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A NOTE ON BERNOULLI POLYNOMIALS 

Dario Cas te l l anos 
Universidad de Carabobo, Valencia, Venezuela 

(Submitted January 1989) 

1. Some General Remarks 

Consider the function x - [x] - % which is periodic with period 1. In the 
interval [0, 1] this function is simply x - %. 

This function has the property that its integral in the interval [0, 1] is 
zero. Let us, then, with the same idea in mind define another function $2(^)9 
such that its derivative is §\(x) = x - %, and such that its integral in the 
interval [0, 1] is zero: 

§7(x)dx = 0. 
Jo 

Similarly, $gO) = $2(x), and 

J §3(x)dx = 0. 
In general, we seek a sequence of functions §n(x), n - 1, 2, 3, . .., such that 

^l(x) = x - %, <^(x) = ^n_l(x) for n > 1, 
and f\ 

I §n(x)dx = 0 for all n > 1. 
Jo 

The constant multiples of these functions nl$n(x) = Bn(x) are called Bernoulli 
polynomials after their discoverer [2]. They obey the relation 

(1.1) B'n{x) = nBn_l(x), n > 1, BQ(x) = 1. 

The first few Bernoulli polynomials are 

B0(x) = 1, BxOc) = x - 111, B2(x) = x1 - x + 1/6, 

£3(aO = x3 - O/Dx1 + (l/2)ar, 2^(a) = ̂  - 2a;3 + ic2 - 1/30, etc. 

It is clear from their construction that Bn(x) is a polynomial of degree n. 
They are defined in the interval 0 < x < 1. Their periodic continuation outside 
this interval are called Bernoulli functions. 

The constant terms of the Bernoulli polynomials form a particularly inter-
esting set of numbers. We set Bn - Bn(0) . It is obvious from the way the 
polynomials Bn(x) are constructed that all the Bn are rational numbers. It can 
be shown that #2n+l = 0 f° r n - 1» and is alternately positive and negative for 
even n. The Bn are called Bernoulli numbers, and the first few are 

BQ = 1, Bl = -1/2, B2 = 1/6, ̂  = -1/30, 56 = 1/42, 

BQ = -1/30, B1Q = 5/66, B1 2 = -691/2730, Blh = 7/6, etc. 

Bernoulli polynomials and numbers are intimately related to the sum of the 
powers of the natural numbers. 

Bernoulli polynomials possess the following generating function [5, 3], 
CXI 

(1.2) tetx{et - l)"1 = 52Bn(x)tn/nl, 
n= 0 

from which we find, on replacing x by x + 1 and then subtracting (1.2) from the 
resulting expression: 

98 [May 



A NOTE ON BERNOULLI POLYNOMIALS 

(1.3) £ [Bn(x + 1) - Bn(x)]tn/nl = te^. 
n= 0 

Using the Maclaurin expansion on the right-hand side and comparing powers of t, 
we find 

(1.4) Bn(x + 1) - Bn(x) = nxn'l9 n = 2, 3, ... . 

From (1.1) and (1.4) there follows 
rx+ 1 

(1.5) Bn(s)ds = a;*, 

from which we find [4] 

r rk + l 
(1.6) L^ n = Z f 5n(s)Js 

Zc=0 k=0Jk 

r+' ( w g n + i ( p + i ) - g n + i 
5 n ( e ) d s = , n = 2 , 3S 4 , . . . . 

Jo w + 1 
In the next section we will make use of the following property of Bernoulli 

polynomials [8]: 

(1.7) J^OO^OOde = (-1)-1 - ^ ^ B n + III, 
n = 1, 2, 3, .. .; m = 1, 2, 3, ... . 

Formula (1-7) is only apparently unsymmetrical in m and n. The reader can 
convince him- or herself of the symmetry of it by trying the different combina-
tions of even and odd values of m and n. 

2. An Expansion for Products of Bernoulli Polynomials 

We wish to expand a product of two Bernoulli polynomials in series of Ber-
noulli polynomials [7]. It will simplify matters if we use the functions $n(#) 
defined at the beginning of Section 1. We want, then, an expression of the form 

n + m 
(2.1) §n{x)§m(x) = Y,ak$k(x), 

k= 0 
where the $n

fs are, we recall, Bernoulli polynomials divided by nl. 
We will make use of the properties 

(2.2) §n(s)ds = 0 for n > 1, 
j o 

and (1.7), which now appears in the guise 

(2.3) j ®n(s)$m(s)ds = (-Dn"16n + OT, n, m - 1 , 2 , ..., 
•J o 

where the bn
}s are Bernoulli numbers divided by n!. 

Also 

(2.4) 0$„(x) = $^ = *n_i-

Using Leibniz's theorem for the derivative of a product [1], we find from 
(2.1) 

(2.5) D8[*n(x)$m(x)] = £ (nbJ$n(tf)Z?s-^0r) = £ afcZ?a*k(s). 
j=0XtJ/ k=0 

That is, 
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n-t m n + m -s 

(2.6) I>*vfl<*> = E ^ A W = E - K - i W V s + i w . 
k=s k=0 x ^ ; d d 

with the restrictions that n - j > 0 and ??? - s + j > 0, i.e., j < n9 j > s - m. 
Since the sum in (2.5) starts at j = 0 and ends at J = s, we must write (2.6) 
in the form 

min(s, n) n + m-s 

j = max(0, s-m) W k= 0 

We now wish to integrate both sides of (2.7) from x = 0 to x = 1 and to 
apply properties (2.2) and (2.3). To do so, we must separate from the first 
sum in (2.7) the terms corresponding to j = n and to j = s - m, since in both 
of these cases the corresponding index is zero and formula (2.3) does not 
apply. 

This gives 
min(s, n - 1) 

(2.8) ae ~ bn+m_B(-l)»-l E (S.)(-iy, s < m + n - 1. 
j = max(0, s-m + l) ^ ' 

If s - m + n, the first sum in (2.5) will contain only one term and we have 

in + m\ 
(2.9) an + m = ( n )• 

Similarly, ifs = /7? + n - l , then the sum will contain only two terms with non-
zero index, both of which will integrate to zero and we have 

(2.10) an+m_x = 0. 

Expressing these results in terms of ordinary Bernoulli polynomials, we 
find, after dividing as by s!, the expressions 

n + m 
(2.11) Bn(x)Bm(x) = £ 0LkBk(x), 

k= 0 

n\m\Bn + m k • minCfe^-D (_DJ 
(2.12) a, = - n + m (-1)"-! £ 7T ^rrr, fe < n+TTz- 1, 

(2.13) ot̂  + ̂.i = 0, 

(2.14) an+m = 1. 

Equations (2.11)-(2.14) are the desired results. The reader may wish to 
look at reference [6] to see alternate ways of expressing these coefficients. 

Since Bernoulli numbers of odd index greater than one are zero, we see that 
if n and m are of the same parity, then expansion (2.11) will only involve 
Bernoulli polynomials of even index. If n and m are of opposite parity, then 
expansion (2.11) will only involve Bernoulli polynomials of odd index. 

If we define 

(2.15) Sn(v) = f > " , 
k= l 

and make use of (1.6), we can express (2.11) in terms of the Sn
fs: 

n + m+2 
(n + l)(77z + l)Sn(r)SmM = £ kakSk_Av) - (n + 1)5m + lSn(r) 

k= 1 
n + m + 2 

- (m + DBn + lSJr) - Bm + lBn + l + £ a A . 
k= 0 
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Observe now t h a t i n the e q u a t i o n above -Bm+iBn+i c a n c e l s X]^ = n+2a/c^?c5 s i n c e 
t h e s e e x p r e s s i o n s a r e the l e f t - and r i g h t - h a n d s i d e s of (2 .11) wi th x = 0 and n 
and m r e p l a c e d by n + 1 and # 7 + 1 , r e s p e c t i v e l y . 

The e q u a t i o n then t a k e s the form 
n + m + 2 

(2 .16) (n + l)(m + l)Sn(r)Sm(r) = £ kakSk_l(r) - (n + l)Bm+lSn(r) 
k= 2 

- (m + 1)5 .£ ( P ) 5 
v ' n+l mK J 

where the a^!s must now be written 

(n + l)I(m + l)15„ + w + 2.fc *in(k,») (_1)3-

/c < n + m + 1, 

(2.18) an+m + 1 - 0, 

(2.19) % + m + 2 = 1, 

and we have observed that a, = 0. 
Note now that the product of Sn(i>) and Sm{r) will involve Sk(r)'s with odd 

index only if n and m axe of the same parity, and Sk (r) ' s with even index only 
if n and m are of opposite parity. 

3. Some Examples 

(3.1) Sl(r)Sz(r) = fS4(r) + jS2(r), 

(3.2) ^ M S ^ r ) = |s5(r) + \s3{i>), 

(3.3) S2(r)S3(r) = -^56(r) + ^ ^ ( r ) , 

(3.4) 52(r)5^(r) - ̂ S 7(r) + |s5(r) - j^S^r) , 

(3.5) 53(r)55(r) - -j^59(r) +|57(r) - -^55(r), 

(3.6) 53(r)S7(r) = ̂ 5 1 3 (r) + Su(r) - |,S9(iO + j^57(r), 

(3.7) ^ ( r O ^ d O ^ r ) - i s n + lfsgCr) + ^S 7(r) - ^ 5 5 ( r ) . 

Especially appealing are the formulas for powers of the Sk{ri)'s. We obtain, 
for instance, the expressions 

(3.8) S i O ) 2 = S3(r), 

(3.9) S2(r)2 = |s5(r) + ±S3(r), 

(3.10) S3(r)2 = ±S7(r) + ±S5(r), 

(3.11) S\(r)2 = |s9(r) + |s7(2») - -jTjS5(r), 

(3.12) S5(r)2 = J5n(r) + §S9(r) - ̂ 57(p), 
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(3.13) 5 i ( r ) 3 = | s 5 0 ? ) + | s 3 ( r ) , 

(3.14) 5 2 ( r ) 3 = | s 8 ( r ) + ^ S 6 ( r ) + ^ S i ^ r ) , 

(3.15) 5 3 ( r )3 = ^ 5 n ( r ) + § £ 9 ( r ) + j^S7{r), 

Formulas (3.8) through (3.11) have been known for a very long time. For-
mula (3.10) is attributed to Jacobi [9]. 

To the best of our knowledge, the only special case of (2.11) that is known 
is [10] 

(3.16) Bh{x) - Bh = (B2(x) - B2)2, 
and accounts for (3.8). 
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FIBONACCI'S MATHEMATICAL LETTER TO MASTER THEODORUS 

A. F. Horadam 
University of New England, Armidale, Australia 2351 

(Submitted March 1989) 

1. Introduction 

Sometime about 1225 A.D., Fibonacci—or Leonardo of Pisa, as he was known 
until relatively recent times—wrote an interesting, undated mathematical 
letter to Master Theodorus, philosopher at the court of the Holy Roman Emperor, 
Frederick II. The full title of this communication, written in medieval Tuscan 
Latin, is: Epistola suprasoripti Leonardi ad Magistrwn Theodorum phylosophvm 
domini Imperatoris. 

Our knowledge of this epistle comes from the nineteenth-century publication 
of Fibonacci's manuscripts by Boncompagni [1], which is the first printed 
record of his works. Boncompagni*s printing of the Epistola [1, pp. 247-52] 
was prepared from a manuscript in the Biblioteca Ambrosiana di Milano. It has 
never been translated into English, though in 1919 McClenon [8] indicated his 
intention to do so. 

Fibonacci's mathematical writings consist of five works (others having been 
lost). These are: (1) Libev abbaci (1202, revised 1228); (2) Pvaotioa 
geometviae (1220); (3) Flos (1225); (4) Libev quadratorwn (1225), his greatest 
opus; and (5) the letter to Master Theodorus, the shortest of his extant 
writings. This useful letter has been somewhat neglected by historians of 
mathematics, a tendency I would like to see reversed. 

To understand Fibonacci's outstanding contributions to knowledge, it is 
necessary to know something of the age in which he lived and of the mathematics 
that preceded him. Indeed, a study of his writings reminds one of the history 
of pre-medieval mathematics in microcosm. In an age of great commercial change 
and expansion, as well as political and religious struggle, he traveled widely 
throughout the Mediterranean area in pursuit of his business and mathematical 
interests. His writings reflect many sources of influence, principally the 
Greeks in geometry and number theory and the Arabs in algebraic techniques, 
while some of his problems reveal oriental influences emanating from China and 
India. Babylonian and Egyptian ideas are apparent in his calculations. For 
further information on Fibonacci's life and times one may consult, for example, 
Gies & Gies [3], Grimm [4], Herlihy [5], and Horadam [6]. 

In popular estimation, Fibonacci is best known for his introduction to 
Europe of the Hindu-Arabic numerals and, of course, for the set of integers 
associated (in the late nineteenth century) with his name. However, these 
popular images of Fibonacci obscure the consummate mastery he demonstrated in a 
wide range of mathematics. 

2. The Letter to Master Theodorus 

The mathematical contents of the Epistola are rather more speculative and 
recreational than is the material of his two major, earlier works which have an 
emphasis on practical arithmetic and geometry. After some general introduc-
tory remarks directed to Master Theodorus, Fibonacci proceeds to pose, and 
solve, a variety of problems. 
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(a) Problems of Buying Birds 

In the first section of this document, Fibonacci's main subject is the 
"Problem of the 100 birds/' a type of problem of oriental origin which he had 
previously discussed in Liber abbaoi. Heres however, he develops a general 
method for solving indeterminate problems. 

Fibonacci begins by discussing variations of the problem of buying a given 
number of birds (sparrows, turtledoves, and pigeons—let us label them x, y , 
and z—costing 1/3, 1/2, and 2 denarii each, respectively) with a given number 
of denarii, a denarius being a coin unit of currency. Details of the cases may 
be tabulated thus: 

Denarii Birds Solution(s) : x, z/, z 

30 30 9 10 11 
29 29 3 16 10; 12 6 11 
15 15 
16 15 3 6 6 

Regarding the third case, which is insoluble in integers (mathematically, 
we obtain 4j, 5, 5y), Fibonacci remarks: ,f...hoc esse non posse sine fraotione 
avium demonstrabo." 

Next, Fibonacci varies the cost per bird when buying 30 birds of 3 kinds 
with 30 denarii. A bird of each variety now costs 1/3, 2, and 3 denarii re-
spectively. He finds the unique solution to be 21, 4, 5 for the numbers of 
each kind of bird. 

Finally, Fibonacci deals with the purchase with 24 denarii of birds of 4 
kinds (sparrows, turtledoves, pigeons, and partridges) at a specified cost per 
bird, leading to the equations 

x + z/ + 3 + t = 24, 

~x + \y + 2z + 3t = 24, 

for which the two solutions are 10, 6, 4, 4, and 5, 12, 2, 5, for x, y, z9 t , 
respectively. 

Admittedly, these problems become somewhat tedious because of their repeti-
tive nature, but an insight into Fibonacci's mind is revealing. Remember that 
he had no algebraic symbolism to guide him. While his techniques, supplemented 
by tabulated information in the margin, are fairly standard for us in these 
problems, they might not have been easy for him. 

(b) A Geometrical Problem 

Following these algebraic problems, Fibonacci [1 (Vol. 2), p. 249] then 
proposes the geometrical construction of an equilateral pentagon in a given 
isosceles ("equicrural," i.e., equal legs) triangle. [Observe that an equi-
lateral pentagon is only regular if it is also equiangular (108°).] 

This problem in Euclidean geometry will be highlighted, for historical 
reasons, and for variety. Fibonacci states the problem in these words: "De 
compositione pentagon^ equilateri in triangulum equiorurium datum.u 

Our Figure 1 reproduces Fibonacci's diagram and notation. In it, Fibonacci 
takes ab = ac = 10, bo = 12, and draws di> ah, gl perpendicular to the base be. 
The equilateral pentagon is adefg. Taking the side ad of the pentagon as the 
unknown res ("thing")—our x~~— to be determined, and using similar triangles, 
Fibonacci applies Pythagoras' Theorem to the triangle die to obtain 

( 8 - H 2 + (TO*) 2 = *2-
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whence, 
X2 + 36yX = 182y 

(net sic reducta est questio ad unam ex vegulis 
aZgebve," he writes). 

He obtains the approximate value 

x = 4° 27i24ii40iii50iv 

in Babylonian sexagesimal notation. 
>Z. 

i e h f i 
FIGURE 1 

To achieve his solutions Fibonacci, with the visual aid of a geometrical 
diagram involving a square and rectangles, completes the square in the quadra-
tic , i.e.? 

x + li 517 
49 182y + 

then subtracts 18y from the square root of 517̂ -g (which he gives in sexagesimal 
notation as approximately n22 et minuta 44 et secunda 23 et tevtia 13 et quarta 
7," i.e., 22° 44i23ii13iii7iv)9 

According to my computations using a calculators Fibonaccifs sexagesimal 
approximation agrees to six decimal places with my approximation (4-456855). 

Fibonacci?s problem is wrongly stated by some writers, for example, Van der 
Waerden [10, p. 40] and Vogel [11, p. 610], both of whom says "A regular 
pentagon is (to be) inscribed in an equilateral triangle." (How can angles of 
108°  and 60°  be equated?) It is ail the more surprising to have Vogel imme-
diately afterward praise Fibonaccifs treatment as "a model for the early appli-
cation of algebra in geometry11 (a statement with which one cannot, of course, 
disagree). Perhaps the error is due to a mistranslation* 

Loria [7, p. 231], who does give a proper account of the problem, states 
however that x Is the length bd (which may be a misprint). But Fibonacci, 
after saying that he is taking each side of the pentagon to be res, continues 
n...et aufevam ad ex ab3 scilicet rem de 103 vemanebit db 10 minus ren (i.e., 
ab - ad ~ db = 10 - as), i.e., ad = x* 

Cantor [2] gives a correct Interpretation and analysis of the problem. 
(Additionally, he extends Fibonacci's problem by finding the value of x in 
terms of equal sides of length a and base-length b for the general Isosceles 
triangle.) 

(c) Problems on the Distribution of Money 

After this excursion into Euclidean geometry, Fibonacci reverts to money 
problems, in particular the distribution of money among five men-—let us desig-
nate them by xs ys ss u3 v—-according to certain prescribed conditions. 

In effect, we are required to solve the five equations 

x + -y 12, y + -|s 1 
15, z + -ju = IE 4 

u + -?v = 20, v + -TX 23. 

To assist his explanation, Fibonacci arranges some of the information in tabu-
lar form. The answers are: 

721 y 10 218 721 s 
67 

<J 1 < + 7 2 1 » = 15 453 721 v = 2 1 ^ 

However, Fibonacci presents his solutions in the Arabic form, i.e., the 
fractions precede the integer. For example, he gives V as ^ ~~ 21, where the 
fractional part is to be interpreted as 

3 + 88 x 7 
7 x 103 

1991] 105 



FIBONACCI'S MATHEMATICAL LETTER TO MASTER THEODORUS 

(I cannot reconcile my correct answer for x with the printed version of Fibo-
nacci's answer which is not easy to decipher in my enlarged photocopy of the 
microfilmed text.) Fibonacci's argument in his solution indicates that he is 
thinking of the calculations for each man being performed in columns. Apart 
from this technique, his method of solution is the usual mechanical one of 
clearing the given equations of fractions and then adding or subtracting 
successive pairs of equations as appropriate. 

The letter concludes with a variation of this problem. Fibonacci now 
requires the reader to solve the system of five equations: 

x + ~{y + z + u + v) = 12, 

y + -~(z + u + v + x) = 15, 

z + -r(u + v + x + y) = 18, 

u + ~(v + x + y + z) = 20, 

v + T U + y + z + u) =23. 

He does not tell us how he resolves the problem but finishes his correspon-
dence with the comment: "tunc questio esset insolubilis3 nisi, conoederetur3 
primus habere debitum; quod debitum esset ^ 1 3 . " 

His correct, unique solution is, in our notation, 

x = -13-^- u = 3 ^ z = 11-^- u = 15 ̂ Z v = 20^_ 
197 ' " 394* 197' 394' 197 " 

Much computational skill must have been required to achieve this solution. 
What is also important is the fact that Fibonacci was willing to acknowledge a 
negative number as a solution, this negative number being conceived in commer-
cial terms as a debt. He did not, of course, use the minus sign which was 
introduced via mercantile arithmetic in Germany nearly three centuries later 
(also to represent a debt). 

3. Concluding Remarks 

While Fibonacci's letter to Master Theodorus does not reveal the true mag-
nitude of his genius, it does exhibit some of his originality, versatility, and 
wide-ranging expertise, as well as some of his powerful methods. 

He was, indeed, the prt-mum mobile in pioneering the rejuvenation of mathe-
matics in Christian Europe. He absorbed, and independently extended, the 
knowledge of his precursors, demonstrating a particular agility with computa-
tions and manipulations with indeterminate equations of the first and second 
degrees. In his geometrical expositions, he displayed a complete mastery of 
the content and rigor of Euclid's works and, moreover, he applied to problems 
of geometry the new techniques of algebra. 

Unquestionably he was, as competent critics agree, the greatest creator and 
exponent of number theory for over a millennium between the time of Diophantus 
and that of Fermat. 

To measure one's own mathematical ability against that of Fibonacci (born 
about 1175, died about 1240, while Pisa was still a prosperous maritime repub-
lic) , the reader is invited to attempt some of the problems occurring in 
Fibonacci's writings, especially his Liber quadratorum (see Sigler [9]), e.g., 
the last problem in that book'—proposed by Master Theodorus—namely, to solve 
the equations 
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x+y+z+x2=u2, 

x + y + z+x2+y2 = v2, 

x + y + z + x2 + y2 + z2 - w2. 

I conclude t h i s s h o r t t r e a t m e n t of the Epistola w i th a c h a s t e n i n g quote [4] 
from F i b o n a c c i ' s best-known work. Liber abbaci, which e x p r e s s e s a s en t imen t 
r e i t e r a t e d i n the Prologue of Liber quadratorum [9] : 

If I have perchance omitted anything more or less proper or necessary, I beg indul-
gence, since there i s no one who i s blameless and u t t e r l y provident in a l l th ings . 
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Bowling Green State Universi ty, Bowling Green, OH 43403 

(Submitted April 1989) 

The n t h F ibonacc i number Fn and the n t h Lucas number Ln a r e def ined by 

Fi = 1 = F2 and Fn = Fn_l + Fn„2 for n > 3 
and 

Li = 1, L2 = 3 , and Ln = £ n _ i + £ n - 2 f o r n - 3 , 
respectively. Thus, the Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34, 
55, 89, . .., and the Lucas sequence is 1, 3, 4, 7, 11, 18, 29, 47, 76, ... . 
Here we have added two adjacent numbers of a sequence and put the result next 
in the line. 

What happens if we put the result in the middle? 
Given the initial sets Ti = {1} and T2 = {1, 2}, we will get the following 

increasing sequences of T-sets. These sets are multi-sets and the elements are 
ordered. 

T3 = {1, 3, 2}, Th = {1, 4, 3, 5, 2}, T5 - {1, 5, 4, 7, 3, 8, 5, 7, 2}, 
2*6 = {1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2}, 
T7 = {1, 7, 6, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 17, 10, 13, 3, 14, 

11, 19, 8, 21, 13, 18, 5, 17, 12, 19, 7, 16, 9, 11, 2}9 ... 

We show in the following that these multi-sets have some nice and interesting 
properties. 

Proposition 1: Let \Tn\ denote the cardinality of the multi-set Tn. Then \Tn\ = 
2n~2 + 1 for n > 2. 

Proof: Since \Tn\ = 2n~2 + 1 for n = 2, we consider the case n > 2 in the fol-
lowing. We obtain Tn from Tn-i by inserting a new number in between every pair 
of consecutive members of Tn_i which is their sum. If |^n-i| = m, then there 
are m - 1 gaps. In each of these gaps a new number will be inserted to form 
Tn. Thus, 

\Tn\ = m + m - 1 = 2m - 1 = 2|27w_1| - 1. 
We have |T3| =3, 12\ | = 5, and \T$\ = 9. Looking at these numbers we conjecture 
that \Tn\ = 2n~2 + 1 for n > 2. Our conjecture is true for n = 3, 4, and 5. 
Suppose it is true for n = k. Then |^| = 2k~z + 1. Since |!Tfc + 1| = 2|Tfe| - 1, 

|Tk+1| = 2(2k~2 + 1) - 1 - 2k~l + 1 = 2(fe + 1)~2 + 1. 

Thus, assuming the truth of the conjecture for n = k, we proved the truth of 
the conjecture for n = k + 1. Hence, by mathematical induction, our conjecture 
is true for all integers n > 2. 
Proposition 2: The largest number present in the multi-set Tn Is Fn+1. Further-
more, Tn contains all the Fibonacci numbers up to Fn+i. 
Proof: Since we have only F2 and F3 in T2, they will be separated by F2 + F3 = 
£\ in T3 and we shall have F2, F4, F3 in T3 with F^ as the largest number and 
F3 as the second largest number. Then, in T^9 F4 and F3 will be separated by 
Fh + F3 = F5 and we shall have £\, F5, F3 in T4 with F5 as the largest number 
and Fi+» the second largest. By induction, we shall have Fn» Fn + i or F„+1, F̂  
as consecutive members in Tn. Thus, the largest number present in Tn will be 
Fn+l-
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S i n c e Tx C T2 C T3 C . . . c Tn, ^ n c o n t a i n s a l l o f t h e F i b o n a c c i n u m b e r s up 
to Fn+l. 
Proposition 3: The mul t i - se t Tn, n > 3 contains a l l of the Lucas numbers up to 
Ln-1° 

Proof: The multi-set T3 contains two consecutive members 1 and 3 which are L^ 
and L2. Then 2\ will contain Lls L]_ + L2s L2s i.e., Ll5 L3s L2 as consecutive 
members „ T5 will contain L3, P3 + L2, L2, i.e., L3, P^, L2 as consecutive mem-
bers, Thus, by induction, the highest Lucas number present in Tn will be Pn_i» 

Since Tj_ C T2 c . . . c Tn, Tn will contain all Lucas numbers up to £„_]_. 
Proposition 4: Any two consecutive members in Tn, n > 1, are relatively prime. 

Proof: The proposition is true for n = 2. Suppose it is true for Tn_i, i.e., 
(a, 2?) == 1 for every pair of consecutive members a and b in Tn„i. Let x and z/ 
be two consecutive members in Tn. Then, either x ~ y and z/ (if x > y) or x and 
y - x (If y > x) are consecutive members in Tn_]_. By assumption, if # - zy and 
z/ are consecutive, then (# - 2/, y) = 1. Hence, (#, 2/) = 1. Similarly, if (x, 
y - x) = 1, then (#, z/) = 1. By mathematical induction, the proposition holds 
for all n. 

Proposition 5: The second element of Tn is n and the last but one element of Tn 
is In - 3. 
Proof: The result follows by mathematical induction. 

