
A Report on The Third International Conference on Fibonacci Numbers and Their Applications Herta T. Freitag 289
An Iterated Quadratic Extension of $G F(2)$ Doug Wiedemann 290
A Note on the Primality of $6^{2^{n}}+1$ and $10^{2^{n}}+1$.H.C. Williams 296
Suppose More Rabbits Are Born Shari Lynn Levine 306
New Unitary Perfect Numbers Have at Least Nine Odd Components 312
Second International Conference Proceedings 317
A Note on Fibonacci Trees and the
Zeckendorf Representation of Integers Renato M. Capocelli 318
A Note on Specially Multiplicative Arithmetic Functions Pentti Haukkanen 325
Indentities Derived on a Fibonacci Multiplication Table Alvin Tirman \& T. Henry Jablonski, Jr. 328
On Sums of Three Triangular Numbers John A. Ewell 332
Stroeker's Equation and Fibonacci Numbers. . Andrzej Makowski 336
Some Observations on the Classical Cuboid and Its Parametric Solutions W. J. A. Colman 338
Pell Polynomials and a Conjecture of Mahon and Horadam Paul Duvall \& Theresa Vaughan 344
Convolution Trees and Pascal-T Triangles John C. Turner 354
A Note on the Third-Order Strong Divisibility Sequences Pavel Horak 366
Elementary Problems and Solutions Edited by A. P. Hillman 372
Advanced Problems and Solutions Edited by Raymond E. Whitney 377
Book Review-The Book of Squares A.F. Horadam 382
Volume Index 383

PURPOSE

The primary function of THE FIBONACCI QUARTERLY is to serve as a focal point for widespread interest in the Fibonacci and related numbers, especially with respect to new results, research proposals, challenging problems, and innovative proofs of old ideas.

EDITORIAL POLICY

THE FIBONACCI QUARTERLY seeks articles that are intelligible yet stimulating to its readers, most of whom are university teachers and students. These articles should be lively and well motivated, with new ideas that develop enthusiasm for number sequences or the exploration of number facts. Illustrations and tables should be wisely used to clarify the ideas of the manuscript. Unanswered questions are encouraged, and a complete list of references is absolutely necessary.

SUBMITTING AN ARTICLE

Articles should be submitted in the format of the current issues of the THE FIBONACCI QUARTERLY. They should be typewritten or reproduced typewritten copies, that are clearly readable, double spaced with wide margins and on only one side of the paper. The full name and address of the author must appear at the beginning of the paper directly under the title. Illustrations should be carefully drawn in India ink on separate sheets of bond paper or vellum, approximately twice the size they are to appear in print.

Two copies of the manuscript should be submitted to: GERALD E. BERGUM, EDITOR, THE FIBONACCI QUARTERLY, DEPARTMENT OF COMPUTER SCIENCE, SOUTH DAKOTA STATE UNIVERSITY, BOX 2201, BROOKINGS, SD 57007-0194.

Authors are encouraged to keep a copy of their manuscripts for their own files as protection against loss. The editor will give immediate acknowledgment of all manuscripts received.

SUBSCRIPTIONS, ADDRESS CHANGE, AND REPRINT INFORMATION

Address all subscription correspondence, including notification of address change, to: RICHARD VINE, SUBSCRIPTION MANAGER, THE FIBONACCI ASSOCIATION, SANTA CLARA UNIVERSIITY, SANTA CLARA, CA 95053.

Requests for reprint permission should be directed to the editor. However, general permission is granted to members of The Fibonacci Association for noncommercial reproduction of a limited quantity of individual articles (in whole or in part) provided complete reference is made to the source.

Annual domestic Fibonacci Association membership dues, which include a subscription to THE FIBONACCI QUARTERLY, are $\$ 27$ for Regular Membership, $\$ 37$ for Sustain Membership, and $\$ 67$ for Institutional Membership; foreign rates, which are based on international mailing rates, are somewhat higher than domestic rates; please write for details. THE FIBONACCI QUARTERLY is published each February, May, August and November.

All back issues of THE FIBONACCI QUARTERLY are available in microfilm or hard copy format from UNIVERSITY MICROFILMS INTERNATIONAL, 300 NORTH ZEEB ROAD, DEPT. P.R., ANN ARBOR, MI 48106. Reprints can also be purchased from UMI CLEARING HOUSE at the same address.

1988 by
(c) The Fibonacci Association

All rights reserved, including rights to this journal issue as a whole and, except where otherwise noted, rights to each individual contribution.

A Report On
 The Third International Conference on Fibonacci Numbers And Their Applications

Abstract

Herta T. Freitag A newspaper article at Pisa, Italy, with a prominent headline: "CONVEGNO PARLANO I MATEMATICI L'INCONTRO IN OMMAGIO A FIBONACCI'" hearalded our Third International Conference on Fibonacci Numbers and Their Applications which was held in Pisa, Italy, July 25th-29th, 1988. A stamp: "I NUMERI DI FIBONACCI CONGRESSO INTERNAZIONALE, 26-7-1988" commemorated it.

Of course, mathematicians all across the globe, and especially those who are so fortunate as to have become interested in "Fibonacci-type mathematics," had known about it for some time. The August 1987 issue of The Fibonacci Quarterly had brought the glad tidings: an announcement that our third conference was to take place at the University of Pisa during the last week of July 1988.

By mid June 1988, we held the coveted program in our hands. 66 participants were listed, and they came from 22 different countries, the U.S. heading the list with a representation of 20, followed by Italy and Australia. Of course, it was to be expected that at conference time proper additional names would lengthen the count. Forty-five papers were to be presented, several of them with coauthors; there were 3 women speakers. Theoretically sounding titles abounded. There was Andreas N. Philippou's paper, coauthored by Demetris L. Antzoulakes: 'Multivariate Fibonacci Polynomials of Order K and the Multiparameter Negative Binomial Distribution of the Same Order." But, rather intriguingly, practical interests wedged themselves in also with Piero Filipponi's paper, coauthored by Emilio Montolivo: "Representation of Natural Numbers as a Sum of Fibonacci Numbers: An Application to Modern Cryptography." This again highlighted one of the joys mathematicians experience: the interplay between theoretical and applied mathematics.

What a delight it was to meet in Pisa, Italy, the birthplace of Leonardo of Pisa, son of Bonacci, 'our'" Fibonacci (=1170-1250). We already knew that-befittingly, and much to our pleasure-Pisa had honored its mathematical son by a statue. My friends and I were among the many (maybe it was all of them) who made a pilgrimage to Fibonacci's statue. It was a fairly long walk, eventually on Via Fibonacci(!), along the Arno River, until we finally found him in a pretty little park. He seemed thoughtful, and appeared to enjoy the sight of the nearby shrubs and flowers. I felt like thanking him for "having started it all," for having coined the sequence that now bears his name. It would have been nice to invite him to our sessions. I predict he would have been thoroughly startled. What had happened since 1202 when his Liber Abaci was published?!

Almost invariably, the papers were of very high caliber. The great variety of topics and the multitude of approaches to deal with a given mathematical idea was remarkable and rather appealing. And it was inspiring to coexperience the deep involvement which authors feel with their topic.

We worked hard. The sessions started at 9 a.m. and with short intermissions (coffee break and lunch) they lasted till about 5:30 p.m. As none of the papers were scheduled simultaneously, we could experience the luxury of hearing ALL presentations.

We did take out time to play. Of course, just to BE in Pisa was a treat. We stepped into the past, enwrapped into the charm of quaint, old buildings, which-could they only talk-would fascinate us with their memories of olden times. As good fortune would have it (or, was it the artistry of Roborto Dvornicich, Professor of Mathematics at the University of Pisa, who arranged housing for the conference participants) my friends and I stayed at the Villa Kinzica-across the street from the Leaning Tower of Pisa. Over a plate of spaghetti, we could see that tower, one of the "seven wonders of the world" whose very construction took 99 years. And-it REALLY leans! We were charmed by the seven bells, all chiming in different tones. But-most of all-we pictured Galileo Galilei excitedly experimenting with falling bodies
I would be amiss if I did not mention the Botanical Garden of Pisa-situated adjacent to our conference room at POLO DIDATTICO DELLA FACOLTA DI SCIENZE. In the summer of 1543 (the University of Pisa itself was founded in the 12th century) this garden was opened as the first botanical garden in Western Europe. Its present location was taken up 50 years later. While we may not have been able to recognize '‘METASEQUOIA GLYPTOSTROBOIDES"' the peace and serenity of this beautiful park struck chords in all of us.

On the third day, the Conference terminated at noon, and we took the bus to Volterra. The bus ride itself ushered in a trip long to be remembered. The incredibly luscious fields of sunflowers and sunflowers-an

AN ITERATED QUADRATIC EXTENSION OF $G F(2)$

DOUG WIEDEMANN
University of Waterloo, Waterloo, Ontario, Canada
(Submitted November 1986)

1. A CONSTRUCTION

It is well known (see, for example, Ex. 3.96 of [1]) that the polynomials $x^{2 \cdot 3^{j}}+x^{3^{j}}+1$ are irreducible in $G F(2)[x]$ for $j=0,1,2, \ldots$ Since

$$
\left(x^{2 \cdot 3^{j}}+x^{3^{j}}+1\right)\left(x^{3^{j}}+1\right)=x^{3^{j+1}}+1
$$

is a square-free polynomial, it follows that the period of each root of $x^{2 \cdot 3^{j}}+$ $x^{3^{j}}+1$ is precisely 3^{j+1}, only one and a half times the degree of the polynomial. The field

$$
C_{j} \approx G F(2)[x] /\left(x^{2 \cdot 3^{j}}+x^{3^{j}}+1\right) \approx G F\left(2^{2 \cdot 3^{j}}\right)
$$

may be obtained by iterated cubic extensions beginning with $C_{0} \approx G F(2)\left(x_{0}\right)$, where $x_{0} \neq 1$ is a cube root of unity. We have $C_{1} \approx C_{0}\left(x_{1}\right)$, where x_{1} is any solution to $x_{1}^{3}=x_{0}$ 。 Iterating, $C_{j+1} \approx C_{j}\left(x_{j+1}\right)$, where $x_{j+1}^{3}=x_{j}$.

This paper deals with an iterated quadratic extension of $G F(2)$, whose generators are described by

$$
\begin{equation*}
x_{j+1}+x_{j+1}^{-1}=x_{j} \text { for } j \geqslant 0, \text { where } x_{0}+x_{0}^{-1}=1 \tag{1}
\end{equation*}
$$

Let

$$
E_{0} \approx G F(2)\left(x_{0}\right), E_{1} \approx E_{0}\left(x_{1}\right), \ldots, E_{j+1} \approx E_{j}\left(x_{j+1}\right)
$$

Note that $x_{0}^{2}+x_{0}+1=0$ has no root in $G F(2)$ so the first extension is quadratic. To show that each subsequent extension is quadratic, it need only be shown that the equation for x_{j+1}, which may be rewritten $x_{j+1}^{2}+x_{j+1} x_{j}+1=0$, has no root in E_{j}, for all $j \geqslant 0$. Although this follows almost immediately from theorems about finite fields, for example, Theorem 6.69 of Berlekamp [2], a more elementary proof will be given here. Let

$$
\operatorname{Tr}^{(n)}(x)=\sum_{i=1}^{2^{n}-1} x^{2^{i}}
$$

Also, let $|E|$ denote the order or number of elements of a finite field E.
Theorem 1: For $j \geqslant 0, x_{j+1} \notin E_{j},\left|E_{j+1}\right|=2^{2^{j+2}}$ and

$$
\operatorname{Tr}^{(j+2)}\left(x_{j+1}\right)=\operatorname{Tr}^{(j+2)}\left(x_{j+1}^{-1}\right)=1
$$

[Nov.

Proof (mathematical induction): Note $x_{0} \notin G F(2)$ and $\operatorname{Tr}^{(1)}\left(x_{0}\right)=\operatorname{Tr}^{(1)}\left(x_{0}^{-1}\right)=1$. The statement of the theorem is therefore true for $j=-1$ if E_{-1} is defined to be $G F(2)$. In a field of characteristic 2, assume $x^{2}=x z+1$. Then,

$$
x^{4}=x^{2} z^{2}+1=x z^{3}+z^{2}+1, x^{8}=x z^{7}+z^{6}+z^{4}+1
$$

and, in general,

Hence,

$$
x^{2^{k}}=x z^{2^{k}-1}+\sum_{i=1}^{k} z^{2^{k}-2^{i}}
$$

$$
\begin{equation*}
x_{j+1}^{2^{2^{j+1}}}=x_{j+1} x_{j}^{2^{2^{j+1}-1}}+x_{j}^{2^{2^{j+1}}}\left(\operatorname{Tr}^{(j+1)}\left(x_{j}^{-1}\right)\right)^{2} . \tag{2}
\end{equation*}
$$

Now assume that the statement of the theorem holds for $j-1$. Then E_{j} has order $2^{2^{j+1}}$ so, if x_{j+1} were in E_{j}, by the Fermat theorem and (2), $x_{j+1}=x_{j+1}+$ $x_{j}\left(\operatorname{Tr}^{(j+1)}\left(x_{j}^{-1}\right)\right)^{2}$. But $\operatorname{Tr}_{r}^{(j+1)}\left(x_{j}^{-1}\right)=1$ by hypothesis, so, by contradiction, x_{j+1} is not in E_{j} itself but in a quadratic extension of E_{j}. The order of E_{j+1} is, therefore, $\left|E_{j}\right|^{2}=2^{2^{j+2}}$, using the second statement of the hypothesis.

Note that the other root to (1) for x_{j+1} is x_{j+1}^{-1}. Also, $G a Z\left(E_{j+1} / E_{j}\right)$ has order 2 so, if σ denotes the nontrivial Galois automorphism, $\sigma\left(x_{j+1}\right)=x_{j+1}^{-1}$. Finally, $\operatorname{Tr}^{(j+2)}$ is the trace map of E_{j+1} to $G F(2)$, so

$$
\operatorname{Tr}^{(j+2)}\left(x_{j+1}^{-1}\right)=\operatorname{Tr}^{(j+2)}\left(x_{j+1}\right)=\operatorname{Tr}^{(j+1)}\left(x_{j+1}+\sigma\left(x_{j+1}\right)\right)=\operatorname{Tr}^{(j+1)}\left(x_{j}\right)=1
$$

by the last part of the hypothesis, completing the statement of the theorem for j.

Corollary: $x_{n}^{F_{n}}=1$, when $n \geqslant 0$ and $F_{n}=2^{2^{n}}+1$ is the Fermat number.
Proof: Define E_{-1} to be $G F(2)$. Since $\left|E_{n}\right|=2^{2^{n+1}}$, the nontrivial member of $\operatorname{GaZ}\left(E_{n} / E_{n-1}\right)$ is given by $\sigma_{n}(y)=y^{2^{2^{n}}}$. Since the conjugate of x_{n} over the field E_{n-1} is $x^{-1}, x_{n}^{2^{2 n}}=x_{n}^{-1}$. Thus, $x_{n}^{F_{n}}=1$.

The order of a field element is defined to be the smallest nonnegative power which equals 1 . In the case where F_{n} is prime, the above result implies that x_{n} has order F_{n}. In any case, the order of x_{n} divides F_{n}. Since the Fermat numbers are known to be mutually relatively prime, for example, see Theorem 16 of [3], the order of $x_{n} x_{n-1} \cdots x_{0}$ is the product of the orders of the x_{i}, $i \leqslant n$. We say an element of a field is primitive if its order is the same as the number of nonzero field elements. If the order of x_{i} is, in fact, F_{i} for $i \leqslant n$, then $x_{n} x_{n-1} \cdots x_{0}$ is a primitive element of E_{n}, because

$$
F_{n} F_{n-1} \cdots F_{0}=2^{2^{n+1}}-1=\left|E_{n}\right|-1
$$

We have not been able to determine if $x_{n} x_{n-1} \cdots x_{0}$ is always primitive.

AN ITERATED QUADRATIC EXTENSION OF GF(2)

2. BASIS SETS

There are several natural ways to construct a basis of E_{n} as a vector space over $G F(2)$. One such is of course the set of powers $x_{n}^{i}, 0 \leqslant i<2^{n+1}$, because $E_{n}=G F(2)\left(x_{n}\right)$ is a degree 2^{n+1} extension of $G F(2)$. Another basis is the collection of elements of the form $x_{n}^{\delta_{n}} \cdots x_{0}^{\delta_{0}}$, where each $\delta_{i} \in\{0,1\}$. This can be shown by induction on n. Clearly, $x_{0}^{0}=1$ and x_{0}^{1} span E_{0}. Since E_{n} is a quadratic extension of E_{n-1}, every member of E_{n} is uniquely expressible as $a x_{n}+b$, where $a, b \in E_{n-1}$. Assuming a and b can be expressed as sums of the $x_{n-1}^{\delta_{n-1}} \cdots$ $x_{0}^{\delta_{0}}$, it follows easily that E_{n} is spanned by the $x_{n}^{\delta_{n}} \cdots x_{0}^{\delta_{0}}$. It immediately follows that these elements form a basis because the number of them is the same as the dimension of the space spanned.

Another basis consists of elements of the form $x_{n}^{\varepsilon_{n}} \ldots x_{0}^{\varepsilon_{0}}$, where $\varepsilon_{i} \in\{ \pm 1\}$. This is shown by a similar argument which uses the fact that each element of E_{n} equals $a x_{n}+b=a x_{n}+c x_{n-1}=(a+c) x_{n}+c x_{n}^{-1}$ for some $a, b, c \in E_{n-1}$.

Theorem 2: The following are bases of E_{n} :

$$
\begin{aligned}
\text { i) } & x_{n}^{\delta_{n}} \cdots x_{0}^{\delta_{0}} \quad \delta_{i} \in\{0,1\} \quad \text { ii) } x_{n}^{\varepsilon_{n}} \cdots x_{0}^{\varepsilon_{0}} \quad \varepsilon_{i} \in\{-1,1\} \\
\text { iii) } & x_{n}^{2^{i}} 0 \leqslant i<2^{n+1}
\end{aligned}
$$

Proof: It has already been shown that i) and ii) each form a basis. The elements iii) are the conjugates of x_{n} over $G F(2)$, and it will be shown that they are linearly independent. This will be done by induction. Certainly, x_{0} and $x_{0}^{2}=x_{0}+1$ are linearly independent over $G F(2)$. Assume that the conjugates of x_{n-1} in E_{n-1} are linearly independent. The transformation $\sigma_{n}(y)=y^{2^{2^{n}}}$ takes each conjugate of x_{n} to its reciprocal. If a combination of the conjugates vanishes, then grouping by reciprocal pairs gives

$$
\begin{equation*}
\sum_{i=0}^{2^{n}-1}\left(\alpha_{i} x_{n}^{2^{i}}+\beta_{i} x_{n}^{-2^{i}}\right)=0 \tag{3}
\end{equation*}
$$

where $\alpha_{i}, \beta_{i} \in G F(2)$. Applying σ_{n} to both sides interchanges α_{i} and β_{i}. Adding this to the original equation gives

$$
0=\sum_{i=0}^{2^{n}-1}\left(\alpha_{i}+\beta_{i}\right)\left(x_{n}^{2^{i}}+x_{n}^{-2^{i}}\right)=\sum_{i=0}^{2^{n}-1}\left(\alpha_{i}+\beta_{i}\right) x_{n-1}^{2^{i}}
$$

By the inductive hypothesis, $\alpha_{i}+\beta_{i} \equiv 0$. Thus, the sum (3) can be rewritten:

$$
\sum_{i=0}^{2^{n}-1} \alpha_{i} x_{n-1}^{2^{i}}
$$

this time the hypothesis implies $\alpha_{i} \equiv \beta_{i} \equiv 0$. Thus, iii) forms a basis.

AN ITERATED QUADRATIC EXTENSION OF GF(2)

In some sense the most interesting is the basis i) because the set for E_{n-1} is contained in the set for E_{n}. Therefore, the union of all bases given by i) is a basis for the infinite field which is the union of all the E_{n}. Another interesting property of the basis i) is that every boolean polynomial in n variables corresponds to an element of E_{n}. These boolean polynomials can be multiplied as elements of E_{n} in a straightforward if tedious manner. To multiply two such elements, collect all terms containing x_{n} to one side. Then using

$$
\left(a x_{n}+b\right)\left(c x_{n}+d\right)=\left(a c x_{n-1}+b c+a d\right) x_{n}+(a c+b d)
$$

the product is computable in terms of a few products in E_{n-1}. Using this formula, it can be seen, though the proof is omitted, that the "degree" of the product of the two elements does not exceed the sum of their degrees. By the degree of a field element, we mean the degree of the associated boolean polynomial.

Each basis element of i) can be identified with the $0-1$ vector, or bit vector, $\left(\delta_{n}, \ldots, \delta_{0}\right)$ which, in turn, can be identified with the integer

$$
\delta_{n} 2^{n}+\cdots+\delta_{0} 2^{0}
$$

Let b_{i} be the basis element associated with the integer i. We now prove a fact regarding the expansion of a product of two basis elements as the sum of basis elements.

Theorem 3: For any i, j, and k the expansion of $b_{i} b_{j}$ contains b_{k} if and only if the expansion of $b_{i} b_{k}$ contains b_{j}.

Lemma: For all i and $j, b_{i} b_{j}$ contains the basis element $b_{0}=1$ if and only if $i=j$.

Proof of the Lemma: Once again, we use induction on n. Obviously, the Lemma holds whenever the two basis elements are in E_{-1}. Assume it holds whenever the two basis elements are in E_{n-1}. Now, in E_{n}, if both b_{i} and b_{j} are in E_{n-1}, the statement of the Lemma is true. If x_{n} is a factor of one but not the other, the product is in $x_{n} E_{n-1}$ and b_{0} cannot occur in the expansion. If $b_{i}=x_{n} c$ and $b_{j}=x_{n} d$, where $c, d \in E_{n-1}$, then $b_{i} b_{j}=x_{n} x_{n-1} c d+c d$. The first term is in $x_{n} E_{n-1}$ and does not contain b_{0}. By hypothesis, the second term contains b_{0} if and only if $c=d$, meaning $i=j$. This establishes the statement of the Lemma for E_{n} in all cases.

Proof of Theorem 3: Consider the coefficient of b_{0} in $\left(b_{i} b_{j}\right) b_{k}$. By the Lemma, it is the coefficient of b_{k} in $b_{i} b_{j}$. Since

AN ITERATED QUADRATIC EXTENSION OF GF(2)

$$
\left(b_{i} b_{j}\right) b_{k}=\left(b_{i} b_{k}\right) b_{j}
$$

it is also the coefficient of b_{j} in $b_{i} b_{k}$.
Corollary 1: Let $i \oplus j$ be the mod 2 sum of i and j as bit vectors. The coefficient of $b_{i \oplus j}$ in $b_{i} b_{j}$ is one.
Proof: Let $i \cap j$, $i \cup j$ be the bitwise AND, bitwise OR of i and j, respectively. It will be shown that the coefficient of b_{0} in $b_{i \oplus j} b_{i} b_{j}$ is one which, together with the Lemma proves the Corollary. Now, by rearranging terms,

$$
b_{i \oplus j} b_{i} b_{j}=\left(b_{i \oplus j} b_{i \cap j}\right)^{2}=\left(b_{i \cup . j}\right)^{2}
$$

and by the Lemma, this contains a b_{0} in its expansion.
The following corollary is an immediate consequence of the Lemma.
Corollary 2: For any $a \in E_{n}, a^{2}$ contains b_{0} in its expansion if and only if a is the sum of an odd number of basis elements.

3. MINIMAL POLYNOMIALS

The minimal polynomials over $G F(2)$ of the x_{n} are quite easy to compute. Starting with $p_{0}(y)=y^{2}+y+1$, let $p_{1}(y)=y^{2} p_{0}\left(y+y^{-1}\right)$ and, in general, $p_{n}(y)=y^{2^{n}} p_{n}\left(y+y^{-1}\right)$. It is clear that $p_{n}\left(x_{n}\right)=0$ for all n because

$$
p_{k+1}\left(x_{k+1}\right)=x_{k+1}^{2^{k+1}} p_{k}\left(x_{k}\right)=0
$$

Since p has degree 2^{n+1}, it is the minimal polynomial of x_{n}. The following result gives a method for computing the p_{n} which is probably better suited to calculation.

Theorem 4: Let sequences of polynomials $a_{n}(y)$ and $b_{n}(y)$ be defined as follows:

$$
a_{0}=1+y^{2}, b_{0}=y \text { and } a_{n+1}=a_{n}^{2}+b_{n}^{2}, b_{n+1}=a_{n} b_{n}, \text { for } n=1,2,3, \ldots
$$

Then $a_{n}+b_{n}$ is the minimal polynomial of x_{n}.
Proof: Let $x_{-1}=1$ and observe that, for $n \geqslant 0, y=x_{n+1}$ is a root of $a_{0}+x_{n} b_{0}$ and, therefore, a root of

$$
\left(a_{0}+x_{n} b_{0}\right)\left(a_{0}+x_{n}^{-1} b_{0}\right)=a_{1}+x_{n-1} b_{1}
$$

If $n \geqslant 1, y=x_{n+1}$ is a root of

$$
\left(a_{1}+x_{n-1} b_{1}\right)\left(a_{1}+x_{n-1}^{-1} b_{1}\right)=a_{2}+x_{n-2} b_{2}
$$

After repeating this $n+1$ times, we see that $y=x_{n+1}$ is a root of $\alpha_{n+1}+b_{n+1}$. It follows from the definition that a_{n} has degree 2^{n+1} and that b_{n} has degree
$2^{n+1}-1$. Thus, $a_{n}+b_{n}$ has degree 2^{n+1} with x_{n} as a root, so it must be the minimal polynomial of x_{n}.

4. EXPERIMENT

The numbers $F_{0}, F_{1}, F_{2}, F_{3}, F_{4}$ are prime so, by the Corollary to Theorem 1 , x_{n} has order F_{n} for $n \leqslant 4$. In addition, using the complete factorizations [4, 5] of F_{n} for $5 \leqslant n \leqslant 8$, it has been checked on a computer that $x_{n_{k}} \neq 1$ for any proper divisor k of F_{n} for $n \leqslant 8$. It would be desirable to know whether x_{n} always has order F_{n}. If this is true, then $y_{n}=x_{n-1} \ldots x_{0}$ is primitive. It would be useful to have a good way to compute the minimal polynomials of the y_{n}.

5. A FIELD USED BY CONWAY

J. H. Conway has given an iterated quadratic extension [6, 7] of GF (2) that comes from the theory of Nim-like games. In our terminology, this extension would be defined by

$$
c_{n}^{2}+c_{n}=c_{n-1} \cdots c_{0} \text { for } n \geqslant 1 \text { and } c_{0}^{2}+c_{0}=1
$$

It is well known that any two finite fields of the same order are isomorphic. However, we do not yet know of an explicit isomorphism between $G F(2)\left(x_{n}\right)$ and $G F(2)\left(c_{n}\right)$.

ACKNOWLEDGMENT

The author would like to thank Norman Herzberg and Neal Zierler for their assistance.

REFERENCES

1. R. Lidl \& H. Niederreiter. Introduction to Finite Fields and Their Applications. Cambridge: Cambridge University Press, 1986.
2. E. R. Berlekamp. Algebraic Coding Theory. New York: McGraw-Hill, 1968.
3. G. H. Hardy \& E. M. Wright. The Theory of Numbers. Oxford: Oxford University Press, 1971. Fourth Edition.
4. R. P. Brent \& J. M. Pollard. "Factorization of the Eighth Fermat Number." Math. Comp. 36 (1981):627-630.
5. J. C. Hallyburton, Jr., \& J. Brillhart. "Two New Factors of Fermat Numbers." Math. Comp. 29 (1975):109-112; see also Corrigenda, Math. Comp. 30 (1976):198.
6. J. H. Conway. On Numbers and Gomes. New York: Academic Press, 1976.
7. J. H. Conway \& N. J. A. Sloane. "Lexicographic Codes: Error-Correcting Codes from Game Theory." IEEE Transactions on Information Theory 32 (May 1986).

A NOTE ON THE PRIMALITY OF $6^{2^{n}}+1$ AND $10^{2^{n}}+1$

H. C. WILLIAMS*
University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
(Submitted November 1986)
1. INTRODUCTION

In 1877, Lucas [3] presented the first practical test for the primality of the Fermat numbers $F_{n}=2^{2^{n}}+1$. We give a version of this test below, using the slightly modified form which Lucas used later in [5, p. 313] and with some minor errors corrected.

Test (T1.1) for the Primality of $F_{n}=2^{2^{n}}+1\left(r=2^{n}\right)$
Let $S_{0}=6$ and define $S_{i+1}=S_{i}^{2}-2 . F_{n}$ is a prime when $F_{n} \mid S_{r-1} ; F_{n}$ is composite if $F_{n} \nmid S_{i}$ for all $i \leqslant r-1$. Finally, if t is the least subscript for which $F_{n} \mid S_{t}$, the prime divisors of F_{n} must have the form $2^{t+1} q+1$.

Three weeks after Lucas" announcement of this test, Pepin [8] pointed out that the test was possibly not effective; that is, it might happen that a prime F_{n} would divide S_{t}, where t is too small for the primality of F_{n} to be proved. He provided the following effective primality test.

$$
\text { Test (T1.2) for the Primality of } F_{n}
$$

Let $S_{0}=5^{2}$ and define $S_{i+1} \equiv S_{i}^{2}\left(\bmod F_{n}\right) . F_{n}$ is a prime if and only if $S_{r-1} \equiv-1\left(\bmod F_{n}\right)$.
Pepin also noted that his test would be valid with $S_{0}=10^{2}$.
Somewhat later, Proth [9], [10] gave, without a complete proof, another effective test for the primality of F_{n}. His test is essentially that of Pepin with $S_{0}=3^{2}$. The proof of Proth's test was completed by Lucas [7], who also noted [5, p. 313] that Pepin's test would be valid for $S_{0}=\alpha^{2}$ when the Jacobi symbol $\left(\alpha / F_{n}\right)=-1$.

