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EUCLIDTS ALGORITHM AND LAME'S THEOREM 

ON A MICROCOMPUTER 

Thomas E. Moore 
Bridgewater State College, Bridgewater, MA 02324 

(Submitted July 1987) 

To the memory of my friend and colleague Hugo D'Alarcao. 

1. Introduction 

We denote the greatest common divisor of two nonzero integers m and n by 
gcd(/?7, ri) . Since it is true that gcd(m, ri) = gcd(±w, ±n), and since gcd(m, ri) 
= gcd(?2, rri) , we may assume that both 77? and n are positive and m < n. 

The Euclidean algorithm for computing gcd(m, n) is a familiar process of 
iterated long division which can be written as follows: 

n - mql +^i; 0 < r, < m, 

m = ^2<7 2
 + rz> ® < ̂ 2 < rl5 

rl 7 p2<?3 + P 3 ' °  < P3 < r2> 

rk_2 = rk_iqk + rk; 0 < rk < rk_l9 

rk-l = Tk%+1 + r ^ l ' pfe+l = °-
The process halts when a remainder 0 is obtained and then gcd(m, n) is the 

divisor r^ in the last step of division. 
A theorem of Gabriel Lame (1795-1870) asserts that the number of divisions 

required to find gcdO, ri) by Euclidfs algorithm is no more than five times the 
number of digits (base 10) in the smaller of m and n. For proofs see [1] and 
[2]. 

Our idea is to keep a count of the number of divisions required to produce 
gcd(m, ri) by Euclid's algorithm, for a range of values of m and n, and to study 
the distribution of these numbers. 

2. Implementation 

The actual computations were accomplished using a BASIC program (written 
for the APPLE II computers but easily modified for other equipment). The pro-
gram is listed in Figure 1., 

In this program, the variable DC represents a division count, that is, the 
number of steps of division in using Euclid's algorithm to obtain gcd(m, ri) . 

The program actually calculates both gcd(m, n) and gcd(n, m) within the 
nested loops of lines 140-230 and, while the second computation is redundant, 
we have chosen to allow it because it gives us a program that should be easier 
to follow than otherwise. The program is also fairly slow to execute, and a 
compiled version of it is preferred. 
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100 REM DYNAMIC VIEW OF LAME'S THM 
110 PRINT "PLOT WHAT DIV. COUNT " 

: INPUT CH 
: REM USER CHOICE 

120 HGR2 
130 H = 140 

: V = 95 
140 FOR M = 1 TO H 
150 FOR N = 1 TO V 
160 DC = 0 
170 IF M > N THEN DC = - 1 
180 GOSUB 240 
190 IF DC < > CH THEN 220 
200 HCOLOR= 3 
210 HPLOT M + H,V - N 

: HPLOT M + H,V + N 
: HPLOT H - M,V + N 
:: HPLOT H - M,V - N 

220 NEXT N 
230 NEXT M 
240 REM SUBROUTINE FOR GCD VIA EUCLID 
250 Ml = M 
260 Nl = N 
270 R = Nl - Ml * INT (Nl / Ml) 
280 DC = DC + 1 
290 Nl = Ml 
300 Ml = R 
310 IF R > 0 THEN 270 
320 RETURN 
330 END 

FIGURE 1 
The graphics display capability of the computer with a monitor suggested 

that we interpret each pair of integers m and n as a lattice point (m, n) in 
the plane and that we plot or do not plot this point on the monitor screen 
according to the value DC obtained in finding gcd(ms n) . Thus, the program 
asks the user to declare the value of DC in which he is interested. 

From the observation that the values of gcd(±tf75 ±n) are all equal, we note 
that a fourfold symmetry can be achieved if the display includes all four quad-
rants. Hence, the origin (0, 0) is translated to screen coordinates (140, 95) 
and all subsequently lit points are, similarly, translates of the actual 
(±m, ±ri) . 

The screen images resulting from four different choices of division counts 
are shown in Figure 2. In each case, the range of positive integers for which 
gcd(m, ri) is computed and a division count kept is 1 < 777 <140, l<n<95. (These 
bounds were determined by the graphics page of memory HGR2 in the APPLE II and 
by the decision to display four quadrants.) 

Figure 2 not only illustrates the expected symmetry but also shows patterns 
of distribution that invite further investigation. 
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FIGURE 2 

Screen dumps showing integer pairs (m, n) in the range —140 < 77? < 140, -95 < n < 95 
whose gcd has been obtained by Euclid's algorithm in the same number of steps 

3. Analysis 

Consider the displays in Figure 2 and the striking fact that the plotted 
points arrange themselves along various lines. For example, in Figure 2(a) 
these are the lines in the x-y plane with the equations y = kx and y = (l/k)x, 
for integers k: k * 0. 

Indeed, if gcd(7??, n) is found in one step, then m divides n (recall m < n) 
and, if n = mq, then the point (m, ri) is on y = qx« Since x = (l/q)y9 then (n, 
777) is on y = (l/q)x. 

Again in Figure 2(a), scanning it in the direction of increasing x, we can 
observe vertical segments at ^-values that are multiples of 6 and still longer 
segments at multiples of 12. For example, at x = 60 (see Fig. 3), we note that 
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the plot ted points are (60, ±k) for k = 1, 2, . . . , 6, and c lear ly gcd(60, ±k) 
i s accomplished in one step by Eucl id 's algorithm. We point out here that 60 = 
lcm(l, 2, . . . , 6) and that s imilar v e r t i c a l segments w i l l occur at a l l x such 
that x = lcm(l, 25 . . . ,777). 

\ 1 .• 
1 -•• I -•" • 

ma 
FIGURE 3 

Still in Figure 2(a), there is also an X-shape of plotted 
locations where x is a multiple of 6. The arms of the X-shape 
Fig. 3), for example, are just the pairs (60 ± k, ±k), for k = 1 
whose greatest common divisor is obtained in one step. 

In Figure 2(b), if we scan along the line y = x in the first 
we can observe +-shapes centered on this line at ̂ -values that 
multiples of 6. For example, locating (60, 60) as the unplotted 
of one such shape (see Fig. 4), we find that this shape is the 
points (60, 60 ± k) and (60 ± k, 60), for k = 1, 2, ..., 6. 
corresponding gcd(/??, n) obtained in two steps by Euclid's 
follows: 

60 + k = (60) (1) + k; 0 < k < 60, 

60 = (k)(60/k) + 0 

or 60 = (60 - fc)(l) + k; 0 < k < 60 - k9 

60 - k = (fc)((60 - k)/k) + 0. 

points at the 
at x = 60 (see 
, 2, . . . , 6, 

quadrant, then 
are once more 
(white) center 
collection of 
Each pair has 
algorithm, as 

FIGURE 4 

Another strongly recurring visual element in Figure 2(b) are blocks of four 
consecutively plotted horizontal or vertical points. In quadrant one, these 
occur at the points (12a + ks 12) and (12, 12a + k) for a > .1, k = 1, 2, 3, L 
For these integer pairs, Euclid's algorithm is done in two steps as follows: 
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12a + k = (12) (a) + k; 0 < k < 12, 

12 = (k)(12/k) + 0. 

There are other discernible patterns in these figures, such as in Figure 
2(c) where a pattern of mostly white lines parallel to the axes defines an 
irregular grid. What is behind it? What is the rule for spacing between 
successive lines? The interested reader may pursue this line of questioning. 

4. Cyclic Behavior 

In another direction, we study the distribution of the values DC for fixed 
m > 1 and n > m. 

Example 1: m = 4. 

n 4 5 6 7 8 9 10 11 12 13 14 15 .. . 

DC 1 2 2 3 1 2 2 3 1 2 2 3 . . . 

That is, the values of DC for consecutive n > 4 form the cycle (1223) of 
length 4. 

Example 2: m = 5, 6, 7. 

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . . 

(TT? = 5 ) DC 1 2 3 4 3 1 2 3 4 3 1 2 3 4 3 1 . . . 
(TW = 6) DC 1 2 2 2 3 3 1 2 2 2 3 3 1 2 2 . . . 
(m = 7) DC 1 2 3 3 4 4 3 1 2 3 3 4 4 3 . . . 

In each c a s e , t he v a l u e s DC form a cyc l e of l e n g t h m. In f a c t , we f ind 
t h i s i s easy to prove g e n e r a l l y . 

Theorem: For f ixed m > 1 and i n t e g e r s n > m, l e t DC be the number of s t e p s r e -
qu i r ed to f ind gcd(/??, n) by E u c l i d ' s a l g o r i t h m . Then the s u c c e s s i v e v a l u e s of 
DC form a cyc le of l e n g t h m. 

Proof: Let r be f i x e d , 0 < v < m. I t i s s u f f i c i e n t to prove t h a t the v a l u e s DC 
a r e t he same for the computa t ions of gcd(m, m + r) and gcd(/7?, km + r) fo r a l l 
i n t e g e r s k > I. This fo l lows a t once from the i n i t i a l d i v i s i o n i n each 
computa t ion . The former beg ins 

m + r = (m) (1) + v 

and the latter begins 

km + r = (jn) (k) + r. 

Thus, in each case, the second step of division and all succeeding steps are 
correspondingly equal. 

Corollary: If gcd(m, n) is accomplished in s steps by Euclid's algorithm, then 
gcd(m, n + km) is accomplished in s steps for all integers fe > 1. 

Example 3: It is well known that gcd(89, 144) takes 10 steps of division, the 
maximum predicted by Lame's theorem. It follows that infinitely many integers 
can be paired to 89 in this way, namely, the integers 144 + 89k, and each gcd 
computation takes 10 steps,. 
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5. Queries and Conclusion 

The cycles for all m > 3 necessarily have the form (12... 3), with the re-
maining DC values of the cycle showing considerable variety. We ask for a rule 
in terms of m and the position of a value within the cycle that will deliver 
this value. We have also observed that DC values can be consecutively repeated 
within a cycle. Is there a rule governing this? Specifically, for a given 
value DC and any positive integer k5 is there a cycle such that DC is repeated 
consecutively k times? 

The microcomputer has been used to gain insight into both the Euclidean 
algorithm and Lame's theorem. More can be gained, and some directions to 
pursue have been given. 
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I . I n t r o d u c t i o n 

In this paper we consider the generating function 

G(x)~k = 1/(1 - a^x - a2x2 - ... - amxm)k (where m > 2 and k > 1) 

as a formal power series. Note that we can write the expression as 

G{x)~k = Fm>k{0) + Fmak(l)x + Fmsk(2)xz + . . . + Fm%kW)xn + . . . (1) 
( fo r n > 0, and where Fm^k{0) = 1 ) . 

However, before considering equation (1), we shall develop certain identities 
by the use of partitions. Let p(n) denote the number of partitions of n; that 
is, the number of solutions of the equation 

x-^ + 2x2 + 3x3 + • • • + nxn = n 
in nonnegative integers. We state the following identity established in [1]: 

p(n) = ~ L p(i)e(j ~ i)p(n - j) (2) 
0 < i < m 

(e(k) = (~l)k if k = (1/2)(3h2 ± h), where h is an integer, wne re < e(k) = 0 otherwise, 

and p(0) = 1. 
The proof of (2) will be evident as a special case of a more general form 

to be given later. Let 

g(x) = J3 cc(n)xn (2a) 
n = 0 

and 

g(x)~l = E b(n)xn (2b) 

n = 0 

where, for convenience, a(0) = b(0) = 1. Then it can be shown that 
t,aU)b(ri - j) = 0 (for n > 0). (3) 

j = o 
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For t he sums 

S = E a(i)b(j - i)a(n - j) and T = £ a(i)b(j - i)a(n - j) 
0 < i < m 0 < i < j <m 
m < j < n 

where 0 < m < n , us ing (3) above, i t can be shown t h a t 

j = o i = o 
Fur the rmore , 

(4 ) 

S + ^ = 22 L a(i)bU - i)a(n - j) = Y, o,{i) E b(s)a(n - i - s) . 
0<i<mi<j<n 0 < i < m s=0 

Note also that the inner sum on the extreme right vanishes unless n - 1 = 0, 
because m < n. Hence, we have S + T = 0. 

Combining this with (4), we get S = -a(n), or, explicitly, 

S = S a(^)M<7 ~ i)a(n - j) = -a(n) (0 < m < n) . (5) 
0 < i < m 
m < j < n 

Since we may equally well have started out with g(x)-1, rather than g(x), we 
also have 

S = YJ b(i)aU - i)b(n - j) = -bin) (0 < m < n) . 
o < i < m 
m < j < n 

II . Some Relations Involving Fibonacci and Tribonacci Numbers 

R e f e r r i n g to ( 1 ) , we f i r s t examine what happens when k = 1 and the cij = 1, 
for i < j < m, where m > 2. For conven ience , we l e t Fm> ]_(ft) = F (n), where m > 
2 and n > 0 . no t e t h a t Fm (0) = 1, F<i(ri) deno tes t he nth F ibonacc i numbers, 
F^{n) deno tes t he nth T r i b o n a c c i numbers, e t c . L e t t i n g n = 2Z, for Z > 1 and 
Z > 77?, we have 

Fm(2Z) = Fm(2Z - 1) + Fm(2Z - 2) + Fm(2Z - 3) + . . . + Fm (2Z - m) . (6) 

Combining (6) with the results of (4) and (5) for the coefficients, we have the 
following table of values that are used to determine Fm (2Z). 

TABLE 1 

a 

z 

Z+1 

Z+2 

Z+m-1 

b 

Fm® 

Fm<Z"1) 

yz-2> 

Fm(Z-m+1) 

1 

Fm(Z-D 

2 

Fm(Z-2) 

Fm(Z"1) 

3 

Fm(Z-3) 

F m ( Z ' 2 ) 

m 

yz-1) 

m 

Fm(Z^) ' 

Fm(Z-m+1) 

Fm(Z-m+2) 

Fm(Z-m+(m-1)) 

Multiplying the elements in column 2 by the sum of the corresponding elements 
in each row, we have: 
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Fm{2Z) = Fm(Z)(Fm(Z - 1) + Fm(Z - 2) + Fm(Z - 3) + . . . + Fm(Z - m)) 

+ Fm(Z - l)(Fm(Z - 1) + Fm(Z - 2) + . . . + Fm(Z - m + 1)) 

+ ^ (Z - 2) (FOT (Z - 1) 4- Fm (Z - 2) + . . . + Fw (Z - 77Z + 2) 

+ FOT(Z - 77z + l)(Fm(Z - m + (m - 1 ) ) ) . (7) 

When 777 = 2, we get the Fibonacci numbers, and (7) becomes 

F2(2Z) = F2(Z)(F2(Z - 1) + F2(Z - 2)) + F2(Z - 1)(F2(Z - 1)), (8) 
or 

i 2̂(2Z) = (F2(Z))Z + (F2(Z - l))2, for Z > 1. (9) 

When 77? = 3, we get the Tribonacci numbers, and (7) becomes 

F3(2Z) = F3(Z)(F3(Z - 1) + F3(Z - 2) + F3(Z - 3)) 

+ F3(Z - l)(F3(Z - 1) + F3(Z - 2)) 

+ F3(Z - 2)(F3(Z - 1)), (10) 
so that 

F3(2Z) = (F3(Z))2+ (F3(Z - l))2 + 2F3(Z - l)F3(Z - 2), for Z > 1. (11) 

Continuing the process of (8)—(11), with m = 2a, we have: 

F2a(2Z) = (F2a(Z))2 + (F2a(Z - l))2 + ... + (F2a(Z - a))2 

+ 2F2a(Z - l)(F2a(Z - 2)+F2a(Z - 3) + ••• + F2a(Z - (2a - 1 ) ) ) 

+ 2F2a(Z - 2)(F2a(Z - 3) + F2a(Z - 4) + ••• +F2a(Z - (2a - 2 ) ) ) 

+ 2FZa(Z - (a - l))(F2a(Z - a ) + F2a(Z - (2a - (a - 1 ) ) ) ) , (12) 

a > 1 and Z > 1. 
Furthermore, 

F2a(0) = 1, F2a(l) = 1, F2a(2) = 2, ..., F2a(2a) = 2Za~l. 

Continuing the process for m = 2a + 1, we have: 

F2a+1(2Z) = (F2a+1(Z))2 + (F2a+1(Z - l))2 + ... + (F2a+l(Z - a))2 

+ 2F2a+l(Z - l)(F2a+l(Z - 2) + F2a+1(Z - 3) + . . . + F2a+l(Z - 2a)) 

+ 2F2a+1(Z - 2)(F2a+l(Z - 3) + F2a+l(Z - 4) + • • . 

+ ^2a+l (Z - (2a - 1 ) ) ) 

+ 2F2a+1(Z - (a - l))(F2a+1(Z - a) + F2a+l(Z - (a + 1)) 

+ F2a+1(Z - (a + 2))) 

+ 2F2a+1(Z - a)(F2a+1(Z - (a + 1))), (13) 

for a > 1, Z > 1. Here, 

F2a+1(0) - 1, F2a+l(l) = 1, F2a+1(2) = 2, F2a+1(3) = 4, ..., 
a n d ^2a+l(2a + 1) = 22a. 

For n = 2Z + 1, we also consider F2a(2Z + 1) and -F2a+l(2Z + D> where Z > a 
and Z > 1. In the exact way we obtained (12) and (13) but with added induction, 
we now get 
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F2a{2Z + 1) = (F2a(Z + l ) ) 2 - (F2a(Z - a ) ) 2 - {F2a (Z - (a + l ) ) ) 2 - • • • 

- (F 2 a (Z - (2a - l ) ) ) 2 

- [2F 2 a (Z - (2a - l ) ) ( F 2 a ( Z - 1) + FZa(Z - 2) + F2 (Z - 3) + ••• 

+ F 2 a ( Z - (2a - 2 ) ) ) ] 
- [2F 2 a (Z - (2a - 2))(F2a(Z - 2) + F2a (Z - 3) + • . • 

+ F 2 a ( Z - (2a - 3 ) ) ) ] 

- [2F2a(Z - (a + 2)){F2a(Z - (a - 2)) + F2a(Z - (a - 1)) 

+ F 2 a ( Z - a) + F2a(Z - (a + 1 ) ) ) ] 
- [ 2 F 2 a ( Z - ( a + l ) ) ( F 2 a ( Z - (a - 1)) + F 2 a ( Z - a ) ) ] (14) 

and 

F 2 a + 1 ( 2 Z + 1) = ( F 2 a + 1 ( Z + l ) ) 2 - ( F 2 a + 1 ( Z - (a + l ) ) ) 2 - • • • 

" ( ^ 2 a + l ( Z - 2 a ) ) 2 

- [ 2 F 2 a + 1 ( Z - 2 a ) ( F 2 a + 1 ( 2 - 1) + F2a+1(Z - 2) + F 2 a + 1 ( Z - 3) + 

••• + ^2a+l (Z - (a - 1 ) ) ) ] 
- [ 2 F 2 a + 1 ( Z - (2a - D)(F2a+1(Z - 2) + F2a+1(Z - 3) + ••• 

+ ^2a+l (Z - (2a - 2 ) ) ) ] 

- [2F2a+1(Z - (a + 2))(F2a+1(Z - (a - 1)) + F2a+1(Z - a) 

+ ?2a+i(Z - (a + 1)))] 

- [2F2a+1(Z - (a + l))(F2a+1(Z - a))]. (15) 

In closing this section, we note that for k = 1, we can combine the coef-
ficients in (1) to obtain 

m 

Fm(n) = L S"^(n " ^' (16) 

j = i 

Hence, we can solve for Fm{ri) in terms of the CLj, where the a^ are arbitrary 
numbers, that is 

Fm(0) = 1, Fm{l) = al9 Fm{2) = (a^2 + a , etc., where m > 1. 

It might also be noted here that all the numbers, the Fibonacci, Tribonacci, 
Quadranacci, ..., and Hoganacci numbers, are, respectively, the sums and 
differences of Fibonacci, Tribonacci, Quadranacci, ..., and Hoganacci squares. 

III. A Congruence for F m k ( n) and Related Identities 

We now return to (1) and consider the function G(x)~k . Let 

y = G(x). (17) 
Since 

l/y = 1 + (1 - y)/y, (18) 

we see that 

1/z/ = 1 + {aYxly) + (a2x2/y) + ... + (amxm/y) . (19) 
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M u l t i p l y i n g (19) by l/yk, we have 

l/yk+l = l/yk + (alx/yk + l) + (a2x /yk + 1) + . . . + (amxm/yk+l) . (20) 

Combining the c o e f f i c i e n t s i n (20) l e a d s t o 

m 
Fm,k+l(n) = i: (ajFm,k+1(n - j)) + Fm k(n), ( n > l ) . (21) 

J' = i 

Substitution of (17) into (1) yields 

Uyk = E Fm k(n)x\ (22) 

n = 0 

which, after differentiation and multiplying through by x, gives 

-kx(y-k~1dy/dx) = f nFm fc(^)xn. (23) 
n = 1 ' 

Now, using the values of y in (18) and (1) and combining the coefficients of 
both sides of (23), we have 

m 

J = l 

We observe that (24) is a special case of (12) and (13). Hence, we get the 
following congruence: 

Fm,k^ E °  (mod k/(n> k^> f o r n ~ k' ^25) 
Multiplying both sides of the equation in (21) by n, we have nFm ̂  (n) in both 
(21) and (24). Hence, combining (21) with (24) leads to 

m 
nFm,k+i(n) = L Ukczj + na.j)Fm> k + 1(n - j) . (26) 

j = i 

Replacing /c with k - 1, we get 

m 
nFm k (n^ = 5] (c/(fe " U^j + naj)Fm k (n - j), (27) 

j = i 

where n, k > 1 and m > 2, 

IV. A Table of Fibonacci Extensions 

We now use equation (21) to make a table of Fibonacci extensions (see [5]) 
where, for convenience, we let m = 2. Of course, we could have considered any 
other value for m, where m > 3. 

In Table 2, below, we consider the values of F^ k(n), where the a- = 1 and 
F2,k(0) = 1. 

Table 2 was constructed by using the following rule: 

To get the kth element in the nth column, add the kth element in the (n - l)st 

column and the kth element in the (n - 2)nd column together with the (k -
l)s t element in the nth column. Note that the second row is the Fibonacci 
numbers. 

When m = 3, we obtain the Tribonacci numbers. To get the Tribonacci extensions 
we merely proceed as in Table 2, except that we have one more term, that is, 
our rule is: 
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To ge t the kth element i n the t̂h column of the Tribonacci extensions, we 
add the kth element in the {n - l)st column, the kth element in the (n - 2)n d 

column and the kth element in the (n - 3)rd column together with the (k - l)st 

element in the nth column. 

We can construct a table for any m > 4 in the same way we found the table for m 
= 3 but with added induction. 

TABLE 2 

0 

1 

2 

3 

k 

0 

0 

1 

1 

1 

1 

1 

0 

1 

2 

3 

k 

2 

0 

2 

5 

9 

3 

0 

3 

10 

22 

4 

0 

5 

20 

51 

5 

0 

8 

38 

111 

6 

0 

13 ... 

71 

233 ... 

In order to construct Table 2 for the kth powers, one might think we need 
to construct k lines, which is a great deal of work. However, this is really 
not necessary, since by equation (27) it is evident we need only find the num-
bers in line k. 

The following is a table of the generalized Fibonacci numbers. For con-
venience, we have replaced a-, with a and a2 with b9 where a and b are arbitrary 
numbers. 

