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THIRD-ORDER DIAGONAL FUNCTIONS OF PELL POLYNOMIALS 

B r . J . M. Mahon 
Benilde High School, Bankstown, N.S.W., 2200 

A. F. Horadam 
University of New England, Armidale, N.S.W., 2351 

(Submitted December 1987) 

1. Introduction 

This paper is concerned with the study of some third-order sequences of 
polynomials. While it is only of an introductory nature, it does give some-
thing of the flavor of the research involved. In particular, we have found 
that an examination of the roots of the auxiliary equation to be a challenging 
and rewarding endeavor. 

The first of these sequences is {rn(x)}. It is defined thus: 

(1.1) 
rQ(x) = 0, rl(x) == 1, r2(x) = 2x 

[rn+1(x) = 2xrn(x) + rn_2(x) (w > 2) 

Two other sequences, namely {sn(x)} and {tn(x)}3 are also considered. They are 
defined thus: 

(1.2) 

(1.3) 

SQ(X) = 0, s-^ix) = 2, s2(x) = 2x 

[sn+l(x) = 2xsn(x) + sn_z(x) (n > 2) 

\t0(x) = 3 , tl(x) == 2x, t2(x) = kx2-

U n + 1(x) = 2xtn(x) + tn_2(x) {n > 2) 

These sequences are called third-order diagonal functions of Pell polyno-
mials [5], or simply Pell diagonal functions, because the first two coincide 
with sequences derived by taking the "diagonals" of gradient 1 from the arrays 
produced by Pell and Pell-Lucas polynomials [10]. 

The three sequences can be considered to be constructed from the diagonals 
of gradient 2 from the arrays produced by expansions of 

(2x + l) n, (2x + 2)(2x + l ) n - r
s (2x + 3)(2;s + l)*-"1, 

where n > 1. 
Considered as a sequence of order three, {sn(x)} appears to be of little 

significance. The sequences {rn (x)} and {tn(x)} may be deemed to be the fun-
damental and primordial sequences, respectively, for those obeying the recur-
rence relation in (1.1)-(1.3) [9]. All of these sequences are too special to 
provide subject matter for the study of third-order sequences in general. In a 
later paper some generalizations of these polynomials may be considered and 
these are closer to typical third-order sequences. 

Jaiswal [6] and Horadam [4] studied the diagonal functions of Chebyshev 
polynomials of the second and first kinds, respectively, {p (x)} and {q (x)}. 
It may be shown that 
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(1.4) 
\rn{x) = (-l)n-\(-x), vn{-x) = (-l)n-lpn(x) 

[sn(x) = i-ir^q^-x), 8n(-x) = (-l)n-lqn(x) 

Simple relations such as these are to be expected as Pell and Pell-Lucas 
sequences are complex Chebyshev polynomials [5]. 

2. Roots of the Auxiliary Equation of the Pell Diagonal Functions 

The auxiliary equation of the diagonal functions (1.1)—(1.3) is the cubic 

(2.1) f(y) = 2/3 - 2XyZ - 1 = 0. 

By DescartesT Rule, one of the roots is real and positive. Denote this by a. 
For x > 0, the other two roots, 3 and y are conjugate complex numbers. It is 
noted that, from (2.1), 

fa + 3 + y = 2x 

(2.1 ') Ja3 + 3y + ya = 0 

[a3y = 1 

By using CardanoTs procedure [3], it is found that 

a = 2x/3 + \/{16^3 + 27 + /(864x3 + 729)}/3^2 
+ ^{16x3 + 27 - /(864^3 + 729)}/3v/2 

( 2 . 2 ) 3 = 2^/3 + u)\/{16x3 + 27 + /(864x3 + 729)}/3v/2 
+ oo2\/{16x3 + 27 - /(864x3 + 729)}/3\/2 

|Y = 2x/3 + a)2v/{16^3 + 27 + /(864^3 + 729)}/3v/2 
+ u\/{16x3 + 27 - /(864x3 + 729)}/3v/2 

where to and to2 are complex cube roots of uni ty; a, 3> and y are c lear ly alge-
braic functions of x. We use function notat ion with the roots where appropri-
a t e . From (2 .2) , i t i s seen tha t , for x > -3/2 \ / 4 , the quant i t i es 

(2.3) 
\/{16;£3 + 27 + /(864x3 + 729)} 

^/{16;c3 + 27 - /(864x3 + 729)} 

are real and so 3 and y are conjugate complex numbers. If 

(2.30 x = -3/2\/4 = d, then 3 = y. 

Again from (2.2), it may be shown that 

(2.4) 

Hence 

(2.5) 

a2- - |3| = 2xa for x > d. 

a > |3| = |Y| for x > 0 

a = |3| = |Y| = 1 for x = 0 

a < |3| = |y| for d < x < 0. 
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THIRD-ORDER DIAGONAL FUNCTIONS OF PELL POLYNOMIALS 

For x < d, it is convenient to consider the roots to be given by 

fa = 2^/3 + 4x/3 COS(4TT + 0)/3 

(2.6) I 3 = 2x/3 + 4x/3 cos(0/3) 

lY = 2x/3 + 4^/3 COS(2TT + 0 ) / 3 

where 

(2 .7 ) cos 0 = (16x3 + 2 7 ) / 1 6 J ? 3 , s i n 0 = 3/{3(32a;3 + 2 7 ) } / 1 6 i ^ 3 

= 3 / ( 3 £ ) / 1 6 x 3 

D be ing the d i s c r i m i n a n t of ( 2 . 1 ) , and thus 
(2.8) D = - (32x3 + 27). 
It may be shown that, for x < d9 

-IT < 0 < 0 

a > 0 

3, y < 0 

I 31 > |y| > a 
|3| > 1 

|y| > 1 for -1 < x < d 

(2.9) \ |y| < 1 for x < -1 

lim 0 = 0 " 
X + -oo 

lim a = 0+ 

lim 3 = _0°  
X + -oo 

lim y = 0~ 
X + -oo 

Some simple correspondences for xs 0, a, 3? and y a r e recorded in Table 2.1. 

TABLE 2.1 

X 

d 
- 1 

- 3 / 2 ^ 2 
—oo 

0 

-TT 

- c o s _ 1 ( - l l / 1 6 ) 

- I T / 2 

0 

a 

1 / ^ 4 

( A - l ) / 2 
(/3 - l ) / ^ 2 
0 

6 

- 2 / ^ 4 
- ( / 5 + l ) / 2 
- ( / 3 + D / ^ 2 
— O O 

y 

- 2 / ^ 4 
- 1 

- 1 / ^ 2 
0 

A computer investigation carried out by Br. V. Cotter indicates that, in 
the natural domain, a is an increasing function, that |$| is a decreasing func-
tion, and that |y| increases, reaches a maximum near x - d and then decreases 
to zero. 

It is noted that a(-l) and 3(-l) are negatives of the roots of the auxili-
ary equation of the Fibonacci sequence. As a result, we would expect that 
there are simple relations between {rn(-l)}9 {sn(-l)}, and Un(-1)} and the 
Fibonacci and Lucas sequences. In fact, a study of the diagonal functions has 
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resulted in obtaining what appears to be a large number of highly specific 
identities for these numbers. We were alerted to these possibilities by the 
work of Jaiswal [6] and Horadam [4] dealing with the diagonal functions of the 
Chebyshev polynomials. 

3. Binet Formulas for the Diagonal Functions 

A variety of procedures may be followed to give a number of formulas for 
the diagonal functions in terms of the roots, a, 3> and y. It may be shown 
t h a t , 

(3 .1 ) 

(3 .2 ) 

(3 .3 ) 
where 

(3 .4 ) 

and 

(3 .5 ) 

for 3 * Y> 

rn(x) = 

rn(x) = 

1 

a 
an+l 

1 

a 2 

arz + 3 

rn(x) = An
a + 

a 
A (a - 3) (a 

r (x) = -
a n + l 

I I 

3 Y 
an+l v n + l 

1 1 

3 2 Y2 

37-2 + 3 y z + 3 

Bl + C? 

ID — 

/ 
/ 

/ 

/ 

/ 

/ 

1 

a 

a 2 

1 

a 2 

a 

3 
- y ) ' " (3 - Y ) ( 3 -

+ i ^ _ + Jr n + l 

t / \ 

1 

3 

3 2 

1 

3 2 

3 

- a ) ' 

1 

Y 

Y2 

1 

Y2 

Y 

and 

= Aw + 1(a?)/A2(a;) 

= 6 n + 3 ( ^ ) / 6 1 ( x ) 

T 
(Y - a ) ( y - 3) 

/'(a) /'(B) f'{y) 
where f(y) is as defined in (2.1). 

The formula (3.1) may be considered to be the third-order analogue of the 
Binet formula for the Fibonacci numbers expressed as the quotient of two 
determinants. The third-order number sequence equivalents of (3.3) and (3.4) 
occur in Jarden [7] and Spickerman [11] and (3.5) may be compared to a formula 
of Levesque [8]. 

Starting with (3.1), we can deduce (1.1). Hence (3.1) could be taken as 
the definition of {rn(x)}. This new definition would allow us to introduce 
negative subscripts. 

Binet formulas for {s (x)} include, for 3 * y, 

( 3 . 6) 
where 

( 3 . 7) 

and 

( 3 . 8) 

s„ (x) = A rari + C'yr 

Y a 
(a - 3 ) (a - Y ) 5 

SM (X) 
+ a n-2 

(3 " Y)(3 

3 n + l + gn-2 

f ( 3 ) + 

a ) ' 
and C 

(Y - a ) ( y " 3) 

ytt + 1 _|_ -ytt-2 

/ ; ( Y ) •f'M 

The Binet formula for tn{x) i s 

(3 .9 ) tn(x) = an + 3 n + Yn-

It may be shown that when 3 = Y' i.e., when x = d, 

(3.10) r(d) = (-l)n"12(2-2")/3{(3n + l)2n - (-l)n}/9. 
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The Binet formulas lead to some simple identities involving the diagonal 
functions, for example, 

(3.11) sn(x) = rn(x) + rn_3(x) = 2xrn_l(x) + 2rn_3(x); 

( 3 . 1 2 ) tn_l(x) = rn(x) + 2rn_3(x) = 2xrn_l(x) + 3rn_3(x) = sn(x) + rn_3(x). 

The formulas also give the following relations with the Fibonacci and Lucas 
numbers, {fn} and {ln}i 

rn(-l) = i-»n+Hfn + 2 ~ 1) 
r_n(-D = fn_2 + (-1)" 

sn(-l) = 2{-ir^fn 

*-*(-!> = *fn 
tn(-l) = (-Dn(ln + 1) 

(3.13) 

4. Determinantal Generators for the Diagonal Functions 

Let us now introduce a new sequence {§ (x)} of determinants of which the 
first few members are: 

<h (x) I 2x\ , cj)9 (x) 2x 1 
0 2x 

, cj)3(x) 2x 
0 
1 

1 
2x 
0 

0 
1 
2x 

The nth term is defined thus: 

(4.1) A (x): ci pp Z.X 

\"r,r + l = * 

Mr,r-2 = 1 

[drc = 0 

for v = 1, 

for r = 1, 

for r = 3, 
otherwise 

2, . 

2, * 

4, . 

. . , n 

. . , n -

. . , n 

• 1 

where drc is the entry in the rth row and cth column. It may be proved by in-
duction that, for n > 0, 

(4.2) <S>n(x) = rn+l(x). 

The sequences {$*(x)}s {cf)**(x)} are defined similarly, except that 

dl2 = 2, 3, respectively. 

Induction shows that, for n > 0, 

(4.3) (J)* Or) = sn + 1(x); 

(4.4) <)>**(*) = *„(*)• 

Next we introduce a further sequence {n (#)} of which the first few members 

nx (̂ ) I 0 J , T)2(X) = 0 1 
2x 0 

, Tlq(^) = 0 1 0 
2x 0 1 
1 2x 0 
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The n t h term i s s p e c i f i e d t h u s : 

(4 .5 ) r\n(x)i \^TiV + i 

0 
Induction may be employed to prove that 

1 

2x 

1 

for v = 1, 

for v = 2, 

for r = 3, 

otherwise 

2, . 

3, . 

4, . 

. ., n 

.. , n 

. ., n 

(4.6) n (aO -n-2 (X). 

From these determinants, some new determinantal generators for Fibonacci 
and Lucas numbers may be derived, namely: 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

4>n(-l) = (-l)nCfn+3 - 1) from (3.13) and (4.2) 

cj>*(-l) = (-Dn2/n+1 from (3.13) and (4.3) 

$*n*(-D = (-DnUn + 1) from (3.13) and (4.4) 

nn(-D - fn + (-1)* from (3.13) and (4.6) 

5. Explicit Summation Expressions for Diagonal Functions 

It is assumed in what follows that n is sufficiently large so that all the 
subscripts are greater than or equal to -1. Repeated application of the 
formula in (1.1) gives the lines below: 

(5.1) rn(x) = 2xrn_l(x) + rn_3(x) 

= (2x)2rn_z(x) + rn_3(x) + (2x)rn_Li(x) 

= {(2x)3 + l}rn_3(x) + (2x)rn_L{(x) + (2x)2rn_5(x) 

= {(2x)^ + 2(2x)}r_Ax) + (2x)zv_, (x) + {(2x)3 + l}r Ax) - n-h n-by 

= {(2x)5 + 3(2x)2}rn_5(x) + {(2x)3 + l}rn_s(x) 

+ {(2x)4 + 2(2x)}rn_7(x) 

= {(2x)6 + 4(2x)3 + l}Pn_6(x) + {(2X)14 + 2(2x)}vn_7(x) 

+ {(2x)5 + 3(2x)z}rn_Q(x) 

One formula suggested by these lines is: 

( 5 . 2 ) r(x) 
[J/3] . 

• _ n \ 
2i 

: 0 ^ 
) ( 2 x ) ^ " 3 4 p n _ J . ( x ) 

[ ( j - 2 ) / 3 ] 

i = 0 X 

K J - D / 3 ] . 

i = 0 

J 2 

J " 1 

2i 

2 i 

( 2 x ) ^ ' - 2 - 3 i > p (a?) 
n-j-1 

)(2x)J-1- -n -j'-Z (X) 

This may be proved by i n d u c t i o n . Put j + 1 

(n-l)/3, 

n in (5.2) to get 

(5.3) rfo) 
i= o 

since r„(x) = p_1(x) 

s c 1 
i 

2i y2x)n~l- 3i 
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By subs t i tu t ing (5.3) in (5 .2 ) , i t i s found that 
(5.4) rn(x) = r.+ l{x)Tn_.{x) + Tj _l(x)vn_j_l(x) + r. {x)v- _n_2(x) 
or 
(5.5) rm + n(x) » rm+l(x)rn(x) + x>m_l(x)vn_l{x) + vm (x)rn_2(x). 

The identity (5.5) is similar to one found in Agronomoff [1] and Jarden [7] for 
third-order sequences of numbers. 

Other explicit expressions for the diagonal functions include 

[ ( n - 2 ) / 3 ] t _ 
— 'n - I - i \ , o „ x „ - 2 - 3 i (5.6) r_2n_l(x) - Eo (n

2",+"/)(^) 

(5.7) p_2 n(^) = £ ( n ^ ^ ( - 2 * ) -

t ( n - l ) / 3 ] n - 1 - iin - 2 - 2i\ (5.8) *„(*) = (2a?)" "I + Z n . " T " 2 1 2 t ) ( 2 x ) - " l - 3 ^ 

i= 0 
(5.9) s_2n(x) = _£ 2i + 1 ( 2i ) { ~ 2 X ) 

E(w + D/3] n + i + £ , _ • N 

(5.10) s.^Gn) = (-2^ + l + £ ^i {u - i)("2^n + 1 " 3 i 

[n/3] _ , „ . 
(5.ii) *„(*> = E r ^ ( i ) ^ B _ 3 i 

[n/3] 
(5.12) *_,„(*). E ^ 7 ( n

2 r ) ( - 2 * ) B 

i = 0 

(5.13) *.,„.,(«) = [ C " E / 3 ] ^ ^ ( " "+M(-2,)«-1-3. 
z n x ^ 0 n - -L\2I + 1/ 

If the method used to prove (5.3) is applied to the other sequences of Pell 
diagonal polynomials, then it is possible to prove that 

(5.14) sm+n(x) = rm+1(x)sn(x) + rm_l(x)sn_1(x) + rm (x)sn _z(x); 
(5.15) tm + n(x) = rm+1{x)tn(x) + rm_1{x)tn_1{x) + r,d)t„.2(x). 

The formulas (5.3) and (5.6)-(5.13) lead to some new explicit expressions 
for the Fibonacci and Lucas numbers: 

[(n-D/3] /vi , „.. 
(5.16) fn + 1 - 1 = Z ("!)'( " \~ 2^2"-l-3^ 

-£ = 0 

t(»z2)/3] ,„ _ i _ 7v o o. (5.i7) / ,„_,-!= EO ( B
2 v + r ) 2 " 

(5.18) fZn + 1 = £ % i
t - ) 2 - 3 , 

i= 0 

(5.19) f f , - 2 - 2 +
 I(^/31»JLJJLil(»-2-2tj(_1)i2fl 
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[(n-l)/3] n . i . J _ -, • 

(5.20) f = Y U ^ n I " ^ 2 n - 2 " 3 ^ 

„ [(n + D/3] n + 1 + i, n _ 7* \ Q. 
(5.21) f2n + l = 2n+ £ -_±(^_^)2n-^ 

in/3] 

. . 2i ^ = 1 

ft - 2-£- > 
(5.22) £n + 1 = £ — ^ T 7 ( n v ^ ) ( - D i 2 w 

v-n n - 2-zA "Z- / 

[(n-l)/3] o , i • x 

(5.24) A2 B + I . z 3 1 -^r-v^ 
ln tT0 n - ̂ \ 2^ / 

By Descartes1 Rule, rn(x) can have no positive roots and, at most, 
[ (ft - l)/3] negative roots. It is believed that this maximal number of roots 
is, in fact, the actual number of roots. We shall attempt to prove this in 
some future paper. 
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ODD NONUNITARY PERFECT NUMBERS 

P e t e r Hag i s , J r . 
Temple University, Philadelphia, PA 19122 

(Submitted December 1987) 

1. Introduction 

Throughout this paper lower-case letters will be used to denote natural 
numbers, with p and q always representing primes. As usual, (c,d) will symbol-
ize the greatest common divisor of c and d. If cd = n and (c, d) - 1, then d is 
said to be a unitary divisor of n and we write d\\n. o(n) and o*(n) denote, 
respectively, the sum of the divisors and unitary divisors of n. Both a and a* 
are multiplicative, and o(pe) = 1 + p + ••• + pe while o*(pe) = 1 + pe. 

In [1] Ligh & Wall have defined d to be a nonunitary divisor of n if cd = n 
and (csd) > 1. If o*(n) denotes the sum of the nonunitary divisors of n, it is 
immediate that a*(ji) = a (ft) - a*(n). It is easy to see that o# is not multi-
plicative, and that o* (n) = 0 if and only if n is squarefree. Now, n has a 
unique representation of the form n = n « n# where (ft, ft#) = 1, ft is square-
free, and n# is powerful. (The value of n is 1 if n is powerful, ft# = 1 if ft 
is squarefree, and 1 = 1 • 1.) It follows easily that 

o#(n) = o(n) * a#(n#) 
so that 

(i) oHn) = n (i + p){ n (i + p + ••• + pe) - n (i + pe)} 
where * > 1 . P,n ^^'^ P ^ 

Ligh & Wall [1] say that n is a /c-fold nonunitary perfect number if a*{n) = 
/cn. In particular, if a#(n) = n, then n is said to be a nonunitary perfect 
number. The integers m and n are nonunitary amicable numbers if o#(jn) = n and 
o*(n) =772. All known fc-fold nonunitary perfect numbers and all known nonunitary 
amicable pairs are even. In the present paper we initiate the study of odd 
nonunitary perfect numbers. Nonunitary aliquot sequences will also be dis-
cussed. 

2. Odd Nonunitary Perfect Numbers 

We begin this section by proving the following 

Theorem 1: The value of a*(n) is odd if and only if n = 2aM2 where (M, 2) = 1, 
M > 1, a > 0. 

Proof: Suppose that o#(n) is odd and n = 2aK where (K,2) = 1 and a > 0. Then 
K > 3 since o# (2°) = o# (2) = 0 and o* (2a) is even if a > 2. Since 2| (1 + pe) 
if p is odd, and since 2|(1 + p + ••• + pe) if and only if e is odd, it follows 
easily from (1) [since a* (n) is odd] that K = M1 and n = 2aM2. Now suppose 
that n = 2aM2 where (Af,2) = 1, M > 1, a > 0. Since (1 + p e ) is even and (1 + p 
.+ ••• 4- pe) is odd if g is even and p is odd, it follows from (1) that 0*(n) = 
o*(2aM2) is odd for a > 0. 

The following corollaries are immediate consequences of Theorem 1. 
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Corollary 1: If n is an odd nonunitary perfect number (or an odd k-fold nonuni-
tary perfect number where k is odd) , then n = M2. 

Corollary 2: If m and n are nonunitary odd amicable numbers, then m = M2 and 
n = N2. 

Corollary 3: If m and n are nonunitary amicable numbers of opposite parity (l\m 
and 2jn), then H? = 2aA?2 where (Af,2) = 1, a > 1. 

Now suppose that n is an odd nonunitary perfect number. From Corollary 1, 
n = p\lP22 ••• pf* where l\ei for -£ = 1, 2, . .., t. From (1), we have 

(2) n = J! (1 + P- + • • • + V&i ) " 11 (1 + V&i)> 
i= 1 "*- ^ i= 1 ^ 

and it follows that 

o ) i = n (i + p:1 + • • • + v~&i) - n (i + v~H) • 
Therefore, 

t t 

i < n (i + P: 1 + P: 2 + •••) - FI i 
i= 1 ^ ^ i = x 

or 
(4) n ?/(? - i) > 2. 

It is well known that (4) holds for (ordinary) odd perfect numbers. Let 
OJ{n) denote the number of distinct prime factors of n. From the table given by 
Norton in [2], we have 

Proposition 1: Suppose that n is a nonunitary odd perfect number. Then oj(n) > 
3. If 3|n, then oo(n) > 7 and 

n > (5 • 7 • 11 • 13 • 17 • 19 • 23)2 > 1015. 

If (15,n) = 1, then oo(n) > 15 and 

n > (7 • 11 • 13 • ••• • 59 • 61)2 > 1043. 

A computer search was made for all odd nonunitary perfect numbers less than 
1015. None was found. Therefore, we have 

Proposition 2: If n is an odd nonunitary perfect number, then n > 1015. 

If n = p°il P22 ••• P+* (where 2\e^) is an odd nonunitary perfect number and 
1 < fj, < e^, then it follows easily from (3) that 

t t 

(5) n (i + p:1 + ••• + p:fo - n (i + p:fo ^ i-
i= 1 7' ^ i= 1 ^ 

In particular, if n is an odd nonunitary perfect number, 

(6) II (1 + p"1 + p"2) - II (1 + p"2) < 1. 
p\n p\n 

Lemma 1: Suppose t h a t N = p*i . . . pa^(7^i . . . qhs = BS where (i?,£) = 1 and S > 1. 
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(7) oHpaS ... pa/)/(Pp ... pr
cO 

r 
= n (i + p_ 1 + ••• + v~°i ) 

where 2 < ci < ai for i = 1, 2, . . . 
number. 

Proof: If ft/ - 7 > 1 and V > 0, it is easy to see that 

W(l + p"1 + ... + p-&) - 7(1 + p~b) > W - V > 1. 

It follows from (7) that /!/ cannot satisfy the inequality (5). Therefore, N is 
not an odd nonunitary perfect number. 

Now suppose that n is an odd nonunitary perfect number and 3\n. Then 

n = 3 x p^2 ••• Pt* w n e r e 2|e^. 
Since 1 + 3 + . . . + 3&1 = 1 + 3&l E 1 (mod 3) and since 1 + pe E -1 (mod 3) if p > 
3 and 2\e, it follows from (1) that 

(8) o*(n) = n = 0 E J] (1 + p + ... + pe) + (-1)* (mod 3) where p > 3. 
Pe\\n 

If p E -1 (mod 3), then 1 + p + ... + pe E 1 (mod 3) if e is even; if p = 1 
(mod 3), then l + p + ... + p e E 0, -1, 1 (mod 3) according as e = 2, 4, 6 (mod 
6), respectively. The following lemma is an immediate consequence of (8) and 
the preceding remark. 

