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TERMINATING DECIMALS IN THE CANTOR TERNARY SET 

C h a r l e s R. Wall 
Trident Technical College, Charleston, SC 29411 

(Submitted October 1987) 

1. Introduction 

The classical Cantor set is usually constructed by beginning with the 
interval [0, 1], deleting the middle third, and then continuing to delete the 
middle third of each interval remaining after the previous step. Another 
characterization is that the Cantor set consists of all numbers between 0 and 1 
that can be written in base three using only 0 and 2 as digits,, In this paper, 
we show that there are only 14 terminating decimals in the Cantor set, namely, 

4' 4' 10' 10' 10? 10' 40' 40' 40' 40' 40? 40' 40' 40°  

(a > 0, b > 0, ab * 0) and gcd (/!/, M) = 1. If N/M is a fraction in the Cantor 
set, then so is 1 - N/M and so is 3N/M, provided 3/1/ is reduced modulo Mi the 
former is the 2's complement, and the latter is the fractional part after 
shifting the ternary point. In what follows, it will be convenient to write 
M = \xp and §(M) = yq, where <j> is Eulerfs function (the numbers u and y will be 
specified). 

The claim above will be established by examining eight infinite classes of 
denominators and eight special cases. We will show that no fractions in the 
eight infinite classes are in the Cantor set; the eight special cases will 
yield the fourteen terminating decimal fractions listed above. 

For j relatively prime to M, we will find it convenient to use the notation 

[J] = (j * 3k (mod M) : 0, 1, 2, .}. 

If g is the smallest positive exponent for which 3g = 1 (mod M) and (j, M) = 1, 
then each set [j] contains g elements, and there are $(M)/g distinct sets [j] . 
Note that either all elements of [j] are numerators of fractions in the Cantor 
set or none are, and that [j] is eliminated if and only if [-j] is. 

Note that: 

3hk 

3hk+l 
3 ^ + 2 
3 ^ + 3 

T h e r e f o r e , 

Ml
 

E 3 
E 9 
E 27 

(mod 80) 
(mod 80) 
(mod 80) 
(mod 80) 

•jhk 

-jhk + l 
-jhk + 2 
7̂ fe + 3 

E 1 (mod 80) 
E 7 (mod 80) 
E 49 (mod 80) 
E 23 (mod 80) 

Lemma 1: If 80|Af, then the sets [j] are pairwise disjoint for j 
and ±343. 

±1, ±7, ±49, 

Reduction of the congruences yields 

Lemma 2: If 40|Af, then the sets [j] are pairwise disjoint for j = ±1 and ±7. 

Lemma 3: If 4JM, then the sets [j] are pairwise disjoint for j = ±1. 

2. General Cases 

In this section, we will examine eight infinite classes of denominators 
M > 1. For each class, we will describe the behavior of the numbers 3k 
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(mod M) . In each case, the congruence for 3^ may be proved by mathematical 
induction, and the others follow from it. No induction proofs will be 
presented because they are all easy (the hard part is spotting the patterns, 
not proving them). Then, we will show how each set [j] with (j, M) = 1 
contains an element N for which N/M is between 1/3 and 2/3, thus proving that 
the class contains no elements of the Cantor set. The scheme of proof is 
summarized by the following chart: 

b 
0 

£2 

0 1 

c 

i n o / t i a l 
S |_« C tr 1 £3 1 

D E 1 F 

A 1 

G 
B 
H 

Class A: Suppose M = 2a with a > 4. Then <j>(Af) = 2a l and we write M = 2p 
and <j)(M) = bq. We observe that 

3q = p + 1 (mod M) 3lq = 1 (mod Af) 

Then, by Lemma 3, the sets [1] and [-1] are disjoint, but [1] contains p + 1, 
which is obviously in the middle third. Details may be found in Reference 1, 
where it was proved that 1/4 and 3/4 are the only dyadic rationals in the 
Cantor set. 

Class B: Suppose Af = 2a5 with a > 5. We write M = 2p and (j) (A?) = 2a+l = 
16(7. Then we may prove that: 

3q = p + 1 (mod Af) 32<7 = 1 (mod Af) 

By Lemma 1, it suffices to examine the sets [j] for j = ±1, ±7, ±49, and ±343. 
Because p + 1 is in the middle third, sets [1] and [-1] do not qualify. Note 
that 7(p+l) = p + 7, which is in the middle third, so [±7] is eliminated. 
Similarly, 49(p + 1) = p + 49 and p + 49 is in the middle third except for 
p = 80 (M= 160); but 243(49) = 67 (mod 160) and 67/160 = 0.41..., eliminating 
[±49]. Note that 343(p + 1 ) = p + 343 and p + 343 is in the middle third 
unless p < 1029, so [±343] is eliminated except possibly for M = 160, 320, 640, 
and 1280. But each of these possibilities includes an element of the middle 
third: 

3 '• 343 E 69 = 0.43...M 
9 • 343 = 207 = 0.64...M 
343 = 0.53...M 
9 • 343 E 527 = 0.41 

M 
M 
M 
M 

= 
= 
= 
= 

160: 
320: 
640: 
1280 M 

Therefore, Class B is eliminated. 
b-l Class C: Suppose M = 5b with b > 2. We write M = 5p and cj) (Af) = 4 e 5 

lOq. Then: 

3q E 2p - 1 (mod M) 35c? = -1 (mod M) 
32q E p + 1 (mod M) 310^ E 1 (mod M) 

But then the numbers 3J for 0 < j < $(M) are distinct, so none of the numbers 
can be in the Cantor set, since 2p - 1 obviously is not. 

Class D: Suppose M= 2 • 5b with b > 2. We write M = 5p and (j)(M) = 4 • 5h~l = 
lOq. Then: 

35? E -1 (mod M) 
310c? E 1 (mod Af) 
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As in Class C, we cannot have all the numbers (3p + 1 in particular), so we 
have none of them. 

Class E: Suppose M = 225& with b > 2. We write M = lOp and $(M) = 8 • 5h~1 

= 20q. Then: 

3q = p - 1 (mod M) 35q = 5p - 1 (mod M) 
32q E 8p + 1 (mod M) 3l0q = 1 (mod M) 

We have only the sets [±1] to check, but they are eliminated because 5p - 1 is 
in the middle third. 

Class F: Suppose M = 235& with b > 2. We write M = 20p and <|>(Af) = 16 - 5b_1 

= 40<?. Then: 

3? E p - 1 (mod M) 35q = 5p - 1 (mod M) 
32q = 8p + 1 (mod M) 3 m E l (mod M) 

By Lemma 2, there are the four sets [±1] and [±7] to check. We quickly elimi-
nate [±1] because 8p + 1 is in the middle third. If p > 21, we eliminate [±7] 
because 7(p - 1) is in the middle third. If p < 21, then p = 10 and M = 200, 
but 357 E 101 (mod 200); thus, Class F yields no members of the Cantor set. 

Class G: Suppose M = 2k5b with b > 2. We write M = 80 and <j> (M) = 32 • 5b~1 

= 80<̂ . A "leapfrog" induction shows that 

3̂  E 2p - 1 (mod M) 35(? = 50p - 1 (mod M) 
32c? E 16p + 1 (mod M) 310^ = 1 (mod M) 

if b is even, while 

3q E 42p - 1 (mod M) 35^ = lOp - 1 (mod M) 
32q E 16p + 1 (mod M) 310? = 1 (mod M) 

if b is odd. In any event, we have to examine the sets [±1], [±7], [±49], and 
[±343]. 

Suppose b is even. Because 50p - 1 is in the middle third, we eliminate 
[±1]. Note that 7(50p - 1) = 30p - 7, which is in the middle third, and that 
49(50p - 1) E 50p - 49, which is also in the middle third, eliminating [±7] and 
[±49]. Now, 343(2p - 1) = 46p - 343, which is in the middle third except when 
p = 5 and M = 400. Coupling this with the fact that 3(343) = 229 (mod 400), we 
eliminate [±343] and, therefore, all of Class G. 

Class H: Suppose M = 2a5b with a > 5 and b > 2. We write M = lOp and <j>(M) 
= 2a+15&_1 = 80(7. Then double induction shows that: 

3q E p + 1 (mod M) 35q = 5p + 1 (mod M) 
32q E 2p + 1 (mod M) 310^ = 1 (mod M) 

Once again, we must examine [±1], [±7], [±49], and [±343]. But 5p + 1 is in 
the middle third, eliminating [±1]. Also, 7(2p + 1 ) = 4p + 7 and 49(5p + 1) = 
5p + 49, so we may eliminate [±7] and [±49]. Because 343(5p + 1) = 5p + 343, 
we may eliminate [±343] except possibly for p = 80 (M = 800) and p = 160 
(M = 1600). But 343/800 = 0.42... and 3(343)/1600 = 0.64..., so the excep-
tional cases present no problem. 

3. Special Cases 

Classes A through H yield no terminating decimals in the Cantor set, so the 
only possible denominators are 2, 4, 5, 8, 10, 20, 40, and 80. If M = 2, the 
only fraction possible is 1/2, which is clearly in the middle third. For the 
other choices of M, we will simply list (in the order obtained) the elements of 
the sets [j]; an asterisk denotes a member of the middle third: 
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M = 4 

M = 5 

M = 8 

M = 10 

M = 20 

[1] = {1, 3} 

[1] = {1, 3*, 4, 2*} 

[1] = {2, 3*} 
[-1] = {7, 5*} 

[1] = {1, 3, 9, 7} 

[1] = {1, 3, 9*, 7*} 
[-1] = {19, 17, 11*, 13*} 

M = 40 [1] = {1, 3, 9, 27} 
[-1] = {39, 37, 31, 13} 
[7] = {7, 21*, 23*, 29} 
[-7] = {33, 19*, 17*, 11} 

M = 80 [1] = {1, 3, 9, 27*} 
[-1] = {79, 77, 71, 53*} 
[7] = {7, 21, 63, 29*} 
[-7] = {73, 59, 17, 51*} 
[49] = {49*, 67, 41*, 43*} 
[-49] = {31*, 13, 39*, 37*} 
[343] = {23, 69, 47*, 61} 
[-343] = {57, 11, 33*, 19} 

Thus, the terminating decimals in the Cantor set are precisely those claimed 
earlier. 

Reference 

1. C. R. Wall. Solution to Problem H-339. Fibonacci Quarterly 21.3 (1983):239. 
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NOTE ON THE RESISTANCE THROUGH A STATIC 

CARRY LOOK-AHEAD GATE 

Mark Nodine 
Brown University, Providence, RI 02912 

(Submitted March 1988) 

In this paper, I show that a problem arising in hardware design has a solu-
tion that is the ratio of consecutive Fibonacci numbers. 

One of the problems in VLSI designs of adders is to minimize the amount of 
time needed for addition [1], A straightforward way of adding is to have a 
separate adder cell for each bit of the operands. The function to be performed 
by each one-bit adder cell is to take inputs A^ and B^ and a carry bit C^-i from 
the previous stage, and compute 

and 

SUM; = AiBiCi.l + AiBtCi^ + AiBiCi_l + Ai 

= Ai®Bi © ^ _ j 

C, 

:th 
+ '' ̂  7, -1» 

where SUM; is the ith bit of the sum and C^ becomes the carry input to the next 
stage. Unfortunately, this scheme means that the ith adder cannot compute its 
result until the (i - l)t h adder has propagated its carry to it. 

One way to get around this problem is to look ahead to compute the carry 
bit to be propagated to each stage. The idea is that each adder can make a 
quick decision whether to propagate or generate a carry by using the formulas: 

GEN = A- and PROP A; ®. 

A carry from the previous stage will be propagated if either Ai or Bi is 
true, and one will be generated at this stage, regardless of the previous carry 
value, if both Ai and B^ are true. The pull-down transistor part of a 4-stage 
static carry look-ahead gate as it might be implemented in CMOS or nMOS is 
shown in Figure 1, where the output is the negation of the fourth carry bit 
value, the inputs on the left are the zeroth carry bit and the first four PROP 
values, and the inputs on the right are the first four GEN values. 

poHL_ 

p2-\C_ 
P H t 

FIGURE 1. 4 - s t a t 

P w 

;e s t a t i c c 

] M 2 

a r ry 

] H 3 

Look-

The circuit works by setting things so that the output C^ will be high 
(true) unless there is a path between it and ground. The overbar indicates a 
negated signal, that is, one which is true when it is at ground and false when 
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it is at the power supply voltage. The transistors can be viewed as switches 
which allow current to flow if their inputs are high (true). In this circuit, 
there will be a path to ground if £3 is true, which means that the fourth stage 
would generate a carry. If there is no carry generated in the fourth stage, 
the output can still be pulled low (true) if a carry was propagated through the 
fourth stage (P3 is true.) and a carry was somehow passed through the third 
stage. This analysis proceeds recursively, so that if, for example, all the 
generate bits were false, a carry would only be generated if all the propagate 
bits were true and the initial C0 carry was true. 

FIGURE 2. Source of the recurrence relation for resistance 

In order to compute the delay through this circuit, it is necessary to com-
pute the. resistance and capacitance between ground and the output. This note 
concentrates on the resistance. The approximation made in computing resistance 
in this paper is that each transistor with a high input is in the conducting 
state and represents a unit of resistance. A generalized n-stage resistance 
network for this circuit has a very regular structure, as shown in Figure 2. A 
"zero-stage" look-ahead gate would comprise but a single resistor and thus have 
a resistance of one. A one-stage gate has a series of two resistors in 
parallel with a third; the composite resistance is computed by using the 
parallel resistance formula: 

alb ab 
a + b 

In this case, a = 2, since resistors in series sum, and b = 1. Thus, Rx = 2/3, 
and we get a general recurrence relation for Rn: 

R0 

Rn 

= 

= 

1, 
V 
V 

1 
• 1 

+ 
+ 

1 
2 

We can attack this recurrence by splitting R^ into its numerator and denomina-
tor: 

*n = Nn-i/Dn-.l+ \ Rr, 
Nn-1 + D n - 1 

N ,/D , + 2 N , + 2D , 
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So we have a double recurrence: 

N0 

Nn 

D0 

Dn 

= 
= 

= 
= 

1 

K-
I 

v 

-1 

-1 

+ 

+ 

Dn-

2Dn 

1* 

- 1 

n > 1 

n > 1 
So far, we have only demonstrated this as a formal solution because the 

fraction Nn/Dn may not be in lowest terms. The lemma below demonstrates that 
this is the actual lowest-term solution. 

Lemma: Nn and Dn are relatively prime. 

Proof: This is a proof by induction. This base case is easy: 

gcd(N0, D0) = gcd(l, 1) = 1. 

Assume that gcd(Dn_ls Nn_x) = 1. We use a result by Euclid that if n > ms then 
gcd(n, m) = gcd(ms n - m) (see [2]). Thus, 

gcd(Dn, Nn) = gcdCN^i + 2Dn_l3 Nn_x + Dn_x) 

= gcd(Nn_! + Dn_l5 D„_x) 

= gcd(Dn_ls Nn_x) 

= 1. D 

We can create ordinary generating functions N(s) and D(s) to find the 
closed-form solutions for the series. If we define Nn = Bn = 0 for n < 0 (the 
ratio Rn will thus be undefined in those cases), then we have formulas for them 
which are valid for all m 

N„ = N ^ + D„_l + &nQ 

D„ = Nn_, + 2D„_i + «„„. 

Multiplying both sides of these equations by zn and summing over all n gives us 
the ordinary generating functions: 

(1) N(g) = sNOs) + sD(3) + 1 " 

(2) D(g) = sN(s) + 2sD(s) + 1. 

Subtracting (2) - (1) and leaving off the (s)fs for clarity, 

D - N = 2D, 
or 
(3) N = D(l - z). 

Plugging this back into (2) gives 

1 
D = -. 

1 - 3z + z2 

Hence, by (3), 
1 - z 

N = . 
1 - 3z + z2 

We can get a closed-form expression for Nn from the generating function by 
factoring the denominator (1 - 3z + z2) into (1 - az) (1 - bz) and expanding in 
terms of partial fractions. Using the quadratic formula, we get that 
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3 + /5 , 3-/5 
2 2 

Here we make the observation tha t , if we l e t 
JL 1 + ^ 2 1 - / 5 
• - - 2 - . • - - 1 — . 

then 
a = <S>2

S b = $ 2 . 
We can also note that 

(4) cj)2 - 1 = cj)5 $ 2 - 1 = $ 

an d 

(5) (j)2 -• $ 2 = / 5 . 

Therefore, to expand the partial fraction 

1 - 2 a 8 

(1 - cj)2s)(l - $2s) 1 - cj)2;s 1 - $2s' 

we can find a by multiplying by (1 - <j)2s) and setting z to 1/cj)2: 

a = —=, 
V5 

using identities (4) and (5). 
Similarly, 

$ 
3 =--~. 

V5 
This gives us a closed form for Nn: 

N = £ N n ^ = « £ (4>2*)n + 3 £ ($2s)n 
n n n 

by substituting the series for the partial fraction form. Equating coefficients 
of zni 

Nn = ±(MZn - u2n) = 4=(*2 n + i - $2n+i)» 
We can get Dn from Nn: 

Dn = Nn + 1 - Nn = ^ ( * 2 n + 3 " $2n + 1) - ^ ( * 2 n + 3 ~ $2n + 1) 

= _l_^2n + 2 _ 2̂n + 2N = p 

where î- is the ith Fibonacci number [2]. it seems there should have been an 
easier way to find the solution. We can rewrite the joint recurrences slightly 
to yield 

NQ = 1 

N„ = N„_x +D„_1, n > 1 

D0 = 1 
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Therefore, we can build the following table: 

n 
0 
1 

1 2 
3 

F 4 
L 5 

N„ 
1 
2 
5 
13 
34 
89 

D„ 
1 
3 
8 
21 
55 
144 

R« 1 
1.000000 
0.666667 
0.625000 
0.619048 
0.618182 
0.618056 

In other words, we have the Fibonacci numbers alternating between the Nw's and 
the Dn

fs. Thus, 

-2n + l 

-2n + 2 

h2n + l I2.n + I 

K2n+2 l2n + 2' 

It is also possible to compute the asymptotic resistance, since as n + °°, <J>̂  •> 0 
but §n -> oo . This gives 

R _ 1 _ ^5 - 1 

The convergence, it can be seen, is quite rapid. 
A similar result for the resistance through a ladder network was obtained 

by Basin [3] and independently by Manuel & Santiago [4]. The resistance of 
their circuit was also a ratio of consecutive Fibonacci numbers, but with the 
larger number in the numerator: 

Fn - 2n 

• I n - I 
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DIVISIBILITY PROPERTIES OF THE FIBONACCI NUMBERS MINUS ONE, 

GENERALIZED TO Cn - Cn _ i + Cn - 2 + k 

Marjorie B i c k n e l l - J o h n s o n 
Santa Clara Unified School District, Santa Clara, CA 95051 

(Submitted March 1988) 

1. I n t r o d u c t i o n 

The numbers {Cn(a, b, k)}, defined by 

Cn(a, by k) = Cn_l(a9 b3 k) + C„_2(a, b, k) + k, 
with 6\ (a, b, k) = a, CAa% b3 k) - b9 where k is a constant, have been studied 
in [1]. The Fibonacci sequence arises as the special case Fn = Cn(l, 1, 0), 
while the Lucas sequence is Ln = Cn(l, 3, 0) . The sequence 

{Cn} = {..., 0, 0, 1, 2, 4, 7, 12, 20, ... } , 

where Cn = Cn(Q9 0, 1), has the property that Cn = Fn - 1, the sequence of 
Fibonacci numbers minus one. 

The sequence {Cn} has remarkable divisibility properties since almost every 
term is a composite number and at least one factor can always be named by 
examining the subscript of Cn. Further, {Cn} contains exactly two prime terms, 
and two-thirds of its terms are even numbers. Analogous properties extend to 
the generalized sequence {Cn(a, b, k)}. 

2. Prime Factors of Cn 

First, since F^m gives all the even Fibonacci numbers, C%n is always odd, 
and Co ± 1 is always even, so the probability of choosing an even term from {Cn} 
at random is 2/3. Since Cn = Fn - 1, we can use [2] to prove some theorems in 
one step. 

Theorem 1: For primes of the form p = 5k ± 2, p divides both C -^ and C ^ + l' 

Proof: We have Fp = -1 (mod p) and Fp+l = 0 (mod p) from [2]. Then 

c
P-i = V i - l = V i - (FP + 1} 

whi le 
C 2 P + 1 = f 2 p + l " 1 = < V l ) 2 + (FP + l)FP ~ {FP + 1 } ' 

where a l l terms on the r i g h t - h a n d s i d e a r e d i v i s i b l e by p in bo th c a s e s . 

Theorem 2: For pr imes of the form p = 5k ± 1, p d i v i d e s Cp, C'p + 1» ^ p - 2 ' ^ 2 p - l ' 
C 2 p S and C 2 p _ 3 . 

Proof: We have Fp = 1 (mod p) and Fp _ x . = 0 (mod p ) from [ 2 ] . We w r i t e Cp , 
C 1 , and C 2 i n f ° r i n s i n which p d i v i d e s t he terms on the r i g h t - h a n d s i d e : 

Cp = (Fp - 1 ) , 

S + i = Fv+i " x = Vi + (FP ~ U> 
Cp-2 - Fp-2 - 1 « tfp - 1) - V l * 
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Since 

where p\Fp_iFn_i and p|(Fp - 1) but p does not divide Fp, observe that whenever 
p\(Fn - 1), then pI^p+w-1• L e t n = P> P + * » a n d p - 2 to write that 

P\C2p-l> P\C2p> a n d PlC2p-3* 
Further, a little rewriting lets us prove the following corollary. 

Corollary: If p\Cn9 then pl^+^p-l) s w = 0, ±1, ±2, ..., where p is a prime of 
the form 5k ± 1. 

Proof: From the proof of Theorem 2, if p\Cn, then p|Cn + (p-i)' The corollary 
holds by the Axiom of Mathematical Induction, since whenever p | ̂Vz+w(p - l) * then 

Pr[n+m(p-l)]+(p-D = Cn + (m + l)(p - 1) • 

Theorem 3: I f IT(p) i s the pe r i od of a prime p i n the F ibonacc i sequence modulo 
p , then 

P\CkHp)-i9 P\CkHp) + i9 a-nd P\CkHp) "r^-

Proof: Since 
Ckli(p)+n Cn = ^fen(p) + n ~" ^ > 

and s i n c e p d i v i d e s the r i g h t - h a n d s i d e by d e f i n i t i o n of I I (p) , i f p\Cn, then 
Pl^£n(p)+tt * Theorem 3 fo l lows because C_^ = C^ = C^ = 0. 

Corollary: The prime 5 d i v i d e s ^ O / c - l ' ^2 0£+l5 ^2 0fc+2> a n d ^2 0^ + 8 ' 

Proof: 11(5) = 20, and 5 d i v i d e s C_x, C^, C 2 , and CQ. 

Theorem 4: I f p i s a prime of the form 5k ± 2 , then p |<^(p+ i) _ 2 i f <7 ^ s odd. 
If q i s even, p\Cq(p+ i) . L, p\Cq(p + i) + i> a n d P l ^ ( p + l ) + 2-

Proof: I f p\Cn, then p|Cn + mn(p) as i n the proof of Theorem 3 . From [ 3 ] , i f p 
i s a prime of the form 5k ± 2 , then I I (p ) | 2 (p + 1 ) . Then, p\Cn+2m(p + i) > rn any 
i n t e g e r . Since 

P\Cp-l> P\Cp-l+2m(p + l) = C (2m + l)p + (2m-l) > 
o r , fo r q odd, 

p\Cqp + (q-2) = Cq(p + l) - 2 • 
If g is even, let g(p + 1) = fcn(p) for some /c, since II (p) | 2(p + 1), and use 
Theorem 3. 

Corollary: If p = 5fc ± 2, then 

(i) p divides C(p+2)(p-i)» Cp(p+3)> and Cps(p + 1) _ 2 ; 

(ii) p divides Cp(p+2) , ̂ p2_2, (7p2, and Cp2 + r 

Proof: (i) Take q odd, <? = p, ̂  = p + 2, and q = ps, in Theorem 4. To show 
(ii), take ^ even, q=p+l, q = p - l . 

Theorem 5: If p is a prime of the form 5k ± 1, then 

P l ^ + Dp-OK + Z)' PI £(/* +Dp-(*-!)> a n d P l ^ + Dp-w f o r any integer /TZ. 

108 [May 



DIVISIBILITY PROPERTIES OF THE FIBONACCI NUMBERS MINUS ONE 

Proof: From t h e C o r o l l a r y t o Theorem 2 , i f p | Cn, t h e n p\C n+m{p _x) . From T h e o -
rem 2 , t a k e ?z = p - 2 , p + 1 , and n = ps and s i m p l i f y . 

C o r o l l a r y ; F o r any p r i m e p , p * 5 , p | C p 2 , p | ^ p 2 + 1 » and p\C 2_2. 

Proof: I f p = 5/c ± 1 , l e t m = p i n Theorem 5 . I f p = 5k ± 2 , u s e t h e C o r o l l a r y 
t o Theorem 4 . 

Theorem 6: I f I I ( j ) i s t h e p e r i o d of any i n t e g e r j , j * 0 , i n t h e F i b o n a c c i 
s e q u e n c e modu lo j , t h e n , f o r a l l i n t e g e r s k, 

J I CkJi(j) - l 5 «7 I CkJiU) + 1 5 a n d ^ I CkJi(j) + 2 ' 

Proof: See the proof of Theorem 3. Notice that any integer will eventually 
divide Cn for some n. 

3. Fibonacci and Lucas Factors of Cn 

Since Cm + n ~ Cm_n = Fm+n - Fm_nS we can write 

(3.1) Cm + n - Cm„n = FmLn, if n is odd, 

Cm + n ~ Cm-n= LmFn > i f n i s e v e n » 

Observe that, if Ln\Cm„n, then L n|C m + n , and Ln has period 2n if n is odd. Sim-
ilarly, Fn has period 2n if n is even. Putting these together with Theorem 6, 
we write 

Theorem 7: If n is odd, L^ divides ^rn-l' ^2rn+ls a n d ^ 2 ^ + 2' while if n is 
even, Fn divides C^pn-l* ^2rn+l5 a nd ̂ 2rn + 2 f ° r a ny integer p. 

Now things are getting exciting. Since we can take n = 2k + 1 to find that 
^lk + 1 divides CL^ + IS Ci+fc + 3 s a nd Ct+fc + i+s and n = 2k to see that F^ divides 
C L ^ - I , CL+^ + IS and £ ^ + 2? notice that Cn is always divisible either by ̂ 2?c + l o r 

by F2k . Now, if /c = 1, i*2 = 1 divides any integer, so take \k\ > 2. Thus, if 
n > 7, or if n < -5, then Cn always has at least one factor smaller than Cn and 
greater than 1 which we can write exactly, so Cn is not prime. We examine the 
sequence from C-^. through Cg: -4, 1, -2, 0, -1, 0, 0, 1, 2, 4, 7, and find that 
the only primes are 2 and 7. 

Theorem 8: The sequence of Fibonacci numbers minus one, Cn = Fn - 1, contains 
only composite numbers for all n > 7 and all n < -5. The only primes which 
appear in {Cn} are C^ = 2 , £g - 7, and |C-2| = 2. 

