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THE DETERMINATION OF A CLASS OF PRIMITIVE INTEGRAL TRIANGLES 

Joseph E. Carroll and Ken Yanosko 
Humboldt State University, Areata, CA 95521 

(Submitted December 1988) 

One of the problems of classical number theory is the determination of all 
primitive integral right triangles. The well-known answer is that if r > s are 
relatively prime positive integers, not both odd, then the triangle with 
sides v2 - s2, 2rs, and v2 + s2 is such a triangle (easy to check) and any such 
triangle is of this form for some v and s. A simple proof of the latter half 
is given in [1]. This paper deals with a similar question that has a similar 
answer but a somewhat longer solution. The main tool in that solution is a 
thinly disguised version of the Chebyshev polynomials of the second kind. 

Definition 1: Let j > k be positive, relatively prime integers. A triangle will 
be called an <j, k> triangle if one of its angles is j/k times another. 

It is easy to write down the primitive integral <1, 1> (i.e., isosceles) 
triangles. These triangles have sides s, ss and r, where v and s are positive 
integers, (i>, s) = 1, and v < 2s. The primitive integral <2, 1> triangles have 
been determined by Luthar in [2]. If v and s are positive integers where 
(r, s) = 1 and s < v < 2s, then the triangle with sides PS, s2, and v2 - s2 is 
a primitive integral <2, 1> triangle, and all such triangles are of this form 
for suitable v and s. In this paper we shall determine all primitive integral 
<j, k> triangles for all j and k satisfying the criterion of Definition 1. 
Although this is hardly one of the burning mathematical questions of our time, 
it is hoped that the solution presented here will be of some interest, since it 
both draws ideas from several areas of mathematics and requires little back-
ground to understand. 

First, let us fix j and k. It is clear that the <j, k> triangles are char-
acterized by having angles ja, /ca, and i\ - (j + k)a for some positive real num-
ber a such that (j + k)a < IT. Also, for any such a, there may or may not be a 
rational sided (hence, a primitive integral) triangle in the similarity class 
of <j, k> triangles associated with a in this way. The law of sines immedi-
ately gives us a triangle in that similarity class. If the triangle with sides 
a, b, c is denoted by the triple <a, b, c>, then <sin ja, sin ka9 sin(j + k)a> 
is in it. The following lemma leads us to a condition on a sufficient to 
ensure that there is a rational sided triangle similar to <sin ja, sin ka9 
sin(j + k)a>. 

Lemma 1: Define a sequence {pn(x)}n>o of polynomials with integer coefficients 
as follows: p00c) = 0, p^(x) = 1S and, for n > 2, 

pn(x) = xpn_l(x) - pn_20c). 
Then, for any real number a which is not an integral multiple of TT, we have 

pn (2 cos a) = (sin na)/(sin a). 

Proof: The formula for the sine of a sum yields the following identities for 
n > 2: 

sin not = sin(n - l)a cos a + cos(n - l)a sin a 

sin(n - 2)a = sin(n - l)a cos a - cos(n - l)a sin a 

Adding these identities and dividing by sin a, we get: 

(sin na)/(sin a) = (2 cos a) • (sin(n - l)a)/(sin a) 
- (sin(n - 2)a)/(sin a) 

1991] 3 



THE DETERMINATION OF A CLASS OF PRIMITIVE INTEGRAL TRIANGLES 

Thus, for any a which i s not an in teg ra l multiple of ir, the sequences 
{(sin na)/(sin a)}n>0 and {pn(2 cos a)}n>0 

satisfy the same second-order linear recurrence relation. Furthermore, these 
sequences coincide on their first two terms. It follows that they are 
identical for all n. 

Proposition 1: If 0 < a < TT/(J + k ) and cos a is a rational number, then there 
is a rational sided triangle with angles ja, ka9 and ir - (j + k)a. 

Proof: By Lemma 1, <p.(2 cos a), pk(2 cos a), p.+,(2 cos a)> has the correct 
angles. Its sides are rational because cos a is. 

Remark 1: It is clear from the definition of {p„} that, for all n > 1, pn(x) is 
monic of degree n - 1. These polynomials, after a shift of subscripts and a 
change of variables, are none other than the Chebyshev polynomials of the 
second kind, {Un(x)}n>0. For n > 0, Un(x) = pn+i(2x) . In fact, Lemma 1 is 
equivalent to a well-known property of Un. It is proved again here to keep the 
discussion self-contained. The Chebyshev polynomials of the first kind, 
{Tn(x)}n>0, also deserve mention because they are used in the proof of the 
following lemma, which will lead us to the converse of Proposition 1. They can 
be defined by 

T0(x) El, Tl(x) = x, Tn{x) = 2xTn_l(x) - Tn„2(x), for n > 2. 
Reasoning as in the proof of Lemma 1, one can show that, for any real number a, 
Tn(cos a) = cos na. 

Lemma 2: Let a, T be real numbers; then, for any integers m and n, cosCwa+ni) 
is in the Z[cos a, cos T] module generated by 1 and cos(a + x) . 

Proof: Suppose that m9 n > 0. Then 

cos(±0?za ± nx)) = cos mo cos nx + sin mo sin nx 

= Tm(cos o)Tn(cos x) 
+ sin o p (2 cos a)sin x p (2 cos x). 

This follows from Lemma 1 and Remark 1 and is also true if o or x is an inte-
gral multiple of IT. Using the formula for the cosine of a sum again, we deduce 

cos(±(mo ± TIT)) = Tm(cos o)Tn(cos x) 
± p (2 cos o)p (2 cos x)(cos(a + x) - cos a cos x). 

Proposition 2: Suppose that for positive relatively prime integers j > k with 
0 < a < TT/(J+A:) there is a rational sided triangle with angles ja, ka9 and 
TT - (j + k)a. Then cos a is a rational number. 

Proof: If such a rational <j, k> triangle exists, then the law of cosines tells 
us that cos ja, cos fea, and cos(j + k) a = -cos(IT - (j 4- k) a) are all rational. 
Since j and fc are relatively prime, there are integers m and n such that mj + nk 
= 1. Applying Lemma 2 for a = ja and x = ka, and using this m and n9 we deduce 
that cos a is rational, as claimed. 

We now have necessary and sufficient conditions on a that there be a 
rational sided triangle with angles ja, ka9 and TT - (j + k) a. When there is 
such a triangle, we need to find the primitive integral triangle in its simi-
larity class. Properties of the sequence {pn(x)} and of a related sequence of 
homogeneous polynomials are the tools that will allow us to make that deter-
mination. 

Proposition 3: The following are true for the sequence {p (x)} defined in the 
statement of Lemma 1: 

4 [Feb. 
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[(n- l)/2] 1 _ . 

(a) p (x) = £ (-DM* . ^ ) ^ n - 1 - 2 ^ for n > 0; 

w- 1 
(b) p (x) = H (x - 2 cos (tn/n)), for n > 1; 

n t= l 

(c) If j|n, then p (x) |p (x) as polynomials in Z[x]. 

Proof: (a) A straightforward (if somewhat tedious) computation using a standard 
addition formula for binomial coefficients demonstrates that the sequence of 
candidate polynomials shown above satisfies the defining recurrence relation 
for the pn . It is immediate that the two sequences coincide for n = 0, 1, so 
they must be the same for all n. Like Proposition 1, this is equivalent to a 
well-known statement about the Un. 

(b) Lemma 1 implies that 2 cos(tu/n) is a root of p for t = 1, 2, . .., 
n - 1 and, since the cosine is strictly decreasing on [0, TT] , these roots are 
distinct. Since p has degree n - 1, the proposed equation is true up to mul-
tiplication by a constant. But, both p and the product above are monic, so 
the constant is 1. 

(c) Part (b) implies this divisibility property as polynomials over the 
real numbers. If pn(x) = p,(x)q(x)5 where q(x) has real coefficients, the fact 
that pd is integer monic and pn is integral implies that q is integral. In 
fact, extending this reasoning, one can prove a stronger statement: if m and n 
axe nonnegative integers, then p. Ax) is the greatest common divisor of pm(x) 
and pn{x) in Z[x]. 

Remark 2: The field extension Q(e2^^)/Q for q an odd prime is often used as 
an example in the teaching of Galois theory and algebraic number theory. It is 
shown that this extension is Galois of degree q - 1 with cyclic Galois group 
and that the irreducible polynomial of e2-71^^ over Q is 

Qq(x) = x?-1 + ... + 1. 

It is also shown that the unique subextension of index 2, which is the subfield 
fixed by complex conjugation, is generated by 

2 COS(2TT/<7) = e^^/q + e-2ui/q 5 

an algebraic integer. Using Proposition 3(b), an identity satisfied by the 
{pn} that is easily proved, and some basic Galois theory, it can be shown that 
the irreducible polynomial of 2 COS(2TT/^) over Q is 

Proposition 3(a) then yields an explicit expression. 

It is convenient to introduce a new sequence {Pn(x, y)}n>i of homogeneous 
polynomials associated to {p (x)}. For n > 1, let 

[(n-l)/2] . 

i = 0 

where the latter equation above follows from Proposition 3(a). Using Proposi-
tion 3(c), we immediately see that d\n implies P^\Pn as polynomials in Z[x, y]. 
We require a final lemma before stating and proving the main result of this 
paper. 

Lemma 3: Let r and s be positive integers with (r, s) - 1 and let n > 1. Then 

(a) (s, Pn(p, s)) = 1; 

(b) (Pn(p, s), Pn+i(r, s)) = 1. 

1991] 5 
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Proof: (a) First, we observe that Pn(r, s) E rn~l (mod s). This follows either 
from the explicit expression for Pn given above or directly from the definition 
of Pn and the fact, noted in Remark 1, that pn is integral monic of degree 
n - 1. Since (p, s) = 1 , it follows that (s, Pn(r, s)) = 1 for n > 1. 

(b) We prove this part by induction. Since Pi(r9 S) = 1, the statement 
is true for n = 1. Let n > 2 and assume that the statement is true for n - 1. 
By the definition of the sequence {Pn(x, y)}s the defining recursion formula 
for {p (x)} translates to 

Pn + l(r, s) = rPn(r, s) - s2Pn-i(r, s) . 

Assume d is a positive integer such that d\Pn(r9 s) and J|Pw+1(p, s) . Then, by 
part (a), (d, s) = 1; by the equation above, d\s2Pn-i(r, s); thus d\Pn-i(r9 s). 
Therefore, by the induction assumption, J = 1. 

Theorem 1: Let j > k be positive integers with (j, k) = 1, and let r and s be 
positive integers with (r, s) = 1 and COS(TT/(J + /c)) < P/2S < 1. Then 

<skPj(r, s), sJP^.(p, s), Pj + k(r, s)> 

is a primitive integral <.7, ̂c> triangle with angles ja, ĉa, and TT - (j + /c), 
for a = arccos (r/2s), and all primitive integral <j, fc> triangles are of this 
form for some such r and s. 

Proof: By the proof of Proposition 1, for each p and s satisfying the condi-
tions of the theorem, <p-(p/s), p, (p/s), p- + fc(p/s)> is a rational sided <j, £:> 
triangle with the required angles. By Proposition 2, any similarity class of 
<j, k> triangles that includes a triangle with rational sides includes a 
triangle of this form for some p and s satisfying the hypotheses of the 
theorem. Our proposed triangle is clearly integer sided, and the definition of 
the Pn implies that it is similar to this one by a scale factor of sJ + fc-1. 
Therefore, we need only prove that it is primitive. By Lemma 3(a), it suffices 
to show that, if u and v are positive integers with (u, v) - 1, then (Pu(r9 s), 
Pv (r, s)) = 1. If (u, v) - 1, there are positive integers m and n such that mu 
and nv are consecutive integers. Then (Pmu(r, s), Pnv(r, s)) = 1 by Lemma 
3(b). But, as noted above, Pu \Pmu and Pv\Pnv. Thus, (Pu (p, s) , Py(p, s)) = 1, 
as required. 

Example 1: To illustrate Theorem 1, we shall determine all primitive integral 
<3, 1> triangles with no side longer than 100. Using Theorem 1, we know that 
they are of the form <S(P 2 - s 2 ) , s 3 , P 3 - 2PS2> for p and s relatively prime 
positive integers with /2/2 < p/2s < 1. Since one side is s3 and we are look-
ing for those with sides no greater than 100, we must have s = 1, 2, 3, or 4. 
For s = 1, we would need /2 < p < 2, which is not possible. For s = 2, we need 
2v2 < p < 4, which is only possible for p = 3 and which gives us the triangle 
<10, 8, 3>. For s = 3, we need 3/2 < p < 6, which is only possible for r = 5 
and which gives us the triangle <48, 27, 35>. For s = 4, we need 4/2 < p < 8, 
which is only possible for p = 6, 7. But 6 is not relatively prime to 4 and 
p = 7 gives us the triangle <132, 64, 119>, two sides of which are too large. 
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AN ALGEBRAIC EXPRESSION FOR THE NUMBER OF 
KEKULE STRUCTURES OF BENZENOID CHAINS 

Ratko Tosic and Olga Bodroza 
University of Novi Sad, Dr. Ilije Djuricica 4, 21000 Novi Sad, Yugoslavia 

(Submitted December 1988) 

1. Introduction 

The enumeration of Kekule structures for benzenoid polycyclic hydrocarbons 
is important because the stability and many other properties of these hydro-
carbons have been found to correlate with the number of Kekule structures. 
Starting with the algorithm proposed by Gordon & Davison [8], many papers have 
appeared on the problem of finding the "Kekule structure count" K for such 
hydrocarbons. We can mention here only a few authors who contributed to this 
topic: Balaban & Tomescu [1, 2, 3, 4], Gutman [10, 11, 12], Herndon [13], 
Hosoya [12, 14], Sachs [16], Trinajstic [17], Farrell & Wahid [6], Fu-ji & 
Rong-si [8], Artemi [1], Yamaguchi [14]. A whole recent book [5] is devoted to 
Kekule structures in benzenoid hydrocarbons. 

In this paper we consider only undirected graphs comprised of 6-cycles. Let 
there be a total of m such cycles, which we shall denote as C^, L/2j ..., u777 in 
each graph of interest. Because the problem we treat arises from chemical 
studies of certain hydrocarbon molecules, we impose upon C\, C<2_> >••, Cm the 
following conditions to reflect the underlying chemistry: 

(i) Every C^ and Q+i shall have a common edge denoted by g^, 
for all 1 < i < m - 1. 

(ii) The edges e^ and ej shall have no common vertex for any 
1 < i < j < m - 1. 

Representing the 6-cycles as regular hexagons in the plane results in a 
graph such as that illustrated in Figures 1(a) and 1(b). In organic chemistry, 
such graphs correspond to benzenoid chains (each vertex represents a carbon 
atom or CH group, and no carbon atom is common to more than two 6-cycles). 

(b) 
FIGURE 1 

2. Definitions and Notation 

By L(xi, x2> •••> xn) » w e denote a benzenoid chain (i.e., a corresponding 
graph) composed from n linearly condensed portions (segments) consisting of 
Xi, X2* «..J xn hexagons, respectively. Figures 1(a) and 1(b) show L(3, 4, 2, 
2, 5, 2) and L(4, 3, 5, 2, 2, 3, 4), respectively. 

Any two adjacent linear segments are considered as having a common hexagon. 
The common hexagon of two adjacent linear segments is called a "kink." The 
chain L(xn, x^* -..5 xn) has exactly n - 1 kinks. So the total number of 
hexagons in L(x1? x<i> •••* xn) is m = Xi + x2 + • • • + xn - n + 1. Observe that 
such notation implies x^ > 2, for i = l , 2 , . . . , n . 

(a) 

1991] 7 



AN ALGEBRAIC EXPRESSION FOR THE NUMBER OF KEKULE STRUCTURES OF BENZENOID CHAINS 

We adopt the following notat ion: 
Kn(xi, x2, •••» xn) i s t n e number of Kekule* s t ruc tures 
(perfect mathcings) of L{x\9 x2> • ••> xn). 
F^ i s the i t h Fibonacci number, defined as follows: 
F_2 = 1, F.l = 0; Fk = Fk_! + i^_ 2 , for k > 0. 

For a l l other de f in i t ions , see [5] . 

3. Recurrence Relation and Algebraic Expression for K n (x 1 , x2 , . . . , xn) 

It is easy to deduce the K formula for a single linear chain (polyacene) of 
Xi hexagons, say L(xi) (see [5]): 

(1) #!(*!) = 1 + *!• 

We define 

(2) Z0 = 1. 

It may be interpreted as the number of Kekule structures for "no hexagons." 

Theorem 1: If n > 2, then, for arbitrary Xi > I, x2 > 1> ...,-#„> 1, the fol-
lowing recurrence relation holds: 

\J) Kn \X± , . . . , Xn- i , Xn) — Xn&n- ]_ \X]_ , . . . , Xn _ ]_ — ly 

+ Zn_2(xl5 ..., ̂ n_2 - 1). 

Proof: Let # be the last kink of L(xi, x2, •••» #n) • W e apply the fundamental 
theorem for matching polynomials [7]. 

Let u and V be the vertices belonging only to hexagon (kink) H (Figure 2) . 
Consider any perfect matching which contains the bond uv. The rest of such a 
perfect matching will be a perfect matching of the graph consisting of two 
components L(xn - 1) and L(xi> x2, . .., xn-\ - 1). The number of such perfect 
matchings is 

Ki(xn - 1) • Kn_l(x1, x2, . . . , xn-\- D» 

i . e . , according to (1) , 

(4) xnKn-l(xi, x2, . . . , xn_! - 1). 

FIGURE 2 

On the other hand, each perfect matching without the bond uv must contain 
all edges indicated in Figure 3. The rest of such a perfect matching will be a 
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perfect matching of L(xls x2$ . . ., xn_2 - 1)* the number of such perfect match-
ing being 

(5) Kn_2(xl> x2> •••» xn-2 " 1)• 

FIGURE 3 

From (4) and (5), we obtain recurrence relation (3). • 

Obviously, Kn(xi, x2, >>>> xn) is a polynomial of the form 

(6) Kn(x\> ..., xn) = gn + X Pn^i* •••» lv^xix -" xh-
l <lY <lz < • • • <lv <n 

Clearly, g0 = 1.
 l'?~n 

Now, we are going to determine the coefficients gn and gn(l\> ...» &p)• 
First, we define an auxiliary polynomial 

For example, we have: 

(8) $0 = 1, Qi(xi) = xi, Q2(xls xi) = 1 - #i + xYx2. 
From (3) and (7), we obtain the recurrence relation 

tyn\Xi , . . . , Xn _ i , X Yi -T L ) — Xntyn- i \X± , . . . , X ^ _ ]_ ) 

+ Qn.2(xl9 • • • > ^n-2)» 

. , Xn-i, Xn) — \Xn — i) Hn-1 v* l̂ » . . . J ^ n - 1 / 

., #n) = Sn + 2^ ^MV^IJ ..., ^ p ) ^ ^ ••• ^£p • 
1 <ll <l2< • • • < lp <n 

I <p <n 

Now, we are going to determine the coefficients £„(&]_, ..., £p) and 5W, for 
n > 1. 

First, we prove the following lemmas. 

Lemma 1: Sn = (-l)nFn_2. 

Proof: The proof will be by induction on n. According to (8), 

SQ = 1 = (-1)0F_2, 5 X - 0 = (-l)1*7-!. 

Suppose that 5^ = (-l)z Fi-2, for i < k. Then, according to (9), 

i.e. , 

(9) 

Let 

(10) 

Clearly: 

Qn(xl> 

Qn(xl> 

9 SQ = 

Sk-i + S-k-2> 
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and by the i n d u c t i o n h y p o t h e s i s , 
sk = - ( - D ^ F f c - a + {-\)k^Fk.h 

= ( - l ) f c - 2 ( ^ _ 3 + Fk^) = (-DkFk_2. D 

Lemma 2 (a): 
(11) Sn(Z1, . . . , Ap_l» lv) = (-lf~lvFn_lpSlp_l(ll, . . , , i p . i ) , fo r p > 1. 

(b): 

d2) snao = (-Dn- i i^. ,1s£ l -1 . 
Proof: I t s u f f i c e s t o prove ( a ) , s i n c e (b) i s a p a r t i c u l a r case of (a) . The 
proof w i l l be by i n d u c t i o n on n - lp. 

I f n - lp = 0 (lp = ri) , t h e n , accord ing to ( 9 ) , 

(13) Sn(ll, . . . , Hp_l9 lp) = ^^-1CA!, . . . , ip-i) 

= (-l)n-nFn_nSn_l(SLl, . . . , £ p _ i ) . 

If n - £p = 1 (£p = n - I), then, using (9) and (13), we have: 

Sn(li, ..., ip) = -Sn-i(&i, ..., £p) 

= Sn.1(lli ..., £p_x) = (-l)1F16'n_2(£1, ..., £p_i). 

Suppose that (11) is true for n - lp < k (lp > n - k ) , n - l > k > 2 . Then, 
for n - lp = k(lp = n - k), according to (9), 

Sn(li, ..., £p) = -Sn_i(li, ..., lp) +5n_2(^i> •••> &p)» 

and, by the i n d u c t i o n h y p o t h e s i s , 

S „ U l f . . . , *p) - - ( - l ) " " 1 " ^ - ! - ^ . ^ * ! , . . . . £p-l> 

+ ( - l ) " - 2 - 1 ^ . ^ ^ . ^ * ! , . . . . Ap_!) 
= {-l)n-i'P{Fn_l_lp + Fn_2.h)Slp_i{ll, . . . , * p _ l ) 

- ( - D " " ^ - ^ . ^ ! , •••> Ap- l ) - D 
Lemma 3: SnUlt . . . , ip) = (-l)n'pFn _ £ / I p _ V l _x . . . ^ - ^ - 1 * ^ - 3 . for p > 1. 
Proof: For p = 1, i t f o l l o w s , from (12) and Lemma 1, t h a t 

snao - ( - D ^ V , ^ ^ = (-D""*1*'„-11(-i)*1"1*V3 
- (-l)"-1Fn.4lF,l_3. 

For 1 < p < n, according to Lemmas 1 and 2, 

S „ ( V ..., ip.!, £p) = (-l)'I-^Fn.£?5£p.1(£1, ..., £p_!), 

and now, by induction, 

Lemma 4(a): gn = ( - l ) * ! ^ , 

(b): gnUi, . . . . M ' - ^ ' ^ . ^ ^ - t p , - ! ' " V * i - A ~ 3 -
Proof: According to ( 7 ) , 

S n ( # l s . . . s «„_!» ^ n + 1) = Kh(xl9 . . . , ^ n _ 1 5 # « ) - . -
Hence, 
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(Sn{%i, . . . , lv) , i f £p = n , 
(U) 9rndi> •••> V = ^ , 

{Sn(ils . . . , ilp) + £ n ( £ 1 ? . . . , £ p s n ) , i f ip < n . 
P a r t i c u l a r l y , we have 
(15) gn = Sn + Sn(n)s fo r n > 1. 
Now, from (15), Lemma 1, and Lemma 3, we have 

J7n = (-1) Fn_2 + ( - l ) » - l F „ _ 3 = ( - l ) n ( ^ n _ 2 - F„_ 3 ) = ( - l ) n F „ _ 4 , 
and (a) i s proved. 

To prove (b), observe that, for lp = n, 

(16) gnal9 ..., AP) = ^ U i 5 ..., Ap) = (-l)n-^£p _£p_x _, ... F£2_£i_1F£i_3, 

and, for lp < n9 

gnai, . . . , £P) = 5 n ( £ l s . . . , £p) + S „ U i , . . . , £p5 n) 

= (-1)* ̂ -Ap^p-Ap^-x --- ̂ £2-£l _/£l _3 
+ (-l)n-p-lFn_h_lFip_lp_i_l ... Fj,2_£i_1F£l_3 

= ("Dn (̂ n-£P ~ ̂ n-Jlp-P^p-Ap.! -1 ••• Fl2-ll-lFl1-3> 
i.e. , 

(17) gn{lx, ..., Ap) = (-l)"~PVlp-2*VVi-l ... ^ . ^ . ^ ^ . 3 . 

Taking into account that, for ip = n3 Fn_z _2 = F-z = 1> (16) and (17) can be 
written together in the form 

(18) gnai, .... Ap) = (-l)n"P^-lp-2^p-Vl-l ••• ̂ 2-^-1^1-3-

Theorem 2: Zn(^1, ..., xn) 

1 < £ x < . . . < ip <n
 n L p 

1 <p <n 

where gn(l\9 . . .> &p) i s g iven by ( 1 8 ) . 
Proof: Follows from Lemma 4. • 
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1. Introduction 

Eric Halsey [3] has invented a method for defining the Fibonacci numbers 
F(x), where x is a real number. Unfortunately, the Fibonacci identity 

(1) F(x) = F(x - 1) + F(x - 2) 

is destroyed. We shall return later to his method. 
Francis Parker [6] defines the Fibonacci function by 

ax - cos Trxa~x 
F(x) = — T > 

where a is the golden ratio. In the same way, we can define a Lucas function 

L{x) = ax + cos nxa~x. 

F(x) and L{x) coincide with the usual Fibonacci and Lucas numbers when x is 
an integer, and the relation (1) is verified. But the classical Fibonacci 
relations do not generalize. For instance, we do not have 

F(2x) = F{x)L{x). 

Horadam and Shannon [4] define Fibonacci and Lucas curves. They can be 
written, with complex notation 

ax - e^x a~x 

(2) F(x) = , 

(3) L(x) = ax + eUxa~x. 

Again, we have F(n) = Fn, L{n) = Ln, for all integers n. 
We shall prove in the sequel that the well-known identities for Fn and Ln 

are again true for all real numbers x, if F{x) and L(x) are defined by (2) and 
(3). For example, we have immediately 

F(2x) = F(x)L(x). 

We shall also relate these F(x) and L(x) to other Fibonacci properties as well 
as to HalseyTs extension of the Fibonacci numbers. 

2. Preliminary Lemma 

Let us consider the set E of functions w : E. -> (C such that 

(4) \/x e E., w(x) = w(x - 1) + w(x - 2). 

E is a complex vector space, and the following lemma is immediate. 

Lemma 1: Let a be the positive root of r2= r + 1. Then the functions / and g, 
defined by 

fix) = ax, g(x) = eUxa~x 

are members of E. 
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Let us define now a subspace 7 of E by 
V = {w : E. -> C, W = Xf + ]ig9 A, y € C}. 

The functions F and L, defined by (2) and (3), are members of 7. 

Lemma 2: For all complex numbers a and b, there is a unique function w in 7 
such that 

w(0) = a, W(l) = b. 

Proof: We have 

w(0) = X + u = a, w(l) = \a - yoT1 = b. 

