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A NOTE ON BERNOULLI POLYNOMIALS

Dario Castellanos

Universidad de Carabobo, Valencia, Venezuela
(Submitted January 1989)

1. Some General Remarks

Consider the function « - [2] - % which is periodic with period 1. 1In the
interval [0, 1] this function is simply = - %.

This function has the property that its integral in the interval [0, 1] is
zero. Let us, then, with the same idea in mind define another function ¢,(x),
such that its derivative is @j(x) = o - %, and such that its integral in the
interval [0, 1] is =zero:

1
f o, (z)dz = 0.
0
Similarly, @é(x) = 9,(x), and
1
f ©3(x)dx = 0.
0
In general, we seek a sequence of functions @n(x), nw=1, 2, 3, ..., such that
¢, (x) = x - %, ¢ (x) = ¢ _,(x) for n > 1,

and 1
J.®n(x)dx =0 for all n = 1.
0

The constant multiples of these functions »n!¢,(x) = B,(x) are called Bernoulli
polynomials after their discoverer [2]. They obey the relation

(1.1) Bi(xz) = nB,_(x), n =1, By(x) = 1.
The first few Bernoulli polynomials are
Bo(x) =1, Bi(x) =2 - 1/2, By(x) = 22 - =z + 1/6,
By(x) = x3 - (3/2)x2 + (1/2)x, By(x) = xz% - 223 + 22 - 1/30, etc.

It is clear from their construction that B, (x) is a polynomial of degree n.
They are defined in the interval 0 < x < 1. Their periodic continuation outside
this interval are called Bernoulli functioms.

The constant terms of the Bermnoulli polynomials form a particularly inter-
esting set of numbers. We set B, = B,(0). It dis obvious from the way the
polynomials B, (x) are constructed that all the B, are rational numbers. It can
be shown that B,,.; = 0 for » 2 1, and is alternately positive and negative for
even 7. The B, are called Bernoulli numbers, and the first few are

By =1, By = -1/2, B, = 1/6, B, = -1/30, By = 1/42,
By = -1/30, By, = 5/66, By, = -691/2730, By, = 7/6, etc.

Bernoulli polynomials and numbers are intimately related to the sum of the
powers of the natural numbers.
Bernoulli polynomials possess the following generating function [5, 3],

(1.2)  tet=(e® - 1)1 = iBn(x)t”/n!,
n=0

from which we find, on replacing x by x + 1 and then subtracting (1.2) from the
resulting expression:
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A NOTE ON BERNOULLI POLYNOMIALS

(1.3) 3 [B,(x + 1) - B(@)]t"/n! = tets.
n=0

Using the Maclaurin expansion on the right-hand side and comparing powers of ¢,
we find

(1.4) Bup(x+ 1) - B,(x) = nx" 1, n=2,3, ... .
From (1.1) and (1.4) there follows

x+1
(1.5) J~ B,(s)ds = x",

x

from which we find [4]

r k+1

(L.6) k"= B,(s)ds
k=0 k=0Jk

B ds = s = 2, ’ s
n(S)S 7+ 1 n 3, 4

fr+1 Bn+1(r + l) - Bn+l

In the next section we will make use of the following property of Bernoulli
polynomials [8]:

1 171
_ _ n-1 mivi.
(1.7) fOBn(s)Bm(s)ds = (-1) Tty 1 Dt

n=1, 2, 3, «o.;3 m=1, 2, 3, ...

Formula (1.7) is only apparently unsymmetrical in m and n. The reader can
convince him- or herself of the symmetry of it by trying the different combina-
tions of even and odd values of m and n.

2. An Expansion for Products of Bernoulli Polynomials

We wish to expand a product of two Bernoulli polynomials in series of Ber-

noulli polynomials [7]. It will simplify matters if we use the functions o,(x)
defined at the beginning of Section 1. We want, then, an expression of the form
n+m

(2.1) 2, () 2y () =k§_:0ak(bk(x)’

where the 9,'s are, we recall, Bernoulli polynomials divided by n!.
We will make use of the properties

1
(2.2) J; ¢,(s)ds = 0 for n 2 1,

and (1.7), which now appears in the guise

1
(2.3) fo 0,(8)0,(s)ds = (-1)"" b, , n, m=1, 2, ...,

where the b,'s are Bernoulli numbers divided by n!.
Also
(2.4) Do, (x) = 0] = e, -
Using Leibniz's theorem for the derivative of a product [l], we find from
(2.1)
n+m

(2.5)  D°Lou(@)en(@)] = 3 (§)0%0, @D 0, (@) = 3° 4D°% ().
i=o0d K=0

That is,
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A NOTE ON BERNOULLI POLYNOMIALS

n+m n+m-s

_ _ s
(2.6) k';sak@k_s(x) = zf;o Ay 0 () = Z(j>®n_j(x)®m_s+j(x),

with the restrictions that n - j 20 andm- s+ J 20, i.e., J <n, § 28 - m.
Since the sum in (2.5) starts at j = 0 and ends at J = 8, we must write (2.6)
in the form

min(s, n) e n+m-s
2.7) L (G i@e @ = X g 0@,
7 =max(0, s-m) k=0
We now wish to integrate both sides of (2.7) from x = 0 to & = 1 and to
apply properties (2.2) and (2.3). To do so, we must separate from the first
sum in (2.7) the terms corresponding to j = n and to j =8 — m, since in both

of these cases the corresponding dindex is zero and formula (2.3) does not
apply.
This gives
min(s, n -1 s

(2.8) a. =5 (~1)yn-1

8 n+m-—8

( )(—l)j, s <m+mn- 1.
J=max(0,s-m+1) d

If s = m + »n, the first sum in (2.5) will contain only one term and we have

(2.9)  a,,, = (” + m)

n

Similarly, if s = m+ n - 1, then the sum will contain only two terms with non-
zero index, both of which will integrate to zero and we have

(2.10) «a = 0.

n+m-1
Expressing these results in terms of ordinary Bernoulli polynomials, we
find, after dividing a, by s!, the expressions

n+m

(2.11) B, (x)B,(x) = 3 a,B,(x),
k=0

1! min(k,n - 1) —1)J
(2.12) o, = ok gyan1 )

k—(n+m—k)! k<n+m-1,

- . !-'5

J=max(0, k-m+1) (k It My 1 = 1y 25 vous
(2.13) an+m-1 = O,
(2.14) oa,,., = 1.

Equations (2.11)-(2.14) are the desired results. The reader may wish to
look at reference [6] to see alternate ways of expressing these coefficients.

Since Bernoulli numbers of odd index greater than one are zero, we see that
if n and m are of the same parity, then expansion (2.11) will only involve
Bernoulli polynomials of even index. If »n and m are of opposite parity, then

expansion (2.11) will only involve Bernoulli polynomials of odd index.
If we define

(2.15) S,(r) = kz k™,
=1

and make use of (1.6), we can express (2.11) in terms of the S,'s:
n+m+2

(n+ 1) (m+ 1S, (2)Sy(x) = 2 koS, _,(r) = (n+ 1)B, 15,(x)
k=1

n+m+2
-~ (m+ 1)B, 5 () = B 1B, + kZ’o o, By -
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Observe now that in the equation above -B,,1B,4+] cancels z:”:g+2ak8k, since
these expressions are the left— and right-hand sides of (2.11) with & = 0 and »n
and m replaced by » + 1 and m + 1, respectively.

The equation then takes the form

n+m+2
(2.16) (n + 1)(m + 1)5,(2)S,(r) = k‘_,_jz koS, () = (n + 1B, 15,(r)
- (m+ DB, 5. (),

where the uk's must now be written

(m+ 1)!(m + 1)!B, - min(k, 7) (-1)7
(2.17) oy = 7+T+2 k(—l)” T

o (m+m+ 2 - k) j=max(0, k-m) (K = J) 17!

k<n+m+1,

(2.18) o, . =0,
(2.19) O imin = 1s

and we have observed that a; = 0.

Note now that the product of S, (r) and S,(r) will involve Sk(r)'s with odd
index only if »n and m are of the same parity, and Sk(r)'s with even index only
if n and m are of opposite parity.

3. Some Examples

(3.1)  5,(x)5,(r) =-%sq(p) + %sb(p),
(3.2)  51(®)853(r) = 255() + 1530,
(3.3)  Sp(2)53(r) = {556(p) + %Esq(rh
_ 8 1 1
(3.4)  52(1)64(2) = 257() + $55(2) - = 53(r)

(3.5) S3(r)Ss(r)

5 2 1
TESQ(P) +'§S7(P) - T§55(P),

(3.6)  S3(r)S7(x)

7 3 1
57 513(r) + S11(x) —-§59(P) +'I§37(P),

(3.7 5183 55() = T61, + 22 59() + 2757(2) - 2=55().

Especially appealing are the formulas for powers of the S,(n)'s. We obtain,
for instance, the expressions

(3.8) S1(r)2 = S3(r),

(3.9) 5,072 = 255() + 1530,
(3.10) S53(r)2 = £5,(x) +-%35(r),
(3.11) §4(1)2 = £59(x) + 257(0) - fgss(r),

(3.12) S5(r)? =

Wl ;N N

511(r) + 255(r) = £57(x),
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A NOTE ON BERNOULLI POLYNOMIALS

(3.13) §1()° = 255() + 1 53(),
(3.14)  Sy(x)3 = %sg(r) + 15560 + 75 5,(2)

3 5
(3.15) 55()% = 2651109 + 259(r) + 15 57(x)

etc.