Lemma 2: Suppose that n is an odd nonunitary perfect number such that 3\n and 
w(n) = t . If pe\n and p = 1 (mod 3), then g > 4. [More precisely, e E 0S 4 
(mod 6).] If 2|t, then n has an odd number of components pe such that p E 1 
(mod 3) and e = 4 (mod 6) . If 2Jt, then n has an even number of components pe 

such that p E 1 (mod 3) and e E 4 (mod 6). 

Now assume that n is an odd nonunitary perfect number such that 3 s 5°  l\n. 
From Lemma 25 74|n. Suppose that 34|w. Then, since a* (3 4 5 2 lh) /3452 74 > 1, 
Lemma 1 yields a contradiction. Therefore, - 32||n. Since a# (325274132)/32527L|-132 

> 1, Lemma 1 shows that 13Jn; and since l + 3 + 32 = 13 and 1 + 52 = 2®13, we 
conclude from (2) that 52\n so that 54|ft. 

If p > 7, let F(p) = a#(325Lf7i+p2)/325Lf7i+p2. It is easy to verify that F is 
a monotonic decreasing function of p and that F(271) > 1. [{F{211) < 1.] We 
have proved 

Proposition 3: If n is an odd nonunitary perfect number and if 3 s 5* 7|n, then 
32\\n and 5If7t+|n. Also, p\n if 11 < p < 271. 

Theorem 2: If n is an odd nonunitary perfect number, then bi(n) > 4. 

Proof: Assume that oo(n) < 4. Then from Proposition 1, w(n) = 3 and 3\n. Since 
(3/2)(7/6)(11/10) < 2 andx/(x - 1) is monotonic decreasing for x > 1, it fol-
lows from (4) that 5|n. Since (3/2)(5/4)(17/16) < 2, p|n if p > 17. 

Assume that 3'5« 7|ft. From Lemma 2, 32||n and it follows easily from (3) 
that 1 < (13/9) (5/4)(7/6) - (10/9). This is a contradiction. 

Now suppose that 3-5- 13|ft. If 32|n, then, from (3), 

1 < (13/9)(5/4)(13/12) - (10/9). 

- n (i + PI°O > i 
i = 1 

, r, then N is not an odd nonunitary perfect 
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If 52||n, then 

1 < (3/2)(31/25)(13/12) - (26/25). 

In each case, we have a contradiction. Therefore, 3454132|n. But, 

a # ( 3 4 5 i + 1 3 2 ) / 3 i + 5 i f 1 3 2 > 1 

and, from Lemma 1, n is not a nonunitary perfect number. 
Finally, assume that 3 • 5 • ll|n. If 32||?z, then, from (3), 

1 < (13/9)(5/4)(ll/10) - (10/9) 

and we have a contradiction. If 3̂ ||n, then, since 1 + 3 + 3 2 + 3 3 + 3 ̂  = ll2 

and 1 + 3 4 = 82, it follows from (2) that 0 E -5(1 + 5e) (mod 11). This is 
impossible since ll|(l + 5e) if 2\e. Therefore, 36|n. Now assume that 52||n. 
If 11^\n, then, since 

a#(3652ll4)/3652llLf > 1, 

we have a contradiction. Therefore, ll2||n. Since n = 3e 52112
s it follows from 

(2) that 

52 • ll2 • 3e = 31 • 133 - Oe + l ~ D/2 - 26 • 122 • (1 + 3e). 

Therefore, 25 • 3e - 10467 and we have a contradiction. We conclude that 54|n. 
But 

a#(365Lfll2)/365i+ll2 > 1 

and, from Lemma 1, n is not a nonunitary perfect number. 

3. Nonunitary Aliquot Sequences 

A t-tuple of distinct natural numbers (n0;n]_; . ..; Ht_1) with ni = o#(rii„i) 
for i - 1, 2, ..., t - 1 and n0 = o#(nt_i) is called a nonunitary t-cycle. A 
nonunitary 1-cycle is a nonunitary perfect number; a nonunitary 2-cycle is a 
nonunitary amicable pair. A search was made for all nonunitary t-cycles with 
t > 2 and ng < 106. One was found: 

(619368; 627264; 1393551) 

The nonunitary aliquot sequence in^} with leader n is defined by 

n0 = n, nx = a*(n0), n2 = o#(ni), ..., ni = a#(n^_x), ... . 

Such a sequence is said to be terminating if nfc is squarefree for some index k 
(so that ni = 0 for i > k) . [We define a# (0) =0.] A nonunitary aliquot 
sequence is said to be periodic if an index k exists such that (n^; n^+\i ...; 
n^+^_^) is a nonunitary t-cycle. A nonunitary aliquot sequence which is 
neither terminating nor periodic is unbounded. Whether or not unbounded 
nonunitary aliquot sequences exist is an open question. 

An investigation was made of all nonunitary aliquot sequences with leader 
n < 106. About 40 minutes of computer time was required. 740671 sequences 
were found to be terminating; 1440 were periodic (194 ended in 1-cycles, 1195 
in 2-cycles, and 51 in 3-cycles) ; and in 257889 cases an ny. > 1012 was 
encountered and (for practical reasons) the sequence was terminated with its 
final behavior undetermined. As was pointed out by the referee, since there 
are 607926 squarefree numbers between 1 and 106, more than 82% of the 740671 
terminating sequences were guaranteed to terminate before the investigation 
just described even began. From this perspective we see that the behavior of 
only about one-third of the "doubtful" sequences with leaders less than 106 has 
been determined. The first sequence with unknown behavior has leader ng = 792. 
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^52 = l5780s270,202,880 is the first term of this sequence which exceeds 1Q12. 
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A VON STAUDT-CLAUSEN THEOREM FOR CERTAIN BERNOULLIANLIKE 

NUMBERS AND REGULAR PRIMES OF THE FIRST AND SECOND KIND 

E s a y a s George K u n d e r t 
University of Massachusetts, Amherst, MA 01003 

(Submitted January 1988) 

In a p r e v i o u s paper [6] we have shown t h a t c e r t a i n o p e r a t o r s i n a c e r t a i n 
comple t ion A of the s-<f-ring A over t he r a t i o n a l numbers de termine a w e l l -
def ined b a s i s . One of the o p e r a t o r s which we cons ide red t h e r e was H! = E ~ Q,D 
and we c a l l e d i t s co r respond ing b a s i s {u^}. I t was shown i n t h a t paper t h a t 

71= 0 

where the coefficients bn a.re. the Bernoulli numbers. The partial fraction de-
composition of these numbers is given by the von Staudt-Clausen Theorem (see, 
for example, [1]): 

bQ = 1, b1 = 1/2, b2m+l = 0, b2m = (-l)ffl (integer + E 1 ^ ) ' ^ > 1, 

where p. is a prime number so that (v. - 1) 2/77. (Note that v. occurs in the 
first power only.) 

Now, let 

(W{)3 = J2 cnun° 
n= 0 

In this paper we will give the partial fraction decomposition for the coeffi-
cients cn . It will turn out for certain cn that higher powers of primes in the 
partial fraction denominators will occur, namely, second and third powers of 2 
and at most second powers of the other primes. 

Definition: We will call a prime p > 3 regular of the first kind if a partial 
fraction belonging to p1 does occur for all n E 2m mod p - 1, n i 2m mod p, m = 
1, 2, ..., (p - 3)12. 

We will call a prime p > 3 regular of the second kind if a partial fraction 
belonging to p1 does occur for all n E 0 mod p - 1, n t 0 mod p. 

It will be seen that our definition of a regular prime of the first kind is 
equivalent to Rummer's definition of a regular prime [5]. It is not known 
whether there exist an infinite number of such primes. On the other hand, it 
is well known that there exist infinitely many irregular primes of the first 
kind. Robert Gonter from the Computer Center at the University of Massachu-
setts was kind enough to test all primes up to about 12 xlO6 for regularity of 
the second kind and found that 5, 13, and 563 are the only irregular ones under 
those primes (see [8]). 

Theorem: The partial fraction decomposition of the coefficients cn with re-
spect to the rest system {0, ±1, ±2, ..., (p - l)/2} is as follows for n > 1: 
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I. Partial fractions with 2, 22, 23 in the denominator. Let 

[0 for n = 25 6, 7, 9, 10 

II for ft = 1, 3, 4, 5, 8 

-nl 

then 

0 for n = 4} 6, 7, 8, 9, 10 

1 for n = l, 2S 3, 5 

0 for n = 1, 2, 4, 6, 8, 10 

1 for n = 3, 5, 7, 9 

yi yi yi 
1 n\ In2 1 nZ 

22 23 

occur as partial fractions of cn for n = 1 through 10 and when n! = ft mod 8 for 
ft, nr > 3, then sn, = sn occurs in cn,. 

II. Partial fractions with 3, 32 in the denominator. Let 

'n\ 

Pn2 

then 

-1 for n = 4, 5, 11, 12, 17 
0 for n = 1, 6, 7, 8, 10, 13, 14, 19, 20 
1 for n = 2, 3, 9, 15, 16, 18 

-1 for n = 2, 4, 6, 10, 12, 16, 18 

0 for n = 1, 3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20 

Pnl , Pn2 
3 32 

occur as partial fractions of cn for ft = 1 through 20 and when nr - n mod 18 
for ft, n! > 3, then o*„, == an occurs in cn, . 

III. Partial fractions with p or p2 (p > 5) ±n the denominator. 

(a) If n E 1 mod p - 1 and ft t p - 2 mod p, ft > 1, let 

p = -1 + (ft - l)[(p - l)/2] + ft[(p - l)/2]2 mod p in i?, 

then p/p occurs as a partial fraction. 

(b) Let b<im be the 2mth Bernoulli number, N 2_m the numerator, and Ẑ m t n e 

denominator of £>2m* n E 2m mod p - 1, 772 = 1, 2, ..., (p- 3)/2, and 
pJ71/2m and n i 2m mod p5 p E (^m^~lD2mN2m^n " ^ ) mod p in i?, then p/p 
occurs as a partial fraction. 

(c) By Wilson?s theorem, we may write 1 + (p - 1)! = ap. If ft E 0 mod 
p - 1, ft i 0 mod p, a £ 0 mod p, let p = -fta mod p in i?, then -1/p2 + 
p/p occurs in the decomposition. 

Remark 1: Let 

2m = IlP^n^^7' (prime factorization!) 

so t h a t (p. - 1)12772. Let 

T = TI/9 / n ^ j ' 
2/77 ' * * \ 7 

1990] 17 



A VON STAUDT-CLAUSEN THEOREM FOR CERTAIN BERNOULLIANLIKE NUMBERS 

which i s an i n t e g e r , then we may a l s o use 

p = T I ] P " ( S i + 1) in - 2m) mod p i n R i n 1 1 1 ( b ) . 

Remark 2: I t can be shown t h a t 

1 + (p - 1 ) ! E pbp_l - p + 1 mod p 2 . 

See [2] where this has been used to show that 1 + (p - 1) ! t 0 mod p2 for all 
p < 114 except for p = 5 and 13, but, as mentioned above, R. Gonter has shown, 
using the computer, that 563 is the only other irregular prime < 12 x 10 . See 
[8]. Other interpretations of a are given in [3] and [7]. 

Corollary 1: Let m = 1, 2, ..., (p - 3)/2, then 

p is regular of the 1st kind <=> p\^2m <===> P ^s Summer regular. 

Corollary 2: If a = [1 + (p - l)!]/p, then 

l + ( p - l ) ! ^ 0 mod p2 <==> a i 0 mod p <=> p is regular of the 2nd kind. 

Proofs: From [6], we know that 

k= 1 

where {x^} is the basis belonging to the operator Dr = E - D. For this basis, 
the multiplication in A is especially simple, namely component-wise, so that 

(u{)3 = Z ( 1 A 3 ) ^ . 
k= 1 

Also 

^ = i <<> 
n= 0 

where the Bn are defined as follows: 
B% = (-l)k+lklS^+l where S*+l is determined by the iteration 
Sn+1 = Sn~1 + kSn> Sn = 1* a n d S i = 0 for ^ > 1. 

The reader should be warned that our definition of the Bn differs from the one 
in [6] by a factor of (-l)n. If we now put 

(^{)3 = £ cnu'n9 

n = 0 

it follows that cQ = 1 and 
n+l 

fe= 1 

After this we do not have to refer to [6] anymore. In the following proofs, 
"~" always means "equal up to an added integer.11 

I. To prove the statements of the theorem in part I, we note first that 
powers of 2 in the prime factorization of fc3 divide into k\ unless k - 2, 4, or 
8. For k = 2, 21/23 = 1/4; for k = 4, 41/43 - 3/8; for k = 8, 81/83 ~ -1/4. 
Using this and the iteration from above to calculate the reduced numerators of 
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Bn/ks for k = 2, 4, 8 mod 4, 8, 4, respectively, we see that they repeat 
periodically with increasing n with periods of length 1, 2, and 8, respective-
ly. Computing next the partial fractions of the so reduced sums 52/23 + #Jj/43 
+ B®/83 for n = 1, 2, ..., 10, we get the statements in part I of the theorem. 

II. Similarly, one proves the the statements in part II of the theorem. 

III. To prove the statements of part III, one uses the following formulas: 

(1) S^= (~l)kllk\ Z ( - l ) J n V n ( s e e , for example, [ 4 ] ) ; 
j = l v<? I 

(2) S% = 0 fo r n < k and S% = 1 [ t h i s fo l lows r e a d i l y from ( 1 ) ] ; 

(3) B\ = Z (-l)j + lQ)jn+l [ fo l lows from ( 1 ) ] ; 
J = 1 

<*> L e t X r , s ) " 5 e + ( P + l ) ( p . l ) - 5 * + 2 . < p - l > ' t h e n 

B^l.e)' A,s) = £ (-lV + lJ8 + r(p'» U^1 - D 2 = 0 mod p 2 

(since, by Fermat?s theorem, j p ~ l - 1 = 0 mod p) . It follows that 
B^(r s) ^-S independent with respect to r mod p2. 

(5) Wilsonfs theorem: (p + 1)! + 1 = 0 mod p. 

Now let p > 5. First we realize that kl/k3 contains a power of p in the denom-
inator (after cancellation) only if k = p or k - 2p. For & = p we have 

p!/p3 = (p - 1)1/p2 

and for k = 2p we have 

(2p)!/(2p)3 ~ [(p-l)/2]2/p. 

To compute £2p/(2p)3 that is ~ -[(p - 1)/2]252^x/p, one uses S 2 ^ E 52p-l m o d p 

and 
(0 if s < v 

(t if s = p 

where 5A/r s) is defined as £$ + (*•+i)(p - i) - ̂ s+p(p-i) and shows independence with 
respect to r mod p by using formula (4) from above. It follows that 

(0 if s < p 
^ t ( p „ 1 } / ( 2 p ) 3 ~ 1 where Pl = -t[(p - l)/2]2 mod p. 

(Pl/p if s = p 

To compute 5nP/p3 which is ~ (p - l)lS?+l/p2 ~ (p - D l C ^ - i ) ^ 2 if s < p and 

~ (p - 1)!*S^~*( L)/p2 - 1/p if s = p where n has been replaced by s + r(p - 1) 

b U t K ^ o for s < p - 1 
1 E J * (0,a) ^ 2 C^-n M * , m o d P 

^"(6.8) for a - p - 1 
The statements in III(a) can now be proved. Let s = 1 so that 

A(J"A; E -P/2 mod P2 

and, therefore, 
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5 i + r ( p - l ) / P 3 . ~ Pz'P 
where p 2 = - [ r ( p - l ) / 2 + 1] mod p and ^ / p 3 ~ 0. P u t t i n g 

n = 1 + p(p - 1) = p + t ( p - 1) 
and 

p = P l + p 2 E - 1 + (n - l ) ( p - l ) / 2 + n [ ( p - l ) / 2 ] 2 mod p , 

then p /p occurs as a p a r t i a l f r a c t i o n of on i f n * 1 and n £ p - 2 mod p . I t 
i s c l e a r t h a t , i f n = 1 and n = p - 2 mod p , then p = 0 mod p and p does not 
occur i n a p a r t i a l f r a c t i o n . 

1 1 1 ( b ) . Let n = s + r ( p - 1) where s = 2 , 3 , . . . , p - 2 . 

3n
P/p3 ~ ^ I j / p 2 ~ -rSP^/p/p. 

To compute S^ ^/p, we utilize the following Bernoulli numbers: 

£ s = S E ^ / ^ = * £ ( - l ) k + 1 [ ( f c - l ) ! / f c ]S* 8 = 2 , 3 , . . . , p - 2, 
k= 1 k= l 

and 
£ s + p _ i - S E ( - D f c + 1 [ ( ^ - l ) ! / f c ] £ * + 1 + E ( - l ) f c + 1 [ ( k - l ) ! / p ] ^ + 1 

fc= 1 fc=s+2 

" ^ J + P + Z P ( -D f c + 1[(fe - D!/p]58
f c

+ m o d p . 
P ^ fc-p + l 

The first sum is equal to bs, the second and third sums E 0 mod p. Therefore, 
we have 

-Cp./P - -S/+p/p = &s + p-i - &s = "(l/s)&s mod p. 
The last congruence follows from a theorem of Kummer. (See, for example, Nr. 
14 in [1].)- Finally, we have 

0 for s odd, since b^ = 0 

V - 3 ? > 3 

p / p f o r S = 2777, 777 = 1 , . . . , 
where ^ 

p E -(r/s)b8 E -(2m)-lD-lNZmr mod p 

where Ẑ m and ^2m a r e t n e denominator and numerator of b^m* Note that (2w)_1 

exists for our 77?'s and that 

D^ = FIp1 for (p. - 1) | 2777 (by the von Staudt-Clausen theorem) 

exists also for our 777 Ts. Furthermore, n = 2m + r(p - 1) , so -v E n - 2m mod p 
and therefore 

p E (277?)~1^̂ /l/2m(n - 2777) mod p if p|^2m and p\n - 2m 
which proves 111(b). 

III(c). Here n = p - 1 + r(p - 1) E 0 mod p - 1, 
R P /D3 ~ -S p _ 1 /D3 
p_l + P(p_1)/p

 Dp -2+r(p- I)' r 
a n d 

- 7 3 P _ 1 = - / ? p _ 1 - r» • A p _ 1 
^ p-2 + p ( p - l ) - b

p-2 T SA(r,p~2) 

(p _ i), _ r* B^~l_Up_2) mod p2, 
but 

C , p . 2 ) = C 1
p . i - ^ E l + (p + 1)! E a.pmodp^ 
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for some i n t e g e r a = 0 5 1, 2 , . . . , p - 1. T h e r e f o r e , 

~Bp~l - - l + ( r + l ) a p mod p 2 . 

Put p - ( r + l)a = -na mod p, then p/p - 1/p2 occurs in the decomposition of cn 

provided that n f 0 mod p and a i 0 mod p5 which proves III(c). 

Proof of Remark 1: We use a theorem of von Staudt (see, for example, [1], vol. 
2, p. 55) which says that T is an integer, then 

{2mylB-2
l
mNlm = T O P : 1 " ^ . 

Proof of Remark 2: 
P-i 

K-i = E (-Dk + 1[(fe - i)!/fc]^p + (P - i ) i / p , 
fc = 1 

so 

so 

pbp-l = p + (p - 1)! mod p 2 (since p£p = 0 mod p 2 for l < / c < p - l ) , 

1 + (p - 1)! = pfc ! - p + 1 mod p 2. 

Proof of Corollary 1: The first equivalence follows at once from our defini-
tion of a regular prime of the first kind and from 111(b). The second equiv-
alence was proved by Kummer himself [5]. 

Proof of Corollary 2: The first equivalence follows from the proof of III(c) 
and the second equivalence from the definition of primes of the second kind. 

References 

1. P. Bachmann. Niedere Zahlentheorie, 2-ter Teil Nr. 14 and 15. New York: 
Chelsea, 1968. 

2. N. G. W. H. Beeger. "Quelques remarques sur les congruences rv~ = 1 (mod 
p2) et (p - 1)! E -1 (mod p 2 ) . f f Messenger Math. 43 (1913):72-84. 

3. Ch. Y. Chao. "Generalizations of Theorems of Wilson, Fermat and Euler." 
J. Number Theory 15 (1982):95-114. 

4. Ch. Jordan. f,0n Stirling Numbers." Tohoku Math, J. 37 (1933):254-278. 
5. E. E. Kummer. "Allgemeiner Beweis des Fermat!s schen Satzes etc." J. fuer 

Math. (Crelle) 40 (1850):130-138. 
6. E. G. Kundert. "Basis in a Certain Completion of the s-d-Rlng over the 

Rational Numbers." Nota II, Rendieonti delta Academia dei Lineei, Serie 
VIII, vol. LXIV, fasc. 6 (1979):543-547. 

7. E. Lehmer. "On Congruences Involving Bernoulli Numbers and the Quotients 
of Fermat and Wilson." Annals of Math. 39 (1938):350-359. 

8. R. Gonter & E. G. Kundert. "Wilson's Theorem (p - 1) ! + 1 = 0 mod p2." 
SIAM Conference on Discrete Mathematics in San Francisco3 June 13-163 1988. 
Report pages 1-8. 

1990] 21 



FIBONACCI HYPERBOLAS 

Clark Kimberling 
Mathematics Software Co., 419 S. Boeke Rd., Evansville, IN 47714 

(Submitted January 1988) 

1. Introduction 

Is it possible for a hyperbola h(x, y) = 0 to pass through infinitely many 
points of the form (Fm, Fn) , whose coordinates are distinct Fibonacci numbers? 
The answer to this question is yes. For example, the hyperbola x2 + xy - y2 + 
1 = 0 passes through the points (1, 2), (3, 5), (8, 13), (21, 34), (55, 89), 

It is not difficult to discover other hyperbolas 

ax2 + bxy + ay2- + dx + ey + f = 0 
that pass through infinitely many (Fm , Fn). We shall call such a hyperbola a 
Fibonacci hyperbola. Bergum [1] and Horadam [2] have discussed classes of 
conic sections that include Fibonacci hyperbolas. In particular, formulas (1) 
and (1;) below occur, after substitutions, among those discussed by Bergum and 
Horadam. The purpose of this note is to prove that these formulas account for 
all the Fibonacci hyperbolas. There are no others. 

2. Formula, Examples, and Graphs 

As usual, let FQ, F±, F2j F$, F^9 F$, F6, ... denote the Fibonacci sequence 
0, 1, 1, 2, 3, 5, 8, ..., and let IQ, £]_, L^y -̂ 3> ^4* ̂ 5> ^6* ••• denote the 
Lucas sequence 2, 1, 3, 4, 7, 11, 18, ... . We extend these sequences in the 
usual way: 

Fn - (-Dn+lF_n and Ln = (~l)nL_n, for n = -1, -2, -3, ... . 

It will be helpful to list the first few hyperbolas of the form 

(1) pn(x, y) = x2 + {-l)n+lLnxy + ( - l ) V + F2 - 0, for n = 1, 2, 3, . . . , 
along with representative points that lie on each hyperbola: 

TABLE 1 

Hyperbola Representative Points 

px(x, 

p2{x, 
p3(x> 

Pk{x> 
P5te, 
p6(ar, 

y) 
y) 
y) 
y) 
y) 
y) 

= x2 + xy - y1 + 1 = 0 
= x2 - 3xy + y2 + 1 = 0 
= x2 + kxy - y2 + 4 = 0 
= x2 - Ixy + y2 + 9 = 0 

= x2 + llxy - y2 + 25 = 
= x2 - I8xy + y2 + 64 = 

0 < 

0 

; i , 2 ) , 
: i , 2 ) , 
: i , 5 ) , 
a , 5), 
;i> i3) 
: i , 13) 

(3, 

(2, 

(3, 

(2, 

, (3 

, (2 

5), (8, 13), (21, 34), (55, 89) 

5), (5, 13), (13, 34), (34, 89) 

13), (8, 34), (21, 89), (55, 233) 

13), (5, 34), (13, 89), (34, 233) 

, 34), (8, 89), (21, 233), (55, 610) 

, 34), (5, 89), (13, 233), (34, 610) 

22 [Feb. 



FIBONACCI HYPERBOLAS 

FIGURE 1 

The Fibonacci hyperbolas 
pl(xs y), p3(x, y) 9 and p5(xs y) 

FIGURE 2 

The Fibonacci hyperbolas 
p2(x9 y) 9 p^(x9 y) 9 and p6 (x9 y) 

Theorem 1: Each hyperbola of the form 

(1) pn(x, y) = x2 + (-l)n+lLnxy + (-l)n y2 + F2 = 0, forn = 1, 2, 3, ..., 

is a Fibonacci hyperbola. 