Proposition 6: The numbers 1, 2, 3, 4, and 6 appear once and only once in every 
Tn, n > 6 as follows: 

(i) The number 1 appears in the first place and 1, n9 n - 1 are consecutive 
members in Tn. 

(ii) The number 2 appears in the (2n~2 + l)th place and In - 5, In - 33 2 are 
consecutive members in Tn. 

(iii) The number 3 appears in the (2n~3 + l)th place and 3n - 8* 3, 3n - 7 are 
consecutive members in Tn. 

(iv) The number 4 appears in the (2n_i+ + l)th place and 4n - 15, 59 4n - 13 
are consecutive members in Tn. 

Proof: Follows by induction. 

Theorem 1: For 3 < m < n5 the multiplicity of m in multi-set Tn is \§(rri) * 
where <J> is Eulerfs function. 

cj)(n) is the number of numbers less than n and relatively prime ton. We 
clearly have <j)(P) = P - 1 for a prime P. When n is composite with prime factor-
ization n = fl^= iP- i s then 

Proof: To get an m in Tn, a pair (a, &) totalling m should appear in Tn_i as 
consecutive members. Since any two consecutive members in Tn„\ are relatively 
prime (Proposition 4), the pair (a, b) must be relatively prime. So we need to 
know the number of pairs (a, b) with (a, b) = 1 and a + b = m» Consider 
m = a + b with (as b) = 1. Then, clearly, (a9 m) = 1 = (2?, w) . Since there 
are §(rri) numbers less than m and relatively prime to m, we can chose "a" in 
<fy(m) ways. Once !la!f is chosen, b = m - a is fixed. Since the pairs (a, £>) and 
(Z?, a) give the same total, we have \§(m) pairs (a, b) satisfying (a9 b) = 1 
and (a + 2?) = m. Clearly (1, 777 - 1) is one of the \§(m) pairs, and this pair 
appears for the first time (and for the last as well) as consecutive members in 
Tm-\. This pair will yield an m in Tm. Thus, we are guaranteed an appearance 
of m in Tm. 
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A natural question is: How many times does m occur in Tm^ Since m has %(j)(w) 
pairs (a, b) , m can appear at most \§{m) times in Tm. We prove below that m 
occurs exactly \§{jn) times in Tm, 

Consider a relatively prime pair {a, m - a) with a < m - a, a * 1. Does it 
belong to Tn for some nl Since (a, m - a) = 1, the g.c.d. of "a" and "m - a" is 
1- Then, by Euclid's g.c.d. algorithm, we have: 

a \m - ai q\ \m - a/ 

(l \ a ( 
JYlff2^ 

<72 

Y2 \ Tl / 13 
]Y2?3^ 

Y 3 \ Y2 Kh 

Yif .m 

Y t - ] 

' ) • 
1 = 

Yt-2 / qt 
u-iqt{ 

Yt-1 

0 

Thus, whenever (a, m -a) = 1, we have the last nonzero remainder yt = 1, with 
the last quotient Yt-1* It is clear that ŷ  (i * t) > 1. 

From the algorithm, we obtain: 

7?7 - a - Yi = #<7i 
a - Y 2 = Yi<?2 
Yl " Y3 = Y2̂ 73 

Yt-2 - Yt = Yt-l^t 
Yt-1 = YtYt-l» where yt - 1 and y^ > I for 1 < i < t . 

Adding, we obtain: 

m - yt = aqi + Yi<?2 + Y2<?3 + ••• + Yt-l<7t + Yt-1 
or m - 1 > qx + q2 + q3 + ... + qt + Yt-l-

If we start with two consecutive members, a, m - a or m - a, a, and proceed 
backward, we reach the consecutive pair (1, Yt-l) after qi + q2+ •• • + <?t steps. 

Conversely, if we start with two consecutive members, 1, Yt-l> w e reach a 
consecutive member, a, m - a or 77? - a, a, after c^ + • • - +C73 + q2 +<7i steps. 

Since 1, Yt-i a r e consecutive in the Tlt_1-set9 and nowhere else, the pair 
(a, m - a) appears as consecutive members in Tq1 +q2 + •• • + qt + Y*-I-

Since ^j + 072+•••+Yt-1 < w - 1» the pair (a, 777 - a) or (777 - a, a) appears 
as consecutive members in ^ , £ < 77? - 1. Thus, every pair (a, 77? - a) with 
(a, 77?) = 1, excepting (I, m - 1), appears as consecutive members in some T^ , 
£ < 777 - 1 and the pair (1, 777 - 1) appears as consecutive in Tm. Hence, for 3 < 
m < n, the multiplicity of m in multi-set Tn is \§{rn) . We shall see that, 
excepting the pair (1, 777 - 1), other pairs appear in T^, where i < [ (m + 3)/2]. 
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Theorem 2: Every r e l a t i v e l y prime p a i r ( a , 777 - a) , a * -1 , a < m - a appea r s i n 
Ti where i < [ (m + l ) / 2 ] , we have i = (/?? + l ) / 2 i n case 77? i s odd. 

Proof: We have 77? - 1 = aq\ + Yi<?2 + Y2^3 + ••• + Y t - l ? t + Y t - l > w h e r e 

a > Y I > Y2 > Y3 > 8 " > Y t - 1 > Yt = 1 » 
and each ^ > 1. If Yt-1 = s> then m - I > s(q\ + qz + $3 + ''' + <7t + 1)> s o 

777 - 1 
> q1 + q2 + q3 + ... + qt + 1 

+ s - 1 > qi + (72 + <73 + ' • • + <7* + s 

<7l + <?2 + <?3 + • • .• + <7t + s ^ [^— + s - l] , 

where [x] stands for the greatest integer < x. The pair (a 9 m - a) appears in 
the (q± +q2 + • • • +<7t + s)t h multi-set. Hence, every pair (a, m - a) of the 
required type terminating in 1 and s in the g.c.d. algorithm is present as 
consecutive members in the multi-set T^9 where i < [(77? - 1)/s + (s - 1)]. For 
s = 2, 

I f 772 i s 

For s * 

ho lds 

FT-1 • • - ' ] - P 4 - 1 • ' 
odd and s = 2 , then 

[a ia+. .1] . f i f l . 
2 5 t h e i n e q u a l i t y 

777 - 1 , - ^ 772 + 1 

<=> 2(777 - 1 + S 2 - s ) < S772 + S 

«*>2s2 - 3 s - 2 < 772(s - 2) «* i 

>̂772 > 2 s + 1 , 

^ 2s 2 - 3s - 2 ,. „ 
m a F ^ 1 , a * 2, 

which is true because m - a > a > s => 77? > 2s, i.e., TTZ > 2s + 1. Now, the above 
inequality yields 

^ • • - • I ' m 
Again, when 772 is odd, s = (772 - l)/2 is an integer and 

I'm - 1 . „ -1 fo . ̂  " 11 f^ + 11 m + 1 

L"T" + s - l\ = L2 + -2-J = hri = - 2 — 
Thus, the bound (772 + l)/2 is attainable when 772 is odd and s = (77? - l)/2. For 
example, for 772 = 43, consider the pairs (2, 41) and (21, 22). Both appear in 
^22- l n the first case, s = 2; in the second case, s = 21 = ( 4 3 - l)/2. Hence 
every relatively prime pair (a, 772 - a ) , a * 1, a < m - a appears in T^9 where 
i < [(772 + l)/2]. 

From the above discussion, it is clear that i. is much less than [(772 + l)/2] 
when 772 is even. For 772 = 90, we have: 

(1, 89) in TQ3; (7, 83) and (13, 77) in Tl8; (23, 67) and (43, 47) in 
Tl5; (11, 79),. (29, 61), (31, 59), and (41, 49) in Tlk; (17, 73), 
(19, 71), and (37, 53) in Tlla Thus, excepting (1, 89), all other 
pairs appear as consecutive members in T^9 i < 18. This is much less 
than [(772 + l)/2] = 45. 
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We discuss below the appearance of certain special pairs as consecutive 
members in the multi-sets. 

(a) 

(b) 

(c) 

The pair (1, a) is always relatively prime 
secutive members in Ta. 
The pair (a + 1, a) is always relatively prime 

This pair appears as con-

whether a is odd or 
even. This pair appears as consecutive member in Ta + i> For example, 
4 and 5 appear as consecutive members in T$, 9 and 10 in TIQ. 
The pair (2m - 1, 2) is always relatively prime. This pair appears as 
consecutive members in Tm+i, [m + 1 = (2 + 2m - 1 + l)/2]. For ex-
ample, 5 and 2 in T^, 13 and 2 in ̂ (2+13+l)/2 = ̂ 8* 

(d) The pair (a, a + 2) is relatively prime if a is odd. We need 1 + 
(a - l)/2 steps to reach this pair if we start from the consecutive 
members 1, 2. Therefore, the pair (a, a + 2) appears as consecutive 
members in ^ [ i +(a - u/2] + 2 = ^(a + 5)/2- F o r example, the pair 9 and 11 
appear as consecutive members in T(g+^/2 = ^l* 

We use the above facts in the examples given in Table 1. 

TABLE 1 

Relatively Prime 
Pairs for a 
Total m 

The Number of the T-Set 
Where the Pair Appears 

The Number of the 
T-Set Where m 

Appears Separating 
This Pair 

20 1, 19 
3, 17 
7, 13 
9, 11 

19 by (a) 
5 + 3 by (b) = 8 
1 + 7 by (b) = 8 
1 + 6 by (c) = 7 

20 
9 
9 

33 19 
31 

4, 29 
5, 28 
7, 26 
8, 25 
10, 
13, 

23 
20 

14, 19 
16. 17 

32 by (a) 
17 by 
7 + 4 
5 + 1 

5 
+ 8 
+ 3 
+ 1 
+ 2 

(c) 
by (a) 11 
+ 3 by (b) or 
by (d) 
by (a) 
+ 3 by 

= 8 or 
= 1 
(a) = ! 

+ 7 by (b) or 
+ 5 by (b) or 

by (d) = 9 
+ 4 by (c) 

+ 1 
+ 1 

+ 6 
+ 4 

+ 16 by (a) = 17 

(a) 
(a) 

= 9 

33 
18 
12 
10 
9 
12 
9 
10 
9 
18 

40 1, 39 
3, 37 
7, 33 
9, 
11, 
13, 
17. 

31 
29 
27 
23 

19, 21 

39 by (a) 
12 + 3 by (a) = 15 
4 + 5 by (d) = 9 

2 + 4 by (a) = 9 
1 + 1 + 4 by (b) = 8 

2 + 13 by (a) = 15 
1 + 2 + 6 by (b) or 1 + 2 + 1 + 5 

9 + 2 by (a) or 1 + 11 by (cO 

3 + 
2 + 

1 + 
by (a) 
- 12 

= 9 

40 
16 
10 
10 
9 
16 
10 
13 

42 1, 41 
5, 37 
11, 31 
13, 29 
17, 25 
19, 23 

41 by (a) 
7 + 4 by (c) 
2 + 7 by (a) 
2 + 4 + 3 by 
1 + 2 + 8 by 
1 + 4 + 4 by 

= 11 
= 9 
(a) = 9 
(a) = 11 
(b) = 9 

42 
12 
10 
10 
12 
10 

By Propositions 1 and 2, Tn (n > 2) has 2n 2 + 1 members with the highest 
number Fn+l. We have 

2^-2 + i = Fn+1 f o r n = 2, 3, 4 
and 

in-2 + 1 > Fn+l for n > 4. 
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So, for- n > 4j, the multi-set Tn has more elements than the highest number 
present. Does it contain all numbers 1, 2S 3, 4, ... up to Fn+l7 We see that 
T5 omits 6, T7 omits 20, and TQ omits 28, 32, and 33. For 6 we have only one 
relatively prime pair (1, 5). This pair appears as consecutive members in Ts. 
So 6 will appear for the first time in T6. From Table 1, we see that the 
relatively prime pair (9, 11) for 20 appears as consecutive members in T7 and 
other pairs appear later. Therefore, 20 will appear for the first time in TQ. 
Again, the relatively prime pairs (7, 26), (10, 23), and (14, 19) for 33 appear 
as consecutive members in ^3 (see Table 1). Therefore, 33 will appear for the 
first time in T^ and will appear thrice. Thus, given an integer 777, we can 
always find the T^ where m appears for the first time, and given two integers m 
and i , we can always say whether 777 appears in T^. But, for given i, we do not 
see how we can tell all the numbers which the multi-set T^ omits unless we 
construct T^ recursively, and this is a horrible task for large "i." 

We conclude this paper with the following problem. 

Problem 1: Given a positive integer i, find all numbers m that Tt omits with-
out constructing T^ . 
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The study of identities and congruences involving binomial coefficients has 
a long history, not only because of the intrinsic beauty and apparent simpli-
city of many of the results, but also because applications for these abound in 
many fields, both inside and outside mathematics. The impetus for the present 
study came from work on classifying spaces in algebraic topology [3], where one 
needed to know how the 2-divisibility of \ ^ ) - (•£) depends on n, a, and b. 

The basic question we would like to address is this: For a given prime p, 
and natural numbers a, b, a ^ b > 1, what is the p-divisibility of the differ-
ence 

(a + x\ _ /a\ 
\ b ) \b) 

and how does it depend on the p-divisibility of xl For any integer k, let 
Vp(k) denote the exponent of the highest power of p dividing ks and Vp(k/n) -
VyW) "" Vp (n) ' We wish to consider 

/ " > = • - ( ( * ; • ) • ( ; ) ) • 

where x is any natural number. Now 

Fix) = (a +
b
X) 

is a polynomial in x with F'(0) * 0, so it is elementary that, for Vp(x) large 
(i.e., x near 0 in the p-adic metric), 

f{x) - vp(F(x) - F(0)) = vp(x) + vp(F'(0)). 

In other words, / "stabilizes" for Vp(x) sufficiently large. The aims of this 
note are threefold. First to determine exactly how large is sufficiently 
large, second to examine the behavior of / both in and near this range, and 
third to understand how the behavior of / is related to the divisibilities of 
(a'l)

x) and (fy m These three divisibilities are intimately connected by the fact 
that 

Vp(y ± z) > mln{Vp(y), vv{z)}, 
with equality holding for p = 2 precisely when V2(y) * V2(z) > This creates 
some surprising phenomena when p = 2. The most striking is that while con-
stancy of V2 (?tX) f° r vl(x^ large is necessary in order for f to exhibit sta-
bility, the latter always occurs before, not after, the former. One of our 
main aims is to understand the phenomena underlying this curious fact. Our 
Conclusion summarizes why this occurs. 

Complete results will be given for p = 2, and some partial results will be 
obtained for odd primes, where the situation is much more complicated. 
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1. Preliminaries 

First we look at [a^x) and its p-divisibility. The basic result on divisi-
bility is due to Kuimner [4, pp. 115-16; 1, p. 270]: If a = £ a ^ and b = Y.b-tP1 

are the base p expansions of a and b (here, of course, ai9 b^ e [0, p)), then 
Vp {j^j , the p-divisibility of (g) , is the number of borrows in the base p sub-
traction a - b. A good general reference is [5]. Some related results can be 
found in [2]. Therefore, 

Vp{a b X) = Vp{b) for VP^ l a r§e> 
and we wish to quantify "large." 

Definition 1: M{a9 b9 p) is the smallest integer M such that 

Vp I i ) = vP\h) w n e n e v e r vp(x) - M. 

For any integer n9 let rii be the residue of n modulo p£. From Kummerfs 
theorem, it is clear that M is nothing other than min{£|a£ > b}. Let 

S = {a, a - 1, — , a - b + 1} 

be the set of integers in the "numerator" of (̂) . Let sl5 s2' •••» Sfr D e t n e 

elements of S arranged in order of decreasing p-divisibility, and let d^ = 
Vp(si). So d\ is the highest divisibility occurring in S9 etc. Note that the 
di are not necessarily distinct. Our first lemma relates M to d\. 

Lemma 2: vpl h ) = Vpi-u) whenever vp (x) >M9 where M = min{£|a£ > b} = d\ + 1. 

Proof: Everything was done above, except the equality M = d\ + 1. We show this 
by manipulating the base p expansion of a. Since ~dM ^b9 aM can never be re-
duced to zero by subtracting something in the interval [0, b), so no element of 
S is congruent to 0 mod pM. Hence, d\ < M - 1. To see that d\ > M - 1, note 
that dM-i < b9 and so there is an element of S which is zero mod pM~l. Thus, 
dl > M - 1. D 

We now turn our attention to f(x). 

Definition 3: N(a9 b9 p) is the smallest integer N such that 

f(x) = Vp{x) + vp(FT(0)) whenever Vp(x) > N. 

Since the equality 

(a + x\ (a\ 
vp\ b ) = vAb) 

of Lemma 1 is clearly necessary for this stabilizing of /, one might expect that 
N > M. It is therefore surprising that, on the contrary, we will show that 
exactly the opposite occurs for p = 2, and that, for odd primes, M and N are 
more or less independent. The first step in computing N is to bound it from 
above. That is one purpose of the next section. 

2. A Formula for f and a bound on N(q, b, p) 

We start with the degree b polynomial 

*(*) -FW = (a+
b

x)-Q-
Note that f(x) = Vp(F(x) - F(0)). Let S be as before and S"1 = {l/s\seS}. For 
any set of integers A let o^{A) denote the ith-elementary symmetric function on 
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the elements of A and abbreviate ok(S l) by ok. Then expanding F(x) - F(0), we 
obtain 

F(x) - F(0) = ± £ ob_k{S)xK = (?) ^ ok{S~^)xk = x(l)J:okx^K 
U' k = 1 SU/ k = 1 X^7£: = 1 

Clearly, for Vp(x) large, Vp applied to the final sum leaves only Vp{o\) . This 
shows that / stabilizes as claimed, and gives our first formula for it. 

Theorem 4: f(x) = vp(x) + ^p(?) + v-p(oi) for vP(x) > N. 

Our main interest is in what determines 21/, and in the curious way that this 
is related to ̂ p(a^) in and near the stable range when p = 2. Now to obtain a 
bound for N from the above, we need only determine how large Vp(x) need be to 
ensure that 

/ b \ 
VP( H°kxk l) = M ^ i ) . 

\k= 1 / 

Theorem 5: N(a9 b9 p) < vp(oi) + d\ + d2 + 1. Proof: We will show that Vp(ak) + vp(x)(k - 1) > yp(o*i ) for k > 2, as long as 
tfp(tf) > UpCo^) + di + d2. 

Note that 

. . • i = 1 ' 

We then have 

vp(ok) + vp(x)(k - 1) > - £ ^ + (fc - l)(vp(oi) + dl + d2) 
i= I k • 

= vp(oi) + (k - 2)vp(ol) + (k - 2)(dl + d2) - E di 
k i==3 

= Vp(oi) + (fc - 2)(z;p(a1) + ^i) + E (̂ 2 ~ ^ ) 
i = 3 

* yp(ai). D 

3. At the Prime 2 

Henceforth, let p = 2 and let y stand for v2. In this section we will sim-
plify our formula for / in the stable range, show that N = d2 + 1, and give a 
formula for N that is easily computed from a and b. This formula shows that N 
is almost determined by bo 

We begin by obtaining more information about the behavior of V \ ^j . 

Lemma 6: The following facts express how the relationship between v (^^x) and 
V [%) changes as v(x) varies in relation to d2, d\9 and Mi 

a. di > d2, 

b. v(^ * xy= v(x) + v(?} - di when d2 < v{x) < M - 1 = dx, 

c. yf , j > y(^) when v(x) = M - 1 = d\9 

d. y(a + X\ = v Q when t;(x) > M = <2X + 1. 

Notice that Lemma 6 shows that V (aJ/ increases predictably for tf2 < #(#) < d\9 
jumps sharply up when v(x) = d\9 and then drops to constancy for v(x) > d\. 
Later, we will compare this behavior with that of f(x), 

Proof: We note first that d\ > d2, since between any two integers exactly divi-
sible by 23 lies one divisible by 2J+*» For parts (b) and (c), we note that 
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V{a b X) ~ v{b) = v^Sl + x>} ~ v<^s^ + 2 v(si + -#) ~ yOi) -
Since v(x) > d2, we have v(s^ + x) = v(si) for all i > 1, so the sum evaporates. 
Then, if v(x) = d\9 we have v(si + s) > f(si), so the result is positive, while 
if v(x) < d\, then v(s\ + x) = v(x)9 producing the result v(x) - d\, as claimed. 
Part (d), which completes our description of the behavior of v(atx) , is merely 
a restatement of Lemma 2. • 

Now we can also strengthen our theorems about f and N, since we can actual-
ly compute v(oi). 

Corollary 7: f(x) = v(x) + v (g) - d\ for v(x) > N, and N < d2 + 1 < d\ + 1 = M. 

Proof: From Lemma 6, we know that d\ > d2. Hence, v(oi) = -d\ and the result 

follows, n 
This verifies that N < M, i.e., f(x) stabilized before V \ bj becomes con-

stant . 
Next, we complete our determination of N with 

Theorem 8: N = d2 + 1- Moreover f(x) > v{x) + v (£) - d\ whenever v(x) = N - 1 
= d2. 
Proof: In view of Corollary 7, we need only show that 

f{x) > d2 + v(i ) - d\ if v{x) = d2* 

Since 
v{b) > d* + "(?) - dx 

from Lemma 6, this will follow if we also show that 

Recalling that v(x) = d2 < d\, we have 

v(a tX) - v(T) = v(Sl + a:) - i7(Sl) + L (t>(e* + a?) - v(e^) 

= d2 - d\ + X! OO^ + x) - y(ŝ )) 

> d2 - di> 
the last inequality holding, since each term in the sum if nonnegative, and at 
least one [with v(s2) = d2] is positive. D 

We will now provide a formula for N more convenient for calculation. Let 

k = k(b) = [iog2(i)]f 

the greatest integer in log2(b). Recall that, for any integer n, nl denotes 
the residue of n modulo 2l. Let 

k if afc ̂  Z?fc, 

k + 1 if ak < bk. 
Clearly, g is easy to compute from a and bs and it is almost determined by b. 

Lemma 9: N = d2 + 1 = g. 

Proof: We need only show that g - d2 -t I. First we show that g > d2 + 1. Since 
[log2(b)] = k, we have b € [2k, 2k + 1 ) . Since S is a sequence of Z? consecutive 
integers, S must contain exactly one or two multiples of 2k. If only one, it 

g(a, b) 
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is the element of highest two-divisibility d\ in S, so d2 < k; hence d2 + 1 ̂  k 
< g. If there are two, one is an even multiple of 2k , of highest divisibility, 
the other is an odd multiple of 2k. Hence, d2 - k. Thus, we need to show that 
whenever g_= k (rather than k + 1), ̂ has only one multiple of 2k. But g = k 
only when bk < ak . We write b = 2k + bk, a = $2k + ak, with 0 < bk < ak < 2k. 
Then 

(3 - 1)2^ < a - b < $2k < a < (3 + l)2fe, 

so S has only one multiple of 2k. 
To show that g < d2 + 1> note that, since Z? e [2k, 2 k + 1 ) , there must be at 

least two multiples of 2k~l in S. Thus, d2 > k - 1, or d2 + 1 £ k. So we are 
done If g = k. If g = k + I, then we need d2 to be at least k. So we need two 
multiples of 2k in S. We write a and 2? as before, but now ak < bk < 2k, so we 
have _ 

a - 2> = (3 - l)2k + (ak - bk) < (3 - 1)2* < 32* < a, 

and we have exhibited two multiples of 2^ in 5. Q 

4. Conclusions 

Our results for p = 2 provide a complete picture of the relationship among 

„e),„(«n. "•</<*> = » ( m - o ) 
in the stable range. There are three possibilities: 

_e, x .-,1 . la + x\ . . (a + x\ (a\ fix) will equal v{ b J if v[ h J < V^J; 

fix) will equal v(%) if v{£) < V (U J * ) ; 

/(#) will exceed both of the above if they are equal. 

We see that all three possibilities actually occur, in the order stated, as 
vix) increases through the stable range. This trio and order of behaviors is, 
in fact, the only way fix) can possibly achieve the formula 

vix) + vg) - dY 

in a range that srarts earlier (at N = d2 + 1 = g) than the constancy of v \ b
x) 

(at M = dl + 1). 
For odd primes, the situation can be quite different. We illustrate the 

situation in the case of b = 2. Then 

Fix) - FiO) = (a ^ X) ~ (2) = *(* + 2a - l)/2. 

Let .j be a positive integer. 
First, choose a = pj. From Lemma 2, we have M = d̂  + 1 = j + 1, and since 

Vp(oi) = -J and d^ = 0, Theorem 5 says that N < 1. Since 

F(a0 - FiO) = a: (a: + 2pJ - l)/2, 

we have that N is indeed 1. So, as above, N < M and # = [logp(Z?)] + 1. 
Next, choose a = ipj + I)12. Here the situation is radically different. 

Since p is odd, d\ = d2 = 0, but 2a - 1 = p*7, so fp(ai) = J, and Theorem 5 says 
that N < j + 1. From 

F(a?) - FiO) = xix + p^')/2, 

we see that N = j + 1. But M = <£]_ + 1 = 1. 
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There are patterns however, and the reader is invited to discover them0 
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The binary number system lends itself to unrestricted ordered partitions, 
as indicated in Table 1. 

TABLE 1. The Binary Case 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Binary 
Representation 

1 
10 
11 
100 
101 
110 
111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 
10000 

k 

1 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
5 

Associated 
Partition of k 

1 
2 
11 
3 
21 
12 
111 
4 
31 
22 
211 
13 
121 
112 
1111 

8 

Note that the partitions of k = 4, ranging from 4 to 1111, are in one-to-one 
correspondence with the integers from 8 to 15, for a total of 8 partitions. 
Similarly, there are 16 partitions of 5, 32 of 6, and generally, 2 k _ 1 

partitions of k. These are in one-to one correspondence with the binary 
representations of length k. 

