the greatest element of the ̂ -sequence < 7?7, a(2) is the greatest 

element of the A-sequence Km- a,±) , and, generally, a^ is the greatest ele-

ment of the ̂ -sequence ̂  fn - a /^ ~ a (2) - ••• - a^_1y We denote by h(m) the 

number s in (2), that is, the number of terms in the representation of 777. 

Suppose that k ̂  2 is a positive integer and define an ^-sequence by a1 = 

1, a2 = k9 and an + 2 = cc-n + i + a n , n = l , 2, .... We call this a recursive A= 

sequence. If a2 = /c = 3, then a„ = L„, n = 1, 2, ... . If a2 = k = 2, then 
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&n ~ F
n + i> n ~ ls 2, •••» and (2) is t n e Zeckendorf representation [7, Lemma 

5.12, p. 45], so that h(m) = f(m). 

Consider now a recursive ̂ -sequence. If a2 = ̂ , we defined 

M«> = 1 "Z Hi))/a 

so that i 2̂(n)=ipw, and proved [7, Theorem 5.15, p. 46] that for all a2 = k > 2, 

_Vn> 5 - i / 5 lim = — — (3} 

a generalization of (1). 

In [4] Daykin has given a different generalization of (l)e If h and k are 
positive integers such that h < fe < /z + 1, then he defined [4, p. 144] the 

(h9 k)th Fibonacci sequence (v^) in the following way: 

Vi = i for 1 < i < fc, 
^i = vi_1 + t̂ ..̂  for k < i < h + k9 (4) 
yi = yi-i + vi-k + (k - h) for i > h + k„ 

Clearly, the Fibonacci numbers F2, F , ... are given by the (2, 2)th Fibonacci 

sequence. 

Daykin generalizes the Theorem of Zeckendorf by proving [4, Theorem C, p. 

144] that, if (1̂  ) is the (h9 k)th Fibonacci sequence, then for each positive 

integer m there is one, and only one, system of positive integers i 9 i2$ . .., 

ift such that 

m = v- + v- + • • • + vij3 , (5) 

where i2 > ix + h if d > 1, and iv+1 > iv + k for 2 < V < d. [We note that the 
(/z, fe)th Fibonacci sequence is an ^-sequence, and it is easy to see that the 

representation (5) is the same as (2).] 

Let IJJ denote the average number of summands required in (5) for all those 

positive integers m such that vn < m < Vn+1. Then [4, Theorem E, p. 144] for 

k > 2, 
% e - 1 , 6 . 

lll-n-= 1 +fc(0 - l) 3 (6) 

where 0 = 0(k) is the positive real solution of the equation z - 1 = z1" . 

In this paper we consider three other kinds of unique representations using 

Fibonacci and Lucas numbers and prove the following corresponding results. Let 

fr(m) denote the number of elements in the "maximal" representation (see [5, 

p» 74],[2]) of m using Fibonacci numbers F2, F3, ... (where no "gaps" formed 
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by two consecutive Fibonacci numbers are allowed). Let g(m) denote the number 

of elements in the "minimal11 representation (see [59p. 76] 9 [3]9 [8]) of m and 
let gr(m) denote the number of elements in the "maximal" representation (see 

[59p. 77]9 [3]) of m using Lucas numbers. These are similar to the correspond-
ing Fibonacci representations but with certain additional restrictions to en-

sure uniqueness. We define 

and A; = £ g'd))/Ln. 

Then we have 

,. Xn 5 - A 
III 7T " -To"' (7) 

\' 5 + i/5 
lim — = , (8) 

and 
K 5 +V5 

^irm-T6-' (9) 

2. "MINIMAL" LUCAS REPRESENTATIONS 

Let ax - 1 = L19 a2 - LQ, and an = Ln_15 n = 3, 49 . . . 9 so that 

an+2 = an+l + ans ^ = 39 49 ... . (10) 

Lemma 1 : The representation of a positive integer m corresponding to this it-
sequence is the "minimal" Lucas representation. 

Proof: Similar to that of Lemma 5.12 in [79 p. 45]. m 

It follows that g(jri) = h(m) for every positive integer 777. Let 

S{n) = £ h(i) and S'(n) = S(an + 1 - 1) [7, p. 7]. 

i-l 

Then it follows from (10) that we have (compare with Theorem 5.4 in [79 p. 41]) 
Sf(n + 2) = S'{n + 1) + S' (n) + Ln9 n.= 25 3, ... . (11) 

Lemma 2: S'(n) = n • Fntal, « = 2, 3, ... . 

Proof: Easily by induction9 using (11) and [55 (X8)9 p. 56]. m 
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It follows that 

E gd) = E h(i) = Sr(n + 2) - SF(n + 1) (12) 
i = Ln+i i = % + 2 

= (n + 2)Fn+1 - (n + 1)F„ = n • Fn_x + Lw, n = 2, 3, . . . . 

(This holds also for n = 19 if we define FQ = 0 as usual.) From (12), it fol-

lows that (7) holds, because 

Fn - 1 5 _ /5 
lim — = — — — (see, for example, [7, (5.36), p. 47]). (13) 

3- "MAXIMAL" LUCAS REPRESENTATIONS 

Lemma 3- Suppose that m is a positive integer such that £n + 1 ^ m < £n + 2 ~ 1> 

where n > 1. Then the greatest-indexed Lucas number in the "maximal" Lucas 

representation of m is Ln. 

Proof: This follows from Theorem 2 in [3, p. 250]. • 

Let 
Ln + 2 - 1 

«(") = E ^f(^)5 n > o, 

so that A^ = a(n)/Ln» 

Lemma k: a(n) = a(n - 1) + a(n - 2) + Ln3 n = 2, 3, ... . 

Proof: Since a(0) = a(l) = 2, a(2) = 7, and L2 = 3, the equation clearly holds 

for n = 2. Let £n + 1 ^ m ^ Ln + 2 - 1, where n ^ 3. According to Lemma 3, the 

greatest-indexed Lucas number in the representation of m is Ln. Let mr = m -
Ln„ Then 

L , < mf < L ^ - 1. (1.4) 
n - 1 n + 1 

According to Lemma 3, if £n < mf < ^n+ 1 ~ 1> then the greatest-indexed Lucas 

number in the representation of mf is Ln_13 and if Ln_1 < 7?7' < Ln - 1, then it 

is L . I t follows that in both cases we get the representation of m by adding 
Ln to the representation of mf« It follows that 

gf(m) = gf{mf) + 1, (15) 

which, together with (14), clearly completes the proof. • 

Lemma 5: a(n) = n • F + Ln, n = 0, 1, ... . 

Proof: Easily by induction using Lemma 4. m 

It follows that (8) holds because 
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F r 
lim — — = — 7 — — (see, for example, [7, (5.34), p. 47]). (16) 
tt+oo Ln l u 

k. "MAXIMAL" FIBONACCI REPRESENTATIONS 

Let 

bin) = _ £ ff(i)9 n > 1, 
i = Fn + i 

so that tyf
n = b(n)/Fn. Let 

Then we have 

1 + ( - l ) n + 1 
Lemma 6: bin) = cin) 4- ~~2 , n = 2, 3, . . . . 

