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ON TRIANGULAR FIBONACCI NUMBERS 

Luo Ming 
Chongqing Teachers' College, China 

(Submitted February 1987) 

1. Introduction and Results 

Vern Hoggatt (see [1]) conjectured that 1, 3, 21, 55 are the only trian-
gular numbers [i.e., positive integers of the form \m(m + 1)] in the Fibonacci 
sequence 

Un+2 = Un+1 + Un> U0 = °> Ul = X> 
where n ranges over all integers, positive or negative. In this paper, we 
solve Hoggatt?s problem completely and obtain the following results. 

Theorem 1: 8un + 1 is a perfect square if and only if n = ± 1,0, 2, 4, 8, 10. 

Theorem 2: The Fibonacci number un is triangular if and only if n -= ±1, 2, 4, 
8, 10, 

The latter theorem verifies the conjecture of Hoggatt. 

The method of the proofs is as follows. Since un is a triangular number if 
and only if 8un + 1 is a perfect square greater than 1, it is sufficient to 
find all n! s such that 8un + I is square. To do this, we shall find, for each 
nonsquare 8un + 1, an integer wn such that the Jacobi symbol 

,8un + K_ ^ 
\ wn I 

Using elementary congruences we can show that, if 8un + 1 is square, then 

n = ±1 (mod 25 • 5) if n is odd, and 

n E 0, 2, 4, 8, 10 (mod 25 • 52 - 11) if n is even. 

We develop a special Jacobi symbol criterion with which we can further show 
that each congruence class above contains exactly one value of n such that 8un 
-f 1 is a perfect square, i.e., n = ±1, 0, 2, 4, 8, 10, respectively. 

2. Preliminaries 

It is well known that the Lucas sequence 

Vn+2 = yn+l + Vn> V0 = 2> Vl = l ' 
where n denotes an integer, is closely related to the Fibonacci sequence, and 
that the following formulas hold (see [2]): 

u_n = (-l)n+1un, v_n = {-l)nvn; (1) 

2um+n = umVn + unvm, 2vm+n = 5umun + vmvnl (2) 

+ 2(-l)n + 1; (3) u2n = UnVn' V'in = V 

vl - 5ul = 4(-l)»; (4) 
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uzkt + n = (-irun (mod yfe); (5) 
where n, m, t denote integers and k = ±2 (mod 6). 

Moreover, since x =: ±un9 y = ±Vn are the complete set of solutions of the 
Diophantine equations 5x2 - y2- = ±4, the condition un = \m(m + 1) is equiva-
lent to finding all integer solutions of the two Diophantine equations 

5m2(m + l) 2 - 4z/2 = ±16, 

i.e., finding all integer points on these two elliptic curves. These problems 
are also solved in this paper. 

3. A Jacob! Symbol Criterion and Its Consequences 

In the first place we establish a Jacobi symbol criterion that plays a key 
role in this paper and then give some of its consequences. 

Criterion: If a, n are positive integers such that n = ±2 (mod 6), (a, vn) = 
1s then 

(±t\aun„ + 1\ /8au„ ± v„ f±4au2n + 1\ = /8aun ± vn\ 
I v2n / \ 64a2 + 5 / 

whenever the right Jacobi symbol is proper. 

Proof: Since n = ±2 (mod 6) implies vn = 3 (mod 4) and 2n - ±4 (mod 12) implies 
V0 = 7 (mod 8), we have 

Zn x 

/±4aw9 + 1\ (±8au0yn + 2\ t±8auY]vr, + vt;\ 

= ( - - j s ince a, n > 0 imply Saun ± Vn > 0 

__ i^\( ^ \ __ /^yi^L±i!ti\ by (2) 
\ y n / \ 8 a u „ ± y„ / \vn/\ 8aun ± vn / 

/ 2 \ / a \ /4Qau2 + 8ay2\ / 2 \ / a \ /A(64a 2 + 5)unvn\ 
\vn)\8aun ± vn)\ 8aun ± vn. I \vn/\8aun ± vn)\ 8aun ± vn ) 

+ /_2_\/ ®_ \ / 8 a u n ± vn\/ unvn \ 

\y n / \8aw n ± z;„/V 64a2 + 5 l\8aun ± y„/ 

If u„ E 1 (mod 4 ) , then 

\8aun±vn) \ un ) \unJ \vn)9 

If un = 3 (mod 4 ) , then 

( un \ = _/8aun ± vn\ = /z^X = /z^\ 

\8aun ± vn) \ un j \un) \vn) 

I un \ (Un\ 
Hence, we always have I j = I—J. 

\8aun ± Vn) \Vn/ 

SlnCe \Saun ±vn) = T\—^—) = Afc)fe)? ^ g6t 
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/±4au2 n + 1\ = / a w a \/8aun ± vn\ = y a \ / 8 a u n ± i?n\ 
V ^ 2 n / Un/ \8aw„ ± vj\ 6 4 a 2 + 5 / \8aw2n ± v%)\ 64a2 + 5 / ' 

Moreover, put a = 2S£, s > 0, l\b. If fc = 1 (mod 4), then 

_ 8aw2n ± rf-
<-2n ~ un' \ouu2n ^ ""2 

If b = 3 (mod 4), then 

/ a \ = / b \ = / 8au2n ± v%\ = 

\8aw~ ± z;2/ \8aw9vj ± z;2/ \ i / 

( — 2 — i ) - ( — b — t ) • <eaU2vv") - '• 
\8au2n ± Vn' \8au2n ± v^l \ D I 

the same as above, so we finally obtain 

/±4au2n + 1\ = I8aun ± vn\ 

\ v2n } \ 64a2+5 / 

The proof is complete. • 

Now we derive some consequences of this criterion. 

Lemma 1: If n = ±1 (mod 25 °  5), then 8un + 1 is a square only for n = ±1. 

Proof: We first consider the case n = 1 (mod 25 • 5). If n * 1, put 

n = 6(n - 1) -3 r -2 • 5m + 1, 

where 6 (n - 1) denotes the sign of n - 1, and r > 0, 3JT?7, then 777 > 0 and m E ±16 
(mod 48) . We shall carry out the proof in two cases depending on the 
congruence class of 6(n - 1) • 3T (mod 4). 

Case 1: 6 (n - 1) •• 3r = 1 (mod 4). Let k = 5m If m = 16 (mod 48) or k = m 
if m E 32 (mod 48), then we always have k = 32 (mod 48). Using (5) and (2), we 
obtain 

8un +• 1 = 8w2/c + 1 + 1 = 4(w2/c + z;2k) + 1 = 4w2A: + 1 (mod vlk). 

Using the Criterion, we get (evidently the conditions are satisfied) 

l^n + 1\ = f*U2k + 1\ = /8ufc + VkY 
\ vov ) \ vov / V 69 / '2k ' x "2k 

Take modulo 69 to {8wn + i?n }, the sequence of the residues has period 48, 
and k = 32 (mod 48) implies 8uk + ffe = 38 (mod 69) , then we get 

(^) • -i) - -> 
so that 8un + 1 is not a square in this case. 

Case 2: 6(n - 1) • 3r = 3 (mod 4). In this case, let k = m if m =16 (mod 
48) or k = 5m if 777 E 32 (mod 48) so that k = 16 (mod 48) always. Similarly, by 
(5), (2), and the Criterion, we have 

/8un + 1\ = /-4M2?C +.1\ = /8ufo - ^ X 

\ v7V ) \ v2k ) \ 69 / 
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S ince t h e s equence of r e s i d u e s of {8un - Vn} (mod 69) h a s p e r i o d 48 and k 
16 (mod 48) i m p l i e s 8uk - Vk E 31 (mod 6 9 ) , we g e t 

m • -£) • -
Hence 8un + 1 is also not a square in this case. 
Secondly, if n = -1 (mod 25 • 5) and n * -1, by (1) we can write 

8u„ + 1 = 8u_n + 1. 

Since -n = 1 (mod 25 * 5) and -n * 1? it cannot possibly be a square according 
to the argument above. 

Finally, when n = ±1, both give 8wn + 1 = 3 , which completes the proof. Q 

In the remainder of this section we suppose that n is even. Note that if n 
is negative and even, then 8un + 1 is negative, so it cannot be a square; 
hence, we may assume that n > 0. 

Lemma 2: If n = 0 (mod 22 • 52) , then 8un + 1 is a square only for n = 0. 

Proof: If n > 0, put n = 2 - 52 - 2s • £, 2J£, s > 1, and let 

!

2S if s = 0 (mod 3), 

52 • 2 s if s = 1 (mod 3), 
5 * 2s if s = 2 (mod 3), 

then fc E ±6 (mod 14). Since (2, vk) = 1, fe = ±2 (mod 6), by (5) and the Cri-
terion we get 

/8u„ + 1 
V2k 

\ = (±8U^ + l) = (16uk ± ^ \ = (l6uk ± Vk\ 

[It is easy to check that (16un ± Vn, 3) = 1 for any even n.] 
Simple calculations show that both of the residue sequences {I6un ± Vn] 

modulo 29 have period 14. If k E 6 (mod 14), then 

16ufe + Vk '= 1 (mod 29), I6uk - Vk = -6 (mod 29); 

if fc E -6 (mod 14), then 

16wk + Vk E 6 (mod 29), I6uk - vk = -1 (mod 29). 

Since (±1/29) = (±6/29) = 1, we obtain 

/8un + 1\ 
• i , 

so that 8un + 1 is not a square. 
The case n = 0 gives 8wrt + 1 = l2, which completes the proof. D 

Lemma 3: If n = 2 (mod 25 • 5 2 ) , then 8w + 1 is a square only for n = 2 . 

Proof: If n > 2, put n = 3P • 2 • 52 - il + 2, 3/|% £ > 0, then £ E ±16 (mod 48). 
Let k = I or 51 or 52£, which will be determined later. Since 4 | fc implies (3, 
Vk) = 1, and clearly k = ±2 (mod 6), we obtain, using (5), (2), and the 
Criterion 

l^n + 1\ = /±8M2fc + 2 + 1\ = /±12M2fe + 1\ = /24Mfe ± vfc\ 
V v2k ) - \ v2k ) - \ vlk ) - ~\ 581 J' 
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Taking {24un ± vn} modulo 581, we obtain two residue sequences with the 
same period 336 and having the following table: 

24w„ 
2kun 

n 
+ vn 
- vn 

(mod 
(mod 
(mod 

336) 
581) 
581) 

80 
65 
411 

112 
401 
320 

128 
436 
222 

208 
359 
145 

224 
261 
180 

256 
170 
516 

It is easy to check that 

for all six of these residue classes n (mod 336). 
Since 336 = 48 • 7, we see that % E ±16 (mod 48) are equivalent to I ~ 16, 

32, 64, 80, 112, 128, 160, 176, 208, 224, 256, 272, 304, 320 (mod 336). We 
choose k as follows: 

(H if £ E 80, 112, 128, 208, 224, 256 (mod 336) 
k =<5i if I E 16, 160, 176, 320 (mod 336) 

{52i if £ E 32, 64, 272, 304 (mod 336). 

With this choice k must be congruent to one of 80, 112, 128, 208, 224, and 256 
modulo 336. Thus, we get 

/8"n + 1\ = /2Auk ± vk\ = _^ 

so that 8un + 1 is not a square. 
Finally, the case n = 2 gives 8un + 1 = 32. The proof is complete. D 

Lemma 4: If n E 4 (mod 2 5 ) , then 8un + 1 is a square only for n = 4. 

Proof: If n > 4, we put n = 2 • 3r 'k + 4, 3|fe, then fe = ±16 (mod 48). Accord-
ing to (5), we have 

8un + 1 E -8z^ + 1 E -23 (mod vk). 
Simple calculations show that the sequence of residues {vk} modulo 23 has 

period 48 and that k = ±16 (mod 48) implies that vk = -1 (mod 23). Hence, 

m-(f)-(£)-&)--'• 
so that 8un + 1 is not a square in this case. 

When n = 4, 8un + 1 = 52. The proof is complete. • 

Lemma 5: If n = 8 (mod 25 • 5), then 8un + 1 is a square only for n = 8. 

Proof: If n > 8, we put n = 2 • 3P -5A+ 8, 3J£, then £ = ±16 (mod 48). Let k = 
I or 5£, which will be determined later. For both cases, we have, by (5), 

8un + 1 E -8u8 + 1 E -167 (mod yfc). 

The sequence {vn} modulo 167 is periodic with period 336, and the following 
table holds. 

n (mod 336) ±32 ±64 ±80 ±112 ±160 
vn (mod 167) 125 91 17 166 120 

It is easy to verify that all values in the second row are quadratic non-
residues modulo 167. Let A denote the set consisting of the residue classes in 
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the first row. We now choose k such that its residue modulo 336 is In A. 
The condition 1 = ±16 (mod 48) is equivalent to 1 = 16, 32, 64, 80, 112, 

128, 160, 176, 208, 224, 256, 272, 304, 320 (mod 336), and all of these residue 
classes, except four classes, are in A. For these classes, we let k = I . The 
four exceptions are £ E 16, 128, 208, 320 (mod 336), for which we choose k = 51 
so that k = 80, -32, 32, -80 (mod 336), respectively, which are also in A. 
Thus, for every choice of k, Vk is a quadratic nonresidue modulo 167. Hence, 

m-G?)-(&)--'• 
and 8un + 1 is not a square. 

Finally, for n = 8, 8un + 1 = 132, which completes the proof. Q 

Lemma 6: If n = 10 (mod 22 • 5 »11), then 8un + 1 is a square only for n = 10. 

Proof: In the first place, by*taking {vn} modulo 439 we get a sequence of resi-
dues with period 438 and having the following table: 

n (mod 438) 2 8 16 44 56 64 94 178 230 256 296 302 332 356 376 
vn (mod 439) 3 47 12 306 54 407 395 24 79 101 394 202 184 135 74 

Let B denote the set consisting of all fifteen residue classes modulo 438 
in the first row. Simple calculations show that, for each n in B, vn is a quad-
ratic nonresidue modulo 439. 

Now suppose that 8un + 1 is a square. If n > 10, put n = 2*1*5* 11* 2t + 
10, 2J£, t > 1. The sequence {2t } modulo 438 is periodic with period 18 with 
respect to t and we obtain the following table: 

t (mod 18) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
2* (mod 438) 2 4 8 16 32 64 128 256 74 148 296 154 308 178 356 274 110 220 
5 • 2t (mod 438) 302. 332. 5^ 
11 • 2* (mod 438) 44 94 37_6 230 
5 • 11 • 2* (mod 438) 8 296 35^ 

where the underlined residue classes modulo 438 are in B. If we take k as fol-
lows : 

2t if t = 1, 3, 4, 6, 8, 11, 14, 15 (mod 18) 
, = j 5 • 2t if t E 10, 12, 16 (mod 18) 

M l • 2t if t ,= 0, 2, 7, 9 (mod 18) 
.5 * 11 • 2t if t E 5, 13, 17 (mod 18), 

then the residue of k modulo 438 is in B, that is, vk is a quadratic nonresidue 
modulo 439. Thus, by (5), we get 

8un + 1 E -SulQ + 1 E -439 (mod vk), 
and 

(8uY] + 1 

ffl - &) • ->• k 

so 8un + 1 is not a square. In the remaining case n = 10, we have 8un+ 1 = 212. 
The proof is complete. D 

Lemmas 2 to 6 immediately imply the following result: 

Corollary 1: Assume that n E 0, 2, 4, 8, 10 (mod 25 * 5 2 » 11), then 8un + 1 is a 
square only for n = 0 , 2, 4, 8, 10. D 
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4. Some Lemmas Obtained by Congruent Calculations 

The lemmas in this section provide a system of necessary conditions for 8un 
+ 1 to be a square. We prove them mainly by the following process of calcu-
lation: First we study {8un + 1} modulo a^ . We get a sequence with period k, 
(with respect to n) , in which we eliminate every residue class modulo k, of n 
for which 8un + 1 is a quadratic nonresidue modulo a1. Next we study {8un + 1} 
modulo a^, and get a sequence with period k2. For our purpose, a2 will be cho-
sen in such a way so that kl\k2> Then we eliminate every residue class modulo 
k2 of n from those left in the preceding step, for which 8un + 1 is a quadratic 
nonresidue modulo a2• ^ e repeat this procedure until we reach the desired 
results. 
Remark: Most of the a^ will be chosen to be prime and the calculations may 
then be carried out directly from the recurrence relation 

Sun+2 + 1 = (8un+l + 1) + (8un + 1) - 1. 

Lemma 7: If 8un + 1 is a square, then n = ±1, 0, 2, 4, 8, 10 (mod 25 • 5). 

Proof: 
(i) Modulo 11. The sequence of residues of {8un + 1 } has period 10. We can 

eliminate n = 3, 5, 6, 7 (mod 10) since they imply, respectively, 

8un + 1 E 6, 8, 10, 6 (mod 11), 

all of which are quadratic nonresidues modulo 11, so there remain n = ±1, 0, 2, 
4, 8 (mod 10). 

For brevity, we shall omit the sentences about periods in what follows 
since they can be inferred from the other information given, e.g., mod 10 in 
the above step. 

(ii) Modulo 5. Eliminate n E 9, 11, 12, 14, 18 (mod 20), which imply 

8un + 1 E ±2 (mod 5), 

which are quadratic nonresidues modulo 5, so there remain n E ±1, 0, 2, 4, 8, 
10 (mod 20). 

(iii) Modulo 3. Eliminate n E 3, 5, 6 (mod 8), which imply 

8un + 1 E 2 (mod 3), 

which is a quadratic nonresidue modulo 3, so eliminate n E 19, 21, 22, 30 (mod 
40) and there remain n E ±1, 0, 2, 4, 8, 10, 20, 24, 28 (mod 40). 

(iv) Modulo 2161. Eliminate n E 28, 39, 41, 42, 44, 60, 68 (mod 80) since 
they imply, respectively, 

8un + 1 E 1153, 2154, 2154, 2154, 2138, 2067, 1010 (mod 2161), 

which are quadratic nonresidues modulo 2161, so there remain n = ±1, 0, 2, 4, 
8, 10, 20, 24, 40, 48, 50, 64 (mod 80). 

(v) Modulo 3041. Eliminate n E 24, 40, 50, 64, 79, 81, 82, 84, 88, 90, 100, 
104, 120, 128 (mod 160) since they imply, respectively, 

8un + 1 E -57, 2590, 2613, 1815, -7, -7, -7, -23, 
2874, 2602, 619, 59, 447, 1500 (mod 3041), 

which are quadratic nonresidues modulo 3041. 
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Modulo 1601. Eliminate n = 130, 144 (mod 160) s ince they imply, r e s p e c -
t i v e l y , 

8un + 1 = 639, 110 (mod 1601), 
which are quadratic nonresidues modulo 1601. 

Hence, there remain n ='±1, 0, 2, 4, 8, 10, 20, 48, 80 (mod 160). 

(vi) Modulo 2207. Eliminate n E 48, 80, 208, 240 (mod 320) since they imply 

8un + 1 = 933 or 1276 (mod 2207), 

both of which are quadratic nonresidues modulo 2207, so eliminate n = 48 and 80 
(mod 160) and there remain n = ±1, 0, 2, 4, 8, 10, 20 (mod 160). 

(vii) Now we eliminate n E 20 (mod 160) by the following calculation. Put n = 
160/77 + 20, since 80 E 2 (mod 6); by (5), ̂i60?77+20 E ± U 2 0 (mod y8())> where the 
sign + or - depends on whether m is even or odd. Using (3) and (4), we get 

/to20 + l \ = / ^80 \ _ /<4) - 2 ) 2 - 2x = /(5u2
Q + 2)2 - 2x 

\ y8o / \ 8 u 2 o + v V 8u2 0 + 1 ; v su20 + 1 ; 
/(5 • (8w2 0) 2 + 2 - 8 2 ) 2 - 2 • 84\ 

= \ 8u2Q + 1 / 

- 8 2 ) 2 - 2 » 8 S __ / 9497 \ = / 9497 \ 

8u90 + 1 / \Su9[) + 1/ \54121/ 

(5 + 2 • 8 2 ) 2 

8u 20 ' x ' w^-20 
Similarly, 

/-8^20 + X\ = / ^80 \ = / 9497 \ = / 9497 \ 
\ vR() I \8u9(] - 1/ \8u9[] - 1/ X54119/ '80 ' \u^20 x/ \UM-20 

Hence 8un + 1 must not be a square when n E 20 (mod 160), and, finally, 
there remain n = ±1, 0, 2, 4, 8, 10 (mod 160). This completes the proof. D 

In the following two lemmas, we suppose that n is even. 

Lemma 8: If n is even and 8un + 1 is a square, then we have n E 0, 2, 4, 8, 10 
(mod 22 - 5 2 ). 

Proof: We begin from the second step of the proof of Lemma 7. Note that since 
n is even, there remain n = 0, 2, 4, 8, 10 (mod 20). 

(i) Modulo 101. Eliminate n = 12, 18, 20, 24, 32, 38, 40, 42, 44, 48 (mod 
50) since they imply, respectively, 

8un + 1 E 42, 69, 86, 73, 34, 61, 66, 35, 38, 94 (mod 101), 

which are quadratic nonresidues modulo 101. 
Modulo 151. Eliminate n E 22, 28, 34 (mod 50) since they imply, respec-

tively, 

8un + 1 E 51, 102, 108 (mod 151), 

which are quadratic nonresidues modulo 151. 
Hence, there remain n = 0, 2, 4, 8, 10, 30, 50, 60, 64, 80 (mod 100). 

(ii) Modulo 3001. Eliminate n E 60 and 80 (mod 100) since they imply, re-
spectively, 

8un + 1 E 2562 and 2900 (mod 3001), 

both of which are quadratic nonresidues modulo 3001. 
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Modulo 25. El iminate n = 64 (mod 100) s ince i t impl ies 
8un + 1 E 10 (mod 25) , 

which is a quadratic nonresidue modulo 25. 
Hence, there remain n = 0, 2, 4, 8, 10, 30, 50 (mod 100). 

(iii) Modulo 401. Eliminate n = 30, 50, 130, 150 (mod 200) since they imply, 
respectively, 

8un + 1 E 122, 165, 281, 238 (mod 401), 

which are quadratic nonresidues modulo 401. Hence, at last, there remain n E 
0, 2, 4, 8, 10 (mod 100), which completes the proof. • 

Lemma 9: If n is even and 8un + 1 is a square, then we have n E 0, 2, 4, 8, 10 
(mod 22 • 5 • 11). 

Proof: 

(i) Modulo 199. Eliminate n E 16, 18, 20 (mod 22) since they imply, respec-
tively, 

8un + 1 E 136, 176, 192 (mod 199), 

which are quadratic nonresidues modulo 199. There remain n E Q, 2, 4, 6, 8, 
10, 12, 14 (mod 22). 

(ii) Modulo 89. Eliminate n = 6, 24, 26, 28, 32, 34 (mod 44) since they im-
ply, respectively, 

8un + 1 E 65, 82, 66, 26, 6, 6 (mod 89), 
which are quadratic nonresidues modulo 89, so there remain n E 0, 2, 4, 8, 10, 
12, 14, 22, 30, 36 (mod 44). 

(iii) In the first two steps of the proof of Lemma 7 we have shown that it is 
necessary for n E O , 2, 4, 8, 10 (mod 20), so that there further remain n = 0, 
2, 4, 8, 10, 22, 30, 44, 48, 80, 88, 90, 100, 102, 110, 124, 140, 142, 144, 
168, 180, 184, 188, 190 (mod 220). 

(iv) Modulo 661. Eliminate n = 44, 48, 124, 144, 180, 184 (mod 220) since 
they imply, respectively, 

8un + 1 E 544, 214, 290, 447, 379, 546 (mod 661), 

which are quadratic nonresidues modulo 661. 
Modulo 331. Eliminate n = 30, 58, 88, 102 (mod 110) since they imply, 

respectively, 

8un + 1 E 242, 231, 312, 164 (mod 331), 

which are quadratic nonresidues modulo 331. Thus, we can eliminate n E 30, 88, 
102, 140, 168 (mod 220). 

Modulo 474541. Eliminate n = 80, 90, 142, 188 (mod 220) since they im-
ply, respectively, 

8un + 1 E 12747, 54121, 131546, 131546 (mod 474541), 

which are quadratic nonresidues modulo 474541. 
Hence there remain n = 0, 2, 4, 8, 10, 22, 1005 110, 190 (mod 220). 

(v) Modulo 307. Eliminate n = 14, 22, 58, 66 (mod 88) since they imply, 
respectively, 

8un + 1 E 254, 162, 55, 147 (mod 307), 
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which are quadratic nonresidues modulo 307. These are equivalent to n E 14, 22 
(mod 44), so that we can eliminate n E 22, 110, 190 (mod 220) from those left 
in the foregoing step and then there remain n E 0, 2, 4, 8, 10, 100 (mod 220). 

(vi) Modulo 881. Eliminate n = 12, 56, 100, 144 (mod 176) since they imply, 
respectively, 

Sun + 1 E 272, 293, 611, 590 (mod 881), 

which are quadratic nonresidues modulo 881. These are equivalent to n E 12 
(mod 44), so that we can eliminate n E 100 (mod 220). 

Finally, there remain n E 0, 2, 4, 8, 10 (mod 220). This completes the 
proof. • 

From Lemmas 7 to 9, we can derive the following corollary. 

Corollary 2: If n is even, and if 8un 4- 1 is a square, then n E 0, 2, 4, 8, 10 
(mod 25 • 52 • 11). 

Proof: Suppose that 8un + 1 is a square, n is even. According to Lemmas 7 to 
9, n must satisfy the following congruences simultaneously: 

'n E c, (mod 25 * 5) 

'n E c2 (mod 22 - 52) ^ , c£, ̂ 3 e {0, 2, 4, 8, 10}. 

E £3 (mod 22 • 5 • 11) 

Because the greatest common divisor of the three modulos is 20 and the 
absolute value of the difference of any two numbers in {0, 2, 4, 8, 10} cannot 
exceed 10, we conclude that C\ = e<i = c%. Moreover, since the least common 
multiple of the three modulos is 25 • 52 . • 11, we finally obtain n E 0, 2, 4, 8, 
10 (mod 25 • 52 • 11). The proof is complete. • 

5. Proofs of Theorems 

Now we give the proofs of the theorems in Section 1. 

Proof of Theorem 1: Suppose 8un + 1 is a square, the conclusion follows from 
Lemma 7 and Lemma 1 when n is odd, and from Corollary 2 and Corollary 1 when n 
is even. Q 

Proof of Theorem 2: The proof follows immediately from Theorem 1, by exclu-
ding u0 = 0, since a triangular number is positive. 

