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A RADIX PRODUCT REPRESENTATION FOR REAL NUMBERS

Arnold Knopfmacher

University of the Witwatersrand, Johannesburg, Wits 2050, South Africa
(Submitted September 1988)

Introduction

Two classical representations for real numbers in terms of integer 'digits"
are the series representation of Sylvester (1880) and the product representa-
tion of Cantor (1869): If A4 denotes any real number (4 > 1 in the product
case), then these representations, respectively, take the forms:

1 1 1
A=a0+_+'_+'—+"°, a,LEIN,
a a2 ag
where ay 22, aj+1 2 a;(a; - 1) +1 for 7 =2 1,
= 1\
= 9k - X
and A=2 ¢I=[1 (1+ai}’ a; € N,
where k €W, aj 2 2, a;41 2 a? for 7 > 1.

For further details, see, for example, Perron [3].

Far more familiar to us than the above is of course the radix or decimal-
type representation for A to the base g, where here and throughout, g denotes
an integer greater than or equal to two. One of the advantages of this latter
representation over the first two, is that the digits "q;" all lie in the
finite set {0, 1, ..., g = 1} which allows us to conveniently express our
decimal expansion base g in the positional notation

A = ApQy -1 «++ A1AQ * A-1A-20-3 «ss =

It seems therefore a natural question to ask whether we can derive a further
product representation for a real number 4 > 1 in the radix form

4= 11 (1+—.>, where m € N, a; € {0, 1, ..., g - 1}.
7 =-m q*

The paper is set out as follows. In Section 2, we derive a more general
type of radix product representation for real numbers 1 < 4 < 2. The main
interest of the radix product representation is that, like ordinary decimals
(base ), it depends only on digits belonging to the set {0, 1, ..., g - 1},
thus allowing us to express the radix product

4 =i[1(1 +gi7;)

as 0 * ayapsag ... say, just as in the decimal case. Furthermore, as shown in
the paper, the rate of convergence of the radix product is basically the same
as that of the ordinary decimal expansion. It is true that the Cantor product

A=H<l+—l—>

ag

converges more rapidly. However, by the same token, the Sylvester series
1
A =3 Z;

converges far more rapidly than the ordinary decimal expansion. Furthermore,
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A RADIX PRODUCT REPRESENTATION FOR REAL NUMBERS

due to the exponential growth of the integers a; in Sylvester's and Cantor's
representation they are unwieldy to use in practice and each "digit" a; must,
in turn, be represented in the decimal system, a drawback which is absent in
the case of the radix product. In Section 3, we introduce an alternative,
computationally simpler algorithm which allows the computation of the radix
product digits from the leading digits of a certain sequence of ordinary g-
decimals. Finally, in Section 4, we investigate the possibility of an
analogous radix product representation for real numbers 0 < 4 < 1.

Throughout the paper, unless otherwise stated, lower case letters denote
nonnegative integers.

2. Radix Products in a Varying Scale

Let ¢gy5 ¢g5» ... be an infinite sequence of natural numbers greater than
one. Then, it is well known (see, e.g., Perron [3]) that every real number 4
has a generalized decimal expansion

a a a
A=ayg+L+ 2+ 32— .,
41 9192 419243
where a, = [4], 0 < a; <g; - 1 for © > 1.

Using the product algorithm below, we derive an analogous generalized prod-

uct representation: Let 1 < 4 = A} < 2. Then, recursively define, for n z 1,

a, = [Ay = Dayqy --- q,15 4, =2 1,

Ay -1
oy = (L4 o)

If 4, = 1, then stop the algorithm. This leads to

where

Proposition 2.1: Let 1 < A < 2. Then 4 has a finite or infinite product rep-—
resentation

o

a.
Y
ir=ll 4192 --- 94

where the "digits" «a.

; satisfy 0 < a; £ gq; - 1.

Proof: First, a repeated application of the recurrence yields
a a a
1 1 2
1+ ——)A. = {1+ ——><1 + ———~>A =
( qi/72 ( q1 q19» 3

(1 + %><1 + %) (1 + a—q—;%)z‘lml,

if A # 1. Since 1 < 4y <2, 0 <a; = (4, - gl < q;. Suppose now, induc-
tively, that 4; > 1 and 0 < a; < g; - 1 for © < n. From the definition

Az 4

a, = [(4, - l)q1q2 cer qul
we deduce that
+ 1
L. S i B
qy -+ 4y q1 <<+ 9y

and it follows that

a, +1 a 1
T
ntl gy -e- q; -+ 9y dy eee G, T ay

Thus, Yt o

0 < A+l = [(An+]_ - 1)q]. e qn+l] < Ap+1

I

IA

1990] 291



A RADIX PRODUCT REPRESENTATION FOR REAL NUMBERS

as required. Now, either 4, = 1 for some n, or
1
1 <4,<1+ — < 1 + > 1 asn > o, forn > 1.
Q199 -+ Gp-1 on-1

The result follows.

Of particular interest to us is the decimal-type product representation
obtained by setting q; =g, = g3 = --- = ¢, in the above. Before discussing
this case in some detail, we brlefly mention one further special product repre-
sentation of interest, which arises from Proposition 2.1 by setting ¢, = n + 1
for n =2 1.

Corollary 2.2: Every real number 1 < A < 2 has a "factorial" product represen-

tation
el (e,
i[H (7 + 1)!
where 0 < a; < 7 for 7 2 1.

In the sequel, however, we shall confine our attention to the most inter-
esting case of Proposition 2.1, obtained by setting ¢, = q for all n 2> 1.

Theorem 2.3: Every A > 1 has a finite or infinite radix product representa-
tion (base q) of the form
® a;
A= n{Im <1 + 52): = @A, eee AUy K QA gy eees

where m € N, a; € {0, 1, ..., g - 1}.

9

Proof: It follows from Proposition 2.1 that we can represent every 1 < 4 < 2 as

A=ﬂ<1+~>
i=1 q*

A simple (nonunique) method of extending this product for 1 < 4 < 2 to every
A > 1 is as follows: First, if A' < 2g, then, for a suitable 0 < ay £ q - 1, we
can write

a
ar= (1 +=0)4,
q

where 1 < 4 < 2. Now apply the algorithm to A. Next, if A" > 2g, then there
exists m € IN such that 1 + g™ < 4" <1 + qm+1. Thus, we can write

1
A" = <1 + ﬁ)/{’y

where 1 < A" < (1 + qm+1)/(l + g™ < g, and the product expansion for 4" now
follows from that of 1 < 4' < 2q.

Remarks 2.4: Even in the case 1 < 4 < 2 the radix product representation base
g is not necessarily unique. For example, to base 2,

1+ 1= (1+ 1)(1+ 1)(1+ l>(1+i)
2 22 23 24 287 07
where the one-term expansion on the left follows from applying the algorithm

directly to 4 = 1.5, while the algorithm applied to A = 1.2 = 1.5/1.25 yields
the expansion on the right.

Unfortunately, as these and other examples show, real numbers can have more
than one expansion as a radix product subject only to the condition that the
digits lie in {0, 1, ..., ¢ - 1}. However, the constructive algorithm at the
start of Section 3 produces a unique choice for the digits a; at each step.
For the digits produced by this algorithm, it follows from the proof of Propo-
sition 2.1 that the following inequality holds for each»n > 1:
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A RADIX PRODUCT REPRESENTATION FOR REAL NUMBERS

a, +1 = :
(%) <l + —ﬁ————> > J1 (l + g%).
q" i=n q*
Conversely, it can be shown that there is only one radix product expansion for
a given 1 < 4 < 2 for which (%) holds for each n > 1. Thus, every 1 < 4 < 2
has a unique radix product expansion

©

A=H(l+gi.>

i=1 qr

s.t. for each 7 > 1,

(1 + Ei—i—£> > 1 (1 + 9ﬁ>.
q* n=i q"
Furthermore, since the algorithm chooses the largest possible digit "a;" at
each stage, in general, this radix product expansion will converge faster than
any other not satisfying (%), and is thus the canonical expansion for 4.

In addition, rational numbers need not have finite representations as
g-radix products. As a particular case of Euler's product identity

e LG )
1+ = 1+ —=)> € R, > 1,
y _ l V[I;Il yz 1 y |yl
we have, for any » € IN,
1 ® 1
A=1+—F"-—-= <l + ——;7——>.
qr -1 nl;ll q2 tr

Note also that such 4 have recurring ordinary g-radix expansions of the form
4 = 1.00...01, where the period consists of r - 1 zeros followed by a one. In

general, however, other recurring decimals base ¢ need not have '"nice" radix
product representations, unlike the case above.

3. An Alternative Radix Product Algorithm

We can reformulate the general product algorithm of Section 2 in the case
of a fixed base g, into the following computationally simpler form. It is easy
to show that the new algorithm is equivalent to that of Section 2 in the case
q, = q, = -+ = g, provided we replace any real number with recurring decimal
expansion
a .4 1 g-1

A=1+ —_— t+
qs qs+l qs+2

+ ..., 0<ac<qg-1, s €N,

by the finite expression
a+1
qS
In this form the algorithm determines only the nontrivial digits (a; > 0) in the
radix product representation.

If 1 <A < 2, let 41 = 4. Then, if the unique decimal expansion of A (base
q) is of the form

A =1+

b
A=1+ il + .., 1 <pb, =g-1, r EN,
q
then we can write
o bl 1
A =1+ A{, where 1 < 4/ < 1 + — <2
1f “ b1
~ n
Ay =1+ —F-4,
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A RADIX PRODUCT REPRESENTATION FOR REAL NUMBERS

has already been defined with

1 <A} <1+ <2,

then define

. b, \1. b, \"1 b, +1
A= (1 + Zq) 4, < (1 + f) (1 + —ﬁ—;——>

q q™ g™
=1 <1+ !
g™ + by q™
It follows that we can write
b
7 = _ntl
An+1 =1+ qpy”_l n'+1’

where r, 4,1 > r,, 1 < Db, £ g -1 and

1
- < 2.

1 <4
bn+l

<1+

i
n+1l

1f Aé =1, let A”+1 = 1 and stop the algorithm. Then

7 b
~ l ~ ~
A4=4 = (1 + rl)Az = = A 11 (1 + q;‘»’>
If the procedure does not terminate with some £n+l = 1, then
0 < A 1 < ! < ! < < 1 0 >
- —_— — oo —_— > o
) n+l q1%+1_1 < e < < o as »n
Thus, 1im 4,,; = 1, and hence,
N> oo - b
4 =11 <1+ ;)
=1 q*

if

b b
P = (1 + =2 ) .- <1 + ;’>,
q qr
we also have b
n+1
4 = (l + -?::f'Aé+l>E%
q 1
and so
bn+l A A in

<

0 <d-5 = qr’ni-l n+lfn < qrn'*l -1 q

The above argument can therefore be used to give an alternative proof of Theo-
rem 2.3 and, in addition, if for 4 > 1,

7 bi
Prz = II <1 + r;)’
n=-m q*

then the rate of approximation to 4 by the finite "decimal"™ P, is given by

*pA—_1<%,7’LZl.
qn+1 q

0<4-P, <

In order to appreciate how easily this algorithm can be applied in prac-
tice, we illustrate it with a numerical example. For convenience, we choose
the base g equal to ten: Let A = 4y = 1.035124. Then

Py =0 % 03, Ay = (1.03)71(1.035124) = 1.004974...,
Py = 0 % 034, A3 = (1.004)71(1.004974...) = 1.000970...,
Py =0 % 0349, 4, = ...