Proof: i(n) - e(n) = / ' (F - 1) - f'(Fn + 1 - 1 ) . We use the formulas (see, 

for example, [5, ( J 5 ) , ( I 6 ) , p. 56]) 

and 
* W i ~ * = ^ +*2fc-2 + • • • + ^ + ^ 2 . fe » 1 . 2 , . . . . (18) 

If n is even, n = 2fc, we get f'(Fn+2 - 1) - f (Fn + 1 -l)=fe-/c = 0 and if n 

is odd, n = 2k + 1, we get f'(Fn+2 - 1) - /f(Fn+1 - 1) = (fc + 1) - fc = 1. • 

Lemma 7- Let F ^ - l < m < F t „ - 2, where n > 2. Then the greatest Fibonacci 
' n+l n+2 

number in the "maximal" representation of 7?? is Fn. 

Proof: [2, Theorem 1, p. 2]. H 

In a similar fashion as in the case of "maximal" Lucas representations, it 

follows now that 

c(n) = a(n - 1) + c(n - 2) + Fn , n = 4, 5, ... . (19) 

Lemma 8: c(n) = (1/5) ( n - L ^ - 3FJ, n = 2, 3 

Proof: Easily by induction using (19) and [5, (J9)» p°  56]. is 

Formula (9) now follows from Lemma 8 and Lemma 6 using the fact that 

lim —-— = (see, for example, [7, (5.36), p. 47]). (20) 
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A WINNING STRATEGY AT TAXMAN® 

DOUGLAS HENSLEY 
Texas A & M University, College Station, TX 77843-3368 

(Submitted October 1986) 

Taxmaiu is an educational computer game, brought out by the Minnesota Edu-

cational Consortium. Starting from an initial set, which in the standard game 

is 
S± = {1, 2, ..., n}9 

the player chooses successive integers fc , &2, ... . After each choice kj9 kj 

and its divisors in S- are deleted to form S. . The player's score is in-
J j+ I J 

creased by kj and the computer's by the sum of all the deleted proper divisors. 

It is illegal to choose k e S- if k has no proper divisor in Sj. Initially, 

any k except 1 may be chosen in the standard game, since that k has at least 

the proper divisor 1 e S . As play continues, the number of legal choices 

dwindles. Whenever the player has no legal move, the computer scores the sum 

of the remaining elements and the game is over. The objective is to have a 

higher score than the computer at the end. 

Play can be described by listing the integers chosen in the order they were 

picked. For instance, with n = 10, we might play (10,95 8). The monitor would 

show, successively, 

{1, 2, 3,4, 

{3,4,6,7, 

{4,6, 7,8} 

{6,7} 

GAME OVER 

5, 

8, 

6, 7, 

9} 

8, 9, 10} 

YOU 

0, 

10, 

19, 

27, 

27, 

ME 

0 

8 

11 

15 

28. 

We lost. We could have won if we had picked 7 first. The computer would have 

deleted 7 (for us) and 1 (for itself) to give S2 = {2, 3, 45 5, 6, 8, 9, 10}. After 

that we could still have chosen 10, 9, and 8, or better still, 9, 6, 8, and 10. 

In general, we should begin play by choosing the largest prime p < n. Aside 

from our choice, only 1 will be deleted, and it is deleted on any first move. 

However, for large n there are «(l/2)n2 points at stake, and this tactic makes 

at most an n point difference. Let fin) denote the best possible score for the 

player on {1, 2, ..., n). It is natural to conjecture that 
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lim f(n)/(\n2) = C 

exists. If so, and if C > 1/2, then the player can win for all sufficiently 

large n. 

In fact, we have the following theorem. 

Theorem: lim f(n)/(^-n2) = C exists, and \ < C < |- . 
«-• oo / \z / z 4 

From this it follows that the player can win for n sufficiently large. On 

the basis of the proof we give, "sufficiently large" may be very large indeed. 

Yet a little experimentation strongly suggests that in fact the player can win 

for n > 4. Resolving the question of how large n has to be is simple, in prin-

ciple. Suppose our theoretical argument shows f(n) > (1/4) (n2 + n) for n > N. 

We have only to exhibit a winning line of play for all n9 4 ^ n ^ N, to show 

the player wins for any n ^ 4. Unfortunately, the calculations will be lengthy 

unless the theoretical argument is greatly sharpened, reducing N to tractable 

size. (I obtained N = 6,000,000.) 

The idea of the asymptotically winning strategy is to divide and conquer, 

by partitioning the game into subgames playable separately on certain nonstan-

dard initial sets. We select a prime p and let 

D denote {d: if q\d and q is prime, then q ^ p}, 

Av = U q and Bp = II (1 - 1/q). 
q < p ^ q < p 

q prime q prime 

Thus, D3 = {1, 2, 3, 4, 6, 8, 9, 12,16, . . .}, A3 = 6 , and B3 = 1/3. Next, for the 

chosen p, we partition {l, 2, ..., n] into sets 

Nk (n) = {kd: d e Dp and kd < n] 

for k relatively prime to Ap. Thus, with p = 3, {l, 2, ..., 40} partitions as 

{1, 2, 3, 4, 6, 8, 9, 12, 16 , 18, 24, 27, 32, 36}, {5, 10, 15, 20, 30, 40} 

{7,14,21,28}, {11,22,33}, {13,26,39}, {17,34}, {19,38} 

and some singletons. Any time we choose a number in N (n), only elements of 

N, (n) are deleted. In general, 
i» p 

However we play on NkiP(n), the sets /n 
Nkr p (n) for kr > k are undisturbed. 

Let fp (x) denote the best score possible for the player if the (nonstan-

dard) initial set Is {d E Dp: 1 < d < x]. Thus, fp(x) Is defined for real x, 

but only changes at elements of Dp; e.g., / (5) = 7, because on [1, 5] H D = 
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{1, 2, 3, 4}, the best play is to take 3 and then 4. Similarly, f (36) = 144, 

taking 3, 4, 27, 18, 36, 24, and 32, starting from [1, 36] O D3. 

The best score possible on NkiP(n) is clearly kfp(n/k) . In view of (1), 

then, if we play on #£« (n) in order of increasing /c, we get 

where E* denotes summation only over k relatively prime to Ap. This score is 

a lower bound for f(n), that is, 

/(n)> £*fc/p(n/k). (2) 

In our example n = 40, the same line of play is applied to {11,22, 33} and 

{13,26, 39}, and from these we score 11/(3) and 13/(3), respectively. In 

general, grouping partition pieces having the same number of elements puts (2) 

into the form 

f(n)> £ f (j) E * k> (3) 

where j f denotes the next element of Dp after j. 

Let us now temporarily put aside rigor and look ahead to the answer. If 

Bp = b/Ap9 then b is an integer, and of any Ap consecutive integers, b of them 
are relatively prime to Ap. Thus, the inner sum in (3) is the sum of, roughly, 

( 71 71 \ 1 (71 71 \ 

~ =T) integers, with an average value of about -A-r + ~ ) . This suggests 
something like 

f{n) > \n*Bp E /P«)(T2 -772V <3'> 

Happily, essentially the same sum as in (3) provides an upper bound for 

fin). 
Suppose we choose p prime and then play a game on {l, 2, . . . , n}. For each 

integer m ̂  n we pick, we note which is the largest proper divisor of m in play 
at the time, and call it t(m). Distinct mfs have distinct t(m)Ts, since t(m) 
is deleted when we pick m. We separate the m we pick into two sets: 

M± = {mi t(m) < n/p} and M2 = {m:° t(m) > n/p}. 

Clearly, M± has fewer than n/p elements, so our score from M1 is less than 

n2lp. To bound from above our score from M , we need a lemma. 

