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SOME NEW RESULTS ON QUASI-ORTHOGONAL NUMBERS

Selmo Tauber

Portland State University, Portland, OR 97201
(Submitted April 1987)

1. Introduction

As far as is known tc this author, the term "Quasi-Orthogonality'" was first
introduced by K. S. Miller in [1]:

Given two sets of numbers A(m, n) and B(m, n) such that m, n, s € Z, and
A(m, n), B(@m, n) =0 for n < 0, m < 0, and »n < m, they are said to be quasi-
orthogonal to each other if

55 A(s, n)B(m, 8) = 8§(m, n) (1)

where §(m, n) is the Kronecker delta.

Equivalently, we can say that if A(n) is the square, and triangular matrix
of elements A(m, n) of n rows, and B(n) the square and triangular matrix of
elements B(m, n) of n rows, then

A(n)B(n) = I, (2)
i.e., the two matrices are inverse of each other.

H. W. Gould has compared the different aspects of quasi-orthogonality and
studied some of its properties [2].

In this paper we shall be concerned with the so-called BILINEARLY RECURRENT
orthogonal numbers, i.e., numbers satisfying recurrence relations of the form:

A(m, n) fﬁmvﬂ“m—l,n—l)+fﬂm,MAw,n—lh (3)
B(m, n) = fa(m, n)B(m - 1, n - 1) + f,(m, n)B(m, n - 1). (4)
The problem to solve is the following: knowing f; and f,, find f3 and f,

or, since the problem is symmetric, knowing f; and f,, find f, and f,.
So far, only the following cases have been studied:

Case 1: f, = N(n), fo = M),

fs = 1/[N(m + 1)], fi = -M(m + D/[Nm+ 1)]. cf. [3].
Case 2: fl = P(m), f2 = Kn) + M(m + 1),
fy= 1/P(n), fiy = -[&Km+ 1) + M@n)1/P(n). Cf. [3].

Other cases of quasi-orthogonal numbers have been studied but they are not
of the bilinearly recurrent kind.

The final aim is to obtain a general case where the functions f; are all of
the form f; (m, n). This result has thus far been impossible to reach.

In this paper we study

Case 3: f,(m, n) = a(m)B(n), f,(m, n) = n(n),
F3lms n) = 1/a(n)g(m), f,(m, n) = -n(m + 1)/a()B(m + 1).
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SOME NEW RESULTS ON QUASI-ORTHOGONAL NUMBERS

2. P-Polynomials and A-Numbers

Let J be the set of positive numbers and zero, i.e., J= [0, Z*]. We assume
that m, n, k, s € J, and that a(m, n), b(m), and ¢(m) are defined, and not equal

to zero, also that x > 0.
Consider the polynomial

P(n, x) = ié a(m, n)A(m, n)x™ =kfil[b(k) + c(R)x],

m=0
so that
n+1
P(n+ 1, ) =3 alm, n+ DA, n + 1z
m=0
n+

I]l[b(k) +ce(k)x] = [b(n + 1) + en + x]P(n, x)
1

= [b(n + 1) + c(n + Dal 3, alm, n)A(m, n)x™.

m=0

m+l  we obtain

By comparing the coefficients of x
am+ 1, n+ DAm+ 1, n+ 1) =cn + Lalm, n)Alm, n)
+ b(n + Dalm + 1, n)A(m + 1, n)
or, since a(m+ 1, n + 1) = 0,

_ a(m, n)
Am+ 1, n+ 1) =cn + l)a(m T L oar D A(m, n)

alm + 1, n)
+ b(n + l)a(m T A+ D Alm + 1, n),

or again,

Ay 7)) = o@D ey o
a(m, n)
+ b(n)gimi_ﬁ_:_ll4A(m’ no-1).
a(m, n)

This is the recurrence relation for the numbers A(m, n).

3. B-Numbers

We express x” in terms of P-polynomials as defined in Section 2, thus

1

x” A(s, n)B(s, n)P(s, x)

2
s=0
2 A(s, n)B(s, n) [ Y a(m, 8)A(m, s)xm],
s§=0

m=0

(5)

(6)

(7

(8)

where the numbers A(s, n) are defined, and different from zero, for s, n € J,

and B(s, n) satisfy the conditions of Section 1.
It follows that

S
" > A(s, n)a(m, s)B(s, n)A(m, s)x™
=)

s=m

2
s§=0
> xm| 3 A(s, m)a(m, s)B(s, n)A(m, s)],
m=0

1989]
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which shows that the quantity in brackets, i.e., the coefficient of ™ must be
equal to 6;.

To assure the quasi-orthogonality of the numbers A(m, s) and B(s, n) it is
necessary to assume that

X(s, n)a@m, s) = 1. (10)
This result can be obtained in the following way:
For m = n, we take A(s, n)a(n, s) =1, i.e., A(s, n) = 1/a(n, 8).
For m # n, i.e., for m < n, it is necessary to write
a(m, s) = a;(ma,(s), r(s, n) = r;(8)r,(n),
with X, (s) = 1/a2(8), so that
A(s, n)a(m, &) = A, (n)a;(m),

which, substituted into (9), gives

rxo
2<n)a1<m)xml>: B(s, n)A(m, s)} (92)

s§=m

8
3
1]

o (m)ay (mx™sy,

n

S
m=0
n

ST A
m=10
which is satisfied if A,(n) = llal(n).

We summarize this result by writing

A(s, n) = [l/az(s)])\z(n):
or
}\(3, TZ) = ],/CZ(?’L, 3) = l/al(n)az(s)'
Under these conditions, clearly (9) can be written as
n
z" = Y z"sy (11)
m=0
and
n
Y B(s, n)A(m, s) = &}. (12)
s=m
On the other hand,
n
"l = ghe g = [ S A(s, n)B(s, n)P(s, x)}x. (12a)
s=0
Since, according to (6),
P(s+ 1, x) = [b(s + 1 + c(s + 1)x]P(s, n), (13)
it follows that
xP(s, ) = [P(s + 1, x) = b(s + 1)P(s, x)]/c(s + 1) (14)

so that, substituting into (12a), we obtain

ntl _ % P(s +1, @  b(s +1)
x Sg%)k(s, n)B(s, n)[ e+ D) G T D P(s, x) (15)
n+1
= 3 Ms, n+ 1)B(s, n + 1)P(s, ).
§=0
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Comparing the coefficients of P(s + 1, x), we see that

r(s, n)

M + 1, n+ 1)B(s+1, n+ 1) =mB(s, 7) (16)
e + 1, n)b(s + 2)
- c(s + 2) Bls + 1, n)
or .
B(s + 1, n+ 1) = Mo, n) B(s, n) (17)

AMe + 1, n+ De(s + 1)

As + 1, m)b(s + 2)
T+ 1, n+ Des + 2) B(s + 1, n),

or again,
Ms -1, n-1) _ _
B(s, n) = 6. e B (s 1, n 1) (18)

A, n - Db + 1)
B A(s, M)e(s + 1) Bl,n - 1.

Equation (18) is a first form of the recurrence relation for the B-numbers.

