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LUCAS NUMBERS AND POLYNOMIALS OF ORDER K AND THE 
LENGTH OF THE LONGEST CIRCULAR SUCCESS RUN 

Ch . A. Chara lambides 
University of Athens, Panepistemiopolis, 15784 Athens, Greece 

(Submitted September 1989) 

1. I n t r o d u c t i o n 

The Lucas numbers Ln, n = 0, 1, 2 , . . . , may be def ined by 

Ln - Ln__i + Z/n_2? n = 25 3 , . . . » LQ = 2 , L^ - 1 . 

Among several combinatorial Interpretations of the Lucas numbers in terms of 
permutations5 combinations, compositions (ordered partitions), and distribu-
tions of objects into cells, the most commonly used as an alternative combina-
torial definition of them is the following: The nth Lucas number Ln, n = 2, 3, 
. .., Is the number of combinations of n consecutive integers {1, 2, 3, . ..> n] 
placed on a circle (so that n and 1 are consecutive) with no two integers 
consecutive. Since 

L(n, r, 2) - ~r^(H ~ T), v = 0, 1, 2, . . . , [n/2], n = 2, 3, . , . , 

where [x] denotes the integral part of x, Is the number of r-combinations of 
the n consecutive integers {1, 2, . .., n }, placed on a circle, with no two 
integers consecutive, it is clear that 

[n/2] 

r = 0 

The polynomials 

Tln = /L , n = 1, 2, 

ln/2] 

may be called Lucas polynomials. It Is worth noting that these polynomials are 
related to the Chebyshev polynomials, 

Tn(x) = cos(n0), cos 9 = xs 

by gn{x) = 2i~nTn(ix/2), £ = /^T. Riordan [8] considered the polynomials hn(x) 
= -i~ngn(£x) , n = 1, 2, ..., and the Lucas-type polynomials 

M*) - T ^ ( " ; > " - ' = *n/z3 <*1/2>. « - i. 2, . . . . 
in a derivation of Chebyshev-type pairs of inverse relations. 

The present paper is motivated by the problem of expressing the distribu-
tion function of the length of the longest run of successes in a circular 
sequence of n independent Bernoulli trials (Philippou & Marki [7]) and the 
reliability of a circular consecutive k-out-of-n failure system (Derman, 
Liebermann, & Ross [1]). An elegant solution to this problem is provided by 
the nth Lucas-type polynomial of order k. This polynomial and the nth Lucas 
number of order k9 as a particular case of it, are examined in Section 2. As 
probabilistic applications, the above posed problems are discussed in Section 
.3. 
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2. Lucas Number s a n d Polynomials of o r d e r K 

Let L (n, p , k) be the number of p -combina t ions of the n c o n s e c u t i v e i n t e -
gers {1 , 2, . . , , n} d i s p l a c e d on a c i r c l e s wi th no k i n t e g e r s c o n s e c u t i v e . 
Moser & Abramson [ 3 ] , e s s e n t i a l l y showed t h a t 

(2 .1 ) 

Lin, p , k) = 

n 
v 

[n/k] 

J = 0 

0, 1, 2 , . . . 5 n , n = 0, 1, 2, 

n - jk\ 

. , fc - 1, /c = 2, 3 , 

n - p 
j /n - j'/cl n - v ) 5 p = 0, 1, 2 , . . . , [n - n / fe] , 

n = k, k + 1, . . . , k = 2, 3 , . , 
0', P > [n - n/fc] , n = fc, /c + 1, . . . , k = 29 3 , 

where [#] denotes the i n t e g r a l p a r t of x. As i t can be e a s i l y shown, t h e s e 
numbers s a t i s f y the r e c u r r e n c e r e l a t i o n 

(2 .2 ) 
Lin, v, k) = 

The sum 

X L(n - j , P - j + 1, fc), P = 0, 1, 25 . . . , n - 1, 
J = i n = 1, 2, . . . , fc, fc = 2, 3 , . . . 
min{p + 1, k} 

Y L(n - j , v - j + 1, Zc), P = 0, 1, 25 . . . , [n - n/k], 
J=l n = k + 1, k + 2,...., 

k = 2, 3, . . . . 
[n - n/fe] 

(2 .3 ) L?uk = X] £(w, *, ^ ) , n = 1, 2, . . . , Zc = 2, 3 , . . . , 

for n = k, k + 1, . .., is the number of combinations of the n consecutive inte-
gers {1, 2, . .., n] displaced on a circle, with no k integers consecutive. 
This number, which for k = 2 reduces to LHi2 = ^ ' t n e nth Lucas number, may be 
called the nth Lucas number of order k. 

The polynomial 
[n - n/k] 

(2.4) Ln k(x) = Y, L(ns P, k)xn~r, n = 1, 2, ..., k = 2, 3, ... 
v = 0 

may be called the nth Lucas-type polynomial of order k. Clearly, 
Ln, k ^ = Ln,k' 

Recurrence relations, generating functions, and alternative algebraic 
expressions of these numbers and polynomials and also their connection with the 
corresponding Fibonacci numbers and polynomials are presented in the following 
theorems and corollaries. 

Theorem 2.1: The sequence Lnyk(x), n = 1, 2, ..., of Lucas-type polynomials of 
order k satisfies the recurrence relation 

(2.5) 

Ln,kW = 
J= 1 

x\n + zL Ln-j,k(x)(> n = 2, 3, ..., k, k = 2, 3, 

•J2Ln-j.feW' n = k + I, k + 2, ..., k = 2, 3, ..., 
j'= i 

with Lls £(#) = x* 

Proof: From (2.4), on using the recurrence relation (2.2), it follows that" 

(a) for n - 1, 2, . . . , fc, 
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n- \ n- 1 r + 1 
Ln, kW = E L(n> p> k)xn~r = £ E L(n ~ J> * ~ «7 + 1> &)#"" 

p=0 p = 0 j = 1 

n n - 1 
= X E E L(n ~ J5 ^ ~ J + 1» fc)xn~p-1 

j = 1 v = j - 1 

I n- 1 n - 1 
= ^\n + E E ^(n - </> p - ^° + *> ^)xn~r _ 1 

( J = 1 V = J 

= xh + _ E £ „ - ^ &(*)>; 

(£>) for n = k + 1, k + 2, . . . , 

i n , f c w = E £(^> *, ̂ n " 
T = 0 

[rc- n/k] min{rs + 1, /<} 
= E E L(n - j , r - j + 1, k)xn-

r=0 j - 1 

fe [n-w/fe] 
= ^ E E L^n ~~ i* r - j + i , ^)xn"fe-1 

j = i P=j -1 

' E ^ - i . f e W ; 
j = i 

and for n = 1, 

Lx fc(#) = L(l, 05 fc)x = ^ . 

Remark 2.1: The nth Lucas-type polynomial of order fes for n = 2, 3, 
virtue of (2.1) and (2,4) may be obtained as 

(2.6) Lntk(x) = ? E ( T K ~ P = d + a ? ) n _ 1 . 

fe, by 

r= 0 

Also, from. (2.5), for n = fe+I3 fc + 2S . . . , i t follows that 
(2.7) Lnsk(x) = (1 + x)Ln_Xj k(x) ~ xLn-k-it k(x) . 

Corollary 2.1: The sequence LUtky n= 1, 2? . .., of the Lucas numbers of order 
k satisfies the recurrence relation 

(2.8) f n~} 
w + E £w. 

^ , f c = l 
j = i 

j . fc , n = 25 3 , . . . , k, k = 23 35 

E ^ n - j , fe> n = ^ + l , £: + 2? . * , 3 k + 2, 39 . . . , 

wi th Lj_5 fc = 1. 

Theorem 2.2: The generating function of the sequence of Lucas-type polynomials 
of order*ks Ln^ k(x)s n = 1, 2, . . . , is given by 

(2.9) Lk(t; x) = jt Ln k(x)tn = Ix^jtAll - a? X tA . 

Proof: Multiplying the recurrence relation (2.5) by t n and summing for n = 1, 
2, . . . , we find 
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Lk^'y *) = E Ln, k W t n = xt + E Ln, fcW^ + E Ln, fcW^ 
rc= 1 ^=2 n = A : + l 

= z £ j V ' + x £ " Z i n - j . i W t " + X L T.Ln-j,k(x)tn 

j= 1 n= 2 J = 1 n= k+1 j = 1 

= x £ t / t J + x £ L £ » - j . k ( a ) * " + ^ E E ^ n - j . k O c ) * " 
J = 1 j = 1 n = j + 1 i= ln=fc + l 

= tf£j^ + a ? £ ^ E Ln_dtk(x)tn-J 
J = 1 J = 1 w = J + 1 

fc k 
= x^jt3 + xLk(t; x) Y, tJ, 

j = i j = i 
from which (2 .9 ) f o l l o w s . 
Corollary 2.2: The g e n e r a t i n g f u n c t i o n of the sequence of Lucas numbers of 
order k, Ln^ ^, n = 15 25 . . . , i s g iven by 

(2.io) ik(t) = E ^ ^ = ( L " 4 i - E ^ ) • 
Theorem 2.3: The n t h Lucas - type polynomial of o rde r k may be expressed as 

(2 .11) (a) Ln>k(x) = - 1 + f r a / f f 1 ) ] ( - l ) J ' ^ 7 f e ( K ~ / V ( 1 + x ) " - ^ f e + 1) 

p l. + 2 P 2 + . . • + kpfe ( P X + P 2 + • - - + rk) ! P i + P ; 
(2 .12) (b) Lnyk(x)=Z r + p + . . . + y > / V l r . ! ! . . . r». T X 2 ^ 

PT + r2 + ••• + rk rllr2l ... pfc , 

where the summation is extended over all partitions of n with no part greater 
than k, that is over all vi = 0 S 1, 2, ..., n5 i = 1, 2S ..., k such that 

PX + 2P 2 + •- - + krk = n. 

Proof: The generating function (2.9) may be expanded into powers of t as 
7 / fc 

L,(t; a ; ) = - t 4 log 1 - ^ t J 

i«,>/ri _ 

dt 
-t 4r log{[l - (1 + x)t + xtk + l](l - t)~1} 

= -t(l - t)"1 - £ -~ log[l - (1 + #)£ + xtk+l] 

= "X>n + * 4f E [d + *H " xtk + 1]p/p 
rc= 1 "^ r = l 

= -E* n + ^ E E ( - n ^ R V a + *r- 'V+ '* 
w = 1 "^ r = i ^ = 0 J W/ 

= - E t n + E E ( - D J P + J'^(3.)^J'd + x)r-Hr+Jk 

n= i r='i j = o P ^ ' 

yielding (2.11), 
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A different expansion of (2.9) as 

Lk(t; x) = ~tft log(l - *£*') = t ft tjx^ tf/r 

= t A f* y (r - 1)1 x^i+^2 + '-' +I,
kt

ri+2^2 + "' +krk 
^ r=l pl-p2- ••• rk* 

r = ! ^ P!!r2
! ••• vkX 

where in the inner sums the summation is extended over all P = 0S 1, 25 . 
p, i = 1, 2, ..., k, such that P X + P 2 + .••

 + vk = p' o n P u t t i ng 

+ p2 + ... +rfcltn 

1, 2, . . . , res 
i = 1, 2, ...3 k, such that P]_ + 2 P 2 + ••• + ^p

k
 = n« The last expression im-

plies (2.12). 

Corollary 2.3: The nth Lucas number of order k may be expressed as 

(_X) n (n " Qk\0n-Q(k + l) 

k 
n = v - Y, U ~ !)*%• 

yxe lds 
« ( ^ Pi + 2PO + •• 

r i !i>2! . . 2»f c! 

(2.13) (a) L n . k . - i + E w ^ f y t y 

(2.14) (W £„,* = £-£ 
PT + 2 P 2 + ... + A:rfe (rl + P 2 + • • • + rk) I 

rl + r2 + •'* + rk P I ! P 2 ! ••• rk• 

where the summation is extended over all p^ = 0, 1, 2, ...s re such that 

Pi + 2 P 2 + ... + krk = re. 

Remark 2.2: A known expression for the reth Lucas number Ln and two expressions 
for the reth Lucas number of order 33 Hn E L^5 3, may be deduced from the general 
expression (2.14). Setting k = 2 and introducing the variable r = P 2 , it fol-
lows that 

[ y ? ] re /re - p\ 

Putting k = 3 and introducing the variables v = P2, J = r^s (2.14) reduces to 

[n/2] [(n-2r)/3] „ _ ? 7\ / 7> + 7\ 

^•15) ** = E .E n-Z-2j( r + / ) ( * ) 

while, introducing the variables p = p 2 + 2 P 3 ? j = P39 (2.20) becomes 

[2n/3] [W3] - P ~ J 
P - 2j 

The Lucas numbers Ln are related to Fibonacci numbers Fn by 

^n = Fn + 2Fn_x = Fn+i + Fn_x. 

An extension of this relation to the Lucas-type polynomials and the Fibonacci-
type polynomials (see [6]) is obtained in the following theorem. 
294 [Nov. 



LUCAS NUMBERS AND POLYNOMIALS OF ORDER K AND THE LENGTH OF THE LONGEST CIRCULAR SUCCESS RUN 

Theorem 2.4: The Lucas - type polynomials of o rde r k, LH}k(x), n = 1, 2 , . . , a r e 
expressed in terms of the F i b o n a c c i - t y p e polynomials of o rde r k, Fn k (x) , 
n = 1, 2, . . . , by 

min{ft, k} 
(2 .17) Ln>k(x) = x Y. JFn-j + Lk(x), n = 1, 2, . . . , fe = 2 , 3 , . . . . 

J = l 

Proof: Since ( see [6] ) 

£>n+1,,(*)*« = (i - x £ *A , 
w= 0 \ 3 = 1 / 

i t fo l lows from (2 .9 ) t h a t 

t,Ln>k(x)tn = x( E ^ J " V E ^ + i.fcO*)*^ 
ft=l \ j = i / \ r = 0 / 

oo I m±n{n, k] \ 

n=l{ j = 1 ) 

tfhich i m p l i e s ( 2 . 1 7 ) . 
Corollary 2.4: The Lucas numbers of o rde r k a r e expressed i n terms of the F i b o -
ciacci numbers of o rde r k by 

min{n, k} 

(2 .18) Lnyk = J2 JFn-j + i,k> n = 1, 25 . . . , fc = 2, 3 , . . . . 

Remark 2.3: The polynomial 

O - ft/fe] 
(2 .19) gn k{x) = X) L ( n > *> « x ( n " P ) f c - n , n = 1, 25 . . . , fc = 2 , 3 , . . . , 

p = 0 

may be called the nth Lucas polynomial of order k. It is related to the Lucas-
type polynomial (2.4) by 

(2.20) gnsk(x) = x-nLntk(xk)9 n = 1, 2, ..., k = 2, 3, ... . 

Expressions for these polynomials, analogous to (2.5), (2.9), (2.11) and (2.12), 
on using (2.20), may easily be deduced. Further, 

min{ft, k} 

(2 .21) gn}k(x) = Z a'xk~j+lfn-j + i,k(x)> * = l , 2 , •••» ^ = 2 , 3 , . . . , 
J = 1 

where fn k(x) is the nth Fibonacci polynomial of order k (see [5] and [2] as k-
bonacci polynomial). This relation may be deduced from (2.17) by virtue of 
(2.20) and [4], 

fn>k(x) = x~n + lFnfk(xk). 

3. Probabilistic Applications 

Consider a circular sequence of n independent Bernoulli trials with con-
stant success probability p and let q = 1 - p . Further, let Cn be the length 
of the longest circular run of successes and let Sn be the total number of suc-
cesses. In Theorem 3.1, the conditional distribution function of Cn, given 
Sn = p, P(Cn < x/Sn = p ) , -oo < x < oo s is obtained in terms of the numbers 
L(jiy P, [x] + 1) and the distribution function of Cn, P(Cn < x), -<*> < x < *>, is 
expressed in terms of the Lucas-type polynomials of order [x] + 1. 
1991] 295 
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Theorem 3.1: Let Cn and Sn be the length of the longest run of successes and 
total number of successes, respectively, in a circular sequence of n indepen-
dent Bernoulli trials with constant success probability p. Then, 

(3.1) P{Cn < x/Sn = v) = (n, P, k + l)/{n\, 0 < x < v < n, k [x] 

1, p < x < °°, v < n. 

(3.2) P(Cn < x) 
0, -co < x < 0 
pnLn>k + l(q/p), 0 < x < n 

1, n < x < °°. 

Proof: The elements of the sample space are combinations {ij, i-i* •••} of the n 
consecutive integers {1, 2, ..., n} displaced on a circle where im is the 
position of the mth success, m = 1, 2, The event {Cn < xs Sn = v} con-
tains all the p-combinations of the n integers {1, 2, ..., n] displaced on a 
circle, with no k + 1 = [x] + 1 integers consecutive. Clearly, the number of 
these p-combinations is given by L(n9 P, k + 1). Further, each of these p-
combinations has probability prqn~r. Hence, 

(3.3) P(Cn < x, Sn = p) = L(n, P, fc + l)pp^n-p, fe = [a:], 

and since 
p(^n = r) = (l)prqn~r, P = 0, 1, 2, 

(3.1) follows. 
n, 

. . , [n - n/(k + 1)], on 

0, 1, 2, ... , on using 

Summing the probabilities (3.3) for p = 0, 1, 2, 
using (2.4), (3.2) is deduced. 

Since P(Cn = k) = P(Cn < k) - P ( ^ < fc - 1), & = 
(3.1), the next corollary is deduced. 

Corollary 3.1: The probability function of the random variable C is given by 
f 

(3.4) P(Cn = k) 
qn, k = 0 
pn, k = n 
pn{Lnyk + l{q/p) - ^^((?/p)}, k = 1, 2, ..., n 1. 

Remark 3.1: A circular consecutive-fc-out-of-?2: P system is a system of n com-
ponents displaced on a circle which fails when k consecutive components fail. 
Suppose that the probability for each component to function is p and to fail is 
q = 1 - p. Derman, Lieberman, and Ross (see [1]) expressed its reliability 
Rc(p, n, k) as 

k 
Rc{p, ks n) = p2 J^ JqJ'~1RL(.p, ks n - j - 1), 

where RL{p, k3 n) denotes the reliability of a linear consecutive-/c-out-of-n: F 
system. 

Interpreting as a "success11 the failure of a component, the reliability 
Rc(p> k, n) is the probability that the length Cn of the longest circular run 
of successes in a circular sequence of n independent Bernoulli trials with 
constant success probability 1 is less than or equal to k. It is then clear 
from Theorem 3.1 that 

(3.5) Rc{p> k, n) = qnLn}k(p/q) = £ (-i)J_?L_(* .^)p^q^ - qn 

with the last equality by (2.11), 
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1. If D > 1 is a rational number, not a square, then has a (simple) con-
tinued fraction expansion of the form 

fD = [b0, b19 ..., bk_l9 2b0] 

with & > 1 and positive integers b± such that the sequence {b\9 . ..5 £&-].) is 
symmetric, i.e., 2^ = Zty-̂  for all i e {1, . . . , k - 1 }. Necessary and suffi-
cient conditions on ^Q, ..., b^-i which guarantee that D is an integer are 
stated in [3; §26]. Recently, C. Friesen [1] gave a fresh proof of these 
conditions. He deduced, moreover, that for a given symmetric sequence {b\, 
...,2>k_ l) there is either no integral D such that the continued fraction expan-
sion of VD has the given sequence as its symmetric part or there are infinitely 
many squarefree such D. 

