
THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 

TABLE OF CONTENTS 
Second-Order Recurrence and Iterates of [an + Vi\ ClarkKimherling 194 
Entry Point Reciprocity of Characteristic Conjugate 

Generalized Fibonacci Sequences David Englund 197 
Announcement on Fifth International Conference 199 
Summation of Certain Reciprocal Series Related to 

Fibonacci and Lucas Numbers Richard Andre- Jeannin 200 
Sequences of Integers Satisfying Recurrence Relations Richard Andre-Jeannin 205 
Conjectures about s-Additive Sequences Steven R. Finch 209 
A Note on Euler's Numbers.. .Nenad Cakic 215 
The Zeckendorf Representation and the 

Golden Sequence .Martin Bunder and Keith Tognetti 217 
Third International Conference Proceedings 219 
The Period of Convergents Modulo M of Reduced Quadratic 

Irrationals R.A. Bateman, E.A. Clark, M.L. Hancock and C.A. Reiter 220 
On the Notion of Uniform Distribution Mod 1 . Rita Giuliano Antonini 230 
Some Recursive Asymptotes ' R.N. Whitaker and A.G. Shannon 235 
Second-Order Recurrences and the 

Schroder-Bernstein Theorem Calvin Long and John Bradshaw 239 
Sets of Terms that Determine all the Terms of a 

Linear Recurrence Sequence Clark Kimherling 244 
Some Convolution-Type and Combinatorial Identities 

Pertaining to Binary Linear Recurrences Neville Robhins 249 
A Note on a Class of Lucas Sequences Piero Filipponi 256 
Multiplicative Partitions of Bipartite 

Numbers Bruce M. Landman and Raymond N. Greenwell 264 
A Combinatorial Interpretation of the Square of 

a Lucas Number John Konvalina and Yi-Hsin Liu 268 
Reciprocal GCD Matrices and LCM Matrices Scott J. Beslin 271 
Summing Infinite Series with Sex Herb Silverman 275 
Elementary Problems and Solutions .Edited by Stanley Rabinowitz andA.P. Hillman 277 
Advanced Problems and Solutions Edited by Raymond E. Whitney 283 

VOLUME 29 AUGUST 1991 NUMBER 3 



PURPOSE 
The primary function of THE FIBONACCI QUARTERLY is to serve as a focal point for 

widespread interest in the Fibonacci and related numbers, especially with respect to new results, 
research proposals, challenging problems, and innovative proofs of old ideas. 

EDITORIAL POLICY 
THE FIBONACCI QUARTERLY seeks articles that are intelligible yet stimulating to its 

readers, most of whom are university teachers and students. These articles should be lively and 
well motivated, with new ideas that develop enthusiasm for number sequences or the explora-
tion of number facts. Illustrations and tables should be wisely used to clarify the ideas of the 
manuscript. Unanswered questions are encouraged, and a complete list of references is ab-
solutely necessary. 

SUBMITTING AN ARTICLE 
Articles should be submitted in the format of the current issues of THE FIBONACCI 

QUARTERLY. They should be typewritten or reproduced typewritten copies, that are clearly 
readable, double spaced with wide margins and on only one side of the paper. The full name 
and address of the author must appear at the beginning of the paper directly under the title. Il-
lustrations should be carefully drawn in India ink on separate sheets of bond paper or vellum, 
approximately twice the size they are to appear in print. Since the Fibonacci Association has 
adopted Fi = F2= 1, Fn+i = Fn + Fn-i, n > 2 and Li = l, L2 = 3, Ln+i = Ln + Ln-i9 n > 2 as the stan-
dard definitions for The Fibonacci and Lucas sequences, these definitions should not be a part 
of future papers. However, the notations must be used. 

Two copies of the manuscript should be submitted to: GERALD E. BERGUM, EDITOR, 
THE FIBONACCI QUARTERLY, DEPARTMENT OF COMPUTER SCIENCE, SOUTH 
DAKOTA STATE UNIVERSITY, BOX 2201, BROOKINGS, SD 57007-0194. 

Authors are encouraged to keep a copy of their manuscripts for their own files as protection 
against loss. The editor will give immediate acknowledgment of all manuscripts received. 

SUBSCRIPTIONS, ADDRESS CHANGE, AND REPRINT INFORMATION 
Address all subscription correspondence, including notification of address change, to: 

RICHARD VINE, SUBSCRIPTION MANAGER, THE FIBONACCI ASSOCIATION, SAN-
TA CLARA UNIVERSITY, SANTA CLARA, CA 95053. 

Requests for reprint permission should be directed to the editor. However, general permission 
is granted to members of The Fibonacci Association for noncommercial reproduction of a 
limited quantity of individual articles (in whole or in part) provided complete reference is made 
to the source. 

Annual domestic Fibonacci Association membership dues, which include a subscription to 
THE FIBONACCI QUARTERLY, are $35 for Regular Membership, $45 for Sustaining 
Membership, and $70 for Institutional Membership; foreign rates, which are based on interna-
tional mailing rates, are somewhat higher than domestic rates; please write for details. THE 
FIBONACCI QUARTERLY is published each February, May, August and November. 

All back issues of THE FIBONACCI QUARTERLY are available in microfilm or hard copy 
format from UNIVERSITY MICROFILMS INTERNATIONAL, 300 NORTH ZEEB ROAD, 
DEPT. P.R., ANN ARBOR, MI 48106. Reprints can also be purchased from UMI CLEARING 
HOUSE at the same address. 

1991 by 
©The Fibonacci Association 

All rights reserved, including rights to this journal 
issue as a whole and, except where otherwise noted, 

rights to each individual contribution. 



l$e Fibonacci Quarterly 
Founded in 1963 by Verner E. Hoggatt, Jr. (1921-1980) 

and Br. Alfred Brousseau (1907-1988) 

THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 
DEVOTED TO THE STUDY 

OF INTEGERS WITH SPECIAL PROPERTIES 

EDITOR 
GERALD E. BERGUM, South Dakota State University, Brookings, SD 57007-0194 

ASSISTANT EDITORS 
MAXEY BROOKE, Sweeny, TX 77480 
JOHN BURKE, Gonzaga University, Spokane, WA 99258 
LEONARD CARLITZ, Duke University, Durham, NC 27706 
HENRY W. GOULD, West Virginia University, Morgantown, WV 26506 
A.P. HILLMAN, University of New Mexico, Albuquerque, NM 87131 
A.F. HORADAM, University of New England, Araiidale, N.S.W. 2351, Australia 
CLARK KIMBERLING, University of Evansville, Evansville, IN 47722 
DAVID A. KLARNER, University of Nebraska, Lincoln, NE 68588 
RICHARD MOLLIN,. University of Calgary, Calgary T2N 1N4, Alberta, Canada 
GARY L. MULLEN, The Pennsylvania State University, University Park, PA 16802 
SAMIH OBAID, San Jose State University, San Jose, CA 95192 
JOHN RABUNG, Randolph-Macon College, Ashland, VA 23005 
NEVILLE ROBBINS, San Francisco State University, San Francisco, CA 94132 
DONALD W. ROBINSON, Brigham Young University, Provo, UT 84602 
LAWRENCE SOMER, Catholic University of America, Washington, D.C. 20064 
M.N.S. SWAMY, Concordia University, Montreal H3C 1M8, Quebec, Canada 
D.E. THORO, San Jose State University, San Jose, CA 95192 
ROBERT F. TICHY, Technical University, Graz, Austria 
CHARLES R. WALL, Trident Technical College, Charleston, SC 29411 
WILLIAM WEBB, Washington State University, Pullman, WA 99164-2930 

BOARD OF DIRECTORS 
THE FIBONACCI ASSOCIATION 

CALVIN LONG (President) 
Washington State University, Pullman, WA 99164-2930 
G.L. ALEXANDERSON 
Santa Clara University, Santa Clara, CA 95053 
PETER HAGIS, JR. 
Temple University, Philadelphia, PA 19122 
FRED TV HOWARD 
Wake Forest University, Winston-Salem, NC 27109/ 
MARJORIE JOHNSON (Secretary-Treasurer) 
Santa Clara Unified School District, Santa Clara, CA 95051 
JEFF LAGARIAS 
Bell Laboratories, Murray Hill, NJ 07974 
LESTER LANGE 
San Jose State University, San Jose, CA 95192 
THERESA VAUGHAN 
University of North Carolina, Greensboro, NC 27412 



SECOND-ORDER RECURRENCE AND ITERATES OF [an + 1/2] 

Clark Kimber l ing 
University of Evansville, Evansville, IN 47222 

(Submitted June 1989) 

The equation 

[x[nx + 1/2] + 1/2] = [nx + 1/2] + n 

determines a unique real number x, in the sense that there is only one value of 
x for which this equation holds for all positive integers n. This special 
value of x is the golden mean, (1 + v5)/2. 

The purpose of this note is to prove the above assertion in the more gen-
eral form of Theorem 1 (of which it is the case when a = b = 1), and to give a 
necessary and sufficient condition that iterates of the function [an + 1/2], in 
the sense of Theorem 2, form a second-order recurrence sequence. 

Notation: Throughout, let f(x) = x2- - ax - b, where a and b are nonzero inte-
gers satisfying a2 + 42? > 0. Write the roots of f(x) as 

a = (a + /a2 + 42?)/2 and 3 = cc - a. 

Let [CLQ, a\9 a^, . . . ] denote the con t inued f r a c t i o n of the r o o t a, wi th conver -
gen ts p,lqk given in the u s u a l way ( e . g . , Rober ts [ 1 ] , pp. 97-100) by 

P_2 = 0, p_Y = 1, pk = akipk_l + pk_2 for k > 0, 
q_z = 1, q_x = 0, qQ = 1, qk = akqk_1 + qk_2 for k > 1. 

Lemma 1: | $ | < 1 i f and only i f \b - l.| < | a | , and 

| $ | = 1 i f and only i f \b - l | = \a\. 

Proof: | 3 | ^ 1 i f and only i f 

(1) a - 2 < / a* + kb < a + 2, 
with equality if and only if | 31 = 1. This inequality shows that a cannot be 
less than or equal to -2, since a2 + kb is positive. Moreover, if a = -1, then 
b > 1, so that /a2 + 42? > a + 2, a contradiction. Therefore, a > 1. In case 
a = 1, we have 
(2) 2 - a < /a2 + 4£> < a + 2, 

and if a > 2, then the leftmost member of inequality (1) is nonnegative. So, 
if a = 1, square the members of inequality (2), and if a > 2, square those of 
inequality (1). In both cases, the resulting inequalities easily simplify to 
-a < b - 1 < a. 

Lemma 2: There exists a positive integer K such that 

l(pk - aqk - l)(pfc - l)lqk + 1/2] < bqk 

< Up - aq + l)(p + l)/qk + 1/2] 
for all k > K. k k k 

Proof: It suffices to prove for all large enough k the inequalities 

(Pk ~ aqk - l)(Pj< - l)/qk + 1/2 < bqk + 1 
and 

bqk < (pk - aqk + 1)(pk + l)/qk - 1/2, 

which are equivalent to 
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(3) l(pk ~ D/qk]Z + a/qk < apk/qk + b + l/2qk < [ (pfc + l)/afe]2 - alqr 

Substitute a + e for pk/qk, where |e| < l/qkqk+i (e.g., Roberts [1], p. 100), 
square where indicated, and use the fact that a2 - aa - b = 0 to see that (3) 
is equivalent to 

\eqk(a - 2a - e) + 1/2 - 1/tfJ < | a - 2a - 2e | , 

which holds for all large enough /c, since, as k + °°, the left member approaches 
1/2, while the right approaches \a - 2a| = /a2 + 42? > 1. 

Lemma 3: If \b - l| < |a|, then equation (4) below holds for x = a and for all 
n > 1. 

Proof: By Lemma 1, |$| < 1, so that the fractional part r = na+l/2- [not + 1/2] 
satisfies |r - 1/2| < 1/2|3|. Since 3 = a - a, we have -1 < (a - a)(1 - 2v) < I, 
so that 0< (a - a + l)/2 + (a - a)r < 1. Since a2 = aa + b, we then have 

0 < (a - a) {no. + 1/2 - r) + 1/2 - Z?n < 1, 
or 

Z??2 < (a - a) [na + 1/2] + 1/2 < 1 + 2?n, 

so that equation (4) holds for x = a. 

Theorem 1: Suppose a and Z? are integers satisfying \b - l| < |a| . Then there 
exists one and only one number x for which 

(4) [x[nx + 1/2] + 1/2] = a[nx + 1/2] + bn 

for all n > 1. Explicitly, # = a = (a + /a2 + 4Z?)/2. 

Proof: Let n be the denominator afc of the /cth convergent pk/qk to the root a of 
3?z - ax - 2?. We shall show that in order for (4) to hold for this choice of n, 
the number x must lie inside infinitely many intervals (Lk, Rk), where 

Lk = ^k " 1}/^fe a n d Rk = (?k + l)lcLk' 
To see that x > Lk for all large enough k, observe that, for x < Lk and all 

large enough k, we have 

[x[nx + 1/2] + 1/2 - a[nx + 1/2]] = [(x - a)[nx + 1/2] + 1/2] 

< [{{pk - l)/qk - a)[pk - 1 + 1/2] + 1/2] 

< [(pk - aqk - l)(pk - l)lqk + 1/2] < bqks 

by Lemma 2. This contradiction to (4) shows that x > Lk for all large enough 
k. Similarly, Lemma 2 shows that x < Rk for all large k. It follows that the 
only viable candidate for x is a, since only this number lies inside infinitely 
many of the intervals (Lk, Rk). 

Lemma 3 shows that the root a does indeed satisfy (4) for all n > 1. 

Theorem 2: For any positive integer n, the sequence {sk} given by 

Si = n, sz = [an + 1/2], s3 = [as2 + 1/2], ..., sk = [ask-i + 1/2] 

satisfies the recurrence relation sk = ask-i + bsk-2 for all n > 1 and for all 
k > 2 if and only if \b - l| < \a\. 

Proof; If \b - l| < \a\, then s3 = as2 + bsi , according to (4). In fact, for 
any k > 3, substituting sfc_2 for n into (4) yields [ask + 1/2] = ask-i + bsk-2> 
as asserted. 

Now, if Z? - 1 = a, then a = a + 1, so that 

s2 = (a + l)n and S3 = (a + l)s2 = (a + l)2n = as2 + Z?si-
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By induc t ion5 

sk = (a + l)k~ln = asfr-i + bs-k-2 f o r a l l /c > -3. 
S i m i l a r l y , i f Z? - 1 = - a , then 

sk = (a - l ) f c - 1 n = a s ^ - i + bs-^-i f ° r a H /c > 3 . 
If 12? - l| > \a\ 9 then | 3. | >' 1 by Lemma 1, Then the well-known representa-

tion a\QLm + Z? 13m for the mth term of any recurrence sequence 

tm = a*m_i + btm_z, 
for which a2 + Wb > 0, shows that the sequence 

atm - tm + l = 2>1em(a - 6) 
diverges, so that the relation t , -, = \.a^m

 + 1/2] cannot hold for all m. 

In conclusion, we note that the well-known representation 

Fn = [aFn_! + 1/2] 

for the nth Fibonacci number in terms of the golden mean, a, and only one pre-
ceding term, follows from Theorem 2 when a = b = 1. Theorem 2 reveals many 
other second-order recurrence sequences which lend themselves to this sort of 
first-order recurrence. 

Reference 

1. Joe Roberts. Elementary Number Theory. Cambridge, Mass.: MIT Press, 1977. 
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ENTRY POINT RECIPROCITY OF CHARACTERISTIC CONJUGATE 
GENERALIZED FIBONACCI SEQUENCES 

David A. E n g h i n d 
Belvidere, IL 61008 
(Submitted July 1989) 

Introduction 

Given a pair of integers, A , B, such that (A , B) = 1 and 0 < A < %5 5 we 
define a generalized Fibonacci sequence as follows: 

G0 = B - A, Gl = A, Gn = Gn_l + Gn_2 for n > 2. 

Terms with negative indices can also be defined by: 

6Ln = G^-n - G\-n for n > 1. 
We say that 

\G\ - GQG2\ = M 2 + AB - BZ\ 
is the characteristic of {Gn}, In addition, we define a conjugate sequence 
{Hn} by: 

HQ = B - A, Hl = B - 2A, Hn = Hn_l + Hn_2 for n > 2. 

It is easily seen that: 

1. £n > 0 and Hn > 0 for all n > 0; 

3. {£n} and {Hn} have the same characteristic; 

4. {Gn} and {Hn} are distinct unless A = 1, B = 3, in which case Gn = Hn = 
Ln (the nth Lucas number; see [1]). 

Let {Tn} = {Gn} or {#w}. If M is any positive integer, we say M enters 
{Tn} if there exists K > 0 such that M|TZ. The least such K will be called the 
entry point of M in {T„}, and denoted T(M) . The entry point of M in the 
original Fibonacci sequence {Fn} (which is guaranteed to exist) is denoted 
Z(M) . The entry point of M (if it exists) in {Ln}, {Gn}, {#n} will be denoted 
L(M), G(M)> H(M), respectively. 

In this paper we prove the following theorems. 

Theorem 1: If Af|G0, then M enters {Gn} and {#„}, and £(M) = #(M) = Z(M). 

Theorem 2: If Af|£0 but M enters {Gn}, then M also enters {#n}5 and G(Af) + #(A/) 
= Z(Af). 

Theorem 2 may be considered an entry point reciprocity law. We will make 
use of the following identities. 

V-U J-m+n = ^m-l-t-n ^m-^n + l 

(2) 

(3) H„ = 
(4) (Tn, Tn+1) = (Fn, F„+i) = 1 

(5) F_n = (-l)n-1Fn 

(6) 
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The Main Results 

Proof of Theorem 1: Since GQ = H0 = B - A, and (G0, G x) = (HGi H1) = 1, it 
suffices to show that, if {Tn} is a sequence such that M\TQ and (TQ, T\) = 1, 
then M enters {Tn} and T(M) = Z(M) . (1) implies TK = FK_lT0 + FKTl; therefore, 
hypothesis implies TK = FKTi (mod Af) , so that 

TZ(M) = Fz{M)Ti = 0 (mod M). 

Thus, M enters {Tn} and T(M) < Z(M) . Also 
FT(M)TI E ^ ( A f ) E 0 (mod M) . 

But (T0, Tx) = 1, so (Af, Ti) = 1. Therefore, FT(Af) E 0 (mod M) . This implies 
Z(M) < T(M), so ̂ (M) = Z(M). 

Lemma 1: Let {Tn} = {£n} or {#„}. If X is an integer such that 0 < X < Z(Af) 
and Tx E 0 (mod A/), then J = T(AQ . 

Proof: Hypothesis implies ^(AQ < X. Suppose T(M) = I7 < I. (1) implies 

TX = T(X-Y) + y = FX-Y-1TY + FX-YTY + l* 

Thus, 
^Y E ^-y-i^j + **-A+i (mod W -

But hypothesis implies Tx E TY E 0 (mod Af) , so FI„JTy + 1 E 0 (mod Af) . Hypothe-
sis and (4) imply (Ty, ̂ y+i) = 1, so that (Af, TY+l) = 1. Therefore, î .__Y E 0 
(mod M) . But 0 < Z - I < Z < Z(M) , which contradicts the definition of Z(M) . 
Hence, T{M) = Z. 

Proof of Theorem 2: Let rc = G(M) . Hypothesis and (2) imply Fn-2A + Fn_lB = 0 
(mod Af) . (3) implies 

HZ(M)-n = ~^Z(M) + 2-n^- + FZ(M) + l-nB' 

Now (6) implies 

FZ(M)+2~n = Fl-nFZ(M) + ^Z-n^ZCM) + 1 E F2-nFZ(M) + l E t ' 1 ^ ~lFn-2FZ(M) + l (mod M>> ' 

^Z(M)+l-n = F-nFZ(M) + Fl~nFZ(M)+l E ^1-n^Z(M) +1 E (-1) ^n - l̂ Z(M) + 1 (mod W • 

[The last steps involved use of (5).] Therefore, 

HZ(M)-n = (_1) Fn-ZFZ(M) + lA + C"1) ̂ n - l̂ Z(M) + l5 

E (-Dn^z(M) + l(^n-2^ + F„-iB) = 0 (mod M). 
Thus, by Lemma 1, 

E{M) = Z(M) - n = Z(M) - G(M) . 

CoroHary 1: For {Tn}, if T(Af) exists, then T(M) < Z(M); if T(M) = Z(M), then 

M\TQ. 

This follows from Theorems 1 and 2. 

Corollary 2: If A/ enters {Ln} and M > 2, then L(M) = %Z(M); L(2) - Z(2) = 3. 
Moreover, if Af > 2 and if Z(Af) is odd, then M does not enter {Ln}. 

Proof: 2|L0, SO Theorem 1 implies L(2) = Z(2) = 3 . If Af > 2 and M enters {£„}, 
then Af|L0. Since {Ln} is self-conjugate, Theorem 2 implies 2L(Af) = Z(M), so 
L(M) = %Z(Af). Hence, when Af > 2, M enters {Ln} only when Z(Af) is even. 
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SUMMATION OF CERTAIN RECIPROCAL SERIES RELATED TO 
FIBONACCI AND LUCAS NUMBERS 

Richa rd A n d r e - J e a n n i n 
Ecole Nationale d'Ingenieurs de Sfax, Tunisia 

(Submitted July 1989) 

1. Introduction 

Some years ago, R. Backstrom and B. Popov (see [1], [2], [3]) computed sums 
of the form 

^ ~F T~^ and S 7—rr~^> 
*an + b + c Lan + b + C 

for certain values of a, b, and c. For instance, Backstrom obtained 

m T 1 = 2/5 + 1 y , 1 = {5 
n^oLZn + 3 10 * ^0F2n + l + 1 2 ' 

and he a l s o gave the e s t i m a t e 

(2) E j l-— « I + 7—7^ = 0 . 6 4 4 5 2 . . . , 
n=0L2n + 2 8 4 log a 

where a is the golden ratio. Recently, G. Almkvist [4] has given an exact for-
mula connecting the last sum with Jacobi's theta functions. 

The aim of this note is to obtain new results of the same kind. For exam-
ple, we show that 

(3) E — - = - = 0.618..., 
n=oL2n + /5 a 

which can be compared with (2), and the surprising result 

n=oFln + 1 + 3//5 

In the final section, following Almkvistfs method, we express the series 

y 1 
n=o F2n + 1 + 2//5' 

in terms of the theta functions, with the estimate 
1 /s /5 • n2 

(5) E 0 F2n + 1 + 2//E 4 log a ( log a ) 2 ( e n 2 / l o § a + 2) 

2. Main Resul t 

Theorem: Let s be a p o s i t i v e i n t e g e r . then 

(6) E 77= = ~TW~> S e v e n > s * °> 
rf?oF2n+l + LJ/5 2Fs 
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and 
v- l 1 / 8 - 1 1 \ (7) V —— = — + ), s odd. 

n=0 L2n + /5FS L8\ 2 1 + a" 5 / ' 

3. Preliminaries 

As noticed by Almkvist, it is probably better for this study to use direct 
calculus rather than Fibonaccian identities. 

Lemma 1: Let q9 o be real numbers, with q > 1, and let s be a positive integer. 
Then the following equality holds: 

1 I s " 1 ! (8) £ -^r „ = u ^ + q-n~° + <?s/2 + q~s/z qs/z - q-s/zn=ol + qn+o-s/2 

Proof: One can readi ly verify that 

1 1 
q-n+o _j_ q-n-a _j_ ̂ s / 2 + q-s / 2 q--s72 _ qs/2\j_ + ^ n + c r + s / 2 ]_ + qn + a-s/2 

Hence, by the telescoping ef fec t , for N > s - 1, 

y = ( y 
n=oqn + ° + q-n~° + qs/1 + q~s/z q~s/z - qs/z\n = N-s + l 1 + q"+°+s/2 

s - 1 i \ 

" n?0 1 + qn+o-B/2)' 

Letting #-•«>, we obtain (8) (since q > 1) . 

Lemma 2: Let a and s be posi t ive in tegers , l e t b be any in teger , and define 
Ts(a, b) by g _ x 

n~0 1 + aaiZn-s) + h 

Then 

(9) T a ( l , 0) - * ^ + _ L _ r 

and 
(10) T s ( l , 1) = | . 

Remark: Here, a is the golden ratio or any positive real number. 

Proof: isj^ l 
i ! i _l_ jL _L_ X S ( t _I_ X 

-2k 2-2 s( l , 0) " Z o L + a 2 „ - 2 s = x + a-2s + 2
+ t i ( l + a2k +

 l + a-

1 + I + e _ ! . 1 + s _ 1 
1 + a"Zs 2 1 + a -2s 

On the other hand, 
2s ] 

^ a + l U . 0) = E 
n=0 1 + a 2n-2s -1 

1 + 

1 
1 + a" 

i + f ( i + I 
a-2s-l ^ \ 1 + a2*"1 1 + a-Zk+] 

-2s - 1 + S. 
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This concludes the proof of (9). The proof of (10) follows the same pattern. 

4. Proof of The Theorem and of Other Identities 

As usual, the Fibonacci and Lucas numbers are defined by 

Fn = -^(an - (-l)ncTn), Ln = an + (-l)na"n. 

Let a, b be integers, with a > 1. Put a = b/2a and q = a2a in (8) to get 

(]_]_) Y^ ± = i rp ta fo\ 
n=0 a2an + b + or2™-* + aas + a~as aas - a~as S ' 

where Ts (a, b) is defined above. Let us examine different cases according to 
the parity of a, b, and s. 

First case: b even, s or a even. Since (11) can be written as 

(12) E j L - T — = -pi— Ts (a, b), 
n=0 L2anb + Las V5Fas 

letting s = 1 in (11), we obtain Backstrom's Theorem V. Namely, 

V- 1 1 1 , 
\ — = s a e v e n 3 £ even. 

n = 0 L 2 a n + Z> + La / 5 F a 1 + ah~a 

Letting b = 0, a = 1, and applying (9), we obtain Backstrom's Theorem IV, which 
is 

5F , \ 2 l + a - , ; j s even. n= 0 L2n + Ls /5FS 

Second case: Z? even, s and a odd. Formula (11) becomes 

(13) E L — = = y ^ - ^ (a, fe). 