In fact, 

u±l = u2 = l e 2/2> uh = 2 * 3 / 2 s US = 6 # 7 / 2 ? M10 = 1 0 e 1 1 / 2 e °  

Finally, we give two corollaries as the Diophantine equation interpreta-
tions of Theorem 2. 

Corollary 3: The Diophantine equation 

5x2(x + I ) 2 - 42/2 = 16 (6) 

has only the integer solutions (x, y) = (-2, ±1), (1, ±1). 

Proof: According to (4) and the explanation at the end of Section 2, equation 
(6) implies \x(x + 1) = un and n is odd, thus it follows from Theorem 2 that 
\x(x + 1) = 1, which gives # = -2 or 1. • 
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Corollary 4: The Diophantine equat ion 
5x2(x + I ) 2 - 4z/2 = -16 (7) 

has only the integer solutions (x, y ) = (-1, ±2), (0, ±2), (-2, ±3), (1, ±3), 
(-3, ±7), (2, ±7), (-7, ±47), (6, ±47), (-11, ±123), and (10, ±123). 

Proof: with the same reason as in Corollary 3, equation (7) implies \x(x + 1) = 
wn and n is even, so \x(x + 1 ) = 0 , 1, 3, 21, or 55 by Theorem 2 (adding u Q = 
0). Thus, we get a; = -1, 0, -2, 1, -3, 2, -7, 6, -11, 10, which give all 
integer solutions of equation (7). • 
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A rational number r is said to be divisible by a prime number p provided 
the numerator of r is divisible by p . Here it is assumed that all rational 
numbers are written in standard form. That is, the numerators and denominators 
are relatively prime integers and the denominators are positive. 

Certain sequences {un}™=1 of rational numbers have the property that if p 
is any prime number, then up = u-, (mod p) . A sequence {un}™=i having this pro-
perty is said to be a Fermat sequence or to possess the Fermat property. 

The obvious example of a sequence that has the Fermat property is {an}^= 1 

with a being an integer. Indeed Fermat?s Little Theorem states that if a is 
any integer and if p is a prime number, then ap = a (mod p) . 

There are sequences {un}™=1 that have the Fermat property other than 
{an}™=1. An example of a sequence that has the Fermat property for odd primes 
is the sequence {Tn(x)}™=1 where x is an integer and Tn(x) is a Tchebycheff 
polynomial of the first kind. 

It is the purpose of this paper to give a class of sequences (of rational 
numbers) all having the Fermat property. The following theorem is related to 
Newtonfs formulas. Let 

f(x) = xk + A^"1 + . . . + Ak_Yx + Ak 

be a polynomial with real or complex coefficients. The sequence {un}™=1 is de-
fined in the following way: The first k terms of the sequence are given by New-
ton's formulas, namely, 

ul + Al = °> 
u2 + &\u\ + 2i42 = 0, 

u3 + Alu1 + A2ul + 3A3 = 0, (1) 

uk + &i'uk_l + A2uk_2 + . . . + Ak_lul + kAk = 0 . 
After the initial k terms are given, the rest of the terms are generated by the 
difference equation 

un + Alun_l + Azun_2 + ... + Akun_k = 0, (2) 

for n > k + 1, which is formed from the polynomial f(x). It is well known that 
the sequence {un}^=1 given above is the sequence of the sum of the powers of 
the roots of f(x). Thus, if 

fix) = (x - xx)(x - x2) ... (x - xk) 9 
then 

un = x^ + x2 + • • • + xk, for n = 1, 2, 3, ... . 

In this paper it is supposed that x^x2 ... xk * 0. See [6], pages 260-262. 
The Corollary to Theorem 1 solves the difference equation defined by (1) 

and (2) with appropriate adjustments in the way f(x) is factored. 
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Theorem 1: Let ol9 o^y . .., ak and x^, x^9 . .., xk be any real or complex num-
bers. Let 

Then 

II (1 + x^xf* = 1 + L A^ 

Cs -I J j -I ~t~ C* rsX r\ T • • • "t~ G -uX n. 

(3) 

(4) 

XM-n^ E (» - ' ' iK-*- ' ' E (^V 
J'i = 0 c72 = 0 \ ^ 2 / J3 = 0 W 3 / 

J n _ 2 

E 
^ ' n - l = 0 

' - 2 
V (Jn-2\/\ 3n-2-jn-i( On-l \/\0n-i-{0\ 

J. 
"Jn- l) A 3\ J2 ~ On- 1 

where n is a natural number. 

Proof: The argument is formal. Take In x of both sides of (3). Then, for the 
left side, 

k k 
In n (1 + x^Y* = E °i ln(l + * ; * ) • 

t = 1 i = 1 

The expansion 

(4) 

(5) ln(l + ^ ) = ^ - ^ r - + ̂ ~ - + . . . + ^JH. *1 + . . . , 
2 3 n 

\x\ < 1 is well known. 
Let Coexr f(x) denote the coefficient of xr when f(x) is expanded as a power 

series in x. Then 

k k c.(-l)n-lx? 
Coea.n £ ci l n ( ! + xix) = £ (6) 

i = 1 

n 

To find the coefficient of xn on the right side of (3) after In x is taken, 
the following argument is given. Since the coefficient of xn is to be deter-
mined, it follows that only 

In (l + t/i^) 
need be considered. Thus, the required coefficient is 

Coe^lnfl +T,AixA 
n . / JL A 2 

(7) 

Coexn + -

/ n \n~ 

n - J 

Since each term in this expansion has x as a factor, it is not necessary to 
consider terms for which n - j >• n. Thus, n - j < n so that j > 0. Also, the 
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only ones that are needed to be considered are those which do have some term 
with xn in its expansion. Now each term that has xn in its expansion satisfies 
ft (ft - J) ̂  ft or n - j > 1 or n - 1 > j. Thus, the largest value for j needed 
is n - 1. Hence, / n , 

Coexnln(l + L ^ M = Coe^ £ : W 
\ i = i / j \ = o ft - j i 

- £ 
n - 1 ( - l ^ ^ C o e ^ ^ + t ^ ^ " 1 ) ' " ' 1 

j ^ o ft - J i 

n - l 

= E 
(-l)»-rfi-lCoexrfl j f ( " J V ' 1 ) ^ " ' 1 " ' 2 ! ^ ^ " 1 ) 1 

J , - O " - J l 

».i (-i)n~JW % (n jV^r^^coe^,-, , (A2 + £3^**-2y 
E 

Continuing this pattern with a simple induction completes the proof. • 

An important special case of Theorem 1 occurs when c^ = e2 = • • • = cfe = 1-
In this case, in (7), 

Coe^lnfl + E ^ x M = Coe^lnU + E 0 ^ ) ' (9> 

where a,, a~, • ••> ofc are the elementary symmetric functions of x-^, x^, . . . , x^. 
Thus, 

O n • X -j "t" i U Q "i • • • "T" «X/ ir , 

+ • • . + xk--iXk, . . . , crk 

The only terms in the expansion (9) that need be considered are those which 
actually do have some term with xn in its expansion. Now each term which has 
xn in its expansion satisfies kin - j) > n, or (k - l)ft > kj, [see line (8)]. 
Let hfrin) be the largest whole number t such that (k - l)ft > kt* Thus, 0 < j < 
hk(n), With this change, the following is a corollary to Theorem 1. 

Corollary to Theorem 1: Let n be a natural number and let a^, x2, . .., ^ be a 
set of real or complex numbers. 

Then, nhf (-Dil £ (" ; ̂ Vr'1"'2 E (^W^ ••• 

«X/ I l~ X r\ ~> • • • T" *Aj -i 

ft - Jl 

JE2 (^W^-^f-- >-* _7- V 
j" ^oWfe-l/ * Z W l <?2 ' e °  «?fc-l/ 

l g ^ - 1 (*?1 <?2 " • Jfc-l) g ^1 <?2 ' " <?fc-] 

(10) 
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where o^9 c ^ , •••> °k a r e t ^ i e elementary symmetric functions of x->, x2, • . • 9 x, 
and hk(n) is the largest whole number t such that (k - l)n > kt. 

Using (10), with appropriate simplifications for k = 2 and fc = 3, gives: 

mm , (n ;..J') 
xl + x\ = n £ (-1)-7 v

w * / ( g l + x^-^-i {xxx2y , (11) 
and 

x^ + x£ + x\ (12) 

/ ^ 0 £ = [ ( j + l ) / 2 ] V l ,XJ l } n 
a • 

n - j 
/ ryt ry* _|_ /y» /y» _l_ ry* ry% \ •*-.*' <J ( ry\ rv* rf» | (/ Ki • 
\*Aj -\ tAj r\ I tXr r\ %AJ Q I tAj QtA/ -| y y î/O -i %KJ r\%Aj Q y 

where [ ] is the greatest integer function. 

The identity (11) is known. It is reported on in [2], p. 80, in the 
article on G. Candidofs use of this identity. 

For a discussion of formal arguments, see [3]. 

Theorem 1 can now be used to establish 

Theorem 2: Let cl5 c2> • ••> ok and x\9 x2> • ••> xk be any real or complex num-
bers and if the coefficients A^9 A2, A^, ... in 

n (1 + x.xf1 = 1 + f; A^X1 

are all rational numbers, then: 

(1) The sequence {un}™=1, un = c^" + c2x2 + ... + ckx£9 is a sequence of 
rational numbers; and 

(2) If for any prime number p, p is relatively prime to each of the denom-
inators of Al9 A2> . .., Ap, then the sequence {un}™=1 has the Fermat property. 

Proof: From Theorem 1, it is clear that un is a rational number if A19 A2> ..., 
An are all rationals. Also, if p is a prime number, from Theorem 1 and the 
fact that the denominators of Al9 A2, ..., Ap are all relatively prime to p, up 
E u-^imod p) . Here, ul = A^. Q 

L. E. Dickson established a result somewhat reminiscent of Theorem 2. He 
showed that if Zn is the sum of the nth powers of the roots of the polynomial 

xm + a^™'1 + .. • + ak = 0, 

where ai = 0 and a\9 a29 ..., ak are all integers, then Zp E 0 (mod p) when p 
is a prime. See [1]. This result is of course a corollary of Theorem 2. 

Example 1: For the Tchebycheff polynomials it is known that 

2Tn(x) = (x + /^2 _ if + (X - /x2 - l) n . 

(See [5], p. 5.) Letting 

and 
yl=x + T/X2-
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y2 = x - Jx2- - 1 
and 

(1 + yxy)(l + y2y) = 1 + 2xy + y z 

so that, by Theorem 2, for x an integer {2Tn(x)}™=1 is a Fermat sequence. Thus, 
if p is a prime number 2Tp(x) E 2a? (mod p) . Hence, if p > 2, {T (x^Z=i n a s t n e 

Fermat property. 
It is possible to give examples of sequences {u }"=1 in (1) of Theorem 2 

where the c?s are irrational or even complex. However, if the x fs are irra-
tional, then it is not obvious that un E u, (mod p) for p being a prime number. 
The position taken here is that no irrational number is divisible by any prime 
number. The arithmetic of this paper is the arithmetic of the real rational 
integers. Thus, 

^ 2 ) * 2 ^ P^3 

but as Theorem 2 shows 

\—2—) +\—T-) =—T- + ~r~(modp)' 
Thus, for x^9 %2> *eo? xk9 t n e r o o t s ° f a polynomial over the rationals 

x? + x? + ... + xg E xl + x2 + ... + #k (mod p) 

is a generalization of Fermat!s Little Theorem. 
From Theorem 1 it is clear that if the uTs are all rational numbers, then 

all the A ? s in Theorem 2 are also rational. Thus, the following corollary is 
established. 

Corollary to Theorem 2: Let c^, o2, . . . , ck and a:1 , x2 , . . . , xk be any real or 
complex numbers. Then a necessary and sufficient condition for the coefficients 
1' •"• 9 ' -̂  Q ' ... m 

n (1 + ay*)"* = 1 + E 4.a?S (13> 

to be rational numbers is for the sequence 
n^n = l s ^"n = ^1*^1 "̂" ̂ 2*^2 ~̂" * * * ~̂" ^kXk 

to be a sequence of rationals. 

Example 3: Let a and 2? be rationals and suppose that b is not the square of a 
rational. Consider the power series 

(1 + (a + >/b)x)a-^(l + (a - /£)x) a + /£ = 1 + E ^ar*. (14> 

i = l 

By the corollary, the power series will have rational coefficients provided 

un = (a + /b)(a - /b)n + (a - /b) (a + ^ ) \ 

is rational for n = 1, 2, 3, ... . Now 
un = (a2 - fc)[(a - /M*"1 + (a + v^)""1] (15) 

n-l 

i-0 

which is clearly rational. 
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For example , 

(1 + 0)X)W2(1 + 032X)W = 1 + E &ixi> 
i = l 

(16) 

is such that Ai is rational for i = 1, 2? 3, ... when 1, co, a)2 are the cube 
roots of unity. 

Example 4: Define the sequence {un}™=1 by the formula 

*n = £ -.2n 

J = l 

2j - 1 
km 

Here 777 is an arbitrary natural number. Then {wn}n = 1 is a sequence of integers 
which has the Fermat property. 

To see this, consider the product 

ny). £(, _ [..^i.],). 
™ 2j - 1 

M u l t i p l y t h i s by fj c o s 2 ; TT so t h a t 
J = I 

m 2 j - 1 
/ Q / ) 11 c o s ^ — ; •"" 

j = 1 477? 

4/7? 

n(co 0 2 j - 1 
S Z 7J _ ^ 

477? ^ 

Rep l ace 2/ by x 2 so t h a t 

, 2 j " f(x2) n cos2-
j = 1 477? 

(~ l ) m I I c o s 2 : TT 

1 m I 
-TT = f ] ICO 

9 2 j - 1 2 , 
4TT? 

J - l 477? fix2) 
2 j - 1 \( ^ 2 j - 1 x - cos TfUx + cos : TT 

477? 4777 

(17) 

(18) 

(19) 

(20) 

T h i n k i n g of c o s [ ( 2 j - l)/477?]n a l o n g t h e u n i t c i r c l e f o r j = 1 , 2 , . . . , m, i t i s 
i n t h e f i r s t q u a d r a n t so t h a t , by symmetry, 

' lV77 ft 9 2 j - 1 " 

(-1) n cos2—; 7T 

A well-known identity is 

fix2) 
2m I 

= Til 

a:277 + 1 n (* 2 - 2x cos 2 j - 1 
In 

x - cos 

TT + l j . 

2 j " 1 
4TT? • ) • 

I n ( 2 2 ) , l e t n = 2m and # = £ so t h a t 

„ 2m 2 7 - 1 
2 = ( - l ) m 2 2 w n c o s 2 — IT. 

J = 1 477? 

Now, by symmetry around the unit circle, 

2m 

n c°s 2m 2 7 - 1 m m . . 27 - 1 ( - 1 ) 

J = l 477? J = l 477? )2m-l 

(21) 

(22) 

(23) 

(24) 
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Using (24) and (21) y i e l d s 

f(x2) = ( - . 1 ) ^ 2 2 O T ~ 1 fi(x - cos 2 J " lir). (25) 
i = i \ 4/7? ' 

I t i s w e l l known t h a t 

2w / 27 - 1 \ 
T0 (x) = l2771'1 U\x - cos — TTK 

Z m j = i \ 4??7 / 

where T2m(x) i s t h e 2777th Tchebychef f p o l y n o m i a l ( s e e [ 4 ] , p p . 8 6 - 9 0 ) . T h i s 
f o l l o w s from t h e f a c t t h a t Tn (x) = c o s ( n a r c c o s x). Now x ~ fy, so t h a t 

f(y) = (-DmT2m(^), (26) 
which is a polynomial in y with integer coefficients. 

Since sec2 [ (2j - 1) I km\ ir for j = 15 2, 3, . .., 777 are the roots of 

(-iry
mT2ma/Jy) 

and the coefficients of this polynomial are all integers and the leading coef-
ficient is (~l)m, it follows from the corollary to Theorem 2 that {un}™=1 is a 
sequence of integers satisfying the Fermat property. 
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1. Introduction 

Let $(m) be an integer-valued function defined on the set of all positive 
integers. If m = p^lp\2 • •• p^r» where the p^Ts are distinct prime numbers, r 
and the k^ ! s are positive integers, we define $-,(1, (j>) = (f)(1) and 

r 
$l(rn> <f>) = $(m) - £ ^(m/p^) + £ <!>(&/(p. p. )) 

i = l 1 ^2 

£ *(/TZ/(P p p. )) + ... + (-Dr*W(o? ... PP)), 
1̂ < ^2 < "̂ 3 

where the summation H^ < ̂  < ... < ̂ . is taken over all integers £,, 
with 1 < i^ < i^_ < ' ' ' < in - r* 

If 77? = 2 °Pilp2
2 ••• Vrr ' w n e r e t n e Pi ? s a r e distinct odd prime numbers, and 

/<0 > 0, P, and the /c^!s > 1 are integers, we define, similarly, 

<D20?, cf>) = of)(77?) - £ tim/pt) + £ c()(77?/(pi p^ )) 
•̂  = 1 ix < i2 1 2 

E *(^/(p. ?. p. )) + '•• + (-DPc()(7??/(p1p2 ... .p )). 
^ < i2 < i3 ^ ^ *3 

If m = 2k
r where k > 0 is an integer, we define 

$2(777, (|>) = (|>(77?) " 1. 

If, for some integer n > 2, we have (J)(77?) = nm for all positive integers 77?, then 
we denote $^(T?7, </>) by $̂ (77?, n) , £ = 1, 2, to emphasize the role of this integer 
n. 

On the other hand, let S be a subset of the real numbers and let / be a 
function from S into itself. For every positive integer n, we let fn denote 
the nth iterate of f : fl =f and fn=f<> fn~l for n > 2. For every #0

 G s > w e 

call the set {fk(xQ)\k > 0} the orbit of xQ under /. If XQ satisfies fm{x$) = 
XQ for some positive integer 77?, then we call XQ a periodic point of / and 
call the smallest such positive integer m the minimal period of XQ and of the 
orbit of #0 (under f). Note that, if XQ is a periodic point of / with minimal 
period 77?, then, for every integer 1 < k < 777, fk(x§) is also a periodic point of 
/ with minimal period 77? and they are all distinct, so every periodic orbit of f 
with minimal period m consists of exactly 777 distinct points. Since it is obvi-
ous that distinct periodic orbits of / are pairwise disjoint, the number (if 
finite) of distinct periodic points of / with minimal period 77? is divisible by 
??? and the quotient equals the number of distinct periodic orbits of f with 
minimal period m. This observation, together with a standard inclusion-exclu-
sion argument, gives the following well-known result. 
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Theorem 1: Let S be a subset of the real numbers and let f : S + S be a map-
ping with the property that, for every positive integer m, the equation fm(x) = 
x (or -x9 respectively) has only finitely many distinct solutions. Let $(m) 
(or ip(m) , respectively) denote the number of these solutions. Then, for every 
positive integer m, the following hold. 

(i) The number of periodic points of / with minimal period m is M m , (J)) . So 
^ (m, cj)) = 0 (mod 777) . 

(ii) If 0 G S and / is odd, then the number of symmetric periodic points (i.e., 
periodic points whose orbits are symmetric with respect to the origin) of 
/ with minimal period 2m is ^(m, ^) . Thus, ^ o ^ 5 40 E 0 (mod 2m). 

Successful applications of the above theorem depend of course on a knowl-
edge of the function (J) or ty . For example, if we let S denote the set of all 
real numbers and, for every integer n > 2 and every odd integer t = 2k + 1 > 1, 
let 

/n(*) = an • ft (x - j) 
J = I 

and let 

# (x) = bt • x H (x2 - j2), 
J = 1 

sphere an and bt are fixed sufficiently large positive numbers depending only on 
n and t, respectively. Then it is easy to see that, for every positive in-
teger m, the equation f™(x) = x [g™(x) = -x9 resp.] has exactly nm (tm, resp.) 
distinct solutions in S* Therefore, if <J)(m, ri) = nm and ty(rn9 t) = tm, then we 
have as a consequence of Theorem 1 the following well-known congruence iden-
tities which include Fermatfs Little Theorem as a special case. 

Corollary 2: (i) Let m > 1 and n > 2 be integers. Then ^(m, ri) E 0 (mod m) . 

(ii) Let m > 1 be an integer and let n > 1 be an odd integer. 
Then §^(jn> ri) = 0 (mod 2m). 

In this note, we indicate that the method introduced in [1] can also be 
used to recursively define infinitely many <f> and 0 and thus produce infinitely 
many families of congruence identities related to Theorem 1. In Section 2, we 
&rill review this method, and to illustrate it we will prove the following 
result in Section 3. 

Theorem 3: For every positive integer n > 3, let cf>n be the integer-valued 
function on the set of all positive integers defined recursively by letting 
<(>n(m) = 2m - 1 for all 1 < m < n - 1 and 

n- 1 

Mn + fe) = E * » ( w + fe - J)» for all fc > 0. 
J = I 

Then, for every positive integer m, ^ ( m , <J>n) = 0 (mod m) . Furthermore, 

lim[log ^ ( m , (f)n)]/m = lim[log (f)n(m)]/m = log a n , 
m -> 00 -1 m + & 

where an is the (unique) positive (and the largest in absolute value) zero of 
the polynomial 

n-2 
%n~l ~ E xk-

k = 0 
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Note that in the above theorem these numbers $n(m), m > 1, are generalized 
Fibonacci numbers [3, 4] and when n = 3, these numbers 3̂(777), m- > 1, are the 
well-known Lucas numbers: 1, 3, 4, 7, 11, 18, 29, ... . 

Just for comparison, we also include the following two results which can be 
verified numerically. The rigorous proofs of these two results which are 
similar to that of Theorem 3 below can be found in [1, Theorem 2] and [2, Theo-
rem 3], respectively. 

Theorem 4: For every positive integer n > 2, let sequences 

<*&., 1, j,n>» <£fc,'2, J,»>> I < j < n9 

be defined recursively as follows: 

* l , 1, j,n = 0 , 1 < j < ns 

^2, i , j , n = 1, 1 < j < n, 

bl, 2,j,n = t>2,2,j,n = °> 1 < J < W - 1 , 

^ 1 , 2 , n , n = ^ 2 , 2 , n 3 n = ! • 

F o r i = 1 o r 2 , a n d fc > 1 , 

bk + 2,i,j,n = hk9i, 1, n + * / c , i , j + l ,n» 1 < J < H - 1 , 

®k + 2, i, n} n ~ &k, i , 1, n + "k + l, i, n, n • 

L e t bj<^iyjyn = 0 f o r a l l - 2 n + 3 < fc < 0 a n d 1 < j < n , a n d f o r a l l p o s i t i v e 
n i n t e g e r s m, l e t 

n 
4>n(ni) = bm,2,n,n + 2 • L bm + 2-2ji l,j,n' 

J = 1 

Then, for every positive integer m, (̂777, (j)n) = 0 (mod m) . Furthermore, 

l i m [ l o g ^ O ? , <t>n)]/m = l i m [ l o g $ (m)]/m = l o g $ n , 
m •> 00 m -> 00 

where $„ is the (unique) positive (and the largest in absolute value) zero of 
the polynomial ic2n+1 - 2a:2n""1 - 1. 

Remark 1: For all positive integers 777 and n, let 

Amsn = ̂ (2777 - 1, <j)n)/(2777 - 1), 

where <j)n is defined as in Theorem 3 for n = 1 and as in Theorem 4 for 2 < n. 
Table 1 lists the first 31 values of Am^n for 1 < n < 6. It seems that Am^n = 
2OT_n_1 f o r n + 1 < m < 3n + 2 and ^OT?n > 2™-"-1 for 77? > 3n + 2. If, for all 
positive integers m and n, we define sequences <Bm^n^k> by letting 

Bm,n,l = ^m + 3n + 2? n " ^m + 3n + l, n 
and 

Bm,n,k = Bm + 2n + l, n,k-l ~~ Bm + 2n+1, n + l3 fe -1 

for fe > 1, then more extensive numerical computations seem to show that, for 
all positive integers ks we have 

(i) Bl, n,k = 2 f o r a 1 1 n - ls 

(ii) 52? n? k = 4fe for all n > 1, 

(iii) 5 3 „ ^ is a constant depending only on k, and 

(iv) for all 1 < 777 < In + 1, Bm^ n^k = Bm^-^k for all j > n > 1. 
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Theorem 5: Fix any in t ege r n > 2. For a l l i n t e g e r s i , j , and k with i = 1, 2, 
1 < Ijl < n, and fe > 1, we define c. . . „ r e c u r s i v e l y as fo l lows: 

°1, 1, n, n- = 1 a n d £]., ' 1, j , n = 0 f o r J * ^> 
c l , 23 1, n = l a n d c l 5 2 , j , n = 0 f o r J * 1 . 

For i = 1, 25 and fe > 1, 

c / c + l ? £, 1, n = ^fe, i , 1, n + ckyi, -n,n + ck, i, n,n> 

Ck+l,i9 j,n = °k,i, j - 1 , n + * * , * , „ , „ f o r a 1 1 2 < J < n , 

^/c + 1, i , - 1 , n = c f e , i , - 1 , n + c k , i , - n , n + c k , ^ n , n 9 

Ck + 1, i,-j, n = Oki i,-j+l9 n + Ck,i, -n, n f o r a 1 1 2 < J < tt. 

Let c^ x j, n = 0 f° r a H integers fc, j with 4 - n < k < 0 and 1 < \j\ < n5 and, 
for all positive integers 777, let 

n- 1 
M^ * 2 E Gm+2-k,l,n+l-k,n + 2 ^ + l,2,l,n ~ X 

fc = l 
and 

n- 1 
*n^) = 2T,Gm + 2-k,l,k-n-l,n + 2^m + l,2,-l5n + l -

k = 1 

Then, for every positive integer 77?, 

$1(777, (()„) E 0 (mod 777) and $ 2 ^ ' ^n) E 0 (mod 2???). 

Furthermore, 

lim[log $i(m, c()n)]/77z = lim[log <bn(m)]/m = lim[log tyn(m)]/m 
m -> 00 777 -> 00 m - > o o 

= limjlog $2(^» *n)]/^ = 1°§ Yn
5 

where yn Is t n e (unique) positive (and the largest in absolute value) zero of 
the polynomial xn - 2xn_1 - 1. 