In this paper, I shall prove a more precise statement. Starting with the 
conditions as in [3; §26] I will show that, given a symmetric sequence which 
meets these conditions, there are infinitely many D with prescribed p-adic 
exponent Vp (D) for finitely many p and p^JfD for all other p, such that VD has 
the given sequence as the symmetric part of its continued fraction expansion. 
Moreover, I will show that about 2/3 (resp. 5/6) of all symmetric sequences of 
the given even (resp. odd) length are symmetric parts of the continued fraction 
expansion of VD for some integral D. Finally, I consider the corresponding 
questions for the continued fraction expansion of (1 + VD)12 for an integral 
DEI (mod 4). 

2. I begin by citing Satz [3; 3.17] in an appropriate form. 

Theorem 1: Let (&]_, ..., bk-\) (k > 1) be a symmetric sequence in N+ and let 
b$ e N+. Then the following assertions are equivalent: 

a) [bQ9 bl9 ..., bk_l9 2b0] = /D with D e N +; 

b) Z?0 = — • [me - (-l)kfg] for some 777 € Z, where e9 f9 and g are defined by the 

matrix equation 

<" (? £)-&'(?' *)• 
If this condition is fulfilled, then 

(2) D = b\ + rnf - {-l)kg2. 

In order to state more precise results, I introduce the following notation. 

Definition: For a symmetric sequence of positive integers {b\, . . . 9 b^-i) (k > 1) 
let 

be the set of all K N + with T/5 = [bQ9 bl9 . .., bk_l9 2bQ] for some bQ e N+. 
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Corollary 1: Let (2?l5 . . . , bk-i) be a symmetric sequence i n N+ and de f ine e, f, 
g by ( 1 ) . Then the fo l lowing a s s e r t i o n s a r e e q u i v a l e n t : 

a) &(b19 . . . , bk_1) * 0. 
b) E i t h e r e = 1 (mod 2) or e = fg E 0 (mod 2 ) . 

If b) i s f u l f i l l e d , then ^(Z?l s . . . , -fr^-i) c o n s i s t s of a l l D G N+ which a r e of 
the form 

(3) D 4 / - ( - 1 ) ^ 777 + " ( - 1 ) ^ k „2 ~f2g2 

i - m -r I : 

J L 
with m e Z satisfying we - (-l)k fg > 0. 
Proof: The conditions stated in b) are necessary and sufficient for the exist-
ence of m e Z such that 

^0 = | . [me _ (-!)*/£] 
is a positive integer. Inserting this expression for £>Q in (2) yields (3). D 

Applying Corollary 1 to the special sequence (JD\9 . .., bk-\) = (1> •••> 1) 
gxves 

\f g) V^.j Fk_2)> 

where (Fn)n>_l is the ordinary Fibonacci sequence defined by 

P_! = 1, F0 = 05 P n + 1 = Fn + F n _ l o 

Taking into account that Fk E 0 (mod 2) if and only if k = 0 (mod 3), I obtain 

Corollary 2: 0 ( 1 , . . . , 1) * 0 i f and only i f /c ^ 0 (mod 3 ) . 

(fc- l) 
3. Now I investigate the possible prime powers dividing D E @(bi, . .., bk-\) 
for a given symmetric sequence (&]_, . .., bk-\) . 

For n € Z, n * 0, and a prime p, set 

z;p(n) = w if pw\n, pw+l)(n (w > 0) . 

The following result is an immediate consequence of the arguments given in [2; 
§2]. 

Lemma: Let F(X) = AX2 + BX + C e Z[Z] be a quadratic polynomial. For a prime 
p, set 

EP(F) = {w E N\vp(F(x)) = w for some x e Z }. 
Let P be a finite set of primes, wp E Ep(F) for p E P, and suppose that, for 
every prime p £ P, the congruence P(x) E 0 (mod p2) has at most two solutions x 
(mod p2). Then there exist infinitely many x E N, such that 

vv(F(x)) = wp for all p E P 
and 

Vp(F(x)) < 1 for all primes p £ P. 

Now let (Z?i, ..., bk-i) (k > 1) be a symmetric sequence of positive inte-
gers. Define e> f, and g by (1) and, depending on these numbers, for every 
prime p, a set Ep = Ep(e, f9 g, k) C N of possible exponents as follows: 

a) p * 2. /r-1^\ 
({0}, if e E 1 (mod 2), pje, and (̂  p

; j = -1; 
Ep = I 

( N, otherwise. 
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b) p = 2, e = 1 (mod 2): 

E. ({0,1}, if k = 1 (mod 2); 
2 (N\{1, 2}, if fe E 0 (mod 2). 

cj p = 2, e E /£ = 0 (mod 2): 

„ _ /N+, if e E 2, g E 0 (mod 4); 
^9 "IN, ot J2 (N, otherwise. 

With these definitions, it is possible to state Theorem 2, which general-
izes the results of [1]: 

Theorem 2: Let (b\9 . .., 2?fc-i) (k ^ 1) be a symmetric sequence of positive in-
tegers, define e9 f, and g by (1), and suppose that either e = 1 (mod 2) or 
e E /^ E 0 (mod 2). For a prime p, let Ep = E (e,f, g9 k) be defined as above. 

i) If D e9{bi, •••» *p-i)» then t>p (Z?) e #p for all primes p. 

it) Let P be a finite set of primes and Wp E Ep for p E P. Then there are in-
finitely many D E @(bi» ..., ̂ -i) such that Vp(D) = wp for all p E P and 
Vp(D) < 1 for all primes p £ P. 

Proof: 

Case 1. e E \ (mod 2). By (1), eg - f2 = (~l)k+l and thus / + g = 1 (mod 
2). It follows from (3) that D E N if and only if /w is even. Set 77? = 2n; 
then, by (3), 

£ £ ~ (-l)Vl 
. P2^2 

(4) 2? = D(n) = e2n2 + [2/ - {-l)k efg] • n + 

By the above Lemma, it is enough to show that for every prime p the following 
two assertions are true: 

1. Ep = {vp(D(x))\x e Z } . 

2. The congruence D(x) = 0 (mod p2) has at most two solutions x (mod p 2 ) . 

From (4) I obtain, by an easy calculation, 

D(n) e2n + f - (-1)*^' 
2 

£>'(n) = 2e2n + 2f - (-l)k efg 

t-Dk 

If p\e, p * 2, the congruence D{x) = 0 (mod pw) has exactly one solution x 
(mod pw) for every w > 1 and thus there are a; e Z with ?;p (£>(#)) = w for every 
W > 0. If pje, p * 2, and l(-l)k/p] = -1, the congruence D(x) E 0 (mod p) has 
no solution. If p\e, p * 2, and [(-l)fe/p] = 1, the congruence D(x) = 0 (mod p) 
has two different solutions; these satisfy DT(x)j£0 (mod p) and, therefore, for 
every W > 0, there are x E Z with VP(D (x)) = ^, and the congruence Z7(#) = 0 
(mod p2) also has exactly two solutions modulo p2. 

If k E 1 (mod 2), the congruence D(x) = 0 (mod 4) is unsolvable, but since 
Z?(0) £ 2?(1) (mod 2), there are a? e Z with ^2(^(x)) = w for w = 0 and w = 1. 

If k = 0 (mod 2), then 

£(n) (n + / + ~Y) - 1 (mod 8); 

thus D(x) E 0 (mod 2) already implies D(x) = 0 (mod 8), the congruence £(#) = 0 
(mod 4) has exactly two solutions x (mod 4), and for every w > 3 there are x E 
Z with v2(D(x)) = W. 

Case 2: e E fg E 0 (mod 2). By (1), eg - /2 = (-l)k+1; thus, fc = 0 (mod 
2), / = 1 (mod 2), and e# = 0 (mod 8). It follows from (3) that D e Z for all 
77? E Z; therefore, I have to consider the polynomial 
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D - D M =^.mi + (f-eJf).m + (q£-gi). 
Again it is enough to show that for every prime p the following two assertions 
are true: 

1- E
P = ivp(D(x)) \x E Z}. 

2. The congruence D(x) E 0 (mod p2) has at most two solutions x (mod p2) . 

First, observe that 

e*DQn) = (£ • m + f - ^ff - 1. 
If p * 2, the congruence D(x) E 0 (mod p) has at least one and at most two 

solutions x (mod p) , and these satisfy Dr (x) z' 0 (mod p) . Therefore, for every 
W E N, there are x E Z with i?p (£(#)) = W, and the congruence £(#) E 0 (mod p2) 
has at most two solutions x (mod p 2 ) . 

Suppose now that e E 2 (mod 4) and ^ E 0 (mod 4) . Then £(777) E m2 + fm (mod 
4), and it follows that D(jri) = 0 (mod 2) for all /??, D' (m) = 1 (mod 2) for all 
tfz, the congruence D(x) E 0 (mod 4) has exactly two solutions x (mod 4), and for 
every w E N there are x E Z with yp(£(#)) = itf. 

If e E 0 (mod 4) or g = 2 (mod 4), then the congruence D(x) = 0 (mod 2) is 
soluble, and from Dr(x) = 1 (mod 2) for all x9 it follows that the congruence 
D(x) E 0 (mod 4) has at most two solutions x (mod 4) and that, for every w E N, 
there are x E Z with vp(D(x)) = w. • 

4. In this section it will be shown that about 2/3 (resp. 5/6) of all symmet-
ric integer sequences (b\, . .., 2?fc-i) satisfy ̂ (2?x» •••» f̂c-3.) * 0- T o do this, 
define 0 : Z -> £L2(F2) by 

6(a) = (* J) (mod 2); 

for a finite sequence (b\, . .., 2?m) define 
777 

0(&!, ..., 2>J = n e(*j) G GL2iF2). 

Obviously, 0(2?i, ..., bm) depends only on b\9 . . . , bm (mod 2). Put 

••( ! J)- --(? J)-«^> 
and find a3 = T 2 = 1, ax = TO 2 [as £L2(F2) " ̂ 3]- With these definitions, the 
following holds. 

Theorem 3: Let (2?l5 ..., Z?fe-i) (fc ̂  1) be a symmetric sequence of positive 
integers. 

i) (£>!, ..., 2?fc_i) * 0 if and only if 6(2?!, . .., bk-\) * a2. 

U) I f fc i s even, k = 2£, then 0(2?i, . . . , 2?fc-l) = a 2 i f and only i f 

9(2?!, . . . , £ £ _ i ) E { T , a 2 } and 2?£ = 1 (mod 2 ) . 

Fur thermore , i f /l/£ deno tes the number of a l l 
(2?l5 . . . , bt-i) e {0, l } 4 " 1 wi th 0(2?x, . . . , 2?£_x) E { T , a 2 } , 

then 
A7 - 2*"1 + (-1)* 

1 ~ 3 

Hi) If fc is odd, k = 21 + 1, then 0(2?i, . .., 2?£-i) = a2 if and only if 

0(Z?i, ..., bz) E {a, ax}. 

1991] 30i 



CONTINUED FRACTIONS OF GIVEN SYMMETRIC PERIOD 

Fur thermore , i f /l/£ deno tes the number of a l l 

0(2?!, . . . , bz) e {o, 1 } £ wi th Q(bl, . . . , Z?£) G {a, a x } , 

then 

Proof: i) is an immediate consequence of Corollary 1. If k = 2% and 

A/t. t- \ (a b\/bo l\t a c\( abq abqo + 1\ 

and thus 

6(b1} .... ifc.i) = 02 - (J }) 
if and only if a = 0, c = bz = 1. Since 

(" ^ ) ^ i 2 ( F 2 ) , 

this implies also 2? = 1. Therefore, 0(2?]_, . .., b^-i) = a2- if and only if 

e(fc!, ..., ̂ .i) = (J J ) e {T> a2}. 

If k = 2£ + 1 and 

9(*1. •••' M = (" J) G GL2(F2)> 

if and only if a = b = 1 and cZ = c + 1, i.e., 

(° 5) «<••«>• 
To o b t a i n the formulas for /l/£ and /I//, c o n s i d e r the number 

An(0 = # (bx, ..., b„) e {o, i}n\e(b1, ..., b„) = O 
for any n G N+ and £ G £L2 (F2) • These quantities satisfy the recursion formulas 

Ai(o) = A1(T) = 1, 
A1U) = 0 for all ? G £L2(F2)\{a, x}, 

4z + iU) = ̂ n(Ca2) + ^ U T ) for all £ e GL2(F2), 

which have the solution 

2 n _ 1 + 2(-l)n~l 

An{o) = 4„(T) = ̂  + ^ l) , 

4nU) = 3 ̂  ; for e e ^2(F2)\{a, T}. 

Therefore, for & > 2, 

^ = ^£ = ^ _ ! ( T ) + 4£-i(a*) = ----- ^ l-^-
3 

2£ + c-n£ + 1 

N[ = 4£(a) + A.ioi) = Y^ = Nl + l , 
and these formulas remain true for 1=1. • 
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5. In this final section I formulate the corresponding results for the con-
tinued fraction expansion of (1 + /D)/2 for D = 1 (mod 4); as the proofs are 
very similar to those for /D, I leave them to the reader. (For Theorem IA, see 
Satz [3; 3.34].) 

Theorem IA: Let (b\9 ..., bk-i) (k > 1) be a symmetric sequence in N+ and let 
Z?o e N + . Then the following assertions are equivalent: 

i + SD a) [bQ9 b l 9 ..., b k _ l 9 2b0 - 1] = — - — with D e N+, D = 1 (mod 4). 

b) Z?Q = — • [1 + me - (~l)kfg] for some m € Z, where e, f, and g are defined by 

(1). 
If this condition is fulfilled, then 

D = (22?0 - l) 2 + 4m/ - 4 • (-l)^2. 

Definition: For a symmetric sequence of p o s i t i v e i n t e g e r s (&]_, ...,bk-\) (/c ^ 1) 
l e t 9'{bi, . . . , i fc- i ) be the s e t of a l l £ e N+ wi th D = 1 (mod 4) and 

= [Z?Q, Z?x, . . . , bk_15 2bQ - 1] for some b0 e N+. 

Corollary IA: Let (&]_, . . . , bk-\) be a symmetric sequence in N+ and de f ine e, 
f, g by ( 1 ) . Then the fo l lowing a s s e r t i o n s a r e e q u i v a l e n t : 

a) @r(bl9 . . . , ' V i ) * 0-
b) E i t h e r e = 1 (mod 2) or g = fg + 1 = 0 (mod 2 ) . 

I f b) i s f u l f i l l e d , then@'(bl9 . . . , bk_l) c o n s i s t s of a l l D e N + , D = 1 
(mod 4 ) , which a r e of the form 

D = e2m2 + [ 4 / - 2 • ( - l )*e; fe] • m + [ / V - 4 - (-1) V l 
wi th 77? e Z s a t i s f y i n g 1 + me - {-l)kfg > 0. 

Corollary 2A:@'(l, . . . , 1) * 0 ( a l w a y s ) . 

Theorem 2A: Let (2?i, . .., bk-\) (k > 1) be a symmetric sequence of positive 
integers, define e9 f9 g by (1), and suppose that either e = 1 (mod 2) or 
e = fg + 1 E 0 (mod 2). Let P' be the set of all odd primes p with p\e and 

(T) - -1-
0 If 0 e 0'(2>i, . .., fcfc-i) and p e Pr, then p ^ . 
xO Let P be a finite set of odd primes, P D PF = 0 and (wp)peP a sequence in 

N. Then there are infinitely many P e $>'(b\9 . .., &&_i) such that yp(P) = 
Up for all p e P and Vp(D) < 1 for all primes p <£ P. 

Theorem 3A: Let (Z?i, ..., bk-\) (k > 1) be a symmetric sequence of positive 
integers. Then @f (b\9 ..., &&-i) = 0 if and only if Zc is even, k = 21, and 
Z?£ E 0 (mod 2) . 
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ON DETERMINANTS WHOSE ELEMENTS ARE RECURRING SEQUENCES 
OF ARBITRARY ORDER 

Richard Andre-Jeannin 
Ecole Nationale d'Ingenieurs de Sfax, Tunisia 

(Submitted October 1989) 

Some yea r s ago, C a r l i t z [1] and Z e i t l i n [2] c a l c u l a t e d d e t e r m i n a n t s of the 
form \i^a + k(i + j)l (^ ' i = 0 ' 1» •••» p ) » where {un} i s a second-orde r r e c u r r i n g 
sequence . More g e n e r a l l y , the aim of t h i s paper i s to o b t a i n a c losed form for 
the s x s de te rminan t 

( 1 ) 
• 3 ^-JJ 

Wa> 

°a+il + j 1 ' 

? ^ a + dv 

' ' ^ a + ^ 4 - j r 

, W a + t r + J2 
, W a + tr + j r 

where s = v + 1 and a, i ]_, . . . , %T , j ]_, 
fies the recurrence of order s, 

, j p are integers, when {wn} satis-

(2) £ (-D* lokwn-k, n e Z, 
fc= i 

where G^, G2> . .., as are complex numbers, with os * 0 

We shall often write A /' ,2' .r instead of A 
J ]_ » J 2 ' ' ' ' * 3 r 

We want to obtain an expression of Aw in terms of the Fibonacci solution 
{w„ } of (2), whose initial conditions are: 

^ 1 , . 

b'i» • 

• • 5 ^-p 

• • 3 J p 

a 

(3) u^ = M<s) = 4r-l = 0; M
(„s) = 1. 

(4) 

We define the characteristic number ew of the sequence {wn} by 

'1, 2, ..., p, 

1, 2, 
•& + J i 

(i, j = 0, 1, . . ., P) . 

Note that, for the Fibonacci sequence {u„ }, we have, by (3) and (4), 
v (p + 1) rs 

1. A Particular Case 

In this section we assume that the characteristic polynomial of (2) admits 
distinct roots 04, ..., as, and that QL^/QLJ is not a root of unity, for distinct 
i and j. In that case, there exist complex numbers C\y ..., Cs, such that 

•i = 1 

Notice also that 

i=1 
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The statement of the main result of this section is 

~k, 2k, ..., rk\ Theorem I [k, 2k, . . . , vk\ Cl . . . Cso«V(a\, . . . , c ^ ) 2 

aV(a\, . . . . o ^ ) 2 

e» °s Vr ^ s 

where V(a-,, . .., as) = II (a^ - a^) is the Vandermonde determinant. 

The proof will require the following result. 

Lemma I: ew = Cl . . . CQ V(a19 . .., a s ) 2 . 

Proof: From the equality between matrices 

[wi + j] = [Cj + laj+l][al+l] (i, j = 0, 1, . .., r), 

and passing to determinants, we obtain 

e „ = ^ j - i o t j + l u j + l l l u i + l l 
^ . . . ^ s | a | + 1 | 2 

(i, J = 0, 1, . , r) 

C i C q 7 ( a , , . . . , a s ) : Q . E . D . 

