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A RADIX PRODUCT REPRESENTATION FOR REAL NUMBERS 

Arno ld Knopfmacher 
University of the Witwatersrand, Johannesburg, Wits 2050, South Africa 

(Submitted September 1988) 

Introduction 

Two classical representations for real numbers in terms of integer "digits" 
are the series representation of Sylvester (1880) and the product representa-
tion of Cantor (1869): If A denotes any real number 04 > 1 in the product 
case), then these representations, respectively, take the forms: 

1 1 1 
A = a0 + — + — + — + . -., a- em, 

u a\ a2 £3 ^ 

where a\ ^ 2, a^ + i > a^(a^ - 1) + 1 for i > 1, 

and A = 2k f\ (l + — I , a- e ]N, 
i= 1 V &il % 

where k E IN, a\ > 2, â  + 1 > a2 for i > 1. 

For further details, see, for example, Perron [3]. 
Far more familiar to us than the above is of course the radix or decimal-

type representation for A to the base q, where here and throughout, q denotes 
an integer greater than or equal to two. One of the advantages of this latter 
representation over the first two, is that the digits "a^" all lie in the 
finite set {0, 1, ..., q - 1} which allows us to conveniently express our 
decimal expansion base q in the positional notation 

A = anan-i ... a\a§ • a_ia_2&-3 ••• • 

It seems therefore a natural question to ask whether we can derive a further 
product representation for a real number A > 1 in the radix form 

A = 11 (l + — , where m e IN, an- e {0, 1, . . . , q - 1}. 

The paper is set out as follows. In Section 2, we derive a more general 
type of radix product representation for real numbers 1 < A < 2. The main 
interest of the radix product representation is that, like ordinary decimals 
(base q), it depends only on digits belonging to the set {0, 1, ..., q - 1}, 
thus allowing us to express the radix product 

- n (i + ̂ ) A •" " a" 
q1 

as 0 * aiaiCi^ ... say, just as in the decimal case. Furthermore, as shown in 
the paper, the rate of convergence of the radix product is basically the same 
as that of the ordinary decimal expansion. It is true that the Cantor product 

A n(-s) 
converges more rapidly. However, by the same token, the Sylvester series 

converges far more rapidly than the ordinary decimal expansion. Furthermore, 
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A RADIX PRODUCT REPRESENTATION FOR REAL NUMBERS 

due to the exponential growth of the integers a^ in Sylvester's and Cantor's 
representation they are unwieldy to use in practice and each "digit" a^ must, 
in turn, be represented in the decimal system, a drawback which is absent in 
the case of the radix product. In Section 3, we introduce an alternative, 
computationally simpler algorithm which allows the computation of the radix 
product digits from the leading digits of a certain sequence of ordinary q-
decimals. Finally, in Section 4, we investigate the possibility of an 
analogous radix product representation for real numbers 0 < A < 1. 

Throughout the paper, unless otherwise stated, lower case letters denote 
nonnegative integers. 

2. Radix Products in a Varying Scale 

Let q-^, q2, ... be an infinite sequence of natural numbers greater than 
one. Then, it is well known (see, e.g., Perron [3]) that every real number A 
has a generalized decimal expansion 

A = an + — + — — + — + 

where aQ = [A], 0 < ai < q^ - 1 for i > 1. 
Using the product algorithm below, we derive an analogous generalized prod-

uct representation: Let 1 < A E AI < 2. Then, recursively define, for n > 1, 

where / an \~l 

4 ^ - ( 1 % l g 2 . . . J A-
If An = 1, then stop the algorithm. This leads to 

Proposition 2.1: Let 1 < A < 2. Then A has a finite or infinite product rep-
resentation 

where the "digits" a^ satisfy 0 < a^ < qi - 1. 

Proof: First, a repeated application of the recurrence yields 

' = (i+a)(1+^.)... (1+
 aJL )An + l9 

\ ql!\ qlq1i \ qlq2 . . . qj 
if An * 1. Since 1 < Al < 2, 0 < al = [ (Ax - 1)^] < ql. Suppose now, induc-
tively, that Ai > 1 and 0 < ai < qt - 1 for i < n. From the definition 

we deduce that 

a^ an + 1 
1 + < An < 1 + n 

ql . . . qn qx . . . qn 

and it follows that 

1 < An + 1 < (1 +
 an + \ 1/(1 + . "" . ) =1 + « + l < (l 

< l +. l 
Thus, 

0 < an+1 = [{An+l - 1 ) ? 1 . . . qn+1] < qn+l, 
<?1 • • • <7„ 
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A RADIX PRODUCT REPRESENTATION FOR REAL NUMBERS 

as required. Now, either A n = 1 for some n, or 

1 < Ay, < 1 H < 1 + -> 1 a s n ->• oo, f o r n > 1 . 
<7!<72 . . . <7n_i 2 " " 1 

The result follows. 
Of particular interest to us is the decimal-type product representation 

obtained by setting q, = q„ = q~ = ••• = cin in the above. Before discussing 
this case in some detail, we briefly mention one further special product repre-
sentation of interest, which arises from Proposition 2.1 by setting q = n + 1 
for n > 1. 

A-f[(l 
i= l \ 

Corollary 2.2: Every real number 1 < A < 2 has a "factorial" product represen-
tation 

a J 
1 + 

^=i V (i + 1)!, 

where 0 < a^ < i for % > 1. 
In the sequel, however, we shall confine our attention to the most inter-

esting case of Proposition 2.1, obtained by setting qn = q for all n > 1. 
Theorem 2.3: Every A > 1 has a finite or infinite radix product representa-
tion (base q) of the form 

A = I! (l + -f): = anam_l ... a^a2 * a_xa_2 . . . , 

where m 6 1, â ' e {0, 1, ..., q - 1}. 

Proof: It follows from Proposition 2.1 that we can represent every 1 < A < 2. as 

- n ( i + ^ : 
i= I v (?2 

y4 
qi 

A simple (nonunique) method of extending this product for 1 < A < 2 to every 
A > 1 is as follows: First, if A ' < 2q, then, for a suitable 0 < a Q < q - 1, we 
can write 

* ' - ( 1 + ^ ) 4 , 

where 1 < .4 < 2. Now apply the algorithm to A . Next, if A11 > 2q, then there 
exists m E IN such that 1 + qm < A" < 1 + qm + l. Thus, we can write 

, . ( l • - L A' 

where 1 < A r < (1 + qm + l) / (1 + qm) < q, and the product expansion for A " now 
follows from that of 1 < A ' < 2^. 

Remarks 2.4: Even in the case 1 < A < 2 the radix product representation base 
q is not necessarily unique. For example, to base 2, 

- 3 " ( ' • £ ) ( ' • £ ) ( ' + ? ) ( ' • ! . ) 
where the one-term expansion on the left follows from applying the algorithm 
directly to A = 1.5, while the algorithm applied to A = 1.2 = 1.5/1.25 yields 
the expansion on the right. 

Unfortunately, as these and other examples show, real numbers can have more 
than one expansion as a radix product subject only to the condition that the 
digits lie i n { 0 , 1, . . . , q - 1 } . However, the constructive algorithm at the 
start of Section 3 produces a unique choice for the digits di at each step. 
For the digits produced by this algorithm, it follows from the proof of Propo-
sition 2.1 that the following inequality holds for each n > 1: 
292 [.Nov.-
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qn o (1 + — 1 > i n ( l + ^ ) . 
Conversely, it can be shown that there is only one radix product expansion for 
a given 1 < A < 2 for which (*) holds for each n > 1. Thus, every 1 < A < 2 
has a unique radix product expansion 

A ^ n (I +24) 
s.t. for each i > 1, 

Furthermore, since the algorithm chooses the largest possible digit "a^" at 
each stage, in general, this radix product expansion will converge faster than 
any other not satisfying (*), and is thus the canonical expansion for A. 

In addition, rational numbers need not have finite representations as 
^-radix products. As a particular case of Euler's product identity 

i + —̂—r = fi (i + -^M> y e * » \y\ > i . y - i n= i \ z/z / 
wre h a v e , f o r any v € IN, 

4 = 1 + -J— = I 1 H + 
n = \ \ qr - 1 „Vi V q z - 1 

Note also that such 4 have recurring ordinary q-radix expansions of the form 
4 = 1.00... 01, where the period consists of v - 1 zeros followed by a one. In 
general, however, other recurring decimals base q need not have "nice" radix 
product representations, unlike the case above. 

3. An Alternative Radix Product Algorithm 

We can reformulate the general product algorithm of Section 2 in the case 
of a fixed base q, into the following computationally simpler form. It is easy 
to show that the new algorithm is equivalent to that of Section 2 in the case 
q, = q2 = ... = q, provided we replace any real number with recurring decimal 
expansion 

a q - I q - I n , _T 
A = 1 + — + ^—y- + l—-^ + -.., 0 < a < q - 1, s e l , 

qs qs + L qs+/L 

by the finite expression 

a + 1 
A = 1 + — . 

qs 

In this form the algorithm determines only the nontrivial digits (a^ > 0) in the 
radix product representation. 

If 1 < A < 2, let Ai = A. Then, if the unique decimal expansion of A (base 
q) is of the form 

A = 1 + -~- + . . . , l < f c 1 < < 7 - l i r 1 e N , 

then we can write 
bl 1 

A = 1 + —f- A' , where 1 < A' < 1 + — < 2. 
qr^ x x Z?x 

If 
bn 

A = 1 _| 1 . /] f 
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h a s a l r e a d y b e e n d e f i n e d w i t h 

i < K < l +ir * 2> 
un 

then define 
by, VK I K\-i( bn + 1 m 1 1 

= 1 + — — < 1 + —^-. 
q n + bn q~» 

It follows that we can write 
K + 1 

A = 1 + n L A r 

An + l L +
 qrn+1

 An + I> 

where rn + l > r n , I < bn + i < q - 1 and 

1 < A' , < 1 + T < 2. 
n+l bn+i 

If A'n = 1, let An+l = 1 and stop the algorithm. Then 

A-h- (1+^)4=... -A^JX^^ 
If the procedure does not terminate with some An+i = 1, then 

1 1 1 
0 <• i4„ + i - 1 < < < • • . < — -> 0 a s n -> °°. 

qrn + i - 1 cfn q" 
T h u s , l i m An+i = 1 , and h e n c e , 

i= l x q * / 
i f 

b, \ ( by, 
1 + 

q*'i / \ qx 

we a l s o h a v e 

/ bi 

A= { l + ^ A n + l)Pn 
and s o 

bn+l , A 2 

0 < A - p = — n l A r P < < 
U A ^ qrn+1

 An + \ t n < qrn + l - 1 <
 qn-

The a b o v e a r g u m e n t c a n t h e r e f o r e b e u s e d t o g i v e an a l t e r n a t i v e p r o o f of T h e o -
rem 2 . 3 a n d , i n a d d i t i o n , i f f o r A > 1 , 

p„ = ii (i + -V)> 
n = -m \ q / 

then the rate of approximation to A by the finite "decimal" Pn is given by 
A A 

0 < A - Pn < ^--r < — , n > 1. 

In order to appreciate how easily this algorithm can be applied in prac-
tice, we illustrate it with a numerical example. For convenience, we choose 
the base q equal to ten: Let A = Ax = 1.035124. Then 

Pi = 0 * 03, A2 = (1.03)-1(1.035124) = 1.004974..., 

P2 = 0 * 034, A3 = (1.004)-1(1.004974...) = 1.000970..., 

P3 = 0 * 0349, Ah = ... . 
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To conclude this section, we make a few comments about radix product "frac-
tions" base q, that is, radix products of the form 0 * ccia^a-^ . . . , 0 < a^ < 
q - I. It is clear from the above algorithms that any 1 < A < 2 has a repre-
sentation as a fractional radix product. (To obtain a product expansion for 
A = 2, we can apply the algorithm of Section 3 to A = 1.999...). However, 
fractional product representation also exists for certain real numbers greater 
than two. If we denote the largest such fraction (base q) by 

Eq = 0 * (q - l)(q - 1)..., 

then it follows from standard inequalities relating infinite series and prod-
ucts that 

i + £1^ri<e,<exp(E1^). 
n= I C[ \n= I q J 

which gives 2< Eq < e for every q. However, the actual value of Eq varies with 
q. In the table below, we list approximations for Eq for some small values of 
the base q. 

TABLE 1. The Largest Radix Product Fraction 
Corresponding to Given Bases q 

q 

2 
3 
4 
5 
6 
7 
8 
9 
10 

E? 

2.38423 
2.26971 
2.20963 
2.17207 
2.14619 
2.12719 
2.11263 
2.10110 
2.09172 

Note that the values of Eq listed correspond to those for the finite products 

A ( * + ^ ) 
for suitable values of k. If we denote such finite products by Eq(k), then 

e,- e,(fc).= eq(k)( ft {} + 3~^1) ~ l) 
x ̂  = K + 1 H ' 

<6,(e*p((q-l)n+j.) -l) <*(*«-*-!). 
With this as an upper bound for the error, large enough values of k were chosen 
for each of the entries q = 2, 3, ..., 10 to give Eq - Eq(k) < 10~5. Examina-
tion of Table 1 suggests that e^ is a decreasing function of q for q > 2, a 
fact that can be verified by considering the derivative with respect to q, of 
log Eq . Furthermore, using Theorem 5.7, in Hyslop [1] we see that the uniform 
convergence of the infinite series 

for q > 2, implies the uniform convergence of the product e , for q > 2, and it 
follows that lim Eq = 2. 

q + oo 
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4. Radix Product Expansions for Real Numbers Less than One 

One immediate product representat ion for 0 < A < 1 follows from the radix 
product expression for A~l > 1. Thus, if we have 

A' 
then 

A 

1 = . 0 (l + ^ ) > 0 < at < q - 1, 
% = -m \ q^/ 

n ( i + ^ y 1 - n ( i - - A i = -m \ <? " ' v = -m 

In particular, for .4 > 1/2, 

CD ^ = n (i - .a i V 
In this form, however, the product no longer has a denominator depending only 
on the base. This product does, however, suggest the possibility of represent-
ing every 0 < A < 1 in the form 

Unfortunately, it turns out that it is not possible to represent every 0 < 
A < 1 or even 1/2 < A < 1 in this manner. 

To see this, let {a^} be a sequence of real numbers with a^ E (0, 1) for 
every k. Then we deduce from Weierstrassfs inequality (see Mitrinovic [2], 
p. 210): 

k k 

n (1 - an) > 1 - X; a n , 
n =r n = r 

by taking limits that 

f\ (1 - an) > 1 - £ an. 
n = 2 n = 2 

Hence, 
11 (1 - an) > (l - £ a„)(l - a j > 1 - X an. 

w= 1 ' \ n= 2 / n=\ 

Applying this last inequality to p, = J~£ (X — ^ — ) , we obtain 
r = 1 \ ^ / 

1 i = l 

™ q - I 

Since p, is the smallest number that can be represented in the form 

n^i - | f ) . o < fli < q -1, 
it follows that there can be no such product representation for any 0 < A < p±> 
Similarly, the largest real number that can be represented in the form 

fl (l T ) , 0 < at < q - 1, ax *• 0, 

is p2 = 1 - (l/q), and the smallest real number that can be represented in the 
form 

a • 
^ ( l - -±)> 0 < ai < q - 1, ax = 0, 

is 

^-M-'-fr1)-
296 [Nov. 
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Since the i n e q u a l i t y r e l a t i n g i n f i n i t e p r o d u c t s and s e r i e s y i e l d s p ~, > p9 t h e r e 
can aga in be no such produc t r e p r e s e n t a t i o n for any r e a l number p? > A > p9 . 
In g e n e r a l , s i n c e 

• nJ1 - V)> 1 - ̂  
t = 171 + I X H I <7 

there will be an infinite sequence of gaps in any representation system based 
upon products of this type. 

A consideration of Equation (1) suggests that, for 1/2 < A < 1, we can ob-
tain a product expansion with digits in {0, 1, ..., q - 1} and denominators 
independent of "a/' consisting of terms 

V q% + q) 
To obtain such expansions, we introduce the following algorithm: Let 

\ < A = Al < 1. 

Then recursively define, for n > 1, 

an = [U " An)(qn + q)]9 An * 1, 
where 

An + i = V ~ ~^T~q) An' 
If An = 1, then stop the algorithm. 

Using this we can show, in a similar manner to Proposition 2.1, that 

Proposition 4.1: Every 1/2 < A < 1 has a "near radix" product representation 

n=i \ qn + q) 
with "digits" an in the set {0, 1, ..., q - 1}. 
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PARTITIONS WITH "M(a) COPIES OF a" 

E. E. Guer in 
Seton Hall University, South Orange, NJ 07079 

(Submitted September 1988) 

In [1], Agarwal & Andrews studied partitions with "a copies of a," and in 
[2], Agarwal & Mullen studied partitions with "d(a) copies of a" (where d is 
the divisor function). In this note, partitions with "M(a) copies of a" are 
considered; the maximum exponent function, M, is defined by 

M(a) = max(el5 . . . , eT ) 

if the integer a > 1 has canonical prime-power form a = p^1 ... p&r , and Af(l) = 
1. 

Define L to be the set of ordered pairs (a, b) of positive integers with 
1 < b < M{a) . We say i is a partition of n with M{a) copies of a if IT is a 
finite ordered collection (al5 b\) , (di* b^_) , ..., (a^, bk) of elements of L 
such that GL\ + CLi + • • • + a^ = n and, for I < i < j < k, a^ > a-j with bi < bj 
if CLI = <Zj. If we replace (a, Z?) in L by a^, the partitions of n with nA/(a) 
copies of a" for n = 1, 2, 3, 4, can be represented, respectively, by 

lx; 2l5 ll + li; 3i, 2X + ll5 li + li + li; 

4l5 42, 3i + li, 2l + 2l5 2l + lx + lx, li + li + li + li-

For the positive integer n9 let /??(n) denote the number of partitions of n 
with uM(a) copies of a.11 As in [3, Ch. 1] and [2], a generating function for 
such partitions is 

1 + £ rn(n)qn = f[ (1 - qn)~M(<n\ 
n= 1 «= 1 

This is an immediate consequence of the following theorem [3, Th. 1.1]: 

If H is a set of positive integers, if "#" is the set of partitions with 
parts in H, and if p(uE", n) is the number of partitions of n with parts in 
H, then for \q\ < 1, 

Y,P("H", n)qn = f][ (1 - qn)~l. 
n>0 ^e# 

The factor (1 - qn)~l = I + qn + qn + n + ... is replaced by 

(1 - ̂ n)-^) = (1 + qn + qn + n + ...)#(«) 
= (1 + <?«1 + ^ ^ " l + ...)(1 + ^ + ^ 2 + ̂2 + ...) 

••- (1 + qnMin) + ^n^)+n«(«) + ...) 

for rii = n (1 < i < Af(n)) ; thus, the number of partitions of n with "M(a) copies 
of a" is counted. For example, TT?(4) is the coefficient of q^ in 

(i - ? ) - ' ( i - ^ - m - ^ - m - <?4r2 

= (1 + qli + < ? l l + l 1 + ^ 1 i + 1 i + 1 i + g l i + l i + l i + 1 i + . . . ) 

• (1 + q2^ + ?
2 i + 2 i + - . . ) ( 1 + ? 3 1 + • • • ) ( l + ? * 1 + " - ) ( l + ? 4 ! + • • • ) 

for l j = 1, 2i = 2, 3} = 3 , 4j = 4 2 = 4; s i nce 
? 4 = ? 4 ! = g 4 2 = ^3!+!! = q21+2l = ^2,-M^l! _ ? 11 + 11 + 1! + 11, 

then w(4) = 6, and the exponents 
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4 l 5 42, 31 + ll5 2l + 2 l 5 2l + l l + ll5 li + li + li + 1] 

are the six partitions of 4 with "M(a) copies of a." 
If p(ft) is the number of unrestricted partitions of n, then 

1 + Y,m(n)qn = f\ (1 - qn)~l Yl (I - q yWW-U 
n= l n= I n > 1 

M(w) > 1 
pin\M(n) - 1 _ = (£>(«)<?«) n (£ 

\ n = 0 ' « > 1 \ £ = 0 
M(n) > 1 

Note that M(ji) = p(n) if n = 1, 2, 3. Some values of m{n) are shown below. 
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

m(n) 1 2 3 6 8 13 18 30 41 60 82 121 162 226 302 422 

A recurrence formula for m(n) is now given. Let [r] denote the greatest 
integer less than or equal to the real number r; let 

t ^ V = £m0qv> 
i = o / y = o 

where A: is a positive integer [so that (k)v is the coefficient of qv in the 
expanded form of (1 + q + q2 + q3 + - - O ^ ) ; and let s^ equal the ith nonsquare-
free positive integer (with S]_ = 4, s 2 = 8, s3 = 9, s^ = 12, s 5 = 16, and so 
forth). Then, if n > 4, 

J 
^(n) = J2 m n, s- ' 

1 
where j is the unique positive integer such that s- < n < Sj + i5 777(0) is defined 
equal to 1, 

[n/4] 
^w, 4 = P<» + J^ p(4 - ni) 

i= 1 
for n > 4, and 

W„j S = M S j ) - D[n/s..] "Ktt " Sjt^/Sj]) 

[n/sj] -1 /t7-_! 

£= 1 \y = 1 
for n > Sj > Si. For example, 

777(16) = W 1 6 j 1 6 + 77716> 1 2 + 77715j 9 + 77716j 8 + 7 ? 7 1 6 j 4 

= (M(16) - 1) 1^77(0) + (M(12) - 1)1777(4) + (M(9) - 1) 1/77(7) 
+ (Af(8) " 1)2777(0) + (M(8) - D l W 8 f l f 

+ ( p ( 1 6 ) + p ( 1 2 ) + p ( 8 ) + p ( 4 ) + p ( 0 ) ) 
= ( 3 ) i • 1 + ( l ) i • 6 + ( l ) i - 18 + ( 2 ) 2 - 1 

+ (2)x(p(8) + p(4) + p(0)) + (231 + 7 7 + 2 2 + 5 + 1 ) 

= 3 + 6 + 1 8 + 3 + 5 6 + 3 3 6 

= 422. 

Combinatorial interpretations of partitions with "Af(a) copies of a" can be 
stated in terms of plane partitions [3, Ch. 11] and factorization patterns [2]. 
In [4], Mitchell considers plane partitions in which the number of parts equal 
to j > 1 in any row is not less than the number of parts equal to j in the next 
row; we designate these plane partitions as Mitchell plane partitions (MPP's). 
Each MPP of a positive integer n can be written uniquely in an "identical-
element-column format" (ICF) of the type 
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Lrl 

i l t • a2t . . . artr 

wi th 

E E aa = 
and 

with 

i = 1 j = 1 

au > ai + u l (i 

ail = ••• = ait2 

1, . . . , r - 1 ) , 

for each i = 1, ..., r , and such that, if ail = akl for i < k, then £^ > tfe. If 
n > 1, then m(ri) is the number of ICF's of the following types: 

/ V 

I- all azl ... arl (with ]T aix = n and a^x > ai + 1 x (i = 1, ..., r - 1); 
\ i = 1 ' 

t\ = • ' ' = tr = 1. ICF's of this type are unrestricted partitions of n, 
II. ICFTs formed by first replacing one or more of any nonsquarefree a^\ (i = 

1, . .., P) in I, as indicated in (i) and (ii) below, and then rearranging 
these columns if necessary. (If a^\ is squarefree, then a i\ is the only 
acceptable form.) 

(i) If an * a^i for k * i, and p is the smallest prime such that pM(aiO 
divides an* then acceptable replacement forms for a^\ are those with 
ai\IVv identical column entries, each entry pv (v = 1, . . ., M (CLI ) - 1) . 

(ii) If an ~ ai + i, l = * • * = ai +w,\> ai\ * ak\ if ^ * ^' ^ + 1» •••» i + ^ 
(1 < £ < i + p < p ) , then acceptable replacements are those with one 
or more of an, ..., CLi+w,l replaced by replacement forms specified 
in (i) under the condition that entries in the column replacing a^\ 
are greater than or equal to entries in the column replacing ac\ if 
c > b (i < b < c < i + w). 

Denote the set of ICF's of n of these types by MICF(n), and m{n) is the order 
of the set MICF(n). 

Also, m{n) is the number of restricted "maximum-exponent" factorization 
patterns (MFP's) of the type b°^ ... b^r with 

and 

with 

and 

n = blal + • • • + bra2 

b1 = ... = bki > bki+l= . . . = bk2 > .•• > bK_l+l = . . . = bkc 

av 

a l * • • • * % > a k l + l * ' " * ak2> • • • * a k a . l + l * * • • ^ aka> 

and i n which, fo r bvav = w (1 < w < ri) and for v = 1, 2 , . . . , r, bv
v has the 

fo l lowing s p e c i f i e d form: 

(1) If w is a squarefree positive integer, then ,bj - W , 

(2) If w is not squarefree, and p is the smallest prime such that p̂ (w) 
divides w, then b*v = wl or b%v = {pt)^/Pl) (t = 1, ..., M(n) - 1). 

To illustrate, 777(8) = 30 and the elements of MICF(8) are 
8 2 4 71 62 611 53 521 5111 44 42 22 431 321 422 222 

2 4 2 22 2 2 
2 
2 
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4211 2211 41111 21111 332 3311 3221 32111 311111 2222 22211 
2 2 

221111 2111111 11111111 
The element 321 (obtained from 231 by a column rearrangement) has plane parti-
tion form 321 and corresponds to the MFP 3l21\l. 

2 

For any positive integer n there is a bisection between the set MICF(n) and 
the set of MFP's of n. Also, a bisection between the members of the multiset 
{1]_, 2]_, 3]_, 4]_, 42> •••> Yi\i • ••» M̂(n)} and the set of MFP's of n is indicated 
by 1]_ corresponding to l1, 2X to 21, 3X to 31, 4X to 22, 42 to 41, ..., and nl 
to nl if M(w) = 1, or nl to p«/p , ..., nv(w)-i to (p^-l)^/?^- 1), nw(n) to nl 
if Af(rc) > 1 and p is the smallest prime such that pM(n) divides n. 
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1. Introduction 

Let A = (ai, a<i> ..., an) be an n-tuple of nonnegative integers, and define 

D(A) = (\ai - a2\, \a2 - a3\, ..., |an_L - an\, \an - ai\). 

Note that in the definition of D the n-tuple A is regarded as written in a cir-
cle, so Ludington's title "Cycles of Differences" [3] is more suggestive than 
my "Columns of Differences" [1]. 

Sequences of the form A, D(A), D2(A), D^(A), ... are called Ducci sequences 
here (see [5] and [7]). Some authors call them n-number games. 

Since applying D does not increase the maximum of the components of a tuple 
it follows that in a Ducci sequence there are just a finite number of differ-
ent tuples. Let DS(A) be the first tuple which is equal to a previous tuple 
Dr(A), then the tuples Dr (A) , DT + l(A) , ..., Ds~l(A) form a repeating cycle. 
The length of this cycle, s - v , is called the period of the sequence. If R 
and S are any two natural numbers such that DH(A) = DS(A), then s -• r\S - R. 

This article deals mainly with the periods of Ducci sequences. (Authors 
who deal with the length of the part that precedes the cycle refer to that 
length as the length of the game.) 

2. Maximal Periods 

The components of every tuple in the periodic part of a Ducci sequence are 
all equal to either 0 or a constant C which depends on the first tuple of the 
sequence (see [1], Th. 1 in [2], Lem. 3 in [3], item I in [7]). Since for 
every positive A, D(XA) = XD(A), one may assume without loss of generality that 
C = 1. In other words, let us restrict our attention to n-tuples with 
components from {0, 1}. In particular, the Ducci sequence that starts with the 
n-tuple (0, ..., 0, 1) will be called a basic Ducci sequence, and the length of 
its period is denoted P(n). 

Let H(a\9 a2» . . . , an) = (a2> •••> an, a\) > then ff is a linear transforma-
tion over Z^. Since |x - y\ = x + y (mod 2), it follows that D = I + H, and D 
is also a linear transformation over Z^. 

Theorem 1: For any n, the maximal period of Ducci's sequence of n-tuples is 
P{n). Periods of other sequences divide this maximum. 

If DR(A) = DS(A) holds for A = (0, 0, 0, ..., 0, 1), it holds also for 
A = (0, 0, ..., 0, 1, 0), for A = (0, ..., 0, 1, 0, 0), etc. This follows from 
the cyclic character of D (or, alternatively, from the commutativity of D with 
E). Since D is linear, it holds also for sums of these A's. D 

3. Upper Bounds for P(n) 

Lemma 1: If 2m = t (mod n) , then D^m) = I + Ht. 
Proof: By Induction on m, (I + H)^m) = I + #(2"}. #(2"} = Et since, by the defi-
nition of H9 Hn = I. • 
Note that Lemma 1 suggests an effective way to compute Dr(A) for big r's: Write 
r as Z2mi, then compute (II(X + Htl ) ) (A) . 

302 [Nov. 



PERIODS IN DUCCI'S n-NUMBER GAME OF DIFFERENCES 

Corollalry 1: If n is a power of 2, then the cycle of Duccifs sequences consists 
of a single n-tuple (0, 0, ..., 0). 

Proof: In this case, Dn = I + H° = I + I = 0. D 

Coronary 2; If n is not a power of 2, then the cycle of the basic Ducci 
sequence contains an n-tuple with exactly two lfs. 

Proof: Take any m which is big enough to assure that Z^2m)(0, 0, . .., 0, 1) is 
in the periodic part of the sequence. Reducing 2m modulo n gives a t * 0. 
Ht(0, 0, . .., 0, 1) has exactly one 1, but it is not (0, 0, . .., 0, 1). Thus, 
the result follows from Lemma 1. D 

Corollary 3: If 2m E 1 (mod ri) then P(n) divides 2m - 1. 

Proof: In this case £(2"} = I + Hl = Dl. Q 

Remark: Both Corollaries 1 and 3 are not new. Corollary 1 is item D-^ in [7] 
and appears in at least 19 of the 22 articles referred to there, sometimes only 
for n = 4. The present proof is considerably shorter than the ones in [7] and 
in [6]. Corollary 3 is written without proof in [1] and is the "further" part 
of Theorem 3 in [3], restricted to odd nfs. 

