
EL THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 

A Report on The Third International Conference on 
Fibonacci Numbers and Their Applications Herta T. Freitag 

An Iterated Quadratic Extension of GF(2) Doug Wiedemann 

A Note on the Primality of 62" + 1 and 102" + 1 H.C. Williams 

Suppose More Rabbits Are Born Shari Lynn Levine 

New Unitary Perfect Numbers Have at Least 
Nine Odd Components Charles R. Wall 

Second International Conference Proceedings 

A Note on Fibonacci Trees and the 
Zeckendorf Representation of Integers Renato M. Capocelli 

A Note on Specially Multiplicative 
Arithmetic Functions Pentti Haukkanen 

Indentities Derived on a Fibonacci 
Multiplication Table Alvin Tirman & T. Henry Jablonski, Jr. 

On Sums of Three Triangular Numbers John A. Ewell 

Stroeker's Equation and Fibonacci Numbers. Andrzej Makowski 

Some Observations on the Classical Cuboid 
and Its Parametric Solutions W.J.A. Colman 

Pell Polynomials and a Conjecture of 
Mahon and Horadam PaulDuvall & Theresa Vaughan 

Convolution Trees and Pascal-T Triangles John C. Turner 

A Note on the Third-Order Strong Divisibility Sequences Pavel Horak 

Elementary Problems and Solutions Edited by A. P. Hillman 

Advanced Problems and Solutions Edited by Raymond E. Whitney 

Book Review—77ie Book of Squares A.F. Horadam 

Volume Index 

289 

290 

296 

306 

312 
317 

318 

325 

328 

332 

336 

338 

344 

354 

366 

372 

377 

382 

m 

7 VC VOLUfVIE 26 NOVEMBER 1988 ISSUSVIBER 4 



PURPOSE 
The primary function of THE FIBONACCI QUARTERLY is to serve as a focal point for 

widespread interest in the Fibonacci and related numbers, especially with respect to new results, 
research proposals, challenging problems, and innovative proofs of old ideas. 

EDITORIAL POLICY 
THE FIBONACCI QUARTERLY seeks articles that are intelligible yet stimulating to its 

readers, most of whom are university teachers and students. These articles should be lively and 
well motivated, with new ideas that develop enthusiasm for number sequences or the explora-
tion of number facts. Illustrations and tables should be wisely used to clarify the ideas of the 
manuscript. Unanswered questions are encouraged, and a complete list of references is abso-
lutely necessary. 

SUBMITTING AN ARTICLE 
Articles should be submitted in the format of the current issues of the THE FIBONACCI 

QUARTERLY. They should be typewritten or reproduced typewritten copies, that are clearly 
readable, double spaced with wide margins and on only one side of the paper. The full name and 
address of the author must appear at the beginning of the paper directly under the title. Illustra-
tions should be carefully drawn in India ink on separate sheets of bond paper or vellum, approx-
imately twice the size they are to appear in print. 

Two copies of the manuscript should be submitted to: GERALD E. BERGUM, EDITOR, 
THE FIBONACCI QUARTERLY, DEPARTMENT OF COMPUTER SCIENCE, SOUTH 
DAKOTA STATE UNIVERSITY, BOX 2201, BROOKINGS, SD 57007-0194. 

Authors are encouraged to keep a copy of their manuscripts for their own files as protection 
against loss. The editor will give immediate acknowledgment of all manuscripts received. 

SUBSCRIPTIONS, ADDRESS CHANGE, AND REPRINT INFORMATION 
Address all subscription correspondence, including notification of address change, to: 

RICHARD VINE, SUBSCRIPTION MANAGER, THE FIBONACCI ASSOCIATION, 
SANTA CLARA UNIVERSITY, SANTA CLARA, CA 95053. 

Requests for reprint permission should be directed to the editor. However, general permis-
sion is granted to members of The Fibonacci Association for noncommercial reproduction 
of a limited quantity of individual articles (in whole or in part) provided complete reference 
is made to the source. 

Annual domestic Fibonacci Association membership dues, which include a subscription to 
THE FIBONACCI QUARTERLY, are $27 for Regular Membership, $37 for Sustain Mem-
bership, and $67 for Institutional Membership; foreign rates, which are based on international 
mailing rates, are somewhat higher than domestic rates; please write for details. THE FIBO-
NACCI QUARTERLY is published each February, May, August and November. 

All back issues of THE FIBONACCI QUARTERLY are available in microfilm or hard 
copy format from UNIVERSITY MICROFILMS INTERNATIONAL, 300 NORTH ZEEB 
ROAD, DEPT. P.R., ANN ARBOR, MI 48106. Reprints can also be purchased from UMI 
CLEARING HOUSE at the same address. 

1988 by 
© The Fibonacci Association 

All rights reserved, including rights to this journal 
issue as a whole and, except where otherwise noted, 

rights to each individual contribution. 



A Report On 
The Third International Conference on Fibonacci 

Numbers And Their Applications 
Herta T8 Freltag 

A newspaper article at Pisa, Italy, with a prominent headline: "CONVEGNO PARLANO I MATE-
MATICI LTNCONTRO IN OMMAGIO A FIBONACCI" hearalded our Third International Conference 
on Fibonacci Numbers and Their Applications which was held in Pisa, Italy, July 25th-29th, 1988. A stamp: 
"I NUMERI DI FIBONACCI CONGRESSO INTERNAZIONALE, 26-7-1988" commemorated it. 

Of course, mathematicians all across the globe, and especially those who are so fortunate as to have become 
interested in "Fibonacci-type mathematics," had known about it for some time. The August 1987 issue of 
The Fibonacci Quarterly had brought the glad tidings: an announcement that our third conference was to 
take place at the University of Pisa during the last week of July 1988. 

By mid June 1988, we held the coveted program in our hands. 66 participants were listed, and they came from 
22 different countries, the U.S. heading the list with a representation of 20, followed by Italy and Australia. 
Of course, it was to be expected that at conference time proper additional names would lengthen the count. 
Forty-five papers were to be presented, several of them with coauthors; there were 3 women speakers. 

Theoretically sounding titles abounded. There was Andreas N. Philippou's paper, coauthored by Demetris 
L. Antzoulakes: "Multivariate Fibonacci Polynomials of Order K and the Multiparameter Negative Binomial 
Distribution of the Same Order." But, rather intriguingly, practical interests wedged themselves in also with 
Piero Filipponi's paper, coauthored by Emilio Montolivo: "Representation of Natural Numbers as a Sum of 
Fibonacci Numbers: An Application to Modern Cryptography." This again highlighted one of the joys 
mathematicians experience: the interplay between theoretical and applied mathematics. 

What a delight it was to meet in Pisa, Italy, the birthplace of Leonardo of Pisa, son of Bonacci, "ou r" 
Fibonacci (= 1170-1250). We already knew that—befittingly, and much to our pleasure—Pisa had honored 
its mathematical son by a statue. My friends and I were among the many (maybe it was all of them) who 
made a pilgrimage to Fibonacci's statue. It was a fairly long walk, eventually on Via Fibonacci(l), along the 
Arno River, until we finally found him in a pretty little park. He seemed thoughtful, and appeared to enjoy 
the sight of the nearby shrubs and flowers. I felt like thanking him for "having started it all ," for having 
coined the sequence that now bears his name. It would have been nice to invite him to our sessions. I predict 
he would have been thoroughly startled. What had happened since 1202 when his Liber Abaci was published?! 

Almost invariably, the papers were of very high caliber. The great variety of topics and the multitude of 
approaches to deal with a given mathematical idea was remarkable and rather appealing. And it was inspiring 
to coexperience the deep involvement which authors feel with their topic. 

We worked hard. The sessions started at 9 a.m. and with short intermissions (coffee break and lunch) they 
lasted till about 5:30 p.m. As none of the papers were scheduled simultaneously, we could experience the 
luxury of hearing ALL presentations. 

We did take out time to play. Of course, just to BE in Pisa was a treat. We stepped into the past, enwrapped 
into the charm of quaint, old buildings, which—could they only talk—would fascinate us with their memories 
of olden times. As good fortune would have it (or, was it the artistry of Roborto Dvornicich, Professor of 
Mathematics at the University of Pisa, who arranged housing for the conference participants) my friends and 
I stayed at the Villa Kinzica—across the street from the Leaning Tower of Pisa. Over a plate of spaghetti, 
we could see that tower, one of the "seven wonders of the world" whose very construction took 99 years. 
And—it REALLY leans! We were charmed by the seven bells, all chiming in different tones. But—most of 
all—we pictured Galileo Galilei excitedly experimenting with falling bodies . . . 

I would be amiss if I did not mention the Botanical Garden of Pisa—situated adjacent to our conference room 
at POLO DIDATTICO BELLA FACOLTA DI SCIENZE. In the summer of 1543 (the University of Pisa 
itself was founded in the 12th century) this garden was opened as the first botanical garden in Western Europe. 
Its present location was taken up 50 years later. While we may not have been able to recognize 
"METASEQUOIA GLYPTOSTROBOIDES" the peace and serenity of this beautiful park struck chords 
in all of us. 

On the third day, the Conference terminated at noon, and we took the bus to Volterra. The bus ride itself 
ushered in a trip long to be remembered. The incredibly luscious fields of sunflowers and sunflowers—an 

(Continued on page 331) 
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AN ITERATED QUADRATIC EXTENSION OF GF(2) 

DOUG WIEDEMANN 
University of Waterloo, Waterloo, Ontario, Canada 

(Submitted November 1986) 

1 . A CONSTRUCTION 

I t is well known (see, for example, Ex. 3.96 of [1]) that the polynomials 

x2'3° + x3J + 1 are irreducible in GF(2)[x] for J = 0, 1, 2, . . . . Since 

(x2'3' + x3J + l)(x3J + 1 ) = x3J+±+ 1 

is a square-free polynomial, it follows that the period of each root of a;2*3 + 

x + 1 is precisely 3J 1, only one and a half times the degree of the polyno-

mial . The field 

Cj ~ GF(2)[x]/(x2'3J' + x3' + 1) ~ GF(22'3J) 

may be obtained by iterated cubic extensions beginning with CQ ~ GF(2)(xQ)9 

where x0 £ 1 is a cube root of unity. We have C1 ~ CQCX-L), where xx is any 

solution to x1 = xQ, Iterating, C--+1« CAxj + 1) 9 where x- + 1 = x-. 

This paper deals with an iterated quadratic extension of GF(2), whose gen-

erators are described by 

xj + i + xj+i = xj f o r J ̂  °3 where arQ + x~l = 1. (1) 

Let 

Z?0 - GF(2)(*0), ̂  - ff0(*i>* .-•- V i S V * j + i>-

Note that ic2 + ̂ Q + 1 = 0 has no root in GF(2) so the first extension is quad-

ratic. To show that each subsequent extension is quadratic, it need only be 

shown that the equation for x.,1 , which may be rewritten x. + x • x. + I = 0, 

has no root in E -, for all j > 0. Although this follows almost immediately 

from theorems about finite fields, for example. Theorem 6.69 of Berlekamp [2], 

a more elementary proof will be given here. Let 

Tr(n\x) = £ x2\ 
i = l 

Also, let \E\ denote the order or number of elements of a finite field E. 

Theorem 1: For j > 0, xj+1 i E^ \Ej + 1\ = 22° + 2 and 

Tru + Z\x. + 1 ) = 57r(j' + 2)(a;:_J1) = 1. 
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AN ITERATED QUADRATIC EXTENSION OF GF(2) 

Proof (mathematical induction): Note xQ £ GF(2) and Tr(1)(xQ) = TP ( 1 ) (^Q 1 ) = 1. 

The statement of the theorem is therefore true for j = -1 if E_ is defined tc 

be GF(2). In a field of characteristic 2, assume x2 = xz + 1. Then, 

x4 = x2s 2 + 1 = xz3 + s2 + 1, x8 = xz7 + z6 + zh + 1, 

and, in general, 

k 
2K 2K - 1 , x~^ ?K - ?v 

X = XZ + 2̂  z • 
i = l 

Hence, 
^r2

+1 = xd + 1x* + *? (Tp(J + 1)(xT1))2
e (2) 

Now assume that the statement of the theorem holds for j - 1. Then #. has or-

der 2 so, if x.x1 were in E J , by the Fermat theorem and (2), #•_,, = #..., + 

# (̂ p (J+D (^T1))2. But Tv^ + 1){x~^) = 1 by hypothesis, so, by contradiction, 

#. . -, is not in E- itself but in a quadratic extension of E •. The order of 27-,. 

is, therefore, |/77'|2 = 22 , using the second statement of the hypothesis. 

Note that the other root to (1) for x.,1 is tf7?\. Also, Gal(E -^JE.) has 

order 2 so, if O denotes the nontrivial Galois automorphism, 0(x. ) = x"1 . 

Finally, Tr(j' + 2) is the trace map of £,J. + 1 to GF(2) , so 

Tr(j' + 2 )0rTM = T P ( J > 2 ) ( X . + 1 ) = TP(J' + 1)(X. + 1 + aU > + .)) = Tr(j" + 1)(x.) = 1 

for j . 

by the last part of the hypothesis, completing the statement of the theorem 

F 9n 

Corollary: xn
n = 1, when n ^ 0 and Fn = 2 + 1 is the Fermat number. 

Proof: Define E_1 to be GF(2) . Since |27n| = 2 , the nontrivial member of 
9 2 n 

Gal(En/En_1) i s g i v e n by On(y) = 2/ . S ince t h e c o n j u g a t e of x n o v e r t h e f i e l d 
2?n_1 i s x ™ , x ^ = #„ . T h u s , ^ n

n = 1. • 

The order of a field element is defined to be the smallest nonnegative 

power which equals 1. In the case where Fn is prime, the above result implies 

that xn has order Fn . In any case, the order of xn divides Fn , Since the Fer-

mat numbers are known to be mutually relatively prime, for example, see Theorem 

16 of [3], the order of xnxn_1 ••• xQ is the product of the orders of the x^9 

i < n* We say an element of a field is primitive if its order is the same as 

the number of nonzero field elements. If the order of xi is, in fact, F^ for 

i < n, then x„x„ 1 ••• x„ is a primitive element of E , because 
ft Yl A. U f L 

Fn?n-i ••• Fo = 2 2 " + 1 - 1 = \En\ - 1 . 

We have n o t been a b l e t o d e t e r m i n e i f x x . • 
w n - 1 
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2. BASIS SETS 

There are several natural ways to construct a basis of En as a vector space 

over GF(2). One such is of course the set of powers x£, 0 < i < 2n + 1, because 

#„ = GF(2)(xn) is a degree 2 n + 1 extension of GF(2). Another basis is the col-

lection of elements of the form xn
n • •• xQ°9 where each 6̂  £ {0, l}. This can be 

shown by induction on n. Clearly, x = 1 and x1 span E . Since Z?n is a quad-

ratic extension of En_19 every member of Z?n is uniquely expressible as axn + b , 

where a9 b £ E _1. Assuming a and 2? can be expressed as sums of the ^ " l ^ ,,# 

xQ° , it follows easily that En is spanned by the xn
n ••• ;r00. It immediately 

follows that these elements form a basis because the number of them is the same 

as the dimension of the space spanned. 

Another basis consists of elements of the f orm xn
n - • • x^ where e . e {±1}. 

This is shown by a similar argument which uses the fact that each element of 

En equals axn + b = axn + cxn_1 = (a + c)xn + cx^1 for some a, b9 c e En_1. 

Theorem 2: The following are bases of En: 

i) x6
n«.--x6

Qo 6 ^ ( 0 , 1 } ii) x^-'-xl* £{ e {-1,1} 

iii) x2
n
l 0 < i < 2n + 1 

Proof: It has already been shown that i) and ii) each form a basis. The ele-

ments iii) are the conjugates of xn over GF(2), and it will be shown that they 

are linearly independent. This will be done by induction. Certainly, xQ and 

XQ = x + 1 are linearly independent over GF(2) . Assume that the conjugates of 
22?1 

xn_1 in En_1 are linearly independent. The transformation On(y) = y takes 

each conjugate of xn to its reciprocal. If a combination of the conjugates 

vanishes, then grouping by reciprocal pairs gives 
2 r W f + s.*-21) = o, o) 
i = 0 

where ai, g^ e GF(2). Applying On to both sides interchanges ou and 3^. Add-

ing this to the original equation gives 

0 = t <<** + MOrf +x'n2i) = t\^i + Wn-i-
i=0 £ = 0 

By the inductive hypothesis, ai + 3^ E 0. Thus, the sum (3) can be rewritten: 

2 n - 1 

i = 0 

this time the hypothesis implies a- E @- E 0. Thus, iii) forms a basis. 

Z a--̂  21 

£"~n - 1 : 
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In some sense the most interesting is the basis i) because the set for E 

is contained in the set for En. Therefore, the union of all bases given by i) 

is a basis for the infinite field which is the union of all the En. Another 

interesting property of the basis i) is that every boolean polynomial in n 

variables corresponds to an element of En. These boolean polynomials can be 

multiplied as elements of En in a straightforward if tedious manner. To multi-

ply two such elements, collect all terms containing xn to one side. Then using 

(ax„ + b)(cx„ + d) = (aox^ n + be + ad)x„ + (ac + bd) 

the product is computable in terms of a few products in E ,. Using this for-

mula, it can be seen, though the proof is omitted, that the "degree" of the 

product of the two elements does not exceed the sum of their degrees. By the 

degree of a field element, we mean the degree of the associated boolean poly-

nomial. 

Each basis element of i) can be identified with the 0-1 vector, or bit vec-

tor, (6n, ..., 60) which, in turn, can be identified with the integer 

6n2n + -.. + 602° . 

Let bi be the basis element associated with the integer i. We now prove a fact 

regarding the expansion of a product of two basis elements as the sum of basis 

elements. 

Theorem 3- For any i, j , and k the expansion of b^bj contains bk if and only 

if the expansion of b^b^ contains bj . 

Lemma: For all i and j, b^b- contains the basis element bQ = 1 if and only if 

i = J. 

Proof of the Lemma: Once again, we use induction on n. Obviously, the Lemma 

holds whenever the two basis elements are in E_ . Assume it holds whenever the 

two basis elements are in E . Now, in En, if both bi and bj are in En_1, the 

statement of the Lemma is true. If xn is a factor of one but not the other, 

the product is in x E and bn cannot occur in the expansion. If b- = x a and 
r n n -1 0 L n 

bA = x d, where c, d e E n, then b-b- = xx„ ^od + cd. The first term is in 
J Yl Yl — x <s d i l Y l — L 

x En_1 and does not contain bQ« By hypothesis, the second term contains b0 if 

and only if o = ds meaning i. = j . This establishes the statement of the Lemma 

for En in all cases, m 

Proof of Theorem 3: Consider the coefficient of ^ in (bibj)bk. By the Lemma, 

it is the coefficient of bk in b^bj. Since 
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(bibj)bk = (bib^bj 

it is also the coefficient of hi in b^b^* m 

Corollary 1: Let i 0 j be the mod 2 sum of i and j as bit vectors. The coef-

ficient of b• ~ • in fc.-&i is one. 

Proof: Let iDj9 i U j be the bitwise AND, bitwise OR of i and j, respectively. 

It will be shown that the coefficient of bQ in fy^jb^b- is one which, together 

with the Lemma proves the Corollary. Now, by rearranging terms, 

and by the Lemma, this contains a b0 in its expansion, m 

The following corollary is an immediate consequence of the Lemma. 

Corollary 2: For any a e E 9 a2 contains bQ in its expansion if and only if a 

is the sum of an odd number of basis elements. 

3. MINIMAL POLYNOMIALS 

The minimal polynomials over GF(2) of the xn are quite easy to compute. 

Starting with p Q(y) = y2 + y + 1, let p (y) = y2p>Q(y + y'1) and, in general, 

V (y) = y2 V (y + y'1)- It is clear that p (x ) = 0 for all n because 

pfe+1(^+1) =^TX(x!<> = °-
Since p has degree 2n + 1, it is the minimal polynomial of xn. The following 

result gives a method for computing the p which is probably better suited to 

calculation. 

Theorem k: Let sequences of polynomials an(y) and bn(y) be defined as follows: 

a 0 = 1 + y2
9 bQ = y and an + 1 = a2

n + b2, bn + 1 = anbn, f o r n = 1, 2 , 3 , . . . . 

Then an + bn is the minimal polynomial of xn. 

Proof: Let x = 1 and observe that, for n > 0, y = xn+1 is a root of aQ + xnbQ 

and, therefore, a root of 

(a0 + a;„fc0)(a0 + x^b 0) = a± + xn_1b1. 

If ?i ) 1, w = i is a root of d n+1 

(ax + ̂ n.A)K + <-A> = a2 + ^n-2^2* 

After repeating this n + 1 times, we see that y = xn + 1 is a root of an + 1+bn + 1. 

It follows from the definition that an has degree 2n+1 and that Z?n has degree 
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2n + 1 - 1. Thus, an + 2?n has degree 2n + 1 with xn as a root, so it must be the 

minimal polynomial of x . m 

k. EXPERIMENT 

The numbers FQ, F± , F2, F3 , F^ are prime so, by the Corollary to Theorem 1, 

xn has order Fn for n < 4. In addition, using the complete factorizations [4, 

5] of Fn for 5 < n < 8, it has been checked on a computer that xn £ 1 for any 

proper divisor & of Fn for n < 8. It would be desirable to know whether xn al-

ways has order Fn . If this is true, then y = oon_1 . . . xQ is primitive. It 

would be useful to have a good way to compute the minimal polynomials of the 

y • 
5. A FIELD USED BY CONWAY 

J. H. Conway has given an iterated quadratic extension [6, 7] of GF(2) that 

comes from the theory of Nim-like games. In our terminology, this extension 

would be defined by 

c2
n + cn = cn_± ... c0 for n > 1 and c\ + oQ = 1. 

It is well known that any two finite fields of the same order are isomorphic. 

However, we do not yet know of an explicit isomorphism between GF(2) (xn) and 

GF(2)(an). 
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A NOTE ON THE PRIMALITY OF 62" + 1 AND 102" + 1 

H. C. WILLIAMS* 
University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 

(Submitted November 1986) 

1. INTRODUCTION 

In 1877, Lucas [3] presented the first practical test for the primality of 

the Fermat numbers Fn = 22 + 1. We give a version of this test below, using 

the slightly modified form which Lucas used later in [5, p. 313] and with some 

minor errors corrected. 

Test (T1.1) for the Primal ity of Fn = 22* + 1 (r = 2n) 

Let SQ = 6 and define S^+1 = £? - 2. Fn is a prime when Fn\Sr_1; Fn is 

composite if Fn\Si for all 7' < r - 1. Finally, if t is the least sub-

script for which Fn\St, the prime divisors of Fn must have the form 

2t+1q + 1. 

Three weeks after Lucas' announcement of this test, Pepin [8] pointed out 

that the test was possibly not effective; that is, it might happen that a prime 

Fn would divide St , where t is too small for the primality of Fn to be proved. 

He provided the following effective primality test. 

Test (T1.2) for the Primality of Fn 

Let SQ = 52 and define S^+1= £? (mod Fn). Fn is a prime if and only if 

S E -1 (mod Fn). v - 1 n 

Pepin also noted that his test would be valid with SQ = 102. 

Somewhat later, Proth [9], [10] gave, without a complete proof, another 

effective test for the primality of Fn. His test is essentially that of Pepin 

with S = 32. The proof of Prothfs test was completed by Lucas [7], who also 

noted [5, p. 313] that Pepin's test would be valid for SQ = a2 when the Jacobi 

symbol (a/F ) = -1. 

While effective tests for the primality of Fn have been known for almost 

100 years, little seems to have been done concerning the development of effec-

*Research supported by NSERC of Canada, Grant #A7649« 
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tive tests for the primality of other integers of the form (2a)2 + 1. The two 

smallest values of a after 1 for which this form could possibly yield primes 

distinct from the Fermat numbers are a = 3 and a = 5. Riesel [11] denoted these 

numbers by (?n = 62 + 1 and Hn = 102 + 1; he also provided a small table of fac-

tors for some of these numbers. Now Gn is of the form A3r+ 1 and Hn is of the 

form 2A5r + 1. These are forms of integers for which Lucas [4], [5], [6] pre-

sented primality tests. These tests, which are given in a modified and cor-

rected form (there are several errors in LucasT statements of these tests) make 

use of the Fibonacci numbers {Um}, where UQ = 0 , U = 1, and Uk, = Uk + Uk_ . 

Note that neither Test T1.3 nor Test Tl.4 is an effective test for the primal-

ity of N. 
Test (T1.3) for the Primality of A 3 r + 1 

Let N = A3r + 1 with N E ±1 (mod 10). Put S0 E USA/UA (mod N) and de-

f i n e Sk_1 E S{ - 3Sl + 3 (mod N). (1.1) 

N is a prime when N\Sr_1; if t is the least subscript such that N\St, 

the prime factors of N must be of the form 2q3t+1 + 1 or 2q3t+1 - 1. 