294 [Nov.



A RADIX PRODUCT REPRESENTATION FOR REAL NUMBERS

To conclude this section, we make a few comments about radix product '"frac-
tions" base g, that is, radix products of the form 0 * ayapaz..., 0 < a; <
g - 1. It is clear from the above algorithms that any 1 < A < 2 has a repre-
sentation as a fractional radix product. (To obtain a product expansion for
A = 2, we can apply the algorithm of Section 3 to 4 = 1.999...). However,
fractional product representation also exists for certain real numbers greater

than two. If we denote the largest such fraction (base g) by
€ = 0% (g-1(@-1)...,

then it follows from standard inequalities relating infinite series and prod-
ucts that

~q -1 <°"q-1>
1 + < €, < exp
nz=:1 q” 1 nz=:1q” ’
which gives 2< €4 <e for every g. However, the actual value of €; varies with
q. In the table below, we list approximations for €; for some small values of
the base g.

TABLE 1. The Largest Radix Product Fraction
Corresponding to Given Bases g

Q

Cq

.38423
.26971
.20963
.17207
.14619
.12719
.11263
.10110
.09172

O WO ~NONUTR W
NN NDNDNDDNDDN

[

Note that the values of €, listed correspond to those for the finite products
k

H<1+q_1>

n=1 qn

for suitable values of k. If we denote such finite products by eq(k), then
w g-1
€r - €0 = g I (1+ L) - 1)
q q q i ksl qt

< & (exp((q - 1) [I jz) - l) < e(eqk -1).
i=k+19

With this as an upper bound for the error, large enough values of k were chosen
for each of the entries g = 2, 3, ..., 10 to give €4 - Eq(k) < 1075. Examina-
tion of Table 1 suggests that €; is a decreasing function of ¢ for g = 2, a
fact that can be verified by considering the derivative with respect to g, of
log €;. Furthermore, using Theorem 5.7, in Hyslop [1] we see that the uniform
convergence of the infinite series

i -1
D LR
=1 g

for g > 2, implies the uniform convergence of the product €

follows that lim €q = 2.
q > o

Z

g’ for g 2 2, and it
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A RADIX PRODUCT REPRESENTATION FOR REAL NUMBERS

4. Radix Product Expansions for Real Numbers Less than One

One immediate product representation for 0 < 4 < 1 follows from the radix

product expression for 471 > 1, Thus, if we have
1 2 2
A4 =.Hm<l+q—->,oﬁai3q—l,
i=o .
then v

o0 a. _]. == a.
A = (1 + ——?-) = (1 - —¢—>
AL rg) = Q-

In particular, for 4 > 1/2,
o a .-
(1) A=n<l——.;>.
i=1 qr + a;
In this form, however, the product no longer has a denominator depending only

on the base. This product does, however, suggest the possibility of represent-
ing every 0 < 4 < 1 in the form

© b.
_ T
A—iIl(l—g;), 0<b;, <gq; - 1.
Unfortunately, it turns out that it is not possible to represent every 0 <
4 <1 or even 1/2 < 4 < 1 in this manner.

To see this, let {ak} be a sequence of real numbers with g, € (0, 1) for
every k. Then we deduce from Weierstrass's inequality (see Mitrinovié [2],
p. 210):

k k
[1a-a)>1-% a,
n=r n=r

by taking limits that

o

IT - a,)

n=2

v

1 - E: Ay -
n=2

Hence,

v

ﬁ(l—an),<1—ian>(1—al)>1—ian.
n=2

n=1 n=1

i -1
Applying this last inequality to P; = 11 <1 - EZ?;—), we obtain
=1
mq_l
p>l—z : = Q.
! i=1 q*
Since p; is the smallest number that can be represented in the form
1——.>,Oga-g —l,

ll;ll( q* ¢ =4
it follows that there can be no such product representation for any 0 < 4 < p;.
Similarly, the largest real number that can be represented in the form

- o
n<l—gz—.>,0§aisq—l,al¢0,

=1

is py, = 1 - (1/q), and the smallest real number that can be represented in the
form

- a.
_nl(l——“,>,0s%gq—1, a, = 0,
i

is

296 [Nov.



A RADIX PRODUCT REPRESENTATION FOR REAL NUMBERS

Since the inequality relating infinite products and series yields P3
can again be mno such product representation for any real number P3
In general, since

- q - l) 1
1 - - > 1 - =,
i=£L1< qr q"

there will be an infinite sequence of gaps in any representation system based
upon products of this type.

A consideration of Equation (1) suggests that, for 1/2 < 4 < 1, we can ob-
tain a product expansion with digits in {0, 1, ..., ¢ - 1} and denominators
independent of "g;" consisting of terms

a; .
<l —m), 7z > 1.

To obtain such expansions, we introduce the following algorithm: Let

1
5 <A = Al < 1.

v v
™~
\2
e
S}

Then recursively define, for n > 1,

ay = [(l - An)(q” + q)]’ An z l’

Ay -1
AVL+1= l—m AH'

If 4, = 1, then stop the algorithm.
Using this we can show, in a similar manner to Proposition 2.1, that

where

Proposition 4.1: Every 1/2 < 4 < 1 has a "near radix" product representation
= a
A= (1——”—)
nljl q" + q
with "digits" g, in the set {0, 1, ..., g - 1}.
References
1. J. M. Hyslop. Infinite Series. 5th ed. University Mathematical Texts, 1965.

2. D. S. Mitrinovié. Analytic Inequalities. New York: Springer-Verlag, 1970.
3. 0. Perron. Irrationalszahlen. New York: Chelsea, 1951.
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PARTITIONS WITH "M(a) COPIES OF a"

E. E. Guerin

Seton Hall University, South Orange, NJ 07079
(Submitted September 1988)

In [1], Agarwal & Andrews studied partitions with "g copies of a," and in
P

[2], Agarwal & Mullen studied partitions with "d(a) copies of ¢" (where d is
the divisor function). In this note, partitions with "M(aq) copies of g" are
considered; the maximum exponent function, ¥, is defined by

M(a) = max(ey, ..., €,)

if the integer a > 1 has canonical prime-power form a = pfl .. pjf, and M(1l) =
1.

Define L to be the set of ordered pairs (a, b) of positive integers with
1 <b < M(@). We say m is a partition of n with M(a) copies of g if =7 is a
finite ordered collection (a;, by), (as, by), ..., (ay, by) of elements of L

such that a; +ap + +++ + ay =n and, for 1 <7 <4 <k, a; 2 a; with by < bj

if a; = a;. If we replace (a, b) in L by a;, the partitions of »n with "M(a)
copies of ¢" for m = 1, 2, 3, 4, can be represented, respectively, by

115 27, 17 + 175 315 27 + 17, 17 + 17 + 153
41, 42, 3]_+].1, 21+21, 21+11+11, 11+11+11+11.

For the positive integer n, let m(n) denote the number of partitions of n
with "M(a) copies of a." As in [3, Ch. 1] and [2], a generating function for
such partitions is

1+ > mn)gn = [l (1 - gm~¥m,
n=1 n=1
This is an immediate consequence of the following theorem [3, Th. 1.1]:

If H is a set of positive integers, if "H" is the set of partitions with
parts in #, and if p("H", n) is the number of partitions of »n with parts in
H, then for |q| < I,

Lo, mygn = [l (1 - gt
nz0 neHx
The factor (1 - g®)~! =1 4 g* + g**"+ ... is replaced by
(1 - g™ M) = (1 + gn + gntr + )
= (l+qgM+qgntm+ o)1 +q"+qg"T 4 )
e 7y(n) () ¥ () -
(1 +gq + g + )

for n; =n (1 £ 7 < M(n)); thus, the number of partitions of n with "M(a) copies
of @" is counted. For example, m(4) is the coefficient of g% in

A -t -gHta-gHta-g9H™7?
- +q11 +q11+11 +q11+11+11 +q11+11+11“1 o))
(1 + g2 + gt L )A + g+ e+ g+ e+ gt + -
for 11 =1, 27 =2, 37 =3, 4; = 4y = 4; since
q4 - q41 - q42 - q31+11 - q21+21 - q21+11+11 - q11+11+11+1%

then m(4) = 6, and the exponents
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are the six partitions of 4 with "M(a) copies of a."
If p(n) is the number of unrestricted partitions of #z, then

L+ Y mmgr= 1 -qg0-1 1 (1-gq)@m-D
n=1 n=1 n>1
M(n) >1
=<i p(n)qn> I <iqm>M(n)-1_
0 n>1 i=0
M(n) > 1
Note that M(n) = p(n) if n = 1, 2, 3. Some values of m(n) are shown below.

n 12345 6 7 8 91011 12 13 14 15 16
m(n) 1236 813 18 30 41 60 82 121 162 226 302 422

A recurrence formula for m(n) is now given. Let [r] denote the greatest
integer less than or equal to the real number r; let

(57) - Zee

where k is a positive integer [so that (k), is the coefficient of ¢? in the
expanded form of (1 + g + ¢2 + q3 + ...)%); and let s; equal the 7th nonsquare-
free positive integer (with s} = 4, s, =8, s3 =9, s, =12, sg = 16, and so
forth). Then, if n > 4,

J
mn) = 3 My,
=1
where j is the unique positive integer such that s; < n < sj,.1, m(0) is defined

J
equal to 1,
[n/4]

My, 4 = pn) + »z: p(4 - ni)

=1
for n =2 4, and

Mn,g; = (M(85) = 1), mn = s;ln/s;1)

[n/s;1-1 i-1
T R CIER IR OO P
i=1 v=1 h
for n 2 sj > s;. For example,

m(16) = myg,16 * Mg, 12 * Mig, 9 t Mg, 8 * Mg,y

M(16) - 1) m(0) + (M(12) - 1)ym(4) + (M(9) - 1)ym(7)
+ (M(8) - 1),m(0) + (M(8) - l)lms,q

+ (p(16) + p(12) + p(8) + p(4) + p(0))

(3)7+1 +(1)y=6+ (1); =18+ (2),-1

+ (Z)l(p(8) + p(4) + p(O)) + (231 + 77 + 22 +5 + 1)
=34+ 6+ 18+ 3 + 56 + 336

= 422.