While effective tests for the primality of F_{n} have been known for almost 100 years, little seems to have been done concerning the development of effec-

[^0]```
A NOTE ON THE PRIMALITY OF 6 6}\mp@subsup{2}{}{n}+1\mathrm{ AND 10}\mp@subsup{0}{}{\mp@subsup{2}{}{n}}+
```

tive tests for the primality of other integers of the form $(2 \alpha)^{2^{n}}+1$. The two smallest values of $a$ after 1 for which this form could possibly yield primes distinct from the Fermat numbers are $\alpha=3$ and $\alpha=5$. Riese1 [11] denoted these numbers by $G_{n}=6^{2^{n}}+1$ and $H_{n}=10^{2^{n}}+1$; he also provided a small table of factors for some of these numbers. Now $G_{n}$ is of the form $A 3^{r}+1$ and $H_{n}$ is of the form $2 A 5^{r}+1$. These are forms of integers for which Lucas [4], [5], [6] presented primality tests. These tests, which are given in a modified and corrected form (there are several errors in Lucas' statements of these tests) make use of the Fibonacci numbers $\left\{U_{m}\right\}$, where $U_{0}=0, U_{1}=1$, and $U_{k+1}=U_{k}+U_{k-1}$. Note that neither Test T1.3 nor Test T1.4 is an effective test for the primality of $N$.

$$
\text { Test (T1.3) for the Primality of } A 3^{r}+1
$$

Let $N=A 3^{r}+1$ with $N \equiv \pm 1(\bmod 10)$. Put $S_{0} \equiv U_{3 A} / U_{A}(\bmod N)$ and define

$$
\begin{equation*}
S_{k-1} \equiv S_{k}^{3}-3 S_{k}^{2}+3(\bmod N) \tag{1.1}
\end{equation*}
$$

$N$ is a prime when $N \mid S_{r-1}$; if $t$ is the least subscript such that $N \mid S_{t}$, the prime factors of $N$ must be of the form $2 q 3^{t+1}+1$ or $2 q 3^{t+1}-1$.

There are a number of puzzling aspects of this test. First, why did Lucas restrict himself to a test for numbers $N \equiv \pm 1(\bmod 5)$ ? Of course, as we shall see below, it is necessary for $N \equiv \pm 1(\bmod 5)$ in order to use the Fibonacci numbers in a primality test for $N$, but other Lucas sequences could also be used. For example, if $N \equiv-1(\bmod 4)$, we could use $P=4, Q=1$; if $N \equiv 5$ (mod 8), we could use $P=10, Q=1$; and if $N \equiv 1(\bmod 8)$, we could use $P=6, Q=1$ (see Section 2). It may be that because of Lucas' great interest in Fibonacci numbers, he restricted his values of $N$ to those that could be tested by making use of them. Also, why did Lucas give this test in a form which, unlike Tl. 1 and Tl.4, does not allow for the inclusion of a test for the compositeness of $N$ ? Finally, to the author's knowledge, nowhere among the vast number of identities that Lucas developed for the Lucas functions does he mention the simple identity on which (1.1) is based.

Lucas also gave:
Test (T1.4) for the Primality of $N=2 A 5^{r}+1$
Put $S_{0} \equiv U_{A}(\bmod N)$ and define $S_{k+1} \equiv 25 S_{k}^{5}+25 S_{k}^{3}+5 S_{k}(\bmod N) \cdot N$ is a prime when the first $S_{k}$ divisible by $N$ is $S_{r}$; if none of the $S_{i}$ ( $i \leqslant r$ ) is divisible by $N, N$ is composite; if $t$ is the least subscript

## A NOTE ON THE PRIMALITY OF $6^{2^{n}}+1$ AND $10^{2 n}+1$

such that $N \mid S_{t}$, then the prime factors of $N$ must be of the form $2 q 5^{t}+1$ or $2 q 5^{t}-1$.

The purpose of this paper is to derive tests for the primality of $G_{n}$ and $H_{n}$, which are very much in the spirit of Lucas' test for the primality of $F_{n}$. We will do this by modifying tests Tl.3 and T1.4. Further, like Pepin's test, our tests will be effective. In order to achieve this, we shall be guided by the methods developed by Williams [12], [13], and [14]. It should be mentioned here that the techniques we use here could also be applied, as in the manner of [14], to other numbers of the form $A r^{n}+1$.

## 2. SOME PROPERTIES OF THE LUCAS FUNCTIONS

In order to develop primality tests for $G_{n}$ and $H_{n}$, we will require some properties of the Lucas functions $V_{n}$ and $U_{n}$. Most of these properties are well known and are included here for reference.

Let $\alpha, \beta$ be the zeros of $x^{2}-P x+Q$, where $P, Q$ are coprime integers. We define

$$
\begin{equation*}
V_{n}=\alpha^{n}+\beta^{n}, U_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) \tag{2.1}
\end{equation*}
$$

and put $\Delta=(\alpha-\beta)^{2}=P^{2}-4 Q$. The following identities can be found in [5] or verified by direct substitution from (2.1):

$$
\begin{align*}
& V_{n}^{2}-\Delta U_{n}^{2}=4 Q^{n}  \tag{2.2}\\
& V_{2 n}=V_{n}^{2}-2 Q^{n}  \tag{2.3}\\
& U_{2 n}=U_{n} V_{n}  \tag{2.4}\\
& V_{3 n}=V_{n}\left(V_{n}^{2}-3 Q^{n}\right)  \tag{2.5}\\
& U_{3 n}=U_{n}\left(\Delta U_{n}^{2}+3 Q^{n}\right)  \tag{2.6}\\
& U_{3 n}=U_{n}\left(V_{n}^{2}-Q^{n}\right)  \tag{2.7}\\
& V_{5 n}=V_{n}\left(V_{n}^{4}-5 Q^{n} U_{n}^{2}+5 Q^{2 n}\right),  \tag{2.8}\\
& U_{5 n}=U_{n}\left(\Delta^{2} U_{n}^{4}+5 Q^{n} \Delta U_{n}^{2}+5 Q^{2 n}\right),  \tag{2.9}\\
& U_{5 n}=U_{n}\left(V_{n}^{4}-3 Q^{n} V_{n}^{2}+Q^{2 n}\right) \tag{2.10}
\end{align*}
$$

If we put $X_{n}=U_{3 n} / U_{n}$, then

$$
\begin{equation*}
X_{n}=\Delta U_{n}^{2}+3 Q^{n}, \tag{2.11}
\end{equation*}
$$

by (2.6), and

$$
X_{3 n}=\Delta U_{3 n}^{2}+3 Q^{3 n}=\Delta U_{n}^{2} X_{n}^{2}+3 Q^{3 n}=X_{n}^{2}\left(X_{n}-3 Q^{n}\right)+3 Q^{3 n},
$$

by (2.11). Hence,

$$
\begin{equation*}
X_{3 n}=X_{n}^{3}-3 Q^{n} X_{n}^{2}+3 Q^{3 n} ; \tag{2.12}
\end{equation*}
$$

```
A NOTE ON THE PRIMALITY OF 6 6
```

also

$$
X_{2 n}=U_{6 n} / U_{2 n}=\left(U_{3 n}^{\prime} / U_{n}\right)\left(V_{3 n} / V_{n}\right)=X_{n}\left(X_{n}-2 Q^{n}\right),
$$

by (2.4), (2.5), and (2.2). Hence, by (2.12), we get

$$
\begin{equation*}
X_{6 n}=X_{n}^{3}\left(X_{n}-2 Q^{n}\right)^{3}-3 Q^{2 n} X_{n}^{2}\left(X_{n}-2 Q^{n}\right)^{2}+3 Q^{6 n} \tag{2.13}
\end{equation*}
$$

To obtain a result analogous to (2.12) for $Y_{n}=U_{5 n} / U_{n}$, we note that

$$
Y_{n}=\Delta^{2} U_{n}^{4}+5 Q^{n} \Delta U_{n}^{2}+5 Q^{2 n},
$$

by (2.9); thus,

$$
\begin{aligned}
Y_{5 n} & =\Delta^{2} U_{n}^{4} Y_{n}^{4}+5 Q^{5 n} \Delta U_{n}^{2} Y_{n}^{2}+5 Q^{10 n} \\
& =Y_{n}^{4}\left(Y_{n}-5 Q^{n} \Delta U_{n}^{2}-5 Q^{2 n}\right)+5 Q^{5 n} \Delta U_{n}^{2} Y_{n}^{2}+5 Q^{10 n}
\end{aligned}
$$

We get

$$
\begin{equation*}
Y_{5 n}=Y_{n}^{5}+5 Q^{n}\left(Q^{n}-\Delta U_{n}^{2}\right) Y_{n}^{4}+5 Q^{5 n} \Delta U_{n}^{2} Y_{n}^{2}+5 Q^{10 n} . \tag{2.14}
\end{equation*}
$$

For the development of one of our tests, it will be convenient to define

$$
\begin{equation*}
W_{n} \equiv V_{2 n} Q^{-n}(\bmod N) \tag{2.15}
\end{equation*}
$$

Here the modulus $N$ is assumed to be coprime to $Q$. From (2.8) and (2.2), we get

$$
\begin{equation*}
W_{10 n} \equiv W_{n}^{2}\left(W_{n}^{3}-5 W_{n}^{2}+5\right)^{2}-2(\bmod N) \tag{2.16}
\end{equation*}
$$

Also, by (2.10), we have

$$
\begin{equation*}
\left(U_{10 n} / U_{2 n}\right) Q^{-4 n} \equiv W_{n}^{4}-3 W_{n}^{2}+1(\bmod N) \tag{2.17}
\end{equation*}
$$

We will also require some standard number-theoretic properties of the Lucas functions. We list these as a collection of theorems together with appropriate references. We let $p$ be an odd prime and put

$$
\varepsilon=(\Delta / p), \quad \eta=(Q / p)
$$

where $(\cdot / p)$ is the Legendre symbol.
Theorem 2.1 (Carmichael [1], Lehmer [2]): If $p \nmid \Delta Q$, then $p \mid U_{p-\varepsilon}$. $\square$
Theorem 2.2 (Lehmer [2]): If $p \nmid \Delta Q$, then $p \mid U_{(p-\varepsilon) / 2}$ if and only if $\eta=1$. $\square$
Theorem 2.3 (Carmichael [1], p. 51): The g.c.d. of $U_{p n} / U_{n}$ and $U_{n}$ divides $p$. (This result is true as well for $p=2$.) $\square$

Theorem 2.4: Let g.c.d. $(N, 2 p Q)=1$. If $p|m, N| U_{m}$, and g.c.d. $\left(U_{m / p}, N\right)=1$, then the prime factors of $N$ must be of the form $k p^{\nu} \pm 1$, where $V$ is the highest power to which $p$ occurs as a factor of $m(p \vee \| m)$. 口

By combining Theorem 2.4 with Theorem 2.3, we get the following

## A NOTE ON THE PRIMALITY OF $6^{2^{n}}+1$ AND $10^{2 "}+1$

Corollary: If g.c.d. $(N, 2 p Q)=1$ and

$$
U_{p n} / U_{n} \equiv 0(\bmod N)
$$

then the prime factors of $N$ must be of the form $k p^{\nu} \pm 1$, where $p^{\nu-1} \| m$.
If we put $p=2$, we have $U_{p k} / U_{k}=V_{k}$; hence, $N=F_{n}$ is a prime if for some $P$, $Q$ we have $V_{(N-1) / 2} \equiv 0(\bmod N)$. On the other hand, if $N=F_{n}$ is a prime, we must have $V_{(N-1) / 2} \equiv 0(\bmod N)$ if $N \nmid \Delta Q,(\Delta / N)=1$, and $(Q / N)=-1$. This will certainly be the case if we put $P=a+1, Q=a(\alpha=\alpha, \beta=1)$, where $(\alpha / N)=$ -1. Thus, $N=F_{n}$ is a prime if and only if $V_{(N-1) / 2} \equiv 0(\bmod N)$ when $P=a+1$, $Q=\alpha$, and $(\alpha / N)=-1$. This, of course, is the Pepin $(\alpha=5,10)$ or the Proth ( $\alpha=3$ ) test for the primality of $F_{n}$.

To extend these ideas to the $G_{n}$ and the $H_{n}$ numbers, we must find a result analogous to Theorem 2.2 for $U_{(p-\varepsilon) / 3}$ and $U_{(p-\varepsilon) / 5}$ when $\varepsilon=1$. This can be done by using a simple modification of an idea developed in Williams [12] and [13]. We describe this briefly here and refer the reader to [13] for more details. (In [13] we deal with the case $p \equiv-q \equiv 1(\bmod r)$ only.)

We let $p, q$, and $r$ be odd primes such that $p \equiv q \equiv 1(\bmod r)$ and let $K=$ $G F\left(p^{q-1}\right)$. Write $t=$ ind $m$, where $m \equiv g^{t}(\bmod q) \quad(0 \leqslant t \leqslant q-2)$ and $g$ is a fixed primitive root of $q$. We consider the Gauss sum

$$
(\xi, \omega)=\sum_{1}^{q-1} \xi^{\text {ind } k} \omega^{k}
$$

where $\xi$ and $\omega$ are, respectively, primitive $p^{\text {th }}$ and $q^{\text {th }}$ roots of 1 in $K$. If, as in [13], we let $j=$ ind $p$,

$$
q \alpha=(\xi, \omega)^{r}, q \beta=\left(\xi^{-1}, \omega\right)^{r},
$$

then $\alpha+\beta, \alpha \beta \in G F(p)$, and in $K$,

$$
(q \alpha)^{(p-1) / r}=(\xi, \omega)^{p-1}=(\xi, \omega)^{-1}(\xi, \omega)=\xi^{-j}
$$

Thus, if $P \equiv \alpha+\beta(\bmod p)$ and $Q \equiv \alpha \beta(\bmod p)$, then $U_{p-1} \equiv 0(\bmod p)$. Also
if

$$
\begin{aligned}
& U_{(p-1) / r} \not \equiv 0(\bmod p) \\
& p^{(q-1) / r} \not \equiv 0,1(\bmod q)
\end{aligned}
$$

This result is analogous to Theorem 2.2; however, in order for it to be useful, we must be able to compute values for $\alpha+\beta$ and $\alpha \beta$. The value of $\alpha \beta$ is simply $q^{r-2}$, but $\alpha+\beta$ is rather more complicated. It can be written as

$$
\begin{equation*}
\alpha+\beta \equiv \sum_{i=0}^{(r-3) / 2} C(i, r, q) R^{i}(\bmod p) \tag{2.18}
\end{equation*}
$$

$$
\text { A NOTE ON THE PRIMALITY OF } 6^{2^{n}}+1 \text { AND } 10^{2^{n}}+1
$$

where the coefficients $C(i, r, q)$ are independent of $p$, and $R$ can be any solution of a certain polynomial congruence (modulo $p$ ). In the case of $r=3, R$ does not occur in (2.18); in the case of $r=5, R$ can be any solution of

$$
x^{2}+x-1 \equiv 0(\bmod p)
$$

For more details on $R$ and tables of $C(i, r, q)$, we refer the reader to [12] and [14]. Here, it is sufficient to note that $C(0,3,7)=1, C(0,5,11)=-57$, and $C(1,5,11)=-25$.

## 3. THE PRIMALITY TESTS

It is evident from the results in Section 2 that it is a very simple matter to develop a sufficiency test for the primality of numbers like $G_{n}$ and $H_{n}$. One need only select some integer $a$ such that g.c.d. $(a, N)=1$, put $P=a+1, Q=$ $\alpha$, and determine whether

$$
\begin{equation*}
U_{N-1} / U_{(N-1) / r} \equiv 0(\bmod N) \tag{3.1}
\end{equation*}
$$

Here, $r=3$ for $N=G_{n}$ and $r=5$ for $N=H_{n}$. If (3.1) holds, $N$ is a prime; however, if (3.1) does not hold, we have no information about $N$ and must select another value for $\alpha$. In practical tests for the primality of these numbers we would use, instead of (3.1), the two conditions

$$
\begin{equation*}
\text { g.c.d. }\left(\alpha^{(N-1) / r}-1, N\right)=1 \tag{3.2a}
\end{equation*}
$$

and

$$
\begin{equation*}
a^{N-1} \equiv 1(\bmod N) \tag{3.2b}
\end{equation*}
$$

In this case, if (3.2a) and (3.2b) hold, then (3.1) holds; if (3.2b) does not hold, $N$ is composite. Also, if $N$ is a prime, the first value of a selected (by trial) usually causes both (3.2a) and (3.2b) to hold. Nevertheless, this test is not effective, in that we cannot give a priori a value for $a$ such that, if $N$ is a prime, (3.2a) and (3.2b) must hold.

We will now give effective tests for the primality of $G_{n}$ and $H_{n}$. We first note that, since $\left(\Delta / G_{n}\right)=\left(5 / G_{n}\right)=(2 / 5)=-1$, we cannot use the Fibonacci numbers in a test for the primality of $G_{n}$. However, we can still give a very simple test like Test Tl. 2 for the primality of $G_{n}$.

Let $N=G_{n}$. By the results at the end of the last section we know that if $P=1$ and $Q=7$ then, since $N^{2} \not \equiv 0,1(\bmod 7)$, we must have

$$
U_{N-1} / U_{(N-1) / 3} \equiv 0(\bmod N)
$$

when $N$ is a prime. Also, under the assumption that $N$ is a prime,

$$
(Q / N)=(7 / N)=(N / 7)=(2 / 7)=1 \text { and } U_{(N-1) / 2} \equiv 0(\bmod N)
$$

