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SOME NEW RESULTS ON QUASI-ORTHOGONAL NUMBERS 

Selmo T a u b e r 
Portland State University, Portland, OR 97201 

(Submitted April 1987) 

Introduction 

As far as is known to this author, the term "Quasi-Orthogonality" was first 
introduced by K. S. Miller in [1]: 

Given two sets of numbers A(m, n) and B(m, ri) such that m, n, s € Z, and 
A{m, ri) , B(m, ri) = 0 for n < 0, m < 0, and n < m, they are said to be quasi-
orthogonal to each other if 

n 
J2A(s, n)B(m, s) = 6(777, n) (1) 

s = m 

where 6(777, ri) is the Kronecker delta. 
Equivalently, we can say that if A(n) is the square, and triangular matrix 

of elements A(m, ri) of n rows, and B (n) the square and triangular matrix of 
elements B(m, ri) of n rows, then 

A(n)B(n) = I, (2) 

i.e., the two matrices are inverse of each other. 

H. W. Gould has compared the different aspects of quasi-orthogonality and 
studied some of its properties [2], 

In this paper we shall be concerned with the so-called BILINEARLY RECURRENT 
orthogonal numbers, i.e., numbers satisfying recurrence relations of the form: 

A{m, n) = f1(m, n)A(m - 1, n - 1) + f2(77z, n)A(m, n - 1) ; (3) 

B(m, n) = f3(m, n)B(m - 1, n - 1) + fh(m9 n)B{m, n - 1). (4) 

The problem to solve is the following: knowing f, and f2, find f~ and f^9 
or, since the problem is symmetric, knowing f? and /. , find f^ and f^ • 

So far, only the following cases have been studied: 

Case 1; f1 = N(n) , f2 = M(n) , 

f3 = l/[N(m + 1)], fh = -M(m + l)/[N(m + 1)]. Cf. [3]. 

Case 2: fx = P(TT7) , f2 = K(n) + M(m + 1), 

f3 = 1/P(w), fh = -[K(m + 1) + M(n)]/P(n). Cf. [3]. 

Other cases of quasi-orthogonal numbers have been studied but they are not 
of the bilinearly recurrent kind. 

The final aim is to obtain a general case where the functions f^ are all of 
the form f^ (m, ri) . This result has thus far been impossible to reach. 

In this paper we study 

Case 3: f1(m, ri) = a(m)$(n), f2(m, ri) = n(n), 

f3(m, n) = l/a(n)&(m), fh(m, ri) = -n(m + l)/a(w)3(w + 1). 
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2. P-Polynomials and A-Numbers 

Let J be the set of positive numbers and zero, i.e., J= [0, Z+]. We assume 
that m, ft, k, s € J", and that a(m9 ft) , b(m) , and c(jri) are defined, and not equal 
to zero, also that x > 0. 

Consider the polynomial 

Pin, a;) = £ a(m, n)i4(m, ft)xw = fl [M&) + <?(&)#], 
so t h a t 

n + l 
Pin + 1, x) = Yl a(m> n + 1M(^» n + l)ffffl 

m= 0 
n + l 

= II [&(&) + c(k)x] = [bin + 1) + c(n + l )x]P( f t , x) 

= [bin + 1) + c{n + l ) x ] Y aim, ri)Aim, n)xn. 
m= o 

By comparing the coefficients of xm+l, we obtain 

aim + 1, n + 1)̂ (777 + 1, n + 1) = c(n + l)a(m, n)A(m, ri) 

+ b{n + l)aim + 1, ri)A(jn + 1, ft) 

o r , s i n c e a(m + 1, ft + 1) # 0, 
a(w, ft) 

(5) 

(6) 

4(777 + 1, ft + 1) = c (n + 1) a(m + 1, n + 1) Aim, ri) 

aim + 1, n + 1) 

or a g a i n , 
a im - 1, n - 1) 

^4(m, ft) = ciri) r Aim - 1 , n - 1) 
aOw, ft) 

, , xa(?7z, n - 1) + Z?(w)-H r - ^ f a , n - l ) . 
a (777, ft) 

This is the recurrence relation for the numbers Aim, ft). 

(7) 

3 . B - N u m b e r s 

We exp re s s xn i n terms of P-po lynomia l s as def ined i n Sec t i on 2 , thus 

xn = Y ^(s> n)Bis, ft)P(s, x) 
s = 0 

(8) 

Y X ( S , ft)5(s, ft) 
s = 0 

£ a(777, s)^L(/77, S ) X " 
m= 0 

where the numbers X(s, ft) are defined, and different from zero, for s, ft € J, 
and 5(s, ft) satisfy the conditions of Section 1. 

It follows that 

xYi = JL Z M s , ft)a(777, s)Bis, ri)Aim, s)xn 

S = 0 777= 0 
(9) 

m= 0 

n -i 

£ X(s, ri)aim, s)Bis, ri)Aim, s) \, 
s = m J 
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which shows t h a t t he q u a n t i t y i n b r a c k e t s , i . e . , t he c o e f f i c i e n t of xm must be 
equa l t o 6^. 

To a s s u r e the q u a s i - o r t h o g o n a l i t y of the numbers A(m, s) and B(s, n) i t i s 
n e c e s s a r y to assume t h a t 

A(s , n)a(m, s) = 1. 

This r e s u l t can be ob t a ined i n t he fo l lowing way: 

For 777 = n , we t ake A(s , n)a(n, s) = 1, i . e . , A(s , ri) = l/a(n, s). 

For 777 * n, i . e . , for m < n, i t i s n e c e s s a r y to w r i t e 

a(777, s) = a1(m)a2(s), A(s , n) = \l(s)\2(n), 

w i th AjCs) = l / a 2 ( s ) , so t h a t 

A(s , n)a(jn, s) = Xz(n)al(m), 

which, s u b s t i t u t e d i n t o ( 9 ) , g ive s 

2 A 2 (n)a 1 (m)x m 

m= 0 
E £ ( s , nM(777, S) 

= E \2(n)al(m)xmSn
m, 

m= 0 

which is satisfied if A2(n) = 1/a-, in). 

We summarize this result by writing 

A(s, 7̂ ) = [l/a2(s)]A2(n), 
or 

A(s, n) = l/a(n, s) = l/al(n)a2(s). 
Under these conditions, clearly (9) can be written as 

(10) 

(9a) 

;» = £ ^ 
and 

£ 5(s, n)̂ (777, s) = 6JJ. 
8 = /n 

On the other hand, 

^A(s, n)B(s, n)P(s, x) 
8 = 0 

Since, according to (6), 

P(s + 1, x) = [b(s + 1 + <?(s + l)x]P(s, n ) , 

it follows that 

xP(s, x) = [P(s + 1, x) - b(s + l)P(s, a;)]/c(s -

so that, substituting into (12a), we obtain 

[P(s + 1, x) b(s + 1) 

c(s + 1) c(s + 1) 
xn + 1 = £ A(s> n)5(s, w) 

s = 0 
n + 1 

= £ A(s, n + l)5(s, n + l)P(s, x) . 
s = o 

I) 

P(s, a?) 

(11) 

(12) 

(12a) 

(13) 

(14) 

(15) 
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Comparing the coefficients of P(s + 1, x), we see that 
Xis, n) 

Xis + 1, n + l ) S ( s + 1, n + 1) 

Ks + 1, n + 1) = 
Xis , n) 

or a g a i n . 
5 ( s , n) = 

Xis + 1, n + l ) c ( s + 1) 

X(g + 1, w)fr(s + 2) 
X(s + 1, n + l)o(s + 2) 

X(s - 1, n - 1) 

, , ,x ~ ? ( s , n) cis + 1) 
_ Xjs + 1, n ) M s + 2) 

c ( s + 2) 

K s , n) 

' ( s + 1, n ) , 

Ks + 1, n) 

(16) 

(17) 

X(s , n )c(s) 

Xis , n - 1)2? (s + 1) 

(s - 1, n - 1) 

(s , n - 1) . 

(18) 

A(s5 n)o(s + 1) 

Equation (18) is a first form of the recurrence relation for the S-numbers. 

4. Eva lua t ion of a(m, n) 

According to (4) and (7), we can write: 

a{m - 1, n - 1) 
c(w) - = fAm, n); 

aim, n) l 

^ajm, n - 1) 
2>(n) _— = f Am, n). 

a (777, n) z 

From (20), we deduce 

bin)aim, n - 1) = f^im, n)a(jn, ri) 

bin - I)aim, n - 2) = f^im, n - I)aim, n - 1) 

bin - T)aim, n -- 3) = f^171* n ~ 2)aim, n - 2) 

b(2)a(m, 1) = f2im, 2)aim, 2) 

and multiplying through and simplifying, 

(19) 

(20) 

n bik) 
k = 2 

aim, 1) = aim, n) 

aim, n) = aim, 1) 

ft f2im, k)} 
k = 2 * J 

bik) 

and 
fe=2 / 2 ( /7Z , k j j 

nfl1^(^)//2(777 - 1, fc) 
£ = 2 z 

aim - 1, n - 1) = a(??7 - 1, 1) 

S u b s t i t u t i n g (21) and (22) i n t o ( 1 9 ) , we o b t a i n 

cin)a{m - 1, 1) 

(21) 

(22) 

"fl bik)/f7im - 1, k) 
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= a(m, 1) II b(k)/f9(m, k) 
k = 2 

f1im, n) 

which, after simplification, gives 

aim, 1) = aim - 1, 1 )Ve in ) /b (n ) ] 

nfl f2(m, k)/f2(m - 1, k) [f2im, n)/flim, n)] 

aim, 1) = aim - 1, l)Q(m) 9 

since the left-hand member of (23) is independent of n, i.e., 

(23) 

(24) 

aim) = [cin)/bin)} O f7<jn, k)lfAm - 1, k) 
k = 2 

[f2im, n)/fxim, n)\. (25) 

To eliminate n in the right-hand member of (25), we assume that 

f-^im, ri) = aim)$ in), and f2im, ri) = &(m)r\(n). 

Equation (25) can then be written as 

Q(m) = [c(n)/b(n)][8(m)/&(m - 1) ] n~2 [6 (m)r\ in) /aim) B(n) ] . 

In order to have the right-hand side independent of n, it is necessary to 
assume that 

[cin)/bin)][n(w)/3(w)] = A = Const., 
and 

Sim)/Sim - 1) = 1, 

i.e., 6(777) = B = Const. We may also assume that A = B = 1, i.e., 

f2im, n) = /2^^ = n<^ ' 
[c(n)/2?(?2)][n(w)/3(w)] = 1. 

It follows that aim) = 1/01(777) and, returning to (24), we can write 

a(77?, 1) = aim - 1) / a (TT?) 
a(7?? - 1 , 1) = a(777 - 2)/aim - 1) 
aim - 2 , 1) = a(777 - 3)/aim - 2) 

( 2 6 ) 

( 2 7 ) 

( 2 8 ) 

( 2 9 ) 

a(2, 1) = a(l, D/a(2), 

and multiplying through, we obtain 

a (777, 1) = ail, 1) 

Substituting (30) into (21), we obtain 

n I/CKJ) 
L J = 2 

a(777, n) = a(777, 1) l\bik)/f2im, k) = a ( l , 1) J I - T T T U 
1 « bik) 

k = 2 j = 2 aij) k = 2 r)ik) 

(30) 

(31) 

In the following examples we shall show how the results so obtained can be 
used to solve the proposed problem. 
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5. Example I 

Given Aim + 1, n + 1) = mnAim, n) + A (m + 1, n), which we rewrite in the 
form of (4), 

A{m, n) = (m - 1) (n - l)A(n - 1, n - 1) + Aim, n - 1), 

so that f1 = (m- I) in - 1), i.e., 01(777) = 777 - 1, 3(n) = n - 1, /2 = n (n) = 1. 
Equation (26) gives 

cin)I bin) = $(n)/n(n) = n - 1, 

and from (31) we o b t a i n , wi th a ( l , 1) = 1, 

m 1 ft n 

a(m, n) = O T
J ~ T O 2>(k) = X{n) I (m - 1 ) ! , X(n) = fl fc(/c). 

j = 2 j - l ^ = 2 7< = 2 

From (10), it follows that, since X(s, n)a(m9 s) = 1, 

X(s, n) = (w - 1)!/X(s). 

From (18), we obtain 

/3 = X(s - 1, n - 1)/X(s, n)c(s) 

= [(« - 2)l/X(s - l)][Z(s)/(n - l)!c(s)]. 

As we have shown in this example, cin)I bin) = n - 1, so c(n) = (n - I)bin) and 
f3 = l/(n - l)(s - 1). Again, from (18), we obtain f^ = -lis in - 1 ) . It fol-
lows that the S-numbers satisfy the relation 

5(s, n) = [l/(n - l)(s - l)]5(s - 1, n - 1) - [l/(n - l)s]5(s, n - 1). 

For y4(l, 1) =5(1, 1) = 1, we present a table of the A- and S-numbers: 

n 

1 

2 

3 

4 

5 

\m 1 

1 

1 

1 

1 

1 

2 

1 

3 

6 

10 

4(777, 

3 

4 

22 

70 

n) 

4 

36 

300 

5 

576 

1 

1 

-1 

1 
2 

1 
6 

1 
24 

2 

1 

3 
4 

7 
24 

5 
64 

B(m, n) 

3 

1 
4 

11 
~72 

85 
1728 

4 

1 
36 

-25 
1728 

5 

1 
576 

6. Evaluation of L and f, 

As we have seen in Section 4, it is necessary to assume that 

flirn* n) = a(m)B(n) and f2(m9 n) = n(n). 

From (31), aim, n) , and (10) and its consequences, it follows that X(s, n) = 
I lain, s). Thus 

1989] 

A(s, n) = [ fla(j) n r)ik)lbik) 
k = 2 

(32) 

199 



SOME NEW RESULTS ON QUASI-ORTHOGONAL NUMBERS 

and 

Then it follows from (18) that 

/3(s, ri) = X(s - 1, n - 1)/A(s, n)c{s) = l/a(n)(3(s) (33) 

fkis, n) = -A(s, n - l)b(s + 1)/A(s, n)c(s + 1) 

= -n(s + l)/a(n)6(s + 1). (34) 

The results of Example I can be checked easily using (33) and (34). 

7. Example II 

Given 
Aim + 1, n + 1) = — A (m, ri) + Aim + 1, n). 

We rewrite this in the form of (3), i.e., 

A(m, n) = [(n - l)2/(m - l)]A{m - 1, n - 1) + A(m, n - 1). 
It follows that 

fl(m9 ri) = u(m)$(n) = (n - l)2/(m - 1), 

f2 = 1, 

and 

so that 

f3(m, n) = (n - I) / (m - I)' 

fAm, n) = -(n - Dim1, 

Km, n) = [(n - 1) / (m - l)2]B(m - 1, n - 1) - [ (n - l)/m2]B(m, n - 1), 

For A(l, 1) = 15 we give here the values of the A- and S-numbers for m, n 
< 5. 

n 

1 

2 

3 

4 

5 

\w 1 

1 

1 

1 

1 

1 

2 

1 

5 

14 

30 

A{m, 

3 

2 

49 
2 

273 
2 

n) 

4 

6 

410 
3 

5 

24 

1 

1 

-1 

2 

-6 

24 

2 

1 

5 
2 

63 
8 

255 
8 

Bim, ri) 

3 

1 
2 

49 
24 

1897 
216 

4 

1 
6 

205 
216 

5 

1 
24 
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1. Introduction and Definitions 

A rooted tree, x, is a partially ordered set whose Hasse diagram is a tree 
(in the graph-theoretic sense of the term) having a unique minimal element 
called the root, see Figure la. If |x| = n, a natural labeling of x is a bisec-
tion T: x •> {1, 2, . .., n} such that v < w in T implies T(v) < T(w). One such 
labeling is given in Figure lb. In this case, we say T has shape x. We let fT 
represent the number of natural labelings of x. 

The hook of a node V € x is 

Hv = {we T\w > v} 

with corresponding hooklength hv = \HV\. The hooklengths of our example tree 
are displayed in Figure lc. The well-known hook formula [3] for the number of 
natural labelings states that 

L / V G T 

Thus, in our example fT = 7!/(7)(3)(2)(1)4 = 120. 

1 7 
(a) (b) (c) 

A tree, a labeling and the hooklengths 

FIGURE 1 

In Section 2 we will give a simple probabilistic proof of (1.1) inspired by 
an algorithm of Greene, Nijenhuis, and Wilf [1] for standard Young tableaux. 
The tree version has previously appeared in [5], but is included here for com-
pleteness. An algorithmic derivation of the hook-generating function for 
reverse tree partitions [which specializes to (1.1) as the variable approaches 
1] can be found in [6]. 

A Fibonacci tree [9] is a finite lower-order ideal of the infinite poset in 
Figure 2a. The name derives from the easily proved fact that the number of 
Fibonacci trees with n nodes is the nth Fibonacci number. For example, Figure 
2b shows the five Fibonacci trees with four nodes. Let Ĵ n be the set of all 
Fibonacci trees with n nodes, then 
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E f? = nl (1 .2 

(a) W 
Fibonacci trees 

FIGURE 2 

Formula (1.2) has a bijective proof due to Bender (reported in [9]). I 
Sections 3 and 4 below we will give two constructions that build a labeled tre 
T E &n with probability f^/n !, thus proving (1.2) twice. The first algorith 
constructs the tree "from without" as done for tableaux in another paper o 
Greene et al. [2]. The second builds the tree "from within" and is based o 
work of Pittel [4]. 

2. Choosing a Labeling Uniformly 

Let T be a fixed shape with n nodes. The following algorithm can be use-
to choose a labeling of x. 

GNW1. Pick a node VET uniformly at random, i.e., with probability l/n. 

GNW2. If v is maximal (a leaf), then let T(v) = n and return to GNW1 wit 
T and n replaced by T - {v} and n - 1, respectively (unless there are no node 
left, in which case the algorithm halts). 

GNW3. If V is not maximal, then choose a different node w E Hv uniforml 
at random, i.e., with probability l/(hv - 1), and return to GNW2 with w in th. 
role of v. 

A sequence of nodes generated in the process of finding a vertex to t 
labeled (in this case by the loop between GNW2 and GNW3) is called a trial. P. 
example of a typical trial is given in Figure 3. 

Prob(v): 1/11 1/6 1/2 

A GNW trial 

FIGURE 3 

Theorem 1: If T is a fixed rooted tree with n nodes, then GNW1-3 produce aJ 
labelings of T uniformly at random. In fact, the probability of any give 
labeling is 

11 hv/nl 
v e T 

Proof: Let w be any maximal element of T and let W be the set of vertices c 
the unique path from w to the root of T (excluding w itself). Note that thei 
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are the only vertices whose hooklengths are changed if w is removed from T dur-
ing GNW2. Therefore, by induction, it suffices to show that the probability 
that w gets label n is 

P(w) = (1/n) Uhv/(hv - 1) 
V G W 

= (i/n) n (i +r-!—r)-
But 1/n is the probability of choosing an initial node and each term in the 

expansion of the product corresponds to the probability of a unique trial 
ending in w, D 

As an immediate corollary we have 

Corollary 2: The number of labelings of a given tree x with n nodes is 

/T = n\/Y\hv. • 
/vex 

3. Fibonacci Trees Grown from Without 

It will be convenient to introduce coordinates for the infinite tree of 
Figure 2a. Let the nodes of the "spine" be (i, 0) for £ = 0, 1, 2, ... while 
the leaves are denoted by (£ , 1) for the same range of i . Now, any Fibonacci 
tree can be specified by its coordinates as is done in Figure 4a. 

(2,1) 

\/(3,0) 

(0,1) 7(2,0) 
\/Tl,0) 

(0,0) 

(a) (b) 
Coordinates and the associated tree 

FIGURE 4 

Given any vertex v = (i, j ) , then v has associate vJ = (£, 1 - j). If x is 
a Fibonacci tree with spine of length s, then the associated tvee is 

x ' = {v = (i, j)\vr e x or i = s + 1}; 
see Figure 4b where the associated treefs nodes are the open circles. Note 
that T! is "upside down" with root r = (s + 1, 1). 

Now suppose we wish to build a labeled Fibonacci tree, T. Assume that the 
first m - 1 vertices of T have already been constructed and given the labels 1, 
..., m - 1. Let x be the current shape of T with associate xf whose root is p. 
To add a node labeled m to T we proceed as follows: 

WNG1. Choose a v € x' - {v} uniformly at random. 

WNG2. If v £ x, then add V to x with label m and halt. 

WNG3. If V e x, say v = (£, j) , then return to WNG1 with x' replaced by 
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F igure 5 p r e s e n t s an example of a t r i a l gene ra t ed by WGN1-3. 

Prob(v): 1/7 1/5 1/2 

A W N G trial 

FIGURE 5 

If this procedure is used iteratively for m = I, 2, . . , 9 n to produce a labeled 
Fibonacci tree, then let P(T) be the probability that labeling T is created. 
Thus, the total probability of producing a given shape T is P(x) = ZP(T), where 
the sum is over all labelings T of T. 

Theorem 3: If T is a Fibonacci shape with n nodes, then iteration of WNG1-3 
produces all labelings of T with total probability 

P(T) = fT2/n! 

Note: It is not true that WNG1-3 produces each labeling of T with probability 
P{T) = fT/nl. 

Proof: Let x have leaves W\> W^* ...» Wĵ  and define the subtrees x̂  = x - {w^} 
for all i . Let P(W^\T^) denote the probability that Wi gets labeled n after 
the algorithm constructs some labeling of x^ . Hence, by the definitions above 
and induction, 

P(T) = E ^ ^ O ^ I n ) = Z(fT
2 /(n- 1 ) ! ) P ( W J T * ) . 

Let the wn- be arranged in order of increasing first coordinate, i.e., 

(3.1) 

/1 - (ax, 1), ..., wk_l = (ak„i> 1), wk = (ak, j), 
where GL\ < ••• < a^ and j may be 0 or 1. We need a couple of lemmas to help 
compute the quantities in (3.1). 

Lemma 4: Let x and the wt be as above, then 

fc-i 
/T = II (n - ai - i). 

i = 1 

Proof: Using the hook formula (Corollary 2), we see that every term in the n\ 
is canceled by a hook of x except those in the product above. • 

Lemma 5: Let x and the w^ be as above, then 

i - 1 / 2 
PCWJT;) = d/n) n (i + — 

.7 = 1 V n ao - 3 T)-
Proof: Initially we can pick any one of the n nodes in x ' - {r}. Any trial 
ending at w^ can only pass through those Wj with j < £ and their associates wf-. 
Landing on either of these two reduces the number of available nodes in 
TJ - {T} to n - <Zj - g - 1, accounting for the second term of the binomial 
above. Q 
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For n o t a t i o n a l convenience , l e t b± = n - ai - i . Hence, by Lemma 4 , 

fT = blb2 . . . bk^ 

and 
fT. - tt>i " 1) • •• «> i - i - Dbi + l . . . bk.x. 

Also , from Lemma 5 , 

Thus, 

/T
2 P K | i { ) / ( n - 1 ) ! = ( l / n ! ) { O (2>? - 1 )U O 2>?\. 

U < j < i J J U < j < k 3 ) 

Plugging this expression into (3.1), we see that the sum of products telescopes 
(from the right-hand end) so that 

P(t) = b\ . . . bl_Yln\ = ff/nl 

as d e s i r e d . Q 

The obvious corollary is 

Corollary 6: E fT2 = n ! • 

We should also note that this algorithm has a "zone effect" similar to the 
original one for Young tableaux. Specifically, if v = (a, 1) and w = (b , 1) 
with a^ < a, b < a^+1, then by Lemma 5 we have P{V\T) = P(W\T) * This observa-
tion will be useful in the next section. 

4. Fibonacci Trees Grown from Within 

Given v e x, then v is a singleton if V f £ x and a doubleton otherwise. In 
Figure 6a, the singletons are (0, 0), (3, 0), (4, 0), and (6, 0), with the rest 
of the vertices being doubletons. If x has a spine of length s, then the 
corresponding extended tree is 

T" = TU{V!\V e x is a singleton} u {(s + 1, 0)}, 

see Figure 6b. The elements of T" - x are organized into zones, which are 
maximal strings of vertices with consecutive first coordinates. Zones are 
numbered from the bottom up starting with zone 0, e.g., in Figure 6, 

Z0 = U 0 , 1)}, Zl = {(3, 1), (4, 1)}, Z2 = {(6, 1), (7, 0)}. 

In the same way, the doubletons of x are grouped into bands with band i direct-
ly below zone i. In our example, the bands are 

B0 = 0, Bl = {(1, 0), (1, 1), (2, 0), (2, 1)}, Bz = {(5, 0), (5, 1)}. 

3 P 

A tree and the extended tree 

FIGURE 6 
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Finally, it will be convenient to have a total order on the vertices. If 
V = (i, j) and w = (x, y) , then we will write v <t w if i<x or i = x and j^y> 

Now, given a labeled Figonacci tree T of shape T on m - 1 nodes, we find a 
node of w E T" - T to label m by constructing a trial as follows. As usual, 
":=" is the Pascal assignment symbol. 

PI. Let v := (0, 0) with probability 1. Let the set of predecessors of v 
be P := 0. 

P2. Set P := PU{v}. 

P3. Pick zj uniformly at random from among the set, D, of possible direct 
successors of v = (t, j) defined by: 

(a) if v is a doubleton, then D = {w E T" - P|w>tz;}. 

(b) if y is a singleton, then let 5 be the band of largest index 
containing an element of P and let b be the maximum node of B 
(with respect to <t). In this case 

D = {w e T" - P|u >t b} - {ZJ a singleton|u < y}. 

If 5 does not exist, i.e., P consists only of singletons up to 
this point, then we take b = (0, 0). 

P4. If w e T" - T, then halt, else return to P2 with w := V. 