With s = 1 in (13), we have 

> — — = — , b even, a odd. 
«'0L2an+b + /5Fa K 1 + ab~a 

Letting a = 1 and b = 0 in (13) and applying (9), we get (7) so that 

2̂  — = — — + s s o d d e 

As special cases, we have 

/ , — = — and y^ — = -j- + —. 
n- o L2n + /5 a n=o L2„ + 2/5 4 8 

Third case: 2? odd, s or a even. Formula (11) becomes 

(14) L -r= = 4~TS (a, b) . 
n=0 Fzan + b + Las I ^ as 

With s = 1 in ( 1 4 ) , we get 
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y\ — = 77- 5 b odd, a even. 
n=oFZan + b + LJ/5 Fa 1 + ab~a 

When a = 2 and b = 1, we have 

Now, put. a = 1, b = 1 in (14) and use (10) to get (6) so that 

^ 1 s 
2^ = .^^ s even. 

»-oF2w + 1 + Lj/l 2Fs 

As special cases, we mention (4) and 

t „-0 ?2n+l + 7//5 3" 

Last case: b odd, s and a odd. Formula (11) becomes 

(15) E - l. F = fi- Ts (a, b) . 

Putting s - 1 in (15), we obtain Backstrom's Theorem II, which is 

V" = _ _ ]j odd, a odd. 
n=0 F2an + h + Fa La 1 + afo"a 

With a = Z? = 1 in (15), we obtain Backstrom's Theorem I, which is 

V- 1 s/5 AA 

n=Q *2n+I + hs ZLs 

Remark: Consider the r e c u r r e n c e r e l a t i o n 

Wn = pWn„l + Wn_2, n > 2 , p > 0 , 

and the solutions 
nn _ (_-[\nn-rL 

Un = V a , Vn = an + (-l)noTn, 
/A ,-

9 p + /A 
where A = pz + 4, a = > 1. 

The results above could be generalized with Un, Vn, vA in place of Fn, Ln, V5. 

5. A New Tantalizing Problem 

Let us return to (6). When putting s = 0 in the left-hand side, we obtain 
the convergent series 

(16) V - = 1.161685787..., 
o Fln+l + 2/i/5 

where the number on the right is not one we recognize. Using the limit process 
introduced by Backstrom ([1], p. 20), we would have 

lim ̂ §- = -j-4^ = 1.16168590..., 
S+Q 2FS 4 log a 

so we see that /5/(4 log a) is a good estimate of the sum (16). 
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Using the method i n t r o d u c e d by Almkvis t , we can now express (16) i n terms 
of the t h e t a f u n c t i o n s . In f a c t , we have 

I _ co Q2n + 1 

y t = /5 y i 

n=0 F2n + l + 2//5 n=0 (1 + q*n+W 

where q = a-1. By a classical formula (see, e.g., [5], p. 471), we can write 

£ _... q^1 l *'{ n=0 (1 + ^ + 1)2 gn2 v3 

where (with AlmkvistTs notations) 

v = J-y^— £ en2n2/log 
3 V log q V 

and 

3 log ^V log q V \ log <?/ 
(The summation is over all integers n.) 

After some calculus, we obtain the final formula 

£ n2e-n2n2/log a 
* i / 5 n 2 / 5 n - i 

n = o ^ 2 n + l + 2 / / 5 4 log a ( log a ) 2
 1 + 2 V e " n 2 n 2 / l o § a 

w= 1 

which can be compared with Almkvistfs formula for 

£ L_. 
n= 0 ^2n + 2 

Limiting ourselves to the first term (n = 1), we get the estimate (5). 
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SEQUENCES OF INTEGERS SATISFYING RECURRENCE RELATIONS 

R i c h a r d A n d r e - J e a n n i n 
Ecole Nationale d'Ingenieurs de Sfax, Tunisia 

(Submitted July 1989) 

Let us consider the recurrence relation 

(1) n3un - (34n3 - 51n2 + 27n - 5)un„l + (n - l)3un_2 = 0. 

Apery has proved that for (UQ, U^) = (1, 5) all of the un* s are integers, and 
it is proved in [1] and [2] that, if all the numbers of a sequence satisfying 
(1) are integers, then (UQ, U\) = X(l, 5), where X is an integer. We give here 
a generalization of this result, with a simple proof, and applications to 
Aperyfs numbers as well as to the recurrence relation 

(2) Ln_iFnun - 5FnFn-iF2n-iUn-i - i77n_1Lnun_2 = 0, 

where Fn, Ln are the usual Fibonacci and Lucas numbers. 

1. The Main Result 

Let {an}, {bn} be two sequences of rational numbers with {un} the sequence 
defined by (u$, U\) and the recurrence relation 

(3) un = anun-i + bnun..2> n > 2. 

We then have two results. 

Theorem 1: Suppose that 

(4) a) For all integers n > 2, bn * 0. 
n 

(5) b) There exists a real number P such that lim J~J \bk\ = P. 
n + co k = 2 

Then the recurrence relation (3) has two linearly independent integer solutions 
only if \bn\ = 1 for all large n. 
THeorem 2: Suppose that 

(6) a) For all n > 2, bn * 0 and \bn\ = 1 for all large n. 

(7) b) For all n > 2, an * 0 and lim|an| = a. 
n •> oo 

Then relation (3) has two linearly independent integer solutions only if an = a 
for all large n, where a is an integer different from zero. 

Remark: Recall that two sequences {pn} and {qn} are linearly dependent if two 
numbers (A, u) exist (not both zero) such that, for all n, 

*-Pn + vqn = 0. 

In the other case, the sequences are linearly independent. It is easy to prove 
that {p7 } and {qn}, when satisfying (3), are linearly dependent if and only if 

(8) P0ql ~ P^Q = 0. 

2. Proof of Theorem 1 

Let us suppose that {pnl and iqn} are two independent integer solutions of 
(3) and define the sequence An by 

(9) An = Vn.i1n ~ Pn<ln-i> n > \. 
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I t i s e a s i l y proved t h a t 

(10 ) An = - £ n A n - l > n > 2 . 

H e n c e , 

( 1 1 ) An = ( - 1 ) ^ - ^ 2 . . . bnAl9 n > 2 . 

By t h e Remark a b o v e , A-, = p n ^ i ~ Pi<7o ^ ^ ' a n c * ^y (5 ) we h a v e 

(12) lim|A„| = I A J P ; 

thus, the sequence of integers |An| converges and we deduce from (12) that 

(13) | An | = |AX|P, for all large n. 

By (11) we have An * 0 for all n (since bn * 0 and A]_ * 0) . Hence, (13) shows 
that P * 0. By (10) we have 

|An| 
I = _̂  = &„ , for all large n. 

IA n _ !I 
This concludes the proof of Theorem 1. 

3. Proof of Theorem 2 

Suppose that {pn} and iqn} are two independent integer solutions of (3) and 
define the sequence Dn of integers by 

Dn = Pn-l^n ~ Pn^n-l' n > 1. 
It is obvious that 

(14) Dn = anA n_ l 5 n > 2. 

However, by (6) we have, for n large, since |2?„| = 1, 

|An| = |Ax \P * 0. 

Hence, 

(15) \Dn\ = |a„||A1|P * 0, for all large n, 

and by (7), 

lim|P„ | = a | A]_ |P. 

Thus, for all large n, 

(16) |Pn| = a|Ax|P. 

Note that a * 0, since Dn * 0, and that a is a rational number by (16). Com-
parison of (15) and (16) shows that 

\an\ = a, for all large n, 

Let us now write a = p/q, where p and q are relatively prime integers. With-
out loss of generality, we can assume that 

p 
(17) un = ± — un-i ± un-2> for n > 2. 

Consider the solution ivn} of (17) defined by the initial values (0, 1). Note 
that AiVn is an integer, namely, 

The relation 
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shows that 

q\ hxvn_Y y £° r n > 2. 

By mathematical induction, it is easy to prove that for all integers m > 1 
and n > 1, qm\&iVn. Therefore, q = 1, and a is an integer. 

4. Application 

Suppose that \bn\ = Cn_l/Cn, with Cn * 0 for all n, Cn * Cn-l> and 

lim Cn = C. 

n+ oo 

We can then write 

k=2 k Cn C 

By Theorem 1, the sequence (3) cannot have two linearly independent solutions, 
since \bn\ * 1. 

This result can be applied to (1) with Cn = n3, and also to the recurrences 

(18) nun - (2m + 1)(2n - l)wn-i + (n - l)wn_2 = 0, 

and 

(19) n2un - (lln2 - lln + 3)un_x - (n - l)2un_2 = 0, 

with Cn = n in (18), Cn = n2 in (19). Note that (18) and (19) admit integer 
solutions defined by the initial values (1, 2m + 1) [resp. (1, 3)]. The inte-
ger solution of (18) is simply un = Pn (-m), where 

_L i!_r,nn _ ^ m _ n ln\(n + k\r-i)kxk p , w = ^ ^ ( i - . ) ^ ] % n ( ^ ) ( n r ) ( - i ) 

is the nth Legendre polynomial over [0, 1] (see [3] for another proof). Equa-
tions (1) and (19) appear in Apery's proof of the irrationality of £(3) and 
C(2). 

Now, let us consider recurrence (2), in which we have 

=
 Fn-lLn 

Ln-lF
n' 

Then 
n T T 
1~T ^n J-Jn /— 
J 1 bk = — and P = lim — = /5. 

By Theorem 1, the sequence (2) cannot have two linearly independent integer 
solutions. it will be shown below (and in [4]) that the solution {qn} defined 
by the initial values (1, 0) is an integer sequence. On the other hand, the 
solution {pn} defined by the initial values (0, 1) cannot be an integer 
sequence. Let us write the first few values of these two sequences in order to 
see this. They are: 

n 

Pn 

qn 

It can also 

lim 
n> oo 

0 

0 

1 

be 

Pn 
$n 

1 

1 

0 

shown 

= E 
k = l 

2 

10 

3 

that 

1 

3 

84 

25 

4 

8225 
3 

816 

5 

999146 
5 

59475 

3.35988566624... . 
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Not ice how qu ick ly p /q conve rges . We have 

— = 3 . 3 5 9 8 8 5 6 . . . and — = 3 . 3 5 9 8 8 5 6 6 6 2 4 . . . . 

One can deduce from t h i s t h a t S , ( 1 / i ^ ) i s i r r a t i o n a l (see [ 4 ] ) , 

5. Genera l iza t ion 

Consider the recurring sequence defined by uQ9 ..., ur_-, and 

(20) un = a\un_l + a\un_1 + ... + a%un_p, n > r, 

where r is a strictly positive integer, and where {a^}, . .., {a^} are sequences 
of rational numbers. By analogy with Theorem 1, we have the following result. 

Theorem 1': Suppose that 

(a) For all n > r, al * 0. 
n 

(b) There exists a number P such that lim f\ IalI = P-
n + ™ k = r 

Then (20) has r linearly independent integer solutions only if \ar^\ = 1 for all 
large n. 
Proof: Suppose that {p1}, ..., {pri are r linearly independent integer sequence 
solutions of (20) and define the sequence An of integers by r x r determinant 

&n = \vn-T+i\, • > n > r - I. 

It is easily proved that An = (-l)r~lankn-\. Hence, 
n 

Kl = lAr-l| I! Wl\> n > V. 
k = v 

We have kv-\ * 0, since the {pt}'s are independent, and the end of the proof is 
as in Theorem 1. 

The reader can also find a theorem analogous to Theorem 2. 
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Steven R. Finch 
6 Foster Street, Wakefield, MA 01880 

(Submitted July 1989) 

A strictly increasing sequence of positive integers a-,, a2? ••• is defined 
to be s-additive [1] if, for n > 2s, an is the least integer greater than an-\ 
having precisely s representations a^ + a.j = an, i < j . The first 2s terms of 
an s-additive sequence are called the base of the sequence. An s-additive 
sequence, for a given base, may" be either finite or infinite; the sequence is 
assumed to be maximal in the sense that the total number of terms is as large 
as possible. Consider, for example, the case in which s = 1, a\ - 1, and 
a,2 ~ 2. The next fifteen terms of the sequence are 3, 4, 6, 8, 11, 13, 16, 18, 
26, 28, 36, 38, 47, 48, 53. The sequence is infinite (as is any 1-additive 
sequence) since an _ 3 + an _ ]_ is an integer greater than an_i with no other 
representation di + CLJ and, hence, there exists a least such integer. It is 
the archetypal s-additive sequence, and was first studied by Stanislaw Ulam 
[2], An example of a 2-additive sequence is 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 
17, 19, 29, 31, 33, 43, 44, 47, 51, . .., which also appears to be infinite 
(though a proof of this fact is not known) . Not all 2-additive sequences are 
infinite, as illustrated by the sequence 1, 3, 5, 7, 8. 

For s ^ 1, Raymond Queneau [1] showed that an s-additive sequence has at 
least 2s + 2 terms if and only if there exist positive integers u and V such 
that the 2s numbers in the base (up to ordering) are u, 2u, ..., su, v9 u + v9 
2u + v, . .., (s - l)u + v. This is called Condition u,v» We denote an s~ 
additive sequence satisfying Condition u, V by the ordered triple (s, u, v). 
Note that the correspondence between such sequences and ordered triples is not 
one-to-one, since (s, 1, s + 1) = (s, 2, 1). Queneau undertook a detailed 
examination of various properties of s-additive sequences, including conditions 
for sequences to be infinite and conditions for sequences to be regular (in a 
sense to be defined shortly). Some of the conjectures in [1] are consistent 
with conjectures presented here; some others are false due to several unfortu-
nate errors in Queneau5s computations. 

We examine first conditions for s-additive sequences to be infinite. 

Conjecture 1: A 2-additive sequence is infinite if and only if Condition u, V 
is met. 

For s > 3, Condition u,V is necessary but not sufficient for infinitude, as 
evidenced by the finite 4-additive sequence (4, 1, 5) = 1 (1) 10, 12 (2) 20, 23 
(2) 31, 36, 38, 47, 48, 49, 51, 53, 60, 80, 85. In order to state Conjectures 
2 through 4, we assume that Condition usV is satisfied and that, without loss 
of generality, u and V are relatively prime. These two assumptions hold 
throughout the remainder of this paper. 

Conjecture 2: An s-additive sequence, when 3 < s < 6, is infinite if and only 
if 

(a) u = 1 and v is as in Table 1, 
(b) u = 2 and V is as in Table 2, or 
(c) u > 3. 

Conjecture 3: An s-additive sequence, when s is even and 8 < s < 20, is infi-
nite if and only if 

(a) u = 2 and v is as in Table 3, or 
(b) u > 3. 
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Table 1: Conditions associated with Conjecture 2(a) 
Condi t ions on V 

3 
4 
5 
6 

v > 3 
5 < V * 8, 12, 13, 
z; = 6, 9, 13, 15 
y = 8 

17, 22 

Table 2: Conditions associated with Conjecture 2(b) 
£ Conditions on V 

3 y = 1, 5 or =3 mod 4 
4 z; = 3, 7, 9 mod 10 
5 V = 1 or E9 mod 12 
6 y E 3, 5, 7, 9, 11 mod 14 

Table 3: Conditions associated with Conjecture 3(a) 

s Condi t ions on V 

8 v = 3 , 1 1 , 2 1 , 25 , 29, 39, 57, 6 1 , 65 , 75, 83 , 93 , 97, 101, 111, 119, 129, 133, 
137, 147 or 151 < V = 3, 7, 11 mod 18 

10 v = 19, 23, 45, 51, 67, 89, 95, 107 or 111 < v = 1, 7, 19 mod 22 
12 z; = 47, 143, 169, 177, 183, 235, 261, 307, 313, 333, 339, 365, 391 or 

411 < v E 1, 21 mod 26 
14 v = 189, 249, 279, 309, 339, 369, 375, 399, 429, 459, 489, 519, 525, ..., 939 

or 945 < v E 9, 15 mod 30 
16 v = 187, 323, 663, 731, 833, 893, 935, 969, 995, 1003, 1029, 1037, 1063, ..., 

1649 or 1675 < v = 9, 17 mod 34 
18 v = 417, 645, 759, 873, 979, 987, 1101, 1215, 1329, 1443, 1519, 1557, . .., 

3305 or 3343 < v = 37 mod 38 
20 v = 439, 1333, 1343, 1543, 1573, 1615, 1627, 1637, 1657, 1699, 1741, 1783, 

1867, 1889, . . ., 4429 or 4451 < v = 19, 41 mod 42 

Conjecture 4: An s-additive sequence, when s is odd and s ^ 7, is infinite if 
and only if ii > 3. 

The sequence (24, 2, 1523) appears to be infinite, whereas (22, 2, v) is 
never infinite. Proof that certain sequences are finite is not difficult; for 
example, (3, 2, v) has (Jv + 53)/4 terms (a, = 10z; + 10) when 5 < V (7v + 53)M 
mod 4. However, no s-additive sequence, s > 1 and u < 2, has been proven to be 
infinite. Note that the example involving (3, 2, v) shows that arbitrarily 
long finite sequences exist. Long sequences are computationally unwieldy since 
all terms a-., . .., ^n„i must be considered when determining an. Thus, the com-
puter evidence leading to Conjectures 1 through 4 is necessarily limited. 

We turn now to regularity issues. An infinite s-additive sequence is regu-
lar if successive differences an+i - an are eventually periodic; i.e., there is 
a positive integer N such that % + n + i ~ aN+n = an+l " an f ° r a H sufficiently 
large n. (The smallest such N is called the period.) An equivalent condition 
involves arithmetic multiprogressions [1] which are infinite sequences of the 
form 

1 9 2. 
2b + o 

where 0 < 0\ 
1* 

< c2 

2Z? + c 

b + Cj, Z? + c2 

, . . ., 22? + CT, , 

Z> + 

< ak < b + cj. If some arithmetic multiprogression, after 
at most finitely many deletions of certain terms or insertions of additional 
terms, is equal to the s-additive sequence (s, u, f),then (s, u, v) is regular. 
We write this condition more compactly as 
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(s, u5 v) ~ bn + [ol9 cz, ..., ck] n = 0, 1, 2, ..., 
in which the symbol ~ is to be interpreted as eventual equality. If greater 
precision is required, we write 

(s, u, v) = bn + [cl, c2, ..., ok ] © dx, ..., dp © ex, ..., eq, 

where c^, . .., dp and e\, . .., £q are, respectively, the inserted and deleted 
terms on the right-hand side that make equality hold. 

The nature of Conjectures 2 through 4 might lead one to suspect that some-
thing is special about the case u > 3. This is true, in fact, as proved by 
Queneau in [1]. 

Theorem 1: If s > 1 and u > 3, then (s, u, v) is regular and 

(s, u, i?) = nu + [y] © u, 2u, . .., sw, (25 - l)u + 2z;. 

A consequence of this result and Conjecture 4 is that there do not exist 
infinite irregular sequences when s is odd and s > 7. No analogous general 
formulas appear to hold for the remaining cases s = I or u < 2. A limited 
computer search for regular 1-additive sequences has uncovered many examples, 
some of which are exhibited in Table 4. (The first three of these were found 
by Queneau [1].) We conjecture that (1, us v) is regular for a wide variety of 
u and V. Though a proof is not known, a sensible argument might be based on 
Theorem 2 and (deceptively simple) Conjecture 5. Periods for (1, 2, v) and for 
(1, 4, V), as fascinatingly intricate functions of odd V > 3, are listed in 
Table 5. [Some cases have either incalculably long periods or long initial 
stretches before periodicity begins. For example, the period for (1, 2, v), 
where 35 < v < 41 is odd, probably exce. eds 109.] 

Table 4: Regular 1-additive sequences 

(1, 2, 5) = 126n + [5 (2) 15, a9 = 19, a10 = 23, ..., a3k = 119] © 2, 12 
(1, 2, 7) = 126n + [7 (2) 21, a n = 25, a12 = 29, ..., a28 = 117] © 2, 16 

a ^ = 1767] © 2, 20 
, a16 3 0 = 6497] © 2, 24 
., a5908 = 23607] © 2, 28 
a82 = 493] © 2, 32 

(1, 2, 9) = 1778n + [9 (2) 27, a1 3 = 31, a14 = 35, . 
(1, 2, 11) = 6510n + [11 (2) 33, a 1 5 = 37, a16 = 41, 
(1, 2, 13) = 23622n + [13 (2) 39, a 1 7 = 43, a18 = 47, 
(1, 2, 15) = 510n + [15 (2) 45, a1 9 = 49, a20 = 53, . 
(1, 2, 17) = 507842n + [17 (2) 51, a21 = 55, a22 = 59, ..., 

a126962 = 507823] © 2, 36 
(1,4,5) = 192n + [5 (4) 17, 19, 21, a1 0 = 25, axl = 27, ..., a35 = 173] 

© 4, 14, 24 
(1, 4, 9) = 640n + [9 (4) 29, 31, 33, 37 (2) 41, a 1 5 = 45, a16 = 47, ..., 

a91 = 609] © 4, 22, 40 
(1, 4, 11) = 1318n + [11 (4) 27, 37, 39, 43 (2) 47, 51 (2) 57, 61, 67, 69, 75, 77 

83, 85, 89, 91, 99, 105, a29 = 111, a30 = 123, ..., a2i+9 = 1309] 
© 4, 26, 31, 35, 48 0 57, 105 

(1, 4, 13) = 896n + [13 (4) 41, 43, 45, 49 (2) 53, a 1 7 = 57, a18 = 59, ..., 
aio7 = 853] © 4, 30, 56 

(1, 4, 17) = 2304n + [17 (4) 53, 55, 57, 61 (2) 65, 69 (2) 73, a 2 2 = 77, 
a23 =79, ..., a251 = 2249] © 4, 38, 72 

(1, 4, 19) - 2560n + [a25 5 2 = 14753, a25 5 3 = 14761, ..., a2 9 0 3 = 17275] 
(1,4,21) = 2816n + [21 (4) 65, 67, 69, 73 (2) 77, 81 (2) 85, alh = 89, 

a25 =91, ..., a28 3 = 2749] © 4, 46, 88 
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Table 5: Periods for ( 1 , uv v ) , u = 2 and 4 
v u = 2 u = 4 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 

32 
26 
444 
1628 
5906 
80 

126960 
380882 
2097152 
1047588 
148814 

8951040 
5406720 

242 
127842440 

-
_ 
-
-

32 
-
88 
246 
104 
_ 
248 
352 
280 
5173 
304 

10270 
320 
-
712 
826 
776 

108966 
824 

Theorem 2: If a 1-additive sequence has only finitely many even terms, then 
the sequence is regular. 

Proof; Let e denote the number of even terms in the 1-additive sequence a\* di<> 
a^s . . . . Let Xi < X2 < • • • < xe be the even terms and let y, = xyj2 f° r each 
k, where 1 < k < e. Given an integer n > ye , define 

K the number of representations a^ + a* In + 1, i < j. 
Observe that a^ + a.j = 2n + 1 only if either a^ or aj is equal to some x^ (since 
a sum of two integers is odd if and only if one of the integers is odd and the 
other is even). This observation gives rise to the following recursive 
formula: 

K E «(*>*-
k= 1 

y*. i) 

where 6(0) = 1 and 6(r) = 0 for r * 0. The summation simply counts the number 
of times (out of e) that 2n + 1 is a term in a^5 #23 Define nows 
for each n > xe9 a vector of ye components 

(bn- ^n-ye + l bn-ye+2 K-i)1 • 
Regularity of the 1-additive sequence a1? a^ ... is clearly equivalent to even-
tual periodicity of the vector sequence 3Xe» $xe+ls 8° °  • ^he components of 3̂  
obviously do not exceed e. Since the number of vectors of length ye contain-
ing 0, 1, 1 or g is {e + 1) ye some $n must recur, which, in turn, 
brings about periodicity by the recursive formula. This completes the proof. 

Recall that u and v are assumed to be relatively prime. Assume, moreover, 
that u < V. 

Conjecture 5: 
(1, 1, v) has infinitely many even terms. 
(1, 2, v) has two even terms (specifically a.\ ~ 2 and ct(V + 7)/2 = 2i>+2) when 

V > 3; it has infinitely many even terms when v = 3. 
(1, 3, v) has infinitely many even terms. 
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(1, 4, V) has four even terms when v = 2k - 1 for some k = 3, 4, 5, ...; 
otherwise, it has three even terms. 

(1, 55 V) has thirteen even terms when v = 6; 
otherwise, it has infinitely many even terms. 

(1, u9 V), for even u > 6, has 2 + u/2 even terms. 
(1, u, v), for odd u > 7, has 2 + y/2 even terms when v is even; 

otherwise, it has infinitely many even terms. 

There is no reason for even terms to be small; for example, (1, 4, 255) has 
a8750 = 260606-

Other interesting trends exist in the distribution of successive differences 
an+i - an for these sequences. Let us focus on (1, 2, v), V > 3, for definite-
ness. The successive differences are always even beyond a certain point. For 
most of a period, the successive differences remain relatively small. As the 
end of the period draws near, the successive differences seem to explode to a 
maximum value (= 2v + 2), which concludes the period and a new period begins. 
In contrast, the sequence (1, 2, 3) appears to possess unbounded successive 
differences. This seems to occur as well for the sequence (s, 1, s + 1), for 
each s = 1, 2, 3, and 5; e.g., when s = 2, a^3Qi+- a^^Q3 = 174886-174579 = 307. 
Many questions arise. Is the converse of Theorem 2 true? Do there exist regu-
lar s-additive sequences for s > 1 and u < 2? Is it possible for successive 
differences of an infinite irregular s-additive sequence to be bounded9. 

