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ON TRIANGULAR FIBONACCI NUMBERS

Luo Ming

Chongging Teachers' College, China
(Submitted February 1987)

1. Introduction and Results

Vern Hoggatt (see [1]) conjectured that 1, 3, 21, 55 are the only trian-
gular numbers [i.e., positive integers of the form 3m(m + 1)] in the Fibonacci
sequence

U

na2 = Ungpr T Uy Ug = 05y =1

n+1l

where n ranges over all integers, positive or negative. In this paper, we
solve Hoggatt's problem completely and obtain the following results.

Theorem 1: 8u,+ 1 is a perfect square if and only if n = *1, 0, 2, 4, 8, 10.

Theorem 2: The Fibonacci number u, is triangular if and only if n = 1, 2, 4,
8, 10.
The latter theorem verifies the conjecture of Hoggatt.

The method of the proofs is as follows. Since u, is a triangular number if
and only if 8u, + 1 1is a perfect square greater than 1, it is sufficient to
find all »n's such that 8u, + 1 is square. To do this, we shall find, for each
nonsquare 8u, + l, an integer w, such that the Jacobi symbol

8u, + 1

()

Using elementary congruences we can show that, if 8u, + 1 is square, then
n = *1 (mod 2%+ 5) if n is odd, and

0, 2, 4, 8, 10 (mod 2° +5%2 .+ 11) if n is even.

"

"

We develop a special Jacobi symbol criterion with which we can further show
that each congruence class above contains exactly one value of n such that 8u,
+ 1 is a perfect square, i.e., n = *1, 0, 2, 4, 8, 10, respectively.

2. Preliminaries

It is well known that the Lucas sequence

vn+2

where n denotes an integer, is closely related to the Fibonacci sequence, and
that the following formulas hold (see [2]):

= Un+l + [ DO =2, Ul =1,

u_, = D"y, v = (D)7, (1)
2Upman = UpUn T UpUps 2Vpyn = Stglhy, T Uplys (2)
Uy, = UpVys Uy, = V3 + 2(=1)"HL; (3)
V2~ 5uZ = 4(-1)"; (4)
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ON TRIANGULAR FIBONACCI NUMBERS

Upppin = (-1)%wu, (mod vy); (5)

where 7, m, t denote integers and k = *2 (mod 6).

Moreover, since x = *u,, y = tv, are the complete set of solutions of the
Diophantine equations 5x2 - y2 = 4, the condition u, = sm(m + 1) is equiva-
lent to finding all integer solutions of the two Diophantine equations

s5m2(m + 1)2 - 4y? = %16,

]

i.e., finding all integer points on these two elliptic curves. These problems
are also solved in this paper.

3. A Jacobi Symbol Criterion and Its Consequences

In the first place we establish a Jacobi symbol criterion that plays a key
role in this paper and then give some of its consequences.

Criterion: If a, n are positive integers such that n =*2 (mod 6), (a, v,) =
1, then
<i4au2n + 1) <8aun b v”>
Von 64a’ + 5

whenever the right Jacobi symbol is proper.

Proof: Since m = %2 (mod 6) dmplies v, = 3 (mod 4) and 2n = *4 (mod 12) implies

Uy, =7 (mod 8), we have

(ilfauzn + 1> ] (iSau?_n + 2) ) (iBaunvn +,v%> by (3)
Yon Von Yon

_ Yon . .

= since @, n > 0 imply 8au, * v, > 0
8au,v, * v

) (D) v
v, /\8au,, * v, v, 8au, * v,

2 ( a (40@74% + 8@7)%) (2 >( a )(X(Maz + 5)ann>
B -<vn> 8au, * vn> 8au, * vy B v, /\8au, * v, 8au, * v,
<2>< a )<8aun + Un>< Uy, Uy )
=+ — .
v,/ \8au, + v,/ \ 64?2 +5 /N\8au, * v,
If u, 1 (mod 4), then
( Uy, (Saun v, <vn) ~ (un)
8auntvn> - Uy ) T \un/  \vn/)’
If u, = 3 (mod 4), then
( Uy, _<8aun oy, <vn> (un>
8au, * vn> o Up > Uy v,/

Uy, U,
Hence, we always have ———————;—) ={—1.
n

Bau, * Un

51 v, _<8aun v, 2a\ [ %n
ince (Saun T vﬂ) =3 v ) = A(Un><vn>’ we get
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ON TRIANGULAR FIBONACCI NUMBERS

(téaMZn + l) _ _(£L>< a >(8aun * vn> _ _< a >(8aun * U”>
Vs, vy /\8au, * v, 64a?+5 8au,, * v2 64a?+5 /)’
0, 2/b. If b =1 (mod 4), then

() (o) - (25 )-
= = = ;
8au,, * v3 8au,, * v3 b

If » = 3 (mod 4), then

(o, 75) ™ (g, 732)
8auo, * v% 8aug, * U%

the same as above, so we finally obtain

<14au2n + 1) _ _(8aun + un>
vy 64a’ + 5

n

Moreover, put a = 2°b, s

I\

I

i<8au2n * v$> .
b 3

The proof is complete. [J
Now we derive some consequences of this criterion.
Lemma 1: If n = #1 (mod 2%« 5), then 8u, + 1 is a square only for n = *I.

Proof: We first consider the case n = 1 (mod 2%+ 5). If n = 1, put
n=2=06(n-1) «37 «25m+ 1,

where §(n - 1) denotes the sign of n - 1, and r 2 0, 3*m, then m > 0 and m = %16
(mod 48). We shall carry out the proof in two cases depending on the
congruence class of 6(n — 1) » 3" (mod 4).

Case 1: §(n — 1)« 3% =1 (mod 4). Let k' =5m if m =16 (mod 48) or kK = m
if m = 32 (mod 48), then we always have k = 32 (mod 48). Using (5) and (2), we
obtain

8u, + 1 = 8uy, g + 1 2 4uy, +vy) +1 = 4uy, +1 (mod v,, ).
Using the Criterion, we get (evidently the conditions are satisfied)

<8un + 1) (4”2k + 1\ <8uk~+ vk>
Vox Vox )B 69

Take modulo 69 to {8u, + v,J}, the sequence of the residues has period 48,
and k = 32 (mod 48) implies 8uy, + v; = 38 (mod 69), then we get

8u, + l) (38> .
( Vg - \69/
so that 8y, + 1 is not a square in this case.

Case 2: §(n — 1)+ 3" =3 (mod 4). "In this case, let k’= m if m = 16 (mod
48) or k = 5m if m = 32 (mod 48) so that k = 16 (mod 48) always. Similarly, by
(5), (2), and the Criterion, we have

8u, +1 (—Aqu +1 <8uk —-vk>
( Vo ) - Vg ) - 69 /)’
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Since the sequence of residues of {8u, - v,} (mod 69) has period 48 and k =
16 (mod 48) implies 8u; - v, = 31 (mod 69), we get

<8un + l) (31) ]
Yok S o\es/ T

Hence 8u, + 1 is also not a square in this case.
Secondly, if # = -1 (mod 2% «5) and n = -1, by (1) we can write

8u, + 1 =8u_, + 1.

Since =n = 1 (mod 2%+ 5) and -n = 1, it cannot possibly be a square according
to the argument above. .
Finally, when n = %1, both give 8u, + 1 = 32, which completes the proof. []

In the remainder of this section we suppose that n is even. Note that if »n
is negative and even, then 8u, + 1 1is negative, so it cannot be a square;
hence, we may assume that n 2> 0.

Lemma 2: If n = 0 (mod 22+ 52), then 8u, + 1 is a square only for n = 0.

Proof: If n > 0, put n = 2 52+ 25 g, 2*1, s > 1, and let
29 if s 0 (mod 3),
k =<5%2+2° if ¢ = 1 (mod 3),
5. 2° if s = 2 (mod 3),

then & = #6 (mod 14). Since (2, vy) =1, k
terion we get

(874” + 1) _ <i8u2k + l> _ _<16uk t vk> _ _<l6uk + vk>
Vo Vo 929 29 )
[It is easy to check that (l6u, * v,, 3) = 1 for any even 7n.]

Simple calculations show that both of the residue sequences {16u, * v,}
modulo 29 have period 14. If kX = 6 (mod 14), then

16y, + vy = 1 (mod 29), 1l6uy - vy = -6 (mod 29);
if ¥ = -6 (mod 14), then

lou, + vy, = 6 (mod 29), 16uy -~ vy = -1 (mod 29).
Since (*1/29) = (x6/29) = 1, we obtain

8u, + l>
__..:_.___ = _1’
< Vo

so that 8u, + 1 is not a square.
The case n = 0 gives 8u, + 1 = 12, which completes the proof. [J

i1

+2 (mod 6), by (5) and the Cri-

Lemma 3: If nw = 2 (mod 2°+ 52), then 8u + 1 is a square only for n = 2.

