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Introduction 

Let A be in SI2(C) ("The special linear group of degree 2 over C"; see [5]) 
and let n be a positive integer. Let us look at all 5's in SI^CC) for which 
Bn = A. 

If x = TrA * ±2, then A is diagonalizable since it has two different eigen-
values, namely, (x ± /x2 - 4)/2, and it is trivial to compute all n th roots of 
A. 

If A is the identity matrix and if 6 is an eigenvalue of some nth root B of 
A, then, unless 6 = ±1, the other eigenvalue of B is different (as it is 1/6, 
the determinant being 1) and therefore B is diagonalizable, that is, B is a 

conjugate of ( . ,. J , with 5 an nth root of 1; note that when 6 = ±1, it is 

easy to check that B is ±( 1 ) . The case A = ( ) is similar, 
/1 0\ 

Finally, if x = ±2, but A * ± ( J, the problem is slightly more diffi-
cult; it turns out that there are either 0, 1, or 2 nth root(s) in S^CC), de-
pending on n and A. 

If A E Gl2(C) ("The general linear group of degree 2 over C"; see [5]) is 
not a multiple of the identity, then A has exactly n nth roots. If A is a mul-
tiple of the identity, then A has infinitely many nth roots for any n. • 

Although we will compute roots in SI 2(C) and Gl2(C), the immediate purpose 
of this paper is not to compute roots in these groups. Our purpose is to give 
a nonlinear-algebra approach to computing roots which rests on the arithmetic 
involved in computing the powers of an element of SI2(C) or G^CC). Computing 
these powers involves a finite number of multiplications and additions; this 
gives rise to polynomials and the arithmetic of these polynomials yields 
another method to compute roots in SI2(C) without any linear-algebra concept. 
We obtain a complete description of these roots in this way, with 
transcendental functions in expressions not naturally given by the linear-
algebra approach [see, e.g., (1.14-C)]. We will explore this arithmetic and 
see how it connects most naturally with Chebyshev?s polynomials. It also 
yields a natural meaning to arbitrary complex powers in S^CC) and G^CC), and 
we obtain an explicit formula allowing computations of A for any n in a time 
which theoretically does not depend on n [see (1.6), (1.8), and (2.1)]. As far 
as computing roots is concerned, the arithmetic of these polynomials gives an 
elegant nonlinear-algebra solution which solves the problem of extracting roots 
in all cases in the same way, be the matrix diagonalizable or not. 
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Computing r o o t s of 
'a bs 

,c d> « - ( l 5) 
is achieved first through computing roots of 

A/^ad - be [which is trivially in S^CC)]; 

therefore, we first study the arithmetic of powers and roots in SI 2(C). It 
rests on two families of polynomials; if x and Xn are, respectively, the traces 
of A and 

An - Ian bn 
\Cn Un 

then xn is a polynomial in x which depends only on n and not on A . In addi-
tion, there is a polynomial Pn which gives the values of bn and cn through 

hn = hpn (x) and cn = cPn (x) . 

These polynomials are deeply related to Chebyshev's polynomials and a full 
description of their zeros yields a full description of all roots of any 
element of SI 2(C). The Pn

 1 s, which appear naturally in our problem have been 
considered more or less directly in some other contexts (see [1], [3], and 
[4]). 

The Pn
 ! s have received much attention, but as far as we know the Xn's n a v e 

received little; the computation of roots in S^CC) has also received little 
attention because in most practical cases there is an obvious linear-algebra 
solution (which however masks the arithmetic behind the calculations). As far 
as the raw computation of roots is concerned, we found a vague and partial 
answer in [6] which triggered our investigation, and an exercise in [2] coming 
from [7] which concerns the sole case when A is hermitian and n = 2. We are 
thankful to Professor G. Bergum for bringing to our attention references [3] 
and [4] regarding the Pn '' s. 

Powers and Roots In S12(C) 

The starting point of this paper is the following family of polynomials: 
for each n € Z, we define a polynomial Pn by 

(a) PQ(t) = 0 and P^t) = 1; (b) P„+1(« = tPn (t) - ̂ ^ ( t ) (1.1) 

These polynomials have the easily verified properties: 

a) P„(±2) = w(±l)n+1; b) P_n = -Pn. (1.2) 

Their roots are studied in [3] and [4], where Pn = A2n in their notation. The 
following proposition, the proof of which is an easy induction on n using 
ad - bo = 1 [this matrix is in S ^ C ) ] , ignited our interest in this family of 
polynomials; we lately discovered a more general version of it in [1], but we 
state in Proposition 1 just the particular case we need. 

Proposition 1: Let A = ( -,) be an element of SI2(C) and let us set \ = a + d. 
Then, for each n E Z: 

»\n , (aPn(x) ~ P„-i(x) bPn(x) \ n ,) 
V \ cPn(x) dPn(X) - Pn-i(x)l 

Corollary: For A € SI2(C) and n € Z, if x a n d Xn
 are> respectively, the trace 

of A and An, then 

Xn = P„+i(x) - P„-i(x). (1.4) 
1989] 3 8 7 
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Using (1.4) as a motivation, we introduce yet another family of polynomi-
a l s : for each n e Z, we set 

x „ W = Pn+iW - f n - i ( * ) ; 
each xn is a polynomial of degree \n\ ; moreover x = X_w» a s i-s easily checked 
from F„ = -P-n . The table in the Appendix shows these polynomials for all 
values of n in the range 2 < n < 20. 

We shall need the zeros of all polynomials of the form xn ~ ^> with £ e C. 
Fortunately, these zeros are easy to describe and, surprisingly, this result 
seems to be new. 

Proposition 2: Let n > 0 and £ be an arbitrary complex number, and let us set 
p = £/2. Then the n complex numbers £Q, £ ]_ , ..., Cn-1 defined by 

/argcosh p + 2ki\i\ /arccos p + 2ki\\ 
Zk = 2 coshl 1 = 2 cosf J (1.5) 

are the zeros of x - E, (k = 0, . . . , n - 1) . 

Proof: If Tn is the nth Chebyshev polynomial of the first kind (see [8] or 
[9]), then one easily proves that the Tn's are defined in terms of the Pn 's by 

2Tn(t) =Pn+1(2t) ~Pn,l(2t). (1.6) 

Since we look for the solutions of 

X n e . , Pn+l(x) ~ P n - l W 

—- = —, or equivalently of = p, 
2 . 2 2 

when we set x = 2s, the problem reduces, using (1.6), to solving Tn (s) = p ; 
using the identities Tn(cos 6) = cos(n0) and Tn (cosh 6) = cosh(n0), we see that 
T (s) = p has n solutions, which are given by 

(argcosh p + 2/C7ri\ /arccos p + 2ki\\ 
= COS , n ) \ n ) (1.7) 

where k = 0, ..., n - 1 (simply write Tn{s) as T^(cos arccos s) = p . . . ] . These 
solutions yield the solutions E,-. = 2s^ . Q.E.D. 

Remark: It follows from (1.6) that the value of the nth Chebyshev polynomial 
at any complex number s is the half-trace of An, where A is any element in 
S?2(C) with half-trace s. Therefore, if sn is the half-trace of the nth power 
of an element of A in S^CC) with half-trace s, we have 

sn = cosh(n argcosh s) = cos(n arccos s). 

This is an easy exercise in linear algebra since given A there exists an 
invertible matrix X such that 

XAX-I = (i 1 ; 6 ) . 

Because the trace is invariant under conjugation, we have 

s = cosh(ln 6) and sn = cosh(ln 6n) = cosh(n argcosh s). 

Next we need an explicit description of the zeros of the Pn' s. These are 
known (see [3] and [4], where A>in in their notation is our Pn) but our proof is 
simpler and yields an explicit expression for the values of the Pn 's [see (1.8) 
below] which is used in proving Proposition 5. 

388 [Nov. 



THE ARITHMETIC OF POWERS AND ROOTS 

Proposition 3: For each integer n, the zeros of Pn are 

Sk = 2 cos(ku/\n\)} (k = 1, ..., |n| - 1). 

In particular, they are all real and distinct. 

Proof: In view of (1.2)-(b), we will suppose, in full generality, that n > 0. 
Using the easily proved identity 

(s2 - l)P„(2s) = Tn+l(s) - sTn(s), 

which defines the Pn ' s in terms of the Tn
 f s, and the trivial identities (see 

[8]) 

s = cosh(argcosh s) and Tk (cosh x) = cosh.(kx) , 
we have 

(s2 - l)Pn(2s) = sinh(argcosh s)sinh(n argcosh s). 

Upon writing s = cosh(argcosh s ) , using the standard identities for hyperbolic 
functions and using the relation (1.2)-(a) to take care of the case s = ±1, we 
obtain the following explicit formula for Pn(2s), which one will observe gives 
the value of Pn without any iteration, and hence of the matrix 

/a by 
\c dl 

without iteration: 

nsn+l if s = ±1; 

Pn(2s) = < s±nh(n a r g c o s h s) , . ( 1 « ° ) 
1 —J77 - — r^- o t h e r w i s e . 
sinh(argcosh s) 

[Note that, with s * ±1, the denominator of the lower part of (1.8) cannot be 
0, and that the value of the quotient does not depend on which value is chosen 
for argcosh s.] It follows from (1.8) that the solutions of Pn(2s) = 0 are the 
values of s for which (n argcosh s) is a multiple of i\i; these values are given 

sk = c o s ^ j , (k = 1, ..., n - 1), 

whence the result 

/kit Sk = 2sk = 2 cosf^j, (k = 1, ..., n - 1). Q.E.D. 

I t i s i n t e r e s t i n g h e r e t o c o m p a r e t h e z e r o s of \ n ± 2 w i t h t h o s e of Pn 

From ( 1 . 5 ) : 

^The z e r o s of X n " 2 : ?0 = 2 c o s 0 , Ci = 2 cos j , . . . . £n_l = 2 cos — ^ - ' 

^The z e r o s of Xn
 + 2 : ?0 = 2 c o s \* ^ l = 2 cos y , . . . , £ „ _ ! = 2 cos n ~ - V 

iThe z e r o s of Pn : Sx = 2 cos ^ , S 2 = cos -—, . . . , 5 n _ j = cos n 

1989] 389 
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Zeros 

X3-2: 6=2, 6 =-1, & = -l 
X3 +2 : 6 = 1, 6 = -2, 6 == 1 

P3 : Si = 1, 52 = -1 

X4 - 2 : 

X4+2 : 

A : 

6 = 2, 6=o, 6 = -2, 6 = o 
6 = V% 6 = -V2, 6 = -V2, 6 = V2 
5X = V2, S2 = 0, 53 = -y/2 

FIGURE 1 

The zeros of xn + 2, xn - 2 , and Pn 

Figure 1 shows the cases n = 3 and n = 4 and illustrates the essential con-
tent of Corollary 1 below; for convenience, let us call the zeros of xn + 2 and 
Xn - 2 "small zeros" when they are strictly less than 2 in absolute value. 
Then, we clearly have the following: 

Corollary 1: 
1. The small zeros of xn + 2 and xn ~ 2 are each of multiplicity 2. 

2. The small zeros of xn + 2 and the small zeros of xn ~ 2 form two dis-
joint subsets, the union of which is the set of zeros of Pn, 
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Corollary 2: For any n € Z and for any £ * ±29 Pn does not vanish on a zero of 

Corollary 1 states something on the values of Pn at the zeros of xn - 2, 
and Corollary 2 on the values of Pn at the zeros of xn~X> with £ * ±2, If we 
agree to say that a function / separates n points z\ 9 . .., sn when /* takes n 
different values on {sl5 . .., 2n} , then Proposition 4 below completes the 
information of Corollaries 1 and 2. This proposition will be responsible for 
the fact that the nonmultiple of the identity in G^CC) has exactly n distinct 
nth roots. 

Proposition 4: For all n € Z and all.£ * ±2, Pn separates the \n\ zeros of xn ~ 
5. 

Proof: Since P_n = -Pn and X-n = Xn » w e may suppose, in all generality, that 
n > 0. The cases n = 0 and n = 1 are vacuously true because xo an<^ Xi n a v e , 
respectively, 0 and 1 zero [recall that xo (̂ ) = 2 and xi(£) = £] • Therefore, 
we suppose that n > 2. 

In order to consider the value of Pn on each of the zeros of Xn ~ £' ^et u s 

set 

. argcosh £/2 
a + 2^ = . 

n 
Saying that £ ^ ±2 means that a + hi is not a multiple of ni/n . The roots of 
Xn - £ are, after (1.5), 

Ck = 2 cosh(a + M + ^ p 1 ) (& = 0, . . . , n - 1), 

and therefore, 

M S * ) = P «( 2 cosh(a + ii +~^))-
Now, 

2/CTTi^ cosh (a + hi + ~ ^ ) * ±1, 

since the contrary would imply that a + bi Is a multiple of i\i/n. It follows 
from (1.8) that, for r = 0, ..., n - 1, 

P (? ) - slnh n(a + bi) 
s i n h a cos I 2? H + i cosh a sinlZ? H 

\ n i \ . n 1 
The denominator is the expansion of sinh(a + bi + — - — ) . 

If a * 0, then, from (1.9), Pn separates all E,r, for the denominator takes 
n different values, which are n different points on the ellipse with center 0 
going through sinh a and i cosh a. On the other hand, if a = 0, Pn cannot 
identify two £P's, for, in the case a - 0, (1.9) becomes 

sin nb 

and Pn identifying two £r
fs, say £^ and ^ (with h * k)> would imply that 

sin 12? + ) = sin (2? + ) 
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(because s i n nb * 0 by C o r o l l a r y 2 to P r o p o s i t i o n 3 ) , which would imply i n t u r n 
t h a t b i s a m u l t i p l e of ir/n, c o n t r a d i c t i n g the h y p o t h e s i s . Q.E.D. 

Proposition 5: 

(a) The set of nth roots of f j is made of all diagonal matrices f l/*)' 

where 6 is an nth root of 1, and of all matrices 

f c o s ^ + T Y A 

V Z cos ̂  - T, 
(1.10) 

where Y, Z, T,. and k satisfy the following constraints: 

(CI): T is any complex number and YZ = -[T1 + sin2 — ) 

[This means exactly that the determinant of (1.10) is 1]; 

(C2): k is even and 1 < k < n - 1. 

(b) The set of nth roots of ( in SI 2(C) is made of all diagonal 

matrices ( i/^)s where 6 is an nth root of -1, and of all matrices of 

the form (1.10) satisfying constraint (CI) above, constraint (C2) being 

replaced by constraint (C3): 

(C3): k is odd and 1 < k < n - 1. 

Proof: 

(a) Let f J be an nth root of the identity in SI2(C), and let §.= a + 6. 

By (1.3), we have 

(aP„(fi) - Pn-i(Q) &Pn(Q) \ /l 0\ (1 , n 

^ yPn(Q) &Pn(Q) - Pn-i(Q)J \0 l)' K ' J 

If PK(Q) = 0, then 3 = y = 0 and a = 1/6, which implies that a is an nth 

root of 1, and we have a root which is a diagonal matrix ( 1/£/ a s desired. 

We will therefore suppose that Pn (Q) = 0. From Proposition 3, we know that 

Q - 2 cos — for some k in {1, 2, . .., n - 1}. 
n 

It is clear from (1.11) that 3 and y obey no other constraints than aS - 3y = 
1. On the other hand, a and 6 are determined by: 

(A) a + 6.= Q; (B) Pn_l{Q)=-l. (1.12) 

Using (1.8) to work out the value of Pn_i(Q) = P„_1(2 cos ki\/n) we obtain 

. . (n - l)kui . (n - l)ki\ 
7 smh sin 

*„-! 2(cos £ ) - —^— - — t — - <-Dfc+1- (I-") 
smh sin — 

n n 
It follows from (1.12)-(B) and (1.13) that k must be even. [Remark: the con-
straint nk is even and 1 < k < n - 1" in (C2) implies that in (1.10) n > 3; 
therefore, P^ (Q) * 0 and the identity matrix has no square roots of the form 
(1.10)]. Finally, (1.12)-(A) implies that if Pn (Q) = 0 , then the diagonal of 
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(a J is of the form of the diagonal of (1.10). Moreover,' constraint (CI) is 

satisfied since ( is in SI2(C). As matrices of the form (1.10) are 

clearly ftth roots of the identity matrix (to see this, apply Proposition 1), we 
have all ftth roots of the identity with trace a zero of Pn. This completes the 
proof of (a). 

(b) The proof runs parallel to the proof of (a). The constraint (1.12)-(B) 
is to be replaced by P„ _]_(§) = 1, which, by (1.13), implies that k is odd. 

[Remark: The fact that /< is odd allows A _-, J to have infinitely many roots 

of any order in Sl2(C), as opposed to ( :M which has only two square roots in 
SI2(C).] Q.E.D. XU U 

We now hold all the necessary results to give a complete description of all 
nth roots of any element of SI 2(C). 

Theorem A: Let 

n be any positive integer, t = (a - d)/29 and x = a + d . Then the set of all 

'1 0\ 
ftth roots of A in SI2(C) is described as follows: 

Case 1. A = ±1 ) 

The nth roots of A are exactly the conjugates of L - , 1, where u is an 

root of ±1. [Remark: When A is the identity and n = 2, 

0 \ _,/! 0̂  
\0 1/ia/ ~V0 1/ 

is in the center of S?2(C) and thus has no proper conjugates; this is why the 
identity has only two square roots. Apart from this case A has infinitely many 
nth roots for each n.] 

Case 2. A is not the identity and x = 2. 

There are only one or two root(s), depending on the parity of n; this 
(these) root(s) is (are) 

^ > ( a + ( r 1 } , + (*-!))' < ^ - A ) 

where a is ±1 if n is even and +1 if n is odd. 

-1 0̂  Case 3. A * ( _^j but x 

There are no roots in SI2(C) if n is even and only one root if n is odd, in 
which case this root is 

a / n ) ( a - ( n~ 1} , {
b .A. 

v \ c d - (ft - 1) / 

Case 4. x x ± 2 -

There a r e e x a c t l y n d i s t i n c t nth r o o t s . I f we s e t 

\ik = fargcosh ? ) + 2ki\i and M 

(1.14-B) 

s i n h \ik /ft 

s i nh \±k 
1989] 393 
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then these nth roots are A0, . .., An_l9 where 

cosh ̂  + tMk bMk \ 
A*"\ cMk coBh ̂ - t t f j - (1-U-C) 

X = x + w. 

Proof of Theorem A: 

Throughout, (^ ^ will represent an nth root of A = (a ,\ and 

Case 1. We will consider only the case of ( ), as the case A = ( ) 

follows immediately from it. We must prove that the set of conjugates of 

f „ 1/ )' w n e r e y is an nth root of 1, is the set of roots described by 

Proposition 5(a). Let us write & (for^oot) for the set described by (1.5)-(a) 

and *€ (for Conjugate) for the set of conjugates of y . ). 

First, we need a detailed description of <*f; a direct calculation yields 

( By 
ua6 - - -2a3 sinh(ln u )y 

2y6 sinh(ln u) -(3yu -'—) / 

2 + ^ ~ * 

where a6 - 3y = 1. If we use the identity 

/X + W , X ~ U 

(* 2A = ( 
\z wl \ x + w x - w 

to rewrite (1.15), we obtain 

/cosh(ln u) + T sinh(ln u) -2a3 sinn(In u) \ . 
\ 2y6 sinh(ln u) cosh(ln u) - T sinh(ln y)j (1.16) 

where r = a5 + 3y. If y = e1K^i/n, K = 0, ..., n - 1, then (1.15) becomes 

fcos + %Y sin -2a^ s m \ 
* n * ] (1 17) 

2yot s m cos - t T s i n / 
n n n l 

Matrix (1.17) characterizes the elements of ^ and entails the detailed descrip-
tion of m that we now use. 4 

We first show t h a t ^ C ^ . If K = 0, (1.17) is the identity which is tri-
vially in J5. If 1 < 2K < (n - 1) , it is trivial to show that (1.17) has the 
form (1.10) (see Proposition 5) by solving 

/cos + tF sin -2aB^ sin \ 
I n n n \ 
\ n . . . 2KTI 2KI\ . _ . 2XTT J 
\ 2y5^ sin cos - tT s m / 

' n n n ' 
^ . rn V \ 

cos — + T i \ , 
Z cos — - T I n I 

with k, T, I, Z as unknowns. Finally, if n < IK < 2(n - 1), then (1.17) is a 
matrix with inverse of the form (1.17) for a value of K for which 0 < 2K < (n -
1); since M is closed for inversion, (1.17) is in M« 
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We next show t h a t ^ C ^ f . A l l m a t r i c e s (_ _ , ) , whe \Q 1/u/ re u is an nl root of 

15 are trivially in &. Let us consider the system (1.18) with left-hand side 
as unknown (that is, K9 a, 3? y5 5 are unknown) and r set to a6 + 3y . Let us 
set K = k/2. [Note that the left-hand side of (1,18) is a typical member of ctfi 

and that the right-hand side is a typical member of M. Moreover, the left-hand 
side of (1.18) is the left-hand side of (1.15) rearranged.] 

If sin(2A:TT/n) = 0, the left-hand side of (1.18) is (±^ _?), 

( n -J occurs only if n is even and K = n/2 . 

fore, we will suppose that sln(2Ki\ /n) * 0. We wish to show that the elements 
of M of the form of the right-hand side of (1.10) are in ^, that is, that 
(1.18) s with the left-hand side as unknown, has a solution. This is achieved 
through showing that the following system has a solution, where (b) comes from 
iT = T [see (1.18)], and (C) and (D) from the nondiagonal terms of (1.18): 

vially in ^ note that 

which is tri-

There-

a) a6 - 3y 

b) a6 + 3y 
/CTT 

T + i ki\ 1 

A) a6 
2i sin —-

Tcn_ 
n 

B) 3y = 

ki\ 
n 

2i sin 
/err 
n 

C) a£ 
2i sin 

D) y<5 = 

ki\ 

2i sin 
kn 

and where 

YZ + TA + sin^ 
ki\ = 0 (Constraint CI, Proposition 5), 

The subsystem (A, B, C) has the following solution in terms of a; 

-Y 
0 . . kn 2a% s m — 

n 
-a (T kn\ (T - i sin £) 

T + i sin 
ki\ 

2ai sin kit 

(1-19) 

Note that, if Y = 0, we may use (D) to express y in terms of a, since Y = Z = 

0 is possibly only when (1.18) is (^ . j, a case which is trivially in <tf; 

therefore, we assume that \Y \ + \z\ * 0 and, without loss of generality, that 

Y * ••] Constraint 

YZ + Tl + s i n / feir 
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precisely means that the solutions (1.19) are' compatiblewith (D). Case 1 has 
thus been established. 

Case 2. A is not the identity but x = 2.. 

Then, by ( 1 . 2 ) , 

ia b\ = (xPn(X) - P n _ i ( x ) yPniJO. \ n ? m 
\c d) \ zPn(X) wPn(X) - Pn-l(X))' U ° Z U ; 

The Mobius transformation defined by ( -,) in PSl2(C) ("The projective special 

linear group of degree 2 over C") has a unique fixed point as x = 2 (see [5]); 

therefore, the one defined by ( ^ ), the nth iteration of which is ( 7 ) , has 
J \z wl \c d! 

also a unique fixed point; thus, we have X = ±2. On the other hand, 
Xn(-2) = -2 if n is odd, 

as is easily checked. From x (X) = x = 2, we see that in the case where n is 
odd we must have X = 2. Therefore, from (1.20) and 

dd 
even 

p ( + 2 ) = n(+1)n+i = J n if n is o 
" U j U i ; \±rc if n is e 

/nx - (n - 1) nz/ \ 
\ ns nw - {n - I)) 

- in - 1) ±m/ 
±nz ±nw - (n .») 

if n if odd, 

if n is even. 

Solving then for x, y9 zy w in terms of a, 2?, c, d yields 

ix y\ = 
\Z Wl 

c d + (n - 1)) 
a + (n - 1) 2? 

c J + (n - 1)) 

which is exactly (1.14-A). 

(-1 0\ 

if n is odd, 

if n is even, 

Case 3. A * ( _:) but x - 2. 

As in Case 2, we must have J = ±2; however, since 

X„(±2) - 2(±1)"+1 = X. 

we must have X = -2 and n odd. Moreover, we then have 

Pn(X) = w and Pn_i(Z) = -(n - 1). 
The result follows immediately from (1.20). 

Case 4. x * ±2. 