```
A NOTE ON THE PRIMALITY OF 6 '2"}+1\mathrm{ AND 10** + 1
```

by Theorem 2.2. Further, since $U_{(N-1) / 3} \not \equiv 0(\bmod N)$, we cannot have $U_{(N-1) / 6} \equiv 0$ $(\bmod N)$ by (2.4); hence,

$$
\begin{equation*}
U_{(N-1) / 2} / U_{(N-1) / 6} \equiv 0(\bmod N) \tag{3.3}
\end{equation*}
$$

If we define $Z_{m} \equiv\left(U_{3 m} / U_{m}\right) Q^{-m}=X_{m} Q^{-m}(\bmod N)$, then by (2.13) we have

$$
Z_{6 m} \equiv Z_{m}^{3}\left(Z_{m}-2\right)^{3}-3 Z_{m}^{2}\left(Z_{m}-2\right)^{2}+3(\bmod N)
$$

by putting $S \equiv Z_{6^{k}}(\bmod N)$, we have

$$
\begin{equation*}
S_{k+1} \equiv S_{k}^{3}\left(S_{k}-2\right)^{3}-3 S_{k}^{2}\left(S_{k}-2\right)^{2}+3(\bmod N) \tag{3.4}
\end{equation*}
$$

If $r=2^{n}$, then

$$
\begin{equation*}
S_{r-1} \equiv\left(U_{(N-1) / 2} / U_{(N-1) / 6}\right) Q^{-(N-1) / 6}(\bmod N) \tag{3.5}
\end{equation*}
$$

It follows that, if $S_{r} \equiv 0(\bmod N)$, then any prime factor of $N$ must have the form $k 3^{2^{n}} \pm 1$. Since $\left(2 \cdot 3^{2^{n}}-1\right)^{2}>N$, we see that $N$ must be a prime.

Now,

$$
S_{0}=Z_{1} \equiv\left(U_{3} / U_{1}\right) Q^{-1}(\bmod N) \text { and } U_{3} / U_{1}=P^{2}-Q
$$

hence,

$$
\begin{equation*}
S_{0} \equiv P^{2} Q^{-1}-1 \equiv 7^{-1}-1 \equiv 3(N-2) / 7(\bmod N) \tag{3.6}
\end{equation*}
$$

Thus, by combining the results (3.6) (3.4), (3.5), (3,3), and the theorems of Section 2, we get the following necessary and sufficient primality test for $G_{n}$ : Primality Test (T3.1) for $N=6^{2^{n}}+1\left(r=2^{n}\right)$

1. Put $S_{0}=3(N-2) / 7$ and define
$S_{k+1} \equiv S_{k}^{3}\left(S_{k}-2\right)^{3}-3 S_{k}^{2}\left(S_{k}-2\right)^{2}+3(\bmod N)$.
2. $N$ is a prime if and only if

$$
S_{r-1} \equiv 0(\bmod N)
$$

Unfortunately, because of the difficulty in finding $R$, the primality test which we shall develop for $H_{n}$ is not as simple or elegant as T3.l. Also, the formula (2.14) for $Y_{5 n}$ is not as simple as (2.12); that is, we cannot express $Y_{5 n}$ in terms of a simple polynomial in $Y_{n}$ and $Q^{n}$ only. However, in this case, we can directly integrate Lucas' Test T1.4 into an effective test for the primality of $H_{n}$.

Let $N=H_{n}$. Since $N^{2} \neq 0,1(\bmod 11)$, by the results at the end of Section 2 we know that, if $N$ is a prime, then

$$
\begin{equation*}
U_{N-1} / U_{(N-1) / 5} \equiv 0(\bmod N) \tag{3.7}
\end{equation*}
$$

when $P \equiv-57-25 R(\bmod N), Q=11^{3}=1331$, and

$$
\begin{equation*}
R^{2}+R-1 \equiv 0(\bmod N) \tag{3.8}
\end{equation*}
$$

If we put $T_{k} \equiv W_{10^{k}}(\bmod N)$, by (2.16) we get

$$
\begin{equation*}
T_{k+1} \equiv T_{k}^{2}\left(T_{k}^{4}-5 T_{k}^{2}+5\right)^{2}-2(\bmod N) \tag{3.9}
\end{equation*}
$$

Hence, if $r=2^{n}$, we also get

$$
T_{r-1} \equiv W_{(N-1) / 10} \equiv V_{(N-1) / 5} Q^{-(N-1) / 10}(\bmod N)
$$

It follows from (2.17) that (3.7) holds if and only if

$$
\begin{equation*}
T_{r-1}^{4}-3 T_{r-1}^{2}+1 \equiv 0(\bmod N) \tag{3.10}
\end{equation*}
$$

As mentioned above, the difficulty in using this as a test for the primality of $H_{n}$ resides in the fact that we do not usually know a priori a value for $R$. We can, however, apply the noneffective Test Tl. 4 of Lucas. If this succeeds, we need not use the result above; but, even if it fails, it will provide us with a value for $R$ and then we can use a test that we know is effective.

We note that in Lucas' test we have $P=1, Q=-1$. Hence,

$$
\varepsilon=(\Delta / N)=(5 / N)=1, \quad \eta=(Q / N)=1
$$

and

$$
\begin{equation*}
U_{(N-1) / 2} \equiv 0(\bmod N) \tag{3.11}
\end{equation*}
$$

when $N$ is a prime.
Define

$$
\begin{aligned}
X_{i} & \equiv V_{2^{i}} \quad(\bmod N) \\
Y_{i} & \equiv U_{2^{i}} \quad(\bmod N) \quad(i \geqslant 1)
\end{aligned}
$$

By (2.3) and (2.4), we have

$$
\begin{equation*}
Y_{i+1} \equiv Y_{i} X_{i}, \quad X_{i+1} \equiv X_{i}^{2}-2(\bmod N) \tag{3.12}
\end{equation*}
$$

Also, by (2.2),

$$
\begin{equation*}
X_{i}^{2}-5 Y_{i}^{2} \equiv 4(\bmod N) \tag{3.13}
\end{equation*}
$$

If we put $H_{n}=2 A 5^{r}+1\left(r=2^{n}\right)$, then $A=2^{r-1}$ and

$$
\begin{equation*}
U_{A} \equiv Y_{r-1} \equiv \prod_{i=0}^{r-2} X_{i}(\bmod N) \tag{3.14}
\end{equation*}
$$

by (2.4). Thus, if $N$ is a prime and $N \mid U_{A}$, we must have

$$
\begin{equation*}
X_{m} \equiv 0(\bmod N) \tag{3.15}
\end{equation*}
$$

for some $1<m \leqslant r-2 \quad\left(X_{1}=V_{2}=3\right)$. Hence, by using (3.15) and (3.13), we see that

$$
\begin{equation*}
R \equiv 25\left(2+5 \cdot 10^{r / 2} Y_{m}\right) 10^{r-2}(\bmod N) \tag{3.16}
\end{equation*}
$$

is a solution of (3.8).
1988]

## A NOTE ON THE PRIMALITY OF $6^{2^{n}}+1$ AND $10^{2^{n}}+1$

Put

$$
\begin{equation*}
S_{0} \equiv Y_{r-1}(\bmod N) \tag{3.17}
\end{equation*}
$$

and define

$$
\begin{equation*}
S_{k+1} \equiv 25 S_{k}^{5}+25 S_{k}^{3}+5 S_{k}(\bmod N) \tag{3.18}
\end{equation*}
$$

Using (2.9) we see that $S_{k} \equiv U_{A 5^{k}}(\bmod N)$. If $N$ is a prime, by (3.11) we must have $S_{r} \equiv 0(\bmod N)$. If $S_{0} \not \equiv 0(\bmod N)$, then, for some $t<r$, we have

$$
S_{t} \not \equiv 0(\bmod N) \quad \text { and } \quad S_{t+1} \equiv 0(\bmod N)
$$

By (3.18) we find that

$$
\begin{equation*}
R \equiv 5 S_{t}^{2}+2(\bmod N) \tag{3.19}
\end{equation*}
$$

is a solution of (3.8). Also, if (2• $\left.5^{t+1}-1\right)^{2}>N$, then, by the Corollary of Theorem 2.4, we know that $N$ is a prime.

We are now able to assemble this information and use (3.12), (3.16)-(3.19), (3.9) and (3.10) to develop the following test.

$$
\text { Primality Test }(T 3.2) \text { for } H_{n}=10^{2^{n}}+1\left(r=2^{n}\right)
$$

1. Put $X_{1}=3, Y_{1}=1$ and define

$$
\begin{aligned}
Y_{k+1} & \equiv Y_{k} X_{k}(\bmod N), \\
X_{k+1} & \equiv X_{k}^{2}-2(\bmod N)
\end{aligned}
$$

2. If $X_{m} \equiv 0(\bmod N)$ for some $m \leqslant r-2$, put

$$
R \equiv 25\left(2+5 \cdot 10^{r / 2} Y_{m}\right) 10^{r-2}(\bmod N)
$$

and go directly to step 5; otherwise,
3. Put $S_{0} \equiv Y_{r-1}(\bmod N)$ and define

$$
S_{k+1} \equiv 25 S_{k}^{5}+25 S_{k}^{3}+5 S_{k}(\bmod N)
$$

4. Find some $t<r$ such that

$$
S_{t+1} \equiv 0(\bmod N) \text { and } S_{t} \not \equiv 0(\bmod N)
$$

If no such $t$ exists, then $N$ is composite and our test ends. If

$$
\left(2 \cdot 5^{t+1}-1\right)^{2}>N
$$

then $N$ is a prime and our test ends. If

$$
\left(2 \cdot 5^{t+1}-1\right)^{2}<N,
$$

put

A NOTE ON THE PRIMALITY OF $6^{2^{n}}+1$ AND $10^{2^{n}}+1$

$$
R \equiv 5 S_{t}^{2}+2(\bmod N)
$$

5. Put

$$
T_{0} \equiv(57+25 R)^{2}((5 N+1) / 11)^{3}-2(\bmod N)
$$

and define

$$
T_{k+1} \equiv T_{k}^{10}-10 T_{k}^{8}+35 T_{k}^{6}-50 T_{k}^{4}+25 T_{k}^{2}-2(\bmod N)
$$

6. $N$ is a prime if and only if

$$
T_{r-}^{4}-3 T_{r-1}^{2}+1 \equiv 0(\bmod N)
$$

## REFERENCES

1. R. D. Carmichae1. "On the Numerical Factors of the Arithmetic Forms $\alpha^{n} \pm$ $\beta^{n}$." Annals of Math. (2) 15 (1913-1914):30-70.
2. D. H. Lehmer. "An Extended Theory of Lucas' Functions." Annals of Math. (2) 31 (1930):419-448.
3. E. Lucas. "Sur la division de la circonference en parties égales." Académie des Sciences de Paris, Comptes rendues 85 (1877):136-139.
4. E. Lucas. "Considérations nouvelles sur la théorie des nombres premiers et sur la division géométrique de la circonference en parties égales." Assoc. Francaise pour 1'Avancement des Sciences, Comptes Rendues des Sessions, 1877, pp. 159-167.
5. E. Lucas. "Theorie des functions numériques simplement périodiques." Amer. J. Math. 1 (1878):184-240, 289-321.
6. E. Lucas. "Sur la série récurrent de Fermat." Bulletino di Bibliografia e di storia delle Scienze Mathematiche e Fisiche 11 (1878):783-798.
7. E. Lucas. "Question 453." Nouv. Corresp. Math. 5 (1879):137.
8. P. Pepin. "Sur la formule $2^{2^{n}}+1$." Académie des Sciences de Paris, Comptes rendues 85 (1877):329-331.
9. F. Proth. "Mémoires présentés." Académie des Sciences de Paris, Comptes rendues 87 (1878):374, see also p. 926.
10. F. Proth. "Extrait d'une lettre de M. Proth." Nouv. Corresp. Math. 4 (1878):210-211.
11. H. Riese1. "Some Factors of the Numbers $G_{n}=6^{2^{n}}+1$ and $H_{n}=10^{2^{n}}+1 . "$ Math. Comp. 23 (1969):413-415; Corrigenda, Math. Comp. 24 (1970):243.
12. H. C. Williams. "An Algorithm for Determining Certain Large Primes." Congressus Numerantium III, Proc. of the Second Louisiana Conf. on Combinatorics, Graph Theory and Computing, Utilitas Mathematica, Winnipeg, 1971, pp. 533-556.
13. H. C. Williams. "A Class of Primality Tests for Trinomials Which Include the Lucas-Lehmer Test." Pacific J. Math. 98 (1982):477-494.
14. H. C. Williams. "Effective Primality Tests for Some Integers of the Forms $A 5^{n}-1$ and $A 7^{n}-1 . "$ Math. Comp. (To appear.)

# SUPPOSE MORE RABBITS ARE BORN 

SHARI LYNN LEVINE<br>Student, Half Hollow Hills H.S. East, Dix Hills, NY 11746

(Submitted November 1986)

How would Fibonacci's age-old sequence be redefined if, instead of bearing one pair of baby rabbits per month, the mature rabbits bear two pairs of baby rabbits per month? The answer is an intriguing sequence that has led to the development of what are herein defined as "multi-nacci sequences of the order $q, "$ where $q$ is the number of rabbit pairs per litter. Table 1 illustrates the sequence with $q=2$.

Pair
Sequence Month
1

1
1


21
6
Table 1

2
$3 \quad 3$

5

11
$43 \quad 7$
Key: $R R=$ Pair of rabbits ready to reproduce $\mathrm{BB}=$ Pair of bunnies (immature rabbits)

Call this sequence the "Beta-nacci sequence"; note that each term can be generated by adding the preceding term to twice the one before that, i.e.,

$$
B_{n}=B_{n-1}+2 B_{n-2} .
$$

Using a similar process, sequences can be developed for situations when 3 , 4,5, and 6 rabbit pairs per litter are born. Call these multi-nacci sequences Gamma-, Delta-, Epsi-, and Zeta-nacci sequences, respectively. Table 2 illustrates the first seven terms in each of these multi-nacci sequences and the general formulas for each sequence.

Table 2

| Beta-nacci |  | Gamma-nacci |  | Delta-nacci |  | Epsi-nacci |  | Zeta-nacci |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $B_{n}$ | $n$ | $G_{n}$ | $n$ | $D_{n}$ | $n$ | $E_{n}$ | $n$ | $Z_{n}$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | , | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
| 3 | 3 | 3 | 4 | 3 | 5 | 3 | 6 | 3 | 7 |
| 4 | 5 | 4 | 7 | 4 | 9 | 4 | 11 | 4 | 13 |
| 5 | 11 | 5 | 19 | 5 | 29 | 5 | 41 | 5 | 55 |
| 6 | 21 | 6 | 40 | 6 | 65 | 6 | 96 | 6 | 133 |
| 7 | 43 | 7 | 97 | 7 | 181 | 7 | 301 | 7 | 463 |
| $B_{n-1}$ | $2 B_{n-2}$ | $G_{n-1}$ | $3 G_{n-2}$ | $D_{n-1}$ | $4 D_{n-2}$ | $E_{n-1}$ | $5 E_{n}$ | $z_{n-1}$ | $6 Z_{n-2}$ |

## SUCCESSIVE TERM RATIOS

When one examines the ratio created from two successive terms of the Fibonacci sequence, as $n$ gets larger, the ratio under investigation approaches the Golden Ratio, $\phi=1.618033989 .$. , which is the decimal representation of

$$
\phi=(1+\sqrt{5}) / 2
$$

For the multi-nacci sequences to be analogous to the Fibonacci sequence, each sequence should also have a unique ratio that is approached when one forms a ratio of one term to its preceding term. Indeed, this is the case. Let $S_{q}=$ the limit, as $n \rightarrow \infty$, of successive term ratios of any multi-nacci sequence of order $q$. (By this definition, $S_{1}=\phi$. ) Let ${ }_{n} S_{q}=$ the successive term ratios of the $n^{\text {th }}$ term to its preceding term in any multi-nacci sequence of order $q$, e.g., ${ }_{5} S_{2}=2.20$. The Beta-nacci sequence ratio is examined in Table 3 .

Table 3

| $n$ | $B_{n}$ | $n_{n}{ }_{2}{ }^{*}$ | $n$ | $B_{n}$ | $n^{S_{2}{ }^{*}}$ |
| :--- | ---: | :--- | ---: | ---: | :---: |
| 1 | 1 |  | 7 | 43 | 2.048 |
| 2 | 1 | 1.000 | 8 | 85 | 1.977 |
| 3 | 3 | 3.000 | 9 | 171 | 2.012 |
| 4 | 5 | 1.667 | 10 | 341 | 1.994 |
| 5 | 11 | 2.200 | 11 | 683 | 2.003 |
| 6 | 21 | 1.909 | 12 | 1365 | 1.999 |

*To the nearest thousandth.
Thus, we can see that for the Beta-nacci sequence $S_{2} \rightarrow 2$.

## SUPPOSE MORE RABBITS ARE BORN

It can be shown that for the Gamma-nacci, Delta-nacci, Epsi-nacci, and Zeta-nacci sequences, the following ratios are approached:

$$
\begin{array}{ll}
\text { Gamma-nacci: } & S_{3} \rightarrow 2.30277 \\
\text { Delta-nacci: } & S_{4} \rightarrow 2.56155 \\
\text { Epsi-nacci: } & S_{5} \rightarrow 2.79129 \\
\text { Zeta-nacci: } & S_{6} \rightarrow 3.00000
\end{array}
$$

The technique of the proofs of these ratios is illustrated below using the Gamma-nacci sequence.

Let $A=G_{n-2}$ when $n$ is very large. Then, the next term in the sequence, $G_{n-1}$, will be approximately $S_{3}(A)$, and the next term, $G_{n}$, will be $\left(S_{3}\right)^{2} A$.

Remember that, by definition, $G_{n}=G_{n-1}+3 G_{n-2}$.
But this is $\left(S_{3}\right)^{2} A=S_{3} A+3 A$, whose solution is $S_{3}=(1 \pm \sqrt{13}) / 2$.
Disregarding the $-\sqrt{13}$, because there are no negative rabbits,

$$
S_{3}=2.30277 \ldots
$$

Note that the equation $\left(S_{3}\right)^{2}-S_{3}-3=0$ bears a striking resemblance to the equation $\left(S_{1}\right)^{2}-S_{1}-1=0$ that generates $\phi$. In fact, an entire family of equations can be created which when solved yield the ratios indicated earlier. Specifically, the general equation is $\left(S_{q}\right)^{2}-S_{q}-q=0$, and the ratio

$$
S_{q}=(1+\sqrt{1+4 q}) / 2
$$

## SPECIAL RECIPROCAL PROPERTIES

One special property of the Golden Ratio is that it is its own reciprocal after one has been subtracted from it. With the multi-nacci sequences, some more general questions can be investigated, such as: "What number, when one is subtracted from it, is twice its own reciprocal, or three times its own reciprocal, or four times its own reciprocal?" The answers, in this order, are the Beta-nacci, Gamma-nacci, and Delta-nacci successive term ratios: $S_{2}, S_{3}$, and $S_{4}$, respectively.

The proof of a generalized version of this question is very straightforward.

$$
\begin{aligned}
\left(S_{q}\right)^{2}-S_{q}-q & =0 \\
\left(S_{q}\right)^{2} & =S_{q}+q \\
S_{q} & =1+\frac{q}{S_{q}} \\
\left(S_{q}-1\right) & =q\left(\frac{1}{S_{q}}\right)
\end{aligned}
$$

Thus, the special reciprocal property of the Fibonacci sequence is but one
of a more general set of reciprocal properties of the ratio limits of the multi-nacci sequences.

## BETA-NACCI SEQUENCE PROPERTIES

In particular, the Beta-nacci sequence has been given additional examination because it appears to have many interesting properties.

Table 4

| $n$ | $B_{n}$ | $2 B_{n}$ | $2^{n}$ | $\sum_{n=0}^{n} B_{n}$ | $\left(B_{n}\right)^{2}$ | $\left(B_{n-1}\right)\left(B_{n+1}\right)$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 1 | 0 | 0 |  |
| 1 | 1 | 2 | 2 | 1 | 1 | 0 |
| 2 | 1 | 2 | 4 | 2 | 1 | 3 |
| 3 | 3 | 6 | 8 | 5 | 9 | 5 |
| 4 | 5 | 10 | 16 | 10 | 25 | 33 |
| 5 | 11 | 22 | 32 | 21 | 121 | 105 |
| 6 | 21 | 42 | 64 | 42 | 441 | 473 |
| 7 | 43 | 86 | 128 | 85 | 1849 | 1785 |
| 8 | 85 | 170 | 256 | 170 | 7225 | 7353 |
| 9 | 171 | 342 | 512 | 341 | 29241 | 28985 |
| 10 | 341 | 682 | 1024 | 682 | 116281 | 116793 |
| 11 | 683 | 1366 | 2048 | 1365 | 466489 | 465465 |

Notice that in Table 4 the sum of any two successive terms in the $B_{n}$ column is a power of 2 , or

$$
\begin{equation*}
B_{n}+B_{n-1}=2^{n-1} \tag{1}
\end{equation*}
$$

The $\sum_{n=0}^{n} B_{n}$ column is remarkably like the $B_{n}$. In fact,

$$
\sum_{n=0}^{n} B_{n-1}=B_{n}+\frac{(-1)^{n}-1}{2}
$$

Examining the $2 B_{n}$ column, it appears that there is a difference of $\pm 1$ between the entries in the $B_{n}$ and $2 B_{n-1}$ locations. That is,

$$
\begin{equation*}
B_{n}-2 B_{n-1}=(-1)^{n-1} \tag{2}
\end{equation*}
$$

Because in the Fibonacci sequence there is a relationship between $\left(F_{n}\right)^{2}$ and $\left(F_{n-1}\right)\left(F_{n+1}\right)$, the Beta-nacci numbers have been examined for a similar relationship. From Table 4 entries, the results of $\left(B_{n}\right)^{2}-\left(B_{n-1}\right)\left(B_{n+1}\right)$ are $+1,-2,+4$, $-8,+16,-32,+64,-128,+256,-512$, and +1024 , so that $\left(B_{n}\right)^{2}-\left(B_{n-1}\right)\left(B_{n+1}\right)=$ $(-2)^{n-1}$. Fibonacci numbers have the same relationship using the base of ( -1 ) instead of $(-2)$. It can be shown that $\left(T_{n}\right)^{2}-\left(T_{n-1}\right)\left(T_{n+1}\right)=(-q)^{n-1}$, where $T$ is any term of a multi-nacci series of order $q$.

Equation (1) shows that the summation of two successive terms in the Betanacci sequence is $1,2,4,8,16, \ldots$. . If this sequence is studied, it, too, is observed to be a Beta-nacci-type sequence. For example, $16=8+2(4)$. In other words, the powers of 2 are a Beta-nacci sequence. (Interestingly, also, is the fact that the powers of 3 are a Zeta-nacci sequence.) Furthermore, if two terms of the $2,4,8,16, \ldots$ sequence are summed, a sequence with the terms 3, 6, 12, 24, 48, ... develops. This is also a Beta-nacci-type sequence, i.e., $24=12+2(6)$. In fact, summing two successive terms in any multi-nacci sequence creates a new sequence of the same multi-nacci type.

Moreover, summing three successive terms of the Beta-nacci sequence creates the sequence $2,5,9,19,37,75,149$, .., which is yet another Beta-nacci-type sequence, i.e., $37=19+2(9)$. Summing any number of successive terms in any multi-nacci sequence results in a new multi-nacci sequence of the same type:

If $T_{n}$ is the $n^{\text {th }}$ term of any type of multi-nacci sequence, then

$$
\begin{aligned}
T_{n} & =T_{n-1}+q T_{n-2} \\
T_{n+1} & =T_{n}+q T_{n-1} \\
T_{n+2} & =T_{n+1}+q T_{n} \\
T_{n+3} & =T_{n+2}+q T_{n+1} \\
\vdots & \vdots \\
T_{n+m} & =T_{n+m-1}+q T_{n+m-2} \\
\sum_{N=n}^{m} T_{N} & =\sum_{N=n}^{m} T_{N-1}+q \sum_{N=n}^{m} T_{N-2}
\end{aligned}
$$

Similarly, it can be shown that summing the terms in any two or more nonsequential multi-nacci sequences of the same order results in sums which are also a multi-nacci sequence of the same order.

## BETA-NACCI $n^{\text {th }}$ TERM

In the past, mathematicians have developed formulas for the $n$th term of the Fibonacci sequence. This is important because, without such a formula, one must enumerate every single term up to the one in question. Thus, the Betanacci sequence has been examined for a formula for the $n^{\text {th }}$ term.

Using (1) and (2), as defined,

$$
\begin{aligned}
B_{n}+B_{n-1} & =2^{n-1} \\
B_{n}-2 B_{n-1} & =(-1)^{n-1}
\end{aligned}
$$

we have:

$$
\begin{aligned}
& \quad \begin{aligned}
& B_{n}=2 B_{n-1}+(-1)^{n-1} \\
& 2 B_{n-1}+(-1)^{n-1}+B_{n-1}=2^{n-1} \\
& 3 B_{n-1}=2^{n-1}-(-1)^{n-1} \\
& \text { For ease in examination, let } n-1=n \text {, so } 3 B_{n}=2^{n}-(-1)^{n} . \text { Then } \\
& B_{n}=\frac{2^{n}-(-1)^{n}}{3} .
\end{aligned}
\end{aligned}
$$

This formula is much less complicated than one for Fibonacci's $n^{\text {th }}$ term.

## REPEATING UNITS DIGITS

One can observe that the units digits in the Beta-nacci sequence are 1,1 , 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, ... . They repeat every four terms. The units digits of the $\sum B_{n}$ terms also repeat every four terms as $0,1,2,5,0,1,2,5$, etc. In 1963, Dov Jarden showed in [1] that the units digit of the Fibonacci sequence repeats every 60 terms. Thus, in this regard, Beta-nacci is a vast improvement over Fibonacci. All multi-nacci sequences have units digit repeat periods.

| RABBIT PAIRS PER LITTER, $q$ | SEQUENCE | UNITS DIGIT REPEAT PERIOD |
| :---: | :--- | :--- |
| 1 | Fibonacci | 60 |
| 2 | Beta-nacci | 4 |
| 3 | Gamma-nacci | 24 |
| 4 | De1ta-nacci | 6 |
| 5 | Epsi-nacci | 3 |
| 6 | Zeta-nacci | 20 |
| 7 | Eta-nacci | 12 |
| 8 | Theta-nacci | 24 |
| 9 | Iota-nacci | 6 |
| 10 | Kappa-nacci | 1 |
| 11 | Lambda-nacci | 60 |

Moreover, the sequence of units digit repeat periods $60,4,24,6,3,20,12$, $24,6,1$ now repeats as we get into the higher-order multi-nacci sequences. The determination of the tens digit repeat periods is left to the reader.

## CONCLUSIONS

Fibonacci-type sequences develop from multiple rabbit births. This paper demonstrates that these sequences also have interesting properties of their own which are ripe for future study.

## REFERENCE

1. Dov Jarden. "On the Periodicity of the Last Digits of the Fibonacci Numbers." The Fibonacci Quarterly 1, no. 4 (1963):21-22.

# NEW UNITARY PERFECT NUMBERS HAVE AT LEAST <br> NINE ODD COMPONENTS 

CHARLES R. WALL
Trident Technical College, Charleston, SC 29411
(Submitted November 1986)

1. INTRODUCTION

We say that a divisor $d$ of an integer $n$ is a unitary divisor if $\operatorname{gcd}(d, n / d)=1$,
in which case we write $d \| n$. By a component of an integer we mean a prime power unitary divisor.

Let $\sigma^{*}(n)$ denote the sum of the unitary divisors of $n$. Then $\sigma^{*}$ is a multiplicative function, and $\sigma^{*}\left(p^{e}\right)=p^{e}+1$ if $p$ is prime and $e \geqslant 1$. Throughout this paper we will let $f$ be the ad hoc function defined by $f(n)=\sigma^{*}(n) / n$.

An integer $n$ is unitary perfect if $\sigma^{*}(n)=2 n$, i.e., if $f(n)=2$. Subbarao and Warren [2] found the first four unitary perfect numbers, and this author [3] found the fifth. No other such numbers have been found, so at this stage the only known unitary perfect numbers are:
$6=2 \cdot 3,60=2^{2} 3 \cdot 5 ; 90=2 \cdot 3^{2} 5 ; 87360=2^{6} 3 \cdot 5 \cdot 7 \cdot 13 ;$ and
$146361946186458562560000=2^{18} 3 \cdot 5^{4} 7 \cdot 11 \cdot 13 \cdot 19 \cdot 37 \cdot 79 \cdot 109 \cdot 157 \cdot 313$
It is easy to show that any unitary perfect number must be even. Suppose that $N=2^{a} m$ is unitary perfect, where $m$ is odd and $m$ has $b$ distinct prime divisors (i.e., suppose that $N$ has $b$ odd components). Subbarao and his co-workers [1] have shown that any new unitary perfect number $N=2^{a} m$ must have $a>10$ and $b>6$. In this paper we establish the improved bound $b>8$.

Much of this paper rests on a results in an earlier paper [4]:
Any new unitary perfect number has an odd component larger than $2^{15}$ (the smallest candidate is 32771).
Essential to this paper is the ability to find bounds for the smallest unknown odd component of a unitary perfect number. The procedure is laborious but simple, and can be illustrated by an example:

Suppose $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 19 \cdot 43 \cdot r q p$ is unitary perfect, where $r$, $q$, and $p$ are distinct odd prime powers, $r<q<p, a \geqslant 12$, and $p \geqslant 32771$. Then $64<r<261$, because

$$
f(3 \cdot 5 \cdot 7 \cdot 19 \cdot 43) \cdot(262 / 261)^{4}<2<f(3 \cdot 5 \cdot 7 \cdot 19 \cdot 43) \cdot(65 / 64)
$$

NEW UNITARY PERFECT NUMBERS HAVE AT LEAST NINE ODD COMPONENTS

Consequently, $r<2^{\alpha}$ and $r<32771$. But $f\left(2^{\alpha}\right) \leqslant 4097 / 4096$ as $\alpha \geqslant 12$, and $f(3 \cdot 5 \cdot 6 \cdot 19 \cdot 43) \cdot(4097 / 4096) \cdot(32772 / 32771) \cdot(134 / 132)^{2}<2$, so $64<r<133$.

In the interests of brevity, we will simply outline the proofs, omitting repetitive details.

## 2. SEVEN ODD COMPONENTS

Throughout this section, suppose $N=2^{a}$ vutsrqp is unitary perfect, where $p, \ldots, v$ are powers of distinct odd primes, and $v<u<t<s<r<q<p$. Then we know that $a \geqslant 11$ and $p \geqslant 32771$.

Theorem 2.1: $v=3, u=5, t=7$, and $\alpha \geqslant 12$.
Proof: We have $v=3$ or else $f(N)<2$, so there is only one component $\equiv-1$ (mod 3), and none $\equiv-1(\bmod 9)$. But

$$
f\left(2^{11} 3 \cdot 7 \cdot 11 \cdot 13 \cdot 19 \cdot 25 \cdot 32771\right)<2
$$

so $u=5$. Then there are no more components $\equiv-1(\bmod 3)$, only one $\equiv-1$ (mod 5), and none $\equiv-1(\bmod 25)$. As a result, $\alpha$ is even, so $a \geqslant 12$. Then $t=7$, or else $f(N)<2$.

Theorem 2.2: $s=13$.
Proof: We easily have $s=13$ or $s=19$, or else $f(N)<2$, so suppose $s=19$. Then $25<r<53$. If $r$ is 43 or 37 , then (respectively) $64<q<66$ or $85<q<88$, both of which are impossible. Thus, $r=31$, so $151<q<159$ and then $q=157$. But then $79 \mid p$ and $p>2^{15}$, so $p=79^{c}$ with $c \geqslant 3$, whence $79^{2} \mid \sigma^{*}\left(2^{a}\right)$, which is impossible.

Theorem 2.3: $r=67$.
Proof: We have $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 13 \cdot r q p, p \geqslant 32771$, and $a \geqslant 12$, so $64<r<131$. If $r>79$, easy contradictions follow.

If $r=79$, then $341<q<377$, so $q=361$, 267 , or 373. But $q=373$ implies $11 \cdot 17 \mid p$, a contradiction. If $q=367$, then $p=23^{c}$ with $c \geqslant 4$, so $23^{3} \mid \sigma^{*}\left(2^{a}\right)$, which is impossible. If $q=361$, then $p=181^{c}$ with $c \geqslant 3$, so $181 \mid \sigma *\left(2^{a}\right)$, hence $90 \mid \alpha$, whence $5^{2} \mid N$, a contradiction.

Finally, if $r=73$, then $526<q<615$ and $37 \mid q p$, so $p=37^{c}$ with $c \geqslant 3$. But $73 \nmid \sigma^{*}\left(2^{a} 37^{c}\right)$, so $73 \mid(q+1)$, which is impossible.

Theorem 2.4: There is no unitary perfect number with exactly seven odd components.

## NEW UNITARY PERFECT NUMBERS HAVE AT LEAST NINE ODD COMPONENTS

Proof: If this is so, then $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 13 \cdot 67 \cdot q p$. Then $1450<q<4353$, so $p \geqslant 32771$, whence $1450<q<3037$. Then $a \geqslant 12$ implies $1450<q<2413$. Now, $17^{3} \| N$ implies $3^{3} \mid N$, so $p=17^{c}$ with $c \geqslant 4$. But $17^{2} \nmid \sigma^{*}\left(2^{a}\right)$, or else $q$ is a multiple of 354689 , so $17^{3} \mid(q+1)$, which is impossible.

## 3. EIGHT ODD COMPONENTS

Throughout this section, assume that $N=2^{\alpha}$ woutsrqp is unitary perfect, where $p, \ldots, w$ are powers of distinct odd primes, and $w<v<u<t<s<r<q<p$. Then $a \geqslant 11$ and $p \geqslant 32771$ as before.

Theorem 3.1: $w=3, v=5$, and $\alpha \geqslant 12$.
Proof: Similar to that for Theorem 2.1.
Theorem 3.2: $u=7$, and $t=13$ or $t=19$.
Proof: From $f\left(2^{12} 3 \cdot 5 \cdot 13 \cdot 19 \cdot 31 \cdot 37 \cdot 43 \cdot 32771\right)<2$, we have $u=7$, so there is only one component $\equiv-1(\bmod 7)$. Thus, $t \leqslant 31$. If $t$ is neither 13 nor 19 , then $t=31$, so $a \geqslant 14$, and we quickly obtain $s=37$ and $r=43$. But then we have $N=2^{\alpha} 3 \cdot 5 \cdot 7 \cdot 31 \cdot 37 \cdot 43 \cdot q p$, subject to $121<q<125$ and $11 \cdot 19 \mid q p$, an impossibility.

Theorem 3.3: If $t=19$, then $s=31$.
Proof: Suppose $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 19 \cdot$ srqp with $s<r<q<p$. Then $25<s<73$. Easy contradictions follow if $s>43$.

If $s=43$, then $64<r<133$. If $r=121$, then $140<q<147$, which is impossible. Other choices for $r$ force $q$ and $p$ to be powers of 11 and another odd prime (in some order) with no acceptable choice for $q$ in its implied interval.

If $s=37$, then $85<r<176$, so $r$ is $103,121,127,157$, or 163 . If $r$ is 157 or 163 , there in only one choice for $q$, and it implies that $p$ is divisible by two different odd primes. If $r=127$, then $a>20$ and so $262<q<265$, an impossibility. If $r=121$, then $291<q<318$, so $q$ is 307 or 313 ; but $q=313$ implies $61 \cdot 157 \mid p$, and if $q=307$, then $p=61^{c}$ with $c \geqslant 3$, so $61^{2} \mid \sigma^{*}\left(2^{a}\right)$, whence $5^{2} \mid N$, a contradiction. If $r=103$, then $502<q<583$ and $13 \mid q p$, so $p=13$ with $c \geqslant 4$; but $13 \nmid \sigma^{*}\left(2^{a}\right)$, or else $5^{2} \mid N$, so $13^{3} \mid(q+1)$, which is impossible.

Theorem 3.4: $\quad t=13$.
Proof: If $t \neq 13$, then $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 19 \cdot 31 \cdot r q p$ with $r<q<p$ and $a \geqslant 16$, so $151<r<307$. Since $r \not \equiv-1(\bmod 5)$, $r$ must be $157,163,181,193,211,223,241$, 271,277 , or 283 . If $r$ is 271,241 , or 223 , there is no prime power in the
implied interval for $q$ (note $a \geqslant 20$ if $r=223$ ). If $r$ is 283, 277, 211, or 193, the only choices for $q$ require that $p$ be divisible by two distinct primes.

If $r=163$, then $2202<q<2450$, so $p=41$ with $c \geqslant 4$; thus, $2202<q<2281$, and the only primes that can divide $q+1$ are $2,7,19,31,41$, and 163 , but no such $q$ exists. If $r=181$, then $p=13^{c}$ with $c \geqslant 4$, as $942<q<985$ and $13 \mid q p$; but $13 \nmid \sigma^{*}\left(2^{a}\right)$, or else $5^{2} \mid N$, so $13^{3} \mid(q+1)$, which is impossible. If $r=157$, then $79 \mid q p$ and $4525<q<5709$, so $p=79^{c}$ with $c \geqslant 3$; however, $79 \nmid \sigma^{*}\left(2^{a}\right)$, and so $79^{2} \mid(q+1)$, an impossibility.

Corollary: There are no more components $\equiv-1(\bmod 7)$, and none $\equiv-1\left(\bmod 13^{2}\right)$. Theorem 3.5: $s \leqslant 73$.

Proof: We have $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 13 \cdot s r q p$, and $61<s<193$ follows easily, so $s$ is $67,73,79,103,109,121,151,157$, or 163.

If $s$ is 163 or 157 , then any acceptable choice of $r$ forces $q p$ to be divisible by two distinct odd primes with no acceptable choice for $q$ in its implied interval. The same occurs with $s=151$ unless $r=163$; but if $s=151$ and $r=$ 163, then $358<q<398$ and $19 \cdot 41 \mid q p$, so $q=19^{2}$, whence $41 \cdot 181 \mid p$, an impossibility. If $s=127$, then $a \geqslant 16$ and, for each $r$, any acceptable choice for $q$ forces $p$ to be divisible by two distinct primes.

If $s=121$ and $r \neq 241$, then two known odd primes divide $q p$ and there is no acceptable choice for $q$ in its implied interval. If $s=121$ and $r=241$, then $318<q<350$ and $61 \mid q p$, so $p=61^{c}$ with $c \geqslant 3$; but $61 \nmid \sigma^{*}\left(2^{a}\right)$ unless $41 \mid q$, hence $61^{2} \mid(q+1)$, which is impossible.

Suppose $s=109$. Then $156<r<328$ and $11 \mid r q p$, so $11^{4} \mid q p$ as $11^{3} \|_{N}$ implies $3^{2} \mid N$. Now, $109 \nmid \sigma^{*}\left(2^{a}\right)$, or else $5^{2} \mid N$. If $109 \mid \sigma^{*}\left(11^{c}\right)$, then $11 \cdot 61 \cdot 1117 \mid r q p$, an impossibility. Thus, one of $q$ and $p$ is $11^{c}$ with $c \geqslant 4$, and the other is a component $\equiv-1(\bmod 109)$, and the least candidate for this component is 2833. Then $156<r<175$, so $r$ is 157 or 163 . If $r=163$, then $a \neq 12$, or else $11 \cdot 17$ - 41-241|rqp, so $a \geqslant 14$, whence $11 \cdot 41 \mid q p$ and $3913<p<6100$, an impossibility. If $r=157$, then $a \geqslant 16$, and $11 \cdot 79 \mid q p$ and $44000<q<300000$, whence $q=11^{5}$ and $3^{2} \mid N$, a contradiction.

If $s=103$ and $r=271$, then $\alpha \geqslant 16$ and $462<q<473$, so $q=463$ and $17 \cdot 29 \mid p$, an impossibility. If $s=103$ and $r \neq 271$, then $r+1$ includes an odd prime $\pi$ and the interval for $q$ forces $p=\pi^{c}(c \geqslant 2)$. But in each case, $\pi \mid \sigma^{*}\left(2^{a}\right)$ implies a contradiction, so $\pi^{c-1} \mid(q+1)$, an impossibility.

If $s=79$, then $\alpha \geqslant 16$, as $\alpha=14$ implies $5^{2} \mid N$, so $341<r<695$. Except for $r=373, r+1$ includes an odd prime $\pi$ and the interval for $q$ forces $p=\pi^{c}$

## NEW UNITARY PERFECT NUMBERS HAVE AT LEAST NINE ODD COMPONENTS

$(c \geqslant 2)$, but in each instance $\pi \mid \sigma^{*}\left(2^{a}\right)$ either is impossible or implies conditions on $q$ which cannot be met. If $r=373$, then $4031<q<4944$ and $11 \cdot 17 \mid q p$, so $q=17^{3}$, whence $3^{2} \mid N$, a contradiction.

Theorem 3.6: $s=67$.
Proof: Suppose not: then $N=2^{\alpha} 3 \cdot 5 \cdot 7 \cdot 13 \cdot 73 \cdot$ rqp, $526<r<1232$, and $37 \mid r q p$. The cases $37^{2} \| N$ and $37^{3} \| N$ are easily eliminated, so $37^{4} \mid N$. Now, $73 \nmid \sigma^{*}\left(2^{a} 37^{c}\right)$, so $N$ has an odd component, not $37^{c}$, which is $\equiv-1(\bmod 73)$, and the two sma11est candidates are 1459 and 5839. If $N=2^{\alpha} 3 \cdot 5 \cdot 7 \cdot 13 \cdot 73 \cdot 1459 \cdot q p$, then $823<q<1032$, but $37 \nmid \sigma^{*}\left(2^{\alpha}\right)$, or else $5^{2} \mid N$, so $37^{3} \mid(q+1)$, which is impossible.

Now, call $p=37^{c}(c \geqslant 4), q \equiv-1(\bmod 73)$, and $q \geqslant 5839$. Then $526<r<674$, so $37 \nmid(r+1)$. Consequently, $q \equiv-1\left(\bmod 37^{3}\right)$, so $q+1 \geqslant 2 \cdot 37^{3} 73$ and, hence, $q \geqslant 7395337$. If $\alpha=12$ or $a=14$, then $r$ is in an interval with no prime powers. Therefore, $a \geqslant 16$, so $526<r<531$, which forces $r=529$. Then $a \geqslant 18$, but $a=18$ implies $5^{2} \mid N$, so $a \geqslant 20$. But then $100000<q<240000$ and $53 \cdot 37 \mid q p$, so $q=53^{3}$, which implies $3^{2} \mid N$, a contradiction.

Theorem 3.7: There is no unitary perfect number with exactly eight odd components.

Proof: Assume not: then we have $N=2^{a} 3 \cdot 5 \cdot 7 \cdot 13 \cdot 67 \cdot$ rqp with $1450<r<4825$. Now, $67 \nmid \sigma^{*}\left(2^{a}\right)$, or else $3^{2} \mid N$. Also, $17 \mid N$ and $17^{2}<r$. But 17 cannot divide $N$ an odd number of times, or else $3^{2} \mid N$, so $17^{4} \mid N$.

We already have $\alpha \geqslant 12$ and $a$ even. The cases $\alpha=12$ and $\alpha=14$ are easily eliminated, so $\alpha \geqslant 16$ and then $1450<r<3022$.

Note that $67 \nmid \sigma^{*}\left(17^{c}\right)$, so $N$ has an odd component, not $17^{c}$, which is $\equiv-1$ (mod 67), and the three smallest candidates are 1741, 2143, and 4153. If the component $\equiv-1(\bmod 67)$ exceeds 2143 , then $1450<r<2375$. Thus, we may require $1450<r<2375$ in any event.

We cannot have $17^{2} \mid \sigma^{*}\left(2^{\alpha}\right)$, or else $17 \cdot 3546898 \cdot 2879347902817 \mid r q p$, and this is obviously impossible. If $17 \mid(r+1)$, then $r$ is $1597,1801,2209$, or 2311. If $67(r+1)$, then $r$ is 1741 or 2143. If $r+1$ is divisible by neither 17 nor 67, then we may take $p=17^{c}(c \geqslant 4$, so $p \geqslant 83521)$ and $q \equiv-1\left(\bmod 17^{2} 67\right)$, whence $q \geqslant 116177$, so $1450<r<1531$. Thus, in any event, $r$ must be one of the following numbers: $1453,1459,1471,1489,1597,1741,1801,2143,2209$, or 2311. But each of these cases leads to a contradiction, so the theorem is proved.

REFERENCES
1．M．V．Subbarao，T．J．Cook，R．S．Newberry，\＆J．M．Weber．＂On Unitary Per－ fect Numbers．＂Deてta 3，no． 1 （Spring 1972）：22－26．MR 48非224．

2．M．V．Subbarao \＆L．J．Warren．＂Unitary Perfect Numbers．＂Canad．Math． Buて乙． 9 （1966）：147－153．MR 33非3994。

3．Charles R．Wall．＂The Fifth Unitary Perfect Number．＂Canad．Math．BuZZ． 18（1975）：115－122．MR 51非12690．

4．Charles R．Wall．＂On the Largest Odd Component of a Unitary Perfect Num－ ber．＂The Fibonacci Quarterly 25 （1987）：312－316．

## NOW AVAILABLE

## ＇Applications of Fibonacci Numbers＇

Proceedings of the Second International Conference on Fibonacci Numbers and their Applications，San Jose State University，U．S．A．，August 1986

Edited by A．N．Philippou，A．F．Horadam and G．E．Bergum
（ISPN：90－277－2673－6）
The book will be available from Kluwer Academic Publishers from March 1988 onwards at the price of $\$ 59.25$（including a $25 \%$ discount）．

Orders should be prepaid by cheque，credit card，or international money order．
Order from：Kluwer Academic Publishers
101 Philip Drive
Assinippi Park
Norwell，MA 02061
U．S．A．
if you reside in the U．S．A．and Canada，
Residents of all other countries should order from：
Kluwer Academic Publishers
Sales Department
P．O．Box 322
3300 AH Dordrecht
The Netherlands

# A NOTE ON FIBONACCI TREES AND THE ZECKENDORF REPRESENTATION OF INTEGERS 

RENATO M. CAPOCELLI*

Oregon State University, Corvalis, OR 97331
(Submitted November 1986)

The Fibonacci numbers are defined, as usual, by the recurrence

$$
F_{0}=0, F_{1}=1, F_{k}=F_{k-1}+F_{k-2}, k>1
$$

The Fibonacci tree of order $k$, denoted $T_{k}$, can be constructed inductively as follows: If $k=0$ or $k=1$, the tree is simply the root 0 . If $k>1$, the root is $F_{k}$; the left subtree is $T_{k-1}$; and the right subtree is $T_{k-2}$ with all node numbers increased by $F_{k} . T_{6}$ is shown in Figure 1. For an elegant role of the node numbers in the Fibonacci search algorithm, the reader is referred to [5].

Fibonacci trees have been studied in detail by Horibe [2], [3]. The aim of this note is to present some additional considerations on Fibonacci tree codes and to explore the relationships existing between the codes and the Zeckendorf representation of integers.


Figure 1. The Fibonacci Tree of Order 6, $T_{6}$

[^1][Nov.

Recall that each integer $N, 0 \leqslant N<F_{k+1}$, has the following unique Zeckendorf representation in terms of Fibonacci numbers [6]:
$N=\alpha_{2} F_{2}+\alpha_{3} F_{3}+\alpha_{4} F_{4}+\cdots+\alpha_{k} F_{k}$, where $\alpha_{i} \in\{0,1\}$ and $\alpha_{i} \alpha_{i-1}=0$.
Let us write this as $\alpha_{k} \alpha_{k-1} \alpha_{k-2} \ldots \alpha_{3} \alpha_{2}$. The Zeckendorf representation of an integer then provides a binary sequence, called a Fibonacci sequence, that does not contain two consecutive ones, and the number of Fibonacci sequences of length $k-1$ is exactly $F_{k+1}$.

The Zeckendorf representation of integers perserves the lexicographic ordering based on $0<1$ (see [1]).

A tree code is the code obtained by labeling each branch of a tree with a code symbol and representing each terminal node with the path of labels from the root to it. We stress that tree codes are prefix codes (i.e., no codeword is the beginning of any other codeword) and have a natural encoding and decoding. Moreover, tree codes preserve the order structure of the encoded set in the sense that, if $x$ precedes $y$, the codeword for $x$ lexicographically precedes the codeword for $y$.

In the sequel, we use 0 for each left branch and 1 for each right branch in a binary tree. The Fibonacci code, denoted $C_{k}$, is the binary code obtained in this way from $T_{k}$. For example, $C_{6}$ is shown in the following table.

| 0 | 00000 | 5 | 0100 | 10 | 101 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 00001 | 6 | 0101 | 11 | 110 |
| 2 | 0001 | 7 | 011 | 12 | 111 |
| 3 | 0010 | 8 | 1000 |  |  |
| 4 | 0011 | 9 | 1001 |  |  |

The first result of this note is the determination of the asymptotic proportions of zeros and ones in the Fibonacci codes.

Let $N_{k}^{0}$ and $N_{k}^{1}$ denote the total number of $0^{\prime} s$ and $l^{\prime} s$ in $C_{k}$, respectively, and let $N_{k}=N_{k}^{0}+N_{k}^{1}$ denote the total number of symbols. For example, $N_{6}^{0}=30$ and $N_{6}^{1}=20$. Put $p=\lim _{k \rightarrow \infty}\left(N_{k}^{0} / N_{k}\right)$ and $q=1-p=\lim _{k \rightarrow \infty}\left(N_{k}^{1} / N_{k}\right)$. We will show the following