Proof: If n > 2, put n = 37+ 2 528 + 2, 3*2, 2 > 0, then £ = *16 (mod 48).
Let k = £ or 5% or 52%, which will be determined later. Since 4‘k implies (3,
vy) = 1, and clearly k = *2 (mod 6), we obtain, using (5), (2), and the
Criterion

8u, + 1 <t8u2k+2 + 1 (ilZuzZ< + 1 (24uk vy
( Yok > ) Yok > ) Yok ) o 581 )
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Taking {24u, * v,} modulo 581, we obtain two residue sequences with the
same period 336 and having the following table:

n  (mod 336) 80 112 128 208 204 256
24y, + v, (mod 581) 65 401 436 359 261 170
24y, - v, (mod 581) 411 320 222 145 180 516

It is easy to check that

(24un t o,
581 > =1
for all six of these residue classes n (mod 3367).
Since 336 = 48« 7, we see that & = #16 (mod 48) are equivalent to % = 16,

32, 64, 80, 112, 128, 160, 176, 208, 224, 256, 272, 304, 320 (mod 336). We
choose k as follows:

L if &
k =458 if 2

529 if 2

80, 112, 128, 208, 224, 256 (mod 336)
16, 160, 176, 320 (mod 336)
32, 64, 272, 304 (mod 336).

With this choice k must be congruent to one of 80, 112, 128, 208, 224, and 256
modulo 336. Thus, we get

<8un + 1) <24uk * Uk> )
Vo 581 ’

so that 8u, + 1 is not a square.
Finally, the case n = 2 gives 8u, + 1 = 32, The proof is complete. [

HETH

Lemma 4: If n = 4 (mod 2%), then 8u, + 1 is a square only for n = 4.

Proof: 1f n > 4, we put n = 2+ 3% <k + 4, 3*k, then k¥ = *16 (mod 48). Accord-
ing to (5), we have

8u, + 1 = =8uy + 1 = =23 (mod v,).
Simple calculations show that the sequence of residues {v;} modulo 23 has
period 48 and that k = %16 (mod 48) implies that vy = -1 (mod 23). Hence,

(5)- G- (3)- (5)- -

vy vy 23 23 ’
so that 8u, + 1 is not a square in this case.

When n = 4, 8u, + 1 = 52. The proof is complete. []
Lemma 5: If n = 8 (mod 25+ 5), then 8u, + 1 is a square only for n = 8.
Proof: 1f n > 8, we put n = 2+ 3" <54 + 8, 3f%, then £ = *16 (mod 48). Let k =
% or 5%, which will be determined later. TFor both cases, we have, by (5),
8u, + 1 = -8ug + 1 = -167 (mod v,).

The sequence {v,} modulo 167 is periodic with period 336, and the following
table holds.

n (mod 336) +32 +64 +80 +112 +160
v, (mod 167) 125 91 17 166 120

It is easy to verify that all values in the second row are quadratic non-
residues modulo 167. Let A denote the set consisting of the residue classes in
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the first row. We now choose k such that its residue modulo 336 is in 4.

The condition 1 = #16 (mod 48) is equivalent to 1 = 16, 32, 64, 80, 112,
128, 160, 176, 208, 224, 256, 272, 304, 320 (mod 336), and all of these residue
classes, except four classes, are in A. For these classes, we let kK = &. The
four exceptions are £ = 16, 128, 208, 320 (mod 336), for which we choose k = 5%
so that k = 80, -32, 32, -80 (mod 336), respectively, which are also in 4.
Thus, for every choice of k, v, 1s a quadratic nonresidue modulo 167. Hence,

() - (50 - (5%9)
Vg “\ vy, > “\167) = 7L

and 8y, + 1 is not a square.
Finally, for n = 8, 8u, + 1 = 132, which completes the proof. [J

Lemma 6: If n = 10 (mod 22+ 5 +11), then 8u, + 1 is a square only for »n = 10.

Proof: In the first place, by taking {v,} modulo 439 we get a sequence of resi-
dues with period 438 and having the following table:

n  (mod 438) 2 8 16 44 56 64 94 178 230 256 296 302 332 356 376
v, (mod 439) 3 47 12 306 54 407 395 24 79 101 394 202 184 135 74

Let B denote the set consisting of all fifteen residue classes modulo 438
in the first row. Simple calculations show that, for each n in B, v, is a quad-
ratic nonresidue modulo 439.

Now suppose that 8u, + 1 is a square. If n > 10, put n = 2<% +5-11+2% +
10, 2*1, t > 1. The sequence {2¢} modulo 438 is periodic with period 18 with
respect to t and we obtain the following table:

t (mod 18) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2t (mod 438) 2 4 8 16 32 64 128 256 74 148 296 154 308 178 356 274 110 220
52t (mod 438) - 302 332 56

11 - 2% (mod 438) b o4 376 230
5011 2% (mod 438) 8 296 356

where the underlined residue classes modulo 438 are in B. If we take k as fol-
lows:

2t if ¢t =1, 3, 4, 6, 8, 11, 14, 15 (mod 18)
% 5.2°¢ if ¢ = 10, 12, 16 (mod 18)

11+ 2t if ¢t 20, 2, 7, 9 (mod 18)

5¢ 112t 4if ¢ = 5, 13, 17 (mod 18),

then the residue of k modulo 438 is in B, that is, v, 1s a quadratic nonresidue
modulo 439. Thus, by (5), we get

8u, + 1 = =8u;, +1 = -439 (mod v,),

8u, + 1 <_439 (vk > |
( vy > "\ o ) “\439) T

so 8u, + 1 is not a square. In the remaining case n = 10, we have 8u,+1 = 212,
The proof is complete. [J

and

Lemmas 2 to 6 immediately imply the following result:

Corollary 1: Assume that n = 0, 2, 4, 8, 10 (mod 2%+« 52+11), then 8u, + 1 is a
square only for n =0, 2, 4, 8, 10. [J
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4, Some Lemmas Obtained by Congruent Calculations

The lemmas in this section provide a system of necessary conditions for 8u,
+ 1 to be a square. We prove them mainly by the following process of calcu-
lation: First we study {8u, + 1} modulo a;. We get a sequence with period k,
(with respect to #n), in which we eliminate every residue class modulo k, of n
for which 8u, + 1 is a quadratic nonresidue modulo a;. Next we study {8u, + 1}
modulo a,, and get a sequence with period kz' For our purpose, a, will be cho-
sen in such a way so that kllkz. Then we eliminate every residue class modulo
ko of n from those left in the preceding step, for which 8u, + 1 is a quadratic

nonresidue modulo a,. We repeat this procedure until we reach the desired
results.

Remark: Most of the g; will be chosen to be prime and the calculations may
then be carried out directly from the recurrence relation

8u,,p + 1 = (81, + 1)+ (8u, +1) - 1.
Lemma 7: I1If 8u, + 1 is a square, then n = *1, 0, 2, 4, 8, 10 (mod 25+ 5).

Proof:

(1) Modulo 11. The sequence of residues of {8u, + 1} has period 10. We can
eliminate n = 3, 5, 6, 7 (mod 10) since they imply, respectively,

8u, +1 =6, 8 10, 6 (mod 11),

all of which are quadratic nonresidues modulo 11, so there remain n = *1, 0, 2,
4, 8 (mod 10).

For brevity, we shall omit the sentences about periods in what follows
since they can be inferred from the other information given, e.g., mod 10 in
the above step.

(ii) Modulo 5. Eliminate n = 9, 11, 12, 14, 18 (mod 20), which imply
8u, + 1 = #2 (mod 5),
which are quadratic nonresidues modulo 5, so there remain »n = *1, 0, 2, 4, 8,
10 (mod 20).
(iii) Modulo 3. Eliminate n = 3, 5, 6 (mod 8), which imply
8u, + 1 = 2 (mod 3),
which is a quadratic nonresidue modulo 3, so eliminate n = 19, 21, 22, 30 (mod
40) and there remain n = *1, 0, 2, 4, 8, 10, 20, 24, 28 (mod 40).
(iv) Modulo 2161. Eliminate » = 28, 39, 41, 42, 44, 60, 68 (mod 80) since
they imply, respectively,
8u, + 1 = 1153, 2154, 2154, 2154, 2138, 2067, 1010 (mod 2161),
which are quadratic nonresidues modulo 2161, so there remain n = *1, 0, 2, 4,
8, 10, 20, 24, 40, 48, 50, 64 (mod 80).
(v) Modulo 3041. Eliminate n = 24, 40, 50, 64, 79, 81, 82, 84, 88, 90, 100,
104, 120, 128 (mod 160) since they imply, respectively,

8u, +1 = -57, 2590, 2613, 1815, -7, -7, -7, =23,
2874, 2602, 619, 59, 447, 1500 (mod 3041),

which are quadratic nonresidues modulo 3041.
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Modulo 1601. Eliminate » = 130, 144 (mod 160) since they imply, respec-—
tively,

8u, +1 = 639, 110 (mod 1601),

which are quadratic nonresidues modulo 1601.
Hence, there remain n = *1, 0, 2, 4, 8, 10, 20, 48, 80 (mod 160).