X is a zero of xn ~ X> saY (see Proposition 2), 

v r o u a rgcosh(X/2) + 2ki\i 0 a r ccos (X/2 ) + 2/CTT f. 0 1 . 
2 = £, = 2 c o s h — - —-— = 2 cos ; (1 .21) 

••«• n n . 

consequen t ly , from 
(x yy = (xPn(X) - P n - i U ) 2 / ^ 0 0 \ (a b\ 
\z wl \ zPn(X) wPn(X) - Pn_l{X)) \c d) 

we obtain the following possibilities for ( ^ ) : 
fo F \z Wl 
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( 'a + Pn-lttk) b \ 

pnu ) p„afc) \ a 22 ) 
, pnak) p„ak) / 

[(1.22) uses tacitly Corollary 2 of Proposition 3 in using P (£ ) in the denom-
inator.] We first show that each of the n matrices defined by (1.22), (k = 0, 
• .-, n - 1), is an nth root of 4 in SI 2(C) (see Lemma 1 below). Then we show 
that these matrices are all different (see Lemma 4 below, which requires Lemmas 
2 and 3). 

Lemma 1: xkwk - ykzk = 1 [the possible values of (̂  ^) obtained from Proposi-

tion 2 are all in SI 2(C). 
Proof: Let us set 

= argcosh(X/2) + 2ki\i 
n 

Then 

— = _£i5—?L b y (ls8) a n d (1.22), and % = cosh u by (1.22), 
Pn(Zk) sinh nu 

tfliich gives 
sinh u 

^cosh u + t 
sinh nu 

sinh u 
sinh nu 

Therefore, 

cosh u 

sinh 
sinh 

1 - t 

2 

u 
nu 
sinh 
sinh 

u 
nu 

o _ Ox sinhzu 
^Wj, - 2/7,37, = cosh^u - (2?£ + t ) —«—» 
* * * * sinhznu 

but 2 _ 4 ^ /x x2 
2?£ + t2 = be + = ("?) "' 1 = c o s n n^ - 1 = sinh2nu, 

whence the result. This completes the proof of Lemma 1. 

Lemma 2: xk + yk = ik. 
Proof: From (1.22), we have 

X+2Pw.1(gfc) 

But (see the Remark following Proposition 2), 

^ + yk - „ " : * d-23) 

X 2 ^ ( c o s h ( a r g C O S h ( ^ 2 ) + 2 ^ ) ) = 2Tn&); 

therefore, from (1.6), we have 

x = p„+i(ek) - pn-iteO> 
which, by definition (1„1), gives 

x = ' 5 k p n a k ) - 2 P n . 1 ( e k ) . 
Substituting this value of X into (1.23) yields the result and completes the 
proof of Lemma 2. 

1989] 397 



THE ARITHMETIC OF POWERS AND ROOTS 

Lemma 3: (** M - (̂ /2,+ */*»«*> f ,b'P»(,%) „ ,) (Recall: t - *-=-*). 

Proof: From (1.22) and Lemma 2, we have the linear system 

2* 
Wj. = 

the solution of which is the required result; thus, Lemma 3 is proved. 

Lemma 4: The matrices ( k ^k) {k = 0, ..., n - 1) are all different. 
\zk wk) 

Proof: This is simply a consequence of Lemma 3 and Proposition 4, "since Pn 
separates the £fcfs. This completes the proof of Lemma 4, and Theorem 4 has 
thus been proved. Q.E.D. 

Remark: The denominator of Mk [see (1.14-C)], which is sinh \iks with 

\ik = argcosh -̂  + 2kui, 

does not depend on A: because, if we set s = x/2* we have 

sinh \ik = ±vsz - 1, 

where the sign is chosen so as to agree with the principal value of argcosh s; 
note that Mk does not depend on the choice of this principal value. 

In the same fashion, we have 

sinh —&• = ±/s7
2 - 1 

for the numerator of Mk when we set sk = cosh(yfc/n). Thus, we have 

Mk = ±/s2 - l//s2 - 1, 

and, clearly, only the numerator of this expression depends on L 

Roots in Gl2 (C) 

Let us conclude with the computation of roots in G^CC). For 

let 6 be one of the two square roots of det A; we will write 6+ for 6, 6_ for 
-6, A + for A/6+ and A. for /l/6_ . Clearly, A+ and A_ are in SI2(C). 

We first observe that the nth roots of ̂  in G^CC) are elements of §B with: 
an nth root of 6+ and 5 an nth root of A+} 

or i. (2.1) 
an nth root of 6_ and 5 an nth root of J4_) 

It is clear that an element §B is an nth root of A, for 

($5)n = §nBn = ̂  or > = A. 
(6_i4_ 

Conversely, all nth roots of A are of this form, for let ( • be an nth root 

of A and x be one of the two square roots of (xu) - yz)\ then 
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A = (x y)n = Tn(x/T y/T\n 

\z w) \Z/T W/T ) 
from which we get 

d/T)»4 = (x'x y'x)n. 
\Z/T W/T) 

The determinant of the right-hand side being 
ixw - yz\n 
\ 72 ) - x> 

we have that Tn = 6±; thus, 

/ * y\ = ixh yh\ 
\z w) \Z/T W/T) 

is of the form $5. 
To obtain all nth roots of A, we shall compute all products §B with $ and B 

satisfying (2.1); note that, since A+ and A_ are in SI2(C)* Theorem A gives all 
possible B!s. Let us agree that 6 is one of the square roots of (ad - be) for 
which (R Tr A+) > 0. 

We first suppose that A is not a multiple of the identity. We consider 
separately three cases: 

Case A. Tr A+ = 2 and n is even (say n = 2k). By Case 2 of Theorem A, A+ 
has two roots in SI2(C) which are of opposite signs [see (1.14-A)]; on the 
other hand, the roots $ of 6+ come in pairs with opposite signs and there are 
2k of them. If $]_, . .., $̂ » ~®l » •••> ~®k a r e the n possible values for $ and 
AQ and -AQ are two roots of A+5 then the set 

{$1, ..., §k, -$1, ..., -<^}U0> ~^0> (2.2) 

contains n elements. 
On the other hand, A. has no nth root (see Case 3 of Theorem A); thus, in 

this case the products of the form 

(a root of 6_)(a root of A.) (2.3) 

contribute nothing. A_ has therefore altogether n distinct nth roots and these 
are the elements of the set (2.2). 

Case B. Tr A+ = 2 and n is odd. 

Each of A+ and A. has exactly one nth root in SI2(C) (Cases 2 and 3 of The-
orem A), namely: 

rru +- * A A l(a/6+ + (n - I) b/6+ 
The root of A+: A0 = -( Q/^ d/^+ + £ 

The root of A.: = _l/a/6_ - (n - 1) b/6. \ 
n\ e/6. d/6. - (n - 1)/ 

(since 6+ = -6_ , these two roots are- of opposite signs). If r = |6| and 0 is 
the argument of 6+, then the nth roots of 6+ and 6_ are 

for 6+: re^9^{a0, ..., an_x}, 

for 6_ : re*<e + ir>/n{a0, ..., a ^ } , 

where a0, ..., a _j are the n nth roots of 1. Note that the second set is the 
first set multiplied by -1. Therefore, the nth roots of A form the union of 
the following two sets: 
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X2 = reWn{-oQ, ..., - a ^ . ^ H o ) 

Clearly, Z]_ = A'2 anc^ their union contains exactly n elements. 

Case C. Tr A+ * 2. 

Let ag, ...s a _]_ be the n nth roots of 1, and let B be one of the n nth 

roots of A+ [see Case 4 of Theorem As (1.14)-C)]. Then OQB9 . ,., an_]_5 are all 
distinct and each of them is an nth root of A+ since (akB)n = Bn = A+, It fol-
lows from Theorem A, Case 4, that 0"Q5, . .., an 5 are the n roots of A+ , and 
therefore that the set of elements of the form 

(a root of 5 + ) (a root of ,4+) (2.4) 

is, using the notation of Case B, 

p ^ e / ? 2 { a 0 s mmmf an_l}{o0Bs . . . , a n _ 1 5 } , 

which i s the s e t 
reietnio0B, . . . , On-iB}; " (2 .5 ) 

this set contains n elements. 
If a is any nth root of -1, a similar argument yields 

re^/n{ooQ, ..., aan_1}{aa05, .. . ., ac^.^} 

for the set of elements of the form (2.3). This is 

reiQ/n o2{o0,, ..., an_!}{a0S, ..., an_x5}, 

which contains exactly n distinct elements. Now, since a is an nth root of -1, 
o2 is an nth root of 1; then o2 is one of OQ, -.., crn-i, which implies that the 
set of elements of the form (2.3) is described by (2.5), which is already the 
set of elements of the form (2.4). Therefore, A has exactly n distinct nth 

roots in Gl2(C) . 

The case when A is a (nonzero) multiple of the identity is immediate; A has 

infinitely many nth roots, for if A = f L then A = -al n iK an^ ( i) 

has infinitely many nth roots for each n (see Theorem A, Case 1). Hence, we 
have proved the following theorem, which is our conclusion. 

Theorem B: Let A be in CI2(C). 

a) If A is a nonzero multiple of I J, then A has infinitely 

many nth roots; 

b) If A Is not a multiple of I 1, then A has exactly n dis-

tinct nth roots. They are of the form W satisfying (2.1). 
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Appendix 

Polynomials Pn and xn
 f o r 2 - n - 2 0 

n 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Xn 

X 

x 2-

x 2-
x 3-

x 3-
x 4-

x -
x 5-

x5-
x6-

x6-
x7 -

7 X -

x8-

x8-
x9-

x9-
xi0 

x10 

x11 

x11 

x12 

x12 

x13 

x13 

x14 

x14 

x1B 

x16 

x16 

x18 

x17 

x1T 

x18 

x18 

x19 

x19 

x20 

2 

-1 
3x 

2x 
- 4x2 + 2 

3x2 + 1 
- 5x3 + 5x 

-4x3 +3x 
- 6x4 4- 9x2 - 2 

- 5x4 + 6x2 - 1 
- 7x5 + 14x3 - 7x 

- 6x5 + 10x3 - 4x 
- 8x6 + 20x4 - 16x2 + 2 

-7xs + 15x4 -10x2 + 1 
-9x7 + 27x5 -30x3 +9x 

-8x7 + 21x5 - 20x3 +5x 
- 10x8 + 35x6 - 50x4 + 25x2 - 2 

- 9x8 + 28x6 - 35x4 + 15x2 - 1 
- llx9 + 44x7 - 77x5 + 55x3 - llx 

- 10x9 -f 36x7 - 56xB + 35x3 - 6x 
- 12xxo + 54x8 - 112x6 + 105x4 - 36x2 + 2 

- llx10 + 45x8 - 84z6 + 70x4 - 21x2 4- 1 
- 13X11 + 65x9 - 156x7 + 182x5 - 91x3 4- 13x 

- 12xu 4- 55x9 - 120x7 4- 126x5 - 56x3 4- 7x 
- 14x12 4- 77x10 - 210x8 4- 294x6 - 196x4 4- 49x2 - 2 

- 13x12 4- 66x10 - 165x8 4- 210x8 - 126x4 4- 28s2 - 1 
- 15x13 4- 90X11 - 275x9 4- 450x7 - 378x5 4- 140x3 - 15x 

- 14x13 4- 78xu - 220x9 4- 330xT - 252xB 4- 84x3 - 8x 
- 16x14 4- 104x12 - 352x10 4- 660x8 - 672x8 4- 336x4 - 64x2 4- 2 

- 15x14 4- 91x12 - 286x10 4- 495x8 - 462x8 4- 210x4 - 36x2 4- 1 
- 17xls 4- 119x13 - 442X11 + 935x9 - 1122x7 4- 714xB - 204x3 4- 17s 

- 16x1B 4- 105x13 - 364X11 4- 715x9 - 792x7 4- 462x5 - 120x3 4- 9x 
- 18z16 4- 135x14 - 546x12 4- 1287x10 - 1782x8 4- 1386x6 - 540x4 4- 81x2 - 2 

- 17x18 4- 120x14 - 455x12 4- lOOlx10 - 1287x8 - 924x6 - 330x4 4- 45x2 - 1 
- 19x17 4- 152x16 - 665x13 4- 1729xu - 2717x9 4- 2508x7 - 1254x5 4- 285x3 - 19x 

- 18x17 4- 136r16 - 560x13 4- 1365X11 - 2002x9 4- 1716x7 - 792xB + 165x3 - lOx 
- 20x18 4- 170x16 - 800x14 + 2275x12 - 4004x10 4- 4290x8 - 2640x6 + 825x4 - 100x2 4-2 
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1. Introduction 

Many different approaches have been proposed to evaluate the sums of powers 
of consecutive integers, 

n 

r= 0 

Interest in these sums is very old: the Greeks, the Hindus, and the Arabs had 
rules for the first few cases. Modern interest in these sums goes back more 
than 350 years to Faulhaber's (1631) "Academia algebrae." Fermat (1636), 
Pascal (1654), Bernoulli (1713), Jacobi (1834), and many others have also 
considered this question. Recent contributions are due to Sullivan [1], 
Edwards [2], Scott [3], and Khan [4]. Sullivan uses a simple and elegant 
recursion formula to study this problem. Edwards and Scott make use of a 
matrix formulation which is very intimately connected to Pascal's triangle and 
the binomial theorem. Khan introduces a simple integral approach that can be 
presented in all generality with just a basic knowledge of calculus. The 
interested reader will find a textbook account in Jordan [5], for example. 

The purpose of the present note is to study sums of the type 
n 

r = 0 *, ' 

where ns k > 0 are integers and x is an arbitrary parameter (real or complex) . 
The sums of powers of consecutive integers can be obtained from our results, as 
a special case, by letting x -> 1. But since the latter sums (x = 1) have been 
studied extensively in the literature, the main emphasis of the present note 
will be on the former sums (x * 1). 

2. A Method for Evaluating ^2rkxr 

In this section, we present a calculus-based method for evaluating J2rkxr, 
To our knowledge, this approach has not been discussed before. An alternative 
approach is to use Sullivan's technique [1] by setting ar = xr, instead of 
ar = 1, in his expressions. However, after examination, it was found that this 
approach is not analytically as transparent as the present approach; thus, the 
details are not reported here. 

Let x * 1 be an arbitrary real or complex parameter, and note the follow-
ing identity, 

£ > r = (1 - xn + 1)/(l - x ) . (1) 
r = 0 
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By k s u c c e s s i v e a p p l i c a t i o n s of t he d i f f e r e n t i a l o p e r a t o r D = xd/dx t o bo th 
s i d e s of ( 1 ) , we immediately o b t a i n 

J2rkxr = Dk(l - xn + l)/(l - x). ( 2 ) 
v = 0 

For k = 0, (2) is to give back (1) and so we adopt the convention that r°  = 1 
for all r, including the case v = 0. The above formula provides a compact 
analytic expression for the desired sums. 

By observing that k applications of D on the right-hand side of (2) pro-
duces a result with a common denominator of (1- x)k+l

 s we define a set of poly-
nomials of degree n + k + 1, Qn+i(x; k); thus: 

£ rkxv = Qn+l(x; fc)/(l - x)k+1, (3) 
. , o 

with 
Qn+l(x; 0) = 1 - xn+l, (4) 

from (2) and (1). From this point on, the summation index will be r, unless 
otherwise specified. A recursion formula in k is obtained by noting that 

n n 
£ vk + lxv = D Y,rkxT. (5) 
o o 

Identifying each side of (5) with a ^-polynomial as given in (3) we get 

Qn + l(x; k + 1) = x[(l - x)Q7l+l(x; k) + (k + l)Qn + l(x; k)] (6) 

for k integer > 1; Qn+i(x; 0) is defined by (4), and a prime denotes differen-
tiation with respect to x. 

The first few ^-polynomials are: 

Qn+l(x; 1) = x - (n + l)xn+1 + ^xn+2; (7) 

Qn+l(x; 2) = a? + x2 - (n + l ) 2 ^ n + 1 + (2n2 + 2n - l)xn+2 - n2xn+3; 

Qn + l(x; 3) = x + l\x2 + x3 - (n + l)3xn+1 + (3n3 + 6n2 - 4)xn + 2 

- (3n3 + 3n2 - 3n + l)xn+3 + n3^n+4. 

3, General Properties of £ r k x r 

An inspection of (7) suggests that the ^-polynomials may be written as xn 

times a polynomial of degree k in n, plus a term which is n-independent. Con-
sequently, this property also holds for Hrkxr

s by (3). To see this more 
clearly, rewrite (2) as follows: 

xn + l 

£ rkx* = Dk r- - Dk —±—. (8) 
~ x - l x - 1 

The first term on the right-hand side generates xn times a polynomial of degree 
k in n and the second term generates a term which is independent of n. As a 
result, in an effort to display the n-dependence of the right-hand side as 
explicitly as possible, we rewrite (8) in the form 

£ rkxr = xnPk (x; n) + Rk (x), (9) 

where 

Pktel n) = £ a%\x)nr (10) 
v = 0 
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is a polynomial of degree k in n, with coefficients a^ which depend on x. The 
term R is independent of n and so, by setting n = 0 in (9), we find that Rk = 
-a^k\ except when k = 0. Indeed, because of our earlier convention that r°  be 
equal to 1 for all v > 0, the case k = 0 has to be handled differently. From 
(2), with k = 0, we find that 

RQ(x) = -II (x - 1) and a(0°} (x) = x/(x - 1) . 

Finally, with this restriction in mind, we rewrite (9) in the form 

n k 
Y,rkxr = xnY,^\x)nv - a(

Q
k\x) (11) 

0 r= 0 

and establish rules to obtain the coefficients a[kK To obtain these coeffi-
cients, we will use two different methods: A) a method of recursion on k; and 
B) a method of recursion on n. 

A) fe-Recursive Method: This method consists in assuming that the 'a^ s are 
known for some k. Then, by using (5), the next set of coefficients, a^+1) 5 is 

determined. By (5) and (9)-(ll), we get 

xnPk+l(x; n) - a<* + 1> = D[xnPk(x; n) - af\. (12) 

To reduce this expression, perform the derivative and get 

xn[PkJtl{x; n) - nPk(x; n) - DPk(x; n) ] = a(
0
k+l)(x) - Da{k\x)« (13) 

The right-hand side of (13) is independent of n but the left-hand side has a 
factor which grows exponentially with n. Consequently, for (13) to hold for 
all values of n, with x fixed but arbitrary, we must have 

4fc+1> = Da(
Q

k\ (14) 

Pk + 1 = nPk +DPk. (15) 

To reduce (15) further, define 

a$i E 0, a™ E 0, (16) 

and use (10) to get 

fc + i 
L ia{

r
k+i) (x) - a ; _ \ ( x ) - Da£\x)]nT = 0. (17) 

In o rde r for t h i s e x p r e s s i o n to hold for a l l n, w i th x f i xed but a r b i t r a r y , we 
must have 

a<fc + 1) = 4k\ + Da™. (18) 
Because of (16), the case v = 0 is consistent with (14) above; similarly, for 
v = k + 1, we get 

and so we conclude, from (3), that 

a(k\x) = x/(x - 1) (20) 

for all k9 including k = 0. One significant drawback of this fc-recursive 
approach is that all previous sums must be known in order to determine the kth 

one. Fortunately, however, using method B, it is possible to determine the kth 

sum independently from the others. 
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B) I n d u c t i o n on ni By i n d u c t i o n on ns (10) and (11) g ive 

n + l 
E^xr = xn + lPk(x; n + 1) - a(*\x) (21) 

ors equivalently, 

(n + l)kxn+l = xn+lPk(x; n + 1) - xnPk (x; n). (22) 

With (10), this gives 

x{n + l)k = ̂ 4 k ) ( n + D r " E ^ V . (23) 
o o 

To simplify the notation in what follows, we will write av for av because the 
upper index k is kept fixed. 

Using the binomial expansion, (23) becomes 

E^-Z (i)nr - E a3n° = XE (An (24) 

For this equation to hold for all n, we must have equality of the coefficients 
of like powers of n on both sides; hence, 

ak = x/(x - 1), (25) 

as observed p r e v i o u s l y , and 

dy, = 

\rl . ^ , \r) 
j=r+l 

(26) 

for 0 < r < k - 1. We give here the first few ap's, for arbitrary k; ak is 
given by (25), and 

*k-l -kx/(x - l) 2, (27) 

ak_2 = k(k - l)x(x + l)/2(x - l) 3, 

ak_3 = -k{k - l)(k - 2)x(x2 + kx + l)/6(x - I)4. 

Others are determined readily using (26). 
To conclude this section, we extend (2) to negative values of n. To do so, 

first note that the right-hand side of (2) is well defined for all values of n, 
with k an integer > 0. For n = -1, the right-hand member of (2) is zero, so we 
adopt the convention that 

-l 
E rkxr = 0 for all x * 1 or 0. 
o 

For n an i n t e g e r > 2, we l e t 

i . e . , 

STrkxr E Dk(x-n+l _ l)/(x - 1 ) = -D
J 1 

n-l 

n-l - 1 

1 

E^1 
0 

n-l 

i 

with S = 0 on the right-hand side. 

x(i (28) 

(29) 
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Now set n - -1 in (11) to obtain ' / 

x-ltaf'i~lf-a^= 0, (30) 
0 

i.e., 
k 

(x - l)a(
Q

k) = £ (-l)ra^} for all x * 1. (31) 
l 

This interesting property can be observed in the special cases that follow. 

4. Interest ing Special Cases 

In this section, results for k = 1, 2, 3, 4, and 5 are presented. 

To begin with, we let x = 2 and find the following sums: 

j[>. 2r = 2[2n(n - 1) + 1]; 
o 

£ P 2 • 2P = 2[2n(n2 - In + 3) - 3]; 
o 

X p3 • 2r = 2[2n(n3 - 3n2 + 9n - 13) + 13]; (32) 
o 
n 
£ rk • 2r = 2{2n(nh - 4n3 + 18n2 - 52n - 75) + 75]; 
o 
n 
X > 5 • 2V = 2[2n(n5 - bnh + 30n3 - 130n2 + 375n - 541) + 541]. 
o 

There is an interesting regularity in the coefficients of n in the parentheses; 
for example, the absolute value of the coefficient of n°  is equal to the sum of 
the absolute values of the coefficients of all the higher-order terms. 

The second sum in (32) belongs to a class of sums where the summand r^xr is 
symmetric under the interchange of p and k; rk • kr. Such sums have an in-
trinsic appeal and we give a few examples below: 

E r 2 - 2r = -^[2n(n2 - 2n + 3) - 3]; 
o 12L 

£ p 3 • 3r = 4r [3 n (4n 3 - 6n2 + I2n - 11) + 11]; (33) 
o 2^ 
n ^ 
X ^ P 4 - 4r = —I-[4n(27?2i+ - 36n3 + 90n2 - 132n + 95) - 95]. 
o 3 

The case T,Qvl • 1P has to be handled differently because (1) does not hold for 
x = 1; we shall discuss this type of situation in C) below. 

Other interesting results are now given in A)-C). 

A) For x = -1: 

E ("DrP = \[{-Dn{2n + 1) - 1]; 
o q 
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E (-DrP2 = k(-Dn(n2 + «)] = (-1)" f>; (34) 
o z o 

X (-DI'P3 = ̂ [(-Dn(4n3 + 6n2 - 1) + 1]. 
o 

B) For x = £ imaginary, we get, for example, 

Y,irrz = \{in{n2 + In + i(l - n2)) - <L] . (35) 
o 

If the real and imaginary terms are gathered separately, for n even, two iden-
tities are obtained. The identity for the real terms gives -back the second 
equation of (34) and that for the imaginary terms gives the new identity, 

n/2-1 

E (-l)r(2r + l)2 = [(-ir/2(l - n2) - 1]. (36) 
o 

C) For x = 1: In order to obtain the sums of powers of consecutive integers, 
take the limit x -> 1 in (3) and get 

n Sfc+iOc; k) (-Dk+l dk + l 

V * - > i ( l - x ) k + 1 (Zc + 1)! x+i dxk + l ^ + 1' ' 

after k + 1 applications of lfH6pital?s rule. For /c = 0, 1, 2, 3, equations 
(7) give, respectively: 

d 
lim — Qn+l(x; 0) = -(n + 1); 
x ->• i ax 

d2 

lim — ^ ̂ n+1(x; 1) = n{n + 1) ; 

' ^ d* ( 3 8 ) 

lim — ^ Qn+ x(x; 2) = -n(n + 1) (2n + 1) ; 
a; -> i a2? 

d4 
,2 (-y, _|_ 1 \ 2 lim —-j- Qn+l(x; 3) = 6nz (n + 1)< 

x ->• 1 <2-^ 

Insertion of these results in (37) gives the expected results for the appropri-
ate sums. The present technique is, however, somewhat cumbersome to handle. 
Indeed, k derivatives are first required to find Qn+i(x; k) followed by k + 1 
additional ones in order to compute the limit. Cases with x = 1 can be handled 
easily with Khan's technique or by the method of induction on n presented 
earlier. Indeed, by observing, from (8), that 

lim Dk(xn+1 - l)/(x - 1) 
x + l 

is a polynomial of degree k + 1 in n, we may write 

E ** = "f>?}^ - ô (39) 
0 0 

and proceed as before. 
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Introduction 

A sequence is complete if every positive integer is a sum of distinct terms 
of the sequence [1, 3]. In this paper I discuss and characterize this defini-
tion and two definitions that generalize it. 