Lemma 1: Suppose k is relatively prime to Ap9 d e Dp, and kd e M2. Then 

k\t(kd). 
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Proof: If k)(t(kd)9 then some prime q > p divides k to a higher power than it 
does t{kd). But then 

kd/t{kd) > q > p, 

in contradiction to the assumption t(kd) > n/p. m 

From Lemma 1, we claim that, for k < n and relatively prime to ip, 

E kd < kfp(n/k). (4) 
d£DP 
kd(=M2 

For consider the sequence of moves in the standard game we just played, but 

restricted to those moves which chose a number of the form kd, with d € Dp and 

kd £ M2. We can map this sequence of moves onto a shadow game played on the 

initial set Dp D {1, 2, . .., [n/&]}. The image of a choice of kd in the real 

game is the choice of d in the shadow game. This d will be a legal move. 

First, k~1t(kd) is a proper divisor of J, since t(kd) was a proper divisor of 

kd, and since, from Lemma 1, k~1t(kd) is an integer. Second, since t(kd) had 

not yet been deleted at the time kd was chosen in the standard game, no multi-

ple kdr of t(kd) had yet been chosen in that game. Thus, in the shadow game, 

no multiple df of k~1t(kd) can yet have been chosen. Therefore, k~1t(kd) must 

still be in play in the shadow game and available as an as yet undeleted proper 

divisor of d. By its definition, the sum of the numbers d so chosen in the 

shadow game is less than or equal to / (ji/k) s and (4) follows on multiplication 

by k. 

Summing (4) over k and using our observation about M1 now gives 

E m < n2/p + Z*kf(n/k)9 (5) 
meM1uM2 k^n 

and since this holds even for best play, we can group /c?s as before and get 

f(n) <n2/p + X f(j) £ * k. (6) 

The analog of (3f) is then 

Now assuming that the sum here is convergent (and it is, as we shall prove 

z \P J < " V 

later), (3') and (6') converge to give 

1 1 \ 
£ • ( 7 ) lim fffi = lim Bp L / (j)f-L - -T^T n + ~ ( l / 2 ) n 2 p ^ PjeDp

JP d \ j t j ' 2 
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The path now splits. We should like to have some notion of the value of C, 

and the demands of rigor must be met. First, let us work on C. 

In principle we have only to pick p large, calculate f (j) for enough terms 

that the "tail" of 

is less than 1/p, and we shall get C to within an error on the order of 1/p. 

The catch is that it is hard to find fp(j) for large j and large p. 

A crude upper bound is not so hard. Any odd numbers rn between n/2 and n 

that are picked have odd t(m) between 1 and n/3. There are, thus, ^ (n + 3)/6 

such m. We can pick in all no more than (l/2)n numbers. The sum of a set of 

< n/2 numbers, all <n and containing at most (n + 3)/6 odd numbers between n/2 

and n, is at most (35/96)n2 + 0(n). 

Thus, C < 35/48 < 3/4. The proof that C > 1/2 is more difficult. 

We choose p = 5 and calculate /5(j) for 1 < j < 36, and then a lower bound 

for /5(j) for 40 < j < 200. It turns out that 

.?/s(j)(4-T77)> 1-9 and B5 = ^ . 
J ̂  200 

Now, C > B5ZDf5U)(j-2 -~)>Js-^>h 

[See the table of f5(j)9 1 to 36, and the lower bound, 40 to 200.] More exten-

sive calculations with p = 7 suggest that in fact C > .56. Before proceeding 

to the problem of justifying (3f) and (6f) (which are not claimed to hold ver-

batim), it would be well to spell out the winning strategy. 

(A) Partition {l, 2, ..., n} into sets of the form Nk 5(n) = {kd: d € D5, 

d < n/k} with k relatively prime to 30. 

(B) Discard Nk 5(n) if n/k > 200. Make no attempt to score from these fe. 

(C) For all k relatively prime to 30 and satisfying (n/200) < k < n, play 

f̂e 5 ̂ n^ a s instructed by the table. Start with smaller values of k and work 

up. 

This will win if n Is large enough. For lesser n, we might do well to go 

ahead and play the Nk An) for small k by ear, starting with k = 1. And, of 

course, first pick the largest prime. 

We now justify (3 ;) and (6 f) and show that 

T,fpU)(\ ~ -777) 

is convergent. The "0" notation will be helpful from this point on. We say 
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<f>i(n) = 0((j)2(n)) if there exists C1 > 0 such that | cf> X (?̂ ) | < C^ (n) for all n . 
A subscript 0P denotes that for each p such a constant Cp exists. 

Table A. f5(n) for n e D5, n < 36 

n 

1 
2 
3 
4 
5 
6 
8 
9 
10 
12 
15 

1 16 
18 
20 
24 
25 
27 
30 
32 
36 

f5M 

0 
2 
3 
7 
9 
15 
19 
28 
33 
44 
54 
62 
80 
96 
112 
128 
155 
177 
193 
219 

Moves 

none 
(2) 
(3) 
(3,4) 
(5,4) 
(5,4,6) j 
(5,6,8) 
(5, 9, 6,8) 
(9, 6, 10,8) 
(5, 9, 10,8, 12) 
(9, 15, 10, 8, 12) 
(9, 15, 10, 12, 16) 
(9, 15, 20, 18, 12, 16) 
(5, 15, 10, 20, 12, 18, 16) 
(9, 15, 10, 18, 20, 16, 24) 
(25, 15, 10, 20, 16, 18, 24) 
(25, 15, 27, 10, 18, 20, 16, 24) 
(2, 25, 15, 27, 18, 30, 20, 16, 24) 
(2, 25,15, 27, 18, 30, 20, 24, 32) 
(3, 4, 25, 27, 18, 36, 24, 20, 30, 32) 

Table B. The lower bound for f5(n) given here comes from first playing the 
odd numbers by hand, then taking 2f (n/2) for our score on the evens. 

n, 

40, 
45, 
48, 
50, 
54, 
60, 
64, 
72, 
75, 
80, 
81, 
90, 
96, 

fs(n) >, 

259, 
292, 
324 
356 
410 
454 
486 
538 
590, 
670 
747, 
813 
877 

Moves 

(25, 15, 27) 
(3, 25, 27,45) 

(5, 27, 45, 75) 

(3, 25, 75, 45, 81) 

H5 

100, 
108, 
120, 
125, 
128, 
135, 
144, 
150, 
160, 
162, 
180, 
192, 
200, 

fs(n) >9 

941 
1049 
1137 
1239, 
1303 
1402, 
1506 
1610 
1770 
1924 
2056 
2184 
2312 

(5, 

(5, 

Moves 

125, 75, 45, 81) 

9, 81, 125, 75, 135) 

Lemma 2: For 0 < x < y, 

E * k = ^Bp(y2 - x2) + 0(A2
p) + 0(z/i4p). 

x<k<y Z 
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Proof: Consider the set Rp of reduced residues mod Ap that are relatively prime 

to Ap. Rp has ApBp elements. For each v e Rp, the arithmetic progression (r, 

r + Ap9 v + 2Ap, . ..) intersects the interval (x, y) in either [(2/ - x)/Ap] or 

J- + [(2/ ~ x)/Ap] points, whose average lies between — (x + y - Ap) and — (x + y + Ap) 

if there are any. Thus, for r e i?p, 

E & = ( ^ ^ + 0W p))(^-p^ + 0(1)) = ̂  "
 x l + 0(2/) + 0 W P ) . (8) 

Now, summing over the ApBp elements of Rp gives 

Jfk = \Bv{y2 - x2) + Q(yAp) + 0(4). • (9) 
x<k<y Z 

Remark: We could get much sharper estimates here from the literature on sieves. 

The quantity estimated in (9) is a weighted count of how many numbers survive 

sifting by the small primes q < p. See [2] for a readable introduction to 

sieves. 