Queneau also introduces several generalizations of s-additivity, of which 
we discuss one. (Replacing addition by multiplication in the definition of s-
additivity defines s-multiplicativity. This has not been studied. Nor has 
substituting the condition i < j by i < j.) A strictly increasing sequence of 
positive integers a^, di* ••• is defined to be (s, t)-additive with base B if B 
consists of the first m terms a\, a^* •••> am for some positive integer m and 
if, for n > m, an is the least integer greater than an-\ having precisely s 
representations of the form 

cLiY + ai2 + ••• + ciit = an, iY < iz < -•• < i t . 
Note that an s-additive sequence is the same as an (s, 2)-additive sequence with 
m=2s. Note also that, while m > 2s is necessary for (s, 2)-additivity and m > t 
is necessary for (1, t)-additivity, m = 5 is possible in conjunction with (2, 3)-
additivity. Lacking a suitable analogue of Condition u, V for s-additivity, we 
write an (s, t)-additive sequence as (s, t% a\ , ..., am) . For example, 

(2,3;1,2,3,4,5) = 1(1)5, 8(1)11, 25, 28, 29, 49, 66, 67, 69, 89, 92, 110, 111, ... 

which appears to be infinite. As previously, any (1, t)-additive sequence, for 
t > 2, is infinite, while extension of the proof to (s, t)-additive sequences, 
for s > 1, does not seem possible. We conclude with several more arithmetic 
multiprogression formulas obtained by limited computer search for regular 
(1, 3)-additive sequences (see Table 6). The first of these was found by Peter 
N. Muller and also appears in [3]. 

Table 6: Regular (1, 3)-additive sequences 

(1, 3; 1, 2, 3) ~ 25n + [80, 82, 104] 
(1, 3; 1, 2, 9) ~ 572n + [581 (1) 590, 645 (1) 653, 708 (1) 717, 772 (1) 781, 

836 (1) 844, 899 (1) 908, 963 (1) 972, 1027 (1) 1035, 1090 (1) 1098] 
(1, 3; 1, 3, 4) ~ 219n + [411, 412, 444, 446, 481, 482, 517, 521, 554, 555, 591, 626] 
(1, 3; 1, 3, 5) ~ 82n + [87, 89, 115, 117, 141, 143] 
(1, 3; 1, 3, 6) ~ 51n + [164 (1) 167, 211 (1) 213] 
(1, 3; 1, 3, 7) ~ 20n + [23] 
(1, 3; 2, 3, 4) ~ 148n + [157, 159, 160, 203, 204, 206 (1) 208, 253 (1) 255, 

258, 302] 
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Postscript 

Recent computations show that 

(1, 4, 7) ~ 11301098n + [a13671i+99 = 80188457, ..., a15599i+57 = 91489549] 
and 

(1, 5, 6) ~ 1720n + [a156 3 0 3 = 1579049, ..., a1 5 6 5 1 0 = 1580767]; 

thus, (1, 4, 7) and (1, 5, 6) have periods 1927959 and 208, respectively. Fur-
ther results on the regularity of certain 1-additive sequences will appear in a 
forthcoming paper. 
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A NOTE ON EULER'S NUMBERS 

Nenad Cakic 
University of Nis, 16000 Leskovac, Yugoslavia 

(Submitted July 1989) 

Recently, Y. Imai, Y. Seto, S. Tanaka, and H. Yutani [1] defined the coef-
ficients Z(m, r) by 

m), (1) Z(m, r) - £ (- l) r + k g ! J)fem {m > 1, r = 1, 

Z(77?, r ) = 0 (m < 0 or r < 0 or m < r) , 
and proved that 

m / 7 ( ? 7 1 T i ' ) m \ 
* " = E ', II (* + i - r)) (x, meff) , 

r = 1 ^ m' i = 1 / 

Z(tfz, r) = Z(m, m + 1 - r) , 

(2) X! zO> p ) = ml 0w > 1 , r = 1 , . . . , ra), 
p= i 

Z(T?7 + 1 , P ) = (772 - V + 2)Z(77?, 2» - 1 ) + P Z ( T ? ? , r ) . 

In this short note we will show that the coefficients Z(m, r) are just Euler's 
numbers Am r introduced in 1755 by 

r- 1 
A = E ( - i ) k ( m t ^(r-kV 

tie substitution j = r -

E (-i)r + &C + i)fcm = E 1 ( -D i ( w t V " J')m> 
:=1 v ^7 i=0 \ d f 

k= 0 
Indeed, using the substitution j = r - k, from (1) follows 

r - 1 

k=l xx 'w j = 0 
i.e., that Z(T77, r) = Am>r. 

In [1] the authors mentioned that it would be interesting to find a connec-
tion between the coefficients Z{m, r) and Stirling's numbers of the second kind 
S(n, k) . Since Z(m9 r) = Am r , we have the following relations (see, e.g., 
[2], [3]) 

Z(m, r) = E (-DMr I _ 7 JO - k - r + l)\S(m, m - r - k + 1), 

Z(m, r) = E (-l)"-'^-1^ ~_ \)klS(m, k), 

klS(m, k) = t^(m,r)(m
m:l). 

If we take m = k in the last equality, we obtain 
m 

m\S(m> m) = ^ Z(T77, r ) , 
r = 1 

which is equivalent to (2), because S(m, m) = 1. This is Lemma 2 from [1]. 
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Preamble 

In what follows, we have 
/S - 1 The Golden section:, x = ———- = 0.618. . . . 

Fibonacci numbers: FQ = 0, Fl = 1, Fi = Fi_l + Fi_2, i > 2. 

The Zeckendorf representation of a number is simply the representation of 
that number as the sum of distinct Fibonacci numbers. If the number of terms 
of this sum is minimized, that representation is unique, as also is the repre-
sentation when the number of terms is maximized. (See Brown [1] and [2].) 

A general Zeckendorf representation will be written as 
h 
£ Fk. , where kx > k2 > > •• > kh > 2. 
J= 1 J 

Thus, 16 can be represented as 

F7 + Fi+, F6 + ^5 + *V F7 + F3 + F2, and Fe + Fs + F3 + F2. 

The first is the unique minimal representation; the last is the unique maximal 
representation. The others show that representations of any intermediate 
length need not be unique. 

It is easy to show that only numbers of the form Fn - 1 have a unique Zeck-
endorf representation (i.e., one that is maximal and minimal). 

From here on, we will refer to the minimal Zeckendorf representation and 
the maximal Zeckendorf representation as the miwimai and maximal. 

We define 

Beta-sequence: {3j}5 J = 1, 2, 3, ..., 3j = [ U + 1)T] - [JT]. 
This takes on only the values zero or unity. 

Golden sequence: Any sequence such as abaababa. . . which is obtained from the 
Beta-sequence $i» 32' $33 •••» where "2?" corresponds to a zero and "a" corre-
sponds to a unit. 

We will prove that the final term of each maximal representation is either 
F2 or F3 and show the pattern associated with the final terms in the represen-
tations of 1, 2, 3, 4, 5, 6, ..., namely: F2, F3i F2> F2, F3, F2s ... is a Golden 
sequence with the term F2 corresponding to a unit and the term ^3 corresponding 
to a zero. 

More specifically, we will show that the last term in the maximal represen-
tation of the number n is ^3-3n = 2 - 3n» 

We note a similar result for the "modified" Zeckendorf representation which 
may include F± as well as F2. 

Main Results 

Theorem 1: The maximal ends with F2 or F3. 

Proof: We note that F3 cannot be replaced by F2 + F^ in a Zeckendorf expansion 
as F2 = Fi . If Fk with k > 3 is the smallest term in an expansion of a number 
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n, then Fk can be replaced by ^-i + Fk^2
 an& s o t n e expansion is not maximal. 

Thus, if an expansion is maximal, it must end in F^ or F3. 

Lemma 1: [ (j + ^)x] = Fi-l + [JT] if t > 2 and 0 < j < Fi+l. 

Proof: Fraenkel, Muchkin, and Tassa proved in [3] that if 0 is irrational, 
0 < «7 < tfi anc^ Vil^i i-s t n e ^th convergent to 0 in the elementary theory of 
continued fractions, then 

[(j + qi-i)Q] = pi_l + [j'0], £ > 1. 

As F^-i/Fi is a convergent to T, our result follows. 
h h 

Lemma 2: If ^T Fk . is a Zeckendorf expansion, then J] Fk. < ̂  + 1 - 1. 

h n 
Proof: E \ . * ̂ -1 + ^ - 2 + ••• + 2̂ - **1 + i " 2, since £ ^ = ̂ n + 2 - 1-

The result is now obvious. 
h 

Lemma 3: I f j * has a Zeckendorf expans ion XI ^ • 5 t n e n 

i= 1 * 
(a) [ J T ] - Fki.x + ^ 2 _ ! + . . . + F ^ _ i _ 1 + [ T ^ J 
(b) [ ( j + 1 ) T ] - Fk ! + Fk l + . . . + K ! + F, 

Proof: h 
(a) Let 7?z = X ^ . » then by Lemma 2, m < F^ +i and so by Lemma 1, 

i - 2 i 

[ J T ] - [ ( ^ + 772) T ] - F f c l _ l + [777T]. 

S i m i l a r l y , i f n = £ ^k • ' t7721] = Fk2-l + t n T ]> s o e v e n t u a l l y 

[JT] = ^ - l + *•"•* + V i " l + [ T F k J . 
(b) As i n (a) ( t h i s t ime wi th ?77+ 1 < F^ +i), 

[U + D T ] - [{Fki + . . . + (Fkh + 1 ) ) T ] 

- Fki.x + . . . + ^ _ x - l + l(Fkh + 1 ) T ] 

= F k l - 1 + . . . + F^^-l + Fkh-l by Lemma 1. 

Lemma 4: I f j has a maximal Y\ FT. . , then 
i - 1 l 

(a) [ J T ] = F f e i _ ! + . . . + ^ _ x - i + ^ - 1. 

(b) B,- - 2 - Fkfc . 
Proof: 

(a) I f kh = 2 , then UFkh] = 0 = Fk - 1. 

I f fcfc - 3 , then [TFkh] = 1 - Fkh - 1, 

so the r e s u l t fo l lows by Lemma 3 ( a ) . 

(b) By Lemmas 4(a) and 3 ( b ) , 

Bj - [ ( J + D T ] - [ J T ] - Fkh.Y - Fkh + 1 = 2 - Ffcfc, 
as ^ = 2 or 3 and so Fk _ ]_ = 1. 

Theorem 2: The l a s t term i n t he maximal fo r j * i s ^3-3-- = 2 
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Proof: By Lemma 4(b), if Fk is the last term in a maximal for j, then 

S — 2 - Fkh . 

If kh = 3, then &j = 0 and F3„$. = F3 = 2 - Bj. 

If fefe = 25 then Bj = 1 and F3_3j = F2 = 2 - Bj -

We now see that the last term of the maximal for any integer j is either 1 
or 2. It also follows immediately that the sequence of the last terms for the 
maximals for 1, 2, 3, 4, ... form a Golden sequence 1211212112..., where a unit 
is unchanged but a zero is replaced by 2. 

Suppose we form the modified maximal from the maximal by forcing the last 
term to be unity; that is, the last two terms are F3 + î ?' F3 + Fi, or F^ + F\. 
Then it follows easily from the above that the second last terms of the 
modified maximals for 2, 3, 4, ... correspond to the same golden pattern as the 
last terms in the maximals for 1, 2, 3, ... . 
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Introduction 

The properties of the period lengths of the continued fraction convergents 
modulo m of reduced quadratic irrationals are studied in this paper. These 
period lengths vary wildly, yet will be shown to satisfy strong divisibility 
properties. Wall [6] studied these period lengths for the Fibonacci numbers 
that arise as convergents of the simple continued fraction with all partial 
quotients equal to 1. Many other papers, including [1], [3], [4], and [5], 
extend and complement those results. Some of the theorems in Wall extend in a 
direct manner to the continued fraction investigation given here; however, a 
key theorem of Wall about occurrences of zeros does not generalize so that new 
approaches are required. In some cases, known properties of continued frac-
tions, for a reference see Rosen [2], yield simpler proofs for the analogs of 
theorems from Wall. Two theorems presented here give properties of the periods 
for reversals and rotations of the continued fractions which have no analogs 
from the Fibonacci numbers. Matrix computation of the convergents is developed 
and analyzed to produce further results including remarkably good bounds on the 
period lengths. 

Definition of the Period 

Reduced quadratic irrationals, denoted a in this paper, are those real num-
bers that have purely periodic simple continued fraction expansions. Consider 
such an a: 

1 
a = a1 -I 

a -\ 

where a^ E Z+ and t is chosen as small as possible. This is abbreviated by 
a = [ a\, a^_y . . . , â "] , where t is said to be the period of a. Associated with 
each continued fraction are the p,q sequences defined in the following manner: 

P_l = 0'. p0 = 1, pn = anPn^ + pn_z, 

"This work was done at Moravian College during an NSF REU program which was supported by grant 
DMS-8900839. 
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We i l l u s t r a t e the ca l cu l a t i on of these sequences with a = (1 + v3)/2 = [ 1 , 2 ] . 

CLn I 

Pn-
%:• 

0 
1 

1 
0 

1 

1 
1 

2 

3 
2 

1 

4 
3 

2 

11 
8 

1 

15 
11 

2 

41 
30 

1 

56 
41 

2 

153 
112 

1 

209 
153 

2 

571 
418 

Below are the values in t h i s t ab le modulo 2. One can see tha t the sequence p 
the sequence q , and both sequences taken together are a l l p e r i o d i c . 

CLn I 

?v 
? K : 

0 
l 

l 
0 

l 

l 
i 

0 

l 
0 

1 

0 
1 

0 

1 
0 

1 

1 
1 

0 

1 
0 

1 

0 
1 

0 

1 
0 

1 

1 
1 

0 

1 
0 

Theorem 1: The p,q sequence modulo m i s purely p e r i o d i c . 

Proof: Consider the 2 x 2 block of p ' s and q' s (mod m) a t st - 1 and s t , where 
s = 0, 1, 2, . . . and t i s the period of a. Since there are only m* p o s s i b i l i -
t i e s for t h i s block, i t eventual ly repea ts so t h a t , for some i , j , say with 
i < j , 

Pit-l E P j t - l * Pit E Pjt> 

l i t - i - Ijt-i* t i t E <lot (m o d "*>• 

Since ait+n = ajt+ns the defining relations give that the p,q sequence repeats. 
Also, from the defining relations, we see that 

Pit -2 = Pit ~ aitPit-l E Pjt ~ ajtPjt~l = Pjt-2 

Pit-3 = Pit-l ~ ait-lPit-2 E Pjt-1 ~ ajt-lPjt-2 = Pjt-3 

Pit-(it-i) = Pi = Pjt-(it-i) = P(j-i)t.+ r 

The same argument holds for the q sequence. Therefore, the p, q sequence is 
purely periodic. • 

The period of the p,q sequence modulo m is denoted k(a, m), or k(m), or k 
if no ambiguity occurs. It is evident from the proof of this theorem that 
k(a, m) < mht. The remainder of this paper will explore the properties of 
k(a, 777). 

Elementary Properties 

In light of the initial conditions for the p,q sequences and the definition 
of k, we get an immediate corollary. 

Corollary 2: When k = k{m) , then pk_l = 0, pk E 1, qk_Y = 1, and qk = 0 modulo m. 

Next is a theorem which establishes that k is even for all moduli greater 
than 2. 

Theorem 3: If m > 2, then k(m) is even. 

Proof: Suppose that A: = k{m) is odd. Then, by using the continued fraction 
identity Vk^k-l ~ Pk-l°tk= (~^k a n d substituting the values of the p,q sequence 
from the corollary into this equation, we have (1)(1) - (0) (0) = -1 mod 777. 
Therefore, 2 E 0 mod 777, which implies a modulus of 2. • 

Theorem 4: If mi\mz> then k(mi) \k(mz) • 

Proof: Let k = kirn?) and mi\ m^, then T^lp^-l implies 777\\pk-\> and w2|^fe-l ~ 1 
implies ?TZI | ̂7fc— i ~ 1- Likewise, for pk - 1 and qk. Hence, k(jn\) | kijn^ . D 
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The following theorem shows that, if the periods of the prime power factors 
of a modulus are known, then the period of the modulus can readily be calcu-
lated. 

Theorem 5: If m has the prime factorization m = IIpf* and if ki denotes the 
length of the period of the p,q sequence mod p&i, then k(m) = lcm[k^] . 

Proof: Since k^\k for all i, ±cm[ki]\k. On the other hand, since pk E 1 mod pe.1 

for all i, pk E 1 mod lcm [p/*]. Similarly, p^-i E 0, qk_i E I, qk E 0. There-
fore, k\lcm[ki]. D 

For the sequence of Fibonacci numbers modulo m, the zeros are known to be 
in arithmetic progression. The placement of zeros is not simple for continued 
fractions in general. Consider an example with m - 3: 

ani | 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 

pn: 0 1 0 1 2 1 1 0 1 2 2 2 0 2 0 2 1 2 2 0 2 1 1 1 0 1 
qn

n: 1 0 I 1 2 1 2 0 2 0 2 1 2 2 0 2 1 1 1 0 1 0 1 2 1 1 0 

The theorem below begins giving insight into the structure of the convergents 
without controlling the zeros. 

Notice that, for some q's and moduli m, the period of a reduces mod m. For 
example, a = [1, 2, 3, 4] mod 2 is "the same as" [1, 2] mod 2. We say the 
period of a is preserved modulo m when this does not occur. It is frequently 
convenient to restrict consideration of k(a9 m) to the case where the period of 
a is preserved modulo m. Of course, one can get information about fc(a, m) when 
the period of a is not preserved. For example, one can consider [1, 2] instead 
of [1, 2, 3, 4] when the modulus is 2. 

The next theorem states that k(a5 m) is always a multiple of the period of 
a. This is useful information about the structure of the periods and also 
gives a trivial lower bound. 

Theorem 6: If a = [a\9 a2? . ..» cct] and the period of a is preserved mod m, 
then t \k(jn) . 

Proof: Suppose that k = k(m), then pn = pn+k for n = 1, 2, ... . So, 

anPn-l + Pn-2 E an + kPn+k-l + Pn+k~2 m o d m' 
Thus, 

anPn-l = an + kPn+k~l = an + kPn-\' 

S i m i l a r l y , 

an%-l E an + k%-l m o d m* 

Multiplying the congruences by qn and pn , respectively, and subtracting gives 

an{-l)n-1 = an{qnpn_l - p^^) = an + k(qnpn_1 - Vnqn„{) 

It follows that an = an + k mod m and, therefore, t\k(rri) . D 
The hypothesis that the period of a is preserved mod m is indeed necessary, 

since for a = [1, 2, 3, 4, 5, 6], t = 6J4 = k(a, 2) and a reduced mod 2 is "the 
same as" [1, 2]. 

It is now known that in order to determine k{m) one need only look at the 
nt - 1 and nt places in the p,q sequence, where n = 1, 2, ... . 

Corollary 7: If the period of a is preserved mod m, the period length k is of 
the form k = ct, where c is the smallest positive integer with 

Pet-i E ° ' Pet E *> qct-i E x> %t
 E °-
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Matrix Formulation 

The following theorems allow us to look at only these blocks of integers 
without going through the intermediate calculations. First, we establish the 
following lemma. 

Lemma 8: Define rn = anrn-i + r„_2 with initial conditions r-\ = a, PQ = ^» where 
a, b e 1+. Then rn = bpn + aqn. 
Proof: For n = -1 and n - 0, the relation holds trivially. Now suppose that 
T-n = bpn + aqn and r n + x = bpn + l + aqn + l . Then, 

Tn + 2 = an + 2^P«+l + a<?n+l> + bPn
 + ^n = *>P« + 2 + a?n+2- D 

We now define a matrix ^ called the fundamental matrix which depends only 
on a and that can be used to compute the blocks of convergents at the end of 
blocks of length t, 

Theorem 9: Let 

W-(q<-l ^Y, then W " . (<»*-! *«*\ 
\Pt-l Pj \Pnt-l Put! 

Proof: Consider the function Fa : Z2- -> Z2 which takes an initial condition pair 
(a, 2?) to the pair (rt-i> vt) giving the last two terms resulting from applying 
one period of recursions r3- = a^v^-\ + pj-2> 3 = x ? ••••» £> to initial condi-
tions V-i = a, TQ = Z? . In light of the lemma, Fa can be written in matrix 
form: 

Fa(a, b) = (a, fc)tf. 
On the other hand, applying n periods of the recursions is just n iterations of 
Fa and (pnt _-,, p ,) is the result of applying n periods of the recursion to 
(0, 1). Hence, 

(pn t_ 1 ? pnt) = ^ ( 0 , 1) = (0, l)Wn. 
Likewise, 

(?„t-l • ?«*> " (1> 0)f/n 

and the conclusion follows. Q 

Notice in the example below that W9 W2-, and W^ appear upside down in the 
list of convergents of a = [3, 5, 2]. 

/ 5 11\ 2 = /201 440\ 3 = / 8045 17611\ 
\16 35/5 \640 1401/5 \25616 56075/5 

ak: 

qk-
0 
1 

1 
0 

3 

3 
1 

5 

16 
5 

2 

35 
11 

3 

121 
38 

5 

640 
201 

2 

1401 
440 

3 

4843 
1521 

5 

25616 
8045 

2 

56075 
17611 

The following corollary is a direct consequence of Theorem 9 and Corollary 
7. 

Corollary 10: 

(i) If ft/n E J mod w, then fcO) |n£. 
(ii) If the period of a is preserved mod 77?, then o is the smallest integer such 

that WG E I mod 7?7 if and only if k(jri) = ct. 

Remark: If p is an odd prime, the order of the multiplicative group of matrices 
{A e Mz(Zp) |det(i4) = ±1} is 2(p + I)pip - 1) and it follows that 

fc(p)|2(p + l)p(p - D t . 
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This establishes a slightly better upper bound for k(p) than the p H observed 
earlier. Furthermore, this remark limits the factors appearing in k(p). 

Reversals and Rotations 

Given an a = [a\9 a^9 . . . , at ] , we construct other quadratic irrationals 
related to a: the reversal of a, a* = [at, at-\9 . .., a\\ and the rotation of 
by one position, a* = [at, a\9 a^* ..., at-\]< The rotation of a by j posi-
tions to the right is indicated by a*<? . The following theorems show that 
k(a, m) is not changed when a is reversed or rotated. Thus, if we know 
k(a, m), then we really know k{m) for up to 2t different quadratic irrationals. 

Theorem 11: k(a, m) = k(u*, m) = k(u*2, m) = .•• = feCa**"1, m). 

Proof: First, notice that if the period of a is not preserved mod m9 then the 
period of a*J is not preserved mod m for all j . If a = [a\9 a^* • • • > a>t ] 
degenerates into ar = [a\9 a^9 ..., ati\ mod m. That is, tr is the smallest 
positive integer so that for all j, aj = aj + t' mod m. Then for all j 5 k{aT° , /??) 
= k(a'*J , /??), but the period of a' is preserved mod m. Thus, without loss of 
generality, we will assume the period of a is preserved mod m. 

Let W be the fundamental matrix for a. let a be the smallest positive inte-
ger with Wc E I mod m, let Fa be the function as in the proof of Theorem 8 
which gives the last two terms resulting from applying one a period of 
recursions to given initial conditions, and let p*, q* denote the p,q sequence 
for oT . 

Note that a* = [at, a\9 a<i> . .., cct]. Thus, (p*, P*+0 a r i s e from apply-
ing one period of the a recursion relations to initial condition (pj, p"^) . That 
is, 

<P*> P?+l> = Fa(P5' PV = <Po> PVW 

and applying uc" periods of the a recursions gives 

( p 0 V p * t + i ) - ^ ° ( P S . P I ) - (Po> ??>""• 
Likewise for the q sequence. Thus, k(a* 9 m)\k(a, m) . Applying this fact to 
further rotations gives 

k(a, m) = k(ukt , m) \ k(a* t ~l, m)\ ... |fc(oT, 77?)|fc(a, m) 

and, hence, the required equalities must hold. • 

Theorem 12: k(a, m) = k(a* , TTZ) . 

Proof: If k = k(a, m), then, from well-known identities (see Rosen [2, p. 363]) 
of continued fractions p£/q£ = P^lp^-i a n d P̂ -i/<?/?-1 = ^k^k-l' Therefore, 

Pfc-1 = ?k E °> Pfe* = Pk E !' 
<#_! - ?,.! = 1, ?£ = Pk_! = 0, 

which implies k(a^ 9 m)\k(a9 m) . It is evident that k(a^ ,m) = /c(a, /??) since, by 
applying the process on a^, we obtain k(a, m) |/c(a*, w) . D 

Periods of Powers of Primes 

The relation between k(a9 p) and k(a9 pe) is explored next. Consider the 
periods of a = [1, 1, 1, 1, 1, 2] for several prime power moduli. 

p 
2 
3 
5 
7 

k(a, p) 
12 
18 
36 
84 

k{u, p2) 
24 
18 
36 
588 

k(a, p3) 
48 
18 
180 

4116 

k(a, p4) 
96 
54 
900 

28812 
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Notice when the exponent of p in the modulus is increased by one the period 
seems to "increase" by a factor of p or 1. Indeed, the following theorems show 
that as the exponent of p increases the period k(pe) will increase by a factor 
of p after some initial constant sequence. An exception is p = 2, which is 
slightly more complicated. 

It is interesting to note that for the analogous theorem of Wall [6] about 
the Fibonacci numbers there are no known examples with k(p) = k{p2). For the a 
given above, k(p) = k(pe) for some e > 1 does occur. Identifying when this 
occurs remains an open problem. 

We now turn to proving the above properties. Let A be a matrix with inte-
ger entries. If p e divides each element of A but p e + 1 does not divide some 
element of A , we say p e exactly divides A 3 and write pe\\A. This means that A 
can be written A = peS for some matrix S with integer entries where S contains 
an element which is not divisible by p. 

Lemma 13: Let U be a matix with integer entries, I be the identity matrix, 
and p be an odd prime number. If pe\\U - I for some e > 1, then p e + l\\Up - I. 
Moreover, for p = 2, if e > 2 and 2e\\U - X, then 2e + l\\U2 - T. 