In Section 1, I give several examples of complete sequences. Section 2 
describes how a theorem due to Brown & Weiss [1] can be used to characterize 
the complete sequences. In Section 3, Weak completeness [3] is defined, a 
sufficient condition for a sequence to be weakly complete is given and, 
finally, a condition equivalent to weak completeness is presented. 

In Section 4, the concept of completability is introduced. Several condi-
tions which imply the completability of a sequence are described. A theorem 
characterizing the completable sequences is proved, and it is used to find an 
infinite noncompletable sequence. The relations between the concepts of "com-
pleteness" discussed are described. 

1. Sequences and Completeness 

A sequence is a collection of numbers in one-to-one correspondence with the 
positive integers. Since only sequences of nonnegative integers are con-
sidered in this paper, the word "number" will be understood to refer to a non-
negative integer, and the word "sequence" will refer only to sequences of such 
numbers. 

Definition 1: A sequence f is complete [3] if every natural number is a sum of 
one or more distinct terms of the sequence. 

Erdos & Graham [2] mean, by a complete sequence, a sequence such that every 
sufficiently large natural number is a sum of distinct terms of the sequence. 
We will not use "complete" in this sense. 

Clearly, the sequence {ft} = {1, 2, 3, 4, 5, ...} is complete. However, 
there exist infinitely many other complete sequences. For example, the 
sequence {1, 2, 3, 4, 8, 12, 16, 20, 24, 28, ...} is complete. This follows 
from our ability to represent each positive integer in mod 4. A similar 
sequence may be obtained from any number m > 1, by appending the numbers from 1 
to m - 1 to the multiples of m. As we see in the following example, any 
sequence constructed in a similar manner is complete. 

Example 1: Let m be a natural number. Then the sequence f9 where 

r>, N ( (n - m + 1);77, if n > m, 
f(n) = < . , - • , 

J \ n , if 1 < ft < 777 

is complete. 
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Proof: Let n be a natural number, and let v be its least residue mod nn If 
r = 0, then n is a term of /. If r * 0, then n - r is a multiple of m. If 
n - v = 0, then, once again, n is a term of /; otherwise, n is a sum of dis-
tinct terms of f9 namely n - v and r. 

The Fibonacci sequence {1, I, 2, 3, 5, 8, . ..} = f\3 \ is an example of a 
complete sequence [3]. In this sequence, 

fl, i(D = 1, fi, i(2) = 1, and 

A, l(w) = /1, i(n - 1) + flf !<> - 2) if' rc > 3. 

Consider the class of all sequences / that satisfy the recurrence relation 

fin) = f{n - 1) + f(n - 2) if n > 3. (R) 

The sequences in this class have only two degrees of freedom, since, given 
the first two terms, the recurrence relation (R) determines all remaining 
terms. Any ordered pair of whole numbers can be the first two terms of a 
sequence satisfying (R) . The class of these sequences is countably infinite, 
but any illusions we might have that an infinite number of them are complete 
are shattered by Proposition I which follows. But first, a definition: 

Definition 2: Suppose fitJ-(l) = i , fii3-(2) = j\ and that fit j satisfies (R).' 
Then /^ - is called the Fibonacci sequence beginning with i and j. 

Proposition 1: The Fibonacci sequence beginning with i and j is complete if and 
only if (i, j) is one of the pairs (0, 1), (i, 0), (1, 1), (1, 2), (2, 1). 

Proof: ("If" part.) Parallels exactly the proof that f. , is complete. 

("Only if" part.) Let / be the Fibonacci sequence beginning with i and 
j. Suppose f is complete. It is easily seen that 1 must be one of the first 
two terms of /. If i = 1 and j > 2, then 2 is not a sum of distinct terms of 
f. If j = 1 and i > 2, then 2 Is, again, not a sum* So if / is complete, then 
(i, j) Is one of the pairs (0, I), (1, 0), (1, 1), (1, 2), (2, 1). 

In the next section, we shall derive a characterization of the complete 
sequences. 

2S Brown's Criterion and Its Use in Characterizing 

All Complete Sequences 

Of the three sequences {ln_1}, {2n_1}, and {3""1}, the first two are com-
plete, and the third Is not, the following relations are true for all natural 
numbers nt 

lw < 1 + £ l*"1, 2n - 1 + £ 2i"1, and 3n > 1 + £ 3*"1. 
i = 1 i = 1 i = 1 

These data suggest that a sequence f may be complete iff, for all p > 1, 

f(P +1) < 1 + £ / ( i ) . 
i = l 

A counterexample shows that this is not so: If f is the complete sequence 
{8, 4, 2, 1, 16, 32, 64, 128, ..., 2n"1, . ..}, then the inequality is false for 
some p. For Instance, f(2) = 4, even though 1 + /(I) = 2, The important 
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difference between the sequences {ln_1}? {2n_1}, and {3n-1}5 and the sequence 
{8, 4, 2, 1, 16, . ..} is that the first three sequences are nondecreasing, 
while the fourth is not. The following theorem about nondecreasing sequences 
with first term 1 can be used to characterize all complete sequences. The 
theorem is known as "Brown's criterion'5 since it was first proved by Brown & 
Weiss [ 1 ] . 

Brown's Criterion: If f is a nondecreasing sequences and if /(I) = 1, then f 
is complete iff, for all p > 1, 

f(P + l) < i + £/(£). 
i = i 

Let / be any sequence. If f is finite, then f is not complete. If f is 
infinite but contains no 1, then it is not complete, since 1 is not represent-
able. If f is infinite and contains a 1, then it is either nondecreasing or 
not. Suppose f is not nondecreasing. Either there is a term that occurs 
infinitely often in the sequence, or there is not. If there is not, then, 
without affecting its completeness, the terms of the sequence can be rearranged 
so that it is nondecreasing. Suppose there is a term of the sequence f that 
repeats infinitely often. The following theorem will show that there is a 
nondecreasing sequence g that is complete if and only if f is. 

Theorem 1: Let the sequence / contain a term which is repeated infinitely 
often. Then there is a sequence g that is nondecreasing and which is complete 
if and only if / is. 

Proof (and construction) : Suppose the value of the least term, in magnitude, 
that repeats infinitely often is k. If there is no term of f greater than k, 
then the terms of / less than k can be reordered, and the term k (infinitely 
repeated) tacked on to the end, to obtain the sequence g. By this procedure, 
{5, 4, 3, 2, 6, 6, 1, 6, ...} can be turned into {1, 2, 3, 4, 5, 6, 6, ...}. 

If there are terms greater than k9 then we show that the removal of all 
terms of f that are greater than k will not affect its completeness. First, 
note that the removal of terms from a sequence that is not complete cannot 
render the sequence complete; so all that must be proved is that, if the 
sequence / is complete prior to the removal of all terms greater than k9 it 
will remain complete. 

Suppose / is complete and all such terms are removed. Let n be a natural 
number. If n < k3 then n is a sum of distinct terms of the original sequence 
none of which is greater than ks so it is a sum of distinct terms of the new 
sequence. If n is greater than k, then n is the sum of a multiple of k and a 
nonnegative integer less than k, that is, 

n = ak + P, where 0 < r < k. 

If v = 0, then, since k is infinitely repeated, n is a sum of distinct 
terms of the new sequence. If r * 0, then ak is the sum of distinct terms k5 
while i5 is a sum of distinct terms all less than k. So n is the sum of 
distinct terms of the new sequence. The cases have been exhausted; thus, the 
new sequence is complete if the original sequence is complete. 

Hence, there is no loss of generality in assuming that no term of / is 
greater than ks since all such terms can be dropped3 and the resulting sequence 
can be reordered into a nondecreasing sequence, as described above. 

So we may assume, without loss of generality, that / is nondecreasing. If 
/ contains zeros, they can be removed, again without affecting completeness, so 
assume / contains no zeros. Brown's criterion may immediately be applied to 
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decide whether / is complete—for, since f contains a 1 but no zeros, /(l) must 
be 1. 

Briefly, then, the procedure for testing a sequence f for completeness is 
as follows: 

i) If / is finite, or if / contains no 1, then / is not complete. 

ii) If some number occurs infinitely often in the sequence f, then remove all 
terms of f that are greater than the least term so repeated, if any terms 
greater than the least term do exist. 

iii) If f is not nondecreasing, then reorder it so that it is. Do not remove 
any nonzero terms of the sequence to accomplish this. 

iv) If / contains any zeros, remove them, since a sum of distinct integers 
containing zeros clearly is still a sum of distinct integers. 

v) Prove or disprove that the inequality 

/ ( P + i) ^ i + £ fW 
i = l 

holds for all p > 1. 

The complete sequences have been characterized! 

The limitation of completeness, as a mathematical statement of the intui-
tive idea of the "richness" of a sequence, is not one of undue generality but, 
rather, is a failure to include sequences which are so "nearly complete," or 
which are so easily "turned into complete sequences," that to call them 
"incomplete" seems little more than nitpicking. For example, the sequences 
{2, 3, 4, 5, 6, ...} and {2, 2, 4, 6, 10, 16, ...} are not complete, although 
every integer > 2 is a sum of distinct terms of the first sequence, and 
although the sequence {1, 2, 2, 4, 6, 10, . . . } , obtained by appending a 1 to 
the second sequence, is complete. 

3. Weak Completeness 

Definition 3: A sequence f is weakly complete [3] if a positive integer n exists 
such that every integer greater than n is a sum of distinct terms of f. Erdos 
& Graham [2] call such sequences complete. 

A complete sequence is weakly complete. The sequence f(n) = n + 1, to give 
a trivial example, is weakly complete but not complete. The following theorem 
specifies a condition implying weak completeness. 

Theorem 2: A sequence / is weakly complete if a positive integer n and a real 
number s > 2 exist such that: 

i) If x > n , then there is a term of the sequence strictly between x and 
(2 - 2/s)xs and 

ii) every integer between n and sn (inclusive) is a sum of distinct terms 
of the sequence. 

Proof: By strong induction. Given an integer w > sns we must show that w is a 
sum of distinct terms of the sequence. Let our induction hypothesis be that 
every integer inclusively between n and w - 1 is a sum of distinct terms of f. 

412 [Nov. 



CHARACTERIZATIONS OF THREE TYPES OF COMPLETENESS 

There e x i s t s a term of the sequence , f(t)9 s t r i c t l y between w/2 and 
(1 - 1/s)w, by h y p o t h e s i s i ) . Let 

m = w - f{t). 
Then 777 < w/2, and m > w/s > n. Since n < m < w/2, m is a sum of distinct terms 
of /; and, since 777 < w/2 < f{t), none of these distinct terms equals f (t) . 
Since w = m + fit), w is a sum of distinct terms of f. By strong induction, 
the theorem is proved. 

The two properties i) and ii) are not necessary for weak completeness. In 
particular, the function f(n) = 2n~l fails condition i) for all positive n and 
real s > 2. The sequence f(n) is nevertheless complete. (I am obliged to the 
referee for this example.) The sequence f(n) - n + 1, on the other hand, 
satisfies i) and ii) for suitable s and n, and yet is incomplete. Thus, 
conditions i) and ii) are sufficient, but not necessary, for weak completeness, 
and are neither sufficient nor necessary for completeness. 

The following examples of sequences which fail to be weakly complete show 
that this concept is not too broad. 

Example 2: The Fibonacci sequence beginning with 2 and 2 is not weakly com-
plete; neither is {2n}. 

Proof: Let f be either of these sequences. Any term fin) is even, so any sum 
of distinct terms of f is even. No matter how large n > 0 is chosen, 2n + 1 is 
greater than n and is not a sum of distinct terms of /. 

If any two terms of the Fibonacci sequence fi 1 are replaced by zeros, the 
resulting sequence is not weakly complete. A proof of this can be found in 
[3]. Thus, the Fibonacci sequence beginning with 2 and 3 is not weakly 
complete. 

Definition 4: A sequence / is finite if a number n exists such that, for all 
natural numbers m > n, f (n) = 0. A sequence is infinite iff it is not finite. 
An infinite sequence / is increasing if, for any two natural numbers 777 and n 
such that rn > n, f(m) > f(n). 

Definition 5: Let / be weakly complete. Then the greatest integer which is not 
a sum of distinct terms of / is called the threshold (of completeness) of /. 
Erdos & Graham [2] use the term "threshold" as well, but may not mean the same 
thing by it. 

Theorem 3: The following conditions on a sequence f are equivalent. 

a) Every infinite increasing sequence contains a term that is a sum of 
distinct terms of f . -

b) Every infinite increasing sequence contains a subsequence each of whose 
terms is a sum of distinct terms of f. 

•c) f is weakly complete. 

Proof: c) -> b) . Suppose c) holds. Let an infinite increasing sequence h be 
given. Then, if (̂777) is the least term of In greater than T, the threshold of 
/, then g(n) = h(n + m) defines a subsequence of h each of whose terms IS a SUE 
of distinct terms of f. 

b) -> a) . Obvious. 
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a) ->- c) . If f were not weakly complete, then the sequence of numbers 
that are not sums of distinct terms of / would form an infinite increasing 
sequence containing no sum of distinct terms of f, so a) would not be true. 
So, if a) holds, then c) holds. 

(I am obliged to the referee for suggestions which shortened this proof.) 

4. Completability 

The sequence {2, 2, 4, 6, 10, 16, 26, 42, 68, ...} is not weakly complete, 
even though it is "sufficiently rich" that the mere attachment of a 1 to this 
sequence renders it complete. This suggests the definition of a third, very 
general sort of completeness, called completability, such that a completable 
sequence becomes complete after a suitable finite sequence is prefixed to it, 
that is, attached to it at its beginning. 

Definition 6: Suppose f is a sequence, and J is a finite sequence. If I(ji) = 0 
for all n, then define the result of prefixing I to f to be f. Otherwise, if m 
is a natural number such that I{m) is nonzero and, if n > m, I(ji) - 0, then 
define the result of prefixing I to f as the sequence h such that h(n) = I(ji) 
if n < m, and h{n) = fin - m) if n > m* 

The formal tools are now available with which to define completability: 

Definition 7: A sequence / is completable if there exists a finite sequence I 
such that the result of prefixing I to / is complete. 

Note that the completability of a sequence is not affected by the removal 
or prefixing of a finite number of terms from or to the sequence. 

Theorem 4: A weakly complete sequence is completable. 

Proof: Let / be weakly complete, and let T be its threshold (see Definition 5). 
Define the sequence I by letting 

I(n) = n if n < T and I in) = 0 if n > T. 
Then I is finite, and the result of prefixing I to f Is complete. 

The following two theorems derive sufficient conditions that a sequence be 
completable. 

Theorem 5: Let f be a sequence. If a positive integer n and a real number v 
strictly between 1 and 2 exist such that, if x > n, there is a term of / 
strictly between x and vx9 then / is completable. 

Proof: Let s = 2/(2 - v). Then v = 2 - 2/s, and s > 2. Define the sequence I 
to contain the integers between n and sn, inclusive, in numerical order, 
followed by zeros. The sequence I is finite. Let In be the result of prefixing 
I to /. If h is weakly complete, then it is completable by Theorem 4; hence, / 
is completable. Theorem 2 now applies: Our s is the s of that theorem. 

The preceding theorem can be used to show that if f is a sequence, and if 
there exists a real number v strictly between 1 and 2 such that, for all suffi-
ciently large n9 

fin) < f{n + 1) < vf(n), 
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then f i s comple t ab l e . I f V i s g r e a t e r than 2 and the r i g h t - h a n d i n e q u a l i t y i s 
r e v e r s e d , i . e . , i f 

fin + 1) > vf{n) 
for all sufficiently large n, then / is not completable. This will be shown in 
Theorem 9. 

Theorem 6: Let / be a sequence. Suppose there is a natural number rn > 1 such 
that all but a finite number (possibly zero) of terms of f are divisible by m. 
Suppose, in addition, that the sequence I defined by 

I(n\ = f(n + s) /m, 

where f(s) is the last term of / that is not divisible by m, is complete. Then 
/ is completable. 

Proof: If there is a term of f not divisible by 777, let r be the largest; if 
every term of f is divisible by m, let r = 0. Let 

h(n) = n if n < m5 

h(n) = 0 otherwise, 

and let the sequence j be the result of prefixing the finite sequence In to f. 
We obtain that j is complete by a similar argument to that of the proof of 
Theorem 1. 

Counterexample: The converse to Theorem 6 is false: there exists a complet-
able sequence any two consecutive terms of which are relatively prime. 

Let / be the Fibonacci sequence whose first two terms are 2 and 3. Then f 
is completable because the result of prefixing the finite sequence h 
defined by h(l) = 1, h(2) = 1, and h(n) = 0 if n > 2, is complete. 

This shows that Theorem 6 does not characterize the completable sequences. 

Theorem 6 proves that completable sequences can be obtained by multiplying 
every term of a complete sequence by a constant and prefixing some finite 
number, possibly zero, of terms. It is also true that, if every term of a 
weakly complete sequence is multiplied by a constant and a finite sequence is 
then prefixed, the result is completable (replace m by 777 + T9 where T is the 
threshold of the weakly complete sequence, in the proof of Theorem 6). The 
concept of completability is certainly not restrictive. There is now the 
problem of proving that it is not too general—that the class of completable 
sequences does not coincide with the class of sequences. This will be done in 
the next four theorems. 

Definition 8: Let f be a sequence. Then P(f) is the set of all natural numbers 
that are sums of distinct terms of f. This notation is due to Erdos & Graham 
[2]. 

It follows from this definition that a sequence / is complete iff P(f) = N. 
Similarly, a sequence / is weakly complete iff P(f) is cofinite (i.e., iff its 
complement in I is a finite set). 

Theorem 7: A sequence f is completable iff there exists a positive integer c 
such that, if q is greater than c and is not in P(f) , then there exists a 
number 777 in P(f) such that 0 .< q - m < c. 
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Proof: ("Only if" part.) If f is weakly complete, then upon choosing c to be 
the threshold of /, the theorem follows trivially. Suppose f is eompletable 
but not weakly complete. If J is a finite sequence such that the result of 
prefixing I to f is complete, then let c be the maximum element of P(I) . 
Suppose q is greater than c and not in P (f) . Then q is the sum of distinct 
terms of I and distinct terms of f. Let the distinct terms in this sum from f, 
taken by themselves, have the sum m. The distinct terms in this sum from I are 
greater than zero, but cannot exceed c. However, q is the sum of m and these 
distinct terms of J, so m < q < m + e. This implies 0 < q - m < c. 

("If" part.) If I is the finite sequence consisting of c ones followed 
by zeros, then prefixing I to f we obtain a sequence g. Let q be a natural 
number. If q < c, then q is the sum of q ones from X. If q > c, then either q 
is in P{f) or is not. If q is not in P{f) , then there is m in P(f) with 
0 < q - m < c, and q is the sum of m in P(f) and q - m in P(I) . The terms 
whose sums are m and q - m> respectively, do not overlap because the terms of I 
precede the terms of / in the sequence. So every natural number is a sum of 
distinct terms of g. Thus, / is eompletable. 

It follows from Theorem 7 that an infinite sequence f is complete iff the 
sequence h, defined by h{n) = nth term of P(f) in order of magnitude, has the 
property that the difference between consecutive terms of h9 h(ji + 1) - h(n), 
is a function of n that is bounded from above. 

Theorem 7 is a necessary and sufficient condition that a sequence f be eom-
pletable. The following theorem applies the contrapositive of the "only if" 
part of Theorem 7 to obtain a condition that a sequence not be eompletable. 

Definition 9: A sequence f is super-increasing if the quantity 

fw -nE fw 
• i = 1 

is positive for all sufficiently large n. [Note that superincreasing sequences 
are increasing for n sufficiently large.] 

Theorem 8: Let f be a superincreasing sequence. Suppose 

i = 1 

is unbounded from above. Then f is not eompletable. 

Proof: Suppose the condition of Theorem 7 held. Then there would exist a num-
ber c such that, if n were greater than c and not in P(f) , there would exist 777 
in P(f) such that 0 < n - m < c. For all positive integers c, we will exhibit 
t > c which is not in P (f) and such that, if 777 is in P(f) and is less than t, 
c + 777 is also less than £, so that the sequence / cannot satisfy the necessary 
condition of Theorem 7. 

Let c > 0 be given. By hypothesis, there are infinitely many n such that 

fM ^Y, fH) > c + 1. 
i = 1 

Choose any such n9 and define t = f(n) - 1. Then: 

a) t is not in P(f). 
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For suppose t were in P(f) . Then t^ and v would e x i s t such t h a t 

v 
t = E f^i)* f o r a 1 1 ^ > ^ i < ^3 

i = 1 

since t < fin) and / is increasing beyond the nth term. This implies that t , 
the sum of the terms f(t^) can be no greater than the sum of all terms up to 
the (ft - l)th , that is, 

n-l 

i = l 
and so 

* = E / W * *E /.(*) < /(*) - ^ - i = t - ^ < t s 
i = 1 £ = 1 

which is impossible. 

b) t > c. 

Since 

fin) -n^fd) - 1 > c, 
i = l 

and since t = fin) - 1, 

n- l 
* > E fW + e > c. 

i = l 

c) If 772 is in P(f) and m < t, then 777 + c < t . 

Since m < t, m < /(ft). Since m is in P(f), m is a sum of distinct terms of 
/, and since 777 < /(ft) this sum can be no greater than 

n-l 

i = l 
So 

n-l 
0 + 1 < fin) - £ /(i) < fin) - m; 

i = 1 
hence, 

n-l 
c < t - E /(^) ^ t - m and 777 + e < t . 

i = l 
Theorem 9: Let f he a sequence. Suppose there exists a real number v > 2 such 
that, for all sufficiently large ft, 

f(n + 1) > vfin). 
Then / i s not comple t ab l e . 

Proof: Let 

M«) = fin) -nj2 f^) in > 2) . 
i = 1 

Suppose ft is sufficiently large such that, for all T > n, 

fir + 1) > y/(r). 
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Since, 

f(r + 1) > 2/(r), 

f(r + 1) - f(r) > f{v); 
thus, subtracting 

r- 1 

i = 1 

from both sides, we obtain 

h(r + 1) > h(r) for all v > n. 

We will show that the function In satisfies the condition of Theorem 8; that 
is, ft(p) is positive for sufficiently large p and unbounded from above. 

Since 

h(r + 1) > h(r) + 1 

for all p > ft, it is true by induction that 

ln{v + m) ^ h(v) + m for all rn > 1 and v > n. 

Let z = h(n). If 2 > 0, then h(r) is positive for all p > ft; so suppose z < 0. 
Then, If m > ~z, 

h(n + m) > h(n) + m > h(n) - z = 0, 

so, if r > rz - z, h{v) > 0. Thus, in any case, h(r) is positive for all suffi-
ciently large r. 

Suppose h(r) is bounded above by w, for all p. Again, let z = h(n) . Then 
3 < w; let 77Z = w - z. Then 

/z(n + w + 1) > ?z(n) + m + 1 == 2 + m + 1 = w + 1, 

a contradiction. So h(r) is unbounded from above. 
This theorem, and Theorem 5, relate completability to the rate of growth of 

a sequence. However, there are infinite sequences whose completability neither 
theorem can decide. For example, let / be the sequence defined by 

(1, if n = 1, 
fW = <f(n - l) 2, if n is even, 

[f(n - 1) + 1, if n > 3 is odd. 

If n is sufficiently large, then 

fin + 1 ) < 2f(n), if n is even, 

fin + 1) > If in), if n is odd. 

/ satisfies neither the hypothesis of Theorem 5 nor that of Theorem 9. 
Theorem 9 yields infinite noncompletable sequences, for example, the se-

quence fin) = 3n. 

Remark: Those results of the past two sections which relate the three defini-
tions of completeness may be summarized as follows: 

Let J be the class of complete sequences, let K be the class of weakly com-
plete sequences, let L be the class of completable sequences, and let M be 
the class of all infinite sequences (see Definition 4) . Then J C 
K C L C M, and all containments are proper. The Remark after Definition 3, 
Theorem 4, and the Remark after Theorem 9 prove that J Q K, K Q L, L C M. 
The relations J C K and K C L are true because fin) = ft + 1 is in K but not 
in J, and because fin) = 2ft is in L but not in K. 
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Introduction 

We are concerned with finding the convergents 

C, (a) P.7 

in lowest terms, to the positive real number a which satisfy the inequality-
relating to Hurwitz's theorem, 

I a - Cj (a) I < /5q2 , 0 < 3 < 1, (1) 

where a has a simple continued fraction expansion {i; i, i, . ..} and i is a 
positive integer. 