It is well known (Zeckendorf [1]) that the Fibonacci numbers 

Fl = 1, F2 = 1, F3 = 2, Ft, = 3, F5 = 5, F6 = 8, F7 = 13, ... 

serve as a basis for another zero-one number system, depending on unique sums 
of nonconsecutive Fibonacci numbers. These sums are often called Zeckendorf 
representations (see Table 2) . The partitions of k that appear in this scheme 
are those in which only the last term can equal 1; that is, 

k = Vi + i>2 + ••• + ?j * where r^ > 2 for i < j and rj > 1. 
Table 2 suggests that, for any k* the number of partitions in which 1 is 

allowed only in the last place is the Fibonacci number F% (e.g., 34 - 21 = 13 
partitions of 7, ranging from 7 to 2221). This is nothing new, since the 
number of zero-one sequences of length k beginning with 1 and having no two 
consecutive l?s is well known to be F^. It is less well known that these zero-
one sequences correspond to partitions. 
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n 

1 
2 
3 
4 
5 
6 
7 
8 

21 
22 
23 
24 
25 

32 
33 
34 

TABLE 2, 

Zeckendorf 
Representation 

1 
2 
3 

3 + 1 
5 

5 + 1 
5 + 2 
8 

21 
21 + 1 
21 + 2 
21 + 3 
2 1 + 3 + 1 

2 1 + 8 + 3 
2 1 + 8 + 3 + 1 

34 

. The Zeckendorf 

Zero-One 
Representation 

1 
10 
100 
101 
1000 
1001 
1010 
10000 

1000000 
1000001 
1000010 
1000100 
10O0101 

1010100 
1010101 
10000000 

Case 

k 

1 
2 
3 
3 
4 
4 
4 
5 

7 
7 
7 
7 
7 

7 
7 
8 

Associated 
Partition of k 

1 
2 
3 
21 
4 
31 
22 
5 

7 
61 
52 
43 
421 

223 
2221 

8 

Here is a summary of the observations from Tables 1 and 2. The first-order 
recurrence sequence 1, 2, 4, 8, ... serves as a basis for unrestricted parti-
tions, and the second-order recurrence sequence 1, 2, 3, 5, 8, ... serves as a 
basis for somewhat restricted partitions. 

The purpose of this article is to extend these results to higher-order 
sequences, their zero-one number systems, and associated partitions. To this 
end, and for the remainder of the article, let m be an arbitrary fixed integer 
greater than 2. 

Define a sequence {s^} inductively as follows: 

Si = 1 for i = 1, 2, ...,77?, 

Si = si-i + Si-m for i = m + 1, m + 2, ... . 

Theorem 1: Every positive integer n is uniquely a sum 
si + si + ''' + si * where i t - iu > m whenever t > u. 

Proof: The first m positive integers are one-term sums. Suppose, for h> m + 1, 
that the statement of the theorem holds for all n < h - 1. Let ii be the great-
est i for which s^ < h. If h - s^ = 0, then the required sum is six itself. 

Otherwise, h - Six is, by the induction hypothesis, uniquely a sum si + ... 
+ si of the required sort, so that 

(1) 
Suppose 

h = 

M " 
h > 

SH 
~ i>2 

Sh 

+ 

< 

+ 

^2 

m -

s i i 

+ 

1. 

> 

... + 8iy 

Then 

Hx
 + si Ul - 772+1 b i l + 1> 

contrary to our choice of i\ as the greatest i for which h > Si* 
Therefore, the sum in (1) has it - iu - m whenever t > u, and this sum is 

clearly unique with respect to this property. By the principle of mathematical 
induction, the proof of the theorem is finished. 
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Theorem 1 shows that the sequence {s^} serves as a basis for a "skip m - % 
number system" analogous to the Zeckendorf, or Fibonacci, number system. The 
latter could be called the "skip 1 number system." 

Examples: In the skip 1 system: 

31 = 21 + 8 + 2 = 1010010 
32 = 21 + 8 + 3 = 1010100 
33 = 2 1 + 8 + 3 + 1 = 1010101 
34 = 34 = 1000000 

In the skip 2 system: 

57 = 41 + 13 + 3 = 1001000100 
58 = 41 + 13 + 4 = 1001001000 
59 = 41 + 13 + 4 + 1 = 1001001001 
60 = 60 = 10000000000 

We turn now to partitions. For a quick glimpse of what is coming, notice 
that the zero-one representations for 57, 58, and 59, just above, lend themselves 
naturally to the partitions 343, 334, and 3331 of the integer 10. 

In general, in the m - 1 system, for a given positive integer k9 the digit 
one occurs at and only at places ils i2, •••» ty, where k = Si + Si + ... + 
Si , and each pair of ones are separated by at least m - 1 zeros; therefore, to 
each k there is a unique ordered y-tuple of integers v^ defined by 

(rl = ix , if V ~ 1, 
(2) \vu = iu - iu+i for u = l9 2, . . . , v - l , ±fv>l and s^ ^ m, 

< m - 1. 

We summarize these observations in Theorem 2. 

Theorem 2: Let k be a positive integer, let Sk = {sk9 sk + 1, ..., s^+1 - 1}, 
and let Pk be the set of partitions Pj , P2» ...> ^y of k that satisfy py > 1 
and p^ > m for i = 1, 2, ..., 777 - 1. Then equations (2) define a one-to-one 
correspondence between Sk and Pk9 so that the number p(k) of partitions in Pk 
is sfc_m_!. 

Now for any positive integer k, and for j = 1, 2, ..., w , let p(&, j) be 
the number of partitions p^, P2, •••» py °f ^ f° r which py = j and v^ >m for 
1 = 1, 2, . .., y - 1. As in Theorem 2, let p(/c) be the number of partitions of 
k for which vv > 1 and v^ > m for i = 1, 2, ..., y - 1. Let (̂/c) be the number 
of partitions of k for which p. > /?? for aZ-Z- indices i = 1, 2, ..., v - 1, y. 

PX = i:, if v ~ 1, 
p
w = ^u " ^u+i for 

pu = ^u " ^w+i for 
w = 1, 
u = 1, 

2, 
2, 

y -
v -

- 1, if v > 1 and s.£. 
- 1 and py = iv , 

if ?; > 1 and s--

1 If k = j < m9 
Lemma 1: 

p(k, j) 
[0 if k < m9 j < m, and k * j . 

Proof: For any given fc < m, the partition of /c is the number k by itself, so 
that p(k9 k) = 1. Clearly, p(k9 j) = 0 for k * j since, in this case, no par-
tition of the form described is possible. 

Lemma 2: Suppose i < j < m. Then p(k9 j) = p(k - 1, j) + p(k - m9 j) for fe = 
m + 1, m + 2, . . . . 
Proof: Assume k > m + 1. Each of the p(/c - 1, j) partitions rl9 r2» •••»

 rv-l> <7 
of k - I yields a partition vx + 1, P2, ...» ^ - I » J of /c. Moreover, P X + 1 > 
m + 1, so that every partition of k having first term > m + 1 corresponds in 
this manner to a partition of k - 1. 

Each of the p(^ - tf?, j) partitions P2, P3, . . . 9 j of k - m yields a parti-
tion m9 P2, P3, ..., j of A:. Moreover, every partition of k having first term 

122 [May 



ZECKENDORF NUMBER SYSTEMS AND ASSOCIATED PARTITIONS 

m corresponds in this manner to a partition of k - m. 
Since p(k9 j) counts partitions having first term > m9 a proof that 

p(k» j) = p{k - 1, j) + p(k - m, j) 
is finished. 

Theorem 3: Suppose k is a positive integer. The number (̂fc) of partitions 
3?1, z^' •••» rv °f ^ having r^ > m for i = 1, 2, . .., v is given by the mth-
order linear recurrence q(k) = q (k - 1) + q(k - m) for k = m + l9 m + 2, . .., 
where q(j) = 0 f° r J = ls 2, ..., m - 1, and q(/??) = 1. 

Proof: The assertion follows directly from Lemma 2, since 
m-l 

<?(fc) = p(fc) - ̂ p f c J ) . 
J= 1 
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1. Introduction 

A well-known combinatorial formula for the Fibonacci numbers Fn, defined by 
FQ = 0, Fi = 1, Fn = ̂ . } + F„_2 for n > 2, is 

L w / 2 J _ . 

(1) £ r , ^ = Fn+1 for n > 0, 
£= 0 X ^ ; 

which can be shown by induction (see, for example, Knuth [11, Ex. 1.2.8-16]). 
The following proof, however, is easily generalizable to various other recur-
sively defined sequences of integers. 

The Fibonacci numbers {i^? ̂ 3> ... } are the basis elements of the binary 
Fibonacci numeration system (see [11, Ex. 1.2.8-34] or Fraenkel [7]). Every 
integer K in the range 0 < K < Fn+i has a unique binary representation of. n - 1 
bits, kn-ikn-2 ••• &i> such that 

n- 1 

K = E M i + 1 
£= 1 

and such that there are no adjacent l's in this representation of K (see Zeck-
endorf [17]). It follows that, for ft > 1, Fn+i is the number of binary strings 
of length n - 1 having no adjacent lTs. The number of these strings with 
precisely i lTs, 0 < i < [n/2\, is evaluated using the fact that the number of 
possibilities to distribute a indistinguishable objects into b + 1 disjoint 
sets, of which b - 1 should contain at least one element, is (aT1) (see Feller 
[6, Sec. II.5]). In our case, there are n - 1 - i zeros to be partitioned into 
i + 1 runs, of which the i - 1 runs delimited on both sides by lfs should be 
nonempty; the number of these strings is therefore (n~M. 

In a similar way, counting strings of certain types, Philippou and Muwafi 
[15] derived a representation of Fibonacci numbers of order m, with m > 2, as a 
sum of multinomial coefficients; their formula coincides with that presented 
earlier by Miles [13]. 

The properties of the representation of integers in Fibonacci-type numera-
tion systems were used by Kautz [10] for synchronization control. More 
recently, they were investigated in Pihko [16] and exploited in various 
applications, such as the compression of large sparse bit-strings (see Fraenkel 
and Klein [8]), the robust transmission of binary strings in which the length 
is in an unknown range (see Apostolico and Fraenkel [3]), and the evaluation of 
the potential number of phenotypes in a model of biological processing of 
genetic information based on the majority rule (see Agur, Fraenkel, and Klein 
[1]). In the present work, the properties of numeration systems are used to 
generate new combinatorial formulas. In the next section, this is done for the 
sequence based on the recurrence a^ = a^ _ i + ai-m> for some m > 2, which 
appears in certain applications to encoding algorithms for CD-ROM. Section 3 

*This work was partially supported by a fellowship from the Ameritech Foundation. 
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deals with other generalizations of Fibonacci numbers, namely, sequences based 
on the recurrences ui = mui-i + ui-l f° r m - 1» or Vi ~ mvi-\ - V^-2 f° r m - 3S 
which are special cases of the sequences investigated by Horadam [9]. For 
certain values of 77? and with appropriate initial values, these two recurrence 
relations generate the subsequences of every kth Fibonacci number, for all k ^ 1. 
For further details on the properties of numeration systemss the reader is 
referred to [7]. 

2. A Generalization of Fibonacci Numbers 

Given a constant integer m > 2, consider the sequence defined by 

A(n} = n - 1 for 1 < n < m + 1, 

4 m ) = 4T-1 + A{n-m for n > ro + 1. 

In particulars Fn = A\} are the standard Fibonacci numbers. It follows from 
[7, Th. 1] that7; for fixed m, the numbers {A(™\ ^ ^ > •••} are the basis 
elements of a binary numeration system with the following property: every 
integer K in the range 0 < K < A^1 has a unique binary representation of m - I 
bitss kn-ikn-2* •«^is such that 

i = 1 
and such that there are at least m - 1 zeros between any two l's in this repre-
sentation of Z. Hence, for n > 1, ̂  + x is the number of binary strings of 
length n - 1 having this property. 

For n = 25 we again get the property that there are no adjacent ones in the 
binary representation, 

An interesting application of the sequence An is to analyze encoding 
methods for certain optical discs. A CD-ROM (compact disc-read only memory) is 
an optical storage medium able to store large amounts of digital data (about 
550 MB or more) . The information, represented by a spiral of almost two bil-
lion tiny pits separated by spaces, is molded onto the surface of the disc. A 
digit 1 is represented by a transition from a pit to a space or from a space to 
a pit, and the length of a pit or space indicates the number of zeros. Due to 
the physical limitations of the optical devices, the lengths of pits and spaces 
are restricted, implying that there are at least two 0!s between any two lfs 
(for details, see, for example, Davies [4]): this is the case m = 3 of our 
sequence above. It follows that if we want to encode a standard ASCII byte 
(256 possibilities), we need at least 14 bits, which corresponds to A^ = 211. 
In fact, there is an additional restriction that no more than 11 consecutive 
zeros are allowed, which disqualifies 6 of the 277 strings, but 14 bits are 
still enough; indeed, the code used for CD-ROM is called EFM (eight to fourteen 
modulation). 

We now derive a combinatorial formula for 4̂n+i« First, note that in+i is 
also the number of binary strings of length n + m - 2, with zeros in its 777 _ — ' 1 
rightmost bits, such that every 1 is immediately followed by w - 1 zeros. Let 
k be the number of lfs in such a string, so that k can take values from 0 to 
1 {n + m - '2)lm\. We now consider the string consisting of elements of two 
types; blocks of the form 10...0 (m - 1 zeros) and single zeros; there are k 
elements of the first type and (n + m - 2) -km of the second, which can be 
arranged in 

n + 7 7 2 - 2 - (772 - l)k\ 
k I 
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ways. Thus, we have the fo l lowing formula , ho ld ing for m > 2 and n > 1: 
L(w+m-2)/mJ, 

(2) E (B + B , - % - < ' B - 1 > * ) - 4 2 1 , 
k=0 

For 777 = 2, (2) reduces to formula (1). Using the example mentioned above for 
EFM codes, setting m = 3 and n = 15, we get: 

Co6) * (?) - (?) - ft0) • (5) - (?) 
= 1 + 14 + 66 + 120 + 70 + 6 = 277 = A^. 

3. Regular Fibonacci Subsequences 

Let Ln be t he n t h Lucas number, de f ined by LQ = 2 , L]_ = 1, Ln = Ln_i + Z/n_2 
for n > 2. The s t a n d a r d e x t e n s i o n to n e g a t i v e i n d i c e s s e t s 

L_n = ( - l ) n L n and F_„ = ( - l ) n + 1 F n fo r n > 1. 
We are interested in the regular subsequences of the Fibonacci sequence 

obtained by scanning the latter in intervals of size k, i.e., the sequences 
{i?^n+j}n = _oo for all constant integers k > 2 and 0 < J < k. The following iden-
tity, which is easily checked and apparently due to Lucas (see Dickson [5, p. 
395]) , shows that all the subsequences with the same interval size k satisfy a 
simple recurrence relation: for all (positive, null, or negative) integers k 
and n, 

(3) Fn = LkFn_k + (-l)fc+lFB_2fc. 

It follows that all regular subsequences of the Fibonacci numbers can be 
generated by a recurrence relation of the type U£ = mui-i ± ui-2> f° r certain 
values of m, and with appropriate initial conditions. We now apply the above 
techniques to obtain combinatorial representations of these number sequences. 

For fixed m ^ 3, define a sequence of integers by 

U^ - 0, U{m) - 1, and U™ = mU^x - U™2 torn > 1. 

The numbers {u[m\ U^\ •••} are the basis elements of an m-ary numeration sys-
tem: every integer K in the range 0 < K < U„ has a representation of n - 1 
'Vz-ary digits," ̂ n_i^n_2...k\, with 0 < k± < m - 1, such that 

i= 1 
this representation is unique if the following property holds: if, for some 
l < i < e 7 < n - l , ki and k-j both assume their maximal value m - 1, then there 
exists an index s satisfying i < s < J, for which k8 < m - 3 (see [7, Th. 4]). 
In particular, for m = 3, we get a ternary system based on the even-indexed 
Fibonacci numbers {1, 3, 8, 21, ... }, and in the representation of any integer 
using this sequence as basis elements, there is at least one zero between any 
two 2fs. 

For general 772, we have that U^ is the number of m-ary strings of length 
n - 1, such that, between any two (m - l)?s, there is at least one of the digits 
0,..., (m - 3). For a given m-ary string A of length n - 1, let 'j^ be the num-
ber of i's in A, 0 < £ < m - 1, thus, 0 < j ^ < n and 

m- 1 

E h = n ~ !• 
i = o 
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To construct an w-ary string satisfying the condition, we first arrange the 
digits 0, ..., (m - 3) in any order, which can be done in 

( & ) 
\ 3 0 » t71 > - - - > dm-If 

ways. Then the dm-\ (jn - l)fs have to be interspersed, with no two of them ad-
jacent. In other words, the Y^ZQQ^ smaller digits, which are now considered 
indistinguishable, are partitioned into Qm-\ + 1 sets, of which at least j m - \ - 1 
should be nonempty; there are 

in - Jm_2 " dm-l) 
V dm-l I 

possibilities for this partition. Finally, the (/77-2)fs can be added anywhere, 
in 

i n - U 

\Jm-2 I -2 
ways. This yields the followinig formula, holding for 77? > 3 and n > 1: 

(4) y in - l - Jm-2 - Cm-l\(n " l \ ( n ~ Jm-2 ~ Q m -1 \ = JJM 
,jm -1 >0 W'o» «7l> ••• > Jw-3 / W'm-2 A Jm-l / n ' • «70» • • " «7/n-l 

j 0 + . .. + j m _ 1 = n - 1 

Using the fact that for integers a and b, (̂ ) = 0 i f 0 < a < Z ? , there is no 
need to impose further restrictions on the indices, but the rightmost binomial 
coefficient in (4) implies that Qm-\ varies in fact in the range 0 < jm-i -
\ (n - 1)/21. The sequence {Un ) corresponds to the sequence (wn(0, 1; m9 1)) 
studied by Horadam [9]? but formula (4) is different from Horadam's identity 
(3.20). 

Remark: Noting that the definition and the multinomial expansion of the multi-
variate Fibonacci polynomials of order k {Hjf'^Xi, ..., xk)} of Philippou and 
Antzoulakos [14] may be trivially extended to Xj£R(j=l,...,k), we readily 
get the following alternative to (4), namely, 

L(n-1)/2J . 

V™ = £ (n " • " ^ ( - l W - 1 - ^ , m > 3, n > 1, 
j = o v J ' 

since {U™} = {H(
n

2\m, -1)} (m > 3, n > 1) . 
From (3), we know that the regular subsequence {^(n-D + j ^n= 0 °^ t n e Fibo-

nacci numbers, for constant even k > 2 and 0 < j < k, is obtained by the same 
recurrence relation as the sequence _ QS with the difference that the 
first two elements (indexed 0 and 1) must be defined as F-K + J and F-j instead of 
0 and 1. Thus, we can express the Fibonacci subsequences with even interval 
size in terms of U^m': 

Theorem 1: For any even constant k > 2 and any constant 0 < j < k9 the follow-
ing identity holds for all n > 1: 

(5) FHn_1)+ . = FjU^ -F_k+XL-1-
Proof: By induction on n. For n = 1, 

Fj = Fdxl - F.k+jx0. 

For n = 2, 

*fc+j = ̂ ^ + (~Dk + 1F_k + j by (3), 
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but s i n c e k i s even, t he r i g h t - h a n d s i d e can be r e w r i t t e n as 

Suppose the i d e n t i t y ho lds for a l l i n t e g e r s < n . Then 

Fkn + j = LkFk(n-l) + j " Fk(n-2) + j 

r3 n + l r -k+jun s 

so the identity holds also for n + 1, and therefore for all n ̂  1. D 

In particular, for J = 0 and k = 2, we get the numbers Fz(n-l) > n = 1» 2, 
..., which are the even-indexed Fibonacci numbers, and correspond by (5) to 

y(LV = u°\. 
n-1 n~ 1 

For ?72 = L 2 = 3, the multinomial coefficient in (4) reduces to \ A ] = 1? and the 
equivalent of (4) can therefore be rewritten as: 

r ( n - l ) / 2 1 n - l - j 2 

>=0 Jo =max(0, J 2 - 1 ) WO + e72/V J 2 / ~ 

, fo r n = 4 , we g e t : 

(S)(J)+ (?)(S) + (^) + (3)(S) * { ? ) ( ! ) + (i)(?) + (3)(?) + (3X2) 

J2 = 0 JO =max(0, j 2 

For example, for n = 4, we get: 

-•1 + 3 + 3 + 1 + 3 + 6 + 3 + 1 = 21 = ̂ 3 ) =. FQ. 

For fixed 777 > 1 , define a sequence of integers by 

F 0
( w ) - 1, V™ = 1, and 7^> = mPffi' + 1 ^ for n > 2 . 

The numbers {7i , F f , ...} are the basis elements of an (m + l)-ary numeration 
system with the following property: every integer K in the range 0 < K < V„ 
has a unique representation of n - 1 !l {m + l)-ary digits/1 A:n_x^n-29 e 8^1'» with 
0 < k-f < m, such that 

i = 1 
and such that, for £ > 1, if &-£ + ]_ assumes its maximal value 777, then k = 0 (see 
[7, Th. 3]). In particular, for 77? = 1, we get the binary numeration system 
based on the Fibonacci sequence and the condition that there are no adjacent 
l ' s . • • • - . , . .. 

For - general 7??, we have that 7„ is the number of (77? + l)-ary strings of 
length n - 1, such that when scanning the string from left to right, every 
appearance of the digit 777, unless it is in the last position, is immediately 
followed by a digit 0. Special treatment of the rightmost digit is avoided by 
noting that VJf1' is also the number of (777 + l)-ary strings of length n> with 0 
in its rightmost position, and where each digit 777 is followed by a digit 0. 
For a given (77? + l)-ary string A of length n, let Qi be the number of £?s in A r 
0 < i < 777, thus 0 < Q i < n and 

m 

E h = n. 
To construct an (777 + l)-ary string satisfying the condition, distribute the 0fs 
in the spaces between the 777fs, such that every 777 is followed by at least one 0» 
In other words, the j 0 zeros have to be partitioned into j m + 1 sets, of which 
at least j m should be nonempty; there are H o \ possibilities for this partition* 

\ 3 m I 
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We now consider the string obtained so far as consisting of J'Q units, where 
each unit is either one of the j m pairs ?l/??0" or one of the remaining J'Q - j m 
single zeros. The digits 1, . .., (m - 1) are then to be distributed in the 
spaces between these units, including the space preceding the first unit, but 
not after the last unit, because the rightmost position must be 0. First the 
digits 1, ..., (/??-!) are arranged in any order, which can be done in 

( . % \ ) 
\Jl» • • • 5 d m-\l 

ways; finally, these 2L,̂  = 1J^ digits, which are considered indistinguishable, 
are partitioned into J'Q sets, which can be done in 

,m-l 
n . - 1 \ 

1 - jm E u - v In - 1 - dm \ 
X n - I / \ n ~ h ~ 3ml 
\ Jo l / 

wayse Summarizing, we get, for m > I and n > 1: 

y / J o V U " 1 " dm ) = 
JQ> 0, j \ 

«7o + " ' + 3m =n ^ 
For m = 1, the multinomial coefficient is [,-0_i)= 1, and we again get (1). For 
m = 2, the sequence {V^l)} is {1, 3, 7, 17, . .. }, and the ternary numeration 
system based on this sequence is the system which yielded the best compression 
results in [8]. The sequence {V^ } corresponds to {wn(l, 1; m, -1)} in [9], 
but again the combinatorial representation (6) is different from Horadam's 
formula (3.20). For m = 2, (6) reduces to: 

£ . £ . .$)(" i»'-V2) - "?'• 
r(n-n/2i "-J2 

j2=0 J0=max(l, j2) 2/X J°  

For example, for n = 3, we get: 

(l)(l) - (o)(i) - (o)(z) - (!)(!) • (?)(!) 
= 1 + 2 + 1 + 1 + 2 = 7 = Vf\ 

Returning to the regular subsequences of the Fibonacci numbers, we still 
need a combinatorial representation of the subsequences with odd interval size 
k, which by (3) satisfy the same recurrence relation as V^ k , but possibly with 
other initial values. The counterpart of Theorem 1 for the odd intervals is: 

Theorem 2: For any odd constant k > 1 and any constant 0 < J < k, the follow-
ing identity holds for all n > 1: 

(7) F
k(n-1) + j " FjV^ + (F_k + j - F3.)nt\-Di + 1V^l 

i = 1 

Proof: By i n d u c t i o n on n. For n = 1, 
F3 - F 3 X l + <-F-k + 3 ~ ^ ) x 0 . 

For n = 2 , 
*W = i^j + ^-fe+J- " * V ^ * + 1) + W-k+J ~ F^ 

-F.V™ + (F_k + j -F6)V[L*\ 
Suppose the identity holds for all integers < n. Then, denoting the constant 
(F.k+j - Fj) by a, 
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Fkn + j - LkFk(n-l) + j + Fk(n-2) + j 

= Lk\Fdv<LJ + *n±\-i)i+lvn« 
L i= 1 £= 1 

i = 1 
But the l a s t term i s 

thus, 
a(-l)"Lfc = a ( - l ) n ( 7 f k ) - 7<L*}) = a [ ( - l ) n 7 ^ } + (-1)W+171

(L*)] ; 

i= 1 
and the identity holds also for n + 1, and therefore for all n, D 

In particular, for J = 2 and k = 3, we get the numbers 

^3(n-l)+2}«-i = U, 5, 21, 89, ...}, 

i.e., every third Fibonacci number, which correspond, by (7), to F„ 3 = V^ . 
For example, using formula (6) with 777 = L3 = 4, we get for n = 3 (writing in 
the multinomial coefficients the values J'Q, ..., j \+ from left to right and 
collecting terms which differ only in the order of the values of j^, J2> J3): 

\o)u,o,o,o,i/ + u)\2,o,o,o,o) + 3u) \o , i ,o ,o , i ) + 3\oAi,1,0,0,0/ 

+ 3\0A0,2,0,0,0/ + 3\0/\0,1,1,0,0/ 

= 1 + 2 + 3 + 6 + 3 + 6 = 21 = 73(4) = FQ. 

4. Concluding Remarks 

Combinatorial representations of several recursively defined sequences of 
integers were generated, using the special properties of the corresponding 
numeration systems. On the other hand, it may sometimes be desirable to eval-
uate directly the number of strings satisfying some constraints. The above 
techniques then suggest to try to define a numeration system accordingly. For 
example, in Agur and Kerszberg [2] a model of biological processing of genetic 
information is proposed, in which a binary string symbolizing a DNA sequence is 
transformed by repeatedly applying some transition function^. For^being the 
majority rule, the number of possible final strings, or phenotypes, is eval-
uated in [1] using the binary numeration system based on the standard Fibonacci 
numbers. Other transition functions could be studied, and if the resulting 
phenotypes can be characterized as satisfying some constraints, the 
corresponding numeration system gives an easy way to evaluate the number of 
these strings. 
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A NOTE ON THE IRRATIONALITY OF CERTAIN 
LUCAS INFINITE SERIES 
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1. I n t r o d u c t i o n 

Recently, C. Badea [1] showed that 

is irrational, where Ln is the usual Lucas number. We shall extend here his 
result to other series, with a direct proof, and we shall also give a deeper 
result, namely, 

X T— $ «(^)» w=Lth e = ±1-
n= 0 L2n 

Consider the sequence of integers {wn} defined by the recurrence relation 
(1.1) wn = pwn-i - qwn-2> 
where p > 1, q * 0 are integers with d = p2 - kq > 0. Roots of the character-
istic polynomial of (1.1) are 

p + /d p - /d 
a = ̂ —2 and 3 = ^—^ , 

where a + 3 = p5 a$ = q, and a - 3 = v5 > 0. Note that a > |$| and a > 1 since 
a2 > a|3| = \q\ ^ 1. 