Il

Combinatorial interpretations of partitions with '"M(a) copies of a" can be
stated in terms of plane partitions [3, Ch. 11] and factorization patterns [2].
In [4], Mitchell considers plane partitions in which the number of parts equal
to J = 1 in any row is not less than the number of parts equal to j in the next
row; we designate these plane partitions as Mitchell plane partitions (MPP's).
Each MPP of a positive integer n can be written uniquely in an "identical-
element-column format" (ICF) of the type
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11 o1 ot A
Ay Aoy, =e Ape,
with
r ti
Z Zaig=n
=1 g=1
and J
' ailzai+1’l(i=l, cees r = 1),
with
a’l,l = e =a7:t7_-
for each 2 =1, ..., 7, and such that, if a; = ay, for ¢ < k, then t; 2 t,. If

n >

I.

IT.

Deno

1, then m(n) is the number of ICF's of the following types:

r
ayy Gy eee Gy <with ézlail =nand a;, 2 a4y, (=1, «.., 7 - 1);
i

ty = ++» = t, = 1. ICF's of this type are unrestricted partitions of n.)

ICF's formed by first replacing one or more of any nonsquarefree a;; (¢ =
1, ..., r) in I, as indicated in (i) and (ii) below, and then rearranging
these columns 1f necessary. (If a;, is squarefree, then a;; is the only
acceptable form.)

(i) If a;; # ay, for k # %, and p is the smallest prime such that p¥(a:)
divides a;;, then acceptable replacement forms for g;; are those with
a;1/p? identical column entries, each entry p? (v =1,..., M(ay) -1).

(ii) 1If A1 =Ai4+1,1 T **° = Ai4y,1 A41 7 Akl ifk=z<,71+1, ..., 7 +w
(1 <42 <41+ r<pr), then acceptable replacements are those with one
or more of a;y1, ..., Q;4y,,1 replaced by replacement forms specified
in (i) under the condition that entries in the column replacing ap;
are greater than or equal to entries in the column replacing a.; if
e>b (1 <b<c<i+w.

te the set of ICF's of n of these types by MICF(n), and m(n) is the order

of the set MICF(n).
Also, m(n) dis the number of restricted '"maximum-exponent' factorization

patterns (MFP's) of the type b?l ce bir with
n=>bia + --- + bea,
and
. by = = bkl g bk1+1 =-eo =Dy, > ee > by 41 T e S br,
with
ko=r
and
ay > ... > akl, ak1+1 Z .. 2 akz, e e akc_1+1 Z e 2 Ay,»
a
and in which, for b,a, = w (l <w <n) and for v =1, 2, ..., r, b,” has the

following specified form:

300

a
(1) 1If w is a squarefree positive integer, then b’ = wl;

(2) 1If w is not squarefree, and p is the smallest prime such that p¥®)
divides w, then bg” = ! or bﬁ” = (pt)(w/pt) (t =1, .., M) - 1).

To illustrate, m(8) = 30 and the elements of MICF(8) are

8 2 4 71 62 611 53 521 5111 44 42 22 431 321 422 222
2 4 2 22 2 2
2
2
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4211 %211 41111 21111 332 3311 3221 32111 311111 2222 22211
2

221111 2111111 11111111

The element 3%1 (obtained from %31 by a column rearrangement) has plane parti-

tion form %21 and corresponds to the MFP 312211,

For any positive integer » there is a bijection between the set MICF(n) and
the set of MFP's of n. Also, a bijection between the members of the multiset
{11, 24, 39, 495 4o, vy M1y «ovs My} and the set of MFP's of n is indicated
by 1; corresponding to 11, 2, to 21, 3; to 31, 4y to 22, 4, to 41, ..., and "y
to nl if M(n) = 1, or ny to p™P, ..., nypy-) to (pHW=LYyU/pEW=1 "y 0y to nl
if M(n) > 1 and p is the smallest prime such that p¥() divides n.
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Amos Ehrlich
Tel-Aviv University, Tel-Aviv, Israel

(Submitted September 1988)

1. Introduction

Let A = (a;> as> ..., a,) be an n-tuple of nonnegative integers, and define
D(A) = (lay = az|> laz = azls --vs lay-1 = anls |an = ar])-

Note that in the definition of D the n-tuple 4 is regarded as written in a cir-
cle, so Ludington's title "Cycles of Differences" [3] is more suggestive than
my "Columns of Differences" [1].

Sequences of the form 4, D(4), D2(4), D3(4), ... are called Ducci sequences
here (see [5] and [7]). Some authors call them n-number games.

Since applying D does not increase the maximum of the components of a tuple
it follows that in a Ducci sequence there are just a finite number of differ-
ent tuples. Let D®(4) be the first tuple which is equal to a previous tuple
D¥(4), then the tuples DT (4), D**l(4), ..., D°"1(4) form a repeating cycle.
The length of this cycle, s - r, is called the period of the sequence. If R
and S are any two natural numbers such that DF(4) = DS(4), then s - TIS - R.

This article deals mainly with the periods of Ducci sequences. (Authors
who deal with the length of the part that precedes the cycle refer to that
length as the length of the game.)

2. Maximal Periods

The components of every tuple in the periodic part of a Ducci sequence are
all equal to either 0 or a constant C which depends on the first tuple of the

sequence (see [1], Th. 1 in [2], Lem. 3 in [3], item I in [7]). Since for
every positive A, D(M) = AD(4), one may assume without loss of generality that
c = 1. In other words, let us restrict our attention to n-tuples with
components from {0, 1}. 1In particular, the Ducci sequence that starts with the

n—-tuple (0, ..., 0, 1) will be called a basic Ducci sequence, and the length of
its period is denoted P(n).

Let H(ay, ag, --.> ay) = (azs, ..., a,, ay), then H is a linear transforma-
tion over Z2' Since |x - y[ = x +y (mod 2), it follows that D = I + H, and D
is also a linear transformation over Z;.

Theorem 1: For any n, the maximal period of Ducci's sequence of n-tuples is
P(n). Periods of other sequences divide this maximum.

1f D®(4) = D5(4) holds for 4 = (0, 0, O, ..., O, 1), it holds also for
A=, 0, ..., 0, 1, 0), for 4 = (0, ..., 0, 1, 0, 0), etc. This follows from
the cyclic character of D (or, alternatively, from the commutativity of D with
H). Since D is linear, it holds also for sums of these A's. [J

3. Upper Bounds for P(n)

Lemma 1: If 2™ = ¢ (mod n), then D?™) = J + gt

Proof: By Induction on m, (I + H)(Zm) =7+ H2M, H2T = gt since, by the defi-
nition of #, H" =71. [

Note that Lemma 1 suggests an effective way to compute D”(4) for big r's: Write
r as $2™, then compute (II(I + H?1))(4).
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Corollalry 1: 1f n is a power of 2, then the cycle of Ducci's sequences consists
of a single n-tuple (0, 0, ..., 0).

Proof: In this case, D" =T + HY =T + T = 0. []

Corollary 2: 1f n is not a power of 2, then the cycle of the basic Ducci
sequence contains an n-tuple with exactly two 1's.

Proof: Take any m which is big enough to assure that D™ (0, 0, ..., 0, 1) is
in the periodic part of the sequence. Reducing 2" modulo n gives a ¢t = 0.
Ht(O, 0, ..., 0, 1) has exactly one 1, but it is not (0, 0, ..., 0, 1). Thus,
the result follows from Lemma 1. [J

Corollary 3: If 2™ = 1 (mod n) then P(n) divides 2™ - 1.
Proof: In this case p2" = 17 4+ gl =pl. Qg

Remark: Both Corollaries 1 and 3 are not new. Corollary 1 is item D; in [7]
and appears in at least 19 of the 22 articles referred to there, sometimes only
for w = 4. The present proof is considerably shorter than the ones in [7] and
in [6]. Corollary 3 is written without proof in [1] and is the "further" part

of Theorem 3 in [3], restricted to odd n's.
Theorem 2: 1f 2Y = -1 (mod n), then P(n) divides n(2¥ - 1).
Proof: D@ =T + g1 = F"Y(4 + I) = H"1D; hence, D®2") = g="p" = p"_- []
Let us use the following abbreviations:
a. For an odd n > 1, let m(n) be the smallest m > 0 such that 2™ = 1 (mod
7n). [By Fuler's theorem, such an m does exist and m(n)|¢(n).]
b. If for an odd n > 1 there is an M such that 2¥ = -1 (mod n), then n
will be said to be "with a -1." When this occurs, the smallest such ¥
is m(n)/2. 1If this does not occur, then we say that n is "without a
_1."
Facts:
For every odd n with a -1, from 3 to 163 except for 37 and 101,

P(n) = n(2mm/2 - 1),
For every odd »n without a -1, from 7 to 165 except for 95 and 111,
P(n) = 2mW - 1,

For all of the four exceptions, P(n) is 1/3 of the "expected" value. I do
not know whether any deeper thing is hidden behind this divisor 3.

These data were computed in the following way. Since for every odd »n there
is an m such that 2™ = 1 (mod n), and since: (0, ..., 0, 1, 1) =D(0, ..., O,
1), it follows from the proof of Corollary 3 that, for such an n, (0, ..., O,
1, 1) is in the periodic part of the basic Ducci sequence. The note just after
Lemma 1 gives a fast way for checking whether D0, ..., 0, 1, 1) = (0, ..., O,
1, 1). By Corollary 3 and Theorem 2, one has to check only r's which divide

2 - 1, and in many cases only the divisors of n(2meMIZ — 1y,
As an example, let us see how P(37) is found. 18 is the smallest M such
that 2% = -1 (mod 37). [In other words, 37 is with a -1 and m(37) = 36.] By

Theorem 2,
P(37)|37 - (218 - 1) = 9699291. 9699291 = 3+ 3 +3 7 19«37 - 73.

A subroutine based on Lemma 1 is now called, and outputs D¥(0, ..., 0, 1, 1)
for » = 9699291/3, 9699291/7, 9699291/19, 9699291/37, and 9699291/73. The
first of these r's returns (0, ..., 0, 1, 1), while the other omnes do not.
Running this subroutine for » = 9699291/9 does mnot return (0, ..., 0, 1, 1)
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either; hence,
P(37) = 9699291/3 = 3233097.

Remark: The D” subroutine is quite fast. The reason for stopping the calcu-
lations at P(l65) was the time needed for the factoring. I thank Yehuda Kats
of Levinsky College for Teachers, Tel-Aviv, for factoring the numbers that were
needed in calculating P(131), P(139), and P(149).

4. More Properties of P(n)

Having seen that P(n) may be a proper divisor of 270D- 1 or of n(27(M/2 - 1)
there is an interest in the following theorem.

Theorem 3: 1If n is not a power of 2, then n]P(n).

