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ON A NEW KIND OF NUMBERS 

A. K. Agarwal 
The Pennsylvania State University, Mont Alto, PA 17237 

(Submitted June 1988) 

1. Introduction 

Recently, properties of the sequence {L2n+\}, where L2n+i is a Lucas number 
of order 2n + 1, were studied [1]. In the present paper, we introduce a new 
class of numbers defined by 

(i.D /(*, k) = ( - l r - ^ . Y ) ^ ! , 
where n is any nonnegative integer and 0 < k < n. 

These numbers have the interesting property (see [1], (1.5)): 

(1.2) £/(n, k) = 1, 
k= 0 

for every nonnegative integral value of n. Property (1.2) is very much analo-
gous to the following property of Stirling numbers of the first kind (see [2], 
(6), p. 145): 

(1-3) X>n = 0. 
k= 1 

Also, these new numbers generalize the Catalan numbers in a nontrivial way. 
First, we recall that the Catalan numbers on are defined by means of the gen-
erating relation ([5], p. 82) 

(1-4) £ cntn = (2t)'1(l - /I - 4t), 
n= 0 

or by the explicit formula ([5], p. 101) 

( i . 5 ) cn = (* + D ' 1 ^ " ) . 

The following relationship is obvious: 

(-l)nf(n, 0) 
(1.6) on = (2n + 1) 

Results obtained in this paper include a table, recurrence relations, gen-
erating functions, and summation formulas for these new numbers. In view of 
(1.6), many results reduce to their corresponding results for the Catalan num-
bers found in the literature. In our last section, we pose two significant 
open problems. 

As usual (a)„ is PochhammerTs symbol and is defined by 

n . . (1 if n = 0 
K l} Ka)n \a(a + 1) ... (a + n - 1), for all n e {1, 2, 3, ...}, 

2&\ will denote the hypergeometric function defined by 

a-8> 2^i[ e. J - ^ - ^ r ^ r - c*°' -1' ~2' •••' 
and the Jacobi polynomials are defined by 
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(1.9) Pn
(a'6)M = n[

 n("T-) 2̂1 
'-n, -a - n; x + 1 
1 + 3; x - 1 

2. Table of f(n, k) 

In this section, we give a table of f(n, k) produced by SCRATCHPAD—IBM's 
symbolic manipulation language. 

TABLE OF f(n, k) 

X 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

1 

-3 

10 

-35 

126 

-462 

1716 

-6435 

24310 

-92378 

352716 

1 

4 

-20 

84 

-336 

1320 

-5148 

20020 

-77792 

302328 

-1175720 

2 

11 

-77 

396 

-1815 

7865 

-33033 

136136 

-554268 

2238390 

3 

29 

-261 

1595 

-8294 

39585 

-179452 

786828 

-3372120 

4 

76 

-836 

5928 

-34580 

180880 

-883728 

4124064 

5 

199 

-2587 

20895 

-135320 

771324 

-4049451 

6 

521 

-7815 

70856 

-504849 

3118185 

7 

1364 

-23188 

233244 

-1814120 

8 

3571 

-67849 

749910 

9 

9349 

-196329 

10 

24476 

3 . R e c u r r e n c e Rela t ions 

In equation (1.3) of [1], it is noted that 

(3 .1 ) 3 L 2 n + i - L2n-i = L2n+3, n > 2. 
Using (3.1) with n replaced by n - 1 and (1.1), we see that 

(3.2) (n + k + l)(n + k)f(n, k) + 3(n + k){n - k + l)/(n, k - 1) 

+ (n - k + l ) ( n - k + 2 ) / ( n , /c - 2) = 0, k > 2. 

Fur the rmore , e l i m i n a t i n g ^2/c + l from 

2n + 3 
/ ( n + 1 , fc) = ( - D n + 1 " k ( n + 1 + - fe)L2k + 1 

and 

/(*, « - (-i)B"k(?_+
k

1)i2k+i. 
we obtain the formula 

-(2n + 3)(2n + 2) 
(3.3) /(n + 1, k) -f(n, k). 

{n - k + l)(n + £ + 2)' 
Following the method of proof of formula (3.3) and using (1.7), we can ob-

tain its straightforward generalization in the form 
(-l)m(2n + 2)2„ 

(3-A) /(" + m> k) - Jn - k + l)m(„ + k + 2), 
where ̂  is a nonnegative integer. 

-/(«, fc), 

4. Generating Relations 

We first obtain generating functions for f(n, k) with respect to n. That 
is, we prove the following theorem. 
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Theorem 4.1: Let f(n, k) be defined by (1.1). Then 
, , ^ fin + k, k) (1 + V)lk + 1

T 

^-L) n^oKk + n) + 1 2k + 1 L2fc + 1 

and 
(1 + v)2k+2 

(4.2) X /(n + k, k)tn == V i ; L2k+l, 
n=0 I - V 

where t? is the function of t defined by 
(4.3) v = -t{\ + V)1. 
Remark: In view of (1.6), (4.1) yields (1.4) while (4.2) yields the following 
generating relation for the Catalan numbers: 

(4.4) J (2w + l)cntn - { \ + V)1, v = t(l + v)1. 

Proof of (4.1) : First, multiply both sides of (1.1) by (2k + l)/[2(fc + n) + 1]. 
Then sum over n from 0 to ». Finally, appeal to the well-known identity ([4], 
p. 348, Prob. 212), 

(4.5) t - ^ T " ( a t ^ Y - (1 + «)a , « = t(l + M)3 
to obtain (4.1). 

Proof of (4.2): Starting with the definition (1.1) of f(n, k), we have 

J2f(n + k,k)tn = L2k + lJ2[ „ )(-*) = 2̂£: + l ^ " > 
n=0 n = 0X n ' i - V 

by virtue of the identity (see [4], p. 349, Prob. 216), which is 

(4.6) E ( a + <g + 1>*W*- <1 +*>a + 1, 

u = ta + w)0+1. 
Next, we prove the following theorem on generating functions involving double 
series: 

Theorem 4.2: Let f(n9 k) be defined by (1.1). Then 

<4-7) Z E / (* + k> « ^ + f e = (i - £)_1> 1*1 < i» 
rc= 0 k= 0 

and 

(4.8) £ £ % + k:*\t» + *- (1 + W[l, f; |. |; f. ̂ 1, 
n=o k=o 2(k + n) + 1 L 2 2 2 4 4J 

where Z*\ is Appell*s double hypergeometric function of the fourth kind defined 
by ([6], p. 14), that is, 
a ô  v r 7. i ^ \ - \ - (a)m + n(b)m + n X

m yn rr-r /p-p 

w = 0 n = o (£)w(£% w! nl 
Proof of (4.7): By making use of (1.1), we observe that 

t tf(n + k,k)t" + k=±LZk + lt*±(2n + 2
n
k+l)(-t)n. 

ft = 0 k=0 k=0 n = 0 v " ' 
Summing the inner series with the help of (4.6) and then interpreting the re-
sulting expression by means of the generating relation (1.4) of [1], which is, 

(4.10) S L2n+ltn = (1 + t)(l - 3£ + t 2)" 1 , \t\ < 1, 
n = 0 
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we are led to (4.7). Alternatively, (4.7) can be obtained by using (1,2). 

Proof of (4.8): Comparing (4.10) with the following generating function for 
Jacobi polynomials (see [3], Eq. 10, p. 256), 

(A.ID E 
n= 0 

(a + 3 + lX7PJa'6)(x) 
(1 + a), 

= (1 - t) • 1 - a -
2*1 

^(1 + a + 3), \{2 + a + 3); 2t{x _ 1} 

1 + a; (1 - i)2J 
we obtain the formula 

(4-12) L2n + 1 =-Jl_PfU/2,-l/2)(3/2). 

If we use (4.12) in the following generating function (see [3], p. 271), 

(4.13) £ ^ V ^ w i ' ^ t n = Fh[y96; 1 + a, 1 + 3; \t(x - 1 ) , k(x + 1)], 
nss o (1 + a)„ (1 + 3)n 2 2 

remembering that 

(4.14) (3/2)n = (l/2)n(2« + 1), 

we find that ^2n+l satisfies the generating relation 

(4-15) L 
L 2n+l ,„ 1 3 1 t 5t 

„fo 2n + 1* M 1 ' 2; 2' V 43 4 

If we now start with the left-hand side of (4.8), we have 

E fin + k, k) n+k " L2fe+l 2k + I tin + 2k + 1 
w,fc=o2(n + /0 + l fe = 0 2fc + 1 n = 0 2 (fc + n) + 1 

Summing the inner series by using (4.5), we get 

)(-*)". 

^ fin + k, k)t n + k 

: 0 2(w + k) + 1 
= (1 + v) £ 

L 2fe+l 
kTo 2k + 1 

(-tf)*. 

Interpreting the last infinite series by means of (4.15) along with the second 
member of the generating function, (4.8) follows at once. This concludes the 
proof of Theorem 4.2. 

5. Summation Formulas 

0) 

In this section we propose to prove the following summation formulas: 

(5 .1 ) V {fin + k - m - 1, k) + j^^fin + k - m - 1, k - l)>f(m, 
m=o I L2k-l ) 

= f{n + k, k) - f{n, 0)L2w + 1 , k > 1 . 

ny f(m> Q ) ^ ( n ~ m - l, Q) = fin, 0) 
• * J^0 (2w + l ) { 2 ( n - m) - 1} 2n + 1 ' 

{n - 2mil + k)} 
( 5 ' 3 ) J^0 (2/77 + l){2(/c + n - m) + 1} 

fin+k- m, k)fim, 0) = 0. 

(5.4) "f; f(jn, 0) 
m = 0 

/ ( n - m + k - 1, k) L2k+l f(n + k - m - l , k - l ) 
2ik + n - m) - 1 £2fc-l (2/?7 + 1)(2£ + 1) 

fin + fc, fc) ^2/c+i fin, 0) 
2(fc + n) + 1 (2fc + 1) (2n + 1) , k > 1. 
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(5.5) J2 ( -Dk 

k = o 

f(n, n - k) f(n, n - k + 1) 
J2{n - / < ) + ! J2Xn -k)+3 

{In + l)cn. 

, c ^ A / ( w , k)f(n, n - k) f(2n, n) f(2n, n + 1) (5-6) Z 
k = 0 L2fc + 1^2(/?. -&) + l J 2 n + 1 J 2 n + 3 

Remark: In view of r e l a t i o n s h i p (1 = 6 ) , (5 .2 ) and (5 .3 ) y i e l d the fo l lowing 
formulas for t he Ca ta l an numbers: 

(5-7) £ "n + l 3 

and 

(5.8) n£^^_rr/ = 2J2' 
m= 0 

"m^n-m> 
m = 0 

respectively. 

Proof of (5.1): Changing the dummy index /c to k - 1 in (4.2), we get 

(5.9) £ /(« + fc - 1, k ~ l)tn = L2k_l ^ - J—. 
n=0 1 - y 

On the other hand, for k = 0, (4.2) reduces to 
f1 + v) 2 

(5.10) X f(n, 0)tn = l£_Liy_. 
n= 0 L - V 

In view of (5.9), (4.2) can be written as 

Z f(n + k, k)tn 

n= 0 
^ ^ d + ^ ) 2 E / ( « + 
L2k - 1 « = 0 

1), 

which can be r e w r i t t e n i n t he form 

1 ~ tj^fim, OH 
772-0 

L2k + l 

Zf(n + k, k)tr 

n = 0 

E /fa, o)/(« + fc - i, fc - i )* n + m 

L2k-\ m,n= 0 
by virtue of (5.10). 

Equating the coefficients of tn and using (2.4), we arrive at (5.1). 
Proof of (5.2): Setting k = 0 in (4.1), we get 

(5-11) L ^ V ^ -l+». rfr'o In + 1 

In view of the definition of v in (4.3), (5.11) can be written as 

f^t» =i t(\ + v) 2 _ 1 * Z /(n, Q)/fa, 0) „̂ + „ 
o 2n + 1 „5V=o (2w + l)(2/?7 + 1) 

Comparing coefficients of tn, we get (5.2). 

Proof of (5.3): Combining (4.1) and (4.2), we have 

t f(n + *, «*» - (2fe + 1)(1 + t;) t f(n + k' k) t\ 
w=o 1 - v n^0 2(fc + n)+l 

Multiplying both sides by (1 + y) and then using (5.10) and (5.11), we obtain 

y f(m> 0)f(n + k> k)
 tn + m (2k , n y f(m> Q ) / ^ + k> U tn + m 

n,m=0 2/72+1 n,m=0 2(k + n ) + l 

By equating the coefficients of t n , we get (5.3). 
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Proof of (5.4): This proof is similar to that of (5.1) and, hence, will be 
omitted. 

Proof of (5.5); Equation (5.5) is an immediate consequence of (1.1), the fol-
lowing identity (see [5], p. 65), 

(5.12) [2n+
k
l)-t K2" * + ' ) 

and (1.5). 

Proof of (5.6): Using (1.1), we 

k=0 L2k + lLZ(n -

n - k) 
-k)+l 

[In + 1\ 
\ k - 1 /_ > 

have 

H) i ; E( 2 n ; 
k= ox K 

. ^ 1 ) _ , _ „ , ( * , + 2 ) , 

where we obtained the last equation by using the Vandermonde addition formula, 
which is 

<5.i3) tiji)(H".k)-e:» 
Appealing to the binomial identity 

« • » > ( * : ' ) - ( * ) + ( » - . ) • 

we have 
y* fin, k)f(n, n - k) = n lum + 1\ Mn + 1 

k=0
 L2k + l£*2(n -k)+l \\ n I \n - I k= 0 L2k+lL2(n -k)+l <A 

Using (1.1) to interpret the right-hand side, we arrive at (5.6). 

6. Questions 

The most obvious questions arising from this work are: 

(i) Do the numbers f(n, k) have a nice combinatorial meaning? 

(ii) We have seen that f(ji, k) has a property analogous to the Stirling num-
bers of the first kind and that they also generalize the Catalan numbers. 
Is it possible to associate f(n , k ) with some other known mathematical. 
objects? 
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SOME SEQUENCES OF LARGE INTEGERS 

H e n r y I b s t e d t 
o. Forstadsgatan 10 b, 21131 Malmo, Sweden 

(Submitted June 1988) 

1. Introduction 

One of the many interesting problems posed in the book Unsolved Problems in 
Number Theory [1] concerns the sequence 

nxn = x™_1(xn_l + n - 1), x1 e N. 

It was introduced by Fritz Gobel and has been studied by Lenstra [1] for m = 1 
and X]_ = 2. Lenstra states that xn is an integer for all n < 42, but x^-^ is 
not. For m = 2 and x^- 2, David Boyd and Alf van der Poorten state that for 
n < 88 the only possible denominators in xn are products of powers of 2, 3, 5, 
and 7. Why do these denominators cause a problem? Is it possible to find even 
longer sequences of integers by choosing different values of x^ and ml These 
questions were posed by M. Mudge [2]. 

The terms in these sequences grow fast. For m = 1, X\ = 2, the first ten 
terms are: 

3, 5, 10, 28, 154, 3520, 15518880, 267593772160, 160642690122633501504. 

If the number of digits in xn is denoted N(n) , then 7/(11) = 43, //(12) = 85, 
/1/(13) = 168, 7/(14) = 334, 71/(15) = 667, 7/(16) = 1332, and 7/(17) = 2661. The 
last integer in this sequence, x^2y has approximately 89288343500 digits. 

The purpose of this study is to find a method of determining the number of 
integers in the sequence and apply the method for the parameters 1 < 777 < 10 and 
2 < Xi < 11. In particular, the problem of Boyd and van der Poorten will be 
solved. Some explanations will be given to why some of these sequences are so 
long. It will be observed and explained why the integer sequences are in 
general longer for even than for odd values of m. 

2. Method 

For given values of x± and m consider the equation 

(1) kxk = xk_ 1(x™_1 + k - 1) 
where the prime factorization of k is given by 

(2) k = \\VT • 
i= 1 ̂  

Let us assume that x^^i is an integer and expand x^ _ ]_ and #£_]_ + k ~ 1 in a 
number system with G^ = p.tf, (t^ > n^) as base. 

(3a) xk.1 = X>adGi (0 " aJ K Gi} 

and 

(3b) x™_x + k - 1 = E bjG( (0 < bj < GJ. 
J 

Since tf^ _ i * 0, it is always possible to choose t^ so that a^ * 0 and b^ * 0. 
With this t^ we have 

(4) Xk-l(Xk-l + ̂  ~ 1) = E ajhlGi ~ aQhQ ^ m ° d G0' 
J, t 
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The congruence 

(5) kxk = aQbQ (mod G±) 

is soluble iff (k, Gi)\a0bQ, or, in this case, iff pni\a0b0. But, if pni\a0b0, 
then by (4) we also have z ^ 

P^lXk-l^k-i + k - D-
Furthermore, if (5) is soluble for all expansions originating from (2), then it 
follows that 

k\xk-\(xk-i + k - l) 
and, consequently, that xk is an integer. The solution xk (mod Gi) to kxk = 
a§b§ (mod Gi) is equal to the first term in the expansion of xk using the 
equivalent of (3a). The previous procedure is repeated using (3b), (4) , and 
(5) to examine if Xj^ + i (mod G^) is an integer. 

From the computational point of view, the testing is done up to a certain 
pre-set limit k = kmaK for consecutive primes p = 2, 3, 5, 7, ... to p < kmaK . 
One of three things will happen: 

1. All congruences are soluble modulus G^ for k < kmax for all p . < fcmax. 

2. a0^o = 0 fo r a certain set of values k < kmax , p . < kmaK. 
3. The congruence kxk E a0^o (mod G^) is soluble for all k < n < kmaxs but 

not soluble for k = n and p = p . . 

In cases 1 and 2 increase kmax, respectively, t^ in G^ = p ^ (if computer faci-
lities permit) and recalculate. In case 3, xn is not an integer, viz. n has 

: k < n 

Results 

been found so that xk is an integer for k < n but not for k = n. 

The results from using this method in the 100 cases 1 < m < 10, 2 < x± < 11 
are shown in Table 1. In particular, it shows that the integer sequence holds 
up to n = 88 for m = 2, Xi = 2 which corresponds to the problem of Boyd and van 
der Poorten. The longest sequence of integers was found for Xi = 11, m = 2. 
For these parameters, the 600 first terms are integers, but ^501 ̂ s not* ^n 

the 100 cases studied, only 32 different primes occur in the terminating values 
n. In .7 cases, the integer sequences are broken by values of n which are not 
primes. In 6 of these, the value of n is 2 times a prime which had terminated 
other sequences. For X\ = 33 m = 10, the sequence is terminated by n - 2 * 132. 
The prime 239 is involved in terminating 10 of the 100 sequences studied. It 
occurs 3 times for m = 6 and 7 times for m = 10. It is seen from the table 
that integer sequences are in general longer for even than for odd values of m. 

TABLE 1. xn is the first noninteger term in the sequence defined by 
nxn = x

n-i(Xn-\ + n ~ 1)• T n e t a ° l e gives n for parameters xl and m. 

m 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

x1= 2 

43 
89 
97 
214 
19 
239 
37 
79 
83 

239 

xl = 3 

7 
89 
17 
43 
83 

191 
7 

127 
31 

338 

x1 = 4 

17 
89 
23 

139 
13 
359 
23 

158 
41 
139 

xx = 5 

34 
89 
97 

107 
19 

419 
37 
79 
83 

137 

xx = 6 

17 
31 

149 
269 
13 
127 
23 

103 
71 

239 

xx = 7 

17 
151 
13 

107 
37 

127 
37 

103 
83 
239 

xx = 8 

51 
79 
13 
214 
13 
239 
17 

163 
71 

239 

xx = 9 

17 
89 
83 

139 
37 

191 
23 

103 
23 

239 

x1 = 10 

7 
79 
23 

251 
347 
239 
7 

163 
41 
239 

xx = 11 

34 
601 
13 

107 
19 

461 
37 
79 
31 

389 
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4. A Model To Explain Some Features of the Sequence 

The congruence 

x(k) = a{k) (mod p), a(k) e {-1, 0, 1, ..., p - 2} 

studied in a number system with a sufficiently large base pt
9 is of particular 

interest when looking at the integer properties of the sequence. Five cases 
will be studied. These are: 

1. a(k) does not belong to cases 2, 3, 4, or 5 below 
2. a(k) = -1, p * 2 
3. a(k) = 0 
4. a(fc) = 1 
5. a(/c) = a(fc + 1) and/or a(k) = a(fc - 1), a(k) * -1, 0, 1 

These cases are mutually exclusive; however, in case 5 there may be more than 
one sequence of the described type for a given p, for example, for m = 10, x-^ = 
7, and p = 11, we have a(k) = 7 for k = 1, 2, ..., 10 and a(k) = 4 for k = 11, 
12, ..., 15. Therefore, when running through the values of k for a given p, it 
is possible to classify a(k) into states corresponding to cases 1, 2, 3, 4 or 
into one of several possible states corresponding to case 5. In this model, 
a(l) appears as a result of creation rather than transition from one state to 
another but, formally, it will be considered as resulting from transition from 
a state 0 (k - 0) to the state corresponding to a(l). 

The study of transitions from one state to another in the above model is 
useful in explaining why there are such long sequences of integers and why they 
are in general longer for even than for odd m. Table 2 shows the number of 
transitions of each kind in the 100 cases studied. Let aT be the number of 
transitions from state r to state s: 

Ar = £ a P S,
 Bs = Z ars> Qs = 100AJBS. 

r s 
(Note that r and s refer to states not rows and columns in Table 2.) The tran-
sitions for odd and even values of m are treated separately. It is seen that 
transitions from states 4, 5, and 2 (for even 77?) are rare. Only between 5% and 
14% of all such states "created" are "destroyed," while the corresponding 
percentage for other transitions range between 85% and 99%. It is the fact 
that transitions from certain states are rare, which makes some of these inte-
ger sequences so long. That transitions from state 2 are rare for even m (11%) 
and frequent for odd m (99%) make the integer sequences in general longer for 
even than for odd m. In all the many transitions observed, it was noted that 
certain types (underscored in Table 2) only occurred for values of k divisible 
by p, while other types never occurred for k divisible by p. Transitions from 
state 3 all occur for k divisible by p but, unlike the other transitions which 
occur for k divisible by p, they have a high frequency. Some of the observa-
tions made on the model are explained in the remainder of this paper. 

TABLE 2. The number of transitions of each type for odd and even m 

From 
state 

0 
1 
2 
3 
4 
5 

Bs 

Qs % 

To s 
l\m 

467 

181 
202 
20 
2 

872 
92 

tate 1 
2\m 

1847 

55 
634 
35 
2 

2573 
95 

To state 2 
2fm 
38 
220 

36 
2 
1 

297 
99 

2\m 

40 
701 

30 
6 
2 

779 
11 

To state 3 
2\m 

60 
252 
71 

39 
0 

422 
85 

2\m 

60 
791 
21 

12 
3 

887 
86 

To state 4 
2\m 

55 
247 
39 

111 

0 

452 
14 

2\m 

55 
642 
7 

80 

2 

786 
8 

To state 5 
2\m 

32 
75 
2 
9 

2 
120 
5 

2\m 

69 
307 
0 
16 
3 

11 

406 
5 

A 
2\m 

652 
794 
293 
358 
61 
5 

2163 

r 
2\m 

2071 
2241 
83 
760 
56 
20 

5431 
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Transitions from state 4 and, for even m only, from state 2 
It is evident from kxk = xk-i(xk-i + k - 1) that, if xk„i = ±1 (mod p) and 

(k, p) = 1, then xk = ±1 (mod p ) . Assume that we arrive at x^^i E ±1 (mod p) 
for k < p - m and m < p. We can then write 

(6) Xp_w_i = ±1 + up (mod p 2 ) , 0 < a < p 
and 

(7) xp-m-i E (±]- + a P ) m E l ± m P (mod P2) (̂  even). 

Equations (6) and (7) give 

(p - m)xp_m ~ ±(p - m) (mod p2) 

or, since (p - m, p) = 1, 

x E ±1 (mod p2) or xk = ±1 (mod p2) for p - m < k < p - 1. 

For A: = p, we have 

pxp E ±1(1 + p - 1) (mod p2) 

or, after division by p throughout 

xp E ±1 (mod p). 

It is now easy to see that xk = 1 (mod p) continues to hold also for k > p. 
The integer sequence may, however, be broken for k = p2. 

Transitions from state 3 

Let us assume that Xj = 0 (mod p) for some j < p. If (j + 1, p) = 1, it 
follows that tfj + i = 0 (mod p) or, generally, xk E 0 (mod p) for j < k < p - 1. 
For k = p - 1, we can write tfp_i = pa (mod p 2 ) , 0 < a < p - 1. We then have 

pxp E pa(pmam + p - 1) (mod p 2 ) , 

from which follows xp E -a (mod p), viz. xp is an integer; however, if a|0, the 
state is changed. 

Transitions from states of type 5 

When, for some j < p - 1, it happens that xj = 1 (mod p), it is easily seen 
that xk E Xj (mod p) for j < k < p. This implies 

pXp E x j Q + p - l ) (mod p) , 

from which it is seen that xp may not be congruent to Xj (mod p) but also that 
xp is an integer. 
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1. Introduction 

In order to determine the sequence v - ([ma] 9 m = 1, 2, 3, . . .) , for irra-
tional a (where [x] denotes the largest integer not exceeding x), Bernoulli [1] 
considered the sequence of differences cZi , d^* ^3» • ••> where 

( 1 ) dm = Km + l ) a ] - [/77a], 777 = 1 , 2 , 3 , . . . . 

Clearly then, 
7 7 7 - 1 

[ma] = Yl &i + Ca]> m = 3, 4, 5, ... . 
i= l 

Thus, knowing the first two terms of v , one can then determine the entire se-
quence from (1). For example, with a = v2, we have the following. 

m 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

dm 

1 
2 
1 
2 
1 
1 
2 
1 
2 
1 

[ma] 
1 
2 
4 
5 
7 
8 
9 
11 
12 
14 

It may be shown that dm may only equal [a] or [a] + 1 (that is, 0 or 1 when 
0 < a < 1) . If we replace [a] by s (small) and [a] + 1 by 1 (large), then we 
obtain a string of such characters. This we will refer to as the characteris-
tic of a. For example, the characteristic of a = /2 is sslslsslsl... . 

String operations may be used to generate the characteristic from its first 
few terms, by utilizing the continued fraction expansion of a. Bernoulli was 
the first to guess the rules which were the basis of these string operations. 
These were reformulated in a more attractive form by Christoffel [2]. However, 
it had to wait until Markoff [9] before the first proofs were offered. In 
Section 4 we show how the characteristic is generated. 

In this paper we demonstrate a rather intriguing connection between the 
characteristic of a and the sequence of arcs or gaps formed by the partition of 
the circle by the successive placement of points by the angle a revolutions. 
The connection is not immediately obvious and does not hold for all values of 
a. We use results from the Three Gap Theorem, a result first conjectured by 
Steinhaus (see [6, 10, 11, 13-15, 18, 19]) which states that N points placed on 
the circle as above partition it into gaps of either three or two different 
lengths. 

Consider such a circle when N is equal to the denominator of a convergent 
[see (2)] to a. Only in this case is the circle partitioned into gaps of 
exactly two different lengths. We can label these gaps as large or small, 
assigning I or s where appropriate and thus we have a string of gap types, 
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ordered clockwise about the circle, with the first element describing the gap 
adjacent to the origin. 