(vi) Modulo 2207. Eliminate » = 48, 80, 208, 240 (mod 320) since they imply
8u, + 1 = 933 or 1276 (mod 2207),

both of which are quadratic nonresidues modulo 2207, so eliminate n = 48 and 80
(mod 160) and there remain n = %1, 0, 2, 4, 8, 10, 20 (mod 160).

(vii) Now we eliminate n = 20 (mod 160) by the following calculation. Put »n =
160m + 20, since 80 = 2 (mod 6); by (5), uUigomszp = *upg (mod vgy), where the
sign + or - depends on whether m is even or odd. Using (3) and (4), we get

<8u20 + 1> =< Vg ) _ ((vz?—o -2)2 - 2> _ ((5u§0 +2)2 - 2)
Vgo Bupy + 1 Bugy + 1 Busy + 1
((5~ (8uyg)? +2-82)2 - 2+ 84)
8uyg +1

<(5+2-82)2—2-8”)=( 9497 )=<9497>=_1
8u,, + 1 8u,, + 1 54121
Similarly,
(~8u?_o + 1> ) ( Vg0 ) _ < 9497 ) ) (9497 > ..
Vag 8u20 -1 8u20 -1 54119

Hence 81, + 1 must not be a square when 7 20  (mod 160), and, finally,
there remain n = %1, 0, 2, 4, 8, 10 (mod 160). This completes the proof. []

K

In the following two lemmas, we suppose that n is even.

Lemma 8: 1f »n is even and 8u, + 1 is a square, then we have n = 0, 2, 4, 8, 10
(mod 22 52).

Proof: We begin from the second step of the proof of Lemma 7. Note that since
n is even, there remain n = 0, 2, 4, 8, 10 (mod 20).

(i) Modulo 101. Eliminate » = 12, 18, 20, 24, 32, 38, 40, 42, 44, 48 (mod
50) since they imply, respectively,
8u, + 1 = 42, 69, 86, 73, 34, 61, 66, 35, 38, 94 (mod 101),

which are quadratic nonresidues modulo 101.
Modulo 151. Eliminate n = 22, 28, 34 (mod 50) since they imply, respec-
tively,
8u, + 1 = 51, 102, 108 (mod 151),

which are quadratic nonresidues modulo 151.
Hence, there remain n = 0, 2, 4, 8, 10, 30, 50, 60, 64, 80 (mod 100).

(ii) Modulo 3001. Eliminate n = 60 and 80 (mod 100) since they imply, re-
spectively,

8u, + 1 = 2562 and 2900 (mod 3001),
both of which are quadratic nonresidues modulo 3001.
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Modulo 25. Eliminate n = 64 (mod 100) since it implies
8u, +1 = 10 (mod 25),

which is a quadratic nonresidue modulo 25.
Hence, there remain n = 0, 2, 4, 8, 10, 30, 50 (mod 100).

(iii) Modulo 401. Eliminate n = 30, 50, 130, 150 (mod 200) since they imply,
respectively,

8u, + 1 = 122, 165, 281, 238 (mod 401),

which are quadratic nonresidues modulo 401. Hence, at last, there remain n =
0, 2, 4, 8, 10 (mod 100), which completes the proof. [J

Lemma 9: If n is even and 8u, + 1 is a square, then we have n= 0, 2, 4, 8, 10
(mod 22 ¢ 5. 11).

Proof:

|

(i) Modulo 199. Eliminate n = 16, 18, 20 (mod 22) since they imply, respec-
tively, :

8u, + 1 = 136, 176, 192 (mod 199),

which are quadratic nonresidues modulo 199. There remain »n
10, 12, 14 (mod 22).

(ii) Modulo 89. Eliminate n = 6, 24, 26, 28, 32, 34 (mod 44) since they im-
ply, respectively,
8u, + 1 = 65, 82, 66, 26, 6, 6 (mod 89),

which are quadratic nonresidues modulo 89, so there remain n
12, 14, 22, 30, 36 (mod 44).

0, 2, 4, 6, 8,

1t

0, 2, 4, 8, 10,

1

(iii) In the first two steps of the proof of Lemma 7 we have shown that it is
necessary for n = 0, 2, 4, 8, 10 (mod 20), so that there further remain n = 0,
2, 4, 8, 10, 22, 30, 44, 48, 80, 88, 90, 100, 102, 110, 124, 140, 142, 144,
168, 180, 184, 188, 190 (mod 220).

(iv) Modulo 661. Eliminate n = 44, 48, 124, 144, 180, 184 (mod 220) since
they imply, respectively,
8u, + 1 = 544, 214, 290, 447, 379, 546 (mod 661),

which are quadratic nonresidues modulo 661.
Modulo 331. Eliminate » = 30, 58, 88, 102 (mod 110) since they imply,
respectively,

8u, + 1 = 242, 231, 312, 164 (mod 331),

which are quadratic nonresidues modulo 331. Thus, we can eliminate n = 30, 88,
102, 140, 168 (mod 220).
Modulo 474541. Eliminate n = 80, 90, 142, 188 (mod 220) since they im-
ply, respectively,
8u, + 1 = 12747, 54121, 131546, 131546 (mod 474541),
which are quadratic nonresidues modulo 474541.
Hence there remain » = 0, 2, 4, 8, 10, 22, 100, 110, 190 (mod 220).

(v) Modulo 307. Eliminate n = 14, 22, 58, 66 (mod 88) since they imply,
respectively,

8u, + 1 = 254, 162, 55, 147 (mod 307),
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which are quadratic nonresidues modulo 307. These are equivalent to n = 14, 22
(mod 44), so that we can eliminate »n = 22, 110, 190 (mod 220) from those left
in the foregoing step and then there remain »n = 0, 2, 4, 8, 10, 100 (mod 220).

(vi) Modulo 881. Eliminate m = 12, 56, 100, 144 (mod 176) since they imply,
respectively,

8u, + 1 = 272, 293, 611, 590 (mod 881),

which are quadratic nonresidues modulo 881. These are equivalent to n = 12
(mod 44), so that we can eliminate »n = 100 (mod 220).

Finally, there remain n = 0, 2, 4, 8, 10 (mod 220). This completes the
proof. [J

From Lemmas 7 to 9, we can derive the following corollary.

Corollary 2: 1If n is even, and if 8u, + 1 is a square, then n = 0, 2, 4, 8, 10
(mod 25«52 11).

Proof: Suppose that 8u, + 1 is a square, n is even. According to Lemmas 7 to
9, n must satisfy the following congruences simultaneously:
nzec; (mod 2% 5)
= 2452
n=ec, (mod 2 52) ey Cys Cy € {0, 2, 4, 8, 10}.
n=cy (mod 225+ 11)

Because the greatest common divisor of the three modulos is 20 and the
absolute value of the difference of any two numbers in {0, 2, 4, 8, 10} cannot
exceed 10, we conclude that ¢; = ¢y = c3. Moreover, since the 1least common
multiple of the three modulos is 25 52 11, we finally obtainn = 0, 2, 4, 8,
10 (mod 25+ 52+ 11). The proof is complete. []

5. Proofs of Theorems

Now we give the proofs of the theorems in Section 1.

Proof of Theorem 1: Suppose 8u, + 1 is a square, the conclusion follows from
Lemma 7 and Lemma 1 when »n is odd, and from Corollary 2 and Corollary 1 when n
is even. [J

Proof of Theorem 2: The proof follows immediately from Theorem 1, by exclu-
ding u, = 0, since a triangular number is positive.
In fact,

U,y =u, =1 ©2/2, uy, = 2°3/2, ug =6 °7/2, Uyjo = 10 11/2. 0

+1

Finally, we give two corollaries as the Diophantine equation interpreta-
tions of Theorem 2.