4. Evaluation of a(m, n)

According to (4) and (7), we can write:

a(m - 1, n — 1)

e(n) Py — = fi(m, n); 19
a(m, n - 1)
b(ﬂ)—m = fz(m, n). (20)

From (20), we deduce
bn)aim, n - 1) = fz(m, n)a(m, n)
b(n - Da(m, n - 2) = f,m, n - Lalm, n - 1)
b(n - 2)a(m, n - 3) = folmy n = 2)a(m, n - 2)

b(2)a(m, 1) = f,(ms 2)a(m, 2)
and multiplying through and simplifying,

L]

{ﬁ b(k)]a(m, 1) = a(m, [ I £,0m k)]
k=2 k=2

or
n bk) 1
- B AT 21
a(m, n) = a(m, l)[krzlz 75 G, k)J 2n
and .
am -1, n -1 =alm-1, 1) [kl:lzb(k)/fz(m -1, k):]. 22)
Substituting (21) and (22) into (19), we obtain
n-1
e(m)aim - 1, l)[kl:lzb(k)/fz(m -1, k)]
19891

197



SOME NEW RESULTS ON QUASI-ORTHOGONAL NUMBERS

= a(m, 1) [kljzb(k)/fz(m, k)]fl(m, n)

which, after simplification, gives

a(m, 1) = alm - 1, )[e®n)/bn)]

n-1
[kr_lz Folms KY/Fy(m = 1, k)] [f, (s w)/F) (s 7)) (23)

or
a(m, 1) =alm -1, 1)a@m), (24)

since the left-hand member of (23) is independent of n, i.e.,
n-1
Q@m) = [c(n)/b(n)][;ljzfz(m, K)Ifolm = 1, k)][fz(m, n)/fyGm, n)]. (25)

To eliminate » in the right-hand member of (25), we assume that
fiGm, n) = a(m)B(n), and Folmy n) = S(m)n(n).
Equation (25) can then be written as
Q@m) = [e(m)/bm) 118G /66 -~ 1)1 2[8(mn () /a(m)B(n)].

In order to have the right-hand side independent of »n, it is necessary to
assume that

le(m)/b(m)][n(n)/B(n)] = A = Const., (26)
and

S(m)/S(m = 1) =1, (27)
i.e., 8{(m) = B = Const. We may also assume that 4 = B = 1, i.e.,

folms n) = f,(n) = n(n, (28)

le()/b(m)IIn(m)/8(n)] = 1. (29)

It follows that Q(m) = 1/a(m) and, returning to (24), we can write

a(m, 1) = a(m - 1)/oa(m)
alm - 1, 1) = a(m - 2)/oa(m - 1)
alm - 2, 1) =a(m - 3)/oa(m - 2)
a(2, 1) = a(l, 1)/a(2),

and multiplying through, we obtain

almy 1) = a(l, 1)[ I l/oc(j)]. (30)
=2

Substituting (30) into (21), we obtain

n m 1 n b(k)
3 = ) > = 3 N T e 31
a(m, n) a(m l)k[gb(k)/fz(m k) a(l 1)j£¥ o AL v (31)

In the following examples we shall show how the results so obtained can be
used to solve the proposed problem.
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5. Example I

Given A(m + 1, n + 1) = mmd(m, n) + A(m + 1, n), which we rewrite in the
form of (4),

A(m, n) = (m - 1D)(n - DA(n - 1, n ~-1) + 4(m, n - 1),

so that fl =(m-1)n-1), 1.e., a(m) =m -1, B(n) =n - 1, fz =nn) = 1.
Equation (26) gives

c(n)/b(n) = Bn)/n(n) =n -1,
and from (31) we obtain, with a(l, 1) =1,

1 f:[zb(k) = X(?’Z)/(m - D!y X(n) =kﬁ b(k).

alms ) :ngzj -1y =2

From (10), it follows that, since A(s, n)a(m, 8) = 1,
A, n) = n - 1)/X(s).
From (18), we obtain
F3 =26 -1, n-1)/xs, nic(s)
=[(m-2)1/x( - DIX)/(m - Dlcle)].
As we have shown in this example, e¢(n)/b(n) =n - 1, so ec(n) = (n - 1)b(n) and

f3 =1/(n - 1)(s - 1). Again, from (18), we obtain fL+ = -1/s(n - 1). It fol-
lows that the B-numbers satisfy the relation

B(s, n)y = [1/(n - 1)(s - DIB(s =1, n~-1) - [1/(n - 1)s]B(s, n - 1).
For A(1, 1) = B(l, 1) = 1, we present a table of the A- and B-numbers:

Alms n) B(m, n)
n |1 2 3 4 5 1 2 3 4 5
1|1 )
2 |11 4 1
301 3 4 % -% %
4 |1 6 22 36 _% _2l4 _% 3%
5 |1 10 70 300 576 = _ESZ 1‘3‘;—8 e 5_;’6

6. Evaluation of f3 and f,

As we have seen in Section 4, it is necessary to assume that
Filmy m) = a(mp(n) and f,(m, n) = n(n).

From (31), a(m, n), and (10) and its consequences, it follows that A (s, n) =
1/a(n, s). Thus

A, n) = [jﬁzuu)][kli n(k)/b(k)]. (32)

1989] 199
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Then it follows from (18) that

F3(s, n) = a(s = 1, n - 1)/A(s, n)e(s) = 1/a(n)B(s) (33)
fulss m) = =x(s, n = 1)b(s + 1)/2x(s, n)e(s + 1)
= -n(s + D/am)B(s + 1). (34)

The results of Example I can be checked easily using (33) and (34).

7. Example II

Given

2
Mm+l,n+l)=%;Am,n)+Am+1,nL

We rewrite this in the form of (3), i.e.,

AGm, n) = [(n - 1D2/(m - D1AGm - 1, n - 1) + A@m, n - 1).

It follows that

fr0m, n) = a(mg®) = (n - D2/(m - 1),
fz =1,
falmy n) = (n = 1)/(m - 1),
and fu(my n) = -(n = 1)/m?,
so that
B(m, n) = [(n = D/(m - D*IBm - 1, n - 1) = [(n = 1)/m*1B(m, n - 1).
For A(l, 1) = 1, we give here the values of the A- and B-numbers for m, »n
< 5.
A(m, n) B(m, n)
" m |1 2 3 4 5 1 2 3 4 5
1 1 1
2 1 1 -1 1
5 1
3 1 5 2 2 -5 >
49 63 49 1
4 1 14 - 6 -6 Ky YA 6
273 410 255 1897 205 1
> L 30 = 3 2% | % T Lie T216 74
References
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PROBABILISTIC ALGORITHMS FOR TREES

Bruce E. Sagan
Michigan State University, East Lansing, MI 48824-1027

Yeong-Nan Yeh
Academica Sinica Nanking, Taipei, Taiwan, R.0.C.
(Submitted April 1987)

1. Introduction and Definitions

A rooted tree, T, is a partially ordered set whose Hasse diagram is a tree
(in the graph-theoretic sense of the term) having a unique minimal element
called the root, see Figure la. If ]Tl=71, a natural labeling of 1 is a bijec-—
tion T: 7 > {1, 2, ..., n} such that v < w in t implies T(v) < T(w). One such
labeling is given in Figure 1b. In this case, we say T has shape t. We let f,
represent the number of natural labelings of T.

The hook of a node v € 1 is

Hy = {we t|lw > v}

with corresponding hooklength h, = |H,|. The hooklengths of our example tree
are displayed in Figure lc. The well-known hook formula [3] for the number of
natural labelings states that

£ =n!/H - (1.1)

verT

Thus, in our example f. = 7!/(7)(3)(2)(1)* = 120.