Proof: Suppose first that p is an odd prime with pe\\U - J, so U = I + peS where 
S is a matrix with integer entries and p does not divide some entry in S. The 
binomial theorem is not true for matrices in general, but it is true when one 
of the matrices is the identity. The third and higher terms of the binomial 
expansion below have at least two factors of p e plus another factor of p coming 
from the binomial coefficient or from an additional factor of p e . Thus, for 
some matrix T9 we have 

up = (I + v
esy = £ (p-)pjesj = (o)J + (l)pes + P2e+lT° 

Thus, UP - I = pe + lS + p2e+1T. Notice that pe + l\Up - I and that if pe+2 did, 
then p would divide all the elements of 5, which contradicts the hypothesis. 
Therefore, pe + ̂ \\Up - I as required. 

Similarly, If p = 2 and 2e\\U - I', U has the same form as above and 

U2 = I + 2e + lS + 22eS2. 
Thus, 2e+l\U2 - J. Now, for e > 25 2e > e + 2 so that if 2e+2\U2 - I then l\S9 
which is not so. Thus, 2e+l\U2 - J. D 

Theorem 14: Let p be an odd prime which preserves the period of a. There is 
a positive integer e so that 

k(p) = k{p2) = ... = k{pe) and k(pe+J) = pik(p) for all J > 1. 

Moreover, for p = 2 there is an integer e > 2 such that 

k{22) = k(23) = ... = k(2e) and k(2e+j) = 2jk(2) for all j > 1. 

Also, k{2) = Zc(4) or k{2) = %fc(4). 

Proof: Let p be an odd prime and £/ be the fundamental matrix for a. Notice 
that p n preserves the period of a for all n. So, by Corollary 10, k(pe) = nt 
if and only if n is the smallest positive integer with Wn = I mod p e . Select c 
to be the smallest exponent for which W° = I mod p. Then let e be the largest 
exponent (possibly 1) for which k{p) = k(p2) = •-• = k{pe). Notice that £ must 
be finite, since for large enough e, p e will be larger than the entries in Wa 

and, hence, W° £ I mod p e . Now pe||l^ - I so that, by the lemma, p e + l\\Wpc - J. 
Thus, at = &(pe) |k(pe+1)|ptf£. So, ft(pe+1) = e£ or pot. If fe(pe + 1) = tf£, then 
pe + 1\W° - J, which is impossible since pe\\W° - J. Therefore, k(pe+l) = pk(pe) . 
Continuing inductively gives k(pe+J) = pJ'k(pe) . 
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Moreover, for p = 2? the same argument works beginning with fc(22), since 
the lemma used requires e > 2 in this case. Also, if W° = I mod 2, then for 
some matrix T, Wc = I + 2T; hence, Ĵ 2c = J mod 4 and the ratio fc(4)/fc(2) is 1 
or 2. • 

The special possibilities mentioned in the theorem for p = 2 do occur as 
indicated by the examples: 

a 

[I7~2] 
[1, 1, 2] 

[1, 2, 3] 

Hi) 

4 

6 

6 

fc(4) 

8 

12 

6 

fc(8) 

8 

24 

12 

£(16) 

16 

48 

24 

£(32) 

32 

96 

48 

where 

Bounds for Prime Periods 

It was shown in Corollary 10 that o is the smallest positive integer such 
that Wc = I mod m if k(m) = ot. To facilitate the analysis of Wc, we diagon-
alize the fundamental matrix. The eigenvalues of this matrix are 

4 = ̂ [(P* + <?t-i) + ^] a n d A2 = 2"t(Pt + ^ t - 1 ^ " ̂ » 

d = (pt + ̂ . p 2 + 4(-l)t"1. 
It is evident from the definitions of Xi and X2 that 

XXX2 = (-1)* and Xx + X2 = (pt + <?t-l)' 

These identities are used in the following lemmas and theorems* Computing the 
eigenvectors and completing the diagonalization, we find the following form for 
Wn. 

Theorem 15: Let W be the fundamental matrix for a and let ^n = (x" - X^/vd. 
Then, 

wn for n = 1, 25 .. 
Pt - 1 ^n ^n +1 <?£ -1 ^n J 

Proof: The fundamental matrix can be diagonalized by the matrix P, where 

X2 - q. t-U 

and P~ 
-1 

^ T / 5 

A2 " <7t-i -q.t 

it 
Computing Wn = PPnP 1, where P is the diagonal matrix with X]_ and X2 on the 
diagonal, we get 

V" 
<7t ̂ 

- ( A l -1>(A2 - <7t-l><*! - A2> < M * l ( * l - <7 t - l> - X 2< X 2 - <?t-l> 

This s i m p l i f i e s i n t o the r e q u i r e d m a t r i x us ing the p r o p e r t i e s of the e igen-
v a l u e s . D 
Remark: An i n t e r e s t i n g consequence of t h i s d i a g o n a l i z a t i o n i s t h a t 

Pnt-tft = 4ntPt-l f o r a l l n = 1, 2, . . . . 
Lemma 16: 

<£n_x - ( - D * [ ( p t + ^ - i ) ^ " -S?n+1] fo r n - 1, 2, . . . . 
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Proof: The eigenvalues A^ and A2 satisfy the characteristic equation of W* 
Thus, A^ - (pt + qt_l)\i + (-1)* = 0 and, likewise, for A2. Multiplying these 
equations by A^"1 and A^-1, respectively, and subtracting yields 

Solving for ££n_^ gives the conclusion. • 

Notice that J£Q and ̂  are integers and that &n+i is an integer combination 
of ££n and JS?n_i« Therefore, ££n is an integer for n - 1, 2, . .. . 

Lemma 17: If p is an odd prime and (4) is the Legendre symbol, then 

(i) jSfp E ̂ -j mod p, and 

(ii) ifp + 1 = 2"l(pt + ̂ ^ [ ( f ) + l] mod p. 

Proof: By writing out A^ and A2 in their respective binomial expansions, can-
calling the even terms, reducing modulo p, and applying Euler!s criterion, we 
get that 

(i) z? = ±a{ - AP } - 2 l _ p
l i ^ P ( ? ) < P * + ? * - i > p " ^ ' 1 ) / 2 

j odd 
i ( P U f - U / 2 i (2 ) mod p , and 

<"> *•. - T/<1 - is*i> - ̂ M" } > . + ' « - 1 > p * 1 • J ^ ( j - l ) / 2 
j < p \ 

j odd 

E 2-1 ( p t + qt-x)l(pt + qt-i)P~l + c f ( P _ 1 ) / 2 ] mod p 

= 2 _ 1 ( p t + <7*-i>[(f) + 1] ™>d P- a 
The following three corollaries are direct consequences of the previous two 
lemmas. They provide information about the entries in Wn when n = p - (̂ ). 

Corollary 18: If (§) = 1, then 

(i) J2?p_2 E (-1)*"1 mod p, 
(ii) ^p-i = 0 mod p, and 
(iii) j£?p E 1 mod p. 

Corollary 19: If (|) = 0, then 

(i) ^?
p.1E2-1(-l)t-1(pt + qt_Y) mod p, 

(ii) <gp - 0 mod p, and 
(iii) &p + l E 2"1(pt + qt_l) mod p. 

Corollary 20: If (§) = -1, then 

(i) J£p = -1 mod p, 
(ii) J^p+i = 0 mod p, and 
(iii) J*?p+2 E (-1)* mod p. 

Corollary 10 describes the relation of k{p) to o such that Wc = I and Theo-
rem 15 gives a form for Fn. These are combined to obtain divisibility proper-
ties for k(p) . These multiples of k(p) also give upper bounds on k{p). 

#, Up - l)t if (g) - 1, 
Theorem 21: If p is an odd prime, then k(p) divides \i\-pt if (-) = 0, 

(2(p + l)t if (f) = -1. 

1991] 227 



THE PERIOD OF CONVERGENTS MODULO M OF REDUCED QUADRATIC IRRATIONALS 

Proof: 

Case 1. Suppose t h a t (J-) = 1, and then apply C o r o l l a r y 18 to Wp~l: 

/ P - l 
(-D t - l JSf. p - 2 + ^ t - l ^ p -p - 1 

P t - l ^ p - 1 

' ( - l ) * - ^ - ! ) t - l 
I mod p. 

0 1. 

Therefore, k(p)\(p - 1)£ for (|) = 1. 

Case 2. Suppose that (f) = 0, and then apply Corollary 19 to Wpi 

^ ( p , + ?,„!) 

2"1(pt + 4t-i)J 
mod p. 

Thus, W2p E 4"1(p, + g t_ x ) 2 X, but since (pt + g t _ x ) 2 = d + 4(-l) t = 4(-l)t mod p 
we have W2p E (-1)*!". Therefore, j/*p = I and /c(p)|4pi in this case. 

Case 3. Suppose that (,|) = - 1 , and then apply Corollary 20 to W?+l: 

Thus, J/' 

;P+1 _ 

r2(P+l) = 

• ( - l ) * " 1 ^ + ^ . 1 J 2 f p + 1 ^ t ^ p + 1 

p* - 1 *^V+1 •^p + 2 ?t - 1 ^V + 1 • 

•<-D* 0 

o (-Uf 
mod p. 

I and /c(p) 12(p + 1)£ in this case, D 

The proof of the previous theorem allows tightening of the bound when the 
period of a is even. ((p _ 1 ) t if (|) = ls 

Theorem 22: If t is even, then k{p) divides llpt if (§) = 0, 
( ( P + D t if ( i ) = - i . 

The bounds given by Theorems 21 and 22 are met with some frequency. For exam-
ple , considering the primes less than 1000 for the modulus, the bounds are met 
about 66 percent of the time for a 
for a 

[2, 1, 4, 3, 5] and 35 percent of the time 
[4, 5, 1, 3, 2, 5], 

Questions 

We leave the reader with some questions. First, when does k{p) = k(pe)1 
Wall stated that, for a = [T], no examples for k(p) = k(p2) occur for p < 10,000 
and we have checked this for p < 100,000* Does k(p) = kip2-) ever happen in 
that case? Given a = [a^, a^^ . .., a t], can bounds be given on the p!s for 
which k(p) = /c(p2)? Does t play a role in such bounds? Can anything be said 
for k(p) = k(pe) for e = 35 4, ... ? 

Wall gives considerable discussion of the period length of the sequence of 
Pn

fs defined in Lemma 8 for the case in which an ~ 1 for all n. There, the 
period is often independent of the initial conditions a and b. To what extent 
does that theory work for periodic sequences of an's? 

The next question concerns the upper bounds for k(p) given by Theorems 21 
and 22. We would like to know when k(p) equals its upper bound. We conjecture 
that k(p) is the upper bound with some frequency; perhaps two-thirds of the 
k(p) equal their upper bound when t is a prime. Can the bounds be improved 
when t is composite? 
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Addendum on Lower Bounds 

Theorem 6 gives a trivial lower bound on k(p). It seems reasonable to 
expect k{rn) > c log(m) for some constant c depending on a. Are such bounds 
possible? The referee offered the following solution. Let a\^ a^ ...5 an be 
the complete list of the partial quotients for a given quadratic irrational a. 
Set A = max{ai, ...5 an] + 1. Then 

pt < (A - l)pt_1 + pt_2 < Apt_x for all t > 2 

and p-j_ = ax < A so that 

p < At for all t > 1. 

For At < m < At + l , this means that k(m) > t . It follows that 

, , x log m 
kirn) > — 1 for all w > 1. 

log A 
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0. Introduction 

The notion of a uniformly distributed sequence mod 1 is a classical tool of 
number theory (see, e.g., [1], [2]), but it is well known that there exist 
sequences which are not uniformly distributed; it turns out that this kind of 
sequence is more conveniently treated by notions other than the classical ones. 

In this paper one such notion is used, which enables us to study the 
sequence formed by the fractional parts of decimal logarithms of the integers 
(it is well known that this sequence is not uniformly distributed in the 
classical sense; see, e.g., [1]). 

With our result, we obtain a simple solution of the so-called first digit 
problem. 

1. Preliminary Results 

In this section we list some definitions and results used in the sequel. 
We begin with the definition of uniform distribution with respect to a measure 
on IN*. 

Definition 1.1: Let u be a measure on. IN*, which we assume to be positive and 
unbounded; for each integer n9 write 

Sn = y([l, n]). 

Now let (#n)w->i be a sequence of real numbers in [0, 1]. We say that (xn)n>1 
is y-uniformly distributed in [0, 1] if, for each function f in C([0, 1])3 we 
have n 

lim ̂ -L— = / f(x)dx. 
n + oo on Jo 

Remark 1.2: It is easily seen that we may replace (Sn) by any equivalent se-
quence . 

Remark 1.3: The notion of uniform distribution in the sense of Definition (1.1) 
has been introduced by other authors, although they used different names and 
symbols. 

It is also clear that it can be expressed by saying that the sequence of 
measures (vn)n>x on [0, 1] defined by 

y{« 

weakly converges to the Lebesgue measure on [0, 1] (see, e.g., [8]). 

In what follows, we shall use the following proposition, a direct conse-
quence of well-known results concerning weak convergence; note that it is a 
straightforward generalization of a classical theorem in number theory (see 
[1], [2]). 

*Lavoro svolto nell'ambito del GNAFA e con finanziamento del MPI. 

230 



ON THE NOTION OF UNIFORM DISTRIBUTION MOD 1 

Proposition 1.4: The following conditions are equivalent: 

(a) (xn)n>i i s U-uniformly distributed in [0, 1]; 
(b) for every interval [a, b[ in [0, 1], we have 

f>a}i[a,M(*^ 
lim = b - a, 

n. •> oo & n 

where K ,, stands for the indicator function of [a, b[> 

For each integer n, write 

(1.5) Hn = exp Sn. 

We shall assume that the sequence (Hn)n>l is obtained by restriction to I* 
of a function H defined on E.+ and having the following property: 

(1.6) There exists a positive constant I and an increasing, slowly 
varying function L such that 

H(y) = ylL(y). 

(We recall that L varies slowly at infinity if, for every x > 0, we have 
. L(xy) 

lim — — — = 1. 
y++00 L(y) 

For further properties, see [5].) 

To handle the case I = 0, we make an additional assumption: 

(1.7) For each (a15 a2, a3, a^) in E.4, where ax, a2, a3, a^ are strictly 
positive numbers such that a^ * a2, cc3 ^ a^, we have 

L{axy) - L(a2y) L(a3y) - L(a^y) 

log(a1a21) log(a3a^1) 

as y converges to infinity. 

We prove the following proposition. 

Proposition 1. 8: 
L(x + y) 

(a) For every x > 0, we have lim — = 1. 
z/->+oo •L'i.y) 

(b) In the case I = 0, for each (b±9 b2, b3, b^) in H*4, where 
b-,, b2, bo9 b, are positive numbers, we have 

L{aYy + Z?1) - L(a2y + b2) L(a3y + b3) - Lja^y + bh) 

log(a1a^1) log(a3a^1) 

as y converges to infinity. 

Proof: Part (a) follows from the inequalities 

L{x + y) L{2y) 
L(y) ~ L{y) ' 

the second of which holds for y sufficiently large. 
The assertion of part (b) is proved by noting that, for every e > 0, we 

have, for y sufficiently large 
L{aYy) - L((a2 + e)y) L{axy + b{) - L(a2y + b2) L({al + e)y) - L(a2y) 

L((a3 + e)y) - L(a^y) L(a3y + b3) - L(a^y + bh) L(a3y) - L((ah + e)y) 
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Definition 1.9: Let u be a measure on M* ; we say that u has property P if (1.6) 
holds [in the case A = 0, if (1.6) and (1.7) hold]. 

We shall also use some results concerned with the notion of density on IN*, 
which is studied, for example, in [6]. 

Definition 1.10: Let u be a measure on IN*, and (Sn) its distribution function as 
defined in Definition (1.1). 

Consider the density onl* generated by the sequence of measures, (y)n>i» 
defined as follows: 

_ _1_ 
Vn " Sn ^n] * y ; 

this density will be called the u-density. 

Definition 1.11: For each t > 0, l e t fit be t he measure o n l * def ined by 

ft* = 2 [exp(-^fe) - exp(-tSk + i)]ek, 
k> 1 

The density generated by (yt) will be called the exponential density with 
respect to u (or, more briefly, the u-exponential density). 

We state the following result, the proof of which is given in [6]. 

Proposition 1.12: Assume that the sequence (u{n})„>]_ is bounded. Then the u~ 
density and the u-exponential density agree everywhere. 

The following theorem, proved in [7], gives a practical method for calcu-
lating an. exponential density. 

Theorem 1.13: Let (£ n) n > 1 , (Wn)n>i ^e t w o sequences of positive real numbers, 
such that 

(i) lim ln = lim mn = + °°  and %n < mn < ln + \ for every integer n; 
n -»- 0°  n •* oo 

(ii) the sequence (jnn - ln)n>l is bounded; 
(iii) we have mn ~ mn + \> ln ~ ln + \ as n converges to infinity. 

Last, let A be a real number, with 0 < A < 1; then the following conditions 
are equivalent: 

(a) l im ]L-1 = A; (b) l im - ^ = A; 
n -> oo /77 n yz ->- oo £ w 

(c) l im 2 [exp(-£JU) - exp(-£/7?7,) ] - 4 . 
w •>• 0 + fc > 1 

2 . The Theorem of Uniform D i s t r i b u t i o n 

We shall prove the following result. 

Theorem 2.1: Let u be a measure on IN*, with property P. Then the sequence 
({log]_o?z})n > 1 is u-uniformly distributed in [0, 1]. 

Proof: Proposition (1.4) applies, so we can show that, for every interval [a, b[ 
in [0, 1], we have 

X > w i [ a M({iog10fc}) 
l im = b - a. 
n+co log #„ 
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We can write 

where E is the subset of M* the elements of which are the integers k satisfying 
the relation 

ion + a < k < ion + z? 

for some integer n; hence, calculating the limit above amounts to finding the 
U-density of E (in the sense of Definition 1.10). 

First we note that, because of the relations 
1Qn+b _ 1Qn+a > l a n d 1Qn+a+l „ lQn+b > ^ 

which hold for n sufficiently large, E is neither finite nor cofinite. Denote 
ky (Pn)w>i' (cln\>i t n e t w o sequences of integers such that 

s = U [ P „ , <?»[• 
?2 > 1 

Moreover, for every x > Q, write 

x if x is an integer 
Ux) = 

* [x] 4- 1 otherwise, 
so that we have the obvious relations 

pn = Ml0" + a ) ; qn = Hion + h ) . 
Because of our hypotheses on y, t>he sequence (\i{n})n >]_ is bounded; hence. Pro-
position 1.12 applies, and our goal is equivalent to finding the y-exponential 
density of E, that is, we calculate the limit 

lim ]T [exp(-t log Hp ) - exp(-i log #?„)]; 
t + 0+ n> 1 n 

we do this by means of Theorem 1.13, where we put 

ln = log HPn ; mn = log Hqn. 

The inequalities x < $(x) < x + 1, together with Proposition 1.8, give 

iim = £> - a; 

now, a well-known theorem of Cesaro gives the same value for the limit we con-
sidered in Theorem 1.13(a). 

Remark 2.2: Paper [3] treats, using different techniques, the particular case 
of the preceding theorem where u{n} = 1/n (so that Sn ~ log n ). Paper [3] also 
contains a reference to another paper [4] in which the same particular case is 
studied. The same result is extended in a different direction in Theorem 7.16 
on page 64 of [1]. 

Now, let v be an integer, with 1 < v < 9 and, in the proof of Theorem 2.1, 
take a = log1Qp, b = log10(r + 1); then E turns out to be the set of integers 
the decimal expansion of which has r as the first digit and the preceding proof 
gives _rc 

l l m = i0g # 

« — u([l, n]) 10 r 
This simple remark may be rephrased as follows: 
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Corollary 2.3: Let E be the set of integers the decimal expansion of which has 
r as the first digit; if p is a measure on IN* satisfying the property P, then 
the y-density of E is log1Q(p + I)IT, 
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1. Introduction 

We consider a generalized Fibonacci sequence {Hn} defined by the linear 
homogeneous recurrence relation 

(1.1) Hn = Hn.l + Hn_2s n > 2, 

with initial conditions #]_ = 1, H2 = X, where X can be real or complex. In [6] 
Horadam has studied the properties of these sequences. Among these proper-
ties 5 it is well known that 

(1.2) lim Hn+i/Hn = a, 
n ->oo 

where a = (1 + v5)/2 is the positive root of the associated auxiliary polyno-
mial. The other root is $ = (1 - /5)/2. 

The purpose of this paper is to look at two variations of (1.2) and at two 
curves that result. Before that, we recall that the general term for {Hn} is 
given by 
(1.3) Hn = Aan - 53n

5 

where A = (X - 3)/a/5 and B = (X - a)/3/5. 

2. Curves 

We next construct the function 

(2.1) I(X) = lim a2n 

n •> oo 

At first sight, this would appear to be indeterminate. However, with the use 
of (1.3), we can establish that 

(2.2) 1 ( 1 ) = ^ 

accordingly as n is even or odd. With the repeated use of a2 = a + 1, (2.2) can 
be reduced to 

(2.3) I(x) = ±(3a + 1)(X - a)/(J - 3). 

Figure 1 is a sketch of I{X) plotted on the Cartesian plane. We have a pair 
of intersecting hyperbolae with asymptotes given by I(X) = ±(3a + 1) and X = 3, 
and X-intercept of X = a. 

Now put X = x + iz/, so that we have I(X) = I(x9 y) and 

(2 .4 ) I(x9 y) = ± / 3 a + 1])
2 2{(x2 + y2 - x - 1) + iy(2a - 1 ) } . 

(a + (x - l))z + z/z 

Figure 2 is a sketch of I(x9 y) plotted on the Argand plane, holding y con-
stant and varying x. We have a pair of parabolic pencils of coaxal circles. 
The radius of each circle is (5 + 5a)/2z/, and each is tangential to the real 
axis at the points (±(3a + 1 ) , 0). 

^n+l 
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ICO 

FIGURE 1. I(X) v s . X 

FIGURE 2. I(x, y) 

In the te rminology of Deakin [ 3 ] , c o n s i d e r the fo l lowing numbers: 

complex: x + izy, i^- - - 1 , 
d u a l : 
duo: 

x + ey9 ez 0, 
1. X + 0)2/, 03 

J(x, z/) generates circles in the complex plane, parabolas in the dual-plane, 
and hyperbolas in the duo plane. 
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3. Other Generators of a 

We define the iterative root sequence {vn} ={vn(k, x; a, b)} by means of the 
recurrence relation 

(3.1) vn(fe, x; a, b) = (bvn_i(k9 x; a, b) + a)l/k 

with initial term Vi(k, x; a, b) = xl^k. For example (see [13]), 

lim Vy,(k9 a% a, b) = a. 

It is known (see [2]) that if lim v„(fc, a; a, b) = A then 

(3.2) a + M = ^ 
and 
(3.3) lim v„(fc, ̂ _ i ; Fk.ls Fk) = a 

n + oo 
or 
(3.4) Fk_l + Ffea = a*, 

where Fk is the kth Fibonacci number. An early example of (3.4) occurs in Basin 
& Hoggatt [1] and a later geometric illustration in Schoen [11]. For a back-
ground to this in the more usual context of continued fractions, see Hoggatt & 
Bruckman [5] and Kiss [9]. We wish to consider here the rate of convergence of 
(3.3). 

Whitaker [12] recently showed that for sequences {vn(k9 x; a, b)}, a finite 
nonzero function I(X) can be constructed in the form 

I(X) = lim , ) (A - v„(/c, X; a, b)). 
n •¥ oo \ u J 

The equivalent form for the Fibonacci case is 

(3.5) I(X) = l i m ( ^ f (a - vn(fc, X; Fk.l9 Fk)) . 
n>oo\ t k J 

As before, this can be considered on the real or complex planes, although there 
is no closed form for J(l) . Comparing (2.1) and (3.5), we can comment on the 
rates of convergence of the methods of generating a from the ratio of succes-
sive terms of the generalized Fibonacci sequence and from the iterative root 
sequence. The rate of convergence of the former method is proportional to a2, 
whereas the other rate is proportional to kak~l/Fk. If k > 2, kak~l/Fk > a2, 
because 

a2Fk = ( a V - 1 - 3fe"2)//5 < ( a 3 / ^ ) ^ " 1 = (1.89)afe"1. 

Thus, the iterative root sequences produce the faster convergence rate. If we 
consider noninteger values of k, we can find an iterative root sequence that 
converges to a at the same rate as the ratio of the generalized Fibonacci 
number; that is, we can find ks such that (i) kak~l = a2 and (ii) a + a = ak. 
This occurs when k = 1.790048745 and a = 0.74841991. Calculation shows that 
both Hn+l/Hn and v„(/c, a; a, 1) with these values of k and a require 22 
iterations to provide eight-figure accuracy for a. 

4. Concluding Comments 

The ideas presented here can be extended by altering the recurrence rela-
tion. One way is to include real coefficients, another is to increase the 
order. Kiss & Ticky [10] have determined the asymptotic distribution function 
for the ratios of the terms in the former case, and Goldstern, Tichy & Turnwald 
[4] in the latter. They have also established several estimates for the 
discrepancy or error term. Another generalization would be to consider 
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(4.1) I(X) = lim a In 
Hn + l 

by analogy with (3.1) of Horadam [7]. In the Fibonacci sequence (4.1) can be 
rearranged as 

(4.2) JU)/(3a + 1) = ±Fk(X - a)/(Z - 3). 

Graphs of these are directly related to Fibonacci sequences as in Horadam & 
Shannon [8]. 
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1. Introduction 

The Schroder-Bernstein theorem states that if f is a one-to-one mapping of 
X into J and g is a one-to-one mapping of Y into Xs then there exists a one-to-
one mapping h of X onto J; see, for example, [1]. 

