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ON PRIMITIVE PYTHAGOREAN TRIANGLES WITH EQUAL PERIMETERS 

Leon Bernstein* 
58, Sokolov Street, #5, Tel-Aviv, Israel 

(Submitted November 1983) 

Dedicated to my wife Pesia and my son John 

1. Introduction 

A triple (x, y, z) of natural numbers is called a Pythagorean Triangle if 
x, y9 z satisfy the Pythagorean equation 

x2 + y2 = z2. 

The triple (x9 y, z) is a Primitive Pythagorean Triangle (PPT) if x, y, z have 
no common factor greater than 1. If JJ is assumed to be odd, the set of PPT's 
can be generated by the set of pairs of natural numbers (u, v) satisfying 

u > V > 0, (u, v) = 1, u + V = 1 (mod 2), (1) 

the well-known generating formula being 

(x9 y9 z) = (u2 - v2, 2uy, u2 + t>2). 

The pair (u9 v) is called the generator of the PPT (#, y, z). 
In terms of the generator^ the perimeter S of (i, z/, s) , S = # + 2/ + z, may 

be expressed as 

5 = 2u(u + y). 

Denote by H the set of all such perimeters. Let Hk be the subset of H defined 
by the relation: S e Hk if 5 is the perimeter of exactly k PPT!s. 

It is not difficult to show that Hi is an infinite set9 i.e., there is an 
infinite set of PPT*s each one of which has a perimeter not shared by any other 
PPT. The surprising fact that E^ is also an infinite set is proved in [1]. It 
is the main purpose of this paper to prove that Hk is an infinite set for any 
k9 k > 3; see Proposition 3.3 below. The proof may appear to be constructive, 
but it is ultimately seen to depend on a known existential Theorem of malytic 
number theory, the so-called modern version of Bertrand!s postulate. 

Necessary conditions for the construction of k PPT!s with equal perimeters 
are given in the next section. That the conditions can be met is shoi n in the 
proof of Proposition 3.3. 

2. A Constructive Device 

Let us first construct k different generators (u, v) of PPT?s with equal 
perimeters. 

*This paper is the final version of two papers submitted for publication by Leon Bernstein before 
he died on March 12, 1984, of a cerebral hemorrhage. It benefitted from the advice of a number of 
anonymous referees. 
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ON PRIMITIVE PYTHAGOREAN TRIANGLES WITH EQUAL PERIMETERS 

Proposition 2.1: Let Bl9 B2, . . . , Bk be k ( k > 3) odd positive integers, pairwise 
relatively prime, Bl < Bz < ''' < Bk, and 

5* < 5 x / 2 . (2) 

Let 
k 

Ak = Yl B^ and ut = i4fe/5t for t G f, f = {1, 2, . . . , k}. 
i = 1 

Assume there exists an odd positive integer Pk satisfying the two conditions 

(Pk, ut) = 1, t e T, (3) 

5X
 < Pk < 2 Z^ ' ( 4 ) 

If vt = Pfc#t - ut9 t € T, then the pairs (ut, Vt) are generators of fcPPT?s hav-
ing equal perimeters S, S = 2P^lfe<, 

Proof: We show first that (ut, vt) is the generator of a PPT for each t e T9 
i.e., that (ut, Vt) satisfies (1). From the definitions of ut3 Vt, it follows 
that 

ul > u2 > """ > Uk anc^ Vl < V2 < * " " < yfe* ^ 

Since by (4), 

vl m PkBl - u l = PkBl ~ B2Bl ••• Bk > 0, 

it follows from (5) that vt > 0 for t e TB Moreover, it follows from (5) that 
ut > Vt9 t E T9 provided uk > Vk. And this is a consequence of (4): 

uk ~ vk = 2uk ~ PkBk > WklBJ ~ 1BlB2 ••• \ - l = °-

Thus, ut > v t , t e T. 
Next, (ut, Vt) = 1 if and only if (uts ut + vt) = (Ak/Bt, Pj<Bt) = 1, which 

is true since, by assumption, (ut9 Pk) = 1 and the 5,;?s are pairwise relatively 
prime. 

Since ut + Vt is odd, ut and Vt must have opposite parity, i.e., ut + Vt = 
1 (mod 2). This concludes the proof that (ut, V t) satisfies (1) for each t e T. 

Finally, since 5 = 2ut(ut + Vt) = 2PkAk is independent of t, the k PPTfs 
generated by (ut, Vt), t e T> have equal perimeters. 

3. Infinity of Hk 

The main argument of this section rests on the following existential 
result; see [2], page 371. 

Theorem 3.1: For every positive number e there exists a number £ such that for 
each x, x > £, there is a pr ime number between x and (1 + z}x. (It will be used 
to prove the following proposition which has a certain interest in itself.) 

Proposition 3.2: Let k > 3 and let 6 > 0. Then there is a number £ such that for 
every y, y > £, there are fc consecutive primes B^9 B^$ ..., 5, and a prime P, 
satisfying the inequalities 
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ON PRIMITIVE PYTHAGOREAN TRIANGLES WITH EQUAL PERIMETERS 

y < Bl < B2 < ••• < Bk < /l + 6z/, 

AJ * < P < (1 + 6)_L^ *zl 

Proof: Let ex be a given number such that 0 < £]_ < /l + 6 - 1. By Theorem 3.1, 
there is a number £]_ such that for every x > £i , there are at least /c consecu-
tive primes Z^, B2i . .., 5^ in the open interval (x, (1 + Z\)x) . Let 

1 + 6 1 
(1 + ei) 2 

and take ?2 s o large that for each x> x > 52> there is at least one prime 
number in the interval {x, (1 + z)x). 

Let ^ = max(^ 15 £2)- Then for every y, y > £, we have that the interval 
(y9 (1 + e 1 )2/) contains fe consecutive primes, 

y < Bx < Bz < ••• < Bk < (1 + El)2/, (6) 

and the interval (2/, (1 + e)y) contains a prime number Pk , 

f 2/ < P* < (1 + e)j/. (7) 

We show next that the interval 

[X, Y] 
?2B, . .. Bj, B-\B? ••• B\,-\ 

Sfc 

contains Pk . 0n_ the one hand, we know from (7) that [J, (1 4- e)Z] contains at 
least the prime Pk , since for fc > 3, Z = 5253 ... Bk/Bi > B2 and B2 > y by (6). 
On the other hand, [J, (1 + e)X] is a subinterval of [X, Y] if we show (1 + e)X 
< Y. This last inequality is equivalent to 

BYB2 *.^Bk_l^ 1+6 B2Bz 

k 
( 1 + 6 ) 5 > d + e i ) 2 

which, in turn, is equivalent to 

(1 + £l)2Bf > B \ . 
But (1 + e1)51 > (1 + ex)y > Bk by (6). Thus Y > (1 + e)J. This concludes the 
proof. 

We are now ready to prove the main proposition. 

Proposition 3.3: Let Hk, k > 3, be the set of integers S such that S is the per-
imeter of exactly k PPT's. Then Ek is infinite. 

Proof: Taking 6 = 1 in Proposition 3.2, we can count on k consecutive primes 
£}, #2, •••» ^ such that 

Bk < SlBl, 

so condition (2) is satisfied; moreover there is a prime P, such that condition 
(4) is satisfied. 
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Defining Ak, ut 9 and vt as in Proposition 2.1, we see that (3) is also sat-
isfied, so we may conclude that (ut9 v t ) , t E T9 generate k PPTfs having equal 
perimeter S = 2PkAk. 

Since y in (6) may be taken to be any number larger than £, it is clear 
that the above process may be repeated infinitely often. Each time we obtain a 
new set of k PPTfs having equal perimeters. 

It remains to show that no PPT, other than the ones constructed, can have 
perimeter S = 2PkAk. To do so, assume (u, v) generates a PPT with perimeter S 
- 2PkAk. We will show that (u9 v) is not a generator of a PPT unless (u9 v) is 
one of the pairs (ut, Vt) constructed above. 

Since S = 2u(u + v) =' 2PkAk = 2B1B2 •••
 BkPk> there are but a finite number 

of possible values for u and u + v. We assume first that Pk is a factor of u 
and consider the three possibilities: 

(i) u = Pk, u + v = BlBz ... Bk9 

(ii) u = B]_B2 ... BkPk, u + v = 1, 

(iii) u = qYq2 ... qmPk, u + v = qm+lqm + 2 ... qk> 
where q^i ••• ?m) ^ ? G {1 s 2, . .., k - 1}, denotes any one of the products of m 
different primes from the set {B^9 B2, . . . , Bk}, and qm+lqrn + 2 ••• qk the product 
of the remaining primes. 

In case (i), condition (4) implies 

2u = 2Pk < 45-^2 . . . Bk_l/Bk < BlB2 . . . Bk = u + v9 

so that u < V 9 a contradiction of (1). 

For case (ii) , V = i - u < 0, contradicting (1). 

For case (iii), using (4), we write 

( ?1<7 2 ••• < 7 * > < ^ + l W ••• ?*>Pfc = A A > AVB\ 
= B\ . . . B\> (qm+1qm+2 . . . ^ ) 2 . 

Then 
u = ? 1 ? 2 . . . qmPk > qm+lqm+2 ... qk = u + V9 

contradicting (1). 

Next, we shall assume that Pk is not a factor of u. Then Pk must be a fac-
tor of (u + i?) , and we consider the four possibilities: 

> w = 5 \B 2 ... S^, 

?2 ... BkPk, w = 15 

7W + l?m + 2 ••' <?fcPfc> M = <7l?2 •'• ?m» 

where ^ ^ °ea ^m9 m G ^ls 2, ..., fe - 2}, denotes any one of the products of 77? 
different primes from the set {Bl9 B2, ...9-Bk}9 and qm+iqm+2 -•• <7k the prod-
uct of the remaining primes. Note that u + V contains at least two of the 
primes B^ as factors. 

(IV) u + v = ^ P ^ , U = 5X^2 • -. ^t-l^t + 1 . . . Bk9 t £ T. 

In case (I), using (4), we get 

u + v = Pk < 2AklB\ < BXB2 . .. Bk = u9 

contradicting (1). 

( I ) 

( I I ) 
( I I I ) 

u + v = Pk 

u + v = Bl. 
u + v = qrn 
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In case (II), V = S152 ... BkPk - 1 > 1 = u, contradicting (1). 

For case (III), using (4), we have 

u + v = qm + lqm + 2 ... qkPk > qm + lqm+2 .-• qk^k^\ 

a contradiction of (1). 

Case (IV) is seen to describe the k pairs (ut, Vt) defined above. These k 
pairs then generate k PPTTs with equal perimeters S = 2PkAk, and no other PPT 
can have this perimeter. 

4. Examples 

Let us conclude with a few examples. 

(1) When k = 3, we have: 

Bi 

11 
31 
17 
17 
23 
23 
23 
29 

B2 

13 
37 
19 
19 
25 
29 
29 
31 

$3 

15 
43 
21 
21 
29 
31 
31 
37 

^3 

19 
53 
25 
29 
33 
41 
43 
41 

KU\s Vi ) 

(195, 14) 
(1591, 52) 
(399, 26) 
(399, 94) 
(725, 34) 
(899, 44) 
(899, 90) 
(1147, 42) 

(uz, v2) 

(165, 82) 
(1333, 628) 
(357, 118) 
(357, 194) 
(667, 158) 
(713, 476) 
(713, 534) 
(1073, 198) 

(u3, 

(143, 
(1147, 
(323, 
(323, 
(575, 
(667, 
(667, 
(899, 

v3) 

142) 
1132) 
202) 
286) 
382) 
604) 
666) 
618) 

S 

81,510 
5,228,026 
339,150 
393,414 

1,110,550 
1,695,514 
1,778,222 
2,727,566 

(2) Finally, let k = 4 and 
Bl = 17, B2 = 19, B3 = 21, Bh = 23. 

For the integer P4 within the bounds in (4), we can select any prime P4 in 
the set 

{541, 547, 557, 563, 569, 571, 577, 587}; 

moreover, Proposition 2.1 allows us to take any nonprime Pi+ in the set 

{545, 559, 565, 581, 583}. 

References 
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ON A GENERALIZATION OF THE FIBONACCI SEQUENCE 
IN THE CASE OF THREE SEQUENCES 

Krassimir T . Atanassov 
Institute on Microsystems, Lenin Boul. 7 km., 1184-Sofia, Bulgaria 

(Submitted August 1985) 

A new direction for generalizing the Fibonacci sequence was introduced in 
[1], and [2]o In this paper, we shall continue that direction of research. 

Let C]_, C25 ...s C§ be fixed real numbers. Using C± to C6, we shall con-
struct new schemes which are of the Fibonacci type and are called 
3-F-sequences. Our analogy is of [1] and [2]; the form is 

1' 0 ^ 2 5 ^0 35 ^1 ks 1 ~~ 5s ^ 1 — 6 

a n + 2 Xn+l + yn 

?n + 2 = Xn + l + Hn 
O , . = X^ . + V3 

v n+ 2 n + l u n 

(n > 0), 

where < ^ + 1, ^ + 1, ar;*+1) is any permutation of (an + l , bn+l, cn+l) and {y\9 y% 9 
y^) is any permutation of (an, bn, cn). 

The number of different schemes is obviously 36. 
In [3], the specific scheme 

Is 0 ~~ 2s ^0 ~" 35 ^1 ~" 4' ^1 "~ 5s G\ ~ 6 

(n > 0), 

+ K 
is discussed in detail. For the sake of brevity, we devise the following rep-
resentation for this scheme: 

(1) 

Note that we have merely eliminated the subscripts and the equal and plus sym-
bols so that our notation is similar to that used in representing a system of 
linear equations in matrix form. Using this notation, it is important to re-
member that the elements in their first column are always in the same order 
while the elements in the other column can be permuted within that column. 
Every element a> b, and c must be used in each column. 

We now define an operation called substitution over these 3-^-sequences and 
adopt the notation [p, q]S, where"p, q e {a, b9 c}, p * q. Applying the opera-
tion to S merely interchanges all occurrences of p and q in each column. For 
example, using (1), we have 

a ) 
(2) 
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Note t h a t i n t h e r e s u l t we do n o t m a i n t a i n t h e o r d e r of t h e e l e m e n t s i n t h e 
f i r s t co lumn. To m a i n t a i n t h i s o r d e r we i n t e r c h a n g e t h e f i r s t and l a s t rows of 
[2] t o o b t a i n 

!

a Q b) 
b a c>9 
o b a) 

which corresponds to the scheme 

a Q 1' ^0 ^2' ̂ 0 3s ^ 1 h9 1 ~ 5' ̂  1 ~~ 6 

(n > 0), 
an + 2 
hn + 2 

°n + 2 

Cn+l 
= an + l 

= hn + \ 

+ 
+ 
+ 

b. 
c. 
a 

where C[9 C^9 . .., C£ are real numbers. 

We shall say that the two schemes S and Sr are equivalent under the opera-
tion of substitution and denote this by 

S ++ S ' . 

I t i s now o b v i o u s t h a t f o r any two 3 - F - s e q u e n c e s S and S\ i f [p 9 q]S ++ Sf, 
t h e n [ p , q]ST <-+ S. To i n v e s t i g a t e t h e c o n c e p t of e q u i v a l e n c e t o a d e e p e r e x -
t e n t , i t i s n e c e s s a r y t o l i s t a l l 36 schemes : 

s2 

^6 

a a o i 
S3=<b b a > 5 1 Q 

\c o b) 

!

a b a\ 
b a b\ Slh 
o c a ) 

(a b b\ 
S17 = \ b a a > S l 

{a c c) 

!

a b °) 
b a a\ S22 
o c b) 

c 
a 
b 

S25={b a b\ S2S 
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(a Q b\ (a c b\ (a a b\ (a a b) 
S23 = lb a a\ S3Q = lb a o> S3l = lb b a> S32 = lb b o 

{o b e ) [c b a) [c a c) [a a a) 

I a c c I l a c 
b a a > SOL, = \b a 

[a b b) \c b 
S33=<b a a S3h=lb a b\ S35 = lb b a \ S ^ 

Note that S = S23 and S! = S3QS so that S23 ^ S3 0* 

We say that a 3-i*7-sequence S is trivial if at least one of the resulting 
sequences is a Fibonacci sequence. Otherwise, S is said to be an Essential 
Generalization of the Fibonacci sequence. 

Observe that there are ten trivial 3-F-sequences. They are 

l5 2 ' 3 ' Us 55 1 0 5 13s 17' ?7' 3 6* 

These 10 schemes are easy to detect since they have at least one row all with 
the same letter. Furthermore, for these schemes one of the three possible sub-
stitutions returns the scheme itself. For example, 

ib, olSi ++ Si* i = 1, 2, 3, 4 

[a, b]Si ++ Sly i = 1, 5, 13, 17 

[a, c]S i ++ Si, i = 1, 10, 27, 36. 

The twenty-six remaining schemes are Essential Generalizations of the Fibonacci 
sequence. For eight of these schemes, the result is independent of the substi-
tution made. That is, 

[P, q]S6 ++ Sg 

[p, q]S2Q <- S33 

[p, q]S15 ++ S25 

[p, q]S23 <-• S3Q 

for all p and q. This means the substitution operation for these schemes is 
cyclic of length 2. 

For the other eighteen Essential Generalizations of the Fibonacci sequence 
schemes, all three possible substitutions generate three different schemes. 
For example, 

[a, b]S7 ++ S3l 

[a, o]S7 +->• 5 1 4 

[b, a]S7 ++ Slz 

[a, b]SQ <- S35 

[a, c]S8 +->- S2l 

[b, c]S8 ++ Sll 

[a, b]S16 <-* S3k 

[a, e]S16 *-+ S23 

[b, o]S16 ++ S26 

All of the substitutions associated with the remaining eighteen schemes and 
their results are conveniently illustrated by the following three figures. 
That is, these pictures determine all possible cycles. 

For example, 

[a, b]S2S ++ S19 

and 

[a, b]([b, c]([a, c]S2^) ++ S23« 
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FIGURE 1 FIGURE 2 

FIGURE 3 

Note that the figures tell us that many of the schemes are independent. 
That is, S21+ and SIQ are independent. In fact, SIQ is related only to the six 
schemes listed in Figure 3. Similar results can be found for the other 
schemes. 

The closed form equation of the members for all three sequences of scheme 
^2 3 is given in [3] . By a method similar to that given in [3] or [1], the 
closed form equation of the members for all three sequences of the other 
schemes can be determined. We leave this task to the reader. Obviously, these 
results could be generalized to the case of four or more sequences with very 
little difficulty. 
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(Submitted May 1986) 

This article deals with Fibonaccifs sequence 

uQ = 0, ux = 1, un+2 = un+l + un 

and with the arithmetical function 

K(rn) = length of the period of Fibonacci fs sequence 
when reduced modulo m. 

In the last few years I had some occasions to guide activities in a mathe-
matics-with-computer club for 15-year-olds, where we investigated the function 
K(m) . Theorems 1 and 2 of the present article were found (without proofs) by 
members of these clubs. To be more specific, these are those of the students1 

results, which I was not able to find in the literature either before or after 
they have emerged in the club. The rest of the students1 discoveries can be 
found either in [1] or in [4]. One of these is the following lemma which was 
suggested by the student Oded Farago. 

Lemma: For any m and n, K([m, n]) = [K(m) , K(n)]. 

Proof: Follows from [5], Lemma 13. 

Theorem 2 in [1] says almost the same, but only for m and n that are rela-
tively prime, so OdedTs present version is more symmetric. (The lemma holds 
for every sequence that becomes periodical when reduced modulo a natural 
number.) 

Theorem 1: For any fixed m let Xm(n) = K(mn + l) /K(mn) . Then: 

I. Xm(n)\m for all n; 
II. Xm(n)\\m(n + 1) for all n; 

III. there exists t such that Xm(n) = m for all n > t . 

This theorem emerged from the work of four girls: Shoshi Pashkes, Sigalit 
Teshuva, Mali Gana, and Chenit Lotan. 

Proof: 

(i) If p is prime and t is the largest integer such that K(pt) = K(p), then 
Theorem 5 in [1] implies 

1 if 1 < n < t - 1 
9 

p if n > t 
from which I, II, and III immediately follow. 

Xp(n) 
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(ii) If 77? = pe, then the conclusion follows from (i) , since 

Xm(n) = Xp(ne)Xp(ne + 1) ... Xp(ne + e - 1). 

(iii) Now let (a, b) = 1 and assume that the theorem holds for m = a and m = b. 
By hypothesis and the lemma, 

Aa(n)|a, \b(n)\b, K(anbn) = [Z(an), K(bn)], 
also 

Z(aw + 1 Z ? w + 1 ) = [Xa(n)K(an), Xb(n)K(bn)]. 

Let AaZ?(n) = K(an+lbn+l) /K(anbn) . Then A^(n) | Aa(n) ^(n) . Thus, AaZ?(n)|ab. 

Let p be a prime such that pZn\Xah(n) * Then p\ab; without loss of general-
ity, let p|a. 

Let p X n \ \ X a ( n ) , pyn\\K(an), p°\\K(b) . 
Since p\b, by part I we have p\xb(n) , so pc||X(Z?n) for all n. Therefore, 

sn = Max(j:n + yn, c} - Max{z/W , c}9 

that is, sn = xn» xn + yn ~ £> or 0. By hypothesis, xn < xn + i and yn < yn + \-
Therefore, zn < sn + 1, so pZn\Xab(n + 1). Since p is arbitrary, we have 

*ab(n)\^ab(n + 1). 

By hypothesis, there exists ta such that Xa(n) = a for all n > t a . Since 
^a(n) = a means that K(an+l) = aK(an) this implies that yn + i > yn + 1. It fol-
lows that there exists a T > ta such that for all n > T we have y > c and thus 
zn — xn. 

Since, for such an n, Xa(n) = a, it follows from zn = xn that pSn||a. 

Since p\b, it follows that, for all n > T, pZn\ab* 

For n sufficiently large, this holds for every prime p that divides ab; for 
such an n, Xab(n) = ab. 

Theorem 2: For any even i > 3, Kiu^) = 2i. For any odd i > 4, K{u^) = hi. 

Remark. 1: Amihai and Moshe, the boys who found this, used different words. 
They said that the elements of the sequence K(u^), K(u^), K(u^) , . .. are, 
alternatively, the elements of two arithmetical sequences, one with the dif-
ference 4 and one with the difference 8. 

Remark 2: The second part of Theorem 2 follows from Theorem 3 in [3]. 

Proof: K{m) is the first i after 0 such that ut ~ 0 and u^ + i = 1 (mod m). 
Theorem 3 in [1] says: For every m there is a d such that w- E 0 (mod 777) 

if and only if d\j. 
If m = Ui > 1 then d = i , since the elements before Ui are not changed when 

reduced modulo u^. [This proves that K(ui) is a multiple of i.] 
For the same reason, if i > 3 then Ui-\ t 1 (mod u^) . 

Now Ui+i = Ui-\ (mod u^); therefore, if i > 3, then the i element of the 
Fibonacci sequence modulo u^ does not start a new period, instead, it starts a 
sequence of Ui-\ multiples (mod u^) of the original sequence. Hence, 

U2i+1 E U l i - \ ~ Ui-l (mod U ^ -

For every i, w?_1 = ui_1ui + (-I)*" ; therefore, if i is even, then T ^ + I E ^ 
(mod u^) and K(u^) = 2i. 
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For odd i9 u2i + l = -1; therefore, ulii + l - 1, so u3i + l $ 1 and K{ut) = ki. 
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HOW MANY 1TS ARE NEEDED? 
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13508 Bartlett St., Rockville, MD 20853 

(Submitted January 1987) 

Let f(n) denote the number of lTs necessary to express n, using the opera-
tions + and x (and parentheses). Determining f(n) is an old problem, origin-
ally considered by Mahler and Popken in 1953 [3]. We have calculated f(n) for 
n < 3 and we present some statistics. (The reason for a power of 3 will be 
explained later.) 

The Problem 

With f(n) defined as above, we have 

i l, for n = 1, and 
(1) 

min {f(a) + /«?)}, for n > 1. 
ab = n or 
a + b =n 

This formula is very time consuming to use for large n, but we know of no 
other way to calculate f(n). 

The behavior of f(n) is interesting. Self ridge has shown that 3k + Q3k~l 

is the largest n for which f(n) = 3k + 0, for 0 = 0, ±1. His proof is by 
induction, and the induction step is based on the following observation: If 
b{m) is the largest n for which f(n) - m, then b(m) is the largest element of 
the set 

U ib(r) + b(s), b(r)b(s)}. (2) 
v + s = m 

Using (2), it is fairly easy to show that b(m) has the required form. 
There are two competing conjectures about the behavior of f(n) for large n. 

It has been conjectured that 

f(n) < 3(1 + e)log3n, for large n, and any e > 0. (3) 

It has also been conjectured that there is a set S (possibly of positive den-
sity) and a positive constant c so that 

fin) > 3(1 + c)log3n, for all n in 5. (4) 

The Results 

We calculated f(n), using equation (1), for n < 310 (59,049). We chose 310 

because we wou Id have all n for which f(n) < 30, by Selfridgefs results. 
We broke the interval into 30 subintervals between the values of the form 

3k + 03k~l for 0 = 0, ±1 and we also looked at the sets S(jn) = {n : f(n) = m}, 
for m = 1, 2, ..., 37, incomplete beyond m = 30. 
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Analysis of the thirty subintervals 

One typical subinterval is the interval 18 < n < 27. The values at the 
"endpoints" differ by 1. If conjecture (3) were true, we would expect the val-
ues of fin)/logon in the interval to "flatten out" and approach the values at 
the endpoints, as n gets large. Table 1 gives the mean and standard deviation 
of /(n)/log3?z in each interval. 

While the analysis of such small values of fin) has very little to do with 
behavior at large n, it is clear that in this range conjecture (4) is strongly 
supported. 

The single worst value of f in)/log^n encountered was at n = 1439, with fin) 
= 26, and /(n)log3n =3.9281. 