We show that when N is the denominator of a total convergent [see (3)] this 
string, after a trivial permutation, forms the first few terms of the charac-
teristic, but only for special values of a (for example, those numbers with 
identical terms in their continued fraction expansion). One such value is the 
golden number, a = T = ( /5~ - l)/2. The golden number's characteristic has 
interesting properties (see [16]) and we give it a special name—the Golden 
Sequence. 

In order to state Christoffel's rule for generating the characteristic, we 
introduce in Section 2 some aspects from the theory of continued fractions. 
The Three Gap Theorem is later described in more detail in Section 3 before we 
prove our main result (in Section 4,2). 

2. Continued Fractions 

Write to - a and express (for n = 0, 1, 2, . . . ) , 

an
 = [t nJ , 

- 1 

tn+l = Ttni9 

where {x} = x - [x] is the fractional part of x. Thus, we can generate the 
simple continued fraction expansion of a, namely, 

1 
a = ag + 9 

CLi + 
1 

a2 + 

a3 + ... 

= {a0; a\, a25 a3, . . .}. 

The partial convergents to a are defined as 
V -• 

(2) —Zlj-— = {a0; a\, a2, . ..» an-l> t}, i = 1, 2, ..., an - 1, 
$n, i 

while 
V T) 

(3) —'—— = — = {̂ o? al5 a Z' ...J CLn-\, an}, 
defines the total convergents. 

For example, the continued fraction of x is given by 
T = {0; 1 + T} = {0; 1, 1 + T} = {0; 1, 1, 1, ...}. 

All convergents to T are total convergents and 

Pn = qn-l = Fn = Fn-l + Fn~2> * * ^ F~l = l> F0 = 0. 
We quote some results from the theory of continued fractions (see Khint-

chine [7]); 

(4) - - ^-j- , p_2 - q_Y - 0, q_2 - p_x - 1, 

<6> In" ~ Pn = t V + V ' 
Un + \Pn ^ Pn + l 

< 7) ^n,ikn-laW + Rn-lhn.M = 1' 

<8> Pn,i kn-lal + Pn-lkn.M = a> 
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(9) min II gall = | |a„a| |5 

(1 - {qna}, n odd, 

(10) |k„a« = I 
\{qna}, n even, 

where \\qa\\ = \qa - p|, p = [qa + 1/2]. That is, ||ga|| is equal to the absolute 
difference between qa and its nearest integer. Note that p = [q a + 1/2]. 

Also, if a = {0; a, a, ...} = (/a2 + 4 - a)/2, then 

( 1 1 ) p = (1/cQ* - (-«)" 
U i ; P^ a + 1/a ^ - 1 * 

3. The Three Gap Theorem 

The reader is referred to van Ravenstein [18] for an account of the Three 
Gap Theorem as well as the proofs of many of the results used in this section. 
Alternatively, the reader may see van Ravenstein [19] where the theorem is also 
discussed with special reference to the golden number. 

3.1 Order of Points 

Consider N points placed in succession on a circle at an angle of a . We 
are interested in determining the order of the points as they appear in clock-
wise order on the circle. This is equivalent to ordering ({na} = no. mod 1, 
n = 0, 1, 2, . .., N - 1) into an ascending sequence. (y mod x = y -x[y/x] = 
x{y/x}.) Let ({UJOL}) , j =: 1, 2, ..., 71/ be that ordered sequence. That is, 

{ui, u2, • •, uN} = {0, 1, ..., N - 1}, 

where {UJOL} < {UJ+ i<y.}. It is shown in Slater [11] and Sos [14] (or see [18], 
Th. 2.2) that the elements UA are obtained by the following relation, 

!

u2, 0 < Uj < N - u2> 

u2 - uN, N - u2 ^ Uj < uN, 

-uN, uN < Uj < N, 

for j = 1, 2, ..., N, w1 = uN + l = 0. Points Uj and u-+l delimit the j t h gap, 
which is of length {(u-+1 - Uj)a}. 

Here, we will only be concerned with the case where the circle is parti-
tioned into gaps of just two different lengths. This occurs when N = u2 + % 
or, equivalently, when N is the denominator of a convergent to a. 

It may be shown (from [18], Lemma 2.1) that, for N = u2 + u^ = qUii (i> = 15 
2, ..., an, n > 2), 

(13) Uj = ((-l)n-1(j - Dqn-i) mod qn>i, j = I, 2, ..., qn}i. 
For any other value of N, the circle is composed of gaps of three different 
lengths. 

3.2 The String of Gap Types 

Now let us consider the more dynamic situation—we will describe the change 
in gap structure induced by the addition of extra points. In particular, we 
are interested in the transition from a circle of qn_i gaps to one of qn gaps. 
Notation is needed. 

Suppose the circle is partitioned into gaps of only two different lengths, 
say large and small. We label a large gap 1 and a small gap s. Let 

®n = 4>n, l*n,2 • • * $n,qn 

denote the string of gap types when N = qn , ordered clockwise from the origin 
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n odd, 

n even, 
Pn(s) = 

(sa-~ 

\lsa-

-ll, 

-1 
3 

n odd, 

n even 

around the circle so_ that <j>n,j denotes the gap type (either s or I) of the j t h 

gap formed by points UA and u-+l- Assume that $Q = s. 
For any string S and nonnegative integer t , denote by £* the concatenation 

of 5 with itself t times, where 5°  is the empty string. For any strings Si, S^* 
we write SiS^ for the concatenation of S\ followed by S%. 

Define Pn such that 

(sa«l9 

{lsan, 
The following theorem shows that Pn is the production rule which describes 

the manner in which the string of gap types develops as more points are in-
cluded on the circle. The result may, after a little effort, be derived from 
(12). We omit the proof, and refer the reader to Theorem 4.1 in [18]. 

Theorem 1: 

$n =P w($ n_!) = Pn^n-l,l)Pn^n-l,z) ••• P„ (<f>„-if qn_,) • • 

Example: For the golden number, x = (/5 - l)/2, 

(si, n odd, 
Pn(l) =1 P„(8) = Z. 

{is, n even, 
Hence, 

^2 
3̂ 

= I, 
= Zs, 
= sll, 

i+ = lists, 
s = slsllsll. 

We now introduce the following two results which we will need to prove our 
main result in Section 4.2. Proposition 2 demonstrates a simple property of 
the production rule Pn , while Proposition 3 shows that a component of the 
string $n is symmetric. 

Let 0 = 0]_02-.. 6fc denote a string of k letters, where 0^ = s or Z-, i = 1, 
2, ..., /c. For any string S, let 5* denote the string S in reverse order. We 
write P„(6)* and P„(6fe)* for (Pn(0))* and (Pw(0fc))*, respectively. 

Proposition 2: P n(0)* = Pn_i(0*). 

Proof; Pn(0)* = (Pn(e1)P„(62) ... Pn(0fe))*5 

= P#z(8k)*Pw(6k_1)* ... Pn(6i)*, 
Pn_i(ek)Pn_1(ek_1) ... P.z-iOi), 

= p^.iO^efc.i ... ex), 
= P„-I(0*), 

where we have used the fact that Pn(s)* = Pn_i(s) and Pn(l)* = Pn-i(l) . D 

Let 5 n = ^ , 2 ^ , 3 • • • *«, qn-l-
Proposition 3: B* = Bn (n > 1 ) . 
Proof: For n = 1, the result is trivial since from Theorem 1, $]_ = sai I. Now 
consider the case n > 2. It is necessary to show that 

4>n,j = $n,qn-j+l> 0 = 2> 3 , . . . , qn - 1 . 
From (13), with i = an (since N = qn), 

(14) wj = ((-l)"-1^' - D ^ - i ) mod ^n, j = 1, 2, ..., <7n. 
Thus, 
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uqn-j+z = ( ( - i ) n l(qn - U - ! ) ) ^ - i ) m o d 3V> 
= ( ( - D " ( J ~ D ^ n - i ) mod cyn ( j = 2, 3 , . . . , qn). 

H e n c e , 
W J + uq,-J + 2 = qn ( j = 2 , 3 , . . . , ? „ ) . 

T h u s , 
H7 + 1 " MJ = <1n ~ Uqn~J + l - (<ln " uqn-J+2) («/ = 2 > 3 , . . . , <?„ - 1 ) , 

= uqr,-o+2 ~ uqn-j + l > 
from which the result follows. Q 

4. The C h a r a c t e r i s t i c of a 

4 . 1 Genera l a 

The following method of constructing the characteristic is described in 
Venkov ([20], pp. 65-68). Markoff first showed that the characteristic of a is 
equal to 3132^3 - -•? where 

B„ = 6^li1en_2B„_1, 60 = s , Bl = s"!"^. 

We mention that if a is rational, say a = {aQ; a\9 a2, • • • •> aN}9 then 3]_32 
... 3/v-i (3/i/)°°  is the characteristic where N is even (so that the number of 
terms is odd). If N is odd, the number of terms can be made odd, as . ..a#_.]_, 
aN} can be replaced by ...aN-i, aN - 1, 1}, if aN > 1. If a# = 1 (and a * 1), 
then ...%_£, % _ ] _ , a#} can be replaced by ...a/v_2, %-i + IK 

Let a = {0; 1, 2, 3} = {0; 1, 2, 2, 1} = 7/10. Then 

3o = s, 
3i = Z, 
32 = 3i303i = 1st, 
33 = 323i32 = Islllsl, 
3̂  = 3233 = Isllslllsl. 

The characteristic is then given by 3i 3233 (3̂ )°°, that is, 

llsllslllsl(Isllslllsl)™. 

Fraenkel et al. ([4], Theorem 1) offer an alternative method of construc-
tion: they show that the characteristic is equal to lim &n, where 

(16) 6„ - C-lK-2> &0 - s . 6 ! - s^'H. 
They actually form the characteristic by means of "shift operators." It may be 
shown, however, that the recurrence relation (16) is an equivalent means of 
formulating the characteristic, in terms of the actual operations required. 

Note that if a = {a^i a\9 a2, ..., aN}, then 6^ is the characteristic (if N 
is even). 

Example: As in the above example, consider a = 7/10. Then 

60 = s, 
61 = I, 
62 = lis, 
63 = llsllsl, 
6̂  = llsllsllls. 

Thus, 6£ is the characteristic. 

The method of Fraenkel et al. [4] generalizes the work done by Stolarsky 
([12], Theorem 2), who shows how to generate the characteristic for the parti-
cular case where a = {1; a, a, ...}, the positive root of x2-+ (a - 2)x - a = 0. 
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In this paper, we present a new proof of Theorem 1 in [4] and Theorem 2 in 
[12] for the case a = {0, a, a, . . . } , the positive root of x2 + ax - 1 = 0 by 
exhibiting a connection between the characteristic of a and its string of gap 
types (see Theorems 5 and 8 below). 

4.2 The Characteristic of a - {0; a, a, ...} 

From now on, unless otherwise stated, assume that a = {0; a, a, ...}. For 
this case, we show how the string of gap types $n is generated recursively and 
how it is related to the characteristic of a. 

Theorem 4: 
vn-l^n-2 (n > 2), $0 = s, $! 

Proof: Theorem 1 implies the truth of the assertion for n = 2, 3. Using the 
induction hypothesis we show that the result holds in general by verifying it 
for n = k + 1, assuming that it holds for n = k and n - k - 1. 

w 
= p f c + i ( ^ - i * f e - 2 ) 
= pk+1(4°o p k + 1 ( * k _ 2 ) 

Thus, 
. 1 ( * J _ 1 ) a ^ _ 1 ( * k _ 2 ) . 

*k+l = **"**- ! ' 
which follows from Theorem 1 and Proposition 2 for 0 = $£_]_ and the fact that 
Pk+l = Pk.l for all k > 2. • 

The following theorem shows how the string $n is related to another string 
fin which corresponds to the first qn elements of the characteristic. One 
merely places the first element of §n in the penultimate position of §n to 
obtain ttn. 

We let An = ^ j , Bn be as in Proposition 3, and Cn = §n,qn' N o w' l e t 

\ln — DnAnCn. 

Theorem 5: 
ttn = ^_1ftn_ 2 in > 2 ) , fi0 = s, Qi = sa~ll. 

Proof: The result is readily shown to be true for n = 2, 3 from direct obser-
vation of the strings fi2 a n d ^3- These strings derive from <£>2 a n d $3> which 
may be written down using Theorem 4. In what follows, assume that n > 3. 

Induction on n using Theorem 1 implies 

Is, n odd, 
(17) An = Cn_! = < 

\Z, n even. 
(This is actually true for n > 2.) 

We are required to show that 
BnAnCn = (Bn - \An - lCn- 1 )aBn- 2An- 2Cn - 2 » 

or, using (17), 

(18) Bn = (Bn_iAn_iCn„i)a Bn_z-

Theorem 4 is equivalent to the statement 

AnBn^n = ^n-lBn-lAn-1) An-2Bn-2^n- 2• 

Using (17) and rearranging terms leads to 
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Bn - Bn-iAn_i(Cn-.iBn_iAn-i)a An-it 

F u r t h e r m a n i p u l a t i o n g i v e s 

- l A - l ^ n - l . ) Bn-2> (Bt 
(Recall from Proposition 3 that Bn = Bn.) Thus, which is equivalent to (18). 

the theorem is proved. Q 

The following corollary gives the production rule for the string ^O^1^2B'* 
The proof is by induction and is omitted. Note that the production rule is 
independent of n. 

sa~ll, Q(l) Corollary 6: Suppose t h a t Q(s) = s u ^ , y,{L) = su 

tin = Q(Qn-i) = ^-l^n-i (n > 2 ) , ^ 0 = s, 

Example: For a = T , we have Q(s) = I, Q(l) = Is3 

H e n c e , 
QQ = s , 
Ql = I, 

^3 = Isl, 
Qi+ = Islls, 
^ 5 = Isllslsl. 

~lls. Then 

} l = s a ~ l l . D 

and - l "n-2 f o r n > 1 . 

The Golden Sequence is then limn A Comparing Theorem 5 with Fraenkel et 
alTs result ([4], Theorem 1) [equivalent to our Equation (16)] identifies Qn as 
the first qn elements of the characteristic. That is, ttn = Sn, where 5n is 
defined by (16). Thus, the string of gap types is generated in the same way as 
the characteristic, a result all the more surprising since it does not hold for 
all a. We proceed to verify the connection between Qn and the characteristic 
by exploiting the relationship between §n and ft„. This, then (with Theorem 5), 
forms the new proof of Theorem 1 in [4] and Theorem 2 in [12] for the case a = 
{0; a9 a, . . . } . The proof sheds light on the set of numbers for which the 
string of gap types corresponds to the characteristic. First, we need the 
following, which is proved in van Ravenstein ([17], Equation 5.12). 

Lemma 7: [ka] Pn 

i s any i r r a t i o n a l number 

Let £ln — a)n j 0 3 n 2 • • 

Theorem 8: For n > 2 , 

1, 2, ?*,• 1 (n > 2, I < i < an), where a 

n » Q n 

03 
n,j 

0, 

I, dj = 1, 

where dj is defined by (1) and j = 1, 

Proof: Equation (14) is equivalent to 

Thus, for j 

( - i ) B _ 1 ( j 

= 2, 3, ... 

1) 
%-l) 

In 7' 
(-l)"-1 '̂ - D- <?n 

(19) 

(20) 

"j + l UJ (-1) n - \ , 
in-I - (-D* ln\ 

in-1 
U ~ 1) 

<7n-

(-l)n-lqn-x ~ (-IV^qJUa] - [ (j - l)a]). 

210 [Aug. 



CHARACTERISTICS AND THE THREE GAP THEOREM 

The l a t t e r s t e p fo l lows from Lemma 7 and Equat ion ( 1 1 ) . Hence, for j = 2 , 3 , 
. . . , qn - 1, 

U-ir-Hq^, - qn), d._Y = 1. 
From (9) and ( 1 0 ) , i t may now be shown t h a t 

(21) 
U , d.Y = 1, 

J • 

where j = 2, 3, . . . , qn - 1. 
To complete the proof, first note from (6) that 

(pn - 1, n odd, 

( p n , n even. 

From Lemma 7, [ ( q n - l ) a ] = [ (q n - l)pn/qn] = pn .- 1. T h e r e f o r e , 

( 0 , n odd, 

V1, n even. 
From (14) and (9) we have 

<22) •»,! 
Z, d^-x = 0. 

The result for §n,q follows similarly. From Lemma Al (see Appendix), 
[(qn + l)a] = pn. Hence, 

(0, n even, 
dRn = [(qn + Da] - [qna] =1 

{1, n odd, 
and thus, from (14) and (9), 

(s, dqn = 0, 
(23) 4>„ =< 

(l, d,n = 1. 

Theorem 5 and Equations (21)-(23) establish the proof. D 

Corollary 9: Suppose that a = {0; a\9 a2> . ..}» where a^ = a^-j+i for j = 1, 2, 
, 1. Then 

"i.3 = 

(s, 

I 
dj = 0, 

dj = 1. 
Proof: For this value of a, 

-f- = - ^ = {0; ai3 CLi-i, •••> a2* ̂ l>°  

The proof is then identical to the proof of Theorem 8; in particular, the step 
from (19) to (20) follows. D 

The correspondence between §n and the characteristic does not hold for all 
a, as the following (counter)example shows. 

2T + 9 
Let a = {0;l, 2, 3, 1 + T } = . Then 

3T + 13 
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$0 = s, $]_ = I, $2 = Iss, $3 = ssslsslssl, 

and thus, 

^o = s, Q>i = Z-, ̂ 2 = sis, 3̂ = sslsslsssl, 

which does not correspond to the characteristic, since 

60 = s, 6]_ = I, &2
 = Z^s, 63 = llsllsllsl. D 

Conjecture: The correspondence between $̂  and the characteristic holds only for 
a equivalent to the number {0; a, a, a, ...}. 

APPENDIX. The Evaluation of [Not], N = 1, 2, ... 

We have shown how one may evaluate the integer parts of positive consecu-
tive multiples of a number by forming its characteristic. Here, we present an 
alternative method by which we decompose the number into terms related to its 
continued fraction expansion. The method appears in Fraenkel et al.[3] and is 
central to their paper. We offer a new and shorter proof. 

Lemma Al (see Fraenkel et al. [4], Lemma 2) : Suppose that n > 0 and 0 < q < qn . 
Then [ (q + qn_l)a] = pn_l + [^a]. 

Lemma A2 (see, e.g., Fraenkel [5], Theorem 3): There is a unique decomposition 
of any natural number N in the form 

m 

N - EM*. 
^ = 0 

where the b^ s are integers; 0 < b$ < q\, 0 < bi < a^+i> i > 0, and bi = a^ + i, 
only if b-i _ 1 = 0. Since this expansion is unique, 

(A) £A?i < ?* + !' i= 0 

Theorem A3: I f N = YJh.qi, t h e n 
i = fe 

[/1/a] 
£ ^ZV ^ even> 

i = k 

-1 + Z ^P 7 - > fc o d d 
£ = fc ^ •• 

w h e r e Z?fc * 0 ( i . e . , k = m a x { j : bj > 0}) . 

Proof: If N = ^ b i q i , bk * 0, t h e n 

[/1/a] 
w - 1 

EM* + (bm ~ l^m + Oa 
i = fe 

From (A) , 

lib q + (2>m - l ) ^ m < bmqm< am + lqm< qm + l. 
i= k 

Hence, from Lemma Al, 

[/1/a] = p + 
71- I v " 

E ^ i + 0>m " D^/77 a 
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F u r t h e r a p p l i c a t i o n of (A) and the lemma l e a d s to 

[Na] = h Pm + 
m-l 

. • 7 ^ ^ ^ 

% = k 

Clearly, we are led to 
m 

W«] = E KVm + lbkqka}. 
i = k + 1 

From (6), . 

b.q.a - b-j p7 = T ; . 
k^. k k tk+lPk + Pfc + 1 

Thus, -1 < bk(qka - pk) < 1, since 0 < bk < â  + 1. Hence, 

' bkp , /c even, 

\bkp. - 1, k odd. 

This completes the proof. • 
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1. Introduction 

Using Lagrange inversions one obtains the formal power series (fps) expan-
sions (cf. Riordan [12], See* 4.5) 

(1.1) exp bz = 2^ r: w > 
k=Q * l 

(1-2) ^ •£)<"* + *>'„*, 
1 - az k=0 kl 

where w = z • exp(-~as)s and 

(i.3) u + *)> - f :_A- (« f e + »ws 
=̂ o ak + b\ k I 

(1.4) IliJili.-f; («* + V* 
1 - ga * = 0 \ k I 

1 + z 
where V = z/(l + s) a . With the help of these identities, Gould [6-8] obtained 
many convolution identities. Higher-dimensional extensions of (1.2) and (1.4) 
were studied and proved by Carlitz [1, 2] using MacMahon*s Master Theorem. 
Finally, Carlitz?s identities were embedded into a general theory by Joni [9]. 
The key for her results, again, is Lagrange inversion (this time the multi-
variable Lagrange-Good inversion formula, cf. Joni [10]). 

In [5] Cohen & Hudson discovered two-variable generalizations of (1.1) and 
(la 2) that are different in nature from the corresponding results of Carlitz, 
and studied related convolution identities, Their proofs are based on a spe-
cific operator method also used in Cohenfs papers [3] and [4]. Thus, the ques-
tion remained open as to whether there might be a Lagrange-type inversion for-
mula providing the background for Cohen & Hudson1s results and yielding two-
variable extensions of (1.3) and (1.4), in addition. This formula will be 
given in Section 3 (Theorem 1, Corollary 2) of this paper. Subsequently, we 
are able to derive all of Cohen & Hudson's results and, moreover, to give the 
"factorial55 analogues that correspond to (1.3) and (1.4). This will be done in 
Section 4. For the purpose of illustration, we list some identities in the 
next section. 

2. Some Expansion and Convolution Identities 

To write our identities, it is convenient to adopt the usual multidimen-
sional notations. Let k = {k\9 k2), n = (n1? n2) e Z2 (pairs of integers) and 
z = (3]_, z2) be a pair of inde terminates, then we define kl = k\ lk2 • ? n > k if 
and only if nx > k\ and n2 ^ k2, n - k = (rii - fci, n2 - k2), 0 = (0, 0), 
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Throughout this paper, for k E Z , A^, y^, a^, 3i ̂  (E (complex numbers), i = 1, 
2, we shall write 

(Ax + y^i)(a2 + 62^2) „ ,7, (*2 + y2^2)(ai + M l ) 
i?x(W = , RAk) = —7 , 
1 ~ A2 + U2^2 Al + M l 

and 
(Ax + mki) (A2 + y2^2> 
(A2 + u2fc2) (*i + M l ) 

for short. Note that v^QC) is equal to R^{k) with 3i = 0 and a^ = 1. 
The first of Cohen & Hudson's identities, (1.3) in [5], is equivalent to 

(2.1) _ _ _ ^ ^ 

For £2
 = 0' (2.1) reduces to (1.2). The factorial analogue of (2.1) we prove 

is 
\±l\i2 z}z2 

(2 2) * " M l (i + M~a + 327 
' _ ] n *1 \ / _ _M2 ^2 

A o l + S i / V A i l + s -

•^("*f)C*f)*i<i + ",""<s,<i + " « > " ' * -
E q u a t i o n ( 2 . 2 ) r e d u c e s t o ( 1 . 4 ) f o r s 2 = 0 . The t f mixed f ! e x p a n s i o n , 

^1^2 %2 

(2 .3 ) — f r / x + £ V , r ^ } ) ^ e x p ( - p 1 ( ^ ) ) ( l + 

Ax 1 + z2) ^ir1"1 
s2)" •2»2(fe) 

is a two-variable generalization of (1.2) and (1.4) at the same time. This is 
seen by setting s2 = 0 or z\ = 0, respectively. 

The second expansion of Cohen & Hudson, (1.5) in [5], is equivalent to 

1 _ 1 rY{k)ki R2(k)k* 7 

(2.4) = Z —L r r,, S~ «p(-ri(k)3i - i?2(fe)a2). 
Ax - y2axs2 ^>g Ax + y ^ /c! ~ 

Setting z2 = 0 in (2.4) gives (1.1); setting sx = 0 gives (1.2). The factorial 
analogue of (2.4) is presented here: 

(2.5) = y —L__^i/«V^a))^(1 + S l ) - * i ( S > ( i + z2yR^\ 
%2 kz0 *1 + M l V * i A ^2 / 

1 + Z2 

This is a generalization of (1.3) and (1.4) at the same time. Similarly, a 
two-dimensional generalization of (1.1) and (1.4) is 

(2.6) -
z2 

Xl - y 2 a x 1 + ^ 2 
k ^ 1 *i(k) R2(k)\ k , n , W 1 _,_ ,-R2(k) 

= £ T—T 1 77~i—I i J5~ exp(-p1(W^1)(l + s2) 2 ~ , 
feTg ̂ 1 + M l kil \ K-2 I ~ 

and a generalization of (1.2) and (1.3) is 
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(2.7) l- E , +
l
 v f f f l ) ^ ' ^ + ai>-"<sW-s2(*)*2). 

We give another expansion, which Cohen & Hudson missed: 

_ v v (al^l ~ 3i^i)(a2P2 " B2^2> 

(2.8) i = y — — — — — ^ — • 

• z^ exp(-Rl(k)z1 - R2{k)z2). 

This is a two-variable generalization of (1.1). The corresponding generaliza-
tion of (1.3) reads 

(aiUl ~ gi-X1)(a2U2 ~ ^ 2 ) 

(2 9) ! = Y l 2 X 2 ( a i + 3 l ^ l ) ( a 2 + ®lkz) (^(k)\(RAk)\ 
j^q (Ax + y 1 / c 1 ) ( A 2 + U 2 ^2 ) \ k{ ) \ k2 ) 

• 3*(1 + Z l ) - ^ ( ^ ( 1 + ^ K ^ , 
that of (1.1) and (1.3) , 

(am! - $i\i)(a2\i2 - $2\2) 
A l A 2 " k ^ ~ ^ + g^ i ) ( a 2 + 32^2) Rl(Mkl (R2(k)\ 

ikq (Xl + Mlkl)(X2 + M2k2) kY\ \ k2) ° 

• g* exp(-i?1(7c)s1)(l + z2rR*<® . 

Identities (2.1)-(2.10) will be proved in Section 4 by establishing three types 
of general expansions that underly (2.1)-(2.3), (2.4)-(2.7), and (2.8)-(2.10), 
respectively. 

From each of the expansions (2.l)-(2.10), we may derive a convolution iden-
tity which generalizes Jensen's convolution or the Abel-type Jensen-Gould con-
volution identity, respectively (cf. [6], [7]). We shall give two examples; 
the remaining identities are obtained similarly. 

Multiplying both sides of (2.1) with exp(sx^i + s2z2) and comparing coef-
ficients of z~, we obtain (1.4) of [5]. 

(2.u) f2_ E M1_ll + ̂ L_ y I^y2_L2 l_ 
n2!J-i^0Vx2/ («i-Ji)! « i ! ^ 0 U l / ( n 2 - j 2 ) ! nl 

_ T r^kfi rz(k)k> (-r^k) + Sl)"'-fel-(-r2(fe) + e2)"^z 

"kTo ?S! (2 " £>! 