Formulas (3.8) through (3.11) have been known for a very long time. For-
mula (3.10) is attributed to Jacobi [9].

To the best of our knowledge, the only special case of (2.11) that is known
is [10]

(3.16) BL*(-’L') - BL'_ = (Bz(.’L') - Bz)z,

and accounts for (3.8).
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FIBONACCI'S MATHEMATICAL LETTER TO MASTER THEODORUS

A. F. Horadam

University of New England, Armidale, Australia 2351
(Submitted March 1989)

1. Introduction

Sometime about 1225 A.D., Fibonacci—or Leonardo of Pisa, as he was known
until relatively recent times—wrote an interesting, undated mathematical
letter to Master Theodorus, philosopher at the court of the Holy Roman Emperor,
Frederick II. The full title of this communication, written in medieval Tuscan
Latin, is: Epistola suprascripti Leonardi ad Magistrum Theodorum phylosophum
domini Imperatoris.

Our knowledge of this epistle comes from the nineteenth-century publication
of Fibonacci's manuscripts by Boncompagni [1], which is the first printed
record of his works. Boncompagni's printing of the Epistola [l, pp. 247-52]
was prepared from a manuscript in the Biblioteca Ambrosiana di Milano. It has
never been translated into English, though in 1919 McClenon [8] indicated his
intention to do so.

Fibonacci's mathematical writings consist of five works (others having been
lost). These are: (1) Liber abbact (1202, revised 1228); (2) Practica
geometriae (1220); (3) Flos (1225); (4) Liber quadratorum (1225), his greatest
opus; and (5) the letter to Master Theodorus, the shortest of his extant
writings. This useful letter has been somewhat neglected by historians of
mathematics, a tendency I would like to see reversed.

To understand Fibonacci's outstanding contributions to knowledge, it is
necessary to know something of the age in which he lived and of the mathematics
that preceded him. Indeed, a study of his writings reminds one of the history
of pre-medieval mathematics in microcosm. In an age of great commercial change
and expansion, as well as political and religious struggle, he traveled widely
throughout the Mediterranean area in pursuit of his business and mathematical
interests. His writings reflect many sources of influence, principally the
Greeks in geometry and number theory and the Arabs in algebraic techniques,
while some of his problems reveal oriental influences emanating from China and
India. Babylonian and Egyptian ideas are apparent in his calculations. For
further information on Fibonacci's life and times one may consult, for example,
Gies & Gies [3], Grimm [4], Herlihy [5], and Horadam [6].

In popular estimation, Fibonacci is best known for his introduction to
Europe of the Hindu-Arabic numerals and, of course, for the set of integers
associated (in the late nineteenth century) with his name. However, these
popular images of Fibonacci obscure the consummate mastery he demonstrated in a
wide range of mathematics.

2. The Letter to Master Theodorus

The mathematical contents of the Epistola are rather more speculative and
recreational than is the material of his two major, earlier works which have an
emphasis on practical arithmetic and geometry. After some general introduc-
tory remarks directed to Master Theodorus, Fibonacci proceeds to pose, and
solve, a variety of problems.
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FIBONACCI'S MATHEMATICAL LETTER TO MASTER THEODORUS

(a) Problems of Buying Birds

In the first section of this document, Fibonacci's main subject is the
"Problem of the 100 birds," a type of problem of oriental origin which he had
previously discussed in Liber abbaci. Here, however, he develops a general
method for solving indeterminate problems.

Fibonacci begins by discussing variations of the problem of buying a given
number of birds (sparrows, turtledoves, and pigeons—Ilet us label them x, y,
and z—costing 1/3, 1/2, and 2 denarii each, respectively) with a given number
of denarii, a denarius being a coin unit of currency. Details of the cases may
be tabulated thus:

Denarii Birds Solution(s): x, y, 2
30 30 9 10 11
29 29 3 16 10; 12 6 11
15 15
16 15 3 6 6

Regarding the third case, which is insoluble in integers (mathematically,
we obtain 4%, 5, 5%), Fibonacci remarks: "...hoc esse non posse sine fractione
avium demonstrabo."

Next, Fibonacci varies the cost per bird when buying 30 birds of 3 kinds
with 30 denarii. A bird of each variety now costs 1/3, 2, and 3 denarii re-
spectively. He finds the unique solution to be 21, 4, 5 for the numbers of
each kind of bird.

Finally, Fibonacci deals with the purchase with 24 denarii of birds of 4
kinds (sparrows, turtledoves, pigeons, and partridges) at a specified cost per
bird, leading to the equations

x+y+z+t=24,

To+ Sy + 25 + 3t = 24,
for which the two solutions are 10, 6, 4, 4, and 5, 12, 2, 5, for x, y, 3, ¢,
respectively.

Admittedly, these problems become somewhat tedious because of their repeti-
tive nature, but an insight into Fibonacci's mind is revealing. Remember that
he had no algebraic symbolism to guide him. While his techniques, supplemented
by tabulated information in the margin, are fairly standard for us in these
problems, they might not have been easy for him.

(b) A Geometrical Problem

Following these algebraic problems, Fibonacci [1 (Vol. 2), p. 249] then
proposes the geometrical construction of an equilateral pentagon in a given
isosceles ("equicrural," i.e., equal legs) triangle. [Observe that an equi-
lateral pentagon is only regular if it is also equiangular (108°).]

This problem in Euclidean geometry will be highlighted, for historical
reasons, and for variety. Fibonacci states the problem in these words: "De
compositione pentagonj equilateri in triangulum equicrurium datum."

Qur Figure 1 reproduces Fibonacci'’s diagram and notation. Imn it, Fibonacci
takes gb = ae = 10, be = 12, and draws di, ah, gl perpendicular to the base bc.
The equilateral pentagon is adefg. Taking the side ad of the pentagon as the
unknown res ('thing"}-——our x—to be determined, and using similar triangles,
Fibonacci applies Pythagoras' Theorem to the triangle die to obtain

/ 4 \2 1N,
(\8"5x> *(10“) =



FIBONACCI'S MATHEMATICAL LETTER TO MASTER THEODORUS

whence, a
x? + 363x = 1825

("et sic reducta est questio ad unam ex regulis
algebre,” he writes). d g
He obtains the approximate value

x = 4027124114011l 501V b
Ze h f2

in Babyloni i ton.
in Babylonian sexagesimal notation FIGURE 1

To achieve his solution, Fibonacci, with the visual aid of a geometrical

diagram involving a square and rectangles, completes the square in the quadra-
tic, i.e.,

2 2
(x + 18%> = 51745 {= 1828 + (18%) ]

then subtracts 18% from the square root of 5174k (which he gives in sexagesimal
notation as approximately "22 et minuta 44 et secunda 235 et tertia 13 et quarta
7, di.e., 2204412311 13111 71v),

According to my computations using a calculator, Fibonacci's sexagesimal
approximation agrees to six decimal places with my approximation (4.456855).

Fibonacci's problem is wrongly stated by some writers, for example, Van der
Waerden [10, p. 40] and Vogel [11, p. 610], both of whom say: "A regular
pentagon is (to be) inscribed in an equilateral triangle." (How can angles of
108° and 60° be equated?) It is all the more surprising to have Vogel imme-
diately afterward praise Fibonacci's treatment as "a model for the early appli-
cation of algebra in geometry" (a statement with which one cannot, of course,
disagree). Perhaps the error is due to a mistranslation.

Loria [7, p. 231], who does give a proper account of the problem, states
however that «x is the length bd (which may be a misprint). But Fibonacci,
after saying that he is taking each side of the pentagon to be res, continues
"...et auferam ad ex ab, scilicet rem de 10, remanebit db 10 minus re" (i.e.,
ab - ad =db =10 - ), i.e., ad = x.

Cantor [2] gives a correct interpretation and analysis of the problem.
(Additionally, he extends Fibonacci's problem by finding the value of x in
terms of equal sides of length a and base-length b for the general isosceles
triangle.)

(c) Problems on the Distribution of Money

After this excursion into Euclidean geometry, Fibonacci reverts to money
problems, in particular the distribution of money among five men—let us desig~
nate them by x, ¥y, 8, u, v—according to certain prescribed conditions.

In effect, we are required to solve the five equations

x + ly =12, y + lz =15, z + lu =18, u + lv =20, v + lx = 23.
2 3 4 5 6
To assist his explanation, Fibonacci arranges some of the information in tabu-
lar form. The answers are:

67 61
e U= 15557, v = 21=57 .

o

~
~
-

However, Fibonacci presents his solutions in the Arabic form, i.e., the
fractions precede the integer. For example, he gives v as % f%% 21, where the
fractional part is to be interpreted as

3 + 88 x 7
7 x 103
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(I cannot reconcile my correct answer for x with the printed version of Fibo-
nacci's answer which is not easy to decipher in my enlarged photocopy of the
microfilmed text.) Fibonacci's argument in his solution indicates that he is
thinking of the calculations for each man being performed in columns. Apart
from this technique, his method of solution is the usual mechanical one of
clearing the given equations of fractions and then adding or subtracting
successive pairs of equations as appropriate.

The letter concludes with a variation of this problem. Fibonacci now
requires the reader to solve the system of five equations:

x + E(y +z+u+v) =12,
y + %(z +u+v+x) =15,
z + %(u +v+ax+y) =18,
u+%(v+x+y+z)=20,
v+ %(x +y + 2+ u) = 23.