TABLE 1 
Mean and Standard Deviation of fin)/logon, for a <n <b 

a 

1 
2 
3 
4 
6 
9 

1 2 
1 8 
27 
36 
54 
81 

1 08 
1 62 
243 
324 
486 
729 
972 

1458 
2187 
2916 
4374 
6561 
8748 

13122 
19683 
26244 
39366 

b 

2 
3 
4 
6 
9 

1 2 
1 8 
27 
36 
54 
81 

1 08 
162 
243 
324 
486 
729 
972 

1458 
2187 
2916 
4374 
6561 
8748 

13122 
19683 
26244 
39366 
59049 

mean 

3.1699 
3.0 
3.2915 
3.2077 
3.3350 
3.2928 
3.3613 
3.3430 
3.3653 
3.3726 
3.3959 
3.3743 
3.3973 
3.3988 
3.3996 
3.4031 
3.4031 
3.4037 
3.4031 
3.4039 
3.4017 
3.4012 
3.4016 
3.3996 
3.3985 
3.3987 
3.3965 
3.3949 

std d e v l 

0.0 
0.0 
0.0 
0.1216 
0.1340 
0.2716 
0.1382 
0.2273 
0.1754 
0.1607 
0.1748 
0.1630 
0.1307 
0.1473 
0.1395 
0.1327 
0.1290 
0.1194 
0.1191 
0.1130 
0.1043 
0.1040 
0.0995 
0.0945 
0.0931 j 
0.0893 
0.0860 
0.0840 
0.0806 j 

Analysis of the sets Sim) 

Let Sim) = {n : fin) = m}. In Table 2 we consider the following questions 
about Sim). 

• What is its first element? 
• How many elements are in Sim)? 
• What is its last element? 
• What is its average element? 

One result about the sets Sim) not captured in Table 2 is: If bim) and b\im) 
aice. the largest and second largest elements of Sim), then b\im) = [ i8/9)bim) ] , 
where [•] is the greatest integer function. 

Outline of proof: The proof is by induction. 

The result is true by inspection for small values of m. For large values 
of m we have an equation similar to (2): b\im) is the second-largest member of 
the set 
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U ib(r) + bis), b(r)b(s), b(r) + b^s), b^b^s)}. (5) 
r + s = m 

For ??7 > 9, it is easy to show that both b(m) and (8/9)b(m) belong to this set. 
It only remains to show that there are no elements between these two values, 
and this can be done by a simple case-by-case examination using the results of 
Selfridge and the induction hypothesis. 

TABLE 2 
Analysis of the sets S(m) 

m 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0 
1 1 
1 2 
13 
1 4 
1 5 
16 
1 7 
1 8 
1 9 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

first 

1 
2 
3 ! 
4 
5 
7 

1 0 
1 1 
1 7 
22 
23 
41 
4 7 
59 
89 
107 
167 
179 
263 
347 
467 
683 
719 

1223 
1438 
1439 
2879 
3767 
4283 
6299 

10079 
11807 
15287 
21599 
33599 
45197 
56039 

last 

1 
2 
3 
4 
6 
9 

1 2 
1 8 
27 
36 
54 
81 
108 
162 
243 
324 
486 
729 
972 
1458 
2187 
2916 
4374 
6561 
8748 
13122 
19683 
26244 
39366 
59049 
78732 
118098 
177147 
236196 
354294 
531441 
708588 

|S(m)| 

1 
1 
1 
2 
3 
2 
6 
6 
7 
14 
1 6 
20 
34 
4 2 
56 
84 
108 
152 
214 
295 
398 
569 
763 

1094 
1475 
2058 
2878 
3929 
5493 

mean 

10 
2.0 
3.0 
4.0 
5.5 
8.0 

11.0 
14.5 
21.3 
28.4 
37.7 
55.2 
73.3 

100.4 
141.9 
191.7 
266.0 
371.8 
501.3 
701.3 
966.1 

1335.4 
1842.9 
2571.0 
3513.8 
4914.9 
6792.4 
9378.7 

13061.5 
18051.5 

median 

To ] 
2.0 
3.0 
4.0 
5.5 
8.0 

11.0 
14.5 
20.5 
28.0 
37.5 
53.5 
73.5 
98.5 

137.0 
185.5 
257.5 
362.5 
482.5 
675.0 
931.0 

1284.5 
1783.0 
2478.0 
3382.5 
4734.0 
6533.5 
9020.0 

12534.0 
17315.0 

Comments 

In his paper [2], Guy relays some questions about the function f(n) . We 
comment on three of these: 

Q: For what values a and b does f(2a3b) = 2a + 3fc? 
A: f(2a3b) = 2a + 3b for all 2a3& < 310, at least. 

Q: If f(2a3b) = 2a + 3b and there is a larger n' so that f(rc') = 2a + 3b 
(a, b > 0), must n' = 2a3&, for some r, si 

A: No. Two counterexamples are 27 < 335, with f(27) = f(335) = 14, 
and 2732 < 355, with f(2732) = /(355) = 20. 

Q; When the value of f(n) Is of the form f(a) = fib), with a + b = n, and 
this minimum is not achieved as a product, is either a or b equal to 1? 

A: Yes, at least for n < 310. 

The calculation of f{n) was performed on a Symbolics 3645 LISP machine using 
equation (1), and we used over 50 hours of CPU time. 
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OPTIMAL SPACING OF POINTS ON A CIRCLE 
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1. Introduction 

Consider N points placed on the circle of unit circumference in the follow-
ing way: begin by placing a point anywhere on the circle. Now place another 
point so that the angle (or circumferential distance) between the two points, 
measured clockwise from the first point, is equal to a. The third point is now 
placed at a clockwise angle of a from the second point. Thus, we successively 
place N points on the circle by our angle a. 

Our problem is to find the value for a so that these points are spread 
about the circle in the most even (which we call optimal) fashion. We show 
that, in certain senses, the golden section (a = T = ( v5 - l)/2) provides the 
optimal spacing of points, where the number of points can assume any value. 

This problem originally arose while investigating the phenomenon of phyllo-
taxis—regular leaf arrangement. Most higher-order plants exhibit a remarkable 
degree of regularity in the positioning of their leaves. In a sunflower, for 
instance, one can perceive two sets of opposed spirals which each partition the 
set of florets. Intriguingly, the number of spirals are almost certainly 
consecutive members of the Fibonacci sequence 

Fn = Fn-l + Fn.2, n > 2, F0 = 0, Fl = 1. 

This pattern (which we call Fibonacci phyllotaxis) manifests itself in 95% of 
those plants which produce their leaves sequentially. In parallel to this 
observation, the divergence angle subtended by consecutively formed leaves is 
quite close in value to the ratio of these consecutive Fibonacci numbers. In 
the limit, Fn_i/Fn is equal to the golden section. To simplify the situation, 
we consider just the angular displacement of the leaves and thus we develop a 
simplistic model of plant growth with leaves appearing as points on a 
meristematic ring, successively placed at a constant angle. 

What this paper shows is that the plant places its leaves in the optimal 
manner—in order to spread its leaves most evenly (and thus reduce leaf 
overlap) the optimal divergence angle is shown to be the golden section. The 
partition of the circle by the golden section is also examined in detail to 
reveal a rather self-similar structure. 

We use results from The Three Gap Theorem (originally the Steinhaus Conjec-
ture) which states that the above N points partition the circle into arcs, or 
gaps, of at most three and at least two different lengths! The result is all 
the more remarkable since it holds for all irrational a and for any number of 
points. It also holds for rational a = p/q with the number of points less than 
q. (For N = q the circle is partitioned into q equal gaps.) Even though this 
has been proved by various mathematicians ([1], [2]-[7]), the result does not 
appear to be well known. 

Note that, in order to conserve space, where complete proofs of results are 
not presented we either refer the reader to an existing proof or briefly 
outline a proof. 
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2. The Three Gap Theorem 

Suppose that we have consecutively placed N points on a circle by the angle 
a. Let (ui(N) , u2(N) > • • • > uN(N)) be the sequence of points as they appear on 
the circle, ordered clockwise from the origin U\{N) = 0. That is, 

{ui(N), u2(N), ..., uN(N)} = {0, 1, 2, ..., N- 1} where {uja} < {z^ + 1a}. 

Thus, for example, with a = /2 the first 12 points placed on the circle appear 
in the order (0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7). We call Uj+i(N) = Uj+i 
the successor to Uj , or Wj-+i = Suc(u7-). Equivalent to the original statement 
of The Three Gap Theorem is the fact that the difference between succeeding 
points assumes at most three, and at least two, different values. The 
following determines the ordering of points around the circle. (For a proof, 
see van Ravenstein [7, Theorem 2.2].). 

0 < m < N - u2, 

uN, N - u2 < m < u^9 

u$ < m < N. 

Thus, for our example with a = /2 and N = 12, 

5, 0 < m < 7, 

-7, 7 < m < 12. 

It is easily seen that Uj = 5 (j - 1) mod 12, where y mod x = y - x[y/x] = 
x{y/x}. In general, if N = u2 + u%9 the circle is partitioned into gaps of 
just two different lengths and then 

ud = ((j - l)u2) mod N, j = 1, 2, ..., N. (1) 

It is easy to see that the length of the gap formed by point m and Suc(m) 
is equal to {(Sue(777) - m) a} where {x} denotes the fractional part of x such 
that x = [x] + {x} where [x] is the largest integer not greater than x. In 
fact, for gap lengths less than ~ this gap length is equal to 

|(Suc(/7?) - 777) a I , where \\x\\ =min({x}, 1 - {x}) = \x - [x + j ] \ , 

the difference between x and its nearest integer. (This is always the case for 
N > ql [notation defined in Theorem 2]; in what follows, we will always make 
this assumption. Note that ql is the first point to replace 1 as the closest 
point to the origin.) Thus, Theorem 1 shows that the circle of N points is 
partitioned into N - u2 gaps of length ||u2all > N " UN §aPs o f length \\uNa\\ and 
u2 + uN - N gaps of length 1̂ 2̂ 11 + ||%a|| • T n e same applies for rational a, say 
a = p/q in lowest terms, where N < q. In this paper, however, we will always 
assume that a is irrational. 

Point u2 is the successor to 0, while 0 is the successor to uN; that is, u2 
and uN are the points which neighbor the origin. We see that we need only know 
the values of these two points to determine the entire ordering. 

We can characterize the angle a by the following. Let 7(a) denote the path 
of a defined to be a sequence of pairs (u2 > uN), the points which neighbor the 
origin as points are successively included on the circle. For example, 

7(/2) = ((1, 2), (3, 2), (5, 2), (5, 7), (5, 12), . . . ) . 

It can be shown ([7, Proposition 4.2]) that each point always enters one of 
the larger gaps. Two gaps are formed, one equal in length to the smallest gap 
present. Thus, it is natural to define the ratio of gap division as the ratio 
of the smallest to the largest gap present. Hence, we let 

Theorem 1: ( u2, 
Sue (777) - m = <{ u2 -

-u N> 

Sue (777) 
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rN(a) 
min( l^a I , |%a|) 

||u2a| + \\uNa\\ 

[This is in fact the ratio point N - 1 that divides some (large) gap.] 
The path sequence 7(a) and the ratio of gap division rN( a) are quantities 

we will use in our analysis of the golden section1s unique distribution 
properties. We can in fact determine explicitly their values in terms of the 
continued fraction expansion of a, which is expressed by 

a0 + 
ai + 

1 
a0 + 2 a3+ ... 

\<2QI &Y> ^ 2 5 ^ 3 s • • • J • 

The n t h t a i l of a i s 
tn = te„; <*„ + !» aw + 2» •••>» (2) 

such t h a t 

a = {a 0 ; al9 a2, . . . , an_l9 tn}. 
We say that a is equivalent to 3 if some tail in a is equal to some tail in 3. 

Partial convergents are defined by the (irreducible) fractions 

Pn9i _ Pn-2 + tPn-l _ r . - i - - . ' i o 

4n9<L Qn-2 + %CLn-l 

where 
Pn, an Vj\ 

«n,a„ " <Ir. V-2 = <?-l = ° ' ? - 2
 = P- l = K 

Theorem 2: 

u2 = 
( ? n - l ' 

1 ? • • i > ^ w ^ - 1 

n odd, 

n even, 

We call pn/qn a total convergent to a. 
The reader is referred to [7, Theorem 3.3] for a proof of the following. 

(ln,i-l> n ° dd> 

v. <? _ i » n even, 

where <?„,;_! < N < qn^, 2 < i < an (n > 2) . 

For qn.x < N < qn>1 (n > 2), 

W»-2» n even> W n - 1 

For 71/ < qx, Uj = j - 1, o = 1, 2, ..., tf. 
The following proposition may be easily proved from the definition of rN (a) , 

Theorem 2, and the continued fraction theory. 

Proposition 3: / ^ 

2 - i + tn> 1n,i-l < * * ?»,i' 
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where i = 2, 3, . .., an, (n > 2). [tn is defined by (2). 

From Theorem 2, 

7(a) = ((1, q})\ (q i9 ^ n _ 1 ) / ; ; i = 1, 2, s <^n' ^ ^-' ~̂ > • ) . (3) 
where 

(1, ?i) 

^ ? i 5 ^ - P " 

(15 ^i) , 0 < a < 2", 

Sq\> 1) 3 | < a < 15 

'(<7«-l> ?«,*)> n odd, 

3. The Golden Section 

For convenience, let the partition of the circle of unit circumference by 
the successive placement of points 0S 1, 2, ... by the golden section, T, be 
denoted by G. The partition by 1 - x we denote by G!. 

The continued fraction of x is given by 

x = {0; 1 + x} = {0; 1, 1 + x} = {0; 1, 1, 1, }. 

All convergents to x are total convengents and 

Pn = ?n-l = Fn = Fn-l + Fn-2> n > I , F _ 1 1» ^n 0. 

That is, convergents to x are equal to the ratio of consecutive Fibonacci num-
bers. From Theorems 1 and 2, for Fn < N < Fn+i> 

Suc(m) 

0 < m < N - F„ 

-n -2* 

-n-\-

N F„ < m < F, n - 1 ' 

Fn_l < m < N, 

0 < m < N - F. 

~F, 
-F„ 

n-23 N - F 
n-l> 

• l < rn < Fn. 

n odd, 

n even. 

(4) 

Fn < m < N, 

When N = Fn+l, from (1), 

u . = ((_!)*-! (J- _ l)Fn) m Q d ^ + ^ 

Since Fn.l - Fnx = ( - T ) n (by induction), (4) shows that N points (Fn < N < Fn+i) 
partition the circle into N - Fn_i gaps of length xn- 1, N - Fn gaps of length xn 

and Fn+i - N gaps of length Tn~2. 
From Proposition 3, since tn = 1 + T, n = 1, 2, ..., 

-2 *W(T) 1 F < N < F^ n+ 1 ' (5) 

Theorem 4.1 from [7] describes the partition G by looking at the transfor-
mation of gap types as points are included on the circle. Gap types are either 
!flarge!f or "small" when N that is, when N is the denominator of a 
convergent to a. For the golden section, this theorem describes the following: 
each large gap present: when N = Fn is divided by the addition of a further Fn-\ 
points into two new gaps which can be labelled (in clockwise order) as 
small:large (n odd) or large:small (n even) when N = Fn+i. Those small gaps 
present when N = Fn can then be labelled as large. 
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This fact and (5) can be used to prove the following self-similarity prop-
erty of G, thus demonstrating the beautiful symmetry inherent in Fibonacci 
phyllotaxis. 

Theorem 4: Consider any large gap present on the circle partitioned by the 
placement of Fn points by the golden section. Include further points on the 
circle and observe the resulting partitioning of this gap. If we pretend the 
gap is itself a circle of unit circumference (by lengthening it by the factor 
T n " 2 and identifying its endpoints as the same) then its partition is identical 
to G if n is odd, or equal to Gr if n is even. 

Let us interpret I to be a time variable and define the age of a gap to be 
the time it has survived without being divided. That is, the age of the gap 
with endpoints Uj, Uj + \ is N - 1 - max(uj> Uj + \). From [7, Proposition 4.2] 
each point, for all a, divides the oldest of the larger gaps. Using [7, 
Theorem 4.1] it can be shown that only for the golden section does the 
formation of a large gap always coincide with that of a small gap. This proves 
the following. (Note that we assume that a is between 0 and 1. If a > 1, the 
following results hold if a is replaced by its fractional part, {a}.) 

Theorem 5: For -̂  < a < 1, each point always enters the oldest gap if and only 
f a = T . For ( 
2 = (3 - /5)/2. 

if a = T. For 0 < a < |, 

Intuitively, in terms of phyllotaxis, it seems sensible that points be in-
serted in the oldest gap as the above result shows. This property must ensure 
an ideal distribution of points. In fact, the following theorem shows that the 
golden section provides the optimal value for gap division (our criteria for an 
optimal distribution) in the sense that the smallest value assumed by the ratio 
of gap division is largest for the golden section (where -j < a < 1). However, 
the golden section is somewhat of a compromise as Theorem 7a shows (that the 
ratio of gap division1s maximum value is smallest for the golden section, where 
1 < « <f). 
Theorem 6: max min rN (a) = T 2 , exclusively attained by a = T. 

\<OL<1 N 

max min rN(a) = T 2 , exclusively attained by a = T 2 . 
0 < a < ~ N 

Proof: We first consider the case where ^ < a < 1. From Proposition 3, 

1 1 
min z» (a) = min min r (a) = min = , 

N n qn_1< W <qn
 N n 1 + tn 1 + max tn 

1 n 

where n = 2, 3, ... (q± = a^ ~ 1 since a > j). 
Consider a = af * T , which has ak > 1 for some integer k greater than 1. 

Then max t n > t k > 2, so rN(ar) < |. The result follows since -| < rN ( T ) = T 2 . 

The second statement follows by symmetry (note that 2»„(1 - a) = P^(a)). 

Theorems 7a and 7b follow from Proposition 3 in a similar fashion. 

Theorem 7a: min max rN (a) = T 2 , exclusively attained by a = T. 
7 < a < § N 
min max p„7 (a) = T 2 , exclusively attained by a = T 2 . 

i < a < l N NK 

Theorem 7b: min max rN (a) = T 2 , exc lus ive ly a t t a i n e d by 
j < a < 1 N 
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a = {0; 1, a , 1 + T } = ———17*75 where a i s any i n t ege r g r e a t e r than 1. 
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min max rN(a) = T , e x c l u s i v e l y a t t a i n e d by 
0 < a < j N 

a = {0; a + 1, 1 + T } = — — T~T» w n e r e a i s anY integer greater than 1. 

We determine the value of a which ensures a path which consistently maxi-
mizes the length of the smallest gap on the circle. For each value of N, the 
points are generated by a constant angle a. This value of a may change with N 
but only in such a way that the path is retained: so that the addition of extra 
points does not alter the relative order of existing points. We show that 7(T) 
is the path which ensures that the smallest gaps are consistently as large as 
possible [where, initially, (u2(4), u3(4)) = (2, 1), \ < a < f]. That is, as N 
increases, if the pair (u2(F) 9 uN(N)) does not assume the value equal to the 
appropriate successive element of 7 ( T ) , then the smallest gap thus formed will 
not be as large. 

Note that the golden section has path 

7(T) = ((1, 1), (2, 1), (2, 3), (5, 3), . . . ) , 

= ((1, 1), (Fn+l, Fn) ', n = 2, 3, . . . ) . 

Theorem 8: Suppose that (u2(4), w3(4)) = (2, 1) generated by a constant angle 
a where -̂  < a < -j . Then 7 ( T ) is the path which consistently maximizes the 
length of the smallest gap. 

1 2 

Proof: We prove the result by induction. Initially, -^ < a < -^ or a = {0; 1, 1, 
£3}, 1 < £3 < °°5 such that point 2 is closest to the origin. The next element 
in the path must, from (3), be (2, 3). From Proposition 3, point 2 is furthest 
from the origin if a3 = 1 than if a3 > 1 since then it divides the gap bordered 
by the origin and the first point into a larger ratio. Hence, a = {0; 1, 1, 1, 
£4}. This ensures, from (3), that the next element in the path is (5, 3). Thus, 
the first three terms in the path belong to 7(x). 

Now, assume that the terms in the path equal successive Fibonacci pairs and 
that (u2(N), uN(N)) = (Fn_i, Fn) where Fn < N < Fn+i9 n even. Then, a = {0; 1, 
1, 1, ..., 1, tn} (n - 1) ones, 1 < tn < °°. The next element in the path must 
be (Fn+1, Fn) succeeded by (Fn+ 1, Fn + 2) if an = 1. From Proposition 3, the small 
gap bordered by origin and point Fn is larger if an = 1 than If an > 1. The case 
is similar for odd ft. Thus, the path is equal to 7 ( T ) -

Note that the theorem shows that maximizing the length of the smallest gap 
ensures convergence to the golden section. Similarly, 7(x2) consistently maxi-
mizes the length of the smallest gap where, initially, there are three points 
on the circle and ^< a < j . The following generalizes Theorem 8. Its proof 
is similar in manner and is omitted. 

Theorem 9: Suppose that we have placed qn + 1 points (ft > 2) generated by a = 
{0; a\> a2j ...5 ccn> £n + l̂ « Then as more points are added, 7(af)> where 

t Sn 1 + I Vn + TPn-l 
aT = {0; al9 a2, ..., an, 1 + x) = - — — — , 

qn
 + TCln-i 

is the path which consistently maximizes the length of the smallest gap. 
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1. Introduction 

Let k be a positive integer and let {Tn}°° = () be a kth~order integral linear 
recurrence defined by 

Tn + k = alTn + k-l + a2Tn + K-Z + ' " ' + %T
n d > 

with arbitrary initial terms TQS TI$ . .., 2̂ -1 • Associated with the recursion 
relation (1) is the characteristic polynomial 

f(x) = xk - axxk'1 - ... - ak_Yx - ak (2) 

with characteristic roots P]_, P23 • • • *
 vk • ^e will seek subsequences of {Tn} 

such that the recursion relation (1) is also satisfied as a congruence modulo 
some integer 777. Specifically, we will endeavor to find positive integers d and 
n such that 

Tn + kd E aiTn + (k-l)d + a2Tn+(k-2)d + 8 0 ' + <*k-lTn + d + akTn ( m o d m) ( 3 ) 

for all nonnegative integers n. This investigation was suggested by Freitag 
[2] and by Freitag and Phillips [3] and [4], and will generalize the results of 
these papers. 

Two approaches will be taken in satisfying congruence (3) • In the first 
approach, given a fixed modulus m we will seek to find integers d such that (3) 
is satisfied. Along these lines, Freitag [2] proved the following theorem: 

Theorem 1: Let {Fn} as usual denote the Fibonacci sequence. Then 
Fn + 2d E Fn + d + ?n (™>d 10) (4) 

for all nonnegative integers n if and only if d = 1 or 5 (mod 12),Q 

The second approach will be to take the integer d from among the integers 
appearing in a specified sequence such as the sequence of primes and then find 
moduli m9 depending on d, such that congruence (3) is satisfied. Corresponding 
to this approach, Freitag and Phillips proved Theorems 2 and 3 in [3] and [4] 9 
respectively. 

Theorem 2: Let {Tn } be a second-order recurrence defined by 

Tn + 2 = alTn + l + a2Tn' 
Then, if p is a prime greater than 3, 

Tn+2p = *lTn+p + *2Tn < m o d 2P> 

for all nonnegative integers n.Q 

Theorem 3: Let {Tn } be a k th-order recurrence with distinct characteristic roots 
satisfying 

Tn+k = alTn+k-l + a2Tn + k-Z + ••• + <ZkTn . 

Then, if p is a prime, 
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Tn + kp E alTn+(k-l)p + a2Tn+{k-2)p + • • • + ^k-lTn+p + akTn ( m o d P> 

for a l l nonnegative i n t e g e r s n.Q 

2. Definitions and Known Results 

We will need the following definitions and lemmas to continue. 

Lemma 1: Let {Tn} be a £:th-order linear recurrence with distinct characteris-
tic roots r^9 i>2, ..., Pm. Then 

?n = £ (ci° )+ 4"n + ••• + ^ " ' - " n 8 ' - 1 ) ^ , 
i = 1 

where the <?. are complex constants and s^ is the multiplicity of the root î  . 

Proof: This is a classical result in the theory of finite differences (see, for 
example, Milne-Thomson [5, Ch. XIII]).• 

Definition 1: The primary linear recurrence {Vn}^=0 is tn e recurrence satisfy-
ing (1) and defined by 

where rl9 r2, . . . , vk are the zeros of the characteristic polynomial (2). If 
any characteristic root v. = 0, we define r9 to be 1. 

Lemma 2: Suppose {Tn} is a kth-order linear recurrence satisfying 

Tn + k = alTn + k-l + a2Tn+k-2 + * " * + akTn ' 

Suppose m is a positive integer such that (a^, m) = 1. Then {Tn} is purely 
periodic modulo m. 

Proof: This is proved by Carmichael [1, p. 344].D 

Lemma 3: Let {Tn} be a fcth-order integral linear recurrence with character-
istic roots P1? i»2» . . . > P̂  . Let h be a fixed positive integer, and let g be a 
fixed nonnegative integer. Then the sequence 

also satisfies a linear integral recursion relation 

Sn + k = al ^n+k-l + a2 Sn + k-2 + " ' + ak Sn> (5) 

where a[ , ai \ •••* a^ are integral constants dependent on h but not on q. 
Further, if j is a fixed integer such that 1 < j < k9 then 

af = £ <-DJ'r?r? ... rh , (6) 

where one sums over all indices 7^, i2, ..., î  such that 

1 < i < i < ... < ij < k. 

Proof: This i s proved in [6 ] .D 

3. Main Resul ts 

We now present our p r i n c i p a l theorems. 
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Theorem 4: Let {Tn } be a kth-order recurrence defined by 

Tn + k = alTn + k~l + a2Tn+k-2 + " °  + CLkTn . 