Theorem 1: $p=\frac{1}{\Phi}$ and $q=1-\frac{1}{\Phi}$, where $\Phi=\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}$ is the golden ratio $\frac{1+\sqrt{5}}{2}$. Proof: From the inductive construction of the Fibonacci tree and the fact that $T_{k}$ has $F_{k+1}$ terminal nodes, one has the following equations:

$$
N_{k}=F_{k+1}+N_{k-1}+N_{k-2}
$$

A NOTE ON FIBONACCI TREES AND THE ZECKENDORF REPRESENTATION OF INTEGERS

$$
\begin{aligned}
& N_{k}^{0}=F_{k}+N_{k-1}^{0}+N_{k-2}^{0} ; \\
& N_{k}^{1}=F_{k-1}+N_{k-1}^{1}+N_{k-2}^{1} .
\end{aligned}
$$

These equations, applied recursively, give

$$
N_{k}=\sum_{i=0}^{k-1} F_{i} F_{k-i+2}, \quad N_{k}^{0}=\sum_{i=0}^{k-1} F_{i} F_{k-i+1}, \quad N_{k}^{1}=\sum_{i=0}^{k-1} F_{i} F_{k-i} .
$$

Therefrom one gets: $\quad N_{k}^{0} / N_{k}=\sum_{i=0}^{k-1} F_{i} F_{k-i+1} / \sum_{i=0}^{k-1} F_{i} F_{k-i+2}$.
To evaluate the asymptotic behavior of $\sum_{i=0}^{k-1} F_{i} F_{k-i+j}$, we use Binet's formula

$$
F_{k}=\frac{1}{\sqrt{5}}\left(\Phi^{k}-\Gamma^{k}\right) \text {, where } \Gamma=\frac{1-\sqrt{5}}{2} .
$$

We then have

$$
\begin{aligned}
\sum_{i=0}^{k-1} F_{i} F_{k-i+j} & =\frac{1}{5}\left(\sum_{i=0}^{k-1} \Phi^{k+j}+\sum_{i=0}^{k-1} \Gamma^{k+j}-\sum_{i=0}^{k-1} \Phi^{i} \Gamma^{k-i+j}-\sum_{i=0}^{k-1} \Phi^{k-i+j} \Gamma^{i}\right) \\
& =\frac{1}{5}\left(k \Phi^{k+j}+k \Gamma^{k+j}-\Gamma^{j+1} \frac{\Gamma^{k}-\Phi^{k}}{\Gamma-\Phi}-\Phi^{j+1} \frac{\Phi^{k}-\Gamma^{k}}{\Phi-\Gamma}\right) \\
& =\frac{1}{5}\left(k \Phi^{k+j}+k \Gamma^{k+j}-\frac{\Gamma^{j+1}}{\sqrt{5}}\left(\Phi^{k}-\Gamma^{k}\right)-\frac{\Phi^{j+1}}{\sqrt{5}}\left(\Phi^{k}-\Gamma^{k}\right)\right) \\
& =\frac{1}{5} k \Phi^{k+j}+O\left(\Phi^{k}\right) .
\end{aligned}
$$



Figure 2. The Uniform Fibonacci Tree of Order $6, U_{6}$
From the above, one finally obtains

$$
\lim _{k \rightarrow \infty} \frac{N_{k}^{0}}{N_{k}}=\lim _{k \rightarrow \infty} \frac{\sum_{i=0}^{k-1} F_{i} F_{k-i+1}}{\sum_{i=0}^{k-1} F_{i} F_{k-i+2}}=\frac{1}{\Phi} .
$$

## A NOTE ON FIBONACC\| TREES AND THE ZECKENDORF REPRESENTATION OF INTEGERS

The remainder of this note is devoted to exploring relationships between the Fibonacci codes and the Zeckendorf representation of integers. In particular, we show that the Zeckendorf representation of integers can be obtained as a variant of the Fibonacci codes by inserting some redundant digits 0.

To this end, let us define the uniform Fibonacci tree of order $k$ (denoted $U_{k}$ ) as follows: For $k \leqslant 2$, the uniform Fibonacci tree coincides with the Fibonacci tree. If $k>2$, the root is $F_{k}$; the left subtree is $U_{k-1}$; the right subtree has root $F_{k}+F_{k-1}$ whose right subtree is empty and whose left subtree is $U_{k-2}$ with all numbers increased by $F_{k}$.

A uniform Fibonacci tree is the Fibonacci tree with dummy nodes after each right branch that force the leaves to be at the same level. The uniform Fibonacci tree can be obtained from the branch labeling of the Fibonacci tree, as described in [3]. The relationships between this labeling and the Zeckendorf representation of integers have been unnoticed. Figure 2 above shows $U_{6}$. Some properties of $U_{k}$ are given in the following theorems.

Theorem 2: $U_{k}$ has $F_{i+2}$ nodes at level $i, 0 \leqslant i \leqslant k-1$.
Proof: Theorem 2 is trivially true for $k=1$, 2. Suppose it is true for each $U_{i}, i<k(k>2)$. We prove that it is true for $U_{k}$.

Let us denote by $L(i, k)$ the number of nodes that $U_{k}$ has at level $i$. The construction of $U_{k}$ implies

$$
L(0, k)=F_{2}, \quad L(1, k)=F_{3},
$$

and

$$
L(i, k)=L(i-1, k-1)+L(i-2, k-2), 2 \leqslant i \leqslant k-1
$$

By the induction hypothesis, this gives $L(i, k)=F_{i+1}+F_{i}=F_{i+2}$.
Corollary 1: $U_{k}$ is obtained by adding $F_{k}-1$ internal nodes to $T_{k}$.
Proof: From Theorem 2, $U_{k}$ has $\sum_{i=2}^{k} F_{i}=F_{k+2}-2$ internal nodes. Since $T_{k}$ has $F_{k+1}-1$ internal nodes, we get that $U_{k}$ has $F_{k+2}-2-F_{k+1}+1=F_{k}-1$ additional nodes.

Similarly, as was done in [3] for Fibonacci trees, it is possible to classify terminal nodes of $U_{k}$ into:

R-nodes, the terminal nodes that are right sons, and
$\mathcal{L}$-nodes, the terminal nodes that are left sons.
Lemma 1: $U_{k}$ has $F_{k-1}$ © -nodes and $F_{k}$ \&-nodes.

## A NOTE ON FIBONACCI TREES AND THE ZECKENDORF REPRESENTATION OF INTEGERS

Proof: By induction. Trivially true for $k=2$, 3. Suppose the lemma is true for each uniform Fibonacci tree of order less than $k, k>3$. The definition of $\mathfrak{R}$-nodes and $\mathcal{L}$-nodes implies that the type ( $\mathcal{R}$ or $\mathfrak{L}$ ) determination within each of the left and right subtrees of any uniform Fibonacci tree gives the correct type determination in the whole tree. Hence, by the construction of $U_{k}$ and by the induction hypothesis, $U_{k}$ has $F_{k-2}+F_{k-3} \mathcal{R}$-nodes and $F_{k-1}+F_{k-2} \mathcal{L}$-nodes. This completes the proof.

As was done in [2] for Fibonacci trees, and as Theorem 2 suggests, one can construct $U_{k+1}$ by properly splitting terminal nodes of $U_{k}$. However, the recursive construction for uniform Fibonacci trees is slightly different from that described in [2] for Fibonacci trees. This time, all terminal nodes generate offsprings.

Theorem 3: If each $R$-node of $U_{k}, k \geqslant 2$, generates only the left node and each $\mathfrak{L}$-node generates two nodes, then the resulting tree that has $F_{k} R$-nodes and $F_{k-1}+F_{k} \mathcal{L}$-nodes is exactly $U_{k+1}$.

Proof: By induction. Suppose the theorem is true for each $U_{i}, i<k, k>3$ (when $k=2,3$, the assertion is easily shown). $U_{k}$ has, as its left subtree, $U_{k-1}$ with $F_{k-2}$ \{-nodes and $F_{k-1} \mathcal{L}$-nodes. Making terminal nodes of this $U_{k-1}$ generate offsprings produces $U_{k}$ by the induction hypothesis. Similarly, the right subtree of $U_{k}$ has empty right subtree and has $U_{k-2}$ as the left subtree. Making the $F_{k-3} \mathcal{R}$-nodes and the $F_{k-2} \mathcal{L}$-nodes of this $U_{k-2}$ generate offsprings produces $U_{k-1}$ by the induction hypothesis. Therefore, making all $\mathbb{Q}$-nodes of $U_{k}$ generate left sons and all $\mathcal{L}$-nodes generate two sons produces $U_{k+1}$.

We now relate the tree code of $U_{k}$, the uniform Fibonacci tree code of order $k$ (denoted in the sequel by $B_{k}$ ), to the Zeckendorf representation of integers. For example, $B_{6}$ is given by:

| 0 | 00000 | 5 | 01000 | 10 | 10010 |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 1 | 00001 | 6 | 01001 | 11 | 10100 |
| 2 | 00010 | 7 | 01010 | 12 | 10101 |
| 3 | 00100 | 8 | 10000 |  |  |
| 4 | 00101 | 9 | 10001 |  |  |

Lemma 2: The uniform Fibonacci code of order $k$ is the set of all Fibonacci sequences of length $k-1$.

Proof: From the construction of the uniform Fibonacci tree, the uniform Fibonacci code does not allow two consecutive 1 's in any codeword and contains $F_{k+1}$ distinct codewords of length $k-1$. The number of Fibonacci sequences of length $k-1$ is also given by $F_{k+1}$. 【

Theorem 4: In a uniform Fibonacci code, the codeword that represents the terminal node $i$ is the Zeckendorf representation of the integer $i$.

Proof: From Lemma 2, the uniform Fibonacci tree code of order $k$ is the set of Fibonacci sequences of length $k-1$. By definition, they provide the Zeckendorf representation of nonnegative integers $<F_{k+1}$. Since the Zeckendorf representation preserves the lexicographic ordering, the assertion is a straightforward consequence of the order-preserving property of tree codes.

Uniform Fibonacci trees, therefore, provide an efficient pretty mechanism for obtaining the Zeckendorf representation of integers. The procedure is:

Given the integer $i, 0 \leqslant i<F_{k+1}$, construct the uniform Fibonacci tree of order $k$. The Zeckendorf representation of $i$ is the path of labels from the root to terminal node $i$.

It is also worthwhile to note that the uniform Fibonacci trees in the setting of the Fibonacci numeration system play a role analogous to that of the complete binary trees in the setting of the binary numeration system:

The number of nodes at each level is given by a Fibonacci number (power of 2 , in the binary case);
The path of labels to a terminal node is the Zeckendorf representation (the binary representation, in the binary case).

The last result is the determination of the number $\bar{N}_{k}^{1}$ of $1^{\prime}$ 's and the number $\bar{N}_{k}^{0}$ of 0 's in $B_{k}$. With the same notation of Theorem 1 , we have

Theorem 5: $\quad \bar{N}_{k}^{1}=N_{k}^{1} ; \quad \bar{N}_{k}^{0}=N_{k}^{0}+N_{k}^{1}-F_{k-1}, \quad k \geqslant 2$.
Proof: The first part is immediate from the construction of trees $T_{k}$ and $U_{k}$. The second part can be proved by induction. Suppose Theorem 5 is true for each uniform Fibonacci tree of order less than $k, k>3$ (when $k=2$, 3 , the assertion is trivially true). By the construction of $U_{k}$, one has the equation:

$$
\bar{N}_{k}^{0}=\left(F_{k}+\bar{N}_{k-1}^{0}\right)+\left(F_{k-1}+\bar{N}_{k-2}^{0}\right) .
$$

By the induction hypothesis, this gives

$$
\bar{N}_{k}^{0}=F_{k}+F_{k-1}+N_{k-1}^{0}+N_{k-1}^{1}-F_{k-2}+N_{k-2}^{0}+N_{k-2}^{1}-F_{k-3} .
$$

## A NOTE ON FIBONACCI TREES AND THE ZECKENDORF REPRESENTATION OF INTEGERS

Since $N_{k}^{0}=F_{k}+N_{k-1}^{0}+N_{k-2}^{0}$ and $N_{k}^{1}=F_{k-1}+N_{k-1}^{1}+N_{k-2}^{1}$ (see Theorem 1), the assertion is true.

Theorem 5 allows immediate computation of the asymptotic proportion of 1's (and 0 's) in Fibonacci sequences (see [4]). Indeed, denoting by $p, q$ and $\bar{p}, \bar{q}$, respectively, the asymptotic proportions of 0 's and 1 's in $C_{k}$ and $B_{k}$, and recalling Theorem 1 and its proof, one obtains

$$
\bar{q}=1-\bar{p}=\lim _{k \rightarrow \infty} \frac{\bar{N}_{k}^{1}}{\bar{N}_{k}}=\lim _{k \rightarrow \infty} \frac{N_{k}^{1}}{N_{k}+N_{k}^{1}-F_{k-1}}=\frac{q}{1+q}=\frac{\Phi-1}{2 \Phi-1}=\frac{5-\sqrt{5}}{10} .
$$

## ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to the anonymous referee whose suggestions led to a substantial improvement in the presentation of this note.

## REFERENCES

1. V. E. Hoggatt, Jr., \& M. Bicknell-Johnson. 'Lexicographic Ordering and Fibonacci Representations." The Fibonacci Quarterly 20, no. 3 (1982):193-218.
2. Y. Horibe. "An Entropy View of Fibonacci Trees." The Fibonacci Quarterly 20, no. 2 (1982): 168-178.
3. Y. Horibe. "Notes on Fibonacci Trees and Their Optimality." The Fibonacci Quarterly 21, no. 2 (1983):118-128.
4. P. H. St. John. "On the Asymptotic Proportions of Zeros and Ones in Fibonacci Sequences." The Fibonacci Quarterly 22, no. 2 (1984):144-145.
5. D. E. Knuth. The Art of Computer Programming. Vo1. 3: Sorting and Searching. Reading, Mass.: Addison-Wesley, 1973.
6. E. Zeckendorf. "Representation des Nombres Naturels par une Somme de Nombres de Fibonacci ou de Nombres de Lucas." Bulletin de la Société Royale des Sciences de Liége, Nos. 2-3 (1972):179-182. This paper contains Zeckendorf's original proof dated 1939.

## A NOTE ON SPECIALLY MULTIPLICATIVE ARITHMETIC FUNCTIONS

PENTTI HAUKKANEN
University of Tampere, SF-33101 Tampere, Finland
(Submitted December 1986)
An arithmetic function $f$ is called multiplicative if

$$
\begin{equation*}
f(m n)=f(m) f(n), \tag{1}
\end{equation*}
$$

whenever $(m, n)=1$. A multiplicative function $f$ is called completely multiplicative if (1) holds for all $m$, $n$. Further, a multiplicative function $f$ is said to be a quadratic (see [1], [3], [8]) or a specially multiplicative function (see [2], [4], [6], [7]) if

$$
\begin{equation*}
f=a \circ b, \tag{2}
\end{equation*}
$$

where $a, b$ are completely multiplicative functions and o denotes the Dirichlet product. It is known that (2) is equivalent to

$$
f(m n)=\sum_{d \mid\left(m, r_{i}\right)} f(m / d) f(n / d) g(d) \mu(d)
$$

where $g$ is a completely multiplicative function and $\mu$ denotes the Möbius function. The completely multiplicative function $g$ is defined for every prime by

$$
g(p)=(a b)(p) \text { or } g(p)=f(p)^{2}-f\left(p^{2}\right) \text { or } g(p)=f^{-1}\left(p^{2}\right)
$$

where $f^{-1}$ denotes the Dirichlet inverse of $f$. Since a quadratic $f$ is multiplicative, the values $f(n)$ are known if the values $f\left(p^{m}\right)$ are known for all primes $p$ and all positive integers $m$. Furthermore, the values $f\left(p^{m}\right)$ are known if the values $f(p), f\left(p^{2}\right)$ [or the values $f(p), f^{-1}\left(p^{2}\right)$ or the values $a(p), b(p)$ ] are known. The values $f\left(p^{m}\right)$ are given recursively by

$$
\begin{align*}
& f(1)=1, \\
& f(p), f\left(p^{2}\right) \text { are arbitrary, } \\
& f\left(p^{m}\right)=f(p) f\left(p^{m-1}\right)-g(p) f\left(p^{m-2}\right), m=3,4, \ldots . \tag{3}
\end{align*}
$$

Consequently, if we put $f\left(p^{m}\right)=S_{m}$, we obtain a generalized Fibonacci sequence determined by
$S_{0}=1$,
$S_{1}, S_{2}$ are arbitrary,
$S_{m+1}=S_{1} S_{m}-\left(\left(S_{1}\right)^{2}-S_{2}\right) S_{m-1}, m=2,3,4, \ldots$.
If we let $S_{1}=1, S_{2}=2$, we obtain the Fibonacci sequence.

## A NOTE ON SPECIALLY MULTIPLICATIVE ARITHMETIC FUNCTIONS

If $f$ is specially multiplicative and $f=\alpha \circ b$, where $a, b$ are completely multiplicative, then the generating series of $f$ to the base $p$ is given by

$$
f_{(p)}(x)=\frac{1}{(1-\alpha x)(1-\beta x)} \quad(p \text { a prime }),
$$

where $\alpha=\alpha(p), \beta=b(p)$. Then

$$
f_{(p)}(x)=\frac{1}{1-f(p) x+g(p) x^{2}}
$$

where $f(p)=\alpha+\beta$ and $g(p)=\alpha \beta$. Noting that the generating function of the Fibonacci sequence $\left\{F_{n}\right\}$ is

$$
\sum_{n=0}^{\infty} F_{n} x^{n}=\frac{1}{1-x-x^{2}}
$$

$f_{(p)}(x)$ will generate $\left\{F_{n}\right\}$ if $f(p)=1$ and $g(p)=-1$.
If $\alpha$ is any nonzero complex number, one could consider $f$ for which $f(p)=a$ and $g(p)=-\alpha^{2}$. It will follow that

$$
f_{(p)}(x)=\frac{1}{1-a x-a^{2} x^{2}}=\sum_{n=0}^{\infty} a^{n} F_{n} x^{n} .
$$

Hence, $f\left(p^{n}\right)=a^{n} F_{n}$. Write $f\left(p^{n}\right)=G_{n}$. Using known properties (see [5], [9]) of the Fibonacci sequence $\left\{F_{n}\right\}$, for example, the following properties of the sequence $\left\{G_{n}\right\}$ can be derived:

$$
\begin{aligned}
& \sum_{k=0}^{n} a^{n-k+2} G_{k}=G_{n+2}-a^{n+2}, \\
& \sum_{k=0}^{n}(-1)^{k} a^{n-k} G_{k}=(-1)^{n} a G_{n-1}+a^{n}, \\
& \sum_{k=0}^{n} a^{2(n-k)+1} G_{2 k}=G_{2 n+1}, \\
& \sum_{k=1}^{n} a^{2(n-k)+1} G_{2 k-1}=G_{2 n}-a^{2 n}, \\
& 2 \sum_{k=1}^{n} a^{3(n-k)+2} G_{3 k-1}=G_{3 n+1}-a^{3 n+1}, \\
& \sum_{k=0}^{n}(n-k) a^{n-k+3} G_{k}=G_{n+3}-(n+3) a^{n+3}, \\
& \sum_{k=0}^{2 n} a^{2(2 n-k)+1} G_{k} G_{k+1}=G_{2 n+1}^{2}, \\
& 2 n-1 \\
& \sum_{k=0}^{2(2 n-k)-1} a_{G_{k}} G_{k+1}=G_{2 n}^{2}-a^{4 n}, \\
& \sum_{k=0}^{n} a^{2(n-k)+1} G_{k}^{2}=G_{n} G_{n+1},
\end{aligned}
$$

$$
\begin{aligned}
& 10 \sum_{k=0}^{n} a^{3(n-k)+4} G_{k}^{3}=G_{3 n+4}+(-1)^{n} 6 a^{2 n+5} G_{n-1}+5 a^{3 n+4} \\
& G_{n+m}=G_{n} G_{m}+a^{2} G_{n-1} G_{m-1}, \\
& G_{n}^{2}-G_{n-k} G_{n+k}=(-1)^{n-k+1} G_{k-1}^{2} a^{2(n-k+1)}, \\
& \alpha G_{3 n+2}=G_{n+1}^{3}+a^{3} G_{n}^{3}-a^{6} G_{n-1}^{3}, \\
& \alpha G_{2 n+1}=G_{n+1}^{2}-a^{4} G_{n-1}^{2} .
\end{aligned}
$$

The proofs of the above relations are omitted.

## ACKNOWLEDGMENT

The author wishes to thank the referee for his valuable comments.

## REFERENCES

1. T. B. Carroll\&A. A. Gioia. "On a Subgroup of the Group of Multiplicative Arithmetic Functions." J. Austral. Math. Soc., Ser. A, 20, no. 3 (1975):348358.
2. D. H. Lehmer. "Some Functions of Ramanujan." Math. Student 27 (1959):105116.
3. P. J. McCarthy. "Busche-Ramanujan Identities." Amer. Math. Monthly 67 (1960):966-970.
4. A. Mercier. "Remarques sur les Fonctions Specialement Multiplicatives." Ann. Sc. Math. Quebec 6, no. 1 (1982):99-107.
5. K. Subba Rao. "Some Properties of Fibonacci Numbers." Amer. Math. Monthly 60 (1953):680-684.
6. D. Redmond \& R. Sivaramakrishnan. "Some Properties of Specially Multiplicative Functions." J. Number Theory 13, no. 2 (1981):210-227.
7. R. Sivaramakrishnan. "On a Class of Multiplicative Arithmetic Functions." J. Reine Angew. Math. 280 (1976):157-162.
8. R. Vaidyanathaswamy. "The Theory of Multiplicative Arithmetic Functions." Trans. Amer. Math. Soc. 33 (1931):579-662.
9. N. N. Vorob'ev. Fibonacci Numbers. New York: Pergamon Press, 1961.

# IDENTITIES DERIVED ON A FIBONACCI MULTIPLICATION TABLE 

## ALVIN TIRMAN

East Tennessee State University, Kingsport, TN 37660
T. HENRY JABLONSKI, JR.

East Tennessee State University, Johnson City, TN 37660
(Submitted December 1986)

A multiplication table constructed only with Fibonacci numbers assumes the appearance shown in Table 1. In any of its rows among three successive integers, the sum of the first two equals the third. This may be expressed as

$$
\begin{equation*}
F_{m} F_{n}+F_{m} F_{n+1}=F_{m} F_{n+2} \tag{1}
\end{equation*}
$$

Table 1


While this result is rather trivial, it does suggest that the table should be scrutinized to uncover analogs. Doing this, an investigator perceives that along any descending diagonal the sum of two successive integers is a Fibonacci number. This is expressed as

$$
\begin{equation*}
F_{m} F_{n}+F_{m+1} F_{n+1}=F_{m+n+1} \tag{2}
\end{equation*}
$$

Combining formulas (1) and (2) "geometrically" leads to the following triangular representation in the table:

$$
\begin{equation*}
F_{m} F_{n}+F_{m+1} F_{n}+F_{m+1} F_{n-1}=F_{m+n+1} . \tag{3}
\end{equation*}
$$

One of the identities known by practically every student of the Fibonacci numbers is

$$
F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}
$$

On the Fibonacci multiplication table, this assumes the following appearance:


When analogs are sought in the table, none appears. In view of the findings of identities (1), (2), and (3), this is surprising.

If, however, this well-known result is altered to assume the form

$$
F_{1} F_{2}+\left(F_{2}^{2}+F_{3}^{2}+\cdots+F_{n}^{2}\right)=F_{n} \cdot F_{n+1}
$$

it remains numerically identical to $1^{2}+1^{2}+2^{2}+\cdots+F_{n}^{2}=F_{n} \cdot F_{n+1}$.
As the revised form

has analogs throughout the table, it is evident that $1+1+2+\cdots+F_{n}^{2}=$ $F_{n} \cdot F_{n+1}$ is just a special case of the more general identity

$$
F_{m-1} F_{n}+F_{m} F_{n}+F_{m+1} F_{n+1}+F_{m+2} F_{n+2}+\cdots+F_{m+k} F_{n+k}=F_{m+k} F_{n+k+1}
$$

that is,

$$
\begin{equation*}
\sum_{j=0}^{k} F_{m+j} F_{n+j}=F_{m+k} F_{n+k+1}-F_{m-1} F_{n} \text { for } m \geqslant 2, n \geqslant 1 \tag{4}
\end{equation*}
$$

A sequence of squares beginning in the upper left-hand corner of the table
may be built as follows:

$$
\begin{aligned}
& \begin{array}{r}
(1+1)^{2} \quad\left(F_{1}+F_{2}+F_{3}\right)^{2} \\
(1+1+2)^{2}
\end{array} \\
& \left(F_{1}+F_{2}+\cdots+F_{n}\right)^{2} \\
& \left(1+1+\cdots+F_{n}\right)^{2}
\end{aligned}
$$

## IDENTITIES DERIVED ON A FIBONACCI MULTIPLICATION TABLE

This same sequence could also be developed by summing rows and columns in the manner indicated below:


As these constructions cover identical squares, it becomes evident that the entries of any $n$ by $n$ square in the upper left-hand corner of the table may be summed in any two distinct ways both of which equal $\left(F_{n+2}-1\right)^{2}$. This results in the following identities:

$$
\begin{equation*}
\left(\sum_{i=1}^{n} F i\right)^{2}=\sum_{i=1}^{n} F i\left(F_{i+3}-2\right)=\left(F_{n+2}-1\right)^{2} . \tag{5}
\end{equation*}
$$

An analog of the sequence of squares is the sequence of oblong rectangles of dimension $n$ by $n+1$.


By pursuing an analysis similar to that performed on the squares, the following oblong identities are obtained:

$$
\begin{equation*}
\left(\sum_{i=1}^{n} F i\right)\left(\sum_{i=1}^{n+1} F i\right)=\sum_{k=1}^{n}\left(F_{k+2}^{2}-F_{k+2}\right)=\left(F_{n+2}-1\right)\left(F_{n+3}-1\right) . \tag{6}
\end{equation*}
$$

Other identities that may be gleaned from the table include
and

$$
\begin{equation*}
F_{2 n+1}^{2}=F_{2 n} \cdot F_{2 n+2}+1 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
F_{2 n}^{2}=F_{2 n-1} \cdot F_{2 n+1}-1, \tag{8}
\end{equation*}
$$

which can readily be combined into

$$
\begin{equation*}
F_{n-1} F_{n+1}-F_{n}^{2}=(-1)^{n}, \tag{9}
\end{equation*}
$$

the basis for one of Charles Dodgson's favorite geometrical puzzles:

$$
\begin{equation*}
F_{n-1} F_{n+1}-F_{n+2} F_{n-2}=2(-1)^{n} . \tag{10}
\end{equation*}
$$

## Third International Conference (Continued from page 289)

actual ocean of yellows-were not only joyous, but also touched our mathematical souls. Do Fibonacci numbers not play an important role in deciphering nature's handiwork in sunflowers?

Volterra, situated about 550 metres above sea-level, immediately transplanted us into enigmatic Etruscan, as well as into problematic Medieval times. While we were fascinated both by the histroic memorabilia, as well as by the artifacts and master pieces, the magnificent panorama of the surrounding landscape enhanced our enjoyment still further.

As has become tradition in our conference, a banquet was held on the last night before the closing of our sessions. Lucca, the site of the meeting, provided a wonderful setting for a memorable evening, Ligurian in origin, it bespeaks of Etruscan culture, and exudes the charm of an ancient city.
The spirit at the banquet highlighted what had already become apparent during the week: that the Conference had not only been mind-streatching, but also heartwarming. Friendships which had been started, became knitted more closely. New friendships were formed. The magnetism of common interest and shared enthusiasm wove strong bonds amoung us. We had come from different cultural and ethnic backgrounds, and our native tongues differed. Yet, we truly understood each other. And we cared for each other.

I believe, I speak for all of us if I express my heartfelt thanks to all members of the International, as well as of the Local Committee whose dedication and industriousness gave us this unforgettable event. Our gratitude also goes to the University of Pisa whose generous hospitality we truly appreciated. I would also like to thank all participants, without whose work we could not have had this treat.
"Auf Wiedersehen"' then, at Conference number Four in 1990.

# ON SUMS OF THREE TRIANGULAR NUMBERS 

JOHN A. EWELL
Northern Illinois University, DeKalb, IL 60115
(Submitted December 1986)

1. INTRODUCTION

According to Dickson [3, pp. 6 and 17], Fermat conjectured and Gauss proved the following theorem.

Theorem 1: Every nonnegative integer can be expressed as a sum of three triangular numbers [including $O=O(O+1) / 2$ ].

Gauss also gave a method for counting the number of such representations of a given nonnegative integer. In this paper we propose to express the implicit counting function in terms of simple divisor functions. All of these functions are collected in the following definition.

## Definition:

(i) For each nonnegative integer $n, t_{3}(n)$ denotes the cardinality of the set

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{N}^{3} \mid n=\sum_{i=1}^{3} x_{i}\left(x_{i}+1\right) / 2\right\}
$$

(Here, $\mathbb{N}=\{0,1,2, \ldots\}$.
(ii) For each positive integer $n$ and $i \in\{1,5\}$,

$$
d_{i}(n):=\sum_{\substack{\delta \mid n \\ \delta \equiv i(\bmod 6)}} 1 ;
$$

and, $\varepsilon(n):=d_{1}(n)-d_{5}(n)$.
Theorem 2: Let $n$ denote an arbitrary nonnegative integer.
(i) If $n=3 i(i+1) / 2$, for some $i \in \mathbb{N}$, then

$$
t_{3}(n)=1+3 \sum_{i=0} \varepsilon(n-3 i(i+1) / 2)
$$

(ii) If $n$ is not of the form $3 i(i+1) / 2$, then

$$
t_{3}(n)=3 \sum_{i=0} \varepsilon(n-3 i(i+1) / 2) .
$$

In both cases, summation extends over all $i \in \mathbb{N}$ for which $n-3 i(i+1) / 2>0$.

Section 2 is dedicated to proof of Theorem 2. In view of the two theorems we then deduce a corollary concerning the behavior of the function $\varepsilon$.
2. PROOF OF THEOREM 2

The leading role in our argument is played by the following variant of the quintuple-product identity.

$$
\begin{equation*}
\prod_{1}^{\infty} \frac{\left(1-x^{2 n}\right)\left(1-a^{2} x^{2 n-2}\right)\left(1-a^{-2} x^{2 n}\right)}{\left(1+a x^{2 n-1}\right)\left(1+a^{-1} x^{2 n-1}\right)}=\sum_{-\infty}^{\infty} x^{n(3 n+2)}\left(a^{-3 n}-a^{3 n+2}\right) \tag{1}
\end{equation*}
$$

(Here and throughout our discussion we assume that $a$ and $x$ denote complex numbers with $a \neq 0$ and $|x|<1$.$) For a discussion of (1) and other forms of the$ quintuple-product identity see [5]. We shall also require the classical tripleproduct identity:

$$
\begin{equation*}
\prod_{1}^{\infty}\left(1-x^{2 n}\right)\left(1+a x^{2 n-1}\right)\left(1+\alpha^{-1} x^{2 n-1}\right)=\sum_{-\infty}^{\infty} x^{n^{2}} a^{n} \tag{2}
\end{equation*}
$$

In [2] Carlitz and Subbarao show how to deduce one form of the quintuple-product identity from (2).

Multiplying (1) by $a^{-1}$, we have

$$
\begin{align*}
& \left(a-a^{-1}\right) \prod_{1}^{\infty} \frac{\left(1-x^{2 n}\right)\left(1-a^{2} x^{2 n}\right)\left(1-a^{-2} x^{2 n}\right)}{\left(1+a x^{2 n-1}\right)\left(1+a^{-1} x^{2 n-1}\right)}  \tag{3}\\
& =a \sum_{-\infty}^{\infty} x^{3 n^{2}+2 n} a^{3 n}-a^{-1} \sum_{-\infty}^{\infty} x^{3 n^{2}+2 n} a^{-3 n} \\
& =a \prod_{1}^{\infty}\left(1-x^{6 n}\right)\left(1+a^{3} x^{6 n-1}\right)\left(1+a^{-3} x^{6 n-5}\right) \\
& \quad-a^{-1} \prod_{1}^{\infty}\left(1-x^{6 n}\right)\left(1+a^{-3} x^{6 n-1}\right)\left(1+a^{3} x^{6 n-5}\right)
\end{align*}
$$

In the last step we have used (2) to transform the infinite series into infinite products. For the sake of brevity, put

$$
\begin{aligned}
& F(\alpha)=F(\alpha, x):=\prod_{1}^{\infty} \frac{\left(1-a^{2} x^{2 n}\right)\left(1-\alpha^{-2} x^{2 n}\right)}{\left(1+a x^{2 n-1}\right)\left(1+a^{-1} x^{2 n-1}\right)} \\
& G(\alpha)=G(\alpha, x):=\prod_{1}^{\infty}\left(1+a^{3} x^{6 n-1}\right)\left(1+\alpha^{-3} x^{6 n-5}\right) \\
& H(\alpha):=G\left(a^{-1}\right) .
\end{aligned}
$$

Hence, (3) becomes

$$
\prod_{1}^{\infty}\left(1-x^{2 n}\right)\left(a-a^{-1}\right) F(a)=\prod_{1}^{\infty}\left(1-x^{6 n}\right)\left\{a G(a)-a^{-1} H(a)\right\}
$$

Differentiating the foregoing identity with respect to $\alpha$, we get

$$
\begin{align*}
& \prod_{1}^{\infty}\left(1-x^{2 n}\right)\left\{\left(1+a^{-2}\right) F(\alpha)+\left(\alpha-a^{-1}\right) F^{\prime}(\alpha)\right\}  \tag{4}\\
& =\prod_{1}^{\infty}\left(1-x^{6 n}\right)\left\{G(\alpha)+\alpha^{-2} H(\alpha)+\alpha G^{\prime}(\alpha)-\alpha^{-1} H^{\prime}(\alpha)\right\}
\end{align*}
$$

Now, using the technique of logarithmic differentiation, we evaluate $G^{\prime}(\alpha)$ and $H^{\prime}(a)$, then substitute these evaluations into (4), let $\alpha \rightarrow 1$, and cancel a factor of 2 in the resulting identity to get

$$
\begin{aligned}
& \prod_{1}^{\infty} \frac{\left(1-x^{2 n}\right)^{3}}{\left(1+x^{2 n-1}\right)^{2}} \\
& =\prod_{1}^{\infty}\left(1-x^{6 n}\right)\left(1+x^{6 n-1}\right)\left(1+x^{6 n-5}\right)\left\{1+3 \sum_{1}^{\infty}\left(\frac{x^{6 n-1}}{1+x^{6 n-1}}-\frac{x^{6 n-5}}{1+x^{6 n-5}}\right)\right\}
\end{aligned}
$$

In the foregoing identity we then let $x \rightarrow-x$, utilize the definition of $\varepsilon$, and simplify to get

$$
\begin{equation*}
\prod_{1}^{\infty} \frac{\left(1-x^{2 n}\right)^{3} \cdot\left(1-x^{6 n-3}\right)}{\left(1-x^{2 n-1}\right)^{3} \cdot\left(1-x^{6 n}\right)}=1+3 \sum_{1}^{\infty} \varepsilon(n) x^{n} \tag{5}
\end{equation*}
$$

At this juncture, we appeal to the following well-known identity of Gauss [4, p. 284].

$$
\prod_{1}^{\infty} \frac{1-x^{2 n}}{1-x^{2 n-1}}=\sum_{0}^{\infty} x^{n(n+1) / 2}
$$

Hence, (5) becomes

$$
\left\{\sum_{0}^{\infty} x^{n(n+1) / 2}\right\}^{3}=\sum_{0}^{\infty} x^{3 n(n+1) / 2}\left\{1+3 \sum_{1}^{\infty} \varepsilon(n) x^{n}\right\}
$$

or, equivalently (owing to the fact that the left side of this identity generates $t_{3}$ ),

$$
\sum_{0}^{\infty} t_{3}(n) x^{n}=\sum_{i=0}^{\infty} x^{3 i(i+1) / 2}+3 \sum_{n=1}^{\infty} x^{n} \sum_{i=0} \varepsilon(n-3 i(i+1) / 2) .
$$

Equating coefficients of like powers of $x$, we thus prove our theorem.
Corollary: If $n$ is any positive integer which is not of the form $3 i(i+1) / 2$, then there exists $j \in\{0,1, \ldots,[(-1+\sqrt{(8 / 3) n+1)} / 2]\}$ such that

$$
\varepsilon(n-3 j(j+1) / 2)>0
$$

Proof: Let such an $n$ be given. By multiplicative induction it follows easily that $\varepsilon(m) \geqslant 0$ for each positive integer $m$. Hence, the sum on the right side of
the equation of Theorem 2 (ii) is nonnegative. Now, by Theorem $1, t_{3}(n)>0$. Hence, the aforementioned sum is positive, whence there exists

$$
j \in\{0,1, \ldots,[(-1+\sqrt{(8 / 3) n+1)} / 2]\}
$$

such that

$$
\varepsilon(n-3 j(j+1) / 2)>0
$$

## CONCLUDING REMARKS

In a recent paper, Andrews [1] has presented a proof of Theorem 1 which (unlike Gauss's proof) is independent of the theory of ternary quadratic forms. Of course, such proofs of Theorem 1 and Theorem 2 then combine to yield a proof of the Corollary that is independent of the theory of ternary quadratic forms. However, if one could find another such direct proof of the Corollary, then one could use the statement of the Corollary (then independent of Theorems 1 and 2) and Theorem 2 to produce yet another proof of Theorem 1.

## REFERENCES

1. G. E. Andrews. "EYPHKA! Num $=\Delta+\Delta+\Delta . "$ J. of Number Theory 23, no. 3 (2986):285-293.
2. L. Carlitz \& M. V. Subbarao. "A Simple Proof of the Quintuple-Product Identity." Proc. Amer. Math. Soc. 32 (1972):42-44.
3. L. E. Dickson. History of the Theory of Numbers, II. New York: Chelsea, 1952.
4. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers, 4th ed. Oxford: Oxford University Press, 1960.
5. M. V. Subbarao \& M. Vidyasagar. "On Watson's Quintuple-Product Identity." Proc. Amer. Math. Soc. 26 (1970):23-27.

# STROEKER'S EQUATION AND FIBONACCI NUMBERS 

ANDRZEJ MA̧KOWSKI
University of Warsaw, 00-901 Warsaw, Poland
(Submitted December 1986)
R. J. Stroeker [1] considered the Diophantine equation

$$
\begin{equation*}
\left(x^{2}+y\right)\left(x+y^{2}\right)=N(x-y)^{3}, \tag{1}
\end{equation*}
$$

where $N$ is a positive integer. He found all solutions of (1) for $N \leqslant 51$ and proved that if $x, y$ satisfy this equation with $N \neq 1,2,4$ then

$$
\max (|x|,|y|)<N^{3} \quad(\text { see Theorem } 1 \text { of [1]). }
$$

For every $N$ equation, (1) has the trivial solution $x=y=-1$. Theorem 2 of [1] asserts that for odd $N>1$ there exists a nontrivial solution with $x y \neq 0$, and for infinitely many such values of $N$ there are at least five such solutions. The table given at the end of [1] shows that for many even $N$ there is only the trivial solution.

Below, we exhibit a connection between (1) and Fibonacci numbers defined by $F_{0}=0, F_{1}=1, F_{n+1}=F_{n}+F_{n-1}$. The following identities are well known:

$$
\begin{align*}
& F_{k} F_{k+1}+(-1)^{k}=F_{k-1} F_{k+2} ;  \tag{2}\\
& F_{k-n} F_{k+n}-F_{k}^{2}=(-1)^{k+n+1} F_{n}^{2} \tag{3}
\end{align*}
$$

When we put $n=1$ or 2 in identity (3), it becomes, respectively,

$$
\begin{align*}
& F_{k-1} F_{k+1}-F_{k}^{2}=(-1)^{k}  \tag{4}\\
& F_{k}^{2}-(-1)^{k}=F_{k-2} F_{k+2} \tag{5}
\end{align*}
$$

Taking (4) with $k$ replaced by $k+1$ and multiplying it by $F_{k+1}$, we get

$$
\begin{aligned}
& F_{k} F_{k+1} F_{k+2}-F_{k+1}^{3}=(-1)^{k+1} F_{k+1}, \\
& F_{k+1}^{3}-(-1)^{k}\left(F_{k+2}-F_{k}\right)=F_{k} F_{k+1} F_{k+2}, \\
& F_{k+1}^{3}+(-1)^{k} F_{k}=\left[F_{k} F_{k+1}+(-1)^{k}\right] F_{k+2}
\end{aligned}
$$

which, in view of (2), may be written in the form

$$
\begin{equation*}
F_{k+1}^{3}+(-1)^{k} F_{k}=F_{k-1} F_{k+2}^{2} . \tag{6}
\end{equation*}
$$

Multiplying (5) and (6), we get

$$
\left[F_{k}^{2}-(-1)^{k}\right]\left[F_{k+1}^{3}+(-1)^{k} F_{k}\right]=F_{k-2} F_{k-1}\left(F_{k}+F_{k+1}\right)^{3}
$$

and

$$
\left[F_{k}^{2} F_{k+1}^{2}-(-1)^{k} F_{k+1}^{2}\right]\left[F_{k+1}^{4}+(-1)^{k} F_{k} F_{k+1}\right]=F_{k-2} F_{k-1}\left(F_{k} F_{k+1}+F_{k+1}^{2}\right)^{3}
$$

This shows that, for $N=F_{k-2} F_{k-1}$, equation (1) is satisfied by

$$
x=F_{k} F_{k+1}, y=-F_{k+1}^{2} \quad(k \text { even })
$$

and by

$$
x=F_{k+1}^{2}, y=-F_{k} F_{k+1} \quad(k \text { odd }) .
$$

Therefore, for infinitely many values of $N$, the number max $(|x|,|y|)$ is larger than 11 N because

$$
\lim _{k \rightarrow \infty} \frac{F_{k+1}^{2}}{F_{k-2} F_{k-1}}=\left(\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)^{5}>11
$$

Furthermore, since there are infinitely many even Fibonacci numbers, there are infinitely many positive even integers $N$ such that (1) has a nontrivial solution. The last result, however, can be proved in a simpler way:

For $N=\left[(\alpha+1)^{3}+1\right]\left(\alpha^{3}+1\right)$, the numbers $x=\alpha(\alpha+1)^{2}$, $y=a^{2}(a+1)$ satisfy (1).

The following question remains open: Do there exist infinitely many positive (even) integers $N$ such that equation (l) has only the trivial solution?

## REFERENCE

1. R. J. Stroeker. "The Diophantine Equation $\left(x^{2}+y\right)\left(x+y^{2}\right)=N(x-y)^{3}$." Simon Stevin 54 (1980):151-163.

## $\diamond \diamond \diamond$

# SOME OBSERVATIONS ON THE CLASSICAL CUBOID AND ITS PARAMETRIC SOLUTIONS 

W. J. A. COLMAN<br>North East London Polytechnic, Essex RMB 2AS, England

(Submitted December 1986)

1. The classical cuboid has intəgral edges and face diagonals. We require integer solutions of the Diophantine equations:

$$
\begin{equation*}
x^{2}+y^{2}=u^{2}, \quad x^{2}+z^{2}=v^{2}, \quad \text { and } y^{2}+z^{2}=\omega^{2} . \tag{1.1}
\end{equation*}
$$

The first parametric solution was given by Saunderson (Dickson [1], p. 497) and subsequent two-parameter solutions have been given by a number of writers; a listing of these authors can be found in Kraitchik [2]. The general solution of equations (1.1) is unknown. In this paper a method is given which leads to an infinity of two-parameter solutions which are of ever-increasing degree and complexity.
2. A solution of (1.1) is given by

$$
\begin{align*}
& x=\left(a^{2}-d^{2}\right)\left(c^{2}-b^{2}\right)  \tag{2.1}\\
& y=2 a d\left(c^{2}-b^{2}\right) \\
& z^{2}=4 c^{2} b^{2}\left(a^{2}+\frac{2 a b d}{c}-d^{2}\right)\left(a^{2}+\frac{2 a c d}{b}-d^{2}\right),
\end{align*}
$$

because

$$
\begin{aligned}
& x^{2}+y^{2}=\left(\left(c^{2}-b^{2}\right)\left(a^{2}+d^{2}\right)\right)^{2} \\
& x^{2}+z^{2}=\left(\left(a^{2}-d^{2}\right)\left(b^{2}+c^{2}\right)+4 a b c d\right)^{2} \\
& y^{2}+z^{2}=4\left(a d\left(b^{2}+c^{2}\right)+b c\left(a^{2}-d^{2}\right)\right)^{2}
\end{aligned}
$$

We see from these equations that a cuboid with two integral edges and integral face diagonals has a four-parameter solution. The problem here is to make $z$ rational.

Putting $a / d=w$ and $b / c=D$ (say), where $w$ and $D$ are rationals, we have

$$
\begin{equation*}
z^{2}=4 c^{2} b^{2} d^{4}\left(w^{2}+2 D w-1\right)\left(w^{2}+\frac{2}{D} w-1\right) \cdot \tag{2.2}
\end{equation*}
$$

If we multiply the quadratics and put $A=D+1 / D$, we require rational solutions of

$$
\begin{equation*}
w^{4}+2 A w^{3}+2 w^{2}-2 A w+1=t^{2} \tag{2.3}
\end{equation*}
$$

## SOME OBSERVATIONS ON THE CLASSICAL CUBOID AND ITS PARAMETRIC SOLUTIONS

We wish to determine solutions of (2.3) in the form $w=w(A)$. If (2.3) has a rational solution $w=w_{0}$, then it also has a rational solution

$$
w=-\frac{1}{w_{0}} .
$$

But this will just interchange $a$ and $d$ and will not effect the solution.
We can equate (2.3) to the square of a quadratic in $w$ in the usual way, to show that there is a rational solution

$$
\begin{equation*}
w=\frac{A}{4}, \quad t=\frac{3 A^{2}}{16}-1 \tag{2.4}
\end{equation*}
$$

This gives the classical solution of Saunderson:

$$
\begin{align*}
& x=\left(c^{2}-b^{2}\right)\left(\left(b^{2}+c^{2}\right)^{2}-16 b^{2} c^{2}\right)  \tag{2.5}\\
& y=8 b c\left(c^{4}-b^{4}\right) \\
& z=2 b c\left(3\left(b^{2}+c^{2}\right)^{2}-16 b^{2} c^{2}\right)
\end{align*}
$$

Equation (2.2) has another simple solution. Putting $w=1 / 2 D$, we see that $w^{2}+2 D w-1$ is square, and we require

$$
\frac{5}{4 D^{2}}-1=\square .
$$

This has the standard rational solution

$$
D=\frac{\alpha^{2}+\alpha \beta-\beta^{2}}{\alpha^{2}+\beta^{2}} \quad \text { and } \quad \square=\left(\frac{\alpha^{2}-4 \alpha \beta-\beta^{2}}{2\left(\alpha^{2}+\alpha \beta-\beta^{2}\right)}\right)^{2},
$$

which gives

$$
a=\alpha^{2}+\beta^{2}, \quad b=\alpha^{2}+\alpha \beta-\beta^{2}, \quad c=\alpha^{2}+\beta^{2}, \quad d=2\left(\alpha^{2}+\alpha \beta-\beta^{2}\right),
$$

and we have the solution:

$$
\begin{align*}
& x=\alpha \beta\left(\alpha^{2}-\beta^{2}\right)(3 \alpha-\beta)(3 \beta+\alpha)(2 \alpha+\beta)(2 \beta-\alpha)  \tag{2.6}\\
& y=4 \alpha \beta\left(\alpha^{2}+\beta^{2}\right)(2 \alpha+\beta)(2 \beta-\alpha)\left(\alpha^{2}+\alpha \beta-\beta^{2}\right) \\
& z=2\left(\alpha^{2}+\beta^{2}\right)^{2}\left(\alpha^{2}+\alpha \beta-\beta^{2}\right)\left(\alpha^{2}-4 \alpha \beta-\beta^{2}\right) .
\end{align*}
$$

3. To determine further solutions of (2.3), we can put $w=n+w_{0}$, where $w_{0}^{4}+2 A w_{0}^{3}+2 w_{0}^{2}-2 A w_{0}+1=t_{0}^{2}$, and write

$$
\begin{aligned}
& n^{4}+\left(4 w_{0}+2 A\right) n^{3}+\left(6 w_{0}^{2}+6 A w_{0}+2\right) n^{2}+\left(4 w_{0}^{3}+6 A w_{0}^{2}+4 w_{0}-2 A\right) n+t_{0}^{2} \\
& =\left(C n^{2}+B n+t_{0}\right)^{2} \quad(\text { say }) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
2 B t_{0} & =4 w_{0}^{3}+6 A w_{0}^{2}+4 w_{0}-2 A \\
B^{2}+2 C t_{0} & =6 w_{0}^{2}+6 A w_{0}+2
\end{aligned}
$$

and

$$
w=\frac{2 B C-4 \omega_{0}-2 A}{1-C^{2}}+w_{0} .
$$

These equations give:

$$
\begin{equation*}
w=\frac{A w_{0}^{9}+12 w_{0}^{8}+12 A w_{0}^{7}+32 w_{0}^{6}+30 A w_{0}^{5}+24 w_{0}^{4}-36 A w_{0}^{3}+9 A w_{0}-4}{4 w_{0}^{9}+9 A w_{0}^{8}-36 A w_{0}^{6}-24 w_{0}^{5}+30 A w_{0}^{4}-32 w_{0}^{3}+12 A w_{0}^{2}-12 w_{0}+A} \tag{3.1}
\end{equation*}
$$

If we put $w_{0}=A / 4$, then the next solution generated is

$$
w=\frac{A^{10}+240 A^{8}+9728 A^{6}-122880 A^{4}+589824 A^{2}-1048576}{8 A\left(5 A^{8}-288 A^{6}+3072 A^{4}+8192 A^{2}-65536\right)}
$$

Putting $D=2=b / c$, we obtain $A=5 / 2$ and $w=602697401 / 880248720$. Hence, we have a cuboid with $b=2, c=1, \alpha=602697401$, and $d=880248720$.