From Lemma 2, and from (3), 

fp (n/k) = -jn Bp X, JP^ / i . 2 f2 I ' v n " . ^ 7- Jp Zkfp(n/k) = ~n2Bp £ / p ( j ) ( - ^ - T M + oJn E 7 / p ( j ) V <10) 

Now, l e t g ( j) be the t o t a l number of po in t s a t s take in Dp D [ 1 , j ] , t ha t i s , 
'p 

£. (j) = E d. (11) 
d<i 

up deDp 

Then fp(j) < gpU) > s o (1° ) holds with gp in place of fp in the error term. 

Now, 

\g (j) < E 1 = ¥(j, p). 
J p d£DP 

d<j 

The counting function ^ (x 9 y) of integers < x composed exclusively of primes 

< y has been the topic of numerous studies over the past fifty years. For an 

elementary but surprisingly good estimate, see [1]. 

Here, because we are not trying to see how small we can take n with a given 

p, a simple estimate will do. 

Lemma 3: ¥(#, p) = 0(log x)p. 

[I02 xT 
-—-—- + 1 possible values for the number of powers of 2 
log 2 J 

[los x"1 -z—^-^r + 1 possibilities for the number of powers of 3, ..., log 3J 

and there are clearly fewer than p primes < p. a 
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Thus , from Lemma 3 , 

E 7 ^ 0 * ) = O(log 
J£Dp J P 

n) p', (12) 

since the sum in (12) has ¥(n, p) terms. Thus, 

i V p ( n f t ) = \n2Bv X fvU)(\ ~ ~ ) + Op (n (log n)2^). (13) 

Our other unfinished business is to show that 

is convergent. For purposes of computation, some estimate of the rate of con-

vergence would also be helpful—how many terms must we take to bring the par-

tial sum to within e of its limit? 

Convergence of 

E "p(j)(i7 - ̂ V) 
EDP

 p VJ2 y2/ j€Dp 

,7< 

is simple. Since f (j) < gp(j) 9 we need only prove 

Dp
 r V J / 

convergent. It is, to l/B 

Proof: X 9p C/ ) (TT - T77) = E ( ^ - T77) E d = E d E ( ^ - T77) 
P d^ up j ^ UP 

d<j j>d 

= E did1 = E i/d = n (i - 1/q)"1 = I/BP. 
deDv d^Dp V^P 

q prime 

Now, for any fixed p, if 

is within e of l/5p, then 

E : / P O- ) (T? - 771) < e- (14) 

But how does n in (14) depend on e and p? Here is an estimate—the technique 

is taken from probabilistic number theory, and we omit the proof. 

, 2 N 

2»p«'(£-;p)-°(i(1-->'MW). 
J ^ X 
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I. RAREFACTION OF PRIMES IN THE SERIES OF INTEGERS 

Let p be a prime number and TT(H) the number of primes up to n, inclusive. 

In the capricious succession of primes in the series of integers, the inequal-

ity 
7T(2n) < 2i\(n) (n > 10) (1) 

shows a certain regularity. It is equivalent to the following proposition. 

Theorem 1: The first n integers contain more primes than the n following, for 

n greater than 10. 

I submitted this proposition as a conjecture to Professor G. Robin of the 

University of Limoges, with two remarks: 

—It is true for n K 10,000, as I have verified it on the computer. 

—The inequalities 

T-z?—(i + T-r—) < •*(") < T ^ — il + ^ r — ) (n > 5 2 > 
log n\ 2 log nl log n\ 2 log n I 

established by Rosser and Schoenfeld [1] are not sufficient to prove (1), for 

they give 
^ r ^ /o ^ 2n 1", o 3(log n)2 - (log 2n)21 
2i\(n) - u(2n) > -= = —-log 2 TT~\ ; ~ , 

v J v log n log 2n L 2 log n log 2n J 
where the expression in brackets is negative. 

Robin sent me the following ingenious demonstration of Theorem 1: Suppose 

that for n > n0 

« _ ( ! + ^ — ) < n n ) < _ « _ ( i + ^ _ ) . (2) 
log n \ log n / log n \ log n / 

Then for n > nr 

2n 
2TT(n) - Tr(2n) > 

log n log 2n 
+ a(log 2n)2 - Mlog n)21 

log 2n log n J log 2 . ., n -, 
log 2n log 

> -= ^ H l o g 2 + (a - b) ] . 
log n log 2n b y 

Therefore, if b - a < log 2, An > 0 for n ^ nQ. 
We shall see that we can choose a = 5/6 for n ^ 10,000, and verify directly 

afterward that we can also do this for n > 227. We take b = 3/2. We write, as 
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usual, 0(n) = L < n logp. Then (see [1], p. 359) : 

0(n) = n + R(n) , 

where i?(n) < — ^ — for a = ~ and n > 10,000. 
log n 6 

Lemma: We have 

_n 5_ 
log n 6 (log n ) 2 TT(H) > TZZ-Z: + 7- n J ,2 (n > 111) , 

For n >n = 10,000, with log . (n) 

TT(H) - 7T(n0) = 
J n-= 

r dt 
L log t' 

og t 

= log . (n) - log . (nn) + _, 1- I ./1 ,, o 
6^v 6^v o' log n log n 0 Jn0 t(log t ) 2 

COT f n 

> log.(n) - log.(n0) - J ^ ^ y ~ aJn TTc Log ty 
since R(n^) < 0. 

Let 

f(n) = log. (n) log n (log n ) 2 

Then, /'(n) = 2/(log t ) 3 ; hence, 

fin) ~f(n0) , 2 j n o T I 5 i - ^ T 

and 

TT(H) __ ̂ ? —U.— ^ _^ ! L ^ + h--)[f(n) - f (nn) ] 
v J log n (log n)2 (log n ) 2 V 2/ J J °  

+ TT(n0) log n0 (log n 0 ) : 

So, for n0 = 10,000, 
n0 n0 

TT(n0) = 1229 > 0 ~ log nQ (log nQ)2 ' 

Since f(n) > f(nQ), we have 

TT(n) > -r-^— + | ,. n — (n > 10,000) . log n 6 (log n ) 2 

Remark: G. Robin adds: "In [2] the authors claim to have proved (1) and state 

their demonstration will be published at a later date. As far as I know, it 

has not yet appeared, but as we saw, the proof is an easy consequence of the 

results from Rosser and Schoenf eld .fl 

Professor Robin also sent me a demonstration of a more general proposition, 

which I submitted to him again as a conjecture. 
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Theorem 2: For all integers k and n greater than 2, 

u(kn) < ku(n) . (2) 

Suppose (3) is verified for n > nn. Then, 

feTT(n) - *(&*) > - ^ — r - [ l o g fc + a d o g f e n ) 2 - & ( l o g n ) 2 l 
log n log kn L log A:n log n J 

> -̂  ^ r-[log fc + (a - fc) ] . 
log n log A:n 

We have seen that with nQ > 10,000, we can take a = 5/6, b = 3/2. So 

log k + (a - b) > 0 for fc > 2. 

1 3 
For n > 59, we can choose a = y and 2? = y; consequently, log k + (a - b) > 0, 

for fc > 3. We verify directly afterward that (3) holds for k = 3 and n < 59. 

For n > 17, we can choose a = 0 and 2? = -«•; consequently, log & + (a -2?) > 0, 

for fc > 5. 
The case & = 4 being treated as /c = 2, it remains to study (3) for n ^ 16. 

