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LUCAS NUMBERS AND POLYNOMIALS OF ORDER K AND THE
LENGTH OF THE LONGEST CIRCULAR SUCCESS RUN
Ch. A. Charalambides
University of Athens, Panepistemiopolis, 15784 Athens, Greece

(Submitted September 1989)

1. Introduction

The Lucas numbers L,, n = 0, 1, 2, ..., may be defined by
Ly =1Ly 1+ Ly_o,m=2,3, ..., Lg=2, Ly =1.

Among several combinatorial interpretations of the Lucas numbers in terms of
permutations, combinations, compositions (ordered partitions), and distribu-
tions of objects into cells, the most commonly used as an alternative combina-
torial definition of them is the following: The nth Lucas number L,, n = 2, 3,

., is the number of combinations of n consecutive integers {1, 2, 3, ..., #n}
placed on a circle (so that n and 1 are consecutive) with no two integers
consecutive. Since

n o /m-r -
L(r, », 2) = (" 7 F), =0, 1, 2, o /2], m = 2, 3, e,
where [x] denotes the integral part of x, is the number of r-combinations of
the »n consecutive integers {1, 2, ..., n}, placed on a circle, with no two
integers consecutive, it is clear that

[n/2]

_ n_m-r _
L”_I,Z:On—r< » )’n~1’2’

The polynomials

[n/2]

_ n n - r -2 -
g, (x) Pgo -——M< . )x” Tom=1, 2, e

may be called Lucas polynomials. It is worth noting that these polynomials are
related to the Chebyshev polynomials,

T,(x) = cos(nb), cos 6 = x,

by g, (x) = 22777, (ix/2), i = V/=1. Riordan [8] considered the polynomials %, (x)
=1"g,(Zx), n =1, 2, ..., and the Lucas-type polynomials

ey n n - r\ n-r n/2 . 1/2y =
L, (x) =1;§% E_:_?( » )x =gxMeg (xt'e), n=1, 2, ...,
in a derivation of Chebyshev-type pairs of inverse relations.

The present paper is motivated by the problem of expressing the distribu-
tion function of the length of the longest run of successes in a circular
sequence of 7 independent Bernoulli trials (Philippou & Marki [7]) and the
reliability of a circular consecutive k-out-of-n failure system (Derman,
Liebermann, & Ross [1]). An elegant solution to this problem is provided by
the nth Lucas-type polynomial of order k. This polynomial and the n'™ Lucas
number of order k, as a particular case of it, are examined in Section 2. As
probabilistic applications, the above posed problems are discussed in Section
3.
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LUCAS NUMBERS AND POLYNOMIALS OF ORDER X AND THE LENGTH OF THE LONGEST CIRCULAR SUCCESS RUN

2. Lucas Numbers and Polynomials of order K

Let L(n, r, k) be the number of r-combinations of the » consecutive inte-
gers {1, 2, ..., n} displaced on a circle, with no k integers consecutive.
Moser & Abramson [3], essentially showed that

(2.1)

n = - -—
(P)’ r=0,1, 2, ..., n, n=20,1, 2, ..., k-1, k=2, 3,
(n/k] . _ )
Ln, 2 B =4 3 D" P)ﬁ—{igz(fl__if), r=0, 1,2, ..., [n- n/kl,
i=0 n==k, k+1, ..., k=2, 3,
0, r>[n-wn/kl, n==%kK k+1, ..., k=2, 3, ...,

where [x] denotes the integral part of . As it can be easily shown, these
numbers satisfy the recurrence relation

r+1

(2'2) ZL(?’Z—j, P_j+l5 k), P=0’ l’ 2’ ---,n_]—s
=1 = =
Lns v 1) =17 n=1,2, ..., k, k=2, 3,
min{r+1, k}
) L(n—j, I’—j"’l) k)’ r =20, 1, 23 e [n"n/k]r
j=1 n=k+1, k+2,....,
The sum k 2, 3,
[n-n/k]
(2.3) L, .= 2, Ln,r, K)yn=1,2, ..., k=2,3, ...,
r=0
for m = k, k+ 1, ..., is the number of combinations of the » consecutive inte-

gers {1, 2, ..., n} displaced on a circle, with no k integers consecutive.
This number, which for k = 2 reduces to L, o = L,, the nth Lucas number, may be
called the nth Lucas number of order k.
The polynomial
[n-n/k]
(2.4) Ly p(x) = 2% L(n, r, K)x" ", n =1, 2, ..., k=2, 3,
»z

may be called the nth Lucas-type polynomial of order k. Clearly,

L, (1) =1L, 4.

Recurrence relations, generating functions, and alternative algebraic
expressions of these numbers and polynomials and also their connection with the
corresponding Fibonacci numbers and polynomials are presented in the following
theorems and corollaries.

Theorem 2.1: The sequence L, p(x), n =1, 2, ..., of Lucas-type polynomials of
order k satisfies the recurrence relation

n-1

(2.5) x{? + 2 Ln_j,k(x)}, n=2, 3, ..., k, k=2, 3,
j=1

L, (@) = '

€3 Dy (@), m=k+ 1, k+2, ..., k=2,3, ...,
Ji=1

with Ll,k(x) = X.
Proof: From (2.4), on using the recurrence relation (2.2), it follows that:

(a) for n=1, 2, ..., k,

1991] 291



LUCAS NUMBERS AND POLYNOMIALS OF ORDER K AND THE LENGTH OF THE LONGEST CIRCULAR SUCCESS RUN

n-1 n-1r+1

S Ln, v, ™" =Y, Y Ln-g, r-g+1, k)a" "
r=0 r=0 g=1

Ln,k(x)
n n-1
="’CZ Ln - g, »r =4+ 1, k)an~r-1

i=1 -1

r=7

n-1n-1
xin + . Z_L(n -d,r-g+1, k)x”"’"l}

j=1r=j

Il
8
S
+
3
™)
™~
3
[
o
=
~~
8
N
N’

(b) form=k+1, K+ 2, ...,

[n-n/k]
Ly k(@ = 2 L(n, », K)a"~ 7"
r=0
[n-n/k] min{r+1, k}
= 3 Ln-g, r-g+1, k-7
r=0 J=1
[n-n/k]
=X Z L(Vl - j’ r - j + 1, k)xn—k_l
r=4-1

>
Jj=1

k

= @2 Ly, (@)
Jg=1

and for n = 1,

Iy x(@) = L(1, 0, Kz = =

Remark 2.1: The ntP Lucas-type polynomial of order k, for n = 2, 3, ..., K, by
virtue of (2.1) and (2.4) may be obtained as

n-1

> <n>x”'r= (1 + z)n-1,

r=0 r

(2.6) Ly ,(x)

Also, from (2.5), for n = k + 1, kK + 2, ..., it follows that
(2.7) Ly (@)

(1 + m)Ln_l’k(x) = Lhyp_p-1, k() .

Corollary 2.1: The sequence L, yx, n = 1, 2, ..., of the Lucas numbers of order
k satisfies the recurrence relation

n-1
(2.8) Rt 2 Dy go m= 2, 3, weus Ky k=2, 3,

Do ly s n=k+ 1, kK+2, oo, k+2,3, ...,

Theorem 2.2: The generating function of the sequence of Lucas—type polynomials
of order *k, Ln’k(x), n=1, 2, ..., is given by

= koo kooA\L
(2.9)  Lp(t; @ = 2 L, ,(@)t" = (achtJ)(l - thJ) .

n=1 Jj=1 Ji=1

Proof: Multiplying the recurrence relation (2.5) by t" and summing for =z = 1,
2, ..., we find
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w k
Di(ts @) = P Lo (@)t" = @t + 30 Dy (@) 8" + S Ly, w(@tn
n=1 n=k+1
n-1 © k
=xthJ +xZ > Ly, @t +x Y Y Dy (o)t
j=1 =2g=1 n=k+1j=1
=xZJt‘7+%’L Z Ly j, ()" +wZ ZLn q k(@) t”
j=1 Jg=1n=4+1 j=1ln=k+1
= xthJ +x2t3 Z Ly -z, k(@)=
j=1 J=1 n=j+1

xZJtJ + xLy (3 x)ZtJ
j=1 Jg=1

from which (2.9) follows.

Corollary 2.2: The generating function of the sequence of Lucas numbers of

order k, L, 4, n =1, 2, ..., is given by
o k AL
(2.10) Ly(t) = 3. L, xt" = < LJtJ><1 -3 tJ> .
n=1 Jg=1 j=1
Theorem 2.3: The nth Lucas-type polynomial of order k may be expressed as
[n/(k+1)] n - Jky Sk +1
(2.11) (@) I, (@ =-1+ 2. (-1)7 __k< . )xm 4 gy dRk+D
’ j=0 J J
r. + 2r, + -0 + kr, (r; +r, +eee+ 1 )!
_ 1 2 kM 2 K/ ritTrateetry
(2.12) (D) Ly, x(x) D rtr, t e rilr,t o..oor x
where the summation is extended over all partitions of » with no part greater
than X, that is over all r; =0, 1, 2, ..., n, 2 =1, 2, ..., k such that
Z’1+21ﬂ2+~--+krk=nn

Proof: The generating function (2. 9) may be expanded into powers of ¢ as

Ly (5 ©) = -¢ c?t log(l - Z t‘7>

Jj=1

= ¢ log{[l - (1 + 2)¢ + «tk*11(1 - )1}

4
dt

-l - )t - 5 log[l - (1 + x)¢ + xtk*1]

- S t" 4+ ¢ _d_ S [(1 +x)¢t - xtk+1]r/r
dt

n=1 r=1

= d e l/r - o .
= - n t = 1 Ji Nxd(1 r-jLr+ gk

nzlt + = rz=:l JZ (-1) (J)x (1 +x)" 7t

]
™

© r
UPIDINC DI EELEMNai (1 4 gy dpre ik
r= i=0

n=1

- o [n/(k+D)] R A .
==t + S ) (" I ed (1 4 )t IR g

n§=:1 ,fé ;‘:1 DT Jk( J ) (

yielding (2.11).
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A different expansion of (2.9) as

d koo d = k A\
Ly(t; ©) = -t Iz log(l -x E tJ) =t Z(x 'Z tJ>/1/=
J J

=1 n=1 =1
- ¢ a 53 3 (r - 1)! xrl+p2+.--+rktrl+2r2+-~-+krk
dtr=1 PI!I’zl coe l”k!
B 53 (ry + 279y + --- + krp)(r - 1! xrl+p2+..-+Pktrl+2P2+--.+km
=1 rylryt oo !
where in the inner sums the summation is extended over all » =0, 1, 2, ...,
r, =1, 2, ..., k, such that r; + r, + ... + r, = r, on putting

k
n=r- 3 (j- Dr;

L
yields / X ( X
© ry + 2ryp + ... + Kr ry +rpt+ o +r)! byt
Lt @) = 3 {z . K "2 QAU A
w1 1”1+Y’2T ---+l”k rylry! ...l”k.
where in the inner sum the summation is extended over all r, =0, 1, 2, ..., 7,

=1, 2, ..., k, such that r; + 2ry, + ... + krk = n. The last expression im-
plies (2.12).

Corollary 2.3: The n'h Lucas number of order k may be expressed as

(/] no o n o= JgRkyon-gk+1)
2.13) (@) L, x = -1+ (-1 —*-( . >2 BEALREM
(2.13) " k P e AU
r, +2r, + «-- + kr, (r, +r,+ . +r)!

_ 1 2 k 1 2 k
(2.14)  (B) Ln i = 2 ry+ryt+ -+ rilry!l ool
where the summation is extended over all », = 0, 1, 2, ..., n such that

ry + 2ry + ... + kr, = n.

Remark 2.2: A known expression for the n'' Lucas number [, and two expressions
for the n'™ Lucas number of order 3, H, = L, 3, may be deduced from the general

expression (2.14). Setting kK = 2 and introducing the variable r = r,, it fol-
lows that
el -
Ly = 2 n - r< r )'
r=0

Putting k = 3 and introducing the variables » = r,, j = r3, (2.14) reduces to

[n/2] [(n-2r)/3]
(2.15) H, = 3.

n n-r-2j\(r+4J
( )27

n-r-2j\ r+gJ r
while, introducing the variables r = r, + 2r3, j = rj3, (2.20) becomes
[2n/3]  [r/3]

2.16) #, =3 3y = (”TT)(”‘I"j).

=% Son-r J r - 2J

The Lucas numbers L, are related to Fibonacci numbers F, by
LVL = Fn + ZFVZ‘I = Fn+1 -+ Fn—l'

An extension of this relation to the Lucas—type polynomials and the Fibonacci-
type polynomials (see [6]) is obtained in the following theorem.

294 [Nov.
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Theorem 2.4: The Lucas~type polynomials of order %, Ly, x(x), n =1, 2, .., are
expressed in terms of the Fibonacci-type polynomials of order k, F, p(x),
n=1, 2, ..., by

min{n, k} .
(2.17) Ly (@ =2 3 JF, . k(@ n=1, 2, ..., k=2, 3,
i=1

Proof: Since (see [6])
o k AL
2 Fy @t = (1 -x ), 75‘7) >
n=0 Jg=1
it follows from (2.9) that

k N
x( Za‘ﬂ)(ZFm,k(mt”)
r=0

j=1

w min{rn, k}
&L Z an—j+1,k(m) t”,

2 Lo g (o) t"
n=1

™

i=1
which implies (2.17).

Corollary 2.4: The Lucas numbers of order k are expressed in terms of the Fibo-
nacci numbers of order k by

min{n, k}
(2.18) Ln,k= Z an_j+l)k,n=l, 2y ve.s k=2, 3,
J=1

Remark 2.3: The polynomial

[n-n/k] %
(2.19) g, (@) = ¥ L, v, T m =1, 2, oo, k=2, 3, ...,

r=0

may be called the n'™" Lucas polynomial of order k. It is related to the Lucas-—
type polynomial (2.4) by
(2.20) g, (@) =2x7"L, (X)), n=1, 2, ..., k=2, 3,

Expressions for these polynomials, analogous to (2.5), (2.9), (2.11) and (2.12),
on using (2.20), may easily be deduced. Further,

min{n, k}

(2.21) g, (= = ¥ geFItp o @, n=1,2, ..., k=2,3, ...,
Jg=1

where f, ,(x) is the nth Fibonacci polynomial of order k (see [5] and [2] as k-
bonacci polynomial). This relation may be deduced from (2.17) by virtue of
(2.20) and [4],

Fo (@) = x"”+15%,k(xk).

3. Probabilistic Applications

Consider a circular sequence of #n independent Bernoulli trials with con-
stant success probability p and let g = 1 - p. Further, let (, be the length
of the longest circular run of successes and let S, be the total number of suc-
cesses. In Theorem 3.1, the conditional distribution function of (,, given
8, =r, P(C,, £ x/S,, = r), —» < g < x, is obtained in terms of the numbers
L(n, r, [x] + 1) and the distribution function of (,, P(C, < x), —» < x < «, isg
expressed in terms of the Lucas—~type polynomials of order [x] + 1.
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Theorem 3.1: Let C, and S, be the length of the longest run of successes and
total number of successes, respectively, in a circular sequence of »n indepen-
dent Bernoulli trials with constant success probability p. Then,

0
(3.1) P(C, < x/S, =»r) ={L(n, r, k + 1)/(2), 0<ax<rc<mn, k=[x]
1, r <x < o, r<n.
0, - < <0
(3.2) P(Cp, < x) ={p"Ly,k+1(q/p)s 0 < x <n
1, n < x < o,
Proof: The elements of the sample space are combinations {Z;, <, ...} of the n
consecutive integers {1, 2, ..., n} displaced on a circle where %, is the
position of the mt" success, m = 1, 2, ... . The event {(C, < x, S, = r} con-
tains all the r-combinations of the » integers {l, 2, ..., n} displaced on a
circle, with no K + 1 = [x] + 1 integers consecutive. Clearly, the number of

these r-combinations is given by L(n, », k + 1). Further, each of these r-
combinations has probability p*q”~". Hence,

(3.3) P, £x, S, =r) =Ln, v, k+ L)pTqg" ", k = [x],
and since

P(s, = r) = (
(3.1) follows.

n n—-r

r = B
r)p q , r 0, 1, 2, ..., 7,

Summing the probabilities (3.3) for » = 0, 1, 2, ..., [#n - n/(k + 1)], on
using (2.4), (3.2) is deduced.

Since P(C, = k) = P(C,, < k) - P(C, <k - 1), k=0, 1, 2, ..., on using
(3.1), the next corollary is-deduced.

Corollary 3.1: The probability function of the random variable (' is given by

q%, k=20
(3.4)  P(C, = k) ={p", k=n
P {Ln, k+1(q/pP) = Ly, x(q/P)}> k=1, 2, ..., n - 1.

Remark 3.1: A circular consecutive-k-out-of-n: F system is a system of 7 com-—
ponents displaced on a circle which fails when k consecutive components fail.
Suppose that the probability for each component to function is p and to fail is
g = 1 - p. Derman, Lieberman, and Ross (see [1]) expressed its reliability
R.(p, n, k) as

k .
Rc(p; k, n) = pZquJ_lRL(p’ ks n - j - 1);
i1

where R, (p, k, n) denotes the reliability of a linear consecutive-k-out-of-n: F
system.

Interpreting as a 'success" the failure of a component, the reliability
Rq.(p, k, n) is the probability that the length (, of the longest circular run
of successes in a circular sequence of #n independent Bernoulli trials with
constant success probability 1 is less than or equal to k. It is then clear
from Theorem 3.1 that

(n/(k+1)] . .
(3.5)  R.(ps k, n) = q"L, ,(plq) = 3 (—l)JE—{Lﬁz(n -Jk>pJqu - q"
’ j=0 J J
with the last equality by (2.11).
296 [Nov.
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1. If D > 1 is a rational number, not a square, then /D has a (simple) con-
tinued fraction expansion of the form

/D = [bys bys --s by_y» 2by]

with k > 1 and positive integers b; such that the sequence (b1, ..., by-7) is
symmetric, i.e., b; = by-,; for all 2 € {1, ..., k - 1}. Necessary and suffi-
cient conditions on bg, ..., bg-1 which guarantee that D is an integer are
stated in [3; §26]. Recently, C. Friesen [1] gave a fresh proof of these
conditions. He deduced, moreover, that for a given symmetric sequence (by,
«v.s by-1) there is either no integral D such that the continued fraction expan-
sion of VD has the given sequence as its symmetric part or there are infinitely
many squarefree such D.

In this paper, I shall prove a more precise statement. Starting with the
conditions as in [3; §26] I will show that, given a symmetric sequence which
meets these conditions, there are infinitely many 0 with prescribed p-adic
exponent vp (D) for finitely many p and szD for all other p, such that VD has
the given sequence as the symmetric part of its continued fraction expansion.
Moreover, I will show that about 2/3 (resp. 5/6) of all symmetric sequences of
the given even (resp. odd) length are symmetric parts of the continued fraction
expansion of VD for some integral D. Finally, I consider the corresponding
questions for the continued fraction expansion of (1 + YD)/2 for an integral
D =1 (mod 4).