Proof: Write the components of an 4 € Z; on the vertices of a regular m-gon in

a counterclockwise order, starting, say, at the highest vertex. For example,
write (0, 0, 0, 1, 1) as follows:

VAN

e

If A has an axis of symmetry, then D(4) also does, and its axis is obtained
from that of 4 by a rotation of -180/n degrees. [It is the bisector of the
axis of A and the axis of H(4).] 1If 4 has more than one axis, then each of the
axes is transferred to the followers of A in the same way.

By Corollary 2, there is an n-tuple with exactly two 1's in the cycle of
the basic Ducci sequence. Since this n-tuple has just one axis of symmetry, so
do all of the tuples in the repeating cycle. During one cycle, the axis
rotates a whole multiple of 180 degrees, so the period is a multiple of n. [J

In the proofs of the following theorems, I am going to cut a tuple into
equal parts and write these parts one below the other in the form of a matrix.
These matrices are not intended to represent linear transformations. They are
just another way to write the tuples, and you may read them the same way you
read an English text of more than one line. For example, for

A = (a, b; C, d) e, f) 9> h, 7;) j: ky Z):

a b ¢ d b ¢ d e
HA) = Hle f g hl =|f g h <
i g k1 Jj k L a

On the other hand, if the dimensions of the matrix form of A are given,
then each row and each column of A are well defined tuples on their own, and
our transformations # and U may apply to each of them. Let us define //;(4) to
be the matrix obtained from A by replacing each row by //(that row), and define
‘D, (A), Fo(A), and Dp(4) in similar ways, with "D" instead of "/" or with
"column" instead of "row.'" Following our last example,

b ¢ d a e f g n
H(4) = |f g h e| H(A) =i j k 1
Jg k L Z a b ¢ d

Theorem 4: If n = 2"k, where k is an odd number, then P(n) = 2"P(k).

Let us write each n-tuple 4 as a k x 2" matrix. ' Since each row of 4 is,
now, of 2™ components, H(Tw(A) = H.(4). By Lemma 1, this holds for D's too.
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To find P(n), it is sufficient to inspect just every 2"th element of the
basic Ducci sequence since, by Theorem 3, 2m|P(n). If we start our inspections
with the first element of the entire sequence, i.e., with the n-tuple whose
matrix is

0, «.., 0, 0
0, ..., 0,0
0, ..., 0, 1

then the right column of the inspected elements forms a basic Ducci sequence of
k-tuples, and the other columns are 0's (since D) = Dg). The period of the
inspected subsequence is, thus, P(k), and the period of the entire sequence is

2"P(k). O
Theorem 5: 1f k|n, then P(k)|P(n).

Proof: By Theorem 1, it is sufficient to find an #n-tuple whose Ducci sequence
has P(k) for its period. We are going to see that the n/k x k matrix

Os ... 0,1

0, ..., 0, 1

will do.

Indeed, if all of the rows of a matrix A are equal to each other, then H(4)
= H;(4); hence, D(4) = D;(4). It follows that the Ducci sequence of n-tuples
which starts with the above mentioned matrix, behaves like the basic Ducci
sequence of k-tuples. [J
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Introduction

Let ¢ and n be natural numbers. Let F, denote the nth Fibonacci number,
that is Fy = Fp =1, F, = F,_; + F,,_, for n > 3. Consider the equation

(%) F, = cx?.

In [1], Cohn solved (x) for ¢ = 1, 2. In [9], we found all solutions of
(%) such that ¢ is prime and either ¢ = 3 (mod 4) or ¢ < 10,000. Harborth &
Kemnitz [4] have asked for solutions of (%) for composite values of ec.
Clearly, it suffices to consider only squarefree values of c.

If ¢ < 1000, then ¢ has at most three distinct odd prime factors. There-
fore ¢ = kp where p is prime and k = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19,
21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 38, 39, 42, 51, 55, 65, 66, or 70. In
this paper, we solve (%) for each of the above values of ¢. In the cases k =
2, 13, 26, 34, our results are valid only for p < 10,000; in the other cases,
there are no restrictions on p. These results are listed in Table 1.
Combining these new results with those from [1] and [9], we obtain all
solutions of (%) such that 1 < ¢ < 1000. We list these solutions in Table 2.

Preliminaries

Let p denote a prime, m a natural number. Let L, denote the nth Lucas num-
ber, that is Ly =1, Ly = 3, L, = L,_1+L,_ for n > 3. Let op,(n) = k if pkn,
where k 2 0. Let (a/p) denote the Legendre symbol. Let z(n) = min{m:n‘Fm}.
If p is odd and 2|z(p), let y(p) = %z(p).

¢D) F, = x2 iff n = 1, 2, or 12.
(2) F, = 2x2 iff n = 3 or 6.
(3) If p = 3 (mod 4), then F, = pxz iff (n, p, x2) = (4, 3, 1).
(4) If p =1 (mod 4) and p < 10,000, then F, = px? iff

(n, p) = (5, 5), (7, 13), (11, 89), (13, 233), (17,1597), or (25,3001).
(5) F, # 6x2. (6) L,=x2 iff n = 1 or 3.
) L, = 2x% iff n = 6. (8) Ly = 3x2 iff n = 2.
(9) L, = 6x2. (10) L, = 7x2 iff n = 4.
(11) L, = 1llx? iff n = 5. (12) L, = 1922 iff n = 9
(13) Ly = 29x2 iff n = 7. (14) Ly, = 7 (mod 8) if 3[n.
(15) 5(L,, 13/L,, 17}L, for all n.
(16) If m > 2, then m|F, iff z(m)|n.

(17) Fo, = FyL,.
(18) 1f m > 3, then F,|F, iff m|n.
2 if 3|n,

(19) (Fps Ly) = {
1 if 3fn.
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(20) If m > 2, then Ly|L, iff n/m is odd.

(21)  Fs3,/F, = I3 - (-1)". (22) L3, /L, = L% - 3(-1)".
(23)  Fs,/5F, = 5F} + 5(-1)"F2 + 1. (24) 5[F3,/F,.
(25)  Ls,/L, =L} - 5(-1)"L2 + 5.
1 if p = #1 (mod 5),
(26) 2(p)|(p - e) where e = <-1 if p = #2 (mod 5),
0 if p = 5.
(27) (Frs Fu) = Fim, oy - (28) (B, Fr,/F,) |k.
(29) (Fn’ F5n/5Fn) = 1. (30) F’+n+l + 2 = an_1L2n+2.
(31) Fuyp1 + 2 = Fou1lp,-5. (32) (Frs Imin) |Ln-

(33) x? - 5y2 = -4 iff x = L, y = F, for some odd .

(34) If p is odd, p|F,, and pJa, then op Fpram[Fr) = k.

(35) 2|7, /F, iff 3fm. (36) 2|5, iff 3|n.

(37) 3|L, iff n = 2 (mod 4) (38) 4|0, iff n = 3 (mod 6).
5 if 5|n,

1 if 5/n.

(41) If k is odd, then (L,, Lyz,/Ly)|k.

|

(39) (Fys Fs,/Fy) = { (40) L, =L% - 2(-1)".

2 if n = 3 (mod 6),
(42) 09(Ly) =91 if n = 0 (mod 6),

0 otherwise.
(43) If p is odd, then p|L, iff n = ky(p), k odd.
(44)  F, [F, = 125F% + 175(-1)"F} + 70F2 + 7(-1)".
(45) 3|F, iff 4|n.
Remarks: (6), (7), (1), and (2) are Theorems 1 through 4 in [1]. (3) and
(4) are Corollary 1 and Theorem 3 in [9], respectively. (5) and (9) follow
from Lemmas 1 and 2 in [20], respectively. (8) and (10) are established in
[2], (11) through (13) in [11]. (32) is Theorem 1 in [7]. (28) is Lemma 16 in
[3], while (34) follows from Theorem 2 in [3]. (41) follows from Theorem 4 in
[8]. (17), (18), (20), and (27) are Iy, Theorem III, Theorem V, and Theorem II

in [5], respectively. (40) follows from I;5 and I,g in [5]. The other identi-
ties are elementary or well known.

The Main Results

Lemma 1: Lg,/L, = x? iff m = 1.

Proof: 1f L3,/L, = x2, then (22) implies L% - 3(-1)" = x2. If m is odd, then
L% =1, som= 1. If m is even, then L; = 4, which is impossible, since m is a
natural number. Conversely, L3/L; = 4 = 22,

Lemma 2: L3, /L, # 2x2.

Proof: Assume the contrary. Then (22) implies L% - 3(-1)™ = 222. 1If 3[x, then
3|Lm, so we get *3 = 0 (mod 9), an impossibility. If 3fx, then L% = 222 =2
(mod 3), an impossibility, since (2/3) = -1.

Lemma 3: If p is odd, then Fmp = (5/p)F, (mod p).
Proof: This follows from (91) in [6] and Fermat's theorem, noting that A = 5

for the Fibonacci sequence.
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Lemma 4: If p =3 or 7 (mod 20), then F,,/F, = z?.

Proof: Let Fpp/F, = x2. If plf%, then (34) implies op(Fyp/Fn) = 1, an impossi-
bility. If p*Fm, then Lemma 3 implies Fyp/Fy = (5/p) (mod p), so x2 = (5/p)
(mod p). If p = 3 or 7 (mod 20), then (5/p) = -1, so 22 z -1 (mod p) and p = 3
(mod 4), an impossibility.

Lemma 5: 1f Fj3,/F, = 222, then m is odd or m = 2.

Proof: We must show that F¢;/F,; = 2z? iff j = 1. Now, Fg/F, = 8 = 2(2)2. 1If
Fe;ilFp; = 2x?, then (17), (18), and (20) imply (F3;/F;)(Ls3;/L;) = 2z?. 1If 3[4,
then (35) implies 2|F3;/F;, so
(FgJ/ZFJ>(L3J/LJ) = .’/CZ.
Let d = (F3;/2F;, L3;/L;). WNow, d|(F3;, L3;), so (19) implies d|2. We have
F3;/2F; = dy?, Ls;/L; = da®.
Lemma 2 implies d # 2. Therefore, d = 1, so Lemma 1 implies j = 1. If j = 3k,
then (35) implies 2*F9k/F3k' Let g=(F9k/F3k’ L9k/L3k)’ Then, g)(ng, Lgk), SO
(19) implies g |2. But 2fFq,/F3,, so g = 1. Therefore,

For/Fax = y?» Lop/Ly = 2%,

which contradicts Lemma 1.
Lemma 6: F3,/F, = 3z% iff (m, x2) = (4, 16).
Proof: 1f F3,/F, = 3z%, then (16) implies 2(3)|3m, so m = 4k. Now (21) implies
L%, - 1 = 322, If 3|k, then (36) implies 2Lqu, so (Ly, + 1, Ly, - 1) = 1, so
Lup * 1 =u2. Now (40) implies L%k -1 =uy?o0r L5 - 3 =u?, so L%k =1 or 4,
an impossibility. If 3/k, then (36) implies 2fLy;, so (Lyy + 1, Ly, - 1) = 2.
In fact, (14) implies
Ly, + 1 Ly, -1
F 3 =
8 2

Since the factors on the left are coprime, one of them must be a square. If
5Ly - 1) = v2, then (40) implies L%k - 3 = 202, an impossibility, since (2/3)
= —-1. Therefore,

(Ly;, + 1)/8 = w2 and %Ly, - 1) = 302,
Lk Lk

Now Ly =1 (mod 6) implies (6, k) = 1, so Lox =3 (mod 4). (40) implies L%k -1
= 8u?, so Ly + DUy = 1) = 8u2. Since ZXqu, (40) also implies 21L2k, S0
(Lpy + 1, Lyp = 1) = 2. Thus, we have

]

= 3y2.