Theorem 2: If 2M = -1 (mod ri), then P{ri) divides n(2M - 1). 

Proof: D^2M) = I + H~l = H~l(H + I) = H~1D; hence, D^n2^ = H~nDn = Dn.- U 

Let us use the following abbreviations: 

a. For an odd n > 1, let m(n) be the smallest m > 0 such that 2m = 1 (mod 
ri) . [By EulerTs theorem, such an m does exist and m(ji) \ §(n) . ] 

b. If for an odd n > 1 there is an Af such that 2M E -1 (mod w) , then n 
will be said to be "with a -1." When this occurs, the smallest such M 
is m(n)/2. If this does not occur, then we say that n is "without a 
-1." 

Facts: 
For every odd n with a -1, from 3 to 163 except for 37 and 101, 

P{n) = n(2mW/2 - 1). 

For every odd n without a -1, from 7 to 165 except for 95 and 111, 

Pin) = 2ffl(n) - 1. 

For all of the four exceptions, P(n) is 1/3 of the "expected" value. I do 
not know whether any deeper thing is hidden behind this divisor 3. 

These data were computed in the following way. Since for every odd n there 
is an m such that 2m E 1 (mod ri), and since (0, ..., 0, 1, 1) =D(Q, — , 0, 
1), it follows from the proof of Corollary 3 that, for such an n, (0, — , 0, 
1, 1) is in the periodic part of the basic Ducci sequence. The note just after 
Lemma 1 gives a fast way for checking whether Dr(0, ..., 0, 1, 1) = (0, ..., 0, 
1, 1). By Corollary 3 and Theorem 2, one has to check only r's which divide 
2 - 1, and in many cases only the divisors of n(2m(^n^2 - 1 ) . 

As an example, let us see how P(37) is found. 18 is the smallest M such 
that 2M E -1 (mod 37). [In other words, 37 is with a -1 and w(37) = 36.] By 
Theorem 2, 

P(37)|37 • (218 - 1) = 9699291. 9699291 = 3 • 3 • 3 • 7 • 19 • 37 • 73. 

A subroutine based on Lemma 1 is now called, and outputs Dr(0, ..., 0, 1, 1) 
for v = 9699291/3, 9699291/7, 9699291/19, 9699291/37, and 9699291/73. The 
first of these pfs returns (0, ..., 0, 1, 1), while the other ones do not. 
Running this subroutine for r = 9699291/9 does not return (0, , 0, 1, 1) 
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either; hence, 

P(37) = 9699291/3 = 3233097. 

Remark: The Dr subroutine is quite fast. The reason for stopping the calcu-
lations at P(165) was the time needed for the factoring. I thank Yehuda Kats 
of Levinsky College for Teachers, Tel-Aviv, for factoring the numbers that were 
needed in calculating P(131), P(139), and P(149). 

1) 

4. More Properties of P(n) 

Having seen that P{ji) may be a proper divisor of 2m^ - 1 or of n{2m^'2-
there is an interest in the following theorem. 

Theorem 3: If n is not a power of 2, then n\P(n). 

Proof: Write the components of an A £ Z2 on the vertices of a regular n-gon in 
a counterclockwise order, starting, say, at the highest vertex. For example, 
write (0, 0, 0, 1, 1) as follows: 

"•-y-
If A has an axis of symmetry, then D(A) also does, and its axis is obtained 
from that of A by a rotation of -180/n degrees. [It is the bisector of the 
axis of A and the axis of H(A).] If A has more than one axis, then each of the 
axes is transferred to the followers of A in the same way. 

By Corollary 2, there is an n-tuple with exactly two l's in the cycle of 
the basic Ducci sequence. Since this n-tuple has just one axis of symmetry, so 
do all of the tuples in the repeating cycle. During one cycle, the axis 
rotates a whole multiple of 180 degrees, so the period is a multiple of n. • 

In the proofs of the following theorems, I am going to cut a tuple into 
equal parts and write these parts one below the other in the form of a matrix. 
These matrices are not intended to represent linear transformations. They are 
just another way to write the tuples, and you may read them the same way you 
read an English text of more than one line. For example, for 

k, I), A = ( a , b, c, dj e, 

H(A) = 11 
a b e d 
e f g In 
i 0 k I 

f, g, h, i , j , 

= 
b a d e 
f • 9 h i 
j k I a 

On the other hand, if the dimensions of the matrix form of A are given, 
then each row and each column of A are well defined tuples on their own, and 
our transformations // and D may apply to each of them. Let us define U/^A) to 
be the matrix obtained from. /4 by replacing each row by //(.that row), and define 

:'D-L(A), HC(A.).,••and DC(A) in similar ways,, with "P" instead of "//" or with 
Following our last example, 

\e f g h\ •••-•: 

HC(A) *Ai . i -. k l \ . 
\a b c d\ 

"column" instead of "row. 

HL W ) 
b 
f 
J 

G 

9 
k 

d 
h 
I 

a 
e 
% 

Theorem 4: If': n = 2mk, where k is an odd number, then P(n) = 2mP{k). 
Let us write each n-tuple A as a k x 2m matrix. Since each row of A 

now, of 2m components, P^'^W) = HC(A). By Lemma 1, this holds for P's too. 
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To find P(n), it is sufficient to inspect just every 2mth element of the 
basic Ducci sequence since, by Theorem 3, 2m\P(n). If we start our inspections 
with the first element of the entire sequence, i.e., with the n-tuple whose 
matrix is 

0, 0, 0 

0, ..., 0, 0 
0, ..., 0, 1 

then the right column of the inspected elements forms a basic Ducci sequence of 
^-tuples, and the other columns are 0fs (since D^2-™^ = Dc) . The period of the 
inspected subsequence is, thus, P(k), and the period of the entire sequence is 
2mP(k). D 
Theorem 5: If k\n, then P(k)\P(n). 

Proof: By Theorem 1, it is sufficient to find an n-tuple whose Ducci sequence 
has P(k) for its period. We are going to see that the n/k x k matrix 

0, 

0, 

., 0, 1 

0, 1 

will do. 
Indeed, if all of the rows of a matrix A are equal to each other, then H(A) 

= Hi(A); hence, D(A) = Di(A). It follows that the Ducci sequence of n-tuples 
which starts with the above mentioned matrix, behaves like the basic Ducci 
sequence of fc-tuples. • 
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Introduction 

Let c and n be natural numbers. Let Fn denote the nth Fibonacci number, 
that Is Fi = F2 = 1> Fn = Fn_1 + Fn„2 f° r n - 3. Consider the equation 

(*)' Fn = ox1. 

In [1], Cohn solved (*) for c = 1, 2. In [9], we found all solutions of 
O ) such that <? is prime and either o = 3 (mod 4) or c < 10,000. Harborth & 
Kemnitz [4] have asked for solutions of (&) for composite values of o. 
Clearly, it suffices to consider only squarefree values of c. 

If c < 1000, then c has at most three distinct odd prime factors. There-
fore c = kp where p is prime and k = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 
21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 38, 39, 42, 51, 55, 65, 66, or 70. In 
this paper, we solve (*) for each of the above values of c. In the cases k = 
2, 13, 26, 34, our results are valid only for p < 10,000; in the other cases, 
there are no restrictions on p. These results are listed in Table 1. 
Combining these new results with those from [1] and [9], we obtain all 
solutions of (*) such that 1 < a < 1000. We list these solutions in Table 2. 

Preliminaries 

Let p denote a prime, 777 a natural number. Let Ln denote the nth Lucas num-
ber, that is Li = 1, Lz = 3, Ln = Ln_]_ + Ln_2 for n > 3. Let op(n) = k if pk\\n, 
where k > 0. Let {alp) denote the Legendre symbol. Let z(ri) = m±n{m:n \Fm}. 
If p is odd and 2|g(p), let y(p) = %s(p). 

(1) Fn = x2 iff n = 1, 2, or 12. 

(2) Fn = 2x2 iff n = 3 or 6. 

(3) If p E 3 (mod 4), then Fn = px2 iff (n, p, x2) = (4, 3, 1)-

(4) If p = 1 (mod 4) and p < 10,000, then Fn = px2 iff 
(n, p) = (5, 5), (7, 13), (11, 89), (13, 233), (17,1597), or (25,3001). 

(5) Fn * 6x2. (6) Ln = x2 iff n = 1 or 3. 

(7) Ln = 2x2 iff n = 6. (8) Ln = 3x2 iff n = 2. 

(9) Ln * 6x2. (10) L„ = lx2 iff n = 4. 

(11) Ln = llx2 iff n = 5. (12) Ln = 19x2 iff n = 9 

(13) Ln = 29J;2 iff n = 7. (14) H n = 7 (mod 8) if 3Jn. 

(15) 5\Ln, l3\Ln, \l\Ln for all n. 

(16) If m > 2, then m\Fn iff s(m)|n. 

(18) If w > 3, then Fm\Fn iff /w|n. 
(2 if 3|n, 

(19) (Fn, Ln) ={ 
I 1 if 3{n. 
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(20) I f m > 2 , then Lm\Ln i f f n/m i s odd. 

(21) F3n/Fn = L2 - ( - 1 ) " . (22) L3n/Ln = L2
n - 3 ( - l ) * . 

(23) F5n/5Fn = 5F^ + 5(-l)nF2 + 1. (24) 5\F3n/Fn. 

(25) L 5 n / L n = L^ - 5 ( - l ) " L * + 5. 
( 1 i f p = ±1 (mod 5 ) , 

(26) s ( p ) | ( p " e) where e = < - l i f p E ±2 (mod 5 ) , 
I 0 if p = 5. 

(27) ( ^ , F„) = Fimtn). (28) (F„, F ^ / F n ) | ^ . 
(29) ( F n , F s ^ / 5 ^ ) = 1. (30) Fhn + l + 2 = F2n^L2n + z . 

(31) A n - l + 2 = i?2n+1^2n-2- (32) (Fm , Lm±n) \Ln. 
(33) x2 - 5y2 = -4 iff x = Ln, y = Fn for some odd n. 

(34) I f p i s odd, p\Fm, and p j a , then op(Fpkam/Fn) = k. 

(35) 2|F3w/Fw i f f 3J777. (36) 2 | L n i f f 3 | n . 

(37) 3 |L n i f f n E 2 (mod 4) (38) 4|-L„ i f f n E 3 (mod 6 ) . 
(5 i f 5 In, 0 

(39) ( F n , ^ 5 n / F n ) = <! _ (40) L2n = L2
n - 2{-\)n. 

u i f 5{n. 
(41) I f /c i s odd, then (£„» L^n/Ln)\k. 

(2 i f n E 3 (mod 6 ) , 
(42) o 2 (^n) = \ l ±f n E 0 (mod 6 ) , 

(O o t h e r w i s e . 
(43) I f p i s odd, then p\Ln i f f n = ky(p) , /c odd. 

(44) F 7 m /F w = 1 2 5 ^ + 175(-l)mF* + 7 0 ^ + 1{-I)m . 

(45) 3 | ^ i f f 4 |w. 
Remarks: (6), (7), (1), and (2) are Theorems 1 through 4 in [1]. (3) and 
(4) are Corollary 1 and Theorem 3 in [9], respectively. (5) and (9) follow 
from Lemmas 1 and 2 in [20], respectively. (8) and (10) are established in 
[2], (11) through (13) in [11]. (32) is Theorem 1 in [7]. (28) is Lemma 16 in 
[3], while (34) follows from Theorem 2 in [3]. (41) follows from Theorem 4 in 
[8]. (17), (18), (20), and (27) are J7, Theorem III, Theorem V, and Theorem II 
in [5], respectively. (40) follows from _Z"15 and J18 in [5]. The other identi-
ties are elementary or well known. 

The Main Results 

Lemma 1: L3m/Lm = x2 iff m = 1. 

Proof: If L3m/Lm = x2, then (22) implies L2 - 3(-l)/7? = x2. If m is odd, then 
Lm = 1, so m = 1. If m is even, then Lm = 4, which is impossible, since m is a 
natural number. Conversely, L3/Li = 4 = 22. 

Lemma 2: L3m/Lm * 2x2. 

Proof: Assume the contrary. Then (22) implies Lm - 3(-l)777 = 2x2. If 3|x, then 
2>\Lmi so we get ±3 = 0 (mod 9), an impossibility. If 3J[x, then Lm = 2x2 = 2 
(mod 3), an impossibility, since (2/3) = -1. 

Lemma 3: If p is odd, then Fmp E (5/p)Fm (mod p). 

Proof: This follows from (91) in [6] and Fermat*s theorem, noting that A = 5 
for the Fibonacci sequence. 
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Lemma 4: If p E 3 or 7 (mod 20), then Fmp/Fm * x2. 

Proof: Let Fmp/Fm = x2. If p\Fm, then (34) implies op(Fmp /Fm) = 1, an impossi-
bility. If p)(Fm, then Lemma 3 implies Fmp/Fm E (5/p) (mod p ) , so a:2 E (5/p) 
(mod p). If p E 3 or 7 (mod 20), then (5/p) = -1, so x2 E -1 (mod p) and p E 3 
(mod 4), an impossibility. 

Lemma 5: If F3m/Fm = 2x2, then w is odd or 772 = 2. 

Proof: We must show that F6j/F2j- = 2x2 iff j = 1. Now, Fe/F2 = 8 = 2(2)2. If 
F6j/F2j = 2x2, then (17), (18), and (20) imply (F3j/Fj)(L3j/Lj) = 2x2. If 3Jj, 
then (35) implies 2\F3j-/Fj, SO 

(.F3j/2Fj)(.L3j/Lj) = x2. 

Let d = (F3j/2Fj, L3j/Lj). Now, d | ( F 3 j - , £ 3 ^ ) . so (19) i m p l i e s d\l. We have 

F3j/2Fj = dy2, L3j/Lj = dz2. 
Lemma 2 imp l i e s d * 2. The re fo r e , a7 = 1, so Lemma 1 i m p l i e s j = 1. I f j = 3/c, 
then (35) i m p l i e s 2J(FQk/F3k. Let g = (F3k/F3k , L3k/L3k) . Then, a | (F9fc , ^9/<)> s o 

(19) i m p l i e s a | 2 . But 2J(F3k/F3k, so g = I. T h e r e f o r e , 
F9k/_F3k = ?/2> L3k/L3k = ZZ> 

which c o n t r a d i c t s Lemma 1. 
Lemma 6: F3m/Fm = 3x2 i f f (m, x2) = ( 4 , 16 ) . 

Proof: I f F3m/Fm = 3x2, then (16) i m p l i e s s(3)|3/??, so /?? = 4fc. Now (21) imp l i e s 
Lhk - 1 = 3x2. I f 3\k, then (36) i m p l i e s 2\LLik, so (L4fc + 1, LL{k - 1) = 1, so 
L^k ± 1 = w2. Now (40) i m p l i e s L2/c - 1 = u 2 or ^ 2 ^ - 3 = w2, so L2^ = 1 or 4 , 
an i m p o s s i b i l i t y . I f 3\k, then (36) i m p l i e s 2\h^k, so (LL^ + 15 £4/, - 1) = 2. 
In f a c t , (14) i m p l i e s 

Lhk + 1 Li+k - 1 

8 2 ^ 
Since the factors on the left are coprime, one of them must be a square. If 
%(Lt+fe - 1) = V2, then (40) implies L 2k - 3 = 2y2, an impossibility, since (2/3) 
= -1. Therefore, 

{Lhk + l)/8 = u2 and %(L47c - 1) = 3v2. 
Now L^k E 1 (mod 6) implies (6, /c) = 1, so L2k = 3 (mod 4). (40) implies L2k - 1 
= 8u2, so (L2^ + l)(L2k - 1) = 8u2. Since 2\h hk, (40) also implies 2JL2k> SO 
(L2k + 1, Ẑfc - 1) = 2. Thus, we have 

L2k + 1 = 4a2, L2/c - 1 =
 2hl-

Again (40) implies Lk + 3 = 4a2, so that L2 = 1, k = 1, w = 4, x2 = 16. Con-
versely, F^/^if = 144/3 = 48 = 3(4)2. 

Lemma 7: F3m/Fm * 6x2. 

Proof: Assuming the contrary and reasoning as in the proof of Lemma 6, we have 
777*= kk and L2

k - 1 = 6x2. Since L^k is odd, (36) and (14) imply 

CO^fc + D/8)(L^ - l)/2) = 6w2. 

Since the factors on the left are coprime, we have 

(Lhk + l)/8 = 2az/2, % ( £ ^ - 1) = bz2, ab = 3. 

If a = 1, then L^k = (4z/)2 - 1, which contradicts Theorem 5 in [6]. If b = 1, 
then (14) implies z2 = 3 (mod 4), an impossibility. 
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Lemma 8: I f p\F5m/Fm, then p = 5 or p E 1 (mod 10) . 

Proof: I f p |F5 / 7 Z / i^ and p ^ 5 , then p\F5m/5Fm, so (23) i m p l i e s 
5F^ + 5(-l)mF% + 1 E 0 (mod p) . 

Since the discriminant is 5, we must have (5/p) = 1; therefore, (26) implies 
s(p)|(p - 1). Now (16) implies p\Fp-i. The_ hypothesis implies p\Frjm; hence, 
p\(F5m, Fp_i). (27) implies p | Fi5rrit p _ 1}. (29) implies p JF„ , so p|(Fw, Fp _ x) . 
(27) also implies pji^p-i); therefore, (5m, p - 1) * (/??, p - 1) , so 51 (p - 1) . 
Thus, p * 2, so p E 1 (mod 10). 

Lemma 9: L5m/Lm * x2. 

Proof: Assume the contrary. Then (25.) implies 

4 - 5(-l)m4 + 5 . x 2 . 
The discriminant is 25 - 4(5 - x2) = kx2 + 5. Since our equation has integer 
roots, we must have kx2 + 5 = t 2 , so x2 = 1, and L^ = (-1)777 or 4(-l)"7. But 
then l\m and Lm = 1 or 4, an impossibility. 

Lemma 10: If Fn = x2 - 2 and n £ 2 (mod 4), then (n, ;c2) = (3, 4) or (9, 36). 

Proof; 
Case 1. Let n = 4/7? + 1. The hypothesis and (30) imply 

F2m-lL2m+2 = °°2 • 
Let d = (F^m-ii ^2m+2^ ' (32) implies d\L^ , that is, <i|4. If d = 1 or 4, then 
F2m-i and ^2m + 2 a r e squares, which contradicts (6). If 6? = 2, then F2m~i = 2 # 2 

and L2m+2 = 2z2 • (2) implies 2/?? - 1 = 3, so n = 9 and a:2 = 36. 

Case 2. Let n - km - 1. The hypothesis and (31) imply 

^2^+1^2^-2 = ^2-

As in Case 1, we must have (i^ + i, ^2m-2) ~ 2> s o F2m + l = 2U2> ^2m-2 = 2s2. 
(2) implies 2??? + 1 = 3, so n = 3 and x2 = 4. 

Case 3. Let n = km. Then Fn E 0, 3, or 5 (mod 8). But x2 - 2 E 6, 7, or 
2 (mod 8). Therefore, Fn * x2 - 2. 

Lemma 11: F5m/5Fm = x2 iff w = x2 = 1. 

Proof: Let F5m/5Fm = x2. If m = 2fc, then (17), (18), and (20) imply 

(F5k/5Fk)(L5k/Lk) = x2. 
Let d = (F5k/5Fk, L5k/Lk). Then d|(F5fc, L5fc), so (19) implies <f/2. But Lemma 
8 implies 2\F'$ml5Fm, so d = 1. Therefore, both F^k/5Fk and L$k/Lk are squares, 
which contradicts Lemma 9. If 2\m, then (23) implies 

5 ^ - 5Fl + 1 = x2. 

The discriminant is 25 - 20(1 - x2) = 20x2 + 5. Since the preceding equation 
has integer roots, we must have 20x2 + 5 = t2, but then 5|t, so t2 = 25w2, and 
4^2 + 1 = 5w2. Therefore (kx)2 - 5(2w) 2 = -4. Now (33) implies that there 
exists odd n such that Fn = 2w, Ln = 4x. Also 

Fl = (5 ± 5w)/10 = (1 ± w)/2. 
Since F2 > 0, we have F2 = %(1 + u). Therefore, Fn = kF% - 2. Since n is odd, 
Lemma 10 implies Fm = 1 or 3. Now /?? is odd, so Fm * 3. Therefore, i^ = 1, so 
m = x2 = 1. Conversely, F5/5Fl = l2. 

Remark: Let Fffl = F*FOT, .where (î '% Fd) = 1 for all d < m. F* is called the 
primitive part of Fm. In particular, 
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Lemma 

Lemma 

Proof: 

F5p ~ F5p 

11 implies 
12: FoimlFrn 

I f F$m/Fm 

/F5F
P 

F*V * ' 
* px2 

= px1, 

= ^ 5 ? 

x2. 

. 
l e t 

>/5Fp 

d = 

( i f 

(F3m 

P * 

lFm> 

5) 

F3 
F3m/F3m^ ^^d\(F3m, F3m/F3m); t h u s , 

( 2 8 ) i m p l i e s d\3. I f d = 1 , t h e n F3m/Fm o r F3m/F3m i s a s q u a r e , w h i c h c o n t r a -
d i c t s Lemma 4 . I f d = 3 , t h e n F3k/Fk = 3 T / 2 , w h e r e k, = m o r 3̂ ??. Lemma 6 
i m p l i e s /c = 4 ="tfz. But F3&/F^ * px2. The c a s e Fosm/Fm = x 2 i s s i m i l a r . 

Lemma 13: F7m/Fm * 7x2. 

Proof: L e t m be t h e l e a s t i n t e g e r s u c h t h a t t h e r e e x i s t s x s u c h t h a t F7m/Fm = 
lx2. Now 7\F7m, s o ( 1 6 ) i m p l i e s z(7)\7m, so 81777. L e t 777 = 2k. ( 1 7 ) , ( 1 8 ) , and 
( 2 0 ) i m p l y 

(F7k/Fk)(L7k/Lk) = 7x2. 

Let d = (F7k/Fk, L7k/Lk). Therefore, d\(F7k, L7k) , so (19) implies d \ l . But 
(44) implies F7k/Fk is odd, so d = 1. Therefore, F7k/Fk = y2 or 7y2. But the 
first possibility contradicts Lemma 4, while the second possibility contradicts 
the minimality of m. 

Lemma 14: If p and y(p) are odd, then Ln * 2px2. 

Proof: If Ln = 2px2, then the hypothesis implies ^2(in) is odd, so (42) implies 
6/n. But the hypothesis and (43) imply n is odd, a contradiction. 

Lemma 15: If p E 5 or 7 (mod 8), then Ln * 2px2. 

Proof: Let Ln = 2px2. Then (36) implies n = 3m, so that Lm(L3m/Lm) = 2px2. 
Let d = (Lm, L3m/Lm). (41) implies <i|3. 

Case 1. d = 1. (22) implies 3\Lm, so (37) implies m i l (mod 4). We have 
Lm = az/2, L3m/Lm = 2?s2, with aZ? = 2p, so a\l or 2?|2. If a = 1, then b = 2p and 
(6) implies 7?? = 1 or 3. But £3/^1 = 4 * 2ps2; £9/^3 = 19 * 2ps2. If a = 2, 
then (7) implies m = 6, an impossibility. If & = 1, then a = 2p and Lemma 1 
implies 777= 1, so ̂  = 1 * 2pz2. Lemma 2 implies b * 2. 

Case 2. d = 3. Then Lw = 3ay2, L3m/Lm = 3b z2, with a|2 or &|2. If a = 1, 
then & = 2p, and (8) implies 777 = 2, but L§/L2 = 6 * 6ps2. (9) implies a * 2. 
(37) implies 777 E 2 (mod 4), so (22) implies L2 - 3 = 3bz2. Therefore, 3bz2 E -3 
(mod 9), so bz2 = -1 (mod 3); thus, b * 1. If £ = 2, then L2 E 3 (mod 6), which 
implies 777 = 12k ± 2. Since a = p, we have F12k±l= 3py2. (40) implies ̂ 6fc±1 + 2 

= 3py2. Therefore, (-2/p) = 1, which is impossible if p E 5 or 7 (mod 8). 

Lemma 16: Let Fn = /<px2, where 2\z{k). Then 2|n and F±n = day2, L^n = dbz2, 
where 

(2 if 3|w 
J = (*V , L^n) = < , afc = fcp, (a, 2?) = 1, and dyz = x. 

1 if 3\n 
Proof: The hypothesis, (16), and (17) imply 2\n, FVnLVn = kpx2 . The conclusion 
now follows from (19). 

Theorem 1: Fn * 6px2. 

Proof: Assume the contrary. Then (16) implies z(6)\n, so n = 12/7?. (38) and 
Lemma 16 imply F6m = hay2, L6m = 2bz2, ab = 3p. If a = 1, b = 3p; hence, (37) 
implies 77? is odd. But (1) implies m = 2, an impossibility. (3) implies a * 3. 
If b = 1, then a = 3p, so (45) implies 2|TT7, but (7) implies 77? = 1 , an impossi-
bility. (9) implies b * 3. 

Theorem 2: Fn = 3px2 iff (n, p, x2) = (8, 7, 1) or (12, 3, 16). 
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Proof: Assume Fn = 3px2. (16) implies z(3)|ft, so n = km. Lemma 16 implies F2m 
= day2, L2m = 2b z2, d = (F2m, L2m), a2? = 3p. If 3/fw, then (19) implies d = 1, 
so either F2w

 = #2 o r %2> o r L2m = ^2 o r 3^2- (1)> (3)» (6) > and (8) imply 2/?? 
= 2 or 4, so n = 4 or 8. Now î \ = 3 * 3px2. F8 = 21 = 3px2 implies p = 7, n = 
8, / = 1. If m = 3k, then (19) implies d = 2, so either F6/< = 2z/2 or 6z/2, or 
L2fe = 2z2 or 6s2. (2), (5), (7), and (9) imply 6k = 6, so n = 12. Now Flz = 
144, so p = 3, ft = 12, x2 = 16. Conversely, FQ = 21 and Fl2 = 144. 

Theorem 3: Let 2 < p < 104. Then Fn = 2px2 iff (ft, p, x2) = (9, 17, 1). 

Proof: If Fn = 2px2, then (16) implies z(2)\n, so n = 3m and Fm{F3m/Fm) = 2px2. 
Let d= (Fm, F3m/Fm). (28) implies d|3. If d = 1, then 4 = ay2, F3m/Fm = bz2, 
ab = 2p. If a = 1, then 2 F3m/Fm. Therefore, (1) and (35) imply m = 1 or 2, so 
ft = 3 or 6. But F3 = 2 * 2px2; F6 = 8 * 2px2. If a = 2, then b = p and (2) im-
plies 777 = 3 or 6, so n = 9 or 18. Now F18/F6 * px2. Fo)/F3 = 17, so, if ft = 9, 
then p = 17, x2 = 1. Lemma 4 implies b = I. If b = 2, then Fw = p7/2. Since 
^2 = 1 = Pjy2> Lemma 5 implies 7?? is odd. Therefore, (3), (4), and the 
hypothesis imply 777 = 5, 7, 11, 13, 17, or 25. But none of the corresponding 
values of F3m/2Fm is a square. If d = 3, then FOT = 3az/2, F3m/Fm = 3bz2, ab = 
2p. If a = 1, then Z? = 2p. (3) implies 777 = 4, but Fl2/FL{ = 48 = 6pz2, so p = 
2, contrary to the hypothesis. (5) implies a * 2. If 2? = 1, then a = 2p, 
which contradicts Theorem 1. If 2? = 2, then F3m/Fm = 6s2, which contradicts 
Lemma 7. Conversely, Fg = 34. 

Theorem 4: Fn = 5px2 iff (ft, p, x2) = (10, 11, 1). 

Proof: If Fn = 5px2, then (16) implies 2 (5) |ft, so ft = 5777, and Fm(F5m/Fm)= 5px2, 
so Fm(F5m/5Fm) = px2. Now (29) implies either (i) Fm = y2, F5m/5Fm = pz2, or 
(ii) FOT = py2, F5m/5Fm = z2. If (i) holds, then (1) implies 777 = 1, 2, or 12. 
We get a contradiction unless 777 = 2, ft = 10, p = 11, x2 = 1. If (ii) holds, 
then Lemma 11 implies 777 = 1, so ̂  = 1 = py2> a n impossibility. Conversely, 
FlQ = 55. 

Theorem 5: Fn = 7px2 iff (ft, p, x2) = (8, 3, 1). 

Proof: If Fn = 7px2, then (16) implies s(7)|ft, so ft = 8777. If 3̂777, then Lemma 
16 implies F^m = ay2, L^m = bz2, ab = Ip. If a = 1, then (1) implies 777 = 3, a 
contradiction. (3) implies a * 7. (6) implies 2? * 1. If 2? = 7, then (10) 
implies 4TT7 = 4, so ft = 8, p = 3, x2 = 1. If 777 = 3k, then Lemma 16 implies F12fe 
= lay2, Li2k = 2b z2, ab = 7p . (2) implies a * 1. Theorem 3 implies a * 7. 
(7) implies 2? * 1. Lemma 15 implies 2? * 7. Conversely, F8 = 21. 

Theorem 6: Fn * 15px2. 

Proof: Assume the contrary. Then (16) implies s(15)|ft, so ft = 20m. If 3\m, 
then (15) and Lemma 16 imply FiQm

 = 5az/2, ^10^7 = bz2, ab = 3p. Now (4) implies 
a * 1. Theorem 2 implies a * 3. (6) and (8) imply b * 1 and 3, respectively. 
If 777 = 3k, then (15) and Lemma 16 imply F3Qk = lOay2, L30k = 2bz2, ab = 3p 
Theorems 3 and 1 imply a * 1 and 3, respectively. (7) and (9) imply b * 1 and 
3, respectively. 

Theorem 7: Fn = 10px2 iff (ft, p, x2) = (15, 61, 1). 