Proof of Theorem I: Let us c o n s i d e r the sequence iw^}, w i th i ^ = wa + f c n-
we have 

(5) W'n = f l^a^aj)" , 
i = 1 

and, since the a^ are distinct, {w1} satisfies a recurrence 

m= 1 

Then 

with 

afc ... a* 

Clearly we have, with the above notations, 

vk\ \k, 2k, ..., 
*wlk, 2k, ..., rfcl 

r i , 2, 
'Ll, 2, 

., r\ £,,' 

However, by Lemma I and (5), we have 

ll C.a° V(ak,, .... a*)2 

= Cl . . . Csaa
sV{a\, . . . , a * ) 2 = ewo\ 

V(<x\, . «.*) k\2 

7 ( a , , . . . , a V 

AppJications: 
(i) Put a = n - rk in the formula of Theorem I to get 

<« A"G; S; : : : : ll\n - rk\ -c^ ••• £.CT n - rk V(a\, ,, a*) k>2 

Vtf"1* 
7 ( a * , . . . , o ^ ) 2 

7(01,, , a j : 

In the case s = 2, we obtain 
W n - A + k 

7 (do ~ a?)2 

^ = ^C2a»-fc(a$ - a|)2 = e ^ " * — 2 i— 

ar^ta^ 
(a2 - o^)' 

*wu2 
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which is the well-known Catalan relation; thus, (6) is a generalization of this 
result. 

(ii) We can also study the sequence iw^}, where {wn} satisfies the second-
order recurrence 

whence 

wn = pwn_1 - qwn_2, 

Wn = C^ + C2
a2' 

Assuming that ou/a2 is not a root of unity, we get 

(7) < = to(t)cic r'^H'^n> 
where the a^a|"^ are distinct. Hence, {w„} satisfies a recurrence of type (2), 
wi th 

v rs rs 
(8) as = JTl o-l^i1 = ( a ^ ) 2 = q2 • 

i, = 0 
By a p p l i c a t i o n of Theorem I , we o b t a i n a new proof of a known r e s u l t ( see [ 1 ] , 
[ 2 ] ) . 
Corollary I: \w^+k{i + j ) l ( i , j = 0, . . . , r) 

— ars kr(r2 - 1) Y 
e 1 a 2 ?„(Jl?,(^)S 

i=0su/i= 1 

Proof: By Theorem I , ( 7 ) , and ( 8 ) , we ge t 

~k, 2k, . . . , rfci (9) w, a+k(i+j)\ = A7,,r k, 2k, . . . , rfcl 

n( i = 0 
Ac^C^ z * q 2 • 7 ( a 2 , a x a 2 r - 1 

y rs_ 

i = 0 

^ \ 2 

, < ) 2 , 

and i t can be shown (see [ 1 ] , p . 130) t h a t the va lue of the Vandermonde d e t e r -
minant i s 

rs kr{r2 - 1) r 
( 2 K r - i + l (10) (a x - a 2 ) 2 (7 ^ Y\ (u[2}) 

i= 1 ^ 

The result follows now from (9) and (10) since, by Lemma I, 

ew = ^i^2^al " a2-)Z-

2. The General Results 

In what follows, we do not make any assumption about the roots of the char-
acteristic equation, and we put again s = v + 1. In this section we shall 
prove the following theorem. 

Theorem II: Let iwn] be any solution of the recurrence (2). For all integers 
a, ^i5 "Z"9s > ^r> Q\> J2> • " ' Jr' W e h a V e 

(11) 
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where i s the v x v determinant 

, (p, q = 1, 2, . . „ , v) , °M, ....^r \Uip+q-l I 

From Theorem I I , we get a corollary which can be compared with (6) . 

Corollary II (Catalan's relation): For a l l integers n and k, we have 

\k, 2k, . . . , pfei (12) k, 2k, . . . , rfc n - vk an-rkp r 2 

Proof: Put a = n - r/c, j m = im = mk, I < m < v, in the general formula (11). 
For example, in the case s = 2, (12) becomes 

and, in the case s = 3, 

"n-2fc n-k 
an-2ke °3 ew 

(3 ) U 

(3) W 

(3) 
2k 

(3) 
7 c + 1 " 2 k + 1 ' 

3. Proof of Theorem II 

We shall need the following results. 

Lemma II: 

(i) For all integers il5 ..., ir, </]_, 

&•-•*/ = & f. 
3\t • • ' » dr ui, . . . , VP 

( i i ) For a l l integers i l 5 . . . , iv, j l s , j , and a l l 1 < p < r , we have 

M> 
• Jp> . J r 

and 
fc = 1 J l . , j - k, . . . , j ' / 

^ i , • • • » ^ p , E ( - D k - \ ^ 
fc = 1 

k i x , . . . , ip-k, . . . , i r 

( i i i ) If x is a permutation of {1 , 2, . . . , r } of sign e(x) , then for a l l 
integers i1 , . . . , iv, Qx, . . . , j r , 

JT(1)> • • •» JT( r ) 

and 

- £(T)A7' 

e(T)6, 

then 

JT(1)> • • • > JT(r.) " v t / " J i , ..., j r 

(iv) If j\ = j z for distinct /c and I or if there exists k such that jfc = 0, 

„• = 0. Jr J 1 > • • • » Jr1 

Proof: This is an immediate consequence of the properties of determinants. 

Lemma III: Let us consider two sequences {Xn} and {Yn}, with n = (n^, ..., nt) 
E Zt, such that, for all n € Zt, and all 1 < p < t, 

(13) ^.....np,...,^ = t (-Dfc"1^„1,...,np-k,...,nt. 
fc= 1 

and 

(14) *nlf...,np,...,nt = E (-D^1^!^,..., fe, ...,,t. 
fc = 1 
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(15) 

then 

(16) 

ct 

%n 

If Xn = Yn ho lds fo r a l l n be long ing to 

{ n e z S 0 < np < p , 1 < p < £ } , 

Yn holds for all n € Zt. 

Proof: By induction on t . The statement is well known for t = 1. Let us sup-
pose that (16) holds up to a certain t > 1. For the inductive step t -> £ + 1, 
fix an integer /?? and consider the sequences {x^} and {y^}, with n = (nl5 . .., 
n^) defined by 

^n Anx> ..., nt,m a n a i/w J K j , . . . , nt, m ' 

By definition, x ^ = y^ holds for all n e Ct and all 0 < m < p, and by the in-
duction hypothesis, 

x^ = y^ for n e Zt and 0 < m < P. 

Now, fix n C Zt and consider the sequences xf
m and y !

m, defined by 

xm = Xnl, . . . , nt, m anc* Urn = ^nl, . . . , nt, m ' 

We have x£ = y^ for 0 < m < P, and the same equality holds for all integers m9 
since by (13) {x^} and {y^} satisfy a recurrence relation of order s. This 
concludes the proof of Lemma 3. 

Proof of Theorem 2: 

Step 1: We prove that, for all integers i \ , . .., ir, jj, ..., j r , 

d 7 ) A ^ . 1 , • • • • * ' - ^•••••ir i-ir^r11 &d j . 
ji» • • • , j r i , z , . . . , p J I » • • •» t/r 

Let us fix £]_, ..., ir. By Lemma 2(ii) and Lemma 3, it suffices to show 
that (17) holds for j]_, ..., j r belonging to the set 

Cr = {(ji5 . .., jr) e Zr
s 0 < j < P, 1 < p < P } . 

If one of the conditions of Lemma 2(iv) is satisfied, then (17) clearly holds. 
Therefore, we have only to consider the case where (jl, ..., jr) is a permuta-
tion of (1, 2, ..., p). By a direct calculation, 

r(r- 1) 
61, ...,r = (-1) 2 > 

whence (17) holds for (j2 , ..., jr) = (1, 2, . .., P ) , and by Lemma 2(iii), the 
equality holds for every permutation of (1, 2, . .., P) . 

Step 2: By Lemma 2(i) and Step 1, the following statement holds: 
i l } . . . , i r _ l,2,...,r Al,2,...,r -r(p " 1} 

Hence, (17) becomes 

(18) b1}"'"** = 1,2, ...,r 
v y Jl,...,Jr l,2,...,r ^!,..., ̂ r Ji»---»Jr 

Now, it is known (see [3], p. 99) that 
Al, 2, ..., P xa„ 
1, 2, . . ., p s w 

By this and (18), the proof is complete. 

For a second-order recurring sequence, (11) becomes 

WaWa+i+j~ Wa+iWa+j = °2ewUi Uj ' 
When giving particular values to a, i , and j, one can deduce from this some 
well-known identities. 
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PERIODIC FIBONACCI AND LUCAS SEQUENCES 
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1. Introduction 

In the early thirteenth century there appeared the book Liber Abaci by the 
mathematician Leonardo of Pisa [7], who also became known as Fibonacci (see 
also [2]). In it a problem concerning an ideal case of the reproduction of 
rabbits is treated, and the sequence 

(1) F = 1, 2, 3, 5, 8, ... 

is introduced. This sequence has since become known as the Fibonacci Sequence. 
One of its features is the recurrence relation 

(2) an = an_1 + an_2, for n > 3. 

In the second half of the nineteenth century E. Lucas [8], who had actually 
coined the term Fibonacci Numbers, introduced a similar sequence connected 
closely to that of Fibonacci, 

(3) L = 1, 3, 4, 7, 11, ..., 

obeying the same recurrence relation as F. The sequence L has since become 
known as the Lucas Sequence [3] (see also [4]). 

Since then the generalized sequences of both kinds have been introduced. 
For both, the recurrence relation is 

an = aan_1 + oan_2, 

where a and a are prescribed numbers. 
We shall also stipulate aQ = 1 or 2 according to whether the sequence is a 

generalized F or a generalized L, respectively. The recurrence relation holds 
already for n = 2 (see also [3]). In [10] Wall treated generalized Fibonacci 
sequences modulo an integer 77? and showed that some are periodic mod (jri) (see 
also [6], [11], and [12]). 

Now let a and a be two arbitrary complex numbers and let the terms of the 
generalized Fibonacci (Lucas) sequence be f$ = 1, fi - a (g$ = 2, g^ -a). It 
turns out that in some cases such sequences are periodic. Put, for example, 
a = 1, o = -1. Then both sequences are periodic of period 6. 

In this paper we wish to characterize those sequences which are periodic; 
in other words, to specify precisely for which ordered pair (a, a) the corre-
sponding Fibonacci (Lucas) sequence is periodic. We shall also specify in each 
relevant case the period Ts T being the least positive integer for which 
an + T = an for every n. 

Let us first look at degenerate cases. The case a = a = 0 is trivial with 
T = 0. If just one of the two vanishes, the remaining parameter is necessarily 
a root of unity, a trivial case being a = 1, a = 0, f = 1. 

We may, therefore, assume both parameters to be nonzero. 

2. Periodic Row-Column Matrices 

Let n > 1 be a positive integer. Consider an n x n-matrix A ~ {d-tj) over 
the complex field with a^j - 0 if both i and j are greater than one. Put 
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n 

J = 2 

We shall name such a matrix a (one-row)-(one-column) matrix or5 in short, an 
RCM. 

The characteristic polynomial of A is Xn - aXn~^ + oXn~2 so that the two 
nonzero eigenvalues of A satisfy the quadratic equation 
(4) X2 - aX - a = 0 

whose roots are 

^ - i -- /(tf^-
It follows that for n > 2 the spectrum of A depends solely on a and a and is 
independent of n. 

For a = a2/4, the matrix A is neither diagonalizable nor periodic for any 
nonzero value of a. 

The polynomial f(z) = z2 - az - a appears in a paper by M. Ward [11], among 
others. Ward also considers what he calls degenerate sequences in which zeros 
appear periodically, with periods 2, 3, 4, and 6, although the sequences as 
such are not periodic (see, e.g., [11, Th. 3]). 

Except for the case a = -a2 /4, the two nonvanishing eigenvalues of A are 
distinct. In addition, we have rank A = 2, and hence, A is diagonalizable. For 
i = 1, 2, we have 
(5) X\ = aXi + a, 
(6) Xi + Xz = a. 
Let j be a positive integer. Define 

Tj- = Tr A^ 

We have 
Yi = a> 

y2 = X2 + X2 = aXj + a + aX2 + a = a2 + 2a. 

Also, for j > 3, equalities (1) and (2) imply 

(7) y. = X{ + X{ = X{~ZXJ + x(~2X2
 == a A l " 1 + a A l " 2 + aX2~l + a A 2 ~ 2 

= a^.-! + aYj._2. 

We thus have a recurrence formula for y-, J - 3, displaying a generalized Fibo-
nacci sequence. We now turn to the possible periodicity of an RCM. A neces-
sary condition for A to be periodic is | X-, | = | X~ \ = 1 • It also follows that A 
is periodic if and only if y, is periodic. 

Putting 

I a2 + o 

we have 
a , , a 

X1 = - + W9 X2 = -r - W. 
For both X^ and X2 to be on the unit circle, it is necessary that 

11 r, ^F 
\w\ = J 1 — , and arg w = arg a ± -~. 

Set arg a = <|) and arg X1 — <(> = ip. Then arg X2 = arg X-^ - 2I|J, so that 

arg X1 = a + ip and arg X2 = a = ty (see Fig. 1). 
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FIGURE 1 

Then 

tan ty 
1 -

\a\ 
- 1. 

Now set 

(8) ±i|> + (j) = arc tan(± 1 )+ are a 
2JT 

s 

p,-

where £ = I for the plus sign and £ = 2 for the minus sign. A necessary and 
sufficient condition for A to be periodic is that both \^ and X2 be roots of 
unity. We also find that equation (4) implies 

aX = A.(A - a) !*(</' -¥"•)(-! *</^.«) 
4 

,2i«J) i a l 2 , 2 i « _ s i 
4 / 4 

We thus have 

Theorem 1: Let A be an RCM. Then A is periodic if and only if 

(i) for both choices (±) we have TT Marg a ± arc tan /-—— - l) are rational; 

01i arg a (ii) a 

Corollary 1: Let ^ be an RCM. Then A is periodic if and only if the following 
three conditions hold. 

(i) IT-1 arg a is rational; 

(ii) TT-1 arc tan /-——- - 1 is rational; 
V \a\2 

(iii) a = -e2i ars a . 
Corollary 2: Let A be a real RCM. Then 4 is periodic if and only if 

arc tan 1 is rational and a 
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Corollary 3: A r e a l RCM i s p e r i o d i c i f and o n l y i f 

IT l a r c t a n /—- - 1 a n d a = - 1 . 
az 

Corollary 4: Let A be a purely imaginary RCM. Then A is periodic if and only if 

I-1 arc tan / - 1 is rational and o = 1. 

Corollary 5: A necessary condition for an RCM to be periodic is that a satisfy 
the inequality 0 < \a\ < 2. 

Corollary 6: A necessary condition for an RCM to be periodic is \o\ = 1. 

Let us now seek the period T = T(A). It will clearly be the least integral 
for which both T(§ + ty) and T($ - ip) are integral multiples of 2ir. Put 

Pi p2 
For i = 1, 25 the p. are necessarily rational, so that we may put 

mi 
p. = — , with (m-9 ft-) = 1. ^ ft^ ^ ^ 

We then have 

Theorem 2: Let ^ be a given periodic RCM, Then the period T(A) is given by 
the formulas T(A) = L.C.M. (mi, m2) where the m^ are defined as above. 

We also have, for a periodic RCM, (|a|/2) = cos ty, SO that we may write 

(9) a = 2 cos tyei*. 

We may also write Xl = el^+^\ X2 = ei^~^\ so that 

Xl + X2 = elHe^ + e~^) = 2 cos i|/ e^. 

Then it is easy to see that x\ = e
ki^+^\ Xk = e

ki^~^ so that, likewise, 

yk = X\ + X\ = 2 cos(^)eki* , 

thus proving that 4̂ is periodic if and only if the traces of the powers of A 
3.1CQ. periodic. We then have 

Corollary 7: Let A be a periodic RCM with a = 1. Then A has period 6. 

Proof: We have <f> = 0 and cos \\) = 1/2, so that ip = TT/3. The result follows. 

Let us consider two examples. 

TT 1 3 
Example 1: L e t <J) = — , IJJ = TTf'11- Then 

a = 2 c o s — TT e20, o = -e10 . 
OU 

We a l s o h a v e cj) + I|J = — TT , $ - ip - - T T / 6 , SO t h a t tfzx = 1 5 , m2 = 1 2 , and h e n c e , 

T = L . C . M . ( 1 5 , 12) = 6 0 . 

Example 2: L e t a = eH/3> Then = ~e
2lTi/3. A l s o c o s $ = 1/2 s o t h a t cj) = ip = 

T T / 3 ; h e n c e , cf> + ij; = 2 T T / 3 , <|> - ip = 2TT, WX = 3 , tfz2 = 1 , a n d s o T = 3 . 

3 . T h e L e a d i n g E l e m e n t of a P o w e r of a n RCM 

L e t A be an RCM. P u t A = (a^) . L e t a ^ d e n o t e t h e (i, j ) - e l e m e n t of Ak. 
We c o n s i d e r a[k) f o r fc > 1 . P u t a • • = a . , a . -, = 3 •. We t h e n h a v e a\2) = a2 + a . 
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For i * 1 * j, we have 
(2) (2) (2) 

a l / = a a j 5 a i l = a$i> aij = $£ a j J 

ai3i = a 3 + 2 a a ' ai3'} = (al + Q ) a j 
a™ = (a2 + a) 3 , , ag> = a 3 . a j . 

Put /o = l> fl = a> fl = al + a -
Suppose that for some A: we have 

(10) afl = fk, 4 « = a ^ ^ , 
i l " p i J k - l ' aij = 6i"jJfe-2 
(fc)= ^ 4 - 1 ' 4f- 6,;«-A-2 for i * 1 x j . 

Then 
T(fc + 1) a 11 afk + ofk_1 = fk+1, 

We may use induction since 10 holds for k = 2. We thus have 

Lemma 1: Let ,4 be an RCM. Then equalities (10) hold for every i, j > 1 and for 
k > 2. 

We thus obtain 

Theorem 3: Let A be an RCM. Then the leading elements and the traces of the 
successive powers of A form a generalized Fibonacci sequence and a generalized 
Lucas sequence. 

For a = a = 1 we obtain the original Fibonacci and Lucas sequences appear-
ing in (1) and (2). We may therefore look at ROM's as generating Fibonacci and 
Lucas sequences. A particular such case has already been treated in [5] and 
also in [1]. 

We may now combine the two aspects of RCMTs, namely, periodicity on the one 
hand, and Fibonacci sequences on the other in order to draw the following 
conclusion. 

Theorem 4: A generalized Fibonacci (Lucas) sequence with complex parameters a 
and a is periodic if and only if both 

—— - 1 and TT 1 arg a 
i \ l 

are rational and a = -e^ arg a . 

Corollary 8: A generalized Fibonacci (Lucas) sequence with real parameter a is 
periodic if and only if 

TT-1 arc t a n y ^ - 1 

is rational and a = -1. The period T is determined as prescribed by Theorem 2. 

Let n > 2 be an integer. Consider a generalized Fibonacci or Lucas sequence 
for which the parameters <\> and ip are <j> = ip = u/n. Then 

A JL 1 2 l T A 

* * = ~ft~s * " 
so t h a t 

a = 2 cos — e , 

ty = 2TT 

-2i\i 
o = -e n 

so we get a periodic sequence of period ft. We may thus state 
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Corollary 9: Every p o s i t i v e i n t e g e r > 2 i s a p e r i o d for some g e n e r a l i z e d F i b o -
n a c c i (Lucas) sequence . 

For n = 2, we have to s t i p u l a t e a = 0, 0 = 1 , s i n c e c|) = \jj = TT/2. We may 
a l s o s t a t e 

Corollary 10: Every p o s i t i v e i n t e g e r i s a p e r i o d for some RCM. 