Special cases of {wn} which interest us here are the generalized Fibonacci 
{Un} and Lucas {Vn} sequences defined by 

nn _ on 
(1.2) Un = a _ I and Vn = an + 3n. 

It is easily proved that {Un} and {Vn} are increasing sequences of natural 
numbers (for n > 1) and that 

Un ~ ̂ T ^ » Vn ~ «", U„ < Vn 

for all positive integers n. 
We also have 

(1 .3 ) U2n = UnVn9 

(1 .4 ) aUn - Un+l = - 3 n . 
The purpose of this paper is to establish the following result. 

Theorem: We assume that the above conditions are realized and that e is fixed 
(e = ±1). We then have: 

2) If id is irrational and |$| < 1, then 1, a, 6 are linearly independent 

1) 6 = LL 77— -̂s a n irrational number; 

over Q [or, in other words: 0 £ @(Sd)]. 
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Remark: When q = + 1 , i t i s q u i t e s i m p l e t o p r o v e t h a t | $ | < 1 and /d i s i r r a -
t i o n a l ™ More g e n e r a l l y , | $ | < 1 i f and o n l y i f p + q > - 1 and p - q > I [ s i n c e 
i n t h a t c a s e P ( l ) < 0 , P ( - l ) > 0 , w h e r e P i s t h e c h a r a c t e r i s t i c p o l y n o m i a l ] . 

2. Preliminary Lemmas 

Let {p } and'{^ } be two sequences of integers defined by 

Sn=tj^ = f> With,, VfW*. 
k= 0 ^ in 

By (1.3), we have 

(2.1) qn = tf2„+i. 

We need the following lemmas. 

fe=0 

Lemma 1: 
Vn 

Pn 
= e , + i ( e _ | ) 

Proof: The r e s u l t i s o b v i o u s when e = 1 . I n t h e o t h e r c a s e , s i n c e Vn i s i n -
c r e a s i n g , we h a v e : 

Pin Pln+l 
< e . 

%2n+l 

Lemma 2: pnqn_l - Pn-lqn = znU\n 

Proof: ^ - = Sn - £ n _ x = Pnqn~l " P " - l * " . H e n c e , by ( 2 . 1 ) and ( 1 . 3 ) , 

p J , - p ,q = 77— q a -, = 77— U9n + iUon = enU%n. 

Lemma 3: F o r a l l p o s i t i v e i n t e g e r s n and fc, we h a v e 

U ̂ n+l / 1 \fe 
Fo n + k + 1 \ Vo« + 1 

Proof: Using (1.3), we can show that 

and s o 

U^n + l } | V^n + i ~ ^ 2 n + A : + 1 ~ ^ 2 n + k + 1 

i = 1 

C/9n + l 1 / 1 \k 
. A < _ < 

7 2" + f c + 1 " n v2n+i 
i- 1 z 

V ^ n + l ) 

since Fn is increasing. 

Lemma 4: lim|^ 6 - p \ = —---77, where {pn} and {qn} are defined as above. 

(e - ^ ) = e " + i (e - sn) 

c.n + k + 1 j ^ c-k 

Proof: rn + l| 

.« + ! 

fc=0 ^ 2 n + f e + 1 fc = 0 ^ 2 n + f e + 1 
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Hence, Fkn 
1 -7 n n 1 - V n - V 

k=0 v2n + k + l k=0 

~ ekU9n+i 
wi th i?n = Z 7 \ • 

fc=l i / 2 n + k + 1 

However, by Lemma 3 , we have 

Iff 1 < V y 2 " + 1 < V ( l 

so t h a t l im i?„ = 0 and 

C^U^n + l Ujn + l 

V2 n + fc + 1 Vnn + 1 

- ) k . 1 
/ F 2 n + 1 " 1 

+ Rn> 

lim a 6 - p = lim 77 = -. 
n+cJ n ^n ' n̂ co ^ 2

n + 1 a " 3 

3. Proof of the First Part of the Theorem 

Recall that a convergent sequence of integers is stationary, and suppose 
that 0 = a/b {a and b integers, b > 0) . By Lemma 4, the sequence of positive 
integers \qna - pnb\ tends to the limit c = b I (a - $) . When (a - 3) is irra-
tional, this is clearly impossible. In the other case we have, for all large 
n, since the sequence is stationary, 

a = e*+ 1k f - p„) • ~ g > 
and so, for all large n, 

(3-1) qn f - pn = ^ g . 

Using (3.1) for n and n - 1, we have 

By (2.1), (1.3), and Lemma 2, we obtain 

and so 

J. 
a -

^2" = ^ ^ ( ^ 2 " " * ) • 

It follows from this and (1.2) that 

a2" - B2" = a2" + 62" - e or 62" = e/2, 

for all large n. This is clearly impossible, since 

l im | 3 | 2 " e {0, 1, +«>}. 
n -> +00 

This concludes the proof . 
Examples: 

a ) £ 7 — i-s i r r a t i o n a l ( t h e case e = 1 i s B a d e a ? s ) . 
n= 0 ̂ 2" 

b) 2 ~~^ ^s irrational (the case e = 1 was discovered by Golomb [2]). 
n=0 22 + 1 
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4. Proof of the Second Part of the Theorem 

Suppose that we can find a relation 

(4.1) k0 + kid + k2d = 0, ki e Q. 

We can limit ourselves to the case of ^ e Z. Replacing n by 2 n + 1 in (1.4) and 
putting xn = U2n+i +1, we have 

(4.2) lim(a<?n - xn) = 0, 
n ->oo 

since |3| < 1. 
By (4.1), it follows that 

k0qn + kl(qna - xn) + k2(qnQ - pn) + klxn + k2pn = 0 

or, for all positive integers n, 

M<7n a " xn) + k2(qnQ - pn) € Z. 
Hence, by Lemma 1, 

k!Bn + Hqna - xn) + k2\q„Q - p „ | e Z. 
Using Lemma 4 and (4.2), it follows that 

k 
llm(feie» + 1(?„o - xn) + k2\qnQ - pn\) = — 2 _ e Z. 
n>oo u P 

Thus, we have k2 = 0 (since a - 3 is irrational) and, by (4.1), 

kx = &0 = 0, 

since a = (p + vd)/2 is irrational. This concludes the proof. 

Example: ]T i ^ - ^ ( / 5 ) , 
«= 0 ̂ 2* 

Corollary: Let r be a positive integer. With the hypotheses of the theorem, we 
have: 

1) ®v = z2 Tr ^s a n irrational number; 
n = 0 Vr>2n 

2) If i/5 is irrational and |$| < 1> then 1, a, Qr are linearly independent 
over Q, 

Define the sequence {V^} by 

K = Vm = (ap)» + (6r)". 

{V^} is the Lucas generalized sequence, with real roots ap and 32% which is 
associated with the recurrence 

K = («r + 8') (/„'_! - a'BX'-2 = ^ B'-i " ?r^'-2-
We can apply the result of the Theorem to the sequence {F^n}. In fact, we 

have 
Vr > Vi = p > I, |g|r < 1 (since | 31 < 1) 

and the discriminant dr of the recurrence is 

d> = Vl - kqv = (ar - 3 r ) 2 = (a - 3 ) 2 ^ . 

From this, we have 

/d7 = (a - $)Ur = i/S/r. 

Thus, /a is an irrational number because is. 
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COMBINATORIAL INTERPRETATIONS OF THE q-ANALOGUES O F L 2 n + 1 

A. K. A g a r w a P ' 
Indian Institute of Technology, Delhi, New Delhi-110016, India 

(Submitted May 1989) 

1. Introduction 

Recently in [1], two different ^-analogues of Î n + l w e r e found. Our object 
here is to interpret these ^-analogues as generating functions. As usual, Tjjl 
will denote the Gaussian polynomial, which is defined by 

( i . i ) 

where 

[:]• 
(a;q)n 

(.q;q)n/(qiq)m(qiq)n-m> if 0 < m < n, 

0, 

n 

otherwise 

(1 - aql) 
\ \ (1 - aq"^) 

We shall also need the following well-known properties of [̂ J: 

(1.2) \n]= \ H 1; |_mj [n - my 

(1.3) \n]=\n~ 1]+qn-m\n~ )]• 

_ In [1], we studied two different q-analogues of ^2n+l denoted by Cn(q) and 
Cn(q), respectively. These were defined by 

(1.4) Cn{q) = £ An3J(q)3 

where 

(1.5) 

and 

(1.6) 

where 

(1.7) Dn(q) = J2B„,m(q) 
m= 0 

i n which BniTn{q) a r e de f ined by 

4 n , j ( < 7 ) 
In - j 

«7 
Si) + ( i + ^?j) 

(~2n - j " 
LJ - i . 

2 n - 2 j + l + ( J
2 j 

^ n W " £n(<7) + ^ n - l ( ^ ) . 

( 1 . 8 ) Bntm(q) >|"n + 77? + l l 
L 2/72 + 1 J ' 

Remark 1: An^{q) de f ined by (1 .5 ) above a r e Dnij(q) i n [ 1 , p . 171] w i t h j 
r e p l a c e d by n - j . This only r e v e r s e s the o rde r of summation i n ( 1 . 4 ) . 

Remark 2: Equat ion (1 .8 ) i s (3 .6 ) i n [ 1 , p . 172] w i t h m r e p l a c e d by n - m and 
(1 .2 ) a p p l i e d . 

*This paper was presented at the 853rd Meeting of the American Mathematical Society, 
University of California at Los Angeles, November 18-19, 1989. 
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_ Several combinatorial interpretations of the polynomials Cn(q), An$m(q), 
Cn(q) , Dn(q), and BnjTri(q), for g = 1, were given in [1]. In this paper, we 
refine our results for the general value of q9 or, in other words, we interpret 
these polynomials as generating functions. In Section 2, we shall state and 
prove our main results. 

2. The Main Results 

In this section, we first state two theorems and three corollaries. The 
proofs then follow. 

Theorem 1: Let P{m9 ft, N) denote the number of partitions of N into m - 1 dis-
tinct parts, where the value of each part is less than or equal to 2ft - 77?, or 
the number of partitions of N into m distinct parts where each part has a value 
which is less than or equal to 2ft - 777 + 1. Then 

r 
(2.1) An>mtq) = Y,P(m, ft, N)qN, 

N= 0 
where 

v = 2nm - 3(2)-

Example: The coefficient of q7 in A$ 2(^) is 4 (see below); also, p(2, 5, 7) = 
4, since the relevant partitions are 7, 6 + 1 , 5 + 2 , and 4 + 3. 

^5,2(<?) = q17 + <716 + 2415 + 2qlhf + 3<?13 + 3<?12 + kq11 + 4<?10 + 4^9 

+ 4g8 + 4<77 + 3g6 + 3q5 + 2qh + 2q3 + q2 + 2 

Corollary 1: 

(2.2) Cn(q) = ^ P(ft, N)qN, 
N= 0 

where 

(2.3) P(ft, /!/) = E ^0*, w» W 
171= 0 

and 
s = max<!2ft77? - 3 ( ' ' ' ) V , 1 < m < n. '\lnm - 3g)} 

Theorem 2: Let $(777, n, N) denote the number of p a r t i t i o n s of N of the form 
IT = 2?! + b2 + • • • + bt, such t h a t 777 < t < 2m + 1: 

2^-x - hi > 2 If 2 < i < m 

b\ < ft + 777 

i f i > m + 1 

Then, 
(2 .4 ) Bntm(q) = £ Q(™> n, N)q», 

N= 0 
where 

u = ft2 + (ft - 777) - (ft - 777)' 

Corollary 2: 
(2 .5 ) Pn(<?) = E «(ft, ilO?*, 

7\7 = 0 where 

(2 .6 ) Q(n, N) = £ SOW. ft-, tf). 
m= 0 
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Corollary 3: 
( 2 . 7 ) Cn(q) = £ R(n, N)q»9 

N= 0 
where 

(2 .8 ) R(n, N) = Q(n5 N) + Q(n - 1, N). 

Proof of Theorem 1: L e t t i n g j = m i n ( 1 . 5 ) , we have 

i„..w - ([2"; *] + [2;_TK"_2"*1)«(*) * [2n
m: ™],2-2—*(*) 

- [ 2 " - ; + 1 ] ^ » * ( [ 2 " - ; + I ] - [ a , - " ] ) ' ( " I ) -
where the last step comes by using (1.3) with n replaced by 2n - m + 1 and not-
ing that 

(m\ 171 + \2 -rn-Since AniTn(q) is a polynomial, the degree of Anjm(q) is the degree of 

In - m + 11 _\ 2 / q^ 2 , which is 2nm- 3( ? j. 

It is easily seen that 

\2n - m + 11 

generates partitions into m - 1 or m distinct parts, where each part has a value 
less than or equal to In - m, and 

(t - ; + 1 - [ 2„ - ^ c ; ' ) 
generates partitions into m distinct parts with the largest part equal to 
In - 777 + 1. Combining these results, we see that A n m(q) generates P(ms n, N) . 
The proof of Corollary 1 is now obvious. 

Proof of Theorem 2: By the definition of the Gaussian polynomial, it is clear 
that 

\n + 7?? + 11 
L 2m + 1 J 

generates partitions into at most 2777+1 parts where each part has a value less 
than or equal to n - 777. Multiplication of iz^+l J by ^mZ = ^1 + 3 + ''" +2-m _1 means 
that we are adding 2777 - 1 to the largest part, 2777 - 3 to the next largest part, 
2m - 5 to the next largest part, etc. Since the largest part is less than or 
equal to n - m + (2777 - 1) = n + m - 1, there are at least m parts where the 
minimal difference of the first 777 parts (with the parts arranged in nonincreas-
ing order) is 2. The 777th and the (777 + l ) t h parts are distinct. Obviously, the 
degree of BnjTn(q) is 

7772 + (2777 + 1 ) ( n + 777 + 1 - 2777 - 1 ) = n2 + (jl - m) - (-W - 777) 2 . 

This completes the proof of Theorem 2. 
Corollaries 2 and 3 are now direct results of Theorem 2. 

3. Conclusions 

In the literature, we find several combinatorial interpretations of the q-
analogues of the Fibonacci numbers. The Catalan numbers and Stirling numbers 
are other good examples. The most obvious question that arises here is: Do the 
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polynomials An>m(q), Cn(q) , BniTn(q), Dn(q), and Cn(q) have combinatorial inter-
pretations other than those presented in this paper? So far, we know one more 
combinatorial interpretation of the polynomials Dn(q)• Before we state it in 
the form of a theorem, we recall the following definitions from [2]. 

Definition 1: Let ir be a partition. Let y.. be the node of ir in the i t h row and 
j t h column of Ferrers1 graph of IT. We say that y. . lies on the diagonal 6 if 
*& - J = 6. 

Definition 2: Let IT be a partition whose Ferrers graph is embedded in the fourth 
quadrant. Each node (i, j) of the fourth quadrant which is not in the Ferrers 
graph of IT is said to possess an anti-hook difference p^ - kj relative to ir, 
where p^ is the number of nodes on the i t h row of the fourth quadrant to the 
left of the node (i, j) that are not in the Ferrers graph of TT and kj is the 
number of nodes in the j t h column of the fourth quadrant that lie above node 
(i, j) and are not in the Ferrers graph of IT . 

Remark: By the Ferrers graph of a partition, in the above definitions, we mean 
its graphical representation. If TT = GL\ -f a2 + • • • + # „ (with a^ > a>i + i> 
1 < i < n - l i s a partition, then the ^th row of the graphical representation 
of this partition contains a^ points (or dots, or nodes). The graphical 
representation of the partition 5 + 3 + 1 of 9, thus, is: 

We now present the other combinatorial interpretation of the polynomials 
Dn(q) in the following form. 

Theorem 3: Let f(n, k) denote the number of partitions of k with the largest 
part < n and the number of parts < n , which have all anti-hook differences on 
the 0 diagonal equal to 0 or 1. Let g(n9 k) denote the number of partitions of 
k with the largest part < n + 1 and the number of parts < n - 1, which have all 
anti-hook differences on the -2 diagonal equal to 1 or 2. For k > 1, let 
h(n, k) =f(n, k) + g(n, k - 1). Then 

0*(<7> = 1 + E &("» k)q*. 
k= 1 

Note: For the proof of Theorem 3, see [2, Th. 2, pts. (1) and (4), p. 11]. We 
remark here that part (3) of Theorem 2 in [2] was incorrectly stated: 

qn2+nd2n-i(q~l) should be replaced by qn2+nd2n (q'1). 
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SUBSETS WITHOUT UNIT SEPARATION AND PRODUCTS 
OF FIBONACCI NUMBERS 

J o h n Konval ina a n d Yi-Hsin Liu 
University of Nebraska at Omaha, Omaha, NE 68182 

(Submitted June 1989) 

1. Introduction 

It is well known that the Fibonacci numbers are intimately related to sub-
sets of {1, 2, 3, . .., n} not containing a pair of consecutive integers. More 
precisely, let Fn denote the nth Fibonacci number determined by the recurrence 
relation 

FY = l, Fz = 1, Fn + 2 = Fn+l + Fn (n > 1) . 

Then the total number of subsets of {1, 2, 3, . .., n} not containing a pair 
of consecutive integers is Fn+2> This result can also be expressed in terms of 
a well-known combinatorial identity. Kaplansky [2] showed that the number of 
fc-subsets of {1, 2, 3, . .., n} not containing a pair of consecutive integers is 

in + 1 - k\ 
\ k ) • 

Consequently, summing over k we obtain the identity 

(1) £ (K + V ^ = ?n + 2-
k>0x ' 

In this paper we will derive a combinatorial identity expressing the square 
of a Fibonacci number and the product of two consecutive Fibonacci numbers in 
terms of the number of subsets of {1, 2, 3, ..., n] without unit separation. 
Two objects are called uniseyavate if they contain exactly one object between 
them. For example, the following pairs of integers are uniseparate: (1, 3), 
(2, 4), (3, 5), etc. Konvalina [3] showed that the number of ^-subsets of 
{1, 2, 3, ... n} not containing a pair of uniseparate integers is 

(2) \i=ox K ^ ' 

0 if n < 2(k - 1). 

Let Tn denote the total number of subsets of {1, 2, 3, ..., n) without unit 
separation. Then, summing over k9 we have 

[k/2] • n + l - k - l i , (3) Tn = E E (n +1: K
H 

We will prove that if n is even then Tn is the square of a Fibonacci number; 
while, if n is odd Tn is the product of two consecutive Fibonacci numbers. 

2. Main Result 

Theorem: if n > 1, then 
T2n ~ Fn + 2 

T2n + l = Fn + 2Fn+3' 
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Proof: The fo l lowing i d e n t i t i e s on summing every f o u r t h F ibonacc i number a r e 
needed i n o b t a i n i n g t he r e s u l t : 

(4) 

(5) 

(6) 

(7) 

7^Fhj F2n + 1 l> 
J = 1 

n 

X? Fhj-2 = F2n; 

n 

X< Fho-$ = F2n-lF2n'9 

J = 1 
n 

A" *V/-1 = F2nF2n + l' 
j = 1 

These i d e n t i t i e s a r e e a s i l y proved by i n d u c t i o n and the fo l lowing well-known 
F ibonacc i i d e n t i t i e s ( see Hoggatt [ 1 ] ) : 

Fn+l ~ Fn-\ =: F2n> 
7J7 777 IP IP — TP 
hnhn+\ - hn-\bn-2 " k 2n - 1 * 

Now, e v a l u a t i n g Tn i n (3) , we o b t a i n 

„ ^ {k^in + l - k - 2 i \ [in+^/2] ^ ( n + l - k - 2i\ 

Now, replacing k by k + 2i, since k - 2i contributes zero to the sum, we obtain 
the key identity 

(8) Tn = Z Z ( n + l - k
k - ^ ) 

V ^ n h = n v ^ / i>0 fc-0 
where m = [(n + 2)/2] - 2i. 

Next, we will apply (1) and the Fibonacci identities (4), (5), (6), and (7) 
to evaluate (8). First, identity (1) can be expressed as follows: 

/„ + 1 - fcv [("+»'21 /„ + 1, - ks (9) x r + * ) - £ ( n + j - ) - ^ + J k>0 x ^ ' fc»0 

Replacing n by n - 4i, identity (9) becomes 

fin\ v W w + 1 - fc - hi\ „ 

do) feEo( fc ) - ^ + 2 - w » 
where p = [ (n + l ) / 2 ] - 2 i . 

To complete the proof, we will evaluate (8) based on whether n = 0, 1, 2, 
or 3 (mod 4). 

Odd Case: If n is odd, then [(n + 2)/2] = [(n + l)/2], so m = p and, applying 
(10) to (8), we have a sum involving every fourth Fibonacci number. 

(11) Tn = £ Fn + 2-hi • 
•i > 0 

Case 1. n = 1 (mod 4) 

In this case we have w + 2 = 4£ - 1 for some integer t . Substitute t -
(n + 3)/4 for n in (7) and apply to (11) to obtain 

T* = F(n + 3)l2F(n + 3)72+1 • 
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Since n i s odd, replace n by In + 1, and the desired r e s u l t 

2n+l = n + 2™n+3 
i s obtained. 

Case 2. n E 3 (mod 4) 

In this case we have n + 2 = kt - 3 for some i. Substitute t = (ft + 5)74 
for n in (6) and apply to (11) to obtain 

T = F(n + 5)/2-lF(n+5)/2' 
Replace ft by 2ft + 1 and the result is the same as in the previous case: 

T2n+l = Fn+2Fn+3' 

Even Case: If n i s even, m = p + l s and applying (10) to (8) we have 
P + i 

(12) ?„ = E £ ( 
-• s. A 7, _ n \ 

ft + 1 - k - 4 i \ 

£ > o fe = o 

£ > 0 k = 0 N 

ft + 1 - fc ~ ki 
' -,• > n \ £ >0 

ft + 1 - (p + 1) - 4£\ 
p + 1 I 

£ / n + 2 - ^ £ + £ 0 ( ^ / 2 - 2 i + l) 

Observe that the last summation is zero except when ft/2 - 2i + 1 = 0. That is, 
when £ = (ft + 2)/4 or ft + 2 = 0 (mod 4). In this case, the last sum is 1. 

Case 3. ft E 2 (mod 4) 

Here ft + 2 = 4t for some t . Substitute t = (ft + 2)/4 for ft in (4) and 
apply to (12) to obtain 

Since ft is even, replace n by 2ft and the desired result is obtained: 

12n rn + 2' 

Case 4. n = 0 (mod 4) 

Here ft 4- 2 = 4t - 2 for some t. Substitute t = (ft + 4)/4 for ft in (5) and 
apply to (12) to obtain 

Tn = F(n+h)/2' 
Replace ft by 2ft and the result is the same as in the previous case. 

Table 1 

ft 

1 
2 
3 
4 
5 
6 

Fn 

1 
1 
2 
3 
5 
8 

^ 

1 
1 
4 
9 
25 
64 

F F 

1 
2 
6 
15 
40 
104 

n 

1 
4 
6 
9 
15 
25 

ft 

7 
8 
9 
10 
11 
12 

Fn 

13 
21 
34 
55 
89 
144 

Fl 
169 
441 
1156 
3025 
7921 
20736 

FnFn+l 

273 
714 
1870 
4895 
12816 
33552 

T 

40 
64 
104 
169 
273 
441 
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AN EXTENSION OF A THEOREM BY CHEO AND YIEN 
CONCERNING DIGITAL SUMS 

Robert E. Kennedy and Curtis N. Cooper 
Central Missouri State University, Warrensburg, MO 64093 

(Submitted June 1989) 

1. Introduction 

For a nonnegative integer k, let s(k) denote the digital sum of k. In [1], 
Cheo and Yien prove that, for a nonnegative integer x, 

x - 1 
(1.1) £ s(k) = (4.5)a: log x + 0(x) . 

fc=o 
Here 0(f(x)) is the useful "big-oh" notation and denotes some unspecified func-
tion g(x) such that g(x)lf(x) is eventually bounded. We usually write 

g(x) = 0(f(x)) 
and read, " g(x) is big-oh of f(x).n For an introduction to this important 
notation, see [3]. In this paper we determine a formula for 

(1.2) XZ(s(k))2. 

The resulting formula will be used to calculate the mean and variance of the 
sequence of digital sums. Firsts in order to facilitate the discussion, we 
introduce some notation. 

2. Notation 

For each positive integer x9 let [0, x) denote the set of nonnegative inte-
gers strictly less than x. In addition, we will let s([0, x)) be the sequence 

(2.1) 8(0), s(l), 8(2), ..., s(x - 1). 

That is, we have not only taken into account s(k), but also the frequency of 
s(k) . Then, letting u and a2 be the mean and variance of s([0, x)), respec-
tively, we have 

i X- 1 

X fc-0 
and 

(2.2) a2 = i ^(fltt))2 - v2. 

If x is a power of 10, then the following lemma gives the exact value of u 
and a2. Its proof is given in [2] and will not be reproduced here. 

Lemma 2,1: Let x = 10" for a positive integer n. Then 

u = the mean of s([0, x)) = 4.5n 
and 

o2 = the variance of s([0, x)) = 8.25n. 

3. A Formula for (1.2) 

The following theorem gives a formula for the expression (1.2). 
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Theorem 3.1: Let s be the d i g i t a l sum f u n c t i o n and l e t x be a p o s i t i v e i n t e -
ger . Then 

x - 1 
(3.1) E (s(k))2 = 20.25a; log2x + 0{x log x). 

fc-o 

Proof: For each positive integer x9 define 

Mx) =XY,s(k) and B(x) = E (s(k))2. 

In [1], Cheo and Yien showed that for any positive integer n and for any deci-
mal digit 0(0, 1, 2, 3, ...9 or 9), 

(3.2) A(c • 10n) = (4.5cn + ^-^-i^-ho*. 

Using Lemma 2.1 and formula (2*2) for the variance of s([0, x)), we have 

(3.3) 5(10n) = 20.25n210n + 8.25nlOn. 

Therefore, for a positive integer n and a decimal digit 0, we can calculate 
B(c • 10n). That is, 

<j.lOn~l 

3(s -10n) - "-. E (s(^))2. 

Since for 0 < k < 10n and 0 < j < a - 1 we have t h a t s ( j • 10n + k) = J + s(fc) . 
Thus, the above s i n g l e sum can be r e w r i t t e n as a double sum 

o- 1 1 0 n ~ l o- 1 1 0 n " l 
B(<? • 10n) = E E (J + s ( k ) ) 2 = E E U1 + 2je(fe) + ( s ( £ ) ) 2 ) 

j « 0 fc « 0 j = 0 / c = 0 

c - 1 c - 1 / 1 0 n ~ l \ 1 0 n - l 
- E i210n + 2 E i E e(*c)) + E ^(8»))2' 

j - o j - o \ fc « o / k = o 

We may now apply (3 .2 ) and (3 .3 ) t o o b t a i n 

B(e • 10n) = {C ~ 1 ) g . ( 2 g " X) 10* + 2 g E j ( 4 . 5 ) n l O n 
b j - o 

+ 0(8.25n + 20.25n2)10n. 