Proof: If Fn = 10px2, then (16) implies s(10)|ft, so ft = 15TT7, and F5m(Fl5m/F5rn) 
= px2. Let d = (F5m, Fl5m/F5m). (28) implies d\3. (24) implies F5m = day2, 
Fi5m/F5m = dbz2, ab = 2p. Suppose d = I. If a = 1, then b = 2p and (4) implies 
5TT? = 5, so F15/F5 = 122 = 2ps2. Therefore, p = 61, ft = 15, X2 = 1. Theorem 3 
implies a * 2. Lemma 4 implies b * 1. If 2? = 2, then a = p, so Theorem 4 
implies 5777 = 10. But F3Q/FiQ * 2^2. Now suppose that d = 3. Then F5 = 15ay2, 
^15 /̂ 5 = 32?32, a2? = 2p. Theorems 2 and 1 imply, respectively, a * 1 and 2. 
Lemmas 6 and 7 imply, respectively, b * 1 and 2. Conversely, F15 = 610. 
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Theorem 8: Fn = llpx2 iff (n, p, x2) = (10, 5, 1). 

Proof: If Fn = llpx2, then (16) implies z(ll)\n, so n = 10m. If 3)(m, then Lemma 
16 implies F5m = ay2, Lbm = bz2, where ab = Up, so a or b = 1 or 11. (1) and 
(3) imply, respectively, a * 1 and 11. (6) implies b * 1. If £ = 11, then a- p. 
Now (11) implies 5m = 5, so p = 5, n = 10, and a:2 = 1. If m = 3k , then Lemma 
16 implies ^15^ = lay2, ^15^ = 2bz2, with a and 2? as above. (2) implies a * 1. 
Theorem 3 implies a 2 11. (6) implies b * 1. If 2? = 11, then L15k = 22s2. 
But since y (11) = 5, this contradicts Lemma 14. Conversely, FIQ = 55. 

Theorem 9: Let p < 10^. Then Fn = I3px2 iff (n, p, x2) = (14, 29, 1). 

Proof: If F„ = 13pjJ2, then (16) implies z(l3)\n, so n = 1m, and Fm(F7m/Fm) = 
I3px2. Let d = (Fm, F7m/Fm). (28) implies d|7. If J = 1, then Fw = ay2, 
F7m/Fm = bz2, ab = 13 p, so a or b = I or 13. If a = 1, then (1) implies m = 
1, 2, or 12. We get a contradiction unless m = 2, in which case n = 14, p = 
29, x 2 = 1. If a = 13, then b = p and (4) implies 777 = 7. But Fbt3lF7 * ps2. 
Lemma 4 implies 2? * 1. If 2? = 13, then a = p. Now, the hypothesis and (4) 
imply 777 = 4, 5, 7, 11, 13, 17, or 25. In each case, F7m/Fm * pz2. If J = 7, 
then (16) implies s(7)|#z, so m = 8k, and we have F8fe = ~l&y2, F^Sk ^Sk = 72?22, 
aZ? = 13p. (3) implies a * I. Theorem 5 implies a * 13. Lemma 13 implies 2? * 
1. If b = 13, then a = p , so Theorem 5 implies 8k = 8. But then F56/91FQ = 
z2, an impossibility. Conversely, Flif = 377. 

Theorem 10: Fn = Ikpx2 iff (n, p, x2) = (24, 23, 144). 

Proof: If Fn = Ikpx2, then (16) implies s(14)|n, so n = 2km. (38) and Lemma 16 
imply Fi2m = Aay2, £]_2m = 2bz2, ab = Ip. If a = 1, then (1) implies 12/?? = 12, 
from which it follows that n = 24, p = 23, x2 = 144. (3) implies a * 7. (7) 
implies 2? * 1. Lemma 15 implies b * 1. Conversely, F24 = 46368. 

Theorem 11: Fn = llpx2 iff (n, p, x2) = (9, 2, 1). 

Proof: If F„ = 17px2, then (16) implies z (17) \n, so n = 9m and Fm(Fojm/Fm) = 
llpx2. Let d = (Fm, F3m/Fm). (28) implies d\9. Now Fm = day2, F3m/Fm = dbz2, 
ab = lip. If d = 1 or 9, then Lemma 12 implies b * 1, 17, p. Therefore, 2? = 
17p and a = 1, so (1) implies m = 1, 2, or 12. We have a contradiction unless 
m = 1, in which case F3/llFi = 2 = p22, so p = 2, n = 9, x2 = 1. If d = 3, then 
o3(F3m/F ) is odd, but (34) implies £3(F9m/Fm) = 2. Conversely, F9 = 34. 

Theorem 12: Fn * I9px2. 

Proof: Assume the contrary. Then (16) implies z(l9)\n, so n = 18/77. Lemma 16 
implies Fgm = 2ay2, Lgm = 2bz2, ab = 19p. (2) implies a -* 1. Theorem 3 implies 
a * 19. (7) implies b * 1. Since y(19) = 9, Lemma 14 implies b * 19. 

Theorem 13: Fn = 2lpx2 iff (n, p, x2) = (16, 47, 1). 

Proof: If Fn = 2lpx2, then (16) implies z (21) | ?2, so 71 — 8/?7. (37) implies 3\Ltitm. 
If 3|m, then Lemma 16 implies F^m = 3ay2, Li^ = bz2, with aZ? = 7p. If a = 1, 
then (3) implies 4/77 = 4, so LLf = 7 = Ipz2, an impossibility. If a = 7, then 
Theorem 2 implies 4/77 = 8 and L8 = 47 = pz2, so p = 47, n = 16, and x2 = 1. (6) 
implies 2? * 1. If 2? = 7, then (10) implies Am = 4, so i^ = 3 = 3ps2, an impos-
sibility. If m = 3k, then Lemma 16 implies F^k = bay2, î2A: = 2^^2 » a^ = 7p. 
(5) implies a ^ 1. Theorem 1 implies a * 1, a * p. (1) implies b * 1. Con-
versely, FlG = 987. 

Theorem 14: Fn * 22px2. 

Proof: Assume the contrary. Then (16) implies z(22)\n, so n = 30/77. Lemma 16 
implies Flbm= 2ay2, Ll5m = 2bz2, ab = 22p, so a|22 or b\22. Now (2) and (I) 
imply a * 1 and 2, respectively. Theorem 3 implies a * 11. (3) implies 
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a * 22. (7) and (6) imply b * 1 and 2, respectively. Lemma 14 implies b * 11. 
(11) implies b * 22. 

Theorem 15: Fn * 23px2. 

Proof: Assume the contrary. Then (16) implies s(23)|ft, son = 2km . Lemma 16 
implies F12m = 2az/2, L12/77 = 2bz2, az? = 23p. (2) implies a * 1. Theorem 3 im-
plies a * 23. (7) implies 2? * 1. Lemma 15 implies b * 23. 

Theorem 16: Let p < 10^. Then Fn = 26px2 iff (ft, p, x2) = (21, 421, 1). 

Proof: If Fn = 26px2, then (16) implies 2(26) ft, so n = 21m and F7m(F2im/F7m) = 
26px2. Let d = (F777Z, F2lm/F7m). (28) implies d|3. (34) implies' I3p2lm lF7m • 
Therefore, if <f = 1, we have F7m = 13a2/2, F2im/F7m = bz2, ab = 2p. If a = 1, 
then (4) implies 7??? = 7, so F2l/2F7 = 421 = ps2. Therefore, p = 421, n = 21, 
and x2 = 1. Theorem 3 implies a * 2. Lemma 4 implies 2? * 1. If b = 2, then 
F7 = I3py2. The hypothesis and Theorem 9 imply 7/77 = 14. But FLi2/FlLi * 2s2. 
If d = 3, then (16) implies s(3)|7/??, that is, k\lm9 so 7/77 = 28A:. We now have 
2̂8fe = 39ay2, FQi+k/F2Qk = 3bz2, with aZ? = 2p. Theorems 2 and 1 imply a * 1 and 
2, respectively. Lemmas 6 and 7 imply 2? * 1 and 2, respectively. Conversely, 
F2l = 10346. 

Theorem 17: Fn = 29px2 iff (ft, p, x2) = (14, 13, 1). 

Proof: If Fn = 29px2, then (16) implies 3 (29) |ft, so ft = 14/77. If 3\m, then Lem-
ma 16 implies F7m = ay2, L7m = bz2, ab = 29p. (1) implies a * 1. (4) implies 
a * 29. (6) implies b * 1. If 2? = 29, then F7w = pz/2. (13) implies 7m = 7, 
so F7 = 13 = pz/2. Therefore, p = 13, ft = 14, x2 = 1. If m = 3fc, then Lemma 16 
implies F2ik = 2ay2, -Ẑlfc = 2^z2, &2? = 29p. (2) implies a * 1. Theorem 3 
implies a * 29. (7) implies b * 1. Since y (29) = 7, Lemma 14 implies 2? * 29. 
Conversely, Fllf = 377. 

Theorem 18: Fn * 30px2. 

Proof: Assume the contrary. Then (16) implies s (30) | ft, so ft = 60m. Lemma 16 
implies F30m = 2ty2, L30w = 2bz2

s tb = 30p. But (15) and (42) imply (b, 10) = 
1, so F30rn = 20ay2, L3Qm = 2bz2, ab = 3p. If a = 1, then F30/77 = 5(2i/)2, which 
contradicts (4). Theorem 2 implies a * 3. (7) implies b * I. (9) implies b * 
3. 

Theorem 19: Fn * 31px2. 

Proof: Assume the contrary. Then (16) implies s(31)|ft, so ft = 30m. Lemma 16 
implies Fl5m = 2ay2, ^isOT = 22?22, ab = 31p. (2) implies a * 1. Theorem 3 im-
plies a * 31. (7) implies 2? * 1. Lemma 15 implies b * 31. 

Theorem 20: Fn * 33px2. 
Proof: Assume the contrary. Then (16) implies 3 (33) |ft, so ft = 20/77. (43) implies 
ll|L10w. If 3/̂/77, then Lemma 16 implies F10m = Hay2, I/IO/T? = £32, ab = 3p. (3) 
implies a * 1. Theorem 2 implies a * 3. (6) and (8) imply b * 1 and 3, respec-
tively. If w = 3fc, then Lemma 16 implies F30^ = 22ay2, L30k = 2bz2, ab = 3p. 
Theorems 3 and 1 imply a * 1 and 3, respectively. (7) and (9) imply b * 1 and 3, 
respectively. 

Theorem 21: If p < 10\ then F^ = 34px2 iff (ft, p, x2) = (18, 19, 4). 

Proof: If Fn = 34px2, then (16) implies s(34)|n, so n = 9m and F3 (F3m/F3m) = 
34px2. Let d = (F3w, F9m/F3m). (28) implies rf|3. (35) implies 2\F3rnlF3rn. If 
c? = 1, then F3m = 2az/2, F3m/F3m = 2?22, a/3 = 17p. If a = 1, then b = I7p and 
(2) implies 3/?? = 3 or 6. If 3/7? = 3, then F3/17F3 = 1 * ps2. If 3/TZ = 6, then 
F1Q/17F6 = 19 = ps2, so p = 19; hence, ft = 18 and x2 = 4. If a = 17, then 
b = p, and Theorem 3 implies 3/?? = 9. But F27/F$ * pz2. Lemma 4 implies 2? * 1. 
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If b = 17, then F3m = 2py2. But the hypothesis and Theorem 3 imply p = 17, so 
17 | d, an impossibility. If d = 3, then (45) imlies 777 = kk, so F^fe = 6az/2, 
^36k^l2k = 3b z2, ab = 17p. (5) implies a * 1. Theorem 1 implies a * 17, p. 
Lemma 6 implies 2? * 1. Conversely, FIQ = 2584. 

Theorem 22: Fn * 35px2 . 

Proof: Assume the contrary. Then (16) implies z(35)\n, so n = 407??. If 3\m, 
then (15) and lemma 16 imply T?i§m

 = 5a?/2, £20/77 = ^^2> #& = 7p. (4) implies a * 
1. Theorem 4 implies a * 7, a * p, so b * 7. (6) implies 2? * 1. If 777 = 3k, 
then (15) and Lemma 16 imply F§Qk

 = lOay2, L§Qk = 2bz2, ab = 7p. Theorem 3 
implies a * 1. Theorem 7 implies a * 7, a * p, so & * 7. (7) implies 2? * 1. 

We omit the proofs of the two following theorems (23 and 24) because they 
are similar to proofs of prior theorems. 

Theorem 23: Fn = 38px2 iff (n, p, x2) = (18, 17, 4). 

Theorem 24: Fn •* 39px2. 

Theorem 25: Fn * klpx2. 

Proof: Assume the contrary. Then (16) implies s(42)|n, so n = 2km. (37) im-
plies 3/fL̂2/7?5 (38) implies 4/fL̂ om* Therefore, Lemma 16 implies F^im ~ 12az/2, 
Li2m = 2bz2, ab = 7p. (3) implies a * 1. Theorem 2 implies a 2 7. (7) implies 
2? * 1. Lemma 15 implies b * 7. 

Theorem 26: Fn * 5lpx2. 

Proof: Assume the contrary. Then (16) implies 2(51) n, so n = 36m. (15), (37), 
and Lemma 16 imply FiQm =102ay 2 , LiQm = 2bz2, ab = p. Theorem 1 implies a * 1. 
(7) implies 2? * 1. 

Theorem 27: Fn * 55px2. 

Proof: Assume the contrary. Then (16) implies s(55)|n, so n = 10/77 . If 3̂ 777, 
then (15) and Lemma 16 imply F $m = bay2, L^m = bz2, ab = lip. If a = I, then 
Theorem 4 implies 5T?7 = 5, so L5/II = 1 = pz2, an impossibility. If a = 11, 
then Theorem 4 implies 5m = 10, so L]_Q = 123 = pz2, an impossibility. (6) 
implies 2? * 1. If b = 11, then (11) implies 5T?7 = 5, so F5m/5 = 1 = py2, an im-
possibility. If 777 = 3/<, then (15) and Lemma 16 imply Fi$k = lOay2, ^15^ =2bz2, 
ab = lip. Theorem 3 implies a * 1. Theorem 7 implies a * 11. (7) implies 2? * 
1. Lemma 14 implies b * 11. 

Theorem 28: Fn = 65px2 iff (n, p, a;2) = (35, 141961, 1). 

Proof: F3b = 65* 141961* l2. If Fn = 65px2, then (16) implies z(65)\n, so n = 
35T?7, and F7m(F35m/F7m) = 65px2. Let d = t ^ , F35m/F7m) . Now Lemma 8 implies 
13^35/77/^7 • If 5̂ 777, then (39) implies J = 1, so Flm = I3ay2, F35m/F7m = 5bz2, 
ab = p. If a = 1, then (4) implies 7TT7 = 7, so F35/5F7 = 141961 = ps2. There-
fore p = 141961, n = 35, x2 = 1. Lemma 11 implies b * 1. If 777 = 5k, then (39) 
implies d= 5. (34) implies 52\Fl75k/F35k. Thus, F35k = 325ay2, Fl75k/F35k = 
5bz2, ab = p. But (4) implies a * 1. Lemma 11 implies 2? * 1. 

Theorem 29: Fn * 66px2. 
Proof: Assume the contrary. Then (16) implies z(66)\n, so n = 6O777. Now (43), 
(38), and Lemma 16 imply F 3§m = 44az/2, L3§m = 2b z2, ab = 3p. (3) implies a * 
1. Theorem 2 implies a * 3. (7) and (9) imply b * 1 and 3, respectively. 

Theorem 30: Fn * 70px2. 
Proof: Assume the contrary. Then (16) implies z(70)\n , so n = 120/77. (15), 
(38), and Lemma 16 imply F§Qm = 20ay2, L^0m = 2bz2, ab = 7p. (4) implies a 2 1. 
Theorem 22 implies a * 7. (7) implies b * 1. Lemma 15 implies b * 7. 
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We summarize the results of Theorems 1 through 30 in Table 1. For each 
listed value of k9 we list all solutions of (*) with c = kp, if any. The cases 
k = 2, 23, 26, 34 are subject to the restriction that p < 10,000. 

TABLE 1 

k 

2 
3 
3 
5 
6 
7 

(n, p, x2) 

(9, 17, 1) 
(8, 7, 1) 
(12, 3, 16) 
(10, 11, 1) 

*********** 
(8, 3, 1) 

k 

10 
11 
13 
14 
15 
17 
19 

(n, p, x2) 

(15, 61, 1) 
(10, 5, 1) 
(14, 29, 1) 
(24, 23, 144) 

************* 
(9, 2, 1) 
************* 

k 

21 
22 
23 
26 
29 
30 

(n, p, x2-) 

(16, 47, 1) 

************ 
************ 
(21, 421, 1) 
(14, 13, 1) 

************ 

k 

31 
33 
34 
35 
38 
39 

(n, p, x2) 

*********** 
*********** 
(18, 19, 4) 

*********** 
(18, 17, 4) 

*********** 

k 

42 
51 
55 
65 
66 
70 

(n, p, x2) 

************** 
************** 
************** 
(35, 141961, 1) 

*************** 
*************** 

Combining these new results with those of [1] and [9], we obtain Table 2, 
which lists all solutions of (*) such that 1 < C < 1000. 

o 

1 
1 
1 
2 
2 

{n, x2) 

(1, 1) 
(2, 1) 
(12, 144) 
(3, 1) 
(6, 4) 

a 

3 
5 
8 
13 
21 

T 
(n, x2 

(4, 1) 
(5, 1) 
(6, 1) 
(7, 1) 
(8, 1) 

ABLE 
) c 

34 
55 
89 
144 
233 

2 
(n, x2) 

(9, 1) 
(10, 1) 
(11, 1) 
(12, 1) 
(13, 1) 

c 

322 
377 
610 
646 
987 

(ft, X2) 

(24, 144) 
(14, 1) 
(15, 1) 
(18, 4) 
(16, 1) 

Concluding Remarks 

Notice that in every solution we have x2 = 1, 4, or 144. This leads us to 
conjecture that in any solution of (*) one must have x2 = 1, 4, or 144. 
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1. Introduction 

In this paper we introduce the Vinogradov [8] inversion theorem for func-
tions defined on a finite partially ordered set. Our inversion theorem reduces 
to that by Vinogradov in the case of positive integers. For material relating 
to Vinogradovfs inversion theorem, we refer to [2], [3], and [4]. 

As an example of our generalized Vinogradov inversion theorem we consider 
an inversion theorem relating to arithmetical functions and regular convolu-
tions. As applications, we give expressions for certain restricted sums of 
Fibonacci and Lucas numbers. Special cases of the applications can be found in 
[4]. 

2. A Generalized Vinogradov Inversion Theorem 

Let (P , C) be a locally finite partially ordered set. A complex-valued 
function f on P x P is said to be an incidence function of (P, c) if f(x, y) = 
0 unless x C y. We denote by J(C, P) the set of all incidence functions of (P, 
C) . The convolution of /, g E J(c, P) is defined by 

(fog)(x, y) = J2 f(x, z)g(z, y). 
x cz cy 

The inverse of / E P(C, P) is defined by 
f° rl = rlof = 6, 

where &(x, x) = 1 and 6(x9 y) = 0 if x * y. The inverse of £, defined by £ (x, 
y) = 1 whenever x c y, is denoted by u and is called the Mobius function of 
(P, c). 

Now we are able to give our generalized Vinogradov inversion theorem. The 
original Vinogradov inversion theorem is reproduced in the remark of Theorem 2 
in Section 3. 

Theorem 1: Suppose (P, c) and (P, <) are locally finite partially ordered 
sets. Let fx be a complex-valued function of x E P and let dx be a function of 
x e P into P. Then, for all a, b e P, 

E fx = £ ^a* *) £ /*» 
a <x <b a cz a <x <b 

dx = a z c dx 

where u is the Mobius function of (P, c). 
Proof: We have 

X) fx = J2 fx&(a> dx) = Yl fx E P(^ ' ^) = 'Epfa> 2) E j ^ , 
a<x<2? a <x <b a <x <b a cz cdx a cz a < x <b 

dx=a serf, 
which was required. 
Remark: We note that Theorem 1 implies the classical inversion theorem for 
incidence functions of (P, c) stating that if, for all a, b E P, 
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g(a, b) = X) f(z, b), 
ac z cb 

then 

f(a, b) = X! v(a> z)g(z, b); 
aczcb 

that is 

(1) f(a, b) = £ u(a, a) X f(y, b) . 
aczcb zcy cb 

In fact, let a, 2? e P with a c b. We assume x c y -> x < y for all x, y e P and 
denote 

{x e P: a c x c b] = {xx(=a), x2s ..., xm(=b)}9 

{x e P: a < x < b} = {yi(=a), y2> ..., yn(=b)}, m< n. 
Then we take 

ui/j = <2j dy2
 = %2' * ' ' ' £/m = ' dym + i = . . . = ^ ^ = Q5 

where c <£ b, and /x = f(dx> b) . (If there does not exist an element c E P such 
that c <£ b, then we consider the set P u {<?}.) In this case, 

a <x <b a <x <b 
and dx =a dx =a 

£u(a, s) L f = L u(a, 2) X /Wx> W = Z u(a, s) £ jfQ/» &) • 
a c z a<x<b^ acz a<x<b acz zcycb 

zcdx z cdx 

Thus, by Theorem 1, we a r r i v e a t ( 1 ) . 
3. Regular Arithmetical Convolutions 

Let A be a mapping from the set IN of positive integers to the set of sub-
sets of IN such that, for each n E M, A (n) is a subset of the set of positive 
divisors of n. Then the ̂ -convolution of two arithmetical functions f and g is 
defined by 

(f °A g)W = Z f(d)g(n/d). 
deA(n) 

Narkiewicz [6] defined an ̂ -convolution to be regular if: 

(a) the set of arithmetical functions forms a commutative ring with unity 
with respect to the ordinary addition and the ̂ -convolution; 

(b) the ̂ -convolution of multiplicative functions is multiplicative; 
(c) the function E9 defined by E(n) = 1 for all n G IN, has an inverse \iA 

with respect to the ,4-convolution, and \iA(n) = 0 or -1 whenever n is a 
prime power. 

The inverse of an arithmetical function f such that f(l) * 0 with respect to the 
^.-convolution is defined by 

/ -A r 1 = r 1 °A f = Eo> 
where EQ(l) = 1 and E0(n) = 0 for n > 1. 

It can be proved (see [6]) that an ̂ -convolution is regular if and only if 

(i) A(mn) = {de:d e A(m), e e A(n)} whenever (m, ri) = 1, 
(ii) for each prime power pa > 1 there exists a divisor t = tA(pa) of a 

such that 

A(pa) = {1, pK p2t, ..., pvt], 
where vt = a, and 

Aipi*) = {1, pt
9 p2t , ..., pu}, 0 < i < v. 
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(-1 if 

^ ( p a ) = t o if 

For example, the Dirichlet convolution D, where D (n) is the set of all posi-
tive divisors of n, and the unitary convolution U, where 

U(n) = {d > 0:d\n, {d, n/d) = 1}, 

are regular (see [1]). In this paper we confine ourselves to regular convolu-
tions . 

A positive integer n is said to be ^.-primitive if A(n) = {1, n]. The gen-
eralized Mobius function \±A is the multiplicative function given by (see [6]) 

-1 if pa (>1) is ̂ -primitive, 

Lf pa is non-^-primitive. 

For a positive integer k, we define 

Ak(n) = {d > 0:dk e A(nk)}. 

It is known [7] that the ^-convolution i-s regular whenever the /1-convolution 
is regular. The symbol (a9b)A k denotes the greatest kth power divisor of a 
which belongs to A(b) . In particular, denote (a,b)A 1 = (a,b)A. Then 

(a, b)D = (a, b), 
the greatest common divisor of a and b. 

Let A be a. regular arithmetical convolution. Then we define the relation c 
on the set M of positive integers by 

m c n <̂> m E A[n) 
and denote by JNA the resulting locally finite partially ordered set. 

Let f be an arithmetical function, that is, a complex-valued function on3N. 
Then we can associate with f an incidence function fr of IN̂  defined by 

(f(n/m) if m e A(n), 
f'(m, n) = \ 

\ i 

The mapping f -> fr is one-one and 

(2) (/'o g')(m, n) = (foA g)<(m, n) 

(see [5], Ch. 7). Plainly 

(£70)f(w, ri) = 6(/??, n), E'(m, n) = £,(m, n) . 

Therefore, by (2), 

(\iA) r(m, n) = \i(m, n) . 
Now we are in a position to state Theorem 1 for regular convolutions. Let-

ting < be the natural ordering on IN, we can write 

Theorem 2: Let f^ be a complex-valued function of i e IN and let d^ be a func-
tion of t E I into M. Then, for all n e IN, 

i = 1 cZ > 1 £ = 1 
di = 1 deA(di) 

Remark: If A = D in Theorem 2, we obtain the original Vinogradov inversion 
theorem. 

Corollary: Let fi be a complex-valued func t ion of i € IN. Then 

A /i = S MA(d) £ /v. 

Proof: Replace A by ^ and take ^ = ((i, ̂ fc)̂ l, fc )1/k in Theorem 2. Since de 
Ak(((^y nk)Afk)1/k) if and only if d e ^fe(n), £Zfc|i, we obtain the Corollary. 
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4. Appl ica t ions to Fibonacci and Lucas Number s 

Let Fi be the i t h F ibonacc i number, t h a t i s , F\ = 1, F2 = I, Fn = Fn_i + Fn_2 
(ft > 3 ) , and l e t L^ be the £th Lucas number, t h a t i s , L]_ = 1, L2 = 3 , Ln = Ln_i + 
£„-2 (n > 3 ) . 
Theorem 3: Let ,4 be a r e g u l a r convo lu t ion and k E IN. Then, for each n E M , 

\d-, + dK - {-DdkFmdk - Fdk 
(3) Z ^ = Z vA,id)- ,k 

j-l d e ^ W ^ L,k - (-1)** - 1 
(4) Z Lv = £ i^.W): 

where w = [n/dk], the greatest integer in n/d^. 
Proof: Plainly, 

£ pi = £ . ^ • 
t- = 1 1 < i <n/dK 

Then, using the formulas 

1 

where 

Fn = j=(on - 3n), Ln = an + 3n, 

a = -|(1 + /5), 6 = |(1 - /5), 

we obtain, after some computations, 

F ->< y< ~ (~l)dk F jk ~ F-i, L maK + dK v J L mdK L dK 

Z F, = 
dK\z a 

Thus, applying the Corollary of Theorem 2, we get (3). The proof of (4) goes 
through in a manner similar to that of (3). 

Corollary: Let A be a regular convolution. Then, for each n E IN, 

Z f; = Z y4(d) 
,d, Fn + d ~ (-VaFn - Fd 

«;i , d€.4(«) " L*- (-Dd - 1 
(t, n )# = 1 

A Li = Z M d > 7 - T T ^ — ; • 

Theorem 4: Let A be a r e g u l a r convo lu t ion and k E IN. Then, for each n E IN, 

A _ Fmdv + „ ~ i-DdkFmdk ~ F k 
(5) , Z F. - Fn + 2 - £ P , ^ ) ^ - ( _ n ^ x " I-

n 

(6) Ex
 Li 

= W - L ^ ,W) - — 1 ; 3, 
deAk(n) - L

d< ~ ( -1 )^ " 1 

where /?? = [n/d ] . 
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Proof: We have 
n n n 

X, Fi = £ h - . £ Fi • 
>-l ^ = 1 ^ = 1 

(̂ .ŵ .k >l d'^A.k = 1 

Therefore, applying (3) and the identity 
n 

12 Fi = Fn + 2 " 1» 
i= 1 

we obtain (5). Similarly, applying (4) and the identity 
n 

L Li = Ln+2 ~ 3' 
i = 1 

we get (6). 
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TWO CLASSES OF NUMBERS APPEARING IN THE CONVOLUTION OF 
BINOMIAL-TRUNCATED POISSON AND POISSON-TRUNCATED 

BINOMIAL RANDOM VARIABLES 

M. K o u t r a s 
Statistical Unit, University of Athens, Athens, Greece 

(Submitted October 1988) 

1. Introduction 

The Stirling numbers of the second kind, known to mathematicians as the 
coefficients in the factorial expansion of powers, are of great importance in 
the calculus of finite differences, and have been extensively studied, espe-
cially with respect to their mathematical properties (see Jordan [14], Riordan 
[17] and references therein). Recently, several extensions and modifications 
were considered, which have proved useful in various combinatorial, probabil-
istic and statistical applications. Of the most interesting variations are the 
Lah numbers, Lah [16], and their generalization ^-numbers, Charalambides [8], 
[9], appearing in the expansion of a factorial of t, scaled by a parameter s, 
in a sum of factorials of t . 

The present paper was motivated by the problem of providing explicit ex-
pressions for the distribution of two-sample sums from Poisson and binomial 
distributions, one of which is left-truncated. Specifically, the distribution 
of the statistic Z = X\ + ••• + Xv + %v+i + ••• + Xv+n, where 

(a) Xi, ..., Xv is a random sample from a Poisson and Xv + \9 ..., Xv+n an 
independent random sample from a left-truncated binomial distribution and 

(b) Xi, ..., Xv is a random sample from a binomial and Xv + i> ..., Xv + n an 
independent random sample from a left-truncated Poisson distribution, 

led to the introduction of two double sequences of Stirling and (7-related num-
bers, obtained from the expansion of certain classes of polynomials in a series 
of factorials. 

In Section 2, we discuss some general results relating the expansion of 
polynomials in factorials and the corresponding exponential generating func-
tions (egf's). In Section 3, we consider two specific families of polynomials 
(r-q polynomials) and introduce two double sequences of numbers (R-Q numbers). 
Notice that in Tauber's [19] terminology these numbers might be called general-
ized Lah numbers. Next, the egf's of the R-Q numbers are used to derive recur-
rence relations and initial conditions and the connection to well-known numbers 
is examined in Section 4. In Section 5, it is shown how R-Q numbers can be 
used for the introduction of two new families of truncated discrete probability 
functions including binomial and hypergeometric distributions as special cases; 
also for the solution of the above-mentioned problems (a) and (b). An applica-
tion to occupancy problems is also provided. Finally, in Section 6, a further 
generalization of the R-Q numbers, through egf's, is also discussed, along with 
its properties and applications. 