Proof: Well-known identities, given as I^i^ and J19 in Hoggatt [3], show that for 
odd n and even m, 

xm ^ ^n m Ln + m)Ln + m L n m Ln-mLn +m ^ L
 n 

= F
2 + ^2 _ r^2 + (_1)m + ̂  + lF2i 

= 0. 

Similarly, identities J22 anc^ ̂ 19 yield analogous results for even n and odd m. 
Thus, for any positive integer n9 positive even integer h9 and integer k for 
which k + n is odd, all the points 

(Fk' Fk + n>5 (Fk + h9 Fk + n + h^ 9 (Fk+2h9 Fk + n + 2h'9 ' ' ' 

lie on hyperbola (1). 

Theorem 2: Each hyperbola of the form 

(!') qn(x, y) = x2 + (~l)n + lLnxy + (-l)V - î 2 = 0, for n = 1, 2, 3, . . ., 

is a Fibonacci hyperbola. 

Proof: For odd n and odd m9 identities _Z~22 anc^ -̂ 19 yield 

wZ + (T. w - F )F - F2 = F2 + F F , - F2 

= ^2 _ F 2 + ,F2 _ F 2) 

= 0. 

Similarly, qn(Fm, Fn + m) = 0 for even n and even /??. As in the proof of Theorem 
1, it now follows that for any positive integer n, positive even integer h9 and 
integer k for which k + n is even, all the points 

(Fk9 Fk + n)> (Fk + h> Fk + n + h^9 (Fk + 2h9 Fk + n + 2h^ > '*' 
lie on hyperbola (1')• / 
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TABLE 2 

Hyperbola Representative Points 

q-^ix, y) = x2 + xy - y2 - 1 = 0 
q1{xi y) = x2 - 3xy + y2 - 1 = 0 
q3(x, y) = x2 + hxy - y2 - 4 = 0 
qi+(x> y) = x2 - Ixy + y2 - 9 = 0 
q5(x, y) = x2 + llxy - y2 - 25 = 0 
q§(x, y) = x2 - I8xy + y2 - 64 = 0 

1) (2, 3), (5, 8), (13, 21), (34, 55) 
3), (3, 8), (8, 21), (21, 55), (55, 144) 
3), (2, 8), (5, 21), (13, 55), (34, 144) 
8), (3, 21), (8, 55), (21, 144), (55, 377) 
8), (2, 21), (5, 55), (13, 144), (34, 377) 
21), (3, 55), (8, 144), (21, 377), (55, 987) 

FIGURE 3 

The Fibonacci polynomials 
q1(x, y), q3(x, y), and q5(x, y) 

FIGURE 4 

The Fibonacci polynomials 
q2(x> y} > ̂ 4(^5 2/)> a n d ^ 6 ^ ' y^ 

3. The Main Theorem 

In this section we shall state and prove the main theorem of this paper, 
which expresses every Fibonacci hyperbola in terms of the polynomials Pn(x, y) 
and qn(x, y). 

Lemma 3.1: The coefficients a, b, c, d, e, f in the equation 

(2) ax2 + bxy + cy2- + dx + ey + / = 0 
of a Fibonacci hyperbola can be chosen to be integers. (Following the proof of 
this lemma, these coefficients will be understood to be integers except where 
stated otherwise.) 

Proof: Divide both sides of (2) by one of the nonzero coefficients, and then 
substitute for {x, y) any five distinct (Fm , Fn) that lie on the hyperbola. 
Cramer's Rule applied to the resulting five equations shows that each coeffi-
cient is a rational number. Let D be the least common multiple of the five 
denominators. Write (2) using the five rational numbers and 1 as coefficients, 
and then multiply both sides by D. The resulting coefficients are integers. 
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Lemma 3.2: Suppose (2) is a hyperbola that passes through the points (Fs , 
Ft ) for some pair s ]_, s^ » S3, . .. and £]_, 7̂ 5 "£33 ... of nondecreasing se-
quences of integers. Then there exist constants 77? and N such that tn - sn = m 
for all n > N. 

Proof: The proof will be in three cases. 

Case 1. Suppose c = 0. Then b * 0, else (2) would not represent a hyper-
bola. Divide both sides of (2) by x2 to find 

-alb = lim y/x = lim Ft /Fs 
x->oo n + °o n n 

= lim(a** - 3 ^ ) / ( a S n - 3 ^ ) = l im atn~Sn
9 

n + co n + 00 

where a = (1 + / 5 ) / 2 and 3 = (1 - / 5 ) / 2 . 

I f a = 0, then l im w = ~d/b9 so t h a t l im i^ = - d/b , which i s i m p o s s i b l e , and 
COco n->co n 

so a ̂  0. Consequently lim a n ~Sn is a nonzero constant. The exponent tn - sn 
n + <x, 

is an integer for all n, so that tn - sn is a constant for all sufficiently 
large n. 

Case 2. If c ̂  0 and a = 0, then 2? * 0, else (2) would not represent a 
hyperbola. Divide both sides of (2) by y2 to find 

-c/2? = lim x/y = lim Fs /Ft = lim a 
Z/ -> co n > c o * " ?Z->oo 

sr - t „ 

so that sn - tn9 and hence tn - sn is a constant for all sufficiently large n. 
Case 3. If o * 0 and a * 0, then divide both sides of (2) by x2 and solve 

the resulting equation for y/x to obtain the slopes of the asymptotes: 

X > c o ~ n>oo "" " n->c 
(-2? ± /Z?2 - kac)/2c = l im z//x = l im Ft /FSn = l im or" ~Sn 

x>co n > 00 n n n-> 00 

so t h a t tn - sn must be a c o n s t a n t for a l l s u f f i c i e n t l y l a r g e n. 

Theorem 3: For n = 1, 2, . . . , l e t 

p n 0 r 5 z/) = ;r2 + (-l)n+1Lnxy + ( - l ) V + F2 = 0, 
and let q (x, y) = p (x, t) - 2F2. Every Fibonacci polynomial is one of the 
following forms: 

pn(x9 y) = 0, qn(x, y) = 0, Pn(-x, y) = 05 or qn(-x, y) = 0. 

Proof: Suppose 

(2) ax2 + bxy + cy1 + dx + ey + f = 0 

is a hyperbola that passes through the points (FSn » ^tn) f° r some pair s^, s2 5 
83, ... and t \ , 11> ^3'J ••• °f nondecreasing sequences of integers. We refer 
to the three cases of Lemma 3.2 and show first that Case 1 and Case 2 cannot 
occur. Let m be as in Lemma 3.2; note that m can be negative. 

In Case 1, if m = 0, then infinitely many (FSn s FSn ) lie on the conic sec-
tion (2), and so (2) represents the line y = x , not a hyperbola. If m = 0, 
then the equation 

-alb = am = [(1 + v/5)/2]'7? = (Lm + /5i^)/2 

shows that a lb is not a rational number, contrary to Lemma 3.1. We conclude 
that c * 0. 
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In Case 2, -c/b = a n~Sn , an irrational constant for all sufficiently large 
n, contrary to Lemma 3.1. Consequently, c * 0 and a * 0, which is Case 3. 

In Case 3, (-b ± /Z?2 - bac)/2c = am = (Lm + f5Fm )/2. Separating rational 
and irrational parts yields 

(3) -b/o = Lm. and ±(/£2 - kac) Ic = /5Fm . 

Substitute ~oLm for Z? into the second equation and obtain 

c = 4a/(L2 - 5F2) = (-l)ma. 

We may and do assume that a = 1 (allowing i e, / to be rational numbers), so 
that (2) takes the form 

(4) x1 - {-l)mLmxy + (~l)my2 + dx + ey + f = 0, m = ±1, ±2, ±3, ... . 

Now, substitute (FSn , Fs + m) for (a:, 2/) into (4): 

Using identities X21 (if w i-s even) and i~23 (if ̂  i-s odd) from [3] gives 

(-l)" [*£+»> " ̂  ^ + 2™ 1 + ̂ a B + eFSn+m + f = 0. 
Identity _Z"ig from [3] then gives 

{-l)s»+mF£ + dFSn + eFSn + m +f- 0. 

Let ?2]_, 7̂ 2? ̂ 3 be any three integers, exceeding N, for which the three integers 
sn , sn , s^ are either all odd or all even. Then the system 

(5) dF8ni + eFSn + m+ f = (-l)8"'+n + Vffl2, for i = 1, 2, 3, 
has the unique solution 

d = 0, e - 0, / - (-l)8-« + n + V2. 

Clearly, the sw., for i = 1, 2, 3, ..., must all be odd or must all be even, 
else the infinite system (5) has no solution. 

Case 1. Suppose the sn are all odd. Rewrite (4) as 
t 

(6) x2 - {-l)mLmxy + ( - l ) V + (-DmFm = 0, m = ± 1 , ±2, ±3 , . . . . 

I f 77? < 0, then Lm = ( - l ) r a L_ n and Fm = ( - l ) m + 1 F _ m , so t h a t 

x2 - L_mxy + (-l)V + (-l)mF_2m = 0. 

Substitute n for -m to obtain 
(7) x2 - Lnxy + (-l)V + (-l)X2 = 0. 

If n is even, (7) is p (x, z/) = 0 ; if n is odd, (7) is qn(-x, y) = 0. 

If n = m > 0 and is even, then (6) is p O , z/) = 0. If n = m > 0 is odd, 
then (6) is qn(x, y) = 0. 

Case 2. Suppose the sn. are all even. Rewrite (4) as 

(6') x2 - (-l)mLmxy + (-iyV - (-1)777*7* = 0, m = ±1, ±2, ±3, ... . 
If w < 0, then write n = -777, so that 

(7') x2 - L^z/ + (-l)V - (-DX2 = 0-

If n is even, (7 ') is ̂  (x, z/) = 0 ; if n is odd, (7 ') is ̂  (-x, y) = 0. 

If n = m > 0 and is even, then (6') is qn(x, y) = 0. If n = m > 0 is odd, 
then (6') is p (x, z/) = 0. 
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4, Concluding Remarks 

Theorem 3 establishes the following representation for all Fibonacci hyper-
bolas : 

y2 + bxy + (~l)nx2 + / = 05 where \b\ = Ln and |/| = F2» 

Each of these hyperbolas consists of two branches: . 

y = (-bx + Ab2 - 4(-l)n]x2 - 4/)/2 
and 

y = (-bx - Ah2 - 4(-l)n]x2 - 4/)/2. 

The representative points listed in Tables 1 and 2 lie on the upper branch of 
their respective hyperbolas. Does the lower branch also pass through points 
that are closely associated with Fibonacci numbers? The affirmative answer to 
this question follows from Bergum [1, pp. 27-28]. 
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The number of combinations of ft elements taken k at a time is given by the 
binomial coefficient (??)• If the n elements are arranged in a circle, any two 
circular combinations are said to be indistinguishable if one can be obtained 
by a cyclic rotation of the other. Let C(n, k) denote the number of distin-
guishable circular combinations of n elements taken k at a time. Using a for-
mula for C(n, k), we consider a problem on circular Fibonacci binary sequences. 

We recall that a Fibonacci binary sequence is a {0, l}-sequence with no two 
l's adjacent. Similarly, a circular Fibonacci sequence is a circular {0, 1}-
sequence with no two l's adjacent. Let H(n) denote the number of distinguish-
able circular Fibonacci binary sequences of length ft, and let ft/(ft) denote the 
total number of l's in all such sequences. The ratio Q(n) - W(n)/nH(n) gives 
the proportion of l's in all the distinguishable circular Fibonacci binary 
sequences of length ft. In the case of ordinary Fibonacci binary sequences, 
this ratio tends to the limit (5 - /5)/10 as ft •> °°  [2]. In the case of circu-
lar Fibonacci binary sequences, a similar result can be proved. 

For any integer 

777 = V\1V12 • •• PjJ * 2 , 

where p.!s are distinct prime numbers and r. > 1, let $(m) be defined by 

• (m> -«(l -i-)(l - J-) ... (l - ^ 

for m = 1, let ^(jri) = 1. Thus, (J) is the Euler totient function. The number 
C(n, k) of all distinguishable circular combinations of n elements taken k at a 
time is given by the following formula. 

C(n, k) = - V Hm)^^ 
\<m\{n,k) 

(See [1], p. 208.) 
Now let g(n, k) denote the number of distinguishable circular Fibonacci 

binary sequences of length n which contain a total of k l's. Since each 1 must 
be followed by a 0 in the sequence, 

gin, k) = C(n - k, k). 

If n is a prime number, the ratio 

W(n) 1 C(n - 1, 1) + 2C(n - 2, 2) + 3C(n - 3, 3) + ••• 
Q(n) = nH(n) ft 1 + C(n - 1, 1) + C(n - 2, 2) + C{n - 3, 3) + 

1 + " I 3) + (" 2 4) 
»[l + 1 + (n~ 3)/2 + (M" 4)/3+ • 

Using the following formula (see [3], p. 76), 
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where s = /l + kx, one has 

nH(n) = n -

1 + /5V2-1 / I - / 5 \ n ~ r 

+ [ ( " ; 2 ) - ( " : 3 ) + ( " ; 4 ) •••• ] 

Thus, the limit through prime numbers is 

lim Q(n) = (5 - /5)/10. 
ft i s prime 

In g e n e r a l , for any p o s i t i v e i n t e g e r n = p\l p^ . . . pTJ , one has 

nff(n) - n [ l + l + ( " - 3 ) / 2 + (n " 4 ) / 3 + . • •] 

i= i P i
 l V T i rlA r - 1 / V r - 1 y 

+ . . . + - r - 1 
1 

E - ^ P > E mn/pip* -?-1) 

where the successive terms enumerate sequences having patterns of increas 
multiplicity. 

Let y = (1 + /5)/2, z = (1 - /5)/2. Then 

n#(n) = (yn + sn + n - 1) + £ cKp.) — 
i = l * ?i 

^(z/n/Pi + zn,?i - 1) 

+ ^ Q / n / p * + zn/p' - i ) + . . . + ^ - Q / n / ^ + 3 n / ^ f i - i ; 

+ . E 4><P,Pffl)-^- ^ ( 2 / n / p ' p " + zn/v^ - 1) 
t,m = l 

v?-p 

-'iLm'r).p Tl 

+ &*!!_( n/pfpm + zn/pjp„ _ 1 } 

+ . . . + P ^ p ^ ( y »/?;< K- + z ^ p;- - D" 
n 

I + I I + I I I + . . . 
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Since ^(r)/r < 1 for any positive integer r, and \z\ < 1, we have: 

i i ^ E yn/v- (p. + p 2 + ••• + p p o < E ^ / 2 2 p p ; 
i= 1 ^ ^ i i = l i 

< fy^22n = ({)2nyn'*; 
i = 1 

I H S J C ^ M P . +P| + ••• +?;o(pm +pm
2

 + . . . +Pn'-) 
i * m 

< E z / n / 2 2p p ;2p^ < ^ ^ / 2 4 n = UVnyn/2. 

^ * " ? ^ * 7 7 7 

But for l a r g e n, 
7 J 

E (^ )2Vz^ / 2 < E ( ^ " V 7 2 = 2 V i / n / 2 * ^ V / 2 = ^Q/n)-
i = 0 V W i= 0KZ/ 

So 
n#(n) = yn + o (z / n ) . 

S i m i l a r l y , 

J/(n) = ^=(yn'1 - zn~l) + - ^ E <Kp,) [Q/ n / p * - 1 " s ^ " 1 ) 
/ 5 /5 i= i 

+ ( z / ^ 2 " 1 - zn/pf~l) + . . . + (yn/Pil- l - z^Pi'-1)] 

i J' 
+ 4= E K P - P )i(yn/pipm ~l - zn/PiPm - 1 ) 

v5i,m=l z m 

i*m 

+ . . . + (y n^ll Pmr" - x - z n/P^ K" ~ l) ] + • • - = ̂ -p- + o{yn). 
/ 5 

Thus, we have the following result on the asymptotic proportions of l's in cir-
cular Fibonacci binary sequences. 

lim Q(n) = (5 - /5)/10. 
n -> oo 

The author wishes to thank the referee for his comments and suggestions. 
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Let M be a right angled triangle with legs x and y and hypotenuse z. Then 
x, y 9 and z satisfy x2 + y2 = z2

9 and conversely. If x, y, and z are natural 
numbers, then M is called a Pythagorean triangle and (x, y, z) a Pythagorean 
triple. If the natural numbers x9 y, and z further satisfy (x, y) = 1 or 
(y 3 z) = 1 or (z, x) = 1 (if one of these three holds, then all three hold), 
then M is called a -primitive Pythagorean triangle and (x, y3 z) a primitive 
Pythagorean triple. It is well known [4] that all primitive Pythagorean 
triangles or triples (x, y, z) are given, without duplication, by: 

(1) x = 2uv, y = u2 - v2, z = u2 + v2 or 

x = u2 - v2
 s y = 2uv, s = u2 + i?2, 

where u and V are relatively prime natural numbers of opposite parity and sat-
isfy u > V. Conversely, if u and V (u > v) are relatively prime natural num-
bers of opposite parity, then they generate a Pythagorean triangle according to 
(1) . Every primitive Pythagorean triangle (x, ys z) generates an infinite 
number of primitive Pythagorean triangles, namely (tx, ty, tz) where t is a 
natural number. Conversely, if (x, y, z) is a Pythagorean triangle, then (x/t9 
y/t, z/t) is a primitive Pythagorean triangle provided (xs y) = t . 

We see that the area of a primitive Pythagorean triangle 

(2uv, u2 - V2, u2 + V2), 

where u > V, (u, v) = 1, and u and V are of opposite parity is 

uv(u2 - v2). 

Conversely, a natural number n of the form uv(u2 - V2) with u > V, (us v) = 1, 
and u and V of opposite parity is the area of the primitive Pythagorean 
triangle (2uv, u2 - V2, u2 + V2). 

Definition 1: The area of a Pythagorean triangle is called a Pythagorean number 
and that of a primitive Pythagorean triangle a primitive Pythagorean number. 

From the discussion above, it is clear that if n is a Pythagorean number 
then t2n is also a Pythagorean number for every natural number t . But, if t2n 
is a Pythagorean number, it does not imply that n is a Pythagorean number. For 
example, 84 = 22 • 21 is a Pythagorean number but we shall see shortly that 21 
is not. 

The following is a list of Pythagorean numbers below 10,000. There are 150 
in all, out of which 43 are primitive. The primitive ones are underlined. 
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6, 24, 30, 54, 60, 84, 96, 120, 150, .[80, 210, 216, 240, 270, 294, 330, 

336, 384, 480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 756, 840, 864, 

924, 960, ̂ 90, 1014, 1080, 1176, 1224, 1320, 1344, 1350, 1386, 1470, 1500, 

1536, 1560, 1620, 1710, 1716, 1734, 1890, 1920, 1944, 2016, 2100, 2160, 

2166, 2184, 2310, 2340, 2400, 2430, 2520, 2574, 2646, 2730, 2880, 2904, 

2940, 2970, 3000, 3024, 3036, 3174, 3360, 3456, 3570, 3630, 3696, 3750, 

3840, 3900, 3960, 4056, 4080, 4116, 4290, 4320, 4374, 4500, 4536, 4620, 

4704, 4860, 4896, 4914, 5016, 5046, 5070, 5250, 5280, 5376, 5400, 5544, 

5610, 5670, 5766, 5814, 5880, 6000, 6090, 6144, 6240, 6480, 6534, 6630, 

6750, 6804, 6840, 6864, 6936, 7140, 7260, 7350, 7440, 7560, 7680, 7776, 

7854, 7956, 7980, 8064, 8214, 8250, 8316, 8400, 8640, 8664, 8670, 8736, 

8820, 8910, 8970, 8976, 9126, 9240, 9360, 9600, 9690, 9720 

If P'P^ and P^ stand, respectively for the number of primitive Pythagorean 
numbers and number of Pythagorean numbers in the ith thousand, then we have: 

(P-P<> ^:) (13, 34), (6, 19), (34, 17), (3, 13), (4, 13), 

(3, 13), (2, 12), (5, 10), (2, 13), and (1, 6) 

for i = 1, 2, 10 in order. 

This shows that the distribution of Pythagorean numbers is very irregular. 
From the above table, we see that 

(i) every Pythagorean number is divisible by 6. 

(ii) the unitfs place of a Pythagorean number is 0, 4, or 6. 

(iii) out of the first 150 Pythagorean numbers there are 86 with 0, 31 
with 4, and 33 with 6 in their unit's places. Thus, there are more 
Pythagorean numbers with 0 in their unit's places than with 4 or 6. 
Pythagorean numbers with 4 or 6 in their unit's places occur almost 
the same number of times when we consider all Pythagorean numbers up 
to a given integer. 

We shall see that (i), (ii), and (iii) are facts not accidents. 
We can construct as many primitive Pythagorean or Pythagorean numbers as we 

like. But given a Pythagorean number, we cannot tell or construct the next 
Pythagorean number. We shall give some necessary and sufficient conditions for 
an integer n to be Pythagorean or primitive Pythagorean, but they are not very 
useful for practical purposes when n is very large. 

Theorem 1: A natural number n is Pythagorean if and only if it has at least 
four different positive factors a, b, c, and d such that 

ab = od = n and a + b = c d. 

Proof: Let n be a Pythagorean number. Then 

n = m^uviu2- - v2-) 
where u and v {u > v) are of different parity with (u, v) = 1. Clearly, n has 
four different factors, 

a = mv(u + v), b = mu(u - v), o = mu{u + v), and d = mv(u - v), 
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and they satisfy ab = cd = n and a + b = m(u2 + V2) = c - d. Conversely, let n 
be a natural number with four different positive factors a* b 9 cs and d such 
that ab = cd = n and a + b = c - d. From ab = cd and a + b = c - d, we elimi-
nate d and get 

c2 - a(a + b) - ab = 0. 

Since the discriminant (a + b)2 + kab > (a + b)2 and c is a positive integer, 
we take 

c = |{a + Z? + /(a + b)2 + 4aM. 

For c to be an integer, we must have 

(a + b)2 + 4aZ? = t2 

where £ is a positive integer. The necessary condition is also sufficient. 
Now 

(a + b)2 + 4aZ> = t2 or 2(a + b)2 = £2 + (a - Z?)2 

can be rewritten as 

4(a + Z>)2 = (t + a - b)2 + (t - a + b)2. 

Clearly, t + a - b and t - a + b are both even integers. Therefore, 
ft + a - M 2 /£ - a + 2>\2 7x9 i t + a - b\z it - a + £ y i 

(a + 2»2 = ( ) + ( ~ ) 
I f 

ft + a - b t - a + b\ 
= 777 (-' 2 2 > 

t h e n 7?? d i v i d e s a + b. H e n c e , 

+ b\2 _ It + a - fc\2 / £ - a + 2?\2 
777 / ~ V 2777 / ^ 2777 

Now 

la + /3\2 _ /t + a - b\2 It - a + M 2 
V 777 / ~ V 2777 / + ^ 2m / 

It + a - b t - a + b a + b\ 
V 2777 2777 777 / 

is a primitive Pythagorean triple. Taking 

t + a - Z ? £ - a + 2? 9 9 a + Z? 9 9 = 2uv, = u z - TJ>Z, and = uA + V z
s 

2/77 2777 777 

w h e r e u > V9 (u, v) = 1 , and u and i? a r e of o p p o s i t e p a r i t y , we g e t 

a = m(v2 + uv) 9 b = 7T7(W2 - w v ) , 

c = m(u2 + u v ) , d = m(uv - v2). 

I f we t a k e 

t + a - b 0 r, t - a + b , a + b 9 9 = u z - V , = 2uv, and = wz + V z , 
2777 2777 777 

t h e n 

a = 777(u2 - UV) , Z? = 7??(V2 + WV), 

<? = m(u2 + uv), <i = 7?7(wv - v 2 ) , 
then 

n = ab = m2uv(u2 - v 2 ) , 
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which i s the a r e a of the Pythagorean t r i a n g l e 
(2muv, m{u2 - v2), m{u2 + v2)). 

Hence, n i s a Pythagorean number. We no te t h a t 

a + Z? = c - d = /??02 + v2) 

is the hypotenuse of the Pythagorean triangle with area n. 
Bert Miller [6] defines a nasty number n as a positive integer n with at 

least four different factors a, Z?, c, and d such that 
a + b - c - d and ab = ad = n. 

By Theorem 1, n is nasty if and only if it is Pythagorean. "Pythagorean num-
ber" is a better name for "nasty number." 