By Cramer's rule, X and u exist and are unique, 

Lemma 3: Let w be a member of 7, and /z a real number. Then the functions w^ 
and Wfr, defined by 

wh(x) = w(x - h) , w^x) = e^xw(h - x), 

are members of 7. 

Proof: The proof is simple and therefore is omitted here. 

Lemma 4: Let w and v be two elements of 7 and 6 : K2 -> (C, the function defined 
by 

6(x, y) 
u(x), u(x + 1) 

u(x)v(y + 1) - u(x + l)y(z/). 

Then we have 

(5) 6(a, 2/) = euy&{x - y, 0). 

Proof: First, we have 

\u(x), u(x) + u(x - 1) 
(6) 6(x, y) 

v(y), v(y) + v(y - 1) 

-S(x - 1, z/ - 1). 

u(# - i) 

v(y - 1) 

Now, let us define 

T)(x, y)' = eiiry6(x - z/, 0) = £i7r^(wO - z/)i;(l)' - w(tf - y + l)v(0)). 

Let x be a fixed real number. By Lemma 3, the functions 

y -> 6 0 , 2/), z/ + r)(x, y) 

are members of 7. We have 

6 0 , 0) = r\(x, 0) , 

and, by (6), 

5(x9 1) = -6(x - ' l , 0) = n(tf» 1 ) . 
By Lemma 2 we have , for a l l r e a l numbers y9 

S(x, y) = r\(x> y). 
This concludes the proof. 

Lemma 5: Let F and L be the Fibonacci and Lucas functions defined by (2) and 
(3). Then, for all real numbers, we have: 

(7) L(x) = F(x + 1) + F(x - 1); 
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(8) 5F(x) = 2L(x + 1) - L{x)i 

(9) L(x) = 2F(x + 1) - F{x). 

The proofs readily follow from the lemmas and the definitions of the functions. 

3. The Main Result 

Theorem 1: Let u and v be two functions of V. Then, for all values of x9 y, 
and z 5 we have 

(10) u(x)v(y + z) - u(x+ z)viy) = eUyF{z){u(x- y)v(l) - u(x-y +l)v{0)], 

where F is defined by (2). 

Proof: For x and y fixed, consider the function A: 

A(s) = u(x)v(y + z) - u(x + z)v(y). 

By Lemma 3, A is a member of F, and we have, with the notation of Lemma 4S 

A(0) = 0, A(l) = 6(x, y). 

Thus, we have, since the two members take the same values at z = 0, z = 1: 

AGs) = 6 (*, y)F(z). 

The proof follows by Lemma 4. 

4. Special Cases 

Let us examine some particular cases of (10): 

Case 1. u = v = F 

Since F(0) = 0, F(l) = 1, we have 

(11) F(x)F(y + s) - F(tf + s)F(z/) = euVF(z)F(x - y). 

Case 2. u = V = L 

Since L(0) = 2, L(l) = 1, we have, by (8), 

(12) L(x)L(y + s) - £(# + s)L(zy) = -5gilT^(<0F(x - z/) . 

Case 3. u = F9 v = L 

We have, by (9), 

(13) F(x)L(y + z) - F(x + z)L(y) = -ei7r^F(s)L(x - z/) . 

Case 4. u = L, v = F 

(14) L(x)F(y + z) - L(x + s)F(z/) = e^F(s)L(x - y) . 

Case 5. Let y = 0 in (12) and (13) to get 

(15) 2L(x + s) = L(a?)L(a) + 5F(^)F(s) , 

(16) 2F(x + z) = F(a;)L(3) + F(js)L(a;). 

Case 6. Let zy = 1 in (11)-(14) to get 

(17) F{x + z) = F(x)F(z + 1) + F(z)F(x - 1), 

(18) L(x + s) = L(ff)L(3 + 1) - 5F(s)F(x - 1), 

(19) F(x + z) = Fix)Liz + 1) - Fiz)Lix - 1), 

(20) Lix + z) = L(x)F(z + 1) + F(s)L(x - 1). 
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Case 7. Let y = x - z i n (11)—(14) to get 

(21) {Fix))1 - F{x + z)F{x - z) = eiHx-z){F{z))2, 

(22) {L{x))z - L{x + z)L{x - z) = -5eU(<x~ z){F{z) ) 2 , 

(23) F{x)L{x) - F{x + z)L{x - z) = -el^x ~^F{z)L{z), 

(24) F{x)L{x) - F{x - z)L{x + z) = e™(x'z)F(z)L(z) . 

Remark: (21) and (22) a r e C a t a l a n ! s r e l a t i o n s fo r F{x), L{x). 

5. Appl ica t ion : A Reciproca l Se r ies of Fibonacci Number s 

Theorem 2: Let x be a s t r i c t l y p o s i t i v e r e a l number and F the F ibonacc i func-
t i o n . Then we have 

fc-l FGr • 2*) F(x)ax 

Proof: We recall the relation attributed to De Morgan by Bromwich and to Cata-
lan by Lucas, 

* a2""1 1 a - g2* 
(25) 2^ , ofc , , 9« » k= l 1 - sz 1 - 2 1 - zz 

where z is a complex number (\z\ * 1). Now put z = ezlJX a~2x in (25) to obtain: 

eU2-k~lxa~lkx n eUlk~Yx 1 n ei^2k^x 

( 2 6 > /5l 1 - g^^cT2**1* =*?ia2** - ^ 2 ^ a " 2 ^ = / 5 A ? i F(2*tf) 

On the o t h e r hand, the r i g h t member of (25) becomes 

, N 1 eUxa~lx - eU2^a~2n + lx 1 eiltxF((2n - l)x) 
(27) • == • . 

1 - eUxa~2x 1 - ei*2nxa-2n + 1x /5F(x) F(x • 2n) 
(26) and (27) g ive us 

n ei-n2k~1x eUxF((2n - \)X) 
(28) / . ^ = , 

fc-i F(2fea;) F ( 2 n - x)i^(x) 
and so 
(29) E "^-T = • 

k=i F(2kx) F(x)ax 

Remark: Put x = m i n ( 2 9 ) , where m i s a n a t u r a l i n t e g e r . Af te r some c a l c u l a -
t i o n s i n the case m odd, we o b t a i n the well-known formula: 

C } h i F{2km) " a 2 - - T 
Formula (30) was found by Lucas (see [5], p. 225) and was rediscovered by Brady 
[1]. See also Gould [2] for complete references. 

6. Halsey f s Fibonacci F u n c t i o n 

First, we recall a well-known formula, 
m{ri) 

F = 

where m(n) is an integer such that (n/2) - 1 < m(n) < (ft/2). 

& ( " " i ' )•"'-'• 
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We have used the binomial coefficients (£) only when n is a positive inte-
ger but it is very convenient to extend their definitions. Then 

ix\ . lx\ oo(x - 1) . . . ( # - fc + 1) 
( 0 ) = i , (k) = , k > u 

defines the binomial coefficients for all values of x, 
From this, we can introduce the function G, 

(31) G(x) = Z { l ' , x > 0, 

where m(x) is the integer defined by (x/2) - 1 < m(x) < (x/2). Then, clearly, 
we have 

G(n) = Fn, n > 1. 

Theorem 3: G coincides with Halsey?s extension of Fibonacci numbers, namely, 

G(x) = E [^ ~ ̂ )S(x ~ 2/c, /c + l)]"1, x > 0, 
fc = 0 

where B(x, y) is the beta-function: 

£(x, y) = f tx~l(l - t)y~ldt, x > 0, y > 0. 
Jo 

Proof: It is sufficient to show that 

(32) I = (* - k ~ l) 
K (x - k)B(x - 2k, k + l) V k r 
In fact, the left member of (32) is 

r(x - k + 1) _ (x - k)(x - k - 1) ... (x - 2k)T(x - 2k) 
(x - k)T(x - 2k)T(k + 1) (x - fc)r(tf - 2fc)k! 

(x - k - 1) ... (x - 2k) Ix - k - l\ -rr1)-
in which we have used the well-known properties of the gamma-function: 

T(x) = (x - l)T(x - 1), Y(k) = (k - 1)1 

This concludes the proof. 

Let p be a positive integer, and let Gp be the polynomial defined by 
P 

G __ 
k= 0 ^ - . ^ ( " • J - 1 

We see, from (31), that 

(33) G(x) = Gp(x), 2p < x < 2-p + 2; 
thus, 

£p(2p + 1) = £(2p + 1) = F2p+l, 

£p(2p + 2) = £(2p + 2) = F2p + 2. 

In fact, we have a deeper result, which we state as the following theorem. 

Theorem 4: Gp(n) = Fn for n = p + 1, p + 2, ..., 2p + 2. 

Proof: We shall prove this by mathematical induction. If p = 0, we have 

G0(D = GQ(2) = 1. 
Now we suppose that Gp-i(n) = Fn (n = p, ..., 2p). Then we have 
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GENERALIZED COMPLEX FIBONACCI AND LUCAS FUNCTIONS 

Gp(x) = Gp.l(x) + [ £ j = (?p-iW + j —, 

and thus, 

Gp(ra) = Gp-i(n) = Fn, for n = p + 1, ..., 2p; 
but we have seen above that 

Gp(2p + 1) = F2p + 1, £p(2p + 2) = F2p + 2. 

This concludes the proof. 

Corollary: G is continuous for all values of x > 0. 

Proof: By (33), it is sufficient to show the continuity from the right at x = 
2p. But 

lim G{x) = Gv(2p) = Flv (by Theorem 4) 
x •> 2p ^ 

* >2P = £(2p). 
Finally, we see that Halsey^ function is a continuous piecewise polyno-

mial. For instance, 

G(x) = 1 , 0 < x < 2, 

G(a0 = i c - l , 2 < ̂  < 4, 

^/ A x2 - 5x + 10 . ̂  ,̂ . £(x) = , 4 < x < 6. 
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1. I n t r o d u c t i o n a n d Theorem 

Let 

J] di(u)2~'1 , where di (oo) = 0 or 1 for i = 1, 2, . .., 
i= 1 

denote the dyadic expansion of any element 00 in the closed unit interval [0, 1], 
This expansion is unique except when (D is a dyadic rational 

(2m - l)2~n, m = 1, 2, ..., 2n~l
9 n = 1, 2, ..., 

in which case there are two such expansions, the terminating one concluding 
with an unending succession of zeros and the nonterminating one concluding with 
an unending succession of ones. To insure uniqueness, we quite arbitrarily 
choose the terminating expansion in such a case. 

Of particular interest is the asymptotic behavior of 
m 

pmM = m~l £ diM, 
i= 1 

the proportion of ones appearing among the first m dyadic places in the expan-
sion of 00, for m = 1, 2, ... . Borel [2] asserted that "almost all" 03 in 
[0, 1] have the property that the limiting value of this proportion is 1/2. 
More precisely, if v is the Lebesgue measure on the class of Borel measurable 
subsets of [0, 1] and if 

5 = {a) : 0 < a) < 1, lim pm (00) = 1/2}, 
m -> co 

then v(S) = 1. Borel fs arguments in support of this impressive fact were 
flawed, but valid proofs were supplied by later workers (see [1]). The set S 
defines those numbers in [0, 1] which are said to be simply normal to base 2. 

The very definition of simply normal numbers induces rather natural fami-
lies of partitions of [0, 1]. Motivated by the definition of S and the fact 
that, for each fixed positive real number e less than 1/2 (to avoid trivial-
ity) , the inequality 

\p (uO - 1/21 > e 
holds for only finitely many values of 777 for every co in S, we can sharpen 
Borelvs landmark result by considering the following measurable functions 
which, moreover, can be defined for all 00 in [0, 1]: 

I (00, e) = sup{7?? : m = 1, 2, . . . , and p (03) > 1/2 + e} 

and 

n(a3, e) E Xl~({a3: 0 < 03 < 1, p (03) > 1/2 + e}), 
m= 1 m 

where the supremum of the empty set is 0 and 1(A) is the indicator function of 
the set A, Thus, in the expansion of 03, £(03, e) is the "largest" dyadic place, 
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and n(o), e) is the total "number" of dyadic places, at which the proportion of 
ones up to that place exceeds 1/2 + e. Note that these functions assume the 
value +°o for infinitely many GO in [0, 1], but Borelfs result implies that the 
sets on which they assume an infinite value have Lebesgue measure zero. 

For every GO in S, the values of these functions are nonnegative integers. 
It is illuminating, therefore, to decompose S according to the values of each 
of these functions, creating the families of countable partitions £(e) and 91(e) 
having respective members 

L- = {w: w e 5, &(o), e) = j}, J = 0, 1, 2, . . . , 
and 

Nj E { GO : GO e £, n (GO , e) = j }, j = 0, 1, 2, ... . 

The following theorem gives the Lebesgue measures of the members of each of 
these partitions when e = k/(2k + 4) for any positive integer k. 

Theorem: Suppose e = k/(2k + 4) for some positive integer k. Then 

v(L0) = v(N0) = 1 - yk, 

and for j = 1, 2, ..., 

i f j ^ 0 mod (fc + 2 ) ; whereas v(Lj) = 0 i f J = 0 mod (A: + 2) , and 

. [ J 7 ( / C + 2 ) ] . . . 
v(Nj) = (1 - y,)2-J £ [1 - (& + 2 ) £ / j ] K ) . 

i = o x w 

Here, yk is the unique solution of xk + 2- - 2x + 1 = 0 in the open interval (0, 1) 
and [£] is the greatest integer not exceeding t . 

Remark 1: I f j = r mod (k + 2 ) , where r = 0, 1, . . . , fc + 1, then we have t h a t 

(k + 2)(U/0c + 2 ) ] + 1) - j = k + 2 - p . 
Remark 2: For /c = 1, 2, 3, 4, and 5 and k •> °°, the values of v(Lj) are tabled 
in [3] for 

j = 0, 1, ..., inf</z: X v(LJ-) > 0.9999 

and the values of v(Nn-) are tabled in [7] for 

( h 

j = 0, 1, ..., lnf<h: X) v(#j) - 0.9999 
( 3'0 

Remark 3: Our theorem remains true if pm((^) is interpreted as the proportion 
of zeros appearing among the first m dyadic places in the expansion of GO for 
m = 1, 2, ... . Furthermore, since the proportion of zeros exceeds 1/2 + e if 
and only if the proportion of ones is less than 1/2 - e, our theorem remains 
valid when the strict inequalities are reversed and e is replaced by -e in the 
definitions of io(co, e) and ft(oj, e) . 

Note: Because 
/fc + l \ 

^ + 2 - 2x + 1 = (x - 1)1 X ) ^ " 1) 

and, for 0 < x < 1/2, 
fc + l 
X) a^ < 1, 
i= 1 

ŷ  is the unique solution of 
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k+ 1 
Y^ ^ = 1 in (1/2, 1) for every positive integer k. 

i= l 
We now show that yk = r~+1, the reciprocal of the (k + l)st Fibonacci root tabled 
in [5] for fe = 1, 2, ..., 18. For any positive integer K> 2, consider the K-
generalized Fibonacci numbers defined by fK(j) = 0, for j = 0, . .., K - 2, 
fK(K - 1) = 1, and 

K 

fK U) = E fK U - i) f or j = Z, K + 1, . . . , 
i = 1 

and tabled in [5] for K = 2, . .., 7 and j = 0, . .., 15. Miles [6] proved that 

lim j^(j + D/fKU) = ^ 

where r is the unique solution of 
K- 1 

Y xl = xK in (1, 2). 
i = o 

It follows that p"1 is the unique solution of 
K 

X xl = 1 in (1/2, 1); 

-1 hence, y = pfc+1for fc = 1, 2, 

Proof of the Theorem 

If SG denotes the complement of S with respect to [0, 1], then v(Sa) = 0, 
and since, for j = 0, 1, 2, ..., 

{GO : 0 < GO < 1, £(co, e) = j} = Lj u (ID : ID e 5C, £(o), e) = j}, 

it follows that 

v(Lj) = v({w: 0 < oo < 1, £(oo, e) = j}). 

Similarly, for every nonnegative integer j, 

v(/l/J-) = v({oo: 0 < to < 1, n(o), e) = j}) . 

Now it is well known (see, e.g., [4], Ex. 4, p. 56) that <d^(u))> is a se-
quence of independent random variables (functions) on [0, 1] for which 

P E V({0):0 < 03 < l,.^(o)) = 1}) = 1/2 
and 

q = v({o):0 < oo < 1, ̂ (co) = 0}) = 1/2 

for every positive integer £, since Ĵ (co) = 1 on 2 t _ 1 disjoint intervals each 
of length 2~z , and similarly for ^7;(GJ) = 0. Note that 

{<^(o))> : 0 < oo < 1} 

differs from the set of all sequences of zeros and ones only by the set of 
sequences corresponding to the nonterminating expansions of the set of dyadic 
rationals mentioned above. As this latter set is countable and, hence, of 
measure zero, its inclusion or exclusion has no effect in our work. 

If we define the Rademacher functions 

x^(n}) = 2di(u) - 1, i = 1, 2, ..., 

so that <x^(ud)> is a sequence of independent and identically distributed random 
variables such that ĉ̂- (oo) = +1 or -1 with respective probabilities p = 1/2 and 
q = 1/2, then pm(u) > 1/2 + e if and only if sm(u>) > 2em, where 

m 
sffl(o)) E X] 2̂ (00) for every positive integer m. 

i = 1 
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Our theorem then fo l lows immediate ly from the theorems in [3] and [ 7 ] , where 

u = p - q = 0 and A = 2e = k/ (k + 2) , k = 1, 2, . . . . 

3. The Special Case e = 1/6 

The case in which e = 1/6 (k = 1) is particularly attractive since it is 
the smallest e dealt with by our theorem and since yl5 the unique solution of 
x3 - 2x + 1 = 0 in (0, 1), is <J> E (/5 - l)/2, the reciprocal of the ubiquitous 
golden ratio. In this case, our theorem yields V(LQ) - 1 - cj) = cj)2 and, for 
J = 0, 1, ..., 

vtf3j- + i> - • ( 3 J / 1 ) 2 - 3 ^ - 2 , 

and 

v(^3j+2) ! ( w ; 2 ) 2~
d^ 3,7-3 [cj)(3j + 2)/(4j + 4)]v(L3j- + 1 ) , 

with v(L37- + 3) = 0. Here, the successive values of v(L3j- + i) are most easily com-
puted recursively using v(L]_) = (f>/4 and the relation 

<T ^ 3(3j + 4)(3j + 2) . 

^ ^ = 16(J + l)(2J + 3) Va3^' + l)' J = °' U 2' ••• * 

It follows that, for J = 0, 1, 2, ..., 
v(^3j + l) > v(L3</+2) > v(L3j- + 3) = 0 

and 
v(L3j + l) > v(L3j- + i+) 

so that, for increasing values of the subscript, these measures exhibit an in-
teresting "damped saw-tooth" pattern, each value of j corresponding to a single 
tooth. 

It is noteworthy to observe that 

cj> = 1 - v(L0) = 1 - v({o) : a) e S, pm(o>) < 2/3 Mm = 1, 2, ...}) 

= v({o) : oo G S, p (OJ) > 2/3 for some m = 1, 2, ...} ) , 

that is, the set E of simply normal numbers to base 2 in [0, 1] having the 
property that the proportion of ones to some dyadic place in their expansion 
exceeds 2/3 has measure cj). Clearly, S O [1/2, 1], with measure 1/2, is a 
subset of E. Yet, E is dense in [0, 1]. For if n is an arbitrarily small but 
fixed positive real number, then for any 

u> = ^^(03)2'^ in [0, 1], 

consider 
N 2 /1 /+1 

<*>' = E ^ ( w ) 2 - i + £ 2 - < * + ^ + ]T 2 - ^ + 2/0, 
i = 1 J = 1 fc = 1 

where 71/ i s t he s m a l l e s t p o s i t i v e i n t e g e r such t h a t 2~N < n. Here , 

pm(o)') = m"1 £ ^ i ( o j ) + (2/1/ + 1) + Km - 3/1/) / 2 ] 
Li = 1 

so that lim p (OJ') = 1/2; hence, o)' e £. Moreover, 

, f o r ?7Z > 3/1/ + 1 , 

p 3 i , + 1 ( o ) ' ) = (3ff + l ) " 1 £ ^ ( o o ) + (2/1/ + 1) 
U = 1 

> (2/1/ + l ) / ( 3 / l / + 1) > 2 / 3 ; 

therefore, u)r G E. Finally, since o) and o)' agree in the first /!/ dyadic places 
of their expansions, we have | OJ ' - 0) | < 2 -/!/ < n. 
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I t i s a l s o worth n o t i n g t h a t the measures of t h e members of £ ( 1 / 6 ) g iven 
above y i e l d a s imple formula e x p r e s s i n g <J> i n terms of t he s e r i e s 

, ^ ( 3 i + l j 2 . 3 j - and s,t(3't2)^-
j = o \ J I j = 0 \ J / 

For, 

£ v(Lj) = v(S) = 1 = cj)2 + <f> 
J = 0 

implies <j>z//4 + (j)2s/8 = (j); hence5 ((> = 2(4 - y)/z. Note that 

2//4 = l/((|)/5) and g/8 = 1//5. 
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1. Introduction 

Let P and Q be relatively prime integers, a and 3 (a > 3) be the zeros of 
x1 - Px + Q, and, for k = 0, 1, 2, 3, ..., let 

ak _ ak 
(1) Uk = Uk(P, Q) = and Vk = Vk(P, Q) = ak + $k. 

a - 3 
The following result is well known. 

Theorem 0: Let m and n be positive integers, and d = gcdO, n) . 

(i) gcd(^, Un) = Z7d; 

in 7i 
(ii) if -g and ^ are odd, gcd(7^, Vn) = Vd ; 

(iii) if /7z = n, gcd(i/w, Vn) = 1 or 2. 

Using basic identities, Lucas proved Theorem 0 in the first of his two 1878 
articles in which he developed the general theory of second-order linear recur-
rences [5]; Lucas had previously proven parts (i) and (iii) in his 1875 article 
[4], Nearly four decades later, Carmichael [1] used the theory of cyclotomic 
polynomials to obtain both new results and results confirming and generalizing 
many of Lucas? theorems; Theorem 0 was among the results obtained using 
cyclotomic polynomials. 

Curiously, the value of gcd(7TO, Vn) when m and n are not divisible by the 
same power of 2, and of gcd([/w, Vn) for m * n, do not appear in the literature, 
and have, apparently, never been established. It is interesting that the 
values of all three of these gcd's can be rather easily found, for all pairs of 
positive integers m and n, by the application of an approach similar to that 
used in establishing- the Euclidean algorithm to a single sequence of equations. 
We shall prove the following result. 

Main Theorem: Let m = 2a m\ n- 2bnf, mr and n' odd, a and b > 0, and let d = 
gcd(/??, ri) . Then 

(i) gcd(tfm, Un) = Ud9 

'Vd if a = b, 
(ii) gcd(7ffl, Vn) = | 

(iii) gcd(Um, Vn) = | i 

or 2 if a * b; 

Vd if a > b, 

or 2 if a < b. 
The value of gcd(7m, Vn) is even if any only if Q is odd and either P is even 
or 3\d; gcd(Um9 Vn) is even if and only if Q is odd and (1) P and d are even, or 
(2) P is odd and 3\d. 

Our definition of Uk and Vk assures that the above result holds for all 
second-order linear recurring sequences {Uk} and {Vk} satisfying 

U0 = 0, Ux = 1, Un+2 = PUn + l - QUn9 
and 

V0 = 2, Vi = P, Vn+2 = PVn + 1 - QVn. 
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If P = 1 and Q = -l, the sequences are the Fibonacci and Lucas number sequences, 
respectively; for this case, a nice alternate proof of (ii) has been communi-
cated to the author by Paulo Ribenboim, and appears now in [6]. If one defines 
the sequence {Un} more generally, by 

Ul = a, U2 = b, Un+2 = oUn + l + dUn, 

then Lucas' result [ (i) above] will hold under certain circumstances: P. Horak 
& L. Skula [2] have characterized those sequences for which (i) holds. 

In our last section, we shall observe that a result analogous to Theorem 1 
holds for Lehmer numbers and the "associated" Lehmer numbers. 

2. Preliminary Results 

We base our proof on the following formulas, all of which are well-known, 
and are easily verified directly from the definition (1) of Uk and Vk . 

Property L: Let r > s > 0, e = min{p - s, s], and D = P2 - 4§. 

L(i) Uv = Vr.sUs ± Q U\r_2s\> where the + si en is used iff v — 2s > 0, 

L(ii) Vr = VV.SVS - QeV{r_2s\, 

L (Hi) Ur = Ur..sVs ± QeU\r-2s\> where the + sign is used iff r - 2s < 0, 

L(iv) Vr = DUr-8U8 + QeV\r-2s\, 
L(v) Yl = Wl + 4«r. 

We will use the fact that, for k > 0, 

(2) gcd«7k, Q) = gcd(Ffe, Q) = 1, 
which is also readily shown from (1) [or see [1], Th. I]. 

Finally, we require this result concerning the parity of Uk and Vk 9 which 
is easily deduced from (1), using P = a + $ and Q = a$ (or see [1], Th. Ill): 

Parity Conditions: If k = 0, Uk = 1 and Vk = 2. Let k > 0. 

(i) If Q is even, both Uk and Ffe are odd; 

(ii) If § is odd and P is even, then Vk is even, and £/fc is even iff k is; 

(Hi) If § is odd and P is odd, then Uk and Fj, are both even iff 3 | k. 

3. The Basic Result 

Let {y^} and {6^} (i > 0) be sequences of integers. Let TTIQ = 2AM and HQ = 
2B/1/ be positive integers with A and B > 0, Af and N odd, and 777 0 > n 0 ' an(* let 

d0 = \rriQ - 2n0| and d = gcd(m0, n 0 ) ; 

let £w and #n be integers, and Kd be defined by 

^ 0 = V0Hn0 + $0#d0-

Theorem 1: For j = 1, 2 , 3 , . . . , l e t 

mj = n ^ . i , n^ = d^l9 Gm. = i ^ . ^ and Hn. = Kd._i9 i f n ^ > dj-l9 
or 

^ = dj-i, rij = n ^ , 6^ . = Kd._± and # „ . = En^i , i f n ^ < dj-l, 

l e t ^ = \mj ~ 2rij\, and l e t i ^ . be def ined by 

Gmj = ydHn. + 63-Kd.. 
I f , for j > 0, g c d ( ^ . , 6^) = Is then 
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Proof: For each pair of integers v and s, we let (r, s) denote gcd(r, s) . The 
definitions of rrij9 rij, and dj imply that {mj} is a nonincreasing sequence of 
positive integers; let k be the least integer such that mk-\ = mk. Now, i t is 
clear, from our definitions above, that 

(m0, nQ) = (n0, dQ) = (m1, nx) = (nx, dx) = • • • 

= (TTZfe_ 1» nk-i) = (nk_l, d k - i ) . 