The proof of the theorem involves the construction of three disjoint sub-
sets of X satisfying certain criteria. Applied to a specific example, the sub-
sets produced are unions of intervals bounded by ratios of successive Fibonacci 
and Lucas numbers and the singleton {2/(1 + v5)} where (1 + v5)/2 is the golden 
ratio. More generally, the subsets produced are the unions of intervals 
bounded by ratios of successive elements of two general second-order recurrence 
sequences with the same characteristic equation and the singleton {1/a} where a 
denotes the positive root of the characteristic equation of the given 
recurrence. 

As usual, we define the Fibonacci and Lucas sequences for all n by 

(1) F0 = 0, Fj_ - 1 , Fn + 2 = Fn+l + Fn 

and 

(2) LQ = 2, L]_ = 1 , Ln + 2 = Ln+i + Ln. 

We further define the sequences {Hn} and {Kn} for all n by 

(3) #0 = c, Hl = ac, Hn+Z = aHn+i + bHn 

and 

(4) KQ = d, K1 = e, Kn+2 = aKn + 1 + bKn 

where a, b, c, d9 and e are positive. Since we will need it later, we further 
require that 

(5) a > % 

2. Proof of the Schroder-Bernstein Theorem 

Before showing how it is related to second-order recurrences, we outline 
the proof of the Schroder-Bernstein theorem. 

With / and g as defined, let g(Y) be the subset of X that is the image of Y 
under g. Let AQ = X - g(Y) and let An= g(f(An-.{)) for each integer n > 1. Let 
f(X) be the subset of Y that is the image of X under /, let BQ = g(Y- f(X)) , and 
let Bn = g{f{Bn_l)) for all n > 1. Finally, set 

A = 0 A., B = (j B-, and X„ = X - (A U B) . 

Then it is not difficult to show that A9 B9 and Xm are disjoint, that 

X = A u B u Xm9 
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h(x) 

and that the function h, defined by 

{f(x) for x e A u X^, 

_ 1 ( x ) for x e B, 

is a one-to-one mapping from X onto J. 

3 . An Example I n v o l v i n g S e c o n d - O r d e r R e c u r r e n c e s 

Theorem 1: Let X = (0 , 2 ) , J = ( 1 , «>), / ( x ) = x + 1, and #(z/) = 1/z/. Then the 
s e t s An, Bn, and Z^ of the proof of the S c h r o d e r - B e r n s t e i n theorem a r e g iven by 
the f o l l o w i n g : 

(6) 

(7) 

and 

(8) 

-n + l Ly 

L^n + 29 Ln+l 

/ Ln Fn+ll 
\Ln+i* Fn+2j 

/ Fn Ln+l 
\Fn+i9 Ln + 2 

'Ln+\ Fn 

_Ln + 2' Fn+\ 

ll + /5i' 

n > 0, n even, 

n > 0, n odd, 

n > 0, n even, 

n > 0, n odd, 

More generally, the following theorem holds. 

Theorem 2: Let a, 2?, c, d, e, {Hn}n>o> anc* "t̂ n̂ n>o b e a s i n t n e introduction. 
Let X = (0, ̂ /e), Y = (a, «>), f(x) = bx + a, g(y) = 1/y, and H_l = 0. Then the 
sets An, Bn, and X^ of the proof of the Schroder-Bernstein theorem are given by 

(9) 

(10) Bn 

and 

(11) Xa 

n > 0, n even, 
tin *n \ 

n + l &n+l/ 

I Kn Hn 1 
i-p , 77 n > 0, n odd, 
\Kn+l ^n + lJ 

(En-l # n + il 
i-77—, 77 n > 0, n even 
\ hn Kn + 2J 

77 , -77—1 n > 0, n odd, 

I I 1. 
U + /a2 + 4£J 

Before proving these theorems, it will be convenient to prove the following 
lemmas. 

Lemma 1: If /, g, {Hn}, and {Kn} are as defined in Theorem 2, then 

/Fn-l\\ %n I J %n \ \ %n + l 
9\" J\EnJ) Hn+1

 u\J\Kn + l)J Kn+2 

for all n > 0. 
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Proof: Since g(f(x)) = l/(bx + a ) , 

M^fr)) - -t^i— 
b • — 5 — + a 

tiy, 

Hn Hy, 

bHn_l + aHn Hn + l 

by (3). Note that this is even true for n - 0, since #_]_ - 0 is consistent with 
(3). Similarly, we show that 

/ / Kn \\ = ^n+1 

Lemma 2: For the sequences {#n} and {Zn} as defined in Theorem 2, the follow-
ing inequalities hold. 

(12) 

(13) 

H« 
Hn + l 

Hn+1 

Kn+2 

Kn + 2 

n > 0, n even, 

n > 0S n odd. 

Proof: Since a, bs e, d9 and e are positive, it follows from (3) and (4) that 

El = JL
 e = El 

Hi ao ae + bd K2' 

Since g(f(x)) = l/(bx + a) is a decreasing function and 

AT) = 17 and f(^) 
it follows that 

1 K2 
< 

H 
Ho K* 

and the argument for all n > 0 is easily completed by induction. 

Lemma 3: If X, An, and Bn are defined as in Theorem 2, then 

n > 0, n even, 

n > 0, n odd. 

X 

V^n+l' Kn+2/ 

An U 
R _ r t ZQ\ /#_I £1-1 _ r_̂  d\ /0 e 1 

0 " L !̂9 z j U \ # o ' ^zJ U c J e / U \c> ae + M J e 

Proof: For n = 0, i t follows from (3) and (4) that 
' Q 

\_ac' 

Thus, since J = (0, die) and el {ae + M ) < c/ac? as above, 

as claimed. Assume that, for k even, 
k \"i /-̂ fe + l 

J - :(&.KO„«<)] - (& &)• 
Then, since Hk+i/Hk + 2 < Kk + 2lKk + 3 bY Lemma 2, it follows that 

[ U Ai) U [ \J Bi)\ = I •= , Tr J" [J? . 77 
Hi, Kk+2 
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/ Hk + l Kk + 2 
\Bk + 2' Kk + 3JC 

This proves the result for k + 1. The proof for k + 2, which completes the in-
duction, is the same as for k + 1 except that it requires the inequality 

K; k + 3 Hk + 2 < 
"k+3 Kk + L Hj 

which also follows from Lemma 2, since k is even. 

Proof of Theorem 2: As in the sketch of the proof of the Schroder-Bernstein 
theorem, we consider 

and 
g(Y) = gUa, »)) = (o, ±) 

An = X gw. (0> | ) . {0, i ) . [i. | ) . r#o £o 
Ul' K\ 

by (3) and (4), since l/a < die by (5). Now, assume that 

H = 
By Kt 

LHk+1* Kk+i/9 

where k ^ 0 is even. Then 

\+l - Gif{Ak)) = g[f\ 
By Ky Kk + 1 B k + 1 

\lBk+is Kk + l) ) j \Kk + 29 Hk + 2J 
by Lemma 1 s i n c e , as noted above, g(f(x)) i s a d e c r e a s i n g f u n c t i o n . Repeat ing 
t h i s argument wi th k+1 r e p l a c i n g k, we have t h a t 

" Bk + 2 #& + 2 N 
4 + 2 

^ + 3* Kk + 3 

Thus, by mathematical induction, the An are as described in (9). Moreover, we 
note that we have also shown that 

Bn 

Bn + l 
Kn 

for n even and 
Bn Kn 

for n odd. 
%n +1 Bn+ 1 Kn +1 

To prove (10), we recall from the sketch of the Schroder-Bernstein theorem that 

bd + ae\ 30 = gtf - f(X)) - g(ia, -) - f((o. f ))) - *((a, -) - (a, ^ ^ ) ) 

= g([M +
e

 ae> «)) - (0. M ^ ] = (̂ . 
since we take #_]_ = 0 as noted in the proof of Lemma 1. The proof of (10) is 
now completed by induction exactly like the proof of (9) . Finally, to prove 
(11), we use Lemma 3. As in the sketch of the Schroder-Bernstein theorem 

^co X - (A u B) 

= X - |( CjAi 
i= 0 (MB<)] 

( (Kn+l Bn \ 

lim < ^Kn+2-' Rrt + \) 
n > 0 0 ) / Hn Kn + 1\ 

\\Bn+l' Kn+l) 

limU 
n •> 00 ( i=0 / \i= 0 ) 

even, 
{l/a}, 

n odd, 

where a = (a + /a2 + 4&)/2, since it is well known that 

lim 
%n + l 

lim 
#n + l 

a, 
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m) 

the positive root of the characteristic equation of the recurrences in (3) and 
(4). This completes the proof of Theorem 2, 

It is interesting to note that3 since a is a root of x2 = ax + b9 

r?, , NN . b aa + b a2 

f(a(a)) = a + - = = — = a 
J y a a a 

and 
1 _ q __ _o_ _ 1_ 

(b/a) + a b + aa a2 a 
so that a is a fixed point of f(g(x)) and 1/a is a fixed point of g(f(x)). 
Proof of Theorem 1: This follows immediately from Theorem 2 by taking a = b = 
c = e = 1 and <i = 2. 

Of course3 similar results obtain for the Pell and other well-known sequen-
ces by other appropriate choices of a, b9 c9 d3 and g. 
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1. George F. Simmons. Introduction to Tocology and Modern Analysis. New York: 
McGraw-Hill, 1963, pp. 29-30. 
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A second-order linear homogeneous recurrence sequence UQ, U\9 U29 ... is 
defined by a recurrence relation un = aun-\ + bun-2f where a and b are complex 
numbers with b * 0, and two initial terms UQ and u\. We raise the following 
question: for given a and b, what sets of terms, other than UQ and U\9 are 
sufficient to determine the entire sequence? We shall see that any two terms 
are often sufficient, but not always. A comparable result will then be 
presented for recurrences of higher order. 

Suppose a and b are given and Vp and Vq, where p < q9 are known terms of a 
sequence satisfying vm - avm-\ + bvm-2, Then the terms u0 and un of the 
sequence defined by um = Vm + p9 where n = q - p, are known. Accordingly, with-
out loss of generality, we recast the original question as follows: under what 
conditions on a3 b3 and n do tine values of u0 and un determine the values of um 
for all m > 0? 

The answer depends on a sequence of bivariate polynomials defined recur-
sively by Fm(x9 y) = xFm_l(x9 y) + yFm_2{x9 y), beginning with Fl(x, y) = 1 and 
F2(x9 y) = x. These are often called Fibonacci -polynomials; indeed, Fm(l9 1) 
is the mth- Fibonacci number. 

Theorem 1: Suppose a and b are complex numbers satisfying Fn(a, b) * 0, where 
b * 0 and Fn(x, y) denotes the Fibonacci polynomial of degree n - 1 in x. Then 
UQ and un determine um for all m > 0. 

Proof: If n - 1, then the recurrence um - aum-\ + bum-2 determines um inductively 
for all m > 0. 

If n = 2, then the equation u2 - ou\ + bu$ yields U\- (u2 - buQ)/a, so that 
U\ and hence all um are determined. [Note that a * 0, since a = F2(a9 b).] 

For n > 3, we have a system us = aus-\ + bus-2 of n - 1 equations, for s -
2, 3, ..., n. Write the first of these as au\ - u2 = -buQ9 the last as bun-2 + 
awn_i = un9 and all the others as bus-2 + aws_i - us = 0. As an example, for 
n - 5, we have 

au\ - u2 = -Z?UQ 
Z?MI + a^2 - «3 - 0 
Z?̂ 2 + au$ - Ui+ = 0 

bu-$ + aw^ = W5. 

The coefficient matrix of this system, 

[" a -1 0 0 1 
\b a -1 0 

0 Z? a - 1 
[ 0 0 b a \ 

clearly has determinant F$(a9 b) given by Laplace expansion about the first 
column: aF^(af b) + bF$(a9 b). 

For the general case, n > 3, it easy to see, inductively, that the deter-
minant of the coefficient matrix is Fn{a9 b). Accordingly, if Fn(a, b) * 0, 
then the system has a unique solution. In particular, u\ is determined, so 
that um is determined for all m > 0. 
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Theorem 2: Suppose u$ and un are known for some n > 1. Suppose5 further, that 
a1lb is a nonzero integer and one of the following holds: 

(i) a2-j'b does not equal -1, -~2, or -3; 
(ii) if n E 0 mod 3, then a2 + b * 0; 
(iii) if n E 0 mod 4, then a2 + 2D * 0; 
(iv) if ft E 0 mod 6, then a2 + 3& * 0. 

Then w,„ is determined for all 77? > 0. 

Proof: The polynomial Fn (x9 y) is an even function in x if n is odd, and odd in 
x if n is even. Accordingly, by the Fundamental Theorem of Algebra, this 
polynomial factors in the form 

fn(x2, y) = (x2 - c1y)(x2 - o2y) -.. (x2 - c r _];,y) 

if ft is odd? and xfn-i(x2 , y ) if ft is even, where Ci is a complex number for 
£ = 1, 2, . . . , ft™ 1. 

If a2//3 is a nonzero integer /-c, then a2 - kb = 0, so that ĉ  = a2lb for some 
i. Thus, x2 - (a2lb)y divides Fn(^3 y). 

It is known ([1], Theorem 6) that the only divisors of Fn(x9 y) over the 
ring T[^s 2/] that have degree 2 in x are the three second-degree Fibonacci™ 
cyclotomic polynomials: x2 + y9 x2 + 2z/5 .x2 + 3y, and that these are divisors 
if and only if n is divisible by 3, 4, or 6, respectively. Therefore, except 
for the four recognized cases, we have Fn{a9 b) * 0, so that, by Theorem 1, um 
is determined for all 777 > 0, 

Theorem 3: Suppose a2 + b = 0 and UQ is known* Then um = {-a)mu§ for every 
m E 0 mod 3. Also, if u^ is known for some k not congruent to 0 modulo 3, then 
um is determined for all m > 0» In fact, 

(1) um = (-a3)^-, 

for m = 3i + j 5 J = 0, 1, 2, where w2 = awi - a2u$» 

Proof: First, we shall establish equation (1). The statements 

u3i = (-l){a3tiiG3 7 3̂i + i = (-l^a3tul5 and W3i + 2 = (~l)'la3'lU2 
are clearly true for i = 0* Assume them true for arbitrary £ > 0. Then 

w3t + 3 = aw3i+2 + ^3i + l 

= a(-V)za3tU2 - a 2 ( - l ) ^ a 3 ^ W l 

= ( - l ) i a 3 i + 1 ( w 2 - awx) 

= ( - l ) i a 3 i + 1 ( - a 2 w 0 ) 

= ( ~ l ) i + 1 a 3 i + 3 u 0 , 

and, s i m i l a r l y , 
u 3 i + i+ = (~l)i + la3i + 3u1 and w3.. + 5 = (-1)* 

By i n d u c t i o n , t h e r e f o r e , 

um = (-a3)7"wJ- for 777 = 3 i + J , J = 0, 1, 2 . 
Now equation (1) shows that UQ determines those um for which m is a multiple of 
3, and no others. However, if u^i+i is also known for some £, then 

so that iq is determined, and hence wm is determined for all 777 > 0. A similar 
argument obviously applies if Un-+2 ^s known for some i* 

1991] 245 



SETS OF TERMS THAT DETERMINE ALL THE TERMS OF A LINEAR RECURRENCE SEQUENCE 

Theorem 4: Suppose a2 + 2b = 0 and UQ is known. Then 

um = (-l/4)m/4 amu$ for every m = 0 mod 4. 

If uk is also known for some k not congruent to 0 modulo 4, then um is deter-
mined for all m > 0. In fact, 

um = {~ah I kYu^ for m = 4i + j, j = 0, 1, 2, 3, 

where w2 = â i - (a2/2)uQ and W3 = (a2/2)ui - (a3/2)uQ. 

Proof: (The proof is similar to that of Theorem 3 and is omitted here.) 

Theorem 5: Suppose a2- + 3b = 0 and WQ is known. Then 

um = (~l/27)m/samu0 for every m E 0 mod 6. 

If Uj. is also known for some /c not congruent to 0 modulo 6, then um is deter-
mined for all rn > 0. Explicitly, 

u2 = au1 - (a2/3)uQ9 

u3 = (2a2/3)u1 - (a3/3)wQ5 
y3/o\,. _ On^l (a6/3)u1 - (2a^/9)uQ, 

0' i5 = (ai+/9)w1 - (a5/9)w 

and wm = (-a6/27)^ w-, 

for /?? = 6i + j = 0, 1, 2, 3, 45 5. 

Proof: (The proof is similar to that of Theorem 3 and is omitted here.) 

Second-order sequences for which u\ * 0 and UQ = un = 0 for some n > 2 are 
of special interest, since in this case Fn{ai b) - 0, so that Theorem 1 does not 
apply. Theorem 6 describes such sequences. [To see that Fn(as b) = 0, note 
that the recurrence u = au -> + bum 0 gives 

u2 = aw1? w3 = aw2 + ̂ i = (&2 + 2?)^ = w1^3(a, 2?), 

and by induction, wn = U j ^ (a, 2?) . ] 

Theorem 6: Let Fn(x, y) denote the nth Fibonacci polynomial, x̂ here n > 2. If 
U\ - 0 and WQ = un ~ ®> then Fn (a, 2?) = 0, and there exist nonzero real numbers 
c> r and positive integers p, q such that 

u^ = cvm sin mp-n/q, 

where n is an integer multiple of q, for 777 = 0, 1, ... . 

Proof: From the Binet representation for the general term of a second-order 
homogeneous recurrence sequence, 

um = wam + zEm. 

It is easy to check that z must be a complex conjugate of W, so, after writing 
w - a + bi and a = r(cos 0 + i sin G), we have 

um = (a + bi)rm(cos mQ + i s i n 7776) + (a - bi)rm(cos mQ - i s i n 7?70) 
= 2rm(a cos mQ - b sin 7726) . 

Now a must equal 0, since u0 = 0, and sin nQ must equal 0, since un = 0. It 
follows that 0 must be of the form pn/q* where n is a multiple of g. Thus, the 
asserted form for um has been demonstrated. Since um is not uniquely deter-
mined, Theorem 1 shows that F (a, b) = 0 (as was already proved differently just 
before the statement of Theorem 6). 
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Sequences of Higher Order 

The method of proof of Theorem 1 extends readily to recurrence sequences of 
arbitrary order k > 2, as indicated by Theorem 7, 

Theorem 7: Suppose k > 2, and suppose 
satisfying cfc_1 ̂  0. A set of k terms, 

, are complex numbers 

ur un un u„ 
where 0 < m\ < m^ < ••• < flfy-ij uniquely determine all the terms of a recurrence 
sequence given by 

(2) w„ Ck-lUn-l + Ck-ZUn-Z + + CnU. O^n-k 
if and only if the matrix M defined below is nonsinguiar: let N denote the 
(m-k-i - k + 1) x (fflfc-i + 1) matrix (a^-) given by 

(°j-i + i f o r i s t - 1» i, ..., t + fc - 2 
a^j = <-1 for j = i + k - 1 

(0 for all remaining j, 0 < j < m^-i, 

for i = 1, 2, ...,mfc_i-/c+l, 

and define M to be the (flfy-i ~ ?C + 1) x Ofc_i - /c + 1) matrix obtained by delet-
ing from N the columns numbered 0, 777 ]_, ̂ J . «., ^k-l-
Proof: Equation (2) generates, for n = k, k + I, 
k + 1 equations of the form 

(3) C_iM 

If all the terms u$ 

. ., m^-i, a system of in^-i 

k~lun-l + Ck-2Un~2 
^2' 

+ C0Wn-fe - w = 0. 

"•mk 
are regarded as unknowns, then the coef-

ficient matrix of the system is N. If u$5 um , um2, ..., umk„i a r e n o w regarded 
as known, and accordingly transposed to the right-hand side of each of the 
equations (3), then the coefficient matrix of the resulting system is M. By 
Cramerfs Rule, this system has a unique solution if and only if \M\ * 0. 

As an example, consider a third-order recurrence 

un = aun_l + bun_2 + cun_s, 
and suppose UQ, Mi, and um are known. (In the notation of Theorem 6, k = 3, 
Wx = 1, and m2 = m.) Define !?]_ = 1, T2 = a, and find for 77? = 4 that 

0 

-1 

which on deletion of columns 0, 1, and 4 leaves 

-1 
ML 

+ b. For m = 5, 

a 

2? a 

with determinant a2- + b. Define T3 

with determinant Tu = ^ 3 + M ^ + £^V Continuing with m = 6, 7, 8, 
obtain recursively a sequence of trivariate polynomials: 

0 
0 
0 

b 
0 
0 

a 
b 
c 

- 1 
a 
b 

0 
- 1 

a 

0 
0 

-1 
yields % = 

a 
2> 
c 

- 1 
a 
b 

0 
-1 

a 
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Tm = aTm.r + bTm„z + cT,,,-!. 
Since, for example, 5̂ .(1, -1, 1) = 0, Theorem 6 tells us that UQ, U\y and u^ are 
not sufficient to determine all the terms of a sequence obeying the recurrence 
un = un~\ - ^n-2 + un~3- ®n t n e other hand, as ̂ 5(1, -1, 1) * 0, the terms UQ? 
U\i and u§ do determine the entire sequence. 

Reference 

1. C. Kimberling* "Generalized Cyclotomic Polynomials, Fibonacci Cyclotomic 
Polynomials, and Lucas Cyclotomic Polynomials/1 Fibonacci Quarterly 18,2 
(1980):108~26. 
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SOME CONVOLUTION-TYPE AND COMBINATORIAL IDENTITIES 
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San Francisco State University, San Francisco, CA 94132 

(Submitted September 1989) 

Introduction 

Let sequences {rn} and {sn} be def ined for n > 0« L e t t i n g 
n 

tn = 2 rksn-k> 
k = 0 

we obtain a sequence {tn} which is called the convolution of {vn } and {sn}. In 
keeping with the ideas of V* E. Hoggatt, Jr. [7], one may define iterated con-
volution sequences as follows: 

^ 0 ) - rn; r^ = t Vn~k for 3 * l-
k = 0 

In particular, If {Fn} denotes the Fibonacci sequence, then 

^n ~ 2~J -k^n~k 
k= 0 

is the convolution of the Fibonacci sequence with itself, Hoggatt [7] obtained 
the generating function: 

x/(l - x - x2)j + l = £ F^j)xn. 
n= 0 

The convolved sequence F„ ''was also considered by Bicknell [2] and by Hoggatt & 
Bicknell-Johnson [8], For related results, see also Bergum & Hoggatt [1] and 
Horadam and Mahon [9]. 

Let primary and secondary binary linear recurrences be defined, respective-
ly, by 

u0 = 0, ux = 1, un = Pun_l - Qun_2
 f o r n ~ 2* 

vQ = 25 ^ = P5 vn = Pvn_x - ^ n _ 2 for n > 2, 

where P and $ are nonzero, relatively prime integers such that D = P - ^Q * 0. 
In this paper, we generalize prior results of Hoggatt and others by developing 
formulas for weighted convolutions of the type 

n 
£/(n, k)rksn_k, 

k=Q 

where each of rn and sn is un or Vn and the weight function f(n, k) is defined 
for n > 0 and 0 < k < n and satisfies the symmetry condition 

f(n, n - /c) = /(n, fc) for all k. 

In addition, we prove some results about the sums 

£ (2K and £ (JH-
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Pre l iminar ies 

Let the r o o t s of the e q u a t i o n : t2- - Pt + Q = 0 be 

a = %(P + D1^), b = %(P - D%), 
so t h a t 

(1) a + b = P 

(2) aZ? = Q 
(3) a - b = Z^ 

(4) wn = (an - bn)/(a - b) 

(5) vn = an + 2?" 

(6) v„ = 2un+1 - Pun 

(7) y„ = Pun - 2Qun_1 

<8> Vn = W n + 1 - « " « - ! 

(9) t/(l - Pt + £t2) = f ] Mn£" 
« = 0 

(10) E (£ = 2r 

<»> .?.(;)'-(?) 
(12) £ fc(n - fc) = ^ ^ 

(13) £ f e 2 ( n - fc)2 = ! i L ^ 
k=0 ^° 

The Main R e s u l t s 

Theorem 1: 

fc = o 

fW fcE(feK"n-* = ~D 

Proof: Without r e s t r i c t i o n on f(n, k), (4) i m p l i e s 

" n 
£ fin, k)ukun_k = £ / ( n , k) ak - bk \/an-k - bn~k 

k=0 - - fe~o \ a - b l \ a - b 

= (a - b)~2J2f(n, k)(an + bn - akbn~k - an~kbk) 
k=o 

D^UnZfin, k) - £ /(«, k)(akbn~k + an~kbk))9 
\ k=0 k= o / 

using (3) and (5). 
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(a) I f f(n, k) = 1, we ge t 

T,ukun-k = D~l((n + l)vn ~ E (akbn~k + an~kbk)) 
:= 0 \ k= 0 / k = 0 \ Zc = 0 

Now 
" fcfcn-fc _ ^ ~-khk _ , n / ( a / ^ ) n + 1 - 1 \ _ an + l ~ bn + l 

k=0 fc= 0 (a/2?) - 1 / a - b *n + l' 

n (n + l)vn - 2 u n + 1 
E "fcM*-k = 5 • 

k=o u 

The o t h e r p a r t s of (a) fo l low from (6) and ( 7 ) , s i n c e 

(n + l)vn - 2un+l = nvn + vn - 2un+l = nvn - Pun 

= (n - l)vn + vn - Pun = (n - l )v„ - 2Qun_l. 

(b) I f f(ji9 k) = ( £ ) , we ge t 

k=oXK/ \ k=o ' k=oK-' 

= Z}-1(2r/y„ - 2(a + b)n) = ^ -

u s i n g (1) and (10) . 

Theorem 2: 

M E Wn-k = ^ + X ^ n + 2Wn + l 
fc = 0 

fw E (£>>*»„-* = 2",„ + 2P«. 
k= 0 

Proof: The proof is similar to that of Theorem 1, except that we use (5) instead 
of (4). 