Let p be a prime. Then for all nonnegative integers b, 

Tn + kpb E a1Tn+(k_1)pb +a2Tn+(k_2)pb + . . . + ak_lTn+pb + akTn (mod p ) , 

where n is any nonnegative integer. 

Proof: Let rls r^, ..., rm be the distinct characteristic roots of {Tn}. Let R 
denote the integers of the algebraic number field Q{v^, v~ , . .., T

m) > where Q 
denotes the rational numbers. Let Z denote the rational integers. Let P be a 
prime ideal of R dividing p. Let a be the Frobenius automorphism of the finite 
field R/P having Z/p as a fixed field. Then a is defined by a(x) - xp. Then, 
for any nonnegative integer by oh, defined by ob(x) = xpL'9 is also an auto-
morphism of R/P fixing Z/p. 

Now, for 1 < i < m3 

vk = airk-i + a2r}~2 + ... + ak_lvi + ak. (7) 

Applying o^ to equation (7), we have, for 1 < i < m, 

k 
ob(rf) = r&b = ̂ ( a ^ - l + a^-2 + ... + afc) = Y, "j°b(ri~j) 

^ " j = i 

E J] ajrik'j)pb (mod p ) - (8) 
J = i 

By (8), (1), and Lemma 1, we have 

*w -.stK'+ 4"«+ •••+ «ri' i )»wi'>"] 
= EjH0)

 + 41)^---^ri"1)^"1K].E' 

i=1 ° ;tvv 1 y * 

= E V»+CW)P» (modP). (9) 
J =1 

Since the first and last terms of (9) are rational integers, we have 

k 
Tn+kpt = HajTn+{k_j)ph (modp).D 

j = i 

Remark: We note that Theorem 4 is a generalization of Theorem 3. 

Theorem 5: Let {Tn} be a /cth-order recurrence defined by 
Tn + k = ̂ n + fc-l + «27n + /c-2 + " • +

 akTn • 

Let e be a fixed positive integer such that (<?, a^) = 1. Then there exists a 
fixed modulus ̂  such that if h = 1 (mod gO , then 

where n is any nonnegative integer. 

\r}pb 

k (k-j)pb 

aJri 
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k 

Proof: If h is any positive integer, then by (5) and (6), 
Tn + kh = a l Tn + (k-l)h + a2 Tn+(k-2)h + " " + ak Tn » (10) 

where, for 1 < j < k, 

a{h) = T (~l)j+lrh rh ... r!1 , (11) 

where one sums over all indices i^9 i 2 , ..., ij such that 

1 < i l < i2 < ... < ij < k. 

Let nj = (j) . Let 1 < j < k be a fixed integer and let t(/}, t£J), . .., t^J) de-
note the ( •) algebraic integers (-I)57'*1!5. p. . . . v. , where these represent all 
the (j) products taken j at a time of the characteristic roots r^9 r2, ...9 r-
of {Tn}. By the theory of symmetric polynomials, for a fixed integer j such that 

1 < j < fe, the rij algebraic integers t± , t2 * •••> £nJ a r e t n e roots5 possibly 

with repetitions, of a monic polynomial of degree n3- with rational integral co-
efficients. 

Let {P^J)}, defined by 

be the primary linear recurrence with characteristic roots ti ,' £2 » ..., tn. . 
Since (a^, c) =1, it follows by Lemma 2 that {F^J } is purely periodic modulo c. 
Let dj denote the period modulo c of {F^J)} for 1 < j < k. Let g be the least 
common multiple of d̂  , d2> ...3 d^. Since by (11), 

it follows that if h = 1 (mod g), then 
aw = 7(j) E VU) = a ^ ( m o d o)m ( 1 2 ) 

The result now follows by (10).Q 

Corollary; Let {Tn } be a /cth-order linear recurrence defined by 
Tn + k = alTn + k-l + a2Tn+/c-2 + ' " + akTn • 

Let p be a fixed prime such that p \ ak. Then there exists a fixed modulus ̂  
such that If h = pb (mod g0 , where b is any nonnegative integer, then 

Tn+kh = «irn+oc-m + azW-a". + ••• + aA (mod P}' 
where n is any nonnegative integer. 

Proof: Let {7n} be any primary linear recurrence with characteristic roots r1$ 
^2' •••» ̂ • Then 

7P, = pf + *2* + ••• + *? = (PX + r2 + ... + r,)p* - (F^* = Py 
(mod p). 

Let the primary linear recurrences {V^} and the integers a^, where I < j < k, 
be defined as in the proof of Theorem 5. Choose the modulus g in the same man-
ner as in the proof of Theorem 5, letting p = c. Then 

T/(J) _ T/(J) , _ . 

i/pi = K̂  (mod g) 
and af > = 7«> s vp s 7<* = a, (mod p) 
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for a l l j such that 1 < j < k. The proof now follows by (10) .• 

Remark 1: Note that if p is a fixed prime, the corollary to Theorem 5 is a 
strengthening of Theorem 4. 

Remark 2: Theorem 1 follows from the corollary to Theorem 5. By the proof of 
this corollary, i t can be shown that if d = 1 or 5 (mod 12), then 

Fn+2d E Fn + d + Fn (mod 5). (13) 

Similarly, i t can be shown that if d = 1 or 2 (mod 3), then 

Fn + 2d E Fn + d + Fn (mod 2 ) . ( 1 4 ) 

It thus follows that if d = 1 or 5 (mod 12), then (14) holds. Since 2 and 5 
are relatively prime, it follows from (13)-(14) that if d = 1 or 5 (mod 12), 
then congruence (4) holds. This proves the necessity of Theorem 1. The 
sufficiency of Theorem 1 follows from the fact that {Fn} has a period modulo 10 
equal to 60. Examining (4) for all integral values of d between 1 and 60 es-
tablishes the result. 

Theorem 6: Let {Tn} be a kth-order linear recurrence defined by 

Tn + k = alTn + k-l + aZTn + k-2 + " • + akTn • 

Let c be a fixed positive integer such that (c, ak) = 1. Then for all non-
negative integers b9 there exists an infinite number of primes p of positive 
density in the set of primes such that 

Tn + kpb ~ alTn+(k-l)pb + a2Tn + {k-2)pb + ••• + ak-lTn + pb + akTn 
(mod op) , (15) 

where n is any nonnegative integer. Furthermore, there exists a fixed modulus 
g such that if p = 1 (mod g) s then congruence (15) is satisfied. 

Proof: By Theorem 4, the congruence (15) is satisfied modulo p for any prime p. 
Given the integer c, we choose the modulus g in the same manner as in the proof 
of Theorem 5. By Dirichletfs theorem on the infinitude of primes in arithmetic 
progressions, there exists an infinite number of primes p such that p E 1 (mod 
g). Further, the density of such primes is ll$(g)9 where $ denotes Euler's to-
tient function. By Theorem 5, congruence (15) is also satisfied modulo o> 
since pb is also congruent to 1 modulo g for any nonnegative integer b. Since 
we can also assume that (p, c ) = ls it follows that (15) is satisfied modulo 
cp.U 

Corollary 1: Let {Tn} be a fcth-order linear recurrence defined by 

Tn + k = alTn+k-l + a2^n + k-2 + " " " + akTn' 
Let c be a fixed prime such that c\a^. Then for all nonnegative integers b, 
there exists an infinite number of primes p of positive density in the set of 
primes such that 

Tn + kpb ~ alTn+ (k-l)Pb + a2Tn+(k-2)Pb + " • + ak~lTn + pb + akTn 

(mod cp) , (16) 

where n is any nonnegative integer. Furthermore, there exists a fixed modulus 
g such that if the prime p = o^ (mod g), where b is any nonnegative integer, 
then congruence (16) is satisfied. 
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Proof: This follows by the corollary to Theorem 5 and the proof of Theorem 6. 

Corollary 2: Let {Tn} be a second-order linear recurrence defined by 

Tn+2 = alTn+l + a2Tn ' 
Then for all primes p > 3 and for all nonnegative integers b, 

Tn+2P* E aiT
n+pt + azTn (mod 2p), (17) 

where ft is any nonnegative integer. 

Proof: Let p > 3 be a prime. By Theorem A, congruence (17) holds modulo p for 
all ft. We will show that (17) also holds modulo 2 for all ft. The corollary 
will then follow since (2, p) = 1. 

First, suppose that l\a^. Considering the characteristic polynomial f (x) 
of {Tn} modulo 2, we have 

f(x) = x2- - a±x - az = x{x - a ) (mod 2) . . 

Hence, the characteristic roots of {Tn} modulo 2 are 2̂ - E a1 (mod 2) and i^ E 0 
(mod 2). As in the proof of Theorem 5, we have that if h is any nonnegative 
integer, then 

Tn + 2h ="?\ + h +a2)Tn> (18) 
where a\ and a^ a r e defined as in equation (11). Constructing the primary 
linear recurrences {T^1^} and {V„} as in the proof of Theorem 5, we observe 
that 

V(
n

l) E ax (mod 2) (19) 

for all ft > 1 and 

Y^p E a2 = 0 (mod 2) (20) 

for all ft > 1. By (12) and (18)-(20), we see that for j = 1 or 2, 

af = v£j) E ad (mod 2) (21) 

for all positive integers./?. Letting h = pb, equation (18) and congruence (21) 
lead to the congruence 

T«+2p> = alTn+P^ + a2Tn (mod 2), 
which is what we wanted to show. 

Now, suppose that l\a^. Constructing the primary recurrences {V^} and 
{V^} as in the proof of Theorem 5, we see that {V^l)} and {V^2)} are each purely 
periodic modulo 2 by Lemma 2. Further, one can easily determine that the period 
of the second-order recurrence {V^} modulo 2 is either 2 or 3, and the period 
of the first-order recurrence {Vyp} modulo 2 is 1. It thus follows that if we 
determine the modulus g, as in the proof of Theorem 5, then g .= 2 or 3. By 
Theorem 5, if g = 2 and p is a prime such that p E 1 (mod 2), then congruence 
(17) holds modulo 2. By the corollary to Theorem 5, if g = 3 and p is a prime 
such that p E 1 or 2 (mod 3), then the congruence (17) again holds modulo 2. 
Since for any p > 3, p E 1 (mod 2) and p = 1 or 2 (mod 3), the result now fol-
lows . D 

Remark: Note that Co rollary 2 to Theorem 6 generalizes Theorem 2. 
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1. Introduction 

For a real sequence {ak}^>05 a§ * 0, and y e M9 consider the real array 
A{k9 ft, y) , (k9 ft) e Z X X, which satisfies the recurrence 

A(k9 n, y) = J2 a.A(k - j , n - 1, y) (1.1) 

subject to the diagonal condition 

A(k, ufc, y) = 0 for k > 0, (1.2) 

and the conditions 

4(0, 0, y) = 1 and A(fc, ft, y) = 0 for fe < 0. (1.3) 

We wish to use lattice path combinatorics to obtain known formulas for A(k9 
ft, y) . Collectively these constitute a Lagrange inversion formula. Others have 
made similar studies; our explanations are influenced by those of Raney [18] 
and Gessel [9]. We examine specific examples of recurrences and their 
solutions, the generalized Catalan arrays. We illustrate our approach by 
enumerating certain plane trees. 

For the given sequence (&/<}£ >o' le t ate; y) denote 

Y,A(k, \ik + 1, \i)xk
9 

k >o 

which we view as a diagonal series. In particular, let 

a(x) = ate; 0) = ]T ai-xk (tne initial series), 
and let * i 0 

ate) = ate; 1) (the principal diagonal series). 

For any power series, let [xk]If- xJ denote the coefficient f^ . Let 

ak = [xk]a(x) = A(k9 k + l9 1) [the principal diagonal of A(k9 n9 1)]. 

It is immediate from (1.1) and elementary properties of formal power series 
(see [3], [12]) that 

A(k9 ft, 0) = [xk]an(x). (1.4) 

The following record solutions to (1.1, 1.2, and 1.3). 

Propositions: For 777, n e Z and k9 X e Mi 
i/i \xk 

1. A(k9 ft, y) = A(k, ft, 0 ) , ft * 0. (1.5) 

2. 4(fc, ft, y) = E (l~yj)at7-4(fe - j , ft - 1, 0 ) ; A(k9 1, y) = (1 - yfc)a*. (1.6) 
j > o 
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3. A(k, m + n + \ik, A) = £ A(j, m + \ij, \)A(k - j , n + \i(k - j) , y) . (1.7) 

4. i4(fe, n + yfc, y) = [xk]an(x; y). (1.8) 

5. §(x) = a(x; y) is a unique series satisfying cj) (x) = a(xcf>^(x)) . (1.9) 

These are proven in Sections 3 and 4. In proving (1.5), we interpret the 
factor (n - \ik)/n. For (1.6) we interpret {A(k, 1, u)}fc>0. Proposition (1.7) 
is a Vandermonde-type convolution; (1.8) shows that A(k, ft, y) is a convolution 
array; (1.9) gives a functional relationship between a (x; y) and a(^) which 
immediately yields xa(x) as the compositional inverse of x/a(x). Correspond-
ingly, (1.9) with (1.4) and (1.5) yields a Lagrange inversion formula; another 
is given in Section 5. 

A lattice path is a directed path in the Cartesian plane with vertices the 
lattice points (integer pairs) and with steps (directed edges) of the form ((x, 
y), (x + u, y + v)). There will be various restrictions on (u, v); the set of 
permitted (u> v)'$ is called the step set. A lattice path from (0, 0) to (k, ft) 
which lies strictly above the line y = \xx for 0 < x < k is called a (k, ft, u)-
path. If we restrict to steps of the form ((x, y), (x + j, y + 1)) with weight 
a-j, and if the weight of a path is the product of the weights of its steps, then 
we shall show that A(k9 ft, y) is the sum of the weights of the (k, ft, y)-paths 
for ft > \ik. 

FIGURE 1 
A(3, 4, 1) counts the (3, 4, l)-paths with step set {(j, 1) : j e. 1} 
and a3- = 1 for j e I. [,4(3, 4, 1) = (7(3, 4, 1) = y3 of Example 2B). ] 

2. Examples of Recurrences and Their Solutions, the Catalan Arrays 

The recurrences are defined by their initial series. A(k, ft, 0) and a 
A(k, k + 1, 1) (often in [25]) are found from (1.4) and (1.5). For reference 
b(x), o(x), etc., B(k, ft, y), C(k, ft, y), etc., and 3> y, etc. denote the spe-
cific a(x), i4(fe, ft, y), and a. Here "PA," "CA," and "CN" abbreviate Pascal's 
array, Catalan's array (see [21], [24]) and the Catalan numbers [11]: 1, 1, 2, 
5, 14, 42, ... . These examples are unnecessary for Sections 3 and 4. 

Example 2A: b(x) = 1 + x. B(k, ft, 0) = (?) , PA, where, for n e Z and k e fflf, 

(̂ ) = (w)(n - 1) ... (ft - fe + l)/k\ if fc > 0 and (̂ ) = 1. 

B(k, ft, 1) = P " * ) , another PA, and 3k = 1 for -fe > 0. 

B(k, n, 2) = n ~ 2 {^\9 CA (see Table 1). 

[xk]Q(x; 2) = B(k, 2k+l9 2)= , * i^k * l\, CN (marked + in Table 1). 

3(a:; 2) = 1 + ^32(^; 2) by (1.9). The step set {(0, 1), (1, 1)} yields (^) as 
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the number of (k, n, 0 ) - p a t h s . 

n\k 

5 
4 
3 
2 
1 
0 
-1 
-2 

A 

0 

1 
1 
1 
1 
1<-
1 
1 
1 

1 

3 
2 
1+ 
0 
-1 
-2 
-3 
-4 

2 

2+ 
0 
-1 
-1 
0 
2 
5 
9 

TABLE 1 
section of B(k, 

3 

-2 
-2 
-1 
0 
0 
-2 
-7 
-16 

n, 2) 

4 

-3 
-1 
0 
0 
0 
2 
9 
25 

n\k 

5 
4 
3 
2 
1 
0 
-1 
-2 

A 

0 

1 
1 
1 
1 
1+ 
1 
1 
1 

1 

4 
3 
2 
1<-
0 
-1 
-2 
-3 

2 

9 
5 
2+ 
0 
-1 
-1 
0 
2 

TABLE 2 
section of C(fc, 

3 

14 
5+ 
0 
-2 
-2 
-1 
0 
0 

n, 1) 

4 

14+ 
0 
-5 
-5 
-3 
-1 
0 
0 

Example 2B: c(x) = £ x^ = (1 - #) x . 
fc >o 

C(fc, « , 0) = (n + £ " l), PA. 

C(fc, n, 1 ) , CA, are the b a l l o t numbers [ 3 ] , [ 16 ] , see Table 2, 
1 l2k\ 

^v = 
k k + 

— ( J/)5CN (marked <- in Table 2). 

xy2(x) - y(x) + 1 = 0 by (1.9). C(k, n, 0) counts the (fe, n, 0)-paths with step 
set {(0, 1), (1, 0)} with (0, 1) as the initial step. C(k, n, 0) also counts 
the (fc, n, 0)-paths with step set {(j, 1) : j £ I}; see Figure 1. 

Example 2C: b(x) = I + xv = b(xv), where v € I, v > 0. 

5(fe, n, 0) = ( „) if fc = vZ and = 0 otherwise, a variant PA. 

£/-7 - I N n - k/n\ n - vK/n\ „/7Z x .̂  7, B(k, n, 1) = - ^ - ( x ) = — — ( J = BU. »• v) if fc vZ and 
0 otherwise. 

Example 2D: c(x) = I + xz. 

C{k, n, 0) = (T,/9) r o r ^ even and = 0 otherwise, a variant PA. 

"Yfe
 =

 k I i(W) = 1? °' l5 °' 2' "" z e r ° - i n t e r s P e r s e d CN" 
Example 2E: c(x) = 1 + 2x + x 2 . 

£(&, n, 0) = ( / * ) , a PA with every other row missing. 

C(k, n, 1) = B{k, 2n, 2). 

Y k 
1 /2/C + 2 \ 

(fc, 2k + 2, 2) = T——r( , ), CN with first entry missing. 

Note that [xk]y(x) = [xk]$2(x; 2) = [xk}x~l (3(x; 2) - 1) . 

Example 2F: m(x) = I + x + x2. 
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M(k, n, 0) = [x*](l - *3)(1 - x)~l = E (-DJ'n)(n + l- l ) -

M(k, n9 0) = [xk]((l + x2) + x)n = E (*)(̂ ')-

yk = M(fc, /c + 1, 1) = 1, 1, 2, 4, 9, 21, . .., named for Motzkin [17], who found 
them to count the ways of placing nonintersecting cords between k points on a 
circle. Note 

j £0 

and 

-[xk]((l + x + x2) + x ) k + 1 = 7 — ^ - £ (fe t 1)[a:J'-1](l + x + a;2)'' 
A. K T I K -1- 1 

J 

= E L- _ i)Vi-
See Example 7A and [4], [5], and [14]. 

3. Lattice Path Analysis for Propositions 1 and 2 

We use weighted paths with steps of the form ((x, y), (x + j, y + 1)), de-
noted by <j> and assigned the weight a-j, j > 0. <Ji:n> denotes an arbitrary 
path <Ji><J2> ••• <Jn> an<^ Oi = i aji denotes its weight. P(k9 n9 y) denotes the 
set of all (k9 n9 y)-paths and \P(k9 n , y) | denotes the sum of the weights of 
the paths in P{k9 n9 y). When appropriate, |v4| denotes the cardinality of A, 

Since all (k, n, y)-paths pass through { (fc - j, n - 1) : 0 < j < fe} exactly 
once, 

|P(fe., n, y) | = E O ^ 
<Jl:«>eP(fe,n, y) £ = i «7i 

^ ^ w- 1 

E aj lp(k • J» n - 1, y) | 
0 < j < k 

\P(09 0, y) | = 1 and \P(k9 ]ik9 y) | = 0. Hence, \P(k9 n9 y) | satisfies (1.1), 
(1.2), and (1.3) for n > ufc. Thus, 

Proposition 6: \P(k9 n, y) | = i4(n, fc) for n > ufc. (3.1) 

We next determine \P(k9 n, y ) | by a "radiation" scheme, which extends the 
method used by Dvoretzky and Motzkin [7] on Barbierfs ballot problem of 
counting the (k9 n9 y)-paths with a two element step set. Grossman [13], [16] 
reformulated their technique as "penetrating analysis." See also [18]. 

Each path <Ji-.n> € P(k9 n9 0) determines a sequence of cyclic permutations, 
each being a path in P{k9 n9 0): 

<c/l:n>» <J2:1> = <J2><J3> ••• <jV<Jl>> < J 3 : 2 > = < J 3 > < j\> " °  <Jl><J2>' 

--.. <Jn:n-l> = < J n > < J l > •'• < j\z - 2 > < J n-1 > • 0-2) 
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Le t p be t h e p e r i o d of < j ' i : n > . [ < j 1 : „ > ] d e n o t e s t h e c y c l i c p e r m u t a t i o n 
c l a s s { < J i : n > , < J 2 : i > » - . . , < i p : p - 1 > } 5 t h e s e t of d i s t i n c t p a t h s i n ( 3 . 2 ) . 

Le t <Ji:n> be a f i x e d [ f i x e d u n t i l ( 3 . 5 ) ] p a t h i n P(k, n, 0) of p e r i o d p . 
< J l:n> = < J l > < J 2 > •"• <Jp > G P&p/n, p, 0), 

is the initial subpath of <Ji.-n>. Each path in [<j'i:„>] is the concatenation of 
n/p copies of a cyclic permutation of <Ji:p>. Distinguish the steps in <Ji:p^ 
by their index. Thus, each step in <Ji:p> initiates a unique path in [<Ji:n>]. 
A step <j> is called a zero step if j = 0; otherwise it is called positive. Let 
J+ = {{, : j^ > 0 and £ < p}5 the index set of the positive distinguished steps of 
S71: See Figure 2, 

FIGURE 2 

If y = 1 and <Ji:7> = <0X ><02><23><(V <45><06 ><07> (the subscripts-
distinguish the steps), then J+ = {3, 5}. Z3 = {2}, Z5 = {1, 45 7}s 

Z0 = {6}. <Ji:7> and <J*6:5> a r e s n o ™ with 3 sub swaths of rays in-
dicated on <Jg:5>-

In the following n ^ ufe. Fix i e J+ and consider the geometrical configura-
tion of <j£ +1 . ̂ > £ [ <j ]_ . p> ] where each step is a line segment (i + 1 is replaced 
by 1 if i = p). From the points on the last step of <Ji+i:i>> namely <ji>9 draw 
rays in the direction of the ray from (0, 0) through (-1, -y) . See Figure 2. 
Since the terminal vertex of <Ji+\:i> is above or on the line y = \ix9 all rays 
must strike and be absorbed on the right side of <0i+l:iy bY t n e zero steps, 
positive steps being too inclined to be hit. By examining a triangle with 
vertices (05 0), (0, )ij - 1), and (j\ \ij) , we see that the vertical width of 
the swath of rays from <ji > is \iji - 1. This swath can be partitioned 
into \iJ£ - 1 equal parallel subswaths. Since each subswath passes between 

vertically adjacent lattice points, each subswath must irradiate the entire 
interior of a zero step. If Zi denotes the set of indices with respect to <j\:p> 
of the zero steps which are irradiated by the rays from <j^> , then 

\Zi\ = vjt - 1. . (3.3) 

We claim that the Z^, i e J+, are disjoint from one another. Suppose there 
is a zero step that is irradiated by both <ji> and <j^/>, where the zero step 

3.989] 37 



A RECURRENCE RESTRICTED BY A DIAGONAL CONDITION: GENERALIZED CATALAN ARRAYS 

appears earlier in, say, <j^/ + ]_ : ̂  > . But the configuration of <j£' + l:i'> shows 
that the step <ji> will shield this zero step from the irradiation of <j^r >. 

Let Z0 be the index set of clean (nonirradiated) zero steps in < J i:p >. By 
considering the vertical and the horizontal dimensions of <j\:p>, 

v = E \zi\ + M + \Zc\ 
and i£J+ 

vkp/n = u £ j\ = X (^ - 1) + k+| = E lz. 

and thus, 
, . _ p(n - ufe) 

(3.4) 

As noted, each path in [<Ji:n
>] is uniquely determined by its initial step 

which is a distinguished step of <Ji:p>. A path beginning with a positive step 
touches or is below y = \ix by the first step. A path beginning with a zero 
step touches y = \ix for the first time on its radiating positive step. Thus, 
the paths beginning with a clean zero step are precisely those belonging to 
P(k, n, y ) . By (3.4), we have 

Lemma: The number of paths in [<ji:n>] n P(fc, n, y) is 

|2el = = |[<Jl:n>]|. (3.5) 

Since every path in a cyclic permutation class has the same weight and 
since the classes are disjoint with union P(fc, n, 0 ) , 

Yi — y k n 

A(k, n, y) = \P(k, n, y) | = £ — ~ 1 [<Ji:w >1 I .0 a ^ (sum over all 
"̂  = 1 c.p. classes) 

n - \ik %r^ , r . , • JL n - yfc, ,., x | 
= —^-E|t<«7i:„>]| i n i a J - t = — ^ - \ P ( k , n, 0 ) | 

n - ]ik 

n 
A(k9 n, 0). 

Thus, a formula for i4(fc, n, y) has been constructed for n > \xk. Simple arith-
metic shows that this formula satisfies (1.1), (1.2), and (1.3) for n * 0 and 
fe > 0; hence (1.5) is valid. 