The factorial analogue of (2.11), deduced by multiplying both sides of 
(2.2) with (1 + Si)131 (1 + 22)S2 and comparing coefficients of z~ reads 

"•'M^iftf!: £) + (;;),£„(£)*(:*: £) - (§) 
V /̂ l C^)\ /^2C^)\ /~̂ i (̂ ) + S i W - ^ W + s2\ 
^ ^r A 2̂ /\ n{- kY ) \ n2- k2 ) ' 

3. Lagrange Inversion 

Let 

<Kg) = (*i(si, s2), (j)2(̂ l»
 zl)) 

be some pair of fps in z\ and s2 with cj).(0, 0) * 0, i = 1, 2. Let 
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f(z) = (zl/^>l(z), z2/$2(z)). 
The (two-variable) Lagrange-Good formula solves the problem of expanding a 
formal Laurent series g(z) of the form 

(3.1) g{z) = Y,g;Z*~> 

for some m € Z 2 , in terms of powers of f(z); namely, if 

g(z) X cvfhz), 
then 

keZ2 

ck = <z"~>g(z)A(z)f-Hz), -k, 

where <z~>a(z) denotes the coefficient of z~ in a(z) , and 

A(g) = — (z)$i {z)$2(z) with — (s) the Jacobian of f(z). 

For formal Laurent series of the form (3.1), we shall use the abbreviation fLs. 
The general two-dimensional Lagrange inversion problem can be formulated as 

follows: Let F = (/^(g)), 2 be a "diagonal sequence," i.e., ffc(z) is ° f t n e 

form ~ 

/*(*) = E/„***. 
n > A: — 

Then, for a given sequence F, one tries to find some sequence F = (f]{(z))j<eZ2 
such that expanding an arbitrary fLs g(z) in terms of F, 

(3.2a) ?(g) = £ cfe/ (3), 
feeZ2 ~ ~ 

the coefficients e^ are given by 

(3.2b) ^ = <s2><7(s) • A ( a ) . 

Obviously, the sequence F is uniquely determined by 

(3.3) <gS>^(5) . / 2 ( H ) = fi25, 

where 6nk is the Kronecker delta. In this paper, we shall solve this Lagrange 
inversion problem for 

(3.4) fk(z) = gSft (zlfi^f2(z2)R2(k) y 

where fi(t), f2(t) are fps in the single variable t with /V. (0) * 0, i = 1, 2. 
Evidently, F = (f]<(z))kezz is a diagonal sequence. 

Theorem 1: Let F = ( ^ ( 2 ) ) K z 2 be as defined in (3.4). The sequence 

uniquely determined by (3.3), is given by 
(3.5) £ (3) = PiU 1̂ 2 

~ V~' (Ai + m^i)(A2 + \i2k2) 
where W is the operator 

(3.6) 

with 

W = det 

z1D1 + 
32 
U2 

A2 F,(2l) 

^ 1 " — Ai)^2(^2) #2^2 + 

^2 
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V*;> = *i i^-.^i^fi^i^ i = i, 2-

D^ stands for the differential operator with respect to z^. Equivalently, 

( a2 + 32^2 \ / al + 3i^i \ 

(ami - 3iA1)(a2u2
 _ $2^2) 

(3.7) / k( 2) = 

(Xl + y^i)(X2 + U2^2) 
F1(g1)F2(22) AC*)'1-

Proof: The proof is based on the method for treating Lagrange inversion 
problems introduced by the author [11]. For i = 1, 2, apply (z-D. + (X^/u-)) 
on both sides of (3.4) to get 

(3.8) (*.Z>. +^)/s(g) 
3 3 - ^ 

A, + \in-k y3. ^3-i\ 

^3-i A3-i + V3-ik3-il 
fk^--

i = 1, 2. 

Writing <5^(/c) = (X^ + u^fe^) 1 ? ̂  = 1» 2, simple manipulations show that the 
system (3.8) of two equations is equivalent to the system 

(3.9) ^ ( g ) = ̂ ( ? 0 ^ ( g ) 5 i = 1, 2, 

^here 

U3- U3-

and 

(3.10) V = det 

(a3-i 

si^i + 

U3_ 

Ul 

3 " V i k ( o ^ - i - + ^ ^ \U3-i U, 

/ $2 \ 
(a2 - - A 2 ) F l ( S l ) 

F3_v(S3-v) 

/ 3i x ZoDo + 
^2 

Now Theorem 1 of [11] with A = (D, Afx = Af2 = set of fLs, £7̂ , V, oi(k) as above, 
may be applied. The bilinear form we need is defined by 

(3.11) (a(z), b(z)) = <z$>a(z)b(z)9 

for fLs a(z) and M < 0 . Thus, by (4.4) of [11], the dual system 

(3.12) Up^z) = c^mWh^z), i = 1, 2, 

[note that F* = J/ as defined in (3.6), since (z^D^)* = -s^Z^] has to be solved 
first. It is a simple matter of fact that (3.12), the dual of (3.9), is equi-
valent to the dual of (3.8), which reads 

Xi + Mik — + ( x . + u ^ ) ! ^ + 

P3-i, 
a 3 - i - ^ - ^ 3 - , 

A3-i + ̂ 3-ifc3-- Fi<*i> 
.(*), 

i = 1, 2. 

A solution of this system of equations is seen to be h-^iz) = f^(z)~^9 hence, by 
(4.6) of [11], respecting V* = W, ~ 
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Ul^2 

*(5) = ( x 1 + u l f c l ) ( x 2 + M2) m^' 
which establishes (3.5). A little bit of calculation from (3.5) leads to 
(3.7). D 

Corollary 2 (Lagrange formula): Let F = (f]i(z))kez2
 b e a s defined in (3.4). The 

coefficients in the expansion 

(3.13) g(z) = X okfk{z) 
kez2 ~ ~ 

are given by 

(3.14) ok = <z^>g(z)fk(z)9 

with j\ (<0 of (3.7), or 

M^2 
(3.15) cj, = (Ax + m^i) (A2 + ]i2̂ 2) 

<59>/k(g)"1^(2)-

Proof: Equation (3.14) is merely (3.2) for fk(z) of (3.4), (3.15) is based on 
(3.14), (3.5), and W* = 7. U 

As a first application, we shall prove (1.7) of Cohen & Hudson [5]. Take 
fl(£) = flW = exP ̂> which implies Fl(t) = F2(t) = t. Let 

9W = TV" E 
a l - — Al)la2 ^2 

A9ISiS 2*1*2 

^1^2 j = 0 (Ai/yx + l)j (A2/y2 + 1) 

where (a)j = a(a + 1) ... (a + J - 1). For this choice of fi(t) [V depends on 
Fi(t)\], g{z) satisfiesVg([z) = l/uiy2. Utilizing the Lagrange formula (3.15), 
from this fact we obtain 

(3.16) 
1 (ai 'V^k 

32. 
a 2 -—X2)zlz2 

A X A 2 j = o 

= £ Ul+Hlkl)-"1 (A2 + u2fe2r1-1 ~ y^2 ~ (-g)^exp(i?1(/c)g1+i?2(/c)g2). 
fc> o 

(Ai/ui + l)j(A2/u2 + Dj 

\ ̂  i ̂ . z' 7» ̂  k 

Equation (3.16) is another two-variable extension of (1.1) (set z2 = 0). 

4. Coefficient Formulas for Some Special Expansions 

The following technical lemma turns out to be useful for further computa-
tions. 

Lemma 3: Let h(t) be an fLs in t . With the assumptions of Theorem 1, 

(4.1) <g5>/zU3-i)^(2i)/s(5)-1 

= - — — -<z->h(z3^i)f, (z) S for ̂  = 1 , 2. 
(A- + yifei)(a3_i.+ B3-^3-i) * ~ 

Proof: Without loss of generality we prove (4.1) for i = 1. We start with the 
identity 

<z^>h(z2)[l + \il 
i2 + 3 2 ^2 

M*i> /*(*> ^ \ r ' r i A 2 + U2 /C2 ^i-i^v 

- < g ^ / 2 ( 2 2 ) S 2 ^ / 2 ( ^ ) " / ? 2 ( ~ ) / i ( ^ i ) " A l ( a 2 + e 2 " 2 ) / ( A 2 + y 2 - 2 ) 
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Because of ( a ^ ) * =_ - s ^ [with respect to the b i l i n e a r form of (3.11)] the 
right-hand side of t h i s equation i s equal to 

Together with a b i t of manipulation, we f ina l l y a r r ive a t (4 .1 ) . Q 

Corollary 4: Let fk(z) be given by (3 .4 ) . Then 

( a ^ i - 3iX1)(a2y2 " 32X2) 
X 1 X 0 - ACiACp ; : — — — 

(4-2) l \ ? 2 (x1 + u l f e l ) ( x 2 + p2?c2) Ws>' 
where d^ = <g~>//c(g)_1. 

Proof: By (3.14) we have to compute 

Using the form (3.7) of fk(z), repeated application of (4.1) gives 

<32>f (g) = <S2> 1 fel W, ^ 
Xl + TJ1fc1/\ A2 + U2^2 

(axux - 3iAx) (a2U2 " $2^2) ^1^2 

(04 + 3i/Ci)(a2 + 32^2) U l + liifei)(X2 + U2fc2). 

(alUi - 3iX1)(a2U2 ~ ^2^2) 

fkW - 1 

X\Xz " ^ 1 ^ 2 
I I V n - t - l-S n Pf n I I [ V /^ - t - r s /-> K- /-. I (04 + 3i^i) (a2 + 32k2) ^ 0 

(Xx + u1/c1)(X2 + u2fc2) 

tfhich furnishes (4.2). D 

For f^iZi) = exp(-s^) and f^iz^ = (1 + s^)-1, respectively, the expansions 
(2.8) and (2.9) are obtained as special cases of (4.2). The mixed analogue 
(2.10) is (4.2) with fi(zi) = exp(-s1) and f1{z1) = (1 + s 2 ) _ 1 . 

Quite analogously, we prove 

Corollary 5: If fk (g) = z}fl{zlfl^)f1{z2)R^\ then 

(4.3) — — \ r , = £ Ul + n^i)~ldkfk(z), 
Xl + u2axF2(s2) ^>o ~ ~ 

where dk - (z~>fk(z)~l* 

Sketch of Proof: Again using (3 .14) , ( 3 . 7 ) , and (4.1) we proceed along the 
l ines of the proof of the preceding coro l l a ry . Q 

The expansions (2 .4 ) - (2 .7 ) are spec ia l cases of ( 4 . 3 ) . F ina l ly , we have 

Corollary 6: If ^ ( 3 ) = z}fY ( z ^ 1 ^ f1{z1)Tl^) , then 

U1U2 
1 - Y Y Fl(zl)F2(zz) 

(4.4) — — — = T,dkfk{z), 

where dk = <z ~>j\ (z)~ * . 
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Proof: Observe that the left-hand side of (4.4) is equal to 

l/(l + ̂  ^1(^1)) + l/(l + ~ F2{z2)^ - 1. 

This in hand, the method used to prove Corollary 4 can be used again to settle 
(4.4). D 

Equations (2.1)-(2.3) are special cases of (4.4). 
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LAMBERT SERIES AND THE SUMMATION OF RECIPROCALS 
IN CERTAIN FIBONACCI-LUCAS-TYPE SEQUENCES 

R. A n d r e - J e a n n i n 
Ecole d'Ingenieurs de Sfax, Tunisie 

(Submitted July 1988) 

1. I n t r o d u c t i o n 

Consider the sequence of real numbers defined by the recurrence relation 

(1.1) Wn = pWn.x + Wn-2, 
where p is a strictly positive real number. Special cases of (Wn) which inter-
est us here are: 

an - 3 n 

(1.2) Un = _ (Fibonacci-type sequence), 
and 

(1.3) Vn = an + 3n (Lucas-type sequence), 

where 
a = 

(1.4) 

*="— 2 
It is clear that 

(1.5) a3 = -1, a > 1, -~1 < 3 < 0. 

On the other hand, the Lambert series is defined by 

(1.6) L(x) = ± — ^ - , |x| < 1. 

It has been known for a long time (see Horadam [1] for complete references) 
that 

E 7T- = (a - B M M B 2 ) - L(^)], 
n= 1 U2n 

*= 1 l2n-l 

The purpose of this paper is to establish the following result. 

Theorem 1: 

(1.7) E jr-^j = 2(a - 3)[M32) - 2L(B4) + 2L(38)] + 3; 

2. P re l iminary Lemma 

Lemma 1: 

(2 .D E , ^ " 2 w + 1
 = L ^ ) - L ( ^ 2 ) ; 

2̂= 0 1 - X Z n + i 
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(2.2) £ X
 n = L{x) -- 2L(x2); 

n= l 1 + Xn 

(2.3) £ ~ ^ — T T T = L ^ ~ 3L(^2) + 2L(x^). 
n=0 1 + X2n + 1 

(2.1) is obviously true, whereas (2.2) follows from the identity 

2x In 

1 + xn 1 - xn I - x2n' 

and (2.3) follows from 

n=0 1 + X2n+l «= i 1 + x n «- l 1 + OJ2?2 " 

3. Proof of Theorem 1 

Lemma 2: 

(3-D 2 i ; 4 r = 1 + E 7 r 4 - ; 
n=ia Un a n= 1 vn.Un + 1 

(3-2) 2 E - ^ - i + E - ^ -
«= l a Fn up n= l ^z7n + l 

Proof: F i r s t , we have 

aUn + 1 + y„ = _ L - [ a ( a » + l - (-1)» + 1 - L - ) + a" - (-1)" ^ 
1 p.W+1 , 1 \ 

= — — (an+2 + an) = - (a + - = an + l . 

Thus, 
1 

+ a»*/w " a^Un + 1 UnUn + } 

ig this term by term, we 
the same pattern if we c 

uVn + i + Vn = (a - G)aw + 1. 

By adding this term by term, we find (3.1) since U\ - 1. The proof of (3.2) 
follows the same pattern if we observe that 

Thus, 
1 1 _ a - g 

unVn
 + an + 1Vn+l " VnVn + l' 

Now, adding t h i s term by term, we find (3.2) s ince ^i = p . 

Lemma 3: 

(3.3) £ - J — = (a - £)[L(32) - 2L(34) + 2Z,(38)]; 
n = 1 a 6/n 

Proof; 
1 ^ _ ^ _ = ^ 1 = ^ 3 2 n 

a - B ^ i a n [ / n „ ~ i a 2 * - " ( - 1 ) * „~i 1 - ( - l ) n 3 2 w 

„~1 1 ~ 3 ^ +n^0 1 + 3 ^ + 2 

Using (1.6) with x = 3 4 and (2.3) with x = 6 2 , we find ( 3 . 3 ) . On the other 
hand, we have: 
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y = y - = v - = v - + v — 
„t-i anVn n^Y a2n + {-l)n „ ^ i 1 + ( - l ) n 3 2 n n=i 1 + 3 ^ n=o 1 

i*+n+2 

ihn+Z' 

Using (2.2) with x = 34 and (2.1) with x = 32, we find (3.4). This concludes 
the proof of Lemma 3. Now the proof of the theorem follows immediately from 
Lemmas 2 and 3. 

4. Special Cases 

4.1 Fibonacci-Lucas Sequences 

Let p = 1 in (1.1) to obtain 
l + i/5 

Wn = K-l + Wn-2> a = » 
1 - /5 

£/n = Fn is the Fibonacci sequence and Vn = Ln is the Lucas sequence. Equations 
(1.7) and (1.8) take the following form: 

£ 1 
n= 1 ^n^ n + \ 

1 

2/5 

rc= 1 -^n^n + 1 v5 

.3 - /5\ 0 11 - 3 / 5 \ /47 - 21/5 
L - 2L + 2L 

2L 

2 
3 - / 5 47 - 21/5 

2 
1 - / 5 

2/5 

1 - / 5 

4 .2 Pell and Pe l l -Lucas S e q u e n c e s 

Let p = 2 i n (1 .1 ) to o b t a i n 

Wn = 2Wn_l + Wn_2, a = 1 + / 2 , 3 = 1 - / 2 . . 
£/n = Pn is the Pell sequence, Vn = §n is the I. Pell-Lucas sequence. Equations 
(1.7) and (1.8) take the form: 

£ = 4/2[L(3 - 2/2) - 2L(17 - 12/2) + 2L(577 - 408/2)] + 1 - / 2 ; 
n = 1 Pyi^n + l 

~ 1 1 r- r~ 1 - / 2 
53 7 ^ = -7=[i(3 - 2/2) - 2L(577 - 408/2) ] + 3n + l il 4 /2 

5. Generalization 

The following theorem generalizes the above result. It is given without 
proof, since the methods required exactly parallel those of Section 3. We 
assume that K is an odd integer. 

Theorem 2: 
1 2(a - 3) , 

^ [L($2k) - 2L(3 4 k ) + 2 L ( 3 8 k ) ] + ~z\ 
n=iUknUk{n + l) Uk , Uk 

E 1 -[£(B2k) - 2L(f38k)] + 
»^i^„^( n +i) (a - B ) V ^ ' " N- " Co - B)J/fĉ  

For the proof, the reader will need the following lemmas. 

Lemma 2': 

2£ 
1 

+ ^ E n = i a k n [ / f e n a k t / k rz= 1 ^ n ^ ( n + l ) ' 

1 1 , N " 1 
T/fen '« Vk n=l Vkn Vk(n + l) 

2 y 
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Lemma 3': 

n^i~aknUkn 
Z knn = (^ ~ 3)[£(32/c) - 2L(^) + 2L(B8^)]; 

t -J^T— = L{^k) - 2L(38fe). 
n= i aKnV-, kn 
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THE DISTRIBUTION OF RESIDUES OF TWO-TERM RECURRENCE SEQUENCES 

Eliot Jacob son 
Ohio University, Athens, OH 45701 

(Submitted July 1988) 

Let UQ, UI , A, B be i n t e g e r s and d e f i n e , for n > 2 , 

Un = AJJn_Y + BUn-2. 

For an integer m > 1, the sequence (Un) considered modulo 777 is eventually peri-
odic. We say (Un) is uniformly distributed modulo m [notation: u.d.(mod m)] if 
every residue modulo m occurs with the same frequency in any period. In this 
case, it is clear that the length of any period will be a multiple of m. 
Conditions that (JJn) be u.d.(mod m) can be found in [2, Theorem A]. Suppose 
(Un) is u.d.(mod pk) where p is a prime and k > 0. Let M > 2 be any integer. 
We study the relationship between the distribution of Un (mod M) and Un (mod 
M° pk) . For integers N > 2 and 0 < c < N, denote by x>(N, c) the number of times 
that c occurs as a residue in one shortest period of Un (mod N) . Our main 
result can now be stated. 

Theorem: Let p be a prime and k > 0 be an integer such that Un is u.d.(mod 
pk) . Say Un has shortest period of length pkf modulo pk. Let M > 2, and 
assume that Z7W is purely periodic modulo Ms with shortest period of length Q. 
Assume p\Q. Then, for any 0 < a < M, and 0 < b < M* pk with b = a (mod M) , 

v(M- pk, b) = / - v(M, a). 

We remark that ( , ) denotes the GCD. Also, observe that the hypothesis 
p\Q yields p\M. To prove the Theorem, we make use of a recent result of Velez 
[2], which we state here for the readerTs convenience. 

Lemma: Suppose that Un is u.d.(mod pk) with shortest period of length pkf. 
Then, for any integer s > 0, the sequence Us+qf, q = 0, 1, ..., pk - 1, consists 
of a complete residue system modulo pk. 

Proof of Theorem: Let 0 < a < M and let v(M, a) = d. As the Theorem is vacu-
ous if d = 0, assume d > 1. Let z^, u2> ..., W^ be all of the integers 0 < 
Wi < Q such that UW.E a (mod M) . Let 0 < £> < M • pfe, say & E P (mod pfe) with 
0 < r < pk. Assume b = a (mod M). Note that Un has period length 

f 
LCM(S5 fpk) = e «°  pk modulo M • pfc. 

(Q» j) 
For ease of notation, we set 2 = f/(Q, f). As (M, pfc) = 1, it suffices, by the 
Chinese Remainder Theorem, to show that the system 

(a (mod M) 
(1) Un =< 

{r (mod pk) 

has exactly z • <i solutions, 0 < n < z* Q* pk. 
We begin by producing, for each w^9 solutions Vn> V^z, ..., f ŝ of the sys-

tem. Fix i . Then 

UWi+eQ = a (mod M) for all 0 < e < 2 - p ^ - l . 

Let 0 < Sn < s^2 < ••• < siz < f be all of the distinct integers such that 

wi = sil E si2 E ... E siz (mod (S, /)). 
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By Velez's lemma, there exis t integers 0 < q-^, q • ? , . . . , q- < pk - 1 such that 

Us- • + q.-if - v (mod pk), for a l l j . 

Then, a lso , for any 0 < t < Q/(Q, f) - 1, we have 

US;j+(q?:j + tp^)f E r (mod pk) . 

The bounds on e, t guarantee that these subscripts are less than z • Q ' pk. For 
each i-, j, we seek e = e^j , t = t^-j in these bounds such that 

Write s^j - wi = (Q, f)mi-. Note that since lz * pk, -jT]—~£\ ) = 1 » t n e linear 
congruence ^ J ' ' 

t - z . p k = -{m,- + q i j 3 ) ( n . o d ^ — ) 
(Q, f). 

H has a unique solution t = t^- with 0 < £•• < — - 1. But then 

Q\(Q, Dimij + qidZ + ttj • Z - pk) ; 

thus, since (Q, z • Q • p k ) = Q, the linear congruence 

eQ = (Q, f) (mi;j + q^ z + t^ • z • pk) (mod. z • § • pk) 

has § solutions 0 < e < z • q • p k . Hence, this congruence has a unique solution 
e = e^j satisfying 0 < e^j < z • pk - 1. With these values of e^j, t^ , we have 

wi + ei3-Q = s i d + (qi. +" *if7-pfe)jT (mod g • « • pk), 
so equality holds, since both sides are less than z • Qm p k . Set i?-- = u^ + &ijQ 
for all i, j . Then 0 < v^j < z " Q • p k , and each y^- is a subscript that satis-
fies the system (1), that is, Uv,. = b (mod M» p k ) for all i , j . We claim that 
the Vij are distinct. 

Suppose that v ̂  = V gh. Then w± + ê - Q = wg + e.ghQ implies Q\(w^ - Wg) . As 
0 < w^9 Wg < Q, this gives w^ = Wg, so that i = g. Then 

so that jT| (s^j - s^h). As 0 < s^- , s ^ < /, we have that s^j = Sijj ; therefore, 
j = h. Thus, the v^j are distinct. This shows that, for any 0 < a < M and any 
0 < b < M • p k , v (M • pfc, b) > z • v(M, a) . The proof is concluded by observing 
that 

M-pk-\ M-ip*--i (a (mod M) 
z . Q. pk = ^ v(M'p^5 W = J ] X>0tf' pfc, &)-, where b = < 

b = 0 . a=.0 ̂ =Q ( P (mod pfc) 
/>/ - 1 p k - 1 A/ - 1 

- X X! s • V ( M ' a ) = s • p k 2 ] v(A/, a) = z ' p k ' Q. 
a=0 r=0 a = 0 

Hence, equality holds throughout, and the Theorem follows. D 

Example: Let A = B = 1, UQ = 0, ̂  = 1 so that i/w is the Fibonacci sequence. 
Then Un is u.d.(mod 5). Take M = 33. Then Un has period of length Q = 40 mod-
ulo 33, and one computes that v(33, 1) = 5, whereas v(165, 1) = 3. This justi-
fies the hypothesis that p\Q. Moreover, in this case, v(33, a) assumes 5 
values for 0 < a < 33, but v(165, b) assumes only 4 values for 0 < b < 165. 

In fact, our Theorem asserts that Un has the same number of distinct dis-
tribution frequencies modulo M and M• pk, whenever M, p satisfy the hypotheses 
of the Theorem [that is, v(M, *) and v(M»pk, *) take on the same number of 
distinct values]. This provides an alternate method of obtaining the results 
in [1]. 
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Note that the "purely periodic" hypothesis of the Theorem can be omitted if 
one substitutes asymptotic density for frequency, as the finite number of terms 
before Un becomes periodic modulo M do not affect density. Our final result is 
well known but illustrates the Theorem's power. 

Corollary: Suppose that Un is u.d.(mod pk) and is u.d.(modAf), where p is a 
prime that does not divide the length of the period of Un (mod M) . Then Un is 
u.d. (mod M • pk) . 
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"What is the use," thought Alice, 
"of a book without pictures and 
conversations?..." 
Alice's Adventures in Wonderland, 

—Lewis Carroll 

1. Introduction 

In this paper we show how the two well-known integer representation theo-
rems which are associated with the name of Zeckendorf may be generalized as 
dual systems by constructing colored tree sequences whose shade sets partition 
Z+ = {1, 2, . . . } . Many interesting properties of the representations can be 
observed directly from the tree diagrams, and the proofs of the properties can 
truly be said to be "evident" or "obvious"; we shall not translate such proofs 
into other symbolic forms. 

The Zeckendorf theorems are about representations of positive integers as 
sums of distinct elements of given number sequences. The first theorem is in 
Lekkerkerker [6], and a dual of it is given by Brown [2]. Early papers on 
properties of the Zeckendorf integer representations are Zeckendorf [12] and 
Brown [1]. Klarner [5] gives an excellent review of the literature to 1966, 
and extends many of the theories to that date. In [3] Carlitz et al. (1972) 
define Fibonacci representations of integers, and study their properties. 

In Turner [7] we showed how to construct certain tree sequences and defined 
their shade sets, which together demonstrated the Zeckendorf representation 
theorems. In Zulauf & Turner [13], we showed how the shade sets could be 
defined in a set-theoretic notation, and proved the Zeckendorf theorems in a 
concise manner. In Turner [8] and Turner & Shannon [9] we defined Fibonacci 
word patterns and used them to study tree shade sets. 

Notation and definitions for integer representations 

(i) Let c = {<?!, <?2> c3» •••} De any sequence of distinct real numbers, and 
let N E Z+ (i.e., N is a positive integer). We shall be concerned with 
representations of N of the form 

(1.1) N = ± ei0i, 
i = 1 

where n > 1 and e^ € {0, 1} for each i . 
In this paper c will be a strictly increasing sequence of nonnegative 
integers. Once c is given, the vector e = {e\ , ..., en } determines the 
representation. 

(ii) (as in [4]): The sequence c is complete with respect to the positive 
integers if and only if every integer /!/ e Z+ has a representation of the 
form (1.1). 

(iii) (see [4]): If the number of elements of c used in a representation is as 
small as possible, the representation is said to be minimal; if it is 
the largest possible, then the representation is maximal. 
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The dual Zeckendorf theorems 

We shall use the notation Z and Z* when referring to these theorems and 
related properties. 

Theorem 1.1 (Z; [6], [12]): Every N e Z+ has one and only one representation 
in the form (1.1) with c = {un] = {Fn + l} = {1, 2, 3, 5, . ..}, the, Fibonacci 
sequence, and with the coefficients e^ satisfying en = 1, and e^e^+i = 0 if 
1 < i < n. 

Moreover, these representations are minimal; and for a given value of n 
there are Fn integers having Zeckendorf representations. 

Theorem 1.2 (the dual, Z,f; [2]): Every N 6 Z+ has one and only one represen-
tation in the form (1.1) with c = {un}, e^ e {0, 1}, en = 1, and e^ + &i+\ * 0 
if 1 < i < n. 

Moreover, these representations are maximal; and for a given value of n 
there are Pn+\ integers having Zeckendorf representations. 