Corollary 3: The Diophantine equation

502(x + 1)2 - 4y% = 16 (6)
has only the integer solutions (x, y) = (-2, *1), (1, %1).
Proof: According to (4) and the explanation at the end of Section 2, equation

(6) implies 3x(x + 1) = u, and n is odd, thus it follows from Theorem 2 that
(e + 1) = 1, which gives & = -2 or 1. [J
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Corollary 4: The Diophantine equation
502 (x + 1)2 - 4y2 = -16 (7

has only the integer solutions (x, y) = (-1, *2), (0, £2), (-2, =3), (1, *3),
(=3, x7), (2, x7), (-7, *47), (6, *47), (-11, *123), and (10, *123).

Proof: yith the same reason as in Corollary 3, equation (7) implies 3x(x + 1)
U, and n is even, so 3x(x + 1) =0, 1, 3, 21, or 55 by Theorem 2 (adding Uy =
0). Thus, we get x = -1, 0, -2, 1, -3, 2, -7, 6, -11, 10, which give all
integer solutions of equation (7). [
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A rational number r is said to be divisible by a prime number p provided
the numerator of r is divisible by p. Here it is assumed that all ratiomnal
numbers are written in standard form. That is, the numerators and denominators
are relatively prime integers and the denominators are positive.

Certain sequences {Hn}:=1 of rational numbers have the property that if p
is any prime number, then u, = u; (mod p). A sequence {u,l,., having this pro-
perty is said to be a Fermat sequence or to possess the Fermat property.

The obvious example of a sequence that has the Fermat property is {a”},.;
with a being an integer. Indeed Fermat's Little Theorem states that if a is
any integer and if p is a prime number, then a? = a (mod p).

There are sequences {u,},_., that have the Fermat property other than
{a"};_,. An example of a sequence that has the Fermat property for odd primes
is the sequence {7,(x)};_; where x is an integer and T, (x) is a Tchebycheff
polynomial of the first kind.

It is the purpose of this paper to give a class of sequences (of rational
numbers) all having the Fermat property. The following theorem is related to
Newton's formulas. Let

fl@) = ok + A2k + oo + 4,z + 4y

be a polynomial with real or complex coefficients. The sequence {u,},_; is de-
fined in the following way: The first k terms of the sequence are given by New-
ton's formulas, namely,

up + Al = 0,
u, + Alul + 2A2 =0,
ug + Aju, +4u; + 345 =0, (1)

u, + Aqug o HAyuy o+ oeee F A Uy kh, = 0.

After the initial X terms are given, the rest of the terms are generated by the
difference equation

u, + Aju + Agu, o+ cee + AU, =0, (2)

for n > k + 1, which is formed from the polynomial f(x). It is well known that
the sequence {u,},.; given above is the sequence of the sum of the powers of
the roots of f(x). Thus, if

n-1

flx) = (x - xl)(x - xz) cee (&= x)s
then
U, =xf +x+ ... +axf, forn =1, 2, 3,
In this paper it is supposed that xyx, ... %, # 0. See [6], pages 260-262.

The Corollary to Theorem 1 solves the difference equation defined by (1)
and (2) with appropriate adjustments ingithe way f(x) is factored.
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Theorem 1: Let cy, Cps «wws Cp and Ty, X,, ..., ¥, be any real or complex num-
bers. Let

k o
I+ z2)% =1+ 3 4,x%. (3)
i=1 i=1
Then
clx? + szf + e + cpxf . (4)
n-1 . J1 n - 7 . . Jy . . .
J n-g, -J J J, = d
R R (R R N ¢
_ Jp =0 J, =0 2 J3=0 3
n - jl
jn-z J J . J b § . . ) . .
In=2\yg In-2=Jdn-1( Cdn-1 . AIn-1 =Wy —dy =0 mdnon Ajl“Jz”"'"Jn~1
j_1=0(=7n—1> n-2 <J1-Jz‘ ""Jn-l) n-1 n

where n is a natural number.

Proof: The argument is formal. Take 1n x of both sides of (3). Then, for the
left side,

x k
In [T (1 + xix)ci =3 e¢; In(1 + x,2). (4)
i=1 iz1

The expansion

2 3 n-1
R el A LG Dl i
In(l + ) = x 2+3 + ee. + ” + s (5)

|x| < 1 is well known.

Let Coexrf(x) denote the coefficient of x¥ when f(x) is expanded as a power
series in x. Then

k ko, (-1)" !
Coexn.}: ¢; In(l + x;x) =}; 1—7— (6)
=1 =1
_ (—1)”‘1[clx? +oe,x) e + e xy]
- .

To find the coefficient of x” on the right side of (3) after 1ln x is taken,
the following argument is given. Since the coefficient of x” is to be deter-
mined, it follows that only

n
ln(l + Aixi)

i=1

need be considered. Thus, the required coefficient is

n
Coexnln<1 +i§iAix1> (7)
n . n N2 . n N
>4t (EA..?C”' (—1)”-J'1<2Aix7—>
i=1 i=1 " i=1
= Coexrl - + = .. + + .

1 2 n-4

Since each term in this expansion has x as a factor, it is not mnecessary to
consider terms for which n - j > n. Thus, n - j < n so that j 2 0. Also, the
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only ones that are needed to be considered are those which do have some term
with 2" in its expansion. Now each term that has x” in its expansion satisfies
nn-g) 2normn-g4=21ormn-1=2g7 . Thus, the largest value for J needed

is m = 1. Hence, N n- g
n_ i .
S 20

n . n-1
Coe,.» ln(l + zAiw) - Coe,n 3 8)

i1 Jizo n- g

. " . n-g
o1 (—l)n—Jl-lcoexh (Al + z:zAix1-1> 1
iz

"

7120 n =g

. - g _ = i ./ n . .
R M A L P

_ le—:l jz 0 ’L'=2
=0 n -1
. n-g, o . n ] .
n-g, -1 no= Ji\yn-d.-d -2\72
- (-1) 1 -Zo ( jz >A1 1 1Coex‘j~1,j2 <A2 + iZBAixl )
J,= =
= Y . .
J,=0 n-J1

Continuing this pattern with a simple induction completes the proof. [J

An important special case of Theorem 1 occurs when ¢; = ¢, = --- =¢, = 1I.
In this case, in (7),

k . k .
Coe_, ln(l + 2 Aiaﬂ) = Coe,, ln(l + Eoixl), 9)

=1 =1

where gy, 0,, ..., 0, are the elementary symmetric functions of Xy, Xy, «..5 Xy
Thus,

0p = 2; + X, + v.. + Lys
Oy, = X%, + X &y + T2, + oo+ XL+ o0
+ ... +xk_1xk, cees Op
= L&y eee Ty
The only terms in the expansion (9) that need be considered are those which
actually do have some term with x" in its expansion. Now each term which has
x" in its expansion satisfies k(n - j) 2 n, or (k - 1)n 2 kj, [see line (8)].

Let h3x(n) be the largest whole number ¢ such that (k - 1)n 2 k¢. Thus, 0 < j <
hg(n). With this change, the following is a corollary to Theorem 1.

Corollary to Theorem 1: Let n be a natural number and let Z;, Z,, ..., &; be a
set of real or complex numbers.

(n) . J . . . jz > . .
k 1 - _ _ _
R N s
n n n Ji= J2= J2 J3=0 3
X+ xh A e+ af = -
n - J]_
Jy-2 . . . . . ) ) ' o )
> (qk_2>oak-z—Jk_1<_ Cdk-1 )Oak_l—(Jl-Jz----—Jk_u o192 ke
o 1m0 NTx-1/ K72 Jy=dg =t T dg) KL

>

(10)
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where 0,, 0,, ..., Ox are the elementary symmetric functions of Tys Loy wees Xy
and %, (n) is the largest whole number ¢ such that (k - 1)n = kt.

Using (10), with appropriate simplifications for kK = 2 and k = 3, gives:

" [n/2] i (n ; j) . .

xl +xh =n jgo (-1) —n——j(xl + x,)" 23 (2y2,)7 (11)
and
xl + xy + x} (12)
[2n/3] . J -

noy (-1)? Y AT (x, + 2, + x,)" 72

_ d=o E=[(J’+l)/2]( . )(J S )@t ke
n-g

(1@, + Ty + xa2)) 2 ‘j(xlxzxs)j‘“

3

where [ ] is the greatest integer function.

The identity (11) is known. It is reported on in [2], p. 80, in the
article on G. Candido's use of this identity.
For a discussion of formal arguments, see [3].