Theorem 2: If four positive integers P, s, t , and are such that p, s, and t 
are in arithmetic progression with 777 as their common difference, then n = rstm 
is a Pythagorean number. If s and m are relatively prime and of opposite 
parity, then n is a primitive Pythagorean number. 

Proof: As p, s, and t are in arithmetic progression with 777 as their common dif-
ference, 

n = rstm = v{v + 777) (r + 2m)m. 

Taking 

a = P(P + 777), & = O + 2777)777, C = (P + 777) (P + 2777), d = P777, 

we have four different positive integers a, 2?, c, and d such that 

ab = cd = n and a + Z? = P 2 + 2P77? + 2T772 = c - d. 

Therefore, by Theorem 1, n = PŜ TT? is a Pythagorean number. If s and 777, i.e., 
p + 7?? and 777 are relatively prime and of different parity, we take p + 777 = u, 
m = v and get 

n = uv(u2 - v2) 
where (u, v) = 1, u > V, and u and v are of different parity. Hence, n is a 
primitive Pythagorean number. 

Corollary 2.1: The product of three consecutive integers n, (n + 1), (n + 2) is 
a Pythagorean number. It is primitive only if n is odd. 

Proof: Since n(n + I)(n + 2) = n(n + l)(n + 2) • 1 is the product of three inte-
gers n, n + 1, n + 2 that are in arithmetic progression with common difference 
1, n(n + l)(n + 2) is a Pythagorean number. The triangle is 

{In + 2, n2 + 2n9 n2 + 2n + 2). 

The numbers w + 1 and 1 are always relatively prime. They will be of dif-
ferent parity if and only if n is odd. Hence, n{n + 1) {n + 2) is a primitive 
Pythagorean number if and only if n is odd. 

n 
Corollary 2.2: The number 6^T,k2 i s a primitive Pythagorean number. 

k= 1 
Proof: The number 

n 

6 Yl k = n(n + l)(2n + 1). 
fc* 1 
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Since {n + 1) and n aire r e l a t i v e l y prime and of o p p o s i t e p a r i t y 

1 • (n + 1) (2w + 1) * n 

i s a p r i m i t i v e Pythagorean number, by Theorem 2. 

Corollary 2.3: F2n
F2n + 2F2n + ̂  i s a P y t n a g ° r e a n number where Fn i s t he nth F i b o -

n a c c i number. I t i s p r i m i t i v e i f and only i f F2 + 2 i s even. 

Proof: The F ibonacc i numbers a r e def ined by 

F, = 1, F2 = 1, Fn+l =Fn +Fn_lt n > 2 . 
I t i s w e l l known t h a t 

F0 F0 4-i, = (^9 4 - 9 ) 2 - 1 = (F0 + 9 + D ( ^ 0 4-9 ~ D -
2n zn+H v 2n + 2 7 v 2n + 2 ' v 2n + 2 y 

The re fo r e , 
F2nF2n + 2F2n + k = ^ 2 n + 2 " 1 ^ 2 n + 2 ^ 2 n + 2 + ^ 

= product of three consecutive integers. 

Hence, by Corollary 2.1, it is a Pythagorean number. It is primitive if and 
only if Fr, +2 ~ 1 i-s odd, i.e.,

 F2n + 2 ^s even-

Corollary 2.4: The product of three consecutive Fibonacci numbers F2n>
 F2n+l9 

and F2n + 2 ^s a Pytn ago r e a n number. It is primitive if and only if F2n + l ^s 

even. 

Proof: UseF2„ + 2.F 2 n = (F2n + 1)2 - 1. 

Corollary 2.5: The product of four consecutive Fibonacci numbers Fn, F
n+i» 

F
n + 2> and F + o is a Pythagorean number. It is primitive if and only if F +, 
and F +2 a r e °f different parity. 

Proof: We have 

^ ^ + 1 ^ + 2^+3 = (Fn + 2 " ^ w - l ^ n + 2 ^ + 2 + ^n+l^n+1' 
Since 

^ + 2 -
 Fn+l> Fn + 2> a n d Fn + 2 + ^+l 

are in arithmetic progression with common difference F
n+i> by Theorem 2 

n n + 1 rc + 2 n+ 3 
is a Pythagorean number. Since 

(Fn+1> Fn + 2^ = l j 

^ 2 ^ + 1 ^ + 2^+3 ± S P r i m i t i v e i f a n d o n l y i f F
n+I a n d r̂c + 2 a r e ° f d i f f e r e n t 

parity. 

Corollary 2.6: The product of four consecutive Lucas numbers Ln, Ln + i» ^n + 29 

L + 3 is a Pythagorean number. It is primitive if and only if -^n+1s ^n+2 a r e ° ^ 
opposite parity. 

Proof: The Lucas sequence is defined by 

LQ = 2, Ll = 1, Ln+l = Ln +^,_1, n > 1. 
Since 

LnLn + lLn + ZLn + 3 = ( L n + 2 " ~ L n + l ) L n + 2 ( L n + 2 + L n + P * Ln + l> 
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i t i s a Pythagorean number, by Theorem 2. Since 

( L n + l ' Ln+2) = 1 ? 

it is primitive if and only if L +, and L 2
 a r e °f different parity. 

We have already seen that there are infinitely many Pythagorean and primi-
tive Pythagorean numbers which are products of three consecutive integers. 
Since 

x{x + l)(x + 2)(x + 3) 

is always Pythagorean if either x or x + 3 is a square, we have an infinite 
number of Pythagorean numbers which are products of four consecutive integers. 
Now a natural question is: 

Do we have infinitely many Pythagorean and primitive Pythagorean 
numbers which are -products of two consecutive integers'7. 

The following theorems give affirmative answers to our question. 

Theorem 3: There are infinitely many Pythagorean numbers which are products of 
two consecutive integers. 

Proof: Let 

n = a2(a2 - l)a2(a2 + 1), a > 1. 

Since (a2 - l)a2(a2 + 1 ) is a product of three consecutive integers, it is a 
Pythagorean number, by Corollary 2.1. The product of a Pythagorean number and 
a square number is always Pythagorean. Thus, 

n = a2{a2 - l)a2(a2 + 1) 

is Pythagorean. Since n = a^(a^ - 1), it is a product of two consecutive inte-
gers. 

Again, let 

n - fl2(?ijLl)(^JLi)(a2 _ 2) 

where a is an odd natural number > 1. Since 1, (a2 - l)/2, a2 ~ 2 form an 
arithmetic progression with common difference (a2 - 3)/2 and a is odd, 

(a2 - 3\/a2 - 1\, o 

is Pythagorean, whence, 

3\/an ,2 

is Pythagorean. But 
/a1* - 3a2\/a^ - 3a2 \ 

n - \~T-)(—l— + ') 
is a product of two consecutive integers. 

Theorem 4: There are infinitely many primitive Pythagorean numbers which are 
products of two consecutive integers. 

Proof: Consider the product number FnFn+ lFn + 2Fn+ 3 where Fn is the nth Fibonacci 
number and Fn+l, Fn+2 are of opposite parity. By Corollary 2.5, FnFn+lFn+2Fn+3 
is a primitive Pythagorean number. Since FnFn+3 = Fn+lFn+2 + (-l)n, 
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FnFn+lFn + ZFn + 3 ~ Fn+lFn+2^Fn + lFn+2 + ^ ^ ) 

is a product of two consecutive integers. 

Although there are infinitely many Pythagorean numbers which are products 
of (a) three consecutive integers, (b) two consecutive integers, there are only 
two Pythagorean numbers 6 and 210 which are simultaneously products of two as 
well as three consecutive integers [7]. 

Theorem 5: Every Pythagorean number is divisible by 6. 

Proof: Every Pythagorean number n is of the form m2uv(u2 - V2) where u > V, (u, 
V) = 1 and u and V are of opposite parity. Since u and v are of opposite 
parity, n is already divisible by 2. We show that n E 0 (mod 3). Since, by 
Fermatfs little theorem u^ E u (mod 3) and f3 E v (mod 3), 

n = m2uv(u2 - V2) = m2(u^v - uv^) E m2(uv - uv) = 0 (mod 3). 

Corollary 5.1: No Pythagorean number except 6 is perfect. 

Proof: By Theorem 5 every Pythagorean number n is divisible by 6. So 

n E 0, 3, or 6 (mod 9). 

As every Pythagorean number is even, no odd perfect number (the existence or 
nonexistence of which is an open problem) can be a Pythagorean number. The 
number 2n-1(2n - 1) when n and 2n - 1 are primes is an even perfect number and 
every even perfect number is of this form [4] . It is an easy exercise to see 
that every even perfect number except 6 is congruent to 1 (mod 9). Therefore, 
no even perfect number > 6 can be Pythagorean. Thus, 6 is the only number that 
is both Pythagorean and perfect. 

By Bertrand!s postulate [4] there is a prime number between n and In for 
every integer n > 1. The following theorem shows that we can have a similar 
result for Pythagorean numbers. 

Theorem 6: For every integer n > 12 there is a Pythagorean number between n 
and 2n. 

Proof: The number 24 does the job for 13 < n < 23, 30 does the job for 24 < n < 
29, and 54 does the job for 30 < n < 53. We see that 

6(t + l) 2 < 12t2 for t > 3. 

Therefore, the Pythagorean number 6(t + I)2 lies between 6t2 and 12t2 . Thus, 
6(t + l) 2 does the job for 

6t2 < n < 6(t + I) 2 - 1 for t > 3. 
Since 6t2 is Pythagorean for every positive integer t , there is a Pythagorean 
number between n and In for every n > 12. 

We know that if n is Pythagorean then t2n is Pythagorean for every natural 
number t. If n and tn are both Pythagorean, then it follows easily that t n is 
Pythagorean for every positive integral exponent 77? . Thus, 5m * 6, 2m * 30, 
lm • 30 are Pythagorean for every positive integral exponent 7?7. Hence, there 
are an infinite number of Pythagorean numbers of the form 10/C* If t = 10s + 2 
or 10s + 3, then 6t2 = 4 (mod 10). Since 6t2 is Pythagorean for every positive 
integer t, we have an infinite number of Pythagorean numbers of the form 
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10k + 4. Similarly, for t = 10s + 4 and t = 10s + 6, we have 6t2 E 6 (mod 10), 
whence there are an infinite number of Pythagorean numbers of the form 10k + 6. 
Thus, we have 

Theorem 7: There are infinitely many Pythagorean numbers of the form (i) 10k 9 
(ii) 10k + 4, and (iii) 10k + 6. 

The next theorem shows that every Pythagorean number is of the form 10k, 
10k + 4, or 10k + 6. 

Theorem 8: No Pythagorean number can have 2 or 8 in its unit's place. 

Proof: As every Pythagorean number is divisible by 6, it can have 0, 2, 4, 6, 
or 8 in its unit's place. We shall show that it can have only 0S 4, or 6 in 
its unit's place. Every Pythagorean number is of the form t2uv(u2 - V2) where 
t9 u, and v are natural numbers with (u, v) = 1, u > V, and u and v are of 
opposite parity. It is an easy exercise that number n is the area of the 
Pythagorean triangle 

(2tuv, t(u2 - v2), tin2 + v2)). 
A Pythagorean triangle has one of its sides divisible by 5. If one of the legs 
or t is divisible by 5, then n is divisible by 10 and, hence, has 0 in its 
unit's place. Now suppose that neither t nor one of the legs is divisible by 
5. Then u t 0 (mod 5) , V 1 0 (mod 5), and u2 - V2 £ 0 (mod 5), but then u2 + 
V2 E 0 (mod 5). As u2 + V2 is odd, we have u2 + V2 = 5 (mod 10). Now, con-
sidering modulo 10, we have 

(u, v) E (1, 2), (1, 8), (2, 1), (2, 9), (3, 4), (3, 6), (4, 3), 
(4, 7), (6, 3), (7, 4), (7, 60, (8, 1), (8, 9), (9, 2), 
and (9, 8). 

For every (u, v) written above, uv(u2 - V2) = 4 or 6 (mod 10). If t i 0 (mod 
5), then t2 E 1, 4, 6, 9 (mod 10) and t2uv{u2 - V2) can have only 4 or 6 in its 
unit's place. Thus, every Pythagorean number can have 0, 4, or 6 in its unit's 
place. 

Corollary 8.1: No four Pythagorean numbers can form an arithmetic progression 
with common difference 6 or 24. 

Proof: We shall prove the corollary for the common difference 6. The proof for 
the common difference 24 is analogous. We show that n, n + 6, n + 12, and n + 
18 cannot be simultaneously Pythagorean. The number n being Pythagorean, it 
must have 0, 4, or 6 in its unit's place (Theorem 8). If n has 0 in its unit's 
place, then n + 12 will have 2 in its unit's place. So n + 12 cannot be 
Pythagorean. If n has 4 in its unit's place, then n + 18 cannot be Pythago-
rean. If n has 4 in its unit's place, then n + 18 cannot be Pythagorean by the 
same argument. If n has 6 in its unit's place, then n + 6 will have 2 in its 
unit's place. So n + 6 cannot be Pythagorean. Therefore, n, n + 6, n + 12, 
and n + 18 cannot be simultaneously Pythagorean. 

Arguing as above, we have 

Corollary 8.2: No three Pythagorean numbers can form an arithmetic progression 
with common difference 12 or 18. 

It is clear that for any a.p. series of Pythagorean numbers with common 
difference d and of length L we have an a.p. series of Pythagorean numbers of 
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length at least L with common difference dt2, t an integer. 

Conjecture 1: The numbers n, n + 6, and n + 12 cannot be simultaneously 
Pythagorean. 

Conjecture 2: The numbers ns n + 24, and n + 48 are simultaneously Pythagorean 
if and only if n = 6. 

We note that if Conjecture 2 is true then Conjecture 1 is true. Suppose n9 
n + 6, and n + 12 are simultaneously Pythagorean, then 4n, 4n + 24, and kn + 48 
are Pythagorean. If Conjecture 2 is true, then kn = 6 , which is nonsense. So 
Conjecture 1 is true. We see from our list of Pythagorean numbers that 120, 
150, 180, 210, 240, 270 form an a.p. series with common difference 30. It has 
length 6. From this a.p. series, we can construct an a.p. series of length at 
least 6 with common difference 30t2 , t a positive integer. For example, 480, 
840, 960, 2080 is an a.p. series with common difference 120. 

Problem 1: What can be the maximum length of an a.p. series all of whose terms 
are Pythagorean numbers? 

If two Pythagorean numbers are 6 apart, then we call them twin Pythagorean 
numbers like twin primes. For example, twin Pythagorean numbers below 10,000 
are: 

(24, 30), (54, 60), (210, 216), (330, 336), (480, 486), (540, 546), 
(720, 726), (750, 756), (1710, 1716), (2160, 2166), (8664, 8670), 
(8970, 8976). 

Although we do not know whether the number of twin primes is finite or infinite 
we do have a definite answer for the twin Pythagorean numbers. 

Theorem 9: The number of twin Pythagoreans is infinite. 

Proof: Since 6 and 30 are Pythagorean numbers, 6x2 and 30y2 are Pythagorean for 
all integral values of x and y, 6X2- and 30z/2 are twin if 

6x2 - 30z/2 = ±6 or x2 - 5y2 = ±1 . 
The pellian equation x2 - by2 = -1 has fundamental solution 

ul + v l ^ = 2 + /5. 

All solutions of x2 - 5y2 = -1 are given by 

(2 + /5) 2 l = u2 1 + vz 1/5. 

Again, all solutions of x2 - 5y2 = 1 are given by 

(2 + /5) 2 = uz + v2 i/5. 

We have the recurrence relation 

u. n + 2 = 4 w n + l + Un> Vn+2 = kVn+\ + Vn w i t h 

2, Vn = 1. Ul = ^ 5 V1 = ^ 5 u2 ~ ^' u2 

The first few solutions for x2 - 5y2= ±1 are (1, 0), (2, 1), (9, 4), (38, 17), 
(161, 72) etc. They give us, respectively, twin Pythagorean numbers (6, 0) , 
(24, 30), (486, 480), (8664, 8670), (155526, 155520). 

Since we have an infinite number of solutions for each of the equations 

x2 - 5y2 = -1 and x2 - 5y2 = 1, 
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we have an infinite number of twin Pythagorean numbers. For Pellfs equation, 
one can refer to [8]. 

Since 6 and 60 are Pythagorean, 6x2 and 60y2 will be twin Pythagorean if 

6x2 - 60y2 = ±6 or x2 - I0y2 = ±1. 

All solutions of x2 - I0y2 = ±1 are given by 

un + /I(h;n = (3 + /T0) n; 

n is even for x2 - I0y2 = 1 and odd for x2 - I0y2 = -1. The solutions satisfy 
the recurrence relation 

Un + 2 = 6un + l + Un a n d Vn + 2 = K + l + Vn w i t h 

ui = ^9 vi = 0» ^2 = 3, t>2 = 1. 

The first solutions are: (1, 0), (3, 1), (19, 6), (117, 37). They give us, re-
spectively, (6, 0), (54, 60), (2166, 2160), (82134, 82140). We again have an 
infinite number of Pythagorean twins from the solutions of the equations 
6x2 - 60y2 = ±6. 

Definition 2: A Pythagorean number n is called independent if it cannot be ob-
tained from another Pythagorean number m by multiplying it by t2, where £ is a 
natural number. For example, 6 is independent, while 24 is not. 

It follows from Theorem 1 that for an integer to be an independent Pythago-
rean number, it is necessary that it should be primitive. The following 
example shows that the necessary condition is not sufficient, and hence C. K. 
Brown1s statement [2] is incorrect. 

Consider the number 840. It is primitive because it is the area of a 
primitive triangle (112, 15, 113). It is also four times the area of another 
primitive triangle (20, 21, 29). Hence, 840 is primitive but not independent. 

Theorem 10: There are an infinite number of primitive Pythagorean numbers 
which are not independent. 

Proof: Consider the number n given by 

n = (18k2 + Ilk + 2)(6^2 + Mi + l)(24k2 + 16k 4- 3) (12k2 + 8k + 1), 

where k > I. Let 

u = 18k2 + 12k + 2 and v = 6k2 + 4k + 1. 

Now u is even, v is odd, and (u, v) = 1 with u > V. So n = uv(u + v)(u - v) is 
the area of a primitive Pythagorean triangle, and hence n is a primitive 
Pythagorean number. Again n can be written as 

n = (3k + l)2(12k2 + 8k + 2)(24k2 + 16k + 3)(12k2 + 8k + 1) 

= (3k + l)2n', 

where n' is of the form a(a + I)(2a + 1) where a = 12k2 + 8k + 1. So n! is 
primitive Pythagorean by Corollary 2.2. If k > 1, n is not independent. 

We give two more examples for the above fact. 

Example 1: 

n = (18k2 + 24k + 8)(6k2 + 8k + 3)(24k2 + 32k + 11)(12k2 + 16k + 5), k > 1, 

= (3k + 2)2(12k2 + 16k + 6)(24k2 + 32k + 11)(12k2 + 16k + 5) 
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Example 2: 

n = (6k + 2)(2k + I)(8k + 3) (4fc + 1) with k > 1 and 3k + 1 = s2, 

= (3fc + l)(4fc + 2)(8k + 3) (4k + 1). 

Problem 2: Find a sufficient condition for an integer n to be an independent 
Pythagorean number. 

Definition 3: A natural number n is called a twice (thrice) Pythagorean number 
if it can be the area of two (three) different Pythagorean triangles. 

Since by Theorem 10 we have infinitely many primitive Pythagorean numbers 
which are not independent we have an infinite number of twice Pythagorean num-
bers . The number n = 840 is a thrice Pythagorean number because n is the area 
of three Pythagorean triangles (40, 42s 58), (70, 24, 74), and (112, 15, 113). 
Hence, 840t2 is triply Pythagorean for every natural number t . 

Some positive integers are twice primitive Pythagorean. There are three 
such numbers below 10,000. They are 210, 2730, and 7980. For example, (i) 
n = 210 is the area of two primitive Pythagorean triangles (12, 35, 37) and 
(20, 21, 29), (ii) n = 2730 is the area of two primitive Pythagorean triangles 
(28, 195, 197) and (60, 91, 109), and (iii) n = 7980 is the area of two primi-
tive Pythagorean triangles (40, 399, 401) and (168, 95, 193). 

To find all positive integers n which can be the area of two primitive 
Pythagorean triangles is an interesting problem which, to the best of our 
knowledge, has escaped the notice of mathematicians so far. 

Problem 3 

Problem 4 

Problem 5 

Find all positive integers n which are twice primitive Pythagorean. 

Is there an integer n which is thrice primitive Pythagorean? 

Let m be the maximum number of Pythagorean triangles having the 
same area. Can we say something about 772? 

Definition 4: A powerful number [3] is a positive integer n satisfying the prop-
erty that p2 divides n whenever the prime p divides n, i.e., in the canonical 
prime decomposition of n, no prime appears with exponent 1. 

Definition 5: A number is powerful Pythagorean if it is powerful and Pythagorean. 

Theorem 11: A Pythagorean number is never a square. 

Proof: If possible, let m2uv(u2 - V2-) = s2 where (u9 v) = 1, u > V, and u and v 
are of opposite parity. Then 

S2 
UV(U - V) (U + V) = —~ = S f2 

mA 

yields 
u = a2, v = b2, u - v = c2

9 and u + v = d2
9 

where a, b9 c, and d are natural numbers. Now we have 

a 2 _ h2 b2 = c2 and a2 + b2 = d2, 

which is impossible [4]. if (u, v) = 1 and uv(u - v)(u + v) = sk, then there 
exist natural numbers a, b9 c, and d such that 

u = ak, v = bk, u - v = ck> and u + v = dk, 
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whence eft + b^ = d^. A primitive Pythagorean number is never a kth power of an 
integer if Fermat's last theorem is true for the exponent k (i.e., x^ + yk = z^ 
has no nontrivial solution)„ 

Theorem 12: There are infinitely many powerful Pythagorean numbers. 

Proof: If n is Pythagorean, then t2n2m+^ ±s powerful Pythagorean for every pos-
itive integer t and m. 

The smallest powerful Pythagorean number is 63 = 216. Some other powerful 
Pythagorean numbers are t2 • 63, t2 • 2m • 303, t2 • 5m • 63, t2 • lm > 303. 

Theorem 13: There is no Pythagorean number in the Lucas sequence. 

Proof: A Pythagorean number is divisible by 6 and has 0, 4, or 6 in its unit's 
place. For the nth Lucas number to be Pythagorean, it is necessary that Ln = 0 
(mod 6) and Ln E 0, 4, or 6 (mod 10). We consider the Lucas sequence modulo 6 
and modulo 10 separately. 

Modulo 6 the Lucas sequence is 

<2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5>2,1,3,... . 

Its period is 24. We have 

L2^k+6 E °  (mod 6^ a n d L2^k+18 ~ °  (mod 6^' 
Modulo 10 the Lucas sequence is 

<2,1,3,4,7,1,8,9,7,6,3,9>2,1,... . 

Its period is 12 and 

L2kk + 6 = L12fc'+6 ~ 8 ( m ° d 10)' 
L 2 ^ + 18 = L12(2k + l)+6 E 8 ( m o d 10)' 

The Lucas numbers that are divisible by 6 have 8 in their unites place; there-
fore, they cannot be Pythagorean. 

Conjecture 4: There is no Pythagorean number in the Fibonacci sequence. 

We shall discuss the problems and conjectures in this paper and other 
interesting questions on Pythagorean numbers in a future paper. 
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1. In [1] i t i s shown t h a t t h e r e e x i s t s a " f r i e n d l y - p a i r " of m u l t i p l i c a t i v e 
f u n c t i o n s {/, g} such t h a t 

(1 .1 ) / ( n a ) = g(n), g(n*) = / ( n ) , f(n)g(n) = 1 
for a fixed integer a > 2. It is clear that / and g must satisfy the function-
al relation, 

(1.2) F(na ) = F(n) for all natural numbers n. 

Hence, it is natural to examine whether pairs of functions {/, g}, not neces-
sarily multiplicative, exist so that 

(1.3) f(na) = g(n), g(n&) = f(n) 
for a given pair a, $ > 1. Relation (1.3) implies that f and g must both sat-
isfy the following functional equation where v = a • 3-

(1.4) F(nr) = F{n) M n e M (the set of all natural numbers). 

Conversely, If F satisfying (1.4) for some v exists, then for any factorization 
of v as a • 3 we could define 

(1.5) f(n) = Fin), g(n) = F(na) so that g(n$) = f(n) 

and so / and g satisfy (1.3). N.B. If r is prime, then both f and g are the 
same as F defined by (1.4). 