4. Divisibility of the Generalized Sequence \Cn(a, b, Jc)} 

From [1], the sequence {Cn(a> b3 k)} with initial values C^ ~ a and C^-b 
is given by 

(4.1) Cn(a, b, k) = Cn-l(a, fc, fc) + £n_2(a> ^ ^) + k 

= aFn_2 + M 7 ^ + /cC„(0, 0, 1) 

= #„ +. Zc<7n 

for the generalized Fibonacci numbers En, Hn = Cn(a9 b, 0 ) , and Cn(0, 0, I) - Cn 
of the earlier section. 
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As in Section 3, 

S + n(a' b9 k) " Cm-n\a* b9 k) = (Hm + n ~ Fm-w) + K-(Cm + n - Cm_n)9 

so that we can write 

(4.2) Cm + n(a, b, k) - Cm..n{a, b9 k) = LnHm + kFmLn9 if n is odd; 

Cm + rl(a, b9 k) - Cm_.n(a9 b, k) = Fn(Hm + l + Hm_l) + kLmFn, if n is even. 

Thus, the periods of Fn and Ln are still 2n, where we again distinguish n even 
and n odd. Also, since every nonzero integer eventually divides F-^ for some k9 
every nonzero integer will divide Cn (a, b, k) for some n if {Cn(a, bs k)} 
contains a zero term. If {Cn(a, b, k)} contains two zero terms, in some cases 
we will again have a finite number of primes occurring. 

Theorem 9: If Cq (a, b9 k) = 0, and if a nonzero integer j has period H(j) in 
the Fibonacci sequence, then j \ Cq +mn(j) (a* >̂ ^) f° r a H integers TTZ. 

Theorem 10: If F2m|^(a, 2?, fc), then 

F2m\Cq+hm(a> b> k^> 
and if L2m + l\C'q(a9 b9 k), then 

L 2 m + 1 1^ + ̂  + 2 ^ ' ^' k), 
for any integer /??. 

Now, Theorem 10 gives us some interesting special cases. Notice that if 
Cq(a, b9 k) - 0, and if Cq+r(a, b9 k) = 0, where v is an odd number, then 
{Cn(a, by k)} will contain a finite number of primes, because for n larger than 
certain beginning values, Cn(a, by k) will always be divisible either by F 2m or 

L2m+1> W h e r e F2m * °> ± l > a n d L2m+l * ± l ' 
Without loss of generality, if {Cn(a, b9 k)} has a zero term, renumber the 

terms, taking new starting values, so that 

a = 0 = C1(0y b9 k). 

Then, i f Cr+i(09 b9 k) = 0 for some r > 0, from ( 4 . 1 ) , 

Cr + l(Q, b9 k) = 0 • F P _ ! + bFr + kCr + l = 0, 

where we list some possibilities and special cases. Notice that k = Fr and b = 
-CT+i = -FT+i + 1 always is a solution, and write the resulting 

Cn(a9 b9 k) = Cn(09 -Cr+l9 Fr). 

For v = 1, we have C„(0, 0, 1) = Cn; for r = 2, Cn(0, -1, 1) = C„_2; and p = 3 
gives Cn(0, -2, 2) = 2Cn_23 all the sequence of Fibonacci numbers minus one. 

Consider r = 4 and {Cn(0, -4, 3)} = {..., 0, -4, 1, -2, 0, 1, 4, 8, 15, 26, 
44, 73, 120, . ..}. We can show that 

Cn(09 -4, 3) = -4F„_! + 3Cn = Ln_3 - 3. 

From [2], we have L^-p = 3 (mod p) where p is any prime, so p |̂ 2p ~ 3* and we 
have 

p|C2p+3(0, -4, 3). 

All odd-subscripted Cn(0, ~4, 3) have Fm or Lm for a divisor for some m9 but we 
cannot easily say whether or not {Cn(09 -4, 3)} contains a finite number of 
primes. However, any prime terms will have a subscript of the form 6m, If v 
is even, we cannot determine whether or not {Cn(09 b9 k)} will contain a finite 
number of prime terms. 
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However, for r = 5, {Cn(0, -7 3 5)} contains only two primes, 2 and 7. We 
write Cn(03 -7, 5) for -3 < n < 10: -24, 7, -12, 0, -7, -2, -4, -1, 0, 4, 9, 
18, 32. We observe | CY | = 2 and | C3 | = 7 = C_2- From Theorem 10, 

L2k + l\Cl + ^k+2> L2k + l \C6+hk + 2> F2k\Cl+kk> a n d F2k I ̂ 6 + 4/c ' 
covering every possible subscript, so that Cn(0, -7, 5) always has F2fc or îfc + l 
for a divisor. But F2k - ±1 f o r k - ±19 and î 2fe + l = ±;1- f o r k = 0 and /c = -1. 
So terms Cn(03 -7, 5) for n > 10 or n < -3 have a divisor greater than 1 and 
less than Cn(03 -7, 5) and thus are not prime. For v = 7, in a similar 
fashion, we find only the three primes 7, 73, and 79 in {Cn(0, —20, 13)}. If 
v - 9, all the terms of (Cn(0, -54, 34)} are even, but, if we instead consider 
{Cn(0, -27, 17)}, we find 

|C5| = 13 = Cll9 \CQ\ = 11, and Clh = 107 

as the only primes. Finally, v = 11 has only two primes 

|C5| = 73 and |C8| = 79, 

but v = 13 is the best of all, containing no primes at all! 
From the preceding discussion, we can write the following theorem. 

Theorem 11: If {Cn(a3 b, k)} has Cl(a3 b, k) = 0 and Cl + r(a , b, k) = 0 for r 
an odd integer, then \Cn(a9 b3 k)\ is prime for only a finite number of values 
for n. 

Now, recall from above that the probability of choosing an even term from 
{Cn} = {Cn(0, 0, 1)} is 2/3. {Cn(a3 b, k) } has the same property only when k 
is odd, and when at least one of a or b is even. These results can be verified 
by examining Cn(a3 b3 k) from (4.1) for n = 3m, 3m + 1, and 3m + 2, where we 
always take k odd. 

( i ) Co ( a , b3 k) = a F q 9 + bF' , + kC~ . ' • 
v y 3m v 5 5 / 3m-2. 3m-1 3m 

N o t e t h a t kCo)m, F-3m-\, and F^m-2 a r e a H ° d d . T h e n , i f a and 2? h a v e t h e same 
p a r i t y , C3m{a3b3 k) i s o d d , w h i l e i f a and 2? h a v e o p p o s i t e p a r i t y , C3m{a3 b, k) 
i s e v e n . 

( i i ) C3m + 1(a, b, k) = a F ^ + bF3m + kC3m + 1 . 

Here both bF 3m and kC^ + i are always even, while i^-i is odd, soC3 m + i(a, 2?, k) 
is even or odd as a is even or odd. 

C111) C 3 m + 2 ^ ' &> fe> = ^ 3 m + & F 3 m + l +
 kC3m + 2-

Now, aF3m and kC^m+2 are always even, while F3m + i is odd, so £3^+2(^5 b, k) is 
even or odd as b is even or odd. 

Putting the three cases together, first notice that, if all of a, b3 and k 
are odd, Cn(a9 b3 k) is always odd. If a and b are both even, C3w(a, b3 k) is 
odd but C3m + i(a3 b3 k) and £3^+2(a, 2?, /c) are both even. If a and b have 
opposite parity, Co>m{a3 b3 k) is even, and either C3m+i(a3 b, k) or £3^+2(^5 »̂ 
fc) is even, but not both. Then, if k is odd, and at least one of a or b is 
even, the probability that a term chosen at random from {Cn(a, b, k)} will be 
even is 2/3. 

Next, re-examine the three cases for k even. If a, b3 and k are all even, 
Cn(a3 b3 k) is always even, a trivial result. In (i) , kC$m is even, while 
F3m_2 and F3m_i are odd, so that C$m(a9 b 3 k) is odd if a and b have opposite 
parity, but even if a and b have the same parity. From (ii) , both bF^m and 
kC3m + l are even, while F3m„l is odd, so Cr3m + 1(a, b3 k) is even or odd as a is 
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even or odd. From (iii), "both aF^m and ̂ £3^+2 are even, while F$m + i is odd, so 
^3m+2(a> b 9 k) is even or odd as b is even or odd. Putting these results 
together, if k is even, and a and b have opposite parity, then C^m(a, b9 k) is 
odd while exactly one of 6Y3m + 1(a, b9 k) or £3^+2 (<z> b, k) is odd. If k is even 
and both a and Z? are odd, C^m(a9 b9 k) is even but both C^m+i(a9 b9 k) and 
^3^ + 2(̂ 5 b, k) are odd. Thus, if k is even and at least one of a or b is odd, 
the probability of randomly choosing an even term from {Cn(a9 b9 k)} is 1/3. We 
summarize in Theorem 12. 

Theorem 12: If /c is odd, and at least one of a or b is even, the probability 
that a term chosen at random from {Cn (a, b9 k)} will be even is 2/3. If k is 
even, and at least one of a or b is odd, the probability that a term chosen at 
random from {Cn(a9 b9 k)} will be even is 1/3. If a, b, and k are all odd, 
Cn{a9 b9 k) is always odd. 
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Let x denote a positive integer, written in the ordinary denary form, and 
define its palindromic inverse xT to be the integer obtained from x by writing 
its digits in reverse order. We ignore leading zeros so that both 1234 and 
12340 have palindromic inverse 4321. A number is called a palindrome if x = 
xf. Similar definitions apply to bases other than 10. 

A notorious problem concerns palindromic sums [3]. From any starting point 
Xi we form a sequence inductively by x^+i = Xy. + x£ , and the question is 
whether one always arrives at a palindrome. A negative answer is conjectured, 
and specifically that for Xi = 196 a palindrome is never reached. Although 
this problem is unsolved, the conjecture is known to be correct for base 2 [2]. 
The problem, however, is somewhat artificial since the property of being a 
palindrome will not persist throughout the iteration even if ever attained. We 
consider here the problem of taking palindromic differences; starting with X\, 
define 

xfe + l \xk ^kl 
inductively. In this case, if xk were a palindrome, all its successors would 
vanish, and the first question that arises is whether this always occurs. This 
problem has been considered previously (see [1], [4], [5]). 

Clearly, if X\ has only one digit, then x2 - 0, and if Xi has two digits, 
then x2 will have at most two digits and be divisible by 9. If x2 = 9 or 99, 
then # 3 = 0 , whereas all other cases do eventually reach zero, as the sequence 
90, 81, 63, 27, 45, 9, 0 shows, for this sequence together with all palindromic 
inverses contains all integers of no more than two digits divisible by 9. The 
same reasoning applies to three-digit numbers, for then x2 will be divisible by 
99, and the sequence 990, 891, 693, 297, 495, 99, 0 shows just as before that, 
for any Xi under 1000, the process leads to zero in the end. As we shall see 
presently, the close connection between the behavior for two- and three-digit 
numbers is not mere coincidence. 

Given an x± having n digits, it is not necessarily true that x2 < #]_> but 
certainly x2 has n or fewer digits. Accordingly, from any starting point Xi of 
digit length n one of two things must happen; either in the sequence of 
iterates we find one with fewer than n digits, which property will then per-
sist, or else the sequence becomes periodic eventually with all the numbers in 
the period having n digits. Within a period, the period-length p, is the 
number of iterations required to return to the starting point. We have already 
seen that there are no periods with 0 < n < 4. However, there is a period with 
n = 4, p = 2, with X\ = 2178, x2 = 6534. So there are nontrivial periods. We 
seek to determine for each n, all possible periods; alternately, we might 
desire to find all possible p. 

It is easily seen that p = 1 cannot occur except for Xi = 0, for it would 
require x2 = xl and so x{ = 7x^ . Suppose then that the first and last digits 
of xi were a and bs respectively. Then we should find that b = 2a or 2a + 1 and 
also that a = lb (mod 10), which cannot hold simultaneously. [Incidentally, it 
can be shown that if instead of base 10 we consider base 3 the same result 
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holds if 3 = 2 or if 3 = 1 (mod 3). However, in other cases, there are 
nontrivial periods with p = 1, e.g., x = ab with 

a = (3 - 2)/3, b = (23 - 1)73 if 3 = 2 (mod 3), 
and a; = a£c<i wi th 

a = 3 / 3 , fc = (3 - 3 ) / 3 , o = (23 - 3 ) / 3 , 6Z = 23/3 i f 3 = 0 (mod 3 ) . 
We shall, however, concentrate on the denary case in the sequel. 

We observed before a connection between the behavior of three-digit numbers 
and that of two-digit numbers, and we now use this to dispose of the case in 
which n is odd. Suppose that we have a period in which n = 2m + I is odd, and 
let xi = a§a\ ... &2m-la2m De anY number in any period with digit length n. 
Then x^ is the modulus of the difference 

^0 al m •• am ° • • a2m-laZm 
. am ... a-j_ aQ 

and since the two middle digits coincide, the middle digit of the difference 
will be 9 or 0 accordingly as there is or there is not a carry in the middle of 
the subtraction. Hence, for every number in such a period the middle digit 
will be 0 or 9, and moreover, were this digit to be removed in all cases, we 
should obtain a period with the same p but with n reduced by 1. Conversely, 
all periods with n odd can be obtained from exactly similar ones with n one 
less by the insertion of a suitable middle digit 0 or 9; thus, the period 2178, 
6534, 2178 leads to 21978, 65934, 21978. In fact, we can produce a period with 
n one larger still by doubling this middle digit and, of course, the process 
can be carried on indefinitely. We call a period old if it is derived in this 
way from one with smaller n, and we shall from now onward concentrate on 
finding the new periods; since all new periods have n even, we shall write n -
2m. 

Much of what follows was obtained by computation, and economy soon becomes 
a major consideration. At first sight, it might appear that to find all 
periods of digit length 2m it might be necessary to consider all 9 •' 102"7"1 
possible n-digit numbers and their iterates to find all possible periods. Such 
a procedure would be extremely wasteful, for all the integers in a period are 
themselves iterates, and there are far fewer of these. For suppose that x-^ -
CC^CL-, ... <2 •, and without loss of generality that x •, < x\. Then 

m- 1 

x2 = J2 Ar(lOn~r-1 - 1075), 
r = 0 

where Ar = an-T-\ - av . Since x2 has n digits (and not less), it is easily 
seen that this requires 

1 < AQ < 9 and -9 < AP < 9, r = 1, 2, ..., m - 1. 
Secondly, the observation that second iterates cannot have AQ = 9 reduces the 
number of cases to be considered to 8 °19;77~1. Despite this reduction and some 
other refinements, the number of cases still grows exponentially with n, which 
soon makes complete computation impossible. 

We shall represent the iterate xs a number of 2m digits, by the correspond-
ing ̂ fs in the canonical form U 0 , Ai, ..., Am„i] where it is to be understood 
that AQ lies between 1 and 8 and the others between -9 and 9. From this, the 
denary form for x is found by writing 

V l ••• Am-l ~A
m-l ••• ~Al ~AQ 

where, of course, some of the numbers will be negative. To deal with this, we 
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start at the right, and whenever we encounter a negative number add 10 to it 
and subtract 1 from its predecessor in the usual "borrow and carry" fashion, 
familiar from elementary arithmetic. The successor is then easily calculated 
in the same canonical form and the process repeated, in a manner eminently 
suitable for computation,, 

It will be clear that if Am-i = 0, then in the denary form the number will 
have its two middle digits both 0 or both 9, and its successor will also have 
Am-i = 0; such a number cannot appear in a new period, and so can be ignored in 
a search for new periods. At first this appears to produce only a small saving 
in the computation, a factor of 18/19, but this is not so, for we can ignore 
any Xi any of whose iterates has Am_i = 0, and this observation saves a very 
large proportion of the time required to compute the periods. 

Since we now assume that Am_i * 0, we can associate with each number x of 
digit length 2m in a new period, the rational number u... •= XI Ar * 19~p whose 
denominator is precise ly 19m~1, and conversely, each such u yields a unique x. 
Within each period we call that x the first in the period if the corresponding 
u is the least u of any x in the period. It clearly suffices to find all the 
first numbers in the periods. 

For any r with 0 < r < m - Is we write 

X -i — 1 / L Q , /i-i, ..., rl-p 9 i J 

or 
*^i "" fl5 l ' ' ' '' ^ ' 

according as the first nonvanishing integer in the sequence Ar + i9 . ..,. 4m-i is 
positive or negative. The utility of this lies in the fact that if 

x2 = iB0,'Bl9 . . . , Bm_l}, 

then BQ9'BI, . . . , Bv depend only upon AQ , A\y ..., AT and the value + or - and 
not on the actual values of ̂ 4P+i5 . ..» A-m-l* Using this fact, we see that no 
period contains any element {5, + } , for the successor would have BQ = 0. 
Furthermore, no period has {4, +} as its first element, for the successor would 
have BQ = 2, contradicting the assumption that {4, +} came first in the period. 
In this way, we can write a program to determine whether anv period could start 
with (AQ9 AI> ..., Ar, e), where s = + or -, for we can calculate the first r + 
1 digits in the canonical form of its successor, then there would be two 
possible second successors, four possible third successors, and so on. At each 
stage, we can delete any suggested successor which comes before Xi and so 
determine whether we could eventually return to X]_, and if so what is the 
minimum possible period. For r - 0, it is possible to show on the back of an 
envelope that, for the first element of any period AQ = 1 or. 2. For r = 2, 
about 3 minutes on a simple home computer suffice to prove 

Result 1: The only period with m = 2 starts at {2, 2} corresponding to 2178, 
and for m > 2, every new period must start at one of 

{1, 0, +}, {1, 1, ±}, {1, 2, ±}9 {1, 3, ±}, {2, -9, ±}, {2, -8, +}, 

{2, -6, ±}, {2, -5, ±}, {2, -3, - } , {2, 0',.'-}, or {2, 2, - } . 

The same program showed that the only periods with p = 2 are {2, 2} and 
possibly more starting at {2, 2, - }. Use of this fact allows us to find all 
periods with p = 2. Let a (jn) denote the number of periods both old and new 
with p = 2 and n = 2m. One such is, of course, {2, 2, 0, 0, ..., 0}, but this 
apart, we must have X\ = {2, 2, -} and so x2 = (6, 6, . . .}. If 

x2 = (6, 6, +} or {6, 6, 0, 0, ..., 0}, 

then 
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x3 = {2, 3, ±} or {2, 2, 0, 0, ..., 0}, 

respectively, and in either case x? * x-,. Thus, 

x2 = {6, 6, - } . 

Now consider the number 2199 ... 9978 - Xi. It is easily seen that for some 
k > 2 this number has its first k digits zero, its last k digits zero, and a 
number y, which occupies the middle 2m - 2k digits; then 

xx = {2, 2, 0, ..,, 0, Ak9 ..., Am_1} 

with Ak < 0. Then 

2/1 = i-Ak> •••> - V i > -
Also, z/-, < z/|, otherwise we should not have a?2 = {6, 6, -} and, moreover, y, 
must also be periodic with period dividing 2, and hence equal to 2. Therefore, 
2/-,= {2, 2, ...}, etc. Conversely, given such a y, we can find a corresponding 
#2 of digit length 2m. Hence, 

o(m) = 1 + a(l) + ... + a(777 - 2) 
and so 

o(m + 1) = a (777) + a (77? - 1). 

Since a(l) = 0 and a(2) = 1, it follows that a(m + 1) = Fm, the 777th Fibonacci 
number. Also, the number of old periods with p = 2 and of digit length 27?? 
equals o(m - 1); hence, for m > 3, the number of new periods of digit length 
2777 equals Fm_x - Fm_2 = Fm_3.-

We show next that all periods starting at {2, 2, -} have p = 2. For, let 
x-, be the first element in the period; then x2 - {6, 6, ± }. We cannot have 
x2 ~ (6, 6, +}, otherwise x^ = {2, 3, ±} or {2, 4, ± }, whence x^= {2, -} 
—impossible, since x-, was assumed to be the first in the period. Thus, 

x2 = {6, 6, -} and x^ = {2, 2, ±}. 

Again the + sign is impossible, since it would be found that x^ came before x,. 
Thus, we find that, for all k9 

x2k+l = {2, 2, -} and .x2k = (6, 6, -} 

and, accordingly, p must be even. If we now subtract x, from 2199 ... 9978, we 
find that after deleting leading and trailing zeros we obtain either zero or 
else a number z/1 which also forms part of a periodic sequence with the 
properties that, for each k9 

yzk+i < yk+i a n d yzk > yk-
It is not very difficult to establish that these conditions also require y•, to 
start {2, 2, ±}; we omit the details. Hence, all periods starting at {2, 2, -} 
are obtained by the construction above; thus, by induction on 77?, all have 
period 2. Summing up, we have 

Result 2: Every period with p = 2 starts with {2, 2, ...} and conversely. For 
given digit-length 2T?? where m > 3, there are precisely Fm-\ such distinct 
periods of which precisely Fm_3 are new periods, Fk denoting the 777th Fibonacci 
number. 

For other values of p, there does not seem to be such a neat description. 
We have carried out a complete search for 777 < 8 and obtained the following 
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Result 3: 

m 

2 

3 

4 

5 

6 

7 

8 

For m < 8. 

P 

2 

2 

2 
2 
14 

2 
2 
2 
14 

•2 

2 
2 
2 
2 
12 
14 
22 

2 
12 
14 
22 

2 
12 
14 
14 
17 
22 

, the only periods 

First X-, 

2178 

219978 

21999978 
21782178 
11436678 

2199999978 
2178002178 
2197821978 
1143996678 

219999999978 
217800002178 
217821782178 
219780021978 
219978219978 
118722683079 
114399996678 
125520874479 

eight periods 
one old period 
one old period 
one old period 

thirteen periods 
one old period 
one old period 

1143667811436678 
1186781188132188 
one old period 

are: 

Canonical Form 

2, 

23 

2, 
2, 
2, 

25 

2, 
2, 
2, 

2, 
2, 
2, 
2, 
2, 
1, 
2, 
1, 

2, 
2, 

2 

2, 

2, 
2, 

-8, 

2, 
2, 
2, 

-8, 

2, 
2, 
2, 
2, 
2, 
2, 

-8, 
2, 

-8, 
-9, 

0 

0, 
-2, 
-6, 

0, 
-2, 
0, 

-6, 

0, 
-2, 
-2, 
0, 
05 

-1, 
-6, 
5, 

-6, 
9, 

0 
-2 
4 

0, 
-2, 
-2, 
4, 

0, 
-2, 
-2, 
-2, 
0, 

-3, 
-4, 
5, 

4, 
-3, 

0 
0 
-2 
0 

0, 
0, 
• 2, 
-2, 
-2, 
2, 
0, 
2, 

-4, 
-3, 

0 
0 
2 
0 
-2 
3 
0 
1 

6, 
9, 

8, -2 
-9, 2 

It will be observed in the above that certain of the canonical forms of new 
periods read the same left to right as right to left, e.g., {2, 2} and {1, 2, 
5, 5,. 2, 1} and that others do so with a change of sign, e.g., {2, 2, -2, -2}. 
Consider any x = {AQS ..., /lm_]_} in which Am_i * 0 and define the dual of x, z 
= {CQ, ..., Cm-i} where the A's have been written down back to front and the 
signs changed throughout if Am„i < 0; formally 

Cr = sgnl^^} • Am-r„i, 0 < v < m - 1. 

Clearly, performing the operation twice will yield x again, justifying the name 
"dual." There is one difficulty that arises, for if Am-i = ±1 and Am-2

 n a s 

opposite sign to Am_i, then z = {1, -} and on expansion this fails to have 2m 
digits. We shall deal with this as it occurs. The utility of the definition 
lies in the following 

Lemma: The iterate of the dual equals the dual of the iterate. 

Proof; There are two cases depending on the sign of Am_i. We give the proof 
for Am_i < 0, the other case being less transparent but essentially similar. 
If x = {AQ, . .., Am_i} s then z = {-Am_i, ..., -A 0 }. Thus, to find the denary 
representation for x9 we have to perform the "borrow and carry" routine on the 
expression 
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A0A1 ... Am_l{-Am_1) ... (-A^i-Ao), 
whereas for z we must do the same for 

(-Vx) ••• (-^K-VVl ... 4m_i-
Now observing that both AQ an<^ ~^m-l a r e positive, and the fact that the "first 
half" of the former expression is identical to the "second half" of the latter 
and vice-versa, it becomes clear that this property remains intact after the 
borrowing and carrying; recalling how the iterate is formed from the denary 
form proves the result. 

Now consider any new period which guarantees that Am_^ ^ 0 for every x in 
the period. At first sight, the lemma would appear to give a new dual period, 
obtained by taking duals throughout. There are, however, three reasons why 
this need not be. In the first place, we might have a period in which x-, is 
its own dual, and then by the lemma this property would persist throughout the 
period. Thus, the dual period does indeed exist, but is identical to the given 
one. This case can be further subdivided into two cases. If x •, is its own 
dual, then we have either Ar = Am_r_i for each r, in which case we call x-^ 
symmetric, or else Ar = -Am-T„i for each p, in which case xi is said to be 
skew-symmetric. It is not difficult to see that the property of being 
symmetric or skew-symmetric also persists throughout the iterations and so we 
also call the respective periods symmetric or skew-symmetric. Both types do 
exist, as we see in Result 3. The symmetric cases are interesting, and can 
occur not only if m is even but also with m odd. The skew-symmetric cases, 
however, are all formed from periods with fewer digits in the following manner. 
Let 

xl = ^ 0 ' * ' " ' ^ - 1 ^ 
be the first member of any period whatsoever. Then we can obtain a skew-
symmetric period with the same p starting at 

yl = {AQ9 ..., Am_1, 0, ..., 0, -Am_1, ..., -AQ} 

where the number of zeros written in the middle is arbitrary and can be zero; 
conversely, any skew-symmetric period is of this form. The symmetric case is 
entirely different, and although {1, 2, 5, 5, 2, 1} belongs to a period, 
neither {1, 2, 5} nor {1, 2, 5, 0, 5, 2, 1} does. 

A second reason why the dual period may not be interesting is that although 
X, may not be self-dual, it may be the dual of one of its iterates. Thus, if 

xl = {2, -8, -6, 4} 
then 

ooQ = (4, -6, -8, 2}. 

In such cases it is reasonable to call the period self-dual although the 
elements themselves are not. It is plain that for all self-dual periods p must 
be even. 

There is a third reason why the dual period may not yield anything inter-
esting. It is possible that one x in a period is of the form we mentioned 
above with Am_l = ±1 and Am_2 °f opposite sign to Am-i, in which case the dual 
"collapses," in not having the requisite number of digits. This does indeed 
occur; one example, which may well not be simplest, is the one given in Result 
4 below for p = 9. It has 

^3 = (4, 3, 4, 7, 0, -3, 9, 1, -6, 2, 2, 3, 2, 6, 7, -9, 6, 
8, -4, 1, -4, 9, -2, 1}. 

There are some divisibility properties of the x which can occur in a 
period. Naturally, all are multiples of 9, but the observant reader may have 
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noticed that all the x-, with 777 < 8, and indeed all those for n < 17, including 
those with n odd are multiples of 11. If n = 2m + 1 is odd, then any iterate 
is a multiple of 11 since, if x^ = a^a^ •-• ^2 » then 

±*2 - ]£ (ar - a2/n_p)(102ffl-r - 10r) = 0 (mod 11). 
r = 0 

If n = 2m is even and x = aQa-> . .. a~ _i» then 

2m -v 
xl + *{ = X (aP + a2m.1.p)(102m"1"r + 10r) E 0 (mod 11), 

v= 0 
and so 

#2 = \x^ - #{I = ±2^1 (mod 11). 
Hence, 2^ and x2 are either both divisible by 11 or neither is. Therefore, in 
any period either all or none of the numbers are multiples of 11. Let us 
consider how we might hope to discover periods consisting of nonmultiples of 
11. In the first place, if x^ = {AQ, -..J Am_l}s then 

m - 1 - m--1 
xi = E'^ r ( io 2 , "" r - 1 - ioP) E 2 E ( - i > r " 1 ^ r (mod 1 ] - )-

2? = 0 r = 0 

Thus, if x1 is symmetric and m even, then 11107̂ . Similarly, if X\ is skew-sym-
metric and m odd, but this case is not really interesting, because whatever the 
parity of m, the property of being divisible by 11 or not is inherited from the 
shorter period from which X\ can be formed. 