For n = 1 choose a = 1, a = 0. The g e n e r a l i z e d F ibonacc i sequence wi th 
pa ramete r s a and o sugges t t h a t the t r a c e s y, be polynomials i n a, a of degree 
k, so t h a t 

[k/2\ 

j = 0 

The coefficients (J)̂  may be established by graph-theoretical counting tech-
niques. Induction may also be used to show that 

*fci \ J i + V j - 1 J K 3\{k - 2j) ! * 
The verification is left to the reader. 

A similar formula may be found in [9]. 
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0. Introduction 

In the study of electrical networks, it is well known that the coefficients 
of the polynomial which characterizes the transfer function (ratio of output to 
input voltage) of a ladder network formed by a cascade of N identical uncoupled 
elementary cells belong to the (N + l)th row of Pascal's triangle. This circum-
stance allows us a direct and fast determination of the transfer function of 
the entire ladder network. 

On the other—hand, in the case of direct coupling among interacting elemen-
tary cells forming a ladder network, the polynomial coefficients are not those 
belonging to Pascal's triangle, but rather to another triangle named the "DFF 
triangle8' from the initials of the authors who first dealt with it (see [3], 
[4]). 

The DFF triangle also provides a noteworthy interest from the mathematical 
point of view, because some of its properties are connected with Fibonacci 
numbers. 

1. The Generating Polynomials 

The DFF triangle can be formed in the following manner (8.n> k being the gen-
eral coefficient). 

We define (see [3], [4]): 

(1.1) ani k = 0 if n < ks 

(1.2) 8LU} k = 1 if n = k9 k = 0, 
while the other elements of the triangle can be derived from the recursive 
formula 

n - 1 
(1.3) an?fe = a„_1>fe + £

 aa,k-i If n > k. 
a = 0 

In this manner we have the DFF triangle for values of s.n \i 

n \ 
0 
1 
2 
3 
4 
5 
6 
7 

0 

1 
1 
1 
1 
1 
1 
1 
1 

1 

1 
3 
6 

10 
15 
21 
28 

2 

1 
5 
15 
35 
70 

126 

3 

1 
7 
28 
84 
210 

4 

1 
9 

45 
165 

5 

1 
11 
66 

6 

1 
13 

7 ... 

1 

Thus, for example, â  ? = 5 and a? ,- = 66. 
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T h e g e n e r a t i n g p o l y n o m i a l Pn (x) i s d e f i n e d i n [ 1 ] a s 

(1.4) Pn(x) = E a„,fca* 
k = o 

w h e r e 

( 1 . 5 ) 
DKP„ (x) 

A n , k k\ 

From the DFF triangle it is possible to obtain the expression of the poly-
nomial for small values of n: 

(1.6) PQ(x) = 1 
Pl(x) = 1 + x 
P2{x) = 1 + 3x + x1 

P3ix) = 1 + 6x + 5x2 + x3 

and so on. 
From (1.1), (1.2), (1.3), and (1.4) we have 

(1.7) 

and 

(1.8) P(x) 

n n n n - 1 

E a«,fc*k = L a n - i , ^ + E E aa,fe-i^ 
fc= 0 fc=0 fc= 0 a= 0 

n - 1 n n - 1 
ftn-l, n*" + E an-l,k^ + ^ E E aa,k-l X 

k= 0 k= 0 a= 0 

n - 1 ct+1 

k-1 

= Pn^x) + * E Eaa ) f e-1^~1' 
o = 0 fe= 0 

(1.9) P„(x) = Pn.i(x) + i ^ P a W , 
a = 0 

which is the recursive formula for the polynomials. 
With the initial condition PQ(X) = 1, it is easy to obtain the polynomials 

(1.6). Furthermore, we can also use (1.5) to find the triangle coefficients. 
In order to find the polynomials, we must apply the previous method. Let 

(1.10) f(x, t) = E Pw(aO*". 
n= 1 

Then 
Dn[f(x, t)]I 

( L I D pn(x) = u ; . 
n\ \t=o From (1.9) and (1.10) we have 

n - 1 
( i . i 2 ) f(x, t) = E Pn-i^t71 + ^ E !>*(*> *n 

n= I n= 1 a = 0 

= t E p . ^ w * " - 1 + ^ E t " [ P 0 + px + . . . + p ^ ] 
n = 1 „ = l 

~ T, - t 1 + t(l + X) 

- *[1 + /(x, *)] + x[l + f (x, *>]£** - t 2 _ t ( 2 + x) + i-

If we develop the denominator in (1.12) in partial fractions, we obtain 

(1.13) f(x, t) = u , „ ^ ln + — „ r ^ /r> 1, t - bix)/2 t - cix)/2 
where 

y - yix) = ix1 + 4x) 1/2 aix) -y 
2(x + 4)' 

b(x) = 2 + x + y, and c(x) = 2 + x - y. 
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From the b inomia l expans ion i n (1 .13) and a f t e r s i m p l i f i c a t i o n , we a l s o have 

(1 .14) f(x, t) = 
x + y + 4 _ y 

(x + 4) (a: + y + 2) rf^l 
x - y + 4 ^ 

+ ' + 4) (a? - y + 2)}t 

b(x)/2 
t 

= E 
ft > 1 

( X , - r , v ^ # , ^ y w > x 

1 + y/(x + 4) 
c ( a 0 / 2 j 

1 - z//(a? + 4) 
(x + 7/ + 2)^ + 1 / 2 n (ar - z/ + 2 ) n + i / 2 n J 

from which we have, using (1.10), 

1 + y/(x + 4 ) 1 - z//(x + 4) 
Pn (a?) = + (x + y + 2 ) n + 1 / 2 n ' (x - y + 2)^ + 1 / 2 ? z 

(a: - y + 4) (ar - y + 2) n + (x + z/ + 4) (x + z/ + 2) n 

(a: + 4)2^ + 1 

1 
(1 .15) Pn(x) = — -

r i nn + 1 

x - y + 4 Jl 
a? f ^ x<-»*(> +«-'. /z = 0 

'2/ 

a? + v + 4 J\ in\ 
+ x ! 4 L ( ^ ) ( x + 2 ) - ft^ft 

From t h i s e q u a t i o n , on d i s t i n g u i s h i n g the case of odd h from t h a t of even 
h9 and s i n c e 2/ = (a?2 + 4a?) ^ , we can w r i t e 

(1 .16) P(x) 2n t (*)(* + 2)̂  
h = 0 (mod 2 ) v n / 

- ^ / 2 (ar + 4) /z /2 

+ E HYX + 2)"-M;i + 1 ) / 2 (a : + 4 ) ^ ~ 1 > / 2 

ft s 1 (mod 2) 

2 . De te rmina t ion of a n, & 

From equations (1.5) and (1.16), and considering also LeibnizTs formula 

(2 .1 ) Dk[f(x)g(x)] = Z (J<
i)DJ'f(x)Dk-Jg(x)) 

we have 
(2 .2 ) ant k\2n E ( ? ) E (k.)Dd[xh/2 (x + 4)*/2 ] 0*-^[a? + 2 ] n " h 

0 (mod 2 ) V / 2 / j = 0 V ^ / 

+ E (?) E (kV[a^ + 1 ) / 2 (* + 4)^-1) / 2]Z)^qa: + 2] 
h = 1 (mod 2)\rl} j= 0 V ' 

ft- /z 

ar= 0 

Then, from ( 2 . 1 ) , i t i s p o s s i b l e t o w r i t e 

D'j[xh/1(x + 4 ) ^ 2 ] = £ ( ^ ) ( ^ 2 ) ^ ! ^ ( ; z / 2 ) " w * 

* ( h'-2m)U " m)l(x + 4)(*/2>~J" + w . 

2?k-^[(a: + 2 ) " - * ] = (^ ~ ^ ( f c - j) I (x + 2 ) n - / z - f e + ^ , 

and 
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(2 .3 ) Di[xlh+i)n(x + 4 ) ^ - 0 / 2 ] = £ (3
m)(ih +

m
l)/Z)mlx((-h+W-'» * 

where here and in the following equations the * represents multiplication. 

From (2.3) and from the properties of binomial coefficients, (2.2) becomes 

(2 .4 ) a 
2 ( h = Q (mod 2yn/j=0XK 3} 

* E {h,2)[hl2)xWV-\x+ li)W2)-J + m 
m^Q \ m )\Q - ml 

+ E (")E(^")(- + 2r^^^E((" + 1 ) / 2 ) ( ( ^ " 1 ) / 2 ) * 

* x((h+ l ) / 2 ) -m ^x + 4 ) ( ( ?z - D / 2 ) - J + /77 

#= 0 
When # = 0, the w-sum e x i s t s only i f m = /z/2 and TTZ = (7z + l ) / 2 , r e s p e c -

t i v e l y . So we can w r i t e 

«•» ....• £o«)£(;:5K-'-'[0 .%2) - 0 %i'ftj 
It is worth pointing out that L 1 = 0 if 1) ̂  E 0 } so 

/ fr/2 \ n . . 7 . 
I . _ 7./9) * 0 only i f /z i s even 

and 
0 - (h ; i ) / 2 ) * ° °n iy i f h i s °dd-

3. The Properties of a k 

3.1 The Asymptotic Expression of an f k 

From [2], the asymptotic expression of the binomial coefficient is 

»•» a)-fe)',2^^(-2(("/2rt>2) 
and, from e q u a t i o n ( 2 . 5 ) 5 we f ind t h a t the a sympto t i c e x p r e s s i o n of a n > ^ can be 
expressed as 

2 2 n - / c + 2 n j_ k 
an, k * ^ T - E — 77777^ E 2 _ J * 

T 3 / 2 fr = o (n(n - h))1/2 j = o 

exp 
-2(n - ft)((n/2) - h)2 - 2 n [ ( ( n - fr)/2) - (k - j)]: 

n{n - h) 
2h/2 

2(h-l)/2 

(h - 1 ) 1 / 2 

•If?* -» 
exp 

h even 

4 /3ft + 1 ^2' 
ft - 1\ 4 /z odd 
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3.2 The Row Sums of the Triangle Are Equal to 
Fibonacci Numbers with Odd Subscripts 

From t h e e x p r e s s i o n ( 1 . 1 6 ) f o r Pn(x), when x = 1 , we h a v e 

( 3 . 3 ) P ( l ) (5 + 5 1 / 2 ) / 5 
(3 + 5l/2)n + l / 2 n 

(5 ; l / 2 ) / 5 
(3 A/2 \n+l }n+ 1 12n 

; l / 2 
1 + 5 1 / 2 / 3 - 5 l / 2 \ « + l i _ 5 I / 2 / 3 + 5 l / 2 \ w + l ' 

From Binet's formula, we have 

( 3 . 4 ) 1 
• 2 w + l ; l / 2 

1 + 5 1 1/2 \2n + l I _ 5 I / 2 \2n + l 

I t i s e a s y t o show t h a t P „ ( l ) = ^ 2 n + l ( w h e r e ^ x = l s ^ 3 = 2 , F5 - 5, .). 

This is the main result we were interested in showing in this paper. (It 
may also be verified in the table of the DFF triangle.) 

3.3 The Sums of the Triangle Diagonals Give the Powers of 2 

From a direct inspection of the DFF triangle and (1.3), we have that the 
sum of the elements of an upward-slanting diagonal is equal to the sum of all 
elements that are above this diagonal and, consequently, to the sum of all 
superior upward-slanting diagonals. This sum value is a power of 2. 

In fact, if we define 

n n 

r= 0 

i t i s p o s s i b l e to w r i t e 

- E + E + 

= <r -2 + r ~ 3 + 

E1 

+ E 1 * ! 

•• + E1
 + i) -

Conclusions 

2n-z(Zl + l) " 2""1, 

The principal aim of this paper has been the determination of a closed ex-
pression of the general coefficient Q.n, k °f a n e w numerical triangle, named the 
DFF, which characterizes the transfer function of a ladder network whose 
elementary cells are directly coupled. Moreover, the authors present some of 
the triangle's interesting mathematical properties, one of which is connected 
to Fibonacci numbers. 

Acknowledgment 

The authors would like to thank Professor M. Cerasoli for his valuable 
advice. 

320 [Nov. 



A NEW NUMERICAL TRIANGLE SHOWING LINKS WITH FIBONACCI NUMBERS 

References 

1. K. Baclawski, M. Cerasoli, & G. C. Rota. Intvoduzione alia probabilitd. 
UMI5 1984. 

2. E. A. Bender. "Asymptotic Methods in Enumeration." SIAM Review 16.4(1974). 
3. A. D?Amico5 M. Faccio, & G. Ferri. "Determinazione della funzione di tras-

ferimento e dell'impedenza equivalente secondo Thevenin per reti a scala 
passive formate da celle elementari uguali tra di loro." Internal research 
report (Dip. Ing. Elettrica - Universita di L'Aquila, 1989). 

4. G. Ferri. "Progettazione di un microscopio ad effetto tunnel." Laurea the-
sis (Universita di LTAquila5 1988). 

5. J. Riordan. An Introduction to Combinatorial Analysis. Princeton, N.J.: 
Princeton University Press, 1980. 

6. J. Riordan. Combinatorial Identities, New York: Wiley & Sons, 1968. 

Applications of Fibonacci Numbers 
Volume 4 

New Publication 
Proceedings of 'The Fourth International Conference on Fibonacci Numbers 

and Their Applications* Wake Forest University* July 30-August 3, 199IF 
edited by G*E„ Bergum, A,N* Philippou and A.F, Horaiam 

This volume contains a selection of papers presented at the Fourth International Conference 
on Fibonacci Numbers and Their Applications. The topics covered include number patterns, 
linear recurrences and the application of the Fibonacci Numbers to probability, statistics, 
differential equations, cryptography, computer science and elementary number theory. 
Many of the papers included contain suggestions for other avenues of research. 
For those interested in applications of number theory, statistics and probability, and 
numerical analysis in science and engineering. 

1991, 314 pp. ISBN 0—7923—1309—7 
Hardbound Dfl. 180.00/E61.00/US $99.00 

A.M.S. members are eligible for a 25% discount on this volume providing they order direct-
ly from the publisher. However, the bill must be prepaid by credit card, registered money 
order or check. A letter must also be enclosed saying UI am a member of the American 
Mathematical Society and am ordering the book for personal use." 

| ^ g KLUWER 
ACADEMIC 

PUBLISHERS 
P.O. Box 322, 3300 AH Dordrecht, The Netherlands 

P.O. Box 358, Accord Station, Hingham, MA 02018-0358, U.S.A. 

W 

1991] 321 



GENERALIZED MULTIVARIATE FIBONACCI POLYNOMIALS OF ORDER K 
AND THE MULTIVARIATE NEGATIVE BINOMIAL DISTRIBUTIONS 

OF THE SAME ORDER 
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(Submitted November 1989) 

1. Introduction and Summary 

In a recent paper, Philippou and Antzoulakos [4] introduced and studied the 
sequence of multivariate Fibonacci polynomials of order k and related them to 
the multiparameter negative binomial distribution of the same order of 
Philippou [3], in order to derive a recurrence relation for calculating its 
probabilities. This sequence of polynomials includes, as a special case, both 
the sequence of Fibonacci polynomials of order k and the sequence of Fibonacci-
type polynomials of the same order of Philippou, Georghiou, and Philippou [9] 
and [10], respectively. 

In this paper, we introduce a generalization of the sequence of multivari-
ate Fibonacci polynomials of order k (see Definition 2.1), and we derive an 
expansion in terms of the multinomial coefficients and a recurrence for the 
general term of the (r - l)-fold convolution of this sequence with itself (see 
Theorems 2.1 and 2.2). Next, we relate these polynomials to the multivariate 
negative binomial distribution of order k of Philippou, Antzoulakos, and 
Tripsiannis [8], and we derive a useful recurrence relation for calculating its 
probabilities (see Proposition 3.1 and Theorem 3.1). Analogous recurrences 
follow directly for the type I, type II, and extended multivariate negative 
binomial distributions of order k of [8] (see Corollaries 3.1-3.3). 

The present paper generalizes results on multivariate Fibonacci polyno-
mials of order k (see Remark 2.1) and Fibonacci-type polynomials of the same 
order (see Remark 2.2). At the same time, several results of Aki [1], 
Philippou and Georghiou [6], and Philippou and Antzoulakos [4] on recurrences 
for the probabilities of univariate geometric and negative binomial distribu-
tions of order k are generalized to the multivariate case. 

Unless otherwise stated, in this paper k9 m9 and T ar.3 fixed positive inte-
gers, n^ (1 < i < m) are integers, n^j (1 < i, < m and 1 < j < k) are nonnegative 
integers as specified, x^j (1 < i < m and 1 < J < k) are real numbers in the 
interval (0, °°) , _1 denotes the • 7?2-dimensional vector with a one in every 
position, and j_^ (1 < i < m and 1 < j < k) denotes the w-dimensional vector 
with a j in the ith position and zeros elsewhere. Also, whenever sums and 
products are taken over i and j, ranging, respectively, from 1 to m and from 1 
to k, we shall omit these limits for notational simplicity. 

2. Generalized Multivariate Fibonacci Polynomials 
of Order k and Convolutions 

In this section, we introduce the sequence of generalized multivariate 
Fibonacci polynomials of order k, to be denoted by 

"-n ^ 1 ' • • • s ^ m ) J 

"The research of this author was supported by the State Scholarship Foundation of Greece. 
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along with the (r - l)-fold convolution of H^ (2^, . .., x_m) with itself, to be 
denoted by _ 

and we derive a multinomial expansion and a recurrence for the nt h term of 
Hi K>(x-,, . .., x ) . In some instances, we shall use the notation H„ and Hi „ 
instead of H^K) (x1, . .., x_m) and #^ r(*£i> •••» £w)» respectively. 

Definition 2.1: The sequence of polynomials #^ (<r , . .., x_m) is said to be the 
sequence of generalized multivariate Fibonacci polynomials of order k, if 

< ° ( £ i > • • • > £ - > 

0, if some n^ < 0 (1 < i < m), 

1, if n = j., 

S i S j ^ i j ^ - ^ . ^ i * •••» £m>> elsewhere, 

where n = (n15 . .., nm) and a^ = (x.^9 . .., x^, ) , i = 1, . . . , m. 

For ?w = 1, n]_ = n (>0) and xx = x, #^ (*Ei» •••» ^ m ) reduces to En \x), the 
sequence of multivariate Fibonacci polynomials of order k of Philippou and 
Antzoulakos [4] . 

(k) Lemma 2.1: Let E\ \x_^, . .., #m) be the sequence of generalized multivariate 
Fibonacci polynomials of order k9 and denote its generating function by 

g k ( t l 5 . . . , tm; x_19 . . . , x_m). 

Then, for 0 < x-- < 1 (1 < i < m and I < j < k) and Z - £ , • # • • < 1, we have 

U | . . . t f f l . . 
gk(tl9 . . . , t m ; £ x , . . . , x_m) = J> p i I < ! ' 

1 " ^ i ^ j x i j t i i = I, . . . , m. 