Van Ravenstein, Winley, & Tognetti [5] have solved this problem for the 
case where i = 1, which means a is the Golden Mean, and extended that result in 
[6] to the case where a is a Noble Number that is a number equivalent to the 
Golden Mean. 

The Markov constant for a, A?(a), is defined at the upper limit on /5/$ such 
that (1) has infinitely many solutions p., q. (see Le Veque [4]). Thus, in 
order to determine M(a) , we require the lower limit on values of 3 such that 
there are infinitely many solutions. 

Using the notation of [6] and the well-known facts concerning simple con-
tinued fractions (see Chrystal [2], Khintchine [3]), we have: 

(i) If a = {i; i, i, ...} where i is an integer and i > 1, then 
+ /£2 + 4 

which is the positive root of the equation xz - ix - 1 = 0; 

<u) p, («*« - (-r2) (•"• - Hn 
(" + ; ) 

where j = 0, 1, 2, ... . 

(-+2 - (-T2) 
(« + £) = p,-_i 

Hence, C,(a) = — 
3 qc (---(-r1) 

(2) 

The numbers p. have been studied extensively by Bong [1] where their rela-
tionship with Fibonacci and Pell numbers is described in detail. 

420 [Nov. 



HURWITZ'S THEOREM AND THE CONTINUED FRACTION WITH CONSTANT TERMS 

Solutions to (1) 

Case 1. If j is odd (j = 2k + 15 k = 0, 1, 2, . . . ) , then (1) becomes 

which, using (2)(ii) , finally reduces to 

From (3), we see that; 

(i) there are no solutions for k if 

o < e , ^ V 1 ^ C4) 
(ii) there is a nonzero finite number of solutions for k if 

which simplifies to 

0 < A ( " 2 3 - 1 ) < 3 < 7 - ^ - . l . (5) 

We note that equality holds on the right in (5) only when a is the Golden Mean. 

(iii) All nonnegative integers are solutions for k if 

< 6 < 1. (6) 

( • • * ) 

(7) 

Case 2. If j is even (j = 2k, k = 0, 1, 2, ...)» then (1) becomes 

q6 (aq. - V- ) < -^ 

and again using (2)(ii)s this reduces to 

(?)* < »2(K« 4 ) - > 
From (7), we see that: 

(i) there are no solutions for k if 

0 < 6 < ^ ; (8) 

T + a) 
(ii) there is a nonzero finite number of nonsolutions for k if 

0 < a 2 ( ^ ( a + I ) _ i ) < l f 

which simplifies to 

1989] 421 



HURWITZ'S THEOREM AND THE CONTINUED FRACTION WITH CONSTANT TERMS 

(iii) all nonnegative integers are solutions for k if 

/5 
a 

< 3 < 1. (10) 

In the particular case i = 1, a is the Golden Mean, a + (1/a) = /5, and 
there will be no convergents Cj (a) that satisfy (1) when j is even. However, 
if i > 2, then (/5/a) < 1 and there are convergents that satisfy (1) when j is 
even. 

Define 

h -_ /5 (a 2 -
a 3 

i) 
9 $M '" 

Summary 

/5 /5 
L+iV °u « 

Using (4)-(10), we see that: 

(i) If i > 2, then 3L < 3M < 3^ < 1 and there are no convergents that satisfy 
(1) when 0 < 3 < 3L. 

If $£ < 3 < 3W5 there are a finite number of convergents Cj (a) that satis-
fy (1) with j = 1, 3, 5, . .., 2[i?] + 1 and 

R = — - ^ • (11) 
In 

If 3 = 3yvfs there are an infinite number of convergents that satisfy (1) 
given by all Cj (a) where j is odd. 

If 3^ < 3 < 3̂ 5 there are an infinite number of solutions to (1). These 
are given by all Cj (a) for j odd and all but a finite number of Cj (a) when 
j = 0, 2, 4, ..., 2[S] where 

4 iU°+:)) - • 
(12) 

If 3[/ ̂ .3 < 1J there are an infinite number of solutions to (1) given by 
^•(a) for j = 0, 1, 2, ... . 

(ii) If i = 1, then 3^ < 3^ = 1 < 3y and there are no convergents that satis-
fy (1) unless 3L < 3 < 1 • In this case, the only convergents that are 
solutions to (1) are given by 

Cj(a) = -^—, j = 1, 3, 5, ... ., 2[R] + 1, 
Fo 

where 
z? i (1 - 3)(7 + 3/5) /, (7 - 3/5) ... , . r-n M Q . 
i? = In - ^ / In as specified in [5] . (13) 

(iii) The lower limit on numbers 3 such that (1) has infinitely many solutions 
is given by 
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and in this case the Markov constant for a is given by 

/5 , 1 Af(a) = -f- = a + - = /£2 + 4. (14) 
PM a 

Examples 

1. If i = 2, then a = 1 + /2 = {2; 2, 2, ... } , 3L * 0.77, 3M - 0.79, 3y - 0.93. 
Hence, we see that for: 

(i) 3 e (0, 0.77], there are no convergents satisfying (1); 

(ii) 3 E (0.77, 0.79), there are a finite number of convergents satisfying 
(1) and these are specified by (11); 

(iii) 3 = 0.79, there are an infinite number of convergents satisfying (1) 
given by all Cj (a) where j = 1, 3, 5, ...;' 

(iv) 3 G (0.79, 0.93), all the convergents CJ(OL) satisfy (1) for j odd, 
whereas all but those specified by (12) satisfy (1) for j even; 

(v) 3 ^ (0.93, 1), all convergents satisfy (1). 

In particular, it is seen from (14) that M(l + /2) = 2/2. 

2. If a = {1; 1, 1, 1, ...} = l +
2
 5 , then 3L - 0.85, 3M = 1, B# * 1.38. 

Consequently, if $ E (0, 0.85], there are no convergents that satisfy (1), 
whereas, if 3 E (0.85, 1), there are a finite number of solutions to (1) speci-
fied by (13). If 3 = 1J there are an infinite number of solutions given by all 
CAa) where j is odd and we see from (14) that 
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A Generalization of Binet's Formula 

We derive a simple generalization of Binet's formula for Fibonacci and 
Lucas numbers. From the equations 

' l + /~5V ' 1 - ^ • ( i . i , £_ = /5 T - m and 

L„ - H^h (L /5 
(1.2) 

we have at once, 

and 
/5Fm 

Raising both sides to the nth power, and combining the results by means of 
(1.1) and (1.2), we find 

and 

L„ 

1 \(Lm + /5Fm 
= /sLV 2 

/5i^\^l 

r - ( ^ 2 
(1.3) 

(1.4) 

which are the desired generalizations. Equations (1.3) and (1.4) reduce to 
equations (1.1) and (1.2), respectively, when m = 1. Note that, in the right-
hand sides of equations (1.3) and (1.4), m and n can be interchanged. 

A number of interesting results can be obtained from (1.3) and (1.4). 
Note, for instance, that one has 

(Lm + /5FJn = Ll + QL^rSF + Q ) ^ " ^ 2 + ••• + C.^)*^, (1.5) 

and 

(Lm - /5Fmr = Ll - Q l ^ 1 ^ + ©£iT25** - ... + (-1)"(/5)V;. (1.6) 

If these results are substituted into (1.3), we see that L™ cancels out. The 
remaining terms all have a nonzero power of Fm , and we have found a simple 
proof of the known result that Fnm is divisible by Fm and Fn . For Lucas 
numbers, we observe that cancellation of the last term in (1.5) and (1.6) will 
take place only if n is odd. Hence, L is divisible by Lm only if n is odd. 

424 [Nov. 



A GENERALIZATION OF BINEI'S FORMULA AND SOME OF ITS CONSEQUENCES 

With the aid of (1.3) and (1.4), it is possible to obtain some appealing 
generating functions for Fibonacci and Lucas numbers. We proceed as follows: 

E 
n = 0 

F ^ run 
n 

tn 

1 
1 

1 
= / 5 

lLm + JlF, L„ ~ /5P ( L -V 5 - )v . (L- -"'•)"t-

>{( 
L„ + /5Fm /5Fm 

exp^l T, jt - exp I h 

f5Fm 
j ; e x p ( ^ ) s i n h ^ *) 

An identical procedure gives 

\2 
^mvi t 

2 exp(-tj C osh^-*j = n Z ^ T 

Fmtexp^Ttj ~ - r 

Using the expans ion [ 1 ] , 

t esc 
//5Fr 

x z / n=0 

F fn 

z csch z = ^ -
k = 0 

2(2 2k-I Dl 2k ,2k 
(2k): 

\ Z \ < TT, 

( 1 .7 ) 

(1 .8 ) 

Some c u r i o u s formulas may be o b t a i n e d from (1 .7 ) and ( 1 . 8 ) . From ( 1 . 7 ) , 
for example, one has 

(1 .9 ) 

(1 .10) 

where the B~. are Bernoulli numbers, and forming the Cauchy product, we have 

w+ (LmA ^ ^ ^ 2 ( 2 ^ - 1 - l)B2fc5*****" + 2* 

\ 2 / n = 0 fc=0 w! (2fe) ! 2 ^ 

_ _ ^ f^l 2(2^-1 - l)5kF^F(n_zk)mBzkt» 

n=o fe=o (w - 2k)l(2k)l22k 

where [n/2] designates the greatest integer in n/2. 
Expanding the exponential and equating corresponding powers of t, we get 

L " ~ 1 = - ^ E(2
W
fe)2"-2fc(2^-l - l)5^F{n_zk)mBlk, (1.11) 

which gives powers of Lucas numbers in terms of Fibonacci and Bernoulli num-
bers . 

From (1.8), one has 

^rrm t 
2 c o s h ^ — t ) = e x p ( - T i ) n E — 

Expanding the exponential term, forming the Cauchy product, and separating the 
even part, since the left-hand side is even, one finds 

o2n-l In .n 
?2n __ Z v^ /2n 

n E f ^ ) ^ 1 ) 2 kLmLm(2n-k)> -> fc = 0x 

which gives even powers of Fibonacci numbers in terms of Lucas numbers. 
1989] 
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I n ( 1 . 8 ) , c h a n g e t t o -t a n d add t h e r e s u l t t o ( 1 . 8 ) t o o b t a i n 

2 c o s h — t ) c o s h l t] = > , 
12 / \ 2 / „~o (2n)! 

which may be written 
ff5F„ \ /Lm \ J I L2rm t l n 

:osh(-2 cosh t) = sech >(T') t 
\ z /n = 0 

\ 2 / \2 /n^0 (2w)! 

Using the expansion [1], 

^ E2n ? w I I i 
sech s = /^ "7 ~ £ s s < %TT 

n=0 ( 2 ^ ) ! 

where the Ẑ n a r e Euler numbers, we find 

which gives even powers of Fibonacci numbers in terms of Lucas and Euler num-
bers. 

Byrd [4], [5] has obtained expressions for Fibonacci and Lucas numbers 
which bear some resemblance to the expressions obtained by the author. 

Now, observe that 

(L + yfbF \/L - /5F 
1 m w W m "" = (-1)*. (1.14) 

This relation can be used to advantage to obtain sums of reciprocals of Fibo-
nacci and Lucas numbers. For this purpose, it is convenient to introduce the 
abbreviations: 

Lm + ^m 1 + /5 ' . ... 
am = £ ' al = a = — ^ s (1-15) 

bm = ^ ~> b1 = b = . (1.16) 

We define the Lambert series as 

M3) = E 3 . |@| < 1, (1.17) 
n = l 1 - 3n 

and note that 
on 00 o2n 00 nln 

LM - L(^) = E — ^ - E —e—5- = £ , - (Lis) 
n = 1 1 - 3 n = 1 1 - 3 2 n « = 1 1 ~ 3 2 n 

We will make use of Jacobi's identity [2] 

eio?) = 1 + ^ E , ? * 2 > k l < 1. d-19) 
n = 1 1 + ^ z n 

w h e r e 
e3(?) = E <7"2> 

« = - 0 0 

is a special case of the third theta function of Jacobi. Jacobins second theta 
function'. 
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n = -co 

i s r e l a t e d . t o the t h i r d t h e t a f u n c t i o n through the i d e n t i t y 

e|(q2) + e2(^2) = e2(^). (1.20) 

Recalling (1.14), observe that we have 

y l
 = y h™ 

n = ±am - bm n = i (-1) - bm 

which, for even m, gives at once 

t J—- /5[L(&2m) - £(*>!„)], (1.21) 
n 1 2nm 

w h i l e , for odd 77?, remembering t h a t £>2m + l i s n e g a t i v e , we have 

1 °° (-hn i \2n +1 

n = ° F(2n+lX2m+l) « » 0 l + ( - & 2 7 n + 1) 4 n + 2 

= T [ 0 i ( - ^ + i ) - e l^L + i ) ] = T ei(6L+i>- (1-22) 

Equations (1.21) and (1.22) are generalizations of results obtained by 
Landau [8]. 

For Lucas numbers, one has 

y l = y h™ 
n=l u

m ^ um « = 1 \-i-) + #m 

which, for even m, gives 

« = 1 L2nm 

while, for odd 777, we get 

^2m + l i oo (—hn -. } 2n + l 

y = E 
n = ° Lj(2n + lK2m + l) " = 0 I - 1-^2^ + 1^ 

The last equality above is established in a manner wholly analogous to equation 
(1.18). 

Many more relations can be established by simply imitating the procedures 
used for ordinary Fibonacci and Lucas numbers. The only change is to replace a 
and b by am and bm. In particular, Borwein & Borwein [2], and Bruckman [3] 
give a host of such relations. 
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2, A Class of Series for the Arc Tangent 

In reference [6], we made use of Chebyshev polynomials of the first and 
second kinds 

Tn{x) = \[{x + A 2 - l)n + (x - A 2 - l)n], 

\x + A 2 ^ ! ) ^ 1 - (x - A ^ T ) n + 1 " 
A 2 - I 

UAx) = 

to e s t a b l i s h , w i th x = A / 2 , the r e l a t i o n s 

F2n=T5U2^-2lS n>~ U 

F = — T i^\ 
C 2n + l / 5 ^2n + l \ 2 / ' 

L2n = 2 T 2 n \ " 2 " / ? 

L 2n 

2n\ 2 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Equations (2,5) and (2.6) were! given in a different guise. 
In reference [6], we also established the two series for the arc tangent: 

with 

and 

2_ - (~lfT2n+1(x)t2n + l 

/5n = o 5n(2n + 1) 

A a 

x + A 2 4- a2 

tan" • I n , = a = 4 £ (-1)̂ 1̂ !̂ ) 
n = o (2n +!)(£ + A 2 + 1) 2n + l' 

with 
t = —(1 + A + [a2(2x2 - DAr4]). 

These series give, with x = A/2, the results 

- (-l)nF2n + 1t^l 
tan" • I r v = a = £ 

with 

and 

with 

„_0 5"(2M + 1) ' 

2a 

1 + A + (4a2/5)? 

,-1 a = 5 E (-Dn^2n+1 
n = 0 (2n + l)(t + A 2 + l ) 2 n + 1 ' 

£ = ̂ (1 + A + (24a2/25)). 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

To generalize these equations, we need an analogue of (1.3) for Chebyshev 
polynomials of the first kind. 

We know that 

Tm (cos 0) = cos rn.Q. (2.15) 
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Let rnQ - $, and we have 

Tn[Tm(cos 0)] = Tn(cos cj)) = cos ncj) = cos nmQ, 
or 

Tn[Tm(s)] = Tnm(z), (2 .16) 
which is the desired relation, 

For n and m odd and z = /5/2, (2.16) gives 

T l^F \ = ̂ Ijp { 
12n+l\2 2m+lJ 2 C 2 n + l ) ( 2 m + 1 ) ? ( 2 . 1 7 ) 

w h i l e , for even m9 we ge t 

Tni\L2m) -hLZnm. (2 .18) 
Similar relations may be obtained directly from (2.1) and (2.2): 

T2n+l{tTFZm) = ("1)2i/'g(2n + l ) 2 m> (2 .19) 

^ ^ L 2 m + 1 ) = ^ % ( 2 m + l ) ' (2-20) 

T2n^"2~"f'2m+1 j = ^-L2n(2m + 1) ' (2.21) 

^ - 1 ( ^ 1 ) - ^ ; 

» 2 B - l ( 4 ?
2 . ) = <-l)» + W 5 ^ , (2-23) 

£/„-l(%£2J = f ' (2-24) 
2 777 

TT / i • 7- \ » r 7 - i n(2m + \ ) 
Un-I^L2m+0 = ̂  l ~f ' ( 2 - 2 5 > 

r 2 ^ + l 

M T ^ + l j " ^ • (2.26) 

In equations (2.19), (2.20), (2.23), and (2.25), i is the imaginary unit. 
Changing x to T2m+i(x) in (2.7) through (2.10), letting x = /5/2, and using 

(2.16), (2.4), and (2.17), we find 

tan xa = X, ^T^—~"TT * (2.27) 
n = o 5 (2n + 1) 

U2n-l\-TF2m+l) -^—7 > (2.22) 
2m + l 

with 

and 

with 

2a 
(2.28) Fo ̂  + 1?\ ̂ i + (4/5)a2' 2m+l 2m+l v y 

- V (-1) ff(2n+l 

n = 0 (2n + l)(t + A 2 + l)2w + 1 

. -i . v (~I)nF(2n+l)(2^ + l) 
tan x a = 5 2./ p = , (2.29) 

5F2m+l 
t = ^ (1 + A + [(4a/5)2((5/2)F2m + 1 - D / ^ w + 1 ] ) . (2.30) 

Observe that the right-hand sides of (2.27) and (2.29) are independent of m. 
Equations (2.27) through (2.30) reduce to (2.11) through (2.14) when/?? = 0. 
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S e r i e s ( 2 . 2 7 ) and ( 2 . 2 9 ) c o n v e r g e m o s t r a p i d l y f o r m = 0 . The r e a d e r 
s h o u l d h a v e no t r o u b l e s h o w i n g t h a t , a s m i n c r e a s e s w i t h o u t b o u n d , ( 2 . 2 7 ) and 
( 2 . 2 9 ) d e g e n e r a t e i n t o G r e g o r y T s s e r i e s : 

™ (^]\n 2n+l , , 
tan"1 a = V K } , a < 1 . ( 2 . 1 3 ) 

n=0 In + 1 

Equations (2.27) through (2.30) provide a class of series for the arc tan-
gent whose convergence lies between those of series (2.11) and (2.13) and that 
of series (2.31) . 

3. Some Series for ir 

The series we obtained in the previous section can be used to obtain some 
curious expressions for TT. 

For instance, (2.27) through (2.30) give, with a = 1, 

TT = y (-l)nF(2 n + l)(2m+l) 2
2 n + l 

4 =
 n% 5n(2n + 1) (Fzm + i + / ^ + ( 4 / 5 ) ) 2 ^ ' 

and 

w i t h 

JT = 5 y (~1) ^(2w+l)(2w + l ) ^ ( 2) 

4 n = o (2n + l ) ( t + A 2 + l ) ^ + l J 

Dr2m + l 
4 (1 + A + [ ( 4 / 5 ) 2 ( ( 5 / 2 ) ^ + 1 - D / ^ w + 1 ] ) - ( 3 . 3 ) 

For 77? = 0 , ( 3 . 1 ) and ( 3 . 2 ) become 

oo f „ i \ n wn , o 2 n + 1 

J - / F E ( x) F 2 " i i i — — , <3-4> 
4 n = o (2n + 1 ) ( 3 + / 5 ) 2 n + 1 

and 
7 = 5 Z 2n±1 ( 3 . 5 ) 
4 n = o (2n + 1 ) ( 3 + / l 0 ) 2 n + 1 

Series (3.4) and (3.5) were published by the author in [6]. 
Note that, as m increases, series (3.1) and (3.20 will go from equations 

(3.4) and (3.5) to the limiting case of Leibniz's series 

* V ("1)n i 1 . 1 1 . (<x M 

An explicit evaluation of series (3.4) and (3.5) requires a rapid algorithm 
for the numerical determination of A and /l0. The interested reader may use 
the series 

r, - 1117229 f (%)^9539fe (3 7) 
499640 jf?0 203k12^9l2kkl* 

^ _ 790269 - (%), ( - 1 ) * 8 4 4 4 * 

2 4 9 9 0 5 ^ 0 103 f c 4 9 9 8 1 2 f c fc! ' 

and 

where 
(a)k = a(a + 1)(a + 2) ... (a + fc - 1), a * 0, 

(a)0 = 1 is Poehhammerfs symbol. 

Either series taken to k = 12 gives one hundred decimal places of the corre-
sponding root. 
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S e r i e s ( 3 . 7 ) and ( 3 . 8 ) a r e s p e c i a l c a s e s of t h e f o l l o w i n g g e n e r a l e x p r e s 
s i o n 

n. » (l/N)kak 

smtr-l
]^0 s(N + l)kt [(r-DN-UkmNkki' 

N/—T- _ n y - yt/LM)k^ 
vs/t , p _ i L, „(N + i)k 4- r e r - n / v - i u ^ / v ^ 7 , i ' ( 3 . 9 ) 

where s, t, and N are positive integers, n is the positive integer nearest 

f t-m(f)1/ff, r > 1, (3.10) 

determined with a calculator, and v and m are arbitrary positive integers (m 
may even be a positive rational). a is an integer, positive or negative, that 
satisfies the equation 

^ l i trNmN _ a = nNa ( 3 # n ) 

Equation (3.9) is simply an identity found by expanding the expression 

a W/fl 
I _ (3.12) 

[(sN+l)/(tN+l)]trNmN/ 
in two different ways: (1) by putting the quantity inside parentheses under a 
common denominator and using (3.11) and (2) by expanding (3.12) by Newton's 
binomial theorem: 

(i -*ra = E — h — > 1*1 < x- (3-13) 

Generally, the larger the 777 and r are, the more rapidly converging the 
series is. 

For series (3.7), we searched for a value of m in the neighborhood of 
100,000 for which n would differ from an integer by not more than ±0.01. This 
makes a small and improves convergence. The parameter p, of course, plays.no 
part when t = 1. 

For /?? = 99928, we found 

5 • 99928 • /5 = 1117229.00427, 

so we take n = 1117229 and find, using (3.11), 

53 • 999282 - a = 11172292, 

which gives a= 9559. 
For the series (3.8), we found 777 = 99962, and 

10 • 99962 • /TO = 3161075.99464, 
which gives n = 3161076, and 

103 • 999622 - a = 31610762, 

which gives a = -33776. 
These sets of values, when substituted in (3.9), give series (3.7) and 

(3.8). 
It can be shown [7] that, if p lq is a convergent in the expansion of a 

real number x as a continued fraction, then there does not exist any rational 
number alb with b < qn that approximates x better than pn Iqn . Hence, a 
sensible way to make (3.10) nearly an integer is to choose m as the denominator 
of a high enough convergent in the expansion of the Nth root of s It as a con-
tinued fraction. 
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For the case of square roots, the identity 

Ja - b = (a - b2)/{2b + (/a - b)), 

due to Michel Rolle (1652-1719)., Memoives de mathematiques et de physiques, 
vol. 3, p. 24 (Paris, 1692), gives at once the continued fraction 

r -u i a ~ b2 a - b2 a - b2 ,_ 1/N 
Va = b + — — — — — (3.14) 

2b + lb + 2b + . . . 
from which we can obtain suitable continued fraction expansions by giving 
appropriate values to a and Z?. 

For instance, a = 5, b = 2 gives 

^ = 2 + i + i + i + l + i+... < 3 - 1 5 > 
and a = 10, b = 3 gives 

•/10 = 3 + | + | + | + i + i + _ . (3.16) 

Note that a = 5/4, & = 1/2, gives the well-known result 

/5 + 1 _ 1 I I I 1 
2 " 1 + l + l + l + l + I + * . . ' > 

Let p V<7n be the nth convergent in the expansion of a real number VD in a 
continued fraction. Consider the following identity 

Now, it is known that, for an appropriate value of n, the expression p2 - Dq2 

will be either +1 or -1, a fact intimately bound up with the properties of 
Pell's equation. These n's occur in cycles; hence, we can make the second term 
in parentheses in (3.17) as small as we please by choosing a sufficiently large 
value of n. 