Thus, it suffices to look for arithmetic functions F that satisfy what may 
be called the "power-periodicity" expressed in (1.4). 

2. A complete characterization of such a power-periodic function F is more 
straightforward than when F is required to be multiplicative: Given a natural 
number r > 1, define F(jn) arbitrarily for every m that is not an rth power of a 
natural number. Every natural number n that is an rth power is uniquely ex-
pressible as 

(2.1) n = mr%, m a non-rth power and i a natural number. 

So F(n) with power-period v is easily characterized by its values at non-pth 
powers. 

3. Suppose F is required to be multiplicative. Then (1.4) implies: 

(3.1) UF(pra) = EF(pa) where n = Epa 

p\n p\n 
in the standard form of unique factorization into powers of primes. Writing 
F(pa) as Gp(a) and considering G as an arithmetic function of a9 we are led to 
the following property of G that would suffice to ensure the power-periodicity 
of F. 

Define a "multiplicatory-periodic" arithmetic function with period r by the 
relation 
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(3.2) G{vn) = G(n) for all n and a given integer v > 1. 

An infinity of such functions G exists. For we can define G{m) arbitrarily for 
every m that is not a multiple of r, and then every n that is a multiple of r 
can be uniquely expressed as 

(3.3) n = m • vi where v\m and i > 1. 

Taking a countable infinity of such functions G and labelling each of them 
with a unique prime number suffix p, se/t-lip a function F(n) defined as 

(3.4) F(n) = II G (a) when n = lip in the standard form. 
p \ n 

It is easily found that this F satisfies (1.4). 

4. We are, in turn, led to finding multiplicative functions that have a multi-
plicatory-period as defined in (3.2). In such a case 

(4.1) YlG(pa+i) = Il£(pa), n = Upa
9 r = FI pS 

where p runs through all the primes so that a, i > 0. Writing G(pa) as Hp(a), 
we see that a sufficient condition for (4.1) to hold is that #p be periodic in 
a with period i (in the normal sense of periodicity). That is, for every prime 
p and the corresponding i such that 

(4.2) p z \ r , p'l + l\v 
we should have 

(4.3) Hp(a + i) = Hp(a) V a e i . 

A function Up {a) satisfying (4»2) and (4.3) can be easily constructed by 
(i) defining Hp(o) as an arbitrary function of the prime argument p and (ii) 
further defining arbitrary values for H(a) for the values of a in the interval 
0 < a < i , where i is the unique integer corresponding to p given by (4.2). 
These arbitrary values completely determine the values of Hp(a) for every prime 
p and every nonnegative integer a, in order that (4.2) and (4.3) hold. Hence, 
a function G defined by 

(4.4) G(n) = II H (a), n = 11 pa, 
p p 

where p is a variable prime, is multiplicative and multiplicatory-periodic with 
n as that period. 

5. Special Solutions 

The preceding general solution notwithstanding, the particular pairs of 
functions given in [1] are still of interest. They show how certain simple 
expressions of known arithmetic functions exhibit the power-periodic relation 
(1.4), and hence generate friendly-pairs. 

The two instances given in [1] actually can be shown to be representatives 
of two classes of such arithmetic functions. 

Write P-periodic for power-periodic, which is the property expressed by 
(1.4) and M-periodic for the multiplicatory-periodic property expressed in 
(3.2). 

Class I: 

Consider the mth r o o t of u n i t y , oo = exp(27ri//??) for a g iven m > 1. Obviously 

(5 .1 ) k = 1 (mod m) => ukr = oor. 
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That i s , top as a function of r is M-periodic with k as an M-period. Construct 
the multiplicative fin) defined by i t s values for powers of primes as fipr) = 
u>r. Clearly* fin) = ojfi(n) where Q, in) is the total number of prime divisors, 
repetition reckoned, in the factorization of n. I t is also clear that fin) is 
P-periodic, with P-period k9 i . e . , f(n^) = fin) V n e M. 

When k happens to be a square, say k = a2, we have 

fin*) = g{rC)9 gin*) = fin). 

In the first friendly-pair given in [1], m is taken as a + 1 so that a = -1 
(mod 77?), so ooaP = ooT and hence fin)gin) = 1. 

Class II: 

The concluding pair of functions given in [1], "friendly" except for the fact 
that they are not reciprocals of each other, is 

(5.2) fin) = Z yW); gin) = £ yW) 
so that 

(5.3) fin1) = gin); gin1) = fin); fin)gin) = 1 if n is a cube 
= 0 if not. 

The summand u is the Mobius function. The first summation Is over divisors d 
of n such that nId is a perfect cube. The other summation is over the divi-
sors d of n such that d2\n and n/d1 is a perfect cube. 

The general class, of which the given example turns out to be representa-
tive, is given below. 

Take a multiplicative function c(ri) that vanishes when n is divisible by an 
pth power (for a fixed r) . There are infinitely many such functions, since 
cipx) can be defined arbitrarily for every prime p and 1 < X < r - I. Set 

(5.4) Fin) = X cid) and Gin) = £ c(d) 

where r and c are as just assumed and £ is any integer such that 

3 k: kl = 1 (mod r). 

The summations are over divisors d of n such that n/d is an rth power in the 
first case and dl\n and n/d1 is an rth power in the second case. 

F and G can be proved to be multiplicative. Define 

(5.5) Trin) = 1 if n is an rth power 
= 0 if not. 

Observe that Tr(n) is multiplicative. F and G can now be written as divisor-
convolution products. 

(5.6) Fin) = Y,eid)Trin/d) and G(n) = £ c ( d 1 / £ ) ^ (d)Tr (n/d), 

where, in the second summation, o is understood to be zero when d}^1 is not an 
integer. Such convolution products of multiplicative functions are multi-
plicative. Hence, F and G are multiplicative and are consequently character-
ized by their values for powers of primes. For every prime p > 2 and a > 1, we 
have, by virtue of (5.6), 

Min(r- 1, a) 
(5.7) F(p«) = £ cipl)T (pa-^), 
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where t!Minfl deno tes t h e minimum v a l u e from among t h e arguments w i t h i n t he 
p a r e n t h e s e s . By the n a t u r e of t he func t i on TT, i t i s c l e a r t h a t a l l t he terms 
but one on the r i g h t - h a n d s i d e of (5 .6 ) have to be z e r o . The r e s u l t i s t h a t 

(5 .8 ) F(pa) = c(pamod p ) , 

where fla mod r" stands for the remainder left when a is divided by r. 
If k and I are two integers such that kl = 1 (mod v), then 

(5 .9 ) F(pkla) = c(pkla mod r ) = c ( p a m o d p ) 

which, by (5 .8 ) = F ( p a ) . 
Hence 

(5 .10) F(nkl) = UF(pkla) [where n = Iipa~\ 
p \ n *- -» ' 

= II F(pa) = F(n). 

That is, F defined in (5.4) is P-periodic, with kl for a P-period. So, if we 
set F(nk) = G"k (n) , then G* in1) = F(ri) . We prove below that G* is the same as G 
defined in (5.4). 

Min(r - 1, fca) 

(5.11) F(pka) = £ c(pt)Tr(pk«-t). 
i= 0 

Now note that 

(5.12) Tp(p^'i) = ^(p^Ca-U)) 

since the indices on both of the sides differ by a multiple of r and Tr is not 
affected thereby. 

Using (5.11) and (5.12), we deduce 

(5.13) F(nk) = I\F(pka) where n = FIpa in the standard form 
P 

= II [Tr(pka) + c(p)Tv(pk^-^) + c(p2)Tr(pk^-2^) 
V 

+ ... until the index on p becomes negative] 

2 G(d) (multiplied out) 
dltT = n 

which = G{n) as defined. 

6. Three Points and an Open Problem 

Before concluding, we make three observations and indicate a promising problem. 

Note (i): Pair-wise "friendliness" being found only on off-shoots of power-
periodicity, one could study friendly-pairs defined on the basis of M-periodi-
city and normal periodicity also: Say 

(6.1) f{kn) = gin), g{ln) = fin), so that 

fikin) = fin) and gikln) = gin); 

(6.2) fin + k) = gin), gin + I) = f{n), so that 

fin + k + I) = fin) and gin + k + £) = gin) . 
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The former of these cases does not appear to be as trivial as the latter, as 
seen from the construction of M-periodic functions given earlier. 

Note (ii): The definitions of P- and M-periodicities, leading to interesting 
consequences in the case of arithmetic functions, would seem to degenerate into 
trivialities in the case of functions of a continuous variable. 

For instance, defining f(kx) = f(x) for all real x or f(xk) = f(x) for all 
real x leads only to f being a constant, if / is to be continuous at zero in 
the first case and at one in the second case. 

Note (iii): Why pairs only? one could ask for r-tuples of functions f.s 0 < i < 
n - 1, satisfying the mutual relation* 

(6.3) f.(n (•) kt) = fi+lmodP(n), 
where (°) stands for multiplication or "to the power of." Obviously, every f. 
is "0) "-periodic; with f\ki for a "(•) "-period. 

i 
Note (Iv): In the case of normal periodicity it is well known that if k is a 
period then there is a divisor of k that is the minimal period (considering 
arithmetic functions), and a function cannot have more than one fundamental 
period. That is not true for M- and P-periodic arithmetic functions. It 
appears promising to study the set of integers 

{kvlsi r, s em + {0}} 
for a given pair of natural numbers k and £. 
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One of the beauties of mathematics is i ts consistency. To find, serendi-
pitously, a verification of a result from an area other than the one being 
studied is an unexpected bonus. One such bonus is a proof of the Fibonacci 
identity 

(^ fn+2 = fi+lfn-i + fi + 2fn-i + l> X ~ i ~ U ' 2 

which arose during a count of maximal independent sets in trees. 

Firstj we need some definitions from graph theory [1]. 

A graph G is a nonempty finite set of points, or vertices, V, along with a 
prescribed set E of unordered pairs of distinct points of 7, called edges. We 
write G = (7, E). 

If two distinct points, x and y, of a graph are joined by an edge, they are 
said to be adjacent, and we write x adj y. 

A walk of a graph G is a finite sequence of points such that each point of 
the walk is adjacent to the point of the walk immediately preceding it and to 
the point immediately following it. If the last vertex of the walk is the same 
as the first, the walk is closed. If a closed walk contains at least three 
distinct points and all are distinct except the first and last, then we have a 
cycle. A graph is acyclic if it contains no cycles. A walk is a path if it 
contains no cycles. A walk is a path if all the points are distinct. 

A graph is connected if every pair of points is joined by a path. 

A tree is a connected, acyclic graph. 

The degree of a point V in G, denoted deg v, is the number of edges inci-
dent with v, 

An endpoint or end vertex or leaf of a tree is a vertex of degree one. 
(Every tree has at least two endpoints.) An interior point of a tree is any 
vertex with a degree greater than one. 

An independent set for graph G is a set of vertices with the property that 
no two vertices in the set are adjacent. 

A maximal independent set (MIS) of G is an independent set which is con-
tained in no other independent set of G. 

FIGURE 1 
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For the tree in Figure 15 {15 3, 6} is an independent set; {1, 3, 6, 7} and 
{2, 4, 5} are maximal independent sets. Note that not all maximal independent 
sets are the same size, Also note that any vertex v is either included in a 
given maximal independent set or adjacent to a vertex in that maximal inde-
pendent set* 

It was hoped that the number and sizes of maximal independent sets would be 
a key to the structure of a tree. Although that was not the case, it was while 
counting the maximal independent sets of a narrow class of trees that the 
counterexample was found, along with the Fibonacci identity (1). 

Let T be a tree with n vertices. Let p(T) be the tree obtained by adding 
one edge and one end vertex to each vertex of T. Then p(T) has In vertices, 
and is called the expanded tree of T, and T is the reduced or core tree of 
p(T) , The expanded tree has exactly n end vertices. If T is a tree with In 
vertices and exactly n end vertices, then each of the end vertices (with its 
adjoining edge) can be removed to obtain the core tree, which we call p-1(T). 
Figure 2 shows a core tree with its expanded tree. The added vertices are 
circled. 

p(T) 

FIGURE 2 

If e is an endpoint of tree T which is adjacent to a vertex x of degree 2, 
call e a remote end vertex. 

Now consider only the set of trees that are expanded trees of n-paths, n = 
1, 2, 3s ... . Let us count the number of maximal independent sets for each of 
these trees. 

Let MT = the number of maximal independent sets of T. 

Let T be the expanded tree of an n-path. For each vertex V in T9 define 
X(v) to be the number of maximal independent sets of T that contain v. If V is 
an interior point (i.e., not an endpoint) and if W is the endpoint adjacent to 
Vi then 

X(v) + X(w) = MT, 

since every maximal independent set must contain either V or w. In particular, 
if e is a remote end vertex and e adj x, then 

X(e) + X(x) = MT. 

If x adj y9 y * es then 

X{y) + X{x) = X(e), 
since e belongs to every MIS containing y9 and if a MIS S contains x, then (S -
{x})u{e}is also a MIS of the proper size, and these are the only MISTs that 
could possibly contain e. 
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FIGURE 3 

By combining these two equalities, we find that MT = X(y) + 2\(x). 

The following proposition states some more facts about relationships among 
A-numbers* 

Proposition 1: Let T be an expanded tree that looks like the tree in figure 4; 
that is, e is a remote end vertex, e adj x, x adj y, y * e, z^ is the end 
vertex adjacent to y, z2 adj y, z2 * Z\, z2 * x9 and z$ is the end vertex adja-
cent to z2» The structure of the rest of T (which is attached at z2) does not 
matter. 

T: 

FIGURE 4 

Then: 

(i) A0 3) = 3A(i/), so that A(s3) is divisible by 3; 

(ii) AOsi) = 2X{y) + X(z2); 

(iii) X{z2) is even; 

(iv) \{z\) is even; 

(v) X{y) and MT have the same parity; 

(vi) X(v) is independent of the number of remote end vertices attached to v 
for any v £ T that is an interior point. 

In addition, 

(vii) X{e) = MT„{eiX]. 

Proof: 
(i) For every MIS S containing y, s3 € S, S - {y} U {s^}, 

S - {y, e} u {zi9 x}, 
so A(s3) = 3A(z/), and 3 divides A(s3). 

(ii) This can be proved in two ways: 

(a) MT = X(z2) + X(z3) = X(z2) + 3X(y) by (i); 

MT = AQ/) + \{zi). 

The difference of these two equations is 

0 = 2AQ/) + X(z2) - X(Zl) 
or 

X(zx) = 2A(z/) + X(z2), 
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(b) For every MIS S c o n t a i n i n g y, 

%i e S - {y, e} u {x, z\} 
and 

si e s - iy} u {̂ i}» 
%i is also in every MIS containing z2. 

(iii) Let T± be the part of T containing es xs y5 Z\9 z2* S3, and 

T2 = (T - Tx) u {s 2}. 

A(^2) = (number of MISfs in T]_ containing z2) x (number of MIS?s in ̂F2 
containing s2) = 2 x (number of MIS?s in T2 containing s 2 ) 9 The two 
sets in T]_ are {2]_3 32s e} and {s]_3 s2, x}. Thus, 2 divides A(s2). 

(iv) follows immediately from (ii) and (iii); and (v) follows from (iv) and 

MT = X(y) + X(zi). 
(vi) Let el5 e2s .,», efe be the remote end vertices attached to some interior 

point v in T9 with e\ adj x ^ xi adj y, i = 1, 2, OB,s L Then every 
MIS containing v must also contain all the e^'s, and if a MIS contains 
even one xi , then 1? is not a member of that set, Thus, X(y) is not 
affected by the size of k» 

(vii) Let. XF(v) be the number of MIS?s containing v In T - {e, x}3 for any ye 
T - {g, x}. 

and 

so 

so 

He) 

X(x) 

t h a t 

2X(e] 

He) 

a l s o 
MT = 

+ X(x) •• 

+ A(z/) = 

) = MT + 

My + 
2 

2MT-{B, 

= MT 

= He) 

Hy) 

X(y) 
3 

x] - X 

(2) 

x'Q/) 
since for every MIS S in T - {e, x} we have, in T, the MIS 5 u {e} and 
the MIS S u {re}, except when S contains y. 

But (vi) implies that X{y) = X r(y) , so 

XQ/) = A'Q/) = ZMT-{e,x) " ̂ V <3> 
(2) and (3) lead to 

X(e) = MT-{e,x}° 

Now to determine MT: The expanded trees of n-paths have exactly two remote 
end vertices. 

ran: 
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We will call the central n - 2 points of the core tree the central path, and 
will find the A-numbers for all points of the central path, as well as for the 
nonremote end vertices. 

Starting at the right-hand end of the central path, we label each vertex of 
the central path and each corresponding end vertex with the number of maximal 
independent sets containing the point that include only points that have been 
previously labeled, or points only "to the right" of the given point. Points 
"to the right" of an end vertex shall include the point in the core tree to 
which it is connected. These labels will be elements of the Fibonacci sequence 
(1, 1, 2, 3, 5, 8, ... is the Fibonacci sequence, where the nth term, fn, 
equals the sum of the two previous terms: fn = fn_l + fn-7) ' 

Since a vertex in the central path is contained in exactly the same number 
of maximal independent sets to its right as the most recently labeled end ver-
tex, its A-number will be the same as the label of that end vertex. (Note that 
because of the order of labeling described above, these two points are not 
adjacent.) 

Since any end vertex can be added to a MIS containing the most recently 
labeled end vertex (to the right) or to a MIS containing the vertex in the 
central path adjacent to the most recently labeled end vertex, the label of the 
end vertex in question will be the sum of the labels of those two previously 
labeled vertices. 

Then since the farthest remote end vertex to the right and the point adja-
cent to it can each only be in one MIS to the right, we see (refer to Fig. 5) 
that the labels of the interior points are indeed a Fibonacci sequence. The 
labels of the end vertices form a Fibonacci sequence but start with the second 
term. 

A portion of the tree in Figure 5 with labels that will correspond to the 
following discussion is shown in Figure 6. 

... v' v" v"' ... 

m 
z' z" z'" 
FIGURE 6 

Define r(w) to be the number of MISfs containing vertex w and points "to the 
right" of w. 

For a vertex v' in the central path, v' is in the same number of maximal 
independent sets to its right as z" is in, where z'! is the endpoint adjacent to 
v", vl! adj v* and v" to the right of y'. r(z ') = r(v") + r(z") since, if 2' is 
in a MIS S (containing points only "to the right" of z ') , then either zl! € S or 
v" e S. 

Therefore, 

r(vr) = r(z") = r(zm) + r(v'" ) = r{v") + r(vm ). 

Thus, if we number the vertices of the central path from left to right by 
Vn-2> Vn-39 ''°> V2> Vl9 a n d t h e e n d v e r t i c e s by S^_2, £n_3s ...» S2' sl» w n e r e 

zi adj vi9 then i+ 

r(v,) = f. + l and r(^) = f. + z. 

Then, 
nvn_2) = fn_Y and X(zn_2) = 2fn 

(since for every MIS "to the right" we could add either the remote end vertex e 
or the adjacent point x) and hence, 
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MT = X(v„_2) + A(3„_2) -/„_!+ 2/„ 

~ Jn _ i Jn J~n ~ Jn+l J~n ~ J~n + 2* 
Now label each point vi and end point z^ in a similar manner from the left 

by £(i^) and £(<^). 

A(^) = r(Vt) * l(vt) and X^^) = v{zt) • U ^ ) . 

Note that £(z^) = fn_^ since i^ is the n ~ i - 1st point from the left, and 

Since 

A(^) + A(s^) = % , 1 < i < n - 2, 

we have the following well-known [2] number theoretic result* 

Theorem 3.24: fn+z = f ^ . f ^ , + fi + zfn.i + l for 1 < i < n - 2. 

For more general expanded trees, we follow a similar procedure. If v is a 
member of the core tree and deg v = k, then A (i?) is the product of k - 1 
labels—one from each of the k - I branches incident with v. If i> adj z, z an 
end vertex, then A(s) is also the product of k - 1 labels. In this general 
case, the labels will not always be elements of the Fibonacci sequence, but 
each individual label will be obtained as the sum of the two previous labels in 
the same branch. It is not necessary to find all labels for every point in 
order to find MT. Only the A-numbers for one end vertex and its adjacent point 
are needed. 

As an example, in Figure 7 is a tree with 20 vertices. The points e and y 
are the ones for which the A-numbers are being found. We are labeling from the 
endpoints of the separate branches toward the vertices e and z/, in the order of 
the indices on the yfs. 

(20+ 45) (4+ 5) • 5 4 + 1 
= 130 = 4 5 = 5 

MT = 130 + 45 = 175 

FIGURE 7 

V-, is in only one MIS to the r ight . 

V2 is in 4 MIS's to the right—there are two choices on each of the paths 
leading to the remote end vertices for 2° 2 MIS's. 

V3 is in the same MIS's to the right as t>2 • 

V^ is in the same MIS's as v^ o r the same MIS's as i?2, for a to ta l of 
1 + 4, or 5. 
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Vc and Vr are like v, and V~> respectively, when labeling from the end of 
their branch, i.e., "from above." 

v7 gets a label of 4 from above (the same as Vr) and a label of 5 from the 
right (the same as y.) for a total of 5 • 4 MIS's. 

VQ is in 4 + 5 sets to the right (the sum of labels from v3 and V^) and in 
1 + 4 sets from above (the sum of labels from v^ and v^) for a total of 
9-5, or 45. 

X(y) = 1 • 45, the product of the number of MIS's to the left and the number 
of MIS's to the right (from the VQ label). 

\{e) = 2 • (20 + 45), with 2 being the number of MISfs to the left and 
20 + 45 being the sum of the labels from v7 and VQ. 

MT = X(y) + X{e) = 45 + 130 = 175. 

If we look at the triangular array of A-numbers for the central n - 2 ver-
tices of the core tree of the expanded tree of an n-path, we see a triangle 
whose entries grow along diagonals in a Fibonacci-like manner. Figure 8 shows 
the first 3 trees and gives the A-numbers of the circled vertices. In the fol-
lowing chart, In is the number of vertices of the expanded n-path. 

Notice that the triangle is symmetric about a vertical line through its 
center. The two outer diagonals are the Fibonacci sequence without the first 
term. All other diagonals are Fibonacci-like in that each term, starting with 
the third is the sum of the two terms immediately preceding it in the diagonal. 
Also, each diagonal is a set of multiples of the first element, and the members 
correspond to multiples of the shortened Fibonacci sequence seen in the outer 
diagonals. 

Also notice that if there are In vertices in the tree, there are n vertices 
in its core tree and n - 2 vertices of that core tree will not be adjacent to a 
remote end vertex in the original tree. Therefore, there will be n - 2 ver-
tices to label and n - 2 numbers in the row of the triangle associated with 2n 
(see Fig. 8). 
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Now, the remarkable coincidences of the triangle can be understood if we 
recall the way in which the vertices of the central path are labeled. Each 
label is the product of the number of MISfs to the right and the number of 
MISfs to the left. However, the numbers of MIS's to the right for the central 
path are just the Fibonacci numbers, starting with the second term. Likewise, 
because of symmetry, the numbers of MIS's to the left are also the Fibonacci 
numbers, starting with, the second term. So for the n - 2 elements of the 
triangle row associated with 2n, we have fn_l_^m f-, 2 < i < n - 1. 

For example, if we let the factor on the left represent the number of MIS's 
to the left and the factor on the right represent the number of MIS's to the 
right, we see that the row associated with 2n = 14 and n - 2 = 5 is: 

1-8 2*5 3«3 5*2 8-1 

Certainly, the growth of the numbers related to maximal independent sets in 
this special class of trees is related to Fibonacci numbers and patterns, and 
the study of one enhances the other. 
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ON THE SUM 
a 
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(Submitted March 1988) 

In t h i s n o t e , the sum 

J ] ( - j a , where p i s an odd prime and ( — J i s the Legendre symbol, 

w i l l be w r i t t e n i n an expanded form. S p e c i a l ca ses of t h i s form y i e l d t he 
r e s u l t s t h a t , for p = 7 (mod 8 ) , 

( P - D / 2 . x 

.?, (§)» - -• 
and fo r p = 3 (mod 8 ) , 

( p - l ) / 2 
Y] - is an odd multiple of 3. 

This latter result implies that for such primes the difference in the number of 
quadratic residues and quadratic nonresidues in the first half of the interval 
1 < a < p - 1 must be an odd multiple of three. 

Let p be an odd prime, and let l—\ denote the Legendre symbol. 