TABLE 3 

Values of F2i ^ (n , a , b) 

0 

1 

2 

3 

k 

1 

0 0 

1 a 

1 2a 

1 3a 

1 ka 

2 

0 

a2 + b 

3a2 + 2b 

6a2 + 2b 

3 

0 

a3 + 2ab 

4a3+6ab 

!0a3+12ab 

4 

0 

a4+3a2b + b2 

5a4 + 12a2b + 3b2 

15a4+30a2b + 6b2 

Table 3 was constructed using the rule: 

To get the kth element in the nth column, we add the product of a multiplied 
by the kth element in the (n - l)st column and the product of b multiplied by 
the kth element in the (n - 2)nd column together with the (k - l)st element in 
the nth column. 
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To obtain the table for m = 3 that gives us the generalized Tribonacci numbers, 
we use the rule: 

To get the kth element in the nth column, we add the product of a\ multiplied 
by the kth element in the (n - l)st column to the product of a^ multiplied by 
the kth element in the (n - 2)nd column and we add those two products to-
gether with the third product of a$ multiplied by the kth element in the 
(n - 3) r d column. We then add the sum of the three products together with 
the (k - l)st element in the nth column. 

To obtain the table for m > 4, we do exactly as we did for m = 3 but with added 
induction. 

We conclude this paper by noting that in exactly the way we found Table 2 
(with the ctj = 1) we may also construct Table 3 with the aj equal to arbitrary 
numbers. 

Using step-by-step induction, it is easy to show that, by equation (27), we 
can find any element on line k using only the numbers found on line k and a^ . 
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1. Introduction 

In [1] and [2] we studied difference equations of the form 

Gn = Gn_! + Gn_2 + p(re) (1) 

where GQ = £]_ = 1 and p (n) is either a (ordinary or power) polynomial [1] or a 
factorial polynomial [2], i„e.3 

k 
E aini 

'. = 0 
or pin) •• 

k 
= E c ^ > 

i = 0 
p(n) = 22 ainZ o r pin) = E GLin{z), (2) 

i = 0 

respectively, where 

n{i) = n(n - 1) (ji - 2) ... {n - i + 1) for i > 1 and n(0) = 1. 

The main results established in [1] and [2] provide expressions for the 
solution of (1) in terms of the coefficients 04, ..., ak of (2) and in the 
Fibonacci numbers Fn , i.e., in the solution of the homogeneous difference 
equation 

Fn = ?„_! + Fn_2, (3) 

where ^ 0 = ^ 1 = 1; cf. also [5]. 
In this note we derive similar expressions for the family of differential 

equations corresponding to (1) and (2), viz. we consider differential equations 
of the form 

x"(t) + x'(t) - x(t) = p(t), (4) 

where x(Q) = c, x'(0) = d, 

k k 
p(£) = E aitz o r pW = E \^ 

i = 0 i = 0 

tf) 

and we express the solution of (4) in terms of the coefficients 04, ..., ak and 
in the solution of the homogeneous differential equation corresponding to (3), 
i.e., the solution of 

z/"(t) + yr(t) - y(t) = 0 (5) 

where z/(0) = y!(0) = 1. 
Essential in our approach is the following proposition in which p(£) now 

need not be a (factorial) polynomial at all; it may be an arbitrary function 
which, however, gives rise to a particular solution xp(t) of (4). 

Let F_l = 0 and F_n = (~l)nFn_2 for each n > 2. 

1989] 303 



FIBONACCI-LIKE DIFFERENTIAL EQUATIONS WITH A POLYNOMIAL NONHOMOGENEOUS PART 

Proposition 1.1: Let xpit) be a p a r t i c u l a r s o l u t i o n of ( 4 ) . I f x(0) = c and 
x!(0) = d, then the s o l u t i o n of (4) can be expressed as 

x(t) = (c - xp(0))( E F-n^)+ (d - x ^ ( 0 ) ) ( t F-n-lf^) + xp(t). (6) 

Proof: Using standard methods (cf. e.g., [3]), we first determine the solution 
xh(t) of the homogeneous equation corresponding to (4). To this end, we solve 
(5) with 2/(0) = yr(0) = 1: 

yit) = -(1 + c|)2)(/5)-1 expC-cj)^) + (1 + $i)(/5)~l exp(-<j>2£), 

where ^ = |(1 + /E) and 02 = i(l - ^5). Then we obtain 

\ n = o n! / \ «= o ^ i 

\ L) r xn-2 A.n-2\v - TT J? v 
y sz±z (<bn-2 - (bn-2)— = Y F Li — 
s=0 VD n- n=0 n ' 

since (1 + $2)0f = ^ anc^ ^ + ^iHt = "̂ Notice that 

n = 0 ^ °  n = 0 Ai' 

Now it is straightforward to show that for the solution x(t) of (4) we have 

oo(t) = xh(t) + xp(t) = (c - xp(0))yr(t) + (d - x^iO))y"it) + xp(t), 

which yields together with (7) the desired equality (6). D 

From Proposition 1.1 it is clear that we now need a particular solution of 
(4). As in [1] and [2] we distinguish two cases, viz. pit) is a polynomial 
(Section 2) and pit) is a factorial polynomial (Section 3). 

2. Polynomials 

Throughout this section, we assume that pit) is an ordinary or power poly-
nomial 

k 

pit) = E ^ t \ 
i = 0 

As a particular solution of (4) we try 

k 
xpit) = E ^ t \ 

i =0 

For p(t) and xpit), we write 

Pit) = E h 77 and xp(t) = tziJT' 

respectively, where 3̂  = i> I ô  and Bi = HA . for each i (0 < i < k) . Hence, (4) 
yields 

A: - 2 +i, k-1 A.i k <i k +i 

E Bi + 2 7T + £ 5i + l 77 ~ E 5t 7T = E ^ 77-
i = 0 ^ • i = 0 " " " 
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From a comparison of the coefficients of t i / i \ , i t follows that 

Dk Pfe» 

Bi = -B-. + Bi + 2 + Bi + 1, for 0 < i < fc - 2 . 
Thus, we can successively compute 5fc, 

Therefore, we write of 
?k-l ' ' ^0' is a linear combination 

, p k. 

~E a 
j = i 

^J MJ 

(cf. [1] and [2]), which gives 

" E o-u 
j = ̂  

k k 
li ~ . ? ^ + 2, A ~ E ai + l,^j' 

j = i + 2 j = £ + 1 

Comparing the coefficients of $j yields the following difference equation for 
each j (1 < j < k)i 

aid = ai + 2,ti + ai + i,j> f o r 3 - i * 2, 

_^ • = 1. But this me 

Fj_i9 for 0 < i < j , 

^here a;; = a.-_-, • = 1. But this means that 
d d J 1 , J 

and hence 

.(*) = E Si I T = ~E E / j - i J l «j 77 = - E «j( E jU-^Fo-it 
^=0 <" ^ = o j = ̂  <" j =0 \ i = 0 

which implies 

x (0) = 50 = -EMa,- and x'(0) 
j=o 

E J ^ -
J = i 

J - I C 

These equalities together with Proposition 1.1 yield the following propo-
sition. 

TABLE 1 

j 

0 

1 

2 

3 

[4 
5 

6 

7 

J 8 

9 

Pjit) 

1 

t + 1 1 
£2 + 2t + 4 | 

£ 3 + 3 t 2 + 12t + 18 ! 

t 4 + 4t 3 + 24t2 + 72£ + 120 ! 

t s + 5t4 + 40t3 + 180t2 + 600t + 9 6 0 

t 6 + 6 t s + 6Ot4+36Ot3+180O£2 + 5760t +9360 

t 7 + 7t6 + 84t s + 630t4 + 4200t3 + 20160t2 + 65520t + 105840 

t 8 + 8£7+ 112t 6 + 1008ts + 840Ot4 + 53760£3 + 262080t2+846720£ + 
+ 1370880 

£9 + 9 t 8 + 144t7 + 1512£6+ 15120£s+ 12Q960t4 + 786240£3+ 3810240t2+ ' 
+ 12337920* + 19958400 ' 
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Proposition 2.1: The s o l u t i o n of (4) wi th x(0) = c, x! (0) = d, and 

k 

i = 0 

can be expressed as 

x(t) = (o +Lfc)(f;^-n | T ) + W + Ak)(t^-n-l | T ) " E a^Pj(*). 
\w = 0 "•/ \n = 0 n° f j = 0 

where L̂ , and £fe are linear combinations of a0s . ••> ak, and for each j (0 < j < 
^) 5 p7- (£) is a polynomial of degree j: 

J = 0 j = 1 i = 0 

The polynomials p.(£) are given in Table 1 above for j = 0, 1, 2, . .., 9. 

The coefficients of OLJ in Z<fc and ik are independent of k ; cf. [1] and [2]. 
They give rise to two infinite sequences L and I of natural numbers (not 
mentioned in [4]) as k tends to infinity. The first few elements of these new 
sequences are 

L: 1,1,4,18,120,960,9360,105840,1370880,19958400,..., 
I: 0,1,2,12,72,600,5760,65520,846720,12337920,... . 

3. Factorial Polynomials 

This section is devoted to the case in which p(t) is a factorial polynomial 

p(t) = £ attw. 
i = 0 

In order to try 
k 

xPW = TL&itM (8) 
y i = o 

as a particular solution of (4) , we first ought to determine the derivative of 

Lemma 3.i: ^ - = £ (J)t(fc)(-1) <"-k-1> 

Proof: The argument is by induction on n. The basis of which (n = 1) is triv-
ial. Suppose the equality holds for n - 1: 

To perform the induction step, consider 

dt(n)/dt = <f(£(£ - l)(n~l))/dt = (t - 1)("-1) + £<f((£ - l ) ( n - X ) ) / ^ . 

Now, by the Chain Rule, we have 

d((t - l)^n~l))/dt = <f((£ ~ l){n-l))/d(t - 1). 

Applying the Binomial Theorem from [2] to (t - D^-^-and the induct ion hypoth-
esis (9) yields: 

306 [Aug. 



FIBONACCI-LIKE DIFFERENTIAL EQUATIONS WITH A POLYNOMIAL NONHOMOGENEOUS PART 

= (-i)(n-1} +"i;1(7yfc)(-i)(n"k'1) =nE1(?k(fc)(-D(n-/c-1) 

which completes the induction. D 
From Lemma 3.1, (4), and (8), we obtain 

k Ii - 1 , J: \ I m-\ 

E-
i = 2 

| 2 A ( z ( : ) ( E ; ( ; ) t ( » ( - i ) < - - ' ) ( - i ) ^ -

+ E^( l i :1(^)t ( B , ) (- i) ( i - 'B- i ) ) - ±Att^= ±ait 
„• _ i \ m = n \''i' / „• _ n „• _ n £ = 1 \ m = 0 N m ' / t = 0 i = 0 

Comparing the coefficients of t ^ yields 

Ak = -ak, 
Ak-1 = -afc-i + kak, 

n = i + 2 \ m = i + l V 7 7 7 / V 7 ' / / = i + 2 
for each i (0 < i < k - 2) . As (-x)(n) = (-l)n(x + n - l)(n) and n(n) = n!s this 
latter recurrence can be rewritten as 

Ai ot̂  + E ^ ( - l ) * ^ " 1 n 

n - v 
= ̂  + 1 

/ n-1 _/_o n ( n " ~ ^ \ 
+ E ^n ( E (~Dn ' ( „ /??)(m __ i ) ) 

n =^ + 2 \/77 = ̂  + l v / v ' I 
or 

4, = -a, + (i + 1 ) ^ + 1 + E ^inK> (1Q) 
n = i + 2 

where 

Cin = (-l)n-i"1w(n-° ((n - i)"1 - ^ E (w " ^)_1(^ - i)~M. 
\ m = i + 1 ' 

Now (10) enables us to compute Ak, . .., ^.0: -^ is a linear combination of o^, 
..., ak. Thus 

j =^ 

and (10) becomes 

E ^-a- = <*i + (̂  + D E bt + i^CL- + E ^n E ^nja
(7" 

j = i j='i + l rc=£'+2 «/ = « 

From the coefficients of CLJ , it follows that 

2?,v = 1, 

1989] 307 



FIBONACCI-LIKE DIFFERENTIAL EQUATIONS WITH A POLYNOMIAL NONHOMOGENEOUS PART 

Hence, 

and 

Since 

^i, i+ 1 ~ ̂  + 1 ' 
J 

bi;j = (i + Dbi + Uj + £ tinhj f o r J ^ ^ + 2 . 
n = i + 2 

fc fc ... k 1 3 
i = o j = i j = o \ i = o / 

^ ( « = - z « J - f z ^ ( l i : 1 ( i ) t a ) ( - i ) ( i - i - 1 > 
j = i \ i = i 

E 
J' = 0 

^(0) = -EZ^c^ and ^(0) = - £ ( £ (-1)c* _ 1 ) 2^ . ) c^-, 
k / 3 

E 
i = i \ i = i 

we have the following result. 

Proposition 3.2: The s o l u t i o n of (4) wi th x(0) = c, xr(0) = <i5 and 

P(t) = E ^ t 
i =0 

(i) 

can be expressed as 

x(t) = (c + M^) 
\ n = 0 n' / \ n = 0 n- I j = 0 

where M^ and mk are linear combinations of a0? ...» a^, and for each j (0 < J < 
/c) , TT7-(£) is a factorial polynomial of degree j : 

E ( E (-i)(i-1)z>^)aJ.; ^.(t) = E^,;*( i ) - a 
J = 0 j 

For j = 0, 1, ..., 9, the factorial polynomials i\j(t) are given in Table 2. 

TABLE 2 

7 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

i r , ( t ) 

1 

t < « + l 

t ( 2 ) + 2 f ( D + 3 

£ ( 3 ) + 3 t ( 2 ) + 9 f ( l ) + 8 

t «> + 4 t (3) + l g £ ( 2 ) + 3 2 t ( l ) + 5 0 

t(s) + 5t( 4 ) + 30*(3) + 80*(2) + 250*(1) + 214 

t « ) + 6£(s) + 4 5 t(4) + 1 6 0 t (3) + 150tV) + 1284£(1) + 2086 

((7) + 7 f (6) + 6 3 t ( s ) + 280t(4) + 1750*(3) + 4494*(2) + 14602*(1) + 11976 

£(8) + gt(7) + g4t(<j) + 4 4 8 t ( s ) + 3500* «> + 11984*(3)+ 58408*(2) + 

+ 95808*( 1 )+162816 

*( 9 ) + 9*(8) + 108*(7) + 672*(<J) + 6300£(s) + 26964*(4) + 175224*(3) + 
+ 431136*(2) + 1465344*(1) + 1143576 
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As i n the p r ev ious s e c t i o n and [1] and [ 2 ] , the c o e f f i c i e n t s of OLJ i n Mk 
and 77?fc a r e independent of k. The f i r s t few e lements of t he l i m i t sequences 
(not mentioned i n [4]) M and m ( ob ta ined from Mk and mk for k -> °°) a r e 

M: 1 , 1 , 3 , 8 , 5 0 , 2 1 4 , 2 0 8 6 , 1 1 9 7 6 , 1 6 2 8 1 6 , 1 1 4 3 5 7 6 , . . . , 
m: 0 , 1 , 1 , 8 , 1 6 , 2 2 4 , 6 0 8 , 1 3 3 2 0 , 4 1 7 6 0 , 1 3 6 6 1 5 2 , . . . . 

Finally, we remark that the coefficients bij (and hence the elements of the 
sequences M and m) can also be computed from a^i by means of 

'bin = S W > "0 ( L <Ves(£5 j) ) (i < j), 

where s(£, j) and S(i9 m) are Stirling numbers of the first and of the second 
kind, respectively. 
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INTEGRAL TRIANGLES AND CIRCLES 

Aleck J . Hunter and M. Kovarik 
CSIRO, P.O. Box 56, Highett, Victoria, Australia 3190 

(Submitted July 1987) 

Having noticed that Pythagorean triangles have integral diameter circumcir-
cles and integral diameter incircles, A. Hunter was prompted to inquire as to 
whether there were any integer-sided, non-right-angled triangles having inte-
gral diameter incircles or integral diameter circumcircles. After a couple of 
weeks of Diophantine analysis, the answer to these questions was found to be in 
the affirmative in both cases. 

The first solutions found in this way were: 

SIDES DIAMETER 

Incircle Problem 

7 15 20 4 

Circumcircle Problem 

182 560 630 650 

On investigating the circumcircle problem, M. Kovarik devised the construc-
tion in Figure 1 which shows how that problem may be solved by means of Pythag-
orean triangles. 

FIGURE 1 

Kovarik's construction for the integer-sided scalene triangle 
7,15,20 having an integral diameter circumcircle 

The first integer-sided scalane triangle produced by Kovarik's method was 
the 7,15,20 triangle, which happened to coincide with the first solution to the 
integral diameter incircle problem found above. This prompted Hunter to 
inquire whether other triangles constructed by Kovarik's method had integral 
diameter incircles. 
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G e n e r a l i z a t i o n s of Kovar ik ? s c o n s t r u c t i o n a r e shown i n F igu re s 2 - 5 . The 
two Pythagorean t r i p l e t s a,b9c and r , s , i a r e s c a l e d t o have t he common h y p o t -
enuse , at. 

FIGURE 2 FIGURE 3 

FIGURE 4 FIGURE 5 
FIGURES 2-5 

Four constructions for integer-sided, non-right-angled triangles 
having an integral diameter circumcircle, based on the pair of 

Pythagorean triplets a9b9c and r,s,t 

For a cyclic quadrilateral, Ptolemy's theorem states that the sum of the 
products of the opposite sides is equal to the product of the diagonals. It 
follows that the values of z corresponding to Figures 2, 3, 4, and 5 are 

as + br, br , ar + bs, and bs\ 

respectively, and are clearly integers. There are two non-right-angled, inte-
ger-sided triangles x,ysz for each of Figures 2-5 as given in Table 1. 
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TABLE 1 

Triangle No. x y 

at cr as + br 
bt cs as + br 
at or \as - br\ 
bt cs \as - br\ 
at cs ar + bs 
bt cr ar + bs 
at cs \ar - bs \ 
bt cr \ar - bs | 

gles. 

by 

It remained to investigate the diameters of the incircles of these trian-

The diameter of the incircle of a triangle whose sides are x,y,z is given 

^ + y - %) (y + % - x) u + x - y) 
x + y + z 

Substitution of the values of x, y, and z given in Table 1 yields the in-
circle diameters given in Table 2. 

TABLE 2 

Triangle No. Incircle Diameter 

ar -
bs -
ar -
bs -
as -
br -
as -
br -

(c - b)(t - s) 
(c - a) (t - r) 
(c + b)(t ~ s) 
(c - a)(t + r) 
(c - b)(t - r) 
(c - a)(t - s) 
(c - b)(t + r) 
(c + a)(t - s) 

Clearly, the diameters of all incircles are integers. The integral trian-
gles and circles (itacs) generated from the Pythagorean triplets 

~r~ 
s 

lt_ 
= 

a 
b 
c 

= 
[31 
4 
_5__ 

are shown in Figure 6. When the two Pythagorean triplets are equal, triangles 
numbered 1 and 2 become isosceles, numbers 3 and 4 diminish to a point, 5 and 6 
become right-angled, and 7 and 8 are scalene. The itacs generated from 

r 
s 
t 

= 
a 
b 
c 

= 
8 
15 
17 

are shown in Figure 7. 
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FIGURE 6 

Itacs based on a9b9Q equal to r,s,t equal to 3,4,5 

FIGURE 7 

Itacs based on a9b9c equal to v9s9t equal to 8,15,17 

Where a9b3c and r9s9t are independent Pythagorean triplets, all eight tri-
angles are, in general scalene. Itacs generated from 

~a 
b 

^c 
= 

"3 
4 
5 

J 

V 

s 
J. 

= 
' 5~| 
12 

J3_ 
are shown in Figures 8 and 9 and itacs generated from 

a 
b 
c 

= 
3 
4 
5 

5 

V 

s 
t 

= " 8 1 15 
17 

are shown in Figures 10 and 11. 
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FIGURE 8 

Itacs based on a,b,c equal to 3,4,5 and r,s,t equal to 5,12, 13 (5 incircles) 

FIGURE 9 

Itacs based on a,b,c equal to 3,4,5 and r9s,t equal to 5,12,13 (3 incircles) 
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FIGURE 10 

Itacs based on a,b,c equal to 3,4,5 and r,s,t equal to 8,15,17 (5 incircles) 

FIGURE 11 
Itacs based on a,b,c equal to 3,4,5 and r,s,t equal to 8,15,17 (3 incircles) 
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Triangles a r i s ing in i t a c s are also Heronian; that i s , have in tegra l a reas . 
The area of a t r i ang le i s given by 

A xyz 
la' 

where d is the diameter of the circumcircle, and x, y, and z 
Substituting from Table 1, we obtain expressions such as 

. _ ar(as + bv) 

are the sides. 

For Pythagorean triplets a,b,a and r,s9t, ab and rs are both even, so A is 
always an integer. 
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UNITARY PERFECT NUMBERS WITH SQUAREFREE ODD PART 

S. W. GRAHAM 
Michigan Technological University, Houghton, MI 49931 

(Submitted July 1987) 

1 a Introduction 

A divisor d of a natural number n is said to be unitary if and only if 

(d, n/d) = 1. 

The sum of the unitary divisors of n is denoted o*(n). It is straightforward 
to show that if 

n = pl
lp2

z ... pk
k , 

then 

a*(n) = (p*i + l)(p*2 + 1) ••• (p£k + D -
A natural number n is said to be unitary perfect if a*(n) = 2n. 

Subbarao and Warren [2] discovered the first four unitary perfect numbers: 

6 = 2-3, 60 = 22 • 3 • 5, 90 = 2 • 32 • 5, 87360 = 26 • 3 • 5 • 7 • 13. 

Wall [3] discovered another such number, 

46361946186458562560000 = 218 • 3 • 54 • 7 • 11 - 13 • 19 • 37 • 79 • 109 - 157 • 313, 

and he later showed [4] that this is the fifth unitary perfect number. No 
other unitary perfect numbers are known, and Wall [5] has shown that any other 
such number must have an odd prime divisor exceeding 215. 

In this paper, we consider the existence of unitary perfect numbers of the 
form 2ms, where s is a squarefree odd integer. We shall prove that there are 
only three such numbers. 

Theorem: If 2ms is a unitary perfect number and s is squarefree, then either 
m - \ and s = 3, m = 2 and s = 3 • 5, or m = 6 and s = 3 • 5 • 7s 13. 

2. Preliminaries 

Throughout this paper, the letter s shall be used to denote an odd square-
free number. The letter p, with or without a subscript, shall denote an odd 
prime. The letter q, with or without a subscript, shall denote a Mersenne 
prime. 

Our starting point is the observation that, for any fixed m, it is easy to 
determine all unitary perfect numbers of the form 2ms. From the previously 
stated formula for o\n), we see that if s = pYp2 - - - Pr > then 2ms is unitary 
perfect if and only if 

_ a*(2ms)_2m + 1 PX + 1 P2 + 2 pr + 1 
2ms 2m ° pl * p 2 pr ' ( } 

Any odd prime dividing 2m+l must appear as a denominator on the right-hand side. 
If p is such a prime, then all odd prime divisors of p + 1 must also appear as 
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denominators on the right-hand side. If we can force a prime to appear more 
than once, then we can conclude that there is no unitary perfect number of the 
form 2ms. 

For example, suppose m = 1. Since 27 + l = 3° 43, 3 and 43 must appear as 
denominators on the right-hand side of (1). Since ll|(43 + 1), 11 must also 
appear. But 3 | (11 + 1), so 3 must appear twice. Therefore, there is no 
unitary perfect number of the form 27s. 