For the continued fraction (3.16), we choose the convergent 

9238605483/2921503573, 

and from (3.17) find the series 

r- 9238605483 " . (%)k , io, 
/TO = T — : , (3.18) 

2921503573^0 10/c29215035732feA:! 
which picks up about twenty decimals per term, i.e., series (3.18) carried to 
k = 5 gives one hundred decimal places of the square root of ten. 

For the square root of five, we can use (3.15), but we can do better if we 
remember that Ln/Fn -> /5 as n increases. Using the same idea exemplified in 
(3.17)s we obtain 

r5-±(l+
L»\5FZ)-\ (3.19) 

Since Ln - 5Fn - 4(-l)n, we see that the numerator in the fraction inside par-
entheses is 4(-l)n and the corresponding series will give any number of deci-
mal places per term by choosing n large enough. It is desirable to choose n as 
a multiple of 3, because then Fn is even and the factor of 4 cancels out. In 
that case, (3.19) becomes identical to (3.17) with D = 5. 
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Choosing n = 48, we have F^Q = 4807526976 and 

r- 5374978561 ~ (%k (-1)* 

2403763488^0 5fc24037634882kfel' 

which also picks up about twenty decimal places per term. 
Needless to say, one may also use the computer to search for a good value 

of 77?s and then use this value to construct an appropriate series. Note, for 
instance, the values found in this manner: 

5 « /5 » 83204 = 930248,9999994625, (3.21) 

10 • /TO • 777526 = 24587531.00000079. (3.22) 

For (3.21), we searched for a value of m in the neighborhood of 100,000. The 
corresponding series gives about twelve decimal places per term. For (3.22), 
we searched for a value in the neighborhood of 750,000. The corresponding 
series picks up about seventeen decimal places per term. 

By way of comparison, the values we used in series (3.18) and (3.20) give 

10- /10- 2921503573 = 92386054830.00000000057353236, 

5 • /5 • 2403763488 = 26874892804.999999999624625216. 

4. Some Identities for Fibonacci Numbers 

Equations (2.17) through (2.26) provide many interesting relations for 
Fibonacci and Lucas numbers. 

The identity [1] 

2(x2 - l)Y,Ulm{x) = T2n+2(x) - 1 (4.1) 
m= 0 

gives, with x = hF
2k
 anc* u s e of (2.24) and (2.18), the result 

2^F(2m+l)2k ^ ^ ' l ) 

m = 0 ^h 2k 
The identity [1] 

n 
2(1 - x2) T,U2m.l(x) = x - T2n+l(x) (4.3) 

7 7 7 = 1 

gives, with x = \L2k and use of (2.24) and (2.18), the result 

±F(7 „ k = ^ 1 ) 2 * ~L^. (4.4) 
^ (2m)2k 5^ 

m= I -JL 2k 
Equations (4.2) and (4.4) can be combined to give 

V - L(n+1)2fe + Ln2k ~ L'2k " 2 (4 5) 
£-"/m2k " 5pot 

7 7 7 = 1 J i 2k 

Equation (4.3), with x = (/5/2)F2k+1 and use of (2.17) and (2.22) gives 

V^ r, F (2n+l)(2k + l) ~ F2k + l .. r . 
l^F2m(2k+l) = } • (4»6) 
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The i d e n t i t y [1] 

nt,T2m + l(x) = %*72w_1Gn) ( 4 . 7 ) 
m= 0 

gives, with x = (/5/2)F2k+l and the use of (2.17) and (2.22), the result 

n-1 JF 
T F = 2n(2fe+1) (4 8) 

Equations (4.6) and (4.8) combine to give the expression 

A „ ^(n+l)(2fc+l) + ^n(2fc + l) ~ ^2fc+l /, n. 

£/»<"+»- 7^1 • (4>9) 

Equations (4.5) and (4.9) are generalizations of well-known results. 
The reader should note that these formulas, once established, may be veri-

fied by induction. 

5. Other Numerical Sequences Associated with Classical Polynomials 

Much of the success we have had in obtaining properties of Fibonacci and 
Lucas numbers has depended largely on our being able to associate a recurrent 
sequence of numbers with the set of Chebyshev polynomials. The question natu-
rally arises as to whether other such sequences of positive integers exist 
associated with other classical polynomials. Surprisingly, such sequences do 
exist in a number of important cases. 

For example, if Pn(x) designates Legendre polynomials, the expression 

bn = 2ni-nPn(i) (5.1) 

gives a recurrent sequence of positive integers associated with Legendre poly-
nomials. We have, explicitly, 

b = ( E ] i2U ~ m ' (5 2) 
°n

 kh0 k>(n - k)l(n - 2k)\- ^-l> 

The pure recurrence relation for Legendre polynomials 

nPn(x)= {In - l)xPn_l(x) - (n - l)Pn_2Gr), n > 2, (5.3) 

together with (5.1) gives 

nbn = 2(2?2 - l)bn-l + 4(n - l)Z?n_2, n > 2, b0 = 1, bY = 2, (5.4) 

which defines the.&„ recurrently. The first few are 

b0 = 1, bl = 2, b2 = 8, b3 = 32, bh = 136, b5 = 592, etc. 

Similarly, if Ln (x) designates the simple Laguerre polynomials, the expres-
sion 

cn = n!L„(-l) (5.5) 

gives a recurrent sequence of positive integers associated with simple Laguerre 
polynomials. We have, explicitly, 

^ m\ 1 

°n = nlMkh- (5-6) 
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The pure recurrence relation for simple Laguerre polynomials 

nLn(x) = (In - 1 - x)Ln_l(x) - (n - l)Ln_2(x), n > 2, 
together with (5.5) gives 

cn = 2ncn_l - (n - l)2cn_2, n > 2, cQ = 1, cx = 2, 

which defines the cn recurrently. The first few are 

o0 = 1, cl = 2, c2 = 7, c3 = 34, ̂  = 209, c5 = 1546, etc. 

Using the known generating function for simple Laguerre polynomials 

(1 - t)-1exp(-^-) = ZLn(x)t\ 
we obtain at once 

(i - t r W - ^ U £ 2nfL. 
\i - tl yfr'o nl 

Now, replacing t/(l - t) by x, we find the interesting expansion 

(5.7) 

(5.8) 

n = o n\ (l + X)n+l , X > -%. (5.9) 

Another curious series for the exponential is found from the expression 

't ext = (I)" r(v) £(v + n)Iv+n(t)C^(x), (5.10) 

due to Gegenbauer, where I-^(t) are modified Bessel functions of the first kind 
[9], given by 

_ (%^)fe 
Ik(t) " r(fc + l) 

^ — 0 ^ ( - ; l + k; % * * ) , 

and C^(x) are ultraspherical polynomials [9] defined by 

(2v) p(v-h, v-%) ( a : ) 

CM (v + %)„ 

where P^a' ̂ (#) are Jacobi polynomials. 
In terms of ultraspherical polynomials, Chebyshev polynomials are given by 

UAx) = cUx), 
Cn(x) 

(5.11) 

(5.12) 

With appropriate substitutions in (5.10) and making use of (2.3) and (2.6), we 
have 

1 - (-D" /5 -

v I.n 
x n = l 

1 + (-D 
>5F„ + -L, J„(2x//5). (5.13) 

If Hn(x) designates Hermite polynomials, then the expression 

d„ = 2-»'2iXH//2), (5.14) 
gives a recurrent sequence of positive integers. 
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The pure r e c u r r e n c e r e l a t i o n for Hermite polynomials 
Hn+i(x) = 2xHn(x) - 2nHn_i(x), 

together with (5.14) gives 

dn + i = dn + ndn-i, n > 1, d^ = 1, dl = 1. (5.15) 

Sequence (5.15) has been studied by P. Rubio, Dragados y Construcciones (Mad-
rid, Spain), although (5.14) was, to my knowledge, discovered by me (see [10]). 

The first few d'n s are 

d0 = 1, dl = 1, d2 = 2, d^ = 4, d^ = 10, d5 = 26, etc. 

Known relations for Hermite polynomials provide interesting expansions with 
the dn

]'s as coefficients. For instance, the generating relation [9] 

(1 - 4tz)"^exp 
"2 0/ - 2xt)2] _ ^ Hk(x)Hk(y)tk 

y 1 - 4*2 k = o kl 

gives, on changing both x and y to -i//2, and t to -t/2, the interesting rela-
tion 

(i - * * ) - M T ^ ) - £, ^r• (5-16) 

Changing to x, we find 
1 - t 

ex = (2a? + D3^ E 77 ^-TT7> x > "%• (5'17) 

k% kl (x + l)k+l 

Series (5.9), (5.13), and (5.17) are offered only as mathematical curiosi-
ties. None of them converges faster than Euler's exponential series 

00 ~n 

n = 0 n' 

Series (5.9) and (5.17), in particular, converge very slowly. 
These recurrent sequences of positive integers associated with classical 

polynomials seem not to have been studied in the existing literature, in spite 
of the fact that they may well be used to advantage in numerical work. 

6. Continued Fraction Expansions for Fibonacci and Lucas Numbers 

We will close this paper by showing how to expand Fibonacci and Lucas num-
bers in nontrivial finite continued fractions. This result is rather surpris-
ing inasmuch as Fibonacci and Lucas numbers are integers. 

The expression 

S = aQ + a-̂  + oua^ + c^o^ou + o^a^aga^ + ' ' • > (6.1) 

is easily seen to be equivalent to the infinite continued fraction 

S = an + — -77—7 T /-, , r • (6.2) 
u 1 - (1 + a2) - (1 + a3) - ... 

If we let 

a0 = 3(s), (6.3) 

where 3 (2) is an arbitrary function of zs 
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BOO blb2 ... bq 

(al + k - 1)(a2 + k - 1) (ap + /c 1) 

(bq + k - 1) k 
, fc > 1 , k (bl + k - l)(b2 + k - 1) 

where none of the b1s is zero or a negative integer, then (6.1) becomes 

BOO 1 + 
ap s (a1)2(«2^)2 ••• (ap)2 s 2 

&!&.,... fc, 1! (&1)2(&2), (bq)2 2! 

(6.4) 

(6.5) 

= $(.Z)pFq 
\JD -, s L^pJ • • • 3 ^<^ 9 _j 

(6.6) 

Use of (6.2) with the values (6.3) , (6.4), and (6.5) gives a continued frac-
tion expansion for the generalized hypergeometric function pFq (z) times an 
arbitrary function of z , 3(s). The continued fraction expansion converges, of 
course, whenever the infinite series defining the hypergeometric function 
converges. The continued fraction and the series converge and diverge 
together. 

One of the known expressions for Jacobi polynomials is 

,(«, (-!)"(! + 3), 
(s) = : 2*1 

-n9 1 + a + 3 + n; 

1 + 

1 + z 

In terms of Jacobi polynomials, Chebyshev polynomials are given by 

nl 

and 

T(x) = 

U„(x) = 
{n + 1)! 
(%)„ 

(6.7) 

(6.8) 

(6.9) 

Simple substitutions, and use of (2.3) through (2.6), gives continued frac-
tion expansions for Fibonacci and Lucas numbers. 

Let us illustrate this by finding a continued fraction expansion for L^. 
One has 

'-In, 2n; 

In 2 1 
2 + /5 

from which one gets, for n = 2, 

3(s) = 2, 

aQ = 2, 

ax - -16(2 + / 5 ) , 

x2 = -^(2 + / 5 ) , 

*3 = -|(2 + / 5 ) , 

iu =-i(2 + / 5 ) , 
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ak = 0, k > 4 . 
From t h e s e , i t fo l lows t h a t 

L = 2
 1 6 ( 2 + ^5) 5(2 + /5 ) 8(2 + ./E) 5(2 + J5) = 

14 1 + -6 - 5/5 + 1 - 2 / J + 6 - /5~ 
as the reader can verify easily. 

Putting the Jacobi polynomial into its several equivalent forms [9] gives 
different, but equivalent, continued fractions for Fibonacci and Lucas numbers. 
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1. Introduction 

In Turner [6], a sequence of trees was defined such that the nth tree Tn 
had Fn leaf-nodes, where Fn is the nth element of the Fibonacci sequence. It 
was shown how to construct the trees so that the nodes were weighted with inte-
gers from a general sequence {Cn} using a sequential method described in Sec-
tion 2. 

This produced a sequence of Fibonacci convolution trees {Tn}, so called 
because the sum of the weights assigned to the nodes of Tn was equal to the nth 
term of the convolution product of {Fn } and {Cn}. That is, the ft meaning the 
sum of weights: 

Q(T„) = (F * C)n = E ^ C „ _ i + 1. 
i = I 

This result is illustrated in Section 3. 
With this construction, a graphical proof of a dual of Zeckendorf's theorem 

was given, namely that every positive integer can be represented as the sum of 
distinct Fibonacci numbers, with no gap greater than one in any representa-
tion, and that such a representation is unique [2]. 

To develop this procedure further, we give a construction for kth-order 
colored trees, and for colors consider generalized Fibonacci numbers of order 2 
and greater. To this end, we define the recurring sequence 

{Wn} = {Wn(a, b; p, q)} 

as in Horadam [4] by the homogeneous linear recurrence relation 

Wn = pWn-i - qWn-2, n > 2, 

with initial conditions Wi = a, W2 = b. The ordinary Fibonacci numbers are then 

{FJ E {Wn(l, 1; 1, -1)}. 

2. C o n s t r u c t i o n of K t h - Q r d e r Colored T r e e s 

Given a sequence of c o l o r s , C = {Cl, C2* C3, . . . }, we c o n s t r u c t kth - o r d e r 
co lo red t r e e s , Tn, as f o l l o w s : 

Ti - C{ 
Tn = Tn®Fl * Cn, with Cf being the root node in each case, 

n = 2, 3, ..., k; 
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Tk + m - C
k + m kV/m + i> m = 1 , 2 , 

t = o 

in the l!drip-feed" construction, in which the kth-order fork operation V is to 
mount trees Tm, Tffl+|S . .., Tm + k_i on separate branches of a new tree with root 
node at Cm + ji for m > 1. Thus., when m - 1, we get: 

r7 r2 ... r, 

a 
For example, when k = 2 and (7 = {F n } , the sequence of Fibonacci convolution 
trees is 

1- 1 

T, T, 

If 1 

where Ti, T2 s are the initial trees, and subsequent ones are: 

^ = 0 

TL+ = F^V(T2, T3), and so on (see Turner [8]). 

The tree ^ + 1 for the general case is;: 

C T 

I 
pi 
^ t 7 

In Section 4S we take the colors from the kth-order Fibonacci sequence (cf. 
Shannon [5]) given by 

fc-i 
^n+fe = X] ̂ n + i5 n - 1s anc* with initial elements C] , C2 > . .», C^ • 

The colors on the leaves taken from all the trees in the sequence, from left to 
right, form the Fibonacci word pattern (Turner [8]): 
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J \C i i t>2' •••> Cyj ~ C\i C2 s . . . , Cfr , Ci<^2 a ° • ^ f e » ^ 2 • • • ^ k ^ l • • • ^ f c ' • • • 

There i s a remarkable r e l a t i o n s h i p between the l e a f - w o r d p a t t e r n and the 
t r e e shade s e t s , which we s h a l l d i s c u s s in Sec t ion 4 . 

Examples of F ibonacc i word p a t t e r n s , showing how they a r e formed by r e -
o rde r w o r d - j u x t a p o s i t i o n r e c u r r e n c e s a r e , 

v = 2 
v = 3 
r = 4 

f(a, b) = a, 2?, a£, bab, abbab, ... 
/(a, b3 c) = a, 2?, c, abc, boabc, cabcbcabc, 
/(a, &, c, d) = a, Z?, c, J, abed, bedabed, . . 

It is of interest to note that 

/(a, b) = {tf„(a, 2>; 1, -10 t Fn_i)} 

where 10 i m represents 10m for notational convenience, {Wn} is Horadamfs gen-
eralized Fibonacci sequence, and Fn are the ordinary Fibonacci numbers. Thus, 

Wi = a 

W2 = b, 

W3 = W2 + lO1^! 
= b + 10a 
= ab3 in the above notation, and so on. 

3. Number Properties of the Trees 

(i) Node weight totals 

As stated in the Introduction, when k = 2 the sum of all node weights of Tn 
is equal to the convolution term (F * C)n . We illustrate this for the case 
C = {Fn} and with the fifth tree in the sequence. 

It 

T, -

From observation, 

tt(T5) = 1 + (1 + 1 + 1 + 1) + (1 + 1 + 1 + 2) + (2 + 3) + 5 = 20. 

Using the formula, we get 

fi(T5) = FlF5 + F2Fh + F3F3 + FhF2 + F5Fl 

= 2F1F5 + 2F2Fi+ + F\ 

= 10 + 6 + 4 = 20. 

(ii) Number of nodes with colors Cx , C2, . . . , Ck at different nodes 

Now consider the first four trees associated with the color sequence 

C = F(a, b) = as b5 a + b, a + 2b, ... 
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Note that we use /(a, b ) to denote the word pattern and F(a, b) for the color 
sequence. 

Let (na9 rtfr) represent the number of a*s and the number of 2?'s at any level 
in the tree; we get the following table for this pair. 

Tree 

Tj 

T2 

T3 

T4 

Ts 

T6 

m = (level + 1) 1 

(1,0) 

(1,0) 

(1,1) 

(1.2) 

(2,3) 

(3,5) 

2 

(0,1) 

(2,0) 

(2,1) 

(2,3) 

(3,5) 

3 

(0,1) 

(2,1) 

(4,1) 

(4,4) 

4 

(0,1) 

(2,2) 

(6,2) 

.5 

(0,1) 

(2,3) 

6 

(0,1) 

If we represent the element in the nt h row and mth column of this array by 
xrm , then xrm satisfies the partial recurrence relation 

xnm = xn-l,m-l + *n-2,m-l> I < m < Yl, n > 2, 

with boundary conditions 

"11 "21 (1, 0); 

xZ2 = (0, 1); 
xn\ = (Fn-2> Fn-\) > n > 2l 

x^ = (0, 0), m > n. 

The proof follows from the construction of the trees and the fact that the root 
color for Tn, after n = 2, is the nt h term of f(a, b) , which is aFn_2 + b^n-l 
(see Horadam [3]). 

4- Shades and Leaf Patterns 

Consider the set of all leaf-to-root paths in a given convolution tree. 
Each leaf node determines a unique path, say P^ . We can label the paths P]_ , 
P2 J • • • 5 Pg according to their position (taken from left to right) on the tree 
diagram. If we add up the node weights on path Pi and denote this path weight 
by W^9 we obtain a sequence {J/̂ , W2 3 ..., Wg], called the shade of the tree 
(Turner [6]). This is denoted by Z (Tn) and is described in more detail in 
Section 5. 

Recall from Section 2 that the colors on the leaves of the trees in the 
sequence form a Fibonacci word pattern. For example, the pattern f(l, 4) of 
leaf nodes for k - 2 can be seen in Figure 1. 
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Colors: F(l,4) = 

Initial Trees: 

{1,4,5,9,... } 

1 
T, T* 

T3= 1 

Shades: 6, 10 Shades: 14, 15, 19 

Shades: 20,24,28,29,33 Shades: 37,38,42,43,47,51,52,56 

FIGURE 1 

The shades can be generated by the (J) function of Atanassov [1] defined by 
):1N+1N such that cj)(0) = 0 and 

where 
i = 1 

•i = 1 

The shades and leaf numbers of the first four trees for /(l, 4) are as follows: 

Tree 

Leaf numbers 
Ti 

1 
T2 

4 
T3 
14 

T4 

414 
Shade 1 6, 10 14, 15, 19 

)(1) =• 1 (f)(14) = 5 (j)(51) = 6 cj)(105 4) = 14 
<f>(64) = 10 (j)(14, 1) - 15 

<K15, 4) = 19 

Note that (J) (n) just accumulates the elements of the total leaf number pattern 

/(I, 4) = 1, 4, 14, 414, 14414, ..., 

from the left. Thus, the shade set for the tree sequence is 

1 
1 + 4 = 5 

1 + 4 + 1 = 6 
1 + 4 + 1 + 4 = 10... 

In the general second-order case, 

f(a, b) = a, b, ab9 bob, ..., 
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and the shade sequence via + sib is, in turn, 

la, la, 2a, 2a, 2a, 3a, 3a, 
+ + + + + + 
lb lb lb 3b 3b kb. 

An example can be seen in Figure 1 for f(l, 4). 
Various results can be developed from the coefficients of a and b in this 

sequence. For example, if we write them as two-component vectors, we get 

{(#}-{(*)• ( M i M z M D - (D- « ) •« ) . ©••••} 
then the first differences are: 

-{CMS). (!)•(!)• (J)- 0 - (J)- (?)•(?)••••} 

Note that the elements of {A^} determine the Wythoff pairs, much studied in 
the Fibonacci literature [7]. To see this, consider the positions of the lfs 
in the upper elements of {A^}, and likewise in the lower elements: the upper 
l's indicate the sequence {[na2]}, and the lower lfs the sequence {[not]}. 

It is now clear that for the leaf number pattern 

/(I, 1) = 1, 11, 111, 11111, ... 

the shade is 

1, 23, 456, 7891011, ..., 

as Figure 2 so graphically illustrates: for we merely have to accumulate the 
sequence of l's, from the left, to get the shade, which is the sequence at the 
base of the straight lines from the trees to the horizontal axis. 

Thus, each natural number n corresponds to a leaf-to-root path; and the 
path!s color-sum provides a representation of n as a sum of distinct Fibonacci 
numbers: 

" - E &iFi> ei e {0> !>• 

Furthermore, e^ + e^+i > 0 for each i, which means that there is never a gap 
greater than one among the Fibonacci numbers constituting any representation, 
which is evident from the "drip-feed" tree-coloring procedure. Deleting the 1 
from each leaf node, in each representation, one obtains integer representa-
tions with the same properties but in terms of distinct members of the sequence 
iun] = {Fn + \} • This integer-representation result has come to be known as 
ZeckendorfTs dual theorem [2]. 

We now present two general results about the leaf patterns and shade sets. 

Theorem 1: For the kth-order tree sequence defined in Section 2, the colors on 
the leaves, from left to right, form the Fibonacci word-pattern 

Proof: The colors on the leaves, from left to right, are initially by construc-
tion Ci, C2> ..., Ck in turn, and then for Tk+i they are C2 . .. CkCi, and so on, 
as in the recurrence that produces the kth-order Fibonacci word-pattern. 
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Corollary: I t fo l lows t h a t i f C i s the kth - o r d e r F ibonacc i sequence wi th i n i -
t i a l e lements Cl, Cz, . . . , Ck as i n Sec t ion 2, then 

]T ( l e a f c o l o r s ) = ( roo t co lo r Cn), n > k* 

0 1 1 2 3 4 5 6 7 
F F F F F *0 £l £2 3 4 

9 10 11 12 13 14 15 16 17 18 19 20 21 

FIGURE 2(a) 

Weights of leaf-to-root paths versus max. node weight 

a:l 1 3 8 =13 
b:12 3 8 « 14 
c:1123 8 -15 
d:l 2 5 8 - 16 
e:l 1 2 5 8 - 17 
f:l 1 3 5 8 -18 
g:12 35 8 - 19 
h:l 1 2 3 5 8 « 20 

FIGURE 2(b) 

Leaf-to-root paths for T6 

Theorem 2: The shade set of Tn (from the sequence of Theorem 1 and its corol-
lary) is given by adding leaf-colors from the left, that is, by computing the 
partial sums of the leaf-pattern. Thus, if the leaf nodes of Tn have the color 
pattern L^L^ . . . Lr with each Li G {Cl5 C2? . ••» Ck}, then the shade 

Z(Tn) = {Sl + i?„_1, S2 + Rn.l9 . .., Sr + i?n_]_} for n > ks 

where Lm is the mth partial sum of the leaf color pattern (left to right) of 
Tn, and 

n - 1 

i = l 

is the sum of the root colors for the previous n - 1 trees. 
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Proof: An inductive proof is easily established. 

Corollary: If Ci = 1 for i = 1, . .., k, 

llm\JZ(Tn) = Z+, for any k > 2. 

This corollary provides the integer representations which are the subject of 
the next section. 

We can also represent the shades in terms of {Wn}, as defined in Section 1. 
For k = 2 and /(l, 1), we can define the sequence {Srm} by 

S„ 10Wn + 1 (mod 10+777), 1 < m < n. 

Then, for example, for {Wn} = {Wn(l9 4; 1, -10 t Fn)}, we have 

n 
W 

and 
m 1 

2 
4 

2 
41 
5 

3 
14 

4 
414 

3 4 
141 4141 
6 10 

14414 

5 
44141 
14 

which is the shade sequence we found in Section 3. 

5. Integer Representation Theorem 

A family of integer representations using the kth-order Fibonacci sequence 
with lTs for the first k elements is given by the following theorem. 