T

1 7
(a) (b) ()

A tree, a labeling and the hooklengths

FIGURE 1

In Section 2 we will give a simple probabilistic proof of (l.1) inspired by
an algorithm of Greene, Nijenhuis, and Wilf [1] for standard Young tableaux.
The tree version has previously appeared in [5], but is included here for com-
pleteness. An algorithmic derivation of the hook-generating function for
reverse tree partitions [which specializes to (l.l) as the variable approaches
1] can be found in [6].

A Fibonaceci tree [9] is a finite lower-order ideal of the infinite poset in
Figure 2a. The name derives from the easily proved fact that the number of
Fibonacci trees with n nodes is the n'PM Fibonacci number. For example, Figure
2b shows the five Fibonacci trees with four nodes. Let %, be the set of all
Fibonacci trees with »n nodes, then

1989] 201
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Zf-r2=n! (1.2 '

TES
°
.

Efyowy)

(b)

Fibonacci trees

FIGURE 2

Formula (1.2) has a bijective proof due to Bender (reported in [9]). I
Sections 3 and 4 below we will give two constructions that build a labeled tre
T € &, with probability ff/n!, thus proving (1.2) twice. The first algorith
constructs the tree "from without" as done for tableaux in another paper o
Greene et al. [2]. The second builds the tree "from within'" and is based o
work of Pittel [4].

2. Choosing a Labeling Uniformly

Let 1 be a fixed shape with 7 nodes. The following algorithm can be use-
to checose a labeling of T. ;

GNW1. Pick a node v € T uniformly at random, i.e., with probability 1/=.
GNW2. If v is maximal (a leaf), then let T(v) = n and return to GNW1 wit

T and n replaced by T - {v} and n - 1, respectively (unless there are no node
left, in which case the algorithm halts).

GNW3. If v is not maximal, then choose a different node w € H, uniforml
at random, i.e., with probability 1/(%, - 1), and return to GNW2 with w in th
role of v.

A sequence of nodes generated in the process of finding a vertex to t
labeled (in this case by the loop between GNW2 and GNW3) is called a trial. 2
example of a typical trial is given in Figure 3.

v

Prob(v): 1/11 1/6 1/2
A GNW trial

FIGURE 3

Theorem 1: If 1 is a fixed rooted tree with » nodes, then GNW1-3 produce al
labelings of 1 uniformly at random. In fact, the probability of any give
labeling is

Il 7, /n!

VET

Proof: Let w be any maximal element of T and let W be the set of vertices ¢
the unique path from w to the root of 1 (excluding w itself). Note that thes
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are the only vertices whose hooklengths are changed if w is removed from T dur-

ing GNW2. Therefore, by induction, it suffices to show that the probability
that w gets label n is

P(w)

(1/n) I hy/(hy = 1)
vew

1
a/m I (1  — 1)'

But 1/n is the probability of choosing an initial node and each term in the

expansion of the product corresponds to the probability of a unique trial
ending in w. [J

As an immediate corollary we have

Corollary 2: The number of labelings of a given tree 1t with »n nodes is

fe=nt/Mn,. O

vVET

3. Fibonacci Trees Grown from Without

It will be convenient to introduce coordinates for the infinite tree of
Figure 2a. Let the nodes of the "spine" be (Z, 0) for ¢ = 0, 1, 2, ... while
the leaves are denoted by (7, 1) for the same range of ©. Now, any Fibonacci
tree can be specified by its coordinates as is done in Figure 4a.

(2,1)
(3,0)
0,1) (2,0)
(1,0)
(0,0)

(a) (b)

Coordinates and the associated tree
FIGURE 4
Given any vertex v = (Z, J), then v has associate v’ = (¢, 1 - j). If 1 is
a Fibonacci tree with spine of length g, then the associated tree is
' ={v = (<, j)[v' € Tor 7 =38+ 1};

see Figure 4b where the associated tree's nodes are the open circles. Note
that t' is "upside down" with root r = (s + 1, 1).
Now suppose we wish to build a labeled Fibonacci tree, T. Assume that the
first m - 1 vertices of T have already been constructed and given the labels 1,
., m = 1. Let T be the current shape of T with associate t' whose root is r.
To add a node labeled m to T we proceed as follows:

WNGl. Choose a v € t/ - {r} uniformly at random.
WNG2. If v ¢ 1, then add v to T with label m and halt.

WNG3. If v € 1, say v = (Z, J), then return to WNGl with +t’' replaced by
- A{E g 2" < i},

1989] 203




PROBABILISTIC ALGORITHMS FOR TREES

Figure 5 presents an example of a trial generated by WGN1-3.

VEU

Prob(v):

A WNG trial

FIGURE 5

If this procedure is used iteratively for m = 1, 2, ..., n to produce a labeled
Fibonacci tree, then let P(T) be the probability that labeling T is created.
Thus, the total probability of producing a given shape 1 is P(t) = IP(T), where
the sum is over all labelings T of T.

Theorem 3: If 1 is a Fibonacci shape with »n nodes, then diteration of WNG1-3
produces all labelings of 1 with total probability

P(1) = fZ/n!

Note: It is not true that WNG1-3 produces each labeling of t with probability
P(T) = fi/n!.

Proof: Let 1T have leaves wj, Wy, ..., W; and define the subtrees 1; = 1 - {w;}
for all ©. Let P(wilTi) denote the probability that w; gets labeled n after
the algorithm constructs some labeling of 1;. Hence, by the definitions above
and induction,
P(t) = 20 P(1;)Pwg|t) = 2 (f2 /(n - 1)DPw,|1;). (3.1)
i z *

Let the w; be arranged in order of increasing first coordinate, i.e.,
wl = (a1: D, «ovy wk—l = (ak—l’ 1, wk = (ak’ J),

where a; < ... < gy and j may be 0 or 1. We need a couple of lemmas to help
compute the quantities in (3.1).

Lemma 4: Let T and the w; be as above, then

k-1

o=l n=-a;, -1).

=1

Proof: Using the hook formula (Corollary 2), we see that every term in the n!
is canceled by a hook of 1T except those in the product above. [J

Lemma 5: Let 1 and the w; be as above, then

i-1 2
Pw;lt) = (/m) I (1 + ——————)
i=1 n-a;=-gJ- 1
Proof: Initially we can pick any one of the n nodes in 1] - {r]. Any trial
ending at w; can only pass through those w; with j < 7 and their associates w!.
Landing on either of these two reduces the number of available nodes 1in
1/ - {r} ton - a; - § - 1, accounting for the second term of the binomial

T
above. []

204 [June-July



PROBABILISTIC ALGORITHMS FOR TREES

For notational convenience, let b; = n - a; - 7. Hence, by Lemma 4,

f} = blbz . bk—l
and

fTi = (bl - 1) oo e (bi—l - l)bi+1 e o e bk—l'
Also, from Lemma 5,

2 2

P(wi[Ti) = (l/n)(l + E;_:_I> cee (l + ET———:—I>-

Thus,

FE Pt )/ = DY = (1/nz>{ @2 - 1)}{ I b}}.

1<t i<g<k

Plugging this expression into (3.1), we see that the sum of products telescopes
(from the right-hand end) so that

P(t) = b% ... bZ_,/n! = f2/n!

as desired. [J
The obvious corollary is

Corollary 6: 3 fZ2=n! 0O
TES,

We should also note that this algorithm has a "zone effect" similar to the
original one for Young tableaux. Specifically, ifv = (a, 1) and w = (b, 1)
with a; < a, b < a;4), then by Lemma 5 we have P(vlr) = P(wIT). This observa-
tion will be useful in the next section.