Theorem 1 can now be used to establish

Theorem 2: Let cj, Cps +..5 C; and X1, Xos «-.> x;, be any real or complex num-
bers and if the coefficients Al, Az’ A3, ... in

k w
I](l + xix)cl =1+ }: Azt
=1 =1

are all rational numbers, then:

(1) The sequence {uyl . _., u, = c,x +c,x? + .- + ¢, x;, is a sequence of
) nip=1> Un 1% 2%2 kT !
rational numbers; and

(2) 1If for any prime number p, p is relatively prime to each of the denom-

inators of 4;, 4,, ..., Ap, then the sequence {unl},_, has the Fermat property.

Proof: From Theorem 1, it is clear that u, is a rational number if 4,, 4,, ...,
A, are all rationals. Also, if p is a prime number, from Theorem 1 and the
fact that the denominators of Al’ Az’ «.v> Ay are all relatively prime to p, Up
= ul(mod p). Here, u; = Al' O

L. E. Dickson established a result somewhat reminiscent of Theorem 2. He
showed that if Z, is the sum of the nth powers of the roots of the polynomial
m=-1 =
x™ + ajx + .- +a, =0,
where a; = 0 and a;, az, ..., a; are all integers, then Zp = 0 (mod p) when p

is a prime. See [1]. This result is of course a corollary of Theorem 2.

Example 1: For the Tchebycheff polynomials it is known that
2T, (x) = (x + V2 - 1)" + (¢ - Vo2 - 1)".

(See [5], p. 5.) Letting
Yy, =x + yx2 - 1

and
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Yy, =x - vxZ - 1
and
(L +y ) (1 + yy) =1+ 2zy + y?

so that, by Theorem 2, for z an integer {27,(x)},_, is a Fermat sequence. Thus,
if p is a prime number ZTP(x) = 2x (mod p). Henmce, if p > 2, {T (oc)}°n°=1 has the
Fermat property.

It is possible to give examples of sequences {u }:=1 in (1) of Theorem 2
where the ¢'s are irrational or even complex. However, if the x 's are dirra-
tional, then it is not obvious that u, = u; (mod p) for p being a prime number.
The position taken here is that no irrational number is divisible by any prime
number. The arithmetic of this paper is the arithmetic of the real rational
integers. Thus,

p
<1+2/§> il-;/g(modp),

but as Theorem 2 shows

() + (55 5 155

Thus, for x£,, £, ..., &£,, the roots of a polynomial over the rationals
1 2 k poiy

p p P
xl + xz + eee + xk = xl + x2 + eee + xk (mod p)

is a generalization of Fermat's Little Theorem.

From Theorem 1 it is clear that if the u's are all rational numbers, then
all the 4's in Theorem 2 are also rational. Thus, the following corollary is
established.

Corollary to Theorem 2: Let ¢y, ¢ps .-.5 ¢, and &y, Z,, ..., Ty be any real or
complex numbers. Then a necessary and sufficient condition for the coefficients
Al’ Az, A3, ... 1in

k © .
nma+ xix)ci =1+ }: 4,xt, (13)
=1 =1
to be ration%l numbers is for the sequence
o\ n n n
{und Ly, Uy = 120 + 20 + ..o + ),
to be a sequence of rationals.

Example 3: Let a and b be rationals and suppose that b is not the square of a
rational. Consider the power series

1+ @+ B E+ (@- /B =1+ 3 4zt (14)

=1
By the corollary, the power series will have rational coefficients provided
U, = (@ + /b)(a - /D)* + (a - VD) (a + Vb)",

is rational forn =1, 2, 3, ... . Now

(@2 -~ b)[(a - /D)*" L + (a + VB)*"1] (15)

Unp

n'_l — . 3 .

@ - ("7 a2 D+ 11,
i=o* T

which is clearly ratiomnal.
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For example,

(1 + w)® (1 + w2)" = 1+ ¥ 4;x%, (16)

=1

is such that A; is rational for 7 = 1, 2, 3, ... when 1, w, w? are the cube
roots of unity.

Example 4: Define the sequence {un};:l by the formula

m 27 - 1
u, =y secn————n.
" Jj=1 4m

Here m is an arbitrary natural number. Then {un};::l is a sequence of integers
which has the Fermat property.

To see this, consider the product

m 27 -1
fy) = 11 (1 - [seczg———ﬂ]y>. (17)
i=1 4m
. m 23 -1
Multiply this by [] cos2——— so that
j=1 4m
m 25 - 1 m 27 - 1
2———-———’” = 2———'” - . 18
f'(y)j[;ll cos - jr=11<cos p y) (18)

Replace y by xz? so that

m 27 - 1 m 27 - 1
f'(xZ) n COSZ_J——TT = n (Cosz—J————TT - .”X,‘2>, (19)
j=1 4m Jj=1 4m

[(—l)mafll coszg%’;—lﬂ]f(xz) = jf:11<x - cos Z—J;;—{ﬂ><x + cos gq—(:%w) 20)

Thinking of cos[(2j - 1)/4m]l along the unit circle for j =1, 2, ..., m, it is
in the first quadrant so that, by symmetry,

m 27 - 1 2m 2 -1
" Y R 2y = - 7. 21
{( ) 'r=]1 cos - n:lf(x ) [;[l(x cos - (21)
J J
A well-known identity is
n 27 -1
2" + 1 = [I (xz - 2x cos I 1). (22)
i=1 2n

In (22), let n = 2m and & = 7 so that

2m 23 -1
2 = (=1)"227[] cos2=L . (23)
j=1
Now, by symmetry around the unit circle,
2m 27 -1 m 2§ -1 -1)"
o T = -1 c 82 m = . (24)
jl;llc S 4m -1) jl;ll © 4m 22m=1
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Using (24) and (21) yields

2m 27 -1
f(x?) = (-1)m22m-1 [](? - cos —g—————ﬂ>.
j=1 4m
It is well known that

om 27 - 1
T, (x) = 22m-1 (x - cos —=—1),
2m( ) jEL 4m

where Ty, (x) is the 2m‘™®™ Tchebycheff polynomial (see [4], p
follows from the fact that T, (x) = cos(narccos x). Now x = /Y, so that

F) = UL, (),
which is a polynomial in y with integer coefficients.

Since sec2[(2j-1)/4m]m for j =1, 2, 3, ..., m are the roots of

(-D)"y"T, (1/Vy)

p. 86-90).

(25)

This

(26)

and the coefficients of this polynomial are all integers and the leading coef-
ficient is (-1)™, it follows from the corollary to Theorem 2 that {un}:=1 is a

sequence of integers satisfying the Fermat property.
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1. Introduction

Let ¢(m) be an integer-valued function defined on the set of all positive
integers. If m = pf1p§2 . pﬁf, where the p;'s are distinct prime numbers, r
and the k;'s are positive integers, we define &,(1, ¢) = ¢(1) and

010m, 9) = 6(m) = 3 oGilp,) + T oG/, b, )
z z

1= 7,1<’Lz

- X om/p, b, p, )+ e+ (CTOm/ (P, -e- P
1 %2 %3

’i1<i2<i3

where the summation 2:i1<i2<o--<ij is taken over all integers Z;, Tps «..5 Lj
with 1 < ) <2y < +ee < T; <.
If m= ZkopflpSQ... pff, where the p,'s are distinct odd prime numbers, and

k, =2 05 r, and the k;'s = 1 are integers, we define, similarly,
0 7 g

r
o (ms ¢) = 0(m) = ¥ ¢(m/p,) + X ¢m/(p, p; ))
i=1

i1<i2
- L smlp, p, p, ) * eee (1) 00m/(pypy --- P
1)< 1, < 1, o273
If m = 2%, where k 2 0 is an integer, we define
o, (ms ¢) = ¢(m) - 1.

If, for some integer n > 2, we have ¢(m) = n™ for all positive integers m, then
we denote ¢;(m, ¢) by ¢;(m, n), © = 1, 2, to emphasize the role of this integer
n.

On the other hand, let S be a subset of the real numbers and let f be a
function from S into itself. For every positive integer n, we let f" denote
the nth iterate of f: f1 =f and f"=f o f*! for n 22. For every x5 €S, we
call the set {fk(xo)lk > 0} the orbit of z, under f. 1f xy satisfies f™(xg) =
xy for some positive integer m, then we call x; a periodic point of f and
call the smallest such positive integer m the minimal period of xy and of the
orbit of xy (under f). Note that, if x; is a periodic point of f with minimal
period m, then, for every integer 1 < k < m, fX(xy) is also a periodic point of
f with minimal period m and they are all distinct, so every periodic orbit of f
with minimal period m consists of exactly m distinct points. Since it is obvi-
ous that distinct periodic orbits of f are pairwise disjoint, the number (if
finite) of distinct periodic points of f with minimal period m is divisible by
m and the quotient equals the number of distinct periodic orbits of f with
minimal period m. This observation, together with a standard inclusion-exclu-
sion argument, gives the following well-known result.
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Theorem 1: Let S be a subset of the real numbers and let f:S5 + S be a map-
ping with the property that, for every positive integer m, the equation f™(x) =
x (or ~-x, respectively) has only finitely many distinct solutions. Let ¢ (m)
(or Y(m), respectively) denote the number of these solutions. Then, for every
positive integer m, the following hold.