Theorem 3: Any integer n € Z+ has a representation of the form 

» - E^C., e, e {0, 1}. 

where the C^ are distinct elements of the kth-order Fibonacci sequence F(l, 1, 
..., 1), and 

k-l 
L ei+- > 0 for all i , k > 1. 
j=o 

Proof: The proof follows immediately from Theorem 2 and its corollary and the 
manner of construction of the trees. (The Zeckendorf dual occurs when k = 2.) 

Corollary: We can use. the initial lTs in each representation in a manner which 
provides representations for all integers in terms of distinct elements of the 
sequence whose first elements are 1, 2, 3, ..., k, and whose subsequent ele-
ments are the corresponding l's of F(i9 1, 1, ..., 1). 

As an example, for k = 3, the sequence F(l, 1, 1) gives the color set 
{1, 1, 1, 3, 5, 9, 17, ...}, and the first six trees are: j 

If 1 

1- H H 

1? 1 

K If 1 

1? 1 K 1 

v ~ ^ 
446 

?i T2 T3 T4 Ts 
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The following table shows the shades and the corresponding integer repre-
sentations for integers N = 1, . .., 15 when the initial l?s are replaced by a 2 
when (1, 1) occurs and by 1, 2 when (1, 1, 1) occurs in a representation. 

\Tm 

\z<TJ 

Integers in 
Representation 

Maximum gap 

1 

1 

1 

-

2 

2 

2 

-

3 

3 

3 

-

4 

4 

1 
3 

1 

5 6 

2 1 
3 2 

3 

0 0 

5 

7 8 9 

2 3 1 
5 5 3 

5 

1 0 1 

10 11 

2 1 
3 2 
5 3 

5 

0 0 

6 

12 13 14 15 -. 

1 1 2 1 
2 3 3 2 
9 9 9 3 

9 

2 1 1 1 
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Repeating decimals show a surprisingly rich variety of number sequence 
patterns when their repetends are viewed in retrograde fashion, reading from 
the rightmost digit of the repeating cycle towards the left. They contain 
geometric sequences as well as Fibonacci numbers generated by an application of 
Pascal*s triangle. Further, fractions whose repetends end with successive 
terms of Fnm , m = 1, 2, ..., occurring in repeating blocks of k digits, are 
completely characterized, as well as fractions ending with Fnm+p or Lnm+p, 
where Fn is the nth Fibonacci number, 

F1 = 1, F2 = 1, Fn+i = Fn + Fn_19 

and Ln is the nth Lucas number, 

1. The Pascal Connection 

It is no surprise that 1/89 contains the sum of successive Fibonacci num-
bers in its decimal expansion [2], [3], [4], [5], as 

1/89 = .012358 
13 
21 
34 

However, 1/89 can also be expressed as the sum of successive powers of 11, as 

1/89 = .01 
.0011 
.000121 
.00001331 
.0000014641 

where 

1/89 = 1/102 + ll/lO4 + 1'12/106 + ..., 

which is easily shown by summing the geometric progression. If the array above 
had the leading zeros removed and was left-justified, we would have Pascal's 
triangle in a form where the Fibonacci numbers arise as the sum of the rising 
diagonals. Notice that llk generates rows of Pascal's triangle, and that the 
columns of the array expressing 1/89 are the diagonals of Pascal's triangle. 
We call this relationship "the Pascal connection." 

Now, 1/89 leads to the Fibonacci numbers by summing diagonals of Pascal's 
triangle. Since 89 = 102 - 11, consider 9899 = 10*+ - 101. By summing the geo-
metric series, 

1/9899 = 1/104 + 101/108 + 1012/1012 + ... . 
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However, 101* generates rows of Pascal's triangle where the columns are inter-
spersed with columns of zeros. By the Pascal connection we obtain Fibonacci 
numbers in every second place, as 

1/9899 = .0001010203050813..= . 

The Pascal connection also gives us 

1/998999 = .000001001002003005008013..., 

since 998999 = 106 - 1001. In general, 

l/(102k - 100...01)., 

where (k - 1) zeros appear between the two l!s, gives successive Fibonacci num-
bers at every kth place by the Pascal connection. 

Looking again at 89 = 102 - 11, observe that 889 = 103 - 111, and summing a 
geometric series gives 

1/889 = 1/103 + 111/106 + 1112/109 + ..., 
where 

1/889 = .001 = .001124859... 
.000111 
.000012321 
.000001367631 

and we generate the Tribonacci numbers 

0 , 1, 1, 2 , . . . , Tn + i = Tn + Tn _ i + Tn _ 2 , 

by the Pascal connection, since 111^ generates rows of the trinomial triangle, 
and the sums of the rising diagonals of the trinomial triangle yield the 
Tribonacci numbers [1]. 

The results of expressing 1/89, 1/9899, 1/998999 in terms of Fibonacci num-
bers have been developed by other methods by Long [2] and by Hudson & Winans 
[3]. Winans [4] also gives 1/109 and 1/10099 as a reverse diagonalization of 
sums of Fibonacci numbers, reading from the far right of the repeating cycle, 
where 1/109 ends in 

13853211 
21 

34 
55 

89 

We next apply,the Pascal connection to repeating decimals, looking out to 
the far end of the repetend and reading from right to left. 1/109 has a period 
length of 108, and 1/109 ends in powers of 11, as 

1/10108 + 11/10107 + 112/101 0 6 + ..., 

or, a reverse diagonalization of powers of 11, 

1 
11 

121 
1331 

14641 
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Summing the geometric progression, 

ly n i ~ l
 = n 1 0 8 - 1 Q 1 0 8 - l = l l 1 0 8 - 1 + I P 1 0 8 - l 

i = i 1 0 1 0 9 _ i 1 0 1 0 8 • (110 - 1) 109 1 0 1 0 8 » 1 0 9 

Now, 1 0 9 | ( 1 1 1 0 8 - 1) because 109 is prime, so that the left term is an integer. 
The rightmost term represents one cycle of the repetend of 1/109, since 109 has 
period length 108. Thus, 1/109 gives Fn , n = 1, 2, . . . , reading from the 
right, by the Pascal connection. 

Notice that 109 = 11(10) - 1, and 109 is prime with period 108. Now, 

1109 = 111(10) - 1, 

where 1109 is prime with period 1108. We can generate the last digits of the 
repeating cycle for 1/1109 in exactly the same way by writing 

1/101108 + 111/101107 + 1112/101106 + ... . 

By the Pascal connection, 1/1109 ends in the Tribonacci sequence, ...74211. 
Generalizing 109 in another way, 10099 is a prime with period length 3366, 

where 10099 = 101(102) - 1, so that 1/10099 can be expressed in terms of powers 
of 101 from the far right. As before, 101^ generates rows of Pascal's triangle 
where the columns are interspersed by zeros, so that the Pascal connection 
shows 1/10099 ending in ...0503020101. Similarly, 1000999 = 1001(103) - 1, and 
1000999 is prime with period length 500499 [6], so that, by the Pascal 
connection, 1/1000999 must end in Fn appearing as every third entry, as 
..005003002001001. 

We can immediately write fractions which generate the Lucas numbers Ln from 
the right. Since 1/109 ends In Fn , n = 1, 2, ..., reading from the right, and 
Ln = 2Fn„l + Fn, multiplying 1/109 by 21 in effect adds 2Fn_1 + Fn in the 
expansion except for the rightmost digit. But because the digit on the right 
of Fi is indeed 0, the last digit also fits the pattern, so that 21/109 ends in 
Ln_i from the right. Also, multiplying 1/109 by 101 in effect adds Fn_i + Fn+i 
to make Ln except for the rightmost digit. Thus, 101/109 ends in Ln except for 
the rightmost digit. That is, 101/109 ends in ...74311, and Ln reads from the 
right to left beginning at the 107th digit. Since 1/10099 gives Fn, n = 1, 2, 
..., reading from the right with every second digit, 201/10099 ends in Ln from 
the right as ...181107040301. Similarly, 2001/1000999 ends in Ln as every 
third digit. Finally, 10001/10099 ends in ...18110704030101 while 1000001/ 
1000999 ends in ...018011007004003001001. 

We will eventually prove these notions, but to enjoy these relationships 
one needs an easy way to write the far right-hand digits in these long 
repeating cycles. If. (A, 10) = 1, A > 1, then A • l/A = 1 = .99999... . To 
generate 1/109 from the right, simply fill in the digits to make a product of 
...9999999: 

109 
...53211 

109 
109 

218 
327 
545 
...999999 

The last digit of the next partial product must be 2 to make the next digit in 
the product be 9. So the digit preceding 5 in the multiplier must be an 8. 
One proceeds thusly, filling in the digits of the multiplier one at a time. 
The multiplier gives successive digits of 1/109 as read from the right. 
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2. Retrograde Renegades: Repeating Decimals that Contain 

Geometric Series 

Any repeating decimal can itself be considered as a geometric series, but 
here we want to study repeating decimals which contain geometric series within 
their repetends. First, we list some general known results in Lemma 1 [7], 
[8]. 

Lemma 1: Let n be an integer, (ft, 10) = 1, n > 1. Then L(n) , the length of 
the period of ft, is given by 

(i) 10L(n) E 1 (mod n), 

where L(n) is the smallest exponent possible to solve the congruence; if R(n) 
denotes the repetend of ft, then R(n) has L(ji) digits and 

(ii) R(n) = (10L(n) - l)/ft; 

the remainder B after A divisions by n in finding 1/ft is given by 

(iii) 104 = B (mod ft), 

and 
(iv) mL(n) E 1 (mod n) ̂  ^ n) = 1. 

While L{n) can be calculated as in Lemma l(i), Yates [6] has calculated 
period lengths for all primes through 1370471. 

We first look at repetends which contain powers of numbers reading left to 
right, or right to left, such as 1/97 = .01030927... and 1/29, which ends in 
...931, both of which seem to involve powers of 3. 

Lemma 2: The decimal expansion of 1/(100 - k) , (100, k) = 1, contains powers 
of k from left to right, k < 100. 

Proof: Summing the geometric series, 

1/102 + fc/104 + k2/106 + ... = 1/(100 - k). 

Lemma 3: The repetend of l/(10k - 1) contains powers of k as seen from the 
right. 

Proof: Let n = 10k - 1. Then the sum after L(n) terms of 

° " 1QL(n) ^ lQL(n)-l T
 lQL(n)-2 ^ 

is given by summing the geometric progression for L(n) terms as 
1 {i0L(n)kL(n) _ ^ 

10L(n) ' (10k - 1) 
_ 1 [l0L(n)kL(n) _ 1QL(n) + lQL(n) _ X] = kL(n) _ 1 lQL(n) _ x 

10 L ( n ) * (10k - 1) ft 10L(n)ft 

where the left-hand term is an integer and the right-hand term gives one cycle 
of 1/ft following the decimal point, both by Lemma 1. 

Notice that 1/89 has powers of 11 or Fibonacci numbers as seen from the 
left and powers of 9 from the right, while 1/109 has powers of (-0.09) from the 
left (where the initial term is 0.01), and powers of 11 or Fibonacci numbers as 
seen from the right. Also, 1/889 has Tribonacci numbers as seen from the left, 
and powers of 89 on the right, since 889 = 10 * 89 - 1. 
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Next, consider pairs of fractions whose repeating decimal representations 
end in each other. For example, 31 appears as the rightmost two digits of 1/29 
(period length 28), and 29 is the last pair of digits of 1/31 (period length 
15). Now, 29-31 = 9 • 102 - 1, and the digits in the two cycles, reading from 
the right, can be represented as 

1/29: 31/1028 + 9 -31/1026 + 92 • 31/102*4 + ...; 

1/31: 29/1015 + 9 '29/1013 + 92 • 29/1011 + ... . 

Further, 1/29 ends in ...137931, and 1/31 ends in ...29, 1/931 in ...029, 
1/7931 in ...0029, 1/37931 in ...00029, and, finally, 1/5 = 0.000...29 (26 
zeros in the repetend) , where B is the entire repetend of 1/29. Also, there 
are many representations of a fraction reading from the right, such as, for 
1/59 with its 58-digit period length, ending in ...779661, we have 

1/1058 + 6/1057 + 62/1056 + ..., 

61/1058 + 36 • 61/1056 + 362- 61/1054 + ..., 

661/1058 + 39 • 661/1055 + 392 • 661/1G52 + ..., 

9661/1058 + 57- 9661/1054 + 572 • 9661/1050 + ..., 

where 

1058 E 1 (mod 59), 1057 = 6 (mod 59), 1056 = 36 (mod 59), 

1055 E 39 (mod 59), and 1054 = 57 (mod 59). 

Notice that the multipliers are the remainders in reverse order in the division 
to obtain 1/59. 

Both of these examples of retrograde renegades are explained by Theorem 1. 

Let A and B be integers, (A, 10) = 1, (B, 10) = 1, A > 1. Let L(A) 
be the number of digits in the period of A. If l/A ends in B, then the end of 
l/A can be expressed as 

S/10^4 ) +KB/10LW-k + K2B/lOL^~2k + ..., 
where 

AB + 1 = K • 10fe, 

and the number of terms is L(A) /k if k divides L(A) , or [L(A)/k] + 1 otherwise, 
where [x] is the greatest integer in x. 

Proof: AB + 1 = K • 10^ because K • 10^ is a partial dividend where A is the divi-
sor, B is the quotient, and 1 is the remainder, in the long division process to 
find l/A. By Lemma 1, 

10L^> E 1 (mod A) and i0LU)-k E K (mod 4) . 

Case 1 . L e t k\L(A). Sum t h e g e o m e t r i c p r o g r e s s i o n w i t h L(A)/k t e r m s t o 
o b t a i n 

= B , WLW/k - i o L ( / 1 ) - i ) 
1 0 L ^ } ' ( Z - I0k~l) 

= B
 t WL{A)/k ' 1 0 L ( A ) - 1 0 L ( A ) + 1 0 L ( A ) - 1) 

1 0 L ( A ) AB 

KL(A)/k - 1 1 0 L ( A ) - . 1 

A A • 1 0 L ( A ) 
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Now, t he r i g h t - h a n d term r e p r e s e n t s one cyc le of the r epe t end of I/A fo l lowing 
the decimal p o i n t , by Lemma 1, Next , i f t he l e f t - h a n d term i s an i n t e g e r , we 
a r e done. By Lemma 1, 

1QL(A)-k = R ( m o d A ^ 

KL(A)/k = (l0L(A)-k)L(A)/k = (l0L(A))(L(A)-k)/k = X (mod A ) s 

which means that the left-hand term is an integer,, 

Case 2. If k does not divide L(A), then L(A) = km + r, 0 < v < m9 and 
there are (m + 1) terms. Then, summing as befores 

B Km + l» 1 0 f e ( m + x ) - 1 

1 0 L ( A ) K« 10* - 1 

Km + l • lQk(m + l) _ IQL(A) IQ^U) - 1 
= ioL^) • A + To^TTT 

Notice that the right-hand term is the same as in Case 1. If the left-hand 
term is an integers then Case 2 is done* The left-hand term is equivalent to 

(Zm + 1°  ioHm-i)-L(A) - I)/A 

so we have an integer if 
Km + l . lQk(m + l)~L(A) = l (mod ,4) a 

But K E ioL(A)-k (mod A), and substituting aboves 
/ IQ L(A) ~k \m +l . J_Q^(/77 + 1) - L(A) _ ^Q L(4) (/n + 1) - £:0?7 + 1) + k(m + 1) - L(A) 

= lOmL(A) = (lQL(A))m E x ( m o d A ) 

and we are done. 

Corollary (due to G. E. Bergum): Let A be a prime with k digits* If B is the 
integer formed by writing the last i digits of the repetend of 1/A9 L{A) > 1 > 
k, then 1/B ends in ...000..J, where A is preceded by {i - k) zeros. 

3. Fractions that Contain Fnm in Their Decimal Representations 

Hudson & Winans [3] completely characterized decimal fractions which can be 
represented in terms of Fym , reading from the left. In particular, they give 

1/71 = E F2i/I0i + K 
i = i 

Winans [4] gives 9/71 as ending in Fibonacci numbers with odd subscripts. 
Since 9/71 also begins with F2m-i reading from the left and 

L2m = F2m-l + F2m + l> 

we write 11 • 9 = 99 = 28 (mod 71) and 28/71 begins with Llm, m = 1, 2S ... . 
Since we find that 19/71 ends In F2m-3, and 

L2m-2 = F2m-l + F2m- 3» 

19/71 + 9/71 = 28/71 ends in L2m_29 m = 1, 2, ..., reading from the right. 

Further5 Hudson & Winans [3] give 

1/9701 = .000103082156..., 
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where F2m appears in groups of two d i g i t s . We note that 9701 = 89 • 109, with 
1188 d ig i t s in i t s repeating cycle . I t turns out that 

99/9701 = .0102051334... 

and that 99/9701 ends in . . . 893413050201, where F2m-i appears in groups of two 
d i g i t s , reading e i ther from the l e f t or from the r i g h t . Since 

L2m = F2m-l + F2m + l> 
and 

101- 99 = 9999 = 298 (mod 9701), 

we should have 298/9701 both beginning and ending in Lucas numbers with even 
subscripts. In fact, 

298/9701 = .03071848... 

and ends with ...4718070302, or begins with Ẑ m anc* ends with 2̂̂ 2-2? m = 1, 2, 
..., moving in blocks of two. 

Next, we give a description of fractions with a decimal representation 
using Frm , reading from right to left. 

Theorem 2: The decimal representation of 
F„ 

102/c + L * I0k - 1 , n odd, 

ends in successive terms of Frm , 777 = 1, 2, ..., reading from the right end of 
the repeating cycle, and appearing in groups of k digits. 

Proof: Change the sum written in (i) to geometric progressions by using the 
Binet form for Fn9 

Fn = (an - (3n)//5, where a = (1 + /E)/2 and 3 = (1 - /5)/2. 

Then sum the geometric progressions, making use of aB = -1 and Ln = an + 3n» 
After sufficient algebraic patience, one can write, for k > 0, 

(i) Y IQ^^'^F = - — — — - — — n(L + l) n 
i = i ni (-1)^ + 110^ + L„. 10fe - 1 

Notice that the sum is a positive integer at this point, and dividing by 10^, 
y > 0, will move the decimal point y places to the left. Let 

M = (-l)n+1102fe + Ln • 10k - 1, 

where M > 0 when n is odd, and let L(M) be the length of the period of M. The 
number of terms L in the sum must be chosen so that L > L(M)/k. We divide both 
sides of (i) by 1 0 L ^ , and add (Fn - Fn) to the numerator on the right-hand 
side, making 

Mi) f 1 0 ^ - D ^ W p - lOkL~L(M) a~l)n + llOkFnL +Fn{L + l)) ~Fn 
J i = i ~ni M 

F (10LW - 1) 
+ 

IQ^M) M 

Since kh > L(M) , iQkL-L(M) > Xj a n d t h e decimal point has been shifted L(M) 
places left. Now, the rightmost term is Fn times one cycle of the repetend of 
1/M. Thus, when n is odd, 

M = 102fc + Ln • 10k - 1, and Fn/M has the needed form. 
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Now, if n is even, 

M = (-l)n+1102* + Ln • 10* - 1 

is negative, and we have to modify Theorem 2. 

Theorem 3: The decimal representation of 
M - F.n 0 7 , 

^-^-, M = 102* - Ln » 10* + 1, n is even, 

ends in successive terms of Frm , /?? = 1, 2, . .., reading from the right end of 
the repeating cycle and appearing in groups of k digits, if 1 is added to the 
rightmost digit, 

Proof: Return to (ii) in the proof of Theorem 2. When n is even, both numera-
tor and denominator of the left-hand term are negative, so we still have a 
positive term there. Since M is negative when n is even, rewrite the right-
hand term as 

-Fn(10L(Ai) - 1)/10L(M)M 

for adjusted M, 

M = 102* - Ln • 10* + 1. 

Then write 

-Fn(10L(A/) - 1) _ -FW(10L^ - 1) + (A/(1Q£M - 1)) - (M(10L{M) - 1)) 
10L(M) M ~ 10LM M 

__ (M - Fn)(lOL{M) - 1) 1 _ 

10L(M)M 10L(M) 

The fractional part represents (M - Fn) times one cycle of the repetend of 1/M, 
with 1 added to the rightmost digit, which finishes Theorem 3. 

Further, notice that if Fn /M is represented in terms of Fym , then other 
fractions with the same denominator will have representations in terms of Fnm+r 
and Lrm+r9 r = 0, 1, ..., n - 1. For example, for n = 2, k = 1 and m = 1, 2, 

2/139 ends in F3m, 20/139 in F3m_3, 11/139 in F3m„l$ 13/139 in F3m+l; 

24/139 ends in L3m, 31/139 in L3m.l9 41/139 in L3m+1. 

In general, for n = 3, tf? = 1, 2, ..., and M = 102* + 4 * 10* - 1, we have 

2/M ends in F3m; 2 • 10*//^ ends in F3m_3. 

Since F3m + F3m_3 = 2F3m_1, and F3m + 1 = F3m + i^-i* we find that 

(10* + l)/M ends in F3m_l; . (10* + 3)/M ends in F3m+l. 

Then L3m = F3m + 1 + F3m^l and. L3m_2 = F3m_3 + F3m.1, give us that 

(2 • 10* + 4)/Af ends in L3m; (3 • 10* + 1)/M ends in L3m_2, 

Lastly, L3m+2
 = ^3w + ^F3m+l means that 

(3 • 10* + 11) /M ends in L 3m + 2, 
where all of the above occur In groups of k digits. 

The even examples are both more difficult and more entertaining. For n = 2, 
m = 1, 2, ..., M = 102* - 3® 10* + 1, the following occur in blocks of k digits 
from the right: 
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(10* - 3)/M ends in F2m+2, (10* - DIM ends in F2m+l; 

(2- 10* - 3)/M ends in L2m , (10* - 4)/Af ends in L2m + 1-

For n = 4, m = 1, 2, . .., M = 102* - 7 • 10* + 1, the following occur in blocks 
of k digits from the right: 

(10* - 5)/M ends in Fhm+l, (10* - 8)/M ends in F 

^+2, (4 • 10* ~ 29)/M ends in Z ^ + 3. (3 •' 10* - 18)/M ends in £^+2, (4 * 10^ ~ 29)/M ends in L 
These are by no means exhaustive. Fibonacci and Lucas numbers abound but en-
countering negative numerators causes addition of multiples of M to write a 
fraction with a positive numerator and the same repetend5 and there will be 
adjustments to the last digit in the representation 

When n is even, Theorem 3 gives the same denominators as found by Hudson & 
Winans [3] for the even case, in representations using Frm from left to right. 
We find examples such as 9/71 and 99/9701, which both begin and end in ̂ 2^-1* 
and 98/9301, which has F^m_^ from the left and Fbrm^i from the right. We can 
write a corollary to Theorem 3. 

10* - 1 
Corollary: ( i ) — ^ 1 beg ins and ends wi th FZm.l9 

y 102* - 3 • 10* + 1 
10* - 2 

(ii) begins with F^ 3 and ends with FL{m-i, 
102* - 7 • 10* + 1 

both appearing in blocks of k digits. 

Proof: Case (i) , where n = 2. From left to right, 1/A? begins with F 2m_2
 and 

10k/M begins with F2m, so subtracting gives (10* - 1)/M for i^m-l- From right 
to left, 

(M - l)/M = (102* - 3 • I0k)/M ends in F2w 

except for the last digit, so moving one block left, 

(10* - 3)/M ends in F2m+2. 

Using F2m_l = F2m+2 - 2F2m, compute 

(10* - 3 - 2(-l))/M == (10* - l)IM9 

where the numerator is positive, ending in F^m-l* 

Case (ii), where n = 4. From left to right, 3/Af begins with Fiim_bf, so 
3 - 10*/M be gins with Fi+m. Since 3i?7ifm_3 - Futm - 2F^rn-L^s we find that 

(10* - DIM begins with F^m_3. 

From right to left, except for the last digit, 

(M - 3)/M ends in Fhm, 

(M - 3)/lOkM = (3M - 3)/lOkM = (3 • 10* - 21)/M. 

5F^m allows us to compute 

(3 • 10* - 21 - 5(-3))/3M = (10* - DIM, 

where the numerator is positive, ending in Fi+m_i. 

Examining the proof of the corollary, we have seen several examples for 
n = 2 and n = 4 where 
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Fp • 10* - Fv+n 
ends in F^ 102* - L„ • 10fe + 1 ™ + P 

and some earlier examples for n = 3 and n - 1, where 
FD • 10k + fp + „ 

ends in F„. 102* +L„ -10k - 1 nm+p' 
We write our final generalization as Theorem 4. 