2. Preliminary General Results 

Let {pm(x), m = 0, 1, ...} be a class of polynomials, and consider the 
double sequence {P(m, n) , m = 0, 1, ..., n = 0, 1, . . . , m} obtained by 
expanding the polynomial pm(%) in a series of factorials, namely 
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(2.1) p (x) = Z P(m> n)(x)n. 
m n = 0 

Denote the egf of the numbers P(m, n) with respect to the index m by fn(t), and 
the egf of the polynomials pm (x) by p(x; t), that is 

(2.2) fn(t) = £ P(m, n)^, p(x; t) = ± p (x)^. 

On using (2.1), we may easily verify that 

P(oo, t) = X fn(t)(x)n, 
n= 0 

and the next theorem is an immediate consequence of Newton's formula (see Jor-
dan [14]). 

Theorem 2.1: Let p (x ; t) denote the egf of a class of polynomials {pm (x) , 
m = 0, 1, ...} and fn(t) the egf of the corresponding numbers P (m, n) as 
defined in (2.1). Then 

(2.3) fn(t) = ^-[A"p(^ t)]x=Q. 

We now state some general results referring to recurrence relations satis-
fied by the polynomials pm(x) and the numbers P(m, n) , when a certain partial 
differential equation holds true for the egf p{x, t) . 

Theorem 2.2: If the egf p(x, t) of the polynomials p (x) satisfies the par-
tial differential equation 

o dv(x, t) 
(2.4) (1 + Bt + Ct2) F

 dt = (D + Et)p(x, t), 

where B, C, D, and E may be functions of x, then there is a recurrence relation 
connecting three polynomials p (x) with consecutive indices (degrees), namely, 

(2.5) pm+l(x) = (D - Bm)pm{x) + ((E + C)m - Cm2)pm _x{x). 

Proof: Differentiate p(x9 t) of (2.2) term by term, substitute in (2.4) and 
equate the coefficients of trn/ml in the right and left sides of the resulting 
identity. 

Note that (2.5) is true for m > 1, while, for m = 0, it reduces to 

(2.6) pl(x) = DpQ(x), 

which suggests that D = D(x) must be at least of order 1 with respect to x. 

Theorem 2.3: If p(x, t) satisfies the partial differential equation 

dv (x ~b) 
(2.7) (1 + bt)—— = (c0 + cYx + c2t + c123ct)p(x, t) 

dt 
with b, Cg, C\i Ci> and c\2 being constants, then the polynomials pm (x) and the 
numbers P(m, n) satisfy the recurrences 
(2.8a) pm+l(x) = (cQ + cYx - bm)pm(x) + (c2 + cl2x)mpm_l{x), m > 0, 
(2.8b) px(x) = (o0 + cix)pQ(x), 

(2.9a) P(m + 1, n) = (cQ - bm + Cin)P{m, n) + c1P(m, n - 1) 
+ m(c2 + nc\2)P{m - 1, n) + c\2mP(m - 1, n - 1), 

1 < n < m - 1, 
(2.9b) P{m + 1, m + 1) = ciP(m, m), 

(2.9c) P(T77 + 1, 777) = (o0 + (c]_ - b)m)P(m, m) + c1P(/?7, w - 1) 
+ c12mP(m - 1, m - 1). 
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Proof: For ( 2 . 8 ) , apply Theorem 2.2 i n the s p e c i a l case 

B(x) = b, c(x) = 0, D(x) = cQ + Cy£, E(x) = c2 + cl2x. 

For (2.9) observe that, after expanding pm+l(x) s pm(x), and pm_l(x) by (2.1), 
one obtains 

m + 1 m m 

Y.P(.™ + 1> w)(a;)n = (o0 - bm) Y,p(™> n)(x)n + c x £ nPfa , n)(x)n 
ft = 0 ft = 0 rc = 0 

/??+ 1 m- 1 
+ c l X! p ( ^ ' n - 1) (a?)w + 77z(c2 + rc<212) Hp(m ~ 1> w) (#)« 

n = 1 ft = 0 

+ mG\?_ Ylp(m - l, n - l)(x)n, 
~n= 1 

which establishes the proof. 

It is worth noticing that many classes of well-known numbers with special 
interest in statistical and combinatorial applications, have an egf p(x, t) 
obeying the partial differential equation (2.7). For example, 

a. If pm(x) = xm, we obtain the Stirling numbers of the second kind (see 
Jordan [14]) and 

p(x, t) = 2^xm—r = euX, — = xp(x, t) . 
m = 0 m' ot 

3. If pm(x) = (x - a)m , we are led to the noncentral Stirling numbers of 
the second kind, Koutras [15], or weighted Stirling numbers, Carlitz [4], [5], 
or r-Stirling numbers, Broder [1], with 

p(x, t) = X (* - a ) s = et(x~a\ -^-^—- = (x - a)p(x, t). 

y. If pm(x) = {-x)m, or more generally, pm(x) = (sx)m , we obtain the Lah 
or (7-numbers, respectively, Lah [16], Charalambides [8], [9], with 

P(X, t) = Y,^^mh = (1 + t)SX, (1 + t) ^ \ l = SXp(x, t). 
m=0 m" d t 

6. If pm(x) = (sx + r)m9 the resulting numbers are the Gould and Hopper 
numbers studied by Charalambides & Koutras [10]. In this case, we have 

p(x, t) = X (sx + r)ml- = (1 + t)sx + r
5 (1 + t) P \ ; = (sx + p)p(x, t). 

m=0 m' d t 

Notice how simple it is to compute the egf for any of the above-mentioned 
special cases. The egf fn(t) and the recurrences for the corresponding numbers 
are then easily obtained as a direct application of Theorems 2.1 and 2.3. 

3. The r-q Polynomials and Numbers—Generating Functions 
and Recurrence Relations 

Let us define two classes of polynomials by the formulas 

dm 

(3 .1 ) rm(x) = rm(x; s, a) = e~a — [tsxeat}t=v 
dm 

(3 .2 ) qm(x) = qjx; a) = e-* — [t«e**]t_v 

Thus, the first few r-q polynomials are 

r0(x) = 1 , vY(x) = sx + a, r2(x) = s2xz + (2a - l)sx + a2, 

q0(x) = 1 , qx(x) = x + a, q2(x) = x1 + lax + a(a - 1). 
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Considering the Newton expansion of r-q polynomials in a series of factorials, 
we may define the R-Q numbers by 

m m 
(3 .3 ) iQ

ffl(x; a , s) = ]£ R(m9 n; s, a)(x)n = ^Rtm, n) (x)n, 
n = 0 n = 0 

m m 

(3 .4 ) qm(x:> a) = S Q(™> nm> a)Wn
 = J2 Q(m> n)(x)n. 

n = 0 n = 0 
Since for a = 0 the r - q polynomials reduce to 

rm(x) = (saO^, ^ 0 * 0 = xm, 

it follows that 

R(m, n; s, 0) = C(m, n, s) 

the C-numbers, 

R(m, n; -1, 0) = L(rn, n) 

the Lah numbers, and 

Q(m, n; 0) = S(m, n) 

the Stirling numbers of the second kind. 
As a starting point, let us derive the egf of the r-q polynomials and num-

bers, namely 

(3.5) r{x, t; s, a) = YJ Tm^x:> s' a^> 
m = 0 m ' 

00 j-m 

fn(t; s, a) = £#(777, rc; s, a)— r , 

q(x, t; a) = £ q^Oc; a)—r> #„(*; a) = E 6(w' n5 ^)^y-
w = o w =« "' -

Regarding tsxeat and taext as f u n c t i o n s of t and expanding i n a Taylor 
s e r i e s around t - 1, we o b t a i n 

tsx at = y ±L^\t3x atl Si LL_ 

ta£rt = Z ^ [ t a ^ L 1
( t " t

1 ) , 

and, using definitions (3.1) and (3.2), we get 

(3.6) r(x, t) = r(x, t; s9 a) = (1 + t)sxeav , 

(3.7) q(x, t) = q(x, t; a) = (1 + £)aext. 

As regards the egf's of R-Q numbers, they may be obtained easily from Theorem 
2.1, which, in view of (3.6) and (3.7), gives 

fjt; s, a) =^re«*[A"(l + *)8*U0 

T e^ [ (1 + t ) s x { ( l + t ) s - 1}"\X=0-

gn(t; a) = ^ ( 1 + t ) a [A" e '* ] x . „ - ^ ( 1 + t)a [e** {e* - U"]x.0. 

There fo re , 

(3 .8 ) fn(t) = fn(t; s, a) = ± eaH(l + t)s - 1 } " , 
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1 
(3.9) gn{t) = gn(t; a) = ̂ -(1 + t)a {e* - l}n 

ni 

Differentiating (3.6) and (3.7) with respect to t , we obtain the partial 
differential equations 

and 

dr(x, t) 
(1 + t) — = (sx + at + a)r(x9 t) 

. dq(x, t) 
(1 + t) rr = (a + xt + x)r(x, t), 

at 
and using Theorem 2.3, we may establish the following recurrence relations for 
the r-q polynomials and R-Q numbers 

rm + i(x) = (a + sx - m)r(x)+ amrm^i(x), m > 1, 
(3 .10) m 

r±(x) = (a + sx)rQ(x); 

qm+1(x) = (a + x - m)qm(x) + mxqm_l(x), m > 1, 
ql(x) = (a + x)qQ(x); 

(3 .12) R{m + 1 , ri) = (a + sn - m)R(jn, ri) + amR{m - 1, ri) 
+ sR(rn, m - 1 ) , 777 > n + 1 ; 

(3 .13) i?(/7? + 1, m) = sR(m, m - 1) + (a + sm - m)R(m, m); 

( 3 . 1 4 ) i?(/77, 777) = Si?(772 - 1 , 777 - 1 ) ; 

(3 .15) Q(m + 1, ri) = (a + n - m)Q(m, n) + nmQ{m - 1, n) 
+ Q(l7l, 71 ~ 1) + 77̂ (777 - 1 , ft - 1) , 777 > ft + 1 ; 

( 3 . 1 6 ) §(777 + 1 , 777) = aQ(m, m) + Q(m, 777 - 1) + mQ(m - 1 , 777 - 1 ) ; 

( 3 . 1 7 ) e(-777, 777) = 5(777 - 1 , 777 - 1 ) . 

Notice that both relations (3.12) and (3.15) are not "triangular array recur-
rences" since, for the computation of the (777 + 1, n) term, they require the 
value of the (777 - 1, n) term. It is also obvious that, in order to compute all 
the terms of the double sequences i?(7?7, n) and Q(m, n) , m > n via recurrences 
(3.12) and (3.15), respectively, one should at least know the following "ini-
tial" (boundary) conditions 

a. 777-axis v a l u e s R(jn, 0 ) , Q(m, 0 ) , 777 = 0, 1, . . . , 
b. first-diagonal values R(m9 m), Q(ms 777), 777 = 1, 2, ..., 
c. second-diagonal values i?(777, 777-1), Q(m, 777 - 1) , 777 = 1, 2, . . . . 

For (a), consider the egf's (3.8) and (3.9) which, in the special case n = 0, 
give 

J°  m=o ml m^0 ml 

g (t) = V 5(777, 0)^- = (1 + t)a = T (a)tm. 

Hence, 

(3.18) i?(777, 0) = am, Q(m, 0) = (a)m. 
The initial condition (b) is readily obtained through (3.14), (3.17), (3.18), 
as 

(3.19) R(m, 777) = sm, Q(m, 777) = 1. 

As regards condition (c) , we proceed as follows: relations (3.13) and (3.16), 
in view of (3.18), may be written in the form 
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As-m+lR(m, m - 1) = a + (s - l)m, LQ{m9 m - 1) = a + m, 
m m 

and inverting the difference operator Lm9 we obtain 

s-m + lR(m, m - 1) = am + (s - l)^) + fei, CO", w - 1) = aw + (̂ ) + fe2-

Since 
i?(2, 1) = 2i?(l, 0) + (a + s - l)i?(l, 1) = (2a + s - l)s 

a n d S(2, 1) = 6(1, 0) + a«(l, 1) + «(0, 0) = 2a + 1, 

both constants k\ and k^ should vanish, and we finally deduce that 

(3.20) ,m* V2/ 2 ^ = 2i 3j _ ^ 
<2(m, m - 1) = aw + ( ) 

It is obvious that the recurrences (3.12) and (3.15), along with initial condi-
tions (3.18), (3.19) and (3.20) determine the double sequences R{m9 ri) , Q(jn9 n), 
m > n. 

4. Connection with Other Numbers 

Let us denote by 

s(m, n; a) = —j- ^ > } -L = a'
 S{m> n; a) = ̂ "^-a d_ 

ldxr' 
the noncentral Stirling numbers of the first and second kind, respectively, and 

C(m9 n; s, a) = ^j[An(sx + a)m]x=0 

the noncentral C or Gould and Hopper numbers. 
The first class of numbers has been recently studied by Carlitz [4], [5] as 

weighted Sterling numbers, by Koutras [15], as noncentral Stirling numbers, by 
Broder [1] as r-Stirling numbers, and by Shanmugan [18]. The second class, 
which was introduced by Chak [6] and Gould & Hopper [12], and subsequently 
investigated by Charalambides & Koutras [10], is closely related to Howardfs 
[13] degenerate weighted Stirling numbers Si(m9 n, A|6) and S(m9 n, X|0) by 

Sl(m, n, X|0) = {-l)m~nC{m9 n; 6 - A, 6)/6n, 

S(m9 n, X|0) = QmC(m9 n; AG"1, 0"1). 

In order to establish the connection between the R-Q numbers and the above-
mentioned classes, let us denote by 

and 

00 4-m i 

Hn(t) = En{t; a) = £ S(m, n; a)^j = -^ eat [e* - l]n 

oo fin I 

Cn(t) = Cn(t; s, a) = £ C(m, n; s, a)-j = ̂ -(1 + t)a[(l + t)s - l]r 

the egf!s of noncentral Stirling and C-numbers, respectively. Comparing with 
formulas (3.8) and (3.9), we obtain 

fn(t; a, s) = eatfn(t; 0, s) = eatCn(t; s, 0), 

gn(t; a) = (1 + t)agn(t; 0) = (1 + t)aHn(t; 0), 

(1 + t)afn(t; s, a) = eatCn(t; s, a), 

ea*gn(t; a) = (1 + t)aHn(t; a), 

which imply the corresponding relations 

(4.1) R{m9 n; s, a) = £ (™)am-kR(k, n; e, 0) = £ (fjam'kC(k9 n, s) 
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Q(m, n; a) = £ (£)(a)w_ke(fc, n; 0) = £ (?)(a)w_kS(fc, n); 

(4-2> £ (̂ )(a)m_ki?(fc, n; s5 a) = £ (^)am"^(/c5 n; s, a), 
and m m 

L^V-^cfc, «; a) = L(^)(a)m_ks(fc, "! a>-
Note also that (4.1) leads to the inverse relations 

(4.3) C(m, n; s) = f< (?) (-af ~ k R (k, n; s, a), 
k=n\K/ 

and m 
S(m, n) = £ (k)(-a)m_kQ(k5 n; a), 

which imply that the RHS sums are independent of the parameter a. 
Finally, we mention that, in view of (4.1), formulas (3.3) and (3.4) lead 

to the following explicit expressions for the r-q polynomials 
m 

(4.4) rm(x; s, a) = £ U K _ k ( e * ) * 
k =0 V K / 

and m 
qm(oo; a) = £ Q ( a ) m _ ^ . 

fe= o 

Remark 1: The proof of (4.4) could also be obtained through the egf's r(x, t), 
q(x, t), by expanding the RHS of (3.6) and (3.7) in a power series with respect 
to t . 

Remark 2: Comparing (4.3) with the binomial and Vandermonde formulas, 

(a + x)m = E (™)am-kxk, (a + ex)m = £ (™)(a)n_k(sa:)fc , 

one might say that the r-q polynomials are the "intermediate connectors" in the 
transition from powers to factorials and vice versa. 

Another important formula for the R-Q numbers may be obtained as follows: 
Multiplying (4.1) by C(n, A, s~l) and summing up for n = A, A + 1, ...,/??, we 
have 

m m m , , 
£i?(rc, n; s, a)C(n, A, s"1) = £ ^ U F " ^ ^ ' n> s > c ^ ' A> s _ 1) 

m K 

T,U)am~kT,C(k, n, s)C(n, A, s~l) 
k=XXK/ n=X k = X ' n = X 

and on using the orthogonality property of C'-numbers, we deduce that 
m 

(4.5) £i?(/7z, n; s, a)C{n, A, s~l) = [\)am'x. 
n=X XA/ 

Similarly, the orthogonality property of Stirling numbers implies that 

(4.6) £S(/w, n; a)s(n, A) = (^j(a)m_A. 
n = X 

In matrix notation, formulas (4.5) and (4.6) could be stated as follows: If 
R = (Rmn)> Q = (Qmn)> c = (cmn) > a n d s = (s mn) a r e t n e infinite matrices with 

Rmn = i?(/77, n ; s , a ) , Qmn = §(/??, n; a) 9 m, n = 0 , 1, . . . , 
C m = 6,(/??, n , s " 1 ) , sw?.z = s(m, n), n, A = 0, 1, . . . , 

r e s p e c t i v e l y , then 
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* * - ( ( > - ) . < * - ( ( > > - ) 

5. Appl ica t ions 

Two new families of d i s c r e t e t r u n c a t e d d i s t r i b u t i o n s 

It is obvious that the egf's (3.8) and (3.9) satisfy the relations 

nf A' 
fn + x(*'> s, a + b) = 7 — — — / n ( * ; a, s)fx(t; b, s) 

and 
(n + A) ! 

9n+x(t; a + b) = ~^n'+
X'x)l 9n(t; a)gx(t; b), 

which imply the following addition theorems 
- 1 JH 

R(m, n + A; s, a + b) = ( ) X (7 F ( ^ > n ; s , a)R{m - k, A; s , 2?) ; 
\ n / k=0\K/ 

Q{m, n + A; a) = ( n + A) £ ( 5 J ) e ( f c , n ; a)S(ro - fc, A; i ) . 
fe= 0 

For A = 0 one o b t a i n s , by v i r t u e of ( 3 . 1 8 ) , 

R(m, n; s, a + b) = Z U P™ ^(^> n5 s> a ) > 

S(TW, n ; a + b) = L U K ^ - f c ^ , ^ a) > 
k = o X K / 

and, therefore, we are led to the conclusion that 
im\bm~xR(x, n; s, a) 

(5 .1 ) f(x; m, n; a, b) = L. — ~7T> x = n , n + 1, 
\X/R(m, n; s, a + b) 

^ / ^ \ ( ^ - ^ ( ^ n ; a ) 

# (x ; m, n ; a , 2?) = ( ) - — , x = n , n + 1, . . . , /??, 
define families of multiparameter discrete distributions with range 

Rx = {n, n + 1, ...,/??}. 

Note that probability functions (5.1) could be regarded as generalizations 
of binomial and hypergeometric laws, respectively, since 

g(x; m, 0; a, b) = g)(m * J/( /a + 
m 

Convolut ion of binomial a n d Poisson d i s t r i b u t i o n s 
with t r u n c a t i o n away from ze ro 

L e t Xi, Xi> • • • 5 Xv be a r andom s a m p l e f rom t h e b i n o m i a l d i s t r i b u t i o n 

( 5 . 2 ) P[X = x] = (1 + Q)~N^)QX, x = 0 , 1 , 2 , . . . , /!/, 

where 0 = p / ( l - p ) > 0 and f is a positive integer. It is well known that the 
sum Z]_ = Xi + • • • + Xv is again a binomial variable b(vN, p) with probability 
function 

(5.3) P[Zl = z] = (1 - 6)~a(^0s, z = 0, 1, ..., a, a y/1/. 
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Assume further that another independent sample Xv + i, . .., Xv+n coming from the 
zero-truncated Poisson distribution with parameter 0 is available. For statis-
tical inference purposes, it would be interesting to establish- explicit for-
mulas for the distribution of the two-sample sum Z = Xi + ••• + 'Xv+n. To this 
end, we proceed as follows: The probability function of Z2 = Xv + L + ••• + Xv+n 
was obtained by Cacoullos [2] in the form 

nlS(z, n)Qz 

P[Z2 = z] = ——. , z = n, n + 1, ... . 

Therefore, 
z 

P[Z = z] = E p I z l = s " x]P[Zz = x] 

Tr7i£n(l)w.-*s<*>* (1 + 0)a(ee 

which, on using (4.1), gives 

(5.4) P[Z = z] = n^a/ — — , .s = w, n + 1, ... . 
(1 + Q)a (eQ - l)n zl 

Expression (5.4) may be used to obtain an explicit formula for the (unique) 
unbiased estimator of the parametric function Qk (k a positive integer) that is 
based on the two-sample sum Z. Thus, from the condition of unbiasedness 

E[hk(Z)] = Qk for every 0 > 0, 

we obtain, by virtue of (5.4), (3.5), and (3.9), 

}2 hk(z)Q(z, n; a)-j = X (z)kQ(z - k, n; a)-j, 
z =n ^ • z =n+k *' 

which implies that 
(z)kQ{z - k, n; a) 

hk(z) - ' «<*' nl a) 

. 0 if z < n + k. 
Hence, 

hi(Z) = ZQ(Z - 1, n; a)/Q(Z, n; a), Z > n + 1 
is an unbiased estimator of 0, and since 

VartMZ)] = £[(MZ))2]-62 = S[(^i(Z))2] - E[h2(Z)] 
the statistic 

h*(Z) = [h±(Z)}2 - hz(Z) 
will be an unbiased estimator of the variance of the unbiased estimator of 0. 

Consider the case where Xi, X2, ->-, Xv is a random sample from the Poisson 
distribution with parameter 0 and Xv+l, ..., Xv+n is an independent sample from 
the zero-truncated binomial law with probability function 

l(N 

if z > n + k, 

P[X = x] = [(1 + Q)N - irl{xpx> a? = 1, 2, ... . 
The distribution of Zx = X1 + • • • + Xv is, of course, Poisson with parameter 
VQ, while the probability function of Z2 = Xv + l + ••• + Xv +n is given by (see 
Cacoullos & Charalambides [3]) 

nlC(x, n, N) dx 

p [ z > = x] " la + e)̂  - ir &.* * - * . » + ! . - • • • 
Therefore, the probability function of the two-sample sum Z = X\ + • 
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P[Z = z] = E p E z l = * - a?]^[22 = a?] 

ft! 6 s 2 / ! ? \ 
vQ[(l + e )* - l]n zl £?n\x) e 

which, on using (4.1), reduces to 

(* ^ pry 1 n\R(z, ft; N, v) 6* 
(5.5) P[Z = z] = - , z = ft, n + 1, ... . 

evQ[(l + 6)* - l]n zs-
Following similar arguments with the binomial-zero truncated Poisson problem, 
one could easily verify that hk(Z) with 

(z)kR(z - k, n; N, v) 

h k ( z ) -; R { z > n; N> v) 
if z > n + k> 

,0 if z < n + k, 

is an unbiased estimator of the parametric function 0^, while 

h*(z) = [/z!(Z)]2-̂ 2(Z) 
is an unbiased estimator of the variance of the unbiased estimator of 8. 

c. Occupancy problems 

Formula (4.1) implies the following combinatorial interpretation of the 
numbers Q (m , n; a): Consider n identical cells with no capacity restrictions 
and a control cell of a E Z+ different (distinguishable) compartments, each of 
capacity 1. If a + m > ft, then Q(m, n; a) is equal to the number of ways of 
distributing m distinct balls into the cells so that none of the n identical 
cells is empty. 

(L The Generalized R-Q Numbers 

Following the technique used by Charalambides [8] and Charalambides & Kou-
tras [10], we may define the generalized R-Q numbers 

Rr(m, n; a, s) = Rr(m, ft) and Qr(m, n; a) = QT(m, ft) 

by their egffs as follows [cf. (3.8) and (3.9)], 
00 tm 

(6.1) fn,r(t) = fn,r(^5 S, a) = £ Rr(m> n^^T 
m = rn L' 

j ; e ° t { a + ty-:t(s
k) k=0*"' 

(6.2) gnir(t) = gn,r(t; a) - £ Qr(m, n)g-
m-rn ml 

r - 1 +k\n 1 / v - 1 -i-k v 

ft! I ^ 0 &! ) 
The generalized i?-§ numbers retain many of the properties of the R-Q numbers 
and may be studied in a similar way. 

Thus, differentiating (6.1) and (6.2) with respect to t, we obtain the 
difference-differential equations 

d tr~l 

(1 + t)— fn,r{t) = (a + sn + at)fntr(t) + (s)r (p _ 1} , /„,r_i(t), 
and P-l 

(1 + *}dt ̂ .^(t) = (a + " + nt)9n.*W + (1 + ^ ( Z - 1)! ?n,r-l<*>' 
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which imply the fo l lowing r e c u r r e n c e r e l a t i o n s : 

Rr(m + 1, ri) = (a + sn - m)Rr{mi n) + amRr(m - 1, ri) 

+ ( P ̂  1 ) (s ) r i? r (wz - r + 1, n - 1 ) , m > vn + 1; 

Rr(rn + I, n) = (a + sn - rn) i? P (pn 5 n) + ( *^ 1)(s)rRr(rn - r + 1, n - 1 ) ; 

Rr(rn, ri) = f j (s)rRr(rn - r , n - 1 ) ; 

<2pO?7 + 1, n) = (a + n - m)QT{m, ri) + nmQv(m - 1, n) 

+ ( P _ x ) ^ - r + 1, w - 1) + 2"g)«(w - r, n - 1 ) , 
m > rn + I; 

])Qr(m - r + 1 , n - 1 ) 

+ r(^)Qr(rn - r, n - 1); 

( VYl\ 
r )rQr(m - r, n - 1 ) . 

Not ice a l s o t h a t the 777-axis v a l u e s for RT(jn, ri), Qr(m9 ri) a r e 

i?r(77z, 0) = am, ep(7??5 0) = ( a ) m , 

as may be readily verified from (6.1) and (6.2). 
Another set of recurrences (with respect to r) useful for tabulation pur-

poses is the following: 

Rr + 1(m, n) = £ (-l)k ^TT^ittRrirn - rk, n - fc); 

i? r(m, ri) = 2^ - r - i ? r + i ( w ~ P K , tt - fc) ; 
fc= 0 ^ ! ^ P / 

Sr + iOw, n) = ^2 (-l)k r
 k Qr(m - rk, n - k); 

n (#0 v 
Qr(m, ri) = J2 7,f , ^ Sr + iO" - rfe» n - k). 

k= 0 & • v*1- J 

This set of recurrences results from the formulas: 

w h/s\k t r k 

fn,r + l ( t ) = X/ (-1) ( ) ~TT~ fn-k,r(t); 
k=0 ^ r / Kl 

fn.rW = t(S
v)k T^fn-k,r + l(V; fc-o^/ kl 

n ivk 

9n,r + l(f^ = £ t - 1 ) A:! ( p ! ) k ^n -ktr^ '•> 
n ^vk 

It is also worth noticing that: 

a. The generalized i?-g numbers are connected to the generalized C and 
Stirling numbers (see [8]) by relations analogous to those of Section 4 for the 
flnon-generalizedn quantities. 
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b. The form of the egf's (6.1) and (6.2) imply "proper" addition theorems 
for the generalized R-Q numbers, which lead to the definition of two multi-
parameter discrete distributions with probability functions 

/m\bm'xRr(x, n; s, a) 
f(x; 777, n; a, b, r) = I— — , x = rn, rn + 1, . . . , m, 

>, ^x/ RT{rn, n; s, a + b) 
and 

g(x; m, n; a, b) = — , x = rn, rn + 1, . . . , m. 
\xl Qr(m, n; a + b) 

c. The generalized R-Q numbers appear in the convolution of two samples 
coming from a binomial and a Poisson law, when one of the distribution laws is 
truncated on the left away from a given nonnegative integer r. More pre-
cisely, we have: 

(i) If Xi, X2 > ..., Xv is a random sample from the binomial distribu-
tion b(N, p) and Xv+i, ..., Xv+n another independent sample from the Poisson 
distribution with parameter 0 = p/(l - p), truncated away from r, i.e., 

1-1 *x 
P[Xi = x] = 

r - 1 

- T. k^o kl 
—;•, x = p, r + 1, . . . , 

i = y + l , . . . , v + n, 
then the distribution of the statistic Z = Z]_ + • • • + Xv + n is given by 

Qr(z, n; a) Qz 

P[Z = z] = , z = rn, rn + I, .... 
^n,P(8; a) z\ 

(ii) If Xi , X29 . . « , Xv is a random sample from the Poisson distribu-
tion with parameter 0, and Xv+i, ..., Xv+n another independent sample from the 
binomial law with probability function 

P[Xi = x] (i + e)* - E £ e* 
k= 0 xa:/ 

I 16 , x = r, r + 1, ..., 
i = z; + 1, . . . , v + n, 

then the distribution of the statistic Z = Z]_ + • • • + Xv + n is given by 
i?r(g, n; 71/, n) QS 

P [ Z = s 1 = , z = rn, rn + I, ... . 
/„,r(e; /i/, v) 2! 

d. The numbers Qr(m9 n; a) admit a combinatorial interpretation similar to 
the one given for Q(m, n; a) in Section 5c. In the expression "none of the n 
identical cells is empty," simply replace "is empty" by "contains less rhan r 
balls." 

Acknowledgments 

The author wishes to thank Professors T. Cacoullos and Ch. Charalambides 
for many helpful suggestions and critical comments during the preparation of 
the present work. 

References 

1. A. Broder. "The r-Stirling Numbers." Discrete Math. 49 (1984):241-59. 
2. T. Cacoullos. "A Combinatorial Derivation of the Distribution of the Trun-

cated Poisson Sufficient Statistic." Ann. Math. Statist. 32 (1961):904-05. 
3. T. Cacoullos & Ch. A. Charalambides. "On Minimum Variance Unbiased Estima-

tion for Truncated Binomial and Negative Binomial Distributions." Ann. 
Inst. Statist. Math. 27 (1975) :235-44. V',;". 

4. L. Carlitz. "Weighted Stirling Numbers of the First and Second Kind—I." 
Fibonacci Quarterly 18 (1980):147-62. 

332 [Nov. 