On the other hand, suppose m = 6. Since 26 + 1 = 5 • 13, both 5 and 13 must 
be prime divisors of s. Since 3|(5 + 1) and 7|(13 + 1), 7 and 13 must be prime 
divisors of s. If any other p divides s, then 

o*(2ms) > 26 + 1 n 3 + 1 ̂  5 + 1 ̂  7 + 1 B 13 + 1 ̂  p + 1 
2ms ~ 26 * 3 " 5 " 7 " 13 * P 

Therefore, the only unitary perfect number of the form 25s is 26 • 3 • 5 • 7 • 13. 
Proceeding in this fashion, it is easy to show that the only unitary per-

fect numbers of the form 2ms with m < 10 are those listed in the theorem. 
Thus, we may assume henceforth that 77? > 10. (Alternatively, we could reduce to 
the case 77? > 10 by quoting a result of Subbarao [1].) 

The method of the preceding paragraphs is "top-down": we start with divi-
sors of 2m + 1 and work down. While this procedure works well for specific m, 
it does not lend itself well to a proof in the general case. We therefore 
introduce an alternative "bottom-up" procedure. This procedure starts with the 
Mersenne primes dividing s and works up to the divisors of 2m + 1. (A Mer-
senne prime is a prime of the form 2^ - 1; the first few such primes are 

3 = 22 - 1, 7 = 23 - 1, 31 = 25 - 1, 127 = 27 - 1, 8191 = 213 - 1.) 

First we note that s does have Mersenne prime divisors. For in equation 
(1), all odd prime divisors of a*(s) = V\Vo ••• Pr

 m u s t appear in the denomina-
tor of the right-hand side. But some of the pi' s divide 2m + 1, so at least 
one of the terms p^ + 1 must be free of any odd prime factors. It follows that 
p. is a Mersenne prime. 

Suppose q is a Mersenne prime dividing s. Renumber the primes in (1) so 
that q = p,. There is some (necessarily unique) prime p2 dividing s such that 
pl | (p2 + 1). Note that p2 > 2p1 - 1. Either p2\(2w + 1) or there is some p3 

such that p2|(p3 + ! ) • Continuing in this way, we obtain a sequence of primes 

Pl < Vz < '" < Pk> (2) 
where p is a Mersenne prime, p, | (2m + 1), and p^ + 1 ^ 2p̂ . - 1. 

To formalize the ideas of the preceding paragraph, we introduce the follow-
ing function /. Let p be an odd prime in the denominator of the right-hand 
side of (1). We define f(p) to be 1 if p\(2m + 1). Otherwise, we define f(p) 
to be the unique prime pr such that pr\s and p | (p ' + 1) . We define 

f0(p) = p. / i ( p ) = / ( p ) . a n d / * + I < P > = / ( / * ( p ) ) -
We also define 

/(l) = 1 and /w(p) = ft f. (p). 
i- = 0 % 

For example, if TT? = 6 and s = 3 • .5 • 7 '13, then 
/x(3) - 5, f2(3) = 1, and j^ (3) = 3 - 5 . 

Similarly, 

/co^7) = 7 - 1 3 . 
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Let qY, q2, . .., qz be the Mersenne primes dividing s. Then all odd primes 
dividing s occur in the product 

At this point, we cannot rule out the possibility that this product contains 
repeated prime factors. For example, if 41 \s, then 41"]/^ (3) and 4l|jf (7). Ac-
cordingly, for each Mersenne prime q , we define F(q^) to be the product of all 
primes that divide f^iq^ but do not divide any of fm(q{)> f00(q2^' • • • > fm (?£ -1) • 
With this definition, we have 

2m + l r q * ^ ^ ) ) q*(^(^)) 

If we write 

« < > • ^ 

then the above may be rewritten as 

2m + x 

2. 

G(<7i) ••• £(<?*) = 2. (4) 

The idea behind the proof is to obtain upper bounds for G(q) that make (4) 
antenable. The crucial point here is that, if p15 p2, . .., p are the primes 
described in (2), then p2 > 2p15 p3 > 4p1 - 3, etc. It follows that 

oo 2ip. - 2 ^ + 2 

G(q) < II -r 1 1 • 
i = o 2^p. - 2* + 1 

.̂s we shall show in Lemmas 1 and 2, this product converges. This bound for G 
is sufficient for the larger Mersenne primes. A more elaborate analysis is 
needed for the smaller primes. 

3. Lemmas 

Lemma 1: If p and 6 are real numbers with p > 1, then 

» 6p^ - (p + p2 + ... + pi) (p - 1)6 
i=0 6p^ - (1 + p + p2 + ... + pi) (p - 1)6 - p 

Proof: The Kth partial product is 

6 p6 - p p^6 - pK - •«- - p 

6 - 1 p6 - p - 1 pK& - pK - • •• -,p - 1 

Note that the numerator of each term after the first is p times the denominator 
of the previous term. Therefore, the Kth partial product is 

6p* (p - 1)6 
p^6 _ p# _ ... - p _ i (p - 1)6 - p + .p K' 

The result follows by letting K tend to infinity. 

o m - 1 
Lemma 2: If q = 2m - 1 is a Mersenne prime, then G(q) < 

) m - 1 
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Proof: Let p^9 p2, . . . , p be t he pr imes d i v i d i n g G (q) . Since p-, = q = 2m and 
and p i + 1 ^ 2p. , we see t h a t 

p. > 2m+i~l - 2* + 1. 
T h e r e f o r e , 

9 tf? 9777 + I _ o 

c(9) < — ^ — — - . . . . 
2m - 1 2m + l - 3 

The result now follows by applying Lemma 1 with 6 = 2m and p = 2. 
Lemma 3: Let q.9 . .., q be the Mersenne primes that divide s and are at least 
8191. Then J 

G^ ••• < W ^ f§yf-
Proof: It is well known that, if 2m - 1 is prime, then m must be prime. Thus, 
m = 2 or m is odd. Consequently 

212+2t 

<?(„) ... c(^) * no 2l2+u _ i 
We bound this by observing that 

2\2+2i a, 2
lz+2i - 4 - 42 - ... - 4 ^ 

n 1 9 + 9 , — ^ n -0 2 1 2 + 2 i - 1 i=o 2l2+zi - 1 - 4 - 42 -... - 4* 

The result now follows from Lemma 1 with 6 = 21 2 and p = 4. 

Lemma 4: Let (7., ..., q£ be the Mersenne primes that divide s and are at least 
127. Then ° 

G(qd) ... G(qz) * g . 

Proof: We first get a bound on (7(127) . Let p15 ..., p^ be the primes that di-
vide F(127). If v < 1, then £(127) < 128/127. Assume that p > 2. Then px = 
127 and p~ is a prime of the form 127/z - 1, where all the odd prime divisors of 
In are at least 8191. Now 127 • 2l - 1 is composite for 1 < i < 7, so p2 > 127 
• 28 - 1 = 32511. Therefore, 

r( , < 128 " 32511 - 2i - 2 - 22 - ... - 2^ = JJ28 16256 
U j " 127iV0 32511 . 2* - 1 - 2 - - - - - 2* 127 * 16255' 

From this and Lemma 3, we see that 

G(qj) ... Giqi) ^(127)^(8191) ... ,l|f.i|||f.fZf ,l|f. 

4. Proof of the Theorem 

As stated in Section 2, we may assume that m > 10. 

The proof breaks into three cases: (1) m odd, (2) m = 0 mod 4, and (3) m E 2 
mod 4. 

Case 1; Assume that m is odd. Then 3J2™ + 1, and G(3) = 4/3. It follows that 
the left-hand side of (4) is 

2m + 1 4 r f l , r , ^ , . 1025 4 4 16 122 ̂  . 
~ ^ ~ " 3 ̂ 7 ^ 3 1 > ••• * 1024 3 3 15 121 < 2°  
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Case 2: Assume that m = 0 mod 4. Then 2m + 1 = 2 mod 3 and 2m + 1 E 2 mod 5. 
It follows that there is some prime p such that p \ 2 m + I, p E 2 mod 3, and 
p > 5. Moreover, the congruence x1* E -1 mod p has the solution x E 2 m ^ , so we 
have p E 1 mod 8. By the Chinese Remainder Theorem, p E 17 mod 24. We cannot 
have p = 17 since 32|a*(17). Therefore, p > 41, and the left-hand side of (4) 
is 

2~ +-' " P + l 0(7)0(31) ... 5 i ° « * « *!i 122 < 2. 
2m 3 p 1024 3 41 3 15 121 

Case 3: Assume that m E 2 mod 4. Then 512 m + 1, and 

ff(3)=-ff. 
This case breaks into four subcases: (i) 7/fs; (ii) 71 s and 13^s; (iii) 7|s, 
13|s, and 103|s; (iv) 7|s, 13|s, and 10 3 \ s . 

Subcase 3 (i) : Assume that 7|s. Then the left-hand side of (4) is 

^ «3) 0 ( 3 1 ) 0 ( 1 2 7 ) ...<iSg$jliI|i<2. 

Subcase 3 (ii) : Assume that 71 s and 13|s. Other than 13, the least prime of the 
form lln - 1 with all odd prime divisors of h greater than or equal to 31 is 
7 • 32 - 1 = 223. Therefore, 

< 8 f, 224- 2l - (2 + 22• + ••• + 2^) = 8 112 
U) ~ n i l —' ~*' (1 + 2 + ... + 2*) 7 111' 

Therefore, the left-hand side of (4) is 

^ 1025 4 6 8 112 21 12^ < 2 
" 1024 3 5 7 111 15 121 

Subcase 3 (iii) : Assume that 7|s, 13 |s, and 103 \s. Then 31 |s since 

a*(3 • 5 • 7 • 13 • 31) 
7 • 13 • 31 

> 2. 

If F(7) contains any prime factors other than 7 or 13, then the least such 
factor is of the form 13/z - 1, where all odd prime factors of h are > 127. 
Other than 103, the least prime of this form is 13 • 2 7 - 1 = 1663. Therefore, 

G(7) < 8 14 832 
UK J ~ 1 13 831s 

and the left-hand side of (4) is 

„ 1025 4 6 8 14 832 122 
1024 3 5 7 13 831 121 < 2. 

Subcase 3 (iv) : Assume that 7 j s, 13 |s, and 103 |s. Then \2l\s since 

q*(3 « 5 « 7 * 13 • 103 • 127) 
3 • 5 • 7 • 13 • 103 • 127 

The least prime of the form 103ft - 1 is 103 • 8 - 1 = 823. Therefore, 

C(i\ < 8 14 104 412 
K J " 7 13 103 411' 
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and the right-hand side of (4) is 

< 1 Q 2 5 4 6 8 _H JJ04 ^12 3072 < 

~ 1024 3 5 7 13 103 411 3071 
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In this paper we consider the problem of dividing a rectangle into nonover-
lapping squares and rectangles using recurring-sequence tiling. The results 
obtained herein are illustrated with appropriate figures. These results, with 
the exception of basic introductory material, are believed to be new. There 
seem to be no such results in the literature. 

Among the many generating functions possible, we choose the following: 

G(x)~k = 1/(1 - x - x2 - ... - xm)k (1) 

(where m = 2, 3, 4, ... and k = 1, 2, 3, . . . ) • 

Note that 

G{x)~k = Fm)k(0) + Fm>k(l)x + Fmsk(2)x2 + ... + Fm}k(n)xn + ... (2) 

[where Fm k(0) = 1, for all m and k] . 
In this paper, we limit k to the value of 1. Therefore, with k = 1, for con-
venience, we can write 

When m = 2, the above formulas will result in the well-known Fibonacci numbers. 
When m = 3, one will obtain the Tribonacci numbers. 

A tile representing a number in one of these sequences will be a square 
whose sides are of a length equal to that number. As we examine various ver-
sions of equation (2) above, we will attempt, to combine tiles so that 
rectangular regions are formed. When this is not possible, we will identify 
the gaps left in the almost-rectangular region, and attempt to generalize the 
sizes of those gaps. 

First let m = 2, then for n = 0, 1, 2, ..., we have the Fibonacci numbers 
and the following consecutive values for F2(n): 

F2(0), F2(l), F2(2), ..., F2(n), ... 

= 1, 1, 2, 3, 5, 8, 13, 21, ... , (3) 

When tiles are fashioned from these numbers, they may be arranged as in Figure 
1. Note that each tile is a square. There are, of course, other ways to 
arrange these tiles. This method of arrangement is simple to follow, and 
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f a c i l i t a t e s the arguments below. In t h i s c a s e , as each new t i l e i s added to 
the r e g i o n , a f u l l r e c t a n g l e r e s u l t s . 

FIGURE 1 

When 777 = 3, then, for n = 0, 1, 2, 3, ..., we have the Tribonacci numbers 
consisting of the following consecutive values for F%(n)i 

F3(0), F3(l), F3(2), ..., F3(n), ... 

= 1, 1, 2, 4, 7, 13, 24, 81, 149, 274, ... . (4) 

Tiles representing these numbers may be arranged as in Figure 2. Again, though 
distorted because of space, each tile is a square. Note that in this case the 
addition of a new tile results in a region of irregular shape. To form a full 
rectangle, smaller rectangles (not necessarily squares) must be added to fill 
in the "gaps." We shall examine these gaps further below. 

i B(4.U 

: R(2,1)T 

FIGURE 2 

We will later continue in this way for larger values of 77?, and step by step, 
and with added induction we will develop a systematic way of placing tiles 
using the recurring sequence in equation (2) above. 

Let us now examine the gaps in the rectangle we are attempting to tile. 
Refer to the upper left corner of Figure 2 to see these gaps. Our approach 
will be to find a recurrence relation which might be used to construct smaller 
rectangles, which will in turn fill in the gaps. We shall label these smaller 
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rectangles Rm(x, y) , where x and y are the horizontal and vertical components 
of the rectangles, respectively. 

In Table 3 below, for m = 3S we list the consecutive values of the horizon-
tal component x (where x = 23 4, 11, 24, 68, 149, ...) in the consecutive rec-
tangles Rm(x, y). 

TABLE 3 

Horizontal Components of Rectangles, for m = 3 

1 Rectangle 

R(2,1) 

R(4,1) 

R(11,6). 

R(24,7) 

R(68,37) 

R(149,44) 

X 

2 

4 

11 

24 

68 

149 

Formula I 

F3(0)+F3(1) J 

F3<3) 

F3(3)+F3(4) 

F3(6) | 

F3(6)+F3(7) j 

F30) 

Now, using Table 3 and by induction, we obtain the following general values 
of x in i?3 (x, y) : 

x = F3(3n) + F3(3n + 1 ) or x = F3(3n + 3), where n > 0. (5) 

In Table 4 below, for m = 3, we list the consecutive values of the vertical 
component y (for y = 1, 1, 6, 7, 37, .44, ...) of each i?3(x, y) from Figure 2: 

TABLE 4 

Vertical Components of Rectangles, for m = 3 

1 Rectangle 

R(2,1) 

R(4,1) 

I R(11,6) 

J R(24,7) 

1 R(68,37) 

1 R(149,44) 

y 

1 

1 

6 

7 

37 

44 

Formula 1 

F3(0) 1 

F3(D J 
F3 (2) + F3 (3) 

F3(4) j 

F3(5)+F3(6) | 

F3(7) 

I - I 
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Now, using Table 4 step by step and with added induction, we obtain the 
following values of y in R3(x, y): 

y = F3(0) = 1 or y = F3(3n + 1) or 
F3(3n + 2) + F3(3n + 3), where n > 0. (6) 

Combining (5) and (6) above, we observe that the general form of each gap-fill-
ing rectangle R3(x, y) may be written as 

i?3(2, 1) or R3(F3(3n + 3), F3{3n + 1)) or 

R3(F3(3n + 3) + F3(3n + 4), F3(3n + 2) + F3(3n +3)), where n > 0. (7) 

We now consider the rectangles that we are attempting to tile. The nota-
tion we use will be Am(x, y) , where once again x and y are the horizontal and 
vertical lengths of the tiled rectangle. 

For 77? = 3, we have A$(x , y) . As we add the tiles one by one, certain of 
the rectangles A$(x 9 y) tiled, in order of their construction, are shown in 
Table 5. Also shown are the components of each tiled rectangle, with each 
square tile followed by an S. 

TABLE 5 

Construction of Tiled Rectangles, for m = 3 

I Tiled Rectangle 

*3(2.U 

A3 (4,6) 

A3 (11,7) 

A3 (24,37) 

A3 (68,44) 

Component Squares 1 
and Rectangles I 

1S + 1S 

A3 (2,1) +2S + 4S + R3(2,1) I 

A3 (4,6) +7S + R3(4,1) I 

A3 (11.7) +13S + 24S + R3(11,6) 

A3 (24,37) +44S + R3(24,7) I 

Continuing in this way, by induction, we conclude that the general formulas 
for the areas A^(x, y) are 

A3(F3(3n) + F3(3n + 1), F3(3n + 1)) or 

A3(F3(3n + 3), F3(3n + 2) + F3(3n + 3)), where n = 0, 1, 2, ... . (8) 

Now, let m = 4 in equation (2). Then, for n = 0, 1, 2, ..., we have the 
following consecutive values for F.(n): 

^ ( 0 ) , ^ ( 1 ) , 2^(2), ...5 Fh(n), ... 

= 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, ... . (9) 

An arrangement of the tiles corresponding to these values is shown in Figure 6. 
Again, note that the arrangement of square tiles results in an irregular shape. 
Once again, "filler" rectangles must be generated to fill in the gaps, to 
construct a fully tiled rectangle. 
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j R(108,44) 

i R(52,27) 

i R(23,14) 

: R(8,3) 

• R(4,2) 

i R(2J) 

[ i l l 
2 

4 

8 

15 
29 

56 

108 

208 

FIGURE 6 

In Table 7 below, for m - 4, we list the consecutive values of the horizon-
tal component x (where x = 2, 4, 8, 23, 52, 108, 316, 717, 1490, . ..) in the 
consecutive rectangles R^ix, y). 

TABLE 7 

Horizontal Components of Rectangles, for m = 4 

I Rectangle 

R(2.1) 

R(4.2) 

R(8.3) 

R(23,14) 

R(52,27) 

R(108,44) 

X 

2 

4 

8 

23 

52 

108 

Formula I 

F4(0)+F4(1) I 

F4(0) +F4(1) +F4(2) 

F4(4) I 

F4(4) +F4(5) ! 

F4(4) +F4(5) +F 4 (6 ) | 

F4(8) I 

Now, using Table 7 with added induction, we find the following general val-
ues of x in Ri+(x, y) : 

x = Fh(lm) + Fk(im + 1) or 

x = Fh(i\n) + Fk(bn + 1) + F^n + 2) or 

x = F,(^n + 4), where n > 0. (10) 

In Table 8 below, for m = 4, we list the consecutive values of the vertical 
component y (y = 1, 2, 3, 14, 27, 44, 193, 372, 609, . ..) of eachi?^, y) : 
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TABLE 8 

Vertical Components of Rectangles, for m = 4 

I Rectangle 

R(2,1) 

R(4.2) 

R(8.3) 

R(23,14) 

R(52,27) 

R(108,44) 

y 

1 

2 

3 

14 

27 

44 

Formula 

^ 
F
4 (2) 

f%(D+F4(2) 

F4(2) +F4(3) +F4(4) 

F4(3) +F4(4) +F4(5) 

F 4 (5) + F 4 (6) 

Now, using Table 8 step by step and with added induction, we find the fol-
lowing general values of y in R^{x, y): 

y = F^d) = 1 or y = 2^(2) or (11) 

y = Fh{kn + 1) + Fh{kn + 2) or 

y = Fh(kn + 2) + Fh(im + 3) + Z^(4n + 4) or 

y = Fh(l\n + 3) + F^{kn + 4) + Fh(kn + 5), where n = 0, 1, 2, ... . 

Combining equations (10) and (11) above, we observe that the general formulas 
of the R.(x9 y) may be written as 

i?^(2, 1), i?J4, 2) (12) 

Rh(F^im + 4), F^kn + 1) + i^(4n + 2)), 

V M 4 n + 4) + F 4 (4n + 5 ) , ^ ( 4 n + 2) + Fh{kn + 3) + F 4 (4n + 4 ) ) , 

W 4 " + 4) + F^(4n + 5) + F4(4n + 6), 

F^kn + 3) + F4(4n + 4) + Fh(kn + 5)), where n > 0. 

We now consider selected tiled rectangles ^(a;, y) in the order of their 
construction: 

TABLE 9 

Construction of Tiled Rectangles, for m = 4 

1 Tried Rectangle 

4,(2.1) 

A4(4,2) 

A4(8,12) 

A4(23,15) 

A4 (52,29) 

A4 (108,164) 

Component Squares 
and Rectangles 

1S+1S 

A4(2,1) + 2S + R4(2,1) 

A4(4J2) + 4S + 8S + R4(4,2) f 

A4(8,12) +15S + R4(8,3) 

A4(23,15) +29S + R4(23,14) | 

A4 (52.29) + 56S + 10SS + R4 (52,27) I 
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Cont inuing i n t h i s way, we conclude t h a t t he g e n e r a l formulas for the a r e a s 
A, (x , y) a r e 

Ah{F^n) + Fk(*m + 1 ) , F^n + 1 ) ) , 

M V 4 n ) + Fh{Lm + 1) + i ^ ( 4 n + 2 ) , F^n + 2 ) ) , 

(13) 

7, 

\ ( ^ ( 4 n + 4 ) , Fh(kn + 3) + F\{hn + 4 ) ) , where n > 0. 
Now, by i n d u c t i o n , we t i l e t he f u n c t i o n s i n equa t ion (2) for a l l m = 5 , 6, 

. . . . We a r e concerned wi th the sequence of v a l u e s for Fm(n): 

F f 0 ) , * L ( 1 ) , Fm(2), > FmM3 

= 1, 1, 2 , 4 , 8, 16, . . . , 2 m - 1 , 2r 1, 2 m + 1 - 3 , 
? m + 2 5, 2 m + 3 - 20, . . . , where n > 0. (14) 

An arrangement of the t i l e s co r respond ing to t h e s e v a l u e s i s shown i n F igure 
10. 

... 
I R(16,8) 
j R(8.4) 

i R(4r 

i 

2) _ 

2 
4 

m-1 m-2 
R(2 ,2 —1) 

8 
16 

... 

m-1 
2 

m-3 
2 

m-2 
2 m I 

2 -1 

FIGURE 10 

Now, by induction, we may systematically generalize the values of the hori-
zontal component x in each rectangle Fm(x, y): 

For n = 0, 
Fm (m - 0 + m) 

Fm(m • 0 + m) + Fm (m • 0 + m + 1) 

Fm (m • 0 + m) + Fm (m • 0 + m + 1) + Fm (m * 0 + m + 2) 

Fm(m • 0 + m) + Fm(m • 0 + m + 1) + i^(m • 0 + m + 2) 

+ . . . + Fm(m • 0 + 2m - 2) . 

For n = 1, 
Fm (m • 1 + w) 
i ^ (m • 1 + /??) + Fm (7w • 1 + m + 1) 

Fm(m • 1 + m) + Fm (m • 1 + m + 1) + Fm (m • 1 + /?? + 2) 

F m (m - 1 + 7 7 ? ) + F m (777 • 1 + 77Z + 1 ) + F m (77? • 1 + W7 + 2 ) 

+ • . . + Fm(m * 1 + 2m - 2) . 
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Then, in g e n e r a l , for n (where n > 0 ) , 
Fm(m* n + m) ( 15 ) 

Fm (m ' n + m) + Fm(m • n + m + 1) 

Fm (m • n + m) + Fm (m • n + 777 + 1) + i ^ (/?? • n + m + 2) 

Fm (777 • n + w) + Fm {m • n + 777 + 1) + Fm (m • n + m + 2) 

+ . • • + Fm(m • n + 2777 - 2) . 