We have seen that x2 = ±2x^ (mod 11) and so, if x, is not divisible by 11, 
then 

xl = xv+l E • ± ^ x \ (m°d 11) 

which implies that 

2P = ±1 (mod 11), 

i.e., that 5 divides p. It is not too difficult to show that p = 5 will not 
yield such a value, for if p = 5 it can be shown that 

xl = x6 E 25^i ~ ~x\ (m0(i 11)-
So in the search for possible periods not divisible by 11, it seems natural to 
look for numbers with period 10, which are not symmetric with m even nor skew-
symmetric. In this way we have been able to find such a period, which is the 
one listed in Result 4 below; it is self-dual. 

From the computational point of view, the existence of such numbers is 
rather a pity, for had we been able to show that all periods were divisible by 
11, the necessary computation to exhaust all possibilities for a given n could 
have been reduced by a factor of 11. 

The next question is, determine for which p periods exist. We have seen 
that there are none with p = 1, but some with p = 2, 10, 12, 14, 17, and 22. 
There is in principle no difficulty, given a suggested p, to search for periods 
in a systematic way. Suppose that we have reason to think that there might be 
a period starting at x\ = {A Q , ..., Av , ± } of period-length p. Then, as 
mentioned above, we can calculate the 2 P~ 1 possible pth successors of x\ and 
check whether any one can be {^Q , . . . , Ar , ±}. If not, we can discard this 
starting point; if yes, then we can increase r by one and look at the 19 
possible starting points with the first v + 1 entries and the sign given, etc., 
inductively. Although the task sounds quite formidable, it is actually very 
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efficient at least for small p, apparently more so than a complete search for a 
given m. In this way, we have been able to show 

Result 4: For p < 14, there are no periods with p = 1, 3, 6, or 13. For the 
other ten values of p, one example each is provided by: 

p Canonical form for x, 

2 {2, 2} 
4 {2, -3, 0, -9, 5, -9, 0, -3, 2} 

5 {1, 0, 5, 9, 1, 3, -4, 6, 6, -4, 3, 1, 9, 5, 0, 1} 
7 {2, -6, 2, 8, -9, 1, -7, 5, 4, 3, 5, 3, 4, 5, -7, 1, 

-9, 8, 2, -6, 2} 

8 {2,-3, 0, -9, 5, -9, -2, 0, -5, 0, 4, 1, 8, 2, -2, 
-1, 7, 1, -4, -6, -7, -3} 

9 {2, -8, -8, -4, 0, 3, 5, 2, -1, -3, 2, 2, -8, -4, 6, 
-1, 6, 0, 3, 7, 3, 0, 3, -3} 

10 {1, 0, 6, -7, 0, -7, -8, 6, -6, -8, 1, 1} 
11 {2, -3, -4, 5, -7, -3, 5, 5, -6, 5, -1, 3, -5, -5, 3, 

-1, 5, -6, 5, 5, -3, -7, 5, -4, -3, 2} 

12 {1, 2, -1, -3, 2, 3} 
14 {2, -8, -6, 4} 

The author wishes to thank the referee for providing some references. 
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1. Introduction 

The n-dimensional hypercube, Qn , is the graph whose vertex set, V(Qn), is 
the set of all n-bit strings, any two of which are adjacent iff they differ in 
exactly one bit. We refer to Qn as the n-cube. The 1-, 2-, 3-, and 4-cubes 
are illustrated in Figure 1. 

(a) Qx (b) Q2 

1100 

(d) Q4 

FIGURE 1 

Sometime in the early 1980s, Paul Erdos asked for the largest order of an 
induced subgraph of Qn which contains no 4-cycle. This question has been 
answered and extremal graphs characterized [1]. Since a 4-cycle in Qn can be 
interpreted as a sub-^s it is natural to generalize and ask for the order of a 
largest induced subgraph of which contains no sub-^ k e {1, 2, 3, ...}. 
It is also natural to ask for the order of a largest induced subgraph of Qn 
which contains no Ik -cycle, k ^ {2, 3, . . . } , but this question seems far more 
difficult. Partial results in this direction appear in [2]. 

With the advent of the hypercube computer, these questions assume a new 
significance. An n-dimensional hypercube computer is a multicomputer with 2n 

processors, possessing the network topology of an n-dimensional hypercube; 
i.e., each vertex of the cube is associated with a processor and each edge 
represents a direct communication link between the two processors incident with 
that edge. A question that has generated some interest recently ([3], [4]) is 
how does the hypercube computer behave in the presence of faulty nodes (or 
links)! In particular, given a set of faulty nodes (links), what is the 
largest subcube that remains? The question is pertinent because there are 
algorithms which are designed to run on a cube structure, and in the presence 
of faulty nodes (links) will run on the largest remaining subcube [3]. 

In the following, Fn and Ln will denote the nth Fibonacci and Lucas 
numbers, respectively, having the initial conditions FQ = 0, Fi = 1 and L]_ = 1, 
L2 = 3. We use [x\ and Ix] to denote the greatest integer less than or equal 
to x and the least integer greater than or equal to x> respectively. Now, let 
f(n5 k) denote the largest order of an induced subgraph of Qn that contains no 
sub-C7, • It is known that 
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fin, 2) 3 [1]. 

A good lower bound for f(n, 3) is known, namely, 

(n, 3) > |. 2n + 2L 2 J /fr [5], 

In general, it is easy to show [3] that 

(1) f(n, k) > YTJ' 2*» 

In this paper we prove, in Theorem 2 and its corollary, a result which 
enables us to improve on the inequality in (1) for the special case k = 4. We 
obtain 

4 nn , 1T 
- • 2 + -^Ln+1 , n even, 
i 4 0?2 2 

n odd. 

2. The Hypercube Problem 

The order of a graph is the size of its vertex set. Given a graph G with 
vertex set V(G) and edge set E(G), a subgraph of G is a graph whose vertex and 
edge sets are subsets of V{G) and E(G), respectively. If # is a subgraph of $^ 
and there is a subgraph of H isomorphic to some Qk, 1 < k < n9 then H is said 
to contain a sub- *k- Given any graph G with vertex set V(G) and S Q V(G)9 the 
subgraph of G which is -induced by S, denoted <S>, is the graph with vertex set 
S and two vertices of <S> are adjacent iff they are adjacent in G. 

In Figure 2, £]_, £2 > and £3 are all subgraphs of §3. The graphs £]_ and £2 
are not induced subgraphs of Q$, while £3 is. G2 and £3 both contain a sub-^2* 

110 

100 101 

(a) Gx 

110 111 

100 101 

011 

001 

( b ) G2 

FIGURE 2 

(e ) G, 

011 

Example: Let A/ be the set of 16 vertices listed in Figure 3. For each v = 
vlv2V3Vhv5V§v7 ^n »̂ w e n a v e i>5 = y6 = v7 = I, while the first four bits range 
from 0000 to 1111. Hence < W > 5 the subgraph of Q7 induced by W, contains a 
sub-^. (In fact, < W > is isomorphic to Qi+.) 

For V e V(Qn), the weight of v9 denoted wgt(y), is defined to be the number 
of l's in v. Observe that the vertices of W have weights ranging from 0 to 4 
(mod 5). In fact, for all n, any sub-Q̂ . in Qn contains vertices with weights 
of 0, 1, 2, 3, and 4 (mod 5). For n e Z+, k £ {0, 1, 2, 3, 4}, let 

F£ = {v e n« n ) : wgt(y) = k (mod 5)}. 

If V Q V(Qn) and <V> contains a sub-^ , then 

V n n for all k G {0, 1, 2, 3, 4}. 
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1 1 1 
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1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 

FIGURE 3 . The v e r t e x s e t W 

Hence for any k, <V(Qn) - 7̂ > contains no sub-Q,. This implies (1). To obtain 
the inequality in (2), we first let V1^ = \\V\. Clearly, 

'»" • L ("•)• 
mod 5 

and if we define 
V{n) m m FT, , 

0 <k <4 

then we obtain f(ns k) > 2n - V(n). Determination of a formula for V{n) is the 
content of the next two sections. 

3 . P r o p e r t i e s of t h e V£ 

We begin with an example. By definition, 

Similarly, 

rI-(!)+(J)-14 and ,7 _ (7) _ (7) _ „7 _ 35. 
Hence, 7(7) = 14 = 7?. On the other hand, if we compute values of 7^, we find 
that 7(6) n 7f. In Theorem 1 we will show that, if we define 

kin) = - 2 (mod 5): 

then V(n) V, k(n)' 
Because the terms V£ are computed in terms of binomial coefficients, we 

would expect the V£ to reflect some of the properties of binomial coefficients. 
That this is the case is illustrated in the following lemma. 

Lemma: For n e Z +, k e {0, 1, 2, 3, 4}, 

(1) (Recursion Formula) 

vk V\ rc-l + VjJ_-r, where k - 1 is computed modulo 5. 
(2) (Symmetry Formula) 

K Vj1, where k + j E n (mod 5) , 
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(3) (Initial Conditions) 

(i) For n < 5, 7* = (£j, 

( i i ) V5
Q = 2, 75 = (£ ) for fc G {1, 2, 3, 4} . 

Proof: To prove (1) let £7n be a set of size n and let W% denote the collection 
of all subsets of Wn of size congruent to k (mod 5), k G {0, 1, 2, 3, 4}. Then 
clearly #*/£ = 7^. Now let w G fr/n, W G W%. If w e W, the remaining elements of 
W can be chosen from the n - 1 elements of fr/n - {w} in 7^, ways. Otherwise, if 
W £ W, the elements of W can be chosen from the n - 1 elements of J/" - {w} in 
7£~1 ways. 

To prove (2) let n G Z + , fc G {0, 1, 2, 3, 4}. The division algorithm yields 
integers m and j such that 

n - k = 5m + j where j G {0, 1, 2, 3, 4}, 

and hence k + j = n (mod 5). Using this we can relate V£ and 7" as follows: 

\ ?-fi) + (*is) + - + (*:s.) 
- « ) • ( * : 5) • • 

= ( „ " * ) + -

= Vj + 5m) + 

\n - j / 

+ G) 
+ G) • v-

The proof of (3) is trivial and so omitted. Q 

Using the initial conditions and the recursion for the 7^, we can build a 
table of values for the 7^ similar to Pascal's triangle. Since the 7^ are 
computed mod 5, there will be 5 entries in each row of our Pascalian Rectangle. 
In Figure 4 we illustrate the general form of the table and in Figure 5 we fill 
in specific values. 

Row 

n 
n 
n 

n 
n 

n 
n 

A 
v\ 

n 
n 
n 

n 
n 

n 
n 
n 

FIGURE 4 

n 
n 

n 
n 
n 

n 
K 

1 
2 
3 
4 
5 

Remark: Notice the wrap-around property of the table. The right-most entry in 
an even row (or the left-most entry in an odd row) is the sum of the left-most 
and right-most entries of the previous row, e.g., 

Vl- V% + V* and V\ = Vl + V\. 

If the table is constructed as in Figure 4 above and Figure 5 below, then 
the left-most entry of the nth row is next seen to be a smallest entry of the 
nth row. Recalling the definition of 7(n), we state the following theorem. 
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Row 

0 0 1 1 0 1 
0 1 2 1 0 2 

0 1 3 3 1 3 
1 4 6 4 1 4 

2 5 10 10 5 5 
7 15 20 15 7 6 

14 22 35 35 22 7 
36 57 70 57 36 8 

72 93 127 127 93 9 

FIGURE 5 

Theorem 1: For n e Z + , 

V{n) = Vl{ny with k(n) 2 (mod 5). 

Proof: That the left-most entry of the nt h row is of the form [n/2] - 2 follows 
from the recursion formula and induction. Next, we must show that the left-
most entry of each row in Figures 4 and 5 is also a smallest entry of that row. 
This follows easily by induction once we verify that the symmetry of each row 
is maintained. But this is immediate from the symmetry formula of the Lemma. 
If n is even, then 

- 2 n 
2 

2. 

If the left-most entry of the nt h row is ^ / 2 ) _ 2 5 

of the form 
then the right-most entry is 

Vn 

(n/2) -2 + 4 
V(n/2) + 2' 

Since 

( I - 2) + (1 + 2 ) = " (mod 5> 
we have, by the Lemma, that 

V, v "{nil) -2 v(n/2) + 2e 

Similarly, 

(̂  - 2 + l) + (̂  - 2 + 3) E n (mod 5) 

so that the second and fourth entries of the row are equal. Similar reasoning 
verifies the shifted row symmetry for n odd. An easy induction completes the 
proof. D 

4. A Recursion for V, k{n) 

Our next theorem provides a recursion and closed formula for V(n). 

Theorem 2: For any integer n E Z+, 

[2V(n - 1), n odd, 
(i) V(n) 

2F(n - 1) + F n-25 
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( i i ) V(n) = 
2n - ~Ln , n o d d , 

n 1 
2 " ~5Ln + l > n e v e n " 

Proof: By the established symmetry of the table in Figure 5, the first and last 
entries in an even row are identical. Also, for n odd, we have 

kin) 2 = kin - 1), 

Therefore, we have, for n odd 
m vn = vn~l + vn~l = vn~l + vn~l =?vn~l 

{ 3 ) Vk{n) Vk(n) + Vk{n)-l Vk(n -1) + Vk(n-l)-l ZVk(n-l) 
For n even, in 7^(n), we need to take a somewhat less direct approach. To 

this end, we define D(n)s for all n, as follows 

(4) Din) 
f^(»)+2- ^n(n)+l ^ 0 d d ' 
| 7 « V1/fe(n) + 1 'fc(n) 

We will show that Z?(n) 
fies that 

n even. 
To begin with, consultation of Figure 5 veri-

/}(!) = i - o = l, 27(2) = 1 - 0 = 2, Z)(3) = 3 - 1 = 2, 2?(4) = 4 - 1 = 3. 

Now, for n even, we have 

D™ = Vk(n)+1- VUn) 

\vn~l + vn~l] 
1 k(n) +1 ^(n)J 

rn -1 + 7 n-l 

L^(n) + ^(n)-lJ 

"k(n-l)+2' '/c(n-l)+lJ lvk(n-l)+ll vk(n - l)* + 7,5 

r « - l 
L ^ ( n - l ) + 2 ^(n-l)+l J ^ lVk(n-l) +1 vk(n-l) 

D(n- 1) + [Vk\~l2)+l- Vk
n

(~2_2)] 

Din - 1) + £(n - 2). 

A similar argument shows that the recursion holds for n.odd. Since Din) satis-
fies the same recursion as Fn and the initial conditions are the same, we have 
that Din) = Fn . 

We return now to V-, k(n)° F o r n e v e n , we h a v e 

(5) 7 Tn - 1 - 1 
&(TI) " vk(n) T "fe(w)- 1 

7 n - 1 + 7. n - l 
fc(n-l) + 1 fc(w - 1) 

Tn-\ 
vk(n-l) 

T n - 1 = 277*; . \ ,+ K ^ 1 W 1 - ^ ; . 1 } ] 

= 2 7 " " I + [ 7 n ' 2 
fe(n - 1) L ' 

n-l 

27 

fc(w - 2 ) + 1 vk(n - 2 ) J 

" " 1
1 , + Din - 2) = 2 7 " " 1

 n + F : ( n - 1) v y k(n - 1) n •2 * 

Combin ing t h e r e s u l t s i n ( 3 ) and ( 5 ) y i e l d s 
Tn-\ 

(6 ) 7 k(n) 

27 fc(n - D ' 
rn - 1 
kin - 1 ) 

ft o d d , 

277, ,„ n + Fn _ 2 , n e v e n . 
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To solve this recursion we note that [x/ (1 - x - x2) ] is the generating function 
for the sequence F0 , Fl3 F2, . .., so that [-x/ (1 + x - x2)] is the generating 
function for the sequence FQ, -Fi, F2, -^33 • ••> and therefore 

x - x^ 1 + X 
is the generating function for the sequence FQ, 0, ̂ 25 0, F^s 

7(X) = X] C ^*-

then (6) gives 

V(x) = 2:rF(x) + x - x1 - x 

Let 

2x4 + 
1 + x 

A. partial fraction expansion of the rational function V(x) leads, after some 
calculation, to the closed form: 

(7) Un) 
i . 2 -
.1. 2* 

1 T 

— Ln + i , n even, 

5L> n odd. 

Combining the results of (6) and (7) with the definition of V(n) completes the 
proof. D 

Corollary: Let f(n, k) denote the largest order of an induced subgraph of Qn 
that contains no sub-C^. Then 

4 on , 1 r 
— 8 2 + — L n + 1 , n even. /(n, 4) > 

n odd. 

Proof; This follows from Theorem 2 and the fact that f(n, 4) > 2n - 7(n) . D 

Remarks: (1) Recalling that 7fc(n) is a sum of binomial coefficients, it is in-
teresting to observe the locations of these binomial coefficients in Pascalfs 
triangle. In Figure 6, the circled entries in the nth row of Pascal's triangle 
are the binomial coefficients that sum to Vi Un)' Observe t h a t t he c i r c l e d en-
t r i e s a r e "as f a r as p o s s i b l e " from the b inomia l c o e f f i c i e n t s of t he form (n/2) 
[ 6 ] . 

1 10 
1 11 55 

0 
0 

0 
0 

1 3 3 1 

4 6 4 1 

5 10 10 5 

15 20 15 6 

21 35 35 21 

(28j 56 70 56 28 

84 126 126 84 M36 

n.20) 210 252 210 120 

(165) 330 462 462 330 (l65] 

0 
0 0 

© 10 1 

55 11 1 

FIGURE 6 
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(2) A related problem appeared in the 35th W. L. Putnam Intercollegiate 
Mathematical Competition [7]; that problem asked for a calculation of S%, where 

sn
k - E t (})> * - o, i , 2. 

5. Conclusion 
mod 3 

By defining the terms l/£ and 7(n) modulo 5, we were able to obtain an 
improved lower bound for f(n, 4), the largest order of an induced subgraph of 
Qn that contains no sub-^.. In general, by working modulo m9 we can improve on 
the inequality (1) for k = m - 1; for k £ {0, 1, . . . 9 m - 1}, let 

mod m 

Then /(n, w - 1) > 2n - V (n, m). Work on determination of V(n, m), for all 
m < {0, 1, ...s n] is in progress by this author. It was originally 
conjectured that f(n, m - 1) = 2n - 7(n, m) but this is now known to be true 
only for m e {0, 1, 2} [8]. 
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REPEATING DECIMALS REPRESENTED BY TRIBONACCI SEQUENCES 
APPEARING FROM LEFT TO RIGHT OR FROM RIGHT TO LEFT 

' 1, 
: 3, 
: 5, 
1 2, 

?3 = 
i?3 = 

S3 = 

U3 = 

0 format 

2, 

7, 

10 

3, 

b n j 

5 

But, 
, and 

in Lin [8], 
could be 

Pin -Yen Lin 
Taiwan Power Company, 16F, 242 Roosevelt Road, Section 3, 

Taipei 10763, Taiwan, R.O.C. 
(Submitted April 1988) 

1. Introduction 

In 1953 Fenton Stancliff [1] noted that 

E l 0 - ( i +DF. = J_, 

where F^ denotes the ith Fibonacci number. This curious property of Fibonacci 
numbers attracts many Fibonacci fanciers. Afterward, Long [2], Hudson & Winans 
[3], Winans [4], and Lin [5] discussed this Fibonacci phenomenon from different 
viewpoints. Kohler [6] and Hudson [7] then discussed Tribonacci series decimal 
expansions. In Lin [8], the characteristics of four types of Tribonacci series 

Tn = Tn_Y + Tn_2 + Tn_3, where Tl = 1, T2 • 

Rn - Rn-i + Rn-2 + ^n-3» where i?]_ = 1, i?2 : 

Sn = Sn-i + Sn„2 + Sn-3> where Si = 2, #2 : 

Un - Un-i + Un-2 + ̂ n-3s where Hi = 1, U2 '• 
are further explored in their J3 - X2- - X - 1 = 
there was a question left open, which is whether 
described as one of the four different types of decimal expansions represented 
by sequential Tribonacci series of the form: 

A. 0. TniTn2Tn3TnL±Tn5TnSTn7 . . . = Na/Ma9 

B. 0. TniTn2Tn3Tnt+Tn5Tn£)Tn7. . . = Nb/Mb, 

C. Nc/Mc ends in . . .Tn7TnSTn5Tnl,Tn3TnZTnl, 

D. for Nd/Md > 0, Nd/Md ends in .. ^ n 7 T n 6 T n 5 T n ^ T n 3 T n 2 T n l, 

for ffd/A/d < °> V ^ d e n d s i n '"Tn7TneTn5TnkTn3Tn2Tnl9 

where T = -T 
wiicj-c j . r m j. n m . 

The terms of decimal expansion A are all positive, and those of decimal 
expansion B appear positive and negative alternately. The repetends of C and D 
are viewed in retrograde fashion, reading from the rightmost digit of the 
repeating cycle toward the left. The terms of repetend C are all positive, and 
those of repetend D appear positive and negative alternately. This question 
has been given a positive answer in this article. In the following, each of 
those four types of decimal expansions will be explored. 

2. Decimal Fractions That Can Be Represented in Terms of 
Tribonacci Series Reading from Left to Right 

Summing the geometric progressions using the same method described in Lin 
[5], Kohler [6], and Hudson [7], we can easily obtain the decimal fractions of 
the Tribonacci series Tnm+p as equation (1). 
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Theorem 1: 

( 1 ) £ 
T. nm + p Tn+p- 1 0 2 k + (T 2n + p Rn-Tn + p) - 1 0 f e + Tp 

l 10 /07Z lG3 f e - i?„ • 102A: + i?_„ • 1 0 k - 1 

Rrrm+p, Smn + p> a n d Urm + p h a v e t h e same r e p r e s e n t a t i o n i f we c h a n g e T i n t o /? , 5 , 
and Uy r e s p e c t i v e l y . 

When p = 0 j t h e y become 
21™ Tn • 1 0 2 * + ( f 2 n - Tn • i?„) • 1 0 * + T0 

(2) 

(3) 

(4) 

m=l 10*™ 10 3k R„ • l O 2 * + R 10" 1 

/77 = 

t 
R-yi Rn • 1027c + (i?2 w - i?2) • 10fe + i?0 

^ i lO*7" 103 f e - i?„ • 10 2 / c + i?_„ • 10fe - 1 

S^ Sn . 102 f e + ( 5 2 n - £ n • Rn) - 10fe + SQ 

l 10 few 

(5) £ tf„ 

10 3 / c - i?„ • 102 f e + i?_n • 10fe - 1 

^ • - 102 f e + (U2n ~ Un * Rn) • 10* + *70 

1 10* ) ^ 103fe - i?„ ° 102* + i?_n • 10fc - 1 

where n and & must satisfy 

1 
(6 ) 

3 • 10* 
Rn + ^ ( i + J ) + £ ^ U 2 . + y 2 ) < 1 , 

w h e r e X = ^ 1 9 + 3/33 and J = s / l 9 - 3 / 3 3 . A l s o , 

( 7 ) i?_n = i?-^+3 ~ ^ - ^ + 2 ~ R-n + l-

Some particular values for the above series are summarized in Tables 1-4. 

co D 

Z - ^ Yirn 

= i i o fern 

\ n 

1 

2 

3 

1 

123 
889 

10203 
989899 

1002003 
998998999 

2 

323 
689 

30203 
969899 

3002003 
996998999 

3 

603 
349 

69003 
930499 

6990003 
993004999 

4 

111003 
889499 

11010003 
988994999 

5 

210203 
789899 

21002003 
978998999 

6 

387803 
611099 

38978003 
961010999 

7 

713003 
288499 

71030003 
928984999 
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TABLE 2. Some values of ^ 
110 km 

\v n 

k \ 
1 

i 

3 

1 

233 
889 

20303 
989899 

2003003 
998998999 

n 

523 
689 

50203 
969899 

5002003 
996998999 

3 

893 
349 

98903 
930499 

9989003 
993004999 

4 

171203 
889499 

17012003 
988994999 

5 

320103 
789899 

32001003 
978998999 

6 

587603 
611099 

58976003 
961010999 

7 

1083503 
288499 1 

108035003 
928984999 

TABLE 3. Some values of T] —^~ 
m . i l 0 t o ' 

k \ 

l 

2 

3 

1 

100 
889 

10000 
989899 

1000000 
998998999 

2 

110 
689 

10100 
969899 

1001000 
996998999 

3 

190 
349 

19900 
930499 

1999000 
993004999 

4 

40000 
889499 

4000000 
988994999 

5 

70200 
789899 

7002000 
978998999 

6 

129700 
611099 

12997000 
961010999 

7 

240100 
288499 

24001000 
928984999 

TABLE 4 . Some v a l u e s of Y\ ™ 
w = l l 0 

k\ 

1 

2 

3 

1 

110 
889 

10100 
989899 

1001000 
998998999 

2 

200 
689 

20000 
969899 

2000000 
996998999 

3 

290 
349 

29900 
930499 

2999000 
993004999 

4 

60200 
889499 

6002000 
988994999 

5 

109900 
789899 

10999000 
978998999 

6 

199800 
611099 

19998000 
961010999 

7 ' 

370500 
288499 

37005000 
928984999 

Using (6) and k = ls 2, 33 n = 45 8, 12, respectively, we obtain: 

[11 + 10°  4.51786.../3 + 2- 12.41106.../3]/30 = 1.14445... > 1; 

[131 + 1089 4.51786. ../3 + 24 • 12.41106.../3]/300 = 1.30977... > 1; 

[1499 + 1238' 4.51786.../3 + 274 • 12.41106.../3]/3000 = 1.49897... > 1 

These indicate that the ratios of geometric progressions are greater than 1 
thus, the sums are divergent. This explains all the blanks in Tables 1-4. 
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3. Decimal Fractions That Can Be Represented in Terms of Alternating 
Positive and Negative Tribonacci Series Reading from Left to Right 

Long [2] gave a proof for 

E -m-l 

"l (-10)" 

Lin [5] proved 

= 1/109; 

(-10k)w + 1 102fc + 10k*Ln + (-l)n 

and 

E i (-10k)m + l 102/i + I0k - Ln + (-l)n' 

where Lm is the mth Lucas number. These equations show that Fibonacci and 
Lucas numbers appear as the positive and negative terms of alternated Fibonacci 
and Lucas series, viz., 

J/M= o. ̂ vyyvv.., 
where Fm = -Fm , and the Fm appears successively in the repetend in blocks of k 
digits. In this case of Tribonacci sequences, if we substitute (-10̂ ) for 10fc 

in equation (2), it will appear as: 

(8) 
Tn .10^ + (TnBn - T2n) -10^ + TQ 

m=i {-\Qk)m 103k + Rn • 102fe + R-n * 10k+ 1 

Changing T into i?, 5, and [/, it will still be true. 