Note that the trials generated by Pl-4 do not necessarily respect the par-
tial order in T and the sequence of P's computed in P3 is not ordered by 
containment. For example, if a trial in the tree of Figure 6 has begun (0, 0), 
(4, 0), then the next node could be any one in T" except the two initial nodes 
and (3, 0). If the trial continues to (1, 1), then any nontrial vertex (i, j) 
with i > 1 is available for the next choice, including (3, 0). However, if the 
trial begins (0, 0), (1, 1), (4, 0), then the only possible successors are 
vertices (3, 1), (4, 1), (5, 0), (5, 1), (6, 0), (6, 1), and (7, 0). 

Nevertheless, these rules do provide the desired distribution. 

Theorem 7: If T is a Fibonacci shape with n nodes, then iteration of Pl-4 pro-
duces all labelings of x with total probability 

P(T) = fr
2/nl 

Proof: It suffices to show that Lemma 5 is still true when using Pl-4. It will 
be convenient to reformulate the Lemma slightly for this setting. Let A be a 
Fibonacci tree with n - 1 nodes and leaves w^, W^* ••• with first coordinates 
ai < a2 < ••. . 

Lemma 8: With A as above and w e X" - A in the kth zone, then the probability 
of terminating a Pl-4 trial at w is 

P(w) = (l/n) n (l + 2—: r). 
Wj € Bi , i < k V n - CLj - J - 1 ' 

Proof: Induct on fe . We will provide an explicit proof of the induction step, 
the anchor step being similar. 

The trials t: VQ = (0, 0), V\> ..., w are of two types, those that pass 
through an element of Bk and those that do not. The latter are in bijective 
probability preserving correspondence with trials VQ, T^, ..., wr, where wr e 
Zfc-i- In the former case, if VA 6 B^ is the first such node then VQ, ..., Vs _ \ , 
w' is a legal trial having the same probability as the initial segment of t. We 
will show below that the sum of the probabilities P of all possible final seg-
ments vJ , ̂ j+l' •••» -w is independent of both the particular node of Bk and the 
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initial history of £. Thus, by induction, it suffices to demonstrate that 

2 
1 +P\Bk\ n (i +

 2—^1) 

But the right side above telescopes to (s + |5^|)/s, where s is the denomi-
nator corresponding to the largest leaf in By that has coordinates (a, 1), say. 
It is easy to see that if we consider the subtree a = {{i, j) G A | i > a} then s 
= |o" | + 1. Hence, to finish the proof of the theorem, we need only show 

Lemma 9: Let t , V = Vj, P, and a be as above. Then P is independent of the 
set of nodes on t prior to v and of V itself (as long as V G By). In fact, P = 
l/(|a| + 1). 

Proof: Let {y = ui <t 2^ -t • • • -t um^ be- the set of all possible vertices that 
could appear on t from v up to (but not including) w> i.e., the set of all ele-
ments above v that are either elements of By, or singletons not previously on t . 
Because of these restrictions, the set of direct successors, D(u^), does not 
depend on the previous Uj chosen and, in fact, we have 

BiM-i) - {uAj > i} U {v G o"\v is not a singleton in 0} 

Thus, 

and 

Hence, 

= D(ui_l) - {wi}. 

\D(um)I = \{v G on\v is not a singleton in o}\ = \o\ + 1 

\D(Ui)\ = \B{ui_{)\ - 1-

P= , l , ( i + 1 L \ . . . ( 1 + i ^ _ \ = i _ _ 

as desired. D 

Of course, Theorem 7 gives another proof of Corollary 6. 

5. Remarks and Open Questions 

Another point of similarity between Fibonacci trees and standard tableaux 
is the formula 

where In is the number of involutions in the symmetric group Sn. The corre-
spondence of Bender [9] mentioned in the introduction also proves (5.1). Is 
there a probabilistic way to demonstrate this, either for trees or tableaux? 

A third family of posets that displays behavior similar to that of standard 
tableaux and rooted trees are the shifted standard tableaux [3] . The shifted 
analog of the hook formula (1.1) has been proved probabilistically by one of us 
[7]. It would be interesting to find an aleatory proof of the "sum of squares" 
equation in the shifted case (see [8] for the exact formula). 

Finally, tableaux and shifted tableaux are intimately connected with repre-
sentations of Sn . Ordinary tableaux give the degrees of ordinary irreducible 
representations (using matrices in GLn), while their shifted cousins are 
related to projective ones (those using PGLn9 the projective linear group). In 
this setting, the analog of (1.2) expresses the fact that the sum of the 
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squares of the irreducible degrees equals the order of the group. Can (1*2) 
itself be recast in this light? Specifically, is there a group of matrices G 
such that the degrees of the irreducible representations p:Sn •+ G are given by 
the fT ? 

References 

1. C. Greene, A. Nijenhuis, & H. S. Wilf. "A Probabilistic Proof of a Formula 
for the Number of Young Tableaux of a Given Shape." Adv. in Math 31 
(1979):104-109. 

2. C. Greene, A. Nijenhuis, & H. S. Wilf. "Another Probabilistic Method in 
the Theory of Young Tableaux." J. Combin. Theory Ser. A 37 (1984):127-135. 

3. D. E. Knuth. The Art of Computer Programming: Sorting and Searching. Vol. 
3. Reading, Mass.: Addison-Wesley, 1973. 

4. B. Pittel. "On Growing a Random Young Tableau." J. Combin. Theory Ser. A 
41 (1986):278-285. 

5. B. Sagan. "Partially Ordered Sets with Hooklenghts: An Algorithmic 
Approach." Ph. D. dissertation, M.I.T., 1979. 

6. B. Sagan. "Enumeration of Partitions with Hooklengths." European J. of 
Combin. 3 (1982):85-94. 

7. B. Sagan. "On Selecting a Random Shifted Young Tableau." J. Algorithms 1 
(1980):213-234. 

8. B. Sagan. "Shifted Tableaux, Schur ^-Functions and a Conjecture of R. 
Stanley. J. Combin. Theory Ser. A. To appear. 

9. R. P. Stanley. "The Fibonacci Lattice." Fibonacci Quarterly 13(1975): 
215-232. 

Announcement 
FOURTH INTERNATIONAL CONFERENCE ON 

FIBONACCI NUMBERS AND THEIR APPLICATIONS 
Monday through Friday, July 30» August 3,1990 

Department of Mathematics and Computer Science W a k e F o r e s t Univers i ty Winston-Salem, North Carolina 27109 

International Committee: Horadam, A.F. (Australia), Co-Chairman; Philippou, A.N. (Cyprus), Co-Chairman; 
Ando, S. (Japan), Bergum, G. (U.S.A.), Johnson, M. (U.S.A.), Kiss, P. (Hungary), Filipponi, Piero (Italy), Camp-
bell, Colin (Scotland), Turner, J.C. (New Zealand). 

Local Committee: Fred T. Howard, Co-Chairman; Marcellus E. Waddill, Co-Chairman; Elmer K. Hayashi, Theresa 
Vaughan, Deborah Harrell. 

CALL FOR PAPERS 
The FOURTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND THEIR APPLI-

CATIONS will take place at Wake Forest University, Winston-Salem, N.C., from July 30 to August 3, 1990. This 
Conference is sponsored jointly by the Fibonacci Association and Wake Forest University. 

Papers on all branches of mathematics and science related to the Fibonacci numbers as well as recurrences and 
their generalizations are welcome. Abstracts are to be submitted by March 15, 1990, while manuscripts are due by May 
1, 1990. Abstracts and manuscripts should be sent in duplicate following the guidelines for submission of articles 
found on the inside front cover of any recent issue of The Fibonacci Quarterly to: 

Professor Gerald E. Bergum 
The Fibonacci Quarterly 
Department of Computer Science 
South Dakota State University 
P.O. Box 2201 
Brookings, South Dakota 57007-0194 

208 [ J u n e - J u l y 



CONVOLUTIONS OF FIBONACCI-TYPE POLYNOMIALS OF ORDER K 
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1. Introduction and S u m m a r y 

Unless otherwise explicitly stated, in this paper k is a fixed positive in-
teger, n^ (1 < i < k) and n are nonnegative integers as specified, p and x are 
real numbers in the intervals (0, 1) and (0, °°) , respectively, q = 1 - p , and 
[x] denotes the greatest integer in x. Let 

^( k ) (*)C0 
be the sequence of Fibonacci-type polynomials of order k, i.e., 

F^\x) = 0, F[k\x) = 1, 

and 

F<-k\x) = 
Er'.(x) if 2 < n < k + 1, 
: = I 

n 
(l.D 

xT,Fw .(x) if n > k + 2. 
^ = 1 

This definition is due to Philippou, Georghiou, and Philippou [11] (see also 
[8]), who obtained the following results: 

,nF(k) 

. = o J-

1 

n = 0 xs - • » » - xsK 

s\ < 1/(1 + x), 

1 - (1 + x)s + xs k + l' (1.2) 

o*> E 
and 

nl s ..., nk 3 
n\ + 2^2 + • • • + /cn̂  = n 

\ ft!, ..., nk J , ft > 0 , 

-,00 
i = 0 3-0 3 ) 

x x°(l + x) -(fc+l)J 5 ft > 0 . 

(1.3) 

(1.4) 

Now let #k be a random variable which denotes the number of Bernoulli 
trials until the occurrence of the kth consecutive success. Then 

(Nk = n) = pnF^\_k{qlp)9 n > k, 

1 [(n-i)/(k+ 1)] 7 . 

p(Nk = ft + k) - E ( - i ) V + i E (-DJ'(n " V" ^J 

£ = 0 ,7=0 v J 

and 

1989] 

)(<7P*)J', 

n > 0, 

(1.5) 

(1.6) 
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P(NV = M) 1PK> 

n = k, 

k + I < n < 2k, 

n 1) - qpkP(Nk = n - 1 - k), n > 2k + 1. 

(1.7) 

The three results above are due, respectively, to Philippou, Georghiou, and 
Philippou [11], Uppuluri and Patil [12], and Philippou and Makri [8]. We note, 
however, that expression (1.6) was implicit in the work of [10], and variants 
of (1.7) have also been established in [1] and [6] by different methods. 

In the present paper we generalize relations (1.6) and (1.7) to two types 
of negative binomial distributions of order k (see Propositions 3.3 and 3.4, 
and Theorems 3.1 and 3.2), and we illustrate the computational usefulness of 
Proposition 3.3. The first type of negative binomial distribution of order k 
was introduced and studied in [9] and [5], while the second type was considered 
in [4]. Although the latter was recognized as a negative binomial distribution 
of order k, different from the first, it was named in t4] "compound Poisson 
distribution of order k" as arising from the Poisson distribution of order k by 
compounding. The above-mentioned propositions and theorems are stated and 
proved in Section 3. Their proofs depend on generalizations of expressions 
(1.1)-(1.5) to the (r - l)-fold convolution of {F^k\x)}™=0 with itself, which 
we proceed to discuss first. Here, and in the sequel, v is a positive integer, 
unless otherwise explicitly stated. 

2. Convolutions of Fibonacci-Type Polynomials of Order k 

Let {F^r(x)}^=0
 b e t h e (̂ ~ l)-fold convolution of the sequence {F^k\x)}^=Q 

with itself', i.e., F^k)
r (x) = 0, and for n > 1, 

n, r x ' 

F(*\x) if r = 1, 

£ Fj, \ _ i (aO^i - j<x> if ^ > 2. 
I J = 1 

(2.1) 

As a consequence of (2.1), and in view of (1.2), we get 

£ snF™, (x) £0°ntf\M 
(1 - sV 

i 

[1 - (1 + x)s + xsk+1]r' 

(1 - xs - * '' - xsk)r 

's\ < 1/(1 + x), 

(2.2) 

Expanding (2.2) as a Taylor series about s = 0, and following procedures 
similar to those of [9]-[11], we readily find the following closed formulas for 
{F^} r (x)}0°==Q, in terms of the multinomial and binomial coefficients, respec-
tively. 

Theorem 2.1: Let { ^ , r ( ^ ) } ^ = 0 be the (r - l)-fold convolution of the sequence 
{Fn (x)}™=0 with itself. Then 

(a) F^Up(x) 

and 

n1, .. . , nk 3 
nl + 2«2 + • • • + knk = n 

V ni, . . . , nk, v - 1 / 
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[<»- i> .m + i ) ] . . ,„ _ i _ kj, (b) Kk\ , w = E H)fg)( i + *)"-* E (-DJ'(n " V ) 

x(n- i -k3_Y - ly(1 + xy(k+l)j> R ̂  Q> 

We also note that, if we multiply both sides of (2.2) by xv and then dif-
ferentiate them with respect to x, we obtain the following reduction formula 
with respect to r. 

Proposition 2.1: Let {F^r (x) }~ = 0 be the (r - l)-fold convolution of the sequence 
{i^° (x)}^=0 with itself.' Then 

We proceed next to show that {F^)
r(x)}^Q satisfies the following linear 

recurrence with variable coefficients. 

Theorem 2.2: Let {F„\(x)} be the (r - l)-fold convolution of the sequence 
{F^k\x)}^=Q with itself, and set F™r (x) = 0 f or -k + 1 < n < -1 - Then 

F^r(x) = 0, F™r(x) = 1, 
and 

J = 1 

From the definition of {F^t r (x)}°^ = Q, we have 

F ^ O c ) = 0 and F™r(x) = 1. (2.3) 
Now, let |s| < 1/(1 + x) . Noting that 

(1 - xs - ... - xsk)~r = (1 - xs - ... - xsk)-r~l(l - x ^ s j \ (2.4) 

and 

SJ(1 - x s _ ... - xs*)-*-1 = ^ S ^ l - j r+l<X>> 1 S J < fe, (2.5) 

by (2.2), 
we get 

J = l J 

E s ^ 0 ? , Ax) = (1 - xs - ••«. - xs^)-1-"1 - x£sJ'(l _ XS - ••• - xsk)-*-K 
n = o J-i by (2.2) and (2.4), 

= E a"^!. r+l<*> -
 X £ E/^W^l^' 

" = 0 J ' l n = °  by (2.2) and (2.5), 
r „, k 1 

= E s" 
n = 0 

Therefore, 

^ l . , ( « ) - ^ l . r + l(*) - - E / n ^ - i , ^ ! ^ ) ' » * 0. (2-6) 
J = 1 

Next, differentiating both sides of (2.2) with respect to s, we get 

oo ... ?C 

E^'^+l.r^) = ^ E ^ V ^ d - XS - ... - XSk)-r~l 

n = l j = 1 

= raEiE^-j.r+iW' hy <2-2) a n d ( 2 - 5 ) > 
j=l n=0 
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n = 1 3 = 1 

which implies 
k 

J = 1 

Combining (2 .6 ) and ( 2 . 7 ) , we o b t a i n 

i f A . r + l ^ ) - f £ (" + dr)F^.tT+1Cx), n>l, 
J = l 

which, along with (1.1) and (2.3), establishes the theorem. 

Remark. 2.1: Results analogous to Proposition 2.1 and Theorem 2.2 have been 
obtained by Horadam and Mahon [3] for convolutions of the sequence of Pell 
polynomials (of order 2) with itself. 

3. Binomial Expressions and Recurrences for the 

Negative Binomial Distributions of Order k 

In the present section, we employ Theorems 2.1 and 2.2 to derive binomial 
expressions and simple recurrences for the following two distributions of order 
k [4], [5], [9]. 

Definition 3.1: A random variable X is said to be distributed as negative bino-
mial distribution of order k, type I, with parameter vector (p, p) , to be de-
noted by NBk}1(r, p) , if 

*<*-»>->- E ( V " ' + «* V-VXf) 
nl+ -'- + nk 

, n > kr. 
n1 + 2n2+ — • + knk = n-kr 

Definition 3.2: A random variable X is said to be distributed as negative bino-
mial distribution of order k, type II, with parameter vector (p, p) , to be de-
noted by NBktI1 (P, p), if 

P(X=n) = pr 2^ k i •)( J y n > 0. 
^ n l t ~ , nk3 \ nls . . . , nk, v - 1 l\pi 

n i + 2n2 + • • • + kn k = n 
The negative binomial distribution of order k9 type I, gives the probabil-

ity that the first occurrence of p success runs of length k happens at trial n 
[5]. The negative binomial distribution of order k, type II, arises as a gamma 
compound Poisson distribution of order k. More precisely, if we use CP^ir, a) 
to denote the (gamma) compound Poisson distribution of order k with parameter 
vector (p, a) [4], we note that 

NBk,n(r> P) = CPk(r> a) f o r V = a/(a + k) . 
The fact that CP-^ (p, a) is a negative binomial distribution of order k, albeit 
different from NBk,i(r, p ) , was already mentioned in [4] by Philippou, who 
named the new distribution, however, "compound Poisson distribution of order ku 

as arising from the Poisson distribution of order k by compounding. 
As a consequence of Theorem 2.1(a) and Definitions 3.1 and 3.2, respec-

tively, we have the following relationships. 
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Proposition 3.1: Let X be a random variable distributed as NBktl(r, p) and let 
{F^)

p(^)}^=0 be the (r - l)-fold convolution of {F^\x)}™ = 0 with itself. Then 

P(Z = n) = pnF^\_kr^(q/p)9 n > kr. 

Proposition 3.2: Let J be a random variable distributed as NBk n ( r , p) and let 
{^)7,(x)}^=0 be as above. Then 

P(Z = n) = prF™lap{q/k), n > 0. 

Combining Theorem 2.1(b) with Propositions 3.1 and 3.2, respectively, we 
obtain the following binomial expressions for the negative binomial distribu-
tions of order k. 

Proposition 3.3: Let X be a random variable distributed as NBk}1(r, p), 

i = o 

kj + r - 1> 

v [(n-i)Kk+l)] 
P(X = n + kr) = 2 (-ir(J)pkr+i £ (~DJ'(n 

i = 0 

(n 
1 

L)(qpk)J', w > 0. 

Then 

Proposition 3.4: Let X be a random variable distributed as NBkill(r, p) . Then 

pu--o-p'i(-i>'(S)(H*r 
^ = 0 K 

i n - i - k j + r - 1 
\ r - 1 

[(n-i)/(fc+l)] 

J=0 X 

i - kj\ 

)[(fx r̂r- - * •• 
Remark 3.1: Another binomial expression for the probabilities P(X = n + kr) {n 
> 0) of NBkil(r, p) has been obtained by Charalambides [2], who employed for 
this purpose the truncated exponential Bell polynomials. Our expression 
appears to be more applicable. 

Remark 3.2: For r = 1, Propositions 3.3 and 3.4 provide binomial expressions 
for the probabilities of 

Gkil(p) = NBk>la, P) and Gk$11(p) = NBktll(l, p) , 

respectively. The first one implies (1.6), the main result of Uppuluri and 
Patil [12], since Nk is distributed as Gkil(p) [7], [9]. The second is noted 
presently for the first time. 

Theorem 2.2 and Proposition 2.1 imply 

Theorem 3.1: Let X be a random variable distributed as NBkil(r, p), and set 
Pn = P(X = n). Then 

0, n < kr - 1, 

V kr n = kr9 

E [n - kr + j(r - DlpjPn_ ., n > kr + 1. (q/p) 
n - kr /Ti 

Proof: For n < kr - 1, (X = n) = 0, which implies Pn = P(0) = 0. For n = fcp, 
Definition 3.1 gives Pn = pkre p0r n > kr + 1, we have 

,njp(k) 
Pn = PnFn-kr + i,rWP)> h? Propos i t ion 3 . 1 , 
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= Pn ^ ^ E [ » - ^ + 3(r - Wn^lcr + l-j.rtiW' b y T h e o r e m 2 . 2 , 

(<?/p) & 
= — V [n - kr + j(r - l)]pJP„_ ., by Proposition 3d. 

n - kr j = i n J 
For r = 1, Theorem 3.1 reduces to the following corollary, which implies 

recurrence (1.7), since Nk is distributed as Gk x(p) [7], [9]. 

Corollary 3.1: Let X be a random variable distributed as Gk x(p) E ̂ 5fe x(l, p), 
and set Pn = P(X = ri) . Then 

pfe, n = k, 

qpk, k + 1 < n < 2k, 

[Pn-i ~ qpkPn-!-k> n>2k+l. 

Theorem 2.2 and Proposition 2.2 imply 

Theorem 3.2: Let X be a random variable distributed as NB k 1T (r, p) , and set 
Pn = P(X = n), n > -k + 1. Then 

0, -fc + 1 < w < -1, 

pr, n = 0, 

K,/T. j = 1 

Proof: For -fc + 1 < n < -1, (Z= n) = 0, which implies Pn = P(0) = 0. For n = 0, 
Definition 3.2 gives Pn = pr. For n > 1, we have 

Pn = PrFnl\,r^/k^ b y Proposition 3.2, 

= PP "^-^ E in + J (2" - D ] ^ . - r(?/fc), by Theorem 2.2, 

P„ = 

_2_ E tn + <7*(p ~ l)]^n-j» by Proposition 3.2, 
J = i 

which completes the proof of the theorem. 

For r = 1, Theorem 3.2 reduces to the following corollary. 

Corollary 3.2: Let J be a random variable distributed as Gk zl (p) = NBkf XI(1, p) . 
and set Pn = P(X=n), n > -k + 1. Then 

P. = i 

p, n = 0 

/ k + qVl~lpq 
\ I / T" 

I t )n-l 

, I < n < k, 

J^-i-k. n^fe + 1. 

4. Computational Examples 

In this section we illustrate the computational usefulness of Propositions 
3.3 and 3.4. Since both propositions are of the same nature, we restrict 
attention to Proposition 3.3 in comparison to Definition 3.1. 
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Example 4.1: Assume t h a t a random v a r i a b l e X i s d i s t r i b u t e d as NB~ T ( 5 S p) and 
we a r e i n t e r e s t e d i n c a l c u l a t i n g P(X = 18) and P{X = 2 0 ) . 

P r o p o s i t i o n 3 .3 g ives 

P(X = 18) = £ (-^(Di7 4 * ) p 1 5 + i = 35p15 - 75p16 + 50p17 - 10p18 (4.1) 
i. = 0 

P(x = 20) - £ (-i>*mP^< l(5E/41(-i)J'(5 - V 3J')(9' V 3jY^j 

i = 0 X W j = 0 <7 ^ 7 

= P15[(I) - *GM - v6[(8
4) - O3]+ ^17(l) 

-10p"(J) + 5 p l 9 ( J ) - p 2 0 ( J ) 

= 126p1 5 - 350p 1 6 + 350p 1 7 - 150p1 8 + 25p 1 9 - p 2 0 

- 30qp18 + 2 5 q p 1 9 . (4 .2 ) 

A l t e r n a t i v e l y , i f we use D e f i n i t i o n 3 . 1 , we ge t 

(ni + n2 + n3+ b\(£ \ni + n2 + n3 

n1 + 2n2+ 3n3 = 3 

r n l s n2, n3 3 Vn^, n 2 s n$9 4 / \ p / 

1 8 r / 3 + 0 + 0 + 4 \ / q \ 3 ^ / 1 + l + 0 + 4 \ / W \ 2 ^ I 0 + 0 + 1 + 4 \ / q \ 1 l 
= P18LV3, 0, 0, 4Ap) + Vl, 1, 0, 4Ap) + VO, 0, 1, 4Ap) J 
= 3 5 ^ 3 p 1 5 + 30<?2p16 + 5qp 1 7 (4 .3 ) 

and 
P ( Z = 2 0 ) = p 2 0 £ P l + w2 + « 3 + 4 \ ( I ) 

^ n l 9 n2> n 3 3 \ f t l s ?22 , n 3 , 4 / \ p / 
n ! + 2n2+ 3n3 = 5 

2 0 r / 5 + O + O + 4 \ m 5 _,_ / 3 + l + 0 + 4 \ / q \ 4 , / 2 + 0 + l + 4 \ / q \ 3 
= P °LV5, 0, 0, 4Ap) + U, 1, 0, 4/lp) + V2, 0, 1, 4Ap) 

/ l + 2 + 0 + 4 \ / 4 \ 3 /0 + 1+ l + 4 \ / q \ 2 l 
+ Vl , 2 , 0 , 4 / V p / + \ 0 , 1, 1, 4/Vp/ J 

= 126q5p15 + 280qhp16 + 210q3p17 + 30q2p18. (4.4) 

Example 4.2: Assume that a random variable X is distributed as NB2Q (3> p) anc* 
we are interested in calculating P(X = 80) and P(X = 100). 

Proposition 3.3 gives 

pa- so) = £ (-DH-H2^"" > 6 0 + i 

i = 0 

= 231p60 - 630p61 + 570p62 - 171p63 (4.5) and 

P(X = 100) 

3 , 7 o X [(40-i)/21 

£ (-i)l@P60 + i £ E ( - D * © ? 6 0 ^ t < 4 0;E/ 2 1 1(-i) i(4 o-v2 o j')(4 2-v2 0 j')^2°)j 

1989] 215 



CONVOLUTIONS OF FIBONACCI-TYPE POLYNOMIALS 

= ^[C2
2)-2o(2

2
2)^0]_3pe1[(41)_19(22l)^20] 

+ 3P62[(4
2°)-I8(2

2V20] - ^ K l - i ' l i V i 
= 861p60 - 2460p61 + 2340p62 - 741p63 - 4620^p80 

+ H970qp81 - I0260qp82 + 2907<?p83. (4.6) 

On the other hand, Definition 3.1 does not appear to be applicable for this 
task without a considerable amount of computational effort, even with the aid 
of the computer. 

In general, when k and n - kr are large, Proposition 3.3 fares much better 
than Definition 3.1 for calculating negative binomial probabilities of order k, 
type I. If all probabilities up to P(X =m) are needed, for some integer m 
(>kr), the recurrence given in Theorem 3.1 is most appropriate for calculating 
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1. Introduction 

The Stirling number of the second kind, S(n, k) , is defined as the number 
of ways to partition a set of n elements into k nonempty subsets. Obviously, 
S(ji9 k) = 0 if n < k. The sequence {S(n5 k) (mod pN)}n>]< is known to be peri-
odic. That is, there exists NQ > k and TT > 1 such that 

S(n + TT, k) = S(n, k) (mod p#), for n > N0. 

Note that any period is divisible by the minimum period. Carlitz [2] showed 
that if k > p > 2 and ph~l < k < pb, where b > 2, (p - l)pN+b~ 2Is a period for 
{S(n, k) (mod pU)}n>k. 