Now, step by step and with added induction, we obtain the generalized values of 
the vertical component y in each rectangle Rm(x, y): 

For n = 0, 
Fm (777 • 0 + 1) + Fm (777 • 0 + 2) + . . . + Fm (m • 0 + 777 - 2) 

^ (777 • 0 + 2) + Fm (m • 0 + 3) + . . . + Fm (m • 0 + 777) 

i^(777 • 0 + 3) + Fm(m • 0 + 4) + . . - + Fm(777 • 0 + 777 + 1) 

Fm (777 • 0 + 777 - 1) + Fm (m • 0 + m) + . . . + Fm (m • 0 + 2m - 3) . 

Fo r n = 1 , 
Fm (m • 1 + 1) + Fm (777 • 1 + 2) + • • • + Fm (777 • 1 + 777 - 2) 

Fm (777 • 1 + 2) + Fm (777 • 1 + 3) + • • • + Fm (777 • 1 + 777) 

F^ (777 • 1 + 3) + Fm (777 • 1 + 4) + . . . + Fm (77? • 1 + 777 + 1) 

Fm (m • 1 + 777 - 1) + Fm (77? • 1 + 777) + • • • + i7^ (777 • 1 + 2777 - 3) . 

For n is general, where 7-7 = 0, 1, 2, ..., 

Fm{m • n + 1) + Fm (777 • n + 2) + - . . + Fm (777 • n + 77? - 2) (16 ) 

Fm(m • n + 2) + Fm (777 • n + 3) + . . . + Fm (m • n + 777) 

Fm (777 • n + 3) + Fm (777 • n + 4) + . . . + Fm (777 • n + 777 + 1) 

Fm(m • n + m - 1) + Fm(m • n +777) + . . • . + Fm (m • n + 27?? - 3) . 

One should note that 

Fm(m • 0 + 777) = 2 m _ 1 

and 
Fm (777 • 0 + 1) + Fm (777 • 0 + 2) + • • • + Fm (777 • 0 + 777 - 2) = 2m~ 2 - 1. 

Combining the generalized formulas for the x and y components of each rectan-
gle, equations (15) and (16) above, we observe that the general formulas of 
each rectangle Rm(x, y) may be written as 

Rm(2> 1) (17) 

* w ( 4 , 2) 

flm(8, 4) 

^(16, 8) 
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Rm(Fm(m* 0 + m), Fm(m° 0 + 1) + Fm (777 • 0 + 2) + . . . + Fm (m • 0 + m - 2 ) ) 

Rm(Fm(m* Q + m) + Fm(m* 0 + m + I), 

Fm (m • 0 + 2) + Fm (/?? • 0 + 3) + . . . + Fm (m • 0 + TTZ)) 

F w (Fm (TT? • 0 + TT?) + Fm (777 • 0 + m + 1) + Fm(/?? • 0 + m + 2) , 

^ ( 7 7 7 - 0 + 3) + Fm(m • 0 + 4) + . . . + Fm(m • 0 + m + 1 ) ) 

Rm(Fm(m • 0 + 77?) + Fm(m • 0 + 777 + 1) + Fm (?7? • 0 + 777 + 2) \ 

+ • . • + Fm (77? • 0 "I- 2777 - 2) , Fm (777 • 0 + 777 - 1) + Fm (?77 • 0 + 77?) ! 

+ • • • + Fm (77? • 0 + 277? - 3 ) ) 

Rm(Fm(m* 1 + 7 7 ? ) , Fm(77Z- 1 + 1) + Fm(m° 1 + 2) + . . . + Fm (m • 1 + m - 2 ) ) 

i?m(Fm (77? • 1 + 77?) + Fm (777 • 1 + 77? + 1) 

Fm (77? • 1 + 2) + Fm (77? • 1 + 3) + . • . + Fm (777 • 1 + TT?) ) 

i?m(Fm (777-1+777) + Fm (777 • 1 + 77? + 1) + Fm (777 • 1 + 77? + 2) , 

Fm(777. 1 + 3) + Fm(77Z- 1 + 4) + . . . + Fm(777- 1 + 777 + 1 ) ) 

Rm(F (777 • 1 + 77?) + ^(777 • 1 + 777 + 1) + Fw (TT? • 1 + 777 + 2) 

+ • • . + Fm (77? • 1 + 277? - 2) , F^ (77? * 1 + 77? - 1) + Fm (777 • 1 + 77?) 

+ . . . + Fm (m • 1 + 277? - 3 ) ) 

Rm(Fm(m • tt + 77?), F,„ (777 • 72 + 1) + Fm (T?7 • tt + 2 ) + • • • + Fm (777 • tt + 777 - 2 ) ) 

Rm(Fm (77? • tt + 77?) + Fro (777 ° n + 77? + 1 ) , 

^ (77? • tt + 2 ) + F m (77? • 72 + 3 ) + • • • + Fro (777 » n + 77?) ) 

Rm(Fm(m • n + TT?) + Fm (777 • tt + 777 + 1) + Fm (m • tt + TT? + 2) , 

Fro (TT? • n + 3) + Fro (TT? • n + 4) + • • • + Fm (777 - n + 77? + 1 ) ) 

^ (Fro (77? • U + 77?) + Fro (/7? • tt + 77? + 1 ) + Fm (777 • tt + 77? + 2 ) 

+ • • . + F ^ (77? • tt + 277? - 2 ) , 

F'ro (777 « tt + 77? - 1 ) + Fm (777 * tt + 77?) + • • • + Fm (m • tt + 277? - 3 ) ) , 

where tt = 0, 1, 2, ... . 

We now consider the tiled rectangles Am(x,y) in order of their construction: 

Am{Fm(m- 0) + Fm (777 • 0 + 1) , Fm (T?7 • 0 + 1) ) ( 1 8 ) 

Am(Fm(m- 0) + Fro (77?- 0 + 1) + Fro (TT?- 0 + 2 ) , Fm (TT? • 0 + 2 ) ) 

i4 m (F m (777- 0 ) + Fro (77? » 0 + 1 ) + Fm (m * 0 + 2 ) + Fro (777- 0 + 3 ) , Fro (77?- 0 + 3 ) ) 

^ ( ^ ( 7 7 7 - 0 ) + Fro(77?» 0 + 1 ) + Fro(777« 0 + 2 ) 

+ . . . + Fm (77? - 0 + 77? - 2 ) , Fro (77? • 0 + 77? - 2 ) ) 

Am(Fm(m- 0 + 7 7 ? ) , Fm(m° 0 + m - 1) + ^ fa • 0 + /7?)) 

Am{Fm{m • 1 ) + Fro (777 • 1 + 1 ) , Fro (???• 1 + 1 ) ) 

4ro(Fro(77? - 1 ) + Fm (777 • 1 + 1) + Fm (?77 • 1 + 2 ) , F m (TT? • 1 + 2 ) ) 
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Am(F (m- 1) + Fm(m- 1 + 1) + Fm(m - 1 + 2) + Fm(m- 1 + 3 ) , Fm (m • 1 + 3)) 

Am{Fm (m • 1) + Fm (m * 1 + 1) + Fm {m • 1 + 2) 

+ . . . + Fm (w • 1 + m - 2 ) , Fm (m • 1 + /?? - 2)) 

i4m(Fm(77z- 1 + m), Fm(m» 1 + m - 1) + Fm (777 • 1 + m)) 

Am(Fm(mn)+Fm(nm + 1 ) , Fm{mn + 1)) 

Am(Fm(nm) + Fm (mn + 1) + Fm (wn + 2) , Fm {mn + 2)) 
Am{Fm(mn) + Fm{mn + 1) + Fm (mn + 2) + î m ( m + 3 ) , Fm {mn + 3)) 

Am{Fm{mn) + Fm{mn + I) + Fm{mn + 2) 

+ . . . + Fm(mn + m - 2), Fm(mn + m - 2)) 

Am{Fm{mn + 777), Fm(mn + m - 1) + Fm{mn +777)), 

where n = 0 5 1, 2 , . . . . 

This establishes the recurring sequences for the tiling with k = 1 and 777 = 2 5 
3, 4, ... for equation (1), using the construction of Figure 10. We intend to 
generalize this procedure for k > 1 in later work. 
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In [1] the authors showed that the diophantine equation Nb2 

does not admit any in tegra l solut ion except for the t r i v i a l case N = -1 and 
b = c = 0. At the end of the proof, a conjecture about i t s general izat ion was 
made, namely that 

Nb2 = a2 + tf(4fc + 1) + 1 (1) 
would not yield any nontrivial solutions. 

In this paper we give a new proof of the original equation. We also prove 
that (1) does not have a solution when N is a positive integer. A counter-
example is given to show that there may exist infinitely many solutions of the 
general equation when N takes negative values, so the conjecture in (1) was not 
correct. 

Omitting the trivial case when b = c = 0, we show that 
c2 + 1 
b2 - 1 

is not an integer for all integral values of b and c. Suppose that N is an 
integer. We consider two cases. Suppose b is even. This means that b - 1 = 
3 (mod 4) , which implies that there exists at least one prime p = 3 (mod 4) 
such that p divides b2 - 1. This in turn leads to c2 + 1 E 0 (mod p) , which is 
impossible since -1 is a quadratic nonresidue (mod p) . If b is odd, then 
b2 - 1 = 0 (mod 8), so c2 + 1 = 0 (mod 8), which is also impossible. 

To show that (1) has solutions when N is negative, take N = -2. The equa-
tion becomes 8k - 2b2 = o2 - 1, which has infinitely many solutions given by 

b = 2m9 c = In + 1, and k = m2 + n{jri + l \ 

where m, n are arbitrary integers. The reader can easily generate infinitely 
many solutions by selecting other specific negative values of N. 

Theorem: The diophantine equation Nb2 = c2 + N(bk + 1) + 1 does not admit any 
solution when N > 0. 

Proof: We consider five cases: 

1. Let N E 3 (mod 4). There is a prime factor.p of N such that p E 3 (mod 
4). This implies c2 + 1 = 0 (mod p), which is impossible. 

2. N E 1 (mod 4). Let N = 4t + 1 with t > 0. The equation becomes 

(4t + \)b2 = o2 + 4M + 2, 

where M = 4t/c + t + A:. This equation is solvable only if the congruence 
b2 - o2 E 2 (mod 4) is solvable. But since b2 - o2 E 0, 1, 3 (mod 4) for all 
possible choices of b and a9 b2 - c2 E 2 (mod 4) is not solvable. 

3. 21/ E 0 (mod 4). This implies c2 + 1 = 0 (mod 4), which is impossible. 
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4 . N E 2 (mod 8 ) . Let N = St + 2 wi th t > 0. The e q u a t i o n becomes 

(8 t + 2)b2 = c2 + (8£ + 2)(4fc + 1) + 1, 
which implies 2^2 - c2 E 3 (mod 8) is solvable. Since x2 E 0, 1, 4 (mod 8) for 
all integers x, lb1 - o2 = 0, 1, 2, 4, 6, 7 (mod 8); thus, 2&2 - c2 E 3 (mod 8) 
is not solvable. 

5. N E 6 (mod 8). Let /!/ = 8t + 6 = 2(4t + 3). Then N contains a prime 
factor p, where p E 3 (mod 4). Thus, the solution of the equation is not 
possible for the reason discussed in Case 1 above, and the proof is complete. 
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Let FQ = 0, Fi = 1, and Fn = Fn_i + Fn_2 (n - 2) denote the sequence of Fi-
bonacci numbers. For an integer m > 1, recall that (Fn) is uniformly dis-
tributed modulo m if all residues modulo m occur with the same frequency in any 
period (see [2], [4]). This happens precisely when m = 5k with k > 0, in which 
case (Fn) has (shortest) period of length 4 • 5k, and each residue occurs four 
times (see [1]5 [3])., In this paper we study moduli with more complex 
distributions. 

For any r, 0 < r < m, denote by v(p) the number of times r occurs as a res-
idue in one (shortest) period of Fn (mod m). If m is a power of 5, then v(p) = 
4 for all p. However, if m = 11, then the period of Fn (mod 11) is 0, 1* 1> 2, 
3, 5, 85 2, 10, 1, so that v(p) takes on four different values. 

Definition: For an integer m > 1, (Fn) is almost uniformly distributed modulo m 
[notation: (Fn) AUD (mod m)] if V(P) assumes exactly two values for 0 < r < m. 

In this paper we describe four infinite sequences of AUD moduli, along with 
describing the function v precisely for these moduli. Our proof makes use of a 
recent result of Velez [2], which we state here for the reader's convenience. 

Lemma: For any integer s > 0, the sequence 

Fs + hq, q = 0, 1, ..., 5k - 1, 

consists of a complete residue system modulo 5 . 

Main Theorem: (Fn) is AUD (mod m) for m e {2 • 5k, 4 - 5k, 3 • 5k, 9 • 5k: k > 0}. 
For these moduli, the following data appertain: 

Modulus Period Distribution 

2 3 v(0) = 1, v(l) = 2 

4 6 v(0) = v(2) = v(3) = 1, v(l) = 3 

rk 7 rt o / nk / \ (4 r is e\ 
5K, k > 0 3 • 4 • 5K v(p) = < 0 

(8 P |s oc 
2 p' ̂  1 (mod 4) 

2 

4 • 5k, k > 0 3 • 4 • 5k v(r) = 

even 
}dd 

3 • 5k, k > 0 8 • 5k v(p) 

6 p = 1 (mod 4) 

2 P = 0 (mod 3) 
3 P ^ 0 (mod 3) 

9-5*. IfcsO 3.8-5* v(r) - ^ ^ }' J ^ 9) 
1 ̂  ^ = 1, 8 (mod 9) 

Proof: The cases m = 2, 3, 4, 9 can be checked directly. Assume that k > 1. 
Because of the similarity of the proofs of the four cases, we only prove the 
cases 77? = 2 • 5k and 777 = 9 • 5k, leaving the proofs of the remaining cases to the 
reader. 

•{ 
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Case 1. m = 2 • 5k. As the period of Fn (mod m) is the least common multi-
ple of its periods modulo 2 and 5k, it is clear that the period is 3 • 4 • 5^. 

To compute V ( P ) , it suffices, by the Chinese Remainder Theorem, to compute 
the number of simultaneous solutions to the system 

Fn = PX (mod 2) 

Fn = P 2 (mod 5k) 

with 0 < n < 3 • 4 • 5k
 9 for ordered pairs of residues (r1, r2) with 0 < i51 < 2 

and 0 < P2 < 5fe. Fix r2. 
For n in the indicated range, n can be expressed uniquely in the form n - s 

+ 4<7, with 0 < s < 4 and 0 < ^ < 3 » 5 ? < : - l . By the lemma, for fixed s, there 
is a unique <y, with 0 < q-, < 5 - 1 such that 

Then, also, 

^ + 4(^+5*) E p2 ( m o d 5 ^ 
and 

^8 + ̂ ( ^ + 2-5*) E r 2 ( m o d 5?C)' 

because Fn has period 4 • 5k modulo 5k. Now observe that 

s + bql E s + q-^ (mod 3) , 

s + 4((71 + 5?c) E s + qY + (-1)^ (mod 3), 

s + 4 ( ^ + 2- 5k) = s + qY + (~l)k+1 (mod 3), 

and these are incongruent modulo 3. Thus, for fixed s, there are exactly two 
solutions q to the system 

Fs + hq E 1 (mod 2) 
Fs + hq E ^2 (mod 5k) 

and exactly one solution q of the system 
Fs + hq E 0 (mod 2) 

^s + 4q E ^2 (mod ^ 

with 0 < ^ < 3 - 5 k - l o 
Now s has four possible values, so that there are exactly eight solutions 

of 
' Fn E 1 (mod 2) 

Fn E p2 (mod 5k) 

and exactly four solutions of 

Fn = 0 (mod 2) 

Fn = r2 (mod 5fe) 

with 0 < n < 3• 4 • 5^ - 1. This translates via the Chinese Remainder Theorem 
to the stated distribution. 

The method of proof is now clear, and we provide few details in Case 2. 

Case 2. m = 9 • 5fe . The period is lcm(24, 4 • 5k) = 8 • 3 • 5k. Express n = 
s + kq> where 0<s<3, 0<q<6*5^ - 1. For fixed s and residue r2 (mod 
5k) , there is a unique q^ such that F8 + i+q = r2 (mod 5k) with 0 < q •, < 5k - 1. 
Now the Fibonacci numbers have period 0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8,0, 8, 
8, 7, 6, 4, 1, 5, 6, 2, 8, 1 (mod 9) of length 24, so we consider the sub-
scripts s + ^(ql + t • 5k) (mod 24) for t = 0, 1, 2, 3, 4, 5. A straightforward 
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c a l c u l a t i o n y i e l d s t h a t t h e s e a r e congruent ( i n some o rde r ) t o s , s + 4 , s + 8, 
s + 12, s + 16, s + 20 (mod 2 4 ) . Thus, for f ixed s, r~ t h e r e a r e 6 v a l u e s of 
q90<q<6»5k-l9 w i th Fs + hq = r2 (mod 5k) , (namely, q = q l + t * 5 k , 0 < t 
< 5) . Now, for t h i s sequence of q% s 9 we have t h a t : 

s = 0 => Fs + i+(? E 0, 3 , 3 , 0, 6, 6 (mod 9) 

s = 1 => Fs + Lf(? E 1, 5 , 7, 8, 4 , 2 (mod 9) 

s = 2 => FS + LK? E 1, 8, 1, 8, 1, 8 (mod 9) 

s = 3 => FS + LK? E 2, 4, 8, 7, 5, 1 (mod 9) 

Again, the stated distribution follows from the Chinese Remainder Theorem. D 

Remarks: It is clear from the proof that the given method will decide the dis— 
tribution of any family of the form m » 5k , where 5j/rz, once it is known expli-
citly modulo 777. However, there does not appear to be a general theorem valid 
for all 777 that will let one forgo this tedium. 

It is natural to ask if the list in the Theorem is complete. A computer 
search of moduli m < 1000 indicates this is so. However, the converse proof 
quickly reduces to showing that a modulus m where v takes on only the values 0 
and / for that 777 does not exist. The question of whether there exists a prime 
p > 7 such that only the frequencies 0 and f occur mod p is a well-known open 
problem. 
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THE GENERALIZED ZECKENDORF THEOREMS 

Paul S. B r u c k m a n 
13415 52nd P1.3 W., Edmonds, WA 98020 

(Submitted August 1987) 

We recall the Zeckendorf Theorem and its dual, credited to E. Zeckendorf, 
which deals with the representation of integers as sums of distinct Fibonacci 
numbers. These theorems were restated and proved by J. L. Brown, Jr., ̂in [1] 
and [2]. Throughout this paper, we let N denote the set of positive integers. 

Zeckendorf Theorem: If n e N, n may be uniquely expressed in the following 
form: 

n = Z QkFk+1, (1) 
fe = i 

where 
6k e {0, 1}, Qk = 0 if k > r, and Qk + dk+l < 2, k = 1, 2, ... . (2) 

Dual Zeckendorf Theorem: If n£N, n may be uniquely expressed in the form 
shown in (1), but with the conditions: 

Qk € {0, 1}, Qk = 0 if k > is and Qk + Qk+1 > 0, k = 1, 2, ..., P. (3) 

[Note: The usual statement of the condition on the O^'s in (2) is, 6^0^+1 = 0, 
which is equivalent. The condition as stated in (2) is more amenable to the 
proper generalization.] 

Before stating and proving the appropriate generalizations of the above 
theorems, we introduce some useful definitions. 

Given integers b and t with Z? > 2, t > 2, we say that a given integer n £ N 
is by t-up'pev representable iff there exists an increasing sequence 

of positive integers such that n may be uniquely expressed in the following 
form: 

n = E Bk(b, t)Hk(bs t), (4) 
k = l 

where 
dk(b, t) e {0, 1, ..., b - 1}, efe(Z>, t) = 0 if k > r, (5) 

and 
9fe + 0fe+l + ••• + Gfc+t-l < Q> ~ Dt> fe = 1, 2 , . . . . (6) 

We say t h a t n e N i s b, t-lower representable i f f t he same c o n d i t i o n s hold as 
i n (4) and ( 5 ) , but (6) i s r e p l a c e d by: 

h + h + i + ••• + e* + * - i > o, k = i, 2 , . . . , p . (7) 
Let S(H) and T(^) denote the sets of b, t-upper representable and b, t-lower 

representable numbers, respectively. For brevity, we may write the sum in (4) 
in the form: 

n = ( e r e r _ l ... e2e1)/ 7, (8) 
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omitting the arguments "b9 t" where no confusion is likely to arise. We may 
j.et the notation in (8) represent the b9 t-representation of n [an element of 
S(H) or T(H)] as well as the value of the sum indicated in (4) [an element of 
S(H) or T(H)]. Here, S(H) and T(H) denote the sets of £,£-upper and -lower 
representations, respectively, of the form given in (8). Note that_condition 
(6) for b, t-upper representations states that no representation in S(H) is to 
contain t consecutive digits, equal to (b - 1); similarly, condition (7) re-
quires that no element of T(E) is to contain t consecutive digits equal to 
zero. _ _ _ _ 

Let Sr(H) and Tr (H) denote the subsets of S(H) and T(H) , respectively, 
which contain v digits in the representation (that is, with_0r > 0, Qk_j= 0, if 
k > v > 1). Let the corresponding integers represented by Sr(H) and Tr(H) be 
arranged in nondecreasing order (as yet, we do not know if any duplication 
occurs), and call these ordered sets Sr(H) and Tr(H), respectively. Let Ur(H) 
and Vr(H) denote the sizes of Sr(H) and Tr(H), respectively, that is, 

Ur(H) = \SP(H)\, VV(E) = \TT{H)\. (9) 

Let Ar(H) and Br(H) denote the smallest and largest values, respectively, of 
Sr(H); let CV(H) and Dr(H) denote the smallest and largest values, respectively 
of Tr(H). Finally, we observe that: 

S(H) = &Sr(H), T{E) = (jTT(H). (10) 
r = 1 r = i 

We may now express and prove the following theorems. 

Theorem 1 (Generalized Zeckendorf) : We define the sequence G = (Gk(b, t))fe = 1 
as follows: 

Gk = bk~l, k = 1, 2, ..., t; (11) 

Gk+t = (b - l)(Gfc+t-i + G*+t-2 + ••• + Gk+l + fy), k = 1, 2, ... . (12) 
Then 

N = S(G). (13) 

Moreover, if N = S(H) for some sequence H = (Hk(b, t))k=1, then H = G. 

Theorem 2 (Generalized Dual Zeckendorf): If G is as defined in (11) and (12), 
then N = T(G). Moreover, if N = T(#) for some sequence H = (Hk(b, £))£=1, then 
# = G. 

Proof of Theorem 1: We begin by deriving the values of Ur(H). Since 

6x e {1, 2, . . . , Z ? - l } i f p = l 5 

we have 
Ul(H) = b - 1 = G2 - Gx. 

If v = 2 (with t > 2), then 

0! € {0, 1, 2, ..., b - 1} and 62 e {1, 2, ..., b - 1}, 

independently, so 

U2(H) = b(Z) - 1) = £3 - G2. 

Continuing in this fashion, we see that 

UP(H) = br~l(b - 1) = Gr+1 - Gr, r = 1, 2, ..., t - 1. 

Setting & = 1 in (12) yields: 

Gt+1 = (b - Dib1'1 + &*"2 + ... + 1) = 2?* - 1. 
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Also, note that St(H) may be generated by (b - 1) choices for 6t and b choices 
for each of 0̂ -J.J ©t-2> •••» ®ll however, we must subtract from this composi-
tion the (one) choice where all digits are equal to (b - 1). Therefore, 

Ut(H) = b^Hb - 1) - 1 = 2>* - 1 - b*'1 = Gt + l - Gt. 