Remark 2: For all integers m > 1 and n > 2, let 

where the i|̂ n's are defined as in the above theorem. Table 2 lists the first 25 
values of Dm, n for 2 < n < 6. It seems that Dmy n = 2m~^ for n < m < 3n, and 
Dm,n > 2m~n for m > 3n. If, for all integers TT? > 1 and n > 2, we define the 
sequences <£7m n /c> by letting 

^m, n, I = ^m + 3n, n ~ ^m + 3n - 1, n 
and 

Em,n,k = Em + 2n, n, k-\ ~ Em + 2n, n + l, k-l 

for fc > 1, then more extensive computations seem to show that, for all positive 
integers k3 we have 

(!) El,n,k = 2 for all n > 2, 

(ii) £,23 n, ̂  = ^^ f o r all n > 2, 

(iii) ^3 n ^ and E^ n k are constants depending only on fe, and 

(Iv) for all 1 < 77z < 2n, ̂ m,n,k = #*,,,/,*: f o r all j > n > 2. 

See Tables 1 and 2 below. 
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TABLE 1 

m 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Am, 1 

1 
1 
1 
1 
2 
2 
4 
5 
8 

11 
18 
25 
40 
58 
90 

135 
210 
316 
492 
750 

1164 
1791 
2786 
4305 
6710 

10420 
16264 
25350 
39650 
61967 
97108 

Am,2 

1 
1 
0 
1 
1 
2 
2 
3 
4 
6 
8 

11 
16 
23 
32 
46 
66 
94 

136 
195 
282 
408 
592 
856 

1248 
1814 
2646 
3858 
5644 
8246 

12088 

m , 3 

1 
1 
0 
1 
0 
2 
1 
3 
2 
6 
4 
9 
8 

18 
16 
32 
32 
61 
64 

115 
128 
224 
258 
431 
520 
850 

1050 
1673 
2128 
3328 
4320 

^ m , 4 

1 
1 
0 
1 
0 
2 
0 
3 
1 
6 
2 
9 
4 
18 
8 

30 
16 
56 
32 

101 
64 

191 
128 
351 
256 
668 
512 

1257 
1026 
2402 
2056 

m, 5 

1 
1 
0 
1 
0 
2 
0 
3 
0 
6 
1 
9 
2 

18 
4 
30 
8 

56 
16 
99 
32 

186 
64 

337 
128 
635 
256 

1177 
512 
2220 
1024 

m 3 6 

1 
1 
0 
1 
0 
2 
0 
3 
0 
6 
0 
9 
1 

18 
2 

30 
4 
56 
8 

99 
16 

186 
32 

335 
64 

630 
128 

1163 
256 

2187 
512 

TABLE 2 

Dm,2 

1 
2 
3 
4 
5 
6 
:-7 
8 
9 

10 
11 
12 
13 
14 
15 
16 ' 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0 
1 
2 
4 
8 

16 
34 
72 

154 
336 
738 

1632 
3640 
8160 
18384 
41616 
94560 

215600 
493122 
1130976 
2600388 
5992560 

13838306 
32016576 
74203112 

0 
0 
1 
2 
4 
8 

16 
32 
64 

130 
264 
538 

1104 
2272 
4692 
9730 

20236 
42208 
88288 
185126 
389072 
819458 
1729296 
3655936 
7742124 

0 
0 
0 
1 
2 . 
4 
8 

16 
32 
64 

128 
256 
514 

1032 
2074 
4176 
8416 

16980 
34304 
69376 
140458 
284684 
577592 

1173040 
2384678 

0 
0 
0 
0 
1 
2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 
2050 
4104 
8218 

16464 
32992 
66132 

132608 
265984 
533672 

1071104 

0 
0 
0 
0 
0 
1 
2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 
8194 

16392 
32794 
65616 

131296 
262740 
525824 
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2. Symbolic Representation for Continuous Piecewise Linear Functions 

In this section, we review the method introduced in [1], Throughout this 
section, let g be a continuous piecewise linear function from the interval [a, 
d] into itself. We call the set {(xi} 2/̂ ) K = 1> 2, . .., k} a set of nodes for 
(the graph of) y = g(x) if the following three conditions hold: 

(1) k > 2, 
(2) Xi = os Xfr = d, Xi < X2 < eeo < ̂ ^3 and 
(3) g is linear on [xi, #£+il for all I ^ i < k - I and z/̂  = g(x^) for all 

1 < i < L 
For any such set, we will use its ^-coordinates z/]_, 1/2, . . . , y^ to represent 
its graph and call 2/12/2 • • • Uk ^ n t n a t order) a (symbolic) representation for 
(the graph of) y = g(x) . For 1 < i < j < fe, we call y^yi+i . .. 2/j the repre-
sentation for z/ = g(x) on [#£, xj] obtained by restricting 2/12/2 ••• 2/k to [#£ , 
^ • ] . For convenience, we will also call every y^ in 2/12/2 ... 2/̂  a node. If yi 
= 2/̂ +1 for some i (i.e., ^ is constant on [x^, %i+i]) > w e will simply write 

2/! . . . 2 / ^^+2 . - • yk 

instead of 

2/1 ••• 2/i2/i+iJ/i + 2 '•• 2/fc" 
That is, we will delete 2/̂ +1 from the (symbolic) representation 2/12/2 ... 2/fc • 
Therefore, every two consecutive nodes in a (symbolic) representation are dis-
tinct. Note that a continuous piecewise linear function obviously has more 
than one (symbolic) representation. However, as we will soon see that there is 
no need to worry about that. 

Now assume that {(x^9 2/̂ )1 i ~ 1> 2, ..., k} is a set of nodes for y = g(x) 
and a^2 ... aP is a representation for y = g(x) with 

{a x , a2* . - . , ar} c {z/i, zy25 . . . , 2/zJ 
and a^ * a^ + i for a l l i < i < r - I* If 

{2/i? 2/25 • • " 5 2/k} -̂ 1^15 ̂ 2' •••» *̂fc}» 
then there is an easy way to obtain a representation for 2/ = g^(x) from the one 
a^2 . . . ccr for y = g(x). The procedure is as follows: First, for any two 
distinct real numbers u and v9 let [u : V] denote the closed interval with end-
points u and v. Then let £>£, !&•£, .2 ••• ^i? t; b e t n e representation for 2/ = ^(x) 
on [a^ : a^ + il which is obtained by restricting a^2 • •• ar to [a-c : a^ + i]. We 
use the following notation to indicate this fact: 

aiai + l + b i , l h i , l «** h i , t i (under gO if ai < ai + 1, 
or 

a;a;+l * bi, tt ••• &i,2^i, l (under 9) i f «i > ai + 1 . 
The above representation on [a^ : a^+i] exists since 

Finally, if a{ < a^ + i, let zisj = £i?J- for all 1 < j < t€. If a{ > a^ + i, let 

* W = & i , *i+l"J f ° r a 1 1 l ~ $ - t i ' 
Let 

Z = sl j ] L 3 e« ^ 1 ^ ^ 2 , 2 °*°  S 2 5 t 2
 e6B Sr3 2 *°°  ^r,**-

(Note that zi t . = s^+i i for all 1 < £ < Z > - 1 . ) Then it is easy to see that Z 
is a representation for y = g2(x)» It Is also obvious that the above proce-
dure can be applied to the representation Z for y = g2(x) to obtain one for y = 
g3(x), and so on. 
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3, Proof of Theorem 3 

In this section we fix an integer n > 3 and let fn(x) be the continuous 
function from the interval [1, n] onto itself defined by 

fn (x) = x + 1 for 1 < x < n - 1 
and 

fn(x) = -in - l)x + n1 - n + 1 for n - 1 < x < n. 
Using the notations introduced in Section 2, we have the following result. 

Lemma 6: Under fn, we have 

k(k + 1) -> (k + l)(k + 2), 2 < fc < n - 2, if n > 3, 

(fc + l)fc -> (fc + 2)(fc + 1), 2 < fc < n - 2, if n > 3, 

(n ~ \)n •> n(l), n(n - 1) -> (l)n, 

n(l) •> (l)n(n - 1) ... 432, (l)rc -> 234 ... (n ~ l)rc(l). 

In the following, when we say the representation for y = fn (x), we mean the 
representation obtained, following the procedure as described in Section 2, by 
applying Lemma 6 to the representation 234 . .. (n - l)n(l) for 2/ = fn(x) suc-
cessively until we get to the one for y = f^(x) . 

For every positive integer k and all integers £, j with 1 < i, j < n - 1, 
let ay. i • n denote the number of uv * s and vu1 s in the representation for 2/ = 
f^(x) whose corresponding x-coordinates are in the interval [£, £ + 1], where 
uv = In if j = 1, and wz; = J(J + 1) if 2 < j < n - 1. It is obvious that 

a1? . ? i + l j n = 1 for all 1 < t < n - 2, 

al,n-l, 1, n = ls a n d a l ? i 3 j ? n = °  elsewhere. 
From the above lemma, we find that these sequences <ah > . „> can be computed 
recursively. 

Lemma 7: For every positive Integer k and all integers £ with 1 < £ < n - 1, we 
have 

afc + l, i, 1, n = a](,i, 1, n + a k 3 i , n-1, n9 

ak + l, i,2,n = ak, i , 1, ns 

a, , T • • = a7 • T + a7 . . , „, 3 < j ^ n - 1 if « > 3. 

It then follows from the above lemma that the sequences <(^k,iy j n> c a n a ^ 
> . 

J5 
be computed from the sequences <av „ -r . > 

Lemma 8: For every positive Integer fc and all integers j with 1 < j <n-l, we 
have 

ak,n-l, j,n = ak + i,n-l-i,j,n> l S * * M " 2' 

For every positive integer /c, let 

n - 1 w - 1 
^7 = y* a, . 1 + y* a7 . . 

Then it is easy to see that ck n is exactly the number of distinct solutions of 
the equation f%(x) = x in the Interval [1, n] . From the above lemma, we also 
have, for all k > 1, the identities: 
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n-2 n-3 
ck,n = 12 a k - i , n-1, l,n + 12 a k - i , n- 1, n- 1 - £, n 

i = 0 ' £ = 0 

provided that CLm n-l j n ~ 0 f ° r a H ^ - 0 and j > 0. Since, for every posi-
tive integer fc, 

ak,n-l, 1, n = ak-l, n-1, 1, n + ak - 1, n - 1, n - 1, n 
= a k - l , n - l , 1, n + ak-2, n - 1 , 1 , n + ak~Z, n- 1, n - 2 , n 

= < Z f c - l , n - 1 , 1 , n + ak-2, n-1, 1, n + G f c - 3 , n - 1 , 1, n 

+ a 7 . . . • 
k - 3 , n - 1 , n - 3 , n 

n- 1 

and 
J-4, k- ^ , n - l , 1, n ^ = 1 

n - 2 n - 3 
c k , n = S a/c-£, n-1, 1, n + 2 ak-£, n-1, n-1- £, n 

£ = 0 ^ = 0 

n - 2 
= ^7 i -, + a-, i i i + 12 ai • ' i i 

fc, n - 1, l , n & - 1, n - 1, l , n £ ~ 2 K ^ , n - 1 , 1 , n 

+ a k - l , n - 1 , 1 , n + a k - l , n - 1 , n - 2 , n 

n - 3 
+ 12 a 7 • i i • 

^ ^ _ t>5 n - 1 , n - 1 - i , n 

a f c , n - l , l , n + 2 a / c - l , n - l 5 1, n + J2 a k - i , n - 1 , 1, n 
^ = 2 

n - 3 
2 a / c - l , n - 1 , n - 2 , n + i-> a k - £ , n - 1, n - 1 - i , n 

£ = 2 

n - 2 
= 12 (t + !)a7 . 

provided that am n _1 x n = 0 i f 777 < 0 , we o b t a i n t h a t ( ? k ? n = 2fe - 1 f o r a l l 1 < 
k < n - 1 and 

n- 1 
for all integers k > n« °k,n X*,°k-i,n 

^ = 1 

If, for every positive integer m, we let <$>n(m) = cmj„, then, by Theorem 1, we 
have $i(m9 (j)n) = 0 (mod w ) . The proof of the other statement of Theorem 3 is 
easy and omitted (see [3] and [4]). This completes the proof of Theorem 3* 

1989] 123 



A SIMPLE METHOD WHICH GENERATES INFINITELY MANY CONGRUENCE IDENTITIES 

References 

Bau-Sen Du. "The Minimal Number of Periodic Orbits of Periods Guaranteed 
in Sharkovskii!s Theorem." Bull. Austral. Math. Soc. 31 (1985):89-103. 
Bau-Sen Du. "Symmetric Periodic Orbits of Continuous Odd Functions on the 
Interval." Bull. Inst. Math. Acad. Sinica 16 (1988):1-48. 
Hyman Gabai. "Generalized Fibonacci fe-Sequences." Fibonacci Quarterly 8.1 
(1970):31-38. 
E. P. Miles, Jr. "Generalized Fibonacci Numbers and Associated Matrices." 
Amer. Math. Monthly 67 (1960):745-52. 

Announcement 
FOURTH INTERNATIONAL CONFERENCE ON 

FIBONACCI NUMBERS 
AND THEIR APPLICATIONS 

Monday through Friday, July 30-Atigest 3,1990 
Department of Mathematics and Computer Science 

Wake Forest University 
Winston-Salem, North Carolina 27109 

International Committee 
Horadam, A.F. (Australia), Co-Chairman Loca l C o m m i t t e e 
Philippou, A.N. (Cyprus), Co-Chairman Fred T. Howard, Co-Chairman 

Ando, S. (Japan) Marceilus E. Waddill, Co-Chairman 
Bergum, G. (U.S.A.) Elmer K. Hayashi 
Johnson, M. (U.S.A.) Theresa Vaughan 

Kiss P. (Hungary) Deborah Harrell 
Filipponi, Piero (Italy) 

Campbell, Colin (Scotland) 

CALL FOE PAPERS 
The FOURTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND 

THEIR APPLICATIONS will take place at Wake Forest University, Winston-Salem, N.C., from 
July 30 to August 3, 1990. This conference is sponsored jointly by the Fibonacci Association and 
Wake Forest University. 

Papers on ail branches of mathematics and science related to the Fibonacci numbers as well as 
recurrences and their generalizations are welcome. Abstracts are to be submitted by March 15, 
1990. Manuscripts are requested by May 1, 1990. Abstracts and manuscripts should be sent to G.E. 
Bergum (address below). Invited and contributed papers will appear in the Conference Proceedings, 
which are expected to be published. 

The program for the Conference will be mailed to all participants, and to those individuals who 
have indicated an interest in attending the conference, by June 15, 1990. All talks should be limited 
to one hour or less. 

For further information concerning the conference, please contact Gerald Bergum, The Fibo-
nacci Quarterly, Department of Computer Science, South Dakota State University. P„0. Box 2201, 
Brookings, South Dakota 57007-0194. 

124 [May 



ON ANDREWS1 GENERALIZED FROBENIUS PARTITIONS 

Padmavathamma 
University of Mysore, Manasagangotri, Mysore-570 006, India 

(Submitted March 1987) 

1. Introduction 

A generalized Frobenius partition or simply an F-partition of an integer n 
greater than 0 is a two-rowed array of nonnegative integers 

J CLI . . . ar\ 

Ui ... br) 
where each row is arranged in nonincreasing order and 

r 
n = v + E (ai. + *i) • 

i = l 

Let Q^^^iri) denote the number of those F-partitions of n in which each part is 
repeated at most In times and is taken from k copies of the nonnegative integers 
which are ordered as follows: mi < nj if m < n or if m = n and i < j , where i 
and j denote the copy of the nonnegative integers. c^^^in) is called the num-
ber of F-partitions of n with k colors and h repetitions. Let 0$-^ (̂<?) D e t n e 

generating function of cty^ h(n) so that 

00 

ft = 0 

For example, the F-partitions enumerated by e$2 2(1) a r e 

oooo 
and those enumerated by ccf)2 2(2) are 

/ 0 2 0 A / 0 2 0 2 \ / 0 2 0 2 \ / 0 2 0 2 \ /0 2 OA 
\o2 o1Ao2 o2Ao2 OxAoi 0^x02 o2/ 

°2 ° l \ /° l 
Oi 0 

l \ / 0 i 0 A / 0 i OA/Ox OA 
J\02 OxAox 0^X02 02/ 

and 

^ 2 , 2(̂ 7) = ! + ^ + 17<72 + 

Similarly, 
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George E. Andrews [2] has studied extensively the two functions 

c<bl,k(n) = <h(n) a n d 0§k, l(") = c$k(ri). 
The former function enumerates the F-partitions of n in which the parts repeat 
at most k times and the latter enumerates those i^-partitions of n in which the 
parts are distinct and are colored with k given colors. Andrews [2] has ob-
tained infinite product representations for 

^ l , l(?) = <h(<7)> c<t>i,iW = <j>2(<?)> 

and has expressed Cc()3 1 (̂ ) = C<J> 3 (̂7) as a sum of two infinite products. The 
purpose of this paper is to outline a method of obtaining such representations 
for Cfyfc^iq) for arbitrary positive integers k and h. We first consider in §2 
the typical cases C<|>2, i(q) a n d (^(1)2J3(?) a n d sketch in §3 how the methods of §2 
can be extended for C\j>£ ^ (?) for arbitrary positive integers k and In. Through-
out, we use the notations 

CO 

(a)m = (a, q)m = II (1 - aqn) 
n = 0 

for complex numbers a and q with | ^ | < 1. 

2. Represen ta t ions of Ccj)2 2 (q) and C(f)2 3 (q) 

Theorem 1: For | ^ | < 1, 

^*2,2(?) = ^ 0 ( ^ ) 2 ( ^ ; ? Z t )» ( -? 2 ; ^ ( i ) 
+ 2q-l[qB0(q)]2(q1*; q^i-q1*; qh)h 

where A$(q) = ̂ 2(̂ 7) and qB§(q) is the generating function for symbols 

(2) /CLI ••• aPaP+1\ 

\3i ••• 3 P / 

That is, this is subject to the same rules as the original generalized Froben-
ius symbols related to <\>2(q) but there is one more element in the top now. 
This sort of generalization of the Frobenius symbol has been studied at length 
by James Propp in a forthcoming article in the Journal of Combinatorial Theory. 

Proof: To prove (1) we first make use of the following result of Andrews [3, 
Lemma 3]: 

(z*q)JzZq)Jz-la-l)a(z-H-l)m (3) 

= A0(a> 6> q) £ qn2 + nane,n3Zn 

n = -oo 

- $-lA0(aq, 3> q) E qnlan$nzln~l, 
n = -co 

where z, a, 3 are nonzero, \q\ < 1, and 

A0(a, 3, q) = (-<?)„ (-ae*"1?; q2)m (-a'l&q; qZ)m(q)~J' W 

Choosing a = co, 3 = a)2 in (3) where a) = exp(27ri/3) and observing that 

n (i - ?^-i +^- 2 ) ^ - ^ 4 - ^ 
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we obtain 

ft (1 + zqn + l + z2q2n+2)(l + z~lqn + z~2q2n) (5) 
n = 0 
= A0(q) ± qn2+ns2n _ BQ {q) £ q**s2n-l, 

n = -oo n = -oo 

where 

A . W - (^2i " > ^ ' i ̂  - •,(,) (6) 

B /- ̂  (-<?; <72)m(-<76; g6)„ 
W - ^ • (7) 

From the General Principle of Andrews [2, p. 5 ] , it immediately follows 
that C$2 2^) ^s tne constant term in 

ft (1 + *qn + l + z2q2n+2)2(l + z~lqn + z~2q2n)2. 
n = 0 

Squaring (5) and equating the constant terms, we get 

00 _ 00 „ 

C+2j2(?) = M ? ) 2 Z ?2" + t?B0(?)]2 £ ?2" -2""1. (8) 
n = -00 n =-00 

Now, using Jacobifs triple product identity [1, p. 21]: 

00 ~ 

£ <?«V = (q2; ̂  (-<?*; q 2 ) ^ - ^ " 1 ; ?
2 ) r o (9) 

for z * 0, |q| < 1 for the two summations in (8) we get (1). 

From the proof of Theorem 1, it immediately follows that C ^ 2(?) n a s the 
following representation. 

Corollary 1: For | ^ | < 1, 

rA , , (-<?2; - 7 2 ) 2 ( - ? 3 ; g 6 ) , 2 ^ 1 * ; g 'Q-C-g2; g* ) 2
 n n , 

C<|>2 2 ( ? ) = 7—7 (10) 
(g>2 

^ , ( - ? ; ?2)2(-c?6; g 6 ) M ( ^ ; ^ ) „ ( - ^ ; c ^ ) 2 

+ 2? S)l * 
Theorem 2: For |q| < 1, 

^2, s(g) -4i(g)2(g6; g6)„(-g3; g6)f (ID 
+ q-HqB1(q)][q^C1(q)](q&; q6)a(-q; g6)m("g5; g5)„> 

where A\(q) = (j)3(q)5 qBi(q) is the generating function for symbols (2) where a 
part can be repeated at most three times on each row and q2Ci(q) is the gener-
ating function for symbols 

/oil . .. a2,ar+1a2, + 2\ 

\8l ... 3r / 
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which has two more elements in the top row than the original generalized Fro-
benius symbol. 

Proof: Proof of (11) is similar to the proof of (1) and we give only a sketch. 
First, for a, 3, y, z nonzero and \q\ < 1, we can obtain the Laurent expansion 
of the product 

(zaq)m (zbq)n (zyq)m (s^cT1^ U^B"1^ (^V1^ (3 ') 

in the same way the analogous Andrews* identity (3) above is derived [3, Lemma 
3]. Then, substituting a = i> 3 = -i* and y = -1 in that Laurent expansion, we 
obtain in analogy with (5) 

fl (1 + zqn + l + z2q2n + 2 + z3q3n + 3)(l + z~lqn + z'2qln + z~3q3n) (5') 
n = 0 

(q2; q2)m(q; q2)2(qe; q6), T ( 3. ̂ 6)2 f)<7«3n^3n)a3n 
(?)„ L »- — 

+ q(-q; ^^(-q-S; q6^ £ qh( 3n2 + 5n ̂ Sn + l 
n = -oo 

+ qH-q-1; q6)A-q7l <76)„ f) ?«3"2+ 7" )s3"+2l 
ft = -oo -" 

= ^(qOZi + ̂ i(^)E2 + ̂ l(^)^3^ say. 

From the General Principle [2, p. 5], it is clear that C$2 3(̂ 7) is a con-
stant term in 

00 

II (1 + zqn + l + z2q2n + 2 + <?3<73n+3)2(l + z~lqn + z~2q2n + s" 3^ 3") 2. 
n = 0 

Squaring (5f) and equating the constant terms, we find 

C<$,2,3(q) = Ax{q)2 £ ?3n2 + [qBl (q) ] [q2Cx {q) ] £ ?3n2+2n-5. ( 8 ' ) 
n = - o o ft = - oo 

Finally, using (9) for the two summations in (8')* we obtain (11). 

From the proof of Theorem 2, we obtain the following representation of 

Corollary 2: For \q\ < 1, 

C<t>2,3W = 7—^ [(-q6; qb)t + < 1 2 > 

+ 2^2(-^; (76)2(-^5; qe)2(~q~l; qs)„(-q7; q6)ml . 

3. Representation of Ccf> h(q) in General 

The representation of C<J>£ h (q) for arbitrary positive integers fe and /z is 
obtained in Theorem 3 in the same way we obtain the special cases (1) and (11), 
but after suitable generalizations of the methods. Lemma 1 furnishes a result 
which plays the role played by Jacobi's triple product identity in passing from 
(8) to (1) and from (8') to (11). Due to the mechanical nature of the steps, 
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we only sketch our proofs and avoid lengthy expressions. 

Lemma 1: For a > 0, a\, . .., a^-i integers and \q\ < 1, the series 

^ 4 E nl + E n n\ + j 3
f l n 

£ q \ t - i i<i<j<fe-i V t - ! r l ( 9 f ) 

can be expressed as a sum of 27c_23?c~34^~I+ ... (?c - l)fc" (k "^ infinite products. 

Proof: First Step. By grouping terms with nj_, ••-> ̂ k-2 e v e n an<3 ^i> •••> nk-2 
odd separately, the series (9f) can be written as the sum of 2^~2 series, each 
of which will be of the form 

/ \ k~2 

a(3nf + • • - + 3ng . 2 +2 E ^nA + Y, hni 
\ l l<i<j<k-2 I * - l 

^ qanl_l + bnk_1 + bt 

nk-l = -°° 

where wl5 2?̂ , . .., bk-2> &> b' a r e integers. Here, the second series can be 
written as an infinite product by Jacobifs triple product identity (9). Thus, 
it suffices to express the first series as a product. 

Second Step: By grouping terms with nl5 ..., ̂ ^-3 = v (mod 3), r ~ 0, 1, 2, 
the first series of the first step can be written as the sum of 3 3 series, 
each of which will be of the form 

^ alun\ + • • " + 24n*-3+ 12 , . ? . »i»j)+ E3"i»* 
<7 A , <7 ^ l<i<J£fc-3 / i - 1 

n!, ... , nk_3 = -« 

x £ q3ank-2 + ank-2 + c ' , 

where m2, Q\* ...3 £ -3* £* cf are all integers. 

Proceeding similarly, we arrive at the (k - 2 ) t h step, namely, 

(k - 2)th Step: By grouping terms with n\ = r (mod fc - 1), r = 0, 1, 2, ..., 
k - 2, separately, the first series of the (k - 3) t h step can be written as a 
sum of (k - l)k-(k-D = fe - l series, each of which will be of the form 

» i - — n2=-co 

(where ^_ 2, a^, Bi, Yi for ^ = 15 2 are integers), which are explicit infinite 
products by (9). 

Conclusion: From Steps 1 to (k - 2) , it is clear that the series (9') can be 
written as a sum of 2/c_23k_34fc~L+ ... (k - 1) infinite products. This proves 
Lemma 1. 

Theorem 3: For arbitrary positive integers k and h, C^>kth(q) can be expressed 
as a sum of infinite products. 

Proof: For s, 04, ..., a^ all nonzero and \q\ < 1, we consider the product 
(sa1q)oo(sa2^)ro ... (sa^)oo(s-1a-1)oo(s-1a-1)aD ... O T 1 ^ 1 ) . , (3") 
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which, on using (9), can be written as 

m n^ + n-^ n2 + n 

iq)lh t {-l)niq~T~^l
lzn^ ... ± (-1)̂  cT^- a^ z«* . (13) 

It is not difficult to realize a procedure for obtaining the Laurent expan-
sion of the product (13). For instance, consider, for arbitrary integers a, b, 
Oy d, e, f and nonzero 2, a, 3 and \q\ < 1, the product 

y> Qam^ + hm^mgCm y ^.dn1-^ ennn fn / i n 
m = -oo n = -00 

In t h i s , l e t 

*= T^fry and y = T^TTT 
By grouping terms with m = r (mod y), r = 0, 1, . . . , z/- 1, separately, and then 
changing n to n - xm, (14) can be written as sum of y number of series of the 
form 

I) 5(6, z9 q, m) f; (?^2-^^^+^ane (15) 
m= -00 n = -00 

Now grouping terms with m = r (mod e),r= 0, 1, ..., g - 1, where lad - be = 0 
with (d, e) = 1 in (15), we obtain the Laurent expansion of (14). 