Loy + 1 = 4ha?, Ly - 1 = 2b2.

Again (40) implies L% + 3 = 4a?, so that LZ =1, k=1, m =4, 22 = 16. Con-
versely, Fip/Fy = 144/3 = 48 = 3(4)2.

Lemma 7: Fj3,/F, = 6x2.

Proof: Assuming the contrary and reasoning as in the proof of Lemma 6, we have
m= 4k and L&, - 1 = 6x2. Since L, is odd, (36) and (14) imply

Ly + 1)/8) Ly, - 1D/2) = 6w2.
Since the factors on the left are coprime, we have
Ly, + 1)/8 = 2ay2, %(Lyy - 1) = bz2, ab = 3.

If a = 1, then Ly, = (4y)2 - 1, which contradicts Theorem 5 in [6]. If b =1,

then (14) implies 22 = 3 (mod 4), an impossibility.
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Lemma 8: If p|Fs,/F,, then p = 5 or p = 1 (mod 10).
Proof: 1f p]FSm/Fm and p # 5, then p[F5m/SE%, so (23) dimplies

5P + 5(-1)"F2 + 1 = 0 (mod p).
Since the discriminant is 5, we must have (5/p) = 1; therefore, (26) implies
2(p)|(p - 1). Now (16) implies p|Eb_1. The hypothesis implies p|Fs,; hence,
pl(F5m, Fp_l). (27) implies PIEQSm,p—lr (29) implies p*Fm , SO p*(Fm, Fp_1).

(27) also implies p[F, ,-1); therefore, (5m, p = 1) = (m, p - 1), so 5|(p - 1).
Thus, p # 2, so p = 1 (mod 10).

Lemma 9: Ls, /L, = x2.
Proof: Assume the contrary. Then (25) implies

" 2

Ly = 5(-1)"L5 + 5 = x2.

The discriminant is 25 - 4(5 - %2) = 4x2 + 5. Since our equation has integer
roots, we must have 4x?2 + 5 = ¢2, so 22 = 1, and L% = (-1)" or 4(-1)". But
then 2|m and L2 =1 or 4, an impossibility.
Lemma 10: If F, = x2 - 2 and n # 2 (mod 4), then (n, x2) = (3, 4) or (9, 36).

Proof:
Case 1. Let n

4m + 1. The hypothesis and (30) imply
Fom-1Loms2 = 2.

Let d = (Fp,-15 Lyysp). (32) implies d|L3 , that is, d|4. If d = 1 or 4, then
Fy,-1 and Ly, ,, are squares, which contradicts (6). If d = 2, then F,,_ ; = 2y2
and Lj,.p = 232.. (2) implies 2m - 1 = 3, so n = 9 and x? = 36.

Case 2. Let n

4m - 1. The hypothesis and (31) imply

- .2
Fons1lbop-2 = x°.

As in Case 1, we must have (Fonu41> Lop-2) = 2, 80 Fopiy = 2y2, Lp,.p = 232,
(2) implies 2m + 1 = 3, so n = 3 and x2 = 4.

Case 3. Let n = 4m. Then F,, = 0, 3, or 5 (mod 8). But x2 -2 =6, 7, or
2 (mod 8). Therefore, F

I

Lemma 11: Fs,/5F, = x? iff m = 22 = 1.

Proof: Let Fs,/5F, = x2. 1f m = 2k, then (17), (18), and (20) imply
(Fsp/5F) (Lsy /Ly) 2

x4,
Let d = (Fs;/5F, Lg;/Ly). Then d|(F5k, Lgy)s so (19) dmplies d/2. But Lemma
8 implies 27F5m/5Fm, so d = 1. Therefore, both Fg /5F; and Lgy/L; are squares,
which contradicts Lemma 9. If ZXm, then (23) dimplies

5P} - 5F2 + 1 = 22.

The discriminant is 25 - 20(1 - %2) = 20x2 + 5. Since the preceding equation
has integer roots, we must have 20?2 + 5 = t2, but then 5|t, so t2 = 252, and
4x? + 1 = Sw?2. Therefore (4x)2 - 5(2w)2 = -4. Now (33) implies that there
exists odd n such that F, = 2w, L, = 4x. Also

F2 = (5 +50)/10 = (1 + w)/2.

Since F2 > 0, we have F2 = %(1 + w). Therefore, F, = 4F2 — 2. Since n is odd,
Lemma 10 implies F, = 1 or 3. Now m is odd, so F, # 3. Therefore, f =1, so

m=x? = 1. Conversely, F5/5F; = 12.

Remark : Let F, = F*F , where (F¥

mtms )

F;) =1 for all d < m. F¥* is called the
primitive part of F,. In particular,
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* .

FSp = FSP/FSFP = FSP/SFP (lf p ES 5).
Lemma 11 implies ng = x2.
Lemma 12: Fg,/F, = px?.

Proof: 1f Fg,/F, = px?, let d = (F3,/Fy,, Fg,/F3,). Now d|(F3,, Fg,/F3,); thus,
(28) implies d|3. If d = 1, then Fj3,/F, or Fo,/F3, is a square, which contra-
dicts Lemma 4. 1If d = 3, then F3,/F), = 3y%, where k = m or 3m. Lemma 6
implies k = 4 = m. But FaglF, = pxz. The case Fg,/F, = 22 is similar.

Lemma 13: F;,/F, = Tx2.

Proof: Let m be the least integer such that there exists x such that F, /F, =
7z%. Now 7|Fy,, so (16) implies z(7)|7m, so 8|m. Let m = 2k. (17), (18), and
(20) dimply

(Pl F) (L /Ly) = T2,

Let d = (Fy/Fys Lyg/Ly). Therefore, dl(F7k, L7x)s so (19) 1mplles dIZ But
(44) implies Fy; /F, is odd, so d = 1. Therefore, Fy /Fy = y or 7y But the
first possibility contradicts Lemma 4, while the second possibility contradicts
the minimality of m.

Lemma 14: If p and y(p) are odd, then L, # 2px2.

Proof: 1f L, = 2px?, then the hypothesis implies 0,(L,) is odd, so (42) implies
6/n. But the hypothesis and (43) imply n is odd, a contradiction.

Lemma 15: If p = 5 or 7 (mod 8), then L, # 2px2.

Proof: Let L, = 2px?. Then (36) implies n = 3m, so that L,(Ls,/L,) = 2pz?.
Let d = (L, L3,/L,). (41) implies d|3.

Case 1. d = 1. (22) implies 3[Lm, so (37) implies m # 2 (mod 4). We have
Ln = ay2, L3,/L, = bz?, with ab = 2p, so a2 or b|2. 1If a =1, then b = 2p and
(6) implies m = 1 or 3. But L3/L; = &4 = 2pa?%; Lg/Lz = 19 = 2pz?. 1If a = 2,
then (7) implies m = 6, an impossibility. If » = 1, then a = 2p and Lemma 1
implies m = 1, so [} = 1 # 2pz2. Lemma 2 implies b # 2.

Case 2. d = 3. Then L, = 3ay?, Lz,/L, = 3bz?, with a|2 or b|2. If a =1,
then b = 2 2p, and (8) 1mp11es m = 2, but L6/L2 =6 = 6pz (9) implies a = 2.
(37) implies m = 2 (mod 4), so (22) implies L - 3 = 3pz? Therefore, 3bz2 = -3
(mod 9), so bz? = —1 (mod 3); thus, b = 1. If b =2, then L = 3 (mod 6%, which
implies m = 12k + 2. Since a = p, we have L12k+1 3py (40) implies L6k+1 + 2
= prz. Therefore, (-2/p) = 1, which is impossible if p = 5 or 7 (mod 8).
Lemma 16: Let F, = kpz?, where 2[a(k). Then 2|n and F,, = day?, Ly, = dbz2,
where

d (F L,.) {2 it 3|n b Kk ( b) 1 d d
= 1y, 1 = s ap = s (a4, = 1, an 2 =X
o 1 if 3/n P Y
Proof: The hypothesis, (16), and (17) imply 2|n, F = kpx?. The conclusion

/EVL /QVL
now follows from (19).

Theorem 1: F, = 6px?.

n
Proof: Assume the contrary. Then (16) implies Z(G)In, so n = 12m. (38) and
Lemma 16 imply Fg, = 4ay?, Lg, = 2bz%, ab = 3p. 1f a =1, b = 3p; hence, (37)
implies m is odd. But (1) implies m = 2, an impossibility. (3) implies a =z 3.
If b = 1, then a = 3p, so (45) implies Zlm, but (7) implies m =1, an impossi-
bility. (9) implies b = 3.

Theorem 2: F, = 3px? iff (n, p, x%) = (8, 7, 1) or (12, 3, 16).
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Proof: Assume F, = 3pz2. (16) implies z(3) [n, so n = 4m. Lemma 16 implies F,,
= day?, Lo, = 2b2%, d = (Foys Ly,)» ab = 3p. 1If 3fm, then (19) implies d = 1,
so either Fy, = y? or 3y2, or Ly, = 32 or 3z2. (1), (3), (6), and (8) imply 2m
=2o0r 4, son =4 or 8. Now F, = 3 # 3px2. Fg = 21 = 3px? implies p = 7, n =
8, x2 = 1. If m = 3k, then (19) implies d = 2, so either Fer = 2y2 or 6y2, or
Loy = 282 or 6z%2. (2), (5), (7), and (9) imply 6k = 6, so n = 12. Now F,, =
144, so p = 3, n =12, 2 = 16. Conversely, Fg = 21 and Fy, = 144.

Theorem 3: Let 2 < p < 10%. Then F, = 2px2 iff (n, p, x2) = (9, 17, 1).