In this paper, we will determine the minimum period of {S(n, k) (mod A01n>fc 
for k > 1 and M > 1. This extends the results given in [1] and [3], and 
confirms that the periods in [2] are indeed the minimum periods for odd p. 

2. Preliminaries 

Given any sequence (̂ n̂ n>o °f integers, its generating function, A(x), is 
defined as 

n = 0 

Certainly, A(x) is a formal power series over the ring of integers. A period 
of {an (mod M)}n>0 will also be called a period of A(x) modulo M. The next 
theorem is obvious. 

Theorem 2.1: If (an}n>0 is generated by A(x) , then IT is a period of {an (mod 
M)}n>0

 if anci only if (1 - tf^MCtf) is a polynomial modulo M. 

We will study generating functions in the forms of l/f(x), where f (x) G 
E[x], and f(0) = 1. We have 

Theorem 2.2: Given /(a?), u(a0 G Z[ar] , where f(0) = w(0) = 1, let u and \if be 
the minimum periods of l/f(x) and l//(tf)u(#) modulo M, respectively. Then u 
divides uf. 

Proof: From the definition of u', we have 

1 - xV 
f(x)u(x) 

Therefore, 

i(x) e TLjx] . 
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1 - X»' 

fM 
= h(x)u(x) e EJx]. ML 

This implies that y r is a period of l/f(x) modulo M, However, y ' may not be 
the minimum period. Thus, y|yf. fj 

The next theorem is again obvious. Yet, it allows us to assume that M is a 
prime power. 

Theorem 2.3: Let p^1 ... p&s be the prime factorization of M, and let y(pf*) 
be the minimum period of {an (mod p6.1) } n > 0 • Then the minimum period of {an (mod 
M)}n>0 is the least common multiple of y(pfO, where 1 < i < s. 

Let \i(k; pN) be the minimum period of the sequence of Stirling numbers of 
the second kind {S(n, k) (mod PN)}n>]<' It is well known that 

f^S(n + k, k)xn = — . 
n = o (1 - x)(l - 2x) ... (1 - kx) 

It now follows from Theorem 2.2 that \i(k; pN)\]i(k + 1; pN) . We would like to 
know when \x(k; pN) = \i(k + 1; p^) . 

Theorem 2.4: Let i4 (#) be a formal power series over the ring of integers, and 
p € Z, where p > 1. Let IT be a period of A(x) modulo pN. Then TT is not a per-
iod of A(x) I (I - vx) iff v i 0 (mod p) and h(r~l) t 0 (mod p#) , where /z(#) is 
the polynomial (1 - x^)A(x) modulo p#, and p-1 is the inverse of p modulo p#. 

Proof: If p = 0 (mod p), then 1 - vx is invertible (mod pN). Thus, 

(1 - xTr)^(x)/(l - PX) 

is still a polynomial modulo ptf. Now assume that r $ 0 (mod p), and let 

/z(x) 

Then we have 

(1 ~ 
1 

D 

n = 0 

x 7 7 ) ^ ) _ /z(x) 
- P X 1 - P.T 

D-l / n 

\n=0 I\n=0 J 

i - 1 I m \ oo / I) 

E E v " " T + E 2>„r-
n = 0 \ « = 0 / 77? * Z? \ « = 0 

) ( P X ) W (mod ptf) 
m = /} \ n = 0 / 

is a polynomial modulo p N if and only if 

Z) 

£ anp"n = ̂ (p"1) E 0 (mod pN). D 
n = 0 

Therefore, to determine \i(k; pN), it suffices to find the minimum period of 
l/fk(x) modulo pN, where 

k 
fk(x) = n (i - ix). 

K i= 1 
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3. Stirling Numbers 

First of all, we determine u(/c; pN) for 1 < k < p. The following theorem 
is a routine exercise. 

Theorem 3.1: For 1 < k < p, \i(k; pN) is the least common multiple of the or-
ders of i modulo pN for 1 < i < k. 

For k > p, we use induction on N. The case of N = 1 is relatively simple. 

Theorem 3.2: If k > p, b > 2, then u(fc; p) = (p - l)pfe_1, where p b _ 1 < k < p b . 

Proof: If k = pb, b > I, then 

Pf e / P - 1 /> (x) = n (i - %x) = I n (i - ix)| 
p i= l U = l ; t = l 

= (1 - ^ - y ' " 1 = 1 - xCP" 1 )^" 1 (mod p ) . 

So, y ( p & ; p) = (p - D p ^ " 1 . T h e r e f o r e , \x(k; p) | (p - l ) p f c _ 1 fo r pb~l< k < pb, 
2? > 1. In p a r t i c u l a r , for a f ixed b > 2, 

I _ x ( p - l ) P b - 2 

7z(aj) = — = 1 (mod p) . 
Jpb-l (X) 

From Theorems 2.2 and 2.4, we know that 

(p - l)pb~2 = ij(pfc-1; p) divides \i(pb~l + 1; p) properly. 

Consider p b ~ l < k < p b , b > 2. On one hand, 

\i(pb~l + 1; p) divides u(Zc; p) , 

so (p - l)p^"2 is a proper divisor of u(/c; p) . On the other hand, 

\i(k; p) divides \\(pbl p) = (p - l)pfo-1. 

Therefore, u(fc; p) = (p - Dp2'"1. D 

The next lemma can be easily verified. We leave the proof to the reader. 

Lemma 3.3: Let f(x)e7L[x] such t h a t f ( 0 ) = 1, and l e t IT be a p e r i o d of l/f(x) 
modulo pN. Then pTT i s a p e r i o d of l/f(x) modulo p ^ + 1 . 

Corollary 3.4: For pb~l < k < pb, b > 1, \i(k; pN) always d i v i d e s (p - l)pN+b~2. 

Now we are ready to prove 

Theorem 3.5: For k > p > 2, and p^"1 < k < p , where b > 2, 

u(k; P^) = (p - Dp^+Z?"2. 

Proof: The case of /!/ = 1 is proved in Theorem 3.2. Assume it is true for some 
N > 1; we want to show that it is also true for N + 1. Because of Lemma 3.3, 
if p2>-l < k < p b

 y b > 2, then y(fc; pN + l) is either 

(p - l)pN+b~2 or (p - Dp/l7+Z?-1. 

In any case, for k = pb ~l, we always have 
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h(x) = — e 7LpN+i [x]. 
Tpb-i\X) 

If we are able to show that h((ph~l + l)"1) i 0 (mod pN+l), then 

(p - l)pN+b- 2 divides \i{ph~l+ 1; p N + 1) properly. 

This implies that y(p£-l + 1; pN+ 1) must be (p - l)p^+^"1. Then y(fc; pN+l), 
where pb -1 < \ < pZ?, will also be (p - l)pN+b~]1. Note that 7z(#) can also be 
rewritten as 

i _ r(p-l)pN+b-3 p - i 

h(x) = — x Y,*dip-l)lp 3-
Jpb-i \ x ) j = o 

From the inductive hypothesis on /I/, we have 

1 _ a.Cp-Dp^-3 

/pi-i (*) 
2 0 (mod p^). 

x = (ph~l+ l)'1 

On the other hand, it is easy to check that the highest power of p that divides 

xd(P~l)PN+b-3 I 
U = (P

b~i + 1 ) - 1 

is exactly p. Hence, h((pb~l + 1)_1) 2 0 (mod pN+l). Q 

Theorem 3.6: If p = 2, then 

(1) y(l; 2*) = y(2; 2*) = 1, 

(2 if /!/ = 1 or 2 
(2) y(3; 2*) = u(4; 2*) = < 

( 2/l/_1 if N > 3 
(3) y(fc; 2N) = 2^+Z?_2for 2^" l < k < 2 , b > 3. 

Proof: The proof is identical to that of Theorem 3.5 for b > 3. We have to de-
termine y(3; 2N) = y(4; 2N) separately. In this case, we study 

1 f E ^ V E 3Jxd) = t,K*n> 
\i=0 /\j=0 / ^ = 0 

A(#) (1 - tf)(l - 3a:). Xt = u , VJ: 

where £n = (3n+1 - l)/2. Thus, y(3; 2N) is the smallest n such that 

£n E 2>0 = 1 (mod 2*). 

That is, it is the smallest n such that 

3n = 1 (mod 2N+1). 

Therefore, y(3; 2^) satisfies (2) in the statement of the theorem. Q 

4. Final Remarks 

It is possible to obtain the same results without invoking any induction. 
However, the computation is more involved. We were also able to extend the 
result to the generating function l/f(x), where f(x) is a product of linear 
factors of the forms 1 - rx, v £ Z. These approaches will appear in a forth-
coming paper elsewhere. 
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ON r-GENERALIZED FIBONACCI NUMBERS 

Francois Dubeau 
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Introduction 

Miles [5] defined the p-generalized Fibonacci numbers (p > 2) as follows: 
ur,n = °  (n = ~l> " 2> ~3> •••)» (la) 
UTi 0 = 1, (lb) 

v 
uv,n = X ur, n - i (n = 1, 2 , 3 , . . . ) . (lc) 

i = l 

In such a way, for r = 2, we get the ordinary Fibonacci numbers. The object of 
this paper is to present, in the first section, an elementary proof of the 
convergence of the sequences of ratios 

lr, n - 1 

using neither the theory of difference equations nor the theory of continued 
fractions. In the second section, we consider a geometric interpretation of 
the p-generalized Fibonacci numbers that is a natural generalization of the 
golden rectangle. Finally, in the third section, we consider electrical 
schemes generating these numbers. 

1. Convergence Results 

For each r > 2, we consider the sequence of ratios 

Rather than using the theory of difference equations to obtain a formula for 
uT} n and use it to prove the convergence of the sequence to the unique positive 
root of the polynomial 

pr(x) = xr - I > ^ (see [5]), 
i = 1 
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we present here a proof based on a fixed point argument using the way the ur n 
are generated. 

Observe that ur>n > 0 for n > 0. Hence, dividing (lc) by ur n_i» we get 

£ = 2 ^r, n - 1 
1) 

and, using the definition of tVy i , we obtain 

r ^ 
tr,n = 1 + E 7—1 (n > P). (2) 

11 ^p, n -j 
J = l 

From (1), we also have 

^p n = ^ ^ p yi — i — ^p ?2 — p — l tor ?z ̂  zj 

hence, dividing by wr>n_ ls we obtain 

£r, „ = 2 - — (n > p + 1). (3) 
11 ̂ p, n-i 

i = l 
Now, since tTi n > 1 for n = 1, ..., p, using (2) we have tPj n > 1 for all n > 1 
and, using (3), we also have tr> n < 2 for all n > 1. 

Using (2) and (3) we can generate a sequence of upper bounds {Bri £}j? = n and 
a sequence of lower bounds {br, ^I=Q f° r £p, n a s follows. We have 

1 = bTy 0 < tVi n < BTi o = 2 (n > 1) 

and, assuming that Z?Pj £_-[ and BPj £_x are known and such that 

£p, £-1 ^ ^p, w ^ 5 P , £-1 f o r all « ^ ̂ U " 1) + 1, 

we generate bTj l and BTj £ using (2) and (3) in such a way that 

br, £ = l + E — T T ~ < tpj n < 2 - — = 5r> £ (4) 
^ = 2 ^P, £ ~1 ^P, £-1 

for all n > P£ + 1. 
The problem is now related to the convergence of the sequences 

^ps£>r=0 a n d {B*>, £^=0' 
We consider the two functions 

f, <*) - 1 + £ -Jrr and Fr (x) - 2 - -j? 
i = 2 ^ ^ 

From (4), 5r, A = Fr(SPj£_1) and bVy £ = /r(^r, £-i)» hence, the result we look 
for will be obtained from the study of the two functions fr(') and Fr (•) . 

Lemma 1: Let p > 2 and FT (x) = 2 -. 

(a) The equation x = FP(x) has two solutions in the interval (0, °°) . One 
solution is 1 and the other, noted ar9 is in the interval (1, 2). 

(b) Let {ooi}T=Q be a sequence defined by x^ + 1 = Fr (xi) for i = 0, 1, 2, ... . 

(i) If x0 € (1, a P), the sequence { ^ I ^ Q is strictly increasing and con-
verges to ar . 
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( i i ) If XQ E (ar, oo)s the sequence {x^}?3 i s s t r i c t l y decreasing and con-
verges to a- . 

Proof: If x € (0, oo), then 

F ' (x) r + 1 X" 

„, N P(P + 1) 
> 0 and F"(x) = r+2 < 0; 

hence, Fv ( • ) i s a s t r i c t l y increasing continuous concave function on (0, °°) . 
Also 

lim Fr (x) = -°°, lim Fr (x) = 2, 
x -> 0 + a;>+oo 

F r ( l ) = 1 and Fr (1) = r > 1, then Fr (x) < x on (0, 1) and there ex i s t s a r ea l 
number aP such that FT (x) > x on ( 1 , ar) and Fr(x) < x on (aP , °° ) (see Figure 
1). The r e s u l t s follow from these observations. D 

FIGURE 1. Graph of y = F r ( x ) 

Lemma 2: Let r > 2 and l e t 

1 
fr. (*) = 1 + E 

i = 2 X i-1 

The equation x = fr(x) has a unique solution $r in t n e interval (0, °°). Also 
3r is the unique positive root of the polynomial 

p (x) = xr - E xz 

i = i 

Proof: If x e (0, °°), we have 

/P'(*) = " E 
^ = 2 XL 

< 0 and f"(x) = E i ( i - 1) 
-£ = 2 ^ i + 1 > 0; 

therefore, /* (•) is a strictly decreasing continuous convex function on (0, °°). 
Also 

lim fr(x) = +oo and lim fr(x) = 1 (see Figure 2). 
a; -> 0 + # •> +oo 

It follows that there exists a unique positive x such that x = fr(x). Also, 
for x > 0, x = fr(x) is equivalent to 
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- E 
i = l 

and the result follows. Q 

FIGURE 2. Graph of y = fr(x) 

Lemma 3: Let r > 2. For x * 1, x = fr(x) is equivalent to x = Fr(x), and it 
follows that 

6 r - ar € (2(1 - p ) , 2). 

Proof: x = Fr (x) is equivalent to x^O - 1) = rcp - 1. For # * 1, x = Fr (x) is 
equivalent to 

r-i 

i = 0 

which is also equivalent to x = fr(x). Hence, 

«P = /r(ar) ̂  /r(2) = 2̂ 1 - 4r)- • 

From Lemmas 1-3 we can conclude that i) the sequence {Br> z} is strictly 
decreasing and converges to ar, ii) the sequence {bP} jt^-g is strictly increas-
ing and converges to ar. Then, using (4), we have the following result. 

Theorem 1: Let r > 2, uTi n given by (1), and 

tY u 
for n > 

r, n - 1 

The sequence {trtn}™=1 converges to the unique positive root ar of the polyno-
mial 

P (x) = xv - f; x p - \ . D 

We could call ar the v -generalized golden number; hence, we have the fol-
lowing result. 

Theorem 2: The sequence of 2^-generalized golden numbers {ar}™ is a strictly 
increasing sequence converging to 2. 
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Proof: Let 2 < r, < P2. We have Fr (as) < Fr (x) for all x e (1, °°); Hence, 

ari = Fr (aPi) < FP2 (aPl) . 

It follows that ar e (1, ap2) . Then the sequence {ar}~=2 is strictly increas-
ing and upper bounded by 2. It converges and we have 

lim ar = lim(2 - — 1 = 2 . D 
p -> 00 p-^oo\ Ot^ / 

Remark 1: Somer [8] considered the proof of Theorem 2 based on continued frac-
tions. 

Remark 2: We have shown that ar is the unique positive root of the polynomial 

pr (x) = xr - X ^ 
= 1 

We can also easily observe that p (x) has 

(i) only one negative real root if r is even, 
(ii) no negative real root if v is odd, 

because p (x) = 0 is equivalent to 

xr = for x < 0 
x - 1 

(see Miles [5] for a complete study of the polynomial p (x) ) . 

Remark 3: We could consider that uVi i are given positive real numbers for i = 
0, ..., v - 1 and that uTy n are generated using (lc) for n > r. In this way, 
we could show that tVy n > 1 for n > r and tP } n < 2 for n > 2r. More generally, 
it follows that we could start with any given real numbers uTi i (£ = 0, ..., 
v - 1) and use the method described here to show 

which is the positive root of p (x), as soon as r successive values uVi ^ of the 
same sign appear. 

2. A Geometric Interpretation 

Let us consider the sequence of r-tuples {vVy n}n=o generated by induction. 
Let VTy 0 = (ur> 0, ur> ls . .., Wr, r-l)- Assuming that iTi j is already generated 
for j = 0, ..., n - 1, we generate fPjn as follows: 

(i) determine the unique integers i and k such that n = i + kr, 0 < i < r 
and fc > 0 [in other words, i = 1 + (n - 1) mod r], 

(ii) the coordinates of 5P,n are those of Vr, n-i except for the ith coor-
dinate of vTs n which is the sum of the v coordinates of ^ ^ . p 

From this construction, we can show that the coordinates of vr, n a r e suc-
cessively urin, uF)n + l, . .., ursn+r-i where uPi n + r-i±s the ith coordinate, 
and the sum of the coordinates of vr> n is urtTl+r. 

To each vr> n we can associate the parallelepiped rectangle in E.r having 
this point as the vertex that is not on the axis. This construction for v > 2 
is a natural generalization of what happens in the case v = 2. Figures 3 and 4 
illustrate the cases v = 2 and r = 3, respectively. 
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"2,0 

"2,1 

"2,2 

"2,3 

"2,4 

"2.5 

= ( 1 , 1) 
= ( 2 , 1) 
= ( 2 , 3) 
= (5 , 3) 
= (5 , 8) 
= (13 , 8) 

1 I 5 13 

FIGURE 3. Case r = 2 

^3,0 

^3,1 

^3,2 

^3,3 

^3,4 

^3,5 

= ( 1 , 1, 2) 
= ( 4 , 1, 2) 
= (4 , 7, 2) 
= (4 , 7, 13) 
= (24, 7, 13) 
= (24, 44, 13) 

FIGURE 4. Case r 

Normalizing the vectors VTt n with respect to the uniform norm 
serve that 

lim = ar, 
k+c 

(i = 1, ..., r) 
\vr, i+ kr\\ 

we ob-

where dTs 1 is a unit vector, with respect to the uniform norm, having the coor-
dinates l/aj"i, l/a£~2, ..., l/a£, l/ar, 1, and_ such that 1 is the i t h coor-
dinate. Figures 5 and 6 illustrate the vectors dTt 1 (i = 1, . .., r) for r = 2 
and v = 3, respectively. 

a2 = 1.618034... 

ci2 l = (1, l/a2) 

ci 2,2 d/a?, 1) 

FIGURE 5. Case r = 2 
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a 3 = 1 .8392868 . . . 
d 3 j l = ( 1 , l / a | , l / a 3 ) 

d3 3 = ( l / a | , l / a 3 , 1) 

FIGURE 6. Case r = 3 

Moreover, the volume V of the parallelepiped generated by the vectors dVy i, 
" i s d-p 2' • • • 5 <3, 

1 \r-l 
Fr = det (dr> x, . . . , dr> r ) = ( 1 - -^ j 

Since lim av = 2, it follows that lim Fr = 1. 
V -> +oo 2» -> oo 

We can present an informal interpretation of the last result. If we consi-
der coordinatewise convergence, we can define for the sequence {dr, i}r=i t n e 

limit 

d . = lim cL (2 1-i nl-i .., 2"2, 2"1, 1, 0, 0, ...) 

which is a vector in the infinite-dimensional euclidean space E.00 (or the set of 
infinite sequences). Hence, the semi-infinite determinant 

7^ = det(d00t 1? d 2> • • •) = l i m vr 
r+ oo 

is triangular and has l?s along the diagonal, so FM = 1. 

3 . E lec t r ica l Schemes 

It is well known that we can generate the sequence 

"2,n +ir 
U2,n ) n = 0 

using electrical circuits (see [1], [2], [3], [4], [6], [7]). Recently, Beran 
[2] wondered if it was also possible for the sequence 

(U3,n+ir 
( U3,n Jn-0* 

We present here one method to generate the sequence 

using electrical circuits. 
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Let us define the resistances 

r _ ur, j + i 

for j > 0 and i, > -j. Hence defined, connecting in series r successive resis-
tances 

Vj.i + k (k = 0. .... r - 1) 
we obtain the resistance next to the last one 0,^ • + because 

r-1 

Also, connecting in parallel r successive resistances 

n;+k)f (k - 0, ..., r - 1) 
we obtain again the resistance next to the last one ^7-+p J because 

^r . = 1 
"J + P, i r - 1 

Using these observations, we can generate a sequence of sets {5j} «, where 
S% is the set of resistances having values Q^f % for t- = -r, -v + 1, . .., -1, 0, 
1, ..., r - 1, T, The process is by induction. 

For n = 0, we have: 

(i) Q^ i = 0 for i = ™r, . . . , - 1 ; 

( i i ) fij>0 = 1; 

( i n ) n£ ^ = Y. ^o, i - j f o r ^ = l > • - •' p-
J = i 

Assuming that the resistances in the sets SQS Sl9 S2> . ••» Sn-\ a r e avail~ 
able, we can generate the resistances in the set S* as follows: 

v 1 
(i) for ̂  = -r, ..., -1, we have ttn ^ 

2^ 1 /tin - j , j + i 
J = l 

and ^ . j , j + i e C / , f o r J = 1> . . . , r 

(in these expressions we do not consider a term for which the index j is such 
that n - j < 0) . Then the resistance fi^ ̂ can be constructed if we use the 
already constructed resistances and connect them in parallel. 

(ID $£0 = i. 
V 

(iii) for i = 1, . . ., r, we have fij^ i = 2 ®-n,i-j> 
J = 1 

where fi^ ̂ _ • 6 5JJ for j = 1, . .., p. 

These resistances are already known and can be connected in series to obtain 
the desired resistance. 

If we consider the rational resistances hence built, in each set Sn their 
smallest common denominator is ur> n if we start with ur Q, ..., ur, r-\ having 
no common factor, i.e., (ur 0, ur 15 ..., ur r_{) = 1. Then, if we write these 
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rational numbers using their common denominator ur n, the numerators form the 
sequence {ur> n + i}^=_r-
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NOTE ON A FAMILY OF FIBONACCI-LIKE SEQUENCES 

J o h n C. T u r n e r 
University of Waikato, Hamilton, New Zealand 

(Submitted May 1987) 

In [2] P. Asveld gave a s o l u t i o n to the r e c u r r e n c e r e l a t i o n 

Gn = Gn-l + Gn-2 + E ^ w i t h GQ = Gl = 1 . ( 1 ) 
3=0 

In [2] we showed that the solution to the recurrence relation 

Gn = Gn_l + Gn_2 + Sn, Gl = Sl9 G2 = Sl + S2, (2) 

where Sn is the nth term of any sequence {Sn} = S, is given by the nth term of 
the convolution of the Fibonacci sequence F with the sequence S. That is, the 
solution of (2) can be expressed as 

Gn = (F * S)n , 

using * to mean convolution. 
This note shows how Asveld *s family can be dealt with by the convolution 

technique, using generating functions. Although we do not work through the de-
tails in the note, it is clear that a comparison of the two final solutions 
would yield interesting identities relating Asveld\s tabulated polynomials and 
coefficients, and the coefficients from our solution. 
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Solution Method 

Comparing (1) and (2), we see that the sequence on the right-hand side is: 

k 

j=o ° 

but the initial conditions differ since G0, GJ both equal 1 rather than Si and 
(Si + S2)9 respectively. However, it may quickly be ascertained that with GQ = 
Gi = 1 Asveld*s equation is satisfied by 

Gn = Fn+l + (F * S'K-1> Where S' = {S2> S 3' S4> '"}' (3) 

Now the generating function of F is f (x) = 1/(1 - x - x2-) . To find the 
generating function of 5 f, we note that otQ is generated by OLQ/CI - x) , and aj-nJ 

by 

aj ^~(^j-i(^)) f o r i = !' •••> k, 

where g • (x) refers to the generating function of nl and gQ(x) = 1/(1 - x ) . It 
follows that the generating function of Sr is: 

q(x) = — 
a9(l + x) d 

.1 - x (1 - x)1 (1 - x)3 K dx 
d / \ k 

+ '" + a/c dx'\Xgk-l(x)) ~ •? aj' j=o 
(4) 

Finall}s from (3) and (4), we know that the solution of (1) is, for n > 2: 
Gn = Fn+l + Cn-2> (5) 

where Cn_^ is the coefficient of xn~2- in the product of generating functions 
f(%) > g(x) > with G0 = Gi = 1. 

Comparison of Solutions 

As stated above, we do not wish in this note to go into the algebraic de-
tail necessary to make a full comparison of the two types of solution. It will 
be instructive, however, to show the two solutions with a small value of k. We 
shall set k = 2, and then Sn = aQ + a.n + a2n2-. The solutions are: 

Asveldfs Solution: 
2 

£ « = ( ! + ^ 0 0 a 0 + a 0 1 a l + a02a2^n+l + X2Fn ~ £ a j ? j ( n ) > ( 6 ) 

where 
J 

P• (n) = £ aijni a n d A2 = ax + (1 + a12)a. 
= 0 

and the coefficients a^j 

aii 3 [ w i t h Bim = (ly-ir-Hi + 2™-*). 
a i j = - E Bimamj-, if j > i \ 

m = i+ 1 ' 

Asveld [1] tabulates the coefficients of the ajfs in (6), and with these 
coefficients equation (6) reduces to the following: 
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Gn = (1 + aQ + 3ax + 13a2)Fn+1 + (ax + 7a2)Fn 

- [a0 + (n + 3)a1 + (n2 + 6n + 13)a2], (7) 

where {Fn}±s the Fibonacci sequence {1, 1, 2, 3S 5, . ..}. 