(1) The number of periodic points of f with minimal period m is ®l(m s ). So
&, (m, ¢) = 0 (mod m).

(ii) If 0 € S and f is odd, then the number of symmetric periodic points (i.e.,
periodic points whose orbits are symmetric with respect to the origin) of
f with minimal period 2m is ®,(m, V). Thus, ¢,(m, Y) = 0 (mod 2m) .

Successful applications of the above theorem depend of course on a knowl-
edge of the function ¢ or Y. For example, if we let S denote the set of all
real numbers and, for every integer n = 2 and every odd integer ¢t = 2k + 1 > 1,
let

14

ful@) = ay« fl @ - 5
and let !
k
g, (x) = by x_Hl(mZ - 7%,
=

where a, and b, are fixed sufficiently large positive numbers depending only on

m and ¢, respectively. Then it is easy to see that, for every positive in-
teger m, the equation fﬂ%x) = [gf@r) = -x, resp.] has exactly n™ (t™, resp.)
distinct solutions in S. Therefore, if ¢(m, n) = n™ and Y(m, t) = t™, then we

have as a consequence of Theorem 1 the following well-known congruence iden-
tities which include Fermat's Little Theorem as a special case.

Corollary 2: (i) Let m 2 1 and n 2 2 be integers. Then Ql(m, n) = 0 (mod m).

(ii) Let m = 1 be an integer and let » > 1 be an odd integer.
Then ¢2(m, n) = 0 (mod 2m).

In this note, we indicate that the method introduced in [1] can also be
used to recursively define infinitely many ¢ and ¥ and thus produce infinitely
many families of congruence identities related to Theorem 1. In Section 2, we
will review this method, and to illustrate it we will prove the following
result in Section 3.

Theorem 3: For every positive integer n 2 3, let ¢, be the integer-valued
function on the set of all positive integers defined recursively by letting
¢,(m) = 2™ -1 for all 1 <m <n - 1 and

v
o

n-1
b,(n + k - j), for all k
J=1

6, (n + k) =

"
o

Then, for every positive integer m, @;(m, ¢,) (mod m). Furthermore,

lim[log @, (m, ¢,)]1/m = %%m[log b, (m)1/m = log oy,

o ©

where o, is the (unique) positive (and the largest in absolute value) zero of
the polynomial
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Note that in the above theorem these numbers ¢,(m), m > 1, are generalized
Fibonacci numbers [3, 4] and when n = 3, these numbers ¢3(m), m = 1, are the
well-known Lucas numbers: 1, 3, 4, 7, 11, 18, 29,

Just for comparison, we also include the following two results which can be
verified numerically. The rigorous proofs of these two results which are
similar to that of Theorem 3 below can be found in [1l, Theorem 2] and [2, Theo-
rem 3], respectively.

Theorem 4: For every positive integer n > 2, let sequences
Pr,1,4,n7s br,2,4,n05 1 <J <,

be defined recursively as follows:
bl,l,j,n=o’ 1Sj.<_7’l,
bZ,l,j,n=]-’ 1 <4 <mn,
by, 2,5, n =b2,2,j’n =0, 1<j<n-1,
bl, 2, n,n =b2, 2,n,n = L.

For 2 = 1 or 2, and k > 1,

brv2,i,4,n = Pr,i,1,n ¥ Pr,i, 41,00 1 S J <m -1,
br+2,i,n,n = Pryi,1,n + Drsl, i,n,n-

Let bg,1,5,n» = 0 for all -2n + 3 < k <0 and 1 < j <#n, and for all positive

nintegers m, let

n
(bn(m) = bm,z,n,n + 2 .Zlbm+2‘2j5 Ljg,n*
i=

Then, for every positive integer m, Ql(m, ¢n) = 0 (mod m). Furthermore,

%%m[log oy (my ¢,01/m = %{QJlOg b,(m)]/m = log B,

where B, is the (unique) positive (and the largest in absolute value) zero of
the polynomial x27+l - 2x27-1 - 1,

Remark 1: For all positive integers m and n, let

A =0 (2m -1, ¢,)/(2m - 1),

m,n
where ¢, is defined as in Theorem 3 for n = 1 and as in Theorem 4 for 2 < n.
Table 1 lists the first 31 values of Ap,n for 1 < n < 6. It seems that 4, 6, =
2" "=l for m+ 1 <m < 3n+ 2 and 4y, > 2" "L for m > 3n + 2. 1If, for all
positive integers m and n, we define sequences <B, , ;> by letting

Bm,n,l = Am+3n+2,n - 2‘4m+3n+l,n

and
B

myon,k = Bm+on+l, n k-1 m+2n+1, n+l, k-1

for ¥ > 1, then more extensive numerical computations seem to show that, for
all positive integers k, we have

(1) By, p,x = 2 for all n = 1,
(ii) By, nyx = 4k for all n = 1,

(iid) B3 n,x is a constant depending only on k, and

[\
S

v
—_

(iv) for all 1 <m < 2n + 1, B = Bm,j,k for all jJ

myn,k
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Theorem 5: Fix any integer n = 2. TFor all integers %, J, and k with < = 1, 2,
1 < IJI <n, and kX > 1, we define Cr,z, i n recursively as follows:

C1,1,nn = land ¢y g jn =0 for j #n,

C1,2,1,» = 1 and ¢} » =0 for j=1.

sds M
For 2 =1, 2, and k 2 1,
Ck+l,4,1,n = Ck,i,1,n t Cryi, -n,n T Cp g on no
Ck+l,4, 4,7 = Ck,2,5-1,n T Ck,i,n,n for all 2 < J < n,
Cr+l,i,-1,n = Ck,i,-1,n T C, i -nn ¥ Cr g n, n
Cr+l, i,-4,n = Ck,i,-+1,n T Cx 4, -n, n for all 2 < J < n.

Let ¢y, 1, j,n = 0 for all integers k, j with 4 - n <k < 0 and 1 < Ijl < n, and,
for all positive integers m, let

n-1
b, (m) = 2k216m+2—k,1,n+1-k,n t 20m11,2,1, 0 — 1
and
n-1
d)n(m) = Zkzlcm+2_k,1, k-n-1,n T 2C’m+1,2,—1,n + 1.

Then, for every positive integer m,
oy (m, ¢,) = 0 (mod m) and o,(m, ¥,,) = 0 (mod 2m).
Furthermore,

%im[log @y (ms ¢,)1/m

lim[log ¢,(m)1/m = lim[log Y, (m)1/m
= lim[log 5 (m, ¥,)1/m = log v,
where Yy, is the (unique) positive (and the largest in absolute value) =zero of

the polynomial z” - 22"" !} - 1.

Remark 2: For all integers m = 1 and n = 2, let

Dm’n = @z(m, ll)n)/(zm),

where the y,'s are defined as in the above theorem. Table 2 lists the first 25
values of Dp,, for 2 < n < 6. It seems that Dy, = 2"" for n <m < 3n, and
Dp,n > 2"°" for m > 3n. 1If, for all integers m > 1 and 7 2 2, we define the
sequences <E, , > by letting

Ern,n,l = Dm+3n,n - 2Dm+3n—1, n
and

Em,n,k = Em+2n, n,k=-1 7 Em+2n, n+l, k-1
for k > 1, then more extensive computations seem to show that, for all positive
integers k, we have

(1) By, pn,x = 2 for all n =2 2,
(i1) Ep p ok = 4tk for all n = 2,
(iii) E3 , k and E are constants depending only on k, and
3, n, L,n,k

(iv) for all 1 <m < 2n, Ep , 3 = Ep ;¢ for all j 2 n = 2.