TABLE 5. Some particular values for the Trm series 

\ n 
k \ 

1 

2 

3 

1 

100 
109l" 

1000 
1009901 

1000000 
1000999001 

2 

90 
1291 

9900 
1029901 

999000 
1002999001 

3 

210 
1751 

20100 
1070501 

2001000 
1007005001 

4 

40000 
1109501 

4000000 
1010995001 

5 

69800 
1209901 

6998000 
1020999001 

6 

130300 
1391101 

13003000 
1039011001 

7 

239900 
1708501 

23999000 
1070985001 

4. Decimal Fractions That Can Be Represented in Terms of 
Tribonacci Series Reading from Right to Left 

Winans [4] pointed out that 1/109, 9/71, and 1/10099 can be expressed as a 
reverse diagonalization of sums of Fibonacci numbers reading from the far right 
on the repeating cycle, where 1/109 ends in 
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13853211 
21 
34 
55 

...8623853211 

Johnson [9] gave a short solution to this kind of problem. Summing from 
the rightmost digit of the repeating cycle toward the left, she got the result: 

F 
(9) — - , n is odd. 

102fc + Ln • 10k - 1 
Summing the geometric progressions by using the Binet form for Tribonacci 

Tn as Lin did in [8],.and using the method indicated in Johnson [9], for k > 0, 
we can derive: 

(io) £ io«-»r„ . • W » " ° ' B " ' + t f . B „ , - » . f . 1 > - i . « + 
m = 1 103 k - i?_n • 102fc + Rn • 10k - 1 

TnL • l O ^ " 1 ) - T0 • 102?c - (72n - RnTn) • lQfc - Tn] 

Let the denominator be acronymed as M, and L(M) be the length of the period of 
M. We add 

[-T0 • 102fe - (T2n - RnTn) • 10fc - Tn] • 10L(M) 

+ [T0 • 102fc + (T2n - RnTn) • 10k + Tn] • 10L(M) 

to the numerator and divide both sides of (10) by 10 ̂  ; then it becomes 

m = 1 

= ^ ( L - 1) 10 + U»(L + l) ^VnL J i U 

M 

TnL • i o ^ - i - i ( A O ) _ ^ . 102fc _ {Tln - RnTn) . i0fc - Tn 

( T 0 - \Qlk + (y 2 n - i?nyn) - i o k + y n ) ( i o L ( M ) - i ) 
M • 10L(M) 

and, we ge t 

Theorem 2: The decimal r e p r e s e n t a t i o n of 

zv _ ^o " i o 2 f e + (^2n - RnTn) - iQ f e + ^ ^ > 0 
M 103k - i?_n - 102fe + i?w • 10k- 1 

ends in successive terms of Tmn 3 m = 1, 2, 3, ..., reading from the right end 
of the repeating cycle and appearing in groups of k digits. 

If N < 0, then we have 

Theorem 3: The decimal representation of 

M + N M + TQ * 102k + (T2n - RnTn) • I0k + Tn 
(12) 

M 103fc - i?_n • 102fc + i?„ • 10fe - 1 
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ends in successive terms of Tmn , m = 1, 2, 3, . . . , reading from the r ight end 
of the repeating cycle and appearing in groups of k d i g i t s , i f 1 i s added to 
the rightmost d i g i t . 

Proof: If N i s negative, the N/M s t i l l has a posi t ive term there . The 
numerator needs to be adjusted as below: 

(T0 • 102* + (T2n - RnTn) • 10* + Tn){lQ L(M) 1) 

(T0 * 1Q2* + (TZn - RnTn) • 10* + Tn)(10LW - 1) + (10L ( M ) - l)M- (10L ( M ) - l)M 

{M + TQ • 102fc + (T2n - RnTn) • 10* + ^ X I O ^ W - 1) • 1 

10L(M) -M IQHM) 

The fractional part represents (M + N) /M times one cycle of the repetend of 
1/M, when 1 is added to the rightmost digit. 

Using the same method, we derive (11) and (12), and we can further 
generalize them to 

Theorem 4: 

(13) 
N _ Tp . IP2* + CT2n + p - RnTn + p) - 10fe + Tn + p 

M 10 3k R-n • 102?c + i?„ • 10k - 1 
, iF > 0, 

A/ + tf # + ^p • I02k + (T2n+ - RnTn + p) • 10* + 2*„ + p 
(14) — — = - — z- - — -, N < 0, 

M 103* - R-n • 102* + i?n • 10* - 1 

ends in Trmjrpi reading from the right end of the repeating cycle and appearing 
in groups of k digits. If N < 0, 1 is added to the rightmost digit. 

From the above method, we can easily obtain the decimal fractions that end 
in successive terms of Rrm + p, Srm + p, and Urm + p by changing T into R, S, and U9 
respectively. 

Tables 6-9 show some values of Trm + p, Rrrm + ps ^mn + p> 8Ln<^L ^mn + p9 ^or P = ~3, 
-2, -1, 0, 1, 2, 3, and n = 1, 2, 3, 4, 5. 

TABLE 6. Fractions whose repetends end with successive terms of Trm±p , 
occurring in repeating blocks of one digit 

7 ^ ^ 
-3 

_2 

-1 

0 

1 

2 

3 

1 

1000 
1109 

100 
1109 

10 
1109 

1 
1109 

111 
1109 

122 
1109 

234 
1 109 

2 

1039 
1129 

110 
1129 

1120 
1129 . 

11 
1129 

112 
1129 

114 
1 129 

237 
1129 

3 

4 8 9 A 
569 

71 
569 

& * 
J§* 
64 
569 

57 
569 

113 
569 

4 

1470 
1609 

121 
1609 

22 
1609 

4 
1609 

147 
1609 

173 
1609 

324 
1609 

5 

1240 
1309 

122 
1309 

1283 
1309 

27 
1309 

123 
1309 

3 24 
1309 

274 
1309 

Note A; i is added to the rightmost digit. 
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TABLE 7. Fractions whose repetends end with successive terms of RTm± 
occurring in repeating blocks of one d ig i t 

p ^ \ 

-3 

-2 

-1 

0 

1 

2 

3 

1 

499 
1109 

1048 
1109 

992 
1109 

321 
1109 

143 
1109 

347 
1109 

811 
1109 

2 

539 
1129 

972 
1129 

1070 
1129 

323 
1129 

107 
1129 

371 
1129 

801 
1129 

3 

363 
569 

110- A 
569 

472 A 
569 

207 
569 

51 
569 

161 
569 

419 
569 

4 

601 
1609 

1572 . 
1609 

1456 
1609 

411 
1609 

221 
1609 

479 
1609 

1111 
1609 

5 

583 
1309 

1056 
1309 

11 
1309 

341 
1309 

93 
1309 

451 
1309 

891 
1309 

Note A : 1 is added to the rightmost digit. 

TABLE 8. Fractions whose repetends end with successive terms of 5 m± p , 
occurring in repeating blocks of one digit 

^ \ 
-3 

_2 

-1 

0 

1 

2 

3 

1 

409 
1109 

1039 
1109 

1102 
1109 

332 
1109 

255 
1109 

580 
1109 

58 * 
1109 

2 

420 
1129 

992 
1129 

42 
1129 

325 
1129 

230 
1129 

597 
1129 

23 * 
1129 

3 

293 
569 

501 
569 

544 
569 

200 
569 

107 
569 

282 
569 

20 „ 
569 

4 

502 
1609 

1554 
1609 

990 
1609 

437 
1609 

372 
1609 

799 
1609 

III 
5 

698 
1309 

1109 
1309 

107 
1309 

342 
1309 

249 
1309 

1117 
1309 

1289 
1309 

Note A : 1 is added to the rightmost digit. 

*: —1 is added to the rightmost digit. 
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TABLE 9. Fractions whose repetends end with successive terms of Vrm±v , 
occurring in repeating blocks of one digit 

> - ^ 
—3 

—2 

-1 

0 

1 

2 

3 

1 

1019 
1109 

1100 
1109 

110 
1109 

11 
1109 

112 
1109 

233 
1109 

356 
1109 

2 

1010 „ 
1129 

20 
1129 

101 
1129 

2 
1129 

123 
1129 

226 
1129 

351 
1129 

3 

4 9 9 A 
569 

560 
569 

72 
569 

^62 A 
569 

56 
569 

121 
569 

170 
569 

4 

1510 A 
1609 

1591 
1609 

1598 
1609 

26 
1609 

151 
1609 

320 
1609 

497 
1609 

5 

n61 
1309 

53 
1309 

96 
1309 

1 
1309 

150 
1309 

247 
1309 

398 
1309 

Note A : 1 is added to the rightmost digit. 

*: -1 is added to the rightmost digit. 

5. Decimal Fractions That Can Be Represented in Terms of Alternating 
Positive and Negative Tribonacci Series Reading from Right to Left 

Star t ing from Theorem 4 of Johnson [9 ] , we rewrite i t as : 

The repeating cycle of 
(-1)" -Fp -10k-Fn + p 

(-l)n -102* - Ln -10* + 1 
ends in F m + p , 

and the repeating cycle of 
{-l)n -Lp -10* - Ln + p 

ends In Lrrm + p, 
(-l)n • 102* - Ln • 10* + 1 

for m = 1, 2, 3, 4, . .., occurring in blocks of k digits. Substituing (-10*) 
for (10*), we get 

Theorem 5: 

(15) The repeating cycle of 

(16) and the repeating cycle of 

N (-Dn+1 -Fp • 10* - Fn+J 

M {-\)n • 102* + £„'• 10* + 1 

N _ (-l)w + 1 'Lp - 10* - Ln + p 

ends in F m + p , 

ends in L m + p5 
(-l)n • 102* + Ln • 10* + 1 

for m = 1, 2, 3, 4, ..., occurring in blocks of k digits. If N/M > 0, all even 
terms are negative, if N/M < 0, all odd terms are negative. For example, 

for k - 1, n - - 1, 
N/M = 1/89 

= 0 • ...38202247191 

= 0 • ..853211 
...893413 5 2 1 positive 

.5521 8 3 1 negative 

...38202247191 summation 
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for k = 1, n = 12, 

N/M = -16/369 

--0-55556 ;;;3-f072 
...11879264 

4807526976 
46368 positive 

144 negative 
14930352 

...008755920 

...6367088 
096 

.....4 
60433604336 summation 

Using (15) and (16), we can derive Tables 10 and 11 for k = 1, 2, 3, and n from 
1 to 7. 

TABLE 10. Fractions whose repetends end in F^ with positive 
and negative terms alternated, positive fractions begin 

with positive 'Erm , negative fractions opposite 

x̂ 1 

2 

3 

1 

l 
89 

1 
9899 

1 
998999 

2 

-l 
131 

-1 
10301 

-1 
1003001 

3 

2 
59 

2 
9599 

2 
995999 

4 

-3 
171 

-3 
10701 

-3 
1007001 

5 

-5 
11 

5 
8899 

5 
988999 

6 

- 8 
281 

-8 
11801 

-8 
1018001 

7 ! 

-13 
191 

13 
7099 

13 
970999 

TABLE 11. Fractions whose repetends end in L ^ with positive 
and negative terms alternated, positive fractions begin 

with positive Lrm , negative fractions opposite 

^N; 
i 

2 

3 

1 

-19 
89 

-199 
9899 

-1999 
998999 

2 

-23 
131 

-203 
10301 

-2003 
1003001 

3 

-16 ; 

59 

-196 
9599 

-1996 
995999 

4 

-27 
171 

-207 
10701 

-2007 
1007001 

5 

9 
11 

-189 
8899 

-1980 
988999 

6 

-38 
281 

-218 
11801 

-2018 
1018001 

7 

-9 
191 

-171 
7099 

-1991 
970999 

Because 
0. ...F7FsF5Fl,F3FzF1 + 0. . . .F7F6F5F±F3F2Fl 

-0. 0000...0001 = 0. 9999...999, 

0 F7FeF5Fl+F3F2Fl and 0 . . . aF7FsF5F^F3F2Fl 
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are complementary numbers. This result can be described in another way: 

If N/M > 0, N/M ends in 0. . . .F7F6F5Fl+F3F2Fl 

then N/M - 1 ends in 0. . . . F 7 F 6 F 5 F k F 3 F 2 F 1 ; * 

if N/M < 0, N/M ends in 0 F7F6F5Fl+F3F2F1 

then 1 + N/M ends in 0 . . , . F 7 F e F 5 F k F 3 F 2 F 1 . * 

*: -1 is added to the rightmost digit. 

So, Tables 10 and 11 have their complementary tables. 
From Theorem 4, if we use (-10k)' instead of (10^)s then we will have 

Theorem 6: For N/M > 0, the repeating cycle of 

(17) 
N 
M 

TP • 10 2k (^2n + p Rn^n + p) * 10 + ^n+i 

-103fe - R-n • 10 2k 10A 1 

ends with T, mn+p'> even terms are negative; for N/M < 0, the repeating cycle of 

(18) 
10 2k ~ Wz n + p RnTn + p)' 10k + Tn + l 

M -10 3k R-n • 10 2k R* 10A 

ends with Tnm + p> odd terms are negative, both appearing in blocks of k digits. 
Table 12 shows some illustrations of (17) and (18). 

As before, the above results can be developed as follows: 

If N/M > 0, N/M ends in 0 rp rp rp rp rp rp rp 
•17n1£n15n1hn1 3n1Zn1n> 

then N/M - 1 ends i n 0 . . . . T 7 n T 6 n T 5 n T k n T 3 n T 2 n T n ; * 
rp rp rp rp rp rp rp if N/M < 0, N/M ends in 0 . 

then 1 + N/M ends in 0 . 

*: -1 is added to the rightmost digit. 

So, Table 12 has its complementary table, too. 

In1 bn1Sn1kn13n12n1n» 
T7nT6nT5nTknT3nT2nTn-* 

TABLE 12. Fractions whose repetends end in Tnm appearing 
with positive and negative terms alternated 

\ n 
k \ 

1 

2 

3 

1 

-l 

911 

-1 990101 

-1 
999001001 

2 

9 
931 

99 
990301 

999 
999003001 

3 

-12 
1571 

-102 
1050701 

-1002 
1005007001 

4 

-4 
611 

-4 
951101 

-4 
995011001 

5 

13 
1111 

193 
992101 

1993 
999021001 

6 

-43 
2491 

-313 
1113901 

-3013 
1011039001 

7 

-14 
211 

76 
857101 

976 
985071001 

Conclusion 

Tables 1-5 and Tables 6-12 have a great difference, the former tables con-
tain blanks, the latter do not. Examining M 10 3k R. 10 2k + i?n- 10' 1, 
Rn is always greater then R-ns so we can calculate M whenever we wish. 
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From the above d i s c u s s i o n , we can f ind t he fo l lowing i n t e r e s t i n g r e s u l t s : 
1/89 = 0 . 0 1 1 2 3 5 8 . . . = 0. F0FlF2F3F^F5F6... 9 

10/89 = 0.112358... = 0. FlF2F3FliF5F&. . . , 

10/109 = 0.U2358... = 0. FlF2F3FbtFbF^. . ., 

1/109 ends in ...853211 or . . .F6F5Fl+F3F2Fl, 

1/89 ends in . . . 8532U or . . ,FeF5FkF3F2Fl, 

88/89 ends in ...8532U or ...F6F5F^F3F2Fl9* 

100/889 = 0.112485939... = 0. TlT2T3TL^T5TsT7. . . , 

100/1091 = 0.U247... = 0 . TlT2T3ThTbT^T1. . . , 

1/1109 ends in ...374211 or . . .T7T^T5T^T3T2Tl, 

1/911 ends in ... 374:2 ll or . . .T7T^f5Tl{T3T2fl , 

910/911 ends in . . .^742ll or . . .T7Te>T5TkT3T2Tl ,* 

*: -1 is added to the rightmost digit. 

One of the above, 

1/1109 = 0.00...862385374211, 

can not only end In Tm, m - 1, 2, 3, 4, 5, ..., but can also end in T^m, m = 1, 
2, 3, 45 5, .... Summing up, we may find different forms of the decimal 
expansion for a particular fraction. Perhaps, they could be explored on 
another occasion. 

In another article written by this author (unpublished), even Tetrabonacci 
series can also be divided into four types, as above. 
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BOOK REVIEW 

A New Chapter for Pythagorean Triples by A. G. Schaake and J. C. Turner 

In this book, the authors develop a new method for generating all Pythago-
rean triples. They also illustrate that their new method can be used to find 
solutions to the Pellian equations x2- - Ny2- = ±1 where N is square-free. Since 
the book contains only accusations and examples, it is impossible to verify 
that their method is mathematically correct even though the numerous examples 
found in the book seem to imply that it does work. The authors have published 
a Departmental Research Report, with proofs of their methods, which may be had, 
on request, with the book. The reviewer has not read the Research Report. 

The method, at least to this reviewer, appears to be new. Furthermore, the 
method is a very neat way of relating Pythagorean triples to continued 
fractions via what is called a "decision tree." However, the reviewer does not 
accept the new method with the enthusiasm of the authors because they make 
claims which, in the opinion of the reviewer, may not be true. Several of 
these claims will be discussed later in this report. 

The basic claim of the authors is essentially that (x3 y, z) is a Pythago-
rean triple if and only if 

q - r p + s q + r 
In J In In 

where r/s and p/q are, respectively, the last two convergents of a continued 
fraction of the form 

[0; ul9 u2, -.., ui, v, 1, j, (v + 1), ui9 ..., u2> u\\. 
Using the parity of v, a nice contraction method developed by the authors for 
the set of values ui» u2* •••> u^ and the size of j, the authors illustrate 
that there are five families which predict the value of n. 

Most of the book is spent on the development of the techniques used and 
examples which show how the techniques work. The explanations are clear and 
the examples are well done. Actually, there are far more examples than are 
probably needed. The book is very easy to read. In fact, several chapters 
could be reduced in size or eliminated since anyone with a background in number 
theory would know most if not all of the material in Chapters 1 and 2. Other 
parts of the book could also be left out. For example, the tables on pages 127 
to 137 were of no value to the reviewer. To be fair to the authors on this 
point, however, in the Foreword they do state that the material is intended to 
be accessible to teachers and college students, as well as to number theorists 
and professional mathematicians. (Please turn to page 155) 
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EQUAL SUMS OF UNLIKE POWERS 

Leon J . L a n d e r 
6721 Gleason Road, Edina, MN 55435 

(Submitted May 1988) 

1. Introduction 

Solutions are given for the Diophantine equation 

x{ + xf + ... + xp
m = y\ + y\ + ... + yq

n, p > 0, q > 0, m + n > 2, 

for which we use the notation (p.q.m.n) . In a previous paper [1] we surveyed 
solutions of this equation for p = q with p and q < 10. We now show that 
(p.q.m.n) has nontrivial parametric solutions in which the number of terms m, n 
on both sides of the equation depend on p and q. Some of these solutions will 
be valid when p = q as a special case, but in general we assume that p > q. 
That is, we always write the equation with the higher exponent on the left-hand 
side. We assume that none of the x^ or y- is zero, and that x\ * yq- , i.e., 
that equal individual terms on both sides of the equation have been removed. 
Rarely does this condition invalidate one of the many solutions available by 
our algorithms. 

Related work includes a number of parametric solutions and also numerical 
solutions, usually involving low values of either p or q or both. Uspenski [2] 
gives a general solution in relatively prime integers of zn = x2 + y2 for 
n > 1, Various solutions of the equation z2 = x3 + y^ by Euler, Hoppe, Thue, 
and Schwering are given in Dickson [3]. The equation (3.2.n.l) was solved for 
various values of n by a number of investigators [4] , [5] . Cunningham gave a 
procedure for solving (2n.4.2.3) in [6]. Several writers solved (4.2.777.n) for 
various values of m and n [7]. Some numerical examples of biquadrates as the 
sum of several cubes or squares are given in [8] . A parametric solution of 
(5.2.3.1) was obtained by Bouniakowsky [9]. Cunningham solved (8.2.6.1) in 
[10] and both (4.2.3.3) and (8.4.3.3) in [11]. Rignaux solved (6.2.2.2) in 
[12]. Killgrove [13] discussed the equation xn + ym = zk and gave a proof for 
a theorem of Lebesgue [19] which states that if x2t + y2t = z1 has a nontrivial 
solution, then t is odd and ut + Vt = wt has a nontrivial solution. Beerensson 
[14] proved that xn 4- yn = zm has infinitely many integer solutions if m, n are 
relatively prime, but did not present explicit solutions. In [20], Kelemen 
proved two theorems on conditions for the solvability and form of solutions of 
the general equation 

a1a?P + a2x^2 + ... + anx\n = 0, 

and gave examples. 

2. Solution for all Positive Values of p, q 

Theorem 1: The Diophantine equation 

(1) xf + x|+ ••• + xp
m = y\ + y\ + ..•.+ yq

n, 
where p > 0, q > 0, m > -0, n > 0, and m + n > 2, has a nontrivial parametric 
integer solution, as follows. If d is the greatest common divisor of p and q, 
this solution exists for all m, n such that 

r r 
m = E (uk + vkkd), n = £ (vk + ukkd), 
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where r is any integer > 1 and, for k = 2, 3, . .., p, the uk and vk are arbi-
trary nonnegative integers not all zero. 

Proof: Since d is the greatest common divisor of p and q, there exist positive 
integers A , B, C, D such that 

(2) Ap - Bq = Cq - Dp = d. 

Let a\9 di> ...5 CLS and b\, b^ • ••> bt be arbitrary nonzero integers where 
s > 1 and t > 1, and let 

(3) M = £ <2£, y = £ bq
k. 

fc= l k= l 
Then u^, when expanded by multiplication, is the sum of sd terms, each of which 
is the product of d numbers of the form a?. Therefore, each term of ud is of 
the form yP, where y is an integer. Thus, we have 

(4) ud = £ yj, 
3 = 1 

where the y. are all integers. Similarly, we have 

td 

(5) v* = £ 4> 
j = i 

where the z- are all integers. Then, from (2) and (4), 

u Cq uDpuCq-Dp = uDpud = j^^PyP, 

so that 

(6) (uc)<r = £ (y,uD)P 
3=1 J 

is a nontrivial parametric solution of (1) with m = sd, n = 1, and having s 
arbitrary nonzero integer parameters a^, a2> • •.? as. Similarly, 

td 

vAp = vBqvAp-Bq = VBqvd = £ y5^?s 
J= 1 J 

or d 

(7) (VA)P = £ o ^ 5 ) * . 
j = i 

which is a nontrivial parametric solution of (1) with m = 15 ft = t , and having 
t > 1 arbitrary nonzero integer parameters Z?i, Z?2J . . . , 2?t. 

Next, we may "add11 two or more solutions of (1) by summing the terms with 
exponent p to form the left-hand side of the new solution and summing the terms 
with exponent q to form the right-hand side. Therefore, a valid nontrivial 
parametric solution of (1) may be obtained by summing uk solutions of the form 
given by (7) for t = k9 together with vk solutions of the form given by (6) 
with s = k9 where k takes on the values 2, 3, . .., r for any arbitrary integer 
v > 1. The numbers of solutions to be "added11 in this way, uk andyk , may be 
any nonnegative integers not all zero. Then m, ft, the number of terms in the 
resultant equation having exponents p, qs respectively, will be as given in the 
theorem. 
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Example 1: Let p = 4 arid q = 3 so that d = 1. Take A = B = 1, C = 3, D = 2. 
Let r = 2 so that s = 2 and t = 2. We have 

w = ax + a2, y = &1 + 2?2, ^x = #]_> y2 = a2, ^ = &]_» s2 = Z?2. 

The solution (6) becomes 

(6.1) [(a^ + a!j)3]3 = [ax(a^ + a^)2]4 + [a2(a^ + a^)2]4 

and the s o l u t i o n (7) becomes 

(7 .1 ) (b\ + b\)h = [^(Z?3 + £ 3 ) ] 3 + [2>2(£3 + 2> 3 ) ] 3 . 

Two numerical examples of (6.1) for (a1? a2) = (1» 1) and (2, 1) are 
83 = 4^ + 4 4. 491 33 = 578^ + 289^. 

Two numerical examples of (7.1) for (b^, Z?2) = (2, 1) and (3, 2) are 

94 = 183 + 93; 354 = 1053 + 703. 

We may obtain further solutions by combining (through "addition") any number of 
the individual solutions. For example, from those given, we get 

9̂  + 44 + 44 = 183 + 93 + 83; 5784 + 2894 + 35^ = 49133 + "l053 + 703, 

and so on. 

Example 2: Let p = 6 and q = 4 so that d = 2. Take A = B = 1. Set r = 2 so 
that £ = 2. Then we have z;2 = (b\ + b\)2, so that 

<JI Ay -I j O Q 1 9 ' L. 9 * 

Solution (7) becomes) 

(7.2) (2>J + 2 ^ ) 6 = [£2(2^ + bl)]h + 2[2>12>2«>J + b^)]1" + [£>2(2^ + Z^)]4. 

Two numerical examples of (7.2) for (bi> £2) = (1» 1) and (2, 1) are 

26 = 24' + 2Lf + 24 + 24; 176 = 684 + 344 + 34^ + 174. 

Note that the terms in each equation of the type (6) and (7) are not rela-
tively prime. However, since the exponents p and q are different, it is not 
usually possible to remove a common factor and still have an equation remaining 
with the same exponents p and q. This would be possible if in equation (1) 
there is a divisor F of all the terms x^, x2> . ••» %m> y^* y ^ .•. . , yn, where F 
is of the form z? and / is divisible by p and q, and z > 1. When solutions 
involving different sets of parameters a^ and b-j are combined by "addition," 
the resultant solution will not in general have such a common divisor (as in 
the examples given above). 

3. Solution for p and q Relatively Prime 

Theorem 2: Whenever p and q are relatively prime, equation (1) of Theorem 1 
has a nontrivial parametric integer solution for all positive values of m, n 
such that m + n > 2. 

Proof: In Theorem 1, let d = 1. We use the notation (p.q.m.n) to denote equa-
tion (1). Then (6) gives a solution of (p.q.s.l) for arbitrary s > 1, which we 
denote by (S) . If n = 1, set s = m to solve (p.q.m.n) with m integer param-
eters. Similarly, (7) gives a solution of (p.q.l.t) for arbitrary t > 1, which 
we denote by (T) . If m = 1, set t = n to solve (p.q.m.n) with n integer param-
eters. Next, assume that m > 2 and n > 2. Now set s = m - 1 and t = n - 1. 
Then "add" the two solutions (S) , (T) to obtain a new solution of (p.q.s + 1. 
t + 1) = (p.q.m.n). This solution will have s + t = w + n - 2 arbitrary inte-
ger parameters. Next, if m = 2 and n > 3, add solution (T) with t = 2 to 
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solution (T) with t = n - 2 to obtain a solution of (p.q.2.n) having n integer 
parameters. Similarly, if n = 2 and m > 3, add solution (S) with s = 2 to solu-
tion (S) with s = m - 2 to obtain a solution of (p.q.m.2) having m integer 
parameters. 

There remain only three cases, namely, (p.q.2.2), (p.q.2.3), and (p.q.3.2) a 
For the case 777 = n - 2, let a, Z? be distinct positive integers, arbitrary 
except that both are even or both are odd. Then aq + bq = 2w9 where w is an 
integer. Then, since p and q are relatively prime, we have Ap - Bq = 1 for 
integers A, B and 

wBq(aq + bq) = wBcL(2w) = 2wB* + AP-B{! = 2wAP. 
Then 

(aw5)^ + (bwB)q = (ZJA)P + (ŵ )P 

is a solution of (p.q.2.2) having two integer parameters a, 2? of equal parity 
but otherwise arbitrary. For the case m = 2, n = 3, let a, 2?, and e be 
distinct positive integers, arbitrary except that the sum aq + bq + cq - 2w, 
where w is an integer. This can be achieved by selecting a, bs and c to all be 
even, or by choosing one of a, b, or o to be even and the others odd. 