Turner ' s Solution: 

For n > 2, from (5) we see that 

^n = Fn+l + ^n-25 

where Cn_2 is t n e coefficient of xn~2 in the expansion of 
u a2(1 + x) 

+ _ __ (â  + ai + a^) x(l - x - xz) (1 - x ) 2 (1 - x); 

= (1 - x - x2)~l(l - x)~3[(a0 + 2ax + 4a2) 

- (2aQ + 3a1 + 3 a 2 ) x + (aQ + a-̂  + a 2 ) x 2 ] . 
This g ive s 

Gn = Fn+1 + aQ(a - lb + a) + ax(2a - 32? + c) + a2(4a - 32? + e), (8) 

where a = (F * B)n_i, b = (F * B)n_2, and c = (F * 5 ) n _ 3 , with F the Fibonacci 
sequence and B the sequence of binomial coefficients 

(S)-(n-(j) C - ! ) 
[N.B. the expressions {F * B)^ are to be set to zero if i < 0.] 

Corresponding coefficients in (7) and (8) may now be compared, and, as 
promised above, interesting identities result. Thus: 

Coefficients of aQ:
 F

n + l " * = a - 22? + e; 

Coefficients of al: 3Fn + 1 + Fn - (n + 3) = 2a - 32? + c; 
*"» + ! 

3^n + l 

^Fn + l 

- 1 

+ ^n 
+ IF, Coefficients of a2:; 13Fn+1 + lFn - (n2 + 6n + 13) = 4a - 32? + c. 

These in themselves are identities relating the Fibonacci terms and the 
convolutions with binomial coefficients. 

Solving the three equations for a, 2?, and o, and taking the sum a + b + cy 
leads to the identity 

3 
Z 07 * BK-i E 2i?n+5 " i < 3 n 2 + 9n + 20). (9) 

i = l 

Using (9) we can obtain 

(F * B)n - (F * B)n_3 = 2Fn + i+ - 3(n + 2). (10) 

Then, setting n = 3i - 2 in (10) and summing over i = 1, 2, 3, ..., # , we 
obtain 

( F * B ) 3 W _ 2 E F3ff+, -|(3ff2 + 3ff + 2). (ID 

Similar identities may be obtained for {F * B)3N_l and (F * B)^ . 

Clearly, repeating these procedures for fc = 3, 4, ... would lead to more 
and more complex identities of this type. 
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MORE ON THE FIBONACCI PSEUDOPRIMES 

Adina Di Por to a n d Piero Fi l ipponi 
Fondazione Ugo Bordoni, Roma, Italy 

(Submitted May 1987) 

Generalities 

The idea of writing this note was triggered by the necessity that occurred 
in the course of our research job, of expressing the quantity xn + yn (x and y 
arbitrary quantities, n a nonnegative integer) in terms of powers of xy and x + 
y. Such expressions, commonly referred to as Waring formulae, are given in 
high school books and others (e.g., see [1]) only for the first few values of 
n> namely 

xu + y 0 = 

+ yl X1 

x1 + y2 

x6 + yz 

xh + yk 

2 

x + y 

(x + y)2 

(x + y)3 

(x + y)h 

(1.1) 2xy 
3xy(x + y) 

kxy{x + y)2 + 2(xz/)2. 

Without claiming the novelty of the result, we found (see [2]) the following 
general expression 

+ yn = E (-l)kCTlik(xy)k(x + y) 
k = 0 

n-2k 

where 

C0, o 2 

Jn, k -rr(n ;* ) -»*» .* < » - » 

(1.2) 

(1.3) 

and [a] deno tes the g r e a t e s t i n t e g e r not exceeding a . 

Seve ra l i n t e r e s t i n g c o m b i n a t o r i a l and t r i g o n o m e t r i c a l i d e n t i t i e s emerge 
(see [2] ) from c e r t a i n cho i ce s of x and y i n ( 1 . 2 ) . In p a r t i c u l a r , s ens ing 
Lucas numbers Ln on the l e f t - h a n d s i d e of (1 .2 ) i s q u i t e n a t u r a l for a F i b o -
n a c c i f an . In f a c t , r e p l a c i n g x and y by a = (1 + / 5 ) / 2 and 3 = (1 ~ / 5 ) / 2 , 
r e s p e c t i v e l y , we ge t 

Work carried out in the framework of the Agreement between the Fondazione "Ugo Bordoni" and 
the I t a l i a n PPT Administration. 
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[n/2] 
K = Z ^»,fc (n > 0), (1.4) 

k = o 
t h a t i s 

Ln = 1 + «£•„ (n > 1 ) , (1 .5 ) 
where 

ln/2] , [n/2] 
*» = E JTTlfefe ) - E *„,*• (1-6) 

We point out that the equali ty (1.5) can also be obtained using the r e l a t i o n -
ships (see [3 ] , [4]) 

Ln-Fn_1+Fn+1 ( 1 .7 ) 

Fn+i = L (n
 k

 k), (1.8) 

where Fn stands for the nt h Fibonacci number. 
Observing (1.5), the following question arises spontaneously: 

"When is the congruence 

Ln E 1 (mod n) {n > 1) (1.9) 

verified?" 

The obvious answer is: 

"The congruence (1.9) holds iff Sn is integral." 

Theorem 1: If n is relatively prime to k (1 < k < [n/2]), then BUt k is a posi-
tive integer. 

Proof: The statement holds clearly for k = 1. Consequently, let us consider 
the case 2 < k < [n/2]. Letting 

pn k = ri (« - & - j ) , (i-io) 
J = l 

it suffices to prove that, if n is relatively prime to k, then P k/kl is inte-
gral. It is known [5] that 

Pnik = 0 (mod (fc - 1)!), 

that is, 

^ , f e - p„,*/(fc - D « ( i - iD 
is an integer. Again, from [5] we have 

(n - A:)Pnjfe E o (mod fc!) (1.12) 

whence, dividing both the two sides and the modulus by (k - 1)1, we can write 

(n - k)AUik E 0 (mod k), (1.13) 

see [6, Ch. 3., Sec. 3(b)]. If n is relatively prime to k, from (1.13) it fol-
lows that 

n - k i 0 (mod k), (1-14) 

^nj k E 0 (mod k). (1.15) 

From (1.15) and (1.11), it appears that, if n is relatively prime to k, then 

Pn>k E 0 (mod 7<!) . Q.E.D. 
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From Theorem 1 it follows that, if n is prime, all addends Bn ^, cf. (1.6), 
are integral. Therefore, Sn is integral. This is a further proof of the well-
known result (see [7]) 

Ln E 1 (mod n) (if n is a prime). (1.16) 

2. On the Fibonacci Pseudoprimes 

The sum Sn Q.&.TL be integral also if n is not a prime. In particular, this 
sum can also be integral if two or more of its addends BUi y_ are not integral. 
The composite numbers n which satisfy this property, i.e., for which congruence 
(1.9) holds, are called Fibonacci Pseudopvimes (see [8]), which we abbreviate 
F.Psps. and denote by Qk (k = 1, 2, . . . ) . 

Proposition 1: A composite number n is a F.Psp. iff Sn is integral. 

The smallest F.Psp. is Qi = 705. It was discovered by M. Pettet in 1966 
[9] who discovered also Q2 - 2465 and Q3 =2737, but we cannot forget the un-
believable misfortune of D. Lind [10] who in 1967 limited his computer experi-
ment for disproving the converse of (1.6) to n = 700, thus missing the mark by 
a hairfs breadth. In the early 1970s, J. Greener (Lawrence Livermore Lab.) 
discovered Q^. and §5 [7]. To the best of our knowledge, the F.Psps. are known 
up to Q7 = 6721. The discovery of Q§ and Q7 is due to G. Logothetis [8]. 

Curiosity led us to discover many more F.Psps. Using the facilities of the 
Istituto Superiore P.T. (the Italian Telecommunication Ministry), a weighty 
computer experiment was carried out to find all F.Psps. within the interval [2, 
106]. They are shown in Table 1 together with their canonical factorization. 
The computational algorithm is outlined in Section 3, where a worked example is 
also appended. 

Inspection of Table 1 suggests some considerations on the basis of which we 
state several propositions and theorems. Most of them show that certain 
classes of integers are not F.Psps., thus extending the results established in 
[8, Sec. 6]. Some conjectures can also be formulated, 

Consideration 1: No even F.Psps. occur in Table 1. 

Proposition 2: 

(i) L6n f 1 (mod 6n) 

(ii) £ 6 n + 2 t 1 (mod 6n + 2) (n odd) 

(iii) Len + i+ t 1 (mod 6n + 4) (n even) 

Proof: 

(i) The congruence L§n E 0 (mod 2) implies that 6n \ l§n - 1. 

(ii) Using the identities [11, formula (11)] and L 3 , I«„ (from [3]), it can 
be proved that 

In- 1 

k = l 

Since F^k E 0 (mod 2) and F§n+2 = 1 (mod 2), the quantity on the left-hand side 
of (2.1) is clearly odd, that is, 

L6n+2 - 1 * 0 (mod 4). 
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Since, for n odd, the congruence 6n + 2 = 0 (mod 4) holds, it follows that 

6n + 2 | L6 n + 2 - 1 (n odd). 

(iii) The proof is similar to that of (ii) and is omitted for brevity. Q.E.D. 

TABLE 1 

& : 

Q 2 = 
Q 3

 : 

% • • 

% • • 

gi»: 
Q u 
Q l 2 : 

Q l 3 : 

§15: 
Ql8 = 
Ql9 
Q20 
Q21 : 

ag 
P 
Q27 
Q28 
Q 2 9 
Q30 
Q31 
Q32 
Q33 
Q34 
Q35 
§36 
Q37 
Q38 
Q39 
240 
Q41 
Q42 
043 

705 
2465 
2737 
3745 
4181 
5777 
6721 
10877 
13201 
15251 
24465 
29281 
34561 
35785 
51841 
54705 
64079 
64681 
67861 
68251 
75077 
80189 
90061 
96049 
97921 
100065 
100127 
105281 
113573 
118441 
146611 
161027 
162133 
163081 
179697 
186961 
194833 
197209 
209665 
219781 
228241 
229445 
231703 

=3-5-47 
=5-17-29 
= 7-17-23 
= 5-7-107 
= 37-113 
= 53 • 109 
= 11-13-47 
= 73 • 149 
= 43-307 
= 101 • 151 
= 3-5-7-233 
= 7-47-89 
= 17-19-107 
= 5-17-421 
= 47-1103 
= 3-5-7-521 
= 139 • 461 
= 71 • 911 
= 79 - 859 
= 131-521 
= 193 - 389 
= 17-53-89 
= 113-797 
= 139 - 691 
= 181 • 541 
= 3-5-7-953 
= 223-449 
= 11-17-563 
=137•829 
= 83 • 1427 
= 271 -541 
= 283-569 
= 73 • 2221 
= 17-53-181 
= 3-7-43-199 
= 31-37-163 
= 23-43-197 
= 199 • 991 
= 5-19-2207 
= 271 811 
= 13-97-181 
= 5-109-421 
= 263-881 

Q 4 4 : 
Q 4 5 : 

% ' • 

048 : 

§ 4 9 ; 
o 5 0 : 
Q51 
§ 5 2 : 
0 5 3 : 
0 5 4 : Q55 
Q56 

0 5 9 : 
o 6 0 

n6 1: 
n 6 2 ' 
o 6 3 

o 6 4 ' 
o 6 5 

Q66 
§ 6 7 ; 
o 6 8 : 

$'• 
Q73 
Q74 
Q75 
Q?6 
Q77 
o7 8 

Q79 
Qso 
0 8 1 
0 8 2 

|I3 

252601 
254321 
257761 
268801 
' 272611 
283361 
302101 
303101 
327313 
330929 
399001 
430127 
433621 
438751 
447145 
455961 
489601 
490841 
497761 
512461 
520801 
530611 
556421 
597793 
618449 
635627 
636641 
638189 
639539 
655201 
667589 
687169 
697137 
722261 
741751 
851927 
852841 
853469 
920577 
925681 
930097 
993345 
999941 

= 41-61 • 101 
= 263-967 
= 7-23 -1601 
= 13-23-29-31 
= 131 • 2081 
= 13-71- 307 
= 317-953 
= 101-3001 
= 7-19-23-107 
= 149 • 2221 
= 31-61-211 
= 463-929 
= 199-2179 
= 541-811 
= 5-37-2417 
= 3-11 -41-337 
= 7-23- 3041 
= 13-17- 2221 
= 11-37-1223 
= 31-61-271 
= 241-2161 
= 461-1151 
= 431-1291 
= 7-23-47-79 
= 13 • 113 • 421 
= 563-1129 
= 461-1381 
= 619-1031 
= 43-107-139 
= 23-61-467 
= 13-89-577 
= 7-89-1103 
= 3-7-89-373 
= 491-1471 
= 431-1721 
= 881-967 
= 11-31-41-61 
= 239-3571 
= 3-7-59-743 
= 23-167-241 
= 7-23-53-109 
= 3-5-47-1409 
= 577-1733 

It must be noted that the well-known result [7] L2k f 1 (mod 2k) (k > 2) 
appears to be included in the incongruences (ii) and (iii). 

Proposition 2 can be summarized by the following 

Theorem 2: If n is even but n * 2(6k ± 1 ) (k = 1, 2, . . . ) , then n is not a 
F.Psp. 

The set of integers of the form 2(6/c ± 1) contains all numbers that are 
twice a prime greater than 3. 

Proposition 3: If n = 2p is twice a prime and 1 < k < p - 1, then the fraction-
al part of BHik is either 0 or 1/2. 

The proof of Proposition 3 is based on the argument used in the proof of 
Theorem 1 and is omitted for brevity. 
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Since the last term of the sum S2pi cf. (1.6), is B2p = l/p, from Propo-
sition 3 it follows that the fractional part of this sum is either l/p or l/p + 
1/2. Noting that, in the particular case p = 2, the fractional part of SL± is 
clearly 1/2, from Proposition 1 we have 

Theorem 3: If n is twice a prime, then n is not a F.Psp. 

On the other hand, the same result can be obtained using the congruence [7] 

Lkp E Lk (mod p) (p a prime) (2.2) 

whence we get L2p - 1 = 2 (mod p), that is, 2p \ L2p - 1. 
Now, let us consider the integers of the form 2 (6ft ± 1) with 6ft ± 1 compos-

ite and state the following 

Theorem 4: If n = 2(6ft ± 1) and ft E +1 (mod 5) (i.e., if n is even, divisible 
by 5 and not divisible by 3 and 4), then n is not a F.Psp. 

Proof: The identity J1? [3] can be rewritten in the form 

L2(2m±l) ' l = 5F2m±l " 3 

whence we obtain the congruence 
L2(2m±l) " 1 = 2 (mod 5), (2.3) 

which implies that 2(6ft ± l)|^2(6fe±l) ~ 1 if 6ft ± 1 E 0 (mod 5), that is, if 
ft E +1 (mod 5). Q.E.D. 

Finally, we observe that there exist F.Psps. of the form 6ft ± 1 with ft ̂  +1 
(mod 5) (e.g., Q65 = 6 -88435 + 1 and Q66 = 6 • 92737 - 1) and state the fol-
lowing 

Theorem 5: If n = 2ft + 1 is a F.Psp., then In is not a F.Psp. 

Proof (reductio ad absurdum) : Let us suppose that 
LZ(2k+l) = Lkk + 2 E 1 <>od *fc + 2). (2-4) 

From identity IlQ [3] and (2.4), we can write 
Lhk+2 " 2 E -1 E L ^ + 1 (mod 4ft + 2), 

whence we obtain the congruence 

L2k+l = ~l ( m o d 2k + X) ( 2 e 5 ) 

which contradicts the assumption. Q.E.D. 

Consideration 1, together with Theorems 2, 3, 4, and 5, allows us to offer 
the following 

Conjecture 1: F.Psps. are odd. 

Consideration 2: The F.Psps. listed in Table 1 are given by the product of a 
certain number of distinct primes. 

Using (2.2), one can readily prove the following 

Theorem 6: If p15 p2, ..., p, are distinct odd primes, then n = PiP2 ... pk is 
a F.Psp. iff Ln/Vm E 1 (mod p j (t = 1, 2, ..., ft). 
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For example, we see t h a t 
L 1 5 E 1 (mod 47) 

3 • 5 • 47 = Q, o { L, ,, -, = 1 (mod 5) 
' 1 ' 1 4 1 

1^235 = 1 (mod 3) . 

On the basis of Theorem 6, we observe that, if p and q are distinct odd primes 
(q > p) , then 

Lpq zz 1 (mod pq) 
Lp = I (mod q) 

Lq E 1 (mod p) 
(<? > p ) . (2.6) 

Now, the upper congruence on the right-hand side of (2.6) is clearly impossible 
for p = 3, 5, 7, 11, 13. It follows that n = pq is not a F.Psp. for the above 
values of p. The smallest p such that n = pq is a F.Psp. is p = 37. 

In [8] the authors show that, for the conjecture Ln t 1 (mod n2-) {n > 1), 
it follows that pk (p a prime, k > 1) is not a F.Psp. We formulate the follow-
ing 

Conjecture 2: F.Psps. are square-free. 

Consideration 3: The rightmost digits of the F.Psps. listed in Table 1 are not 
uniformly distributed. 

The occurrence frequency f(c) of the rightmost digit c of the F.Psps. with-
in the interval [2, 106] is shown in Table 2. 

TABLE 2 

o 

1 
3 
5 
7 
9 

no) 
45 

6 
11 
13 
11 

Moreover, it can be noted that, in the same interval, only 17% of the 
F.Psps. are of the form 4n + 3. Hence, the F.Psps. congruent to 3 both modulo 
4 and modulo 10 are supposedly very rare. 

Consideration 4: The density of the F.Psps. less than n shows a comparatively 
slow decrease as n increases^ within the interval [2, 106]. 

Conjecture 3: There are infinitely many F.Psps. 

Let q{n) denote the number of F.Psps. smaller than or equal to a given pos-
itive integer n. Numerically, the F.Psp.-counting function q(n) seems asymp-
totically related to the prime-counting function ir(n) (cf. [4, p. 204]. 

Conjecture 4: q(n) is asymptotic to ir(i/n)/a. 

The behaviors of q(n) and Tr(/n)/a vs n are plotted in Figure 1 for 2 < n < 
10 , TT (x) = #/ln x being the Gauss estimate of ir(x). 
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FIGURE 1 

Behaviors of q(ji) and 7r(/n)/a vs n 

We conclude this section by pointing out that, for a given odd prime p, it 
is possible to find out necessary (sufficient) conditions for n = pk (k an 
integer greater than 2) to be (not to be) a F.Psp. 

Hinging upon the periodicity of the Lucas sequence reduced modulo p (P 
being the period), we observe that 

Ln = 1 (mod 3) iff n = 1, 3, 4 (mod 8) 
Ln = 1 (mod 5) iff n E 1 (mod 4) 
Ln E 1 (mod 7) iff n = 1, 7 (mod 16) 
Pn EE 1 (mod 11) iff n E 1 (mod 10) (2.7) 

Ln - 1 (mod p) iff ft 1- p (mod P), 

It is readily seen that, if n = pk t Y\ > ̂ 2> •••» ps (mod P), then Lpk t 1 (mod 
p) and a fortiori L k t 1 (mod pk) , that Is, n = pk Is not a F.Psp. As an ex-
ample, solving some of the congruences (2.7) pfc EE T\9 r^, ..., rs (mod P) in fc 
and taking into account that an even integer not of the form 2(6/z ± 1) (cf. 
Theorem 2) is not a F.Psp., lead to the statement of the following 

Theorem 7: If either n = 3k and k i 1, 3 (mod 8) 
or n = 5k and k i 1 (mod 4) 

Ik and k f 1, 7 (mod 16) 
Ilk and £ 2 1 (mod 10) 
13k and k t 1, 13 (mod 28) 

or n = 17k and k ^ 1, 17 (mod 36) 
or n = 19k and k 2 1 (mod 18), 

then n is not a F.Psp. 

or n 
or n 
or ft 

Denoting by Mn = 2n - 1 the ftth Mersenne number, we can state the follow-
ing corollary to Theorem 7. 

Corollary 1: If n = 2h and h > 2, then M„ is not a F.Psp. 

Proof; Since Mn = 22h - 1 EE 0 (mod 3) and k = (22/z - l)/3 = 5 (mod 8), the 
proof follows directly from the first statement of Theorem 7. Q.E.D. 

Furthermore, considering the following classes of composite integers con-
gruent to 3 modulo 10 (cf. Consideration 3 for c = 3): 
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nl = 3(10fc + 1 ) (k = 1, 2 , 
n2 = 13(10fc + 1 ) (k = 1, 25 

n 3 = l l(10/c + 3) (k = 0, 1, 
nh = 19(10/c + 7) (k = 0 , 1, 

n 5 = 7(10fc + 9) (fc = 0S 1, 

n 6 = 17(10fc + 9 ) (k = 0, 1, 
the intersection of which is not empty, we can state the following further cor-
ollary to Theorem 7. 

Corollary 2: If either n = nl and U 0, 1 (mod 4) 
or n - riz and k i 0, 4 (mod 14) 
or n = ̂ 3 
or n = ft 4 and k t 3 (mod 9) 
or n = n^ and /c j£ 3, 4 (mod 8) 
or n = ng and k t 89 10 (mod 18), 

then n is not a F.Psp. 

3. A Computational Algorithm to Find Ln Reduced Modulo n 

The algorithm described in the following finds the value of <Ln>n (Ln re-
duced modulo ft) after [log2^] recursive calculations. The values of n compos-
ite (2 < ft < 106) for which <Ln>n = 1 correspond, obviously, to the F.Psps. Qk 
shown in Table 1. 

Step 1: Decompose ft as a sum of powers of 2. 

where m = [log2ft] and a^ can assume either the value 0 or the value 1. 

Step 2: Starting from the initial values 

1 

1, -kQ
 A i 

calculate the pairs 

(Lk , Fk ) (i = 1, 2, 

where kr 1 and 

2k. i - l if a„ 

2ki_l + 1 if am_i 

,, m -

= 0 

= 1. 

1) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

The pairs (3.3) can be calculated, on the basis of the previously obtained 
values, using the identities 

J2k Ll + 2(-l) fc-1 

L2k+l = Lk(5Fk + Lk)/2 + (-1) fc-1 

and 
•2k ~ FkLk> 

(3.5) 
(3.6) 
(3.7) 
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F2k+l = Lk(Fk + Lk)n + ( - I ) * " 1 , (3 .8 ) 
de r ived from i d e n t i t i e s I"7, IQ, ^i$> -^18' a m * ^32 f^ " 

S tep 3 : C a l c u l a t e L 
n using 

Ly, — 
L2.km 

L2krr 

-1 

-i + l 

if aQ = 0 

if aQ = 1 
(3.9) 

End. 

The algorithm works modulo n throughout. We recall, cf. (3.6) and (3.8), 
that the multiplicative inverse of 2 modulo an odd n is (n + l)/2. 

As a practical example, the various steps to find <Ln>n for n = Q2o - 90061 
are shown in the following. 

Q23 = 90061 = 216 + 21If + 21 2 + 211 + 210 + 29 + 28 + 27 + 26 + 23 + 22 + 2°  

772 = 1 6 

i 

0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

&m -i 

1 

0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 
1 
1 
0 
1 

*i 

1 

2 
5 
10 
21 
43 
87 
175 
351 
703 
1407 
2814 
5628 
11257 
22515 
45030 
90061 

<Lk*>Q„ 

1 

3 
11 
123 

24476 
86547 
78960 
27806 
89985 
9349 
26554 
27349 
11194 
69119 
59408 
90059 

1 

4. Conclusions 

<**<>«„ 

1 

1 
5 
55 

10946 
30844 
73765 
89112 
90027 
4181 
23164 
70287 
17179 
26137 

0 
0 
-

We think that a thorough investigation of the behavior of the fractional 
part of the quantity Bn^, cf. (1.6), as n and k vary could lead to the dis-
covery of further properties of the F.Psps. 

4.1. A practical application 

If we could know a priori that an integer N is not a F.Psp., then the algo-
rithm developed in Section 3 would ascertain the primality of N. 

On the other hand, the proof of Conjecture 4 would suffice to make the 
above algorithm an efficient probabilistic test for the primality of large 
numbers. Besides being interesting per se, this algorithm could find an 
application in modern cryptography. Currently, probabilistic testing for the 
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primality of large numbers (more than 100 digits) plays a relevant role in the 
so-called public-key cryptosystems [12]. The most widely used probabilistic 
test is the SS (Solovay & Strassen) test [13]. The computational complexity of 
a single step of this test is slightly greater than the complexity of our 
algorithm. Usually, 100 steps of the SS algorithm are required, thus assuring 
that N is prime with probability pl = 1 - 1/2100 « 1 - 7.88- 10~31. If Conjec-
ture 4 were proved, we could state that a sufficiently large number N satisfy-
ing the congruence LN E 1 (mod N) is prime with probability p2 -« 1 - 2/-(a/N) . 
It can be readily proved that, if N has more than 61 digits, p2 > p, . For ex-
ample, if N is a 100-digit number, we have p2 * 1-3.9°  10-50. 

4.2. A remark 

We wish to conclude this section and the paper with a remark. It appears 
that Qn = Fiq and Q l7 = L23. We asked ourselves whether this fact has an inti-
mate significance and whether there exist other F.Psps. which are either Fibo-
nacci or Lucas numbers. 

First we noted that h = 19 is the smallest prime such that F^ is composite: 
Fi$ = 4181 = 37 »113. Moreover, if we exclude k = 3 (recall that L3n is even) 
k = 23 is the smallest prime such that Lk is composite: L23 = 64079 = 139 • 461. 
The subsequent values of h and k that verify this property are h = 31 and k = 
29. Using the algorithm described in Section 3, we ascertained that 

and 
LF = 1 (mod F3l) (F3l = 1346269 = 557 • 2417) 

LLi9 = 1 (mod L29) (L29 = 1149851 = 59 • 19489), 

The following question arises: "Are all the composite Fibonacci and Lucas 
numbers with prime subscript, F.Psps.?" 

Furthermore, we found that 

LL32 E 1 (mod L32) , 

Lo2 = 4870847 = 1087'• 4481 being the smallest composite Lucas number of which 
the subscript is a power of 2. 