Furthermore, by our assumptions that Gm = y-Hn. + $n-Kj and (Gm , 6-) = 1, we 
have, similarly 

(Gm0> HnQ) = (HnQ, Kdo) = ... = (Hnk_i9 Kdk_^. 

Since, by definition, mk = max{nfe>]_, ^ - j } , w^-i = ̂ /<-l o r ^k-l' 

Case 1. If w^_x = n^_]_, then d^-i = \mk-\ - 2nk-i\ = mk-\ also, so 

(m0, nQ) = (Wfc-i, ̂ -1) = /Wfc-i; 

that is, d = w^_i = nk-i = £?&_]_. Hence, in Case 1, 

(GmQ> Hn0) = (Hd> Kd) ' 

Case 2. If tffy-i = <^-l * nk-l> then £^_i = \^ik-i ~ ^nk-l\ implies n^_^ = 0. 
But, then, since ?̂ _i = min{n/c_2> f̂c-2̂ * f̂e-2 = 5̂ this implies 

d = (m0, nQ) = (nfe_2, 0) = nk_2. 

Hence, in Case 2, 

(GmQ, HnQ) = (H^, KdkJ = (^, Z 0 ) . 

For j > 0, let Mj =mj/d, Nj = rij/d, and Dj = dj/d. If A = B, M0, /l/0, and 
Z?0 are each odd; consequently, M j , 71/j, and Ẑj are odd for j = 0, 1, 2, 3, ... . 
This is possible only in Case 1, since, in Case 2, dk-2 = 0, implying that Dk-2 
is even. If A * B, it is easy to see that, for each j, exactly one or exactly 
two of the three integers M j , Nj, and Z?j is (are) even, and this is possible 
only in Case 2, since, in Case 1, /^-l = ^k-\ = Dk-\* This proves the theorem. 

4. Proof of the Main Theorem 

For j > 0, we assume that mn-9 n J, •> d~9 Gm ., Hn., and Kd. are as defined in 
a J J J J J 

Section 3, and Mj, Nj, and £>j are as defined in the proof of Theorem 1. Let 
S(r) denote the number of integers j, 0 < j < k, such that ft^-i ̂ ̂ j'-i' anc^ f° r 

each positive integer i, let p(i) denote the parity of i. 
Lemma 1: If A * B9 and if there exists an integer k such that dk = 0, then 
£(/c) is even if and only if A > B. 
Proof: Assume A * B and that there exists an integer k such that dk (and hence, 
Dk) equals 0. It is clear that the number of integers j, 0 < j < k such that 
Nj-\ ^ Dj-l i s S{k) . Now, A * B implies that, for each j, 

(p(Mj), p(Nj), p(Dj)) = (even, odd, even) or (odd, even, odd), 

and it is clear from the definitions of mj and rij that £(&) is precisely the 
number of changes from one of these two forms to the other, as j assumes the 
values 0, 1, 2, ..., k. Since dk = 0, 

(p(Mk)9 p(Nk), p(Dk)) = (even, odd, even); 
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i t follows tha t S(k) i s even if and only if MQ i s even; tha t i s , i f and only if 
A > B. 

Proof of the Main Theorem: Let e3- = m±n{rrij - nj, nj}. 

(i) We assume without loss of genera l i ty tha t m > n, l e t m = mQ, n = n0, and 
apply Theorem 1 with GmQ = Um , HnQ = UnQ , yj = vm;j-n^ and 6j = ±Q6j', where the 
+ sign i s chosen if and only if rrij - 2rij > 0, for j > 0. For each j > 0, Gm. = 
YjHnj + 6jZ^. implies tha t Kd . = Ud.9 by property L ( i ) ; since (Gm.9 Sj) = 1, as 
observed in Section 2, 

gcd(Um, Un) = gcd(Ud9 Ud) = Ud9 i f a = b, 
and 

gcd(Um9 Un) = gcd(Ud, UQ) = gcd(Ud, 0) = Ud9 If a * b. 

(ii) Assume, again without loss of gene ra l i t y , tha t m > n, and l e t m = JTIQ and 
n = nQ. Defining £OTQ , #nQ , £d j . , Y j - , and 6j as VmQ, Vn 9 7dj. , ^ - - n ^ a n d ~QeJ > 
for j > 0, r e spec t ive ly , we have, by Theorem 1 and L ( i i ) , 

gcd(7w, Vn) = gcd(7d , Vd) = Vd If a = b9 
and 

gcd(7m, Vn) = gcd(7rf, 2) = 1 or 2 if a * b, 

proving ( i i ) . 

(Hi) Case 1. Assume m > n , l e t m = rriQ and n = no? and define £OT , Hn , Kd , 
y 0 , and 60 as [/WQ, VnQ , £/do, f/OTo_n0 and ±Se°» where the + sign i s used i f and 
only if m0 - 2n0 < 0. For j = 1 , 2, 3 , . . . , l e t Yj = DUm..n.s Sj = £ej' , and 
%dj = "^j i f Gm. = 7 „ . . 1 ; and ŷ - = Um..n.9 6j = ±Qeo , and A'dj. = £/dj. £ / GOTj- = 
Un._±9 where the + sign i s used if and only if rrij - 2rij < 0. Corresponding to 
each j ( j > 0 ) , then, Gm. = YjHn. + 6jKd. i s e i t he r L ( i i i ) or L(iv) . 

If a = b9 Theorem 1 implies 

gcd(Um9 Vn) = gcd(7d , Ud) [or, gcd(*7d, Vd)]9 

and it is immediate from (2) and L(v) that this integer is either 1 or 2. 
If a * b9 Theorem 1 implies 

gcd(Um9 Vn) = gcd(7^, UQ) = gcd(7d, 0) = Vd9 
or 

gcd(Um9 Vn) = gcd(Ud9 70) = gcd(Ud, 2) = 1 or 2. 

Now, Gmp = yrHnr + §TKdr changes from one of the forms L(iii) or L(iv) to the 
other as v changes from j - 1 to j if and only if n^-i > dj-i'9 hence, the num-
ber of such changes as j assumes the values 0, 1, 2, ..., k, is S(k) . Since 
&d0

 = Ud0 > t n e integer k such that Kdk = UQ exists if and only if S(k) is even, 
and, by Lemma 1, this happens if and only if a > b; that is, if a * b9 gcd(Um, 
^z) = Vd ̂ f a n d only if a > 2?. 

Case 2. Assume n > m9 let n = m^ and m = UQ9 and define GmQ, HnQ, Kd()9 y0, 
and 60 to be VmQ, UnQ , 7j0, DUmQ.nQ9 and §e° , respectively. All the remaining 
definitions parallel those in Case 1 in the obvious way, and the proof is 
similar. 

The conditions determining whether gcd(7m, Vn) or gcd{Um, Vn) is 1 or 2 
follow immediately from the parity conditions in Section 2. 

Letting Fk = Uk(l9 -1) and Lk = Vk(l9 -1) represent the kth Fibonacci and 
Lucas numbers, respectively, we have the following corollary. 

Corollary: If m = 2amr
9 n = 2hnf, m! and nf odd, a and b ̂  0, and d = gcd(??7, n), 

then 

(i) gcd(Fm9 Fn) = Fd; 

(ii) gcd(Lm, Ln) = Ld If a = b, 2 if a * b and 3\d9 and 1 if a * b and 3)(d; 
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(Hi) gcd(Fm, Ln) = Ld i f a > b, 2 i f a < b and 3\d, and 1 i f a < b and 3)(d. 

5. Lehmer N u m b e r s 

Let R be an integer relatively prime to Q. We let a and 3 denote the zeros 
of x2- - VRx + Q, and redefine 

((a* - 3fe)/(a - 3), if k is odd, 

\(ak - 3^)/(a2 - 3 2 ) , if fc is even, 
and 

\{ak + 3k)/(a + 3 ) , if fc is odd, 

|(afc + 3fe) , if /c is even. 
Ffc = V ^ > Q) 

The numbers £/̂  and 7^ were defined by Lehmer, who developed many of the 
properties of this generalization of Lucas sequences in his 1930 paper [3]. 
The numbers are known, respectively, as Lehmer numbers and the "associated" 
Lehmer numbers. 

The Main Theorem is true for Lehmer numbers and the associated Lehmer num-
bers, except that appropriate changes must be made in the statement concerning 
the parity of the greatest common divisors. We shall not restate the theorem, 
and refer the reader to [3], Theorem 1.3, for the parity conditions for U^ and 

Both Ufr and Vy. are. prime to Q ([3], Th. 1.1), and it is not difficult to 
show, directly from the definitions above, the following counterpart of Prop-
erty L: 

Property L': Let v > s > 0, e = min{p - s, s}, and A = R - kQ. 

Lf (i) Ur = RVT-SUS ± QeU\v..2s\> ff r ^s o d d and s is even, 

Ur = Vr-sUs ± QeU\T-2s\> otherwise;. 

L' (ii) Vr = RVr-sVs - Q V\r-2s\'> if v ^s e v e n a n d s is odd, 

Vr = Vr.sVs - QeV\r-2s\> otherwise; 

L!(iii) Ur = RUT_SVS ± QeU\r-2s\> if v a n d s a r e o d d> 

Ur = Ur-sVs ± QeU\r-2s\> otherwise; 

L'(iv) Vr = RMJr..sUs + QeV\r_2_s\> if T a n d s a r e even, 

Vr = MJr.sU8 + QeV\r-28\> otherwise; 

L'(v) RVl = tiJ\ + kQv, if v is odd, 

Yl = RMJ* + kQv, if r is even. 

The + sign is used in L*(i) if and only if v - 2s > 0, and in L*(iii) if and 
only if r - 2s < 0. 

Each of the identities L?(i) through L'(iv) is of the form 

Gm, = ydHn. + 6jKd.. 
The proof that gcd(Um, Un), gcd(Vm9 Vn), and gcd(Uw, Vn) are set forth in the 
Main Theorem is, then, precisely the same as that given in Section 4, with the 
slight changes required as the above identities replace the identities of 
Property L. 
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Introduction 

Suppose a (large) integer N is given and we wish to choose positive inte-
gers A, B such that 

(a) the sequence {wn} defined by Wi = A, w^ = B, and Wn + 2 = Mn + l + wn> 
n > 1, contains the integer N, 

(b) s = A + B is minimal. 

What can be said about s in relation to N, and how are A and B to be found? We 
also consider some generalizations. 

The case N = 1,000,000 was recently the subject of a problem in a popular 
computing magazine [1]. Obviously, for N > 2, A = 1, B = N - 1 Is one pair 
satisfying (a) and so the problem does have a solution for each N. Also s > 2, 
and equality here holds whenever N = Fk , a Fibonacci number. Hence, 

lim inf s = 2 as N -> °°. 

In the opposite direction, we shall show that s > y/N for infinitely many N, but 
that for all sufficiently large N, s < y/N + 0(/lT1/2 ) , whe re y = and a = 
(1 + /5)/2. We shall also show how to select A and B for each N. 

The Original Problem 

Clearly, for a solution to the problem A > B > 0, for if B > A , then the 
pair Ai = B - A, B^ = A would yield a smaller s. Starting from A, B, we then 
obtain, successively, A, B, A + B, ..., t, N and we now define, for each t < N, 
the sequence 

t0 = N, ti = t, tn+2 = tn - tn+i, n > 0, 
i.e., work backwards, so to speak, until we arrive at 

tk = A + B, tk+i = B, tk+2 = A, tk+3 < 0. 
Thus, the only choice at our disposal is t; k is then characterized by being 
the smallest integer for which £^+3 < 0, and our object is to choose t so as to 
minimize s = t k , 

Let a and 3 be the roots of 02 = 6 + 1. Then a$ = -1, a + 3 = 1, and 

Fn = (a» - 3n)/(a - 3). 

Then the roots of 62 = 1 - 0 are -a and -3? so that, for suitable constants c 
and d9 

tn = (-l)n{oan + d$n}. 
Using the initial conditions to = N9 t\ - t, we then find that 

(1) tn = R ) " * , - ! - tFj. 
Also, for n > 0, 

(2) aFn_l - Fn = -3n"x = (-l)na-n+l, 
and so 
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( 3 ) ( - l ) n { c ^ n _ l " V > 0 . 

We now p r o v e t h e f o l l o w i n g . 

Theorem: Let 

tn = ( - l ) " ^ . ! - tFn}9 

where tk = A + B, tfc+1 = B, tk + 2 = A. Then t = [n/a] gives the smallest value 
for tk = A + B = s and 

s < 2/(iP/a) * 1.5723/tf. 

There are two cases. Suppose first that 21/ > at. Then 

tn = (-l)nt{aFn_1 - Fn} + (-l)n{il/ - at}Fn_l > (-l)n {N - at}Fn_l, 

so tn can be negative or zero only if n is odd. Thus, k must be even, and if 
k = 2Z, then t2K + l > 0* ^2K + 3 - °- Thus, from (1) 

^2# t ^2X + 2 
< — < 

F2K + l n F2K + 3 
and defining p = N/a - t > 0, we have 

^2Z+3 ~ aF2K+2 P ^2Z+1 " ° 2̂Z 
< — < 

aF2K+3 N OLF2K+I 
i . e . , i n v i e w of ( 2 ) , 

(4 ) UZK + 1F2K+1 < N/p £ °.ZK + 3F2K+3, 

w h e n c e , 

a ^ + 2 + 1 = aZK + l(a2K + 1 - 3 2 x + 1 ) < N/5/p 
< a 2Z + 3 ( a 2 Z + 3 _ 32iC + 3) = a ^ + 6 + 1 ; 

s o 

( 5 ) a ^ + 2 < / l / /5/p - 1 < a ^ + 6 . 

A l s o , i n t h i s c a s e , 

( 6 ) S = t2K = NFZK-! - tF2K 

= ff(*2X-l - F2^/«) + PF2K 
= N/u2K + pF2K = 5 + n, say. 

Of these two terms, £ is always the larger; In fact, from (4), we have 

uFlK + l < _5 = ff < «3j?2fi + 3 
F 2 X

 < n p a 2 x F 2 i ( " F 2 X ' 
whence 

(8 ) a 2 < £ / n < a 6 + 2 | 3 | 2 x _ 3 / i ?
2 i c -

We now show t h a t , f o r a l l t < N/a, t = [N/a] g i v e s t h e s m a l l e s t v a l u e f o r s. 
F o r , l e t t = [ # / a ] and tf < t b e a n y o t h e r i n t e g e r , y i e l d i n g , r e s p e c t i v e l y , p , 
Z , £ , n , s and p f , KF, £ ' , n f

5 and s f . Then t ; < t - 1 , whence p ' > p + 1 a n d , 
i n v i e w of ( 5 ) , Kr < Z . I f Z f = Z , t h e n £ ' = £ and n ' > n , w h i c h g i v e s s ' > s , 
w h e r e a s , i f Z ' < Z , t h e n 

s ' = £ ' + n ' > £ ' 2> a 2 £ = (a + 1 ) 5 > £ + n = s , 

in view of (8). Moreover, using (7), we see that 
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(£ + n ) 2 £n(£ , n , n) P^(a3^2z+3 
21/ # l n SJ a2 I F2 a3F2ZH 2Z + 3 

p - ( a 3 F 2 z + 3 + F2K) 2 
a *2K+3 

p(a - 3) / a 3 ( a 2 * + 3 - 3 2 i r + 3 ) + ( a 2* - 3 2 z ) j 2 

a 4 z + 6 + 1 t (a - 3) J 
p a 4 Z + 6 ( a 3 _ 3 3 } 2 

< 4 p v 5 . 
(a - 3) 

Thus, 
(9) s < 2 t f 1 ' 2 p 1 / 2 5 1 / l f . 
The case i n which 217 < a t i s e n t i r e l y s i m i l a r . Suppress ing the d e t a i l s we f ind 
t h a t k must be odd, and i f k = 2M - 1, then wi th a = £ - 217/a, we o b t a i n 

(4 0 a2MF2M < N/a < a2M+2F2M+2, 

( 5 ' ) ahM < 217/5/a + 1 < a ^ + \ 

( 6 ' ) s = N/a2M~l + a F ^ - i = 5 + n, s ay . 

2̂M < £ = # < ^?2M + 2 

( 8 ' ) a 2 - 3 ^ " 3 / 5 < £/n < a 6 . 
For all sufficiently large 21/, 

(9') 8 < 2Nl^2a^2 51/Lf + 0(N~1^). 
At this stage we may immediately make the observation that, for any 21/, one of a 
and p lies below 1/2, and so (9) and (9 ') immediately give an upper bound of 
(221//5)1/2 + 0(2I/~1/2) or approximately 2«11521/1/2. It is, however, possible to 
improve this. 

Let us suppose that p/a = a~2e, so that 

(10) p = 1/(1 + a2e) and a = a2e/(l + a 2 e ) , 

since a + p = 1. Then, if 0 > 1 - 1/217, i.e., p is small, we use the inequal-
ity (9), and if 0 < -1 + 1/21/, i.e., a is small, we use the inequality (9') and, 
in either case, obtain 

(11) s < 221 / 1 / 2 5 1 / i + / ( l + a2)112 + 0( / l /" 1 / 2 ) = yN1/2 + 0(21/"1 / 2 ) , 
as r e q u i r e d . The remaining case i s | 6 | < 1 - 1/21/. Let 217/5/p - 1 = aA, and l e t 
217/5/a + 1 = a y . Then a l i t t l e man ipu l a t i on y i e l d s 

26 > X - u > 20 - 1/217, 

and so, certainly, |x - u| < 2. Then we have, from (5), that ax > aifZ + 2, i.e., 
X > l\K + 2 and, from (5'), that 4M + 4 > u. Since y + 2 > A, 42tf + 6 > 4Z + 2 
and so M > K. Similarly, we find that M < K - 1, and so all in all M = K or 
K - 1; in other words, the values of k obtained from p or a differ by exactly 
one. It is easy to see that whichever is the larger value would give the 
sharper bound for s, but there is no a priori way to determine which does 
indeed give the larger k. If it is 2K, then we can improve the bound given by 
(9), by observing that 

X < y + 20 < 4M + 4 + 20, 

and so the upper bound for E,/r\ given by (8) can be improved to a^+2Q + 0(1/21/) 
and then the same argument which led to (9) now leads to 
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s2 p ( a 2 + e + a " 2 " 9 ) 2 , , (a2 9 + a " 2 " 9 ) 2 0 

— < ; — + 0(1/N) = ±— —^- + 0 ( 1 W 
# (a - 3) (a 2 + l ) / 5 

= / ( 0 ) + 0(1/71/) 5 s ay . 

In the same way, it is possible to improve the bound if the larger value is 
given by 2M - 1, and the corresponding bound for s2/N is just f(-Q) + 0(1/71/). 
Since we do not know which of these will apply, we must take the larger one, 
i.e., g(Q) = max{/(0), /(-0) } . It is quite simple to see that /(0) is an 
increasing function of 0 and so the worst case arises from (1 - 1/71/), the upper 
bound for |0|, giving 

s2/N < 4/a + 0(1/71/), 

yielding (11) again. This concludes the proof of the theorem. 

Now, we show that this bound cannot be reduced. Choosing 71/ = ̂ 2n+1^2^ + 2' 
we find that 

[N/a] = (a4n+2 + 34n + 2 - 3)/5, p = (a + 34n+3)//5, 

a = - ( 3 + 31+n + 3 ) / / 5 5 A = 4?z + 2 , u = kn + 4 , 
and so K = n - 1 and M = n. Therefore, it follows that the latter gives the 
larger value for k, and that, in view of (9r)9 

s = Nal~2n + pF2n-i 
( a 2 n + l _ 3 2 n + l ) ( a 2 n + 2 _ 3 2 n + 2 ) ( g + g*+w + 3 ) ( a 2 n - 1 _ g 2 n - l ) 

5 

+ a 2 " " 2 + 3 2 n + 3 2 n + Lf + 3 6 n + i4} - \{aln^ 

= I ( a 2 « + 1 

and now 
s^_ _ 4F2 n + 1 

N ?2n+2 

+ 

-

= 

5 a 2 n _ 1 

g2n - 2 _ g2n _ g6n + 4 . 

3 2 n + 1 ) ( a 3 - 33) = F3, 

4 ( a 2 n + 1 - 3 2 n + 1 ) 4 
( a 2 n + 2 _ 3 2 n + 2 }

 >
 a 

This concludes the discussion of the original problem. 

Generalizations 

Several generalizations are now possible. the simplest of these consists 
of choosing a given integer a ^ 1 and replacing the original relations by 

(al) the sequence {wn} defined by W\ = A9 w2 = B9 and Wn + 2 = awn + i + Wn, 
n > 1, contains the integer 71/, 

(bl) s = aB + A is minimal. 

This creates but minor changes in the working above. We now let a > 0 and 3 < 
0 be the roots of 02 = a0 + 1 and then a 3 = - l s a + 3 = a , a - 3 = (a2 + 4 ) 1 / 2 . 
We define Fn as before in terms of a and 3, although, of course, Fn will no 
longer be the Fibonacci number. The effects of this are to replace /5 wherever 
it occurs by the new value of a - 3 * and to replace the number 2 = F3 in 
formulas (9), (9f), and (11) and in the value of y, by a2 + 1. The form of the 
result remains identical, with 

Y = (a2 + 1)/A and a = (a + (a2 + 4)1/2)/2. 

The details are omitted. 
The next generalization we consider consists of replacing the original 

relations by 
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(a2) the sequence {wn} defined by Wj = A, w^ = B, and Wn + 2 = c^n + \ ~ wn> 
n > 1, contains the integer N, 

(b2) s = aB - A > 0 is minimal. 
Here the integer a cannot be 1, otherwise any such sequence would contain only 
six distinct numbers, or 2, otherwise the problem becomes trivial since we 
could always take W\ = 1, W^ = 2, and then WN = N with s = 3. So we assume 
that a ^ 3. We now let the roots of 62 = aQ - 1 be 

a = (a + (a2 - 4)1/2)/2 and 3 = (a - (a2 - 4)1/2)/2, 

and then a3 = 15 ct + 3 = a , w i th 

0 < 3 < 1 < a and a - 3 = a = ( a 2 - 4 ) 1 / 2 . 

Again we let Fn = (an - 3n)/(ot - 3) > and proceeding as before we let the inte-
ger in the sequence before N be t, and obtain A, B, aB - A , . .., t, N, and so, 
if to = N, t\ = t, tn+2 = atn+i - t n , we get a reverse sequence where 

(12) t„ = tF„ - NFn.x, 

(13) F„ - aFn_! = 6"-1 > 0, 

(14) tn = -(N - t a ) ^ - ! + t6n_1. 

What happens now depends on the sign of (N - ta) . 

Case I. N > ta. Then, eventually, t„ becomes negative, and we find that 

s = h , Fk + 1 " B. ** + 2 = ̂ . and Ffc+3 < 0. 

All this parallels the previous work with only minor differences, and if p = 
N/a - t, then we find that 

(15) a2k + e > 1 + N(a - 3)/p > a27c + Lf, 

(16) s = tk = tFk - NFk_l 

= N(Fk/a - Fk.Y) - pFk 

= N/a* - pFk = £ - n, say. 

(17) a4 < £/n < a6 + 0(1//!/). 

Unfortunately, it is no longer necessarily the case that sr > s whenever tr < t 
= [N/a], For we have tr < t - 1, whence pf > p + 1, and so, in view of (15), 
kr < k. Now, if indeed kr < k, then sr > s, for 

s' = £' - n' > £'(1 - 1/a4) > a£(l - 1/a4) > £ > £ - n = s . 

However, if kr = k, then s' < s, since now p' > p. Although this is true, we 
shall see presently that it causes no problems, for then p' > 1, and in such a 
case a choice with t > N/a would always yield a smaller s . In any event, we 
obtain a result analogous to (9), 

(18) 8 < (a2 - D/l/^p1/2 (a2 - 4 ) 1 / 4 + 0(/lT1/2). 

Case II. N < ta, is entirely different. Let t = N/a + a. Then 

tn = £3n_1 + oaFn_l 

is positive for all n > 0, and we now need to choose k = K to minimize s = t k . 
Then tK < tK+i gives, in view of (12), 

N(FK - FK_1) < (FK + l - FK)t = (FK + l - FK)(N/a + a) 

and so, using (13), 
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and so 

(1 - 3)(ax+1 + f3*)a > N(a - 3)(1 - 3)3* 

which, together with a similar inequality obtained from tK < tK-i yields 

(19) a2*"1 < N(a - 3)/a - 1 < a2K + l
 9 

and then 
s = tK = tFK - NFK_X 

= (f/a + o)FK - NFK_l 

= N/aK + oFK = £ + n5 say. 

In this case, it is clear that the smallest s is provided by taking a as small 
as possible, and we find, using (19), that the ratio x]/E, lies between a and 
(a2^ - I)/ (a2K+1 + 1) < 1/a, and so we obtain, as before, 

2 (S + n) 2 £TI 

G — T} 
s 
~N N N 

^ QFK / q2* - 1 a2^ + 1 + 1) 
" az la2^+1 + 1 + 2 + a2* + 1 J 

•( + 1) a(a + 1) 
< (a2^+1 + l)(a - 1) (a - 1) 

Thus, 
(I + 6)1/2 (20) 8 < ̂ l/2al/2<j-__aj> 

and this bound is much better than that provided by (18) unless p is extremely 
small, certainly less than 1. This justifies our earlier remark that we need 
only consider the smallest value of p. Since, at any rate, we can always take 
a < 1 in (20), we obtain immediately 

, /l + B)1/2 

"VTTB/ " 
s < N 1/2 < 

This can be improved slightly, and we prove that s < NL/Z&, where 

1 + 3 1 
1 - 3 1 + 33" 

As before, we define 0 by p/a = a~2e obtaining (10), and define X and y by 

N(a - 3)/p - 1 = aA and N(a - 3)/a + 1 = au, 
whence 

29 < X - y < 20 + l/N.. 

If now 0 < 3/2, then a < (1 + 3 3)~ 1 / 2 and then (20) gives the required result, 
whereas if 0 > 5/2 - l/N, then we find that 

P 2 < 35/(l + 35) + 0(1/#) 

and then, using (18), we find that 

N a - 3 1 + 35 

and since 3 < 15 the result easily follows. The remaining case is where 

3 < X - y < 5 

and then, in view of (15) and (19), we find that 2k < X - 4 and IK > y - 1, 
whence 
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2(K - k) > \i - \ + 3 > -2, 

and s o , s i n c e bo th k and K a r e i n t e g e r s , K > k. Thus, from (16) and ( 1 9 ) , we 
f ind t h a t 

s < N/ak < N/aK < Nl/2 (1 - 3 2 ) ~ 1 / 2 + 0(N~l/2 ) 
and again the result follows. 