There are a number of puzzling aspects of this test. First, why did Lucas 

restrict himself to a test for numbers N E ±1 (mod 5)? Of course, as we shall 

see below, it is necessary for N E ±1 (mod 5) in order to use the Fibonacci 

numbers in a primality test for N9 but other Lucas sequences could also be 

used. For example, if N E -1 (mod 4), we could use P = 4, Q = 1; if N E 5 (mod 

8), we could use P = 10,Q = 1; and if N E 1 (mod 8) , we could use P = 6, Q = 1 

(see Section 2). It may be that because of Lucas1 great interest in Fibonacci 

numbers, he restricted his values of N to those that could be tested by making 

use of them. Also, why did Lucas give this test in a form which, unlike Tl.l 

and T1.4, does not allow for the inclusion of a test for the compositeness of 

Nt Finally, to the authorfs knowledge, nowhere among the vast number of iden-

tities that Lucas developed for the Lucas functions does he mention the simple 

identity on which (1.1) is based. 

Lucas also gave: 

Test (T1.4) for the Primality of N = 2A5r + 1 

Put SQ E UA (mod N) and define ^ + 1 E 25S\ + 255^ + 5Sk (mod N) . N is 

a prime when the first Sk divisible by N is Sp; if none of the Si 

(i < r) is divisible by N9 N is composite; if t is the least subscript 
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such that N\St9 then the prime factors of N must be of the form 

2q5t + 1 or 2q5t - I. 

The purpose of this paper is to derive tests for the primality of Gn and 

Hn s which are very much in the spirit of LucasT test for the primality of Fn . 

We will do this by modifying tests T1.3 and Tl-4. Further, like PepinTs test, 

our tests will be effective. In order to achieve this, we shall be guided by 

the methods developed by Williams [12], [13], and [14]. It should be mentioned 

here that the techniques we use here could also be applied, as in the manner 

of [14], to other numbers of the form Arn + 1. 

2. SOME PROPERTIES OF THE LUCAS FUNCTSONS 

In order to develop primality tests for Gn and Hn, we will require some 

properties of the Lucas functions Vn and Un. Most of these properties are well 

known and are included here for reference. 

Let a, 3 be the zeros of x2 - Px + Q, where P, Q are coprime integers. We 

define 

Vn = a" + Bn, Un = (a* - 3n)/(a - 3), (2.1) 

and put A = (a - 3 ) 2 = -P2 - 4§. The following identities can be found in [5] 

or verified by direct substitution from (2.1): 

V2 -
v n v2n 

u2n 
V3n 

Usn 

Usn 

V5n 
USn 

Usn 

- hV2
n = kQn, 

= V2 - 2Q\ 

= unvn, 
= Vn(V2 - 3(3") , 

= Un(MJ2 + 3Qn), 

= Un(V2 - Qn), 

= Vn(Vk
n - 5QnU2

n + 5Q2n), 

= Un(A2Uk
n + 5Q"AU2 + 5Q2n), 

= Un (Vk
n - 3QnV2 + Q2n) . 

( 2 . 2 ) 

( 2 . 3 ) 

( 2 . 4 ) 

( 2 . 5 ) 

( 2 . 6 ) 

( 2 . 7 ) 

( 2 . 8 ) 

( 2 . 9 ) 

( 2 . 1 0 ) 

If we put Xn = U3n/Un, then 

Xn = hU2
n + 3Qn, (2.H) 

by (2.6), and 

X3n = MJ2
3n + 3Q3n = MJ2X2

n + 3Q3n = X2
n{Xn - 3Qn) + 3Q3n , 

by ( 2 . 1 1 ) . Hence , 

X3n = X3
n - 3QnX2 + 3Q3n; ( 2 . 1 2 ) 
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also 

X2n = USn^2n = & 3n ^ J ( ^ „ / / „ ) = X„ (X„ - 2Qn) , 

by ( 2 . 4 ) , ( 2 . 5 ) , and ( 2 . 2 ) . Hence , by ( 2 . 1 2 ) , we g e t 

X&n = X\{Xn - 2Qn)3 - 3Q2nX2(Xn - 2Qn)2 + 3Q6n. ( 2 . 1 3 ) 

To o b t a i n a r e s u l t a n a l o g o u s t o ( 2 . 1 2 ) f o r Yn = U5n/Un> we n o t e t h a t 

Yn = A2Uk
n + 5QnAU2 + 5Q2n, 

by ( 2 . 9 ) ; t h u s , 

Y5n = AZU^ + 5Q5nAU2Y2 + 5Q10n 

= Yk
n(Yn - 5QnAU2

n - 5Q2n) + 5Q5nAU2Y2 + 5Q10n. 

We g e t 

Y5n = Yl + 5Qn(Qn - MJ2
n)Jh

n + 5Q5nAU*Y* + 5Q10n . (2.14) 

For the development of one of our tests, it will be convenient to define 

Here the modulus N is assumed to be coprime to Q. From (2.8) and (2.2), we get 

W10n E Wn&n " 5Wn + 5 ) 2 - 2 (mod N) . (2.16) 

Also, by (2.10), we have 

WloJVlnW1*" E ^ - 3Wn + 1 (mod JO- (2-17) 

We will also require some standard number-theoretic properties of the Lucas 

functions. We list these as a collection of theorems together with appropriate 

references. We let p be an odd prime and put 

e = (A/p), n = («/p), 

where (e/p) is the Legendre symbol. 

Theorem 2 .1 (Carmichael [ 1 ] , Lehmer [ 2 ] ) : I f pfAQ, t h e n p | [ / p _ £ . • 

Theorem 2.2 (Lehmer [2]): If pj(AQ9 then p|^(p_e)/2
 i f a n d o n ly if n = 1 • D 

Theorem 2.3 (Carmichael [1], p. 51): The g.c.d. of.Upn/Un and Un divides p. 

(This result is true as well for p = 2.) • 

Theorem 2.4: Let g.c.d. (/I/, 2pQ) = 1. If p\m9 N\Um, and g.c.d. (Um/p9 N) = 1, 

then the prime factors of N must be of the form kpv ± 1, where V is the highest 

power to which p occurs as a factor of m (pv||tfz). • 

By combining Theorem 2.4 with Theorem 2.3, we get the following 
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Corollary: If g.c.d.(N, 2pQ) = 1 and 

UpnIVn E °  ^mod #>' 

then the prime factors of N must be of the form kpv ± 1, where pv~1||m. 

If we put p = 2, we have Upk /Uk = Vk ; hence, N - Fn is a prime if for some 

P, Q we have 7^_ r w 2 = 0 (mod Z!/) . On the other hand, if N = Fn is a prime, we 

must have V(N_1)/2 = 0 (mod i!7) if ^|AC (A/tf) = 1, and (£/#) = -1. This will 

certainly be the case if we put P = a + 15 6 = # (a = a, 3 = 1) 5 where (a/N) = 

-1. Thus, N = Fn is a prime if and only if V(N_ ^ / 2 E 0 (mod N) when P = a+ 1, 

§ = a, and (a/217) = -1. This, of course, is the Pepin (a = 5, 10) or the Proth 

(a = 3) test for the primality of Fn. 

To extend these ideas to the Gn and the Hn numbers, we must find a result 

analogous to Theorem 2.2 for £/(p_ £ ) / 3 and £/(p_ew5 when e = 1. This can be done 

by using a simple modification of an idea developed in Williams [12] and [13]. 

We describe this briefly here and refer the reader to [13] for more details. 

(In [13] we deal with the case p E -q E 1 (mod v) only.) 

We let p, q9 and r be odd primes such that p E q E 1 (mod r) and let K = 

GF(pq~1)m Write t = ind m9 where m E g* (mod q) (0 < £ < a - 2) and ^ is a 

fixed primitive root of q. We consider the Gauss sum 

q-l 
(5, o)) - £ 5 ind fc . . k 00 

1 

where £ and OJ are, respectively, primitive rth and ath roots of 1 in K. If, as 

in [13], we let j = ind p, 

q<* = (5, o))p, q3 = ( r 1 , oo)p, 

then a + 3, a3 G £F(p), and in X, 

( a a ) ^ " 1 ^ = (?s ^P-I = (g5 a3)-i(59 w ) = g"J". 

Thus, if P E a + 3 (mod p) and S E a3 (mod p) , then [/ E 0 (mod p) . Also 

U(p-i)/r ^ °  (mod p ) 5 

if p^-D/r ^ 0, 1 (mod q). 

This result is analogous to Theorem 2.2; however, in order for it to be 

useful, we must be able to compute values for a + 3 and ag. The value of a3 is 

simply qr , but a + 3 is rather more complicated. It can be written as 

(2-- 3)/2 

a + P = T, C(i,9 P:} q ) ^ (mod )s (2.18) 
^ = 0 
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where the coefficients C(i, r, q) are independent of p, and R can be any solu-

tion of a certain polynomial congruence (modulo p) . In the case of r = 35 R 

does not occur in (2.18); in the case of r = 5, R can be any solution of 

x2 + x - 1 E 0 (mod p ) . 

For more details on R and tables of C(i,r, q), we refer the reader to [12] and 

[14]. Here, it is sufficient to note that C (0, 3, 7) = 1, C(0, 5, 11) = -57, 

and C(l, 5, 11) = -25. 

3. THE PRIMALITY TESTS 

It is evident from the results in Section 2 that it is a very simple matter 

to develop a sufficiency test for the primality of numbers like Gn and Hn. One 

need only select some integer a such that g.c.d.(a, N) = 1, put P = a + 1, Q = 

a, and determine whether 

UN-l/U(N-l)/r = °  Onodff). (3-D 

Here, p = 3 for N = Gn and r = 5 for N = #n. If (3.1) holds, N is a prime; 

however, if (3.1) does not hold, we have no information about N and must select 

another value for a. In practical tests for the primality of these numbers we 

would use, instead of (3.1), the two conditions 

g.c.d.(a(/v-1)/p - 1, N) = 1 (3.2a) 
and 

aN~l = 1 (mod N). (3.2b) 

In this case, if (3.2a) and (3.2b) hold, then (3.1) holds; if (3.2b) does not 

hold, N is composite. Also, if N is a prime, the first value of a selected (by 

trial) usually causes both (3.2a) and (3.2b) to hold. Nevertheless, this test 

is not effective, in that we cannot give a priori a value for a such that, if 

If is a prime, (3.2a) and (3.2b) must hold. 

We will now give effective tests for the primality of Gn and Hn. We first 

note that, since (A/Gn) = (5/Gn) = (2/5) = -1, we cannot use the Fibonacci num-

bers in a test for the primality of Gn. However, we can still give a very 

simple test like Test T1.2 for the primality of Gn. 

Let N = Gn. By the results at the end of the last section we know that if 

P = 1 and Q = 1 then, since N2 f 0, 1 (mod 7), we must have 

when N is a prime. Also, under the assumption that I is a prime, 

(Q/N) = (7/tf) = (N/7) = (2/7) = 1 and U(N_l)/2 = 0 (mod N) 
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h. 

Now 

e n c e , 

3 

^ 0 

So 

= 

= 

z l = 

P2Q- • l 

by Theorem 2.2. Further, since U(N_l)/3 t 0 (mod N) , we cannot have U(N_l)/6 E 0 

(mod 71/) by (2.4); hence, 

%-D/2/y(ff-i)/6 E °  (mod " ) • (3-3) 

If we define Zffl E (U3m/Um)Q'm = XmQ~m (mod /I/), then by (2.13) we have 

Zsm = Zl^m " 2) 3 - 3Z*(Zra - 2 ) 2 + 3 (mod N) . 

by putting 5 = Zck (mod 212), we have 
b 

Sk + i = Sk(Sk ~ 2 > 3 - 3Sl(Sk - 2 ) 2 + 3 (mod N). (3.4) 

If r = 2", then 

It follows that, if 5 r E 0 (mod 212) , then any prime factor of 21/ must have the 

form k3zn ± 1. Since (2 • 32* - l)2 > Zl/, we see that 21/ must be a prime. 

(U3/U1)Q'1 (mod /!/) and ^ / ^ = P2 - Q; 

- 1 E 7"1 - 1 E 3(21/ - 2)/7 (mod 21/). (3.6) 

Thus, by combining the results (3.6), (3.4), (3.5), (3,3), and the theorems of 

Section 2, we get the following necessary and sufficient primality test for Gn: 

Primality Test (T3-1) for N = 62" + 1 (r = 2n) 

1. Put SQ = 3(21/ - 2)/7 and define 

Sk + 1 = S\{Sk - 2) 3 - 3S*(Sk - 2 ) 2 + 3 (mod 21/). 

2. 21/ is a prime if and only if 

S 1 E 0 (mod 212) . 
r -1 

Unfortunately, because of the difficulty in finding R, the primality test 

which we shall develop for Hn is not as simple or elegant as T3.1. Also, the 

formula (2.14) for Y is not as simple as (2.12); that is, we cannot express 

Y5n in terms of a simple polynomial in Yn and Qn only. However, in this case, 

we can directly integrate Lucas' Test T1.4 into an effective test for the pri-

mality of Hn. 

Let 212 = Hn. Since N2 ^ 0, 1 (mod 11), by the results at the end of Section 

2 we know that, if 21/ is a prime, then 

UN-l/U(N-l)/5 E °  (mod ̂  <3'7> 

when P E -57 - 25P (mod 212) , Q = ll3 = 1331, and 
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Rz + R 0 (mod N). (3.8) 

If we put Tv W 10* (mod N), by (2.16) we get 

T\ (Tl 5Tl + 5): 

Hence, if r = 2", we also get 

2 (mod tf) (3.9) 

T — W 
± r - 1 - ^(N- 1)/10 

7„ }-(ff- 1)/10 (mod tf) (A7- D/5* 

It follows from (2.17) that (3.7) holds if and only if 

3T: + i 0 (mod N), (3.10) r - 1 p - 1 

As mentioned above, the difficulty in using this as a test for the primal-

ity of Hn resides in the fact that we do not usually know a priori- a value for 

i?. We can, however, apply the noneffective Test T1.4 of Lucas. If this suc-

ceeds, we need not use the result above; but, even if it fails, it will provide 

us with a value for R and then we can use a test that we know is effective. 

We note that in Lucas1 test we have P = 1, Q - -1. Hence, 

e = (A/ff) = (5/N) = 1, n = (Q/N) = 1, 

U, 0 (mod N) 
and 

L(N- l)/2 

when N is a prime. 

Define 

Xi E V2i (mod N) 

Yi E U2. (mod ff) (i > 1). 

By (2.3) and (2.4), we have 

(3.11) 

Yi+i 
YiXi> Xi + 1 = 4 - 2 (modi?)-

Also, by (2.2), 

X? - 51? E 4 (mod N). 

If we put Hn = 2A5r + 1 (r = 2n) , then 4 = 21 

r-2 
I! ̂  (mod N) 

and 

UA = Y 
A r - 1 i = 0 

by ( 2 . 4 ) . T h u s , i f 21/ i s a p r ime and N\UA9 we must h a v e 

Xm E 0 (mod tf) 

( 3 . 1 2 ) 

( 3 . 1 3 ) 

( 3 . 1 4 ) 

( 3 . 1 5 ) 

tti V f o r some 1 < m < P - 2 

s e e t h a t 

R E 2 5 ( 2 + 5 • lOr/2Ym)lOr'2 

i s a s o l u t i o n of ( 3 . 8 ) . 
1988] 

2 - 3 ) - Hence , by u s i n g ( 3 . 1 5 ) and ( 3 . 1 3 ) , we 

(mod N) ( 3 . 1 6 ) 
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Put 

^ o E Yr~i ( m o d ^ ) ( 3 . 1 7 ) 
and d e f i n e 

Sk+1 E 2 5 £ | + 25S3
k + 5Sk (mod N) . ( 3 . 1 8 ) 

Using (2.9) we see that Sk = UA5k (mod 2V) . If N is a prime, by (3.11) we must 

have Sr E 0 (mod 21/). If 5'0 ^ 0 (mod /I/), then, for some t < r, we have 

S. £ 0 (mod 21/) and S = 0 (mod 21/) . 

By (3.18) we find that 

R = 5Sl + 2 (mod 21/) (3.19) 

is a solution of (3.8). Also, if (2 • 5 t + 1 - l) 2 > 21/, then, by the Corollary of 

Theorem 2.4, we know that 21/ is a prime. 

We are now able to assemble this information and use (3.12), (3.16)-(3.19), 

(3.9) and (3.10) to develop the following test. 

Primality Test (T3.2) for Hn = 102* + 1 (r = 2n) 

1. Put X± = 3, Y1 = 1 and define 

Yk + 1 = YkXk (mod N)> 

Xk + 1 E X2 - 2 (mod /I/). 

2 . I f J m E 0 (mod 21/) f o r some m < r - 2 , p u t 

i? E 25(2 + 5 • 1 0 W 2 Y J 1 0 P " 2 (mod 21/) 

and go d i r e c t l y t o s t e p 5 ; o t h e r w i s e , 

3 . Pu t S0 E Yr_1 (mod 21/) and d e f i n e 

5fe + 1 E 255^ + 255* + 5Sk (mod ff) . 

4. Find some t < r such that 

£t+i = °  (mod
 N) a n d 5t ^ °  (mod ^ ) -

If no such t exists, then N is composite and 

our test ends. If 

(2 • 5t + 1 - l) 2 > 21/, 

then N is a prime and our test ends. If 

(2 • 5t+1 - I) 2 < N, 

put 
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R E 5£2 + 2 (mod N). 

5. Put 

TQ E (57 + 25R)2((5N + 1)/11)3 - 2 (mod /!/) 

and define 

Tk + 1 E T^°  - lOTl + 35^£ " 5 0 ^ + 2 ^ l - 2 (mod N) . 

6. 71/ is a prime if and only if 

^P_ - 357^_1 + 1 E 0 (mod tf). 
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How would Fibonaccifs age-old sequence be redefined if, instead of bearing 

one pair of baby rabbits per month, the mature rabbits bear two pairs of baby 

rabbits per month? The answer is an intriguing sequence that has led to the 

development of what are herein defined as "multi-nacci sequences of the order 

q <," where q is the number of rabbit pairs per litter. Table 1 illustrates the 

sequence with q = 2. 
Table 1 

BB 

RR 

BB RR BB 

RR BB RR BB RR 

Pa i r 
Sequence 

1 

1 

3 

5 

Month 
1 

2 

3 

4 

11 

21 

43 

BB RR BB RR BB RR BB RR BB RR BB 

RR BB RR BB RR BB RR BB RR BB RR BB RR BB RR BB RR BB RR BB RR 

Key: RR = Pair of rabbits ready to reproduce 
BB = Pair of bunnies (immature rabbits) 

Call this sequence the "Beta-nacci sequence"; note that each term can be 

generated by adding the preceding term to twice the one before that, i.e., 

Bn = Bn-1 + 2Bn-2-

Using a similar process, sequences can be developed for situations when 3, 

4,5, and 6 rabbit pairs per litter are born. Call these multi-nacci sequences 

Gamma-, Delta-, Epsi-, and Zeta-nacci sequences, respectively. Table 2 illus-

trates the first seven terms in each of these multi-nacci sequences and the 

general formulas for each sequence. 
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Table 2 

Beta-nacci 

n 

0 
1 
2 
3 
4 
5 
6 
7 

n - l 

5n 

0 
1 
1 
3 
5 
11 
21 
43 

2^ o 
tt - 2 

Gamma-

n 

0 
1 
2 
3 
4 
5 
6 
7 

« - 1 

nacci 

&n 

0 
1 
1 
4 
7 
19 
40 
97 

3 ^ - 2 

Delt 

n 

0 
1 
2 
3 
4 
5 
6 
7 

V i 

a-

+ 

nacci 

Dn 

0 
1 
1 
5 
9 
29 
65 
181 

4£ o 
n - 2 

Epsi 

n 

0 
1 
2 
3 
4 
5 
6 
7 

*n-i 

-nacci 

En 

0 
1 
1 
6 
11 
41 
96 
301 

+ 5E 0 n - 2 

Zeta 

n 

0 
1 
2 
3 
4 
5 
6 
7 

V l 

-nacci 

Zn 

0 
1 
1 
7 
13 
55 
133 
463 

+ 6Z o 
n-2 

SUCCESSIVE TERM RATIOS 

When one examines the ratio created from two successive terms of the Fibo-

nacci sequence, as n gets larger, the ratio under investigation approaches the 

Golden Ratio, cf) = 1.618033989..., which is the decimal representation of 

cf) = (1 + i/5)/2. 

For the multi-nacci sequences to be analogous to the Fibonacci sequence, 

each sequence should also have a unique ratio that is approached when one forms 

a ratio of one term to its preceding term. Indeed, this is the case. Let Sq -

the limit, as n -> ° °, of successive term ratios of any multi-nacci sequence of 

order q. (By this definition, S1 =(().) Let nSq = the successive term ratios 

of the n t h term to its preceding term in any multi-nacci sequence of order q9 

e.g., S? = 2.20. The Beta-nacci sequence ratio is examined in Table 3. 

Table 3 

n 

1 
2 
3 

1 4 
5 
6 

Bn 

1 
1 
3 
5 
11 
21 

S * 
n 2 

1.000 
3.000 
1.667 
2.200 
1.909 

n 

1 
8 
9 
10 
11 
12 

Bn 

43 
85 
171 
341 
683 
1365 

n 2 

2.048 
1.977 
2.012 
1.994 
2.003 
1.999 

To the nearest thousandth. 

Thus, we can see that for the Beta-nacci sequence S. ->• 2. 
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It can be shown that for the Gamma-nacci, Delta-nacci, Epsi-nacci, and 

Zeta-nacci sequences, the following ratios are approached: 

Gamma-nacci: S3 -> 2.30277 
Delta-nacci: S^ -> 2.56155 
Epsi-nacci: S5 -* 2.79129 
Zeta-nacci: Se -> 3.00000 

The technique of the proofs of these ratios is illustrated below using the 

Gamma-nacci sequence. 

Let A = Gn_2 when n is very large. Then, the next term in the sequence, 

G 9 will be approximately S3(A)9 and the next term, Gn, will be (S3)2A. 

Remember that, by definition, G = Gn_1 + 3Gn_2. 

But this is (S3)2A = S 3A + 3,4, whose solution is S3 = (1 ± /l3)/2. 

Disregarding the -vl3, because there are no negative rabbits, 

S3 = 2.30277... . 

Note that the equation (S3)2 - S3 - 3 = 0 bears a striking resemblance to 

the equation (5'1)2 - S± - 1 = 0 that generates (|). In fact, an entire family of 

equations can be created which when solved yield the ratios indicated earlier. 

Specifically, the general equation is (Sq)2 - SQ - q = 0, and the ratio 

Sq = (1 + Vl + 4<7)/2. 

SPECIAL RECIPROCAL PROPERTIES 

One special property of the Golden Ratio is that it is its own reciprocal 

after one has been subtracted from it. With the multi-nacci sequences, some 

more general questions can be investigated, such as: "What number, when one is 

subtracted from it, is twice its own reciprocal, or three times its own recip-

rocal, or four times its own reciprocal?" The answers, in this order, are the 

Beta-nacci, Gamma-nacci, and Delta-nacci successive term ratios: S2> ^35 an(^ 

S^9 respectively. 

The proof of a generalized version of this question is very straightfor-

ward. 

(Sq)2 - Sq - q = 0 
(Sq)2 = Sq + q 

(Sq - 1) = q(j-) 

Thus, the special reciprocal property of the Fibonacci sequence is but one 
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of a more general set of reciprocal properties of the ratio limits of the 

multi-nacci sequences. 

BETA-NACCI SEQUENCE PROPERTIES 

In particular, the Beta-nacci sequence has been given additional examina-

tion because it appears to have many interesting properties. 