By applying the above procedure successively, we obtain the Laurent expan-
sion of (13). Substituting 04 = u), . . . , a^ = LO^, where GO = exp(2iri//z + 1) in 
that Laurent expansion, multiplying the resulting identity k times, and equat-
ing the constant terms, we find Cfy^^iq) to be a sum of series of the form (9') 
which, by Lemma 1, is a sum of 2k~2-3k~^> ... (k - 1) infinite products. 

It would be interesting to obtain combinatorial proofs of equations (8) and 
(8f) which might throw more light on this subject. 
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1. Introduction 

In [1], using the properties of the reciprocity law for Dedekind sums, L. 
Carlitz proved that the system 

hhf = 1 (mod k), Khf E 1 (mod k') 
(*) 

kk' E l (mod h), kkf E l (mod h') 

has no positive integral solutions unless either k = kT or h = hr. 

In [2], M. DeLeon studied (essentially) solutions of the system (*) . He 
defines a Carlitz four-tuple (a, b, c, o) by: a, b9 a are integers (not re-
quired to be positive), ab = 1 (mod c) , c2 E 1 (mod a) , and c2 = 1 (mod £>) . He 
introduces the notion of a primitive Carlitz four-tuple (a, fc, c, c) , that is, 
one with the property that there exists no integer m > 1 such that one also has 
that {aim, bm, c, c) is a Carlitz four-tuple. We mention here two of his 
results, which are basic to our work in this paper: the Carlitz four-tuple (a, 
b, o, o) is primitive if and only if the greatest common divisor 

gcd(a, (c2 - I)lb) = 1, 

and secondly, if (a, bs cs c) is primitive, then a divides b. 
In this paper we consider only the positive integral solutions of the sys-

tem (*). Since at most three different integers are involved, we use the nota-
tion (a, by o) for a solution, with ab = 1 (mod c), c1 E 1 (mod a ) , and c2- E 1 
(mod b); we call this a Carlitz triple (CT) . The results of [2] of course 
apply to these triples. A primitive CT will be called a PCT. 

In Section 2, we first prove some elementary arithmetic properties of a 
PCT, and then prove the following conjecture from [2]: 

If (a, by o) is a PCT with a * by c > 1, c * ab. - 1, 
then we have: 0 < a < c < b. 

In Section 3, we show that the set of all PCT?s (a, ax, o) with o > 2, and 
for a fixed integer x > 3, satisfy a recursive relation. The original recur-
sions (resulting directly from a study of these PCT\s) are not very pretty, but 
they reduce to a surprisingly simple form. 

In Section 4, we give the generating functions associated with the recur-
rences from Section 3; these are rational functions whose denominator is quad-
ratic. 

The reader will notice that many of our results are stated with assorted 
minor restrictions (e.g., o > 1, or a < b, and so on). In Section 5, we dis-
cuss the reasons for such restrictions. It is then seen that only one inter-
esting case [out of all possible positive solutions to the system (*)] is not 
covered. This is the case of those PCT?s of the form (a, a, c) , to which, of 
course, the conjecture of DeLeon does not apply. We hope to say more about 
these in a later paper. 

1989] 131 



RECURSIONS FOR CARLITZ TRIPLES 

2. Elementary Properties 

In this section we first develop some of the arithmetic consequences of the 
definition of a PCT (a, b, c) . Recall that a CT is a triple of positive 
integers a, b, c satisfying: 

a < b 

ab 
c2 

c2 

E 1 
E 1 
= 1 

(mod 
(mod 

c) 
a) 

(mod b) 

The PCT triples also satisfy the additional conditions 

a\b 
gcd(a, (c2 - I)lb) = 1. 

Lemma 2.1: Let (a, b, c) be a PCT with e > 1. 
Then there exist integers x, p, u so that x > 0, u > 0, r > 0, and 

(i) b = ax 
(ii) c2 - 1 = ax(uc - a), (a, u) = (a, uc - a) = 1 
(iii) a2x = 1 + PC. 

Proof: Since a\b, (i) is true for some x > 0. Then aZ? = a2x and (iii) fol-
lows since ab = 1 (mod <?) . We know that b - ax divides c2 - 1, that is, a2 - 1 
= ax£ for some integer £; £ > 0 since e > 1. Since ax£ E -1 (mod <? ) and a2x E 
1 (mod c), then £ = -a (mod c). We claim that t = uc - a with u a positive in-
teger. If c = 2, this is seen directly: o2 - 1 = 3 = ax£ implies that a, x, 
and £ can only take on the values 1 or 3. If a = x = ls then w = 2; if a = 3, 
x = 1, £ = 1, then u = 2; if a = 1, x = 3, £ = 15 then u = 1. If c > 2, then 
since t E -a (mod <?) and £, a, and <? are all positive, then £ = uc - a for some 
u > 0. Note that p can be 0 if and only ±fa=b=x=l; otherwise p > 0. D 

Corollary 2.1: Let (a, 2?, <?) be a PCT with c > 1, and suppose the integers x9 
p, u are given as in Lemma 2.1. Then (uc - a, x(uc - a ) , c) is also a PCT with 
e > 1. D 

Remark: Later on, for a given x > 3, we will be considering the set of all 
PCT's (a, b, c) for which b la = x. It will be useful to note that, if (a, ax9 
c) is a PCT with c > 2, then one of the two PCTfs (a, ax, <? ) and (uc - a, 
x(uc - a), c) has its left-most member less than c. [This follows from Lemma 
2.1(ii); a(uc - a) divides c2 - 1, so one of the factors must be less than c.] 

Lemma 2.2: Let (a, b, c) be a PCT with c > 1, and suppose the integers x9 P, u 
are given as in Lemma 2.1. Then 

(i) c = axu - P 
(ii) (ru - d)c = av - u 
(iii) (a2 - u2)(v2 - 1) = (a2 - I)(ru -a)2. 

Proof: From the proof of Lemma 2.1, we have x = b/a9 v = (ab - 1)/c> and u = 
(c2 - 1 + ab)/bc. The result follows easily from these equalities. • 
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Theorem 2.1: Let (a, b? c) be a PCT with a > 1 and c > 1, and suppose the in-
tegers x, p, u are given as in Lemma 2.1. Then r > 1, and (a, fo, P ) is a PCT. 

Proof: First5 since a > 1, then a2x = 1 + re > 1 [Lemma 2.1(iii)] and so r > 0. 
Now consider Lemma 2.2(ii) with r = 1. Lt reduces to (u - a) £ = a - u. We 
have c > 0, so this implies a = u. But (a, u) = 1 by Lemma 2.1(ii), and so u = 
1 and a = 1, contradicting the assumption that a > 1; thus p > 1, Next, since 
a2x = 1 + re and <? = axu - P, then 

a2x = 1 + r(axu - r) = 1 + (wax)p - P 2 

ax(a - UP) = 1 - P 2 

and so p2 E 1 (mod a) and p2 E 1 (mod b) (since b = ax). 

From Lemma 2.1(iii) we already have ofr = a2x E l (mod p) . It remains to 
show that (a, b, P ) is primitive, that is (see [2]), that 

gcd(a, (P 2 - I)/ax) = gcd(a, ru - a) = 1. 

From Lemma 2.1(H) and the fact that (a, 2?, c?) is primitive, we have 

gcd(a, u) = 1. 

Lemma 2.1(iii) implies that 

gcd(a, p) = 1. 

Then gcd(a, ru - a) = 1 also. • 

The following theorem settles the conjecture of DeLeon in the affirmative. 

Theorem 2.2: Let (a, &, c) be a PCT with 0 < a < b and c? > 1. If a < e9 then 
b > e. 

Proof: First5 if a = 1, then we have5 by Lemma 2.1(iii), that a2x = x = 1 + re. 
Since b = ax, and £> > 1, then p > 0 and so b > e + 1. Thus, the theorem is 
true for a = 1 and e > 2. For a > 1, the proof is by descent. (We use the 
notation of Lemma 2.1.) Suppose the contrary, and let e be the smallest posi-
tive integer such that there exist integers a, x so that, with b = ax, one has 
that (a, fc, e) is a PCT with a < e and b < e9 a < b and e > 1. Note now that, 
since we have b > a, then x > 1. Since ax < c, then a2x < a c Then 

a2x = 1 + re < acj 
and hence r < a* By Theorem 2.1, (a, ax, P ) is also a PCT and has p > 1, and 
by Corollary 2.1, (a', b!, <?r) = (PW - a, X(PH - a) , P ) is a PCT. Since a > P, 
and since p2 - 1 = axiru - a) then x(ru -a) < P. Thus, 

aF < ef
 s b? < e?

 9 ar < br
 9 and p > 1. 

We have p < a < ax < e, which contradicts the minimality of e. This completes 
the proof. • 

Corollary 2.2: Let (a, b9 e) he a PCT with 0 < a < £>, and with £ > 1, and sup-
pose the integers x, p, u are given as in Lemma 2.1. Assume that a < c. Then 
u = 1. 

Proof: By Theorem 2.2, ax > c, so from Lemma 2.1(ii) it follows that 

0 < ue - a < e* 
Since a < e9 then it must be that u = 1. D 
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3. The Recursion for PCT?s 

Consider the set S(t) of all PCTfs of the form (a, a (t + 1) , c) > where a > 
2 and t > 2. In this section, we show that for each t > 2, S(t) is a recur-
sively defined sequence of triples, with initial element (1, t + 1, £) . 

These conditions of course imply that Theorem 2.2 and its Corollary will 
apply to all these PCTTs. In particular, in the notation of Lemma 2.1, for any 
PCT (a, h, c) in this section we will always have u = 1-

Lemma 3A: Let (a, b9 c) be a PCT with a < b and c > 2, and r as defined in 
Lemma 2.1. If a < c/2, then v < c - 2; if a > c/2, then p > c. 

Proof: We use the notation of Lemma 2.1. Note that 

(p + 1) (c + 1) = PC -h 1 + p + c. 

By Corollary 2.2, u = 1 and so, from Lemma 2.2(1), ax = p + (3. 
By Lemma 2.1(iii), a2x = PC + 1. Hence, we have 

(p+l)(<? + l)= a2x + ax = ax (a + 1). 
If a < c/2, then a + 1 < c - a. Then, 

(p + 1)(<? + 1) < ax(c - a) = c2 - 1, 

which implies that v < c - 2; similarly, if c/2 < a < e9 then a + I > c - a , 
and then p > <? - 2. Note that a = c/2 is not possible if c is odd; if c is 
even and c > 2, then (a, c) = 1 implies that a * c/2* [Lemma 2.1(iil) implies 
that (a, c) = 1.] By Lemma 2.2(ii), since u = 1, we have 

(p - a)c = ap - 1, 

so that (p, c) = 1 and hence p * c« It remains to show that p * (<? - 1) . Sup-
pose to the contrary that v = e - 1. By Lemma 2.2(i) then, ax = 2c - 1 > 3. 
Since ax must divide c2 - 15 while gcd(2c - 1, <2 - 1) = 1, then 2c - 1 must 
divide c + 1; this is impossible for <? > 2. Thus, P * c - 1, and it follows 
that p > e. D 

Lemma 3.2: Suppose that (a, ax, P) and (a, ax, fc) are both PCTfs with P, fc > 2 
and x > 3, and that v * k. Then a2x = 1 + rks and r + fe = ax. 

Proof: By Corollary 2.2, n = 1. Then, from Lemmas 2.1 and 2.2, we must have: 

p 2 - 1 = ax(r -a) 
a 2 x = 1 + rm (for some p o s i t i v e In teger m) 
p + 77? = a x 
fc2 - 1 = ax(s - a) 
a2x = 1 + /en (for some positive integer ri) 
k + n = ax. 

Then 

a2x = 1 + /??(ax - TTZ) = 1 + n(ax - n), 

and then 

(m - n)ax ~ m2- - n2, 

which gives ax = 777 + n. Then k = m and p = n. D 

Lemma 3.3: If (a, ax, c) is a PCT with e > 2 and x > 3, and if a2x = 1 -f PC, 
then p * <3. 
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Proof: If P = 15 c l e a r l y p * c« Suppose r > 1. Since a2x =1 + vc implies t h a t 
(a , P ) = 1 and r > 1, then p * a. By Lemma 2.2 and Corol lary 2 .2 , 

(p - d)c = pa - 1. 
Thus, p and c must be relatively prime. Since c > 1, then p * c, D 

Coronary 3.3: Suppose that (a, ax, c) is a PCT with e > 2 and x > 3, and with 
azx = 1 + re and a > c/2. Then the PCT (a, ax, P ) has p > c and a < p/2. 

Proof: For the PCT (a, £>, c) , Lemma 3.1 says that p > o. Applying Lemma 3.1 to 
the PCT (a, bs P ) completes the proof. • 

Remark: Observe that, given any PCT (a, ft, e) with b/a = x > 3 and e > 2, 
there are two more PCT!s particularly associated with it, in which the quotient 
of the second element by the first is also x9 namely 

(c - a, (c - a)xs c) and (a, b9 P) . 

By Lemmas 3.1 and 3.2, there are exactly two such triples, and, in the lexico-
graphic ordering of all triples, one of these associated triples is "less than" 
(a, b9 c), and the other one is "greater." 

Example: x = 5; CQ = 4 = x - 1; a = 1. Then (1, 5, 4) is a PCT; 

a2x = 5 = 1 + 4 . 

Also (3, 15, 4) is a PCT so we have a = 3 and 
a2x = 45=. 1 + 4x11. 

[Note that 3 = CQ - 1, and 11 = <?Q - <3Q - 1 = <?]_.] 
Now (3, 15, 11) is a PCT (Theorem 2.1). Wishing still to go up, use the 

related PCT (8, 40, 11) (Corollary 2.1); then a = 8 and we have 

azx = 1 + 11x 29. 

Put o2 = 29. 

[Note that 8 = 11 - 3 = (cl - cQ + 1).] 

We now have that (8, 40, 29) and (21, 5 x 2 1 , 29) are PCTfs. With a = 21, 
then 

a2x = 1 + 29 x 76. 

Put c3 = 76. 

[Note that 21 = c2 - &i + c0 - 1.] 

For convenience, we state this rather commonplace observation as a theorem. 

Theorem 3 A : The set S(t) of all PCTfs (a, a(£ + 1), c) with a > 0, <? > 2, t > 
2, is linearly ordered by the lexicographic order: 

where AQ = (1, t + 1, t ) , and if y4n = (a, a(t + 1), c ) with a < <?/2, then 
i4n + 1 = (c - a, (e - a) (t + 1), e); 

if An = (a, a(t + 1 ) , c) with a > c?/2, then 
A n + l = (a, a(t + 1), (a2(t + 1) - l)/c). • 
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The first few members of {A^} are: 

A0 = (1, t + 1, t) 
^i = (t - 1, (t - l)(t + 1), t) 
i42 = (t - 1, (t - l)(t + 1), t2 - t - 1) 
4 3 = (t2 - 2t9 (t2 - 2t)(t + 1), t2 - £ - 1). 

Let (#Qs #]_, x2, . ..) be the sequence of the left-hand entries of the A^5 
and define a sequence (an) as follows: 

<2Q = 1, ai = £ - 1, 

and then, for all i > 1, a^ = #2£ - 1°  That is5 (an) is the sequence of the 
distinct left-hand entries of the triples A±. We proceed similarly on the 
right; it will be convenient to furnish this sequence with an "extra" initial 
term: 

CQ = 1, ci = t, a2 = t2 - t.- 1, ... . 
From the definition, we have that 

an = cn - an_! and cn+ 1 = (a2 (t + 1) - l)/on. 

Theorem 3.2: For fixed t , t > 2, the sequences { a n } a n d { c n } defined above s a t -
i s fy 

( i ) a n = cn - on_l + . . . + ( - 1 ) ^ ^ . + . . . + ( -1)" (n > 0) 
( i i ) cn + i = ( t + l ) c n - 2(£ + l ) a n _ ! + ^ - x (n > 1 ) . 

Proof: Since ag = 1 = (-1) ° 5 then (i) follows by induction from the definition 
of {Ai}. 

We have OQ = 1, and Cj = t, so 

<?2 = t2 - £ - 1 = (t + l)c1 - 2(t + l)a0 •+ c0. 

From the definition of {i^}, if n > 2, we have 

Cn = {(£ + l)(c„-i - On.2 + ... + (~1)W)2 ™ l}/<?„-l 

= [(£ + 1) C2„i + 2C„.1(-C„_2 + ^n-3 ™ 8° « + (-D* 

+ (~̂ -2 + e„_3 + ... + (-1)")2 - U/^-l 

= (t + l)en-i + 2(t + 1)(-C„_2 + ^ - 3 - '•• + (~i)n) 

+ {(£ + l)(-tfn-2 + e*-3 ~ ••• + (""I)")2 " H/^n-

= (t + D ^ - x + 2(t + l)(-an_i) + {(£ + l)(an_2)2 - l}/cn-l. 

From the definition of {A^}, we know that 

{(£ + l)(an_2)2 - 1 }/<?„•-2 = cn.l5 

and this proves (ii). • 

Using this result, one can establish that the sequences {an} and {cn} do in 
fact satisfy recursions of a much simpler nature, 

Theorem 3,3: For fixed t, i > 2, the sequences {an} and{cn} satisfy, for n > 1: 

(i) cn_i + cn = (t + l)an-i 

(ii) an + 1 = (t - l)an - an-i 

(iii) on+i = (t - l)cn - c n _ l 9 
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Proof: It is easy to verify that (i) , (ii), (iii) are all true for n = 1,2, 3. 
Suppose they are true for all k9 1 < k < n. From Theorem 3.2 and the in-
ductive hypothesis, we have 

en+i = (£ + D^n + 2(t + l)(-a„_i) + £n_i 

= (t + l)c„ - 2(en + cn-i) + cn_! 

= (t - l)en - c„_i. 

It then follows that 

c n + l + c n = fc?n " c n - 1 = (^ + D ^ n ~ ^n " <?n - 1 

= (t + l)(cn - an_x) = (t + l)an. 

Since an - cn - an-\ , statement (ii) follows from (iii); this completes the 
proof. • 

4. Generating Functions 

It is well known that recursive sequences like {an} and {cn} are naturally 
associated with generating functions, which may be found and described in a 
standard way. In this section we give the generating functions and the corre-
sponding Binet formulas without proof. 

Let t be a fixed integer, t > 2, and consider the sequences {an} and {cn} 
defined in Section 3. Define two formal power series by 

i=0 I=0 

Theorem 4.1: The series defined above satisfy 
F(z) = (1 + z)/(l + (1 - t)z + z2); G(z) = F(z)/(l + z). D 

If t = 3, then 
3 2 + 2 ( 1 - t) + 1 = (Z ~ l ) 2 , 

while, if t > 3, then z2 + z (I - t) + 1 has irrational roots. Thus, we consi-
der two cases separately. 

Theorem 4.2: If t = 3, then 

F(z) = E(i + 1)3*; 

an = n + 1 and cn = In 4- 1. Q 

Theorem 4.3: Let t > 3, and let a, 3 be the two roots of z2 + (1 + t)z + 1. 
Then a * 3> and we have 

an = (a*+1 - 3n+1)/(a - 3) 
and 

en = (a*+1 + an - 3n + 1 - 3„)/(a - 3). D 

5. Some Exceptions 

In this section we discuss the reasons for the restrictive conditions at-
tached to some of our results. Throughout we use the notation of Lemma 2.1; 
(a, b, a) is a PCT, a, b, c are positive integers, and so on. 
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A. If c = 1: For all positive as b9 (a, bs 1) is a CT and is primitive if 
and only if a = 1. 

B. If c = 2: The only PCT\s with c = 2 are (1, 1, 2), (1, 3, 2), and (3, 
3, 2). 

C. If c > 2, there are no PCT's of the form (a, 2a5 e). or (a, 3as e) . 

D. There are PCT?s of the form (a, a, e), for instance (8, 8, 3). How-
ever, these seem to differ from those with a < b in various essential 
ways; in particular, they do not appear to fit into a single recur-
rence scheme. Note that DeLeonTs conjecture does not apply to these 
PCTfs. 

Statements (A) and (B) are easily checked. To see (C) , suppose first that 
(a, 2a, c) is a PCT with c > 2. Then, by Theorem 2.2, we have a < c < la ; and 
by Corollary 2.2 and Lemma 2.1, we can write 

c2 - 1 = 2a(c - a) = lac ~ 2a2. 

Rearranging, we get 

c2 - lac + a2 = 1 - a2 

(c - a) 2 = 1 - a2. 

Since e > a, this is positive, contradicting the fact that a > 0. Therefore, 
(a, 2a, c) can only be a PCT If c = 1, 2. 

Proceeding similarly with a PCT of the form (a, 3a, <?) with c > 2, we get 
a <. <? < 3a and 

cl _ i = 3a(c - a) 

(<? - a) 2 = 1 + a O - 2a). 

Since c > a, this is positive, so c > la . Rearranging the first equation in 
another way, we get 

c2 - 3ac + 2a2 = 1 - a2 

(c - a)(c - 2a) = 1 - a2. 

Since c > 2a, we must have a = 1. A CT (a, ib, c) must satisfy a& = 1 (mod c) 
and c2 E 1 (mod a, 6). Here we have a = 1, Z? = 3; then a£> = 1 (mod c) implies 
c < 2. Thus, there are no PCTfs with c > 1 and the form (a, 3a, <?). 
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1. Introduction 

A positive integer which is divisible by its digital sum is called a Niven 
number. This concept was introduced in [1], and was investigated in greater 
detail in [2], [3], and [4]. A variety of results and open questions were pre-
sented in these articles. One problem, however, that was not completely 
resolved was a characterization of Niven repunits. That is, Niven numbers 
whose decimal representation is all ones. For example, the repunits 1, 111, 
111111111, and 111111111111111111111111111 (2.7 ones) are the first four Niven 
repunits. Here, we will give a complete characterization of such integers. In 
addition, it will be pointed out how all Niven repunits can be constructed from 
a certain list of primes. 

To facilitate the following discussion, we use the notation R(n) to repre-
sent the repunit made up of n ones. Thus 

R(n) = |(10n - 1) 

and so, we wish to determine under which conditions 

R(n) = 0 (mod ri). (1.1) 

2. A Useful Lemma 

A particular instance of the following lemma will be useful in proving a 
characterization theorem for Niven repunits. 

Lemma 2.1: Let a,b9 m* and n be positive integers. If a E b (mod mn), then 
amk E bmk (mod mk + n) 

for each nonnegative integer k. 

Proof: By observing the factorization, 

am^i __ 6 m * + i = {am* _ hmk) [ (amk ) m ~ l + (amk ) m ~ 2 Q)mk) + •-• + ( Z ^ ^ T " 1 ] , 

the proof follows by induction on L 

For convenience, we state a special case of Lemma 2.1 as Lemma 2.2. 

Lemma 2.2: Let m9 n, and t be positive integers. Then lO7^ E 1 (mod mn) implies 
that 

(10*)™* = 1 (mod mk + n) 
for each nonnegative integer k. 
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3. The Characterization Theorem 

Using Lemma 2.2, we can now prove the following theorem, which gives neces-
sary and sufficient conditions in order that (1.1) is true. 

Theorem: Let n and 10 be relatively prime. Denote the order of 10 (mod n) by 
gn(10). Then the following statements are equivalent. 

(1) R{n) is a Niven repunit. 

(2) 10n E 1 (mod n). 
(3) n E 0 (mod en(10)). 

(4) n = 0 (mod gp(10)) for each prime factor p of ft. 

Proof: That (1) =» (2) => (3) => (4) is a direct application of congruence arithmetic 
and Fermatfs Theorem. Thus, we need only prove that (4)^(1). 

Suppose that n .= 0 (mod ep(10)) for each prime factor p of ft. Let m be the 
least prime factor of ft. Then, since gOT(10) < m and, by the hypothesis em(\0) 
is also a factor of ft, we have that em(10) must be 1. This can only occur when 
m = 3. 

So, we may write the prime factorization of n in the form 
t 

3k n P?*» where 3 < p_ < p0 < pQ < ••• < p . 

Thus, ft = 0 (mod ev (10)) for i = 1, 2, 3, ..., £ and since 
10ePX10) E l (mod v ^ 

for each i, we have that 10n = 1 (mod p^) for each i. But by FermatTs Theorem, 

10 P^1 = 1 (mod p.) 

and so, £p.(10) divides p. - 1 for each i. Thus, 

l0(">Pi-l) E 1 (mod pt) 

for each i where, as usual, (ft, p^ - 1) denotes the greatest common factor of n 
and p. - 1. But, since (ft, p. - 1) is a factor of ft/p^ , we have 

10 n / p ^ E 1 (mod P i ) 

for each i. Noting that 

10 n / 3 k E 1 (mod 3 2 ) , 

we have, by Lemma 2.2, that 

(10B/P<V'*' = 1 (mod ph + l ) 
for each i, and 

(10«/3fc)3* = x (mod 3fe + 2 ) . 

Therefore, 

10n E 1 (mod p*i) 
for each i, and 

10n E 1 (mod 3f e + 2). 

It follows that 10n E 1 (mod 32ft) and so 

-kl0n - 1) E 0 (mod ft). 
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Therefore, R(n) is a Niven repunit, and we have that (4)=>(1). 

An immediate corollary to the theorem is that i?(3t) is a Niven repunit for 
every nonnegative integer t . This follows from the fact that e3(10) = 1 and 
statement (4) of the theorem. In fact, statement (4) gives the most useful 
characterization of Niven repunits. 

4. Generation of Niven Repunit s 

Using statement (4) of the theorem, we can construct all n such that R{n) 
is Niven by determining which primes, p, are such that every prime factor of 
ep(10) also satisfies the condition of statement (4). For example, since 
03(10) = 1, as has already been pointed out every power of 3 is a Niven 
repunit. But since g7(10) = 6 has a factor of 2, it follows that no multiple 
of 7 can satisfy statement (4). That is, R(lm) can never be a Niven repunit. 
In fact, the first prime larger than 3 that can be a factor of an n that sat-
isfies statement (4) is 37. This follows because 037(10) = 3 and, as stated 
above, 3 is a prime that must be a factor of every n that satisfies statement 
(4) of the theorem. 