Continuing, we have 

(3.4) B{o • 10n) = (g - 1 ) g ( 2 g " *> iQ" + (<j - 1)0(4.5n)10n 
D 

+ 0(20.25n2 + 8.25rc)10n. 

Since 
n-l x 

(3.5) E ^ 1 0 * = -r(10n(9n - 10) + 10) A 92 
and 
(3.6) J] i210l = —(10n(81n2 - 180n + 110) - 110), 

i-0 93 

we can now prove (3.1). Let 

x - a^O"'1 + an-110n"2 + ... + ^10°  

be the decimal representation of the nonnegative integer x. Then 
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k - 0 
S i m i l a r l y , a s i n t h e d e t e r m i n a t i o n of B{o • 1 0 n ) , t h i s s i n g l e sum c a n b e w r i t t e n 
a s t h e f o l l o w i n g sum of s i n g l e sums 

a n l O n ~ l - l a n _ 1 1 0 n " 2 - l 
B(x) - E ( s ( f e ) ) 2 + £ ( a n + 8 ( f e ) ) 2 

k= 0 k = 0 
a j l O 0 - 1 

+ • • • + E ( a n + a n - l + " • • + a 2 + S W ) 2 

k= 0 

= E ^ I O ^ 1 ) + 2nE( £ a^A(aklOk-1) + ^Y £ a Y ^ l O ^ 1 . 
* - 1 / o - l U - f c + l / k - i \ i « k +1 / 

Using (3.4), we have that 

B(x) = t x - £ 2 + £3 + £4 + £5 + £ 6 , 

w h e r e 

and 

* ! = 2 0 . 2 5 ( n - l ) 2 ^ s 

£ 2 = 2 0 . 2 5 E ( ( n - I ) 2 - (i - l ) 2 ) a 1 0 i _ 1 , 
. i - 1 • 

n 
^3 = E ( 4 . 5 a ? + 3 . 7 5 a i ) ( £ - D I O * " 1 , 

£= 1 

n ( a i - l ) ( a i ) ( 2 a i - 1) . , 
£4 = J] —^ 1 101"1,.. 

£« 1 
n - 1/ n \ 2 

^5 - E ( E a 4 «fciofc-i, 
k - l U « k + l / 

n - 1/ n 
' 6 " 

n - 1/ n \ 

>£( E «<V 
k - l U « k + l / 

*6 - 2Ef E aAA(aklOk-1). 
k* 

It can be shown without difficulty that 

£3 = 0(# log '#), £4 = 0(#)> 
and since the calculation of £5 and £5 are similar, only £5 will be calculated 
here. Thus, 

*6 - 2 
k 
£ ( E ^W^IO*- 1 ) < 18nE(n - k)A(ak10k-1) 

E(n - fc)U.5a (fc - 1) + -*—^ llO*"1 

by (3.2). Hence, 
n - 1 n - 1 

(3.7) t 6 < 729 J^(-k2 + (n + l)k - n)lOk~l + 729 J^(n - k)lQk~l 

k-1 k-l , 

and using (3.5) and (3.6) we have, after simplification, 

£6 < 9nlOn - 11 • 10n + 9n + 11, 
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and so 
t 6 = 0(aMog x), 

since n = <9(log x) and 10n = 0(x). Similarly, 
t5 = 0(x). 

Thus t2 = 0(x log x) follows, since 
n 

t2 = 20.25 £((n " I)2 - (̂  - D^^lOi - 1 
i= l 

n- 1 
< (20.25)(n - l)2(10n - 1) - (20.25)(9) £ ̂ 210S 

i = 1 
and so, by (3.6), 

t2 < (20.25)(n - l)2(10n - 1) - |(10n(81n2 - 180n + 110) - 110) 

and, after simplification, we obtain 

#2 = 0(x log x). 
Therefore, 

B(x) = 20.25(n - 1) x - 0(x log x) + 6>(# log ia) + 0(x) 
+ 0(x) + 0(x log x) 

= 20.25(n - l)2x + 0(x log a;) 
= 20.25x log2x + 0(x log a;), 

since n = log a; + 0(1), and (3.1) has been proven. 

Using (1.1), we have an immediate corollary to Theorem 3.1. 

Corollary 3.2: Let s be the digital sum function and x be a positive integer. 
Then 

(3.8) u = 4.5 log x + 0(1) 

and 

(3.9) a2 = 0(log a). 

Proof: The proof of (3.8) follows immediately from (1.1) by dividing through by 
x. To prove (3.9), we use (3.8), (3.7), and (2.2) to obtain 

a2 = 20.25 log2# + 0(log x) - (4.5 log x + 6>(l))2. 
This implies that 

a2 = 0(log x). 

4. Conclusion 

In [1], Cheo and Yien proved that 0(x) is the best possible residual for 
the relation (1.1). Here, the second term of (3.3) implies that 0(x log x) is 
the best residual given by (3.1). It should also be mentioned here that we 
have restricted our discussion to base ten numbers. Cheo and Yien, however, 
give their results for any positive integer base greater than one. By substi-
tuting base 10 by base b9 the base 10 digit 9 by b - 1, and base 10 logarithms 
by base b logarithms, the results of this paper can, in like manner, be given 
without restricting base. Finally, we note that the determination of a formula 
for 
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x - 1 
£ (s(k))n, for n > 3, 

k=0 

appears to be complicated and is left as an open problem. 
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1. Introduction 

The characteristic equation of the sequence of Fibonacci numbers is 

(1.1) x2 - x - 1 = 0; 

its roots a = (1 + v5)/2 and 3= (1 - v/5)/2 play an important role in the theory 
of Fibonacci numbers and other related matters. The Fibonacci numbers have 
been generalized in various ways. One such generalization and the correspond-
ing characteristic equations were recently studied by Horadam and Shannon [3]: 

Define the polynomials (j) (x) by C|)Q = 0, and 

(1.2) (j>n(x) = xn~l + xn~2 + ... + x + 1 (n > 1). 

The "cyclotomy-generated polynomial of Fibonacci type" of degree n2 + n is then 
defined by 

(1.3) pn(x) = X"2-" - 4,n2+n - X^X ^ i z ± + X2n * ^ n . 
Vn + 1 Vn 

It is easy to see that p±(x) is the left-hand side of (1.1). 
In [3], both real and complex zeros of pn(x) were studied. However, some 

of the more interesting properties were given only in the form of conjectures. 
It is the purpose of this paper to provide proofs of these conjectures, based 
on some classical results from the geometry of polynomials. Furthermore, it 
will be shown that the main factor of pn(x) is irreducible over the rationals 
for all n, and that the unique positive zeros of p (x) are Pisot numbers. 

2. Roots of Unity 

Horadam and Shannon [3] observed that n2 - n complex zeros of p (s) lie on 
the unit circle for small n; they conjectured that this is true for all n. The 
following proves this conjecture. 

Proposition 1: p (2) has the n2 - n zeros zk = exp(2iri/c/n(n +1)), where k = 1, 
2, ..., n2 + n - 1, excluding multiples of n and of n + 1. 

Proof: Note that we may write §n(x) = (xn - 1) / (x - 1) for x * 1. With (1.3) we 
get 

(xn + l - l)(xn - l)(x - l)pn(x) 
= xnl + n(xn+l - l)(xn - l)(x - 1) - (xn2+n - l ) ( x n + 1 - l ) ( x n - 1) 

- x2n+1(xn2-1 - l)(xn - l)(x - 1) + x2n(xnl- - l)(xn + 1 - l)(x - 1) 
= xn2+3 + 2 - 3xn2+3 + l + xn2 + 3 + xn2+2 + l + xn2+2 - xn2+n 

- x2n + z + 3x2n + l - x2n - xn + l - xn + 1 
= (xn2 + n - l)(x2n + 2 - 3x2n+l + x2n + x n + 1 + xn - 1 ) , 

and, t h e r e f o r e , 

150 [May 



ZEROS OF CERTAIN CYCLOTOMY-GENERATED POLYNOMIALS 

( 2 . 1 ) V (x) = (xZn+Z - 3x2n+l + X2n + Xn + l + Xn~ 1 ) . 
(xn + l - \){xn - 1)(X - 1) 

This proves the proposition* since xn +n - 1 has zeros zk = exp(27Ttfc/n(n + 1))5 

where Zn, %2n9 9 " °  a r e cancelled by the zeros of xn+1 - 1, and 3n+1, #2(n+1) s 

... are cancelled by the zeros of xn - 1. 

3. Roots within the Unit Circle' 

It is clear from (2.1) that the remaining zeros of p (z) are those of 

(3.1) /„(£): = s2 n + 2 - 3z2n+l + z2n + zn + l + sn - 1. 

First? we note that fn(z) has a double zero at z = 1, since zn+l - 1 and 3n - 1 
have simple zeros at 2 = 1, while p (1) = 1 - n2 - n ^ 0 ? by (1.3). Hence, we 
may consider 

(3.2) rn(z): = fn(z)/{z - I)2 

= z2n - z2n~l - 2 s 2 n _ 2 - . . . - nzn - nzn~l - (n - l)zn~2 

- . . . - 2z - 1 

(see a l s o [ 3 , p . 9 1 ] ) . We no t e t h a t we can w r i t e 

/ o o \ / \ 9r7 ( 1 — S ) ( 1 — S ) 
(3 .3 ) r (z) = s Z n - ^ —^—-p *-. 

n (1 - z)L 

The following three propositions show that all but one of the zeros of vn(z) 
lie in a narrow annular region just inside the unit circle, and that the argu-
ments of all In zeros are quite evenly distributed. 
Proposition 2: For all n > 1, the zeros of rn(z) lie outside the circle 

\z\ = (l/3)1/n. 

Proof: We apply Rouchefs Theorem (see, e.g., [4, p. 2]). Departing from (3.3), 
we let 

PCs): = z2n and Q{z) : = -(1 - zn) (1 - <?n + 1)/(l - 2) 2. 

Set t: = \z\. Now, for £ < 1, 

I , (1 - tn)(l - tn + 1) _ 1 - tn - tn+l + t2n+1 

^ U ) | " (1 + t) 2 " (1 + t) 2 

while 

|P(JS)| = t2n. 

Hence, we have |S(s)| > \P(z)| when 

1 - tn - tn+l + t2n+1 , M9n 

(i + ty2 

which is equivalent to 

tn(l + t + tn + tn + 1 + tn+2) < 1; 

this holds when 

tn(2.+ 3tn) < 1 

(since £ < 1) . But this last inequality is satisfied for tn = 1/3. Hence, by 
Rouchefs Theorem, rn{z) = P{z) + Q(z) has the same number of zeros within the 
circle \z\ = (l/3)1/n as does Q(z), namely, none at all, since all the zeros of 
Q(z) have modulus 1. Also, the above inequalities show that there can be no 
zero on this circle. The proof is now complete. 
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(3 .5 ) 
where 

and 

rn(z) = gn(z)hn(z), 

gn(z) = \ V - zn~l 

h„(z) = 5 + lzn + a*"1 

Proposition 3: For n > 1, P„(S) has 2n - 1 zeros within the unit circle. 

Proof: It is easy to verify the following factorization. For any a, 

(3.4) (a + l)azZn - z2n~l - 2zln~2 - . .. - nzn - nzn~l - (n - Ds*" 2 

- ...- 2z - 1 

= [(a + l)sn + sn_1 + ... + z + l][asn - zn~l - ... - z - 1]. 

In particular, if we set a = (/5 - l)/2, then (a + l)a = 1, and with (3.1) we 
get 

1, 

.,„v~, 2 ~ • ~ • ... + Z + 1. 

The Kakeya-Enestrom Theorem (see, e.g., [4, p. 136] or [7, Prob. III. 22]) now 
shows immediately that all n zeros of hn(z) lie within the unit circle. To 
deal with gn(z)9 we consider 

(3.6) (z - l)gn(z) = ^ ~ lz"+l - ^ 2
+ lzn + 1. 

By Pelletfs Theorem (see, e.g., [4, p. 128]), n zeros of (z - l)gn(z) lie on or 
within the unit circle. But z = 1 is the only zero on the unit cricle, since 
the difference of the complex vectors ((/5 - l)/2)zn+l and ((/5 - l)/2zn has 
length one only if they are collinear; (3.6) then implies 3 = 1 . Hence, gn (z) 
has n - I zeros within the unit circle. (We remark that this fact also follows 
directly from Theorem 2.1 in [2].) The proof is now complete, with (3.5). 

It was remarked in [3] that the complex zeros of pn(z) not located on the 
unit circle appear to lie close to the "missing" roots of unity (see 
Proposition 1 above). With regard to this, we have the following result. 

Proposition 4: For n > 1, rn(z) has at least one zero in each sector 

arg z - —TT k = 0 , 1, . . . , 2n 
n + V 

Proof: We use the f a c t o r i z a t i o n ( 3 . 5 ) . In analogy to ( 3 . 6 ) , we have 

(3.7) (z - l)hn{z) - ^ 2
+ lzn + l - ^ ~ V - 1. 

Equation (3.7) can be brought into the form azn + l + zn + 1 by replacing z by 
((1/5 + l)/2)l/nz. The result of [4, p. 165, Ex. 3] implies that (z - l)hn{z) 
has at least one zero in each of the sectors 

(3.8) 2k + 1 arg z TT n + V 0, 1, ..., n - 1. 

The trivial zero z = 1 (i.e., arg z = 0) is not contained in any of these sec-
tors; hence, exactly one zero of hn(z) lies in each of the sectors (3.8). 

To deal with the factor gn(z), we consider (3.6) and replace z by 

(ei7f(/5 - l)/2)l/nz. 
This brings the right-hand side of (3.6) into the form a'zn+l + zn + 1 for some 
complex af. We now apply a well-known result on the angular distribution of 
the zeros of certain trinomials (see [4, p. 165, Ex. 3]) and "rotate" the 
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r e s u l t i n g s e c t o r s by an ang le of TT / n« 
l e a s t one zero in each of the s e c t o r s 

This shows t h a t (z - l)gn(z) has a t 

(3 .9 ) a rg z -
Ik 

n + I5 k = o, l , n - 1, 

But the sector belonging to k = 0 contains two zeros, namely, 3 = 1 and the 
unique positive zero of gn(z) (by Descartes?s Rule of Signs; see, e.g., [6, p. 
45]). Hence, each sector (3.9) contains exactly one zero of g (s) . This 
proves Proposition 4. [We have actually proved a slightly stronger statement; 
but the sectors (3.8) and (3.9) are overlapping.] 

Remark: As we just saw, the trinomials on the right-hand sides of (3.6) and 
(3.7) can be brought into the form f(z) s 

consider the inverted polynomial 
,n+ 1 + Zn + 1. One could also 

r\z) = zn+'fa/z) yn + l + z + a, 

the zeros Zj of which are the inverses of the zeros Zj of f(z) relative to the 
In this regard, we mention unit circle (i.e., Zj - l/z~j ; see [4, p. 194]), 

that the trinomials zn + ^ - (n + 1)z + n = 0 were studied in [5]; very exact 
bounds on the arguments and the moduli of the zeros of these trinomials were 
obtained. Probably the methods in [5] could be used to obtain similar results 
for the trinomials in (3.6) and (3.7). 

4. Real Roots 

with 

(4.1) 

Horadam and Shannon [3] showed that p (z) has exactly one positive zero Xin 

lim X\n = 
/5 + 3 /5 + 1\2" 

= m this is the one zero not covered by Proposition 3. 
pn(%) has exactly one negative zero x^n with -1 < 
conjecture under the condition that the 
hence, the existence of this negative 
conjectured in [3] that 

They also conjectured that 
X2n < 0. They proved this 

above is true; 
It was also 

factorization (2.1) 
zero is established 

(4.2) lim x2n -i; 

this follows immediately from Propositions 2 and 3. Our aim in this section is 
to give quantitative versions of (4.1) and (4.2). 

Let Gn{z) and En{z) denote the trinomials on the right-hand sides of (3.6) 
and (3.7), respectively. By Descartes?s Rule of Signs, Gn{z) has two positive 
zeros ( s = l and z = Xin).9 while Hn(z) has only one positive zero (z = 1). As 
to the negative zeros, we consider Gn(-z) and Hn(~z). The signs of the coeffi-
cients of Gn(-z) are (-1)" + 1, (-l)n+1, 1; that is, there is one sign change 
when n is even and none when n is odd. Hence, Gn(z) has a negative zero 
(namely, xln) only when n is even. The signs of the coefficients of Hn(~z) are 
(-l)n+1, (_i)n+ls _i; this implies that Hn(z) has a negative zero (namely, x2n) 
only when n is odd. 

The following results give estimates on the location of these zeros. 

= ( /5 + l ) / 2 . Then, for a l l n > 1, Proposition 5: Let 
a 2 ( l - a _ 2 n ) < xln < a z ( l - a -2n-l ) 9 

with equality only for n 
xln ~ a2(l ~ a~2n 

= 1. Furthermore, we have, asymptotically, 
_1) as n •> «>. 
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Proof: It suffices to find two points at which Gn(z) has opposite signs. It is 
easy to see that, for any e, we have 

Gn(a2 _ £) . _£ ̂ L L - 1 ( O 2 - E)» + 1, 

and therefore, for arbitrary numbers a, 

(4.3) Gn(a2 - aa~2n) = -a 3 " X(l - aa"2 n~ 2) n + 1. 

First, we let a = a. Since (1 - a ~ 2 n - 1 ) n < 1 for all n, we get 

(4.4) Gn(a2 - a1_2n) > 0 for n > 1. 

In the other direction, we set a = a2. It is easy to see (using calculus) that 
(1 - a~2n)n is an increasing sequence for n > 1. Thus, we get, with (4.3), 

Gn(a2 - a2~2n) < Gx(a2 - 1) = 0, 
with equality only for n - 1. This, together with (4.4), proves the first 
statement of the proposition. The asymptotic expression follows from the fact 
that, for any real a, we have (1 - aa~2n~2)n -* 1 as n ->- °°. 

Proposition 6: For all n > 2, we have 

(4.5) - l + £ <x2n < - l + ^ . 

and we have, asymptotically, 

^2n ~ -1 + - ^ ~ as n + oo. 

Proof: First, let n be even. Then, for any a, we have 

r i r\ n I i . ^ \ _ / i ^ \ I / r w. V 5 *..) fl,(-l+|)..(l-S)-[^-S^]tl. 
We note that (1 - a/n)n is an increasing sequence for n > 2, at least when a 
1/2. Hence, for all n > 2, 

1 / 7 3 • + i < o . ».(-'^)«ft(-^i)--('-in«-^] 
In the other direction, we use the fact that (1 - (log 5)/2n)n < 1//5 for all 
n. Hence, with (4.6), 

' - ( - ^^)>-^ + i - o . 
This proves (4.5) for even n. If n is odd, we have, for arbitrary a, 

<*•'> " . ( - '^ - ( ' -sn^-s^f 1 ] - ' -
We find that, for n > 3, 

while, again with (4.7), 

« . ( - i * ^ ) « ^ - i - o . 
This completes the proof of (4.5). The asymptotic expression follows from 
(4.6) and (4.7), and from the fact that (1 - a/n)n -> e~a as n -> °°. 
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Remarks: (1) The zero x2l = -1/a = -0.61803; it does not satisfy (4.5). 

(2) As an illustration for Propositions 5 and 6, see Table 3 in [3], 
The two results also explain the observation in [3] that "the negative root 
approaches its lower bound more slowly than the positive root approaches its 
upper bound." 

5. Some Algebra 

In the theory of uniform distribution modulo 1, sequences of the type oo" 
supply important special cases (see, e.g., [8, p. 2]). For instance, it is 
known that a)n is uniformly distributed modulo 1 for almost all (in the Lebesgue 
sense) numbers oo > 1, but very little is known for particular values of a). On 
the other hand, it is of interest to study "bad" examples of cu, namely, those 
for which the sequence ajn is very "unevenly" distributed modulo 1. 

One such example is w = a = (1 + A)/2; its conjugate is 3 = (1 - /5)/2. 
Now an + 3n are the Lucas numbers 2, 1, 3, 4, 7, ... and thus are rational 
integers, so that 

an + 3n = 0 (mod 1). 

But |$| < 1, and so 3" -> 0 as n -> °°, which implies that an •> 0 (mod 1). 
Hence, an (modulo 1) has a single accumulation point. a shares this prop-

erty with a wider class of algebraic numbers (see [8] or [1]). 

Definition: A.Pisot number is an algebraic integer 0 > 1 such that all of its 
conjugates have moduli strictly less than 1. 

Theorem (Salem [8]): If 0 is a Pisot number, then 0 + 0 (mod 1) as n •> °°. 

The proof of this theorem is similar to the above discussion on the proper-
ties of an. 

It is our aim now to show that the unique positive zeros X\n of the poly-
nomials p (x) are Pisot numbers. First, we need the following result, 

Proposition 7: The polynomials rn(x) are irreducible over the rationals. 

We have seen in the previous sections that rn(z) has In - 1 zeros satis-
fying \z\ < 1 and one zero satisfying \z\ > 1. Also, rn{z) is a monic polyno-
mial with rational integer coefficients. If Pn(z) were reducible over the 
rationals, then, by Gauss's Lemma, ^n(s) = G(z)H(z) for suitable monic 
polynomials G(z), H(z) of positive degrees with rational integer coefficients. 
One of these polynomials, say G(z), must have all its zeros of modulus strictly 
less than one. Hence, the constant term of G(z) (the product of all its zeros) 
has modulus |£(0)| < 1. But this contradicts the fact that the constant term 
of G(z) is a nonzero integer. 

Remark: The proof of Proposition 7 is taken from [9] where, by the way, a tri-
nomial similar to (3.6) and (3.7) is considered. See also the remark on page 
12 in [1]. 

Proposition 8: The unique positive zeros Xin of vn(z) are Pisot numbers for all 
n > 1. 
Proof: This follows from Proposition 7 and the results on the zeros of rn(z) in 
the previous sections. 

We close with a factorization involving Fibonacci numbers. Equation (3.4) 
shows that the left-hand side of (3.4) splits into two factors of equal degree 
if a is rational. On the other hand, Proposition 7 shows that this polynomial 
is irreducible over (J for a = (/5 - 1)/2. These remarks suggest that we set 
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a = Fk/Fk+i (where Fk i s t he kth F ibonacc i number) , as i t i s w e l l known t h a t 

Fk/Fk+l + ( /5 - l ) / 2 for k + <»; 

t h e s e f r a c t i o n s a r e a c t u a l l y the b e s t r a t i o n a l approx imat ions to (v5 - l ) / 2 . 
If we t ake i n t o account 

a+ 1 = Fk/Fk+1 + 1 = Fk+2/Fk+1 
and 

(a + l)a - ^ + 2 V ^ ? + l = (Fk\x - 1)/Fk
z
+1, 

we o b t a i n the f a c t o r i z a t i o n 
(1 - F^l)z2n - z2n~l - 2z2n~2 - . . . - nzn - nzn~l - (n - l)zn~2 

- . . . - 2z - 1 

= t ^ + 2 / F / c + l ^ n + Zn~l + ••• + ^ + l ] [ ( ^ / ^ + 1 ) ^ n " 3 n _ 1 

- . . . - 2 - 1 ] . 

We note that the left-hand side of this factorization converges quite rapidly 
to vn (z) as k •> °°, uniformly on compact subsets of t. 
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A number of people have considered the arithmetical, combinatorial, geomet-
rical and other properties of sequences of the form ([na]i n > 1), where a is a 
positive irrational number and [ ] denotes , the greatest integer function. 
(See, e.g., [1]—[16]) and the references contained in those papers, especially 
[8] and [16].) 

There are several other sequences which may be naturally associated with 
the sequence i[na]: n > 1). They are the difference sequence 

fain) = [(n + l)a] - [na] - [a] 

(the difference sequence is "normalized11 by subtracting [a] so that its values 
are 0 and 1), the characteristic function 

<7a(n) (<7a(n) = 1 if ^ = [ka] for some k9 and gain) = 0 otherwise), 
and the hit sequence 

ha(n), 

where ha(n) is the number of different values of k such that [ka] = n. 
We use the notation 

fa = (fa(n): n > 1), ga = igain): n > 1), ha = (ha{n): n > 1). 

Note that fa = fa + ]< for any integer k > I* In particular, fa = fa-\ if a > 1. 
Special properties of these sequences in the case where a equals x, the 

golden mean, T = (1 + /5)/2, are considered in [5], [12], [14], and [16]. For 
example, the following is observed in [12]. Let un = [nx], n > 1, and let Fk 
denote the kth Fibonacci number. Given ks let r = Fzk* s = ^2k+l> t ~ ^2k+2° 
Then 

ur = s, u2r = 2s, u3r = 3s, . .., w(t_2)r = (t - 2)s; 

thus, the sequence ([nx]) contains the (t - 2)-term arithmetic progression 
(s, 2s, 3s, ..., (t - 2)s). 

It was shown in [16], using a theorem of A. A. Markov [11] (which describes 
the sequence fa (for any a) explicitly in terms of the simple continued 
fraction expansion of a ) , that the difference sequence fT has a certain 
"substitution property." We give a simple proof of this below (Theorem 2) 
without using Markov's theorem. We also make several observations concerning 
the three sequences fT, gTS and hT. 
Theorem 1: The golden mean x is the smallest positive irrational real number a 
such that fa = ga = ha. In fact, /a = ga = ha exactly when a2 = ka + 1, where 
k = [a] > 1. 
Proof: It follows directly from the definitions (we omit the details) that if a 
is irrational and a > 1, then ha = ga = /i/a. (The fact that ga = fi/a is 
mentioned in [8]. It is straightforward to show that 

ga(n) = 1 - fi/ain) = 1 and gain) - 0 - fVain) = 0.) 

^Research partially supported by NSERC. 
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Also, if a is irrational and a > 0, then 

KM = fi/M) + U/a] for all n > 1. 
Thus, if a is irrational and fa = ga = ha, then a > 1 (otherwise, ga is iden-
tically equal to 1, and fa is not) and 

fa-[a]M = faM = ga(n) = fi/a(n) for all n > 1. 
Since the sequence fn determines 3 if 3 < 1> this gives a - [a] = 1/a, and the 
result follows. 

Definition: For any finite or infinite sequence w consisting of 0Ts and l!s, let 
W be the sequence obtained from W by replacing each 0 in W by 1, and each 1 by 
10. For example, 10110 = 10110101. (Compare "Fibonacci strings" [10, p. 85].) 

Note that uv = u • V, and that u = V=^u = V by induction on the length of 
V. 

Theorem 2: The sequences fT and fx are identical. 