Proof: 1f F, = 2px?, then (16) implies z(2)|n, so n = 3m and F,(Fs,/F,) = 2px2.
Let d= (F,, F3,/F,). (28) implies d|3. If d = 1, then F, = ay?2, F3,/F, = bz2,
ab = 2p. 1f ¢ = 1, then 2 Fg3,/F,. Therefore, (1) and (35) imply m = 1 or 2, so
n =13 o0r 6. But F3 = 2 # 2px2; Fg = 8 # 2px?. If q = 2, then b = p and (2) im-
plies m = 3 or 6; so n =9 or 18. Now Fig/Fg # px2. Fq/F3 = 17, so, if n = 9,
then p = 17, 2 = 1. Lemma 4 implies b = 1. If b = 2, then F, = py?. Since
F, = 1 = py?, Lemma 5 implies m is odd. Therefore, (3), (4), and the
hypothesis imply m = 5, 7, 11, 13, 17, or 25. But none of the corresponding
values of F3,/2F, is a square. If d = 3, then F, = 3ay2, Fs,/F, = 3bz2, ab =
2p. If a =1, then b = 2p. (3) implies m = 4, but Fi,/F, = 48 = 6pz?, so p =
2, contrary to the hypothesis. (5) implies a # 2. If b = 1, then a = 2p,
which contradicts Theorem 1. If b = 2, then F3,/F, = 622, which contradicts
Lemma 7. Conversely, Fg = 34.

Theorem 4: F, = 5px? iff (n, p, x2) = (10, 11, 1).

Proof: 1f F, = 5px?, then (16) implies z(S)In, so n = 5m, and Fy,(Fg,/Fy)= 5px?,
so F,(Fs,/5F,) = pxz. Now (29) implies either (i) F, = y?2, Fs,/5F, = pzz, or
(ii) F, = pyz, Fs,/5F, = z2. If (i) holds, then (1) implies m = 1, 2, or 12.
We get a contradiction unless m = 2, n = 10, p = 11, x2 = 1. 1If (ii) holds,
then Lemma 11 implies m = 1, so F} =1 = pyz, an impossibility. Conversely,
FIO = 55.

Theorem 5: F, = 7px? iff (n, p, x2) = (8, 3, 1).

Proof: 1f F, = 7px?, then (16) implies z(7)|n, so n = 8m. 1If 3/m, then Lemma
16 implies Fy, = ay?, Ly, = bz%, ab = 7p. 1f a =1, then (1) implies m = 3, a
contradiction. (3) implies a # 7. (6) implies b = 1. If b = 7, then (10)
implies 4m = 4, son =8, p = 3, z2 = 1. If m = 3k, then Lemma 16 implies Fj,y
= 2ay?, Ly, = 2bz%, ab = 7p. (2) implies a = 1. Theorem 3 implies a = 7.
(7) implies b # 1. Lemma 15 implies b # 7. Conversely, Fg = 21.

Theorem 6: F, # 15px?.

Proof: Assume the contrary. Then (16) implies z(lS)In, so n = 20m. If 3*m,
then (15) and Lemma 16 imply Fig, = 5ay2, Ligm = bz2, ab = 3p. Now (4) implies
a # 1. Theorem 2 implies a = 3. (6) and (8) imply » # 1 and 3, respectively.
If m = 3k, then (15) and Lemma 16 imply F3gx = 10ay2, Lgzqr = 2bz2, ab = 3p

Theorems 3 and 1 imply a # 1 and 3, respectively. (7) and (9) imply b = 1 and
3, respectively.

Theorem 7: F, = 10px? iff (n, p, x?) = (15, 61, 1).

Proof: 1f F, = lOpxz, then (16) dimplies z(lO)[n, so n = 15m, and F5m(F15m/F5m)
= px?. Let d = (Fsp» Fisy/Fs,). (28) implies d|3. (24) implies Fg, = day2,
Fisy,/Fs, = dbz?, ab = 2p. Suppose d = 1. If a = 1, then b = 2p and (4) implies
5m = 5, so Fi5/Fs = 122 = 2pg?. Therefore, p = 61, n = 15, 2 = 1. Theorem 3
implies a # 2. Lemma 4 implies b # 1. If b = 2, then g = p, so Theorem 4
implies 5m = 10. But F3¢/Fyg # 2z2. Now suppose that d = 3. Then F5 = 15ay2,
Fis /Fs = 3bz2, ab = 2p. Theorems 2 and 1 imply, respectively, a =z 1 and 2.
Lemmas 6 and 7 imply, respectively, b # 1 and 2. Conversely, Fi5 = 610.
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Theorem 8: F, = llpx2 iff (n, p, x2) = (10, 5, 1).

Proof: 1f F, = llpx?, then (16) implies z(ll)|n, so n = 10m. If 3/m, then Lemma
16 implies Fs, = ay?, Ly, = bz?, where gb = 1lp, so aor b =1 or 11. (1) and
(3) imply, respectively, ¢ # 1 and 11. (6) implies b = 1. If b = 11, then a=p.
Now (11) implies 5m = 5, so p = 5, n = 10, and %2 = 1. If m = 3k, then Lemma
16 implies Fig; = Zayz, Ligy = 2bz?2, with g and b as above. (2) implies g = 1.
Theorem 3 implies a = 1l. (6) implies b = 1. If b = 11, then Ljs; = 2232.
But since y(ll) = 5, this contradicts Lemma l4. Conversely, Fig = 55.

Theorem 9: Let p < 10%. Then F, = 13px?2 iff (n, p, xz2) = (14, 29, 1).

Proof: 1f F, = 13px®, then (16) implies z(13)|n, so n = 7m, and F,(#y,/F,) =
13px?. Let d = (Fy, Fy,/F,). (28) implies d|7. 1If d = 1, then F, = ay?,
FonlFy = bz2, ab = 13 ps so ¢ or b =1 or 13. If a =1, then (1) implies m =
1, 2, or 12. We get a contradiction unless m = 2, in which case n = 14, p =
29, % = 1. 1If a = 13, then b = p and (4) implies m = 7. But F,q/F; = pz2.
Lemma 4 implies b # 1. If b = 13, then g = p. Now, the hypothesis and (4)
imply m = 4, 5, 7, 11, 13, 17, or 25. In each case, Fy,/F, # pzz. 1f d =17,
then (16) implies z(7)|m, so m = 8k, and we have Fgy, = Jay?, Fsgy /Fgx = 7bz?
ab = 13p. (3) implies a # L. Theorem 5 implies g # 13. Lemma 13 implies b
1. If b = 13, then a =p, so Theorem 5 implies 8k = 8. But then Fgq/91Fg
22, an impossibility. Conversely, Fqy, = 377.

Theorem 10: F, = l4px? iff (n, p, x2) = (24, 23, l44).

Proof: 1f F, = lhpx?, then (16) implies z(14)|n, so n = 24m. (38) and Lemma 16
imply Fi,, = bay?, Lyy, = 2bz2, ab = 7p. 1f a = 1, then (1) implies l2m = 12,
from which it follows that n = 24, p = 23, 22 = 144. (3) dimplies a = 7. (7)
implies b # 1. Lemma 15 implies b = 7. Conversely, F,, = 46368.

- Theorem 11: F, = 17px? iff (n, p, 22) = (9, 2, 1).

Proof: 1f F, = 17pz?, then (16) implies z(17)|n, so n = 9m and F,(Fg,/E,)
17pz?. Let d = (F,, Fqg,/F,). (28) implies d|9. Now F, = day?, Fg,/F, = dbz?,
ab = 17p. 1f d = 1 or 9, then Lemma 12 implies b # 1, 17, p. Therefore, b =
17p and @ = 1, so (1) implies m = 1, 2, or 12. We have a contradiction unless
m=1, in which case Fg/17F; = 2 = pz2, sop =2, n =9, 2 = 1. If d = 3, then
03(Fg,/F ) is odd, but (34) implies o03(Fg,/F,) = 2. Conversely, Fq = 34.

Theorem 12: F, = 19px?.

N

Proof: Assume the contrary. Then (16) implies 2(19){7’1, son = 18m. Lemma 16
implies Fgq, = 2ay2, Lg, = 2bz%, ab = 19p. (2) implies ¢ # 1. Theorem 3 implies
a # 19. (7) implies » = 1. Since y(19) = 9, Lemma 14 implies b = 19.

Theorem 13: F, = 2lpx? 1ff (n, p, x2) = (16, 47, 1).

Proof: 1f F, = 21pxz2, then (16) implies z(21)|n, so n = 8m. (37) implies 3[Lyy,.
1f 3[m, then Lemma 16 implies Fy, = 3ay2, Ly, = bz, with ab = 7p. 1If a = 1,
then (3) implies 4m = 4, so L, =7 = 7p22, an impossibility. If a = 7, then
Theorem 2 implies 4m = 8 and Lg = 47 = pzz, sop =47, n = 16, and x2 = 1. (6)
implies b # 1. If b = 7, then (10) implies 4m = 4, so F, = 3 = 3pz2, an impos-
sibility. If m = 3k, then Lemma 16 implies Fy,; = 6ay?, Lyyy = 2bz°, ab = Tp.
(5) implies a # 1. Theorem 1 implies a % 7, a = p. (7) implies b # 1. Con-
versely, Fig = 987. '

Theorem 14: F, = 22px?.

Proof: Assume the contrary. Then (16) implies z(22)| n, so n = 30m. Lemma 16
implies Fys, = 2ay2, Lis, = 2b3?, ab = 22p, so a|22 or b|22. Now (2) and (1)
imply a # 1 and 2, respectively. Theorem 3 dimplies a =# 11. (3) implies
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a # 22. (7) and (6) imply b # 1 and 2, respectively. Lemma 14 implies b = 11.
(11) implies b = 22.

Theorem 15: F, = 23px2.

Proof: Assume the contrary. Then (16) implies z(23)|n, son = 24m. Lemma 16
implies Fy,, = 2ay?, Ly,, = 2bz2, ab = 23p. (2) implies a # 1. Theorem 3 im-
plies a # 23. (7) implies b # 1. Lemma 15 implies b = 23.

Theorem 16: Let p < 10*. Then F, = 26pz2 iff (n, p, x?) = (21, 421, 1).

Proof: If F, = 26px?, then (16) implies z(26) n, so n = 2lm and Fy, (Fpy,/F7,) =
26px?. Let d = (Fy,, Fp1,/F7,). (28) 1mplles d|3. (34) implies 13)Fy1, /F7, -
Therefore, if d = 1, we have F;, = 13ay?, ﬂ21m/F7m =Dbz2, ab = 2p. 1If a =1,
then (4) implies 7m = 7, so Fy1/2F; = 421 = pz? Therefore, p = 421, n = 21,
and 2 = 1. Theorem 3 implies g # 2. Lemma 4 implies b # 1. If b = 2, then
F; = 13py%. The hypothesis and Theorem 9 imply 7m = l4. But Fuo/Fpy = 222,
If d = 3, then (16) implies z(3)|7m, that is, 4|7m, so 7m = 28k. We now have
Fogy = 3%ay?, Fguy/Fogy = 3bz2, with ab = 2p. Theorems 2 and 1 imply a # 1 and
2, respectively. Lemmas 6 and 7 imply b # 1 and 2, respectively. Conversely,
F21 = 10346.