4. Fibonacci Trees Grown from Within

Given v € T, then v is a singleton if v' ¢ 1 and a doubleton otherwise. 1In
Figure 6a, the singletons are (0, 0), (3, 0), (4, 0), and (6, 0), with the rest
of the vertices being doubletons. If T has a spine of length s, then the
corresponding extended tree is

" = TL){U'|U € 1 is a singleton}u{(s + 1, 0)},

see Figure 6b. The elements of 1" - 1 are organized into 2ones, which are
maximal strings of vertices with consecutive first coordinates. Zones are
numbered from the bottom up starting with zone 0, e.g., in Figure 6,

Zo = {0, D}, 2, = {(3, 1), (4, 1)}, Zp = {(6, 1), (7, O)}.

In the same way, the doubletons of T are grouped into bands with band < direct-
ly below zome 7. In our example, the bands are

Bg = 0, By = {(1, 0), (1, 1), (2, 0), (2, 1)}, B, = {(5, 0), (5, D}.

(a)
A tree and the extended tree

FIGURE 6
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Finally, it will be convenient to have a total order on the vertices. 1If
v= (i, j) and w = (x, y), then we will write v<, w if Z<x or Z=x and j<y.

Now, given a labeled Figonacci tree 7 of shape 1 on m - 1 nodes, we find a
node of w € 1" - 1t to label m by constructing a trial as follows. As usual,

":=" is the Pascal assignment symbol.

Pl. Let v := (0, 0) with probability 1. Let the set of predecessors of v
be P := §.

P2. Set P := PU{v}.

P3. Pick w uniformly at random from among the set, D, of possible direct
successors of v = (4, J) defined by:

(a) if v is a doubleton, then D = {w € 7 - Plw=>, v}.

(b) 1if v is a singleton, then let B be the band of largest index
containing an element of P and let b be the maximum node of B
(with respect to <;). In this case

D={wet" - le > bl -{wa singleton|w < v},

If B does not exist, i.e., P consists only of singletons up to
this point, then we take b = (0, 0).

P4. 1If we t" - 1, then halt, else return to P2 with w := ».

Note that the trials generated by Pl-4 do not necessarily respect the par-
tial order in 1 and the sequence of D's computed in P3 is not ordered by
containment. For example, if a trial in the tree of Figure 6 has begun (0, 0),
(4, 0), then the next node could be any one in 1" except the two initial nodes
and (3, 0). If the trial continues to (l, 1), then any nontrial vertex (7, J)
with © > 1 is available for the next choice, including (3, 0). However, if the
trial begins (0, 0), (1, 1), (4, 0), then the only possible successors are
vertices (3, 1), (4, 1), (5, 0), (5, 1), (6, 0), (6, 1), and (7, 0).

Nevertheless, these rules do provide the desired distribution.

Theorem 7: 1f 1 is a Fibonacci shape with n nodes, then iteration of Pl-4 pro-
duces all labelings of 1 with total probability

P(1) = f2/n!

Proof: It suffices to show that Lemma 5 is still true when using P1-4. It will
be convenient to reformulate the Lemma slightly for this setting. Let A be a
Fibonacci tree with n - 1 nodes and leaves w;, Wy, ... with first coordinates
a; < ap < ...

Lemma 8: With A as above and w € A" = X in the k' zone, then the probability
of terminating a Pl-4 trial at w is

2
P@w) = (1/m) T 1+ ———).
w;€B,, i<k n-a; -g -1

Proof: Induct on k. We will provide an explicit proof of the induction step,
the anchor step being similar.

The trials ¢t: vy = (0, 0), v;, ..., w are of two types, those that pass

through an element of B, and those that do not. The latter are in bijective

probability preserving correspondence with trials vy, vy, ..., w', where w' €
g P 0 1

Zg-1- In the former case, if v; € B, is the first such node then vy, ..., v;_1,

w' is a legal trial having the same probability as the initial segment of ¢. We
will show below that the sum of the probabilities P of all possible final seg-
ments Vi, Vjiyls ee.s W is independent of both the particular node of Bk and the
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initial history of ¢. Thus, by induction, it suffices to demonstrate that

B 2
1+ P|B,| -wj[gBk (1 + B | 1>'

But the right side above telescopes to (g + |Bkl)/s, where s is the denomi-
nator corresponding to the largest leaf in B; that has coordinates (a, 1), say.
It is easy to see that if we consider the subtree o = {(z, j) € Ali > g} then g
= ]o| + 1. Hence, to finish the proof of the theorem, we need only show

Lemma 9: Let ¢, v = v;, P, and ¢ be as above. Then P is independent of the
set of nodes on t prior to v and of v itself (as long as v € B;). In fact, P =
/(o] + 1).

Proof: Let {v = uy <, uy <4 ... <, u,} be the set of all possible vertices that
could appear on ¢ from v up to (but not including) w, i.e., the set of all ele-
ments above v that are either elements of By or singletons not previously on t.
Because of these restrictions, the set of direct successors, D(ui), does not
depend on the previous u; chosen and, in fact, we have

Duz) = {ujlj > 1} U {v € o"|v is not a singleton in ¢}
= D(ui—l) - {Hi}.

Thus,

[D(um)| = ‘{D € o”|v is not a singleton in G}( = |o] + 1
and

|Du) | = [D(uy_] - 1.
Hence,

P = lD(;l)l(l ’ |D(u1)l| - l) (1 ’ ’0l1+ 1>= |0‘1+1

as desired. [J

Of course, Theorem 7 gives another proof of Corollary 6.

5. Remarks and Open Questions

Another point of similarity between Fibonacci trees and standard tableaux
is the formula

> =1, (5.1)

1€

where I, is the number of involutions in the symmetric group S,. The corre-
spondence of Bender [9] mentioned in the introduction also proves (5.1). 1Is
there a probabilistic way to demonstrate this, either for trees or tableaux?

A third family of posets that displays behavior similar to that of standard
tableaux and rooted trees are the shifted standard tableaux [3]. The shifted
analog of the hook formula (1.1) has been proved probabilistically by one of us
[7]. It would be interesting to find an aleatory proof of the "sum of squares"
equation in the shifted case (see [8] for the exact formula).

Finally, tableaux and shifted tableaux are intimately connected with repre-
sentations of §,. Ordinary tableaux give the degrees of ordinary irreducible
representations (using matrices in GL,), while their shifted cousins are
related to projective ones (those using PGL,, the projective linear group). 1In
this setting, the analog of (1.2) expresses the fact that the sum of the
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squares of the irreducible degrees equals the order of the group. Can (1.2)
itself be recast in this light? Specifically, is there a group of matrices &
such that the degrees of the irreducible representations p:5, » & are given by
the £ 7
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CONVOLUTIONS OF FIBONACCI-TYPE POLYNOMIALS OF ORDER K
AND THE NEGATIVE BINOMIAL DISTRIBUTIONS OF THE SAME ORDER
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1. Introduction and Summary

Unless otherwise explicitly stated, in this paper k is a fixed positive in-
teger, n; (1 < 7 < k) and n are nonnegative integers as specified, p and x are
real numbers in the intervals (0, 1) and (0, «), respectively, q = 1 - p, and
[x] denotes the greatest integer in x. Let

{(FOw@) 1 _,
be the sequence of Fibonacci-type polynomials of order k, i.e.,
P =0, 8@ = 1,

and

IN
S
A
X
+
P

n
zy F® (x) 4f 2
i=1

b n-1

FOg) = (1.1)
) )

xZFn_i(x) if n =

=1

2
X
+
N

This definition is due to Philippou, Georghiou, and Philippou [11] (see also
[8]), who obtained the following results:

@ 1 1 -8
n (O _ - , 1.2)
nz__:os ne1 (2 1 —28 = o0 —ask 1 - (1 +x)s + asgktl ¢

ls] < /(1 + @),

(k) _ ny + ceo +7’Lk Myt e-e by > 1.3
Eh+l(x) n1:2;, ng 3 < Mls eees Ty )x =0 (-3
and ny+2nyte.- tkng=n
1 . [n-1)/(k+ 1)) . . .
k ; - n-1i-k
P @) = PINC IO )} (7T ET ) (1.4)
= J=

x gd(1 + )~ **Di, 5 = 0,

Now let N be a random variable which denotes the number of Bernoulli
trials until the occurrence of the k™' consecutive success. Then

P, =n) = pER _ (q/p), n 2k, (1.5)
1 ) T VI b _
Pl = n+ k) = 3 (-DFp*+? I G DR AT OTR (1.6)
o 70 n =0,
and
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PN, =n) = {qgpk, k+1<n< 2k, (1.7)
P(Nkzn_l)_qpkp([vkzn-—]_—k), n > 2k + 1.

The three results above are due, respectively, to Philippou, Georghiou, and
Philippou [11], Uppuluri and Patil [12], and Philippou and Makri [8]. We note,
however, that expression (1.6) was implicit in the work of [10], and variants
of (1.7) have also been established in [1] and [6] by different methods.

In the present paper we generalize relations (1.6) and (1.7) to two types
of negative binomial distributions of order k (see Propositions 3.3 and 3.4,
and Theorems 3.1 and 3.2), and we illustrate the computational usefulness of
Proposition 3.3. The first type of negative binomial distribution of order k
was introduced and studied in [9] and [5], while the second type was considered
in [4]. Although the latter was recognized as a negative binomial distribution
of order k, different from the first, it was named in T4] "compound Poisson
distribution of order k" as arising from the Poisson distribution of order k by
compounding. The above-mentioned propositions and theorems are stated and
proved in Section 3. Their proofs depend on generalizations of expressions
(1.1)-(1.5) to the ( - 1)-fold convolution of {#{(x)}’_, with itself, which
we proceed to discuss first. Here, and in the sequel, r» is a positive integer,
unless otherwise explicitly stated.

2. Convolutions of Fibonacci-Type Polynomials of Order k

Let {Eﬁ%?(x)}:=o be the (r- 1)-fold convolution of the sequence {Fém(x)}:=o
with itself, i.e., Eﬁ L(x) = 0, and for n = 1,

FR@) if r = 1,
k
£, (@) = (2.1)

n
(k) k) :
j;Fj’ po1 WED _(x) if r 2z 2.

As a consequence of (2.1), and in view of (1.2), we get

o~ (k) = &)
ngos PR ) LZ::OS”FWLl(x) (2.2)

r 1
] (1 - @8 — ... - x8k)T

(1 - 9"
STt s mkye sl s va .

Expanding (2.2) as a Taylor series about g =0, and following procedures
similar to those of [9]-[11], we readily find the following closed formulas for

{Eﬁ%;(w)}::o, in terms of the multinomial and binomial coefficients, respec-
tively.

Theorem 2.1: Let {Féf;(x)}:=o be the (r - 1)-fold convolution of the sequence
{Fém(x)}zzo with itself. Then

k ny e+, +r -1 P
(a) Fn(+)1 p(x) = Z < 1 x ) >xﬂ1 rk’ n > 0;
s My oees Mk 3D 7’11, o e sy 7’lk,l”—
ny+t 2t tkn =n
and
210
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[(n-2)/(k+1)]

Q) n-t (7 -tk
() £, »@) = 2< DI(Z)a + o P (LR
y (n -1 —Z?{_ﬁ‘r - l)xj(l + ) ®*DI s 0,

We also note that, if we multiply both sides of (2.2) by x¥ and then dif-
ferentiate them with respect to x, we obtain the following reduction formula
with respect to r.

Proposition 2.1: Let {F<M (x)}n o be the (r-1)-fold convolution of the sequence
{Eﬁm(x)}:=o with itself. Then

k —
PO @ = SR, @)1/l e 0.

We proceed next to show that {Eﬁ?;(x)}:=o satisfies the following linear
recurrence with variable coefficients.

Theorem 2.2: Let {F(m (x)} be the (P - 1)-fold convolution of the sequence
{F(M(x)}n o with 1tself, and set F (x) =0 for -k + 1 <n < -1. Then

P @) = 0, FY (@)
and
k k
@ Zl[n +i - DIEY @, o2 1.
i=
From the definition of {F(m (x )}n ,» We have
(k) ( )y =0 and (k) (.’L‘) (2.3)
Now, let Is| < 1/(1 + x). Notlng that
k .
(1 -x8 — «oo —x8K)™ = (1 - 28 = -+ - xsk)""‘l<1 -z, SJ)) (2.4)
j=1
and
69 (1 = @8 = +ov = xsk) T L = 2 s"ES @, 1§ <k, (2.5)
"0 by (2.2),
we get
& * LI
YT @) = (1 - ks - e = wsk) ™l —x Yy sT(l - xs - -ee - xsk) r-1,
n=0 Jj=1 by (2.2) and (2.4),
k 0
(k) (k)
- ZSF +1, r+1(:x:) —szlngsil +1- JP+1(x)’

by (2.2) and (2.5),
5[ @ - e D @)
= J=

Therefore,

k
PR (@ =% @ - xZF‘ i 1@ m 2 0, (2.6)

n+l, r

Next, differentiating both sides of (2.2) with respect to s, we get

© k )
> ns”‘lfﬁﬁn’r(x) =re)y sl 11 -xs - ... - xsk)"1
= j=l

]

k
zu;EIJ E;f :+g s pe1®@)s by (2.2) and (2.5),
n
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o 1 k 0

- n- .

- ZS re ZJFn+1—j,r+1(x)’
n=1 Jj=1

which implies
n+l, r n+l-g,r+1

k
nFE () = px EjF(k) (x), n > 1. (2.7)
j=1

Combining (2.6) and (2.7), we obtain

k
&) _x . x)
Foi, pe1 @) =3 _Zl(n +IJP)E ) s e @) m 2 1,
i=
which, along with (1.1) and (2.3), establishes the theorem.
Remark 2.1: Results analogous to Proposition 2.1 and Theorem 2.2 have been

obtained by Horadam and Mahon [3] for convolutions of the sequence of Pell
polynomials (of order 2) with itself.

3. Binomial Expressions and Recurrences for the

Negative Binomial Distributions of Order k

In the present section, we employ Theorems 2.1 and 2.2 to derive binomial
expressions and simple recurrences for the following two distributions of order

k [4], [51, [9].

Definition 3.1: A random variable X is said to be distributed as negative bino-
mial distribution of order k, type I, with parameter vector (r, p), to be de-
noted by NBk,I(P’ p), if

Nyt ety

ny teee+mn, +r - 1\(9q
P(X=n) = p" 1 k = , n 2 kr.
P nl,Z;, ng > ( Mls eees Mg, 2 = 1 >(p>
ny+2n,+ - + kng=n-kr

Definition 3.2: A random variable X is said to be distributed as negative bino-
mial distribution of order k, type II, with parameter vector (r, p), to be de-
noted by ¥B, . (r, p), if

P(X=n) = pr

ny .-+t n, +r - 1)(q>”1+---+nk w0
s> n 2 0.