Similarly, it is found that the next two primes, after 37, which could pos-
sibly be factors of an n such that R(n) is Niven are 163 and 757 since 

e163(10) = 3Lf and £757(1) = 33. 

The first column in the following table gives all primes, less than 50,000, 
which could possibly be factors of an n that satisfies statement (4). The sec-
ond column gives the corresponding ep(10). 

TABLE 4.1 

prime p 

3 
37 
163 
757 
1999 
5477 
8803 
9397 
13627 
15649 
36187 
40879 

81 
27 
999 
1369 
1467 
81 

6813 
489 

18093 
757 

ep(10) 

1 
3 
= 34 

= 33 

= (33)(37) 
= 372 

= (32)(163) 
= 3^ 
= (32)(757) 
= (3)(163) 
= (3)(37)(163) 

It should be noted that an infinitude of such primes exist, since £p(10) is 
a power of 3 infinitely often. As an example, suppose that 757 is the largest 
prime factor of n. Then in order that R(n) be a Niven repunit, n would have to 
be of the form 

3ni37n2163"3 757^ 

where the exponents are necessarily interdependent. That is, if n^ * 0, then, 
by inspection of the right column of Table 4.1, n\ > 4. So, a list of genera-
tors of Niven repunits can be continuously constructed by consideration of 
Table 4.1. The first few of such a list is given in Table 4.2. 
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TABLE 4.2 

3 
(3)(37) 

(3^(163) 
(33)(757) 

(33)(37)(1999) 
(3)(372)(5477) 
(34)(163)(8803) 

(3^) (9397) 
(33)(757)(13627) 
(3) (163)(15649) 

For example, the product (34) (163) (8803) is in the list given by Table 4.2 be-
cause 

g8803^10) = 1 4 6 7 = (32)(163) 
and each of its prime factors is in the list given by Table 4.1. So, if 8803 
is the largest admissible prime factor of n, 163 would also have to be a factor 
which, in turn, forces 3^ to be a factor of n . The phrase, ". . . generators 
of Niven repunits . . ."is used because increasing the exponents of any of the 
prime factors of the least common multiple of any collection chosen from the 
list given in Table 4.2 will be an n such that R (n) is a Niven repunit. For 
example 

lcm( (3^(163), (33)(757), (33) (757) (13627) ) = (34) (163) (757) (13627) 

and so 

i?(3ni163n2757n313627ni+) 

will be a Niven repunit for any n\ ^ 4, n^_ > 1, n% > 1, and n^ > 1. 

5. Concluding Remarks 

As pointed out, the list of primes given by Table 4.1 can be extended by 
inspecting gp(10) for primes p. A useful reference for finding such primes has 
been published by Yates [5]. For example, he has calculated that, for the 
prime 333667, 

e333667(10) = 9 = 32. 
Hence, 333667 may be added to the list given by Table 4.1 since 3 is already 
listed in Table 4.1. 

Finally, it should be mentioned that since, for any decimal digit d * 0, 

— ( 1 0 n - 1) = 0 (mod tin) 

if and only if R(n) = 0 (mod n), the characterization theorem for repunits also 
gives a complete characterization for what could be called sfNiven repdigits." 
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0. Introduction 

McClung [3] defined a genevatov (of unitary amicable pairs) as a pair (/, k) 
where f is a rational not one and k and fk are integers such that 

a* (/7c) = foHk). 
The utility of this concept arises in that If m = km' and n - knf are unitary 

amicable numbers with 

(fc, m'n') = 1 = (fk, m'n'), 

then fkm' and fkn' are also unitary amicable numbers. McClung found sixteen 
generators which he applied to the unitary amicable pairs in the Hagis list [1] 
to produce 25 unitary amicable pairs of which 3 are new. 

In Section 1, properties of generators are investigated. An equivalence 
relation is defined on the set of generators. A product of two generators is 
defined, but not everywhere, which is consistent with the equivalence relation 
and so yields a product of classes, also not everywhere defined. 

~~ Section 2 is devoted to methods of producing generators. The action of 
classes of generators on unitary amicable pairs is defined and the properties 
are examined. The section closes with a table of generators. 

Section 3 briefly indicates how the methods of Section 2 apply to unitary 
sociable sets, defined in [2]. 

H. J. J. te Riele, [5], [6], used number pairs (a, b), satisfying 

o*(a)/a = o*(b)/b, 
to generate hundreds of new unitary amicable pairs. One can define a binary 
operation and an equivalence relation on the set of all such pairs which yield 
stuctures isomorphic to those developed here for generators. Both te Riele [7] 
and McClung [4] were aware of the equivalence of the two methods. Apparently, 
neither developed the structures of the te Riele pairs to the extent this paper 
does for the McClung generators. 

A paper in progress will extend and generalize this one. 

1. Properties and Operations 

It is assumed that the reader is familiar with McClung Ts results and nota-
tion [3] . To avoid confusion, gcd(a, b) wil denote the greater common divisor 
of a and b. gucd(a, b) will denote the greatest unitary common divisor. The 
notation (/, k) will be reserved for generators. 

A prime p divides / if it divides either the numerator or the denominator 
of /. The expression "p is (not) in/" means that "p does (not) divide /." m 
is said to be relatively prime to /, i.e., gcd(m9 f) = 1, if no prime p divides 
both m and /. 

If a prime p is relatively prime to fk but not to k, then it divides /. 
Extend the definition of a generator as follows. 
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Definition 1: A pair of integers of the form (1, k) will be called a trivial 
generator. 

When applied to a given unitary amicable pair, a trivial generator does not 
generate a different unitary amicable pair. The two integers of a trivial 
generator are relatively prime. So on eliminating extraneous primes, one gets 
(1, 1). 

Theorem 1: a. (/, k) is a generator iff (1//, fk) is a generator. 

b. Let p be a prime which does not divide f. Then, (/, kpa) is a 
generator for all positive integers a. 

f is a rational not one and k and fk are integers. 

o*(fk) = /a*(fc) iff a*(fe) = (l//)o*(/fe) 
iff a*(Q//)Cffc)) = (l//)a*(/fc). 

1// is a rational not one and fk and (l/jf)(/7c) -k are both integers. 
(1//, /7c) is a generator. The argument is reversible. 
If pffe, 
o*(fkpa) == a*(/fc)a*(p*) = /o*(fc)a*(pa) = fo*(kp°). 
If p|fc, set k = krpb, gcd(fcf, p) = 1. By McClungfs Lemma 2, (/, kr) 
is a generator. By the previous case, 

Cf, fepa) - (/, krpa+b) 
is a generator. Q 

Compare with McClungfs Lemma 2. In effect, for any prime p which does not 
divide /, one can divide or multiply k by any power of p that yields an integer 
and thereby produce a new generator. 

Since there are countably infinitely many primes p and prime powers pa, 
each generator (/, k) has countably infinitely many generators (/*, kpa) , y\f* 
associated to it. 

Definition 2: For (/, k), the generator (1//, /7c) is called the inverse or pe-
ciprocal generator and is written (/, fe)-1. 

Note that (1, k)~l = (1, k) and that (1//, /TO"1 = (/*, Zc) . Trivial genera-
tors are their own inverses. The inverse of the inverse is the initial genera-
tor. 

Definition 3: A generator (/̂, k\) is said to be related to a generator (/2> 
fc2) iff (a) •/]_ = fzl a n d (b) there exist integers m and n both relatively prime 
to fis so that mk\ - nk^. 

Theorem 2: The relation of Definition 3 is an equivalence relation. 

Proof: Obvious. D 

Definition 4: A generator (f,k) is said to be primitive if there does not 
exist a prime p, pa\\k, p\f, such that .(•/» kp~a) is a generator. 

Essentially, a generator is primitive iff k has no extraneous primes. Sev-
eral properties are immediate consequences of Definition 3, Theorem 2, and Def-
inition 4. 
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Trivial generators form an equivalence class. 
Each generator (/, k) has a unique primitive generator associated to it by 

eliminating extraneous primes. 
Each equivalence class has one and only one primitive generator. 
For a primitive generator, if p\k, then p\f. Thus, T\ (k) < ir(/). 

(/, k) is primitive iff (1//, fk) = (/, k)~l is primitive. 

Primitive generators are the natural representatives for the equivalence 
classes. Upper case letters (F, K) will be used for primitive generators. The 
primitive generator associated to an arbitrary generator (/, k) will be denoted 
by (f» k ) I t n e equivalence class, by <( f> k)>. Arbitrary equivalence classes 
will be denoted by Q . 

McClungfs conjectures can be stated in stronger form by using reciprocals 
and primitives. Even then, they are false. 

Conjecture 1: Up to reciprocals, the only primitive generator (F, K) with n(F) 
= TT(Z) = 2 is (3/2, 12). 

/ , 2^ * 17) is a counterexample 
\2 -17 / 

Conjecture 2: There are no primitive generators (F9 K) with i\(F) > 2 or TT(Z) > 2. 

2 3 • 3 •5 -11 • 43 (2* • 3 • 5 -11 • 43 h \ 
I , 2H * 3 • 17 1 is a counterexample, 

Definition 5: Let (f\, k\) and (jf2> k2) be two generators such that k2 = f\k\« 
Then the -product of (/^, /q) and (/2, ^2)' i n t h a t order, is defined and given 
by 

(/l* *1> x 0*2* *2> = (/l/2» fe'l)-

Lemma 1: The product (fif2, &i) of two generators (/x, /q) and (/2, ^2) i s a 

generator. The product is trivial iff the factors are reciprocals. 

Proof: ki and fif2k\ = ^2^2 a r e integers. We must show that 

<** tf 1/2*1) = fifi°*(kO; 
°*(fifzkO = o*(f2k2) = /2a*(fe2) = fifi^*(ki). 

If the factors are reciprocals, the product is obviously trivial. Suppose the 
product is trivial. Then, f\f2 = l and f2 = l/f\ . Substituting, the factors 
become (fl9 kx) and (1/jfx, f\ki). Q 

From Definition 5, it is obvious that the product is not defined for every 
pair of generators. The product of (2- 5, 2) and (3 *41, 33) does not exist in 
either order. When the product does exist, it need not be commutative. 

2 • 17, 23) x (^ii 21* • 17) = (22 • 11, 23) 

but is not defined in the opposite order. 
For a generator (/, k) 9 the trivial generator (1, k) is a left identity, 

and (1, fk) is a right identity. 
Where sufficiently defined, the product is associative. Let (/• , k-)> £ = 

1, 2, 3 be generators such that the products (f1, ki) x (/2, fc2) and (/2, fc2) x 
Cf*3> ^3) exist. Then the product of the three is associative; i.e., 

((A> *l) >< Cf2. *2)) x (/3» *3) = (/l» *l) x ((/2. *2) x (f3> k3)). 
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It is a simple matter to follow both sides through to Cfx/2/3 * k\) . The condi-
tions necessary for each intermediate step obtain. 

The reciprocal of a product is the product of the reciprocals in the 
reverse order. 

(Cfl> &l) >< (/2> M r 1 = (/l/2. ^l)"1 = (Ufif2, flflWl 
(/2> ^ 2 ) _ 1 >< (/l» ^ l ) " 1 = (1//2- /2^2) x d//l» flW 

= (I//1/2- /2^2) = d//l/2» Zl/Z^l)-
The equality /x^l = (l/f2) ifik^) must hold for the product of the reciprocals 
to exist. But /x^x = fc2 = (I//2) (fi^-l) • T h e product is defined! 

Lemma 2: Let (/̂ , fc^) , i = 1, 2, 3, 4, be generators such that: 

a. (fl5 /q) is equivalent to (f2, k2) ; Cf 3» ^3) to (/̂ , /ĉ ) ; and 

b. the products (/x, /q) x (/3, fc3) and (/2, ^2) x (A' ^^) exist. Then, 
the products are equivalent. 

Proof: By Definition 35 f\ = f2
 and ^3 = fi+> so fx/3 = fzfh* Also, there exist 

integers 777 and n, both relatively prime to fi so that m^x = ^ 2 ' a n^ P anc^ <7* 
both relatively prime to f3, so that pk3 = qki+. Assume m and n are relatively 
prime and p and q also. Otherwise, divide out the gcd!s. As k3 = f\ki and k^ 
= flk-2* Pfl^-l = qflk-z a nd pk\ = <?̂ 2- ^1 = (q/p)k2

 and m(q/p)k2 = nfc2. mq=pn0 
m must divide p. Say p = am* mq - amn and q = an. Thus, a divides gcd(p, q) = 
1, a = 1, q = n, and p - m. m and n are then relatively prime to both /x anc^ 
f3, hence to fif$> and satisfy the condition for equivalence. D 

Definition 6: Let Cx and C2 be two equivalence classes such that for (/]_, fe^) 
in Cx and for (f2, k2) in C2, the product (f\, k\) x (/°2s fc2) exists. Then, 
we say that the product of the two classes Ci± and C2, in that order, exists and 
is given by: 

Cl x c2 = <(/l5 k o x (/2, fe2)>. 

The product is not everywhere defined. Where it is defined, by Lemma 2, it 
is well defined. Where it is defined, it is not necessarily commutative. It 
does have some nice properties which we list in the following theorem. No 
proofs are given as they follow from the preceding discussion. 

Theorem 3: a. The class of trivial generators is a two-sided identity. 
b. Each class has a two-sided inverse, or reciprocal, given by 

<(/, k)>~1 = <(/, k)~l>» 
c. The reciprocal of a product is the product of the reciprocals 

in the reverse order. 
d. The product is associative; that is, let C^ , i - 1, 2, 3, be 

classes such that the products Cx x C2 and C2 x C3 exist, then 

(Cl x C2) x C3 = Cx x (C2 x C3). 

The reciprocal of a class C will be denoted by C~~l. (C~l)~l = C, 

To form products, class representatives cannot be chosen at random. Even 
primitive generators are not necessarily good choices. The product 

(2 • 5, 2) x (3 • 41, 33) 

is not defined. Equivalent generators yield 
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.- (2 • 5, 2 • 33) x (3 -41, 23 • 33 • 5) = (2-3, 5-41, 2 • 33) . 
Thus 

<(2 • 5)> x <(3 • 41, 33)> = <(2 • 3, 5-41, 2 • 33)>. 

Lemma 3: Let Clf (72 be classes such that for respective generators (f\, &i) 
and (/25 ^2)» /l' fl have no primes in common. Then the product C\ x C^ exists 
and is commutative. 

Proof: Let (f\9 %i) 9 (/2» ^2) he the corresponding primitives. Since / j , f% 
have no primes in common, neither do fi, Z2

 n o r fl> ^-l n o r ^-1? ̂ -2 • Then the 
products, in both orders, can be defined using equivalent generators. Speci-
fically, 

(/l, ^1^2) x (/2» /l^l^2> = (flfl> KlKl) = (/2» #2*1) x Cfl» flKlKl)' 
Thus, 

1 x 2 = 2 x 1 " *-• 

The converse of Lemma 3 is an open question. The following is given with-
out proof. 

Corollary 1: Let C\9 C^ be two classes such that for the respective primitives 
(Fi, Ki) 9 (F29 K2) 9 F\9 Fz have no primes in common. Then the product exists, 
is commutative, and is given by <(^i^2» #1^2)># 

Except for the fact that the product is not everywhere defined, the set of 
classes would form a group. The product fails to exist in one significant case 
so that the properties of the product as described set bounds on the best 
possible situation. 

Lemma 4: With the exception of the identity class, the square of a class does 
not exist. 

Proof: It is a direct calculation to show that the square of the identity is 
the identity. Let (F, K) be the primitive for any nonidentity class, F * 1. 
For the product to be defined there must be integers m and n , relatively prime 
to F so that the product (F, Km) x (F, Kn) exists; that is, so that FKm = Kn9 
Fm = n. Since m and n are relatively prime to F, either F = 1 or m - n , which 
forces F = 1. • 

Lemma 4 also implies that, with the exception of the identity class, the 
powers of a class do not exist. The full characterization of which products 
exist (or do not exist) is an open question. 

2. Generators and Unitary Amicable Pairs 

There are at least three methods of producing generators. McClung found six-
teen in a limited computer search. Briefly, he characterized generators with 
TT(/) = 2 and TT(/C) = 1 and searched for generators of the forms 

(2-p, 2 a ) , (22-p, 2b), and (3 • p, 3°). 

He found five, eight, and three, respectively. By the nature of the character-
ization, all are primitive. 

The characterization of other generator forms remains a fertile area of 
endeavor. It appears, for example, that in the case ir(/) = TT(/C) = 2, f Is not 
an integer. 
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The examination of known unitary amicable pairs yields generators. Before 
discussing the method, a brief review will be useful to allow the introduction 
of notation. 

Two numbers m and n form a unitary amicable pair if 
o*(m) = o*(n) = m + n. 

Let T = gucd(/72, ri) . Write m = TM and n = TN. Assume, for convenience, that 
M < N. Notation for the unitary amicable pair m, n will be U = (T; M, N). 

The action of a generator (fs k) on U to produce a new unitary amicable 
pair Ur takes the following form. If k is a unitary divisor of T such that 

gcd(/fc, (T/k)MN) = 1 = gcd(k, (T/k)MN), 
then the unitary amicable pair produced is Ur = (/T; Af, /I/). 

Use right function notation: 

(j% fc) : (T; M, N) + (fT; M, N) and (T; M, N)(f, k) = (fT; M, N) . 

Lemma 5: Let (/1 > fc^) and (jf̂ * ̂ 2) ̂ e t w o generators which act on the unitary 
amicable pair (T; M, N) to produce the same unitary amicable pair Ur. Then one 
has that (/]_, k\) is equivalent to (/2) ^2) • 

Proof; Since (T; M, N)(fl9 kx) = (ftT; M, /!/) and (T; M, il7)(f2, k2) = (f2T; M, N) , 

(/xT; M, tf) = (/2T; M, ff) and / ^ = / 2 2 \ 

Thus, f\ = fz* k-1 anc* ^2 a r e unitary divisors of T. There exist numbers a, b9 
also unitary divisors of T so that a/q = T = 6^2-

gcd(a, /q) = 1 = gcd(i, fc2). 

We must show that a and £> are relatively prime to fi . Suppose p is a prime di-
viding both a and fY. Since a = (T/Zq) and g c d C / ^ , (T/K^MN) = 1, p does 
not divide f\k\. Thus, p must occur to a negative power in fi and a positive 
in /q. However, since gcd(fcls (T/ki)MN) = 1, it does not. Thus, p does not 
divide jPx. So a, and similarly b, is relatively prime to fi. Therefore, one 
has that (/]_, k\) and (/*2» ^2) a r e equivalent. D 

Definition 7: Two unitary amicable pairs 

Ui = (Ti; Ml9 NO and 7̂2 = (Tl'> M2> #2> 
are said to be in t/ze same family iff A?i = M2 and /l/j = ̂ 2 • 

Lemma 6: The relation of being in the same family is an equivalence relation. 

Proof: Left to the reader. • 

Since the action of a generator class on a unitary amicable pair (T; M, N) 
leaves M and N unchanged, the classes cycle pairs within the family. Lemma 5 
leads to the following statement. 

Definition 8: A generator class C is said to act on a unitary amicable pair U 
to yield another pair Ur if there is a generator (/, k) in C such that 

U(f, k) = U'. 
Notation will be C : U '-> U' or UC = Ur. 

If C is the identity class, UC = U for any U. If UC = Ur, UrC~l = U. 
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Theorem 4: Let U and Uf be unitary amicable pairs in the same family. Then 
there is a class C so that UC = U?. 

Proof: Let U = (T; M, N) and Uf = (Tf ; M , 71/ ) . It suffices to find a generator 
(/, k) so that U(f, k) = £/'. C = .<(/,. fe)>. Let / = T 7 ^ and. /c = f. If I7' = 
T> (f > k) is a trivial generator with the desired action. Assume T! * T. k 
and fk are integers. 

gcd(fe, M).= gcd(T, Ml/) - 1 and gcd(/fe, MN) - gcdCZ7', M ) = 1. 

To verify that fo*{k) = o*(fk), note that the relation o*(TM) - TM = TN, yields 

o*(T)/T = (M + N)/o*(M) . 
Thus, 

o*(T)/T = o*(T')/T'; 
fo*(k) = {Tf/T)o*(T) = (T'/T')o*(Tr) = a*^7") 

= o*((T'/T)T) = o*(fk).. 
Finally, 

U(f,k) = (T; M, N)(Tf/T$ T) = (iT?/T)T; M, N) = CZ7'; M, /!/) = . J7\ D 

Coronary: The cardinality of the set of classes is at least as large as the 
cardinality of the largest family of unitary amicable pairs. 

Theorem 5: Let (/̂ , /q) and (/2, ^2) b e generators, and let [/1? £/2, and ^3 be 
unitary amicable pairs in the same family, satisfying: 

1. The product (fi, &i) x (jf2, &2) exists; 

2. ^ ( f t , ̂ ) = tf2; 

3. U2(fZs k2) = U3. 

Then •Ul((f1, kO x 0*2» &2>) = #3 • 

Proof: By (1) the product 

Cfl> ^1) x (/2. *2> = (fl/2. fel). 
exists. The action U\(fif29 /<i) is defined if /q is a unitary divisor of T]_ as 
given in (2). It suffices to evaluate fifz^i' From (2) and (3), 

flflTl = fl(flTl) = f2?2 = ̂ 3-
Thus, 

U.l(flfl> fel) = (̂ 3; M> ^) = ^3- • 

Let Ci, C2 be classes, and let U\9 U2% ^3 be unitary amicable pairs 
in the same family, satisfying: 

1. The product C\ x C2 is defined; 

"2. ^ 1 = ̂ 2; 

3. £/2C2 - tf3. 

Then, Z/i (Cx x C2) = U3. 

A brief list of primitive generators is given in the table below. Sources 
include McClung?s list [3] and the results of applying Theorem 4 to the uni-
tary amicable pairs in Hagis [1]. Inverses and products are not listed. The 
pairs listed by Wall [8] were not examined for the generators arising there. A 
description of another method of forming generators can be found in [3] and 
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[5] e No effort was made to produce generators for the list given here. This 
list is intended to be typical, not inclusive. 

Table of Primitive Generators 

1. (2 • 32, 22) 15. (23 * 3 • 17,. 2) 

2. (2 • 5, 2) 16. (24 • 11 • 43, 23) 

3. (2 • 17, 23) 17. (2-3-5 -41, 2 • 33) 

4. (2-257, 27) 18, (26-3 • 11 • 43, 2) 

5. (2- 65537, 215) 19. (2 * U , 2^ . 17) 

(22 - 3, 2) 20* (^-1^2~' 2 * 33 ® 5) 

(22.-11, 23) 21. , ; ( 2 3 ' ^ ' 4 3 , 2 ^ 17) 

2 3 . 3 . 5 . 11 . 43 

6. 

9. 

o c / 2d ® 3 ® 5 ® 11 a 43 f \ 
(22 • 43, 25) 22. (- — - j - 1 1 — — , 2*+ . 3 • 17) 

(22 . 683, 2^) 23. ^ 3 - 2 3 > L ^ 4 1 - 43? 24 . 33 . 1 7) 

10. (22 * 2731, 211) 24. (3 • 5, 3) 

11. (22« 43691, 215) 25. (3-41, 33) 

12. (22 - 173763, 217) 26. (3-21523361, 315) 

13. (22» 2796203, 221) 27. (|, 22 • 3) 

14. (22* 32- 17, 22) 28. ( ^ M ? 33* 5) 

3» Unitary Sociable Numbers 

Lai, Tiller, and Summers [2] defined unitary sociable numbers as sets of 
numbers m^9 i = 1, 2, ..., n, so that 

a*(m^) - mi = mi+i, for i = 1, 2, ..., n - 1, 
and 

o*(mn) - 772 n = mi. 

Use the convention tjiat 777 ]_ is the smallest number in the set, 
Unitary sociable sets are extensions of unitary amicable pairs. The 

notation for amicable pairs can also be extended,, Given a unitary sociable 
set, let 

T = gucd(^i, r/?25 * * » * mn) 

and set mi = TM^S i -~ 1, 2S . .., n. Then, one can denote a unitary sociable 
set by the notation 

S = (T; Ml9 ..., Mn). 
All the results of Section 2 are valid with 6'Ts replaced by 5!&. 

The T values were calculated for all sera in [2]. No matches were found 
between these values and the generators given in. the table.. The production of 
new unitary sociable sets by the methods of this paper must await more exten-
sive lists of generators. 
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For integers n > 2, r > 0, let 

Sn{r) = E krn~k. 

It was proved in [1] that, for all r > 1, 

Sn{v) 
n - 1 

\\)sn{r - 1) - Qsn(r - 2) + ... + (-1)"+ lQs„ (0)' 

The purpose of this paper is to extend this result for arithmetic progres-
sions and also to obtain a related formula with no alternate signs. 

Let a and q be real numbers? and let (&i<)k>Q
 De the arithmetic progression 

(a + kq)k;>0. 

If \x\ < 1 and r e {0, 1, . , . } 5 we define 

br \X) — 2w ^ T , ^ * (1) 
fc = l 

In this note we establish two recurrence relations for the series (1) . 
Namely: 

b v \X) ~ X 

and 

Sv (x) 

1 - x 

1 

(a + q)r + (T
1)qSr-l(x) + Q^-p-Z 0*0 + s " + ̂ 0 (̂  

aTx + Q ^ . i W - (^g^-^O) 
1 - xi 

Let us denote by Sr(x* m) the m-adic partial sum, i.e. 

+ (-l)p+VSo(*) 

(2) 

. (3) 

5p(x, m) = E oSx^. 
k = i K 

Proof of (2): We f i rs t deduce a functional equation for Sr(x9 m). 