So far, we have shown: 

Ur(H) = Gr + 1 - Gr9 r = 1, 2, . . . , t . (14) 

Next (for brevity, omitting the argument "#") , assuming JW > t, we let S^ and 5̂ ' 
denote the subsets of Sm with initial digit in {1, 2, ..., b_- 2} and equal to 
(b - 1), respectively. Let £/„J and Z7̂[ denote the sizes of S^ and 5J[, respec-
tively. Also, let 

w„ = uL+u2 + ... +um, wm = u[ + u{ + ... +u^. 
Now Sm = S^ U SfZ; thus, Um = Um + U%, In what follows, we let x represent any 
of the digits in {1, 2, ..., b - 2 }, y = (b ~ 1), and 0 the zero digit; also, z 
represents either x or y. We note that Sm

f may be formed in any of the follow-
ing (mutually exclusive and exhaustive) ways: 

y^-i 
yysm-i 

yy^y^m~t+i 
t-1 

y°Sm-2 
yy°sm-3 

yy^j^m~t 
t-1 

yoosm^3 

yyOMm-h 

yy^j00^m~t-i • 
t-1 

. . y00...0QSt_l 

. . 2 / 2 / 0 0 . . . 0 S t _ 2 

. . 2 / 2 / . . . 2 /00 . . . O O ^ 

t - 1 

2 / 0 0 0 . . . 0 

2/2/00. . . 0 

2 / 2 / . . . 2 / 0 0 . . 

£ - 1 

Therefore, 

y™ = (Wm'-1 + ^-2 + ••• + K-t + l* + (ym-2 + -̂3 + ••• + W 
+ (ua_3 + um^ + ... + t /m_t- i) + ... + (ut_l + ut_2 + ... + u^ + t - i. 

Taking the first difference, we obtain: 

C-i ~ K = K - K-t+r + w,-i ~ K-t- d5) 
Next, we consider the possible ways to generate 5', namely, as follows: 

xSm_19 xOSm_2i x00Sm_3, ..., x00...0051, or #00...00. 
Since x may be chosen in b - 2 ways, we have: 

U> = (b - 2)(t/m_1 + Um_2 + . . . + U1 + 1) = (b - 2HWm_1 + 1). 

Taking first differences in the last expression, we have: 

£/„'+1 - K ' (b - 2)Um. (16) 

Now, adding the expressions in (15) and (16), we obtain: 

= (i - 2)(A/m_1 + 1 - Vm_t - 1) + {*„_! - Wm_t + (b - 2)Un; 
hence, 

um+1 - (i - D(um + wm_x - wm_t) = (b - i)(wm - wm_t). 
Equivalently, 

Um+l - (2> - l){Um + ^ ^ + . . . + tfn_t + 1 ) , (17) 
w = t, t + 1, t + 2 , . . . . 

340 [Aug. 



THE GENERALIZED ZECKENDORF THEOREMS 

Note that (17) is the same recursion satisfied by the Gm*s in (12). Since Gm + i 
and Gm satisfy this recursions so does Gm+i - Gm. It follows from (14) and 
(17) that we have: 

Ur(H) = Gr+l - Gr, v = 1, 2, ..., for all H. (18) 

Next, we derive expressions for Ar(H) and Br(H) [recalling that these are 
the smallest and largest values, respectively, of Sr(H)]. For any admissible 
H, we see that 

AT(H) = (lOO^O)^, 
V - 1 

or, equivalently, 

Ar(H) = Hr. (19) 

In particular, 

Ar(G) = Gr. (20) 

Also, using the notation introduced earlier, we see that 

Br(H) = (yy...y y - i yy.. .y y - l ... yy-—y y - i yy°°-y)H> 
t- 1 £- 1 t-1 v 

where p = wt + y , 0 < t ; < t 5 

and in the above representation there are u blocks of length t of the type: 

yy- ..y y - i. 
Therefore, 

Br(H) = (b - l)(Hr + Hr_1 + ... +Hl) - (fl„ + 1+(u_1)t + ••• +fiu + 1 ) . 

In particular, 

Br(G) = (fc - 1) L ( ? k + (fc " 1) E E ffy+J-t + fc - E Gy + l + j t 
fc - l j = o fc = i j - o 

= E 0> - Dfe""1 + " E c „ + i + 0 - + i ) t - E c u + i + J - t 
fe = 1 j = 0 j = 0 

= &" - 1 + Gv+1+Ut - Gv+l = bv - 1 + ffr+1 - bv, 
or 

5r(ff) = ^ + 1 - 1. (21) 
By definition of Ar(G) and Br(G), we see from (21) that the Sr(G) are disjoint. 
Moreover, from (20), (21), and (18), we have: 

Br(G) - Ar(G) = Gr+l - Gv ~ I = Ur(G) - 1, (22) 

Thus, the difference between the largest and smallest elements of Sr(G) is one 
less than the number of elements in Sr (G) . If we can prove that N C S(G) 
(i.e., that all positive integers have a b, t-upper representation, with G the 
underlying sequence), this in turn will imply that N = S (G) . We will need a 
lemma. 

Lemma: (b - l)Gm < Gm+i < bGms m = 1, 2, ... . 

Proof: The left inequality is clearly true, from (11) and (12), If 1 < m < tn 
Gm = bm~~l

s so Gm+i - bGm in the range 1 < m < t . Also Gt+i = bt -.1 < bGt. 
Replacing k + t by m + 1 and /??, respectively, in (12), and subtracting the re-
sults, we obtain: 
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Gm+l 

bG„ - G, 

G„ 

m + l 

(b - l)(Gm - Gm_t) 

- (b - DGm_t, if m > t . 

Therefore, if m > t, bGm > Gm+l, which yields the right inequality in the state-
ment of the lemma. 

Let Jr denote the set {1, 2, . .., Gr - 1}, r = 2, 3, ... . Assuming 2 < r 
< t, Gr = b'r~^, so if n 6 Jr , n may be uniquely represented as a b-ad±c number 
with digits in {0, 1, . .., b - 1 }; this representation is also a b, t-upper 
representation, as well as a b, t-lower representation. Hence, 

JT C S(G), Jr C T(G), if 2 < r < t . (23) 

Note that Jl = 0, J2 = {1, 2, ..., Z? - 1}. 

Suppose next that r > t, and assume Jr C S(G); this inductive hypothesis is 
seen to be true for r = t . Given an integer nr with Gr < nr < (?r+1, then 

pGr < n' < (p + l)Gr, where 1 < p < b - 1. 

Then 0 < nf - pGr < Gr, so (n' - pGr) e Jr . Hence, by (23), 

(nr - pGr) e S(G), 

which implies that 

n' - pGr = (6r_10r_2 ... QZ^OG* 

which is an element of Tr_i(G) (note that 
contradiction). Therefore, 

Or, 

3P = 0, otherwise nf - pGr > Gr, a 

1DG n1 - ( p 0 P _ 1 0 r _ 2 . 

A p r i o r i , we c o u l d h a v e 

p = QT„i = Qr-z = ° ° " = ®r-t+i = b - I; 

i f s o , 

n' > (b - l)(Gr + Gr.l + . . . + Gr_t + l) = Gr + 1 , 

which would be a contradiction. Hence, n' G S(G). Therefore, if r > t and 
Jr C S(G), we must have the set 

{Gr, Gr + 1, Gr + 2, ..., bGr - 1} C 5(G^). 

However, by the Lemma, 6>+1 < Z?^. Therefore, Jr C S (G) implies Jr+i C S(G) . 
Due to (23), it follows by induction that 

r = 2 

But £ is an increasing sequence, so 

(jJr = #. 
r = 2 

Thus, 71/ C S(G) . By our previous comments, it follows that /l/ = S(G); in other 
words, there is a 1-to-l correspondence between N and S(G). 

The final part of Theorem 1 states that G is the only sequence generating 
b, t-upper representations. To prove this, we will assume N = S(H) for some 
sequence H = (Hk(b, t))k=sl. Since H must be increasing, and since 1 must have 
a (unique) representation, it is apparent that Hi = I. Then, by (18) and (19), 

Ur(H) = Gr+l - Gr and Ar(H) = Hr. 

Also, since the Sr(H) must be disjoint, and since all representations must be 
unique, we must have 
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Br(H) = Ar+l(H) - 1; 

therefore, by (19), Br(H) = Hr+1 - 1. Also, however, we see that 

Br(H) = Ur(H) + UP.l(H) +...+#!(#), 
so 

v 
Br{E) = £ (Gk + l - Gk) = Gr+l - Gl = Gr+l - 1. 

Therefore, Br(H) = Hr + l - 1 = Gr + i - 1, so Hr+l = £p+1 for all v > 1. It fol-
lows that H = G, which completes the proof of Theorem 1. 

Proof of Theorem 2: The proof follows that of Theorem 1. We begin by deriving 
the values of Vr(H). The initial values of VT{U) are derived by reasoning 
identical to that used in the derivation of the initial values of Ur(H), with 
the exception of Vt (H). Thus, 

VP(H) = (b - l)br~l, v = 1, 2, ..., t - 1, 

i.e., in this range, Vr (H) = (b - l)Gr. For T-^(H), we must avoid t consecutive 
zero digits; this will automatically be satisfied if Qt > 0. Hence, 

Vt(H) = (b - D M " 1 = (b - l)Gt. 

Thus, 

Vr(H) = (b - 1)GP, r = 1, 2, ..., t . (24) 

Next, we observe that if m > i, Tm+i(H) may be formed in the following mu-

tually exclusive and exhaustive ways (using the same notation as before): 

t- l 
Since z may be chosen in {b - 1) ways, we have: 

vm+l = (b - i)(vm + V i + ••• + ^ - t + i ) ' <2 5) 
m = t, t + 1, t + 2, ... . 

Note that (25) is the same recursion as satisfied by the £m's (and the Um
1s). 

We conclude from (24) that 

Vp(H) = {b - l)Gr, r = 1, 2, ..., for all H. (26) 

Next, we derive expressions for Cr (H) and Dr(H), the smallest and largest 
values, respectively, of Tr(H). We see that, for any admissible H, 

Cr(H) = (100...0 10(^0 ... lQCh^O lQCL^J))^, 
t- 1 £- 1 £-1 v- 1 

where r = ut + V, 1 < v < t , 

and the representation above contains u blocks of t digits, of the type 

100...0. 

Hence, 

Crm = E Hv+jt. (27) 
j =0 

Also, it is clear that Dr(H) = (yy...y)H, or 
V 

Dr(H) = (b - 1) £,Hk. (28) 
k= l 
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In p a r t i c u l a r , Dr (G) = (b - 1)(G1 + G2 + ••• + Gr). I f 1 < V < t - 1, then 

-fc + j'Tfc ^P((?) = (* - 1 ) E Gk + (b - 1 ) E E GV+) 
k=l j = 0 k=l 

= (2> - D E ^ " 1 + W E 1 ^ + 1 + ( J - + i ) , 
k = l j = 0 

u u 
= b - 1 + E GV + l + jt = b - 1 + H ^V + l + j f " ^y+l 

j = 1 j = 0 

= i u - 1 + C r + 1 (G) - ^ , 
or 

Z?r(G) = Cr+l(G) - 1, where r = u£ + v , v = 1, 2 , . . . , t - 1. (29) 

Also s i f v = £, then r = (w + l ) t , so 

(U + l ) t M + 1 
Z?r(G) = (2? - 1) E Gfc = £ G1 + , t ; 

fc = i j = i 

note that in this case 
(u + 1) blocks of t digits u + l 

Gr+1(G) = (100...0 100...0 ... 100...0 1)G = E Gl+jt 
t-l t-l t-l j = 0 

= DV(G) + (Gl = 1), 

which shows that (29) holds also for v = t . We may therefore conclude: 

Dr(G) = Cr + l{G) - 1, r = 1, 2, ... . (30) 

Note, from (28), that 

£pO0 - ̂ .itfl = (2? - l)#P, 
so 

£r(G) - 0r_i(G) = (b - l)Gr = 7r(G). 

Using (30): 

Dr(G) - Cr(G) = Vr(G) - 1. (31) 

We see from (30) that the Tr(G)'s are disjoint, by definition of the CT(G) and 
Dr(G). Thus, as before, If we can establish that N C T(G), (30) and (31) would 
imply that tf = T(G). 

Recall that Jr C T(£) for 2 < r < t . Suppose next that r > t, and assume 
Jr C T{G) . Given an integer n;/ with Gr < n" < Gr + i, it must satisfy 

pGr < nf! < (p + 1)6>, where I < p < b - I; 

then 0 ^ n/; - pGr < Gr, so (n!t - p£P) € T(6!), by the inductive hypothesis. Now 

n" - pGr = (0r_10P_.2 ... eOG9 

which is an element of Tr_l(G) [for, if Qr > 0, then (n" - pGT) > Gr, a contra-
diction) . Thus, 

n" = (p0P_10P_2 ... 0 X ) G 3 

so nn e T(G). Hence, if r > t and Jr C T(G)9 we have that 

{GT, Gr + 1, . .., 2?Gr - 1} Is a subset of T(G0 . 
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Since Gr+1 < bGr, by the Lemma, JY C T(G) implies Jr+ x C T(G) . So, as before, 
N C T(G). By our previous remarks, N = T(£). 

To prove that G is the only sequence allowing bs £-lower representations, 
we suppose that N = T(H) for some sequence H. Then 

M # ) = (£ - l)Gr, from (26). 

Since /!/ = T(G) = r(5), it follows that 

Dr(H) = Cr+1(#) - 1. 

Also, 

Dr(H) - Dr_l(H) = (b - l)Hri from (28). 

But 

Dr(H) = Vl(H) + V2(H) + ... + Vr(H), 
so 

Dr(H) - Dr_l(H) = Vr(H) = (b - l)Gr. 

From this, it follows that Er = Gr for all r > 1, so H = G. Q.E.D. 

We now illustrate these two theorems with two examples. For b - t = 2, we 
have the "ordinary" Zeckendorf Theorem and its dual, and the appropriate se-
quence G is the sequence of distinct Fibonacci numbers: 

{1, 2, 3, 5, 8, ...} = (Fk+l)l=±. 

For b = 3, t = 2, 

G = {1, 3, 8, 22, 60, ...} 

and we have the following representations: 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

S(G(3, 2)) 

1 
2 
10 
11 
12 
20 
21 
100 
101 
102 
110 
111 
112 
120 
121 
200 
201 
202 
210 
211 
212 
1000 
1001 
1002 

W ( 3 , 2)) 

1 
2 
10 
11 
12 
20 
21 
22 
101 
102 
110 
111 
112 
120 
121 
122 
201 
202 
210 
211 
212 
220 
221 
222 

n 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

S(G(3, 2)) 

1010 
1011 
1012 
1020 
1021 
1100 
1101 
1102 
1110 
1111 
1112 
1120 
1121 
1200 
1201 
1202 
1210 
1211 
1212 
2000 
2001 
2002 
2010 
2011 

T(G(3, 2)) 

1010 
1011 
1012 
1020 
1021 
1022 
1101 
1102 
1110 
1111 
1112 
1120 
1121 
1122 
1201 
1202 
1210 
1211 
1212 
1220 
1221 
1222 
2010 
2011 etc 
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For b = 2, t = 3, 

G = {1, 2, 4, 7, 13, 24, 44, ...}, 

which is the sequence of distinct Tribonacci numbers, and we have the follow-
ing representations: 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

S(G(2, 3)) 

1 
10 
11 
100 
101 
110 
1000 
1001 
1010 
1011 
1100 
1101 
10000 
10001 
10010 
10011 
10100 
10101 
10110 
11000 
11001 
11010 
11011 
100000 
100001 

T(G(2, 3)) 

1 
10 
11 
100 
101 
110 
111 
1001 
1010 
1011 
1100 
1101 
1110 
1111 
10010 
10011 
10100 
10101 
10110 
10111 
11001 
11010 
11011 
11100 
11101 

n 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

S(G(2, 3)) 

100010 
100011 
100100 
100101 
100110 
101000 
101001 
101010 
101011 
101100 
101101 
110000 
110001 
110010 
110011 
110100 
110101 
110110 
1000000 
1000001 
1000010 
1000011 
1000100 
1000101 
1000110 

T{G{2, 3)) 

11110 
11111 
100100 
100101 
100110 
100111 
101001 
101010 
101011 
101100 
101101 
101110 
101111 
110010 
110011 
110100 
110101 
110110 
110111 
111001 
111010 
111011 
111100 
111101 
111110 

It is of interest to indicate a generating function for the Gn(b9 t)!s, 
namely: 

F(z; b, t) = + Z = £ Gn(b, t)zn. (32) 
l - (b - l)(z + z1 + ••• + zt) «-i 

This may be verified by multiplying each side of the last equation by the de-
nominator of the fraction, then applying the relations in (11) and (12) 
defining Gn(b, t). By multinomial expansion, we may derive the following 
explicit expression for Gn(b, t) from (32): 

Gnib, t) = t (b - I)"-1 E (Xi. + "'• +
r

X * ) ' 03) 

where S is the set of t-ples of nonnegative integers x-,, x2, . . . , xt satisfying 

x^ + x^ + . . . + xt = 777, x-, + 2x2 + • • • + txt = n. 

We may also show the following result, expressed as a divided difference: 

Gn(b, t) = (b - l)~l A t ~ 1 ^ n + t-1(^li z2, ..., zt), (34) 

where z-^, z2, ..., zt are the (distinct) roots of the equation: 
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p(z) = p(z; b, t) = zt - (b - l)(st_1 + st_ 2 + ..- + 1) = 0. (35) 

This may be simplified to the following sum: 

Gn(b, t) = (b - l)"1 E ^ + t - 1 / p ' O k ) . (36) 
k = l 

An alternative expression, in terms of a contour integral, is given by: 

Gn(b, t) - (t-D-l^^^ld,, (37) 

where (7 is any simple closed contour in the complex plane, with posi-
tive direction and surrounding z,, z2> ..., zt within its interior. 

Other expressions may be derived which can be shown to be equivalent, namely: 

n (h - 1^ m~1 Jn-m 
(38) 

3 = 0 

and 

Gn(b, t) - E (b - l)m-l "'"£'"" {-DH^M* ~ l ~ kt). (39) 

Undoubtedly, further analysis of such relations should lead to additional 
interesting results. 

References 

1. J. L. Brown, Jr. "Zeckendorf's Theorem and Some Applications." Fibonacci, 
Quarterly 2.3 (1964):163-168. 

2. J. L. Brown, Jr. "A New Characterization of the Fibonacci Numbers." Fibo-
nacci Quarterly 3.1 (1965):1-8. 

1989] 347 
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1. Introduction 

The minimum period of the sequence 

{(*) (mod M)) 
was discovered by Zabek [6] by investigating the Pascal triangle. Applying 
Vandermonde f s convo lution to ( n^) 5 Tr ench [5] obtained identical periods. By 
studying the highest prime power dividing qn - 1, Fray [2] extended the results 
to ^-binomial coefficients. All these approaches depend directly on the prop-
erties of the binomial coefficients. It is difficult to apply these techniques 
to other infinite integer sequences. In this paper, we will look at the 
problem from another perspective. In particular, we will consider the generat-
ing function of 

1 ^ m .+ k\ r (n)K • i = y (n+«.\ 
\k/fn>k- Q _ ^fc+i n^A k i (1 - x)k+i n = 0 

The problem can then be solved by studying divisibility of polynomials over 7LM. 
This approach relies on the generating functions only, so it can also be 
applied to other sequences with similar generating functions. Thus, in this 
paper, we will assume all sequences to be infinite integer sequences. 

2. Preliminaries 

A sequence ian}n>0 is said to be periodic modulo M9 with period TT , if there 
is an integer riQ > 0 such that, for n >.n$, 

an + 1J = an (mod M) . 

If UQ = 0, ioin}n>Q I s s a i d to be purely periodic modulo M. I f 

Mx) = E anxn 

n > 0 
generates {^n^n>05 w e a l s o call TT a period of A(x) modulo M, Clearly, any per-
iod always divides the minimum period* which is, by definition, the smallest 
period. The next two theorems are obvious. 

Theorem 2.1: If {an}n>Q is generated by A(x), then TT is a period of {an (mod 
M)}n>_Q iff 

(1 - x1T)A(x) e EM[x], 

Theorem. 2.2: If {an}n>Q Is generated by A{x) and periodic modulo M with 
period TT, then it is purely periodic modulo M iff the degree of (1 - x^)A(x) is 
at most TT - 1 In 7LM[x] . 
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We will study generating functions of the form l/f(x), where f(x) e 7L[x] and 
/(0) = 1. Under these conditions, IT is a period of 1/ f(x) modulo M iff f(x) 
divides 1 - X77 (mod M) . 

Theorem 2.3: Given f(x)9 u(x) e 7L[x] 9 where f(0) = u(0) = 1, let y and y' be 
the minimum periods of l/f(x) and 1/f(x)u(x) modulo M, respectively. Then y 
divides y r. 

Proof: It suffices to show that yf is a period of l/f(x) modulo M. Equivalent-
ly, it suffices to show that f(x) divides 1 - xy' (mod M) , which follows from 
the fact that f(x)u(x) divides 1 - x^' (mod M). Q 

The next result, which is again obvious, allows us to assume, for the rest 
of this paper, that M is a prime power. 

Theorem 2.4: Let p̂ i ... p^s be the prime factorization of M, and y(pf*) be 
the minimum period of {an (mod p.1)} > 0; then the minimum period of 

{an (mod M)}n>Q 

is the least common multiple of y(p.i:), where 1 < i < s. 

Finally, if we know a period of {an (mod p)} >Q, we have an upper bound for 
the period of {an (mod pN)}n>0* 

Theorem 2.5: If TT is a period of l/f(x) modulo pN9 then pis is a period of 
IIf{x) modulo p^ + 1. 

Proof: From Theorem 2.1, 

x77 = 1 - f(x)h(x) + pNg(x) , for some h(x) 9 g(x) G Z[#]. 

Then, for some H(x), G(x) e 7L[x] 9 

XP* = {l - f(x)/z(x)}p + p^+1£(x) = 1 - f(x)H(x) + p^ + 1G(x). 

Thus, /(#) divides 1 - x-pTr (mod p^4"1). D 

CoroHary 2.6; If ir is a period of l/f(x) modulo p, then irp^"1 is a period of 
1//(x) modulo pfl for tf > 1. 

3. Binomial Coefficients 

Let y(t; p^) be the minimum period of 1/(1 - x)1 modulo pN. Since y(l; pN) 
= 1 for N > 1, we may assume that t > 1. From Theorem 2.3, y(t; p^) always 
divides \i(t + 1; p^) for N > 1. What we would like to know is, when will 

\i(t; pN) * y(t + 1; p*); 

which would imply that y(£; p^) divides y(i + 1; pN) properly. The following 
theorem provides one such criterion. 

Theorem 3.1: Let IT be a period of 1/(1 - x)* modulo M. Then TT is also a 
period of 1/(1 - x)t+l modulo M iff h{\) = 0 (mod M) , where h(x) is the 
polynomial (1 - x7r)/(l - x)* in Z^[x] . 

Proof: Let /z(x) = 2] anxn e 7LM[x] . Then 
rc = 0 
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(1 - oo) t+l 
-^-L- (mod M) 

t xm)( E wn) 
7=0 / \n = 0 I 

i - l / m \ 

E E <*»)xm + M I ) E *ff 

\m= 0 

£ - 1 

m=0 \n = 0 

is a polynomial modulo M iff /z(l) E 0 (mod M) . D 

For b > 0, (1 - x)p E 1 - xp (mod p) ; thus, u(p&; p) = pb. Consequently, 
Corollary 2.6 implies that y(p^; pN)\.pN+b'1. But, from Theorem 2.3, 

\i(t; p®)\\i{pb; pN) if t < p*. 