N5 eves Nk D (n]_, ee ey nk,r'—l p
ny+2np+ .- +kng=n

The negative binomial distribution of order k, type I, gives the probabil-
ity that the first occurrence of »r success runs of length k happens at trial =
[5]. The negative binomial distribution of order k, type II, arises as a gamma
compound Poisson distribution of order k. More precisely, if we use CPi(r, o)
to denote the (gamma) compound Poisson distribution of order k with parameter
vector (r, o) [4], we note that

NBy, 11 (rs p) = CPy(r, o) for p = a/(a + k).

The fact that CP, (r, o) is a negative binomial distribution of order k, albeit
different from WNBy, 1(r, p), was already mentioned in [4] by Philippou, who
named the new distribution, however, '"compound Poisson distribution of order k"
as arising from the Poisson distribution of order k by compounding.

As a consequence of Theorem 2.1(a) and Definitions 3.1 and 3.2, respec-—
tively, we have the following relationships.
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Proposition 3.1: Let X be a random variable distributed as NByx,1(», p) and let
{F$9, ()}, .o be the (r - 1)-fold convolution of {F{(x)},_, with itself. Then
P(X =n) = p”Eﬁiﬁ_krlﬁq/p), n = kr.
Proposition 3.2: Let X be a random variable distributed as NBk,II(P’ p) and let
{Eﬁf}(m)}:=o be as above. Then
P(X = n) = p"FX), (q/k), n = 0.
Combining Theorem 2.1(b) with Propositions 3.1 and 3.2, respectively, we

obtain the following binomial expressions for the negative binomial distribu-
tions of order k.

Proposition 3.3: Let X be a random variable distributed as VB ;(r, p). Then

r [(n~2)/(k+1)] . .
. . ; - i - ki
P(X =n+kr) = 2 (-1 D)prrt? 0"
ig:o (7,>p ,7';0 ( J )
[ - i+ - .
x (n l 17%? 1 r 1>(qpk)J, n = 0.

Proposition 3.4: Let X be a random variable distributed as NBy, 17 (s p). Then

r . k + -4 [n=2)/(k+1)]
= m o= OGNS B
<o k Ji=0

e _ k k+1q4d
S AN [ )] o) M IS

Remark 3.1: Another binomial expression for the probabilities P(X = n + kr) (n
> 0) of NBy,1(r, p) has been obtained by Charalambides [2], who employed for
this purpose the truncated exponential Bell polynomials. Our expression
appears to be more applicable.

(-Di ("7 LT

Remark 3.2: For » = 1, Propositions 3.3 and 3.4 provide binomial expressions
for the probabilities of

Gp,1(P) ENB 1(1, p) and Gy 1y (p) = UBy 11 (1, 128

respectively. The first one implies (l1.6), the main result of Uppuluri and
Patil [12], since Ny is distributed as Gk,l(p) [7], [9]. The second is noted
presently for the first time.

Theorem 2.2 and Proposition 2.1 imply

Theorem 3.1: Let X be a random variable distributed as NBk,I(P’ p), and set
P, = P(X = n). Then

)
0, n < kr -1,
kr = kpr,
P 2 n r
<
.1

k .
a/p). Yn-~-kr+ j@ - I)JPJPn_J., n2kr+l.

n - kr j1

Proof: For n < kr - 1, (X =#n) = @, which implies P, = P(8) = 0. For n = kr,

Definition 3.1 gives P, = pkr. For n 2 kr + 1, we have

P, = p”FﬁElr+lﬂjq/p), by Proposition 3.1,

|
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k

/
= pn %(-q,_p]z); Z [n- kr+ j(r - l)]F;k—)kr+l—j,r(q/p)’ by Theorem 2.2,
- iT1

@/p) & . ; o
= P jg%[n - kr + j(r - 1)]pJPn_j, by Proposition 3.1.

For » = 1, Theorem 3.1 reduces to the following corollary, which implies
recurrence (1.7), since V, is distributed as Gy () 171, [9].

Corollary 3.1: Let ¥ be a random variable distributed as G, 1(p) 2 0By (1, p),
and set P, = P(X = n). Then ’

pk, n =k,
P =4 gpk, k+1<n <2k,
P,_, = qkan~1—k’ n =z 2k + 1.

Theorem 2.2 and Proposition 2.2 imply

Theorem 3.2: Let X be a random variable distributed as NBk,II(P’ p), and set
P, =PX=mn), nz-k+ Then

1.
0, -k +1=<nc<-1,
0,

p!” n =

k
q .
R i = DB L

Proof: For -k + 1 <n < -1, (X=n) = 8, which implies P, = P(¢)=0. For n = 0,
Definition 3.2 gives P, = p¥. For m 2 1, we have

p, = eréﬁn’r(q/k), by Proposition 3.2,
(glk) X .
= pr qn _ l[n + J(r - 1)]Eﬁ?l~j’r(q/k), by Theorem 2.2,
i=

Zjo by Proposition 3.2,

4 5
= — n+ jlr - 1)1P
o J( )18,
which completes the proof of the theorem.

For r = 1, Theorem 3.2 reduces to the following corollary.

Corollary 3.2: Let X be a random variable distributed as Gk’ll(p)iENBk,II(l,p),
and set P, = P(X=n), n 2 -k + 1. Then

p, n=20
. (k Z Q)n—l%?’ N
(kzq)Pn-l _%Pn—l—k’ n=k+ 1.

4. Computational Examples

In this section we illustrate the computational usefulness of Propositions
3.3 and 3.4. Since both propositions are of the same nature, we restrict
attention to Proposition 3.3 in comparison to Definition 3.1.
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Example 4.1: Assume that a random variable X is distributed as IVB3 I(5, p) and
we are interested in calculating P(X = 18) and P(X = 20). ’
Proposition 3.3 gives

5 . -7 .
P =18) = 3 (DF(2)(7 ; F)protE = 35pls - 75ple 4 s0p17 - 1018 (4.1)
=0
and
5 _ CLG-DI e e ae s e s .
P(X = 20) = 3. (-1)1(2)p15+l RGN G 3J)(9 5 3'7)(qp3)"
i=0 i=0 J

oo {(2) - 2] - o [(0) - Q) + 10070)
- 10p18(2) + 5p19(2) - P20(2>

126pl5 - 350p1® + 350p17 - 150p'8 + 25p19 - p20
- 30gp'8 + 25¢plQ. (4.2)

Alternatively, if we use Definition 3.1, we get

P(X = 18) = p18 nys Ny, N33 (Zij_Z§j'Z§j_Z)(g)nl+n2+n3
ny+2ny+3ng3=3
3 2 1
SR (A () B (R R AR
= 35¢%p1® + 30q%p!'® + 5qpt7 (4.3)

and ity + gt b\(4 ny+ny+n3
ny, nps N3 3 (ﬂl, Moy N3 4)(5)
n1+2n2+3n3=5

pzo[(5+o+o+4>(q>5

5, 0, 0, 4/\p

P(X = 20) = p20

1

(3+1+0+4qu*+(2+0+1+4xq)

3, 1, 0, 4/\p 2, 0, 1, 4/\p

]

126¢°p1> + 280¢"pl® + 210g3pl7 + 30q2pl8. (4.4)

(1+2+0+4xqf +(0+1+1+4xg)

1, 2, 0, 4/\p 0, 1, 1, &4

Example 4.2: Assume that a random variable X is distributed as NBZO,1(3’ p) and
we are interested in calculating P(X = 80) and P(X = 100).
Proposition 3.3 gives

_ s :(3)(22 - ), 60+4
roc a0+ 3 cor () P
= 231p80 - 630p®1 + 570p®2 - 171p®3 (4.5)
and
P(X = 100)
3 [(40-1)/21] . . . . .
i (3 : 40 -1 -204\(42~17~- 20 i
= -ZO (—1)'”(7:)2960” -EO (-1)7 ( 3 J)( 12 J)(quo)J
7= J=
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- oo [() - 0] - s[4 - 196

+ 3p62[(ﬁf) - 18(%?)qp2§] - pea[(if) - 17(%?)qp6ﬂ

861p60 - 2460p81 + 2340p02 - 741p83 - 4620gp80
+ 11970gp81 - 10260gp82 + 2907gp®3. (4.6)

On the other hand, Definition 3.1 does not appear to be applicable for this
task without a considerable amount of computational effort, even with the aid
of the computer.