BINOMIAL-TRUNCATED POISSON AND POISSON-TRUNCATED BINOMIAL RANDOM VARIABLES 

5. L. Carlitz. "Weighted Stirling Numbers of the First and Second Kind—II.11 

Fibonacci Quarterly 18 (1980):242-57. 
6. M. Chak. "A Class of Polynomials and a Generalization of Stirling Num-

bers." Duke Math. J. 23 (1956):45-55. 
7. Ch. A. Charalambides. "Minimum Variance Unbiased Estimation for a Class of 

Left-Truncated Discrete Distributions." Sankhya, Ser. A, 36 (1974):397-
418. 

8. Ch. A. Charalambides. "The Generalized Stirling and C Numbers." Sankhya, 
Ser. A, 36 (1974):419-36. 

9. Ch. A. Charalambides. "A New Kind of Numbers Appearing in the n-Fold Convo-
lution of Truncated Binomial and Negative Binomial Distributions." SIAM J. 
Appl. Math. 33 (1977):297-98. 

10. Ch. Charalambides & M. Koutras. "On the Differences of the Generalized 
Factorials at an Arbitrary Point and Their Combinatorial Applications." 
Discrete Math. 47 (1983):183-201. 

11. Ch. Charalambides & J. Singh. "A Review of the Stirling Numbers, Their 
Generalizations and Statistical Applications." To appear in Communications 
in Statistics. 

12. H. W. Gould & A. T. Hopper. "Operational Formulas Connected with Two Gen-
eralizations of Hermite Polynomials." Duke Math. J. 29 (1962):51-63. 

13. F. Howard. "Degenerate Weighted Stirling Numbers." Discrete Math. 57 
(1985):45-88. 

14. C. Jordan. Calculus of Finite Differences. New York: Chelsea, 1960. 
15. M. Koutras. "Non-Central Stirling Numbers and Some Applications." Discrete 

Math. 42 (1982):73-89. 
16. I. Lah. "Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der 

Mathematichen Statistik." Mitteilungsbl. Math. Statist. 7 (1955):203-12. 
17. J. Riordan. An Introduction to Combinatorial Analysis. New York: Wiley, 

1958. 
18. R. Shanmugan. "On Central versus Factorial Moments." South African 

Statist. J. 18 (1984):97-110. 
19. S. Tauber. "Lah Numbers for ^-Polynomials." Fibonacci Quarterly 6(1968): 

100-07. 

1990] 333 
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1. Introduction 

We consider the problem of enumerating paths of the type shown in Figure 1. 
A wave leaves A and arrives at B along a path that is straight line except 
perhaps at the intersection with horizontal lines where the wave may be re-
flected. The layers between lines represent homogeneous media through which 
the wave travels in a straight line only. At the boundary between layers, a 
wave is either reflected or transmitted. This models, for example, sound in 
sea water and electromagnetic waves in soil associated with power transmission, 
LaGrace et al. [6]. Figure 1 shows that points A and B are embedded between 
two layers, in which case a path may cross the AB line some number of times. A 
similar problem exists in the reflection of light by adjacent panes of glass. 

FIGURE 1. The path problem 

It is known that the number of paths Pn with n reflections in two panes of 
glass forms a Fibonacci sequence [9, pp. 162-63, 3]. Extensions of this, 
including more panes and the addition of a mirror, have also been considered 
[2, 4, 5, 10]. 

Let there be mi > 0 layers above the AB line and m^ ^ 0 below. Any path 
from A to B consists of an even number In of traverses across layers. We seek 
Nmlt m 2 ( n ) ' t n e number of paths from A to B consisting of In traverses. 

2. Special Cases 

There are interesting special cases. The two layer model, mi = 0 and m2 ~ 
2 has been considered in electromagnetic wave propagation in soil, LaGrace et 
al. [7]. When mi, m2 ^ ft, the path problem is equivalent to the following. 

Consider a city neighborhood that consists of n by n square blocks. 
How many different paths of minimum length are there from the north-
west corner to the southeast corner? 

View a path as an ordered sequence of In letters, n E's and n S's. The 
path is determined as follows. Starting from the leftmost letter, consider 
each letter as a specification of whether to go east or south at the current 
intersection. At the end of the sequence, a traveler will have gone n blocks 
east and n blocks south. Since there is a one-to-one correspondence between 
paths and sequences, the number of paths is the number of ways to choose where 
in the sequence the S?s should go, or 

* * » . * , ( " ) = (2
n

n)-

When m\ - 0 and m2 > n, the problem is equivalent to Problem 33(a) of Lovasz 
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(see [8]): 

How many monotonic mappings of {1, ..., ft} into itself satisfy the 
condition f(x) < x for every 1 < x < ft? 

A monotonic mapping can be represented as dots on a grid, as shown in Figure 
2a. A path lying entirely on grid lines is drawn through the dots, beginning 
at (1, 1), point A, and ending at (ft + 1, ft + 1), point B. If f(x) = f(x + 1), 
the segment (x, f(x)) -* (x + 1, f(x)) is part of the path. If f(x) < f(x + 1) , 
the subpaths (x, f(x))+ (x + 1, f(x)) and (x + 1, f(x)) + (x + 1, f(x + 1)) are 
part of the path. Also, subpaths (ft, f{n))+ (ft + 1, /(ft)) and (ft + 1, /(ft)) 
-* ((ft + 1), (ft + 1)) are part of the path. 

i 

Y~A 
U'' 

B=(n+l ,n+l ) 

•A 

d ' ' 
; s»-

f(x) f 

1 

© 4 

c k 
x>' ~ A7 

i — - J 

/ •B' 
/VfB 

! ' r 
A' A 2 n 

(a) " (b) 

FIGURE 2. Monotonic mapping equivalence to the path problem 

The restriction f(x) < x for every 1 < x < n precludes a path from cross-
ing the AB line. It follows that the number of mappings is NQ9 >n(n) . An 
interesting argument [8, p. 163], yields a simple expression for this number. 
Figure 2b shows two additional points (0, 1), point A! , and (ft + 1, ft + 2), 
point B1. All paths from A to B below the AB line that never cross it are 
precisely those paths from A to B which never meet the A!B7 line. The total 
number of paths between A and B is { Z1) 5 and if we subtract the number of paths 
which meet the AfBf line, we have our result. Figure 2b shows a path which 
meets the A?B' line (and also crosses it). Let C be the first point at which a 
path from A to B meets the AfBf line. If we reflect the segment AC about the 
A'B' line, we obtain the segment AHC, where A" is point (0, 2). Thus, any path 
A to B which meets the A'B' line can be converted to a path A"B. Further, the 
converse is true. Thus, the number of paths from A to B meeting the A'B' line 
is equal to the number of unrestricted paths from A" to B. This is 

( 
ft - 1 + ft + 1 

ft - 1 )-(,?.)• 
It follows that, 

N . . -<- ) • ' . . . . (") - (?) -L*, ) -rh(?) -
which is a Catalan number. From this, it follows that the total number of 
paths from A to B of 2ft traverses is reduced by 1/(1 + ft) when no path is 
allowed to cross the AB line. Consider now a more general case. 

3. The Number of Paths Where the Media Is on One Side Only 

Let 
Fm(x) = Nm(l)x + Nm(2)x2 + + Nm^)^ 

be the ordinary generating function for N0,m(i) [= Nmy0(i)]. Then, F2(x) enu-
merates paths having one identified intersection with the AB line; that is, 
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having one intersection on the AB line distinct from all other such intersec-
tions. An end point is not considered an intersection. In a path with p 
intersections with the AB line, there are (*J) ways a single identified inter-
section can be chosen. Thus, such a path is counted (\) times in F% (x) . Spe-
cifically, Fm(x) enumerates the ways the path to the left of the identified 
point can be chosen, Fm(x) enumerates the ways to the "right, and F%(x) 
enumerates the ways both can be chosen. In a similar manner, F%(x) enumerates 
paths with two identified intersections on the AB line, etc. Consider 

Gm(x) = F%(x) - Fm3(x) + F^(x) - ... = x
 F

+
m

p
X

{xy 

Gm(x) enumerates paths with at least one intersection with the AB line. Speci-
fically, a path with exactly p intersections with the AB line is counted (\) 
times in F£(x) , (2) times in F3(x), ..., and (p) times in F%+ (x) . Thus, a 
path with exactly p intersections is counted in Gm(x) once: 

( f ) - (S) + - + <-"ptl(S) 1. 

The number of paths having no intersection with the AB line is Nm_i(n - 1). 
This is enumerated in the ordinary generating function xFm-i(x). Thus, 

F£(x) 
1 + Fm (x) 

where the +x term is the initial condition Nm(l) = 1. Solving for Fm(x) yields 

(1) Fm(x) = j-^L • . 
x 

Fm_l(x) + 1 

We can solve for Fm{x) iteratively. When m = I, there is only one path and 

x 
Fi(x) = x + xl + x6 + 

1 - x 
F2(x) is obtained by substituting x/(l - x) for Fm_l{x) [= Fi(x)] in (1). F3(x) 
and other generating functions are obtained in a similar manner. Table 1 shows 
the generating functions Fm (x) for 1 < m < 5. Also shown is the corresponding 
power series expansion. 

Let Fm (x) be the generating function for the number of paths when there are 
arbitrarily many layers below the AB line. An expression for Fm(x) can be 
obtained by substituting Fm (x) for Fm(x) and Fm_i(x) in (1). This yields an 
expression that is quadratic in Fm(x), which can be solved to produce the 
expression shown in Table 1. 

We can find closed form expressions for the approximate number of paths by 
a manipulation of the generating function. We illustrate using F$(x). 

(1 - 51/2) (1 + 51/2) 

„ , , 1 - x (5 - 2 • 51/2) (5 + 3-5 1/2) 
F3 (X) = X = X 1- X 1 - 3# + a: 2 

1 - X 
3 _ 5 1/2 3 + 5 1/2 

Let an ~ bn mean lim -r1 = 1. Then, we can write, 
n -> 00 Dn 

(1 - 5 1 / 2 ) / 2 \ » - l , 
N3(n) ~ —^ -j—[ — ) = 0 . 7 2 4 ( 2 . 6 1 8 ) " " 1 . 

6 (5 - 3 • 5 1 / 2 ) \3 - 5 1 / 2 / 
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TABLE 1. Generating functions, power series expansions and closed form 
expressions for the number of paths with In traverses when there are 

m layers below the AB line and none above the AB line 

Generating Function Fm(x) 

hw=7ri 

1 r , W " 1-2* 
P <r\ *~*2 

' | r , u ) - i - a * + J . » 

r w *-2*2 

| r ' ( A ) - l _ 4 ^ + 3 ^ 

\ F (rt I-**1*** 
| j W l -5 ;c + 6 * 2 - * 3 

L.w-MF-t»m)»-t-h-(i-4') '" 
2x 

Power Series 

jr+.!C2+.r3+jr4+;t5 + • •• 

x + 2x2+4x3+8x4 + l6x5+ ••• 

x + I t 2 +5x3 + 13*4 + 34*3 + • • • 

x-§-2jc2-f5x3 + 14;c4+41;c3 + ••• 

x + 2x2 4-5x3 + Ux* +42.X5 + • • • 

x + 2x2 +5x2 + 14.*4 +42*3 +...+——\2n) *"+... 

Closed Form Expression | 

/V,(n)=l 

JV2(n) = 2 - ! 

N3(n)~ 0.724 (2.618)""1 

iV4(n)~0.5(3f-1 

N4(rt)~0.349(3.247r-1 

JV-(n) ~ (JCn 3 r y 2 4" = 0.564 n~3n 4" 

To find an approximation of a form similar to those given earlier for 

1 /2rc\ 
#. t \ l tln\ 

we can represent (2 )̂ in factorials and use Stirling's approximation. Alterna-
tively, we can apply Theorem 5 of Bender [1] to the generating function for 
Nm(n). In either case, we obtain 

Nm(n) ~ (7rn3)-1/24ne 
Table 2 shows the values of the number of paths of In traverses, where 

there are m layers. These entries were obtained by a program to solve for the 
coefficients of the various generating functions Fm(x) using a symbolic mathe-
matical manipulation package, 

TABLE 2, Number of paths with 2n traverses when there are 
layers below the AB line and none above the AB line 

m/n 

| I 

1 2 
3 

1 4 

1 5 
oo 

1 2 

1 

2 

2 

2 

2 

2 

3 

1 

4 

5 

5 

5 

5 

4 

i 

8 

13 

14 

14 

14 

5 

1 

16 

34 

41 

42 

42 

6 

1 

32 

89 

122 

131 

132 

7 

1 

64 

233 

365 

417 

429 

8 

1 

128 

610 

1094 

1341 

1430 

9 

1 

256 

1597 

3281 

4334 

4862 

10 1 

1 J 

512 | 

4181 

9842 

14041 J 

16796 1 

4. The Number of Paths Where the Media Is on Both Sides 

can be made The calculation for Fmi, mi(x) = Nmi, mz(l)x + Nmlt mz(2)xz + 
in terms of the case just considered. Specifically5 

(2) 
F W.\ j 7772 (x) 

1 + Fm,, m7M 
+ xFmi-i}0(x) + xF0) m i(x) + 2x, 
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for mi, m2 2> 1. F%ltmz/(1 + Fmlt m2(x)) counts p a t h s from A to B wi th a t l e a s t 
one i n t e r s e c t i o n wi th the AB l i n e . xFmi -I,Q(X) a n d xFoimz-lM count pa ths t h a t 
a re e n t i r e l y above and below the AB l i n e , r e s p e c t i v e l y . +2x r e p r e s e n t s t he i n -
i t i a l c o n d i t i o n Nmi, m2 (1) = 2 when m\, m2 ^ 1. 

Solving (2) for Fmif mi{x) y i e l d s 

(3) Fmit mi(x) 
1 

For the special case of m\ = m2 = m we have, from (3). 

Fm,mw = r1 • 
2(Fm.l(x) + 1) 

Table 3 shows the generating functions for Fm> m(x) for 1 < m < 5 and °°, and 
Table 4 shows the number of paths N>n, >n (n) when there are layers above and 
below the AB line. These show clearly the significantly larger number of paths 
which exist when they are allowed to cross the AB line. 

TABLE 3. Generating functions, power series expansion, and closed form 
expressions for the number of paths with 2n traverses when 

there are m layers above and below the AB line 

1 Generating Function F„t„{x) 

''••«-£; 
\'»"-&i 
1 v i , 2*-2x2 

F 3 3 (A) = -
3,3 1 - 4 A + 2 A 2 

L , * 2A-4A2 

F4A(.X)=- c , - 2 

1 - 5x + 5xz 

_ , . 2A - 6A2 + 2A:3 

F 5 5 ( A ) = ; -
3,3 1 - dv + 9x2 - 2x3 

1 2r(F.( j r ) + l) 
F „ . . ( A ) = — = ( l - 4 j r ) - , / 2 - l 

1 - 2x ( F _ ( A ) + 1) 

Power Series 

2 A + 4 A 2 + 8 A 3 + 1 6 A 4 + 32A: 5 + . . . 

2A + 6 A 2 + 18A3 + 54A-4 + 162A-5 +... 

2A + 6 A 2 + 2 0 J C 3 + 6 8 A 4 + 232A: 3 +. . . 

2A + 6AT2 +20JC3 + 7 0 A 4 + 250A 3 +... 

2x + 6JC2 + 2Qx3 + 7 0 A 4 + 252A-3+.. . 

2A + 6A2+2aT3+70A-4 + 252A-3+... + f2
/j"l x"+... 

Closed Form Expression 

iVli l(n) = 2(2)n-1 

N2,2(n) = 2 ( 3 ) - ! 

N3i3(n)~ 1.707 (3.414)"-1 

N4A{n)~ 1.447 (3.618)"-1 

N4A{n)~ 1.244 (3.732r- ' 

N„t„{n) ~ (nnfU2 4" = 0.564 n~xn 4" 

TABLE 4. Number of paths with In traverses when there are 
layers above and below the AB line 

ni /n 

f l 
1 2 

3 

1 4 

1 5 
" 

1 

2 

2 

2 

2 

2 

2 

2 

4 

6 

6 

6 

6 

6 

3 

8 

18 
20 

20 

20 

20 

4 

16 

54 

68 

70 

70 

70 

5 

32 

162 

232 

250 

252 

252 

6 

64 

486 

792 

900 

922 

924 

7 

128 

1458 

2704 

3250 

3404 

3432 

8 

256 

4374 

9232 

11750 

12630 

12870 

9 

512 

13122 

31520 

42500 

46988 

48620 

10 1 

1024 | 

39366 | 

107616 1 

153750 

175066 J 

184756 1 
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Suppose that the first several terms of a sequence are given, then it is 
not so easy to predict the asymptotic behavior of this sequence. But once we 
know that this given sequence is a linear recurrence sequence, we can determine 
the asymptotic behavior through its recurrence formula. 

Indeed, John R. Burke and William A. Webb [1] considered real linear recur-
rence sequences iun}™=Q of order d defined by 

(1) un + d= ad.lun^d_l + ad._2un+d_2 + ... + aQun for n > 0, 

where a*, a^> ..., <2J_I are real numbers, with its corresponding characteristic 
equation: 

(2) p(x) = xd - ad_lxd~l - ... - oiy£ - aQ = 0. 

They obtained a criterion for the asymptotic positiveness of linear recurrence 
sequences (1) if the corresponding characteristic equation has distinct roots. 
Here we call a sequence {un}™=0 asymptotically positive if there exists a natu-
ral number UQ such that 

un > 0 for all n > TIQ . 

In particular, if the above T-ZQ is equal to zero, we call this sequence (wn}^=0 

totally positive. 
In this note, we shall give a criterion of asymptotic positiveness of real 

linear recurrence sequences {un}™=0 (1) of order d, when their characteristic 
equations have multiple roots. 

Let us recall a general representation formula for un. We assume that the 
corresponding characteristic equation (2) of {wn}~=0 has roots A^, A2J . .., Ap 
with corresponding multiplicities /??]_, m2, . . . , rrip. Then there exist polyno-
mials b\, Z?2> .-.» bp with degree b^ < mi - 1 for i = 1, 2, ..., p, where the 
coefficients of polynomials b\9 b^* . . . , bp depend only on the roots of the 
characteristic equation (2) and the initial values of this recurrence sequence. 
Then, we have, for all n > 0, 

(3) un = bi(n)\i + b1{n)Xn
1 + ••• + bp(n)\p. 

The detailed discussion of this representation (3) can be found, for exam-
ple, in W^adys^aw Narkiewicz [4] or Alecksei I. Markusevic [2]. 

Without loss of generality, we arrange the roots AT, A25 •••> Ap according 
to their moduli as 

\\l\ > IA2| ^ ••• ̂  IApI -
Suppose first that X2 is the complex conjugate of Al5 Xi is not real, and 

(4) \xlI = |A2| > |A3| > •.• > \ x p \. 
We assume further that the sum of the first two terms of (3), denoted by 

(5) vn = Z?!(n)Xi + b2(n)Xn
1, 
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does not vanish for i n f i n i t e l y many n. Then 

(6) un = vn + o(vn) 

holds for all sufficiently large n (see Nagasaka, Kanemitsu, & Shine [3]). 
Since {un}™=Q is a real sequence, we get 

b2(n) = b1(n) 
and 

vn = byMx'l + b2{n)\n
2 = bi(n)(re2l[iQ)n + ^ > ) ( r e - ^ ^ ) « 

= bl(n)rne2llinQ + (bl(n)rne2l]ine ) 

= 2 Re{Z?1(n)p^27T7'"-e }, 

where X]_ = re2ljzd and 0 i s not a multiple of IT (since A]_ i s not r e a l ) . Now, if 
we write 

&!<«) = aknk + ak_^~l + ••• + cQ, 

where OQ, cl5 ..., ck are complex numbers determined by the roots Aj, A2, ..., Ap 
and initial values u0, w1? ..., w^-i with nonzero cfc , k < mi - 1. Then 

vw = 2 Re(ekrcfcrwe27,i"e) + o{nkvn) 

= 2nkrn Re(ck)cos(2i\nQ) + o{nkrn) for large n. 

Since 6 is not a multiple of i\ , yrz takes negative values for infinitely 
many n , by applying the same argument as in the proof of Theorem 1 in Burke & 
Webb [1]. Hence, by (6), the original linear recurrence sequence {un} is not 
asymptotically positive for this case. Summarizing the above discussion, we 
have 

Theorem 1: Suppose that the roots X\, X2, •••> Ap of the characteristic equa-
tion of {un}n=Q satisfy (4) and that A^ and A2 are complex conjugates of each 
other and are not real. Assume that vn does not vanish for infinitely many n, 
then the linear recurrence sequence {unY° Q is not asymptotically positive. 

Secondly, we assume again the relation (4) with real X\ and X2, that is, 
-A2 = A]_. We denote the leading coefficients of the polynomials bi(n) + b2(n) 
and b\{n) - b2(n) by A and B, respectively, and assume further that AB * 0 for 
all sufficiently large n. Say that b\{ji) + b2(n) has degree k, b\(n) - b2(n) 
has degree I. Then (8) holds for all sufficiently large n. 

Hence, we have that, for all sufficiently large even n, 

(7) un = Ankx\ + o(nkAi) 

and, for all sufficiently large odd n, we get 

(8) un = Bnlx\ + o(nlx\). 

Thus, we obtain 

Theorem 2: Suppose that the roots A]., X2, . .., Ap of the characteristic equa-
tion of {un}™=0 satisfy (4) and 0 < Xi = -X2 that are real. Assume further 
that the leading coefficients A and B of the polynomials bi(n) + b2{n) and 
b\(ji) - b2(n) are positive. Then {un}™=0 is asymptotically positive. 

We now leave assumption (4). Then, we have either 

(9) JXJI = |A2| = IA3I = ••• = \\j\ > \\j+l\ > ... > \XP|, 
for some j > 2, or 

(10) \X1\ > |A2| > ... > |AP| . 

First, let us consider the case (10). From the fact that the coefficients 
of the characteristic equation a0, a1? ..., ad_i are all real, Ax must be real. 
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Also, if b\(ri) is not identically zero, we get 

(11) un = CnmX\ + o(nmX\), 

where C is the leading coefficient of the polynomial b\(n) of degree m < m\ - 1. 
Thus, we obtain 

Theorem 3: Suppose that the roots A1? A2, • ••> Xp of the characteristic equa-
tion of {un}™=0 satisfy (10). Assume further that the polynomial b\{jt) is not 
identically zero, that X\ is positive, and that the leading coefficient C of 
b\(ji) is also positive. Then the linear recurrence sequence {un}™=0 is asymp-
totically positive. 

For the remaining case (9), we need to divide into the following three sub-
cases : 

(i) j is even, all A£ are not real for £ = 1, 2, . . . , j and X2i is the com-
plex conjugate of X2i-\ for i = 1, 2, ..., j/2. We assume further that b\(ri) > 
b2(n), ..., bp(n) do not vanish for all n > TIQ. 

Then, applying Theorem 1, {un}™=0 is not asymptotically positive. 

(ii) j is even, 0 < Xi = -A2 are real, all other Xz for I = 3, 4, . .., j are 
not real, and X2^ is the complex conjugate of X^i-\ for i = 2, 3, ..., j/2. We 
suppose again that b\{yi) > b2(n) > • ••? bj (n) do not vanish for all n > n§. 

Then {un}n=o is asymptotically positive if the leading coefficients A, B of 
bi(n) + b2(n) and b\(ri) - b2(n), respectively, are both positive for all suffi-
ciently large n and either 

min{deg(Z?1 (n) + ^(n)), deg(2^(n) - b2(n))} is greater than 

max (deg(2 Re(b2i-i(n)))} 
£ = 2 , 3, ..., j / 2 

or 

min04, 5) - 1 is greater than all the leading coefficients of 
2 Re(b2i-i(n)) for which 

min{deg(Z?1(n) + b2 (n)), deg(^x (n) - 2?2(n))} 

= deg{2 Re(Z?2i-i(n))} for i = 2, 3, ..., j/2. 
(iii) j is odd, 0 < X]_ is real, all other A£ are not real for I = 2, 3, . . . , j 
and A2i +1 is the complex conjugate of A2^ for i = 1, 2, ..., [j/2]. 

Then {un}n=Q is asymptotically positive if the leading coefficient C of 
b\{n) is positive and either deg(Z?]_(n)) is greater than 

max .{deg(2 Re(£2i(n)))} 
% = ±, 2, . . . , L J / 2 J 

or C - 1 is greater than all the leading coefficients of 2 Re(2?27;(n)) for which 

deg(Z?1(n)) = deg(2 Re(b2i(n))) fort = 1, 2, ..., [j/2]. 
We assume always the nonvanishing property of all bl{n) for £=1, 2,..., j , 

for the case (9). If some of the bl(n) are identically zero, say by_{n) , then we 
simply ignore these terms bk(n)X^ , and it is sufficient to trace the above 
discussion. 

Finally, we give explicit conditions for a real linear recurrence sequence 
of order 2 or of order 3 to be asymptotically positive. 

We denote {sn}™=0 a linear recurrence sequence of order 2 with recurrence 
formula sn+2 = a\Sn+i + a$sn. First, we assume that its corresponding charac-
teristic equation of degree 2 has only one real double root a * 0. Then, a\ = 
2a and CCQ = -a2 and the nth term sn can be represented by 
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sn = (pxn + p2)an for n > 0. 
By solving the system of equations 

\sl = (Pi + P2^a> 
we obtain 

px = (sx - sQa)/a. 

Applying the discussion of Theorem 3 above, we have 

Theorem 4: Suppose the characteristic equation of a linear recurrence sequence 
{sn}^=0

 n a s only one real double nonzero root a. Sequence {sn}™=0 is asymptot-
ically positive if and only if a > 0 and either si > SQOI or s0 > 0 and si = SQOL. 

Corollary 4.1: Under the same assumption as in Theorem 4, the sequence {sn}™=0 
is asymptotically positive if and only if a} > 0 and either 2si > CLISQ or s0 > 0 
and 2si = a^SQ. 

By using the relation between a and the a^'s, this Corollary follows imme-
diately from Theorem 4. 

Let us recall the case where the characteristic equation of a linear recur-
rence sequence {sn}™=Q, that is, 

(12) X2 - aY\ - a0 = 0, 

has two distinct roots. 

Theorem 5: Let D = a? + 4aQ be the discriminant of equation (12) of degree 2. 
Suppose the characteristic equation of {sn}n=o has two distinct roots 04 and 
a2. This sequence {sn}™=o is asymptotically positive if and only if VD is real 
and one of the following four conditions is satisfied: 

(i) al = 0, s0 > 0, sl > 0. 

(ii) al > 0, 2sl > (ax - T/D)SQ. 

(iii) ax > 0, 2sl = (a1 - /D)sQ3 SQ > 0, aQ < 0. 

(iv) a1 < 0, 2s1 = (al + /D)sQ9 SQ > 0, aQ > 0. 

Proof: Suppose first that VD is purely imaginary. Then a2 is the complex con-
jugate of 04 and the nth term sn can be represented by 

n , — — n Sn = C^i + C\&i J 

since {sn}^=o is a sequence of real numbers. We now apply Theorem 1. 
For {sn}n=o> Vn, as defined by (5), is identical to sn. The nonvanishing 

assumption of sn = Vn is naturally satisfied, since otherwise {sn}™=o becomes 
the sequence of 0!s which is not asymptotically positive. Hence, all 
assumptions of Theorem 1 are fulfilled. Thus, for purely imaginary JD , isn}™=Q 
is not asymptotically positive by Theorem 1. 

Now we get necessarily that if JD is positive real then 04 > a2. Condition 
(i) is already treated in the proof of Theorem 3 [1]. For the remaining cases, 
(ii), (iii), and (iv), we use a representation formula of sn , 

with 

O -J OC -I I C n d n ) 

c 1 — , Co — 
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In addition to case (ii) treated already in Theorem 3 [1], we are forced to add 
condition (iii) , since c, may be zero. If e, = 0 with positive a-^, then 

3 0̂  1 °1 n 
a2. 

al ~ a2 Thus, we require that SQOU - s, > 0 and a^ > 0, from which we deduce uQ > 0 and 
aQ < 0. 

If a-, < 0 with real positive /D, then a2 < 0 and |aj_| < j a,2. | - F o r asymp-
totic positiveness of {sn}^=0, we require that o^ = 0, o^ > 0, and a1 > 0. Re-
writing these three conditions, we obtain (iv). 

The sufficiency part of Theorem 5 is almost immediate from the representa-
tion formula of sn. Q.E.D. 

Remark: Combining Theorems 4 and 5, we obtain a complete characterization for 
asymptotic positiveness of linear recurrence sequences {sn}°^=Q of order 2 in 
terms only of the coefficients of the recurrence formula and of the initial 
values. 

Now we consider a linear recurrence sequence {tn}~=0 of order 3 with recur-
rence relation 

tn+3 = a2^n+2 + a\tn+i + a$tn. 

Burke & Webb [1] give a sufficient condition for {tn}™=0 to be asymptotically 
positive. 

Theorem 6: Suppose the characteristic equation of {tn}™=0 has distinct roots 
and that they satisfy either a.i, a2» 

(13) 

or 

If 04 > 
ten as 

a 3 and tha 

1 al 1 > 1a2 

lall = la2 
0 and cl > 

I > I ot3 I and a 2 is the complex conjugate of a^. 

0, then {tn}™=0 is asymptotically positive where tn is writ-

(14) tn = C-^a^ + Cpa2 + c3aQ« 
Keeping the assumption of distinct roots, Theorem 6 does not cover the fol-

lowing cases: 

(i) 04 = -0L2 with real oq. 

(ii) 0L2 is the complex conjugate of 04 and the roots satisfy 

lall = la2l = I OL 3 I • 
Case (i) can be treated using Theorem 2; however, (ii) is a special case of (9) 
which brings certain difficulty to determine {tn}n=0 to be asymptotically posi-
tive. 