Proof: I t can be shown by i n d u c t i o n on n x , . . . , nm t h a t 0 < x^- < 1 (1 < £ < 777 
and \ < j < k) and H^HjX^- < 1 imply 0 < # ^ ) < ]_ ^ which shows the convergence 
of g,(£•,, . . . j t ; X-,, . . . , a? ) for a t l e a s t | t . | < 1, s i n c e for t h e s e t^ 

g (tx, ..., tm; xx, ..., xj < Y, ••• E fi1--- C 
"1-1 "„-l 

= n^ci - v"1. 
Next, using Definition 2.1, we have 

% ( 1' •*•» ^m' —1' •••» ̂ im' 

" 1 m Z_^ Z_̂  1 m n 
nx = 1 w m = l 
«j_ + . . . + nm > m+ 1 

" 1 = 1 " m = L 

p n l J ." i + c7 +nmTj(k) 

n x = 1 wO T= 1 

= *i • • • *m + L ; E j x i , f * f V * i ' • • • • *™; ^ i ' • • • • -™}' 

from x^hich the lemma f o l l o w s . 
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(k) Now l e t En^ r(x_,, . . . , xm) be the (r - l ) - f o l d convo lu t ion of the sequence 
E^ ( x 1 , . . . , xm) wi th i t s e l f , i . e . , H^r = 0 i f some ni < 0 (I < i < m) , and 
for ni > I (I < i < m) 

(2 .1 ) R%\ 

H(
n
k\ i f r - 1, 

E ••• E ^ - i 4 + l - e . if r 2 2, 
I ill = 1 ^ = 1 

where £ = ( t ^ , . . . , cm) . 

As a consequence of (2 .1 ) and in view of Lemma 2 . 1 , we have 

n1 = 0 nn= 0 
(2.2) J ... £ *?••• C ^ f l . r ^ l . •••• ^ - (l - Z^jX^tif. 

Expanding (2.2) about t^ = • • • = tm = 0 and using procedures similar to those 
of [5] and [8], we readily find the following closed formula for Enj r , in terms 
of the multinomial coefficients. 

(k) 
Theorem 2.1: Let Eny r{x_l, ..., xm) be the (r - l)-fold convolution of the se-
quence E(:^\x_l, ..., xm) with itself. Then 

E{k) (x x)= y (ni1 + '•• + *** + r " l) nnxnii 

- J w 7-J 

Proof: Let 11^ | < 1 (1 < i < m) , 0 < x^- < 1 (1 < i < 777 and 1 < j < k) , and l e t 
Z^; S j ^ i j < 1. Then 

E • •• z ^ . - - c ^ + i f 1.(51. • ••> **> 
«! = 0 nm= 0 

= ( l - E f E , - ^ . * ! ) " ' , by ( 2 . 2 ) , 

= n E Q ( " + I ~ l)(^i £ j xid t\ ) " , s i n c e I E i Z j x^- i f | < 1, 

= Z ( n + r l I („n "' n Jiw***/)»«, 
rc=0 Z ! - L - n . . = ? z 1 1 ' " * * ' m7c 

"̂  J ̂  by the multinomial theorem, 

- t ••• E r E ("i ; / ••• +
n"f r - I ^ n , <*,,*>)»« 

nl = Q nn=Q- lljn^ = nt
 x n l 1 » ' * * ' n mk» -* x 7 J 

= E • • • E kl • • •"*"" E f"11 + ' ' ' + n* + r 7 x) n^n ,x"f , 
i= 1, . . . , m 

by replacing n • by n • - YL Aj - l)n^j (1 < i < /??). The theorem follows. 

We proceed next to show that H-^ r satisfies the following linear recurrence 
with variable coefficients, using procedures similar to those of [4] and [6]. 

(k) Theorem 2.2: Let #„ „(#-,, ..., xm) be the (r - l)-fold convolution of the se-
quence H^X^, ..., x_m) with itself. Then 

E^\ = 0, if some ni < 0 {I < i < m), E^\ = 1, 

if n^ > 0 and some ns > 1 (1 < i , s < m) . 
324 [Nov. 



GENERALIZED MULTIVARIATE FIBONACCI POLYNOMIALS OF ORDER K 

Proof: From t h e d e f i n i t i o n of H^\, we h a v e 

( 2 . 3 ) H™r = 0 , i f some ni < 0 ( 1 < i < m) and E{k)
 r = 1 . 

Now, u s i n g ( 2 . 2 ) t w i c e , we h a v e 

( 2 - 4 ) H™^ r = H™lt r + 1 - E i E ^ ^ + i - i . , r + l » " i ^ 0 (1 < i < W ) , 

since the generating function of the right-hand side reduces to that of # ^ x 

Next, differentiating both sides of (2.2) with respect to ts (1 < s < m) , ~we 
get 

(2.5) nsH^li,r = p ^ j 3\jHnkli-iB,r + i> n i - °  a n d w* * 1 (1 < i * s < m) . 
Combining (2.4) and (2.5), we obtain 

H(k) = T-T-x.-H{k) • + r ~ l Y ir H{1° 

if n^ > 0 and some ns > I (I < i , s < m) , 

by means of (2.1), which along with (2.3) establishes the theorem. 

Remark 2.1: For m = 1, nl = n, and a^ = x = (a^, ..., xfc), Theorems 2.1 and 
2.2 reduce to the main results of Philippou and Antzoulakos [4] on multivariate 
Fibonacci polynomials of order k (see Theorems 2.2 and 2.3), namely, 

(2 6) Hy^ (x) = T l n i + ' • ' + U^ + V " l\X\-xni n>0 ,00 
0) a 

and 

( 2 . 7 ) H{
n

klUr(x) = H ^ i n + J ( P - l)]H^l_jtr(x), n > 1 . 

Remark 2.2: For 777 = 1 , nY = n, and x_i=(x, . . . , x ) , Theorems 2 . 1 and 2 . 2 r e -
d u c e t o Theorems 2 . 1 ( a ) and 2 . 2 of P h i l i p p o u and G e o r g h i o u [ 6 ] , r e s p e c t i v e l y , 
s i n c e f o r t h e s e v a l u e s 

ni, T ^-^_\) ~~ n, v {^) ' 

where Fyn r (x) denotes the (r - l)-fold convolution of the sequence of Fibonacci-
type polynomials of order k with itself. 

(k) We note in ending this section that the sequence Fn defined by 

Fik) 
0, if some n^ < 0 (1 < i < m), 

1, if n = 1_, 

Hi Lj Fn _j_ , elsewhere, 

may be called the multiple Fibonacci sequence of order k, since for m = 1 and 
n\ = n (̂ 0) it reduces to F^ , the Fibonacci sequence of order k (see, e.g., 
Philippou and Muwafi [7]). It may be noted that 

(2.8) F„<» - L ("11 + ••• \ n f ) , n, - 0, 1, ... (1 * i , m). 
~ ~ E.J'V = ni \ ™11> •••» nmk I 

which follows from Theorem 2.1 for r = 1 and x•• = 1 (1 < i < m and 1 < j < k). 

3. Recurrence Relations for the Multivariate Negative 
Binomial Distributions of Order k 

In this section, we employ Theorems 2.1 and 2.2 to derive a recurrence 
relation for calculating the probabilities of the following multivariate nega-
tive binomial distribution of order k of Philippou, Antzoulakos, and Tripsian-
nis [8]. 
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Definition 3.1: A random vector N_ = (Ni, . .., Nm) is said to have the multivari-
ate negative binomial distribution of order k with parameters p, ^IIJ •••» qmk 
(p > 0, 0 < q < 1 for 1 < i < m and 1 < j < k9 and qll + ... + q.. < 1), to be 
denoted by MNBk(p; ^ n , . .., qmk) , if 

^11 + ••• + nmk + P - 1 

w^ = 0, 1, ... (1 < i < m), 
where p = 1 - ? u - • • • - <7mfc. 

Analogous recurrences are also given for the type I, type II, and extended 
multivariate negative binomial distributions of order k of [8]5 denoted by 

MEk>1(r; Ql9 ..., Sw) 5 MNBfejII(p; §}, ..., Qm) , and 

(a) 

(b) 

(c) 
<?,,. = « ; / * 

^ = P l ? 2 

MENBk(r; ? n , .... ^ ) . 

These distributions result by applying to the parameters of MNB^(p; ^113 •••» 
(7^) the following transformations, respectively: 

Qi (0 < Qi < 1 for 1 < i < m, ZiQi < 1 and P = 1 - ^fi-); 

fi^/k (0 < Qi < 1 for 1 < i < m, HiQi < 1 and P = 1 - X ^ ) ; 
Pj-lQij (p0 = ls °  < Sii < 1 for 1 < i < /7? and 1 < j < fe, 

E , ^ - < 1 and Pf = 1 - L.^. for 1 < j < k) . 

We note first the following proposition that relates the multivariate nega-
tive binomial distribution of order k to the generalized multivariate Fibonacci 
polynomials of the same order. 

Proposition 3.1: Let N_ = (yVl5 . .., Nm) be a random vector distributed as 

MNBk(p; q n , ..., ^ ) , 

.et 
Then 
and let H^ r be the (v - l)-fold convolution of the sequence # n with itself. 

P(N1 - Kl, .... iVffl = nm) = p ^ , ^ , .... ?m), 

n^ = 0, 15 ..., 1 < i < m, 

w h e r e q^ = (qil9 . . . , <7i 7 c) , i = l s . . . , m. 

Proof: The proof is a direct consequence of Theorem 2.1 and Definition 3.1* 

We proceed now to derive a recurrence relation for calculating the proba-
bilities of MNBk(p; qll$ ..., qmk). 

Theorem 3.1: Let # = (/!/]_, . .., #m) be a random vector distributed as 

MNBk(p; (?11, ..., ^ ) , 

and set 
pn, r = p ^ i = nl9 . . . , Nm = nm). 

Then 
05 if some n; < -1 (1 < i < m) 5 

P n, r pr
9 if «! = ... = nm = 0, 

IZ-]C-<7--P • + ILnJa -P • s if n7- > 0 and some 
~ -l n* -• fl ns > 1 (1 < ^, s < m) , 
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Proof: I f some n^ < - 1 (1 < i < m) 5 (il/1 = n l 5 . . . , Nm = nm) = 0S w h i c h i m p l i e s 
Pn P ( 0 ) = 0 . I f n = nTt 0 , D e f i n i t i o n 3 . 1 g i v e s Pn> V1 If 
n^ > 0 and some ns > I (I < i , s < m) $ we have 

pn, r = Prffn+i>r^i' •••» £ m ) ' by Proposition 3.1, 

+ 1 1 ^ 1 E ^ ^ + i-^.rCii. •••> £w)}> by Theorem 2.2, 

= ^ ^ j ^ w ^ - i . r + Z L ^ T i EJ^sjP«-Js,r' fey Proposition 3.1. 

Using the transformations (a), (b) , and (c) , respectively, Theorem 3.1 now 
reduces to the following corollaries. 

Corollary 3.1: Let N_ = (N i, . .., Nm) be a random vector distributed as 

MEkt x(r; <?x, ..., ^ m ) , 

and set 
P*,r = P(#i = nl9 . . . , Nm = nm). 

Then 
05 if some n- < -1 (1 < i < m), 
-)kr if n\ 0, 

J~l, 
if n{ > 0 and some rcs > 1 (1 < i, s < m). 

Corollary 3.2: Let /V = (/l/l5 . .., /l/m) be a random vector distributed as 

mBk, II O ; <?1> •••» <7m)' 
and set 

Then 
P(#i = nl9 , Nm = nm) , 

0, if some n?: < -1 (1 < i < m) , 

p1 if «i 

J k n ~ii> T 

= nn 
v 

-- o , 
1 _ . <7 

if n^ > 0 and some ns > 1 (1 < i, s < m). 

Corollary 3.3: Let N = (Ni, . .., /l/m) be a random vector distributed as 

MENBk(r; (?u, ..., q ^ ) , 
and set 

Then 
P(Nl = nl9 . . . , Nm = nm). 

0, if some n^ < -1 (1 < i < m), 

(Pi ••• Pk^5 if nx = .- = nm = 0, 

SjPl '•• P,7-l<WPn-

if n^ > 0 and some ns > 1 (1 < i , s < m). 

For m = 1, Theorem 3.1 and Corollaries 3.1-3.3 reduce to known recurrences 
concerning respective univariate negative binomial distributions of order k 
(see [4] and [6]). For k = 1, Theorem 3.1 (or any one of Corollaries 3.1-3.3) 
provides the following recurrence for the probabilities of MNB(r; q-^, ..., qm) , 
the usual multivariate negative binomial distribution, 
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P n, r 

0, i f some n^ < - 1 (1 < i < m), 
pJ\ i f ni = • • • = n.m = 0, 
y n n i p " -*- n p 
^i^-i^ n-I. , r n i s n - l s » r ' 

i f n,: > 0 and some ns > 1 (1 < i , s < m) , 
which does not seem to have been n o t i c e d b e f o r e . 

Remark 3.1: For r = 1, Theorem 3.1 and C o r o l l a r i e s 3 . 1 - 3 . 3 provide r e c u r r e n c e s 
for the p r o b a b i l i t i e s of r e s p e c t i v e m u l t i v a r i a t e geometr ic d i s t r i b u t i o n s of 
o rde r k of [ 8 ] , de f ined by 

MGk(<7n, . . . , qmk) = MNBfe(l; ? n , . . . , ^ ) , 

M G k > I I ( ^ - , . . . , <?m) = MNBf e > I I ( l ; ^ , . . . , ^ ) , 
and M E G k ( ? n , . . . , qmk) = MENB ( 1 ; q^, . . . , ^ ) . 

The resulting recurrence for MEG^C^n-,, ..., q , ) has also been obtained in [5], 
via a different method. 

We note in ending this paper that another derivation of Theorem 3.1, with-
out employing the sequence of generalized multivariate Fibonacci polynomials of 
order k, has been obtained by Antzoulakos and Philippou (see [2]). 
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1. Introduction 

Let {Wq} be a recurrence sequence of order n (n E N) and let its generating 
function be given by 

- W\(z) 
(1) W(z) = 22 Wqz = —n » 

*-o \\ (i - tyz) 
3= l 

where Wi (s) is a polynomial in z with deg Wi(z) = 777. For a positive integer k, 
let Wfc(s) denote the generating function of the sequence {wi} of the kth powers 
of Wq. It is known that Wk(z) is a rational function in z (see [6] or [8]). 
The aim of this paper is to study the degrees of polynomials in the numerator 
and denumerator of Wk{z), This paper is similar in character to [4]. 

The function Wk(z) has been studied with m = n - 1 in [8] and [11]. Gen-
erating functions for powers of third-order recurrence sequences have been 
studied in [13], and those of second-order recurrence sequences in [1], [3], 
[5], [7], [9], [10], and [12]. 

The proof of our result is based on the following theorem by Hadamard: 
If A(z) = f] anzn, B{z) = £ bnzn, and C(z) = £ anbnzn, 

n=0 n-0 n-0 
then 

where y is a contour in the s plane, which includes the singularities of 
B(z/s)/s and excludes the singularities of A(s) . If the radius of convergence 
of A(z) [resp. B(z)] is R (resp. it")» then the radius of convergence of C{z) is 
at least RRr, and y may, for example, be any circle between |s| = R and |s| = 
\z\/R' (see [6], p. 813, [14], pp. 157-59). 

2. The Generating Function wk(z) 

Theorem: Let {wq} be a recurrence sequence of order n and let its generating 
function be given by (1). Then 

(2) wk(z) = -±—, 
where 

^ .00 = t I ! ^K7n (1 - b\l • • • fn
n z), N0 = N u {0}, 

r1 + • • •+ r n = fc 

and Wk(z) is a polynomial in z with 

deg J/k(s) £ \ k~ ) - n + 77?. 
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Proof: C l e a r l y W^{z) c a n b e w r i t t e n i n t h e f o i 
777 - p 

WY{z) = wpzp \ \ (1 - a.tz), 0 < p < m, 
i = 1 

w h e r e p i s t h e l e a s t i n t e g e r s u c h t h a t Wp * 0 . Assume f i r s t t h a t bj * bj f o r 
^1 X ^2 a n <^ ^ i * ^ "^or J = ^ ' ^ ' . . . ? n . Then we d i s t i n g u i s h two c a s e s : 
m < n, m > n. 

Case 1. Let 77? < n. We proceed by induction on k. If k = 1, the theorem 
holds. Assume it holds for k = K (K > 1) . We shall prove that it holds for 
k = K + 1. Applying Hadamard's theorem and the Cauchy residue theorem and 
noting that the appropriate winding numbers are = 1, we obtain 

: + i ( s ) = Y^J WK^W^IS') 
as 
s 

m - p 

- I f 
I'm}-, 

WK(s)wvzP I"! ( s - ^z) 
^ = 1 , 

— • — s n ~ m - l d s 71 

n (i - b*1-- br
n« S) U(s - b,z) 

m - p 
WK(bhz)wp [1 (bh - a.) 

= L — — — _ _ _ _ _ _ _ _ -z>*-*-i. 
n (i - b\i ••• *# v > fi (̂ 2 - fy) 

Pl + • • • +rn = A7 j = i 
Denote briefly j*7z 

777 - p rz 

Ch = wP H (feh " **) n (Aft - Aj)-1^-™"1-
i= 1 J =1 

O*) - n + ,+ ,(i - *? • • • *?:l *£+i • • • *»«) • 
r± + • - • + rh _ 1 + rh + j + • • - + rn - K + 1 x ' 

(h) 
Converting the fraction in the sum over h by EK+l(z)9 we obtain 

£CftMV>0*> 
( 3 ) » ^ ( a ) - " ' W « ) • 

The number of solutions of the equation P1 + ••• + vn = K in (r1, ..., Pn) e NQ 
is equal to 

rir1)-
Thus 5 t h e number of s o l u t i o n s of t h e e q u a t i o n v\ + • • • + v1 , + r7 , + • • • + r^ 

^ 1 h- l h+ l n 

= K + 1 i n ( r 1 5 . . . , ^ _ 1 ? ^ + 1 » • • • > *Vz) G N o i s e ( l u a l t 0 
(n + K - 1\ 
\ X + 1 / 

This is plainly the degree of the polynomial EK + l{z). Thus, the degree of the 
polynomial in the numerator of the fraction of (3) is less than or equal to 

In + K - 1\ , , in + K - 1\ 

that is, less than or equal to 

In + {K + 1) - 1N 
^ + ! > - n + m. 

This proves the theorem in Case 1. 
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Case 2. Let m > n. We proceed by induction on k in this case, too. The 
theorem holds for k = 1. Assume it holds for k = K. Then the series WK(z) can 
be written in the form 

a~b UK{z) 
wK(z) = L ^ ^ t + 7T77V5 

where 
TI / ̂  ̂  (n + K ~ l \ ^ -u (n + K - 1\ 

a = deg WK(z) < ̂  R ) - n + m, b = { R J 
and UK(z) is a polynomial in z of degree < b. Note that a - b < m - n. The 
series w(z) can be written in the form 

m - n # n /[ 
w(z) = Yjviz^+ 12 i _ h—• 

j=0 J £ = 0 i ^ £ S 

Applying Hadamard's theorem and the Cauchy residue theorem and noting that the 
appropriate winding numbers are =1, we obtain 

W* + l(*) = 27iJY WK{S)w(zl8)^f 

^ r a- b m- n zj ^ r a- b n Qi 

- 2¥iJY £ £ W ^ d s + 2i?JY £„ EM* 7 ^ 1 & 

+ 2TTiJY A 0 DK{8) VJ S J+1 ^ + 2TTi JT £ Q Z?*(S) S - b,Z ^ 

a-b a-b n . . m - n . n UK(bzz) 

where 57- (j = 0, 1, . .., 777 - n) is a complex constant. Now we can see, after 
some calculations, that ̂ +i(^) c a n be- written in the form 

^ + 1 ( 2 ) 
W X + 1 U J DK+l(z)' 

where 
, , ^ In + (Z + 1) - 1\ 

deg ^ + 1 ( s ) * ( K+ I ) ~ n + 777. 