Equation (3.1) will generate an infinity of rational solutions $w$, and each such solution gives a two-parameter solution of equations (1.1). It is evident that these solutions increase very rapidly in degree and complexity. The solutions do not necessarily give independent parametric formulas. If we put $w_{0}=$ 1 , then $w=\frac{A+4}{A-4}$, which, again, gives Saunderson's solution (2.5).
4. It is seen that the solution

$$
w=\frac{A}{4}=\frac{1}{4}\left(D+\frac{1}{D}\right)
$$

makes both quadratics, $w^{2}+2 D w-1$ and $w^{2}+\frac{2}{D} w-1$, simultaneously square. We will now consider this further.

We have

$$
\begin{equation*}
w^{2}+2 D w-1=\left(\frac{\alpha^{2}+2 D \alpha-1}{2 \alpha+2 D}\right)^{2} \text { if } w=\frac{\alpha^{2}+1}{2 \alpha+2 D} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{2}+\frac{2}{D} w-1=\left(\frac{\beta^{2}+\frac{2}{D} \beta-1}{2 \beta+\frac{2}{D}}\right)^{2} \quad \text { if } w=\frac{\beta^{2}+1}{2 \beta+\frac{2}{D}} \tag{4.2}
\end{equation*}
$$

where $\alpha$ and $\beta$ are arbitrary rationals such that $w$ is finite. Equating (4.1) and (4.2), we require rationals $\alpha$ and $\beta$ such that

$$
\begin{equation*}
\frac{\alpha^{2}+1}{2 \alpha+2 D}=\frac{\beta^{2}+1}{2 \beta+\frac{2}{D}} \tag{4.3}
\end{equation*}
$$

If $\alpha=\beta$, then $D=1$, which is trivial. If $\alpha=-\beta$, then we again obtain the classical solution (2.5). Thus, we have

$$
(\alpha+D)\left(\beta^{2}+1\right)=\left(\beta+\frac{1}{D}\right)\left(\alpha^{2}+1\right)
$$

Put $\alpha+D=K\left(\beta+\frac{1}{D}\right)$ and $\beta^{2}+1=\frac{1}{K}\left(\alpha^{2}+1\right)$ for some rational $K$ :

## SOME OBSERVATIONS ON THE CLASSICAL CUBOID AND ITS PARAMETRIC SOLUTIONS

$$
\begin{aligned}
& \therefore \quad \beta^{2}\left(K^{2}-K\right)+\beta\left(\frac{2 K^{2}}{D}-2 K D\right)+\left(\frac{K^{2}}{D^{2}}-3 K+D^{2}+1\right)=0 \\
& \therefore \quad \beta=\left(K D-\frac{K^{2}}{D} \pm\left(\frac{\left(1+D^{2}\right) K^{3}}{D^{2}}-4 K^{2}+\left(1+D^{2}\right) K\right)^{1 / 2}\right) / K^{2}-K
\end{aligned}
$$

We require

$$
\begin{equation*}
\frac{\left(1+D^{2}\right)}{D^{2}} K^{3}-4 K^{2}+\left(1+D^{2}\right) K=\square \tag{4.4}
\end{equation*}
$$

Multiply equation (4.4) by $\left(\frac{D^{2}+1}{D^{2}}\right)^{2}$ and put $\frac{\left(D^{2}+1\right) K}{D^{2}}=m$ (say).

$$
\therefore \quad m^{3}-4 m^{2}+\left(\frac{D^{2}+1}{D}\right)^{2} m=\square .
$$

Let us put, as before, $A=D+1 / D$, then we have

$$
\begin{equation*}
m^{3}-4 m^{2}+A^{2} m=t^{2} \tag{4.5}
\end{equation*}
$$

Equation (4.5) is an elliptic curve and has the obvious rational solution $m=4$. We can see, by direct substitution, that if $m=m_{0}$ is a rational solution then $m=A^{2} / m_{0}$ is also a rational solution. Employing the same technique as before, we can put $m=n+m_{0}$ and consider

$$
\begin{equation*}
n^{3}+n^{2}\left(3 m_{0}^{2}-4\right)+n\left(3 m_{0}-8 m_{0}+A^{2}\right)+t_{0}^{2}=\left(B n+t_{0}\right)^{2} \tag{4.6}
\end{equation*}
$$

which gives

$$
\begin{equation*}
m=\frac{\left(m_{0}^{2}-A^{2}\right)^{2}}{4\left(m_{0}^{3}-4 m_{0}^{2}+A^{2} m_{0}\right)} \tag{4.7}
\end{equation*}
$$

The right-hand side of (4.7) is unchanged if $m_{0}$ is replaced by $A^{2} / m_{0}$. We can therefore generate two sequences of solutions starting with $m_{0}=4$. Thus, we have

$$
\begin{aligned}
& m_{0}=4 \\
& m_{1}= \\
& m_{2}=\frac{1}{64} \\
& \text { etc. }
\end{aligned}
$$

$$
\text { and } \frac{A^{2}}{4}
$$

$$
m_{1}=\frac{\left(16-A^{2}\right)^{2}}{16 A^{2}}
$$

$$
\text { and } \frac{16 A^{4}}{\left(16-A^{2}\right)^{2}}
$$

$$
m_{2}=\frac{\left(\left(16-A^{2}\right)^{4}-256 A^{6}\right)^{2}}{64 A^{2}\left(A^{2}-16\right)^{2}\left(A^{4}+64 A^{2}-256\right)} \text { and } \frac{64 A^{4}\left(A^{2}-16\right)^{2}\left(A^{4}+64 A^{2}-256\right)}{\left(\left(16-A^{2}\right)^{4}-256 A^{6}\right)^{2}}
$$

Using these values of $m$ we can determine $\beta$, and hence $\alpha$, as a rational function of $D$. This will then give $\omega$ as a rational function of $D$ and will lead to a two-parameter solution. For $m=4$, we have solution (2.5). For $m=A^{2} / 4$, we have

$$
\alpha=\frac{D^{4}+8 D^{2}-1}{2 D\left(D^{2}-3\right)} \text { and } \beta=\frac{5 D^{2}+1}{D\left(D^{2}-3\right)}
$$

1988]
with $\quad \omega=\frac{\left(D^{2}+1\right)\left(D^{4}+18 D^{2}+1\right)}{4 D\left(3 D^{4}-10 D^{2}+3\right)}$.
With this values for $w$, we have

$$
w^{2}+2 D w-1=\left(\frac{5 D^{6}+27 D^{4}-41 D^{2}+1}{4 D\left(3 D^{4}-10 D^{2}+3\right)}\right)^{2}
$$

and

$$
w^{2}+\frac{2}{D} w-1=\left(\frac{D^{6}-41 D^{4}+27 D^{2}+5}{4 D\left(3 D^{4}-10 D^{2}+3\right)}\right)^{2} .
$$

Putting $D=b / c$ and removing common factors gives the solution:

$$
\begin{align*}
x= & \left(c^{2}-b^{2}\right)\left(\left(b^{2}+c^{2}\right)^{2}\left(b^{4}+18 b^{2} c^{2}+c^{4}\right)^{2}\right.  \tag{4.8}\\
& \left.\quad-16 b^{2} c^{2}\left(3 b^{4}-10 b^{2} c^{2}+3 c^{4}\right)^{2}\right) \\
y= & 8 b c\left(c^{4}-b^{4}\right)\left(b^{4}+18 b^{2} c^{2}+c^{4}\right)\left(3 b^{4}-10 b^{2} c^{2}+3 c^{4}\right) \\
z= & 2 b c\left(b^{6}-41 b^{4} c^{2}+27 b^{2} c^{4}+5 c^{6}\right)\left(5 b^{6}+27 b^{4} c^{2}-41 b^{2} c^{4}+c^{6}\right)
\end{align*}
$$

Putting $b=2, c=1$ gives

$$
x=570843, \quad y=234960, \quad z=1128524
$$

and putting $b=3, c=1$ gives

$$
x=153076, \quad y=570960, \quad z=600357
$$

Neither of these solutions is in Lal and Blundon's [3] computer-generated list.

$$
\text { For } m_{1}=\frac{\left(16-A^{2}\right)^{2}}{16 A^{2}} \text { we have, if } D=2 \text {, that }
$$

$$
\alpha=\frac{-509}{40}, \quad \beta=\frac{-1139}{78}, \quad w=\frac{-260681}{34320} ;
$$

thus, $a=-260681, b=2, c=1$, and $d=34320$. This gives

$$
\begin{aligned}
& x=3(295001)(226361) \\
& y=6(260681)(34320)=2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \cdot 29 \cdot 89 \cdot 101 \\
& z=4(176041)(240479) .
\end{aligned}
$$

We can also determine another set of solutions of 4.5 by writing

$$
n^{3}+n^{2}\left(3 m_{0}-4\right)+n\left(3 m_{0}^{2}-8 m_{0}+A^{2}\right)+t_{0}^{2}=\left(C n^{2}+B n+t_{0}\right)^{2} .
$$

This gives

$$
\begin{equation*}
m=m_{0}\left(\frac{m_{0}^{4}-6 A^{2} m_{0}^{2}+16 A^{2} m_{0}-3 A^{4}}{3 m_{0}^{4}-16 m_{0}^{3}+6 A^{2} m_{0}^{2}-A^{4}}\right)^{2} . \tag{4.9}
\end{equation*}
$$

Equation (4.9) will again generate two infinite sets of two-parameter formulas.
5. It is clear that the sequences of parametric solutions given in this paper by (3.1), (4.7), and (4.9) rapidly lead to solutions of high degree with "large" values for $x, y$, and $z$. But we know from $L a l$ and Blundon's list [3] that there are many smaller solutions, and so there must be other parametric solutions of smaller degree, like (2.5) and (2.6). Some other solutions of degree 8 or more are given in Kraitchik [2, Ch. 5]. For each such parametric solution $x, y$, and $z$, we have the derived solution given by $X=y z, Y=x z$, and $Z=x y$. This effectively doubles the number of formulas. Whether there are solutions of (2.3) which give these smaller solutions remains open. It seems intuitively clear that the number of parametric solutions of given degree is finite, but that this number increases with the degree. Unfortunately, we have no idea what this rate of increase might be.
6. Finally, we see, from (2.1), that

$$
x^{2}+y^{2}+z^{2}=c^{4} d^{4} D^{2}\left(\frac{D^{2}+1}{D}\right)^{2}\left(w^{4}+\frac{8 w^{3}}{\left(\frac{D^{2}+1}{D}\right)}+2 w^{2}-\frac{8 w}{\left(\frac{D^{2}+1}{D}\right)}+1\right)
$$

Therefore, putting $D+1 / D=A$ as before, we see that $x^{2}+y^{2}+z^{2}$ is square if

$$
w^{4}+\frac{8}{A} w^{3}+2 w^{2}-\frac{8}{A} w+1=\square .
$$

This equation is similar to (2.3). If we change $A$ into $4 / A$, we can deduce rational solutions using (3.1), starting with $w_{0}=1 / A$. Therefore, we can generate a sequence of two-parameter formulas for a cuboid with edges $x, y$, and $z^{2}$, such that $x^{2}+y^{2}, x^{2}+z^{2}, y^{2}+z^{2}$, and $x^{2}+y^{2}+z^{2}$ are all square.

A perfect cuboid would exist if we could find rational $\omega$ and $A=D+\frac{1}{D} \neq 2$, where $D$ is also rational, such that

$$
w^{4}+2 A w^{3}+2 w^{2}-2 A w+1 \text { and } w^{4}+\frac{8}{A} w^{3}+2 w^{2}-\frac{8}{A} w+1
$$

are both square, or if we could determine a solution $w=w(A)$ satisfying both quartics. This, of course, seems unlikely, but the problem of perfect cuboids remains stubbornly open.

## REFERENCES

1. L. E. Dickson. History of the Theory of Numbers. Vo1. 2: Diophantine Analysis. New York: Chelsea, 1966.
2. M. Kraitchik. Theorie des nombres. T. 3: Analyse Diophantine et upplications aux cuboides rationnels. Paris: Gauthier-Villars, 1947.
3. M. Lal \& W. J. Blundon. "Solutions of the Diophantine Equations $x^{2}+y^{2}=$ $\ell^{2}, y^{2}+z^{2}=m^{2}, z^{2}+x^{2}=n^{2} .1$ Math. Comp. 20 (1966):144-147.

# PELL POLYNOMIALS AND A CONJECTURE OF MAHON AND HORADAM 

PAUL DUVALL and THERESA VAUGHAN
University of North Carolina at Greensboro, NC 27412
(Submitted December 1986)

1. INTRODUCTION

In [1], Horadam and Mahon define a family of $n \times n$ matrices $V_{n}$ in connection with the Pell polynomials $U_{n}(x)$. They conjecture that the characteristic polynomial of $V_{n}$ is given by
where

$$
\begin{equation*}
C_{n}(\lambda)=\sum_{k=0}^{n}(-1)^{\left(k^{2}+k\right) / 2}\{n, k\} \lambda^{n-k}, \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\{n, k\}=\prod_{i=1}^{n} U_{i}(x) / \prod_{i=1}^{k} U_{i}(x) \prod_{i=1}^{n-k} U_{i}(x) \tag{1.2}
\end{equation*}
$$

In this paper we prove the conjecture of Horadam and Mahon and also derive various other results concerning the structure of $V_{n}$ and $C_{n}(\lambda)$.

## 2. NOTATION

The Pell polynomials are defined recursively by

$$
\begin{aligned}
& U_{0}(x)=0, \quad U_{1}(x)=1, \\
& U_{n}(x)=2 x U_{n-1}(x)+U_{n-2}(x) \quad(n \geqslant 2)
\end{aligned}
$$

and the associated Pell-Lucas polynomials by

$$
\begin{aligned}
& W_{0}(x)=2, \quad W_{1}(x)=2 x, \\
& W_{n}(x)=2 x W_{n-1}(x)+W_{n-2}(x) \quad(n \geqslant 2) .
\end{aligned}
$$

In this paper, to keep the notation as simple as possible, we shall work with the following closely related polynomials in the indeterminate $t$ :

$$
\begin{aligned}
& P_{0}(t)=0, \quad P_{1}(t)=1 \\
& P_{n}(t)=t P_{n-1}(t)+P_{n-2}(t) \quad(n \geqslant 2)
\end{aligned}
$$

and

$$
\begin{aligned}
& Q_{0}(t)=2, \quad Q_{1}(t)=t \\
& Q_{n}(t)=t Q_{n-1}(t)+Q_{n-2}(t) \quad(n \geqslant 2) .
\end{aligned}
$$

Standard manipulations with difference equations give the Binet formulas:

$$
P_{n}(t)=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) \text { and } Q_{n}(t)=\alpha^{n}+\beta^{n},
$$

where $\alpha, \beta$ are the roots of the polynomial $y^{2}-t y-1$;

$$
=\frac{1}{2}\left[t+\sqrt{t^{2}+4}\right] \text { and }=\frac{1}{2}\left[t-\sqrt{t^{2}+4}\right] .
$$

We shall require the easily proven identity

$$
\begin{equation*}
P_{n}(t)=\sum_{k=1}^{[n / 2]}(n-k-1) t_{k}^{n-1-2 k} . \tag{2.1}
\end{equation*}
$$

$V_{n}$ is defined to be the $n \times n$ matrix whose $(i, j)$ entry is

$$
\left(V_{n}\right)_{i j}=\binom{j-1}{j+i-n-1} t^{i+j-n-1}
$$

for example,

$$
V_{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 3 t \\
0 & 1 & 2 t & 3 t^{2} \\
1 & t & t^{2} & t^{3}
\end{array}\right] .
$$

## 3. A SIMILARITY TRANSFORMATION ON $V_{n}$

The main result of this section (Theorem 3.2) shows that $V_{n}$ is similar to a particularly nice matrix in block upper triangular form. This form will lead to a recursion for the characteristic polynomial of $V_{n}$.

Let $T_{n}$ be the $n \times n$ matrix whose columns carry the recurrence satisfied by $P_{n}(-t)$, i.e.,

$$
\left(T_{n}\right)_{i j}=\left\{\begin{aligned}
1, & \text { if } i=j \\
t, & \text { if } i=j+1 \\
-1, & \text { if } i=j+2 \\
0, & \text { otherwise. }
\end{aligned}\right.
$$

Then we have
Lemma 3.1: The inverse of $T_{n}$ is given by

$$
\left(T_{n}^{-1}\right)_{i j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i<j \\ P_{k+1}(-t), & \text { if } i=j+k .\end{cases}
$$

Proof: Let $A$ denote the matrix defined in the statement of the Lemma, and let $B=T_{n} A$. Then $B$ is lower triangular, with diagonal elements all equal to one. A typical element below the diagonal has the form

$$
P_{i}(-t)+t P_{i-1}(-t)-P_{i-2}(-t)=P_{i}(-t)-(-t) P_{i-1}(-t)-P_{i-2}(-t)=0,
$$

since this is the recursion defining $P_{i}(-t)$. Thus, $B=I$ and $A=T_{n}^{-1}$.
Theorem 3.2: The matrix $T_{n}^{-1} V_{n} T_{n}$ has the block form $\left[\begin{array}{cc}-V_{n-2} & X \\ 0 & Y\end{array}\right]$, where $X$ is
$(n-2) \times 2, Y$ is $2 \times 2$, and

$$
Y=\left[\begin{array}{ll}
P_{n}(t) & P_{n-1}(t) \\
P_{n-1}(t) & P_{n-2}(t)
\end{array}\right] .
$$

Proof: First we show, by induction, that the first $n-2$ columns of the matrix

$$
A=\left(a_{i j}\right)=T_{n}^{-1} V_{n} T_{n}
$$

have the desired form.
The $i^{\text {th }}$ row of $T_{n}^{-1}$ is

$$
R_{i}=\left[P_{i}(-t), P_{i-1}(-t), \ldots, P_{2}(-t), 1,0, \ldots, 0\right]
$$

and the $j^{\text {th }}$ column of $V_{n} T_{n}$ is $C_{j}=\operatorname{col}\left(x_{1}, \ldots, x_{n}\right)$, where

$$
\begin{aligned}
& x_{k}=0(k=1,2, \ldots, n-j-2) \\
& x_{n-j-1}=-1 \\
& x_{n-j}=-\binom{j+1}{1} t+t \\
& x_{n-j+k}=-\binom{j+1}{k+1} t^{k+1}+\binom{j}{k} t^{k+1}+\binom{j-1}{k-1} t^{k-1} .
\end{aligned}
$$

Then $\alpha_{i j}$ is the dot product $R_{i} \cdot C_{j}$, and to start the induction, we have:

$$
\begin{aligned}
& a_{i j}=0 \text { if } n-j-2 \geqslant i \\
& a_{i j}=-1 \text { if } n-j-2=i-1 \\
& a_{i j}=-\binom{j-1}{1} t \text { if } n-j-2=i-2 \\
& a_{i j}=-\binom{j-1}{2} t^{2} \text { if } n-j-2=i-3 .
\end{aligned}
$$

Now suppose that, if $0 \leqslant s<r$ and $n-j-2=i-s$, then

$$
a_{i j}=-\binom{j-1}{s-1} t^{s-1}
$$

Then, for $n-j-2=i-r$,

$$
\begin{aligned}
a_{i j}= & \sum_{k=1}^{i} P_{i+1-k}(-t) x_{k}=\sum_{k=r+1}^{i} P_{i+1-k}(-t) x_{k} \\
= & \sum_{k=1-r+1}^{i-1} P_{i+1-k}(-t) x_{k}+P_{1}(-t) x_{i} \\
= & \sum_{k=r+1}^{i-1}\left[(-t) P_{i-k}(-t)+P_{i-k-1}(-t)\right] x_{k}+P_{1}(-t) x_{i} \\
= & (-t)\left[-t^{r-2}\binom{j-1}{r-2}\right]+\left[-t^{r-3}\binom{j-1}{r-3}\right]-\binom{j+1}{r-1} t^{r-1} \\
& \quad+\binom{j}{r-2} t^{r-1}+\binom{j-1}{r-3} t^{r-3}
\end{aligned}
$$

$$
=-t^{r-1}\binom{j-1}{r-1} .
$$

This completes the induction.
From the definition of $V_{n}$, the $j$ th column of $V_{n-2}$ must be

$$
\operatorname{col}\left[0,0, \ldots, 0,1,\binom{j-1}{1} t,\binom{j-1}{2} t, \ldots,\binom{j-1}{j-2} t^{j-2}, t^{j-1}\right]
$$

therefore, the upper left diagonal $(n-2) \times(n-2)$ block of $T_{n}{ }^{1} V_{n} T_{n}$ is indeed $-V_{n-2}$.

The entries $a_{n-1, j}$ and $a_{n, j}$ for $1 \leqslant j \leqslant n-2$ are all zero because, if $i=$ $n-1$, then $n-j-2=i-r$ implies $r=j+1$. Then the term

$$
-t^{r-1}\binom{j-1}{r-1}=-t^{r-1}\binom{j-1}{j}=0
$$

If $i=n$ and $n-j-2=i-r$, then $r=j+2$ and we have

$$
-t^{r-1}\binom{j-1}{r-1}=-t^{r-1}\binom{j-1}{j+1}=0
$$

It remains to show that the lower right diagonal $2 \times 2$ block of $T_{n}^{-1} V_{n} T_{n}$ is given by

$$
\left[\begin{array}{ll}
P_{n}(t) & P_{n-1}(t) \\
P_{n-1}(t) & P_{n-2}(t)
\end{array}\right]
$$

We shall compute $a_{n, n}$ in detail. The other three cases are similar. Recalling that

$$
R_{n}=\left[P_{n}(-t), P_{n-1}(-t), \ldots, P_{2}(-t), 1\right]
$$

and

$$
C_{n}=\operatorname{co1}\left[1,\binom{n-1}{1} t,\binom{n-1}{2} t^{2}, \ldots, t^{n-1}\right]
$$

we have

$$
\begin{aligned}
a_{n, n} & =\sum_{k=0}^{n-1}\binom{n-1}{k} t^{k} P_{n-k}(-t) \\
& =\sum_{k=0}^{n-1}\binom{n-1}{k} t^{k} \sum_{j=0}^{[(n-k) / 2]}\binom{n-k-1-j}{j}(-t)^{n-k-1-2 j},
\end{aligned}
$$

by (2.1). Reversing the order of summation gives

$$
a_{n, n}=\sum_{j=0}^{[n / 2]} t^{n-1-2 j} \sum_{k=0}^{n-2 j}\binom{n-1}{k}\binom{n-j-k-1}{j}(-1)^{n-k-1-2 j}
$$

Consider the inner sum

$$
S=\sum_{k=0}^{n-2 j}\binom{n-1}{k}(n-j-k-1)(-1)^{n-k-1-2 j}
$$

When $k=n-2 j$, the binomial coefficient $\binom{n-j-k-1}{j}=\binom{j-1}{j}=0$, so we may take the upper limit to be $n-2 j-1$.

Now, make the substitution $p=n-2 j-1$ in $S$ to get

$$
S=\sum_{k=0}^{p}\binom{p+2 j}{k}\binom{p+j-k}{j}(-1)^{p-k}=\sum_{k=0}^{p}\binom{p+2 j}{k}\binom{p+j-k}{p-k}(-1)^{p-k}
$$

Note that $\binom{p+2 j}{k}$ is the coefficient of $x^{k}$ in the expansion of $(1+x)^{p+2 j}$ and that $\binom{p+j-k}{p-k}(-1)^{p-k}$ is the coefficient of $x^{p-k}$ in the expansion of $(1+x)^{-j-1}$. Then $S$ is the coefficient of $x^{p}$ in the expansion of

$$
(1+x)^{p+2 j-j-1}=(1+x)^{n-j-2},
$$

that is,

$$
S=\binom{n-j-2}{n-2 j-1}=\binom{n-j-2}{j-1}
$$

Returning to the calculation of $a_{n, n}$, we have

$$
a_{n, n}=\sum_{j=0}^{[n / 2]} t^{n-1-2 j}\binom{n-j-2}{j-1}=\sum_{k=0}^{[(n-2) / 2]}\binom{n-3-k}{k} t^{n-3-2 k}
$$

(eliminating zero terms and replacing $j-1$ by $k$ ). Thus, $a_{n, n}=P_{n-2}(t)$, by (2.1). The sums for $a_{n, n-1}, a_{n-1, n}$, and $a_{n-1, n-1}$ can be evaluated by the same methods, but we omit the proofs here.
4. THE CHARACTERISTIC POLYNOMIAL OF $V_{n}(t)$

Let $A_{n}$ denote the matrix $T_{n}^{-1} V_{n} T_{n}$ and let $C_{n}(\lambda)$ be the characteristic polynomial of $V_{n}$. As before, let $Y=Y_{n}$ be the matrix

$$
Y_{n}=\left[\begin{array}{ll}
P_{n}(t) & P_{n-1}(t) \\
P_{n-1}(t) & P_{n-2}(t)
\end{array}\right]
$$

In this section, we establish some basic properties of $C_{n}(\lambda)$ and prove the conjecture of Mahon and Horadam.

Lemma 4.1: The characteristic polynomial $C_{n}(\lambda)$ of $V_{n}$ satisfies the recurrence:

$$
\begin{aligned}
& C_{2}(\lambda)=\lambda^{2}-t \lambda-1 \\
& C_{3}(\lambda)=(\lambda+1)\left(\lambda^{2}+Q_{2}(t) \lambda+1\right) \\
& C_{n}(\lambda)=(-1)^{n-2} C_{n-2}(-\lambda)\left(\lambda^{2}-Q_{n-1}(t) \lambda+(-1)^{n-1}\right) .
\end{aligned}
$$

Proof: Since $A_{n}$ and $V_{n}$ are similar, $C_{n}(\lambda)=\left|\lambda I-A_{n}\right|$. By the block form of $A_{n}$,

$$
\left|\lambda I-A_{n}\right|=\left|\lambda I+V_{n-2}\right| \cdot\left|\lambda I-Y_{n}\right| .
$$

Since $P_{n}(t) P_{n-2}(t)-P_{n-1}(t)^{2}=(-1)^{n-1}$ and $P_{n}(t)+P_{n-2}(t)=Q_{n-1}(t)$,

$$
\left|\lambda I-Y_{n}\right|=\lambda^{2}-Q_{n-1}(t) \lambda+(-1)^{n-1}
$$

Since $\left|\lambda I+V_{n-2}\right|=(-1)^{n-2} C_{n-2}(-\lambda)$, Lemma 4.1 follows.

## Corollary 4.2:

a) If $n$ is even, say $n=2 k$, then

$$
C_{2 k}(\lambda)=\prod_{j=0}^{k-1}\left(\lambda^{2}-Q_{n-1-2 j}(t) \cdot(-1)^{j} \lambda-1\right),
$$

and the characteristic roots of $C_{2 k}(\lambda)$ are

$$
\left\{(-1)^{j} \alpha^{n-1-2 j},(-1)^{j} \beta^{n-1-2 j}: j=0,1, \ldots, k-1\right\}
$$

b) If $n$ is odd, say $n=2 k+1$, then

$$
C_{2 k+1}(\lambda)=\left(\lambda-(-1)^{k}\right) \prod_{j=0}^{k-1}\left(\lambda^{2}-Q_{n-1-2 j}(t) \cdot(-1)^{j} \lambda+1\right),
$$

and the characteristic roots of $C_{2 k+1}(\lambda)$ are

$$
\left\{(-1)^{k},(-1)^{j} \alpha^{n-1-2 j},(-1)^{j} \beta^{n-1-2 j}: j=0,1, \ldots, k-1\right\}
$$

Proof: We prove b); the proof of a) is similar. From Lemma 4.1, we get

$$
C_{5}(\lambda)=\left(\lambda^{2}-Q_{4}(t) \lambda+1\right)\left(\lambda^{2}-Q_{2}(t)(-\lambda)+1\right)(\lambda-1)
$$

and from the recurrence, for $n \geqslant 5$, we derive

$$
C_{n}(\lambda)=\left(\lambda^{2}-Q_{n-1}(t) \lambda+1\right)\left(\lambda^{2}-Q_{n-3}(t)(-\lambda)+1\right) C_{n-4}(\lambda) .
$$

Since $C_{3}(\lambda)$ has the factor $(\lambda+1)$, if $n \equiv 3(\bmod 4), C_{n}(\lambda)$ will also have the the factor

$$
(\lambda+1)=\lambda+(-1)^{(n-1) / 2}
$$

Since $C_{5}(\lambda)$ has the factor $(\lambda-1)$, if $n \equiv 1(\bmod 4), C_{n}(\lambda)$ will also have the factor

$$
(\lambda-1)=\lambda+(-1)^{(n-1) / 2}
$$

The rest of $b$ ) is clear.
The characteristic roots of $C_{n}(\lambda)$ are the roots of its factors. We have

$$
\left(\lambda-\alpha^{j}\right)\left(\lambda-\beta^{j}\right)=\lambda^{2}-\left(\alpha^{j}+\beta^{j}\right) \lambda+(\alpha \beta)^{j}=\lambda^{2}-Q_{j}(t)+(-1)^{j}
$$

and

$$
\left(\lambda+\alpha^{j}\right)\left(\lambda+\beta^{j}\right)=\lambda^{2}-Q_{j}(t)(-\lambda)+(-1)^{j},
$$

and this completes the proof.
Define the coefficient $\{n, k\}$ by

$$
\{n, k\}=\prod_{i=1}^{n} P_{i}(t) / \prod_{i=1}^{k} P_{i}(t) \prod_{i=1}^{n-k} P_{i}(t)
$$

and define the polynomial $R_{n}(\lambda)$ by

$$
R_{n}(\lambda)=\sum_{k=0}^{n}(-1)^{\left(k^{2}+k\right) / 2}\{n, k\} \lambda^{n-k}
$$

The next theorem states that $R_{n}(\lambda)=C_{n}(\lambda)$. Then the conjecture of Mahon and Horadam follows by making the substitution $t=2 x$.

Theorem 4.3: For all $n \geqslant 2, R_{n}(\lambda)=C_{n}(\lambda)$.
Proof: It is easy to verify the cases $n=2$, 3 . Thus, we need only show that $R_{n}(\lambda)$ satisfies the recurrence of Lemma 4.1 ; that is, we must show that

$$
\begin{equation*}
R_{n}(\lambda)=(-1)^{n} R_{n-2}(-\lambda) \cdot\left(\lambda^{2}-Q_{n-1}(t) \lambda+(-1)^{n-1}\right) . \tag{*}
\end{equation*}
$$

Let $F(\lambda)$ denote the right-hand side of $(*)$, let $\alpha_{j}$ denote the coefficient of $\lambda^{j}$ in $R_{n}(\lambda)$, and $b_{j}$ the coefficient of $\lambda^{j}$ in $F(\lambda)$. Then, from the definition of $R_{n}(\lambda), a_{n}=1, a_{n-1}=-P_{n}, a_{1}=(-1)^{\left(n^{2}-n\right) / 2} P_{n}$, and $a_{0}=(-1)^{\left(n^{2}+n\right) / 2}$.

The $n^{\text {th }}$ term in $F(\lambda)$ is

$$
(-1)^{n}(-\lambda)^{n-2} \lambda^{2}=\lambda^{n},
$$

so $b_{n}=1=a_{n}$.
The $(n-1)^{\text {th }}$ term in $F(\lambda)$ is

$$
\begin{aligned}
& (-1)^{n} \lambda^{2}(-\lambda)^{n-2}(-1)\{n-2,1\}+(-1)^{n}\left(-Q_{n-1}(t) \lambda\right)(-\lambda)^{n-2} \\
& =\lambda^{n-1}\left(P_{n-2}(t)-Q_{n-1}(t)\right)=\lambda^{n-1}\left(-P_{n-1}(t)\right),
\end{aligned}
$$

so $b_{n-1}=a_{n-1}$.
The constant term of $F(\lambda)$ is

$$
(-1)^{n}(-1)^{n-1}(-1)^{(n-1)(n-2) / 2}=(-1)^{(n+1) n / 2} \text {, }
$$

so $a_{0}=b_{0}$.
For $b_{1}$, we have

$$
\begin{aligned}
b_{1}= & (-1)^{n}\left(-Q_{n-1}(t)\right) \lambda(-1)^{(n-1)(n-2) / 2} \\
& +(-1)^{n}(-1)^{n-1}(-\lambda)(-1)^{(n-2)(n-3) / 2}\{n-2, n-3\} \\
= & (-1)^{n(n-1) / 2}\left(Q_{n-1}(t)-P_{n-2}(t)\right) \lambda \\
= & (-1)^{n(n-1) / 2} P_{n}(t),
\end{aligned}
$$

giving $a_{1}=b_{1}$.
For the remaining coefficients we need to show that, for $2 \leqslant k \leqslant n-2$, $a_{n-k}=b_{n-k}$; that is,

$$
\begin{aligned}
(-1)^{(k+1) k / 2}\{n, k\} & =(-1)^{n}(-1)^{n-k-2}(-1)^{(k+1) k / 2}\{n-2, k\} \\
& +(-1)^{n}(-1)^{n-k-1}(-1)^{k(k-1) / 2}\{n-2, k-1\}\left(-Q_{n-1}(t)\right) \\
& +(-1)^{n}(-1)^{n-k}(-1)^{(k-1)(k-2) / 2}\{n-2, k-2\}(-1)^{n-1} .
\end{aligned}
$$

Clearing signs, this reduces to

$$
\begin{align*}
\{n, k\}=(-1)^{k}\{n-2, k\} & +Q_{n-1}(t)\{n-2, k-1\} \\
& +(-1)^{n+k}\{n-2, k-2\} . \tag{**}
\end{align*}
$$

Factoring out $\{n-2, k-1\}$ reduces ( $* *$ ) to

$$
\frac{P_{n}(t) P_{n-1}(t)}{P_{k}(t) P_{n-k}(t)}=(-1)^{k} \frac{P_{n-k-1}(t)}{P_{k}(t)}+Q_{n-1}(t)+(-1)^{n+k} \frac{P_{k-1}(t)}{P_{n-k}(t)}
$$

Thus, it suffices to show that for $2 \leqslant k \leqslant n-2$,

$$
\begin{aligned}
& P_{n}(t) P_{n-1}(t)-P_{k}(t) P_{n-k}(t) Q_{n-1}(t) \\
& =(-1)^{k} P_{n-k}(t) P_{n-k-1}(t)+(-1)^{n-k} P_{k}(t) P_{k-1}(t)
\end{aligned}
$$

This last identity is proven using the Binet formulas and the properties of $\alpha$ and $\beta$. For convenience, denote $P_{n}(t)$ by $P_{n}$ and so on. First,
and

$$
\begin{aligned}
& P_{n} P_{n-1}=\left(\alpha^{n}-\beta^{n}\right)\left(\alpha^{n-1}-\beta^{n-1}\right) /(\alpha-\beta)^{2}=Q_{2 n-1}+(-1)^{n} Q_{1}, \\
& Q_{n-1} P_{k} P_{n-k}=\left(\alpha^{n-1}+\beta^{n-1}\right)\left(\alpha^{n}+\beta^{n}-\beta^{k} \alpha^{n-k}-\alpha^{k} \beta^{n-k}\right) /(\alpha-\beta)^{2} \\
&=\left(\alpha^{2 n-1}+\beta^{2 n-1}+(-1)^{n-1}(\beta+\alpha)-(-1)^{k}\left(\alpha^{2 n-2 k-1}\right.\right. \\
&\left.\left.+\beta^{2 n-2 k-1}\right)-(-1)^{n-k}\left(\alpha^{2 k-1}+\beta^{2 k-1}\right)\right) /(\alpha-\beta)^{2} \\
&=\left(Q_{2 n-1}+(-1)^{n-1} Q_{1}+(-1)^{k+1} Q_{2 n-2 k-1}\right. \\
&\left.+(-1)^{n-k-1} Q_{2 k-1}\right) /(\alpha-\beta)^{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& P_{n} P_{n-1}-P_{k} P_{n-k} Q_{n-1} \\
& =\left((-1)^{k} Q_{2 n-2 k-1}+(-1)^{n-k} Q_{2 k-1}+2(-1)^{n} Q_{1}\right) /(\alpha-\beta)^{2}
\end{aligned}
$$

On the other side,

$$
\begin{aligned}
& (-1)^{k} P_{n-k} P_{n-k-1}+(-1)^{n-k} P_{k} P_{k-1} \\
& =(-1)^{k}\left(Q_{2 n-2 k-1}+(-1)^{n-k} Q_{1}\right) /(\alpha-\beta)^{2} \\
& \quad+(-1)^{n-k}\left(Q_{2 k-1}+(-1)^{k} Q_{1}\right) /(\alpha-\beta)^{2} \\
& =\left((-1)^{k} Q_{2 n-2 k-1}+(-1)^{n-k} Q_{2 k-1}+2(-1)^{n} Q_{1}\right) /(\alpha-\beta)^{2}
\end{aligned}
$$

Thus, the identity is true, and ( $* *$ ) is true; that is, $a_{n-k}=b_{n-k}$ for all $k$, $2 \leqslant k \leqslant n-2$. Then $R_{n}(\lambda)$ satisfies the recurrence and initial conditions of Lemma 4.1, and it follows that $R_{n}(\lambda)=C_{n}(\lambda)$. 또․

## 5. THE EIGENVECTORS OF $V_{n}$

The eigenvectors of $V_{n}$ can be computed in a recursive way. The initial cases are given below.

Lemma 5.1: $V_{2}$ has eigenvalues $\alpha$, $\beta$. Eigenvectors $v_{I}$ and $v_{2}$ corresponding to $\alpha$ and $\beta$ are given by

$$
v_{1}=\left[\begin{array}{c}
1 \\
\alpha
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
\beta
\end{array}\right] .
$$

The matrix $V_{3}$ has eigenvalues $-1, \alpha^{2}, \beta^{2}$ with corresponding eigenvectors $v_{1}, v_{2}, v_{3}$ given by

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
t \\
-1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
2 \alpha \\
\alpha^{2}
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
2 \beta \\
\beta^{2}
\end{array}\right] .
$$

Lemma 5.2: Let $u=\operatorname{col}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $w=\operatorname{col}\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ be adjacent columns of $V_{n}$, with $u$ to the left of $w$. Then

$$
\begin{aligned}
& t u_{n}=w_{n} \\
& t u_{i}+u_{i+1}=w_{i} \quad(i=1,2, \ldots, n-1) .
\end{aligned}
$$

Proof: If $u$ is column $j$, then for $i=1,2, \ldots, n-j-1$ we have $u=0$ and $t u_{i}+u_{i+1}=w_{i}$. If $i=n-j+k$ for some $k, 0 \leqslant k<j$, then

$$
t u_{i}+u_{i+1}=t\left(\begin{array}{l}
j \\
i
\end{array}-1\right) t^{i-1}+\left(\begin{array}{cc}
j & -1 \\
i
\end{array}\right) t^{i}=\binom{j}{i} t^{i}=w_{i}
$$

Since $u_{n}=t^{j-1}$ and $w_{n}=t^{j}$, we have $t u_{n}=w_{n}$ 。
Corollary 5.3: Define vectors $x$ and $y$ by

$$
\begin{aligned}
& \mathbf{x}=\operatorname{col}(\underbrace{0, \ldots, 0}_{j}, x_{1}, \ldots, x_{t}, \underbrace{0, \ldots, 0}_{k}) \\
& \mathbf{y}=\operatorname{col}(\underbrace{0, \ldots, 0}_{j+1}, x_{1}, \ldots, x_{t}, \underbrace{0, \ldots, 0}_{k-1})
\end{aligned}
$$

where $j+t+k=n$ and $k>0$. Put

$$
\mathbf{u}=V_{n} \mathbf{x} \quad \text { and } \quad \mathbf{v}=V_{n} \mathbf{y}
$$

with $u=\operatorname{col}\left(u_{1}, \ldots, u_{n}\right)$ and $v=\operatorname{col}\left(v_{1}, \ldots, v_{n}\right)$. Then $t u_{i}+u_{i+1}=v_{i}$.
Proof: Let $e_{k}$ denote the column vector with 1 in the $k^{\text {th }}$ place and 0 everywhere else. By Lemma 5.2, the result is true for

$$
x=e_{j+1} \quad \text { and } \quad y=e_{j+2} \quad(j+2 \leqslant n)
$$

and hence is true in general by linearity. .
Theorem 5.4: Let $n>1$ be odd, so that $V_{n}$ has
$\varepsilon=(-1)^{(n-1) / 2}$
as an eigenvalue. Let

$$
\mathbf{v}=\operatorname{col}\left(v_{1}, \ldots, v_{n}\right)
$$

be an eigenvector corresponding to $\varepsilon$. Put

$$
\begin{aligned}
w & =\operatorname{col}\left(v_{1}, \ldots, v_{n}, 0,0\right) \\
& +\operatorname{col}\left(0, t v_{1}, \ldots, t v_{n}, 0\right) \\
& +\operatorname{col}\left(0,0,-v_{1}, \ldots,-v_{n}\right) .
\end{aligned}
$$

Then $w$ is an eigenvector for $V_{n+2}$, corresponding to the eigenvalue

$$
-\varepsilon=(-1)^{(n+1) / 2}
$$

Proof: Put $w=w_{1}+w_{2}+w_{3}$, where the $w_{i}$ are the summands in the statement of the Theorem. From the form of $V_{n}$ (it has $V_{n-2}$ in the lower left block, with zeros above it), it is clear that

$$
V_{n+2} \mathbf{w}_{1}=\varepsilon\left(0,0, v_{1}, \ldots, v_{n}\right)
$$

since $v$ is an eigenvector for $V_{n}$ corresponding to $\varepsilon$. Then by Corollary 5.3,

$$
V_{n+2} \mathbf{w}_{2}=\operatorname{t\varepsilon }\left[\left(0, v_{1}, \ldots, v_{n}, 0\right)+t\left(0,0, v_{1}, \ldots, v_{n}\right)\right]
$$

so

$$
V_{n+2} w_{3}=-\varepsilon\left[w_{1}+2 w_{2}-t^{2} w_{3}\right]
$$

$$
V_{n+2} w=\varepsilon\left(-w_{1}-w_{2}-w_{3}\right)=-\varepsilon w
$$

Theorem 5.5: Suppose that $v=\operatorname{col}\left(v_{1}, \ldots, v_{n-1}\right)$ is an eigenvector for $V_{n-1}$ corresponding to the eigenvalue $\alpha^{i}(i \geqslant 0)$. Put

$$
\mathbf{w}=\operatorname{col}\left(v_{1}, \ldots, v_{n-1}, 0\right)+\alpha \operatorname{col}\left(0, v_{1}, \ldots, v_{n}\right)=x+\alpha y
$$

Then $\mathbf{w}$ is an eigenvector for $V_{n}$ corresponding to the eigenvalue $\alpha^{i+1}$.
Proof: We have

$$
\begin{aligned}
& V_{n} \mathbf{x}=\alpha^{i} \mathbf{y} \\
& \text { so that } V_{n} \mathbf{y}=\alpha^{i} \mathbf{x}+\alpha^{i} t \mathbf{y} \\
& V_{n}(\mathbf{x}+\alpha \mathbf{y})=\alpha^{i}(\mathbf{y}+\alpha \mathbf{x}+\alpha t \mathbf{y}) \\
& \text { Since } \alpha^{2}=1+\alpha t, \\
& V_{n}(\mathbf{x}+\alpha \mathbf{y})=\alpha^{i}\left(\alpha \mathbf{x}+\alpha^{2} \mathbf{y}\right)=\alpha^{i+1}(\mathbf{x}+\alpha \mathbf{y})
\end{aligned}
$$

as required.
Remark: The analogous result also holds for the eigenvectors corresponding to the eigenvalues $\beta^{i}$.

Corollary 5.6: All of the eigenvectors of $V_{n}$ can be computed in terms of the eigenvectors of $V_{n-1}$ and $V_{n-2}$.

## REFERENCE

1. J. M. Mahon \& A. F. Horadam. "Matrix and Other Summation Techniques for Pell Polynomials." The Fibonacei Quarterly 24, no. 4 (1986):290-308.

# CONVOLUTION TREES AND PASCAL-T TRIANGLES 

JOHN C. TURNER<br>University of Waikato, Hamilton, New Zealand<br>(Submitted December 1986)<br>1. INTRODUCTION

Pascal (1623-1662) made extensive use of the famous arithmetical triangle which now bears his name. He wrote upon its properties in 1653 , but the paper was not printed until 1665 ([1], "Traité du triangle arithmétique"). The triangle now appears in virtually every text on elementary combinatorics. All textbook authors note the recurrence relation satisfied by binomial coefficients in adjacent rows of the triangle, and a few point out the "curious" fact that certain diagonals of the triangle have Fibonacci numbers as their sums (apparently first noted by E. Lucas in 1876).

In this paper we give a graph theory approach that provides an easy access to associations between Pascal-T triangles and generalized Fibonacci sequences. The approach is to use certain sequences of tree graphs, which are called convolution trees for a reason which is explained in Section 3. These trees consist of nodes and branches that are introduced and "grown" according to a given construction rule; integer weights are assigned to the nodes as the construction proceeds.

The weights are obtained from a color sequence $\left\{c_{n}\right\}$, and they are assigned to the nodes in a well-defined manner. The choice of generalized Fibonacci sequences of use for $\left\{c_{n}\right\}$ enables many attractive identities to be discovered, almost by inspection.

In Section 6 we define a level counting function for the trees that counts certain of the colored nodes in the trees and also provides generalizations of Pascal's triangle. The arithmetic triangles which arise are known as Pascal-T triangles [2].

The main results of the paper are collected together as Theorem 5 in Section 6. This demonstrates the links between various properties of the Pascal$T$ triangles and the generalized Fibonacci sequences which the study of colored convolution trees reveals.

A graph is a set of nodes (or points) together with a set of edges (in tree graphs they are often called branches). An edge is, informally, a line joining two of the nodes. The total number of edges which attach to a given node is the valency (or degree) of that node. A circuit is a path in a graph which proceeds from node-edge-node-edge-node-...-node and is such that the first node and the last node are the same node.

A tree is a graph that has no circuits.
In a tree we may distinguish any one node and call it the root of the tree. Then we may distinguish all nodes in the tree (other than the root) whose valencies are one (unity) and call them leaf nodes.

We are now in a position to present the rules by which colored convolution trees are constructed.

## 2. FIBONACCI CONVOLUTION TREES

The Fibonacci convolution trees are defined by a recurrence construction which builds the trees $\left\{F_{n}\right\}$ sequentially, assigning the integer weights or colors $\left\{c_{n}\right\}$ as they are built. A similar construction (but not the coloring) was given in [3]. The method parallels the definition of Fibonacci numbers (namely $f_{n}=f_{n-2}+f_{n-1}$, with $f_{1}=1, f_{2}=1$ ), with a binary operation $\oplus$ that works as follows. We define the initial colored rooted trees in the sequence to be

$$
F_{1} \equiv c_{1} \cdot \quad \text { and } \quad F_{2} \equiv \begin{gathered}
c_{2} \\
c_{1}
\end{gathered}
$$

Then, given any two consecutive trees $F_{n-2}, F_{n-1}$, we obtain the next tree by $F_{n}=F_{n-2} \oplus F_{n-1}$, the joining operation $\oplus$ being indicated by the diagram:


Note that one new root node, labelled $c_{n}$, is introduced during this operation. Figure 1 shows the first four trees in the sequence. In Figure 1 and in subsequent tree diagrams, the color alone is used to depict the colored node, for convenience.

$F_{1} \quad F_{2}$

$F_{3}$

$F_{4}$

Figure 1. Fibonacci Convolution Tree Sequence
3. PROPERTIES OF A CONVOLUTION TREE

We next tabulate basic graph properties of the convolution trees. It will be seen that the parameters listed have an attractive set of formulas in terms of the Fibonacci numbers $\left\{f_{n}\right\}=\{1,1,2,3,5, \ldots\}$. Some graph terms used in the table may require definition for the reader, thus:

In any rooted tree a unique path may be traced from the root to any other given node in the tree. The number of edges (branches) in that path is called the level of the given node. The height of a convolution tree is the maximum level occurring.

The symbols ( $c * \mathrm{f})_{n}$ refer to the $n^{\text {th }}$ term of the convolution of sequences c and f ; this term is defined to be $c_{1} f_{n}+c_{2} f_{n-1}+\cdots+c_{n} f_{1}$.

Table 1. Properties of Fibonacci Convolution Trees

|  | Parameter | Formula (for $F_{n}$ ) |
| :---: | :---: | :---: |
| (i) | Number of nodes | $F^{n} \equiv \sum_{1}^{n} f_{i}$ |
| (ii) | Number of edges | $F^{n}-1$ |
| (iii) | Number of nodes of valency $v:$ $(n>2)$$\left\{\begin{array}{l}v=1 \\ v=2 \\ v=3\end{array}\right.$ | $\begin{aligned} & f_{n} \\ & f_{n-1}+1 \\ & f_{n}-2 \end{aligned}$ |
| (iv) | Number of leaf nodes | $f_{n}$ |
| (v) | Height | $n-1$ |
| (vi) | Weight (sum of node colors) | $(\mathrm{c} * \mathrm{f})_{n}$ |
| (vii) | Lowest leaf-node level | $\left[\frac{n}{2}\right]$ |
| (viii) | Number of leaf nodes at level m | $\binom{m}{n-m-1}$ |

## CONVOLUTION TREES AND PASCAL-T TRIANGLES

Proofs: All of the formulas given in the table can be proved using a combination of graph definitions, the tree construction rule, simple algebra, and mathematical induction.

The convolution result (vi) is the reason for the name we gave to the tree graphs. To demonstrate a proof method, we shall give the proof for (vi) only. It is proved as follows: using $\Omega(F)$ to mean "weight of $F$ " (i.e., the sum of the node colors in $F$ ), we have, from the construction rule,

$$
\begin{equation*}
\Omega\left(F_{n}\right)=\Omega\left(F_{n-2}\right)+\Omega\left(F_{n-1}\right)+c_{n}, \text { for } n \geqslant 2 \tag{1}
\end{equation*}
$$

Noting that $\Omega\left(F_{1}\right)=c_{1} f_{1}=(\mathbf{c} * \mathrm{f})_{1}$, and $\Omega\left(F_{2}\right)=c_{1} f_{2}+c_{2} f_{1}=(\mathbf{c} * \mathrm{f})_{2}$, it is easy to proceed by induction. That is, we may show that, if

$$
\Omega\left(F_{i}\right)=c_{1} f_{i}+c_{2} f_{i-1}+\cdots+c_{i} f_{1}=(c * f)_{i}
$$

for $i=1,2, \ldots, n$, then

$$
\Omega\left(F_{n+1}\right)=(\mathrm{c} * \mathrm{f})_{n+1} .
$$

We leave the details to the reader.

## 4. SOME THEOREMS DERIVED FROM THE TREES

Weighted convolution trees are structured configurations of integers, and in the long tradition of such structures (c.f. figurate numbers, Ferrer's diagrams and the like) they can be used to reveal identities and relations between given sequence elements. The next four theorems illustrate many interesting relations between Fibonacci numbers, Fibonacci convolutions, and binomial coefficients.
Theorem 1 (Lucas, 1876): $f_{n}=\sum_{m}\binom{m}{n-m-1}$ with $m$ varying from $\left[\frac{n}{2}\right]$ to $n-1$, where $[x]$ is the greatest integer function.

This follows from formulas (iv) and (viii) of Table 1.
Theorem 2: Let $r=\left[\frac{n-1}{2}\right]$ with $n \geqslant 3$. Then

$$
r f_{n}=(f * f)_{n}-\sum_{i=0}^{r}\binom{r}{i}(f * f)_{i+1}
$$

Proof strategy: This theorem gives a relationship between Fibonacci integers, terms of the convolution sequence $f * f$, and binomial coefficients. It is an example of how interesting identities may be discovered virtually by inspection of the colored convolution trees. We shall describe the proof strategy with
reference to tree $F_{5}$. The reader may care to fill in the details of the proof, and then to look for other identities of a similar nature.

First we note that a cut along a dotted line
 drawn immediately below the lowest leaf-node (which is $[n / 2]$; see Table 1 (vii)) would, in effect, split the tree into a lower portion that is a full binary-tree and an upper collection of separated smaller convolution trees.

By full binary tree we mean a rooted tree of which the root node has valency two, and all other non-leaf nodes have valency three.
Next we observe that the smaller convolution trees are $F_{1}, F_{2}$, and $F_{3}$ and that they occur with frequencies given by the binomial coefficients
Tree $F_{5}$

Collecting this information together, and equating the weight of $F_{5}$ to the sum of the weights of all the subtrees we have described, we get

$$
\Omega\left(F_{5}\right)=(f * f)_{5}=\Omega(\text { full binary tree })+\sum_{i=0}^{2}\binom{2}{i}(f * f)_{i+1}
$$

Finally, inspection of the full binary tree reveals that the sum of the colors on the nodes at each level is $f_{5}$; and there are $r=2$ levels, so