Theorem 3: 
n 

Wn-l = E UkUn-k f ° r H - l 

k = o 
if and only if wQ = 0, Wl = 1, wn = Pwn_l - Qwn_2

 + un f o r n - 2-
Proof: (Sufficiency) Following Carlitz [4], let 

tf(« = E wntn-
n= 0 

Then 

(1 - Pt + ^ t 2 )A/( t ) = UQ + (Wx - PwQ)t + X) (^» - ~PWn-\ + QVn_2)tn 

n = 2 

= t + x wntn = i ; «nt" = t / d - pt + ̂ t2)? 
n = 2 n = 0 

so W(t) = t/(l - Pt + ^ t 2 ) 2 , from which it follows by (9) that 

n 
Wn-l = E UkUn-k' 

k= 0 
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(Necessity) (Induction on ri). Let 

n 
Wn~\ = HUkUn-k f o r U * ! ' 

k = 0 

By d i r e c t e v a l u a t i o n , we have 

wQ = 0, wx = 1, w2 = IP, w3 = 3P2 - 2S. 

Theorem 1(a) i m p l i e s Wn_l = D~l(nvn - Pun) « Now 

Pw1 - ^w0 + u 2 = P ( l ) - 5(0) + P = IP = w2; 

Pw2 - QiJl + u 3 = P(2P) - 5(1) + (P 2 - Q) = 3P2 - 2« = w3. 

P ^ n „ ! ~ 5 ^ n _ 2 - | ( w n - Pun) - | ( ( n - l ) t ; n „ 1 - Pu n _ , ) 

= ±(Pvn + (n - l){Pvn - g y ^ ) - P(Pun - Qun_x)) 

= ~(Pvn + (n - l ) i > w + 1 - Pun + 1) 

= \^Pvn - 2 i > n + 1 + (n + l ) i> n + 1 - P ^ n + 1 ) 

But 2z;n + 1 - P^n = 2(an + 1 + bn + l) - (a + &)(an + £n) - an + 1 + £ n + i - abn - an£ = 
(an - Z?n)(a - 2?) = Dun, Therefore, 

Pu)n_l - 5^n„2 + wn = wn - ^(Pun) + wn = wn. 

Theorem 4: If 
n 

Xn = E *>fc*>«-fc for n ^ °> 
fc= 0 

then 
^0 = 4, ̂  = 4P, xn = ^ „ _ ! - Qx

n-2 + Dun for n > 2. 
Proof: This is similar to the proof of Necessity in Theorem 3, and therefore is 
omitted here. 

Lemma 1: Let f(n, k) be a function such that /(n, n - fe) = f(n, k) for all k 
such that 0 < k < ns where n and /c are nonnegative integers. Then 

fc = 0 

Proof: Let 

k =0 fc=0 
Then 

j = n-n* " 

Letting k = n - j , we obtain 

^n ™ ̂ i = E «"-*/(". n - k)n2fc_n - E /(*. kyQn-k(-un_2k/Qn-*k), 
k= 0 &= o 

by (14), that is, 
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sn ~ si = - L « V ( n , k)un_Zk = -Sx, so Sn = 0. 
k = o 

Theorem 5: If f(n9 k) satisfies the hypothesis of Lemma 1 above, then 

t fin, k)ukvn_k = un(tf(n, k)) . 
k=Q \k=0 ) 

Proof: Zf(ns k)ukvn_k - £ f(n, k)l^-^) (an~k + bn~k) 

^ „, 7 J q n - 2>n - q n ~ ^ + a ^ - ^ X 

- E/(«, *>( ^ j 

fc=0 

zk - bk\ 
~ K n , K ) [ -

fe="o 'v '" fe= o 
/ q n - bn ~ an~kbk + ahbn"k^ 

fe= 0 
n / 7 / n n ~ 2 - ^ _ un-lk \\ 

by Lemma 1 . 

Corollary 1: 

U = o / k^.o ' \k=o 

HVn-k = 2 W« ^ E Mfcy«-fe = (n + l ) u n (W E ( ? V 
fc = 0 fe= 0 X / 1 / 

^ X ^ V n - * = (2n")M„ (d) ±k{n - k)ukvn_k = ( ^ ^ ) « „ 

n 5 

(ej feX>2(n ~~ V2ukvn-k = ( ^ 3 ^ K 

Proof: This follows from Theorem 5 and (10) through (13), 

Theorem 6: Let un and r>n be the primary and secondary binary linear recurren-
ces, respectively, .with parameters P and Q$ as defined in the introduction, and 
with discriminant D = P2 - 46. Define 

"» = £•(*)«*. r» = £ (£>* . 
Then, £/„ and Vn are also primary and secondary binary linear recurrences, re-
spectively, with parameters P* = P + 2, §* = P + § + 1, and discriminant £>* = D. 

Pr°°f: ^•^K-,t0(J)(4^)-lii(S«>-1?„GH 
(q + l) n - (fr + l ) n

 = (a + l) n - (fr + l) n 

q - b . (q + 1) - (2? + 1) 

If we let 4 = a + l , £ = b + l , then 

r/ - ̂  - Bn 
Un A ~ B * 

a primary binary linear recurrence with parameters 

P* - A + B = (q + I) + (b + 1) = (q + 2?) + 2 = P + 2, 
and 
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Q-k = AB = {a + 1) (b + 1) = ab + (a + b) + 1 - P + Q + 1. 

Similarly, if 

then Vn = An + Bn, a secondary binary linear recurrence with A and B as above. 
Furthermore, 

D* = (P*)2 - 4£* = (P + 2) 2 - 4(P + S + 1) 

= P2 + 4P + 4 - 4P - 4$ - 4 = P2 - 4« = P. 

Theorem 7: Let {wn} and {i?n} be primary and secondary binary linear recurrences 
with discriminant P > 0. Then there exists a positive integer, m3 such that 

if and only if m = 2, un = Fn , vn - Ln. 

Proof: To prove sufficiency, we note that, if P = -Q - 1, so that un = Pn, ^n 

£„, then a2 = a + l = ^ , Z?2 = 2> + 1 = P, so that Theorem 6 implies 

An - Bn aln - Z?2n f- (n\ __ An - Bn __ a^ - b^n _ 
k\krk ~ A - B ' a - b ~ Uln k = o 

±(l)vk - A" + P* = a2" +fc*» - i;2n. 
fc = o 

To prove necessity, using the notation of Theorem 6, we note that hypothesis, 
(4), and (5) imply 

An - ~Rn nmn - hmn 

* 1- = 5 £_? An + Pn = amn + £mn. 
a - b a - b 

Therefore, A = am, B = bm, so that aw = a + 1, bm = i + 1. Let 

f m M = xm - x - 1. 
Then /m (a) = fm(b) = 0 . If m is odd, then fm(x) has critical values at 

* = iT^"1/^-!)]. 
It is easily verified that fm (±m^~l^m ~ l^) < 0. Therefore, fm(x) has a unique 
real root, so a = b, which implies D = 0, contrary to hypothesis. If /w is 
even, then fm(x) has a minimum at a? = 777 f"1/^ ~ ̂ , and fm{m^~l^m~1^) < 0, so 
fm(x) has two real roots a and 2? with a > b* Now, 

4(-l) = 1, /m(0) = fm(l) - -1, 4(2) = 2m - 3 > 0, for 777 > 2, 

so we must have -1 < b < 0 and 1 < a < 2. Therefore, 0 < a + & < 2 and -2 < ab 
< 0. Since a + b and ab must be integers, we have P = a + b = l9 Q = ab - -1. 
It now follows that un = Pn, y„ = Pn, a7" = a + 1 = a2, so 7?? = 2. 

Concluding Remarks 

If P = -§ = 1, then D = 5, un - Fni and y„ = L„ (the nth Lucas number). In 
this case, Theorems 1(a), 1(b), 2(a), 2(b), say, respectively: 
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(ii) r ? W = —-4 

CUD £0Vn-fc- (n+l)in + 2^+1 

(IV) JCoS)Vn.fc-2% + 2 

(I) was obtained by Hoggatt & Bicknell-Johnson [8]; an alternate form of 
(I) was given by Knuth [10]; (I) and (II) appeared without proof in Wall [11]; 
(II) and (IV) were given by Buschman [3]. 

Theorem 7 also yields the identities 

k = 0 X K / fc = 0V/C/ 

(V) appeared in papers by Gould [6] and by Carlitz & Ferns [5]. 
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A NOTE ON A CLASS OF LUCAS SEQUENCES* 

Piero Filipponi 
Fondazione Ugo Bordoni, Rome, Italy 

(Submitted September 1989) 

1. introduction 

In a short communication that appeared in this jounal [12], Whitford con-
sidered the generalized Fibonacci sequence {Gn} defined as 

(1.1) G„ = (c£ - ed)lU, 
where d is a positive odd integer of the form 4fc + 1 and 

(ad = (1 + /d)/2 
(1-2) { 

(&d = (1 - U)I2. 
The sequence {Gn} can also be defined by the second-order linear recurrence 
relation 

(1.3) Gn + 2 = Gn+1 + ((d - l)/4)Gn; GQ = 0, G1 = 1. 

Monzingo observed [7] that, on the basis of the previous definitions, the 
analogous Lucas sequence {Hn} can be defined either as 

(1.4) Hn+2 - Hn+1 + ((d - l)/4)fl„; H0 = 2, ^ - 1 

or, by means of the Bi.net form 

(1.5) Hn = a* + 3». 

Our principal aim is to extend the results established in [7] by finding 
further properties of the numbers Hn which, throughout this note, will be refer-
red to as Monzingo numbers, 

2. On the Monzingo Numbers Hn(m) 

Letting 

(2.1) (d - l)/4 = m e M 

in (1.3) and (1.4), we have 

(2.2) Gn + 2(m) = Gn + l(m) + mGn(m); GQ(m) = 0, GY{m) = 1 

and the Monzingo numbers 

(2.3) Hn+2(m) = Hn+l(m) + mHn(m); HQ(m) = 2, Hl(m) = 1, 

respectively. Note that both {Gn(m)} and {Hn(m)} are particular cases of the 
more general sequence {Wn(a9 b; p, q)} which has been intensively studied over 
the past years (e.g., see [3], [4], [5], and [6]). More precisely, we have 

(2.4) {Hn(m)} = {Wn(2, 1; 1, -m)}. 

The first few values of En{m) are given in (2.5). 

*Work carried out in the framework of the agreement between the Italian PT Administration and 
the Fondazione Ugo Bordoni. 
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( 2 . 5 ) HQ(m) = 2 
tflOTZ) = 1 
Hz(m) = (d + l ) / 2 = 2/72 + 1 
#3OTZ) = (3d + l ) / 4 = 3m + 1 
^i+O) = ( J 2 + 6d + l ) / 8 = 2m2 + 4/77+1 
#5(77?) = (5d2 + lOd + 1 ) / 1 6 = 5m1 + 5 / 7 7 + 1 . 

U s i n g B i n e t ' s form ( 1 . 5 ) , ( 1 . 2 ) , and t h e b i n o m i a l t h e o r e m , t h e f o l l o w i n g g e n -
e r a l e x p r e s s i o n f o r Hn(jn) i n t e r m s of p o w e r s of d c a n r e a d i l y b e f o u n d t o be 

(2-6) Hn(m)--Hn(^)--^lfQdJ> 

where [•] denotes the greatest integer function. 
From (2.3), it must be noted that #n(l) and the nth Lucas numbers Ln coin-

cide. As a special case, letting 777 = 1 (i.e., d = 5) in (2.6), we obtain 

(2.7) L - ^ [ n £ 2 l ( » W 

Countless identities involving the numbers Hn(m) and Gn(m) can be found 
with the aid of (1.1) and (1.5). A few examples of the various types are 
listed below. 

(2.8) Hn(m)Hn+k(m) = H2n+k(m) + (-m)nHk(m) (cf. [7, (3)]), 

whence Simeon's formula for {Hn(m)} turns out to be 

(2.9) Hn_1(m)Hn+l(m) - H^(m) = (-m)"-1(4m+ 1). 

(2.10) H2n{m) = fl*(m) - 2(-m)", 

(2.11) G2n(m) = Gn{m)Hn(m), 

(4m + l)G2n(m) + H2n(m) 
(2.12) H2n+1(m) 

(2.13) ff2n+1(m) 

2 

g2„ (m) + fl2w (m) 
2 

(-m)a (Han + b(m) - Hb.a(m)) - Ha(n + 1) + b(m) + Hb{m) 
(2.H) E o W ™ > - (-„)<. + 1 - *„<„) 
Observe that (2.14) may involve the use of the negative-subscripted Monzingo 
numbers 

(2.15) E_n(m) = (-m)-nHn(m). 

m " [2/77(2n - 1) + n ] ^ + 1(/77) - 2 / 7 7 2 # n _ ! (/72) 
(2. i6) ^ ^ . E f i j W V j + i W = — r i > 

j = 1 4/?7 + 1 
( { £ „ } , the Monzingo 1st Convolution Sequence) 

n nEn + h(m) - in + l)#n+3(777) + 3 / 7 7 + 1 
( 2 . 1 7 ) i^QHAm) = o ' 

J - 1 J /772 

,o i o ^ V- HJ {m) / l + A/77 + 1 \ , / l - A/77 + 1\ 
(2.18) .Z-7T- = exP( 2 ) + e X H 2 j' 
The usefulness of (2.10)-(2.13) will be explained later. 
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Some properties of the Monzingo numbers can also be found by using appro-
priate matrices. As a minor example, we invite the reader to prove that 

(2.19) Hn(m) = tr Mn, 

where tr A denotes the trace (sum of diagonal entries) of a generic square mat-
rix A and 

(2,20) M 1 m 
1 0 

Letting 

(2.21) m = k(k + 1) (k e IN) 

in (2.3) leads to a simple but rather interesting case. In fact, we have [cf. 
(2.1)] 

(2.22) d = kk2 + kk + 1 = (2k + I) 2, 

so that [cf. (1.2)] 

(2.23) ad = k + 1 and 3d = -k 

are integral and 

(2.24) Hn(k2 + k) = (k + l)n + (-k)n . 

On the basis of (2.24), it can readily be seen that the numbers Hn(k2 + k) can 
be expressed by means of the following first-order linear recurrence relation 

(2.25) En(k2 + k) = (k + l)En_l(k2 + k) + (2k + D ^ - ^ - l ) " ; 

H0(k2 + k) = 2 . 

This suggests an analogous expression for Hn(m) (m arbitrary). In fact, using 
(1.2), (1.5), and (2.1), it can be proved that 

(2.26) Hn(m) = adHn.l(m) - Am + 1 $n
d~l; HQ(m) = 2, 

whence, as a special case, we have 

(2.27) Ln = aLn_! - 53n_1; L0 = 2, 

where a = a5 and 3 = $5-

Now, let us consider a well-known (e.g., see [6], Cor. 7) divisibility pro-
perty of the numbers Wn(2, b; b* q) which, obviously, applies to the Monzingo 
numbers. Namely, we can write 

(2.28) Hr(m)\HH2s + 1)(m) 

whence it follows that 

Proposition 1: If Hn(m) is a prime, then n is either a prime or a power of 2. 

Proposition 1 and (2.24) give an alternative proof of a particular case (a and 
b, consecutive integers) of well-known number-theoretic statements concerning 
the divisors of an ± bn (e.g., see [10], pp. 184ff.). More precisely, we can 
state 

Proposition 2 (n odd): If (k + l)n - kn is a prime, then n is a prime. 

Proposition 3 (n even): If (k + l)n + kn is a prime, then n = 2h (h e M ) . 

It must be noted that, for k = 1, Proposition 2 is the well-known Mersenne!s 
theorem, while Proposition 3 is related to a property concerning Fermat's num-
bers (e.g., see [10], p. 107). We point out that, from the said statements 
concerning the factors of an ± bn

s it follows that, if p is an odd prime and 
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Hp(k2 + k) i s composi te , then i t s prime f a c t o r s a r e of the form 2lp + 1. For 
examples we can r e a d i l y check t h a t , for k = 2 and p = 11 , we have 

# l l ( 6 ) = 175099 = (2 • 1 • 11 + 1 ) 2 ( 2 • 15 • 11 + 1 ) . 
Finally, let us consider the sum 

h 
(2.29) Snah = X > n M 

rn= 0 

and ask ourselves whether it is possible to find a closed form expression for 
(2.29) in terms of powers of ft. A modest attempt in this direction is shown 
below. Taking into account that Hn(0) = 1 \f n > 0, expressions valid for the 
first few values of n can easily be derived from (2.5) and from the calculation 
o f # 6 (777) = 2T?7 3 + 9T?7 2 + 6TT? + 1 : 

(2 .30) Sl>h = ft + 1 Shth = (2ft3 + 9ft2 + 10ft + 3 ) / 3 
52 ' , / , = ft2 + 2ft + 1 5 5 \ = (5ft3 + 15ft2 + 13ft + 3 ) / 3 
£ 3 ' ^ = (3ft2 + 5ft + 2 ) / 2 5 6 j \ = (ft4 + 8ft3 + 16ft2 + lift + 2 ) / 2 . 

3 , Some C o n g r u e n c e a n d Divis ibi l i ty P r o p e r t i e s 
of t h e Monzingo N u m b e r s 

If we r e w r i t e (2 .6 ) as 
in/2] 

(3.1) 2n-lHn(m) = 1 + Z (2)d*> 

i t i s eas i ly seen that 
(3 .2 ) 2n-lEn{m) E 1 (mod d). 
From (2.24), Proposition 1, and the definition of -perfect numbers (e.g., see 
[9], p. 81), it follows that all even perfect numbers are given by 2p~1Hp(2), 
where Hp(2) is prime (p > 3, a prime). Since 777 = 2 implies d = 9, from (3.2) 
we can state 

Proposition 4: Any even perfect number greater than 6 is congruent to 1 modulo 
9. 

By using either [1, (2)] or [2, (1.2)] and taking into account that [cf. 
(1.2)] 

(3.3) < 
\U<d$d = (1 " d)lk = "777, 

we obtain the following expression for Hn(m) in terms of powers of 777 [cf. 
( 2 * 5 ) ] [n/2] 
(3.4) Hn(m) = X! ̂ n 7-̂ J" (n > 1), 
where 

_l_/n - j^ 
JV J 

Rewrite (3.4) as 
[n/2] 

(3.6) #„(777) = 1 + n £ ^ 5 j m J ' (n - *) 
J = 1 

and observe that, if n is a prime, then CnjJ- is integral. It follows that 
(3.7) H (m) E 1 (mod n) if n Is prime. 

(3-5) Cn , =-^-.(n'. A. 
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Note that (3.6) allows us to state that 

(3.8) (i) Hn(m) = 1 (mod m) (n > 1) 

(3.9) (ii) Hn(2k) is odd (n > 1), 

(3.10) (iii) En(2k + 1) = 1 + 
[nil] 

E nCn 
J = I 

L„ (mod 2) . 

(3.10') that is to say, H (2k + 1) is even iff n E 0 (mod 3). 

Curiosity led us to investigate the divisibility of En(m) by some primes 
p > 2. A computer experiment was carried out to determine the necessary and 
sufficient conditions on n for an odd prime p < 47 to be a divisor of En(m) 
(2 < m < 10) . The case m = 1 has been disregarded, since the conditions on n 
for the congruence Ln E 0 (mod p) (p < 47) to hold are well known. For p and m 
varying within the above said intervals, the results can be summarized as 
follows 

(3.11) En(m) E 0 (mod p) iff n = r (mod 2r). 

The values of v are displayed in Table 1, where a blank value denotes that p is 
not a divisor of the Monzingo sequence {En(m)}. 

TABLE 1. Values of r for 3 < p < 47 and 2 < m < 10 
^ V 777 

3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 

2 

2 
3 
-6 
4 

11 
14 
5 
18 
10 
-23 

3 

3 
2 
6 
-8 
-
11 
14 
4 
-21 
-8 

4 

2 
-
4 
6 
3 
-9 
12 
-16 
-
-21 
23 

5 

-
-2 
7 
8 
10 
6 
. 16 
18 
-
-
-

6 

-
-
-2 
8 
3 
11 
7 
-
18 
20 
21 
23 

7 

2 
2 
-3 
6 
9 
10 
-
. 16 
. 21 
. 8 

8 

3 
4 
-7 
2 
5 
4 
14 
15 
18 
10 
-24 

9 

-
3 
5 
-
-2 
12 
-16 
-5 
22 
23 

10 

2 
-
2 
-
-9 
5 
-5 
3 
-
-7 
6 

Let us give an example of use of Table 1 by considering the case m = 6 and 
p = 29. For these two values, the table gives v = 7. It means that Hn(6) E 0 
(mod 29) iff n E 7 (mod 14). 

Of course, the above-mentioned experiment led us to discover also the repe-
tition period Pm,p of the Monzingo sequences reduced modulo p. Some values of 
Pm>p are shown in Table 2. 

TABLE 2. Values of Pn for 3 < p < 47 and 2 < m < 10 

3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 

2 

2 
4 
6 
10 
12 
8 
18 
22 
28 
10 
36 
20 
14 
46 

3 

1 
24 
24 
120 
12 
16 
90 
22 
28 
240 
171 
336 
42 
736 

4 

8 
6 
48 
120 
12 
8 
18 
528 
35 
320 
171 
105 
42 
46 

5 

2 
1 
3 
40 
56 
16 
360 
264 
105 
192 
36 
40 
42 
23 

6 

1 
4 
6 
5 
12 
16 
18 
22 
28 
30 
36 
40 
42 
46 

7 

8 
4 
1 
60 
12 
288 
120 
11 
28 
960 
684 
1680 
33 
736 

8 

2 
24 
16 
10 
56 
16 
60 
176 
28 
30 
36 
20 
77 
2208 

9 

1 
6 
6 
10 
84 
144 
72 
528 
210 
960 
36 
40 
1848 
46 

10 

8 
1 
24 
6 
42 
288 
180 
11 
280 
30 
36 
20 
42 
552 
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3.1 The Numbers Hn (m): A Divisibility Property 

Both the definitions and most of the properties of the numbers HH(m) and 
Gn(m) remain valid if m is an arbitrary (not necessarily integral) quantity. 
Let us define the numbers En (m) as the first derivative of Hn(jri) with respect 
to m 

(3.12) H^\m) = ̂  Hn(m). 

From (3 .12) and ( 3 . 4 ) , we have 

[n/2] 
n In - j (3.13) Hw(m) = E J 

[n/2] 
(,* 7 «? -_}?lmJ-l / H (J - D K n - 2 j ) ! 

n ' j f fn ". f " ^/r^'"1 (w > 1). 
[ w / 2 ] 

J = i 

7 ( D Now i t i s p l a i n t h a t #„ (w) = 0 (mod n) . Moreover - (cf . [ 6 ] , p . 278) , (3 .13) 
l e a d s to the fo l lowing cu te r e s u l t 

(3 .14) - 2 - = ^ - i ( m ) (n > 1 ) . 

4. The Monzingo Pseudoprimes 

Of course, the converse of (3.7) is not always true. Let us define the odd 
composites satisfying (3.7) as Monzingo Pseudoprimes of the mth kind and 
abbreviate them m-M.Psps. Incidentally, we note that the 1-M.Psps. and the 
Fibonacci pseudoprimes defined in [8] and investigated in [2] coincide. 

For ?7? > 1, the /ry-M.Psps. are not as rare as the Fibonacci pseudoprimes. 
Let \im(x) be the m-K. Psp. -counting function (i.e., the number of m -M. Psps. not 
exceeding x) and let Mi(m) be the smallest among them. A computer experiment 
has been carried out to obtain y^QOOO) and Mi(m) for 1 < m < 25. These quan-
tities are shown against m in Tables 3 and 4, respectively. 

TABLE 3. Values of ym(1000) for 
1 < m < 25 

TABLE 4. Values of M l (jn) for 
1 < m < 25 

m 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

(im(1000) 

1 
3 
6 
5 
8 
15 
9 
3 
15 
14 
7 
15 
12 

m 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

^m(1000) 

11 
22 
2 
5 
8 
13 
17 
29 
9 
4 
10 
9 

m 

1 
2 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Mx{m) 

705 
341 
9 
25 
15 
9 
49 
231 
9 
25 
33 
9 
49 

m 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Mx{m) 

21 
9 
85 
51 
9 
25 
15 
9 
33 
69 
9 
25 

The reader who would enjoy discovering many more w-M.Psps. can use the sim-
ple computer algorithm described on pages 239-40 of [2], after replacing the 
identities (3.5)-(3-8) in [2] by the identities (2.10)-(2.13) shown in Section 
2 above. 
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I t can be proved t h a t c e r t a i n odd composi tes a r e #?~M.Psps. In t h i s n o t e , 
we r e s t r i c t o u r s e l v e s to demons t ra t ing t h a t , fo r p an odd prime and s an i n t e -
ger g r e a t e r than 1, ps i s a p-M.Psp. 
Theorem 1: Hps(p) = 1 (mod ps). 

Proof: By observing (3.6), it is plain that it suffices to prove that Cp?, j pj 
is integral for 1 < j < (ps - l)/2. More precisely [cf. (3.5)], if (p, j) = 1, 
then Cps}j is an integer; thus, it suffices to prove that the power a with 
which p enters into j! is less than j . This is true for any j and p (odd). In 
fact, it is known (e.g., see [11], p. 21) that 

(4.1) a = E [j/pi], 
i = l 

whence we can write 

a < E «//p̂  = j'/(p - 1) < J. Q.E.D. 
i= 1 

Let us conclude this note by pointing out that the numerical evidence turn-
ing out from the above said computer experiment suggests the following 
Conjecture 1: If p > 5 is a prime and s is an integer greater than 1, then ps 

is a (p - l)-M.Psp., that is 

(4.2) Hps(p - 1) E 1 (mod ps). 