Then, as before, we have Ap - Bq = 1 for integers A, B9 and 

wBq(aq + bq + cq) = wBq(2w) = 2wBq+AP~Bq = 2wAP. 
Therefore, 

{awB)q + (bwB)q + (owB)q = (wA)P + (wAy 
is a solution of (p.q.2.3) having three integer parameters. In a similar 
manner, we can generate a three-parameter solution of (p.q.3.2). This com-
pletes the proof. 

Example 3: Let p = 8 and q = 5. First, to solve (8.5.2.2), take a = 3, b = 1 
so that 35 + l5 = 244 = 2(122) and w = 122. Then, since 2(8) - 3(5) = 1, we 
may take A = 2, B = 3, and 12215(35 + l5) = 12216(2), or 

[3(122)3]5 + [(1223)]5 = [(1222)]8 + [(1222)]8. 

To solve (8.5.2.3), take a = 2, b = c = 1, so that 25 + l5 + l5 = 34 = 2(17) 
and w = 17. Then, 1715(25 + I5 + I5) = 1716(2)3 or 

[2(173)]5 + (173)5 + (173)5 = (172)& + (172)8. 

4. Derived Solutions 

Theorem 3: If a specific nontrivial solution of equation (p.q.m.ri) exists for 
which all of the n terms yq- in equation (1) are equal, then a nontrivial solu-
tion exists for the equation (q + pr .p.n.m) , where r is any nonnegative 
integer. 

Proof: If 

nbq = t «l 
i= 1 

is the specific nontrivial solution of (p.q.m.n), then 

nbqbPr = bPr± af = ± (a^f - nbq + pr 

£= 1 i= 1 

is a solution of the equation (q + pr.p.n.m). 
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Example 4: A computer s ea r ch by the au thor y i e l d e d the s m a l l e s t n o n t r i v i a l 
s o l u t i o n of ( 6 . 2 . 3 . 1 ) as 1Q06 + 81 6 + 426 = 11348652. I f we s e t b = 1134865, 
we have 

(100&p)6 + (81br)s + (42Z?15)5 = b*T+1 

as a solution of equation (6P + 2.6.1.3) for p > 0. 

Theorem 3 can also be applied when p = q. The solutions recently found by 
Eklies [15] and Frye [16] to the equation x^ + y^ + 34 = th allows us to solve 
the equation (4p + 4.4.1.3), for any integer v > 0. In particular, for r = 1, 
we have 

(tx)4 + {ty)h + {tz)h = t8 

as a solution of (8.4.1.3), where x = 95800, y = 217519, z = 414560, and 
t = 422481. Other solutions to the equation (p.p.m.n) can be found in [1]. 

5. Incompleteness of the Theorems 

The solutions to (1) produced by the algorithms of Theorems 1, 2, and 3 are 
not complete. The smallest nontrivial solution of (4.2.3.1) is 

204 + 154 + 124 = 4812, 

which cannot be produced by Theorem 1, since 481 is prime to 20, 15, and 12. 
The smallest nontrivial solution of (4.3.2.2) is 

ll1* + 8^ = 243 + 173. 

This solution cannot be produced by Theorem 2, which yields only solutions of 
the form 

or by Theorem 3, which yields only solutions of the form 

x^ + x^ + . • . 4- x^ = ny^. 

6. Table of Solutions 

We supplement the discussion by presenting in Table 1 a list of solutions 
to equation (p.q.m.n) for p and q < 10 and m and n < 4. The solutions were 
obtained by a combination of methods, including the use of Theorems 1, 2, and 
3, computer search, and reference to the literature. As illustrated in the 
table, the solutions produced by use of Theorems 1, 2, and 3 are incomplete, 
since solutions exist for which the terms in (1) have no common divisor > 1. 
Table 1 lists the solutions in smallest integers known to the author. Some 
equations have no nontrivial solutions. The equations (6.3.1.2), (6.3.2.1), 
(9.3.1.2), (9.3.2.1), (9.6.1.2), and (9.6.2.1) have no nontrivial solution 
because, as Euler proved [17], the equation x3 + y3 = z3 has no solution with 
xy * 0; similarly, equations (4.2.2.1), (6.4.1.2), (8.2.2.1) and (8.6.2.1) can-
not be solved nontrivially because Euler showed that the equation xk + yh = z2 

has no solution with IJ/ * 0 [18]. The equations (6.2.2.1), (6.4.2.1), and 
(8.6.1.2) are impossible (because x3 + y3 = z3 is impossible) by a theorem of 
Lebesgue [19]. As shown in Table 1, the equations for small values of p, q, ms 
and n which appear to be the most difficult to solve in small integers are 
(6.3.3.2), (6.3.3.1), (6.4.2.2), (6.4.3.1), (6.4.3.2), (8.2.3.1), (8.4.2.2), 
(8.4.3.1), (8.4.3.2); (8.6.m.n) for m < 4, n < 4 except (8.6.1.3); (9.3.3.1); 
and (9.6.777.n) with m < 4, n < 4. Although solutions were not found for these 
specific values of p, q, rn9 n, we can obtain solutions for the same values of 
p, q with larger values of m, n by applying Theorem 1. For example, solutions 
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a9 + b \ 

15 then u - 65 and 

for (9.6.1.8) and (9.6.8.1) are 

u3 = (a3u)6 + (b3u)e + 3[(a2bu)e + (ab2u)s]9 u = c 

(z;2)6 = (a3v)3 + (2>3v)9 + 3[(a2£?;)9 + (ab2v)3], y 

where a and Z? are arbitrary integers. If a - 2 and b 
V = 513 and these solutions become 

659 = 5206 + 3(2606) + 3(1305) + 656; 

2631696 = 41049 + 3(20529) + 3(10269) + 5139. 

The author would be pleased to receive correspondence concerning any new solu-
tions to the equations discussed above. 

TABLE 1. Solutions of £ 

Legend: The entry x-^ , x2 hi > yi 

E y) 
J = i 
, y denotes the solution. 

146 

^ V m.n 1.2 

3.2 

4.2 

4.3 

5.2 

! 5.3 

5.4 

6.2 

6.3 

6.4 

6.5 

7.2 

7.3 

7.4 

7.5 

7.6 

2-2,2 5-10,5 
5-11,2 

5-24,7 
5-20,15 
2-2,2 
9-18,9 

2-4,4 
5-41,38 
3-6,3 

4-8,8 
2-2,2 

5-100,75 
5-117,44 
5-120,35 
Impossible 

Impossible 

2-2,2 
33-66,33 

2-8,8 
5-205,190 
5-250,125 
5-278,29 
2-4.4 
9-162,81 

! 8-32,32 

8-16,16 

2-2,2 
65-130,65 

1.3 

3-3,3,3 
3-5,1,1 

3-6,6,3 . 
3-7,4,4 
3-3,3,3 

3-9,9,9 
3-11,11,1 
6-18,12,6 
9-27,27,27 
3-3,3,3 

3-18,18,9 
3-26,7,2 

3-8,6,1 
5-22,17,4 
6-30,24,18 
481-20(481), 
15(481),12(481) 

3-3,3,3 
34-68,34,34 

3=45,9,9 
3-43,17,17 

3-9.9,9 
6-64,26,6 
11-55,55,33 
27-243,243,243 
27-81.81.81 

3-3,3,3 
66-132,66,66 

2.1 

2,1-3 2,2-4 
8,4-24 

Impossible 

4,4-8 32,32-128 
108,108-648 

2,2-8 8,8-256 

2,2-4 

8,8=16 

Impossible 

Impossible 

Impossible 

| 16,16-32 

2,2-16 
8,8-2048 

4,4-32 
32,32=4096 
2,2*4 

~474-8~ 

I 32,32-64 
2a 5 . a 5 -a 6 

a-129 

2.2 

4,1-7,4 4.2-6,6 

5,5-35,5 

11,8-24,17 
14,14-42,14 j 

3,1-12,10 
4,1=31,8 
6,6-24,12 
12,10-70.18 

41.41-123.41 I 

2,1-7,4 
3,1-21,17 

18,12=330,102 

172,86*=27778,16942 

Unknown I 

122,122-366,122 

4,1-127.16 
4,1-103,76 
4,1-92.89 

14,14-588.196 
16.12-620,404 

j 41 3 ,41 3 «*3(41 5 ) ,41 5 j 

1223,1223« j 
3(1224).1224 j 

365,365-1095,365 
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TABLE 1 (cont inued) 

\ m . n 1.2 

' P-q 

8.2 

8.3 

8.4 

8.5 

8.6 

8.7 

9.2 
9.3 

9.4 

J 9.5 

9.6 
9.7 

9.8 

5=500,375 i 
5=585,220 
5=600,165 
3-18,9 | 
4=32,32 

impossible 

8,8=32 
332-2(332), 

332 

Impossible 

2=2,2 

2=16,16 
Impossible 

2-4,4 
17-578,289 
16=128,128 

Impossible 
16=32,32 

2-2,2 
257-514,257 

1.3 

3-54,54,27 
3-63,36,36 | 
3=79,16,8 
6=108,72,36 
8=255,57,22 
9-243,243,243 
See Text, 

Section 4. 

9=27,27,27 

a«100a,81a, 
42a a-1134865 
3=3,3,3 

3=81,81,81 
3-24,18,3 

5-110,85,20 

3-9,9,9 

81-37,37,37 

Unknown 
81-35

835,35 

3-3,3,3 

2.1 I 

Impossible 

2,2=8 

Impossible 

8,8=32 

Impossible 

64,64=128 

2,2-32 
Impossible 

8,8-128 

2,2-4 

Impossible 
8,8-16 
2a3 ,a3-a4 

a-513 
1128,128-256 

2.2 

3,1-71,39 
3,2-79,24 
4,3-264,49 
6,6-144,72 

Unknown 

a2,a2-3a3,a3 

a-122 

Unknown 

a,a-3a,a a=1094 

5,5-1875,625 
4f2-60,36 
7,2-322,191 
8.4-480.288 I 
a,a«3a2,a2 a«41 

a4,a4**3a7,a7 | 
a-122 

I Unknown I 
a4,a4«3a5,a5 

a«1094 

a,a^3a,a a-3281 

I J 
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TABLE 1 (con t inued) 

1 >v f 

3.2 

4.2 

4.3 

5.2 

5.3 

5.4 

6.2 

6.3 

6.4 

6.5 

7.2 

7.3 

"n.n 2.3 

3,2=5,3,1 
3,3=5,5,2 

2,1=3,2,2 
3,1=8,3,3 
5,4=9,5,3 

2,1=5,2,2 
3,1=12,8,6 
3,3=22.1,1 

6,4=17,15,8 
8,3=32,6,3 
9,3=36,21,15 

9,9=18,9,9 

2,1=6,5,2 
5,3=127,12,9 
5,5=176,15,7 

7,5=46,33,1 
7,6=50,34,1 

3,3=6,3,3 
7,7=19,18,1 
7,7=21,14,7 

17,17=34,17, 
17 

2,1=11,2,2 
2,1=10,5,2 
2,1=8,7,4 

4,2=20,20,8 
5,4=44,21,4 

3.1 

3,2,1=6 
3,3,3=9 
6,2,1=15 

20,15,12=481 

5,5,3=11 
9,9,9=27 

3,3,3=27 
12,12,12=864 
15,5,5=875 

3,3,3=9 
24,24,24=288 
68,34,34=1156 

27,27,27=81 

100,81,42= 
1134865 

Unknown 

Unknown 

81,81, 
I 81 ,=243 

3,3,3=81 
12,12,12= 

10368 

9,9,9=243 

3.2 

3,1,1=5,2 
4,2,1=8,3 

— 
2,1,1=3,3 
3,2,1=7,7 
3,3,3«6,3 
8,5,4=17,4 

2,1,1=5,3 
2,2,1=7,4 

9,3,3=39,6 
9,9,9=54,27 

17,4,1=37,17 

3,2,1=25,13 
3,2,2=29,4 
3,3,2=39,1 

Unknown 

Unknown 

11,11,11-22,11 

2,1,1=11,3 
2,1,1=9,7 

3,3,1=15,10 
3,3,3=18,9 

3.3 

2,2,1=3,2,2 

2,2,1=5,2,2 
3,1,1=7,5.3 
4,1,1=5,5,2 

2,1,1=4,3,3 
2,2,1=6,5,2 j 

3,2,2=6,4,3 
3,3,3-8.6,1 ] 

6,4,3=9,7,3 
6,6,6-12,6,6 | 

2,1,1=5,5,4 
2,2,1-10,5,2 
2,2,1=11,2,2 

3,3,1=11,4,4 
6,2,1=30,25,16 

10,6,1=30,22,7 
10,9,1-34,21,5 

16,16,2=32,2,2 

2,2,1=15,4,4 
2.2,1-12.8,7 
2,2,2=16,8.8 

4,4,2=32,4,4 
6,6,2=76,49,15 
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TABLE 1 (con t inued) 

P Q > 

i 7>4 

7.5 

7.6 

8.2 

8.3 

8.4 ' 

8.5 

8.6 

8.7 

9.2 

9.3 

9.4 

9.5 

9.6 

9.7 

9.8 

m.n 2.3 

9,9*54,27,27 

a3,a3-2a4, 
a4,a4 a-17 

33,33-66, J 
33,33 | 

2.1-11,10,6 
2,1-12,8,7 

4,2-40,12,4 
4,2-33,31,4 | 

7,7-56,35,21 
7,7-55,39,16 

a2,a2-2a3, 
a3,a3a-17 

Unknown 

65,65=130, 
65,65 

3,3-162, 
81,81 

4,2-57,42,15 
| 4,3-65.19,7 

9,9-162,81. 
81 

a4.a4-2a7. 
a7,a7a-17 

Unknown 

l a 4 ,a 4 « B 2a 5
s 

a5,a5 a-65 

a,a-2a,a,a 
I a-129 

3.1 

3,3,3-9 

9,9,9»27 

243,243,243 
-729 J 

Unknown 

3.3,3-27 

Unknown I 

27,27,27-243 

Unknown 

36,36,36**37 

3,3,3-243 

I Unknown 

27,27,27=37 

3,3,3-9 

Unknown 

27,27,27-81 

37,37,37-38 

3.2 

a3,a3,a3«*6a5,3a5 

. a-459 

2a2,a2,a2-a3,a3 

a-65 ! 

a,a,a-6a,3a 
a=15795 ! 

3,3,2»97,63 

9,9,9-486,243 

Unknown 

112,112,112-
2(113),113 

Unknown 

43,43,43-86.43 

2,1,1-17,15 
2a,a,a«a5,a5 a-257 

12,8,8-1808,-784 

a,a,a-6a2,3a2 

a=459 

2a,a,a«a2,a2 

a«257 

Unknown 

2a3,a3,a3-a4,a4 

a»257 

2a7,a7,a7-a8»a8 

I a-257 

3.3 

6,1,1-23,3,2 
8,2,2-32,32,4 | 

8,4,4-16,16,8 

32,32,2-64,2,2 

2,1,1-11,11,4 
2,1,1-13,18,5 j 

2,1,1-5,5,2 
3,2,2-18,9,8 I 

4,4,3-18,13,8 
5,4,3-24,19,5 I 

a2,a2,a2-3a3, 
2a3,a3 a-92 

Unknown 

a,a,a-3a,2a,a 
a-772 

2,2,2-32,16.16 

3,2,1-23,18,3 1 
3,3,2-32,17,13 j 

8,8,2-128,4,4 

3a,2a,a-a2,a2,a2 

a-6732 j 

I Unknown 

I 2a3,a3,16-a4,32, | 
32 a-513 

128,128,2-256, 
2,2 
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1. Introduction 

A Fibonacci sequence is defined by two initial terms, F(l) and F(2), to-
gether with the recursion equation 

(1) Fin + 1) = Fiji) + F ( n ~ l ) s n = 2 , 3S 4, . . . . 

A closed form expression for the nth Fibonacci number is given by 

(2) Fin) = 4= 1 + /5 2_ 
/5 

i - /r 
1, 2, 3, 

If we let F(l) = F{2) - 1 in equation (1), then we get the well-known sequence 
of Fibonacci numbers 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... . 

Because Fin) is defined recursively in (1), we must know F{n) and F{n - 1) in 
order to find Fin + l)n Therefore, to find F(1Q0) for example, we must first 
compute F(3) , F(4), . . ., , F (98) , F(99) . This becomes a formidable computing 
task as n gets large. Finding F (n) for large values of n from equation (2) is 
also a laborious task. Computing time, machine limits, and round-off error are 
problems that must be considered. 

In this paper we assume that m terms of the Fibonacci sequence are known. 
To construct a formula that generates the m terms, one can use the Lagrangian 
approach to obtain the collocation polynomial. This method is based on the 
following theorem from [3]. 

Theorem: Let (xk, f k ) , k = 0, 1, 2, ..., n, denote (n + 1) points that would 
lie on the graph of a function. Then there exists a unique collocation poly-
nomial p(x) = ]C-_ a-x- whose graph passes through the given (n + 1) points. 

The Lagrangian method may require sophisticated numerical techniques in 
order to produce the collocation polynomial. However, the finite differences 
procedure and the examples presented here are at a level that can appeal to 
high school teachers with a desire to add interesting exercises involving 
Fibonacci numbers (or any sequence). Therefore, the emphasis in this paper is 
not on the derivation of the formula, but on the application of the formula to 
reproduce the given m Fibonacci numbers. In addition, the formula presented 
is in a more directly useable form than is usually available, and its purpose 
is different from equations (1) and (2). In some applications, such a formula 
may prove to be quite useful. 

2. A Polynomial Formula Using Finite Differences 

In this section we describe a general method for constructing a polynomial 
that generates the terms of a sequence. Let s^, S2$ ...5 sm be the terms of a 
sequence. Form the successive order differences as shown in Table 1. 
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n 

1 

2 

3 

4 

5 

6 

Sequence 

* i 

«2 

^3 

s4 

«5 

5 6 

Terms 
1st 

— D\ 

— Dl 

Dl 

Dl 

Dl 

TABLE 1 

2nd 

Dl 

n2 
JJ2 

Dl 

Dl 

Difference 
3rd 

-D? 

D\ 

Dl 

4th 

- D\ 

- D\ 

5th ••• 

Dl 

where 

D\ = 52 - si 

D\-s^- S2 

Dl = D\ - D\ 

D\ = Dl-D] 

D\ = Dl - D\ 

D\ = Dl-D\ 

> = Dl I3 - D2 
Jm-3 — Um.-2 

We assume that some order difference becomes constant. 
= 1, 2, 3, ..., m - i , for some i = 1, 2, . .., m 

for all j. 

That is, £>• £> 

difference Z^|+1 is zero 
< m 1 be a positive integer such that D-

2. Thus, the next order 

is zero for all j = 1, 2, Let k 
. . . , m - k. The general term of the original sequence can now be expressed by 
a polynomial in n. The polynomial formula that generates the sequence is based 
on the above finite difference table and is given by 

(n - l)(n - 2) ̂ 2 . (n - l)(n - 2)(n - 3) 
(3) s-, .+ (n l)D\ + 

(n - 1) (n 
2! 

2) 

2) 2 
— L D \ + 3! 

-£; 

(w - (fc 
(fc - 1 ) ! 

1)) k- 1 

Equation (3) is in terms of s, and D 
"-1", the leading first terms of the various 

complete derivation of (3).is given in [1] and [2]. 
D\-

the first term of the sequence, auu ^ 
order differences. The 

Equation (3) assumes that the order differences, D- 1, 2, m 
However, we have found that 

- t, 
this are zero for some £ = 1, 2, ..., w - 1. 

condition is not necessary for the derivation of a generating polynomial. 
Equation (3) can be extended in order to construct a polynomial that generates 
the terms of any sequence whether or not the order differences, Df9 j = 1, 2, 

m 1, are zero for some t 
mc 

the sequence if given by 

1, 2, 77? 1 
the sequence, s^9 and the differences Z?J, D^-, 

We use the first term of 
The general term of 

(4) sl + {n - l)D[ + 

(n - 1) (n 

(n - 1) (n 
2! 

2) 

2) 2 (n - 1) {n - 2) (n 
~3l ~~ ^ 

(77? - 1 ) ! 
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3. Examples 

In this section we apply equation (4) to several sequences. Consider the 
first four terms of the Fibonacci sequence, 1, 1, 2, 3. Form the order 
differences as shown in Table 2. 

Sequence 

TABLE 2 

Differences 

Thus, s 1 = l , D\ = 0, D\ = l9 and d\ = -1. Substituting these values into (4) 
yields 

(5) 1 + (r D(0) + 
(ft - 1) (ft _2)_(1) + (n ~ l)(ft 2) (ft - 3) 

(-1) 

-i(-ft3 + 9ft2 - 20ft + 18), 

For ft = 1, 2, 3, 4, equation (5) yields the Fibonacci numbers 1, 1, 2, 3. 
Using (5), it is possible to generate F(4) without having to compute F(l), 
F(2) , F (3) as in the recursion equation (1). Note that (5) does not generate 
the correct term F(5) = 5 for ft = 5. This procedure produces a polynomial that 
generates only the terms of the initial sequence. 

We do not have to begin the sequence of terms with F(l) in order to apply 
(4). For example, consider F(10), F(ll), F(12), F(13), F(14), namely, 55, 89, 
144, 233, 377. Table 3 contains the order differences. 

Sequence 

TABLE 3 

Differences 

1 

2 

3 

4 

5 

55 

89 

144 

233 

377 

34 

55 

144 

21 

34 

55 

13 

21 

Here, sl = 55, D\ = 34, B\ = 21, D{ = 13, D\ = 8, sl = F(10), s2 = F(ll), s3 = 
F(12), sh = ^(13), s5 == F(14). Using (4), we obtain a polynomial that generates 
the sequence: 

(6) 
(ft - 1) (ft 

55 + (ft - 1)(34) + 

(ft - l)(ft - 2)(ft - 3)(ft - 4) 
+ 24 

•^(21) + ( n " 1 ) ( n 2) (ft - 3) 

(8) 

(13) 

r(2ft^ 7ft3 + 55ft2 + 58n + 222) 

For ft=l, 2, 3, 4, 5, equation (6) yields the Fibonacci numbers 

F(10) = 55, F(14) = 377. 
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Once again we can generate any single term of the sequence without computing 
previous terms. For example, in order to generate F(14) = 377, we let n = 5 in 
(6). As in the previous example, we do not obtain' F(15) = 610 by letting n = 6 
in (6). 

Suppose we are given a longer sequence of Fibonacci numbers. To obtain the 
generating polynomial, the above procedure suggests we must calculate all the 
order differences. Fortunately, this is not the case. 

Consider the sequence consisting of the first ten Fibonacci numbers and the 
order differences given in Table 4. 

F(l) 

0 

TABLE 4 

Fibonacci Numbers 

F(2) 
1 

°\ 

F(3) 
2 

°\ 

F(4) F{5) F(6) F(7) 
3 5 8 13 

Differences for Equation (4) 
n3 r>h n5 n6 

F(8) 
21 

»I 

F(9) 
34 

"? 

^(10) 
55 

n -1 13 -21 

There is a definite pattern in the differences given in Table 4. The lead-
ing differences alternate in sign beginning with D and the absolute value of 
these differences yields the first eight Fibonacci numbers 1, 1, 2, 3, 5, 8, 
13, 21. The following examples further illustrate the pattern in the leading 
differences. 

Consider the sixteen Fibonacci numbers beginning with F(5) = 5 through 
F(2) = 6765. The Fibonacci numbers and the leading differences are given in 
Table 5. 

TABLE 5 

Fibonacci Numbers 

F(5) 
5 

F(13) 
233 

F(6) 
8 

W4) 
377 

F(7) 
13 

F(15) 
610 

F(8) 
21 

F(W 
987 

Differences 

F(9) 
34 

F(17) 
1597 

W O ) 
55 

F(18) 
2584 

for Equation (4) 

mi) 
89 

^(19) 
4181 

F(12) 
144 

F(20) 
6765 

s l Dl Dl Dl Dl Dl Dl Dl Dl Dl Dl° Dll Dl2 Dl3 ^ Dl5 

5 3 2 1 1 0 1 -I 2 -3 5 -8 13 -21 34 -55 

From Table 5, we see that 

D\ = F(4), D{ = F(3), Dl = F{2), D\ = F(l). 
After D^9 the differences follow the same pattern of differences as in the pre-
vious example. That is, the differences alternate in sign, and the absolute 
value of the differences yields the first ten Fibonacci numbers. 

Therefore, suppose we consider a sequence of sixteen Fibonacci numbers 
beginning with î (10) = 55. Then the differences are found quickly and simply 
without computation from the patterns in the above examples. The differences 
for (4) are: 

34 
*1 
21 13 

D\ Dl °l °l D\ 
1 

Df 
1 0 

D\l 
1 

0p 2? J 3 D\* D\$ 

Substituting these values into (4), we obtain a polynomial in n which generates 
the sixteen Fibonacci numbers F(10) = 55 through F(25) = 75025. 
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These examples demonstrate a technique for obtaining a polynomial that gen-
erates any finite sequence of Fibonacci numbers. The leading order differences 
must be calculated in order to determine the polynomials but they follow a 
discernible pattern. The resulting polynomial generates only those terms in 
the initial sequence and is useful in some applications. 
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***** 

(continued from page 140) 

The reviewer has some problems with comments made by the authors. First, 
the authors could, I believe, have misinterpreted the quote by Schalau and 
Opolka which is given in the Foreword. The Pythagorean triple problem was 
completely solved in antiquity if by this statement Schalau and Opolka meant 
that a method had been developed which totally solved the problem of finding 
all Pythagorean triples. If Schalau and Opolka meant that no new results could 
be found, then the authors are correct. I believe that the former is the case. 

The authors also claim that there is no technique for systematically gen-
erating all Pythagorean triples by the old method. This is, I believe, a 
matter of opinion. The reviewer happens to believe that the original technique 
developed by Diophantus is very systematic. That is, (x9 y, z) is a Pythago-
rean triple if and only if x = u2 - V2 , y = 2uv, and z = u2 + V2 , where u > V. 
The problem here is the meaning of "systematic." The authors also feel that 
their method is more time efficient. The reviewer has a problem with this. 
Finding the greatest common divisor of two integers, even when large, is not a 
problem for the computer. It does take time but would it take any more time 
than is needed to go through the contraction method developed by the authors or 
to find the convergents needed for the continued fraction or to pick and 
implement the method (class) that gives the correct value of n? I think not. 

Overall, I would recommend the book and suggest that those interested in 
Pythagorean triples or Pellian equations read it. 

********************************************************* 
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1. Introduction 

The Hermite polynomials, Legendre polynomials, Laguerre polynomials, 
Gegenbauer polynomials, and Jacobi polynomials belong to the system of classical 
orthogonal polynomials (see, e.g., [4]). For each class of these polynomials, 
it is well known that the orthogonal property, differential equation (gen-
eralized) , Rodrigues representation, and three-term recurrence relation are all 
equivalent (see, e.g., [4]) in the sense that any one of the above four 
properties implies the other three. 

Throughout this paper we concentrate exclusively on the Hermite polynomials 
Hn(x). There exist in the literature (see, e.g., [l]-[3], [5], [6], [8]) many 
starting points for developing the properties of the Hermite polynomials: (i) 
Hermite differential equation (see, e.g., [6]), (ii) Rodrigues' representation 
[8], (iii) the simple but beautiful relation [9], given in Arfken ([2], Prob. 
13.1.5, p. 718), 

(1) Hn(x) = (2x - D)nl, D E d/dx, n > 0, 

and (iv) the following generating function (see, e.g., [l]-[3], [5]) 

(2) exp(2tx - t1) = Y, Hn(x)tn/nl 
n= 0 

Many generating functions exist for the Hermite polynomials (see, e.g., [5]). 
However, throughout this paper by generating function for Hn(x) we only mean 
the more familiar one defined by (2). Moreover, we follow the convention that 
W® = I, the unit operator, for any operator W. The purpose of this paper is to 
present the following relation 

(3) Hn(x) = g'1[2x - D + g~1{Dg}]ng, D = d/dx, n > 0, 

where g (x) is any differentiable function not identically zero, as the spring 
(starting point) for the starting points. We begin with a derivation of (3) 
and then show that all properties of the Hermite polynomials and many a beau-
tiful relation follow from it. 