Theorem 4: The repeating cycle of 

Fp • 10* + (-lr+^p+n 
1Q2* + (-l)n+1(Ln • 10* - 1) 

and the repeating cycle of 

Lp- Wk + (-l)» + lLp+„ 
ends in Ly 

i02k + (-l)«-+l(Ln-. 10* - 1) ?OT+P 

for /?? = 1, 25 ...,'occurring in. blocks of k digits, for positive integers k and 
n such that 

102* + (~l)n+l{Ln • 10* - 1) > Fp • 10* + (~l)" + 1Fp+„ > 0. 

The proof of the Fibonacci case follows from summing 

L 
- ni+ v 5 E l 0 ^ - i)^w f „ .. 

using the techniques of Theorems 2 and 3. Since we force cases where the num-
erator and denominator are both positive, we can do the proof as one case, and 
the proof is fairly straightforward but very long and tedious. The Lucas case 
follows by adding the fractions which represent Frm + ^_l^ and F?w? + (p + 1 ) . 
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GROUPS OF INTEGRAL TRIANGLES 
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The Group Hy. An integral (rational) triangle T- (a, b9 c) is a triangle 
having integral (rational) side lengths a, b9 c. Two rational triangles 

Tl= (a1? bl9 cx) and T2 = (a2> b2, e2) 

are equivalent if one is a rational multiple of the other: 

(a2* b2, c2) = (ralt rb^9 re-^) for rational r. 

As our favorite representative for a class of equivalent rational triangles, we 
take the primitive integral triangle (a, b9 c) in which a, b9 e have no common 
factor greater than 1. That is, for any positive rational number r we identify 
(ra9 rb, re) with (a, b, c). 

A pythagorean triangle is an integral triangle (a, b, c) in which the angle 
y, opposite side c, is a right angle. Equivalently, (a, b9 c) is a pythagorean 
triangle if a, b, c satisfy the pythagorean equation 

a2 + b2 = c2. (1) 

An angle 3> 0 < 3 < ir, is said to be pythagorean if 35 or IT - 35 is an angle in 
some pythagorean triangle or, equivalently, if it has rational sine and cosine. 
A heronian triangle is an integral triangle with rational area. Clearly, an 
integral triangle is heronian if and only if each of its angles a, 3» Y> is 
pythagorean. 

In [1] the set of primitive pythagorean triangles is made into a group 
#Tr/2 . The group operation is, basically, addition of angles modulo TT/2. When 
placed in standard position (Fig. 1), a primitive pythagorean triangle T = 
(a, b, c) is uniquely determined by the point P on the unit circle, 

P = (cos 3, sin 3) = (a/c, bid). 
Geometrically, the sum of two such triangles, (a, b, e) and (A, B, C) , is 
obtained by adding their central angles $i and 32 • If 3i + 32 equals or 
exceeds TT/2, then the angle sum is reduced modulo TT/2. The identity element is 
the (degenerate) triangle (1, 0, 1) with 3 = 0 . The inverse of T = (a, b, c) 
is -T = (b, a, c). Thus, in H^/2 we must distinguish between (a, b9 c) and (b, 
a, c) , even though they are congruent triangles. Analytically, the sum of (a, 
by c) and (A, B, C) may be expressed 

UaA - bB9 bA + aB, cC) when aA - bB > 0, 
(a, b9 e) + 04, £ , £ ) = < (2) 

{(bA + aB, bB - aA, cC) when aA - bB < 0. 

With this definition of the sum of two triangles, H.^/2 becomes a free abel-
ian group. The set of generators of H^/2 may be taken to be the set of trian-
gles Tp = (r9 s9 p) with p prime, p = 1 (mod 4), and r > s ([1, p. 25]). Thus, 
any primitive pythagorean triangle can be written as a unique linear combina-
tion of the generators with integral coefficients. 
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FIGURE 1 

The set of pythagorean triangles may be characterized as that subset of the 
integral triangles for which y = TT/2. One may ask if the requirement that y be 
a right angle is essential for defining a group structure. The answer is no. 
Let us fix an angle y, 0 < y < TT, with rational cosine, cos y = u/w, and denote 
by Hy that subset of the integral triangles having one fixed angle y. The 
condition for a triangle T = (a, b5 c) to belong to Hy is that a, b, and c 
satisfy the generalized pythagorean theorem (the law of cosine) 

^2 = i1 + b2 - 2abu/Wo (3) 
To define addition of two triangles in Hy, we proceed almost as we did for 

the case of H^j2 above, guided by our geometric intuition. When placed in stan-
dard -position (Fig. 2), a primitive y-angled triangle T = (a, b, c) is uniquely 
determined by its central angle $ or, equivalently, by the point P on the unit 
circle. Geometrically, the sum of two triangles (a, b, c) and (A, 
is obtained by adding their two central angles $]_ and If 

Y 
+ 

, C) in H 
equals or 

exceeds ( TT - y) , then the angle sum is reduced modulo (IT - y) . The identity 
element is the (degenerate) triangle (1, 0, 1) with 3 = 0 . The inverse of T = 
(a, by o) is -T = {b, a, 6s). Thus, in Hy we must distinguish between (a, b, c) 
and {by a, c) even though they are congruent triangles. Analytically, the sum 
of (a, by c) and {Ay B, C) may be expressed 

(a, b9 c) + {Ay C) = 

{aA - bB, aB + bA- 2bBu/w, cC) if aA -

{aB + bA- laAu/Wy bB - aA, cC) if d -

0, 

0. 
(4) 

FIGURE 2 

To see that (4) defines a group operation on Hy, we must show that 

T = {ay by c) + {Ay By C) 

satisfies (3). This is not very difficult but somewhat tedious. Since addi-
tion of y-angled triangles corresponds to addition of their central angles, the 
operation is associative and commutative. Simple computations will show that 
(1, 0, 1) is the identity element^ and that -{a, b3 c) = {b, dy c) • We note 
that (4) reduces to (2) when y = TT/2. 

Using the angle y for which cos y = -5/13, we give a few examples of addi-
tion of triangles as defined by (4): 
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(13, 11, 20) + (119, 65, 156) = (4, 13, 15), 
(13, 11, 20) + (65, 119, 156) = (182, 29, 195), 
2(11, 13, 20) = (11, 13, 20) + (11, 13, 20) = (308, 39, 325), 
3(11, 13, 20) = (2881, 4823, 6500). 

The sum of two triangles is required to be a primitive member of Hy, so 
cancellation of common factors of the three coordinates on the right of (4) may 
be necessary. To obtain integral components, multiplication of the three coor-
dinates by w = 13 may be necessary. For computational purposes, it is worth 
noting, from (4), that if a triple T = (a, bs c) appears with a < 0, then 

T = (b - 2au/w, -a, c) 

after the required reduction of the central angle modulo (TT - y). We summarize 
in Proposition 1. 

Proposition 1: The set Hy of primitive y-angled triangles is an abelian group 
under the operation, called addition, defined by (4). The identity element in 
Hy is (1, 0, 1), and the inverse of (a, b, o) is (b, a, c). 

The group E^/2 is a free abelian group. For values of y other than TT/2, a 
characterization of the group Hy is not so simple. One difficulty is that we 
have no easy way, so far, of identifying the members of Hy. For ^/ 2, it is 
well known [2] that a member (r, s, t), i.e., a primitive pythagorean trian-
gle, is generated by a pair of positive integers (/??, n) , m > n that are rela-
tively prime and have m + n ~ I (mod 2). The generation process is: 

or (5) 

(5') 

v = rrp- -

v = 2mn, 

s = 2mn, t = m2 + n 

+ nz 

In fact, (5) establishes a one-to-one correspondence between the set of all 
such pairs (m, n) and the set of all primitive pythagorean triangles (r, s, t) 
with odd v. The pair (777, n) is called the genevatov for (r, s, t) . 

To obtain a generating process for y-angled triangles, akin to (5) and (5 ') 
for pythagorean triangles, we shall make the restriction that cos y = u/w, 
sin y = v /w are both rational numbers. To simplify the derivation of the 
process, which is geometrically inspired, we also make the assumption that 
TT > y > TT/2, SO that u/w < 03 i.e., u < 0. Thus, (|w|, V, w) is a pythagorean 
triangle, and ( TT - y) is a pythagorean angle, (ir - y) <TT/2. The central angle 
of any triangle T in Hy is then also pythagorean, and T is a heronian triangle. 

With each pythagorean angle 3 ? 0 < 3 < (TT - y) , we can associate a unique 
primitive pythagorean triangle (r, s, t) having central angle 3, and also a 
unique primitive y-angled triangle (a, b9 o) having central angle 3 (Fig. 3). 
It follows that there is a one-to-one mapping § from the subset of H^/2 having 
central angle 3 < 
one may show that 
way. 

(a, b, o) 

(TT - y) onto H . 
d) and <b~~^ can be 

Using only elementary geometry (Fig. 3), 
represented by matrices in the following 

)(r, t) = 

(P, s, t) K-l (a, by c) = 
u 
V 
0 

0" 
0 
w_ 

a 
b 
c 

= (vr + us, ws, vt), (6) 

(wa - ub, vb, wc). (7) 
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FIGURE 3 

a r s , . b s , N 
_ = _ _ _ C O S ( TT - y ) 5 - = - CSC(TT - y ) , 

(a, b, c) - (vr + us, ws, vt) 

FIGURE 4 

a v s ^ , . 
- = - - - COt(7T - Y ) 5 

(a, £, c) (yp + us, ws, yt) 

esc (IT - ' Y ) ' 

Cancellations of common factors of the three components on the right of (6) 
and (7) may be necessary in order to arrive at primitive triangles. We give a 
few examples to illustrate the use of (6). As above, Y is defined by 

cos Y = -5/13 = u/w, sin Y = 12/13 = v/w. 

4 ] 
= (33, 39, 60) = (11, 13, 20). 

cj)(35, 12, 37) = (30, 13, 37). 

Equation (6) makes it possible to construct members of Hy from members of 
H^/2 . The generating process for Y_angled triangles is at hand: substitute (5) 
and (5f) into (6) and remember that the central angle $ must satisfy 3 < (fr - Y ) • 
Thus, when using (5), we must have 

(4 , 3 , 5) = 

( 3 , 4 , 5) = 

12 -5 0 
0 13 0 

_ 0 0 12J 

:4 , 13, 15) . 

4 
3 

L 5 

tan - n _ TT -
- < tan — 
m 2 

Y w + u 
V 

and, when using (5 ' ) , we must have 

tan — = -
2 m + n 

n w + u so that w - u - v 
w - u + v 
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Summarizing, we formula te the g e n e r a t i n g p roces s for y - a n g l e d t r i a n g l e s i n 
P r o p o s i t i o n 2 . 

Proposition 2: For a given angle y, TT/2 < y < TT, (cos y , s i n y) = (u/w, v/w) , a 
y -angled t r i a n g l e ( a , b, c) i s gene ra t ed by means of: 

a = v(rn2 - ft2) + lumn, b = 2wmn, c = v(m2 + n2) or (8) 

a = 2iV7?n + W(TT72 - n2), 2? = u(/??2 - n2), c = y(/??2 + n2). ( 8 ' ) 

Here 777 and ft are relatively prime positive integers, m > n and 777 + ft = 1 (mod 
2). Furthermore, for (8), (777, ft) must satisfy ft/777 < (w + u)/v , and for (8 ') , 
ft/777 > ul(w + v). Each y-angled triangle is obtained in this way. 

We illustrate the use of (8) by a few examples. As before, y is given by 
(cos y, sin y) = (-5/13, 12/13) = (u/w, v/w). 

(m, n) = (2, 1). (a, b, c) = (16, 52, 60) = (4, 13, 15). 
(/77, ft) = (3, 2). (a, b, o) = (0, 1, 1) = (1, 0, 1). 
(777, ft) = (4, 1). (a, b9 c) = (35, 26, 51). 
(777, ft) = (5, 2). (a, 2?, c) = (38, 65, 77). 

If (w, 7j, w) = (0, 1, 1), so that y = TT/2, then (8) and (8') reduce to (5) 
and (5')- Thus, Proposition 2 is a generalization of the euclidean process of 
generating pythagorean triangles. 

In the case of 0 < y < TT/2, not covered by Proposition 2, the derivation of 
the generation process of y-angled triangles is only slightly more compli-
cated. The key step, however, is still the formal substitution of (5), (5 ') 
into (6) with a slight modification. If 0 < 3 < TT/2, SO that P = (r/t, s/t) is 
in the first quadrant, we simply substitute (5) or (5 ') into (6) depending on 
whether r is odd or even. For 3 = TT/2, P= (0/1, 1/1), we use (777, ft) = (1, 1) 
to generate the pythagorean triple (0, 1, 1), from which we obtain 

(j)(0, 1,1) = (u9 w, v) . 

If TT/2 < 3 < (TT - y) , so that P is in the second quadrant (Fig. 4), we write 

/-r s\ 
P (?•!)• '>»• 

and consider the point Pf = (r/t, s/t) in the first quadrant. The corre-
sponding angle 3f, (cos 3f

s sin 3 ') = (r/t, s/t), must satisfy y < 3f<Tr/2. We 
then apply cj) to (-r, s, t) to arrive at the member of Hy that corresponds to P. 
We summarize in Proposition 2'. 

Proposition 2!: For a given angle y, 0 < y < TT/2, (COS y, sin y) = (u/w, v/w), 
a y-angled triangle (a, b, c) is generated by means of: 

a = v(m2 - ft2) + 2wrm, b = Iwmn, c = v(m2 + n2) or (8) 

a = 27j>777ft + u(m2 - ft2), b = w(m2 - ft2), c = v(m2 + ft2) or ( 8 ' ) 
a = -v(m2 - ft2) + lumn, b = Iwrrm, c = v(m2 + ft2) or (9) 

a = -2vmn + u(m2 - ft2), b = w(m2 - ft2), c = v(m2 + ft2). (9') 

Here 777 and ft are relatively prime positive integers, m > n and 777 + n = 1 
(mod 2). Furthermore, for (9), (777, ft) must satisfy 

ft V 
— > , 
777 W + U 
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and for (9 ') , 

n u 
m w + v 

Each y-angled triangle is obtained in this way except {u, W9 v), which is ob-
tained from (8) by taking {m, n) = (1, 1). 

HQ and HJJ.. It is tempting to consider the two limiting cases: y = 0, TT . Since 
then the triangles collapse, we shall call (a, b, c) a triple. But the rule 
(4) for adding two such triples makes sense and, in fact, defines a group 
operation on Hy, y = 0, i\. 

For y = 0, we have cos y = 1 = u/w, sin y = 0 = v/w, and we~may take 

(u, V, w) = (1, 0, 1). 

The condition for the triple (a, b, c) to belong to HQ is: 

c2 = a2 + b2 - 2ab, i.e., c = \a - b\ . (10) 

Similarly, the condition for the triple (a, b9 c) to belong to H^ is: 

c2 = a2 + b2 + 2ab, i.e., c = a + b. (H) 

Addition of two triples in HQ and H^ is defined by rewriting (4) with cos y = 1 
and cos y = -1, respectively. 

For (a, by a) and 04, B, C) in H0: 

UaA - bB, aB + bA - 2bB, oC) when o4 - bB > 0, 
(a, b, c) + W, 5, C) = I 

{{aB + bA - 2aA, bB - aA, CC) when aA - bB < 0. 
For (a, 2?, c) and {A, B, C) in H^i 

UaA - bB, aB + bA + 2bB, cC) when aA - bB > 0, 
(a, fc, c) + (A, B, C) = I 

{{aB + bA + 2aA, bB - aA, cC) when aA - bB < 0. 

It is straightforward to verify that HQ and i^ become groups under these opera-
tions. Note that the generation process described above makes no sense for 
triples in HQ and H^ . Fortunately, (10) and (11) already provide easy methods 
of constructing members of HQ and H^. 

Open Problems. How does the group structure of Hy vary as the parameter y runs 
through the pythagorean angles from 0 to TT? For each such y, the group opera-
tion is defined by (4), but the group structures are, in general, different. 
For example, H^/2 has no nontrivial element of finite order, whereas H^ has no 
element of infinite order. For other values of y, Hy has nontrivial elements 
of finite order as well as elements of infinite order. A description of the 
isomorphism classes of the family of groups Hy , 0 < y < TT , is desirable. 
Another question is: For which angles y is Hy isomorphic with H^/2 ? More gen-
erally, for which angles y1 and y2 are Hy and #y2 isomorphic? If H^/2 and Hy 
are isomorphic, which properties of pythagorean triangles can be transferred to 
y-angled triangles? For example, the number of primitive pythagorean triangles 
(p, s, t) having the same hypotenuse t may be determined by using the group 
structure of the group H^/2 , see [1]. If {a, b, c) is in Hy and Hy is 
isomorphic with H^j2 , can one determine the number of y-angled triangles having 
the same "hypotenuse" ol 
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A great many papers about pythagorean triangles have appeared in the lit-
erature presenting various properties of these beautiful triangles. See, for 
example [2] . Very possibly some properties of pythagorean triangles can be 
generalized so as to be applicable to y-angled triangles. How exclusive is the 
requirement that y De a right angle? 
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A BOX FILLING PROBLEM 

Amitabha T r i p a t h I 
State University of New York at Buffalo 

(Submitted January 1988) 

1. Introduction 

For an arbitrary but fixed integer b > 1, consider the set of ordered pairs 
Sb - i(is a^)i 0 < i < b - 1, CLi equals the number of occurrences of i in the 
sequence a^9 a-^, . .., ab-l^' A complete solution for Sb is given explicitly in 
terms of b. It is shown that there is a unique solution for each b > 6 and for 
b = 5, that there are two solutions for b = 4, and that there is none for b = 
2, 3, or 6. 

Let b be an arbitrary but fixed integer, b > 1. We wish to determine, 
whenever possibles the integers a^ (0 < i < b - 1), where a^ denotes the number 
of occurrences of i in the lower row of boxes in the table below, 

0 

aQ 

1 

al 

2 

a2 

. . . i 

ai 

b - 1 

<*b-i 

This may be viewed as a problem in determining all possible sets whose members 
are functions that satisfy a special property. It is easy to see that the case 
b = 2 gives no solution; henceforth, we shall assume that b > 3« It is con-
venient to consider the cases b > 6 and 3 < b < 6 separately. 

2. The Case b > 6 

It is clear from the definition of each a^, that aQ * 0. Thus, the set 
?b = {-ai: ai x 0} is nonempty. In fact, |T^| = b - ag°  Since a^ boxes are 
filled by i and since each box is necessarily filled by an integer at most 
b - 1s we have 

E ai = b° 
0 <i< b- 1 

Define the set TQ b = Tb - {aQ}. Clearly, 

l^o,b\ = h ~ ao " 1 and £ai = ̂  " ao* 
Since each member of ^o5& is a t lea s t 1> it: follows that 
T0j& consists of (b - a0 - 2) 1ss and one 2. (*) 

If aQ = I, T0jb would consist of (2? - 3) lfs and one 2, and T& would con-
sist of (b - 2) lfs and one 2. This is Impossible since the boxes are being 
filled by 0, 1, and 2, while a1 = b - 2 > 4, 

If aQ = 2, TQ ̂  would consist of (b - 4) l?s and one 2, and J^ would con-
sist of (b ~ 4) l?s and two 2fs. This, too. Is impossible since the boxes are 
being occupied by 0, 1, and 2, while a1 = 2? - 4 > 2. 
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Thus, aQ > 3 and aA - 1 where A = aQ. Hence, 

T^ = {aQ, a1 = 2? - a0 ~ ^'
 az = ^' aA = 1} • 

But IT̂ I = Z? - a0 = 4 implies that a§ = b - 4 and the unique solution in' this 
case is given in the table below. 

0 

b - 4 

1 

2 

2 

1 

3 

0 

b - 5 

0 

2? - 4 

1 

b - 3 

0 

2? - 2 

0 

2? - 1 

0 

3. The Case b < 6 

By repeating the argument in the case b > 6 until (*), if aQ * 1 or 2, we 
would have |T&| = 2? - aQ = 4 and so b = aQ + 4 > 7. Hence, afl = 1 or 2. 

If aQ = 1, Th would consist of (2? - 2) l's and one 2. Since all the boxes 
are being occupied by 0, 1, and 2, we must have 2? - 2 < 2. If 2? = 3, we have 
a0 = al = a2 = "̂' which does not give a solution. If 2? = 4, we have aQ = 1, 
a^ = 2, a~ = 1J which does give a solution. 

If aQ = 2, Tfo would consist of (b - 4) l's and two 2's. Since all of the 
boxes are filled by 0, 1, and 2, we must have 2? - 4 < 2. If Z> = 4, we have 
&Q = 2, a-, = 0 , dy ~ 2, which gives a solution. If b - 5, we have C£Q = a.-. = a^ 
= 2, which does not give a solution. 

We thus have two solutions if b = 4, one solution if b = 5, and no solution 
if b = 2, 3, or 6, and these are listed in the tables below. 

0 

2 

1 

1 

2 

2 

3 

0 

4 

0 

0 

1 

2 

1 

2 

0 

2 

1 

2 

3 

0 

0 

b = 4 2? = 5 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 

A. P. Hillman 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to 
Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. 

Each solution should be on a separate sheet (or sheets) and must be 
received within six months of publication of the problem. Solutions typed in 
the format used below will be given preference. Proposers of problems should 
include solutions. 

Anyone desiring acknowledgment of contributions should enclose a stamped, 
self-addressed card (or envelope) . 

BASIC FORMULAS 

The Fibonacci numbers F and the Lucas numbers Ln sat isfy 
F ^o = F a.1 + F > Fn = o* F i = i ; 

n + 2 n + l n 5 0 1 9 

Ln+2 = Ln+l + L n > L0 = 2> Ll = l ' 

Also, a = (1 + /5) /2 5 3 = (1 - v/5)/2, Fn = (an - 3 n ) / / 5 , and Ln = an + 3 n . 

PROBLEMS PROPOSED IN THIS ISSUE 

B-652 Proposed by Herta T. Freitag, Roanoke, VA 

Let a = (1 + /5) /2 3 

n n 

Sl(n) = Y, ak a n d s i ^ = £ a~k ° 
k = l k=l 

SAn) 
Determine m as a function of n such that - aFm i s a Fibonacci number. 

S2{n) 

B-653 Proposed by Herta T. Freitag, Roanoke, VA 

The sides of a t r iangle are a = F
2n+3" ^ = Fn+3F?i> a n d c = F3Fn + 2Fn+l5 w i t h 

n a posi t ive integer. 

(i) Is the t r iangle acute, r igh t , or obtuse? 
( i i ) Express the area as a product of Fibonacci numbers. 

B-654 Proposed by Alejandro Necochea, Pan American U. , Edinburgh, TX 

Sum the in f in i te ser ies 

co ] + ? k 

y F 
k=l 

22k 
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B-655 Proposed by L. Kuipers, Sierre, Switzerland 

Prove t h a t t he r a t i o of i n t e g e r s x/y such t h a t 
F2n < £[ < ^2n+l 

^2n + 2 # ^2n + 3 
and with smallest denominator y is (F0 + Fn t-\)/(F0 x 0 + F0 l 0 ) . 

^ v 2n 2rc+l// v 2« + 2 2n+3y 

B-858 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Find a c losed form for the sum 

k = o 

where wn s a t i s f i e s wn = pwn_, - qwn„2 ^ o r n -*-n ^> 3 , . . . }, w i th p and q non-
zero c o n s t a n t s . 

B-857 Proposed by Clark Kimberling, U. of Evansville, Evansville, IN 

Let 777 be an i n t e g e r and m > 3 . Prove t h a t no two of the i n t e g e r s 

k (mFn + Fn_1) for & = 1, . 2 , . . . , 77Z - 1 and n = 0, 1, 2 , . . . 

a r e e q u a l . Here F_ 1 = 1. 

SOLUTIONS 

Average Age of Fibonacci's Rabbits 

B-628 Proposed by David Singmaster, Polytechnic of the South Bank, 
London, England 

What is the present average age of Fibonacci1s rabbits? (Recall that he 
introduced a pair of mature rabbits at the beginning of his year and that rab-
bits mature in their second month. Further, no rabbits died. Let us say that 
he did this at the beginning of 1202 and that he introduced a pair of 1-month-
old rabbits. At the end of the first month, this pair would have matured and 
produced a new pair, giving us a pair of 2-month-old rabbits and a pair of 
0-month~old rabbits. At the end of the second month we have a pair of 3-month-
old rabbits and pairs of 1-month-old and of 0-month-old rabbits.) Before 
solving the problem, make a guess at the answer. 