2. I begin by citing Satz [3; 3.17] in an appropriate form.

Theorem 1: Let (b1, ..., bg-1) (kK 2 1) be a symmetric sequence in N, and let
bg € N,. Then the following assertions are equivalent:

@) [bys bys -ves by_y» 2by] = YD with D € Ny;

b) bO = %' [me - (—l)kfg] for some m € Z, where e, f, and g are defined by the
matrix equation
k-1

e f b; 1
w (& D=1 b)

f g 7,'[[11 0
If this condition is fulfilled, then
(2) D = b3 + mf - (-1)kg2.

In order to state more precise results, I introduce the following notation.

Definition: For a symmetric sequence of positive integers (by, ..., by-1) (k =2 1)
let
Dby, wes byy)

be the set of all D € N, with VD = [bo, bys -5 by_1s 2by] for some by € N,.
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Corollary 1: Let (by, ..., bg-1) be a symmetric sequence in N, and define e, f,
g by (1). Then the following assertions are equivalent:

a) Dby, ..., b_y) = 0.
b) Either ¢ = 1 (mod 2) or e = fg =0 (mod 2).

If b) is fulfilled, then by, ..., by-;) consists of all D € N, which are of
the form s

2 42
(3) D=7 +{f— (-1)kfj—;5’}-m+[ng— (-1)k92]

with m € Z satisfying me - (-1)kfg > 0.

Proof: The conditions stated in b) are necessary and sufficient for the exist-—
ence of m € Z such that

by = 51 - [me - (-1)*fg]

is a positive integer. Inserting this expression for by in (2) yields (3). O

Applying Corollary 1 to the special sequence (b1, ..., br-1) = (1, ..., 1)

gives

(2 f)=<Fk' Fk—l>,

g Frop o Fr-2
where (F,),,_; is the ordinary Fibonacci sequence defined by

F—l =1, FO = 0, E%+1 = E% + Fn—l'
Taking into account that F; = 0 (mod 2) if and only if k = 0 (mod 3), I obtain
Corollary 2: 9(1, ..., 1) # ¢ if and only if kK Z 0 (mod 3).

[ —)
(k-1)

3. Now I investigate the possible prime powers dividing D € Z(by, ..., bx_1)
for a given symmetric sequence (by, ..., bx-1)-
For n € Z, n # 0, and a prime p, set

vp(n) = w if p?|n, p"lfn (w > 0).

The following result is an immediate consequence of the arguments given in [2;

§21.

Lemma: Let F(X) = AX?2 + BX + C € Z[X] be a quadratic polynomial. For a prime
p, set
Ep(F) = {w € N|v, (F(x)) = w for some x € Z}.

Let P be a finite set of primes, wp € E,(F) for p € P, and suppose that, for

. = 2 .
every prime p ¢ P, the congruence F(x) = 0 (mod p“) has at most two solutions x
(mod pz). Then there exist infinitely many x € N, such that

vp(F(x)) = wp for all p € P
and
vp(F(x)) < 1 for all primes p ¢ P.

Now let (b1, ««.5 byr-1) (k 2 1) be a symmetric sequence of positive inte-
gers. Define e, f, and g by (1) and, depending on these numbers, for every
prime p, a set E, = E,(e, f, g, k) C N of possible exponents as follows:

a) p = 2. (-1)*
{0}, if e = 1 (mod 2), pfe, and (——) = -1;
B, ={ P

N, otherwise.
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b) p=2,e =1 (mod 2):

E ={{0, 1}, if k =1 (mod 2);
2 N\{1, 2}, if kX = 0 (mod 2).

2, e = fg 0 (mod 2):

B = N,, if e =2, g = 0 (mod 4);
2 N, otherwise.

c) p

With these definitions, it is possible to state Theorem 2, which general-
izes the results of [1]:

Theorem 2: Let (bi, ..., bx-1) (k 2 1) be a symmetric sequence of positive in-
tegers, define ¢, f, and g by (1), and suppose that either ¢ = 1 (mod 2) or
e = fg =0 (mod 2). For a prime p, let E, = E (e, f, g, k) be defined as above.

i) 1If DeDbys --.» bp_l), then v, (D) € Ep for all primes p.

it) Let P be a finite set of primes and wp € E, for p € P. Then there are in-
finitely many D € Y(by, ..., by-1) such that v, (D) = wp for all p € P and
vp(D) <1 for all primes p ¢ P.

Proof:

Case 1. e =1 (mod 2). By (1), eg - f2 = (-1)¥*! and thus f + g
2). It follows from (3) that D € N if and only if m is even. Set
then, by (3),
f?g®

(4) D =D(n) = e?n? + [2f - (-1)kefgl * n + [T - (-l)kgz]-

1 (mod
= 2n;

3
[

By the above Lemma, it is enough to show that for every prime p the following
two assertions are true:

1. E, = {v,(D(x)) | € Z}.
2. The congruence D(x) = 0 (mod pz) has at most two solutions x (mod p2).

From (4) I obtain, by an easy calculation,

e 2
e2+D(n) = [ezn + f - (-l)k—gg} - (-D)*,
D'(n) = 2e%n + 2f - (-1)kefy.
If ple, p # 2, the congruence D(x) = 0 (mod p¥) has exactly one solution X
(mod pv) for every w 21 and thus there are x € Z with vp(D(x)) = w for every
w=0. If ple, p # 2, and [(—l)k/p] = -1, the congruence D(x) = 0 (mod p) has

no solution. If ple, p # 2, and [(-1)%/p] = 1, the congruence D(x) = 0 (mod p)
has two different solutions; these satisfy D'(x) Z0 (mod p) and, therefore, for
every w 2 0, there are x € Z with vp(D (x)) = w, and the congruence D(x) = 0
(mod pz) also has exactly two solutions modulo p2.

If Kk =1 (mod 2), the congruence D(x) = 0 (mod 4) is unsolvable, but since
D(0) # D(1) (mod 2), there are x € Z with v,(D(x)) = w for w = 0 and w = 1.

If Kk = 0 (mod 2), then

2
D(n) = (n+f+32-9-) -1 (mod 8);

thus D(x) = 0 (mod 2) already implies D(x) = O (mod 8), the congruence D(x) =
(mod 4) has exactly two solutions & (mod 4), and for every w 2 3 there are x €
Z with v, (D(x)) = w.

Case 2: e = fg = 0 (mod 2). By (1), eg - f2 = (-1)**1; thus, k¥ = 0 (mod
2), £ =1 (mod 2), and eg = 0 (mod 8). It follows from (3) that D € Z for all
m € Z; therefore, I have to consider the polynomial
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D = D(m) = if- m2 + <f - §§g>- m + (fé?i - gz>.

Again it is enough to show that for every prime p the following two assertions
are true:

1. Ep = {UP(D(x))lx € 7Z}.
2. The congruence D(x) = 0 (mod pz) has at most two solutions & (mod pz).

First, observe that

e?D(m) = (ez- m+ f - Ef€>2 - 1.
2 2

If p # 2, the congruence D(x) = 0 (mod p) has at least one and at most two
solutions 2 (mod p), and these satisfy D'(x) Z 0 (mod p). Therefore, for every
w € N, there are x € Z with vp(D(x)) = w, and the congruence D(x) = 0 (mod pz)
has at most two solutions x (mod pz).

Suppose now that e = 2 (mod 4) and g = 0 (mod 4). Then D(m) = m? + fm (mod
4), and it follows that D(m) = 0 (mod 2) for all m, D'(m) =1 (mod 2) for all
m, the congruence D(x) = 0 (mod 4) has exactly two solutions x (mod 4), and for
every w € N there are x € Z with vp (D(x)) = w.

If ¢ = 0 (mod 4) or g = 2 (mod 4), then the congruence D(x) = 0 (mod 2) is
soluble, and from D'(x) = 1 (mod 2) for all x, it follows that the congruence
D(x) = 0 (mod 4) has at most two solutions « (mod 4) and that, for every w € N,
there are x € Z with v, (D(x)) = w. [

4. In this section it will be shown that about 2/3 (resp. 5/6) of all symmet-
ric integer sequences (b1, ..., by-1) satisfy X(by, ..., by-1) #= . To do this,
define 0:7Z » GL,(F,) by

a 1

6(a) = (l 0) (mod 2);

for a finite sequence (b}, ..., b,) define
m
0(b1s «-v» bp) = .r[e(bj) € GLy(Fy).
Jg=1
Obviously, 6(by, ..., b,) depends only on by, ..., by (mod 2). Put

1 1 0 1
= = E
N (1 0)’ t (1 0> Lo (F2)
and find 03 = t2 = 1, ot = 102 [as GLy(Fy) = %3]1. With these definitions, the
following holds.

Theorem 3: Let (b1, +.., bx-1) (kK 2 1) be a symmetric sequence of positive
integers.

i) (b1s +--s br_1) # 0 if and only if 6(by, ..., bx-1) # o2.
ii) If k is even, k = 2%, then 6(by, ..., bx-1) = 02 if and only if
8(bys --v» by_1) € {1, 02} and b, = 1 (mod 2).
Furthermore, if IV, denotes the number of all
(bys -vvs byo1) € {0, 13471 with 6(by, ..., by-1) € {1, 02},
then

-1 ~1)%
N = 2____;t_£_ll_'

2 3
iii) If k is odd, k = 22 + 1, then 6(by, ..., bg-1) = 02 if and only if
0(b1s +..> by) € {o, ot}.
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Furthermore, if Ng denotes the number of all

6(bys ...> by) € {0, 1}* with 6(by, ..., by) € {0, o1},
then

g = Ng,1.

Proof: i) is an immediate consequence of Corollary 1. If k = 2% and

b
0(bys «ovs byo1) = (Z d) € GLy (Fy),
then
_(a Dby\(by l\(fa ¢ aby abye + 1
8(brs «evs br-1) = (c d><l 0)(b d)(abgc +1 cb, >
and thus
_ o _ (0 1
e(bl, e ooy bk—l) g (1 1)
if and only if a = 0, ¢ = b, = 1. Since
a b
@ By canay,
this implies also b = 1. Therefore, 6(by, ..., bx-1) = 02 if and only if

e(bl, c e ey bl—l) = <? ;) € {T, 02}.
If Kk = 28 + 1 and
8(b1s -ees by) = (& Z>€(Ezwz%

o, e e = (20 9 (210 Y-

if and only if a=b =1and d =c + 1, i.e.,

then

(g 2) € {0, ot}.
To obtain the formulas for N, and N{, consider the number
A,(8) = # (b1, ..., by) € {0, 1}']6(D;, ..., b,) = &}
for any nw € N, and & € GL,(F,). These quantities satisfy the recursion formulas

A1(0) = 41(1) =1,
A1(8) = 0 for all & € GL,(Fy)\{o, 1},
An1(E) = 4,(E0?) + A,(g1) for all £ € GL,(Fy),

which have the solution

[]

2771 + 2¢-1"-!

A,(0) = A, (1) = 3 >

277l 4+ ()"
3

4, (8) for ¢ € GLz(Fz)\{O, t}.

Therefore, for £ = 2,

2471+ (-t
3 >

2% 4 (_1)1+1

Ay (0) + Ay(o1) = T = Wy,

Ny = Ay 1(1) + 4,_1(02) =

Ny

]

and these formulas remain true for £ = 1. []
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5. In this final section I formulate the corresponding results for the con-
tinued fraction expansion of (1 + vD)/2 for D = 1 (mod 4); as the proofs are
very similar to those for /5, I leave them to the reader. (For Theorem IA, see
Satz [3; 3.34].)

Theorem 1A: Let (by, ..., by-1) (k 2 1) be a symmetric sequence in N, and let
by € N,. Then the following assertions are equivalent:

a) [bo, b19 ceey bk-l’ 2b0 - 1] = l_-g‘—/l_) with D € N.,., D=1 (mod 4).
b) bo = %- [1 + me - (-1)¥fg] for some m € Z, where e, f, and g are defined by
(1).

If this condition is fulfilled, then
D= (2bg - 1)2 + 4mf - 4« (-1)kg2.
Definition: For a symmetric sequence of positive integers (by, ..., bx-1) (k2 1)
let 9'(by, ..., bg_1) be the set of all D € N, with D = 1 (mod 4) and

1+ VD
5 = [bo, bl’ cees by Zbo - 1] for some bO € N,.

Corollary 1A: Let (by, ..., bg-1) be a symmetric sequence in N, and define e,
f> g by (1). Then the following assertions are equivalent:

@) D'(bys «-us by ) = 0.
b) Either ¢ =1 (mod 2) or e = fg + 1 0 (mod 2).

If b) is fulfilled, then gw(bl, e bk—l) consists of all D€ N,, D =1
(mod 4), which are of the form

D = e?m? + [4f - 2+ (-)kefgl * m + [f2g9% - 4+ (-1)kg?]
with m € Z satisfying 1 + me - (-1)Xfg > 0.
Corollary 2A: 2'(1, ..., 1) = 0 (always).

11

3

Theorem 2A: Let (by, ..., bx-1) (k 2 1) be a symmetric sequence of positive
integers, define e, f, g by (1), and suppose that either e = 1 (mod 2) or
e = fg+1=0 (mod 2). Let P’ be the set of all odd primes p with p[e and

() -

i) I1f D € 9’(b1, cees bk—l) and p € P', then p,{D.

ii) Let P be a finite set of odd primes, P N P’ = ¢ and (wp)pcp 2 sequence in
N. Then there are infinitely many D € 2'(by, ..., bg-1) such that v,(D) =
wp for all p € P and v,(D) < 1 for all primes p ¢ P.

Theorem 3A: Let (b1, ..., by-1) (k 2 1) be a symmetric sequence of positive
integers. Then 2'(by, ..., bg-1) = ® if and only if k is even, k = 2%, and
b, = 0 (mod 2).
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ON DETERMINANTS WHOSE ELEMENTS ARE RECURRING SEQUENCES
OF ARBITRARY ORDER

Richard André-Jeannin
Ecole Nationale d'Ingénieurs de Sfax, Tunisia
(Submitted October 1989)

Some years ago, Carlitz [1] and Zeitlin [2] calculated determinants of the
form I“g;k(i+jﬂ (Z, g =0, 1, ..., r), where {w,} is a second-order recurring
sequence. More generally, the aim of this paper is to obtain a closed form for
the sx s determinant

Was wa+j1’ s wa+jp
Tls eees 1y wa+il, wa+i1+‘7—1, eees wa*’il‘*‘jr
(D A, al = |. . s
J1s eee> JI, N .
Way i, wa+ir+j1’ cers Waig 4,

where s =» + 1 and @, 21, «++5 Zps> J1» ---5> Jp are integers, when {w,} satis-
fies the recurrence of order s,

k]
(2) wn = Z (_l)k_lokwn—k9 n € Z’
k=1

where o0;, 0y, ..., 0, are complex numbers, with o, = 0.
Gy igs s Floovees B
We shall often write A !" ? 7 instead of A, af.
Jl,,jz,...,J,, . .
!71’ ce oy Jr
We want to obtain an expression of A, in terms of the Fibonacci solution
{u(”} of (2), whose initial conditions are:
n

(3) ugﬂ = ugw = ... = u;?l =0; @ =1.

We define the characteristic number ¢, of the sequence {w,} by
1, 2, ..., »r
(4) ey = b, of = |wgy;l G d=0,1, ..., n).
1, 2, ..., »r

Note that, for the Fibonacci sequence {u%ﬂ}, we have, by (3) and (4),
r(r+1) rs

e = (1) 2 = (-DZ.

1. A Particular Case

In this section we assume that the characteristic polynomial of (2) admits
distinct roots aj;, ..., ag, and that ui/aj is not a root of unity, for distinct

7 and j. In that case, there exist complex numbers C;, ..., C,, such that

s
w, =‘§:10ia2, nelZ.
i<

Notice also that

S
o, = [lo;.

=1
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The statement of the main result of this section is

Theorem 1: Aw[i’ gzlz, Tt Z: a:I

Cp ovee C, ol V(a?, s ué)z

V(uﬁ, cees q§)2

where V(al, cees O ) = JI.(ai - uj) is the Vandermonde determinant.

1>
The proof will require the following result.

e (T R

Proof: From the equality between matrices

Lemma I: e

[wi+j] = [CE+1Q;+1][@£+1] (Z, =0, 1, ..., 7)),
and passing to determinants, we obtain
- T J c s o
e, = 100k e | G d=0,1, .oy p)
! 2
Cp vev Colody|

=Cy ou. CgV(ags -ves ag)2. Q.E.D.

I

Proof of Theorem I: Let us consider the sequence {w]}, with w] =

we have
s

(5) w) = ggicga?(aﬁ)n,

k

and, since the oy

8

=1 197
w}z Zl -nr Oy, - 2
me=

are distinct, {w;} satisfies a recurrence

I

with

Clearly we have, with the above notations,
k, 2k, ..., rk _ 1, 2, ..., r‘ _
Aw[k, 2y e, TK a] B Aw’[l, 2, ..., Y] TG
However, by Lemma I and (5), we have

S
e, l;[]lCiGZ]V(aﬁ, cees ak)2

V(u?, eees u§)2

=0 ... QSOZV(aﬁ, eees u§)2 = g,00

Applications:
(i) Put g = n - rk in the formula of Theorem I to get
ky, 2k, ..., vk -
(6) Aw[k’ R [ rk] =Cp ... Cuol TRV, .o, k)2
k ky2
_ o, on-rk V(al, cees af) '
wos V(al, e us)z
In the case & = 2, we obtain B 2
2 = 0. C.gtk(gk ky2 = n-k Sglﬁ:_ng_
Wy gWnyr = Wy = 010505 (al - az) = ¢, 0, 5
(0L2 - OLI)

= ewog_k(u(;f))z’
19911

V(al, eens us)z

w

a+kn*

Then
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which is the well-known Catalan relation; thus, (6) is a generalization of this
result.

(ii) We can also study the sequence {w,}, where {w,} satisfies the second-
order recurrence
wn = pwn—l - qwn-Z’
whence
_ n n
w, = Clal + Czuz'
Assuming that (xl/ot2 is not a root of unity, we get
r P . . . .
r _ TNYr—-1 1=\
7w 'iZ;)<i>0102 (aiaz=i)m,
where the a%ug_i are distinct. Hence, {wﬁ} satisfies a recurrence of type (2),
with

(8) Og =

rs rs

t = (alaz)i_ = qir.

o[

7. r=
ata
7;012

By application of Theorem I, we obtain a new proof of a known result (see [1],

[2]).