2. Spring of Springs 

Actually, (3) is a combination of the pure recurrence relation (see, e.g., 
[5]) 

(4) Hn+i(x) = 2xHn(x) - 2nHn_1(x), n > 1, 

and the differential recurrence relation (see, e.g., [5]) 

(5) DHn(x) = 2nHn_l(x), n > 1, 
and the results (see, e.g., [5]) 

(6) H0(x) = 1, 

(7) H1(x) = 2x. 
The proof is as follows. Using (4) and (5), we have 
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(8) Hm+l(x) = 2xHm(x) - 2mEm_l(x) = (2x - D)Hm(x) , m > 1. 

Moreover, i n view of (6) and ( 7 ) , Hl(x) = (2x - D)H0(x). Thus, 

(9) Hn(x) = (2x - D)Hn_l(x), n > 1. 

If g(x) is any differentiable function not identically zero, then 

(10) gHn(x) = g(2x - D)Hn_l(x) 

= [2x - D + g-l{Dg}]{gHn_l(x)}9 n > 1. 

Iteration of (10) yields 

(11) gHn(x) = [2x - D + g-l{Dg}]ng5 n > 1, 

since HQ(X) = 1. However, (11) is also true for n = 0. Relation (3) now fol-
lows immediately. 

The interesting point about (3) is that one need not specify what g{x) is. 
Any differentiable function not identically zero will suffice. Thus, for exam-
ple, when g = 1, we obtain the beautiful relation given in Arfken ([2], Prob. 
13.1.5, p. 718): 

(1) Hn(x) = (2x - D)nl9 D = d/dx, n > 0. 

When g = exp(-£2/2), we derive the relation 

(12) Hn(x) = exp(x2/2)(x - £)nexp(-x2/2), n > 0, 

a result that is very useful in the quantum mechanical treatment of a simple 
harmonic oscillator (see, e.g., [2]). When g = exp(-x2), we deduce from (3) 
the Rodrigues' representation (see, e.g., [5]) 

(13) Hn(x) = (-l)nexp(^2)Z)n{exp(-x2)}5 n > 0. 

It is now clear that the spring of springs [i.e., (3)], the Rodrigues' repre-
sentation [i.e., (13)], Arfken's formula [i.e., (1)] and (12) are all equiva-
lent. 

Relation (3) has been obtained as a natural consequence of the standard 
properties of the Hermite polynomials. We shall now show that (3) is a spring 
for developing the properties of Hn(x). First we prove (9) starting from (3): 

Hn(x) = g~l[2x - D + g~l{Dg})ng 

= g~l[2x - D + g-l{Dg}]{gHn.l(x)} 

= (2x - D)Hn_i(x) s n > 1. 
Relation (9) plays a crucial role in establishing the results that (1) and (3) 
are springs of the Hermite polynomials. For example, the differential recur-
rence relation can be obtained from (9). If DHM(x) = 2MEM_l(x) for some M > 1, 
then 

(14) DHM+l(x) = D{(2x - D)HM(x)} 

= 2HM(x) + (2a; - D)DHM(x) 

= 2HM(x) + (2x - D){2MHM_l(x)} 

= 2HM(x) + 2MHM(x) 

= 2(M + l)HM{x). 
By using induction, we now obtain the differential recurrence relation, (5). 
The three-term recurrence relation, (4), then follows from (9) and (5). The 
differential equation satisfied by HM(x) can be obtained from (14), since 

2HM(x) + (2x - D)DHM(x) = 2(M + l)#M(x), 
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so that 

(15) {D1 - 2xD + 2M)HM(x) = 0, M > 0. 

From (9), one can obtain the power series expansion (see, e.g., [5]) using 
induction: 

(16) Hn(x) = £ ^ — f — \ , n > 05 
s=0 sl(n - 2s)l 

where [r] is the greatest integer < r. Though tedious, the method is straight-
forward. For an alternative method of arriving at the power series expansion 
from (1), see also [8]. Following Simmons ([6], p. 191), we can obtain the 
generating function [see (2)] from the power series expansion. We show that 
(2) can also be derived from the pure recurrence relation as follows: (i) 
Assume the existence of a generating function of the form 

(17) G(x, t) = J2 Hn(x)tn/nl 
n= 0 

(ii) Differentiate G(x, t) partially with respect to t and use the three-term 
recurrence relation and (6) and (7) to develop the following first-order dif-
ferential equation for G(xs t): 

(18) G~l(dG/dt) = 2x ~ It. 

(iii) Holding x fixed, integrate both sides of (18) with respect to t , from 0 
to t, to obtain 

(19) G(x9 t) = G(x, 0)exp(2xt - t1). 

(iv) Since G(x, 0) = HQ(x) = 1, by (6), it follows that 

(20) G(x, t) = exp(2;rt - t2) . 

Our procedure outlined above is just similar to the one used by Arfken ([2], 
Prob. 13.1.1, p. 717) to arrive at the generating function from the differen-
tial recurrence relation, (5), supplemented with the results 

(21) H2m+l(0) = 0, m > 0, 

(22) H2m(0) = (-l)ffl(W!W, m > 0. 

Rodrigues' representation is a simple corollary of (3) and the orthonormal 
property, 

(23) I exp(-xz)Hm(x)Hn(x)dx = 2nn!/rr6„ 

can be proved using it (see} e.g., [8]). Szego [10] has elegantly shown that 
real orthogonal polynomials associated with an even weight function and an 
interval of orthogonality symmetric with respect to the origin have a definite 
parity. Hence, 

(24) Hn(-x) = {-l)nEn{x)i n > 0. 
In other words, Hn(x) can contain only those powers of x that are congruent to 
n (mod 2). Using this result, Descartesfs rule of signs, and the properties of 
the zeros of Hn(x) (see, e.g., [5], [10]), it has been proved in [7] that Hn(x) 
does contain only those and all those powers of x that are congruent to n (mod 
2). Moreover, the adjacent coefficients of En{x), n ^ 2, alternate in sign [7]. 
See also (16). Thus, starting from (3), one can obtain the differential recur-
rence relation, pure (i.e., without derivative) recurrence relation, differen-
tial equation, and orthonormal property satisfied by the Hermite polynomials in 
addition to their Rodrigues representation, power series expansion, and 
generating function. 
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3. The Relat ion Hn(x) = 2 n { e x p ( - D 2 / 4 ) } xn 

We now prove the fo l lowing i n t e r e s t i n g r e l a t i o n from B e l l ( [ 3 ] , Th. 5 . 3 , p . 
159): 
(25) Hn(x) = 2 n { e x p ( - D 2 / 4 ) } x n . 

Here exp(-D2/4) is formally expanded as 

(26) exp(-£2/4) = JT {(-l/4)s/s!}£2s. 
s = 0 

Since 

({nl/(n - 2s)\}xn~ls , 2s < n, 
(27) D2sxn = < 

( o , 2s > n5 

one can obtain (25) directly from the power series expansion, (16), using (26) 
and (27). Our proof of (25) is an alternative to that given in Bell ([3], p. 
159). By retracing the steps for obtaining (25) from (16), one can show that 
(25) implies (16). Thus, the power series expansion and Bell!s formula [i.e., 
(25)] are equivalent. 

4. Status of the Springs 

We can clearly classify the starting points into two distinct groups: (a) 
full/complete/self-contained springs and (b) associate (incomplete or partial) 
springs. To the first category belong the generating function, the Rodrigues 
representation, the power series expansion, relations (1), (3), and (25), and 
the orthonormal property. These springs specify the Hermite polynomials com-
pletely. The differential equation, the pure and differential recurrence 
relations, the orthogonal property, and (9) belong to the second category 
because they require supplementary conditions to specify the Hermite 
polynomials fully. The constant term of any Hn(x), n > 1, cannot be found from 
the differential recurrence relation, (5), since the operator D simply swallows 
it. In the case of the orthogonal property, we require the value of the right-
hand side of (23) when m = n, for all n > 0 (the square root of the reciprocal 
of this quantity is the so-called normalization constant), and to make (9) a 
complete spring we require the result HQ(X) = 1. 

An outline of the development of the various properties from the springs is 
shown schematically in Figure 1. (Of course, not all the paths are shown.) 
Certain properties can be more easily obtained from a given spring, while it 
may be tedious to derive another property from the same spring. For example, 
in view of (26), we have 

[D exp(-Z^/4)]/(x) E {exp(-£2/4)}(£/), 
where f(x) is any differentiable function of x. Hence, from (25) and (26), we 
have 

DHn(x) = £[2n{exp(-£2/4)}xn] 

= 2n{exp(-£2/4)}(Z^) 

= 2n[2n"1{exp(-£2/4)}xn-1] 

= 2nHn_i(x), n > 1. 
Probably this is the simplest proof of the differential recurrence relation. 
The method of induction plays an elegant role in developing certain properties 
from a given starting point. Some properties can be independently obtained 
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from a given spring without going e i ther via the generating function or via the 
Rodrigues representat ion. 

FIGURE 1 

Schematic diagram showing the development of the various properties of the 
Hermite polynomials. Full springs are shown inside the circles. Squares 
enclose the associate starting points. Triangles stand for the supple-
mentary conditions necessary to make the incomplete springs complete ones. 
We have not given the complete paths to arrive at all the properties, 
starting from a given spring. The following abbreviations have been used: 
(a) AF: Arfken's formula, (l) of text. (b) BF: Bell's formula, (25) of 
text. (c) CAF: Corollary to Arfken's formula, (9) of text. (d) DE: 
Differential equation. (e) DRR: Differential recurrence relation. (f) GF: 
Generating function. (g) LC: Leading coefficient of each and every Hn(x), 
n ^ 0 (= 2n); supplement to the differential equation. (h) ONP: Ortho-
normal property. (i) OP: Orthogonal property. (A knowledge of the leading 
coefficient or the normalization constant for every Hn(x) makes it a 
complete spring.) (j) PRR: Pure (three-term) recurrence relation. (k) 
PSE: Power series expansion. (1) RR: Rodrigues' representation. (m) SD: 
Supplement to the differential recurrence relation, (21) and (22) of text. 
(n) SOS: Spring of springs, (3) of text. (o) SP: Supplement to the pure 
recurrence relation, (6) and (7) of text. 
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5. Conclusions 

Any relation or a set of relations that can specify all the Hermite poly-
nomials completely should be a full starting point. One can level criticisms 
against any spring. For Simmons ([6], p. 189), the generating function method 
is totally unmotivated, though it has the advantage of efficiency for deducing 
the properties of the Hermite polynomials. While he prefers to develop the 
properties from the differential equation, Andrews ([1], p. vii) introduces the 
classical orthogonal polynomials by the generating function method and Rain-
ville [5] revels in the generating function approach. Relation (1) is simple 
and handy, but may have the obvious weakness of being completely unmotivated. 
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ON THE EQUATION cf)(x) + <|>(fc). = * ( x + fc) 
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So lu t i ons of the equa t ion 

(where cf> i s E u l e r ' s t o t i e n t func t ion ) were cons ide red by Makowski [ 3 ] . He 
showed t h a t a t l e a s t one s o l u t i o n e x i s t s i f k i s even, or k i s not d i v i s i b l e by 
3 , or 

* - ̂ X 1 • • • C. 
where F^ = 22'+ 1 is the ith Fermat number, a^ > 1 for 0 < i < s, Fs + i is prime, 
and (m, 2FQFI . . . Fs FS + I) = 1. He did not determine whether solutions exist 
for other odd numbers that are divisible by 3. Makowski also raised the 
question whether there are positive integers for which no solution exists. In 
particular, he noted that it is not known whether there is a solution for 
k = 3. 

This paper provides very severe necessity conditions for x when k = 3, and 
significantly enlarges the set of integers for which at least one solution is 
known to exist. 

Throughout this paper, p, q, and r will denote distinct odd prime numbers. 

Lemma 1: If <f>(n) = 2j for j > 1 and odd, then n = pa or n - 2pa. 

The proof is given in [1]. 

Lemma 2: If <f>(n) = 4j for some odd j > 1, then n is one of the following: pa, 
2pa, 4pa, paq&, or 2paq$. 
Proof: Clearly n cannot be divisible by 8 and cannot have more than two dis-
tinct odd prime factors. 

Theorem I: If <j>(x) + (f)(3) = $(x + 3), then 

(i) x = 2pa or x = 2pa - 3, and 
(ii) p > 3. 

Proof: (i) Let <|> (a?) = 2yj and <J> (a; + 3) = 2?^ f o r J> k odd. Then the hypothe-
sis gives us 2vj + 2 = 2mk. Hence, v = 1 iff m * 1. 

Case 1. Let v = 1. Then x = pa or a: = 2pa by Lemma 1. a? = pa implies 

pa _ pa-1 + 2 = <|>(p« + 3), 

and s i n c e pa + 3 i s even, 
p a + 3 

<Kpa + 3) < Z—2 . 

Thus, pa + 1 < 2pa_1, which Is impossible. 

Case 2. Let m = 1. Then x = pa - 3 or x = 2pa - 3 (Lemma 1). Since pa - 3 
is even, 

va - 3 
Kpa - 3) < ̂  . 

However, 
Upa) * ~pa; 
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so i f x = p a - 3 , we have 

P
 2" + 2 > (f)(pa - 3 ) + (f)(3) > | p a , 

which gives the contradiction 3 > pa. 

(ii) Suppose p = 3. 

Case 1. Let a? = 2 • 3 a for a > 1. Then 

<K2 • 3 a ) + <|)(3) = (f)(2 • 3 a + 3 ) , 
so t h a t 

3a~l + 1 = <f)(2 • 3 a _ 1 + 1 ) . 
Not ice t h a t t h i s i m p l i e s t h a t 2* 3 a _ 1 + l and <f>(2» 3 a ~ * + 1) a r e r e l a t i v e l y pr ime; 
hence , 2° 3 a _ 1 + l i s s q u a r e - f r e e . And s i n c e 8 | (30t"-L + 1) , Lemma 2 g ives us 

2 » 301-I + 1 = q or 2 • 3 a _ 1 + 1 = qr. 

The supposition 2* 3a_1 + 1 = q leads to the contradiction 

cf)(2* 3a_1 + 1) = 2 - 3a~~1 = 3a_1 + 1. 

Hence, 2 * 3a~l + I = qr. 
Assume q > r. Since 

2$(qr) = 2(3a_1 + 1) = qr + 1 = 2(<?r - q - r + 1) , 

we get qr = 2q + 2r - 1. But r > 5, so ^p > 4^. Therefore, 2r - 1 > 2q, which 
contradicts q > r. 

Case 2. Let a? = 2 • 3a - 3 for a > 1. Then 

2cf)(2- 3a_1 - 1) + 2 = 2- 3a_1 and (f)(2- 3a_1 - 1) = 3a_1 - 1. 

Hence 2 • 3a_1 - 1 and cf)(2 e 3a - 1). are relatively prime, which implies that 
2- 3a_1 - 1 is square-free. Also, since 3J(3a-1 - 1) , we have 3Jcf)(2 * 3a-1 - 1). 
So, if q\(2* 3a_1 - 1), then q i 1 (mod 3). Thus, 4 = 2 (mod 3). So, 

cf)(2 • S0^1 - 1) == (̂  - 1)(?2 - 1) ... (^ - 1) = 1 (mod 3). 

But (3a_1 - 1) = 2 (mod 3). This contradiction completes the proof. 

cf)(2pa + 3) 1 
Lemma 3: If 4>(2pa) + (f)(3) = cf)(2pa + 3), then ——~n —- < -. 

2pa + 3 X 2pa + 3 
a + 2 < — -. Proof: cf)(2pa + 3) = cf)(2pa) + 4(3) = (^-f^)p 

(f)(2pa - 3) 1 
Lemma 4: If (f)(2pa - 3) + (f)(3) = 4>(2pa), then — — ^ —- < -. 

2pa — 3 z 

/p - 1\ 2pa - 3 . 
Proof: cj)(2pa - 3) = ĉ (2pa) - (f)(3) = (^—jP a " 2 < " ^ • 

Lemma 5: Let S = {q\q = 2 (mod 3)}. If n is a positive integer such that every 
prime factor of n belongs to 5 and §(n) In < 1/2, then n has more than 32 dis-
tinct prime factors. 

Proof: Calculations show that even if the 32 smallest primes in S all divide n, 
§{n)/n is still greater than 1/2. 

Theorem II: If <$>(x) + (f)(3) = <}>(#+ 3), then: 

(i) x or x + 3 has at least 33 distinct prime factors, or 
(ii) x = 2pa for a odd, p = 2 (mod 3), x > 1011, and x + 3 

has at least 9 distinct prime factors. 
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Proof: 
Case 1. Let a; = 2pa - 3, a even. Suppose q\x. Then 2pa - 3 = qv for some 

integer v, and 4pa = 2qv + 6. And since a is even, 6 is a quadratic residue 
mod q. Hence, the thirteen smallest primes that can divide x are 5, 19, 23, 
29, 43, 47, 53, 67, 71, 73, 97, 101, and 139. Let x = q^q^2 ••• ??* - Calcu-
lations show that 

I < A . i S . 2 2 e Z 8 42 46 ^2 66 "70 _72 96 _100 /138\28 

2 K 5 * 19 * 23 * 29 * 43 * 47 * 53 ' 67 " 71 ' 73 ' 97 * 101 * \139 / " 

So if i < 40, then $(x)/x > 1/2. But §(x)/x < 1/2 by Lemma 4. Hence, i > 40. 

Case 2. Let x = 2pa - 3, a odd. Suppose q\x and q = 1 (mod 3). Then we 
have (j>(a?) = 0 (mod 3) . So 

[<t>(x) + (f)(3)] = 2 (mod 3). 

But <(>(#) + <K3) = <K# + 3); hence, 

<)>(# + 3) = (j)(2pa) = p 0 ^ 1 ^ - 1) = 2 (mod 3). 

And since a is odd, this is impossible. Thus, if q\x, then q = 2 (mod 3). So 
by Lemmas 4 and 5, a: has at least 33 distinct prime factors. 

Case 3. Let x = 2pa, a even. Suppose q \ (x + 3) and q E 1 (mod 3). Then 
<f)(ar + 3) E 0 (mod 3). But 

<t>(x + 3) = (j)(2pa) + cj)(3) = pa_1(p - 1) + 2, 

So pa_1(p - 1) + 2 E 0 (mod 3), which implies 

pa"l(p - 1) E 1 (mod 3). 

And since a is even, this is impossible. Hence, if q\(x + 3), then q = 2 (mod 
3). Thus, by Lemmas 3 and 5, x + 3 has at least 33 distinct prime factors. 

Case 4. Let x = 2pa, a odd, and p = 1 (mod 3). Suppose q\x + 3 and q E 1 
(mod 3). Then $(x + 3) = 0 (mod 3). But 

<t>(x + 3) = pa~l(p - 1) + 2 E 2 (mod 3). 

Hence, every prime divisor of x + 3 belongs to S = {̂ |̂ 7 = 2 (mod 3)}. There-
fore, by Lemmas 3 and 5, x + 3 has at least 33 distinct prime factors. 

Case 5. Let x = 2pa, a odd, and p E 2 (mod 3). Suppose that 5 | (x + 3), 
q\(x + 3), and q = 1 (mod 5). Then <J>(a: + 3 ) = 0 (mod 5), pa = 1 (mod 5), and, 
since a is odd, pa _ 1 = ±1 (mod 5). Therefore, 

<t>(x + 3) = pa - p a _ 1 + 2 £ 0 (mod 5) . 

Hence, the prime factors of x + 3 all belong to S\ = {^|^ ^ 7} or 51(# •+ 3) and 
every other prime divisor of x + 3 belongs to S2 = (̂l*? > 5 and <? = 1 (mod 5)}. 
Let 

* + 3 = qpq^ ... q?'. 
Calculations show that if all q- belong to S\ or q^ = 5, and all other <7 • 
belong to S2, then <J) (x + 3) / (x + 3 ) > 1/2 whenever -i < 8. Therefore, by Lemma 
3, # + 3 has at least 9 distinct prime factors. Calculations also show that in 
either case, x > 1011. 

Makowski did not determine whether solutions exist for k = 18t i 3 or for 
k ~ kbm, where 5\m. The following theorems not only prove that solutions exist 
for many of these integers, they characterize x for each k. 
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Theorem III: <)>(#) + $(k) = $(x + k) has a solution if fc = 3m is odd and satis-
fies any of these conditions: 

(i) pa||fe, pS = q - 2, a > 3, and qffc; 

(ii) p||fc, p = 3q - 4, and q\k\ 

(iii) pffc, p = 9q - 16, and qffc; 

(iv) p\\k, p = 3a<? - 2ars 3a - 1 = 2a_1(p + 1), q\k and r|fe. 

Proof; 
(i) Let k = paj. Then ^{2qa~^) + <Kpa«7) = Hqpa~^')* 
(ii) Let fc = 3apj. Then cf>(22°  3aj) + (j)(3apj) = cf)(qe 3a+1j). 

(iii) Let k = 3apj. Then cK24 °  3aj) + c()(3apj) = (j)(q » 3a+2j) . 

(iv) Let k = 3pj. Then <|)(3 • 2arj) + <K3pj) = cf)(3a+1<7J) • 

Theorem IV: Let 2m + 1 = 3aft where (3, ft) = 1 and a > 0; and suppose there 
exists a positive integer j such that j - cj)(j) = n and 3aJ - 2m+l = p . Then, 
If k - 3pv where (3v, 2pj) = 1, the equation <j> (x) + §(k) = c|) (a? + k) has a solu-
tion. 

Proof: <j)(2ffl + 1 • 3T;) + <f>(3p2>) = cf>(3a + 1 • jv). 

Theorems III and IV provide a solution for 51 of the 91 positive odd inte-
gers that are less than 10,000, divisible by 45, and not divisible by 25. They 
also give solutions for 50 of the 112 k such that k = I8t ± 1 and k < 1000. 
Since the solutions produced by these theorems depend on k being divisible by 
certain kinds of primes, it seems reasonable to expect that numbers with many 
prime divisors are much more likely to satisfy the hypotheses of the theorems 
than the relatively small numbers considered above. 

It is not known whether there are solutions for k = 3p where p = 5, 7, 13, 
19, 23, 59, 67, 71, 73, 97, 113, 127, 131, 151, 163, 167, 181, or 199. For all 
other p < 200, k = 3 has a solution defined in Theorems III and IV. 

Theorem IV raises the question: for which n does the equation n = x - <$>(x) 
have at least one solution? This equation was considered by Erdos [2], but a 
characterization of all such ft has not been found. 

The calculations in part (i) of Theorem II could probably be refined to 
show that x or x + 3 must have 40 or more distinct prime divisors. But such a 
refinement would not be significant, since we have already shown that any 
solution for k = 3 must be very large. Now the real challenge is to prove that 
<(>(#) + <K3) = §(x + 3) has no solution. 

Finally, we mention two other related, unanswered questions: 

1. For which positive integers n does §(x) + <Jj (ft - x) = $(ri) have at least 
one solution? 

2. For which pairs of positive integers a, b does cj)(a) + <KW = §(a + b)1 
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There is no .really new theoretical result below. However, our paper will 
show how to use an old and clever idea in order to discover recurrences. Such 
an expository paper surveying these techniques may be of interest. A few spe-
cific books or papers are needed, but for general background as to notations 
and definitions for Fibonacci, Bernoulli, Bell, and Stirling numbers, etc., the 
reader may consult papers in the Fibonacci Quarterly or Riordan's books [6], 
[7]. Niven [5] has given a good, readable account of formal power series. It 
is shown there when and why convergence questions may be ignored. Finally, 
four papers of the author, [1], [2], [3], and [4], may be consulted for other 
background information. Reference [1] is especially useful for an abundance of 
intricate generating functions for powers of Fibonacci numbers. 

We begin with a small theorem about formal power series, 

Theorem 1. Exponential Series Transformation: Define 

(1) S(n) = £ (£W," 
k =o^7 

(2) s£{x) - ± ^An, 
n = 0 n ' 

and 

(3) &(x) = £ ^S{n). 
Then 

(4) &(x) = exjtf(x). 

The proof is simple and runs as follows. We have 

k 

n= 0n- k= 0XK/ n=0 fe=0(-w k)lkl 

m f . £fe f , ^ =-f, £fe f^ £ ^ 
'k^0kln^k(n - k)l fakl&o n\ 

& = o Kl n=0 nl 

What we wish to show here is that by clever manipulation, especially if ex 

combines in a novel way with sd, we may often use (4) to find a different way of 
writing expansion (3) that does not use S(n) again directly. Then, by equating 
coefficients, we get a new recurrence. This is a common piece of psychological 
trickery used in research. We say the same thing but in a seemingly different 
manner. 

Relation (1) may easily be inverted to give 

(5) ^Ant= t (-Dn~k(l)s(k), 
k= 0 

which is a well-known result [7] which follows readily from the Kronecker delta 
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(6) ±(-ir-Hn
v)()) = ( ° •) = in • * J- = M' 

k = j \kl\o I \n - j / (0 if j ^ n. 

As a consequence of this inversion., we may also state Theorem 1 in a dual form. 

Theorem 1': Define 

u f ) An = i : (-i)n-k(j)£(k)5 

(2') g?(*) = £ f?S(n), 

(3 0 4^) = t $An. 
n= 0 n i 

Then 
(4f) ĵ (a?) = e~x'&(x). 

We will now concentrate on applications of Theorem 1. 

Application 1. Let An = (-l)nFn, where Fn is the nth Fibonacci number defined 
by 

Fn + l = Fn + Fn-1> FQ = 09 Fx = I. 
We must recall that the exponential generating function for the Fibonacci 

numbers is 
» xn Qax _ ebx 

(7) £ ~sFn = 7—' 
n=on! a - b 

where a + b = 1, ab = -1. These are the roots of the characteristic equation 
associated with the recurrence relation. In fact, a, b = (1 ± /5)/2. 

It then follows in this special Fibonacci case that 

To show this, we have 

&(x) = ex sd(x) 
?-Z?x e(\~a)x _ e(l~b)x ebx 

a - b a - b a - b 
pax _ pbx * Tn 

Recalling (1) and (3), we have, upon equating coefficients, the new recurrence 
relation S(n) = -Fn, i.e., 

(8) E ( - D k + 1 ( 2 K = F«-
The reader may find it interesting to try to provide a simple inductive 

•proof of relation (8) using the binomial and Fibonacci recurrences 

[n t*) = G) + (fe - i ) ' Fn+1 = Fn + F " - i -
Such a proof requires a certain algebraic skill. 

Application 2. Let An = Bn, the nth Bernoulli number, whose exponential gener-
ating function is known to be 

(9) s/(x) =Z^rBn 
n=onl n ex - 1 
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I t can then easily be seen that 

<Six) = ex f 1 = _~X
 1 = .*«-*), e* - 1 e - 1 

and it thus follows from Theorem 1 that Sin) = i~l)nBn, i.e., 
n 

(10) £ \l)Bk = (-1)W£«> valid for all n > 0. 