In general, when k and n - kr are large, Proposition 3.3 fares much better
than Definition 3.1 for calculating negative binomial probabilities of order %k,
type I. If all probabilities up to P(X =m) are needed, for some integer m
(zkr), the recurrence given in Theorem 3.1 is most appropriate for calculating
them.
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1. Introduction

The Stirling number of the second kind, S(n, k), is defined as the number
of ways to partition a set of n elements into k nonempty subsets. Obviously,
S(n, k) = 0 if n < k. The sequence {S(n, k) (mod p¥)}, ., is known to be peri-
odic. That is, there exists Ny 2 k and m 2 1 such that

S(n + m, k) = S(n, k) (mod p¥), for n > Ny.

Note that any period is divisible by the minimum period. Carlitz [2] showed
that if k > p > 2 and pb’l <k < pb, where b 2 2, (p - 1)pV+b-24is a period for
{5(n, k) (mod pM)}, 4.

In this paper, we will determine the minimum period of {S(n, k) (mod M)},
for k 2 1 and ¥ > 1. This extends the results given in [1] and [3], and
confirms that the periods in [2] are indeed the minimum periods for odd p.

2. Preliminaries

Given any sequence {a,}
defined as

220 of integers, its generating function, A(x), is

Alx) = Y a,x".
n=0

Certainly, A(x) is a formal power series over the ring of integers. A period
of {a, (mod M)}nzo will also be called a period of A4(x) modulo M. The next
theorem is obvious.

Theorem 2.1: If {a,},., is generated by A(x), then m is a period of {a, (mod
M)}, 5o if and only if (I - x™A(x) is a polynomial modulo M.

We will study generating functions in the forms of 1/f(x), where f(x) €
Z[x], and f(0) = 1. We have

Theorem 2.2: Given f(x), u(x) € Z[x], where f(0) = u(0) = 1, let u and p' be
the minimum periods of 1/f(x) and 1/f(x)u(x) modulo M, respectively. Then u
divides u'.

Proof: From the definition of p', we have

1 - ¥

F@ulz)

Therefore,

= h(x) € Z,lx].
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1 - W
fx)

This implies that p’ is a period of 1/f(x) modulo M. However, u'’ may not be
the minimum period. Thus, u[u’. 0

= h(@ux) € Z,lx].

The next theorem is again obvious. Yet, it allows us to assume that ¥ is a
prime power.
Theorem 2.3: Let p eee pe8 be the prime factorization of M, and let p(p )
be the minimum perlod of {an (modzy “)},50- Then the minimum period of {a, (mod
M)}n>0 is the least common multlple of u(p ), where 1 < 7 < s.

Let u(k; pN) be the minimum period of the sequence of Stirling numbers of

the second kind {S(n, k) (mod pN)}nzk‘ It is well known that

1
(1 = x)(1 - 2z) --- (1L - kx)°

E:AS(n + k, k)a™ =
n=0

It now follows from Theorem 2.2 that u(k; p¥)|u(k + 1; p¥). We would like to
know when n(k; p¥) = u(k + 1; ph).

Theorem 2.4: Let A(x) be a formal power series over the ring of integers, and
r € Z, where r» > 1. Let m be a period of A(x) modulo p¥. Then m is not a per-
iod of A(x)/(l - rx) iff » # 0 (mod p) and h(r~1) £ 0 (mod p¥), where h(x) is
the polynomial (1 - x™)A(x) modulo p¥, and r~1 is the inverse of » modulo ph.

Proof: 1f r» = 0 (mod p), then 1 - rx is invertible (mod p%). Thus,
(1 - 2MA(x)/(1 - rx)

is still a polynomial modulo pV¥. Now assume that r # 0 (mod p), and let

h(x) = 3 a,x™.

Then we have

1 - s MA@ | k@ _ (Eanxn>< ZW)")
n=0 n=0

- re 1 - rx

D-1 m © D
> (Z e ) Py ( Z%f‘“")‘m)m (mod p?)
m=0 = n=0

is a polynomial modulo pV if and only if
D
S ar™™ = h(r7l) 20 (mod p¥). 0O
=0

Therefore, to determine u(k; p¥), it suffices to find the minimum period of
1/f; (x) modulo p¥, where

k
[ (@) = II (1 - ix).

p){ﬂ—
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3. Stirling Numbers

First of all, we determine p(k; p¥) for 1 < k < p. The following theorem
is a routine exercise.

Theorem 3.1: For 1 < k < p, u(k; pV) is the least common multiple of the or-
ders of ¢ modulo p¥ for 1 < ¢ < k.

For k > p, we use induction on N. The case of N = 1 is relatively simple.
Theorem 3.2: 1f k > p, b = 2, then u(k; p) =(p - L)p?~!, where p?~! < k < pPb.

Proof: 1f k = pb, b 2 1, then

pb ) B p-1 . pb‘l
fr @ = 10w = { Q- io)
pli

b-1 -
= (1 - xP°H? = 1 - x®-DP"' (pod p).

So, u(pb; p) = (p - 1)pP-1. Therefore, u(k; p)|(p - Dp?~! for pb-1l< k < pb,
b = 1. 1In particular, for a fixed b 2 2,

1 - g@-bp*7?

h(z) = ——— =1 (mod p).
Fprr (@) b
From Theorems 2.2 and 2.4, we know that
(p - DpP~2 = u(p?~1; p) divides u(pP~! + 13 p) properly.

Consider p?~! < k < pb, b 2 2. On one hand,
u(@P~1 + 1; p) divides u(k; p),

so (p - l)pb'Z

is a proper divisor of u(k; p). On the other hand,
u(k; p) divides u(pb; p) = (p - l)pb"l.
Therefore, u(k; p) = (p - l)pb'l. ]
The next lemma can be easily verified. We leave the proof to the reader.

Lemma 3.3: Let f(x)€ Z[x] such that f(0) = 1, and let m be a period of 1/f(x)
modulo p¥. Then p7 is a period of 1/f(x) modulo p¥*l.

Corollary 3.4: For pb=1< k < pb, b = 1, u(k; p¥) always divides (p - 1)p"*+?-2
Now we are ready to prove

Theorem 3.5: For k > p > 2, and pP~1< k < p , where b > 2,
u(ks pf) = (p - DpP+o-2,
Proof: The case of N = 1 is proved in Theorem 3.2. Assume it is true for some

N > 1; we want to show that it is also true for N + 1. Because of Lemma 3.3,
if pb-1< k < pb, b > 2, then n(k; p”+1) is either

(p - l)pIV+b—2 or <p — l)p”*b"l.