Theorem 17: F, = 29px? iff (n, p, x2) = (14, 13, 1).

Proof: 1f F, = 29px?, then (16) implies z(29)|n, so n = l4m. If 3[m, then Lem-
ma 16 implies F,, = ay?, Lo, = bz2, ab = 29p. (1) 1mp11es a# 1. (4) implies
a = 29. (6) 1mplies b= 1. If b =29, then Fy, = py?. (13) implies 7m = 7,
so Fy = = py2. Therefore, p = 13, n = 14, 22 = 1. If m = 3k, then Lemma 16
implies F21k = Zay s Loy = 2bz2, ab = 29p. (2) implies a # 1. Theorem 3
implies a 2 29. (7) implies b # 1. Since y(29) = 7, Lemma 14 implies b # 29.
Conversely, Fi, = 377.

Theorem 18: F, # 30px?2.

Proof: Assume the contrary. Then (16) implies z(30)|#n, so n = 60m. Lemma 16
implies F3q, = 2ty2, L3gm = 2bz%, tb = 30p. But (15) and (42) imply (b, 10) =
1, so F3g, = 20ay?, L3gm = 2bz%2, ab = 3p. 1If a = 1, then F3q, = 5(2y)?, which
contradicts (4). Theorem 2 implies a # 3. (7) implies b # 1. (9) implies b =
3.

Theorem 19: F, = 31lpx?2.

Proof: Assume the contrary. Then (16) implies z(31)|n, so n = 30m. Lemma 16
implies Fis, = 2ay®, Lis, = 2bz%, ab = 3lp. (2) implies g # 1. Theorem 3 im-
plies a # 31. (7) implies b # 1. Lemma 15 implies b = 31.

Theorem 20: F, = 33px2.

Proof: Assume the contrary. Then (16) implies z(33)|n, son = 20m. (43) implies
11/L1gn- If 3fm, then Lemma 16 implies Fig, = llay?, Lig, = bz?, ab = 3p. (3)
implies g # 1. Theorem 2 implies a # 3. (6) and (8) imply b # 1 and 3, respec-
tively. If m = 3k, then Lemma 16 implies Fsqp = 22ay?, Lagx = 2bz?, ab =
Theorems 3 and 1 imply a # 1 and 3, respectively. (7) and (9) imply b # 1 and 3,
respectively.

Theorem 21: If p < 10%, then F, = 34px? iff (n, p, x?) = (18, 19, 4).

Proof: 1f F, = 34px2, then (16) implies z(34)|n, so n = 9m and Fj (Fgm/F3m

34px?. Let d = (F3,, Fgm/p3m . (28) implies d|3. (35) implies 2fFg, /F3,. If
d = 1, then F3, = 2ay?, Fg,/F3, = bz%, ab = 1Ip. If a = 1, then b = 17p and
(2) implies 3m = 3 or 6. If 3m = 3, then Fg/l7F3 = 1 = pz? If 3m = 6, then
F1g/17Fg = 19 = p22, so p = 19; hence, n = 18 and x2 = 4. If a = 17, then
b = p, and Theorem 3 implies 3m = 9. But Fp;/Fq # pz%2. Lemma 4 implies b = 1.
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If b = 17, then F3, = 2py2. But the hypothesis and Theorem 3 imply p = 17, so
l71d, an impossibility. If d = 3, then (45) imlies m = 4k, so Fj,; = 6ay2,
Fier/Fiox = 3b22, ab = 17p. (5) dimplies ¢ = 1. Theorem 1 implies a = 17, p.
Lemma 6 implies b # 1. . Conversely, Fig = 2584.

Theorem 22: F, = 35px?.

Proof: Assume the contrary. Then (16) implies z(35)\n, so n = 40m. 1If 3*m,
then (15) and lemma 16 imply Fug,, = 5ay2, Ly, = bz, ab = Tp. (4) implies a =
1. Theorem 4 implies a # 7, a # p, so b=z 7. (6) implies p # 1. I1If m = 3k,
then (15) and Lemma 16 imply Fgqp = 10ay2, Lgox = 2bz2, ab = 7p. Theorem 3
implies a # 1. Theorem 7 implies ¢ # 7, a # p, so b z 7. (7) implies b = 1.

We omit the proofs of the two following theorems (23 and 24) because they
are similar to proofs of prior theorems.

Theorem 23: F, = 38px? iff (n, p, x2) = (18, 17, 4).
Theorem 24: F, -# 39px2.
Theorem 25: F, # 42px?.

Proof: Assume the contrary. Then (16) implies Z(42)]n, so n = 24m. (37) dim-—
plies 3[Li,,; (38) implies 4)Li,,. Therefore, Lemma 16 implies Fy,, = 12ay?,
Ly, = 2bz2, ab = 7p. (3) implies g # 1. Theorem 2 implies g = 7. (7) implies
b 2z 1. Lemma 15 implies b = 7.

Theorem 26: F, = 51pxz2.

Proof: Assume the contrary. Then (16) implies z(51) n, so n = 36m. (15), (37),
and Lemma 16 imply Fig, =102ay?, Lign, = 2b3%, ab = p. Theorem 1 implies g # 1.
(7) implies b = 1.

Theorem 27: F, = 55px2.

Proof: Assume the contrary. Then (16) implies z(55)|n, son = 10m. 1f 3*m,
then (15) and Lemma 16 imply Fs, = 5ay?, Ls, = bz2, ab = llp. If a = 1, then
Theorem 4 implies 5m = 5, so Lg/ll = 1 = pzz, an impossibility. If a = 11,
then Theorem 4 implies 5m = 10, so Lig = 123 = pz?, an impossibility. (6)
implies b = 1. If b = 11, then (11) dimplies 5m = 5, so Fg,/5 =1 = pyz, an im-
possibility. If m = 3k, then (15) and Lemma 16 imply Fis, = 10ay?, I1s5; =2bz?,
ab = 1llp. Theorem 3 implies g # 1. Theorem 7 implies a = 11. (7) dimplies D =
1. Lemma 14 implies b = 11.

Theorem 28: F, = 65px2 iff (n, p, x2) = (35, 141961, 1).

Proof: F3s = 65% 141961 % 12. 1f F, = 65pz?, then (16) implies 2(65)|n, so n =
35m, and Fy,(F35,/F7,) = 65pz?. Let d = (Fy,, F3s,/F7,). Now Lemma 8 implies
13{F35,/F7 . 1t 5fm, then (39) implies d = 1, so Fy, = 13ay?, F3s,/F7, = 5bz?,
ab = p. 1If g =1, then (4) implies 7m = 7, so F3g5/5F; = 141961 = pz2. There-
fore p = 141961, n = 35, % = 1. Lemma 11 implies b = 1. If m = 5k, then (39)
implies d = 5. (34) implies 52*Fl75k/F35k' Thus, F35k = 325ay2, F175k/F35k =
5b22, ab = p. But (4) implies ¢ # 1. Lemma 11 implies b = 1.

Theorem 29: F, = 66px?.

Proof: Assume the contrary. Then (16) implies 2(66)|n, so n = 60m. Now (43),
(38), and Lemma 16 imply Fsq, = 4bay?, Lsg, = 2bz%, ab = 3p. (3) implies a =
1. Theorem 2 implies a 2 3. (7) and (9) imply b = 1 and 3, respectively.

Theorem 30: F, = 70px?.

Proof: Assume the contrary. Then (16) dimplies z(70)ln, so n = 120m. (15),
(38), and Lemma 16 imply Fgq, = 20ay?, Lgo, = 2bz%, ab = 7p. (4) implies a = 1.
Theorem 22 implies a # 7. (7) implies b # 1. Lemma 15 implies b = 7.
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We summarize the results of Theorems 1 through 30 in Table 1. For each

listed value of k, we list all solutions of (%) with ¢ = kp, if any. The cases

k =

2, 23, 26, 34 are subject to the restriction that p < 10,000.

TABLE 1
kK (n, p, x2) k  (n, p, x2) kK (n, p, x2) k  (n, p, z2) kK  (n, p, x2)
2 (9, 17, 1) 10 (15, 61, 1) 21 (16, 47, 1) 31 kkdkkkRAAAL 42 kkkkkkkAAAKKKK
3 (8, 7, 1) 11 (10, 5, 1) 22 kkkkhkikhkhkhk 33 kkkkkAAkAAX 51  kEkkAAAARAAKARK
3 (12, 3, 16) 13 (14{ 29, 1) 23 kkkkkkhhhhkk 34 (18, 19, 4) 55  kkkkkkkAAAAkkk
5 (10, 11, 1) 14 (24, 23, 144) 26 (21, 421, 1) 35  kkkkkkkkkkk 65 (35, 141961, 1)
6 kkkkkAKKKAK 15  kkkkkhhhxkkkk 29 (14, 13, 1) 38 (18, 17, 4) 66  krEAAKRKkAAAAKKRRKA
7 (8, 3, 1) 17 (9, 2, 1) 30 AxkkkAhkkhhk 39  kkkkAhhAAAA 70  kkkkkkhhkhkAAAKAA
19 kkkkkkkhkhkkhk

Combining these new results with those of [1] and [9], we obtain Table 2,

which lists all solutions of (%) such that 1 < ¢ < 1000.

TABLE 2
c | (n, z2) c (n, x2) ¢ n, z2) . e (n, x2)
1| (1, D 30 G, 1) 34 | (9, 1) 322 | (24, l44)
1] (2, 1) 51 (5, 1) 55 | (10, 1) 377 | (14, 1)
1| (12, 144) 8 | (6, 1) 89 | (11, 1) 610 | (15, 1)
21 (3, 1) 13 | (7, 1) 144 | (12, 1) 646 | (18, 4)
2 | (6, 4) 21 | (8, 1) 233 | (13, 1) 987 | (16, 1)
Concluding Remarks
Notice that in every solution we have %2 = 1, 4, or 144. This leads us to

conjecture that in any solution of (%) one must have x2 =1, 4, or l44.

10.

11.
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VINOGRADOV'S INVERSION THEOREM FOR GENERALIZED
ARITHMETICAL FUNCTIONS

Pentti Haukkanen
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(Submitted September 1988)

1. Introduction

In this paper we introduce the Vinogradov [8] inversion theorem for func-
tions defined on a finite partially ordered set. Our inversion theorem reduces
to that by Vinogradov in the case of positive integers. For material relating
to Vinogradov's inversion theorem, we refer to [2], [3], and [4].

As an example of our generalized Vinogradov inversion theorem we consider
an inversion theorem relating to arithmetical functions and regular convolu-
tions. As applications, we give expressions for certain restricted sums of
Fibonacci and Lucas numbers. Special cases of the applications can be found in

[4].