Table k 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Bn 

0 
1 
1 
3 
5 
11 
21 
43 
85 
171 
341 
683 

2Bn 

0 
2 
2 
6 
10 
22 
42 
86 
170 
342 
682 
1366 

2n 

1 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 
2048 

n 

n = 0 

0 
1 
2 
5 
10 
21 
42 
85 
170 
341 
682 
1365 

(Bn)2 

0 
1 
1 
9 
25 
121 
441 
1849 
7225 
29241 
116281 
466489 

<*n-i><W 

0 
3 
5 
33 
105 
473 
1785 
7353 
28985 
116793 
465465 

Notice that in Table 4 the sum of any two successive terms in the Bn column 

is a power of 2, or 

Bn +*„.! = 2' (1) 

The hn=0Bn column is remarkably like the Bn. In fact, 

£ Bn-1 
n = 0 

( -Dn - i 

Examining the 2Bn column, it appears that there is a difference of ±1 be-

tween the entries in the Bn and 2Bn_± locations. That is, 

Bn ~ 2Bn-i = (-I)""1- (2) 

Because in the Fibonacci sequence there is a relationship between (Fn)2 and 

{Fn_1)(Fn+1)» the Beta-nacci numbers have been examined for a similar relation-

ship. From Table 4 entries, the results of (Bn)2 - (Bn _±) (Bn+1) are +1, -2, +4, 

-8, +16, -32, +64, -128, +256, -512, and +1024, so that (Bn)2 - (Bn_1)(Bn+1) = 

(-2)n~1. Fibonacci numbers have the same relationship using the base of (-1) 

instead of (-2). It can be shown that (Tn)2 - (Tn_1)(Tn+1) = (-q)""1, where T 
is any term of a multi-nacci series of order q. 
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Equation (1) shows that the summation of two successive terms in the Beta-

nacci sequence is 1, 2, 4, 8, 16 If this sequence is studied, it, too, 

is observed to be a Beta-nacci-type sequence. For example, 16 = 8 + 2(4). In 

other words, the powers of 2 are a Beta-nacci sequence. (Interestingly, also, 

is the fact that the powers of 3 are a Zeta-nacci sequence.) Furthermore, if 

two terms of the 2,4, 8, 16, ... sequence are summed, a sequence with the terms 

3, 6, 12, 24, 48, ... develops. This is also a Beta-nacci-type sequence, i.e., 

24 = 12 + 2(6). In fact, summing two successive terms in any multi-nacci se-

quence creates a new sequence of the same multi-nacci type. 

Moreover, summing three successive terms of the Beta-nacci sequence creates 

the sequence 2, 5, 9, 19, 37, 75, 149, ..., which is yet another Beta-nacci-type 

sequence, i.e., 37 = 19 + 2(9). Summing any number of successive terms in any 

multi-nacci sequence results in a new multi-nacci sequence of the same type: 

If Tn is the n th term of any type of multi-nacci sequence, then 

7 _ 

n 

n+ 1 

n+2 ~ 

T 1 n - l 

T 

T 

+ ?Tn-2 

+ ^ » - l 

+ <Pn 
™n+3 ™ri + 2 + H^n +1 

-^n + m ~ n + m-1 ^-^n + m-2 

m m m 

2-J TN
 = 2*> ?N -1 + Cl2^ TN -2 

N = n N = n N = n 

Similarly, it can be shown that summing the terms in any two or more non-

sequential multi-nacci sequences of the same order results in sums which are 

also a multi-nacci sequence of the same order. 

BETA-NACCI nth TERM 

In the past, mathematicians have developed formulas for the nth term of the 

Fibonacci sequence. This is important because, without such a formula, one 

must enumerate every single term up to the one in question. Thus, the Beta-

nacci sequence has been examined for a formula for the nth term. 

Using (1) and (2), as defined, 

•}« - 1 

\YL-1 

3*. + B , = 2 

n n-1 

we h a v e : 
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2Bn_1 + ( - 1 ) " " 1 +Bn_1 = 2 " - 1 

n = 2Bn_1 + ( - 1 ) ' 

n - l 

3B n _ 1 = 2"" 1 - ( - l ) " " 1 

For ease in examination, let n - 1 = n, so 3B = 2" - (-l)n. Then 

_ 2n - (-1)" 
Sn - 3 • 

This formula is much less complicated than one for Fibonacci's nth term. 

REPEATING UNITS DIGITS 

One can observe that the units digits in the Beta-nacci sequence are 1, 1, 

35 5, 1, 1, 3, 5, 1, 1, 3, 5, ... . They repeat every four terms. The units 

digits of the EBn terms also repeat every four terms as 0,1, 2, 5, 0, 1, 2, 5, 

etc. In 1963, Dov Jarden showed in [1] that the units digit of the Fibonacci 

sequence repeats every 60 terms. Thus, in this regard, Beta-nacci is a vast 

improvement over Fibonacci. All multi-nacci sequences have units digit repeat 

periods. 

RABBIT PAIRS PER LITTER, q SEQUENCE UNITS DIGIT REPEAT PERIOD 

1 Fibonacci 60 
2 Beta-nacci 4 
3 Gamma-nacci 24 
4 Delta-nacci 6 
5 Epsi-nacci 3 
6 Zeta-nacci 20 
7 Eta-nacci 12 
8 Theta-nacci 24 
9 Iota-nacci 6 
10 Kappa-nacci 1 
11 Lambda-nacci 60 

Moreover, the sequence of units digit repeat periods 60,4, 24,6, 3,20, 12, 

24, 6, 1 now repeats as we get into the higher-order multi-nacci sequences. The 

determination of the tens digit repeat periods is left to the reader. 

CONCLUSIONS 

Fibonacci-type sequences develop from multiple rabbit births. This paper 

demonstrates that these sequences also have interesting properties of their own 

which are ripe for future study. 
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NEW UNITARY PERFECT NUMBERS HAVE AT LEAST 
NINE ODD COMPONENTS 
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(Submitted November 1986) 

1. INTRODUCTION 

We say that a divisor d of an integer n is a unitary divisor if 

gcd(J, n/d) = 1, 

in which case we write d\n. By a component of an integer we mean a prime power 

unitary divisor. 

Let a*(ft) denote the sum of the unitary divisors of ft. Then G* is a mul-

tiplicative function, and 0*(pe) = pe + 1 if p is prime and e ^ 1. Throughout 

this paper we will let / be the ad hoc function defined by fin) = o*(n)/n. 

An integer ft is unitary perfect if a*(ft) = 2ft, i.e., if /(ft) =2. Subbarao 

and Warren [2] found the first four unitary perfect numbers, and this author 

[3] found the fifth. No other such numbers have been found, so at this stage 

the only known unitary perfect numbers are: 

6 = 2-3, 60 = 223 • 5; 90 = 2 • 325; 87360 = 263 • 5 • 7 • 13; and 

146361946186458562560000 = 2183 • 547 • 11 • 13 • 19 • 37 • 79 • 109 • 157 • 313 

It is easy to show that any unitary perfect number must be even. Suppose 

that N = 2am is unitary perfect, where m is odd and m has b distinct prime di-

visors (i.e., suppose that 217 has b odd components). Subbarao and his co-workers 

[1] have shown that any new unitary perfect number N = 2am must have a > 10 and 

b > 6. In this paper we establish the improved bound b > 8. 

Much of this paper rests on a results in an earlier paper [4]: 

Any new unitary perfect number has an odd component larger than 
2 1 5 (the smallest candidate is 32771). 

Essential to this paper is the ability to find bounds for the smallest un-

known odd component of a unitary perfect number. The procedure is laborious 

but simple, and can be illustrated by an example: 

Suppose N = 2a3 • 5 • 7 * 19 • 43 • rqp is unitary perfect, where r, q, and p 

are distinct odd prime powers, p < g < p , a^l2, and p> 32771. Then 64<r<261, 

because 

/(3 • 5 • 7 • 19 • 43) • (262/261)4 < 2 < f(3 • 5 • 7 • 19 • 43) • (65/64). 
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Consequently, r<2a and r< 32771. But f(2a) < 4097/4096 as a> 12, and 
/(3 • 5 • 6 • 19 • 43) - (4097/4096) • (32772/32771) • (134/132)2< 2, 

so 6 4 < P < 133. 

In the interests of brevity, we will simply outline the proofs, omitting 

repetitive details. 

2. SEVEN ODD COMPONENTS 

Throughout this section, suppose N = 2avutsrqp is unitary perfect, where 

p, ...9v are powers of distinct odd primes, and V <u< t< s <r< qKp. Then we 

know that a> 11 and p> 32771. 

Theorem 2.1: ?; = 3, u = 5, £ = 7, and a >12. 

Proof: We have z; = 3 or else f(N)<2, so there is only one component E -1 (mod 

3)3 and none E -1 (mod 9). But 

f(2n 3 • 7 • 11 • 13 • 19 • 25 • 32771) < 2, 

so u = 5. Then there are no more components E -1 (mod 3), only one E -1 (mod 

5), and none E -1 (mod 25). As a result, a is even, so a^ 12. Then t = 7, or 
else /(#)< 2. • 

Theorem 2.2: s = 13. 

Proof: We easily have s = 13 or s = 19, or else f(N)<29 so suppose s = 19. 

Then 25<r<53. If P is 43 or 37, then (respectively) 64<q<66 or 85<q<88, 

both of which are impossible. Thus, v = 31, so 151<q<159 and then q = 157. 
But then 79 |p and p>2 1 5 , so p = 79c with c >39 whence 792|a*(2a), which is 

impossible. • 

Theorem 2.3*. v - 67. 

Proof: We have N = 2a3 • 5 • 7 • 13 * rqp, p> 32771, and a> 12, so 64<r< 131. If 
r> 79, easy contradictions follow. 

If p = 79, then 341<<?<377, so q = 361, 367, or 373. But q = 373 implies 
11 • 17|p, a contradiction. If q = 367, then p = 23c with c> 4, so 233|a*(2a), 
which is impossible. If <? = 361, then p = 181e with c>3, so 18l|c*(2a), hence 

90|a, whence 52\N9 a contradiction. 

Finally, if P = 73, then 526<q<615 and 37|qp, so p = 37c with c>3. But 

73|a*(2a37c), so 73\(q + 1), which is impossible. 

Theorem 2.4: There is no unitary perfect number with exactly seven odd compo-

nents. 
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Proof: If this is so, then N = 2a3 • 5 • 7 • 13 • 67 • qp. Then 1450 <q< 4353, so 

p> 32771, whence 1450<q<3037. Then a> 12 implies 1450<^<2413. Now, 173\\N 

implies 33|/1/, so p = 17c with c>k. But 172ja*(2a), or else q is a multiple 

of 354689, so 173|(^ + 1), which is impossible, s 

3. EIGHT ODD COMPONENTS 

Throughout this section, assume that N = 2awvutsrqp is unitary perfect, 

where p, . .., w are powers of distinct odd primes, and w < y < w < t < s < P < ^ < p . 

Then a^ll and p ^ 32771 as before. 

Theorem 3-1: w = 3, v = 5, and a > 12. 

Proof: Similar to that for Theorem 2.1. m 

Theorem 3.2: u = 7, and t = 13 or t = 19. 

Proof: From /(2123 • 5 • 13 • 19 • 31 • 37 • 43 • 32771)< 2, we have u = 7, so there 

is only one component E -1 (mod 7). Thus, £<31. If t is neither 13 nor 19, 

then t = 31, so a ̂ 1 4, and we quickly obtain s = 37 and r3 = 43. But then we 

have N = 2a3 • 5 • 7 • 31 • 37 • 43 • qp, subject to 121<q< 125 and 11 • 19\qp, an 

impossibility. • 

Theorem 3-3: If t = 19, then s = 31. 

Proof: Suppose N = 2a3 • 5 • 7 • 19 • srqp with s<r<q<p. Then 25<s< 73. Easy 

contradictions follow if s>43. 

If s = 43, then 64<r<133. If P = 121, then 140<q<147, which is impos-

sible. Other choices for v force q and p to be powers of 11 and another odd 

prime (in some order) with no acceptable choice for q in its implied interval. 

If s = 37, then 85<r< 176, so v is 103, 121, 127, 157, or 163. If r is 157 

or 163, there in only one choice for q, and it implies that p is divisible by 

two different odd primes. If r = 127, then a> 20 and so 262<q<265, an impos-

sibility. If v = 121, then 291<q<318, so q is 307 or 313; but q = 313 im-

plies 61 • 157 |p, and if q = 307, then p = 61c with c>3, so 612|a*(2a), whence 

52\N, a contradiction. If r = 103, then 502<^<583 and I3\qp9 so p= 13 with 

c> 4; but 13|a*(2a), or else 52\N, SO 133|(q + 1), which is impossible, m 

Theorem 3-4: t = 13. 

Proof: If t ^ 13, then N = 2a3 • 5 • 7 • 19 • 31 • rqp with r<q<p and a> 16, so 

1 5 1 < P < 3 0 7 . Since r t -1 (mod 5), r must be 157, 163, 181, 193, 211, 223, 241, 

271, 277, or 283. If v is 271, 241, or 223, there is no prime power in the 
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implied interval for q (note a>20 if v = 223) . If r is 283, 277, 211, or 193, 

the only choices for q require that p be divisible by two distinct primes. 

If r = 163, then 2202 < q< 2450, so p = 41 with c> 4; thus, 2202 < q< 2281, 

and the only primes that can divide q+ 1 are 2, 7, 19, 31, 41, and 163, but no 

such q exists. If r = 181, then p = 13c with c > 4 , as 942<^<985 and I3\qp; 

but 13|a*(2a), or else 52\N, SO 133|(g + 1), which is impossible. If r = 157, 

then 79|<7p and 4525 <<?< 5709, so p = 79c with o>3; however, 79|cr*(2a), and so 

792|(q + 1 ) , an impossibility, m 

Corollary: There are no more components E -1 (mod 7), and none E -1 (mod 13 ). 

Theorem 3.5: s< 73. 

Proof: We have 71/ = 2a3 • 5 • 7 • 13 • srqp, and 61<s< 193 follows easily, so s is 

67, 73, 79, 103, 109, 121, 151, 157, or 163. 

If s is 163 or 157, then any acceptable choice of v forces qp to be divisi-

ble by two distinct odd primes with no acceptable choice for q in its implied 

interval. The same occurs with s = 151 unless r = 163; but if s = 151 and r = 

163, then 358<q<398 and 19°  4l|gp, so q = 192, whence 41 • 181 |p, an impossi-

bility. If s = 127, then a^l6 and, for each r, any acceptable choice for q 

forces p to be divisible by two distinct primes. 

If s = 121 and r £ 241, then two known odd primes divide qp and there is no 

acceptable choice for q in its implied interval. If s = 121 and r = 241, then 

318<q<350 and 6l|qp, so p = 61c with c> 3; but 6lja*(2a) unless 4l|^, hence 

612|(q + 1), which is impossible. 

Suppose s = 109. Then 156<r<328 and ll\rqp, so ll1* |qp as ll3\\N implies 

32|/1/. Now, 109ja*(2a), or else 52\N. If 109|a*(llc), then 11 • 61 • 1117 \rqp, 

an impossibility. Thus, one of q and p is lle with c ^ 4 , and the other is a 

component E -1 (mod 109), and the least candidate for this component is 2833. 

Then 156<r<175, so r is 157 or 163. If P = 163, then a + 12, or else 11- 17 
9 41°  24l|pgp, so a>14, whence 11°  hl\qp and 3913<p<6100, an impossibility. 

If r = 157, then a>169 and 11 • 79\qp and 44000 < q< 300000, whence q = ll5 and 

3 \N9 a contradiction. 

If s = 103 and r = 111, then a> 16 and 462<^< 473, so q = 463 and 17 • 29|p, 

an impossibility. If s = 103 and v 4- 271, then v + 1 includes an odd prime Tf 

and the interval for q forces p = i\° (c>2). But in each case, 7i|a*(2a) implies 

a contradiction, so i\c~1\(q + 1 ) , an impossibility. 

If s = 79, then a>16, as a = 14 implies 52|/1/, so 3 4 1 < P < 6 9 5 . Except for 

r = 373, r + 1 includes an odd prime TT and the Interval for q forces p = nc 
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(c^2), but in each instance 7r|a*(2a) either is impossible or implies condi-

tions on q which cannot be met. If v = 373, then 4031 < q < 4944 and 11 • 17 \qp9 

so q = 173, whence 32\N9 a contradiction. & 

Theorem 3-6: s = 67. 

Proof: Suppose not: then N = 2a3 • 5 • 7 • 13 • 73 • rqp, 526 <r< 1232, and 37\rqp. 

The cases 372\\N and 373\\N are easily eliminated, so 37h\N. Now, 73|a*(2a37c), 

so N has an odd component, not 37c, which is E -1 (mod 73), and the two small-

est candidates are 1459 and 5839. If 21/ = 2a3 8 5 • 7 • 13 • 73 • 1459 • qp, then 

823<(?<1032, but 37|a*(2a), or else 52|/lf, so 373|(q+l), which is impossible. 

Now, call p = 37e (c>4), q E -1 (mod 73), and ̂ >5839. Then 526<r<674, 

so 37J(P + 1). Consequently, q E -1 (mod 373), so q + 1> 2 • 37373 and, hence, 

q^ 7395337. If a = 12 or a = 14, then r Is in an interval with no prime powers. 

Therefore, a>16, so 526<r<531, which forces r = 529. Then a>lS9 but a = 18 

implies 52\N, SO a>20. But then 100000 < q < 240000 and 53* 37\qp, so q = 533, 

which implies 32\N9 a contradiction, H 

Theorem 3-7^ There is no unitary perfect number with exactly eight odd compo-

nents. 

Proof: Assume not: then we have N = 2a3 • 5 • 7 * 13 • 67 • vqp with 1450<r< 4825. 

Now, 67fa*(2a), or else 32\N. Also, 17 \N and 172<r. But 17 cannot divide N 

an odd number of times, or else 32\N, SO 17^\N. 

We already have a ^ 12 and a even. The cases a - 12 and a = 14 are easily 

eliminated, so a>16 and then 1450<r<3022. 

Note that 67|a*(17c), so N has an odd component, not 17c, which is E -1 

(mod 67), and the three smallest candidates are 1741, 2143, and 4153. If the 

component E -1 (mod 67) exceeds 2143, then 1450<r<2375. Thus, we may require 

1450 < P < 2375 in any event. 

We cannot have 172|a*(2a), or else 17- 3546898°  2879347902817\rqp, and this 

is obviously impossible. If 17\(r + 1), then r is 1597, 1801, 2209, or 2311. 

If 67|(P + 1), then r is 1741 or 2143. If r + 1 is divisible by neither 17 nor 

67, then we may take p = !7° (c>4, so p ^ 83521) and q E -1 (mod 17267), whence 

q> 116177, so 1450<P<1531. Thus, in any event, r must be one of the follow-

ing numbers: 1453, 1459, 1471, 1489, 1597, 1741, 1801, 2143, 2209, or 2311. 

But each of these cases leads to a contradiction, so the theorem is proved, m 
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The Fibonacci numbers are defined, as usual9 by the recurrence 

F0 = 0, F1 = 1, Fk = Fk_x +Fk.z, k> 1. 

The Fibonacci tree of order k, denoted Tk, can be constructed inductively 

as follows: If k = 0 or k = 1, the tree is simply the root 0. If k > 15 the 
root is Fk ; the left subtree is Tjc_1; and the right subtree is Tk_2 with all 

node numbers increased by Fk . TG is shown in Figure 1. For an elegant role 

of the node numbers In the Fibonacci search algorithm3 the reader is referred 

to [5]. 

Fibonacci trees have been studied in detail by Horibe [2], [3]. The aim of 

this note is to present some additional considerations on Fibonacci tree codes 

and to explore the relationships existing between the codes and the Zeckendorf 
representation of integers. 

Figure 1. The Fibonacci Tree of Order 6, Ts 
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Recall that each integer N, 0 < N < Fk + 1* has the following unique Zecken-

dorf representation in terms of Fibonacci numbers [6]: 

N = CL2F2 + a3F3 + a ^ + ••• + akFk, where a^ e {0, 1} and c^a 0. 

Let us write this as &kak_1ak_2 . .. a3a2. The Zeckendorf representation of 

an integer then provides a binary sequence, called a Fibonacci sequence, that 

does not contain two consecutive ones, and the number of Fibonacci sequences 

of length k - 1 is exactly F, « 

The Zeckendorf representation of integers perserves the lexicographic or-

dering based on 0 < 1 (see [1]). 

A tree code is the code obtained by labeling each branch of a tree with a 

code symbol and representing each terminal node with the path of labels from 

the root to it. We stress that tree codes are prefix codes (i.e., no codeword 

is the beginning of any other codeword) and have a natural encoding and decod-

ing. Moreover, tree codes preserve the order structure of the encoded set in 

the sense that, if x precedes y, the codeword for x lexicographically precedes 

the codeword for y. 

In the sequel, we use 0 for each left branch and 1 for each right branch 

in a binary tree. The Fibonacci code, denoted Ck , is the binary code obtained 

in this way from Tk . For example, Cs is shown in the following table. 

1 ° 
1 1 
1 2 
3 

1 4 

00000 

00001 

0001 , 

0010 

0011 

5 

6 

7 

8 

9 

0100 

0101 

011 

1000 

1001 

10 

11 

12 

101 1 
110 

111 1 

The first result of this note is the determination of the asymptotic pro-

portions of zeros and ones in the Fibonacci codes. 

Let N^ and Nk denote the total number of 0's and lfs in Ck, respectively, 

and let Nk = Nk + Nk denote the total number of symbols. For example, /l/°  = 30 

and Nl = 20. Put p = lim(tfP/JV7 ) and q = 1 - p = lim(^J/Np) . We will show the 

following 

1 1 "rc+l . 1 + /5 
Theorem 1 : p = -r and q = 1 - -r, where $ = lim — - — is the golden rat%o ~ . 

Proof: From the inductive construction of the Fibonacci tree and the fact that 

Tk has Fk+1 terminal nodes, one has the following equations: 

N, Fk+i + Nk-i + h-2l 
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These equations, applied recursively, give 

k - l . k - l k - l 
Nk = E Fi Fk . i + 2 . K = E Fi Fk - i + 1 > < = E FtF} 

i = 0 ^ = 0 
& - £ ' 

The refrom one g e t s : N*/Nk = _E ^ V W E ^ ^ _ i + E^ 
i = 0 

/k-l 

i = 0 

k-l 
To evaluate the asymptotic behavior of Z ^i ̂ V - ' + '' w e u s e Binet's formula 

^ = 0 

Fv = — (§k - Tk), where Y = l
 0

 5. 
•5 

We then have 

k-l T /k-l k-l ^ . k-l 

i=0 ^ J \ i = 0 

£$fc + J + ferfc + J _ r j + l l 

k + j _ V r h ^ r ^ - ^ + J 
£ = 0 i = 0 

k - l 

E< 
£ = 0 

}k -i + j-ni 

-K' $ « ? -

- r 
§<? + i 

JL 7> f̂e fcfcfc + J + Q($k). 

/ 5 
-(<&>* - Tk) 

Figure 2. The Uniform Fibonacci Tree of Order 6, U6 

From the above, one finally obtains 

l i m — 
k + ~ ^ 

l i m 
k - > ~ 

k - l 

E ^ F k - £ + l 
* = o 1 

X) FzFk-i + 2 
i = 0 
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The remainder of this note is devoted to exploring relationships between 

the Fibonacci codes and the Zeckendorf representation of integers. In parti-

cular, we show that the Zeckendorf representation of integers can be obtained 

as a variant of the Fibonacci codes by inserting some redundant digits 0. 

To this end9 let us define the uniform Fibonacci tree of order k (denoted 

Uk) as follows: For k < 23 the uniform Fibonacci tree coincides with the Fibo-

nacci tree. If k > 23 the root is Fk; the left subtree is Uk_1; the right sub-

tree has root Fk + F*_1 whose right subtree is empty and whose left subtree is 

Uk_2 with all numbers increased by Fk« 

A uniform Fibonacci tree is the Fibonacci tree with dummy nodes after each 

right branch that force the leaves to be at the same level- The uniform Fibo-

nacci tree can be obtained from the branch labeling of the Fibonacci tree, as 

described in [3]. The relationships between this labeling and the Zeckendorf 

representation of integers have been unnoticed- Figure 2 above shows U&. Some 

properties of Uk are given in the following theorems. 

Theorem 2: Uk has F^ + 2 nodes at level i, 0 < i < & - 1. 

Proof: Theorem 2 is trivially true for k = 1, 2. Suppose it Is true for each 

Ui9 i < k (k > 2) . We prove that it Is true for Uk. 

Let us denote by L(i5 k) the number of nodes that Uk has at level i . The 

construction of Uk implies 

L(0S k) = F23 L(l, k) = F3, 
and 

L(i9 k) = Lii - 1, k - 1) + L{i - 2, k - 2), 2 < i < k - 1. 

By the induction hypothesis, this gives L(£, k) = F£+1 + Ft = Fi + 2
m u 

Corollary 1: Uk is obtained by adding Fk - 1 internal nodes to Tk -

Proof: From Theorem 25 Uk has E^=2F^ = Fk+2 - 2 internal nodes. Since T^ has 

Fk+1 - 1 internal nodes3 we get that Uk has Fk+2 - 2 - Fjc+1 + 1 = ^k ~ ^ addi~ 

tional nodes- • 

Similarly, as was done in [3] for Fibonacci trees, it is possible to clas-

sify terminal nodes of Uk into: 

(R-nodes9 the terminal nodes that are right sons, and 

£-nodes5 the terminal nodes that are left sons. 

Lemma 1: Uk has Fk_1 (R-nodes and Fk £-nodes* 
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Proof: By induction. Trivially true for k = 2, 3. Suppose the lemma is true 

for each uniform Fibonacci tree of order less than k9 k > 3. The definition of 

(R-nodes and <£-nodes implies that the type ((R or «£) determination within each 

of the left and right subtrees of any uniform Fibonacci tree gives the correct 

type determination in the whole tree. Hence, by the construction of Uk and by 

the induction hypothesis, Uk has Fk_2 + Fk_3 (R-nodes and Fk_-L + Fk_2 £-nodes. 