The generalization in this paper: 

In Section 2 we show how to construct classes of colored tree sequences 
tfhose shade sets exactly cover Z+, and hence derive classes of complete sequen-
ces of integers (those used to color the trees). From these classes we select 
"wo which are dual in a sense that generalizes the dual conditions e^ei + i = 0 
and e^ + e^+1 * 0 used in the Zeckendorf theorems 1.1 and 1.2, respectively. 
Chus, we obtain a class of dual integer representation theorems, of which the 
Dair (Z, Z'r) is the simplest case. 

2. Colored Trees and Their Shades 

Definitions 

(i) A tree is a set of n nodes (or points), and a set of n - 1 edges (lines 
joining pairs of the nodes), having no cycles (paths from a node which 
return to that node). 

(ii) If one node in a tree is distinguished, and labelled as a root, we have 
a rooted tree. 

(iii) If real numbers (in this paper integers) are assigned to the nodes of a 
rooted tree, we have a number tree. We call the numbers colors of the 
nodes. 

(iv) A node, other than the root, which has only one edge attached to it is 
called a leaf. There is a unique path from the root to any given leaf. 
The sum of the colors on a root-to-leaf path is called the shade of the 
path. 

(v) The set of shades of all root-to-leaf paths in a rooted tree is the 
shade set (or shade) of the tree. 

Generation of a 3-parameter class of colored tree sequences 

Suppose we are given a coloring sequence of integers, denoted by c E CQ, 
C\> Ci* •••> on, ...; and also an initial sequence of i rooted trees denoted by 
TQ, TI, ..., T^_i, each of whose nodes is colored by a member of c. 

Then we can continue the tree sequence in the following way. 

For the nth tree, take a fc-fork (with k < n) and color its root node eH. 
Select an ordered subsequence of the TQ , T\, ..., Tn-i, of length k and using 
consecutive members, and mount them one by one from left to right on the k 
prongs on the fork. The following diagram makes this construction clear: 

1990] 231 



GENERALIZATIONS OF THE DUAL ZECKENDORF INTEGER REPRESENTATION THEOREMS 

(2.1) 

with k < j < n + 1. 
Any selection of values for the triple (i, j, k) will determine a sequence 

of colored trees, so the construction just defined determines a 3-parameter 
family of such trees. We shall also allow j, k to be functions of n. 

Tree sequences with shade sets exactly equal to Z^: 

We investigate now the choices of c, the triple (i, j, k) , and the initial 
trees such that they will lead to a sequence of trees having shade set Z^ = {0, 
1, 2, ... }. We shall require this to happen exactly; which is to say that if 
Zm denotes the shade set of the mth tree Tm of a sequence we shall require 

777= 0 
z+o and Z„ n Z, when u * V. 

Examples 

Before giving a general result, we shall give three examples to illustrate 
the various concepts introduced above. The first two provide graphical proofs 
of the dual Zeckendorf theorems; we treated these in [7] and [13]. The third 
gives an indication of the generalization we are aiming at, and we give the 
first seven trees of its sequence. 

Example 1 (Zeckendorf, Z) 

Parameter values: (i, j s k) 
Color sequence: 

(2 , n + 1, n - 1) ( for Tn) 
{0, U\, U2> •*•} where un = Fn+i. 

. . ' I V N 0 1 
T0 Tl T2 

Example 2 (Zeckendorf dual, Z*) 

Parameter values: (i, j, k) = (2, 3, 2) 
Color sequence: {0, u\, u^, ...}. 

. /v 
Example 3 (gap range 1, 2) 

Parameter values: (i, j, k) = (3, 4, 1) 
Color sequence: {0, 1, 2, 3, 4, 5, 7, ...} with cn = en_2 + cn-3-> 

for n > 5. 

.. :v v 0 1 2 3 
TQ Tl T2 T3 Ti, 
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For t h i s l a s t example, i t may be observed t h a t t h e sequence of t r e e shade s e t s 
{ Z n } , n = 0 , 1, 2, . . . i s 

{{0} , {1} , {2} , {3S 4 } , {5 , 6 } , {7, 85 9 } s {10, 1 1 , 12, 13} , . . . } . 

It is also seen that the number of leaves in Tn is cn-2_ after n = 5. It should 
be evident that with this color sequence and method of tree construction the 
shade set sequence will continue through the positive integers. Thus, the 
shade set covers ZQ exactly. So, given any positive integer N, it will 
correspond to the shade of just one root-to-leaf path in one tree of this 
sequence of colored rooted trees. It is easy to derive a formula to tell 
which. We shall not do this here, but rather remark upon the fact that the 
numbers (colors) on that root-to-leaf path constitute a representation for N as 
a sum of distinct members of c. Thus, c is complete for Z+. Moreover, because 
of the parameter values (£, j, k) and the construction process, we can state, 
from the following illustration, that the representation for N has gaps in its 
constituent colors of either 1 or 2 (i.e., at least a gap of 1 and at most a 
gap of 2) . 

Take N = 12, for example. This occurs in the shade of T7. The third root-
to-leaf path from the left gives the representation 

12 = 1 + 4 + 7 = cl + ch + c6. 

The binary representation (i.e., the vector of ^-values) is (0, 1, 0, 0, 1, 0, 
L). The "gaps" referred to above can now be seen as runs of 0?s occurring 
Detween the l's. All representations from this tree sequence will have a gap 
of 1 zero or 2 zeros between every pair of adjacent l's. A graphical "proof" 
of this is to write the construction rule thus, where the color gap sizes 
occurring are indicated on the fork edges: 

Tn-3 Tn~2 

m ._ \ / s for n > 3 n "~ \ / 

°n 

It is evident that in every tree beyond the third a 2 or a 1 must occur on 
every edge, and hence only gaps of 2 and 1 occur in all root-to-leaf path sums. 

The reader may care to check that similar reasoning applied to the trees of 
Examples 1 and 2 will verify the dual Zeckendorf theorems, with their gap 
properties that e^ei^i = 0 and e^ + ei + i x 0> respectively. 

Before going on to define the dual classes which generalize the Zeckendorf 
theorems, we give an indication of how studies of Fibonacci word patterns [8] 
occurring on the tree sequences can provide theorems about properties of 
integer representations. Referring to Example 2, for instance, suppose we wish 
to investigate the occurrence of integer representations with the Zeckendorf 
dual properties and which contain u\ = 1 (i.e., also e\ = 1). Examining the 
trees, we see that U\ = 1 occurs only on leaf nodes. It is easy to derive 
formulas for the number of z-q's occurring in tree Tn (it is obviously Fn) , and 
for the pattern of the occurrences. Details of the pattern are given in [8]; 
briefly, the pattern starting with T^ is given by the Fibonacci word juxtaposi-
tion recurrence formula 

Wn + 2 = WnWn + i , with Wi = 1 and h/\ - 01. 
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This gives the pattern (which is the leaf-node color pattern) 1, 01, 101, 
01101, ... . The positions of the lfs are the places 1, 3, 4, 6, 8, 9, ... and 
of the 0?s are 25 5, 75 105 . . . . These two sequences are the well-known 
Wythoff number sequences, given by {[an]} and {[a^n]} , respectively, where a = 
%(1 + /5) and [x] is the greatest integer function ([8] and [11]). Similar 
analyses lead to similar conclusions for the placings of the other colors in 
the tree sequence. 

To study relative positions and frequencies of occurrences of integer 
representations from Example 3, it is necessary to solve the third-order 
recurrence given for cn; and to study the corresponding word pattern recurrence 
Wn + 3 = WnWn + i with initial words Wi = 0, ¥2 - 1* ^3 = 2. 

3. Generalized Dual Zeckendorf Theorems 

We choose parameter values for (i, j, k) in (2.1) so that two dual tree-
sequence classes are defined. With suitable choices of initial trees, and of 
coloring sequences, we shall ensure that the first one (designated the GZ-
class) generates integer representations such that all gaps in the e-vectors 
have at least g* zeroes; and that the second one (designated the £Z*-class) 
generates integer representations with all gaps having at most g* zeroes. To 
be precise, we define a gap g to be a run of g zeroes occurring between two 
successive l's in an g-vector. The conditions "at least g* " and flat most g*" 
on the gap sizes in the g-vector representations are the dual conditions. We 
note immediately that the £Z-class will contain the sequence of Example 1, 
since the conditions ejej+i - 0 and g > 1 are equivalent. Likewise, the GZ*-
class contains the sequence of Example 2, since the conditions ej + &j+i * 0 
and g < 1 are equivalent. 

The following tables give definitions, and the first few color sequences 
and corresponding tree sequences as examples. 

TABLE 1. Definitions 

GZ-class 

Gap sizes: g > g* 

Parameter: (i, j, k) = (g* + 1, n + 1, n - g*) (for Tn) 

Color sequence: on + i = on + c„ + ^_]_ 

Initial colors: 0, 1, 2, ..., i 

Initial trees: {©|r = 0, .„., i - 1} 

General solution for c is given in §4 

GZ*-class 

9^9* 

(i, j, k) = (g* + 1, g* + 2, g* + 1) 

Cn+i = °n + ^n+1 + ••• + Cn+i-l 

0, 2° , 21, 22, ..., 2i~l 

The first i + 1 trees of {Tn} are 
given by: 

]0 ^1 ••• Tt_i 

® ® ® 
0, 1, ..., 2t_1,... 

with 2 < t < i . 

General solution for c is given in §4 
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TABLE 2. Example Sequences 

9* 

1 
2 
3 

1 

2 

CZ-Class 

0, 1, 2; 3 , 5 , 8, 13, . . . 
0 , 1, 2 , 3 ; 4 , 6, 9, 13 , . . . 
0, 1, 2 , 3 , 4; 5 , 7, 10, 14, . . . 

Tree Sequences (g > g*) 

0 1 2 3 5 

0® 0® 1® Ofl 1* 2» 

0 1 2 3 4 6 

£Z*-Class 

0, 1, 2; 3 , 5 , 8, 13 , . . . 
0 , 1, 2 , 4 ; 7, 13 , 24, 44, . . . 
0 , 1, 2 , 4 , 8; 15, 29, 56 , . . . 

Tree Sequences (g < g*) 

0 1 2 3 

0 « \% 0 * 1 

,.'VT N 
0 1 2 4 

0® l« 

o \ / 
• * 11 2 V 

4 J 

It should be noted that, since the shades of all the tree sequences in both 
the GZ- and £Z*-classes exactly cover ZQ, all the color sequences used (with 
?0 = 0 deleted) are complete for Z+. 

Within each pair of tree sequences, for each value of g* > the root-to-leaf 
paths give integer representations using distinct colors and with gaps satis-
fying g > g* and g < g*, respectively. Those on the tree sequences with g* = 1 
are the dual Zeckendorf representations. 

As we said in the Introductions there is hardly a need for formal proofs of 
the above statements about the integer representation properties. They all 
follow by induction, using the definitions of the procedures for constructing 
the colored trees. Study of the general tree diagram tells all! As Alice 
thought, in Wonderland: "What is the use of a book without pictures... ." 
However, to demonstrate the reason for the choices of (t, j , k) in the two 
classes, we shall give some details of the proofs. The key property to 
establish is that the shade sets of the trees in any sequence partition ZQ. 

Theorem: Each tree-sequence in the two classes defined in Table 1 has shade 
set exactly equal to ZQ = {0, 1, 2, ...}. 

Proof: We shall use induction, for sequences in each class. 

Case (i) Let T = {Tn} be a tree-sequence in the £Z-class. 

The first i trees in T have shades 0, 1, . .., (i - 1), respectively, by the 
definitions of initial colors and initial trees given in Table 1. The 
(i + l)t h tree is 

since k = n - g = i - ( i - l ) = l (meaning there is a 1-fork) , and n - j + 1 
= n - ( n + l ) + l = 0 (meaning that TQ is mounted on it). Here we have used 
the formulas given in Table 1 for the parameters (£, J, k) in the GZ-class. 

Thus, Ti has shade 0 + % = i 5 which continues the shade sequence required 
by the theorem. 

We now make the inductive hypothesis that the shade sets continue as for 
the theorem, up to the last (rightmost) branch of tree Tn, with n > i. 
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Referring to the construction diagram (2.1), inserting parameters j = n + 1 
and k = n - g*, we find that TQ is mounted on the first (leftmost) branch of 
the fc-fork used to construct Tn. This is also true for Tn + 1, etc. Hence, the 
leftmost branch shade of Tn+i is cn+i + 0 = cn+1. 

Now, the rightmost branch shade of tree Tn is cn + (rightmost branch shade 
of Tn-g*_i), which, by the inductive hypothesis, equals cn + (cn-g* - 1). 
Then, since on + cn_g* ~ on + cn-^+i = ^n+l (using parameter and color sequence 
definitions), we have shown that 

(leftmost branch shade of Tn+1) = (rightmost branch shade of Tn) + 1. 

Hence, the shade of Tn + i follows on in natural sequence from that of Tn. This 
completes the inductive proof. 

Case (ii) Let T = {Tn} belong to the £Z*-class. 

We proceed as for Case (i); we shall omit the details showing that the shades 
of TQ, T]_, . .., Ti + i conform to the theorem. 

Assume that the shade of the tree sequence TQ, T\, ..., Tn, with n > i + 1, 
is a sequence 0, 1, 2, ..., p. We shall show that the first element of the 
shade of ?„ + 1 is v + 1. 

Let us use the notation Ln, Rn to mean, respectively, the "leftmost branch 
shade of tree Tn

u and the "'rightmost branch shade of tree Tn." We have to show 
that Rn + 1 = Ln + i> From the construction diagram (2.1), and inserting the 
parameters for j , k from Table 1 for the £Z*-class, we see that 

Rn = cn + Rn (= cn + Ln ~ 1); 
and 

Ln + l = °n + \ + Ln-g* (= ^ n + Gn-\ + ••• + en_g* + Ln_g*). 
Now 

Ln = °n + Ln-g*-l = °n + (Ln-g* ~ °n-g*-0» 
using the fact that, for n > 1, the cardinal number of the shade set of Tn is 
equal to cn : this is easily established by induction, for the trees in GZ*. So 
we have 

Rn + 1 = on + Ln = 2cn - cn_g*-i + Ln_g* 

— On -r Cn-i T • • • -r Cn _ g* ~r Ln__g* 
= °n + l + ^n-g* 
= Ln+1' 

The existence of the generalized dual Zeckendorf integer representations 
now follows immediately. The proof that the gap sizes satisfy conditions 
g > g* or g < g* for tree sequences in the GZ-class or £Z*-class, respectively, 
rests on simple observations of the gaps that can occur [see diagram (2.1)] 
between on and the root colors of the k trees Tn-j + i, ..., Tn.j + ]< used in the 
construction. 

The final table gives the dual representations of N - 1, 2, ..., 10 for the 
cases g* = 1 and g* = 2. Note that they are, respectively, minimal and maximal 
representations. (See Table 3 below.) 

4. Formulas for the Color Sequences in the Two Classes 

In Table 1 we gave the initial values and general recurrence equations for 
the color sequences in the GZ- and £Z*-classes. We end the paper by giving 
general solutions for the equations, which provide formulas for the terms of 
the sequences in terms of weighted sums of binomial coefficients. We also give 
geometrical interpretations for these weighted sums: they are related to the 
elements on certain diagonals of Pascal?s triangle. Thus, in a very nice 
pictorial way, we have linked the generalizations of the dual Zeckendorf 
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integer representations to generalizations of the Pascal-Lucas theorem which 
states that sums of the terms on the 45°  upward diagonals of Pascal1s triangle 
are Fibonacci numbers. 

TABLE 3. Dual Integer Representations 

N 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

£Z-Class 

g* = i 

i (i) 
2 (01) 
3 (001) 
1 + 3 (101) 
5 (0001) 
1 + 5 (1001) 
2 + 5 (0101) 
8 (00001) 
1 + 8 (10001) 
2 + 8 (01001) 

g* = 2 

1 (1) 
2 (01) 
3 (001) 
4 (0001) 
1 + 4 (1001) 
6 (00001) 
1 + 6 (10001) 
2 + 6 (01001) 
9 (000001) 
1 + 9 (100001) 

N 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

GZ*-Class 

9* = 1 

1 (1) 
2 (01) 
1 + 2 (11) 
1 + 3 (101) 
2 + 3 (011) 
1 + 2 + 3 (111) 
2 + 5 . (0101) 
1 + 2 + 5 (1101) 
1 + 3 + 5 (1011) 
2 + 3 + 5 (0111) 

9* -

1 
2 
1 + 2 
4 
1 + 4 
2 + 4 
1 + 2 + 4 
1 + 7 
2 + 7 
1 + 2 + 7 

2 

(1) 
(01) 
(11) 
(001) 
(101) 
(011) 
(111) 
(1001) 
(0101) 
(1101) 

The recurrence for the GZ-class 

We wish to index and refer to the sequences in the GZ-class, as g* ranges 
over 1, 2, 3S etc. To this end we add a superscript in brackets, to the 
expression for the nth term in the ^*th sequence. Thus, c^f denotes this 
expression. Since it is typographically clumsy to use g* as the indexing 
letter, we shall replace g* by i (note that the values for i as used here and 
subsequently are 1 less than the ones used for the parameter in Table 1). 

The recurrence equation for c^ (omitting c^' = 0 from each sequence) is 

(4.1) ^(i) = ^(i) + ^(i) 

with initial values 

e^l'-^-i = cK*'. + £?:, , for n > 1, n + ̂  + 1 n + ̂  n 5 ? 

(4.2) Ai) s for s 1, 2, ..., £ + 1. 

[Note that for i = 1 this gives the Fibonacci sequence = {Fn+1}.] 

The general solution to (4.1) and (4.2), given i, is 

(4.3) <#?i + 1 = E (" " r i ) , for n - i + 1 = 1, 1, 3, .... 
which can be demonstrated by direct substitution, and making use of the identity 

\r + 1/ \r + l) + \r) 

for the binomial coefficients. 

We use the normal convention that L E 0 when a < b.\ 

If i is small, say i = 1, 2, 3, or 4, then we can use Binet-type formulas 
to calculate the c^ efficiently for any n. If i is large, then formula (4.3) 
above is probably the most efficient way to calculate a^ exactly. 

For example, if i = 1000, then ^22 0 0 is 

(T) - (T) • r2")+ (?)• 
which equals 

1 + 2199 + 1199 x 1198/2 + 199 x 198 x 197/6 = 2014100. 
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Thus, to calculate o (1000) 2200 2014100 from the above formula requires only a few 
additions and multiplications; whereas to calculate it directly from the recur-
rence relation (4.1) could require that all the cn be precomputed for n = 
1, 2, ..., 2199. Clearly, formula (4.3) is much quicker. 

The solution (4.3) also has a nice geometric interpretation, which we show 
in the final subsection. 

The recurrence for the GZ*-class 

The recurrence equation for c*^ (omitting c i ^ = 0 from each sequence) is 

n + i + l un ^ cn + l ^ (4.4) ^*{i) 

with initial values 

(4.5) c*{i) = 2S _ 1 for s 

+ 0*U) for n > 1, 

1, 2, , i + 1. 
[Note that i = 1 again gives the Fibonacci sequence {Fn+i}.] 

By considering e*+£+i ~ c*^), and using (4.4), we find that 

(L 6) <~*CO = Jr*^ - r^(i) rt = 1 ? 
^ ' 0 J cn + i + l LCn + i C i - l 9 n 1, Z, ... . 

We used this equivalent form of the recurrence equation as a first step in 
obtaining a general solution. The details of our solution method are lengthy, 
and will be reported elsewhere. Our solution is given next, as (4.7): it may 
be checked by insertion into (4.4) or (4.6) and use of elementary algebra and 
manipulations with binomial coefficients. 

The general solution to (4.4) and (4.5), given £, is 

where 

(4.7) 

c*d) = Ua+D _ u{i+i) f o r n 1, 2, 

,<*> = 
[n/i] 

'In - rz\ for n 0, 1, 2, 
o (-2)2 

We show in the next subsection how the solutions for the dual pairs of re-
currences in the GZ- and £Z*-classes are neatly related to elements on the 
diagonals of increasing slope within Pascal's triangle. 

Geometric interpretation 

Consider Pascal's triangle, for the binomial coefficients, drawn as a 45°  
triangle rather than the usual equilaterial triangle, thus: 

0 ] 
1 J 
2 J 
3 
4 J 
5 ] 
6 ^ ^ ] 
7 ^ ^ ] 
8 ^ ^ ] 
9 ^ 

1 
2 
3 

I 4 

^ ^ 5 ^ 
^ ? 6 

7\ 9 

^ ^ 6 ^ ^ 4 ^ 
^.10 10 

15 20 
21 35 
28 56 
36 84 

^ 

1 
5 
15 
35 
70 
126 

13 - *<» ) 

31 0 flu> ) 

1 
6 1 
2 7 
56 28 
126 84 

Lucas diago 

8 1 
36 9 

Then c 
slope 

(i) 
n+l 

- is iust the sum of all the binomial coefficients on the line of 
7. j 

that starts on the left end of the nth row. In particular, the n 7th 
Fibonacci number is the sum of the numbers on a 45°  line (slope i = 1) starting 

row (these lines are the well-known Lucas diagonals). As an at the ,th 

example, for the case i = 3, 

.(3) .(3) 
-9+1-3 (l)-(DAD- 1 + 6 + 3 10. 
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C g </Lg UQ 

The geometric interpretation also suggests the results c® = 2 and c^ = n 
corresponding to lines of slope 0 (horizontal) and °°  (vertical), respectively. 

As an example in the GZ^-class, again taking i = 3, and with n = 9, we get 

'X) - f ® - O - £(})] 
= 432 - 224 = 208. 

Inspection of Pascal's triangle shows that u^ is a weighted sum of the 
elements on the upward diagonal of slope i which begins at the first element of 
the nth row: the weights are powers of 2 as given in (4.7). 

Hence, <?*^ is the difference of weighted sums from the adjacent diagonals 
beginning on the nth and (ji - l)t h rows. 
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1. Introduction 

In this discussion, only tame embeddings of S^ in S3 that are oriented will 
be considered. All knots will be represented as regular projections and any 
projection is assumed to be regular. The reader is expected to know "big 0" 
notation; see [2] for example. Some knowledge of NP-Completeness is also 
useful. 

The algorithm analysis of the complexities is relative to the number of 
crossings of a given knot projection. Also, the analytical creation of the 
Conway polynomial is in the Class P. This is shown by the presentation of a 
well-known algorithm used for computing the Alexander polynomial which can be 
easily suited to generate the Conway polynomial in better than 0(n3) time. 

The proof of the Conway algorithm having exponential worst case time com-
plexity is based on showing the existence of n crossing knot projections. Given 
these particular projections, the Conway algorithm may perform <9(((1 + /5)/2)n) 
operations on the various knot projections which the algorithm derives in order 
to calculate the Conway polynomial. 

Definition 1.1: The crossing number of a knot K is the minimum number of cross-
ings for any regular projection of the knot K. 

Definition 1.2: A split link (see [10], [11]) L c S3 is a link L = £]_ u L2 where 
Li and L2 are nonempty sublinks and there exist two open balls, 5j and B2 in S3 

such that Bx n B2 = 0 ; and LY C B1 and L2 C B2. 

Definition 1.3: A tangle (see [4]) is a portion of a knot diagram from which 
there emerge only four arcs from the four "directions" NE, NW, SE, and SW, and 
possibly some crossings inside. 

Examples: 

®<8> ©O 
+1 Integer -1 Integer 0 Integer « Integer 

Tangle Tangle Tangle Tangle 
FIGURE 1 

A tangle cannot have any knot arcs passing under or over it. The integer 
tangles pictured above, denoted by the integers +1 and -1 describe all cross-
ings of any knot or link. The following three operations are the elementary 
knot crossing operations. 

Definitions 1.4: 
1. Smoothing — This operation takes an oriented +1 or -1 integer tangle and 

replaces it with an oriented °°  integer tangle. 
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Changing—This operation takes an oriented +1 or -1 integer tangle and 
replaces i t with an oriented -1 or +1 integer tangle , respect ively . 
Deleting—This operation takes a +1 or -1 integer tangle and replaces 
i t with a 0 i-angle. 

Smoothing: 

3, 
i t with a 0 tangle 

Changing: 

Deleting: 

FIGURE 2 

Fundamentally, the Conway algorithm is based on the first two knot opera-
tions. The operations of changing and smoothing crossings will be focused on, 
although smoothing and deleting [14] and changing and deleting will also be 
discussed. 

Conceptually, there can be a tree of projections built during the applica-
tion of elementary crossing operations. This tree of projections will become 
the basis of the complexity analysis. 

A knot's tree of projections relative to changing and smoothing is built: as 
follows: 

If the knot K is the unknot, then the tree of projections is the trivial 
tree with an unknot projection as the root with no children. 

Given a knot K that is not the unknot, the tree of projections is the 
binary tree with a projection of K as the root. Choose a crossing, call it J, 
change the knot projection K at the crossing X to produce the knot projection 
L. Take the knot projection K9 and the crossing X. Smooth it to produce the 
link projection R. The right child of the root projection K is the smoothed 
knot projection R and the left child of the projection is the changed 
projection L. This process of smoothing and changing of knot projections and 
nonsplit link projections is recursively continued always placing changed knot 
or link projections as left subtrees and smoothed knot or link projections 
become right subtrees. When a subtree becomes the unknot or a split link it is 
a leaf having no more children. It may be observed that by changing a crossing 
one can reach either the unknot or a split link. A link's tree of projections 
is constructed similarly. 

Examples: 0) 
' \ 

Oo O 

FIGURE 

° co 
. / \ 
oo o 

3 
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Notice that the trefoil and the figure eight knots have identically struc-
tured trees of projections. Any combinations of the three elementary opera-
tions consistently applied forms a tree of projections in a similar fashion. A 
tree of projections is assumed to be relative to changing and smoothing unless 
otherwise noted. 

To quote Louis Kauffmann [10], a convenient way to get an unknot from a 
knot is to perform the following operations on the knot diagram [10, p. 79]: 

Choose a point p on the diagram and draw knot so that you first draw an over-crossing 
line at the first encounter with a crossing, under cross at the second encounter, and 
continue until you return to p. 

Performing this to a knot projection and then applying Reidemeister moves can 
produce the unknot in familiar form. 

Definition 1.5: An unknot projection developed in this fashion is designated a 
descending knot projection [6], [7]. A descending knot projection's mirror 
image is, of course, an ascending knot projection. 

Just as there is a rather straightforward algorithm for creating a descend-
ing knot projection there is also a straightforward algorithm for detecting an 
ascending knot projection. 

Definitions 1.6: 
1. The unknotting number of a knot is the minimum number of changes that must 

be performed to produce the unknot starting from any knot projection. The 
unknotting number of a knot K is denoted by u(K) . 

2. The unsmoothing number of a knot is the minimum number of smooths that must 
be performed to produce the unknot or split link from any knot projection. 
The unsmoothing number of a knot K is denoted by us (if) . 

3. The deleting number of a knot is the minimum number of deletes that must be 
performed to the crossings to produce a split link or an unknot from any 
knot projection. The deleting number of a knot K is denoted del(K). 

In 1970, J. H. Conway defined a polynomial, S/K(z), with integer coeffi-
cients for oriented knots and links. The polynomial can be recursively 
calculated from a regular projection of a knot or link K by consistently apply-
ing the knot crossing operations of changing and smoothing. 

Theorem 1.7: Every knot K has a well-defined Conway polynomial. 