2. A Generalized Vinogradov Inversion Theorem

Let (P, C) be a locally finite partially ordered set. A complex-valued
function f on P x P is said to be an incidence function of (P, C) if f(z, y) =
0 unless x C y. We denote by I(C, P) the set of all incidence functions of (P,
C). The convolution of f, g € I(C, P) is defined by

Foq(xs y) = 2o flx, 2)g(z, y).
zCzCy
The inverse of f € I(C, P) is defined by

fort=flof=s,

where §(x, ) = 1 and §(x, y) = 0 if x # y. The inverse of ¢, defined by ¢ (x,
y) = 1 whenever x C y, is denoted by p and is called the Mobius function of
7, 9.

Now we are able to give our generalized Vinogradov inversion theorem. The
original Vinogradov inversion theorem is reproduced in the remark of Theorem 2
in Section 3.

Theorem 1: Suppose (P, C) and (P, <) are locally finite partially ordered
sets. Let f, be a complex-valued function of x € P and let d, be a function of
x € P into P. Then, for all g, b € P,

fo =2 ulas 2) 2. bf””’

<x<b acsa asx<
dz=a z2Cdy
where p is the Mobius function of (P, C).

a

Proof: We have

fo = fo8(as d) = 2 fo 2o was 2) = 2 ula, 2) 2. fo»
b a aczcCdy a a

a<x<b as<x< <z <o cz <x<ph
de.=a zcd,
which was required.
Remark: We note that Theorem 1 implies the classical inversion theorem for
incidence functions of (P, C) stating that if, for all a, b € P,
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gla, b) = 3 f(z, b),
aczch

then
fla, b) = 3 ula, a)g(z, b);
aczch
that is
() fla, b) = 2 wu(a, 8) Y, fly, b).
aczcCch ycb

z2C
In fact, let a, b € P with a C b. We assume £ C y = x < y for all x, y € P and
denote

{x € Pr acaecbhbl=1{xr;(=a), 29, ..., x,(=b)},

e € Pt as<x<bl ={y1(=a), yps «+v» y,(=b)}, m < n.
Then we take

dy, = a, dy, = Ty, «-.5 dy, =b, dy,,, =--- =dy, =c,

where ¢ € b, and f, = f(d;, b). (If there does not exist an element ¢ € P such
that ¢ ¢ b, then we consider the set P U {¢}.) 1In this case,

fo= be(dx’ b)'—'f(a, b)

as<x<bh asxs<
and de=a dz=a
Tula, &) 2, f, = 2 ula, 2) 2 f(d. b) = 2 u(a, 2) 2. f(y, b).
acz asg;b aca asx;b acsa acych
z2Cdy acd,

Thus, by Theorem 1, we arrive at (1).

3. Regular Arithmetical Convolutions

Let A be a mapping from the set IN of positive integers to the set of sub-
sets of IN such that, for each n € N, A(n) is a subset of the set of positive
divisors of n. Then the A-convolution of two arithmetical functions f and g is
defined by

(fog ) = 2, f(dgwn/d).
ded(n)

Narkiewicz [6] defined an A-convolution to be regular if:

(a) the set of arithmetical functions forms a commutative ring with unity
with respect to the ordinary addition and the A-convolution;

(b) the A-convolution of multiplicative functions is multiplicative;

(c) the function E, defined by E(n) = 1 for all n € IN, has an inverse g,
with respect to the A-convolution, and u,(n) = 0 or -1 whenever n is a
prime power.

The inverse of an arithmetical function f such that f(1) # 0 with respect to the
A-convolution is defined by

foaft=7"to, f=Ep
where Fg(l) = 1 and Eyx(n) = 0 for n > 1.
It can be proved (see [6]) that an A-convolution is regular if and only if

(1) A(m) = {de:d € A(m), e € A(n)} whenever (m, n) = 1,
(ii) for each prime power p2 > 1 there exists a divisor ¢ = £,(p2) of a
such that
A(p®) = {1, pt, p?t, ..., prt},
where rt = g, and

A(ptt) = {1, pt, p?t, ..., p*t}, 0< 1 < »r.
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For example, the Dirichlet convolution D, where D(n) is the set of all posi-
tive divisors of n, and the unitary convolution U, where

Uy = {d > 0:d|n, (d, n/d) = 1},

are regular (see [1]). 1In this paper we confine ourselves to regular convolu-
tions.

A positive integer n is said to be A-primitive if A(n) = {1, n}. The gen-
eralized M&bius function u, is the multiplicative function given by (see [6])

-1 if p% (>1) is A-primitive,
e = {7 T o
0 if p? is non-A-primitive.
For a positive integer k, we define
Ay(n) = {d > 0:dk € A(nk)}.

It is known [7] that the Aj-convolution is regular whenever the A-convolution
is regular. The symbol (a,b), , denotes the greatest kth  power divisor of «
which belongs to A(b). In particular, denote (a,b), , = (a,b),. Then

(as b)p = (a, b),

the greatest common divisor of a and b.
Let 4 be a regular arithmetical convolution. Then we define the relation C
on the set IN of positive integers by

mcn < meldn)

and denote by IN; the resulting locally finite partially ordered set.
Let f be an arithmetical function, that is, a complex-valued function on IN.
Then we can associate with f an incidence function f' of N, defined by

fn/m)y if m € A(n),
0 if m & A(n).
The mapping f » f' is one-one and
(2) (f'og"(my n) = (fo,g)" (my n)
(see [5], Ch. 7). Plainly
(Eg) "(my n) = &§(my, n), E'(m, n) = ¢(m, n).
Therefore, by (2),

f(m, n) ={

1]

(uy) "(ms m) = u(m, n).

Now we are in a position to state Theorem 1 for regular convolutions. Let-
ting < be the natural ordering on IN, we can write

Theorem 2: Let f; be a complex-valued function of 7 € IN and let d; be a func-
tion of 7 € IN into IN. Then, for all n € IN,

n n

,E: fi =2 Hy (D) 2 Iy

7=1 dz1 =1

d; =1 de€a(dy)

Remark: 1f A = D in Theorem 2, we obtain the original Vinogradov inversion

theorem.

Corollary: Let f; be a complex-valued function of ¢ € N. Then
n

>

i=1fﬁ'

a*li

Proof: Replace A by Ay and take d; = ((Z, nk)a, k)% in Theorem 2. Since d€
Ar(((Z, nk)y, k)Y %) if and only if d € Ay (), d*|i, we obtain the Corollary.
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4. Applications to Fibonacci and Lucas Numbers

Let F; be the ¢ Fibonacci number, that is, Fy =1, Fp =1, F, = F,_| + F,_
(n 2 3), and let L; be the 7th Lucas number, that is, L; =1, [,=3, L, =L

Ln_z (ﬂ > 3).

2
+

n n-1

Theorem 3: Let A be a regular convolution and k¥ € IN. Then, for each »n € IN,

k
n F_ - (-D¥F . -
dx+ dk md* dk
(3) F, = (D : ,
,;;1 ‘ 4;2200 A Dye = (D -1
(Tyn), =1 = G
dk 7k
(4 S Le ¥ g aimteat T O b n Bac ¥ 2CLF
s = u.n_ 5
e 7 A,

1 ded, ) Lg = (14 -1
where m = [n/dk], the greatest integer in n/dX.

Proof: Plainly,

_ii F,o= 2 F .

=1 1<7<n/d* wd
akli
Then, using the formulas
1
F, = 2 = 67, Ly = o+ 87

where
o=t +/5, 8=20-/5
2 ’ 2 ’
we obtain, after some computations,

7

ax _
- (_1) Fmdk Ebk

iF _ Frakyax
i1t Ly - (DY -1
ki qk
Thus, applying the Corollary of Theorem 2, we get (3). The proof of (4) goes
through in a manner similar to that of (3).

Corollary: Let A be a regular convolution. Then, for each n € IN,

d
i F.o= Z . /d)Fn-Fd - (-1) Fn B Fd
. ;T AN >
” ’;51_1 Yodeam Ls- -4 -1
i,n), =
) L. = Z: H (d)Ln+d — (—1)dLn ~La ¥ 2D
. ;= A 7 .
G, =1 T acin Ly - (D% -1
Theorem 4: Let A be a regular convolution and k € N. Then, for each n € IN,
dk
7 Fo . = (-1)*F .. - F
‘d*{ a]/-. ‘dr\ d){
(5) X =Eu, - X u (DT = -1,
@ ac o bge = (D -1
n
(6) 2 I
=
. 4y, o _ dk 7 _ dk
_(g’”):.k>l < (d)LmdudK (D% Lge = Lge + 2(-1) )
- +2 7 . D - 3
! d€ 4y (n) Ax Ly = (-1)&" -1

where m = [n/dk].
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Proof: We have
14 7 n

=1 =} i=1
(i, n94,x > 1 (2,n9, , =1
Therefore, applying (3) and the identity

n
2 F;

i=1

we obtain (5). Similarly, applying (4) and the identity

Fn+2 -1,

n
2 Dp =Ly = 3,

=1

we get (6).
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1. Introduction

The Stirling numbers of the second kind, known to mathematicians as the
coefficients in the factorial expansion of powers, are of great importance in
the calculus of finite differences, and have been extensively studied, espe-
cially with respect to their mathematical properties (see Jordan [14], Riordan

[17] and references therein). Recently, several extensions and modifications
were considered, which have proved useful in various combinatorial, probabil-
istic and statistical applications. Of the most interesting variations are the

Lah numbers, Lah [16], and their generalization (-numbers, Charalambides [8],
[9], appearing in the expansion of a factorial of ¢, scaled by a parameter s,
in a sum of factorials of t.

The present paper was motivated by the problem of providing explicit ex~
pressions for the distribution of two-sample sums from Poisson and binomial
distributions, one of which is left-truncated. Specifically, the distribution
of the statistic Z = Xy + --- + X, + X,41 + --- + X,,,, where

(a) Xy, ..., X, is a random sample from a Poisson and ¥,;;, ..., X,4, an

independent random sample from a left-truncated binomial distribution and

(b) Xy, ..., X, is a random sample from a binomial and X,,1;, ..., X,y an
independent random sample from a left-truncated Poisson distribution,

led to the introduction of two double sequences of Stirling and (C-related num-
bers, obtained from the expansion of certain classes of polynomials in a series
of factorials.

In Section 2, we discuss some general results relating the expansion of
polynomials in factorials and the corresponding exponential generating func-
tions (egf's). 1In Section 3, we consider two specific families of polynomials
(r-g polynomials) and introduce two double sequences of numbers (X#-¢ numbers).
Notice that in Tauber's [19] terminology these numbers might be called general-

ized Lah numbers. Next, the egf's of the F-@ numbers are used to derive recur-
rence relations and initial conditions a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>