Remark: Because Bn = 0 for all odd n > 3, this familiar recurrence may be mod-
ified to read as 

(U) E ( £ W = 5n> valid for all n > 2. 
Zc*(T 

Symbolically, in the umbral notation of Blissard, this is often written in the 
compact form (B + l ) n = Bn (expand and demote powers to subscripts). 

Application 3. Let A n = B{n), the nth Bell, or exponential number. These num-
bers have the well-known exponential generating function 

(12) eeX~l = exp(e* - 1) = V — Bin), 
n=o nI 

so this is our sd{x). 
By out theorem, using relation (4), we find that 

<Six) = exexp(ex - 1) = Dxex?(ex - 1) = Dxj#ix), 

- E ^ W - ± f?*(n + 1), 
n=0 n l

 n= 0nl 

whence by our theorem we find the recurrence relation Sin) = B(n + 1), i.e., 
n 

(13) £ U)B(k) = £(w + 1), valid for all n > 0. 
fc = ov/a 

By the inversion (5), this yields 

(14) £(-l)n-k(?)s(fc + 1) = B(n), 

which, in terms of the finite difference quotient operator, says that 

(15) KB(k + 1) = B(n), 
k, 1 

which is the analogue of the differential calculus formula 

(16) (Dx)nex = ex. 

This parallel of (15) with (16) is a further reason why the Bell numbers are 
reasonably called "exponential" numbers. 

The reader may look for other examples where a generating function has some 
nice relation to the exponential function, which is part of the secret of 
success. Such research requires an artistic touch of intuition. 

It is possible to set down a parallel theorem for binomial generating func-
tions. We offer the following. 

Theorem 2. Binomial Series Transformation: Define as before in (1), 

(17) S(n) - t(l)Ak, 
k=o' 
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(18) @(x) = I>n^n> 
n= 0 

and 

(19) Mx) = £ xnS(n), 
n= 0 

Then 

(20) Mx) = £ An n + l n=0 (1 - x) 

and the best we can do to parallel (4) is to write this as 

(21) Mx) = ^(s), where z 
1 - x 1 - x 

The proof is easy and runs as follows. We have 

jew = ±x»± (n
k)Ak = t Ak t &y 

-±A*t (n+
k v+fc= t^kt{n+

k
ky 

7< = 0 n = 0 x K 7 k= 0 ft = 0X K 7 

k= o * 1 - a; & = o * 1 - x 
This result is useful in a different way than Theorem 1. We give as an 

example, 

Application 4. Let An = (-l)nFn as in Application 1. Then 

-x 
mx) = x; i-x)nFn = -

n = 0 1 + X - Xz 

and 
1 1 -2 -x 

Mx) = #(z) = T = " r 
1 - x l - x l + ^ - 2 z l - x - x z 

= -#(-*) = -t,Fnxn, 
n= 0 

so that by Theorem 2 we have the recurrence S{n) = -Fn, i.e., 

(22) E(-Dfe + 1(feh =F«' 
k=0 X K / 

which is precisely result (8) again, but it required a bit more work to obtain 
it by use of Theorem 2. This gives some feeling for the elegance of the expo-
nential generating function when it can be used. 
Application 5. In Theorem 2, let An = Fn using the Fibonacci numbers again. 
Then 

Mx) = 
1 - X - X Z 

and the reader may verify that a bit of algebra using An = 1 and m = 2 in equa-
tion (2.11) in [1] yields 
(23) Mix) = = £ F2nxn, 

I - 3X + XZ n=0 
so that we have the recurrence S(n) = F2n, i.e., 

(24) t0(l)Fk = F2n. 
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Application 6. Let us appl}̂  Theorem 1 to a generating function studied by Euler 
(cf. [2], p. 48, and [4], Sect. 6). Euler used the generating function 

(25) st(x) = st(x, p) = (ex - l)p 

to evaluate the series 

(26) S(n, p) = — Z (-Dp-J'(?)jn, 

which we.have designated here by the "Stirling Number of Second Kind" notation 
of Riordan. It is known (see [4], Sect. 6) that 

(27) j*(x, P) = f: —s jr (-i)k(l)k\ 
n= o nl k= o XK/ 

In Theorem 1 then, with this for sd{x), and taking S{n) to be given by 

(28) S(n) = £(".)J:(-l)P-k(l)k\ 

(29) An(p) = £ (-Dp-fcg)£n, 
fc = o 

we then find by Theorem 1 that 

&(x) = exs3?(x, p) = ex(ex - l)p = (ex - 1 + l)(e* - l)p 

= (e* - l)(ex - 1)P + (e* - l)p = (e* - l)p + 1 + (e* - l)p 

or, more simply, 

(30) &(x) = jrf(x, p + 1) + j/(x, p). 
Therefore, 

(3D Z ^S(n) = £ ^M?2(p + 1) + An(p)], 

so that we find the recurrence 

(32) S(n) = An(p + 1) + An(p), 
which, in view of (28) and (29), says 

n 
(33) £ (^j(p) = ̂ «(P + 1) + 4„(p). 

j = 0 W ' 

Comparing (26) and (29) , we have the correspondence 
(34) : An(p) = plS(n, p) 
for translating our results into Riordan!s "Stirling Number" notation. Thus, 
we find 

n 
(35) £ u)^> P) = (P + l)^(w» P + 1) + S(n, p) k = o 

n-l 

£ (£)£(*> ?> = (? + D^(« , p + i ) . 
, _ n \ ft / n= 0 

However, £(&, p) = 0 whenever 0 < j < p, so we finally get the recurrence for-
mula for the Stirling Numbers of the Second Kind, i.e., 

n-l 
(36) £ (l)s(k, p) = (p + l)S(n, p + 1). 

fe = p v 
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Conclusion. The work we have presented here was based on the use of the bino-
mial coefficient (£?) in the defining relationships (1) and (17). It is easy to 
replace this by other functions g(n9 k) and obtain parallel theorems. We just 
have to impose interesting properties on g(n, k) in order to get interesting 
theorems. In later papers we will exhibit such results for ^-analogs, Fibo-
nomial coefficients, and the bracket function. 
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Introduction 

We present an approach to the Fibonacci numbers by considering finite par-
tially ordered sets (posets). The nth Fibonacci number, Fn can be interpreted 
as the number of ideals in a very simple poset, usually called a fence. 

The purpose of this note is not to prove new theorems about the sequence 
{Fn}. However, we wish to demonstrate that the approach has several 
advantages. By attaching to each Fibonacci number a geometrical object, the 
number gets an additional dimension, that might be of value in proving 
identities for the Fibonacci numbers. 

While, in general, it may be difficult to count the number of ideals in a 
poset, the simple structure of a fence enables one to calculate the number of 
ideals in several different ways. 

Even the simple partition of the ideals in a fence into two classes, those 
that contain a given element x, and those that do not contain x, can be used 
to show properties of the Fibonacci numbers that usually are verified by an 
inductive proof. This may, in some cases, add to our understanding of "why" 
the proof is valid. 

Another advantage is that, after having established that Fn is the number 
of ideals in a fence with n elements, we have at our disposal theorems from 
the general theory of posets, see for instance [2]. 

Preliminaries 

Our terminology on posets is, with a few exceptions, standard, and we 
refer to for instance Birkhoff [1], but for the convenience of the reader, we 
define briefly the basic concepts. 

We let [n] denote the set {1, ..., n}. 
In this paper a partially ordered set (poset) is a finite set equipped 

with a relation > that is reflexive, antisymmetric, and transitive. 
An ideal in a poset P is a subset I of P such that, for any x E P and any 

y E I, if x > y then x e J. Both 0 and P are ideals in P. Actually, an ideal 
in the present paper is usually called an upper ideal, dual ideal, or filter. 

For any poset P, Id(P) denotes the number of ideals in P. Moreover, 
Id(x), Id(x & y), and Id(x & -i y) denote the number of ideals (in P) that 
contain x, contain x and y, contain x but not y, respectively. 

Given a subset A of a poset P, let 4̂* denote the set of elements x E P 
such that x > a for some a E A, and A* denotes the elements x E P such that 
a > x for some a E A. 

Any subset A of a poset P, may be considered as a poset in itself with the 
inherited relations from the set P. Hence, Id(A) denotes the number of ideals 
in the poset A. This should not be confused with the earlier definitions of 
Id(x), Id(x & y), etc. 

The elements x and y in a poset P are path connected if there exists a se-
quence of elements x^ , . . . , xn in P such that x^ = x, xn = y9 and x^ and x^+i 
are comparable for each 1 <i <n - 1. Two subsets A and B of a poset are separ-
ated if x and y are not path connected for any x E A and y E B. 
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The fence Tn w i th n e lements i s the pose t 
Tn = {xi > x2 < x3 > > •• < (or >) xn}. 

Let TQ refer to the empty fence, with one ideal only. 
A fence can be pictured as a lattice path; we show T5 in Figure 1. 

xi x3 £5 

\ /v 
x2 x4 

FIGURE 1: T 5 

The following observation, whose simple proof is omitted, will be found to 
be very useful. 
Lemma 1: Let A be a subset of the poset P. Then: 

1. The number of ideals in P that contain A equals Id(P - A*). 
2. The number of ideals in P that are disjoint with A equals Id(P - A*). 
3. If P = A U B, where A and B are separated subsets of P, then 

Id(P) = Id{A)Id{B). 
As an illustration of Lemma 1, we shall find Id(x3) and Id(^x$) for the 

fence r5. In order to find Id{x3) , Lemma 1.1 says that one shall erase all y 
such that y > x3, and find the number of ideals in the remaining poset. In 
this case, we only erase x3 itself, and are left with a poset consisting of two 
separated parts, each being isomorphic to T2. Hence, by Lemma 1.3 it follows 
that Id(x3) = Id1{Y2). 

In order to find Id(~^Xo)s one must erase {X3}* = {x 2, x 3, x^}. One is left 
with two separated copies of r^; thus, Id(r^x3) = Id2(Ti). Hence, 

Id(T5) = Id2(T2) + Id1{Yl). 
Ideals in a Fence 

Let FQ = 1, Fi = 2, F2 = 3, etc., refer to the Fibonacci numbers, and Tn to 
the fence of cardinality ft. 

Theorem 1: Id(Tn) = Fn for n = 0, 1, 2, . . . . 
Proof: By definition Id(T0) = 1, and trivially Id(Ti) = 2. We shall show that 

Id(Tn) = Id(Tn-i) + Id(Tn.2) for n > 2, 

In general, 

Id(Tn) = Id(xn) + Id(^xn). 

If n is even, it follows from Lemma 1 that 

Id(xn) = Id(rn_2) and Id(r>xn) = JdCr^-x), 

and if ft is odd, Lemma 1 yields that 

Id(xn) = Id(Tn-i) and Id(r-xn) = Id(r„_2). 

This proves Theorem 1. 

We shall consider a few simple applications of Theorem 1. 

Corollary 1: Fn = Fi.1Fn.i + Fi.1Fn-i-l for 2 < i < ft. 
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Proof: Follows from Theorem 1, Lemma 1, and the i d e n t i t y 

Id(Tn) = Id(xi) + Id(-^Xi). 
In the remainder of this note we simplify our notation by letting the nodes 

of Tn be denoted by 1, . . . , n instead of X\, ..., xn. 

Corollary 2: 
F2n-l = #{ (al> • • • » aT<) \ai i s o d d a n d ai ~ 1 a n d al + e ' ' + afe = 2n + 1}. 

Proof: A subset X of [n] can uniquely be given by an odd (i.e., k - odd) tuple 
(aj, ..., afc) of positive integers whose sum equals n + 2. To such a tuple we 
assign the set X defined by: a^ is the smallest number belonging to X, a\ + a 2 
is the smallest number greater than ai that does not belong to X, a\ + a^ + £3 is 
the smallest number after a\ + a2 that belongs to X, etc. 

The following example illustrates the correspondence. Let n = 11 and let 
{a 1, . .., (25) = (2, 3, 2, 2, 4). This vector corresponds with the set {2, 3, 
4, 7, 8}. 

It is easily seen that by this correspondence, the set corresponding to a 
vector (a]_, ..., afe) is an ideal in Tin-l ^^ each a^ is an odd integer. 

This proves Corollary 2. 

Coronary 3: F2n.l - £ (w + *) 

Proof: By Corollary 2, i^n-l equals the number of tuples (a^, ..., afe) of odd 
positive integers whose sum is 2n + 1. Put aj = 2bj - 1, and since & is odd, 
there exists an integer i such that k = 2i + 1. One derives the condition 

b1 + • • • + 2?2i + i = n + i + 1 
and since 

#{(<?!, . . . , c^)\c^ > 1 and ex + . . . + ̂  =/??} = (? _ J . • 

Corollary 3 follows. 

Finally, let us add that many more identities can be shown in this simple 
manner. 

A slightly more complicated application is achieved by defining an equiv-
alence relation on T2n-i by declaring two ideals to be equivalent if they con-
tain the same odd numbers in {In - 1]. Counting the number of ideals in each 
equivalence class leads to the following identity, whose proof is left to the 
reader. 

^ -1 + E (i: X+1 ~ s ) 2 - , 
where the sum is over all (s s k) such that s > k > 1 and s + k < n + 1. 
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1. Introduction 

One of the great advances in mathematics recently has been in the analysis 
of nonlinear dynamical systems. In this paper we will study the properties of 
a set of polynomials in two variables using techinques from nonlinear dynamic 
theory. These polynomials are variants of the class of generalized Fibonacci 
polynomials (see, for example, [7]) defined by 

PQ(ZI> s 2) = 0, P\(zi> 3 2 ) = 1, 

Pn+1(sl3 z2) = (1 - s1)Pn(s1, z2) ™ (s2 ~ Si)P„_i(si, z2), n > 1. 
The results derived here are not new in the sense that they can be proven from 
existing work on generalized Fibonacci polynomials but the approach is entirely 
novel in that it provides a link between the analysis of generalized Fibonacci 
numbers and the theory of dynamical systems via the iteration of rational func-
tions of degree one. 

Fundamental to the concept of the analysis of nonlinear dynamical systems 
is the functional iteration of the form 

(1) xn + l = f(\, xn), 
where A is a parameter that can be varied. In this paper we will consider the 
iterative behavior of the general rational function of degree one given by 

1 - X i X 
(2) f(k, Ax, A2, x) = k , 

1 — A2X 
where ks AT, and A2 can be complex, and relate these iterations to a family of 
polynomials, defined in two variables by 

(3) P0(Zi* s2) = 0* pi(si» s2> = lj 

Pn+l(z1, z2) = (1 - zl)Pn{zl, z2) ~ (̂ 2 " zOpn-l^l» s2), n > 1. 
We will also consider as a special example the case when k = 1 and Ax = 0, so 
that 

(4) f(X, x) - r 4 ^ , 
and relate the iterations of this class of functions to a family of polynomials 
defined by 

(5) PQ(z) = 0, Pl(z) = 1, P„ + i0s) = Pn(s) - zPn-l(z), n > 1. 
We note that in our terminology Pn(05 z) = Pn(z) * The polynomials presented in 
(3) and (5) are in fact variants of two well-known classes of polynomials known 
as generalized Fibonacci polynomials and Fibonacci polynomials, respectively. 

In Section 2 we will present a review of some of the known results concern-
ing generalized Fibonacci polynomials and show that they can be generalized to 
the polynomials defined in (3) and (5) . The analysis in Section 3 will prove 
some of these results anew but using a completely different approach. This 
approach is based on the concept of topological conjugacy. Two maps f:A -> A 
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and g:B + B are said to be topologically conjugate if there exists a homeo-
morphism h : A •+ B such that 
(6) h O f = g .0 h. 
Topologically conjugate maps are equivalent in terms of their dynamics (see, 
for example [4]). Now, if g is the function us, then (6) is called the Schro-
der Functional Equation (SFE). It is well known (see, for example, [1]) that, 
if f is a rational function of degree two or more, then the SFE does not have a 
solution if u is a root of unity. On the other hand, Siegel [11] has shown 
that, if u = e2lJta , where a is irrational, then the SFE has a solution if there 
exist a, b > 0 such that 

P a - - > — , Vp, q e Z. qb> 
This condition is satisfied for a set of u of full measure on the unit circle. 
In this paper we will make use of the well-known fact that f, given by (2) , is 
topologically conjugate to \ix. Hence, the dynamics of / and \ix are equivalent 
and the zeros of the generalized Fibonacci polynomials can be related to the 
roots of unity. 

2_. Generalized Fibonacci Polynomials 

Although Fibonacci polynomials have been studied for well over a century, 
there was initially no common agreement on how to define this class of polyno-
mials. For example, Catalan [3] defined them by 

F0(z) = 0, Fl(z) = 1, Fn+l(z) = zFn(z) + Fn-l(z), n > 1, 

while Jacobsthal [9] defined them by 

F0(z) = 0, Fl{z) = 1, Fn+l(z) = Fn(z) + zFn_l(z)i n > 1, 

and Byrd [2] by 

FQ(z) = 0, Fl(z) = 1, Fn+l(z) = 2zFn(z) + Fn_l(z), w > 1. 

However, the general consensus (see [6], for example) is that the class of 
Fibonacci polynomials is defined by 

(7) FQ(z) = 0, Fl(z) = 1, Fn+l(z) = zFn(z) + Fn_l(z), n > 1. 

It is easy to obtain a simple closed expression for these polynomials in 
terms of trigonometric functions (see [6], for example) and hence show that the 
zeros of Fn are given by 

2^ cos — , Ac=ls . .., n - 1. 
ft 

'.w-ir-j-v-"-'-"-^] 
In addition, it is easy to show 

V 
(8) _ 

j = o " 

Horadam [8] has considered generalized sequences of Fibonacci numbers given 
by 

% = a, w1 = b, wn + l = pwn - qwn_l, n > 1, 

where wn is a function of a, b, p , and q, and obtained closed expressions for 
many special classes of wn. The case in which a = 0, b = 1 so that 

(9) F0(zl9 z2) = 0, Fl(zl, z2) = 1, 

Fn+l(zl, z2) = z1Fn(z1, z2) + z2Fn_1(z1, z2)s n > 1 
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is now known as the family of generalized Fibonacci polynomials. The proper-
ties of these polynomials have been studied extensively by Hoggatt & Long [7], 
which builds on the earlier work of Webb & Parberry [12] who consider the divi-
sibility properties of Fibonacci polynomials. 

In particular, Hoggatt & Long [7] show that 

do M«I. *2> = io(n -) - j)zr2'-l4> v = p - ^ ] , 
and that Fn(zi, z2) = 0 iff 

. r ki\ n 
2i = 2^^/z<? c o s — , k = 15 . . . , n - 1 . 

n 
Furthermore, they show that, for m > 2, Fm \Fn iff m\n and that Fn is irreduci-
ble over the rationals iff A is prime. A consequence of this is, if n\ , ..., 
rii are the factors of n, then all the zeros of Fni, ..., FUl are zeros of Fn. 

This work has been generalized by Kimberling [10] who shows that each gen-
eralized Fibonacci polynomial Fn has one and only one irreducible factor that 
is not a factor of Fk for any k < n, which is called the nth Fibonacci cyclo-
tomic polynomial Gn(zi, z2)• Kimberling shows 

Fn(zls z2) = 11 Gn(zl9 z2). 
d \ n • 

The polynomials defined in (3) and (5), which will prove significant when 
analyzing the behavior of the iteration of rational functions of degree one, 
can easily be related to generalized Fibonacci polynomials and Fibonacci poly-
nomials. In fact, comparing (3) and (9), we see 

(11) 
while 
(12) 

or 

(13) 

P„ ( s i . z2) = Fn(l -

\ x 2 / xn_1 

„(i\ 
Pn(z' / J \n-l' 

~ S i 

This can be seen by substituting (12) into (5) and noting that (7) results. 
Consequently, it is trivial to show 

.7=0 X <> ' 

V 
—» , _ . n i n, — ± — ./ \ n 

V 
J = 0 

while P n - L 
(14) Pn(^l5 zz) = L (n " \ " J')(l - ̂ 1)^^-1(^i - * 2 ) ' \ p 

In addition, the zeros of Pn(zl9 z2) and Pn can be found from (11) and (13). 
Thus, the zeros of Pn are simple and given by 

I ? ki\ 
- secz — , k =* I, ..., n - 1, 
4 n 

so that all zeros are real distinct and lie in the interval (1/4, ° ° ). Simi-
larly, if zl * 1, then P (sl5 z2) = 0 iff 

(15) z9 = zx + (1 - si)2- sec2 — , k = 1, ..., n - 1, 
4 n 

where all the roots in this set are simple, so that if n = 2p + 1 there are p 
distinct zeros while if n = 2p there are p - 1. On the other hand if s, = 1, 
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then (14) implies 

(16) Pina, z2) = 0, n = ls 25 ...5 
while it can easily be seen from (14) that 

(1 + zx)2\ /l - z^71-1 

(17) Pn[zi, 

We also note that a formula for Pn can be derived by considering the charac-
teristic polynomial associated with (3) given by 

x2- - (1 - Z\)x + z2 - z\ = 0. 

The roots of this equation are 
1 - Si ± /(l + 2 i ) 2 - Uz2 

Q = i i 
1 2 

and so it is easily seen that 

(18) " ' * ' 
Pn(sl5 s2) = ^ — j 

In the next section we will show that some of the above results can be 
proved by noting the behavior of the iterations of rational functions of degree 
one. For ease of notation we will henceforth refer to the polynomials Pn(zi, 
z2) as the Shifted Generalized Fibonacci Polynomials (SGFP). 

3. Functional Iteration 

Consider the iteration scheme given by (1) where / is as in (2). We will 
denote the iterations of {x, X\, x2, ...,#„, . . .} by 

if(k\x); k = o, l, ...}. 
The following result gives the value of xn after n iterations. 

Lemma 1: Let z^ = A:Als z2 = kX2, and Pn(sl5 z2) represent the nth shifted gen-
eralized Fibonacci polynomial then 

{n) kPn(zl9 z2) - x(Pn(z1, z2) - Pn + i(zl9 z2)) 
T (X) — ' • 

Pn + i(zi9 z2) + s 1 P ? 2 ( s l 3 z2) - x\2Pn(zi, z2)' 

Proof: The proof i s by i n d u c t i o n . From ( 2 ) , 
1 - XiX 

1 - \ik 
f^Kx) = k 

1 1 - X2x k(l - zi) - x(z2 - z\) 
1 - XiX 1 - z2 - X2x(l - z\) 

1 - x?k 
z 1 - X2x 

kP2(zi, z2) - x{P2(zl9 z2) - P3(zi> z2)) 
P 3 ( s l 3 z2) + ziP2(zi> z2) - X2xP2(zis z2)s 

w h e r e zi = /cA]_, z2 = kX2* Now, 

1 - XiX 
kPn ~ k - -—: -\Pn - Pn+\) 

f(n + D(x} , f("\fix)) = 1 - ^ L 
1 - XiX 

Pn + l + ZiPn - Z2~ - Pn 
1 - X2x 

=
 kPn + l " X(*2-Pn - *l(Pn - -Pn + l ) ) = kPn+1 - x(Pn + l - Pn + 2) 

Pn + l + *\Pn ~ Z2Pn " A 2 ^ P n + i P„ + 2 + ^ P ^ - A 2 ^ P n + 1 ' 
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by ( 3 ) , and t h e lemma i s p r o v e d . 
From Lemma 1 , i t c a n b e s e e n t h a t 

/«N XoX2 ~ (1 + Zi )x + k 
(19 ) f<»\x) = x + p n ( s i s ^ } ^ L ^ ^ , 

P n + 1 U l 5 s 2 ) + ^ P J s p s 2 ) - X 2 a: -P n (2 l 5 <?2) 
so that x is a fixed point of f ^ iff 

(20) Pn(sl> s2) = °> o r A 2^ 2 " (1 + 3].)a; + k = 0. 

Thus5 it can be seen that., if 

then f is periodic of order n no matter what the starting value [or, equiva-
lently, f^n\x) is the identity function]. From this, we deduce that the result 
in [7] about the common zeros of generalized Fibonacci polynomials is a direct 
consequence of (20). For, if N is a multiple of n, and z\ and s2 are chosen so 
that Pn(s]_, s2) = 0, then f will be periodic of order n for any starting value. 
But / will also be periodic of order Ns and so from (19), PN(Z\> 22) = 0. Thus, 
Pn \PN iff n\N. 

The above property is due to the well-known fact that the map given by (2) 
is topologically conjugate to the map \xz by a Mobius transformation (see, for 
example, [4]). Consequently, if the function g(z) = \±z is iterated, then g 
will be periodic of order n for any initial guess if \in - 1 = 0; hence, the 
zeros of the shifted generalized Fibonacci polynomials are related to the, nth 

roots of unity. 
Some simple analysis gives the relationship between u and (2) as 

1 - 2zz + z\ ± (1 - zl)/(l + zx)2 ~ 4s2 _ 0± 

2{z2 - zY) 6T 

where S]_ = kX\9 s2 = fcA2. This can also be written as 
/I - 2z0 + z2 \ 

(22) v1 ~ U ~ H + 1 = 0. 
\ z2 - zY / 

Hence, from (18) and (21), we have 
e£ - e? e± - eT „ , . V(i + zQ2 - 4z2 

(23) U" - 1 = * = Tn-^Pntel* 22> = ^ Pn^l> *2> ' 

Now the dynamics of g and / are equivalent (see, for example, [4]). If 
||i| < 1, then the iterations of g converge to 0 for any starting value while, 
if |y| > 1, the iterations converge to infinity for any starting value apart 
from 0. On the other hand, if |u| = 1, there are two possibilities: if u is an 
nth root of unity, the iterations of g are periodic of order n for any starting 
value, so that g^n) is the identity function while, if yn * 1, then the itera-
tions of g{x) wander chaotically on the unit disk of radius x taking on all 
possible values. Thus, the relationship between the zeros of unity and the 
zeros of Pn are obtained from (22) and (23) by noting the following: 

(i) y = 1 corresponds to (1 + zx)2 = 4s2, so that from (17) and Lemma 1, 

(21) 

* - 4 -l(l+ £)<!-*!>) Ik 

(ii) y = -1, which is equivalent to \in = 1 for n even, corresponds [by (16) 
and (22)] to ^ = 1. In this case f is periodic of order 2 for any 
starting value. 

(iii) yn = 1, with u £ (1, -1}, implies [from (22) and (23)] that the zeros of 
Pyj are 
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(24) z2 = 1— (1 - zO1 + 3i-
(y + l)z 

For these values of z\9 f ^ is the identity function. 
Thus, in conclusion, we have seen that by iterating the general rational 

function of degree one and noting that the dynamics of this function are the 
same as that of the function \iz, we have obtained relationships between the 
zeros of generalized Fibonacci polynomials and the nth roots of unity. These 
results are not new but the proofs are and they rely upon obtaining a general 
formula for the nth iteration of a rational function of degree one in terms of 
a set of polynomials called Shifted Generalized Fibonacci Polynomials. Thus, 
we have related the study of Fibonacci theory to the iteration of the general 
rational function of degree one. 

With respect to the mathematics of the iteration of nonlinear functions, 
since it is known that the Schroder Functional Equation has no solution for 
rational functions of degree 2 or more when y is an nth root of unity, we have, 
in this paper, essentially characterized the dynamics of all rational functions 
that satisfy the SFE when y is a root of unity. Finally, in this paper we have 
obtained results about the nature of the zeros of a new class of polynomials by 
iterating an appropriate class of functions and this technique may well be 
generalizable. 
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In [1], Un is defined to be a divisibility sequence if Um\Un whenever m\n. 
It is conjectured that 

i= 0 
A, ci integers, is a divisibility sequence if and only if exactly k of the c^ 
are 0. In this note, the conjecture will be shown to be true. 