Theorem 1: Let qs l < q < p ~ l , h e a divisor of p - 1 and k such that p - 1 = 
kq; then, 

S 
satisfies 

+... ^±'1*1+fi- " i t 

This sum can be expanded as follows: 

a> h\ t (fU- s i s ("•-"; + ">•-'>* +'4-
s = l ( a = ( s - l ) H l ^ ; ) s = l ( t = l V P ' j 

Next, ( ( s - l)fc + £)<? = (s - l)kq + tq 
= (s - l ) ( p - 1) + fcj 
= (s - D p + tq - (s - 1) 
= (s - D p + (t - l)q + (q - (s - D ) . 
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Substitution into the right-hand side of (1) and noting that (s - l)p = 0 
(mod p) yields 

(2) EJ £ (^"1)?+;"(S"1)){(5 - DP + (t - 1), + (, - (a - 1)}|. 

In (2), letting y = g - (s - 1 ) , splitting the sum, and summing on v yields 

Note that the first sum in (3) is S. In the second sum, replace t - 1 with 
t; then, the second sum can be written 

Putting the pieces together, we have 

®* •»•;?;)(, - »>;?: ( ^ ) j . 
from which the conclusion follows. 

Corollary 1: If q3 1 < q < p - 1, is a quadratic residue modulo p , then q - 1 
divides 

fc -1 ,+n + 9\ fc -1 

( , - 2 » t ( ^ ) + . . . + ?(a^^). 
And, l £ q 9 l < q < p - l 9 i s a q u a d r a t i c nonres idue modulo p , then q + 1 
d i v i d e s 

k~l'tq + 1\ k\-1 (tcl + ^ " X ) \ ( , - „ S ( ^ ) + . . . + Z( *-<r P ; t = o v P j 

Proof: i n the second case, (q/p) = - 1 , and so q + 1 divides the left side of 
(*) and, consequently, the right side of (*), The conclusion follows by noting 
that (<? + 1, p ) = 1. The first case follows in a similar fashion with q - 1 
replacing ^ + 1, and by noting that the first sum on the right side of (*) is 
multiplied by q - 1. 

Example: Let p = 17 and q = 4; then fc = 4. Since 4 is a quadratic residue, 
the conclusion from Corollary 1 is that 3 divides 

t =0 ' t'O ' 

Corollary 2: I f p E 7 (mod 8 ) , then S = -p £ ( ^ V 
(p-l)/2f 

Proof: In Theorem 1, let q = 2 and, hence, 2 is a quadratic residue. Thus, 

fc-1 5 = P*?0HH; 
that is, 
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a=i p / 

5 • » % (f 
a odd 

The desired conclusion is obtained from the following: 

P-1 p-l (p-D/2 0 /o,(P"1)/2 (p-D/2 

.?, (I) • - A (?) - - .?, (") • -(f) .?, (?) • - £ (? 
a odd a even 

Note that the conclusion in Corollary 2 also holds with p E 1 (mod 8) , but 
trivially; both S and the sum are zero. 

(p- l)/2 
Theorem 2: I f p = 3 (mod 8 ) , p > 3 , then 3 d i v i d e s I ] (-). 

a = 1 \P/ 

Proof: Let q = 2; then ^ is a quadratic nonresidue, and so Corollary 1 implies 
that 3 divides 

ky (2t + * 
, V 0 V p 

that iss 
P~i & (D-
a odd 

Now5 by an argument similar to that used in the proof of Corollary 2; the con-
clusion follows. 

Example: Let p = 11; then the quadratic residues are 1, 3, 4, 5, and 9, while 
the quadratic nonresidues are 2, 6, 7, 8, and 10. Hence, the sum in Theorem 2 
is 

n) * (£)+ G)• (H) • (f) 1 - 1 + 1 + 1 + 1 = 3 . 

Note that the conclusion in Theorem 2 also holds for p E 5 (mod 8) , but 
trivially; the sum in question is zero. 

Also note that in Theorem 2 with p E 3 (mod 8), (p - l)/2 is odd. There-
fore, the sum in Theorem 2 has an odd number of terms, each one equal to ±1. 
It follows, then, that the number of quadratic residues and quadratic nonresi-
dues are opposite in parity. Hence, from Theorem 2, the difference in the 
numbers of quadratic residues and quadratic nonresidues in the interval from 1 
to (p - l)/2 must be an odd multiple of three. 

(v'l)l2 ia\ 
Theorem 3: If p = 7 (mod 8), then £ \ ) a = °-

p,oo,..=p
E'(2)a-,pr(2>.+ V d>. 

a = lXP7 a = l XP7 2> = (p + D/2Vp/ 

In the last sum, let b = p - a; then this sum can be rewritten as 

„?, ( — ) ( p ~ a ) = £ ( p ) a - p „?, (p)> 
/P - a \ / ^ \ sxnce (—-—J = - ( - ) • Hence, 

P 
(p-JJ/2 /ax (P ~J)/2 

S = 2 
a = 1 
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ĵ Note that this equation also holds for p E 3 (mod 8) since, in this case, it 
is also true that 

Now, from Corollary 2, 

(p~l)/2 /a^ 

s - -P £ (|). 
and so 

a = 1 
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Dan Kalman 
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(Submi t ted March 1988) 

Let {s%} be the sequence of sums of rth powers given by 

(1) 
k= 0 

These familiar sequences are the subject of an extensive literature, a few 
recent samples of which may be found among the references. The present note 
has two objectives: 

® To illustrate the application of matrix methods in the context of finite 
difference equations; and 

• To publicize the following beautiful matrix formula for s^. 

1 
-1 1 
1 -2 1 «> •.-•[«) G) G) - ( , i i ) : 

±1 :(I) *6) 

1P 

3r 

O + Dr 

This equation may be viewed as reducing the sum of n terms of the power se-
quence to a linear combination of the first r + 1 terms. Accordingly, there is 
an implicit assumption that n > v. Note that the matrix appearing as the 
middle factor on the right side of this equation is lower triangular. The 
zeros that should appear above the main diagonal have been omitted. The non-
zero entries constitute a version of Pascal's triangle with alternating signs. 

The scalar equivalent of equation (2) has appeared previously ([4], eq. 57, 
p. 33) and can be derived by standard elementary manipulations of series expan-
sions for exponential functions. The main virtue of the matrix form is esthe-
tic: it reveals a nice connection between s^ and Pascal's triangle, and is 
easily remembered. 

The main idea we wish to present regarding the application of matrix analy-
sis to difference equations may be summarized as follows. In general, an nth-
order difference equation with constant coefficients is expressible as a first-
order vector equation. The solution of this first-order vector equation is 
given in terms of powers of the coefficient matrix. By reducing the coeffi-
cient matrix to its Jordan canonical form, the powers can be explicitly 
calculated, finally leading to a formula for a solution to the original 
difference equation. This approach was discussed previously [5] for the case 
in which the matrix is diagonalizable. In applying this method to the deriva-
tion of (2), the matrix is not diagonalizable. Another example with a non-
diagonalizable matrix will also be presented, connected with reference [3]. 

In the interest of completeness, a few results about linear difference 
equations will be presented. These can also be found in any introductory text 
on the subject, for example [8]. 
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1. Elementary Results about Difference Equations 

The sequence s^ satisfies the recursive relation 

This is an example of a difference equation* It expresses one term of a 
sequence as a function of the preceding term* and the sequence index n. More 
generally, a difference equation of order k specifies a term of a sequence {an} 
as a function of the preceding k terms and n. We shall be especially concerned 
with linear, constant coefficient, homogeneous difference equations. Any equa-
tion of this type can be cast in the form 

(3) an+k + ok_lan+k.l + ... + cQan = 0 ; n > 0, 
where the coefficients Cj are constants. Hereafter, we assume all difference 
equations are of this type. Clearly, given initial terms ag through a^-i* the 
remaining terms of the sequence are uniquely determined by equation (3) . The 
main objective of the next section is to develop techniques to express these 
terms as a function of n. 

The analysis of difference equations is expedited by reformulating equation 
(3) in terms of linear operators. Accordingly, we focus for the present on the 
linear space of sequences {ak}-,=() of complex numbers, and state 

Definition 1: The linear operator L, called the lag operator, is defined by the 
relation 

(4) UanVn=0 = {an + 1 } ^ = 0 . 

L has the effect of shifting the terms of a sequence by one position. 
Thus, it is often convenient to write 

Lan = an+l. 
Now (3) may be expressed in the form 

p(L){an} = 0 
where p(t) = tk + ok-\tk~l + • • • + CQ is called the characteristic polynomial 
of the equation. We follow the usual convention that the constant term of the 
polynomial p operates on the sequence {an} by scalar multiplication. Since 
p(L) is a linear operator, solving (3) amounts to determining the null space. 

Now we turn our attention to the application involving s*. As a first 
step, we use the operator approach to characterize polynomials in n as solu-
tions to a specific class of difference equations. The statement and proof of 
this result will be simplified by the following notation. 

Definition 2: D is the operator L - 1. Nk is the null space of Bk, Note that 
N]_ C N 2 ^ N3 ... . 

Theorem 1: For any k, Nfc consists of the sequences {an} such that an = p(n) 
for some polynomial p of degree less than k. 

Proof: We show first that polynomials of degree less than k are contained in 
Nfc. For k = 1, with an a polynomial of degree 0, and thus constant, it is 
clear that B{an} = 0. Proceeding by induction, assume that polynomials of 
degree less than k - 1 are in Nfe_ls and hence in Nfe. Showing that {nk~1} is in 
Nfc then assures that all polynomials of degree less than or equal to k - I die 

One application of D to {n ^} produces the sequence 

{(n + D^"1 - nk~1}. 
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This result is a polynomial of degree k - 2 and so is annihilated by D^"1, by 
the induction hypothesis. This shows that Bk{nk~1} = 0, and completes the 
first part of the proof. 

For the converse, we must show that the polynomials of degree less than k 
exhaust N^ . Since these polynomials comprise a subspace of dimension k9 it 
will suffice to show that N^ has dimension no more than k. This statement is 
clearly true for the case that k = 1. As before, the general case shall be 
established by induction. 

Assume that Nj has dimension j for all j less than k9 and suppose that an 
and bn are in Nfc but not in N^.^. Then I>k~1an and ~Dk~lbn are nonzero elements 
of N1? which is one dimensional. This implies that, for some scalar o9 

Bk~1an = cBk~lbn. 
Hence, an - obn lies in N^.j. We conclude that the dimension of N^ can exceed 
that of Nfc_]_ by at most 1. Finally, by the induction hypothesis, the dimension 
of N^ is no more than k, completing the proof. Q 

This result may be immediately applied to the analysis of s*. As observed 
previously, 

<+1 - si = (n + 1)' 
which is, in operator notation, 

Ds£ - (n + l)r. 

Now the right side is a polynomial in n of degree r9 so is annihilated by Dp+1. 
Thus, applying D p + 1 to both sides yields 

D"+2< = 0 

and hence, s^ is in Np+2- Moreover, 

which is not zero. It follows that 

sv
n e NP + 2\NP + 1, 

and that s£ is a polynomial in n of degree r + 1. 
The realization of s^ as a solution to the equation 

T)r + 2an = 0 

is more significant for our purposes than is the characterization of s% as a 
polynomial. For future reference, it is convenient to express this equation in 
the form 

(5) (L - iy + 2an = 0. 

We show next how matrix methods can be employed to solve difference equations. 
Then, as a particular example, we apply the method to (5) to derive (2). 

2. Matrix Methods for Difference Equations 

Matrices appear as the result of a standard device for transforming a kth-
order scalar equation into a linear vector equation. The transformation is 
perfectly analogous to one used in the analysis of differential equations ([1], 
p. 192), and was used in the form presented below in [7]. 

Suppose an satisfies a difference equation of order k, as in equation (3). 
For each n > 0, define the &>dimensional vector vn according to 

62 [Feb. 



SUMS OF POWERS BY MATRIX METHODS 

2n+2 

^n + k-1 

The vector vn may be visualized as a window displaying k entries in the 
infinite column 

Now the transformation from vn to v^+1 can be formulated as multiplication 
by the k * k matrix C given by 

'k-1 

This matrix is the companion matrix for the characteristic polynomial of the 
original difference equation (3) . It can also be understood as a combination 
of row operations. In this view, C has the effect of rolling rows 2 through k 
up one position, and creating in place of row k the linear combination 

-£Q(row 1) - c,(row 2) ^^(row k) , 

These operations correspond exactly to the transformation from vn to v„+]_. 
Visually, multiplying vn by C has the effect of moving the window described 

earlier down one position. Algebraically, vn satisfies the vector difference 
equation 

(6) vn+l = Cvn. 
Evidently, a solution vn of (6) may be characterized by 

(7) Vn - C"V0, 

and so, the solution an of (3) is given as the first component of the right 
side of (7). These remarks may be summarized by expressing an in the equation 

(8) = [ 1 0 0 0] 

1 
0 

0 

k-1 lk-l 

This formula is not really useful as a functional representation of an 
because the powers of C must be computed by what is essentially a recursive 
procedure (although the computation can be made very efficient by exploiting 
the special structure of C, see [2]). However, if the roots of the character-
istic polynomial are known, the Jordan canonical form of C can be explicitly 
formulated as described in [7]. Thus, if the reduction of C to its Jordan form 
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J is expressed by C = SJS-1, then the matrix Cn may be replaced by SJnS-1 in 
(8). The special case in which the roots are distinct features a diagonal J 
and so the powers of J are simply expressed. This case is discussed in [5]. 
In the sequel, we shall focus on the application of matrix methods to the 
analysis of s£, based on equation (5). Observe that the characteristic poly-
nomial is given by (t - l ) r + 2 , hence, rather than distinct roots, we have a 
single root of multiplicity p + 2. The next section will discuss the proper-
ties of the Jordan form for this case, and derive equation (2). 

3. Analysis of s£ 

As observed in the preceding section, s% satisfies the difference equation 
(5) with the characteristic polynomial (t - l)r + 2-s and with k therefore equal 
to v + 2. Using this information, the general equation (8) may be particu-
larized to give 

(9) si - [1 0 0 ... 0] C 

C is the companion matrix for (t - l)p + 2. It can be shown that the Jordan 
canonical form for the companion matrix of a polynomial has one Jordan block 
for each distinct root. (A simple proof of this assertion may be constructed 
using Theorems 4.5 and 8.5 of [9].) In the present case, the Jordan form J is 
therefore a single Jordan block corresponding to the root 1. That is, J is a 
square matrix of dimension r + 2 with entries of 1 along the main diagonal and 
first superdiagonal, and all other entries zero. It will be convenient to 
write J = I I N , where I is the identity matrix. The matrix N is familiar as a 
nilpotent matrix whose j t h power has lfs on the j t h superdiagonal, and 0's 
elsewhere, for 0 < j <r + 1. Accordingly, Jn may be computed as 

(I + N)*=P£(^)NJ", 

and we observe that this result has constants along each diagonal. Specifi-
cally, it is an upper-triangular matrix with l's on the main diagonal, (JVs on 
the super diagonal, (2),s o n the next diagonal, and so on. 

The matrix S is also described in [7], and is given by 

V-.J 
This matrix is a special case of a more general form 

M >̂ = ((}: \y~%-

1 
1 1 
1 2 1 

,'i1) eh cj 
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In fact, M(X) plays the role of S when the characteristic polynomial is 
(t - A ) p + 2 , and the specific instance of S above is M(l). There are several 
interesting properties of M(X) described in [6]. Of special interest here is 
that 

M U r 1 = M(-A), 

and in particulars 

S"1 = M(-l). 

This shows that S_1 has the same form as S, but with a minus sign introduced 
before each entry of the odd numbered subdiagonals. Note that the square 
matrix which appears in (2) has exactly this form, but with one less row and 
column. Put another way, the matrix in (2) is the (p + 1)-dimensional 
principal submatrix of S"1* For future reference, we shall denote this matrix 
by S*. 

Combining the results presented so far, we have 

(10) 0 0 0]SJnS-1[s^ sf sl s^f. 50 °1 °2 °r+l-
This equation can be simplified by observing that premultiplication of a 

square matrix by the row [1 0 0 • • • 0] results in just the first row of the 
matrix. The first row of S is again [1 0 0 • • • 0] so that the product of the 
first three factors on the right side of (10) is simply the first row of Jn, or 

[(o) (?) <;)••• ( , : . ) ] • 
Therefore, we may write 

<"> °'«-[(o) (1) (V-Lli)]*-^ ^ 4 - < + 1 i T 

This is similar to (2), and is interesting in its own right. 
Next, to replace the initial terms of the sequence is2^} with initial terms 

of {nr}, we observe that 

(12) 

Dp+1 

1 
1 1 
1 1 1 

1 1 1 1 

0r 

(r + If 

When the right side of (12) is substituted in (11), the product S_1T appears, 
where T is the triangular matrix in (12). A straightforward computation 
reveals that S-1T may be expressed as the partitioned matrix 

1 

0 

0 

s* 
Thus, the combination of (11) and (12) results in the partitioned matrix equa-
tion 

»> • : - [ (S ) | ( ; ) ( ; ) - ( r i i ) ] 
1 

0 

0 

J 

[Oil2 . . . (p + l ) p f * 

Carrying out the partitioned multiplication completes the derivation of (2), 
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It is instructive to use (2) to derive a formula for s^ 
case. For example, with r == 2, we have 

in a particular 

(") (?) (") 
1 

-1 
1 

0 
1 

-2 

0 
0 
1 ( 1 ) + > G ) + <")• 

This gives s2- in terms of binomial coefficients, and simplification produces 
the well-known equation 

2 _ n(n + f){In + 1) 
Sn ~ 6 

The derivation of (2) generalizes immediately. Let p be a polynomial of 
degree r, and define sn = ££=0p(&)- All of the analysis through equation (13) 
remains valid when kv is replaced by p(k). This leads to the following analog 
of equation (13). 

0 "> < . - [ ( 5 ) | ( ? ) ( S ) - U . ) ] 
" 1 

_ 0 

0 

s* 
[p(0)|p(l) p(2) p(r + 1)] 

Carrying out the partitioned product now yields the identity 

(15) <.-'«»-[(?) (3 G)-(r I l)] 
1 
"I 1 
1 -2 

±1 I) *G) 1 

pd) 
p(2) 
P(3) 

p(r + 1) 

1 
1 
1 

0 
1 

-2 

0 1 
0 
1 J 

r i 2 
5 2 

92 

This equation may be used for adding up the first n terms of the sequence 
{p(k)} starting from k = 1 instead of k = 0. 

An interesting class of examples involves summing the pth powers of the 
first n integers equivalent to b modulo a. In these cases, the polynomial has 
the form p(k) = (ak + b)r . With a = 4 and 2? = -3, for example, the left-hand 
side of (15) is the sum of the first n terms of the progression lr, 5r, 9r, ... » 
For an even more specific example, let r = 2. Then (15) reduces to 

>'"'"'*-*"-»!-[(!)(;)G)] 
• ( ? ) + " ( 2 ) + " (5) . 

A review of the derivation of (2) and (15) reveals a natural division into 
two parts. In the first, culminating in equation (11), the analysis has gen-
eral validity. Any difference equation for which the Jordan canonical form can 
be calculated can be subjected to a similar analysis, resulting in an analo-
gous identity. The second part depends on the fact that the characteristic 
polynomial for the difference operator is a power of t - 1. Therefore, the 
final result (15) should not be expected to generalize in any obvious fashion 
to a larger class of difference equations. In the final section, another 
example is considered. As expected, a result analogous to (11) is obtained, 
but no analog for (2) appears. 
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4. Geometrically Weighted Power Sums 

In [3], recursive procedures are presented for expressing formulas for the 
geometrically weighted power sum 

<M = tkrxK 
k= 0 

This is a generalization of s% in the sense that s£(l) = s£. The sequence 
{sv

n(x)} (indexed by n) can be analyzed by matrix difference equation methods. 
As a first step, we have the following simple generalizations of earlier 
material. 

Definition 3: Dx is the operator L - x, where x acts as a scalar multiplier. 
N k O ) is the null space of D^. Note that Nx(x) C N2 (x) C N3 (x) . .. . 

Theorem 2: For any k, Nfe (x) consists of the sequences {an} defined as the 
termwise product of the exponential sequence xn with a polynomial in n of 
degree less than k. 

We omit a proof for this theorem; one can be obtained by modifying the 
proof of the earlier theorem in an obvious way. The main significance for the 
present discussion is as follows. Since 

Bs^(x) = {n + l)rxn + 1, 

it must be annihilated by ~D^ + 1° 
ence equation 

(L - x)r+l(L 

Therefore, s* (x) is a solution to the differ-

l)an 0. 

x) r+ 1 (t - 1), We rep-The characteristic polynomial for this equation is (t 
resent the reduction of its companion matrix to Jordan form in the usual way as 
C = SJS _1. Once again, the analysis of [7] is directly applicable. It tells 
us that J has one Jordan block of dimension r + 1 for the root x, and a 1 x 1 
block for the simple root 1. The matrix S is closely related to M(x) defined 
above. In fact, the first r + 1 columns of S are identical to the correspond-
ing columns of M(x) , but the final column consists of all l's. [Indeed, this 
final column is really the first column of M(l). In general, the matrix S is a 
combination of M(x)fs for the various roots of the characteristic polynomial, 
with the number of columns for each x given by its multiplicity as a root.] 
With these definitions for J and S, and with s£(x) in place of s^, we may 
calculate s^(x) using (11). 

Unfortunately, there is a bit more work required to determine an explicit 
representation for the inverse of S in this example. For simplicity, shorten 
M(x) to M, and define E to be the difference S - M. Thus, E is given by 

0 
0 

0 
0 

0 . 
0 . 

0 . 
0 . 

. 0 

. 0 

. 0 

. 0 

1 
1 

1 
0 

_ 
1 
1 

1 
0 

[0 0 0 1], 

Let the column and row matrices in this factorization be called Ec and Er, re-
spectively. Now we claim that 

s-1 = (i - s-^ivr1. 
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This can be verified by p r emu 1 tip lying by S. The product S_1E can be computed 
using the factorization of E as soon as S_1EC is determined. Thus, the problem 
of inverting S is reduced to finding the inverse image of a single vector. 
This is not surprising: since S was obtained by making a rank 1 modification to 
M, it is reasonable to expect a corresponding rank 1 modification to link the 
inverse matrices. 

Proceeding with this approach, S_1EC is computed by solving the equation Sv 
= Ec for v. Again using S = M + EcEr, write the equation as 

Mv + EcErv = Ec. 

Since Erv is a scalar, namely v9 the last entry of v, the equation may now be 
rearranged as 

Mv = (1 - v)Ec. 

This leads to 

v = (1 - v)M"1Ec, 

and by equating the final entries of the vectors on either side, to an equation 
for v. Once v is found, v simply requires the computation shown at the right 
side of the previous equation. Carrying out these steps produces 

(1 - x) r+l 

1 
1 - X 
(1 - x)1 

(i - xY 
(1 - x)r+1 - 1 

With this result, it is now possible to express S 1 as M l - vErM" Let 
-1 vw. w = ErM 1, which is simply the last row of M x. This gives S 1 = M 

At this point, the factors appearing at right in (11) cannot be simplified 
much further. As before, the first two factors yield the first row of S. How-
ever, this row has a 1 in the last position as well as the first, so multiply-
ing by Jn results in the sum of first and last rows of that matrix. Meanwhile, 
J is a block diagonal matrix. The first block is (r + 1)-dimensional and of 
the form xl + N. Its powers are computed just as before, exploiting the 
properties of N. Specifically, the first row of the nth power is 

[(SK (1>-1 - (>-'} 
and contributes all but the last entry of the first row of Jn. The second 
block is just the scalar 1 at the end of the diagonal. It contributes the only 
nonzero entry in the last row of Jn. When the first and last row are added, 
the result is 

[(!)*" (IK1 G> 
When all of the foregoing calculations and reductions are combined into a 

single equation, the result is 

(16) <(X) - [QXn (;)a»-l ... {^y-r ^-i 

s\{x) 
s\(x) 
s*(x) 

Lsr+1(*) 
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where 

-x 

-zrr^+1 

1 
-2x 

(-x) Ct')(->' (rV) i-xy 

(1 - x) F + l 

1 - x 

(1 : xV 
(1 - x)r+1 - 1 

[(-x)-l ( ' t 1 ) ^ ' (^ 1 ) ^ ^ 1 ••• *] 

This formulation is not as compact as (2) but is sufficiently orderly to 
permit convenient calculation for specific values of v and x. The following 
formulas were obtained by writing a short computer program to define and 
calculate the product of the last two matrices on the right side of (16), then 
running it with x set to 2 and v set to 1, 2, 3, 4, and 5. 