This completes the proof, n 

As was done in [2] for Fibonacci trees, and as Theorem 2 suggests, one can 

construct Uk+1 by properly splitting terminal nodes of Uk. However, the recur-

sive construction for uniform Fibonacci trees is slightly different from that 

described in [2] for Fibonacci trees. This time, all terminal nodes generate 

offsprings. 

Theorem 3- If each (R-node of Uk, k ^ 2, generates only the left node and each 

«£-node generates two nodes, then the resulting tree that has Fk (R-nodes and 

Fk_± + Fk £-nodes is exactly Uk + 1 . 

Proof: By induction. Suppose the theorem is true for each Ui , i < k, k > 3 

(when k = 2, 3, the assertion is easily shown). Uk has, as its left subtree, 

Uk-i w ^ t n Fk_2 (R-nodes and Fk_± £ -nodes. Making terminal nodes of this JJ-k_1 

generate offsprings produces Uk by the induction hypothesis. Similarly, the 

right subtree of Uk has empty right subtree and has Uk_2 as the left subtree. 

Making the Fk_3 (R-nodes and the Fk_2 £-nodes of this Uk_2 generate offsprings 

produces Uk_± by the induction hypothesis. Therefore, making all (R-nodes of 

Uk generate left sons and all £-nodes generate two sons produces U]< + 1 o m 

We now relate the tree code of Uk, the uniform Fibonacci tree code of order 

k (denoted in the sequel by Bk), to the Zeckendorf representation of integers. 

For example, B6 is given by: 

1 °  
1 

2 

3 

4 

00000 

00001 

00010 

00100 

00101 

.5 

6 

i 7 

8 

9 

01000 

01001 

01010 

10000 

10001 

10 

11 

12 

10010 | 

10100 

10101 

Lemma 2: The uniform Fibonacci code of order k is the set of all Fibonacci 

sequences of length k. — 1. 
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Proof: From the construction of the uniform Fibonacci tree, the uniform Fibo-

nacci code does not allow two consecutive l!s in any codeword and contains Fjl + 1 

distinct codewords of length k - 1. The number of Fibonacci sequences of length 

k - 1 is also given by Fk . m 

Theorem k: In a uniform Fibonacci code, the codeword that represents the ter-

minal node i is the Zeckendorf representation of the integer i . 

Proof: From Lemma 2, the uniform Fibonacci tree code of order k is the set of 

Fibonacci sequences of length k - 1 * By definition, they provide the Zeckendorf 

representation of nonnegative integers < ^&+i« Since the Zeckendorf represen-

tation preserves the lexicographic ordering, the assertion is a straightforward 

consequence of the order-preserving property of tree codes, • 

Uniform Fibonacci trees, therefore, provide an efficient pretty mechanism 

for obtaining the Zeckendorf representation of integers. The procedure is: 

Given the -integer i9 0 < i < ̂  + 1, construct the uniform Fibonacci tree 
of order k. The Zeckendorf representation of i is the path of labels 
from the root to terminal node i. 

It is also worthwhile to note that the uniform Fibonacci trees in the set-

ting of the Fibonacci numeration system play a role analogous to that of the 

complete binary trees in the setting of the binary numeration system: 

The number of nodes at each level is given by a Fibonacci number (power 
of 2, in the binary case); 
The path of labels to a terminal node is the Zeckendorf representation 
{the binary representation, in the binary case). 

The last result is the determination of the number Nk of l'.s and the num-

ber Nk of 0?s in Bk. With the same notation of Theorem 1, we have 

Theorem 5: fl\ = N^; l£ = N°k + n\ - Fk_l9 k > 2. 

Proof: The first part Is immediate from the construction of trees Tk and Uk . 

The second part can be proved by induction. Suppose Theorem 5 is true for each 

uniform Fibonacci tree of order less than k, k > 3 (when k = 2, 3, the asser-

tion is trivially true). By the construction of Uk, one has the equation: 

N°k = (Fk +^° -i) + (h-i + ^ - 2 ) ' 

By the induction hypothesis, this gives 

W l = Fk + Vl + K-l + ^ -1 - h-2 + K-2 + Nl-2 - h-3-
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S i n c e N% = Fk + N°_1 + IF®_2 and B\ = F f e _ i + ^ _ x + tf*_2 ( s e e Theorem 1) , 

the assertion is true- ® 

Theorem 5 allows immediate computation of the asymptotic proportion of l's 

(and 0ss) in Fibonacci sequences (see [4]). Indeed, denoting by p, q and p, q, 
respectively, the asymptotic proportions of 0!s and lfs in Ck and Bk, and re-

calling Theorem 1 and its proof, one obtains 

- , - - , . * - , . fc % $ ~ 1 5 - / 5 
<7 = 1 - p = l i m = l i m = ^—; = TT^ T = v~p: * 
q V *"Nk

 k^Nk^Nl-Fk.1 l + q 2 ® ~ l 1 0 
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An arithmetic function / is called multiplicative if 

f{mn) = f(m)f(n), (1) 

whenever (m, ri) = 1. A multiplicative function / is called completely multi-

plicative if (1) holds for all m9 ft. Further, a multiplicative function / is 

said to be a quadratic (see [1], [3], [8]) or a specially multiplicative func-

tion (see [2], [4], [6], [7]) if 

f = aob, (2) 

where a, b are completely multiplicative functions and °  denotes the Dirichlet 

product. It is known that (2) is equivalent to 

f(mn) = Z f(m/d)f(n/d)g(d)\i(d), 
d\(jn,n) 

where g is a completely multiplicative function and y denotes the Mobius func-

tion. The completely multiplicative function g is defined for every prime by 

g(p) = (ab)(p) or g(p) = f(p)2 - f(p2) or g(p) = f^ip2), 

where f'1 denotes the Dirichlet inverse of /. Since a quadratic / is multipli-

cative, the values /(ft) are known if the values f(pm) are known for all primes 

p and all positive integers m. Furthermore, the values f(pm) are known if the 

values f(p) , f(p2) [or the values f(p)s f~1(p2) or the values a(p) , b(p)] are 

known. The values f(pm) are given recursively by 

/(D = 1, 

f(p)5 f(p2) a r e arbitrary, 

f(pm) = f(p)f(pm'1) ~ g(p)f(pm-2), m = 3, 4, ... . (3) 

Consequently, if we put f(pm) = Sm, we obtain a generalized Fibonacci sequence 

determined by 

S Q - 1, 

S1, S2 are arbitrary, 

Sm + i = Si^m ~ ((^1) ~ ̂ 2^m-i' m = 2S 3, 4, ... . 

If we let Si = 1, #2 = 2 , we obtain the Fibonacci sequence. 
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If / is specially multiplicative and / = a°b, where a, b are completely 

multiplicative, then the generating series of / to the base p is given by 

f(P)(x) = (1 - coOd - to) (P a prime)> 

where a = a(p) , g = b(p) . Then 

^(p)(J:) = 1 - /(p)* + g(p)x2' 

where jT(p) = a + 3 and g'(p) = a@. Noting that the generating function of the 

Fibonacci sequence {Fn} is 

Y<n
FnXn = 1 _ x - ^ 2 ' 

n = 0 

f(P)(x) w i l 1 generate {Fn} if j(p) = 1 and #(p) = -1. 

If a is any nonzero complex number, one could consider / for which f(p) -a 

and g(p) = -a2. It will follow that 

frn,(ai) = i 2-T = £ ^n^^n. 
J(p) 1 - ax - az^cz „~0

 n 

Hence , f(pn) = anFn. W r i t e j ( p n ) = Gn. Us ing known p r o p e r t i e s ( s e e [ 5 ] , [ 9 ] ) 

of t h e F i b o n a c c i s e q u e n c e {Fn } , f o r e x a m p l e , t h e f o l l o w i n g p r o p e r t i e s of t h e 

s e q u e n c e {Gn} can be d e r i v e d : 

tan~k^Gk =Gn + 2 - a - 2 , 
k = 0 

E (-l)kan~kGk = (-DnaGn_1 + an, 
k = 0 

a ^ 2 k ~ ^in + l'-
fc = 0 

V - 2(n-fc) + l / 

n 
Y 3(n-fc) + 2 L jL*a ^3/c - 1 ~ U 3 n + 1 

k = l 

E (n - k)an-k+3Gk = Gw + 3 - (n + 3)a; 

fe = i 

n - k + 3 ^ _ /-, _ / w i Q N ^ + 3 

£ = 0 

In 
1 ^ 2 ( 2 n - f e ) + l ^ E „2(2n - f c ) + l r ^ _ r2 

a UkUk+l ~ ^ 2 k = o 
2n-l 

y - 2 ( 2 n - / c ) - l r - r _ r2 _ hn 

k = 0 

£ a * - " + 1 f f f c
2 -GHGn + 1 . 

k = 0 
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l o f a * ^ ' ^ = G3n+k + (-l)n6a2n+5Gn_1 + 5a3n + \ 

k = 0 

Gn+m = GnGm + alG
n-lGm-l> 

Gl ~Gn-^n+k = H r ^ 1 ^ ^ ^ ^ ^ 
aGsn + z = Gn + i + a Gn - a Gn_1, 

aG2n+l = Gn + 1 " a Gn-l' 

The proofs of the above relations are omitted. 
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A multiplication table constructed only with Fibonacci numbers assumes the 

appearance shown in Table 1. In any of its rows among three successive inte-

gers, the sum of the first two equals the third. This may be expressed as 

( i ) 

F 
r 8 
FQ 

F F + F F = F F 
m n m n+l J-mLn+2' 

1 
1 
2 
3 
5 
8 
13 
21 
34 

Table 1 

F„ Fc 7 

13 
^8 

21 

F 9 
34 

1 
1 
2 
3 
5 
8 
13 
21 
34 

1 
1 
2 
3 
5 
8 
13 
21 
34 

2 
2 
4 
6 
10 
16 
26 
42 
68 

3 
3 
6 
9 
15 
24 
39 
63 
102 

5 
5 
10 
15 
25 
40 
65 
105 
170 

8 
8 
16 
24 
40 
64 
104 
168 
272 

13 
13 
26 
39 
65 
104 
169 
273 
442 

21 
21 
42 
63 
105 
168 
273 
441 
714 

34 
34 
68 
102 
170 
272 
442 
714 
1156 

While this result is rather trivial, it does suggest that the table should 

be scrutinized to uncover analogs. Doing this, an investigator perceives that 

along any descending diagonal the sum of two successive integers is a Fibonacci 

number. This is expressed as 

F F + F F LmL n ^ L m + lL n + l Fm (2) m + n + 1• 

Combining formulas (1) and (2) "geometrically" leads to the following tri 

angular representation in the table: 

F F + F ^,F + F ± 1 F , m n m+ 1 n m+ 1 n - 1 F m + n+l (3) 

One of the identities known by practically every student of the Fibonacci 

numbers is 

+ F z = F F _,_ , n n n + l 
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On the Fibonacci multiplication table, this assumes the following appear-

ance: 

When analogs are sought in the table, none appears. In view of the findings 

of identities (1), (2), and (3), this is surprising. 

If, however, this well-known result is altered to assume the form 

FF+(F2 + F2+'''+F2)=F°F , 
£ \ n 2 ^ y£ 2 £ 3 ^ £ n } £n Ln + 1> 

it remains numerically identical to 1 4-1 + 2 + 

As the revised form 

+ F = F • F 
^ Ln Ln Ln+± 

has analogs throughout the table, it is evident that 1 + 1 + 2 + ''' + Fn 

F • F is just a special case of the more general identity 
n n+l 

Fm-lFn + FmFn + F
m+lFn + l + F

m+2Fn + 2 + • " + F
m + kFn + k = F

m + k
Fn + k + l > 

t h a t i s , 

ZF
m + J

F
n + j = F

m + k
Fn + k + l ~ Fm-lFn ^ r m > 2, n > 1 . 

J - 0 
(4) 

A sequence of squares beginning in the upper left-hand corner of the table 

may be built as follows: 

F, 

F l 

1 

1 

F2 

1 1 

1 

1 
l 2 

F, 

F, 

F l 

1 

1 

2 

F 
£ 2 

1 

1 

2 

^ 3 

2 

2 

4 , 

3> . . . , . 

(.Fx + F2)2 

(i + D2 (FI + F2 + F
3 ) -

( 1 + 1 + 2 ) 2 

F l 

1 

1 

; 

Fn 

F2 • 

1 . 

• • ^n 

. . Fn 

; 

Fl\ 
(F1 + F2 + • • • + Fn)2 

(1 + 1 + • • • + Fn)2 
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This same sequence could also be developed by summing rows and columns in 

the manner indicated below: 

F, 

'.••:-
F l 

1 

F2 

3 
> F2 

F3 

F l 

1 

F 
C 2 

3 

^3 

12 

F2 

5 • • * 5 • 

F i 

I 

F2 

3 

1Z 

33 

F (F 

Fn 

2) 

As these constructions cover identical squares, it becomes evident that the 

entries of any n by n square in the upper left-hand corner of the table may be 

summed in any two distinct ways both of which equal (Fn+2 - 1) . This results 

in the following identities: 

2 

(±H) = Z.FHF.+ 3 - 2) = (Fn+2 - 1 
\z = 1 I ^ = 1 

(5) 

An analog of the sequence of squares is the sequence of oblong rectangles 

of dimension n by n + 1. 

1 1 

2 

6 

1 

1 

2 

1 

1 

2 

2 

2 

4 

3 

3 

6 

2 

6 

20 

By pursuing an analysis similar to that performed on the squares, the fol-

lowing oblong identities are obtained: 

n + l 

Other identities that may be gleaned from the table include 

and 

330 

Fz = F • F + 1 
2 n + l 2n 2n+2 

Tji 2 — W •' JP 
£ in r In - 1 ^ 2n + l 1, 

(6) 

(7) 

(8) 
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which can readily be combined into 

Fn-lFn+l ~Fn= (-!)"> (9) 

the basis for one of Charles Dodgsonfs favorite geometrical puzzles: 

V l * „ + 1 -
 Fn + 2Fn-2 = 2(~1)n- (10) 

*o#o# 

Third International Conference (Continued from page 289) 

actual ocean of yellows—were not only joyous, but also touched our mathematical souls. Do Fibonacci 
numbers not play an important role in deciphering nature's handiwork in sunflowers? 

Volterra, situated about 550 metres above sea-level, immediately transplanted us into enigmatic Etruscan, 
as well as into problematic Medieval times. While we were fascinated both by the histroic memorabilia, as 
well as by the artifacts and master pieces, the magnificent panorama of the surrounding landscape enhanced 
our enjoyment still further. 

As has become tradition in our conference, a banquet was held on the last night before the closing of 
our sessions. Lucca, the site of the meeting, provided a wonderful setting for a memorable evening, 
Ligurian in origin, it bespeaks of Etruscan culture, and exudes the charm of an ancient city. 

The spirit at the banquet highlighted what had already become apparent during the week: that the Conference 
had not only been mind-streatching, but also heartwarming. Friendships which had been started, became 
knitted more closely. New friendships were formed. The magnetism of common interest and shared enthusiasm 
wove strong bonds amoung us. We had come from different cultural and ethnic backgrounds, and our native 
tongues differed. Yet, we truly understood each other. And we cared for each other. 

I believe, I speak for all of us if I express my heartfelt thanks to all members of the International, as well as 
of the Local Committee whose dedication and industriousness gave us this unforgettable event. Our gratitude 
also goes to the University of Pisa whose generous hospitality we truly appreciated. I would also like to thank 
all participants, without whose work we could not have had this treat. 

"Auf Wiedersehen" then, at Conference number Four in 1990. 
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1. INTRODUCTION 

According to Dickson [3, pp. 6 and 17], Fermat conjectured and Gauss proved 

the following theorem. 

Theorem 1: Every nonnegative integer can be expressed as a sum of three tri-

angular numbers [including 0 = 0(0 + l)/2]. 

Gauss also gave a method for counting the number of such representations 

of a given nonnegative integer. In this paper we propose to express the impli-

cit counting function in terms of simple divisor functions. All of these func-

tions are collected in the following definition. 

Definition: 

(i) For each nonnegative integer n, t3(n) denotes the cardinality of the 

s e t / 3 N 
Uxl9 x2, x 3 ) e]N3\?i = £ xi(xi + 1)/2J>. 

(Here, JN = {0, 1, 2, . . . } . ) 

(ii) For each positive integer n and £ € {l, 5}, 

^(n):= E 1; 
6= i (mod 6) 

and, e(n) : = d1(n) - d5(n). 

Theorem 2: Let n denote an arbitrary nonnegative integer. 

(i) If n = 3£(£ + l)/2, for some £ e J7, then 

tq(n) = 1 + 3 y > ( n - 3£(£ + l)/2). 
d i-o 

(ii) If n is not of the form 3£(£ + l)/2, then 

M n ) = 3 E £ ( n " 3£(£ + l)/2). 
£ = 0 

In both cases, summation extends over all £ € IN for which n ~ 3i(i + l)/2 > 0. 
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Section 2 is dedicated to proof of Theorem 2. In view of the two theorems 

we then deduce a corollary concerning the behavior of the function £. 

2. PROOF OF THEOREM 2 

The leading role in our argument is played by the following variant of the 

quintuple-product identity. 

fid- * * * ) ( ! - a2Xln-2)(l - a-2X2n) _ ^a.n(3n+2)(a-3n. „ a 3 n + 2 ) - ( 1 ) 

1 (1 + ax271-1)^ + a^x2"-1) 

(Here and throughout our discussion we assume that a and x denote complex num-
bers with a ^ 0 and \x\ < 1.) For a discussion of (1) and other forms of the 
quintuple-product identity see [5]. We shall also require the classical triple-

product identity: 

O d - x2n)(l + ax271'1)^ + a~xx2n-x) = JTxn2an. (2) 
1 -00 

In [2] Carlitz and Subbarao show how to deduce one form of the quintuple-prod-

uct identity from (2). 

Multiplying (1) by a"1, we have 

(a - a'1) ft CI - « t o ) d - «2a:2")Cl - (3) 
i (1 + ax2n-l)(l + a"1*2""1) 

= a f > 3 n 2 + 2 n a 3 n - a"1 f ) xSnZ + 2n
a-3n 

_oo - c o 

= a fl (1 - x6n)(l + a V ^ X l + a-3x&n-5) 
l 

- a'1 fid - xSn)(l + a'W-^d + a 3 * 6 n " 5 ) . 
l 

In the last step we have used (2) to transform the infinite series into infinite 

products. For the sake of brevity, put 

r,, N N A (! - a2^2n)(l - a"2^2n) 
F(a) = F(a, x) : = II — ~ — (1 + oaj^^Xl + a-xx^-x) 

G{a) = £(a, x) : = ft (1 + aV n _ 1 )(l + a"3x6n"5)5 
l 

#(a) : = £(a~]-). 

Hence, (3) becomes 

0(1 - x2n)(a - a-x)F(a) = II d - *6*){a£(a) - a"1i7(a)}, 
l i 
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Differentiating the foregoing identity with respect to a, we get 

ft (1 - x2n){(l + a~2)F(a) + (a - a~1)F'(a)} (4) 
l 

= II (1 - x6n){G(a) + a'2H(a) + aGr(a) - a'1H,(a)}. 
l 

Now, using the technique of logarithmic differentiation, we evaluate GT(a) and 

Hr(a)9 then substitute these evaluations into (4), let a -> 1, and cancel a fac-

tor of 2 in the resulting identity to get 

^ (1 - x2n)3 

1 (I +a:2B-1)2 ' 

CO ( " / - v . 6 " " 1 rf^n "5 

= n (i - *6 n)d + x6n_1)(i + x&n-5)h + 3 £ 
i ( i \1 + X6""1 1 + a6"-5, 

In the foregoing identity we then let x •+ -x, utilize the definition of e, and 

simplify to get 

n — ^ ^ - L = 1 + 3£e(«)cc*. (5) 
1 (1 - a;2"" 1) 3- (1 - x&n) i 

At this juncture, we appeal to the following well-known identity of Gauss [4, 

p. 284]. 

1 1 - x2n~x o 

Hence, (5) becomes 

/ oo \ Q t» , ( oo s 

or, equivalently (owing to the fact that the left side of this identity gener-

ates t 3 ) , 

f>3(n);cn = f)i3 i ( i t I )' 2 + 3 ^ » E e(n - 3i(i + l)/2). 
0 i =0 n = l i = 0 

Equating coefficients of like powers of x, we thus prove our theorem. 

Corollary: If n is any positive integer which is not of the form 3i(i + l)/2, 

then there exists j e {0, 1,...,[(-1 + V(8/3)n + l)/2]} such that 

e(n - 3j(j + l)/2) > 0. 

Proof: Let such an n be given. By multiplicative induction it follows easily 

that z(jri) ^ 0 for each positive integer• m. Hence, the sum on the right side of 
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the equation of Theorem 2(ii) is nonnegative. Now, by Theorem 1, t (ji) > 0. 

Hence, the aforementioned sum is positive, whence there exists 

j e {0, 1, ..., [(-1 + A8/3)n + l)/2]} 

such that 

e(n - 3J(J + l)/2) > 0. 

CONCLUDING REMARKS 

In a recent paper, Andrews [1] has presented a proof of Theorem 1 which 

(unlike Gauss's proof) is independent of the theory of ternary quadratic forms. 

Of course, such proofs of Theorem 1 and Theorem 2 then combine to yield a proof 

of the Corollary that is independent of the theory of ternary quadratic forms. 

However, if one could find another such direct proof of the Corollary, then one 

could use the statement of the Corollary (then independent of Theorems 1 and 2) 

and Theorem 2 to produce yet another proof of Theorem 1. 
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R. J. Stroeker [1] considered the Diophantine equation 

(x2 + y)(x + y2) = N(x - y)\ (1) 

where N is a positive integer. He found all solutions of (1) for N ̂  51 and 
proved that if x9 y satisfy this equation with N 4 1* 2, 4 then 

max(|x|, \y\) < Ns (see Theorem 1 of [1]). 

For every N equation, (1) has the trivial solution x = y = -1. Theorem 2 of 

[1] asserts that for odd N > 1 there exists a nontrivial solution with xy f 0, 
and for infinitely many such values of N there are at least five such solu-
tions. The table given at the end of [1] shows that for many even N there is 
only the trivial solution. 

Below, we exhibit a connection between (1) and Fibonacci numbers defined by 

F n = 0 9 F , = 1 , F_l,=F + F . The following identities are well known: 
0 ' 1 y n+ 1 n n -1 b 

**-„**+„ - ^ 2 = (-Df c + n +X2- (3) 
When we put n = 1 or 2 in identity (3), it becomes, respectively, 

F^2- (-1)* = Fk_2Fk + 2. (5) 

Taking (4) with fc replaced by k + 1 and multiplying i t by Fk+1, we get 

FkFk+lFk+2 " Ffc+1 " ( - 1 ) Ffc+19 

^fe+1 ~ ( - 1 ) (Fk + 2 - Fk) = FkFk+iFk + 2> 

which, in view of (2), may be written in the form 

C i + <~»\ -h-tf+z' (6) 

Multiplying (5) and (6), we get 

[Fk
2- (-l)k][Fk\1+ (-l)*Ffc] =Fk_2Fk_1(Fk +Fk + 1)\ 
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and 

This shows that, for N = Fk-zFk-i' e q u a t i o n (1) is satisfied by 

x = FkFk+i> y = ~Fk\i i k e v e n ) 

and by 

x = Fk\i> y = ~FkFk+i <k o d d > -

Therefore, for infinitely many values of N9 the number max(|x|, \y\) is larger 

than UN because 

Furthermore, since there are infinitely many even Fibonacci numbers, there are 

infinitely many positive even integers N such that (1) has a nontrivial solu-

tion . The last result, however, can be proved in a simpler way: 

For N = [(a + l) 3 + 1](a3 + 1), the numbers x = a(a + I ) 2 , 

y = a2 (a + 1) satisfy (1). 

The following question remains open: Do there exist infinitely many posi-

tive (even) integers N such that equation (1) has only the trivial solution? 
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1. The classical cuboid has integral edges and face diagonals. We require 

integer solutions of the Diophantine equations: 

x2 + y2 = u2, x2 + z2 = v2 , and y2 + z2 = 0)2. (1.1) 

The first parametric solution was given by Saunderson (Dickson [l],p. 497) 

and subsequent two-parameter solutions have been given by a number of writers; 

a listing of these authors can be found in Kraitchik [2]. The general solution 

of equations (1.1) is unknown. In this paper a method is given which leads to 

an infinity of two-parameter solutions which are of ever-increasing degree and 

complexity. 