A second realization of the contribution of each cyclic permutation class 
to | P(k, n, y ) | establishes (1.6). By (3.3) and (3.5), the weight contributed 
by [<Ji:w>] for n > \ik Is 

\Za\fl ah = £ (1 - ^t)ajt n ai{ + E J [ E ( 1 - ^ ) ^ S II ̂  1 

, /n . . .__ ) (since j\ = j s = 0 for zero steps and 
v Pe;ty J t iVt / since the term in { } is 0) 

V 
= L a - ujt)ajt n ad. t=i i * t 

Summing over all cyclic permutation classes yields 

A(k, n, y) = P(fc, n, y) = . 2^ (1 - yj^a- Jl a. ™fhq^ 
<Ji:n>€^(fc»w, 0) J li = 2 ̂  aJ-l patns; 
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= 22 (1 "" yj)tfj E I ! a j - [ S i n c e a l l p a t h s p a s s t h r o u g h t h e l i n e 
<7^° <J2:n>'i = 2 £/ = 1, t h e second sum i s ove r a l l p a t h s 

from ( j , 1) t o (fe, ft).] 

= 5^ (1 - ]ij)dj\P(k - j , ft - 1, 0) | ( w e i g h t s a r e t r a n s i t i o n i n v a r i a n t ) 
j £ 0 

= E (! " \ij)ajA(k - j , n - 1, 0 ) . 

Thus we have constructed the formula of (1.6) for n > yfe. If i4(fc, ft) momen-
tarily denotes this formula, then it is easily shown that A(k9 ft) satisfies (1-1) 
for (k, ft) G 1" x X. Since i4(fc, ft) and i4(fc, n, y) agree when n > yfc, they agree 
for all (k, ft) e I x 2, yielding (1.6). 

Equation (1.6) yields a nice interpretation for i4(fc, ft, y) on both sides of 
z/ = y# and n > 1. Retaining the definitions of this section, reassign the 
weight of (1 - ]ij)aj to the initial steps ((0, 0), (j, 1)), j > 0. Then A(k, 
n, y) is the sum of the modified weights of all unrestricted paths from (0, 0) 
to (n, k). 

With af(x) denoting the usual formal derivative, immediately (1.6) is equi-
valent to (similar to a result in [1]) 

A(k, ft, y) = [xk](a(x) - wxa1 (x))an~l (x) for n e Z. (3.6) 

4. The Proofs of Propositions 3, 4, and 5 

We establish (1.7), a useful generalized Vandermonde-type convolution [10], 
[16]. Then, using the tractable notation of series, we reformulate both the 
convolution and (1.1) in terms of diagonal series. 

First we give a lattice path proof of (1.7) for m9 n > 0 and m + \xk > \k. 
Since ((x, y) , (x+j\ z/ + l)), j > 0, is the form of the lattice steps, any path 
in P(k, m + n + yfc, A) must intersect the line M = {(j , m + yj) : 0 < j < k}. 
Since the weight of a path is invariant under translation, the sum of the 
weights of the paths from (j, m + yj) to (fc, m + ft + yfc) which remain above M is 
|P(fc - JJ ft + y(fc ~ j) J y)| • Hence the sum of the weights of the paths in P(/c, 
7?2 + ft + yfe, A) that pass through M for a last time at (j, m + yj) is the product 

|P(j, 7?? + yj, A) | |P(fc - J, n + y(fe - j ) , y) | . 

Summing o v e r M and p u t t i n g i4(#, y9 y) = | P ( # , 2/, y) | y i e l d s ( 1 . 7 ) i n t h i s c a s e . 
Now f o r 77? e Z and ft > 0 , ' ( 1 . 7 ) can be p roved by i n d u c t i o n on t h e v a l u e of 

ft + ]ik by o b s e r v i n g t h a t , f o r ft + y i - l < f t + yfc, 

£ aiA(k - i , m + n + \ i i - l + y(fc - i), A) 
i > 0 

= E Z^(j , ^ + ^ '» x ) ^ ^ - i - j> n + vi - 1 + v(k - i - j), y) 
£ > 0 j > 0 

= L 4 ( j , w + y j 5 A) XI a ^ ( / c - j - £, n - 1 +• u(& - j ) , y ) . 
<7 £ 0 £ > 0 

The case for m e Z and ft < 0 can be proved by induction with respect to -ft upon 
noting that (1.1) yields 

A(k> m + (ft - 1) + u&, y) 

= A(k, m + ft + \xk, y) - £ ajA(^ - j \ TT? + (ft - 1 + u j ) + y(fe - j ) , y) 

and t h a t -ft + 1 - y j < -ft. 
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Equivalent to (1.8) is 

a" (a;; y) = X 4(fe, yk + n9 \i)xk f o r n e Z . 

/ c > 0 

For n > 0 , t h i s can be p roved i n d u c t i v e l y s i n c e , by ( 1 . 7 ) , 
an+l(x; y) = a (a:; y ) a " ( x ; y) = X ^ ( k , U& + !> y ) # k X^(fe> y^ + w, y)^ f e 

fc>o fc>o 

= X) ^ ^ ' y/c + rc + 1, ]i)xk
a 

k>0 

The case for n > 0 and (1.7) yields 

c T n ( x ) = a " n ( x ) J] i4(fe , ]ik + n , y ) ^ k XI AU<9 ]±k - n , y ) x ^ 
k>0 fc>0 

= o T n ( x ) a n ( x ) £ 4 ( f c , P^ " « , \i)xk = X! ^(fc» ^ - n> V)xk. 
k>0 k>0 

As in [9], equation (1.8) has the following meaning for n > yfe: Since each 
(k9 ]ik + n9 y)-path must sequentially intersect for a last time each of the lines 
y = ]ix + i for 1 < i < n9 each (k9 ]ik + n, y)-path is an n-fold concatenation of 
(k9 yj + 1, y)-paths for various j. Correspondingly, the total weight of the 
(k9 \ik + n9 y)-paths is a coefficient of an n-fold convolution of a(x; y). 

Moreover, since each (k9 \xk + 1, y)-path intersects the line y = yfc only 
preceding its last step, the set of (k9 \ik + 1, y)-paths is the disjoint union 

k 
P(k9 \ik + 1, y) = U (<Ji: y/<><J> : <Ji: yk> i s a 

J =0 
(k - j, y(fc - j) + yj, y)-path} 

= U ^•<Jl:\ik><^'> l <il:yk> i s a yj-fold concatenation of 
j = o 

various (j, yj + 1, y)-paths}. 
More precisely, we have that 

a ( a ; y) = Z ' 4 ( f c , yk + 1, y ) x ^ 

= X E Ci-x^A{k - j , y(fe - j ) + y j , \i)xk~J' 
fe>0j>0 

E « r r i ^ f t ~ <?> P(fc - J) + vj> ^)^ fc-j 
j > 0 d k>0 

= X a j ^ J a P J ' ( x 5 ^) = X a j ( ^ a y ( ^ 5 y ) ) J -
J > 0 j * 0 

This establishes (1.9) since comparing coefficients shows the uniqueness. 
As a consequence of (1.9), we have 

Proposition 7: For each y e 1, if a(x; y) is taken as the initial series, then 
a(x; y + 1) is the corresponding principal diagonal series. 

Proof: If ct(x) denotes the principal diagonal for a(x; y) , then by (1.9), 

~a(x) = aix'a(x); y) = a(xa(x) [a(x~a(x); y)]y) 

= a(xa(x)[a(x)]V) = a(x[E(x) p + 1) . 

But a(x) must be a (a;; y + 1) by the uniqueness in (1.9). 
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5. A Lagrange Inversion Formula 

A common Lagrange inversion formula [3], [12], is included as it easily 
follows (1.4), (1.5), (1.6), and (1.9). See [3], [8], [9], [12], and [18] for 
more general formulas. 

Proposition 8: For any initial series a(x), there exists a unique series 

ud(x) = ^ ^ji
xk 

such that oo(x) = xa((ti(x)) . Moreover, if f(x) is a formal Laurent series so that 

f(x) = 2 ffrxk f ° r some t <E Z, 
* " I 1 

( [x°]f(x) + [x-l]f'(x)log(a(x)a-l(0)) for n = 0. 
Droof: By (1.9), OJ(^) = xa (x) is the unique solution. It suffices to show the 
second part for f(x) == xk

9 k e X. For ft * 0, 

|>n]0m(a;))fe = [^-k]ak(^) = 4 (ft - fe, ft, 1) = [xn"^]| an0r) 

= ^[xn-l]kxk-lan(x). 

ks noted in [12], 

0 = [x-1]—(xklog(a(x)a-l(0))) 
ax 

= [x-l]kxk-llog(a(x)a~1(0)) + [x~l]xkaf (x)a~l (x). 

For ft = 0, it follows from (3.6) that 

[x°]uk(x) = [x°]xkak(x) = [x~l]ak(x) = 4(-fc, 0, 1) 

= [x~k](l - xaf(x)a~l(x)) = [x~l]kxk~llog(a(x)a-1(0)). 

6. More Examples of Recur rences 

Example 6A: r(x) = 1 + (w + 1) X! xk = (1 + wa?)(l - a;)"1-

i?(fc, ft, 0) = [a?*] X ( ^ V ^ L (n + ) ~ l)x-

fn + i - 1 > 
i >0 

Note how rk r e l a t e s to ak of Sect ion 3 . Also, 
R(k, ft, y) = R(k, n - 1, y) + wi?(fc - 1, ft - 1, y) + i?(fc - 1, ft, y ) , 

and i?(?C, ft, y) is the sum of the weights of the (fc, ft, y)-paths with the step 
set {(0, 1), (1, 1), (1, 0)} where (1,1) has weight w. As shown in [21], [22], 
or from R(k9 ft, 0), we have 

(fc, n, 1) = £ wJ'(n + fe • J' McCfe - s, n - j , 1), 
-? > n x f7 / J ̂ 0 
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For w = 1, s e e Tab le 3 , where 

t h e I ' - S c h r o d e r numbers , a r e marked . See [ 1 9 ] , [ 2 1 ] , and [22] 

pk = 2ok (fc > 0 ) ; 

s e e Example 6E. xp2(x) + (wx - l )p(ar ) + 1 = 0 by ( 1 . 9 ) . 

Note t h a t 

n\k 

4 
3 
2 
1 
0 
-1 

0 

1 
1 
1 
1+ 
1 
1 

1 

6 
4 
2«-
0 
-2 
-4 

2 

16 
6+ 
0 
-2 
0 
6 

3 

22+ 
0 
-6 
-4 
-2 
-8 

4 

0 
-22 
-16 
-6 
0 
10 

n\k 

4 
3 
2 
1 
0 
-1 

0 

1«-

£(fc, 

1 

3 
2 
1«-
0 
-1 
-2 

2 

7 
3+ 
0 
-2 
-3 
-3 

TABLE 4 
n, 1) for 

3 4 

11«- 0 
0 -22 
-6 -28 
-8 -24 
-7 -15 
-4 -5 

w = 1 
TABLE 3 

R(k, n9 1) f o r ZJ = 1 

General Example 6B: Given any sequence y ^ w2» ^3> • • •» c o n s i d e r t h e s t e p s e t 
{ ( 0 , 1 )} u { ( j , 0) : J > 0} where ( 0 , 1) ha s w e i g h t 1 and ( j , 0) has w e i g h t zj-«. 
I f i4(fe, n , y) i s t h e sum of t h e w e i g h t s of t h e (k, n, y ) - p a t h s ( t h e i n i t i a l s t e p 
must be v e r t i c a l ) , we have 

A(k, n, y) = A(k, n - 1 , y) + £ ^ ( f c - J , n , y) . 
j > o 

It follows inductively that this A(k, n, y) satisfies (1.1) for {ak}k>0 defined 
by a0 = 1, ai = Wi, az = W2 + WiWi, a3 = W3 + W2W\ + W ^ + WiWiWi, and in gen-
eral 

E n ^-£l + £2+• • • + £m = & l<t<m 
Hence, 

a(#) Z S * k = 1 + E ( Z ^ V = f1 ~ Z ^arA"1. See [26], 
fc>0 k>1 \i > 1 / ^ i > 1 / 

Example 6C: In Example 6B put W]_ = w2 = 1 and wi = 0 for i > 2. 

a (or) = (1 - # - a:2)-1. 

Thus, afc = 1, 1, 2, 3, 5, ..., the Fibonacci numbers. See 7B. 

Example 6D: In Example 6B put wi = I for i = v and = 0 otherwise. 

c(x) = (1 + ^ v ) _ 1 = e(xv) of (2.2). 

_ J _ / ( v + 1)K\ 
vK + 1 V Z / C(k, k + 1, 1) = C(Z, Zc + 1, v) 

f o r k = vK and = 0 o t h e r w i s e . 

Example 6E: I n Example 6B p u t w^ = w f o r i > 0 : 

s(tf) = 1 + Z (^ + D ^ " 1 ^ = (1 - M E ) ( 1 - (W + D a ; ) " 1 . 
fc >o 
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S{K n, 0) = £ (-l)'V(a, + l)k-H^)(n + \ ~ * ~ l). 
j > 0 X J / V K- ~ 3 I 

When w = 1, see Table 4 for £(fc, n, 1) where ok = S(k, k + 1, 1), the s-Schroder 
numbers [23], are marked; see Example 7B. 

From (w + l)xa2(x) - (1 + wx)o(x) + 1 = 0 [by (1.9)] and the last identity 
of Example 6A, one can show: 

(i) (w + l)(a(x) - 1) = p(x) - 1, 

(ii) (1 + wxp(x)) = (1 - wxo(x))~l, and 

(iii) o(x) = (1 - xp(x))~l. 

These are illustrated in Tables 3 and 4: (i) relates the principal diagonals. 
(ii) and (iii) relate the partial row sums in the triangle above the zeros in 
one array to the principal diagonal in the other, as generalized in the follow-
ing: 

n-l 
Proposition 9: I f tn = J2 un~kA(k, n, 1) = XI v>JA(n- j , n9 1 ) , a w e i g h t e d p a r -

k = o j > o 

tial row sum, then t(x) = ]T tnxn = (1 - wxa(x))~l. 
n>0 

Proof: t(x) = X! S wjA(n - j, n, l)xn = X! ̂ J'^J'X ̂ -(n " j'» n " J + J» l)n"J' 
« > 0 j > 0 j > 0 "^0 

= X W^X^QL3 (x) . 
J> 0 

This extends a result in [20]. 

7. Enumerating Plane Trees 

Informally, a rooted plane tree is an unlabeled tree which is oriented in 
the plane so that it branches upward from a root (a distinguished vertex which 
need not be univalent) to the leaves. Two plane trees are equal if one can be 
continuously transformed into the other in the plane so that the nonroot 
vertices remain above the level of the root. A more formal definition is given 
by Klarner [14] and [16]. A planted plane tree is a plane tree with univalent 
root. See Figure 3. 

Y V Y 
FIGURE 3 

This illustrates the planted plane trees with 4 edges and no 
degree restriction. These trees are listed as they correspond 
to the paths of Figure 1 under Bijection A. The numbers 
indicate the order of growth. 

Here we enumerate rooted plane trees with vertex degree restrictions by 
establishing bijections between the trees and previously counted lattice paths. 
Equivalently, one can establish directly a recurrence for the tree counts in 
the form of (1.1). The following examples are enumerated by other methods in 
[4], [5], [7], [12], [14], [15], [16], and [22]. One common method for planted 

Y 
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plane trees is to establish a functional equation for a generating function and 
then solve the equation perhaps, and not surprisingly, by the Lagrange 
inversion formula as in [12]. 

Bijection A: Counting rooted plane trees with respect to the number of edges 

Let T(n, p) be the set of such trees with n edges and root degree p. Let D 
be a specified set of permitted degrees for the nonroot vertices. Let P(n - p, 
n;D) be the set of (n - p, n9 l)-paths with step set 

{(j, 1) : j + 1 € D}. 

A bijection from P(n - p, n; D) to T(n, p) is defined inductively. The trivial 
zero-length path in P(0, 0; D) corresponds to the tree consisting of just a 
root. A path in P(n - p, n; D) and the corresponding tree in T(n, p) can be 
extended in two ways. (i) The path can be extended to a path in P{n - p, n + 
1; D) by attaching a new step (0, 1), while the corresponding tree is extended 
to a tree in T[n + 1, p + 1) by grafting a new left-most edge to the root. 
Such a new step corresponds to a new leaf. (ii) For j•+ 1 € D and j < p, the 
path can be extended to a path in P{n - p + J* n + 1; D) by attaching the step 
(j, 1) while the corresponding tree is extended to a tree in Tin + 1, p - j + 1) 
by cutting at the root the j left-most incident edges and then grafting the 
lower vertices of these edges to the upper vertex of a new left-most edge 
incident to the root. Thus, a (j , 1) step corresponds to a new vertex of 
degree j + 1. Hence, 

\T(n, p)| = A(n - p, n, 1) = Hxn'H £ xAn. 
n V + 1 e D I 

Bijection B: Counting rooted plane trees with respect to the number of leaves 

Modify the scheme of Bijection A by replacing the underlined phrases sequen-
tially by: n leaves; let D (2 $ D); {(0, 1)} u {(j, 0) : j + 2 e D}; j + 2 e D 
and j < p - 1; P(n - p + j, n; £)•; step (j, 0); T(n, p - j); the j + 1; (j, 0) 
step; degree j + 2. Thus, by Example 6B with w3- = 1 if j + 2 G D and = 0 other-
wise, , 

\T(n, p)| = A(n - p, n, 1) = £[*"-e](l - E a?^)"n. 
n X j + 2 € Z? / • 

Example 7A: Applications of Bijection A 

If D = 1 - {0}, no degree restriction, |T(n, 1) | = C(n - 1, n, 1) = Yn-i5 
see Example 2B and Figure 3. For D = {1, 3}, trivalent planted trees, \T(n9 1)| 
= C(n - 1, n, 1) = Yn-l of 2D. For D = {1, v + 1}, use 2C. For D = {1, 2, 3}, 
no vertex has degree greater than 3, \T(n9 1)| = Mi(n - 1, n, l)=yn-i; see 2F. 

If Z) = 1 - {0, 2}, no bivalent nonroot vertices, let d(x) = (1 - a;)"1 - x. 

\nn, P ) | -£[af»-p]d»(x) = g . i : o ( - i ) " - ^ ) ( 2 \ - _ p ; x ) . 

(J: + 1)6 0 ) = (1 - x6(x))~l by (1.9). One can show 

(x + l)(6(x) - 1) = x(v(x) - 1) (thus, 6n_!+ 6n = yw_L, n > 0). 

Therefore, by Proposition 9, 
n - 1 

fe = 0 
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Hence 

£ \T(n, p) | = yn_ls 

P^ l 

as in [4]. 

Example 7B: Applications of Bijection B 

An immediate source for such trees is the problem [3] of counting the ways 
to bracket n nonassoeiative, noncommutative factors so that the number of fac-
tors associated by a pair of brackets is restricted to some set B. If B = {2}, 
we have the problem of Catalan [2], 1838. There is a simple bisection between 
the usual pairwise bracketings on n factors and the planted plane trees with D 
= {1, 3} and n leaves. For D = {1, 3}, 

\T(n, p)| = p-[xn-p](l - x)~n. 

\T(n, 1)| = yn-i, the appropriately named sequence of Example 2B. 
If B = E - {0, 1}, we have the problem of Schroder [23], 1870. If n = 4, 

the bracketings are 

(a(b(cd)), (a((bc)d)), (a(bcd)), (((ab)c)d), ((a(bc))d), 

((abc)d), ((ab)(cd)), (a(bo)d), (ab(cd)), ((ab)cd), (abed). 

There is a simple bijection between the unrestricted bracketings on n factors 
and the planted trees with n leaves and no bivalent vertices. For D = 1 - {09 

2}, refer to Example 6E with w = 1: 

\T(n, p)| = £(n - p, n, 1) and \T(n9 1)| = an_i» 

If D = {1, v + 2}9 

\T(n, 1)|= C(n - 1, n, 1) = yw-i; 

refer to Example 6D. If D = {1, 3, 4}, refer to Example 6C. 
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I t i s wel l known tha t the powers of the matr ix 
Tl l] 

M = I 
[l 2J 

are matrices of the form 

F„ 

- n + l 

- n+ 1 

~n + 2J 

whose entries are the Fibonacci numbers. If these matrices are normalized by 
dividing by F , so that the first entry is always 1, then the resulting se-
quence converges to 

~l f 1 
( i ) 

if fz\ 
where / = (1 + /5)/2 is the golden ratio. 

Moore [2] noticed that if the 2 in M is replaced by 1 + x and the same pro-
cedure (taking powers of M and normalizing to obtain a 1 in the first entry) is 
performed then the resulting sequence seems to converge to a matrix of the same 
form with f = (x + /x 2 + 4) / 2. These observations naturally suggest the fol-
lowing questions. 

1. If we start with any symmetric 2 x 2 matrix M 9 with positive integral 
entries, does a similar phenomenon occur and, if so, what is the corresponding 
value of fl 

2. If there is convergence with f = (a + id) lb , what are the values of d 
that can occur, i.e., in what quadratic number fields do we find such fl 

Since we normalize at each step, we can assume that 

[i y 
M = 

\_y 1 + x 
Diagonal iz ing M gives M = PDP~l with 

1 1 

(x + fd)/2y 
2 

(x - Sd)/2y 
, D = 

(x + 2 + i/d)/2 0 

where d = x2 + 4z/ . Thus we have Mn 

0 {x + 2 - /d)/2j 

When we normalize D to make the pDnp-l 
leading entry 1,, the second diagonal entry is less than one and so the sequence 
of its powers converges to 

0 

0 0 
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and so PD P-1, when normalized, can be seen to converge to a matrix of the form 
(1) with f = (x + id)/2y, where d = x2 + 4z/2. 

The set of d that can be written as x2- + ky2 can be easily found, since we 
know what numbers can be written as the sum of two squares. (A positive 
integer is the sum of two squares if, when factored, all its prime factors con-
gruent to 3 modulo 4 occur with even exponent, see, e.g., [1].) If d is odd, 
then d is the sum of two squares if and only if it is of the form x2- + (2y)2 = 
x2 + 42/2, since one of the terms must be even. If d is even, then d = x2 + 4z/2 

if and only if d = km, where m can be written as the sum of two squares. Since 
d is even, x is even, and so d is divisible by 4. The 4 can then be factored 
out giving m as the sum of two squares. The converse is also easy. Thus, d is 
of the form x2 + ky2 exactly if, when factored, all its odd prime factors 
congruent to 3 modulo 4 occur with even exponent and 2 does not occur with ex-
ponent 1. 
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Introduction 

The three related classical series for representing real numbers as the 
sums of reciprocals of integers were all studied toward the end of the nine-
teenth century. These are, respectively, the series of Sylvester, Engel, and 
Luroth (see Perron [1]). More precisely, given any veal numbev A there exist 
thvee (different) sequences of integers {a^} such that 

, - S A 1 1 1 
(i) A = a, + — + — + — + . . . 1 al a2 a3 

where al > 2, ai+l > a^a^ - 1) + 1 for i > 1, 

(ii) A = an + — + + + •.., 

where a± > 2, a^ + l > a^ for i > 1, 
1 1 1 1 1 

(iii) A = an + — + 7 r r — • V -, TT 7 T\— • — + • • • 5 
u a-^ (a1 - l)^x &2 ^ai " l)ai(a2 " l)a2 a3 

where a^ ^ 2 for i > 1. 

Observe that as we move from the Sylvester series (i) to the Luroth series 
(iii), the denominators in the expansion become increasingly more complex while 
at the same time the growth conditions on the digits a^ become simpler. We now 
generalize the expansions in (i) and (ii) above, to obtain new representations 
for real numbers that depend on a power k > 0. These new representations have 
the desirable property of having terms only slightly more complex than in (i) 
and (ii) above, yet their digits need satisfy only mild growth conditions. Two 
different sets of algorithms leading to results of the types mentioned are con-
sidered. We state the main results in the case where the digits ai grow least. 

Given any fixed veal k > 1 and any veal numbev A3 theve exist sequences of 
integevs {a^} such that 

I 1 1 
(i) A = a0 + -r + -r + -T + •••» 

where ai+l > at > 2 for i > 1, and for i sufficiently large, 

a • + 1 < ai + l < 2llkat + 1, 

I I 1 
(ii) A = aQ + —7 + r- H — + • • •, 

a* (a^a^) (alaza^)K 

where a-, = 2 , 1 < a . < 2 for i > 2, and a- = 2 infinitely often, 
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1 1 1 
(iii) A = aQ + — + - r - + + . . ., 

al ^1^2 (^^2^ a3 

where a1 = 2, 1 < a^ < 2 for i > 2, and a^ = 2 infinitely often. 

Since only the digits 1 and 2 are used, the representations (ii) and (iii) 
above could be regarded as being analogous in some fashion to the binary repre-
sentation for real numbers. Expansions of the above form where the digits have 
no upper bounds are also considered. We note in particular that, by setting k 
= 1 in the above results, we obtain expansions for real numbers with the same 
form as the Sylvester and Engel series but whose digits are considerably 
smaller. In addition, when k is a positive integer, rational numbers have 
representations of types (ii) and (iii) above for which the digits ai become 
'periodic. This condition is analogous to that of the L'uroth series when A is 
rational. 

The paper is set out as follows. In Section 2, we consider kth power ana-
logues of the Sylvester series. In Section 3, we consider kth power analogues 
of the Engel series. Finally, in Section 4, we consider kth power expansions 
that are related to a simplified version of the Lliroth series. 

For convenience we introduce the following notational conventions. The 
lower case letters a^ and an denote integers throughout the paper. Further-
more, unless otherwise stated, the lower case letter k represents a positive 
real number. 

2. Generalizations of Sylvester Series 

We introduce two different algorithms that lead to a kth power generaliza-
tion of the series of Sylvester. The first coincides with the ordinary Sylves-
ter algorithm for k = 1. The second leads to a restricted growth of the digits 
in all cases, including k = 1. 

Theorem 2.1: Let k > 0. Every real number A has a representation 

where: 

if k > 1, then a^ + l > ai > 2 for i > 1, and for i sufficiently large, 

ai + l > ai + 1, 

if 0 < k < 1, then ai + l > ai{ai - 1) + 1 for i > 1, al > 2. 

Proof: In order to obtain this result, we introduce the following algorithm: 

Given any real number A, let A-^ = A ~ ^ 0
5 ^ "^^1 ~ ^' 

Then we recursively define 

1 

A l/k + 1 for n > 1, An > 0, 

where 

An + l = An - — for An > 0. 