This is well known and a proof can be found in [11]. 

Surprisingly, the Conway polynomial is well defined independent of the par-
ticular sequence of smoothings and changings used to calculate it. One of the 
most important facts about Conway's algorithm is that it can be applied to any 
regular projection of a knot K and it will produce the same polynomial. 

2. The Algorithm 

Algorithm 2.1: (Conway's algorithm, see [4], [10], and [11]) 

Given: a projection of a knot K 
Returning: the Conway polynomial of the knot K 

1. Choose an orientation of the knot projection K. 
2. If (K is the unknot), then: 

Conway polynomial of the unknot is 1: VQ = 1 

3. If (K is a split link), then: 

Conway polynomial of the split link is 0: V^ = 0 
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4 . Otherwise , when K i s not the unknot and not a s p l i t l i n k , the t r e e of p r o -
j e c t i o n s i s b u i l t accord ing to the fo l lowing formula: 

vK - vL = sv M 

for K, L, and M knot and/or link projections identical in all respects 
except that they differ at one crossing in the following manner: 

® <g> O 
K L M 

FIGURE 4 

One must be sure to preserve the orientation and keep track of the multiple 
of the indeterminant on the right smoothing edge and the constant mul-
tiples on the left changing edges. 

5. Recursively repeat steps 2 through 5 with the appropriate smoothed and 
changed knot and/or link projections until the entire tree of projections 
is built. 

6. Return polynomial VK. 
7. End. • 

Applying Algorithm 2.1 to a knot projection methodically generates its tree 
of projections by performing changes and smoothings to the knot projection 
until there are only projections of unknots or split links left. These changes 
and smoothings must be performed by adhering to the following formula, 

where K, L, and M are identical knot projections in every respect except for 
the following significant differences at only one crossing: 

<8> ® <0> 
K L M 

FIGURE 5 

Using this relation recursively starting with any knot projection K, the 
projection eventually becomes resolved into either unknots or split links and, 
therefore, terminates. Notice that during step 4 of Algorithm 2.1 two new 
knots are created by changing and smoothing. These new knots may have many 
possible different projections, but any regular projection will suffice. The 
Conway polynomial of the unknot is defined to be one (V0 = 1) and any split 
link is defined to be zero (Vspiit link = 0) . The Conway polynomial of both the 
Trefoil and Figure Eight knots is z + 1. 

The Conway algorithm terminates when all subtrees have become either un-
knots or split links. 

The unknotting number is a lower bound of the number of crossing changes we 
must perform in order to construct the unknot from a given knot projection. 
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Similarly, the imsmoothing number is a lower bound* The next logical question 
might be: "Given any particular projection of a knot Z, how fast can Conway*s 
algorithm resolve the projection of the knot Z into unknots and split links?51 

Lemma 2.2: At most, [(ft/2)J is the unknotting number u(Z) of any n crossing 
knot or link Z. 

Proof: First, taking the case of an alternating and oriented knot or link pro-
jection Z of n crossings, orient the knot or link and then prepare to traverse 
it. If the traversal begins at an overcrossing, then set out to build a 
descending knot or link projection; otherwise, construct an ascending knot or 
link projection. 

Without loss of generality, assume that the descending variety will be con-
structed. Starting traversal at an overcrossing of the knot or link projection 
every time a crossing is encountered, if it is the first encounter with the 
crossing, ensure that it is an overcrossing. If It is the first encounter with 
a crossing, being passed under, change It to an overcrossing. Otherwise, if it 
is the second encounter with this crossing, then proceed under the crossing. 
This will construct the descending knot or link in at most 

r(w/2)l - 1 < I(ft/2)J 

changes because it was assumed that the traversal started on an overcrossing. 
Now we must contend with the nonalternatlng knot or link projection. Given 

a knot or link Z with n crossings, If K has more overcrossings than undercross-
ings, then construct the descending knot projection in less than or equal to 
L(ft/2)J crossing changes; otherwise, construct the ascending knot projection 
similarly. D 

Lemma 2.3: At most, [{n/2)\ is the deleting number del(Z) of any n crossing 
knot or link Z. 

The proof is similar to the proof of Lemma 2.2, and is therefore omitted. 

Lemma 2.4: Given an n crossing knot or link L, at most n - 1 is the unsmooth-
ing number us(Z). 

Proof: Given a projection of the knot Z with n crossings, if all n crossings 
are smoothed, then there will be only unknots and unlinks remaining. After 
n - 1 smooths, the knot Z will have, at most, only one crossing left, however 
many associated unlinks are left. The knot with the one remaining crossing 
must be the unknot. Q 

Theorem 2.5: At most, given an n crossing knot, the tree of projections rela-
tive to changing and smoothing, and smoothing and deleting can have 

0{((1 + /5)/2)n} projection nodes. 

[Note that (1 + /5)/2 = <J>, the "golden" ratio.) 

Proof: The tree of projections relative to changing and smoothing follows 
directly from Lemma 2.2 and Lemma 2.4. Given a knot projection Z, build a tree 
of projections that can be described by the recurrence relation 

f(n) = f(n - 1) + /(n - 2) + 1 
where f (p) is the number of nodes in any tree of projections of a given knot 
projection with n crossings and, of course, f(0) = 1, f(l) = 1, and f(2) - 3. 

The tree of projections relative to smoothing and deleting follows iden-
tically from Lemmas 2.2 and 2.3. D 

Theorem 2.5 supplies an upper bound on Conway's algorithm (Algorithm 2.1). 
This is due to the relation 
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(1) V£ = VL + SVM 

upon which Conway based his algorithm. Notice the similarity between (1) and 
the recurrence relation that defines the Fibonacci sequence. 

An implementation of Conway's algorithm may not be bounded strictly by the 
upper bound established by Theorem 2.5, but any implementation of Conway's 
algorithm can be made to adhere to this upper bound. 

A tree of projections relative to changing and deleting has an upper bound 
of 6>(2^n/2)) given an n crossing knot. Additionally, a tree of projections 
relative to smoothing and smoothing, or changing and changing, or deleting and 
deleting all have exponential upper bounds. In summary5 we have the following 
theorem. 

Theorem 2.6: At most, the tree of projections relative to any consistently 
applied elementary knot operation has as an upper bound an exponential number 
of nodes. 

In Theorems 2.5 and 2.6 we have not yet established the existence of any 
classes of knots which actually adhere to these bounds, i.e., How tight are 
these bounds? 

3. The Complexity 

A particular class of knots with specific projections illustrates that 
there exist knot projections whose trees of projection relative to smoothing 
and changing, and smoothing and deleting actually satisfy the upper bound of 

G{((1 + /5)/2)n}. 

The class of knots is the (2, ri) torus knots and links and the Fibonacci 
knots [14] Fn = 1111...1 (n lfs in Conway's notation, see [4]). The (2, n) 
knots and links will all be assumed to have the projections and orientations 
described below. 

H — \ 
mmmm 3sT\ 

FIGURE 6 

Standard projection of the (2, ri) knots and links 

Throughout the rest of this discussion, the (2, n) torus knots or links 
will denote the standard projections of the (2, n) knot or link. Also, given 
any standard projection of a (2, ri) knot or link, smoothing and changing will 
produce standard projection knots or links. This is being done because stand-
ard projections can be maintained throughout the execution of Conway's 
algorithm. The Fibonacci Knot Class is defined by Turner in [14], which we 
follow. Just as in [14] a knot from the Fibonacci Knot Class will be denoted 
as Fn. In Conway's notation [4], Fn = 111...1 (n ones). This turns out to be 
useful in the worst case analysis. Several lemmas are now presented without 
proof, since they can easily be deduced via examination. 

Lemma 3.1: Smoothing the specified projection of a torus knot (2, ri), for 
m > 1 and n - 2m + 1, can produce the link projection (2, n •- 1). Addition-
ally, smoothing the link projection (2, ri) , for n - 2m and m > I, can produce a 
torus knot projection (2, n - 1). We also point out that changing a torus knot 
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projection (2, ri) , where n = 2m + 1 and m > 1, can produce the torus knot 
projection (2, n - 2). And changing the link projection (2, ri) , for n = 2 and 
777 > 1, can produce the link projection (2, n - 2), 

Lemma 3.1 can be verified by examination of parts of the actual torus knot 
projections. 

Lemma 3.2: (Turner [14]) Given a Fibonacci knot Fn deleting and smoothing a 
crossing can create the following projections Fn„i and Fn-2° 

An n-trefoil is n trefoils connected in the following fashion: 

FIGURE 7 

Lemma 3.3: Given an n-trefoil, any sequence of elementary knot operations 
forms an exponential tree of projections. 

Lemma 3.3 can be proved by using induction. 

Definition 3.4: An AVL tree [1], [2] is a binary tree which has the property 
that from any given node in the tree the depths of the right and left subtrees 
differ by at most one. 

Examples: 

FIGURE 8 

For brevity, from here the discussion is focused on the elementary opera-
tions of changing and smoothing, 

The following induction establishes that applying Algorithm 2.1 to a (2, ri) 
knot projection can produce an AVL tree. The Conway algorithm, given a stan-
dard projection of a (2, n) knot or link may maintain standard projections 
throughout smoothing and changing. It is easily proven that any AVL tree has 
exponential number of nodes, but an exact result will be found. 

Theorem 3.5: A torus knot standard projection (2, n ) , for n = 2m + 1 and 
77? > 1, will produce a tree of projection with 9{((1 + /5)/2)n} projection nodes 
provided standard projections are maintained throughout the computation of the 
Conway algorithm. The same is true for a (2, ri) link projection. 

Proof: By Lemma 3.1, standard projections can be maintained throughout the 
construction of a tree of projections of a (2, ri) knot or link projection. 
Standard projections will be maintained throughout this proof. 

Claim: When Conway's algorithm is applied to a (2, ri) knot or link in standard 
projection, it produces an AVL tree with the number of nodes described by the 
recurrence relation 

fin) = fin - 1) + fin - 2) + 1. 
Proof by induction: 

Basis. The unknot (2, 1) produces a trivial AVL tree. The link (2, 2) 
produces an AVL tree with 3 knot projections or nodes. The trefoil (2, 3) 
produces a tree with 5 nodes. 
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Inductive hypothesis. Assume that for some number q and some function f 
the standard knot projection (2, m) has an AVL tree of projections with f(jri) 
nodes as long as m < q* Additionally, the standard link projection (2, m - 1) 
has an AVL tree of projections with f(jn ~ 1) nodes. 

Inductive step. By the inductive hypothesis, the link or knot projection 
(2, q - 1) has an AVL tree of projections of size f(q - 1) . The knot or link 
(2, q - 2) has a tree of projections with fiq- 2) nodes in its AVL tree. Now, 
by adding the +1 integer tangle appropriately to the link or knot projection 
(2, q - 1) , the knot or link projection (2, q) may be produced. Performing a 
change to the standard projection of the knot or link (2, q) can produce the 
knot or link projection (2, q - 2) . Smoothing a crossing of the knot or link 
(2, q) may produce the link or knot (2, q - 1) projection. Making the projec-
tion of the knot or link (2, q) the root of the tree of projections with the 
subtrees created by the knot projections (2, q - 1) and (2, q - 2) can make a 
tree with a total of f(q - 1) + f{q - 2) + 1 projection nodes. This is true 
because the tree of projections of the link or knot (2, q - 1) is an AVL tree, 
and the tree of projections of the knot or link (2, q - 2) is also an AVL tree 
by the inductive hypothesis. The link or knot projection (2,q - 1) has smooth-
ing and changing subtrees consisting of the trees of projection (2, q - 2) and 
(2, q - 3), respectively. Since depth((2, q - 2)) - depth((2, q - 3)) < 1 where 
depth(Z) is the depth of Zfs tree of projections, then depth((2, q - 1)) -
depth((2, q - 2)) < 1. Therefore, the knot or link projection (2, q) can have 
an AVL tree of projections with number of nodes described by the recurrence 
relation 

fiq) = fiq - 1) + fiq - 2) + 1. 
This means that applying Conway's algorithm to the standard projection of 

(2, ri) and preserving standard projections throughout the calculation of the 
Conway polynomial will produce an AVL tree of projections with the number of 
nodes described by the recurrence relation 

fin) = fin - 1) + fin - 2) + 1. 
End of induction. 

Next, the exact number of nodes, in closed form, in this tree of 
projections can easily be derived by solving the nonhomogeneous, constant 
coefficient difference relation of second order: 

fin) - fin - 1) - fin - 2) = 1. 

Given fin) - fin - 1) - fin - 2) = 1, where n > 2, with the boundary condi-
tions fiO) = 1, /(l) = 1, and f(2) = 3. 

The closed form solution is easily derived using the method of variation of 
constants: ,_ ,_ _ „ . ' 

1 + /5/1 + /5\n -1 + /5/1 - /5\" 1 (1 - /5\n "-1/ 2 

+ T I H H £0(TTTI) 

/5 

Taking the identity 

(*} £ A i + /5/ = 1 + /5L'l + /5/ ' 1 + /5 
which converges to 0 as n approaches <*, noting (1 - v5)/2 < 1, 2/(1 + /5) < 1> 
and, for some integer k and some constant A when n > ks 
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fin) < A[—^—) , 
we obtain 

Now, to show ((1 + /5)/2) = 0(f(n)): Given equation (*) and the fact that 
(1 - v5)/2 < 1, then choosing a large enough constant A and some number k when 
n > k, 

((1 + /5)/2)n < 4((1 + /5)/2)n + 1 as n ^ , 

Hence, 

/(«) = e{((i + /5)/2)"}. 

This completes the proof. Q 

Since the tree of projections for a (2, n) knot projection whose children 
remain as standard projections has depth of at least [(n/2)J, it is quite easy 
to show fin) = £(2[(n/2)J), alternatively. 

Noting Theorem 2.5 and Theorem 3.5 and given any n crossing knot K, call 
its tree of projections relative to smoothing and changing PK. Then the stan-
dard projection of the (2, n) knot can have a tree of projections P(2, n) that 
is larger than or equal to PK. 

A similar argument, along with Theorem 2.6, illustrates that the Fibonacci 
Knot Class forms an upper bound on the size of a tree of projections relative 
to smoothing and deleting. So we have proved 

Theorem 3.6: The (2, n) knots and the Fibonacci knots Fn have trees of pro-
jections relative to changing and smoothing, and smoothing and deleting, 
respectively, which can be the largest possible given a knot with n crossings. 

It is left to the reader to show that the n-trefoil will produce a knot 
which can have the largest possible tree of projections relative to changing 
and deleting within a constant. 

It has been established that there are knot projections (and link projec-
tions, for that matter) whose trees of projections can have an exponential 
number of nodes relative to the number of crossings in the projections. The 
tree of projections may be built as needed and taken apart immediately 
afterward. 

Any operation on the nodes of the tree of projections of a knot can be 
considered the fundamental operation. The operation of checking for an unknot 
or split link seems to fit the bill best (see Algorithm 2.1). This is because 
the appearance of the unknot or split link indicates a leaf node in the tree of 
projections with no children; hence, the algorithm may stop smoothing and 
changing down that particular branch of the tree. 

And now a nice application: Denoting the Conway algorithm by C. 

Theorem 3.7: CWorst in) = 0((1 + /5)/2)n); or the Conway algorithm has expo-
nential worst cast time complexity. 

The Conway algorithm, given any knot projection K is invariant since the 
Conway polynomial of the knot K is well defined given any knot projection of K 
(Theorem 1.7). Let n denote the number of crossings of a particular knot. By 
Theorem 3.5, using C in constructing the Conway polynomial of the standard 
projection of the torus knot (2, n), it is possible to produce an exponential 
tree of projections. So, CworstOO has exponential time complexity dominated by 
Oiiil + /5)/2) ) unknotting checks. Q 

Corollary 3.8: Any polynomial invariant constructed by any consistent combina-
tion of knot operations (changing, smoothing, and deleting) on a knot 
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projection is of exponential worst case cost. Provided the operations are 
performed to the given knot projection until all of the derived knot or link 
projections are resolved into unknots and split links at least. 

This is true, since these operations are irrespective of the unknown's and 
their coefficients. 

For example, take the Homfly polynomial [6] of a knot K, Homfly^Cx, y, z) , 
which can be calculated in a similar fashion to Algorithm 2.1. The Conway 
polynomial of the same knot YK(z) can then be created by setting x = 1 and y = 
1, resulting in Homfly (1, 1, z) = VK(z). 

It might be noted that Conway's algorithm has a constant best case time 
complexity. It seems to be a very hard problem to decide the average case time 
complexity of Conway's algorithm. 

Theorem 3.9: The act of creating the Conway polynomial is in the class P. 

This will be proved by the presentation of an algorithm which can determine 
the Conway polynomial in better than (9(n3) time. 

Algorithm 3.10: (Aversion of Alexander's Algorithm, [3]; see also [13]) 

Given: a projection of a knot K. 
Returning: the Conway polynomial of the knot K. 

1. Choose an orientation of the knot projection K. Label the crossings from 
Z]_ to Xn for a knot with n crossings. 

2. Create an n by n matrix, calling it mat, filling all entries of mat with 
zeros. 

3. Fill the entries of the matrix as follows: 
Each crossing is associated with a column of the matrix. 
for col : = 1 to n do 

Say crossing col is: 

FIGURE 9 

Then let 

endfor 

mat[/c, col] 
mat[i, col] 
mat[j, col] 

= 1 -
= z 
= -1 

and column of the matrix mat producing a (n - 1) x (n - 1) 4. Disregard any row 
matrix. 

5. Calculate the determinant of the matrix produced in step 4. 
6. The polynomial created by computing the determinant is the Alexander poly-

nomial. 
7. The Alexander polynomial is converted to the Conway polynomial by noting 

/SK(z2) = VK (z - z~l) where equality is up to multiples of ±zn. 
8. Normalize A x 0 2 ) into !K(z). Return VK(z). 
9. End. 

This algorithm clearly terminates, and the computationally time consuming 
part of Algorithm 3.10 is step 5, calculating the determinant. Step 5 can be 
done by a straightforward algorithm in 0(n3) time. For example, performing 
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Gaussian elimination followed by multiplication along the diagonal computes a 
determinant m time. There are other algorithms which can compute this 
in slightly better time. The fact that the matrix is sparse, only having three 
nonzero elements in each column, can also be taken into account. 

This 0(n3) complexity is the same given any n crossing knot projection. 
Therefore, denoting Alexander's algorithm as Alex, it must be that 

A l e x best( n) = A l e x worst( n) = Alexaverage M = 0(n3), 
assuming Gaussian elimination followed by multiplication along the diagonal is 
used to calculate the determinant. Hence, the act of creating the Conway 
polynomial is in the class P. 

4. Conclusion 

In this paper it is established that the consistent application of elemen-
tary knot operations may lead to an exponential number of derived knot projec-
tions. This illustrates that Conway's algorithm has exponential worst case 
time complexity. Moreover, the nonvacuous upper bound on the worst case com-
plexity is based on the golden ratio. It was then illustrated that a 
determinant based algorithm given by Alexander is of polynomial time com-
plexity; hence, calculating the Conway polynomial is in the class P. It is 
interesting to note that Jaeger [8] has shown the calculation of the Homfly 
polynomial to be in the class /i/P-Hard. 

Corollary 3.8 shows that this complexity analysis can be applied to the 
calculations of the Jones polynomial [9], the Homfly polynomial [6], the Kauf-
fman polynomial [12, Appendix], and many other polynomial invariants of knots 
and links. 

Hopefully, algorithms for the calculation of knot polynomials will receive 
more attention in the future. Many interesting questions remain open. It is 
presently unknown whether any knot polynomial can detect knottedness. Yet 
Fellows & Langston [5] have recently nonconstructively shown that detecting 
knotlessness is in P. So the quest is on to find some invariant, knot 
polynomial or otherwise, that can recognize the unknot in polynomial time. 
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AN ALGEBRAIC IDENTITY AND SOME PARTIAL CONVOLUTIONS 
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(Submitted July 1988) 

Let {cti}i>Q an<^ {bi~^i>o D e a n y t w o r e a - l o r complex number sequences s a t i s -
fying at * 0 and bi * 0 for i > 0. Assume t h a t x, y, and z a r e t h r e e formal 
v a r i a b l e s . For any n a t u r a l number n, de f ine a formal b inomia l c o e f f i c i e n t as 
f o l l o w s : 

n X - a 
( - ) , n ^ — ^ , where {*) = 1 . 
\nl(a) k

lJl ak \ 0 / ( a ) 
It is obvious that when ak = k (k = 0, 1, . . . ) 3 (S)(a) rec^uces to t n e ordinary 
binomial coefficient. If we replace x by I - q% and a^ by 1 - qk (k = 0, 1, 
...) instead, then (n)(a\ becomes the Gaussian binomial coefficient 

{ l \ : \ 
Based on these preliminaries, we are ready to state our main result. 

Theorem: Let 0<m<n<rbe three natural numbers. Then the following alge-
braic identity holds: 

yk 

Ub) 
= an + lbr-n{ * ,) ( y ) zn + l - ambr-m + 1(X) ( y ^ ,),^zm. n + L / n\n + i/(a)\p - n!(b) m r m + i\m/(a)\r - m + 1Kb) 

This identity follows from splitting the summand 

ibr_k{x - ak)z - ak{y - *r-k>}(£)(a)(r I k\b)*k 

= ak + lbr-k\k + i)(a)U - k)(bfk + l " akbr-k + l(k){a)\r - k + l){b)zk 

and diagonal cancellation. 
Taking z = 1, (2) reduces to the following. 

Corollary: Let 0 < m < n < v be three natural numbers, then 

(3) ^Jb^-aMX){ry-k)^ 
= an + lbv-nyn + J ^ l ^ _ n ) ( b ) - a,A-rc + i(^)(a)(r _ ̂  + 1 j ( f c ) . 

For the remainder of the paper, we shall discuss the applications of (2) 
and (3) to combinatorial identities. 

First, letting m = 0, y = m - x, and ak = bk = k in (3) gives 

(A\ v* P̂ C - mk/x\/m - x\ r - nix - l\lm - x\ 
k^0 rx \k/\r - k) r \ n )\r - n)° 

If we define a partial convolution by 

(5) Sm(X,r,n) = ±o(*Xr:*), 
then (4) generates the following recurrence: 
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Sm(x,r,n)=——(^ n )(r _ J +-S m-i(* - 1, r - 1, n - 1). 

Performing iteration on this recurrence and noting that the closed form of 
SQ(X, r, ri) from (4) and (5) is 

A (x\(l - x\ (I - x)(r - 1) - nix - 1\/ -x \ 

we have 
/-,N - / N A r - n(m\/r\-~L (x - k - l\(m - x\ 
(7) Sm0r, r, n) ^ E ^ r r - f c W U ) I «-fc ) L - « ) ' 

which contains the following interesting example (cf. Anderson [1]): 

(1 - x) Q - 1) - n(x 

k^Q\kl\r - k) r(r - 1) 
This identity and (6) are the main results of [1] established by the induction 
principle. 

Rewriting (7) in the form 

^m+n v - n(m - X\(T - l\~l 
k= 0X 

and making some trivial modifications, it may be reformulated as 

n , x , -v/72 + w v - nlm - x\(v - l\~l sr (m - r\/n - x\ 
Sm(x, v, n) = (-1) - i r - ( r _n){ m ) Zo{m _ k)(n _ k), 
ing some trivial modifications, it may be reformulated as 

In - r\ 
(Q\ v" iny1 lx\lm - x - r + n\/r\ _ \ n I A im - v\ln - x\ 
W X*\il \i)\ n - i )\i) ~ im - v\ L \ m _ k)\n _ /J-

Since (9) is a polynomial identity in r, it is also true if we replace r by a 
continuous variable 2/ which provides an algebraic identity. The particular 
case of m = 0 in (9) yields the following combinatorial identity: 

«« ,?,(?)«)«)"(";!i")-r;T;")-
Next, taking a^ = b± = i and replacing r and n by /?? + n in (3), we have 

<n> ,?0
{ ( m + ̂  - ( » - k ) ^ u i kin: i ) = ^oc; ')• 

Putting x = y and m = n + l i n ( l l ) , w e obtain the following identity, 

which reduces to an identity of Riordan ([3], p. 18) for x = n - m. 
If we let m •* m + s, x ->• 2m + s, and 2/ •> 2n + s, alternatively, then (11) 

degenerates to Prodinger's generalization for Riordan's identity (cf. [2], and 
[3], p. 89): 
,n> v 0̂7, a. W2m + s\/2n + s\ (w + s) (n + s)/2m + s\ /2w + s\ (13) Zo(2k + S ) ( m _ fe)(n. k ) m + n + 8 { m )[ n J' 

Finally, letting x = y = 1 - qt, ai = bi = 1 - qS and m = 0 in (3), we ob-
tain the following q-binomial convolution formula by simple computation: 

<») £i^{;][,?,],<.-»<'--->. [';'][,!„ 
When q •> 1, (14) reduces to the ordinary binomial identity: 

(1 5 )
 fc?Q P - n \k)\r - k) = \ n )\r - n)' 
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= (e • e ) ( r ) 
= (I • u)(r) 
- (Ik • e) (r) 

J . Sandor 
4136, Forteni Nr. 79, Jud. harghita, Romania 

L. Toth 
str. N. Golescu Nr. 5, 3900 Satu-Mare, Romania 

(Submitted July 1988) 

1. Introduction 

This note deals with certain inequalities involving the elementary arith-
metic functions d(r) , (j>(r), a n d a/<(p) a n d their unitary analogues. We recall 
that a divisor d of p is called unitary [2] if (J, r/d) = 1. Let e E 1, Ik(r) 
= jok (// > o) , and u denote the Mobius function. In terms of Dirichlet convolu-
tion, denoted by (° ), we have [1]: 

where _T(P) = p. 

The unitary convolution of two arithmetic functions f and g is defined by 

(1.1) (f®g)(r) = E/W)ff(|), 

where d||p means that J runs through the unitary divisors of p. The unitary 
analogue u* of u is given by [2] 

(1.2) u*(r) = (-l)w(r), 

where OO(P) denotes the number of distinct prime factors of p with GO (1) = 0. 
The unitary analogue (f)* [2] of the Euler totient is given by 

(1.3) cj)*(r) = (I © u*)(r). 
The unitary analogues of d and afc are d* and a* and 

(1.4) d*(r) = 2a)(p)5 

O)(P) being as defined in (1.2); 

For properties of a*, see [5]. It is known that d*, <f>*, and a* are multiplica-
tive functions. Further, given a prime p, 777 > 1, 

(<i*(pm) = 2 
(1.5) < <j>*(p"0 = p™ - 1 

(a*(p"0 = pm/i + 1 

Let <\>k = (Ik • y) . $k(r) is multiplicative in p 
1 the structure of <j>, and a^ 

(*k • crk) = (Ik • y) • (Xfc • e) 

From the structure of <j>, and a^, we note that 

(Jfc ' I ^ ) ' ( y e ) 
(IV • IV) as y is the Dirichlet inverse of g. 

or 
(1.6) X *k(d)ak(|) = pfcd(p) (fe > 1). 
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I t follows that 

,(r) + ok{r) = X ^W)a k g ) = rkd(r). 
d\r 

Therefore, dxi> a*r 

(1.7) $k(v) + ok(r) < rkd(r) 
with equality if and only if v is a prime. 

In arriving at (1.7), we have used the fact that cj)̂  and ok assume only pos-
itive values. 