2. A solution of (1.1) is given by 

x = (a2 - d2)(c2 - b2) (2.1) 

y = 2ad(c2 - b2) 

2 , 2-/2/ 2 , 2abd jz\ ( 2 , 2aad ,2\ z = ko^b \a + - d ) [a + —r— - d ) , 

because 

x2 + y2 = ((o2 - b2)(a2 + d2))2 

x2 + z2 = ((a2 - d2)(b2 + c2) + kabcd)2 

y2 + z2 = h{ad{b2 + c2) + ba(a2 - d2))2 » 

We see from these equations that a cuboid with two integral edges and integral 

face diagonals has a four-parameter solution. The problem here is to make z 

rational. 

Putting ajd - w and b/c = D (say), where w and D are rationals5 we have 

z2 = kc2b2dh{w2 + 2Du) - l)(w2 + jjW - l) . (2.2) 

If we multiply the quadratics and put A - D + l/D9 we require rational solu-

tions of 

wh + 2Aw* + 2w2 - 2Aw + 1 - t2. (2.3) 
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We wish to determine solutions of (2.3) in the form w = w(A). If (2.3) has 

a rational solution w = wQ9 then it also has a rational solution 

1 
W = - — . 

w0 

But this will just interchange a and d and will not effect the solution 

We can equate (2.3) to the square of a quadratic in w in the usual way, to 

show that there is a rational solution 

This gives the classical solution of Saunderson: 

x = (c2 - b2)((b2 + c2)2 - I6b2c2) (2.5) 

y = 8bc(ch - bh) 

z = 2bc(3(b2 + c2)2 - 16b2c2). 

Equation (2.2) has another simple solution. Putting w = 1/2D9 we see that 

W2 + 2Dw - 1 is square, and we require 

_5_ 
2 1 = •. 

This has the standard rational solution 

n a2 + qg - B2 

D = and • = 
a2 + 32 

a2 - 4ag - B2 V 
,2(q2 + qB - B 2 ) / ' 

-, a = a2 + B2
3 d = = 2(q2 + qB -- B 2 ) , 

which gives 

a = a2 + B2
9 b •= a2 + qB -

and we have the solution: 

x = aB(a2 - B2)(3q - B)(3B + a)(2a + B)(2B - a) (2.6) 

y = 4qB(a2 + B2)(2a•+ B)(2B - a) (a2 + qB - B2) 
z = 2(q2 + B2)2(a2 + qB - B2)(a2 - 4qB - B2). 

3. To determine further solutions of (2.3), we can put w = n + wQ, where 

w\ + 2Aw\ + 2w\ - 2AwQ + 1 = t2, and write 

nk+ (4w0 + 2A)n3 + (6w2
Q + 6AwQ + 2)n2 + (hw\ + 6Aw2

Q + 4wQ - 2A)n + t\ 
' o 

R V 7 - I - •/, = (Cn2 + Bn + t,)2 ( s a y ) , 

T h e r e f o r e , 

2BtQ = 4^Q + 6Aw2
Q + 4u0 - 24 

+ 2CtQ = 6w2 + 6/kJ0 + 2 
a n d 23C - 4 ^ . - 2 . 4 

w= _____ + WQB 
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These equations give: 

Aw* + 12W8
Q + 12Aw7

Q + 32w6
0 + 30Aw5

Q + 24w£ - 36Aws
Q + 9Aw0 - 4 

w = . (3.1) 
hw\ + 9Aw\ - 36Aw\ - 2hw\ + 30Aw] - 32w3

Q + \2Aw\ - I2w0 + A 

If we put wQ = .4/4, then the next solution generated is 

A10 + 240,4 8 + 9728,4 6 - 1228804" + 58982442 - 1048576 
w = . 

SA(5A8 - 288Ae + 307244 + 819242 - 65536) 

Putting D = 2 = fc/c, we obtain 4 = 5/2 and w = 602697401/880248720. Hence, we 

have a cuboid with i = 2 , c = l , a = 602697401, and d = 880248720. 

Equation (3.1) will generate an infinity of rational solutions w9 and each 

such solution gives a two-parameter solution of equations (1.1). It is evident 

that these solutions increase very rapidly in degree and complexity. The solu-

tions do not necessarily give independent parametric formulas. If we put wQ = 
A + 4 ls then w - , _ /, which, again, gives Saunderson's solution (2.5). 

k. It is seen that the solution 

• - * - * ( » • * ) 
makes both quadratics, w + 2Dw - 1 and W2 + JJW - 1, simultaneously square. 
We will now consider this further. 

We have 

,2 
w 

a. OT-v, i f®2 + 2DoL - l \ 2 .c a2 + 1 ,, 1N 
+ 2Db) ~ l = I 2a + 2£ ) lf W = 2oTT-2^ (4'X> 

and 

23 + 
^z + -w - 1 = I 1 if w = 1, (4.2) 

D 

where a and 3 are arbitrary rationals such that w is finite. Equating (4.1) 

and (4.2), we require rationals a and 3 such that 

a2 + 1 B2 + 1 
2a + 2D 2 

P D 

(4.3) 

If a = 3, then D = 1, which is trivial. If a = -3, then we again obtain the 

classical solution (2.5). Thus, we have 

(a + 2)(32 + 1) = (3 + ̂ )(a2 + 1). 

Put a + D = z(3 + ̂ ) and 32 + 1 = -̂ (a2 + 1) for some rational K: 
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.-. &2(K2 - K) + Q{^- - 2KD) + (|£ - 3K + D2 + l\ =0 

••• e - (*D - £ ± (^_|!MI _ 4z2 + (1 + D^x/2yK, _ x. 
We require 

K3 - 4ZZ + (1 + DZ)K = a. (4.4) 

2 _L i \2 
Multiply equation (4.4) by UL+±\ a n d p u t

 ( P + 1 ) Z = w (say), 

m -km + 1 — 1 772 = • . 

Let us put, as before, A = D + 1/Z), then we have 

w3 - 4m2 + A2m = t2. (4.5) 

Equation (4.5) is an elliptic curve and has the obvious rational solution 

777 = 4. We can see, by direct substitution, that if m = m is a rational solu-

tion then 777 = A2/mQ is also a rational solution. Employing the same technique 

as before, we can put m = n + 77?0 and consider 

n3 + n2(37772 - 4) + n(3rn0 - SmQ + A2) + t\ = (Bn + tQ)2, ( 4 . 6 ) 

which g i v e s 
(m2 - , 4 2 ) 2 

( 4 . 7 ) 
4 (777g - 47T72 + y42777Q) 

The right-hand side of (4.7) is unchanged if 7770 is replaced by A2/mQ. We 

can therefore generate two sequences of solutions starting with 77? = 4. Thus, 

we have 

777n = 4 and 
A2 

(16 - ^ 2 ) 2 , 164" 
— and 

1642 (16 - A2)2 

((16 - A2)1* - 256A6)2 , 644* U 2 - 16)2(Ak + 644 2 - 256) 
a n d - — • - - • - — - - • — • - — • in 2 

6442(42 - l6)2(Ah + 6442 - 256) ((16 - A2)1* - 25646)2 

etc. 

Using these values of 777 we can determine 3? and hence a, as a rational function 

of D. This will then give w as a rational function of D and will lead to a 
two-parameter solution. For 777 = 4, we have solution (2.5). For 777 = 42/4, we 

have 
Dh 4- 8D2 - 1 

a = — and 3 
2D(DZ - 3) D(D2 - 3) 
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(D2 + l)(Dh + 18DZ + 1) 
with w 

M){3Bh - 10D2 + 3) 

With this values for w, we have 

2j.07, , (5De + 27Dh - 41£2 + 1 w + 2Dw - 1 = ( 
V UD(3Dh - 10D2 + 3) 

and 
2 l 2 , (D6 - 41P4 + 27D2 + 5\2 

V 4Z)(3Z)4 - 10D2 + 3) / 

Putting D = b/c and removing common factors gives the solution: 

x = (c2 - b2)((b2 + o2)2{Jjh + 18&2c?2 + c1*)2 (4.8) 

- 16£2e2(3£4 - I0b2c2 + 3 c V ) 

z/ = 8 t e ( ^ - Z ? 4 ) ^ + I8b2c2 + ^)(3Z/ - 10Z?2c2 + 3ch) 

z = 2bc(bs - 412? V + 27£2cl+ + 5c6)(5£6 + 272? V - 41&V + c6) 

Putting b = 29 c = 1 gives 

a; = 570843, y = 234960, 2 = 1128524; 

and putting b = 3, e = 1 gives 

x = 153076, y = 570960, z = 600357. 

Neither of these solutions is in Lai and Blundonfs [3] computer-generated list. 

( ~\ r /]2\2 

For m1 = — 1 r . o—— we have, if D = 2 5 that 
1 16A 
= -509 R = -1139 -260681 

a 40 9 P 78 s ^ 34320 ; 

thus, a = -260681, & = 2, c = 1, and d = 34320. This gives 

x = 3(295001)(226361) 
z/ = 6(260681) (34320) = 2 5 - 32 - 5 • 11 • 13 • 29 • 89 • 101 

z = 4(176041)(240479). 

We can also determine another set of solutions of 4.5 by writing 

n3 + n2(3mQ - 4) + n(3m2
Q - 8mQ + A2) + t\ = (Cn2 + 5n + t Q ) 2 . 

This gives 

3/T?^ - 16/?^ + 6^2m2 - Ah 
(4.9) 

Equation (4.9) will again generate two infinite sets of two-parameter formulas. 
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5- It is clear that the sequences of parametric solutions given in this 

paper by (3.1), (4.7), and (4.9) rapidly lead to solutions of high degree with 

"large" values for x9 y9 and z. But we know from Lai and Blundon's list [3] 

that there are many smaller solutions, and so there must be other parametric 

solutions of smaller degree, like (2.5) and (2.6). Some other solutions of 

degree 8 or more are given in Kraitchik [2, Ch. 5]. For each such parametric 

solution x9 y, and 2, we have the derived solution given by X = yz , Y = xz, and 

Z = xy. This effectively doubles the number of formulas. Whether there are 

solutions of (2.3) which give these smaller solutions remains open. It seems 

intuitively clear that the number of parametric solutions of given degree is 

finite, but that this number increases with the degree. Unfortunately, we have 

no idea what this rate of increase might be. 

6. Finally, we see, from (2.1), that 

2 2 2 4 lh^2fD2 + 1 \ 2 / 4 ' • SW3 ' , o 2 SW , A 

Ff1) FiR 
Therefore, putting D + l/D = A as before, we see that x2 + y + z is square if 

wh + jw3 + 2w2 - jw + 1 = n. 

This equation is similar to (2.3). If we change A into h/A9 we can deduce ra-

tional solutions using (3.1), starting with w = l/A. Therefore, we can gener-

ate a sequence of two-parameter formulas for a cuboid with edges x, y, and z , 

such that x2 + y2, x2 + z2, y2 + z2, and x2 + y2 + z2 are all square. 

A perfect cuboid would exist if we could find rational W and A = D + -̂  ̂  2, 

where D is also rational, such that 

w + 2Aw3 + 2w2 - 2Aw + 1 and wh + -w3 + 2w2 - -rw + 1 A " • A 

are both square, or if we could determine a solution w = w(A) satisfying both 

quartics. This, of course, seems unlikely, but the problem of perfect cuboids 

remains stubbornly open. 
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1. INTRODUCTION 

In [1], Horadam and Mahon define a family of n x n matrices Vn in connec-

tion with the Pell polynomials U(x). They conjecture that the characteristic 

polynomial of Vn is given by 

cnw = t (-DikZ + k)/2{n, mn-k, ( l .D 
k = 0 

where 

{n, k} = fl ̂ (x)/n Ui{x)nf\Ui{x). (1.2) 
£ = 1 / £ = 1 £ = 1 

In this paper we prove the conjecture of Horadam and Mahon and also derive 

various other results concerning the structure of Vn and Cn{\). 

2. NOTATION 

The Pell polynomials are defined recursively by 

UQ(x) = 0, U1(x) = 1, 

Un(x) = 2xUn_1(x) + Un.,2{x) (n > 2) 

and the associated Pell-Lucas polynomials by 

WQ(x) = 2, W±(x) = 2a?, 

tfn0c) = 2xWn_1(x) + tfn_2(a:) (n > 2). 

In this paper, to keep the notation as simple as possible, we shall work 

with the following closely related polynomials in the indeterminate t: 

P0(t) = 0, P^t) = 1, 

Pn(t) = tPn_1(t) + Pn_2(£) (n > 2) 
and 

Q0(t) = 2, ^(t) = *, 

Standard manipulations with difference equations give the Binet formulas: 

Pn(t) = (an - gn)/(a - 6) and Gn(*) = a" + Bn, 
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where a, (3 are the roots of the polynomial y2 - ty - 1; 

= j[t + Vt2 + 4] and = |[t - Vt2 + 4] . 

We shall require the easily proven identity 

p„(t) 
[n/2] "•I <- J / 

5( 
n - fe - 1 

k = l 
)tn~1-2k. 

Vn is defined to be the n x n matrix whose (i, j) entry is 

(F*^ = 0 + i J - 1 
i - n 

Li + j - n - l 

for example, 

0 0 0 1 
0 0 1 3t 
0 1 It 3t2 

(2.1) 

A SIMILARITY TRANSFORMATION ON V 

The main result of this section (Theorem 3.2) shows that Vn is similar to 

a particularly nice matrix in block upper triangular form. This form will lead 

to a recursion for the characteristic polynomial of Vn -

Let Tn be the n x n matrix whose columns carry the recurrence satisfied by 

Pn(-t)9 i.e., 

1, if i = j 
t, if t = j + 1 

|-1, if t = j + 2 
0, otherwise. 

Then we have 

(T ) .. 

Lemma 3*1: The inverse of Tn is given by 

tj 

if ^ = J 
if i < j 

v^ + i^)* i f l = 3 + k. 

Proof: Let A denote the matrix defined in the statement of the Lemma, and let 

B = T A. Then B is lower triangular, with diagonal elements all equal to one. 

A typical element below the diagonal has the form 

since this is the recursion defining P.(-£). Thus, B = I and A = T~ . • 

Theorem 3«2: The matrix Tn VnTn has the block form 

(n 2)x 2, J is 2 x 2, and 

-Vr, 
where X is 
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Pn(t) Pn.x(t) 

Proof: First we show, by induction, that the first n - 2 columns•of the matrix 

A = (a,p = T-n\Tn 

have the desired form. 
i -•, The ^cn row of T~n
x is 

Ri = [^("^)9 ^ _ i ( ~ t ) s •••» ?2(-t), 1.0, ..., 0] 

and the j t h column of K, JL\, i s C,- = col (x . . . . , x ) , where 

xk = 0 (k = I, 2, ..., n - j - 2) 
Xn-j-l = _ 1 

xn_3. = -(j \ l ) t + t 

= . « - m - - ( i : i ) * k + i + u > * + i + ( i : i ) * k - 1 - ' 
Then a-, is the dot product R^ • c77-9 and to start the induction, we have: -LJ 

a .. = 0 i f n - j - 2 > i 
<SfJ 

id 

"id 

a . • 

-1 i f n - j - 2 = i - 1 

-(J° ~ X ) t i f n - j - 2 = i - 2 

-(J' ^ X ) * 2 i f n - j - 2 = i - 3 . 

Now suppose t h a t , i f 0 ^ s < 20 and n - j ~ 2 = i - s , then 

^3 \s - 1 / 
Then, for n - j - 2 = i - r , 

•2-J = £ p i t l . t ( - t ) = 
fc = l 

i - 1 

Zc = £ - r + 1 

-£ - 1 

k=i-r+i 

= (-*) 

346 
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This completes the induction. 

From the definition of Vn , the j t h column of Vn_2 must be 

coi[o, o,..... o, i, (j - l)t, p' - ̂  ,..., ( j : \ y - 2 , f'-1" 
therefore, the upper left diagonal (n - 2) x (n - 2) block of Tn

1VnTn is indeed 

-K-2-
The entries a n - 1, j and an • for 1 < j < n - 2 are all zero because, if t = 

n - l , then n - j - 2 = i ~ r implies v = J + 1. Then the term 

- * ~ ( j : ; ) - -t*-^ -l) - o. 
If i = n and n - j - 2 = z - r , then r3 = j + 2 and we have 

• ' ( * : ! ) - - ' • ' « ; ! ) 

0. 

I t remains to show tha t the lower r i g h t diagonal 2 x 2 block of Tn VnTn i s 

given by 

>„(*) ?„-!(*)" 

We s h a l l compute an?n in d e t a i l . The other th ree cases are s i m i l a r . Recalling 

t h a t 
Rn= lPn(-t), P n . , ( - * ) , •••> P2(-*)> 1] 

and 

C = c ol[l. (» " > , (» " V . 
we have 

n - l 

I(", K-.H) fc = 0 

n - l 

. = 0 \ K I A = o J k = 0 v J 

by ( 2 . 1 ) . Reversing the order of summation gives 

tl/2] „ , _• nzJJ in - l\(n - j - k - 1 
j = o fc = o 

[n/2] . n~ 2j" / r 7 _ i x / 

*„.« = Z *n'1-2j L ( k )( J 
^ - l ) " - . ^ 1 " ^ 

Consider the inner sum 

n-2J 

s - " i f ( n f c 1 ) ( " - ' / ^ - 1 ) ( - i > B " * " 1 " 2 J 

fe = 0 

( ? 2 — 7* — fc~~l\ / 7* "- 1 \ . j = ^ . j = 09 so 
we may take the upper limit to be n - 2j - 1. 
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N 

Now, make the substitution p = n - 2j - 1 in S to get 

a - if 12v+ j - *)<-»'-* - i f \ w ) ( p ; i i «)<-»*->• 
ote that [" - ) is the coefficient of xk in the expansion of (1 + x ) p + 2j* 

and that (-" ^ - )(-l)p~k is the coefficient of xp~ in the expansion of 

(1 + x)'3"1. Then S is the coefficient of xp in the expansion of 

(1 + xy + ^'-i-1 = (1 + ^ ) n " J " - 2 , 

that is, 

.*-(,":6"-2i)-(V-l2)-
Returning to the calculation of an n, we have 

[n/2] -, o - / r 7 - -7 - ? \ t ( w - 2 ) / 2 ] / „ o _ l , \ a o 7 

j-o \ j - i / fe = 0 A: / 

(eliminating zero terms and replacing j - 1 by k). Thus, an n = Pn_2(t), by 

(2.1). The sums for a . a , and a , , can be evaluated by the same 

methods, but we omit the proofs here, m 

k. THE CHARACTERISTIC POLYNOMIAL OF Vn(t) 

Let An denote the matrix T"n
lVnTn and let Cn(X) be the characteristic poly-

nomial of Vn. As before, let Y = Yn be the matrix 

^n = 

In this section, we establish some basic properties of Cn(X) and prove the 

conjecture of Mahon and Horadam. 

Lemma k.\: The characteristic polynomial Cn(X) of Vn satisfies the recurrence: 

CZ(X) = X2 - tX - I 

C3(A) = (X + 1)(X2 + Q2(t)X + 1) 

Cn{X) = (-l)"-2Cn.2(-A)(A2 - Qn_l(t)X+ (-I)""1). 

Proof: Since An and 7n are similar, C (X) - \Xl - An\ . By the block form of 

A 
\XI - An\ = \XI + 7„_2| • |XJ - Yn\. 

Since P„(t)Pn_2(*) - Pn.x{t)2 = (-1)""1 and P„ (*) + Pn.2(t) = Qn.^t) t 
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|AJ - Yn\ - X2 - Qn^(t)X + (-l)*"1. 

Since jXI + Fn„2| = (-1)"~2Cn^2(-X), Lemma 4.1 follows, • 

Corollary k.2: 

a) If n is even5 say n = 2/<9 then 

k-i 

j = o 

and the characteristic roots of C2k (X) are 

{(-lya*-1-2*, (-I^'B"-1"2^ : j = 0, 1, ..., fc - 1}. 

b) If n is odd, say n = 2k + 1, then 

C2k + 1(A) = (X - (-1)*) n (X2 - Qn_1_2At) • (-1)J'A + 1), 

and the characteristic roots of C.JL+.(A) are 

{(-l)fc, (-l^'a"-1-^', (-1)5 B"-1-2^ : j = 0, 1, ...,fe-l}. 

Proof: We prove b); the proof of a) is similar. From Lemma 4.1, we get 

C5(X) = (A2 - Qk(t)\ + 1)(A2 - «2(t)(-X) + 1)(A - 1), 

and from the recurrence, for n ^ 5, we derive 

Cn(X) = (X2 - Qn^(t)X + 1)(X2 - C„.3(t)(-X) + l)c7n_4(A)e 

Since C3(X) has the factor (X + 1), if n = 3 (mod 4), Cn(X) will also have the 

the factor 

a + i) = x + ( - i ) ( n - 1 ) / 2 . 
Since C5(X) has the factor (X - 1), if n E 1 (mod 4), Cn(\) will also have the 

factor 

(X - 1) = X + (-l)(n-1)/2. 

The rest of b) is clear. 

The characteristic roots of Cn(X) are the roots of its factors. We have 

(X - a«0(X - (5J") = X2 - (a«* + 3J')X + (a$)J' = X2 - ̂ (t) + (-l)J' 
and 

(X + ĉ ')(X + B^) = X2 - «7.(£)(-X) + (-DJS 

and this completes the proof, a 

Define the coefficient {n3 /c} by 

{n, /<} - n p7. ^ ) / ri ^ (t) "TIP,, (t) 
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and define the polynomial i?n(X) by 

*»tt> = t (-D(k2 + k)/2in, k}\n'k. 

k = 0 

The next theorem states that i?n(X) - Cn(X) . Then the conjecture of Mahon 

and Horadam follows by making the substitution t = 2x. 
Theorem 4.3: For all n > 2, Rn(X) = Cn(X). 

Proof: It is easy to verify the cases n = 2, 3. Thus, we need only show that 

i?n(X) satisfies the recurrence of Lemma 4.1; that is, we must show that 

Bn(X) = (.-DnRn_2i-\) • (A2 - Qn_1(t)X + (-1)""1). (*) 

Let F(X) denote the right-hand side of (*), let a^ denote the coefficient of XJ 

in Rn(X)9 and bj the coefficient of XJ in F(X) . Then, from the definition of 

i?n(X), an = 1, an_x = -Pn, a, = (-l)(n2"
 n)/% , and aQ = (-l)("2+*>/2. 

The nth term in F(X) is 

(-l)n(-X)n~2X2 = Xn, 

so bn = 1 = an. 

The (n - l) t h term in F(X) is 

(_l)n2(-X)n-2(-l){n - 2, 1} + (-l)n(-Sn_1(t)X)(-X)^2 

= xn~1(pn.2(t) - e n . ! ( t ) ) = : x n - 1 ( - p „ . 1 ( t ) ) , 
so i n - 1 = an_1. 

The constant term of F(X) is 
(_1)W(_1)"-1(_1)(«- 1)("- 2)/2 = (_!)(«+ l)rc/2 ̂  

so a0 = £0. 

For b19 we have 

2^ = (-D"(-«n.1(t))X(-l)("-1)("-2)/2 

+ (-l)"(-i)"-i(-x)(-l)("-2)("-3)/2 {„ _ 2 , n - 3} 

= (-l)n("-1)/2(«n.1(*) - Pn.z(t))\ 

= (-D"(n-1)/2Pn(t), 

giving a± = b1. 

For the remaining coefficients we need to show that, for 2 ^ k < n - 2, 

an.k = bn_k; that is, 

+ (-i)»(-i)»-k-i(-i)^-i)/2{„ - 2, k - 1}(-Q„.x(t)) 
+ (-l)B(-l)"-*(-l)(J:-1)«-2)/2{„ - 2, fe - 2}(-l)"-1. 

Clearing signs, this reduces to 
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{w, k] = (~l)k{n - 2, k} + Qn_1(t){n - 2, k ~ 1} 

+ (~l)n+k{n - 2, k - 2}B 

Factoring out {n - 2, k - 1} reduces (**) to 
(**) 

P (t)P n(£) 
Pk(t)P„.k(t) ^ " P,(t) 

Thus, it suffices to show that for 2 < k < n - 2, 

PnOOP^C*) -P.Ct)^,^*)^.^) 
= ( - D ^ - f c O ^ . f e - x C * ) + (- i )n- f cp f ca)pf c . 1 (*) . 