S.Cx, m + p) = £ a^k = E a r x k + E a r x k 
fe = 1 fe=l • fc=m+l . 

i = 1 

= Sr(x, m) + ^W]E (mcl + ^i)r^t 

i = l 

= Sr(x5 m) + * T E (*Mrnq)Jar*a 

i = l ,7 = 0 x«/ / 
r(x, m) + xraE ( ^ W L a ^ 

• - n \ , / » _ -1 j - 0 
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= S„ 'r(x, m) + xm*£ {V.){mqySr_-j{x, p) , 

For m = ls we obtain 

p 
Sr(x9 p + I) = (a + ^)rx + a? J) (^W^r- jO^ p) 

= (a + <7)r# + xSr(x9 p) + x E ( Aq^Sp-jix, p). 
j = l V / 

Now, i f p -> oo3 We have 

Sr(x) = (a + <7)P# + xSr(x) + 3?E ( .)qJ'Sr-j(x), 
j = i \ QI 

br \X) 
1 ~ X 

which was to be proved 

(a + q)r + Q ^ - i O r f + Q ^ p - a ^ ) + • • • + qrS0(x) 

Proof of (3): We proceed as follows: 

fc=l fc = l £ = 1 ^ fc=l 

E **E [ar - (a. - <?n + £a*x* 
k v 

fc = l 

' " , v / -V9V ''< 

fc = l £ = l j = l V / fe = i 

E E E ("D J ' + 1 (^W-V^+ « r E ^ 
fc-1 i - l J - l V / k = 1 

E ( - D J + 1 ( ^ k j r E < ~ J ^ + tfpE^ 
J = l x ^ 7 £ = 1 fc=i k=l 

J - l x ^ ; i - 1 * - l * - l 

E (-DJ + 1r-W'E T- 1 —(a!^^ - < ~ V + 1 ) + a ' E ** 

1 P • / Y»\ m 

y ~ ; E ("l)J + 1 (7 ' )^ J [ ^ -J ( ^ s 77Z) ~ *m+1*i-jfa)] + a - £ x * $ J - l £ = 1 
where 

sP-j(m) = E «v J -
i = i 

So Sr(x9 m) can be written as 

5p(x, 77z) = — — E (-l)J + 1(^WJ^p-j(a?, w) - T(x, m) + a^E *k, 1 ^ j = 1 V / fe = l 

with 
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with 

T(xs m) X' m + l Jl 

1 - X 
± (-l)J+1Q^'8r_3-(m). 

We will show that 

T(x9 m) •> 0 as m + 
We have 

So that 

(ax - q)r = a* » Q < ~ ^ + ••• + (-DV 

ar = (a2 ~ g)r = ar - i^\aT
2~lq + . .- + (~1)*V 

<_1 = (am - qV = ap - (^)aP_1q + •--•+ (-DV 

ap = a£ - [\)qsr-iW + ••• + (-~l)p^ps00?0 
or 

£ ( - l y + l^Wsr-j-On) = a£ - a ' 
J = 1 V / 

and (5) is now clear. 

Let 77? ->• °°  in (4) . It then follows that 

1 
Sv{x) = Q^-lCaO ~ g>2^-2(^) +-.-•• +.(-l')2, + V^0(^) 1 - # 

is exactly (3). 

Remark: Of course, one can consider 

00 

5 r W = £ a?xk' {\x\ < 1, P > 0), 
fe = o * 

and obtain 

^<*> = ̂ ^ [ a P + (i)^r-i(a?) + (2)^^-2 (̂ ) + ••• + qP^oto)] + <**, 1 
and 

1 

respectively,, 

(a - qV + QqS^ix) - Qq2Sr„2(x) + ... + (-D^V^O 

Reference 

1. L. Cseh & I. Merenyi* Problem E 3153. Amev* Math. Monthly 93(1986), 
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1. Introduction 

Many problems lead to constant coefficient linear recurrences, mostly of 
the second order, for which explicit solutions are readily available. In some 
cases, howevers one is faced with the problem of solving nonconstant coeffi-
cient linear recurrences. Second- and higher-order linear recurrences with 
variable coefficients cannot always be solved in closed form. The methods 
available to deal with such cases are very limited. On the other hand, the 
theory of differential equations is richer in special formulas and techniques 
than the theory of difference equations. The lack of a simple "change of 
variable rule," that is, a formula analogous to the differential formula 

dy _ dy dt 
dx dt dx' 

in the calculus of finite differences, precludes most of these techniques to 
carry over when we attempt to solve a difference equation. 

Of course, in such cases, a step-by-step procedure, starting with the ini-
tial values, is always possible. And in many cases it may be the best 
approach, especially if one needs the value of the independent variable not far 
from its initial points. However, we frequently ask the question whether the 
solution may be written in closed form. 

When a certain class of second-order linear recurrences was studied, we 
arrived at a theorem not found anywhere in the literature and which is stated, 
after some preliminaries, in the next section. In Section 3 we give a proof of 
the theorem, and its consequences are examined. It is found that a whole class 
of second-order linear recurrences can be solved in closed form. Finally, an 
example is given where the theorem is applied. 

2. Preliminaries and a Theorem 

Let I - {..., -1, 0, 1, ...} be the set of all integers. The domain of the 
(complex-valued) functions defined in this paper will be subsets of I of the 
form IN = {N9 N + 1, N + 2, ...} where N e I (usually N = 0 or 1). We are 
going to consider linear recurrences written in operator form as 

E2y + aEy + by = 0 (1) 

where E is the shift operator, i.e., Ey - y (n + 1), a, b, and y are functions 
on IN and where b(n) * 0 for n £ IN. We will also use the notation 

•y" + ayf + by = 0 (2) 

where y! = Ey 9 yn = E2y, and so on, in order to stress the analogy between re-
currences and differential equations. 

First, we examine the constant coefficient second-order linear recurrences 

E2y + nEy + vy = 0 (3) 

where Greek letters will always stand for scalar quantities. 
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In the elementary exposition of the theory [1] we try solutions of the form 
y(n) = Xn for some as yet undetermined scalar X, and we are thus led to the 
notion of the characteristic polynomial associated with the given equation. In 
general 5 we are able to find two linearly independent solutions and hence the 
general solution. The question arises, however, as to why we try solutions of 
that particular form. In the more advanced exposition of the theory [3], 
linear recurrences are treated as a special case of first-order linear systems 
where the trial solutions y(n) ~ Xn appear naturally when we attempt to calcu-
late An where A is the matrix coefficient of the system. 

For the moment, we make the observation that when (3) is premultiplied by E 
we get 

E*(Ey) + vE(Ey) + v(Ey) = 0, (4) 

i.e., whenever y is a solution, Ey is also a solution of (3) and, furthermore, 
the assumption for the existence of solutions of the form y (n) = Xn is equiva-
lent to the statement Ey = Xy for some X. 

Next, take the less trivial case of the recurrence 

aE(aEy) + \iaEy + vy = 0 (5) 

where a{n) * 0 for n G IN. We try to solve (5) as a first-order recurrence (of 
the Riccati-type) in a. The substitution a = Eu/u leads to the constant coef-
ficient linear recurrence 

E2(uy) + ]iE(uy) + v(uy) = 0 , (6) 

which has solutions of the form u{n)y{n) = Xn or 

u{n + l)y(n + 1) = 
uin)y{n) 

i.e., aEy = Xy for some X. Note also that if (5) is premultiplied by E and 
then by a we get 

aE(aE(aEy)) + \iaE(aEy) + vaEy = 0, (7) 

i.e., whenever y is a solution, aEy is also a solution of (5). 

The above discussion suggests the following. 

Theorem: Let L and M be two linear (difference) operators and suppose that LMy 
= 0 whenever Ly = 0. Then there exists (at least) a solution y of Ly = 0 such 
that My = Xy for some X. 

3. Proof of the Theorem 

Let {y\> z/2' 'o*5 l/m^ D e a basis for the null space of L. Then Myi is also 
in the null space, i = 1, 2, . .., m and can be written as a linear combination 
of the basis, i.e., 

m 
MVi = E eikyk' i = 1, 2, .... m. (8) 

k = 1 
Form the matrix C = [c^] associated with the operator M and let u be an eigen-
vector of CT with associated eigenvalue X, i.e., CT\i = Xy. Now, let 

Then 

in 

y ' E ViMi-
i = l 

I m \ m m m 

My = M[ Z^yA = E Ui%* = E u; 5>; 
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m l m \ 

= E E U;C«W = *h> <9> 
fe=l \ £ = 1 / 

Now l e t 
L E E2 + aE + bl, (10) 

and 
M E pE + ql (11) 

where b(n)p(n)q(n) * 0 for n e IN and I is the identity operator. Since My = 
Xz/ can always be solved in closed form, the following problem arises: 

"Given a second-order linear operator L (10), find a first-order 
operator M (11) such that LMy = 0 whenever Ly = 0." 

Although it is not always possible to find such an M, we proceed to deal with 
the problem and find out what can be said about it. 

It is easy to see that 

LM = p"E3 + (q" + apf)E2 + (aqr + bp)E + bql 
and (12) 

ML = pE3 + (a'p + q)E2 + (6 fp + a^)^ + 6̂ J. 

Then 
pLM - p"ML = rL9 (13) 

provided that 

r = qp - qpn (14) 
and 

a'p" - ap' - q" + q = 0; (15) 
b'p" - Z?p - aqr + aq = 0. (16) 

Thus5 p and q must satisfy the second-order linear system (15) and (16). 
Note, however, that (15) can be "summed," since it can be written as 

A(ap') = A(A + 2I)q (17) 

where A = E - I is the difference operator. When (17) is premultiplied by A-1 

gives 

ap' = qT + q + c (18) 

where o is a constant. Elimination now of q from (16) and (18) gives 

abnpnt - a'(aa; - ̂ f)p" + a(aa' - b r)p r - a 'bp = 0, (19) 

which is a third-order linear recurrence in p. Solving (19) is a more diffi-
cult problem than the original one (10). Note, however, that ±t aa1 - bf

 9 (19) 
is only a two-term recurrence, which means that the recurrence 

y" + a'yr + aa'y = 0 (20) 

can be solved in closed form for any a. We can say something more. From (18) 
we have 

a = (qf + q + c)/pr, (21) 

and when the above expression is substituted in (16) we obtain 

b = (q2 + aq + d)/ppf (22) 

where d is a constant. We are, thus, led to the conclusion that the second-
order linear recurrences of the form 

PPry" + p(qf + q + v)y' + (q2 + ]iq + v)z/ = 0, (23) 
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where u, v are scalar quantities and p, q are arbitrary functions, can be solved 
in closed form. Finally, note that (20) is a special case of (23) , and when q 
is constant and p(n) == n in (23) we have the Euler-type difference equation 
[2]. 

As an application of the above discussion consider the recurrence 

Then 

y{n + 2) - 2(n + l)y(n + 1) + (n + -|j y(n) = 0. 

L E E2 - 2(n + l)E + In + |) J. 

(24) 

It is easy to see that 

L(E - nl)y - (E - nI)Ly = 0. 

Therefore, the theorem applies for (24) and, consequently, there is (at least) 
one solution of (24) among the solutions of 

(E - nl)y = \y9 

which are 

y{n) = A(X + 1)(X + 2) ... (A + n - 1). 

Substitution of y{n) into (24) gives 

o 1 1 
A2 - X + -r = 0 or A = 77. 4 z 

Therefore, one solution of (24) is 

yi(n) = \ { \ + l){\ + 2) ... (-| + n - l) or j/ (n) = r(| + n) , 

where r( » ) is the Gamma function. The other, linearly independent, solution 
yAri) can be found by the method of the reduction of order. 
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1. Introduction 

In letters [1] to one of us (Fielder) in mid-1977, the late Verner Hoggatt 
conjectured that the third diagonal of Pascal's triangle could be used in a 
simple algorithm to generate rows of integers whose row sums equaled corre-
spondingly indexed Baxter permutation values (see [3], [4]). Later, in 1978, 
Chung, Graham, Hoggatt, and Kleiman produced a remarkable paper [2] in which 
they derived a general solution for Baxter permutation values. 

In planning an extension of HoggattTs work, we searched for, but never 
found, a proof of HoggattTs conjecture or even a documented statement of the 
conjecture. Reference [2] did, however, state that Hoggatt had found a simple 
way of finding the first ten Baxter permutation values but, again, without 
giving the conjecture. In this note, we formalize HoggattTs conjecture, derive 
formulas for the values predicted by the conjecture, and then prove the 
conjecture. As new material, we extend HoggattTs conjecture to all Pascal 
diagonals. In so doing, we will introduce structures called Hoggatt triangles 
and integers called Hoggatt sums. These names were the explicit choice of one 
of us (Fielder) as a tribute to Verner Hoggatt for his work with Pascal tri-
angles and, in some small way, to express gratitude for Vern's guidance, help, 
and friendship through the years. Finally, we report briefly on a computer-
aided experiment to obtain recursion formulas for selected Hoggatt sums. 

2. Hoggatt's Conjecture 

Whereas Hoggatt chose a column representation to demonstrate his algorithm, 
we use a diagonal format. There is, of course, no conceptual or computational 
difference. 

Hoggattfs conjecture may be phrased as follows: "Select the zeroth1 and 
third right diagonal of PascalTs triangle and let them become, respectively, 
the zeroth and first right diagonal of a new triangle with as yet undetermined 
values for the entries of the other diagonals. For m = 2, 3, 4, ..., in suc-
cession, compute the 777th row sum and 77?th row entries for the new triangle as 

. , /77Z + 2\ (^-1)0 , (Rm-Ol , , (^m-l)m-l /lN 

Row^sum = 1 4- ( n + + . . . H (1) 
V 3 ' Do 01 ^ - 1 

where t h e (Rm-i) f s a r e t h e (m - l ) t h row i n t e g e r s s t a r t i n g w i t h q = 0 a t t h e 
l e f t and t h e D f s a r e t h e f i r s t d i a g o n a l i n t e g e r s s t a r t i n g w i t h q = 0 a t t h e 
t op r i g h t . Then t h e 777 th row sum a s g i v e n by (1) i s i d e n t i c a l l y t h e 777th B a x t e r 
p e r m u t a t i o n v a l u e Sm." 

J-Unless stated otherwise, the counting of indices, rows, columns, diagonals, e tc . in this note 
s tar ts with zero as the f i r s t encountered. 
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In order to visualize the algorithm of (1), assume that integers of the 
rows through the four have been found through successive application of the 
right side of (1). The diagrams below illustrate how the fifth row is 
constructed. (Note that the first two integers of any row are always known.) 

(2) 
1 

20 

1 

10 

1 

4 

50 

1 

10 
1 

20 
1 35 X X X X 

By using Rs for the fourth row entries and Ds for the first diagonal entries 
graphic preparation for the algorithm appears as 

> a 

When generated by (1), the fifth row becomes 

*0> 
^0 

01 

R3 h 
V 

(3) 

(4) 

with calculated values, 1, 35, 175, 175, 35, 1. The row sum is 422, which 
equals Baxter permutation 55. The rows completed prior to row five have sums 
equal to SQ , Si, ^ 5 ^3» ^4' respectively. In anticipation of later work, the 
new triangle will be called a Eoggatt triangle of order three. 

3. Formulas for Row Sums, Row Integers, and Proof of the Conjecture 

The development of formulas for the row sums is presented by using the 
third right diagonal of Pascalfs triangle. (If the entries are in the binomial 
coefficient form, the procedure is easy to follow.) This, in turn, is used as 
the first diagonal of a third-order Hoggatt triangle. Apply (1) as before, but 
retain the accumulated binomial coefficients in the row construction. The 
construction of rows one and two is shown. 

1- + 

1 + = 1 + (5) 

(5) 

(t)(l) (6) 

The obvious pattern of the development can be generalized by summations in 
which the total is the general mth row and the individual terms of 
summation are the /??th row values of a third-order Hoggatt triangle. 
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im + 2 

h?o k
l=0 (3 + k\ H^O k

l=0 (3 + k)( 

•1 h { o J m-l h (m + 2 ~ k)^ 
i + X n „ 17jX - I + .E n *,„ , M(3) • ^ 

The general t t h term, 0 < t < m of our development for Sm in (7) can be 
shown as:^ 

(7ft + 2)(3)(TT? + l)(3)(7ft)(3)(/ft - 1 ) ( 3 ) ... (m - t + 3 ) ( 3 ) 

(3)(3)(4)(3)(5)(3)(6)(3) _ ( t + 2)(3) 

(7ft + 2 ) ( t ) Q + l)(t)(?ft)^> 

(t + 2)(t)(t + l)(t)(t)(t)' 
(8) 

In reference [2], the successful derivation of a compact expression for Baxter 
permutation values appears as Bin) in equation (1) of [2] and also on page 392 
of [2]. In [2], index n starts at one, while our index starts at zero (as does 
Hoggattfs original index). For compatibility with our index, Bin) of [2] 
becomes 

nf JL n lm + 2Y"1 (m + 2\-1 ^ i 1 / ^ + 2\/7ft + 2\/7ft + 2\ ,Q. 

The general £th term, 0 < t < 7ft, from (9) is 

0/7ft + 2\/7ft + 2\/7ft + 2 \ 
2V t A t + l / U + 2) = 2(77? + 2)(t)(7ft + 2 ) ( t + 1)(7ft + 2)(t + 2) 

im + 2)2im + 1) (7ft+2)2(?ft + I) it + 2) I it + ! ) ! ( £ ) ! 
(10) 

To prove Hoggattfs conjecture, all we need do is show that Bim + 1) in (9) 
and our Sm in (7) have identical £th terms. By restructuring the right side of 
(10) and canceling like numerator-denominator terms as shown below 

(̂Tft + 2){t)jm^-nim + l)(t)Xm^^^jm^^ ( u ) 

Jim-t-^&h-i^it + 2){t) *^T* lit + l)(t) • l(£)(t)' 

we have identically the right side of (8). 
If (TT? - t) is substituted for t in the left side of (10), the same binomial 

coefficient product is obtained except for reverse order. This indicates equal-
ity between the (77? - t)th and £th terms of the sum and establishes symmetry of 
third-order Hoggatt triangles about a central vertical axis. 

Thus, thanks in large measure to work [2] in which Hoggatt participated, a 
solid conjecture proof exists. We would like to think that Vern would be 
pleased to know that there are no longer any loose ends. 

4. Hoggatt Sums and Hoggatt Triangles 

A natural extension of HoggattTs conjecture is to apply it to all right 
diagonals of Pascal's triangle. In this paper, the resultant row sums are 
called Hoggatt sums and the triangles formed by the successive row elements are 
called Hoggatt triangles. A particular row sum is identified by its index (0, 
1, 2, ...) and its order. Order is equal to the index of the particular Pascal 
diagonal. Order of a Hoggatt triangle is similarly specified. The physical 

~Ehe terminology (s)(p) = plip) is a "partial" factorial, where 

(s)<p> = (s)(s - 1) ... (s - p + 1). 

Because 0! = 1, (s)(0) = (0)(0) = 1. 
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layout of a Hoggatt triangle is similar to that of Pascalfs triangle in that 
each has the same number of row members. The fcth row of a Pascal triangle can 
be computed from the (k - l) s t row. Hoggatt triangles share this attribute but 
additionally require data from the first diagonal to complete a new row. 

The general Hoggatt development, including the proof of symmetry, is simi-
lar to that used earlier for the special case of d = 3. The row sum, (S^)m , 
becomes 

m 
(sd)m = o?m)0 + E o?m)i+1> (12) 

i = 0 
w h e r e im + d - 1\,D , 

\ d ){Rm-l\ 
(Vo " !' <*»>i + l = 777— <13> 

V d ) 

and ( J ±s the ith element of the dth Pascal diagonal. 

In our terminology, d is the order and 777 is the index of the row sum. With the 
nucleus diagonals in place, operations similar to (5) and (6) lead to the 
summation forms 

/777 + d - 1 - k\ tm + d - 1\ 

h=0 k=0 

The right expression in (14) is the reference [2] "analog" of the left 
expression in that, for d = 3S it reduces to (9). 

Examples of Hoggatt triangles appear in Appendix A; Hoggatt sums in Appen-
dix B. Although the extension of Hoggattfs conjecture is new, it is 
interesting to note that several of the resulting triangles or sums of orders 
zero through three are already well known. This actually enhances Hoggatt*s 
work, since his conjecture and extensions introduce new ways of calculating the 
triangles and/or sums. For example, Hoggatt and Bicknell [5] point out that 
the array we designate as the Hoggatt triangle of order zero provides 
triangular numbers in base nine. Development of the Hoggatt triangle of order 
one introduces a new way of generating the time-honored Pascal triangle. 
Reference [5] anticipates the Hoggatt triangle of order two as an array of 
generalized binomial coefficients for the triangular numbers. Further, [5] 
demonstrates that Hoggatt sums of order two are identically the Catalan 
numbers, Cw+l- T n e equivalence of Hoggatt sums of order three and Baxter 
permutation values needs no further discussion. 

5. A Computational Experiment 

If a sequence of integers follows a linear index-invariant recursion, it is 
very easy to find the recursion formula. However, when the recursion is index-
variant, the analytic difficulty increases dramatically. Reference [2] credits 
Paul S. Bruckman for equation (21) of [2], the linear, third-order, index-
variant recursion formula for Baxter permutation values (Hoggatt sums of order 
three). When recast in our index m9 Bruckman1s formula is identically that 
which Hoggatt stated in [1]. Unfortunately, we have no way of knowing how Vern 
obtained this formula. 

After a brief struggle with ^-transform methods (see Juryfs comments in 
[6], p. 59) 5 we decided to attempt a nonanalytical determination of recursion 
formulas for second- and third-order Hoggatt sums as an experiment in digital 
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computation. Because of the large, exact integers involved and the need for 
mixed symbolic and numeric operations, we chose to compute, in muMath, one of 
the currently available computer algebra systems (see [7], [8]). The experi-
ment consisted essentially of a brute-force calculation of the coefficients of 
a recursion formula using simultaneous linear equations. After each run 
through the experiment, any false, inconsistent, or arbitrary values were 
either deleted or reassigned and the run repeated with fewer equations. 

Surprisingly, we could never duplicate the coefficients of Bruckman!s 
formula. A significant result, however, was that we could obtain an infinite 
number of sets of coefficients for formulas which were correct for all m values 
except one. For Hoggatt sums of order three (or Baxter permutation values), Sy 
was always indeterminate. While the presence of arbitrary coefficients was 
responsible for the infinite number of sets of valid coefficients, the inde-
terminancy of Sj was independent of the arbitrary coefficients. The results 
for the second-order Hoggatt sums were similar except that the sole indetermi-
nant value occurred for m = 2, i.e., 5 2 was indeterminant. 

From the experiment we can ask, ffIs Bruckmanfs analytical solution the only 
solution with no indeterminant 5m

fs? Also, does the above behavior hold for 
d = 4, 5, 6, ...?" 

For a more detailed account of the experiment as well as more complete 
derivations from within the main body of the paper, the reader is encouraged to 
contact the authors. 

6. Summary 

We have proved Hoggattfs conjecture and have extended it to all Pascal dia-
gonals. Formulas for obtaining Hoggatt triangles and sums have been developed. 
We have shown that lower-order triangles and sums provide new ways to view 
previously known structures. A computational experiment produced an infinite 
number of restricted recursion formulas for several lower-order Hoggatt sums. 
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APPENDICES 

A p p e n d i x A: H o g g a t t T r i a n g l e s 

1 
1 

21 

1 

1 

15 

1 

1 

10 

105 

1 

20 

1 

6 

50 

1 

3 

20 

175 

ORDER 

1 

10 

1 

4 

50 

1 

6 

50 

TWO 

1 

10 

1 

10 

105 

1 

20 

1 

15 

1 

1 
1 

21 

1 

1 

1 35 175 175 35 1 
1 56 490 980 490 56 1 

ORDER THREE 

1 
1 1 

1 5 1 
1 15 15 1 

1 35 105 35 1 
1 70 490 490 70 1 

126 1764 4116 1764 126 

1 
1 

252 

1 
1 

56 
126 

5292 

ORDER 

1 
1 

6 
21 

196 
1176 

14112 

ORDER 

FOUR 

1 

21 

1176 

FIVE 

1 

56 

5292 

1 

126 
1 

252 

1989] 165 



ON A CONJECTURE BY HOGGATT WITH EXTENSIONS TO HOGGATT SUMS AND HOGGATT TRIANGLES 

Appendix B: Hoggatt Sums 

SUMS VALUE SUMS VALUE 

S6 
S7 
S8 
S9 
S10 
S11 
S12 
S13 
S14 
S15 
S16 
S17 
S18 
S19 
S20 
S21 
S22 
S23 
S24 
S25 
S26 
S27 
S28 
S29 
S30 
S31 
S32 
S33 
S34 
S35 
S36 
S37 
S38 
S39 
S40 
S41 
S42 
S43 
S44 
S45 
S46 
S47 
S48 
S49 
S50 
S51 
S52 
S53 
S54 
S55 
S56 
S57 
S58 
S59 

429 
1430 

4862 

16796 

58786 

208012 

742900 

2674440 

9694845 

35357670 

129644790 

477638700 

1767263190 

6564120420 

24466267020 

91482563640 

343059613650 

1289904147324 

4861946401452 

18367353072152 

69533550916004 

263747951750360 

1002242216651368 

3814986502092304 

14544636039226909 

55534064877048198 

212336130412243110 

812944042149730764 

^ 3116285494907301262 

11959798385860453492 

45950804324621742364 

176733862787006701400 

680425371729975.800390 

2622127042276492108820 

10113918591637898134020 

39044429911904443959240 

150853479205085351660700 

583300119592996693 088040 

2257117854077248073253720 

8740328711533173390046320 

33868773757191046886429490 

131327898242169365477991900 

509552245179617138054608572 

1978261657756160653623774456 

7684785670514316385230816156 

29869166945772625950142417512 

116157871455782434250553845880 

451959718027953471447609509424 

1759414616608818870992479875972 

6852456927844873497549658464312 

26700952856774851904245220912664 

104088460289122304033498318812080 

405944995127576985730643443367112 

1583850964596120042686772779038896 

S6 
S7 
S8 
S9 
S10 
S11 
S12 
S13 
S14 
S15 
S16 
S17 
S18 
S19 
S20 
S21 
S22 
S23 
S24 
S25 
S26 
S27 
S28 
S29 
S30 
S31 
S32 
S33 
S34 
S35 
S36 
S37 
S38 
S39 
S40 
S41 
S42 
S43 
S44 
S45 
S46 
S47 
S48 
S49 
S50 
S51 
S52 
S53 
S54 
S55 
S56 
S57 
S58 
S59 

92 
422 

2074 
10754 
58202 

326240 
1882960 

11140560 
67329992 

414499438 
2593341586 

16458756586 

105791986682 

687782586844 

4517543071924 

29949238543316 

200234184620736 

1349097425104912 

9154276618636016 

62522506583844272 

429600060173571952 

2968354097506204352 

20616682170931488704 

143886306136373723072 

1008739441056488779984 

7101857696077190042814 

50197792010624790718274 

356134037157421426324858 

2535503283457453475113498 

18111330098002679241995204 

129775523667497672794119820 

932649996060323085135343660 

6721418743462792115061865000 

48568825344643221105258466964 

351844920522232388929981300716 

2554987813422078288794169298972 

18596055885560437500207978342572 

135644235608879594521014316895264 

991488035658098636545959755543168 

7261715593999548236305978326928768 

53286745759568455589698874494878272 
391734954014771562094562102701976912 

2884866707621100648995326107469142704 

21280832747254136400685727258623694064 

157235970697232109921578618634420133232 

1163558691573487855005674103586862832160 

8623270949913637637693313639417883473760 

63999829606711522650915748086714806055520 

475648020504874336968975846703558704767360 

35397366207468995514 78214384426524560969920 

26376309482014901194800065543131184691392320 

196786571758072254774209654628466146096941120 

1469930377434643825117255656238830229231391040 

10992599534625333878995280114433052775213597440 

82298082996123210666432106893608345734255512320 

616806373541881093477734895753501754683667475200 

ORDER TWO ORDER THREE 
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Appendix B (continued) 