Defining ^ = _Z\ © y*, and noting that 

(1.8) cj)* © a* = rkd*(r), 
we have 

Theorem 1: (j)̂ (r) + a?(r) < rkd*(r) with equality if and only if r is a prime 
power. 

Further, using the fact that 

$*®d* = a*, 
we also obtain 

Theorem 2: (J>*(p) + d*(r) < aj(p) with equality if and only if v is a prime 
power. 

We remark that Theorem 2 is analogous to the inequality involving §, d, and 
a, see [4], [6]. 

Using the multiplicativity of <j>? and ajff, one could also prove 

Theorem 3: For fc > 1, 
1 q£(rH%(*0 

£(2fc) r2 < X' 

where £(s) is the Riemann ^-function. 

Now, the AM-GM inequality yields 

(1.9) - £ — > Pk/2 (see [9]) 
d(r) 

and 
(1.10) 1 ^ 2 ^ . 

The aim of this note is to establish a few more inequalities which come out 
as special cases of certain general inequalities found in [3] and [7]. 

Let 

0 < a < ai < A /• = i ? \ 
0 < b < bi < B U 1, z, ..., s; 

where a^, bi (i = 1, 2, . . . , s) , a, i4, 2?, B are real numbers. Then, from [7], 

( L I D i-i -/u«i V ^ W 5 + a£)2 

i= 1 / 
Next, let 

0 < a(/°  < af} < . . . < a{k) (k = 1, 2, . . . , m) . 

Then, an inequality due to Tchebychef [3] states that: 
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(1.12) U ^ -
(1)\ 

The i n e q u a l i t i e s de r ived i n Sec t ion 2 a r e e s s e n t i a l l y i l l u s t r a t i o n s of (1 .11) 
and ( 1 . 1 2 ) . 

2. Inequa l i t i e s 

Theorem 4: For k > 0, 

(2.D £ ^ < £ i ± l 
*• d ( r ) " 2 
and 
n ^ a * ( p ) < p k + l 
K } d*W " 2 " 
Proof of (2.1): Let <i]_, . . . , <is be the d i v i s o r s of p . We appea l to (1 .11) by 
t a k i n g a^ = d\l2 , ^ = ^ m / 2 , 4 = rk/2, a = 1, b = r~m/2 , 5 = 1 . Then 

afe(p)gff l(p) (P:fe/2 + r -w/2 )2 

W a ( r ) V 4r 
V(k-m)/2 

or 

(p) \2 ~ 4r,fc/2 -w/2 
ik-m)/l) 

(av(r)om(r))1^ i 
f? 3) ^ K ^ ' rrt - - ^ (r(k + m)/2 + n 

(k-m)/2 

S e t t i n g ??7 = k i n ( 2 . 3 ) 5 we o b t a i n ( 2 . 1 ) . 

S i m i l a r l y , by c o n s i d e r i n g the u n i t a r y d i v i s o r s of r , we a r r i v e a t ( 2 . 2 ) . 
In view of (1 .9) and ( 1 . 1 0 ) , we a l s o have 

Corollary: 

(2 .4 ) rk/z < 
tffcO?) vk + 1 
d(v) ~ 2 

and 

(2 .5 ) Vkl2 < - * r — < 
a * ( r ) 2 

Theorem 5: For k5 m > 0, 

(2 .6 ) ^ ^ > r k / 2 

am(p) 
and 
(2 .7 ) ^ ^ 

o?+m(^) 

Proof of (2.6): Let cfj, . . . , <fs be the d i v i s o r s of r . We appea l to (1 .12) wi th 

a(1) - d \ \ . . . . a f = d\" (i - 1, 2, . . . , 8 ) 
where fc]_, . . . , /cm a r e p o s i t i v e numbers. . 
Then, 

> % + .. .+fcw(r> , g f e i W ^ 

with s = d(r). From (1.9), we obtain 

(2.8) — - --— > r2j*i . 

Wri t ing TT? = 2, we get 
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which proves (2.6). 

The proof of (2.7) is similar and is omitted here. 

Remark: Inequalities (2.6) and (2.7) generalize (1.9) and (1.10), respectively. 

In this connection, we point out that analogous to the inequality 
$(r)d(r) > r [8], one could prove using multiplicativity of (j)* and d* that 

Theorem 6: For k > 1, 

(2.9) d*(r)rk < <\>*(r) (d*(r))2 < r2k . 

The proof of (2.9) is omitted. 
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LENGTH OF THE n-NUMBER GAME 

Anne L u d l n g t o n - Y o u n g 
Loyola College, Baltimore, MD 21210 

(August 1988) 

The n-number game is defined as follows. Let S = (sl5 s2» •••» sn) be an 
n-tuple of nonnegative integers. A new n-tuple D(S) = (sls s2' •••» sn) is 
obtained by taking numerical differences; that is, s^ = \si - s^ + i| • Sub-
scripts are reduced modulo n so that sn = \sn - sx| . The sequence 5, D(S) , 
D2(S), . .. is called the n-number game generated by S. To see that a game 
contains only a finite number of distinct tuples let \s\ = maxls^} and observe 
that \S\ > \D(S) |. Since there are only a finite number of rz-tuples with 
entries less than or equal to l^, eventually repetition must take place. When 
n = 2W, it is well known that every game terminates with (0, 0, . .., 0). That 
this is not the case for other values of n is easily seen by considering the 
following 3-tuple: 

R = (1, 0, 0) 
D(R) = (1, 0, 1) 

D2(R) = (1, 1, 0) 
D3(R) = (0, 1, 1) 
Dh(R) = (l, 0, 1) = D(R) 

The tuples D(R), D2(R), and D3(R) form what is called a cycle. 
For any n-tuple S9 we say the game generated by S has length \ , denoted by 

L(S) , if DX(S) is in a cycle, but Dx~l(S) is not. Thus, in the example above, 
L(R) = 1, while L(D(R)) = 0. For each n, the length of games is unbounded. 
That is, for any X, there exists an n-tuple S such that L(S) > A. On the other 
hand, for tuples S with \S\ < m, there is a game of maximum length, since there 
are only a finite number of such tuples. We introduce the following notation: 

5̂ n(777) = {^l^ is an n-tuple with |5| = w}5 

l£n{m) = max{L(S)\S € ^n{m)}. 

On occasion, when the context is clear, we will drop the subscript. The values 
of J/.\(m) and J/'7(m), along with tuples giving games of maximum lengths, have 
been determined in [10] and [6]. We consider this question when n is not a 
power of 2. We first find an upper bound on Jf'n(m). Then we show that this 
bound is actually realized when n = 2W + 1. 

Before proceeding, a few additional comments are in order. Observe that, 
for any tuple S, if we multiply all the entries by a constant c and denote the 
resulting tuple by cS9 then 

(1) D(cS) = cD(S). 
Additionally, if all the nonzero entries of S are equal with S E 9\m) , then 
S = mE for some E e $/'(!) . In particular, an entry ei in E equals 1 if and only 
if the corresponding entry in 5, s^ , equals m. 

Since a game concludes when a cycle is reached, it is important to be able 
to identify those tuples which occur in a cycle. This author did that in [5]. 
The following theorem gives the salient facts from that work. We say that an 
w-tuple S has a predecessor if S = D(R) for some n-tuple R. 

Theorem 1: Let n = kr where k = 2k and r is odd with r > 1. Suppose S is an 
n-tuple. Then 
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( i ) S has a predecessor if and only if there exis t values ez e {-1, 1) , 
£ = 1, 2, n, such that 

n 

E££S£ = 0-
£ = 1 

(ii) S is in a cycle if and only if all its entries are 0 or \s\ and 

J2ei+jk E ° ( m o d 2 ) j f o r £ = ! » • • • > & » 
j = 0 

where 5 = \s\ * E with tf = (£l5 ez, . . . , en) e 9(X) . 
Part (ii) guarantees that when n is not a power of 2, there are nontrivial 

cycles; indeed, for n odd, the tuple E = (0, ..., 0, 1, 1) is in a cycle. More-
over, (ii) along with (1) gives 

(2) L(aS) = L(5). 

2. A Bound on.^n(m) 

For 5 6 SPn{jri), we say that £ /zas y 0 's and w's in a r^u, denoted by y(£)5 

if the following conditions are met: there exists an integer n such that s^ e 
{0, m} for i = n, n + 1, . .., n + y - 1, at least one of these s^ equals m, and 
y is as large as possible. As usual, we reduce subscripts modulo n. Thus, for 
example, 

\i(S) = 6 when S = (3, 2, 3, 0, 1, 3, 0, 3, 0, 0). 

Loosely speaking, a tuple S will produce a long game if, at each step, \i(D*(S)) 
is as large as possible. In determining an upper bound on J£n(m), the follow-
ing lemmas will be useful. 

Lemma 1: Let S e </n(m), y(£) = t, and t < n. If £(£) e 5^(m), then u(£(S)) < 
t - 1. 
Proof: By hypothesis, for some n, we have 

s^ e {0, w} for i = n, n + 1, ..., n + t - 1, 
Si - m for some i , r)<i<r\ + t - l s 
1 < ST]-l, S n + t < 777 - 1 . 

As before, let D(S) = (Sx, ..., sn). Then 

s^ € {0, 777} for i = \], n + 1, ..., n + £ - 2, 
1 < S T ] - l , 5 n + t-l < ̂  " I-

Hence, if |Z?(5)| = m, then \x(D(S)) < t - 1. D 

At first glance, it might seem in Lemma 1 that, if \D(S) | = 777, then y(Ẑ (6')) 
must equal t - 1. It is possible, however, to have strict inequality. This 
would occur if s^ = 0 for n ^ ^ ^ n + £ - 2 , while Sj = m for some other j. 
Lemma 2: Suppose that S € ^n{m) and not all the nonzero entries equal m. Then 
\Dn~l{S)\ < m - 1. Further, if S has a predecessor, then \Dn~2(S)\ < m - 1. 

Proof: Let y(5) = t . By hypothesis, t < n - 1, and if S has a predecessor, 
then by Theorem l(i), t < n - 2. In either case, Lemma 1 applies. So, if 
\DZ(S)\ = 777, for t = 1, . .., £ - 1, then y(Ẑ i(5')) < £ - « £ . Of course, if 
y(£J(£)) = 1, then |^ + 1(5)| < m - 1. Thus, |^t(5) | < m - 1. Q 

In a moment we will consider those tuples in which all nonzero entries 
equal m. In that case, S = mE for some E e^(l). For tuples in ^ ( 1 ) , the 
following is useful. Let A = Z2[t]A/ where Z2[£] is the polynomial ring over 
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Z2 and i is the principal ideal generated by tn + 1. We associate with # = 
(e1? . .., en) e j/n(l), the polynomial 

0>E(t) = en + en.lt + ... + e1tn-1 + e^71'1 in A. 

Since ei = |ei - ei + i\ = e^ + ei + i in Z2 and tn = 1 in A, 

(3) ^HE)(t) = {&n + &l)+ {en~l + e^)t + ° " + (̂ 2 + e3)tn~2+ (eY + e2)tn~l 

= (1 + t ) ^ ( t ) . 

Lemma 3: Let n = fa?, where -fe = 2k and r is odd with p > 1. Suppose S e ^n(rn) 
and all the nonzero entries equal 777. Then L(S) < k. Further, if S has a pre-
decessor, then L(S) < k - 1. 

Proof: As usual, we let S = mE, where E = O l 5 . . . , <2n) € ^(1) . For the first 
part, by (2), we need only show that Dk(E) is in a cycle. Using (3), we find 

%HE)W = a + t)k &E(t) 
= ( i + tk) 0>E(t) 

= (1 + ik)(ew + en_]_t + ... + e2tn-2 + e^71"1) 
k -̂1 n - 1 

= Z (en-£ + Z\-l)tl + J] (gn-£ + Zn+k-^t1 i n A" 
£ = 0 £ = k 

The second equality holds since k is a power of 2 and so all the binomial coef-
ficients in (1 + t)k except for the first and last are even. From the above, 
we see that 

Dk(E) = (ei + ek + l , e2 + ek + 2, ..., 'en-k + en, e„_k + 1+-e1, ..., en + ek). 
We now check condition (ii) of Theorem 1. In doing so, we use the fact that 
n - k = (r - l)k. For i = 1, we have 

(el + ek+l) + (ek+l + e2k + i) + ••• + (en.k+i + eY) = 0 (mod 2). 

Similarly, (ii) holds for all other values of i. Thus, Dk(E) is in a cycle and 
L(E) < k. 

For the second part, it is also sufficient to show that L(E) < k - 1. Con-
sider the tuple F = (fi, f2, ..., /n) e 5̂ (1) defined by 

fl = °> A = el + e2 + •'• + ei-\ (mod 2), i = 2, ..., n. • 
Since S has a predecessor, # does as well; because the entries of E are either 
0 or 1, Theorem l(i) gives 

el + e2 + ••• + en = 0 (mod 2). 

This means that fn = en and so £(F) = E. Thus, L(£) = L(D(F)) < k - 1. D 

Theorem 2: Let n = fcr, where k = 2k and r is odd with p > 1. Then &n(m) < 
(m - l)(n - 2) + Zc. 
Proof: Let 5 e ^n{jn) . If all the nonzero entries of 5 are equal, then by Lemma 
3, L(S) < k and so the theorem holds. Otherwise, by Lemma 2, \Dn~l(S) | < 777 - 1. 
Continuing, suppose that, for some £ = l,...,777-2, all the nonzero entries of 
Di(n-2) + l(S) a r e equal. Then, again by Lemma 3, L ( ^ ^ n _ 2 ) +1 (S)) < k - 1, which 
means L(5) < £(n - 2) + fc. On the other hand, if the latter condition does not 
hold, then, by Lemma 2, \D^m~ 1)(n~2) + 1 (S) \ < 1. Another application of Lemma 3 
gives the desires result. D 

If there is a tuple S e ^n(m) with L(S) = (m - l)(n - 2) + k, then the proof 
of Theorem 2 tells us what the tuples in the game must look like. 
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Corollary 1: Let n = kv * where k = 2K and r i s odd wi th r > 1. I f 

££nW) = (m - l ) ( n - 2) + fc, 
then there exists S E S^n(m) such that 

(i) \D^n-2) + l(S)\ = m - I and u(Z?£(n-2)+1(5)) = n - 2 
for £ = 0 , ..., m - 1, 

(ii) L(Z^(m-1)(n-2)+1(5)) = fc - 1. 

Proof: This follows immediately from the proof of Theorem 2. D 

In a moment we will state a condition for the existence of a game of maxi-
mum length in terms of the n-tuple (0, . .., 0, 1, 1). Before proceeding, two 
comments are in order. First, if the entries of an n-tuple are rearranged so 
that adjacent elements remain adjacent, then similar games result. Or. more 
precisely, if S = (si , s2 , ..., sn) and o^ is a permutation contained in the 
dihedral group 9n, then 

(4) V(ol(S)) = o2(D(S)) for some a2 € 9n. 

Second, it is convenient to associate with S= (s^, s2, •••» sn) a n ^-tuple 
^(S) E y(l) which is related to the parity of the entries of 5'. We define 
<JZ(S) = (mi, iri23 ...5 mn) in the obvious way with mi E s^ (mod 2). Observe 
that 

(5) ^(D(S)) = D(J[{S)). 

Theorem 3: Let n = kr, where k = 2K and r is odd with r > 1. Suppose for 
77? > 4, ^(TT?) = (m - l)(n - 2) + fc. Then, for some a e ^ n , 

D2(n~2)(E) = a(E), where E = (0, . . . , 0, 1, 1) . 

Proof: By hypothesis, there exists an n-tuple 5 with \S\ = m and 

L(5) = (m - l)(n - 2) + fc. 
Let S7 = 2?(w-̂ )(w-2)+l(5)- Corollary 1 implies that 

|̂ | = |^-4)(n-2) + l(5)| = 4j u ( T ) = n - 2, and I^K""2^) | = 3. 

Since u (T) = n - 2, T has exactly two adjacent entries with values in {1,2,3}. 
One of these must equal either 1 or 3; for, if not, then \D^n~2\T) | < 2. More-
over, since T has a predecessor, Theorem l(i) guarantees that both are in 
{1,3}. This shows that 

Jf(T) = ax(E) for some ol E 9n . 

Similarly, 

^(DHn~2\T)) = a2(E) for a2 e 9n . 

Hence, 
a2(E) = ^(D2(n~2\T)) 

= ^ - ^ ( a ^ E ) ) 
= a3(Z)2(n-2)(E)) 

The second equality follows from (5); the last, from (4). Thus, for o= o^ o^E 
9n9 D2^n-2\-E) = a(E). D 

Theorem 3 is the heart of the matter. Whether or not there exists an n-
tuple which has the maximum possible length depends in large part on E. Since 
E e y ( l ) , Theorem 3 can be recast in terms of polynomials in A. Using (3), we 
see that, in order to have an n-tuple of maximum length, 
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(1 + *)*<*-*> ̂ E(t) = ^a ( E )(t). 

Since ^(t) = 1 + £, ̂ a(E)(^) = ^J + ^' + 1 f o r s o m e J> where, if necessary, the 
exponent j + 1 is reduced modulo n. Thus, we have 

Corollary 2: Let n = for5, where k = 2K and r is odd with v > 1. Suppose that, 
for /?? > 4, if„(m) = (777 - 1) (n - 2) + L Then, for some j, 

(6) (1 + t)2n~3 = tJ'(l + t) 

in A. D 

Theorem 4: Let n be an integer such that n * 2W and n * 2W + 1 for any w. Then, 
for m > 4, &n(m) < (m - 1) (w - 2) + /c. 

Proof: First, suppose n is even. By Theorem l(ii), E = (0, . .., 0, 1, 1) is 
not in a cycle. Thus, ^(E) * E for any i . Now, if £2(n-2)(E) = a(E) for some 
a e £?n, then £2(n_2)P(E) = E where p is the order of a in @n. Consequently, the 
conclusion of Theorem 3 cannot hold. 

For n odd, we will expand (1 + t ) 2 n ~ 3 denoting the Ith binomial coefficient 
by c r 

£ = 0 £ = 0 

1= 0 
. ft- 5 

1= 0 n-3 
+ 2cn_3t 2 + cn_2(in~2 + tn~l). ___ 

The second equality follows by using tn = 1; the third, from c£ = C2T-2-3-£- N o w 

when 2n - 3 = 2V - 1 for some v, all the binomial coefficients are odd, so that 
we have 

(1 + t ) 2 n ~ 3 = tn"2(l + t). 

Thus, (6) holds for n = 2W + 1, where u = i? - 1. On the other hand, when 
2n - 3 * 1° - 1 for any y, then cn_2 is even. So, if t l is present in the 
expansion of (1 + i ) 2 n ~ 3 , then so also is tn~3~l. Hence, (6) cannot hold. Q 

3. The Case n = 2 W + 1 

We now consider the case in which n = 2W + 1. Corollary 2 and Theorem 4 
imply that a game of maximum length is possible. We show that this actually 
occurs. Before examining the general case, we consider the special case n = 3. 

Lemma 4: Let n = .3 and define Tm = (m - 1, 1, m) . Then, for 77? > 2, £(Tm) = 
aC^.i) for some a e ®3. 

Proof: The result is immediate since £(Tm) = (777 - 2, 777 - 1, 1) . D 

Lemma 5: Suppose n = 2W + 1, w > 2. Let ^ = (0, 0, . . . , 0, 777 - 1, 1, 777). 
Then, for 777 > 2, 

Dn~h{Tm) = ( 0 , 777 - 1 , t 3 , £ 4 , . . . , t n _ l 3 7??) 
Dn-3(Tm) = (777 - 1 , 1 , . . . , 1 , 777) 
^ n _ 2 ( ^ ) = (777 - 2 , 0 , . . . , 0 , 777 - 1 , 1 ) 

where the entries in Dn~^ (Tm) have the property that \ti - £•£ + ]_ | = 1 for i = 2, 
. . . , n - 1. 
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Proof: The proof proceeds by induction on w. Suppose that w = 2 so that n = 5. 
Then Tm = (0, 0, m - 1, 1, m) and it is easily seen that D(Tm) = (0, m - 1, 
m - 2, m - 1, m). 

Suppose that the Lemma 5 holds for w - 1; more specifically, suppose that 

Dl~h(Tm) = (0, 777 - 1, P3, P4, r£-i, 77?), and 

^^^(^-i) = (0, 777 - 2, S3, Si+, ..., S£_X, 77? - 1), 

where £ = 2w~l + 1, |P^ - P̂  + il = 1» and \s{_ - s^ + i\ = 1 for i = 2, . . . , £ - 1 . 
Consider the (2W + l)-tuple Tm. We can view Tm as a 2w~l zero-tuple concatena-
ted with a 2w~l + 1 '%-type-tuple." Thus, when we compute Dk(Tm) for k less 
than 2 -1 - 2, we have the same pattern we have for the 2w~l + 1 case. Thus, 
we have 

k D (T ) 
2^-1 _ 
2W~* -
2W~^ -
n t f - 1 

2 ^ - 3 

3 
2 
1 

(0 , 0, . . . 
(0 , 0, . . . 
(0 , 0, . . . 
(0 , 0, . . . 

( 0 , 7 7 7 - 1 , 

, 0 , 0 , 0 , 77? - 1 , P 3 , Tk, . . . , P £ _ l , 77?) 
, 0 , 0 , 77? - 1 , 1 , 1 , 1 , . . . , 1 , m) 
, 0 , 7 ? ? - 1 , m - 2 , 0 , 0 , . . . , 0 , 7 ? ? - 1 , 7??) 
, 7 7 7 - 1 , 1 , 77? - 2 , 0 , . . . , 0 , 77? - 1 , 1 , 77?) 

_ 1 ? . . . , S 3 , 77? - 2 , 777 - 1 , P 3 , P ^ , . . - , 
P £ _ X , 77?) . 

Note that for k = 2w~l, Dk(Tm) may be viewed as the 2W~1 + 1 "^.^-type" tuple, 
(0, . . . , 0, 777 - 1, 1, 77? - 2) , concatenated with the 2w~l tuple, (0, . . . , 0, m - 1, 
1, 77?). The latter is like the 2w~l + 1 "T^-type" tuple, except that it is 
missing the leading zero. By induction, the second through {n - l)st entries 
in Dk(Tm), k = 2 w - 3 ~ n - l \ , differ from the next one by 1. Thus, Dn~h{Tm) 
has the proper form. The conclusion for Dn~^(Tm) and Dn~2(Tm) follows 
immediately. D 

Theorem 5: Suppose n = 2W + 1 for w > 1. Define Rm = (0, 0, ..., 0, 77? - 1, 77?) 
for 777 > 1. Then L(Rm) = (m - 1) (n - 2) + 1. 

Proof: Note that D(Rm) = Tm = (0, ..., 0, 777 - 1, 1, 77?). Now, by Lemmas 4 and 5, 
Dn~2(Tm) = o(Tm_l) for some oe @n and 77? > 2. Further, Tl is contained in a 
cycle, but no other Tm is. Thus, we have L(Rm) = (77? - 1) (n - 2) + 1. 

4. Remaining Questions 

For n not a power of 2 and n * 2W + 1, how large is 0̂ (77?)? What tuple pro-
duces the longest game? Only for n - 1 are the answers to these questions 
known [6]. 

Because Theorem 3 cannot hold for even n9 it is tempting to try to prove a 
related version using E = (0, ..., 0, 1, 0, ..., 0, 1), where the l's occur in 
the (n - k)th and nth places. All efforts to date have failed. What relation, 
if any, does ^in^ n a v e t o ^n(ri) ? The following is a limited answer to that 
question. 

Theorem 6: 2^n{m) < ^2n(m) . 
Proof: Let S e S?n{m) wi th L(S) = &n(m) . Then the t u p l e S A 0, where 

S A 0 = (0 , si, 0, sz, 0, s 3 , . . . , 0, sn) 

is in yZn(m) . By Theorem l(ii), D(S A 0) is in a cycle if and only if S is. 
Further, P 2 ^ A 0) = D(S) A 0. Thus, L(S A 0) = 2L(5). D 

Unfortunately, from the few cases studied, it appears that the above in-
equality is a strict one. 
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The n-number game has been studied extensively; indeed, many key results 
keep reappearing in the literature and being reproved. An extensive bibliog-
raphy appears in [7]. In the interest of completeness, additional references 
which either do not appear in that article or were published after 1982 are 
listed below. 
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In this paper we consider the problem of dividing a rectangle into non-
overlapping squares and rectangles using recurring-sequence tiling. The 
results obtained herein are illustrated with appropriate figures. These 
results5 with the exception of basic introductory material., are believed to be 
new. There seem to be no such results in the literature. 

Among the many generating functions possibles we use the following: 

(1) G(x)-k = 1/(1 - x - x1 - ... - x ) 
(where m = 2S 33 4, ..., and k = 1, 23 3, . . . ) . 

Note that we can write G(x)~k as a power series in x in the form 

(2) G(x)~k = Fmtk(Q) + Fmtk{l)x + Fm}k(2)x2 +... + Fmjk (n)xn + ... 
(where Fm k(0) = 1, for all m and k). 

We develop a general construction method for performing the tiling using k > 2. 
Our work is an extension of the tiling done in [7] for k = 1. 

Using (2), 

(3) G(x)<K~^ = (1 - x - x2 - ... - xm)(Fm>k(0) + Fm}k(l)x + Fmtk(2)x2 

+ ... + FWsk(n)xn + . . . ) . 
Now? combining coefficients in Equation (3) leads to 

W Pm,kW = F
m,k(n - 1) + Fm>k(n - 2) + ••• + Fm,k{n - m) + Fmtk^(n). 

The last term of Equation (4) is important. To preserve the geometry of the 
method of tiling we have used in this paper, it is necessary that 

(5) Fm,k-l(n) < Fm,k(n ~ m^ 
where Fm k-i(n) is the value of the initial tile placed in the construction. 