He does not tell us how he resolves the problem but finishes his correspon-
dence with the comment: "tunc questio esset insolubilis, nisi concederetur,
primus habere debitum; quod debitum esset fg%l3."

His correct, unique solution is, in our notation,

@=-1335, y =358, 2 =112, u=15%, v = 202%.

Much computational skill must have been required to achieve this solution.
What is also important is the fact that Fibonacci was willing to acknowledge a
negative number as a solution, this negative number being conceived in commer-
cial terms as a debt. He did not, of course, use the minus sign which was
introduced via mercantile arithmetic in Germany nearly three centuries later
(also to represent a debt).

3. Concluding Remarks

While Fibonacci's letter to Master Theodorus does not reveal the true mag-
nitude of his genius, it does exhibit some of his originality, versatility, and
wide-ranging expertise, as well as some of his powerful methods.

He was, indeed, the primum mobile in pioneering the rejuvenation of mathe-
matics in Christian Europe. He absorbed, and independently extended, the
knowledge of his precursors, demonstrating a particular agility with computa-
tions and manipulations with indeterminate equations of the first and second
degrees. In his geometrical expositions, he displayed a complete mastery of
the content and rigor of Euclid's works and, moreover, he applied to problems
of geometry the new techniques of algebra.

Unquestionably he was, as competent critics agree, the greatest creator and
exponent of number theory for over a millennium between the time of Diophantus
and that of Fermat.

To measure one's own mathematical ability against that of Fibonacci (born
about 1175, died about 1240, while Pisa was still a prosperous maritime repub-
lic), the reader is dinvited to attempt some of the problems occurring in
Fibonacci's writings, especially his Liber quadratorum (see Sigler [9]), e.g.,
the last problem in that book—proposed by Master Theodorus—namely, to solve
the equations
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z+y+ 3+ 22 =1y2,
x+y+ 2+ x2 + yz = 2,
z+y+z+x2+y2+a?=2,

I conclude this short treatment of the Epistola with a chastening quote [4]

from Fibonacci's best-known work, Liber abbaci, which expresses a sentiment
reiterated in the Prologue of Liber quadratorum [9]:

1.

10.

11.

12.

If I have perchance omitted anything more or less proper or necessary, I beg indul-
gence, since there is no one who is blameless and utterly provident in all things.
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The n™h Fibonacci number F, and the n'! Lucas number L, are defined by

Fy =1=Fy)and F, = F,_; + F,_, for n 2 3
and
Ly =1, Ly =3, and L, = L,y + L, for n =2 3,

respectively. Thus, the Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34,
55, 89, ..., and the Lucas sequence is 1, 3, 4, 7, 11, 18, 29, 47, 76,
Here we have added two adjacent numbers of a sequence and put the result next
in the line.

What happens if we put the result in the middle?

Given the initial sets T; = {1} and T, = {1, 2}, we will get the following
increasing sequences of T-sets. These sets are multi-sets and the elements are
ordered.

-T3 = {]-’ 3) 2}, Tq = {1’ 4’ 3) 5, 2}’ TS = {]-’ 5, 4, 7’ 3’ 8’ 5’ 7) 2}!

T¢ = {1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2},

{1, 7, 6, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 17, 10, 13, 3, 14,
11, 19, 8, 21, 13, 18, 5, 17, 12, 19, 7, 16, 9, 11, 2},

)
~
L}

We show in the following that these multi-sets have some nice and interesting
properties.

Proposition 1: Let |T,| denote the cardinality of the multi-set T,. Then |T,| =
2"°2 + 1 for n 2 2.

Proof: Since ITnl = 2""2 + 1 for n = 2, we consider the case n > 2 in the fol-
lowing. We obtain T, from T, _; by inserting a new number in between every pair
of consecutive members of T, _; which is their sum. If 'Tn—ll = m, then there
are m - 1 gaps. In each of these gaps a new number will be inserted to form
7,. Thus,
|T,| =m+m=-1=2m-1=2|T,_;| - L.

We have |Ig| =3, qul = 5, and |T5| = 9. Looking at these numbers we conjecture
that |7, = 2772 + 1 for n > 2. Our conjecture is true for n = 3, 4, and 5.

Suppose it is true for n = k. Then |Tj| = 272 + 1. Since |Tyuq| = 2|T¢| - 1,
|Tprq] = 2(2%°2 + 1) = 1 = 2k"1 4 1 = 2®k+D=2 4 1,

Thus, assuming the truth of the conjecture for m = k, we proved the truth of
the conjecture for n = k + 1. Hence, by mathematical induction, our conjecture
is true for all integers n = 2.

Proposition 2: The largest number present in the multi-set T, is F,,;. Further-
more, T, contains all the Fibonacci numbers up to F, 4.

Proof: Since we have only F, and F3 in T,, they will be separated by Fy + F3 =
F, in T3 and we shall have F,, Fi, F3 in T3 with F, as the largest number and
F3 as the second largest number. Then, in Ty, F, and F3 will be separated by
Fy, + F3 = Fg and we shall have Fy, Fg5, F3 in T, with Fg as the largest number
and F,, the second largest. By induction, we shall have F,, F,,] or F 4, F,
as consecutive members in T,. Thus, the largest number present in T, will be

F?’Z+l‘
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Since 'y ¢ T, € I3 C «-. C T T

, contains all of the Fibonacci numbers up
to Fn+l“

n

Proposition 3: The multi-set T,, n 2 3 contains all of the Lucas numbers up to
L

n=1-

Proof: The multi-set T3 contains two consecutive members 1 and 3 which are I;

and L,. Then T, will contain L, L; + Ly, Lo, i.e., Ly, L3, L, as consecutive

members. Ig will contain L3, L3 + Ly, Ly, i.e., L3, Ly, Lo as comnsecutive mem-

bers. Thus, by induction, the highest Lucas number present in T, will be L, _;.
Since 7y ¢ Ty C ... C T,, T, will contain all Lucas numbers up to L,_j.

Proposition 4: Any two consecutive members in T,, » > 1, are relatively prime.

Proof: The proposition is true for n = 2. Suppose it is true for T,-1, i.e.,
(as b) = 1 for every pair of consecutive members ¢ and b in T,.;. Let x and y
be two consecutive members in T,. Then, either x -~ y and y (if x > y) or x and
y - x (if y > x) are consecutive members in T,_;. By assumption, if x - y and
y are consecutive, then (x -y, y) = 1. Hence, (x, y) = 1. Similarly, if (x,
y —x) =1, then (x, y) = 1. By mathematical induction, the proposition holds
for all n.

Proposition 5: The second element of T, is n and the last but one element of T,
is 2n - 3.

Proof: The result follows by mathematical induction.

Proposition 6: The numbers 1, 2, 3, 4, and 6 appear once and only once in every
T,, n =6 as follows:

(i) The number 1 appears in the first place and 1, n, n — 1 are consecutive

members in T, .

(ii) The number 2 appears in the (2772 + 1)th place and 2n - 5, 2n - 3, 2 are
consecutive members in T,.

(iii) The number 3 appears in the (2773 + 1)th place and 3n - 8, 3, 3n - 7 are
consecutive members in T,.

(iv) The number 4 appears in the (2" % + 1)th place and 4n - 15, 5, 4n - 13
are consecutive members in T,.

Proof: Follows by induction.

Theorem 1: For 3 <m < n, the multiplicity of m in multi-set T, is %¢(m),
where ¢ is Euler's function.

[¢(n) is the number of numbers less than n and relatively prime to n. We
clearly have ¢(P)=P - 1 for a prime P. When n is composite with prime factor-
ization n = []Z=1Ef”, then

X 1
o(m) =n]l <1 - ——>.]
i=1 Py
Proof: To get an m in T,, a pair (a, b) totalling m should appear in T,_; as
consecutive members. Since any two consecutive members in 7T, _; are relatively
prime (Proposition 4), the pair (a, b) must be relatively prime. So we need to
know the number of pairs (a, b) with (a, b) = 1 and a + b = m. Consider
m = a + b with (a, ) = 1. Then, clearly, (a, m) = 1 = (b, m). Since there
are ¢(m) numbers less than m and relatively prime to m, we can chose "a" in
¢(m) ways. Once "a" is chosen, b = m - g is fixed. Since the pairs (a, b) and
(b, a) give the same total, we have %¢(m) pairs (a, b) satisfying (a, b) =1
and (¢ + b) = m. Clearly (1, m — 1) is one of the %¢(m) pairs, and this pair
appears for the first time (and for the last as well) as consecutive members in

Tm-1. This pair will yield an m in 7,. Thus, we are guaranteed an appearance
of m in T,.
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A natural question is: How many times does m occur in T,? Since m has %¢(m)
pairs (a, b), m can appear at most %¢(m) times in T,. We prove below that m
occurs exactly %¢(m) times in T,.

Consider a relatively prime pair (a, m - a) with a <m - a, a # 1. Does it
belong to T, for some n? Since (a, m - a) = 1, the g.c.d. of "a" and "m - 4" is
1. Then, by Euclid's g.c.d. algorithm, we have:

a\m - af qy
? aqi !
Y1 a q2

Y192

Y2 Y1 q3
Y293
Y3\ Y2 [(4u

Y39y .

Yy .