SUMS VALUE SUMS VALUE 

" 177 
s 5 1122 
s 6 7898 
s 7 60398 
s 8 494078 
s 9 4274228 

s l °  38763298 
s 1 1 366039104 
s 1 2 3579512809 
s 1 3 36091415154 

514 373853631974 

515 3966563630394 

516 42997859838010 

517 475191259977060 

518 5344193918791710 

519 61066078557804360 

520 707984385321707910 

521 8318207051955884772 

522 98936727936728464152 

523 1190144254132426538652 

524 14467503754920598547852 

525 177588968969030657062952 

526 2199766555762125604480244 

527 27479841323744789830066304 

528 346013356369921918769855929 

529 4389333539509515126591248594 

530 56070810203828991362664847534 

531 720991537747532706012643525026 

532 9328596513998279672146714203426 

533 121407761182708178024779745555236 

534 1588853327416452312225693971901886 

535 20902698473348916294574193083438576 

536 276366709279158375016777229713551178 

537 3671353895684626011348096048652533188 

538 48991879229954382412465500058360070428 

539 656578339509065473624710057081932405468 

540 8835422665626508141712557966494394806108 

541 119361980337149820156413158335452884741480 

542 1618555251833277417723413502651871963117380 

543 22026306046942304682421202107440636378252080 

544 300775665856985037635815504148162320960569030 

545 4120680721821174437200697187060554338727113380 

546 56632089950769630959003010091719578219572701768 

547 780672963674065363024657714942613611640651191668 

548 10792880714535509030956272898321515183823343600148 

549 149630114772321753565389670918869975981300480583368 

550 2080024562297436725383387627342232184290452724623868 

551 28989631221925585334377822573493132380111499239694256 

552 405042859452333599815966969539580644980304039216295996 

553 5672895639230230744501228216933481231786496342059764296 

554 79637499355923524957310381320358435277891452641332058656 

555 1120481796741420900139026353148731893246859107399301109816 

556 15799141364786589904575760510447056727208857922105968342104 

557 223240203381865382931261283307541517610831772674383845140304 

558 3160762512031293096204497160156094620737550686304124391199144 

559 44839790319506826307665601833880717528407912782175379485606144 

s< 310 
s 5 2606 
s 6 25202 
5 7 272582 
s 8 3233738 
s 9 41454272 

s 1 °  567709144 
s 1 1 8230728508 
s 12 125413517530 
s 1 3 1996446632130 

514 33039704641922 

515 566087847780250 

516 10006446665899330 

517 181938461947322284 

518 3393890553702212368 

519 64807885247524512668 

520 1264344439859632559216 

521 25157307567003414461132 

522 509758613701956725065312 

523 10504632497377410035604512 

524 219882344614457972071894112 

525 4670084185135656513206765312 

526 100545485811075166151802795824 

527 2192418844178243335833955155336 

528 48379667285208331243156909951858 

529 1079611110993258648130498445227930 

530 24347329288405445022766602579123442 

531 554566629846326336323633836780509714 

532 12750735363523736895224533482780247714 

533 295784841468452675270005420750848137236 

534 6919476264486250695584491663120163937904 

535 163169952940281696912145006005492340179568 

536 3877071820176178830433674797637159283033876 

537 92790578667967629170910388674462669088090860 

538 2236101047387592560288927021551097525450121020 

539 54241035539604690484028904444539438691470414804 

540 1323989240924397287678504113074504691152647841900 

541 32511753934173216440442934840169645923808825880160 

542 802940141706099352768612717751656935735641885154128 

543 19939180912572384650238245526841891336089453041203076 

544 497753077340750439345361117379228609393516565922287616 

545 12488499358131177277361272166359232020651763382248580116 

546 314835804201793426134718207824493669241936791219996967272 

547 7974948166936771934625468937473862232444337311576280767968 

548 202903531153561613979904796282755350111618310117591503533536 

549 5184669810730751738195690096846261341819375230915901136000064 

550 133031155163064817158937067974769173342349063013900835309293824 

551 3427055486216516092233309733621545807996225269108441463298272448 

552 8862630953265046063238987184904504 2148680549782040988260727829632 

553 2300485147484122546569992300460137733495781737369600781780516134976 

554 59928849983050369859897945129004440086248293183817578582162240727680 

555 1566605017513482961732955658845929295951027100154584705176100343447424 

556 A1090373302605147887752883307921674253835971440718737659073287348513408 

557 1081259820998848048353209424742475697589922619283381601497939222715737088 

558 28541983181144917576594561989169677540337165840094612722197240073620315232 

559 755716976463771668194168330657640641261070871073397885785459539567999933788 

ORDER FOUR ORDER FIVE 
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P R O P E R T I E S OF A RECURRING SEQUENCE 

A . K. A g a r w a l 
The Pennsylvania State University, Mont Alto, PA 17237 

(Submitted June 1986) 

1. Introduction 

Recurring sequences such as the Fibonacci sequence defined by 

^0 = 0' Fl = U Fn = *"„-! + Fn-2> n S 2 d - D 

and the Lucas sequence given by 

LQ = 25 Ll = 1; Ln = Ln_l +• Ln_2, n > 25 (1.2) 

have been extensively studied because they have many interesting combinatorial 
properties, 

In the present paper, we study the sequence 

which obviously satisfies the recurrence relation 

Li = 1, L3 = 4S 3L2n+i - L2n-i = L2n+3s (1.3) 

and is generated by [9, p» 125] 

n 
Y*L2n + ltn = (1 + t)(l --3£ + t 2)" 1 , \t\ < 1. .(1-4) 

It can be shown that these numbers possess the following interesting property, 

t(-l)n + k(^+
k

l)L2k + 1 - 1, (1.5) 
n = 0 \ TL - K. f 

for every nonnegative integral value of n, which can be rewritten as 

(1.6) (-1)%*+! ("Dn 

^=0 (n - k)!(n + k + 1)! (2n + 1)! 

In sections 2 and 3, we study two different ^-analogues of ^2n + l* ^n t^ie 

last section we pose some open problems and make some conjectures. As usual, 
we shall denote the rising ^-factorial by 

^ ? ) n v n . 7 T — - ^ r b d-7) (1 - a<T) 
"o (1 - aan + i) 

Note that, if n is a positive integer, then 

(a; ?)„ = (1 - a)(l - aa) ... (1 - a?""1), (1.8) 
and 

lim(a; q)n = (a; q)^ = (1 - a) (I - aq) {I - aq2). . . . (1 = 9) 
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The Gaussian polynomial is defined by [4, p. 35] 

( ? ; ? ) „ / ( ? ; <?)m(<7; ^ ) W - O T
 i f 0 < m < n, 

0 otherwise. 
(1.10) 

2. First q-Analogue of L2n + 1 

To obtain our first ^-analogue of i/2« + l> w e u s e t n e following lemma, due to 
Andrews [5, Lemma 3, p. 8]. 

Lemma 2.1: If, for n > 0, 

Pn - 2-» 7 \ 
£ = 0 w ; <7)n-fe 

then 

£ = 0 (?; q)n-k(aq; q)n + k' 

Bi 

(n-k\ 

2n, f (gg; <7W-i(-i)"-y 2 ; 

an = (1 - a^Zn) £ : : ~-
k=o (q; q)n-k 

Multiplying both sides of (2.1) by (1 - q)~l
9 with a = q and 

pn - — ~ — , 
( ? ; g ) 2 ^ 

and using (1.8), we obtain 

(2.1) 

(2.2) 

(<?5 g)2n+l k = 0 (qi q)n-k(qi <?)n + £:+l 
, n > 0, (2.3) 

which, when compared with (1.6), will give us our first ^-analogue of î 2n + l ^ 
we let ak play the role of (~l)kLlk+l. Observe that (2.3), by using (1.10), is 
equivalent to 

k = o k 

'In + ll 
n - k J 1, n > 0. 

Letting ak = ^(qO (»l)fe in (2.4) and (2.3), we have 

±t-»-f::l Ck(q) = 1, n > 0, 

and, by applying Lemma 2.1 to (2.3), 
(n-k\ 

-Y2n+l\n\ 2 / 
C% H

 fcf 0 L« - k] ( 

(1 - qZn+i)c 
-, n > 0 . 

[1 - qZk+1) 

Now we p r o v e t h e f o l l o w i n g : 

Theorem 2.1: For a l l n > 0 , Cn(q) i s a p o l y n o m i a l . 

Proof: Let 

(2 .4 ) 

(2 .5 ) 

( 2 . 6 ) 

ln ~ J J l - <7^' + 1 (2 .7 ) 
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S ince 

Cn(q) = E Dn,nW> 
J = 0 

it suffices to prove that Dnj(q) is a polynomials Now 

Dn.M) 
n + a 
n - 3 

(1 - q23 + l + qz0 + l - q2n+1) ("-->') 

\ n + 

In -

(1 - q2J + l) 

L , ^+1(i-^-^)V(V) 

Ln - j]q 

Lft - j_P 

(q; q)n-tj(q; q) 2- (1 - ^2j + 1) 

• « + ,/ "I 2j + l+(Y)(l +qn-J)t 
n - j - 1 j n n 

which is obviously a polynomial,, 

Theorem 2.2: The coefficient of qn in Cm(q) equals twice the number of parti-
tions of n into distinct parts,, 

:in-f\ (1 - q2n + 1) J}) n (-• 

Proof: Cm{q) = lim Cn{q) = lim £ ' 
n -> oo 77 -> oo j = o L 

<T 

= E i 
j = o (q ; <?). 

(1 - ^ n - 2 J + l ) 

q\z/5 s i n c e i t can be shown t h a t ,(0. 
lim 
n+ oo 

2n + a 
.ft + b . = n n-i 1 - ? n 

Using the identity [4, Eq. (2.2.6), p. 19], we have 

(2) 
£ T 5 r- = ft (1 + qn) = 2 ft (1 + ?") • 
j=0 W5 ?/j "-0 " = 1 

(2.8) 

(2.9) 

Noting that ft (1 + qn) generates partitions into distinct parts, we are done. 
M = l 

We now note that the numbers 

have a combinatorial meaning„ However, we first recall the definitions of 
lattice points and lattice paths. 

Definition 2.1: A point whose coordinates are integers is called a lattice 
point. (Unless otherwise stated, we take these integers to be nonnegative.) 

Definition 2.2: By a lattice path (or simply a path) , we mean a minimal path 
via lattice points taking unit horizontal and unit vertical steps. 

In Church [2], it is shown that dn, k (0 < k < ft) is the number of lattice 
paths from (0, 0) to (2ft + 1 - k9 k) under the following two conditions: 
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(1) The paths do not cross y = x + I (or, equivalently, do not have two verti-
cal steps in succession). 

(2) The first and last steps cannot both be vertical. 

Example: For n = 3, we have ^3,0 = 1> ^3,1 = 7» ^3,2 = 14, a n d ^3,3 = 7-

The values dn ^ also appear along the rising diagonals (see [8, p. 486]). 

3. Second q-Analogue of L2n + 1 

The second ^-analogue of the numbers L2n+i is suggested by the ^-extension 
of Fibonacci numbers found in the literature (cf. [3, p. 302; 1, p. 7]). 

Equation (1.4) can be written as 

±L2n + l tn = (1 + t) ± „ *" n + 2, 
n = 0 rc = 0 (1 - £.) + 

(3.1) 

provided |t/(l - t)&\ < 1. 
Letting 

qn2tn 

we have 

E ^o?)** = (i + t) E ,, , 

E £„(<7)*w = (i + t) E E 
n = 0 n = o m = 0 

In + 1. + w 
77Z 

1<7"V + W 

by using [4, Eq. (3.3.7), p. 36], which is 

(2; q)\ 
j=o 

N + j - 1" 
J 

Equating the coefficients of t n in (3.3), we get 

n- 1 

where 

-°n- 1, m (?), 
777= 0 777= 0 

^,m(<?) = <7 
(n-m)< 2n - m + I 

m 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Since each 5 n OT(^) is a polynomial, Cn(q) is also a polynomial for all n > 0. 

Theorem 3.1: Let 

Then 

£„(?) = lim(l - t) Y.Cn{q)tn. 

£„(<?) = 2(P1(q) + qP2(q))> 

(3.7) 

(3.8) 

where ^i(^) is an enumerative generating function which generates partitions 
into parts which are either odd or congruent to 16 or 4 (mod 20), and P2(q) is 
another enumerative generating function which generates partitions into parts 
which are either odd or congruent to 12 or 8 (mod 20). 
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Proof: S t a r t i n g w i t h t h e l e f t - h a n d s i d e of ( 3 . 7 ) , we have 

_ oo ( 1 _1_ 4-\nn2-4-n oo nn2-

CAq) = limd " t) E (+. I? = 2 £ t + 1 n = 0 ( £ ; ^?)2n + 2 n = 0 ( ? 5 ? ) 2 n + l 

n = 0 (^7; ^ 2 n \ 1 - qln+l 

T = 2 E v N— + 2q E ? r • 
n = 0 W 5 ^ 2 n n = 0 W ? <?v2n + l 

Now, an a p p e a l t o t h e f o l l o w i n g two i d e n t i t i e s found i n S l a t e r ' s compendium [ 6 , 
I - ( 7 4 ) , p . 160; I - ( 9 6 ) , p . 1 6 2 ] , i . e . , 

ft (1 - q20n-8)d - q20n-l2)a - q20n) 
n= 1 

~ (1 -' q2n) ^ qn^ 
n - l (1 + q2n~l) n = 0 (q; ( ? ; <?)2n 

( 3 . 9 ) 

and 

0 ( 1 - ^1 0 n"1 +)( l - ql0n-e)(l - q 2 0 " - 1 8 ) ( l - <7 2 0 n - 2 ) ( l - ql0n) 
n = 1 

00 00 nn(n + 2) 

= n (i - ?") E T - 2 - ^ — . <3-10> 
n - l n = 0 C ^ ; q)2n+l 

proves the theorem. 

Next, we define the polynomials En^m(q) by 

(#n,m(<7) + 5n-ifOT(d7) if 0 < m < n - 1, 

*n.m(?> = < [ n ^ *] if m-n, • (3.11) 

VO otherwise. 

To give a combinatorial interpretation of the polynomials BniTn(q) and EntTn(q)9 
we consider an integer triangle whose entries enfk (n = 0, 1, 2, . .. ; 0 < fc < n) 
are given by 

en3k = bn,k + &n-l,fc» ( 3 ' 1 2 ) 

where &njk is the (k + l) t h coefficient in the expansion of (£ + y)2n + l~k when 
0 < fe < n, and 2?n> k = 0 for k > n. 

It can be shown that 

n n 
E bn9k = F 2 n + 2 and E en,fe = L2n + l-

fe=0 fc = 0 

Note that En9m(q) and Bna-m(q) are ̂ -extensions of the numbers £nsOT and bn,m 
respectively. Moreover, 5„>m(l) = £>n,m is the number of lattice paths from (1, 
0) to {In + 1 - m9 m) with no two successive vertical steps. Defining En(q) by 

EnW = to[2;_+^Ck(q)(-ir-k, (3-13) 
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it is easy to show that En (q) is a polynomial in q where the sum of the coeffi-
cients is equal to unity. 

Note also that (2.7) and (3.13) are ^-analogues of (1.5). 
Finally, we set 

Dn(q) = t Bn,m(q), (3.14) 
m= 0 

and observe that Dn(q) is a q'-analogue of Wn+i> where Wn is the weighted compo-
sition function with weights 1, 2, ..., n [7, p. 39]; hence, (3.5) leads to the 
formula 

^2n+l = Wn+l + K> n > 1. (3.15) 

Note that the sum of the coefficients of Dn(q) is the Fibonacci number ^2n+2a 

We close this section with the following theorem, which is easy to prove. 

Theorem 3.2: Let Cm(q) be defined by (3.7) and Dm(q) = lim Dn (q), then 

D„(q) = \ Ca(q). (3.16) 

4. Conclusion 

We have given several combinatorial interpretations of the polynomials 

CnW> Dn9mW* CnW> Bnim(q)^ and En>m(q) at q = 1, 
the most obvious question that arises is: Is it possible to interpret these 
polynomials as generating functions? We make the following conjectures: 

Conjecture 1: In the expansion of Cn(q) , the coefficient of qk (k < 2n - 2) 
equals twice the number of partitions of k into distinct parts. 

Conjecture 2: For 1 < k < n, let 
A(k, ri) - the number of partitions of k into parts 
t 0, ±2, ±6, ±8, 10 (mod 20) + the number of partitions 
of k - 1 into parts $ 0, ±2, ±4, ±6, 10 (mod 20). 

then the coefficient of qk in the expansion of Dn(q) equals A(k, n). 

Conjecture 3: In the expansion of Cn (q) , the coefficient of qk (k < n - 1) 
equals 2A(k, n - 1). 

Remark: Theorems 2.2, 3.1, and 3.2 are the limiting cases n •> °°  of Conjectures 
1, 3, and 2 respectively. 

We hope that some interested readers can prove Conjectures 1, 2, and 3. 
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(Submitted April 1987) 

1. Introduction 

Harlan Stevens [8] introduced the following generalization of the Euler (p-
f unction. Let F - {f\(x)9 . . . , ~fk (x)}, k > 1, be a set of polynomials with 
integral coefficients and let A represent the set of all ordered fc-tuples of 
integers (a-,, . .., a^) such that 0 < a-,, . .., a^ < n. Then <PF(n) is the num-
ber of elements in A such that the g.c.d. (/̂ (a-̂ , . .., fk(ak^ = 1- We have, 
for n = IIP - veo , 

r I Nl, ... Nkl-\ <PF(n) = n ^ n 1 - -^ ^ 
j = i V v% i 

where N^j is the number of incongruent solutions of f^(x) E 0 (mod p.), see [8, 
Theorem 1]. 

This totient function is multiplicative and it is very general. As special 
cases, we obtain Jordan1s well-known totient J^(n) [3, p. 147] for f\(x) = ••• 
= f-k^x) ~ xl t n e Euler totient function <p(n) E Ji(n); Schemmelfs function (J>t(n) 
[7] for k = 1 and f\(x) = x(x + 1 ) ... (x + t - 1), t > 1; also the totients 
investigated by Nagell [5], Alder [1], and others (cf. [8]). 

The aim of this paper is to establish an asymptotic formula for the summa-
tory function of <PF(n) using elementary arguments and preserving the general-
ity. We shall assume that each polynomial f^ (x) has relatively prime coeffi-
cients, that is, for each 

fi(x) = aiVi xri + aiT. „ixri~l + ... + ai0 

the g.c.d. (aiTj , aiVi _l5 . . . , ai0) = 1. 

2. P re requ i s i t e s 

We need the following result stated by Stevens [8]. 

Lemma 1: 
<PF(n) = £ M(d)QF(d)(^f, (1) 

d\n 

where u is the Mobius function and QF(n) is a completely multiplicative function 
defined as follows: fiF(l) = 1 and, for 1 < n = II* , pej , 

M w > = fl (Nu ... ffkj.)*' • 
3 = 1 

Under the assumption mentioned in the Introduction, we now prove 

Lemma 2: 

|u(n)ftF(n)| = 0(nE) for all positive e. (2) 
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< (Mk)r. 

Proof: Suppose t h e cong ruence 

fi (x) = a^P. xri + aiv_ -ixTi~l + . • - + a^o E 0 (mod p . ) 
i i J 

is of degree s^j , 0 < s^j < z^ 5 where 

aiSij t 0 (mod P j . ) . 

Then, as is well known (by Lagrange*s theorem), the congruence 

ft (x) = 0 (mod p. ) 

has at most s^j incongruent roots, where S^J < v^ for all primes p.; therefore, 
N;j < v- for all primes p. and N;J < 2 + max z>- = M9 M > 1, for all i and j . 

J ^ r J ^ 1 <-£<£: 
Now, f o r n = H-1pej , \ ]i (n) Q F (n) \ = 0 i f j e x i s t s such t h a t ^ > 2 ; o t h e r -

w i s e , 
| y ( n ) f l F ( n ) | = ( - l ) r - 0 O h j . . . ^ j ) 

I J = 1 

Hence, \ \i (n) tt F (n) \ < A^(n) for all n, where A = Mk > 1. 

On the other hand, one has 

2w(n) = 2r < fi (^ + 1) = d(n), 
,7 = 1 

so oa(n) < log2^45 which i m p l i e s 

| y (w) f i F (w) | < Alo*2dM. 

Further, it is known that d(n) = 0(na) for all a > 0 (see [4, Theorem 315]). By 
choosing a = e/log2^ > 0, we obtain |u(n)ftF(n)| = 0(nE), as desired. 

Lemma 3: The series 

» \i(n)QF(n) 

„=i ns+l 

n(.-^i). w 
is absolutely convergent for s > 0, and its sum is given by 

Ms) 
p. 

where N^ denotes the number of incongruent solutions of f^ (x) = 0 (mod p). 

Proof: The absolute convergence follows by Lemma 2: 

|u(n)ftF(n)/ns+1| < K • l/ns + 1 _ e, 

where Z > 0 is a constant and e > 0 is such that s - e > 0. Note that the gen-
eral term is multiplicative in n, so the series can be expanded into an infi-
nite Euler-type product [3, 17.4]: 

« u(n)fiF(w) / • y(p^)^F(p£)\ / M P ) \ _ , 
L, = || I 2^ r- 1 = 11 I 1 ~i J ~ AF-

From here on, we shall use the following well-known estimates. 

Lemma 4: 

£ ns = ^ + 0(xs), s > 1; (4) 
n < cc S + 1 ' 
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E A = 0(xl-s), 0 < s < 1; (5) 
n < x Yl 

n> x Yl \X I 
(6) 

3. Main Results 

Theorem 1: 
A (k)xk + ̂ ~ 

£ <PF(n) - \ ^ 1 + 0(Rk(x)), (7) 
n < x K + L 

where Rk(x) = xk or x^ + e (for a l l e > 0) according as k > 2 or k - 1. 

Proof: Using (1) and (4), one has 

E <PF(n) = E u(d)M<«S* = £ u(d)flF(i) £ «* 
n<o: d^-n<x d<x 5<x/d 

£ S F W P W ) ^ ' 0r/ i) f e + 1 + 0((a:/d)*)i ;<x (/c + 1 j 
xfc+1 » y(d)nf(d) / k+1 \u(d)QF(d)\\ 

/ . _ |y(d)fi f(d) | \ 
\ A <x 

Here the main term is 

XF(k)xk+l 

k + 1 

by (3); then, in view of (2) and (6), the first remainder term becomes 

0[xk + l • E -^7TT) =o(xk + l . E 7frii-P^ = ̂ U 1 + e) (choosing 0 < e < 1), >(^ + 1 • £ J ^ j = o(x* + l ̂  5*^7) = ̂ U1 + £) (choosing 0 

;econd remainder term, (2) implie For the second remainder term, (2) implies 

o( 

which is 

0(xk) for k > 2, and 0(x'Xl~1 + e) = ̂ (^r1 + e) for fc = 1 [by (5)]. 

This completes the proof of the theorem. 

For fi(x) = • •• = fk(x) = x, we have il/̂j = 1 for all i and j; thus, ^(n) = 
^ in) - the Jordan totient function. This yields 

Corollary 1 (cf. [2, (3.7) and (3.8)]): 

,?/*( n ) = (fe + iK<fc + i) + 0{xk)-k * 2 ; ( 8 ) 

£ ?(«) = T—7T + ̂ (^1 + £ ) , fc = 1, for all e > 0, (9) 

where C(s) is the Riemann zeta function. 
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Remark: The 0~term of (9) can e a s i l y be improved in to 0{x log x) , see Mertens ' 
formula [4, Theorem 330] . 

By s e l e c t i n g k = 1 and fi(x) = x(x + 1 ) . . . . (x + t - 1 ) , t > 1, we get 

V-piri) - §t(n) - Schenimel's t o t i e n t function [ 7 ] , 

for which 21/]_ = p i f p < t , and #]_ = t i f p > £. Using Theorem 1, we conclude 

Corollary 2: 

E Mn> = IT II (l " i) * II (l ~ \ ) + 0(xl + £) for all e > 0. (10) 

For t = 2, §2(n) = <Pr(n)s see [6, p. 37, Ex. 20], and we have 

Corollary 3: 

E <P'(n) = ̂ - • II (l - - V W ^(^ 1 + e) for all e > 0. (11) 
n < x 2 V \ PZ/ 

Choosing fc = 1 and f\(x) - x(\ - x), we obtain 

(pAn) = 6(A, n) - Nagellfs totient function [5], 

where iFj = 1 or 2, according as p|x or p|A, and we have 

CoroHary 4: 

E 6(X, n) = 4- * n (l - -V) • II (l - 4 ) + ̂ (^1 + £) for a11 e > 0. (12) 
n < x * p \ x ^ V j p \ \ X V I 

Now, let f\(x) = • •• = fk (x) = x2 + 1, /V̂  = 1, 2, or 0, according as p = 2, 
p E 1 (mod 4), or p = 3 (mod 4), see [8, Ex. 4]. In this case, we have 

Corollary 5: 

£ ^(n) = FTT!1 - ̂ i) • ^ . i 1 - ^ ) (13) 
n < x K. t i \ / / p =1 (mod 4) \ V ' 

+ 6>(i??<(^))5 with Rk(x) as given in Theorem 1. 

Theorem 2: Let /(#) be a polynomial with integral coefficients. The probabil-
ity that for two positive integers a, b9 a < b, we have (/(a), b) = 1 is 

where /l/(p) denotes the number of incongruent solutions of f(x) ~ 0 (mod p) . 

Proof: Let n be a fixed positive integer and consider all the pairs of integers 
(a, b) satisfying 1 < a < b < n: 

(1, 1) (1, 2) (1, 3) ... (1, n) 
(2, 2) (2, 3) ... (2, n) 

(3, 3) ... (3, n) 

(n, ri) 
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There are 

such pairs and the property (/(a), b) - 1 is true for B(n) pairs of them, where 

Bin) = <PF(l) + <PF(2) + ... + <PF(n) -—• 0 (l %-\ by Theorem 1. 