First, repeated application of the algorithm yields 

A = ao + Ax = H + j% + A2 = ••• - ao + }k + -Tk + ••• + i + An+r 
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Now an = [l/A^k] + 1 implies that, for 0 < An, (an, - l)k < l/An < ak. Thus, 

_1_ 
An * a*' 

and provided an > 2 (0 < An < 1) 
1 

A„ < 
(an - l)k 

Now 0 < i41 < 1 implies al > 2 and 

_L _i_ _JL -
Ar, — A-, — 77 > r — T — U. 
z l a\ a£ a± 

Continuing this process inductively we see that An > 0 for all n. Furthermore, 
since {An} is a strictly decreasing sequence of positive values, we deduce that 
a
n+\ - a

n - 2 f° r ̂  - 1- Therefore, 
_1_ 1 1_ _ ^n "• (an " X ) f e 

^n + 1 " An " a£ " (a„ - Dk ~ ak~ (an - l)k ak 

1 (an - l)ka^ 

Thus, 

In the case 0 < k < 15 ak - (an - l)k < 1; so 

an+l > (an - l)an + 1, n > 1. 

In the case k > 1, we have 

an+1 > an + 1 
provided 

(an - l)k 

(an - 1)' 
> 1. 

This is true if an > 2llkl {2llk - 1). and if An < (2l,k - l)fc/2. On the contrary, 
suppose that 

r ?1,k i 

say. Then 

K + \ = K~ A - ± An n + 1 " n a* \ " (c(k))k' 

Now, either An + l < (21/k - Dfe/2 or 

Thus, at each stage, An+i is decreasing by at least a fixed constant, so after a 
finite number of steps we must reach a stage at which Aj < (2*-'k - 1)^/2. The 
result for k > 1 now follows, since 

1 1 
J + n (aJ + n - l)k (c(k) +n - l)k 

For 0 < k < 1, an+ 1 > (a„ - l)an + 1 > an + 1 as an > 2; hence, 
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1 
A < __ + o as n -> °°. 

(n + l)k 

A slight modification to the algorithm leads to the following results. 

Theorem 2.2: Let k > 0. Every real number A has a representation 
1 1 1 

A = a0 + ~ +~k + ~~k + "' 
a\ a£ a^ 

where 
an + 1 > an > 2 for n > 1, 

and for n sufficiently large, 

a„ + 1 < a n + 1 < 21/fean + 1. 

Proof: We use the same algorithm as previously, except that now we let 

an = [(j-) ] + 1 for n > 1, 4„ > 0. 

As before, an + l > an > 2 for n > 1, but now 
2 2 
—r < i4M < -r- if 0 < Ay. < 1. 
a* n (an - 1)* 

Therefore, for n > 1, 

and 

Also, 

So 

A =A --L >-! 
n+1 n k k 

A , , < 
2 1 2a* - (a„ - l)fe 

n +1 (an - l)fc a£ a£(a n - 1)' 

2 2a«(an - 1) k(„ _ n * 

a"+1 > An + 1 ~ 2af- \an~ Dk' 

and we have an + 1 ^ an + 1, provided that 

2a£ - (a„ - l)k 

This is easily seen to be true if an > 3l^k/(31^k ~ 21/k) and if 

An argument similar to that used in the previous proof shows that these 
conditions must hold after at most a finite number of steps. Thereafter, as 
before, A n •> 0 as n -> °°, and the result follows. 

We note in particular that by setting k = 1 in Theorem 2.2 we get an ana-
logue of the Sylvester series 

1 1 1 

where an+l > an > 3 for n > 1 and for n sufficiently large 
an + 1 < an+i < 2an + 1. 
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This is a much milder growth condition than the condition an + 1 > an(an - 1) + 1 
for ft > 1 of Sylvester,. However, under these weaker conditions we no longer 
obtain uniqueness for the expansions. For example, if we let instead 

m vl/fcn 
+ i . 

where 77? > 1 is \ a fixed constant, we obtain a new expansion for A where the 
digits satisfy very similar growth conditions. 

As a particular case of these expansions, we note that, by definition, the 
Riemann zeta function £(fe) for k > 1 has expansion 

2k 3k kk 

EulerTs well-known formula for C(2tfz), m = 1, 2, 3, . .., then yields 

2Zm % ~ — = 1 + -T- + —z- + -y- + • • • , 
m (2m) I 22m 32m klm 

where Bm i s a B e r n o u l l i number. 

3 . A G e n e r a l i z a t i o n of t h e E n g e l S e r i e s 

Using a l g o r i t h m s e s s e n t i a l l y s i m i l a r t o t h o s e i n t r o d u c e d i n S e c t i o n 2 , we 
o b t a i n kth power a n a l o g u e s of t h e Engel s e r i e s . 

Theorem 3.1: Le t k > 0 . Every r e a l number A h a s a r e p r e s e n t a t i o n 
1 1 1 

A = a 0 + —r + ;: + + - . - , 
a\ (ala2)K (ala2a3)K 

w h e r e : 

if k > 1, then al > 2, ai > 1 for i > 1, and at > 2 infinitely often, 

if 0 < k < 1, then a.., > a.- > 2 for i > 1. 

Proof: We make use of the following algorithm. Given any real number A, let ^ 
= A - an, 0 < ^ 4 1 ̂  1. Then we recursively define 

where 

An+l = <&K - 1 for A„ > 0. 

First, repeated application of the above algorithm yields 

1 A2 
A = aQ + A1 = a0 + ~r + -* 

CI -I CI -I 

an + — + 
1 1 1 . A n + 1 

al Kd^a^) (ala2 • • • <z„) \a^a2 ... a„) 

Again, If An > 0, we have An > l/a„, and if also an ^ 2, then 

1 

(an » 1)* 
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Now 0 < Ai < 1 implies d\ > 2 and A2= a\A - 1 > 0, thus a2 ^ 1. Continuing the 
process inductively we see that An > 0 and hence an > 1 for all n. We consider 
now the case k > 1. Suppose an ^ 2, then 

4 n + 1 = aX - 1 s a" - 1 - (l + - ^ — ) * - 1 £ 2* - 1, 
(an - 1) K \ a„ - 1/ 

since we have assumed an ^ 2. Now, if .̂n + i ̂  1, then an + i ̂  2. Otherwise an + i 
= 1 and ^4n+2 = ^n+l ~ 1- Continuing this process, we see that after at most 
[2k - 1] steps with 

an+i = *» ^n+t+1 = An+i * An+I ~ V5 

we must reach a stage at which 

^n + J- < 1 and an + J- > 2. 

We deduce that the sequence {An} is bounded above by 2^-1 for all n. Further-
more, there exists a sequence of integers n\ - 0 < n2 < n$ < . . . such that 

0 < Ani+1 < 1, a n i + 1 > 2, 

and an = 1 for all other n > 1. Then 

0 < 
{axa2 . . . an.)k 2k(i~l) 

and so £„. -> 4 as £ •> °°, where 
1 1 1 A n + l Sn = a0 + — + + . . . + = A 

ax (ala2) (a1 . . . an) (a1 . . . an)K 

Now let ft^-i < n < n^. Then Sn < Sn < Sni , and n -* °°  iff i •> <». So 5n •> 4 
as n -> oo, i.e., the series converges. For the case 0 < k < 1, If an > 2, then 

fc 1 (an - 1)* # al 
a*, > > — - , since An + ] < - 1. 

Rn+i ccn - (an - i; (an - i) 
Now for k < 1, a„ - (a„ - l)k ^ 1 and since a^ > 2 we deduce that an + 1 > an > 2 
for all n > 1. Thus, 

n + l 1 
— < — — •> 0 as n -> ° ° , (ax ... a n ) k 2** 

and again the series converges. 

This result gives the ordinary Engel series for k = 1. 

It is possible to further restrict the growth of the digits a^ , so that for 
i > 1 they need only take on the values ai = 1 and a^ - 2, for any k > 1. 

Theorem 3.2: Let fc > 0. Every real number A has a representation 
1 1 1 

A = an + — + + 

where: 

If k > 1, then a2 = 2, 1 < ai < 2 for i > 2, and a^ = 2 infinitely often, 
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If 0 < k < 1, then a1 > 2, 1 < ai < 1 + [21/*] for i > 1, 
and a^ > 2 infinitely often. 

Proof: We use the same algorithm as in Theorem 3.1 except that now we let 

A l = A - aQ9 1 < A 1 < 2, 

2 \l/fcl 
and 

<z„ = + 1 for n > 1, An > 0. 

As in the previous result, An > 0 and an > 1 for all n > 1. Also, 

4W > -T 

which implies 

and, in the case k > 1, 

a*X - 1 > 1 

an+l = X + 
2 \l/k" 

fc) 1 + 2l/k < 3. 

Thus, 1 < an < 2 for n > 2, and (since 1 < Ax < 2) a\ > 2. Also provided an = 2 
(the case an > 2 cannot occur for n > 1, by the preceding inequalities) we get 

A„ 
(an - IV 

= 2 and ^ n + 1 < 
2aC 

(a„ » D ? 
1 = 2 fe + 1 1, 

since we assumed an = 2. Now, in the same way as in the previous theorem, after 
at most [2k+l - 1] steps of an+i = 1, we must reach a stage at which An + J- < 2 
and an+j = 2. Therefore, the sequence {An} is bounded above by 2fc+1 - 1 for all 
n*> 1. The convergence of the series for k > 1 is now shown in exactly the same 
way as in the previous theorem. The proof for 0 < k < 1 is exactly the same ex-
cept that a-, > 2 and for n > 1, 

1 < an < 1 + [21/*]. 

In particular, by setting k = 
Engel series 

1 1 1 

1 in Theorem 3.2, we get an analogue of the 

A = an + 
0 a 

+ 

where ax = 2, 1 < ai < 2 for £ > 2 and a^ = 2 infinitely often. Compare this 
to the growth condition ai+i > ai > 2 of Engel. Again under these weaker 
conditions the expansion is not unique. For example, in Section 4 we consider 
a different algorithm which for k = 1 gives another series with the same form 
and conditions on the digits, as the series noted here. 

We note as well that, if we had defined A± = A - a0 with 0 < AY < 1, as we 
did in Theorem 3.1, the digits obtained would have satisfied the same con-
ditions as above for i > 2, but would have had a\ > 2 if 0 < Ax < l/2k_1. The 
representation thus obtained would no longer be entirely in a "binary" form. 

The representation of rational numbers when k takes on integer values 1, 2, 
3, ... is also of interest. The condition that holds, i.e., that A is rational 
if and only if the digits in the expansion eventually become periodic, 
corresponds to the criterion for the representation of rational numbers via the 
Liiroth series. The result below applies to both the algorithms of Theorem 3.1 
and Theorem 3.2. 

1989] 55 



REPRESENTATIONS FOR REAL NUMBERS VIA kth POWERS OF INTEGERS 

Proposition 3.3: Let k = 1, 2, 3, ... . The digits in the kth power expansions 
of Theorem 3.1 (or Theorem 3.2) become periodic if and only if A is rational. 

Proof: Suppose firstly that A^ = p/q is rational (with p, q e 1 ) . Then, since 
k G M, each 4̂„ is also rational, with 

An = a»k_!>!„„! - 1 = ak_x{a^2An_2 - 1) - 1 

= ... = akAl + b = V-f, 

where ae M, b e Z. Now, for the first algorithm (Theorem 3.1) we have 

0 < An=Pf<2k - I. 

Thus, every 

(2fe - l)q\ n 2 3 
71 \q q q 

and so there exist m, n e M such that i4n = ^4n + m. Then the algorithm applied to 
An + m gives the same successive digits as when applied to An9 i.e., the digits 
become periodic. The same argument applies in the case of the second algorithm 
except that now 0 < An = pn/q < 2k+l - 1. 

Conversely, suppose that eventually an = an+m. If we use the notation 

Xn - a{ 3 + 

and l e t ar = (a^a 

A = Xn 

= K 

+ 

+ 

+ 

+ 

1 1 
al (ala2) 

2 • • • dr) y a n d aVc = 

%-l ( W ^nan + l + 

l"X" + FT" + " 

( l X 

1 (I 1 
an-l\an ana

n+l 

1 
(ax . . . an_x)k 

- an+n_1/an_1, we 

1 
• • • + k k 

a X + i ••• 
1 

••• + —n< 

1 
• " + -T~k 

have 

un+m-l/ 

' an+m~l! 

i . - l ' ' 1 + 1 1 
+ — + 

= a rational number. 

Note that for the ordinary Engel series the condition an+l > an implies that for 
some n sufficiently large an+^ = an for all i > 1. 

4. kth Power Series Related to the Luroth Series 

We could at this stage investigate expansions for real numbers whose terms 
take the form of the terms of the Luroth series raised to a power. However, we 
consider instead a similar type of algorithm which leads to an expansion of 
simpler form, yet where the digits satisfy similar conditions. In particular, 
by setting k - 2 in the results below, we obtain a series expansion for real 
numbers with the appearance of a simplified Luroth series. 

Theorem 4.1: Let k > 0. Every real number A has a representation ̂  
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1 1 1 1 
A = aQ + + ~-r + + + . . . , 

al ala2 (ala2)Ka3 {axa2a3r ah 

where: 

if k > 1, then ax > 2, at > 1 for i > 1, and a^ > 2 infinitely often, 

if 0 < k < 1, then a- + 1 > a { > 2 for i > L 
Proof: We derive this result from the following algorithm. Given any real num-
ber A9 let A± = A - a , 0 < Al < 1. Then we recursively define 

an = 1 + \f-\ for w > 1, An > 0, 

where 

^n + 1 = <%K ~ 4 " 1 for An > 0. 

Applying this algorithm repeatedly, we obtain 

A = an + A, = an + — + —r u x u ax a£ 

= an + 

1 . ̂ 2 _ 
fc ~ " * " 
1 

1 1 An + ] 
0 ' „k„ ' ' , x/c ax a x a 2 (ax ... a n_ x ) a n (ax ... an)k 

Now a„ = 1 + [l/An] implies that for A n > 0, 
1 

An > — , 
an 

and provided an > 2 
1 4„ < 

1 

Now 0 < i4]_ < 1 implies that al > 2 and A 2 = a ^ - a i " 1 > 0; thus a2 > I. Con-
tinuing this process inductively, we see that A n > 0; hence, an > 1 for all n. 
Consider the case k > 1. Suppose now that a n > 2; then 

A ^ = <Ai„ - ak~l < _ ^ _ - ^ - 1 = -T2L 
ak~l 

an+l ^n^n "n ^ ~ r - a - _ v -

Now if ̂ n + 1 < 1, then an + i > 2. Otherwise, a n + 1 = 1 and A n + 2 = >4n + 1 - 1. Con-
tinuing this process, we see that after at most [an~ I(an - 1)] steps with 

an + i = 1, A n + i + l = An + i - 1 = A n + l - 1, 

we must reach a stage at which A n + j < 1 and a n + J- > 2. Hence, there exists a se-
quence of integers nl = 0 < n 2 < n 3 < ... such that 

0 < A n i + l < 1, a n . + 1 > 2, and a„ = 1 

for all other n > 1. Then 

rz • + 1 1 
0 < ^ - ± i 

( a , a 9 . . . a„.)k 2kU~U ' 

and so 5 n , -> ^ a s i -> °°, where 

1 1 ^rc+i 5 n = a 0 + — -f . . . + =-— = A ^ r-
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Now l e t ni_l < n < n^. Then 

£ n . < Sn < Sn , and n + °° i f f i •> °°. 

So 5n-> A a s n -> °°, and t h e s e r i e s c o n v e r g e s . For t h e c a s e 0 < k < l , ±fan>2 
t h e n 

1 an - l 

> > 
a fc-l 

Since k < 1, a J l < 1, and as an > 2 we deduce that a , > a > 2 for all n > 1. 
w 1 n+l n 

Thus, 
^n + 1 1 

< _ ^ -> 0 as n ->- °°, 
(a: ... a n ) k 2fen 

and again the series converges to A. 
We note that by setting k = 2 in Theorem 4.1 we obtain the expansion 

1 ! 1 
A = an H + — ~ — + 5 — + . .., 

u aY afa2 (ala2)Aa3 

where a\ > 2, a^ ^ 1 for i > 1, and a^ > 2 infinitely often. In many ways this 
could be regarded as a simplified version of the Lliroth series. In addition, 
we shall show shortly that, as in the Liiroth case, A is rational if and only if 
the digits in the expansion become periodic. 

A second algorithm for k > 1 leads to a "binary" series of this type where 
the digits a^ are equal to 1 or 2, for i > 1. 

Theorem 4.2: Let k > 0. Every real number A has a representation 

1 1 1 
A = a0 + 

a1
 aia2 (a1a2) a3 

where: 

If k > 1, then ax = 2, 1 < a^ < 2 for £ > 2, and ai = 2 infinitely often, 

if 0 < fc < 1, then a, = 2, 1 < a-,, < 1 + 2a\~k for i > 1, 
and â- > 2 infinitely often. 

Proof: We use the algorithm of Theorem 4.1 except that now we let A-, = A - aQ, 
1 < AY < 2, and 

zn = 1 + j-1 for n > 1, i4„ > 0. 

In the same way as before, we can show An > 0 and an ^ 1 for all n > 1. 
Also in this case 

2 
An > — 

which implies 

A = nkA - ^k-1 > ^-1 

It follows that for k > 1 
, 2 

1 + 
LA

n+l-
< I + 5 ^ 3 -
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Thus, 1 < an < 2 for n > 2 and, as 1 < ̂  < 2, a } = 2. Also, provided an = 2 
(the case an > 2 cannot occur from the above), we get 

A < ± - 9 
n " a - 1 5 

and 
2ak 

A < — __ nk-\ _ o ofc-1 

since we assumed an = 2. Now in the same way as in the previous theorem, after 
at most [3.2* l] steps of an+i = 1, we reach a stage at which A n + j < 2 and an+j 
= 2. The convergence of the series for k > 1 is now shown in exactly the same 
way as in the previous theorem. However here, unlike that case, the sequence 
{An} is bounded above for all n by a fixed constant as well. The proof for 0 < 
k < 1 is the same except that we now have, for n > 1, 

A n + 1 < 3.2^-1 < 3, and an + 1 < 1 + 2a\'K 

We consider now the expansion of rational numbers via these algorithms when 
k is a positive integer. We show that as in the previous section A is rational 
if and only if A has an expansion in which the digits become periodic. 

Proposition 4.3: Let k = 1, 2, 3, . . . . The digits in the kth power expansions 
of Theorem 4.1 (or Theorem 4.2) become periodic if and only if A is rational. 

Proof: First suppose that the expansion is periodic, that is, eventually 

an ~ an+m' 

Then with the notation 

1 1 1 
X„ = an + — + k ( \k 

Ia2 ^al ''' an-2) an-l 

and ar = (a]_a2 . . . av)K , a* = otw + m _ 1 / a n _ 1 , we have 
1 

(an . . . cLn+m_2) an + m_l 

1 
a*(an . . . an + m_2)kan + m_1 

alan ala*an+l 

1 / 1 
= Xn + — 

an-l\an 
a„a nan + l 

^an ••• a
n+m-2) an+m-l 

)(l + — + \ + • . •) 

= a rational. 

Conversely, suppose A l = p/q is rational (with p, <? € I ) . Then, since / e e l , 
each A n is also rational, with 

An = ak A - afc-l = ak'\lak 4 0 - a k " ^ - ak~\ 
n n-l n-l n-l n - \ \ n-2 n-2 n-2/ n-l 

= •-• = akAl + b = pn/?. 
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where b e Z, a, p e ! . Now in the case of the second algorithm (Theorem 4.2) 

0 < A„ = P IQ ^ 3.2k~l. 
Thus, every 

2 3.2k-lq) 
A„ e 1 

q> q> 
and we deduce that the expansion becomes periodic in the same way as in 
Proposition 3.3. In the case of the algorithm of Theorem 4.1, we do not have 
a fixed bound for An. However, when A is rational, 

1 . , -, , 
< q + 1 1 + 1 + 

as pn > 1 for 
above by an An 

Am < 
a 

ln > 0. Using the fact that any An for which ar 
for which am > 2, and that (for am > 2) 

fc-1 

1 is bounded 

am-\ 
it follows that, for all n > 1, 

An < (q + l)k"l. 

Thus, every 

4- I)*" {I 1 
\?' q> -*> 

(q 
* } • 

and again we can deduce that the expansion must eventually become periodic. 
In summary, we have found new classes of representations for real numbers 

that are related to the classical series of Sylvester, Engel, and Liiroth. In 
many cases, the expansions require very mild growth conditions on the digits 
and share with the Luroth series the property of begin periodic when a number 
is rational. Unlike the classical series, however, the expansions for real 
numbers with k * I are not unique, slightly different algorithms yielding 
series with the same properties, but with different digits for the same real 
number A. 
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1. Introduction 

In Chapter 3 of his second notebook [1, p. 164], Ramanujan defined polyno-
mials 

v-2 
ArW = X > 0 % k)x2r-k~l (r > 2) (l.i) 

k = o 
with Al(x) = x. The numbers a(r9 k) are integers such that a (2, 0) = 1 and, 
for v > 2, 

a(r + 1, fe) = (r - l)a(r, k - 1) + (2r - k - l)a(r, k). (1.2) 

Also, a(p, fc) = 0 when k<Qoxk>T- 2. Properties of Ar (x) , and the moti-
vation for defining them, are discussed in [1, pp. 163-166]. Included in that 
reference is a list of the polynomials Ar (x) , 1 < v < 7, and the following theo-
rem: 

Lafr, k) = Ar(l) = (r - l)^ 1. (1.3) 
fe = o 

In [3] it was shown how a(r9 v - k) can be expressed in terms of Stirling 
numbers of the first kind, and the following special cases were worked out: 

a(r, 0) = 1 • 3 • 5 • • •• • (2P - 3), (1.4) 

a(r, 1) = [1 • 3 • 5 • ••• • (2r - 3) ] (r - 2)/3, (1.5) 

a(r9 v - 2) = (r - 2)! (1.6) 

We note here that it is easy to prove by induction that 

a(r9 2) = (r - 3)(r - 2)(r - 1)5 • 7 • ••• • (2r - 5)/3. 

The main purpose of the present paper is to prove congruences for a(r9 k) 
(mod p) , where p is a prime number. As an application of some of these congru-
ences we prove Ap(x)/xp+l and Ap_i(x)/xp are irreducible over the rational 
field. We also determine, for all v , the least residues of a(r, k) (mod 2), 
(mod 3), and (mod 4). For each r we find the largest k such that a{v 9 k) t 0 
(mod p ) , and we make a conjecture, based on computer evidence, about the 
smallest k such that a(r9 k) i 0 (mod p ) . We also conjecture the following 
periodicity property: 

a(r + (p - l)p, k + (p - 2)p) = a(r, fe) (mod p). 

This has been verified for all primes p < 251. A few other results and conjec-
tures are given for moduli not necessarily prime. 

2. Congruences (Mod P) 

Theorem 2.1: For any prime number p, 

a(p9 k) = 0 (mod p) (fe = 0, 1, ..., p - 3), 
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a(p, p - 2) = 1 (mod p). 

Proof: In [1, p. 164] we have 

Ar{x) = x(r - 2)Ar_l(x) + x ^ (V " ̂ ( ^ ^ ( x ) , (2.1) 

and hence 

A +l(x) E -x^p(x) + x̂ .p (a:)i41 (#) E (X2 - x)AP(x) (mod p) . 

Comparing coefficients of x2-P~k + l , we have 

a(p + 1, k) E a(p, fe) - a(p, fc - 1) (mod p) . (2.2) 

From (1.2) we have 

a(p + 1, fc) = -a(p, k - 1) - (k + l)a(p, fe) (mod p). (2.3) 

Combining (2.2) and (2.3), we see that 

(k + 2)a(p, fc) E 0 (mod p) (fe = 0, ..., p - 2). (2.4) 

The theorem now follows from (2.4) and (1.6). We note that results similar to 
Theorem 2.1 have been proved for the Stirling numbers [2, pp. 218-219]. 

Theorem 2.2: For any odd prime number p, 

a(p - 1, k) E 0 (mod p) (k = 0, 1, ..., p - 4), 

a(p - 1, p - 3) E (p - 3)! (mod p). 

Proof: From (1.2) we have 

a(p, fe) E -2a(p - 1, k - 1) - (k + 3)a(p - 1, fe) (mod p). 

Thus, by Theorem 2.1, 

(k + 3)a(p - 1, k) E -2a(p - 1, fe - 1) (mod p) (fe = 1, ..., p - 3). 

Since 
a(p - 1, 0) = 1 • 3 (2p - 5) E 0 (mod p) for p > 3, 

the theorem follows from (2.5) and (1.6). 

(2.5) 

Theorem 2.3: For any odd prime number p, the polynomials 

Ap(x)/xP+l and Ap_l(x)/x? 
are irreducible over the rational field. 

Proof: Assume p > 2. We know 

a(p9 k) E 0 (mod p) (fe = 0, 1, ..., p - 3), 

a(pf 0) = 1 • 3 • ••• • (2p - 3) t 0 (mod p 2 ) , 

a(p, p - 2) E 1 2 0 (mod p). 

Thus, j4p(;c)/xp + 1 is irreducible by Eisenstein's Criteria. The proof is similar 
for Ap_l(x)/xP. 

We note here that Theorem 2.1 could be generalized by using pJ, j > 1, in-
stead of p. Replacing p by pJ in the proof, we have 

a(pJ, k) E 0 (mod p) (fe £ -2 (mod p)). 
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Theorem 2.4: I f p i s an odd pr ime and i f m > p , t h e n 

a(m, k) E 0 (mod p) (fc = 0 , 1, . . . , p - 3 ) . 

Ifm>p, t h e n 

a(m, p - 2) = a ( p + t , p - 2) E 1 • 3 ( 2 t - 1) (mod p ) . 