Yi-1\ Ye-2 [ 4%
Yt -19¢

L=y \Yt-1/ Ye-1
Yi-1

0

Thus, whenever (a, m - a) = 1, we have the last nonzero remainder y, = 1, with
the last quotient y,_;. It is clear that vy, (¢ # £) > I.
From the algorithm, we obtain:

m-a - Y = aqa
a - Yz = Y192
Y1~ Y3 = Y293
Yt-2 = Y¢ = Y¢-19¢

Y¢-1 = YeYe-1» Where y, =1 and y; > 1 for 1 < 7 < ¢.

Adding, we obtain:

m= Yy =aqy * yviqa * vaq3 * oo+t ¥e-194 T Vi1
or m-1>q; +qp +g3+ -+ + qe * Ye-1-

If we start with two consecutive members, a, m — a or m - a, a, and proceed
backward, we reach the consecutive pair (1, y.-;) after q;+gp+---+ g, steps.

Conversely, if we start with two consecutive members, 1, y;_;, we reach a
consecutive member, a, m - @ or m - a, a, after g, +--- +g3+qgo +q; steps.

Since 1, y,_; are consecutive in the 7y, ;-set, and nowhere else, the pair
(a, m - a) appears as consecutive members in Tq) +q,+..-+ g, + ;-1

Since qy+qgo+ -+« +Yy4-7 <m - 1, the pair (a, m - a) or (m - a, a) appears
as consecutive members in T;, Z < m - 1. Thus, every pair (a, m - a) with
(a, m) = 1, excepting (1, m - 1), appears as consecutive members in some T;,
7 <m -1 and the pair (1, m - 1) appears as consecutive in T,. Hence, for 3 <
m < n, the multiplicity of m in multi-set T, is %¢(m). We shall see that,
excepting the pair (1, m - 1), other pairs appear in T;, where 7 < [(m + 3)/2].
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Theorem 2: Every relatively prime pair (a, m - a), a # 1, a < m - a appears in
T; where 7 < [(m + 1)/2], we have 7 = (m + 1)/2 in case m is odd.

Proof: We have m = 1 = aqy + v1qy + ypq3 + <+« + y._19+ + Y¢-1, where
a > Y1 > Y22 Y3 > cee 2 Y-l > Yy = L
and each q; 2 1. If yp_; = s, thenm -1 > s8(q; +q2 + g3+ --- + g, + 1), so

m -1
s
m=-1
s

g1+ gy + g3+ - +q, +5 < [m ; 1 + s - l},

>qy tq g3+ g, +1
or

+s-1>q +qxtqgz+ .- +qs+s
or

where [x] stands for the greatest integer < x. The pair (@, m - a) appears in
the (gq; +go +--- +q; +8)th multi-set. Hence, every pair (a, m - a) of the
required type terminating in 1 and s in the g.c.d. algorithm is present as

consecutive members in the multi-set 7;, where ¢ < [(m - 1)/s + (s - 1)]. For
s =2,

m-1 m-1 m+ 1

[8 +s—1]—[ - +2—1}-[ ! ]

If m is odd and s = 2, then

[m -1, - l] _m+1
s

2

For s # 2, the inequality

m -1 e -1 < m+ 1
e 2
holds
e2(m=-1+82-38) <em+ s
2 _ -
w232 =35 -2 <m(s - 2) e m2 gﬁ—:;j?%r——g, s = 2,

em =228 + 1,

which is true because m - a > g > 8 =>m > 28, i.e., m =2 28 + 1. Now, the above
inequality yields
[m + 1]
5 .

[m -1 + s - 1]
s
(m - 1)/2 is an integer and

Again, when m is odd, s
m=1 m=-11 _m+ 11 _m+1
[S +s—1] [z+ 2]_[2]_ Ll

Thus, the bound (m + 1)/2 is attainable when m is odd and s = (m - 1)/2. For
example, for m = 43, consider the pairs (2, 41) and (21, 22). Both appear in
Tyo. In the first case, s = 2; in the second case, s = 21 = (43 - 1)/2. Hence
every relatively prime pair (@, m - a), a # 1, a < m - a appears in T;, where
7 < [(m+ 1)/27.

From the above discussion, it is clear that 7. is much less than [(m + 1)/2]
when m is even. For m = 90, we have:

(1, 89) in Tgg; (7, 83) and (13, 77) im T;g; (23, 67) and (43, 47) imn
Tys; (11, 79), (29, 61), (31, 59), and (41, 49) in T,,; (17, 73),
(19, 71), and (37, 53) in T;;. Thus, excepting (1, 89), all other
pairs appear as consecutive members in T;, 7 < 18. This is much less
than [(m + 1)/2] = 45.

A
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We discuss below the appearance of certain special pairs as consecutive
members in the multi-sets.

(a)
(b)

(c)

(d)

The pair (1, a) is always relatively prime. This pair appears as con-
secutive members in T,.

The pair (a + 1, a) 1is always relatively prime whether g is odd or
even. This pair appears as consecutive member in 7,,;. For example,
4 and 5 appear as consecutive members in Ts5, 9 and 10 in T4 .

The pair (2m - 1, 2) is always relatively prime. This pair appears as
consecutive members in T,y1, [m + 1 = (2 + 2m - 1 + 1)/2]. For ex-
ample, 5 and 2 in T“, 13 and 2 in T(2+13+1)/2 = TB'

The pair (a, a + 2) 1is relatively prime if g is odd. We need 1 +
(a - 1)/2 steps to reach this pair if we start from the consecutive
members 1, 2. Therefore, the pair (a, a + 2) appears as consecutive
members in T(14(4-1)/2]+2 = T(a+5)/2- For example, the pair 9 and 1l
appear as consecutive members in T(g945y/0 = I7.

We use the above facts in the examples given in Table 1.

TABLE 1
The Number of the
Relatively Prime T-Set Where m
Pairs for a The Number of the T-Set Appears Separating
m Total m Where the Pair Appears This Pair
20 1, 19 19 by (a) 20
3, 17 5+ 3 by (b) =8 9
7, 13 1+ 7 by (b) =38 9
9, 11 1+ 6 by (¢c) =7 8
33 1, 19 32 by (a) 33
2, 31 17 by (c) 18
4, 29 7+ 4 by (a) =11 12
5, 28 5+ 1+ 3by (b) or 5+ 4 by (d) =9 10
7, 26 3+ 5by (d) =8o0r 3+1+4+4by(c)=28 9
8, 25 3+ 8by (a) =1 12
10, 23 2+ 3+ 3 by (a) =8 9
13, 20 1+1+7by ()orl+1+1+6by(a)=29 10
14, 19 14+2+4+5by (b) or1+2+ 1+ 4by (a) =38 9
16. 17 1 + 16 by (a) = 17 18
40 1, 39 39 by (a) 40
3, 37 12 + 3 by (a) = 15 16
7, 33 4+ 5 by (d) =9 10
9, 31 3+2+4by (a) =9 10
11, 29 2+ 1+1+4by (b) =8 9
13, 27 2 + 13 by (a) =15 16
17. 23 1+2+6by (b) or1+2+1+5by (a) =9 10
19, 21 1+9+4+ 2by (a) or 1+ 11 by (c0 = 12 13
42 1, 41 41 by (a) 42
5, 37 7+ 4 by (c) =11 12
11, 31 24+ 7 by (a) =9 10
13, 29 2+ 4+ 3by (a) =9 10
17, 25 1+ 2+ 8by (a) =11 12
19, 23 1+ 4+ 4by (b) =9 10

By Propositions 1 and 2, T, (n > 2) has 2""2 + 1 members with the highest
number F,,;. We have

272 4+ 1 = Foyq fornm =2, 3, 4

2772 + 1 > F,,, for n > 4.
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So, for-n > 4, the multi-set 7T, has more elements than the highest number
present. Does it contain all numbers 1, 2, 3, 4, ... up to F,,1? We see that
Ts omits 6, T7 omits 20, and T'g omits 28, 32, and 33. For 6 we have only one
relatively prime pair (1, 5). This pair appears as consecutive members in Ts.
So 6 will appear for the first time in Tg. From Table 1, we see that the
relatively prime pair (9, 11) for 20 appears as consecutive members in T; and
other pairs appear later. Therefore, 20 will appear for the first time in Tg.
Again, the relatively prime pairs (7, 26), (10, 23), and (14, 19) for 33 appear
as consecutive members in I'g (see Table 1). Therefore, 33 will appear for the
first time in Tg and will appear thrice. Thus, given an integer m, we can
always find the T; where m appears for the first time, and given two integers m
and 7, we can always say whether m appears in T;. But, for given 7, we do not
see how we can tell all the numbers which the multi-set 7T,; omits unless we
construct T; recursively, and this is a horrible task for large "¢."

We conclude this paper with the following problem.
Problem 1: Given a positive integer %, find all numbers m that T; omits with-
out constructing T;.
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The study of identities and congruences involving binomial coefficients has
a long history, not only because of the intrinsic beauty and apparent simpli-
city of many of the results, but also because applications for these abound in
many fields, both inside and outside mathematics. The impetus for the present
study came from work on classifying spaces in algebraic topology [3], where ome
needed to know how the 2-divisibility of (azz ) - (%) depends on n, a, and b.

The basic question we would like to address is this: For a given prime p,
and natural numbers a, b, a > b > 1, what is the p-divisibility of the differ-

ence
(a+x)_ a)
b ) (b
and how does it depend on the p-divisibility of x? For any integer k, let

vp(k) denote the exponent of the highest power of p dividing k, and vp(k/n) =
vp(k) - vp(n). We wish to consider

@ =3 7) - (3)):

where x is any natural number. Now

o - (57)

is a polynomial in x with F'(0) # 0, so it is elementary that, for vp(x) large
(i.e., x near 0 in the p-adic metric),

fl@) = vp(F(x) - F(0)) = vy(x) + vp(F'(0)).