Finally, we note that Qr = LlQ - 1. A brief search showed that the small-
est F-.Psp. equal to a Fibonacci number diminished by 1 is 

F33 - 1 = 3524577 = 3 • 7 • 47 • 3571. 
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Let (fn)nemr) denote the F ibonacc i sequence : 

fo " °> A " l> 4+2 - / „ + i +fn (n>0). 
For a p o s i t i v e i n t e g e r m9 l e t m = { 1 , 2 , . . . , m}. In [5] L. Weins te in proves 
by an i n d u c t i v e argument the fo l lowing 

Theorem 1: For a p o s i t i v e i n t e g e r m l e t A Q {fn: ne2m} w i th \ A \ > m + 1. Then 
t h e r e a r e fk, fj €A9 k * j , such t h a t fk \fj . 

Proof: I t i s a well-known f a c t t h a t f^\fj fo r k\j ( s e e , e . g . , [ 4 ] ) . Hence, i t 
s u f f i c e s t o show t h a t , fo r B Q 2m w i th \B\ = m + 1, t h e r e a r e k, j ' e B , k * j , 
such t h a t k\j. Let 2e^ denote the exac t power of 2 d i v i d i n g the p o s i t i v e 
i n t e g e r b9 and d e f i n e , fo r a l l r € 2m.% l \ r 9 

Br = {bEBi b/2e(B) = p } . 
Obviously, U Br = B. Since \B\ = m + l> the pigeon-hole principle yields a Bv 
containing two distinct elements k < j of B. By definition of Br, k\j. 

Remark 1: It should be mentioned that the theorem is best possible, since for 
\B\ - m the conclusion does not hold: Choose, for example, B = 2m \m. It might 
be an interesting question to ask how many sets B Q 2m with \B\ = m have the 
property that any two elements k, j^B, k * J, satisfy k \ J. 

A problem similar to the one treated in Theorem 1 will be considered in 

Theorem 2: For a positive integer m let A Q {f : ne2m} with \A\ > m + 1. Then 
there are fk, fd<=A, k * j , such that (fk, fd) = 1. 

Proof: Since (fk, fd) = f(kfJ) (see [4]), it suffices to show that for B Q 2m 
with \B\ = m + 1, there are k, j€5, k * j , such that (k 9 j) = 1. For rem, 
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let 

Br = {2r - 1, 2r}. 

Obviously, U Br = 2m. By virtue of \B\ = m + 1, the pigeon-hole principle im-
plies that there is a Bv containing two distinct elements k < j of B ; hence, k 
= IT - 1, j = 2r. Therefore, (Zc, j) = 1. 

Remark 2: This theorem is best possible, too: 

B = {b e 2m: 2|M satisfies |B| = m. 

However, all elements of B are divisible by 2. If we make the additional as-
sumption that B contains an odd element, small examples suggest that now 

B = {b e 2m: 3\b} 
is the "worst" case. Thus, one might conjecture that 

>-[f] + 1 
will suffice for B to contain a pair of relatively prime elements. In the se-
quel, we will prove that this is not true for sufficiently large m. 

Remark. 3: The application of the pigeon-hole principle in the proofs of Theo-
rems 1 and 2 is well known (see [1], Ch. 5). 

Lemma 1: Let n > 1, l\n. Let 

B(n) = {b < n: 2\b9 (b, n) > l}u{n}. 
Then 

\B(ri)\ = |(n - <p(n) + 1), 

where (p denotes Euler's function. 

Proof: All the tools used in this proof can be found in [3], Ch. XVI. Let u be 
the Mobius function. 

\B(n)\ = 1 + Z 1 = 1 + rL^- ' E 1 
2b < n z b < n/2 

(b,n) > 1 (2>,n) - 1 

Z b<n/2 d\(b,n) Z d\n b<n/2 
1 b = 0 mod d 

- n + l _ H V ^(^) + 1 V (J\ n + I _ n <p(n) 
~ 2 2 fr* d 2 fa u u u 2 2 n * 

d\n d\n 
From now on, let p always be a prime, respectively, run through the set of 

primes. 

Lemma 2: Let x and y be reals satisfying 

Let 

2 < y < f. (D 

n = n P- (2) 
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Then 

\B(n)\ n + 1 _ n log y Jn log y\ 
2 2 log x U\ log2x /' 

where B(n) is defined as in Lemma 1 and the constant implied by 0( ) is abso-
lute. 

Proof: We have 

^ r = n ( i - £ ) - n ( 1 " F ) = n ( i - £ ) n ( i - J ) ' 1 . (3) 
It is well known (see, e.g., [3], Ch. XXII) that there is a constant C^ such 
that for all z > 2, 

II (l - i) " 1 = ̂  log z +0(1). (4) 

This implies 

n ( 1 - ^ ) = ? - T — + 0(rV)- <s) 
p<2 V p/ Ci log 3 \logZS/ 

By (3), (4), and (5), we have 
Kn) = log y + J log y\ 
n log x \log237 

By Bertrand's Postulate (see [3], Th. 418) and (1), the product in (2) is not 
empty, thus n > 1. By Lemma 1, the claimed formula follows. 

Theorem 3: Let x and y be reals satisfying 

2 < y < |. (6) 

Let 

n = n P-
y<p<x 

Then there is an xQ such that for all x > XQ, 

?(«) 
>? / n log zy \ 
7 + Of- ^ - , 
2 \log log n/ 

where B(n) is defined as in Lemma 1 and the constant implied by 0( ) is abso-
lute. 

Proof: By Tchebychevfs Theorem (see [2], Ch. 7), there are constants C2> C3, 
and XQ satisfying 

| < C2 < 1 < C3 < |, (7) 

such that for all # > xQ, 

C2x < 0(x) < C3x, (8) 

where 

8 (a?) = ]£ log p. 
p< ar 

This implies 
C0x-C.,y C^x~C0y ynX 

e 2 3 * < n < e 3 2 . (9) 
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In case x < y2, by (8) , n < e *y ; hence, 

log log n < (log C3 + 2)log y; 

thus, the theorem is obvious. Therefore, we may assume x > y2, i.e., there is 
t > 2 such that x = yt. By (6) and (7), 

i/*-l > 2 > ^ % 

hence, 

C~u* - C~u > C2yt - C3y > yC2yt. 

By ( 9 ) , 

Tczyt < log ^ < C3yt
l, 

Taking logarithms, we get positive constants C. and C5 with 

log y 1 lQg 2/ 
log log n t log log n 

By Lemma 2, this implies 

I vr \ I n + l j_ nln\ n + 1 a. n/ n l Q g 2/ \ S ( n ) = — T , — + O(-) = — - — 4- Ol-z = . 
I I 2 \tl 2 \log log n) 

Thus, the theorem is proved. 

Now we are in the position to show the following: If for all w £ 1 and all 
B Q n satisfying \B\ > a in + aQs where 04 and a0 are given reals, we find b\9 
b2

eB with (&l5 b2) = Is then, necessarily, 04 > 1/2, even if we assume the 
existence of an element b eB free of prime divisors p < y for arbitrary y. 

For this reason define, for y> 04, a0 € H, 

B(z/; a15 a0) = U {B c n: |s| > c^n + aQ, 3 \/ p\b}> 
new btB p^y 

M(y; an) = inf {a, € R: V 3 (Z>, , Z O = 1}. 

Theorem 4: Let aQ > 1, 7/ € 1. Then 

M(y; a0) = 2-

Proof: By the proof of Theorem 2, we have for all n € IN and all B Q n, \B\ > 
n/2 + 1, that there are Z?x, ̂ e S such that (Z^, £>2) = 1. This implies, for aQ 
> 1 and arbitrary y, that 

M(y; a0) < 2-

It remains to show that 

M(y; a0) > f. d° ) 
For y < 2, (10) is obvious by Remark 2. Hence, let y > 2 and aQ be given, and 
suppose M(y; aQ) < 1/2. This implies 

3 \/ 3 (bls b2) = 1. (ID 
a< 1/2 S€B(z/;a,a0) ^ . ^ e B 
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Let x be a real satisfying x > 2z/, x > x~ (as in Theorem 3). Let 

n = n V-
y < p< x 

By definition of B(n) as in Lemma 1 there is £>EB, namely n, such that p \ b for 
all p < y. By Theorem 3 we have, for sufficiently large n (i.e., for suf-
ficiently large x) 

\B(n)| > an + aQ. 

Thus, there is n £ l with B(n) £ B(y; a, a Q). Obviously, (Z?15 b2) > 1 for all 
b,9 b2eB(n)9 contradicting (11). Therefore, (10) is proved in any case. This 
finishes the proof of the theorem. 

Example: Consider the original problem in Remark 2, i.e., find n e W and B Q 
n9 \B\ > n/39 such that there is an odd b e B and (Z?1, b2) ~ 1 for all bl9 b2

 e 

By Lemma 1, it suffices to look for the least odd n satisfying 

R(] _ VW\ > VL 
2\ n I 3' 

Since 

n\r> V V I 

<P(n) 
n p*|* \- p, 

we may suppose w.l.o.g. that n is squarefree; in fact, we would like to find x 
such that 

2<p<xv y f J 

The smallest solution is x = 23. Therefore, we may choose 

n = n P = 111,546,435. 
2< p< 23 

This is possibly not the least n having the desired properties, but it indi-
cates that the situation for small n (Remark 2) is different from the situation 
for large n. 

I would like to thank the referee for his helpful comments. 
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Introduction 

A bipyramid Bn of order n > 5 with degree sequence 

d^ < d^ ^ d„ *n-l dy, 

is a maximal planar graph consisting of a cycle of order n - 2 and two nonad-
jacent vertices u and v. Every vertex of the cycle has degree 4 and is adjacent 
to both u and V whose degrees are n - 2 as in Figure 1. 

FIGURE 1. A bipyramid with n = 8 

If Bn is redrawn as in Figure 1(b), then it is geometrically obvious that 
all such maximal planar graphs contain wheels as subgraphs with n - 2 vertices 
on the rim and a center u with degree n - 2 [3] . The graph Bn is called a 
generalized bipyramid if the restriction on dn-i is relaxed while preserving 
maximal planarity with 3 < dn„i < n - 2. Some maximal planar graphs BQ axe 
shown in Figure 2. 

v v V 

(1) f = 24 (2) £ = 21 (3) f=21 (4) £ = 21 (5) £ = 21 (6) f = 20 

v v 

(7) £ = 20 (8) f = 20 (9) f = 19 

FIGURE 2. Some bipyramids Bn of order 
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The Fibonacci number f(G) of a simple graph G is the number of all complete 
subgraphs of the complement graph of G. In this paper, our main goal is to 
present a structural characterization of the class of generalized bipyramids 
whose Fibonacci numbers are minimum. We will prove that, if G is a maximal 
planar graph of order n belonging to this class, then 

f(G) ~ (0.805838...)(1.465571...)n. 

This result will be achieved via outerplanar graphs. 

Prodinger and Tichy [2] gave upper and lower bounds for trees: 
tree on n vertices, then 

Fn+1 < f{T) < 2""1 + 1, 
where Fn is the nth Fibonacci number of the sequence 

If T is a 

-1 + Fn-2> F0 1. 

The upper and lower bounds are assumed by the stars Sn and paths Pn in Figure 
3, where 

f(s„) in- 1 + 1 and f(Pn) = Fn+l. 
The upper bound of the set of all maximal outerplanar graphs was investigated 
in [1], It is shown that if G is a maximal outerplanar graph of order n and Nn 
is the fan shown in Figure 3, then 

f(G) < f(Nn) = Fn + 1. 

3 4 

Figure 3. Stars, Paths, and Fans 

2. From Maximal Planar to Maximal Outerplanar 

From the definition of the Fibonacci number of a graph, we observe that the 
number of complete subgraphs in the complement of Bn is the same as the number 
of those complete subgraphs that do not contain the center u and the number of 
those that do contain u. That is, 

f(Bn) = f(Bn - u) + 2. 
The graphs Bn - u for n = 8 are redrawn in Figure 4. 

Let Gn_i - Bn - u and consider the vertex v in Cn. We have 

where f(Hn_2) is the number of complete subgraphs in the complement of CM_i - V 
and f(H£_2) is the number of those complete subgraphs of the complement of £n-l 
that contain v. We remark that if an edge e is added to two nonadjacent ver-
tices of any graph G without destroying maximal planarity, then 

f(G) > f(G + e); 
e is called a chord if it is not a rim edge. It suffices to show that the graph 
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(1) f = 22 (2) f = 19 (3) f = 19 (4) f = 19 

\, 

(5) f = 19 (6) f = 18 

(7) f = 18 (8) f = 18 (9) f=17 

FIGURE 4. Fibonacci numbers of B«- w, n -

Cn-i has minimum / if the remaining chords form longest paths in Hn_2 and H^_2 
as in graph (9) in Figures 4 and 5. That is, f(Cn_i) is minimum if both #n_2 

and H^_2 are maximal outerplanar graphs with longest paths of chords« 

n-2 n-2 

FIGURE 5. f(Cn_{) = f(Hn_2) + f(H^_2) 

Since a maximal outerplanar graph G is a triangulation of a polygon and 
every such graph has two vertices of degree two, there are two triangles T-± and 
T2 in G each of which has a vertex of degree 2. If the vertex v is chosen in 
one of these triangles, then we have the following theorem. 

Theorem 1: Let Hn be a maximal outerplanar graph of order n with a longest 
path of chords. Let Cn+1 = Hn + v , where V is inserted in any triangle of Hn 
and joined to the corresponding vertices, then f(Cn+i) is minimum if V e T± or 
v e To. 

Proof: Consider the formula 

f(Cn+i) = f(Hn) + f(Hl). 
f(Hn) is invariant under all possible choices of triangles, whereas H„ has the 
same Fibonacci number if and only if V G Tl or V e T2. For all other choices 
of triangles, H„ is a disjoint subgraph and hence has a larger Fibonacci num-
ber. D 

In the next theorem, we show that among all maximal outerplanar graphs of 
the same order f(Hn) is smallest. 

Theorem 2: Let G be an arbitrary maximal outerplanar graph of order 71. Then 
f(Jin) < f(G)y where Hn is maximal outerplanar with longest path of chords. 

Proof: Let G and Hn have the same order n and proceed by induction on n. 
Assume that f(Hk) < f(G) for all maximal outerplanar graphs G of order k < n. 
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Using the same labeling of the hamiltonian circuit of G we draw the graph 
Hn. This means that G and Hn differ only in the arrangements of the chords. 
Let u and V be vertices of degree 2 In G and #h, respectively. Define G* = G -
u and H* = Hn - v. That is, G* and H* are the maximal outerplanar graphs of 
order n - 1 obtained by deleting u and v from G and Hn9 respectively. Also, 
let G** and H** be the graphs obtained by deleting the two neighbors of u from 
G and the two neighbors of v from Hn. [Let v = 7k in Figure 6(a) and y = H n 
Figure 6(b).] We observe that the number of complete subgraphs in the 
complement of G is the sum of the number of those complete subgraphs which do 
not contain the vertex u and the number of those which do contain u. After 
noting that 

/(£**) = /(£** - u), 
we have 

f(G) = f(G*) + /(£**) and f(Hn) = /(J7*) + /(#**). (1) 

2k-l k+3 2k-2 2k-l 

1 2 3 k-1 k 1 2 3 k-2 k-1 k 

FIGURE 6. The graphs H2k and ^2 /c- l ' w ^ t n l o n g e s t pa th of chords 

Since £* and H* are maximal o u t e r p l a n a r of o rde r n 
t i o n assumpt ion , 

f(H*) < f(G*). 

1, then, by the indue-

(2) 

As for H** and G**, we see that the former is maximal outerplanar after delet-
ing v (see Figure 6) while the latter need not be. However, by arbitrarily 
adding edges to G** - u, we see that at each stage the Fibonacci number is less 
than that at the previous stage until we construct a maximal outerplanar graph 
Q*** with 2(ft - 3) - 3 edges having G** - u as a subgraph (see Figure 7). 

G, f = 35 G , f=13 G +el5 f=11 

G +e!+e2, f=10 G , f = 9 H , f = 9 

FIGURE 7. The construction of G***, ft= 8 

Now, since /(£**) = f(G** - u) , we have 

/(£***) = f(G*** - U), 

and since E** - u and G*** satisfy the hypotheses of the theorem and their 
order is less than ft, we have 
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f(H**) < /(£***) < /(£**). (3) 

From (1), (2), and (3), we see that f(En) < f(G) and the proof is complete. D 

Now we show that these graphs Hn are the only ones with the relevant prop-
erty. 

Theorem 3: If G is a maximal outerplanar graph of order n with f(G) = f(Hn)9 
then G is isomorphic to Hn. 

Proof: We argue by induction5 assuming the result for small values. The argu-
ment for Theorem 2 shows that f(G*) = f(Hn^) and f(G**) = f(Hn_3) , where 
f(G) = f(G*) + f(G**). Hence, by the induction hypothesis, G* * Hn_1 and G** 
is maximal outerplanar (by observing that an additional edge decreases the 
Fibonacci number) and is isomorphic to Hn_3. These conditions easily force the 
conclusion. Q 

3. The Fibonacci Number of Hn 

The graphs Hn shown in Figure 6 satisfy the recurrence relation 

hn = hn.l + hn„3s 

where f(Hn) = hn, h$ = 1, hi = 2, h2 = 3. 
The solution of (4) is 

(4) 

u + v + 10 
3u + 3v 

u + v + 1 
3 

u + v 

U + V 

3u + 3v 

3u + 3v 
u + v - 2 

u + v 2 U - V r~ '. 
— + V3% 

u - v /3i 

where u -i 29 + 3/93 and v = 3i 29 3/93 
2 — ^ 2 

Since f(Gn_1) = f(^n_2) + /(^_2) , we have 

from which we can prove the following result. 

Theorem 4: If 5n is the generalized bipyramid with minimum Fibonacci number, 
then 

f(Bn) where c « 0.805838. and a * 1.465571... 

Proof: The order of growth of f(Hn) is governed by the dominant root 

U + V + 1 

and f(Hn) ~ c}an, where ^ * 1.3134... . 

For the bipyramids Bn with minimum Fibonacci number, we have 

f(BJ = f(Hn_2) + f(Hn_5) + 2, 

which implies 

f(Bn) ~ Cl[an"2 + an~5] or f(5n) ~ ̂ (oT2 + a"5)an. 

So, we can write 

f(Bn) ~ (0.805838...)a", where a = 1.465571... . 
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We summarize our results for small graphs and compare with Fn, n < 20, in 
Table 1. 

TABLE 1 

Fibonacci numbers of various graphs of order < 20 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Fn 

1 
1 
2 
3 
5 
8 

13 
21 
34 
55 
89 
144 
233 
377 
610 
987 
1597 
2584 
4181 
6765 

10946 

fW 
1 
2 
3 
4 
6 
9 

14 
22 
35 
56 
90 
145 
234 
378 
611 
988 
1598 
2585 
4182 
6766 

10947 

f(Hn) 

1 
2 
3 
4 
6 
9 

13 
19 
28 
41 
60 
88 

129 
189 
277 
406 
595 
872 

1278 
1873 
2745 

f(Bn) 

7 
10 
14 
19 
27 
39 
56 
81 
118 
172 
251 
367 
537 
786 

1151 
1686 
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R e c e n t l y , " D. H„ Lehmer posed the fo l lowing problem: 

I f on i s t he c o e f f i c i e n t of xn i n (1 + x + x2)n, then show t h a t 
2n i s the de te rminan t of the m a t r i x 

' ( T l 

n+l 

"2n 

He noted that the generating function for the cn
%s is 

(1 - 2x - 3x2) -1/2 1 + x + 3xz + 7x6 + 19x4 + 

One might equally ask about the value of the same determinant where the 
on

! s are the coefficients of xn in (a + bx + £X2)n [note that these cn
% s have 

generating function (1 - 2te + dx2)~^^2 , where J = b2 - kac ] ; or perhaps where 
the £n

Ts are the coefficients of xn+r in (a + bx + ox2)n for some fixed integer 
p. 

As an example, consider the case where the cn
 fs are the coefficients of 

in (1 + 2x + x 2 ) n = (1 + x)ln , 

In 
n + v 

that is, 

There does not seem to be an immediate combinatorial argument for finding the 
determinant even in this case. 

In this paper we will answer all of these questions in a very simple way, 
by easy manipulations of the defining polynomials of the cn*s. We make the 
following definitions: 

Let S be the set of sequences of polynomials F = [Fn(x)]n>Q such that each 
Fn(x) has degree less than or equal to 2n? and such that Fn(x)/xn is symmetric 
(about x u ) . [Clearly Fn (x) = (1 + x + xA)n and Fn(x) = (1 + x)An are example 
of such sequences.] We define the "elementary sequence" of S to be 

where IQ(X) - 1 and In (x) = x2n + 1 for each n > 1. 
Suppose F, G e S and r is a fixed integer. For each integer n > 0S let 

An(F, G) be the (n + 1) by (n + 1) matrix with (i, j ) t h entry 

Fi{x)lxi<> Gj(x)lxi (for 0 < i, j < n) . 

For any matrix A with entries in Z[x], we define Cr(A) to be the matrix 
formed from A by replacing each entry with the coefficient of xr* We let Dr(A) 
be the determinant of cr(A). 

'vAt the Western Number Theory Conference in Asilomar, December, 1985. 
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Finally, we let Bn{F) be the (n + 1) by (n + 1) matrix with (i, j) t h entry 
bitj (0 < i , j < n) , where 

Fi(x)/xi = bi 0 + £ ^^x^' + x^'). 
J = 1 

We will see that the value Dr[An(F9 G)] is easily computed in terms of the de-
terminants of Bn(F), Bn(G)9 and Dr[An(I, I)]. 

Lemma 1: Suppose that A, U9 and V are n x n matrices, where A has entries from 
t[x] and U and V from (C. Then, for any integer p, 

The proof of this lemma follows immediately from the observation that, if 
a(x), b(x) G C[x] and a, 3 € (C, then a times the coefficient of xr in a(x) plus 
3 times the coefficient of xr in b(x) equals the coefficient of xr in aa(x) + 

We also make the following trivial observation 

Lemma 2: If F, G G 5, then for any positive integer n9 

i4n(F, G) = Sn(FMn(I, I)Bn(G)T. 

Combining Lemmas 1 and 2, we observe 

CoroHary 1; If F9 G £ S and p is a given integer, then 

Dr[An(F, G)] = Dr[An(I, I)] • Vet[Bn(F)] • Det[Bn(G)]. 

Observing that, by definition, Bn(F) is a lower triangular matrix with diagonal 
entries Fm(0), 0 < m < n9 we have 

n 
Lemma 3: If F <= S, then Det[5n(JFT)] = FI ̂  (0). 

m= 0 

We now compute the values of Dr[An(I9 I)]. 

Lemma 4: For integers p and n with n > 0, we have 

(2n if p = 0 

Dr[An(I, I)] = <(-!) K« + U/2] if p ^ o and 2v divides n + 1 or n + p, 

\0 otherwise. 

Proof: cr[An(I, I)] has (i, j ) t h entry equal to the coefficient of xr in {xl + 
a:"'2') (#«? + x~J) for i, j > 1. Thus, 

er[An(I9 I)] = c-r[An(I9 J)], 

so we will assume henceforth that p > 0. Now, if p = 0, 

(1 i = J = 0, 
[c0(i4n(I, J))]if ̂  = < 2 i = j > 0, 

( 0 otherwise, 
and so it is clear that D0[An(I, I)] = 2n. 

Let X = cr[An(I9 I)] and £n = Dr[An(I9 I)]. For p > 0, 
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(X), 
1 i + j = p, 
1 | i - j | = v, 
0 otherwise. 

We will prove the result for fixed p by induction on n. 
Now i f O < n < p - l , then all entries of the top row of X are zero, and so 

Dn = 0. If n = p , then X has ones on the reverse diagonal and zeros every-
where else, so that 

Dn = (-1) [(n+l)/2] 

For r + l < n < 2 r - 2 , observe that the v - 1st and p + 1st rows of X are both 
(0, 1, 0, ..., 0) so that Dn = 0. 

Now let Kr be the 2v by 2 P matrix with p x P block structure 

" or 
[ Ir 

Ir ' 
Or J 

so that Det Kr = (~l)r. 
If n = 2 P - 1, then the i t h row of x has all zero entries except for ones 

in columns v - i and p + i i f i < p - l , and in column i - p if i > p. We sub-
tract row v + i from row r - i for i = 1, 2, ..., p - 1, which are all determi-
nant-preserving operations and get the matrix Kr. Thus, 

Dn = Det Kr = (-1)0+1>/2. 
Now suppose n > 2 P . If i > n - r + 1, then row i has just one nonzero entry 

(in column j = i - p) and so we can subtract this row from all other rows with 
entries in the (i - p) th column. (This is clearly a determinant-preserving 
operation.) We perform the same action for each column j, with j > n - r + 1 
and we are left with the matrix 

, where I = oT [An_2r (I> -O ]• 
L ^ I -^r J 

T h u s , 
Dn = Dn_2r De t Kr = ( - ! ) [ ( » - 2 r + l ) / 2 ] ( . 1 ) r = ( _ ! ) [ (n + l ) /2 ] 

by the induction hypothesis. 

So by combining Corollary 1 with Lemmas 3 and 4, we may state the main 

Theorem: If F, G e S and A is the (n + 1) by (n + 1) matrix whose (i, j ) t h en-
try is the coefficient of x'l + ̂  + r in Ft(x) • Gj(x) > then the determinant of ^ 
equals 

" y 
_ 0 

o " 
A J J _ 

if p 0, 

n ^(o)^(o) 
n = 0 

(_!)[(«+D/2] if P ^ 0 and 2 divides w + 1 
or n + P, 

0 otherwise. 

Some consequences are 

Corollary 2: The determinant of Mn with cn equal to the coefficient of xn in 
(1 + x + x2)n is 2n. 

Proof: Take i^ (or) = GOT(a0 = (1 + x + x 2 ) m in the Theorem. 