H e n c e , f o r pb~l < t < pb, b > 1 , we h a v e 

i _ xN +b~ l 

G(x) = 7—eZJx]. 
(1 - x)* M 

Since the leading coefficient of (1 - x)1 is ±1, the degree of G(x) is at most 
p/V+£-l_ ia ye conclude from Theorem 2.2 that 1/(1 - x^ is purely periodic 
modulo M. In other words, 

Theorem 3.2: \(i,) (mod M)> is purely periodic, for k > 0. 

In particular, 

H(x) = (1 - xpN+b~2)/(l - x)b~l 

i s a p o l y n o m i a l modulo pN: 

"- 1 

J - o V ^ 
#(*) E E (P "1+. J' " X W (mod p'v). 

We want to know if pN+b 2 is still a period of 1/(1 - x)p + 1 modulo p/Y. In 
order to apply Theorem 3.1, we evaluate 

The highest power of p which divides ( "J" ) is the number of carries in the p-
ary addition of A + B. (See, for example, [1], pp. 270-271.) Thus, 

pN-l\\H(l) and #(1) f 0 (mod pN) . 

It now follows from Theorem 3.1 that 

pN+b-2 divides \i(pb ~ l + 1; pN) properly. 

So, pN+b-2 is a proper divisor of u (£; p/V) for all £ > pb~l. On the other 
hand, for t < pb, 

y(t; p^)|y(p^; p̂ V) and y(pfr; p/V) |p/V+i - 1. 

Therefore, we have just proved 

Theorem 3.3: The minimum period for 1/(1 - x)* modulo p^ is 1 if t = 1, and 
pN+b-i±f pb-i < t < pb, b > l» 
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Corollary 3.4: The minimum p e r i o d of 

i s 1 i f k = 0, and pN+b-l ±f pb-l < \ < pb 3 £ > i . 

Corollary 3.5: I f p^1 . . . p&s i s the prime f a c t o r i z a t i o n of M, then the minimum 
pe r iod of 

i s 1 i f k = 0, and 

n P ^ " " 1 

i = l ^ 

i f p . i _ < & < £ ? . * , & . > 1 for 1 < i < s. 
4. Final Remarks 

Our approach can be used to determine minimum periods of many other infi-
nite integer sequences. For example, the minimum periods of the Stirling num-
bers of the second kind are determined in [3] . In particular, we found the 
minimum periods of l/f(x) modulo M, where the factors of f(x) are all linear 
(in the form of 1 - rx), or are all binomials of the form 1 - xv. These allow 
us to extend the results in [4] to any prime power modulus, and hence to any 
modulus. These results will appear in a forthcoming article elsewhere. 
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1. Introduction 

This paper investigates a concept called a two-sided generalized Fibonacci 
sequence (TGF) that was motivated by problems of uniqueness in measurement 
representations [2-4, 6-8]. The particular context that gives rise to TGFs is 
finite algebraic difference measurement [2, 6-8]. For simplicity, suppose that 
n + 1 objects a-,, ..., #M + 1 are linearly ordered by a real-valued function u as 

w(a1) < u(a2) < ••• < u(an+1) 

and that comparisons can be made between positive differences u(aj) - u(a^), 
i < j . In measurement theory, we are sometimes concerned with conditions which 
guarantee that the u values are unique up to a positive affine transformation 

w •> aw + 3» ct > 0, 

Let di > 0 be defined by 

di = u(ai+l) - u{at). 
Then we search for conditions which guarantee that the d-i are unique up to 
multiplication by a positive constant a. Each equality-of-d±fferences compari-
son yields an equation of the form 

di + di + i + •••+ dj = dk + dk + i + • • • + ̂ £ > 1 ̂  i'^0 < k < I < n, 
in the variables d^. If there are n - 1 linearly independent equations of this 
type that have a strictly positive solution, then their solution by positive di 
is unique up to multiplication of every d^ by the same positive constant. For 
example, the three equations 

d\ = d^i d2 + d% = di+> di + d2 = d$ + di+ 
have solution d* ... d* = 2213, and if d[ ... d^ is any other positive solution 
then there is a X > 0 such that d[ = Xd* for each i. We refer the interested 
readers to [2] for additional discussion of this type of uniqueness in the 
general algebraic difference setting. 

A TGF is a finite sequence of positive integers constructed by starting 
with a 1 and adding terms one by one at either end of the sequence S con-
structed thus far so that each new term equals the sum of one or more 
contiguous terms on the end of S at which the new term is placed. A new term v 
added to S = Xi ... xm produces either vx\ . . . xm with 

U t \ i/O -I , X -l T" X ry 5 a s . , X -1 I . . . ""f~ X ~, J 

or xi ... xmv with 

v e {xm9 xm + xm_li ..., xm + ... + Xl}. 
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TGFs arise from specialized sets of equations of the type described in the 
preceding paragraph. One example for n = 4 is 2114, which is the unique posi-
tive solution (up to multiplication by a positive constant) to 

d2 = d%, d\ = d2 + d%9 di+ = d\ + d2 + d$. 
Although many unique solutions to equations for the general algebraic differ-
ence setting do not correspond to TGFs, as is true for 

d\ . . . d% = 2213, 

two-sided generalized Fibonacci sequences constitute an important subset of all 
such unique solutions, and it is this subset that we study here. 

Let Tn denote the set of all n-term TGFs, and let tn = \Tn |. Then 

Tx = {1}, T2 = {(1, 1)} = {11}, T3 = {111, 112, 211}, 

Tk = {1111, 1112, 1113, 1122, 1123, 1124, 2111, 
2112, 2114, 2211, 3111, 3211, 4112, 4211}, 

and so forth, with t\ = t2 = 1, t$ = 3, ti± = 14, and, as we shall see, £5 = 85, 
tg = 626, .... We note that every TGF for n > 2 has the monotonicity property, 
which means that there is a subsequence of two or more contiguous lfs and the 
sequence is nondecreasing in both directions away from that subsequence. Given 
any finite integer sequence 

bj ... b2bll ... la ^2 * * * ak 

with the monotonicity property, a simple outside-in algorithm identifies 
whether it is a TGF. At each step of the algorithm, we ask whether a largest 
end term is the sum of a contiguous block of terms next to it. If not, the 
sequence is not a TGF; else delete that end term and repeat the question. If 
deletions leave only l!s, the sequence is a TGF. 

We close this section by summarizing our main results. Our first main 
counting result is the nonlinear recurrence 

tn+i = 2ntn - (n - l)2tn_! for n > 2, 

which has the Fibonacci feature that each new term in 

(tl9 t 2 , ...) = (1, 1, ...) 

is determined from its two immediate predecessors. Since the tn sequence is 
not in Sloane's book [10] and has not been brought to that author's attention 
by others (N. J. A. Sloane, personal communication), it may not have been 
studied previously. 

The recurrence implies that 

(/n + 1/2)2 - 1/in < -J1±-L < (Vn + 1/2)2 for n > 2. 

This gives nice bounds on the ratio of successive tn and indicates the growth 
rate of the tn sequence. We omit the proof of these bounds, which follow with-
out great difficulty from the recurrence by induction, algebraic manipulation, 
and subsidiary inequalities such as 

1/2 < Jn{Jn - fn - 1). 

Our other main result for tn is an asymptotic estimate obtained from the 
exponential generating function 

00 4- rpYl~ X. 

Fix) = E " 
(n - 1)! 
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We prove that 

e \ - x 
F(x) = 

l_ 
i-y 1 r* e i-y 

- - I ay 
e Jy = o 1 - y 

and use this to obtain 

tn ~ K(n - l)le2/" lnllh, 

where K = Zj^/e/ir/2 and 
l 

1 f1 el~y 7 KY = dy = 0 .148495. . . . 
e Jy = 0 1 - y 

The ratios of successive values of this approximation of tn lie well within the 
bounds of the preceding paragraph. The generating function can also be used to 
obtain a fuller asymptotic approximation to t n . 

The results for tn are proved in the next section. Section 3 examines 
f(ki> . .., km) , the length of a shortest TGF that contains at least one 
permutation of the positive integer sequence (/C]_5 ..., km) as a (not neces-
sarily contiguous) subsequence. We note first that f{k\, . .., km) is always 
defined for m < 4 but can be undefined for m > 5 because no TGF has a permuta-
tion of ki, . .., km as a subsequence. We then show for a single integer k > 2 
that 

f(k) = \log2k\ + 2, 

where |~x] is the smallest integer at least as great as x. This result is fol-
lowed by a proof that, when k\ < k2 ^k3 < k\+9 f(k\9 k2, k$, ku) - f(k2, k3, ku) 
can be arbitrarily large. We do not know whether the same thing holds for 
f(ki, k2, k3) - f(k2, /c3) or for /(/q, k2) - f(k2) when k\ < k2 < k3, but con-
jecture that f(ki, k2) < f(k2) + 1. 

The paper concludes with remarks on open problems and generalizations. 

2. Counting TGFs 

Theorem 1: £]_ = 1, t2 = 1, and £n+1 = 2ntn - (n - l)2tn-i for n > 2. 

Proof: Each TGF X\ ... xn in Tn yields n left extensions vx\ ... xn in Tn+i for 
the n different values in 

{xi, xl + x2, ..., xi + ••• + xn}. 

It also yields n right extensions X\X2 ... xnv in Tn+ ]_ for the n different 
values in 

^ n ' xn + Xn-l > " ' ' } xn + " ' " + xl J • 

Thus, Tn induces ntn distinct members of Tn+1 by left extension and ntn dis-
tinct members of Tn+i by right extension. But the 2ntn total can contain 
duplications between left and right extensions. 

Call a sequence in Tn+1 a sequence of duplication if it arises from both a 
left extension and a right extension of sequences in Tn . Consider the condi-
tion 

z2 ... zn e Tn_is %i = z2 + ••• + Zj for some 2 < j < n, (A) 

and sn+1 = zn + • •• + 2^ for some 2 < k < n. 

If (A) holds, then Z\Z2 ... sn£n + 1 is clearly a sequence of duplication, since 
3]_ ... sn and s2 ... sn + l are in Tn . 
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Conversely, if Sj ... 2n + 1 is a sequence of duplication, then (A) holds. 
To see this, suppose 

2l ••• s„ + 1 = a%i *.. xn = yl . . . ynb 

with xi . . . xn and 2/2 ... yn in Tn, 

a = x1 + ••• + Xj for some 1 < j < n, and 

^ = yn
 + * " " + #£ f o r some 1 ̂  k ^ n. 

We cannot have a = X\ + ... + xn, since otherwise y^ > yz + ... + yn, contra-
dicting yi . . . yn G Tn . Similarly, b cannot equal yn + . .. + y±m We can con-
clude that (A) holds for Zi = a and sn + 1 = b, provided that we can show that 
S = z2 ••• zn i s i n ^n-1- Suppose, to the contrary, that S £ ^n-l» Then 

xk = xk+l + • • • + ̂ n for some k < n - 1. 
If this is true only for k = n - 1, then xn can be the last term added in the 
construction of X| . . . xn so that its deletion leaves member x^ . . . xn_i = S of 
Tn_i» Hence, we suppose that 

xk = Xfr+i + ••• + xn for some k < n - 2. 

By a symmetric argument for y± ... z/n , 5 £ ^n-\ implies that 

2/j = 2/1 + • • • + 2 / j - l f o r s o m e J ^ 3 . 
With A: and j as just noted, xk = 2^ + 1, z/̂- = Zj , and the monotonicity property 
for 2j ... sn+i requires that there be some l's to the left of Zj and some l's 
to the right of s^ + 1. Therefore, k + 1 < j . But then zk + 1 > Zj (xk > yj) , 
since zk+i is a sum of terms that include Zj, and 2j > s^+i (yj > Xy) , since 2j 
is a sum of terms that include zk+1 . We therefore have a contradiction and 
conclude that S G ̂ Vz-1-

We have shown that (A) holds if and only if Z\ ... zn+l is a sequence of 
duplication. Since for every member of Tn_i each of z\ and zn+i can be chosen 
independently in n - 1 ways to satisfy (A), there are precisely (n - l)2tn„i 
sequences of duplication. Each of these corresponds to one left extension and 
one right extension from Tn. Therefore, 

tn+i = 2ntn - (n - l)2tn_1. D 

A s i m p l e a p p l i c a t i o n of Theorem 1 shows t h a t 

£ 5 = 8 5 , t 5 = 6 2 6 , t7 = 5 3 8 7 , tQ = 5 2 , 8 8 2 , 

t 9 = 5 8 2 , 1 4 9 , t 1 0 = 7 , 0 9 4 , 2 3 4 , t x l = 9 4 , 7 3 0 , 6 1 1 , . . . . 

Theorem 2: tn ~ (n - 1) \Kxiehe'l^l (2n1/i+), w h e r e 

1 

1 f 1 e^-y n 
£i = - - I dy = 0 . 1 4 8 4 9 5 . = 0 1 " 2/ 

Proof: The proof is based on the saddle point method of asymptotic analysis 
described, for example, in de Bruijn [1]. As we note shortly, the main step in 
the proof is covered by results of Hayman [5]. 

We begin with the recurrence of Theorem 1 and form the exponential gener-
ating function 

n-l 

Fix) = £ , " M , 
n = i (n - 1) ! 
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Using the r e c u r r e n c e , we ge t 

Ff(x)(l - x)1 - F{x){2 - x) = - 1 . 

We solve this linear differential equation by a standard method to obtain 
1 

F{x) 

1 
e l - x 

1 - X 1 Jx 1 - y * 

where K\ is as defined in Theorem 2. 
Ignoring fl . .. dy for the moment, we use the saddle point method to obtain 

the asymptotic estimate of the coefficient cn of xn in the power series expan-
sion of el^l~ x^/ (I - x) . It follows from Hayman [5] (and by our independent 
verification) that 

Since cnlcn-\ •* 1 and (see below) fl . . . dy Is insignificant compared to K\, we 
conclude that 

tn/(n - 1)! ~ K^/^he2^ lnl/h 

as claimed in Theorem 2. 
To show that the fj- . .. dy part of F{x) can be ignored asymptotically, we 

first extend this part of F(x) to the complex plane by defining 
1 l z-u 

el~z fl el~u 1 f 1 e ( i - ^ X i - u ) » 
q(z) = I du = I du = lL d^z71. 
^ 1 - zja 1 - U 1 ~ sis 1 - W n n = 0 

By Cauchyfs integral equation, 

g(z) dz 

and therefore 
|2| = j, s s 

max | £7(3) | _ max I ̂ (s) I 

where v = 1 - l//n and the max is taken on the circle | z | = v. We shall show 
that 

1*7(3)1 = O(Jn) for all z with \z\ = P. 

It then follows that 

\dn\ = OiJne^) 

and hence that 

£(n3A /e^) 0. 
*1<V 

Therefore, the total coefficient of xn in the power series expansion of F(x) 
is ~ Kion. 

To obtain 

j(z)\ = 0(i/n) on 3 = r, 

we begin with the second integral expression of g(z) in the preceding paragraph 
and define a by 

u = 1 - a(l - z) 
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t o o b t a i n 

y v 1 -^Ja=o a 

Since Re(l/(1 - z)) = (1 - Re(s))/|l - z\2 and 1 - 1/a < 05 this yields 

I / ) I < ___J__f1 (1- l/a)(l-Re(2))/|l-2|2 ̂ a 

^ ' " |1 ~ *|Ja-0 

With z = p(cos 0 + i, sin 0) in polar coordinates , 

| 1 - z | = (1 - 2v cos 0 + P 2) 1/2 . 

This i s minimized a t 6 = 05 so 

m i n | l - z\ = I - r = l//n« 

There fo re ? 

m a x ( 1 / | 1 - z\) = Jn. 
Moreover, Re ( 1 / ( 1 - z)) i s e a s i l y seen to be maximized a t 0 = IT, where i t 
equa l s 1/(1 + r ) , or about 1/2. Let 3 > 0 be a c o n s t a n t l e s s than R e ( l / ( 1 -
z)) for a l l \z\ = r . Since 1 - 1/a i n the exponent of the p reced ing i n t e g r a l 
i s n e g a t i v e , i t fo l lows t h a t 

\g(z)\ = OWn'f e ( 1 - 1 / a ) 3 d a / a V 

We break the range of i n t e g r a t i o n for a i n t o [0 , 1/10] and [ 1 / 1 0 , 1 ] . Since 

I e^l-l/a^da/a = (9(1), 
J(x = 1/10 

o(/nf . . . da/a] = 0(/n) . 
\ ^ a = l / 1 0 / 

On [0 , 1 /10] , 1 - 1/a < - l / 2 a , so 

•1/10 / r i / i o 
e^/2a da/a /nl e(l~l/a^da/a = olSnl 

Ja=Q \ JO 

Let y = 3 / ( 2 a ) , so da/a = ~-dy/y and 

f l / 1 0 f<*> 
e^/2a da/a = I e~y dy/y. 

JO Jy =56 

Since 3 i s only r e q u i r e d to be l e s s than 1/(1 + r ) , and 0 < v < 1, we can p r e -
sume t h a t 53 > 1. Then, s i n c e 

J (e~x/x)dx = 0(1), 
we get 

r 1 / 1 0 r-
fal e ( i - i /« )e j a / a = o(vn). 

J a = 0 

Hence |^(s)| = 0(Vn) regardless of where z lies on \z\ = v. Q 
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3. Inclusion of Specific Terms in TGFs 

Recall that f(ki> . .., km) is the length of a shortest TGF which contains 
at least one permutation of the positive integer sequence (k\ , . . . , km) . If 
there is no such TGF, we say that f(k\, . .., km) is undefined. 

Theorem 3: f(ki, . .., km) is always defined for m < 4 but can be undefined for 
m > 5. 

Proof: Let k = maxl^, k2, k3, ki+} and assume with no loss in generality that 
k\ < k2 and k3 < ki+. Then k2kil ... lk3ki+ with k l's in the middle is a TGF. 
However, /(4, 5, 6, 7, 8) is undefined since, according to the monotonicity 
property, at least three numbers from {4, 5, 6, 7, 8} must appear in increasing 
order (away from the l's) on the same side of the block of lTs, and this is 
clearly impossible for a TGF. • 

Theorem 4: f(k) = [log2k] + 2 for k > 2. 

Proof: Since the largest possible term in a sequence in Tn is 2n~2- (from 11248 
... 2n~2, for example), f(k) > |~log2/c] + 2 for k > 2. Conversely, given k > 2 
and its expansion as a sum of powers of 2, say, 

k = 2kl + 2kz + ... + 2^p with 0 < £i < k2 < ... < /cp, 

let Ui < u2 < - • • < uq be all integers in {0, 1, ..., £:p}\{/q, ..., kp}. Then 
the (kp + 2)-term sequence 

Z. , . . . , Z . , Z . , 1 , Z j Z ' , . . . , Z 

k is a TGF since each 2X equals 1 plus all terms 2U with y < x. If & = 2 p, then 
it follows that 

f(k) < kp + 2 = log2k + 2; 

if k > 2 p , then the addition of /c to the left end of the sequence gives 
another TGF, from which 

f(k) < kv + 3 < \log2k\ + 2 

f o l l o w s . Hence, 

f(k) = \log2k] + 2 for k > 2. D 

The next steps beyond Theorem 4 are to consider f(k\, k2) and f(k\, k2) -
f(k2) when k\ < k2. We have systematically verified 

f(klt k2) < f(k2) + l (ki < k2) 

for all k2 < 16, but do not know if this holds for larger k2. Similarly, we do 
not know if there is a fixed o such that 

f(ki, k2, k3) < f(k2, k3) + c whenever k\ < k2 < k$. 
However, we do have the following result. 

Theorem 5: If kl < k2 < k3 < kh, then f(kl9 k2, k3, kh) - f(k2, k3, kh) can be 
arbitrarily large. 

The following lemma is used in the proof of Theorem 5. We will prove the lemma 
shortly. Here, [xj is the integer part of x. 

Lemma 1: f(k, k + 1, fc + 2, fc + 3) > L̂ /3J + 6 for ^ > 3. 
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Proof of Theorem 5: Let 

(kl9 k2, k3, kh) = (k, k + 1, k + 2, k + 3) 
wi th k + 1 = 2P and p > 3 . Then 

/(fc + 1, fc + 2 , fc + 3) < p + 5 = log2(A: + 1) + 5 
s i n c e 

2P + 2 , 2P + 1, 1, 1, 1, 2 , 4 , 8, . . . , I9 

i s a TGF in Tp + 5 . When t h i s i s combined wi th the conc lus ion of Lemma 1, we 
have 

f(klf k2, k3, kO - f(k2, k3, k±) > [k/3\ + 1 - log2(A: + 1 ) , 
and the r i g h t - h a n d s i d e can be made a r b i t r a r i l y l a r g e . Q 

Proof of Lemma 1: Let S = xi 
sers in 

be a shortest TGF that contains the inte-

K = {k, k + 1, k + 2, k + 3}, k > 3. 

By the monotonicity property, x^ < k + 3 for all i . 

CLAIM: K = {#]_, i2'
 xn-l> xn^ • 

To prove the Claim, note first that since k > 3, it is impossible for more than 
two elements of K to appear in increasing order away from the center on the 
same side of the sequence 1, 1. Thus, there must be two elements of K on each 
side of the block of l's. Since S is a shortest TGF, elements of K should be 
at the beginning and end of S, and there are no repetitions of elements of K. 
Thus, x1 and xn are in K. The Claim follows by monotonicity of S. 

We now use the Claim to analyze the following three cases: 

Xi, x2 = k + 1, k; xn-i, xn = k + 2, k + 3. 

X\i x2 = k + 2, k; xn_i, xn - k + 1, fc + 3. 

xi, x2 = k + 3, k; xn-i> xn = k + 1, /c + 2. 

The other three possible cases are symmetric to these. 

Case 1: By the construction process, this case forces S to be 

fc + 1, k, 1, ...,1, Zc + 2, Zc + 3. 

By monotonicity, all remaining terms are l's and so there are k + 2 1fs. It 
follows that n = (k + 2) + 4 = fe + 6, and fe + 6 > [̂ /̂J + 6. 

Case 2; For this case, let 

S = k + 2, Zc, p, .. ., <?, fe + 1, A: + 3. 
To obtain k + 2 by the construction process, we must have p < 2, and similarly, 
q < 2. Hence, all terms from p through <? are <2. Since there must be at least 
two l's, and since p+... . + q > / c + l , we note that to obtain k + 1 by con-
struction, we must have 

Case 

Case 

Case 

1 

2 

3 

n > 2 + fc - 1 + 4 = [k 1 + 6 > [fc/3J + 6. 

1989] 359 



TWO-SIDED GENERALIZED FIBONACCI SEQUENCES 

Case 3: Let 

S = k + 3, k, p, ..., q, k + 1, k + 2 
which forces q = 1 and p < 3. Since the p through (7 part must end in 111 or 
211, and since every other term in this part is < 3 by the monotonicity 
property, 

n > 3 + k + 1 - 4 + 4 = [fc/3] + 6 > L^/3j + 6. D 

4. Remarks 

Questions of uniqueness in finite measurement structures are proving to be 
a rich source of interesting combinatorial and number-theoretic problems, as 
shown in [2, 3] and the present paper, and summarized in [4, 8]. Our story 
here is the familiar one of encountering Fibonacci-like structures in an area 
where none was visible at the start. Not only are TGFs natural generalizations 
of the basic Fibonacci sequence in their two-sidedness and their relaxation of 
the requirement that a new addition be the sum of exactly two neighbors, but 
the sequence t \ , t 2 , £3, ... that counts the number of TGFs has a recurrence in 
which the next term is determined by precisely its two immediate predecessors. 