Proof: First, we show that if 0 < a < 1, then fa = gi + a. Let L(w) denote the 
length of the finite sequence w, so that if w = fa(l)fa(2) ... fa(k)9 then 

L(w) = k + fa(l) + ... + fa(k) = k + [(k + l)a]. 
Thus, 

ifa (n) = 1] ** \-n = L(w) + 1 for some initial segment w of fa ] 

** [n = [(fc + 1)(1 + a)] for some k > 0] *> [̂ i + a(n) = 1]. 

Therefore, /T = /T - 1 = #T = A/T = /T_i = fT. 
Corollary 1: The sequence fT can be generated by starting with w = 1 and re-
peatedly replacing w by w. 

Proof: If we define #]_ = 1 and Ek+i = Ek, then, since 1 = 10 begins with a 1, 
it follows that, for each k, Ek is an initial segment of Ek+i» By Theorem 2 
and induction, each Ek is an initial segment of fT . Thus, 

Ex = 1, Ez = E^ = 10, E3 = Ẑ T = 101, EV = £^ = 10110, 

E5 = E\ = 10110101, etc., 

are all initial- segments of fT . (These blocks naturally have lengths 1, 2, 3, 
5, 8, ... .) 

Corollary 2: For each i > 1, let 2^ denote the number of l's in the sequence fT 
which lie between the ith and (i + l)st 0fs. Thus, 

fT = 101101011011010110101101101011011..., 

(xn) = 2 1 2 2 1 2 1 2 2 1 2 2 . . . . 

Then the sequences (xn - 1) and fT are identical. 

Proof: If we start with the sequence (xn) and replace each 1 by 10 and each 2 
by 101, we obtain^ the sequence fT . Since _0̂  = 10 and I = 101, this shows that 
(̂ n " 1) = fT = fx • Therefore, (xn - 1) = /T , and, finally, (xn - 1) = fT . 
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1. Permutations 

We write a -permutation p of {1, 2, . . . , n} in the form p(l)p(2) . . .p(n) . An 
inversion of the permutation p(l)p(2)..,p(n) is a pair (p(i), p(j)) such that 
p(i) > p(j) and i < j . We let i(p) denote the number of inversions of p. For 
example, there are four inversions in the permutation p = 2431: (2, 1), (3, 1), 
(4, 1), (4, 3); hence, i(p) = 4. 

For applications to other areas (computer science, chemistry, physics), it 
is useful to note that the number of inversions of the permutation 
p(l)p(2)...p(n) is the same as the minimum number of interchanges of adjacent 
numbers required to restore p(l)p(2)...p(n) to its natural order 12...n. 

2. Definitions 

Let K be a field of characteristic 0, K[q] the polynomial ring, and R a 
commutative ring with identity containing K[q] . Let A = (a^j) be an nxn 
matrix with entries in R. The ordinary determinant of A is given by the 
familiar formula [3, p. 14] 

detW) = I] (-D^P)alp(1)a2p(2)...anp(n), 

where the summation is extended over all permutations p, and i(p) is the number 
of inversions of the permutation p. The q-determinant of A is defined by the 
same expression with (-1) replaced by the indeterminate q: 

detq(A) = £ <7i(p)alp(1)a2p(2)...a„p(n). 

This makes q a marker for the number of inversions of a permutation. 
Now, just as one can approach the subject of determinants from the point of 

view of Grassmann algebras, we can approach the subject of ^-determinants from 
the point of view of ^-Grassmann algebras. A q-Grassmann algebra (cf. [6]) is 
the associative Z[^]-algebra generated by #]_, XQ_, ..., xn, satisfying the 
relations #? = 0 and XjX£ = qx^Xj, if i < j . Clearly, in this algebra, every 
monomial can be written in the normal form 

oxixi' • 'xi 
1 2 r 

where c is in K[q] and i\ < i2
 < •° ' < ir * Hence, in normal form we have 

(allxl + al2x2 + ... + alnxn)(a2lxl + a22x2 + ... + a2nxn) 
... (anlxl + an2x2 + ... + annxn) = detq(aij)xlx2xr ..xn„ 
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38 Properties 

Theorem 1: 
(1) The ̂ -determinant is a multilinear function of the rows and columns. 
(2) The ̂ -determinant of a block triangular matrix is the product of the q-

determinants of the diagonal blocks. 
(3) detq(A) = detq(AT), .where AT is the transpose of A. 
(4) (Expansion Theorem) Let A^j denote the (£, j)-minor of A. Then, 

detq(A) = alldetq(All) + qa2ldetq(Azl) + q2a3ldetq(A3l) + . .. 

+ ^n"1anldetq(i4nl) 

= anndetq(^nn) + W(n-1)ndetq(i4(n_1)n) + ... + qn-lalndetq(Aln) 

= alldetq(All) + qa12detq(^12) + ^2ax3detq(Al 3) + ... 

+ ^-lalndet,(^ln) 

= anndet(?(lnn) + ^a^^det^C^..^) + ... + qn~"lanldetq{Anl) . 

Proof: Parts (1) and (2) are obvious; (3) follows from i(p) = i{p~l). ;The four 
equalities in (4) represent four ways of sorting the terms of detq{A) * They 
follow from the ^-Grassmann algebra formulation of the ^-determinants. [The 
last two equalities also follow from the first two and part (3).] Q„E*DS 

4. Fibonacci Polynomials 

There are several related polynomial sequences all named Fibonacci polyno-
mials. Here by Fibonacci polynomials we mean the polynomials Riordan called 
Ln{x) in his book [4, pp. 182-83], They were later reintroduced by Doman and 
Williams in [1]. It is interesting to note that Doman and Williams were led to 
the definition of these - polynomials from a study of a one-dimensional Ising 
chain in physics. 

Fibonacci polynomials Fn(q) are defined by the recurrence relation 

and the initial conditions F$(q) = 0, Fi(q) = 1- They are, in fact, expressible 
a s h •• • 

Fn + l(q) - E (" ":V. 
i = 0 x u ; 

where h is the integer part of n/2 (for n > 0). As we shall show in the fol-
lowing,. there are also the -generating functions of the number of inversions of 
permutations p. satisfying \i - p(i)\ < 2, for all i„ 

5. Generating Functions 

. In t̂his section, we. derive several generating functions of the number of 
inversions '-of - permutations by applying ^-determinants to (0, 1)-matrices *•• We' 
let K be the rational field, and we use the abbreviations: 

[n] = (1 + q + q2 + ••• + qn~l), 

[n]\ - [l][2][3]...[n]. 

Theorem 2: The generating functions of the number of .inversions of permuta-
tions of {1, 2, ..., n] is In]1 ([5, p. 21]). 

Proof: Let Jn denote the nxn matrix whose every entry is equal to 1, By the 
Expansion Theorem, '-.. -•• -
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£<7i(p) = detq(Jn) = (1 + q + q1 + ... + qn~l)detq (Jn _x) = [n] ! 

Here the summation is taken over all permutations. Q.E.D. 

Theorem 3: The generating functions of the number of inversions of permuta-
tions of {1, 2, ..., n] satisfying (i - p(i)) < r, for all i, where r < n, is 
[r]n'r[r]l. 
Proof: Let Kn(r) = (k^) denote the n*n matrix defined by 

'l, if i - j < r, 

\Q, otherwise. 

Again, by the Expansion Theorem, 

£ <?i(P) = detq(Kn(r)) = (1 + q + q2 + ... + q'-^detqiK^r)) 
i-pU)<r = [r]n-rdetq(Kr(r)) = [r]n"P[r]! Q.E.D. 

Theorem 4: The generating functions of the number of inversions of permuta-
tions of {1, 2, ..., n] satisfying \i - p(i)| < 2, for all i, is the Fibonacci 
polynomial Fn+l(q). 

Proof: Let Ln = (/̂ j) denote the n*n matrix defined by 

1, if \i - j \ < 2, 

{0, otherwise. 

The desired generating function is then 

E qiiV) = det^(Ln). 
|i-p(i)| <2 

By the Expansion Theorem, det^(Ln) satisfies the recurrence 

det^(Ln+1) = det^(Ln) + qdetq{Ln.l) 9 

and the initial conditions det^(L^) = 1, detq(L2) = 1 + q. Hence, the generat-
ing function is Fn+i(q). Q.E.D. 

We note that, since Fn+i(l) = Fn+i is the Fibonacci number, the number of 
permutations satisfying \i - p(i) | < 1 is Fn+i (see Example 4.7.7 of [5] and 
the related references given there). 

Now, call A < By if A = (a^-), B = (b^-j) are matrices with rational entries 
and a^j < b^j for all i, j. Similarly, define f(q) ^ g{q), if f(q)> $(q) a r e 

polynomials with rational coefficients and the coefficient of every term q^ in 
f(q) is less than or equal to the coefficient of the corresponding term q^ in 
g(q). It is easy to see that if A and B are (0, 1)-matrices and A < B, then 
det (A) < detq(B) and, therefore, 0 < det^Ol) - detq(B). 

Corollary 1: The generating function of the number of inversions of permuta-
tions of {1, 2, ..., n} such that £ - p(£) ̂  v for some £ is given by 

[n]l - [r]n~r[r]l 

When v = 2, the generating function is 

[n]! - [2]""1 = [n]l - (1 + t?)*-!, 

and when r = n - 1, it is 

[n]l - [n - l][n - 1]! = qn~l[n - 1]! 

which is obvious from the given condition. 
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Corollary 2: The generating function of the number of inversions of permuta-
tions of {1, 2, . . . , n} such that \i - p(i)\ >2 for some i is given by 

[n]l - Fn+l(q). 

Corollary 3: Let r be >2. The generating function of the number of inver-
sions of permutations of {1, 2, . .., n} such that (i - p(i)) < r for all i and 
\i - p(i)| ^ 2 for some i is given by 

[r]n~r[r]l - *n+1(<7). 

The special case r = 2 of Corollary 3 is of particular interest. It says 
the generating function of the number of inversions of permutations of {1, 2, 
. .., n} such that (i - p{i)) < 2 for all r and \i - p(i)| > 2 for some £ is 
given by 

O M ) - ' - W # ^ { ( " ; , ) - ( " ; V 
where i t is understood that (^) = 0 if r < i . 

6. Remarks 

From a preprint ("Quantum Deformation of Flag Schemes and Grassmann Schemes 
I: A q-Deformation of the Shape-Algebra for GL(n)" by Earl Taft & Jacob Towber) 
which we received from Professor Earl Taft recently, we learned that another q-
analogue of determinant (essentially replacing q by -q~l) has been developed by 
Yu I. Manin. 

We should also point out that the evaluation of a ̂ -determinant is in gen-
eral difficult, for the evaluation of even one of its specializations {q = 1), 
the permanent, is difficult (see [2]). 
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1. Introduction 

Many properties of the generalized Fibonacci numbers Un and the generalized 
Lucas numbers Vn (e.g. , see [3]-[5], [8]-[10], [12], [14]', [15]) have been 
obtained by altering their recurrence relation and/or the initial conditions. 
Here we offer a somewhat new matrix approach for developing properties of this 
nature. 

The aim of this paper is to use the 2-by-2 matrix Mk determined by the 
Cholesky LR decomposition algorithm to establish a large number of identities 
involving Un and Vn. Some of these identities, most of which we believe to be 
new, extend the results obtained in [6] and elsewhere. 

Particular examples of the use of the matrix M^, including summation of 
some finite series involving Un and Vn , are exhibited, A method for evaluating 
some infinite series is then presented which is based on the use of a closed 
form expression for certain functions of the matrix xM%* 

2. Generalities 

In this section some definitions are given and some results are established 
which will be used throughout the paper, 

•2.1. .The Numbers Un and the Matrix M 

Letting m be a natural number, we define (see [4]) the integers Un(rn) (or 
more simply Un if there is no fear of confusion) by the second-order recurrence 
relation 

(2.1) Un + 2 = mUn + l + Un; U0 = 0, Ux = 1 \f m* 

The first few numbers of the sequence {Un} ares 

u0 ul u2 u3 uh u5 u6 

0 1 m m2+l m3+2m w 4 + 3 w 2 + l m5+^m3+3m . . . . 

We recall [4] that the numbers Un can be expressed in the closed form (Binet 
form) 

(2.2) Un - (a- - 3^)/Am5 

where 

Work carried out in the framework of the agreement between the Italian PT Administration and 
the Fondazione Ugo Bordoni, 
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Jrrfl- + 4 
(2 .3 ) { am = (m + Am)/2 

(m - A j / 2 . 
From (2 .3) i t can be no ted t h a t 

am + 3m = m 

We a l s o r e c a l l [4] t h a t 

[ ( n - l ) / 2 ] 

= 0 l ^ 
( 2 . 5 ) tf„ 

l - D / 2 ] , „ _ A _ l v 

where [°] denotes the greatest integer function. Moreover, as we sometimes 
require negative-valued subscripts, from (2.2) and (2.4) we deduce that 

(2.6) U.n - (-l)n+1£/n. 

From (2.1) it can be noted that the numbers Un(l) are the Fibonacci numbers 
Fn and the numbers Un{2) are the Pell numbers Pn. 

Analogously, the numbers Vn(rn) (or more simply Vn) can be defined [4] as 

(2 .7 ) vn = an
m - e* = y„_! + y n + 1 . 

The first few numbers of the sequence {Vn} are: 

F, Vo V* V, V* V& V0 . 
2 m m2+2 m3+2>m mk+hm2+2 m5 + 5m3 + 5m m& + 6m1* + 9m2 + 2 . . . . 

These numbers s a t i s f y the recurrence r e l a t i o n 
(2 .8 ) Vn + 2 = mVn+1 + Vn; V0 = 2 , 7j = m Mm. 

From (2 .7 ) and (2 .4 ) we have 
(2.9) V-n = (-l)"7n) 

and it is apparent that the numbers Vn(l) are the Lucas numbers Ln while the 
numbers Vn{2) are the Pell-Lucas numbers Qn [11]. 

Definitions (2.1) and (2.8) can be extended to an arbitrary generating par-
ameter, leading in particular to the double-ended complex sequences {£/n(s) }~oo 
and {Vn(z)}2co. Later we shall make use of the numbers Un(z)0 

Let us now consider the 2-by-2 symmetric matrix 

(2.10) M 

which is governed by the parameter m and of which the eigenvalues are ctn 
3m. For n a nonnegative integer, it can be proved by induction [6] that 

and 

(2.11) Mn Un+1 

Also, the matrix M can obviously be extended to the case where the parameter 77? 
is arbitrary (e.g., complex). 
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2.2 A Cholesky Decomposit ion of t h e Matrix M: T h e Matrix Mfc 

Let us put 

(2 .12) Mi = M = 
[1 0 

and decompose Mj as 

(2.13) Mi = TXT{ 
a± 0 al cl 

0 b, 

where 2\ is a lower triangular matrix and the superscript (') denotes transpo-
sition, so that T^ is an upper triangular matrix. The values of the entries 

b±, and o^ of 2^ can be readily obtained by applying the usual matrix mul-
tiplication rule on the right-hand side of the matrix equation (2.13), 
fact, the system 

In 

(2.14) 

A + '1 0 

can be written, whose solution is 

(2.15) 

where i = 

tic, 

-1. 

Any of these four solutions leads to a Cholesky LR decomposition [17] of the 
symmetric matrix Mi. 

On the other hand, it is known [7] that a lower triangular matrix and an 
upper triangular matrix do not commute, so that the reverse product T^T^ leads 
to the symmetric matrix M2 which is similar to but different from M1. If we 
take bl = +ic± [cf. (2.15)], we have 

(2.16) M2 = -
Z 772 

777Z + 1 

-1 

while, if we take b\ = -ici, the off diagonal entries of M2 become negative. 
In turn, M2 can be decomposed in a similar way, thus getting 

Mn T2T>2 

0 

where [y2 

2 = ±/(77z2 + l)/m 

2 = lla2 
2 = ±ic2. 

The reverse product T2T2 leads to a matrix M3 with sign of the off diagonal 
entries depending on whether b2 = +ic2 or -ic2 has been considered. 

If we repeat such a procedure ad infinitum, we obtain the set {Af/Ĵ  of 
2-by-2 symmetric matrices 
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(2.17) Mk 

Uk+l 
(fe * 1 ) . 

-U k-l 

Because of the ambiguity of signs that arises in the Cholesky factoriza-
tion, (2.17) is not the only possible result of k applications of the LR 
algorithm to M. However, the only other possible result differs from that 
shown in (2.17) only in the sign of the off diagonal entries. From here on, we 
will consider only the sequence {Mk} given by equation (2.17). 

Since the matrices Mk are similar, their eigenvalues coincide. Mk tends to 
a diagonal matrix containing these eigenvalues (namely, a 
to infinity. 

To establish the general validity of (2.17) 
sition 

" uk+1 

and 3m') a s ^ tends 

consider the Cholesky decompo-

M» Uz.U; kuk+l 

Uk+l 

, - f c - l 

0 

0 iuk 

where Simson ''s formula 

(2.18) Vk+lVk_x - Ul = (-1)* 

has been invoked. Simsonfs formula may be"quite readily established by using 
the Binet form (2.2) for Un and the properties (2; 4) of am and $m. On the 
other hand, from (2.11) and (2.10), it is seen that 

Ul = det(Afk) = (det M)k = (-1)*. 

Reversing the order of multiplication, we get 

Uk+lUk-

ukuk + 1 

Uk+l 

0 

,'k-l 

iUv 

Uk+l 0 

iuk 
Uk + l 

Uk + 2 

-Up 
[by (2.17)] 

[by (2.18)] 

Thus, if the matrix for Mk is valid, then so is the matrix for Mk + \. 
For convenience, Mk may be called the Cholesky algorithm matrix of Fibo-

nacci type of order k. 
Furthermore, if we apply the Cholesky algorithm to Mn [see (2.11)] ather 

than to M, we obtain 

(2.19) (Mn), 
1 

Uk + n 

ik'lu„ 

i k - -lun 

(-Dnuk-„ Uk 
u. n + k 

,-k-l 

,-k-l u„ (-i)K-lun 

u„ 
k-lr 

Observe t h a t 
( 2 . 2 0 ) (Mn)k = \Mk)n = Mn

r 

Validation of this statement may be achieved through an inductive argument. 
Assume (2.20) is true for some value of n, say N. Thus, 

(2.21) (Mk)N = (MN)k. 

Then, 
(Mkf+l =Mk(Mk)N = Mk(M% = (MN+l)k 

[by (2.21)] 

after a good deal of calculation, so that if (2.20) is true for N, it is also 
true for N + 1. In the calculations, it is necessary to derive certain iden-
tities among the Un by using (2.2) and (2.4). 
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2.3 Functions of the Matrix xMf 

From the theory of functions of matrices [7], it is known that if / is a 
function defined on the spectrum of a 2~by-2 matrix A = [a^j] with distinct 
eigenvalues X]_ and A2s then 

(2.22) f(A) = X - [Xij] = c0I + QlA9 

where J is the 2-by-2 identity matrix and the coefficients cQ and o^ are given 
by the solution of the system 

(2.23) ^ 

1̂ 0 + C1A2 = /(A2^-
Solving (2.23) and using (2.22), after some manipulations we obtain 

(2.24) arn = [(an - A1)/(A2) - (a n - X2)/(X1)]/(X2 - Ax) 

(2.25) xl2 = a12[/(X2) - /(A1)]/(A2 - Ax) 

(2.26) x21 = a21[/(A2) - f(A1)]/(A2 - Ax) 

(2.27) x22 = t(a22 - AX)/(A2) - (a22 - A2)f(A1)]/(A2 - Ax). 

For x an arbitrary quantity, let us consider the matrix xUy. having eigen-
values 

'Ax = xan
m 

?13 
Of 

(2.28) 
^A2 = x$\ 

and let us find closed form expressions for the entries y^ 

I = [yid ] = fix*?). 
by (2.24)-(2.27), after some tedious manipulations involving the use of certain 
identities easily derivable from (2.2) and (2.3), we get 

(2.29) 2/n = [alf(xal) - $f(xZ%)]/(LmUk) 
(2.30) ylz = yzl 

,-k-l lf(xan
m) - f(x$nJ]/(AmUk) 

(2.31) z/22 = [a*/(atf£) - ^f(xan
m)]/(AmUk). 

As an illustrative example, let f be the inverse function. 
(2.29)-(2.31) we obtain 

Then, from 

(2.32) (xMl)-

(2.33) 

xUv 

{-l)k~lUn.k -ik-lUn 

rk-lj Jn + k 

±M'kn [using (2.19) and (2.6)]. 

3. Some Applications of the Matrix Affc 

In this and later sections some identities involving Un and Vn are worked 
out as illustrations of the use of our Cholesky algorithm matrix of Fibonacci 
type Mk. 

Example 1: From (2.19) we can write 

(3.1) Ml u, Ik 
, - f c - l Vv 

rk-lj 

vk 

rk-l 

, - f c - l 

Rk - [r,,] (- [rth)> • V Ĵ 
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whence 

(3.2) M rik Rl [p<n)]. 
L v J 

r f c - l ,(o) Thus, P1X = Vk, r12 = r21 = iK L, r2z = 0. Take r\\J = 1 . By induction on n, 
with the aid of Pascal fs formula for binomial coefficients, it can be proved 
that 

[nil] 

(3.3) 

*ff- .E M)J'a"1}(n '. J ) C 
» = ̂ n ) = ,^-1^-D 
12 

(n) 
•22 

•21 

(-D 

11 

fe-1 (n-2) 
P l l (n > 2). 

*rc/c On the other hand, the matrix Mk can be expressed also [cf. (2.19)] as 

(3.4) Mf=± u-k(n + l) rk-ij 
nk 

,'k-l Unk (-l)*"1^^..!)-

Equating the upper left entries on the right-hand sides of (3.2) and (3.4),by 
(3.3) we obtain the identity 

(3.5) UHn + 1)/Uk = [E21 (-i)'-<*-»(» - 3)v»-V, 
j = 0 \ J / 

i.e., Uk\Uk^n+iy9
 a s w e would expect. 

Furthermore, from (3.1) we can write 

(3.6) [{-i)k-1Mhn 
i-i)k~lVk 

l*{&, 

where Zk = [s--] is an extended M matrix depending on the complex parameter 

(3.7) z = (-i)k'lVk(m). 

From (2.11) we have 

(3.8) 3<*>- Un(z)9 

and by equating z ^ a n d ttie upper right entry of [(-i) f e - 1 M ?] n obtained by (3.4) 
we can write 

(3.9) (-i)n(k-l)ik-lUnk(m)/Uk(m) = (-i)*(fc-l>£<n + l).^-^UnH (m)/Uk(m) 

= tfn(a). 
From (2.5) and (3.7) it can be verified that 

Un(Vk(m)) (k odd, n odd) 

(_1)(fe-l)/2^(7fe(777)) (̂  o d d j n even). 

Therefore, from (3.9) and (3.10) we obtain the noteworthy identity 

(3.11) Unk(m)/Uk(m) = Un(Vk(m)) (fc odd) 

which connects numbers defined by (2.1) having different generating parameters. 

(3.10) Un(z) -
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For ins tance, 

(m3 + 3m) 2 + 1 = m& + 6mh + 9m2 + 1 = (m8 + 7w6 + I5mh + 10m2 + 1) / (m2 + 1) 

= J/3(^W) = U3{m)/U3(m) 

which simultaneously v e r i f i e s (3.5) and (3 .11) . 

Example 2: Following [2 ] , from (2.19) we can wri te e i the r 

ur+kus+k- (-i)kurus ik-l[ur+kus - (-i)kurus-k] 
(3.12) M*Ms

k=± 
'k-l [us + kur- (-i)kusur„k] ur.kus.k- {-iyuru8 

(3.13) Ml + s=j-k 
lk~lu„ 

+ k i^Uy. 

(-l)k~1U 
r+s-k J 

By equating the upper r igh t en t r i e s on the r ight-hand sides of (3.12) and (3.13) 
we obtain 

(3.14) UkUr + 8 = Ur + kUs - (-l)kUrUs_k 

= Ue + kUr - (-l)kU8Ur-k a l so . 

4. Evaluation of Some Finite Series 

In t h i s sect ion the sums of ce r t a in f i n i t e s e r i e s involving Un and Vn are 
found on the basis of some proper t ies of the Fibonacci-type Cholesky algorithm 
matrix Mk. 

I t i s readi ly seen from (2.17) and (2 .19) , with the aid of (2 .1 ) , that 

(4.1) Ml = mMk + I , 
whence 

(4.2) M^ 

Moreover, using the identity 

(4.3) VnUp - Un + p = (-ljP-^n.p, 

which can be easily proved using (2.2) and (2.7), we can verify that 

Mk - ml. 

(4.4) (xM? - I)~l 
xMv (Vnx - 1)1 

k *' (-l)n~1x2 + Vnx - 1 

where x is an arbitrary quantity subject by (2.28) to the restrictions 

(4.5) x * 

A) From (4.1) we can wri te 

C«| - I)" = (mMk)n 

and, therefore , 

£(-D-(5)*f^-»-*?. 
j - o w ' 

whence, by (2.19), we obtain a set of identities which can be summarized by 

170 [May 



CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES 

(4.6) £ (-l)^HW2i+ s = mnUn + B, 
j = 0 x^ ' 

where n is a nonnegative integer and s an arbitrary integer. Replacing s by 
s ± 1 in (4.6) and combining the results obtained, from (2.7) we have 

(4.7) ± (-ir-'^Yzj + s = m»Vn + s . 

Furthermore, following [13], from (4.1) we can write 

(4.8) (mMk + I)nM* = M f + S. 

Equating appropriate entries on both sides of (4.8), with the aid of (2.19), we 
obtain 

j + s ^2n + s s 

whence, replacing s by S i 1 as earlier, we get 

(4.io) ioQyvJ+s - v2n+s. 
B) From (4.2) we can write 

(Mk - ml)n = (#£)-!, 

whence, by (2.19) and (2.32), after some manipulations, we obtain a set of 
identities which can be summarized by 

(4.11) £ t-iymn-H")uj + a = (-l)s"li/n_s. 

C) Finally, let us consider the identity 

(4 .12) (xAn - 1) X > J ' ^ - xh+lAn{h + l) - J, 
j - o 

which ho lds for any square m a t r i x A. From (4 .12) and (4 .4 ) we can w r i t e , fo r 
the Cholesky a l g o r i t h m m a t r i x Mk of F ibonacc i t y p e , 

(4.13) J2x'MkJ = (xMk ~ I)-Hxh + 1M%(h + l) - I) 

(-l)n-lx2 + VnX - 1 k 

_ xh+2Ml{h+2) - xM% - xh+l(Vnx - l)M£{h+l) + (Vnx - I)J 

( - l ) * " 1 ^ 2 + Vnx - 1 

After some manipulations involving the use of (4.3), from (4.13) and (2.19) we 
obtain a set of identities which can be summarized as 

(4.14) T,^U -
3 ?0 n° + s (-1)""1*2 + Vnx - 1 

where n is a nonnegative integer and s is an arbitrary integer. Replacing s by 
s ± 1 in (4.14), by (2.7) we can derive 

(4.15) 2LxVni+e 
j-o "J + S (-I)""1** .+ 7„ar - 1 

We point out that (4.14) and (4.15) obivously hold under the restrictions 
(4.5). 
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5. Evaluation of Some Infinite Series 

In this section a method for finding the sums of certain infinite series 
involving Un and Vn is shown which is based on the use of functions of the 
matrix x.M^ (see Section 2.3). 