Corollary 3: The determinant of Afn with cn = 2n 
n + p 

1989] 255 



ON A CLASS OF DETERMINANTS 

' 2n if v = 0, 

(_!)[(* +D/2] if r * o and 2P divides n + 1 or n + r, 

0̂ otherwise. 

Proof: Take ̂ (#) = £m(tf) = (1 + x)2"7 in the Theorem. 

We make an interesting combinatorial observation in 

Corollary 4: If cn is the coefficient of xn in (1 + tx + x2)n , then the value 
of the determinant of Mn is independent of t . 

Proof: Take Fm(x) = Gm{x) = (I + tx + x2)m in the Theorem and observe that each 
Fm (0) is independent of t. 

Corollary 5: The determinant of Afn with £n equal to the coefficient of xn + r in 
{a + bx + cx2)n (with a, b9 c * 0) is: 

on 

(an-^n + 2,)(n + 1)/2 = I (-i)[(n + 1)/2] 

0 

if r = 0, 
if p * 0 and 2n divides n + 1 or n + r, 

otherwise. 

Proof: Let (a<?) 1/2 )y/c, so that £n is the coefficient of 

^n + ry-n + r 

i n a n [ l + {b/d)y + # 2 ] n . Let <in be the c o e f f i c i e n t of z/n + r i n [1 + {b/Q)y + 
y2]n so t h a t on = ( a n - p ^ n + p ) 1 / 2 ^ n . Then 

oQcl . 

f l c 2 * 

°n • 

. C?n 

' Cn + l 

'• °2n _ 

{old) r/2 

0 

d Q d 1 . . . <fn 

" l " 2 ' * * r* + l 

. . . d, 2n 

0 2 

0 

and so the r e s u l t fo l lows immediately from C o r o l l a r i e s 3 and 4 . 

Corollary 6: The Legendre polynomials [Pn{t)]n>0 are def ined by 

(1 - 2tx + x2) - 1 / 2 

n> 0 

By taking cn = Pn(£), the determinant of Mn is 

Proof: Use Corollary 5 with b = t and £ 2 - 4ac = 1. 

Clearly, this technique of computing this class of determinants may be gen-
eralized to a number of different questions. The real keys to the method are 
that (1, x + x~l, x2 + x~2

9 „..) form an additive basis for TL[x + x~l] over 2; 
and that the action of taking the coefficients of xv of the entries of a matrix 
of polynomials, commutes with multiplication by matrices with entries in I 
(i.e., Lemma 1). 
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GENERATING PARTITIONS USING A MODIFIED GREEDY ALGORITHM 

J o s e p h W. Cree ly 
31 Chatham P l a c e , Vincentown, NJ 

(Submit ted June 1987) 

Let A be an i n c r e a s i n g sequence of i n t e g e r s wi th f i r s t element 1. The 
"greedy" a l g o r i t h m for p a r t i t i o n i n g an i n t e g e r n wi th r e s p e c t to A i s : 

1. Choose the l a r g e s t a € A such t h a t a < n. 

2. Form n - a . 

3. Repeat this process until n is reduced to 0. 
This produces a partition of n and the process is called the greedy algorithm 
since n is reduced by the largest possible bites. In this paper we will deal 
with what we call the "modified greedy" algorithm which replaces the first step 
above with 

1*. Choose any a E A such that a < n* 

Note that this method allows us the flexibility of choosing which elements to 
remove from n, but once chosen, they must be removed as many times as possible. 
Therefore, there were many different partitions of n using this algorithm. 

Let p represent the number of modified greedy partitions of n with largest 

n > 1. 

cmn r 

member m. Then 

Vnn = Pn~l, n 
Define 

p* = Y p. 

= Pin 

and 

= Pin = l> 

PO = 1- (1) 

Theorem: p = p*9 where q E n (mod rri) , and 0 < q < m. 
L van L H 

Proof: Every partition counted in p contains copies of m by the modified 
greedy algorithm. Removal of m1 s from each partition does not change their 
number but reduces their size so that pmn = p*, where q E n (mod m). • 

The following two equations are corollaries. 

v = p , a > 0. (2) 
rm, n + an rmn 
p o ^ = p* i, a > 0. T3) 
^m + a,2m-l+a ^ m - P 

Table 1 exhibits pmn with A = {1,.2, 33 ...} and m, n = 1, 25 3, . .., 15. 
Equations (2) and (3) describe patterns evident in the table. Note that the 
nth row has n positive entries, pmn = p^5 in which q is a maximum corresponding 
to w = (n + l)/2, [(n/2) +1] if n is odd [even]. 

The following conjectures are derived from a larger (80 x 80) table. (De-
fine Ap* = p*+1 - p*.) 

1. log p* approximates a linear function of n if n > 40. 

2. If n is even, Ap* > 0. 
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3 . I f Ap*_-, < 0, then n i s even and has a t l e a s t t h r e e prime f a c t o r s . 

Examples: n = 12, 18, 24, 30, 36, 40, 42 , 48 , 54 , 56 , 
60, 64, 66, 70, 72, 76, and 80. 

4 . I f Ap*_x < 0 , then Ap£ n - 1 <0 , a>0. 
5. For a given n, let 7wr, r = 1, 2, 3, ... be elements of the set {[n/r]}9 

then mv-i > mr. Let qr = n (mod z??P) and w^^ > mr - j > mr, in which j = 0, 1, 
2, ..., /??,,_! -/?zr - 1, then p ^ . ^ = P*r*(rj)' 

Example: Let n = 29, then mi = 29, m2 = 14, w3 = 9, m^ = 7, ... . 

We have q2 = 1; thus, for j = 0, 1, 2, 3, 4, we have 

14-j, 29 P l + 2j ' 

TABLE 1 
Number of P a r t i t i o n s p 

L 77? 

n \ 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

2 

0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

3 

0 
0 
1 
1 
2 
1 
1 
2 
1 
1 
2 
1 
1 
2 
1 

4 

0 
0 
0 
1 
1 
2 
3 
1 
1 
2 
3 
1 
1 
2 
3 

5 

0 
0 
0 
0 
1 
1 
2 
3 
4 
1 
1 
2 
3 
4 
1 

6 

0 
0 
0 
0 
0 
1 
1 
2 
3 
4 
6 
1 
1 
2 
3 

7 

0 
0 
0 
0 
0 
0 
1 
1 
2 
3 
4 
6 
7 
1 
1 

8 

0 
0 
0 
0 
0 
0 
0 
1 
1 
2 
3 
4 
6 
7 

10 

9 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
2 
3 
4 
6 
7 

10 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
2 
3 
4 
6 

11 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
2 
3 
4 

12 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
2 
3 

13 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
2 

14 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

15 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

Pn* 

1 
2 
3 
4 
6 
7 

10 
12 
15 
17 
25 
24 
32 
37 
45 
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CONCERNING THE DIVISORS OF N AND THE EXPONENTS 

THEY BELONG TO MODULO (N - 1) o r (N + 1) 

I r v i n g Adler 
North Bennington, VT 05257 

(Submitted June 1987) 

1. Definition 

A finite set of positive integers is said to have property A if every mem-
ber of the set is a divisor of the greatest member of the set. 

Example: The set of exponents to which numbers prime to m belong modulo m has 
property A. [The greatest exponent in the set is X(rn), and every member of the 
set is a divisor of X (jn). See the propositions listed for reference in Section 
3 below.] Let N be any positive integer greater than 3. Let S be the set of 
exponents to which the numbers prime to N - 1 belong modulo (N - 1) . Let T be 
the set of exponents to which the numbers prime to N + 1 belong modulo (N + 1). 
S and T have property A. Let Sr and T' be the sets of exponents to which the 
divisors of N belong modulo (N - 1) and (N + 1), respectively. Sr is a subset 
of S, and I" is a subset of T. For example, if N = 21, the numbers less than 
20 and prime to it are 1, 3, 7, 9, 11, 13, 17, and 19. The exponents they 
belong to modulo (20) are, respectively, 1, 4, 4, 2, 2, 4, 4, and 2. Then S = 
{1, 2, 4}. The divisors of 21 are 1, 3, 7, and 21. The exponents they belong 
to modulo (20) are, respectively, 1, 4, 4, and 1. Then Sf = {1, 4}. The 
numbers less than 22 and prime to it are 1, 3, 5, 7, 9, 13, 15, 17, 19, and 21. 
The exponents they belong to modulo (22) are, respectively, 1, 5, 5, 10, 5, 10, 
5, 10, 10, and 2. Then T = {1, 2, 5, 10}. The exponents that the divisors of 
21 (1, 3, 7, 21) belong to modulo (22) are, respectively, 1, 5, 10, and 2. 
Then T' = {1, 2, 5, 10}. The propositions proved in this paper grew out of a 
search for values of N for which Sr and Tf also have property A. 

2. Origin of the Problem 

This problem grew out of the following permutation problem. Let a be any 
proper divisor of N, N cards in a deck are numbered from 1 to I from the top 
down and are permuted as follows: Divide the deck into a equal piles and place 
them side by side in the order of their positions in the deck from the top 
down. Then pick up the top card from each pile in rotation, starting with the 
pile that came from the top, until all the cards have been picked up. 
Question: What is the order of the permutation? That is, how many repetitions 
of this procedure will restore all the cards to their original positions in the 
deck? It is not hard to prove that the answer is e repetitions, where e is the 
exponent that a belongs to modulo ( N - 1). (The proof is given in the 
Appendix.) (For example, for an ordinary deck of playing cards, N = 52. If 
the permutation is done with two piles, a = 2. Then a = 8, since 8 IS the 
least exponent for which 2e = 1 modulo 51.) This fact led to an examination 
of the set S! defined above. Since the set Tf is also well defined for any N9 
it is natural to examine this set as well. It is immediate that Sr or Tr has 
property A if N has a divisor that is a primitive A-root of (N - 1) or (N + 1), 
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respectively. Calculation for many values of N shows that there are many 
cases where Sr or Tr has property A even when N does not have a divisor that is 
a primitive A-root of (N - 1) or (N + 1), respectively. However, there are 
also values of N for which S! does not have property A. For N < 26,120, there 
are 130 values of N for which S' does not have property A. The first ten of 
these are 572, 1182, 1463, 1953, 2004, 2010, 2338, 2343, 2405, and 3002. (For 
example, for N = 572, S' = {1, 57, 114, 190, 285}. Since neither 114 nor 190 
is a divisor of 285, Sr does not have property A.) All 130 of these numbers 
have the property that they are divisible by three or more different prime 
numbers. Also, for N < 5254, there are 25 values of N for which Tf does not 
have property A. The first ten of these are 1085, 1434, 2354, 2409, 2849, 
2975, 3069, 3130, 3138, and 3154. (For example, for N = 1085, T' = {1, 2, 12, 
20, 30}. Since neither 12 nor 20 is a divisor of 30, Tr does not have property 
A,) All 25 of these numbers also have the property that they are divisible by 
three or more different primes. These observations led to the conjecture that 
if N has at most two different prime divisors, then Sr and Tr have property A. 
The purpose of this paper is to prove the conjecture. 

3. Definitions and Propositions 

For handy reference, we list below the definitions and propositions of ele-
mentary number theory that are relevant to this paper. 

Definition: If a and m are relatively prime positive integers, and e is the 
least positive integer such that ae = 1 mod (m) , then e is said to be the 
exponent to which a belongs mod (m). 

Definition (Euler's <j)-function) ; For any positive integer m, $ (m) is the num-
ber of positive integers not greater than m and prime to it. 

Proposition 3.0: If p15 p2, ..., p are the different prime divisors of m, then 

<K"0 = m{l - 1/p^d - l/p2) ... (1 - l/pn). (see [1], p. 32). 

Definition: For any positive integer m, X(m) is defined as follows: 

X(2a) = (j)(2a) if a = 0, 1, 2. 

A(2a) = (l/2)(f>(2a) if a > 2. 

X(pa) = §(pa) if p is an odd prime. 

X(2apl
1p22 ••• pa") = M, where M is the least common multiple of 

X(2a), X(pji), X(pa
22)3 ..., A(p^). 

Definition: If a belongs to X(m) modulo m, then a is said to be a primitive A-
root modulo m. 

Proposition 3.1: If (a, b) = 1, there exist positive integers x, y such that 
xa - yb - ±1. 

Proposition 3.2: If a and m are any two relatively prime positive integers, the 
congruence aA(m) E 1 mod m is satisfied (see [1], p. 54). 

Proposition 3.3: If a belongs to d mod m, and an = 1 mod 77?, then d is a divisor 
of n (see [1], p. 62). 

Proposition 3.4: Every modulus m has primitive A-roots (see [1], p. 72). 
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Proposition 3.5: If x belongs to the exponent ab modulo m, then xa belongs to 
the exponent b (see [2], p. 106). 

Proposition 3.6: If tf belongs to the exponent a and y belongs to the exponent b 
modulo m, where (a, b) = 1, then xy belongs to the exponent ab (see [2], p. 106). 

4. Propositions I and II 

Proposition I: If N has the form pa
s where p is a prime number/ then Sr and Tr 

have property A. 

Proof: The following argument is valid for congruences modulo (N - 1) or (N+ 1): 
Let p belong to g, and let pv belong to a7 for any p < a. Since pe E 1, it fol-
lows that (p2")6 E 1. Therefores by Proposition 3.3, d divides e. Then Sf and 
Tf have property A. 

Proposition IIA: If # has the form paqh
s where p and q are different primes, 

then Sr has property A. 

Proposition IIB: If N has the form paq&, where p and q are different primes, 
then T! has property A, 

The proofs for Propositions IIA and IIB are carried through separately 
below. 

5. Proofs of Some Preliminary Propositions 

Before proving Proposition IIA, we prove some preliminary propositions. We 
consider first the special case where (a, b) = 1. Since a and b are rela-
tively prime, then (with appropriate choice of notation, interchanging a and b 
if necessary) there exist positive integers x and y such that xa - yb = 1. 

Proposition 5.1: If (a, 2?) = 1, there exist integers x, y such that 0 < x < b 
and 0 < y < a and xa - yb = 1. 

(1) Can we have x < b and y > a? If we did, then 2? = # + s for some s > 0, 
and y = a + r for some v > 0. Then a^- (a+-r)(tf + s) = 1 yields 
-as - rx - TS = 1, which is impossible. 

(2) Can we have y < a and x > b1 If we did, then a = y + s for some s > 0, 
and x = b + r for some r > 0. Then (b + r) (y + s) - yb = 1, and frs + 
vy + vs = 1. This is impossible if s.> 0. If s = 0, vy = ls and 
hence v = 1 and z/ = 1. Then x = b + I, y = a = I* Then this case is 
possible only if N = pa2". However, with a change of notation, writing 
p for q and vice versa, and a for £> and vice versa, we could have 
written N = paq, and use x = l 9 y = a - l , so that we have x = b, y < 
a [see case (4) below]. Note that y is positive unless a = 1, in which 
case y = 0. 

(3) If # > 2? and 2/ > a, we can replace x by x - b and y by z/ - a, since 

(tf - 2?)a - (y - d)b = tfa - yb = 1. 

By repeated application of this procedure, we would ultimately get 
either case (2) above or case (4) below. 

(4) 0 < tf < b» and 0 < y < a» We can include case (2) in the changed no-
tation (N = paqs with tf = 1, y < a, and y = 0 only if a = 1) by per-
mitting y to be 0 if a = 1. We cannot have y = a9 because if y = a, 
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xa - ba = 1, a(x - b) = 1; thus a = 1, x = b + I, contradicting x < b. 
If x = by ba - by = 1, b(a - y) = 1. Then 2? = 1, z/ = a - 1. Conse-
quently, we may always assume x and z/ such that 0 < x < b and 0<y<a. 

Proposition 5.2: If (a, 2?) = 1, then S' has property ̂ . 

Proof: By Proposition 5.1, pyqx Is a proper divisor of /!/. Let e be the expo-
nent to which pVqx belongs modulo (N - 1). We now show that if pmqn is any 
proper divisor of /!/, and it belongs to f modulo (N - 1), then / divides e. We 
show first that the ordered pairs (0, 1) and (1, 0) are linear combinations 
(with integral coefficients) of (a, b) and (y, x): 

a(y, x) - y(a, b) = (0, ax - by) = (0, 1). 

x(a, b) - b(yf x) = {xa -by, 0) = (1, 0). 

(m, n) = /77(1, 0) + n(0, 1) = mx(a, b) - mb(y, x) + na(y, x) - ny(a, b) 

= (mx - ny)(a, b) - (mb - na)(y, x). 

We know that paqb E 1 modulo (N - 1) and (pyqx)e E 1 modulo (N - 1). Then 

(pV)e(OT*~ni/) E 1 a n d (pyqxy(™b-na) E K 

Therefore, 
(pa^eCms-ni/) = (p^x)e(^-na) m o d ( # _ 1 ) # 

Since p and g are prime to # - 1, we may divide by the right-hand member. This 
yields 

(pmqn)e = 1 modulo (N - 1). 

Therefore, f divides e. 

6. Proof of Proposition H A 

We consider now the general case, N = p3aq9b
 s where (a, b) = 1 and g > 1. 

Let {x, y) be determined such that xa - yb = I, 0 < x < b and 0 < y < a. Let e 
be the exponent that pVqx belongs to modulo (N - 1). Let pvqs be any divisor 
of N. 

p = (paqb)x(pyqx)~b. q = (paqb) '* (pyqx)a . 

p* = (paqb)rx (pyqx)-bv . qs = (paqb) ~sy (pyqx)as . 

Then p ^ s = ( p ^ ^ ) ^ " ̂  (pyqx)as ~ br. 

Let /" be the least common multiple of g and e. Then 

(prq8)f E (paqb)f(rx-sy)(pyqx)f(as-br) = i. 

If prqs belongs to /z modulo (/!/ - 1), it follows that h divides /. To complete 
the proof, we now show that there exists a divisor of N that belongs to f. In 
the special case where g is a divisor of e, the result is immediate, since then 
f = e, and p^g^ belongs to e. 

For the completely general situation, we express g and e as products of 
powers of primes. 

9 = Pi1 ••• P?k a n d « ' P?1 ••• P**, 
where the set W = {pls ..., p, } includes all the primes that occur in either g 
or e. (Some of the a^ and some of the bi may be zero.) Partition W into two 
disjoint sets U and V as follows: 

Vi e u if af > bi9 pi e 7 if at < bt. 
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Let 777 = n pai s n = n P a i • 9 = w^-
p-El/1- v. e V ^ 

Let w = H pbi , z = n Vhi - e = wz. 

Let 77? = w = 1 i f U i s empty. Let n = z = 1 i f V i s empty. 

p a q & be longs t o 77771. T h e r e f o r e , (paqb)n be longs to 777, by P r o p o s i t i o n 3 . 5 . 

pyqx be longs t o wz. T h e r e f o r e , (pyqx)w be longs to z. 

But 777 and z a r e r e l a t i v e l y p r ime . The re fo re , by P r o p o s i t i o n 3 . 6 , 

(paqb)n(pyqx)w be longs t o 777s = / . 
Let J = (paqh)n(pyqx)w = pna + wyqnb + wx. 

If w = 777 = 1, then f = e , which is an element of Sr; otherwise, w < m, y < a, 
and x < b. Then 

na + wy < (n + m)a and n/3 + TJX < (n + 777)2?. 

m = n only if TT? = n = 1, in which case ̂  = 1, a case already disposed of. 

Assume now that m * n. 

A. If m>n, m=n+d, d>0. Then 777 + rz = In + d and mn = n2 + nd. 

If n > 1, mn > m + n. Then 

(n + m)a < mna = ga and (n + m)b < mnb = gb. 

Then J is a divisor of N. 

If n = 1, m = g and w < g. Then 

na + wy = a + wy < a + wa = a(l + w) < ga. 

nb + wx = b + wx < b + wb = b(l + w) < gb. 

Then J" is a divisor of N. 

B . I f n > 777, n = 77? + J , d > 0 . 777 + n = 2777 + d , 77771 = 7 7 7 2 + 7 7 7 d . 

If 777 > 1, mn > m + n. Then, as in A above, J is a divisor of N. 

If 777 = 1, then g = n, and g divides e, a case dealt with above. 

Since J is a divisor of N, and J belongs to / modulo (N - 1) , Sr has 
property A. 

1. Proofs of Some Preliminary Propositions 

Here we prove some preliminary propositions that will be used in the proof 
of Proposition IIB. 

Proposition 7.1: Let N = p^aqgb, where (a, b) = 1. Then pa qb belongs to 2g 
modulo (N + 1). 

Proof: N2 = 1 modulo (N + 1). Let paqb belong to 777. Then, since (paqb)29 = 1, 
777 = 2g/k for some positive integer k. Ifk>2, then m < g and p'^qmb < j\/9 
while (paqb)m E 1. This is impossible, since all the numbers 0, 1, 2, ..., N 
are noncongruent modulo (N + 1). Therefore, k = 1 and m = 2g. 

Proposition 7.2: If JJr = N, and J belongs to 777 modulo (21/ + 1), and Jr belongs 
to n modulo (N + 1) , then either both 777 and n are even and 777 = n or m Is odd and 
n = 2777 or n is odd and 77? = 2n. 
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Proof: (JJr)2 = 1 modulo (N + 1). Therefore, [Jm(J')m]2 = 1. Hence, (Jr)2m = 
1. Consequently, 2m = kn for some positive integer k. Similarly, 2n = mh for 
some positive integer h. Therefore, hk = 4. Consequently, /< = 1, 2, or 4. If 
k = l, n = 2m. If k = 2, m = n. If /c = 4, w = 2n. If m is even, we have both 
Jm and ^(J')7* congruent to 1 modulo (/!/ + 1). Then..(e7')w = 1 and n divides m. 
Similarly, if n is even, m divides n. Therefore, if both m and n are even, m = 
n. If m is odd and n is even, then n = 2???; if n is odd and m is even, then 77? = 
2n. Moreover, m and n cannot both be odd, for if they were it would be 
necessary that m = n. It would follow that (JJr)m E 1, and 2 would be a divi-
sor of m, which is impossible. 

Proposition 7.3: If J is a divisor of 21/ and J" = NJ9 and J" belongs to m modulo 
(N + 1) and J" belongs to n, then either both m and n are even and m = n, or m 
is odd and n = 2m, or n is odd and m = 2n. The proof is similar to the proof 
of Proposition 7.2. 

Proposition 7.4: (Corollary of Propositions 7.2 and 7.3) If J is a divisor of 
N and Jr = N/J and Jft = NJ, and the exponent that either J or Jr or J"" belongs 
to is divisible by 4, then all three belong to the same exponent. 

8. Proof of Proposition IIB 

We consider first the special case where (a, b ) = 1. By Proposition 5.1, 
there exist integers x and y such that xa - yb = 1, with 0 < x < b and 0 < y < 
a, so that pyqx is a divisor of N. Let pVqx belong to e modulo (N + 1). pa^^ 
belongs to 2. Let pa~yqb-x belong to g. Let pp^s be any divisor of N. Then, 
as shown in Section 6, 

prqs = (paqbyx-sy(pyqx^as-brt 

Let / be the least common multiple of e and 2. Then (prqs)f =1. Consequently, 
the exponent that every divisor of N belongs to is a divisor of f. If g is 
even, f = e. If e is odd, ̂  = 2e by Proposition 7.2. Then f = g. In either 
case, / is an element of Tf. Therefore, Tr has property A. 

If N = p9aq9b, where (a, b) = 1 and ^ > 1, let (x, 2/) be determined as 
before such that xa - yb = 1, with 0 < x < b and 0 < y < a. Again, let pyqx 

belong to e modulo (N + 1). By Proposition 7.1, paqh belongs to 2g. As shown 
above, if prqs is any divisor of N, 

prqs = (paqbyx-sy{pyqX)as-bra 

Let / be the least common multiple of e and 2g. Then (prqs)f = 1 modulo (N + 
1), and the exponent that each divisor of N belongs to is a divisor of f. To 
complete the proof, we must show that there exists a divisor of N that belongs 
to f, so that f would be an element of Tr. Express 2g and e as products of 
powers of primes. 

2<7 = Pi1 ..- p£*, e = p \ i ... p£*, 
where, as in Section 6, W = {p15 ..., p, } includes all the primes that occur in 
either 2g or e. Define U, V, m, n, w, and z as in Section 6. Then paqh 

belongs to rnn = 2g, and pyqx belongs to wz = e. (paqb)n belongs to m, and 
(pyqx)w belongs to z. Then (paqb)n (pyqx)w belongs to mz = f. Let 

J = (paqb)n (pyqx)w = pna + wyqnb+wxe 

If 772 = 1, then w = 1, and f = e, which is an element of Tr. If 777 * 1, then W < 
777. Thus, 

na + wy < (n + m)a and nb + wx < (n + m)b. 
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(a) Consider f i r s t n, m > 3. If n = m = 4, then n + m < (l/2)mn = g . By 
induction on m and n separately, i t follows tha t , for a l l m, n > 3, 

na + wy < ga and nb + wx < gb. 

Consequently, J" is a divisor of N, and /is an element of T!. 

(b) If m = 3, then n is even, since 7?7n = 2g. Suppose n > 6. Then, by in-
duction on n, m + n < (l/2)mn, and J" is a divisor of /!/. Similarly, if n = 3, 
then m is even, and If m> 6, m + n< (1/2) mn9 and J is a divisor of N. 
Therefore, for m or n = 3, we have left for consideration only m = 3 and n = 2, 
or 772 = 3 and n = 4, or m = 2 and n = 3, or m = 4 and n = 3. The cases where m 
or n = 2 are considered in (c) and (d) below. If m = 3 and n = 4, 2g = 12, and 
g = 6. It follows that w = 3°  = 1. Then 

na + uz/ = 4a + z/ < 5a < ga and n/3 + wx = kb + x < 5b < gb. 

Then J" is a divisor of /!/. If n = 3 and ^ = 4,2^= 12, and g = 6. Then w = 2 
or 1. If u = 1, 

na + wy = 3a + z/ < ka < ga and nb + wx = 3b + x < 4/3 < gb. 

If w = 2, 
na + zjz/ = 3a + 2y < 5a < ga and nb + wx = 3b + 2x < 5b < gb. 