Since the An factor offers no difficulty, it will be ignored. Furthermore, 
the sufficiency can be demonstrated easily; therefore, only the necessity will 
be proven in the following theorem. 

Theorem: Let 
k 

Un = E ^ > 
i= 0 

where the c^ are integers and ck * 0, be a divisibility sequence; then, c^ - 0 
for 0 < i < k - 1. (Note that there is no loss of generality in assuming that 
Un has this form.) 

Proof: Let n = mt, n , m, t p o s i t i v e i n t e g e r s . Then, 
k k / k \ k -1 

Un = Umt = Z ^ ( m t r = 2 > ; ^ ^ = ( E ^ V - E ci^tk - t^mi' 
i= 0 -z>0 \i= 0 / £= 0 

Since Um \ Un for all t, Um must divide the second sum on the right-hand 
side. (Note that the first sum is Um.) 

Now, fix t > 1 and let di = ct (tk - tl) for 0 < i < k - 1; note that tk -
t l * 0 for all i. Thus, 

Um 

k- 1 
E^i777^ for all m. 

i= 0 
However, Um is a polynomial in m of degree k(ck * 0); thus, for sufficiently 
large m, 

\k-l I 

E ^ • 
U = o I 

0 for all tfz. 

This implies that di = 0 for all i9 and, consequently, ci = 0S Q < i < k - 1. 
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e , 
\Um\ > 

k- 1 
E ^ 

i = 0 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P . Hillman 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to 
Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. 

Each solution should be on a separate sheet (or sheets) and must be 
received within six months of publication of the problem. Solutions typed in 
the format used below will be given preference. Proposers of problems should 
include solutions. 

Anyone desiring acknowledgment of contributions should enclose a stamped, 
self-addressed card (or envelope) . 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln, satisfy 

Fn + 2 = Fn+l + Fn> FQ = °> Fl = ^ 
Ln + 2 = Fn + l + Fn> F0 = 2» Fl = 1' 

Also, a = (1 + /5)/2, 3 = (1 - /5)/2, Fn = (an - 3n)//5, and Ln = an + 6n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-664 Proposed by Mohammad K. Azarian, U. of Evansville, Evansville, IN 

Let a 0 = / 2 and an + 1 = /2 + an for n i n {0, 1, . . . } . Show t h a t 

-1 

B-665 Proposed by Christopher C. Street, Morris Plains, NJ 

lim an = X] E 

Show that AB = 9, where 

A = (19 + 3 / 3 3 ) 1 / 3 + (19 - 3 / 3 3 ) 1 / 3 + 1 , 

B = (17 + 3 / 3 3 ) 1 / 3 + (17 - 3 / 3 3 ) 1 / 3 - 1. 

B-666 Taken from solutions to B-643 by Russell Jay Hendel, Dowling College, 
Oakdale, NY, and by Lawrence Somer, Washington, D.C. 

For primes p, prove that 

(p) = [nip] (mod p), 

where [x] is the greatest integer in x. 

B-687 Proposed by Herta T. Freitag, Roanoke, VA 

Let p be a prime, p 2 2, p * 5, and w be the least positive integer such 
that 10m = 1 (mod p). Prove that each w-digit (integral) multiple of p remains 
a multiple of p when its digits are permuted cyclically. 
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B-668 Proposed by A. P. Hillman in memory of Gloria C. Padilla 

Let h be the posi t ive integer whose base 9 numeral 
100101102...887888 

i s obtained by placing a l l the 3~digit base 9 numerals end-to-end as indicated. 
(a) What i s the remainder when h i s divided by the base 9 integer 14? 
(b) What i s the remainder when h i s divided by the base 9 integer 81? 

B-669 Proposed by Gregory Wulczyn, Lewisburg, PA 

Do the equations 

25Fa + b + cFa + b-cFb + c-aFc + a-b = 4 - L^a - B 2h - L2Q + ^2a^2b^2c ? 

p o p 
^a + b + c^a+b-c^b + o-a^c+a-b = -4 + L2a + L2b + L^c

 + ^2a^2b^2c ' 
hold for all even integers as bs cl 

SOLUTIONS 

Circulant Determinant for Fn + i 

B-640 Proposed by Russell Eider, Northwest Missouri State U., Marysville, MO 

Find the determinant of the n*n matrix (x^) with x^ = 1 for j = i and for 
j = i - 1, x^j = -1 for j = i + 1, and x^ • = 05 otherwise. 

Solution by Paul S. Bruckman, Edmonds, WA 

Let An denote the given matrix and Dn its determinant. Clearly, D\ = 1, and 
D2

 = 2. We may expand Z?n along its first row; doing so, we see that Dn - D~n-i 
+ Bn-is where Bn is the determinant of the n x n matrix obtained by replacing 
x21 = 1 by 0 in y4n, all other entries unchanged. Expanding Bn-\ along its 
first column, we see that 5n_1 = Dn_2« Therefore, we obtain the recurrence 
relation: 

(1) Dn = Dn.x + Dn_2, n = 3, 4, ... . 

Together with the initial values of Dn, we see that 

(2) Dn = Fn + l (n = 1, 2, . . . ) . 

Also solved by R. Andre-Jeannin, C. Ashbacher, Piero Filipponi, Russell Jay 
Hendel, Hans Kappus, L. Kuipers, Y. H. Harris Kwong, Carl Libis, Alex 
Necochea, Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the proposer. 

Fmn and Lmn as Polynomials in Fm and Lm 

B-641 Proposed by Dario Castellanos, U. de Carabobo, Valencia, Venezuela 

Prove that 
1 

F„„ = - F - mn 
ILm + /5Fa\» _ ILm - /5F\n 

L + J5F \n IL - /EF \n 

L m n - I " - ) + 
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Solution by Y. H. Harris Kwong, SUNY College at Fredonia, NY 

Let a = (1 + / 5 ) / 2 and 3 = (1 - / 5 ) / 2 . I t i s known t h a t 

Lm = am + Bm and /5Fm = am - 3 m . 
Solving fo r am and $m, we have 

... Lm.+ /5Fm „ Lm - /5Fm 
and 

w - ——\nmn - amn^ - —— Fmn ~ ^ 3 ] - ^ 

amn + 

_ _1_ 
Fnm ~ ^ 

2 
There fo re , __ _ 

[/Lm + /5FmS» __ /Lm - /5Fm\» 

E d i t o r ? s n o t e : The p ropose r asked fo r a proof t h a t 
[/Lm + /5Fm\" _ /L„ - / ^ y * 

and 

and t he Elementary Problems e d i t o r i n a d v e r t e n t l y i n t e r c h a n g e d some (but no t 
a l l ) ???fs and n f s . 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, James E. Desmond, Rus-
sell Euler, Piero Filipponi, Herta T. Freitag, Guo-Gang Gao, Russell Jay 
Hendel, Hans Kappus, L. Kuipers, Alex Necochea, Bob Prielipp, H.-J. 
Seiffert, Sahib Singh, Lawrence Somer, and the proposer. 

Lk(2n+i) a s a Polynomial in L £ n + i 

B-642 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

I t i s known t h a t 

L2(2n + l) = L2n + l + 2 j 

and i t can r e a d i l y be proven t h a t 
L3{2n+l) = L2n+1 + 3L2n+l' 

G e n e r a l i z e t h e s e i d e n t i t i e s by e x p r e s s i n g ^^(2n+l) » ^ o r i n t e g e r s fc > 2 , as a 
polynomial i n ^2n+l-

Solution by H.-J. Seiffert, Berlin, Germany 

Define the P e l l - L u c a s polynomials Qk(x) as i n [ 1 ] , p . 7, ( 1 . 2 ) 9 by 

Q0(x) = 2, Q1(x) = 2x, Qk + 2(x) = 2xQk + 1(x) + Qk(x). 

F i r s t , we show t h a t 

(1) SfcC^w + l / 2 ) = Lk(2n + 1) 
i s t r u e fo r k = 0, 1. Assuming (1) ho lds fo r a l l j = 0, . . . , k, we ge t 

Qk+l(L2n+l/2) " L2n+l$k(L2n+l/2) + Qk-1(L2n+1/2) 

= L2n + lLH2n + l) + ^(fc - l)(2w + l ) = ^ U + l ) ( 2 n + l ) » 
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where the l a s t equal i ty can eas i ly be proven by using the known Binet form of 
the Lucas numbers. Thus (1) i s establ ished by induction on k. In [1 ] , p . 9, 
(2.16), i t i s shown tha t , for k > 0, 

(2) Qk(x) = E T~r ~. J ) ( 2 x ) ^ ^ s 

where [ ] denotes the greatest integer function. From (1) and (2), we obtain 

L - [y] -k—(k ~ *')L*-* 

1. A. F. Horadam & Bro. J . M. Mahon. "Pel l and Pell-Lucas Polynomials." Fibo-
nacci Quarterly 23.1 (1985). 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, Herta T. Freitag, Rus-
sell Jay Hendel, L. Kuipers, Y. H. Harris Kwong, Sahih Singh, Paul Smith, 
and the proposer. 

Binomial Coefficient Congruence 

B-643 Proposed hy T. V. Padnakumar, Trivandrum, South India 

For positive integers a, n, and p, with p prime, prove that 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, NY 

A well known re su l t of E. Lucas [2] s t a t e s that if the p-ary expansions of 
n and k are Y..>^nipi and S ^ o ^ p S respect ive ly , then 

UK"© (-„). 
(For a short and simple proof, consult [1].) Suppose the p-ary expansions of a 
and m = n + ap are S^>oa-Pi anci ^i><dm-V'L > respectively. We have to show that 

(p)-(p)s(?)-(ni1)-'»i-»^a^o (-dP). 

But it is clear from m = n + ap that mi = ni + ag (mod p), so the proof is com-
pleted. 

1. N. J. Fine. "Binomial Coefficients Modulo a Prime." Amer. Math. Monthly 54 
(1947):589-92. 

2. E. Lucas. TMorie des nombres. Vol. I. Paris: Librairie Scientifique et 
Technique Albert Blanchard, 1961. (Original printing, 1891.) 

Also solved by R. Andre-J eannin, Paul S. Bruckman, Piero Filipponi, Russell 
Jay Hendel, Joseph J. Kostal & Subramanyam Durbha, L. Kuipers, Bob Prie-
lipp, Lawrence Somer, and the proposer. 

Markov Chain 

B-644 Proposed by H. W. Corley, U. of Texas at Arlington, TX 

Consider three children playing catch as follows. They stand at the verti-
ces of an equilateral triangle, each facing its center. When any child has the 
ball, it is thrown to the child on her or his left with probability 1/3 and to 
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the c h i l d on the r i g h t wi th p r o b a b i l i t y 2 / 3 . Show t h a t the p r o b a b i l i t y t h a t 
the i n i t i a l ho lde r has the b a l l a f t e r n t o s s e s i s 

2//3Y2 /5mr\ , 1 - n i o 
-(^— J cos^-j—J + - for n = 0, 1, 2, ... . 

Solution by Hans Kappus, Rodersdorf, Switzerland 

More generally, let us assign probabilities p, <y (p + q = 1) for throws to 
the left and right, respectively. Denote by p^(n) the probability that child i 
has the ball after n tosses (i = 1, 2, 3) and suppose that child 1 is the 
initial holder, i.e., impose the initial conditions 

(1) Pl(0) - 1, px(l) = 0. 

Applying the rule of conditional probability and noting that 

p-^tn) + p2(n) + p3(n) = 1, 

we have the r e c u r s i o n 

(p1(n + 1) = q • p 2 ( n ) + p • p 3 ( n ) = -p * p 1 (n) + (<? - p) • pz(n) + p 

| p 2 ( n + 1) = p • p1(n) + ^ • p 3 ( n ) = (p - q) - p1(n) - q • p2(w) + ^ 
Eliminating p (?z) we arrive at the inhomogeneous second-order difference equa-
tion 

(3) Pl(n + 2) + Pl(n + 1) + (1 - 3p^) • p^n) = 1 - pq, 

which may be solved by standard methods. The solution turns out to be 

(4) Pl(n) - | . ( i -

where <J> i s given by 

(5) cos <J) = - - • (1 

3pq)n/2 cos n§ -

- 3p<7)~1/2 , s i n 
1/3 - 12p<y\l/2 

2\l - 3p<?/ 

For the special case p = 1/3, <7 = 2/3; this is the result of the proposer. 

Remark: The process described in the problem is a Markov chain with transition 
matrix 

0 
<7 
V 

V 
0 
<7 

<7 
V 
0 

AZso solved by Paul S. Bruckman, Piero Filipponi, and the proposer. 
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Edited by 
Raymond E„ Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND 
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK 
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially 
welcomes problems believed to be new or extending old results. Proposers 
should submit solutions or other information that will assist the editor. To 
facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-44Q Proposed by T. V. Padmakumar, Trivandrum, India 

If a^s a£S .»*, ams n are posi t ive integers such that n > a\9 a^* • • • > am 
and 0(n) = m and a^ i s r e l a t i ve ly prime to n for i = 1, 2, 3, . . . , m, prove 

m \2 
J~[ a-i \ = 1 (mod ri) . 

i= 1 / 
H-441 Proposed by Albert A. Mullin, Huntsville, AL 

By analogy with palindrome, a validvome is a sentence, formula, relation, 
or verse that remains valid whether read forward or backward. For example, 
relative to prime factorization, 341 is a factorably validromic number since 
341 = 11 e 31s and when backward gives 13 @ 11 = 143, which is also correct. (1) 
What is the largest factorably validromic square you can find? (2) What is the 
largest factorably validromic square, avoiding palindromic numbers, you can 
find? Here are three examples of factorably validromic squares: 

13 • 13, 101 •101, 311 • 311. 

H-442 Proposed by Piero Filipponi, Rome, Italy 

Prove that the congruence 
(d-3)/2 ( i (mod d) if (d + l)/2 is even 
I! (2i + I)2 = { 

i=\ (-1 (mod d) if (d + l)/2 is odd 
holds if and only if d is an odd prime. 

SOLUTIONS 

A Fifth 

H-365 Proposed by Larry Taylor, Rego Park, NY 
(Vol. 22, no. 1, February 1984) 

Call a Fibonacci-Lucas identity divisible by 5 if every term of the iden-
tity is divisible by 5. Prove that, for every Fibonacci-Lucas identity not 
divisible by 5, there exists another Fibonacci-Lucas identity not divisible by 
5 that can be derived from the original identity in the following way: 

1) If necessary, restate the original identity in such a way that a deri-
vation is possible. 
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2) Change one factor in every term of the original identity from Fn to Ln 
or from Ln to 5Fn in such a way that the result is also an identity. If the 
resulting identity is not divisible by 5, it is the derived identity. 

3) If the resulting identity is divisible by 5, change one factor in every 
term of the original identity from Ln to Fn or from 5Fn to Ln in such a way 
that the result is also an identity. This is equivalent to dividing every term 
of the first resulting identity by 5. Then, the second resulting identity is 
the derived identity. 

For example, FnLn = F2n can be restated as FnLn = Fln ± F$(-l)n . This is 
actually two distinct identities, of which the derived identities are 

4 = L2n + L0(-l)n and 5F* = L2n - L0(-l)n. 

Partial solution (Outline) by the proposer 
Define a Fibonacci-Lucas equation as an algebraic equation in one unknown 

in which one of the roots is equal to (1 + /5)/2. Call a Fibonacci-Lucas equa-
tion divisible by /5 if every term of the equation is of the form (5a + Z?/5)/2 
where a and b are integers. 

Define a Fibonacci-Lucas identity as the sum of a finite number of terms 
equated to zero, each of which terms is the product of a finite number of 
factors, one of which factors is either a Fibonacci or a Lucas number. Call a 
Fibonacci-Lucas identity divisible by 5 if every term of the identity is of the 
form 5a where a is an integer. 
Theorem 1: There are only eight three-term Fibonacci-Lucas identities not 
divisible by 5. 

Theorem 2: Every Fibonacci-Lucas identity can be derived from a three-term 
Fibonacci-Lucas identity by algebraic manipulation. 

Theorem 3: From every Fibonacci-Lucas equation not divisible by /5 it is pos-
sible to derive two Fibonacci-Lucas identities not divisible by 5. 

Theorem 4: There are only four three-term Fibonacci-Lucas equations not divi-
sible by /5. 

Theorem 5: Every Fibonacci-Lucas equation can be derived from a three-term 
Fibonacci-Lucas equation by algebraic manipulation. 

Theorem 6: From every Fibonacci-Lucas identity not divisible by 5 it is 
possible to derive another Fibonacci-Lucas identity not divisible by 5 and a 
Fibonacci-Lucas equation not divisible by /5. 

Comment: Theorem 6 uses Theorems 1 through 5 as lemmas; the proof of Theorem 6 
is the complete solution of this problem. 

Reference: L. Taylor. Partial solution of Problem H-365 (first segment). 
Fibonacci Quarterly 27. 2 (1989):188-89. 

Divide and Conquer 

H-418 Proposed by Lawrence Somer, Washington, D. C. 
(Vol. 26, no. 1, February, 1988) 

Let m > 1 be a positive integer. Suppose that m itself is a general period 
of the Fibonacci sequence modulo m; that is Fn+m = Fn (mod rri) for all nonnega-
tive integers n. Show that 24\m. 
Solution by Paul Bruckman, Edmonds, WA 

Let a and b denote the usual Fibonacci constants; we deal with congruences 
in F (V 5) s modulo some integer, in the normal way. Given m as defined, we may 
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suppose t h a t 
(1) am = G, bm E d (mod m). 

Setting n = 0 in the original congruence, we have 

(2) m\Fm. 

Thus, (1) and (2) imply that c = d (mod m). Also aw + 1 = oa, bm + 1 = ob (mod m), 
so Pm+i = c (mod 772). However, setting n = 1 in the original congruence, we 
have 

(3) ^+1 E * (mod 772). 

Therefore, o = d = 1, i.e., 

(4) aW E 2?W E 1 (mod 777) . 

Now, a result of Jarden [1] states that 

(5) m\Fm!> m > I implies either 5\m or 12 |m. 

Note that a = %(1 + A ) E 2 _ 1 E 3 (mod 5); also, a2 E 4 , a3 = 2 , and a4 = 1 
(mod 5). Hence, 

(6) ar E 1 (mod 5) iff 4|r. 

Thus, ar E 1 (mod 20) only if 4|r. But a4 = 2 + 3a = 2_1 (7 + 3 /5), and 
a8 = 13 + 21a = 2_1(47 + 21/5), neither of which expression is defined (mod 
20); on the other hand, a12 = 89 + 144a = 2_1(322 + 144/5) = 161 + 36/20 = 1 
(mod 20). Hence, 

(7) ar E 1 (mod 20) iff 12 \r . 

Suppose now that 51777- Then am=l (mod m) , by (4), so am = 1 (mod 5), which 
implies 4|m, by (6); hence 20|m. Then am = 1 (mod 20), so 12|m, by (7). There-
fore, for 7?7 as defined, 

(8) 5 1777 implies 60 \m, 

Therefore, by Jardenfs result in (5), we see that 3\m in any event. 
Next, we observe that 

a 2 = 1 + a = 2 _ 1 ( 3 + /5 ) = 2/5 = - / 5 (mod 3 ) ; 
l + 2 a E l - a = Z? (mod 3 ) ; ah E ab = - 1 (mod 3 ) ; 

a 5 = -a (mod 3 ) ; a 6 = / 5 (mod 3 ) ; 
a 7 E -2? (mod 3 ) ; a 8 = 1 (mod 3 ) . 

Therefore 

(9) a s E 1 (mod 3) i f f S\s. 

Since 3|TT7, am E 1 (mod 3 ) , which i m p l i e s 8|m, by ( 9 ) ; hence , 24|?7?e Q.E.D. 

1. Dov J a r d e n , "Recur r ing Sequences . " Riveon Lematematika, 3rd ed . (1973) , 
Theorem F, p . 72. 

Also solved by R. Jeannin, L. Kuipers, C. Long, P. Tzermias, and the propo-
ser. 

Pell-Mell 

H-419 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol. 26, no. 1, February 1988) 

Let P Q , Pis . . . be t he sequence of P e l l numbers def ined by 

P 0 = 0, Pl = 1, Pn = 2P n _ 1 + P n _ 2 for n e {2, 3 , . . . } . 
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Show t h a t 

(a) 9JtkFkPk = 3(n + D(FnPn + l + Fn + lPn) - Fn + 2Pn + 2 - FnPn + 2 , 
k= 0 

(b) 9Z kLkPk = 3(tt + D(L„Pn + i + ^n + l P n ) " I>n + 2Pn + 2 ~ Lr?n> 

(c) Fm + n+1Pn+2 + Fm + nPn = 3(n + l)Fm + Lw (mod 9 ) , 

(d) Lm + n+2Pn + 2 + Lm + nPn = 3(n + 1)Z/OT + 5POT (mod 9 ) , 

where n i s a nonnega t ive i n t e g e r and w any i n t e g e r . 

Solution by the proposer 

Remark: (c) and (d) c o n t a i n i n t e r e s t i n g s p e c i a l c a s e s . 

1) Taking m = -n and us ing F_n = (~l)n+lFn and P_n = (-1) Ln i n (c) y i e l d s 

Pn + 2 = (-l)n+10(n + DFn - Ln) (mod 9 ) . 
2) Taking m = -(n + 1) and using Pn + 2 ~ Pn

 = 2Pn + i in (d) yields 

2Pn+1 = (-l)n+1(3(n + 1)L„+1 - 5Pn+1) (mod 9) 

or, after replacing n by n - 1 

2Pn = (-l)n(3nPn - 5PJ (mod 9). 

3) Taking m = -{n + 1) in (c) and then replacing n by n - 1 yields 

Pn + l + 3z-l E (-Dn + l(3nFn - Pn) (mod 9). 

4) Taking m = -n in (d) yields 

3P^ + 2 + 2Pn E (-l)"(3(w + l)Ln - 5Fn) (mod 9). 

Let (Gn) denote either the sequence of Fibonacci or Lucas numbers. Then 

^n + 3Pn + 3 = (&n+2 + &n + 0 (2Pn + 2 + r̂a + l) 

= 2Gn+2Pn + 2 + ^2 + 2^n+l + 2 £ n + i P n + 2 + ^ + 1 P n + 1 

= Gn + zPn + 2 + ^ + 2 ^ + 2 + Pn + l ) + 2Gn + lPn + 2 + Gn + lPn + l 
= Gn + 2Pn + 2 + Gn + 2(3Pn+l + P n ) + 2£ n + 1 P n + 2 + ^n + l^n + 1 

= Gn+2Pn + 2 + 3Cn + 2 P n + i + £ n +2^n + 2 ^ n + lP^ + 2 + ^n + l^n + 1 

~ Gn + 2Pn + 2 + 3 ( £ n + 2 ^ n + l + ^n + l P ^ + 2 ) ~ ^n + lPn + l + Gn + 2Pn 
~ £« + l(^w + 2 " 2 P n + i ) 

= ^n + 2 ^ + 2 + ^(Gn + 2Pn+l + £« + l^w + 2) ~ ^n + lPn + l + ^>z^z 
+ Gn + i(Pn - Pn + 2 + 2 P n + 1 ) 

which y i e l d s 

( 1 ) Gn + 2Pn + 2 + ^n^n + 3 ( ^ n + l^n + 2 + £« + 2 ^ z + l ) = ^n + 3Pn+3 + ^w + A + 1 " 
Now we a r e a b l e t o p r o v e ( a ) and ( b ) by i n d u c t i o n on n. 

Proof of (a) and (b) : O b v i o u s l y ( a ) and ( b ) h o l d f o r n = 0 . To show t h a t b o t h 
h o l d f o r n + 1 i f t h e y h o l d f o r n 5 we h a v e t o p r o v e t h e e q u a t i o n 

(*) 3 ( n + D(GnPn+l + Gn + lPn) - Gn+2Pn + 2 ~ GnPn + 9 ( n + 1) 

= 3(W + 2)(Gn + lPn + 2 + ^ n + 2 P n + i ) - ^ n + 3Pn + 3 - Gn + lPn+l' 
U s i n g 

^nP^+1 + &n + lPn + 3Gn + \Pn + l = ^w^w+1 + Gn + lPn + 26!
n + 1 P n + 1 + £n + 1 P n + 1 

= (£„ + £n + 1 ) P n + 1 + Gn + l(2Pn + i + P„) = Gn + iPn + 2 + Gn + 2Pn + 1 

and ( 1 ) , we g e t (*) . 
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Proof of (c) and (d) : In [1] i t i s proved that 

( 2 ) 3
7 X > ^ = FnPn+l + Pn+lPn 
k= o 

and 
n 

(3) 3l2LkPk = LnPn+l + ^ n + l P n ~ 2 ' 
k= 0 

which shows that 3 divides the right side of (2) and (3) . Thus, from (a) and 
(b) we easily obtain 

(4) -^ + 2̂ 1 + 2 + FnPn E 2 (mod 9, 
(5) Ln+2Pn + 2 + LnPn E 6(n + 1) (mod 9). 

Now, if 77? is any integer, then we multiply (4) by Lm, (5) by Fm, and add the 
obtained congruences by using the formula FkLm + LkFm = 2Fm + k. Then we divide 
the obtained congruence by 2 [note that GCD(2, 9) = 1] to get (c). 

To obtain (d) we multiply (4) by 5Fm , (5) by Lm and add the obtained con-
gruences by using the formula 5FkFm + LkLm = 2Lm+k. Now, we again divide the 
obtained congruence to get (d). This completes the solution. 

1. P. S. Bruckman. Solution of B565-B566. Fibonacci Quarterly 25.1 (1987):87-
88. 

Also solved by P. Bruckman, C. Georghiou, R. Andre-Jeannin, L. Kuipers, and 
G. Wulczyn. 

Two Two Much 

H-420 Proposed by Peter Kiss, Eger, Hungary, and 
Andreas N. Philippou, Patras, Greece 
(Vol. 26, no. 1, February 1988) 

Show that 
o n - l 

Solution (and Generalization) by H. M. Srivastava, Victoria, Canada 

I t can easi ly be seen, by mathematical induction, that (see [1] , Example 
15, p= 24) 

(2) £ - ^ - = - - — , ( * * 1 ) . 
n = i X z - 1 X - 1 XA - 1 

Now let N •> °o in cases when \x\ > 1 and \x\ < 1, separately, and (2) leads us 
immediately to the sum 

-2*-1 (l/(x - 1), if |ar| > 1, 
(3) S 4—7 = 

" = i ^ i (x/(x - 1), if \x\ < 1. 
Equation (1) follows at once from (3) in the special case when x = 2. 
Remark: The general summation formulas (2) and (3) are attributed to De Morgan 
(1806-1871) and Tannery (1848-1910), respectively, by Bromwich (see [1], Exam-
ple 15, p. 24; Example 24, p. 273) . In fact, (3) has appeared in numerous 
books and tables. 
l. T. J. if A. Bromwich. An Introduction to the Theory of Infinite Series * 2nd 
ed. London: Macmillan, 1926. 

Also solved by P. Bruckman, D. Carothers, C. Georghiou, W. Janous, R. 
Andre-Jaennin, C. Long, H.-J. Seiffert, P. Tzermias, and the proposer. 
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ADVANCED PROBLEMS AND SOLUTIONS 

Editorial Note: The editor wishes to apologize to Paul Bruckman for the omis-
sion of his name in the solution of H-409. The editor would like anyone with 
identities relating to H-409 to submit them to John Turner, University of 
Waikato, New Zealand, for his judgment as to the awarding of the $25 prize. 
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