```
\Omega(full binary tree) = 2f 5
```

Inserting this in the above equation and rearranging to place $2 f_{5}$ alone on the left-hand side, we obtain a demonstration of the formula for the tree $F_{5}$.

Each one of the observations made with regard to the properties of the subtrees of $F_{5}$ can be shown by induction to hold, generally, for subtrees obtained similarly from tree $F_{n}$. Then the proof strategy carries through for $F_{n}$, for $n \geqslant 3$.

Note that the Lucas sum for $f_{n}$ from Theorem 1 can be exchanged for $f_{n}$ in Theorem 2 and another identity obtained immediately.

Theorem 3 (general c): We have already noted in Section 3 the fundomental convolution property, namely,

$$
(\mathbf{c} * \mathrm{f})_{n}=(\mathbf{c} * \mathrm{f})_{n-2}+(\mathbf{c} * \mathrm{f})_{n-1}+c_{n},
$$

where $f$ is the Fibonacci sequence and $c=\left\{c_{1}, c_{2}, \ldots\right\}$.

## CONVOLUTION TREES AND PASCAL-T TRIANGLES

We now examine the effect on the total weight, say $\Omega_{n}(c)$, of the $n^{\text {th }}$ convolution tree when $\mathbf{c}$ is changed to $\mathrm{c}^{(r)}=\left\{c_{r+1}, c_{r+2}, \ldots\right\}$. In terms of the shift operator $E$, operating on the subscripts of the sequence terms $c_{i}$, we can write $\mathbf{c}^{(1)}=E \mathbf{c}$; and, in general, $\mathbf{c}^{(r)}=E^{r} \mathbf{c}=\left\{c_{r+1}, \ldots\right\}$. Let us also introduce the difference operator $\Delta$, now operating on subscripted terms, so that $\Delta \mathbf{c}=\left\{c_{2}-c_{1}, c_{3}-c_{2}, \ldots\right\}$; and then $\Delta^{2} \mathbf{c}=\Delta(\Delta \mathbf{c})$, and so on to $\Delta^{r} \mathbf{c}$ in general. Then the following results hold, pertaining to the total weight of the convolution trees. We now give Theorem 4 as further illustration of how attractive identities and formulas (this time involving $E$ and $\triangle$ ) can be derived with little effort from the colored tree sequence.

Theorem 4:
(ii) (setting $c=f$ )
(a) $\Delta \mathbf{c}=\Delta \mathbf{f}=E^{-1} \mathbf{f} ; \quad\left(\mathbf{f} * \Delta^{r} \mathbf{f}\right)_{n}=\left(\mathbf{f} * E^{r} \mathbf{f}\right)_{n-r}$.
(b) $(f * f)_{n}=f_{n}+(f * E f)_{n-1}$.
(c) $\Omega_{n}\left(E^{r} \mathbf{f}\right)=\Omega_{n}\left(E^{r-2} \mathbf{f}\right)+\Omega_{n}\left(E^{r-1} \mathbf{f}\right), r>2$, with $\Omega_{n}\left(E^{r} f\right)=(f * f)_{n}$ when $r=0$, and $=(\mathbf{f} * \mathbf{f})_{n}+(\mathbf{f} * \mathbf{f})_{n-1}$ when $r=1$.
(iii) [corollary of (ii)(c), writing $\Omega_{n, r}$ for $\left.\Omega_{n}\left(E^{r} f\right)\right]$

$$
\Omega_{n, r}=(\mathbf{f} * \mathbf{f})_{n} f_{r+1}+(\mathbf{f} * \mathbf{f})_{n-1} f_{r}, r \geqslant 1
$$

The proofs of (i), (ii), and (iii) require only simple algebra and Fibonacci number identities.

## 5. HIGHER ORDER CONVOLUTION TREES

The construction rules given in Section 2 may be extended to define sequences of higher-order convolution trees. Thus, for third-order trees:

Recurrence rule: $G_{n+3}=G_{n} \oplus G_{n+1} \oplus G_{n+2}$, using a triple fork to effect the tree combinations thus:


In Figure 2 we show the first five trees in the sequence obtained when the $F_{1}, F_{2}, F_{3}$ trees are used as the initial ones.


Figure 2. The First Five Third-Order Convolution Trees
We will not tabulate their structural properties as we did for the secondorder ones, but we may note that the numbers of leaf nodes follow the sequence $\mathbf{g}=\{1,1,2,4,7, \ldots\}$, and that the weight $\Omega\left(G_{n}\right)$ can be shown to be ( $\left.\mathbf{c} * \mathbf{g}\right)_{n}$, which are generalizations of the second-degree convolution tree properties.

We are now in a position to derive Pascal-T triangles from the sequences of trees.

## 6. A COMBINATORIC FUNCTION AND THE PASCAL-T TRIANGLES

Consider the convolution tree $G_{n}$, colored by integers of the sequence $\mathbf{c}=$ $\left\{c_{1}, c_{2}, c_{3}, \ldots\right\}$. We define the level counting function:
$L \equiv\binom{n}{m \mid i} \equiv$ the number of nodes in $G_{n}$ having level $m$ and color $c_{i}$.
Then, if $G$ is defined in some tree sequence $\left\{G_{n}: n=1,2,3, \ldots\right\}$, we can tabulate $L$ in a sequence of ( $m, n$ ) tables for each value of $i$. We show tables for the second- and third-order trees with regard to color $c_{1}$ only.

Table 2. $\binom{n}{m \mid 1}$ for the Second-Order Trees $F_{n}$
$\left.\begin{array}{|c|ccccccc|c|}\hline m & F_{1} & F_{2} & F_{3} & F_{4} & F_{5} & F_{6} & F_{7} & \text { Row Sum } \\ \hline 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & \ldots \\ 2 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & \cdots\end{array}\right)$

## CONVOLUTION TREES AND PASCAL-T TRIANGLES

We observe the following:
(i) the nonzero elements correspond to Pascal's triangle, the rows beginning on the diagonal; let us designate this triangle $\Delta^{(2)}$;
(ii) the $m^{\text {th }}$ row sum of the table is $2^{m}$;
( $\mathrm{i} i \mathrm{i}$ ) the $j^{\text {th }}$ column sum of the table is $f_{j}$, the $j^{\text {th }}$ Fibonacci number.
Table 3. $\binom{n}{m \mid 1}$ for the Third-Order Trees $G_{n}$

| $m \quad n$ | $G_{1}$ | $G_{2}$ | $G_{3}$ | $G_{4}$ | $G_{5}$ | $G_{6}$ | $G_{7}$ | Row Sum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 3 |
| 2 | 0 | 0 | 1 | 2 | 3 | 2 | 1 | 9 |
| 3 | 0 | 0 | 0 | 1 | 3 | 6 | 7 | (27) |
| 4 | 0 | 0 | 0 | 0 | 1 | 4 | 10 | (81) |
| 5 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | (243) |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | (729) |
| Column Sum | 1 | 1 | 2 | 4 | 7 | 13 | 24 |  |

## Notes:

(i) the triangle now resting on the leading diagonal is the third-degree one, $\Delta^{(3)}$;
(ii) the $m^{\text {th }}$ row sum of the table is $3^{m}$;
( $\mathrm{i} i \mathrm{i}$ ) the $j^{\text {th }}$ column sum of the table is $g_{j}$, where $g$ is defined by

$$
g_{n+3}=g_{n}+g_{n+1}+g_{n+2}
$$

with $\left(g_{1}, g_{2}, g_{3}\right)=\left(f_{1}, f_{2}, f_{3}\right)$, a generalized Fibonacci sequence.
It should be clear from the construction rules given in Section 5 how we can extend the order of convolution trees indefinitely, obtaining the sequence $\left\{G_{2}\right\},\left\{G_{3}\right\},\left\{G_{4}\right\}, \ldots$ of tree sequences. Then, tabulating $\binom{n}{m \mid 1}$ for each would give a sequence of the triangles $\Delta^{(\delta)}, \delta=2,3,4, \ldots$; and the row and column sums of the tables would be, respectively, powers of $\delta$ and generalized Fibonacci numbers.

We note also that every $\binom{n}{m \mid 1}$ is a multinomial coefficient; it is easy to show that the $m$-row elements in each table are generated by the function:

$$
x\left(x+x^{2}+x^{3}+\cdots+x^{\delta}\right)^{m}
$$

where $\delta$ is the order of the trees being considered.
We show below the second-, third-, and fourth-order triangles in the form that Pascal's triangle is usually shown. We do this in order to comment on the generalized row-to-row method of constructing the elements.


Figure 3. Pascal-T Triangles

Note that, in each case, to get the $j^{\text {th }}$ element in the $m^{\text {th }}$ row, take the sum of the $\delta(\delta=2,3,4)$ elements immediately above it in the preceding [i.e., the $\left.(m-1)^{\text {th }}\right]$ row. Use zeros if the summation has to extend beyond a boundary of the triangle. For example, to get 10 , the third element in row 5 of $\Delta^{(4)}$, we add $0+1+3+6$.

Theorem 5 (Pascal-Lucas-Turner): Let $S_{\delta}$ be a sequence of colored convolution trees of order $\delta, \delta=2,3,4, \ldots$. Then the level function $\binom{n}{m \mid i}$, with $i=1$, has a table of values with the following properties:
(i) $m=0,1,2, \ldots ; n=1,2,3, \ldots$;
(ii) the leading diagonal elements are all l's, and elements below this diagona1 are all 0's;
(iii) the sum of the $m$-row elements is $\delta^{m}$;
(iv) the sum of the $n$-column elements is $g_{n}$, where $g$ is the generalized Fibonacci sequence defined by

$$
g_{n+\delta}=\sum_{i=0}^{\delta-1} g_{n+i}, \text { with initial values } f_{1}, f_{2}, \ldots, f_{\delta}
$$

(v) $\binom{n}{m \mid 1}$ is the coefficient of $x^{n}$ in the expansion of $x\left(\sum_{i=1}^{\delta} x^{i}\right)^{m}$;
(vi) $\binom{n}{m \mid 1}=\binom{n-1}{m-1 \mid 1}+\binom{n-2}{m-1 \mid 1}+\cdots+\binom{n-\delta}{m-1 \mid 1}$ for $n>1, m>0$; with

$$
\binom{1}{0 \mid 1}=1,\binom{n}{0 \mid 1}=0, \text { for } n>1, \text { and }\binom{n-i}{m-1 \mid 1} \equiv 0 \text { when } n<i
$$

Proofs: The proofs follow directly from the recurrence construction rules for the trees.

## 7. OTHER LEVEL-FUNCTION TRIANGLES

Although we have presented our topic so far by showing how level functions (with $i=1$ ) provide Pascal's triangle and generalizations of it, we would now like to shift the point of view firmly.

In the theory of convolution trees, the level function seems to us to be an important object of study. Every sequence of convolution trees gives rise to a sequence of tables for the level functions $\binom{n}{m \mid i}$, and the types of values they take depend entirely on the construction rules used to define the trees. Changing the tree recurrences, or the initial trees, or using a more complex coloring rule, will produce triangles of numbers which are not, in general, multinomial coefficients. If generating functions can be found, they will be more complex than the ones given above.

Therefore, we wish to view the tabulation of level functions of convolution trees as a broad topic in its own right. Pascal's triangle arises as a special case in connection with second-order Fibonacci trees.

For reasons of space we cannot give many examples of other triangles here; however, we discuss two further cases to help make our point clear. The first gives rise to "shifted" Pascal triangles; the second arises from Lucas trees, and turns out to be a superposition of two Pascal triangles.

Case 1. $\binom{n}{m \mid 2}$, from the Fibonacci trees
If we look at the rooted trees in $\left\{F_{i}\right\}$ and $\left\{G_{i}\right\}$, we see that all the leaf nodes are colored $c_{1}$. Pruning any tree $F_{n}$ (i.e., removing all the leaf nodes and their adjacent branches) leaves the tree $F_{n-1}$, but with colors $c_{2}, c_{3}, c_{4}$, $\ldots$ instead of $c_{1}, c_{2}, c_{3}, \ldots$.

Hence, the table of $\binom{n}{m \mid 2}$ again has a Pascal triangle in it, but "shifted to the right" and starting at the diagonal above the leading diagonal.

Similarly, $\binom{n}{m \mid 3}$ has a Pascal triangle shifted one step further to the right; and so on.

Case 2. $\binom{n}{m \mid 1}$, Lucas convolution trees
Using a special initial tree, $L_{2}$, we can generate the sequence $L_{1}, L_{2}, L_{3}$, .... called Lucas convolution trees and shown below in Figure 4. Note that the numbers of leaves follow the Lucas sequence $\ell=1,3,4,7, \ldots$, which is generated by the recurrence equation $l_{n+2}=\ell_{n}+l_{n+1}$, with $\ell_{1}=1, l_{2}=3$. The color sequence used is $\mathbf{c}=\left(c_{0}, c_{1}, c_{2}, c_{3}, \ldots\right)$; the recurrence construction begins with tree $L_{3}$ and color $c_{4}$.


Figure 4. The Lucas Convolution Trees
These trees have many properties which relate the Fibonacci and Lucas numbers. We give the table for $\binom{n}{m \mid 1}$, then follow it by the Lucas- $T$ triangle for this level function.

Table 4. $\binom{n}{m \mid 1}$ for the Second-Order Lucas Trees

| $m \quad n$ | $L_{1}$ | $L_{2}$ | $L_{3}$ | $L_{4}$ | $L_{5}$ | $L_{6}$ | $L_{7}$ | Row Sum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 2 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | $3 \times 2^{0}=2^{0}+2^{1}$ |
| 3 | 0 | 0 | 1 | 1 | 1 | 2 | 1 | $3 \times 2^{1}=2^{1}+2^{2}$ |
| 4 | 0 | 0 | 0 | 1 | 2 | 2 | 3 | $3 \times 2^{2}=2^{2}+2^{3}$ |
| 5 | 0 | 0 | 0 | 0 | 1 | 3 | 4 | $3 \times 2^{3}=2^{3}+2^{4}$ |
| 6 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | $3 \times 2^{4}=2^{4}+2^{5}$ |
| Column Sum | 1 | 1 | 2 | 3 | 5 | 8 |  |  |

Note that the row sums are (after $m=1$ ) expressible as $2^{m-2}+2^{m-1}$, and that the column sums are again Fibonacci numbers. The diagram below shows (by dotted and full lines) how the triangle from these Lucas trees is the superposition of two Pascal triangles (after $m=0$ ).


Figure 5. The Lucas $\binom{n}{m \mid 1}$ Triangle
We have developed a notation for writing the $\binom{n}{m \mid i}$ triangles to be derived from various types of recurrently constructed and colored trees, expressing them as superpositions of triangles of multinomial coefficients. The formulas can be given once the construction and coloring rules are given.

## REFERENCES

1. D. E. Smith. A Source Book in Mathematics. New York: Dover, 1959.
2. S. J. Turner. "Probability via the $N^{\text {th }}$ Order Fibonacci-T Sequence." The Fibonacci Quarterly 17, no. 1 (1979):23-28.
3. Y. Horibe. "Notes on Fibonacci Trees and Their Optimality." The Fibonacci Quarterly 20, no. 2 (1983):118-128.

## A NOTE ON THE THIRD-ORDER STRONG DIVISIBILITY SEQUENCES

PAVEL HORAK<br>J. E. Purkynè University, Brno, Czechoslovakia

(Submitted January 1987)
A $k^{\text {th }}$-order 1 inear recurrent sequence $u=\left\{u_{n}: n=1,2, \ldots\right\}$ of integers satisfying the following equation for greatest common divisors,

$$
\begin{equation*}
\left(u_{i}, u_{j}\right)=\left|u_{(i, j)}\right| \text { for all } i, j \geqslant 1, \tag{1}
\end{equation*}
$$

is called a $k^{\text {th }}$-order strong divisibility sequence. A complete characterization of all the second-order strong divisibility sequences was given in [1] for integers and then in [3] for an arbitrary algebraic number field. In this note we shall study the third-order strong divisibility sequences.

The system of all the sequences of integers $\mathbf{u}=\left\{u_{n}: n=1,2, \ldots\right\}$ defined by

$$
\begin{align*}
& u_{1}=1, \quad u_{2}=v, \quad u_{3}=\mu,  \tag{2}\\
& u_{n+3}=a \cdot u_{n+2}+b \cdot u_{n+1}+c \cdot u_{n} \text { for } n \geqslant 1 \tag{3}
\end{align*}
$$

(where $\nu, \mu, a, b, c$ are integers) will be denoted by $U$. The system of all the strong divisibility sequences from $U$ [i.e., sequences from $U$ satisfying (1)] will be denoted by $D$.

The aim of this paper is to find all the strong divisibility sequences in certain subsystems of $U$ and, further, to give some necessary conditions for a sequence from $U$ to be a strong divisibility sequence. Notice that we may take $u_{1}=1$ without loss of generality because all the third-order strong divisibility sequences are obviously all the integral multiples of sequences from $D$.

$$
\text { 1. THE CASES } u_{2}=0 \text { AND } u_{3}=0
$$

Let $U_{1}$ denote the system of all the sequences from $U$ satisfying $u_{2}=0$ and let $U_{2}$ denote all the sequences from $U$ satisfying $u_{3}=0$. Further, let

$$
A=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\} \text { and } B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}, \mathbf{b}_{5}, \mathbf{b}_{6}\right\}
$$

where

$$
\begin{array}{ll}
a_{1}=\{1,0,1,0,1, \ldots\} & a_{2}=\{1,0,1,0,-1,0,1,0,-1, \ldots\} \\
a_{3}=\{1,0,-1,0,-1, \ldots\} & a_{4}=\{1,0,-1,0,1,0,-1,0,1, \ldots\}
\end{array}
$$

## A NOTE ON THE THIRD-ORDER STRONG DIVISIBILITY SEQUENCES

$$
\begin{aligned}
& \mathbf{b}_{1}=\{1,1,0,1,1,0, \ldots\} \\
& b_{2}=\{1,1,0,-1,-1,0,1,1,0,-1,-1,0, \ldots\} \\
& b_{3}=\{1,1,0,-1,1,0,-1,1,0, \ldots\} \\
& b_{4}=\{1,-1,0,-1,1,0,1,-1,0, \ldots\} \\
& b_{5}=\{1,-1,0,1,-1,0, \ldots\} \\
& b_{6}=\{1,-1,0,1,1,0,-1,-1,0,1,1,0, \ldots\}
\end{aligned}
$$

Directly from the definitions, we get: $A \subseteq D \cap U_{1} ; B \subseteq D \cap U_{2}$. The following propositions show that both the inclusions are, in fact, equalities, i.e., the sequences from $A$ (from $B$ ) are precisely all the strong divisibility sequences from $U_{1}\left(\right.$ from $\left.U_{2}\right)$.

Proposition 1.1: Let $\mathbf{u}=\left\{u_{n}\right\} \in U_{1}$. Then $\mathbf{u} \in D$ if and only if $\mathbf{u} \in A$.
Proof: Let $u \in D$; then, from $\left(u_{2}, u_{2 k}\right)=0$ and $\left(u_{2}, u_{k+1}\right)=1$, we get $u_{2 k}=0$ and $u_{2 k+1}= \pm 1$ for every $k \geqslant 1$. Now, from $u_{3}= \pm 1, u_{4}=0, u_{5}= \pm 1$, we obtain four cases:
(i) $u_{3}=u_{5}=1 \Rightarrow u=a_{1}$;
(ii) $u_{3}=1, u_{5}=-1 \Rightarrow \mathbf{u}=a_{2}$;
(iii) $u_{3}=-1, u_{5}=1 \Rightarrow \mathbf{u}=a_{4}$;
(iv) $u_{3}=u_{5}=-1 \Rightarrow u=a_{3}$;
hence, we get $u \in A$. The converse is obvious.
Proposition 1.2: Let $\mathbf{u}=\left\{u_{n}\right\} \in U_{2}$. Then $\mathbf{u} \in D$ if and only if $\mathbf{u} \in B$.
Proof: Let $\mathbf{u} \in D$; then, from

$$
\left|u_{n}\right|=\left(u_{3}, u_{n}\right)=\left\{\begin{array}{ll}
\left|u_{3}\right| & \text { for } 3 \mid n \\
\left|u_{1}\right| & \text { for } 3 \nmid n u
\end{array} \text {, we get } u_{n}=\left\{\begin{aligned}
0 & \text { for } 3 \mid n \\
\pm 1 & \text { for }\left.3\right|_{n i}
\end{aligned}\right. \text {. }\right.
$$

Thus, $u_{2}= \pm 1, u_{4}= \pm 1, u_{5}= \pm 1, u_{6}=0$, and we obtain eight cases:
(i) $u_{2}=u_{4}=u_{5}=1 \Rightarrow u=b_{1}$;
(ii) $u_{2}=u_{4}=1, u_{5}=-1 \Rightarrow u_{6}=2$, a contradiction;
(iii) $u_{2}=1, u_{4}=-1, u_{5}=1 \Rightarrow u=b_{3}$;
(iv) $u_{2}=1, u_{4}=u_{5}=-1 \Rightarrow \mathbf{u}=b_{2}$;
(v) $u_{2}=-1, u_{4}=u_{5}=1 \Rightarrow u=b_{6}$;
(vi) $u_{2}=-1, u_{4}=1, u_{5}=-1 \Rightarrow u=b_{5}$;
(vii) $u_{2}=u_{4}=-1, u_{5}=1 \Rightarrow u=b_{4}$;
(viii) $u_{2}=u_{4}=u_{5}=-1 \Rightarrow u_{6}=-2$, a contradiction;
hence, we get $\mathbf{u} \in B$. Again, the converse is obvious.

## 2. THE CASE $u_{2} \neq 0, u_{3} \neq 0$

Let $U_{3}$ denote the system of all the sequences from $U$ satisfying $u_{2} \neq 0$ and $u_{3} \neq 0$. Obvious1y: $U=U_{1} \cup U_{2} \cup U_{3}$ and $U_{1} \cap U_{3}=U_{2} \cap U_{3}=\emptyset$. Moreover, it is obvious that, for all the sequences from $U$, it holds that

$$
\left(u_{1}, u_{n}\right)=\left|u_{(1, n)}\right| \text { for al1 } n \geqslant 1
$$

Proposition 2.1: Let $u=\left\{u_{n}\right\} \in U_{3}$. Then $\left(u_{i}, u_{j}\right)=\left|u_{(i, j)}\right|$ for $1 \leqslant i$, $j \leqslant 4$ if and only if the following conditions hold:

$$
\begin{align*}
& (\nu, \mu)=1  \tag{4}\\
& c=f \cdot \nu-a \cdot \mu, \text { where } f \text { is a fixed integer }  \tag{5}\\
& (\mu, b+f)=1 \tag{6}
\end{align*}
$$

Proof: Obviously $\left(u_{2}, u_{3}\right)=\left|u_{1}\right| \Leftrightarrow(\nu, \mu)=1$ and $\left(u_{2}, u_{4}\right)=\left|u_{2}\right| \Leftrightarrow$ there exists an integer $f$ such that $f v=\alpha \mu+c$. Finally, let (4) and (5) hold; then,

$$
\left(u_{3}, u_{4}\right)=\left|u_{1}\right| \Leftrightarrow(\mu, b \nu+f \nu)=1 \Leftrightarrow(\mu, b+f)=1
$$

Proposition 2.2: Let $u=\left\{u_{n}\right\} \in U_{3}$. Then $\left(u_{i}, u_{j}\right)=\left|u_{(i, j)}\right|$ for $1 \leqslant i$, $j \leqslant 5$ if and only if (4), (5), (6), and the following conditions hold:

$$
\begin{align*}
& (\nu, b)=1  \tag{7}\\
& (\mu, \nu f+a \cdot(b+f))=1  \tag{8}\\
& (b+f, \nu \cdot(\nu f-\mu a)+\mu b)=1 \tag{9}
\end{align*}
$$

Proof: Let (4) and (5) hold; then,

$$
u_{4}=v \cdot(b+f), u_{5}=a v(b+f)+b \mu+(f v-a \mu) v .
$$

Thus, $u_{5} \equiv b \mu(\bmod |\nu|)$ and we get $\left(u_{2}, u_{5}\right)=\left|u_{1}\right| \Leftrightarrow(\nu, b)=1$. Furthermore, $u_{5} \equiv \nu \cdot(a b+a f+f v)(\bmod |\mu|)$ and, therefore,

$$
\left(u_{3}, u_{5}\right)=\left|u_{1}\right| \Leftrightarrow(\mu, a b+a f+f \nu)=1
$$

Finally, let (4), (5), and (7) hold; then,

$$
\begin{aligned}
\left(u_{4}, u_{5}\right)=\left|u_{1}\right| & \Leftrightarrow(\nu(b+f), \nu(\nu f-\alpha \mu)+\mu b)=1 \\
& \Leftrightarrow(b+f, \nu(\nu f-\alpha \mu)+\mu b)=1,
\end{aligned}
$$

which completes the proof.
Proposition 2.3: Let $u=\left\{u_{n}\right\} \in U_{3}$. Then $\left(u_{i}, u_{j}\right)=\left|u_{(i, j)}\right|$ for $1 \leqslant i, j \leqslant 6$ if and only if (4)-(9) and the following conditions hold:

$$
\begin{equation*}
\nu \mid a(b-\mu) ; \tag{10}
\end{equation*}
$$

## A NOTE ON THE THIRD-ORDER STRONG DIVISIBILITY SEQUENCES

$$
\begin{align*}
& \mu \mid\left(v a f+\left(a^{2}+b\right)(b+f)\right) ;  \tag{11}\\
& \left(b+f, v a f+\mu\left(f-a^{2}+\frac{a(b-\mu)}{\nu}\right)\right)=1 ;  \tag{12}\\
& \left(\nu(a(b+f-\mu)+f \nu)+\mu b, v\left((b+f)\left(a^{2}+b\right)+\right.\right. \\
& \quad+a(f \nu-a \mu)+f \mu)+\mu a(b-\mu))=1 . \tag{13}
\end{align*}
$$

Proof: Let (5) hold, then $u_{4}=\nu \cdot(b+f) ; u_{5}=\nu \cdot(\alpha(b+f-\mu)+f \nu)+\mu b ;$ $u_{6}=\nu\left((b+f)\left(a^{2}+b\right)+a(f \nu-a \mu)+f \mu\right)+\mu a(b-\mu)$; and obviously $\left(u_{5}, u_{6}\right)=$ $\left|u_{1}\right| \Longleftrightarrow(13) . ~ F u r t h e r, ~ l e t ~(4) ~ a n d ~(5) ~ h o l d ; ~ t h e n, ~$

$$
\left(u_{2}, u_{6}\right)=\left|u_{2}\right| \Longleftrightarrow(10) \quad \text { and } \quad\left(u_{3}, u_{6}\right)=\left|u_{3}\right| \Longleftrightarrow(11)
$$

Finally, let (5) and (10) hold; then

$$
\left(u_{4}, u_{6}\right)=\left|u_{2}\right| \Longleftrightarrow(12),
$$

which completes the proof.
Lemma 2.4: Let $\mathbf{u}=\left\{u_{n}\right\} \in U_{3}, \mathbf{u}$ satisfying (5) and (10). Then

$$
\begin{equation*}
u_{2 k} \equiv 0(\bmod |\nu|) ; u_{2 k+1} \equiv b^{k-1} \cdot \mu(\bmod |\nu|) \text { for all } k \geqslant 1 \tag{14}
\end{equation*}
$$

Proof: From (5) and (10), we get: $c \equiv-\alpha b(\bmod |\nu|)$ and, hence,

$$
u_{n+3} \equiv a \cdot u_{n+2}+b \cdot u_{n+1}-a b \cdot u_{n}(\bmod |\nu|) .
$$

Now, using mathematical induction with respect to $k$, we get (14).

Theorem 2.5: Let $u=\left\{u_{n}\right\} \in U_{3}, u$ satisfying (4), (5), (7), and (10). Then

$$
\left(u_{2}, u_{j}\right)=\left|u_{(2, j)}\right| \text { for all } j \geqslant 1
$$

Proof: Let $j \geqslant 1$ be even; then, from Lemma 2.4, we get

$$
\left(u_{2}, u_{j}\right)=|\nu|=\left|u_{(2, j)}\right| .
$$

Now, let $j \geqslant 1$ be odd; then, from (4) and (7), it follows that ( $\nu, b^{k-1} \cdot \mu$ ) $=1$ for all $k \geqslant 1$ and, hence, from Lemma 2.4, we get

$$
\left(u_{2}, u_{j}\right)=1=\left|u_{(2, j)}\right|
$$

3. A SPECIAL CASE OF $u_{2} \neq 0, u_{3} \neq 0$

Let $\bar{U}_{3}$ denote the system of all the sequence from $U_{3}$ satisfying the conditions,

$$
\begin{align*}
& \left(u_{i}, u_{j}\right)=\left|u_{(i, j)}\right| \text { for } 1 \leqslant i, j \leqslant 6  \tag{15}\\
& b+f=0 \tag{16}
\end{align*}
$$

where $f$ is the integer from (5). Further, let

$$
\mathbf{c}=\{1,2,1,0,1,2,1,0, \ldots\}, \quad d=\{1,-2,1,0,1,-2,1,0, \ldots\} .
$$

The following theorem will give a complete characterization of all the strong divisibility sequences in $\bar{U}_{3}$, showing that c and d are the only strong divisibility sequences in $\bar{U}_{3}$, i.e., $\bar{U}_{3} \cap D=\{c, d\}$.

Theorem 3.1: Let $\mathbf{u}=\left\{u_{n}\right\} \in \bar{U}_{3}$. Then $\mathbf{u} \in D$ if and only if $\mathbf{u}=\mathbf{c}$ or $\mathbf{u}=\mathbf{d}$.
Proof: Obviously, c, $\mathbf{d} \in \bar{U}_{3} \cap D$. Conversely, let $\mathbf{u} \in \bar{U}_{3}$ be a strong divisibility sequence. Let us denote $x=\nu \cdot(\nu f-\mu a)+\mu b, y=\nu^{2} a f+\nu \mu\left(f-a^{2}\right)+$ $\mu a(b-\mu)$. Then, from (16), (6), (9), and (12), we get $\mu= \pm 1, x= \pm 1, y= \pm \nu$, so that we have eight possibilities:
(i) $\mu=1, x=1, y=v$

From $\mu=1$ and $x=1$, we get $b-1=v a-v^{2} f$. Then, from $y=\nu$, we get $\nu f=v$ so that $f=1$ and, consequently, $b=-1, a v=\nu^{2}-2$, and $c=\nu-a$, using (5). Then $u=\left\{1, v, 1,0,1, v, \nu^{2}-3, \ldots\right\}$. But from $\left(u_{4}, u_{7}\right)=\left|u_{1}\right|$, we get $\nu= \pm 2$ and, hence, $u=c$ or $u=d$.
(ii) $\mu=1, x=1, y=-v$

Similarly, as in (i), we get $f=-1, b=1, a=-v$, and $c=0$. Then we obtain $\mathbf{u}=\left\{1, \nu, 1,0,1,-\nu, \nu^{2}+1, \ldots\right\}$, a contradiction, since $\left(u_{4}, u_{7}\right)=\nu^{2}+1 \neq$ $\left|u_{1}\right|$.
(iii) $\mu=1, x=-1, y=v$

Using $\mu=1, f=-b$ in $x=-1$, we get $v a=-\nu^{2} b+b+1$ and then, from $y v=v^{2}$, we get $b \cdot\left(\nu^{2}-2\right)=\nu^{2}+2$. Let $|\nu| \geqslant 2$, then $\nu^{2} \equiv-2\left(\bmod \left(\nu^{2}-2\right)\right)$. Trivially, $\nu^{2} \equiv 2\left(\bmod \left(\nu^{2}-2\right)\right)$, so that $\left(\nu^{2}-2\right) \mid 4$ and, consequently, $v= \pm 2$. But $\nu= \pm 2$ implies $b=3, a=\mp 4$, and $c=\mp 2$, a contradiction, since $\left(u_{4}, u_{7}\right)=11$ $\neq\left|u_{1}\right|$. The remaining cases $\nu= \pm 1$ lead to $b=-3, a= \pm 1$, and $c= \pm 2$, a contradiction, since $\left(u_{4}, u_{7}\right)=4 \neq\left|u_{1}\right|$.
(iv) $\mu=1, x=-1, y=-v$

Similarly, as in (iii), we get $v a=-\nu^{2} b+b+1$ and $b \cdot\left(\nu^{2}-2\right)=-\nu^{2}+2$ so that $b=-1, a=\nu$, and $c=0$. Then $\mathbf{u}=\left\{1, \nu, 1,0,-1,-\nu,-\nu^{2}+1, \ldots\right\}$, a contradiction, since $\left(u_{4}, u_{7}\right) \neq\left|u_{1}\right|$.
(v) $\mu=-1, x=1, y=v$

Similarly, as in (i), we get $f=-1, b=1, c=a-\nu$, and $a v=\nu^{2}+2$, which gives $u=\left\{1, v,-1,0,1, v, v^{2}+3, \ldots\right\}$, a contradiction, since $\left(u_{4}, u_{7}\right)=v^{2}+$ $3 \neq\left|u_{1}\right|$.

$$
\text { (vi) } \mu=-1, x=1, y=-v
$$