This last identity is proven using the Binet formulas and the properties of a 

and 3« For convenience, denote Pn(t) by Pn and so on. First, 

- e-Mc^-1 - e " - 1 ) / ^ - 3)2 = e2n_x + ( -D n e 1 5 

(an_1 + 3n_1)(an + 3n - &kan'k - afeB""fe)/(a - 3) 2 

^k^2n-2k -1 

j 2 f e - h \ / / n , ON 2 

and 
P P = ( a r 

^n-l^kPn-k 

= ( a 2 7 7 " 1 + 3 2 " " 1 + ( - l ) n _ 1 ( 3 + a ) - ( - l ) " ( a * 

+ g2"-2fc- i ) - ( - l ) * - * ^ 2 * - 1 + 3 " / < " 1 ) ) / ( a 

(C, ( - l ) " " 1 ^ ! + ( - D k + i , 
j2n ~ 2k - 1 

Then 
+ ( - D " " k " 1 e 2 k . 1 ) / ( a - 3)2< 

Priori-1 PkPn-k^n-l 

= «-l)kQ2n-2k-i + (~l)n~kQ2k-i + 2 ( - l ) n S 1 ) / ( a - 3)2> 

On t h e o t h e r s i d e , 

= (-Dk(e2 n_2^_1 + (-i)w"f cc1)/(a - e)2 

+ ( - i ) n " k ( e 2 f e - i + ( - i ) k « i ) / ( a - e ) 2 

= ( ( - i ) / c e 2 n-2^i + <-Dn~*e2fc-i + 2 ( - D n e 1 ) / ( a - 3)2» 
Thus, the identity is true, and (**) is true; that is, an_k = £>n„k for all k9 

2 < k < n - 2. Then Pn(A) satisfies the recurrence and initial conditions of 

Lemma 4.1, and it follows that Rn(\) = C„(X) . • 

5. THE EIGENVECTORS OF Vn 

The eigenvectors of Vn can be computed in a recursive way* The initial 

cases are given below. 

Lemma 5*1°  V2 has eigenvalues as 3* Eigenvectors v1 and v? corresponding to 

a and 3 are given by 

1 
a Vo = 3 
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The matrix V3 has eigenvalues -1, a2, 32 with corresponding eigenvectors 

v i s V 2 S v 3 g i v e n b Y 

1 
t 
1 

, v 2 = 
1 
2a 
a 2 

, v 3 = 
1 
2 

Lemma 5*2: Let u = col(u15 u2, B*»3 un) and w = col(w15 W2, . . . , Wn) be adja-
cent columns of Vn , with u to the left of w. Then 

tun = wn 

tui + ui+1 = wi (i = 1, 25 »»93 n - 1). 

Proof: If u is column j s then for i = 1, 23 ..., n - j - 1 we have w = 0 and 

tz^ + ui+1 = Wi» If i - n - j + k for some fc9 0 < k < J, then 

Since un - t° "1 and Wn = t°, we have tun = Un°  B 

Corollary 5®3: Define vectors x and y by 

x = col(09 ..., 03 x,, ...s x+9 05 . * * 3 0) 
.. L^ ̂  J- ^ v^~^-.m.mv.~~^._^ 

&?„• 

y = col(09 . . . , 03 x\ , 
%. J -1 

•5 # £ » 0 , . . .» 0 ) 

J + 1 7< ~ 1 

where j + t + k = n and A: > 0, Put . 

u - Vnx and v = Vny 
with u = colC^, . .., un) and v = col(y1, * » « 5 y n^ s Then tw^ + ui + 1 = ^ . 

Proof: Let e^ denote the column vector with 1 in the kth place and 0 every-

where else* By Lemma 5*2§ the result Is true for 

x - ej+1 and y = ej+2 (j + 2 < n), 
and hence is true in general by linearity. • 

Theorem S»h: Let n > 1 be odd$ so that Vn has 

e = (-i)<»-D/2 

as an eigenvalue. Let 

v = col(v19 . . . , i;„) 

be an eigenvector corresponding to e. Put 

w = col (v1$ . . . , z;n , 0 s 0) 

+ col(05 tv19 . .., ti?n, 0) 

+ col(09 0, -v19 . . - , -tf„) . 
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Then w is an eigenvector for Vn+2, corresponding to the eigenvalue 

-£ = (-l)(n+1>/2. 

Proof: Put w = w1 + w2 + w3, where the W { are the summands in the statement 

of the Theorem. From the form of Vn (it has Vn_2 in the lower left block, with 

zeros above it), it is clear that 

7n+2Wi = £(° ' °> y i ' • • • > Vn) 

since V is an eigenvector for Vn corresponding to e. Then by Corollary 5.3, 

Frz + 2 W2 = t £ [ ( ° ' * V * " 5 Vn> 0 ) + t ( 0 s ° ' Vl> '••> ^n)] 

V w = -e[w + 2w - £2w ] 
n+2 3 L 1 2 3 J 

so 
V w = e(-w1 - w2 - w ) = -ew. H 

Theorem 5-5: Suppose that v = col(i>19 . .., y _x) is an eigenvector for V ± 

corresponding to the eigenvalue a^ (i ̂  0) . Put 

w = col(y15 . . ., y„_15 0) + a col(0, v19 ..., i>„) = x + ay. 

Then w is an eigenvector for Vn corresponding to the eigenvalue a1 

Proof: We have 

Vnx = azy 

Vny = o^x + aHy 
so that 

Vn (x + ay) = ai(y + ax + aty). 

Since a2 = 1 + at, 

V (x + ay) = ai(ax + a2y) = aL+L(x + ay) 

as required. • 

Remark: The analogous result also holds for the eigenvectors corresponding to 

the eigenvalues $z -

Corollary 5.6: All of the eigenvectors of Vn can be computed in terms of the 

eigenvectors of Vn_1 and Vn_2. * 
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1. INTRODUCTION 

Pascal (1623-1662) made extensive use of the famous arithmetical triangle 

which now bears his name. He wrote upon its properties in 1653, but the paper 

was not printed until 1665 ([1], "Traite du triangle arithmetique"). The tri-

angle now appears in virtually every text on elementary combinatorics. All 

textbook authors note the recurrence relation satisfied by binomial coeffi-

cients in adjacent rows of the triangles and a few point out the "curious" fact 

that certain diagonals of the triangle have Fibonacci numbers as their sums 

(apparently first noted by E. Lucas in 1876). 

In this paper we give a graph theory approach that provides an easy access 

to associations between Pascal-T triangles and generalized Fibonacci sequences. 

The approach is to use certain sequences of tree graphs9 which are called con-

volution trees for a reason which is explained in Section 3. These trees con-

sist of nodes and branches that are introduced and "grown" according to a given 

construction rule; integer weights are assigned to the nodes as the construc-

tion proceeds, 

The weights are obtained from a color sequence {cn}, and they are assigned 

to the nodes in a well-defined manner. The choice of generalized Fibonacci 

sequences of use for {cn} enables many attractive identities to be discovered9 

almost by inspection. 

In Section 6 we define a level counting function for the trees that counts 

certain of the colored nodes in the trees and also provides generalizations of 

Pascal's triangle. The arithmetic triangles which arise are known as Pascal-^7 

triangles [2]. 

The main results of the paper are collected together as Theorem 5 in Sec-

tion 6. This demonstrates the links between various properties of the Pascal-

T triangles and the generalized Fibonacci sequences which the study of colored 

convolution trees reveals. 
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A graph is a set of nodes (or -points') together with a set of edges (in tree 

graphs they are often called branches). An edge is, informally, a line joining 

two of the nodes. The total number of edges which attach to a given node is 

the valency (or degree) of that node. A circuit is a path in a graph which 

proceeds from node-edge-node-edge-node- • •»-node and is such that the first node 

and the last node are the same node. 

A tree is a graph that has no circuits. 

In a tree we may distinguish any one node and call it the root of the tree. 

Then we may distinguish all nodes in the tree (other than the root) whose val-

encies are one (unity) and call them leaf nodes. 

We are now in a position to present the rules by which colored convolution 

trees are constructed. 

2. FIBONACCI CONVOLUTION TREES 

The Fibonacci convolution trees are defined by a recurrence construction 

which builds the trees {Fn} sequentially, assigning the integer weights or 

colors {en} as they are built. A similar construction (but not the coloring) 

was given in [3] . The method parallels the definition of Fibonacci numbers 

(namely fn = fn_2 + fn_±9 with f1 = 1, f2 = 1), with a binary operation 0 that 

works as follows. We define the initial colored rooted trees in the sequence 

to be 
c2 ® 

F1 = o1 © and F2 = 

c1 i 
Then, given any two consecutive trees Fn_2* ^ . ^ we obtain the next tree 

by Fn = Fn_ © Fn-i> ttie J° ining operation © being indicated by the diagram: 

F o F -, 
n-2 n-1 

Gn 

Note that one new root node, labelled cn , is introduced during this operation. 

Figure 1 shows the first four trees in the sequence. In Figure 1 and in subse-

quent tree diagrams, the color alone is used to depict the colored node, for 

convenience. 
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C\ 

L -i Op 

f i c i / ^ 
\ 2 pZ 

Figure 1. Fibonacci Convolution Tree Sequence 

3. PROPERTIES OF A CONVOLUTION TREE 

We next tabulate basic graph properties of the convolution trees. It will 

be seen that the parameters listed have an attractive set of formulas in terms 

of the Fibonacci numbers {fn} = {l, 1, 29 3, 5, . . .}. Some graph terms used in 

the table may require definition for the reader, thus: 

In any rooted tree a unique path may be traced from the root to any 
other given node in the tree. The number of edges (branches) in that 
path is called the level of the given node. The height of a convolution 
tree is the maximum level occurring. 

The symbols (c * f) refer to the nth term of the convolution of sequences 

c and f; this term is defined to be c.f + c0f , + • * • + c f\ . 
' 1J n 2J n -1 nJ 1 

Table 1. Properties of Fibonacci Convolution Trees 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

Parameter 

Number of nodes 

Number of edges 

Number of nodes ( v = 1 

of valency v: < V = 2 

(n > 2) (v = 3 

Number of leaf nodes 

Height 

Weight (sum of node cole 

Lowest leaf-node level 

Number of leaf nodes at 

rs) 

level m 

Formula 

Fn E 

Fn -

fn 
Jn-l 

fn ~ 

f 
J n 
n -

(c * 

[t] 
\ n -

(for Fn) 

n 

1 

1 

~ 

+ 1 

2 

1 

f>„ 

m \ 
m - l) 
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Proofs: All of the formulas given in the table can be proved using a combina-

tion of graph definitions, the tree construction rule, simple algebra, and 

mathematical induction,. 

The convolution result (vi) is the reason for the name we gave to the tree 

graphs. To demonstrate a proof method, we shall give the proof for (vi) only* 

It is proved as follows: using Q(F) to mean "weight of Fu (i.e., the sum of the 

node colors in F), we have, from the construction rule, 

tt(Fn) = Sl(Fn_2) + n(Fn_x) + cn, for n > 2. (1) 

Noting that Q(FX) = o1f1 = (c * f) ±, and Q(F2) = cj2 + c2f1 = (c * f ) 2 , it is 

easy to proceed by induction. That is, we may show that, if 

n(*i> = cifi + Gzfi-i + ••• + cifx = (c * f). 
for i = 1, 2, . .., n, then 

n(^„+1) = (c * f ) „ + 1 . 

We leave the details to the reader. 

k. SOME THEOREMS DERIVED FROM THE TREES 

Weighted convolution trees are structured configurations of integers, and 

in the long tradition of such structures (c.f. figurate numbers, Ferrer's dia-

grams and the like) they can be used to reveal identities and relations between 

given sequence elements. The next four theorems illustrate many interesting 

relations between Fibonacci numbers, Fibonacci convolutions, and binomial coef-

ficients. 

Theorem 1 (Lucas, 1876): fn = Yl ( _ - 1/ w i t h m v a rY i ng from \— to n - 1, 

where [x] is the greatest integer function. 

This follows from formulas (iv) and (viii) of Table 1. 

Theorem 2: Let v = 
1 with n ^ 3. Then 

tf„ = (f * f)n - t (i) ( f * f)i + l' 
i = 0 

Proof strategy: This theorem gives a relationship between Fibonacci integers, 

terms of the convolution sequence f * f , and binomial coefficients. It is an 

example of how interesting identities may be discovered virtually by inspection 

of the colored convolution trees. We shall describe the proof strategy with 
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reference to tree F5. The reader may care to fill in the details of the proof, 

and then to look for other identities of a similar nature. 

First we note that a cut along a dotted line 
drawn immediately below the lowest leaf-node 
(which is [n/2]; see Table l(vii)) would, in 
effect, split the tree into a lower portion 
that is a full binary-tree and an upper col-
lection of separated smaller convolution 
trees. 

By full binary tree we mean a rooted tree of 
which the root node has valency two, and all 
other non-leaf nodes have valency three. 

Next we observe that the smaller convolution 
trees are F19 F2> and F3 and that they occur 
with frequencies given by the binomial coef-
ficients 

(S). Q. - (j). i t * , - [ f ] - 1 . 

Collecting this information together, and equating the weight of F to the 

sum of the weights of all the subtrees we have described, we get 

2 

n(F5) = (f * f ) 5 = Q(full binary tree) + £ (?)(f * f ) f + 1 -
i = 0 

Finally, inspection of the full binary tree reveals that the sum of the 

colors on the nodes at each level is f5; and there are r = 2 levels, so 

Q(full binary tree) = 2f5. 

Inserting this in the above equation and rearranging to place 2f5 alone on the 

left-hand side, we obtain a demonstration of the formula for the tree F5. 

Each one of the observations made with regard to the properties of the sub-

trees of F5 can be shown by induction to hold, generally, for subtrees obtained 

similarly from tree Fn. Then the proof strategy carries through for Fn, for 

n > 3. 
Note that the Lucas sum for fn from Theorem 1 can be exchanged for f in 

Theorem 2 and another identity obtained immediately. 

Theorem 3 (general c ) : We have already noted in Section 3 the fundamental con-

volution property, namely, 

(c * f ) n = (c * f)n_2 + (c * f ) n _ x + an, 

where f is the Fibonacci sequence and c = {a , c , . . . } . 
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We now examine the effect on the total weight, say fin(c), of the nth con-

volution tree when c is changed to c(p) = {cr+1, ^r + 2, . - . } . In terms of the 

shift operator E, operating on the subscripts of the sequence terms c •, we can 

write C ^ = Ec; and, in general, c(r) = Erc = {cr + 1> . .. } . Let us also intro-

duce the difference operator A, now operating on subscripted terms, so that 

Ac = {c2-c19 o3-c2, . . . } ; and then A2C = A(Ac), and so on to A^C in general. 

Then the following results hold, pertaining to the total weight of the convo-

lution trees. We now give Theorem 4 as further illustration of how attractive 

identities and formulas (this time involving E and A) can be derived with lit-

tle effort from the colored tree sequence. 

Theorem k: 

(i) 5 ^ = Qn(Ec) - Qn(c) = (f * Ac)„; 

r - 1 
6{

n
r) = Qn(Erc) - fi„(c) = (f * Er-1(Ac))n + £ <5(„J\ v > 2. 

3 = 1 

(ii) (setting c = f) 

(a) Ac = Af = E^f; (f * krf)n = (f * Erf)n_r. 

(b) (f * f)„ = f„+ (f * ^ f ) n _ x . 

(c) Qn(Erf) = ftw(£r-2f) + fin(^r-1f), P > 2, with 

ftn(#Pf) = (f * f )„ when r = 0, and 

= (f * f )„ + (f * f )n-l w h e n ^ = 1-

(iii) [corollary of (ii) (c) , writing finjr for Qn(£'rf)] 

^ , , = (f * n n / , + 1 + (f * f)n_1/I.» ^ > i-

The proofs of (i), (ii), and (iii) require only simple algebra and Fibonacci 

number identities. 

5. HIGHER ORDER C0NV0LUTS0N TREES 

The construction rules given in Section 2 may be extended to define se-

quences of higher-order convolution trees. Thus, for third-order trees: 

Recurrence rule: Gn+3 

tree combinations thus: 

G, CL G„ ,, using a triple fork to effect the 

"n + 3 

In Figure 2 we show the first five trees in the sequence obtained when the 

Fo, Fn trees are used as the initial ones. 
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C\ C\ C\ C2 

C1 C2 C\ C\ Ci C± C\ Ci C\ C2 C% 

Co C3 Ci c2 c, c2 
SC3 

Cit Cs 

Figure 2. The First Five Third-Order Convolution Trees 

We will not tabulate their structural properties as we did for the second-

order ones, but we may note that the numbers of leaf nodes follow the sequence 

g={l,l,2,4,75 . ..}, and that the weight &(Gn) can be shown to be (c * g)n , 

which are generalizations of the second-degree convolution tree properties. 

We are now in a position to derive Pascal-27 triangles from the sequences 

of trees. 

6. A COMBINATORY FUNCTION AND THE PASCAL-T TRIANGLES 

Consider the convolution tree Gn, colored by integers of the sequence c = 

{c , c , c , ...}. We define the level counting function: 

L = f 1 - I = the number of nodes in G„ having level m and color o.. 
\m\iI n ^ 

Then, if G is defined in some tree sequence {Gn :n = l,2,3, . ..}, we can 

tabulate L in a sequence of (jn9 n) tables for each value of i. We show tables 

for the second- and third-order trees with regard to color c1 only. 

Table 2. U) for the Second-Order Trees F^ 

0 
1 
2 
3 
4 

! 5 
6 

Column Sum 

*i 

1 
0 
0 
0 
0 
0 
0 

1 

F 
r 2 
0 
1 
0 
0 
0 
0 
0 

1 

F3 

0 
1 
1 
0 
0 
0 
0 

2 

F, 

0 
0 
2 
1 
0 
0 
0 

3 

^5 

0 
0 
1 
3 
1 
0 
0 

5 

Fe 

0 
-0 
0 
3 
4 
1 
0 

8 

F7 

0 ... 
0 ... 
0 ... 
1 . . . 
6 ... 
5 ... 
1 ... 

13 ... 

Row Sum 

1 
2 
4 
8 

(16) 
(32) , 
(64) 
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We observe the following: 

(i) the nonzero elements correspond to Pascal's triangle, the rows beginning 
on the diagonal; let us designate this triangle A ^ ; 

(ii) the mth row sum of the table is 2m; 

(iii) the j t h column sum of the table is /., the j t h Fibonacci number. 

Table 3- ( .,) for the Third-Order Trees £„ 
\772 1 / n 

m^---^ 

0 
1 
2 
3 
4 
5 
6 

Column Sum 

*i 

1 
0 
0 
0 
0 
0 
0 

1 

G2 

0 
1 
0 
0 
0 
0 
0 

1 

£3 

0 
1 
1 
0 
0 
0 
0 

2 

G, 

0 
1 
2 
1 
0 
0 
0 

4 

£5 

0 
0 
3 
3 
1 
0 
0 

7 

^6 

0 
0 
2 
6 
4 
1 
0 

13 

G7 

0 ... 
0 ... 
1 ... 
7 ... 
10 ... 
5 ... 
1 . . . 

24 ... 

Row Sum 

1 
3 
9 
(27) 
(81) 
(243) 
(729) 

Notes: 

(i) the triangle now resting on the leading diagonal is the third-degree one, 

(ii) the /7?th row sum of the table is 3m; 

(iii) the j t h column sum of the table Is g. , where g is defined by 

&n + 3 $n $n + 1 $n + 2 5 

with (g±s g2, g3) = (fl9 f2, f 3 ) , a generalized Fibonacci sequence, 

It should be clear from the construction rules given in Section 5 how we 

can extend the order of convolution trees indefinitely, obtaining the sequence 

{G2}, {£3K {Gh}, ...of tree sequences. Then, tabulating f ,-j) for each would 

give a sequence of the triangles A , 6 = 2 , 3, 4, ...; and the row and column 

sums of the tables would be, respectively, powers of 6 and generalized Fibonacci 

numbers. 

We note also that every ( M ) i s a multinomial coefficient; it is easy to 

show that the m-row elements in each table are generated by the function: 

x(x + x2 + x3 + ••• + x6)m
3 

where 6 is the order of the trees being considered. 

We show below the second-, third-, and fourth-order triangles in the form 

that Pascal's triangle is usually shown. We do this in order to comment on the 

generalized row-to-row method of constructing the elements. 
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A(2) A(3) 

1 1 

1 2 1 1 1 1 

1 3 3 1 1 2 3 2 1 

1 4 6 4 1 1 3 6 7 6 3 1 

1 5 10 10 5 1 1 4 10 16 19 16 10 4 1 

A ( 4 ) 

1 

1 1 1 1 

1 2 3 4 3 2 1 

1 3 6 10 12 12 10 6 3 1 

1 4 10 20 31 40 44 40 31 20 10 4 1 

Figure 3- Pascal-T Triangles 

Note that, in each case, to get the j t h element in the mth row, take the 

sum of the 6 (6=2,3, 4) elements immediately above it in the preceding [i.e., 

the (jn - l)th] row. Use zeros if the summation has to extend beyond a boundary 

of the triangle. For example, to get 10, the third element in row 5 of A , we 

add 0 + 1 + 3 + 6 . 

Theorem 5 (Pascal-Lucas-Turner): Let S$ be a sequence of colored convolution 

trees of order 6, 6 = 2, 3, 4,.... Then the level function ( . . ], with i = 1, 
\m\zj 

has a table of values with the following properties: 

(i) m = 0, 1, 2, ...; n = 1, 2, 3, ...; 
(ii) the leading diagonal elements are all l's, and elements below this diag-

onal are all 0Ts; 

(iii) the sum of the m-row elements is 6m; 
(iv) the sum of the n-column elements is g , where g is the generalized Fibo-

nacci sequence defined by 

6-1 

9n + 6 = E #n+;> w i t h initial values f±9 f2, ..., f6 ; 

i = 0 

(v) I , J is the coefficient of xn in the expansion of xI ^ xz\ ; 

(v!> ( h W " " i f i W "",!,)+ ••• + ( "",!,) f o m > 1, m > 0 ; with \m\l/ \m - 11 1 / \m - 1|1/ \m - 1|1/ 
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Ul)- 1' Ul)-° - *°*n>l, and (j1/^) E 0 when n < i. 

Proofs: The proofs follow directly from the recurrence construction rules for 

the trees. 

7. OTHER LEVEL-FUNCTION TRIANGLES 

Although we have presented our topic so far by showing how level functions 

(with i = 1) provide Pascal's triangle and generalizations of it, we would now 

like to shift the point of view firmly. 

In the theory of convolution trees, the level function seems to us to be 

an important object of study. Every sequence of convolution trees gives rise 

to a sequence of tables for the level functions ( . . ), and the types of values 

they take depend entirely on the construction rules used to define the trees „ 

Changing the tree recurrences, or the initial trees, or using a more complex 

coloring rule, will produce triangles of numbers which are not, in general, 

multinomial coefficients. If generating functions can be found, they will be 

more complex than the ones given above. 

Therefore, we wish to view the tabulation of level functions of convolution 

trees as a broad topic in its own right. Pascal's triangle arises as a special 

case in connection with second-order Fibonacci trees. 

For reasons of space we cannot give many examples of other triangles here; 

however, we discuss two further cases to help make our point clear. The first 

gives rise to "shifted" Pascal triangles; the second arises from Lucas trees, 

and turns out to be a superposition of two Pascal triangles. 

Case 1. J i0 s, from the Fibonacci trees \m\ 2) 

If we look at the rooted trees in {Ft} and {G^}, we see that all the leaf 

nodes are colored c]_. Pruning any tree Fn (i.e., removing all the leaf nodes 

and their adjacent branches) leaves the tree F„_15 but with colors c2, c3, c^3 

... instead of c , c2, <?3, ... . 

Hence, the table of ( . ) again has a Pascal triangle in it, but "shifted 

to the right" and starting at the diagonal above the leading diagonal. 

Similarly, ( . f has a Pascal triangle shifted one step further to the J \m\3J 
right; and so on. 
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Case 2. ml , Lucas convolution trees 

Using a special initial tree, L , we can generate the sequence L , L , L , 

. .., called Lucas convolution trees and shown below in Figure 4. Note that the 

numbers of leaves follow the Lucas sequence £ = 1, 3, 49 75 ..., which is gen-

erated by the recurrence equation £ n + 2 = In + ^n+1s with i± = 1, £2 = 3. The 

color sequence used is C = (oQ9 ol9 £2, c~ 

begins with tree L3 and color c. . 

, ) ; the recurrence construction 

£3 

°3 °1 

\ / V 
\ / 

V 

c3 

?3 ,C1 C2 C0 

Figure 4. The Lucas Convolution Trees 

These trees have many properties which relate the Fibonacci and Lucas num-

bers. We give the table for I 1 j, then follow it by the Lucas-Z7 triangle for 

this level function. 

Table 4. ( i, ] for the Second-Order Lucas Trees 
\m\ 1/ 

0 
1 
2 
3 
4 
5 
6 

Column Sum 

L1 L2 L3 Lh L5 L6 L? 

1 0 0 0 0 0 0 . . . 
0 0 1 0 0 0 0 . . . 
0 1 0 1 1 0 0 . . . 
0 0 1 1 1 2 1 . . . 
0 0 0 1 2 2 3 . . . 
0 0 0 0 1 3 4 . . . 
0 0 0 0 0 1 4 . . . 