?*(2) = 2r tf) 
82(2) = 

8,3(2) = 

8^(2) -

s,5(2) = 

f 2 

+ 4( 

2 + 2 

-26 + I4(J) + 24(5)] + U 

1» - «(») + „£) + 24(») + 48 

-1082 + 542^) - 240(2) + 300^ + 250(^) + 240 «)] + 1082 
These equations are similar to the ones derived by Gauthier ([3], eqs. 31), but 
express s^(2) in terms of binomial coefficients instead of as polynomials in n. 

It is also feasible to use (16) symbolically for small values of r. As an 
example, we carry through the matrix multiplication for p = 2. 

The algebra will be simplified if the factors of (1 - x) appearing in the 
denominator of entries of S"1 are transferred to the corresponding entries of 
the first matrix factor* In pursuit of this goal, rewrite (16) in the form 

s*(x) = RS^C, 

where R and C are the row and column vectors, respectively, appearing in (16). 
Next, define the diagonal matrix D with entries 

(1 - x)~3, (1 - x)-

Then we may write (17) as 

2 (1 c) 1, and (1 - x)' 

sfW (RD)(D-1S"1)C. 

Focusing separately on each factor in (18), observe that 

RD = 

CT = 

n-l 
in\ x (n\ x'" in\^ 
V0/(1 -^r)3 U/(l - x)2 Wl 

n-l 1 

kx1 + x 
(1 - x)3-

9x3 + kx1 + x\ 

and 
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D-lS"1 
(1 - x)3 

-x{l - x)2 (1 - x)2 

x2(l - x) -2x(l - x) 1 - x 
-x3(l - x)3 3ic2(l - x)3 -3a?(1 - x)3 (1 - x)1 

l-x3 3xz -3x 1]. 
(1 - x)3 - 1 

Expressing the right side of this equation as a single matrix produces 

D-lS-1 

The entries in the first column have not been explicitly presented because they 
have no effect on the final formula for s2(x); these entries are each multi-
plied by the zero in the first position of C. Indeed, multiplying this last 
expression by C now yields 

* 
& 
* 
* 

~3x2 

-2x2 - 2x + 1 
~x2 - 2x 

3x2 

3x 
3x 

2x + 1 
-3x2 

-1 
-1 
-1 
1 

D^S^O 

-x(x + 1) 
x2{x - 3) 

-2x3 

x(x + 1) 

Finally, after multiplying by RD, the following formula is obtained: 

sHx) ptt + 1 -fa + 1) 
(1 - x)3 U/(l - x)2 V2/1 - x 

x^ + x 
(1 - x)3 

As before, this result is consistent with the analysis presented in [3]. 

5. Summary 

In this paper, matrix methods have been used to derive closed form expres-
sions for the solutions of difference equations. The general tool of analysis 
involves expressing a scalar difference equation of order k as a first-order 
vector equation, then using the Jordan canonical form to express powers of the 
system matrix, thus describing the solution to the equation. Two specific 
examples of the method have been presented, differing from previous work in 
that neither example features a diagonalizable system matrix. In the first 
example, an esthetically appealing formula for the sum X ^ = Q ^ P w a s derived. In 
the second example, the more general sum Hk=Qkrxk was analyzed. In each case, 
the results have been derived previously using other methods. However, the 
main point of the article has been to show that the methods of matrix algebra 
can be a powerful tool, and provide a distinct heuristic insight, for the study 
of difference equations. 
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I n t r o d u c t i o n 

Let 
zm,n := {(£> J ) - I < i < m, 1 < j < n}> 

^mtH := {A C ZOTjn: there are no (i15 j^), (i2, j2) e A 

with |i1 - i?| + |ji - Jo| =1} 
and 

So K w equals the number of independent (vertex) sets in the Hasse graph of a 
product of two chains with m resp. n elements, i.e., in the m x n lattice. 
Following Prodinger & Tichy [11], we call Km n the Fibonacci number of the m*n 
lattice. 

In this paper we study the numbers Km}n using linear algebraic techniques. 
We prove several inequalities for these numbers and show that 

1.503 < lim Kl
n
/n* < 1.514. 

We conjecture that this limit equals 1.50304808... . 
The problem of the determination of the number of independent sets in 

graphs goes back to Kaplansky [6] who determined in his well-known lemma the 
number of fc-element independent sets in the 1 xn lattice, i.e., in a path on n 
vertices. Burosch suggested to consider other graphs, and some results were 
obtained in [3]. 

Answering a question of Weber, the number of independent sets in the Hasse 
graph of the Boolean lattice was determined asymptotically by Korshunov & 
Saposhenko [9]» Prodinger & Tichy [11] and later together with Kirschenhofer 
[7], [8] considered that problem in particular for trees. They introduced the 
notion of the Fibonacci number of a graph for the number of independent sets in 
it because the case of paths yields the Fibonacci numbers. We will see that 
the numbers Kmsn preserve many properties of the classical Fibonacci numbers, 
i.e., the results do not hold only for m = 1 but for all positive integers m. 
The first results on the numbers KWJ n have been obtained by Weber [12]. Among 
other things he proved the inequality 

1.45 < Km n < 1.74 if mn > 1, 
the existence of 

l im ici/" and l im K-J/"2 

n->oo m>n n + oo n , n 

as w e l l as the i n e q u a l i t y 
1.45 < l im K1/n2 < 1.554. n, n 
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2. Inequa l i t i e s and E igenva lues 

Let 
<Pm := {S C { 1 , . . . , m}: t h e r e a r e no i , j e 5 wi th | i - j | = 1 } , 

rfm>„)S := {A e i f f l > n : (£ , n) € A i f f i e S } , 
xm,n,S := | ^ , n , 5 l -

So xm,n,S counts those sets of s^m>n for which the elements in the top line 
(with second coordinate n) are fixed by S. Obviously, \^m\ = K

m 1° Briefly, we 
set zm °.= Km) i * 

Throughout this section we consider m to be fixed. To avoid too many 
indices, we omit the index m everywhere. Obviously, 

(1) Kn = xn + l, <f> ' 

Moreover, 

(2) x
n + l,S = £ xn,T f o r a 1 1 ^ G ^5 n = ls 2? ' " ' * 

TnS = $ 
Let xn be the vector whose coordinates are the numbers xUjS (S €. <p) and 

A = (as T)s Tecp that sx s-matrix for which 

'1 if S n T = 

^0 otherwise. 

Because of (2), we have 

(3) xn+1 = 4xn, n = 1, 2, ... . 

Let the vector e with coordinates es, S E <P 9 be defined by 

'1 if 5 = <f>, 

[0 otherwise, 

and let, for an integer k9 the vector k be composed only of k1s. Then we have 

(4) xl = Ae = 1, 

and because of (3), 

(5) xn = Ane. 
Finally, if ( , ) denotes the inner product, then 

(6) Kn = xn + l ^ = (An + le, e). 

In our proofs, we often use the fact that A is symmetric. In particular, 
we have, for all vectors x, y, 

(7) (Ax, y) = (x, Ay). 

Theorem 1: For all positive integers k and I, 

(8) <l+l * *2k-IK2l+l' 

Proof: By (6), (7), and the Cauchy-Schwarz inequality, we have 

Kk + l 

= 04^e, e)(42* + 2 e , e ) = K2k-iK2i + l' D 

2 = (Ak + l+ie, e ) 2 = (Ake, Al+le)2 < (Ake, Ake)(A" + 1e9 A i + 1e) 

1990] 73 



ON THE FIBONACCI NUMBER OF AN m x n LATTICE 

Corollary 2: - 1 < ̂ < — < • - . D 
Kl K3 K5 

Since A is symmetric, all eigenvalues of A are real numbers. Let A be the 
largest eigenvalue of A, 

Proposition 3: X has multiplicity 1, to X belongs an eigenvector u with coordi-
nates us > 0 for all S € <p, and |A| > \\i\ for all eigenvalues \i of A. 

Proof: The column and row of A which correspond to the empty set <|> contain only 
ones; hence, the matrix A is irreducible and A2- is positive (see [4], p. 395). 
Now the statements in the proposition are direct consequences of two theorems 
of Frobenius (see [4], pp. 398, 422). D 

Theorem 4: Let u be that eigenvector of A to the largest eigenvalue X for 
which Ua > 0 for all S € <p and EC^„M§ = 1 holds. Then 

Xn S ~ u4>uS^n a s n "** ° ° " 

Proof: We use standard techniques. Let U be the orthogonal matrix whose 
columns are normed, pairwise orthogonal eigenvectors of A and let D be the 
diagonal matrix of the corresponding eigenvalues. Then 

UTAU = D and An = UDnUT. 

Consequently, 

xn = Ane = UDnUTe [note (5)]. 

Because of Proposition 3, the asymptotic behavior of the components of xn is 
determined by the terms containing Xn which yields the formula in the theorem.Q 

Noting (1) and Corollarjr 2, we derive immediately 

Corollary 5: 
(a) lim Kl'n = A, (b) lim ̂ ^ = A, 

(c) 

irks 

n* oo 

l im 
n •> oo 

Kn + 2 _ ^2 
Kn 

(d) 2k+l < A2 for all k = 1, 2, 
K2fe-1 

(a) If p(y) = det(y£7 - .4) = \xz + as_iys * + ... + ao is the characteristic 
polynomial of A, we have az-\ = -trace A = -1 and (by induction) 

[ao| = |det A| = 1 . 
From the Cayley-Hamilton relation, it follows that 

xn + z = -S-ixn+2-i - ••• - aQxn 

and, in particular, the recursion 

Kn + z = ~az-IKn+z-l - ••• - ̂ oKn-

(b) Corollary 5(b) contains in effect the crucial point of the well-known 
power method of v. Mises for the determination of the absolute maximal 
eigenvalue of a matrix. 

Theorem 6: For all positive integers h, k, £, 

^h + 2l-lIK2l-l} ~ A s Kk ' 
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Proof: I t i s w e l l known t h a t t he Ray le igh-Quot i en t does no t exceed the l a r g e s t 
e i g e n v a l u e . Hence, by (6) and ( 7 ) , 

K/z+2£-i/K2£-i - W*+2*e, e) /W**e, e) 
= (Ah(Aze)s Aze)/(Aze, Ale) 
< largest eigenvalue of Ah = \h

 a 

This proves the left inequality. 

To show the right inequality, we use a standard technique for the estima-
tion of the largest eigenvalue of nonnegative matrices (see, e,g., [10], 11.14). 
Let u be the eigenvector of A to A with us > 0 for all S e <p and with UA = 1. 
Then Au = An implies 

Te<p Te<p 
TnS = § 

Hence, 1 > us for all S € <p and, consequently, 
u < 1. 

It follows [note (4)] that 

\ku = 4feu < 4*1 = 4k+1e, 

which gives [note (6)] 

Xk = (\ku, e) < (# + 1e, e) = Kfe, 

i.e., the right inequality. Q 

Corollary 7: For all positive integers £, k with k > 21 - 1, 

KA: S K2£-l 

Proof: We choose h i= k - (21 - 1) i n Theorem 6. Then 

(Kk/K2l-0l'h £ K}/k 

and, equivalently, 

Kk / K 2 £-1 S Kk5 k - K 2£-l' u 

3. Limits 

Now we consider the dependence of 777 and introduce again everywhere the 
index m. We will study the sequence {\)Jm}, where 

Xm = largest eigenvalue of Am = lim <lJn
n [see Corollary 5(a)]. 

In the following, we often use the obvious fact that 

(9) <mt n = <n9 m f o r a 1 1 n> m° 

Proposition 8: For all integers £, k with k > 2% - 1, 
}l/fc < -y 1/(21- 1) 

Proof: By C o r o l l a r y 7 and (9) s we have 
rl/k < r l / ( 2 £ - l ) 
K £ , m - ^ 2 £ - 1,OT 

and f u r t h e r 

l ^ m
j - ( K 2 £ - 1 , /a ' 
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Now, i f m t ends to i n f i n i t y , we o b t a i n 
yl/k < > 1 / ( 2 A - 1) n 
xk < x2l_l . u 

Proposition 9: The l i m i t g := l im X1^171 e x i s t s , and 

*2£^2£-l ^9 * *»1A 
m -> c 

k 
holds for all positive integers I and k. 

Proof: First we note that the existence of the limit is trivial if Conjectures 
2 and 3 are true, because then the sequence {XlJm } is monotoniously decreasing. 
Let 

y := lim inf XlJm (note Proposition 8). 
n -> oo 

Now choose e > 0 and let M be a number that satisfies 

d o ) ~M 
l/M 

Because M is fixed, by Corollary 5(a) there is a number mQ such that, for all 

( I D (*l
M[m

m)l/M < \]iM + in. 
F i n a l l y , by Theorem 6, 

(12) Xm < Kl
m[M

M for a l l m - 1 , 2 , . . . . 

From ( 1 0 ) , ( 1 1 ) , and ( 1 2 ) , we d e r i v e , for a l l m > mQS 

4 / W * K%)UM < K/M + e/2 < Y + e. 
Consequent ly , 

g = l i m XlJm = Y . 
m + oo 

L a s t , but no t l e a s t , aga in by Theorem 6 (with h = 1 ) , 

( K l / m ) l / f c 

and with 77? -> °°, we obtain 

*2*/A2*-l * 0 S ^ • 0 

Theorem 10: The limit lim KJ/^ exists, and it is equal to g. In particular, 

n-> o 

for all positive integers k and %. 

Proof: By Theorem 6 (with h = k = m = n and £ = 1) and using the obvious fact 
t h a t Kn,n * Kn,n + l > 

Hence, 
A 1/n < ,.1/n2 < ^l/n \l/n yl/n 

If n -> °°, then the lower and upper bounds tend to g, by Corollary 5(a) and 
Proposition 9; hence, K ^ also tends to #. The inequality in this theorem is 
a reformulation of the Inequality in Proposition 9. D 
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We no te he re t h a t the e x i s t e n c e of the l i m i t i n Theorem 10 was p r e v i o u s l y 
proved by Weber (see [ 1 2 ] ) . 

To f ind bounds for l im K ^ " , we used a computer ( see Table 1 ) . 
n -> oo 

TABLE 1 

m 

2 
3 
4 
5 
6 
7 
8 
9 
10 

W i 
1.49206604 
1.50416737 
1.50292823 
1.50306010 
1.50304676 
1.50304821 
1.50304807 
1.50304808 
1.50304808 

^ 

1.55377397 
1.53705928 
1.52845453 
1.52334155 
1.51994015 
1.51751544 
1.51569943 
1.51428849 
1.51316067 

Because of Theorem 10 and the numerical results, we have the following 
estimation. 

Corollary 11: 1.50304808 < lim K^/nn2 < 1.51316067. • 
n> oo 

Conjecture 1: For all positive integers m and £, 

Km, 21 + l'Km, 21 ~ ^m' 

If this conjecture is trues then it would follow, as above, that 

A2iL+l/A2*.' lim KlJf < 

hence (with £ = 4), 

lim KlJn' = 1.50304808. 

Let us note that, for numerical purposes, the bound A^m is weak, because 
\l/m decreases slowly whereas the size of the matrix Am increases exponentially 
with m (like the Fibonacci numbers). The following conjecture is stronger. 

Conjecture 2: For all positive integers 777 and k9 
n 

Km,2k ~ Km, 2k-2Km,2k + 2' 

If this Conjecture is true, then, together with Theorem 1 and Corollary 5, it 
would follow (we omit again the index rri) 

Kl K3 

and, further, 

< Az < 

< X < 
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Conjecture 3: For all positive integers m and k, 

^rritlk+l^m,!^ ~ Km, 2k/Km,2k-2' 

If Conjectures 2 and 3 are true, then one can derive (again without index 
m) 

(K I* ")2k < (K IK ^ < Klk Klk~2 . .. ̂ - = r 
\K2k+l/K2k> ~ ^K2k/K2k-2> ~ Kzk_2 Kzk_^ KQ

 X2k'-

2k K 2k+l l/(2fc+l) < 1/2* 
K2k+1 ~ K2k > K2k+l ~ K2k 5 

and, together with Corollary 7, this means that the sequence {<^/t
n
n} decreases 

monotoniously in n. Finally, as in the proof of Proposition 8, one can 
conclude that {\]^m } decreases monotoniously in m. 

Because of the recursions 
Kl,n + 2 = Kl,n + 1 + K l , n a n d K2,n + 2 = 2lC2,n+l + K2,n9 

one can easily verify these conjectures for m = 1, 2 (see also [2]). Using a 
computer, we verified them also for the numbers <m n for which 3 < m < 10 and 
1 < n < 20. 
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1. Introduction 

In [6] D. Shanks introduced the concept of a Fibonacci Primitive Root (FPR) 
mod p, i.e., an integer g which is a primitive root mod p and satisfies the 
congruence g2 = g + 1 mod p. He proved some properties of FPRfs, for instance: 
If for a prime p, p * 5, there is an FPR mod p, then p E ±1 mod 10. He also 
made the following conjecture: 

Let 
F(x) = card{p < xi peff, d g is FPR mod p}, 

and 9 
n(x) = card{p < xi p € F}. 

Conjecture: As a; -> °°, 

Tr(ar) ~ ° ' 

where £ = ̂  [l(l - , * ^ ) 
^7 

38 ^ P(P " 1) 

Note that 

is Artin's constant. 

By a theorem of DeLeon [3] and deep-lying work of Gottsch [4] using methods 
of Hooley [5] on Artin's conjecture, we will prove the Conjecture above on the 
assumption of a certain Riemann hypothesis, namely, 

Theorem: Let p = (1 + /5)/2, ^ be a primitive 2nth root of unity, where n is a 
positive integer, and C be defined as in the Conjecture. If the Riemann 
hypothesis holds for all fields Q(\/p~s £)» then 

FM _ n ^ n/log log x ^ = c + o(log logx). 
TT(^) \ log x I 

Preliminaries 

Let (fn) be the classical Fibonacci sequence, i.e., 

/„ = 0, f, = 1, fn + 2 = fn+l + fn (n > 0). 
An easy pigeon-hole principle argument yields the periodicity of (fn) mod m for 
any integer m > I. Let X(m) be the length of the smallest period mod m. 

Lemma 1: ([3], Theorem 1) Let p * 5 be a prime. Then there exists an FPR mod 
p iff p E ±1 mod 10 and A(p) = p - 1. 
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The following lemma has been proved by Gottsch [4] . A rather obvious gen-
eralization which, however, is more accessible has been given by Antoniadis 
[1]. 

Lemma 2: ([4], Kor. 2.10; [1], Satz 2 and Kor. 4) Let 

A(x) = card{p < x: p = ±1 mod 10, A(p) = p - 1}. 
Under the assumption made in the Theorem, we have 

x (x log log x\ 
A{x) = C + 0[ - 2—), 

log x \ (log x)z I 
where C is defined in the Conjecture. 

It should be remarked that, without assuming the Riemann hypothesis, the 
applied methods only give upper bounds for A(x) (see [4]). These are useless 
with regard to the Conjecture. 

3. Proof of the Theorem 

Since there is an FPR mod 5, we have, by Lemma 1, for x > 5, 

F(x) = 1 + A(x). 
Applying Lemma 2, we get 

x (x log log x\ 
F(x) = C + 0[ - ~ — ) . 

log x \ (log x)2 J 
By the Prime Number Theorem (see, e.g., [2]), 

x „/ x \ i\(x) = + 0[ - ) . 
log x \(log x)2/ 

Thus, 
Ix log log x\ 

F(x) = Cv(x) + ol ^ V ) > 
\ (log x ) z / 

which implies the Theorem. 
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1. Introduction 

The Fibonacci numbers are defined by F0 = 05 F1 = 1, Ft = Fi_1 + Ft _2 for 
t > 2. It is well known [3] that the "ladder" composed of n squares (Fig. 1) 
has Fy n + 2 1-factors. 

FIGURE 1 

A 1-factor of a graph G with In vertices is a set of n independent edges of 
G} where independent means that two edges do not have a common endpoint. In 
the present paper, we investigate the number of 1-factors in a graph Qp,qS 
composed of p + q + 1 squares, whose structure is depicted in Figure 2. 

1 

? » f » 1 J 

QP,c 

FIGURE 2 

Throughout this paper, we assume that the number of squares in Qp}q is fixed 
and is equal to n + 1. 

The number of 1-factors of a graph G is denoted by K{G}. 

Lemma 1: K{Qp>q] = Fn + 2 + Fp + lFq + l where n = p + q. 

Before proceeding with the proof of Lemma 1 we recall an elementary prop-
erty of the Fibonacci numbers, which is frequently employed in the present 
paper: 

<» Fm = FkF
m-k + i +Fk-iF,-k' l±k<m. 

Proof: Let the edges of Q?} be labeled as indicated in Figure 3. 
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containing the edges 1 and 2 must not contain the edges 
s 9 because they have common endpoints with 1 and/or 2. Then* 

FIGURE 3 

First observe that above and below the edges 1 and 2 there is an even number of 
vertices. Therefore, a 1-factor of Qp,q either contains both the edges 1 and 2 
or none of them. 

A 1-factor of 
35 4, 
however, the edge 10 must and the edge 11 must not belong to this 1-factor. 
The remaining edges of Qp} q form two disconnected ladders with p - 1 and q - 2 
squares, respectively, whose number of 1-factors is evidently Fp + iFq. There-
fore, there are Fn+i^q 1-factors of Qp,q containing the edges 1 and 2. 

The edges of Qpn without 1 and 2 form two disconnected ladders with p + 1 
and q - 1 squares, respectively. Consequently, there are F oF +l 1-factors of 
QptQ which do not contain the edges 1 and 2. 

This gives 

K{Qp, qs Fp + 3Fq +1 + Fp+lFq = Fp + 2Fq +l + Fp + lFq + 1 + Fp + lFq 

= 7? 4- TP J? 
p+q+2 ^p+l£q+l9 

where the identity (1) was used. Lemma 1 follows from the fact that p + q = n. [ 

2. Minimum and Maximum Values of K\Qp q\ 
Theorem 1: The minimum value of K{Qp q}, p + q = n , is achieved for p = 1 or 
q = I. 

Proof: Bearing in mind Lemma 1, it is sufficient to demonstrate that for 0 < 
p < n, 

F2Fn ~ Fp+lFn-p + l> 
with equali ty if and only i f p = 1 or p = n - 1. 

Now, using (1) , 
JP TP 
r p + l n - p + 1 "n+1 

JP TP = TP + TP 

Fn + FpFn-p + Fp-lFn-p-l 

- F F 

F F ipJ- n-p 
F + F ,F i > F V n -

Because of FQ = 0, equalit}?- in the above relation occurs if and only if p - 1 
0 or n - p - 1 = 0 . D 
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Theorem 2: The maximum va lue of K{Q } , p + q = n9 i s achieved for p = 0 or 

Proof: 
F ,F , = F , - F F < F = F F 

p+lLn-p+l rn+l EpEn-p ~ n + 1 rlrn + l 
wi th e q u a l i t y i f and only i f p = 0 or p = n . Theorem 2 fo l lows now from Lemma 
1. D 

Theorem 3: I f p * 0, q * 0 , then t h e maximum va lue of # { § p ~ } , p + q = n, i s 
achieved for p = 2 or q = 2. 

Proof: From the proof of Theorem 1 we know t h a t for 0 < p < n , 
F F < F F 
n2rn-2 ~ £prn-p 

with equality for p = 2 o r p = n - 2 „ This inequality implies 

i.e. , 

F - F F > F - F F 
n + 1 r 2 n-2 ~ n+1 rprn-ps 

wjp _J_ w F - F F > F F + F F - F F 
i.e. , 

p w > F F 

from which Theorem 3 follows immediately. Q 

Theorem 4: If p * 19 q * 1, then the minimum value of K{QP} q}, p + q = n, is 
achieved for p = 3 or q = 3. 

Proof: We start with the inequality 

FoF ^ > F F 
c 3r« - 3 ~ npcn-p 

which was deduced w i t h i n the proof of Theorem 3 and in a f u l l y analogous manner 
o b t a i n 

ww < F F 
rhrn-2 ~ r p + l n-p + 1 

wi th e q u a l i t y for p + l = 4 o r p + l = n - 2 . D 

3 . The Main Resul t 

The r ea son ing employed to prove Theorems 3 and 4 can be f u r t h e r con t inued , 
l e a d i n g u l t i m a t e l y to the main r e s u l t of the p r e s e n t pape r . 