Solution by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

The solution to this problem is rather amazing. If n is the number of 
months within the interval (1st Jan. 1202-lst Nov. 1988), then the number of 
pairs of Fibonacci rabbits in the enclosure is currently ^n+1°  On the basis of 
the growth rule, their average age An (in months) is 

<*> An = I" +"L ^ - w V « + l -
By using the identity 

(2) E i \ - t - Fk+3 ~ (N + 2)Fk_N + 1 - Fk_B, 
^ = 1 
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the proof of which i s omi t ted i n t h i s c o n t e x t , we can e v a l u a t e (1) 

(3) An - (n + Fn+2 - nF2 - F1)/Fn+1 = (Fn+Z - l ) / f „ + 1 . 

Since n i s s u f f i c i e n t l y l a r g e (> 9000) , we have 

An « a = (1 + / 5 ) / 2 months. 

Also solved by Charles Ashbacher, Paul Bruckman, John Cannell, Carl Libis, 
and the proposer. 

Always at Leas t One Solution 

B-629 Proposed by Mohammad K. Azarian, U. of Evansville, Evansville, IN 

For which i n t e g e r s a, b5 and c i s i t p o s s i b l e to f ind i n t e g e r s x and y s a t -
i s f y i n g 

(x + y)2 - ex1 + 2(b - a + ac)x - 2(a - b)y + (a - b)2 - c a 2 = 0? 

Solution by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA 

We prove more than what i s asked; namely, for every p o s s i b l e choice of the 
o rdered t r i p l e ( a , b, c), we f ind the cor responding s o l u t i o n (x, y) s a t i s f y i n g 
the g iven e q u a t i o n . 

The g iven equa t ion can be w r i t t e n a s : 

(x + y)2 - 2(a - b){x + y) + (a - b)2 = c(x - a)2 

or [(x + y) - (a - b)}2 = c(x - a ) 2 

or [ (x - a) + (y + b)]2 = c(x - a)2 

The following cases are possible: 

(i) If c = 0, then (x, y) takes infinitely many integral values, namely, 

(x, a - b - x) where a3 b, x are arbitrary integers. 

Thus, with a, b as arbitrary integers and c = 0 the corresponding solu-
tion is 

(x, a - b - x) where x is any integer. 

(ii) If x = a, then y = -b and c can be any arbitrary integer. Hence, with 
any choice of integral values of a, b and arbitrary integer c, we have 
(a, -2?) as the solution for (x9 y) . 

(Ill) If x * a, c * 0, then it follows that a must be the square of an integer 
and (x - a) must divide (y + b) . Consequently, if c = n2 where n is a 
positive integer, then with a, 2? as arbitrary integers and c = n2, we 
get two possible integral solutions: 

[x, (JL - l)(x - a) - b] and [x, -{n + 1) (x - a) - b] 

for (x , ?/) where x i s an a r b i t r a r y i n t e g e r . 

Also solved by Paul Bruckman, L. Kuipers, Amitabha Tripathi, and the pro-
poser. 
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Golden Geometric P r o g r e s s i o n 

B-630 Proposed by Herta T. Freitag, Roanoke, VA 

Let a and b be c o n s t a n t s and de f ine the sequences 

UJn=l a n d ^ n > n = l 
by Ai = a, A2 = b, 5X = 2b - a, B2 = 2a + b9 and An = An_i + An_2 and Bn = 5 n _ x 
+ Bn_2 f ° r ^ - 3 . 

( i ) Determine a and b so t h a t C4n + Bn)/2 = [ (1 + / 5 ) / 2 ] n . 

( i i ) For t h e s e a and Z?, o b t a i n (Bn + An)/(Bn - An) . 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

( i ) Since Cn = (An + Bn)/2 s a t i s f i e s the second-order r e c u r r e n c e r e l a t i o n 

Cn = Cn-i + Cn-2 for n > 3 , 

Ci and C2 de termine the sequence {Cn}n = 1. Solving the system of e q u a t i o n s 

b = CY = (1 + / 5 ) / 2 

a + b = C2 = [ (1 + / 5 ) / 2 ] 2 = (3 + / 5 ) / 2 

we o b t a i n a = 1 and Z? = (1 + / 5 ) / 2 . 

( i i ) For t h e s e a and Z?, we have 

Bl = /5 = v/5y41 and £ 2 = (5 + / 5 ) / 2 = / ^ 2 . 
So 

£ n = /5k„ and (Bn - An)/2 = [ (/f> - l ) / 2 ] i 4 n for a l l n > 1. 
Thus, 

(5 n + An)/2 = [ ( / 5 + l ) / 2 ] A n 

and 
Bn + An / 5 + 1 / / 5 + 1 \ 2 

Bn - An / 5 - 1 V 2 

AZso solved by Charles Ashbacher, Paul Bruckman, Russell Euler, Piero 
Filipponi, L. Kuipers, Carl Libis, Bob Prielipp, H.-J. Seiffert, Sahib Singh, 
Lawrence Somer, Amitabha Tripathi, and the proposer. 

Closed Form 

B-631 Proposed by L. Kuipers, Sierre, Switzerland 

For N i n { 1 , 2, . . . } and N > m + 1, o b t a i n , i n c losed form, 
m + N 

UN = E Uk -• 1) ••• (k - 772) (* + M . 
k=m+± X K 7 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

= _L ^ fo + fe) ! = (n + m + 1)1 ^ / n + k \ 

(n + m + l ) ! / n + m + / | /+ i \ in + m + N + l\ 
~\ n + m + 2 ) 
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Also solved by Paul Bruckman, Odoardo Brugia & Piero Filipponi, and the pro-
poser. 

Golden De te rminan t 

B-632 Proposed by H.-J. Seiffert, Berlin, Germany 

Find the de te rminan t of the n by n ma t r ix (x • •) 
(1 - / 5 ) / 2 for j < i5 and xi- = 1 for j = 

Solution by Hans Kappus, Rodersdorf, Switzerland 

J > i , xid 

with x t . = (1 + / 5 ) / 2 for 
: i . 

More g e n e r a l l y , l e t us de termine the c h a r a c t e r i s t i c polynomial 

S u b t r a c t i n g the (n - i)th l i n e from the (n - i + l ) t h l i n e (i = 1, 
we o b t a i n the de te rminan t 

1 -
3 -
0 

- t 
- 1 + t 

a 
1 -
3 -

- a - t . 
- 1 + t . 

. a 

. 0 

. 0 

a 
0 
0 

n - 1) 

|0 0 ... 3 - 1 + £ 1 - a - t| 

which, after expanding with respect to the nth column, may be written as 

fn(t) = a(l - 3 ~ tV~l + (1 - a - t)/n_x(t) 

= a(a - t) n - x + (3 - t)/n„1(t). 

Because of symmetry, we may interchange a and 3 and eliminate f _•,(£). Thus, we 
arrive at 

/„(*) = d//5){a(a - * ) " - 6(6 - £)"} 

^k+1 _ ok+1 

- L (-D"-kffl- *»-* = E (-i>n-fcGh+i*"~*-
£ = 0 V 7 fc = o *"' / 5 

There fo re , t he s o l u t i o n to the o r i g i n a l problem i s given by fnW = Fn + 1. 

E d i t o r T s Note: Bob P r i e l i p p po in t ed out t h a t B-632 i s a s p e c i a l case of the de -
t e rminan t of Problem A-2 of the 1978 W. L. Putnam Mathematical Compet i t ion. 
(The s o l u t i o n i s i n American Mathematical Monthly, Nov. 1979, p . 753.) 

Also solved by Paul Bruckman, Odoardo Brugia & Piero Filipponi, Russell 
Euler, L. Kuipers, Y. H. Harris Kwong, Carl Libis, Bob Prielipp, Sahib 
Singh, Amitabha Tripathi, and the proposer. 

Ratio of Ser ies 

B-633 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let n > 2 be an integer and define 

*n = X nK 
Ly 

= Ii 
Prove that Bn/An = In - 1. 
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Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

Fk = (a* - Bk)//5 
and 

Lk = ak + 3fe where a = (1 + /E)/2 and 3 = (1 - /5)/2. 

The infinite geometric series 

On-t^T and *„-£(*)* 

both converge since the absolute value of each of their common ratios is less 
than 1. (Notice that the condition n > 2 is needed to insure the convergence 
of the first series.) Thus, 

1 _ 1 / n n \ _ n a - 3 
( } n ' 7E{ n " n) ." 7 F W ^ " ^~3J " ?5 (W - a)(n - 3) 

nee a - 3 = /5 

and 

(2) Bn = Cn+D: 

(n - a) (n - 3) 

n n n{2n - (a + 3)) 

n - a n - 3 (n - a) (n - 3) 

n(2n - 1) 

(n - a) (n - 3) 

Therefore, 5„A4„ = 2n - 1. 

because a + 3 

Also solved by Paul Bruckman, Russell Euler, Herta T. Freitag, Jay Hendel, 
Hans Kappus, L. Kuipers, Carl Libis, H.-J. Seiffert, Sahib Singh, Amitabha 
Tripathi, and the proposer. 
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Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND 
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK 
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially 
welcomes problems believed to be new or extending old results. Proposers 
should submit solutions or other information that will assist the editor. To 
facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-435 Proposed by Ratko Tosic, University of Novi Sad, Yugoslavia 

(a) Prove that, for n > 1, 

F 4- y 1 F F F F 

• , . l<k<n 
\n- 1 

fJ In + 1 \ * 

where [x\ is the greatest integer < x. 

(b) Prove that, for n > 3, 

\n-kr- F; , F. V (-])n~KF F • • ^ . 
n . L> . K LJ n- 1- ik

L ik- i^-\ "'' ^2~ i\ i\ - 2 
Q< %x< . . . < v k < n K K K i 

l<k<n 

= Fn + 3 + (-D"+ 1F„.3. 
(Comment: The identity is valid for n > 0, if we define 

F_3 = 2, F_2 = -1; F. = F,_} + F-_2, for i > -1.) 

H-436 Proposed by Piero Filipponi, Rome, Italy 

For p an a r b i t r a r y prime number, i t i s known t h a t 

(p - 1)1 E p - 1 (mod p ) , (p - 2 ) ! = 1 (mod p ) , 
and 

(p - 3)1 E (p - l ) / 2 (mod p ) . 

Let kQ be the smallest value of an integer k for which kl > p. 
The numerical evidence turning out from computer experiments suggests that 

the probability that, for k varying within the interval [kQ, p - 3], kl reduced 
modulo p is either even or odd is 1/2. Can this conjecture be proved? 
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SOLUTIONS 

I n t e g r a t e Your R e s u l t s 

H-410 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol. 25, no. 2, May 1937) 

Define the F ibonacc i polynomials by 

FQ(x) = 0, F1(x) = 1, Fn(x) = xFn_1(x) + Fn_2(x), fo r n > 2 . 

Prove or disprove that, for n ^ 1, 

j Fn(x)dx = ~(Ln - (-1)^ - 1). 
Jo n 

Solution by Paul Bruckman, (formerly) Fair Oaks, CA 

The conjecture is true. 

Proof: The characteristic equation of the Fn(x) is given by: 

(1) z1 - xz - 1 = 0, 

which has solutions 

(2) u = u(x) = % 0 + 0) , v = v(x) = % (x - 0) , 

where 0 E 0(x) = (x2 + 4)^ = u - V. 

From the initial conditions on the F (x) 9 we readily find: 

un - vn 

(3) Fn(x) = , n = 0, 1, 25 ... . 
U - V 

Also, we define Ln(x) as follows: 

(4) £„(*) = wn + Vn, n = 0, 1, 2, ... . 

We may differentiate the quantities in (2) with respect to x; denoting such 
derivatives by prime symbols, we readily obtain: 

(5) 0' = x/Q; ur = u/Q;. v! = -v/Q. 

From (4) and (5), we find: 

L'n(x) = nun~l • u/Q -• nvn~l • y/0 = n(un - z;n)/0, 
or 

(6) Z^(x) = nFn(x). 

It follows from (6) that 

I i n̂(x)dx = Ln(x)/n\ 5 or 
Jo Jo 

(7) J J?n(a;)<£c = ̂ (^(1) - Ln (0)), n = 1, 2, . . . . 
J o n 

Now 0(1) = 5^, so w(l) = a, y(l) = 3 (the usual Fibonacci constants), and Ln(l) 
= Ln. Also, 0(0) = 2, so w(0) = 1, V(0) = -1, and L(0) = 1 + (~l)n. Thus, 

(8) j Fn(x)dx = h l n - 1 - (-l)n), n = 1, 2, ... . Q.E.D. 
Jo n 
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Also solved by O. Brugia & P. Filipponi, C. Georghiou, L. Kuipers, J.-Z. Lee 
& J.-S. Lee, B. Prielipp, and the proposer. 

Close R a n k s 

H-411 Proposed by Paul S. Bruckman, Fair Oaks, CA 
(Vol. 25, no. 2, May 1987) 

Define t he s imple cont inued f r a c t i o n 6 ( a , d) as f o l l o w s : 

0 ( a , d) = [ a , a + d, a + 2a7, a + 3d, . . . ] , a and d r e a l , d * 0 . 

Find a c losed form for 6 ( a , J ) . 

Solution by C. Georghiou, University of Patras, Patras, Greece 

Take the d i f f e r e n t i a l equa t ion 

(*) zw,! + bw! - w = 0. 

Then, for b * 0, - 1 , - 2 , . . . , we have 
w 1 z 

— = b + 

By differentiating (*), we get 

wf * 
— = b + 1 + w" w"/wm 

and by repeated differentiation of (*), we get the continued fraction 

w z 
(**) f(z) = — = b + 

w b + 1 + 
b + 2 + 

2? + 3 + 

Now it is shown in W. B. Jones & W. J. Thron, Continued Fractions (New York: 
Addison-Wesley, 1980), pp. 209-210, that the above continued fraction converges 
to the meromorphic function 

bQFl(b; z) 
f(z) = F^b-h 1; z) 0 

for all complex numbers z and, moreover, the convergence is uniform on every 
compact subset of I that contains no poles of f(z). 

From the theory of continued fractions, we know that 
aY a2 a3 a ^ clc2a1 c2c3a3 

On + T— , T— , T— , - On + 0 2?i + b2 + b3 + . . . 0" Clbl + e2b2 + ^3^3 + ••• 
Where cn * 0. Then, if we take b = aid and z = 1/d2 in (**) and use the above 
identity, we find 

anF}{a/d); l/d2) 
6(a, d) = —^ 

^(a/d + 1; l/d?-) 
valid for a/d * 0, -1, -2, ... and d * 0. Since 

0^(£ + 1;%*2) = *T*A/C& +%, 2Z? + 1, 2̂ ) - r(i + l)&zybIb(z) 
where M (a, bs z) and 1^ (z) are the Confluent Hypergeometric function and the 
Modified Bessel function of the first kind, respectively, 0 (a, d) can be 
expressed in terms of these functions as 
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InM_AHd) aM{a/d - % , laid - 1, kid) 
)(<z, d) = —gd^L— = . 

Ia/d(2/d) M(a/d+k, laid + 1, kid) 
When aid = -k, k = 0, 1, 25 . . . , we have 

0(-faZ, d) = -faf + )(-(/c - l ) d , d) 
and s i n c e 

1 IAUd) IAlld) 
Q / n /7") = — i = -1 

e ( d , d) x0(2/a7) J 0 ( 2 / d ) ' 
i t i s e a s i l y shown by i n d u c t i o n t h a t 

I j, AUd) 

There fo re , 

•«•-«- £ S S f 
for all (complex) a and d, d * 0 and -Ta/^ {lid) does not vanish. Since the Modi-
fied Bessel functions have no real zeros, the above expression is valid for all 
real a and d, d * 0. 

Finally, for (real) a and d - 0, we have the simple periodic continued 
fraction 

0(a, 0) = (a + /a2 + 4)/2 for a > 0, 

6(-a, 0) = -0(a, 0), and 6(0, 0) diverges. 

Also solved by the proposer who noted the following interesting result: 

(*) 0 ( 1 , 2) = coth 1. 

It A d d s Up! 

H-412 Proposed by Andreas N. Philippou & Frosso S. Makri, 
University of Patras, Patras, Greece 
(Vol. 25, no. 3, August, 1987) 

Show that 
k-l 

Z 
i = 0 " 
t 1 E ( " i + " ' " V * ) - ( ; ; ) ' * * i - o s r s * - i s " -
Tb «,, „., «A ni» • • •» nk I ^r/ 

where the inner summation is over all nonnegative integers n15 . . . , nk such 
that n1 + ln2 + • • • + knk == n - i and n1 + --'+nk=n-2n. 

Solution by W. Moser, McGill University, Montreal, Canada 

The number of solutions (#•,, x~ ? ..., ̂ n_P» 'O °f 

(1) x1 + x2 + .-. + xn„r + i = p 

(where xl5 x2, ..., xn_r, i are nonnegative integers)—or, equivalently, the 
number of ways of distributing r like objects into n - v - 1 unlike boxes—is 
(rJ. This is well known and easy to prove. Let 

(2) nq = ti{j\xj = q - 1, j = 1, 2, ..., n - r], q = 1, 2, ..., fc, 

i.e., n^ is the number of x- fs in (1) equal to g - 1. Since 

476 [Nov. 



ADVANCED PROBLEMS AND SOLUTIONS 

x19x2, . .., xn_r, i e {0, 1, . .., r} and k - 1 > r, 

every Xj is counted once in the sum 

(3) n^ + n.^ + ••• + nk = n - v, 

while x1 + x2 + ••• + xn_r is equal to 

(4) n2 + 2n3 + ••• + (k - l)nk = r - i . 

[Note that (3) and (4) are together equivalent to (3) and nl + 2n2 + ••• + knk 

= n - %.} Thus, every solution of (1) yields a solution of (3) satisfying (4). 
For each i (i = 0, 1, ..., r) , how many solutions of (1) yield the same 
solution of (3)? Corresponding to a solution of (3) satisfying (4) there are 

/ n - v \ 
\nl, n2, . . . , nk) 

l i n e a r d i s p l a y s of n - r i n t e g e r s — r i \ O ' s , n 2 l ' s , . . . , nk k - l ' s — a n d t h e s e 
i n t e g e r s named from l e f t t o r i g h t x-,, x2, . . . , xn_r h a v e sum r - i . The i d e n -
t i t y f o l l o w s . 

Also solved by P. Bruckman, G. Dinside, and the proposers & D. Antzoulakos. 

G e n e r a l l y T r u e ? 

H - 4 1 3 Proposed by Gregory Wulczyn, Bucknell U. (retired) , Lewisburg, PA 
(Vol.. 25, no. 3 , August 1987) 

L e t 777, n be i n t e g e r s . I f 777 and n h a v e t h e same p a r i t y , show t h a t 

(1 ) (2777 + l)F2n + 1 - (2n + DF2m + l = 0 (mod 5 ) ; 

(2 ) (2777 + l)F2n + l - (2n + l)F2m + l E ° ( m o d 2 5 ) i f e i t h e r 

( a ) 277? + 1 o r In + 1 i s a m u l t i p l e of 5 , o r 
(b ) m = n E 0 o r T?7 E n E - 1 (mod 5 ) . 

If 77? and n have the opposite parity, show that 

(3 ) (2777 + l)F2n + l + {In + l)F2m + l = 0 (mod 5 ) ; 

(4 ) (2777 + l)F2n+l + (2n + l)F2m + 1 = 0 (mod 25) i f e i t h e r 

( a ) 2777 + 1 o r In + 1 i s a m u l t i p l e of 5 , o r 
(b ) m E ri E 0- o r m E n E - 1 (mod 5) . 

Solution by Paul S. Bruckman, (formerly) Fair Oaks, CA 

The i n d i c a t e d r e s u l t s a r e t r u e , b u t u n d e r more g e n e r a l c o n d i t i o n s . We p r o v e 
t h e more g e n e r a l r e s u l t . We d e f i n e D(m, n) f o r a l l i n t e g e r s 777 and n a s f o l -
l ows : 

(1 ) D(m9 n) = (2m + l ) F 2 n + 1 - (-l)m + n(2n + l)F2m + 1 . 

Also, for all integers k, we define Qk as follows: 

?2k + l (2) 
(-DkF? 

2k + 1 

Note: 
(3) D(m, n) = (-if (2m + I) {In + l){Bn - BJ . 

We now investigate the values of Qk (mod 25). Clearly, if k E 2 (mod 5), then 
2k + 1 E 0 (mod 5), so Qk (mod 25) and dk (mod 5) are not defined in this case. 
We find that 6̂  (mod 25) (as defined) is periodic, with period 50, and we may 
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form the following table (mod 25), omitting values of k with k = 2 (mod 5): 

k 

l 
3 
4 
5 
6 
8 
9 
10 
11 
13 
14 
15 
16 
18 
19 
20 
21 
23 
24 
25 
26 

{2k + 1 ) _ 1 (-

17 
18 
14 
16 
2 
3 
4 
6 
12 
13 
19 
21 
22 
23 
9 
11 
7 
8 
24 
1 
17 

> F2fe+1 

2 
13 
9 
14 
8 

L 22 
L 6 
L 21 
L 7 
L 18 
L 4 
L 19 
L 3 
L 17 
L 11 
L 16 
L 12 
L 23 
L 24 
L 24 
L 23 

V 
16 
16 
1 
1 
16 
16 
1 
1 
16 
16 
1 
1 
16 
16 
1 
1 
16 
16 
1 
1 
16 

k 

28 
29 
30 
31 
33 
34 
35 
36 
38 
39 
40 
41 
43 
44 
45 
46 
48 
49 
50 
51 
etc 

(2k + 1)-1 (-1) FZk^l 

18 ] 
14 -3 
16 1 
2 -] 
3 
4 
6 
12 
13 
19 
21 
22 
23 
9 
11 
7 
8 
24 
1 
17 

12 
16 
11 
17 
3 
19 
4 
18 
7 
21 
6 
22 
8 
14 
9 
13 
2 

L 1 
L 1 
L 2 

h 
16 
1 
1 
16 
16 
1 
1 
16 
16 
1 
1 
16 
16 
1 
1 
16 
16 
1 
1 
16 

Inspection of the foregoing table yields the following result: 

(4) Qk E 1 (mod 25) iff k E 0 or 4 (mod 5); 

Qk E 16 (mod 25) iff k = 1 or 3 (mod 5). 

It follows from (3) that D(m, ri) = 0 (mod 25) if any of the following condi-
tions on m and n (mod 5) hold: 

(m, n) = (0, 0), (0, 4), (4, 0), (4, 4), 
(1, 1)-, (1, 3), (3, 1), or (3, 3). 

This proves parts (2)(b) and (4)(b) of the problem, but gives more general 
conditions for which D(m, n) E 0 (mod 25). 

Now, if m E 2 (mod 5), then 2m + 1 E 0 (mod 5) and F2m+i = 0 (mod 5). Let-
ting Un = F2n+l ~ (-l)n(2n + 1) and Vn = F2n+l + (-l)n(2n + 1), we may form the 
following table (mod 25), which is periodic with period 50: 

From the table, we see that If m = 2 (mod 5), then 
D(m, n) E 0 (mod 25) for all n only if 5\Un or 5|Vn, 
i.e., F2n + l E ±(2n + 1) (mod 5) for all n. To test 
this, we prepare the following table (mod 5), which 
has period 20: 

m 

2 
7 
12 
17 
22 
27 
32 
37 
42 
47 
52 

2m + 1 

5 
-10 
0 
10 
-5 
5 

-10 
0 
10 
-5 
5 

F2*t + 1 

5 
10 
0 

-10 
-5 
5 
10 
0 

-10 
-5 
5 

Dfjn, n) 

5Un 
-10U„ 
0 

lOUn 
-5Un 

5̂ n 
-107,, 
0 

iovn 
-5Vn 

Wn 

k 

1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 

** 
1 
2 
0 
3 
4 
4 
3 
0 
2 
1 
1 

Fk + k or 

1 - 1 
3 + 2 
0 + 0 
7 + 3 
9-4 
11 + 4 
13-3 
15 + 0 
17-2 
19 + 1 
21 - 1 

Fk - k* 

= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
H 0 

whichever is applicable 

Thus, .5\Un or 51 Vn for all n, which proves that D(m, n) = 0 (mod 25) if m = 2 
(mod 5). Similarly, D(m, n) = 0 (mod 25) if n = 2 (mod 5). This proves parts 
(2)(a) and (4)(a) of the problem. Thus, if m E 2 or n E 2 (mod 5), D(m, n) E 0 
(mod 5). On the other hand, if m f 2 and n i 2 (mod 5), then Qm E 0n E 1 (mod 
5) (from the first table); in the latter case, therefore, D(m3 n) = 0 (mod 5) 
also [using (3)]. This proves parts (1) and (3). 

Also solved by L. Kuipers, L. Sohmer, and the proposer. 
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