We did this successively for 

13 < n < 16, 11 < n < 12, 7 < n < 10, 5 < n < 6, 3 < n < 4, 

using for u(km) the majoration 

TT(n) < f - n (n > 2). 
4 log n 

II. RAREFACTION OF TWINS IN THE SERIES OF PRIMES 

Twins are two primes with a difference of 2. 

Theorem 3: In the infinite series of great primes, twins are extremely rare. 

Let p be the nth prime number. The probability that 7, for instance, does 

not divide p + 2 is 5/6, for the equiprobable remainders in the division of p 

by 7 are 2, 3, 4, 5, and 6. The probability Pn that p^ + 2 will be a prime is 

also 

P = n £ ^ . 
" 2 < P < ^ P - l 

Therefore, if n tends to infinity, Pn tends to zero, like 

n ^ A 
p<^r P 

which is greater. 
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Remark: Our reasoning is not quite rigorous, because we utilize implicitly the 

independence of prime numbers. A conjecture in [3] substitutes an approached 

value of Pn 5 

FT P - 2 FT P " 2 

n ^-z~i to n e^T> 
2<p<pn.0,5615...P

 L 2<p<pn'0,5 r L 

where 0,5615... = e~Y, with EulerTs constant y = 0,5772... . Mertens proved 

that p# _ x 
log pm n — — 

^ < m ^i 

tends to g~Y, if m tends to infinity. 

Yet our reasoning carries away, I think, any doubt that the probability Pn 

tends to zero. If you disagree, consider Theorems 3 and 4 as conjectures. 

Theorem k: The series of primes presents arbitrarily great intervals without 

twins. 

Indeed, if every interval of k consecutive primes presented at least one 

pair of twins, the probability Pn would be at least l/k and could not tend to 

zero. 
Remarks (see [k]): 

1. The table below gives an idea of the rarefaction of twins; the 150,000 

first integers after 10n present t pairs of twins: 

n 8 9 10 11 12 13 14 15 
t 584 461 314 309 259 211 191 166 

2. One estimates , empirically that the number of pairs of twins up to n 

has the order of 

132032 
(log n)2 * 

The estimate leads one to believe there exist an infinity of twin primes. 
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A GENERALIZATION OF METROES IDENTITY 

p. j . MCCARTHY 

University of Kansas, Lawrence, KS 66045 
(Submitted November 1986) 

In 1913, G. Metrod published an arithmetical identity involving EulerTs 

function (J) and the Jordan function J2, and asked if a similar identity holds 

for other Jordan functions [2, p. 155]. The Jordan functions Jk , for k = 1, 2, 

..., are the Dirichlet convolutions of the functions r7 and the Mobius function 

y, where £>k(n) = nk for all n, i.e., Jk = XL>k * y. Cohen [1] answered Metrod's 

question by showing that, for all n, 

H Y,Jk (n/d)Js (n/e)ek = nk + e. (1) 

Metrodfs identity is the special case k = 1, s = 2. 

H. Stevens [5] defined a class of arithmetical functions which includes the 

Jordan functions and he showed that a suitable identity analogous to (1) holds 

for any two functions in the class. All of Stevens1 functions can be written 

in the form g * h'19 where g and h are completely multiplicative, i.e., g(rnn) = 

g(m)g(n) for all m and n, and similarly for h. The function h'1 is the inverse 

of h with respect to Dirichlet convolution. 

In this note, we point out that there is an identity which extends (1) and 

Stevens' identity in several ways. It involves an arbitrary finite number of 

functions, and the functions are not restricted as severely as those described 

above. Furthermore, it holds for an arbitrary regular arithmetical convolution. 

We shall derive the identity for the Dirichlet convolutions, and restate it in 

the more general setting at the end of the note. Our terminology and notation 

will be that used in [3]. 

For i = 1, . .., k9 let ft = g. * h^1, and assume that gi is completely mul-

tiplicative for i = 1, . . . , k - 1. Then, for all n, 

Z E ••' E 91(d2)^^gk.1(dk)h1(d1/d2).^hk_1(dk_1/dk)hk(dk) 
dx\n d2\d, <**M*-i -f1(n/d1)...fk(n/dk) 

= g1(n)...gk(n). (2) 

When k = 1, (2) is simply the expression of the fact that g = f * h . We 

shall complete the proof of (2) by induction on k. Assume k > 1, and that (2) 
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holds when k is replaced by k - 1. Then, for all ft, 

91M ...gk(n) 

= g1(n) £ • • • E 92(d3)...gk_1(dk)h2(d2/d3)• *-hk_1(dk_1/dk)hk(dk) 
dAn d f c | d k - 1 • f2(n/d2)...fk(n/dk). 

Since g1 is completely multiplicative, 

91(n) = g1(d2)g1(n/d2) = g±(d2) E h^(e)f^(nId2e) 

e|(n/d2) 

for every choice of d2. Hence, 

gx(n). . . g k (n) 

dzl" ^ K " x * fz(n/d2)...fk(n/dk) X h^f^nld^). 
d2e\n 

If we write dx for d2e, then 6?1 runs over a l l divisors of ft, and for each d1, 

d2 runs over a l l divisors of dl9 and e = d1/d2. Hence, we obtain the left-hand 

side of (2) . 

Let us look at several examples. If / = J, , / = Js , and / = Jt , then, 

for a l l ft, 

E E HJk(nlc)J8(nld)Jt{nle)dke8 =nk + s + \ 

c\n d\o e\d 

the three-function analogue of (1). 

If we denote ^0 by £, so that £(n) = 1 for a l l ft, then £ = y"1 and the di-

visor sum functions Ok are given by Ok ~ l^k * y"1. Thus, for a l l ft, 

E E eky(ci/e)y(e)a/c(n/aOas (n/d) = nfe + s . 

This identity is not included in Stevens' extension of (1). If (3(ft) = the num-

ber of integers x such that 1 < x < ft and (x, n) is a square, then B = ̂  * ft-1, 

where ft(ft) = |y(ft)| for all n [3, p. 26]. Hence, for all ft, 

E E e|y(d/e)|y(e)B(n/d)a(n/e) =ft2. 

An identity exactly similar to (2) holds in the setting of an arbitrary 

regular arithmetical convolution. A discussion of these convolutions can be 

found in W. Narkiewicz's paper [4] or in Chapter 4 of [3]. Let A be a regular 

arithmetical convolution. An arithmetical function f is called A-multiplica-

tive if fin) = f{d)f(n/d) for all n and all d e A(n). This generalization of 

the notion of completely multiplicative function was introduced by K. L. Yocom 

[6], who obtained several characterizations of such functions. 

276 [Aug. 



A GENERALIZATION OF METROD'S IDENTITY 

For £ = 1. .ao9k, let j\ - gi *A TzT1, where h^1 is the inverse of hi with 

respect to the regular arithmetical convolution A, and assume that g. Is A~ 
multiplicative for i = 1, ..., k - 1. Then, for all n, 

£ E ••• £ ^w2)---^-1(^)^1w1/^).--^.1(^.1/^) 
• hk(dk)f1(n/d1)...fk(n/dk) 

= ̂ (n).. .g k (n) . (3) 

As an example, consider the unitary convolution U, where d G [/(n) means d|n 
and (<i, n/d) = 1. Usually, we write d\\n rather than d € U(n) . The unitary 

Jordan function is J"* = £fe *y e;""1, where now C"1 is the inverse of £ with re-

spect to the unitary convolution. Then, for all n, 

E £ J?(n/d)J*(n/e)ek = nfe + s, 

the unitary analogue of Cohen?s identity (1). 