Corollary I: |w), e+l (2, § =0, «ovs )
rs ars  kr(»?-1) p r

—e2qg2 " 3 r (2)y2

w igo(i>ig1(uki) '

Proof: By Theorem I, (7), and (8), we get

k, 2k, ..., rk
€ [w;;k(i+jﬂ = Aw”[k, 2Ky vuns ik a}

. . ars
r r-1 — -
0(.)0;02 eq 2 e V(ug, ulug oo, uf)z

]
[Bemn

rs
r 5> _
<i>. (01C2)2 . V(u£, o037 I, ..., u{)z,

I
1 :x

and it can be shown (see [1], p. 130) that the value of the Vandermonde deter-
minant is

rs  kr(r’-1) r
- 2 6 (2)yr-i+1
(10) (a; = 0,)% g 11 (uki)r L

=1
The result follows now from (9) and (10) since, by Lemma I,

- 2
e, = €10 (0 = 0,)°.

2. The General Results

In what follows, we do not make any assumption about the roots of the char-
acteristic equation, and we put again s = r» + 1. In this section we shall
prove the following theorem.

Theorem II: Let {w,} be any solution of the recurrence (2). For all integers

a, il, iz, e ir, jl, jz’ e jr, we have
Tys eees Tp .

(1D A, X 3 a =Oseméil,...,i,,csjl,...,j,’
Jis wees d,
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where &; . ., ¢, is the rxr determinant

= s) =
67,'1,,..,‘&1. - |u§'2+q—]_|’ (p’ q = 1, 2, ..., P)-

From Theorem I, we get a corollary which can be compared with (6).

Corollary II (Catalan's relation): For all integers » and k, we have

I SNl LT [ S T - A

Proof: Put a =n - vk, §, = 2, = mk, 1 <m < r, in the general formula (11).
For example, in the case s = 2, (12) becomes

Z 2 = gnmk(, (Y2
W, ey — W2 = op7F(uiP)2,

and, in the case s = 3,
(3 (3) |2
Wy-ox  Wpex  Watk oo |ME Uok
W,y W, Woip | = 057 %Fe, . .
Wy, Vntk  Wyyon Up¥1 Yo+

3. Proof of Theorem Il

We shall need the following results.

Lemma II:
(i) For all integers 21, «evs Zps Jis vees Jrs
Ll veeslp 1o eees dp
Fis evesdr A'il, R

(i1) For all integers Z1, ..., L., J1s ++es Jn» and all 1 < p < 7, we have

. ) s . ,
L1 enavsip k-1 Tys vees lp
A . .= (-1) a, A . .
Jis oersdps oeesdn kz=:1 K Jiseerdp-koonns i
and
S k-1
R S =k§1 (-1 S R
(iii) If t is a permutation of {1, 2, ..., r} of sign e(t), then for all
integers <y, «evs Tps J1s cvos Jpos
L1y eees L Ty enus T
i T = g(t)A! o
Jeqyr I Jls oves dp
and
6jr(1)""’jr(r) = E(T)(SJ.lx---x jp

(iv) 1If j, = J, for distinct k and & or if there exists k such that j, = 0,
then : :
LT o g .= 0.

J1s vees dp J1s vers dp

Proof: This is an immediate consequence of the properties of determinants.

Lemma III: Let us consider two sequences {X,} and {¥,}, with n = (1}, ..., #ny)
€ Z*, such that, for all n € Z%, and all 1 < p < ¢,

S

(13) an,...,np,...,nt = . 1("1);(_10an1,...,np——k,.--,nts
and
s
(14) Ynl,...,np,...,nt = Z (_l>k_1okynx,...,rzp—k,...,nt'
k=1
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If X, = Y, holds for all n belonging to

(15) C, ={ne€ez’, 0<n, <z, 1 <pc<t}

then
(16) X, = Y, holds for all n € Z°.

Proof: By induction on ¢. The statement is well known for ¢ = 1. Let us sup-
pose that (16) holds up to a certain ¢ = 1. For the inductive step ¢t > ¢t + 1,
fix an integer m and consider the sequences {xgﬂ} and {ygm}, with n = (n7, ...,
n;) defined by

(m) = (m) =
Ty _an,...,nt,m and Yn _Ynl,...,nt,m'

By definition, x(™ = y™ holds for all n € C, and all 0 <m < r, and by the in-
duction hypothesis,

(™ =y for n € 2% and 0 < m < r.
Now, fix n € Z' and consider the sequences x! and Y,> defined by

[ . 1=
Lm szl,...,nt,m and Ym Ynl,...,nt,m'

We have x,; = y, for 0 < m < r, and the same equality holds for all integers m,
since by (13) {x}} and {y]!} satisfy a recurrence relation of order s. This
concludes the proof of Lemma 3.

Proof of Theorem 2:
Step 1: We prove that, for all integers Ty, «-+s Tps J1s eces dp>
—_— : . r(r-1)

(17) N CREETR ST

L1y enues Tp 1
. - 2 S - F
J1seees dp l,2,...,p( ) J1s ==+s dp

Let us fix 27, ++.5 Zp. By Lemma 2(ii) and Lemma 3, it suffices to show
that (17) holds for J;, ..., J, belonging to the set
Co = {(j15 «ovs §,) €27, 0<j <pr, 1 <p<rh

If one of the conditions of Lemma 2(iv) is satisfied, then (17) clearly holds.
Therefore, we have only to consider the case where (j;, ..., J,) is a permuta-

tion of (1, 2, ..., ). By a direct calculation,
r(r-1)
61,...,1* = (-1 2
whence (17) holds for (jl, eees Jp) = (1, 2, ..., 1), and by Lemma 2(iii), the

equality holds for every permutation of (1, 2, ..., »r).

Step 2: By Lemma 2(i) and Step 1, the following)statement holds:
- g r(r-1

Tyseees iy 1,2, ceisp 1,2y cees ] )
AI,Z,'--,r - Ail,---,ir - Al,Z,...,r (-1 2 611’---:%'
Hence, (17) becomes
Lyseeesfr  _ ,1,2,000s )
(18) Ajl,n.,jp - Al,z,”.,r 6i1,”.,ip 6J1,“.,Jr‘
Now, it is known (see [3], p. 99) that
1,2, ....7 _ a
Al,Z,...,r - 688&)‘

By this and (18), the proof is complete.

For a second-order recurring sequence, (11) becomes

w (2),,(2)

_ a
Walgsi+j = WatiWag+j = 0p€,U; L

a

When giving particular values to a, 7, and j, one can deduce from this some
well-known identities.
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PERIODIC FIBONACCI AND LUCAS SEQUENCES

Mordechai Lewin
Israel Institute of Technology, Haifa 32000 Israel
(Submitted October 1989)

1. Introduction

In the early thirteenth century there appeared the book Liber Abaci by the
mathematician Leonardo of Pisa [7], who also became known as Fibonacci (see
also [2]). 1In it a problem concerning an ideal case of the reproduction of
rabbits is treated, and the sequence

() F=1,2,3,5,8, ...

is introduced. This sequence has since become known as the Fibonacci Sequence.
One of its features is the recurrence relation

(2) a, =a,; +a,_,, for nz 3.

In the second half of the nineteenth century E. Lucas [8], who had actually
coined the term Fibonacei Numbers, introduced a similar sequence connected
closely to that of Fibonacci,

(3) L=1, 3, 4, 7, 11, ...,

obeying the same recurrence relation as #. The sequence L has since become
known as the Lucas Sequence [3] (see also [4]).

Since then the generalized sequences of both kinds have been introduced.

For both, the recurrence relation is
ay, = aa,_ ;| + 04, _5,
where a and ¢ are prescribed numbers.

We shall also stipulate g, = 1 or 2 according to whether the sequence is a
generalized F or a generalized L, respectively. The recurrence relation holds
already for n = 2 (see also [3]). 1In [10] Wall treated generalized Fibonacci
sequences modulo an integer m and showed that some are periodic mod (m) (see
also [6], [11]}, and [12]).

Now let g and o be two arbitrary complex numbers and let the terms of the
generalized Fibonacci (Lucas) sequence be fj =1, f1 =a (gg =2, g1 = a). It
turns out that in some cases such sequences are periodic. Put, for example,
a=1, ¢ = -1. Then both sequences are periodic of period 6.

In this paper we wish to characterize those sequences which are periodic;
in other words, to specify precisely for which ordered pair (a, o} the corre-
sponding Fibonacci (Lucas) sequence is periodic. We shall also specify in each
relevant case the period I, 7 being the 1least positive dinteger for which
Qu4+7 = Ay for every n.

Let us first look at degenerate cases. The case a = ¢ = 0 is trivial with
T = 0. 1If just one of the two ‘vanishes, the remaining parameter is mnecessarily
a root of unity, a trivial case being a = 1, 0 = 0, T = 1.

We may, therefore, assume both parameters to be nonzero.

2. Periodic Row-Column Matrices

Let m > 1 be a positive integer. Consider an n X w-matrix 4 = (aij) over
the complex field with a;; = 0 if both 7 and j are greater than one. Put

310 , [Nov.



PERIODIC FIBONACCI AND LUCAS SEQUENCES

n
a,, = a ,Zzaljajl = g.
P

We shall name such a matrix a (one-row)-(one-column) matrix or, in short, an
RCM.

The characteristic polynomial of A is A" - a\®*~! + oA""2 so that the two
nonzero eigenvalues of 4 satisfy the quadratic equation

(4) M -—ar-0=0

whose roots are
a a\?
Ao, =% % (—) + o.
1,2 2 2

It follows that for n > 2 the spectrum of A depends solely on g and ¢ and is
independent of n.

For ¢ = a?/4, the matrix A is neither diagonalizable nor periodic for any
nonzero value of a.

The polynomial f(z) = 22 - az - o appears in a paper by M. Ward [11], among
others. Ward also considers what he calls degenerate sequences in which zeros
appear periodically, with periods 2, 3, 4, and 6, although the sequences as
such are not periodic (see, e.g., [11, Th. 3]).

Except for the case o = -a2 /4, the two nonvanishing eigenvalues of 4 are
distinct. In addition, we have rank A = 2, and hence, 4 is diagonalizable. For
7 =1, 2, we have

2 -
(5) AS = ar;, + o,
(6) Ay + Ao = a.
Let j be a positive integer. Define
= J
Y; Tr AY.
We have
Y, = a.
Yo, = A + A3 =ak; + 0 +ak, + 0 =a? + 20.
Also, for § = 3, equalities (1) and (2) imply
= 1d J = 247232 J=232 _ 5i-1 Ji-2 j-1 j-2
(7) v, = A A = A COAT A A = ad] T+ oAy T+ oady T+ oAy

= an—]. + OYj_z.

We thus have a recurrence formula for y., J = 3, displaying a generalized Fibo-
nacci sequence. We now turn to the possible periodicity of an RCM. A neces-

sary condition for A4 to be periodic is lel = IAZI = 1. It also follows that 4
is periodic if and omnly if Yi is periodic.
Putting
[a>+0 _
4 3
we have a a
A1=§+w, }\2=§'—w.

For both A; and A, to be on the unit circle, it is necessary that

2
lwl = ‘/1 - l%}— and arg w = arg a % %.

Set arg a = ¢ and arg A; - ¢ = Y. Then arg A, = arg A; - 2y, so that
arg \; =a+ 1y and arg A\, =a =79y (see Fig. 1).
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4 W1
Q~
FIGURE 1
Then
/1 Ial?- _
tan Y =
lal

Now set

4 2m
(8) ) + ¢ = arc tan|* - 1)+ arg a = —,

2 [
|al i

where © = 1 for the plus sign and ¢ = 2 for the minus sign. A necessary and

sufficient condition for 4 to be periodic is that both A; and X, be roots of
unity. We also find that equation (4) implies
2
, a
1l I l >

2
2 _ - _ =2-/_la| io \[ -
A ai A a) > i<? 1 4 ¢
-g2t0

a? la|? 244 _ |a|? 214 _ a2 246
e (l - —77—>e =7 ¢ -G €

[¢)

MR

We thus have

Theorem 1: Let A be an RCM. Then 4 is periodic if and only if

(i) for both choices (#) we have w’l<érg a * arc tan | 4 5 = 1> are rational;
B _221‘ arg a | Ia|

(ii) o =

Corollary 1: Let A be an RCM. Then 4 is periodic if and only if the following
three conditions hold.

(i) =t arg a is rational;

(ii) 77! arc tan [|4[2 - 1 is rational;
a

(iii) o = -e?t arga |

Corollary 2: Let A be a real RCM. Then 4 is periodic if and only if

_ [ 4 X .
11 arc tan 2" 1 is rational and o = -1.
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Corollary 3: A real RCM is periodic if and only if

771 arc tan L 1 and o = -1.
Y g2

Corollary 4: Let A be a purely imaginary RCM. Then 4 is periodic if and only if

77! arc tan /—ié - 1 is rational and o = 1.
a

Corollary 5: A necessary condition for an RCM to be periodic is that a satisfy
the inequality 0 < la| < 2.

Corollary 6: A necessary condition for an RCM to be periodic is IGI = 1.

Let us now seek the period T = T(4). It will clearly be the least integral
for which both T(¢ + ) and T(¢ - y) are integral multiples of 2w. Put

2w 2w
¢+\U=p—1: ¢"1P=E‘2"
For 7 = 1, 2, the p, are necessarily rational, so that we may put
my
pi = %2, with (m;, n;) = 1.

We then have

Theorem 2: Let A be a given periodic RCM. Then the period T(4) is given by
the formulas T(4) = L.C.M.(m;, mp) where the m; are defined as above.

We also have, for a periodic RCM, (|a|/2) = cos Y, so that we may write
(9) a = 2 cos petd,
We may also write Ay = ete+ V) Ay = -V, 50 that
Ao+, = e (g™ 4+ g~y = 2 cos Y e??,
Then it is easy to see that Aﬁ = eki(¢+wl AS = eki(¢_w)so that, likewise,
Y, = Aﬁ + X; = 2 cos(ky)ek:?,

thus proving that A is periodic if and only if the traces of the powers of 4
are periodic. We then have

Corollary 7: Let A be a periodic RCM with a = 1. Then 4 has period 6.
Proof: We have ¢ = 0 and cos ¢y = 1/2, so that y = 7/3. The result follows.

Let us consider two examples.

m _ 13
Example 1: Let ¢ = 20° ? = Baw. ?hen
13 % o
a = 2 cos 60 me<’, 0= -V,

We also have ¢ + Y = f%TT, ¢ - ¢ = -1/6, so that m; = 15, my = 12, and hence,

T =L.C.M. (15, 12) = 60.
Example 2: Let a = e™/3, Then = -e2"/3, Also cos ¢ = 1/2 so that ¢ = ¢ =
m/3; hence, ¢ + ¢ = 2n/3, ¢ - ¢ = 27, m; = 3, my = 1, and so T = 3.

3. The Leading Element of a Power of an RCM

Let A be an RCM. Put 4 = (aij)' Let ag? denote the (7, j)-element of Ak,

i (k) = = 1 = g2
We consider ajY for k > 1. Put a;; ass apy B;- We then have ayj ac + o.
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For © 2 1 # j, we have

2 2
a&; = ad;, a%f = aB;, a;; = B;a.,

a(l31) = g3 + 2q0, a(137.) = (a?2 + 0)a

3)
a;l = (a% + a)B;s agz; = 1
Put fyp =1, f1 =a, f» = a® + o.
Suppose that for some k we have

k) _ k) -
(10) a(ll)_ fk’ a(lj)~ ujfk_ly
(0 - ) _ . .
Th ail Bl -1> a;; Bidjfk_z for 7 = 1 = J.
en
(k+1) _ i _
Cle _afk Ofk-]_ —fk+1’

K+1) _ . -

af = ojafi_y + 0fip) = o fis
K+

a% B fy>
(k+1) =

aij Biajf%_l.

We may use induction since 10 holds for kX = 2. We thus have

Lemma 1: Let A be an RCM. Then equalities (10) hold for every <, J > 1 and for
k=2 2.

We thus obtain

Theorem 3: Let A be an RCM. Then the leading elements and the traces of the
successive powers of 4 form a generalized Fibonacci sequence and a generalized
Lucas sequence.

For a = 0 = 1 we obtain the original Fibonacci and Lucas sequences appear-
ing in (1) and (2). We may therefore look at RCM's as generating Fibonacci and
Lucas sequences. A particular such case has already been treated in [5] and

also in [1].

We may now combine the two aspects of RCM's, namely, periodicity on the omne
hand, and Fibonacci sequences on the other in order to draw the following
conclusion.

Theorem 4: A generalized Fibonacci (Lucas) sequence with complex parameters g
and ¢ is periodic if and only if both

771 arc tan 4 1 and ! arg a
|lal?

are rational and ¢ = -eg2f arg a |

Corollary 8: A generalized Fibonacci (Lucas) sequence with real parameter a is
periodic if and only if

-1 arc tan‘/—LL -1
a2
is rational and 0 = -1. The period I is determined as prescribed by Theorem 2.

Let n 2 2 be an integer. Consider a generalized Fibonacci or Lucas sequence
for which the parameters ¢ and § are ¢ = ¢ = n/n. Then

o+ P = ZE, o - 2T

n

so that . .
T = -2n7
a = 2 cos E<2” s 0= - "

so we get a periodic sequence of period m. We may thus state
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Corollary 9: Every positive integer 22 is a period for some generalized Fibo-
nacci (Lucas) sequence.

For n = 2, we have to stipulate ¢ = 0, o = 1, since ¢ = ¢ = w/2. We may
also state

Corollary 10: Every positive integer is a period for some RCM.

For n = 1 choose a =1, 0 = 0. The generalized Fibonacci sequence with
parameters a and ¢ suggest that the traces Yy be polynomials in a, o of degree

k, so that
1k/2]

= k=275d
Ve = 2 by el
J=0
The coefficients ¢p; may be established by graph-theoretical counting tech-
niques. Induction may also be used to show that

oo m (50 (50 R

The verification is left to the reader.

A similar formula may be found in [9].
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0. Introduction

In the study of electrical networks, it is well known that the coefficients
of the polynomial which characterizes the transfer function (ratio of output to
input voltage) of a ladder network formed by a cascade of N identical uncoupled
elementary cells belong to the (+1)™ row of Pascal's triangle. This circum-
stance allows us a direct and fast determination of the transfer function of
the entire ladder network.

On the other-hand, in the case of direct coupling among interacting elemen-
tary cells forming a ladder network, the polynomial coefficients are not those
belonging to Pascal's triangle, but rather to another triangle named the "DFF
triangle" from the initials of the authors who first dealt with it (see [3],
(41).

The DFF triangle also provides a noteworthy interest from the mathematical
point of view, because some of its properties are connected with Fibonacci
numbers.