```
A NOTE ON THE THIRD-ORDER STRONG DIVISIBILITY SEQUENCES
```

In the same way as in (i), we get $f=1, \bar{b}=-1, a=-\nu$, and $c=0$ so that $u=$ $\left\{1, \nu,-1,0,1,-\nu, \nu^{2}-1, \ldots\right\}$, a contradiction, since $\left(u_{4}, u_{7}\right)=\nu^{2}-1 \neq\left|u_{1}\right|$.
(vii) $\mu=-1, x=-1, y=v$

Similarly, as in (iii), we get $b \cdot\left(\nu^{2}+2\right)=-\nu^{2}+2$ and, hence, $\nu^{2} \equiv 2$ (mod $\left.\left(\nu^{2}+2\right)\right)$. Trivially, $\nu^{2} \equiv-2\left(\bmod \left(\nu^{2}+2\right)\right)$, so that we get $\left(\nu^{2}+2\right) \mid 4$ and, consequently, $\nu^{2}=-1,0,2$, a contradiction.
(viii) $\mu=-1, x=-1, y=-v$

Similarly, as in (iii), we get $v a=v^{2} b+b-1$ and $b\left(v^{2}+2\right)=v^{2}+2$, so that $b=1, a=\nu, c=0$. Hence, $u=\left\{1, \nu,-1,0,-1,-\nu,-\nu^{2}-1, \ldots\right\}$, a contradiction, since $\left(u_{4}, u_{7}\right)=v^{2}+1 \neq\left|u_{1}\right|$.

Remark: We did not use conditions (8), (11), and (13) in the proof of Theorem 3.1, so that we can, in fact, weaken the assumptions (15) by omitting

$$
\left(u_{3}, u_{5}\right)=\left|u_{1}\right|, \quad\left(u_{3}, u_{6}\right)=\left|u_{3}\right|, \quad \text { and } \quad\left(u_{5}, u_{6}\right)=\left|u_{1}\right|
$$

## REFERENCES

1. P. Horak \& L. Skula. "A Characterization of the Second-Order Strong Divisibility Sequences." The Fibonacci Quarterly 23, no. 2 (1985):126-132.
2. C. Kimberling. "Strong Divisibility Sequences and Some Conjectures." The Fibonacci Quarterly 17 , no. 1 (1979):13-17.
3. A. Schinzel. "Second-Order Strong Divisibility Sequences in an Algebraic Number Field." Archivum Mathematicum (Brno) 23 (1987):181-186.

# ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by<br>A. P. HILLMAN

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. EaCh SOlution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers $F_{n}$ and the Lucas numbers $L_{n}$ satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

$$
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
$$

PROBLEMS PROPOSED IN THIS ISSUE

B-628 Proposed by David Singmaster, Polytechnic of the South Bank, London, England

What is the present average age of Fibonacci's rabbits? (Recall that he introduced a pair of mature rabbits at the beginning of his year and that rabbits mature in their second month. Further, no rabbits died. Let us say that he did this at the beginning of 1202 and that he introduced a pair of one-month-old rabbits. At the end of the first month, this pair would have matured and produced a new pair, giving us a pair of 2 -month-old rabbits and a pair of 0 -month-old rabbits. At the end of the second month we have a pair of 3 -monthold rabbits and pairs of 1 -month-old and of 0 -month-old rabbits.) Before solving the problem, make a guess at the answer.

B-629 Proposed by Mohammad K, Azarian, Univ. of Evansville, Evansville, IN

For which integers $a, b$, and $c$ is it possible to find integers $x$ and $y$ satisfying

$$
(x+y)^{2}-c x^{2}+2(b-a+\alpha c) x-2(a-b) y+(a-b)^{2}-c a^{2}=0 ?
$$

B-630 Proposed by Herta T. Freitag, Roanoke, VA
Let $a$ and $b$ be constants and define sequences $\left\{A_{n}\right\}_{n=1}^{\infty}$ and $\left\{B_{n}\right\}_{n=1}^{\infty}$ by $A_{1}=a$, $A_{2}=b, B_{1}=2 b-a, B_{2}=2 a+b$, and $A_{n}=A_{n-1}+A_{n-2}$ and $B_{n}=B_{n-1}+B_{n-2}$ for $n \geqq 3$.
(i) Determine $a$ and $b$ so that $\left(A_{n}+B_{n}\right) / 2=[(1+\sqrt{5}) / 2]^{n}$.
(ii) For these $a$ and $b$, obtain $\left(B_{n}+A_{n}\right) /\left(B_{n}-A_{n}\right)$.

B-631 Proposed by L. Kuipers, Sierre, Switzerland
For $N$ in $\{1,2, \ldots\}$ and $N \geqq m+1$, obtain, in closed form,

$$
u_{N}=\sum_{k=m+1}^{m+N} k(k-1) \cdots(k-m)(n+k)
$$

B-632 Proposed by H.-J. Seiffert, Berlin, Germany
Find the determinant of the $n$ by $n$ matrix $\left(x_{i j}\right)$ with $x_{i j}=(1+\sqrt{5}) / 2$ for $j>i, x_{i j}=(1-\sqrt{5}) / 2$ for $j<i$, and $x_{i j}=1$ for $j=i$.

B-633 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
Let $n \geqq 2$ be an integer and define

$$
A_{n}=\sum_{k=0}^{\infty} \frac{F_{k}}{n^{k}}, \quad B_{n}=\sum_{k=0}^{\infty} \frac{L_{k}}{n^{k}} .
$$

Prove that $B_{n} / A_{n}=2 n-1$.
SOLUTIONS

## Recurrence Relation for Squares

B-604 Proposed by Heinz-Jürgen Seiffert, Berlin, Germany
Let $c$ be a fixed number and $u_{n+2}=c u_{n+1}+u_{n}$ for $n$ in $N=\{0,1,2, \ldots\}$. Show that there exists a number $h$ such that

$$
u_{n+4}^{2}=h u_{n+3}^{2}-h u_{n+1}^{2}+u_{n}^{2} \text { for } n \text { in } N
$$

Solution by Demetris Antzoulakos, Univ. of Patras, Patras, Greece
We shall show that $h=c^{2}+2$.
Using successively the above recurrence relation, we get:

$$
\begin{aligned}
u_{n+4}^{2} & =c^{2} u_{n+3}^{2}+u_{n+2}^{2}+2 c u_{n+3} u_{n+2}=c^{2} u_{n+3}^{2}+u_{n+2}^{2}+2 u_{n+3}^{2}-2 u_{n+3} u_{n+1} \\
& =\left(c^{2}+2\right) u_{n+3}^{2}+u_{n+2}^{2}-2 c u_{n+1} u_{n+2}-2 u_{n+1}^{2} \\
& =\left(c^{2}+2\right) u_{n+3}^{2}+c^{2} u_{n+1}^{2}+u_{n}^{2}+2 c u_{n+1} u_{n}-2 c^{2} u_{n+1}^{2}-2 c u_{n+1} u_{n}-2 u_{n+1}^{2} \\
& =\left(c^{2}+2\right) u_{n+3}^{2}-\left(c^{2}+2\right) u_{n+1}^{2}+u_{n}^{2}
\end{aligned}
$$

Note: The above recurrence includes the exponent 2 dropped by the E.P.S. editor.

Also solved by Paul S. Bruckman, Piero Filipponi, Herta T. Freitag, C. Georghiou, L. Kuipers, Sahib Singh, and the proposer.

## Never Prime

B-605 Proposed by Herta T. Freitag, Roanoke, VA
Let

$$
S(n)=\sum_{i=1}^{n} L_{2 n+2 i-1}
$$

Determine the positive integers $n$, if any, for which $S(n)$ is prime.
Solution by Paul S. Bruckman, Fair Oaks, CA
First, we obtain a closed form for $S(n)$. Since

$$
S(n)=\sum_{i=1}^{n}\left(L_{2 n+2 i}-L_{2 n+2 i-2}\right),
$$

thus,

$$
\begin{equation*}
S(n)=L_{4 n}-L_{2 n} . \tag{1}
\end{equation*}
$$

Also, $L_{4 n}=L_{2 n}^{2}-2$. Hence,

$$
\begin{equation*}
S(n)=L_{2 n}^{2}-L_{2 n}-2 \tag{2}
\end{equation*}
$$

In turn, this implies

$$
S(n)=\left(L_{2 n}-2\right)\left(L_{2 n}+1\right)
$$

Note that $S(1)=(3-2)(3+1)=4$, which is not prime; also, each factor of $S(n)$ is greater than 1 if $n>1$. Therefore, $S(n)$ is composite for all $n$.

Also solved by Frank Cunliffe, Piero Filipponi, C. Georghiou, Hans Kappus, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the proposer.

Very Much Simplified
B-606 Proposed by L. Kuipers, Sierre, Switzerland
Simplify the expression

$$
L_{n+1}^{2}+2 L_{n-1} L_{n+1}-25 F_{n}^{2}+L_{n-1}^{2}
$$

Solution by Gregory Wulczyn, Lewisburg, PA

$$
\begin{aligned}
L_{n+1}^{2}+2 L_{n-1} L_{n+1}+L_{n-1}^{2}-25 F_{n}^{2} & =\left(L_{n+1}+L_{n-1}\right)^{2}-25 F_{n}^{2} \\
& =\left(5 F_{1} F_{n}\right)^{2}-25 F_{n}^{2}=0
\end{aligned}
$$

Also solved by Demetris Antzoulakos, Paul S. Bruckman, Frank Cunliffe, Piero Filipponi, Herta T. Freitag, C. Georghiou, Hans Kappus, Joseph J. Kostal, Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the proposer.

## Product of Exponential Generating Functions

B-607 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC
Let

$$
C_{n}=\sum_{k=0}^{n}\binom{n}{k} F_{k} L_{n-k}
$$

Show that $C_{n} / 2^{n}$ is an integer for $n$ in $\{0,1,2, \ldots\}$.
Solution by Bob Prielipp, Univ. of Wisconsin-Oshkosh, WI
Since $F_{k}=\left(\alpha^{k}-\beta^{k}\right) / \sqrt{5}$ and $L_{n-k}=\alpha^{n-k}+\beta^{n-k}$ where $\left.\alpha=(1+\sqrt{5}) / 2\right)$ and $\beta=$ $(1-\sqrt{5}) / 2, F_{k} L_{n-k}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}-\left(\alpha^{n-k_{\beta}^{k}}\right) / \sqrt{5}+\left(\beta^{n-k} \alpha^{k}\right) / \sqrt{5}$. Hence,

$$
\begin{aligned}
C_{n} & =\sum_{k=0}^{n}\binom{n}{k} F_{n}-\frac{1}{\sqrt{5}} \sum_{k=0}^{n}\binom{n}{k} \alpha^{n-k_{\beta}}+\frac{1}{\sqrt{5}} \sum_{k=0}^{n}\binom{n}{k} \beta^{n-k_{\alpha}} \alpha^{n} \\
& =2^{n} F_{n}-\frac{1}{\sqrt{5}}(\alpha+\beta)^{n}+\frac{1}{\sqrt{5}}(\beta+\alpha)^{n}
\end{aligned}
$$

[using the fact that $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$ and the Binomial Theorem]

$$
=2^{n} F_{n} .
$$

The required result follows.
Also solved by Demetris Antzoulakos, Paul S. Bruckman, Frank Cunliffe, Russell Euler, Piero Filipponi, Herta T. Freitag, C. Georghiou, Hans Kappus, Joseph J. Kostal, L. Kuipers, H.-J. Seiffert, Sahib Singh, Gregory Wulczyn, and the proposer.

## Integral Average of Squares

B-608 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
For $k=\{2,3, \ldots\}$ and $n$ in $N=\{0,1,2, \ldots\}$, let

$$
S_{n, k}=\frac{1}{k} \sum_{j=n}^{n+k-1} F_{j}^{2}
$$

denote the quadratic mean taken over $k$ consecutive Fibonacci numbers of which the first is $F_{n}$. Find the smallest such $k \geqq 2$ for which $S_{n, k}$ is an integer for all $n$ in $N$.

Solution by Philip L. Mana, Albuquerque, NM
Since $S_{1, k}-S_{0, k}=F_{k}^{2} / k$, a necessary condition on $k$ is that $k \mid F_{k}^{2}$. The two smallest such $k$ in $\{2,3, \ldots\}$ are 5 and $12 . S_{0,5}$ and $S_{1,5}$ are integers but $S_{2,5}$ is not since $F_{6}^{2} \not \equiv F_{1}^{2}(\bmod 5)$. Thus, 5 is not a solution.

It is known that

Hence,

$$
\sum_{j=0}^{m-1} F_{j}^{2}=F_{m} F_{m-1}
$$

$$
S_{n k}=\left(F_{n+k} F_{n+k-1}-F_{k} F_{k-1}\right) / k
$$

Since $F_{12}=144 \equiv 0(\bmod 12)$ and $F_{13}=233 \equiv 5(\bmod 12)$, it follows by induction that $F_{n+12} \equiv 5 F_{n}(\bmod 12)$. This implies that $F_{n+12} F_{n+11} \equiv 25 F_{n} F_{n-1}(\bmod 12)$ and hence $S_{n, 12}$ is an integer for all $n$ in $N$. Thus, $k=12$ is a solution.

Note: P. S. Bruckman points out that $S_{n, k}$ is a "mean of squares" rather than a "quadratic mean."

Also solved by Paul S. Bruckman, Frank Cunliffe, Herta T. Freitag, C. Georghiou, L. Kuipers, Chris Long, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, David Zeitlin, and the proposer.

Sum of Squares
B-609 Proposed by Adina DiPorto \& Piero Filipponi, Fond. U. Bordoni, Rome, Italy

Find a closed form expression for

$$
S=\sum_{k=1}^{n}\left(k F_{k}\right)^{2}
$$

and show that $S_{n} \equiv n(-1)^{n}\left(\bmod F_{n}\right)$.
Solution by C. Georghiou, Univ. of Patras, Patras, Greece
We will show that $S_{n} \equiv n(-1)^{n+1}\left(\bmod F_{n}\right)$.
Let $f(x)=x+x^{2}+\cdots+x^{n}$ and $g(x)=1^{2} x+2^{2} x^{2}+3^{2} x^{3}+\cdots+n^{2} x^{n}$. We then have $g(x)=x^{2} f^{\prime \prime}(x)+x f^{\prime}(x)$ and, therefore,

$$
\begin{aligned}
S_{n} & =\left(g\left(\alpha^{2}\right)+g\left(\beta^{2}\right)-2 g(-1)\right) / 5 \\
& =\frac{1}{5}\left[(n-1)^{2} L_{2 n+1}+(2 n-1) L_{2 n-1}-n(n+1)(-1)^{n}\right]
\end{aligned}
$$

and by using the identity

$$
L_{2 n-1}=5 F_{n} F_{n-1}-(-1)^{n}
$$

we get

$$
S_{n}=(n-1)^{2} F_{n}^{2}+\left(n^{2}+2\right) F_{n} F_{n-1}-n(-1)^{n}
$$

from which the assertion follows.
Note: The solver corrected back to the proposer's $S_{n} \equiv n(-1)^{n+1}$.
Also solved by Paul S. Bruckman, Herta T. Freitag, Hans Kappus, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the proposer.

# ADVANCED PROBLEMS AND SOLUTIONS 

Edited by
RAYMOND E. WHITNEY

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, all solutions should be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-425 Proposed by Stanley Rabinowitz, Littleton, MA
Let $F_{n}(x)$ be the $n^{\text {th }}$ Fibonacci polynomial

$$
F_{1}(x)=1, F_{2}(x)=x, F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)
$$

Evaluate:
(a) $\int_{0}^{1} F_{n}(x) d x$;
(b) $\int_{0}^{1} F_{n}^{2}(x) d x$.

H-426 Proposed by Larry Taylor, Rego Park, NY
Let $j, k, m$, and $n$ be integers. Prove that

$$
\left(F_{n} F_{m+k-j}-F_{m} F_{n+k-j}\right)(-1)^{m}=\left(F_{k} F_{j+n-m}-F_{j} F_{k+n-m}\right)(-1)^{j}
$$

H-427 Proposed by Piero Filipponi, Rome, Italy
Let $C(n, k)=C_{1}(n, k)$ denote the binomial coefficient $\binom{n}{k}$.
Let $C_{2}(n, k)=C[C(n, k), k]$ and, in general, $C_{i}(n, k)=C(C\{\ldots[C(n, k), k]\})$.
For given $n$ and $i$, is it possible to determine the value $k_{0}$ of $k$ for which

$$
C_{i}\left(n, k_{0}\right)>C_{i}(n, k) \quad\left(k=0,1, \ldots, n ; k \neq k_{0}\right) ?
$$

SOLUTIONS
Some Triple Sum
H-404 Proposed by Andreas N. Philippou and Frosso S. Makri, Patras, Greece (Vol. 24, no. 4, November 1986)

Show that

$$
\text { (a) } \sum_{r=0}^{n} \sum_{i=0}^{1} \sum_{\substack{n_{1}, z_{2 \ni} \neq n \\ n_{1}+2 n_{2}=n-i \\ n_{1}+n_{2}=n-r}}\binom{n_{1}+n_{2}}{n_{1}, n_{2}}=F_{n+2}, n \geqq 0 \text {; }
$$

(b) $\sum_{r=0}^{n} \sum_{i=0}^{k-1} \sum_{\substack{n_{1}, \ldots, n_{k} \ni \ni \\ n_{1}+2 n_{2}+\cdots+k n_{k}=n-i \\ n_{1}+\cdots+n_{k}=n-r}}\binom{n_{1}+\cdots+n_{k}}{n_{1}, \ldots, n_{k}}=F_{n+2}^{(k)}, n \geqq 0, k \geqq 2$,
where $n_{1}, \ldots, n_{k}$ are nonnegative integers and $\left\{F_{n}^{(k)}\right\}$ is the sequence of Fibo-nacci-type polynomials of order $k$ [1].
[1] A. N. Philippou, C. Georghiou, \& G. N. Philippou, "Fibonacci-Type Polynomials of Order $K$ with Probability Applications," The Fibonacci Quarterly 23, no. 2 (1985):100-105.

Solution by Tad P. White, Student, UCLA, Los Angeles, CA
(a) Although this is a special case of (b), it can be solved in a slightly simpler manner since the simultaneous equations

$$
\begin{aligned}
n_{1}+2 n_{2} & =n-i \\
n_{1}+n_{2} & =n-r
\end{aligned}
$$

can be explicitly solved to obtain $n_{1}=n+i-2 r$ and $n_{2}=r-i$; thus the sum becomes

$$
\sum_{r=0}^{n} \sum_{i=0}^{1}\binom{n-r}{r-i}=\sum_{r=0}^{n}\binom{n+1-r}{r}
$$

and it is well known that the right-hand side sums to $F_{n+2}$ for $n \geq 0$. However, the details can be omitted since this case is treated in part (b).
(b) Fix $k \geq 2$; we prove this equality in two steps. Let $f(n)$ denote the left-hand side of the equation in question, for our fixed $k$. First, we show that both sides of the equation are equal for $0 \leq n<k$, and then we show that both sides obey the same $k$ th-order recursion relation, namely

$$
f(n)=\sum_{1 \leq l \leq k} f(n-l)
$$

we are off to a good start because we know already that $F_{n}^{(k)}$, and hence $F_{n+2}^{(k)}$, obey this relation.
Assuming first that $0 \leq n \leq k-1$, the upper limit of the summation over $i$ can be replaced with $n$, since if $i>n$, the condition $n_{1}+\cdots+k n_{k}=n-i$ is not satisfied by any $k$-tuple ( $n_{1}, \ldots, n_{k}$ ). Also, the condition that $n_{1}+\cdots+n_{k}=n-r$ for some $r$ with $0 \leq r \leq n$ is vacuously satisfied by every $k$-tuple ( $n_{1}, \ldots, n_{k}$ ) satisfying $n_{1}+\cdots+k n_{k}=n-i$ for some $i \leq n$, so we may remove both this condition and the summation over $r$. Therefore,

$$
\begin{aligned}
f(n) & =\sum_{i=0}^{n} \sum_{\substack{n_{1}, \ldots, n_{k} \ni \\
n_{1}+2 n_{2}+\cdots+k n_{k}=n-i}}\binom{n_{1}+\cdots+n_{k}}{n_{1}, \ldots, n_{k}} \\
& =\sum_{i=0}^{n} \sum_{\substack{n_{1}, \ldots, n_{k} \ni>\\
n_{1}+2 n_{2}+\cdots+k n_{k}=i}}\binom{n_{1}+\cdots+n_{k}}{n_{1}, \ldots, n_{k}} \\
& =\sum_{i=0}^{n} F_{i+1}^{(k)} .
\end{aligned}
$$

Since $F_{n+1}^{(k)}=\sum_{i=1}^{n} F_{i}^{(k)}$ for $n \leq k$, we conclude that $f(n)=F_{n+2}^{(k)}$ for $0 \leq n \leq k-1$.
We now derive a recursion relation for $f(n)$. We make use of the following property of multinomial coefficients:

$$
\binom{n_{1}+\cdots+n_{k}}{n_{1}, \ldots, n_{k}}=\sum_{1 \leq l \leq k}\binom{n_{1}+\cdots+n_{k}-1}{n_{1}, \ldots, n_{l-1}, n_{l}-1, n_{l+1}, \ldots, n_{k}} .
$$

We will follow the convention that a multinomial coefficient vanishes when any entry is negative, so that this identity remains valid whenever each $n_{k}$ is nonnegative. Substituting this in the formula defining $f(n)$, we find

$$
f(n)=\sum_{1 \leq l \leq k} \sum_{r=0}^{n} \sum_{i=0}^{k-1} \sum_{\substack{n_{1}, \ldots, n_{k} \ni \\ n_{1}+2 n_{2}+\ldots+k n_{k}=n-i \\ n_{1}+\cdots+n_{k}=n-r}}\binom{n_{1}+\cdots+n_{k}-1}{n_{1}, \ldots, n_{l-1}, n_{l}-1, n_{l+1}, \ldots, n_{k}}
$$

Letting $m_{i}$ denote $n_{i}$ for $i \neq l$ and $m_{l}=n_{l}-1$, this becomes

$$
=\sum_{1 \leq l \leq k} \sum_{r=0}^{n} \sum_{\substack{m_{1}, \ldots, m_{k} \ni \\ m_{1}+2 m_{2}+\cdots+k m_{k}=n-l-i \\ m_{1}+\cdots+m_{k}=n-1-r}} \sum_{\substack{k-1}}\binom{m_{1}+\cdots+m_{k}}{m_{1}, \ldots, m_{k}}
$$

Letting $s$ now denote $r+1-l$,

$$
=\sum_{1 \leq l \leq k} \sum_{s=1-l}^{n+1-l} \sum_{\substack{m_{1}, \ldots, m_{k} \ni>\\ m_{1}+2 m_{3}+\cdots+k m_{k}=n-l-i \\ m_{1}+\cdots+m_{k}=n-l-s}}\binom{m_{1}+\cdots+m_{k}}{m_{1}, \ldots, m_{k}}
$$

The terms with $s<0$ and $s=n+1-l$ contribute zero to the sum, so we may eliminate them to obtain

$$
\begin{aligned}
& =\sum_{1 \leq l \leq k}\left[\sum_{s=0}^{n-l} \sum_{i=0}^{k-1} \sum_{\substack{m_{1}, \ldots, m_{k} \ni \\
m_{1}+2 m_{2}+\cdots+k m_{k}=n-l-i \\
m_{1}+\cdots+m_{k}=n-l-s}}\binom{m_{1}+\cdots+m_{k}}{m_{1}, \ldots, m_{k}}\right] \\
& =\sum_{1 \leq l \leq k} f(n-l) .
\end{aligned}
$$

Thus $f(n)$ and $F_{n+2}^{(k)}$ obey the same $k$ th order recursion relation, and agree for $0 \leq n \leq k-1$. Thus $f(n)=F_{n+2}^{(k)}$ for all $k \geq 2$ and $n \geq 0$.

Also solved by P. Bruckman, C. Georghiou, and the proposers.
General Ize
H-405 Proposed by Piero Filipponi, Rome, Italy
(Vol. 24, no. 4, November 1986)
(i) Generalize Problem B-564 by finding a closed form expression for

$$
\sum_{n=1}^{N}\left[\alpha^{k} F_{n}\right], \quad(N=1,2, \ldots ; k=1,2, \ldots)
$$

where $\alpha=(1+\sqrt{5}) / 2, F_{n}$ is the $n^{\text {th }}$ Fibonacci number, and $[x]$ denotes the greatest integer not exceeding $x$.
(ii) Generalize the above sum to negative values of $k$.
(iii) Can this sum be further generalized to any rational value of the exponent of $\alpha$ ?

Remark: As to (iii), it can be proved that

$$
\left[\alpha^{1 / k} F_{n}\right]=F_{n}, \text { if } 1 \leqslant n \leqslant\left[\left(\ln \sqrt{5}-\ln \left(\alpha^{1 / k}-1\right)\right) / \ln \alpha\right] .
$$