First let rn = 2; we shall find the sizes of tiles corresponding to values 
of F2sk(n) for various values of k. In Table 1, we have outlined the value of 
the initial tiles generated by the necessary condition that 

Fm3k-lM < Fm^k{n - m) 

as discussed above. For example5 note that 420 < 4743 23109 < 25088, etc. 
The values in Table 1 can be used in an example tiling construction for 

m - 2 and k - 25 as shown in Figure 2. Note that each shape is a square. 
For higher-order constructions, the difficulty lies In choosing the initial 

tile. We now concern ourselves with finding the value of that required initial 
tile. A repeated use of Equation (4) above, in example cases of m = 2 and m = 
3s is summarized in Tables 3 and 4. 
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TABLE 1. C o e f f i c i e n t s Fk(n) when m = 2 

1 n 

1 °  
1 1 I 2 3 
I 4 | 5 

I 6 

I 7 

1 8 

1 10 
1 11 

I 12 1 13 
1 14 

I 15 

I 16 
| 17 

18 

I 19 
L 2o 

k = 1 

1 

1 

2 

3 
5 

8 

13 

21 

34 

k = 2 

1 

2 

5 

10 
20 

38 
71 

130 

235 

89 
144 

233 
377 

610 
987 

1597 

2584 

4181 
6765 

10946 

744 

1308 

2285 

3970 
6865 
11822 

20284 

34690 

59155 
100610 
170711 

k = 3 

1 

3 

9 

22 
51 
111 

233 
474 

942 
1836 

3522 

6666 

12473 

23109 
42447 

77378 

140109 

k = 4 

1 

4 

14 

40 
105 

256 
594 

1324 

2860 
6020 

12402 

25088 

49963 

98160 
190570 

366108 

696787 

'252177 | 1315072 

451441 

804228 
1426380 

2463300 
4582600 , 
8472280 

k = 5 

1 I 
5 J 
20 j 

65 | 
190 | 
511 j 

1295 | 
3130 | 

7285 | 
16435 | 

36122 j 

77645 [ 

163730 j 

339535 | 
693835 j 

1399478 j 

2790100 j 

5504650 J 
10758050 j 
20845300 | 

40075630J 

55 

21 

8 10 

13 

20 

38 

34 

71 

130 

420 

235 

FIGURE 2 

TABLE 3o Calculating the Initial 
Tile for m = 2 

k = 2 

k = 3 

k = 5 

k = 6 

F2I1(5) <r^rm""n 
F^O) <F3(7) j 

F2 3d3) < F 4 ( 1 1 ) 

F
2 , 4 ( 1 7 ) < F2,5(15) 

F
2,5(21) - F

2 , e ( 1 9 ) j 

TABLE 4. Calculating the Initial 
Tile for m = 3 

k = 2 

k = 3 

k = 5 

k = 6 

F3,(12) < F 2 ( 9 ) | 

F32(23) < F 3 ( 2 0 ) 

F3(34) < F < ( 3 , ) 

F3 4(«) < F3 5(42) j 

F (56) < F (53) 
3.5 3.6 1 

^m, k 

Surveying the values above suggests the following relationships. Define 
to be the smallest number such that 

Fm,k-l(Qm,k + m) < Fm,k(Qm,0> 
and let 
that 

im, 1 ' Let 

(6) Q2 = 3Qi - 2QQ + 2. 

1990] 

2i = 1. Then from Table 3S where m = 2, we observe 
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F u r t h e r , we o b s e r v e f rom T a b l e 4 , w h e r e m = 3 , t h a t 

(7 ) Q3 = 3Q2 ~ 2Qi + 2 . 

We t h e n g e n e r a l i z e t h a t 

( 8 ) Qm = 3 « m _ ! - 2Qm.z+ 2 . 

By elementary means we find that Equation (8) can be stated as 

(9) Qm = 2m+1 - 2/77 - 1. 

Then Fm>k(Zm) is the initial tile I, where I = Zm = 2OT+1 — TTZ — 1, for 77? > 2. 
An examination of Tables 3 and 4 will show that a pattern emerges as k 

changes and one looks for a value of n which will result in the next initial 
tile value. As k changes by one, the value of n changes by a constant amount. 
That constant is equal to 

(10) Pm = 2m+l - 7 7 7 - 2 . 

It can be shown inductively, step by step, that the values of the initial 
tiles are 

(ID Fm,k-lWm + (& - 2)PJ < Fmtk[Qm+ (k - 2)PJ, where 777 > 2 and k > 1. 
Then, for example, the next tile values in Table 3, using (11), are seen to be 

F2f6 (25) < F2y7 (23). 

Finally, we now show the general case of placing tiles in the construction. 
We place the sets of squares in the order Set 1, Set 2, etc., where the Sets 
are defined as 

Fm,kW = Fmik(n - 1) + Fmik(n - 2) 

+ ' *• + Fm,k (n ~ m) + Fm,k-lW 
Fm k^U + m ~ D = Fm, k (n + m - 2) + Fmt k (n + 777 - 3) 

+ . . . + Fmik(n - 1) + Fmyk_1(n + m - 1) 
Fm k (n + 2/?7 - 2) = FW j & (n + 2m - 3) + Fm> k (n + 2/T? - 4) 

+ ' •• + Fmtk in + 77? - 2) + F ^ ^ . ^ n + 2m - 2) 

(15 ) S e t j + 1: F w fe(n + j(/r? - 1 ) ) 
= Z^ & ( n - 1 + j(m - 1 ) ) + Fmtk(n - 2 + j ( w - 1 ) ) 

+ s. . . . + Fmjk(n + /77 + j (77? - 1 ) ) + Fmtk^l(n + j(m - 1 ) ) , 

w h e r e j = 0 , 1 , 2 , . . . . 

Using this method of set placement, the final general construction will 
look like Figure 5 below. Note that all shapes are squares, and that as of yet 
we have not fully tiled the rectangle; there are still rectangular gaps in the 
construction. 

We now proceed to find the filler rectangles used to fill in the gaps left 
after placing the square tiles. We note first that the general coefficients 
Fmik(n) may be listed as follows, where 777 > 2, k > 1, and n > 0. 

(16) Fm>k(0) 

Fm,k(D 

w h e r e Fm> k (I) = Fm>k(I - 1) + Fm> k (I - 2) + . . . + Fm, k (I - m + 1) + Fm, k(I - m) 
+ Fm}k_1(I); I = Zm + (k - l)Pm; Fm^(I) = 0 , Fm>k{Q) = 1 , and Fm>k{l) = k. 

(12) 

(13) 

(14) 

Set 1: 

Set 2: 

Set 3 : 
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F k (n+2m-2) 

Fm k (n-2) F m k (n-1) 

Fm k (n+m-2) 

FIGURE 5 

Note that I is the initial tile value, and it is evident that the value of I 
depends on the values of k and m. 

First we examine the case of m = 2 and k = 2 [in other words, 1/(1 - x -
x2-)2-] . Figure 2 may now be redrawn using function notation rather than actual 
numbers, and showing the gap rectangles. We use the notation H and V to denote 
filler rectangles that appear to be oriented horizontally and vertically, 
respectively. 

v3,2 

F210) 

^ . 2 

V2,2 

^ 

H i * 

V1,2 

F,(5) W3) 

5.1 <6> 

F (4) 
2.2V ' 

F2,<5> 

F2.1<8> 

F2.2<6> 

F 
2 ^ 

F2*<8> 

FIGURE 6 

One c a n s e e t h e f o l l o w i n g r e c t a n g l e s i z e s f rom F i g u r e 6 . 

( 1 7 ) # 1 > k [ F 2 j 2 ( 5 ) - F2t x ( 6 ) , F2ti(6)] 
^ 2 , f c l ^ 2 , 2 ( 7 ) " F2,lW> ^ 2 , 1 ( 8 ) ] 

En,k\-F2, l(2n + 5) - F2} l(2n + 6 ) , F2} l(2n + 6 ) ] 
V\ k[F2 x ( 5 ) , ^ 2 , 2 ( 4 ) - F 2 f l ( 5 ) l 
• ^ . f c U V , l ( 7 ) ' ^ 2 , 2 ( 6 ) - ^ 2 , l ( 7 ) ] 

Vn>k[F2, l(2n + 3 ) , F2f 2{2n + 2) - F 2 > x ( 2 n + 5 ) ] , 

w h e r e n > 0 , m = 2 , and k = 2. 

We can generalize this idea for any fc. To use the I notation, Figure 6 may 
be redrawn as follows: 
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V3,K 

H2K 

V2,K 

F
2,/'+ 

vlk 

F2.1<'> 

H l k 

mm 
\*w 

F 2 , ( ' + 

yM> 

D y , + 2 > 

F 2 , l ( , + 

) 

F21d+4) i- 2(l+4) 

3) 

| 2 ( l + 3 ) 

FIGURE 7 

Fur thermore , (17) can be r e w r i t t e n as 

(18) Hljk[F2jk(I) - F2yk(I + 1 ) , F2,k-id + 1) ] 
Hi,k[F2,k(l + 2) - F2tk.1(I + 3 ) , ^ f e - i d + 3 ) ] 

Hntk[Fltk{2n + J) - ,P2jk_1(2n + I + 1), F2,k-it2n + I + 1) 

^Uft,fc-lffl. *2,k(-Z" " 1) • 2 , fc-1 to: 
^k^2,fc-lU + 2), ^2,/cU + 1) " *2,fc-ia + 2)] 

^,fe[^2,fc-l(2^ + J - 2), F2>k(2n + J - 3) - *2,fe-i(2n + I - 2), 
where n > 0, m = 2, and k > 2. 

We now show an example for m > 2, in particular for m = 3, & = 2. In this 
case, the tiling construction begins with the framework shown in Figure 8, 
using (4) for recursion and Table 4 to determine the initial tile. 

FIGURE 8 

The filler rectangles are formed in a similar manner as the case of m = 2, 
except an alternating pattern containing two different constructions is formed. 
The complete construction for k = 2, m = 3 is shown in Figure 9. This same 
pattern is followed for any k, where only the value of the arguments of the 
function F is changed as influenced by the change in the initial tile. 
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H 3 ,2 

V3,2 

H 2 ,2 

V 2 , 2 ; v 1 9 

l.t<12> 

H 1 | 2 

Wwm' 
W9> W1 0> 

W1 2> 

FoJ) yi3> 
F3.2<16> 

F 3 , 1 ^ 

W1 1> 

) 

F3.2(14> 

F3.1<18> 

F 3 , ( 1 5 ) 

FIGURE 9 

One can see the following rectangle sizes from Figure 9: 

(19) #1,3^3,2(12) - F3 !(14), F3>1(14)] 
#2,2^3,2(13) + F3'j2(14), F3j2(15) -F 3 > 2 (14)] 

^1,2^3,1(12), ^3,2(11) " ^3,1(12)] 
^2,2^3,2(13) " ^ 3 > 2 ( 1 2 ) , F3>2(14) - F3>2(13)] 

The pattern of the pair of equations in both the horizontal and vertical rec-
tangles is repeated. These formulas would also be valid for any value of k, 
not just k = 2. 

We can now generalize this idea for any m. The pattern is repeated every 
77? — 1 rectangles. Therefore, the difference in the argument where this pat-
tern repeats is 2m - 2. Figure 10 shows the general construction. 

vm. 

T"~ 

Hm-,.K " ^ 

H m . 2 . k 

H 2 , k 

'• i : v, „ i 
;••• ; V 2 . K 1 i k 

V m-2,k : 

M \ 

W Fm k0""* 
F (kn+1) 

F M Fnk0-S» 

IF 

Fm | ( f1) 

y> 
FJI+D 

1 0+2m-2) F
m k ( l + m " 2 ) 

Fm (l+2m-2) 

kflvl 

F 

Fmk 

(km) 

(l+m-1) 

F 

lm-3) 

•3) 

m,k 

FIGURE 10 

The general formulas for the horizontal and vertical rectangles are: 

(20) HUk[Fmtk(I) - ̂ f c.^I + 772-1), F^fc-xU + 777-1)] 
^2,fe[^,fcU + 1) + ^,fcU + w - 1). *w,*U + w) - Fmtk(I + m - 1)] 
^3,fc[^,fcU + 2) + ^ i k ( I + 7?7 - 1) + Fm,k(I + m), 

^,/cd + 777+1) - J?m,fc(L + 777)] 

1990] 

tfm-l./J^m.kO' + "7 - 2) + Fw>fc(J + 777 - 1) + Fm, k (I + 777) 
+ • • • + Fm,k(I + 2777 - 4 ) , F,„,fc(J + 2777 " 3) - Fmik(l + 2 7 7 7 - 4 ) ] 
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^ k f t . k - l W . Fmtk{I - 1) - ^ ^ ( X ) ] 
v2 k^Fm,k^ + 1) - Fmtk(I)9 Fm>k{I + m - 1) - Fmtk{I + m - 2) 

" • • • ~ ^ . f cOf l + 2) - Fm,fe(/77 + 1 ) ] 
F 3 k[Fm9k(I + 2) - F m , k ( J + 1 ) , Fmsk(I + 777) - F ^ k ( J + m - 2) 

' " ^ . f c d + ro - 3) - . . . - F w , k ( J + 2 ) ] 

^ - 2 k\Fm,kd + m - 3) - Fm.k(I + m - b), 
Fm> k (I + 2m - 5) - F m , ^ ( J + /77 - 2) - i ^ (T + 777 - 3) ] 

^ - l . k t ^ . f e U + rc - 2) - Z^.fcCJ + 777 - 3 ) , 
F w , fe (I + 2m - 4) - Fmtk (I + 777 - 2) ] . 

Then the pattern of 77? - 1 rectangles repeats with the argument (I) incremented 
by 2777 - 2. 

This construction, shown in Figure 10, generalizes the recurring-sequence 
tiling for any k and 777 using the extended Fibonacci numbers generated with (4) . 
The initial tile is selected by the criterion of (5) and the horizontal and 
vertical filler rectangles have the dimensions described in (20). 
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ON A HOGGATT-BERGUM PAPER WITH TOTIENT FUNCTION APPROACH 
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(Submitted August 1988) 

During their discussion of divisibility and congruence relations of the 
Fibonacci and Lucas numbers, Hoggatt & Bergum found values of n satisfying the 
congruences Fn E 0 (mod ft) or Ln E 0 (mod ft) . In this connection, Hoggatt & 
Bergum's research appears in Theorems 1, 3, 5, 6, and 7 of [4]. The present 
paper originated on the same lines in search of values of n that satisfy <$>(Fn) 
E 0 (mod ft) or (j)(Ln) E 0 (mod ft), where § is the totient function. Before 
going into the analysis of the problem, we state some results that will be 
quoted frequently. 

(a) (i) For ft > 2, cj)(ft) is even; (ii) if m\n9 then § (jn) |cj) (ft) ([3], pp. 140-41). 
(b) All odd prime divisors of L2n + \ are of the form 10m ± 1 ([4], p. 193). 
(c) Every Fn with ft > 12 and Ln with ft > 6 has at least one primitive prime 

divisor ([6], p. 15). 
(d) Let p be a primitive prime divisor of Fn (ft > 5 ) ; if ft = 5 (mod 10), then 

p E 1 (mod 4ft) ([6], p. 10). 
(e) A primitive prime divisor p of L 5 n with ft > 1 satisfies p E 1 (mod 10ft) 

([6], p. 11). 
(f) Let ft be odd and p an odd primitive prime divisor ofFn; if p = ±1 (mod 

10), then p E 1 (mod 4ft) ([1], p. 254). 
(g) Let p be an odd primitive prime divisor of Ln\ if p E ±1 (mod 1 0 ) , then 

p E 1 (mod 2ft) ([1], p. 255). 

We begin our discussion by proving the following theorem. 

Theorem 1: If n is an odd integer greater than 3, then 
(i) <K£W) = 0 (mod ft); 

(ii) <t>(F2n) = 0 (mod 2ft). 

Proof: Both results are true when ft = 5. Thus, we choose ft > 7. 

(i) Based on (b) and (c), we have the existence of at least one primi-
tive prime divisor p of Ln of the form 10/77 ± 1. Consequently, by (g) : 

(1) p E 1 (mod 2ft). 

Since p\Ln and <j)(p) E 0 (mod 2ft) is true from (1), we have, using (a), 

<\>(Ln) E 0 (mod 2ft) => <(>(£„) E °  (mod n) 

(ii) Since F2n = FnLn and $(Ln) = 0 (mod 2ft), we have 2n\$(F2n) . 

Note: From the above, with odd ft > 3, $(Ln) = 0 (mod 2ft) and $(F2n) = 0 (mod 
4ft) are both true. The second part follows from [5]. 

Corollary: If n is odd, n > 3, and 3|ft, then 4ft|(f)(Ln). 

Proof: By Lemma 1 of [4] (p. 193), 4 \Ln. From Theorem 1, p\Ln, where p = 1 
(mod 2ft); consequently, by (a), $ (4p) | cf> (Ln) . This proves our result. 

In regard to Fibonacci numbers with even subscripts, we prove the following 
theorem. 

Theorem 2: The congruence §(F2N) E 0 (mod 2/1/) is true for all positive integers 
N, except when N = 1, 2, 3, 4, 8, 16. 
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Proof: It is easy to verify that, for /¥ = 1, 2, 4, 8, 16, the congruence (̂î /j/) 
E N (mod 2/1/) holds and, for N = 3, the result (|>CF6) E 4 (mod 6) is true. Ex-
cluding these values, we complete the proof by considering the following cases: 

Case 1. If N is odd and greater than 3, the result follows from Theorem 1. 

Case 2. For even values of /!/, we discuss the proof in two parts: 

Part 1. Let N = 2n~l, n > 6. For n = 6, the result 

<K*W E °  (mod 64) 
is true (see [1], App. Table). For n > 6, we apply induction 
on n. 
§(F2n) = 0 (mod 2n) is true by -inductive hypothesis. 

(j>(L2*) E 0 (mod 2) is true by (a), and 

$(F2n+i ) = cf) (F2n ) cj) (L2„ ) ; therefore, 

(K̂ V: + 1 ) E °  (mod 2n + 1 ) . 
Part 2. Let N = 2n~lt, where n > 1, t is odd, £ > 1, and 2/1/^6. If 

n = 1, see Theorem 1. If n > 1, we use induction on n. 

Fzn+imt = F
2 \ t L 2 \ t ; LZn \L2^t a n d L2n & F2n.t 

are relatively prime; therefore, 

§(F2^t) • cj)(L2n) divides <j)CF2,: + i.t) . 

Repeating the argument of Part 1 above, we observe that 

<t>(F2nmt) = 0 (mod 2n-t) 

is true by the inductive hypothesis, 

<j>(£2„) E 0 (mod 2) 

follows from (a). Hence, the proof is complete. 

For examination of Lucas numbers with even subscripts, it is important to 
study the values of §(L2n) . By verification, it follows that §(Lzn) ~ 0 (mod 
2n) is true when n = 1, 5, 6, 7, 8 and false for n = 2, 3, 4. It remains an 
open question whether §(Lnn) = 0 (mod 2n) would be true for all n > 5 or for 
infinitely many n or only for a finite number n. 

Since 2n = 0 (mod 4) is true for n > 5, every odd prime divisor of L^n is 
one of the forms 40/?7 + 1, 40/7? + 7, 40/7? + 9, 40/77 4- 23 ([6], p. 11). In [7] it 
is proved that L^n = 3 (mod 4) and, hence, contains an odd number of primes of 
the form 4/77 + 3. 

In view of this, we conclude that, if L^. is the product of an even number 
of primes, then it must contain at least one prime p of the type 40/77 + 1 or 40/77 
+ 9. If this prime p is primitive, then p E 1 (mod 2n + 1) by (g) . In this 
case, 2 |cj)(p) and, consequently, cj)(L2n) E 0 (mod 2n) is true. 

Based on this discussion, we are led to make the following conjecture. 

Conjecture: There may exist infinitely many n such that cf)(£20 = 0 (mod 2n) is 
true. 

It is interesting to note that the following allied result holds. 

Theorem 3: For all positive integers n, <j>(£2* + 1) = 0 (mod 2n) is true. 

Proof: Using the Binet form, it is easy to see that 

L2n + l + 1 = (L2n + l)(L2n - 1). 
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Since (L2?, - 1) i s always even, i t fo l lows by i n d u c t i o n t h a t L?, + 1 E 0 (mod 
2n + 1) i s always t r u e . Hence, 2n = cj)(2n + 1 ) d i v i d e s c(,(L2„ + 1 ) . 

Some s p e c i a l cases a r e d i s cus sed in the fo l lowing theorems. 

Theorem 4: I f n i s a p o s i t i v e i n t e g e r , the fo l lowing congruences ho ld : 
( i ) <KL5„) E 0 (mod 10n) . 

( i i ) (t)(^5w) = 0 (mod 80n) ; rc i s odd, n > 1. 
Proo/"; 

(i) The proof follows from (c) and (e) and the fact that (j)(L5) E 0 (mod 
10) when n = 1. 

(ii) Since, for odd n, 5n = 5 (mod 10) is true when n > 1, by (c) and (d) 
there exists a primitive prime divisor p of F$n satisfying p E 1 (mod 
20n) . Since 5 and p are both relatively prime factors of F5n, 80n 
divides (f>(F5n) by (a). 

Theorem 5: 
(i) If /c > 2, then (K^sO E 0 (mod 16- 5 2 k _ 1 ) . 
(ii) If n = 2P + 1 '3m'5fc with r > 1, m > 1, k > 1, then cf) (F„) = 0 (mod 4n) . 

Proof: 
(i) From [4], p. 192, we have 5k\F^k. Since 5k E 5 (mod 10) is true, by 

(d) there exists a primitive prime divisor p satisfying p E 1 (mod 
4.5^). As 5k and p are relatively prime, $(5*-) • cf)(p) divides $(Fk). 

(ii) By [4], p. 192, we have n\Fn. This, along with Theorem 2, completes 
the proof. 

A Final Note: It is desirable to shed some light on the cases not discussed 
thus far and on the difficulties encountered in the generalization process. 
This is done by showing that the following two congruences are not valid in 
general for a positive integer n, 

(i) cj)(L2n) E 0 (mod In) 
(ii) <KF2« + l) E °  <>od ln + !) 

In regard to (i), we observe that if, for a composite m, Lm is prime, then m 
must be of the form 2t, where t > 2 (see [2]). Consequently, with t > 2 when 
Lyt is prime, which is primitive, we have <^{L^t) = L^t - 1. 

As proved in Theorem 3, L^t = -1 (mod 2t); therefore, we can conclude that 
(j)(L2t) E -2 (mod 2t). Thus, it follows that cJ)(L2t) ^ 0 (mod 2t) when L2t is 
prime and t > 2. Besides this, there may exist other Lucas numbers connected 
with this which may not satisfy the congruence of (i) . One such illustration 
will be the members of the type L2

t
ap, where p is an odd prime and t > 1. We 

observe that, for n < 50, §(Lln) f 0 (mod In) when n = 2, 4, 8, 11, 12, 17, 26, 
29, 37, 46. In view of this, we conclude that the congruence relation in (i) 
is not true in general. 

For case (ii), we observe that for odd n9 if Fn is prime p, where p E ±3 
(mod 10), then p E (2w - 1) (mod 4n) (see [1], p. 254). 

Thus, under this hypothesis of primality, <\>(Fn) = -2 (mod n) . It is easy 
to see that Fn is a prime of this type when n = 7, 13, 17, 23, 43, 47, 83. It 
is interesting to observe that if, for a prime subscript n, Fn is the product 
of two primitive primes each E ±3 (mod 10), then §(Fn) E 4 (mod n). This is 
true when n = 59, 61, 71, 79, 101, 109. 

Based on this, there may exist Fibonacci numbers of odd subscripts n, where 
n is composite, which may also not satisfy relation (ii). One such example is 
^161' where (j>(-̂ i6l) E 16 (mod 161). Consequently, we are justified to say that 
the congruence relation of (ii) is also not true in general. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P . Hillman 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to 
Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. 

Each solution should be on a separate sheet (or sheets) and must be 
received within six months of publication of the problem. Solutions typed in 
the format used below will be given preference. Proposers of problems should 
include solutions. 

Anyone desiring acknowledgment of contributions should enclose a stamped, 
self-addressed card (or envelope) . 

BASIC FORMULAS 

The F ibonacc i numbers Fn and the Lucas numbers Ln, s a t i s f y 
Fn + 2 = Fn+l + Fn> F0 = °» Fl = l* 
Ln+Z = Fn+l + Ln> LQ = 2 , Ll = 1 . 

Also , a = (1 + / 5 ) / 2 , 3 = (1 - / 5 ) / 2 , Fn = (an - 3 n ) / / 5 , and Ln = an + $n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-670 Proposed by Russell Euler, Northwest Missouri State U., Marysville, MO 

^ nFn Evalua te 22 —~-
n=\ 2 

B-671 Proposed by Herta T. Freitag, Roanoke, VA 

Show that all even perfect numbers are hexagonal and hence are all trian-
gular. [A perfect number is a positive integer which is the sum of its proper 
positive integral divisors. The hexagonal numbers are {1, 6, 15, 28, 45, . ..} 
and the triangular numbers are {1, 3, 6, 10, 15,...}. ] 

B-672 Proposed by Philip L. Mana, Albuquerque, NM 

Let S consist of all positive integers n such that n = lOp and n + 1 = 11^, 
with p and q primes. What is the largest positive integer d such that every n 
in S is a term in an arithmetic progression a, a + d, a + 2d, ...? 

B-673 Proposed by Paul S. Bruckman, Edmonds, WA 

Evaluate the infinite product ][ 
n = 2 

B-674 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Define the sequence {un} by 

UQ = 0, u\ = 1, un = gun-i - un-2* for n i n {2, 3 , . . . } , 
where g i s a roo t of x1 - x - 1 = 0 . Compute un for n i n {2, 3 , 4 , 5} and then 
deduce t h a t (1 + / 5 ) / 2 = 2 COS(TT/5) and (1 - / 5 ) / 2 = 2 C O S ( 3 T T / 5 ) . 
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B-675 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

In a manner analogous t o t h a t for the p rev ious problem, show t h a t 

fa + fa = 2 cos £ and fa - fa = 2 cos ^ -o o 

SOLUTIONS 

Not T r u e Asymptot ica l ly 

B-645 Proposed by R. Tosic, U. of Novi Sad, Yugoslavia 

1 ^ r (2m - 1\ r)(2m - 1\ , / 2TT? \ . i o o 
L e t £ 9 m = - 2 o + c f o r w = 1 , 2 , 3 , . . . , 

^ • . - D - M •*(„*,) ««-•». ..2 
where (£) = 0 for k < 0. Prove or d i sp rove t h a t £n = Fn for n = 0, 1, 2 , . 

Solution hy Y. //. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

Let us s tudy the asympto t ic growth of Gn. I t i s ev iden t t h a t 

(2;> 
H e n c e , (2m 

G2m + l \m J (2m)I ml (m - 1 ) ! 

and 

G2m /2m - 1\ mlml (2m - 1)1 
\ m / 

(2m + 1\ 
G2m+z U + 1 / _ (2m + 1) ! mlml _ 2m + 1 

^ m + l /2 /77\ ~ O + l)!/7z! " (2m) ! m + 1 
2 , 

\ 777 / 

so t h a t Gn/Gn-i ~ 2 . However, i t i s w e l l known t h a t 

Thus, Gn * Fn for s u f f i c i e n t l y l a r g e n. In f a c t , from numer ica l computa t ions , 
we have Gn = Fn for 0 < n < 14, and £n > Fn for rc > 15. 

AZso solved by Charles Ashbacher, Paul S. Bruckman, James E. Desmond, 
Piero Filipponi, L. Kuipers, and the proposer. 

T r i a n g u l a r Number Analogue 

B-646 Proposed by A. P. Hillman in memory of Gloria C. Padilla 

We know t h a t F2n = FnLn = Fn(Fn_l + Fn + l) . Find m as a func t ion of n so as 
to have the analogous formula Tm = Tn(Tn.l + Tn+1), where Tn i s the t r i a n g u l a r 
number n(n + l ) / 2 . 

Solution by H.-J. Seiffert, Berlin, Germany 

We have: ^ ( T n _ x + Tn+l) = Tn(Tn -n + Tn+n+l)= Tn(2Tn + 1) 

= n(n + l)(n(n + 1) + l ) / 2 = ^ ( n + i ) . 
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Also solved by Richard Andre-Jeannin, Wray G. Brady, Paul S. Bruckman, 
Nicos D. Diamantis, Russell Euler, Piero Filipponi, Herta T. Freitag, Russell 
Jay Hendel, L. Kuipers, Jack Lee, Carl Libis, Bob Prielipp, Jesse Nemoyer & 
Joseph J. Kostal & Durbha Subramanyam, Sahib Singh, Lawrence Somer, 
Gregory Wulczyn, and the proposer. 