Burke & Webb give another elegant sufficient condition for {tn}^=0 to be 
asymptotically positive as Theorem 2 in [1], but they implicitly assume (13) 
and also that c\ * 0 in (14). In order to obtain the necessary and sufficient 
conditions for {tn}n=o to be asymptotically positive as in Theorem 5 with the 
assumption of distinct roots, there are too many cases split according to the 
vanishingness of the coefficients in (14). We can treat all of these cases; 
however, we shall give necessary and sufficient conditions for itn}^=Q to be 
asymptotically positive only when the characteristic equation has multiple 
roots, since originally we planned to generalize the results of Burke & Webb 
[1] for multiple roots. 
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Thus, we assume that the characteristic equation of {tn}™=0 of order 3 has 
multiple roots. In order to determine conditions for {tn}„=0 to be asymptoti-
cally positive, Theorem 3 assumes that it is sufficient to consider only the 
following two cases: 

(I) The corresponding characteristic equation of degree 3 has only one triple 
real root 3. 

(II) The corresponding characteristic equation of degree 3 has one double real 
root 3 ^ 0 and another real root y with |ft| ̂  IYI• 

Let us treat case (I). The nth term tn is represented by 

tn = (q-^n2 + q2n + qY)$n for n > 0. 

Solving the system of equations 

- i = (Qi + q2
 + ^ 3 ) 3 

t2 = ( 4 ^ + 2q2 + <?3)32, 

we get 

t9 - It, + tn3 2 -t^ + 4^,3 - 3tn32 

q = -A L _ y_f q = _£ L _ y _ , q = t 

Thus j in case (I), the sequence {tn}n=o is asymptotically positive if and 
only if 3 > 0 and either 

(15) t z - 2tx3 + t 03 2 > 0 

or 

(16) t2 ~ 2tx3 + t03 2 = 0 and -t2 + 4^3 - 3t032 > 0 

or 

(17) t2 - 2tiB + t03 2 = -t 2 + 4^3 - 3t032 = 0 and £0 > 0. 

Condition (16) can be reduced to 

(18) ti > t03 and t2 = 2ti& - tQ$2. 

Condition (17) can also be reduced to 

(19) t2 = t032, ti = tQ$, and tQ > 0. 

Summarizing the above argument, we have 

Theorem 7: Let {tnYn=Q be a linear recurrence sequence of order 3. Suppose 
the characteristic equation of {tnYn=Q has only one triple real root 3. The 
sequence {tn}yl=Q is asymptotically positive if and only if aQ > 0, cu > 0, and 
one of the following three conditions holds: 

(i) 3t2 - 2a2tl - a1tQ > 0. 

(ii) 3t2 - 2a2ti~aitQ = 0 and 3t2 - ka2t\ - 3a\t$ < 0. 

(iii) 3t2 - 2a2ti - a^t^ = 3t2 - ka2ti - 3a.it§ = 0 and £0 > 0. 

These three conditions are mentioned in (15), (18), and (19) above. We 
need only rewrite them as the relations 

a2 = 33, al = -332> aQ = 33, 

since 3 is the triple multiple root of the characteristic equation 

A3 - a2X2-alX - aQ = 0. Q.E.D. 
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For case (II), the nth term tn is represented by 

tn = (qYn + q2)$n + hyn. 

Thus, we have 

( 3 2 + 2 Y
2 ) t 0 - 2Ui + t2 y (3 + 2y ) t 0 - (3 + y ) t i + t2 

and 

?Z = 

<?2 

<?1 (3 - Y ) 2 ' Ll 3(3 - Y) 

- Y ( 2 3 + Y H O + 23t x - t2 

(3 - Y ) : 

We now divide into two subcases: 

(Ha) | 3.| > |Y| • 

In this case, the sequence {tn}n==0 is asymptotically positive if and only 
if 3 > 0 and either ql > 0 or q1 = 0 and qz > 0 or ql = q2 = 0, h > 0, and 
Y > 0. 

(lib) |3| = |Y| • 

In this case, the sequence {tn}n = 0 is asymptotically positive if and only 
if either 3 > 0 and ql > 0 o r 3 > 0 , j > 0, <?I = °  > q2 + h > 0, a n d q2 > ^ o r 

3 < 0, q1 = 0, q2 + h > 0, and q2 < h or qx = q2 = 0, h > 0, and p > 0. 

Remark: For an arbitrary given linear recurrence sequence {tn}^=0, we can give 
explicit conditions for {tn}™=0 to be asymptotically positive when the charac-
teristic equation has one real double root 3 and another real root Y with Y in 
terms of only the coefficients of the recurrence formula and of the initial 
values as in Theorem 6, since we have a2 = 23+Y> &\ = "23Y~ 32> a n d aQ = 32Y-
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1. Introduction and Preliminaries 

In this paper the results established by the first two authors in [3], [4], 
and [5] are extended and generalized. 

After defining (in this section) classes of generalized Lucas numbers, 
{Vn(m)}9 governed by the positive integral parameter/??, the Fibonacci pseudo-
primes of the mth kind (/77-F.Psps.) are characterized in Section 2. A method 
for constructing them is discussed in Section 3, while some numerical results 
concerning these pseudoprimes are presented in Section 4. Finally, in Section 
5, some possible further investigations in this field are outlined. 

Let m be an arbitrary natural number. The generalized Lucas numbers Vn(m) 
(or simply Vn, if there is no fear of confusion) are defined (e.g., see [1] and 
[7]) by the second-order linear recurrence relation 

(1.1) Vn + 2 = mVn + l + Vn; V0 = 2, Vl = m. 
These numbers can also be expressed by means of the closed form expression 
(Binet's form) 

(1.2) Vn = an
m + B£, 

where 

!

Am = //??2 + 4 

am = (m + AJ/2 

3m = -l/am = (777 - AJ/2. 

It can be noted that, letting m = 1 in (1.1) and (1.2), the usual Lucas numbers 
Ln are obtained. 

The following fundamental property of the numbers Vn has been established 
([10], Eq. 108, p. 295): If n is prime, then for all m, 

(1.4) Vn(m) E m (mod n) . 

2. The Fibonacci Pseudoprimes of the mth kind: 
Definition and Some Numerical Aspects 

Rotkiewicz proved [15] that for each m, infinitely many odd composite num-
bers n satisfy (1.4). Odd composite n satisfying (1.4) are called Fibonacci 
pseudoprimes of the 77?th kind (/??-F.Psps.) . Write sk(m) for the kth one. Note 
that s1(l) = 705, Si(2) = 169, and sx(3) = 33. 

Some numerical aspects of the Fibonacci pseudoprimes of the 1st kind [s^(l) 
or 1-F.Psps.] have been investigated by the authors in previous papers [3], 
[4], and [5]. In particular, we found that all 1-F.Psps. below 108 are square-
free and, as expected, most of them are congruent to 1 both modulo 4 (81.3%) 
and modulo 10 (63.2%). A heuristic argument to explain the popularity of the 
classes 1 modulo 4 and 1 modulo 10 can be constructed (cf. [12], p. 1018). 

This work was carried out in the framework of an agreement between the Italian PT Administration 
and the Fondazione Ugo Bordoni. 
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Now, a question arises: "Do odd composites exist which are /??-F.Psps. for 
distinct values of 777?" The answer is the affirmative. 

We define as strong Fibonacci pseudoprimes of the Mth kind (M-sF.Psps.) all 
odd composites which are 777-F.Psps. for m = 1, 2, . .., M. Obviously, from this 
definition, it follows that 1-F.Psps. and 1-sF.Psps. coincide and an Af-sF.Psp. 
is an m-sF.Psp. (1 < m < M) as well. For information, the smallest 2-sF.Psp. 
is sli+(l) = 34,561, while the smallest 3-sF.Psp. is s89(l) = 1,034,881. Note 
that Theorem 6 of [4] states that a 1-F.Psp. is also a 4-F.Psp. so that all 
3-sF.Psps. are also 4-sF.Psps. 

A computer experiment was carried out [8] essentially to compile a table of 
1-F.Psps. up to 108 and to find A/-sF.Psps. (M > 1) below this bound. The 
results can be summarized as follows. There are 852 1-F.Psps. below 108 of 
which 48 are 2-sF.Psps. Four among these numbers are 4-sF.Psps. Among them, 
the rather exceptional number 

S802(D = 87,318,001 = 17 • 71 • 73 • 991 

is a 7-sF.Psp. and is, at the same time, a Carmichael number. Carmichael num-
bers are composite numbers n which satisfy the Fermat congruence Z?n_1 E 1 (mod 
ri) for each b relatively prime to n. Denoting the kth Carmichael number by C^, 
we found that 

S802Q) = Clhh. 

2.1 Tables of 1-F.Psps: A Brief Historical Note 

Earlier authors investigated the 1-F.Psps. and compiled tables of them up 
to certain bounds. To the best of our knowledge, apart from the sporadical 
discoveries of the first few 1-F.Psps. (e.g., see [11]; [5], Sec. 2), the 
oldest table (up to 555,200) containing, among other numbers, such pseudoprimes 
was compiled by Duparc [6] in 1955. In 1976 Yorinaga [17] compiled an 
analogous table to 707,000, and in 1983 Singmaster [16] published a table of 1-
F.Psps. to 100,000 (these numbers were defined as Lucas pseudoprimes by the 
author). A table of 1-F.Psps. up to 108 was given by the first two authors [5] 
in 1987. 

The second author extended this table up to 108 [8]. Copies of it will be 
sent, free of charge, upon request. 

_3. A Method To Obtain m-F.Psps. 

In this section we offer a method to obtain generating formulas for the 
/??-F.Psps. and, as a particular instance, we work out formulas for generating 
M-sF.Psps. (M = 1, 2, 3, 4, 5). The case M = 1 concerns, of course, numbers 
that are simply 1-F.Psps. Some numerical examples are also given. 

First, let us state the following propositions. 

Proposition 1: Let pi = 5k i ± 1 and q- = 5/z • ± 2 be odd rational primes. Let 

n = Y\ p*q* (a e {0, 1}) 

be an odd composite and A(n) = lcm(p. - 1, 2q • + 2)- . . 

I f n - 1 = 0 [mod A ( n ) ] , then Ln = 1 (mod ri) , t h a t i s , n i s a 1-F.Psp. 

Proposition 2: I f pi = Ski ± 1, q- = 8hj ± 3 , and n - 1 = 0 [mod A ( n ) ] , then n 
i s a 2 -F .Psp . 

Proposition 3: I f pi = \l>ki ± u (u = 1, 3 , 4 ) , q- = 13^- ± v (v = 2 , 5 , 6 ) , and 
n - 1 E 0 [mod A ( n ) ] , then n i s a 3 -F .Psp . 
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Proposition 4: If Pi = 29ki ± u (u = 1, 4, 5, 6, 9, 13), qd = 29k-j ± v (v = 2, 3, 
8, 10, 11, 12, 14), and n - 1 E 0 [mod A(ft)], then ft is a'5-F.Psp. 

Proof of Proposition 1: Since a2 and 3X, see (1.3), are integers (more precisely, 
unities) over the quadratic field k(/5) 9 we have (see [9], p. 222) 

(3.1) a ^ " 1 = ^i{~1 = 1 (mod Pi) 

and (from [9], p. 223) 

aJJ = Nal = a131 = -1 (mod q •) , 

6l J + i = m± = 61a1 = -1 (mod q.), 

NE, being the norm of the element £ of a generic quadratic field. 
If ft - 1 E 0 [mod A(ft)], then by (3.1) we can write 

(3.3) a{~1 = ap{Pi ~1} = (c^ ~l)Vi E 1 (mod p.) (t- e ]N = {0, 1, 2, ...}) 

and, analogously, 

(3.4) 3""1 = 1 (mod Pi). 

Under the same condition, by (3.2) we have 

(3.5) al = a:" w- = (a:J ) « = 1 (mod <? •) (rj e IN) 

and 

(3.6) 3i_1 E 1 (mod ^ . ) . 

Then, by (3.3)-(3.6) we obtain the congruences 

(3.7) a^ E ul (mod f\ p(:lqc!) (i.e., mod ri) 

and 

(3.8) g" E 32 (mod ft). 

Finally, by (3.7) and (3.8) we have 

Ln = a'l + ^l E aY + Bx = 1 (mod ft). Q.E.D. 

The proofs of Propositions 2, 3, and 4 are similar to that of Proposition 1 
and are omitted for brevity. 

3.1. Generating 1-F.Psps. 

The first two examples offered in this subsection follow directly from The-
orem 4 of [4] and give formulas for generating 1-F.Psps. which are, in 
addition, Carmichael numbers. The above mentioned theorem states that, if ft = 
PiP2* ••?<•' w i t n Pi a prime of the form 5k i ± 1 (1 < i < s) , is a Carmichael 
number, then n is also a 1-F.Psp. Note that Proposition 1 generalizes this 
theorem. 

Example 1: n = Plp2P^ 
In 1939 Chernick invented universal forms for generating Carmichael numbers 

[2]. In this paper we refer to Ore's book [10] where these formulas are 
reported. 

For constructing numbers ft of the above form (see [10], pp. 334-336), a 
suitable choice of the integral parameters Pj, Pz, and P3 [ibid.] is necessary. 
For instance, for Pl = 5, P2 = 1, and P3 = 6, we obtain 

(3.9) n(t) = (30t + 19)(150£ + 91)(180£ + 109) ( t e l ) . 

(3.2) 
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For a l l va lue s of t such t h a t a l l t h r e e f a c t o r s on the r i g h t - h a n d s i d e of (3 .9 ) 
a re prime ( n e c e s s a r i l y of the form 5k^ ± 1) , n(t) i s both a 1-F.Psp. and a 
Carmichael number. The s m a l l e s t among such numbers i s 

n(4) = 79,624,621 = s 7 6 6 ( l ) = C233. 

Example 2: n = PiP2p3p^ 
A formula yielding Carmichael numbers with four factors can be readily ob-

tained from ([13], p. 99): 

(3.10) n(t) = (30t + l)(60t + l)(90t + l)(180t + 1) (t e IN). 

For all values of £ such that all four factors on the right-hand side of (3.10) 
are prime (necessarily of the form 5k ̂  ± 1), n(t) is both a 1-F.Psp. and a Car-
michael number. The smallest among such numbers is 

n(9) = 192,739,365,541 = C\568. 

Example 3: n = pq^q2 

The following example is based on Proposition 1. Let p = 5k ± 1 and q- = 
5hj ± 2. It can be readily proved that, if n - 1 E 0 [mod A(n)], then any two 
of the three numbers p - 1, q -, + 1, and q~ + 1 have the same greatest common 
divisor d. Therefore, we can write 

(3.11) p - 1 = dP, ql + 1 = dQl9 q2 + 1 = dQ2 

or 
p - 1 = dP, 2qY + 2 = 2dQl9 2q2 + 2 = 2dQ2, 

where the numbers P, Q-, , and Q? are relatively prime in pairs. Consequently, 
we have 

A(n) = lcm(p - I, 2ql + 2, 2q2 + 2) = 2dPQlQ2 

and the sufficient condition for n to be a 1-F.Psp. (see Proposition 1) takes 
the form 

(3.12) n = pqxq2 = 1 (mod 2dPQ1Qz). 

Following Ore (see [10], pp. 335-336), let us replace the values of p, qi, and 
(72 o n the left-hand side of (3.12) by the corresponding values obtainable by 
(3.11). After some manipulations, omitted for brevity, we obtain the congru-
ence 

(3.13) d(QlQ2 - PQl - PQ2) + P - QY - Q2 E 0 (mod 2PQlQ2). 

After choosing suitable values for P, Q±9 and Q2, we find the smallest positive 
solution d$ to the congruence (3.13) so that, by (3.11), we can write 

( p = (dQ + 2tPQlQ2)P + 1, 

(3.14) ) q i = (dQ + 2tPQlQ2)Ql - 1, (t em) 

[q2 = (d0 + 2tPQlQ2)Q2 - 1. 

The choice of P, Q-, , and Q2 must yield a value of CZQ such that p = 5k ± 1 and 
qj = 5hj ±2 (j = 1, 2). For all values of t such that all three numbers p, 
q^9 and q2 are prime, n is a 1-F.Psp. (but, in general, it is not a Carmichael 
number). 

For instance, putting P = 5, QY = 1, and §2 = 2 in (3.13), we obtain J0= 14 
and, by (3.14), 

(3.15) n(t) = qlq2p = (20t + 13)(40t + 27)(100t +71) ( t e i ) . 
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For t < 100,000 t h e r e e x i s t 641 1-F.Psps . of the above form. The s m a l l e s t 
among them i s 

n(2) = s l l l t ( l ) == 1 ,536 ,841 , 

whi le the l a r g e s t i s 

n(99 ,992) = 79 ,982 ,429 ,286 ,524 ,601 ,241 . 
Many more formulas fo r g e n e r a t i n g 1-F.Psps . can be ob ta ined by means of 

o t h e r s u i t a b l e cho ices of P, Qx, and Q2 in ( 3 . 1 3 ) . As a f u r t h e r example, l e t -
t i n g P = 5 , Qx = 2 , and Q2 = 9, we ge t 

(3 .16) n(t) = (360* + 203) (900t + 511)(1620t + 9 1 7 ) ( t e i N ) . 

For t < 100,000 t h e r e e x i s t 1255 1-F.Psps . of t h i s form. The s m a l l e s t among 
them i s 

n(10) = 619 ,127 ,589 ,961 , 

while the largest is 

n(99,994) = 524,794,437,221,730,602,894,281. 

It must be noted that the sets containing the 1-F.Psps. of the forms (3.15) and 
(3.16) are disjoint. 

3.2 Generating m-F.Psps. (m > 1) 

Using the results established in Section 3.1 and Propositions 2-4, we can 
derive formulas for generating M-sF.Psps. (M = 2, 3, 4, 5). 

For example, let us consider expression (3.15) which generates 1-F.Psps. 
and impose that ql (and q2) and p are of the forms 8/2 ± 3 and 8k ± 1, respec-
tively (see Proposition 2). As a particular instance, if we impose that p E -1 
(mod 8 ) , then the congruence t E 0 (mod 2) must necessarily hold. For such 
values of t , the relations q, = 8H-, - 3 and q2 = 8h? + 3 turn out, so that the 
conditions of Proposition 2 are fulfilled (the congruence n - 1 E 0 [mod A(n)] 
holds in (3.15), by construction). 

Consequently, the numbers 

(3.17) n(t) = q±q2p = (20 • It + 13) (40 • It + 27) (100 • It + 71) 

= (40£ + 13)(80£ + 27)(200£ + 71) (t e IN) 

are 2-sF.Psps. for all values of t such that all three factors on the right-
hand side of (3.17) are prime. For t < 50,000, there exist 329 2-sF.Psps. of 
this form. The smallest (largest) among them and the smallest (largest) 1-
F.Psp. obtainable by (3.15) (for t < 100,000) obviously coincide. 

Analogously, by imposing the condition p E 3 (mod 13) (see Proposition 3) 
to (3.17), we obtain the numbers 

(3.18) n(t) = (520t + 93)(1040£ + 187)(2600t + 471) (t e IN), 

which, for all values of t such that all three factors are prime, are 3-
sF.Psps. and, consequently (cf. the end of the fourth paragraph in Section 2 ) , 
are also 4-sF.Psps. For t < 50,000 there exist 256 such numbers. The smallest 
among them is 

n(59) = 291,424,493,801,801, 

while the largest is 

n(49,976) = 175,508,922,783,506,139,921,721. 

Finally, by imposing the condition p E -4 (mod 29) (see Proposition 4) on 
(3.18), we obtain the numbers 
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(3.19) n(t) = (15,080t + 2173)(30,160* + 4347)(75,400t + 10,871) (t e IN) 

which, for all values of t such that all three factors are prime, are 5-sF.Psps. 
For t < 25,000 there exist 73 such numbers. The smallest among them is 

n(47) = 3,593,246,900,779,046,281, 

while the largest is 

n(24,791) = 522,508,952,184,890,040,253,388,041. 

It can be proved that numbers of the form (3.19) cannot be 6-F.Psps. 

4. Carmichael Numbers and Generalized Fibonacci Pseudoprimes: 
A Computer Experiment 

By means of this experiment, we sought numbers which are A/-sF.Psps. for 
comparatively large M. Since the largest value of M which we were aware of 
(namely, M = 1) pertains to a Carmichael number (namely, C24/4 = 87,318,001), we 
submitte d all numbers Ck < 25 • 10 9 to the test 

(4.1) Vc, (m) E m (mod Ck) 

for m = 1, 2, 3, ..., with the aid of an efficient computer algorithm which 
finds Vn reduced modulo n after [log2^] recursive calculations (cf. [14], pp. 
114 ff.). We could carry out this experiment by virtue of the courtesy of the 
editor of this journal who placed the table of Carmichael numbers compiled by 
S. Wagstaff (Purdue University) (cf. [12]) at our disposal. 

While this paper was being refereed, Professor Wilfrid Keller (Rechenzen-
trum der Universitaet Hamburg, FRG) kindly provided us with a table of all 
Ck < 1013 compiled by him. Submitting these numbers to the test (4.1) yielded 
the following update to the results obtained from Wagstafffs table. 

There exist 19,278 Carmichael numbers below 1013: 

3518 among them are 1-F.Psps. 3518 among them are 1-sF.Psps. 
2767 are 2-F.Psps. 599 are 2-sF.Psps. 
1735 are 3-F.Psps. 63 are 3-sF.Psps. 
3679 are 4-F.Psps. 63 are 4-sF.Psps. 
1104 are 5-F.Psps. 9 are 5-sF.Psps. 
1643 are 6-F.Psps. 8 are 6-sF.Psps. 
1258 are 7-F.Psps. 4 are 7-sF.Psps. 
1307 are 8-F.Psps. None of them is an 8-sF.Psp. 
1443 are 9-F.Psps. 
1324 are 10-F.Psps. 

The three additional 7-sF.Psps. we found are 

^1092 = 3,998,554,561 = 31 • 41 • 199 • 15,809, 
^3662 = 103,964,580,721 = 37 • 41 • 43 • 199 • 8009, 
C71 2 2 = 669,923,876,161 = 17 • 43 • 97 • 197 • 199 • 241. 

Since none of these numbers is an 8-sF.Psp., the record was not beaten! We 
offered [4] a prize of 50,000 Italian lire to the first person who would 
communicate to us an 8-sF.Psp. (below 1010 0). Of course, at least one of its 
factors was also requested. 

Currently, the smallest 8-sF.Psp. which we were able to construct [see Sec. 
5(iv)] is the 29-digit Carmichael number 

34,613,972,314,979,099,337,871,392,961 

(three factors). Actually, this number is an 11-sF.Psp. The first author won 
the prize. 

352 [Nov. 



ON THE GENERALIZED FIBONACCI PSEUDOPRIMES 

Incidentally, we used the above mentioned algorithm also to submit all com-
posite Lucas numbers Lp (2 < p < 953, p either a prime or a power of 2) to the 
test 

(4.2) VLp(m) = m (mod Lp) 

for m = 2. We recall (see Corollaries 1 and 3 of [4]) that (4.2) holds for any 
p if 777 = 1. The result of this experiment led us to formulate the following 

Conjecture 1: No composite Lp is a 2-F.Psp. 

which implies the equivalent "Lp is prime iff (4.2) holds for 777 = 2." If Con-
jecture 1 were proved, then a powerful tool for finding very large Lucas primes 
would have been discovered. 

5. Future Work 

The authors intend to continue their study on the properties of 777-F.Psps. 
The principal aim of this further work is: 

(i) to find the smallest /M-sF.Psps. for 8 < M < 15; 
(ii) to evaluate the order of magnitude of the smallest /̂ /-sF.Psps. for 

M > 15; 
(iii) to find the smallest M-sF.Psps. (M > 2) (if any) which are the prod-

uct of exactly two distinct primes (the smallest 1-F.Psp. and 2-
sF.Psp. of this form are s5(l) = F19 = 4181 and s202(1) = 4,403,027, 
respectively). 

(iv) to establish formulas for generating M-sF.Psps. (M > 2) which are, 
at the same time, Carmichael numbers. 
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REPORT ON THE FOURTH INTERNATIONAL CONFERENCE ON 
FIBONACCI NUMBERS AND THEIR APPLICATIONS 

Herta T. Freitag 

Sponsored jointly by the Fibonacci Association and Wake Forest University, 
The Fourth International Conference on Fibonacci Numbers and Their Applications 
was held from July 30 to August 3, 1990. As the Conference took place at Wake 
Forest University, our foreign visitors especially gained a most enjoyable 
insight into one of America's delightful set-ups: a small, highly esteemed, 
liberal arts University, nestled at the outskirts of a faithfully restored 
eighteenth-century town, Winston-Salem, North Carolina. 

Immediately upon arrival it became clear to us how carefully and compe-
tently—under the leadership of the co-chairmen of the International Committee, 
A. F. Horadam (Australia) and A. N. Philippou (Cyprus), as well as of the co-
chairmen of the Local Committee, F. T. Howard and M. E. Waddill—our Conference 
had been planned and prepared. Special thanks must also go to G. E. Bergum, 
editor of our Fibonacci Quarterly, for arranging an outstanding program. 

There were about 50 participants, 40 of whom presented papers. Of these, 
two were women. From some 13 different lands they came; beside the U.S., the 
host country, Italy would have won the prize for maximum attendance, then 
Canada and Scotland, closely followed by Australia and Japan. 

Papers related to the Fibonacci numbers and their ramifications, and to 
recursive sequences and their generalizations, as well as those that analyzed 
and explained number relationships, were presented. Once again, as had been 
the case in our previous conferences, the diversity of the papers gave 
testimony to the fertility of Fibonacci-related mathematics, as well as to the 
fructification of ideas, brought about through our mutual but, at the same 
time, disparate interests. The interplay between theoretically oriented manu-
scripts and those that highlighted practical aspects was, again, conspicuous 
and fascinating. 

The Conference was held in the new Olin Physical Laboratory, which was 
accessible via overcoming several road hurdles that were necessitated by 
construction work across the campus. Although our hosts were most apologetic 
about this, we saw it as a sign of a vital, dynamic and, indeed, growing 
University. 

(Please turn to page 382) 
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EXTENSIONS OF CONGRUENCES OF GLAISHER AND NIELSEN 
CONCERNING STIRLING NUMBERS 

F . T . Howard 
Wake Forest University, Winston-Salem, NC 27109 

(Submitted November 1988) 

1. Introduction 

Let s(n, k) and S(n, k) be the (unsigned) Stirling numbers of the first and 
second kinds, respectively. These numbers are well known and have been 
extensively studied; see, for example, [5, Ch. 5]. The generating functions 
are 

(1.1) (-log(l - x))k = kl X s(n9 k)xn/nl, 
n = k 

(1.2) (ex - l)k = kl Y,S(n, k)xn/n\. 
n = k 

Congruences for the Stirling numbers are apparently not well known. A few 
congruences for prime moduli can be found in [5, pp. 218-19, 229] and other 
books, but surprisingly little work has been done on this problem. Carlitz [4] 
worked out a method for finding congruences for S(n, k) (mod p) , where p is 
prime, and recent papers by the author [8], Kwong [10], Nijenhuis & Wilf [12], 
and Peele [14] indicate an increased interest in Stirling number congruences. 

The main purpose of this paper is to extend results of Glaisher [6] and 
Nielsen [11, p. 338] by proving the following congruences: Let p be an odd 
prime, let n be a positive integer, and suppose pt\n\ that is, pt is the 
highest power of p dividing n. Let B-lr be the 2rth Bernoulli number. For 0 < 

2 and 1 < 2v + 1 < 2p - 2, we have 2r 

(1 

(1 . 

(1 

< 2p 

• 3 ) 

•A) 

• 5) 

sin, n - IT) = fX 2v ) B ^ ' (mod ^ } ' 

s(n, n - 2v - 1) = — ^ + ljBlr (mod p6t), 

n (n + 2v\ o + 
S(n + 2r, n) = — ( ' 2r )BZP (mod p 2 t ) , 2?\ 

(1.6) Sin + 2r+l,n) , ^ ^ »(» +J% | > 2 r (mod p^ ) . 

When n = p and 0 < 2r < p - I, l<2r + l < p - l , congruences (1.3) and 
(1.4) reduce to the previously mentioned theorem of Glaisher, while (1.5) and 
(1.6) reduce to the results of Nielsen. Since extensive tables of the Ber-
noulli numbers are available (the first sixty are listed in [9, p. 234], for 
example) and, since the properties of the Bernoulli numbers are well known, 
perhaps congruences like (1.3)—(1.6) can give us information about the struc-
ture of the Stirling numbers. We note that applications of Glaisher's congru-
ence are given in [2] and [6]. 

We also prove in this paper that, for 0 < m < 2p - 2 and pl\n, 

(1.7) s(n + m, n) = -{ m j(-l) Bm (mod pzt), 

(1.8) S{n, n - m) E-^( n " l)B™ (mod p^ ) , 
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where B^1 is a Bernoulli number of higher order. The numbers B^ are discussed 
in [13, pp. 150-51, 461] and a table of the first thirteen values is given. 

We shall actually prove (1.3)-(1.8) in a more general setting. Since it is 
just as easy to do so, we shall prove congruences for the degenerate Stirling 
numbers s(n, k\X) and S{n, k\x) of Carlitz [3]. By letting X = 0, we obtain 
(1.3)-(1.8). We shall also show how to extend the range of r to 0 < 2P < 
(p - l)pt and 1 < 2r + 1 < (p - l)ptJ although the congruences become more compli-
cated. 

A summary by sections follows. Section 2 is a preliminary section in which 
we give the definitions and basic properties of the special numbers we need and 
state a theorem of Carlitz that is necessary for most of the results of this 
paper. In Section 3 we prove congruences (1.3)-(1.6) in terms of degenerate 
Stirling and Bernoulli numbers. In Section 4 we prove (1.7) and (1.8) in a 
more general setting. In Section 5 we extend (1.3)-(1.6) by increasing the 
range of v. 

2. Preliminaries 

m-r ' 

The primary tool of this paper is the following theorem of Carlitz [2], who 
used it to prove the Glaisher and Nielsen congruences, as well as congruences 
for other special numbers. 

Theorem 2.1 (Carlitz): Take 

f = f i x ) = j^cmxm/ml (c1 = 1), 
m= 1 

where the cm are rational numbers and, for k > 1, define 

( f ) k = ±<%>x»lm\. 
x J ' m=0 

with aS^ = am. Define 6m by means of 

^- = E 6mxVml. 
J m= 0 

Then 
(2.1) ma^=-ktp&ra 

Next we define and give properties of the degenerate Stirling numbers, the 
degenerate Bernoulli numbers, and other special numbers that we need. 