In other words, f "stabilizes" for v,(x) sufficiently large. The aims of this
note are threefold. First to determine exactly how large is sufficiently
large, second to examine the behavior of f both in and near this range, and
third to understand how the behavior of f is related to the divisibilities of
(azx) and (g). These three divisibilities are intimately connected by the fact
that

vp(y £ 2) 2 min{vp(y), vp(2)1,

with equality holding for p = 2 precisely when v,(y) 2 v,(z). This creates
some surprising phenomena when p = 2. The most striking is that while con-
stancy of Uz(azx) for v,(x) large is necessary in order for f to exhibit sta-
bility, the latter always occurs before, not after, the former. One of our
main aims is to understand the phenomena underlying this curious fact. Our
Conclusion summarizes why this occurs.

Complete results will be given for p = 2, and some partial results will be
obtained for odd primes, where the situation is much more complicated.
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1. Preliminaries

First we look at (azx) and its p-divisibility. The basic result on divisi-

bility is due to Kummer [4, pp. 115-16; 1, p. 270]: If a = Y a;p? and b = 2b;pt
are the base p expansions of a and b (here, of course, a;, b; € [0, p)), then
vp(%), the p-divisibility of (g), is the number of borrows in the base p sub-
traction g - b. A good general reference is [5]. Some related results can be
found in [2]. Therefore,

a+ x a
vp( b )=vp<b) for v, (x) large,
and we wish to quantify "large."

Definition 1: M(a, b, p) is the smallest integer M such that

vp<a Z x) = UP<Z> whenever v, (x) > M.
For any integer =, let ny; be the residue of n modulo p*. From Kummer's
theorem, it is clear that M is nothing other than min{l|5£ > p}. Let

S={a,a-1, .., a - b + 1}

be the set of integers in the '"numerator" of (%). Let s1, 835 «..» &, be the
elements of § arranged in order of decreasing p-divisibility, and let d; =
Up(gi)- So dl is the highest divisibility occurring in 5, etc. Note that the
d; are not necessarily distinct. Our first lemma relates ¥ to d;.

+x
b

Proof: Everything was done above, except the equality ¥ = d; + 1. We show this
by manipulating the base p expansion of a. Since @y 2 b, dy can never be re-
duced to zero by subtracting something in the interval [0, b), so no element of
S is congruent to O mod p¥. Hence, dl <M~ 1. To see that dl > M - 1, note
that @y_; < b, and so there is an element of S which is zero mod p”~l. Thus,
d]_ZM-l.D

Lemma 2: vp(a ) = vp<g) whenever v, (x) 2 M, where ¥ = min{ﬂ,laZ > b} =d; + 1.

We now turn our attention to f(x).
Definition 3: N(a, b, p) is the smallest integer N such that
f(x) = vp(x) + vp(F'(0)) whenever vy(x) 2 N.

Since the equality

v (*5 %) = vel3)

of Lemma 1 is clearly necessary for this stabilizing of f, one might expect that
N > M. It is therefore surprising that, on the contrary, we will show that
exactly the opposite occurs for p = 2, and that, for odd primes, M and VN are
more or less independent. The first step in computing N is to bound it from
above. That is one purpose of the next section.

2. A Formula for f and a bound on N(a, b, p)

We start with the degree p polynomial

@ - 20 - (1 7) - (3)

Note that f(x) = vp(F(x) -F(0)). Let S be as before and Sl = {l/SlSE:S}. For
any set of integers A let 0;(4) denote the ith_elementary symmetric function on
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the elements of 4 and abbreviate ck(S'l) by o3 . Then expanding F(x) - F(0), we
obtain

1 2 b b
P(@) = F(O) = pr 3] 0y (S)ak = (3) kzl o, (5" Dxk = x(%)kz_:lckxk 1

Clearly, for v,(x) large, vp applied to the final sum leaves only vp(o;). This
shows that f stabilizes as claimed, and gives our first formula for it.

Theorem 4: f(x) = vy(@) + vp(3) + vp(o)) for vp(x) 2 I

Our main interest is in what determines /N, and in the curious way that this

is related to Up(azm) in and near the stable range when p = 2. Now to obtain a

bound for N from the above, we need only determine how large vp(x) need be to
ensure that

b
UP(;Z%kak_l> = vy (07).
Theorem 5: N(a, b, p) < v,(0y) +d; +dy + 1.

Proof: We will show that v,(¢;) + vp(x)(k - 1) > vp(oy) for k = 2, as long as
Up(.’,l’,') > Up(Ol) +CZ1 +d2.
Note that

Up(Uk) 2 —‘Z di.
We then have

k
vp(oy) + vp(x)(k = 1) > —Z_;ld + (k - D)(wp(oy) + dy + dyp)
= v,(01) + (kK = 2)vp(oy) + (k - 2)(d1 +dy) - Zd
= v,(01) + (k = 2)(vp(oy) + dp) + Z (dy - d;)

Up(al)- D

v

3. At the Prime 2

Henceforth, let p = 2 and let v stand for v,. In this section we will sim-
plify our formula for f in the stable range, show that N = d, + 1, and give a
formula for N that is easily computed from a and b. This formula shows that ¥
is almost determined by b.

We begin by obtaining more information about the behavior of v(azx).

Lemma 6: The following facts express how the relationship between v(“;x) and
U(%) changes as v(x) varies in relation to dy, dy, and M:

a. dl > dz,

b. v(azx) = v(x) +v(g) - dy when dyp < v(x) <M -1 =d,
c. v(a;x)} v(g) when v(x) =M - 1 =d;,

a. »(*} ) - o(3) when v(@) = M = dy + 1.

Notice that Lemma 6 shows that v(abx) increases predictably for d, < v(x) < dj,

jumps sharply up when v(x) = d;, and then drops to constancy for v(x) > dj.
Later, we will compare this behavior with that of f(x).

Proof: We note first that d; > d,, since between any two integers exactly divi-
sible by 27 lies one divisible by 27*l. For parts (b) and (c), we note that
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v(a Z x) - v(%) =v(s; +x) - visy) 4—i2;lv(si +.2) ~ v(s;).
Since v{x) > d,, we have v(s; + x) =v(s;) for all £ > 1, so the sum evaporates.
Then, if v(x) = di, we have v(g; + 8) > v(s1), so the result is positive, while
if v(x) < dj, then v(s; + x) =v(x), producing the result v(x) - dj, as claimed.
Part (d), which completes our description of the behavior of U(agm), is merely
a restatement of Lemma 2. [J

Now we can also strengthen our theorems about f and I, since we can actual-
ly compute v(0y).

Corollary 7: f(x) = v(x) + v () - dy for v(x) 2, and I/ <dp + 1 <dy + 1 = M.

Proof: From Lemma 6, we know that d; > d,. Hence, v(s;) = —-dj; and the result
follows. [

This verifies that ¥ < M, i.e., f(x) stabilized before v(azx) becomes con-
stant.

Next, we complete our determination of N with

Theorem 8: N = d, + 1. Moreover f(x) > v(x) + u(g) -~ d; whenever v(x) = N - 1
= dz.

Proof: In view of Corollary 7, we need only show that
Fx) > dy + U(Z) - d; if v(x) = ds.
Since
a a
v(b) > dy + U(b) - d;
from Lemma 6, this will follow if we also show that

u(“ z ”) > dy +v(3) - dy-

Recalling that v(x) = d, < di, we have

o1 37) - +(5)

v(sy +x) - v(sy) + 2. (v(s; + ) - v(sy))
U(Si)Sdz
dy —dp + 2 (0(sg +x) - v(8;))

v(8;)<d,y

>d2—d1,

the last inequality holding, since each term in the sum if nonnegative, and at
least ome [with v(sy) = d,] is positive. [

We will now provide a formula for N more convenient for calculation. Let
k = k(b) = [logy (D)1,

the greatest integer in log,(b). Recall that, for any integer u, n, denotes
the residue of n modulo 2%*. Let

k if @y 2 by,
gla, b) = _ _
kK+ 1 if ay < bx.
Clearly, g is easy to compute from ¢ and b, and it is almost determined by b.
Lemma 9: N =d, + 1 = g.

Proof: We need only show that g = d, + 1. First we show that g 2 d, + 1. Since
[logo(b)] = k, we have b € [2k, 2k+1), Since S is a sequence of b comsecutive
integers, S must contain exactly one or two multiples of 2k. If only one, it
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is the element of highest two-divisibility d; in S, so d, < k; hence dyp + 1 < &k
< g. 1If there are two, one is an even multiple of 2k, of highest divisibility,
the other is an odd multiple of 2k,  Hence, dz = k. Thus, we need to show that
whenever g = k (rather than k + 1), S _has only one multiple of 2X. But g = %k
only when by < ay. We write b = 2K + by, a = B2k + q;, with 0 < by < a; < 2k,
Then

(B - 1)2K < a - b < B2k <a < (B+ 1)2F,

so S has only one multiple of 2k,

To show that g < d, + 1, note that, since b € [2%, 2k*1y, there must be at
least two multiples of 2%¥~! in §. Thus, dp 2k -1, or dp +1 2 k. So we are
done if g = k. If g = k + 1, then we need d, to be at least k. So we need two
multiples of 2% in S. We write g and b as before, but now g, < by < 2k, so we
have _

a-b=(B-1)2%+ (a, - by) < (B - 1)2% < g2k < q,

and we have exhibited two multiples of 2% in S. [J

4. Conclusions

Our results for p = 2 provide a complete picture of the relationship among

o(5) 25 7) ama s - o((17) - (3))

in the stable range. There are three possibilities:

e s et o %) 60(737) <o)

. ay . a a + xy,
f(x) will equal U(b) if U(b) < U( b >,
f(x) will exceed both of the above if they are equal.