1. The Generating Polynomials

The DFF triangle can be formed in the following manner (&, ; being the gen-
eral coefficient).
We define (see [3], [4]):

(1.1) a, =0 if n <k,
(1.2) a, ;=1 ifn=k, k=0,

while the other elements of the triangle can be derived from the recursive

formula .
n -
(1.3)  a, g =ay-1,%x+ 28, 1 if n > k.

a=0

In this manner we have the DFF triangle for values of a, ;:

2 k 0 1 2 3 4 5 6 7
0 1

1 1 1

2 1 3 1

3 1 6 5 1

4 1 10 15 7 1

5 1 15 35 28 9 1

6 1 21 70 84 45 11 1

7 1 28 126 210 165 66 13 1

Thus, for example, a3, = 5 and a, o = 66.
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The generating polynomial P, (x) is defined in [1] as

14
(1.4)  P,(x) = Y a, pxk
K=0
where %
DTP, (x)
(1.5) a, ; = ————

n, K k1 R

From the DFF triangle it is possible to obtain the expression of the poly-
nomial for small values of n:

(1.6) Po(x) =1
Pl(x) =1+ x
Py(x) =1 + 3x + x2
Py(x) =1+ 6x + 522 + 3

and so on.
From (1.1), (1.2), (1.3), and (l1.4) we have

n n n n-1
- I
(1.7) 2o, xxk = 3a, ) pak+ 3 Yla o xk
k=0 k=0 k=0 a=0
and
n n-=1 X non-1 k-1
(]"8) Pn(x) = an—l, nx + Z an—l,k'c + x}_z Z aa,k—lx
k=0 k=0a=0
n-1 a+l -1
=P, _(x) + ) Zaa’k_lx ,
a=0 k=0

n-1

(1.9) P(x) =P, () +zy, P, (x),
a=0

which is the recursive formula for the polynomials.
With the initial condition Py(x) = 1, it is easy to obtain the polynomials
(1.6). Furthermore, we can also use (1.5) to find the triangle coefficients.
In order to find the polynomials, we must apply the previous method. Let

(1.10) f(x, t) = ii P,(x)t".
n=1
Then

(1.11) pn(x) = Q_lilfi_le

7! t=0
From (1.9) and (1.10) we have
o @ n-1
(1.12) f(z, t) = 2, P, _((@t"+xy, 2P (2)t"
n=1 n=1a=0
R -1 S
= tn;an_l(x)t” + an::lt‘Vl[PO + Pl 4+ e + Pn—l]

—t2 4+ t(1 + x)
2 - (2 4+ 2) + 1

ELL+ Fm, )] + o[l + Flz, )] 5 =
k=1

If we develop the denominator in (1.12) in partial fractions, we obtain

a(x) - 1/2 +‘—a(x) - 1/2
t - b(x)/2 t - c(x)/2

(1.13) f(z, t) =

where

-1,

Yy
2(x + 4)°
b(x) =2 +x+y, and c(x) =2 +2x - y.

y =y = (22 + 4x)1/2, a(x) =
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From the binomial expansion in (1.13) and after simplification, we also have

_ x+y+ 4 n
18 f@ D) = e Gy 7 [b(x)/z]

x -y + 4 + n
(x + 4)(x -y + Z)VLZ21 [c(x)/z]
nx1 (.’X:+y+2)”+1/2” (x_y+2)n+1/2n

from which we have, using (1.10),
1+ y/(x + 4) + L - y/l(x+4)

P
n () (x +y + 2)r*1/0m  (x - y + 2)ntl/2n

[l

x-y+d)(x-y+2)" + (x+y+4)x+y+ 2)
(x+4)2n+l ’

L je -y +a B aym n=hyh
(1.15) P, (x) 2n+1[ — h§=:0( DM(R) @ + 20"y

xt+y+4 X n n-h
z __J =hyh
R hgo(h)(x 2"y
From this equation, on distinguishing the case of odd % from that of even

h, and since y = (22 + 4x)/2, we can write

(1.16) P, (x) = -2-1,;[ fj (Z)(x + 2)nhg 2 (g 4 4)h/2
h =0 (mod 2)

+ 7/L)(x + 2) (D200 4 4)(}"1)/2].

hzléod2)<h

2. Determination of a, ,

From equations (1.5) and (1.16), and considering also Leibniz's formula

k
@D Pr@e@) = % (] )D%)Dk Ig (@),
we have 7m0 %
-1 3 n k- -h

n
+ 2 (h) Z ( VDI [ 402 4 4)B-V/2) phoi [ 4 2] h]
h=1 (mod 2) = z=0

Then, from (2.1), it is possible to write

DIwh/2 (@ + 4)M2] = EJ: (i)(h7{72>m!x(h/2)"” *
m=0

. h/2 _ (h/2) = j+m
. (,7 )(J myt(x + 4) g+m,

Dl + 2n ] = (3 D)o - e 2k,

and
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i
[+ 1)/ - - J\((h + 1)/2 ((h+1)/2) -
(2.3) DIzt D2z + 4)(r-1/2] _%é;)(m>( m )m!x(( FD/2)-m oy

((hJ_‘_1;/2>(j - (e + a1/ - Gm

where here and in the following equations the * represents multiplication.

From (2.3) and from the properties of binomial coefficients, (2.2) becomes

(2.4) an,k=ﬁ{ > (M2

(n B ?)(x yooynThok+

h =0 (mod 2) J=0 k
j .
A L A
n k
n n-h-k+j (h+1)/2\((h-1)/2
v -1%@2)( >=Z(k )(x+2) mZO( i )( J-m >
% gt/ =m (g 4 4)<<h—1)/2)-j+m}
=0

When x = 0, the m-sum exists only if m = h/2 and m = (h + 1)/2, respec—
tively. So we can write

n X _ L _
@5 a3 ()2 (5 D2+ (G G )

It is worth pointing out that (g) =0 if b & Ny, so

(j ?/i/Z) # 0 only if h is even

and ( h - 1)/2

g - (h+ 1)/2) # 0 only if 2 is odd.

3. The Properties of a, ,

3.1 The Asymptotic Expression of a,, 4

From [2], the asymptotic expression of the binomial coefficient is

1/2 _n2
G ()= (B)7 2 el 2R = B2

and, from equation (2.5), we find that the asymptotic expression of a, ; can be
expressed as

22n—k+2 n 1

K
o~ _=7 *
Bne & m3/2 hzo (n(n - w))M2 Z:

(-z(n - W) ((n/2) = W2 - m[((n - W)/2) - (k - j>12> .

*  exp

nn - h)
h/2

2 4 (-3 N2

hl/z exp[-h<—4—h h J) ]h even

. 2(h-1)/2 { 4 <3h + 1 J,)Z]
———— eXp|-— - -
& - D2 TP b odd
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3.2 The Row Sums of the Triangle Are Equal to
Fibonacci Numbers with Odd Subscripts

From the expression (1.16) for P, (x), when x = 1, we have

(5 +512)/5 . (5 -5Y2)/5
(3 + 51/2)n+l/2VL (3 - 51/2 yntlyon

1 [1 + 5l/2 <3 - 51/2>n+1 1 - 5l/2 <3 + 51/2>n+1:|

(3.3) P, (1)

]

51/2 2 2 2 2

From Binet's formula, we have

_ 1 1 + 51/2 2n+1 1 - 51/2 2n+1
(3.4) F2n+l - 51/2 l:( 2 ) - 2 :

It is easy to show that P, (1) = F, .1 (where F{ =1, Fy =2, Fg =5, o)

This is the main result we were interested in showing in this paper. (It
may also be verified in the table of the DFF triangle.)

3.3 The Sums of the Triangle Diagonals Give the Powers of 2

From a direct inspection of the DFF triangle and (1.3), we have that the
sum of the elements of an upward-slanting diagonal is equal to the sum of all
elements that are above this diagonal and, consequently, to the sum of all
superior upward-slanting diagonals. This sum value is a power of 2.

In fact, if we define

n n
Z = Zan—r r?
r=0 ’
it is possible to write

PRI R i R U |
2(23”_2 + E:n_3 +oee. + 2:1 + 1) = ... = 2”'2<§:1 + 1) = 271,

[

since Zl = 1.

4. Conclusions

The principal aim of this paper has been the determination of a closed ex-
pression of the general coefficient a,, x of a new numerical triangle, named the
DFF, which characterizes the transfer function of a ladder network whose
elementary cells are directly coupled. Moreover, the authors present some of
the triangle's interesting mathematical properties, one of which is connected
to Fibonacci numbers.
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1. Introduction and Summary

In a recent paper, Philippou and Antzoulakos [4] introduced and studied the
sequence of multivariate Fibonacci polynomials of order k and related them to
the multiparameter mnegative binomial distribution of the same order of
Philippou [3], in order to derive a recurrence relation for calculating its
probabilities. This sequence of polynomials includes, as a special case, both
the sequence of Fibonacci polynomials of order k and the sequence of Fibonacci-
type polynomials of the same order of Philippou, Georghiou, and Philippou [9]
and [10], respectively.

In this paper, we introduce a generalization of the sequence of multivari-
ate Fibonacci polynomials of order k (see Definition 2.1), and we derive an
expansion in terms of the multinomial coefficients and a recurrence for the
general term of the (r - 1)-fold convolution of this sequence with itself (see
Theorems 2.1 and 2.2). Next, we relate these polynomials to the multivariate
negative binomial distribution of order k of Philippou, Antzoulakos, and
Tripsiannis [8], and we derive a useful recurrence relation for calculating its
probabilities (see Proposition 3.1 and Theorem 3.1). Analogous recurrences
follow directly for the type I, type II, and extended multivariate negative
binomial distributions of order k of [8] (see Corollaries 3.1-3.3).

The present paper generalizes results on multivariate Fibonacci polyno-
mials of order Kk (see Remark 2.1) and Fibonacci-type polynomials of the same
order (see Remark 2.2). At the same time, several results of Aki [1],
Philippou and Georghiou [6], and Philippou and Antzoulakos [4] on recurrences
for the probabilities of univariate geometric and negative binomial distribu-
tions of order k are generalized to the multivariate case.

Unless otherwise stated, in this paper k, m, and r ara fixed positive inte-
gers, n; (1 < 7 < m) are integers, n;; (1 < 2 <mand 1 £ j £ k) are nonnegative
integers as specified, x;; (1 << <mand 1 < j < k) are real numbers in the
interval (0, «), 1 denotes the . m-dimensional vector with a one in every
position, and g, (1 < ¢ < m and 1 < j < k) denotes the m-dimensional vector
with a J in the <™ position and zeros elsewhere. Also, whenever sums and
products are taken over 7 and j, ranging, respectively, from 1 to m and from 1
to k, we shall omit these limits for notational simplicity.

2. Generalized Multivariate Fibonacci Polynomials
of Order k and Convolutions

In this section, we introduce the sequence of generalized multivariate
Fibonacci polynomials of order k, to be denoted by

k
H(ﬂ)(f_l’ LICIC ] gm)’

*The research of this author was supported by the State Scholarship Foundation of Greece.
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along with the (» - 1)-fold convolution of H(m(xl, e gm) with itself, to be
denoted by

k
RN CIPENRE
and we derive a multinomial expansion and a recurrence for the nfh term of

,gk)P(xl, «+«» x,). In some instances, we shall use the notation H,gk) and H(k
instead of h(k)(x e gm) and Hé??(gl, s gm), respectively.

Definition 2.1: The sequence of polynomials Héw(g s «ees X,) 1is said to be the
sequence of generalized multivariate Fibonacci polynomials of order k, if

0, if some n; <0 (1 <7 <m),

Hékkgl, cees x,) =41, ifn=1,

> . }:J LJHEMJ (s oves x,), elsewhere,

where n = (ny, ..., n,) and x, = (xil, e xik), =1, ..., m.

For m =1, n; =n (20) and x; = «, Hgo(gl, ...»> Z,) reduces to H;kkg), the
sequence of multivariate Fibonacci polynomials of order k of Philippou and
Antzoulakos [4].

Lemma 2.1: Let H(kkx ...> Z,) be the sequence of generalized multivariate
Fibonacci polynomials of order k, and denote its generating function by

G (Bps cees Tps Ty cens L)

Then, for 0 < T < 1 (1l <72 <mand 1l < J < k) and E:ii:jxij < 1, we have
£ty «.. T
G (brs ovs Bys Zps wees 2 = — T ] <,
1 - z:ii% xi.ti T =1, cu., M

Proof: It can be shown by induction on 7y, ..., Ny that 0 < x;; <1 (1 <7 <m
and 1 < 4 < k) and 2;2;z;; < 1 imply 0 < B < 1, which shows the convergence
of gk(tl, ey tm, Lys eees x ) for at least It ] < 1, since for these t;

©

G (Fr oo B3 B s ER S D nmf:: A A
= ¢, - )7t
Next, using Definition 2.1, we have
gk(tl, cees bps Lys e x,)
R TETTE TR D SRR RO Tl A
=
¥

1 Np=1
st npzm+l

1]

kd n m (k)
PRI D TP DR SERRIN JAup DED DL IFE b

_ - ny ng+g T (k)
=ty e Ty b TpXgmyy 3L eee 2L by eee B B H)

J .
Ty ee By + L Xm o tlg (Brs eees £5 &1 cees )

from which the lemma follows.
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Now let Hé?;(gl, ««.5 Xp) be the (r - 1)-fold convolution of the sequence
Hék (gl, .;.,_gm) with itself, i.e., Hé@r = 0 if some n;, < 0 (1 < %2 <m), and
for n; 21 (1 <72 <m) a

B9, if p o= 1,
. n
2.1y #2, =

where ¢ = (cl, cees C)

As a consequence of (2.1) and in view of Lemma 2.1, we have

hd i ny 1y 77 (K _ P\~
(2.2) ¥ e 3 E e B @ s &) = (- T Tpet )
ny=0 Ny=0
Expanding (2.2) about ¢; = ... = ¢, = 0 and using procedures similar to those

of [5] and [8], we readily find the following closed formula for Hy ' ps in terms
of the multinomial coefficients.

Theorem 2.1: Let Hé??(gl, --+» Z,) be the (r - 1)-fold convolution of the se-

quence HSO(QI, ... Z,) with itself. Then

nyp + - +n +r -1 %

H(k)
E.jn.j=m Nyls vews Bpps = 1
J T4 7

n+1l, r(fl’

n; =0, 1, ... (1 <72 <m.

Proof: Let |t;| <1 (1 <i<m, 0 <x,; <1 (1l <<<mand 1l < j < k), and let

iJ
ZLEinJ < 1. Then

el S E T (s s )
0 Np=0

(1- zog ey t))", by @,

M

n)

=n§;0(n T TN By el)' since | T8 e <1

n
=2 (n T 1> )2 ( N >ninj(x~;jtg)nij ;
n=0 n F-Z-Vz..=n M1ls s> ok
A by the multinomial theorem,
-3 > I A B W P E IO
n?;o n?;O Z;nigl " ( N1ls eses Mpgs 2 — 1 A A

=1, ..., m

m “en =
=0 n,=0 Ydng =ny n11» > Pmies T 1

=1, ..., m

n

_ o< N n - nyp + e +uy tr-1 Ny
= Z .5 e Z/ tll DY t Z ( m nlngﬂclf 3
1=

by replacing n; by n; - Ezj(j - ny; (1 <72 <m). The theorem follows.

We proceed next to show that Hé?L satisfies the following linear recurrence

with variable coefficients, using procedures similar to those of [4] and [6].

Theorem 2.2: Let Hé?;(gl, .--> x,) be the (r - 1)-fold convolution of the se-
quence Hékkgl, ..., Z,) with itself. Then
Hé?L =0, if some n; < 0 (1 << < m), kaL =1,
and zk) (k) r -1 B x)
Byvi,» = X zjxiJHzﬂ—i-u r Ng ZJ"WSJ' Hﬁﬂ-is: r’

if n; 2 0 and some ny, 21 (1 <7, s <m).
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Proof: From the definition of Hépp, we have

(2.3) Hg?r =0, if some n; <0 (1 <7 <m) and H§kL = 1.
Now, using (2.2) twice, we have

(k) (k) (k) .
(2.4) H, +1, Hrl+l,1’+l - Z 2. le nAl-g., v+l n; = 0 (L =72 <sm,
since the generating function of the right-hand side reduces to that of Hﬁ?l »
Next, differentiating both sides of (2.2) with respect to ¢, (1 < 8 < m), we
get

(2.5) n, h(k) Ly = r}j beJH;?l_J ey Mgz 0andn, 21 (1 <4 =258 < m) .

Combining (2.4) and (2.5), we obtain
(k) ~ (k) r -1 .
Hi+l,1“= Zilj‘x Hrz+l—J,r+—ZijJ'H

[€9) .
. sin+l-g.,r’
s n+l

if n; 2 0 and some ny > 1 (1 < ¢, s < m),
by means of (2.1), which along with (2.3) establishes the theorem.

Remark 2.1: For m = 1, ny, =n, and ; = x = (£;, ..., *), Theorems 2.1 and
2.2 reduce to the main results of Phlllppou and Antzoulakos [4] on multivariate
Fibonacci polynomials of order k (see Theorems 2.2 and 2.3), namely,

(k) - ny + -0+ +r -1 "
(2.6) 40 (@ )y ( e e I Jef7, n =0,
jing=n
and
(k) - J (k)
(2.7)  H, ) (%) = Zioln + J(r = DIH,D 5 (x)s no2 1.
Remark 2.2: For m = 1, ny =n, and x; = (X, ..., ), Theorems 2.1 and 2.2 re-

duce to Theorems 2.1(a) and 2.2 of Philippou and Georghiou [6], respectively,
since for these values

B0 @) = 2P @),

ny, r

where F f“ (x) denotes the (r - 1)-fold convolution of the sequence of Fibonacci-

type polynomlals of order k with itself.
We note in ending this section that the sequence Fém defined by

0, if some n; <0 (1L <72 <m),
(k)

F,20=41, ifn =1,
(k)
2. ZJFn is elsewhere,
may be called the multiple Flbonacc1 sequence of order k, since for m = 1 and

ny = n (20) it reduces to F K the Fibonacci sequence of order k (see, e.g.,
Philippou and Muwafi [7]). It may be noted that

(2.8) Frf’;jl= 3 (”11+"'+””’<> n; =0, 1, oo (14 <m.
ZJ’” -n nll, ceey nmk
which follows from Theorem 2.1 for r» = 1 and xz;; =1 (1 <727 <mand 1 £ J < k).