The following example shows that the result is best possible. Let N = 
(Fn+i - Fn)L, where the integer L is to be chosen later. Then 

N/a = {an - an~l - 3n + 2 + 3" + 1} 
a - 3 

= (Fn - Fn.l)L - L3n(l - 3), 

and so 
[N/a] = (Fn - Fn.l)L - 1, 

provided that L3n(l - 3) < 1. It is easily seen that this latter condition is 
equivalent to L < Fn+1 + Fn, so we let L = Fn + i + Fn - x, where x > 0 is to be 
chosen later. If we now take t = (Fn - Fn_i)L = [N/a], then 

t r = (Fn_r+i - Fn„r)L, 

so the least t r - tn = tn+\ = L. On the other hand, if t = [N/a] - 1, then 

tr ~ (Fn_r+i - Fn_r)L - Fv , 
so 

~kn
 = L " Fn = Fn+i - x, 

tn+1 = L ~ Fn+l = Fn - X, 
and tn+2 = Fn-i - x(a - 1). 

Now, if we choose x to be the least integer > Fn_i/(a - 1), then we find that 
k = n - 1, and the value of t^ exceeds L, the value given for s by the other 
choice. Hence, for such an N, we obtain 

s2 Fn + l + Fn - x (a - l)(Fn + 1 + Fn) - Fn_Y 

N Fn + 1 - Fn (a - D(Fn+l - Fn) 
+ 0(1) 

(a - D(Fn+1 - Fn) 

(1 + 32) - 32 

(1 - 3 + 32)(1 - 3) 

1 + 3 1 

+ 0(1) 

• + 0(1) 

= *2 = o + 0(1) = 6Z + 0(1), say. 
1 - 3 1 + 33 

Thus, letting n •> », we find that s < Nl/26 + 0(N~l/2) . 

Reference 
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1. Introduction 

For select real values of p and for real x^9 the expression 

(1) lim x, + (x1 + (x9 + (... + (xk)p ...)P)P)P 

is practically ubiquitous in mathematics. For instance, (1) represents nothing 
more than the old familiar L^=0^^ when p = 1. When p = -1, it becomes a novel 
notation for the continued fraction 

1 
x0 +

 l 
x, + 1 i 

When p = 0, the expression is identically 1 (provided that the terms are not 
all 0). 

Not quite ubiquitous, but certainly not rare, is the case p = 1/2, in which 
(1) becomes 

(2) lim x„ + vx^ + vx2 + /-. . + v/x^9 

a form variously known as an "iterated radical," "infinite radical," "nested 
root," or "continued root." The literature reveals an assortment of problems 
involving (2) but only a smattering of other direct references. Of the few 
treatments of nested square roots as a research topic, one of the sharpest and 
most thorough is a paper by A. Herschfeld from 1935 [4], wherein he refers to 
(2) as a "right infinite radical" and derives necessary and sufficient 
conditions for its convergence. Recently, some of Herschfeld's results have 
been independently rediscovered [10]. 

A mathematical construct which includes infinite series, continued frac-
tions, and infinite nested radicals as special cases ought to merit serious 
investigation. On the other hand, cases of (1) for other powers, for instance 
p = 2, seem likely to produce little more than irritating thickets of nested 
parentheses, and integer x-^ clearly cause rapid divergence. [Herschfeld men-
tions the form (1), calls it a "generalized right infinite radical," notes the 
cases p = 1 and p = -1, states without proof what amounts to a necessary and 
sufficient condition for the convergence of (1) for 0 < p < 1, and drops the 
subject there.] Yet, surprisingly, it turns out that (1) may converge even for 
very large p; even more surprisingly, there is a sense in which the convergence 
gets "better" the larger p grows. 

In this article we gather and derive some basic properties of expression 
(1), especially its necessary and sufficient conditions for convergence. (For 
logistical reasons, we will deal only with positive powers p and nonnegative 
terms x^; negative powers, complex terms, and interconnections between the 
variations represent unmapped territories which appear to be inhabited by 
interesting results.) We note the peculiar fickleness of infinite series in 
this context, and we conclude with a few comments interpreting (1) as a special 
composition of functions. 
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2. Definitions, Notation, and Qualitative Aspects 

Given a sequence {xn\n = 0, 1, 2, ...} of real numbers (called terms), and 
given a real number p, define a sequence {yn} by 

o ) yk - c (P, «*) - *0 + (x i + (x2 + (••• + (xk)p • • • ) p ) p ) p . 
i = 0 

The limit of yk as /c •> °°  will be called a continued (pth) power, denoted by 
C™=0(p> %i) • If the limit exists, the continued power will be said to 
converge to that limit. (We do not insist that the limit be real, although it 
will be in what follows, given the assumption of positive terms and powers.) 
Borrowing from the jargon of continued fractions, C^=Q(p, x^) will be called 
the kth approximant of the continued power. With the intent of both empha-
sizing and streamlining their retrograde associativity, we will make a slight 
deviation from standard notation and write continued powers and their kth 

approximants, respectively, as 

C (p, xt) = xQ +
 p(x, + p(x9 + ...)) 

and 

C (p, xt) = xQ + p(a; + P(... + P(xk) ...))• 
•£ = 0 

Implicit in this notation is the convention p(x) = x?, and the raising of quan-
tities to powers will be effected both ways. For j > 1, we will call 

C(p, x^ = x. + P(xj + l + p(^. + 2 + ...)) 
and 

k 
Cm(p, ^i) = Xj + p(xj+l + p(... + p(xfe) ...)) 

the truncation at Xj of a continued power and of its kth approximant, respec-
tively. If the arguments p and Xi are understood in a given discussion, then 
Ci=J-(p, x^ will be shortened to C-. Note that 

C = xk (k > 0), 

C = xd + ( C J (0 < j < k) . 
In the event that p = l/m, m a positive integer [or, more loosely, for m G (1, 
00) ] , we may use the notation developed in [10]: 

C (p, Xi) = xQ + \/(xl + \/(x2 + </(••• 
i = 0 

and will call such an expression a continued root (dropping the m9 of course, 
when m = 2). 

The contrary associativity of a continued power is at the outset perhaps 
its most prominent and daunting feature. Not only must the evaluation of a 
finite approximant be performed from right to left, but the kth approximant 
cannot in general be obtained as a simple function of the (k - l)st ; that is, 
there is in general no simple recursion formula relating CQ~ to CQ. To mani-
pulators of infinite series and continued fractions, this annoyance is less 
severe than it is to us, because the essentially linear and fractional nature 
of series and continued fractions permits the elimination of nested parenthe-
ses. For most continued powers, however, nonlinearity will subvert or preclude 
such simplification. 
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Since computation of the kth approximant "begins" at x^ and "ends" at XQ, 
one might say that continued powers "end, but never begin" as the number of 
terms increases without bound. This is in stark contrast to most other infi-
nite constructs (borne for the most part by truly iterated processes) which 
"begin, but never end." To have an end, but no beginning, seems rather 
bizarre; perhaps this is because our intuition, abstracted from the natural 
world, prefers infinite processes with finite origins. After all, anyone who 
is born can wish never to die, but what sense can be made of the possibility of 
dying, having never been born? For now, we will accept the informal idea of 
expressions that "end, but never begin" without dwelling on its deeper implica-
tions, lest by sheer grammatical duality the familiar processes that "begin, 
but never end" come to look equally doubtful. 

3. Continued Powers of Constant Terms 

Continued powers turn up in the literature often as continued square roots 
having constant terms, as in the formula (mentioned in [8]) for the golden 
ratio 

<f> = 1 + 5 = /(l + /(l + /(l + / ( . . . 

Such expressions invite consideration of continued powers of the form 

C (p, a) = a + p(a + p(a + ... ) ) . 
i= o 

For a given p > 0, what values of a > 0 (if any) will make this continued power 
converge? 

To answer this question, we conjure up an insight so useful that in one way 
or another it makes possible all of our later results: namely, the order of 
operations can be reversed in a continued power of constant terms. That is, 
the evaluation of a finite approximant may be performed by associating either 
to the right or to the left when all the terms are equal, as the following 
construction demonstrates: 

(4) a = a 

a + p(a) = (a)p + a 

a + p ( . . . + p(a + p(a)) ---) = (--- ((a)p + a)p + . . - ) p + a 

where each side of the last line has the same number of terms. Note that this 
does not work if the terms are not equal. If you index the terms as you add 
them, you will find that neither the left- nor right-hand expressions are 
approximants of a continued power. 

As mentioned in Section 2, associativity in the "wrong" direction is the 
main impediment to the study of continued powers in general. The appeal of the 
present situation lies in the fact that a continued power of constant terms is 
equivalent to a form whose associativity proceeds in the "right" direction, and 
whose convergence can be studied using known techniques. The tool we will make 
most use of is the algorithm known in numerical analysis as "successive 
approximation" or "fixed-point iteration"; for those whom it may benefit, we 
briefly synopsize this algorithm and its properties. In fixed-point iteration, 
a generating function g is defined on an interval I, a starting point WQ is 
chosen in I, and a sequence {w^} is generated by w^ = g(w-^_i) for k = 1, 2, 3, 
... . The sequence {w^} converges to an (attracting) fixed point A in J [with 
the property that g(X) = A ] , provided that g and I satisfy certain conditions. 
For our purposes the following conditions due to Tricomi (mentioned in [3]) 
will suffice, although others are known (cf. [5]): 
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( i ) g(x) must be continuous on the (closed, half-open, or open) in te rva l 
i; 

(ii) there must exist a number X G I such that g(X) - X; 
(iii) \g(x) - X\ < \x - X\ for all x G I, x * X. 
Despite notational vagaries, it is no secret ([7], [9]) that, for p = 1/2, 

the expression (((a)p + a) p + a) p + ••• is simply an "unabbreviated" fixed-point 
algorithm generated by g(x) = ga(x) = xp + a at the starting point x = 0. 
Extending this interpretation to the general case, we invoke the identity (4) 
to claim that the convergence of C™=0(p, a) depends only on ga (x) and a suit-
able interval I containing the starting point x = 0 and the fixed point X . In 
fact, CQ converges just when g and I conform to conditions (i) , (ii)5 and 
(iii) above. With this strategy in hand we obtain 

Theorem 1: The continued pth power with nonnegative constant terms xn = a con-
verges if and only if 

a > 0 for 0 < p < 1; 
a = 0 for p = 1; and 
0 < -a < R fo r p > 1 

whe" _ rJEUEH. 
The set [0, °°) will be called the interval of convergence for a continued 

pth power, 0 < p < 1. Likewise {0} and [0, R] will be the intervals of conver-
gence for p = 1 and p > 1, respectively. 

Proof: The case p = 1 is trivial, since the only value of a for which Z^=0a is 
finite is a = 0, and R = 0 when p = 1. Indeed, C™=0(p, a) converges whenever 
a = 0 for any p > 0. 

For ga(x) = x^ + a and p > 0, continuity is not an issue for x and a in R+. 
Condition (i) is satisfied by any positive interval. 

Condition (iii) is fulfilled for 0 < p < 1 and p > 1, since in both cases 
the function ga(x) = x? + a is strictly increasing, and it is easily shown that 
either X > ga(x) > x or X < ga(x) < x for x * X in the interval(s) I which per-
tain. 

The remainder of the proof, then, involves determining those intervals I 
and establishing the existence of X G I for positive p ^ 1. Because the func-
tions involved are very well-behaved, we offer remarks about their graphs 
rather than detailed derivations of their properties. Essentially, the problem 
is to determine how far a power function can be vertically translated so that 
it always possesses an attracting fixed point. 

0 < p < 1. The curve y = ga (x) = x? + a (typified by y = fx + a) is 
strictly increasing, concave downward, and vertically translated +a units. For 
a > 0, take I = [0, °°). From a graph, it is clear that y = ga(x) intersects 
y = x exactly once in J, at the point x = X = ga (x) . (For a treatment of this 
case when p = 1/2 and a is complex, see [11].) 

p > 1. Here the curve y = ga(x) is exemplified by y = x2 + a; it is con-
cave upward, strictly increasing, and elevated a units. There is a point a = R 
at which y - ga(x) is tangent to y = x; for a > R, the two curves do not inter-
sect; hence, no X = ga(X) exist. 

When a = R, A is the point of tangency of y = gR(x) and y = x. The deriva-
tive of gR{x) is 1 at x = X, whereby X = X = (l/p)l/(P~lh Then, from X = gR(\) 
= Xp + R and X = J, we find 

*•'- "-{if1-®*- (*r* -»- '-^T1-
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This form for R was chosen to foreshadow a recurrent theme in the field of con-
tinued powers, namely the persistent appearance of expressions of the form 
AA/BB. At any rate, for a = R, take I = [0, X] . 

Finally, when 0 < a < R, y = ga(x) intersects y = x at two points lying on 
either side of the point X. Take I = [0, X] , so that the single intersection 
point less than X is the point X E I satisfying condition (ii) . We have shown 
that ga(x) generates convergent fixed-point algorithms over I = [0, X] for 
0 < a < R9 which ends the proof. 

Theorem 1 reveals that, for instance 

C (2, a) = a + 2(a + 2(a + ...)) 
i=0 

converges for any a e [0, 1/4]; the proof shows that 

?„ (2- i ) i= 0 

One may show that as p -> °°  the point R -> 1, hence the interval of convergence 
grows larger as p increases beyond 1. In this context, we can reasonably say 
that the convergence.of a continued pth power gets "better" as p grows large, 
and is "worst" for the famous case p = 1, namely infinite series. 

4. Continued Powers of Arbitrary Terms; 0 < p < 1 

The first discussion of the convergence of the continued square root 

C (|, %i) = ̂ 0 + Axl + /(a?2 + /(..-

appears to have been made in 1916 by Polya & Szego [8], who showed that it con-
verges or diverges accordingly as 

log log xn 
lim sup-

n •> c n 
is less than or greater than log 2. This result was encompassed by a theorem 
of Herschfeld, which gives a necessary and sufficient condition for the conver-
gence of a continued square root and which easily generalizes to the main 
theorem of this section. 

Theorem 2: For 0 < p < 1, the continued pth power with terms xn > 0 converges 
if and only if ix^n} is bounded. 

This follows simply by substitution of l/pth roots for square roots in 
Herschfeld's proof of the case p = 1/2. In lieu of a proof by plagiarism, we 
merely convey the proof's salient features; and to that end, let us take a 
moment to establish three useful properties of approximants and their 
truncations. (Remember that {xn} is nonnegative and p is positive in what 
follows.) First, successive truncations of the approximant CQ conform to the 
inequality 

Furthermore, the approximants form a non-

To see this, start with xk + p(xk + i) > xk and construct each approximant back-
wards to XQ. Finally, from the formula 
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c = x0 +
 p ( x 1 +

p ( . . . +
 p(x._1 +

 p ( q ) ) . . . ) ) 
it is clear that a continued power converges if any truncation converges. 

The necessity of Theorem 2 is easily proved by applying the inequality for 
successive truncations n times to CQ and letting n -> °°: 

n \Vn 

C>- (C) 
0 x n I 

X„ 

C ̂  lim xp . 
0 n+™ 

CT converges; hence, {xp } is bounded. 
On the other hand, suppose there is an M > 0 such that xp < M for all n > 

0 or, equivalently, xn < Mp ". With this, one can construct the inequality 

xQ + P(xl + p(.». + p(xn) ...)) ̂  M + p(Afp_1+ p(... + p(Mp_n) .-•))-

Multiplying the right side by M/M and distributing the denominator through the 
successive parentheses results in 

C (p, xt) < M[l + P(l + p(... + P(l) ...))] 
i = 0 

or 
C (p, ̂ ) ^ M C (p, 1). 

The continued root on the right converges as n + °°, because 1 is in the set of 
constants for all continued roots. The nondecreasing approximants on the left 
are therefore bounded; hence, C™=0(p, x^) converges, which finishes the proof. 

The condition of Theorem 3 is met by most common sequences. An example of 
a divergent continued root is 

C (L 2^) = 2 + ^(2^ + ^/(216 + ^(264 + ^( ... 

where the sequence of terms fails the "upper bound" test: (24 ) p = 2^'^^n + «>. 

5. Continued Powers of Arbitrary Terms; p > 1 

As p exceeds the critical value 1, continued pth powers converge with mark-
edly lower enthusiasm. They behave stubbornly, although not pathologically— 
for, given the hypotheses of this discourse, we are favored at least with a 
nondecreasing sequence of approximants—and in one sense the most reticent 
examples are infinite series (p = 1). In this section we will show that, among 
other things, the better-known convergence tests for series are just limiting 
cases of conditions which hold for general continued pth powers (p > 1). 

For instance, it is common knowledge that, if an infinite series converges, 
then its nth term must approach zero. The analogous property for continued 
powers is summarized in 

Theorem 3: For p > 1, the continued pth power with terms xn > 0 and interval 
of convergence [0, R] converges if lim sup xn < R. For p > 1, it diverges if 
lim inf xn > R. 

Proof: We first prove the latter assertion. If lim inf xn = B > R, then for 
each e > 0 there is a natural number N such that B - e < xn for all n > N. In 
particular, choose e = EQ > 0 such that R < B - eg < xn> an^ f° r convenience, 
set v - B - eg. Then use v < xn for all n > N to construct 

v + p(v + p(... + V(v) ...)) < xN +
 p(xN+l + p(... + P(xn) ...)). 
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More compactly we have , i n the l i m i t i n g c a s e , 

C (p, v) < C (p, x^. 
i = N i = N 

But C™=N(p, v) diverges, because v = B - e0
 i s greater than R and not in the 

interval of convergence. Therefore, the truncation C°°  (p, x^) diverges, and 
likewise the entire continued power. 

A similar argument shows that, if lim sup xn = B < R, the continued power 
converges. However, if R = 0, we would be assuming that lim sup xn = B < 0, 
which for a nonnegative sequence is a malfeasance. By excluding the case p = 1 
(for which R = 0), we salvage this argument and complete the proof. 

We come now to a situation wherein continued powers show substantially 
greater resistance to examination. The deep questions of our present line of 
inquiry involve powers greater than one and terms xn for which 

lim inf xn < R < lim sup xn. 

One of the simplest examples with these features is the continued square 

C (2, ti), 

where we have nonnegative constants a and b such that £2i + l = a» ^2i = »̂ anc^ 
a < 1/4 < b (R = 1/4 for a continued square). That is, 

C (2, t ) = b + 2(a + 2(b + 2(a + ...)))• 
i= 0 

Our approach to this example parallels the development of Section 3. The prob-
lem of "backwards" associativity is overcome by the identities 

(5) b + 2(a + 2(*.. + 2(a + 2(b)) ...)) 

= ((... ((b)2 + a ) 2 + • . . ) 2 + a ) 2 + 2>, 

where each side has the same odd number of terms, and 

(6) b + 2(a + 2(*.- + 2(b + 2(a)) ...)) 

= ((... ((a)2 + b)2 + . . . ) 2 + a ) 2 + b, 

where each side has the same even number of terms. The right-hand sides of 
these equations can each be thought of as an unabbreviated fixed-point algo-
rithm generated by the function ga b(x) = (x2 + a)2 + b; in equation (5) the 
starting point is x = b, while in (6) it is x = 0. We want this algorithm to 
converge to the same limit regardless of the point at which it starts. Under 
our hypotheses, gaii) is positive, strictly increasing, and "concave upwards" in 
R+; a and b are not both 0; thus, it follows that there is a unique point in R+ 

where the derivative of g ^ equals 1. This leads to the equation 4#3 + kax - 1 
= 0, having a single positive real solution which we call y (stated explicitly 
below). 

The convergence of the fixed-point algorithm using ga ^ can now be assured. 
For b = y - (y2 + a ) 2 , the unique attracting fixed point in R+ of ga ^ is the 
point of tangency of y = ga ^(x) and y = x. When b < y - (y2 + a)2, y = 
9a,b^x^ intersects y = x in two points lying on either side of x = y, and the 
left one is the desired attracting fixed point. The interval I = [0, y] maps 
into itself, and since both 0 and b are contained in J, they may be used as 
starting points for a convergent fixed-point algorithm using gath . Thus, we 
are led to the following 
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Proposition: For 0 < a < 1/4 < b, the continued square 

b + 2(a + 2(b + 2(a + •--))) 

converges if and only if b < y - (y2 + a)2, where 

Y V 8 V64 27 V 8 V64 27' 

(The reader may find it entertaining to show by this Proposition that b = 
1/4 if a = 1/4, as Theorem 1 requires.) This is not a particularly graceful 
conclusion to an admittedly rough sketch. But not much more elegant, and con-
siderably less specific, is the generalization to powers other than 2, via the 
same argument. 

Theorem 4: Given p > 1, interval of convergence [0, R], and 0 < a < R < b, the 
continued pth power 

b + p(a + P(Z> + p(a + -..))) 

converges if and only if b < y - (yp + a ) p , where y is the unique root in R+ of 
p2(x?+1 + ax)P'1 - 1 = 0 . 

And so the simplest continued power for which lim inf xn < R < lim sup xn 
leads to a result whose application will in most cases require solution of an 
equation by numerical approximation. Worse yet, note that Theorem 4 has 
virtually no relevance to 

b + p(b + p(a + p(b + p(b + p(a + .--))))) 

or to similar constructions in which various arrangements of two constants make 
up the sequence of terms. Such apparitions are manageable to the extent that 
we can find generating functions for equivalent fixed-point algorithms; these 
functions and their derivatives, however, are not likely to be pleasant to work 
with, especially for noninteger p. 

On the other hand, one should not be left believing that the situation is 
near hopeless when lim inf xn < R < lim sup xn. For instance, satisfying 
results are attainable for a continued power whose terms monotonically decrease 
to R. Subsumed by this special case are (not necessarily convergent) infinite 
series whose terms decrease to 0. Just as the ratio of consecutive terms 
sometimes imparts useful information about the convergence of series, so too 
does a kind of "souped-up" ratio test apply to continued pth powers. In fact, 
the continued powers test almost reduces to dfAlembert's ratio test for series 
as p •> 1, but the precarious nature of infinite sums considered as special 
continued powers causes an interesting and instructive discrepancy. 

Theorem 5: For p > 1, the continued pth power with terms xn > 0 converges if 

fan + l)P
 < (p - DP~1 

Xn " pP 

for all sufficiently large values of n. 
Proof: Assume the validity of the ratio test (for n ^ 0, without loss of gener-
ality) in the form (xn+i)P < axn, where c = (p - l)p_1/pp. Using this inequal-
ity, a proof by induction on the index k (k < n) shows that 

(7) C * {xn_k)[l+o p{l + Q P(... + Q P(l + a) ---))], 
n-k 

where the number of a1s on the right is k. When k = n, (7) becomes 

(8) C * xQ[l + c P(l + c p( ... + a p(l + c) ...))], 
0 
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where the number of c1 s is now n. The right side of (8) contains a variation 
on a continued power of constants, equivalent to an unabbreviated fixed-point 
algorithm generated by the function g(x) = 1 + oxp at the starting point x = 0: 

(9) 1 + c P(l + Q p(... + c p(l + c) ...)) 

= ((... (c + 1)P a + ---)p a + l)p o + 1, 

where both sides are of equal length. By applying the conditions (i), (ii) , 
and (iii) from Section 3, this algorithm can be shown to converge on the inter-
val I = [0, p/ (p ~ l)]j which just manages to include both the starting point 
x = 0 and the fixed point X = p/(p - 1) . Thus, the right side of (9) converges 
in the limiting case to p/(p - 1), which when combined with (8) shows that 

(10) lim C ^ xJ P \. 

We therefore infer the congruence of C0°°5 which completes the proof. 

The continued square C™= Q(2 9 4^ _1') is an example of a continued power 
which converges by the test of Theorem 5. The sequence of terms 

{1, 4"1'2 , 4-3^ , 4"7/8 , ...} 

satisfies the inequality (xn+i)2/xn < 1/4; in fact, equality holds for all n. 
That the ratio test is not necessary for convergence, even when the terms 
decrease monotonically, is demonstrated by 

C o ( 2 , ± + 2 - ; ) , 

which converges by comparison with the other continued square mentioned above. 
(The proof depends on the inequality 

I + 2-(»+2) < k^'n "I), 
4 

whose verification is a mildly interesting exercise in its own right.) The 
terms xn = 1/4 + 2~n satisfy the necessary condition lim inf xn = 1/4, but fail 
the ratio test for all n because 

(xn+l)2/xn = \ + l/(22* + 2*+ 2). 

Since (p - l)p_1/pp ^ 1 as p -> 1, Theorem 5 seems to tell us that an infi-
nite series converges if xn + i/xn < 1. The many erroneous aspects of this con-
clusion arise because the fixed point of g(x) = 1 + oxP9 namely X = p/(p - 1) , 
ceases to be finite when p = 1. Thus, in the inequality (10), the series is 
not bounded, and the construction used to prove the ratio test becomes indeter-
minate. 

6. Continued Powers as Function Compositions 

The analytic theory of continued fractions has long recognized that contin-
ued fractions, infinite series, and even infinite products can be defined in 
the complex plane by means of the composition 

(11) Fk(w0) = /o °  /l °  ••" °  .ffĉ o) 

of linear fractional transformations 

fkM = -u L / » k = °> l> 2 > • • • > 
K bk + dkw 
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by suitable choices of ak, b^, ck, and dy. [6]. Many other constructs can be 
defined similarly using different functions for the fk . For instance fk(w) = 
a^ + tw and WQ = 0 produces polynomials in t . For real x, f^(x) = (fl̂ )̂ ) with 
afe > 0, k = 0, 1, 2, . .., generates what is sometimes called a "tower" or a 
"continued exponential": 

.•a* 

where evaluation is made from the top down ([1], [2]). 
This paper has investigated the limiting behavior of (11) when 

fk(x) = xk + xp, with x > 0, p > 0, and a?& > 0 for k = 0, 1, 2, ... . 

The order of composition in (11) is synonymous with the problematical associa-
tivity of continued powers. In retrospect, our progress depended on establish-
ing the convergence of (11) for the special case /Q = fi = • • * = fk = 9> where 
we variously used g(x) = xp + a, g(x) = (xp + a)p + b, and g{x) = 1 + cxp. In 
these cases the composition (11) reduces to 

Fk(0) = g o g o ... o ̂ (0) 

whose handy recursion formula 

Fk(0) = g o Fk_i(0) 
paves the way for conquest by fixed-point algorithms. This method promises to 
be helpful in exploring continued negative powers and other function-composi-
tional objects that distinguish themselves by uncooperatively nesting their 
operations. 
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1. Introduction 

Wiliam [8] showed that, for the recurring sequence defined by u\ = 0, u^_ = 1, 
and 

(1.1) un+2 = aun + bun+i, 

(1.2) J2un/I0n = 1/(100 - 102? - a) , 
n= 1 

where (b +a)/20 and (b -a) 120 are less than 1 and b = A 2 + 4a (cf. [8]). Thus, 
for the Fibonacci numbers defined by the same initial conditions and a = b = 1, 
we get the "staggered sum11 of Wiliam: 

(1.3) .0 + .01 + .001 + .0002'+ .00003 + •-- = 1/89. 