See Tables 1 and 2 below.
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TABLE 1
m Am,l Am,z Am,3 Am,q Am,s ms 6
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 0 0 0 0 0
4 1 1 1 1 1 1
5 2 1 0 0 0 0
6 2 2 2 2 2 2
7 4 2 1 0 0 0
8 5 3 3 3 3 3
9 8 4 2 1 0 0
10 11 6 6 6 6 6
11 18 8 4 2 1 0
12 25 11 9 9 9 9
13 40 16 8 4 2 1
14 58 23 18 18 18 18
15 90 32 16 8 4 2
16 135 46 32 30 30 30
17 210 66 32 16 8 4
18 316 94 61 56 56 56
19 492 136 64 32 16 8
20 750 195 115 101 99 99
21 1164 282 128 64 32 16
22 1791 408 224 191 186 186
23 2786 592 258 128 64 32
24 4305 856 431 351 337 335
25 6710 1248 520 256 128 64
26 10420 1814 850 668 635 630
27 16264 2646 1050 512 256 128
28 25350 3858 1673 1257 1177 1163
29 39650 5644 2128 1026 512 256
30 61967 8246 3328 2402 2220 2187
31 97108 12088 4320 2056 1024 512
TABLE 2
m Dm,2 Dm’3 Dm,q Dm,S Dm,6
1 0 0 0 0 0
2 1 0 0 0 0
3 2 1 0 0 0
4 4 2 1 0 0
5 8 L 2 1 0
6 16 8 L 2 1
7 34 16 8 4 2
8 72 32 16 8 L
9 154 64 32 16 8
10 336 130 oL 32 16
11 738 264 128 64 32
12 1632 538 256 128 64
13 3640 1104 514 256 128
14 8160 2272 1032 512 256
15 18384 4692 2074 1024 512
16 41616 9730 4176 2050 1024
17 94560 20236 8416 4104 2048
18 215600 42208 16980 8218 4096
19 493122 88288 34304 16464 8194
20 1130976 185126 69376 32992 16392
21 2600388 389072 140458 66132 32794
22 5992560 819458 284684 132608 65616
23 13838306 1729296 577592 265984 131296
24 32016576 3655936 1173040 533672 262740
25 74203112 7742124 2384678 1071104 525824
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2. Symbolic Representation for Continuous Piecewise Linear Functions

In this section, we review the method introduced in [1]. Throughout this
section, let g be a continuous piecewise linear function from the interval [ec,
d] into itself. We call the set {(x;, yi)li =1, 2, ..., k} a set of nodes for
(the graph of) y = g(x) if the following three conditions hold:

(1) k=2 2,

(2) xy; =c¢, X =d, £ < Xy < +++ < X3, and

3) g is.linzar on [x;, xz41] for all 1 <7 <k -1 and y,= g(x;) for all
1 <2 < k.

For any such set, we will use its y-coordinates Yy, Y3 s ..., Y tO represent
its graph and call yiy, ... Y (in that order) a (symbolic) representation for
(the graph of) y = g(x). For 1 << < j <k, we call y;y;41 ... Y; the repre-
sentation for y = g(x) on [x;, x;] obtained by restricting yiys ... Yy to [x;,
x;]. For convenience, we will also call every y; in y y; ... Yx a node. If y,
= y,,1 for some 7 (i.e., g is constant on [x;, x;,;]), we will simply write

Y1 wer Yglivo w00 Uk

instead of

Y1 oo Yelgr1¥ivo oo Yieo
That is, we will delete y;,1 from the (symbolic) representation yiy, -.. Y-
Therefore, every two consecutive nodes in a (symbolic) representation are dis-
tinct. Note that a continuous piecewise linear function obviously has more
than one (symbolic) representation. However, as we will soon see that there is
no need to worry about that.

Now assume that {(x;, y;)|Z =1, 2, ..., k} is a set of nodes for y = g(x)
and a1ay ... a, is a representation for y = g(x) with

{ays ags ooy apl CH{yY1s Y25 «-vs Yz}
and a; # a;4; for all 1 < ¢ <r»r - 1. If

{91’ Yos =ees Y} C {-’Xlls Los eoes :Ck},

then there is an easy way to obtain a representation for y = gZ(x) from the one
aijay ... ap for y = g(x). The procedure is as follows: First, for any two
distinct real numbers u and v, let [u: v] denote the closed interval with end-
points u and v. Then let b; 1bs o ... by, ¢, be the representation for y = g(x)
on [a;: a;+1] which is obtained by restricting ajap ... a, to [a;:a;41]. We
use the following notation to indicate this fact:

a;a; . bi,lbi,z ve bisti (under g) if a; < a; ;s
or

a;q; 41 i

> b; 4, .- b

The above representation on [a; : a;41] exists since

ob;,q (under g) if a; > a; ;-

{ay, ays eoes apt Clay, 25 ooy x)e

Finally, if a; < a;41, let z; ; = b; 7 for all 1 < Jg < t;. If a; > a;+1s let

Ty d

2 = Dby, ¢+1-4 for all 1 < 7 <t

Ty J 7°

Let

7 = Zl,l oo e Zl,t1Z2,2 oo Zz,tz aee Zr,z e Zr,tp'

(Note that z; 4, = 2;41,1 for all 1 <7 < - 1.) Then it is easy to see that 7
is a representation for y = gz(x)n It is also obvious that the above proce-
dure can be applied to the representation Z for y = gz(x) to obtain one for Yy =
g3(x), and so on.
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3. Proof of Theorem 3

In this section we fix an integer n 2 3 and let f,(x) be the continuous
function from the interval [1, n] onto itself defined by

fo@) =ax+1 forl<xs<n-1
and
fu(@) = -(n - Dx + n2 -m+1 forn-1c<zx < n.

Using the notations introduced in Section 2, we have the following result.

Lemma 6: Under f,, we have
k(k +1) ~ (k+ 1)k + 2), k <n -2, if n > 3,
(k + Dk > (kK + 2)(k + 1), k
(n - Lin»n(l), n(n - 1) > (1)n,
n(l) (Dn(m - 1) ... 432, ()n > 234 ... (n - L)n(l).

IN

¥
IA
IA

n -2, if n > 3,

¥

In the following, when we say the representation for y = ff(x), we mean the
representation obtained, following the procedure as described in Section 2, by
applying Lemma 6 to the representation 234 ee. (n - n(l) for y = f,(x) suc-
cessively until we get to the one for y = f (x).

For every positive integer k and all 1ntegers i, § with 1 <4, j <n -1,
let Ak, 4, i, n denote the number of wv's and vu's in the representatlon for y =
f}(x) whose correspondlng x-coordinates are in the dinterval [Z, 7 + 1], where
w = 1ln if § =1, and wv = j(j + 1) if 2 < j <n - 1. It is obvious that

Ay i iel,n = 1 for all 1 <72 <n -2,

ay, n-1,1,n = 1> and Ay i, 5, = 0 elsewhere.
From the above lemma, we find that these sequences <ak i, ,> can be computed
bl 5
recursively.

Lemma 7: For every positive integer k and all integers 7 with 1 < 7 < n-1, we
have

ak+l,i,1,n = ak,i,l,n + ak,i,n—l,n’

A+1, i,2,n = %k, 1,1, 0
= < 7 < - i
ak"'l,iaja” ak>i>15n+ak,i9j_1)n’3_'7‘” 1if »n > 3.
It then follows from the above lemma that the sequences <ay ; ; > can all
be computed from the sequences <ay n-1, j,n
3 3 2

Lemma 8: For every positive integer k and all integers j with 1 < j <n -1, we
have
Ukyn-1, Gon = Fkwiyn-1-4, j,n’
For every positive integer k, let

n-1

-
Cron = L% i 1,n T X
=1 =2

bl

Then it is easy to see that c¢; , is exactly the number of distinct solutions of
the equation f%(x) in the interval [1, n]. From the above lemma, we also
have, for all k =1, the identities:
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-2 n-3
Cron = 22 Tkeiin-1, 1,n T 20 Tk n-l,m-1-4,n

=0 =0
provided that ap -1, 5,» = 0 for all m < 0 and J > 0. Since, for every posi-
tive integer k,

A n-1,1,n = %=1, n-1, 1,n T F%-1,n-1,n-1, n

Tk-1,n-1, L,n T Qk~2,n-1, 1,n ¥ Ak-2,n-1, n-2,n
= dg-1,n-1,1,n T Ak=-2,n-1,1,n T Qk-3,n-1, 1, n

+
A -3, n-1, n-3, n

n-1
= a
igl k-<,n-1, 1, n
and
n=2 n-3
Cr,n T ‘}: Qegyn-1,1,n T _Z Ap-i,n-1, n-1-i,n
=0 =0
n-2
=q + +
kon=L 1,n © Yk-Lin-1,1,n &, %-din-1, 1,n

A1, 1,0 T %o, n-1,n-2,n

~i,n-1,n-1-4,n

-2

n
= An-1, 1,0 T 21, m-1, 1,0 iy_‘dzak—i,n—l, 1, n

n=3

20 a1, me2,n T ,}:zak—i,n—l,n—l—i,n
P

n=2
L+ 1
:L;O(7’ % i ne1,1,m

provided. that «
k<n-1 and

A

mon=1,1,n = 0 if m < 0, we obtain that Cruon = 2k — 1 for all 1

n-1
Crin =iz;1ck"i’” for all integers k 2 n.