In any case, for k = pb‘l, we always have
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1 = pP-Lypr+e-2
h(x) = € Z, v+ [2].
Fpor @ ?

If we are able to show that h((pz’_1 + 1)) £ 0 (mod p¥*1), then

(p - Dp¥+b-24divides u(pP-1+ 1; p¥*1l) properly.

This implies that p(pb-1!+ 1; pf+1) must be (p - 1)p1v+b—1. Then u(k; p”+1),
where pb-1 < k < pb, will also be (p - 1)p¥+b-'I.  Note that h(x) can also be
rewritten as

— p(p-Dp"b-3 p_1
h(x) = 1 - 2 dp=Dpieb-3
0

fpb»l(x) j:

From the inductive hypothesis on N, we have
l _ x(p_l)plv+b—3

fpb—1 (x)

On the other hand, it is easy to check that the highest power of p that divides

0 (mod p¥).

z= (P i+ 17!

LI @-Dptre?

xz =@t l+1)-1
is exactly p. Hence, h((p?-1+ D1 20 (mod pN+1). 0
Theorem 3.6: If p = 2, then

(1) w(@; 2" = u(2; 2 =1,
2 if ¥ =1 or 2
u(4; 2%y = ,
20-1 4f §
(3) u(k; 2%y = 2V*b-2¢0r 2Pl k<2 , b > 3.

[

(2) u(@3; 2M

[\

Proof: The proof is identical to that of Theorem 3.5 for b = 3. We have to de-
termine p(3; 2%) = u(4; 2%) separately. 1In this case, we study

l l o 3 o . R oo
= = xt 393} = ¥ b oxn,
fq(-r) (1 - 2)(1 - 3x) <iz=:o ><j§=:o ) nZ:;O ”
where b, = (3"*1 - 1)/2. Thus, u(3; 27) is the smallest » such that
b, = by = 1 (mod 27).
That is, it is the smallest »n such that

3" = 1 (mod 27* 1y,

Therefore, u(3; 2") satisfies (2) in the statement of the theorem. []

4. Final Remarks

It is possible to obtain the same results without invoking any induction.
However, the computation is more involved. We were also able to extend the
result to the generating function 1/f(x), where f(x) is a product of linear
factors of the forms 1 - rx, » € Z. These approaches will appear in a forth-
coming paper elsewhere.
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Introduction

Miles [5] defined the r-generalized Fibonacci numbers (r 2 2) as follows:

Up,p, =0 (n=-1, =2, =3, ...), (1a)

Up, o = L, (1b)
r

Up,p = 2 Up p-g (=1, 2,3, ...). (lc)
i=1

In such a way, for r = 2, we get the ordinary Fibonacci numbers. The object of
this paper is to present, in the first section, an elementary proof of the
convergence of the sequences of ratios

)
" _ Up, n
r,n -
Up,n-1 ne1

using neither the theory of difference equations nor the theory of continued
fractions. 1In the second section, we consider a geometric interpretation of
the r-generalized Fibonacci numbers that is a natural generalization of the
golden rectangle. Finally, in the third section, we consider electrical
schemes generating these numbers.

1. Convergence Results

For each r 2 2, we consider the sequence of ratios
tpon = Up, nllp,n-1 (=1, 2, 3, ...).

Rather than using the theory of difference equations to obtain a formula for
Uy, n and use it to prove the convergence of the sequence to the unique positive
root of the polynomial

p, (@) =z - Y a'""t (see [51),

i=1
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we present here a proof based on a fixed point argument using the way the u, ,
are generated.

Observe that Up, n > 0 for n 2 0. Hence, dividing (lc) by Up, n-1> We get
+ =14+ 3 Zran-t (n=1)
and, using the definition of tp, 4> We obtain

tpom = 1+ 2 =3 S n zr). (2)

i=2 th n-g
im1

From (1), we also have
Up,y = 2Up, o1 = Up, n-p-1 for m z 23
hence, dividing by Up, n-1> We obtain
1

tp,n =2~ m2r+1). (3)
n tr, n=1
i=
Now, since ¢, , 2 1 for n =1, ..., r, using (2) we have tp,, 21 for all n 2 1
and, using (3), we also have ¢, , < 2 for all n = 1.
Using (2) and (3) we can generate a sequence of upper bounds {B,, 2} - and
a sequence of lower bounds {byr, 4}, _, for t, , as follows. We have
1L =by g<tpn<Bprog=2 (n=z21)
and, assuming that b, ,_; and By, g - are known and such that
bp, -1 S tp,n < By, yo; for all m 2 r(2 - 1) + 1,
we generate br,ﬁ and By, o using (2) and (3) in such a way that
L 1
by, s 2: PR tpon €2 - ——— =8By, (4)
- S -1 By, -1

for all n =2 r8 + 1.
The problem is now related to the convergence of the sequences

{bp, 0¥ o and  {Bn ¢} _,

We consider the two functions

1
xz—l and F,(x) = 2 - e

fo(z) =1+ 2:

i=2
From (4), By, g = Fr(Byp, g-p) and by, 4, = fr(By, ¢-1); hence, the result we look
for will be obtained from the study of the two functions f,(-) and F,(°).

1

Lemma 1: Let » 2 2 and F,(x) = 2 - -
X

(a) The equation x = F,.(x) has two solutions in the interval (0, «). One
solution is 1 and the other, noted a,, is in the interval (1, 2).
(b) Let {xi}:=0 be a sequence defined by x;4; = Fn(x;) for ¢ =0, 1, 2,

(i) 1If xy € (1, a,), the sequence {xi}:=0 is strictly increasing and con-
verges to On.
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(i) If 2, € (ap, «), the sequence {xi}:=0 is strictly decreasing and con-
verges to Q.

Proof: 1f x € (0, »), then

+ 1
>0 and F''(x) = £££————l <
xr+1 xr+2

Fl'(x) = 0;

hence, F,(+) is a strictly increasing continuous concave function on (0, «).
Also

lim F, () = -», lim F,(x) = 2,

z+0F X+
F,(l) =1 and F'(l) = » > 1, then F,(x) < x on (0, 1) and there exists a real
number o, such that F.(x) > x on (l, a,) and F,(x) < x on (a,, ») (see Figure
1). The results follow from these observations. []

FIGURE 1. Graph of y = F,.(x)

Lemma 2: Let r» 2 2 and let

r
1
fo(@) =1+ ;gé T
The equation x = f,(x) has a unique solution B, in the interval (0, =). Also

By is the unique positive root of the polynomial

r
p,(x) = x” - > &t

=1
Proof: If x € (0, »), we have

G -1 <0 and fy(x) = fi ESE;ETLZ
; x

1=2

r
fl@ = -3 > 0;
=2

xi
therefore, f;(-) is a strictly decreasing continuous convex function on (0, «).
Also

lim f,(x) = 4+~ and lim f,(x) = 1 (see Figure 2).

z 0t > 4o
It follows that there exists a unique positive x such that x = f,(x). Also,
for x > 0, x = f,(x) is equivalent to
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x? = 55 xr—i
=1

and the result follows. [J

FIGURE 2. Graph of y = f,.(x)

Lemma 3: Let » > 2. For x =1, x = f,(x) is equivalent to x = F,(x), and it
follows that

B, = o, € (2(1 - %) z>.

Proof: g = F.(x) is equivalent to x"(x - 1) = x¥ - 1. Forxz =z 1, x = F.(x) is
equivalent to

r-1
x” =3y xt
=0
which is also equivalent to x = f,(x). Hence,
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