3. Recurrence Relations for the Multivariate Negative
Binomial Distributions of Order k

In this section, we employ Theorems 2.1 and 2.2 to derive a recurrence
relation for calculating the probabilities of the following multivariate nega-
tive binomial distribution of order k of Philippou, Antzoulakos, and Tripsian-
nis [8].
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Definition 3.1: A random vector N = (N}, ..., N,) is said to have the multivari-
ate negative binomial distribution of order k with parameters vr, qi1s -+ 9ok
(r >0, 0<g <1forl£i§mandl§j$k,andqll+...+qij<l),tobe
denoted by MNB,(r; gy15 .5 q,)> if

PNy =701y «uey, Ny = n,)
_ » 7’111+---+7’ka+¥’—1)“ n nij
ijjrg:n < N1ls eoes Mg r-1 v quj ’
n; =0, 1, ... (1 £2 < m,
where p =1 - 91 = T Qe

Analogous recurrences are also given for the type I, type II, and extended
multivariate negative binomial distributions of order k of [8], denoted by

MNBk,I(P; Ql’ LR E] Qm)’ MNBk’II(P; Ql’ e Qm)’ and
MENBk(r; s e qu).

These distributions result by applying to the parameters of MNBy(r; gy ---»
qu) the follcwing transformations, respectively:

(a) q;; =P/7'q, (0 <@ <lfor1<is<m £,9 <1landP=1- L;0);

(b) q;; = @;/k (0 <@; <1 forl=<is<m 20 <landP=1- 2;0,);

(c) q;; = PP, ... Pj—lQij (Py =1, 0 < Qij <lforl <Z<<mandl < J <Kk,
L;9;; <land P; =1 - 2,4, for 1 <j <k).

]

We note first the following proposition that relates the multivariate nega-
tive binomial distribution of order k to the generalized multivariate Fibonacci
polynomials of the same order.

Proposition 3.1: Let N = (N}, ..., N,) be a random vector distributed as

MNBR(P; qll’ s e 3 qu)’
H(k)

9, v be the (r - 1)-fold convolution of the sequence Hgo with itself.

and let
Then

(k)
P(IVl = Mgy oeees v, = nm) = pPHQ+l,r(gl’ e gm),

S
]
(=]
[

w

“
[
IN
)
IA
3

.

where q; = (qil, ey qik)’ T =1, cuey M.
Proof: The proof is a direct consequence of Theorem 2.1 and Definition 3.1.

We proceed now tc derive a recurrence relation for calculating the proba-
bilities of MNBy(r; qiys - qu).

Theorem 3.1: Let V= (Ny, ..., Ny) be a random vector distributed as

MNBR(P; qll’ LRI ] qu):

and set
Poop =PW, =nys cons Ny =np).
Then
0, if some n; < -1 (1 <7 < m),
P, , ={p* difn = .o =n,=0,

r -1

z; zjqijpz—ji,r + ijqupﬁ'is’l’” if n; 2 0 and some

ng 21 (1 <<, s <m.
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Proof: 1f some n; < -1 (1 £ ¢ <m), (W) =nys «.., Ny =ny,) = 0, which implies
Py, p=P®) =0. 1Ifny = ... =mny = 0, Definition 3.1 gives Eﬁ,P = pT. If
n; 2 0 and some n, 2 1 (1 <7, s <m), we have

’

P% .= pfﬁégl’p(gl, eees gm), by Proposition 3.1,

(k)
pp{zi quinﬁ+l_ii’ Adys wees @)
(k)

E:jqujHﬂ+l‘is:P(ﬂl’ ceas gm)}y by Theorem 2.2,

r =1
Zizjqijpﬁ'ii +

, Mg

r -1
Mg

+

E:jqujEZ—is,r’ by Proposition 3.1.

Using the transformations (a), (b), and (c), respectively, Theorem 3.1 now
reduces to the following corollaries.

Corollary 3.1: Let ¥ = (Ny, ..., N,) be a random vector distributed as

MNB, (75 qys -vvs G0

and set
By p = PWy =mny, ooy Ny =my).
Then
0, if some n; < -1 (1 < 7 <m,
P@,p = pkr, if ny = «o0 =n, =0,
L d-1 r - - J-1
R L P e R S K| A L
if n; 2 0 and some ng 2 1 (L <7, 58 < m).
Corollary 3.2: Let N = (N, ..., N,) be a random vector distributed as
MNBk’II(r; Gis oo G s
and set
Pﬂ,r = P(]Vl T NLs seas Nm = nm).
Then
0, if some n; < -1 (1 << <m),
Py, =4p% 1if ny = «c. =ny =0,
a 3 . Qi r -1 .qS
ZLZJTPE—JVPJF Mg 259 % Pa-go e

if n; 2 0 and some n, 2 1 (I <4, s < m).

Corollary 3.3: Let N = (N, ..., Vy) be a random vector distributed as

MENB, (5 Gyys -5 Q)
and set
Pﬂ,r = P(Nl F My ey Nm = nm).
Then
0, if some m; < ~1 (1 << <m),
Por=4(p; -+ P75 if ny = -co =ny=0,
r -1
TiZjPy s Pyt 5,0 F g Ly oo Py, 00
if n; 2 0 and some ng 2 1 (L <7, s = m).
For m = 1, Theorem 3.1 and Corollaries 3.1-3.3 reduce to known recurrences

concerning respective univariate negative binomial distributions of order k
(see [4] and [6]). For k = 1, Theorem 3.1 (or any one of Corollaries 3.1-3.3)
provides the following recurrence for the probabilities of MNB(r; qus o> qm),
the usual multivariate negative binomial! distribution,
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, if some n; < -1 (1 <7 <m),

0
P o= pl’ if n1=...=nm=0’

s
Ziqi"ﬂ"—li’ r + Mg qsp’_l -lss 12

if n; 2 0 and some n, = 1 (1 <7, s < m),
which does not seem to have been noticed before.

Remark 3.1:-For r = 1, Theorem 3.1 and Corollaries 3.1-3.3 provide recurrences
for the probabilities of respective multivariate geometric distributions of
order k of [8], defined by

MG(Gyys «vvs Quz) = MNBr(Ll; Gyqs «vvs G )s

mk,l(q:[, e Qm) = MNB]{,I(I; ql, LB ] qm)’
MG, 11 (qys «vvs q,) = MNBy 1 (15 gy ooy G0
and MEGk(qll, ees qu) = MENB (1; Gyps o> qu).

The resulting recurrence for MEGk(qll’ ey qu) has also been obtained in [5],
via a different method.

We note in ending this paper that another derivation of Theorem 3.1, with-
out employing the sequence of generalized multivariate Fibonacci polynomials of
order k, has been obtained by Antzoulakos and Philippou (see [2]).
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1. Introduction

Let {wg} be a recurrence sequence of order n (» € N) and let its generating
function be given by

i 174
(1) w(z) = E: quq = _77__l£31__~_,
4=0 1.0 = b2
j=

where W,(2) is a polynomial in 2z with deg W;(3) = m. For a positive integer Kk,
let w,(3) denote the generating function of the sequence {wé} of the ktP powers
of wg. It is known that w;(z) is a rational function in z (see [6] or [8]).
The aim of this paper is to study the degrees of polynomials in the numerator
and denumerator of w;(3). This paper is similar in character to [4].

The function w,(%) has been studied with m = n - 1 in [8] and [11]. Gen-
erating functions for powers of third-order recurrence sequences have been
studied in [13], and those of second-order recurrence sequences in [1], [3],
(51, [7], [9], [10], and [12].

The proof of our result is based on the following theorem by Hadamard:

If A(8) = Y a,8", B(z) = ). b,z", and C(2) = 3 a,b,z",
n=20 n=20 n=20
then

1 ds
0(z) = 5= L A(S)B(Z/S)-E—,

where Yy is a contour in the s plane, which includes the singularities of
B(z/s)/s and excludes the singularities of A(s). If the radius of convergence
of A(z) [resp. B(z)] is R (resp. R'), then the radius of convergence of ((2) is
at least RR', and y may, for example, be any circle between ISI = R and Isi =
|2|/R" (see [6], p. 813, [14], pp. 157-59).

2. The Generating Function w,(z)

Theorem: Let {w,} be a recurrence sequence of order n and let its generating
function be given by (1). Then

Wy (2)
(2) w,(2) = 5.’
where
D 1 brl eee bni _ (0}
k(Z) (Pl,...,rn)ENg ( - 1 n Z)) NO =N U N

ri+e--tr, =k
and W, (z) is a polynomial in z with

deg Wk(z) < (n + i - 1)— n + m.
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Proof: Clearly ¥,(3) can be written in the form
m-p
Wi(a) = wpzp_ﬂl(l - a;3), 0 <p<m,
i=

where p is the least integer such that wp = 0. Assume first that by, = b;, for
Jdy # J, and by # 0 for § = 1, 2, ..., n. Then we distinguish two cases:
m< o, mzn.

Case 1. Let m < n. We proceed by induction on k. 1If k% = 1, the theorem
holds. Assume it holds for kX = X (K 2 1). We shall prove that it holds for
k = K + 1. Applying Hadamard's theorem and the Cauchy residue theorem and
noting that the appropriate winding numbers are = 1, we obtain

1 d
Wy, (8) = RL zA;K(s)w(.z/s)—S§
Wpedw,zP [ (s = a;2)
Proge

= . Sn—m—lds
27 Y n 7 v, n
(1 =p - b2yl (e = b2
Prte.trn =K ! n i=1 J
m~p
. _
. wK(bhz)wp H (b, - a;)
- E: r=1 pr=m=1
h=1 ) » r, 1 i
II (1 - bl T bn bhg) Il (bh - b;)
Pyt =K i=1 ¢
Denote briefly J=h
il & 1 1
g neme
e, = wp,rl(bh - a;) Jl (by, = by) by~
=1 J=1
J=h
(R . ry Th-1 L Than 7,
By i(z) = I . (l = by bh~1 byii =t by Z)'
P1+---+1=h_]+r;1+1+~~~+1;1=A+1
., _(n .
Converting the fraction in the sum over /2 by b;:l(z), we obtain
I
- (h)
hZ_AIChW}{(bhz)E}{H(g)
(3) vy, (3) =22 :
Dy er(2)
I
The number of solutions of the equation A K in (Pl, e Pn) S NO
is equal to
(n + K - 1)
K ’
Thus, the number of solutions of the equation ry ot oot EST + S + -+,
=K+ 1idn (v, ..., Ty s T . )€ NE"I is equal to

(n+K—1>
K+ 1 )

(K -
This is plainly the degree of the polynomial ngl(z). Thus, the degree of the
polynomial in the numerator of the fraction of (3) is less than or equal to

n+ K - 1\

(YL-FK—I
\ K+1 /)’

X >—n+m+(

that is, less than or equal to

(n + (K + 1)

- 1)
X+ 1 - 1+ m.

This proves the theorem in Case 1.

330 [Nov.



ON GENERATING FUNCTIONS FOR POWERS OF RECURRENCE SEQUENCES

Case 2. Let m = n. We proceed by induction on k in this case, too. The
theorem holds for k = 1. Assume it holds for k = K. Then the series w,(z) can
be written in the form

Uy (2)
K
w,(z) = u;t + .
. ;o Dy (2)
where
n+ K -1 n+ K-1
a = deg Wy(z) ( ¥ > -n+m, b= ( I )
and Uy(z) is a polynomial in 2 of degree < b. Note that a - b <m - n. The

series w(2) can be written in the form
mz::n . i AJL
w(z) = v.29J + —_— .
i 7 = 1= byz

Applying Hadamard's theorem and the Cauchy residue theorem and noting that the
appropriate winding numbers are =1, we obtain

vy, () = Z—Tlmfy 0 ()u(a/a)LE

1 a-bm-n . 5d
P SV gt— s A s
mev ~;>=:o JZ_:O% I gdtl ¢ 21t Z Zu Ys - b Zd

+“l“f k() el _;.f LUk A
2mi Jy Sy Dy(s) 7 gi+l 2t ), T Px(8) s - bz
m=n . no Ug(b, z)
= u;v; 85 + uzdy bJ it B.vizd + Y
Tume v % % Sonset v X Tty
where B; (j =0, 1, ..., m - n) is a complex constant. Now we can see, after
some calculations, that wK+1(z) can be written in the form
v, ,(3) = —-——WK+‘(Z>,
k™ 25 @
where

n+ (K+1) -1

deg Wy, ,(z) < ( P

)—n+m.

This proves the theorem in Case 2.

Now the theorem is proved when bj; = bj, for j; = j, and b; = 0 for 4 = 1,
2, +.., m. But the coefficients of 29 (¢ = 0, 1, ...) in the series w;(2) and
in the polynomials W,(2) and Dy(z) are polynomials in the variables w,, a;, and
b;. Thus, taking limits bj, + bj,, bj > 0 proves that the theorem holds for
all by, ..., b,. This completes the proof.

Remark: It should be noted that, in the case in which twe or more of the by
are equal, the treatment used at the end of the proof does not have to give the
best possible result (cf. [8], Sec. 7). However, application of Hadamard's
theorem and Cauchy's residue theorem would be too laborious in that case.

annqﬂe Let {wgq} = {Fg}, the Fibonacci sequence, and let a = (1 + /5)/2, and
(1 - V5)/2. Then, for XK = 1, formula (3) is
alo = B) 711 - g%2) + B(B - )" I(1 -« Z)
(L - a?2)(1 - aBz) (1 - B?z)

which gives the well-known formula

Fy(z) =
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1 - =
1 - 23 - 222 + 33

Fz(Z) =

(see, e.g., [2]; [13], p. 794).

10.

11.

12.

13.

14.
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1. Introduction

Consider a sequence defined by the condition
(.1) uy =0, uy =1, 4., =au,qy +u,, n=20,1,2, ... (a€Z).

If a = 1, then u, = F,, that is, we get the sequence of Fibonacci numbers. If
p is a fixed prime, we also consider the sequence ﬂo, El, ﬁz, ... defined by
the same condition in Fp, the finite field of p elements. Let k = k(p) be the
length of the shortest period of the sequence ﬁo, ﬁl, ﬂz, e+ - A Schinzel [1]
has proved the following result.

Theorem 1.1 (Schinzel): Let S = S(p) be the set of frequencies with which dif-
ferent residues occur in the sequence #, [0 < n < k(p)]. For p > 7, p*a(a2+-4)
we have
= {0, 1, 2} or {0, 1, 2, 3} if k(p) # O (mod 4),
{0, 2, 4} if k(p) = 4 (mod 8),
{0, 1, 2} or {0, 2, 3} or {0, 1, 2, 4} or {0, 2, 3, 4}

if k(p) = 0 (mod 8).

The purpose of this note is to show how this result can be extended, using
the same method, with some minor modifications. Consider the sequence defined
by the condition

S
S
5

f

(1.2) vy = 2, Vy = A, Uy p =AU F Vs N= 0, 1, 2,

If a = 1, then v, = L,, that is, we get the sequence of Lucas numbers. Con-

sider also the sequence 50, ?1, 52, ... defined by the same condition in Fp.

Let k7 = k'(p) be the length of the shortest period of the sequence T,, U, U,,
We prove that k' = k (Lemma 2.1 below) and get the following result.

Theorem 1.2: Let S' = S'(p) be the set of frequencies with which different
residues occur in the sequence v, [0 < n < k(p)]. For p > 7, p{a(az + 4) we have

S" =10, 1, 2} or {0, 1, 2, 3} if k(p) £ O (mod 4),
st ={0, 1, 2} or {0, 2, 3} or {0, 1, 2, 4} or {0, 2, 3, 4}
if k(p) = 0 (mod 4).

Moreover,
(1.3) S' S if k(p) £ 4 (mod 8).

Corresponding to Schinzel's three corollaries, we deduce from Theorem 1.2
the following corollaries.

Corollary 1.3: 1If p > 7, p*az + 4, then at least one residue mod p does not
occur in the sequence U,.

Corollary 1.4: If p = 5, pfa(a® + 4), then at least one residue mod p occurs
exactly twice in the shortest period of the sequence v, .
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Corollary 1.5: For a=1, p > 17,

5" =10, 1, 2, 3} if k(p) # 0 (mod 4),
S'=1{0, 1, 2} or {0, 2, 3} or {0, 1, 2, 4} or {0, 2, 3, 4}

if k(p) = 4 (mod 8),
5" =1{0, 1, 2, 4} or {0, 2, 3, 4} if k(p) = 0 (mod 8).

L. Somer [2] has proved Corollary 1.3 except for the case where p = 1 or 9
(mod 20).

2. Some Lemmas

Let D = a® + 4 and let ¢ be a zero of > - ax - 1 in the finite field Fg,

where g = p if (%) =1 and g = p? if (%) = -1 (we exclude the case p|D).
For u, and 7, we have the formulas
B - ethr -
(2.1) Uy =y, Ty = £+ (T

g+ g1

Let § be the least positive exponent such that £§ = 1.
The following seven lemmas correspond to the lemmas in [1].

Lemma 2.1: For p{2D, we have k'(p) = [8, 2] = k(p). (Here, the symbol [, 2]
means the least common multiple of § and 2.)

Proof: The second equation above is the content of Lemma 1 in [1]. The first
equation follows by exactly analogous considerations using (2.1). [

Lemma 2.2: Let pIZD. The conditions

n =m (mod 2) and D, =D

3

(mod k) or w = m = 0 (mod 2) and n + m = 0
m =1 (mod 2) and n + m = k/2 (mod k).

hold if and only if either
(mod k) or ¥k = 0 (mod 4), n

Proof: We use (2.1) and combine arguments in the proofs of Lemma 2 and Lemma 3

in [1]. O
Lemma 2.3: Let p[2D. The conditions

mox
m
(=

n =m (mod 2) and U, = -V,

are equivalent to
n=m=1 (mod 2) and n + m = 0 (mod k) if k¥ = 2 (mod 4),
n=m+ k/2 (mod 2) and D, = Uy, if kK = 0 (mod 4).

Proof: We use (2.1) and combine arguments in the proofs of Lemma 2 and Lemma 3

in [1]. O
Lemma 2.4: Let p*ZD and let 0 < n < k. We have D,, = 0 if and only if

k 2 (mod 4) and n = k/2,
k =0 (mod 8) and n = k/4 or n = 3k/4.

Proof: Analogous to the proof of Lemma 4 in [1]. [

Lemma 2.5: Let p[2D. We have

, D\ _ . D\ _ _
klp - 1 if (p) =1, k|2(p + 1) if (p> - 1.
Proof: In view of Lemma 2.1, this is exactly the same as Lemma 5 in [1]. [
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Lemma 2.6: 1If k = 2(p + 1) = 0 (mod 8), then for every nonnegative integer e
there is an »n such that

(2.2) B, =7,.

Proof: 1f u, = 0, we use the identity
- +1
VpVnse = UnVUn+e = (=" Dugun_m

and find by virtue of Lemma 4 in [1] that the quotients

)
LEC for 0 < n < k, nek
" 2 4

are all distinct. Since k/2 = p + 1, we have p distinct elements of Fp. One
of them must be 1, which gives (2.2).