For some values of p, we checked Conjecture 1 by ascertaining that, while the 
addends CpSfj (p - I)J are in general not integral, the sum 

(Ps- D/2 
(4.3) E Cpssj(p - 1)3 

j'= i 

is. For example, let us consider the case p = 7, s = 2 and show that (4.3) is 
integral. The nonintegral addends in (4.3) are those for which g.c.d.(ps - j, 
j) * 1, that is 

«.« *,-&«).'. ',-£&)«"• ' . -a®"1' 
Let us write •* 

(4 .5 ) A l + A 1 + A ^ 4 1 > 3 9 - 3 8 - 3 7 - 2 6 7 + 34 > 31 • 29 • 2 3 ^ 11 • 5 • 4 • 3 6 l , 

_,_ 26 « 23 « 11 - 9 • 3 n7X H = 6^ i 

and reduce the sum of the numerators on the right-hand side of (4.5) modulo 7 

6 - 4 - 3 » 2 - 2 - 6 + 6 « 3 « l - 2 - 4 - 5 « 4 « 3 * l + 5 * 2 - 4 * 2 « 5 * 6 

E 6 + 2 + 6 E 0 (mod 7). 

It follows that Ai + A2 + 4 3 is integral, so that 49 is a 6-M.Psp. 
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1. Introduction 

For a positive integer n, let f(ri) be the number of multiplicative parti-
tions of n. That is, f(n) represents the number of different factorizations of 
n, where two factorizations are considered the same if they differ only in the 
order of the factors. For example, /"(12) = 4, since 12 = 6*2 = 4 • 3 = 3 • 2 • 2 
are the four multiplicative partitions of 12. Hughes & Shallit [2] showed that 
f(n) < In 2 for all n. Matties & Dodd [3] improved this to f(n) < n, and in 
[4] they further improved this to f(n) < n/log(n) for n * 144. In this paper, 
we generalize the notion of multiplicative partitions to bipartite numbers and 
obtain a corresponding bound. 

By a j-partite number, we mean an ordered j-tuple (ni, ..., rtj) , where all 
Ui are positive integers. Bipartite refers to the case j = 2. We can extend 
the idea of multiplicative partitions to bipartite numbers as follows. For 
positive integers m and n, define f2(m, n) to be the number of different ways 
to write (jn, n) as a product (a^, bi)(a2, b^.^ia^, f̂e)» where the multiplica-
tion is done coordinate-wise, all a^ and bi are positive integers, (1, 1) is 
not used as a factor of (m9 n) * (1, 1), and two such factorizations are 
considered the same if they differ only in the order of the factors. Hence, 
(2, 1)(2, 1)(1, 4) and (1, 4) (2, 1)(2, 1) are considered the same factoriza-
tions of (4, 4), while (2, 1)(2, 1)(1, 4) and (1, 2)(1, 2) (4, 1) are considered 
different. Thus, for example, f2(6, 2) = 5, since the five multiplicative par-
titions (6, 2) are 

(6, 2) = (6, 1)(1, 2) = (3, 2)(2, 1) = (3, 1)(2, 2) 

= (3, 1)(2, 1)(1, 2). 

It is clear that fin) = fz(n> 1) f° r all n. In Section 2, we give an upper 
bound for f^im* n) . The definition of fi{m, n) may be extended to /j(^i» ..., 
ftj) in an obvious way. 

Throughout this paper, unless otherwise stated, p-, = 2, p2 = 3, ... will 
represent the sequence of primes. 

2. An Upper Bound for f2(m, n) 

When first considering the function fi(jn> n) -> some conjectures immediately 
came to mind: 

(1) f2(m, n) = f(m)f(n) (2) f2(m, n) < f(m)f(n) 
(3) f2(m, n) = f(mn) (4) f2(m, n) < f(rnn) 
(5) fz(m> n) ^ mn/log(mn) (6) f2(^> n) ^ wn-

Surprisingly, none of these is true. The values /(2) = 1, f(6) = 2, /(12) = 4, 
and f2(6, 2) = 5 provide counterexamples to (l)-(5). As it turns out, (6) is 
also false (see Section 3). 

In the next theorem, we establish an upper bound on f2(m, n). We will first 
need the following three lemmas. 
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Lemma 1: L e t { p 1 5 . . . , y.}5 {ql9 . . . , qk}, and {rl, . . . , P j + ̂ 1 e a c h be a s e t of 
d i s t i n c t p r i m e s , and l e t 

x p x . . . P j 5 2/ <7i • • • ^ > ^ P X . . . P^ r j . + 1 . . . P i + fe5 

w h e r e a l l a^ and 2?̂  a r e p o s i t i v e i n t e g e r s . T h e n , / ( s ) = ^ ( ^ J # ) • 

Proof: W i t h e a c h f a c t o r i z a t i o n 

* L 1 l L2 '•' xj+k J U 1 J 2 " • • J j + /c J " • • L P 1 • " • Tj + k J 

we a s s o c i a t e t h e f o l l o w i n g f a c t o r i z a t i o n of (x, y): 

Lp1 -" Pj 'Hi '— 4k J • • • LPi • • • Pj > qi ••» qk J-
T h i s a s s o c i a t i o n i s o b v i o u s l y a o n e - t o - o n e c o r r e s p o n d e n c e . 

Lemma 1 c a n e a s i l y be e x t e n d e d t o j - p a r t i t e n u m b e r s . T h u s , f o r e x a m p l e , 
f2(l2, 4) = / ( 1 8 0 ) = f 3 ( 4 , 4 , 2) = f2(36, 2 ) . 

I t i s w e l l known t h a t 

(a) pn > n log n for n > I, and 
(b) p < n(log n + log log ri) for n > 6 (see [5]). 

As a consequence, we have the following lemma. 

Lemma 2: For n > 4, P2n-\P2n
 < P2'97-

Proof: Direct computation shows the inequality holds for n = 4, 5, and 6. Note 
that, for n > 7, 

(2n - l)(log(2n - l) + log log(2n - l))2w(log 2n+log log In) < (n log n) 2 , 9 7 . 

Thus, from (a) and (b) above, P2n-\P2n
 < ^n l o g n ) 2 " 9 7 < p2'97« 

Lemma 3: Let £]_ > c2 ^ • • • ̂  Cfc > 0. Then 
k k 

,3.032c, nip2i-iPz^ci < J I P | 
i = 1 

Proof: If k = 1 , t h e i n e q u a l i t y h o l d s , s i n c e plp2
 < p 2 * 5 8 5 • For k = 29 s i n c e 

P3Pi+ < p | * 2 3 7 5 w e h a v e 

iPlPl^1 lP3P^°2 < p f ' 5 8 5 c i p | - 2 3 7 ^ [ P f ^ i / P i 2 5 2 ^ ] = [ P i 1 ? ^ ] 2 - 9 8 5 -

I f k = 3 , 
3 

n 
i = 1 

CD .11 lP2i-I?2i]Ci < [ p ^ p ^ ] 2 - 9 8 5 p 8 - 0 8 ^ 3 [ p ^ i p ^ ] - 0 4 7 / ^ 0 5 2 , 3 

= Y\ p 3 . 0 3 2 C i , 
i = 1 ^ 

I f A: > 4 , t h e i n e q u a l i t y f o l l o w s e a s i l y f rom (1 ) and Lemma 2 . 

Theorem 1: L e t m and n be p o s i t i v e i n t e g e r s w i t h (m, ri) * ( 1 , 1 ) . Then 

f2(m, ri) < (jnri) 1 , 5 1 6 / l o g ( w n ) . 

Proof: We can assume that m = p\x ... p ^ and n = p\l ... p^r, where k > r and 
a^ > ai+i9 bi > bt+i for each i . Then, by Lemma 1, 

f2(m, ri) = fip^p^p^P^ ... Pzk-lPik^' 
where ^ = 0 if i > P. For i = 1, . . . , k, let 

ai = max{a., Z?̂ }, 3̂  = min{ais bt}, ^ = (a^ + b^/2. 

We first consider the case in which 
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i= 1 
Then, by Lemmas 1 and 3 and the known bound fo r f{n), 

fzim, n) =/[Pi1P21
P32pC2 ••• P&-lPlJU n < 

n t p ^ - i P ^ ] 
t = 1 

log 
i = 1 

n[P2<-ip£] n(P2i-iP2i)0i ftp? 
t= I ^=I t= i 

< < < 

RIPZ-IPIV 

3.032c,-

±og(mri) 

a{+ b{\ 1.516 n(p^+oi) 
i= 1 

log(wn) 

log(77?n) 

log(mn) 

±og{mri) 

i=1^2^-1^2^ = 1^4' ^ t n e n follows by Lemma 1 that mn > 2 D. Not-
ing that /(144) = 29* we see that the theorem is true in this case as well. 

3. Remarks and Computations 

3.1. Using the algorithm from [1], the values of f^im, w ) were found for all m 
and n such that mn < 2,000,000 and for other selected values of m and n with mn 
as large as 167,961,600 by calculating the corresponding values of f as 
described in Lemma 1. Since large values of m and n tended to give the 
greatest values for the ratio f^im* n)/mn, and since these are the values that 
require the greatest computing time, we used the observations made in Remark 
3.2 below to determine which pairs (m, ri) to study. 

3.2. Using the notation in the proof of Theorem 1, the pairs (777, n) can be 
described by the ordered 2/c-tuple a\b\ ... cc^b^. In Table I below, we use this 
notation to list those 2/c-tuples we have found for which there exist ordered 
pairs (jn, ri) having ratios r{a\bi ... ayby) = / ^ ( ^ n)/mn > 1.5 [given the 2k-
tuple, 77? and n are chosen so as to maximize fi{m, ri) ] . 

^ABLE I. Forms ̂  

albl ... akbk 

663311 
772211 
762211 
662211 
872211 
553311 
862211 
652211 
752211 
553211 
552211 
643311 
962211 
852211 
643211 
554411 
543311 

fielding Large 

fl(m> n) 
162,075,802 
61,926,494 
30,449,294 
15,173,348 

119,957,268 
33,439,034 
58,256,195 
7,126,811 

14,096,512 
10,511,373 
3,400,292 

30,428,542 
107,097,889 
26,610,876 
9,584,844 

255,339,989 
14,162,812 

Ratios fi (777, n)/m 

/ 2 0 77, n)/(ms ri) 

2.17115 
1.86652 
1.83553 
1.82935 
1.80781 
1.79179 
1.75589 
1.71846 
1.69952 
1.68971 
1.63980 
1.63047 
1.61401 
1.60415 
1.54077 
1.52023 
1.51779 
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The prevalence of the forms aabbll in the table is noteworthy. Although 
the forms (a + 1)(a - l)bbll also appear, the ratio is higher for aabbll. Sim-
ilarly, the forms (a + l)abbll have higher ratios than (a + 2) (a- l)bbll. We 
suspect that sequences of the form aabbooll also have large ratios, but the 
lengthy computation time made this infeasible to verify. A result which helps 
explain the prevalence of trailing l!s in the sequence a\b\ 
lows: Let 

.. cckbk is as f ol-

2k if bk * 0 
2k - 1 if bk = 0 

ikuk. 

] r(a 
Then, if 1 < i < 2k3 

. c • 

H 
and let 0\ ... CJ denote a\b\ 

f6P[(i+2)/2]/5P[(j + l)/2] 
v 1 ^ - 1 ̂ + 1 

where [ ] denotes the greatest integer function. 
from the lemma on page 22 of [1]. 

<v> 
Cjl) when c^ > 2, 

3.3. For the more general function fj{n\, 

This result follows easily 

note that 

fj(ql9 ..., qd) = /(pP -, PP Kd), 
where B(j) is the j t h Bell number and the q. are any primes. (B(j) grows very 
fast. See, e.g., [6].) 

3.4. If we set 

f2(rn, n) {mri)a /log(jrtn), 

then, for all m and n for which f^_ (m , n) was calculated, a < 1.251. The lar-
gest value of a occurred when 777 = n = 24 with fi(.2k, 24) = 444. (This was the 
only case in which a > 5/4.) Based on these data, we propose the following 

Conjecture: fi(jn, n) < (rnn)1'251 /log(mn) for all m and n. 
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1. Introduction 

The Fibonacci numbers have a well-known combinatorial interpretation in 
terms of the total number of subsets of {1, 2, 3, . .., n} not containing a pair 
of consecutive integers. Recently, Konvalina & Liu [4] showed that the squares 
of the Fibonacci numbers have a combinatorial interpretation in terms of the 
total number of subsets of {1, 2, 3, . .., 2n} without unit separation. Two 
integers are called uniseparate if they contain exactly one integer between 
them. For example, the following pairs of integers are uniseparate: (1, 3), 
(2, 4), (3, 5), (4, 6), etc. 

In this paper, we will show that the squares of the Lucas numbers also have 
a combinatorial interpretation in terms of subsets of {1, 2, ..., In) without 
unit separation if the integers {1, 2, 3, ..., In} are arranged in a circle 
instead of a line. 

Let Fn denote the nth Fibonacci number determined by the recurrence rela-
tion: 

Fl = 1, F2 = 1, Fn + 2 = Fn+l + Fn (n > 1). 

Kaplansky [2] showed that the numbers of ̂ -subsets of {1, 2, 3, ..., n} not con-
taining a pair of consecutive integers is 

>n + 1 - k\ In + 1 - K\ 
\ k ) ' 

Summing over all /^-subsets, we obtain the well-known identity 

in + 1 - k\ 
(1) E(" + £"*)-*.•* __ "2-

k> 0 ' 
Let f(n, k) denote the number of ̂ -subsets of {1, 2, 3, ..., n} without unit 
separation. Konvalina [3] proved 

(2) f(n, k) =<^=o^ K ^ 
0 if n < 2{k - 1). 

Summing over a l l fc-subsets, Konvalina & Liu [4] showed 

(3) 2 /("> fe) " { 
k i 0 (Fm + 2 F m + 3 if n = 2m + 1 

Next, let Ln denote the nth Lucas number determined by the recurrence relation: 

Lx = 1, L2 = 3, Ln+1 = Ln+l + Ln (n > 1). 

The following identity expressing a Lucas number in terms of the sum of two 
Fibonacci numbers is well known (see Hoggatt [1]): 

(4) Ln = Fn+l + Fn_Y. 
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The Lucas numbers have a combinatorial interpretation in terms of the total 
number of subsets of {1, 2S 3S . . . , n] arranged in a circle and not containing 
a pair of consecutive integers (n and 1 are consecutive) . One way to prove 
this is as follows: Kapiansky [2] showed that the number of fe-subsets of {1, 2S 
3 j . .., n] arranged in a circle and not containing a pair of consecutive 
integers is 

r*\ H(n - k - l\ (n - k\ , in - k - i\ 

Summing over all /Vsubsets and applying (I) and (4), we obtain: 

v^ nin - k - 1\ ^ in - k\ t sp in - k - l\ „ , „ 

gQk\ fe - 1 ) " fc?0( k ) + £0{ k - 1 ) = ^ 1 + Fn'l - L -
2. The Main Result 

Let ^(n3 k) denote the number of .̂ -subsets of {1, 2S 33 ..., n} arranged in 
a circle and without unit separation, Konvalina [3] proved the following 
identity: 

(6) g(ns k) = f(n - 2S k) + 2f(n - 5S k - 1) + 3f(n - 6S k - 2). 

Let C„ denote the total number of subsets of {1, 25 33 . . . , n} arranged in 
a circle and without unit separation. The following result relates the square 
of a Lucas number and C>2_m« 

Theorem: If n > 2, then 

(L^ i f n = 2/7?5 

^ = | L„ i f n = 2/72 + 1. 
Proof: Summing over all /c-subsets and applying (6), we have 

(7) ^ = E ^ &) = E /(w " 2, k) + 2/(n - 5, k - 1) + 3/(n - 6, fe - 2). 
fc > 0 /< > 0 

Even Case: n = 2m 
Applying identity (3) to (7), we obtain 

cn = E f(n ~ 2S k) + 2 £ / ( n - 5, fe - 1) + 3 j ; / ( n - 65 fc - 2) 
k > 0 k>0 k>0 

- ^ 2
+ 1 + 2 ^ ^ + 3F2.J 

- # + l + 2Fm_l{Fm +Fm_1) + F^ 

- (Fm+1 + f m _ l > 2 = L l 

Odd. Case: n = 2m + 1 

Applying i d e n t i t y (3) to ( 7 ) , we have 

Cn = Fm+lFm + 2 + ^m + 3 ^ - 1 ^ 
= Fm + lFm + 2 Fm - \Fm 

= Fm+iFm+2 + 2-FmFm+l + ^ m - 1 ^ / T J 

= ( F w + 1 F m + 2 + FmFm+l) + ( « + 1 + ^ . ^ J 
= F2m + 2 + F2m = L2m + l = ^ ' 

Note : We have a p p l i e d the fo l lowing known i d e n t i t y (see [ 1 ] , p . 59, i d e n t i t y 
J 2 6 wi th T?7 = n - 1) : Fln = FnFn+l + Fn-iFn. 
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1. Introduction 

Let S = {xis x2s ...» xn} be an ordered set of distinct positive integers. 
The nxn matrix [S] = (sij)s where s^- = (xi, Xj) s the greatest common divisor 
of Xi and Xj , is called the greatest common divisor (GCD) matrix on S. The 
study of GCD matrices was initiated in [1], In that paper, the authors 
obtained a structure theorem for GCD matrices and showed that each is positive 
definite, and hence nonsingular* A corollary of these results yielded a proof 
that, if S is factor-closed, then the determinant of Ss det[S]9 is equal to 
<K#i)<K#2) °  B °  $(xn^> where $(#) is Eulerfs totient. The set S is said to be 
factor-closed (FC) if all positive factors of any member of S belong to S. 

In [4], Z. Li used the structure in [1] to compute a formula for the deter-
minant of an arbitrary GCD matrix. 

In this paper, we define a natural analog of the GCD matrix on S. Let 
[[£]] = i^ij) be the n*n matrix with t7-?- = [x<£> Xj]5 the least common multiple 
of Xi and Xj= We shall obtain a structure theorem for [ [£] ] and show that it 
is nonsingular, but never positive definite. As it turns out, the matrix 
factorization of [[5]] emerges from, the structure of the related reciprocal 
GCD matrix l/[S]9 the i, j-entry of which is l/(x^, Xj). Reciprocal GCD 
matrices are addressed in the next section* 

2a Reciprocal GCD Matrices 

Definition 1: Let S = {xi, x2, . ..» xn} be an ordered set of distinct positive 
Integers. The matrix l/[S] is the n*n matrix whose i, j-entry is l/(x^9 Xj) • 
We call l/[S] the reciprocal GCD matrix on S* 

Clearly reciprocal GCD matrices are symmetric. Furthermore, rearrangements 
of the elements of S yield similar matrices. Hence, as in [1] and [2], we may 
always assume Xi < x2 < ... < xn. 

We shall show that each reciprocal GCD matrix can be written as a product 
of A and AT, the transpose of A> for some matrix A with complex number entries. 

In what follows, we let u(n) denote the Moebius function 

( 1 if n = 1 
u(n) = \(-l)p if n = PiP2° •«PP> distinct prime factors 

\ 0 otherwise. 

The lower-case letter l!plf will always denote a positive prime. 

Definition 2: If n Is a positive integer, we denote by gin) the sum 

1 v^ 
gW = - *L,e« y(e). 

n e\n 
We observe that g(n) = f(n)h(n), where f(ri) = l/n and h(n) = L*e\ne® \i(e). 

Since f and h are multiplicative functions, g is multiplicative. Furthermore, 
if p is a prime, h(pm) - 1 - p. Hence, g(pm) = (1 - p)/pm° It follows that 

gin) - I fid - P ) = i # H(-P)-
p | n n p i n 
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Moreover? by the Moebius Inversion Formula (see, e.g., [5]), it is true that 

fin) = 1M = 2] g(e). 
e \n 

These results are summarized in the following lemma. 
Lemma 1: Let n be a positive integer. Then g(n) - 1 if n = 1, and 

gin) = ~ II (i - p) if n > i-
Moreover, 

l/« = Y,9(e)- • 

It is clear that any set of positive integers is contained in an (minimal) 
FC set. We obtain the following structure theorem for reciprocal GCD matrices. 

Theorem 1: Let S = {xi5 x2, . ..» xn} be ordered by X\ < x2 < - -. < xn. Then 
the reciprocal GCD matrix l/[S] is the product of an n x m complex matrix A and 
the m x n matrix AT, where the nonzero entries of A axe of the form Jg(d) for 
some d in an FC set that contains S. 

Proof: Suppose F = {d\, d2> . .-J ̂ ??J is an FC set containing S. Let the complex 
matrix A = (a^j) be defined as follows: 

vgidj) if Jj divides #.£, 

0 otherwise. 

Then 

fc= 1 dk\xt dk\(xif Xj) K•X^> X3} 

dk\xj 
since F is factor-closed. Thus, l/[$] = AAT'. D 

Remark 1: Some of the entries vg(dj) of ̂  in Theorem 1 may be imaginary com-
plex numbers. A real matrix factorization for l/[S] could be obtained by 
defining B = (b^j) via 

!

g(dj) if dj divides xi9 

0 otherwise. 

Then, if C is the incidence matrix corresponding to B9 it is true that l/[$] = 

Corollary 1: Let S be an FC set. Then 

det(l/[£]) = g{xl)g{x1) . . . g(xn). 

Proof: In Theorem 1, take F = S; then i4 and A are lower triangular and upper 
triangular, respectively. So 

det(l/[£]) = det(i) • detC4T) 

= (detU))2 = g(xl)g(x2) ... g(xn). D 

Remark 2: The set F in Theorem 1 may be chosen so that d\ = xi9 d2 = x2 s ...s 
6?n = #w. Hence A - [AisA2]s where Ai is an n*n lower triangular matrix of the 
form 
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Jg(%i) 
/gix^J 

^g(Xn) 

Therefore, rank (A) = n. However, since A has nonreal entries, we cannot con-
clude that AAT is nonsingular. 

Remark 3: Unlike GCD matrices, reciprocal GCD matrices are never positive def-
inite. Recall that the AAT factorization in Theorem 1 is a complex matrix 
product, whereas, in [1], A is real. The fact that a reciprocal GCD matrix is 
not positive definite follows readily from the observation that its leading 
principal 2x2 minor 

1 1 
xYx2 (xY, x2)2 

is negative. 

Remark 4: As in [4], a sum formula for the determinant of an arbitrary recip-
rocal GCD matrix may be obtained from the Cauchy-Binet Formula (see, e.g., [3]) 
and the factorization AA . We omit this formula due to its length. 

3. LCM Matrices 

Definition 3: Let S = {#]_, x2, . • 
integers. The n*n matrix [[S][ 

, xn} be an ordered set of distinct positive 
(tij), where t^ the least com-

mon multiple of x^ and Xj, is called the least common multiple [LCM] matrix on 
S. 

The structure and determinants of LCM matrices come directly from results 
on reciprocal GCD matrices, since 

\_X^ , X j J — . 
l^{) X j ) 

If [[S]] is an LCM matrix, we may factor out x^ from Row i and Xj from Col-
umn j to obtain l/[S], Hence, every LCM matrix results from performing ele-
mentary row and column operations on the corresponding reciprocal GCD matrix. 

The following theorem is a direct consequence of the preceding remarks. 

Theorem 2: Let S = {xl5 x2, ...> xn} be ordered by x^ < x2 < 
A be the n x n matrix in Theorem 1. Then 

[[£]] = D • AAT • D = D •(l/[£]) • D, 

where D is the n x n diagonal matrix diag(#i, x2, ..., xn). D 

Corollary 2: An LCM matrix is not positive definite. • 

Corollary 3: If S is an FC set, then 

d e t [ [ 5 ] ] g(xx) g(xn) = Ft 
i= 1 

$(Xi) n f-v) 
p\xi 

As before, the Cauchy-Binet formula may be used to obtain a sum formula for 
det[[£]], S arbitrary. 

Remark 5: We know from Corollary 3 that det[[£]] * 0 when S is FC. A natural 
question arises: When is det[[5]] zero? For instance, when S = {1, 2, 15, 42}, 
det[[5]] = 0. Furthermore, when is det[[5]] positive? This does not depend 
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entirely upon the parity of n, even in the factor-closed case. For example, 
when S = {1, 2, 4, 8 } , det[[5]] < 0, but when 5 = {1, 2, 3, 6}, det[[5]] > 0. 
In view of these comments, we leave the following as a problem. 

Problem: For which sets S is det[[£]] positive? For which FC sets S is det[[5]] 
positive? For which sets S is det[[5]] = 0? 
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SUMMING INFINITE SERIES WITH SEX 

Herb Silverman 
College of Charleston, Charleston, SC 29424 

(Submitted December 1989) 

The usual way of computing the sum of the series Hn=lnxn for particular 
choices of x, \x\ < 1, is to start with the geometric series 

(i) i^'T^n 
and then appeal to uniform convergence and interval of convergence properties 
to obtain 

X Mn^O / = n?in X n = X ̂  ~ X> = (1 ~ X)2-' 
What follows is a more insightful proof for 0 < x < 1 that is accessible to stu-
dents in finite mathematics classes who are familiar with neither infinite 
series nor calculus. 

The expected value of a finite random variable X = { } with asso-
ciated probabilities if(xi), ..., f(xn)} is 

n 

i= 1 
Consider the problem of determining the number of children a couple would expect 
to have if they continued to reproduce until a girl was born. The probability 
of having exactly n children would be 

<r'(D - (!)". 
which means that 

V* n 

n= l*. 

children would be expected. But, since exactly one girl is expected and a boy 
is as likely as a girl, this sum must be "two." More generally, suppose the 
probability of a boy is x and of a girl is 1 - x. Then, for every girl, we 
would expect x/ (I - x) boys, so the expected number of children x/(I - x) + 1 
could be expressed as 

Y nxn-l(l - x) = , x + 1 = -r-i-
„—, 1 - x 1 -l 

from which we conclude that 

XI n x Y l = 
l (1 - x) 2 

One could similarly find different sums by specifying other gender restric-
tions. For instance, the probability of the kth girl being the nth child is 
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Therefore, 

±n(i; J ) « " - M - ^ . ^ •1 ) . ^ 

or, equivalently, 

Since the probability of a girl being born 

E ^ _ 1 ( i - xyj 
must be "one," we have an alternate proof of (1). Note that (2) may also be 
established by differentiating k times the identity (1). 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

IMPORTANT NOTICE: There is a new editor of this department and a new 
address for all submissions. 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to 
DR. STANLEY RABINOWITZ; 12 VINE BROOK RD. ; WESTFORD, MA 01886-4212 
USA. 