It is the purpose of this note to generalize the result for arbitrary-order 
recurring sequences, and to relate it to an arithmetic function of Atanassov 
[1]. 

2. Arbitrary-Order Sequence 

More generally, for the linear recursive sequence of order k, defined by 
the recurrence relation 

k 
(2.1) un = X (-iy + 1Pt/wn_f/, n > 1, 

J = i 

where the Pj are integers, and with initial conditions UQ = 1 and un = 0 for 
n < 0, we can establish that the formal generating function is given by 

(2.2) £ unxn = (xkfa/x))~K 
n= 0 

where f{x) denotes the auxiliary polynomial 
k 

(2.3) f(x) = xk + £ (-D3PjXk-i. 
j = i . 

Proof: If u(x) = UQ + u\x + u^x2- + . . . + ukxk + . .., 

then -Pixu(x) = -P^u^x - PiUiX2 - ... - Piu-^-iX^ - •••, 

and {-l)kxkPku(x) = (~l)kPku0xk + . .., 

so that ( k • \ / k 

u(x)[l + ̂  (-l)3P,x3) = un or w(x)x/c(x-k+ J] (-DP^^M = 1 
or 

<(a0U + L (-DJ^-^J) = ẑo o r wW^t"k + E i-l)PjXj~k) = 

u(x)xkf(l/x) =1. 

We see then that, for k = 2 and P]_ = -P£ = 1, we get Wiliam5 s case in which 
x = 1/10, namely 
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J2 un/lOn = l/10-2/(10) = 1/^(100 - 102? - a), 
100v 

n = 0 
or 

£ unll02 + n = 1/(100 - 102? - a) 
n= 0 

(where his initial values are displaced by 2 from those here). 
3. AtanassovTs Arithmetic Functions 

Atanassov [1] has defined arithmetic functions § and ¥ as follows. For 
J 

n = J^ â lO*7"2-, at e 3Sf, 
i= 1 

= aj_a2 • • • dj 9 0 < di < 9, 
l e t <j>: Itf -* U be def ined by 

I 0 for n = 0, 

*(n) = \ 4- ,u • 
I z^ ai otherwise; 

and for the sequence of functions (J)Q, (j)l5 ̂ j . .., 

cf>0(n) = n, $l + i(n) = <J>(<|>£, (w)), 

let Y: U -> A = {0, 1, 2, . .., 9} be defined by Y(n) = <f>£(n), in which 

M n ) = 4>£+i(w). 
For example, (j)(889) = 25, ¥(889) = 7, since 

4>0(889) = 889, 
*l(889) = 25, 
<f>2(889) = 7 

= (f)3(889). 
It then follows that 

(3.1) nni0*7u(0.1)) + k) = 1, 
as Table 1 illustrates. 

TABLE 1 

Zc 2 3 4 5 6 7 8 10 11 
¥(8 . . . 89) 8 7 6 5 4 3 2 9 8 

fc-1 t imes 

The result follows from Theorem 1 and 5 of Atanassov, which are, respectively, 

(3.2) Y(n + 1) = Y(Y(n) + 1); 

(3.3) ¥(« + 9) = ¥(n). 

Thus, 10k/«(l/10) = 8 ... 89, and so, 
k - 1 times 

moVu(l/10)) = 8(fc - 1) + 8 + 1 = Sk + 1, 

and V(V(10k/u(0.1)) + k) = ¥(9k + D = ̂ (9 + 1) = 1, as required. 

4. Other Values of X 

The foregoing was for x = 1/10. In Table 2, we list the values of ¥(/(#)) 
for integer values of k and l/x = X from 2 to 10 when Pj = -1, j = 1, 2, . . . , k, 
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in the appropriate recurrence relation. 

TABLE 2 

x/k 

2 
3 
4 
5 
6 
7 
8 
9 

10 

2 

1 
5 
2 
1 
2 
5 
1 
8 
8 

3 

1 
5 
7 
4 
2 
7 
7 
8 
7 

4 

1 
5 
9 
1 
2 
3 
1 
8 
6 

5 

1 
5 
8 
4 
2 
2 
7 
8 
5 

6 

1 
5 
4 
1 
2 
4 
1 
8 
4 

7 

1 
5 
6 
4 
2 
9 
7 
8 
3 

8 

1 
5 
5 
1 
2 
8 
1 
8 
2 

9 

1 
5 
1 
4 
2 
1 
7 
8 
1 

10 

1 
5 
3 
1 
2 
6 
1 
8 
9 

To prove these results, we let x = l/X and so 

(4.1) f(X) = Xk - Xk~l - Xk~2 - ... - X2 - X - 1. 
The calculations which follow are mod 9. Thus, 3 ^ 0 , 6t E 0, 9t = 0 when t > 2. 
(Of course, 9*E 0 when t = 1.) 

Case A: X = 3 , 6, 9 = tf, 
/ ( t f ) = -tf - 1 (mod 9) for a l l k, 
/ ( 3 ) E -4 = 5, 
/ ( 6 ) E -7 E 2, 
/ ( 9 ) E - 1 E 8 as i n the a p p r o p r i a t e rows of Table 2 . 

Case B : J = 4 , 7 , 10 = 3 + 1 , 6 + 1 , 9 + 1 = tf + 1, 
(4 .2 ) /(/I/ + 1) = (N + l ) f e - (tf + D ^ " 1 - . . . - ( # + I ) 2 - ( / ! / + 1) - 1. 

The only terms that interest us, mod 9, in the expansions are the second 
last and last in each expansion. Then (4.2) becomes 

Nk - N(k - 1) - N(k - 2) - ... -tf-3-tf-2-tf-l 
+ 1 - 1 - 1 - 1 - ..<• - 1 - 1 - 1, " 1 

- Nk - N^n - (k - 2) - 1 k~2 times 

n= l 

= 2Wc - -| tf(fc - l)Zc - (fc - 1 ) 

= Mcjl - |(fc - 1 ) | - (fe - 1) 

E M:2 - (fc - 1) since -tf = 2N for tf = 3, 6, 9. 

Thus, /(4) = 3k2 - k + I 
/(7) = 6fc2 - fc + 1 
f(10) = -k + 1 since 9fc2 = 0. 

Substitution of the values k = 2, 3, ...,10 gives the tabulated values. 

Case C: X = 2, 5, 8 = 3 - 1 , 6 - 1 , 9 - 1 , = tf - 1, 

(4.3) /(/!/ - 1) =• (tf - Dk - (N - l) k" x - -.. - (tf - D 2 - (N - 1) - 1. 

As in Case B, this becomes 

Nk(-l)k~l - N(k - l){-l)k-2 - N(k - 2)(-l)/c~3 - ... - N • 2(-l)1 

- /!/ • 1(-1)°  + (-l)k - (-l)7^1 - (-l)^2 - ... - 1 + 1 - 1. 
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When k i s even, t h i s becomes 

7Nk - N(k - 1), = N(k - 2) - N(k - 3) + ••• + 271/ - N + 1 + 1 

r 1 + 1 + • • • r 1 + 1 - 1 = -INK + 1/1/ + N + ••• + N. + 1 
k/2 terms 

= -2M + I &tf + 1 

= -~ Nk + 1 

E 3/1/fc + 1 s i n c e -3 = 6 
E 1 s i n c e 3/1/ E 0, 

which agrees with the appropriate entries of Table 2. 
When k is odd, (4.3) becomes 

Nk + N(k - 1) - /!/(/< - 2) + /!/(£: - 3) - • • • - N • 2(-l)1 - tf • 1(-1)°  - 1 

t- 1 + 1. .-1 + 1, - - - - ,-1 + 1, - 1 = Nk +.N + N+--- + N. 

= Nk + 

= !#fc 

E - 3 M 

E 4/1/ -

(fe - l ) / 2 terms 

\{k - l)N - 2. 

- | / 1 / - 2 

+ 4/1/ - 2 s i n c e 3 = - 6 , 
- 1 E 8 

2 s i n c e -3/1/ = 0. 
Thus, 

/(2) E 1, 
/(5) E 4, 
/(8) E 7, as required. 

5. Concluding Comments 

Wiliamfs staggered sum for Pell numbers [4] can be written as 

(5.1) .0 + .01 + .002 + .0005 + .00012 + .000029 + ... = 1/79. 

This is a particular case of Hulbert [5] who also noted a result like (1.3) 
which can be found in Reichmann [6]. Hulbert stated, without proof, that 

(5.2) f; 10"nFn = 1/(9.9 - k) 
n = 1 

for 

(5.3) Fn+l = kFn + Fn.l with Fl - 1, Fz = k (k = 1, 2, ..., 8). 

When k - 2, we have the Pell case. We can generalize the Pell sequence by set-
ting Pi = 2, Pj = -1, j = 2, ..., k} ... . Then we may extend the work of Sec-
tion 4 by the addition of a term -Xk~1 in f(X), for X = 2, 3, ..., 10. 

Hulbert also noted a staggered sum formed from 

(5.4) £ 10-*(r + * ~ M = 10-1(0.9)-?J+1 (r = 0, 1, 2, . . . ) . 

This is a particular case of Equation (1-3) of Gould [2], namely 

(5.5) t r t v - u-^-n-1-
Curiously, the same issue of the Bulletin where Hulbert's note appeared had in 
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its Puzzle Corner the problem of finding 

the series terminating when the binomial coefficients become improper. This, 
too5 follows from Gould whose Equations (1.74) and (1.75) are, respectively 

^f! (U l k ) = («n+1 - Bn+1)/(« - 6), 
[n^\-Dk(n I k) = |((-D["/3] + (-1)"»+1>/31), 

where a = (1 + /5)/2, 3 = (1 - /5)/2, and [•] represents the greatest integer 
function. It can be seen then that the series (5.6) equals 

\ I ' «•<-»'>(" ;*) 
= (an + 1 - 3n + 1)/2(a - 3) + ((-l)[n/3] + (-1) [2(«+D/3]) /4. 

It is also of interest to note that the generalized sequences of Section 2 are 
related to statistical studies of such gambling events as success runs [7] and 
expected numbers of consecutive heads [3]. 
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Introduction 

In this paper we study a problem related to Fermat?s last theorem. Suppose 
that J, Y, and Z are positive numbers where 

(1) Xa + Ya = Za. 

We show that we can solve this equation for a; that is, we find a unique 

a = a(X, Y, Z) 

in closed form. The method of solution is rather elementary, and we employ 
Wright's generalized hypergeometric function in one variable [1], as defined 
below: n 

p^q 
(al5 Ax), . . . , (ap, Ap); 

L(31 s Bi), ..., (3<7» Bq) i 

When p = q = 1, we see that 

fl r(ai + Ain) 
Z i = 1 
n FI r(3^ + Bin) 

n\ 

i= 1 

(2) 1*1 

(a , A); 

. (3 , B); 
E r ( a + i4n) 3 n 

n= 0 r ( 3 + Bn) n\9 

which i s a g e n e r a l i z a t i o n of the conf luen t hypergeomet r ic func t ion ^ ^ [ a j B ; z] , 

An Equ iva len t Form of Equa t ion (1) 

In Equat ion ( 1 ) , t he case X = Y i s not i n t e r e s t i n g s i n c e , c l e a r l y , 
l n ( l / 2 ) 
l n ( J / Z ) ' 

The re fo r e , we s h a l l assume, wi thou t l o s s of g e n e r a l i t y , t h a t 

Z > Y > X > 0 , 

and w r i t e Equat ion (1) as 
e a InU/Z) + ea ln(Y/Z) - 1 = 0. 

Now, making the transformation 
(3) ealn(Y/Z) = y^ 

we o b t a i n 
InU/Z) 

2/ ln(7/Z) + z/ - 1 = 0, 
and s i n c e 

l n ( J / Z ) l n ( Z / J ) 
l n ( J / Z ) l n ( Z / J ) 

we a r r i v e a t 
ln(Z/X) 

(4) ylniZ/Y) + z/ - 1 = 0. 
52 
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Equat ion (4) i s then e q u i v a l e n t to Equat ion ( 1 ) , and our aim i s to so lve t h i s 
equa t i on for y , t he reby o b t a i n i n g a . We no t e t h a t i t i s no t d i f f i c u l t to 
v e r i f y t h a t Equat ion (4) has a unique p o s i t i v e r o o t y i n the i n t e r v a l ( 1 / 2 , 1) . 

Solution of Equa t ion (4) 

In 1915, Me11in [2 , 3] i n v e s t i g a t e d c e r t a i n t r ans fo rm i n t e g r a l s named a f t e r 
him i n connec t ion wi th h i s s tudy of the t r i n o m i a l equa t i on 

(5) ,N 1 = 0, N > P , yL" + xyl 

where x is a real number and N9 P are positive integers. Mellin showed that, 
for appropriately bounded x9 a positive root of Equation (5) is given by 

F{z)x'zdz9 0 < c < 1/P, (6) 
where 

y - \ 
2T\% JC-

r(;s)r 
F(z) U NV 

NT 1 + - + 
N (> - §> 

k l < (p/N)-p/Na - P / / I / ) P / / V _ 1 < 2. 
and 

(7) 
The inverse Mellin transform, Equation (6), is evaluated by choosing an appro-
priate closed contour and using residue integration to find that 

(8) il+ h) (-*)* 

1 + 
N (I" •)' 

Under the condition shown in Equation (7), Mellin, in fact, found all of 
the roots of Equation (5). However, suppose we relax the restriction that N 
and P are positive integers. Instead, let N and P be positive numbers. We 
then observe that Equation (8) gives a fortiori a positive root of Equation (5) 
for positive numbers N and P. Further, without loss of generality, we set P = 
1, N = w. Then, using the Wright function defined by Equation (2), we arrive 
at the following. The unique positive root of the transcendental equation 

(9) y« + xy 
where 

\x\ < a)/(a 
is given by 

1 = 0, a) > 1, 

1) 1-1/ 0 3 

(10) 1*1 
L5 J ; 

(± +l,±-l); 

We observe that for any \x\ < °°, Equation (9) has a unique positive root y. 
Equations (9) and (10) may also be obtained from Equation (30) on page 713 of 
[4]. 

Let us now apply the latter result to Equation (4). On setting 

l n ( Z / J ) 
x = 1, co" • 1 = A, 

l n ( Z / J ) 
and r iot ing t h a t 1 < 03/(03 - l ) 1 _ 1 / a ) , we f ind 
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(ID y = A ^ , 0 < A < 1. 
(A, A) ; 

(A + 1, A - 1); 

Solution of Equation (1) 

We now solve Equation (1) for a. From the transformation Equation (3), we 
see that 

(12) a ln(J/Z) = In y. 

Then, using Equation (11), we arrive at the following. If Z > Y > X > 0 are 
such that 

Xa + Ya = Za, 
then 

(13) 

where 

(14) 

ln<* A 
(A, A) ; 

(A + 1, A - 1); 

lnCZ/Z) 

ln(Z/J) 
A = )„.„', 0 < A < 1. 

ln(Z/J)' 

We now prove the following. Consider for X < J, M ^ 1, the diophantine 
equation 

XM + YM = ZM. 

Then the positive integers X, J, and Z must satisfy 
(15) XxY~1Zl~x = 1, 

where A is an irrational number such that 0 < A < 1. 
From Equation (12) we have 

(16) (Y/Z)M = y, 

so that y is a rational number in the interval 1/2 < y < 1 as we noted earlier. 
If A is rational, there exist relatively prime integers s and t such that 

A = OJ"1 = sit. 

Hence, y i s the unique p o s i t i v e r o o t of 

2/*/fi + y - 1 = 0. 
Now, since A < 1, then s < t , and we obtain the polynomial equation of degree t 
with integer coefficients: 

yt + (-1)8^8 + + 1 0. 

The only positive rational root that this equation may have is y = 1 (see [5], 
p. 67). But y < 1, so the assumption that A is rational leads to a contradic-
tion. We have then that A is irrational, and Equation (15) follows from Equa-
tion (14). This proves our result. W. P. Wardlaw has given another proof that 
A is irrational in [6]. 

The Wright function ^± appearing in Equation (13) depends only on the par-
ameter A. Thus, for brevity, we define 

nA) 1*1 

(A, A) ; 

(A + 1, A - 1); 
, 0 < A < 1* 

54 [Feb. 



SOLUTIONS OF FERMAT'S LAST EQUATION IN TERMS OF WRIGHT'S HYPERGEOMETRIC FUNCTION 

From our p rev ious r e s u l t , we see t h a t , i f Fe rma t f s theorem* i s f a l s e , then 
t h e r e e x i s t p o s i t i v e i n t e g e r s X < Y < Z such t h a t A i s i r r a t i o n a l . 

The re fo re , Fe rma t f s theorem i s f a l s e i f and only i f t h e r e e x i s t p o s i t i v e 
i n t e g e r s Y < Z, M > 2 , and an i r r a t i o n a l number X (0 < A < 1) such t h a t 

(Y/Z)M = A¥(A). 
Thus, Fermat's conjecture may be posed as a problem involving the special func-
tion A¥(A). We remark that recently, Fermatfs conjecture has been given in 
combinatorial form [7]. 

Some Elementary Properties of A¥(A) 

Although the series representation for A¥(A), which follows below in Equa-
tion (17), does not converge for X = 0, 1, it is natural to define 

X¥(A) 
A = 1 

1/2, AY(A) 1. 
A= 0 

Using this definition, we give a brief table of values for AW(A), which is cor-
rect to five significant figures: 

X A¥(A) 

0.0 1.00000 
0.1 0.83508 
0.2 0.75488 
0.3 0.69814 
0.4 0.65404 
0.5 0.61803 

X AW(A) 

0.6 0.58768 
0.7 0.56152 
0.8 0.53860 
0.9 0.51825 
1.0 0.50000 

Observe that we may write the inverse relation 

A = In AY(A)/ln[l - AY(A)]. 

Note also that when A = 1/2, oo = 2 and Equation (9) becomes y2 + y - 1 = 0, whose 
positive root is (-1 + /5)/2. 

The following series representations for AW (A) , 0 < A < 1 may easily be de-
rived from the first one below: 

(17) 

(18) 

(19) 

(20) 

A^x 
(A, A) 

(A + 1, A - 1); 
-1 - *E (-Dn r(A + An) 

rf^o n\ T(A + 1 + (A - l)n) 

(-Dn sin[ir(1 - X)n]B(Xns n - An) 
'n" n = l (1 - A)n - 1 

n= 0 

1 + A y (~}}l(xa + n) " l ) 
n=i n \ n - 1 / 

Equation (18) follows from Equation (17) by using 

T(z)T(-z) = -TT/S sin i\z; 

B(x, y) is the beta function. Equation (19) follows from Equation (17) by using 
Gauss's theorem for 2

Fl\-a> b\ a; 1]. Equation (20) follows from Equation (17) by 
using /«\ 

"Fermat1s theorem states that there are no integers x, y, z > 0, n > 2 such that xn + yn - zn . 
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Equation (20), for 1/A an integer greater than one, is due to Lagrange ([2], p. 
56). 

Conclusion 

The equation Ia + Ja = Za has been solved for a as a function of I, Y, and 
Z in terms of a Wright function -^\ with negative unit argument. An equivalent 
form of Fermatfs last theorem has been given using this function. Further, 
some elementary properties of -^\ have been stated. 
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A GENERALIZATION OF A RESULT OF SHANNON AND HORADAM 

Dario Castellanos 
Universidad de Carabobo, Valencia, Venezuela 

(Submitted January 1989) 

1. Introduction 

In a recent note in this magazine [5] Professors A. G. Shannon and A. F. 
Horadam generalize a result proposed by Eisenstein [2] and solved by Lord [4] 
to the effect that 

, , (-Dn (-Dn 

(1.1) Ln - ~ ~ ^ — ^ ••• = an, 
^n ~~ tun ~ 

where Ln is the nth Lucas number and a is the positive root of x2 - x - 1 = 0. 
They introduce the sequence {wn} E {wn(a, b; p, q)} defined by the initial 

conditions WQ = a, W\ = b, and the recurrence relation 

(1.2) wn = pwn_i - qwn-l9 n > 2S 
where p and q are arbitrary integers. 

They let a = (p + /(p2 - 4<?))/2, 3 = (p - A p 2 - 4?))/2, for 131 < '1, be the 
roots of 

(1.3) x2 - px + q = 0S 
so that {wn} has the general term 

(1.4) Wn = Aan + 53n
5 

where 

A = {b - at)Id, B = (aa - fc)/d, AS = e/d2; 

e = paZ? - qa2 - b2, d = a - 3* p = a + 3S q = a3. 

They also let Qn = ABqn. 
The Fibonacci sequence is 

{Fn} = {wn(0, 1; 1, -1)}, gn = (-l)*+1/5; 

the Lucas sequence is 

{Ln} E {wn(2, 1; 1, -1)}, Qn = (-l)n; 

the Pell sequence is 

{Pn} E {wn(0, 1; 2, -1)}, £n = (»l)n/8. 

Shannon and Horadam1s result is 
Q Q 

/i c \ n n An 

(1.5) wn - — — ... = Aan. 
They establish this result by finding a general expression for the conver-

gent s of the continued fraction (1.5) and determining the limiting form with an 
appeal to some results of Khovanskii [3]. 

2. An Alternate Approach 

Consider the identity 

(2.1) /s - t = (s - t2)/(2t + (/s - i)), 
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which gives at once the continued fraction (see [1]) 

, s - t2 s - t2 s - t2 

(2.2) /s = t + 
It + It + It + ... 

In (2.2), replace s and t by \t2 - s and \ t , respectively, to obtain 

AT o . -i ~~S S ~~S 

* * 2 - 8 ) - * * - T + T + T+...' 
or equivalently, 

(2.3) /(%t2 - s) +\t = t -~ J J 
With the notation of Section 1, let s = Qn = AB (a$)n , t = Wn = ̂ an + 53n. 

Simple arithmetic shows that the left-hand side of (2.3) becomes Aan, and we 
find 

Qn Qn 
(2.4) Aan = wn - — — 

un - un - •-• 
which is the result of Shannon and Horadam. 

Similarly, let s = (-l)n + 1, t = 2Fn, and recall that Ẑ 2 + (-l)n = Fn_xFn + 1, 
and (2.3) gives 

, (-l)n (-l)n 

(2.5) /(,B_1*„ + l ) - r n - _ + _ + _ . 
As the reader no doubt knows, /(Fn_iFn+i) is approximated by Fn, the approxima-
tion becoming better as n increases. The continued fraction in the right-hand 
side of (2.5) gives the error committed in the approximation. 

Classes of expressions can be found by choosing suitable values of s and t . 
Especially interesting is the choice 

t = a^ll + a ^ + . . . + amwl:, 

where k\9 k2> ...* km, n1? n2> . . . , nm are arbitrary integers, a\> a2, . . . , am 
are arbitrary real numbers, and s is an arbitrary parameter. 

Many other expressions can be found by giving appropriate values to s and 
t . It is left to the reader to discover them. 
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FIBONACCI NUMBERS ARE NOT CONTEXT-FREE 

R i c h a r d J . Moll a n d S h a n k a r M. V e n k a t e s a n 
Department of Computer Science, University of Minnesota 

(Submitted February 1989) 

The F ibonacc i numbers, g iven by the r e c u r r e n c e r e l a t i o n 

F(n + 2) = F{n + 1) + F{n), F{1) = 1, F{2) = 1, 
are considered to be written in base b, so "trailing zeros" correspond exactly 
to "factors of b ." From [4], Theorem 5, page 527, it follows that, for any 
prime ps there exists n s.t. F(k x n) = 0 (mod pi) for positive i and k. The 
existence of j s.t. F (j) E 0 (mod Z?^), for arbitrary positive b, follows by 
applying the above to the prime factoring of b and choosing j to be the least 
common multiple of the n. Thus, in any base, there exist Fibonacci numbers 
with arbitrarily many trailing zeros. 

In the proof of this same theorem [4], it is established for any prime p 
that, if F{n) is the first term E 0 (mod pe) but £ 0 (mod pe+l), then F(p x n) 
is the first term E 0 (mod pe+l), also F(p x n) t 0 (mod pe+z). 

This establishes, for each prime base p, a lower bound on n which increases 
exponentially with the number of trailing zeros in F(n) base p . This bound 
generalizes to composite bases because when F(n) has e trailing zeros in base b 
it must also have e trailing zeros in all bases p, where p is a prime factor of 
b. Specifically, there is some constant k such that, for all sufficiently 
large n, 

TZ(F(n)) < k x log(n), 
where TZ(x) is the number of trailing zeros in x. 

Since- the Fibonacci sequence is asymptotically exponential, there is some 
constant c s„t. n < o x \F(n) \ , where |F(n) | denotes the length of Fin) as a 
string, i.e., the number of digits in F{n) in base b. Combining these, and 
adjusting k to also account for c, gives 

(1) TZ(F(n)) < k x log(|F(n)|). 
These facts can be used to show that the Fibonacci numbers do not form a 

context-free set. A set of strings is context-free iff it is the set generated 
by some context-free grammar or, equivalently, a set of strings is context-free 
iff it is the set recognized by some pushdown automaton. Ogdenfs Lemma, stated 
below, gives a property true of all context-free sets, and is used in Lemma 1 
to show a set of strings closely related to the Fibonacci numbers to be not 
context-free. 

Ogden's Lemma [2] : Let Q be a context-free set. Then there is a constant j 
such that, if a is any string in Q and we mark any j or more positions of a 
"distinguished," then we can write a = uvwxy, such that: 

1) V and x together have at least one distinguished position, 
2) vwx has at most n distinguished positions, and 
3) for all i > 0, uv%wx^y is in Q, 

Lemma 1: Let Q be the set of strings such that the members of Q are the Fibo-
nacci numbers written in base b with a new symbol "#" inserted immediately fol-
lowing the last nonzero digit. The set Q is not context-free. 

Proof: The proof is by contradiction. Assume that Q is context-free. 
Let j be the number of "distinguished" positions required for Ogdenfs Lemma 

(see [2] for a description of Ogdenss Lemma). Since we know there are 
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Fibonacci numbers with arbitrarily many trailing zeros, let a be a member of Q 
corresponding to a Fibonacci number with at least j trailing zeros. The 
trailing zeros, which follow the "#," are used as the distinguished positions 
for purposes of Ogden's Lemma. 

Applying Ogdenfs Lemma, a may be partitioned as follows: 

a = uvwxy, 
where x contains at least one of the trailing zeros. Further, for all i > 0, 
$1 = uv^wx%y must also be in the set Q, and thus correspond to some Fibonacci 
number satisfying (1). 