Suppose now that %, = 0. By Lemma 4 in [1], ¢ = 0 (mod k/2). It follows
from Lemma 2.4 that we can take n = k/4. [

Lemma 2.7: Let p|2D. We have

Proof: Analogous to the proof of Lemma 7 in [1]. [

We remark that Lemma 2.6 and the last equation in Lemma 2.7 will not be
used in this paper. .

3. Proof of Theorem 1.2

To prove Theorem 1.2 we shall consider successively the cases k # 4 (mod 8)
and X = 4 (mod 8). 1In the first case we prove (1.3).

1. Let Xk 2 4 (mod 8). It follows from Lemma 2.4 that 0 occurs in the se-
quence 7D, (0 <n < k). Thus, the sequence 7, (0 < #n < k) is a non-zero multi-

ple of a translation of the sequence #, (0 < n < k). In fact, dif ¢ dis the
least positive integer such that U,, = 0, then -t is the amount by which the
sequence %, (0 < n < k) is translated and D:+) is the constant multiplier. It

then follows immediately that the sequences 7, (0 <#xn < k) and u, (0 < n < k)
have the same frequency pattern of residues appearing in these sequences.
(1.3) now follows immediately.

2. Let Kk = 4 (mod 8). According to Lemma 2.4, 0 does not occur in the
sequence U, (0 < n < k) so that 0 € §'.

According to Lemma 2.2, every element in the sequence Tp; (0 < 2j < k)
occurs there exactly twice, except for the elements Dy and Dy/p , which occur

once. Moreover, Dy, = -Ug by Lemma 2.3. Similarly, every element in the
sequence Vy;,1(0 < J < k/2) occurs there exactly twice, except for the elements
Dy and D3pyy = —Ug/y > which occur once.

Since K = 0 (mod 4), it follows from Lemma 2.1 that & = k and, therefore,
gk/2 = 1, Using (2.1), we see that

=2 _ =2 _
G- Dy = Vg = 4

We assume now that 2 ¢ S'. Consider the elements Up; (0 < 2j < k/2). These
must occur in the sequence Dp;;; (0 < 25 + 1 < k). Since by Lemma 2.3

Va5 = "Vkj2-2;
there are two cases:
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I. D,. # 20, (0 < 27 < k/2),
11. 7,.,= 7, ,, and Ek/z—?.j' = Uy, for some g (0 < 25" < k/2).

We shall consider these two cases separately.
Case I: In this case of the two sequences
ﬁzj (0 <25 <k, g=0, g =zklb)
and
Ty (0 <25 +1 <k, 25 +1=kJ/4, 2 +1 = 3k/b)

one is a permutation of the other. Using (3.1), it follows that

kf2 71 k/2—1_
2 5. - 2(4) = 3 DFy - 2(-4),
j=0 J=0

from which we infer, using Lemma 2.7, that 2k = 16 (mod p), kK = 8 (mod p).
It follows from Lemma 2.5 that either

k=2(pp+1) or k<p+1.

If k = 2(p + 1), then k = 8 (mod p) implies 3 = 0 (mod p), which contradicts
the assumption p > 7. If k < p + 1, then we must have Xk = 8, which contradicts
the assumption kK = 4 (mod 8).

Case II: In this case, there are two different elements in the sequence
Upj+1 (0 £ 25 + 1 < k) which occur twice in this sequence and which are not
equal to any element Up; (0 < 25 < k/2). Since we are assuming that 2 ¢ S',
these elements must appear in the sequence Up; (0 < 24 < k) and, therefore,
they must be Uy and Uy, = -Dg. It follows that the sequences Dp; (0 < 2j < k)
and Up;,.1 (0 <25 + 1 < k) consist of the same elements. Moreover, V; and
Dy,2 » which occur in the former sequence once, occur in the latter sequence
twice and the elements Uy ;= Uy, and Dysp-2;r = D3g/y >, occurring in the former
sequence twice, occur in the latter sequence once. It follows that

k/2 -1 — Z</2-1_2
L Uzj - 2(4) - 4("4) = Z Uzj+1 - 4(2) - 2(_4)’
J=0 j=0
from which we obtain, using Lemma 2.7, that 2k = -16 (mod p), kK = -8 (mod p).

In a similar manner to that in Case I, we conclude that either 5 = 0 (mod p), a
contradiction, or Kk = p = 8 = 1 (mod 2), which contradicts Lemma 2.1.

The assumption 2 ¢ S' thus leads to a contradiction in every case, so that
we have proved that 2 € S'.

Now we prove that either 1 € S’ or 3 € 5’ but not both. We must again look
at the four elements Ug, Vg2 Vxsy > and Ugzy sy . It is clear that our assertion
is true if we prove that the following four conditions are equivalent:

(3.2) in = 1 (mod 2) such that 7, = Vg

(3.3) 3n =1 (mod 2) such that 7, = Dy o
(3.4) in = 0 (mod 2) such that 7, = Dy o
(3.5) dn = 0 (mod 2) such that v, = —53k/‘+ .
Since ﬁk/z = —ﬁo and ﬁ3k/4 = —Ek/u it follows from Lemma 2.3 that

(3.2) = (3.3) and (3.4) = (3.5).
It remains to be proved that
(3.2) = (3.4).
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(3.2) = (3.4) Suppose that n = 1 (mod 2), v, = Dy. We prove that

(3:6) D = Ty
Since k/4 = 1 (mod 2), this will prove (3.4). It follows from (2.1) that
(3.7) Er -1 ="+ 1
and that (3.6) is equivalent to the equation
grd/h gogonk/h kb ok/
which, using (3.7), can be written as
(3.8)  (&" - D(EMY + 74 = 0.

It follows from Lemma 4 in [1] that %,, = 0. This, by (2.1), implies that
(3.8) holds. Therefore, also (3.6) holds and we have proved the implication
(3.2) = (3.4).

(3.4) = (3.2) Suppose that n = 0 (mod 2) and D, = Uy, - We prove that

(3-9)  Doigem = Yoo
Using (2.1), the equation (3.9) can be written as
(3.10) £n+3k/'+ _ E—n—3k/'+ = 2.
We find

En+3k/‘+ = (_g—n + gk/q — g—k/L})g3k/’+ = __E—?'L"'Sk/q + gk - Ek/Z

- _E—rz+3k/‘+ +1 - (-1),

so that (3.10) will follow if we show that
(3.11) g—n+3k/‘+ + E—n—Sk/L} = E—H(E3k/'+ + g"37</‘+) = Q.
But

(g3kI% 4 g=3k/h)2 = (gk/2)3 4 2 4 (£7%/2)3 = (-3 + 2+ (-1)° =0,

so that (3.11) follows and the implication (3.4) = (3.2) is proved.
It has now been proved that the conditions (3.2)-(3.5) are all equivalent.
Since every residue occurs at most twice among Vy; (0 < 2§ < k) and at most
twice among Dy 41 (0 < 24 + 1 < k) it occurs at most four times among v,
(0 <n < k). It follows from what has been proved that, in the case k = 4 (mod
8), we have

s =40, 1, 2} or {0, 2, 3} or {0, 1, 2, 4} or {0, 2, 3, 4}.
This completes the proof of Theorem 1.2. [J

Proof of Corollary 1.3: For pla, this corollary follows directly from Theorem
1.2. TFor pla, we have D, = 0 or 2; hence, 0 € S'. []

Proof of Corollary 1.4: 1f k # 4 (mod 8), then S' =5 by (1.3) and 2 €S’ follows
from Schinzel's Corollary 2. Corollary 1.4 clearly holds for p = 2 by inspec-
tion. If kK = 4 (mod 8), then the proof that 2 € S’ in the proof of Theorem 1.2
holds if p > 7. However, by (3.1), if k = 4 (mod 8), then

352 = 5532 -
Ty = Oy = 4
which implies p = 2 or p = 1 (mod 4). Thus, 2 € S’ can hold only if p = 5. [J

Remark 3.1: Corollary 1.4 is not formulated as generally as the corresponding
Corollary 2 in [1]. Example 3.2 shows that 2 ¢ S' can occur if p = 5.
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Example 3.2: Take a = 2 and p = 5, pfa(a? + 4) = 16. Then S’ = {0, 3}. 1In
fact, the shortest period consists of the residues 2, 2, 1, 4, 4, 2, 3, 3, 4,
1, 1, 3. Note that in this case k = 2p + 2 = 12 -8 (mod p) which was a
possibility in Case II.

Proof of Corollary 1.5: This corollary follows from Corollary 3 in [1] and
Theorem 1.2. [J

We conclude this note by making the following observation. We can look at
Corollary 2 in [l] and the corresponding Corollary 1.4 at the same time and
calculate the smallest residue which appears exactly twice in the shortest
period. Keeping the integer a fixed and considering primes p > 5, pfa(a? + 4)
let us denote these residues by sr,u(p) and sr,v(p). It therefore follows from
Lemma 4 in [1] and Lemma 2.4 above that we have the following result:

sr,u(p) = 0 = sr,v(p) = 0 < k(p) = 0 (mod 8).
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In 1977, Kenneth B. Stolarsky [6] introduced an array s(Z, j) of positive
integers such that every positive integer occurs exactly once in the array, and
every row satisfies the familiar Fibonacci recurrence:

s(Z, j) =s(i, g - 1) +s(i, § - 2) for all j =2 3 for all 7 > 1.

The first seven rows of Stolarsky's array begin as shown here:

1 2 3 5 8 13 21
4 6 10 16 26 42 68
7 11 18 29 47 76 123
9 15 24 39 63 102 165

12 19 31 50 81 131 212
14 23 37 60 97 157 254
17 28 45 73 118 191 309

Hendy [4], Butcher [2], and Gbur [3] considered Stolarsky's array, and Morrison
[5] and Burke and Bergum [l, p. 146] considered closely related arrays. In
particular, Gbur discussed arrays whose row recurrence is given by

s(i, J) =as(i, g - 1)+s(Z, § - 2),

which, fora = 1, is the row recurrence for Stolarsky's original array. In
this note, we show that any one of a larger class of second-order recurrences
can be used to construct infinitely many Stolarsky arrays.

Define a Stolarsky pre-array (of q rows) as an array s(Z, g) of distinct
positive integers satisfying

s(Z, j) =as(Z, §g - 1) + bs(Z, § - 2) for all § 2 3 for 1 << < g,

where a and b are integers satisfying 1 < b < a, and the numbers 1, 2, 3, ...,
q are all present in the array. By a Stolarsky array we shall mean an array
s(Z, ) whose first g rows comprise a Stolarsky pre-array for every positive
integer g. For the following Stolarsky pre-array, g = 2, a = 1, and b =1:

1 4 5 9 12 23 37 60

2 8 10 18 28 46 74 120
In order to construct Row 3 beginning with s(3, 1) = 3, note that s(3, 2) can-
not be 4 or 5, as these appear in Row 1; nor 6, as then s(3, 3) = 9, already in
Row l1; mor 7 nor 8 nor 9 nor 10 nor 11. These observations illustrate the

problem: once q rows of a (prospective) Stolarsky array have been constructed,
can Row g + 1 always be constructed? We shall show that the answer is yes, and
that, actually, Row g + 1 can be constructed in infinitely many ways.
The symbols Si, Sy, ... will always represent a sequence of the following
kind:
(i) s; >0, s, >0, and s, = as, . + bs,_, for n > 3,

where a and b are integers satisfying 1 < b < a. Let

_a + Ya2 + 4b
2

= and B =a - a,
so that a > 1, -1 < B < 0, and the identities a? = qo + b and Bz = gf + b yield
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(i1) s, = apo™ + blB” for all n =2 1, where
SIB - S, S, = 80
a, = —= and b, = ———,
L a(g - o) L g8 - @)

Similarly, the symbols ¢;, %5, ... will always mean a sequence given by

tn = atn_l + btn_z = CZZOL” + szn’
where
tlB - tz tz - tlob
Qy, = ——= and b, = ~——, and t; > 0, t, > 0.
CTCRE) 2 BB - a) ! z

Lemma 1.1: There exists a positive integer N such that s, = [as, + %] for
every n 2 V. The least such N is 2 + [loga/b2|a51 - SZI]-

ala”+l + b16n+1 + ablﬁn — b18n+1

= Sn+1 + ban(O‘ - B),

so that 8,41 = [as, + %] if and only if 0 < b1B"(a - B) + % < 1. This is equi-
valent to -1 < 2(as] - 8)B"” ! < 1, hence to

()™ - 1o < o

o 2]asy - s,

Proof: as, = o(a,o” + b;B")

and hence equivalent to n - 1 2 loga/bZIasl - 32], as required.

Lemma 1.2: Suppose s is not among t;, t2, ..., and ¢; is not among S, 8o,
Let

M =2+ [log,, 2|as) - s3] and N =2+ [log,,2|at; - tp]].

Ifm=M, n >N, and S, < t, <s < t <

m+1° e+ 1 n+l = Smi2
Proof: Suppose m > M and n = N. By Lemma 1.1, s;4.1 = [as; + %] for every 7 = m
and t;,; = [at; + %] for every ¢ 2un. So, if ¢, = 8,41 then

then s < ¢t < s <
m n

lot, + %] = [asne) + %],
so that ¢,.] = Spip. But then at, + bt,_, = aspy1 + bs,, so that t,.; = s,.

But then at,_) + bt,_, = as, + bs,_}, so that t,_, = s,-;. Continuing, we even-
tually reach ¢, = s, for some p 2 1 or else ¢4 = 8; for some g 2 1, contrary to
the hypothesis.

Now that we have s, < ¢, and ¢, < 8,41, the remaining inequalities in the
asserted chain follow by induction: s, < ¢, implies

[asp + %] < [atq + %],
so that s,,1 < tg4+1, and ¢y < s, similarly implies f,47 < Sp4).

Lemma 1.3: Suppose 81, Sy, and t; are given and ¢; > 8;. For k =2 1, let t;m
denote the sequence tj, tp = t; + k, t3 = aty, + bty, ... . Then there exist
positive integers C and X, both independent of k, such that if k > X and m >
Cllog, k] and n is the index satisfying s, < tﬁg < 8,+1> then

< 0

m+ 1 n+l < Spe1 < v

S, < tim < s

Proof: Let

M=2+ [loga/bZIasl - 32'] and N(k) = 2 + [loga/bzlatl— t] - k]].

Let p(k) be the index satisfying

()
Spk) < Euo S Spky+1-
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Clearly, there is a positive integer X; so large that p(k) = ¥ for all k = K.
For such k, Lemma 1.2 gives

(k)
D Spy+h < Tw+n < Spao+ien for all h = 0.
Also, for all k 2 Ky,
%) K = k) _ N (k)
alO‘-p + blﬂp( = SP(k) < t/V(k) = CZZOL + bZEN(k) < (az + lbzl)OCN(k).
Let 4, B, K, be positive integers, with K, > K;, all independent of kX, satisfy-
ing a, + |by| < A + Bk for all k > Ky3 to see that such A and B exist, observe
tIB—(tl'f'k) tl‘f‘k—f;l(x
a, = —————— and b, = ———.
a(B - a) B(B - a)
For all such k,

a,0P% < (4 + BK) o + Q(k), where @(k) = 1 + |b,8P%).
Then
alap(m < Qk) + (4 + Bk)u2+1ogwbﬂuh-trkl,

so that R
a;aP% < Q(k) + o2(4 + Bk) (2|at, - £, = k[)17 108D,

Applying log, to both sides and the inequality log,(x + y) < log,x + log,y to
the resulting right-hand side yields

p(k) + log a; < logaQ(k) + 2 + log,(4 + Bk)
I S
1 - log,b
Now limk+mQ(k) = 1, so that there must exist positive integers ( and K3, inde-
pendent of k, with Ky > K,, such that

p(k) + 1 < C[logy,k] for all k > Ks.

For such k, if m is any integer that exceeds C[log k], then m = p(k) + & for
some A 2 1. For n = N(k) + m - p(k), the stated chain of inequalities follows
from (1).

Theorem: Let S = {s(x, y): 1 <x <g¢g, y 21} be a Stolarsky pre-array. Sup-
pose t; ¢ § and ¢; > max{s(x, 1): 1 < x < g}. Then there exist infinitely many
numbers %, such that no term of the sequence t,, t,, t3 = at, + bty, ... lies
in S.

+ logu(Zloctl -1 - kl).

Proof: Suppose, to the contrary, that there are at most finitely many numbers
k = 1 for which the sequence ¢y, tp, =t} + k, t3 = at, + bt;, ... contains no
element of S. Let kl be the greatest of these k. Let t%m, tgd, ... denote the
(a, b)-recurrence sequence whose first two terms are ¢; and ¢, = ¢t + k; + k.
Then, for every positive integer k, the sequence tam, t(), ... contains a term
of S. That is, there exist indices j(k), x(k), and y(k) for which

2) tioy = s(@(), y(k)), where
(3) 1 < x(k) < q.
On the other hand, by Lemma 1.3, there exist constants (i, Cp, ..., Cq and Kj,

Ky, .., Kq, all independent of k, such that for & = 1, 2, ..., q-» if
Yo > Cpllogykl
where k > K, and j, is the index for which
s(x, y,) < tg? < s(x, y, + 1),
then equation (2) cannot hold for any j(k) < j,. Accordingly, (2) implies
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(4) 1 < y(k) < Cranllog k] for all k > K = max{ky, Ky, ..., Kgl.

Now, since the index x(k) in (2) is < ¢, we have s(x(k), 1) < tik)for all k, by
hypothesis, and also s(x(k), 2) < t;k)for all k larger than some K*. Therefore,
in equation (2), j(k) < y(k), so that

(5) L < j(k) < Cpyllog k] for all k > K*.

Let m(k) = [log, k] max{C}, Cp, ..., Cq}. Then, for all k > K = max{k, K*},
we have
1 <ax(k) g, 1 <yk) csmk), 1 < (k) < m(k).

Let k' be any integer large enough that k' > g[m(K+ k’)]?%. Then, for k = 1,
2, 3, ..., k', we have

1l <xe(K+ k) <qg, 1 csyK+k) sm(K+ k"), 1 <j(K+k) <sm(K+ k").