This proves the theorem in Case 2, 

Now the theorem is proved when bjl * bj2 f° r d\ * J2 anc* Ĵ * 0 for j = 1, 
2, ..., n. But the coefficients of 2^ (g = 0, 1, ...) in the series W-^(z) and 
in the polynomials W^(s) and D^iz) are polynomials in the variables zJp, a^, and 
bj. Thus, taking limits bj1 -> &j2 , Z?j •> 0 proves that the theorem holds for 
all £>]_, . .., bn. This completes the proof. 

Remark: It should be noted that, in the case in which two or more of the bj 
are equal, the treatment used at the end of the proof does not have to give the 
best possible result (cf. [8], Sec. 7). However, application of Hadamardrs 
theorem and Cauchyfs residue theorem would be too laborious in that case. 

Example: Let {wq} E {Fq}, the Fibonacci sequence, and let a = (1 + /5)/2, and 
3 = (1 - /5)/2. Then, for Z = 1, formula (3) is 

a(a - 3)_1(1 - 32s) + 3(3 - a)_1(l - a2z) 
F2(z) = , 

(1 - a2z)(l - a3s)(l - 32s) 
which gives the well-known formula 
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1 ~ Z 
F (;3) = 

1 - 2s - Iz1 + z3 

(see, e.g., [2]; [13], p. 794), 
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1. Introduction 

Consider a sequence defined by the condition 

(1.1) uQ = 0, ul = 1, un + 2 = aun + l + un3 n = 0, 1, 2, ... (a e Z). 

If a = 1, then un = Fn, that is, we get the sequence of Fibonacci numbers. If 
p is a fixed prime, we also consider the sequence wQ, u,, «„, ... defined by 
the same condition in ¥p , the finite field of p elements. Let /c = k(p) be the 
length of the shortest period of the sequence uQ, u-,, TL^* ••• • A Schinzel [1] 
has proved the following result. 

Theorem 1.1 (Schinzel) : Let S = S(p) be the set of frequencies with which dif-
ferent residues occur in the sequence un [0 < n < k(p)]. For p > 7, pja(a2+4) 
we have 

5 = (0, 1, 2} or {0, 1, 2, 3} if fc(p) 2 0 (mod 4), 
S = {0, 2, 4} if k(p) = 4 (mod 8), 
S = {0, 1, 2} or {0, 2, 3} or {0, 1, 2, 4} or {0, 2, 3, 4} 

if k(p) ~ 0 (mod 8). 
The purpose of this note is to show how this result can be extended, using 

the same method, with some minor modifications. Consider the sequence defined 
by the condition 

(1.2) vQ = 2, vY = a, vn+2 = avn+l + vn, n = 0, 1, 2, ... . 
If a = 1, then vn = Ln, that is, we get the sequence of Lucas numbers. Con-
sider also the sequence Vn,, V-,, V2, ... defined by the same condition in Wp . 
Let kr = kr(p) be the length of the shortest period of the sequence VQ, V^9 V^, 
.... We prove that kr = k (Lemma 2.1 below) and get the following result. 

Theorem 1.2: Let Sr = S f(p) be the set of frequencies with which different 
residues occur in the sequence vn [0 < n < k(p) ] . For p > 7, p\a(a?- + 4) we have 

S' = {0, 1, 2} or {0, 1, 2, 3} if k(p) £ 0 (mod 4), 
Sf = {0, 1, 2} or {0, 2, 3} or {0, 1, 2, 4} or {0, 2, 3, 4} 

if k{p) = 0 (mod 4). 
Moreover, 

(1.3) Sr = S if fc(p) t 4 (mod 8). 
Corresponding to Schinzel?s three corollaries, we deduce from Theorem 1.2 

the following corollaries. 

Corollary 1.3: If p > 7, p\a?- + 4, then at least one residue mod p does not 
occur in the sequence Vn. 

Corollary 1.4: If p * 5, pjfaia2 + 4), then at least one residue mod p occurs 
exactly twice in the shortest period of the sequence Vn. 
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Corollary 1.5: For a = 1, p > 7, 

S' = {0, 1, 2, 3} if fc(p) 2 0 (mod 4), 
Sr = {0, 1, 2} or {0, 2, 3} or {0, 1, 2, 4} or {0, 2, 3, 4} 

if fc(p) E 4 (mod 8), 
6" = {0, 1, 2, 4} or {0, 2, 3, 4} if k{p) = 0 (mod 8). 

L. Somer [2] has proved Corollary 1.3 except for the case where p = 1 or 9 
(mod 20). 

2. Some Lemmas 

Let £ = a2 + 4 and let £ be a zero of x2 - ax - 1 in the finite field F# , 
where q = p if (p) = 1 and ̂  = p2 if (p) = -1 (we exclude the case p\D) 

q • 

For un and #n we have the formulas 

rn _ (_r-l\n 

(2.D un = J ' / , i?n = c" + (-r1)7 1 . 
Let 6 be the least positive exponent such that £6 = 1. 

The following seven lemmas correspond to the lemmas in [1]. 

Lemma 2.1: For p\2D, we have kT(p) = [6, 2] = k(p). (Here, the symbol [6, 2] 
means the least common multiple of 6 and 2.) 

Proof: The second equation above is the content of Lemma 1 in [1]. The first 
equation follows by exactly analogous considerations using (2.1). D 

Lemma 2.2: Let p\lD. The conditions 

n E m (mod 2) and vn = vm 

hold if and only if either n = m (mod k) or n E m = 0 (mod 2) and n + m = 0 
(mod fc) or k = 0 (mod 4), n E /T? E 1 (mod 2) and n + m = k/2 (mod fe) . 

Proof: We use (2.1) and combine arguments in the proofs of Lemma 2 and Lemma 3 
in [1]. • 

Lemma 2.3: Let p\lD. The conditions 

n E m (mod 2) and Vn = -Vm 

are equivalent to 

n E 77? E 1 (mod 2) and n + m = 0 (mod k) If k = 2 (mod 4) , 

n = m + k/2 (mod 2) and Vn = Vm + k/2 if A: E 0 (mod 4) . 

Proof: We use (2.1) and combine arguments in the proofs of Lemma 2 and Lemma 3 
in [1]. • 

Lemma 2.4: Let p\2D and let 0 < n < k. We have vn = 0 if and only if 

k E 2 (mod 4) and rc = k/2, 
k E 0 (mod 8) and n = fc/4 or n = 3/c/4. 

Proof: Analogous t o the proof of Lemma 4 in [ 1 ] . • 

Lemma 2.5: Let p\lB. We have 

/c|p - 1 i f ( j j ) = 1, fe|2(p + 1) i f ( | ) = - 1 . 

Proof: In view of Lemma 2 . 1 , t h i s i s e x a c t l y the same as Lemma 5 in [ 1 ] . D 
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Lemma 2.6: If k = 2(p + 1) = 0 (mod 8), then for every nonnegative integer e 
there is an n such that 

( 2 . 2 ) vn+e = vn. 

Proof: If ug ̂  0, we use the identity 

and find by virtue of Lemma 4 in [1] that the quotients 
Vn+e _ n ^ k k 

for 0 < n < —, n * -r 
V 2 4 

are all distinct. Since k/2 = p + 1, we have p distinct elements of Fp . One 
of them must be 1, which gives (2.2). 

Suppose now that ue = 0. By Lemma 4 in [1], e E 0 (mod k/2). It follows 
from Lemma 2.4 that we can take n = /c/4. D 
Lemma 2.7: Let pJ2Z). We have 

fc/2-1 k/2-I k-l 

Proof: Analogous to the proof of Lemma 7 in [1]. Q 

We remark that Lemma 2.6 and the last equation in Lemma 2.7 will not be 
used in this paper. 

3. Proof of Theorem 1.2 

To prove Theorem 1.2 we shall consider successively the cases k t 4 (mod 8) 
and k E 4 (mod 8). In the first case we prove (1.3). 

1. Let k t 4 (mod 8). It follows from Lemma 2.4 that 0 occurs in the se-
quence Vn (0 < n < k). Thus, the sequence Vn (0 < n < k) is a non-zero multi-
ple of a translation of the sequence un (0 < n < k). In fact, if t is the 
least positive integer such that Vn = 0, then -t is the amount by which the 
sequence un (0 < n < k) is translated and Vt+i is the constant multiplier. It 
then follows immediately that the sequences Vn (0 < n < k) and un (0 < n < k) 
have the same frequency pattern of residues appearing in these sequences. 
(1.3) now follows immediately. 

2. Let k E 4 (mod 8). According to Lemma 2.4, 0 does not occur in the 
sequence Vn (0 < n < k) so that 0 € Sr. 

According to Lemma 2.2, every element in the sequence t^j (0 < 2j < k) 
occurs there exactly twice, except for the elements VQ and V^/z > which occur 
once. Moreover, t̂ /2 = -VQ by Lemma 2.3. Similarly, every element in the 
sequence T?27- + i(0 < j < k/2) occurs there exactly twice, except for the elements 
~V\m and ̂ 3̂ /14 = -V^lh » which occur once. 

Since k = 0 (mod 4), it follows from Lemma 2.1 that 6 = k and, therefore, 
%k/2 = _lo Using (2.1), we see that 

(3.1) Vljh = v\k/h = -4. 

We assume now that 2 £. S!. Consider the elements V2j (0 < 2j < k/2). These 
must occur in the sequence ^2j' + l (0 < 2j + 1 < k) . Since by Lemma 2.3 

V2j = ~~Vk/2-2j 

there are two cases: 

1991] 335 



A NOTE ON A THEOREM OF SCHINZEL 

and 

and 

I . V2. * ±Vk/h (0 < 2j < k/2), 

I I . V2.,= Vk/h and Vk/2_2., = V3k/l^ fo r some j r (0 < 2j ' < k/2). 

We s h a l l c o n s i d e r t h e s e two cases s e p a r a t e l y . 

Case I : In t h i s case of the two sequences 

v2. (0 < 2j < k, j * 0, j * fc/4) 

V2j+l (0 < 2 j + 1 < k, 2 j + 1 * fc/4, 2 j + 1 * 3fc/4) 

one i s a pe rmuta t ion of the o t h e r . Using ( 3 . 1 ) , i t fo l lows t h a t 

fc/2-1 k/2-1 

Z ^L - 2(4) = Z Vh + i - 2 ( - 4 ) , 
J = 0 J j = 0 J 

from which we infer, using Lemma 2.7, that 2A: E 16 (mod p) , /e E 8 (mod p) . 
It follows from Lemma 2.5 that either 

& = 2(p + 1) or fc < p + 1. 

If k = 2(p + 1), then fc E 8 (mod p) implies 3 E 0 (mod p) , which contradicts 
the assumption p > 7 . If fc < p + 1, then we must have k = 8, which contradicts 
the assumption k E 4 (mod 8). 

Case II: In this case, there are two different elements in the sequence 
^2j' + l (0 < 2j + 1 < k) which occur twice in this sequence and which are not 
equal to any element V>2j (0 < 2j < k/2). Since we are assuming that 2 £ S!, 
these elements must appear in the sequence i?2j (0 < 2j < k) and, therefore, 
they must be VQ and V^/z = ~VQ. it: follows that the sequences V^i (0 < 2j < k) 
and ^2j" + l (0 < 2j + 1 < k) consist of the same elements. Moreover, VQ and 
Vk/2 > which occur in the former sequence once, occur in the latter sequence 
twice and the elements V>2j' = Vk/h an<^ Vk/2-2j' = ~^Zklh •> occurring in the former 
sequence twice, occur in the latter sequence once. It follows that 

~,2 
k/2 - 1 

£ % • 
J = 0 J 

- 2(A) -- 4 ( -4 ) 
k/2 - 1 

- E j = 0 
^•+1 - 4(2) - 2(-4), 

from which we obtain, using Lemma 2.7, that 2k E -16 (mod p) , k = -8 (mod p) . 
In a similar manner to that in Case I, we conclude that either 5 = 0 (mod p ) , a 
contradiction, or fe = p - 8 = 1 (mod 2), which contradicts Lemma 2.1. 

The assumption 2 £ Sf thus leads to a contradiction in every case, so that 
we have proved that 2 £ 5'. 

Now we prove that either 1 G S [ or 3 G 5' but not both. We must again look 
at the four elements VQ, Vk/2> ~V~k/M > an<^ ^3k/^ • lt: ̂ s c l e a r that our assertion 
is true if we prove that the following four conditions are equivalent: 

(3.2) In E 1 (mod 2) such that vn = VQ, 

(3.3) 3n E 1 (mod 2) such that vn = ̂ k/2 > 

(3.4) In E 0 (mod 2) such that U^ = ̂ /^ > 

(3.5) 3 n E 0 (mod 2) such that v~n = Vok/^ . 

Since ~V~k\2 = - # Q and ^3^/4 = ~^wi+ it follows from Lemma 2.3 that 

(3.2) «> (3.3) and (3.4) ̂ > (3.5). 

It remains to be proved that 

(3.2) <~ (3.4). 
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(3 .2 ) => (3 .4 ) Suppose t h a t n = 1 (mod 2 ) , vn = vQ. We prove t h a t 

Since fc/4 = 1 (mod 2 ) , t h i s w i l l prove ( 3 . 4 ) . I t fo l lows from (2 .1 ) t h a t 

(3 .7 ) c n - i = r n + i 
and that (3.6) is equivalent to the equation 

n̂ + k/4 + ^-n-k/4 = k̂/4 __ ̂ -kA 

which, using (3.7), can be written as 

(3 .8 ) an - DUk/Li + rk/k) = o. 
It follows from Lemma 4 in [1] that ukj^ = 0. This, by (2.1), implies that 
(3.8) holds. Therefore, also (3.6) holds and we have proved the implication 
(3.2) - (3.4). 

(3.4) =» (3.2) Suppose that n = 0 (mod 2) and ^ = t^A e W e Prove that 

Using (2.1), the equation (3.9) can be written as 
(3.10) pn + 3kl^ _ r-n-3k/4 _ 2 

We find 
^ n + 3 k / k = (_£-" + £^A _ -̂k/4 )£-3k/4 = _^-n + 3kA + ^k _ ^k / 2 

= -rn+3k/k + 1 - ( - 1 ) , 
so that (3.10) will follow if we show that 
(3.11) r-̂  + Sk/4 _|_ r-n-3k/4 _ r-^/r3k/4 + r-3k/4\ _ Q^ 

But 

a3k/4 + r3k/4}2 = (Ck/2)3 + 2 + ( r k / 2 ) 3 = (_1}3 + 2 + (_1}3 = 0j 

so that (3.11) follows and the implication (3.4) =*• (3.2) is proved. 
It has now been proved that the conditions (3.2)-(3.5) are all equivalent. 
Since every residue occurs at most twice among t>2j(0 - 2J < k) and at most 

twice among V^i + l (0 < 2j + 1 < k) it occurs at most four times among vn 
(0 < n < k). It follows from what has been proved that, in the case k E 4 (mod 
8), we have 

5f = {0, 1, 2} or {0, 2, 3} or {0, 1, 2, 4} or {0, 2, 3, 4}. 

This completes the proof of Theorem 1.2. • 

Proof of Corollary 1.3: For p\a3 this corollary follows directly from Theorem 
1.2. For p|a, we have vn = 0 or 2; hence, 0 £ 5'. • 

Proof of Corollary 1.4: If k f 4 (mod 8), then 5' = 5 by (1.3) and 2 €5' follows 
from Schinzel's Corollary 2. Corollary 1.4 clearly holds for p = 2 by inspec-
tion. If k = 4 (mod 8), then the proof that 2 G 5' in the proof of Theorem 1.2 
holds if p > 7. However, by (3.1), if k = 4 (mod 8), then 

Vk/h = V\k/h = ~4> 

which implies p = 2 or p E 1 (mod 4). Thus, 2 ^ S! can hold only if p = 5. • 

Remark 3.1: Corollary 1.4 is not formulated as generally as the corresponding 
Corollary 2 in [1], Example 3.2 shows that 2 £ S! can occur if p = 5. 
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Example 3.2: Take a = 2 and p = 5, p\a(a2 + 4) = 16. Then S' = {0, 3}. In 
fact, the shortest period consists of the residues 2, 2, 1, 4, 4, 2, 3, 3, 4, 
1, 1, 3. Note that in this case k = 2p + 2 = 12 E -8 (mod p) which was a 
possibility in Case II. 

Proof of Corollary 1.5: This corollary follows from Corollary 3 in [1] and 
Theorem 1.2. • 

We conclude this note by making the following observation. We can look at 
Corollary 2 in [1] and the corresponding Corollary 1.4 at the same time and 
calculate the smallest residue which appears exactly twice in the shortest 
period. Keeping the integer a fixed and considering primes p > 5, p\a{a2 + 4) 
let us denote these residues by sr^^p) and sr^ip) . It therefore follows from 
Lemma 4 in [1] and Lemma 2.4 above that we have the following result: 

srzu(p) = 0 ^ sr2v(p) = 0 <=> k(p) = 0 (mod 8). 
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In 1977, Kenneth B. S t o l a r s k y [6] i n t roduced an a r r a y s(i, j ) of p o s i t i v e 
i n t e g e r s such t h a t every p o s i t i v e i n t e g e r occurs e x a c t l y once in the a r r a y , and 
every row s a t i s f i e s the f a m i l i a r F ibonacc i r e c u r r e n c e : 

s(i, j) = s(i, j - 1) + s(i, J - 2) for a l l j > 3 for a l l i > I. 

The first seven rows of Stolarsky's array begin as shown here; 

1 
4 
7 
9 
12 
14 
17 

2 
6 
11 
15 
19 
23 
28 

3 
10 
18 
24 
31 
37 
45 

5 
16 
29 
39 
50 
60 
73 

8 
26 
47 
63 
81 
97 
118 

13 
42 
76 
102 
131 
157 
191 

21 
68 
123 
165 
212 
254 
309 

Hendy [4], Butcher [2], and Gbur [3] considered Stolarsky's array, and Morrison 
In [5] and Burke and Bergum [1, p. 146] considered closely related arrays 

particular, Gbur discussed arrays whose row recurrence is given by 

s(i, j) = as(i, j - l) + s(i, j - 2), 

which, for a = 1, is the row recurrence for Stolarsky's original array. In 
this note, we show that any one of a larger class of second-order recurrences 
can be used to construct infinitely many Stolarsky arrays. 

Define a Stolarsky pre-array (of q rows) as an array s(i, j) of distinct 
positive integers satisfying 

s(i, j) = as(i9 j - 1) + bs(i, j - 2) for all j > 3 for 1 < i < q, 

where a and b are integers satisfying 1 < b < a, and the numbers 1, 2, 3, . .., 
q are all present in the array. By a Stolarsky array we shall mean an array 
s(i, j) whose first q rows comprise a Stolarsky pre-array for every positive 
integer q. For the following Stolarsky pre-array, q = 2, a = 1, and b = 1: 

1 4 
2 8 

In order to construct Row 3 beginning with s(3, 1) = 3, note that s(3, 2) can-
not be 4 or 5, as these appear in Row 1; nor 6, as then s(3, 3) = 9, already in 
Row 1; nor 7 nor 8 nor 9 nor 10 nor 11. These observations illustrate the 
problem: once q rows of a (prospective) Stolarsky array have been constructed, 
can Row q + 1 always be constructed*! We shall show that the answer is yes, and 
that, actually, Row q + 1 can be constructed in infinitely many ways. 