We see that all three possibilities actually occur, in the order stated, as
v(x) increases through the stable range. This trio and order of behaviors is,
in fact, the only way f(x) can possibly achieve the formula

v(x) + v(g) - d

in a range that srarts earlier (at N = d, + 1 = g) than the constancy of v(azx)
(atM=d1+l).

For odd primes, the situation can be quite different. We illustrate the
situation in the case of b = 2. Then

F(z) - F(0) = (a ; x) - (g) = x(z + 2a - 1)/2.

Let j be a positive integer.
First, choose a = pJ. From Lemma 2, we have M = d; + 1 = j + 1, and since
vp(0y1) = = and dp = 0, Theorem 5 says that ¥ < 1. Since

F(x) - F(0) = z(x + 2pd - 1)/2,

we have that N is indeed 1. So, as above, N < M and N = [logp(b)] + 1.

Next, choose a = (pi + 1)/2. Here the situation is radically different.
Since p is odd, dy = dy = 0, but 2a - 1 = pd, so vp(0;) = j, and Theorem 5 says
that ¥ < j + 1. From

F(x) = F(0) = z(z + p?)/2,
we see that N = j + 1. But ¥ =d; +1 = 1.

118 [May



p-ADIC CONGRUENCES BETWEEN BINOMIAL COEFFICIENTS

There are patterns however, and the reader is invited to discover them.
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The binary number system lends itself to unrestricted ordered partitions,
as indicated in Table 1.

TABLE 1. The Binary Case

Binary Associated

n Representation k  Partition of k
1 1 1 1

2 10 2 2

3 11 2 11

4 100 3 3

5 101 3 21

6 110 3 12

7 111 3 111

8 1000 4 4

9 1001 4 31
10 1010 4 22
11 1011 4 211
12 1100 4 13
13 1101 4 121
14 1110 4 112
15 1111 4 1111
16 10000 5 8

Note that the partitioms of k = 4, ranging from 4 to 1111, are in one-to-one

correspondence with the integers from 8 to 15, for a total of 8 partitionms.
Similarly, there are 16 partitions of 5, 32 of 6, and generally, 2k-1
partitions of k. These are in one-to one correspondence with the binary
representations of length k.

It is well known (Zeckendorf [1]) that the Fibonacci numbers

Fl=]_,F2=l,F3=2,F|+=3,F5=5,F6=8,F7=13, e oo

serve as a basis for another zero-one number system, depending on unique sums
of nonconsecutive Fibonacci numbers. These sums are often called Zeckendorf
representations (see Table 2). The partitions of k that appear in this scheme
are those in which only the last term can equal 1; that is,

k=r +r)+ ... +0r;, where r; 2 2 for 2 < j and r; = 1.

Table 2 suggests that, for any k, the number of partitions in which 1 is
allowed only in the last place is the Fibonacci number Fj (e.g., 34 - 21 =13
partitions of 7, ranging from 7 to 2221). This is nothing new, since the
number of zero-one sequences of length k beginning with 1 and having no two
consecutive 1's is well known to be Fj. It is less well known that these zero-
one sequences correspond to partitions.
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TABLE 2. The Zeckendorf Case

Zeckendorf Zero-One Associated
n Representation Representation k Partition of k
1 1 1 1 1
2 2 10 2 2
3 3 100 3 3
4 3+1 101 3 21
5 5 1000 4 4
6 5+ 1 1001 4 31
7 5+ 2 1010 4 22
8 8 10000 5 5
21 21 1000000 7 7
22 21 + 1 1000001 7 61
23 21 + 2 1000010 7 52
24 21 + 3 1000100 7 43
25 21 +3 + 1 1000101 7 421
32 21 + 8 + 3 1010100 7 223
33 21 + 8+ 3 +1 1010101 7 2221
34 34 10000000 8 8

Here is a summary of the observations from Tables 1 and 2. The first-order
recurrence sequence 1, 2, 4, 8, ... serves as a basis for unrestricted parti-
tions, and the second-order recurrence sequence 1, 2, 3, 5, 8, ... serves as a
basis for somewhat restricted partitionms.

The purpose of this article is to extend these results to higher-order
sequences, their zero-one number systems, and associated partitions. To this
end, and for the remainder of the article, let m be an arbitrary fixed integer
greater than 2.

Define a sequence {s;} inductively as follows:

s; =1 for 2 =1, 2, ..., m,

S; = 8;-1 t8;-p fori=m+ 1, m+ 2, ... .

Theorem 1: Every positive integer n is uniquely a sum

sy *8;, + ... +s8; , where it = 1y 2 m whenever t > u.

Proof: The first m positive integers are one-term sums. Suppose, for Azm+ 1,

that the statement of the theorem holds for all n<h - 1. Let Z; be the great-

est 7 for which s; < h. If h - s; = 0, then the required sum is s;, itself.
Otherwise, & - s, is, by the induction hypothesis, uniquely a sum s;, + ---

+ 54, of the required sort, so that

(1) h = s,

Suppose ©; — ©p £ m - 1. Then

+ 8i, + .. + Siu'

h2s; +84, 28, T 85 -pel= 84 +1s

contrary to our choice of 7; as the greatest ¢ for which & 2 s;.

Therefore, the sum in (1) has 7¢ - 7, = m whenever ¢ > u, and this sum is
clearly unique with respect to this property. By the principle of mathematical
induction, the proof of the theorem is finished.
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Theorem 1 shows that the sequence {s;} serves as a basis for a "skip m - ¢
number system" analogous to the Zeckendorf, or Fibonacci, number system. The
latter could be called the "skip 1 number system."

Examples: 1In the skip 1 system:

31 =21 +8+ 2 = 1010010
32 =21+8+3 = 1010100
33 =21+8+ 3+ 1=1010101

34 = 34 = 1000000
In the skip 2 system:

57 = 41 + 13 + 3 = 1001000100
58 = 41 + 13 + 4 = 1001001000
59 = 41 + 13 + 4 + 1 = 1001001001
60 = 60 = 10000000000

We turn now to partitions. For a quick glimpse of what is coming, notice
that the zero-one representations for 57, 58, and 59, just above, lend themselves
naturally to the partitions 343, 334, and 3331 of the integer 10.

In general, in the m - 1 system, for a given positive integer k, the digit
one occurs at and only at places <y, %9, ..., 7,, Where k = 8¢, * 87, + e+
s, » and each pair of ones are separated by at least m - 1 zeros; therefore, to
each k there is a unique ordered v-tuple of integers r; defined by

1]
i

v

]

{Pl il’ if7)==l,
(2) r, =1y = iysp foru=1,2, ..., v -1, if v > 1 and s; 2m,
r, =1y = iy for u =1, 2, ..., v - 1and r, = 7,,

if v > 1 and §; =m-~= 1.

We summarize these observations in Theorem 2.

Theorem 2: Let k be a positive integer, let Sy = {sk, 8, + 1, iy 8341 - 11},
and let P, be the set of partitiomns r;, rp, ..., r, of k that satisfy r, > 1
and r; 2 m for 27=1, 2, ..., m= 1. Then equations (2) define a one-to-one
correspondence between S; and P, so that the number p(k) of partitions in Py
18 8Sg-pm-1-

Now for any positive integer k, and for j = 1, 2, ..., m, let p(k, J) be
the number of partitions r;, ry, ..., r, of k for which r, = J and r; 2m for
1=1,2, ..., v = 1. As in Theorem 2, let p(k) be the number of partitions of
k for which r, 2 1 and r; 2m for ¢ = 1, 2, ..., v - 1. Let g(k) be the number
of partitions of k for which r; zm for all indices 7 =1, 2, ..., v = 1, v.
Lemma 1: 1 if k=4 <m,

p(k, §) =<
‘ 0 if k <m, j <m, and k = J.

Proof: For any given k <'m, the partition of k is the number %k by itself, 'so
that p(k, k) -= 1. Clearly, p(k, ) = 0 for k # j since, in this case, no par-
tition of the form described is possible.

Lemma 2: Suppose 7 < j < m. Then p(k, §) = p(k -1, j) + p(k = m, j) for k =
m+ 1, m+ 2, .

Proof: Assume k > m + 1. Each of the p(k - 1, j) partitions rj,ro, «eus Py_1s J
of k - 1 yields a partition r; + 1, 25, ..., r,_1, J of k. "Moreover, r; + 1 =
m + 1, so that every partition of k having first term > m + 1 corresponds in
this manner to a partition of k - 1.

Each of the p(k - m, j) partitions »,, rz, ..., g of k — m yields a parti-
tion m, »y, r3, ..., § of k. Moreover, every partition of X having first term
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m corresponds in this manner to a partition of k - m.
Since p(k, J) counts partitions having first term > m, a proof that

p(k, §) =pk -1, j) + ptk - m, §)
is finished.
Theorem 3: Suppose k is a positive integer. The number ¢g(k) of partitions
71, Py, «.., v, of k having r;, 2m for ¢ = 1, 2, ..., v is given by the m®h-
order linear recurrence g(k) = g(k —= 1) + gtk = m) for k =m+ 1, m+ 2, ...,
where ¢g(j) = 0 for j =1, 2, ..., m -1, and g(m) = 1.