Under certain restrictions, some sums can be worked out by using the re-
sults established in Section 4 above. For example, if 

(5.1) -l/a« < x < l/<, 

we can take the limit of both sides of (4.14) and (4.15) as h tends to infinity 
thus getting 

00 i (-l)s-lxUn.s - Us 
(5.2) X>'*7nj. + a -"o "" '" (-l)n~lxz + Vnx -

{-l)sxVn.s - Vs 

(5.4) Y= e x p ( ^ ) - £ ^ 

(5.3) J > X - + a {.l)n-lx2 + VnX _ i 

5.1 Use of Certain Functions of xMjJ 

Following [6], we consider the power series expansion of exp(xM )̂ [7], 

x'Min 

j - o 
and the closed form expressions of the entries y^ • of Y derivable from (2.29)-
(2.31) by letting / be the exponential function. Equating y^ and the corre-
sponding entry of J on the right-hand side of (5.4), from (2.19) we obtain the 
identities 

(5.5) £ f" + * - [a* exp(xc4) - B* exp(^)]/Aw, 
3 - 0 J ' 

00 xc'U-
(5.6) £ —jf- = [exP0m£) - exp(xB^)]/AOT, 

j = o «/ • 

IT (5.7) £ ?, = t - D ^ ' l a * e x p ( ^ ) - f$k
m exp(xan

m)]/Am, 
j'-o 

which, by using the identity (-l)fc am = -&„ [see (2.4)], can be summarized as 

(5.8) t * U^ + S - K exp(xa-) - B« expOO]/AOT, 

where n is a nonnegative integer and s is an arbitrary integer. 
From (5.8), (2.7), and (2.3) we can readily derive 

(5.9) £ ff + a = [ a ^ e x p C O d + a*) - B ^ e x p O O d + B£)]/AOT 
j - o J' 

= a^^expfra^tA, + 777)/2 - B^expCatfS) (Aw - ra)/2 
= a* exp(xa^) + Bm exp(xB^). 

By considering power series expansions [1], [16], [7] of other functions of 
the matrix xM%9 the above presented technique allows us to evaluate a very 
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large amount of infinite series involving numbers Un and Vn . We confine our-
selves to showing an example derived from the expansion of tan~ly (see [1] and 
[7, p. 113]. 

Under the restriction 

(5.10) -l/< < x < l/a«, 

we have 

(5.1D £ ("1)3 * ! U"{1i-l) + s = [asmtan-l(^a"m) - (̂  tan"! (*($!£) ]/Am. 
J = 1 

6. Conclusion 

The identities established in this paper represent only a small sample of 
the possibilities available to us. We believe that the Cholesky decomposition 
matrix Mk is a useful tool for discovering many more identities. Further 
investigations into the properties of matrices of this type are warranted. 
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1. Introduction 

There exists a unique partition of the positive integers into two disjoint 
sets A and B such that no two distinct integers from the same set sum to a 
Fibonacci number (see [1], [2], and [3]). For the purposes of this paper, we 
shall refer to this partition as the "Fibonacci-free partition." The first few 
numbers in the sets A and B are: 

A = {1, 3, 6, 8, 9, 11, ...}, 

B = {2, 4, 5, 7, 10, 12, ...}. 

In this paper, we shall prove that the sets A and B can be written in the 
form 

A = { [ n c j ) ] } - {[7n<|>]|fp(777<|>) > <J>/2}, 

B = { [ n c j > 2 ] } u {[m<|>]|fp(77z<|>) > cf>/2}, 

where m is a positive integer, (j) = (1 + vo)/2, ^ ranges over all the positive 
integers, and fp(#) denotes the fractional part of x. (We depart from the 
standard notation where (x) denotes the fractional part of x to avoid confusion 
in complicated expressions. See Lemma 4.4 below, for instance.) We shall also 
prove the following conjecture of Chris Long [4] : the set A satisfies the 
equality A = {[w<|>]} - Ar, where AT = {[scf)3] \s E A}. 

We remark that in [3] it is shown that the Fibonacci-free partition cannot 
be expressed in the form A - {[na]}, B = {[nb]} for any a and b, but that the 
above result shows that such a representation is "almost" possible. 

A note on notation: in this paper, unless otherwise specified, Fn denotes 
the nth Fibonacci number, \x] denotes the least integer > x, and dist(#) is the 
distance of x from the nearest integer, i.e., 

dist(ic) = min{x - [x], \x] - x}. 

2. An Important Lemma 

Definition: A positive integer a is said to have the distance property if 

dist(a())) > dist((j)JP) 

for all Fibonacci numbers F > a. 

Lemma 2.1: All positive integers have the distance property. 

This crucial lemma is the key to the proof of Theorem 3.4 below. It will 
be used in the proofs of all three lemmas in the next section. 

Proof: We proceed by induction. Note first of all that 1 has the distance pro-
perty. So now suppose that there exists Fn > 2 such that all integers < Fn 
have the distance property. We have to show that all integers < Fn+i also have 
the distance property. It is well known that Fibonacci numbers have the 
distance property. So we need only check that if k is any integer such that 
Fn < k < Fn+i, then dist(fc<j>) > dist(<$>Fn + l ) . 
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The case k - Fn+1 is clear; therefore, we can safely assume k < Fn+l. Let 
m = k - Fn. Then m i s a p o s i t i v e i n t e g e r < Fn.x so t h a t distOcj)) > d i s t C ^ ^ ) , 
by the induction hypothesis. There are two cases to consider: 

( 1 ) <S>Fn+l > Fn + 1 . Then dist(<f>F„ + 1) = f p ( ^ + x) . So to show that dist(<^n + 1) < 
dist(^cf)), we jus t need to show two things: 

fp(*^«+l) < fp(̂ cj)) and fp((j)Fn + 1) < 1 - fp(kcj)). 

Firs t of a l l , note that fp(77Z<|>) > ±v(§Fn -l)» since 

fpO??<f>) > d i s t O f ) ) > d i s t C ^ . i ) = f p C ^ . i ) . 

Now, dist((j)^n) < d i s t C ^ . i ) , and since dist((J)Fn) = F n + 1 - $Fn9 this means that 
f p ( ^ n - l ) " (Fn + l ~ <$>Fn) > 0 . T h u s , 

fp(<j)^) + f p C ^ - x ) = <|>Fn - (Fn + 1 - 1) + f p C ^ . i ) 

= 1 + f p C ^ - i ) - (Fn+l - $Fn) 

> 1. 

But fp(77z4>) > f p C ^ - i ) , so fp(<|>F„) + fp(w7<|>) > 1. By the definition of /w above, 
k$ = <J>F„ + ?77cf>. I t follows that 

fp(kcj)) = fp((()F„) + f p W ) - 1 

> fP((f)Fn) + f p C ^ . i ) - l 

= f p U ^ + i ) . 

It remains to be shown that fp(c()Fn+1) < 1 - fp(/c<|>). We have 

fp(fc<|>) = fp(^) + fpW) - 1 

< fpU^) 
= 1 - dist(c|>Fn) 

< 1 - dist(<|)FM + 1 ) 

= 1 - fp(cj)Fn + 1 ) , 

i.e., 1 - fp(/c(j>) > fp((()F„+i), so we are done. 

(2) §Fn+i < Fn + 2' In this case, dist($Fn + i) = 1 - fp(cl)Fn + 1 ) ; thus, we need to 
show that fp((j)Fn+1) > fp(/C(f>) and that fp((j>Fn+1) > 1 - fp(fccj)). The arguments 
are almost the same as in case (1), so we will not repeat them here. Again we 
find that dist (<\>Fn+ x) < dist(/c<|>). 

This completes the proof. 

3. The New C h a r a c t e r i z a t i o n 

Lemma 3.1: [m§'2-} + [n(j>2] i s never a F ibonacc i number (???, n p o s i t i v e i n t e g e r s ) . 

Proof: Suppose [mfy2] + [nty2] = Fi for some i . Since 777 and n a r e p o s i t i v e , F^ > 5 
( j u s t l e t m = n = 1 ) . Now, 

—u 

which equals either F^ 
we also have 

1) 
Fi 

F; ~ ~ [FJ§] - 1 - Fi - 1 - {^Fi 

- ̂  - 1 - ( [ ^ ] - ^ ) , 

^ _ x = i^_2 - l o r ^ - 1 - {Fi.l - 1) îV i-2-

[m(l 4- <())] + [n(l + <)>)] (;?? + n)(l + <(>)' 
(m + n) (1 + cj)) 

**] 

But 
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m + n + [mfy] + [n$] 
• (m + ft) 

m + n + TTzcf) + n<\> 

To evaluate this expression, note that the denominator of the big fraction 
here exceeds the numerator by no more than 2, and the denominator is more than 
2(77? + ft), so the fraction is greater than 

2(77? + n) - 2 = rn + n - 1 
2(77? + n) m + n 

Hence, multiplying the fraction by m + ft ,will give a number between m + ft - 1 
and 77? + ft, so the entire expression (after flooring) evaluates to m + ft - 1. 

Equating the two expressions for [ i'V / (J)2 ] 5 we see that m + n - 1 equals either 
î -_2 - 1 or i^-2* In other words, there are two cases to be considered: 

77? + n = Fi _ 2 and 77? + n = ̂ _ 2 + l-

Suppose first that 77? + n = Fi _2. There are two subcases: 

(1) (TT? + ft) <j> < i^ _ i. Then [77?(j)] + [n$] must equal either i^_i - 1 or F i_^- 2. 
But if [777<£] + [7-2$] were equal to i^-i - 2, then fp (777(f)) + fp(n<j>) would have to 
equal 1 + f p((f)î  _2) 5 so that either fp(77?(|)) or fp(n<j>) would have to be greater 
than fp((f)î -_2) •. But f pC^-i-2) = 1 - dist (§Fi _ 2 ) , so this would mean that 
either m or n would not have the distance property, contradicting Lemma 2.1. 
Hence, [777(f)] + [ft(j)] = i^-i - 1. 

(2) (77? + n)(f> > i^_l8 Then [777(f)] + [ft(f>] must equal either Fi_l - 1 or i^-i- But 
if [777(f)] + [ft(j>] were equal to ^ - 1 , we would have fp (777(f)) + fp(nc|>) = f p((f)î  -2) > 
which would imply that either fp(77?(f)) or fp(n<j>) was less than fp((f)F^_2) . But 
fp((f)F^_2) = dist ((f)F̂ _2) s so this would mean that either m or ft would not have 
the distance property, contradicting Lemma 2.1. So again we have [777<J>] + [n$] = 
Fi-l ~ 1. 

It follows that 

[77?(j)2] + [ft(f>2] = 77? + n + [TT?*] + [n<t>] = ^ - 2 + Fi-i - I = Fi - l9 

c o n t r a r y t o t h e a s s u m p t i o n t h a t [T??(J>2] + [ft(J)2] = F± . 
S u p p o s e now t h a t m + n = F^-2 + 1 . Then [77?(j)] + [ft(f)] i s e i t h e r i ^ _ i + 1 o r 

^ _ 1 , and 

[7?7(})2] + [n<i>2] = 7?? + n + [T??())] + [n<|>] = ^ _ 2 + 1 + ^ - 1 + r = Fi + 1 + r , 

where r = 0 or 1, again contrary to the assumption that [T??(J)2] + [ft(J>2] = i^. This 
establishes Lemma 3.1. 

Lemma 3.2: If [m$i + [ftcj>] is a Fibonacci number (where TT? and ft are distinct 
positive integers), then either fp(?77<j)) > (j)/2 or fp(rc<|>) > (j)/2, but not both. 

Proof: Suppose [777(f)] + [ft(f>] = Fk for some 7c. Now [(77? + ft)(f)] exceeds [777(f)] + [n$] 
by at most one, so [(m + ft)(f>] is either Ffe or Ffc + 1. Let us write [(77? + ft)(f)] 
as Ffe + r, where r = 0 or 1. Then 

(77? + n)(f> - fp((77? + n)$) = [(TT? + n)(j)] = Fk + r, 
s o fp((77? + n)(j)) Ffe + r m + n = H — * — • 

fp( (77? + rc)d>) p 
= — * + ^ + +** ~ ̂ + 1 + F^l ~ F* 

fp((77? + ft) 6) V 
" — S ^ ^ + I ± dist((f)^) + ̂ _:. 
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Let x denote the sum of the f i r s t t h r e e terms in t h i s e x p r e s s i o n . Since 
&±st{$Fk) < %, we have x > - 1 . Moreover, 

fp((m + n) (J)) v 
— < 

so x < (2/<j>) + % < 2. It follows that m + n equals either i^_x or Ffe-i + 1. 
Suppose m + n is Fk_l9 Then [(tfz + n)<J>] = [ f t ^ ] , which cannot equal Fk + 1 

and, therefore, must equal Fk . Thus, dist (i>Fk_ i) = fp((j)î ,-i) °  Then, by Lemma 
2.1, fp(w?(()) and fp(n<|>) must both be greater than fp(cj>^ _i) . But 

[{m + n)<J>] - [m$] - [n§] = fp(???(j)) + fp(w<|>) - fp((m + n)(j)) 

= fp(/w<|>) + fp(ncj)) - f p C ^ . i ) 

must be an i n t e g e r , so i t must equa l 1. In o t h e r words, 

[/77(f)] + [n<j>] = [(rn + n )* ] - 1 = Fk - 1, 

but this is a contradiction* 
So m + n = ̂ _ ! + 1. Then m§ + n§ = §Fk-\ + $°  We split into two cases: 

(1) cj>^-l > Fk. We have 

Fk = |>cj)] + [ncj)] = 777c(> + n<j> - fp(mcj)) - fp(n<|>) 

= <j>l̂  _i + <|> ™ fp(m^)) - fp(ncj)) 

=*• fp(m(j)) + fp(ncf)) = c f ^ - i - Fj, + <j> 

= d i s t ^ - l ) + cf). 

So It is clearly impossible for both fp(w?<f>) and fp(ncf)) to be less than cj)/2; we 
need to show that they cannot both be greater than (j)/2. Suppose fp(tf?cj)) = $/2 + 
El and fp(ncf)) = <j>/2 + £2? where £]_ and £2 a r e both positive and ej_ + £2 ~ 
dist(<|)^_i) . Then fp( \m ~ n \ cf>) = |ej. ~ £2! < dist (§Fk-i), but since m and n 
are distinct (and this Is where distinctness is really crucial), 1777 - n | is 
strictly positive, and this contradicts Lemma 2.1 (since |m - ft| is a positive 
integer less than Fk-i) . Hence, fp(tfz<j)) and fp(n<j>) cannot both be greater than 
4>/2. 
(2) §Fk„i < Fk, The argument is similar, except that here 

fp(??7(j)) + fp(nc()) = cj) - d±st($Fk^i) . 

Then c l e a r l y we cannot have both fp(mcj)) and fp(n<|>) g r e a t e r than (|)/2, and w r i t -
ing fp(m<|>) = <|>/2 - £1 and fp(ncj)) = <j)/2 - £2 l e a d s to the same c o n t r a d i c t i o n as 
b e f o r e , 

Lemma 3.3: I f fp(mcj)) > <j>/2, then [w<|>] + [ft<{>2] I s not a F ibonacc i number. (m 
and n a r e p o s i t i v e i n t e g e r s bu t no t n e c e s s a r i l y d i s t i n c t . ) 

Proof: We show t h a t Fk - |><j>] can be w r i t t e n in the form [n<f>] for some n i f 
i^ > [m§] « There a r e two c a s e s : 

(1) Fk = [<l>^fe-i] + 1- If ^fc-l = m> t h e n *fc " t^*] = !» which I s of the form 
[1 * ()>]. Otherwise , Fk-i > ffl. Moreover, by Lemma 2 * 1 , 

1 - fp(tf?<|>) > dist(?w<|>) > dist(4)Ff e_1) = 1 - fp(cf)JPk„1), 

i.e., fp(7W<|>) < f p ( ^ _ 1 ) . Let d = (Fk-i - TW)<|>. Then 

£V(d) = fp(())^_1) - fp(mcf)) < 1 "" <|>/2. 

It follows that [d + <(>] = [d] + 1, and also that [d] = [<f>^-i] - [m$] - Thus, 

^ ™ [TW*]- [^fc-il + 1 - t^] « [<*] + 1 - [d + <H - [(^-1 - n + 1)*], 

so we can just set n=sFk„i"-m+l» 
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(2) Fk = [<\>Fk-i], Now the s m a l l e s t va lue of m fo r which fp(wcj)) > <J)/2 i s 777 = 3 , 
so the s m a l l e s t va lue of Fk fo r which t h i s case can occur i s Fk = 8. Since 
fpOf>) = dist(7?2(J)), we have £p($Fk-i) < fp(5(j)) < 0 . 0 9 1 . So f p U ^ - i - 77z)<|>) < 
1 < cf)/2 + 0 . 0 9 1 ; t h u s , 

[(Fk_l - m + I ) * ] = [ (F f c - i - w)*] + 1. 
Since fpC^F^-j) < fp(???(f>), 

** - C/w*] = [**fc-i] " [w*] = [ ( * * - i " w)+] + 1 = [(Fk-l - rn + !)<}>] 
as we just proved, so we can just set n = -̂fc-i - w + 1, as before. 

Now, since 1/<|> + 1/fy2- = 1, we can apply Beatty?s theorem, which states that 
{[na]} and {[nb]} form a partition of the positive integers if and only if a 
and b are irrational and 1/a + l/b = 1 (see [5], [6]). It follows that any 
number that can be written in the form [n§] cannot be written in the form [scj)2] 
for any s, so that Lemma 3.3 follows immediately. 

Theorem 3.4: The two sets A and B of the Fibonacci-free partition can be writ-
ten in the form 

A = {[ncf>]} - i[m<i>] |fpO<f)) > <j>/2}, 
B = {[n<f>]} u {[m<b]\fv(m<k) > cf)/2}. 

Proof: First of all, we note that, by Beatty's theorem, A and B do indeed form 
a partition of the positive integers. From Lemmas 3.1-3.3, we see that this 
partition has the property that no two distinct integers from the same set sum 
to a Fibonacci number. The theorem then follows from the uniqueness of the 
Fibonacci-free partition. 

4. LongTs Conjecture 

Lemma 4.1: If n is a positive integer such that fp(n<j)) > cj)/2, then there 
exists a positive integer k such that n = [kfy] and fp(fcc|>) < (cj) - l)/2. 

Proof: First, note that 

fp(rc/<|>) = fp(ncj) - ri) = fp(ncj)) > (j>/2. 

Let a = 1 - fp(n/<(>). Note t h a t a < 1 - <f>/2. Then 

4>rn/<|)l = Kn/(j)) + acf> = n + a<|> < n + (1 - <|>/2)<|> = n + (<J> - l ) / 2 . 

Now s e t fc = [n/(|)l. I t i s c l e a r t h a t k has the d e s i r e d p r o p e r t i e s . 

Lemma 4.2: I f k i s a p o s i t i v e i n t e g e r such t h a t fp(&<(>) < (<j> - l ) / 2 , then 
fpafc*]*) > <i>/2. 
Proof: fpCCfc*]*) = fv(k<t>2 - <|>fp(fc<|>)) 

= fp(k(j> + & - <|>fp(fc<|>)) 
= fp(fe+ - *fp(fe+)) 
= fP(fc+ - fP(k(|») - (* - i ) f p ( k * ) ) 
= 1 - fp((<|> - DfpCk*)) 
> 1 - (<|> - l)((j) - l ) / 2 
= (J)/2. 

Lemma 4.3: I f /c i s a p o s i t i v e i n t e g e r such t h a t fp(fccf>) < ( < ( > - l ) / 2 , then 
[[&cf>](f>] = [scj>3], where s = [[&<)>] (2 - cj>) ] . 

Proof: By Lemma 4 . 2 , fp( [«>]<!>) > <f>/2 = (2<|) + l)/(2cf> + 2 ) . Thus, 

2(<j> + l ) fp([fe*]*) > 2* + 1 - (1 + <f>3)fp([W>]<f>) > <f>3 

- fp([fe*]+) > <f>3d - fp( [ fc*]+» - <!>3fp([«>](2 - *)) 

* [[fc*]*] - [[&*]* - <f>3fp([£<f>](2 - ((,))]. 
178 [May 



A NEW CHARACTERIZATION OF THE FIBONACCI-FREE PARTITION 

Now 
[fc(j)](j) = [fe(J)](2 - cj))(!)3 = scj)3 + cf)3fp([fc(j)](2 - ()>)). 

Subtracting cf)3fp( [fe<f>](2 - (())) from both sides and then flooring both sides gives 
the required result. 

Lemma 4.4: If n is a positive integer such that fp(n<|>) > (f/2, there exists a 
positive integer m such that [n<j>] = [ [mty] cj)3] and fp(m<f)) < <|>/2. 

Proof: In view of Lemmas 4.1-4.3, we need to show that [n(2 - <())] can be writ-
ten in the form [/77(f)] with fp(/??(f)) < cf>/2. Now [n(2 -<(>)] = [n(2cj) - 3)<f>]. Let 
77? = fn(2(j) - 3 ) 1 . We claim that this is the desired m. For 

;??(() = n(2(f) - 3)(J) + (f>(l - fp(n(2(f) - 3))) 
= n(2 - <f)) + c|)(l - fp(«(2<|> - 3))). 

Now fp(n(2cf) - 3 ) ) = fp(2n<j>) > fp(<J>) so t h a t <|>(1 - fp(n(2cj) - 3 ) ) ) < <j) - 1 . F u r -
t h e r m o r e , f p ( n ( 2 - <(>)) = 1 - fp(n<|>) < 1 - cf)/2. T h u s , 

n ( 2 - <J>) + (f)(l - fp(n(2<|>\- 3 ) ) ) < [ n ( 2 - <j>) ] + 1 - (f)/2 + <f) - 1 
\ = [ n ( 2 - <(>)] + (f)/2. 

Hence, [777(f)] = [n(2 - (f)) ] and fp(777(f)) < (f)/2, as required. 

Lemma 4.5: If n is a positive integer such that fp(n(f>) < (f)/2, there exists a 
positive integer 777 such that [[n(f)](f)3] = [?77<j>] and fp(777(f)) > cf)/2. 

Proof: First, we note that 

fp([n<j>]cj>) = 1 - fp(((j) - l)fp(w<|>)) > 1 - (cf) - l)(f)/2 = | . 

(For a justification of the first equality in the above derivation, see the 
first five lines of the proof of Lemma 4.2 above.) Now 

fp([ncf>]<f>3) = fp([n<f>](2<f) + 1 ) ) = fp(2[n(f)]cj)). 

S i n c e f p ( [ncf)] (f)) > %, i t f o l l o w s t h a t f p ( 2 [n<f>] <J>) = 2 f p ( [n(f>] (f)) - 1 . So we h a v e 
fp([n(f)](f)3) = 2fp ([«<(>]<(>) - 1 . T h u s , 

(*) fP([n<j)]cj>3) + (j)(l - fp([tt(f>]<)>)) = 2fp([n(f)](f)) - 1 + cf) - (f)fp([n(f)](f)) 
- (f) - 1 + (2 - cf>)fp([ncf)]cj>) 
< c f ) - l + 2 - ( f ) = l . 

Now l e t 7?7 = [ [w<j>] (f)2] . We c l a i m t h a t t h i s i s t h e d e s i r e d m. F o r 

[m$] = [(f)([n(f)]cf)2 + 1 - fp([n<f)]<f)2))] 

= [[n(j)](f)3 + (f) - (f)fp([n(f)](f))] = [[n<f>](f>3]. 

The last equality follows from equation (*) above. 
It remains to show that fp(777(f)) > <f)/2. We have 

[777(f)] = [[n(f)](f)3] = [[ncj)](f)2(f>] = [m(f> - <f> + (f)fp([n(j)](J)2)]. 
But 

-(f) + (f)fp([n(f)](f)2) = -(f) + cf)fp([n(f)](()) 

= 4>(fp([n<|>]<|>) - 1 ) > <!>(f - l ) = -<f> /2 . 

It follows immediately that fp(777(f)) > <|>/2, as required. 

Theorem 4.6: The set A of the Fibonacci-free partition (defined in Theorem 3.4 
above) satisfies the equality A = {[n<|>]} - ̂ f

s where A? = {[s(f)3]|s e 4}. 

Proof: From Lemma 4.4, we see that {[ncf)]} - ,4f C A9 and from Lemma 4.5, we see 
that A c {[??<()]} - 4 \ 
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Elementary Problems Editor Retires 
After 27 years of dedicated service as the Editor of the Elementary Problems Section of The 

Fibonacci Quarterly, Dr. Abe Hillman has made the decision to retire. His replacement will be 

Dr. Stanley Rabinowitz 
12 Vine Brook Road 
Westford, MA 01886 

As of now, all problems for the Elementary Problems Section should be sent to Dr. 
Rabinowitz at the above address. 

As the Editor of the journal, I would like to take this opportunity to thank Dr. Hillman for 
his cooperation and a job well done. Here's wishing you the best of luck in your retirement 
years! 

Dr. Gerald E. Bergum 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
A. P. Hillman 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to 
Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. 

Each solution should he on a separate sheet (or sheets) and must be 
received within six months of publication of the problem. Solutions typed in 
the format used below will be given preference. Proposers of problems should 
include solutions. 

Anyone desiring acknowledgment of contributions should enclose a stamped, 
self-addressed card (or envelope) . 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln sa t i s fy 

Fn+2 = Fn+l +Fn* ?0 = °> Fl = ^ 
Ln + 2 = Ln + l + Ln" L0 = 2 ' L l = l ' 

Also, a = (1 + / 5 ) / 2 , 3 - (1 - / 5 ) / 2 , Fn = (a" - 3 n ) / / 5 , and Ln = an + $n» 

PROBLEMS PROPOSED IN THIS ISSUE 

B-888 Proposed by Russell Euler, Northwest Missouri State U., Maryville, MO 

Find the number of increasing sequences of integers such that 1 is the 
first term? n is the last terms and the difference between successive terms is 
1 or 2. [For example, if n ~ 85 then one such sequence is 1, 2S 33 5S 6S 8 and 
another is 1, 3S 4, 6, 8.] 