```
ADVANCED PROBLEMS AND SOLUTIONS
```


## References

1. V. E. Hoggatt, Jr., \& M. Bicknell-Johnson, "Representation of Integers in Terms of Greatest Integer Functions and the Golden Section Ratio," The Fibonacci Quarterly 17, no. 4 (1979):306-318.
2. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers (Boston: Houghton Mifflin Company, 1969).

Partial solution by the proposer
First, recall that [1, Lemma 2]

$$
\left[\alpha^{k} F_{n}\right]=\left\{\begin{array}{ll}
F_{n+k} & (n \text { odd })  \tag{1}\\
F_{n+k}-1 & (n \text { even }) .
\end{array} \quad(k \geqq 2 ; n \geqq k)\right.
$$

It can be noted that, since the relationship [1, Lemma 1]

$$
\left[\alpha F_{n}\right]=\left\{\begin{array}{ll}
F_{n+1} & (n \text { odd })  \tag{2}\\
F_{n+1}-1 & (n \text { even })
\end{array} \quad(n \geqq 2)\right.
$$

clearly holds also for $n=1$, (a) holds for $k=1$ as well.
Then, we find an expression for $\left[\alpha^{k} F_{n}\right]$ in the case of $1 \leqq n \leqq k-1$. Using the Binet form, the equality

$$
\begin{equation*}
\alpha^{k} F_{n}=F_{k+n}-\beta^{n} F_{k} \tag{3}
\end{equation*}
$$

can be proved [1, Lemma 3]. Again, using the Binet form, we obtain

$$
\begin{aligned}
\beta^{n} F_{k} & =\frac{\beta^{n}\left(\alpha^{k}-\beta^{k}\right)}{\sqrt{5}}=\frac{(-1)^{n} \alpha^{k-n}-\beta^{k+n}}{\sqrt{5}}+\frac{(-1)^{n}\left(\beta^{k-n}-\beta^{k-n}\right)}{\sqrt{5}} \\
& =(-1)^{n} F_{k-n}+\frac{(-1)^{n} \beta^{k-n}-\beta^{k+n}}{\sqrt{5}}=(-1)^{n} F_{k-n}+\alpha
\end{aligned}
$$

Since it is readily seen that

$$
\left\{\begin{align*}
0<x<1 & (k \text { even })  \tag{4}\\
-1<x<0 & (k \text { odd }),
\end{align*} \quad(1 \leqq n \leqq k-1)\right.
$$

from (3) and (4), we can write

$$
\left[\alpha^{k} F_{n}\right]=\left\{\begin{array}{ll}
F_{k+n}-F_{k-n}-1 & (n \text { even, } k \text { even }) \\
F_{k+n}-F_{k-n} & (n \text { even, } k \text { odd }) \\
F_{k+n}+F_{k-n}-1 & (n \text { odd, } k \text { even }) \\
F_{k+n}+F_{k-n} & (n \text { odd, } k \text { odd })
\end{array} \quad(1 \leqq n \leqq k-1)\right.
$$

from which, by Hoggatt's $I_{24}$ and $I_{22}$ [2], we get

$$
\left[\alpha^{k} F_{n}\right]=\left\{\begin{array}{ll}
L_{k} F_{n} & (k \text { odd })  \tag{5}\\
L_{k} F_{n}-1 & (k \text { even }) .
\end{array} \quad(1 \leqq n \leqq k-1)\right.
$$

Now, let us distinguish the following two cases.

## Case 1: $k>N$

From (5) and Hoggatt's $I_{1}$ [2], we have

$$
\sum_{n=1}^{N}\left[\alpha^{k} F_{n}\right]= \begin{cases}L_{k} \sum_{n=1}^{N} F_{n}=L_{k}\left(F_{N+2}-1\right) & (k \text { odd }) \\ L_{k} \sum_{n=1}^{N} F_{n}-N=L_{k}\left(F_{N+2}-1\right)-N & (k \text { even })\end{cases}
$$

which can be rewritten in the following more compact form:

$$
\begin{equation*}
\sum_{n=1}^{N}\left[\alpha^{k} F_{n}\right]=L_{k}\left(F_{N+2}-1\right)-N \frac{(-1)^{k}+1}{2} \quad(\text { if } k>N) \tag{6}
\end{equation*}
$$

Case 2: $1 \leqq k \leqq N$
From (6), we can write

$$
\begin{align*}
\sum_{n=1}^{N}\left[\alpha^{k} F_{n}\right] & =\sum_{n=1}^{k-1}\left[\alpha^{k} F_{n}\right]+\sum_{n=k}^{N}\left[\alpha^{k} F_{n}\right] \\
& =L_{k}\left(F_{k+1}-1\right)-(k-1) \frac{(-1)^{k}+1}{2}+\sum_{n=k}^{N}\left[\alpha^{k} F_{n}\right] \tag{7}
\end{align*}
$$

From (1) we have

$$
\sum_{n=k}^{N}\left[\alpha^{k} F_{n}\right]=\sum_{n=1}^{N-k+1} F_{2 k+n-1}- \begin{cases}{\left[\frac{N-k+1}{2}\right]} & (k \text { odd }) \\ {\left[\frac{N-k+2}{2}\right]} & (k \text { even }),\end{cases}
$$

which, by Hoggatt's $I_{1}[2]$ can be rewritten as (cf. Prob. B-564, for $k=1$ )

$$
\begin{equation*}
\sum_{n=k}^{N}\left[\alpha^{k} F_{n}\right]=F_{N+k+2}-F_{2 k+1}-\left[\frac{2 N-2 k+3+(-1)^{k}}{4}\right] \tag{8}
\end{equation*}
$$

Combining (7) and (8), we obtain

$$
\begin{aligned}
\sum_{n=1}^{N}\left[\alpha^{k} F_{n}\right]= & L_{k}\left(F_{k+1}-1\right)+F_{N+k+2}-F_{2 k+1} \\
& -(k-1) \frac{(-1)^{k}+1}{2}-\left[\frac{2 N-2 k+3+(-1)^{k}}{4}\right]
\end{aligned}
$$

that is,

$$
\begin{align*}
& \sum_{n=1}^{N}\left[\alpha^{k} F_{n}\right]=L_{k}\left(F_{k+1}-1\right)+F_{N+k+2}-F_{2 k+1} \\
& \quad(\text { if } 1 \leqq k \leqq N) \tag{9}
\end{align*}
$$

The problem can be further generalized to negative values of the exponent $\mathcal{K}$. The proof can be obtained by reasoning similar to the preceding and is omitted for the sake of brevity. Se we offer the following

Conjecture: For $N$ and $k$ positive integers,

$$
\begin{aligned}
& \text { ADVANCED PROBLEMS AND SOLUTIONS } \\
& \sum_{n=1}^{N}\left[\alpha^{-k} F_{n}\right]= \begin{cases}F_{N-k+2}-\left[\frac{N-k+3}{2}\right], & \text { if } N>k+1 \\
0, & \text { if } N \leqq k+1 .\end{cases} \\
& \text { Also partially solved by } P . \text { Bruckman. }
\end{aligned}
$$

## BOOK REVIEW

## by A.F. Horadam, University of New England, Armidale, Australia 2351

## Leonardo Pisano (Fibonacci)-The Book of Squares

(an annotated translation into modern English)—L.E. Sigler, Academic Press 1987.
This is the first complete translation into English of Fibonacci's masterpiece, Liber quadratorum ("The Book of Squares'), which was written in 1225 . Until the nineteenth century when he acquired the nickname Fibonacci, the author, who was born in Pisa and christened Leonardo, was universally known as Leonardo Pisano. He is better-known for his Liber abbaci in which the Fibonacci numbers first appear.

The volume under review consists of three main parts, namely; a short biographical sketch of Fibonacci, an English translation of Liber quadratorum, and a commentary on this translation ('‘The Book of Squares'). The Latin text followed by Sigler is that used by Boncompagni who found the MS in the Ambrosian Library in Milan when preparing the first printed edition of Fibonacci’s writings in 1857-62.

Sigler's commentary is particularly useful as it provides in detail an explanation of Fibonacci's text in modern mathematical notation and terminology. Fibonacci had no algebraic symbolism to help him. Following Euclid, he represented numbers geometrically as line-segments. It is truly remarkable how far he could progress with this limited mathematical equipment. His achievements in this book justly confirm him as the greatest exponent of number theory, particularly in indeterminate analysis, in the Middle Ages.

A representative, and famous, problem posed and solved in the text is: Find a square number from which, when 5 is added or subtracted, there always arises a square number.

According to the translator, "a knowledge of secondary school mathematics, algebra and geometry ought to be adequate preparation for the reading and understanding of this book."

We are indebted to Sigler for making this English translation available. For many, it could open up a new world of delight.

## VOLUME INDEX

BOWMAN, DOUGLAS. "A New Generalization of Davison's Theorem," 26(1):40-45.
CAPOCELLI, RENATO M. "A Note on Fibonacci Trees and the Zeckendorf Representation of Integers," 26(4):318-324.
COLMAN, W. J. A. "On Certain Semi-Perfect Cuboids," 26(1):54-57; "Some Observations on the Classical Cuboid and Its Parametric Solutions," 26(4):338-343.
COOPER, CURTIS N. (coauthor Robert E. Kennedy). "A Partial Asymptotic Formula for the Niven Numbers," 26(2):163-168.
CREELY, JOSEPH W. "The Length of a Three-Number Game," 26(2):141-143.
DELEON, MORRIS JACK. "Carlitz Four-Tuples," 26(3):224-232.
DUVALL, PAUL (coauthor Theresa Vaughan). "Pell Polynomials and a Conjecture of Mahon and Horadam," 26(4):344-353.
EHRHART, EUGENE. "On Prime Numbers," 26(3):271-274.
EWELL, JOHN A. "On Sums of Three Triangular Numbers," 26(4):332-335.
FILIPPONI, PIERO (coauthor A. F. Horadam). "A Matrix Approach to Certain Identities," 26(2):115-126.
HAUKKANEN, PENTTI. "A Note on Specially Multiplicative Arithmetic Functions," 26(4):325-327.

HENSLEY, DOUGLAS. "A Winning Strategy at Taxman $®^{8}$ " 26(3):262-270.
HILLMAN, A. P., Editor. Elementary Problems and Solutions, 16(1):85-88; 26(2):181-185; 26(3):278-282; 26(4):372-376.

HORADAM, A. F. "Jacobsthal and Pell Curves," 26(1):77-83; "Elliptic Functions and Lambert Series in the Summation of Reciprocals in Certain Recurrence-Generated Sequences," 26(2):96-114; (coauthor A. G. Shannon), "Fibonacci and Lucas Curves," 26(1):3-13; (coauthor S. Pethe). "Generalized Gaussian Lucas Primordial Functions," 26(1):20-30; (coauthor Piero Filipponi). "A Matrix Approach to Certain Identities," 26(3):115-126; (coauthor A. G. Shannon). "Generalized Fibonacci Continued Fractions," 26(3):219-223.
HORAK, PAVEL. "A Note on the Third-Order Strong Divisibility Sequences," 26(4):366-371.
HORIBE, YASUICHI. "Entropy of Terminal Distributions and the Fibonacci Trees," 26(2):135-140.

IMAI, YASUYUKI (coauthors Y. Seto, S. Tanaka, and H. Yutani). "An Expansion of $x^{m}$ and Its Coefficients," 26(1):33-39.
JABLONSKI, T. HENRY, JR. (coauthor Alvin Tirman). "Identities Derived on a Fibonacci Multiplication Table," 26(4):328-331.
KENNEDY, ROBERT E. (coauthor Curtis N. Cooper). "A Partial Asymptotic Formula for the Niven Numbers," 26(2):163-168.
KISS, PÉTER. "On the Number of Solutions of the Diophantine Equation $\binom{x}{p}=\binom{y}{2}, "$ 26(2):127-130.
KUIPERS, L. (coauthor Jau-Shyong Shiue). "On the $L^{p}$-Discrepancy of Certain Sequences," 26(2):157-162.
LARCHER, GERHARD. "A New Extremal Property of the Fibonacci Ratio," 26(3):247-255.
LEE, JIA-SHENG (coauthor Jin-Zai Lee). "A Note on the Generalized Fibonacci Numbers," 26(1):14-19.
LEE, JIN-ZAI (coauthor Jia-Sheng Lee). "A Note on the Generalized Fibonacci Numbers," 26(1):14-19.
LEVINE, SHARI LYNN. "Suppose More Rabbits Are Born," 26(4):306-311.
LIN, PIN-YEN. "De Moivre-Type Identities for the Tribonacci Numbers," 26(2):131-134.
LUDINGTON, ANNE L. "Generalized Transposable Integers," 26(1):58-63; "Length of the 7Number Game," 26(3):195-204.

MAKOWSKI, ANDREJ. "Stroeker's Equation and Fibonacci Numbers," 26(4):336-337.
McCARTHY, P. J. "A Generalization of Metrod's Identity," 26(3):275-277.
McNeill, R. B. "On Certain Divisibility Sequences," 26(2):169-171.
MOLLIN, R. A. "Generalized Fibonacci Primitive Roots, and Class Numbers of Real Quadratic Fields," 26(1):46-53.
MONZINGO, M. G. "On Prime Divisors of Sequences of Integers Involving Squares," 26(1):31-32.
PETHE, S. "Some Identities for Tribonacci Sequences," 26(2):144-151.
PETHE, S. (coauthor A. F. Horadam). "Generalized Gaussian Lucas Primordial Functions," 26(1):20-30.
PIHKO, JUKKA. "On Fibonacci and Lucas Representations and a Theorem of Lekkerkerker," 26(3):256-261.
POONEN, BJORN. "Periodicity of a Combinatorial Sequence," 26(1):70-76.
SETO, YASUO (coauthor Y. Imai, S. Tanaka, and H. Yutami). "An Expansion of xm and It's Coefficients," 26(1):33-39.
SHANNON, A. G. (coauthor A. F. Horadam). "Fibonacci and Lucas Curves," 26(1):3-13; "Generalized Fibonacci Continued Fractions," 26(3):219-223.
SETO, YASUO (coauthors Y. Imai, S. Tanaka, and H. Yutani). "An Expansion of $x^{m}$ and Its Coefficients," 26(1):33-39.
SHANNON, A. G. (coauthor A. F. Horadam). "Fibonacci and Lucas Curves," 26(1):3-13; Generalized Fibonacci Continued Fractions," 26(3):219-223.
SHIUE, JAU-SHYONG (coauthor L. Kuipers). "On the $L^{p}$-Discrepancy of Certain Sequences," 26(2):157-162.
STERNHEIMER, R. M. "On a Result Involving Iterated Exponentiation," 26(2):178-180.
TANAKA, SHOTARO (coauthors Y. Imai, Y. Seto, and H. Yutani). "An Expansion of $x^{m}$ and Its Coefficients," 26(1):33-39.
TIRMAN, ALVIN (coauthor T. Henry Jablonski, Jr.). "Identities Derived on a Fibonacci Multiplication Table," 26(4):328-331.
TURNER, JOHN C. "On Polyominoes and Feudominoes," 26(3):205-218; "Fibonacci Word Patterns and Binary Sequences," 26(3):233-246; "Convolution Trees and Pascal-T Triangles," 26(4):354-365; (coauthor A. Zulauf) "Fibonacci Sequences of Sets and Their Duals," 26(2):152-156.
VAUGHAN, THERESA (coauthor Paul Duvall). "Pell Polynomials and a Conjecture of Mahon and Horadam," 26(4):344-353.
WALL, CHARLES R. "New Unitary Perfect Numbers Have at Least Nine Odd Components," 26(4):312-317.
WATERHOUSE, WILLIAM C. "Integral 4 by 4 Skew Circulants," 26(2):172-177.
WHITNEY, RAYMOND E., Editor. Advanced Problems and Solutions, 16(1):89-96; 26(2):186192; 26(3):283-288; 26(4):377-382.
WIEDEMANN, DOUG. "An Iterated Quadratic Extension of GF(2), " 26(4):290-295.
WILLIAMS, H. C. "A Note on the Primality of $6^{2^{n}+1}$ and $10^{2^{n}}+1$, " 26(4):296-305.
YANG, KUNG-WEI. "Limits of q-Polynomial Coefficients," 26(1):64-69.
YUTANI, H. (coauthors Y. Imai, Y, Seto, and S. Tanaka). "An Expansion of $x^{m}$ and Its Coefficients," 26(1):33-39.
ZULAUF, A. (coauthor J. C. Turner). "Fibonacci Sequences of Sets and Their Duals," 26(2):152-156.

## SUSTAINING MEMBERS

*Charter Members

| *A.L. Alder | P.A. DeCaux | R.J. Howell | E.D. Robinson |
| :---: | :---: | :---: | :---: |
| S. Ando | M.J. DeLeon | H. Ibstedt | S.E. Schloth |
| R. Andre-Jeannin | J. Desmond | R.P. Kelisky | J.A. Schumaker |
| *J. Arkin | H. Diehl | C.H. Kimberling | A.G. Shannon |
| M.K. Azarian | T.H. Engel | J. Lahr | D. Singmaster |
| L. Bankoff | D.R. Farmer | N. Levine | J. Sjoberg |
| F. Bell | P. Flanagan | C.T. Long | L. Somer |
| M. Berg | F.F. Frey, Jr. | Br. J.M. Mahon | M.N.S. Swamy |
| J.G. Bergart | Emerson Frost | *J. Maxwell | *D. Thoro |
| G. Bergum | Anthony Gioia | F.U. Mendizabal | J.C. Turner |
| G. Berzsenyi | R.M. Giuli | L. Miller | R. Vogel |
| *M. Bicknell-Johnson | I.J. Good | M.G. Monzingo | J.N. Vitale |
| *Br. A. Brousseau | *H.W. Gould | S.D. Moore, Jr. | M. Waddill |
| P.S. Bruckman | H. Harborth | J.F. Morrison | J.E. Walton |
| M.F. Bryn | H.E. Heatherly | K. Nagaska | G. Weekly |
| P.F. Byrd | A.P. Hillman | F.G. Ossiander | R.E. Whitney |
| G.D. Chakerian | *A.F. Hordam | A. Prince | B.E. Williams |
| J.W. Creely | F.T. Howard | S. Rabinowitz | A.C. Yanoviak |

## INSTITUTIONAL MEMBERS

THE BAKER STORE EQUIPMENT COMPANY
Cleveland, Ohio
BOSTON COLLEGE
Chestnut Hill, Massachusetts
BUCKNELL UNIVERSITY
Lewisburg, Pennsylvania
CALIFORNIA STATE UNIVERSITY, SACRAMENTO
Sacramento, California
ETH-BIBLIOTHEK
Zurich, Switzerland
FERNUNIVERSITAET HAGEN
Hagen, West Germany
HOWELL ENGINEERING COMPANY
Bryn Mawr, California
NEW YORK PUBLIC LIBRARY
GRAND CENTRAL STATION
New York, New York
NORTHWESTERN UNIVERSITY
Evanston, Illinois
PRINCETON UNIVERSITY
Princeton, New Jersey

SAN JOSE STATE UNIVERSITY
San Jose, California
SANTA CLARA UNIVERSITY
San Jose, California
KLEPKO, INC.
Sparks, Nevada
SYRACUSE UNIVERSITY
Syracuse, New York
TECHNOLOGICAL EDUCATION INSTITUTE
Larissa, Greece
UNIVERSITY OF SALERNO
Salerno, Italy
UNIVERSITY OF CALIFORNIA, SANTA CRUZ
Santa Cruz, California
UNIVERSITY OF GEORGIA
Athens, Georgia
UNIVERSITY OF NEW ENGLAND
Armidale, N.S. W. Australia
WASHINGTON STATE UNIVERSITY
Pullman, Washington

## BOOKS AVAILABLE THROUGH THE FIBONACCI ASSOCIATION

Introduction to Fibonacci Discovery by Brother Alfred Brousseau. Fibonacci Association (FA), 1965.

Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. FA, 1972.
A Primer for the Fibonacci Numbers. Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. FA, 1972.

Fibonacci's Problem Book. Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. FA, 1974.

The Theory of Simply Periodic Numerical Functions by Edouard Lucas. Translated from the French by Sidney Kravitz. Edited by Douglas Lind. FA, 1969.

Linear Recursion and Fibonacci Sequences by Brother Alfred Brousseau. FA, 1971.
Fibonacci and Related Number Theoretic Tables. Edited by Brother Alfred Brousseau. FA, 1972.

Number Theory Tables. Edited by Brother Alfred Brousseau. FA, 1973.
Recurring Sequences by Dov Jarden. Third and enlarged edition. Riveon Lematematika, Israel, 1973.

Tables of Fibonacci Entry Points, Part One. Edited and annotated by Brother Alfred Brousseau. FA, 1965.

Tables of Fibonacci Entry Points, Part Two. Edited and annotated by Brother Alfred Brousseau. FA, 1965.

A Collection of Manuscripts Related to the Fibonacci Sequence-18th Anniversary Volume. Edited by Verner E. Hoggatt, Jr. and Marjorie Bicknell-Johnson. FA, 1980.

Fibonacci Numbers and Their Applications. Edited by A.N. Philippou, G.E. Bergum and A.F. Horadam.

Please write to the Fibonacci Association, Santa Clara University, Santa Clara, CA 95053, U.S.A., for current prices.


[^0]:    *Research supported by NSERC of Canada, Grant \#A7649.

[^1]:    *On leave from Dipartimento di Informatica ed Applicazioni, Universita' di Salerno, Salerno, Italy 84100.

    Work supported by F.O.R.M.E.Z. and by Italian Ministry of Education, M.P.I.