Much Ado abou t Zero 

B-647 Proposed by L. Kuipers, Serre, Switzerland 

Simplify 

[£ 2 n + 7 ( - l ) » ] [ L 3 „ + 3 - 2 ( - l ) » £ „ ] - 3(-l)nLn_2L2
n + 2 - V2

Ln-l^+2-

Solution by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA 

The given e x p r e s s i o n s i m p l i f i e s to z e r o . By us ing the Binet form of Lucas 
numbers, i t fo l lows t h a t L2 + 7 ( - l ) n = Ln_2L «• -^n v i - e w °f t h i s s t he given 
e x p r e s s i o n i s 

L oL +0[L, Mo - 2 ( - l ) n L - (LZ.0L -, + 3(-l)nL , 9 ) ] . 
n-2 n + ZL 3n + 3 v / n v n + 2 n~\ n + Z/J 

Again, app ly ing the Binet form of Lucas numbers, we see t h a t 
L 2 0 L , + 3(-l)nL ^ 9 = Lq . - 2 ( - l ) n L „ . 

n + 2 n-\ v J n + 2 3n + 3 v ' n 
Hence, t he r e q u i r e d conc lus ion f o l l o w s . 

Also solved by Paul S. Bruckman, Herta T. Freitag, Y. H. Harris Kwong, 
Carl Libis, Bob Prielipp, H.-J. Seiffert, M. Wachtel, Gregory Wulczyn, and 
the proposer. 

Pell Pr imit ive P y t h a g o r e a n T r i p l e s 

B-648 Proposed by M. Wachtel, Zurich, Switzerland 

The P e l l numbers Pn and Qn a r e def ined by 

Pn+2 = 2 P n + l + Pn> P0 = °> P l = ^ ®n + 2 = 2®n+l + ^ n ' ^ 0 = l = «1 • 

Dkn> P2n + l s 3P2n Show t h a t (P. , P2 + 1, 3Pl + 1) i s a p r i m i t i v e Pythagorean t r i p l e for n i n 
{ 1 , 2 , . . . } . 

Solution by Paul S. Bruckman, Edmonds, WA 

The 

(1) 

(2) 

Hence, 

(3) 

Pell numbers satisfy the following identities: 

2P2n®2n = Phn; 

«L - 2PL = !• 
«L - PL - pL + !• 

I t i s known t h a t p r i m i t i v e Pythagoren t r i p l e s a r e gene ra t ed by 

(4) {lab, a2 - b2, a2 + £ 2 ) , where g . c . d . ( a , 2?) = 1. 

We may l e t a = Q2 , b = P2n. We see from (2) t h a t g . c . d . (a , 2?) = 1. Also 
lab = P ^ [us ing ( 1 ) ] ; 

a2 ~ b2 = P\n + 1 [using (3)]; 
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and 
a2 + b2 3Po + 1 [adding 2b2 to both sides of (3)], 

This proves the assertion. 

Also solved by Nicos D. Diamantis, Ernest J. Eckert, Russell Euler, Piero 
Filipponi, Herta T. Freitag, Russell Jay Hendel, L. Kuipers, Jesse Nemoyer & 
Joseph J. Kostal & Durbha Subramanyam, Bob Prielipp, H.-J. Seiffert, Sahib 
Singh, Lawrence Somer, Gregory Wulczyn, and the proposer. 

Sides Differ ing b y 17 

B-649 Proposed by M. Wachtel, Zurich, Switzerland 

Give a r u l e for c o n s t r u c t i n g a sequence of p r i m i t i v e Pythagorean t r i p l e s 
( a„ , bn, cn) whose f i r s t few t r i p l e s a re in the t a b l e 

n 
CLyl 

bn 
Cn 

1 
24 
7 

25 

2 
28 
45 
53 

3 
88 
105 
137 

4 
224 
207 
305 

5 
572 
555 
797 

6 
1248 
1265 
1777 

7 
3276 
3293 
4645 

8 
7332 
7315 
10357 

and which s a t i s f y 
\an - bn\ = 17, 
a < 2 n - l + a2n = 26P2n = h2n~l + h2n> 

and c l n _ l + cln = 26Q2n. 

[Pn and Qn are the Pell numbers of B-648.] 

Rule by Paul S. Bruckman, Edmonds, WA 

(a2n-i, b2n-\, oln-\) 
= (10P2 + 26PnQn - 12Q2, -2kP2 + 26PnQn + 5Q2, 26P2 - lhPnQn + 13^), 

(a2n, b2n, c2n) 

= (-10Pn
2 + 26PnQn + 12«2, 24P2 + 26PnQn - 5Q2, 26P2 + UPnQn + 1 3 ^ ) . 

Rule by Ernest J. Eckert, U. of South Carolina, Aiken, SC 

L e t ( a i , Z?i, C i ) = ( 2 4 , 7 , 2 5 ) , (a2, b2, o2) = ( 2 8 , 4 5 , 53) and A d e n o t e t h e 
m a t r i x 

Then [a2n-i bzn-1 c2n-l^ i s t n e matrix product [a\ Gl]An-1 and 

[a2n b2n c2n] = [a2 o2]A n-\ 

EditorTs note: The derivations and proofs given by Bruckman and Eckert are not 
included because of space limitations; however, since each term in the required 
equations satisfies the same 3rd order linear homogeneous recursion 

wn + 3 = 5(wn + 2 + Wn + l) - Wn, 

it suffices to verify the rules for n = 1, 2, and 3. 

Also solved by Gregory Wulczyn and the proposer. 
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A v e r a g e Age of Genera l ized R a b b i t s 

B-650 Proposed by Piero Filipponi, Fond. U. Bor.doni, Rome Italy 
& David Singmaster, Polytechnic of the South Bank, London, UK 

Let us i n t r o d u c e a p a i r of 1-month-old r a b b i t s i n t o an enc lo su re on the 
f i r s t day of a c e r t a i n month. At the end of one month, r a b b i t s a re mature and 
each p a i r produces k - 1 p a i r s of o f f s p r i n g . Thus, a t the beginning of the 
second month t h e r e i s 1 p a i r of 2-month-old r a b b i t s and k - 1 p a i r s of 0-month-
o l d s . At the beginning of the t h i r d month, t h e r e i s 1 p a i r of 3 -month-o lds , 
k - 1 p a i r s of 1-month-olds, and k(k - 1) p a i r s of 0 -month-o lds . Assuming t h a t 
the r a b b i t s a r e immorta l , what i s t h e i r average age An a t the end of the nth 

month? S p e c i a l i z e to the f i r s t few v a l u e s of k. What happens as n -> °°? 

Solution by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA 

I f Ai denotes the average age a t the end of the i t h month, then we have the 
fo l lowing r e c u r r e n c e r e l a t i o n : 

Ai + l = | ( 1 + A^, where A1 = | ; k > 1. 

Using t h i s , we conclude t h a t 

Thus, 
kn \ i=o I kn(k - 1) 

k + 2 k2 + k + 2 
A*. 

1 

A2 = - ^ - ; A3 = - r — , e t c . 

Limit A^ = „ 
n . o o n k - 1 

Also solved by Paul S. Bruckman and the proposers. 

Multiples of a Prime p 

B-651 Proposed by L. Van Hamme, Vrije Universiteit, Brussels, Belgium 

Let UQ, ui, . . . be def ined by u0 = 0, U\ = 1, and un+2 = un+i - un. Also 
l e t p be a prime g r e a t e r than 3 , and for n i n X = { 1 , 2, . . . , p - l } 5 l e t n 
denote t he y i n I wi th nv E 1 (mod p ) . Prove t h a t 

p - i 

£ (n~lun + k) E ° ( m ° d P) 
n= 1 

for all nonnegative integers k. 

Solution by the proposer. 

Let p be a zero of 1 + X + X2. Hence, p3 = 1. Since 

(1 + p)P - 1 - PP = - Q2P~ 1 - PP 

= -(p2 + 1 + p) = 0 if p = 1 (mod 3) 

= -(p-2 + 1 + p-1) = 0 if p = -1 (mod 3), 

p is also a zero of (1 + X)p - 1 - X. Hence, 
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go . - -o . :?!«;>- = »• 
Multiplying the first equation with p^3 the second with p~k, and using the 
easily verified formula 

^ J r y -Yl\ 

we get 

Dividing by p and using 

p\n 
we set the assertion 

-tP) = - ^ - ^ — (mod p ) , 1 < n < p ~ 13 p \ n / n r r 

Also solved by Paul S. Bruckman. 

(continued from page 288) 

Z^(t) represents the number of zeros of ft which are e-close to n^. By invari-
ance of the complex integral, the functions Z^(t) are constant since the func-
tions ft vary continuously and do not vanish on the path of integration. 
Hence., 2^(0) = 2^(1) for each i. This says that in a small neighborhood of 
each zero of f±, there is a one-to-one correspondence of zeros of f± with zeros 
of f0, in the required manner. Q 

In the case of our given functions, we find that the zeros of the polyno-
mial fn{z) are close to the zeros of g (z), which lie on the circle \z\ = as as 
requireds and the zeros of fn get closer to the circle as n •> °°. H 

Also solved by P. Bruckman, O. Brugia & P. Filipponi, L. Kuipers, and the 
proposer. 
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Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND 
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK 
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially 
welcomes problems believed to be new or extending old results. Proposers 
should submit solutions or other information that will assist the editor. To 
facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-443 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Let us cons ide r the r e c u r r e n c e 
wn = rmn_l + wn_2, 

where m > 0 i s an i n t e g e r and Un, Vn the s o l u t i o n s def ined by 

UQ = 0 , Ul = 1 ; VQ = 2 5 V1 = 777. 

Show t h a t , i f q i s an odd d i v i s o r of m2 + 1, then 
Vq E 777 (mod q) . 

H-444 Proposed by H.-J. Seiffert, Berlin, Germany 

Fn = £ ( .^[ (n-2fc + 2 ) / 5 ] /n 

Show t h a t , for n = 0, 1, 25 . 
[n/2] 

, _ ! ^[(n- 2k+2)/5] / 

( 5 , n - 2k) = 1 

where (p , s) denotes the g r e a t e s t common d i v i s o r of r and s and [ ] the g r e a t e s t 
i n t e g e r f u n c t i o n . 

H-445 Proposed by Paul S. Bruckman, Edmonds, WA 

Establish the identity: 

(1) V u(n)( = z - zl , z e (E , \z\ < 1, and \i is the Mobius function. 

As special cases of (1), obtain the following identities: 

(2) ]T ]i(2n)/F2ns = -32s/5, s = 1, 3, 5, ..., 3 = %(1 - ^5) ; 
n= 1 

(3) £ y(2n - l)/%„-i)s = "3s, s = 1, 3, 5, ...; 
«= l 

(4) £ Vin)/Fns = ( 3 s - 3 2 s ) / 5 5 s = 25 4 , 6, . . . ; 
rc = l 
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(5) £ ( - l ) " - l y ( n ) / f „ 8 •- ( 0 s + e 2 s ) / 5 , s = 2 , 4 , 6, . . . ; 

(6) 

(7) 

£ ( - l ) " - 1 u ( 2 n -
n = 1 

£ ( - l ) » - i p ( 2 n -

" D / V - D a = - e S / 5 > S = I, 3, 5, 

- ! ) / % „ - 1 ) 8 = 6 s , s = 2 , 4 , 6, . . 

SOLUTIONS 

Rather Compact 

H-421 Proposed by Piero Filipponi, Rome, Italy 
(Vol. 26, no. 2, May 1988) 

Let the numbers Un(m) (or merely Un) be def ined by the r e c u r r e n c e r e l a t i o n 
[1] 

U,0 = mU , . + U ; Un = 0 , U, = 1 , 
?z + 2 r z + 1 7-2 s 0 7 1 

where m e N = { 1 , 25 . . . } . 
Find a compact form for 

S(fc, ft, n) -njlUk + jhh^n-i-m {k> h, neN). 
J = 0 

Note that, in the particular case m = 1, 5(1, 1, n) = F ^ is the ?zth term of 
the Fibonacci first convolution sequence [2]. 

References 

1. M. Bicknell. "A Primer on the Pell Sequence and Related Sequences." Fibo-
nacci Quarterly 13. 4 (1975):345-49. 

2. V. E. Hoggatt, Jr. "Convolution Triangles for Generalized Fibonacci Num-
bers." Fibonacci Quarterly 8. 2 (1970)rl58~71. 

Solution by the proposer 

It is known [1] that 

(1) Un = (an - 3n)/A (Binet form) 

where 
'A = (m2 + 4) 1 / 2 , 

(2) \a = fa + A)/2, 

= (772 - A)/2. 

Analogously, the numbers V (jri) (or merely Vn) can be defined as either 

(3) ^ + 2 ""Vn+1 + Vn; VQ = 2, ^ - m , 

or 

(4) Vn = Un_l + ^ + ]_ = a" + 3n (Binet form). 

The following identities will be used throughout the solution: 

(5) VJ + k - (-1)^..,= L%Uk; 

(U.„ - (-l)n+1Un, 
(6) { 
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(-l)s-lxr+2ysr + t + t f * + l 7 e ( p + 1 ) + t + ( - D * ^ . , - Vt 

(7) X > % f + t = , ̂  i , 
j = 0 (-1)S_1X2 + VSX - 1 

where s and t are arbitrary integers and x is an arbitrary quantity subject to 
the restriction x * a~s , 3~s• 

Identities (5) and (6) can be readily proven with the aid of (1), (2), and 
(4) . The proof of (7) is slightly more complicated but several approaches are 
possible. One of these proofs is given in "A Matrix Approach to Certain Iden-
tities" by P. Filipponi & A. F. Horadam (Fibonacci Quarterly 26.2 [1988]:115-
26). 

Now, from (5), we can write 

whence 

(8 ) S(k, h, n) = — - — - 2^ ( - 1 ) v2h3-{n-\)h 
A z A z j = o 

= riV2k + { n - m _ (-i)fe + (*-l)fe 
A 2 " A 2 Kn* 

U s i n g ( 7 ) , ( 6 ) , and ( 5 ) , l e t u s c a l c u l a t e t h e q u a n t i t y Xh^ni 

C a s e 1 : h i s odd [x = - 1 i n ( 7 ) ] 

_ 2 ( - l ) ^ 1 [ ^ ( n + 1 ) + 7 M w - i ) ] _ 2(-lV-l^UhnUh 
( 9 ) Xnah V2h + 2 V2h + 2 

U s i n g (1 ) and ( 4 ) , (9 ) becomes 

( 1 0 ) XKn = 2(-l)n^UhJUh. 

C a s e 2 : h i s e v e n [x = 1 i n ( 7 ) ] 

2 [ F M n + 1 ) - FMn-1}] 2 A ^ A _ ? 
( 1 1 ) Xh = = — — - 2Uhn/Uh. 

V2h Z V2h L 

From ( 8 ) , ( 9 ) , and ( 1 0 ) , we o b t a i n 

( 1 2 ) S(k, h, n) = [nV2k + (n_l)h - 2(-l)kUhn/Uh]/L2. 

The relationship (4) allows us to express S(k, h, n) merely in terms of numbers 
Un. 

As a particular case, we have 

( 1 3 ) 5 ( 1 , 1 , n) = [nVn+1 + 2Un] I A2 = [nUn + 2 + (n + 2 ) £ / J / A 2 . 

A l s o s o l v e d b y P . Bruckman, L. Kuipers, H.-J. Seiffert, and N . A . VoZodin. 

L o t s a S e q u e n c e s 

H - 4 2 2 P r o p o s e d b y L a r r y Taylor, Rego Park, NY 
(Vol. 26, no. 2, May 1988) 

( A l ) G e n e r a l i z e t h e n u m b e r s ( 2 , 2 , 2 , 2 , 2 , 2 , 2) t o fo rm a s e v e n - t e r m 
a r i t h m e t i c p r o g r e s s i o n of i n t e g r a l m u l t i p l e s of F i b o n a c c i a n d / o r L u c a s n u m b e r s 
w i t h common d i f f e r e n c e Fy. . 
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(A2) Generalize the numbers (1, 1, 1, 1, 1, 1) to form a six-term arith-
metic progression of integral multiples of Fibonacci and/or Lucas numbers with 
common difference Fn . 

(A3) Generalize the numbers (4, 4, 4, 4, 4) to form a five-term arithmetic 
progression of integral multiples of Fibonacci and/or Lucas numbers with common 
difference 5Fn. 

(A4) Generalize the numbers (3, 3, 3, 3), (3, 3, 3, 3), (3, 3, 3, 3) to 
form three four-term arithmetic progressions of integral multiples of Fibonacci 
and/or Lucas numbers with common differences Fn , 5Fn, Fn . 

(B) Generalize the Fibonacci and Lucas numbers in such a way that, if, the 
Fibonacci numbers are replaced by the generalized Fibonacci numbers and the 
Lucas numbers are replaced by the generalized Lucas numbers, the arithmetic 
progressions still hold. 

Solution by Paul S. Bruckman, Edmonds, WA 

We indicate below the solutions to parts (A1)-(A4) of the problem: 

(AD (-2F„_2, Fn_3, 2Fn_lt Ln, 2Fn+1, Fn + 3 , 2F + 2 ) ; 

(A2) (-£„-!> -F
n-2> Fn-\> F

n+1' Fn+2> Ln+1}> 

(A3) <-4£„_l. - V 3 '
 2Ln> Ln + 3> 4 in + l > ; 

(A4) (i) (3Fn+1, Ln+2, Fn+h, 3Fn+2); 

(ii) {--iLn_x, ln„2, Ln + 2 , 3Ln + 1); 

(iii) (-3F„_2, -Fn_h, Ln_2, 3Fn_1). 

First, we verify that the above yield the desired solutions: 
( A l ) -2Fn_2 + Fn = -2Fn_2 + 2Fn_2 + Fn_3 = Fn_3; 

Fn-3 + Fn = Fn-\ ~ Fn- 2 + Fn-1 + Fn- 2 = 2Fn- 15 
2Fn-l + Fn = Fn-\ + Fn+l = Ln\ 

Ln + Fn = Fn-l + Fn + Fn +1 = 2Fn + 1 5 
2Fn + l + Fn = ^n + 1 + Fn+2 = ^n + 3 5 

^n + 3 + Fn = Fn + 2 + ^n + 1 + Fn+2 ~ F
n+ 1 = 2 i?n + 2 • Q-E .D. 

(A2) ~Fn-l + Fn = ~Fn-2 ~ Fn + Fn = ~Fn-2'> ~Fn-2 + Fn = Fn-\\ 
Fn-\ + Fn = Fn + ll Fn + 1 + ^n = ^z + 2 5 V̂z + 2 + ^n = Ln + 1* Q-E .D . 

(A3) -4Z/M_i + 5Fn = - 4 L n _ 1 + Ln + 1 + ! , „ _ ! = Ln + L n _ x - 3 L n _ x 

= ^ n _ i + ^ n - 2 ~ 2 L n _ 1 = ^ n - 2 ~ Fn-\ = ~^n-3» 
- L n _ 3 + 5Fn = - Z / n _ 3 + Ln + 1 + Ln_l = -Ln _ x + L n _ 2 + £ n + 2 L „ _ 1 

= ^ n - 2 + ^ n - 1 + Fn = 2 L n ; 
2Ln + 5Fn = 2Ln + Ln_]_ + Ln + i = Ln + L „ _ i + L„ + Ln + 1 

= - ^ + 1 + Fn + 2 = ^« + 3» 
^n + 3 + 5Fn = -̂ n + 3 + Fn-\ + Ln + I = Ln + 2 + Ln + l + Ln + l ~ Ln + Ln + \ 

= L„+ i + L n + 3Ln + 1 - Ln = 4L„ + 1 . Q . E . D . 

(A4) ( i ) 3Fn + 1 + F n = 2 F n + 1 + Fn + 2 = Fn+1 + Fn + 3 = ^^ + 2» 
^n + 2 + ^n = ^ + 3 + Fn + 1 + ^n = Fn+3 + Fn + 2 = ^ + 4 5 
Fn + l, + Fn = 2Fn + 2 + F n + i + Fn + 2 - Fn+l = 3Fn + z . Q . E . D . 

( i i ) -3Ln_l + 5Fn= - 3 L n _ 1 + L„ + 1 + / / „ _ ] _ = Ln -\- Ln_l - 2Ln_l 
= ^̂ 2 ~ Fn^i = Ln-2; 

Fn-2 + 5Fn = ^ n - 2 + Fn-1 + ^n+1 = ^n + ^n+1 = ^n+25 
^n+2 + 5Fn = ^n + 1 + Ln + ^n + 1 + ^̂ 2 - 1 = ?>Fn+I- Q-E .D. 

( i i i ) - 3 F „ _ 2 + F„ = - 3 ^ _ 3 - 3 F „ _ 4 + 2Fn_2 + Fn„3 

= 2Fn_2 - 2Fn_3 - 3Fn-i+ = -£'„-!+; 
-F„_u + FM 
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Ln_2 + Fn = Fn_3 + Fn_Y + Fn = Fn_Y - Fn_2 + Fn^ + F.n.x + Fn_2 
= 3Fn_!. Q.E.D. 

Although not required, it is informative to show how the preceding progres-
sions were discovered. We illustrate the method for part (Al) of the problem. 
First, we note that the value 2 can be assumed only by the following seven 
admissible terms: (F_3, -2F_2, IF„Y , LQ, 2Fls 2F2, F3). If we suppose that 
these are special cases of the desired terms, not necessarily in proper order, 
we surmise that the general terms of the desired solution may be formed by 
adding n to each suffix of the preceding list. If so, the asymptotic values of 
such terms are as follows, again, not necessarily in proper order: 

an5-112 • (a"3, -2a"2, 2a"1, 51/2 , 2a, 2a2, a 3). 

The terms in parentheses may be crudely approximated as follows: (.24, -.76, 
1.24, 2.24, 3.24, 5.24, 4.24). We now rearrange these last terms in ascending 
order of magnitude: (-.76, .24, 1.24, 2.24, 3.24, 4.24, 5.24), and note that 
all the terms are indeed in A.P. We now write down the terms of the first list 
corresponding to these last terms, as follows: (-2F_2, F_3, 2F_1, LQ, 2F1, F3, 
2F2) . Finally, we add n to each suffix in this last septet, thereby forming 
the candidate for the desired general solution; as we have verified, this 
indeed generates the correct solution. 

A similar process yields the solutions of the other parts of the problem, 
though in parts (A3) and (A4) the process is complicated by the fact that the 
choice of terms forming an A.P. is not unique; moreover, in (A4) , a pair of 
"red herrings" occur, which cannot be used to form an A.P., but these are 
readily identifiable as such and may quickly be eliminated from consideration. 

(B) The appropriate generalization is readily obtained by using the general-
ized Fibonacci and Lucas numbers defined as follows, for arbitrary constants v 
and s: 

Un = vFn + sFn_i, Vn = vLn + sLn_l9 for all integers n. 

It is easy to see that the Un' s and Vn
! s satisfy the Fibonacci recurrence, but 

have different initial values, in general. From this, we see that the desired 
generalization is obtained by replacing F by U and L by V in (A1)-(A4); the 
differences in each A.P. will then be an appropriate multiple (either 1 or 5) 
of Un, rather than of Fn . We illustrate only with case (A4)(i): 

(3£/n + i , Vn + 29 Un + ii, 3Un + 2) 
= (3(rFn+l + sFn), (rLn+2 + sLn + l), (vFn + h + sFn + 3) , 3(rFn + 2 + sFn + l)) 
= H3Fn + l9 Ln + 2, Fn + h, 3Fn + 2) + s(3Fn, Ln + l , Fn+3, 3Fn + l) ; 

from ( A 4 ) ( i ) , each quad rup l e t i n p a r e n t h e s e s i s i n A . P . , wi th common d i f f e r e n c e 
Fn and F n _ l s r e s p e c t i v e l y . Due to l i n e a r i t y , the g e n e r a l terms a r e a l s o in 
A . P . , w i th common d i f f e r e n c e = vFn + sFn _ x = Un. Q.E.D. 

Also solved by L. Kuipers and the proposer. 

A Golden Resul t 

H-423 Proposed by Stanley Rabinowitz, Littleton, MA 
(Vol. 26, no. 3, August 1988) 

Prove t h a t each roo t of the equa t ion 
j? Tn . JP Tn-1 . j? rn-2 ± , , , ± p r + F = 0 
nnx ^ rn+lX ^ rn + 2X ^ ^ f Zn-lX T r In U 

has an a b s o l u t e va lue near <j), the golden r a t i o . 

Solution by Tad White, University of California, Los Angeles, CA 
1990] 287 



ADVANCED PROBLEMS AND SOLUTIONS 

Problem: Show that the zeros of the polynomial Fnzn + ••• + F2 n l i e near the 
c i r c l e \z\ = a, where a i s a posi t ive root of z2- - z - 1 = 0. 
Solution: F i rs t divide through by Fn to obtain a monic polynomial; we wi l l 
examine the roots of 

fn (z) = zn + —— zn L + . . . + — . 

The following lemma gives us information about the coefficients of fn . 

Lemma 1: If 3 is the negative root of z2 - z - 1 = 0, then 
Fn + k 

Fy, 

\F 
, for all n, k. 

Then L 

Since 

1/1 = 
emma 1 

ifn ~ 

| e | < i 

gn(z) 

E K 
k= 0 

1 i f 

says that 

3n\ S 

, this 
sn + l 

2 

n 

says 

- ar 

_ ry 

f(3) 

£ n 

ifn 
: + l 

5 

F„ 
Proof: Using Binetfs formula for Fn, we can write 

S$(Fn + k ~ ^ a k ) == ^n + k ~ 3n + fe) - o^(an - 3") = 3n(3fe - ak) = -/53ni^; 

dividing by v5Fn and taking absolute values completes the proof. • 

If we define gn(z) = zn + azn~l + ••• + an, then Lemma 1 tells us that the 
coefficients of fn and gn axe close. To make this precise, we can define a 
norm on the vector space Pn of complex polynomials of degree < n via 

n n 
= £ afe2

fe. 
k= o 

sn!n±2 < 3 B „ _ 
Fn 

gn\ -> 0 as n -> «>. Note also that 

so the roots of gn lie on the circle \z\ = a. Hence, we need only show that 
the locations of the zeros of a polynomial vary in some sense continuously with 
the coefficients. This can be made precise via the following lemma. 

Lemma 2: Given a sufficiently small e > 0 and fi e Pn , there exists 6 > 0 such 
that if /o ^s a n element of Pn with ||/Q ~ /l II < <$» there exists a one-to-one 
correspondence between the roots £ • of /Q an^ t n e roots n^ of /]_ such that 
\^i " ̂ i I < e f ° r eacn ^ °  
Proof; Let ft = (1 - t)/ 0 + £/i f o r 0 < £ < 1; note that ft e Pn for each t. 
Since the set of zeros of f^ is discrete, and since e is small, /]_ does not 
vanish in the closed punctured ball of radius e around n^. Observe that the 
evaluation maps ez i Pn -* (C, given by ez(f) = f(z) are continuous with respect 
to the norm || • || , and In fact uniformly continuous if we restrict z to the 
compact set \z\ < 2 (which contains all of the roots n^ in its interior). There-
fore, we can choose 6 such that ||/*o~/lll < & implies that fQ does not vanish on 
dB(r)i, e) , where B(T\^5 e) is the closed ball of radius e at n^. Since ||/0 ~ fl II 
is a monotonic function of t, we have that no ft vanishes on 8S(n^, e). 

Assume further that e is small enough that the paths 85(n^,e) are disjoint; 
then define the functions 

(please turn to page 282) 

ft' (*> 
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