1f, for every positive integer m, we let ¢,(m) = ¢y, ,, then, by Theorem 1, we
have ¢1(m, ¢,) = 0 (mod m). The proof of the other statement of Theorem 3 is
easy and omitted (see [3] and [4]). This completes the proof of Theorem 3.
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(Submitted March 1987)

1. Introduction

A generalized Frobenius partition or simply an F-partition of an integer =
greater than 0 is a two-rowed array of nonnegative integers

(Cll cee Ay
by «.. by
where each row is arranged in nonincreasing order and

r
n=r+ 3 (a; +b;).
=1

Let céy,, (n) denote the number of those F-partitions of n in which each part is
repeated at most % times and is taken from k copies of the nonnegative integers
which are ordered as follows: m; < nj if m < n or if m = n and ¢ < j, where <
and j denote the copy of the nonnegative integers. c¢y, ,(n) is called the num-
ber of F-partitions of n with k colors and % repetitions. Let C¢k,h(q) be the
generating function of c¢k,h(”) so that

Cop (@) = n§0c¢k,h<n)q7.

For example, the F-partitions enumerated by c¢2’2(1) are
(oo )or)
01/1301/71027\0,
and those enumerated by c¢p »(2) are
o))
(RAN YA YA PYASEYAYSYANEPAV P
o o oo oo oller o)
0, 01/\0, 05,/\0, 0;/V\0y 07/\0, 0y

(o o)or oo ooy o)
0, 0y/\0, 0y/\0; 0,/\0, o0,

and

chp 2(q) = 1 + 4g + 17g% + - ..
Similarly,

Cé3,02(q) =1+ 9g + 54g% + ...
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George E. Andrews [2] has studied extensively the two functions
coy () = ¢ (m) and  coy 1(n) = cor(n).

The former function enumerates the F-partitions of »n in which the parts repeat
at most k times and the latter enumerates those F-partitions of » in which the
parts are distinct and are colored with k given colors. Andrews [2] has ob-
tained infinite product representations for

Co1,1(q) = ¢1(q@)s Co1, 2(q) = $2(q)>
Cé1,3(q) = ¢3(q)s> Codp 1(q) = Codp(q)

and has expressed C¢3,1(q) = C¢3(q) as a sum of two infinite products. The
purpose of this paper is to outline a method of obtaining such representations
for Coy, p(q) for arbitrary positive integers k and 4. We first consider in §2
the typical cases (¢j, (g) and C¢o, 3(q) and sketch in §3 how the methods of §2
can be extended for (¢, ;(g) for arbitrary positive integers k and #. Through-
out, we use the notations

I

(@e=(a Q=11 A - ag™
n=0
for complex numbers g and ¢ with ‘q‘ < 1.

2. Representations of C¢, , (q) and Cod, 3 (q)

Theorem 1: For |q| < 1,
Co2,2(q) = Ag(?(q"; qM)a(-q%; g2 (D
+ 2¢7 gBo () 12(g";5 ¢ (=q*5 qM2E,
where Ap(q) = ¢,(q) and gBy(g) is the generating function for symbols

<(x1 “ee O‘ro"r+l> (2)
By -+ Br

That is, this is subject to the same rules as the original generalized Froben-
ius symbols related to ¢,(g) but there is one more element in the top now.
This sort of generalization of the Frobenius symbol has been studied at length
by James Propp in a forthcoming article in the Journal of Combinatorial Theory.

Proof: To prove (1) we first make use of the following result of Andrews [3,
Lemma 3]:

(zaq) (28q) (27 ta™1) (z71g~1) (3)

= AO(O“ B q)”;qu2+naanZ2n

- 3—1140(06613 B> q) f: q”ZOLnB”ZZ”‘l,

N=-cw
where 2z, o, B are nonzero, |q| <1, and
Aola, 8, @) = (=q)_(-aB"lq; ¢%), (~a~1Bgq; ¢®) (L. (4)
Choosing o = w, B = w? in (3) where w = exp(2wi/3) and observing that
= (-q%; g%
Ima - q2n‘1 + qlm—'Z) = —..__q qz ki
n=1 (95 9w
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we obtain

n€%(1 + 2g"+l 4 22q22) (1 + z71lgn + 572g2n) (5)
= Ao(q)nf:_qubr”zz” - By(q) i qniz2n-l,

where _ o
dg(q) = L5 qz)(";)tqg; e - 4,00 (6)
Bo(q) = - =D qz)goq();qﬁ; e Q)

From the General Principle of Andrews [2, p. 5], it immediately follows
that C¢2’2(q) is the constant term in

HO(]_ + an+l + 22q2n+2)2(1 + Z—lqn + Z—2q2n)2.
n=
Squaring (5) and equating the constant terms, we get

Coa 2(@) = d2(D?2 T q2"* + [qBo(]2 % g2n? -2n-1, (8)
n=-o0 N ==~
Now, using Jacobi's triple product identity [1, p. 21]:
Y g%z = (g%5 q%) (=qz5 q2).(=qz"1; q?), 9)
n=-o

for z = 0, lq] < 1 for the two summations in (8) we get (1).

From the proof of Theorem 1, it immediately follows that C¢, ,(q) has the
following representation.
Corollary 1: For |q| < 1,
(-9%5 92)2(-q%; q°)2(q%; q%), (-q%; q")2
Cop,2(q) = (10)
(@2
(=q5 q2)2(=q5; ), (q"; q*), (=q*; q*)2
+ 2q 2 .
@z

Theorem 2: For |q| < L,
Céa, 3(q) = A1(@D?(q%; ¢5)_ (-¢3; ¢®)2 (11)
+q7%[gB1 (@) 11q%C1 (1% ¢®), (=q5 ¢®), (=¢°; q°).>

where 41(q) = ¢3(q), gB1(g) is the generating function for symbols (2) where a
part can be repeated at most three times on each row and qzcl(q) is the gener-
ating function for symbols

<@1 Otrotr+10tr+2>
B1 «-- Br
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which has two more elements in the top row than the original generalized Fro-
benius symbol.

Proof: Proof of (11) is similar to the proof of (1) and we give only a sketch.
First, for o, B, Yy, 2 nonzero and |q| < 1, we can obtain the Laurent expansion
of the product

(zaq), (2Bq), (zvq), (z7ta™l)_(z71871)_(z71y71), (3"
in the same way the analogous Andrews' identity (3) above is derived [3, Lemma
3]. Then, substituting o = 2, 8 = =%, and y = -1 in that Laurent expansion, we

obtain in analogy with (5)
Ho(l + an+1 + 22Q2n+2 + 33q3n+3)(1 + Z—lqn + Z—2q2n + Z—3q3n) (5"
n=

2. 42 - 42Y2(,6. 46
_ (@5 aP). (a5 4925 4O, [(_qs; 42 5 EGR ) 3
(@2 ©

+q(=q; 45),(=q5; qb), 3 q#(3*+5n)y3n+1

Nn=-c

o 1 2
+ q3(_q-l; qB)w(_q7; q6)oo 2: q 5(3n +7ﬂ)z3n+2]

=-0

Al(q)zl + BI(Q)ZZ + Cl(q)23, say.

From the General Principle [2, p. 5], it is clear that C¢2’3(q) is a con-
stant term in

nl;[O(]_ + an+1 + 22q2?1+2 + Z3q3n+3)2(1 + z—lqn + z‘2q2ﬂ + Z—3q3n)2_
Squaring (5') and equating the constant terms, we find

Cop.3(q) = A1 (@2 3 ¢3% + [qB1(D]11q2C1 (] 3 gdn?+2n-5, 8"

n=-c0 n=-w

Finally, using (9) for the two summations in (8'), we obtain (11).

From the proof of Theorem 2, we obtain the following representation of
Céz, 3(q) -

Corollary 2: For |q| < 1,

(q%; q9)2(q; g% ¢%)3
(@8

+ 262(=q; ¢®)2(=¢%; ¢®2(-q71; %) (=975 ¢®).1.

Cop, 3(q) = [(-q3%; ¢®)5 + (12)

3. Representation of C¢k R (D in General
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