The most obvious problems left open in the paper concern boundedness, or 
better, of f(ki} k2, k 3) - f(k2> k 3) and f(ki> k2) ~ f(k2) when kx < k2 ^ k3. 
A further possibility for investigation is f*(k\9 ..., km), the length of the 
shortest TGF, if any, that has /q, ..., km as a subsequence. 

We mention two generalizations of two-sided generalized Fibonacci sequences. 
The first is also two-sided and is constructed like a TGF except that the value 
of a new term at either end can equal the sum of one or more contiguous terms 
(including a single 1) located anywhere in the sequence constructed thus far. 
Some results for this generalization are included in [2]. 

The other generalization is one of a large number of things that might be 
referred to as generalized Fibonacci trees. The tree we have in mind is con-
structed like a TGF except that it has N rather than 2 branches extending away 
from a root that consists of two lfs. The value of a new term added to a 
branch is the sum of one or more extant terms consisting of either (a) immedi-
ate predecessors on that branch, or (b) all those predecessors plus one or both 
root l!s, or (c) all its branch predecessors plus both root l!s plus terms 
contiguous to the root along some other branch. We are not aware of results 
for this generalization. 
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1. Introduction 

The famous amateur mathematician Pedro A. Piza (1896-1956), who spent most 
of his life in business in Puerto Rico, discovered many interesting things in 
geometry and number theory. In his paper on Fermat coefficients [5], he dis-
covered a criterion for primality which runs as follows: 

In + 1 is prime iff k (2/5 _ i) for a11 k> l ~ k ~ n' (la) 

Actually, he left an ellipsis in the proof. He said that when k is composite 
the proof that k divides the binomial coefficient when 2n + 1 is prime is some-
what more complicated but not difficult and he left this to the interested 
reader. 

Eighteen years later, Henry Mann and Daniel Shanks [4] discovered another 
attractive primality criterion which may be stated as follows: 

C > 2 is prime iff R ?) for every R such that 
KC - 2R) 

C/3 < R < C/2, R > 1. (1.2) 

In their criterion, the binomial coefficients are arranged in an array 
where each row is shifted two units over from the preceding. Then the crite-
rion may be stated more pithily in the following way: A column number C is 
prime if and only if every binomial coefficient in that column is divisible by 
its corresponding row number R. (See Table 3 below.) 

Then Gould and Greig [3] obtained a primality criterion using a "Lucas" 
triangle. Diagonals in this triangle sum to Lucas numbers, whereas in the 
usual Pascal triangle they sum to Fibonacci numbers. The criterion runs as 
follows: 

D > 2 is prime iff D\A(D - J, j) for all j, 1 < j < D/2, (1.3) 

where 

It was shown in [3] that this can be reformulated in the equivalent form: 

C > 2 is prime iff R\(C ~_R' ) for all i?, 1 < R < C/2. (1.4) 

This made the criterion dual to that of Mann and Shanks, since only a minus 
sign is different in comparison to (1.2), but of course the coefficients 
differ. 
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We shall show here that Piza's criterion may be reformulated as follows 

-R C > 2 is prime iff R K J \C - 2RI for all R, 1 < R < C/2. (1.5) 

Since the sign (-l)c does not affect divisibility, it follows that Pizafs cri-
terion is equivalent to that of Gould-Greig. Table 4 below shows Piza's coef-
ficients. 

All of these criteria are susceptible to extensions to generalized binomial 
coefficients—such as Gaussian or ^-coefficients, Fibonomial coefficients, s-
Fibonomial coefficients, etc.—as was shown for the Mann-Shanks criterion in 
[1] and [2]. The Mann-Shanks criterion, requiring fewer divisibility tests, is 
more efficient than the criteria of Piza or Gould-Greig. 

2. Proofs and Discussion 

Let us first examine Pizafs array from (1.1). We have the following dis-
play of (2£:l)i 

TABLE 1. Piza Array 

n 

1 
2 
3 
4 
5 
6 
7 

2n + 1 

3 
5 
7 

® 
11 

© 
15 

1 

1 
1 
1 

0_ 
1 

C^ 
1 

2 

2 
4 
6 
8 

10 _ 
12 

3 

3 
10 
21 
36 
55 

4 5 

O 
20 5 
56 35 

120 126 

6 

—O 
56 

7 . 

7 

. k 

Thus 9 is not prime since 3/flO; 15 is not prime since 3^55, 5^126, 6156. 
We may rearrange the table to make it look more like the usual Pascal array of 

(£): 
TABLE 2. Modified Piza Array 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

n.+ 2 

3 
4 
5 
6 
7 
8 

® 
10 
11 
12 

© 
14 

0 . 

1 
1 

1 
1 

1 
1 , 

Cts 
1 
1 
\y 

(5y 
i 

i 

i 
2 
3 
4 

5 / 

/ L 
S i 

8 

V 
^ L O ^ 

^ 1 1 
12 

2 

1 
3 

V 
^ 0 / 
^ 5 

21 
28^ 

/i(y 
"^45 

55 
66 

3 

1 

!y 
Svz 

20 
3 5 , 

/bi, 
"^84 

120 
165 
220 

4 

^ 1 
5 

1 5 , 
^ 3 5 ^ 
""70 

126 
210 
330 
495 

5. 

1 

/ ^ 
^ 2 1 

56 
126 
252 
462 
792 

6 . . 

) 1 
7 

28 
84 

210 
462 
924 

. k 

Examination of these arrays shows that Piza!s criterion may be reformulated 
as follows: 
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n + 2 is prime iff k + 1 (n - ) for all k9 0 < k < nil. 

Make the replacement n «- n - 2 and this becomes 

2 - k n is prime iff k + 1 for all k, 0 < k < nil - 1. r - r *) 
Then make the replacement k *• k - 1 and this, in turn, becomes 

k n is prime iff k (n
 R _ l

1 ) for all k, I < k < nil. 

(2.1) 

(2.2) 

(2.3) 

However, 
(n - k - l\ _ in - k - l\ _ f,,n I -k \ 
\ k - 1 ) ~ \ n ~ 2k ) ~ { l) \n- 2k)9 

so that Piza's criterion takes the form 

n is prime iff k < - 1 ) B l » -fe2fe) for a11 fe' x s fe < n/2, (2.4) 

which is what we asserted in (1.5). The (-l)n may be dropped, as we said, so 
that Piza's criterion is equivalent to the Gould-Greig criterion. 

Now let us return to the original (1.1) and make the replacement k <- n - k. 
We obtain the equivalent form of Piza's criterion: 

n + k 2n + 1 is prime iff n - k 

Since \r^_\i 1:) = (2\++1) 3 w e m a y r e s t a t e (2.5) as: 

' n + k 

( n t A for all k9 0 < k < n - 1. (2.5) \n - k - 1/ 

2n + 1 is prime iff n - k (Sc"+ l ) - f o r a11 fe* °  - k " n " 1- ( 2 ° 6 ) 

This is an interesting variant because in [1] it was shown that the Mann-
Shanks criterion could be rephrased in the form: 

2n + 1 is prime iff n - k ( n - k \ 
\2k + 1/ for all k, 0 < k n - 1 (2.7) 

Thus, the Piza criterion is a kind of dual to that of Mann-Shanks in that 
one has n + k and the other has n - k. 

We close by setting down the original Mann-Shanks array (1.2) followed by 
the array of Piza-Gould-Greig in the form (1.5): 

TABLE 3. Mann-Shanks Array 

1 

2 

3 

4 

5 

6 

7 

8 

9 

R 

2 

1 

3 

1 

4 

1 

5 

2 

6 

1 

1 

7 

3 

8 

3 

1 

®_ 

/""\ 

R J V-^ 

10 

6 

1 

11 

4 

5 

12 

1 

10 

1 

©
 

/^\ 

R GJ V_/ 

14 

5 

15 

1 

15 

1 

20 

7 

16 17 18 19 .. 

15 6 1 

21 35 35 21 

1 8 28 56 

1 9 

. C 
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TABLE 4. Piza-Gould-Greig; Array 

1 
2 
3 
4 
5 
6 
7 

H 

2 3 4 

1 1 1 
1 

5 

1 
2 

6 

1 
3 
1 

7 

1 
4 
3 

8 

1 
5 
6 
1 

® 10 

f±\ 
6 

10 

u 
1 
7 

15 
10 

1 

11 

1 
8 

21 
20 

5 

12 (Q) 14 15 . . 

1 
9 

28 
35 
15 

1 

f7] 
10 
36 
56 
35 

6 O1 

1 1 
11 12 
45 55 
84 120 
70 126 
21 56 

1 7 

. C 

Mann-Shanks is far more efficient, requiring fewer divisibility tests in a 
column. In Table 4 we must test each R for 1 < R < C/29 whereas in Table 3 we 
test only values of R with C/3 < R < C/2. 

The multiple charms of Pascal's triangle are far from exhausted. 
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(Submi t ted August 1987) 

I t i s w e l l known t h a t a p o s i t i v e i n t e g e r i s s a i d to be p - f r e e (p > 2) i f i t 
c o n t a i n s no p t h power f a c t o r g r e a t e r than 1. Let Qr denote the s e t of a l l p -
f r ee i n t e g e r s . I f the i n t e g e r s p and k a r e such t h a t 2 < v < k, an i n t e g e r of 
the form akb, where a i s any n a t u r a l number and b i s p - f r e e i s c a l l e d a (k, P ) -
i n t e g e r . The s e t of a l l (k, p ) - i n t e g e r s i s denoted by Qk>r. The (k9 p ) - i n t e -
gers were i n t roduced by Cohen [1] and by Subbarao & H a r r i s [ 6 ] , i n d e p e n d e n t l y , 
under d i f f e r e n t n o t a t i o n s . Observe t h a t (oo, p ) - i n t e g e r s a r e the p - f r e e i n t e -
g e r s ; t h e r e f o r e , t he (&, p ) - i n t e g e r s can be cons ide red as g e n e r a l i z e d p - f r e e 
i n t e g e r s . 

The Schnirelmann d e n s i t y for a s e t , S, of p o s i t i v e i n t e g e r s i s denoted by 
D(S). That i s , 

D(S) inf 
n>\ 

S(n) 

where S(n) is the number of integers in S not exceeding n. 
Using computational methods, Rogers [5] proved that #(§2) 

[2] showed, by elementary methods, that 

D(QJ 1 1 

P V 
in which the summation is over all primes p. 
lished 

53/88. Duncan 

(1) 

^«fc,r> * ak,r> 

Later, Feng & Subbarao [3] estab-

(2) 

where 

lk,r < « > ( ' - ? : £ ) - * ( ' - * ) * - ' • 
in which £(/c) is the Riemann zeta function. 

Rieger [4] introduced M-free integers as follows: Suppose M is a 
positive integers with minimal element v > 1. A positive integer n = 
... p"* , where p, , p9 > - . . , pt are distinct primes, is said to be M-
a^ £ M for i, = 1, 2, ..., t . The set of all M-free integers is denoted 

If p, k are integers such that 2 < v < k, write 

A = {P, v + 1, v + 2, ...}, 

B = {n: n > p, n = j (mod k) for some j (p < j < /c - 1)}, 

C = {P}, 
Z7 = {p, 2P, 3P, . . .}. 

(3) 

set of 

free if 
by QM. 

Then observe that QA = 
the set of all semi-p-

Qrl Ql zk, v » the set of all (k, p)-integers; Qc = Sr. 
free integers introduced by Suryanarayana [7]; and 

the set of all unitarily p-free integers given by Cohen [1] 
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ON THE SCHNIRELMANN DENSITY OF M-FREE INTEGERS 

The object of t h i s note i s to obtain a lower bound for D(QM) . This bound 
improves (2) in the case M = 5 . In fac t , we prove the following: 

Theorem: D(QM) > 1 - 2 E (p - D E P~a~l. 
P d£M 

Proof: If QM(n) is the number of integers in $M not exceeding n, then 

ew(«) ^ n - E aM,n(p)> (4) 

where aM?n(p) is the number of integers m < n such that pa||/?? for some a £ M. 
To count OLMiTl(p) 5 for each fixed a e M, we find the number of integers m < n 
with pa\m and pa+l\m, and the latter number is 

[n/pa] - [n/pa+l] 
so that 

/ r n 1 F n i \ / i \ /f n i 
+ 1 . (5) 

Now, from (4) and (5), we obtain a (4) and (5) , we obtain 

4(») *n-Z E (l - ^ ) f c l + l) * « " 2 E (p " 1) E 
p a e M N P/\LpaJ / p ael 

n * p a l . 

where the sum on the right side is over primes p with pa < n for some a E M, 
which gives 

«*(«) > i - 2 E (p - i) E p - a - x . 
^ p aeM 

Since this is also true when summed over all primes, the theorem follows. 

Corollary: For k > r > 2, D(Qk T) > bksV, where 

**,, - 1 - 2 E V~ 
P vK - i 

Proof: Since 

fc-1 i nk~r - 1 V D-a-l = y y ^ = P * 

,7/ m = o A p-»*+J + i (p - i)(p* - i) 

and QB = Q, , the Corollary follows from the Theorem. 

Remark 1: For any k > r > 2S ak r < bkfr. In fact, since 

bk,r = 1 

•('•??)i?t!?('7)FT' 

1 X"1 

1989] 367 



ON THE SCHNIRELMANN DENSITY OF M-FREE INTEGERS 

In view of ( 3 ) , i t s u f f i c e s t o show t h a t 

2 ^{l - ^ 4 - r > 5 ^ + 1 1 - £ ^)(n?2^) 
= n?2 "& +\? P O V "n?2 '"̂* 

^•^^iFi^li-1!?^ (6) 
and this follows if we prove that 

f 1 . 2 7 ^ „.i\__JL 

If a n = -1 or 1, according as n = 1 or n > 1, then £>n = r^"r or 0, according 
as n is a prime or not and cn = [ (ftr - 1) / (nk - 1)]Z?„, so the inequality in (6) 
can be written as 

t \- 2± \ < (± ?l)(± ^). (7) 
n=2 nk n = i n K \ n = 1 n k / \ n = inKJ 

But, by the multiplication of Dirichlet series, the right side of (7) is: 

0 if ft = 1, 
. -pk-r if ft = p, a prime, 

• l n l n ? i ft^' W h e r e dn ) E P*"r otherwise. 
p |n 

\P < n 
Since dn > an - 2cn for all ft, the inequality (7) holds; hence 

a k , r K b k , r * 

Thus, the Corollary improves (2). However, the inequality (1) gives a better 
lower bound for D(Qr) than the one obtained from the Theorem. 

Remark 2: In the special cases of Qc = Sr and QD = Ur, defined earlier, the 
Theorem gives 

p - i 0(Sr) * 1 - 2 £ ^-^p and £>(yp) > 1 - 2 £ 

The authors are grateful to the referee for helpful comments. 
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TRAPPING A REAL NUMBER BETWEEN ADJACENT RATIONALS 

H a r r y D'Souza 
University of Michigan, Flint, MI 48502-2186 

(Submitted September 1987) 

Introduction 

In this article we ask the following question: Given any real number a can 
one find a rational number p/q such that (p + I) / (q + 1) < o < p/q*? Clearly, 
one of the necessary conditions of this problem is that a > 1. But this condi-
tion is not sufficient. Interestingly enough, the question came up as a result 
in algebraic geometry in [2], where Sommese essentially proves the sufficiency 
of o > 2 in the first theorem. 

We give explicit conditions under which the above question is true using a 
somewhat stronger hypothesis: Given any real number a > 1 and N > 0, can one 
find positive integers r and s such that r > s > N, and s divisible by some 
fixed integer 777, and the denominator of a fixed rational number t and 
satisfying v - ts > M, for any M, where 

v 4- 1 v 1 < t < o and 7 1 < a < -? s + 1 s 

The answer depends on whether a is rational or irrational. We have the 
following two theorems: 

Theorem 1: Let o = p/q be a positive rational number. Then the following are 
equivalent: 

i) a > 2 

ii) Given any positive integers m, Ms N and a rational number t = a/b such 
that 0 < t < a, then one can find r and s such that r > s > N, s is 
divisible by mb, and 

v + 1 v 
v - ts > M and •—7 < a < —. 

5 + 1 s 
Proof: First we prove that ii) => i). Since mb divides s, write s = nmb, where 
n is a positive integer. Since v - ts > M, we must have r = ts + M + u for some 
integer u > 1. Hence, v = nma + M + u. Thus, 

I > y + 1 
<7 s + 1 

=> p(s + 1) > g(r + 1) 

=> sp + p - (7 > qv 

nmbp + p - q > qnma + qM + qu 
=> p - q(u + 1) > qnma - nmbp + gAf 
==> p - q(u + 1) /a p\ Af 

\/b a) nh" nqb ^b Q 
Now choose M sufficiently large so that 

/a p\ M 
\b ql nb 
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Hence, we conclude t h a t 
V - qiu + 1) > ^ 

nqb 
Thus, p > q(u + 1 ) , from which i t fo l lows t h a t 

a = £ > 2. 

Next we show that i) => ii). Let r = np + 1, s = nq. Choose n = krnb. Then 
v - ts = n(p - tq) + 1 •> «>, as k •> °°, since p - tq > 0. It is also easily seen 
that 

a > 2=>^-^4 < a. D s + 1 

Before discussing the next theorem, we need a few results. 

I 1 1 
Let an "• . — — denote a continued fraction. 

0 ax + a2 + • • • + an 

1 2 n ^n and #n = Q{ax, . .., a„). 

Unlike [1], we use Q{aQi a,, ..., an) to denote Euler continuants, where each 
of pn and qn are expanded using Eulerfs rule ([1], p. 82). Also well known is 
that (see [1], p. 83), 

Q(aQ, ..., an) = aQQ(al9 ..., an) + §(a2, ..., an). (*) 

Remark 1: By Euler's rule, as n -> », pn -> °°, qn -> », and fi(a2, . .., an) •> °°. 

We also know (see [1], p. 84) that 

Pn<?n-1 " Pn-ltn = ("D""1- (**> 

Let a be an irrational number. 

I I 1 1 
Let a 0 + — , — . , — , = a. 

Then an+1 > 1, and is irrational. Moreover (see [1], p. 89), 

a .
 an + l'Pn + Pn-l 

And, by (**) , it follows that, if n ie even, then 

^- < a < ̂ - i . (***) 
<?„ <7„-l 

This brings us to Theorem 2. 

Theorem 2: Suppose that a is irrational, and a > 1. Let t = a/2? be a fixed 
rational number and m a fixed positive integer. Given any N > 0, one can find 
positive integers v and s, with r > s > N, s is divisible by wZ?, satisfying 
r - ts > M9 for any given M9 where 

^ + 1 ? 0 < t < — — r < a < -. s + 1 s 

Proof: Let a have a continued fraction representation as a above. By (***), we 
see that, for n even, 

370 [Aug. 
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&L < a < bL=lm 

Let r = mabMpn_1 and s = mabMqn_ls then 

r - ts = maM(bpr._, - aq^^,) > M, since j - < o < ""1. 

Pn P + 1 _ Pn ~ <ln ~ mahM 

qn s + 1 (mabMqn_l + l)^n 
> 0 if n » 05 and n is even. 

This follows from (**) and Remark 1 above, noting that m, a, b, and M are given 
and n is arbitrary. Also 

br - as = mabM(bpn_1 - aqn_l) > a - b. 

The last inequality holds since bpn_l - ccqn_l > 1 and ab > a - b; hence, 
v + 1 

* <FTT-
This proves the theorem. Q 

Example 1: The following example shows that if the conditions in part ii) of 
Theorem 1 are relaxed, then the implication is false. Let a = 8/5, r = 5, and 
s = 3, then 6/4 < a < 5/3. 

Example 2: If a = (n + l)/n3 then it is easy to see that it is impossible to 
find v and s in Theorem 1, even under relaxed conditions. If a = p/q, SL 
careful examination of the proof shows that p - q > 2 is a necessary condition. 

Remark 2: If a = 2, then we can easily see that, for any r/s > 2, we must have 
(p + l)/(s + 1) > 2. Hence, Theorem 1 fails in that case even in the relaxed 
form. 
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A COMBINATORIAL PROBLEM THAT AROSE IN BIOPHYSICS 

Doron Ze i lbe rge r 
Drexel University, Philadelphia, PA 19104 

(Submitted December 1987) 

The purpose of this note is to prove the following result that was conjec-
tured by T, L. Hill ([1], [2], p. 148) in the course of his investigations of 
the "surface" properties of some long multi-stranded polymers. 

Theorem: Let s be a positive integer, and for any nonnegative integer m, let 
R(jri) be the number of solutions, in integers (mi, ..., ms) of the system 

mi + ..• + ms = 0, (la) 

\mi\ + ... + \ms\ = 2m. (lb) 

Then, 

S(P): = E R(m)pm = (1 - p)-(s-1 } t (S I ) Pk-

Proof: It is readily seen that R(m) is the coefficient of pmt°  in 

f; tkp\k\/2Y = [ p i ^ t - V d - pl/2t~l) + i + P
1 / 2 t / ( i - P

1 / 2 t ) ] s (2) 
Lk--

( i - p ) s ( i - Q
l/2t)~sa - plI2t-lr 

Thus, §(p) is the coefficient of t°  in the right side of (2). Expanding the 
last two terms in the right side of (2) by Newton's binomial formula, and col-
lecting the coefficient of t° , we get 

« P ) - (i - P)S E ( s ! k : l)2Pk. o ) 
l- = n N 5 — 1 / 

Using Euler's transformation for hypergeometric series (e.g., [3], Th. 21, 
p. 60), (3) can be expressed as the right-hand side of the Theorem. D 

The same method of proof can be applied to treat the more general problem 
where the 0 at the left side of (la) is replaced by a general integer i. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P . Hillman 

Please send all communications regarding ELEMENTARY PROBLEMS AND 
SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, 
NM 87108. Each solution or problem should be on a separate sheet (or 
sheets) . Preference will be given to those typed with double spacing in the 
format used below. Solutions should be received within four months of the 
publication date. 

DEFINITIONS 

The F ibonacc i numbers Fn and the Lucas numbers Ln s a t i s f y 

Fn + 2 = Fn+1 + F„, F0 = 0, Fi = 1 
and 

Ln + 2 = Ln + l + Ln> L0 = 2 ' ^ 1 = l ' 

PROBLEMS PROPOSED IN THIS ISSUE 

B-646 Proposed by A. P. Hillman in memory of Gloria C. Padilla 

We know t h a t P2n = FnLn = Fn(Fn_i + Fn + i) . Find m as a func t ion of n so as 
t o have the analogous formula Tm = Tn(Tn_i + Tn+i) 9 where Tn i s the t r i a n g u l a r 
number n(n + l ) / 2 . 

B-647 Proposed by L. Kuipers, Serre, Switzerland 

Simpli fy 

[L2n + 7 ( - l ) » ] [ L 3 n + 3 - 2(-l)nLn] - 3(-l)nLn_2L2
n + 2 - L^L^L*^. 

B-648 Proposed by M. Wachtel, Zurich, Switzerland 

The P e l l numbers Pn and Qn a r e def ined by 

Pn+2 = 2Pn+l + Pn> P0 ' °> Pl = l ' « « + 2 = 2 « n + l + « „ - « 0 " 1 " « 1 • 

Show t h a t (P. 5 P 2 + I? 3P2 + 1 ) i s a p r i m i t i v e Pythagorean t r i p l e for n i n 
{ 1 , 2 , . . . } . 