The symbols Si, s^ ••• will always represent a sequence of the following 
kind: 

(i) Si > 0, s2 > 0, and sn = asn_1 + bsn_2 for n > 3, 
where a and b are integers satisfying 1 < b < a. Let 

5 
10 

9 
18 

12 
28 

23 
46 

37 
74 

60 
120 

+ /a2 + 4£ 
and a, 

so that a > l , - 1 < 3 < 0 , and the identities az = aa + and a$ + b yield 

1991] 339 



SECOND-ORDER STOLARSKY ARRAYS 

(ii) sn = a-^a71 + 2?x3n for all n > 1, where 

~ - l Z and b, - Z l 
1 a(3 - a) 1 3(3 - a ) ' 

Similarly, the symbols £]_, i2, ••• will always mean a sequence given by 

£„ = atn-i + btn-2 = a>2®n + hi$n> 
where 

ti3 - to , to - £ia 
a = _^ £ a n d £o = — — , and ti > 0, to > 0. 

z a ( 3 - a) z 3(3 - a) i z 

Lemma 1.1: There e x i s t s a p o s i t i v e i n t e g e r N such t h a t s n + i = [asn + %] for 
every n > N. The l e a s t such N i s 2 + [ l o g a / ^ 2 | a s i - s 2 | ] . 

Proof: a s n = a ( a x a n + Z?x3n) = alan + l + £ x 3 n + 1 + a ^ S * - b^n + l 

so t h a t sn + i = [asn + %] i f and only i f 0 < Z?j3n(a - 3) + % < 1. This i s e q u i -
v a l e n t to - 1 < 2 ( a s i - s 2 ) 3 n _ 1 < ! ' hence to 

<b\n~l , i , l (I)" 2 |aS]_ - s 2 I 
and hence equivalent to n - 1 > loga/fc2|aSi - s2|> as required. 

Lemma 1.2: Suppose S]_ is not among t\9 t2, . .., and t\ is not among s\9 s2, 
... . Let 

M = 2 + [loga/b 2|asi - s2|] and N = 2 + [loga/2? 2 | atx - £2 | ] . 

If m > M, n > N, and sm < tn < 8m+1, then sm < tn < sm+l < tn + 1 < sm + 2 < ... . 

Proof: Suppose m > M and n > N. By Lemma 1.1, s^+i = [oiSi + %] for every i > m 
and £•£ + ]_ = [at^ + %] for every i > n. So, if t„ = Sm+1» then 

[a£„ + %] = [as m + 1 + % ] , 

so that tn + 1 = sm + 2- But then a£n + btn„i = asm+]_ + bsm, so that £n_i = s . 
But then at„_i + £t n_ 2 ~ asm + bsm-l> s o that tn_2 = SOT-i- Continuing, we even-
tually reach t\ = Sp for some p > 1 or else tq = S\ for some <? > 1, contrary to 
the hypothesis. 

Now that we have sm < tn and tn < sm + i, the remaining inequalities in the 
asserted chain follow by induction: Sp < tn implies 

[asp + %] < [atq + % ] , 

so that sp + i < tq + i, and tq < sr similarly implies tq + i < sr + ]_. 

Lemma 1.3: Suppose s l 5 s 2 5 and t^ are given and t]_ > S]_. For /c > 1, let tj 
denote the sequence t \ , t2 = t\ + k, t$ = at2 + ^^i, ... . Then there exist 
positive integers C and K9 both independent of k, such that if k > K and /7? > 
C[logak] and n is the index satisfying sm < t^) < s m + 1 , then 

< f(k) Ak) 
sm < vn < s

m + l ^2 + 1 < S ^ + l < ••• -

Proof: Let 

M = 2 + [loga/fc2|as1 - s2|] and N(k) = 2 + [loga/z,2|a^ - ̂ x - k\]. 
Let p(/c) be the index satisfying 

SP(k) < tN(k) ~ Sp(k)+l' 
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C l e a r l y , t h e r e i s a p o s i t i v e i n t e g e r Z x so l a r g e t h a t p(k) > M for a l l k > Z x . 
For such k, Lemma 1.2 g ives 

(1) sp(k) + h < t(Hk) + h K sP(k) + i+h f o r a 1 1 h - °-
Also , fo r a l l fc > Z x , 

a x a P ^ + fc^PW = S p a ) < t™k) = a 2 a ^ } + b2&»™ < ( a 2 + | 2 ? 2 | ) a ^ > . 
Let A, S, iv2 be p o s i t i v e i n t e g e r s , wi th K2 > Ki, a l l independent of k9 s a t i s f y -
ing a2 + \b2\ < A + Bk for a l l k > K2; t o see t h a t such ^ and B e x i s t , observe 

£l& - ( t x + /c) t i + fe - t x a 
a 9 = • and b9 = „ 

a ( 3 - a ) ~ 3(3 - a) 
For a l l such k9 

aiap{k) < (A + Bk)aNik) + 6(fc), where Q(k) = 1 + |&13P ( k ) |« 
Then 

a x a p a ) < S(fe) + (A + £ f c ) a 2 + l o g a / * 2 K - V k l , 

so t h a t L 

a 1 a p ( k ) < g(/c) + a2G4 + Bk)(2\atl - t1 - k\)1 ~ lo^b . 

Applying loga to both sides and the inequality loga(x + y) < logax + logay to 
the resulting right-hand side yields 

p(k) + logaa1 < logaQ(k) + 2 + loga04 + Bk) 

+ 1 - lo^g loga(2latl - *1 - fc|)-

Now llmj^^^Qik) = 1, so that there must exist positive integers C and Z3, inde-
pendent of ks with Zo > î 23 such that 

p(k) + 1 < C[logak] for all A: > K3* 

For such /c, if 772 is any integer that exceeds 6* [log k] , then 777 = p(/c) + fo for 
some /z > 1. For n = N(k) + 77? - p(k) , the stated chain of inequalities follows 
from (1). 

Theorem: Let 5 = {s(x, y) : 1 < x < ̂ , 2/ > 1} be a Stolarsky pre-array. Sup-
pose t\ t S and t\ > max{s(x, 1): 1 < x < q}. Then there exist infinitely many 
numbers t2

 s u c n that no term of the sequence t \ , t 2 , £3 = cit2 + /-?£].? ••• lies 
in 5. 

Proof: Suppose, to the contrary, that there are at most finitely many numbers 
k > 1 for which the sequence tls t2 = t\ + fe, £3 = a^2 + ^ l ' ••• contains no 
element of S. Let kl be the greatest of these k. Let t^, t ^ \ . .. denote the 
(a 5 b ) -recurrence sequence whose first two terms are t\ and t2 - t\ + ki + k. 
Then, for every positive integer k, the sequence t ^ \ t ^ \ * . . contains a term 
of S. That is, there exist indices j(W5 x(k) , and z/(fc) for which 

,W (2) *)£ = s(a?(fc), i/(/c)), whe re J 00 
(3) 1 < x{k) < q. 
On the other hand, by Lemma 1*3, there exist constants C\, 6*2? . ..» £q and iC]_, 
K2, »».s -Kq* all independent of k, such that for x = 1, 2, ..., q5 if 

yx > cx[iogak] 
where k > Kx and j x is the index for which 

s(x, yx) < tjj < s(x9 yx + 1), 

then equation (2) cannot hold for any j(k) < j x . Accordingly, (2) implies 
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(4) 1 < y(k) < Cx(k)[log k] for a l l k > K = max{Zl5 Z2, . . . , Kq]. 

Now, since the index x(k) in (2) is < q, we have s(x(k), 1) < t^ for a l l k, by 
hypothesis, and also s(x(k), 2) < t^ r o r a H ^ larger than some K*. Therefore, 
in equation (2), j(k) < y(k)9 so that 

(5) 1 < j(k) < Cx(k)[logak] for a l l k > K*. 

Let m(k) = [logak] max{C1, C2, . . . , Cq}. Then, for a l l k > IK = max{Z, Z*}, 
we have 

1 < x(k) < q, 1 < y(k) < m(k), 1 < j(/c) < 777(A:). 

Let A:f be any integer large enough that kr > q[m(K + kr)]2. Then, for k = 1, 
2, 3, ..., kr, we have 

1 < x(IK + k) < q, 1 < z/(IK + fe) < m(K + kf), 1 < j(IK + k) < m(K + k ') . 

Now, the total number of distinct triples (x, z/, j) that can satisfy three 
such inequalities is the product q[m(K + kr)] , but we have more than this 
number. Therefore, there exist distinct ku and kv for which 

x(ku) = x(kv), y(ku) = z/(fey), «/(feM) = j(?cy). 

This means that the sequences 
, Aku) Aku) , , AK) Akv) 
vY, v2 , ..., Kj(K)9 ... ana vv v2 , ..., ^•(^)J -•-

have identical first terms and identical j(ku)th terms. But this implies 
t(K) = t(kv) 

contrary to ku * kv. This contradiction finishes the proof. 

Conclusion 

An obvious consequence of the theorem is that any Stolarsky pre-array can 
be extended to a Stolarsky array. For each new row, one need only choose t\ to 
be the least positive integer satisfying the hypothesis of the theorem; that 
is, the least not yet present in the array being constructed. This choice 
ensures that every positive integer must occur in the constructed Stolarsky 
array. 
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1. Introduction 

It is known [1] that the equation Fnx2 + Fn+iX - Fn + 2 = 0 has solutions -1 
and Fn + 2/Fns where {Fn }n> 1 denotes the Fibonacci sequence. One wonders if 
other interesting results might be obtained if the coefficients of the 
quadratic equation were some other functions of the Fibonacci numbers. The 
answer5 as might be expected? is in the affirmative. Surprisingly, however, 
the results in this paper arise in response to the following quite different 
question. Under what conditions does the quadratic equation ax2 + bx - c = 0 
have rational roots given that a, b, and c are represented by the arithmetic 
sequence n , n + r , n + 2 P in some order, where n and v are positive integers? 
In this paper, we treat only the case v - 1. 

As usual, {Fn}n>i will denote the Lucas sequence and a the golden ratio. 
Moreover, we will have occasion to use such well-known results as 

£„ - Fn+1 + Fn-l, Ln + Fn = 2Fn+1, Ln - Fn = 2Fn^, a" = (Ln + Fn/E)/2 

(see [2]). Note that Ln = Fn+x + Fn-l c a n ^e written as 

(1) Ln = 2Fn_1 + F„. 

Also, we will need the following identities from [2]: 

(2a) F2
+l = FnFn + 2 + (-1)"; 

(2b) Fn+lFn.z = FnFn_l + ( - 1 ) " + 1 . 

2 . Fibonacci Q u a d r a t i c s 

The equations 

ax2 + bx - c = 0, ax2 - bx - c = 0, 

ex2 + bx - a = 0, and ox2 - bx - a = 0 
have the same discriminant. Therefore, we shall study only the first one. Let 
us consider the case r = 1. 

Theorem 1: Rational solutions to 

(3) nx2 + (n + l)x - (n + 2) = 0 

exist if and only if 

(4a) n = F2m+l - 1 (m > 1) 

and they are 

(4b) F2m/(F2m + 1 - 1), -FZm + 2/(F2rn + 1 - 1). 

Proof: The discriminant of (3) is 

Bl = (n + I)2 + kn(n + 2) 

= 5(n + I) 2 - 4, 
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R a t i o n a l s o l u t i o n s of (3) e x i s t i f and only i f £>]_ i s a p e r f e c t s q u a r e , s ay , fo r 
example, Z?]_ = t2. Then we have 
(4c) t2 - 5(w + l ) 2 = - 4 , 

which has positive solutions t = ^Zm+l and ^ = F2m+l ~ 1 with m > 1 for n * 0, 
as shown by Long and Jordan [4, Lemma 1], although their proof can be consider-
ably simplified by the use of the identity an = (Ln + Fnv5)/2. But, by (1), 
t = 2F2rn +

 F2m+l and b = n + I = Fzm+l' Using these values in 

x = (-b ± t)/2n, 

we get (4b). It is interesting to note that the solutions are proportional to 
F2m and F2m+2, which precede and follow F2m+1, respectively. 

Theorem 2: Rational solutions to 

(5) nx2 + (n + 2)x - (n + 1) = 0 

exist if and only if 

(6a) n = F2m+3F2m (m > 1) 

and they are 

(6b) F2m+2^F2m+3> ~F2m+l/F2m' 

Proof: The d i s c r i m i n a n t of (5) i s 

D2 = (n + 2 ) 2 + kn{n + 1) 

= n2 + 4(n + l ) 2 . 

Rational solutions of (5) exist if and only if D2 is a perfect square, D2 = t 2 . 
Thus, [n, 2(n + 1), t] form a Pythagorean triplet, not necessarily primitive. 
We represent the triplet as (g2 - h2, 2gh, g2 + h2) to get 

(6c) g2 - gh - (h2 - 1) = 0. 

[Note that if it were represented as (2gh9 g2 - h2, g2 + h2) then g2 - h2 = kgh 
+ 2 and this implies g2 - h2 = 2 (mod 4), an impossibility.] But, again, g is 
an integer if and only if the discriminant of (6c) is a perfect square: 

h2 + 4(/z2 - 1) = 5h2 - 4 = s2 

or 

(6d) s2 - 5h2 = -4. 

This is the same Pell equation as before and so has solutions s = F2m+1 anc^ 
h = F2m+l- N o w 

g = (h ± s)/2 = [F2m+l ± L2m+1]/2 = (F2m+l + F2 J , -F2m = F2m + 2, -F2m. 

Since only the first solution gives positive n, 

n = g -la = F2m+2 ~ F2m+\ = ^2^ + 3^2^' 
with 777 > 1, for n * 0. In this case, using (2b) and (2a), we obtain 

b = F 2 , + 3 ^ + 2 = ̂  + 2 ^ + 1 + 1 = ^ + 2 ^ 2 . + 2 ~ F2,> + l 

F2m + 2 " ^ 2 m + 2 ^ 2 m + 1 F2m+3F2m+l ~ F2m + 2F2m and 
t = # 2 + /z2 = K2

 9 + F 2 , , = Ft?m.oF0 M, + ^ 9 , . 9 F 9 . ^ zm + z 2m + L 2m + 6 2m + l 2m + 2 2m 

Using the se in x = (-b ± t)/2n, we o b t a i n the s o l u t i o n s (6b) as c la imed . 
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The last equation to be considered is 

{n + l)x2 + nx - {n + 2) = 0. 

Instead, we investigate the equivalent equation 

nx2 + ( n - l ) x - ( n + l ) = 0 . 

Theorem 3: Rational solutions to 

(7) nx1 + (n - l)x - (n + 1) = 0 

exist if and only if 

(8a) n = F2m+lF2m (m > 1) 

and they are 

(8b) F2m-llF2m> ~F2m + ll F2m +1-

Proof: The d i s c r i m i n a n t of (7) i s 

D3 = {n - I ) 2 + kn(n + 1) = 4n2 + (n + I ) 2 , 

Rational solutions of (7) exist if and only if D^ is a perfect square, D^ = t2-. 
Thus, (2n, n + 1, t) form a Pythagorean triplet. We represent the triplet as 
(?.gh, g2 - h2, g2 + h2) to get 

(8c) g2 - gh - (/z2 + 1) = 0. 

[Note that if it were represented as (g2 - h2, 2gh, g2 + h2) then we would have 
kgh - 2 = g2 - h2 and this implies g2 - h2 =2 (mod 4), an impossibility.] As 
before, g is an integer if and only if the discriminant of (8c) is a perfect 
square: 

h2 + 4(/z2 + 1) = 5h2 + 4 = s' 
or 

(8d) s2 - 5h2 = 4 

which has positive solutions s = L2m and /z = î m ^or m - 1 ^y t^3 Lemma 2]. 
Since 

^ = {h ± s)/2 = (F2m ± Llm)/2 = (F2m + F2m-i), -F2m-i= F2m+U -F2m ^ . 

Only the first solution gives positive ni 

n = gh = i^+lF2m 

with /?? > 1, for n * 0. In this case, using (2a) and (2b), we have that 

b = F0 M,F0 - 1 = F0 (F0 - - F9 ) - 1 = F9 ,9F9 ~ (F2 + 1) 
zm + 1 2m 2/nv 2m + 2 2my 2m + 2 2m K 2m 

= ^2m+2^2m - F2m+lF2m-l 
and 

t = q2 + /z2 = F2 , + F2 = F9 _,9F9 + F0 ^,F0 , . y 2m + l 2m 2m + 2 2m 2m + l 2m -1 

Using these in x = (-Z? ± t)/2n, we obtain the solutions (8b) as claimed. 

The case v > 1 is under consideration. 
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The purpose of this paper is to study partitions of positive integers for 
which Euler' s totient function is endomorphic. That is, n = a-, + . .. + a^ is a 
(̂ -partition if i > 2, and §(n) = cj)(a-,) + ••• + (f)(â ). 

Questions related to two-summand ^-partitions have been considered by the 
present author [2] and by Makowski [3]; here, we generalize to ̂ -partitions 
with an arbitrary number of summands. Results include: characterizations of 
positive integers which have at least one (̂ -partition and of those which have 
only one § -partition; constructive proof that any prime p has exactly ir(p) <j>-
partitions; and techniques for constructing ^-partitions and reduced <j>-
partitions for various types of positive integers. 

Throughout the paper, p and q will denote distinct primes and ft will denote 
a positive integer. 

Definition 1: A square-free n is simple if n = 1 or n has maximal prime divisor 
p and q\n for every prime q < p. 

Lemma 2: If s is simple, n < 2s5 and n * s3 then , , , > , , , . 
cf)(s) (J)(n) 

Proof: Let s = 2 • 3 • - • . • pi , and le t 2s > ft = q®1 . . . q®k for ql < . . . < qk. 
Since ft < 2s? we have k < i 5 and since s is simple, we have q • > p- for each 
1 < j < k. If k = i and q^ = p- for every 1 < j < k, then n = s. Thus, k < i 
or q- > p- for some 1 < j < k. In either cases 

n = < ? i • - • ,<7fe 1 * 2 * • ' ' e P^ = s 
cj)(n) (<?1 - 1) . . . ( ^ - 1) < 1 • 2 • . . . • {Vi - 1) <|>(s) * 

Theorem 3: n has at least one ^-part i t ion iff n is not simple. 

Proof: (i) Let ft be nonsimple. Then there exists a prime p such that pa|ft for 
a > 1, or n is square-free with maximal prime divisor p and there exists q < p 
such that q/fn. 