Each solution should be on a separate sheet (or sheets) and must be 
received within six months of publication of the problem. Solutions typed in 
the format used below will be given preference. Proposers of problems should 
include solutions. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln9 sat isfy 

Fn+2 = Fn+l + Fn> F0 = °> ^1 = ^ 
Fn + 2 = Fn + 1 + Fn> F0 = 2> ^1 = l o 

Also, a = (1 + / 5 ) /2 , 3 = (1 - / 5 ) /2 , Fn = (an - 3 n ) / /5 5 and Ln = an + 3 n . 

PROBLEMS PROPOSED IN THIS ISSUE 

B-694 Proposed by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA 

Prove that L2„ E 7 (mod 40) for n > 2. 

B-695 Proposed by Russell Euler, Northwest Missouri State U., Maryville, MO 

Define the sequences {Pn} and {Qn) by 

P0 = 0, P1 = 1, Pn+2 = 2Pn+1 + Pn for n > 0 
and 

QQ = 1 , Ql = 1 , Qn + 2 = 2Qn + l + Qn for n > 0. 

Find a simple formula expressing Qn in terms of Pn . 

B-896 Proposed by Herta T. Freitag, Roanoke, VA 

Let (a , b, c) be a Pythagorean t r i p l e with the hypotenuse c = 5F2n + 3 and 
a = L2n+3 + 4 ( - l ) M + 1 . 

(a) Determine b. 
(b) For what values of n , if any, i s the t r i p l e primitive? [The elements 

of a primitive t r i p l e have no common fac tor . ] 

B-697 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Find a closed form for the sum 

n nk-\ 

k= l 
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where Wn * 0 for a l l n and wn = pwn„i - qwn„2
 f o r n > 2, with p and q nonzero 

constants . 

B-698 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Consider the sequence of r ea l numbers a^, a^* . ..> where a-^ > 2 and 
an + l = al - 2 for w > 1. 

Find lim Z?n, where 
. _ " n + 1 for n > 1. 

B-699 Proposed by Larry Blaine, Plymouth State College, Plymouth, NH 

Let a be an integer greater than 1. Define a function p(n) by 

p( l ) = a - 1 and p(n) = an - 1 - £ p(d) for n > 2, 

where X denotes the sum over a l l <i with 1 < d < n and c?|n. 
Prove or disprove that n\p(n) for a l l posi t ive integers n. 

SOLUTIONS 
edited by A. P. Hillman 

Application of Generating Functions 

B-670 Proposed by Russell Euler, Northwest Missouri State U. , Maryville, MO 
M nFn Evaluate £ — r . 

n= 1 z 

Solution by Russell Jay Hendel, Bowling College, Oakdale, NY 

The generating function 

F(x) = "£Fnxn = - " ^ T f 7 
£rz + a; - 1 

has radius of convergence a-1. Differentiating both sides with respect to x 
and then multiplying by x gives: 

JT nFnxn = F{x) + (F(x))2(2x + 1) , for |^ | < a"1. 
n= 1 

Therefore, l e t t i n g x = .5 in the l a s t equations we find 

E ruj- n 
n = l Z 

AZso solved by Richard Andre-Jeannin, Barry Booton, Paul S. Bruckman, Joe 
Howard, Hans Kappus, Joseph J. Kostal, Y. H, Harris Kwong, Alex Necochea, 
Bob Prielipp, Don Redmond, H.-J. Seiffert, Sahib Singh, Lawrence Somer, and 
the proposer. 

Even Perfect Numbers Are Hexagonal and Triangular 

B-671 Proposed by Herta T. Freitag, Roanoke, VA 

Show that a l l even perfect numbers are hexagonal and hence are a l l t r i a n -
gular. [A perfect number i s a posi t ive integer which i s the sum of i t s proper 
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posi t ive integral d iv isors . The hexagonal numbers are {1, 6, 15, 28, 45, . . . } 
and the tr iangular numbers are {1, 3, 6, 10, 15, . . . } . ] 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

The formulas for the kth t r iangular number Tk and the kth hexagonal number 
H^ are 

Tk = ^ 2 ^ a n d Hk = k(2k ~ 1) = T2k-1* 

respectively. It is well known that every even perfect number n is of the form 
n = 2P-1(2? - 1), 

where 2P - 1 is prime; so n i s the (2P_1)th hexagonal number, which is also t r i -
angular . 

Also solved by Richard Andre-Jeannin, Charles Ashbacher, Paul S. Bruckman, 
Russell Euler, Russell Jay Hendel, L. Kuipers, Bob Prielipp, H.-J. Seiffert, 
Sahib Singh, Lawrence Somer, and the proposer, 

Proposal in 10*199, Solution in 11*181 

6-872 Proposed by Philip L. Mana, Albuquerque, NM 

Let S consist of a l l posi t ive integers n such that n ~ lOp and n + 1 = \\q* 
with p and q primes. What i s the largest posit ive integer d such that every n 
in S i s a term in an arithmetic progression a, a + J , a + 2d9 . . . ? 

Solution by Richard Andre-Jeannin, Sfax, Tunisia 

Let n be a member of S. I t is clear that 11(q - 1) = 10(p - 1); hence, 

p = l l r + 1 and q = lOr + 1. 

Since p, q are prime numbers, i t is easi ly proved that v i s even and i1 = 0 
(mod 3) . Hence, r = 6s, p = 66s + 1, ^ = 60s + 1, and the members of S are 
terms in the ari thmetical progression us = 660s + 10. 

Now we have 

u1Q = 10 • 661, ulQ + 1 = 11 • 601, 
and 

ull = 10 • 727, ull + 1 = 11 • 661; 

hence, w10 and u, , are members of 5, and the largest d such that every n In S 
is in an ari thmetical progression is d = 660. 

Also solved by Charles Ashbacher, Paul S. Bruckman, Y. H. Harris Kwong, 
Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, and the proposer. 

Fibonacci Infinite Product 

B-673 Proposed by Paul S. Bruckman, Edmonds, WA 

Evaluate the in f in i te product jJ . 
n = 2 î 2n ~ 1 

Solution by Joseph J. Kostal, U. of Illinois at Chicago, IL 
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- F2n + 1 = - /Fi+n + 1 | Fhn + 2 + 1 

n=2F2n " * n=lKFhn " *- ^Vn + 2 " 1 

FT ( ^ 2 n " l L 2 n + 1 . F2-n + 2.LZn\ 
n= 1 ^ F 2 n + l L 2 n - l F2nL2n + l ' 

ff (F2n'lFzn + : 

J 2 n - 1 ^ 2 n + 2 

w = l ^ 2 n ^ 2 n + l n = \ lj2n - lLj2n + 2 

= î ^ = I 1 = o 
F2' L1 1 ' 1 

AZso so lved by K. Andre-Jeannin, Bob Prielipp, H.-J. Seiffert, and the 
proposer. 

Tr igonomet r i c R e c u r s i o n 

B-674 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Define the sequence {un} by 

u0 = 0, u\ = 1, un = gun-i - un-2, for n i n {2, 3 , . . . } , 
where g i s a r o o t of x 2 - x - 1 = 0. Compute wn for n i n {2, 3 , 4 , 5} and then 
deduce t h a t (1 + / 5 ) / 2 = 2 COS(TT/5) and (1 - / 5 ) / 2 = 2 C O S ( 3 T T / 5 ) . 

Solution by Paul S. Bruckman, Edmonds, WA 

Since g satisfies the equation 

(1) g1 = g + 1, 

we have 

(2) g = a = |(1 + /5) or # = 3 = f(l - /5) . 

The characteristic equation of the given recurrence is 

(3) z2 - gz + 1 = 0, 

which has roots Z\ and z2 given by 

(4) zY = \{g + (g2 - 4)1/2), z2 = \{g - (g2 - 4)1/2) . 

Making the substitution g = 2 cos 0, we may express the roots in (4) as follows: 

(5) Zi = exp(i6), £2 = exp(-i8). 

From the initial conditions, we find that we may express un in the following 
Binet form: 

zn - zn 

(6) un = -1 -^, n = 0, 1, 2, ... . 
sl ~ z2 

Equivalently, using (5), we obtain 
/-7\ s i - n ^ 6 i 
(7) Un = sin 6 ' U = °' ls 2' '•' " 

Using (1) and the given recurrence, we find the following values: 

uz = g • 1 - 0 = g; u3 = g • g - 1 = g; uh = g • g - g = 1; 
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u5 = g * i ~ g = 0; u6 = g* 0 - 1 = -1; u? = g(-l) - 0 = -g, etc. 

Clearly, from (2), g * ±2; hence, 6 * mir, and sin 6 * 0* Since 

w5 = sin 59/sin 8 = 0, 

we see t h a t 6 = rm\ / 5 for some i n t e g e r m, not a m u l t i p l e of 5 , We may r e s t r i c t 
m to t he r e s i d u e s (mod 10 ) , s i n c e 100 = 2rmr» A l so , 

u2 = 2 cos 0, u7 = s i n ( 2 0 + rtm) /sin 0 - ( - l ) ' 7 ?s in 2 0 / s i n 0 = (-l)mu2-

However, as we have seen , u-y = -u2 ; t h e r e f o r e , 77? must be odd. Moreover, s i n c e 
COS(2TT - 0) = cos 0, we may e l i m i n a t e the v a l u e s m = 1 and 9. The re fo re , m = 1 
or 3 . Then, a and 3 must be equa l to 2 cos TT/5 and 2 cos 3TT/5, i n some o r d e r . 
C l e a r l y , a > 0 and 3 < 0; a l s o , 2 cos TT/5 > 0 and 2 cos 3TT/5 < 0. The re fo re , 

(8) a = 2 cos TT/5, 3 = 2 cos 3TT/5. 

Also solved by Herta T. Freitag, Hans Kappus, L. Kuipers, and the proposer. 

Another Sine Recursion 

6-675 Proposed by Richard And.re-Jeannin, Sfax, Tunisia 

In a manner analogous to t h a t for the p rev ious problem, show t h a t 

V2 + /2 = 2 cos -zr and /2 - /2 = 2 cos -5- . o o 
Solution by Paul S. Bruckman, Edmonds, WA 

We have the same c h a r a c t e r i s t i c equa t ion for z and the same s u b s t i t u t i o n s 
as i n B-674; however, i n t h i s c a s e , g s a t i s f i e s the equa t ion 

(i) gh = ^g2 - 2. 
In this case, we may obtain the following values: 

u2 = g, u3 = g2 - 1, uh = g3 - 2g, u5 = ̂  - 3g2 + 1 = #2 - 1, 
w6 ~ Q* ul ~ 1» w8 = 0, W9 = -1, W]_Q - ~^3 etc. 

As before, 

(2) un = sin n0/sin 0, n = 0, 1, 2, ..., where ^ = 2 cos 0. 

Again, we note that g * ±2, so sin 0 ^ 0 . Since UQ = 0, therefore 80 = mu, or 
0 = OTTT/8, for some integer 77? (not a multiple of 8). We see, from above, that 

w 1 0 = s i n ( 2 0 + /7?Tr)/sin 0 = (™l) m w 2 ; 

hence, m must be odd. Again, we may restrict m to the residues of the period, 
in this case, mod 16; moreover, we may eliminate the values m - 9, 11, 13, and 
15, since COS(2TT - 0) = cos 0. Therefore, we may restrict 777 to the values 
m = 1, 3, 5, or 7. The roots of (1) are given by ±/2 + /2 and ±/2 - /2; thus, 
these must be equal to 2 cos 77771/8, m = 1, 3, 5, 7, in some order. Since 

— 7T < 777TT/8 < IT, f o r 777 = 5 Or 7 , 

it is clear that the positive roots (which are the ones we are interested in) 
are generated by 777 = 1 or 3. Also, cos x decreases over the interval [0, %TT], 
from which it follows that 
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2 cos TT/8 = i l + / 2 5 2 cos 3TT/8 = fl - / 2 . 

Also solved by Herta T. Freitag, Hans Kappus, and the proposer. 
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Edited by 
Raymond E. Whitney-

Please send all communications concerning ADVANCED PROBLEMS AND 
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK 
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially 
welcomes problems believed to be new or extending old results. Proposers 
should submit solutions or other information that will assist the editor. To 
facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-455 Proposed by T. V. Padma Kumar, Trivandrum, South India 

Charac te r i ze5 as comple te ly as p o s s i b l e , a l l "Magic Squares" of the form 

al 

h 
ai 

<*i 

a2 

b2 

a2 

dz 

a 3 

h 
°i 

^ 

a„ 
\ 
ak 

4, 

s u b j e c t to the fo l lowing c o n s t r a i n t s : 
l. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

Rows, columns, and diagonals have the same sum 

+ au + d-i + du = h0 +-£>q + e9 + c, = a, + b, 
+ cu + du 

+ ch + do, + du = c, + d7 + a? + bu 

+ au + do 

ah + b3 + bk- K 
a2 + dx + d2 = K 
bu + Co + cu = K 

?2 + o-^ = b 
+ bu + cL = K 

4 + di 
d\-

| + b2 + a2 + b2 

2 + b2 

2 ^ Dl 

a\ + a\ + d2 + d\ = b\ -v c\ + b2 + c2 

c2 + c\ 

c2 + c^ + d\ + d^ « a\ + b\ + a-

a2 + a2. + al + a2, + b2 + b2. + b^ + b^ 

c\ + c\+ c\ + c2 + d\ + d\ + d2+ d2 

al + bl + C l + dl * a2 + b2 + C2 + d2 

22 + b\ + C2 + d\ + a2 + b\ + C2 + d2 - M 

b2 + o3 b, + o, + d0 + a3 

h\h2 
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H-456 Proposed by David Singmaster, Polytechnic of the South Bank, 
London, England 

Among the Fibonacci numbers, Fn , it is known that: 0, 1, 144 are the only 
squares; 0, 1, 8 are the only cubes; 0, 1, 3, 21, 55 are the only triangular 
numbers, (See Luo Ming's article in The Fibonacci Quarterly 27.2 [May 1989]: 
98-108.) 

A. Let p{m) be a polynomial of degree at least 2 in m. Is it true that 
p{m) = Fn has only finitely many solutions? 

B. If we replace Fn by an arbitrary recurrent sequence /„ , we cannot 
expect a similar results since fn can easily be a polynomial in n. 
Even if we assume the auxiliary equation of our recurrence has no 
repeated roots, we still cannot expect such a result. For example, if 

fn = 6/n-l " 8fn-2> f0 = 25 fi = 6, 
then 

/„ - 2» + 4", 

so every fn is of the form p(m) = m2- + m . What restriction(s) on fn 
is(are) needed to make fn = p(m) have only finitely many solutions? 

Comments: The results quoted have been difficult to establish, so Part A is 
likely to be quite hard and, hence, Part B may well be extremely hard. 

H-457 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let f(N) denote the number of addends in the Zeckendorf decomposition of N, 
The numerical evidence resulting from a computer experiment suggests the 
following two conjectures. Can they be proved? 

Conjecture 1: For given positive integers k and n, there exists a positive in-
teger Wj, (depending on k) such that f(kFn) has a constant value for n > nk* 

For example, 

24Fn = Fn+6 + Fn+3 + Fn+l + Fn_h + Fn_6 for n > 8. 

By inspection, we see that n\ - 1, nk = 2 for k = 2 or 3, n^ = 4 and nk = 5 for 
5 < k < 8. 

Conjecture 2: For k > 6, let us define: 

(i) u, the subscript of the smallest odd-subscripted Lucas number such that 
k < Lu, 
(ii) v, the subscript of the largest Fibonacci number such that k > Fv + Fv-§. 

Then, n^ = max(u, v). 

H-458 Proposed by Paul Bruckman, Edmonds, WA 

Given an i n t e g e r m > 0 and a sequence of n a t u r a l numbers aQ, a-, , . . . , am? 
form the p e r i o d i c s imple cont inued f r a c t i o n ( s . c . f . ) given by: 

(1) 6 = [ a 0 ; a 1 ? a 2 , . . . , a 2 , a x , 2 a Q ] . 
The period is symmetric, except for the final term 2aQ, and may or may not con-
tain a central term [that is, am occurs either once or twice in (1)]. Evaluate 
9 in terms of nonperiodic s.c.f.fs. 
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SOLUTIONS 

No Doubt 

H-437 Proposed by L. Kuipers, Sierre, Switzerland 
(Vol. 28, no. 1, February 1990) 

Let x9 y, n be N a t u r a l numbers, where n i s odd. I f 

(*) Ln/Ln + 2 < xl}j < Ln + l/Ln + 3> show t h a t y > ( l /5 )L„ + i f . 

Are t h e r e f r a c t i o n s , x/y9 s a t i s f y i n g (*) for which y < Ln + L^7 

Solution by Russell Jay Hendel & Sandra A. Monteferrante, Bowling College, 
Oakdale, NY 

We prove that the rational number with smallest denominator satisfying (*) 
is Fn+i/Fn+^. An easy induction then shows that 5Fn+^ > Ln + ̂ 9 from which the 
first assertion readily follows. For n > 1, Fn + 3 < Ln + 2 < Fn + L±. This answers 
the second question in the affirmative. 

Proof: If n = 1, an inspection shows that 1/3 is the rational number with the 
smallest denominator between 1/4 and 3/7. We therefore assume n > 2. 

First 

Ln/Ln+1 = 1/(1 + Ln^lLn). 

Hence, the continued fraction expansion of Ln is [0; 1, . .., 1, 3] with n - 1 
ones. Similarly, 

Ln/Ln+Z = 1/(2 + Ln„llLn) 

and, therefore, Ln/Ln+2 = [0; 2, 1, ..., 1, 3] with n - 2 ones. 
Next, let z be a real variable and fix an odd n. Define 

P0 = 0, QQ = 1, P1 = 1, Q-L = 2, Pi = Fi3 Qi = Fi+2 (for 2 < i < n - 1) , 

Pn(z) = zFn^l + Fn_2, and Qn(z) = zFn + 1 + Fn. 

Define the function f(z) = Pn(z)IQn(z) = [0; 2, 1, . .., 1, s] with n - 2 ones. 
Then /(3) = Ln/Ln+2, /(4/3) = Ln+1/Ln+3, and /( ) maps the open interval, 4/3 < 
z < 3 onto the open interval (Ln/Ln+25 Ln+i/Ln+$). 

It follows that, if f(z) is a rational inside the interval (/(3) , /(4/3)), 
then its continued fraction must begin [0; 2, 1, ..., 1, 2, . . . ] . Clearly, 
among all such continued fractions, f{2) has the smallest denominator. Since 

f(2) = P„(2)/en(2) = F„+1/F„ + 3, 

the proof i s comple te . 
The above a n a l y s i s can be g e n e r a l i z e d to d e s c r i b e o t h e r r a t i o n a l s wi th 

smal l denomina tors . For example: Fm/Fm + 2
 = [0> 2, 1, . . . , 1, 2] wi th m - 3 

ones where //? i s an i n t e g e r b igge r than 3." I t fo l lows t h a t Fm/Fm + 2
 i s always i n 

the open i n t e r v a l (Ln/Ln+2, Ln+i/Ln+3) , i f m > n + 1. In p a r t i c u l a r , Fm/Fm + 2 
s a t i s f i e s (*) wi th Fm + 2 < Ln + i{, ±£n+l<m<n+3. 

Also solved by P. Bruckman, R. Andre-Jeannin, and the proposer. 

A Fib on ace - ions I n t e g r a l 

H-438 Proposed by H.-J, Seiffert, Berlin, Germany 
(Vol. 28, no. 1, February 1990) 
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Define the F ibonacc i polynomials by 
FQ(x) = 0, Fl(x) = 1, Fn(x) = xFn_1(x) + Fn_2(x), for n > 2. 

Show t h a t , for a l l odd i n t e g e r s n > 3 , 

f + ° ° dx 7T/1 . TT\ 
I = —(1 + 1/cos - . 

Solution by Paul S. Bruckman, Edmonds, WA 

As i s r e a d i l y e s t a b l i s h e d , 

(1) Fn(x) = u"u ~ V
v
n
9 n = o, 1, 2S . . . , 

where 

(2) u = u(x) = %(x + / x 2 + 4 ) , y = y(a;) = %(ar - / ^ 2 + 4 ) . 
Let 

(3) In = I pff^> for odd n > 3 . 

Note t h a t Fn{x) i s an even polynomial ( for odd n ) ; hence , 

(4) ^ 2 f w 
We may make the substitution: x = 2 sinh 0 in (4); then u(#) = e 9 , y(#) = -e~Q , 
F„ (x) = cosh 0/cosh n0, and dx = 2 cosh 0 <f 0. Therefore, 

(5) 1 = 4 1 cosh20/cosh nQ dQ. 
Jo 

Since n > 3, we see that (5) is well defined; indeed, the integrand may be ex-
panded into a uniformly convergent series. We do so, as follows: 

4 cosh20/cosh nQ = 2(e2Q + 2 + e~2Q)/(en6 + e - n e ) 

I 1 + e~2nQ j 

= 2e(2-^e(l + 2e"2e + g^6) Y, (-l)ke~2nkQ , 
k = o 

Hence, In is equal to: 
f °°  

k = o ' Jo 

= 2 ^ (-Dk[(n(2k + 1) - 2)"1 + 2(n(2k + l))"1 + (n(2k + 1) + 2)"1], 
k = Q 

or, after some simplification: 

(6) in-$±(-Dk/(2k + 1 ) + 4 n £ ( ; i ) f c ( ; ; t i } , 
n fe = o k = o (2k + l)2n2 - 4 

The first series in (6) is the well-known Leibnitz series for %TT. 
The second series in (6) may be evaluated from the Mittag-Leffler formula 

(see [1]): 

(7) IT sec ITS = > - v ^, provided (z - \) t Z. 
k = o (k + % ) 2 - s2 
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Setting z = l/n in (7), we obtain: 

7T sec n/n = 4n2 ]T (- l ) k (2j<- + 1) t(2fc + l ) 2 n 2 - 4 ] " 1 . 
k = 0 

Comparing this with the second series in (6) yields the desired resul t : 

In = ir/n(l + sec i\/n). 

NOTE: By similar methods, we may prove the following resul t : 

£ x dx/Fn(x) = TT/n(tan i\/2n + tan 3ir/2n) , if n > 4 is even. 

Reference 

1. Louis L. Pennisi. Elements of Complex Variables, 2nd ed, Urbana: University 
of I l l i no i s , 1976, p. 336= 

Also solved by P. Byrd, R. Andre-Jeannin, Y. H. Kwong, N. A, Volodin, and 
the proposer. 

Another Lucas Congruence 

H-439 Proposed by Richard Andre-Jeannin, ENIS BP W, Tunisia 
(Vol. 28, no. 1, February 1990) 

Let p be a prime number (p * 2) and m a Natural number. Show that 

L2pm + Lhvm + . . . + L(p _ 1 ) p 7?7 = 0 (mod p m + 1 ) . 

Solution by the proposer 

From the formula: , , - — 

ap + bp = (a + 2)) (-1) 2 (afc) 2 + E(-l)k-Hab)k-l(ap-2k + l + bp-2k+l) 
k= 1 

we get, when taking a = ap \ b = 3pr% 

p m + 1 p w L ( p - i ) p ' 7 1 C p - 3 ) p ^ 2pff' J 

hence: 

(i) v-i " V = VIVDP- + ••• + L 2 P
J -

But it is known (see Jarden, Recurving Sequences, p. Ill) that: 

(2) Lpm + l = Lp„, (mod p^ + 1) 

and thus (1) becomes: 

(3) 0 = Lpm[\p_l)p„ + ... + L2 pJ (mod P- + 1). 

Now we have: gcd(p, £pm) = 1 [since, by (2): Lpm s 1 (mod p ) ] . Thus, (3) shows 
that 

AZso solved by P. Bruckman and G. Wulczyn. 

A Square Product 

H-440 Proposed by T. V. Padma Kumar, Trivandrum, South India 
(Vol. 28, no. 2, May 1990) 

NOTE: This is the same as H-448. 
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If ax 5 #2* . . . 9 am, n are positive integers such that n > a\9 a2-> . . . , am 

and 0(n) = w and a^ is relatively prime to n for i = 1, 2, 3, . .., m, prove 
m , 2 

I! ai ) E ! (mod n ) • 
i = 1 / 

Solution by Sahib Singh, Clarion University of Pennsylvania, Clarion, PA 
Consider the ring (Zn, +n, .„) with Zn = {0,1, 2, ..., (n - 1)}, where the 

operations are addition modulo n and multiplication modulo n, respectively. 
Under this hypothesis, the given members; a^, a2i . .., am are precisely the 
members of the multiplicative group of units of this ring. These m units can 
be partitioned into two classes. The first class consists of those members a^ 
(as well as at) such that 

aiat = 1 (mod ri), where i *'£;< 1 < 'i, t < m. 

The second class contains the remaining members a3- that satisfy oA = 1 (mod n) . 
Without loss of generality, we can name the members of the first class as 

a1? a2> . ••> cck and the members of the second class as a^+^s #fc + 2» •••>
 am> 

(Note that it is possible that the first class is empty, so that k = 0: this 
can be verified when n = 8.) 

Consequently, 

I ! at = ( ft ai Jtefc + i * ak + 2 * • • . • aj, 
i = 1 ^ = 1 / 

Since n ^ = 1 a i = 1 (mod n ) , we conclude t h a t : 
"J \ 2 / fe \ 2 

. n a i ) = L n a i ) (afe+i• a ^ + 2 • •-•.• a J E x (mod n ) e 

Also solved by P . Bruckman, B. Prielipp, and L. Somer. 

Edi tor ia l Notes : 

1. Lawrence Somer!s name was inadvertently omitted as a solver of H-424. 

2. A number of readers pointed out that H-451 is the same as B-643. 

3. Paul Bruckman's name was inadvertently omitted as a solver of H-434. 
He mentioned that line one of the solution should read "[c^r™ + % ] " and that 
the value reported for the approximation of c^ should be 1.22041 not 1.22144. 
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