In both cases, then, J" is a divisor of N. 

(c) If 777 = 2, then w = 1, 2a = 2n, g = ns and e = s, which is odd. f = mz 
= 2e, which is the exponent that p9a~ Vqgb- x belongs to. Therefore, / is an 
element of I". 

(d) If n = 2, m = a, and m is odd. Therefore, a is odd. 

w < (1/3)772 = d/3)a. 

na + wz/ < 2a + (l/3)aa = (2 + a/3)a. 

Since 3 < a (because g > 1 and is odd), 2 < 2g/3. Then 

na + wy < (2a/3 + a/3)a = ga. 

Similarly, nb + wx < gb. Consequently, J" is a divisor of N. 
(e) If n = 1, 7?7 = 2g, and w < (1/2)777. Consider first U < (1/2)777. Then 

Zj < (1/4)777 = (1/2)0. 

na + wz/ < a + (l/2)ga = (1 + g/2)a. 

Since 2 < g, 1 < g/2. Then 

na + wy < (g/2 + g/2)a = ga. 

Similarly, nb + wx < gb. Then J is a divisor of /!/. 
(f) If U = (1/2)777, W = g and the only element of [/ is 2. Consequently, g 

is a power of 2. Then /, which equals 2gz, is divisible by 4. e = ws = gs. / 
= 7772 = 2gs, and s is odd. J = -pa+9yqb+gx, a + gy < 2ga and 2? + ga: < 2gb. If 

a + gz/ < ga and /3 + gx < gb * 
J is a divisor of N. Still to be dealt with is the case where either a + gy > 
ga, or b + gx > gb. If a + gy > gas y > a(g - I)Ig. Since xa = by -f 1, 

xa > ab(g - l)/g + 1. 

Thus, ga: > (g - l)/a + g/a; 2? + gx > gb + g/a > g/3. Then Jf = J/N is well de-
fined and is a divisor of N. Now, by Proposition 7.4, since J = JfN and / is 
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divisible by 4, Jr belongs to f. Therefore, / is an element of 2". Suppose b 
+ gx > gb. Then x > b(g ~ I)/g> Since by = xa - 1, 

by > ab{g - 1) I'g - 1. 

Then gy > (g - \)a - gib and a + gy > ga - gib . If g < b , a + gy > ga. Then 
J! = J/N is well defined, is a divisor of N, and belongs to f. If g > b, 

b + gx < g + gx = g(l + x) < gb if x < b. 

This contradicts the assumption that b + gx > gb. Thus, the case x < b cannot 
occur in this context. If x = b, since ax - by = 1, b(a - y) = 1. Then b = 1 
and y = a - 1. b+gx=g+l>bg. 

a + gy = a + g(a - V) = ga + (a - g) > ga if a > g. 

Then, as above, Jr = J /N is well defined, is a divisor of N9 and belongs to f. 
Now suppose that g > a. Recall that x = b = 1, and y = a - 1. N = p9aqg. paq 
belongs to 2g9 which is divisible by 4. Therefore, p&a~aqg _1 belongs to 2g, 
which is a power of 2. p^g* = pa~lq belongs to gz. Then p9a~9q9 belongs to z> 
which is odd. Thus, p^ga - g-aqZg-1 belongs to 2gz. Let 

jn = p2ga- g- <2q2g-l 

and let 
jr = J////I/ = pga-g-aqg-lr 

Assume a > 2. Then ^ ( a - l ) - a < 0 only if ^ < a/(a - 1) < 2. But ^ > a > 2. 
Therefore, for a > 2 , 0 < ^ a - ^ - a < ^ a . Moreover, 0 < g - 1 < g. Then J"' 
is a divisor of /!/. Since JrF belongs to 2gz which is divisible by 4, J' belongs 
to 2gz, which equals /. Then f is an element of Tf. What remains to be dealt 
with now is the case where a = 1, g > 1. Then we have N = pgq9. g = 2° for 
some c > 0. a = b = l s x = l 9 y = a - l = 0. pa qh = pq belongs to 2g, and 
pyqx - q belongs to gz. Therefore, qg belongs to z which is odd. Thus, p$ 
belongs to 2z. Let p belong to e'. Then e1 divides 2gz, so that 2gz = e Th for 
some positive integer h. Since (pg)e' = 1, 2z divides e1, so that e* = 2zk for 
some positive integer k. Then 2gz = e rh = 2zkh. Thus, kh = g. Consequently, 
k is a power of 2 such that 1 < k < g. Then possible values of e1 are 2s, 4s, 
8z, ..., ̂ s, 2^s. If e ' = 2^s, then f=er, which is an element of T'. If e l 

= gz, then p9 belongs to z, contradicting the fact that p9 belongs to 2z. So 
this case cannot arise. If e r = gz/t with t > 1, then we would have p9Z//t E 1, 
from which it follows that (p9*/t)t = i9 which implies that {pg)z E 1, which 
implies that 2z divides z* Hence, this case too cannot arise. 
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Appendix 

Let b = N/a. The cards are in a piles, with b cards in each pile. This is 
equivalent to a rectangular array with a columns and b rows. Consider the card 
in row h, column k (h = 1, 2, ..., b; k = 1, 2, ..., a). Let x designate its 
original position in the deck. Let f{x) be its new position as a result of the 
permutation, x = (k - l)b + L f(x) = (h ~ l)a + k. Direct calculation shows 
that 

fix) = ax - (a - 1) - (k - 1)(N - 1). 
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Therefore, f(x) - ax - (a - 1) modulo (N - 1) . Designate by fi{x) the posi t ion 
of the card af ter i r epe t i t ions of the permutation. Then, by induction, 

/*(#) = aix - {a1 - 1) modulo (717 - 1). 
I t follows that fi{x) = x if and only if a1 = 1 modulo (N - 1) . 

A GENERAL RECURRENCE RELATION FOR REFLECTIONS 
IN MULTIPLE GLASS PLATES 

Jeffrey A. Brooks 
(student) 

West Virginia University, Morgantown, WV 26506 
(Submitted June 1987) 

The number of possible light paths in a stack of two glass plates can be 
expressed in terms of Fibonacci numbers, as was first pointed out by Moser [1]. 
If two glass plates are placed together in such a way that each surface can 
either reflect or transmit light, then the number of distinct paths through the 
two plates with exactly n internal reflections is Fn+2° 

Junge and Hoggatt [2] used matrix methods to count reflections in larger 
numbers of plates. Hoggatt and Bicknell-Johnson [3] used geometric and matrix 
techniques to count specific sets of reflections. However, these authors did 
not present a general recurrence relation for the number of distinct light 
paths with a fixed number of reflections in an arbitrary number of glass 
plates. Here we shall present such a recurrence relation. 

Consider a single ray of light directed into a stack, of r glass plates. Let 
Tr(n) be the number of distinct paths that can be taken by a light ray en-
tering through the top plate, leaving through either the top plate or the 
bottom plate, and having exactly n internal reflections. Figure 1 illustrates 
the distinct light paths in two plates with zero, one, two, and three 
reflections. 

n = 0 n = 1 n = 2 n=3 

FIGURE 1 

As a light ray passes through the stack of plates in a fixed direction, 
there are a total of r internal surfaces from which it could be reflected. 
(The surface crossed by the light ray as it enters the stack of plates cannot 
cause an internal reflection.) Number the reflecting surfaces from 1 to r 
along the direction of the ray. Figure 2 illustrates this numbering scheme; 
the path shown consists of reflections from surfaces 2-3-3-2-2. 
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il VTM—rH- h 

FIGURE 2 

Let Gr(m9 n) be the number of distinct light paths with exactly n internal 
reflections such that the nth internal reflection occurs at reflecting surface 
m. Then, for n > 1, 

Tr(n) = j^G (k, ri). (1) 
fc= l 

A light path of length n + 1 whose last reflection was from surface m could 
have undergone its nth reflection at any one of the reflecting surfaces r - m + 
1 through p. So 

V 

Gr(m9 n + 1) = E Gr(k, ri). (2) 
k=r-m+ 1 

Combining (1) and (2), we see that 

r-m 
Gv{jn9 n + 1) = Tr(n) - E M ^ > ri). (3) 

k = l 

Let a represent the permutation of {1, 2, ...s p} that maps 1, 2, 3, 4, ... onto 
r, 1, P - 1, 2, ..., and let 

Glim, ri) = Gr(om, ri). 
The functions {G£(m, ri) : 1 < TTZ < p} form a reordering of the {G,

T(m9 n):l < m < r} 
which can be expanded recursively in terms of Tr(n). 

Let 1 < i < [_k/2J , where. [xj is the floor function of Donald Knuth and rep-
resents the greatest integer less than or equal to x. Then, applying (2), (3), 
and the definition of ̂ ( m , ri), we see that: 

G;(l, n) = Gr(r9 ri) = Tr(n - 1); (4) 
V 

G;(2i, ri) = Gr(i9 n) = E Gr(k9 n - 1) (5) 
k=r-i+ 1 
i 

= E ^(2fe - 1, n - 1); 
k- l 

^ ( 2 i + 1, ri) = £ r (p - i , n) = ^ ( n - 1) - E £>(&> n - 1) (6) 
fc = l 

= Tr(n - 1) - E G;(2fc, n - 1). 
fc = l 

By repeatedly applying (4), (5), (6), we can obtain an expansion for Gf
r(m9 ri) 

in terms of {Tr(n - k):1 < k < m}. Furthermore, the coefficients in the expan-
sion of G£(m9 n) are independent of p. So, for any system of p plates and any 
m < r9 the coefficients of the expansion of G},(m, n) in terms of {Tr (n - k)} 9 
are the same. 

Let #£ denote the coefficient of Tr (n - k) in the expansion of G£(j9 n). 
Figure 3 gives the values of Hg for 1 < k < j < 8. 
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£L 
y=i 

2 
3 
4 
5 
6 
7 
8 
9 

10 

k=\ 
_ __ 

0 
1 
0 
1 
0 
1 
0 
1 
0 

2 

1 
0 
2 
0 
3 
0 
4 
0 
5 

3 

- 1 
0 

- 3 
0 

- 6 
0 

- 1 0 
0 

4 

- 1 
0 

- 4 
0 

- 1 0 
0 

- 2 0 

•5 

1 
0 
5 
0 

15 
0 

6 

1 
0 
6 
0 

21 

7 

- 1 
0 

- 7 
0 

8 

- 1 
0 

- 8 

9 

1 
0 

10 

1 

FIGURE 3 

Before proceeding, we must introduce a notation for iterated sums of integers. 
For m9 n > 1, define the nth-iterated sum from 1 to n, denoted S(m, ri) , by 

n i-i i2 in-i 

Sim, n) = £ £ £ ... £ 1. 
ip l i2=l 13=1 tn = 1 

By convention, we let ^(0, ri) = 1 for all n. Note that S(m, ri) obeys the fol-
lowing identity: 

m 

X! S{n9 i) = S(n + 1, m). 
£= 1 

Theorem 1: I f j = fc (mod 2 ) , then 

tf = ( - l ) L ( f e - 1 ) / 2 j 5 ( / c - 1, L(J " k > / 2 j + D -

Otherwise, H^ = 0. 

Proof: By induction on /c. 

Suppose /c = 1. Then H£ is .the coefficient of Tr(n - 1) in the expansion of 
G'rU> n) . If J is o d d > then E° 1, since none of the terms in the summation 
xn (6) can depend on Tr (n - 1 ) . If j is even, then Rd

k = 0, since none of the 
terms in the summation in (5) can depend on T (n - 1). In either case, the 
statement of the theorem is satisfied. 

Suppose k > 1. Assume the statement of the theorem is true for kf < k. 
Four cases must be considered: 

1. Suppose j and k are both even. Let j = 2i where 1 < i < \j/2J . Then 

= (-1) k - 2, 

\(k- 1 ) - l l . 

- E C\l - t <-nL 2 J 4 
m = 1 m = I ^ 

£ 5 6 
77? = 1 \ 

(-1)L 2 Js(fc - 1, 

" " <' 

(2m k - 2 , 

2w - fc 

1) - (k - 1) + 1 

+ 1 

= (-D 
k - 1 

2 

2i - k 

S\k - 1, 

2 
J - k 
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k - 2 
2 

k - 1 
2 where in the l a s t s t e p we used the f a c t t h a t k even imp l i e s 

2. Suppose j and k a r e both odd. Let j = 2 i + 1 where 1 < i < \J/2J . Then 

- - £ A - I - - X : (-1)1- 2 J 

= (-1)L2J sL 

E s[k - 2, 

S\k - 2 , 

(2m- + 1 ) - k 

2m - (k - 1) 
2 + 1 

+ 1 

fc - 1, 

( -1 ) L " i S[k - 1, 
(* 

(2 i + 1) - fe 
2 

J - & 
• • ) 

+ 1 

k - 1 where in the last step we used the fact that k odd implies 

3. Suppose j is even and k is odd. Let j = 2i where 1 < i < [_j/2J . Then 

4 = t/f.V = o. 
777 = 1 

4. Suppose j is odd and k is even. Let j = 2i + 1 where 1 < i < |_j/2J . Then 

777 = 1 

This completes the proof of Theorem 1. 

Theorem 2: Tr(n) = £ (-1) L(/c"1) /2J £(&, [_(r - fe)/2j + l)Tr(n - fc). 
k = 1 

r r v i m \ 
Proof: Tr(n) = E f f P f c n) - E c;(m, n) = £ I E ^ ( n - &)) 

777 = 1 m = l m = 1 \ A: = 1 / 

- t ( £ ^k(* " k) 
= E ( E ( - l ) L ( / c " 1 ) / 2 j S(fc - 1, | > - W/2J + 1) Tr(n - k)\ 

k = 1 \m=k I 

= E ( - l ) L ( k - 1 ) / 2 - l S(fc, | > " * ) / 2 j + l ) r r ( n - &)-
& = 1 

Figure 4 illustrates the coefficients of this recurrence for 1 < r < 10. 
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Tr(n) 

r=\ 
2 
3 
4 
5 
6 
7 
8 
9 

10 

k = 1 

~r i 
2 
2 
3 
3 
4 
4 
5 
5 

2 

1 
1 
3 
3 
6 
6 

10 
10 
15 

3 

- 1 
- 1 
- 4 
- 4 

- 1 0 
- 1 0 
- 1 0 
- 2 0 

4 

- 1 
- 1 
- 5 
- 5 

- 1 5 
- 1 5 
- 3 5 

5 

1 
1 
6 
6 

21 
21 

6 

1 
1 
7 
7 

28 

7 

- 1 
- 1 
- 8 
- 8 

8 

- 1 
- 1 
- 9 

9 10 

1 
1 1 

FIGURE 4 

For r = 1, 2, 3, 4, and 55 these expansions for Tr(n) are the same as those 
derived by matrix methods in [2]; however, the matrix methods required a separ-
ate set of computations for each value of r. 

The recurrence in Theorem 2 has an even simpler statement involving bino-
mial coefficients. Noting that 

S(m, ri) = £ 
1 < i l <i2 ^ - • 

it follows that 

T (n) = X (-D 
k= 1 

L(fc-D/2j 

•c 

+ k 

' ) • 

Tr(n - k). 

Remark: This problem was proposed in a graduate combinatorics class taught by 
H. W. Gould at West Virginia University. 
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1. Introduction 

In [1] H. B. Mann and D. Shanks gave a novel criterion for primality in 
terms of the displaced entries in the Pascal triangle (Î )> t n e simple descrip-
tion is as follows. Consider the left-justified form of the Pascal triangle 
and displace the entries in each row two places to the right from the previous 
row (so that the n + 1 entries in row n occupy columns In to 3n, inclusive); 
also, circle the entries in row n which are divisible by n, Then the column 
number k is a prime if and only if all the entries in column k are circled. 

A little experimentation suggests that the result is also true for the Pas-
cal-57 triangle ^3 (see the portion of T3 below) , and in what follows we show 
that this is the case. \_Tm here is the Pascal-^7 triangle of order m , as 
defined in Section 2, and the nth-row, kth-column entry is denoted by Cm{n, k); 
T2 is the Pascal triangle, and 

C2(n, k) -(J).] 

That is, the same displacement by two is applied to successive rows of !F3, the 
entries to be circled are chosen in the same way, and it is still true that the 
column number k is a prime if and only if all the entries in column k are 
circled. 

0 1 © © © ® 10 @ 12 (O) 14 15 16 (17 

© © © 
1 © 3 

1 
© 
© 

1 

© 
1 

7 © ® 1 
© 10 (L6) 19 (16 

1 © © (3$ 
1 © 21 

1 © @ @ 
1 ® 

The Displaced Array for T3 

In addition to the original paper of Mann and Shanks, the result for TQ_ is 
also given in Honsberger [2, p. 3] with a slightly different proof. Gould [3] 
gives yet another version using a theorem of Hermite [and also extends the 
result to certain arbitrary rectangular arrays, e.g., Fibonomial coefficients, 
in which the entries satisfy a relation analogous to 

(̂ ) = n{n - 1) ... (n - k + l)/kl 
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for the b inomia l c o e f f i c i e n t s ] . A l l t h r e e p roofs a r e s t r a i g h t f o r w a r d and e s -
s e n t i a l l y depend only on the f a c t s t h a t 

C2(n, k) - (I) 

has an explicit formula, and the simple property that 

in\ run - 1\ 
\k) ~ kxk - l/5 

so that if n and k are relatively prime, n divides (£). 
These simplifications, however, are not available for Cm(n, k) with m > 2, 

and so, at least for the present, we show only that T3 has the property 
claimed, since in this case the reduction formula given in Section 2 allows us 
to use only ordinary binomial coefficients. 

2. Preliminaries 

To keep the exposition here self-contained, we will briefly recall the 
definition of the Pascal-T triangle Tm (as used e.g., in Bollinger [4]), and 
state two theorems which are used in the sequel. 

Definition: For any m > 0, Tm is the array whose rows are indexed by n = 0, 1, 
2, . .., and columns by/c= 0, 1, 2, ..., and whose entries are obtained as 
follows: 

(a) TQ is the all-zero array; 

(b) Ti is the array all of whose rows consist of a one followed by zeros; 

(c) Tm9 m > 2, is the array whose n = 0 row is a one followed by zeros, 
whose n = 1 row is 77? ones followed by zeros, and any of whose entries 
in subsequent rows is the sum of the m entries just above and to the 
left in the preceding row. 

The entry in row n and column k is denoted by Cm(ns k ) , although we note that 

C2(n, *) - (I), 
since T2 is the Pascal triangle. There are (jn - l)n + 1 nonzero entries in row 
n, and these are the coefficients in the expansion 

(m - 1) n 
(1 + x + x2 + . .. + xm~l)n = X Cm(n9 k)xk* 

k = o 

The reduction formula referred to earlier is also from [4, Th. 2.2], and 
its statement is as follows. 

Theorem I: Cm(n, k) = £ H ) ^ - i O \ k - j) . 
j =0 w / 

Lastly, we will also need a theorem of Ricci [5]; since this is of some 
interest in its own right, and the source may not be widely available, we in-
clude the short proof. 

Theorem II (Ricci): If a , b , . .., c are nonnegative integers, and 

n = a + Z? + --« + c9 
then 

1989] 273 



THE MANN-SHANKS PRIMALITY CRITERION 

T E °> mod(— —^ -), 
?! \D(a, b, . . . , c)/ albl . 

where D(a, b, ..., o) denotes the greatest common divisor of a, b, . . . , c. 

( Yl\ 71(71 — 1\ 

v ) = T\v - i) t n a t 

If we now write the left side of the main congruence as 

nl e (n - a) ! 
a\{n - a) I " bl . . . cl 

and use the fact just noted, we conclude that the first factor here is divis-
ible by n/D(n, a). Considering a similar decomposition for b, . .., a, we con-
clude that the multinomial coefficient is divisible by the least common 
multiple of the numbers 

D(n, a) D(n, b) D(n, c) 
And then by known divisibility properties this least common multiple is 

n 
D(D(n, a), D(n, b), ..., D(n, c))' 

which is the modulus used in the statement of the theorem. 

3„ Proof of the Criterion for T3 

In the displaced array for T%, constructed as described previously, we can 
of course dispose of the even (composite) column numbers exceeding 2 by noting 
that the construction puts an uncircled 1 (the first entry in any row) in every 
such column in the same manner as that for T2. When k is odd, then, we need to 
show that, if k is a prime, every entry in column k is circled, and if k is 
composite, at least one entry in column k is uncircled. 

We should also note at the outset that by the construction for the 
displaced array, the 2n + 1 entries in row n will now occur in columns In to 4n 
{In < k < 4n, or klk < n < k/2), and the general entry in position (n, k) will 
be C^in, k - In) . Then, if k = p, p a prime > 3, the entries in column p are 
the numbers C^(ny p - 2n) for p/4 < n < p/2, and for these values of n, n and 
p - In are relatively prime. 

We now show that for any relatively prime n and k, C^(n, k) is divisible by 
n [which means that the entries C^(nf p - In) referred to in the previous 
paragraph will all be circled]. From Theorem I with m-- 3, we have that 

C3in,^--toQ)c2(J,k-Jl--toQ-)(kij) 

7-?0G)(2jt7- k) 
n 

k 

E 
3-=h±L,koM(n-j)Hk-j)nZ3-k)l 

k J = "7 } k even 

But from the facts that the arguments of the denominator factorials must add up 
to n, and that twice the second argument plus the third must add up to k, it 
follows that the assumption that the arguments have a common divisor d > 1 
implies that d also divides n and k, contrary to the hypothesis. Theorem II 
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now implies that every term in the sum is therefore divisible by ns and then so 
is C3(n, k) . Thus, all the entries C3(n, p - In) in column p will be circled 
in the displaced array. 

Finally, for k odd and composite, we let p be an odd prime divisor of k and 
let k = p(2r + 1 ) . In this case, the row n = pv contributes the entry C3(pr, 
p) to column k, where, again from Theorem I, 

3 Pr' P . f+i (pr - J) ! (p - j) ! (2j - p) ! " 
3 2 

Here, for each term except the last, the assumption that the arguments of the 
denominator factorials have a common divisor d > 1 leads to the conclusion that 
the prime p is composite; thus, their gcd is 1, and from Ricci's Theorem we 
again conclude each of these terms is divisible by pr. The last term (j = p) , 
however, is just the binomial (Pp ) , which is not divisible by pr [2, p. 8], 
Thus, C3(pr, p) is not divisible by pr, and so there will be an uncircled entry 
in column k. This completes the proof. 

Theorem: In the displaced array for T^, the column number is a prime if and 
only if all entries in the column are circled. 

Lastly, we note that, as with ^ 5 a little experimentation suggests the 
conjecture that the criterion is true in all triangles Tm, but the nature of 
various formulas for Cm(n, k) (see [4], [6], and [7]) appears to require an ap-
proach different from that used here. 
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1. Introduction 

A new look at Zeckendorf's theorem [1] has led to several seemingly 
unexpected results [2], [3], [4], [5], [6]. It is the purpose of this paper to 
extend previous findings [4] by involving squares of Fibonacci numbers (Fn) and 
Lucas numbers (Ln). 

The Fibonacci representation of a positive integer N (^-representation of 
N) [1] is defined to be the representation of N as a sum of positive, distinct, 
nonconsecutive Fibonacci numbers. It is unique [7]. The number of terms in 
this representation is symbolized by f(N). 

Consider the sequences 

{F%/Fm}, {F^/LJ, {Ll/Lm}, {L$/Fa}. 

Necessary interrelationships between n and m need to be stipulated to assure 
integral elements in these sequences. We will predict the number of terms (F-
addends) necessary in these representations, and will also exhibit the repre-
sentations themselves. 

Beyond the identities J7, J^ - J^ , and J2i ~ -̂24 available in [7], the 
following further identities are used in the proofs of theorems: 

Fa(r+l)+b + (-1)a' lFar + b " Fa + b + ( " ^ F h v- „ _ La(r+\)+b ^ ^ L> Lar + b La + b ^ ^ x > L b , , , N 

Fn + k ~ f""1) Fn-k ~ tjFnFk> (1-2) 

Ln + k + (~DLn_k = LnLk. (1.3) 

Their validity can be readily proved with the aid of the Binet form for Fn and 
Ln, In particular, (1.1) plays a prominent role throughout the proofs. 

2. The F-Representation of Fs
2
k /Fs 

If s is an odd positive integer and k is a natural number, then 

isk/2 if k is even 
f(F

s
2
k/F

s) = (2.1) 
[s(k - l)/2 + 1 if k is odd 

and 
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n*i*. -

k/2 s 
E E *Vsi + 2 j - 3 s - 1 i f k i s e v e n > 

(fc-l)/2 8 

^ s + E E *Vsi + 2 j - e - l i f k i s o d d -
i = 1 J = 1 

( 2 . 2 ) 

( 2 . 3 ) 

Proof of (2.2) (k i s even): Using (1.1) , I23> ^24» ^16' a n d ^ 7 > t h e right-hand 
side of (2.2) can be rewritten as 

k/2 

k/2 
E (As 

i = l 

fc/2 
?) - ^s E Fhsi-Fhsi-3s) ~ ^s l^ rhsi-2s 

i = l 

~ Ls(F2sk + 2s ~ ^2sk-2s " 2F2s ) / ĈM-s ~ 2 ) 

= Le{Ll8kFl8 - 2Fls)/(Lhs - 2) = LsF2s(L2s^ - 2)/(Lifa - 2) 

= 5LsF2sFsk l^F2s) = LsFsk/F2s = Fsk/Fs' 

Proof of (2.3) (k i s odd): Using (1.1) , X23' -^24' -̂ 16* I7> a n d ^ 1 7 5 t h e r ight -
hand side of (2.3) can be rewritten as 

(k- l)/2 
F

s + 2^ ^i+si + s + l " Fi+si+s-l " A s i - s + 1 + A s i - s - l ) 
^ = 1 

(/c-D/2 (fc-l)/2 

= ê + E (*w+s- *w_fl) = ŝ + Fs E ^s i 
i = 1 ^ = 1 

= ?
S + M^2s* + 2a " *2a*-2a " ^ S ) / ^ a " 2) 

= FS + i s ( i 2 s ^ 2 s - F ^ K L ^ - 2) 

= ?a + V a ^ a * " L2a ) / (5FL > " f
S + M ^ a f c " ^ a ^ 5 ^ 

= (5^a^2a + Ls(L2sk " L 2 a > ) / ( 5 F 2 S ) " Ls ^Fe + L2sk " L2a > ' <5F2a > 
r2sfe = ^ + L 2 ^ " L2s^'^Fs) = 0 ^ * + 2 ) / ( 5 F a ) 

= 5F*k/(5F8) = FlklFs. 