Carlitz [3] defined the degenerate Stirling numbers of the first and second 
kinds, s(n, k\X) and S(n, k\X), by means of 

/I - (I - x)x\k 

(2.2) ^- —) = kl Z s(n, k\x)xn/n\, 
\ A / n=k 

(2.3) ((1 + Xx)^ - I)* = kl Y< S(n, k\x)xn/nl, 
n = k 

where Ay = 1. Comparing (2.2) and (2.3) with (1.1) and (1.2), we see that the 
limiting case X = 0 gives the ordinary Stirling numbers. Carlitz [3] also 
defined B(mk)(A, z) by means of 

(2.4) {(l + xl)U _ , ) k a + Ax)- - t/^iX, «)*-/». 
with the notation 

(2.5) 3(j° U) = 3(j°(A, 0). 

We use the notation 3(m1}(X, z) = $mU, z) . Thus, 
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(2.6) Bm(X, 0) = 3W(X), 

the degenerate Bernoulli number [1], and 3m(0, 0) = Bm, the ordinary Bernoulli 
number [5, p. 48]. It is known [3], that 

(2.7) s(k, k - m\x) = (-l)*^ " ^fi^M, 

(2.8) S(k + m, k\\) = (k I m)$(
m~k)M. 

The author [7] defined a^(A) by means of 

(2.9) (- ^—-Ak = E^'t^M!, 
M - ( 1 - ^ ) A / w=o 

and showed that 

(2.10) s(k + m, k\x) = (k I mym~k)(X), 

(2.11) S(k, k - m\\) = (-ir(^ " ^ a j ^ U ) . 

We shall make use of the numbers 3m(A, 1 - A). It follows from (2.4) that, 
when X = 0, we have 

when m > 1, 
7(A, 1 - A) = 3OT(0, 1) ; _'" 

when m = 1. 
Also, from (2.4), we see that 30(A> 1 - A) = 1, 3i(A, 1 - A) = (1 - A)/2, and, 
for m > 1, 

(2.12) 3m(A, 1 - A) = 3m(A) - mX^m^{X). 

It follows from (2.12), by induction on m, that &m(\, 1 - A) satisfies a degen-
erate Staudt-Clausen theorem in exactly the same way that 3m(A) does [1]. 
Thus, we can say that, if p is a prime number and if A is rational, A = alb 
with b not divisible by p, then, for r > 0, 

f-1 (mod p) if (p - 1)1 2P and p\a, 
(2.13) p32r(A, 1 - A) E ̂  

I 0 (mod p) otherwise. 
(2.14) 2p$2r+1(X, 1 - A) E 0 (mod p) . 

Note that, if A is integral (mod p) and A ^ 0 (mod p), then 3̂ (A, 1 - A) is in-
tegral (mod p). It follows that, if A is integral (mod p), then 

7?7A3m-i(A, 1 - A) E 0 (mod m) . 
Now suppose p is an odd prime and m = 0 (mod pw) . It follows from (2.12) and 
properties of $m(A) [1] that, if m t 0 (mod p - 1) and/or a $ 0 (mod p), then 

(2.15) 6m(A, 1 - A) E 0 (mod p"). 

3. Extensions of the Glaisher-Nielsen Results 

In this section, and in Sections 4 and 5, we always assume that p is an odd 
prime, n is a positive integer, and p^fn. We also assume A is rational and 
integral (mod p); that is, A = alb with b not divisible by p. 

If we apply Theorem 2.1 with f(x) = (1 + Ax)M - 1, and X\i = 1, we see that 

a^°  = 3Lfe)(A), 6m = 6m(A, 1 - A) (rc > 1) , 

where 3^}(A) is defined by (2.4) and (2.5) and 3m(A, 1 - A) is defined by (2.4) 
with k = 1. Thus, (2.1) becomes 
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(3.D ftf>u) - - ^ E ^ u , i - A)e^ru), with B^U) = i. 
Note t h a t 3^}(X) and 3^~n)(X) a r e i n t e g r a l (mod p) for m < (p - l ) p t . 

Theorem 3.1: For m = 1, . . . , 2p - 3 , 

-B^ n ) (X) = B^CX) s - l B f f l a , 1 - A) (mod p 2 * ) . 

If A ̂  0 (mod p), the congruence is valid for m = 1, ..., (p - l)pt. 

Proof: From (3.1) and the properties (2.13)-(2.15) of 3P(X, 1 - X) , we see that 

(3.2) 3i_n)(A) E B ^ a ) E 0 (mod p*), 

for 777 = 1, 2, ..., 2p- 3, m * p - 1, if X E 0 (mod p) . If m = p - 1, then 

3^\)(X) E 3pr-iU) E 0 (mod p*"1). 

If X ̂  0 (mod p), congruence (3.2) holds for m = 1, . . . , (p - l)pt. We note that 
(p-i) E 0 (mod p) for TTZ = 1, 2, ..., 2 p - 3 , m * p - 1. Thus, letting /c = n or 
fc = -n, we see that every term on the right side of (3.1), with the exception of 
of the v = m term, is divisible by p2t . This completes the proof. 

The following corollary is immediate from (2.7) and (2.8). 

Corollary 3.1: For 777 = 1, ...,2p-3, 

s(n, n - m\\) = (-IT-1 ^ ~ l)$m(\, 1 - X) (mod p2t), 

S(n + m, n\\) = ^(n * m)$m(\, 1 - X) (mod p 2 t ) . 

If X t 0 (mod p), the congruences are valid for m = 1, 2, ..., (p - l)pt. 

If 777 is even and we let X = 0 in Corollary 3.1, we obtain congruences (1.3) 
and (1.5). If m is odd and m > 1, we see from Theorem 3.1 that 

B<f> 5 B{
m

n) =0 (mod p2t), 

where B^ is the Bernoulli number of order k, defined by (2.5) with X = 0. 
This is true because the Bernoulli number Bm is 0 when 77? is odd, m > 1. Thus, 
when X = 0, each term on the right side of (3.1), with the exception of the v = 
1 and r = m - 1 terms, is divisible by p3t. Hence, 

n "1 
>2 5^J 2r + 1 

(2r + 1) n 
5 - - 7 " *2r + (2r + D -
2 2r °  n2(2r + 1 ) , ,. 

E K— BZr (mod p 3^). 
4P 

Similarly, 
(-„) _ n2(2r + 1) 

52r + 1 = — B2r (mod p * * ) . 
Thus, we can state the following corollary. 

Corollary 3.2: The ordinary Stirling numbers satisfy congruences (1.3)-(1.6). 

It is not difficult to extend the range of m in Theorem 3.1. We do this in 
Section 5. 
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4. Further Congruences for the Stirling Numbers 

In this section we prove congruences (1.7) and (1.8). Throughout the sec-
tion, we still have the assumptions concerning n, p, t, and A stated at the be-
ginning of Section 3. 

We first apply Theorem 2.1 to 

1 - (1 - x)x 
f(x) = — 

A 
M) We define cr^;(A) by (2.9), and we define Am(X) by means of 

( 4 . 1 ) j - f xX = £ Am(X)xm/ml 
m= 0 [1 - (1 - x ) x ] [ ( l - « ) 1 _ A ] 

Then we have , by Theorem 2 . 1 , 

(4.2) <4*>(X) =-%±pArM«<£lrM-
When A = 0, (4 .1 ) reduces to 

* = y {-l)mB™xm/m\9 
(1 - X)ln(l - X) m = Q m 

where B^ is the Bernoulli number of higher order [10, pp. 150-51]. 

Lemma 4.1: If Am(X) is defined by (4.1) and $^\x) by (2.4) and (2.5), then 

AmM = (-l)m^\x) (m = 0, 1, 2, . . . ) . 

Proof: We first note that 3^(0) = B{™\ 
Using (2.5) and (2.6), we can prove by induction on z that, for all posi-

tive integers z, 
m 

(4.3) B£°a, *) •£$){&• uty'M-
Equation (4.3) is valid for all real z since B^(X, z) is a polynomial in z. 
We note that a more general result could be proved for numbers generated by 
(x/f)k(f + l)z, with / defined by Theorem 2.1. From (2.4), we also have 

(4.4) 6(r(A, A) - BjfU) = m X B ^ a ) = mX(X - 1) •-. (A - m + 1) . 

Simplifying (4.3), with the aid of (4.4), we have, for A * 0, 

(A - 1)(A - 2) .• (A - 777) 

with 3(Q0)(A) = 1. By means of (4.1) we can show that (-l)JAj(X) satisfies the 
same recurrence with A0(X) = 1. This completes the proof. 

Thus, we can write, for all A, 

-k (4.6) c^(A) = f £ (m
r)(-lf^Ma^r(X). 

Before proving the main result of this section, we need to examine the 
properties of 3(Jf) (A) . The first few values are given in the following table. 

V 

3 ^ ( A ) 

0 

1 

1 

(A - l ) / 2 

2 

(A - 1)(A - 5 ) / 6 

3 

-3 (A - 1)(A - 3 ) / 4 

For A = 0, the first thirteen values are given in [11, p. 461]. By the recur-
rence (4.5), we see that if p is an odd prime, 
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p3(*}U) = 0 (mod p) (m = 1, . . . , p - 2 ) , 
, n n (0 (mod p) i f A t 0 (mod p) , 

p3„p_i (A) = S 
p x U (mod p) i f X = 0 (mod p ) , 

e£p)(X) E 0 (mod p ) , 
p3(

p
P

+
+^(A) E 0 (mod p) (k = 1, . . . , p - 3) 

p -̂Y'u) = U 
0 (mod p) i f A t 0 (mod p) 

(mod p) i f A E 0 (mod p ) , 

(2n_n ( ° ( m o d p) i f A ^ 0 (mod p) 
p3(

?rf i }(A) E { 
2 p _ 1 l l / 2 (mod p) i f A E 0 (mod p) , 

3(
2
2
p
P)(A) E 0 (mod p) (p > 3 ) . 

Theorem 4.1: For p > 2 and TT? = 1, . . . , 2 p - 3 , 

a ^ U ) = -aJ,-">(X) E ( - i r + l I BW(X) (mod p 2 i ) . 

Proof: From (4 .6) and p r o p e r t i e s of $^ (A) , we see t h a t , for 1 < m < 2p - 3 , 
777 * p ~ 1 , 

a ^ } ( A ) E a(
m

n)(A) E 0 (mod p*) . 
Also 

a ^ U ) E 0 (mod p * " 1 ) . 

Since (p-i) E 0 (mod p) for 1 < 777 < 2p - 3, m * p - l , w e see that every term 
on the right side of (4.6) (when k = n or k = -ri) is divisible by p2t , except 
the v = m term. This completes the proof. 

The next corollary follows immediately from (2.10) and (2.11). 

Corollary 4.1: For m = 1, . .., 2p - 3, 

s(n + m, n\\) = ^ + W)(-l)m 6^(A) (mod p 2 * ) , 

5(n,. n- m | x) = - * ( " " ^ S ^ U ) (modp2*). 

Corollary 4.2: The ordinary Stirling numbers satisfy congruences (1. 7) and (1.8). 

5. Extensions of Congruences (1.3)-(1.6) 

Let n9 p, t, and A be defined as in Section 3. Suppose m and h are such 
that 2p - 2 < m and 

(p - l)ph_1 < m < (p - l)pk < (p - D p * . 
Then we define /(£, h) by 

It - h It m £ 0 (mod p - 1) , 
ff-/- M = ^ ^ ~ 1 i f 77? E 0 (mod p - 1 ) , 77? ^ 0 (mod p) , /z = 1, 
IK ' ; ) 2 t - ?i - 1 i f m E O (mod p - 1) , 777 i 0 (mod p) , 7z > 1, 

Jit - h - u - I i f m : 0 (mod p(p - 1 ) ) , pu\\m. 
We now extend Theorem 3.1. 

Theorem 5.1: Suppose X = 0 (mod p). With 777, /z, and f(t, K) defined as above, 
we have 

J-n) (A) E 3^(A) E - ^ 3m(A, 1 - A) (mod p/C*.*)). 
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Proof: We f i r s t no te t h a t Theorem 5.1 imp l i e s t h a t , i f m i s r e s t r i c t e d as in 
the s t a t ement of the theorem, then 

((mod p t ) i f m 1 0 (mod p - 1) , 
( 5 . 1 ) ei"W )(A) = 3 ^ } U ) E 0 hmod pt~l) i f m E 0 (mod p - 1) , 777 t 0 (mod p) , 

^(mod p * " " - l ) i f 77? E 0 (mod p ( p - 1 ) ) , pu\\m. 

We first look at the case m = 2p - 2. In (3.1), with k = n or k = -n, and m = 
2p - 2, all terms on the right side with v < m are divisible by p2t except the 
term v = p - 1. We have 

so 

-6^ 2(A) E B g ^ U ) = - ^ ^ 32p.2(X, I - X) (mod p2*"l). 

We now use induction on /??. Assume Theorem 5.1 is true for all positive inte-
gers v such that 2p - 2 < r < m. In particular, assume congruences (5.1) hold 
with m replaced by r. The problem is to show in (3.1) that, for r = 1, ..., 
m - 1, 

(5.2) ^ ) 3 P ( A , 1 - \)^n_\(\) E 0 (mod pfd.V). 

By using the induction hypothesis and the properties of $r(A, 1 - X) discussed 
in Section 2, we can routinely show that (5.2) holds for all cases of m given 
in the definition of fit, h). 

Corollary 5.1: With the hypotheses of Theorem 5.1, 

sin, n - 7771 A) E ̂ (-l)^-l(^ ~ ̂ ^ ( A , 1 " A) (mod pW'V), 

S(n + 777, n\\) E ̂ ( n + 7??)3m(A, 1 - A) (mod pfU>V). 

Now let 
13£ - 7z - w - 1 if 2v E 0 (mod p(p - 1)), pw\\2r, 

git, h) = <3t - h - u - 1 if pw|| (2r + 1), u > 1, 
!3£ - /i - 1 in all other cases. 

By letting A = 0 in Corollary 5.1, we can now prove the following exten-
sions of (1.3)-(1.6). 

Corollary 5.2: Let 2v and 2v + 1 be restricted as TT? is restricted in Theorem 
5.1. Then 

sin, n - 2v) = ^ ~r ̂ r (mod pfit'h)), 

S(n+2r, n) E l ( w ; 2 % M P ^ « ) , 

sin, n - 2r - 1) E ̂ ^ + U (^ "+ X > 2 , (mod p ^ > ) , 

if 77? > (p - l)pt_1, the congruences become more complicated. However, using 
the same kind of reasoning as before, we can state the following result. We 
let fit, t) be defined as in Theorem 5.1 and define y^ and z/2 by 

pyA(n - 1\ vyJ(n + m\ 
r II \ 777 / L || \ 77? / 
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Theorem 5.2: Let (p - l ) p t _ 1 < m < (p - l ) p t and m i 0 (mod (p - l ) p t _ 1 ) . Then 

s(n, n - 7771 X) = ^ ( - l ) ^ - l ( n " 1 )3 m (A, 1 - A) (mod p^i + ^ ( t ' t } ) , 

S(n + 777, n|A) = * ( * + W ) 3 J A , 1 - A) (mod p*2+/<*.*>). 

By letting A = 0 in Theorem 5.2, we get the corresponding congruences for 
the ordinary Stirling numbers. 
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1. Introduction 

Haukkanen has pointed out in [3] the connection that exists between the 
specially multiplicative arithmetical functions (to be defined in Section 2) 
and the Fibonacci sequence. In this paper we shall discuss the similar connec-
tion that exists between certain arithmetical functions and the generalized 
sequences {wn}, where wn = wn(a, b; p, q), i.e., 

WQ = a, u>i = b, and wn = pwn„i - qwn_2> f o r n - 2, 

which have been studied by Horadam [5], [6], [7], and others (see, for example, 
[10]). Here, a, b, p, and q are arbitrary complex numbers, except that a * 0. 

Our aim is to characterize the family of generalized sequences in terms of 
a family of arithmetical functions, and to illustrate how certain properties of 
the sequences reflect properties of the arithmetical functions. This work was 
done while the second author was a visiting Stouffer professor at the Uni-
versity of Kansas during the 1987-1988 academic year. 

General background material on arithmetical functions can be found in most 
texts on number theory, and more specialized material is in the books by 
Apostol [1] and McCarthy [14]. We shall review here and in the following sec-
tion several concepts which are used in this paper. 

A (complex-valued) arithmetical function, /, is called multiplicative if 
f(l) = 1 and f(rs) = f(r)f(s) whenever (r, s) = 1: it is called completely 
multiplicative if f(l) = 1 and f(rs) = f(r)f(s) for all positive integers r and 
s. If f is an arithmetical function and t is a prime, then the formal power 
series 

f(t)(x) = /(1) + f(t)x + /(t2)x2 + . . . 
is called the Bell series of / at t . Bell series are discussed on pages 42-45 
of [1], and in several exercises (1.97-1.102) of [14]. If /is multiplicative, 
then / is determined completely by its Bell series (at all primes t) . If f is 
completely multiplicative, its Bell series at t is 

f(t)(x) = 1 + f(t)x + f(t)2x2 + ... = i _ l
f(t)x. 

We shall abuse the language and refer to the closed form of the Bell series as 
the Bell series itself. It is the relation between arithmetical functions and 
their Bell series that allows us to make the connection between arithmetical 
functions and generalized sequences. 

2. The Sequences {wn} 

An arithmetical function, /, is called specially multiplicative if there 
exist completely multiplicative functions g^ and g2 such that / = gi * g2? the 
Dirichlet convolution of g^ and g2, i.e., 
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for all positive integers r, where d runs over all of the positive divisors of 
r. Specially multiplicative functions arise naturally in several contexts in 
number theory. However, we emphasize that examples can be constructed in a 
completely arbitrary manner, as follows. For each prime t, let at and 3t De 

complex numbers. Let g-y and g^ be the completely multiplicative functions such 
that, for each prime t, g\(t) = at and g^t) = 3t- Let f - g\ * $2' Then / is 
specially multiplicative and, for each prime t and n > 1, 

/(*n) = I>t'CJ"-
,7 = 0 

Specially multiplicative functions were studied first by Vaidyanathaswamy 
[20] under the name "quadratic functions," and the name "specially multiplica-
tive functions" was given to them by Lehmer [11]. These functions are dis-
cussed on pages 18-27 and 65-68 of [14] and in papers by Kesava Menon [8], 
McCarthy [12], [13], Mercier [15], Ramanathan [16], Rankin [17], Redmond & 
Sivaramakrishnan [18], and Sivaramakrishnan [19]. 

If f is specially multiplicative, the Bell series of / at a prime t is 
given by 

1 
f (x) = -, 

{t) 1 - f(t)x + B(t)x2 

where B is the completely multiplicative function for which B(t) = £7-. (£)<7o (t) 
for each t: we note that f(t) = g\(t) + g^it). Furthermore, if / is a multi-
plicative function such that, for each prime t, its Bell series at t is given 
by -| 

1 - ctx + dtx2 

for some complex numbers Ct and dt, then / is specially multiplicative, as it 
was described earlier in this section, with at and 3t the (possibly equal) 
roots of X2 - ctX + dt . 

In [9], Lahiri defined an arithmetical function / to be quasimultiplicative 
if f(l) * 0 and if there is a complex number k * 0 such that f(r)f(s) = kf(rs) 
whenever (p, s) = 1. It follows immediately that k = f(l) and k~lf is multi-
plicative. In fact, an arithmetical function f with jT(l) * 0 is quasimultipli-
cative if and only if f(l)"lf is multiplicative. 

Now we can make precise the connection between the generalized sequences 
{wn} and certain arithmetical functions. 

Theorem 1: For a sequence of complex numbers {cn}, n > 0, there exist complex 
numbers a, b, p, and q such that cn = wn(a, b; p, q) for all n > 0 if and only 
if there is a quasimultiplicative function / and a prime t such that 

(i) f(l)~lf - g\ * Vffz* where g± is specially multiplicative, g^ i-s com~ 
pletely multiplicative, and u is the Mobius function, and 

(ii) cn = f(tn) for all n > 0. 

Proof: The generating function of the generalized sequence {wn}, where Wn = 
wn(a, b; p, q) is, from [6], 

V - -.« - — + ^ ~ Pa^x 

n= 0 
W„ X' 

px + qx2 

Let t be an arbitrary prime, and let g^ be a specially multiplicative function 
such that 

Gl(t)W = 
1 

1 - px + qx2' 
and let g^ be a completely multiplicative function such that g^it) = (pa - b)/a, 
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so that 

v J a + (b - pa)x 

The inverse g2 of g2 with respect to Dirichlet convolution is \ig2 (see Prop. 
1.8 in [14]), and g2lt)(x) = (g2(t)(x))~l (see Th. 2.25 in [1]). Therefore, if / 
is a quasimultiplicative function given by f(r) = a(gi * \ig2) (r) for all r, 
when wn = f(tn) for all n > 0. 

Conversely, let f be a quasimultiplicative function for which (i) holds, 
and suppose that, for some prime t, 

cn = f(tn) for all n > 0. 

Then cn = wn(ct, b; p, q) for all n > 0, where 

a = /(l), p = g\(t), b = a(^x(t) - g2(t)), and q = hl(t)h2(t) , 

where hi and /z2 are completely multiplicative functions such that gi = hi * h2. 

3. Some Examples 

Horadam pointed out in [7] that several sequences of general interest are 
of the kind considered in Section 2. 

(A) Wn = Wn(l, 2; 2, 1). iwn} is the sequence of positive integers. The 
quasimultiplicative function is T, where T (r) is the number of divi-
sors of v. 

(B) Wn = Wn(l, 3; 2, 1). {wn} is the sequence of odd positive integers. 
The function is T * uA, where A is Liouville's function (see [14], p. 
45). 

(C) wn = Wn(a, a + d; 2, 1). {wn} is the arithmetical progression 

a, a + d, a + 2d, ... . 

The function is a(x * ]ig) , where ^ is the completely multiplicative 
function with g(t) = 1 - £?/a . Here, and in other examples, t is an 
arbitrary prime., 

(D) wn = wn{a, aq; q + 1, (7). {wn} is the geometric progression 

a, a<7, a<^2, . . . . 

The function is ah, where h is the completely multiplicative function 
with h(t) = q. 

(E) The Fermat sequences {un} and {vn}, where 

un = wn(l, 3; 3, 2) = 2n + l - 1 and yn = wn(2, 3; 3, 2) = 2n + 1. 

The functions are, respectively, hi * h2 and 2(/Z]_ * /?2 * U#2) > w n e r e 

/zj, /z2, a nd #2 a r e completely multiplicative functions with 

hi(t) = 1, h2(t) = 2, and ^2(£) = 3/2. 

(F) The Pell sequences {un} and {vn}, where 

un = wn(l, 2; 2, -1) and vn = wn(2, 2; 2, -1). 

The functions are, respectively, hi * h2 and 2(hi * h2 * \ig2), where 
hi, h2, and g2 are completely multiplicative functions with 

hi(t) = 1 + /2, /z2(t) = 1 - / 2 , and #2(t) = 1. 
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One more example. In [ 4 ] , Horadam cons ide red the sequence {wn}9 where wn = 
wn(r, v + s; 1, - 1 ) . The func t ion i s r(hi * h2 * vgz) > where /z l 5 h2, and g2 
a re complete ly m u l t i p l i c a t i v e func t ions wi th 

hY{t) = (1 + /f>)/2, hz(t) = (1 - / 5 ) / 2 , and g2(t) = s/r. 

With v = 1 and s = 0 this is, of course, the Fibonacci sequence. 
In several of the examples, a = 1 and b = p. Sequences for which this is 

true are of special interest, and they will be discussed in the following sec-
tion. Thus, we shall consider sequences {un}, where 

un = un(p, q) = wn(l, p; p, q). 
These are the sequences for which the corresponding arithmetical functions are 
specially multiplicative. 

4. The Sequences {unJ 

There exist various characterizations of specially multiplicative func-
tions, and each of them furnishes us with a characterization of the class of 
sequences {un}. Thus, we have the following theorem; no proof will be given, 
and the reader is referred instead to Theorem 1.12 and Exercises 1.101 and 
1.102 in [14]. 

Theorem 2: For a sequence of complex numbers {cn}, n > 0, the following state-
ments are equivalent: 

(i) cn = un(p, q) for complex numbers p and q, and all n > 0. 
(ii) There is a specially multiplicative function f and a prime t such 

that cn = f(tn) for all n > 0. 
(iii) OQ = 1 and there is a complex number a such that, for all 777, n > 1, 

Cm + n~ °mcn ~ acm-\cn-\' 
(iv) CQ = 1 and there is a complex number b such that, for all m, n > 0 

with m < n, 
m 

GmGn ~ L-j Gm + n-2i® • 
i= 0 

(v) There are complex numbers d and 0 such that 

Z V n = y——2-
?2 = 0 1 - ax + exz 

From the details of the proof of this theorem it emerges that, if (i)-(v) 
hold for a sequence {cn}, then d = p = /(t) and a = 2? = e = q = f(t)2 - f(tz). 

Results about specially multiplicative functions now yield results about 
the sequences {un}, and vice versa, of course. For example, by Theorem 2 of 
[18], if un = un(p, q) for n > 0, then, for all n > 1, 

[«/2] . 
^n = E ("1)J n 7 «7)p"-2^J. 

i = 0 \ J I 
This is an old result about these sequences. The original reference is given 
on page 394 of [2]. 

The identities of (iii)and (iv) are special cases of the same general iden-
tity. The latter is obtained from an arithmetical identity involving specially 
multiplicative functions given first in [13] (see also Ex. 1.79 in [14]). Let 
un = un(p, q) for n > 0. If g is an arbitrary arithmetical function and if 
G = g * y, and if t is any prime, then for all m, n > 0 with m < n, 
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__^ . . in 

(1) E£(^)q^-^n-; = i;^(^)^uw+n_2i. 
v=0 i=o 

If # = C> where £(p) = 1 for all r, then G = 6, where 6(1) = 1 and 6(r) = 0 for 
all r > 1, and (1) is the identity of (iv) . If g = 6, then £ = y, and (1) is 
the identity of (iii) . If g = T = c * c , then £ = C, and we obtain from (1) 
the identity 

Y.^Um-iUn-i = E (̂  + 1)^2^+^-2;; 
i= 0 i= 0 

in particular, with m = n, 

^qn-lu\ = J] (n - i + l)q n-zn. U2i 

Kesava Menon [8] associated with a multiplicative function f another multi-
plicative function /*, which he called the norm of /. The definition of f* can 
be found on page 50 of [14] and in several of the papers in our list of refer-
ences. For our purposes, it suffices to note that if g and h are completely 
multiplicative functions, and if / = g * h, then /* is also specially 
multiplicative and, in fact, f* = g2 * h2. Thus, if the sequence {un}, where 
un = un(p, q), is given by un = f(tn) for a prime t, then we can associate with 
{un} the sequence {u*}, where u\ = f*(tn). We have u* = un(p*, q*), where 

P* = f*(t) = g(t)2 + h(t)2 = p2 - 2q and q* = g(t)2h(t)2 = q2. 
Thus, 

W* = Un(P2 ~ 2cL> ̂ 2)» 
From Theorems 4.1 and 4.2 of Sivaramakrishnan [19], which relate the functions 
/ and f* > we obtain two identities relating the sequences {un} and [u%] : 

(2) 4 = "£ + 2 £ ̂ w*.; 
i= 1 

and 

(3) LC-D^M-i = t (-D̂ M-i-
^=0 i=0 

5. Generating Functions 

We can obtain some information about the generating functions of the se-
quences {un}, and related sequences, from the Dirichlet series generating func-
tions of corresponding arithmetical functions. In this section we assume that 
the reader is familiar with at least some of the material in Chapter 5 of [14] 
on Dirichlet series. Theorems about Dirichlet series generating functions 
involve hypotheses concerning the convergence of the series: we shall assume 
that whatever convergence is required does hold. 

It will suffice to give several examples. Mercier ([15], Th. 3) gave the 
generating function of the product of two specially multiplicative functions, 
and we shall use the form of his result given on page 104 of his paper. From 
Mercier's result we obtain the following: if un = un(p, q) and u^ = un(p f, q!) 
for all n > 0, then 

HUnKxU = 1 - qq 'x' 2 

ri^o'n "n 1 - pp'x + [ ( p 2 - q)q ' + ( p ' 2 - qr)q]x2 - pp'qq'x3 + q2ql2xh 

In pa r t i cu l a r , 

S -k n L — (J X unu*xn = ± , 
«=o 1 - p{p2 - 2q)x + (p4 - 3p2q + 2q2)qx2 - p(p2 - 2q)q3x3 + q^xh 

and 
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-,2̂ .2 

W E *n* 2„» = * - $ X . 
1 - p2x + 2(p2 - q)qx2 - p2q2x3 + ^ x 4 

The denominator on the right-hand side of (4) factors into the product of 
two quadratics, one of which is (1 - qx)2. Hence, 

(5) E 4 2^n _ 1 + <flC 
n=o rL (1 - (p2 - 2q)x + ^2x2)(l - qx)' 

and we note that 

1 
(6) E < ^ 2 _ ?^w -L ^2^2 n=0 1 ~ (p ~ 2̂ )o: + <7ZX' 

The generating function (6) can be obtained also from the Corollary to Theorem 
7 of Redmond & Sivaramakrishnan [18]. 

From (5) and (6), we have 

(7) t u2
nx" = 1 ± _ ^ t u*x\ 

n=0 I - qx n=o n 

Now, 
1 + qx " 

— = 1 + E 2<7wtf". 
1 - qx n= I 

Thus, if we multiply out the right-hand side of (7) and compare coefficients of 
xn, we obtain (2). If we replace x by -x in (7) and multiply the left- and 
right-hand sides of the resulting equation by the left- and right-hand sides, 
respectively, of (7), and then compare coefficients of xn, we obtain (3). 