Now, the total number of distinct triples (x, y, J) that can satisfy three
such inequalities is the product g[m(K+ k')] 2, but we have more than this
number. Therefore, there exist distinct X, and k, for which

m(ku> = x(kv)’ y(ku) = y(kv)’ j(ku) = j(ku)-

This means that the sequences

(k) (k) (k) (k)

Tis bo s ey t,j(ku)’ and Tys Ty, 7 .ee, tj(kv)’
have identical first terms and identical j(ku)th terms. But this implies
(k) _ (k)
ty =1,

contrary to k, # k,. This contradiction finishes the proof.
Conclusion

An obvious consequence of the theorem is that any Stolarsky pre—array can
be extended to a Stolarsky array. For each new row, one need only choose #; to
be the least positive integer satisfying the hypothesis of the theorem; that
is, the least not yet present in the array being constructed. This choice
ensures that every positive integer must occur in the constructed Stolarsky
array.
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1. Introduction

It is known [1] that the equation F,x? + Fo412 - F,.» = 0 has solutions -1
and F,,,/F,, where {F,}, ., denotes the Fibonacci sequence. One wonders if
other interesting results might be obtained if the coefficients of the
quadratic equation were some other functions of the Fibonacci numbers. The

answer, as might be expected, is in the affirmative. Surprisingly, however,
the results in this paper arise in response to the following quite different
question. Under what conditions does the quadratic equation ax? + bx - ¢ = 0

have rational roots given that a, b, and ¢ are represented by the arithmetic
sequence 7, © +r, n + 2r in some order, where »n and v are positive integers?
In this paper, we treat only the case r = 1.
As usual, {L,},»; will denote the Lucas sequence and o the golden ratio.
Moreover, we will have occasion to use such well-known results as
L, =F,1 + Fy_1y L, + F, =2F 1, L, - F, =2F, 1, " = (L, + F,/5)/2
(see [2]). Note that L, = F,4y1 + F,_1 can be written as

¢) L, = 2F,_ + F,.

n n

Also, we will need the following identities from [2]:
(2a) F2 FF + (-1)7;

nel nn+2
(2b) Foi1Fu_y = F,F,y + (-1)"FL,

2. Fibonacci Quadratics

The equations
a2 + bz -~ ¢ =0, ax? -bx -c =0,
cx? + bx —a =20, and cx? - bx - a =0

have the same discriminant. Therefore, we shall study only the first ome. Let
us consider the case r = 1.

Theorem 1: Rational solutions to
(3) ne?2 + n+ Dz - (n+2) =0
exist <f and only if
(4a) n="Fy,,1 -1 (m=1)
and they are
(4b) Fyu/ (Fopms1 = 1)s =Fopyol (Fopey = 1)
Proof: The discriminant of (3) is
Dy = (n+ 12+ 4nn + 2)
5(m+ 1)2 - 4.

I

1991] 343



ARITHMETIC SEQUENCES AND FIBONACCI QUADRATICS

Rational solutions of (3) exist if and only if D; is a perfect square, say, for
example, D] = t2. Then we have

(4c) t2 = 5(nm+ 1)2 = -4,

which has positive solutions ¢ = Ly,41 and n = Fopp1 — 1 with m 2 1 for n 2 0,
as shown by Long and Jordan [4, Lemma 1], although their proof can be consider-
ably simplified by the use of the identity a, = (L, +~E%/§)/2. But, by (1),
t =2Fy,, + Fopy1and b =n+1=F, 1. Using these values in

x = (=b * t)/2n,

we get (4b). It is interesting to note that the solutions are proportional to
Fy, and Fy,40, which precede and follow F,,,;, respectively.

Theorem 2: Rational solutions to
(5) ne? + n+ 2)e - (n+1) =0
exist Zf and only if
(6a) no=Fopyslfion (m 2z 1)
and they are
(6b) Fom+2/Foms 35 —Foms1/Fop-
Proof: The discriminant of (5) is

Dy = (n+ 2)2 + 4nn + 1)

=n2 + 4(n + 1)2.

Rational solutions of (5) exist if and only if D, is a perfect square, D, = t2.
Thus, [n, 2(n + 1), t] form a Pythagorean triplet, not necessarily primitive.
We represent the triplet as (g2 - h2, 2gh, g2 + h?) to get

(6c) g% - gh - (% - 1) = 0.
[Note that if it were represented as (2gh, g2 - h%, g% + h2) then g2 - h? = 4gh

+ 2 and this implies g2 - h? = 2 (mod 4), an impossibility.] But, again, g is
an integer if and only if the discriminant of (6¢c) is a perfect square:

h2 + 4(h2 - 1) = 5h? - 4 = g2

or
(6d) 82 - 5n% = -4,
This is the same Pell equation as before and so has solutions s = Ljp,,; and

h = F2m+1. Now

g=(hs)/2=1[Fyps1* Lpne1l/2 = (Fope1 + Fonds ~Fon = Fopygs ~Fope

Since only the first solution gives positive n,

- 2 _ 32 - w2 _ w2 _
n=yg h Eomeo = Foni1 = Foneslon
with m 2 1, for n 2z 0. In this case, using (2b) and (2a), we obtain
b=Fy gy, v 2=Fy pFy g *1=F o(Fy p-Fy)+1
- 72 - -
4 = Finin = Fopuolon ¥ 1 = FopsFoin = Foniofon
an
- 2 2 _ m2 2 _
t=gttht = ES L, t i = Fy Bt FyyoF g

Using these in x = (-b * t)/2n, we obtain the solutions (6b) as claimed.
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The last equation to be considered is

(n+ x2 +nx - (n+2) =0.

Instead, we investigate the equivalent equation
ne? + (n - x - (n + 1) = 0.

Theorem 3: Rational solutions to

(7) ne? + n - e - (n+1) =0

exist <f and only if

(8a) n=Fy1Fy, (m=1)

and they are

(8b) Fom -1/ Foms  —Fopmso/Fopain.

Proof: The discriminant of (7) is
D3 =(n- 12+ 4nn+1) =4n?+ (n+ 1)2.

Rational solutions of (7) exist if and only if D3 is a perfect square, D3 = t2.
Thus, (2n, n + 1, ) form a Pythagorean triplet. We represent the triplet as
(2gh, g% - k%, g2 + h?) to get
(8¢) g2 - gh - (W2 +1) = 0.
[Note that if it were represented as (g2 - K2, 2gh, g2 + %2) then we would have
bgh - 2 = 92 - h? and this implies 92 - k2 = 2 (mod 4), an impossibility.] As
before, g is an integer if and only if the discriminant of (8c) is a perfect
square:

h? + 4(h? + 1) = 5h% + 4 = g2
or
(8d) §2 - 502 = 4

which has positive solutions s = Ly, and h = F,, for m 2 1 by [4, Lemma 2].
Since
g=(ht8)/2= (Fop t Lpp)/2 = (Fom + Fop-1)s ~Fom-1= Fome1s ~Fop -1

Only the first solution gives positive n:
n=gh="Fy, 1oy
with m 2 1, for » # 0. 1In this case, using (2a) and (2b), we have that
= ; - = - — = - 2
b=Fy by, =1 =0y (Fyp=Fp) =1 =Fy oF -, +1
= Fopiobon = Fops1fon-1

and
- 42 2 - 2 2 -
t=gttht=Fy ot ES =y ot Fyp 0 Fn
Using these in x = (-b * t)/2n, we obtain the solutions (8b) as claimed.

The case r > 1 is under consideration.
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The purpose of this paper is to study partitions of positive integers for
which Euler's totient function is endomorphic. That is, n = a; *+ .-+ +a; is a
¢-partition if 7 2 2, and ¢(n) = ¢(a1) + oo+ ¢(ay).

Questions related to two-summand ¢-partitions have been considered by the
present author [2] and by Makowski [3]; here, we generalize to ¢-partitions
with an arbitrary number of summands. Results include: characterizations of
positive integers which have at least one ¢-partition and of those which have
only one ¢-partition; constructive proof that any prime p has exactly w(p) ¢~
partitions; and techniques for constructing ¢-partitions and reduced ¢-
partitions for various types of positive integers.

Throughout the paper, p and ¢ will denote distinct primes and » will denote
a positive integer.

Definition 1: A square-free n is simple if n = 1 or n has maximal prime divisor
p and qln for every prime g < p.

Lemma 2: 1f s is simple, n < 2g, and n # g, then E%%T > 6%%7'
Proof: Let s = 2 +3 ... «p,, and let 25 > n = qjl .- q'* for q; < ... < q,.

Since n < 28, we have kX < 7, and since s is simple, we have q; > ps for each
1 =g <k. If k=4andg; =p; for every 1 < j <k, thenn = s. Thus, k < ¢
or q; > p; for some 1 < j < k. In either case,

no_o_ 9y - Y B Le2e.c. op, __s
¢(n)  (gqy = 1) -+ (g, - 1) Le2ec.ae(p, = 1) ¢(s)°

Theorem 3: n has at least one ¢-partition iff » is not simple.

Proof: (i) Let n be nonsimple. Then there exists a prime p such that p“[n for
a > 1, or n is square-free with maximal prime divisor p and there exists q < p
such that q*n.

Suppose p®|n for o > 1, and let n = p®. Then ¢(n) = o(p*t) = po(p*~1t).
Hence, n = po~lt + ... + po-lf is a ¢-partition.

p summands

Now suppose »n 1s square-free with maximal prime divisor p and there exists
g < p such that gfn. Let n = pj and p ~ ¢ = a. Then

d(pd) = d(PIe(d) = (p -~ oG = (@ + q - 1)e(J)
=a¢(d) + (g - D) = ap(@) + ¢(qd)-
Hence, n = J + .-« + j + gj is a ¢-partition.
nds

(ii) Suppose n = 2° 3+ ... e p is simple and n = a; + .-- + a; 1is a ¢-par-
tition. Let a; be a summand of the partition. Since a; < mn, it follows from
Lemma 2 that

CZJ' n
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Hence,

n n n
nE St T getle) o gy e
4

¢ (a

a
1
s —Lg(a) + et b(a;) =a, + - +a
3@ D Ha) =
This contradiction completes the proof.
Lemma 4: 1f n = ay + .-« +a;, is a unique ¢-partition of n, then each summand
is simple.

Proof: Suppose n = a; + --- + a; is a unique ¢-partition and some summand a; is
not simple. Then, by Theorem 3, a; has a ¢-partition aq; = by + ... + Dby; thus,
no=ap teeetajoy t by beeet by tazyy +--- + a; 1s a ¢-partition of n which
is different from n = a; + ..+ + a,.

Lemma 5: If a unique ¢-partition of »m has two equal summands, then n = 2s for
s simple.

Proof: Suppose m = s + s + a; + ... + q; is a unique ¢-partition of n. If some
summand a; * 0, then n = 28 + a; + --- + a; is a different ¢-partition of =n.
Therefore, each a; = 0 and n = 2s. By Lemma 4, s is simple.

Theorem 6: n has a unique ¢-partition iff n = 2s for s simple or n = 3.

Proof: (i) Suppose n has a unique ¢-partition. Then, by Theorem 3, # is not
simple.

If n is square-free with maximum prime divisor p and g < p such that q*n,
let n = pj and p - g = a. Then, from the proof of Theorem 3(1i), we have

n=g+ ...+ 7+ qj is a ¢-partition.
T omands
And since it is unique, Lemma 4 implies that J is simple and Lemma 5 implies
that a = 1. Thus, p - g = 1. Hence, we have p = 3, g = 2, and n = 3.
Now suppose p%[n for o > 1 and »n = p%t. Then

no=ptTlt + ...+ p“'ltlis a ¢-partition,
p summands
and since it is unique, we have that p“'lt is simple (Lemma 4). Therefore, by

Lemma 5, n = 28 for s simple.

(ii) It is obvious that 3 = 1 + 2 is a unique ¢-partition of 3.

Let n = 2s for s simple. C(learly, 2s = s + g is a ¢=-partition. Suppose
2s =qp + -+ +aq, is a different ¢-partition. Then there exists a summand
aj # 8. Since a; < 2s, we have, by Lemma 2, that

T A
¢las) $(s)°
This gives the contradiction,
2s9(s)  26(28) s

28 = o(s)  ¢(s) ¢(3)(¢(a1> toeee + (ag))

s s a a:
= $T§7¢(al) + ..+ $757¢(a¢) > ETE;Y¢(Q1) + oo + ¢(ai)¢(ai)
=a; + - +ay.
Hence, 25 = 8 + s 1is a unique ¢-partition of n.
Theorem 7: p = a) + -+« + a;, 1is a ¢-partition iff one summand is prime and

every other summand is 1.
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Proof: (1) p =1+ ... + 1 + g is clearly a ¢-partition for every prime g < p.
p - q summands
(ii) Let p = a; + --- + a; be a ¢-partition. It is obvious that at least
one summand is greater than 1. Suppose the two summands, aj and a,, are each

greater than 1. Then ¢(a;) < a; - 1 and ¢(ay) < ap - 1. Therefore, we have the
contradiction

a + oo ta; - 1l=p-1 o (p)
= ¢(ay;) + -0+ d(ay)
Assume a; > 1. Then a; =p - ¢ + 1, and

p-1=06(@ = o(1) + - + 6(1) + ¢(ay)
% -1 summands
Hence, ¢(a;) = p - 7 = a; - 1. Therefore, @ is prime.

IA

ap + - ta; - 2.

7 -1+ ¢(ay).

As an immediate consequence of this theorem, we get
Corollary 8: A prime p has exactly m(p) ¢-partitions.

We now provide two very general techniques for constructing ¢-partitions
for a particular .

1. 1If n is even, pln, p = 2'+ ... + 2% + ¢, gfn, and n = 2%pm, then
= 2% % 4+ o+ 2% % + 2%mg is a ¢-partition.

Some results regarding how many ways a particular prime p can be written as
the sum of a prime and powers of 2 are given in [1].

Definition 9: A positive integer m is prime dependent on n if every prime divi-
sor of m is a divisor of n.

Notice that if m is prime dependent on »n then ¢(mm) = mp(n).

2. 1If n = p®t where a > 1 and p*t, and p = a; + .-+ + a; such that
each summand is prime dependent on 7, then
n = alp“"lt R aip“‘lt is a ¢-partition.
Notice that for every p such that pa|ﬂ for a > 1 we get a ¢-partition of =
with p summands by letting
p=1l+--- +1
p summands

in construction 2. If n is even, for each such p we can get ¢-partitions with
x summands for every x satisfying a < x < p, where ¢ is the number of nonzero
digits in the binary representation of p.

Definition 10: If n = ay ++--+a; and a; = by +.--+ b; are ¢-partitions, then

n=>by + <+ +b;+ay+ -+ + a; is an expansion of n = a; + ... + a;.
Expansions are clearly ¢-partitions.

Definition 11: A ¢-partition is reduced if each of its summands is simple.

It is obvious that a ¢-partition can be expanded iff it is not reduced. So
every nonsimple number has at least one reduced ¢-partition. The following are
examples of reduced ¢-partitions for various types of n:

(i) 29 =2+ «v0 + 2
29-1 summands
(A1) p* =1+ e + L+ 2+ «00 +2

pa—l(p_z) pu—l
summands summands
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(1ii) 29p% = 2 + cvev + 2 + 6+ .-+ + 6

za-lpotjl(p_B) za-lpa—l
summands summands

(i)Y pg=Ll+ e+ 1L +2+ .- +2+6
(p-2)(q-2) p+qg-5

summands summands

Several open questions about two-summand ¢~partitions could be resolved if
it can be shown that reduction is unique. Evidence and intuition strongly
suggest that it is; but it seems that a proof may be quite difficult. We close
with the conjecture: Every nonsimple number has exactly one reduced ¢-
partition.
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1. Introduction

We shall study a sequence of numbers defined recursively. Let 1ln denote
the principal branch of the natural logarithm, i.e., 1In(re®®)=1nr +<¢, r > 0,

with ¢ = 0 (mod 2m), -7 < ¢ < m. We put 0 O z: = 2z, 1 O 3: = z3(: = g#1n%) angd
(1) n+ Doz = (mox"", n=0,1, 2,
nol=1,n0(1)=-1,101%=e"/2),

We consider, in fact, a more general operation defined by

ag(a, b): = b, aj(a, b): = pb°

and

(2) ops1(as B): = ay(a, @D, n =0, 1, 2,

nasz, noi= a"“/2< T )>.

(ant1, 2 (-1,

By mathematical induction, we obtain the

Proposition: The following algebraic relations hold for all n, m € IN and a, b,
c, 2 € (:

a) ap+m(a, b) = o,(a, a,(a, b)) [in particular (n +m) oz =n0O (ma z)].

]

b) a,(a, b®) = af(ac, b) [in particular n O 2¢ = aj(c, 2z) and
O('n(a, ba) = u%(az’ b)]-

n-1 4
bnk=o°‘k(a’b) sz).

c) apla, b) =
It will be proved in the paper that

: . -t
(1n particular » O 2 = 2lk-o

(3) lim n o e®" =1, |z] < é, z € C.
n +» ©

Moreover, the inverse functiom of ¥, Y(2): = n O 3, 1is explicitly calculated
for [zl < 1/e, and we examine the possibility to extend the definition of ¢ O z
to complex values of ¢.

2. The Evaluation of a Limit

The evaluation (3) is an immediate consequence of

Theorem 1: For all positive integers #n and complex numbers z such that ]z] <
1/e, we have

o

v
(4) |in(n O e®/7)| < 1 DR PEY
n = vl
The following lemma is useful to prove (4) (in [2], see formula (15) and
section 4.1).
z3f'(2) LN(4)
Lemma 1: Let fé“ = f, féARz) t= exp(—}?;7—> and f;ia o= (f#))l ,m=1, 2, 3,
We have
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m k ;
O €D | B | ol
k=14=0
where

J . .
tae & ) = (7 ) B DDk - " L 0 <G sk LSk s,

In particular, o
m 4y e
®)  FENPE =D =kl_11fzf<i>

Proof of Theorem 1: We apply (6) recursively to
fe)=m-1oc, n-2)ocg, ..., 1 OcC.

Using n o ¢ = (n - 1) 0 ¢%, we get

m km—k"(’
M wooWe-1=I(-1o P Fe .
k=1
At the rth step, we obtain (kg: = m):
(8) nooPe=1
m kp-1 Zrka ...kl;r,l—kr(kr-g
O )
ki=1 kp=1 r

whence, since (1 O g)g)(g =1) =ev, v=20,1, 2, ...,
9 mooW@=1
Kn-2 Kp-p =Kn-1/k m-ky

et T A ( n—2> e BTN (m)>
) kn£[=l exp( n-1°Kn-1 ko 1 K,
It follows from (9) that
(10)  expm-n"h < (no ¥ =1)

p< SR> s - (E772) o (;1»

ky=1 ky-y=1

IN

No/N .
exp(m™es n™~1) we use 2: J(.)xJ'4 = N(1 + x)V-1).
i=1 9

Thus, the series

(4) m

1 n o =1))Z 1

n(( S (& ) converges for IZ[ < — and
m! ne

2
m=1

= In((no )P = 1))
2;1 mlnm 5

m

(11)

1 & m™m 1
<22l sl <z

m!
w=0>
m

9
In(n o ) (z = 1) = Somin(roe?

so that the MacLaurin expansion of In(n (O e?/"), namely,

Let us observe that, in general,

arﬂ
(12) Egakzo) = exp(awmln F(zye¥)

In our case

w=0

In(no )W =1
mtn™ #

m
5

(13) In(n o e?/™) = i

m=1
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is valid for |z| < 1/e in view of (11). This completes the proof of Theorem 1,
since (4) follows from (11) and (13). [

3. The Inverse Function

Ifct=nosz,n=1, 2, 3,..., then we write 2 = (-n) D ¢ in a domain where
the inverse function is defined (this is essentially what is called '"partial
inverse" in [3]). The inverse function is defined in such a way that

(14) m+moz=nomMmoz), n, meZ.