Proof: We use induction on 777. The first part of the theorem is true for m 
Assume it is true for 7?? = p, p + 1, . . . , r. Then, by (1.2) we have, for k 
1» ..., p - 3, 

a{v + 1, fc) E 0 (mod p); 

therefore, the first part of the theorem is true for all 77? > p. Now, by (1 
if t > 0, then 

a(p + t, p - 2) E (2t - l)a(p + t - 1, p - 2) 

E 1 • 3 (2t - l)a(p, p - 2) 

E 1 • 3 (2t - 1) (mod p). 

This completes the proof. 

We note that when t > (p + l)/2, 

a(p + t , p - 2) E 0 (mod p) (p > 2). 

We also note the following special cases of Theorem 2.4. For k = 0, 1, 2, 
p - 3: 

a(p + 1, k) E 0 (mod p) ; a(p + 2, k) = 0 (mod p) : 

a(p + 1, p - 2) E 1 (mod p); a(p + 2, p - 2) E 3 (mod p); 

a(p + 1, p - 1) E -1 (mod p); a(p + 2, p - 1) E -2 (mod p); 

a(p + 2, p) E 0 (mod p). 

Theorem 2.5: Let p be an odd prime. Then, for k = 0 , 1, ..., 2 p - 5 : 

a(2p, k) E 0 (mod p); (2p - 1, k) = 0 (mod p); 

a(2p, 2p - 4) E 1 (mod p); a(2p - 1, 2p - 4) E 1 (mod p); 

a(2p, 2p - 3) E -2 (mod p); a(2p - 1, 2p - 3) E 0 (mod p); 

a(2p, 2p - 2) E 0 (mod p). 

Proof: We know by (1.6) and Theorem 2.4 that 

a(2p., 2p - 2) E 0 E a(2p, p - 2) (mod p) . 

From (2.1) we have 

A2p+l(x) E (-# + x2)A2p(x) + 2xAp(x)Ap+l(x) (mod p). 

Thus, by Theorem 2.1 and Theorem 2.4 (with 777 = p + 1) , 

A2p+l(x) E (-x + j;2)A2p(x) + 2x2P + s - 2x2? + l* (mod p) . ( 

Congruence (2.6) gives, for k * 2p - 3, 2p - 4, 

a(2p + 1, fe) E a(2p, /c) - a(2p, k - 1) (mod p) , ( 

and from (1.2) we have 

a(2p + 1, k) E -(& + l)a(2p, k) - a(2p, /< - 1) (mod p) . ( 

Combining (2.7) and (2.8), we have, for k * 2p - 3, 2p - 4, 
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(k + 2)a(2p, k) = 0 (mod p) . 

For fc = 2p - 3 and k = 2p - 4, (2.6) and (2.8) give 

(2p - l)a(2p, 2p - 3) E 2 (mod p ) , 

(2p - 2)a(2p, 2p - 4) = -2 (mod p ) , 

and we see that the congruences for a(2p, k) in Theorem 2.5 are valid. Now5 by 
(1.2) and (1.4), we have 

a(2p, k) = -2a(2p - 1, k - 1) - (k + 3)a(2p - 1, k) (mod p), 

a(2p - 1, 0) E 0 (mod p). (2.9) 

Thus, a(2p - 1, k) E 0 (mod p) (fe = 0, 1, ..., p - 4), 

and by Theorem 2.4, 

a(2p - 1, p - 3) E 0 (mod p). 

It is now clear that the congruences for a(2p - 1, k) follow from the congruen-
ces for a(2p, k) and (2.9). This completes the proof. 

Theorem 2.6: If p is prime and m > 2p, then 

a(m, k) E 0 (mod p) (fc = 0, 1, ..., 2p - 5), 

a(m9 2p - 4) = a(2p + t, 2p - 4) = 1 • 3 (2t + 1) (mod p). 

Proof: We use induction on m. The theorem is true for m = 2p. Assume it is 
true for m = 2p, 2p + 1, ..... p. Then, by (1.2), we have 

a(r + 1, fe) E 0 (mod p) (fc = 0, 1, ..., 2p - 5); 

therefore, the first part of the theorem is true for all m > 2p. By (1.2), we 
have, for t > 0, 

a(2p + t , 2p - 4) E (2t + l)a(2p 4- t - 1, 2p - 4) 

E 3 • 5 • ••• • (2t + l)a(2p, 2p - 4) 

E l - 3 ' 5 (2t + 1) (mod p). 

This completes the proof. 

Using the same sort of proof as the proof of the first part of Theorem 2.5, 
we can show, for p > 2, 

a(3p, k) E 0 (mod p) (k = 0, 1, ..., 3p - 7; k * 2p - 2). 

The case a(3p, 2p - 2) has not been resolved. We indicate with Conjecture 1 in 
Section 4 what the general situation appears to be. The next theorem deals 
with a related problem, namely, the problem of finding the largest k such that 
a(p, k) t 0 (mod p). 

Define g(p3 r) to be the largest k such that a(r, k) i 0 (mod p). 

Theorem 2.7: Let r be a positive integer, r > 2. Write 

p = 2 + (s(p - 1) + t)p + w 

with s > 0 , 0 < t < p - 2 , and 0 < w < p - 1. Then 

g(p, P ) = m = sp(p - 2) + t(p - 1) + u. 

Furthermore, 

a(r, m) E ul (p - 2)!/(p - 2 - t)! (mod p). 
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Proof: We give a brief outline of the proof by induction on s, t, and u. Note 
that showing air 9 k) = 0 (mod p) for all k > m is simple, and we omit the de-
tails. The recurrence relation (1.2) is the main tool in all of the following. 
The theorem is certainly true for s = t = u = 0. For fixed s and t 9 induction 
on u is straightforward. Note that the induction applies to arbitrarily large 
u; the statement of the theorem restricts u to the nonzero values of air9 m) . 
If the theorem is true for some fixed value of s, u = p - 1, and some value of 
t, then it is not hard to show that the theorem must be true for the same s9 u 
= 05 and the successor of t. By induction, if this theorem is true for some s 
and for t = u = 0, then it is also true for that s and all 0 < t < p - 2 and 
0 < u < p - 1. 

Now suppose the theorem is true for some s and all t and u such that 0 < 
t < p - 2 and 0 < u < p - 1. Let 

rQ = 2 + (s(p - 1) + ip - 2))p 
and let 

mQ = spip - 2) + (p - 2)(p - 1). 

Then5 putting t = p - 2 in the induction hypothesis> we have 

a(pQ + u, m0 + u) = w! (mod p) for 0 < u < p - 1. 

Since rQ - 2 E 0 (mod p) and 2P Q - (̂ Q + 1) ~ 3 E 0 (mod p) , we must have 

a(pQS TW0 - 1) E 0 E 0 - 0! (mod p) . 

Now induct on u to show that 

a(pQ 4- u$ mQ + u - 1) E u*w! (mod p). 

Finally, we can conclude that: 

a(pQ + p9 m0 •+• p) E p! E 0 (mod p ) ; 

a(r0 + p, 77z0 + p - 1) = p • p! = 0 (mod p); 

a(2 + (s + Dip - D p , (s + l)p(p - 2)) = airQ + ps mQ + p - 2) 

E 0 - a(pQ + p - 1, w0 + p - 3) + (4 - 0 - 3) * a(pQ + p - 1, wQ + p - 2) 

E ip - 1) - (p - 1)1 E 1 (mod p). 

It follows that the theorem is true for t = u = 0 and s + 1. By induction, the 
theorem is true for all s > 0 , 0 < t < p - 2 , and 0 < w < p - 1. 

The proof of the following theorem follows the same lines as the proof of 
Theorem 2.2. 

Theorem 2.8: Let p be prime, p > 3. Then, for 1 < t < ip - 3)/2, 

aip - t9 k) E 0 (mod p) (fc = 0, 1, ..., p - 2£ - 2). 

For 2 < £ < p - 1, 

a(2p - t, fc) E 0 (mod p) (fc = 0, 1, ..., 2p - 2* - 2). 

For example, using Theorem 2.8, Theorem 2.2, and (1.2), we have, for p > 59 

aip - 2, k) E 0 (mod p) (Zc = 0, 1, . . . , p - 6), 

a(p - 2, p - 5) E -ip - 4)!/3 (mod p ) , 

aip - 2, p - 4) E (p - 4)! (mod p). 

3. Congruences (Mod 2), (Mod 3), and (Mod 4) 

In this section we first determine when air, fe) is even and when it is odd. 
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Theorem 3.1: 
a(r, 0} E 1 (mod 2) (r > 2), 

a(r, 1) E r (mod 2) (r > 3), 

a(r, k) E 0 (mod 2) (k > 1). 

Proof: The congruences for a(r, 0) and a(r, 1) are clear from (1.4) and (1.5). 
By (1.2) we have, for k > 1, 

a(2r, k) E (k + l)a(2r - 1, k) (mod 2). 

If k is odd, we clearly have a(2r, k) is even. If k is even, then 

a(2p, k) E a(2p - 1, k) (mod 2). 

And by (1.2), since k - 1 is odd, 

a(2r - 1, k) E a(2r - 2, k) (mod 2). 

Thus, 

a(2r, k) E a(2r - 2, k) E ... E.a(fe + 2, fe) E fe! E 0 (mod 2). 

Now since 

a(2p + 1, k) E a(2r, fe -- 1) + (k + l)a(2r, k), 

we have a(2p + 1 , k) is even if k > 1. This completes the proof. 

The patterns (mod 4) and (mod 8) are suggested by the computer and can be 
proved by induction on v. For (mod 4) we have the following congruences. 

Theorem 3.2: a(r3 k) = 0 (mod 4) for all k except: 

( m = (1 (mod 4) if v E 1 or 2 (mod 4), 
K ' J " \3 (mod 4) if v E 0 or 3 (mod 4), 

, -, >> _ (1 (mod 4) if p E 1 or 3 (mod 4) , 
a ( J S j " (2 (mod 4) if v E 0 (mod 4), 

a(p, 2) E 2 (mod 4) if v E 0 (mod 4), 

a(r, 3) E 2 (mod 4) if r E 1 (mod 4). 

Theorems 3.1 and 3.2 suggest the following, which can be proved by means of 
(1.2) and induction on n. 

Theorem 3.3: If k > 2n, then a(p, k) = 0 (mod 271) . 

To prove congruences (mod 3) we need the following lemma, which is a spe-
cial case of Conjecture 4 of Section 4. 

Lemma: For r > 2, a(r, k) E a(r + 6, k + 3) (mod 3), 

Proof: The lemma is true for v = 2 , since 

a(8, 3) E 1 (mod 3), 

a(8, k) E 0 (mod 3) if k * 3. 

Assume it is true for r = m - 1. Then, by (1.2), 

a(w + 6, k + 3) E (??7 - 2)a((/?? - 1) + 6, k + 2) 
+ (2(̂7? - 1) - 1 - k)a(m - 1, k) 

(continued) 
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= (jn - 2)a(m - 1, k - 1) + (2(777 - 1) - 1 - k)a(m - 1, k) 

= a(m, k) (mod 3 ) . 

Theorem 3.4: a(r, k) E 0 (mod 3) f o r a l l £c e x c e p t : 

E 1 (mod 3 ) , v > 2, 

= r(r + 1) (mod 3) i f r i 0 (mod 6 ) , 
1 (mod 3) i f r = 0 (mod 6 ) . 

a\r, 

a\r, 

V 

V 

-
2 

+ 
2 

f 

f 

Proof: Suppose r E 2 (modi), i. e. , r = 6 j + 2. Then, by the lemma, 

a(p, fe) E a(6(j - 1) + 2, fe - 3) E ..- E a(2, fe - 3j) (mod 3) 

Thus, 
, _ (0 (mod 3) if k * 3j, 

U ' ; " (1 (mod 3) if k = 3j = (P - 2)/2. 

The other cases of v (mod 6) are handled in exactly the same way. 

4. Conjectures 

Theorem 2.4, Theorem 2.5, and information given by the computer suggest the 
following conjectures. 

Conjecture 1: For all integers t and positive integers h such that h + t > 1, 

a(hp + t, fe) E 0 (mod p), fe = 0, 1, ..., h(p - 2) - 1, 

a(hp + t, /i(p-2) E 1«3 (2tl 2h - 3) (mod p) . 

For t > 0, Conjecture 1 has already been proved in Section 2 of this paper 
for h = 1, h = 2. If we try induction and assume true for h = m - 1, we can 
show, as in Theorem 2.1 and Theorem 2.5, 

(fe + 2)a(mp, k) E 0 (mod p) (fe - 0, ..., m(p - 2) - 2). 

Thus, the proof depends on showing 

a(mp, k) E 0 (mod p) ±f k = -2 (mod p). 

The rest of the proof, for i > 0, would then follow. The cases t > 0 have been 
verified by the computer for all primes less than or equal to 251. The case 
h + t = 0 leads to the next conjecture. 

Conjecture 2: Let p be any prime. 

(i) Let h be any nonnegative integer. Then 

a(2 + hp(p - 1), m) E 0 (mod p) if m * hp(p - 2). 

(ii) Let ft be a nonnegative integer, h t 0 (mod p). Then 

a(l + h(p - 1), m) E 0 (mod p) if m * h(p - 2). 

(iii) Let h be a nonnegative integer, /i / 0 or.p - 1 (mod p) , 

a(h(p - 1), 777) E 0 (mod p) if 777 * /z(p - 2) - 1. 

By Theorem 2.7, we know: 

(i) a(2 + hp(p - 1), /zp(p - 2)) E 1 (mod p) . 

(ii) Let h = sp + t , 1 < £ < p - 1, s > 0 , then 

Then 
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- t), 
t) 

a(l + h(p - 1), h(p - 2)) 
= a(2 + (s(p - 1) + (t - l))p + (p - 1) 
sp(p - 2) + (t - l)(p - 1) + (p - 1) • 

E (p - 1 - £)! • (p - 2)!/(p - 2 - (* - 1))! = 1 (mod p). 

(iii) Let h = sp + t, 1 < t < p - 2, s < 0, then 
a(h(p - 1), h(p - 2) - 1) 

= a(2 + (s(p - 1)+ (* - D)p + (p - 2) - t), 
sp(p - 2) + (t - l)(p - 1) + (p - 2) - t) 

E (p - 2 - £)! • (p - 2)!/(p - 2 - (* - 1))! E (p - 2)!/(p - 1 t) 

The authors are grateful to the referee for suggesting the next conjecture. 
Part of this conjecture would follow from Conjectures 1 and 2. 

Define f(p, r) to be the smallest k such that a(r, k) ^ 0 (mod p). 

Conjecture 3: Clearly f(p, r) = 0 if r < (p + l)/2. Thus, for i> > 2: 

(i) /(p, r) = (p - 2) 

(ii) f(p, r) = (p - 2) 

(iii) /(p, r) > (p - 2) 

LP 
" 
V 

r 
-

V 
-

1_ 
" 

1_ 

- 1 if (p - l)|p; 

if r = t (mod p - 1) , 1 < t < (p + 1) /2; 

IP - 1 
+ 2t if P E t + (p + l)/2 (mod p - 1), 

1 < t < (p - 5)/2. 
In some cases, f(p9 ^) is larger than the formula given in (iii) above. 

For example, f(ll, 17) = 13, f(ll, 48) = 42, jf(13, 22) = 19, and /(13, 68) = 59 
are larger by 2, and f(41, 350) = 334, f(43, 1743) = 1703, /(61, 2152) = 2111, 
and f(67, 2038) = 2002 axe larger by 4. It appears to be difficult to predict 
when /(p, P ) will be larger than the formula or by how much it will be bigger. 
There are many cases where f(p9 T) is larger by 2 or 4, and we suspect the 
formula could be off by even more for very large primes. 

Conjecture 4: If p is any prime, then 

a(r + p(p - 1), m + p{p - 2)) = a(r, m) (mod p) for any r > 2, m > 0. 
Because of the recursion formula, (1.2), it suffices to show that 

a(2 + p{p - 1), m + p(p - 2)) E a(2, m) (mod p) 
for all integers m . In this manner, Conjecture 4 has been proved on the 
computer for any prime p < 251. 

Conjecture 5: If p is any prime and m > 0, then 
air + pnip - 1), m + p*(p - 2)) E a(r, /w) (mod pn) 

for all sufficiently large p. 

Conjecture 5 has been proved on the computer for pn up to 213, 37, 55, 7^, 
ll3, 133, 172, 192, 232, 292, 312, 372, 412. 

Conjecture 6: If p is an odd prime, then 

(i) air, 0) E p (mod 2p) for r > (p + 3)/2; 
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, . . x / 1N _ (0 (mod 2v) if r is even . , , _N /0 (n) a(r, 1) = < ) j o ( -r • JJ and i5 ̂  (p + 3)/2; \p (mod 2p) if p is odd ^ Jl s 

(iii) if m > 2 and r > (p + 3)/2, then 

a(r + p(p - 1), m + p(p - 2)) E a(p, m) (mod 2p). 

Conjecture 6 can be proved to be true if Conjecture 4 is assumed to be 
true. Similar conjectures for other composite moduli also seem to hold, but 
are more complicated to state. 

5. Concluding Remarks 

Apparently not much is known about the numbers a(r9 k). It would be useful 
if a generating function and a combinatorial interpretation were found. Also, 
it appears difficult to find values of Ar(x) for x * 0, x * 1. We remark that 
it is easy to find derivative formulas for Ar(x)s however. It follows from 
(1.2) and the definition of Ar(x) that 

x3A^(x) = Ar+l(x) - (r - l)xAr(x)9 
(J) and thus it is easy to find a general formula for Ar (x). For example, we have 

by (1.3) and the above comments, 

A;a) = r* - (r - iy 
A^(l) = (r + 1)[(P + 1)P - 2rr + (r - l)p]. 
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Le t {xn}n>i be a s equence of p o s i t i v e r e a l number s . The ^ - s e q u e n c e c o r r e -
spond ing t o {xn} i s d e f i n e d a s h a v i n g a s i t s n t h t e rm 

^n + 1 x 

for all integers n > 1. One of the purposes of this note is to compare the se-
quence {xn} with its corresponding ^-sequence {qn} so that conditions imposed 
on one of them will yield results concerning the other. 

1. Example: Consider the Fibonacci sequence {xn} defined recursively by 

ar1 = 1, x2 = 1, xn + l = xn + xn_l if n > 2. 

It is well known that the q-sequence corresponding to {xn} converges to the 
real number ( 1 + /5)/2. This example shows that divergent sequences {xn} can 
have corresponding ^-sequences that converge. On the other hand, examples can 
be found of convergent sequences of quotients of convergent sequences. See 
Theorem 5 below. 

Whenever a sequence {xn} is defined recursively, say 

xY = a, x2 = b, xn+l = f(xn, xn_l) for n > 2 

and positive numbers a and b, let S ( a, b , /) denote the corresponding q-
sequence, where f is a nonnegative function of two real variables which is 
defined and positive in the first quadrant and defined on the positive z/-axis. 
If iqn} converges, let z be its limit 

z = lim a . 

2. Theorem: Let {qn} = S(a, b, f) be the q-sequence corresponding to a sequence 
{xn}. If iqn} converges and f is continuous and positively homogeneous of de-
gree 1 [f(Xx, Xy) = \f(x, y) for A > 0], then z satisfies the equation 

w2= f(w, 1). 

Proof: Since / is positively homogeneous of degree 1, it follows that 

w n = ̂  - fiXn: Xn~l) = f{^> i) - /«„. i). 
•Sz-1 xn-\ \ x r c - l / 

C o n s e q u e n t l y , z2- = f(z, 1) must h o l d b e c a u s e of t h e c o n t i n u i t y of / . 

3 . Examples: (1) For t h e F i b o n a c c i s e q u e n c e , one h a s 

f(xn, xn_l) = xn + xn_l 
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and the limit z = (1 + /5~)/2 satisfies f (z , 1) = ((1 + /5)/2)2, in agreement 
with the theorem. 

(2) Consider {qn} = S(ls 2, xn + 2#n_1) • T o find s, one might 
want first to solve the quadratic equation z2- = z + 2, whose positive solution 
is z = 2. Unfortunately, Theorem 2 as stated does not guarantee that lim q = 
2. If the limit exists, then n 

<••> - ^ - ^ " - ^ - ' + > /0£r) - • • *'«. 
implies 2 - 2. A procedure for finding the limit is presented in the next 
result. 

4. Theorem: Let b > 0 and c > 0 be real numbers. If /(#, 2/) = bx + cy, let 
{a:n} be the sequence defined recursively by 

xl = p > 0, x2 = q > 0, and ̂ n + 1 = /(#„, ̂ n_x) for n > 2. 

Then the (^-sequence S(p9 q, f) converges to 

z = (b + /&2 + 4c)/2 

independent of the initial values p and q. Moreover, the sequence iqn+i - qn) 
is either the constant sequence {0} or oscillates between positive and negative 
values. 

Proof: Note that for n > 2, 

x„Ml bx„ + <?#„ _-, <? 
6 + 4n + l Xn Xn

 D + <7/ 

and hence, for n > 3, 

<7n-l ~ <?n 
^n^n-1 

Consequently, {^n + 1 - qn} is either the sequence {0} or oscillates between posi-
tive and negative values. Also, 

c 
qn = b + for n > 3 

i m p l i e s t h a t qnqn_l = bqn_1 + c > b1 + c for n > 4 , and hence 

Kn+1 " ? J <? 
? n ? n^n -1 &2 + 

I f d = c/ (2?2 + c ) , t h e n 0 < d < 1 and 

k n + i - qn\ * an~*Uk - ?3I f o r n - 3s 

Since 

n = 3 

converges, it follows that iqn} is a Cauchy sequence, thus it converges to some 
number z > 0. Theorem 2 shows that z2 = bz + <? must hold; therefore, 

2 = . D 
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One can, in some cases, compare the behavior of a given sequence {xn} with 
that of its corresponding q-sequence. It is to be pointed out here that the 
sequences referred to in the following result are not necessarily generated by 
recursion 

5. Theorem: Let {xn} be a sequence of positive numbers and let {qn} denote its 
corresponding ^-sequence. Then 

(1) If {qn} e £Q5 then {xn} e £(1); hence {xn} £ <?Q. 

(2) If {xn} £ a - cQ9 then lim qn = 1. 

(i^K Cn, and c denote' the spaces of summable, convergent to zero, and conver-
gent sequences, respectively.) 

6. Example: Consider the sequence defined by 

= 1 

Since 4n2 - 1 > n2, then {yn} £ SL^K Define a sequence {xn} by 

t 
X y, ~~ , 

na+yk) 
k>n 

where t > 0 is a real parameter. This sequence is well defined, because the 
infinite product 

n (i + yk) 
k>-n 

converges. It follows that {1 + y } is a ^-sequence. Indeed, 

x na + yk) 
n + 1 _ k>n 2_ 

k>n + 1 K 

for n > 1. A simple computation shows that 

r w i _̂  N 2 2 4 4 6 6 
, n x

( 1 + V = 1 3 3 5 5 7 • • • • 

where the product on the right was shown by John Wallis (1616-1703) to have the 
value TT/2. 

The next result is an attempt to answer a question suggested by the pre-
vious example: What sequences are q-sequences? 

7. Theorem: Let {yn} be a sequence of positive terms in £(1). Then, there ex-
ists a 1-parameter family of sequences ixn(t)} for t > 0 such that 

*n+l(*) i 

for all n > 1. 

Proof: In order to have that #„ + ]_/#„ = 1 + 2/n> o n e must solve the infinite lin-
ear system 
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'^1(1 + yx) 
\x (1 + y ) ^0 = 0 

Set xl = t, an arbitrary positive real number. Then x2 = t(l + y\) , x^ 
y\)(l + 2/2)' and by induction, 

xn + l = t n (1 + y k ) . 
k<n 

Therefore5 the ^-sequence corresponding to {x (£) } is given by 

x (f) t II (1 + y, ) 

= t ( l + 

Xn^ t El (1 + Z/7<) 
= 1 + v . 

fe < n - 1 

This establishes the result, 

In Theorem 2 above, the limit z of a convergent g-sequence corresponding to 
a recursively generated sequence was shown to satisfy a functional equation 
involving the generating function for the original sequence. This generating 
function was required to be positively homogeneous of degree 1, continuous and 
nonnegative in the first quadrant. According to Theorem 4, if the generating 
function is the restriction of a linear form, then the limit of the ^-sequence 
can be explicitly calculated and does not depend on the initial two terms of 
the original sequence. 

The result that follows explores the nature of the functional equation by 
characterizing the class of functions to which Theorem 2 applies and provides 
examples to show that the independence of the limit z of a ^-sequence with 
respect to the initial terms p and q of the original sequence, which was one of 
the conclusions obtained in Theorem 4, no longer holds in the general case. 

8. Theorem: A function /: [0, °°) x (0, °°) -> [0, °°) is continuous, positive on 
(0, c o ) 2

5 and positively homogeneous of degree 1 if and only if there is a con-
tinuous function y : (0, °°) -> (0, °°) which is such that 

(i) Y(t) = /(l, t) for all t G (0, «,) 
and , . 
(ii) lim , exists and is finite. 

t> 00 t 

Proof: Suppose /: [0, °°) x (0, °°) -* [0, 00) is continuous, positive on (0, ° ° )2 

and positively homogeneous of degree 1. Set 

y(t) = /(l, t) for t e (0, oo). 

Then y is continuous and positive, and 

l i m ^ i = lim fU, l) =/(0, 1) 

exists and is finite, due to the continuity of / and the fact that / is posi-
tively homogeneous of degree 1. 

Conversely, suppose that y : (0, °°) -> (0, °°) is continuous and that 

t->co t 

exists and is finite. Set 

a = lim ^ 
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and define / on [0, °°) x (0, °°) by setting 

'xy(y/x) if x * 0 

[ya if x = 0. 
f{x, y) 

f is continuous for x > 0 and y > 0 since is continuous on (0, °°) , (x, y) -> 
y/x is continuous for x > 0 and y > 0 and the projection (x, 2/) •> x is continu-
ous everywhere. 