If x contained the "#," then clearly 32 would contain two "#" symbols and, 
thus, could not be a member of Q. Therefore, x contains only "0"s, so $̂  has 
at least j + i - 1 trailing zeros. 

Since v and x together can be no longer than a, then $£ can be no more than 
i times as long as a: So |3^| < i * |a|. Applying (1) to these bounds gives: 

j + i - l < k * log(i x |a|). 

Choosing i = 2fc2|a| + 1 produces a contradiction. • 

Theorem: For all integers b > 2, the set of Fibonacci numbers in base b9 con-
sidered as strings over the alphabet 0, 1, ..., b - 1, is not context-free. 

Proof: Assume M is a pushdown automaton (PDA) recognizing the set of Fibonacci 
numbers. We modify the finite control to give another PDA Mf, recognizing the 
set Q, thus contradicting Lemma 4. An informal description of Mr follows. 

Mr contains a copy of the machine M, plus additional logic in the finite 
control to filter the input and pass it to this internal copy of M. Mf accepts 
only when this internal M accepts the string passed to it. 

behaves as follows: 

• Mr rejects if the input does not contain exactly one "#," if the "#" does 
not immediately follow a nonzero digit, or if there are any nonzero 
digits following the "#." Otherwise, Mf accepts if and only if its inter-
internal simulation of M accepts. 

• When Mr reads a digit (any symbol except "#") from the input, it passes 
that digit to M, The "//" symbol, having been checked as above, is other-
wise ignored and is not passed to M. 

By the above rules, if Mf accepts, then the input must be a Fibonacci num-
ber with a "#" inserted following the last nonzero digit. Thus, the input is 
in the set Q. 

Conversely, if the input is in the set Q, then Mr will pass the Fibonacci 
number to M and thus accept. 

Therefore, M! accepts the set Q9 a contradiction by Lemma 4; hence, the set 
of Fibonacci numbers is not context-free. Q 
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K r y s t y n a Bialek and A l e k s a n d e r G r y t c z u k 
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(Submitted February 1989) 

1. Introduction 

In 1856 I. A. Griinert ([6], see also [9], p. 226) proved that if n is an 
integer, ft > 2 and 0 < x < y < z are real numbers satisfying the equation 

(1.1) xn + yn = zn 

then 

(1.2) z - y < -. 

This result was rediscovered by G. Towes [10], and then by D. Zeitlin [11]. 
In 1979 L. Meres [7] improved the result of Griinert, replacing (1.2) by 

(1.3) z - y < -, for a = n + 1 - n2"n, n > 2. 

In [1], we improved the result of Meres, replacing (1.3) by 

(1.4) z - y < + , for n > 4. 

Next, in [2], it has been proved that if k is a positive integer and, for 
ft > [(2k + D C J , ?! = (log 2)/[2(l - log 2)], Equation (1.1) has a solution in 
real numbers 0 < x < y < z, then 

(1.5) z - y < —^-7-. 
^ ft + fc 

Fell, Graz, & Paasche [5] have proved that, if (1.1) has a solution in pos-
itive integers x < y < z9 where n > 2, then 
(1.6) x2 > 2y + 1. 

In 1969, M. Perisastri ([8], cf. [9], p. 226) proved that 

(1.7) x1 > z. 

In [2], it has been proved that 

(1.8) x1 > 2z + 1. 

A. Choudhry, in [4], improved the inequality (1.8) to the form 

(1.9) xl + ^^>z. 

In fact, A. Choudhry proved that 

(1.10) z < C(n) • x1 + ̂ T , 

where ĵ  
2n 

(1.11) C(n) = —, for ft > 2. 
ft n- 1 

First we remark that inequality (1.9) in the Theorem of Choudhry follows 
immediately from (1.1) and the assumption that 0 < x < y < z. Really, we have 

62 [Feb. 



ON FERMAT'S EQUATION 

xn = zn - yn = (z - y)(zn~l + zn~zy + ... + z/*-l) > zn~l, 
and (1.9) follows. 

In this paper we prove the following theorems. 

Theorem 1: If the equation (1.1) has a solution in positive integers x < y < z 
where n > 2, then 

(1.12) z < Cl(n) • xl + ^ t 

where j_ 
9 In 

(1.13) Cl(n) = -Z-j-. 
n n- i 

We remark that (7]_(n) < C(n) < 1. 
Next, we have the following theorem. 

Theorem 2: If z - x < C3 then (1.1) has only a finite number of solutions in 
positive integers x < y < z and 

(1.14) z < Cln • 2 n + l). 

We remark that, from Theorem 1 (see [2]) and the inequality (1.5), we get the 
following corollary. 

Corollary: If k is a positive integer (1.1) has a solution in positive integers 
x < y < z for n > [(2k + D C J , Ci = (log 2)/[2(l - log 2)], then 

x > k + [(2k + D C J . 
Let G2(k) be the set of all matrices of the form 

v sv 

KkS V / 

where k * 0 is a fixed integer and r, s * 0 are arbitrary integers. 
Let RK denote the ring of all integers of the field K = Q(fk). Then, in 

[3], we proved the following theorem. 

Theorem 3: A necessary and sufficient condition for (1.1) to have a solution 
in elements A, B, C € (̂ (fc) is the existence of the numbers a, Bs y e BK, where 
K = Q(fk) such that an + 3n = yn. The proof of Theorem 3 in [3] is based on 
some properties of the matrix 

(a b\ 
), with a, by cs d € Z. \o d/ 

In this paper we give a very simple proof of this theorem. 

2. Proof of Theorems 

2.1 Proof of Theorem 1 

For the proof of Theorem 1, we note that 
n - 1 

(2.1) zn~l + zn~2y + ... + zyn~2 + yn~l > n(zy) 2 . 

From (1.1) and x < y < z we have zn < 2yn\ hence, 

(2.2) y > (•!)*. z. 

Since 

(2.3) xn = (z - y)(zn~1 + zn~zy + .-- + sz/""2 + yn~l), 

we see, by (2.1), (2.2), and (2.3), that it follows that 
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(2 .4 ) xn > n* 2 n - 1 ( | ) 

From ( 2 . 4 ) , we get 

i - l 
In 

22n l + ^ - r 
z < — • x n~ i 

nn~ i 
and the proof i s comple te . 

2 .2 Proof of Theorem 2 

From ( 1 . 1 ) , we have 

(2.5) yn = (z - ̂ )(2n_1 + 2n~2x + --- + sa;""2 + x n - 1 ) . 

Since x < z/ < z, then by (2.5) it follows that 

(2.6) 2/n < (z - x)n • sn-1. 

From (2.6) and (2.2), we get 
/ — \ -i n - i 

(2.7) z/n < (s - x)n(2nz/j" = n • 2 n (s - x)z/n_1. 
From (2.7), we get 

n- 1 
(2.8) y < n • 2 « (s - x). 
From (2.8) and our assumption that z - x < C, we have 

n- 1 
(2.9) z/ < n • 2 * C. 

w - 1 
Since a; < z/, we see by (2.9) that x < n • 2 n C. From our assumption, it now 
follows that 

n- 1 / n - lv 
2 < x + 6 , < n - 2 " 6 r + 6, = 6,(^l+n«2 n j 

and the proof is finished. 

2.3 Proof of Theorem 3 

First we remark that it suffices to prove that the set G2(k) is isomorphic 
to RK, where K = Q(fk) . Let 

<|>: G2(k) + i?z, £ = «(/£), 

Then we prove that <J> is an isomorphism. Indeed, we have, for A, B € G2(k) 9 

<K4 • 5) = <()(i4) • <|)(5) and $(A + B) = $(A) + $(B); 

therefore, G2(k) - RK, where Z = Q{fk) . The proof is complete. 
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1. Introduction 

Let U = {Un}^=0 be a Lucas sequence defined by integers UQ = 0, £/]_ = 1, P, 
Q, and by the recursion 

Un+1 = PUn - QUn.l9 for n > 1. 

The polynomial 

/(a?) = x2 - Px + § 

with discriminant 

D = Pz - UQ 

is called the characteristic polynomial of the sequence U. In the case where 
P = -g = 1, the sequence U is the Fibonacci sequence and we denote its terms by 
F0, Fl9 F2, ... . 

Let p be an odd prime with p\Q and let e > 1 be an integer. The positive 
integer u = u(pe) is called the rank of apparition of pe in the sequence U if 
pe\Uu and pe\Um for 0 < m < u; furthermore, u = u(pe) is called the period of 
the sequence U modulo pe if it is the smallest positive integer for which U^ E 0 
and #fz+l E 1 (mod pe) . In the Fibonacci sequence, we denote the rank of appa-
rition of pe and period of F modulo pe by f(pe) and f(pe), respectively. 

Let the number g be a primitive root (mod pe). If a? = ̂  satisfies the con-
gruence 

(1) f(x) = x2 - P̂r + Q E 0 (mod p e ) , 

then we say that g is a Lucas primitive root (mod pe) with parameters P and §. 
Throughout this paper, we shall write "Lucas primitive root mod pe" without 
including the phrase, "with parameters P and Q9" if the sequence U is given. 
This is the generalization of the definition of Fibonacci primitive roots (FPR) 
modulo p that was given by D. Shanks [6] for the case P = -Q ~ 1. 

The conditions for the existence of FPR (mod p) and their properties were 
studied by several authors. For example, D. Shanks [6] proved that if there 
exists a FPR (mod p) then p = 5 or p = ±1 (mod 10); furthermore, if p * 5 and 
there are FPRTs (mod p) , then the number of FPR's is two or one, according to 
whether p = 1 (mod 4) or p = -1 (mod 4). In [7], D. Shanks & L. Taylor have 
shown that if g is a FPR (mod p) then g - 1 is a primitive root_ (mod p) . M. J. 
DeLeon [4] proved that there is a FPR (mod p) if and only if f(p) = p - 1. In 
[2] we studied the connection between the rank of apparition of a prime p and 
the existence of FPRfs (mod p) . We proved that there is exactly one FPR (mod 
p) if and only if f(p) = p - 1 or p = 5; moreover, if p = 1 (mod 10) and there 
exist two FPRfs (mod p) or no FPR exists, then f(p) < p - 1. M. E. Mays [5] 
showed that if both p = 60& - 1 and q = 30fc - 1 are primes then there is a FPR 
(mod p). 

*This research was partially supported by Hungarian National Foundation for Scientific Research 
Grant No. 907. 
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The purpose of this paper is to give some connections among the rank of 
apparition of pe in the Lucas sequence U9 the period of U modulo pe, and the 
Lucas primitive roots (mod pe); furthermore, we show necessary and sufficient 
conditions for the existence of Lucas primitive roots (mod pe). In the case in 
which P = -Q = e = 1, our results reproduce and improve upon some results for 
FPR's (mod p) mentioned above. 

We shall prove the following two theorems. 

Theorem 1: Let U be a Lucas sequence defined by integers P * 0 and Q = -1, let 
p be an odd prime with p\P = P2 + 4, and let e > 1 be an integer. Then there 
is a Lucas primitive root (mod pe) if and only if 

u(pe) = cf>(pe)5 
where <j> denotes the Euler function. There is exactly one Lucas primitive root 
(mod pe) if u(pe) = §(pe) and p = -1 (mod 4), and there are exactly two Lucas 
primitive roots (mod pe) if u(pe) - §(pe) and p E 1 (mod 4). 

Theorem 2: Let U be a Lucas sequence defined by integers P * 0 and § = -1, let 
p be an odd prime with p\V = P2 + 4, and let g > 1 be an integer. Then there 
is exactly one Lucas primitive root (mod pe) if and only if u(pe) = (j>(pe) anc* 
p E -1 (mod 4) s and exactly two Lucas primitive roots (mod pe) exist if and 
only if 

u(pe) = cf)(pe)/2 and p E 1 (mod 8) 
or 

u{pe) = cf)(pe)/4 and p E 5 (mod 8). 

From these theoremss some other results follow. 

Corollary 1: If U9 p, and e satisfy the conditions of Theorem 2 and 

u(pe) = <Kpe), 
then g is a Lucas primitive root (mod pe) if and only if x = g satisfies the 
congruence 

(2) Unx + */„_! E -1 (mod p*)s 

where n ~ §(pe)/2, 

Corollary 2: If U, p, and e satisfy the conditions of Theorem 2 and g is a Lucas 
primitive root (mod p e ) s then g - P is a primitive root (mod p e ) . 

Corollary 3: If P * 0 is an integer and both q and p = 2^ + 1 are primes with 
conditions p\P and {Dip) = 1, where £ = P2 + 4 and (P/p) is the Legendre sym-
bol, then there is exactly one Lucas primitive root (mod p) with parameters P 
and Q = -1. 

2. Known Results and Lemmas 

Let U be a Lucas sequence defined by nonzero integers P and $* and let 
D = P2 - kQ be the discriminant of the characteristic polynomial of U'. If p is 
an odd prime with pjg and g > 1 is an integer, then, as is well known, we haves 

(i) Un E 0 (mod pe) if and only if u(pe)\n; 

(ii) Pn E 0 and Un+i = 1 (mod pe) if and only if u(pe)\n\ 

( i i i ) w(p) = p i f p\.D, 
u{p) \p - (D/p) i f pj[D, where (P/p) i s the Legendre symbol; 

( i v ) u(pe) = u(p) ' pe~k If u(p) = . - . = w(pfe) * w(pfe + 1 ) and e * /c; 

(v) w ( p ) | w ( p ) ; 
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(vi) Let u(pe) = 2auf and d(pe) = 2bdr, where d(pe) denotes the least positive 
integer d for which Qd = 1 (mod pe) and u', <ff are odd integers. We have 

( [u(pe), d(p&)] if a = b > 0, 
u(pe) = { 

\2[u(p0), d(pe)l if a * b, 
where [x, y] denotes the least common multiple of integers x and y. (For 
these properties of Lucas sequences, we refer to [1], [3], [8]). 

First, we note that congruence (1) is solvable if and only if the congru-
ence y2- = D = P2- - kQ (mod pe) has solutions. Thus, in case p\D, congruence (1) 
is solvable if and only if (D/p) = 1; furthermore, if (D/p) = 1, then (1) has 
two distinct solutions (mod pe). 

Let p be an odd prime for which (D/p) = 1 and let g^ and g2 be the two dis-
tinct solutions of (1). Then we have 

(3) gY - g2 £ 0 (mod p), 

(4) 9\ + 92 E p> 9\92 E Q (mod P e); 
furthermore, it can easily be seen by induction that 

(5) g? E un9i - QUn_x (mod pe) (i = 1, 2) 

for every integer n > 1. Let n-i = ni(pe) be the least positive integer for 
which 

g^ = 1 (mod pe). 

We may assume that n\(pe) > n2 (pe) . 

Lemma 1: If p is an odd prime with conditions p\Q, (D/p) = 1, and e is a posi-
tive integer, then 

u(pe) = [«i(pe), n2(pe)]. 

Proof: Since (D/p) = 1, congruence (1) has two distinct solutions g\ and g2 
which belong to the exponents n^ = n^p6) and n2 = n2(pe) (mod p e ) . Let w = 
u(pe) and q = [n^, n 2]. The definition of w implies that 

1 = ̂ + 1 = PUU - S^-i = -5^-1 (mod p e ) ; 

therefore, by (5), for i = 1 and £ = 2, we have 

^ F = uu9i ~ Ws-i = -QVn-i = 1 (mod p«) 
and so q\u follows. 

On the other hand, by (5) and the definition of q, we have 
Uq9\ ~ Uq92 E g\ ~ 92 E 0 (mod P&)> 

which with (3) implies Uq = 0 (mod p e ) . Thus, 

^ + 1 = PUq - QVq-l = -QVq-l E Uq9l " QVq-l E A E 1 (™°d p e ) , 
and so, by (ii), we have u = q. 

Lemma 2: Let Q = -1 and £ = P 2 + 4. If p is an odd prime with (D/p) = 1 and e 
is a positive integer, then 

(nY(pe) = n2(pe) = ku(pe) if w(pe) i 0 (mod 2) 

w(pe) =lnl(pe) = n2(pe) = 2u(pe) if u(pe) E 0 (mod 4) 

\nl(pe) = 2n2(pe) = u(pe) if w(pe) = 2 (mod 4). 

Proof: Since § = -1 and p is an odd prime, we have d(pe) = 2. Thus, by (vi) , 
we have 
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!

ku if u = u(pe) i 0 (mod 2) 

2u If u = u(pe) E 0 (mod 4) 

u if u = u(pe) E 2 (mod 4) . 

Since (D/p) = 1, congruence (1) has two distinct solutions, g^ and g2, which 
belong to exponents n\ = ni(pe) and n2 = n2(pe) modulo pe . 

If ni = n2 = n, then, by (4), we have 

1 E (gigz)n B Qn E (-1)" (mod p*) 

and so n = 2/??, where m is a positive integer. Now it can easily be seen that 
g™ E g™ E -1 (mod pe); thus, by (5), it follows that 

^ 1 - Umff2 E ^ ~ ^2 E °  (mod p*) . 
By (3) and (i), it follows that u\m. Hence, 2u\n. On the other hand, by Lemma 
1, u = n and so 2u\u; therefore, by (6), we have u^n^bu If u£0 (mod 2) or 
u = n=2ulfu = 0 (mod 4), since in the third case the relation 2u\u cannot 
be satisfied. 

Now let n\ > n2. In this case, we have g-,nz E 1 (mod pe) and 

1 t g^ E (gig2)n> = «"2 = (-if2 (mod p«) . 

Thus, n2 is an odd integer; furthermore, ni\2n2„ By our assumption, it follows 
that rii = 2n2 . Thus, by Lemma 1, u = n1 = 2n2 follows, and, by (6) , we obtain 
u = n1 = 2n2 = zij because u = 2n2 = 2 (mod 4). This completes the proof. 

3. Proofs of Results 

Proof of Theorem 1: If there exists a Lucas primitive root (mod pe), that is, 
if congruence (1) is solvable and rii(pe) = (f)(pe) or n2(pe) = §(pe) 9 then (£>/p) 
= 1 and, by Lemma 1, using the relation ni\§(pe) , we get 

U(pe) = <j)(pe). 

Now assume that u(pe) = §(pe) = pe~l(p - 1). Using (iv) we get u(p) - p - 1 
and using (iii) and (v) we have 

w(p)|(p - 1, p - (D/p)). 

If (D/p) = -1, then u(p) = 2 and so p\P = U2. From this 

OVp) = ((P2 + 4)/p) = (4/p) = 1, 

a contradiction. Thus, (D/p) = 1 and (1) is solvable. 
If p E -1 (mod 4), then u(pe) = 2 (mod 4). By Lemma 2, we have 

w(pe) = n^p*) = 2n2(pe) = (f>(pe), 

which proves that in this case there is exactly one Lucas primitive root (mod 
p e ) . 

If p E 1 (mod 4), then u(pe) - 0 (mod 4). In this case, by Lemma 2, 

u(pe) = nl(pe) = n2(pe) = $(pe), 
which proves that there are exactly two Lucas primitive roots (mod pe) . This 
completes the proof. 

Proof of Theorem 2: If there is exactly one Lucas primitive root mod pe, that 
is, congruence (1) is solvable and rii(pe) = §(pe) , n2(pe) < <S>(pe)s then (D/p) = 
1. By Lemma 2, we have 

u(pe) = nl(pe) = 2n2(pe) = w(pe) = (j)(pe) 

and p E .--!• (mod 4) . 
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If u{pe) = §{pe) and p E -1 (mod 4), then u(pe) ~ 2 (mod 4). Using (6), we 
have u(pe) = u(pe) = $(pe); thus, by Theorem 1, it follows that there exists 
exactly one Lucas primitive root (mod pe). 

Now we assume that there are exactly two Lucas primitive roots (mod pe) . 
Then (D/p) = 1 and, by Lemma 2, we have 

u(pe) = §(pe)/2 if §(pe)/2 E 0 (mod 4) 
or 

u{pe) = <Kpe)/4 if cf)(pe)/4 1 0 (mod 2). 
It follows that u(pe) = cf>(pe)/2 and p E 1 (mod 8) or u(pe) = §(pe) Ik and p E 5 
(mod 8). 

If u(pe) = (j)(pe)/2 and p E 1 (mod 8) or u(pe) = <f>(pe)/4 and p E 5 (mod 8), 
then u(pe) E 0 (mod 4) or u{pe) i 0 (mod 2). By (6), we get u(pe) = §(pe) . 
From this, using Theorem 1, it follows that in this case there are exactly two 
Lucas primitive roots (mod pe). 

Proof of Corollary 1: If g is a Lucas primitive root (mod pe), then 

gHPe)/2 = _! (mod pe); 

thus, by (5), x = g satisfies congruence (2). 
Let n - <j)(pe)/2 and let g be an integer satisfying the congruence 

(7) Ung + Un.l E -1 (mod p&) . 

From this it follows that 

(8) (Ung + Un_^ = Ufa* - Pg - 1) + Ung(PUn + 2Un_1) + (^ + /y^) 

= 1 (mod pe). 

It is well known that 

(9) Un(PUn - 2QUn_x) = U2n and V\ - QU^ = U ^ 

for any integer n > 1. In our case, § = -1 and u(pe) = §(pe) = 2n; therefore, by 
(8) and (9) 

(10) U*(gz - Pg - 1) + tf2n-1 E 1 (mod p*) 

follows. But 

(11) Uln_x = U2n + l - PU2n = f/2„ + 1 E 1 (mod p«), 

since, by the condition u(pe) - (|>(pe) - 2n, as we have seen above, we have 
u(pe) = §(pe) = 2n = u(pe); furthermore, it can easily be seen that p\Un, so, 
by (10) and (11), we get 

g1 - Pg - 1 E 0 (mod pe) . 

Thus, by (5) and (7), we have 

(12) g" E Ung + tfn_! E -1 (mod p*). 

By Lemma 2, using the condition u(pe) = §(pe) and (12), it follows that # be-
longs to the exponent u(pe) = <$>(pe) modulo pe

9 that is, g is a Lucas primitive 
root (mod pe). 

Proof of Corollary 2: If g is a primitive root (mod pe) and ^2 = Pg + 1 (mod 
p e ) , then g(g - P) = 1 (mod pe) . This shows that g - P is a primitive root 
(mod pe). 

Proof of Corollary 3: Using Lemma 2, by our assumptions we have 

u(p) = 2q = p - 1. 

Using Theorem 2, this proves that there exists exactly one Lucas primitive root 
(mod p). 
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1. Introduction 

Let (u) = u(a9 b), called the Lucas sequence of the first kind (LSFK), be a 
second-order linear recurrence satisfying the relation 

(1) un + 2 = aun+i + bun> 
where UQ = 0, U\ - 1, and the parameters a and b are integers. Let D = a2 + kb 
be the discriminant of u(a, b). Let (v) = v(a, b), called the Lucas sequence 
of the second kind (LSSK), be a recurrence satisfying (1) with initial terms 
VQ = 2, V\ = a. Throughout this paper, p will denote an odd prime unless 
specified otherwise. Further, d will always denote a residue modulo p. The 
-period of u(a, b) modulo p will be denoted by u(p). It is known (see [5]) 
that, if p\b, then u(a, b) is purely periodic modulo p. We will always assume 
that, in the LSFK u(a9 b), p\b. The restricted period of u(a, b) modulo p, 
denoted by a(p), is the least positive integer t such that un + t - sun (mod p) 
for all nonnegative integers n and some nonzero residue s. Then s is called 
the principal multiplier of (zO modulo p. It is easy to see that a(p)|u(p) and 
that 8(p) = u(p)/a(p) is the exponent of the principal multiplier s of (u) 
modulo p. 

We will let A(d) denote the number of times the residue d appears in a full 
period of u(a, b) modulo p and N(p) denote the number of distinct residues 
appearing in u(a, b) modulo p. In a previous paper [13], the author considered 
the LSFK u(a, 1) modulo p and gave constraints for the values which A(d) can 
attain. In particular, it was shown that A(d) < 4 for all d. Upper and lower 
bounds for N(p) were given in terms of a(p). Schinzel [8] improved on the 
constraints given in [13] for the values A(d) can have in the LSFK u(a, 1) 
modulo p. 

In this paper we will consider the LSFK u(a, -1) modulo p and determine the 
possible values for A(d) . In particular, we will show that A(d) < 2 for all d. 
We will also obtain upper bounds for N(p). If a(p) is known, we will determine 
N(p) exactly. Schinzel [8] also presented results concerning A(d) for the LSFK 
u(a9 -1) (mod p), citing a preprint on which the present paper is based. 

In [12], the author obtained the following partial results concerning A(d) 
in the LSFK u(a, -1) (mod p). 

Theorem 1: Consider the LSFK u(a, -1) modulo p with discriminant D = a1 - 4. 

(i) If p > 5 and p\D, then there exists a residue d such that A(d) = 0. 
(ii) If p\D, then A(d) * 0 for any d. In particular, we must have that a = ±2 

(mod p). If a E 2 (mod p), then 

un E n (mod p) 

and A{d) = 1 for all d. If a E -2 (mod p), then 

un E (-l)n+1n (mod p) 

and i4(d) = 2 for all d. 
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2. Preliminaries 

A geneval multiplier of u(as b) (mod p) is any nonzero residue s! such that 

un + t ~ s !un (mod p) 

for some fixed positive integer t ! and all nonzero integers n. It is known 
that, if s is the principal multiplier of u(as b) (mod p) and s ! is a general 
multiplier of u(a, b) (mod p) 5 then 

s ' = s^ (mod p) 

for some i such that 0 < i < 3(p) - 1= 
For the LSFK u(a, b) , let A: = a(p). We will let A^(d) denote the number of 

times the residue d appears among the terms 
uki> Uki + I> •••> "H + fe-1 modulo p5 

where 0 < i < $(p) - 1. Results concerning A^(d) will be obtained for the LSFK 
u(a, -1) (mod p). 

The following results concerning u(as b) and v(as b) are well known: 

(2) vl - Bui = 4(-^)n; 
(3) uln = unvn. 

Proofs can be found in [4]. 

3. The Main Theorems 

Our results concerning the distribution of residues in the LSFK u(a, -1) 
modulo p will depend on knowledge of the values of a(p), 3(p)> and (D/p) s where 
(P/p) denotes the Legendre symbol. Theorems 2 and 3 will provide information 
on the values u(p)s a(p)s and $(p) can take for the LSFK u(a5 -1) depending on 
whether (D/p) = 0, 1, or -1. 

Theorem 2: Let u(a, b) be a LSFK. Then 

(4) a(p)|p - (D/p), 

Further, if p\D, then 

(5) a(p)|(p - (Dip))12 
if and only if (-b/p) = 1. Moreover, if (D/p) = 1, then 

(6) u(p)|p - 1. 