Proof: The assertion follows directly from Lemma 2, since

m=1
q(k) = pk) - 3 p(ks 9.
Ji=1
Reference
1. E. Zeckendorf. "Représentation des nombres naturels par une somme de nom-—

bres de Fibonacci ou de nombres de Lucas." Bull. Soc. Royale Sci. Liége 41
(1972):179-82.
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1. Introduction

A well-known combinatorial formula for the Fibonacci numbers F,, defined by
Fy=0, Fy =1, F, =F,_; +F,_, form 2 2, is

in/2] - i
@D) Z: ( : > = F,4y for n 2 0,

i=0 4

which can be shown by induction (see, for example, Knuth [I1l, Ex. 1.2.8-16]).
The following proof, however, is easily generalizable to various other recur-
sively defined sequences of integers.

The Fibonacci numbers {F,, F3, ...} are the basis elements of the binary
Fibonacci numeration system (see [11, Ex. 1.2.8-34] or Fraenkel [7]). Every
integer X in the range 0 < K < F, 4| has a unique binary representation of n - 1
bits, kn—lkn—z . e kl’ such that

n-1

K=2 kiFii
i

and such that there are no adjacent l's in this representation of K (see Zeck-
endorf [17]). It follows that, for m > 1, F,4; is the number of binary strings
of length n ~ 1 having no adjacent 1's. The number of these strings with
precisely 7 1's, 0 £ ©Z < [n/2], is evaluated using the fact that the number of
possibilities to distribute a indistinguishable objects into b + 1 disjoint
sets, of which b - 1 should contain at least one element, is (%F1) (see Feller
[6, Sec. II.5]). 1In our case, there are n - 1 - 7 zeros to be partitioned into
7 + 1 runs, of which the 7 - 1 runs delimited on both sides by 1's should be
nonempty; the number of these strings is therefore ”;1 .

In a similar way, counting strings of certain types, Philippou and Muwafi
[15] derived a representation of Fibonacci numbers of order m, with m = 2, as a
sum of multinomial coefficients; their formula coincides with that presented
earlier by Miles [13].

The properties of the representation of integers in Fibonacci~type numera-—
tion systems were used by Kautz [10] for synchronization control. More
recently, they were investigated in Pihko [16] and exploited in various
applications, such as the compression of large sparse bit-strings (see Fraenkel
and Klein [8]), the robust transmission of binary strings in which the length
is in an unknown range (see Apostolico and Fraenkel [3]), and the evaluation of
the potential number of phenotypes in a model of biological processing of
genetic information based on the majority rule (see Agur, Fraenkel, and Klein
[11). In the present work, the properties of numeration systems are used to
generate new combinatorial formulas. In the next section, this is done for the
sequence based on the recurrence a; = a;-; + a;_p,s for some m 2 2, which
appears in certain applications to encoding algorithms for CD-ROM. Section 3

*This work was partially supported by a fellowship from the Ameritech Foundation.

124 [May



COMBINATORIAL REPRESENTATION OF GENERALIZED FIBONACCI NUMBERS

deals with other generalizations of Fibonacci numbers, namely, sequences based
on the recurrences u; = mu;-1 + u;_9 for m 2 1, or v; = mv;_1 - v;_, for m =2 3,
which are special cases of the sequences investigated by Horadam [9]. For
certain values of m and with appropriate initial values, these two recurrence
relations generate the subsequences of every k" Fibonacci number, for all k = 1.
For further details on the properties of numeration systems, the reader is
referred to [7].

2. A Generalization of Fibonacci Numbers

Given a constant integer m = 2, consider the sequence defined by

A%m =n -1 for 1 <m<m+1,

A = 4+ 4, for o> m + 1.

In particular, F, = Ag) are the standard Fibonacci numbers. It follows from
[7, Th. 1] that, for fixed m, the numbers {A%o, Ag”, ...} are the basis

elements of a binary numeration system with the following property: every
integer K in the range 0 < K < Ag?l has a unique binary representation of m - 1
bits, k,-1kn-2...k1, such that

"ot (m)
K= .ZlkiAi+1
=

and such that there are at least m - 1 zeros between any two l's in this repre-
sentation of X. Hence, for n = 1, Agll is the number of binary strings of
length n - 1 having this property.

For n = 2, we again get the property that there are no adjacent ones in the
binary representation.

An interesting application of the sequence AﬁT) is to analyze encoding
methods for certain optical discs. A CD-ROM (compact disc-read only memory) is
an optical storage medium able to store large amounts of digital data (about
550 MB or more). The information, represented by a spiral of almost two bil-
lion tiny pits separated by spaces, is molded onto the surface of the disc. A
digit 1 is represented by a transition from a pit to a space or from a space to
a pit, and the length of a pit or space indicates the number of zeros. Due to
the physical limitations of the optical devices, the lengths of pits and spaces
are restricted, implying that there are at least two 0's between any two l's
(for details, see, for example, Davies [4]): this is the case m = 3 of our
sequence above. It follows that if we want to encode a standard ASCII byte
(256 possibilities), we need at least 14 bits, which corresponds to A%? = 277.
In fact, there is an additional restriction that no more than 11 consecutive
zeros are allowed, which disqualifies 6 of the 277 strings, but 14 bits are
still enough; indeed, the code used for CD-ROM is called EFM (eight to fourteen
modulation).

We now derive a combinatorial formula for Agﬁl. First, note that Agﬁl is
also the number of binary strings of length n + m - 2, with zeros in its m - 1
rightmost bits, such that every 1 is immediately followed by m - 1 zeros. Let
k be the number of 1's in such a string, so that k can take values from 0 to

l(n + m - 2)/m|. We now consider the string consisting of elements of two
types: blocks of the form 10...0 (m - 1 zeros) and single zeros; there are k
elements of the first type and (n + m - 2) - km of the second, which can be

arranged in

(n+m— 2k- (m - 1)k>
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ways. Thus, we have the following formula, holding for m 2 2 and n > 1:
-2

Lt )/mJn+m— 2 - (m- 1Lk _ ,m

(2) kz% k = Ay

For m = 2, (2) reduces to formula (1). Using the example mentioned above for
EFM codes, setting m = 3 and n = 15, we get:

(0)+ () + )+ () + () +(5)
=1+ 14+ 66+ 120 + 70 + 6 = 277 = 4%%.

3. Regular Fibonacci Subsequences

Let L, be the ntM Lucas number, defined by Ly = 2, Iy =1, L, = L,_1 + Lp_»o
for n 2 2. The standard extension to negative indices sets

Ly = (-1)"L, and F_, = (-1)"*1F, for n 2 1.

We are interested in the regular subsequences of the Fibonacci sequence
obtained by scanning the latter in intervals of size k, i.e., the sequences
{Fkn+j}:=—w for all constant integers kK 2 2 and 0 < J < k. The following iden-
tity, which is easily checked and apparently due to Lucas (see Dickson [5, p.
395]), shows that all the subsequences with the same interval size k satisfy a
simple recurrence relation: for all (positive, null, or negative) integers k
and 7,

(3) F, = LyF,_ + (-D*T1F, 5.

It follows that all regular subsequences of the Fibonacci numbers can be
generated by a recurrence relation of the type u; = mu;_1 * u;_p, for certain
values of m, and with appropriate initial conditions. We now apply the above
techniques to obtain combinatorial representations of these number sequences.

For fixed m 2 3, define a sequence of integers by

u§™ =0, U™ =1, and U = muS™ - U, for n = 2.

The numbers {Ufm, Ugm, ...} are the basis elements of an m-ary numeration sys-

tem: every integer X in the range 0 < K < US” has a representation of »n - 1
"m-ary digits," k,-1Ky-2...k;, with 0 < k; < m - 1, such that

Lo
K= 3 k;U™;

this representation is unique if the following property holds: if, for some
1 <%2<j<n-1, k; and k; both assume their maximal value m - 1, then there
exists an index s satisfying 7 < s < J, for which kg < m - 3 (see [7, Th. 4]).
In particular, for m = 3, we get a ternary system based on the even-indexed
Fibonacci numbers {1, 3, 8, 21, ...}, and in the representation of any integer
using this sequence as basis elements, there is at least one zero between any
two 2's.
For general m, we have that Ugm is the number of m-ary strings of length

n - 1, such that, between any two (m - 1)'s, there is at least one of the digits
0s..., (m = 3). For a given m-ary string 4 of length n - 1, let j; be the num-
ber of ¢'s in 4, 0 <72 <m -1, thus, 0 < j; < »n and

m=1

ji=7’l—1.
=0
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To construct an m-ary string satisfying the condition, we first arrange the
digits 0, ..., (m = 3) in any order, which can be done in
m-3

=0

jO’ jl’ ceey jm—S

ways. Then the j,_; (m - 1)'s have to be interspersed, with no two of them ad-
jacent. In other words, the Z%,ogl smaller digits, which are now considered
indistinguishable, are partitioned into j,-; +1 sets, of which at least g,-j - 1
should be nonempty; there are

(” - jmj;z_l_ jm—l)

possibilities for this partition. Finally, the (m -2)'s can be added anywhere,

in
(5. .)
jm-2
ways. This yields the followinig formula, holding for m 23 and n = 1:

no=1=Jneg = Jn-1\(" = (" = Jn-2 = dm-1 (m)
(4) m- m- ) ) ( m; m-1) = y{m,
jo,...,gm1>o(e70’ J1s eevs Jm-3 (Jm—z) Idm-1 > n
Jot coet guno1=n-1

Using the fact that for integers a and b, (%) =0 if 0 < a < b, there is no

need to impose further restrictions on the indices, but the rightmost binomial
coefficient in (4) implies that j,_; varies in fact in the range 0 < j,-; <
[(n - 1)/21. The sequence (w{m) corresponds to the sequence (w,(0, 1; m, 1))
studied by Horadam [9], but formula (4) is different from Horadam's identity
(3.20).