1 1 2 3 5 8 

Row Sum 

1 
1 

3 x 2° = 2° + 2 1 

3 x 2 1 = 2 1 + 2 2 

3 x 2 2 = 2 2 + 2 3 

3 x 2 3 = 2 3 + 2h 

3 x 2h = 2h + 2 5 

Note that the row sums are (after m = 1) expressible as 2m~ + 2m~ , and 

that the column sums are again Fibonacci numbers. The diagram below shows (by 

dotted and full lines) how the triangle from these Lucas trees is the super-

position of two Pascal triangles (after m = 0). 
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Figure 5°  The Lucas ( . ) Triangle 

We have developed a notation for writing the I , . ) triangles to be derived 

from various types of recurrently constructed and colored trees, expressing 

them as superpositions of triangles of multinomial coefficients. The formulas 

can be given once the construction and coloring rules are given. 
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A NOTE ON THE THIRD-ORDER STRONG DIVISIBILITY SEQUENCES 

PAVEL HORAK 
J. E. Purkyne University, Brno, Czechoslovakia 

(Submitted January 1987) 

A fcth-order linear recurrent sequence u = {un in = 1, 2, ...} of integers 

satisfying the following equation for greatest common divisors, 

(u,9 u.) = |w ( i f J - ) | f o r a H i9 j > 19 (1) 

is.called a kth-order strong divisibility sequence. A complete characteriza-

tion of all the second-order strong divisibility sequences was given in [1] for 

integers and then in [3] for an arbitrary algebraic number field. In this note 

we shall study the third-order strong divisibility sequences. 

The system of all the sequences of integers u = {un : n = 1, 2, . . .} defined 

by 

u1 = l9 u2 = v, u3 = y, (2) 

iin + 3 = a • un + 2 + b • un + 1 + c • un for n ^ 1 (3) 

(where V, y, a, Z?, c are integers) will be denoted by U. The system of all the 

strong divisibility sequences from U [i.e., sequences from U satisfying (1)] 

will be denoted by D. 

The aim of this paper is to find all the strong divisibility sequences in 

certain subsystems of U and, further, to give some necessary conditions for a 

sequence from U to be a strong divisibility sequence. Notice that we may take 

u1= I without loss of generality because all the third-order strong divisibil-

ity sequences are obviously all the integral multiples of sequences from D. 

1. THE CASES u2 = 0 AND u3 = 0 

Let U1 denote the system of all the sequences from U satisfying u2 - 0 and 

let U2 denote all the sequences from U satisfying u = 0. Further, let 

A = {al9 a2, a3, a j and B = {bx, fc»2, fc>3, b^, b5, b j , 

where 

ax = {1,0, 1,0, 1,...} a2 = {1,0, 1,0, -1,0, 1,0, -1,...} 

a 3 = {1, 0, -1, 0, -1, ...} a4 = {1, 0, -1, 0, 1, 0, -1, 0, 1, ...} 
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b± = {1, 1, 0, 1, 1, 0, ...} 

b2 = {1, 1, 0,-1, -1,0, 1, 1, 0,-1, -1,0, 

b3 = {1, 1, 0, -1, 1, 0, -1 

bk = {1, -1, 0,-1, 1, 0, 1 

b5 = {1, -1, 0, 1, -1, 0, . 

b6 = {1,-1, 0, 1, 1, 0, -1 

1, 0, ...} 

-1, 0, ...} 

.} 
-1, 0, 1, 1, 0, .} 

Directly from the definitions, we get: A C D fl^; B C D n U2. The following 

propositions show that both the inclusions are, in fact, equalities, i.e., the 

sequences from A (from B) are precisely all the strong divisibility sequences 

from U (from U ). 

Proposition 1.1: Let u = {un} e U1. Then u e D if and only if u e A. 

Proof: Let u G D; then, from (u9, u0j.) = 0 and (ur k+i ) = 1, we get u7]. = 0 

and u2k+1 = ±1 for every k ^ 1. Now, from u 3 = ±1, uh = 0, u5 

four cases: 

±1, we obtain 

( 

(i 

( 

1 => u = a x; 

) u3 = 1, u5 = -1 =̂  u 

) Uo = -1, u,- = 1 => u 

u3 = u5 = -1 => u = a 3; 
hence, we get u G A. The converse is obvious. 

Proposition 1.2: Let u = {un} e Uz. Then u G D if and only if u e B. 

Proof: Let u G D; then, from 

for 3\n 
(w3, w„) 

for 3JV 
, we get uu 

Thus, ur ±1, u = ±1, uq = ±1, u = 0, and we obtain eight cases: 

(i 

(vi 

(v i i 

u5 = 1 =̂  u 

u^ = 1, w5 -1 =̂  ̂ fi = 2, a contradiction; 

u2 = 1, w 4 

Ẑ  n = - 1 , W . 

64. o J- , L-i u 

-1, W 5 = 1 

U5 

= Ur 

u = b 3 ; 

1 =•> u = b 2; 

1 =5> u = b ; 

1, w c -1 u = b 5 ; 

uh = - 1 , ẑ 5 1 =*u = b^; 

-1 =» u = -2, a contradiction; 

hence, we get u G Again, the converse is obvious. 
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2. THE CASE u2 ± 0, U3 ± 0 

Let U3 denote the system of all the sequences from U satisfying u2 ^ 0 and 

u3 + 0. Obviously: U = U1 U U2 U £/3 and U1 n U3 = U2 n U3 =0. Moreover, it 

is obvious that, for all the sequences from U9 it holds that 

(ul5 wn) = |^(i,n)| for all n > 1. 

Proposition 2.1: Let u = {un} e U3. Then (w^, u^) = |̂ (i,j)| for 1 < i, j < 4 

if and only if the following conditions hold: 

(v, y) = 1; (4) 

c = f • v - a • y, where / is a fixed integer; (5) 

(y, £ + /) = 1. (6) 

Proof: Obviously (u2,.w )= |w1|«=^>(v, y) = 1 and (u2, u^) = |u|<^>there exists 

an integer / such that fv = a\i + c. Finally, let (4) and (5) hold; then, 

(w3, uh) = |Wl|^=#>(y, Z?v + /v) = l«=Ky, fc + f) = 1. 

Proposition 2.2: Let u = { M J G i73 . Then (w^, ẑ -) = |u(i .)| for 1 < i, j < 5 

if and only if (4), (5), (6), and the following conditions hold: 

(v, b) = 1; (7) 

(y, vf + a* (b + /)) = 1; (8) 

(b + f9 v (v/ - ya) + y£) = 1. (9) 

Proof: Let (4) and (5) hold; then , 

uk = v • (b + f) 9 u5 == av(£> + / ) + £>y + (fv - a\i)v. 

Thus, u5 = b\i (mod |v|) and we get (u2, u5) = |u1|«=»(v, b) = 1. Furthermore, 
u5 = V » (a£> + a/ + /v) (mod |y|) and, therefore, 

(u3, u5) = |ux | <̂ > (y, a& + a/* + /v) = 1. 

Finally, let (4), (5), and (7) hold; then, 

(u^9 u5) = \u1\<$=$> (v(£> + / ) , v(vf - ay) + \ib) = 1 
<^(6 + f, v(v/ - ay) + y2>) = 1, 

which completes the proof. 

Proposition 2.3: Let u = {un} e U3. Then (ui9 u-) = |w(i>J-)| for 1 < i, j < 6 

if and only if (4)-(9) and the following conditions hold: 

v\a(b - y); (10) 
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]i\(vaf + (a2 + b)(b + /)); (11) 

(b + f9 Vaf 4- y(/ - a2 + a ( \ " y ) ) ) = 1; (12) 

(v(a(fc + / - y) + fv) + y&, v((£ + f) (a2 + b) + 

+ a(/v - ay) + /y) + \ia(b - y)) = 1. (13) 

Proof: Let (5) hold, then uh = v • (2? + / ) ; u5 = v * (a(£ + / - y) + fv) + y£; 

w6 = v((fe + /)(a2 + fc) + a(/v - ay) + f\i) + \\a(b - y); and obviously (u5, uB) = 

>(13). Further, let (4) and (5) hold; then, 

(u2, u6) = |w2|^=^(10) and (z 3̂, uQ) = |U 3 | < = > (11). 

Finally, let (5) and (10) hold; then 

(u4, w6) = |w2|<=»(12) , 

which completes the proof. 

Lemma 2.4: Let u = {un} e £/3 , u satisfying (5) and (10). Then 

u2£ E 0 (mod |v|); ^2fe+i E ^k~1 9 "M (mod |v|) f o r a H fc > 1. (14) 

Proof: From (5) and (10), we get: c E -aZ? (mod |v|) and, hence, 

wn + 3 E a • un + 2 + Z? • un + 1 - ab * un (mod | v| ) . 

Now, using mathematical induction with respect to k, we get (14). 

Theorem 2.5: Let u = {un} e U33 u satisfying (4), (5), (7), and (10). Then 

(w2, u-) = | ^ ( 2 j J - ) | f o r a 1 1 J ̂  1-

Proof: Let j ̂  1 be even; then, from Lemma 2.4, we get 

(w2, Uj) = \v\ = |u(2j j)! . 

Now, let j > 1 be odd; then, from (4) and (7), it follows that (v, bk~1 • y) = 1 

for all k ^ 1 and, hence, from Lemma 2.4, we get 

(u2, Wj.) = 1 = |w(2f j)). 

3. A SPECIAL CASE OF u2 ^ 0, U3 ^ 0 

Let T73 denote the system of all the sequence from U3 satisfying the con-

ditions, 

(ui9 u-) = |^(isj)| for 1 < i, j < 6, (15) 

b + f = 0, (16) 

where f is the integer from (5). Further, let 
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c = {1,2, 1,0, 1,2, 1,0, . . . } , d = {1,-2, 1,0, 1,-2, 1,0, . . . } . 

The following theorem will give a complete characterization of all the strong 

divisibility sequences in U , showing that C and d are the only strong divisi-

bility sequences in U , i.e., U D D = {c, d}. 

Theorem 3-1: Let u = {un} £ U3. Then u e D if and only if u = c or u = d, 

Proof: Obviously, c, d e U3 n D. Conversely, let u e U3 be a strong divisi-

bility sequence. Let us denote x = v • (vf - \ia) + \ib 9 y = v2af + v\i(f - a2) + 

\ia(b - y) . Then, from (16), (6), (9), and (12), we get y = ±1, x = ±1, y = ±V, 

so that we have eight possibilities: 

(i) ]i = l 9 x = l 9 y = v 

From y = 1 and x = 1, we get b - 1 = Va - V2/\ Then, from z/. = V, we get vf = V 

so that f = 1 and, consequently, & = -1, aV = V2 - 2, and c = V - a, using (5). 

Then u = {1, V, 1,0, l,V,v2-3, . . .}. But from (u^, u?) = \u1\ 9 we get v = ±2 

and, hence, u = c or u = d. 

(ii) ] i = l s x = l s y = - v 

Similarly, as in (i) , we get / = -1, 2? = 1, a = -V, and c = 0. Then we obtain 

u = { l , v , 1,0, 1,-V, v 2 + l , . . .}, a contradiction, since (u4, uy) = V2 + 1 4 

(iii) y = l s x = -l,z/=v 

Using y = 1, f - -b in # = -1, we get va = -v22? + & + 1 and then, from yv = v2, 

we get b • (V2 - 2) = V2 + 2. Let |v| > 2, then V2 E -2 (mod (V2 - 2)). Trivi-

ally, V2 E 2 (mod (V2 - 2)), so that (v2 - 2)|4 and, consequently, V = ±2. But 

V = ±2 implies b = 3, a = +4, and c = +2, a contradiction, since (uh9 u7) = 11 

4 l^xl- The remaining cases V = ±1 lead to b = -3, a = ±1, and a = ±2, a con-

tradiction, since (w^, u?) = 4 ^ |ẑ 11 . 

(iv) y = l,ar = -l,z/=-v 

Similarly, as in (iii), we get va = -V2b + b + 1 and & • (v2 - 2) = -V2 + 2 so 

that 2? = -1, a = V, and c = 0. Then u = {1, V, 1,0, -1,-V, -V2 + 1, . . . }, a con-

tradiction, since (uh, uS) 4 \u
x\* 

(v.) y = -l,x = l,2/=v 

Similarly, as in (i), we get / = - l , 2? = 1, e = a - v , and av = v2 + 2, which 

gives u = { l , v , -1,0, 1, V, v 2 + 3 , . . . } , a contradiction, since (w4, u7) = V2 + 

3 + \u1\. 

(vi) y = -1, x = 1, y = -v 
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In the same way as in (i) , we get / = ] _ , & = -13 a = -V, and c = 0 so that u = 

{1, V, -1,03 1,-V, V 2- 13 . . . } , a contradiction, since (u4 , u ) = v2 - 1 ± \u1\ . 

• (vi i) y = -1, x = -1, z/ = v 

Similarly, as in (iii), we get & * (v2 + 2) = -V2 + 2 and, hence, v2 E 2 (mod 

(V2 + 2 ) ) . Trivially, V2 E -2 (mod (v2 + 2 ) ) , so that we get (v2 + 2)[4 and9 

consequently, V2 = -1,0, 2, a contradiction., 

(viii) y = -1, x = -1, y = -v 

Similarly, as in (iii), we get va = V2Z? + b - 1 and £>(v2 + 2) = V2 + 2, so that 

J = 1, a = V, e = 0. Hence, u = {l,V, -1,0, -1,-V, - v 2 - l , . . . } , a contradic-

tion, since (w^, u7) = V2 + 1 ^ |w | . 

Remark: We did not use conditions (8), (11), and (13) in the proof of Theorem 

3.1, so that we can, in fact, weaken the assumptions (15) by omitting 

(w3, u5) = \u1\, (u3, u6) = \u3\, and (u5, u6) = |u1|. 

REFERENCES 

1. P. Horak & L. Skula. "A Characterization of the Second-Order Strong Divi-
sibility Sequences." The Fibonacci Quarterly 23, no. 2 (1985):126-132. 

2. C. Kimberling. "Strong Divisibility Sequences and Some Conjectures." The 
Fibonacci Quarterly 17 , no. 1 (1979):13—17. 

3. A. Schinzel. "Second-Order Strong Divisibility Sequences in an Algebraic 
Number Field." Archivum Mathematicum (Brno) 23 (1987):181-186. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. HILLMAN 

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS 
to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solu-
tion or problem should be on a separate sheet (or sheets). Preference will be 
given to those typed with double spacing in the format used below. Solutions 
should be received within four months of the publication date. 

DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn + 2 = Fn+l + Fn' F0 = °> *1 = 1 
and 

Ln + Z = Ln+l + L
n> L0 = 2> L I = l ' 

PROBLEMS PROPOSED IN THIS ISSUE 

B-628 Proposed by David Singmaster, Polytechnic of the South Bank, 
London, England 

What is the present average age of Fibonacci's rabbits? (Recall that he 
introduced a pair of mature rabbits at the beginning of his year and that 
rabbits mature in their second month. Further, no rabbits died. Let us say 
that he did this at the beginning of 1202 and that he introduced a pair of one-
month-old rabbits. At the end of the first month, this pair would have matured 
and produced a new pair, giving us a pair of 2-month-old rabbits and a pair of 
0-month-old rabbits. At the end of the second month we have a pair of 3-month-
old rabbits and pairs of 1-month-old and of 0-month-old rabbits.) Before 
solving the problem, make a guess at the answer. 

B-629 Proposed by Mohammad K, Azarian, Univ. of Evansville, Evansville, IN 

For which integers a, b9 and o is it possible to find integers x and y sat-
isfying 

Or + z/)2 - ox2 + 2(2? - a + ao)x - 2(a - b)y + (a - &)2 - ca^ = 0? 

B-630 Proposed by Bert a T. Freitag, Roanoke, VA 

Let a and b be constants and define sequences {^4n}^=1and {Bn}™=1 by Ax= a, 
A2 = b, B1 = 2b - a, B2 = 2a + b, and An = An_1 + An_2 and Bn = Bn_± + 5 for 
n ^ 3. 

(i) Determine a and b so that (An + Bn)/2 = [(1 + /5)/2]n. 

(ii) For these a and b, obtain {Bn + An)/(Bn - An). 
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B-631 Proposed by L. Kuipers, Sierre, Switzerland 

For N in {1, 2, ...} and N ^ m + 1, obtain, in closed form, 
m + N 

£ Hk - 1) ••• (fc - m)(n X fe). 

B-632 Proposed by tf.-J. Seiffert, Berlin, Germany 

N *. 

Find the determinant of the n by n matrix (tf^) with a^ . = (1 + /5)/2 for 
J > i, x^ = (1 - /5)/2 for j < i, and a?^. = 1 for j = t. 

B-633 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let n ^ 2 be an integer and define 

/1 = V Â R = v ^ 
£ = 0 n k = 0 n 

Prove that B „ M n = In - 1. 

SOLUTIONS 

Recurrence Relation for Squares 

B-604 Proposed by Heinz-Jurgen Seiffert, Berlin, Germany 

Let c be a fixed number and un + 2 = oun + \ + un for n in il/ = (0, 1, 2, . .. } . 
Show that there exists a number h such that 

w^+tf = hu^ + 3 - hu*+l + u\ for n in ff. 

Solution by Demetris Antzoulakos, Univ. of Patras, Patras, Greece 

We shall show that h = c1 + 2. 

Using successively the above recurrence relation9 we get: 

u l + k = °2un+3 + ul+2 + 2 e M n + 3 M n +2 = c 2"n+3 + M n + 2 + 2 wn+3 " 2 wn +3 Mn+l 

= ( e 2 + 2 ) M
2

+ 3 + ul+2 - 2cun+1un+2 - 2 M 2
+ 1 

= ( e 2 + 2 ) u 2
+ 3 + c2u*+1 + u2

n+ 2cun + 1un- 2c2u2
n+1- 2cun + 1un- 2u^+1 

= ( c 2 + 2 ) w 2
+ 3 - (o2 + 2 ) u 2

+ 1 + u\. 

Note: The above recurrence includes the exponent 2 dropped by the E.P.S. 
editor. 

Also solved by Paul S. Bruckman, Piero Filipponi, Herta T. Freitag, C. 
Georghiou, L. Kuipers, Sahib Singh, and the proposer. 
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Never Prime 

B-605 Proposed by Herta T. Freitag, Roanoke, VA 

Let 
n 

S(n) = £ L2n + 2i_1. 
i = i 

Determine the positive integers n, if any, for which S(n) is prime. 

Solution by Paul S. Bruckman, Fair Oaks, CA 

First, we obtain a closed form for S(n)« Since 
n 

Sin) = £ (L2n+2i - L2n+2i-2->> 
i = l 

t hus , 
S(n) = Lhn - L2n. (1) 

2 Also, L,, = L0 - 2. Hence, 
5(n) = L | n - £ 2 n - 2. (2) 

In t u rn , t h i s implies 

S(n) = ( L 2 n - 2)(L2 w + 1 ) . 

Note that S(l) = (3 - 2) (3 + 1) = 4, which is not prime; also, each factor of 
S(n) is greater than 1 if n > 1. Therefore, S(n) is composite for all n. 

Also solved by Frank Cunliffe, Piero Filipponi, C. Georghiou, Hans Kappus, L. 
Kuipers, Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the proposer. 

Very Much Simplified 

B-606 Proposed by L. Kuipers, Sierre, Switzerland 

Simplify the expression 
Ll+1 +2Ln.lLn + 1 - 25F2 +L2,,. 

Solution by Gregory Wulczyn, Lewisburg, PA 

Ln+l + 2Ln-lLn + l + Ln -1 " 2 5 ^ = (£n + 1 + L^,)2 - 25F2 

= (5FxFn)2 - 25Fl = 0. 

Also solved by Demetris Antzoulakos, Paul 5. Bruckman, Frank Cunliffe, Piero 
Fidipponi, Herta T. Freitag, C. Georghiou, Hans Kappus, Joseph J. Kostal, Bob 
Prielipp, H.-J. Seiffert, Sahib Singh, and the proposer. 

Product of Exponential Generating Functions 

B-607 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Let 

cn - to{n
kykLn_k. 
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Show that Cn/2n is an integer for n in {03 1, 2, . . . } . 

Solution by Bob Prielipp, Univ. of Wisconsin-Oshkoshf WI 

Since Fk = (a* - 3k)//5 and Ln-k = an'k + $n~k where a = (1 + /5)/2) and B-
(1 - /5)/25 ^ L „ . k = (a» - 3n)//5 - (an"V)//5 + (3n"V)//5. Hence, 

= 2nFn - ~ ( a + 6)" + -L(e + a ) n 

using the fact that 12" 0 (x,) = 2" a n d t h e Binomial Theorem 

= ̂X-
The required result follows. 

Also solved by Demetris Antzoulakos, Paul 5. Bruckman, Frank Cunliffe, Russell 
Euler, Piero Filipponi, Herta T. Freitagf C. Georghiou, Hans Kappusf Joseph J» 
Kostal, L. Kuipersf H»-J„ Seiffert, Sahib Singhf Gregory Wulczyn, and the 
proposer. 

Integral Average of Squares 

B~608 Proposed by Piero Filipponi, Fond. U. Bordonir Rome, Italy 

For k = {29 35 ...} and n in N = {09 1, 25 . . . } , let 

, n + k - 1 

= n 

denote the quadratic mean taken over k consecutive Fibonacci numbers of which 
the first is Fn . Find the smallest such k ^ 2 for which Sn^k is an integer for 
all n in N. 

Solution by Philip L. Mana, Albuquerque, NM 

Since S\ik - SQ^ = Fk/k3 a necessary condition on fc is that k\Fk. The two 
smallest such k in {2S 3, . ..} are 5 and 12. £0j5and S^ ? 5 are integers but 52 j 5 

is not since F| £ Ff (mod 5). Thus, 5 is not a solution. 
It is known that 

7 7 7 - 1 

^ S mm - I 
Hence, 

Since F12 = 144 = 0 (mod 12) and i^ 3 = 233 E 5 (mod 12), it follows by induction 
that Fn + i2 = 5Fn (mod 12). This implies that Fn+i2Fn + n = 25£,„F„_1 (mod 12) and 
hence £„ 12 ^s a n integer for all n in N. Thus, k = 12 is a solution. 

Note: P. S. Bruckman points out that S ^ is a "mean of squares" rather than a 
"quadratic mean." 
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Also solved by Paul S. Bruckman, Frank Cunliffe, Herta T. Freltag, C. 
Georghiou, L. Kuipers, Chris Long, Bob Prielipp, H.-J. Selffert, Sahib Singh, 
Lawrence Somer, David Zeltlln, and the proposer. 

Sum of Squares 

B-6Q9 Proposed by Adlna DlPorto & Plero Flllpponl, 
Fond. U. Bordonl, Rome, Italy 

Find a closed form expression for 

k = i 

and show that Sn = n(-l)n (mod Fn) . 

Solution by C. Georghiou, Univ. of Patras, Patras, Greece 

We will show that Sn = n(-l)n+l (mod Fn). 

Let /(a:) = x + x2 + ••» + ̂ n and g(x) = l2x + 22x2 + 32x3 + ...'+ n2xn. We 
then have g(x) = # f'f(x) + xfr(x) and5 therefore, 

Sn = (<7(<*2) + #(32) - 2g(-l))/5 

= ̂ [(n - D2L2n + l + (2n - l)^2n-l""n(n + DC"1)'1] 

and by using the identity 

L2n-X = 5 ^ A - 1 " ("I)"' 
we get 

Sn = (n - l ) 2 ^ + („2 + 2)^Fn-1 - n(-l)n, 

from which the assertion follows. 

Note: The solver corrected back to the proposer's Sn = n(-l)n+1. 

Also solved by Paul S. Bruckman, Herta T. Freltag, Hans Kappus, L. Kuipers, Bob 
Prielipp, H.-J. Selffert, Sahib Singh, and the proposer. 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
RAYMOND E. WHITNEY 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, 
PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information 
that will assist the editor. To facilitate their consideration, all solutions 
should be submitted on separate signed sheets within two months after publica-
tion of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-425 Proposed by Stanley Rabinowitzf Littleton, MA 

Let F (x) be the nth Fibonacci polynomial 

Fl(x) = 1, F2(x) = x, Fn+1{x) = xFn+1(x) + Fn{x)\ 
Evaluate: e: 

f F(x)dxi (b) f F*(x)dx. 
Jo Jo 

(a) I F (x)dx; 
;0

 jo 

H-426 Proposed by Larry Taylor, Rego Park, NY 

Let j, k, m, and n be integers. Prove that 

(FnFm+k_j-FmFn + k_d)(-ir = iFkF. + n_m- FjF^Jl-iy. 

H-427 Proposed by Piero Filipponi, Rome, Italy 
Let C(n, k) = C1(n, k) denote the binomial coefficient (̂  )• 

Let C2(ns k) = C[C(n, k), k] ands in general* 

Q(n s k) = C(C{a.„[C(ns k), fe]}). 