The proof of (3) is exactly similar to the proof of (2). 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solu-
tion or problem should be on a separate sheet (or sheets). Preference will be 
given to those typed with double spacing in the format used below. Solutions 
should be received within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn + 2 = Fn+l + Fn> F0 = °> Fl = 1 
and 

L _,9 = L n + 2 n+l + Lni L0 ~ 2> L l ~ 1' 

PROBLEMS PROPOSED IN THIS ISSUE 

B-662 Proposed by Philip L. Mana, Albuquerque, NM 

For fixed n, find all m such that LnFm - Fm+n = (-l)n . 

B-623 Proposed by Herta T. Freitagr Roanoke, VA 

Let 
In- 1 

SW = £ Ln + k L k . 

Prove that S(n) is an integral multiple of Ln for all positive integers n. 

B-624 Proposed by Herta T. Freitag, Roanoke, VA 

Let 

n 
Tn = Z^ L2{n + i)-l ' 

^ = 1 

For every positive integer n, prove that either Fn \Tn or Ln |Tn . 

B-625 Proposed by H.-J. Seiffert, Berlin, Germany 

Let P0, Pl, ... be the Pell numbers defined by 

P0 = 0, P, = 1, Pn = 2Pn_l + Pn_2 for n ^ 2. 

Let Gn = FnPn and #n = LnPn. Show that (G„) and (#„) satisfy 

*n + if " 2Kn + 3 ~ 7Kn + 2 ~ 2Kn + l + K " 0 . 
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B-626 Proposed by H.-J. Seiffert, Berlin, Germany 

Let Gn and Hn be as in B-625. Express the generating functions 

GOO = E £„** and ^u) = E ^2" 
w = 0 ft = 0 

as rational functions of z. 

B-627 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let 

Find the smallest k in {2, 3, 45 . ..} such that Cn k is an integer for every n 
in {0, 1, 25 . . . } . 

SOLUTIONS 

2 Problems on Pythagorean Triples 

B-598 Proposed by Herta T. Freitag, Roanoke, VA 

For which positive integers n is (2L , L2 - 3, L2 - 1) a Pythagorean tri-
ple? For which of these n?s is the triple primitive? 

B-599 Proposed by Herta T. Freitag, Roanoke, VA 

Do B-598 with the triple now (2L , L0 + 1, L0 + 3). 

Solutions by Thomas M. Green, Contra Costa College, San Pablo, CA 

It is known that L2n = L2 + 2(-l)w + 1. 

For n odd5 we have L<in = L2 + 2 and the triple 

(2Ln, L2n - 3, £2„ - 1) = (2L„, L? - 1 , ^ 2 + 1} 

which is a Pythagorean triple. Furthermore, a Pythagorean triple of the type 
(2/??, m 2 - 1 9 m2 + 1) is primitive if m is even. Thus, if Ln = m , an even num-
ber, then (2Ln, L^ - 1, L* + 1) is primitive. But, if n is odd, L^ is even 
only when n is an odd multiple of three. 

Similarly, for n even (B-599), the triple 

(2Ln, L2n + 1, L2n + 3) - (2Ln, h\ -1,1%+ 1) 

is Pythagorean and will be primitive if Ln is even. In this case, however, if 
n is even, Ln is even only when n is an even multiple of three. 

Also solved by Paul S. Bruckman, Frank Conliffe, Richard Dry, Piero Filipponi & 
Adina Di Porto, C. Georghiou, L. Kuipers, Bob Prielip, H.-J. Seiffert, Sahib 
Singh, Lawrence Somer, Paul Tzermias, and the proposer. 
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Fibonacci Multiples of 121160 

B-600 Proposed by Philip L. Mana, Albuquerque, NM 

Let n be any positive integer and m = n13 - n. Prove that Fm is an inte-
gral multiple of 30290. 

Solution by Sahib Singh, Clarion University of Pennsylvania, Clarion, PA 

We prove a more general result, namely: Fm is an integral multiple of 
121,160, where m = n13 - n; n being a positive integer. 

We can express 

ni3 „ n _ (n7 _ n) (n6 + Y) = (n5 - n) (n8 + n4 + 1) 

= (n3 - n)(n10 + n8 + n6 + nh + n2 + 1) . 

By Fermatfs theorem: np - n = 0 (mod p) , where p is prime and n is a positive 
integer. 

Thuss we conclude that: 

n13 - n E 0 (mod 13); n13 - n = 0 (mod 7); n13 - n = 0 (mod 5). 

Since n3 - n is a factor of n13 - n and n3 - n is a product of three con-
secutive integers, n - 1, n, n + 15 we have: 

n3 - n = 0 (mod 6) =>. n13 - n = 0 (mod 6) 

=>F 5.F 6-F 7. F13 divides Fm 

(by the fact that v divides s implies Fr divides F8) 
==> 5 • 8 • 13 • 233 is a factor of Fm. 

Thus, we are done. 

Also solved Jby Paul S. Bruckman, David M. Burton, Frank H. Conliffe, Piero 
Filipponi, C. Georghiou, L. Kuipers, Bob Prielipp, #.-J. Seiffert, Lawrence 
Somer, and the proposer. 

Integral Arithmetic Means 

B-601 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let Ansk = (Fn + Fn+i + -.- + Fn+k-i)/k* Find the smallest k in {2, 3, 4, 
•*„} such that i4n ̂  is an integer for every n in {0, 1, 2, ...}. 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

We shall show that 24 is the value of k that is being sought. 
Our solution will use the following known information: 

(1) Fl + F2 + F3 + ... + Fn = Fn+2 - 1, n > 1, and 

(2) Fn + t - Fn_t = LnFts t even. 

[(1) is (I\) on p. 52 of Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr., 
Houghton Mifflin, Boston, 1969, and (2) is (T24) on p. 59, ibid.] 
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Since 

Fn + Fn + 1 + . . . + Fn + k^ 

= (F} + F2 + . . . + Fn + k„1) - (Fi + F2 + ... + F„_!) 

= (Fn + k+1 - 1) - (Fn+1 - 1) [by (1)] 

An,k = (Fn + k + l ~ Fn+1^*-

Let n be an arbitrary nonnegative integer. If k = 24, 

Fn + k+l ~ Fn+l = F(n+13) + 12 " F(n+13)-12 = Ln+13F12 [b^ ^ 2 ^ 

= £„ + 13 ' H 4 -= 0 (mod 24). 

Thus5 An 2i± is a n integer for each nonnegative integer n. 

^0,2 = (̂ 3 ~ ̂ i)/2 = (2 - l)/2 = 1/2. Proceeding in this same manner, it 
can be'shown that AQ^k is NOT an integer for k = 2, 3, 5, 7, 8, 10, 12, 13, 14, 
15, 16, 17, 18, 20,'21, 22, and 23 and that A± k is NOT an integer for k = 4, 
6, 9, 11, and 19. Therefore, 24 is the smallest k in {2, 3, 4, ...} such that 
An 7, is an integer for every nonnegative integer n. 

Also solved by David M. Burton, C. Georghiou, L. Kuipers, H.-J. Seiffert, Sahib 
Singh, Lawrence Somer, David Zeitlin, and the proposer. 

Fibonacci Infinite Series 

B-602 Proposed by Paul S. Bruckman, Fair Oaks, CA 

Let Hn represent either Fn or Ln. 