To prove the next theorem, we need the following lemma.

Lemma 2: For all complex numbers A;, 4, ..., 4,, we have
r! mook r
(15) Zk_‘r—TnAJ= Z nAvl’ 1 <»r <m.
n(m, r) 1= e Rms =1 Viteeetv=m =1
vy 21

Here and in what follows, m(m, r) means that the summation is extended over
the numbers Xy, ..., Kk, such that

ki + 2ky + «oo +mky =my, ky + ky + -0 + k=1,
withijO, 1 <g <m.
Proof: Let
fz): = ﬁi B,z™, g(z): = 53 A, g™
m=1 m=1

be two analytic functions in a neighborhood of z = 0 such that f(0) = g(0) = 0.
We have

f(g(z)) = Z Bm(g(z))m = Z Z Z BmA\)l A\)mz\)l_i' +Vn
m=1 m=1 vy =1 vy =1
= Z Z Z BmA\)l A\szvl+ +\)m’
m=1 r=m vy+.--+tv,=r
whence vy 21 .
[ m
RCRRETEIED > SN SR | VIR
m=1r=1 vy+---+v,=m =
i.e., ) ) vy 21 }
(f(g(2)))'™(z =0 m
(17) flg x 3 > 5, ] 4,
’ I T AL A
vy 2

On the other hand, we compute (f(g(z)))“” using the Faa di Bruno formula [5, p.
177], namely,

m m (7) K;
- & TZENY L peg(a)) .

SO RNCCTON D VD VS TRt o jgl( A2) " g
It gives us

FlgN™ (=0 &I ! ok
(19) m! ‘P; G Kt oee Tt O jUIAJ ’
and the result follows by comparison of (17) and (19).
Remark: Formula (15) gives a variant of (18):

FlgHN™ _ & ngR )N FAg(2)
(20) m! P> n( v ! > r! ’

r=1vi+---tv,=m g=1
vy 21
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We shall also need

Lemma 3 [2, p. 238]: For all analytic functions ¢(2), we have

! m ()Y DAk _
@) T e M) - (C I D@, 1 s s

m(m, ) j=1 Jt / r

A representation of (-1) o y is obtainable from the results of [3] (an
interesting list of references is given in that paper). It is proved that the
function

x = h(g) = g&°
converges when ¢™% < z < el/¢; moreover,

gh(z)) =z and h(gx)) =z, el <x<e,

where
g(x) = gcllz
But
%:1!]&‘:: Ys
9(5)
whence g<%> _ é, % i h(é) for e~ lle < y < ef,

- (_l) oy,
whence

(229 (- oy

Replacing y by (-1) O y gives a similar representation for (-2) o y, and so on.
We give here another kind of representation for (-m) o 2z, m =1, 2, 3,

[

_y-v
yy—y Y . e—l/e < y < ee.

Theorem 2: For all positive integers m and complex numbers 2z such that

I1n 2| < 4,
me

we have

(23) (-m) a z = ﬁ ]Y[ Vﬁz exp(“(-l\))!"_l .(v - 1)

v=1 vy =1 Vm-1=1
Vm—2 - 1) v -v] Vm-2~ Vm-1 V-1 -1 v
. eV vee vV LIAY) e (In 2)Y).
m=2 1

Proof: According to the Lagrange expansion theorem, the root z of the equation
2 In 2 = 1n ¢ which tends to 1 with ¢ is given by

had v-1
In 2 = 3, (-1)v-! X;T—(ln )Y, |ln g| = é.
v=1 °
Since 2 1In 2 = 1In ¢ implies ¢ = 2% = 1 O 2, we obtain

o

v=1
(24) (- oo = ¥ (D S )Y, || <L
v=1 :

which corresponds to (23) for m = 1.
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Now we replace g by (-1) o ¢ in (24) to obtain

il v-1 o o
In((-2) o) = _l)v-l Vv’ 2: . 2: (_l)k1+...+kv—v
v=1 Tokp= k, =1
k-1 k,-1
kot eee KOV
. 1 v R kKy+..otk,
kit k! (In ©)

vo1l Vv kkl_l
_ Hl( o ) (In ¥,

I
Ms
||[\/]8
™

i.e.,

-1op (kketd
(25)  1n((-2) O ©) “: I1 (%) (In 2)°.
Y RN

.
LM<
!
|

The identity (15) with 4; = ri gives

Z u 7(1;“_1 Z u! v
26 — ] = :

( ) kl+"‘+ku=V 1131< kSL! ) TV, ) kll e 7(\)! l;l
kg 21

while (21) [with ¢(2) = e?®] gives

v! Y (dI TNk v- 1\ oy
(27) > 7 T I = = ( )v , 1l <u <.
(v, 1) 10 ese viog=1
We obtain

P> ﬁ<kfi_l tov -1

2 —_ ] = == v-u < <

(8) 7(1+~"+ku=\’ =1 ! > ( l)\) s 1 < u < v,
kg 21

and it follows from (25) that

=
I

> & =yt oL -1
(29 (oo =y xS (YT an o
v=1 p=1 Ve w-1
It is readily seen that the coefficients in the summation over v of (29)
are bounded by

v-1
o (2] )Y,

so that (29) is valid for Iln C] < 1/2e.
The proof is easily completed by mathematical induction. We write
In((-(m + 1)) o) = In((-m) o ((-1) O 1)),

substitute z to (-1) oz in (23), and use (28) to simplify the coefficients.
The estimation

© v-1 v
(30) ](—m) u] cl < exp(% 2:1vv‘ Im 1n C] > < gl/m
= !

holds for |ln z| < 1/me. O
Remark: It follows from the proof of Theorem 2 that

(31) lim(-m) o ¢¥/m =1, |In g| < é

m+w
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4, Extension of the Definition

In this section, we consider the possibility to define ¢ O z for complex
values of ¢. We give only partial results, but it is interesting to observe
that it seems quite possible to extend ¢ O 2 to a bianalytic function of z, C.
All along the process, the relation

(32) (¢1 + o) oz =1¢; o0 (¢ OR)

should remain valid in some domains of the complex plane.

4.1 Extension to Rational Numbers

First, we try to see how % O 3 can be defined. Let us consider a more gen-

eral question. Given z5 € ( and

g(z): = Y ap(z - 200k, ap: = 2,
k=0

analytic in a neighborhood of zy (this fact will be abbreviated z ¢ zy in what
follows), does there exist an analytic function

f(z): = i b(z = 2)k, by: = zq,
K=0

such that the functional equation

(33) F(f (&) = gz

is valid for z O z4?
A solution is not always possible, as shown by the example

g(z) = 22, zg = 0.

An affirmative answer for g(z) = 2%, 25 = 1, would imply that the solution
f(z) =: % 0O 3 satisfies the relation

%D<%Dz)=f(f(z)) =10 3.

To solve the functional equation

(34) F(f(z)) = =%, f(1) = f'(1) = 1,

we seek a solution of the form
f(z) =1 +kZ by(z - 1)k,
=1

Substituting 2 to f(2), we obtain

g% =1 1+ Y a(z- D =1+3 b(fz) - DX
K=1 =1
© k % X
=1+2 2 )3 by Il by, * (- 1)
k=1 2=1 vy+---+v, =k ji=1 N
vjz1
(in the context of [2], it is not difficult to verify that Iak| < 1 for all
k €IN). It is then readily seen that the aforesaid question can be answered in

the affirmative if we find a practical way to solve the following two problems:

1. Express by, by, ..., by in terms of a;, dp, ..., a; in the relations
Cll=bl=l,
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2. Show that the radius of convergence of }: bk(z - l)k is positive.
k=1

We assume in the remainder of the paper that the radius of convergence is
positive in the case g(g) = 3%, 2y = 1. Unfortunately, this fact is not proved
but it seems very likely that it is > 1.

We generalize one step further and ask for an analytic solution of

(35) fo(®) = 2%, f(1) = f'(1) = 1, vhere f,(3) = FECFa)-)).

This leads us to define q times

(36) aszg: = f(z): =1+ 53 bk<l)(z -, 201,
K=1 "\

Q-

for g = 1, 2, 3, ... (the domain of validity should contain [z - l[ < qg/2). It
is then possible to define p/q o & for p/q € Q.. Simply:

p " Lo 1 N = S Y
(37) g O z: g o <q 0 o <q o z) > : 1 +—£§ibk(p, @)z - 1, 20 1.

p times
Tt appears that b (p, q) = bp(p/q). There is no problem defining p/g O z
for p/q € Q_. We construct (-1)/q o 2 by requiring

Co(Los):s

q q
and we observe that (32) remains true for all rationals CT1s Coe Here, we can
write
4 - P, _ y2 . B(2P - 13
(38) g oz a2 + q(z s + 2q<q l)(z D3+ .0, 201,

4.2 Extension to Complex Numbers

It is reasonable to expect that a passage to the limit can be justified in
(38). This would permit us to define ¢t o z for ¢ € R by

lim Z;m(%ﬁe(z— DE =5 p(8) sz~ D, 201,
JFe =0 J k=0

where pj/qj, J=1, 2, 3, ..., is any sequence of rational numbers converging
to t [note that the coefficients by, (t) are reals for real values of t).

Finally, (39) is extended to complex values of ¢ by analytic continuation
and (32) remains valid. We do not give details of our calculations, since the
question concerning the vradius of convergence 1is open. At the end of the
process we obtain a representation of the form

(39) t Oz

(40) coz=z+2(z - 12+ C(C - %)(z -3+ e, 000, 201,

We can define ag(a, z) [see {2)] by requiring

ug(a, z) = ¢ 0O a9,

5. Some Observations

5.1 Solution of a Functional Equation

We observe that the functional equation
(41) fp(2) =23%, f(0) =0, FEN

can be solved.
1991] 357



ITERATIONS OF A KIND OF EXPONENTTALS

Theorem 3: Let IV > 1 be an integer. There exists an analytic solution, in a
neighborhood of the origin, of the equation (41) if and only if NV = M, M €N.
The solution is unique up to a multiplicative constant which must be an.(%;%y*
root of unity.

Proof: 1f N = M, theg a solution of (41) is
f(z) = cz¥, 0%5%= 1.
We must prove that an analytic solution f(z), 3 O 0, exists only in that case.
Equation (41) implies
(42) M = (FE&Y, fO) =0, @ > 1).
Let us assume for a moment that the solutions of (42) are of the form

flz) = ez, ¢V = ¢,

for some positive integer M. Substituting in (41), we find that

oV = gl+d+ o+ n® L omd
N-1
ie., ¥ =47 and elf-1= 1. Hence, we need only to prove that all the analytic
solutions of (42) are of the indicated form. Let

£ = Y A"
m=1

be a solution of (42). We have

3

- had hd e+
fz) =3 Aksz = (FfeNV= 3 .o Ay, w-e Ay, e v
k=1 vy =1 vy =1
o Jij
= E: 2: II Avl' 2",
m=N vi+t.---+tuy=m L=
whence v vy 21
if m=kN, k €N
(43) =4 1 .
V1+.;;;VN=m 1=1Avl 0 otherwise.
vg 21

This relation, for m = N, gives A} = 4y, i.e., Ay =0 or Aq_l = 1. The
following reasoning is easily adapted to the case 4] # 0 [we obtain the
solution f(3) = 4;2]. Let us suppose that 4; = 0. Let kg > I be the first
index for which Ay, # 0. We prove by mathematical induction that Ako+g = 0, %
=1, 2, 3, ... [this gives us the solution f(z) = Akozko, A%O = Ako).

First, we examine the relation (43) with m = Nkg + 1. If a v, is less than
kg, then the corresponding term, in the left-hand member of (43), is equal to

zero. Thus, we examine only the solutions of .
(44) Vit vpgtoeee tvy =Nkg + 1, vy 2 kg, 1 €0 <.
Let vy = «»- = vy =kg (s <N) and v; 2 kg + 1, § = 21, «.., 2g. 1In view

of (44), wé hav
Nko + 1 2 Sko + (V- S)(kg + 1),

whence s 2 V¥ - 1 and, in fact, ¢ = ¥ - 1. Since the right-hand member of (43)

is zero, this relation is reduced to A, = - Agg+1 = 0, d.e., Ag 41 = 0.

Now we suppose that Ay ,; = ..+ = Ako+Q‘1 =0, & > 1, and examine the rela~
tion (43) with m = Nkg + &. Let us consider the equation
(45) Vit vyt oeee vy = Nk + 2, vy 2 kg, 1 €8 <A
If vy, = -+o = vy, = kg (r < N), then v; 2 kg + & for §J # &1, ..., &, (in order
to have Ay, ... Ay, # 0), so that Nkg + & 2rky + (I - ) (kg + &), whence r =

N - 1 and (43) is reduced to
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N-1, - Ak if Nk0+£=k]|/
Ny " Axg 42 {O otherwise,

for some integer k. The possibility Nky + & = kI implies k = kg + &/N; but
1
k0<ko+l—v<k0+2,

so that A; = 0 by hypothesis. In both cases, we conclude that Ako+z =0. [
Remarks: The examples

z

- q =
d-watw “ =b

f(z) =
show that other solutions of (41) are possible for NV = 1. We may compare (42)
with Wedderburn's functional equation g(xz) = [g(x)]2 + 2ax (see [1] for refer-

ences) .

5.2 Solution of a Recurrence Relation

There is a relation similar to 1 which may be solved without difficulty.
Let Ay, By, m=1, 2, 3, ... be two sequences of complex numbers related by

m r
(46) Am=z Z nB\Jﬂ’m=15 2’ 3;
Fo1 v b= 2=1
We have v 21
m r
(47) Bm = (_I)P_l IIAV;L’ m = 1, 2’ 3’
r=1 vyt tvp=m L=1
\)121
Proof: Let

f(z) == (1 - 27", gz := 3 B,z"
m=1

Using Faa di Bruno's formula in the form (20), we obtain

(f(gz)N™ (z = 0) n z
= -3 [ 2, = 4
m! r=1 yptec-tvp=m L=1
whence vy 21
Flg(a) =1+ % 4,an ! :
g(z = zM = — = = .
=1 " 1 -g(2) 1 -3 B,a"
m=1
It follows that
1+2Amzn<1—ZBmzm =1,
m=1 m=1
and by comparison of the coefficients:
m=1
(48) B, =4, - 2: Ap_gBg, m 2 2.
s=1
Thus, m-1 s-1
B, = A, - Ap_14, - }: Am_s<43 - }: As_tBt>
s=12 t=1

m=1
Am - Z Am-sAs + Z Z Am—-sAs—tBt
s=1 s=2 t=1

s-1

m=1
z: Ay, - E: AJIAVZ + 2: Ap-ghg By
s=2

vy =m Vit+tvy=m =1

3

At the nth step, we obtain
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m-1 8;-1

By = 3 (-7 % Ha, + o2 %

r=1 1tHeeetvp=m s1=n sy=n-1
Ve 21
S,l-l—l
> Am-sy e Ag | -s," Bs,» for m =1, 2, ..., (m~-1).
s, =1
This gives us
m-=1 1 r 1 1
Bp = 3 (-1 > [T4,, + (-1)m-1lam-1p,
r=1 Viteeotv,=m =1
\)12

]

m r
2 =nrt 3 [14y,. O
r=1 Viteeotvp=m 2=1

v 21

5.3 An Identity

Using (32), we can write

. ((a+h) oz)- (anoz) . (ho(aoz)) - (aoz)
1lim = 1lim s
h>0 h h>0 h

d
aa(oz oz) =
and (40) [with ¢ = % and 2z replaced by (a O )] gives
(49  Z@oz) = (@oz - D2-2@az) - D3+ ..
On the other hand, (40) gives directly

50 L@ow = (-D2+ (2a-3)- D3+,
whence

51) (@0 &) -1D?-3(@as - D3+ .

- G-D2+ (a-2)E-DP+., 201, a0 0.

5.4 An Appearance of the Fibonacci Numbers

The recurrence relation 1 (section 4.1) may be written in the form

1 =
2%k T 2

r
(52) by by -iﬂ bv,» k = 3.
=1

r=2vi+-ectvn=k
vy 21
To find a bound for |bk[(laki < 1), we may try to use (52) with k = r, k =
vy, and make the substitutions. To do that, we need to take into account that
(52) holds only for k 2= 3. In particular, we must examine, separately, the
solutions of vy + -+.- + v, = k with 1 < v, <2, 1 < 9 <». This leads us to
evaluate the summation

(53) > > L= 2 p (k, 2),

<pr<k vyt Fur=k ~<r<k
1<v, <2 2

N X

where p,(k, 2) is the number of solutions of v; +.--+ v,= k, 1 < v, < 2. This
number is k—r); indeed, if vy, =...=vy;, =1 and vy = 2, & # %1, ..., &g, then
s+1+ (r~-8)+2 =k, so that s = 2r - k and the number of solutions is

r\ _ r _ r
(s) B (21’ - k) (k - r)
(see also the Remark below). Hence, we obtain (see [4], p. 14, Problem 1):
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(548,

S Sr<
2

kar(k, =2 (,7.)=fs k=0,1,2, ...,

%srsk k-r

the kB Fibonacci number.

Remark: Using the generating function
gr(g¥ - )7

M r M
= k = k
(z - 1)T (kz;:lz > k;ppr (k, #)z

and the Leibniz formula, we deduce that the number of solutiomns, pr(k, M), of
the equation vy} + «.. + v, =%k, 1 < vy <M, is equal to
{k—r

P S A (s P

=

R R RS A

j=

(55) L, (k, M)

In particular,

N

p, (ks 2) 2r,
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Introduction
The Fibonacci sequence {F,} and the Lucas sequence {L,} are well-known to

the readers of this Journal. Several closed form formulas exist for Fibonacci
and Lucas numbers, namely:

1 F, = a;—:-Z—n (2) L, ="+ 8",
where o =%(1 + 5%), B=3%(1 - 5%).
1 [";1] n X 1 [% 7\ ek
<) fn = 2n-1 k;() (2k + l>5 ’ 4 bn = ka(z;{)s ’
{%] n -k [g] n -k
) Froyr = 2 ( k ) (6) Ly = n - k( k )'

k=0

George E. Andrews, [1] and [2], derived an additional explicit formula for
the Fibonacci numbers, which can be written as

n
5
= -1k n
@A S D0 - )
k=.{ﬁii]
5
In [1], Andrews proved (7) by using a relation betw<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>