If S^ = { (x, y) : x > 0, y > 0}, S2 = {(0, y) i y > 0} and if z/Q is a fixed 
positive number, then r • 

K ) 
lim /(a;5 z/) = lim xy( — j = lim y 

(x,y) + (0,y0) (*, y)+ (0,2/0) ^ (a:, z/) > (0, z/Q) 
(*,Z/)G ^i (x, y)e S1 (x, y) e Sx 

I 
X 

yQa 

f(0, y0), 

and 

Thus, 

lim f(x, y) = lim ay = yQa = /(0, 2/0). 
U , z/) + (0, z/Q) z/ -> i/0 

(x,y) e 52 

lim /(x, z/) = /(0, z/0), 
(x,y)+(0,yQ) 

and / is continuous at (0, z/Q). It has now been demonstrated that / is contin-
uous on [0, °°) x (0, °°) . 

The function / is also positively homogeneous of degree 1. For, if X > 0, 

f(Xx, Xy) = <wi) 
Aty)a 

i f x * 0 

i f x = 0 
WD 
,A(z/a) 

i f ^ * 0 

i f a; = 0 . 

T h e r e f o r e , f(Xx, Xy) = Xf(x, y). • 

S ince x , = f(x 9 x , ) i m p l i e s 

^ = / ( l 5 t ) = Y ( i ) ' 
the question of the convergence of ^-sequences is equivalent to examining the 
convergence of sequences {q } generated by choosing q2 > 0 and defining q for 
n > 3 by 

* « = Yfe) 
for some positive continuous function y on (0, °°) having the property that 

t > oo t 

exists and is finite. Using this fact, examples can be constructed quite 
easily. The following examples, which were constructed in this way, show that 
limits of ^-sequences depend in general on the starting values X-, and x~ . 

9. Example: Let y(t) = l/t2. Starting with q2 = 1, it follows that qn = 1 for 
all n and lim qn = 1. However, if q„ = 2, then it is easy to show that 

t + < 

>2n"2 

for n > 2, so that {gn} diverges. This shows convergence is dependent on the 
starting values. In this example, 

fix, y) = xy(y/x) = x3/y2. 
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x^ and x2 could be taken as x^ = x2 = 1 and xl = 1, x2 = 2, respectively. 

10. Example: Let y(t) = 1/t and let q2 = v > 0 be arbitrarily chosen. Then 

q3 = Y ( ^ ) = P. 

Similarly, qn = r for all n > 4. Therefore, {<?„} is the constant sequence 

{r, P S ..., P 5 . . . } , 

which converges to r. In this example, it is seen that each positive real num-
ber is the limit of some ^-sequence for the same generating function. Here, 

x)= y 
Starting values may be taken as x^ = 1 and x2 = r > 0. 
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1. Introduction 

The Wythoff number pairs have been much discussed in the literature on 
Fibonacci integers (see [1] for references up to 1978). And in [2] and [3] M. 
Bicknell-Johnson treats generalizations of Wythoff numbers which provide number 
triples with many interesting properties. In this paper we present three 
different ways to generate the Wythoff pairs, and, with some trepidation in 
view of the extent of the literature on them, claim that these are "new." We 
emphasize the notion of "generation11 (in contrast to "giving a formula"), and 
introduce Fibonacci word patterns [3] as a tool to define n-tuple generating 
processes. 

A determinantal relation for the Wythoff pairs is described, which makes 
further use of the word-pattern tools. 

In the final section we show how similar methods can be used to generate 
and study sequences of integer triples. Three examples are given, and each is 
an attempt to generalize aspects of the Wythoff pairs-sequence. 

It is clear to us that these tools and methods hold much promise for devel-
oping a general theory of sequences of integer n-tuples which have structures 
related to Fibonacci word patterns. 

2. Notation and Definitions 

The main tool to be used below is the Fibonacci word pattern, which we de-
veloped in [3] . We shall also use an operation of merging two integer 
sequences, and its inverse; we shall use the terms addmerge and submerge for 
these two operations. 

Definitions and examples 

To keep the exposition brief and readable, we now give somewhat informal 
definitions of the operations and concepts we wish to use. The examples will 
make the intended operations perfectly clear. 

Fibonacci word 'patterns (^^2^3 • • • ^n • • •) 
A word pattern is a concatenation of a sequence of words W-,, ^29 ^3 9 

• • • , ^n ' • • • • The words are formed using characters from a given 
letter set such as {0, 1} or {a, bs c}. The basic word pattern is 
obtained by repeatedly using the concatenation recurrence 

Wn + 2 = WnWn + 1 , with W1 = A, Wz = B. 

We shall denote the resulting pattern by F{A, B). Then: 

F(A, B) = A, B, AB, BAB, ABBAB, .... 

(N.B. The commas on the right should be removed; they are inserted to 
show the boundaries of successive words in the pattern.) 
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Examples to be used below: 

a = (1, 0)'= 1 0 1 0 0 1 0 1 0 0 1 0 0 . . . (using A = 1, B = 0); 
a> = (1, 01) = 1 0 1 1 0 1 0 1 1 0 1 1 0 . . . (using A = 1, B = 01). 

These two binary word patterns are, respectively, the alpha and the 
omega referred to in the title of this article. The a) pattern is named 
after Wythoff, for reasons which will become abundantly clear as the 
paper develops. 

We shall also use the tribonacci word pattern (with Wi=A9 W2 = Bs Wo = C) 
F(A9 3, C) = A, B, Cs ABC, BCABC, ...'{Wn+3 = WnWn+lWn + 2). 

(ii) Set-sequences 
In [4] we introduced the following construction (though with a slightly 
different notation). Let {Sn} be a sequence of sets, and let {an} be a 
sequence of integers. The set-sequence is formed using the following 
recurrence 

S„.n = S U S _,_, + a f 
n + Z n n +1 n> 

with Si s S2 being any given sets. The + operation is to be carried out 
as indicated by 

{sl$ s2$ . •. > Si* ...} + a = {s-̂  + a ? s2 + a, ».., s^ + a 5 ...}.• 

(iii) Addmerging and submerging 
A merging operation, and its inverse, should be clear from the following 
definition and example. 

Let S and T be any monotone increasing sequences. Then the addmerge of 
S and T (written S -^ T) is obtained by taking the multi-union of the 
two sequences and sorting them into monotonic increasing order. By 
"multi-union" we mean that integer repetitions are to be allowed. 

Example 
Let S = {1, 3, 5, 7, 9, ...} and T = {2, 5, 8, 11, ...}. Then 

S — T = {1, 2, 3, 5, 5, 7, 8, 9, 11, ...}. 
The inverse of addmerge is submerge* which we shall write S w T. This 
operation simply removes the sequence S from the sequence S (all elements 
of T, that is, which happen to be in S). 

(iv) Sequence notations 
We shall use either Greek letters or underlined, lowercase Roman let-
ters to denote sequences; and will use or omit subscripts on individual 
sequence elements as is appropriate. The following examples illustrate 
our notation, and will be needed below. 

n = {1, 2, 3, ...} the natural numbers 

n+ = {0, 1, 2, ...} the natural numbers with zero 

_f = {1, ls 2, 3, 5$ ...} the Fibonacci integers {Fn} 
ff = {1, 2, 3, 5, ...} - iFn+1}9 n = 1, 2, ... 
f" = (2, 3S 5, 8, ...} = iFn+2}, n = 1, 2, ... 
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Nl {1, 3, 4, 6, 8, ...} first members of Wythoff pairs, 
equals {[na]} where a = \{l + /5) . 

032 = (2, 5, 7, 105 13, ...} second members of Wythoff pairs, 
equals { [na2-] } . 

£) = (2X5X7 XfoXn) ••• Wythoff Pa i r - s e i u e n c e -
(v) Binary word pattern representations 

Let S be a sequence of 0!s and lTs, say, 

B = bls b2, b3, ..., bn, ..., all 2^ e {0, 1}, 

And let s_= Si, s?f s,, ..., sn, . .. be an integer sequence. Then, 

_s * B = the subsequence from ,s_ whose elements are in the 
positions where the lTs occur in B. 

For example, if 5 = 0 , 1, 0, 1, 0, 1, ..., then, 

n * B = 2, 4, 6, 8, ... . 

3. Three Ways of Generating the Wythoff Pairs 

We now use our word patterns and sequence notations to give three differ-
ent ways to generate the Wythoff pairs. 

(i) Use of the omega sequence 
Recall from Section 2 that the binary word pattern omega is 

a) = F(l, 01) = 1 0 1 1 0 1 0 1 1 0 1 ... 

It may be observed that the l?s occur in positions o)i = 1, 3, 4, 6, 8, 
...; and the 0?s occur in positions u)_2 = 2, 5, 7, 10, 13, ... . Thus, 00 
contains all the information needed for producing the Wythoff pairs. 
Using the notations of 2(iv) and 2(v), we can write: 

(<*l\ /n * F(l, 01)\ 
\u>J \n * F(0, 10)/ 

Note that we can do certain algebraic operations with sequences and our 
new notation. 

Thus, for example: 

n = OJ1 — oo2 = n * [F(l, 01) + F(0, 10)] 

where + is mod 2 addition of elements. 

In [6] two methods of proof are given to demonstrate that omega [i.e., 
F(l, 01)] does in fact generate the Wythoff sequences 

co1 = {[na]} and u)2 = {[na2]} 

as claimed. 

(ii) Use of Fibonacci set-sequences 
In 2(ii) above, we explained the recurrence for generating Fibonacci set-
sequences, viz., 

Sn + 2 = Sn U Sn+l + an. 
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Let S_1 = {0} and SQ = {0}, and {an} = ^ = 1, 2, 3, .5, 

Sx = {1}, Sz = {3}, £3 = {4, 6}, etc.; 

and it soon becomes clear that 

Then, 

Similarly, if {an} = f_" = 2, 3, 53 

the infinite union 

U Sn
 = ̂ 2" 

n = 1 

Proofs of these assertions are given in [6]. 

and the same 5_1, £0 are used, 

(iii) Use of Fibonacci magic matrices 
In [5] we decided that square matrices all of whose elements were Fibo-
nacci integers, whose diagonal, row, and column sums were Fibonacci 
integers and, moreover, whose powers also possessed these properties, 
deserved to be called magic. The spectral radius of these matrices is 
a, the golden mean. The simplest such matrix is 

A = 
0 

1 1 
Note that A1 

The characteristic polynomial of A is a2 - a - 1; and of A2- is A2 - 3A 
+ 1, which has maximum root A = a with a =2(I + v5). 

Many properties of A have been noted in the literature, but the follow-
ing relationships with the Wythoff pairs may possibly be new. We give 
them without full proof. 

Proposition (generation of 03, the Wythoff pairs sequence) : 

(A) [nA + mnJ](}) 

where I is the 2 x 2 identity matrix, n is the natural number se-
quence, and 

m = {mn} = 0, 1, 1, 2, 3, 3, 4, 4, 55 6, 6, 7, ... . 

(N.B. The generation of m by a Fibonacci word pattern is given 
below.) 

(B) a) = i[rnA + 7V12](})|, wh 

1989] 

r = {rn} = 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, ... . 

Note that (B) follows from (A) since m + r_ = n and A2 = A + I. 

Generation of m and r 

The sequence m is generated as follows. Take the Fibonacci word 
pattern 

F(l, 2) = 1, 2, 12, 212, 12212, .... 

We can use the elements of this sequence as frequencies, drawing 
elements from the sequence n = 0 , 1, 2, 3, '4, . .. with these fre-
quencies. This gives a natural extension to the star operation 
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which we defined in 2(v), in connection with binary words. 
we get 

m = n+ * F(l, 2) = 0S 11, 2, 33, 44, 5, 66, etc. 

Thus, 

as required. With this very useful extended operation (which in-
cludes the earlier one, if 0 frequency is interpreted as "leave 
out"), we see that the sequence £ in proposition (B) for OJ is: 

1, 1, 2, 2, 2, 3, 3, 4, 4, 4, n * F(2, 3). 

Corollary: n+ * F(l, 2) + n * F(2, 3) = n, since m + r_ = n. 

The attractiveness of the method of generation of the Wythoff pairs 
just given lies in comparisons that can be made with the classical 
generation of the individual sequences. To spell these out, we 
note that uji = 1, 3, 4, 6, 8, ... is generated by [not], and 0)2 = 
2, 5, 7, 10, 13, ... is generated by [na2-] 9 where a is the golden 
mean. By comparison, the generation formula given in (A) above for 

ux;x%)(i3) -
uses only nA9 where A is a matrix having a as spectral radius, and 
a sequence n+ * F(l9 2): and the sequence F(l, 2) has the same 
pattern as that other " a," the basic Fibonacci word pattern 
referred to in the title of our paper. 

4. A Determinantal Relation for the Wythoff Pairs 

The following interesting relationship is reminiscent of the well-known 
Fibonacci relation 

fn 
fn+1 

fn + 1 

fn + 2 
= (-D n + l 

Consider the Wythoff pair-sequence 

- \0)2/ 

To simplify the notation, we write co1 = a = ia^} and o)2 = b = {b^}. Then, 

a." (»!)(g)©--(J)(l)«)-
Let us pass a 2 x 2 window along this sequence and compute determinants as we 
go. Thus, 

-1, 1, -2, -2, 3, -3, 4, -4, -4, 
6, -5, -5, 8, -6, 9, -7, -7, 11, b, h + 

There is clearly an interesting pattern to the sequence, but how can we capture 
it in a formula? It is here that our word pattern notation becomes really 
useful. Let us submerge the negative and the positive elements, to find: 

-1, -2, -2, -3, -4, -4, -5, -5, -6, -7, -7, -8, ... 
and 

1, 3, 4, 6, 8, 9, 11, ... . 
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Now we see that the negative sequence can be written as (-n) * F(l, 2). And the 
positive sequence is just a), . 

Thus, we state finally 

Proposition: 

(i) The determinants of successive Wythoff pairs are given by 

AGO 
ai 
b; bj ^1 

Z+L 

(with the addmerge ignoring minus signs). D 

It might be said that to complete the above proposition we must give a 
precise formula for the nth term of Aw, whereas we have given only a 
sequence generator. We shall do this later. As we said in the Intro-
duction, we wish first to emphasize ways in which our notation can 
describe the generation of interesting sequences. Picking out par-
ticular values of a sequence is always harder to do. In [3] and [6] are 
given many formulas for making that task easier, being results 
concerning counts of runs and runlengths of particular letters or 
integers in given Fibonacci word patterns. 

(ii) Formulas for the nth term in the sequence of determinants are: 

a), . , when n £ OJ? with n = [ia2] , 
where a is the golden ratio; 

-i, when [(i - l)a2] < n < [ia2]. 

Proof: It may be seen that the positive terms in the sequence of 
determinants, namely, 

a)x = 1, 3, 4, 6, 8, 9, 11, ..., 

occur at positions 

w2 = 2, 5, 7, 10, 13, 15, 18, ... . 

This is fascinating in itself, and immediately explains the given 
formulas, because the positive terms occur when n = [ia2]. D 

[N.B. Because of the fact just noted in the proof, we could give the 
determinant sequence as 

Aw = n * F(0, 10) — (-n) * F(l, 2). 

An immediate corollary of the fact that Ao) includes the sequence 

(-n) * F(l, 2) 
is the following proposition on the representation of the natural 
numbers in terms of the Wythoff numbers. 

(iii) In terms of the Wythoff numbers, every integer N can be represented as 
follows: 

either uniquely as N = a. ,-^b. - b-,,a- using Wythoff pairs; 

or in two ways using a run of three consecutive Wythoff pairs 
thus: N = ai + 1bi - bi^ai = ai + zbi + l - b^zai + 1. 
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There any many other interesting things that could be said about the se-
quence AGO. One more will have to suffice. Suppose we mark the sequence into 
words, each of which ends at a positive integer thus: 

(-1, 1) (-2, -2, 3) (-3, 4) (-4, -4, 6) (-5, -5, 8) (-6, 9) 
(-7, -7, 11) (-8, 12) etc. 

The lengths of these words have the pattern F(2, 3). And their totals follow 
the pattern 

0, -1, 1, 25 -2, -2, 3, -3, 4, -4, -4, 6, -5, -5, 8, ... . 

The first 0 indicates that the sum of the first two determinants is: 

(Ao)) 1 + (Aw) £ = ai^2 + a 2 ^ 3 " ^i) ~ ^3^2 = ^* 
If we consider the sequence of word totals, it appears that it will oscillate 
with increasing amplitude; and that the sum 

n 
Z(Ao)). 

i = \ ^ 

will equal zero infinitely often; but we have not established proofs of these 
observations. 

5. Generation of Other Pair-Sequences 

Any Fibonacci word-pattern which uses a binary letter-set can be used to 
generate a pair-sequence. For example, the alpha sequence 

a = F(l9 0) = 1, 0, 10, 010, 10010, 01010010, ... 

generates the following: 

a = (SLl\ = (l)(3)(6)(S\ • • • t h e 1 P ° s i t 

- \ a 2 / V 2 A 4 / V 5 A 7 / . . . t h e 0 p o s i t 
ions ... 
ions ... 

A question of interest now is whether a_ can be expressed in terms of the 
Wythoff pairs, and vice-versa. Using our word-pattern tools, we find as 
follows: 

^ = 1 3 6 8 11 14 .16 19 ... 

= ( 1 3 4 6 8 9 1 1 12 14 16 17 19) — (4 9 12 17 . . . ) 

= o)x — [o)1 * F(0, 01)] = a) * F(l9 10); 
and 

a2 = 2 4 5 7 9 10 12 13 15 17 18 ... 

= (2 5 7 10 13 15 ...) — (4 9 12 17 ...) 

= a)2 — [a^ * F(03 01)] . 

Thus, we have: 

- \a 9/ \ co9 
[a)X * F ( O , o n r 

,u2/ \OJ2 — [a)1 * F(0, 01)]/* 

By similar methods we can invert these equations thus: 

Oil = «i ~ [̂ 2 * F ( 0 ' 1 0 ) ] \ 
OJ2 = a2 — [a2 * F(09 10)]) 
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And so the alpha pair-sequence can be expressed in terms of the omega 
(Wythoff) pair-sequence; and vice-versa. 

It is evident that by such means an infinite number of pair-sequences can 
be generated, and their properties studied by establishing relationships be-
tween them and the fundamental Wythoff pairs. A new kind of number theory 
could be developed, based upon the sequences oj]_ and a)2 ' anc* related to the 
"ordinary" number theory based on n through the functions [not] and [na2-] . 

Finally, we give an indication of how these methods can be extended to 
study sequences of triples. 

6. Generation of Triple-Sequences 

We shall show, proceeding by examples and comments upon them, how to gen-
erate triple-sequences in three different ways. The first uses Fibonacci word-
pattern with letter-set {as b, c}; the second uses a tribonacci word pattern 
with letter-set {a, b, c]; and the third uses a "magic" tribonacci matrix. 

(i) Use of a Fibonacci word pattern 
Consider the following word pattern: 

F(a, be) = a, be, abc, bcabc, abebcabe, ... . 

Listing the positions of a, b, and c, respectively, produces the follow-
ing triple-sequence: 

a 
b 
c 

= 
1 1 
2 
3 1 

T 4 1 
5 

L 6 J 
1 9 
7 

1 8 
12 1 
10 
11 J 

[ 17 1 
13 

L U J 

T 22 1 
15 

L 16 J 

r 251 
18 

L 19 J 

r 30 
20 

L 21 

It will be noted that, as might be expected since the word pattern is 
Fibonacci, the three component sequences can each be expressed in terms 
of the Wythoff numbers. Thus: 

a 

b 

c 

= 

001 * 
(^2 

—2 + 

a 

1 
, where a = F(l, 0) , 

Then an = (w1)i , h_n = (^2)n , and cn = (oo2)n + 1, where 

i = £n-l = ^ 2 ^ - 1 + la 

Note also that a., ̂ b, £ are each strictly increasing sequences, they are 
non-intersecting, and their union equals %+: all properties of the 
Wythoff pairs-sequence. Their proof is immediate from the way in which 
F(a9 be) is expanded. 

Another interesting point is that the parity of the terms in a is alter-
nately odd and even. And then, since the sum (bn"+ cn) is always odd, 
we have the sum (an + bn + cn) also of alternating parity. 

The parity patterns, and more generally mod 3, mod 4, etc., patterns of 
elements of multi-sequences generated from word patterns would seem to 
be worthy of study. 
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(ii) Use of a tvibonacci pattern 
Consider next the tribonacci expansion of F (a , b, o) and the triple-
sequence it generates through the positions of a, b, c in the resulting 
pattern. 

F(a, b, c) = a, b, c, aba, bcabc, cabcbcabc, ... 

a 
b 
c 

= 
1 1 
2 
3 J 

|~ 4 1 
5 

L 6 J 

r 9 1 
7 

L 8 J 

r 1 3 1 
10 

L U J 

r i 8 1 
14 

[ 12 J 

r 2i i 
16 

L 15 J 

r 26 
19 

L 17 

This triple-sequence again clearly has the property that each element 
sequence is monotone increasing, and the three sequences partition Z+. 

When we first studied this sequence, we hoped that we would find simple 
relationships between a, ID, and c_, respectively, 

{[«T]}, {[nx2]}, and {[nx3]}, 

where x is the positive root of the tribonacci equation 

x*~ 1 0. 

This would have been an excellent generalization of the Wythoff pairs 
property whereby a = {[na]} and h_ = {[na2]}. Unfortunately, we have not 
been able to find such relationships, although there seems to be hope 
for relating Fibonacci word patterns to the sequences of first 
differences {A[nx] }, etc. To encourage the reader to search for these, 
we show the first few tribonacci triples (x = 1.839): 

[TIT] 
[nx2] 
[nx3] 

= 
1 1 
3 
6 1 

r 3 1 
6 

L 12 J 

r 5 1 
10 

L 18 J 

r 7 1 
13 

L 24 J 

r 9 1 
16 

L 31 J 

r ii 
20 

L 3 7 

12 
23 
43 

(iii) Use of a tribonacci magic matrix 
Our third attempt to generalize the Wythoff pairs is to take a 3 x 3 
matrix which generalizes the "magic" properties of the 2 x 2 matrix used 
in Section 3(iii), and attempt to generate with it a unique sequence of 
triples whose members partition X+. Once again we must confess that we 
have not found a fully satisfactory way of defining such a unique 
sequence; but in the spirit of the aims of this paper we believe it is 
worth presenting our attempt. 

The tribonacci magic matrix we shall use is: 

0 
0 
1 

1 
0 
1 

0 
1 
1 

Note that the characteristic polynomial of T is -(A3 - X2 - X 
its spectral radius is x = 1.839. 

Note further that the row sums of powers of T are 

- 1) so 

84 

1 " 
1 

1 
, T2 

1 " 
1 

1 
, ..., which give 

1 1 
1 

3 J 

r 1 1 
3 

|_ 5 J 

r 3 1 
5 

L 9 J 

r 5 1 
9 

[ 17 J 

9 
17 
31 

9 • o . , 

with each element of the triples being in tribonacci sequence. 
are the magic properties of T. 

These 
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The question we ask now is the following. In 3(iii)(B) we generated the 
Wythoff pairs using only the 2 x 2 matrices A and A2 and coefficients 
from the sequences n * F(2, 3) and n+ * F(l, 2). Can we generate a 
unique sequence of triples, a T~sequence> using only the 3 x 3 matrices 
T, T , and T3, together with coefficients from sequences which can be 
defined in terms of Fibonacci word patterns? Furthermore, can we 
require the three member sequences of the triple sequence to be strictly 
increasing, and to partition Z + ? If we can find such a ^-sequence 
uniquely, it will constitute an excellent generalization of the Wythoff 
pairs sequence. 

Out attempt, down through the first twenty triples, is tabulated below, 
showing the triples horizontally for convenience. 

Triples (a, 

a 

1 
2 
6 
7 
9 
12 
13 
14 
16 
17 
18 
19 
21 
23 
24 
27 
28 
29 
32 
36 
37 

b, c) 
Elements 

b 

3 
4 
10 
11 
15 
22 
25 
26 
30 
33 
34 
35 
39 
43 
46 
51 
54 
55 
62 
70 
73 

c 

5 
8 
20 
23 
31 
31 
49 
52 
60 
65 
68 
71 
79 
87 
92 
101 
106 
109 
122 
136 
141 

Row sums of 
Coe, 

V 

0 
1 
2 
3 
4 
5 
5 
6 
7 
7 
8 
9 
10 
11 
11 
11 
11 
12 
13 
13 
13 

(pT + qT 
Eficients 

<7 

1 
1 
1 
1 
2 
4 
5 
5 
6 
7 
7 
7 
8 
9 
10 
10 
11 
11 
13 
14 
15 

2 + p T3) 

r 

0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 

It will be noted that we have succeeded in advancing (a, b, c.) thus far 
without increasing p, q9 and r by more than 1 at each step. But, as we 
confessed above, we have not determined a formula for advancing the 
triple sequence indefinitely while satisfying all the requirements for 
generalizing the Wythoff pairs to triples. 

7. Summary 

In this paper we have defined word patterns, and various tools derived from 
them, in order to generate and study increasing sequences of integer pairs and 
integer triples. 

A particular outcome of our study of pair-sequences as derived from Fibo-
nacci binary word patterns was to show how all such sequences (and there is an 
infinite class of them) might be related to the Wythoff pairs. 
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It is hoped that we have convinced the reader that there is much scope for 
developing a number theory of integer pairs defined by binary sequence rep-
resentations and using tools such as we have described. The title of our 
paper, namely, "The Alpha and the Omega of Wythoff Pairs," might suggest that 
all has now been said upon the pairs. In fact we claim the opposite—that this 
paper can mark a beginning of a broad development in their study and 
application. 

The path to a general study of triple sequences would seem to be a much 
harder (but nevertheless a most interesting) one to seek. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A . P . Hil lman 

Please send all communications regarding ELEMENTARY PROBLEMS AND 
SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, 
NM 87108. Each solution or problem should be on a separate sheet (or 
sheets) . Preference will be given to those typed with double spacing in the 
format used below. Solutions should be received within four months of the 
publication date. 