1 1 1 (a) Find a simplified expression for 
^?7 "rc + 1 ^rc + 2 

(b) Use the result of (a) to prove that 

Z_rf 777 — J "T Z ^ T ; 7; p . 
n = l*n w = 1 -c 2n - 1-P 2n+l-^2n + 2 

Solution by C. Georghiou, University of Patras, Greece 

(a) After some simple algebra it is easy to see that 

1 1 1 Hl + l ~ HnHn + 2 

Hn Hn + l Hn + 2 Hn
Hn + lHn + 2 

(b) For Hn = Fn, we have F*+1 - FnFn + 2 = ("Dn5 and since Fn = 0(an) it follows 
that 

£ (-1)n - t ( ) 
n = l FnFn+lFn + 2 n = 1 \F2nF 2n + lF 2n + 2 F2n - lF2nF2n+ 1/ 

" = 1 ^ 2 n - 1 ^ 2 n + 1 ^ 2 n + 2 

On the other hand, we have 

1_ _ __1 1__\ » JL_ _2_ 1 

,=1X^ ~^777 " ^ 7 7 7 / = " ^ 1 ? 7 + ̂ 7 + ^e 
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By equating the two sums we get the given expression. 

Also solved by Piero Filipponi, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Sahib 
Singh, Paul Tzermias, and the proposer. 

Lucas Analogue 

B-603 Proposed by Paul S. Bruckman, Fair Oaks, CA 

Do the Lucas analogue of B-602(b). 

Solution by C. Georguiou, University of Patras, Greece 

For Hn = Ln, we have L^+l - LnLn+2 = 5(-l)n + 1,and since Ln = 0(an) it fol-
lows that 

E - ^ - ^ = 10 E 
n = i LnLn + 1Ln + 2 n = 1 L2n_lL2n+lL2n+2 

On the other hand, we have 

^ / 1 1 1 \ ^ 1 2 1 

n=l\Ln Ln + l Ln + 2 I n = lLn Ll L2 

By equating the two sums, we get 

i 7 00 i 

n=lLn 3 n = l L2n-lL2n + lL2n + 2 

Also solved by Piero Filipponi, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Paul 
Tzermias, and the proposer. 

• <>•<>• 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
RAYMOND E. WHITNEY 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, 
PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, all solutions 
should be submitted on separate signed sheets within two months after publica-
tion of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-423 Proposed by Stanley Rabinowitz, Littleton, MA 

Prove that each root of the equation 

F xn + F _u1^n_1 + F ^x71'1 + . .. + F0 ,x + F0 = 0 
n n+l n + 2 2n -1 2.n 

has absolute value near cj), the golden ratio. 

H-424 Proposed by Piero Filipponi & Adina Di Porto, Rome, Italy 

Let Fn and Pn denote the Fibonacci and Pell numbers, respectively. 

Prove that, if Fp is a prime (p > 3), then either Fp\PH or F \PH+l, where 
H = (Fp - l)/2. 

SOLUTIONS 

Editorial Notes: Andrzej Makowski has pointed out that H-287 was published in 
the American Mathematical Monthly as Problem S 3 [1979, 55] 
and the solution appeared in [1980, 136]. 

Chris Long solved H-211 by using a Lemma of Wolstenholme 
[Quart. Jour. Math. 5(1862), 35~39] . 

Brush the Dust Off 

H-152 Proposed by Verner E. Hoggatt, Jr., San Jose State University, San Jose, 
CA (deceased) (Vol. 7, no. 1, February 1969) 

Let m denote a positive integer and Fn the nth Fibonacci number. Further, 
let {ck}, k = 1 to °°, be the sequence defined by 

{ck} = {(Fn)m, (Fn)m, ..., (Fn)m}; m, k = 1 to «,, 

2 m _ 1 copies 
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Prove that {cy} is complete; i.e., show that every positive integer n has at 
least one representation of the form 

P 

k = l K K 

where p is a positive integer and 

ai = 0 or 1 if k = 1, 2, ..., p - 1, 
ap = 1. 

Solution by Chris Long, student, Rutgers University, New Brunswick, NJ 

First some preliminaries. 

Lemma 1: Let {x^}, i = 1 to °°, be a nondecreasing sequence of positive inte-
gers with xl = 1. Then {x^} is complete if and only if 

P 
x
P+l = l + Z Xi> for P = x> 2> ••• • 

l 

Proof: This is proven in J. L. Brown, Jr., "Note on Complete Sequences of 
Integers," Amer. Math. Monthly 67 (1960):557-560. 

Lemma 2: (/J7*̂  _x + fn(fn.{)m ^ (fn-0m+l + (/Jm+1 for a 1 1 m, n* I. 

Proof: Since for m9 n ^ I, 

(fn-Oa(fn ~ fn-0 S </» > * </„ "/„-!> ~» (/JX-1 + /„tf»-l>m 
^ (/n-1)m+1 + (fn)m+1-

Lemma 3 : C f n + 1 ) m ^ 2 m " l ( (fn . . 1 ) m + (fn ) n ) f o r a l l m, n * 1 . 

Proof : We have fn+l i fn_1 + fn f o r a l l n i l . I f 

(/n+1)ra s 2n-1((/n.1)m + (/„)«), 

then, since /n+1 = f„_! + /„ and fn+1 > 0 for all n i l , 

(fn+1)mfn+l S 2--l((.fn.1)m+1 + (fn)m+1 + </B)V„-i + 4(/n_i)m) 

i 2m((f„.1)m+l + (fn)m+l) by Lemma 2. 

Hence, by induction, (fn+1)m S 2m-1((/n_1)m + (/n)m.) for all m, n i 1. 

Since Cj = 1, {cj.} is complete if c/c+i S 1 + fi; + ••• + Cj for all fc S 1. 
Now, if 2 S a £ 2m~1, then we have, for k = n2m~l + a, that 

Gk - (4+l)m s ! + 2ra-1((/1)m + ••• +. (fn)m) + (a - D( / n + 1 ) m 

= I + o1 + ••• + ck; 

therefore, we need only prove the case for a = 1, and this is equivalent to 

{fn+l)m S 1 + 2m-1((/1)m + ... + (fn)m). 
But by Lemma 3, 

(fn+l)m i 2m-1((/n_1)m + (fn)m) S 1 + 2m-1((/0) + ••• + (fn)m) 
= 1 + 2m-1((/1)m + ••• + (fn)m)- Q.E.D. 
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At Last 

H-215 Proposed by Ralph Fecke, North Texas State University, Denton, TX 
(Vol. 11, no. 2, April 1973) 

a. Prove 

£ 2% = 0 (mod 5) 
i-n 

for all positive integers n; Pi is the ith term of the Pell sequence, 

Pi = 1. P2 = 2> Pn+1 = 2Pn + Pn-l (« ^ 2) . 

b. Prove 2nLn E 2 (mod 10) for all positive integers n; Ln is the n th term of 
the Lucas sequence. 

Solution by Chris Long, student, Rutgers University, New Brunswick; NJ 

a. Note that 2Pl + 4P2 + 8P3 = 4P2 + 8P3 + 16P4 = 0 (mod 5) and that 
2 i + 2p

i + 2
 + 2 i + lpi + l +

 l l p i = ^(2i + lpi+i + 2'P̂  + 2*-^^) 

+ 4 ( 2 ^ + 2i~lPi_l + 2i~2Pi_2); 

hence, by inductions 

Zi + 2pi + 2
 + 2 i + lpi + l + l i p i = °  (mod 5> 

for all positive integers n. 

b. We have that 2L1 = 4P2 = 2 (mod 10) and that 

2n + 2P n + 2 = 2(2*+1Pn+1 + 2(2nLn)); 

hence, by induction, 

2nLn = 2 (mod 10) 

for all positive integers n. 