Theorem 5: 
(a) I f n i s odd, then 

K{Q0>n] > K{Q2in_2] > K{Qhtn_h} > . . . > K{Qn.3i3} > K{Qn.ul\-

(b) If n i s even and d i v i s i b l e by four , then 

K{Q0iJ > K{Q2rn,2} > • • • > K{Qn/2> n/2] > * { e „ / 2 + 1 , „ / 2 - i > 

> ^«*/2+3,n/2-3> > "- > Z{«n-3,3> > **«„-!, 1>-

(c) If n is even, but not divisible by four, then 

*{«„,„> > K{Q2in_2} > ••• > *{«B/2-i,„/2 + l> > K^n/Z, n/2> 

> ^«„/2+2.»/2-2> > ••• > *{e„-3.3> > X<«»-1.1>-

All the above inequalities are strict. 
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4, Discussion and Applications 

There seem to be many ways by which the present results can be extended and 
generalized. It is easy to see that if in the graph Qp,q some (or all) 
structural details of the type A and B are replaced by A* and B*, respectively 
(see Fig. 4), the number of 1-factors will remain the same. This means that 
our results hold also for chains of hexagons. In particular, it is long known 

B* 

FIGURE 4 

[2] that the zig-zag chain of n hexagons (Fig. 5) has Fn + n 1-f actors. As a 
matter of fact, the number of 1-f actors of chains of hexagons are of some 
importance in theoretical chemistry [1] and quite a few results connected with 
Fibonacci numbers have been obtained in this field (see [1] and the references 
cited therein). 

FIGURE 5 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 

A. P . Hillman 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to 
Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. 

Each solution should be on a separate sheet (or sheets) and must be 
received within six months of publication of the problem. Solutions typed in 
the format used below will be given preference. Proposers of problems should 
include solutions. 

Anyone desiring acknowledgment of contributions should enclose a stamped, 
self-addressed card (or envelope) . 

BASIC FORMULAS 

The F ibonacc i numbers Fn and the Lucas numbers Ln s a t i s f y 

F 
n 

L 
n 

+ 2 

+ 2 

= 

= 

Fn 

L n 

+ 1 

+ 1 

+ 

+ 

Fn> 

Ln> 

F0 

h 
= 

= 

0, 

25 

Fl 

Ll 

= 

= 

i ; 

l . 

A l so , a = (1 + / 5 ) / 2 , 3 == (1 - / 5 ) / 2 , Fn = (a n - 3 n ) / / 5 , and Ln = an + 3 n . 

PROBLEMS PROPOSED IN THIS ISSUE 

B-658 Proposed by Joseph J. Kostal, U. of Illinois at Chicago 

Prove t h a t Q\ + Q\ + • •• + Q,\ = P2 (mod 2 ) , where the Pn and Qn a r e the 
P e l l numbers def ined by 

Pn + 2 = 2Pn+l +Pn> P
0 = °> Pl = ^ 

®n + 2 = 2®n + l + Qn> ^0 = l >' «1 = 1' 

B-659 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

For n > 3 , what i s the n e a r e s t i n t e g e r to FnV51 

B-86Q Proposed by Herta T. Freitag, Roanoke, VA 

Find c losed forms f o r : 
[n/21 . KH + D / 2 ] 

(i) 2 1 - ^ ( ^ ) 5 * , <±i) 21- £ ( ^ I J ^ - l , 

where [£] is the greatest integer in t . 
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B-661 Proposed by Herta T. Freitag, Roanoke, VA 

Let T(n) = n (n + l ) / 2 . In B-646, i t was seen t h a t T(n) i s an i n t e g r a l 
d i v i s o r of T(2T(n)) for a l l n i n 2+ = { 1 , 2 , . . . } . Find the n i n Z+ such t h a t 
T(ji) i s an i n t e g r a l d i v i s o r of 

JT T(2T(i)). 
i= l 

B-662 Proposed by H.-J. Seiffert, Berlin, Germany 

Let Hn = LnPn , where the Ln and Pn a r e the Lucas and P e l l numbers, r e s p e c -
t i v e l y . Prove the fo l lowing congruences modulo 9: 

(1) H^n = 3n, (2) Ehn+l = 3n + 1, 
(3) ^ n + 2 E 3n + 6, (4) # ^ + 3 E 3n + 2. 

B-663 Proposed by Clark. Kimberling, U. of Evansville, Evansville, IN 

Let t\ = 1, ti = 2 , and t n = ( 3 / 2 ) t n _ x - t n _ 2 for ?z = 3 , 4 , . . . . D e t e r -
mine l im sup tn. 

SOLUTIONS 

When Is 2n = n (mod 5)? 

B-634 Proposed by P. L. Mana, Albuquerque, NM 

For how many i n t e g e r s n w i th 1 < n < 106 i s 2n E n (mod 5)? 

Solution by Hans Kappus, Rodersdorf, Switzerland 

More g e n e r a l l y , we show t h a t the number of s o l u t i o n s of 
2n E n (mod 5) (*) 

wi th 1 < n < 1 0 r i s 2 • 1CF"1. In f a c t , i t i s e a s i l y checked t h a t (2n - n) mod 
5 i s p e r i o d i c wi th pe r i od p = 20 s i n c e p = 20 i s the s m a l l e s t number such t h a t 
2 n ( 2 p - 1) E p (mod 5) for a l l n € N. Now the only s o l u t i o n s of (*) wi th 
1 < n < 20 a re n = 3 , 14, 16, 17. Hence, the number of s o l u t i o n s of (*) i n the 
i n t e r v a l [ 1 , 10p] i s 4 - 10 p /20 = 2 • lO 2 " - 1 . 

Also solved by R. Andre-Jeannin, Charles Ashbacher, Paul S. Bruckman, John 
Cannell, Nickolas D. Diamantis, Alberto Facchini, Piero Filipponi, Russell Jay 
Hendel, H. Klauser & M. Wachtel, Joseph J. Kostal, L. Kuipers, Y. H. Harris 
Kwong, Carl Libis, Sahib Singh, Lawrence Somer, Amitabha Tripathi, Gregory 
Wulczyn, and the proposer. 

Applicat ion of t h e Inequa l i t y on t h e Means 

B-635 Proposed by Mohammad K. Azarian, U. of Evansville, Evansville, IN 

For a l l p o s i t i v e i n t e g e r s n9 prove t h a t 

2 n + 1 1 + £ (klk)\ < (w + 2)n+l. 
L k-i J 
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Solution by Bob Prielipp, U. of Wisconsin-Oshkosh 

E(fc!&) = E ((fe + D ! - fc!) = (n + D ! - 1 
k= l k= 1 

Thus, the required inequality is equivalent to 

<„ + !),< ("-tip. 
This inequality follows immediately from the Arithmetic Mean-Geometric Mean 
Inequality, since 

1 + 2 + • • • + n + (n + 1) _ (n + 1) (n + 2) n + 2 
n + 1 ~ 2(n + 1 ) 2 

Also so lved by .R. Andre-Jeannin, Charles Ashbacher, Paul S. Bruckman, J. 
E. Chance, Nicholas D. Diamantis, Russell Euler, Piero Filipponi, Hans 
Kappus, Y. H. Harris Kwong, Carl Libis, Alejandro Necochea, H.-J. Seiffert, 
Sahib Singh, Amitabha Tripathi, Gregory Wulczyn, and the proposer. 

Difference Equa t ion 

B-636 Proposed by Mohammad K. Azarian, U. of Evansville, Evansville, IN 

Solve the d i f f e r e n c e equa t ion 

xn + l = (n + l)xn + X(n + l ) 3 [ n ! ( n ! - 1)] 

for xn i n terms of X, xQ9 and n« 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

Divide the r e c u r r e n c e r e l a t i o n by (n + 1 ) ! : 

, *w + * = —% + X[(n + l ) ( n + 1 ) ! - (n + l ) 2 ] . (n + 1 ) ! n\ 

Let an = xn/nl. We then have 

an+l = an + X[(n + 1)(n + 1)! - (n + l)2] for n > 0, 

from which it follows immediately that 

n 
a„ = an + A E ( ^ ! ^ ~ ̂ 2) • 

0 k=i 

n n 
Since V k\k = (n + 1 ) ! - 1, £ k2 = n(n + 1)(2n + l ) / 6 , and an = xQ, we o b t a i n 

x n = rz!{x0 + X[(n + 1) ! - 1 - n(n + l ) ( 2 n + l ) / 6 ] } . 

AZso solved by R. Andre-Jeannin, Paul S. Bruckman, Nicholas D. Diamantis, 
Guo-Gang Gao, Hans Kappus, L. Kuipers, H.-J. Seiffert, Amitabha Tripathi, 
and the proposer. 
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Golden Geometric Series 

B-637 Proposed by John Turner, U. of Waikato, Hamilton, New Zealand 

Show that 

t - - i. 
n = lFn + aFn+l 

where a i s the golden mean (1 + / 5 ) / 2 . 

Solution by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA 

By induction, Fn + aFn+i = an+l. Thus, the given sum equals 

1 E - ± - • 

Since 1/a < 1, the sum of this geometric series is 

1/a2 1 1 _ 
1 - (1/a) a(a - 1) 1 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, John Cannell, J. £. 
Chance, Nickolas D. Diamantis, Russell Euler, Piero Filipponi, Herta T. 
Freitag, Guo-Gang Gao, Russell Jay Hendel, Hans Kappus, Joseph J. Kostal, 
L. Kuipers, Y. H. Harris Kwong, Carl Libis, Alejandro Necochea, Oxford 
Running Club (U. of Mississippi), Bob Prielipp, Elmer D. Robinson, H.-J. 
Seiffert, A. G. Shannon, Amitabha Tripathi, Gregory Wulczyn, and the 
proposer. 

Summing Every Fourth Fibonacci Number 

B-638 Proposed by Herta T. Freitag, Roanoke, VA 

Find s and t as function of k and n such that 

k 
^ Fn-hk + hi~2 = FsFt' 

i= 1 

Solution by Paul S. Bruckman, Edmonds, WA 

k k-1 \ k ~ l 

L^Fn-hk + hi-2 = jL> Fn-hi-2 = ~^L^^Ln-hi Ln-hi-h' £= 1 ^=0 i= 0 

= 5(Ln " Ln-hk) = F2kFn-2k' 

Hence, we may take s = 2k, t = n - 2k (or s = n - 2k, t = 2k). 

Also solved by R. Andre-Jeannin, Piero Filipponi, Russell Jay Hendel, L. 
Kuipers, Y. H. Harris Kwong, Bob Prielipp, H.-J. Seiffert, Sahib Singh, 
Amitabha Tripathi, Gregory Wulczyn, and the proposer. 
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Lucas Analogue 

B-639 Proposed by Herta T. Freitag, Roanoke, VA 

Find s and t as functions of k and n such that 

k 

JH Ln-i*k + i*i-2 = FsLf i = l 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

It is well known that Ln = an + bn, where a and b are the zeros of x2- - x -
1; so we can employ the same technique used in solving B-638. Alternately, 
using the result (from B-638) 

k 
)-</n-hk + hi-2 = F2kFn-2k9 

^ = 1 

and the fact that L„ = F^.-, - F 13 a solution follows immediately: 

k k k 
2^ Ln->4k + L+i-2 = .2-*Fn + l-kk + L±i-2 + X«>Fn-\-hk + hi-2 i= \ ^ = 1 ^ = l 

F2kFn+\-2k + F2kFn-l-2k 

F2kLn-2k ' 

Also solved by Paul S. Bruckman, R. Andre-Jeannin, Piero Filipponi, L. 
Kuipers, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Amitabha Tripathi, 
Gregory Wulczyn, and the proposer. 
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*************************************************************** 

LETTER TO THE EDITOR 

Dear Professor Bergum, 

On Tuesday 26th July, 1988, at the Pisa conference on Fibonacci Numbers and 
Their Applications, a specially convened meeting considered the problem of 
keeping up-to-date with new information relating to translations of Fibo-
nacci's writings and to any matters concerning his life and works. 

To some extent, the stimulus for that meeting was the recent appearance of 
L. E. Sigler's translation, with commentary, of Fibonacci's Liber quadvatovvm 
("The Book of Squares"). 

Through the medium of "The Fibonacci Quarterly" we are appealing for any 
new details concerning Fibonacci's life and works—particularly translations of 
his works—which could be of interest to the international Fibonacci community. 

Anyone possessing such knowledge could contact one of us. 
ciate this assistance and cooperation very much. 

We would appre-

CL. 3. 

A. F. Horadam 
Department of Mathematics, 
Statistics and Computing Science 
University of New England 
ARMIDALE N.S.W. 2351 AUSTRALIA 

Yours sincerely, 

J. Lahr 
14, Rue des Sept Arpents 
L-1139 Luxembourg 
GRAND DUCHY OF LUXEMBOURG 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 

Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND 
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK 
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially 
welcomes problems believed to be new or extending old results. Proposers 
should submit solutions or other information that will assist the editor. To 
facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-437 Proposed by L. Kuipers, Sierre, Switzerland 

Let x, y, n be N a t u r a l numbers, where n i s odd. If 

Ln/Ln+2 < x/y < Ln+l/Ln+3s show t h a t y > l/5Ln+l+. (*) 

Are t h e r e f r a c t i o n s , oc/y, s a t i s f y i n g (*) for which y < Ln + i±? 

H-438 Proposed by H.-J. Seiffert, Berlin, Germany 

Define the F ibonacc i polynomials by 

FQ(x) = 0, Fl(x) = 1, Fn(x) = xFn_l(x) + Fn_2(x), for n > 2 . 

Show t h a t , for a l l odd i n t e g e r s n > 3 , 

f + m dx T T / . , f / TT\ 
I = — 1 + 1/cos — . 

J_„ Fn (x) n \ nl 
H-439 Proposed by Richard Andre-Jeannin, ENIS BP*W, Tunisia 

Let p be a prime number (p * 2) and m a N a t u r a l number. Show t h a t 

L2pm + Lkpm + . . . + L{p_l)pm = 0 (mod pm + l) . 

SOLUTIONS 

Some Difference 

H-414 Proposed by Larry Taylor, Rego Park, New York 
(Vol. 25, no. 3, August, 1987) 

Let j, k3 m> and n be integers. Prove that 

^m + j^n + k ~ ^m + k^n + j ~ ^^ _. jFn _ m(-l) 
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Solution by Tad White, UCLA, Los Angeles, CA 

The proof is by induction on each of the four variables. Let P(j, k9 m, ri) 
denote the above equality. It is trivial to verify this equality for_ j, k, m, 
n E {0, 1}. We thus need only show that 

(i) P(j - 2, k, 777, ri) and P(j - 1, k, m, ri) =^ P(j, k, m, ri), and 

(ii) P(j + 2, k9 m, ri) and P(j + 1, k, m, n) => P(j, k, m, ri), 

and similarly for the other three variables. The proofs are essentially iden-
tical for each variable, so we will present only the induction on j here for 
brevity. 

Notice that the equality P(j, k9 m, ri) can be written in determinant form: 

11 m+k m+j 

^n+k n + j 

jp TP f-if + i 

Using the Fibonacci recursion relation, the determinant on the left can be 
rewritten as 

TP TP 4 - TP 

-m + k rm + j - l rn + j-2 
TP TP -4- TP 
-n+k n + J - 1 n + j-2 

By linearity of the determinant in the second column, this is 

m+k m + j -I 

^n+k ^n+j-l 

cm+k m+j-2 
Fn + k Fn + j-2 

which, by the induction hypothesis, equals 

Lk-j +lnn-mK LJ ^ rk-j+2rn-m^ lJ J-2 

(Fk.j+2 - Fk„j + l)Fn-m(-l)m + J 

= w TP (-])rn + j 
rk-jcn-m^ l ) > 

as r e q u i r e d . The i n d u c t i o n i n the n e g a t i v e d i r e c t i o n i s the same, except t h a t 
one uses the F ibonacc i r e c u r s i o n r e l a t i o n i n the r e v e r s e d i r e c t i o n . 

Also solved by P. Bruckman, P. Filipponi, L. Kuipers, J. Mahon, F. Makri & 
D. Antzoulakos, B. Prielipp, H.-J. Seiffert, and the proposer. 

A Lit t le Rec ip roc i ty 

H-416 Proposed by Gregory Wulczyn, Bucknell U. (retired), Lewisburg, PA 
(Vol. 25, no. 4, November, 1987) 

(1) I f (P\ = 1, show t h a t 

(2) I f (?} = - 1 , show t h a t 

•5(L
P-l + V i ) E l ( m o d ^ ' 

•5(Pp + 1 - Fp + 1) E 1 (mod p ) . 

. 5 ( P p _ x + Fp_Y) E - 1 (mod p ) , 

• 5 ^ P + 1 " FP + 0 E - 1 ( m o d P>-
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Solution by Lawrence Somer, Washington, D. C. 

I t i s w e l l known t h a t 

Fp-(5/P) ~ ° ( m o d P) a n d FP ~ (5lip) (mod p ) . 
I t i s a l s o known t h a t 

Ln = Fn-\ + Fn +1 • 

It follows from the law of quadratic reciprocity that (p/5) = (5/p) if p is a 
prime greater than 2. 

(1) Suppose (p/5) = 1. Then p * 2. It follows that 

V(5 / P) = Vi E ° (mod £° 
Fp = (5/p) = 1 (mod p). 

^p+1 = V x + FP E ° + l E x (mod P}-

V l = ^ p _ 2 + Fp = (Fv - Fp_Y) + Fp E 1 - 0 + 1 E 2 (mod p ) 

V l = FP + F p + 2 = FP + ^ P + V l } = 1 + 1 + 1 = 3 (mod p ) . 

• 5 ( L p _ x + Fv_]) E . 5 ( 2 + 0) E 1 (mod p) 

• 5 ( L p + 1 - F p + 1 ) E . 5 ( 3 - 1) E 1 (mod p ) . 

(2) Assume that (p/5) = -1. First suppose that p = 2. Then 

V l = £1 = !• V l = L3 = 4> V l =^i = l. V l =^3 = 2-

and 

Then 

Thus, 

and 

Hencej 

and 

Then 

•5 V-i + Vi} = - 5 ( 1 + 1} E _ 1 (mod 2 ) 

and 
•5(Lp+1 - Fp+1) = .5(4 - 2) E -1 (mod 2), 

Now s u p p o s e t h a t p * 2 . I t f o l l o w s t h a t 

and 

Then 

H e n c e , 

and 

T h u s , 

and 

- p - ( 5 / p ) p + 1 

Fp E ( 5 / p ) E - 1 (mod p ) . 

Vi = V l " FP E ° " ("1} E X (mod P}* 
Vl = V2 + F P = (FP ~ V l } + F p E - 1 - 1 - 1 E - 3 (mod p ) 

£ p + 1
 = F P + F

P + 2 = FP + <*P + Vl} E - 1 + ^ + ° E " 2 ( m ° d P } ' 

. 5 ( L p _ i + Fv_l) E . 5 ( - 3 + 1) E - 1 (mod p ) 

• 5 ( L p + 1 - F p + 1 ) E . 5 ( - 2 - 0) E - 1 (mod p ) . 

A l s o s o l v e d b y P . Bruckman, P. Filipponi, C. Georghiou, L. Kuipers, T. 
W h i t e , a n d t h e proposer. 
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A Mean Problem 

H-417 Proposed by Piero Filipponi, Rome, Italy 
(Vol. 25, no. 4, November, 1987) 

Let G(n, m) denote t h e geometr ic mean taken over m consecu t ive F ibonacc i 
numbers of which t h e s m a l l e s t i s Fn . I t can be r e a d i l y proved t h a t 

Gin, 2k + 1 ) (k = 1, 2 , . . . ) 
i s no t i n t e g r a l and i s a sympto t ic t o Fn + k (as n t ends t o i n f i n i t y ) . 

Show t h a t i f n i s odd ( e v e n ) , then Gin, 2k + 1) i s g r e a t e r ( sma l l e r ) than 
Fn + k, except f o r t h e case k = 2 , where Gin, 5) < Fn+2

 r o r every n. 

Solution by Paul Bruckman, Edmonds, WA 
l 

(k-t1-(1) G(n, 2k + 1) 
V s 

Hence, 
x Ik 

log G(n, 2k + 1) = ^ T 7 E log Fn + 3 

1 2k 

——— E ( log a n + <? - % log 5 + l o g ( l - (b/a)n+') 
j ' - o 

1 2* 
- — E ( ( " + <7)1°8 « - % log 5 + l o g ( l - xn + 

+ 1 ,• = o 

3")). 2k . . 0 

where a and fe are the usual Fibonacci constants and x = b/a = -b2. (Note that 
-1 < x < 0.) Thus, 

1 2k 

(2) log £ ( n , 2fe + 1) = (n + fc)log a - % log 5 + E l o g ( l - ^ + < 0 . 
2/C + 1 j = o 

Likewise , 
(3) log Fn + k = (n + fc)log a - % log 5 + l o g ( l - xn + k). 

We now make the d e f i n i t i o n : 

n\ n , n -, / £ ( ^ 2 ^ + l ) \ (4) £ ( n , fc) = logl p J. 
vk 

Thus, it suffices to prove that D(n, k) > 0 if n is odd and D(n, k) < 0 if n is 
even, unless k - 29 in which case £>(n, 2) < 0 for all n. 

Now, from (2) and (3), we have 

1 2fe 
(5) D(n, k) = £ log(l - ̂ n + ̂) - log(l - ** + *) . 

Z/C T J. -• — n J-0 

Expanding into Maclaurin series, we obtain 

LK + i j -0i- 1 £= 1 

i.i \ 2fc + 1\ 1 - a:* // 
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o r , a f t e r some s i m p l i f i c a t i o n , 

(6) D(n, k) = £ i - V W l _±^.£i2*±i2i_y 
i - 1 \ 2fe + 1 ^ / 

We cons ide r the v a r i o u s p o s s i b i l i t i e s : 

Case 1. k i s even, k > 2. Then 

i f , moreover , n i s even, (n + k) i s even, and the l a s t e x p r e s s i o n i s c l e a r l y 
n e g a t i v e ( the f i r s t term v a n i s h i n g i f k = 2 ) . I f n i s odd, then 

D(?l9 k) > £2n + 2 j _ f k ± I _ _ A _ tyitn + Ukf^ + Z _ X 
\2k + 1 / \2fc + 1 

so 
£ ( n , fc) > 2,2n+2fc(_5 _ i ) -%2,»m + ^ ( 5 \ 

\(2k + l ) / 5 / \((2fc + l ) / 5 - 1 ) / 

> a
 F ( 2 - a - ^ - 1 } ) - %&2^ + 2 f e(2 - Zp2" + 2fc) 

2(2k + l ) / 5 
,~-(2w-l) 7 „-(2n-l) -1 o i 

- a
 = ( 2 _ a*-l) _ 2?2^ + 2^ > - - ^n + 2k 

2(2k + l ) / 5 2(2k + 1) 

= h2n(— b2k) > 0 i f k > 4 ( s i n c e a2/c > kk + 2 i f Zc > 3) , 
\kk +2 ) 

Thus far, we have shown that 

(7) D(n, k) < 0 If k and n are even; 

D(n9 k) > 0 if fc > 4 is even, n is odd. 

Also, if n is odd, 
00 / IP . \ 

D(n, 2) = X i-lx<n + 2H(l - — ) < -5x2n + l+ - 20x3n+6 

i-2 \ $K. 

= -5x2n+4(l + 4xn+2) < -5x2n + i+(l - 4£6) < 0. 

Thus, 

(8) D(n, 2) < 0 for all w. 

Case 2. fc is odd, k > 3. Then 

If n is odd, 
/ n2k+l v / ^k+2 x 

Z?(n, fc) > ̂  + 2Ml + — F - %£«« + *> ( — - 1 
V (2k + l)/5/ V(2k + l)/5 / 

(continued) 
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n - ( 2 n - l ) 
> ^ 2 ( « + fc) ( 2 + b2(n + k) ) + _ 2 ( 2 - a" ( 2 n " ^ ) 

2(2fe + l ) / 5 
~ - ( 2 n - l ) / i \ 

> b2(n + k) + __^ _ ( 2 _ -ij = bZn(bZk + _ _ t ) > 0 . 
2(2£ + 1) 5 \ • 4fe + 2 / 

If n i s even, 

clearly, D(n, k) < 0 in this case. Therefore, 

(9) £(w, k) > 0 If k > 3 and n are odd; 

D(n9 k) < 0 If k > 3 Is odd, and n is even. 

Combining (7), (8), and (9) yields the desired conclusion: 

(10) D(n, k) < 0, if n is even, k * 2; 

D(n, k) > 0, if n is odd, k * 2; 

£(w, 2) < 0 for all n. Q.E.D. 

Also solved by the proposer. 
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