For given n and i5 is it possible to determine the value kQ of k for which 

Ci{n, kQ) > ^ ( n , fe) (k = 0, 1, »»«, n; k * kQ)l 

SOLUTIONS 

Some Triple Sum 

H-kQh Proposed by Andreas N. Philippou and Frosso S. Makri, Patras, Greece 
(Vol. 24, no. 4, November li 

Show that 
n 1 

r = o -£=0 nls 2 3 \nl* n2 / 
«! + 2n2 = n- i 
nx + no = n- ;P 
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(b) £ ± r E ( V " V * ) - *„(:?2. » * o, * * 2. 
n1 + 2n2 + . . . + /cwfe = n - i 

» ! + • • • + 72*. = n-r 

where n19 . . . , nk are nonnegative integers and {F^ }] is the sequence of Fibo-
nacci-type polynomials of order k [1]. 

[1] A. N. Philippou, C. Georghiou, & G. N. Philippou, "Fibonacci-Type Polyno-
mials of Order K with Probability Applications," The Fibonacci Quarterly 
23, no. 2 (1985):100-105. 

Solution by Tad P. White, Student, UCLA, Los Angeles, CA 

(a) Although this is a special case of (b), it can be solved in a slightly simpler manner since the 
simultaneous equations 

ni 4- 2n 2 = n — i 

ni 4- n 2 = n - r 

can be explicitly solved to obtain n j = n 4- i — 2r and n2 = r — i; thus the sum becomes 

n 1 

££' n " 
r=0 $=0 

(::;)=E("+r)< 
and it is well known tha t the r ight-hand side sums to Fn+2 for n > 0. However, the details can be omitted 
since this case is treated in part (b). 

(b) Fix k > 2; we prove this equality in two steps. Let f(n) denote the left-hand side of the equation 
in question, for our fixed k. First, we show tha t both sides of the equation are equal for 0 < n < k, and then 
we show tha t both sides obey the same /cth-order recursion relation, namely 

/(«) = £ /("-'); 
fit) (k) 

we are off to a good s tar t because we know already tha t Fn , and hence F„+2, obey this relation. 
Assuming first tha t 0 < n < k — 1, the upper limit of the summat ion over i can be replaced with n, since 

if i > n, the condition rii H h kiik = n — i is not satisfied by any Ar-tuple ( n i , . . . , n^) . Also, the condition 
tha t ni 4- • • • 4- n/e = n — r for some r with 0 < r < n is vacuously satisfied by every A:-tuple (?ii, .. ., tik) 
satisfying rii 4- • • • 4- krik = n — i for some i < n, so we may remove both this condition and the summation 
over r. Therefore, 

/(«) = £ £ (». + ••• + »*) 
t = 0 n i , . . . , r i f c9 

n.i + 2n 2 H J-/cnfc = n— t 

_ ŷ  ŷ  (ni + "' + Tlk\ 
n i + 2n 2 H hfcnfc=* 

= E^1-
8=0 

Since F ^ = J2?=1 F{
{
k) for n < k, we conclude tha t f{n) = F^% for 0 < n < k - 1. 

recursion relation for / ( n ) . We make use of the following pr 

A i l + • • • + n f c \ = y ^ / nx 4- ••• + n f c - 1 \ 
V « i i . . . , n f c / y^<k \ w i , . . . , n j _ i , n / - 1, n j+i , . . ., n £ / " 

We now derive a recursion relation for / ( n ) . We make use of the following proper ty of multinomial 
coefficients: 
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We will follow the convention that a multinomial coefficient vanishes when any entry is negative, so that this 
identity remains valid whenever each nk is nonnegative. Substituting this in the formula defining / (n) , we 
find 

n k-\ /(«)= E E V E ( n1 + ... + «fc-i 
, < , < f c r = n r ^ « . , V n 1 , . . . , n , _ 1 , n , - l , n , + 1 , . . . , n , l < K f c r = 0 { = 0 fi i , . . . ,fifc9 

>*iH |-ttfc = n.— r 

Letting ras- denote nt- for i 7̂  / and mj = nj — 1, this becomes 
n fc-l 

l < ! < f c r = O i = 0 m i , . , . , m ) c 9 
m i + 2m 2 H hkmk = n—l—i 

m i _ j f-mfc = n.— 1 — r 

Letting s now denote r -h 1 — / 

= E E E E ( T + mk 

,mk \<l<k 8=1-1 8=0 mii-im^ 
m x + 2 m H \-kmk = n— I— i 

rrii H [-rrn = n - l - « 

The terms with s < 0 and s = n + 1 — / contribute zero to the sum, so we may eliminate them to obtain 
rn-lk-i , 

+ mk 
rn-i k-1 / 

IZ-f 2^ 2-, ^ m i ) . . . , m k 
K K f c « = 0 i = 0 m i , . . . , m f c 9 

miH \-rrik = n— I— » 

= E /(«-')• 
i<i<fc 

Thus / (n ) and F^+2 obey the same Hh order recursion relation, and agree for 0 < n < k - 1. Thus 
/(n) = F ^ }

2 for all A: > 2 and n > 0. 

Also solved by P. Bruckman, C. Georghiou, and the proposers. 

Genera 1 Ize 

H-405 Proposed by Piero Filipponi, Rome, Italy 
(Vol. 24, no. 4, November 1986) 

(i) Generalize Problem B-564 by finding a closed form expression for 

. N 
£ [akFn], (N = 1, 2, ...; k = 1, 2, ...) 
n= l 

where a = (1 + A/5)/2, Fn is the nth Fibonacci number, and [x] denotes 
the greatest integer not exceeding x. 

(ii) Generalize the above sum to negative values of k. 

(iii) Can this sum be further generalized to any rational value of the expo-
nent of a? 

Remark:-As to (iii), it can be proved that 

[a1/kFn] = Fn9 i f 1 < n < [ ( I n /E - l n ( a l A - l ) ) / l n a ] . 
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[akFn] =<; (fc £ 2; n £ fc) (1) 

References 

1. V. E. Hoggatt, Jr., & M. Bicknell-Johnson, "Representation of Integers in 
Terms of Greatest Integer Functions and the Golden Section Ratio," The 
Fibonacci Quarterly 17, no. 4 (1979):306-318. 

2. V. E. Hoggatt, Jr., Fibonacci and Lucas Nimbers (Boston: Houghton Mifflin 
Company, 1969) . 

Partial solution by the proposer 

First, recall that [1, Lemma 2] 

[Fn+k {n odd) 

[Fn + k - 1 (n even) 

It can be noted that, since the relationship [1, Lemma 1] 

(Fn+1 (n odd) 
[oiFn] =< (n £ 2) (2) 

\Fn+l " l ^U e v e n ) 

clearly holds also for n = 1, (a) holds for k = 1 as well. 
Then, we find an expression for [akFn] in the case of 1 ̂  n S k - 1. Using 

the Binet form, the equality 

«kFn = Fk + n - 6 % (3) 

can be proved [1, Lemma 3]. Again, using the Binet form, we obtain 

3n(ak - &k) (-l)nak-n - $k+n (-l)n(g&-* - ($"-») 
P r7 = = + 

k /5 /5 /5 
/ i \ n a k - n Qk+n 

/ i \n 77 . \ -U P "" P , Nn 
= (-D f̂c_„ + 7r " (-1) Fk-n + ». 

Since it is readily seen that 

( 0 < x < 1 (fc even) , , _ ^ 7 1N / / N 
S i /7 J I N ( 1 = ^ = k - 1) ( 4 ) 
( -1 < x < 0 (fc odd);» v y 

from (3) and (4), we can write 

Ffc+n - F^-n ~ 1 (n e v e n , k even) 

jFjt + n ~ -^fc-n (^ e v e n , fc odd) 
| F ^ + n + F ^ _ n - 1 (n odd, fc even) 

Fk+rl + Fk-n (n ° d d , k odd) 

from w h i c h , by H o g g a t t f s T2i f and T 2 2 [ 2 ] , we g e t 

«/c 
L ^ n (k odd) 

[ a * F J = ^ (1 £ n < fc - 1) (5) 
\LkFn - 1 (k e v e n ) . 

Now, let us distinguish the following two cases. 
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Case 1: k > N 

From (5) and Hoggattfs II [2]5 we have 

{LkT.Fn = Lk(FN+2 - 1) (k odd) 

E [«^J 

n = 1 

which can be rewritten in the following more compact form: 

E io.kFn] = Lk(FN+2 - 1) - N ( - i r + i (if k > N). (6) 

Case 2: U H N 

From (6), we can write 

E [«"*"„] = E [«^J + E [«"*"„] 
n = 1 n-1 n = k 

-̂ n = k 

From (1) we have 

N N-k+1 
TlakFn] = E F2k+n-l 

n=k n=1 

/!/ - fe + 1 

N - k + 2 

(fc odd) 

(fc even) s 

(7) 

which, by Hoggatt's J1 [2] can be rewritten as (cf. Prob. B-564, for k = 1) 

221/ - 2k + 3 + ( - i ) f e l 
E lakFn] = F s + k + 2 - F2k + l 

n = k 

Combining (7) and (8), we obtain 

E [«*FJ = Lk{Fk + 1 - 1) + FN+k+2 - F2k + l 
n= 1 

(-l)fe + 1 
- (k - D-^-A: 

2/1/ ~ 2k + 3 + (-1)' 

that is5 

(8) 

E [ a ^ J = Lk(Fk + l - 1) + ^ + k + 2 - Fu + l 
n=1 2N + (2k - l)(-l)k + (-1)* 

(If 1 £ k £ N) - ; • 
(9) 

The problem can be further generalized to negative values of the exponent 
kB The proof can be obtained by reasoning similar to the preceding and is 
omitted for the sake of brevity,, Se we offer the following 

Conjecture: For N and k positive integers, 
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E[a-*F„] = 
n = l 

-N-k+2 

,0, 

71/ - k + 31 
, if N > k + 1 

if # < fc + 1. 

Also partially solved by P. Bruckman. 

# 0 * 0 * 

BOOK REVIEW 
by A.F. Horadam, University of New England, Armidale, Australia 2351 

Leonardo Pisano (Fibonacci)—The Book of Squares 
fan annotated translation into modern English)—L.E. Sigler, Academic Press 1987. 

This is the first complete translation into English of Fibonacci's masterpiece, Liber quadratorum ("The 
Book of Squares"), which was written in 1225. Until the nineteenth century when he acquired the nickname 
Fibonacci, the author, who was born in Pisa and christened Leonardo, was universally known as Leonardo 
Pisano. He is better-known for his Liber abbaci in which the Fibonacci numbers first appear. 

The volume under review consists of three main parts, namely; a short biographical sketch of Fibonacci, an 
English translation of Liber quadratorum, and a commentary on this translation ("The Book of Squares"). 
The Latin text followed by Sigler is that used by Boncompagni who found the MS in the Ambrosian Library 
in Milan when preparing the first printed edition of Fibonacci's writings in 1857-62. 

Sigler's commentary is particularly useful as it provides in detail an explanation of Fibonacci's text in modern 
mathematical notation and terminology. Fibonacci had no algebraic symbolism to help him. Following Euclid, 
he represented numbers geometrically as line-segments. It is truly remarkable how far he could progress with 
this limited mathematical equipment. His achievements in this book justly confirm him as the greatest 
exponent of number theory, particularly in indeterminate analysis, in the Middle Ages. 

A representative, and famous, problem posed and solved in the text is: Find a square number from which, 
when 5 is added or subtracted, there always arises a square number. 

According to the translator, "a knowledge of secondary school mathematics, algebra and geometry ought to 
be adequate preparation for the reading and understanding of this book.' ' 

We are indebted to Sigler for making this English translation available. For many, it could open up a new 
world of delight. 

382 [Nov. 



VOLUME INDEX 

BOWMAN, DOUGLAS. "A New Generalization of Davison's Theorem/' 26(1):40-45. 

CAPOCELLI, RENATO M. "A Note on Fibonacci Trees and the Zeckendorf Representation of 
Integers," 26(4):318-324. 

COLMAN, W. J. A. "On Certain Semi-Perfect Cuboids/' 26(1):54-57; "Some Observations on 
the Classical Cuboid and Its Parametric Solutions," 26(4)1338-343. 

COOPER, CURTIS N. (coauthor Robert E. Kennedy). "A Partial Asymptotic Formula for the 
Niven Numbers," 26(2):163-168. 

CREELY, JOSEPH W. "The Length of a Three-Number Game," 26(2) :141 -143. 

DELEON, MORRIS JACK. "Carlitz Four-Tuples," 26(3):224-232. 

DUVALL, PAUL (coauthor Theresa Vaughan). "Pell Polynomials and a Conjecture of Mahon 
and Horadam," 26(4)^344-353. 

EHRHART, EUGENE. "On Prime Numbers," 26(3):271-274. 

EWELL, JOHN A. "On Sums of Three Triangular Numbers," 26(4):332-335. 

FILIPPONl, PIERO (coauthor A. F. Horadam). "A Matrix Approach to Certain Identities," 
26(2):115-126. 

HAUKKANEN, PENTTI. "A Note on Specially Multiplicative Arithmetic Functions," 
26(4):325-327. 

HENSLEY, DOUGLAS. "A Winning Strategy at Taxman®," 26(3):262-270. 

HILLMAN, A. P., Editor. Elementary Problems and Solutions, 16(1):85-88; 26(2)1181-185; 
26(3):278-282; 26(4):372-376. 

HORADAM, A. F. "Jacobsthal and Pell Curves," 26(1):77-83; "Elliptic Functions and 
Lambert Series in the Summation of Reciprocals in Certain Recurrence-Generated 
Sequences," 26(2):96-114; (coauthor A. G. Shannon), "Fibonacci and Lucas Curves," 
26(1):3-13; (coauthor S. Pethe). "Generalized Gaussian Lucas Primordial Functions," 
26(1):20-30; (coauthor Piero Filipponi). "A Matrix Approach to Certain Identities," 
26(3):115-126; (coauthor A. G. Shannon). "Generalized Fibonacci Continued Fractions," 
26(3):219-223. 

HORAK, PAVEL. "A Note on the Third-Order Strong Divisibility Sequences," 26(4):366-371. 

HORIBE, YASUICHI. "Entropy of Terminal Distributions and the Fibonacci Trees," 
26(2):135-140. 

IMAI, YASUYUKI (coauthors Y. Seto, S. Tanaka, and H. Yutani ). "An Expansion of x
m and 

Its Coefficients," 26(1):33-39. 

JABLONSKI, T. HENRY, JR. (coauthor Alvin Tirman). "Identities Derived on a Fibonacci 
Multiplication Table," 26(4):328~331. 

KENNEDY, ROBERT E. (coauthor Curtis N. Cooper). "A Partial Asymptotic Formula for the 
Niven Numbers," 26(2):163-168. 

KISS, PETER. "On the Number of Solutions of the Diophantine Equation (p) = (2)5" 
26(2):127-130. 

KUIPERS, L. (coauthor Jau-Shyong Shiue). "On the Lp-Discrepancy of Certain Sequences," 
26(2):157-162. 

LARCHER, GERHARD. "A New Extremal Property of the Fibonacci Ratio," 26(3):247-255. 

LEE, JIA-SHENG (coauthor Jin-Zai Lee). "A Note on the Generalized Fibonacci Numbers," 
26(1):14-19. 

LEE, JIN-ZAI (coauthor Jia-Sheng Lee). "A Note on the Generalized Fibonacci Numbers," 
26(1):14-19. 

LEVINE, SHARI LYNN. "Suppose More Rabbits Are Born," 26(4):306-311. 

LIN, PIN-YEN. "De Moivre-Type Identities for the Tribonacci Numbers," 26(2)r131-134. 

LUDINGTON, ANNE L. "Generalized Transposable Integers," 26(1):58-63; "Length of the 7-
Number Game," 26(3):195-204. 



VOLUME INDEX 

MAKOWSKi, ANDREJ. "Stroeker's Equation and Fibonacci Numbers/1 26(4):336~337. 

McCARTHY, P. J. f!A Generalization of Metrod's Identity/1 26(3).-275-277. 

McNeill, R. B. "On Certain Divisibility Sequences/' 26(2):169-171. 

MOLLiN, R. A. "Generalized Fibonacci Primitive Roots, and Class Numbers of Real 
Quadratic Fields/1 26(1):46-53. 

MONZINGQ, M. G. "On Prime Divisors of Sequences of Integers involving Squares," 
26(1):31-32. 

PETHE, S. "Some Identities for Tribonacci Sequences/' 26(2):144-151. 

PETHE, S. (coauthor A, F. Horadam), "Generalized Gaussian Lucas Primordial Functions," 
26(1):20-30. 

PIHKO, JUKKA. "On Fibonacci and Lucas Representations and a Theorem of Lekkerkerker," 
26(3):256-261. 

POONEN, BJORN. "Periodicity of a Combinatorial Sequence," 26(1):70-76. 

SETO, YASUO (coauthor Y. Imai,, S. Tanaka, and H. Yutami). "An Expansion of xm and It's 
Coefficients," 26(1):33-39. 

SHANNON, A. G. (coauthor A. F. Horadam). "Fibonacci and Lucas Curves," 26(1):3-13; 
"Generalized Fibonacci Continued Fractions," 26(3):219-223. 

SETO, YASUO (coauthors Y. imai, S. Tanaka, and H. Yutani). "An Expansion of xm and its 
Coefficients/1 26(1).-33-39. 

SHANNON, A. G. (coauthor A. F. Horadam). "Fibonacci and Lucas Curves/' 26(1):3-13; 
Generalized Fibonacci Continued Fractions," 26(3):219-223. 

SHSUE, JAU-SHYONG (coauthor L. Kuipers). "On the //-Discrepancy of Certain Sequences," 
26(2):157-162. 

STERNHEiMER, R. M. "On a Result Involving Iterated Exponentiation," 26(2):178-180. 

TANAKA, SH0TAR0 (coauthors Y. Imai, Y. Seto, and H. Yutani). "An Expansion of xm and 
Its Coefficients," 26(1):33-39-

TIRMAN, ALVIN (coauthor T. Henry Jablonski, Jr.). "Identities Derived on a Fibonacci 
Multiplication Table," 26(4):328-331. 

TURNER, JOHN C. "On Polyominoes and Feudominoes," 26(3)^205-218; "Fibonacci Word 
Patterns and Binary Sequences," 26(3);233-246; "Convolution Trees and Pascal-57 

Triangles," 26(4)^354-365; (coauthor A. Zulauf) "Fibonacci Sequences of Sets and Their 
Duals/' 26(2):152-156. 

VAUGHAN, THERESA (coauthor Paul Duvall). "Pell Polynomials and a Conjecture of Mahon 
and Horadam/" 26(4) .-344-353. 

WALL, CHARLES R. "New Unitary Perfect Numbers Have at Least Nine Odd Components," 
26(4).-312-317. 

WATERHOUSE, WILLIAM C. "Integral 4 by 4 Skew Circulants," 26(2):172-177. 

WHITNEY, RAYMOND E., Editor. Advanced Problems and Solutions, 16(1):89-96; 26(2):186-
192; 26(3):283-288; 26(4):377-382. 

WIEDEMANN, DOUG. "An iterated Quadratic Extension of GF(2)/! 26(4):290-295. 

WILLIAMS, H. C. "A Note on the Primality of 62"+ 1 and 1 0 2 % 1," 26(4):296-305. 

YANG, KUNG-WEi. "Limits of q-Polynomial Coefficients," 26(1):64-69. 

YUTANI, H. (coauthors Y. Imai, Y, Seto, and S. Tanaka). "An Expansion of xm and Its 
Coefficients/1 26(1):33-39. 

ZULAUF, A. (coauthor J. C. Turner). "Fibonacci Sequences of Sets and Their Duals," 
26(2)1152-156. 



SUSTAINING MEMBERS 
* Charter Members 

*A.L. Alder 
S.Ando 
R. Andre-Jeannin 

* J. Arkin 
M.K. Azarian 
L. Bankoff 
F. Bell 
M. Berg 
J.G. Bergart 
G. Bergum 
G. Berzsenyi 

*M. Bicknell-Johnson 
*Br. A. Brousseau 
P.S. Bruckman 
M.F. Bryn 
RF. Byrd 
G.D. Chakerian 
J.W. Creely 

P.A. DeCaux 
M.J. DeLeon 
J. Desmond 
H. Diehl 
T.H. Engel 
D.R. Farmer 
P. Flanagan 
F.F. Frey, Jr. 
Emerson Frost 
Anthony Gioia 
R.M.Giuli 
I. J. Good 

*H. W.Gould 
H. Harborth 
H.E. Heatherly 
A.P.Hillman 

*A.F. Hordam 
F.T. Howard 

R.J.Howell 
H. Ibstedt 
R.P. Kelisky 
C.H. Kimberling 
J. Lahr 
N. Levine 
C.T.Long 
Br. J.M. Mahon 

* J. Maxwell 
F.U. Mendizabal 
L. Miller 
M.G. Monzingo 
S.D. Moore, Jr. 
J.F. Morrison 
K. Nagaska 
KG. Ossiander 
A. Prince 
S. Rabinowitz 

E.D.Robinson 
S.E. Schloth 
J.A. Schumaker 
A.G.Shannon 
D. Singmaster 
J. Sjoberg 
L. Somer 
M.N.S. Swamy 

*D. Thoro 
J.C.Turner 
R. Vogel 
J.N. Vitale 
M.Waddill 
J.E. Walton 
G. Weekly 
R.E. Whitney 
B.E. Williams 
A.C. Yanoviak 

INSTITUTIONAL MEMBERS 
THE BAKER STORE EQUIPMENT 
COMPANY 
Cleveland, Ohio 

BOSTON COLLEGE 
Chestnut Hill, Massachusetts 

BUCKNELL UNIVERSITY 
Lewisburg, Pennsylvania 

CALIFORNIA STATE UNIVERSITY, 
SACRAMENTO 
Sacramento, California 

ETH-BIBLIOTHEK 
Zurich, Switzerland 

FERNUNIVERSITAET FIAGEN 
Hagen, West Germany 

HOWELL ENGINEERING COMPANY 
Bryn Mawr, California 

NEW YORK PUBLIC LIBRARY 
GRAND CENTRAL STATION 
New York, New York 

NORTHWESTERN UNIVERSITY 
Evanston, Illinois 

PRINCETON UNIVERSITY 
Princeton, New Jersey 

SAN JOSE STATE UNIVERSITY 
San Jose, California 

SANTA CLARA UNIVERSITY 
San Jose, California 

KLEPKO, INC. 
Sparks, Nevada 

SYRACUSE UNIVERSITY 
Syracuse, New York 

TECHNOLOGICAL EDUCATION 
INSTITUTE 
Larissa, Greece 

UNIVERSITY OF SALERNO 
Salerno, Italy 

UNIVERSITY OF CALIFORNIA, 
SANTA CRUZ 
Santa Cruz, California 

UNIVERSITY OF GEORGIA 
Athens, Georgia 

UNIVERSITY OF NEW ENGLAND 
Armidale, N.S. W. Australia 

WASHINGTON STATE UNIVERSITY 
Pullman, Washington 

JOVE STATISTICAL TYPING SERVICE 
2088 Orestes Way 

Campbell, California 95008 



BOOKS AVAILABLE THROUGH THE FIBONACCI ASSOCIATION 

Introduction to Fibonacci Discovery by Brother Alfred Brousseau. Fibonacci Association 
(FA), 1965. 

Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. FA, 1972. 

A Primer for the Fibonacci Numbers. Edited by Marjorie Bicknell and Verner E. Hoggatt, 
Jr. FA, 1972. 

Fibonacci's Problem Book. Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. 
FA, 1974. 

The Theory of Simply Periodic Numerical Functions by Edouard Lucas. Translated 
from the French by Sidney Kravitz. Edited by Douglas Lind. FA, 1969. 

Linear Recursion and Fibonacci Sequences by Brother Alfred Brousseau. FA, 1971. 

Fibonacci and Related Number Theoretic Tables. Edited by Brother Alfred Brousseau. 
FA, 1972. 

Number Theory Tables. Edited by Brother Alfred Brousseau. FA, 1973. 

Recurring Sequences by Dov Jarden. Third and enlarged edition. Riveon Lematematika, 
Israel, 1973. 

Tables of Fibonacci Entry Points, Part One. Edited and annotated by Brother Alfred 
Brousseau. FA, 1965. 

Tables of Fibonacci Entry Points, Part Two. Edited and annotated by Brother Alfred 
Brousseau. FA, 1965. 

A Collection of Manuscripts Related to the Fibonacci Sequence—18th Anniversary 
Volume. Edited by Verner E. Hoggatt, Jr. and Marjorie Bicknell-Johnson. FA, 1980. 

Fibonacci Numbers and Their Applications. Edited by A.N. Phiiippou, G.E. Bergum 
and A.F. Horadam. 

Please write to the Fibonacci Association, Santa Clara University, Santa Clara, CA 
95053, U.S.A., for current prices. 