Middle Aged 

H-306 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA 
(deceased) (Vol. 17, no. 3, October 1979) 

(a) Prove that the system 5, 

a + b = Fp9 b + c = Fq, c + a = Fr, 
cannot be solved in positive integers if Fp9 Fq , Fr, are positive Fibonacci 
numbers. 

(b) Likewise, show that the system T, 

a + b = Fps b + o = Fq, c + d = Fr , d + e = F8, e + a = Ft , 

has no solution under the same conditions, 

(c) Show that if Pp is replaced by any positive non-Fibonacci integer, then S 
and T have solutions. 

If possible, find necessary and sufficient conditions for the system U9 
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a + b = Fp9 b + e = Fq , e + d = Fr, d + a = Fs , 

to be solvable in positive integers. 

Solution by Chris Long, student, Rutgers University, New Brunswick, NJ 

It is unclear whether the F's are meant to be distinct or not; I will con-
sider both possibilities in the following. 

(a) Assume WLOG that Fq is the maximum of Fp, Fq , Fr. We have that 2a = Fp -
Fq + Fr, If the Ffs are distinct, we then have that Fq ^ Fp + Fr; hence, 
2a ^ 0. Therefore, 5 cannot be solved in positive integers if the F?s are 
distinct. If the Ffs are not distinct, then this is false; e.g., take a = 
b = a = 1. 

(b) This is similar to (a). Assume that Fq is the maximum of the F!s. We have 
that 

2a = Fp - Fq + Fr - Fs + Ft and 2d = Fs - Ft + Fp - Fq + Fr; 

if the FTs are distinct, then Fq ^ Fp + Fr, which gives us that 

2a £ Ft - Fs and 2 a7 ̂  Fs - Ft . 

Adding gives the contradiction that 2(a + d) ^ 0; therefore, T cannot be 
solved in positive integers if the Ffs are distinct. Again, if the F's are 
not distinct, this is false; e.g., take a = b = o=:d = e=z 1. 

(c) This is false for both (a) and (b). Indeed, for system S replace Fp with 
4 and let Fq = 1 and Fr = 2; these values imply that 2a = 5. Similarly, 
for system T replace Fp with 4 and let Fq = 1, Fr = 2, Fs = 3, and Ft = 5; 
these values imply that 2a = 7. 

For system [/, I claim that it is solvable in positive integers if and only 
if Fp + Fr = Fq + Fe and Fp, Fq, Fs, Ft ^ 2. Indeed, the necessity of the 
statement is obvious. For sufficiency, note that all possible solutions 
must be of the form 

(a, i, c, d) = (£, Fp + t , Fr - Fs + t, Fs - t); 

hence, all solutions with a, i, o» d positive integers are given by 

{(£, Fp + t9 Fr - Fs + t, Fs - t)|max(l, Fs - Fv + 1) < t ^ Fs - 1}. 

In particular, £ = Fs - 1 yields a solution under the given conditions. 
It is also interesting to note that the F's cannot all be distinct, as 
this would imply that one of the F?s was S 0. 

Close Ranks 

H-403 Proposed by Paul S. Bruckman, Fair Oaks, CA 
(Vol. 24, no. 4, November 1986) 

Given p, q real with p ^ -1 - 2qk9 k = 0, 1.,. 2, ..., find a closed form ex-
pression for the continued fraction 

e ( p . <?) = P + g + ^ + p + 3<y — • (i) 
p + 4q + ••• 
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HINT: Consider the Confluent Hypevgeometvic (or Kummev) function defined as 
follows: 

M(a5 b, z) = E 7^T"S|T^ b * °> ~l> "2=» ••• • (2) 
n = 0 ^ ^ n 

2 
3 + 4 

n! 5 

3 NOTE: 6(1, 1) = 1 + Q _̂ 4 , which was Problem H-394* 

Solution by C. Georghiou, University of Patras, Greece 

Take the confluent hypergeometric differential equation 

zwft + (b ~ z)wr - aw = 0 (*) 

Then5 for a * 0, -1, -2, . .. and £> * 0, -1, -2, . . . , we have that 

w b - z z/a 
+ wf a w?/w!t 

By differentiating (*), we get 

wf b + 1 - z z/(a + 1) 
+ w!? a + 1 ' w"/w '" 

and by repeated differentiation of (*), we get the continued fraction 

_ = / ( 3 ) = . . - ^ _ _ 

z + 
b + 1 - z z/(a + 1) 

a + 1 2> + 2 - s 
+ ... 

a + 2 
From the theory of continued fractions, we know that 

^°  + 2?! + b2 + £3 + ""
 bQ + ^i^i + C22>2 + <?3£3 + "* (**j 

where cn * 0, and setting c± = 19 c2 - a + l» ,..5 cn = a + n - 1, ...s we get 

f(z) = •• • • • (***; 
J Z ? - s + Z ? + l - s + 2 ? + 2 - s + 

Now it is shown in W. B. Jones & W„ J, Thron, "Continued Fractions/1 in G.-C. 
Rota, ed*, Encyclopedia of Mathematics and Its Applications, Addison-Wesley, 
19805 pp. 276-282, that the above continued fraction converges to the meromor™ 
phic function 

Jy/ N M(a + 1, b + 1, z) 
M(a9 b, z) 

for all complex numbers z and* moreover, the convergence is uniform on every 
compact subset of C which contains no poles of f(z). 

Before we proceed further, we note that the restriction a * 0, -1, -2, 
can be removed by a limiting argument (see also the above-mentioned reference). 

Now, for b * 0, -1, -2, . .., and q * 0 and cn = 2q9 n = 1, 2, 3, .«*, (**) 
and (***) give 
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M(a + 1, 2? + 1, s ) _ 2qb hq2(a + l)z hq2(a + 2)z 
M(a, b, z) 2q(b - z) + 2^(Z? + 1 - z) + 2^(b + 2 - z) + 

F i n a l l y , t a k e a= (p - q)/2q, b = (p + l)/2q, and s = l / 2 q . Then, 

M / p + q p + 1 +_2q 1 
2^ 2<y 2(7/ _ p + 1 _ p + 1 

, p + ff 9 (p 5 q) 
V 2̂ 7 2q 2 q / 

Ml 
p + 3q 

p + 2q + ^- ^ 
^ ^ p + 4<? + 

and the final result is 

e(p, <?) = (p + i) x w 4 w 

V 2q 2q 2qj 
valid for p, q such that q ^ 0 and p * -1 - 2̂ A:, /c = 0, 1, 2, ... . 

Again the restriction p * -1 - 2̂ /c can be removed since it is easy to see 
that 

0(-l - 2qk, q) 
-I - (2k ~ l)q - 1 - (2k - 3)q -1 - q -1 + q 

-1 - 2qk + 
•1 - (2k - 2)q + - 1 - (2k - 4)? + + -1 + 6(-l + 2q, (7) 

For example, for k = 0 (and ^ = 0) , we have 

K-i, 4) = -1 + ZL±JL 
M^^±, 2, J-) 

(V'lf ^) .(-1 + 2q, q) 2q ^ 

and the same result is obtained from the given expression of 0(p, q) by a lim-
iting argument when p •> -1. The same is true for k > 0. 
Finally, when ^ = 0, we have a periodic continued fraction and 

e(p, 0) = p + ^ = p + 
e(p, o) 

p + ... 

which gives for p > 0 or p ^ -4 

6(p, 0) = (p + /p2 + 4p)/2. 

For -4 < p ^ 0, 6(p, 0) diverges. 

Also solved by the proposer. 

• <>•<>• 
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