Proof: Proofs of (4) and (6) are given in [4, pp. 44-45] and [1, pp. 315-17]. 
Proofs of (5) are given in [6, p. 441] and [1, pp. 318-19]. 

Theorem 3: Consider the LSFK u(as -1) with discriminant D. Suppose that p\D. 
Let Dr be the square-free part of D. If \a\ > 3, let e be the funcamental unit 
of Q(SD1). Let s be the principal multiplier of u(a, -1) modulo p. 

(i) 3(p) = 1 or 2; s = 1 or -1 (mod p). 
(ii) If a(p) = 0 (mod 2), then 3(p) = 2. 
(iii) If a(p) E 1 (mod 2), then 3(p) may be 1 or 2. 
(iv) If (2 - a/p) = (2 + a/p) = -1, then a(p) E 0 (mod 2) and g(p) = 2. 
(v) If (2 - a/p) = 1 and (2 + a/p) = -1, then a(p) = 1 (mod 2) and B(p) = 2. 
(vi) If (2 - a/p) = -1 and (2 + a/p) = 1, then a(p) = 1 (mod 2) and 3(p) = 1. 
(vii) If p E 1 (mod 4), (D/p) =1, and the norm of e is -1, then a(p)|(p - 1)/4. 
Proof: This is proved in [11, pp. 328-31]. 
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We are now ready for the statement of our principal theorems. Following 
the notation introduced by Schinzel in [8], we will let S = Sip) denote the set 
of all the values which Aid) attains in the LSFK u{a, -1) modulo p. 

Theorem 4: Let u(a9 -1) be an LSFK. Suppose that 3(p) = 1, and let k = a(p). 
Then k = 1 (mod 2). Let A Lid) denote the number of times the residue d appears 
among the terms M Q , z l̂5 ..., (̂/c-l)/2 modulo p. Let A {(d) denote the number of 
times the residue d appears among the terms &(&+!)/2> u{k+3)/2> •••» u

k modulo p. 

(i) A(d) = A(-d). 
(ii) If p > 5, then S = {0, 1}. 

(iii) A'id) = 0 or 1 for i = 0, 1. 
(iv) A^d) = A[i-d). 

Theorem 5: Let u(a, -1) be an LSFK. Suppose that a(p) E 1 (mod 2) and $(p) = 2. 

(i) A(d) = A(-d). 
(ii) If p > 5, then S = {0, 2}. 

(iii) If d t 0 (mod p ) , then Ai(d) = 0 or 2 for i = 0, 1. 
(iv) A0(0) = A^O) = 1. 
(v) A0(d) = Al(-d). 

Theorem 6: Let w(a, -1) be an LSFK with discriminant D. Suppose a(p) E 0 (mod 
2). Then 3(p) = 2 and (-£/p) = 1-

(i) A(d) = 4(-d). 
(ii) 4(d) = 1 if and only if d = ±2//=Z? (mod p) . 

(iii) If p > 5, then 5 = {0, 1, 2}. 
(iv) If d t 0 or +2/S-D (mod p) , then ̂ ( d ) = 0 or 2 for i = 0, 1. 
(v) If d = 0 or ±2//=£ (mod p) , then ^ W ) = 1 for i = 0, 1. 

(vi) 40(d) = 4i(-d). 
Theorem 7: Let u(a, -1) be an LSFK. Suppose that p\l) and a i 0, 1, or -1 (mod 
p) . Let Z?f be the square-free part of D. Let e be the fundamental unit of 
Qi/D1). Let cl = 0 if a(p) = 1 (mod 2) and cx = 1 if a(p) E 0 (mod 2). 

(i) Nip) E 1 (mod 2). 
(ii) Nip) < (p - iD/p))/2 + Cl. 
(iii) If p E 1 (mod 4), (£/p) = 1, and e has norm -1, then 

/l/(p) < (p - l)/4 + cY. 
(iv) il/(p) = a(p) + Cl. 

4. Necessary Lemmas 

The following lemmas will be needed for the proofs of Theorems 4-7. 

Lemma 1: Let u(a, b) be an LSFK. Let s be the principal multiplier of (u) 
modulo p and let k = a(p). Then 

(7) uk-n E i-l)n+lsun/bn (mod p), 

for 0 < n < k. In particular, if b = -I (mod p) , then 

(8) wk-n E ~s^n (mod P)J 

for 0 < n < k. 

Proof: We proceed by induction. Clearly, 

uk.Q E 0 E i-l)0+lsu0/b° E 0 E u0 (mod p ) . 
Also, 

z^-i = b~1iuk + i - az^) E Z?-1(sw1- a • 0) = (-l)1 + isw1/Z?1 (mod p) . 
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Now a s s u m e t h a t 

uk-n E ( 
and 

uk-(n + l) 
Then 

uk-(n + 2) 

The result for b 

Lemma 2: Let u(a , b ) be an LSJFK. Let n and c be positive integers such that 
n + G < a(p) - 1. Let k = a(p). Then 

(9) (un+c/un)(uk_n/uk-n-c) = (-b)c (mod p). 

Proof: This follows from congruence (7) in Lemma 1. Another proof is given in 
[12, p. 123]. 

Lemma 3: Consider the LSFK u(a, b) . Let o be a fixed integer such that 1 < 
c < a(p) - 1. Then the ratios un + c/un are all distinct modulo p for 1 < n < 
a(p) - 1. 

Proof: This is proved in [12, pp. 120-21]. 

Lemma 4: Let u(a, -1) be an LSFK and let k = a(p). Then 

un f ±un+c (mod p) 

for any positive integers n and c such that either n + c < k/2 or it is the 
case that n > k/2 and n + c < k - 1. 

Proof: Suppose there exist positive integers n and c such that n + a < k - 1 
and 

w^ E ±un + c (mod p) . 
Then 

Un+c/Un = ±1 (mod p). 
By Lemma 2, 

(Un + c/u^iUk-n/Uk-n-c) = 1° = 1 (mod p) ; 
hence, 

Uk~nl^k-n-c E Un+clun ~ ±1 (mod p). 

Thus, by Lemma 3, 

n + c = k - n 
leading to 

n = (k - c)/2. 

Consequently, 

n = (k - c)/2 and n + o = (fc + c)/2. 

The result now follows. 

Lemma 5: Let w(a, -1) be an LSFK and let k = a(p). Let /l/x be the largest in-
teger t such that there exist integers nls n2> • ••> w* f o r which 1 < n^ < [fc/2] 
and wni t ± unj. (mod p) if 1 < i < J < [k/2], where [#] is the greatest integer 
less than or equal to x. Then 

(10) N(p) = 2Nl + 1. 

Proof: By Theorem 3, 3(p) = 1 or 2. First, suppose that 3(p) = 2. Then -1 is 
the principal multiplier of (u) modulo p and the residue -d appears in (u) 

1991] 7 5 

- l ) n + 1 s M „ / i " (mod p) 

E ( - l ) n + 2 s u n + 1 / ^ + 1 (mod p ) . 

E b"l(uk.n - awk_(n + 1)) 
E b - 1 ( - l ) n + 1s[(Z?wn/Z?n + 1 ) + (aun + 1/bn + l)] 

= b-l(-l)n + ls(un+2/bn + l) E ( - l ) n + 3 s u n + 2 / ^ + 2 ( m o d p ) . 
E - 1 (mod p) fo l lows by i n s p e c t i o n . 
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modulo p if and only if d appears in (u) modulo p. Moreover, it follows from 
Lemma 1 and the fact that -1 is a principal multiplier of (u) modulo p that if 
d t 0 (mod p) and d appears in (u) (mod p) , then d = ±uni (mod p) for some i 
such that 1 < i < 71/]_. Including the residue 0, we see that (10) holds. 

Now suppose that $(p) = 1. By congruence (8) in Lemma 1, the residue -d 
appears in (u) modulo p if and only if d appears in (u) modulo p. It also fol-
lows from Lemma 1 that, if d t 0 (mod p) and d appears in (u) modulo p, then 
d = ±uni (mod p) for some i such that 1 < i < 7l/]_ . Counting the residue 0, we 
see that the result follows. 

Lemma 6: Let u (a , -1) be an LSFK. Let k = a (p) . Let ,4'(d) denote the number 
of times the residue d appears among the terms ri\9 n^* . ..» n[k/2] modulo p- Let 
71/1 be defined as in Lemma 5. 

(i) A'(d) + i4'(-d) = 0 or 1. 
(ii) Nx = [&/2]. 

Proof: (i) follows from Lemma 4; (ii) follows from (i). 

Lemma 7: Let u(a, b) be an LSFK. Suppose that p \b . Let s be the principal 
multiplier of (u) modulo p and sJ be a general multiplier of (w) (mod p), where 
1 < j < $(p) - 1. Then 

/4(d) = i4(s«?'<f). 

Proof: This is proved in [13]. 

Lemma 8: Let u (a , -1) be an LSFK with discriminant D. Suppose that a (p) = 0 
(mod 2). Let k = a(p). Then 

uk/2 E ±llJ-D (mod p) . 

Proof: Since a(p) E 0 (mod 2), it follows from (4) that p![D. By (2), it fol-
lows that 

(11) yfc
2

/2 - Du\/Z = 4 ( l ) f c / 2 = 4 . 

Now, Mj(,/2 ^ 0 (mod p) . Thus, by (3), ŷ /2 = 0 (mod p) . Hence, by (11), 
o 

~Duk/2 E ^ ^mod ̂ ^ 
and the result follows. 

5. Proofs of the Main Theorems 

We are finally ready to prove Theorems 4-7. 

Proof of Theorem 4: The fact that a(p) = 1 (mod 2) follows from Theorem 3. 
(i) and (iv) follow from Lemma 1; (ii) follows from Theorem l(i), Lemma 

6(i), and Lemma 1; (iii) follows from Lemma 6(i) and the fact that A(0) = 1. 
Proof of Theorem 5: (i) follows from Lemma 7; (ii) and (iii) follow from Theo-
rem l(i), Lemma 6(i), Lemma 1, and the fact that -1 is the principal multiplier 
of u(a, -1) modulo p; (iv) follows by inspection; and (v) follows from the fact 
that -1 is the principal multiplier of (u) modulo p. 

Proof of Theorem 6: The fact that $(p) = 2 follows f rom Theorem 3. The fact 
that (-D/p) = 1 follows from Lemma 8. 

(i) follows from Lemma 7; (ii), (iv), and (v) follow from Lemmas 8, 6(i), 
and 1 and the fact that -1 is the principal multiplier of (u) modulo p; (iii) 
follows from Theorem l(i), Lemma 6(i), Lemma 1 and the fact that -1 is the 
principal multiplier of u(a9 -1) modulo p; and (vi) follows from the fact that 
-1 is the principal multiplier of (u) modulo p. 
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Remark: Note that Theorem 3 gives conditions for the hypotheses of Theorems 4-
6 to be satisfied. 

Proof of Theorem 7: (i) follows from Lemma 5; (ii) follows from Lemma 5, Lemma 
6(ii), and Theorem 2; (iii) This follows from Lemma 5, Lemma 6(ii), and Theorem 
3(vii); and (iv) follows from Lemmas 5 and 6(ii). 

6. Special Cases 

For completeness, we present Theorems 8 and 9 which detail special cases we 
have not treated thus far. For these theorems, p will designate a prime, not 
necessarily odd. 

Theorem 8: Let u(a, -1) be an LSFK. Suppose pj(D. 

(i) If a = 0 (mod p), then a(p) = 2, S(p) = 2, N(p) = 3, 4(0) = 2, 4(1) = 
4(-l) = 1, and 4(d) = 0 if d f 0, 1, or -1 (mod p) . 

(ii) If a = 1 (mod p) and p > 2, then a(p) = 3, $(p) = 2, /l/(p) = 3, 4(0) = 
4(1) = 4(-l) = 2, and 4(d) = 0 if d t 0, 1, or -1 (mod p) . 

(iii) If a E 1 (mod p) and p = 2, then a(p) = 3, S(p) = 1, N(p) = 2, 4(0) = 1, 
and 4(1) = 2. 

(iv) If a E -1 (mod p) and p > 2, then a(p) = 3, G(p) = 1, N(p) = 3, 4(0) = 
4(1) = 4(-l) = 1, and 4(d) = 0 if d t 0, 1, or -1 (mod p) . 

Proof: (i)-(iv) follow by inspection. 

Theorem 9: Let u(a, -1) be an LSFK. Suppose that p\D. Then a = ±2 (mod p) . 
If a E 2 (mod p), then a(p) = p, 3(p) = 1, N(p) = p, and 4(d) = 1 for all resi-
dues d modulo p. If p > 2 and a E -2 (mod p) , then a(p) = p, $(p) = 2, il/(p) = 
p, and 4(d) = 2 for all residues d modulo p. 

Proof: This follows from Theorem l(ii). 

Remark: If D E 0 (mod p ) , we see from Theorem 9 that the residues of u(a, -1) 
are equidistributed modulo p. See [7, p. 463] for a comprehensive list of 
references on equidistributed linear recurrences. 

7. Concluding Remarks 

In [8] and [13] it was shown that, for the LSFK u(a, 1) modulo p, 4(d) < 4. 
In the present paper it was shown that, for the LSFK u(as -1) modulo p, 4(d) < 
2. In [14] we extend these results considerably. Specifically, let w(a9 b) be 
a second-order linear recurrence with arbitrary initial terms WQ, W\ over the 
finite field Fq satisfying the relation 

wn+2 = awn+l + bWn« 

where b * 0. Then 

4(d) < 2 • ord(-2?) 

for all elements d e Fqi where ord(x) denotes the order of x in ^ . 
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Introduction 

Pascalfs triangle has a seemingly endless list of fascinating properties. 
One such property which has been extensively studied is the fact that the num-
ber of odd entries in the nth row is equal to 2* where t is the number of ones 
in the base two representation of n (see [1], [2], and [3]). 

Generalizations of this property seem surprisingly difficult. For a prime 
modulus, Hexel & Sachs [4] obtain a rather involved expression for the number 
of occurrences of each residue. Explicit formulas are obtained for p = 3 and 
5. In particular, for a prime modulus p, the number of occurrences for a given 
residue in row n depends only on the number of times each digit appears in the 
base p representation of n. However, it is easily seen that composite moduli 
do not satisfy this property. In this article we consider Pascal1s triangle 
modulo 4 and obtain explicit formulas for the number Of occurrences of each 
residue modulo 4. 

Notation and Conventions 

The letters n, j, k, I will denote nonnegative integers. The letter n will 
typically refer to an arbitrary row of Pascalfs triangle. We will need 
detailed information on the base two representation of n. The following 
definitions will be useful. 

Let 
k . k 

n = Yl ^ i 2 ^ where a^ = 0 or 1, and B(ji) = Y ai' 
i= o i=o 

We also define 
c • = 1 if and only if a^ + i = 1 and a^ = 0, where ak + l = 0. 

We then define 
k 

i= 0 

Similarly, we define 
k 

di = (ai+i)(cLi) and D(n) = Y, di' 
i = o 

Clearly, B(n) is the number of "1"; C(n) is the number of "10"; and D(n) is the 
number of "11" blocks, not necessarily disjoint, in the base two representation 
of n. 

For our purposes, 

ln\ = n\ 

is defined for integer values of n and j; further, 

(n.\ = 0 if j < 0 or j > n. 
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We de f ine 
. \ = v i f and only i f f . J = r (mod 4 ) . 

Let N (n) = ( a , b, c) , where Ni(n) = a i s the number of ones , N2(n) = b i s t he 
number of twos, and /l/3 (n) = c i s the number of t h r e e s i n the nth row of P a s c a l ' s 
t r i a n g l e . 

We w i l l make use of s e v e r a l well-known r e s u l t s found in Singmaster [ 5 ] . 

Lemma 1: pe\\( •) i f and only i f the p - a r y s u b t r a c t i o n n - J has e bor rows . 
II \ u I 

Lemma 2: The number of odd binomial coefficients in the nth level of Pascal's 
triangle is 2B(n). 

We begin our work with an easy result which we prove for completeness. 

Lemma 3: N(2k) = (2, 1, 0) when k > I. 

Proof: Clearly 

<2;> • <s>= -
so Nl(2k) > 2. By Lemma 2, 

Nl(2k) + N3(2k) = 2. 

So Nl(2k) = 2 and N3(2k) = 0. Further, for 0 < j < 2k~l, 2k - j will have at 
least two borrows when performed in base two. Thus, 

(2k\ /2k\ 
:(..); hence, (^ = 0. 

Similarly, for 2k~l < j < 2k . Noticing 

\2k-l) = 2> 

we conclude Nz(2k) = 1 . D 

Lemma 4: Let n = 2k + I, where 0 < £ < 2k. 

(i) If £ < j < 2k~l, then ("> 0. 

(ii) If £ < Q < 2k, then ^ = 0 or 2. 

Proof: In case (i) , we must borrow at least twice in subtracting n - j, and in 
case (ii), at least one borrow must take place. 

By Lemmas 3 and 4, it is clear that Pascal's triangle modulo 4 has the fol-
lowing form: 
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The standard identity 

shows that any row in Figure 1 completely determines all subsequent rows. This 
identity and Lemma 3 yield the following recursive relations. 

Part 1: If n = 2k + £, where 0 < £ < 2k~l (see upper dashed line in Fig. 1): 

(i) Q) - <J> for 0 <- J Sti 

(ii) Q) = (j)= 0 for I + 1 < 3 < 2k~1; 

(iii) Q) = ZQ _^-i) for 2k~l < a < 2k~l + I; 

(iv) (") = 0 for 2k~l + I < 3 < 2k; 

(v) Q - (j - zk) for 2k " iK- n-
Part 2: If w = 2k + I, where 2k~l < I < 2k (see lower dashed line in Fig. 1): 

(vi) Q) = <J) for 0 < 3 < 2k~l; 
^Q)=Q+<j-l2^) fori"****; 

/n\ n/ £ (viii) Q = 2{. „ 2fc-i) for £ < j < 2^; 

(x) (*) = (. ^ lk) for 2*"1 + £ < j < n. £ 

All of the expressions above are considered modulo 4. 

We are now in a position to count the number of ones and threes modulo 4. 
Recall that D(n) > 0 if and only if the base two representation of n has a "11" 
block. 

Theorem 5: If D(n) = 0, then Nl(n) = 2s(n) and N3(n) = 0. 
Proof: We use induction on n. The theorem is true for n < 3. Since D(n) = 0, 
we know n = 2k + £5 where £ < 2/c_1 and £(£) = 0. Using (iii) of the recur-
sion, we have 

< 3 > E 2 < * - * 2 * - I > ( m o d 4 ) 

for 2k~l < j < 2k. Thus, there are no threes in this section of the nth row of 
Pascalfs triangle. By (i) and (v), we see 

Q - <J> for * < 2*"1 and Q = <. _ \ k ^ ) for 3 > 2k. 

Thus, N3(n) = 2N3 (£) . But by induction, /l/3(£) = 0. The theorem now follows 
from Lemma 2. D 

Theorem 6: If D(n) > 0, then Nl(n) = tf3(n) = 2s(n)_1o 

Proof: The result is clear for n < 4. 
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Case 1: n = 2k + £, where I < 2k~l. Clearly, £(£) > 0. When considering Q) , 
by the recursion, we need only consider j < I or 2k < j . For 0 < j < £, there 
are as many ones and threes as in row £. By symmetry, there are as many for 
2k < j. Thus, Nl(n) = 2Nl(i) and JV3(n) = 2N3(l), so the result holds by induc-
tion. 

Case 2: n = 2k + A, where 2k""1 < £ < 2k. Let £ = 2k~l + p. Consider the five 
sections of row n: 

A. 0 < J < 2k~l; 

B. 2fe_1 < j < £; 

C. & < j < 2^; 

D. 2k < j < I + 2fc_1; 

E. £ + 2/c_1 < j < £ + 2k = n. 

By symmetry, ,4 = 5* and B = D. In section C, by (viii) , 

5)" 2<v- - W ) 
and there are no ones or threes in C. 

In section A, 

Q)-Q) for0**<2*-l. 
Since we are trying to count the number of times ( •) = 1 or 3, by Lemma 4, we 
need only consider j < r. 

In section B, 

o-o^o-Vo-£\ 

Now, by Lemma 1, (j) and {j-2k~1) a r e both odd or both even. We need only con-
sider the case when they are both odd. Thus, 

2(. _ 2k-l) E 2 (modulo 4). 

Observing x + 2 = 3x if x = 1 or 3 (modulo 4), we have 

0 ^ > , 3 < £ ! .) 0oodulo4). 

Since we are in section B, 2k~l < j < £, and recalling that £ = 2k~l + r, we see 
that 0 < £ - j < r, that is, (i-j) is in section A. 

This implies the number of ones in section A equals the number of threes in 
section B and the number of threes in section A equals the number of ones in 
section B. Hence, there are an equal number of ones and threes in the combined 
sections of A and B; thus, N\(ri) = #3(7-2). The theorem now follows from Lemma 
2. • 

Theorem 7: Nz(n) = C(n)2B{n)~l. 

Proof: Recall that 

(J1.) = 2 if and only if 2 H7!), 
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which occurs if and only if n - J has exactly one borrow in base two. Thus, we 
wish to count the number of j?s such that n - j has exactly one borrow. 
Suppose the borrow occurs from position i + 1 to position i . If 

k k 
n = £ a^ and J = E ^2"> 

i= 0 i= 0 
then a^ + 1 = 1 and a^ = 0, bi + i = 0 and hi = 1. Thus, if C(n) = 0, it follows 
that N2(n) = 0. 

So we assume C(n) > 1. To ensure no other borrow occurs, it must be the 
case that bi = 0 when a^ = 0 for £ * i . When a£ = 1, £ * £ + 1, &£ may equal 0 
or 1. So for each "10" in n!s representation, there are 2s(n)_1 jfs for which 
Q) = 2. Thus, N2(n) = (7(n)2B(n)-1. • 

To summarize, we have 

{2B^nK C{n)2B{n)~l, 0) if D(n) = 0, 

(2s(n)-is (7(n)2s(^)-l5 25(n)-x) if D(n) > 0. 
Recurrences of the type used here are possible for other composite moduli, but 
they become increasingly complex. A complete characterization of the residues 
modulo 6 would be interesting, since 6 is not a prime power. Also, the 
question of general results for arbitrary composite moduli remains open. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. Hillman 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to 
Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. 

Each solution should be on a separate sheet (or sheets) and must be 
received within six months of publication of the problem. Solutions typed in 
the format used below will be given preference. Proposers of problems should 
include solutions. 

Anyone desiring acknowledgment of contributions should enclose a stamped, 
self-addressed card (or envelope). 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln sa t i s fy 

Fn+2 " Fn+l +Fn> F
Q = °> Fl = ^ 

+1 + Ln3 L0 = 2> Li = 1-Ln + 2 ~ Lr 

Also, a = (1 + / 5 ) / 2 , 3 = (1 - / 5 ) / 2 , Fn = (an - 3 n ) / / 5 , and Ln = an + 3 n . 

PROBLEMS PROPOSED IN THIS ISSUE 

B-682 Proposed by Joseph J. Kostal, U. of Illinois at Chicago 

Let T(n) be the t r iangular number n(n + l ) / 2 . Show that 

T{L2n) - 1 - I ( £ l f n + L 2 n ) . 

B-683 Proposed by Joseph J. Kostal, U. of Illinois at Chicago 

Let L(n) = Ln and Tn = n(n + l ) / 2 . Show that 

L(T2n) = L(2n2)L(n) + ( - l ) n + 1L(2n2 - n) . 

B-684 Proposed by L. Kuipers, Sierre, Switzerland 

(a) Find a s t ra igh t l ine in the Cartesian plane such that (Fn, Fn + 1) and 
(Fn+l> Fn+l) a r e o n opposite sides of the l ine for a l l posi t ive integers n. 

(b) Is the l ine unique? 

B-685 Proposed by Stanley Rabinowitz, Westford, Massachusetts, and 
Gareth Griffith, U. of Saskatchewan, Saskatoon, Saskatchewan, Canada 

For integers n > 2, find k as a function of n such that 
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B-686 Proposed by Jeffrey Shallit, U. of Waterloo, Ontario, Canada 

Let a and b be i n t e g e r s wi th 0 < a < b* Set e 0
 = a> °l = ^* a n c i f o r ^ ^ 2 

de f ine on to be the l e a s t i n t e g e r wi th cn/cn_l > c ?
n _ 1 / ^ _ 2 - F i n d a c lo sed form 

for on i n the c a s e s : 

(a) a = I, b = 2% (b) a = 2, b = 3 . 

B-687 Proposed by Jeffrey Shallit, U. of Waterloo, Ontario, Canada 

Let cn be as i n Problem B-686. Find a c losed form for on i n the case wi th 
a = 1 and b an i n t e g e r g r e a t e r than 1. 

SOLUTIONS 

Pell P a r i t y Problem 

B-658 Proposed by Joseph J. Kostal, U. of Illinois at Chicago 

Prove t h a t Q\ + Q\ + . . . + Q\ = P^ (mod 2 ) , where the Pn and § n a r e the 
P e l l numbers def ined by 

Pn + 2 m 2 P n+ l + P n > ? 0 = °> P l = U 

Solution by Piero Filipponi, Fond. V. Bordoni, Rome, Italy 

More g e n e r a l l y , i t can be proved t h a t 

S = £ «J* E p?! (m°d 2) -
£= 1 

where k\, k^ . . . , fcn and 7z a r e a r b i t r a r y p o s i t i v e i n t e g e r s . Using the r e c u r -
rence r e l a t i o n , i t i s r e a d i l y seen t h a t Q^ i s odd for a l l i , so t h a t Q^v i s . 
The re fo re , S i s odd (even) i f n i s odd ( e v e n ) . On the o t h e r hand, i t i s known 
t h a t the P e l l numbers Pn (and any power of them) a r e odd (even) i f n i s odd 
( e v e n ) . 

Also solved by Richard Andre-Jeannin, Charles Ashbacher, Wray Brady, Paul 
S. Bruckman, Russell Euler, Herta T. Freitag, C. Georghiou, Russell Jay 
Hendel, L. Kuipers, Y. H. Harris Kwong, Carl Libis, Bob Prielipp, H.-J. 
Seiffert, Sahib Singh, Lawrence Somer, Amitabha Tripathi, Gregory Wulczyn, 
and the proposer. 