From the Corollary to Theorem 8 of Redmond & Sivaramakrishnan [18], we have 

YJulnxn = (1 + qx) Y.unxYl • 
n=0 n= 0 

Combining this with (7) gives 

n=0 \n=0 /\n=0 

and if we multiply this out and compare coefficients of xn, we obtain 

2 n 
Un = E <7n~^2i-

i= 0 

From Theorem 9 of the same paper, we see that, for a fixed m > 1, 

(8) ]JT um+nxn = (um - qum-ix) £ « / " . 
rc = 0 ft = 0 

If we multiply out the right-hand side and compare coefficients of xn, we find 
that (8) is simply the expression in series form of the identity in (iii) of 
Theorem 2. 

6. Linear Combinations of Sequences 

In this section we shall obtain a result suggested by a theorem of Rankin 
on specially multiplicative functions ([17], Th. 5). We shall say that sequen-
ces {£Tnj)}, j = 1, . . . , k are linearly independent if the only complex numbers 
c\> • • • 9 ck f° r which 

ola(^) + ... + Cj^a^ = 0, for all n > 0, 

for all n > 0 are <?]_ = ••• = ck = 0. 
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Theorem 3: If p1 , . .., pk are distinct complex numbers and if u\J^ = un(p • , q) , 
for j = 1, . . . , k, then the sequences {u^} are linearly independent. 

Proof: Suppose that c1u(^) + — • + cku^} = 0, for n > 0. Then the first k of 
these equations form a system of k linear equations with c^, . .., ck as the 
unknowns, and the matrix of coefficients is [n-J'] , where i - 0, 1, . . . , k - 1 
and j = 1, . .., k. Its first row is 1, 1, ..., I and its second row is p, , p ? , 
. .., p, . Furthermore, as we have noted in Section 4, 

ill] 

r= 0 ^ = L ( - i ) T ;i>7-"2r<?1 

Thus, if i > 2, then by adding appropriate multiples of rows i - 2[i/2], . .., 
i - 2 to row i, the matrix can be transformed into one having pk, ..., pj for 
its ith row. The determinant of the matrix of coefficients is unchanged by 
this transformation. Thus, 

de t [ M
( / } ] 

1 
Pi 

f c - 1 

1 
Pi 

>r 

i 

,fe-i 
[1 (P; - P,-) * 0. 

1 < i < j < k 

Therefore, C\ = ••• = Cy = 0. 

Theorem 4: Let p13 ..., p, be distinct complex numbers and let u^} = un(p-, q) 
for j = 1, . . . , k. If, for complex numbers c ^ , . . . , c k , we have 

wn = c ^ ^ + .-. + cku^ = un(p, q), 

for some p and for all n > 0, then for some h with 1 < h < k, we have cJ/, = i, 
Cj = 0, for j * h and p = p h . 
Proof: We shall use identity (iv) of Theorem 2. We have, for all rn, n > 0 with 
m < n, 

k 
i„ = y^ ^ , o-(77' = y^ <7v' y^ ^ . ?. / , 0 -

i=0 j - I 
k 

L'/E^W?* = S ̂ ^M^-
Also , 

,/ = 1 i = 0 

T.CiWVn = E W y ( j ) 

Thus, i f w < «, 

(9) 
and a l s o 

0, 

ZM^-^f)^ o. 
Therefore, (9) holds for all ///, n > 0, without regard to the relative sizes of 
m and n. Hence, for each (fixed) /z, 

cj(un - uY/) = 0, for j = 1, ..., k. 
Since uQ = 1, we must have c- * 0 for some j . Suppose Cj * 0; then Un = W 
for all n > 0, and 

W 

(h) 

1990] 

2 <Vv; + (c// " 1 ) w « = 0? for aJL1 n " °" 
j = i 

j 
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Thus, o-, = 1 and c- = 0, for j * h. Further, 
(h) Ph = u\ } = ul = p. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. Hillman 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to 
Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. 

Each solution should be on a separate sheet (or sheets) and must be 
received within six months of publication of the problem. Solutions typed in 
the format used below will be given preference. Proposers of problems should 
include solutions. 

Anyone desiring acknowledgment of contributions should enclose a stamped, 
self-addressed card (or envelope) . 

BASIC FORMULAS 

The F ibonacc i numbers F and the Lucas numbers Ln s a t i s f y 

F ^o = F x l + F , Fn = 0, F, = 1; 
n + 2 n+ I n ' 0 1 ' 

L , n — Ju , i i Li % Lip, n+ 2 n+ I n ' 0 2 , L, 1. 

Also , a = (1 + / 5 ) / 2 , 3 = (1 - / 5 ) / 2 , Fn = (an - 3 n ) / / 5 , and Ln = an + Bn. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-676 Proposed by Herta T. Freitag, Roanoke, VA 

Let Tn be the nth t r i a n g u l a r number n(n + l ) / 2 . C h a r a c t e r i z e the p o s i t i v e 
i n t e g e r s n such t h a t 

T 
J- Y) i= 1 

B-677 Proposed by Herta T. Freitag, Roanoke, VA 

Let Tn = n(n + l ) / 2 . C h a r a c t e r i z e the p o s i t i v e i n t e g e r s n wi th 

i= 1 
EJ? 

B-678 Proposed by R. Andre-Jeannin, Sfax, Tunisia 

Show t h a t and L 4n + 3 a r e never t r i a n g u l a r numbers. 

B-679 Proposed by R. Andre-Jeannin, Sfax, Tunisia 

Express Ln^2
Ln-lLn+lLn+2 a s a polynomial in Ln. 

1990] 371 



ELEMENTARY PROBLEMS AND SOLUTIONS 

B-680 Proposed by Russell Jay Hendel & Sandra A. Monteferrante, 
Bowling College, Oakdale, NY 

For an i n t e g e r a > 0, de f ine a sequence x Q , x, , . . . by x„ = 0, X-, = 1, and 
x ^0 = ax _,_, + x^ for ft > 0. Let d = (a 2 + 4 ) 1 / 2 . For n > 2, what i s the n e a r -

n+2 n +1 n 
e s t i n t e g e r to Jx n ? 
B-681 Proposed by H.-J. Seiffert, Berlin, Germany 

Let n be a nonnegat ive i n t e g e r , /c > 2 an even i n t e g e r , and p £ {0, 1, . . . 9k - 1} . 
Show t h a t 

Fkn + r E ^fc + r " *V>* + Fr (*od L^ - 2) . 

SOLUTIONS 

Golden Geometric P r o g r e s s i o n s 

B-652 Proposed by Herta T. Freitag, Roanoke, VA 

Let a = (1 + / 5 ) / 2 , 

n n 

SAn) = E a k a n d 5 2 ( n ) = Z a~fe-
k = l k=l 

Determine m as a func t ion of ft such t h a t - aFm i s a F ibonacc i number. 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

Both SAn) and SAn) a r e geometr ic s e r i e s , whose sums a re 

u(un - 1) 1 an - 1 
S\ (n) = and S9(n) = —- • —. 

1 a - 1 ^ or' a - 1 
r e s p e c t i v e l y . Hence, i f 3 denotes (1 - A ) / 2 , then 

£i(ft) „ a2(an - am~l) + ( a n - B'77"1) 
— uF = a(an - F ) = = F 
S2(n) m k m) a - 3 

when m = n + 1. 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, L. Cseh, Piero 
Filipponi, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the 
proposer. 

P y t h a g o r e a n T r ip l e s 

B-653 Proposed by Herta T. Freitag, Roanoke, VA 

The s i d e s of a t r i a n g l e a r e a = ^ 2 n + 3 , b = F 3F' a n d c = F,F F wi th 
ft a p o s i t i v e i n t e g e r . 

( i ) I s the t r i a n g l e a c u t e , r i g h t , or obtuse? 
( i i ) Express the a rea as a product of F ibonacc i numbers. 
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Solution by Paul S. Bruckman, Edmonds, WA 

Note that 

b = ^ + 2 + Fn + l^Fn + 2 ~ Fn+1^ = FL 2 " Fn + 1 ' 
° = 2Fn + 2Fn+l; 

and a = F2^_„ + F1 ^ , . 
n + z n +1 

We readily see that the given triangle is a Pythagorean (right) triangle, and 
that it satisfies: a1 = b2 + c1, i.e., a is the hypotenuse. 

If A is its area, then 

A = -be = Fn
Fn+lFn+2Fn + 3-

Also solved by L. Cseh, Piero Filipponi, L. Kuipers, Y. H. Harris Kwong, 
Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the proposer. 

Infinite Series 

B-654 Proposed by Alejandro Necochea, Pan American U. , Edinburgh, TX 

Sum the infinite series 

* - ! 2lk k 

Solution by Wray Brady, Axixic Jalisco, Mexico 

f(x) = x/(1 - x - x2) is the generating function for the series 

k= l K 

which series converges if \x\ < I/a. Thus, the sum of the series is 

/(1/2) + /(1/4) = 26/11. 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, L. Cseh, Russell Euler, 
Piero Filipponi, Herta T. Freitag, Russell Jay Hendel, Joseph J. Kostal, L. 
Kuipers, Y. H. Harris Kwong, B. S. Popov, H.-J. Seiffert, Sahib Singh, and 
the proposer. 

Farey Fractions 

B-655 Proposed by L. Kuipers, Sierre, Switzerland 

Prove that the ratio of integers x/y such that 
F2n ^ x ^ F2n+l 

F2n + 2 y F2n + 3 
and with smallest denominator y is (F0 + Fn ,i)/(Fn , 0 + Fn l Q ) , 

# v 2n 2n+ly' v z n + 2 2 n + 3 y 

Solution by Sahib Singh, Clarion University, Clarion, PA 
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Since 

F2n + l 
F2n + 3 

therefore 

F2n 

Fin 1 
F2n+2 F2n+2F2n+Z> 

_j F2n+l 

^2n+2 r 2n + 3 

can be regarded as adjacent fractions of the Farey sequence of order F2ri + 3 (see 

Question 5 on page 173 of An Introduction to the Theory of Numbers by Ivan 
Niven and H. S. Zuckerman, 4th ed. [New York: Wiley & Sons, 1980]). Hence, by 
Theorem 6.4 {Ibid., page 171), the desired conclusion follows. 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, B. S. Popov, and the 
proposer. 

Closed Form 

B-656 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Find a closed form for the sum 

sn =_Zw
kPn~k> 

k = 0 

where wn s a t i s f i e s wn = pwyi_l - qwn_^ for n i n {2, 3 , . . . }, w i th p and q non-
zero c o n s t a n t s . 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

It is a routine exercise to show that 

aak + b$k 

wh = 

where 

* 

a = (p + /p2 - 4<?)/2, 3 = (p - /p2 - 4<?)/2, 

a = u1 - 3^0, and b = OLWQ - W-^. 

The formula for w^ leads to 
n a n+l _ a n + l h pn+l _ $n+l 

sn = y\ui v = + — • • 
n
 k=Qk a - 3 p - a a - 3 p - 3 

Since a + 3 = p and a3 = q> we have 

= aa(pn+l - a n + 1 ) + £ 3 ( p n + 1 - 3^+ 1) 
n ~ (a - 3)a3 

_ p n + 1 ( a a + ftg) - (aan + 2 + Z?3n+2) _ Pn + 1 ^ i " ^n+2 
<?(a - 3) q 
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Also solved by Paul S. Bruckman, L. Cseh, Russell Euler, Piero Filipponi, 
L. Kuipers, B. S. Popov, H.-J. Seiffert, and the proposer. 

Disjoint I n c r e a s i n g S e q u e n c e s 

B-657 Proposed by Clark Kimberling, U. of Evansville, Evansville, IN 

Let m be an i n t e g e r and m > 3 . Prove t h a t no two of the i n t e g e r s 

k(mFn + Fn_l) for k = 1, 2, . . . , 777 - 1 and n = 0, 1, 2, . . . 
a r e e q u a l . Here F_, = 1. 

Composite of solutions by Paul S. Bruckman, Edmonds, WA, and Philip L. Mana, 
Albuquerque, NM 

Assume t h a t m > 3; u, v e N = {0, 1, ...}; 

(1) j , k e { 1 , 2, . . . , m - 1} ; 
(2) j(mFu + F u _ i ) = k(mFv + Fv^). 

We wish to show that j = k and u = v. It is easily seen that 

mFn + Fn„l > 0, for n > 0. 

Therefore, if u = V, then j = k as desired. Now there is no loss of generality 
in assuming that 0 < u < V. 

If u = 0, then v > 0 and (2) gives 

j = k(mFv + iVi) ^ >", 

which contradicts (1). If u = 1, then y > 1, and (2) gives 

mj = k {mFv + Fv _ 1) . 

Thus, 777(j - fcFy) = kFv_l > 1. So 
j - kFv > 1 and j > fcFy > kFv„l = mU - kFv) > m, 

again contradicting (1). 
Now we can assume that 2 < u < V. Also, we assume that gcd(j, k) = 1 since 

this is the situation when j and k are divided by gcd(j, k) in (1). Then (2) 
shows that 

j\(mFv + Fv-0 

and we let mF v + Fv_l = cj. This leads to mFu + Fu-i = ck and 

c(kFv - jFu) = (mFu + Fu_l)Fv - (mFv + FV^)FU 

= Fu_lFv - FV.YFU = (-lfFy_w. 

Hence, c|Fy_M, and we let d = Fv.Jc. Now kFv - jFu = (-l)ud; therefore, 

(3) jFu = kFv - (-l)ud = [(mFu + Fu_x)lc\Fv - (-l)ud. 

Since V > 3 and v - u < V„ we have Fy > î y _ u = cd. Hence, u > 2, and (3) gives 

jFu > (mFu + Fu_l)d - d > (mFu + l)d - d = mdFu . 

Thus, j > md > m. This contradiction and the previous work show that u = V and 
3 = k. 

Also solved by Piero Filipponi and the proposer. 
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facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-446 Proposed by J. A. Sjogren, University of Santa Clara, Santa Clara, CA 

Establish the following result: 

Let n be a whole number and, for any rational number q, let [q] be the 
greatest integer contained in q. Then 

fn= n (3 + 2cosM). 
k = l 

Here, an empty product is to be interpreted as unity. 

H-447 Proposed by Albert A. Mullin, Huntsville, AL 

Determine the minimal number of one-ohm resistors necessary to realize a 
two-terminal circuit to within 10~6 ohms of e ohms of resistance. The two-
terminal circuit is permitted to be non-series-parallel; i.e., we allow bridge-
type sub-circuits, among others. (2) How is this minimal number of unit 
resistors increased if only series-parallel sub-circuits are permitted? Of 
course, e is the usual transcendental number. 

H-448 Proposed by T. V. Padmakumar, Trivandrum, India 

If n is any number and a±, a2> . . . , am are prime to n (ji > a^, a2, . . . , a w ) , 
then (a-^2 ••• am^2 - 1 (mod n) . [The number of positive integers less than n 
and prime to it is denoted by (|>(n) = m* ] 

SOLUTIONS 

Sum Integrals 

H-425 Proposed by Stanley Rabinowitz, Littleton, MA 
(Vol. 26, no. 4, November 1988) 

Let Fn(x) be the nth F ibonacc i polynomial [Fl(x) = 1, F2 O ) = x, Fn + 2(oo) = 
xFn+l(x) + Fn(x).] 

Eva lua t e : (a) I Fn(x)dx (b) f F^(x)dx 
^0 Jo 
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Solution by Paul S. Bruckman, Edmonds, WA 

It may readily be shown that 

(1) Fn(x) = bn 

, n = 1, 2, 3, . . . , 

a(x) = \{x + /*2 + 4), b E b{x) E %(x - /^2 + 4) , 

a - b 
where 

(2) a 

Note 

(3) a + b = x, a - b = (x2 + 4)^, ab = -1. 

We may also define the Lucas polynomials as follows: 

(4) L1(x) = x, L2(x) = x2 + 2, Ln+Z(x) = xLn+1(x) + Ln(x). 

Therefore, we find that 

(5) Ln(x) = an + bn, n = 1, 2, 3, . . . . 

It is easy to differentiate a and b (with respect to x), and we find: 

(6) a'(x) = a/(a - b), b '(x) = -b/(a - b). 

From (6), it follows that 

(7) L^(x) = nFn(x). 

This implies the indefinite integral: 

/ -
1 

(8) J Fn(x)dx = ~Ln(x). 
Now Ln(l) = Ln, the standard Lucas numbers, while Ln(0) = 1 + (-1)" = 2en, 
where en is the characteristic function of the even integers. Therefore, we 
obtain the solution to part (a): 

(9) 
Jo 

Fn(x)dx = -(Ln - 2en) . 

Solution to part (b): 

Consider the expression Sn(x) defined as follows: 
n- 1 

(10) Sn(x) = £ {-l)n-l-kLlk+l(x)l{2k + 1), n = 1, 2, 3, ... . 
k = o 

D i f f e r e n t i a t i n g Sn term by term, we o b t a i n [us ing (7) and ( 1 ) ] : 
~a2k + l _ b2k + V 

S'nix) =nY,{-Dn-l-kF2k + l{x) =n^{-l)n-1-
k=0 k=0 

-(a2 + l)~L(a - 1 (srZn ( - l ) n ) - -
b 

(a - b)^ ' " v~ v " ' ' (a - b) 

= (a - b)~2(a2n - (-l)n + b2n - ( - l ) n ) 

= (an - bn)2(a - b)~2, 

a - b 

(b2 + l)~Hb2n- ( - D n ) 

(11) S'(x) = F2(x). 
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It follows from (11) that 

(12) f F%(x)dx = Sn(l) - Sn(0). 

Since L?k+l(0) = 2e2k+l = 0, we see that Sn(0) = 0. Hence, 

(13) [ F*(x)dx = *£ (-l)r 
2fc + 1 

I t does not appear p o s s i b l e to s impl i fy the foregoing exp re s s ion f u r t h e r , i n t o 
some kind of c losed form. 

Also solved by O. Brugia & P . Filipponi, R. Euler, C. Georghiou, R. Andre-
Jeannin, L. Kuipers, H.-J. Seiffert, J. Shallit, and D. Zeitlin. Georghiou 
mentioned that part (a) is identical to H-410. 

Anothe r I d e n t i t y 

H-426 Proposed by Larry Taylor, Rego Park, NY 
(Vol. 26, no. 4, November 1988) 

Let j , k, m, and n be i n t e g e r s . Prove t h a t 

(FnFm+k-j ~ FmFn+k-j^ (~l^m = (FkFj + n-m ~ Fj Fk+n ~ n) (~1)J -

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

Our s o l u t i o n w i l l use the fo l lowing known r e s u l t s : 

(1) 5FtFe - 5FsFt = Ls + t~ ( - l ) * L 8 _ t 

and 

(2) ( - 1 ) % - L.t. 
[For (1), see (10) and (12) on page 115 of the April 1975 issue of this jour-
nal; for (2), see exercises 3 and 9 on page 29 of Fibonacci and Lucas Numbers 
by Verner E. Hoggatt, Jr. (Boston: Houghton Mifflin, 1969.] 

We now use the above information to produce the following collection of 
equations, each of which is equivalent to the desired result. 

5{F„Fm + k_j - FmFn+k-t)(-l)'n 

= 5(^F, + „_„ - FjFk + n_J{-l)i + [Ln + „+k-j - (-l)nLm+k_^n - L„+n+k.j 

+ ( - D " £ „ + f t . j . j ( - i r 
= lLn+k+j-n ~ (-1) Lj + n_n_k - L n + , + k.n + (-1)"" Lk + n_m_j ] ( - l ) J 

— ( — 1 ) ' ' Lr:+ K - j - n + Ln + k - j - n 

= -(-Dk+JLj + K _ n „ k + Lk + n.m.d + (-l)m+n'k-JLm+k_d_K 

= F-^+k.j-n) + {~D2H-i)-2r- {-iT+n-k-'L^k_;_n 

= ^ - ( m + k - j ' - n ) + ( " 1 ) ^ K ~ C ~ KLri + ;; _ -j _ n 

= L_^ri+ k - j - n) 

Since the last equality holds by (2), our solution is complete. 
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Also solved by P. Bruckman, P. Filipponi, C. Georghiou, R. Hendel, R. 
Andre-Jeannin, L. Kuipers, H.-J. Seiffert, S. Singh, and the proposer. 

A R e c u r r e n t Composition 

H-427 Proposed by Piero Filipponi, Rome, Italy 
(Vol. 26, no. 4, November 1988) 

Let C(n, k) = Cl(n, k) denote the b inomia l c o e f f i c i e n t (£) . 

Let C2(n, k) = C[C(n, k), k] and, i n g e n e r a l , 

Q ( n , k) = C(C{...[C(n, k), k]}). 

For given n and i , i s i t p o s s i b l e to determine the va lue k$ of k for which 

Ci{n, kQ) > Ci(n, k) (k = 0, 1, . . . , n; k * k0)l 

Solution by Paul S. Bruckman, Edmonds, WA 

We may make the problem a b i t more p r e c i s e by r e d e f i n i n g k$ uniquely as 
f o l l o w s : 

(1) Ci{ni kQ) > Ci{n9 k), k = 0, 1, 2, . . . , n, 

with /CQ being the smallest integer with this property. 

Of course, ?CQ = k§(n, i), dependent on the values of n and i . 
We may readily show that k§ as thus defined is uniquely determined. We see 

that, for all n > 1, 
(2) Ci(n, 0) = 1; Ci{n, 1) = Ci(n, n - 1) = n; Ci(n, n) = 0, 

from which the conclusion follows. 

The construction of kQ is much more difficult in the general case; however, 
for i = 1, the solution is well known, namely: 

(3) kQ(n, 1) = [n/2]. 
In other words, given n, the maximum value of (£) is assumed at k - [n/2] (and 
also at k = [\{n +1)], which we ignore, due to our uniqueness definition). 

Even the case i = 2 readily becomes formidable; however, we may make some 
statistical inferences, by means of Stirling's formula, which may have some 
validity as n •> «>. By means of a TT-60 Scientific Calculator, the following 
table was obtained: 

n k0(n, 2) n k0(n, 2) n k0(n, 2) 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0 
0 
1 
1 
2 
3 
4 
4 
5 

9 
10 
11 
12 
13 
14 
15 
16 
17 

6 
6 
7 
8 
8 
9 
10 
10 
11 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

12 
13 
13 
14 
15 
15 
16 
17 
17 
18 

It appears from the table that k$(ji, 2) ~ In / 3, at least asymptotically. We 
conjecture that, given i , a constant 0(i) exists such that 
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(4) k$(n, i) ~ n • 0(i), as n + °°. 
To test this hypothesis, we note that, for most values of k, C^(n, k) is of a 
much higher order of magnitude than k. Using the approximate relation 

( Yl\ 71 

V) ~ FT' v a l i d when n/k is large, 
as well as the obvious recursion 

(6) Ci + 1(n, k) = (Ci° J/ k ) ) , 
we obtain the asymptotic relation 

(Q(n, k))k 

(7) Ci + i(n, k) ~ , for all except the extreme values of k. 

We may make another observation, namely, that the sequence 

Kn = [k0(n, i))i=l 

is nondecreasing for a given n. To see this, let u=k§(n, i) , i? =/CQ (n, £ + 1) . 
Then, by definition, C^(n9 v) < Ci(n, u) and Q+ 1(n, w) < Ĉ  + 1(n, y) . Thus, 

which implies 

(8) u < V. 
We assume the relationship in (4); letting 6 = 0(2) and applying Stirling's 

formula, we obtain: 

(9) Cl(n, Qn) ~ A^'^B", where Al= (2TT0(1 - Q))~h, Bl = (08(1 - 0)1"6)"1. 

Since C]_(n, Qn) is generally much larger than Qn, we may apply (5) with k set 
to equal Qn and obtain, after a second application of Stirling's formula: 

(10) C2(n, Qn) ~ A2n~^ ~^nQ B^cf, where A2 = (2TT0)^, 

#2 = (eA1/Q)Q, and C2 = 5^. 

Note that C^iyi* Qn) is dominated by the term C2 = (5]_ ) . We may perform a 
similar computation, only this time letting 0 = 0(3); we then find that 

C3(n, Qn) ~Ain-^l + in% + n26l)B^cfdf, 
where 53 and C3 are constants and D$ = B^ [note that A^ and B^ are defined as 
in (9), but have different values, since a different value of 0 is used to 
compute them]. We note that C$(n9 Qn) is dominated by the term 

of = (<)*\ 
It appears that if we can determine 0 such that B^ and B^ are maximized, we 
can determine k$(n, 2) and /CQ(W, 3), respectively. Generalizing further, we 
see that 0(i) = 0 may be determined, according to this line of reasoning, by 
maximizing the expression 

(li) B ( ~ 1 = Q~Qi (1 - e)^1-0)6'" 

Since 0 e (0, 1), we see that the above expression exceeds unity; hence, its 
logarithm is positive. Letting /(6, i) equal the logarithm, we thus seek to 
maximize the expression: 

(12) /(0, i) = -0* log 0 - Qi~l(l ~ 0) log (1 - 0). 
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Note that f > 0 if 0 G (0, 1), while 

/(0, i) = lim /(0, i) = 0 and /(I, i) = lim_/(6, £) = 0; 
0 -*- 0 6 -> 1" 

hence, / does indeed assume a maximum value for some 0 e (0, 1). To find this 
value of 0(i), we need to solve the equation /'(0, i) = 0, which yields the 
transcendental equation 

(13) (H1) log (1 - 0) - 0 log 0 = 0. 

Clearly, for i = 1, we obtain the value 0 = 0(1) = %, which is correct. For 
i = 2, we obtain, after some computation on the TI-60, the value 

(14) 0(2) = .7035060764. 

For a few other values of i , the following values were obtained, as the solu-
tions of (13): 

(15) 0(3) = .78783 98702, 0(4) = .83417 45130, 
0(5) = .86358 23417, 0(6) = .88395 71002. 

It is conjectured that, asymptotically at least, the above algorithm yields the 
appropriate value of 0(i), such that /c0(n, i) is validly obtained in (4). As 
for the smaller values of n, no inference is provided by this procedure. 

Same Difference 

H-428 Proposed by Larry Taylor, Rego Park, NY 
(Vol. 27, no. 1, February 1989) 

Let j , m, and n be integers. Let a and b be relatively prime even-odd in-
tegers with b not divisible by 5. Let An = aLn + bFn . Then An = An+i - An_i 
with initial values Ai = b + a, A_i = b - a. 

Prove that the following three numbers 

are in arithmetic progression. 

Solution by Russell Jay Hendel, Bowling College, Oakdale, NY 

We solve the problem without the divisibility restrictions on a and b. 
First, observe that [2x, y, 2z\ are in arithmetic progression iff x + z = y. 
Next, observe that An are linear combinations of the Fn and Ln. Therefore, it 
suffices to prove the two equations, 

Fn-jLm_- + F2jLn + m = Fn + JLm + j and Fn_iFm_. + F2jFn + m = Fn + JFm + j . 

We will prove only second equation, proof of the first equation being similar. 

By Binet's formula (which clearly holds also for subscripts with negative 
values), we reduce proof of this equation to proof of the equality 

^-pn + m-lj + qn + m-2j] _ ^n + m^2j + ^Zj^n+m^ 

= [qn~Jpm~J' + pn~Jqm'J'] - (pn+Jqm + J + pm+J'qn + J) , 

wi th p and q the r o o t s of x2 - x - 1 = 0. To complete the proof , we m u l t i p l y 
the b racke ted exp re s s ion on each s i de of t h i s e q u a l i t y by 1 = (pq) 2J . This 
shows t h a t both s i d e s of the equa t ion a re zero and completes the proof . 

Also solved by P. Bruckman, P. Filipponi, R. Andre-Jeannin, L. Kuipers, 
Y. H. Harris Kwong, and the proposer. 
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Editorial Note: ' 

The editor welcomes solutions of any previously proposed problem. Also, in 
order to avoid misreading proposals or solutions, it would be appreciated if 
submitted material is typed or printed. 

(Continued from page 354) 

Once in our medium-sized auditorium, we ;were intrigued (and assisted) by 
"the wonders technology had wrought": there were two overhead projectors, and 
blackboards—^ugh, whiteboards!—came from everywhere; up and down they went, 
above and below, over and across, sometimes interceded by a screen that 
appeared from nowhere..., and all of it happened by the touch of a button, 
skillfully activated by the cognoscenti. 

Of course, there was not only food for the mind and the soul, but also for 
the stomach. Wake Forest University graciously treated us to daily morning and 
afternoon coffee breaks, and the president, Dr. Thomas K. Hearn, Jr., hosted a 
wine and cheese reception on campus. 

Even though our daily meetings took place from 9:00 a.m. till noon, and 
from 2:00 p.m. to 5:00 p.m., we did not ALWAYS work. In midweek, the afternoon 
was freed, and we took off to Doughton Park in the beautiful Blue Ridge 
Mountains of North Carolina. There the group dispersed to enjoy the magnifi-
cent scenery with a choice of several hiking trails that offer spectacular 
vistas. Those of us who preferred less energetic activities, relaxed at a 
coffee shop where we did, what we seem to do best, or at least most often, and 
with pleasure: exchange mathematical ideas. All this was followed by a lavish, 
typically North Carolinian dinner at Shatley Springs. 

The next day we celebrated our customary evening banquet. It was held on 
campus, and was at once elegant and friendly, somehow reflecting the spirit of 
our group. We speak with many different foreign accents, yet we all understand 
each other, professionally and personally. The magnetism of our beloved disci-
pline has somehow promoted a very special bond of friendship. Many of us had 
been together at some of the past conferences. Quite a few papers exhibited 
the resulting kindling of common mathematical interests which culminated in 
joint authorships. 

Maybe several of you are already gathering your thoughts for our next 
Conference. "Auf Wiedersehen," then, in 1992 at St. Andrews University, 
Scotland. 
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FIFTH INTERNATIONAL CONFERENCE 
ON FIBONACCI NUMBERS 

AND THEIR APPLICATIONS 
Monday through Friday, July 20-24,1992 

Department of Mathematical and Computational Sciences 
University of St. Andrews 

St. Andrews KY169SS 
Fife, Scotland 

Local Committee 
Dr. Colin M. Campbell, Co-Chairman 
Dr. George M. Phillips, Co-Chairman 

This conference will be sponsored jointly by the Fibonacci Association and the University of 
St. Andrews. Papers on all branches of mathematics and science related to the Fibonacci 
numbers as well as recurrences and their generalizations will be welcome. A call for papers 
will appear in the August 1991 issue of The Fibonacci Quarterly. 
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