Hence, the considered probability is 

lim — — = [I (1 |- . 
n+o* A(n) p \ p z / 

As immediate consequences, we obtain, for example: 

Corollary 6 [4, Theorem 332]: The probability of two positive integers being 
prime to one another is 

1/5(2) = 6/n2. 

Corollary 7 (9,F(n) = (J)2(n)): The probability that, for two positive integers 
a and b, a < b, we have (a(a + 1), Z?) = 1, is 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 

A . P . Hil lman 

Please send all communications regarding ELEMENTARY PROBLEMS AND 
SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, 
NM 87108. Each solution or problem should be on a separate sheet (or 
sheets) . Preference will be given to those typed with double spacing in the 
format used below. Solutions should be received within four months of the 
publication date. 

D E F I N I T I O N S 

The F i b o n a c c i numbers Fn and t h e Lucas numbers Ln s a t i s f y 

Fn+2 = Fn+1 + Fn, F0 = 0, Fx = 1 
and 

Ln + 2 = Ln + l + Ln, L0 = 2 , LY = 1. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-640 Proposed by Russell Euler, Northwest Missouri State U., Marysville, MO 

Find t h e d e t e r m i n a n t of t h e n*n m a t r i x (x^j) w i t h x^- = 1 f o r j = i and f o r 
j = i - 1, x i j - = - 1 f o r j = i + 1, and xi;j = 0 , o t h e r w i s e . 

B - 6 4 1 Proposed by Dario Castellanos, U. de Carabobo, Valencia, Venezuela 

Prove t h a t 

1 
• mn 

I + /$p \n n „ /$F \n-

2 

B-642 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

I t i s known t h a t 

L2(2n+l) = L2n + l + 2 ' 
and i t can r e a d i l y be p r o v e n t h a t 

L3(2n+l) = L2n + l + 3Z/2n + l e 

G e n e r a l i z e t h e s e i d e n t i t i e s by e x p r e s s i n g £fc(2w + l)> f ° r i n t e g e r s k ^ 2 , a s a 
p o l y n o m i a l i n ^ 2 n + l -

B-843 Proposed by T. V. Padnakumar, Trivandrum, South India 

For p o s i t i v e i n t e g e r s a , n 5 and p 5 w i t h p p r i m e , p rove t h a t 

( - ; * ) - ( - ) , « ( « d p , . 
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B-644 Proposed by H. W. Corley, U. of Texas at Arlington 

Consider three children playing catch as follows. They stand at the verti-
ces of an equilateral triangle, each facing its center. When any child has the 
ball, it is thrown to the child on her or his left with probability 1/3 and to 
the child on the right with probability 2/3. Show that the probability that 
the initial holder has the ball after n tosses is 

-(—1 cos^-g-j •+ - for w = 0, 1, 2, ... . 

B-645 Proposed by R. Tosic, U. of Novi Sad, Yugoslavia 

Let 

^.-r . - 'J- ' f t laM^) '""-1 -* ' 3 

* 2~ . - (? ) - ( * : j ) • *c? 5 ) <«.-<>.I.* 
where ( . j = 0 for k < 0. Prove or disprove that Gn = Fn for n = 0, 1, 2, ... . 

SOLUTIONS 

Cyclic Permutat ions Modulo 6 and Modulo 5 

B-616 Proposed by Stanley Rabinowitz, Alliant Computer Systems Corp., 
Littleton, MA 

(a) Find the smallest positive integer a such that 

Ln = Fn+a (mod 6) for n = 0, 1, ... . 

(b) Find the smallest positive integer b such that 
Ln = F5n+b(m°d 5> f0r H = °» !• ••' • 

Solution by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

By i n s p e c t i o n of t h e s e q u e n c e s {Ln} and {Fn} r e d u c e d modulo 6 ( b o t h w i t h 
r e p e t i t i o n p e r i o d e q u a l t o 2 4 ) , i t i s r e a d i l y s e e n t h a t a = 6 . 

By i n s p e c t i o n of t h e above s e q u e n c e s r educed modulo 5 ( r e p e t i t i o n p e r i o d 
e q u a l s 8 f o r {Ln} and 20 f o r {Fn}), i t i s r e a d i l y s e e n t h a t b'= 3 . 

Also solved by Paul S. Bruckman, Herta T. Freitag, L. Kuipers, Bob Prielipp, 
H.-J. Seiffert, Sahib Singh, Lawrence Somer, and. the proposer. 

Fibonacci Parallelograms 

6-617 Proposed by Stanley Rabinowitz, Littleton, MA 

Le t R be a r e c t a n g l e each of whose v e r t i c e s h a s F i b o n a c c i numbers a s i t s 
c o o r d i n a t e s x and z/. P rove t h a t t h e s i d e s of R must be p a r a l l e l t o t h e c o o r -
d i n a t e a x e s . 
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Solution taken from those by Paul S. Bruckman, Fair Oaks, CA 
and Philip L. Mana, Albuquerque, NM 

It will be shown that the rectangle either has its sides parallel to the 
axes or it is a square whose sides have inclinations 45°  and -45° . 

Let (Fa , Fh) , (Fb, Fi) , (Fc , Fj) s (Fd, Fk) be the vertices of a parellelo-
gram in counterclockwise order. If its sides are not parallel to the axes, we 
may assume that 

Fa < Fb < Fa and Fa < Fd < Fa. (1) 

Since the diagonals bisect each other, 

Fa + Fa = Fb + Fd. (2) 

By (1), c - a > 2, so Fa + Fc is a unique Zeckendorf representation This, 
with (1) and (2), implies that b = d and that b = a + 2 and c - a + 3* 

Similarly, one has 

Fi < Fh < Fo and Fi < Fi < Fk 

and can show that j = h ..= i + 2 and fc = i + 3. Now the slope of two sides is 

F i • 

h • 

- FH 

~ Fa 
_ Fi ~ Fi + 2 _ 

Fa + 2 ~ Fa 

Fi+1 
Fa + 1 

and the slope of the other sides is ̂ + 1 / ^ + 1* Thus, the parallelogram is a 
rectangle if and only if F?-+l = F2

+l. This happens (for nonnegative sub-
scripts) if and only if Fi + 1 = ^a + le Tni-Ss in turn, is true if and only if i = 
a or {i, a} = {0, 1}. These cases give the rectangles with vertices 

^ a ' Fa + 2^ tfa + 2' *a > > ^ a + 3> Fa+2>> ^ a + 2> Fa + 3 ^ 

(0, 2), (1, 1), (2, 2), (1, 3); 

(2, 0), (1, 1), (2, 2), (3, 1). 

Each of these is a square whose sides have inclinations 45° and -45°. 

Counterexamples (that is, squares with sides not parallel to the axes) given 
by Piero Filipponi and Herta Freitag, 

Multiples of 40 

6-818 Proposed by Herta T. Freitag, Roanoke, VA 

Let S(n) = L2n + 1 + ^ 2 n + 3 + L
2n + b + ° 8 ° + Lhn-lm P r o v e t h a t S ^ i s a n i n t e " 

gral multiple of 10 for a l l even positive integers. 

Solution by Sahib Singh, Clarion U, of Pennsylvania, Clarion, PA 

We prove a more general resul t , namely: 

S(n) E 0 (mod 40) for a l l even positive integers n* 

Using Binet form for Lucas numbers with L,̂  = am + ^ , we have: 

S(n) = a2n + l "£ a2i + 32n + 1 "E 3 2 i 

i = 0 i = Q 

= ahn - a2n + 34n - 32n = Lhn - L2n. 
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Let n = 2k, then 

S(2k) = LQk - Lhk = 5F6kF2k, where k > 1, 

by using J16 and T25 in Hoggatt's Fibonacci and Lucas Numbers. 

Since F§ divides F^k ; we conclude that: 

£(2fc) = 0 (mod 40). 

Also solved by Paul S. Bruckman, David M. Burton, Piero Filipponi, L . Kui-
pers, Bob Prielipp, H.-J. Seiffert, Lawrence Somer, and the proposer. 

More Mul t ip l e s of 10 

B—619 Proposed by Herta T. Freitag, Roanoke, VA 

Let T{n) = Fln + i + Fzn + 3 + F2n + 5 + • • • + F^n-1. For which p o s i t i v e i n t e g e r s 
n i s Tin) an i n t e g r a l m u l t i p l e of 10? 

Solution by David M. Burton, U. of New Hampshire, Durham, NH 

Tin) i s an i n t e g r a l m u l t i p l e of 10 p r o v i d e d n i s a m u l t i p l e of 5 . F i r s t , 
n o t e t h a t t h e i d e n t i t y 

F1 + F3 + F5 + . . . +Fln.l = Fln 

g i v e s us T{n) = Fkn - F2n. 
Now 

F^n - F2n = In o r 4n (mod 5 ) , 

according as n is odd or even; thus, Tin) = 0 (mod 10) if and only if 5 divides 
n. 

To see that Fi+n - F2n =• 2n or kn (mod 5), simply use the congruence 

F2n = ni-l)n+l (mod 5). 

[see the solution to Problem B-379 in the April 1979 issue], which yields 
Fhn ~ FZn = 4n[2 -(-I)"]" (mod 5). 

This could equally well be derived from the congruence 

F2n = nLn (mod 5) 

[see the solution to Problem B-368 in the December 1978 issue], together with 
the two relations 

LZn = 5Fn + 2(-l)n E 2 or 3 (mod 5), 

Lhn = ^F2n + 2 E 2 (mod 5 ) . 

Also solved by Paul S. Bruckman, Piero Filipponi, L. Kuipers, Bob Prielipp, 
H.-J. Seiffert, Sahib Singh, Lawrence Somer, and the proposer. 

C o n g r u e n c e Modulo 9 

B-62Q Proposed by Philip L. Mana, Albuquerque, NM 

Prove t h a t F^k + 3 + i ^ f c + 5 E 2F2kk+6 ( m o d 9 ) f o r a 1 1 n a n d k i n N = { 0 > l> 
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Solution by Paul S. Bruckman, Fair Oaks, CA 

The sequence (Fn (mod 9))^ = 0 i s periodic with period 24, and the period is 
as follows: 

(0 ,1 ,1 ,2 ,3 ,5 ,8 ,4 ,3 ,7 ,1 ,8 ,0 ,8 ,8 ,7 ,6 ,4 ,1 ,5 ,6 ,2 ,8 ,1 ) . 

Inspection of this period shows that: 

F2kk+3 E 2 ' F2kk+5 E 5 > a n d F2kk+& = 8 < m 0 d 9 > -

The problem is therefore equivalent to proving the congruence 

2n + 5n = 2 • 8 n (mod 9), for all n. (1) 

We form the sequences 

(2n (mod 9))~ = Q , (5n (mod 9))".0, and (2- 8n (mod 9 ) ) ^ 0 , 

and find that these are all periodic of period 6; these periods are, 

(1,2,4,8,7,5), (1,5,7,8,4,2), and (2,7,2,7,2,7), 

respectively (actually, the las t sequence is periodic with only period 2, but 
we have t r ip l ica ted the terms in order to make them compatible with those of 
the other two sequences). Therefore, we see that in a l l cases, the congruence 
in (1) is sa t i s f ied , proving the original problems 

Also solved by Odoardo Brugia & Piero Filipponi, Herta T. Freitag, L. 
Kuipers, Bob Prielipp, Sahib Singh, Lawrence Somer, and the proposer. 

Powers of F2h modulo ^2h-i 

6-821 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let n = 2ft - 1 with h a positive integer. Also, l e t K(n) = FhL-h_l. Find 
sufficient conditions on Fn to establish the congruence 

Fnini = l ( m 0 d Fn > • 

Solution by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA 

As n + 1 i s even, therefore using T13 of Hoggatt's Fibonacci and Lucas Num-
bers , we have 

F F x 0 = F 2
4 l + 1 = ^ ^ , E -1 (mod Fn) . n n + 2 n+1 n+ l v n y 

Thus, the order of F , -, modulo Fy, is 4. 
' n + 1 n 

From the property of order, it follows that: 
FnXl'1 = 1 (mod Fn) is true only when 4 divides FhLh_l. 

This is possible when 4 divides Fh or 4 divides Lh_l. (Since 2 is not a factor 
of Fh and also a factor of Fh_i for any h.)t possible for any ft.) 

4 divides Fh =$> h = 6t or n = 12£ - 1. 

4 divides L^_1 => h - I = (2t - 1)3 =*> h = 6t - 2 =s> n = 12t - 5. 

Thus, the required values of ft are 1 and 3, together with those positive inte-
gers ft which satisfy 

ft E 7 (mod 12) or ft E 11 (mod 12). 

1989] 185 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Also solved by Paul S. Bruckman, L. Kuipers, Bob Prielipp, Lawrence Somer, 
and the proposer. 

LETTER TO THE EDITOR 

February 3 , 1989 

Dear Dr. Bergum, 

Ifd like to point out that some results which appeared in Michael Mays!s 
recent article, "Iterating the Division Algorithm" [Fib. Quart. 25 (1987):204-
213] were already known. 

In particular, his Algorithm 6, which on input (b9 a) sets a = a and a i 
- b mod a , appeared in my paper, "Metric Theory of Pierce Expansions," [Fib. 
Quart. 24 (1986):22-4Q]. His Theorem 4, proving that L(b9 a) < 2 ib + 2 [where 
L{b, a) is the least n such that a = 0 ) , appears in my paper as Theorem 19. 

Let ft, ftf be defined as follows: we write f(n) = ft(^(n)) if there exist c, 
N such that f(n) > cg{n) for all n > N. We write fin) = ftf(^(n)) if there ex-
ists c such that f(n) > og{n) infinitely often. Since my paper appeared, I have 
proved 

max L(n9 a) = ft' (log ri) 
i<a< n 

and 

X! L(n9 a) = Q(n log log ri) . 

1 < a< n 

The details are available to those interested. 
Recently, I also stumbled across what may be the first reference to this 

type of algorithm. It is J. Binet, "Recherches sur la theorie des nombres 
entiers et sur la resolution de Inequation indeterminee du premier degre qui 
nfadmet que des solutions entieres," J. Math. Pures Appl. 6 (1841):449-494. 
Binetfs algorithm, however, takes the absolutely least residue at each step, 
rather than the positive residue, and it is therefore easier to prove there are 
no long expansions. 

Sincerely yours, 

Jeffrey Shallit 
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Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND 
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK 
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially 
welcomes problems believed to be new or extending old results. Proposers 
should submit solutions or other information that will assist the editor. To 
facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-430 Proposed by Larry Taylor, Rego Park, NY 

Find integers j , -2 < k < +2, m^ and n^ such that: 

(A) 5FmJni = Lk + Lj+i, for i = 1, 5, 9, 13, 17, 21; 

L. ., for i = 3, 7, 11, 15, 19, 23; 
J + ^ 

+ Fj + i , for i = 1, 2, . . . , 22, 23; 

Fd+i, for i = 1, 3, . . . , 21, 23; 
(E) L m .L w . = Lk - L-+i, f o r i = 1, 5 , 9 , 1 3 , 17 , 2 1 ; 
(F) LW.L^. = L_k + LJ.+ i , f o r i = 2 , 4 , 6 , 8; 

(G) LOTtL,7. = Lfe + Lj+i, f o r i = 3 , 7 , 1 1 , 15 , 16 , 18 , 19 , 2 0 , 22 , 2 3 ; 

(H) Lm.Lni = Lk + F. + i , for i = 10; 

(I) L,.F„. = Lfe + Fj+i, for i = 12; 

(J) 5 ^ . ^ . = h + Fj+i, for i = 14. 

H-431 Proposed by Piero Filipponi, Rome, Italy 

LA CATENA DI S. ANTONIO (St. Anthony's chain) 

Let us consider a town having n (> 1) residents. 

Step 1; One of them f i rs t draws out at random k (1 < fc < n) distinct names 
from a directory containing the names of a l l town-dwellers (possi-
bly, he/she may draw out also his/her own name), then he/she sends 
each of them an envelope containing one dollar. 

Step 2: Every receiver (possibly, the sender himself/herself) acts as the 
sender. 

Steps 3, 4, . , . : As Step 2. 

Find the probability Pm(s, k5 n) that, after s ( > 1) steps, every town-
dweller has received at least m (̂  1) dollars. 
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Remark: I t can r e a d i l y be seen t h a t 

P ( s , n , ri) = 1 for s = m, lim P ^ O , k, n) = 1, and 
S -> oo 

^ / 7 \ n •£ ^ fn ~ 1 ( f ° r ^ = 1) 
i V (logfe(n(fe - 1) + 1) - 1 (for 1 < A: < ft). 

H-432 Proposed by Piero Filipponi, Rome, Italy 

For k and ft nonnegative i n t e g e r s and m a p o s i t i v e i n t e g e r , l e t M(k-9 ft, m) 
denote the a r i t hme t i c mean taken over the kth powers of m consecut ive Lucas num-
bers of which the smal les t i s L n . 

-.n + m-l 
M(k, ft, m) = i- £ L*. 

J = 77 

For /c = 2^ (h = 0, 1, 2, 3), find the smallest nontrivial value mh (mh > 1) of 
m for which M(ky n, m) is integral for every n. 

SOLUTIONS 

Old Timer 

H-365 Proposed by Larry Taylor, Rego Park, NY 
(Vol. 22.1, February 1984) 

Call a Fibonacci-Lucas identity divisible by 5 if 6very term of the iden-
tity is divisible by 5. Prove that, for every Fibonacci-Lucas identity not 
divisible by 5, there exists another Fibonacci-Lucas identity not divisible by 
5 that can be derived from the original identity in the following way: 

1) If necessary, restate the original identity in such a way that a deri-
vation is possible. 

2) Change one factor in every term of the original identity from Fn to Ln 
or from Ln to 5Fn in such a way that the result is also an identity. If the 
resulting identity is not divisible by 5, it is the derived identity. 

3) If the resulting identity is divisible by 5, change one factor in every 
term of the original identity from Ln to Fn or from 5Fn to Ln in such a way 
that the result is also an identity. This is equivalent to dividing every term 
of the first resulting identity by 5. Then, the second resulting identity is 
the derived identity. 

For example, FnLn - F\n can be restated as 

F„Ln = FZn ± F0(-l)n. 

This is actually two distinct identities, of which the derived identities are 

LZ
n = L2n + L0(-l)n 

and 
5Pn2 = L2n - p 0 ( - i r . 

Partial solution by the proposer 

1. Fibonacci-Lucas Equations 

We define a Fibonacci-Lucas equation as an equation in one unknown in which 
one of the roots is equal to (1 + /5)/2. Let x = /5 and a = (1 + x)/2. Let J 
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and k be i n t e g e r s , and l e t 

A=FjFk, B = FjLk, C = LjFk, D = ZyLfc, E-Fk+., 

F = Fk_-, G = Lk+j, H = Lk_jt i = (-1)"7'. 

(Notice that F is not a Fibonacci number because it does not have a subscript.) 
Then, the following results are known: 

5A = G - Hi, 

B = E - Fi, 

C = E + Fi, 

D = G + Hi. 

Let n be an integer. From 

L„ + F„x 
ar 

and 
5Fn + Lnx 

xan = -

F,.a* = 

FjXak = 

Ljak = 

LjXak = 

Fkat = 

L k a* = 

(5 + i4a;)/2 

(5A + Bx)/2 

(D + Gx)/2 

(5C + Ex)12 

(C + Ax)12 

{E + 5 x ) / 2 

2 

the following results can be obtained: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Fkxai = (5A + Cx)/2 (7) 

Lkxa.i = (5S + Zta)/2 (8) 

Subtracting (5) from (1), (6) from (2), (7) from.(3), (8) from (4) gives: 

(S - C)/2 = -Fi 

(5A - D)/2 = -Hi 

(D - 5A)/2 = Hi 

(5C - 5B)/2 = 5Fi 
After (4) minus (8) has been divided by x, this gives the following set of four 

Fibonacci-Lucas equations; 

(Ex) F-ak - Fkai + Fk_j(-l)j = 0 

(E2) F-xak - Lka.i + £fc_J-(-l)J' = 0 

(E3) Lja* - Fkxai - ik_/-l)J' - 0 

(E4) L ^ = Lkai - Fk_j.x(-l)j = 0 
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2. Fibonacci-Lucas Identities 

As yet, there is no rigorous definition of a Fibonacci-Lucas identity. Un-
til such a definition is formulated, there will not be a complete solution of 
this problem. However, the following tentative definition can serve as the 
basis of a partial solution: Define a Fibonacci-Lucas identity as a rational 
form that can be derived from a Fibonacci-Lucas equation. 

Let the letters A through L be redefined as follows: 

A - FjFn+k> 
E = FkFn + j ' 

I ~ Fk - j^n > 

B 

F 

J 

Fj ^n+k9 

= F T, 

= Fk-jLn> 

c 
G 

K 

= LjFn+k> 

^k^n + j ' 

^k - jFn , 

D 

H 

L 

~ LjLn+k> 

= LkLn + j> 
= ^k- j^n-

After equations (E^) throug'h (E^) have been multiplied by an, they can be 
restated as follows: 

(B + Ax)12 - (F + Ex)12 + (J + Ix)/2i = 0 

(5A + Bx)/2 - (H + Gx)/2 + (L + Kx)/2i = 0 

(P + Cx)/2 - (5E + Fx)/2 - (L + Kx)/2i = 0 

(P + Ca;)/2 - (P + Gar)/2 - (51 + Jx)/2i = 0 

Let 

PX - 4 

P 2 = B 

P 3 = <7 

Ph = C 

- E + Ii9 

- G + Ki9 

- F - Ki9 

- G - Ji9 

Ql = B - F + Ji9 

Qz = 5A - H + Li, 

Q3 = D - 5E - Li9 

Qh = P - H - 5Ii. 

Then (Qt + Ptx)/2 = 0 for t = 19 2, 3, 4. But Qt is a rational number. If Pt 
* 09 then P x is an irrational number. The sum of a rational number and an 
irrational number cannot be equal to zero. Therefore, Pt = 0 and Qt = 0. 

It is clear that Pt = 0 and Qt = 0 are rational forms that can be derived 
from a Fibonacci-Lucas equation. In the following set of eight Fibonacci-Lucas 
identities, 

P]_ = 0 is equivalent to Identity (1^) 
§1 = 0 is equivalent to Identity (I2) 
Pi = 0 is equivalent to Identity (I3) 
§2 = 0 is equivalent to Identity (1^) 
P3 = 0 is equivalent to Identity (I6) 
Q3 = 0 is equivalent to Identity (I5) 
Pi+ = 0 is equivalent to Identity (I7) 
Qi+ = 0 is equivalent to Identity (I8) 

Ul) F-Fn + k = FkFn + j - Fk_-Fn{-iy 

( 1 2 ) F3.Ln + k = FkLn + j - Fk_jLn{-iy 

( 1 3 ) FjL„ + k = LkFn + j - Lk_jFn{-l)i 

(W 5FdFn+k = LkLn + j - Lk_-ln(-l)i 

( I s ) V ^ + f c = 5FfcF„ + J. + Lk_jLn{-\y 

( 1 6 ) i j ^ + f c = ^ £ „ + J- + Lk^Fn{-l)o 

( 1 7 ) V"» + fc = LkFn + j + Fk^Ln(-l)^ 

(18) ^ » + * " V ^ + j + 5^_€7 -F„(- l ) - ' ' 
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It can be observed that Identities (1]/) through (Ig) are not divisible by 
5. Also note that (II ) and (I2) can be derived from each other by the method 
described in this problem, (I3) and (I4) can be derived from each other, (I6) 
and (I5 ) can be derived from each other, and (I7) and (I8) can be derived from 
each other„ 

A Prime Example 

H-408 Proposed by Robert Shafer, Berkeley, CA 
(Vol. 25.1, February 1987) 

(a) Define uQ = 3, ul == 0, u^ = 2, and un + l = un_l + un_z for all integers n. 

(b) In addition, let wn = 3, W-, = 0, Wn = -2, and w• , •, = -W -, + w 0 for all 
v / U y 1 y 2 * n +1 n-l n - 2 

integers n. 
Prove: 

Up E Wp E 0 (mod p) and u_p E ~^_p E "1 (mod p ) , 

where p is a prime.number. 

Solution by C. Georghiou, Patras, Greece 

We need the following lemma. 

Lemma: Let 

f(x) = xn + a „}xn~l + an_2xn~2 + ••• + aQ 

be a monic polynomial with integer coefficients and denote its roots by r^ , p^' 
. .., Pn. Then, for any prime p, 

Pf + r2 + °  °  9 + rn ~ (r\ + P2 + °  °  °  + Vn ^ (mod P) • 

Proof: First, it is easy to see that if p is prime, then the multinomial coef-
ficient 

Pi 
k ^ l ... knl 

I s d i v i s i b l e by p when 0 < ki < p , i = 1, 2 , . . . , n , and /q + &2 + * ° ° + ^ n = 
p e Second, by t h e m u l t i n o m i a l t h e o r e m , we have 

( r + :, + . . . + r )? = J] ( P WJ142 . . . rfe, 
1 z / q + fe2 + . . . + ?-,. = p V /<1 > ^ 2 ' * • • ' Kn' 

0 < kx < /c2< • - . < & „ < p X / < l 5 K2$ s ° " 5 K n / 
fci + k2 + • • - + kr_ = p 

x ^ ( r 1 5 2>2, . . . . ^ n ) , 
where 

is a symmetric polynomial with integer coefficients. Then, by the Fundamental 
Theorem on Symmetric Functions (see, e.g., C. R. Hadlock: Field Theory and Its 
Classical Problems, MAA Publ*, 1978, p. 42), each gk(r]_, r2, »*., rn) can be 
written as a polynomial fok in the elementary symmetric functions with integer 
coefficients. Since gv(pi* r^5 ..., rn ) takes integer values, the lemma is 
established. 
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(a) From the initial conditions we find that, for -°°  < n < +°°, 

un = r^ + r̂ ? + p^ 

where p, , r„, P3 are the roots of the (irreducible) polynomial 

f(x) = x3 - x - 1. 

Therefore, for any prime p, 

Up = P P + pj + P P = (P1 4- P2 .+ P 3 ) P = 0 (mod p) ; 

^-(^H^-^)'-<-»'--'<«<p>. 
(b) Same as above, with P-,, P^, P3 the roots of the (irreducible) polynomial 

fix) = x3 + x - 1, 

and we find that 

7Jp = p p + p| + p p E (PX + P 2 + ^ 3 ) P = 0 (mod p) ; 

w „ = P 7 P + P!P + v~V = (— + — + — J = lp = 1 (mod p) . 

AZso solved by P. Bruckman and the proposer. 
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