6-889 Proposed by Philip L. Maria, Albuquerque, NM 

Show that F£ - I ±s & sum of Fibonacci numbers with distinct positive even 
subscripts for all integers n > 3* 

6-890 Proposed by Herta T. Freitag, Roanoke, VA 

Let Sk = a10k + 1 + al0k + 2+al0k+3 + °°» + a 1 0 k + i0
5 where a = (l+/5)/2. Find 

positive integers b and o such that Sk/al0k + b = c for all nonnegative integers 
k, 

6-891 Proposed by Heiko Harborth, Technische Universitat Braunschweig, 
West Germany 

Herta T. Freitag asked whether a golden rectangle can be inscribed into a 
larger golden rectangle (all four vertices of the smaller are points on the 
sides of the larger one). An answer follows from the solution of the general-
ized problems Which rectangles can be inscribed into larger similar rectangles? 
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B-692 Proposed by Gregory Wulczyn, Lewisburg, PA 

Let G(a9 b, c) = - 4 + Lla + L2b + h\Q + ^Za^lb^lo- Prove or d i sp rove t h a t 
each of Fa + b+c, Fb + c-a9 Fa + a^^f a n d Fa + b^a i s an i n t e g r a l d i v i s o r of £ ( a , b, o) 
for a l l odd p o s i t i v e i n t e g e r s a , &, and c. 

B-693 Proposed by Daniel C. Fielder & Cecil O. Alford, Georgia Tech, 
Atlanta, GA 

Let A c o n s i s t of a l l p a i r s {x, y} chosen from { 1 , 2 , . . . , 2n}, B c o n s i s t of 
a l l p a i r s from { 1 , 2 , . . . , n}, and C of a l l p a i r s from {n + 1, n + 2 , . . . , 2 n } . 
Let 5 c o n s i s t of a l l s e t s T = {P]_ 5 P 2 , . . . , P^} wi th t h e P^ ( d i s t i n c t ) p a i r s i n 
i4. How many of the T i n S s a t i s f y a t l e a s t one t he t he c o n d i t i o n s : 

( i ) Pi n Pj * 0 fo r some i and j , w i th i * J , 
( i i ) P^ e B fo r some i , or 

( i i i ) Pi e (7 fo r some i ? 

SOLUTIONS 

Limit of Nes t ed S q u a r e Roots 

B-664 Proposed by Mohammad K. Azarian, U. of Evansville, Evansville, IN 

Let an and a n + 1 = / 2 + a„ fo r n i n {0, 1, } . Show t h a t 

UMOn-tli:^)]'1. 
n+co i~ 0L/» 0 yd '] 

Solution by Russell Jay Hendel, Bowling College, Oakdale, NY 

F i r s t 

£ ()) = 2* and £ 2 - = 2 . 
Next , 

<£|.l > a * i f f *« + 2 > <* n - l + 2> 
and s i m i l a r l y , 

a n + 1 < 2 i f f a £ + 1 = a n + 2 < 4 , 

implying an < 2 . Thus, an i n d u c t i o n shows t h a t t h e sequence {an} i s monotonely 
i n c r e a s i n g and bounded; hence , t h e l i m i t , L9 e x i s t s . Squaring the d e f i n i n g 
r e c u r s i o n and t a k i n g l i m i t s we f ind L 2 = L + 2 or L = 2 . 

This s o l v e s t he problem, s i n c e both s i d e s of t he problem e q u a t i o n have a 
va lue of 2 . 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, Pat Costello, Piero 
Filipponi & Adina DiPorto, C. Georghiou, Norbert Jensen & Uwe Pettke, Hans 
Kappus, Carl Libis9 Bob Prielipp, H.-J. Seiffert, Sahib Singh, Amitabha 
Tripathi, and the proposer. 
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Unique Real Solutions of Cubics 

B-665 Proposed by Christopher C. Street, Morris Plains, NJ 

Show that AB = 9, where 

A = (19 + 3 /3^) 1 / 3 + (19 - 3/33)1 / 3 + 1, 
B = (17 + 3/33) 1 / 3 + (17 - 3/33)1 / 3 - 1. 

Solution by Hans Kappus, Rodersdorf, Switzerland 

Put 
(19 + 3 /33) 1 / 3 = a, (19 - 3/33) 1 / 3 = a f . 

Then a3 + ( a f ) 3 = 38, aaf = 4, and we have 
(A - l ) 3 = (a + a ' ) 3 = 3aaf(a + af) + a3 + ( a ' ) 3 = 12(4 - 1) + 38. 

Therefore, f(A) = 0, where 
/(a?) = x3 - 3x2 - 9x - 27. 

In the same way, we find that #(£) = 0, where 
#(#) = x3 + 3#2 + 9or - 27. 

It is easily seen that the polynomials / and g have exactly one real zero each, 
which must therefore be A and B9 respectively. On the other hand, 

x3f{9/x) - -27g(x); 
hence, f(9/B) = 0, and therefore A = 9/B. 

Also solved by Paul S. Bruckman, C. Georghiou, Norbert Jensen & Uwe 
Pettke, L. Kuipers, Y. H. Harris Kwong, Carl Libis, and the proposer. 

Diagonal p of Pascal Triangle Modulo p 

B-666 Taken from solutions to B-643 by Russell Jay Hendel, Bowling College, 
Oakdale, NY, and by Lawrence Somer, Washington, B.C. 

For primes p, prove that 

(p) E in/p] (mod p), 

where [x] is the greatest integer in x. 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

The result follows easily from the same formula of E. Lucas used in the 
solution to B-643 [vol. 28 (1990), p. 185]. Alternately, let t be the integer 
satisfying 0 < t < p - 1 and p\(n - t). Then (n - t)/p = [nip] and 

n(n - 1) ... (n - t + l)(n - t - 1) -•• (n - p + 1) = (p - 1) I (mod p). 

Therefore, in the field Zp of the integers modulo p, 

/n\ _ r , 1n»»« (w - £ + l)(rc - fr - 1) ••• (w - p + 1) ̂  f"n] 
lp/ Ln/pJ (P - Di LPJ 

Hence, [ ) = [n/p] (mod p). 
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Also solved by R. Andre-Jeannin, Paul S. Bruckman, C. Georghiou, Norbert 
Jensen & Uwe Pettke, Bob Prielipp, Sahib Singh, Amitabha Tripathi, and the 
proposer. 

Cyclic Permutation of Digits 

B-887 Proposed by Herta T. Freitag, Roanoke, VA 

Let p be a prime, p ^ 2, p ^ 5» and m be the l eas t posi t ive integer such 
that I0m = 1 (mod p) . Prove that each 777-digit ( in tegra l ) multiple of p remains 
a multiple of p when i t s d ig i t s are permuted cyc l i ca l ly . 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

Suppose 
n = am_llOm~l + . . . + ax10 + aQ = 0 (mod p ) . 

Let n+ be the integer obtained from n by permuting i t s d ig i t s cyc l ica l ly by t 
posi t ions . More spec i f i ca l ly , 

nt = a ^ t . i l O " - 1 + ••• + «010* + am_1lOt~l + ••• + am_t, 
where 0 < t < m - 1. Since 10m = 1 (mod p ) , we have 

nt = am„t„110m~1 + . . . + a010* + aOT_110m + t _ 1 + . . . + a ^ l O 7 " 
= l O ' C a ^ ^ l O * - ' - 1 + . . . + a 0 + a ^ l O * " 1 + . . . + am_t10"-*) 
= 10tn = 0 (mod p ) . 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, C. Georghiou, Russell 
Jay Hendel, Norbert Jensen & Uwe Pettke, L. Kuipers, Bob Prielipp, Sahib 
Singh, Lawrence Somer, and the proposer. 

Base 9 Modular Arithmetic Progression 

B-G8S Proposed by A, P. Hillman in memory of Gloria C. Padilla 

Let In be the posi t ive integer whose base 9 numeral 
100101102...887888 

Is obtained by placing a l l the 3-digi t base 9 numerals end-to-end as indicated a 
(a) What i s the remainder when h i s divided by the base 9 integer 14? 
(b) What i s the remainder when h i s divided by the base 9 integer 81? 

Solution by C. Georghiou, University of Patras, Greece 

It is easy to see that 

(100101102...887888)9 = (888)99°  +(887)g93+ ... +(100)993'547 

- (729 - l)9°  + (729 - 2)93+ •»*+ (729 - 648)93*6i47 

648 
= E (93 - n)93n_3. 

n= 1 

(a) Nows since (14)9 = 13 and 93 = 1 (mod 13), we have 
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h = 6 £ ( 9 3 - n ) 9 3 - " 3 = 6 X ( 1 - n) = 6 4 7 I 6 4 8 = - 3 (mod 13) . 
n=l n= 1 z 

(b) Now we have (81)9 = 73 and 93 = -1 (mod 73). Therefore, 

648 648 649 
h = E (93 ~ n)93n"3 = -2 + V (-1 - nM-l)"-1 = -l - ]£ n(-l)n 

n=l n= 2 n= I 

= - 1 - ( - 1 ) 6 ' 9 ( 2 ' f 9 + 1 ) - 1 = 324 E 32 Onod 73 ) . 

Also solved by Charles Ashbacher, Paul S. Bruckrnan, and the proposer. 

Fibonacci a n d Lucas I d e n t i t i e s 

B-669 Proposed by Gregory Wulczyn, Lewisberg9 PA 

Do the e q u a t i o n s 
25Fa+b + cFa + b-cFb + a-aFo + a-b = 4 " L2a " L2b " L2a + L2aL2bL2o 

2 2 2 
La+b+cLa+b-eLb+c-aLc+a-b = ™4 + L 2 a + L ^ + L^ + F

2aL2bL2c 

hold for a l l even i n t e g e r s a s Z?? and c? 

Solution by C. Georghiou, University of Patras, Greece 

The answer i s "Yes"! From the i d e n t i t y 

5Fm + nFm-n = L 2m ~ ( _ 1 ) ^ 2n 

we get [setting (-l)a+i+c = e) 

25Fa + b + aFa + b-cFa-b + cFc+b-a = [L2a+2fc ~ e L 2 c J EL2tf " e L 2 a » 2 & ] 

_ o 
= L2a^-L2a+2b + L2a-2b^ ~ eL2a ~ eL2a + 2bL2a-2b 

= L2aL2bL2c ~ ^L\a + Llb +Lla " ^> 

and for a5 Z?5 and e even ( a c t u a l l y for a + b + o even) s the given i d e n t i t y i s 
e s t a b l i s h e d . 

In a s i m i l a r ways u s i n g the i d e n t i t y 
Lm+nLm-n = L 2m + ^ l ^ "L2n 

we f ind 
La + b+cLa + b-cLa-b + cLc + b-a = lL2a+2b * eL2c~^L2c + e L 2 a - 2 z J 

o 
= L 2 c [ L 2 a + 2fc + L 2 a - 2 & : ! + eL2o + eL2a +2bL2a -2b 

= L2aL2bL2a +^Lla +Llb + L l ~ ^ ' 

which e s t a b l i s h e s the second iden t i ty® 

Also solved by K. Andre-Jeannin, Paul S. Bruckrnan, Herta T. Freitag, 
Norbert Jensen & Uwe Pettke, l« Kuipers, Bob Prielipp, and the proposer. 
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Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND 
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK 
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially 
welcomes problems believed to be new or extending old results. Proposers 
should submit solutions or other information that will assist the editor. To 
facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-452 Proposed by Don Redmond, Southern Illinois U., Carbondale, IL 

Let pr(m) denote the mth p - g o n a l number (777/2) {2 + (r - 2) (77? - 1 ) } . Char-
a c t e r i z e the v a l u e s of v and 7?7 such t h a t 

P.W £p,<*>-
k= 1 

H-453 Proposed by James E. Desmond, Pensacola Jr. College, Pensacola, FL 

Show t h a t fo r p o s i t i v e i n t e g e r s 7?? and n, 

m L(2.m+ l)n 

and 
Frs m 

- f ^ - £ (-i)(n+1)(w";f)^(2^-i). 

Ln 0=1 

H-454 Proposed by Larry Taylor, Rego Park, NY 
Construct six distinct Fibonacci-Lucas identities such that 

(a) Each identity consists of three terms; 
(b) Each term is the product of two Fibonacci numbers; 
(c) Each subscript is either a Fibonacci or a Lucas number. 

SOLUTIONS 

An Old-Timer 

H-91 Proposed by Douglas Lind, U. of Virginia, Charlottesville, VA 
(Vol. 4, no. 3, October 1966) [corrected] 

[!]• Let m = — , then show 

Fkn rn-l 
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where 
[{-l)mn i f k i s odd 

0 i f k i s even 
and [x] i s t he g r e a t e s t i n t e g e r not- exceeding x. 

Solution by James E. Desmond, Pensacola Jr. College, Pensacola, FL 

Using the well-known a l g e b r a i c i d e n t i t y ? 

ffl-j ^ _ £ a r V ( * k ~ 1 - 2 j ' +yk~l-2J) + arL^J^LzJ 1 + ( - D f c + 1 

x - y . . 

for a l l p o s i t i v e i n t e g e r s k and nonzero r e a l numbers x,2/ wi th x * y; l e t a; = a" 
and y - 6" where w i s a p o s i t i v e i n t e g e r . We o b t a i n 

an - 3n yr 0
 2 

That i s , 

^ - f ( -D^L + c-if ffl * + (-Dfe+1 

jF .2-/ t l> ^n( /c- l -2j) + ^ i ; 2 J = 0 

j'= 0 

Pell-Mell 

H-433 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol. 27, no. 4, August 1989) 

Let P Q , P J , . . . be the P e l l numbers def ined by 

P0 = 0, P : = 1, Pn = 2Pn_l + Pn_2 fo r n > 2. 

Show t h a t , for n = 1, 2 , . . . , 

6(n + l ) P n _ 1 + P n + 1 = ( - l ) n + 1 ( 9 n 2 - 7 ) P n + 1 (mod 2 7 ) . 

Solution by Robert B. Israel, U. of British Columbia, Vancouver, B.C. 

The congruence 

(1) Pn E ( - l ) n ( ( 1 8 n 2 + 21n + 2)Pn + 12nF„+ 1) (mod 2 7 ) , for a l l n > 0, 
can be established by checking that the right-hand side obeys the defining 
equations for Pn mod 27. Some tedious but straightforward manipulations then 
lead to the desired result. 

Not content to let the matter rest there, we generalize it. Let p and k be 
natural numbers, and define Un by 

U0 - 0, Z7i - 1, Un - (p - l)^-i + Un-Z 

(so that the Pell numbers are the case p = 3). 

Theorem: If no prime factors of p are equal to 5 or less than k9 there is a 
congruence 
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k- 1 . 
(2) Un E ( -1 ) " J2n^ajFn + bdFn+1) (mod p*) , for a l l n > 0, 

J = 0 

where â- and 2̂- are integers. 

It is more convenient to work with Vn = (~l)n+^Un. The generating functions 
of Fn and Vn are, respectively, 

F(z) = and 7(g) 
1 - Z - Z1 1 + (p - 1)3 - Z2 

Letting x = z ~ l - l - z , \ j e have F(s) = x~l and 

nz) = — J — = £ (-p)^-W (mod p*) 

(this being interpreted as a statement about formal power series in the inde-
terminate z with coefficients in the integers mod pk). The generating function 
of n3Fn is 

G ^ - (*£)'*•<*>• 
The generating function of (n + l)JFn+i is s" 1 ^ - ^ ) . To prove the theorem, it 
is enough to prove that for 2 < j < k there are congruences 

J-l 
(3) x~J = E (*i + diz-^G^z) (mod p*). 

i- o 
Let w = 3""1 + s. I claim that 

(4) Gld{z) = 2Z ^fi- with c = (2j)!5J\ 
i= 1 x 

(5) G2i + 1(3) - ̂ £^,2^1^ With ^ + 2,2,- = W + D'5"' 

where c^ . are integers. The proof is by induction, using the identities 

Z% = ~~W' Z%, = ~X " l> Wl = {X + 1 ) 2 + 4 = 5 + 2X + x2-

Equation (4) allows us to express l/x2{}' + l mod pfe in terms of G^Az) and 
lower powers of 1/x, as long as (2j)!5J is invertible mod pfe. To treat l/x2j+2 

similarly, we first use the identity (2z~l - l)w = (2z~l + l)x + 5 and (5) to 
get 

«> i ? i i ^ • « • - - » * , . . - 2 i ; *•*" :,"'"•2j-
2J + 1 a - l 

2 X< ci+i,2j+i~zr> 
^= 1 x 

where #1,2,7 + 1 = 0- T n e factors of z~l that arise here are harmless. To avoid 
factors of z~2, however, we can use the identity (s-1 + 2)w = (z~l - 2)x + 5z~l 

together with (5) to get 

(27 + 1),5J+1s"1 2j+l -1 
— ^ = («-l + 2)Gy+1 - _E VCi.u+l + ^ + l , y + l)V 

+ 2
2 ^ 1 gj + l,2j + l 

i- 1 x 
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Repeated use of these formulas results in the desired congruences (3). 
In the case k = 3, for example, the result of all of this is 

°n ~ ( 1} \\ 10 50 5 + 25 5 " V ^ + V1T + 1~F* + 1) 
(mod p3) 

if (p, 10) = 1. With p = 3, this yields (1). 

Also solved by P. Bruckman, R. J. Hendel, L. Kuipers, G. Wulczyn, and the 
proposer. 

Strange Sex 

H-434 Proposed by Piero Filipponi & Odoardo Brugia, Rome, Italy 
(Vol. 27, no. 4, August 1989) 

Strange creatures live on a planet orbiting around a star in a remote gal-
axy. Such beings have three sexes (namely, sex A, sex B, and sex C) and are 
reproduced as follows: 

(i) An individual of sex A (or simply A) generates individuals of sex C by 
parthenogenesis. 

(ii) If A is fertilized by an individual of sex Bs then A generates 
individuals of sex B. 

(iii) In order to generate individuals of sex A, A must be fertilized by an 
individual of sex A, an individual of sex Bs and an individual of sex C. 

Find a closed form expression for the number Tn of ancestors of an individual 
of sex A in the nth generation. Note that, according to (i), (ii), and (iii), 
A has three parents (T\ =3) and six grandparents (T2 = 6). 

Solution by Russell Jay Hendel, Bowling College, Oakdale, NY 

We claim 

Tn = cAr" + |1, for all n > 0; 

with r1 > 2>2 > 0 > P3 the three roots of p(z) = s3 - 2z2 - z + 1; and 

r? + r, - .1 
- - L - A * 1.22144.... . 1 (P2 - 2^) (P3 -' Vx) 

The proof will use complex variable methods to derive the value of the oi 
and linear algebra methods to derive the value of Tn . 

First, define a homomorphism, H9 on the free monoid on the letters {A, B, C} 
by #(C) = A, #(B) = AB, and #(A) = ABG, so that Tn equals the length of the 
string Pn(A). Following Rauzy [2], a convenient way to study this length is by 
letting M be the 3 x 3, 1-0, upper triangular matrix, defined by M(is j) = 1 if 
i + j > 4, and 0 otherwise. 

Following Rorres & Anton [3], define vectors 

v.x = (1, 0, 0)* and Mvn_l= vn = (xnS ynS sn)*, 

with * denoting vector transpose. Thus, xn = Tn9 and 

Yn = Mn + 1v_l = PDn + lP~lv~K 

with M = PDP~~l, a diagonal decomposition of M. Since the characteristic poly-
nomial of M is p(z)> some straightforward manipulation yields 
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3 
Xn = E °iri> 

i= 1 
for some constants c^, 1 < £ < 3. 

To find closed formulas for the ci , we study the generating function 

1 + z - z2 1 + z - z2-n*) = E T.Bi 3 
i-0 S3p(3 1) n ( a _ r . 1 ) 

i= 1 
Following Hagis [1], we employ the Residue Theorem to yield: 

1 f T{z)_ _ J_ f T(£0 . J^ ^ f r(a) , 
2iri Jcs zn + l ~ 2vi)c0 zn+l 2ri ^ 4 s" + 1 aZ 

where Cs is the circle of radius S about the origin, and CQ and C^ are circles 
of radius .1 around the origin and the r^1, respectively. By the triangle in-
equality for integrals, as S goes to infinity we have 

| 1 f T(z) 
• dz < 0(S~l) + 0. 

By the Cauchy Integral Formula for derivatives, we have 

1 C T(z) = T(n)(0) 
2TTiJCo zn + l nl 

Finally, by the Cauchy Integral Formula and some manipulations, we have 

1 f T(z) , i , P? + r, - 1 
: I — T T - ^ S = Residue at rTl = — — * r.n. 

2 TH, J Q S W + 1 * [| (r. - i^) ^ 

j * £ 
Combining the above, we have an alternate derivation of the preliminary formula 
for the Tn with closed expression for the ci . 

To complete the proof, simply observe that, for large n, 
Tn - o^v\ = ozr^ + c3r% = 0(\r3\)n •* 0. 

For small n, a calculator can be used to verify that an upper bound for the 
absolute value of the preceding expression is bounded by 1/2. The details are 
left to the reader. (In passing, we note that it is straightforward to prove 
that Tn - c^r^ is oscillating and monotone in opposite directions for even and 
odd n.) 

References 
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(1964):267-68. 
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Probably 

H-436 Proposed by Piero Filipponi, Rome, Italy 
(Vol. 27, no. 5, November 1989) 

For p an a r b i t r a r y prime number, i t i s known t h a t 
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(p - 1)1 = p - 1 (mod p), (p - 2)1 = 1 (mod p), 
and 

(p - 3)1 E (p - l)/2 (mod p). 

Let fcQ be the smallest value of an integer k for which kl > p. 
The numerical evidence turning out from computer experiments suggests that 

the probability that, for k varying within the interval [kQ, p - 3], kl reduced 
modulo p is either even or odd is 1/2. Can this conjecture be proved? 

Solution by Paul S. Bruckman, Edmonds, WA 

We will show that the proposer fs conjecture is equivalent to the proposi-
tion that the primes are somehow equally distributed, a concept which we will 
define more precisely later. First, we form the following short table of 
^0 = ^o(p)9 for the first few primes p: 

_£_ ^0 
2 3 
3 3 
5 3 
7 4 
11 4 

Clearly, k$ < p - 3 only if p > 7; suppose then that p > 1 henceforth. Now 
any such prime must be of one of the two forms: 4a + 1 or 4a + 3. Then 

(p - 3) ! = ~ (p - 1) = 2a or 2a + 1. 

Note that these are proper residues (mod p), that is, lie in the interval 
[1, p - 1]. We introduce the notation: f(p) = x to mean that f(p) = x (mod p), 
and x E [1, p - 1] . If we can expect that a prime is equally likely to be of 
either form, it would then follow that Pr[(p - 3)1 is even] = 1/2. This seems 
a plausible supposition, but is apparently an unproven proposition. 

We now tackle the general case. Consider (p - r - 1)1, where r is chosen 
so that r e [2, p - 1 - k0]. Then 

(p - r - 1)1 = (p - 2)l/(p - 2)(p - 3) ... (p - r) 

= l/(-l)'-l2 -3 • r, 
or 

(1) (p - r - 1)1 E (-l)r-1(2»!)-1 (mod p). 

Since g.c.d.(p, rl) = 1, there exists some integer b such that 

(2) p E b (mod 2(r!)). 
As b assumes all values in [1, 2(r!) - 1] with g.c.d.(&, r!) = 1, it is 

clear that any prime p must be of one of those forms [there are 2<|>(z0 such, 
where <fr is the Euler (totient) function]. Again, we may reasonably conjecture 
that each choice of b is equally probable, as p is randomly chosen. For 
example, for r = 3, there are 2(J>(3) = 4 choices: p = 1, 5, 7, or 11 (mod 12), 
and we may plausibly suppose that each form of p is equally likely. 

Now, there are infinitely many integers x such that congruence px = (-1)3" 
(mod rl) has solutions. However, if we restrict x to the interval (0, rl), 
then x = c is uniquely determined. Hence, 

(<jp - (-Dr)/rl E (-l)'-l(r!)-1 (mod p); 

therefore, from (1), we have: 

(3) (p - r - 1)1 E (op - (~Dr)/rl (mod p). 
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Moreover, 

(op - (-l)r)/r! > (p - l)/r! > 2 ( r ! ) ^ l ~ 1 * 2, 

a n d r t _» i "\ _i~ i 

(*p - (™DP)/P! < {r' ~r
l{p + - p - (p - DM 

< p - (2(rl) + 1 - 1)/P! = p - 2. 

This shows that (op - (-l)r)/rl is a proper residue (mod p) . We have proven 
the following result. 

Lemma 1: 

(4) (p - p - 1)1 = (op - (-l)p)/r!, P = 2, 3, ..., p - 1 - k0, 

where c is uniquely determined by c = (~l)pp~1 (mod P ! ) , 0 < c < rl. 

Now, given p, suppose we choose b such that 0 < b < rl , and that p = b (mod 
2(r!)), for some prime p. Also suppose that pf is prime, where p' E br (mod 
2(P!)), and bf = b + rl [hence, rl < br < 2(rl) and g.c.d.(Z?f, rl) = 1). Let a 
and o! denote the values determined from Lemma 1, with p and p', respectively. 
Thus, p = 2a(rl) + bs p! - 2a' (rl) + 2?f for some integers a and af. From Lemma 
1, 

Q = (~Drp~l = (-l)r/[2a(p!) + b] = (-l)^"1 (mod P ! ) ; 
also, 

<?' = (-DP(pO~1 = (-l)Tl[2a'(rl) + b + rl] = (-l)vb~l (mod rl) . 

Hence, cr E a (mod rl) . However, since 0 < c < P! and 0 < <5f < P!, it follows 
that £; = c. Also, from Lemma 1, 

ft iM - r r < ̂ r w . g[2af(r!) + £ + Pi] - (-1)" (pf - r - 1)1 = [epf - (~l)r]/rl = ^ 

_ c[2a(rl) + b] + (2a! - 2a)gp| - (-l)p 

P! + ° 
= [cp - (-1)P]/P! + (2a1 - 2a + l)c. 

Note that <? must be an odd number, since rl is even and rl divides (op- (-l)r). 
Hence, we have proven the following result. 

Lemma 2: Given primes p and pf, 

2 < r < min{(p - 1 - kQ) , (p' - 1 - Zc0') L 

where k^ = kQ(pr) and p ' = p + rl (mod 2 ( P ! ) ) , then (pr - r - 1) ! and (p - r - 1) ! 
are disparate. 

If it is true that each prime p of the form p = b (mod 2(P!)) is equally 
likely, as b varies over its 2<j)(r!) possible values, then it would follow from 
Lemma 2 that Prob[(p - r - 1)1 is even] = 1/2. Letting r vary over its possi-
ble values r = 2, 3"! . . . , p - 1 - kQ, we could then conclude that 

Prob(/c^ is even) = -, for k = k0, k0 + 1, . . . , p - 3 , 

where p is a random prime. Thus, given integers r > 2 and b e [1, 2(rl) - 1], 
with g.c.d.(£>, P!) = 1, the following results are equivalent, for random primes 
p: 
(a) Prob(p = b (mod 2(rl))) = i/2<$>(rl); 

(b) Prob[(p - r - 1)1 is even] = ~. 

The result conjectured in (a) seems plausible enough; however, as far as is 
known, it remains unproven. 
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