B-649 Proposed by M. Wachtel, Zurich, Switzerland 

Give a r u l e for c o n s t r u c t i n g a sequence of p r i m i t i v e Pythagorean t r i p l e s 
(an, Z?n, c n ) whose f i r s t few t r i p l e s a re in the t a b l e 

n i l 2 3 4 5 6 7 8 
a n 24 28 88 224 572 1248 3276 7332 
bn \ 1 45 105 207 555 1265 3293 7315 
<?„ 25 53 137 305 797 1777 4645 10357 
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and which satisfy 

\an - bn\ = 17, 

a2n-l + a2n = 2 6 P 2 n = b2n-l + h2n ' 
and ^ 2 n _ x + c 2 n = 26Q2n. 

[Pn and Sn a r e the P e l l numbers of B-648.] 

B-650 Proposed by Piero Filipponi, Fond, U. Bordoni, Rome Italy 
& David Singmaster, Polytechnic of the South Bank, London, UK 

Let us i n t r o d u c e a p a i r of 1-month-old r a b b i t s i n t o an e n c l o s u r e on the 
f i r s t day of a c e r t a i n month. At t he end of one month, r a b b i t s a r e mature and 
each p a i r produces k - 1 p a i r s of o f f s p r i n g . Thus, a t t he beg inn ing of the 
second month t h e r e i s 1 p a i r of 2-month-old r a b b i t s and k - 1 p a i r s of 0-month-
o l d s . At the beg inn ing of t he t h i r d month, t h e r e i s 1 p a i r of 3 -month-o lds , 
k - \ p a i r s of 1-month-olds , and k{k - 1) p a i r s of 0 -month-o lds . Assuming t h a t 
the r a b b i t s a r e immorta l , what i s t h e i r average age An a t t he end of t h e nth 

month? S p e c i a l i z e t o the f i r s t few v a l u e s of k, What happens as n •> °°? 

B-651 Proposed by L. Van Hamme, Vrije Universiteit, Brussels, Belgium 

Let UQ9 Ui, . . . be def ined by UQ = 0 , U\ = 1, and un+2 - un+i - un. Also 
l e t p be a prime g r e a t e r than 3 , and for n i n X = { 1 , 2 , . . . , p - 1 } , l e t n _ 1 

denote the v i n X wi th nv =• 1 (mod p) . Prove t h a t 

p - i 
E (.n~lun + k) E 0 (mod p) 

n = 1 

for a l l nonnega t ive i n t e g e r s k. 

SOLUTIONS 

Rela t ionsh ip be tween Var iab les 

B-622 Proposed by Philip L. Mana, Albuquerque, NM 

For f ixed n , f ind a l l 777 such t h a t LnFm - Fm + n = ( - l ) n . 

Solution by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Using the Binet forms for Ln and Fm , a f t e r some s imple m a n i p u l a t i o n s , i t 
can be shown t h a t 

I t fo l lows t h a t SntTn = ( - l ) n i f f Fm_n = 1, t h a t i s 777 = n - 1, n + 1, n + 2. 

Also solved by Paul S. Bruckman, Herta T. Freitag, G. Georghiou, L. Kuipers, 
Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, Amitabha Tripathi, 
and the proposer. 
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B-623 Proposed 

Let 

Multiple of Ln 

by Herta T. Freitag, Roanoke, VA 

In- 1 
S(n) = £ Ln+kLk. 

k=l 

Prove t h a t S(n) i s an i n t e g r a l m u l t i p l e of Ln for a l l p o s i t i v e i n t e g e r s n. 

Solution by Sahib Singh, Clarion Univ. of Pennsylvania, Clarion, PA 

Using the Binet form, Ln + kLk = Ln + 2k + (~l)kLn. Thus, 
In- 1 

L* Ln + kLk = (Ln + ?_ + Ln + k + • • • + L5n_2) " ^n 
k=l 

= L5n~l ~ Ln+l ~ Ln 
= L5n~l ~ Ln-1 * 2Ln-

Since L5n_l - Ln_l = 5F2nF3n_l = 5LnFnF3n_l9 S(n) = 0 (mod Ln) i s t r u e . 

Also solved by Paul S. Bruckman, Piero Filipponi, C. Georghiou, L. Kuipers, 
Bob Prielipp, H.-J. Seiffert, Lawrence Somer, Amitabha Tripathi, and the 
proposer. 

Multiple of F^ o r L\ 

B-624 Proposed by Herta T. Freitag, Roanoke, VA 

Let 
n Tn = £ L2(n+i) - 1 • 

i = 1 

For every positive integer n, prove that either Fn\Tn or Ln\Tn. 

Solution by Lawrence Somer, Washington, D. C. 

We will prove the stronger result that either F%\Tn or L^\Tn. By the solu-
tion to Problem B-605 on page 374 of the November 1988 issue of The Fibonacci 
Quarterly, 

Tn = (L2n - 2)(L2n + 1). 

We will show that either Fn\(L2n - 2) or Ln\(L2n - 2). The result will then 
follow. 

It is well known that 

LZn = £2 - 2(-l)M (1) 
and 

Ll - 5** = 4(-l)n. (2) 

First, suppose that n is even. Then, by (1) and (2), 

L2n - 2 = Ll - 4 - 5F2. 
Thus, F||(Ln - 2) if n is even. 
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Now, suppose t h a t n i s odd. Then, by ( 1 ) , 
L2n - 2 = (L2 + 2) - 2 = L*, 

and L £ | ( L ^ _ 2 ) . Q.E.D. 

Also solved by Paul S. Bruckman, Piero Filipponi, C. Georghiou, L. Kuipers, 
Bob Prielipp, H.-J. Seiffert, Sahib Singh, Amitabha Tripathi, and the 
proposer. 

R e c u r r e n c e s for FnPn a n d LnPn 

B-625 Proposed by H.-J. Seiffert, Berlin, Germany 

Let PQ, Pi, . . . be the P e l l numbers def ined by 

P 0 = 0, Pl = 1, Pn = 2Pn_i + P n _ 2 for n > 2 . 

Let Gn = FnPn and Hn = LnPn. Show t h a t (Gn) and (#„) s a t i s f y 

Kn + i+ - 2 Z n + 3 - 7Kn+2 - 2Kn + l + Kn = 0. 

Solution by Amitabha Tripathi, SUNY, Buffalo, NY 

Let us cons ide r two second-order l i n e a r r e c u r r e n c e r e l a t i o n s given by 

xn + 2 = axn+1 + bxn, yn + 2 = cyn+1 + dyn, n > 0, 

wi th a , 2?, c , and d complex numbers wi th a t l e a s t one of a , c nonzero . Then 
the sequence {s n } = {xnyn}, n > 0, i s a l s o a l i n e a r l y r e c u r r e n t sequence of 
o rder a t most fou r . In f a c t , for n > 0, we have 

+ bxn+2)(cyn+3 + ^z/n + 2 ) 

+ M3„ + 2 + adyn+2(axn+2 + ten + 1 ) + 2?exn + 2(c2/n + 2 + dyn+i). 

= a c s n + 3 + (bd + a2d + bc2)zn+2 + abdxn+i(cyn+i + dyn) 

- , ^n + 2 ~ % n 
+ bodxn+2 -

= aczn+3+ (a2d + 2bd + bc2)zn+2 + a2?c<i;3n+1 - bd2yn(xn+2 - axn + i) 

= aczn+3 + (a2d + 2M + Z?c2)3n + 2 + abcdzn+i - b2d2zn. 

The r e s u l t now fol lows wi th a = b = d = 1, c = 2 for each of the sequences {Gn} 
and {Hn}. 

Also solved by Paul S. Bruckman, Odoardo Brugia & Piero Filipponi, C. Geor-
ghiou, L. Kuipers, Y. H. Harris Kwong, Bob Prielipp, Sahib Singh, and the 
proposer. 

G e n e r a t i n g F u n c t i o n s for Fn Pn a n d LnPn 

6-826 Proposed by H.-J. Seiffert, Berlin, Germany 

Let Gn and Hn be as in B-625. Express the g e n e r a t i n g f u n c t i o n s 

G(a) = £ Gnzn and H(z) = £ Hnzn 

n = Q n = 0 

as rational functions of z. 
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Solution by Amitahha Tripathi, SUNY, Buffalo, NY 

It is well known (and follows easily from a Binet-type formula for the nth 
term of a linearly recurrent sequence) that, if 

fn+k + alfn+k-l + alfn+k-2 + ° ° ° + aJn = ° » 

then the denominator of the rational expression for the generating function for 
the sequence fn is given by the polynomial (1 + a\Z + a2z2 + °-°+ a, zk) * Thus, 

(1 - 2z - Iz2 - 2s3 + zk)K(z) 

= KQ + (Kl - 2K0)z + (Z2 - 2Kl - 7K0)z2 + (Z3 - 2K2 - 1KX - 2K0)z3
s 

where Zn + L}. - 2 Z n + 3 - 7Kn + 2 - 2Kn+l + Zn = 0 (n > 0) . Hence, 

C(») - ^ — and BW ^ - + ^ + g 3
3 - . 

1 - 2z - Iz2 - 2 s 3 + ^ . 1 - 2z - Iz2 - 2z3 + zh 

Also solved by Paul S. Bruckman, Odoardo Brogia & Piero Filipponi, C. Geor-
ghiou, L. Kuipers, Y. H. Harris Kwong, Sahib Singh, and the proposer. 

I n t e g r a l Mean of Consecu t ive C u b e s 

B-627 Proposed by Piero Filipponi, Fond U. Bordoni, Rome, Italy 

Let 
Cn.k = (** + ** + 1 + ••• + * * + * - ! > / * • 

Find the s m a l l e s t k i n {2, 3 , 4 , . . . } such t h a t Cn k i s an i n t e g e r for every n 
i n {0, 1, 2 , . . . } . 

Solution by C. Georghiou, University of Patras, Greece 

We f ind t h a t 

°n,k - ^3n + 3*-l ~ F3n-1 + 6 (-l)* + ̂ + ; < _ 2 " 6(-l)V„ _2]/10fe. 
Those k in {2, 3, 4, ..., 24} such that k\C0,k are in the set {6, 9, 11, 19, 
24}o The only k in the last set such that /c|(7is/< is /< = 24. Therefore, the 
required smallest k is fc > 24. From 

C»+l,* =
 Cn,k + (Fn + k ~ Fn)/k, 

we get 

Cn + 1, 2h = Cn, 2h + ^n + 24 ~ Fn)l2t* 

= Cn, m + ^n + 24 + f„ + 2^n + ^ ^ + 24 " V 2 4 

- Cn, 2k + 6Ln + l2^Fn + 2k + Fn+2kFn + ^ > • 

from which i t fo l lows t h a t the answer to the problem i s k = 24= 

Also solved by Paul S, Bruckman, L. Kuipers, Bob Prielipp, Sahib Singh, 
Amitabha Tripathi, and the proposer, 
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PROBLEMS PROPOSED IN THIS ISSUE 

H-430 Proposed by Larry Taylor, Rego Park, NY 
(Corrected Version) 

Find i n t e g e r s j , k (* 0, ± 1 , ±2 ) , m^ and n^ such t h a t : 

(A) 5Fm.Fn. = Lk + Lj+i9 for £ = 1 , 5 , 9, 13 , 17, 2 1 ; 
(B) 5Fm_ Fn_ = Lk - Lj+i, for £ = 3 , 7, 1 1 , 15, 19, 23 ; 

(C) Fm.Ln, = Fk + Fj+i, fo r £ = 1, 2 , . . . , 22, 23 ; 

(D) Lm.Fn. = Fk - Fj+i, for £ = 1, 3 , . . . , 2 1 , 23 ; 

(E) LmiLni = Lk - Lj+i, for i = 1, 5 , 9, 13, 17, 2 1 ; 

(F) Lm,Lni = L- k + Ld+i9 for £ = 2 , 4 , 6, 8; 

(G) £ w . £ n . = Lk + Z^+i , for £ = 3 , 7, 1 1 , 15, 16, 18, 19, 20, 22, 23 ; 
(H) Lm.Lni = Lk + Fj+i, for £ = 10; 

( I ) LmJni = Lk + F ^ . . , for £ = 12; 

(J) ^ ^ = Lk + F i + i , for £ = 14. 

H-433 Proposed by H.-J. Seiffert, Berlin, Germany 

Let PQ , P-, , . . . be the P e l l numbers def ined by 

PQ - 0, Pl • 1, Pn = 2 P n - 1 + Pn_2 for n > 2 . 

Show t h a t , for n = 1, 2 , . . . , 

6(n + D P n _ ! + ^ n + 1 = ( - l ) " + 1 ( 9 n 2 - 7 ) F n + 1 (mod 2 7 ) . 

H-434 Proposed by Piero Filipponi & Odoardo Brugia, Rome, Italy 

Strange creatures live on a planet orbiting around a star in a remote 
galaxy. Such beings have three sexes (namely, sex A, sex B, and sex C) and are 
reproduced as follows: 
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(i) An individual of sex A (or simply A) generates individuals of sex C by 
parthenogenesis. 

(ii) If A is fertilized by an individual of sex B, then A generates individ-
uals of sex B. 

(iii) In order to generate individuals of sex A, A must be fertilized by both 
an individual of sex B and an individual of sex C. 

Find a closed form expression for the number Tn of ancestors of an indi-
vidual of sex A in the nth generation. Note that, according to (i), (ii)5 and 
(iii), A has three parents (Tj = 3) and six grandparents (T2 = 6). 

SOLUTIONS 

A Prize Problem 

H-409 Proposed by John Turner, University of Waikato, New Zealand 
(Vol. 25, no. 2, May 1987) 

The following arithmetic triangle has many properties of special interest 
to Fibonacci enthusiasts. 

1 
1 
7 

1 
6 
22 

1 
5 
16 
47 

1 
4 
11 
30 
81 

1 
3 
7 
18 
46 
116 

1 
2 
4 
10 
24 
58 
143 

1 
1 
2 
5 
11 
26 
63 
153 

1 
2 
4 
10 
24 
58 
143 

1 
3 
7 
18 
46 
116 

1 
4 
11 
30 
18 

1 
5 
16 
47 

1 
6 
22 

1 
7 1 

Denote the triangle by T9 the ith element in the nth row by £?, and the sum 
of elements in the nth row by on. 

(i) Discover a rule to generate the next row from the previous rows. 

(ii) Given your rule, prove the Fibonacci row-sum property, viz: 

on - 2 ^ ^ + tn
n - F2n, for n = 1, 2, .... 

i = 1 

where F? is a Fibonacci integer. 
(iii) Discover and prove a remarkable functional property of the sequence of 

diagonal sequences, {d^}: 
d1 = 1 

d2 = 1 

d3 = 1 

dh = 2 

d5 = 1 

1 

2 

2 

5 

4 

1 

3 

4 

10 

11 

1 

4 

7 

18 

24 

1 ... 

5 ... 

11 ... 

30 ... 

46 ... 

(iv) Discover another Fibonacci arithmetic triangle which has the same gen-
erating rule and other properties but with row-sums equal to î rc-l* 
n - 1, 2, ... . 
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(v) Show how the numbers in the triangle are related to the dual-Zeckendorf 
theorem on integer representations, which states (see [1]) that every 
positive integer N has one and only one representation in the form 

N = £ e.u., 
i 

where the e. are binary digits, ei + ei+l * 0 for 1 < i < k, and {u^} = 
1, 2, 3, 5, . .., the Fibonacci integers. 

There are many interesting identities derivable from the triangle, relating 
the t" with themselves, with the natural numbers and Fibonacci integers, and 
with the binomial coefficients. The proposer offers a prize of US$25 for the 
best list of identities submitted. 

A final remark is that Pascal-T and Fibonacci-T triangles (see [2] and [3]) 
can curiously be linked to a common source. They both may be derived from 
studies of binary words whose digits have the properties of the ei in (v) above. 

References 

1. J. L. Brown, Jr. "A New Characterization of the Fibonacci Numbers." 
Fibonacci Quarterly 3.1 (1965):!-8. 

2. S. J. Turner. "Probability via the Nth Order Fibonacci-!!7 Sequence." Fibo-
nacci Quarterly 17.1 (1979):23-28. 

3. J. C. Turner. "Convolution Trees and Pascal-!7 Triangles." Fibonacci Quar-
terly 26.4 (1988):354-365. 

Solution by Karl Dilcher, Halifax, Nova Scotia 

(i) Claim: Each element in the nth row of T is the sum of the three closest 
elements in the (n - l)t h row minus the closest element in the (n-2)t h 

row. 

Proof: Let 

G(z,t)i = - — = £ fn(z)t\ (1) 
1 - t(l + Z + Z2) + Z2t2 n = 0 U 

The / (z) are polynomials of degree 2n, and we have the recursion 

f0(z) = 1, fx(z) = 1 + z + z2, and 

The fn(z) are self-inverse polynomials, i.e., / (z) = z2nf (l/z); hence, we can 
write 

rn(z) = t»+i + t\+iz + . . . + t r 1 ^ - 1 + tixy + tn
n
+izn+i + ..." 

+ tl+lz2n~l + tn^lz2n , (3) 
This, with (2), proves the claim. 

(ii) The row-sums on are obviously given by 

a„ = /„-!(!), n = 1, 2, ...; 
hence, by (2), the on satisfy the recursion 

ol = 1, oz = 3, an+1 = 3an - an_x; 

(2) 
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but t h i s i s t he well-known r e c u r s i o n for the even- indexed F ibonacc i numbers Fn ; 
hence , a = Fn for n - 1, 2 , . . . . 

' n Zn * ' 
(iii) Claim: The kth differences of the sequence d^ + l are eventually all 1. 

Proof: Obviously, the numbers d^+iin) in the sequence 6^+1 a r e t n e 0<- + l ) t h 

coefficients (counting from the constant coefficient upward) of the polynomials 
fn(z) s as defined by (1). They can be found by taking the kth derivative of 

< W « > =fcT/„(W<0)- (4) 

We consider the generating function, see (1): 

as* l2 = o n = o n 
?(fc), (5) 

To evaluate the left-hand side of (5), we use the partial fraction expansion 

G(z, t) 

where 

3(t): = 

which is easy to verify. Hence, 

1 
/ t 2 + 4 t ( l - t ) 2 

2(1 - t) + V4(1 -
1 „ JZX 

2(1 - t) 1 4 ( 1 -

1 
z + a (£) 

1 

_ 

7T2 + ? 

i 
2 + 3( t )_ 

dzk 

dk 

G(z, t) 
{-l)kk\ 

/t2 + 4t(l - t) 
d(z + a(t))-k~l - (z + 3(t))-fe"1]: 

„, +,, (-1)^! (3(t))fe+1 

dzk |3 = o / t 2 + 4£(1 - t)1 

(a(t)) fe+1 

(a(t)3(t)) k+ 1 

fc! 
(1 - t) rrr^(«' 

where 

^ ( t ) 2 f e + W + 4t(l - t) 2 

Hence, with (4) and (5), we have 

1 

\{t + / t 2 + 4 t ( l - t ) 2 ) fc+1 

(t - h 1 + 4 t ( l - t)2)k+l]. 

(1-„~7**<«-B?0<W*)*". 
I t i s easy to see from (6) t h a t 

gkW = i. 

Using the binomial theorem, we can rewrite (6) as 

(6) 

(7) 

(8) 
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ik/2] < k + l gk(t) = 2"* £ (2 j-Vi)t f c"J (* + 4(1 " t ) 2 ) ' ; (9) 
3 z 

t h i s shows t h a t gAt) i s a polynomial of degree k + [k/2]. 

The kth d i f f e r e n c e kk(n) of the sequence idk+1(n)}n i s 

To e v a l u a t e i t , we cons ide r the g e n e r a t i n g func t ion 

k 
£ A,(n)t" = ± ( E ( 5 ) ( - l ) ^ + 1(n - j))tn 

n = 0 n = 0 \ j = 0 V / / 

- L fyi-iy £ dk+1(n - j)tn 

* , f e 
' = n V ' y, = n j = Q \d > rc = 0 

( 1 - *> g t
( t ) n . ^ + 1 [ b y ( 7 ) ] " (1 - t) 

Hence, 

E Afe(n)tn = —L—g<t). (10) 

F i n a l l y , i f we denote the c o e f f i c i e n t s of gv(t) by a. \ we ge t 

1 ~ t*k 9^) 
/ o o \ / k+ [k/2] \ I n \ 

-( Et" L aft*)- T.t"[Za?). 
where we set a- : = 0 for j >k + [k/2]. Hence, by (8), the coefficients in the 
Taylor series for gk(t)/(1 - t) are all 1 for n > k + [k/2]. Comparing coeffi-
cients on both sides of (10), we get 

Ak(n) = 1 for n > k + [fe/2], 

which completes the proof. 

(iv) Consider the generating function 

^ - ^ y-= ±hn(z)t\ 
1 - t(l + Z + 22) + Z2t2 n = 0 

By multiplying both sides by the denominator of the left-hand side and compar-
ing coefficients, we get the recursion 

hQ(z) = 1, h^(z) = 1 + z2, and 
(11) 

fcn + l00 = (1 + s + s2)^n(s) - ^ ^ ( s ) . 

Hence, the coefficients of the hn(z) satisfy the same generating rule as those 
of fn (z), and we obtain the triangle 
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1 
1 0 1 

1 1 1 1 1 
1 2 2 3 2 2 1 

1 3 4 6 6 6 4 3 1 

If xn denotes the sum of the elements in the nth row, we have, as in (i) , 

so, by (11), the Tn satisfy the recursion 

T1 = 1, T 2 = 2, T n + 1 = 3T n ™ T n _ l 5 

and this is the recursion for the odd-indexed Fibonacci numbers F2 _-,; hence, 
Tn = Fln-1 for n = 1, 2, ... . 

Remark: K. B. Stolarsky considered the partial differential equation 

d2u = _9_̂ w _9w 

dx2 dt2 dt 
and its difference analogue 

2u(x, t + 1) = u(# - 1, t) + u(x9 t) + u(x + 1, t) - u(x, t - 1) 

which, after normalizing, leads to the triangle 

1 
1 1 1 

1 2 1 2 1 
1 3 2 3 2 3 1 

1 4 4 4 5 4 4 4 1 

The generating rule for this triangle is very similar to that of T, namely, 
each element in the nth row is the sum of the three closest elements in the 
in - l)th row minus twice the closest element in the (n - 2) t h row. The gen-
erating function in this case is 

[1 - t(l + z + z2) + 2z2t2]~l
s 

and the sum of the entries in the nth row is 2n - 1. 

Stolarsky also suggested to study the general case 

[1 - t(l + z + z2) + Xz2t2]~l
9 

where the corresponding triangle is generated as before, with the difference 
that A times the closest element in the (n - 2) t h row is subtracted. This was 
carried out in [1], in a slightly more general setting. The sum of the entries 
of the nth row turns out to be 

n/2 /3 + /9 - 4A\n /3 - /9 - 4A\n 

« /9 - 4A (\ 2/A / \ 2/A 

For A = 1, the Fibonacci connection becomes apparent again, since 

(3 ± /5)/2 = ((1 ± i5)H)2. 

Asymptotic formulas for the elements in the columns of the triangle are also 
given in [1]. For example, for A < 9/4, the column elements in the (general) 
triangle are asymptotically 
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2/iT(n - 1) 
(9 - 4X) . /3 + /9^-4xy 

regardless of which column is considered; n denotes the row, numbered as in the 
problem, In particular, for X = 1, this is 

2/ir(n - 1) \ 2 / 2/Ti(n - 1) 2 n F0 

Reference 

1. K. Dilcher. "Polynomials Related to Expansions of Certain Rational Func-
tions in Two Variables.11 SI AM J. Math. Anal, (to appear). 

Also solved by J.-Z. Lee & J.-S. Lee and the proposer. 
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