(2.1) follows readily from (2.2) and (2.3) . 

As a part icular case, l e t t ing s = 1 in (2.1), (2.2), and (2.3), we have (see 
also [3]) 

( 2 . 4 ) f(F£) = [(k + l ) / 2 ] , 

where [x] denotes the greatest integer not exceeding x, and 

if k is even, 

?l = 

k/2 
E F 

J = i 
4j-2 

(/c-l)/2 
^o + E *V if /c is odd. 

,7 = 1 J 

(2.5) 

Theorem 2: If s is an even positive integer and A: is a natural number, then 

fW&IV = k (2.6) 
and 
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Proof of (2.7): Using (1.1), L. , and J16> the right-hand side of (2.7) can be 
rewritten as 

^Zsk+s ~ F2sk-s - 2Fe)/(L2s - 2) - (L2skFs - 2FS)/L2s - 2) 
" <VL2s* - 2 » / ( £

2 s " 2) " (5FaF|fe)/(5Ff) = F | /F e . 
(2.6) is an immediate consequence of (2.7). 

As a particular case, lett ing s = 2 in (2.6) and (2.7), we have [cf. (2.4) 
and (2.5)] 

/ (F2\) = fe (2.8) 
and 

F2k = ? ^ - 2 - (2-9) 
J =1 

3. The F-Representation of Ffk IL 2 

' "s 

Theorem 3: (t = 2s) If s is an odd positive integer and A: is a natural number, 
then 

/Wfefc/V = (s + Dk/2 (3.1) 
and 

k ( s - l ) / 2 
F2sk^Ls = A ^ s i - 3 s + l + ^ - *Vsi + 4j - 3s ^ " (3 .2 ) 

^ = l j = l 

Proof of (3.2): Using ( 1 . 1 ) , jTl i f , ( 1 . 2 ) , I2i+> -^16* a n d II* t h e right-hand side 
of (3.2) can be rewritten as 

k 

LJ (Fi+si -3s + l + ^i+si -s+2 " Fhsi~s-2 " Fksi-3s + k + F hsi - 3s ^ ^ ^ = 1 

A: 

2_, (^ifsi -s ~ Fhsi -3s+ 4 + J ? W - 3 s + ^Fhsi - 3s + 1 ̂  ' 5 

^ = 1 

k k 
= E ( ^ -s + ̂  _ 3 s )/5 = Fs J2 Fhsi _2s 

^ = 1 ^ = 1 

= M*Va* + 2fl " Fksk-2e " 2F2e"<>L»e - 2 ) 

" Fe^ekF2s ~ 2 F 2 S ) / (^ S " 2) = ^ 2 s (^s* " 2)/(L,s - 2) 

= 5*; V2
2

s fc/(5F2
2

S) = FsFisk/F2s - F|8fc/Le. 
(3.1) follows. 

Theorem 4: (t = 2s) If s is an even positive integer and k is a natural num-
ber, then 

f(F2sk/Ls) = sk'2 (3-3) 
and 

k s/2 

^V^s - Z E^ef+W-3a-2- (3-4> 
^ = 1 j = 1 

Proof of (3.4): As in the proof of Theorem 3, using (1.1), Jllf, (1.2), J24, 
J16, and J7, the right-hand side of (3.4) can be rewritten as 
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E w. 
i = l 

ksi-s + 2 Fhsi~s-2 Fksi -3s+2 + Fksi - 3 s - 2 ^ 5 

= Z (^ Jhsi-s Lhsi-^s^5 " Fs E Fi+8i-2s ~ F2sk^Ls" 
^ = 1 ^ = 1 

( 3 . 3 ) f o l l o w s . 

It can be noted that, by letting s = 2 in (3.3) and (3.4), we obtain the 
same identities as those resulting from s = 4 in (2.6) and (2.7). 

Theorem 5: (t = s = 3) If k is an odd positive integer, then 

f(Flk/L3) = k 
and 

( fc -D/2 
* V 4 = F 2 + E ( ^ i 2 J - 2 + ^ 1 2 , - + l ) -

( 3 . 5 ) 

( 3 . 6 ) 

Proof of (3.6): U s i n g ( 1 . 1 ) , Iih> a n c * -^17? t n e r i g h t - h a n d s i d e of ( 3 . 6 ) c a n be 
r e w r i t t e n a s 

F2 + 2 E , ^ 1 2 , = ^2 + 2 ^ 6 / c + 6 " ^ f c - 6 " F 1 2 > / ^ 1 2 " 2 ) 
J =1 

= 1 + (8L6 f e - 1 4 4 ) / 1 6 0 = ( L 6 k + 2 ) / 2 0 = 5 ^ / 2 0 = i ^ / 4 . 

( 3 . 5 ) r e s u l t s f rom ( 3 . 6 ) . 

4 . T h e F - R e p r e s e n t a t i o n of L^kILs 

Theorem 6: (s = 1) I f A: i s a n a t u r a l n u m b e r , t h e n 

fc i f k = 1 , 2 
3 i f /c > 4 i s e v e n 
fc - 1 i f k > 3 i s odd 

/ O ^ i ) = /0£) 
and 

L\ILX - L\ -

^ 3 + F2k-l + ^ 2 k + l i f ^ ^ 4 i s e v e n , 

fc- 2 
^2fc+l + E

 F
2j + 2 if ̂  3 is odd. 

J= 1 

(4.1) 

(4.2) 

(4.3) 

Proof of (4.2): (k > 4 is even) Using J15, the right-hand side of (4.2), which 
is given by the sum of three F-addends, can be rewritten as 

F3 + L2k = L2k + 2 = Lk' 

Proof of (4.3): (k > 3 is odd) Using (1.1) and J18, the right-hand side of 
(4.3) can be rewritten as 

F2k+l + F2k " F2k-2 " 2 = L2k ~ 2 = Ll' 
(4.1) follows as it is trivial for k = 1 or 2. 

Theorem 7: If s and k are odd positive integers (s > 1), then 

f^k/L„) - 2fe 
and 
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Proof of (4.5): Using (1.1), (1.3), and I 1 8 , the right-hand side of (4.5) can 
be rewritten as 

<L2sfc + s " L2sk-e ~ 1Ls)l^2s ~ 2> = (LsL2sk " ^s)/(L2s - 2) 
Ls (hsk 2 ) / ( £ 2s 2) -LaLk/L* - LljL sk I ^s 

(4.4) follows. 

Theorem 8: If s is an even positive integer and k is an odd positive integer, 
then 

1 if k = 1 \ , 
fc+ 1 if fc > 3 j a n d 5 = 2 (4.6) 
(s + l)(/c - l)/2 + 2 if s > 4 

/ t f f l W 
and (for s = 2) 

qk/3 = J 
if fc = 1 

^ 2 + ^ f e - l + ,?, ^ - 3 + ^ - l > i f * * 3; 
(for s > 4): 

(fc- D / 2 

E 
J = I 

(fe- D/2 , 

( 4 . 7 ) 

s-1 s+1 ^ s f - s - 2 + ^ s i - s + 1 
-1;/2/ 

= 1 \ 
s- / \ 

+ ^4s£ + s + l + .2^ ̂ i4si + 2 j - 5 + 2) 
J = 1 / 

s - 2 
( 4 . 8 ) 

Proof of (4.7): (s = 2) The statement clearly holds for k = 1. For fc > 3, 
using (1.1), (1.2), and J15, the right-hand side of (4.7) can be rewritten as 

F2*+Fkk-1 + <S* + 2 ~ hk-S ~ 15)/(£8 " 2) 
= 1 + F^_x + {5FhF^_2 - 15)/45 - 1 + P ^ . j + (^k_2 - l ) /3 

= 3 f ^ - l + Fkk-2 + 2)/3 = (£,, + 2)/3 = qk/3. 

Proof of (4.8): (s > 4) Using (1.1), Ilk, (1.2), I l h , I7, J 1 6 , and I15 , the 
right-hand side of (4.8) can be rewritten as 

(fc-l)/2 

^ = 1 
- F 

(fc- D/2 

+ F + F 
hsi-s-2 hsi-s + l hsi + s + l hsi + s 

- F + F } 
^si + s-2 hsi-s+h hsi- s + 2J 

Ls + 2^ ^i+si-s-2 Fhsi-s + 2 + hsi+s + 2 hsi + s-2' 

(fc-l)/2 (k-l)ll 

^ = 1 ^ = 1 

?2s ViJ2sk " ""2s' 

FHeW»e ~ 2> s ^ 2sk + 2s "" 2sA: - 2 s 
= Ls + 5FsF,s(L7g, - L,J/(5F2

2
s) = Ls + Fs(L2sk 

2 

LoJ/F. 2s 

= (L2g, + 2)/Ls = L^/L,. 

(4.6) follows from (4.7) and (4.8). 
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5. The F - R e p r e s e n t a t i o n of L2
nl'Fm for Ce r t a in Values of n and m 

Theorem 9: (n = 3k, m = 3) I f k i s a n a t u r a l number, then 

fV>lk/F3) = 2k - 1 (5 .1 ) 
and 

2k- 3 
^5 + F6k+ . E F3j + i+ i f & i s even (5 .2 ) 

2/< - 2 J ' = X 

?6k + E ^ 3 j - + 1 i f k i s odd. (5 .3 ) 
3 = 1 

^ / 2 = 

Proof of (5.2) (k i s e v e n ) : Using ( 1 . 1 ) , X23 » -̂ 22 » anc* -̂ 15 » t n e r i g h t - h a n d s i d e 
of (5 .2 ) can be r e w r i t t e n as 

F5 + f6 f e + ^ 6 * - 2 + FSk-5 " F 7 ~ V ^ S 
= 5 + (4* 6 k + ^ 6 , _ 2 + ^ _ 5 " 16) /14 

= ! + ^ 6 k + 3 " F6K-3 + ^ - 2 + ^ - 5 ) / 4 

= 1 + ^ 6 k + 3 + F 6 f e - 3 > / 4 

= * + ^ S / c V 4 = ! + L 6 k / 2 = ^ 6 * + 2 ) / 2 = L i / 2 -

Proof of (5.3) (k i s odd).: As b e f o r e , us ing IlQ i n s t e a d of J 1 5 , the r i g h t - h a n d 
s i d e of (5 .3 ) becomes 

F,K + ^6fc-2 + FSk-s -F^-FJ/L 

' ^Fek +Fek-2 + F6k-sy^ ~ 1 
3 

= HJ2 ~ l = ^6)1 " 2 > / 2 = £ 3 f c / 2 -

(5.1) follows from (5.2) and (5.3), regardless of the parity of k. 

Theorem 10: (n = 6k - 33 m = 6) If k is a natural number, then 
/ U & W = 3fc - 2 (5.4) 

and 
i f f c - a / 8 = F3 +ktl(F12j-M + F 12 , ' - l + F12J+3>- ( 5 - 5 ) 

J = l 

Proof of (5.5): Using I 21> (1-D» ^24 » ^22' a n d -^18' t h e right-hand side of 
(5.5) can be rewritten as 

F3 + t <.F12j-* + 3F12J.+ 1) 
J = 1 

= F3 + tfm-f " F12fc-16 + 3(^12k + 1 " ̂ i2k-ll) " 720)/320 

= (Vl2*-10 + 3F6L12k-5 " 8 ° ) / 3 2 0 = (3L12fc-5 + ^12^-10 " l0^^° 

= ^12^-1 +^12fc-ll " 1 0 ) / 4 °  = ^5L12.-6 " 1 0 ) / 4 0 

= (L6Uk-l) ~ 2 ) / 8 = L3(2fc-1)/8-
(5.4) follows. 

Note that the case (n = 2fc, 777 = 4) is nothing but the case (4.7) of Theorem 8. 
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6. Concluding Remarks 

^-representations of the sequences 

<*& 'Fs > . ^Lk 'Le > • Wh /h > > ̂  /^ > • and {Ll/Fm } 
have been investigated and their /-functions, as well as the specific summation 
expressions, have been given. The authors believe that the results presented 
in this paper are new. Many further analogous sequences could be analyzed. 
Possibly, some of the work above could be extended to simple cases of the se-
quences {F^/d} and {L*/d}, where k > 1, and d is a power of certain Fibonacci 
or Lucas numbers. The authors hope to continue their investigations in this 
area. As an example, we offer the sequences: 

(i) {*&/#} and (ii) {F^ IF*}. 

Example (i) : (s = 4) 

nrtjn~> 
and 

F2 /9 rhk / y 

^k 

F2 + 

(4fc - l)/3 if k = 1 (mod 3) 
{kk + l)/3 if k = 2 (mod 3) 
4£:/3 if k = 0 (mod 3) 

(k- l)/3 
E tf 

^ = i 
4- F + F 

F3 + F? + F9 

(fc-2)/3 
+ E (*• + p 

fe/3 

2hi-li + F 2 4 i - 1 3 + F2ki-3 + F2hi-7 

+ ^ 2 ^ + l) 

if k = 1 (mod 3), 

r24i + 7 r 2 ^ + 9; 

if £ = 2 (mod 3), 

) if k = 0 (mod 3). 

(6.1) 

(6.2) 

Example (ii) : (s = 4) It can be proved that, for s > 2, Ffji^ if and only if 
m = ksFs (k = 0, 1, . . . ) • ln this particular case, we have (cf. [4], Th. 5). 

fVwjH') = f(pi2k/v = 
3fc if k is even 

3fc - 1 if k is odd 
(6.3) 

and 

Fl2k^ = 

k/2 

.-, 2^-19 + F24t-5 ' .^/'2 4i4-2j-
^ = 1 j = 1 

(fc- D/2 

E (*2 + ^ F 2 ^ i + 2j-l7^ if /c is even 

(6.4) 

+ F7 + E (*W-7 + ̂ W + 7 + E *W + 2j-5> if * is o d d« 
j = l 

We leave the proofs of these illustrative examples to the enjoyment of the 
reader. 
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In t h i s note we consider the recurrence re la t ion 
n 

fn+l = L fkan-k + bn, n = 0, 1, 2, . . . , (1) 
k = 0 

where f = 1 and <an> and <bn> are sequences of parameters. Equation (1) is 
termed the convolved Fibonacci equation because of the occurrence on the right 
side of the convolution of the sequences <fn> and <an> . Special cases of (1) 
include the following: 

When CLQ = a\ = 1, an = 0 for n > 2, and bn = 0 for n = 0, 1, 2, . .., the fn 
are the usual Fibonacci numbers. 

When ag = d\ = ••• = ar_^ = 1, an = 0 for n > r, and bn = 0 for n = 1, 2, 
..., the /„ are rth-order Fibonacci numbers (see, e.g., [2] and [3]). 

When a0 = a.\ - 1» an = 0 for n > 2, Z?Q = 0, and 

1̂ = Z aj(n + ! ) J for n = 1, 2, 3, ..., 
J" = I 

(1) becomes the recent recurrence studied by Asveld [1]. 

We first take the generating function of (1) to obtain the generating func-
tion 

*•(*> = £ /„*" 
n = 0 

of </n > in terms of the generating functions A(z) of <an> and 5(s) of <bn> . 
Using standard results (see, e.g., [4]), we immediately get 

F(z) = ! + Zfi8i (2) 
for all s for which F(z) , A(z) , B{z) exist and 1 - zA(z) * 0. 

Two examples of (1) and their solution via (2) are now presented. The an 
and bn are integers in the first example, while they are not in the second. 

&»• 
Let an and bn be the usual Fibonacci numbers. In this case, the /„ 

are called the convolved Fibonacci numbers. Since 

A{z) = B(z) = ~ J' 
1 - z - 2Z 

it follows from (2) that 

-/2/2 /2/2 
F(z) = 1 + 

1 - (/2 - l)z 1 + (/2 + l)s 

and hence / Q = 1, 
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fn ' Y{S2 - l)n + ̂ j(/2 + 1) M, n = 1, 2, 3, ... . 

Example 2: A standard six-sided fair die has three sides painted red, two 
sides painted black, and one side painted white. A series of throws of the die 
is made. We will determine the probability fn that nowhere in the first n 
throws of the die is a throw of black followed by a throw of white. 

Let En denote the event that nowhere in the first n throws of the die is a 
throw of black followed by a throw of white, Wn be the event that a white is 
thrown on throw n, and Rn that a red is thrown on throw n. Wn will denote 
complementation, i.e., the event that a white is not thrown on throw n. We may 
thus write 

P(En) = P(En\Wn)P(Wn) + P(En\Wn)P(Wn) 

from which 

fn = 5/6 /n_! + 1/6 P(En\Wn), n = 2, 3, ..., (3) 

where f i = l . But 

P(Ek\Wk) = P(i?fe.i; Ek.z) + P(Wk.i; Ek_0 

= 1/2 fk.z + P(Ek_l\Wk_l)P(^k-l). k = 2, 3, ... . 
Hence, 

P(Ek\Wk) = 1/2 fk_2 + 1/6 P(^-ikfc-i), k = 2, 3, ..., (4) 

where f$ = l and 'P(Ei \ f/]_) = 1. Substitution of (4) into (3) for k = n yields 

/„ = 5/6 /„_! + l/6[l/2 /n_2 + 1/6 P(^n-i|J/n-i)], n = 2, 3, ..., (5) 

for which P{En_i|^„_i) may be found from (4). 
Successive substitution of P{Ek\W]<) into (3) for k = n - 1, . . . , 1 yields 

n-2 

/n = 5/6 /n_! + 1/2 £ (l/6)n-l-dfi + (l/6)n, n = 2, 3, ... . (6) 
j = o J 

Equation (6) and the initial conditions can be expressed in the form of (1) 
with 

a0 = 5/6, 

an = 1/2 (l/6)n, n = 1, 2, 3, ..., 

Z?n = 1/6 (l/6)n, n = 0, 1, 2, ... . 
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In [3, p. 52], Richard Guy gives the following problem of Schinzel: If p is 
an odd prime and n = 2 or p or 2p, then (cj)(n) + 1) \n, where <J> is Euler's 
totient function. Is this true for any other n? 

We shall show that this question is closely related to a much older problem 
due to Lehmer [4]: whether or not there exist composite n such that 
(J) (n) | (n - 1). It will turn out that if there are no such composite n, then 
Schinzel!s are the only solutions of his problem; if there are other solutions 
of Schinzel?s problem, then they have at least 15 distinct prime factors. Let 
oo(n) denote the number of distinct prime factors of n. More specifically, we 
shall prove the following. 

Theorem: Let n be a natural number and suppose (<J)(n) + l)|n. Then one of the 
following is true. 

(i) n = 2 or p or 2p, where p is an odd prime. 
(ii) n = mt, where m = 3, 4, or 6, gcd(/?7, t) = 1, and t - 1 = 2$(t) [so that 

co(t) > 14]. 
(iii) n = mt, where gcd(m5 t) = 1, <$>(m) = j > 4, and t - 1 = j<$>(t) [so that 

oo(t) > 140] . 

Proof: Since ($(ri) + 1)\n9 we have 

m(($)(n) + 1) = n (1) 

for some natural number 777. Let t = cj>(ft) + 1 and ^ = gcd(/?7, t) . Then, using 
(1) and an easy and well-known result (Apostol [1, p. 28]), 

(|>(n) = <\>(mt) = \ / ^ \ (2) 

Since d\m> we have §(d) \$(m) s o that $(m)/$(d) is an integer. Then, from (2), 
d\$(n); but, by definition, d\($(n) + 1). Hence d = 1. Thus, we have n = mt, 
where 

t = <()(n) + 1 = M/??t) + 1 = <j>(m)<K£) + 1. 
We cannot have t = 1. Also, £ is prime if and only if §(m) = 1. In this 

case, m = 1 or 2, and we have Schinzel?s solutions, in (i). 
Suppose now that t is composite. If (j) (777) = 2, then 77? = 3, 4, or 6 and 

£..- 1 = 2 <(>(£). Cohen and Hagis [2] showed in this case that oo(t) > 14. These 
are the solutions in. (ii) . It is impossible to have $ (m) = 3, so the only 
remaining possibility is that (j) (777) > 4, so t - 1 = J(f>(£), saY> with J > 4. For 
this equation to hold, Lehmer [4] pointed out that t must be odd and 
squarefree, and Lieuwens [5] showed that co(t) > 212 if 3\t. (This latter re-
mark applies also to the solution n = kt in (ii) . ] Suppose 2> \ t, and write 
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t = n p i 5 5 < pT < p 2 < . . . < p u , 

i = 1 

where p1 , p^, •••> P a r e primes. Then p2 > 7, p3 > 11, ... . If u < 139, 

/ . • * - 1 * £ Pj 5 7 11 811 . 
A < 7 = < = [I fe < — — . . . < A 
" *(*) *(*) i-i p. - 1 ~ 4 6 10 810 

(There are 139 primes from 5 to 811, inclusive.) This contradiction shows that 
u = u)(£) ̂  140 in this case, giving (iii) and completing the proof. 

Using the above and results of Pomerance [6, esp. the Remark] and [7], it 
is not difficult to show that the number of natural numbers n such that n < x, 
(<$>(n) + 1) \n and n is not a prime or twice a prime, is 

0(xl/2 (log x ) 3 4 (log log x)_5/6) . 
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Let t be a nonzero integer and S be a set of three or more integers. We 
will say that S is a Pt-set if, for any two distinct elements x and y of S9 the 
integer xy + t is a perfect square. A Pt-set S will be termed extendible if, 
for some integer d, d £ S, the set S U {d} is a Pt-set. 

The purpose of this paper is to characterize certain families of P^-sets, 
and to show that some of these are not extendible. In particular, the result 
of Thamotherampillai [1], that the P^-set {1, 2, 7 } is not extendible, will be 
obtained as an easy corollary. 

To simplify the exposition, throughout this paper statements of congruences 
are to be interpreted modulo 4; i.e., x E y will mean x = y (mod 4). 

Lemma: If S is a Pt-set and a, b, c £ 5 , then none of the numbers 

a(c - b), b(o - a), c(b - a) 
is congruent to 2, modulo 4. 

Proof: By the definition of P^-sets, we have 

ab + t = x2, ac + t = y2, be + t = z2 

for some integers x5 y, and z. Upon eliminating t among the equations above, 
the result follows from the fact that perfect squares are congruent to 0 or 1, 
modulo 4. 

Theorem 1: If all of the elements of a Pt -set are odd, then they are congruent 
to one another, modulo 4. 

Proof: Let S be a Pt-set, and a, b, c e 5. Observe that, if a E b E 1 and e E 
3, then a(c -2?) E 2; while if a = 1 and 2? E c E 3, then b(o -a) =2. Both of 
these conclusions are impossible in view of the Lemma; hence, either a = b = c 
E 1 or a E b E c E 3. 

Theorem 2: If only one of the elements of a Pt-set is odd, then all of the 
others are congruent to 05 modulo 4. 

Proof: Let S be a Pt-set, and as b, a E S. Observe that, if a E 1, b = 2, and 
c E 0 o r i f a E 3 5 Z ? E 2 , C E 0 5 then a(c - b) E 2; while if a E 1 and Z? E C E 
2 or if a E 3 and Z? = c = 2, then c(b -a) = 2. Both of these conclusions are 
impossible in view of the Lemma; hence, if a = 1 or 3, then b E C E 0. 

Theorem 3: Pt-sets of the form {4A: + 1 , 4w + 2S 4?2 + 3} are not extendible. 
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Proof: Assume that {4k + 1, km + 2, kn + 3, d} is a Pt-set. If d is odd, then 
{kk + 1, kn + 3, d} is a Pt-set all of whose elements are odd. However, 4fc + 1 
t kn + 33 contrary to Theorem 1. If d is even, then {kk + 1, 4??? + 2 , J} is a 
Pt-set with only one odd element, 4/c + 1. But 4 w + 2 ^ 0, contrary to Theorem 
2. Consequently, such d cannot exist. 

Corollary: The P2»set {1, 2, 7} is not extendible. 

At this point, the authors wish to express their appreciation to Bud Brown, 
who sent them a copy of [2] upon reading [3], and hence called their attention 
to [1]. It may also be noted that Thamotherampillai's proof of the corollary 
is much more complicated, and its method does not allow for generalizations. 

In conclusion, we provide a table of examples which shows that all of the 
cases not disallowed by Theorems 1 and 2 are indeed possible. In the "congru-
ence type11 column, the members of S are reduced modulo 4 to allow for a quick 
review; thus, for example, the P97-set {3, 8, 24} is type [3,0,0] since 3 E 3 
and 8 E 24 E 0. In this terminology, Pt-sets of types [1,1,3] and [1,3,3] do 
not exist in view of Theorem 1, Pt-sets of types [1,2,2], [1,2,0], [3,2,2], and 
[3,2,0] do not exist in view of Theorem 2; and Pt-sets of type [1,2,3] are not 
extendible in view of Theorem 3. 

Table of Examples 

Congruence type 
[2,2,2] 
[1,1,0] 
[1,1,2] 
[1,3,0] 

j [1,3,2] 
[3,3,0] 

1 [3,3,2] 

S 
{2,10,22} 
{1,9,20} 
{1,5,10} 
{1,7,16} 
{1,79,98} 
{3,27,60} 

{3,7,2} 

t 
5 
16 
-1 
9 
2 

144 
-5 

Congruence type 
[1,1,1] 
[3,3,3] 
[1,0,0] 
[3,0,0] 
[0,0,0] 
[2,0,0] 
[2,2,0] 

S 
{1,5,33} 
{7,11,23} 
{5,8,16} 
{3,8,24} 
{4,12,32} 

{2,12,420} 
{2,6,16} 

t 
31 
323 
41 
97 
16 
1 
4 
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