Remark: Noting that the definition and the multlnomlal expansion of the multi-
variate Fibonacci polynomials of order k {Hn (€1, +.., %)} of Philippou and
Antzoulakos [14] may be trivially extended to x; € R (Jj = 1,..., k), we readily
get the following alternative to (4), namely,

L(n=-1)/2] _ _ . .
Uy(zm) - .ZO (ﬂ ; J)(_l)gmn—l~23’ m=3,nz=1,
i=

since (U™ = {#{Pm, -1)} (m =23, n =2 1).

From (3), we know that the regular subsequence {Fy (n- D+J}m o of the Fibo-
nacci numbers, for constant even kK 22 and 0 < j < k, is obtained by the same
recurrence relation as the sequence {U(Lv}n 0» with the difference that the
first two elements (indexed O and 1) must be defined as F.y4+; and F; instead of
0 and 1. Thus, we can express the Fibonacci subsequences with even interval
size in terms of U™:

Theorem 1: For any even constant K = 2 and any constant 0 < J < k, the follow-
ing identity holds for all n = 1:

(Ly) (Lx)
(5) Z;lk(n—l)+,7 FU R +JU7L kl

Proof: By induction on n. For n =1,
Fj = FJX]. - F_k+jxo.
For n = 2,

Fyyj = IgFj + (-1D**1F, o by (3),
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but since k is even, the right-hand side can be rewritten as

@ _ (L)
FpU™ = FoyagUr

Suppose the identity holds for all integers <wn. Then

Fenvi = Defrn-1y+j = Bn-2)+s

e ) () )
DB UG = Fy USSR = B U+ Py U
= £ Uk

n+l F -k+7j
so the identity holds also for n + 1, and therefore for all n > 1. [J

]

Uske,

In particular, for j = 0 and kK = 2, we get the numbers Fotn-1y> n = 1, 2,
.» which are the even-indexed Fibonacci numbers, and correspond by (5) to

(Ly) (D
Un 1= U,

For m = L, = 3, the multinomial coefficient in (4) reduces to (?g) = 1, and the
equivalent of (4) can therefore be rewritten as:

n -1 ><j0 + l) (3)
o . =P =F,,.
3270 o =max(0, J'z‘l)('70 +J2/\ J2 -

I(n-1)/21 n-1-4,

For example, for n = 4, we get:

(0)o) + (D)) + ) + G)) + ()0) + R)E) + G)E) + (B)2)
=1+3+3+1+3+6+3+1=21=02=F,
For fixed m 2 1, define a sequence of integers by

v{=1, v{™=1, and V" = my™ + v, for n = 2.

The numbers {VOM’ ng, ...} are the basis elements of an (m + l)-ary numeration
system with the following property: every integer K in the range 0 < X < ng
has a unique representation of n - 1 "(m + 1)-ary digits," k,-1kn-5...ky, with
0 <k; <m, such that

K= Zk vim
and such that, for ¢ > 1, if k;;; assumes its maximal value m, then X = 0 (see
[7, Th. 3]). In particular, for m = 1, we get the binary numeration system

based on the Fibonacci sequence and the condition that there are no adjacent
1's. . .

For general m, we have that is the number of (m + l)-ary strings of
length n - 1, such that when scanning the string from left to right, every
appearance of the digit m, unless it is in the last position, is immediately
followed by a digit 0. Special treatment of the rightmost digit is avoided by
noting that Vém is also the number of (m + l)-ary strings of length »n, with O
in its rightmost position, and where each digit m is followed by a dlglt 0.
For a given (m + l)—ary string 4 of length n, let j; be the number. of i's in 4,
0 <72 <m, thus 0 < J < n and

Zji = 7N.
=0

To construct an (m + l)-ary string satisfying the condition, distribute the 0's
in the spaces between the m's, such that every m is followed by at least omne O.
In other words, the jj; zeros have to be partitioned into Jm + 1 sets, of which
at least j, should be nonempty; there are <§:>possibilities for this partition.

ym
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We now consider the string obtained so far as consisting of j; units, where
each unit is either ome of the 4, pairs "m0" or one of the remaining jy; - J,
single zeros. The digits 1, ..., (m - 1) are then to be distributed in the
spaces between these units, including the space preceding the first unit, but
not after the last unit, because the rightmost position must be 0. First the

digits 1, ..., (m — 1) are arranged in any order, which can be done in
m=1 s
> d
=1
J1s wves Tm-1

. -1. - . . . . . .
ways; finally, these le,ji digits, which are considered indistinguishable,
are partitioned into jy sets, which can be done in

m=-1
Z J. -1 o
i=0 ¢ = (;;_ 1 _‘7’.">
jO -1 J0 Jdm
ways. Summarizing, we get, for m 2 1 and n = 1:

(6)

:70)( n-=1=Jn =V7§m)_

j0>_0’ jl’--:» ijO(jm jo_l’ jl’ et jm—1>

l7o+...+ Im =n .
For m = 1, the multinomial coefficient is (gg:i) = 1, and we again get (1). For
m = 2, the sequence {Vy(lz)} is {1, 3, 7, 17, ...}, and the termary numeration
system based on this sequence is the system which yielded the best compression
results in [8]. The sequence {V, ™} corresponds to {w,(l, 1; m, -1)} in [9],
but again the combinatorial representation (6) is different from Horadam's
formula (3.20). For m = 2, (6) reduces to:

Jo) n-1- jz) - 7@
(jz ( Jo - 1 no°
For example, for n = 3, we get:

(6)6) + ()2 + ()2) + (o) + (D)

=l+2+1+1+2=7=7Vv{

[(n-1)/21 n-gs

J’2=0 j0=max(1, J2)

Returning to the regular subsequences of the Fibonacci numbers, we still
need a combinatorial representation of the subsequences with odd interval size
k, which by (3) satisfy the same recurrence relation as T/éL"), but possibly with
other initial values. The counterpart of Theorem 1 for the odd intervals is:

Theorem 2: For any odd constant k = 1 and any constant 0 < J < k, the follow-
ing identity holds for all n = 1:

n-1
; L)
(7 ey = B 4 (Fpy s = F)) X (DI,
=1
Proof: By induction on n. For n = 1,

FJ = FJ x 1 + (F—k+j - F,]’) x 0.
For n = 2,
Frvg = Infy + Fyyg
= (L)
= BV 4 (7

= F;(Ly + 1) + (F
(Ly)
- FOH Vi,

keg T )

k+g

Suppose the identity holds for all integers < n. Then, denoting the constant
(F_gx+; = F3) by a,
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kn+i = Difrei-1+i t Fn-2)+4

n=1 n-2
P ; : L
Ly [Fj Vn(L,() + a Z (_1)1+1Vn(51<1_)} + E:]Vygl’_kf + “2: (_1)z+1Vn( kl)

=1 =1 TeTE

= BV + @?if(-l)i+l[Lijfi + VIO T+ al, (-1 v,
i=

But the last term is

a(-1)"Zy = a(-1)" (7§ - vy = o[ (-1)" v+ (~1)nr v
thus,

Fanvi = Vn(ikl) + O‘,il(“l)ﬂlvrfikf— i
and the identity holds alsz for n + 1, and therefore for all n. [J

In particular, for J = 2 and kK = 3, we get the numbers
{F3n-n+2)n-1= {1, 5, 21, 89, ... 1,

i.e., every third Fibonacci number, which correspond, by (7), to VéLQ = VJA).
For example, using formula (6) with m = L3 = 4, we get for n = 3 (writing in
the multinomial coefficients the values jg, ..., J, from left to right and
collecting terms which differ only in the order of the values of ji, Jjy, J3):

<g><1,o,é,o,1> + (%)(2,0,3,0,0) + 3(1)(0,1,%,0,1) + 3(3)(1,1,S,o,o>

+ 3(é)(o,2,é,o,o> + 3(5)(0,1,%,0,0)

=1+2+3+6+3+6=21=V"=F,.

4. Concluding Remarks

Combinatorial representations of several recursively defined sequences of
integers were generated, using the special properties of the corresponding
numeration systems. On the other hand, it may sometimes be desirable to eval-
uate directly the number of strings satisfying some constraints. The above
techniques then suggest to try to define a numeration system accordingly. For
example, in Agur and Kerszberg [2] a model of biological processing of genetic
information is proposed, in which a binary string symbolizing a DNA sequence is
transformed by repeatedly applying some transition function .#. For .# being the
majority rule, the number of possible final strings, or phenotypes, is eval-
uvated in [1] using the binary numeration system based on the standard Fibonacci
numbers. Other transition functions could be studied, and if the resulting
phenotypes can be characterized as satisfying some constraints, the
corresponding numeration system gives an easy way to evaluate the number of
these strings.
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