Neares t I n t e g e r 

B-659 Proposed by Richard Andre-J eannin, Sfax, Tunisia 

For n > 3 , what i s the n e a r e s t i n t e g e r to 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, NY 

For n > 3, Ln is the nearest integer to FnV59 since 

Vn^> - Ln\ = 2|3|n ^ 2|3|3 < 1/2. 
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Also solved by Charles Ashbacher, Wray Brady, Paul S. Bruckman, Russell 
Euler, Piero Filipponi, Herta T. Freitag, C. Georghiou, Russell Jay Hendel & 
Sandra A. Monteferrante, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Sahib 
Singh, Lawrence Somer, Amitabha Tripathi, Gregory Wulczyn, and the 
proposer. 

Binomial E x p a n s i o n s 

B-660 Proposed by Herta T. Freitag, Roanoke, VA 

Find c losed forms f o r : 
[n/21 [(n + D / 2 j . „ . 

(i) ^ E o ( 2 ^ , (ID 21- £ ( / . J ^ 1 . 
where [t] is the greatest integer in t . 

Solution by Lawrence Somer, Washington, D. C. 

The answer to (i) is Ln; the answer to (ii) is Fn. These representations 
are obtained from the binomial expansions for 

Ln = ((1 + /5)/2)n + ((1 - /5)/2)n 

and 
Fn = U//5)[((l + /5)/2)n - ((1 - /5)/2)«], 

r e s p e c t i v e l y . The r e p r e s e n t a t i o n for Fn i n ( i i ) was given by E. Ca ta lan in 
1857 i n Manuel des Candidats a I'Ecole Poly technique. A proof for t he r e p r e -
s e n t a t i o n of L i n ( i ) can be found in [2 , p . 6 9 ] . Proofs for the r e p r e s e n -
t a t i o n of F i n ( i i ) can be found i n [ 1 , p . 150] and [2 , p . 6 8 ] . 

Re fe r ences 

1. G. H. Hardy & E. M. Wright . An Introduction to the Theory of Numbers, 4 th 
ed. London: Oxford U n i v e r s i t y P r e s s , 1960. 

2. S. Vajda. Fibonacci & Lucas Numbers3 and the Golden Section. New York: 
Hals ted P r e s s , 1989. 

Also solved by Richard Andre-Jeannin, Wray Brady, Paul S. Bruckman, Piero 
Filipponi, C. Georghiou, Joseph J. Kostal, L. Kuipers, Y. H. Harris Kwong, 
Bob Prielipp, Dan Redmond, H.-J. Seiffert, Sahib Singh, and the proposer. 

I n t e g r a l Divisor 

B-661 Proposed by Herta T. Freitag, Roanoke, VA 

Let T(n) = n(n + l ) / 2 . In Problem B-646, i t was seen t h a t Tin) i s an i n t e -
g r a l d i v i s o r of T(2T(n)) for a l l n i n Z+ = { 1 , 2, . . . } . Find the n i n Z+ such 
t h a t T(n) i s an i n t e g r a l d i v i s o r of 

n 
Z T(2T(i)). 

i= l 
Solution by C. Georghiou, University of Patras, Greece 

We have T(2T(i)) = (i + 2i2 + 2 i 3 + i 1 +) /2 and, t h e r e f o r e , 

E W ( t ) ) = T(n)(n3 + 4 n ' + 6n + 4 ) . 
i= 1 5 
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But n3 + 4n2 + 6n + 4 E ( n - l ) ( n 2 + 1) (mod 5 ) , from which i t fo l lows t h a t Tin) 
i s a d i v i s o r of the given sum i f f n E 1, 2, or 3 (mod 5 ) . 

Ateo solved by Richard Andre-Jeannin, Paul S. Bruckman, David M. Burton, 
Russell Euler, Piero Filipponi, Joseph J. Kostal, L. Kuipers, Y. H. Harris 
Kwong, Boh Prielipp, H.-J. Seiffert, Sahib Singh, Paul Smith, Gregory 
Wulczyn, and the proposer. 

C o n g r u e n c e s Modulo 9 

B-862 Proposed by H.-J. Seiffert, Berlin, Germany 

Let Hn = LnPn , where the Ln and Pn a r e the Lucas and P e l l numbers , r e s p e c -
t i v e l y . Prove the fo l lowing congruences modulo 9: 

(1) Ehn = 3n; (2) Hhn+l = 3n + 1; 

(3) # 4 n + 2 - 3n + 6; (4) HL,n + 3 E 3n + 2. 

Solution by C. Georghiou, University of Patras, Greece 

More g e n e r a l l y , we show t h a t for any i n t e g e r m we have 

Hu _, = LmPm - 3nL _^0Pm - 6nLPm^0 (mod 9 ) . 
hn+m mm m+2 m m m+2 v 

Indeed, we have 
Lhn+m = uhn+m + 3 4 n + m = a m (3a 2 - l ) n + 3^(33 2 - D n 

= JT, {n'hi{-l)n"i[a2i + m + 3 2 i + m ] 
i= o ^ ' 

= t (S)(-Dn-i3^2. + m 

= ( ~ D n [ ^ - 3nLm + 2 ] (mod 9 ) . 

S i m i l a r l y , i f y = 1 + /l and 6 = 1 - / 2 , we have 

P ^ = (Y*+n + m _ ^n + m^/2/2 = [ Y m ( 6 y 2 _ ^n _ 6 ™ ( 6 6 2 _ l ) ^ ] / 2 / 2 

n 
m _ x2i + mi = 2"3/2 E ^ V C - I V - M Y 2 ^ 

E (-l)n[Pm - 6nPw + 2 ] (mod 9 ) , 

from which the a s s e r t i o n fo l lows immedia te ly . 
Now, by s e t t i n g m = 0, 1, 2, and 3 , we f ind congruences ( l ) - ( 4 ) , r e s p e c -

t i v e l y . 

Also solved by Paul S. Bruckman, Piero Filipponi, Joseph J. Kostal, L. 
Kuipers, Y. H. Harris Kwong, Carl Libis, Lawrence Somer, Gregory Wulczyn, 
and the proposer. 
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Dense in an Interval 

B-663 Proposed by Clark Kimberling, U. of Evansville, Indiana 

Let t\ = 1, ti = 2, and tn = (3/2)£n_i - tn-i for n = 3, 4, . . . . Determine 
lim sup tn. 

Solution by Hans Kappus, Rodersdorf, Switzerland 

Solving the given difference equation by standard techniques, one eas i ly 
obtains 

tn = (32 /7) 1 / 2 s in (na - b) , 
where 

a = arctan(/7/3), b = arctan(/7/ll). 

Now, since cos a = 3/4, we conclude that a is not a rational multiple of TT, and 
hence (tn ) is not periodic. Therefore, by a well-known theorem, the numbers 
tn are everywhere dense in the interval \t\ < (32/7)1/2. It follows that 

lim sup tn = (32/7)1/2 . 

Also solved by Richard Andre-Jeannin, Paul S. Bruckman, C. Georghiou, 
Russell Jay Hendel, L. Kuipers, Y. H. Harris Kwong, and the proposer. 
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Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND 
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK 
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially 
welcomes problems believed to be new or extending old results. Proposers 
should submit solutions or other information that will assist the editor. To 
facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-449 Proposed by loan Sadoveanu, Ellensburg, WA 

Let G(x) = xk + aixk~l + • . . + ak be a polynomial wi th c as a r o o t of o rde r 
p . I f G^\x) denotes the p t h d e r i v a t i v e of G(x) , show t h a t 

npcn~P 1 
is a solution to the recurrence \GiP\c) 

un = cn~ - a1un_l - a2
un-2 - --• ~ akun_k. 

H-450 Proposed by R. Andre-Jeannin, Sfax, Tunisia 

Compare t he numbers 

e - t f 
n = 1 £ n 

and 
Qr = 2 + y . 

n ^ i Fn(2F^_l + ( - 1 ) ^ - 1 ) ( 2 ^ + ( - l ) n ) 

H-451 Proposed by T. V. Padmakumar, Trivandrum, South India 

I f p i s a prime and x and a are p o s i t i v e i n t e g e r s , show 

SOLUTIONS 

Pell Mell 

H-424 Proposed by Piero Filipponi & Adina Di Porto, Rome, Italy 
(Vol. 26, no. 3, August 1988) 
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Let Fn and Pn denote the Fibonacci and Pell numbers, respectively. 
Prove that, if Fp is a prime (p > 3), then either Fp\PH or Fp\PH+l, where 

H = (Fp - l)/2. 

Solution by Paul S. Bruckman, Edmonds, WA 

Let q = Fp > 3, a prime. Since p = ±1 (mod 6), it is clear from a table of 
congruences (mod 4) that q = Fp = 1 (mod 4). Hence, H = \{q - 1) is even. We 
will consider two separate cases, but first we indicate some results which 
involve Pell numbers (and their "Lucas-Pell" counterparts): 

(1) a = 1 + /2, b = 1 - /2; 

(2) Pn =
 al " *", £n = a^ + bn, n = 0, 1, 2, ...; 

(3) P2n = PnQn; 

(4) G* = ̂ 2n + 2(-l)\ 

Also, if P is an odd prime, the following congruences may be shown to be valid 
(see "Some Divisibility Properties of Generalized Fibonacci Sequences" by Paul 
S. Bruckman, The Fibonacci Quarterly 17.1 (1979), 42-49): 

(5) ap = a, bp = b (mod P), iff (|) = 1; 

(6) ap = b, bF = a (mod P), iff (|) = -1. 

But (2|P) = 1 iff P = ±1 (mod 8); we may now complete the proof of the desired 
result. 

Case I: H E 0 (mod 4). Then q = 2E + 1 E 1 (mod 8); using (5), we have 

aq E a, 2?̂  E 2? (mod ^ ) , 
so 

1 (mod g). 

H e n c e , 

(7) 

afl-\ = a2fl = Z/?"1 = b2H 

P2H E ° ' S2ff 5 2 ( m 0 d <?) 

Also, using (3), (4), and (7), we have 

(8) P2H = PHQH E 0 (mod q); 

(9) Sf = S2/7 + 2 E 4 (mod ?). 

Since QH £ 0 (mod <?) and q\PHQH> it follows that <?|P# in this case. 

Case II: H = 2 (mod 4). Then q = IE + 1 E 5 (mod 8). Hence, using (6). 

a q b, bq - a (mod q); 
thus 

a q + l = a2ff + 2 E M + l = £2/7 + 2 E _j_ ( m o d ^ 
There fo re , 

(10) P 2 / / + 2 i 0, «2f l + 2 i -2 (mod 4 ) . 

Using ( 3 ) , ( 4 ) , and (10 ) , we have 

(11) P2H+2 = PH+1QH+1 = 0 (mod q); 

(12) «2 + 1 = « 2 f l + 2 - 2 = - 4 (mod <?). 

Since QH+l £ 0 (mod (7) and q\PH+iQH+i> it follows that q\PH+1. Q.E.D. 
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Also solved by P. Tzermias and the proposers. 

Two and Two Make 

H-429 Proposed by John Turner, Hamilton, New Zealand 
(Vol. 27, no. 1, February 1989) 

Fibonacci enthusiasts know what happens when they add two adjacent numbers 
of a sequence and put the result next in line. 

Have they considered what happens if they put the results in the middlel 
They will get the following increasing sequence of T-sets (multi-sets): 

*iven initial sets 
T1 = {1} 

T2 = {1, 2} 

T3 = {1, 3, 2}, 
T4 = {1, 4, 3, 5, 2}5 

Tb = {1, 5, 4, 7, 3, 8, 55 7, 2}5 

T6 = {1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2}, 
etc. 

Prove that for 3 < i < n the multiplicity of i in multi-set Tn is %$(£), where 
(f) is Euler's function. 

Solution by the proposer 

A binary tree can be grown, and rational numbers assigned to its nodes, as 
follows: 

Assign (1/1) to the root node; then from each node in the tree grow a left-
branch and a right-branch and assign rational numbers to the new nodes as done 
below: 

(pl/ql) \ P (Pz'Qz) 

(p/q) 

Assignment rule: 

If (p/q) = [aQ; a^, a2, ..., an, 1] (simple continued fraction); 
(1/1) = [0; 1]; then assign 

(px/qx) = [aQ; ax, a2, ..., an, 1, 1] (on left-branch node), 
and (p1lq1) = [aQ; a1? a2, ..., an + 1, 1] (on right-branch node). 

It is easy to show [1] that all rational numbers are generated uniquely by 
this process (there is a one-to-one correspondence between the node values and 
the set of simple continued fractions whose last component is 1). 

If the rational numbers (p/q) on the nodes in the left-hand subtree are 
considered, it will be seen that they will constitute the set of all rational 
numbers in the interval (0, 1) as the growth process continues ad infinitum. 
Hence, each q-value will occur §(q) times, for q > 2. 

The formation of the ^-values in the tree, above the node (1/2), and in the 
left subtree from there corresponds to the formation of the integer values 
included in the T-sets at each stage. 
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The right subtree about (1/2) generates an identical sequence of sets of 
^-values (in different order at each tree level). 

The result of the problem follows immediately. 
(Drawing the tree up to the fourth level will make all the above statements 

clear.) 

Reference 

1. A. G. Shaake & J . C. Turner . "A New Theory of Bra id ing (RR1/1).11 Research 
Re-port No. 165 (1988) , 1-42. 

Also solved by P. Bruckman, S. Mohanty, and S. Shirali. 

And More I d e n t i t i e s 

H-43Q Proposed by Larry Taylor, Rego Park, NY 
(Vol. 27, no. 2, May 1989) 

Find i n t e g e r s j , k (* 0, ± 1 , ±2 ) , mi and n^ such t h a t : 

(A) 5Fm.Fni = Lk + Ld+i, for i = 1, 5 , 9, 13 , 17, 2 1 ; 

(B) 5Fmi Fn_ = Lk - Lj+i, fo r i = 3 , 7, 1 1 , 15, 19, 23 ; 

( O ^ ^ n { = Fk + Fj+i> fo r i = 1, 2 , . . . , 22, 23 ; 
(D) Lm.Fn. = Fk - Fj+i, for i = 1, 3 , . . . , 2 1 , 23 ; 

(E) LmiLni = Lk - Lj + i , for i = 1, 5 , 9, 13, 17, 2 1 ; 

(F) Lmi
Lni

 = L-k + Lj+i> f o r ^ = 2 , 4 , 6 , 8 ; 
(G) £OT.£n. = £* + Lj+i, for i = 3, 7, 11, 15, 16, 18, 19, 20, 22, 23; 

(H) LmiLn. = Lk + i^+i, for £ = 10; 

(I) Ln.Fni = Lk + Fj + i , for i = 12; 

(J) 5FmiFn. = Lk + ^ + i, for £ = 14. 

Solution by Paul S. Bruckman, Edmonds, WA 

Although there is some method to the process whereby j and k are discov-
ered, there is also a lot of trial and error involved. It is easier to simply 
indicate, without further ado, the results of our search: 

(1) Q = -12, k = 7. 

With these values, we find that the problem has solutions m^ and n^, which are 
indicated below; no claim is made that other values of j and k cannot work 
equally well, though this seems likely. 

(A) L7 + £_n= 29 - 199 = -170 = 5(34) (-1) = 5F9F.Z; 
L7 + L_7 = 29 - 29 = 0 = 5F7FQ; 

L7 + L_3 = 29 - 4 = 25 = 5(5) (1) = 5F5FZ; 

L7 + Ll = 29 + 1 = 30 = 5(2)(3) = 5F3Fh; 

L7 + L5 = 29 + 11 = 40 = 5(1)(8) = 52^6; 

L7 + L3 = 29 + 76 = 105 = 5(1) (21) = 5F_1FQ. 
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F7 + 

F7 + 

F7 + 

F7 + 

F7 + 

F7 + 

F7 + 

F7 + 

F7 + 

F_n = 

^-10 : 

F_9 = 

^-8 = 
F_7 = 

^-6 = 

*-5 = 

F-k = 

F_3 = 

= F7 + F n 

= 13 - 55 • 

F7 

13 

F7 

13 

F7 

13 

F7 

+ F3 = 

- 21 = 

+ F7 = 

- 8 = 

+ F5 = 

- 3 = 

+ F3 = 

Note that we may take mi = %(19 - i) , ni = 7 - n^ = %(£ - 5), for all given 

(B) L7 - L_9 = 29 + 76 = 105 = 5(21) (1) = 5FQF.l$ etc, 

i.e., this yields the same results as part (A), in reverse order. With 
same functions mi and rii as in part (A) 5 we obtain the same identities. 

= 13 + 89 = 102 = 34 - 3 = F3L2 (i = 1, 23); 

= -42 = (-21)(2) = F_8L0 (£ - 2); 

13 + 34 = 47 = 1 °  47 = FYLQ (i = 3, 21); 

-8 = (2)(-4) = (-8)(1) = F3L_3 = F_6Li (i = 4); 

13 + 13 = 26 = 13 • 2 = F7L0 (i = 5, 19); 

5 = 5*1 = F5L1 (i = 6); 

13 + 5 = 18 = 1 • 18 = FxLe (£ = 7, 17); 

10 = 5 • 2 = F5L0 (i = 8); 

+ 2 = 15 = 5 * 3 = F5L2 (i = 9, 15); 

F7 + F_2 = 13 - 1 = 12 = 3 • 4 = JV&3 (i = 10); 

F7 + F-i = F7 + Fl = 13 + 1 = 14 = 2 • 7 = F3L4 (i = 11, 13); 

F7 + F0 = 13 = 13 • 1 = F7L! (£ = 12); 

F7 + F2 = 13 + 1 = 14 = F3Lk (i = 14); 

F7 + £\ = 13 + 3 = 16 = 8 • 2 = i^Lo (̂  = 16); 

F7 + F6 = 13 + 8 = 21 = 21 °  1 = 3 » 7 = F8L! * F ^ (i = 18); 

F7 + F8 = 13 + 21 = 34 = 34 • 1 = FgL]. (i = 20); 

F7 + Fl0 = 13 + 55 = 68 = 34 • 2 = FSL0 (i = 22). 

(D) F7 - F-u = F7 - Fxl = 13 - 89 = -76 = 76(-l) = £9^-2 (i - 1» 23); 

F7 - F_9 = F7 - F9 = 13 - 34 = -21 = (-1) (21) = L.^FQ (i « 3, 21); 

F7 - F_7 = F7 - F7 = 0 = L7F0 (£ = 5, 19); 

F7 - F_5 = F7 - F5 = 13 - 5 = 8 = L3F3 = LXF6 (i - 7, 17); 

F7 - F_3 = F7 - F3 = 13 - 2 = 11 = L5F2 (i = 9, 15); 

F7 - F-i = F7 - Fi = 13 - 1 = 12 = 4 • 3 - L3Fh (£ = 11, 13). 

In this case, m^ = %(19 - i), n^ = %(£ - 5), i = 1, 5, 9, 13, 17, 21; 

^i -%(i - 5), ni =%(19 - £ ) , £ = 3, 7, 11, 15, 19, 23. 

(E) L7 - L _ n = 29 + 199 - 228 = 76 • 3 - L3L.2l 
L7 - L_7 = 29 + 29 - 58 = 29 - 2 - L7L0; 

L7 - L_3 - 29 + 4 - 33 - 11 • 3 - L5Z/2; 

L7 - Lx = 29 - 1 = 28 = 4 * 7 = L3L4; 

L7 - L5 - 29 - 11 - 18 - 1 • 18 - £i£6; 

L7 - L9 - 29 - 76 = -47 - (-1) (47) - L^L%. 

In this case, mj = %(19 - i) , n^ = %(£ - 5). 
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(F) L_7 + L_10 = -29 + 123 = 94 = LQL0; 

L_7 + L_8 = -29 + 47 = 18 = 18 • 1 = L6Ll; 

L_7 + L_6 = -29 + 18 = -11 = ll(-l) = L5L-i; 

L_7 + L.h = -29 + 7 = -22 = (-11)(2) = L_5L0. 

(G) L7 + L_9 = 29 - 76 = -47 = (-1) (47) = L_i£8; 

L7 + L_5 = 29 - 11 = 18 = 1 • 18 = L ^ ; 

L7 + L_! = 29 - 1 = 28 = 4 • 7 = L3L4; 

L7 + L3 = 29 + 4 = 33 = 11 • 3 = L5L2; 

L7 + Lh = 29 + 7 = 36 = 18 • 2 = L6L0; 

L7 + L6 = 29 + 18 = 47 = 47 • 1 = £ 3 ^ ; 

L7 + £7 = 29 + 29 = 58 = 29 • 2 = L7L0; 

L7 + LQ = 29 + 47 = 76 + 76 • 1 = LsLl; 

L7 + Ll0 = 29 + 123 = 152 = 76 • 2 = L3L0; 

L7 + Ln = 29 + 199 = 228 = 76 • 3 = £9L2. 

(H) L7 + F-2 = 29 - 1 = 28 = 4 • 7 = £3^. 

(I) L7 + F0 = 29 + 0 = 29 • 1 = L7Fi. 

(J) L7 + F2 = 29 + 1 = 30 = 5 • 2 • 3 = 5F3^. 

AZso soZved by L. Kuipers and the proposer. 

Count to Five 

H-432 Proposed by Piero Filipponi, Rome, Italy 
(Vol. 27, no. 2, May 1989) 

For k and n nonnegative integers and m a positive integer, let M(k9 n, m) 
denote the arithmetic mean taken over the kth powers of m consecutive Lucas num-
bers of which the smallest is Ln. 

-1 n + m -1 
M(k, n, m) = - T L«. 

m .£?n 3 

For k = 2h (h = 0, 1, 2, 3), find the smallest nontrivial value mh (mh > 1) of 
m for which M(k9 n, rri) is integral for every n. 

Solution by the proposer 

Let 
n + m- 1 

L(ks n, m) = £ L,- -

First, with the aid of Binet forms for Fs and Ls and use of the geometric 
series formula, we obtain the following general expression for L(2t9 0, s + 1) 
(t - 0, 1, . . . ) : 
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where 

d') 
's + 1 if t is even, 

[[1 + (-l)s]/2 if t is odd. 

Then, specializing (1) and (1') to t = 1, 2, and 4, after some simple but 
tedious manipulations involving the use of certain elementary Fibonacci iden-
tities (see V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers), we obtain 

(2) L(l, 0, e + 1) = Ls+2 - 1; 

(3) L(2, 0, 8 + 1) = L2s+l + 2 + (-l)s; 

(4) L(4, 0, s + 1) = Fhs + 2 + 4(-l)sF2s + 1 + 6s + 11; 

(5) L(8, 0, e + 1) = [F8s + Lf + 84*\8 + 2 + 12(-l)s(F6s+3 + 14F2s+1) 

+ 3(70s + 163)]/3, 

respectively. We point out that (2) has been obtained separately. 

Case (i): k = 1 (h = 0) 

From (2) we can write 

(6) 1/(1, n, m) = L(l, 0, n + m) - 1/(1, 0, n) = Ln + m + l - Ln + 1. 

If 777 = 24, using Hoggattfs identities I2i+ an<^ -̂ 32> from (6) we can write 

L(l, n, 24) = 5F12Fn+13 

whence 

(7) M(l, n, 24) = L(l, n, 24)/24 = 30Fn+13 

appears to be integral independently of n. Moreover, it can be readily veri-
fied that 

M(l, 0, 777) is not integral for m = 2, 4-23; 

Af(l, 1, 3) is not integral. 

I t fo l lows t h a t rriQ = 24. 

Case ( i i ) : k = 2 (h = 1) 

From (3) we can write 

(8) L(2, n, 777) = L(2, 0, n + TTZ) - L(2, 0, n) 

- ^ z + 2^-1 - ^2,-1 + (-I)"""-1 - (-1)*"1. 

If 772 = 12, using Hoggattfs identities I2^ and I"32, from (8) we can write 

L(2, n, 12) = 5Fl2F2n+ll, 

whence 

(9) M(2, n, 12) = L(2, n, 12)/12 - 60F2n+ll 

appears to be integral independently of n. Moreover, it can be readily veri-
fied that 
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M(29 0, m) is not integral for m = 2-9, 11; 

M(29 1, 10) is not integral. 

It follows that mi = 12. 

Case (iii): k = 4 (h = 2) 

From (4) we can write 

(10) L(4, ft, tfz) = L(4, 0, ft + /??) - L(4, 0, ft) 

= ^ n + ifm-2+ 4 ( - l ) ^ + " - 1 F 2 n + 2 m _ 1 - 4 ( - l ) ^ 1 F 2 n _ 1 + 6/7Z. 

I f m = 5 , us ing H o g g a t t ' s i d e n t i t i e s i~24> -Z~22> a n (^ -^7' (10) can be r e w r i t t e n a s 

L(4 , n , 5) = F 5 [ L M n + 2 ) L 5 + 4 ( - 1 ) " L 2 ( B + 2 ) ] + 30, 

whence 

(11) M(4, ft, 5) = L(4 , ft, 5 ) / 5 - ^ + 2 ) ^ 5 + 4 ( - l ) n L 2 ( n + 2 ) + 6 
appears to be integral independently of ft. Moreover, it can be readily veri-
fied that 

M(4, 0, m) is not integral for 77? = 2, 3, 4. 

It follows that mi - 5. 

Case (iv): k = 8 (h = 3) 

Letting 

(12) r = 2ft + m - 1 

and omitting the intermediate steps for brevity, from (5) we can write 

(13) L(8, ft, m) = L(8, 0, ft + m) - L(8, 0, ft) 

- [ L i * ^ + 84L2l,F2m - l2(-l)n + m(L3rF3m + 14LPFm) + 210TTZ]/3 
- ^ [ V 2 A + 84L2,L, - 12(-l)n + m (L 3 p F 3 7 7 Z /^ + 1 4 L P ) ] / 3 + 70^. 

L e t t i n g m = 5 i n both (12) and ( 1 3 ) , we have 

L(8 , n , 5) = F 5 [1353L 8 ( n + 2 ) + 92ALh(n+2) + 12 ( - 1 ) " (122L 6 ( n + 2 ) 

+ l « , 2 ( n + 2 ) ) ] / 3 + 350 
= 5 [ 45 1 £ 8 ( „ + 2 ) + 3 0 8 ^ ^ + 2 ) + 4 ( - l ) * ( 1 2 2 L 6 ( n + 2 ) 

+ 14L 2 ( n + 2 ) ] + 350, 
whence 

(14) A?(8, n, 5) = i ( 8 , n, 5 ) / 5 = 451£8(n + 2 ) + S O S L ^ + y 

+ 4 ( - l ) n ( 1 2 2 £ 6 ( n + 2 ) + 14L2(n + 2 ) ) + 70 
appears to be integral independently of ft. Moreover, it can be readily veri-
fied that 

M(8, 0, m) is not integral for m = 2, 3, 4. 

I t fo l lows t h a t 77?3 = 5 . 

AZso solved by P . Bruckman. 

Edi tor ia l Note : A number of r e a d e r s have po in t ed out t h a t H-440 and H-448 a r e 
e s s e n t i a l l y t he same. Sorry about t h a t . 
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