D E F I N I T I O N S 

The F i b o n a c c i numbers Fn and t h e Lucas numbers Ln s a t i s f y 

and 
F ^ o = F o-i + F > Fn = 0 5 F , = 1 

n+2 n+1 n 0 1 
n + 2 n+l n ' 0 3 1 

PROBLEMS PROPOSED IN T H I S ISSUE 

B-634 Proposed by P. L. Mana, Albuquerque, NM 

For how many i n t e g e r s n w i t h 1 < n < 106 i s 2n = n (mod 5)? 

B-635 Proposed by Mohammad K. Azarian, U. of Evansville, Evansville, IN 

For a l l p o s i t i v e i n t e g e r s n , p r o v e t h a t 

in+l l + £ (klk) < (n + 2) n+ 1 
k= 1 

B-636 Proposed by Mohammad K. Azarian, U. of Evansville, Evansville, IN 

Solve t h e d i f f e r e n c e e q u a t i o n 

xn+1 = (n + l)xn + X(n + l ) 3 [ n ! ( n ! - 1 ) ] 

f o r xn i n t e rms of A, x^5 and n . 

B-637 Proposed by John Turner, U. of Waikato, Hamilton, New Zealand 

Show t h a t 

v I = i, 
n = l F

n
 + aFn+l 

where a is the golden mean (1 + /5)/2. 
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B-638 Proposed by Herta T. Freitag, Roanoke, VA 

Find s and t as function of k and n such tha t 

k 

i = 1 

B-639 Proposed by Herta T. Freitag, Roanoke, VA 

Find s and t as funct ion of k and n such tha t 

k 

2-J Ln-i\k + hi-2 = ^^f 
t = 1 

SOLUTIONS 

No Fibonacci Pythagorean Triples 

B-810 Proposed by L. Kuipers, Serre, Switzerland 

Prove that there are no positive integers r, s, and t such that (Fr , Fs , Ft ) 
is a Pythagorean triple (that is, su ch that Fl + Fj = Ff). 

Solution by Marjorie Bicknell-Johnson, Santa Clara, CA 

V. E. Hoggatt, Jr., proved that no three distinct Fibonacci numbers can be 
the lengths of the three sides of a triangle. (See page 85 of Fibonacci and 
Lucas Numberss Houghton Mifflin Mathematics Enrichment Series, Houghton 
Mifflin, Boston, 1969.) Since a Pythagorean triple gives integral lengths for 
the sides of a right triangle, his result is more general. Hoggatt!s elegant 
proof follows, where a, b, and c are the sides of the triangle: 

In any triangle, we must have a + b > c9 b + c > a, and c + a > b. 
For any three consecutive Fibonacci numbers, Fn + Fn+i = Fn+2> and so 
there can be no triangle with sides having measures Fn,Fn+i, Fn+2- ^n 

general, consider Fibonacci numbers, Fr, Fs , Ft , where Fr < Fs_i and 
Fs + l < Ft. Since Fs.l + Fs = Fs + l and Fr < F8.l9 we have Fr + Fs <Fs + l , 
and since Fs+i < Ft , we have Fr + Fs < Ft . Therefore, there can be no 
triangle with sides having measure FT , Fs , and Ft . 

Also solved by Charles Ashbacher, Paul S. Bruckman, Piero Filipponi, C. 
Georghiou, Sahib Singh, Lawrence Somer, and the proposer. 

Each Term a Multiple of 3 

B-611 Proposed by Herta T. Freitag, Roanoke, VA 

Let 
n 

S(n) = 53 L%k + 9' 
k = i 

For which p o s i t i v e i n t e g e r s n i s S(n) an i n t e g r a l mul t ip l e of 3? 

Solution by Bob Prielipp, U. of Wisconsin-Oshkosh 

We s h a l l show tha t S (n) i s an i n t e g r a l multkple of 3 for each p o s i t i v e 
in t ege r n. 
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The c l a i m e d r e s u l t i s an immedia te consequence of t h e f o l l o w i n g lemma. 

Lemma: 3 d i v i d e s 1̂+̂  + 2 f ° r each n o n n e g a t i v e i n t e g e r k» 

Proof: Because L2 = 3 , t h e s p e c i f i e d r e s u l t h o l d s when k = 0 . Le t j be a n o n -
n e g a t i v e i n t e g e r . Then 

L 4 ( j + l ) + 2 = L4j ' + 6 = LJ+j+i+ + L 4 j + 5 
= ( L 4 j + 2 + L 4 j + 3 } + ( L 4 j + 2 + 2LhQ + ?) = 2 L 4 j + 2 + 3 L 4 j + 3° 

Hence , i f 3 d i v i d e s £4^ + 2* t h e n 3 d i v i d e s £i+(j + i ) + 2 - T n e r e q u i r e d r e s u l t now 
f o l l o w s by m a t h e m a t i c a l i n d u c t i o n . 

Also solved by Paul S. Bruckman, Piero Filipponi, C. Georghiou, L. Kuipers, 
Chris Long, Br. J. M. Mahon, H.-J. Seiffert, Sahib Singh, Lawrence Somer, 
H. J. M. Wijers, Gregory Wulczyn, and the proposer. 

When the Sum Is a Multiple of 7 

6-612 Proposed by Herta T. Freitag, Roanoke, VA 

Let 

Tin) =±Fhk+1* 
k = 1 

For which positive integers n is T(ji) an integral multiple of 7? 

Solution by Lawrence Somer, Washington, B.C. 

By inspection, we observe that the period of {Fn} modulo 7 is 16. Now, 

F2 = 1 E 1 (mod 7), Fs = 8 = 1 (mod 7), 

F10 = 55 = -1 (mod 7), Flh = 377 = -1 (mod 7). 

It thus follows that 

a n d 

Fkk+2 E l ( m o d 7) i f ^ E 0 o r 1 (mod 4) 

Fhk + 2 E _ 1 ( i n o d 7) i f A: E 2 o r 3 (mod 4 ) . 
C o n s e q u e n t l y , i t f o l l o w s t h a t T(ri) i s an i n t e g r a l m u l t i p l e of 7 f o r a p o s i t i v e 
i n t e g e r n i f and o n l y i f n i s an even i n t e g e r . 

Also solved by Paul S. Bruckman, Piero Filipponi, C. Georghiou, Br. J. M. 
Mahon, Bob Prielipp, H.-J. Seiffert, Sahib Singh, H. J. M. Wijers, Gregory 
Wulczyn, and the proposer. 

Finding the Constants 

B-613 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Show tha t there e x i s t i n t e g e r s a3 b* and c such tha t 

e P + - e P = «^P
2 + M-DPF„2 + C(-D%2. 

Solution by C. Georghiou, University of Patras, Greece 

We w i l l show t h a t a = 5 and b - c = 2 . I n d e e d , from t h e I d e n t i t y 
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5 ^ = Lln - 2 ( - n " , 
we find 

5f2
Xrl + 5F2 = L, 4.,„ + £ , ,„ - 4 ( - D n + p = £ , i , - 4 ( - l ) n + p 

n + p n - p 2n + 2p 2 n - 2 p v ' 2n 2p v ' 
and 

2 5 F»*2 " LZnL2P ~ 2 ( - 1 ) ? i 2 n " 2 ( - l ) % p + 4 ( - l ) * + P . 
I t fo l lows, t h e r e f o r e , t ha t 

FLP
 + Fl-V " 5 ^ 2 = ( 2 ( - l ) P L 2 n + 2 ( - l ) n L 2 p - 8(-ir + ?)/5 

= 2 ( - l ) p ^ + 2 ( - l ) n F * . 
Also solved by Paul S. Bruckman, Herta T. Freitag, L. Kuipers, Br. J. M. 
Mahon, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, Gregory 
Wulczyn, and the proposer. 

Quadruple Produc t s Mod 8 

B-61f£ Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

L e t L(n) = K-2Ln-lLn+lLn+2 a n d F™ ' Fn-2Fn-lFn+lFn+2- S h ° W t h a t 

L(n) = F(n) (mod 8) 
and express [L(n) - F(n)]/8 as a polynomial in Fn . 

Solution by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA 

Using T^Q and 1^ in Hoggat t f s Fibonacci- and Lucas Numbers, we ge t : 
L{n) = L\ - 25 and F(w) = Fjj - 1. 

Replacing £2 by 5F% + 4 ( - l ) n , we get 
L(n) - F(n) = 24F£ + 40( - l ) n F2 _ 8 = 0 (mod 8 ) . 

Hence, 
L(n) 3 F ( W ) = 3 # + 5 ( - l ) » f 2 - 1. 

Also solved by Paul S. Bruckman, Herta T. Freitag, C. Georghiou, L. 
Kuipers, Bob Prielipp, H.-J. Seiffert, Gregory Wulczyn, David Zeitlin, and 
the proposer. 

Ident i ty for I t e ra ted Lucas Numbers 

B-615 Proposed by Michael Eisenstein, San Antonio, TX 

Let C(n) = Ln and an = C(C(n)). For n = 0, 1, . . . , prove t ha t 
a n + 3 = an+2an+l ± an° 

Solution by C. Georghiou, University of Patras, Greece 

I t i s easy to see t ha t an = aL(n) + 3 L ( n ) . Therefore, 
an+2an+l 

( a L ( n + 2) + gL(n + 2) ) ( a L ( n + l ) + g L ( n + l ) ) 

_ aL(n + 3) + g L ( n + 3 ) + ( _ i ) L ( n + l ) ( a M n ) + ££(«)) 

from which the assertion follows. 
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Also solved by Paul S. Bruckman, Piero Filipponi, Herta T. Freitag, L. Kui-
pers, Br. J. M. Mahon, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence 
Somer, David Zeitlin, and the proposer. 
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Edited by 
R a y m o n d E . Whi tney 

Please send all communications concerning ADVANCED PROBLEMS AND 
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK 
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially 
welcomes problems believed to be new or extending old results. Proposers 
should submit solutions or other information that will assist the editor. To 
facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN T H I S ISSUE 

H-428 Proposed by Larry Taylor, Rego Park, NY 

Let j , m, and n be i n t e g e r s . Le t a and b be r e l a t i v e l y pr ime even-odd i n -
t e g e r s w i t h b no t d i v i s i b l e by 5 . Le t An = aLn + bFn . Then An = An+i - An_i 
w i t h i n i t i a l v a l u e s Ai = b + a, A_i = b - a. 

Prove t h a t t h e f o l l o w i n g t h r e e numbers 

(2Fn_J-Am_ j , Fn + J-Am + j , 2F2_J-An + m) 

a r e i n a r i t h m e t i c p r o g r e s s i o n . 

H-429 Proposed by John Turner, Hamilton, New Zealand 

F i b o n a c c i e n t h u s i a s t s know what happens when t h e y add two a d j a c e n t numbers 
of a sequence and p u t t h e r e s u l t n e x t i n l i n e . 

Have t h e y c o n s i d e r e d what happens i f t h e y p u t t h e r e s u l t s in the middle! 
They w i l l g e t t h e f o l l o w i n g i n c r e a s i n g sequence of T - s e t s ( m u l t i - s e t s ) : 

Tx = {1} 
given initial sets 

T2 = {1, 2} 

T3 = {1, 3, 2}, 
Th = {1, 4, 3, 5, 2}, 
^5 = (I, 5, 4, 7, 3, 8, 5, 7, 2}5 
T& = {1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2}, 
etc. 

Prove that for 3 < i < n the multiplicity of i in multi-set Tn is \$(i) > where 
d) is Euler?s function. 

SOLUTIONS 

WhatTs t h e P o i n t ? 

H-406 Proposed by R. A. Melter, Long Island U., Southampton, NY 
and I. Tomescu, U. of Bucharest, Romania 
(Vol. 25, no. 1, February 1987) 
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Let An denote the set of points on the real line with coordinates 15 2, 
. .., n. If F (n) denotes the number of pairwise noncongruent subsets of An, 
then prove 

F(n) = 

' 2n-l + 2 n / 2 _ JL f Q r e y e n n ? 

2n-2 + 3 o 2 ( » - 3 ) / 2 . i f o r o d d n e 

Solution by the proposers 

Let n = n-j_ + • • • + nk be a decomposition of n into fc nonnegative parts. It 
is well known that the number of such decompositions is equal to 

1\ in - iv 
U - 1/ 

The decompositions n^ + • • °  + n̂ , and nfe + • • • + 7^ will be said to be conju-
gate . 

It follows that 

F(n) = 1 +nJ2 a(77z) 
m= 1 

where a(77?) is the number of pairwise nonconjugate decompositions of m. 
Denote by a(m, k) the number of pairwise nonconjugate decompositions of m 

into k parts: 

We shall consider four cases: 

(i) k = 21 and m = 2p. 

In this case the number of self-conjugate decompositions of 777 with k parts 
is equal to 

and hence5 

(5: : )*(5: ; )*- + «::) + (S)-
T ^ „(.. « - ( ; : } ) - i[(;: \) - (?)] • |(g) • M)-
In order to calculate a(jri) 9 consider two subcases. 

I. Let m = 2p. It. follows that 

a(m) £ ? ^ 2 : ' ) • , ? / : ' ) ] • * [ . ? $ :!>•.?,(?:!)] 
E(g) + Z(?)l =|(2^"1 +2P) = 22P-2 + 2P-1 

_ 2m~2 + 2(m~2)/z . 

II. Let m = 2p + 1. One can write 

«« • lz(u2p-,)•1[s(3) - s(5)1 - i?(?) *i?(?) 
•£ >1 ~~ " " L £ > 0 " 

2 ^ - 2 + 2 ( w ~ 3 ) / 2 t 

£ >0 '£ >0 "£ >0 
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^, k) = (i: i) -\[{m
kz l) - (i:}) 

=i(2p - 1) + 1/p " 1\ 
2\2£ - 1/ 2\£ - 1/ 

(ii) k = 2£, m = 2p + 1. 
Here there are no self-conjugate decompositions; hence, 

a(m, fe) - \ ( l I J). 
(iii) fe = 2£ + 1, m = 2p. 

In order to count the number of self-conjugate decompositions, observe that 
the central position (m^) of m, + ••• + m?Z+l m u s t ^e a n e v e n integer. 

Thus, the number of self-conjugate decompositions is equal to 

(?:f) + (?:?) + - + ( J : ! ) - C : 1 ) -
It follows that, in this case 

•<•• » - « : ! ) - I t e : i) - (p ; ' ) ] 
= i / 2 p - 1\ + ! / p - 1\ 

2\ 2£ / 2\ I I ' 
( iv) fc = 2JZ,+ l ,>77=2p + l . 

It can be seen that the central position of a self-conjugate decomposition 
must be an odd number. 

Finally, for odd n, 

F(n) = 1 + 2~l + 2"1 + 2° + 2° + 2X + 2° + 22+ 21 + + 2 n- 3 + 2 ( « - 3 ) / 2 

2 + (2° + + 2n 3) + (2° + 2° + 2X + 21 + 
+ 2 ( n - 5 ) / 2 + 2 ( n " 5 ) / 2 ) + 2 ( n " 3 ) / 2 

= 2 n ~ 2 + 3 • 2(n~3)/2 - 1. 

For even n, one obta ins 
F(n) = 1 + 2"1 + 2"1 + 2° + 2° + 21 + 2° + 22 + 21 + . . . 

+ 2n~h + 2 ( n _ 1 + ) / 2 + 2 ( n ~ 3 ) + 2 ( n _ L f ) / 2 

= 2 + (2° + . . . + 2n~3) + (2° + 2° + . . . + 2 ( n - L * ) / 2 + 2 ( n - L f ) / 2 ) 
- 2 n ~ 2 + 2"^2 - 1. 

Also solved by Paul Bruckman. 

Nice End Product 

H-407 Proposed by Paul S. Bruckman, Lynwood, WA 
(Vol. 25, no. 1, February 1987) 

Find a closed form for the i n f i n i t e product : 

n (5n + 2)(5n + 3) 

n-o On + 1)(5« + 4) ' 
(1) 
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Solution by Carl Libis, student, Tempe, AZ 

Use Theorem 5, p. 14, in Rainvillefs Special Functions9 which says: 

s s 
"If X! ak = 2 &k5 anc* If n o ak o r ̂A: Is a negative integer, 

- (n + ax)(n + a2) . . . (n + as) r ( l + fc1)r(l + Z?2) . . . "r(l + i s ) 

n = i (n + 2?x)(n + £2) . . . (n + £e) r ( l + a{)Y(\ + a2) . . . r ( l + as) ° 

Thus3 

ft (5ft + 2) (5ft + 3) = 5 * 5 ft \ n + 5An + 5/ 
^o(5ft+l)(5ft + 4) " 1 .4 n

lh ( n + l ) ( n + A ) 
5 5 

l a 3 
5 * 5 
I . A 
5 * 5 
1 3 
5 * 5 
I A 
5 * 5 

KM) 
K M ) 
(iMiXfMJ) 
GMtXIMi) 

(iMf) S1"(T) 
•(!)r(|) -Mi) 

2 c . . ( i ) . 

Aifso solved by D. Antzoulakos, 0 . Brugia & P. Filipponi, C. Georghiou, W. 
Janous, B. Prielipp, J. Shallit, and the proposer, 

Ghost from the Past 

H-125 Proposed by Stanley Rabinowitz, Far Rockaway, NY 
(Vol. 5, no. 5, December 1967) 

Define a sequence of positive integers to be left-normal if given any 
string of d ig i t s , there exists a member of the given beginning with this string 
of d ig i t s , and define the sequence to be right-normal if there exists a member 
of the sequence ending with the string of d ig i t s . 

Show that the sequences whose ftth terms are given by the following are 
left-normal but not right-normal. 

a. P(ft), where P(x) i s a polynomial function with integral coefficients. 
b. P„, where Pn is the nth prime. 
c. ft! 
d. Fn, where Fn is the ftth Fibonacci number. 

Comment by Chris Long, student, Rutgers U., New Brunswisk, NJ 

Left-normality for all of the above was established by Raymond E. Whitney 
in this journal, vol. 11, no. 1, p. 77, and vol. 11, no. 2, pp. 186-187; he 
also established that (b) and (c) are not right-normal. For (d), note that the 
Fibonacci sequence is defective mod 8, and hence is defective mod 1000; this 
shows that the Fibonacci sequence is not right-normal. However, the statement 

1989] 95 



ADVANCED PROBLEMS AND SOLUTIONS 

that no polynomials with integer coefficients are right-normal is false, as the 
example P(n) E n demonstrates. Indeed, David Moews, a student at Harvard 
Collegej came up with the following characterization of right-normal polyno-
mials with integer coefficients. 

Theorem (Moews) : If Q Is a polynomial with integer coefficients, then Q is 
right-normal iff 

(1) for all m there exists n with Q(n) E 777 (mod 10) , 
(2) for all n, (QF(n)§ 10) = 1, where Qr(x) is the formal derivative of Q(x). 

Proof (Moews): Note that for all m > l9 Q can be viewed as a function from 
X/10mZinto Z/10mX. Q will be right-normal just when this function is 
surjective for all m; since Z/IO^Z is finite, this will be the case just when 
this function is injective for all m» We induce on m to show that (1) and (2) 
imply this. 

If 777 = 1, this is clear; otherwise, let m > 1. Suppose we have x* y with 
Q(x) E Q(y) (mod 10m). Then Q(x) •= Q(y) (mod 10777"1), so by the induction hy-
pothesis, x E y (mod lO^"1). Let x = y + k!0m~l. Then, since 777 > 1, 2(777-1) > 
m, so Q(x) E Q(y) + klQm~lQ?(y) (mod 10m), and we must have klOm~lQr(y) = 0 (mod 
10m), i.e., kQr(y)=0 (mod 10), which gives k = 0 (mod 10) since §f(z/) is rela-
tively prime to 10. Hence, x E y (mod 10m) , which completes the induction. 

For the other implication, it Is clear that Q cannot be right-normal if (1) 
fails. If (2) fails, let n have (Qf(n)$ 10) = a, a > 1. Then, if b = 10/a, 

S(n + 102?) E S(n) + lObQ'in) (mod 100), 

and a divides Q?(n) so 100 divides l0bQF(n)9 which means that 

Q(n + 106) E #(n) (mod 100). 
This proves that Q is not injective as a function from Z/100X to Z/100Z, so Q 
cannot be right normal. Q.E.D. 

Examples that David Moews came up with of Q(x)'s which satisfy conditions 
(1) and (2), and that are therefore right-normal, include 

Q(x) = ax + b for (a, 10) = 1 
and higher degree polynomials such as 

Q(x) = 2x5 + 5xh + 5x2 + 9x. 

96 



SUSTAINING MEMBERS 
* Charter Members 

A.F. Alameddine 
*A.L. Alder 
G.L. Alexander son 
S. Ando 
R. Andre-Jeannin 

*J. Arkin 
M.K. Azarian 
L.Bankoff 
F.Bell 
M. Berg -
J.G. Bergart 
G. Bergum 
G. Berzsenyi 

*M. Bicknell-Johnson 
M.F. Bryn 
P.F. Byrd 
G.D. Chakerian 
J.W. Creely 
P.A. DeCaux 

M.J. DeLeon 
J. Desmond 

•H.Diehl 
T.H.Engel 
D.R. Farmer 
P. Flanagan 
F.F. Frey, Jr. 
Emerson Frost 
Anthony Gioia 
R.M. Giuli 
I.J. Good 

*H.W. Gould 
M. Guild 
H. Harborth 
H.E. Heatherly 
A.P. Hollman 

*A.F. Horadam 
F.T. Howard 
R.J.Howell 

H. Ibstedt 
R.P. Kelisky 
C.H. Kimberling 
J. Lahr 
J. C. Lagarias 
N. Levine 
C.T.Long 
Br. J. M. Mahon 

*J. Maxwell 
F.U. Mendizabal 
L. Miller 
M.G. Monzingo 
S.D. Moore, Jr. 
J.F. Morrison 
K. Nagasaka 
F.G. Ossiander 
A. Prince 
S. Rabinowitz 
E.D. Robinson 

S.E.Schloth 
J. A. Schumaker 
A.G. Shannon 
D. Singmaster 
J. Sjoberg 
B. Sohmer 
L. Somer 
M.N.S. Swamyv 

*D. Thoro 
J.C. Turner 
R. Vogel 
J.N. Vitale 
M. Waddill 
J.E.Walton 
G. Weekly 
R.E. Whitney 
B.E.Williams 
A.C. Yanoviak 

INSTITUTIONAL MEMBERS 

THE BAKER STORE EQUIPMENT 
COMPANY 
Cleveland, Ohio 

BOSTON COLLEGE 
Chestnut Hill, Massachusetts 

BUCKNELL UNIVERSITY 
Lewisburg, Pennsylvania 

CALIFORNIA STATE UNIVERSITY 
SACRAMENTO 
Sacramento, California 

THE COLLEGE OF IDAHO 
Caldwell, Idaho 

EMERGING TECHNOLOGIES GROUP, INC. 
Dix Hills, New York 

ETH-BIBLIOTHEK 
Zurich, Switzerland 

FERNUNIVERSITAET HAGEN 
Hagen, West Germany 

HOWELL ENGINEERING COMPANY 
BrynMawr, California 

NEW YORK PUBLIC LIBRARY 
GRAND CENTRAL STATION 
New York, New York 

NORTHWESTERN UNIVERSITY 
Evanston, Illinois 
PRINCETON UNIVERSITY 
Princeton, New Jersey 
SAN JOSE STATE UNIVERSITY 
San Jose, California 
SANTA CLARA UNIVERSITY 
Santa Clara, California 
KLEPKO, INC. 
Sparks, Nevada 
TECHNOLOGICAL EDUCATION 
INSTITUTE 
Larissa, Greece 
UNIVERSITY OF SALERNO 
Salerno, Italy 
UNIVERSITY OF CALIFORNIA, 
SANTA CRUZ 
Santa Cruz, California 
UNIVERSITY OF GEORGIA 
Athens, Georgia 

UNIVERSITY OF NEW ENGLAND 
A rmidale, N. S. W. A ustralia 
WASHINGTON STATE UNIVERSITY 
Pullman, Washington 

JOVE STATISTICAL TYPING SERVICE 
2088 Orestes Way 

Campbell, California 95008 



BOOKS AVAILABLE THROUGH THE FIBONACCI ASSOCIATION 

Introduction to Fibonacci Discovery by Brother Alfred Brousseau. Fibonacci Association 
(FA), 1965. 

Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. FA, 1972. 

A Primer for the Fibonacci Numbers, Edited by Marjorie Bicknell and Verner E. Hoggatt, 
Jr. FA, 1972. 

Fibonacci's Problem Book. Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. 
FA, 1974. 

The Theory of Simply Periodic Numerical Functions by Edouard Lucas. Translated 
from the French by Sidney Kravitz. Edited by Douglas Lind. FA, 1969. 

Linear Recursion and Fibonacci Sequences by Brother Alfred Brousseau. FA, 1971. 

Fibonacci and Related Number Theoretic Tables. Edited by Brother Alfred Brousseau. 
FA, 1972. 

Number Theory Tables. Edited by Brother Alfred Brousseau. FA, 1973. 

Tables of Fibonacci Entry Points, Part One. Edited and annotated by Brother Alfred 
Brousseau. FA, 1965. 

Tables of Fibonacci Entry Points, Part Two. Edited and annotated by Brother Alfred 
Brousseau. FA, 1965. 

A Collection of Manuscripts Related to the Fibonacci Sequence—18th Anniversary 
Volume. Edited by Verner E. Hoggatt, Jr. and Marjorie Bicknell-Johnson. FA, 1980. 

Fibonacci Numbers and Their Applications. Edited by A.N. Philippou, G.E. Bergum 
and A.F. Horadam. 

Please write to the Fibonacci Association, Santa Clara University, Santa Glara, CA 
95033, U.S.A., for current prices. 