Suppose pa||ft for a > 1, and le t ft = pH, Then (j)(ft) = (j)(pat) = p<$>(pa~lt) . 
Hence, ft = p a - l t + • • • + pa-I t is a (^-partition. 

p summands 
Now suppose ft is square-free with maximal prime divisor p and there exists 

q < p such that q\n. Let ft = pj and p - q = a. Then 

<Kpj) = *(p)4>(«7) = (p - D<Kj) = (a + q - l)(j)(j) 

= acj)(j) + (q - 1) 4>(j) = acf)(j) + Kqj) • 

Hence, ft = j + • • • + J + qj is a (^-partition. 
a summands 

(ii) Suppose ft = 2 a 3 • ••- • pk is simple and ft = a^ + ••• + a^ is a ̂ -par-
tition. Let GLj be a summand of the partition. Since GLJ < ny it follows from 
Lemma 2 that 

<$>(aj) (j)(n)* 
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H e n c e , 

a-t a rr*( a i } + ••• +jrts*{ai) = a i + ••• + a;-
This contradiction completes the proof. 

Lemma 4: If n = a-, + • • • + a^ is a unique cj)-partition of n9 then each summand 
is simple. 

Proof: Suppose n = a^ + • • • + 3^ is a unique (̂ -partition and some summand aj is 
not simple. Then, by Theorem 3, aj has a ^-partition aj = b\ + • • • + 2?̂ ; thus, 
n = a\ + • • • + aj -i + bi + - ' • + bfc + cLj + i + • - ' + CLi is a ^-partition of n which 
is different from n = a\ + ••• + a^. 

Lemma 5: If a unique ^-partition of n has two equal summands, then n = 2s for 
s simple. 

Proof: Suppose n=s+s+ai+'-' + ai is a unique ^-partition of n. If some 
summand aj * 0, then n = 2s + a^ + • • • + a^ is a different ^-partition of n. 
Therefore, each <Zj = 0 and n = 2s. By Lemma 4, s is simple. 

Theorem 6: n has a unique ^-partition iff n = 2s for s simple or n = 3. 

Proof: (i) Suppose n has a unique ^-partition. Then, by Theorem 3, n is not 
simple. 

If n is square-free with maximum prime divisor p and q < p such that q\n, 
let n - pj and p - q = a. Then, from the proof of Theorem 3(i), we have 

n = j + ••• + j + qj is a ^-partition. 
a summands 

And since it is unique, Lemma 4 implies that J is simple and Lemma 5 implies 
that a = 1. Thus, p - q = 1. Hence, we have p = 3, q = 2, and n = 3. 

Now suppose pa|j?2 for a > 1 and n = pat. Then 

n = pa~1t + ... + pa~1tj is a ^-partition, 
p summands 

and since it is unique, we have that pa_1t is simple (Lemma 4). Therefore, by 
Lemma 5, n - 2s for s simple. 

(ii) It is obvious that 3 = 1 + 2 is a unique (̂ -partition of 3. 
Let n - 2s for s simple. Clearly, 2s = s + s is a (f)-partition. Suppose 

2s = a.\ + • • • + a^ is a different ^-partition. Then there exists a summand 
<2j £ s. Since aj < 2s, we have, by Lemma 2, that 

aJ < S 

<K<Zj) <Ks)" 

This gives the contradiction, 

2sKs) s^(2s) s 
2s = -JUT = -^r= *^y(*( a i } + '•'+ (ai)) 

= al + ••• + ai . 

Hence, 2s = s + s is a unique ^-partition of n. 

Theorem 7: p = a\ + • • • + a± is a <j>-partition iff one summand is prime and 
every other summand is 1. 
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Proof: ( i ) p = 1 + . . . + 1, + q i s c l e a r l y a ^ - p a r t i t i o n for every prime q < p. 
p - q summands 

(ii) Let p = ai + ••. + at be a ^-partition. It is obvious that at least 
one summand is greater than 1. Suppose the two summands, a.\ and a25 are each 
greater than 1. Then <^{ax) < d\ - 1 and <j)(a2) ̂  a2 - 1. Therefore, we have the 
contradiction 

a1 + . . . + a i - l = p - l = cj)(p) 

= c K ^ ) + . . . + Ma^) < aY + . . . + a^ - 2 . 

Assume aj_ > 1. Then a i = p - i + 1, and 
p - 1 = cj)(p) = > (1 ) + -y + (HP, + (j)(ai) = i - 1 + K a ^ . 

i - 1 summands 

Hence, cj)(a].) = p - i = a\ - 1. Therefore, a]_ is prime. 

As an immediate consequence of this theorem, we get 

Corollary 8: A prime p has exactly Tr(p) ̂ -partitions. 

We now provide two very general techniques for constructing ^-partitions 
for a particular n. 

1. If n is even, p||n, p = 2 * + ... + 2ai + (7, q|n, and n = 2apm, then 
n = 2ai + aw + . . . + 2ai + a7?7 + 2amq is a ^-partition. 

Some results regarding how many ways a particular prime p can be written as 
the sum of a prime and powers of 2 are given in [1]. 

Definition 9: A positive integer m is pvime dependent on n if every prime divi-
sor of m is a divisor of n. 

Notice that if m is prime dependent on n then c|)(???n) = m$(n) * 

2. If n = pat where a > 1 and p\t, and p = aj + • • • + ai such that 
each summand is prime dependent on n, then 

n = alpa~lt + ... + a-pa~^t is a <j>-partition. 

Notice that for every p such that pa\n for a > 1 we get a ^-partition of n 
with p summands by letting 

p = .1 + •-. + 1 
p summands 

in construction 2. If n is even, for each such p we can get ^-partitions with 
x summands for every x satisfying a < x < p, where a is the number of nonzero 
digits in the binary representation of p, 

Definition 10: If n = ax + • • • + a^ and a^ = 2>i + • • • + £j are ^-partitions, then 
n = bi + • • • + bj + a2 + °  °  °  + #£ is an expansion of n = a^ + •° • + &i • 

Expansions are clearly ^-partitions. 

Definition 11: A cj)-partition is reduced if each of its summands is simple. 

It Is obvious that a (̂ -partition can be expanded iff it is not reduced. So 
every nonsimple number has at least one reduced ^-partition. The following are 
examples of reduced ^-partitions for various types of n: 

(I) 2a =,2 + ... + 2, 
2a-1 summands 

(ii) pa = 1 + . . . + 1, + 2 + . > . + 2 
pa_1(p-2) pa~l 

summands summands 
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( i i i ) 2apa = 2 + • . • + 2 + 6 + • •» - + 6 
2 a - l p a - l ( p _ 3) 2 a - 1 p a _ 1 

summands summands 

(iv) pq = . ! + • > • + ] , + 2 + - • + 2 + 6 
(p-2)(<?-2) p+c7-5 
summands summands 

Several open questions about two-summand ^-partitions could be resolved if 
it can be shown that reduction is unique. Evidence and intuition strongly 
suggest that it is; but it seems that a proof may be quite difficult. We close 
with the conjecture: Every nonsimple number has exactly one reduced <j>-
partition. 
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1. Introduction 

We shall study a sequence of numbers defined recursively. Let In denote 
the principal branch of the natural logarithm, i.e.s InOe^6 ) = In v + icj), r > 0, 
with (j) = 0 (mod 2TT) , -IT < (J) < TT. We put 0 D s: = S, I D S : = zz(: = e2ln2) and 

(1) ( n + l ) D 3 = (n D s ) ( n D 2 )
s n = 0, 1, 2, . .. 

(n D 1 = 1, n u (-1) = -1, 1 • i = e"77/2). 

We consider5 in fact, a more general operation defined by 

agCa, b): = Z)5 ai(as Z?) : = Z?& 
and 

(2) an + 1(a5 2?): = an(a5 £)a"(a'&)
3 n = 0S 1, 23 eoo 

(an(l, g ) = n n s s n a i - %^2f--|» e\\ . 

By mathematical induction, we obtain the 

Proposition: The following algebraic relations hold for all n, m € IN and as Z?, 
c, z e (E: 

a) an+m(a, 2?) = an(as am (a, Z?)) [in particular (n + 77?) D 3 = n D (m n 3) ] . 

b) an(as b°) = a^(acs Z?) [in particular n n z° = a£(e, 3) and 
an(as Z?a) = <(a2

s Z?) ] . 

c) an(as b) = 2?n*-oa?(a'b) (in particular n n s = a ^ J n ^ 

It will be proved in the paper that 
z/n (3) lim n • ez/n = 1, |2| < | 5 s € I, 

n •> 00 

Moreover, the inverse function of ^s ty(z): = n n zs is explicitly calculated 
for \z\ < l/e9 and we examine the possibility to extend the definition of t, n z 
to complex values of £. 

2* The Evaluation of a Limit 

The evaluation (3) is an immediate consequence of 

Theorem 1: For all positive integers n and complex numbers z such that \z\ < 
l/es we have 

(4) |ln(nDez/*)| * \ %1^\\*Y > 
V = 1 

The fo l lowing lemma i s u s e f u l to prove (4) ( i n [ 2 ] , see formula (15) and 
s e c t i o n 4 . 1 ) . 

Lemma 1: Let /<*> := / , f[*\z) := e x p f ^ f ) and f£\ := ( / ^ , m - 1, 2 , 3 , 
. . . . We have V I(Z) ' 
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m k 

(5) c/(sa))(
m

4) = n n f^\B')^"^-3UHing> 
where 

k = l j = o 

jluKm, fc, j ) - (fe
 m_ ̂ . J l i C - l ) 8 ^ ) ^ - s ) m - f e + J', 0 < j < 2c, 1 < fc < m. 

In pa r t i cu l a r , 
( 4 ) ^ > (6) (/ua))ir;(3 = i) = n 4(i) • 

k= 1 

Proof of Theorem 1: We apply (6) r e c u r s i v e l y to 
f(0 = (w - 1) D C, (n - 2) • c, . . . , 1 • C 

Using n o £ = (n - 1) D £ c , we ge t 
(7) (n n C)(4)U = 1) = [I ((« " 1) ° 0(

fe
4) U = 1). 

£: = 1 

At the p t h s t e p , we o b t a i n (kQ: = m) i 

(8) (n D £)<4)(e = 1) 

n ••• n fci = i 

1 / 7,̂ -fc J m\ • kk 

Un - r) a SV4)(? = 1)" W ' K 
.^-feWfer-l (X) 

x(A) whence, since (1 n C)v (C = 1) = ev, v = 0, 1, 2, ..., 

(9) (n D O ^ U = 1) 

K-2 
= 11 "• 11 expl^.x • ̂ n_x L n 2 

It follows from (9) that 

(10) exp(/7? • nm-1) < (n D c)(^4)(C = 1) 

' • - ( - • ' • ^ • • • ^ . . ^ . ( f e ) •••(?,)) 
= exp(77?m» n'""1) (we use £ J ^ W " 1 = ^ + ^H""1)-

Thus, the series 

\Wt ^ ln ( (w D g ) ^ ( C = D)Z W , , 7 , 1 
>. converges for Z < — and 

(11) E 
777 = 1 

l n ( ( « D 0(
m

4)(C = D ) < — ) — s 

Let us observe that, in general, 

(12) F«\zQ) = exp(^— In F{z0e») 
In our case 

<\ m 

ln(n D C)i4)(C = 1) = —-ln(w D £w) 

so that the MacLaurin expansion of ln(nQ ez^n) , namely, 
M- ^ i / 2/n^ ^ ln(n D C)i4)(C = 1) m 
(13) ln(n n es/n) = 2_j r ^ 3 > 

I I 1 

w = 0 

7 7 7 = 1 
7!rzm 
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is valid for \z\ < l/e in view of (11). This completes the proof of Theorem 1, 
since (4) follows from (11) and (13). D 

3. The Inverse Function 

If £ = ft • z, n = 1, 2, 3, ..., then we write z = (-ft) Q £ in a domain where 
the inverse function is defined (this is essentially what is called "partial 
inverse" in [3]). The inverse function is defined in such a way that 

(14) (ft + m) D z = ft • (m D z), n, m e Z, 

To prove the next theorem, we need the following lemma. 

Lemma 2: For all complex numbers A±9 A^_9 . .., ^4m, we have 

(15) E in L_FT II V " £ I! 4 , 1 < r < m. 
Tr(m, r) M ' ••• Km'j=l vl+... + vr=m £ = 1 

V £ > 1 

Here and in what follows, i\{m3 v) means that the summation is extended over 
the numbers k\, . .., km such that 

k\ + 2k2 + • •. + mA:w = m, /q + /c2 + • • • + fcm = r, 

with /c7- > 0, 1 < j < m. 

Proof: Let 

777 = 1 ^ = 1 

be two analytic functions in a neighborhood of z = 0 such that jf(0) = ^(0) = 0. 
We have 

/(<7(H)) = Es»(?w)" = E £ ••• E s^Vl ... ^ 2
v l + "-+v" 

777 = 1 777 = 1 V i = 1 v m = l 

= E E E v ^ .-. ^„3V1 + - + U " , 
777 = 1 P =777 V]_ + • • • + V m = V 

whence v£ >l 
777 r 

(16) f(g(s)) = E E E Sr II4V, • s"1 
777 = 1 P = l V j + - • • + V r = 777 £ = 1 

n , r (/(g(^)))W(3 = 0) V r 
(17) ^ E E A l l / * . -

2- = 1 Vi + • • • + V r = 777 * - 1 
V , > 1 

On the other hand, we compute (f(g(z)))^m) using the Faa di Bruno formula [5, p. 
177], namely, 

da) ( / (^ ) ) ) ( m ) =E E k. k, n ( M ^ V •/%(»))• 
It gives us 

(f(g(z)))M(z -.0) _ " y £M ™ *, 
(19) m! " A „<£,.) ̂ 1 ••• fem!^Al/J ' 
and the result follows by comparison of (17) and (19). 

Remark: Formula (15) gives a variant of (18): 

(f(g(z))){m) * _ fi /g^OON /<*%(*0) 
m * P = l v 1 + . . . + v r = 7 7 7 £ = l \ ^ ' / 

V, > 1 
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We shall also need 

Lemma 3 [2, p. 238]: For all analytic functions cf>(3), w e have 

(21) 

A representation of (-1) • y is obtainable from the results of [3] (an 
interesting list of references is given in that paper) . It is proved that the 
function 

x = h(z) = zz* 
converges when e~e < z < e^'e ; moreover, 

g(h(z)) = z and h(g(x)) = x, e~l < x < e, 
where 

g(x) = xl!x . 
But 

1 
__— = 1 D X = ; y, 

Ax) 
whence 

i.e. , I 
-j- = (-1) D y, 

n\y) 
whence 
(22) (-1) c y = i/^"""" , e"1/e < «, < ee. 

Replacing y by (-1) n y gives a similar representation for (-2) D y, and so on. 
We give here another kind of representation for (-77?) o z, m = 1, 2, 3, ... . 

Theorem 2: For all positive integers m and complex numbers z such that 

I In z I < —, 
1 ' me 

we have 

(23) ( -*>•*-n n • •• vff e x p ( ^ ^ i . r - M 
v = 1 Vi =1 vm_2 =1 \ V! \ V X - 1 / 

... (i::i -_ j ) . v — ... v ^ r * - 1 - v : - - 1 • cm *>*). 
Proof: According to the Lagrange expansion theorem, the root z of the equation 
z In z = In £ which tends to 1 with £ is given by 

In z = f; (-1)-"1 ^ ( l n O v , | In t\ * \ . 
v = 1 v ' 

Since z In 2 = In £ implies C = s s = l D 2 , we obtain 

(24) ln((-l) o 5) = E (-D^1 ^ ( l n O v , | In ?| < |, 
V = 1 ^ * 

which corresponds to (23) for m = 1. 
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Now we r e p l a c e C by (-1) • £ i n (24) to o b t a i n 

ln( ( -2) D C) = £ ( - D ^ 1 ^ £ ••• £ ( _ i ) * i + - " + ** - v 

fcj! . . . fev! U n t ; 

< 1 
fe£> 1 

i . e . , 
, p - l JL //ffejL -1 

(25) l n ( ( - 2 ) D C) = E E X ( - D ^ 1 V " n l ^ y - r - ) • d n C)v 

The i d e n t i t y (15) wi th Aj = ^y~ g ives 

^1+ ••• +fc, = v £ = l \ ^ £ - / Tr(v,y) M > • • • K v ! j = l \ 3- I 
/ C £ > 1 

whi le (21) [with §{z) = ez] g ives 

T i ( v , y ) 1 - v * J = ! V J ' ' M 

We o b t a i n 

(28) E f i p | ^ ) = 4( v - ;)vv-u, i < y s v , 
fe1+ . . . + kp = v £ = i \ K £ ! / v ! \ y - 1/ 

fc£>i 
and i t fo l lows from (25) t h a t 

£ . ( - D V _ 1 ^ - u , . u - l / V " 1̂  
v = 1 y = 1 

It is readily seen that the coefficients in the summation over v of (29) 
are bounded by 

so that (29) is valid for |In £| < l/2e. 
The proof is easily completed by mathematical induction. We write 

ln((-(7w + 1)) n K) = ln((-m) n ((-1) a c)), 
substitute z to (-1) D ^ in (23), and use (28) to simplify the coefficients. 
The estimation 

(30) |(-m) n c| < expfi E ^j^lwz In C T j * el/m 

holds for |ln c| ^ lime. D 

Remark: It follows from the proof of Theorem 2 that 

(31) lim(-Tw) • Kl/m = 1, |ln c| < ̂ . 

(29) ln((-2) n C) = E E ^IV"1^"^11"1!. " l)( l n ° " 
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4. Extension of the Definition 

In this section, we consider the possibility to define £ D z for complex 
values of £. We give only partial results, but it is interesting to observe 
that it seems quite possible to extend £ D z to a bianalytic function of 2, £ • 
All along the process, the relation 

(32) (£i + C2) n 2 = Ci • (C2 D 2> 

should remain valid in some domains of the complex plane. 

4.1 Extension to Rational N u m b e r s 

First, we try to see how % • z can be defined. Let us consider a more gen-
eral question. Given z$ € (E and 

g(z): = J2 ak^z ~ z0^k' a 0 : = z0> 
k= 0 

analytic in a neighborhood of ZQ (this fact will be abbreviated z £) ZQ in what 
follows), does there exist an analytic function 

f ( z ) : = E b k ( z " 2o)k> ^ 0 : = 20> 
fc = 0 

such that the functional equation 

(33) f(f(z)) = g(z) 
is valid for z (?) ZQ? 

A solution is not always possible, as shown by the example 

g(z) = z1, zQ = 0. 

An affirmative answer for g(z) = zz, ZQ = 1, would imply that the solution 
f(z) =: % D % satisfies the relation 

\ D (| a z) = f(f(z)) = 1 a 3. 

To solve the functional equation 

(34) /(/(a)) = zz, f{\) = f'(l) = 1, 
we seek a solution of the form 

fiz) = 1 + E bk(z - l)k. 
fe= 1 

Substituting s to /(s), we obtain 

z* =: 1 + X > k U - Dfe = 1 + E &&(/(a) - Dfc 

&= 1 fc« 1 

- x + E E E ** II iv, • (« " D* 
(in the context of [2], it is not difficult to verify that \cLy_\ ^ 1 for all 
k € IN). It is then readily seen that the aforesaid question can be answered in 
the affirmative if we find a practical way to solve the following two problems: 

1. Express b\, bi, ..., bk in terms of a\9 ai> •••> Ciy. in the relations 
GL\ = b\ = 1, 

k v 
ak = E E K \\b , k = 1, 2, 3, ... . 

P = 1 Vl +... + vr = k 1 = 1 
v£ >1 
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2. Show t h a t the r a d i u s of convergence of J ] b^(z - l)k i s p o s i t i v e . 
k= 1 

We assume in the remainder of the paper that the radius of convergence is 
positive in the case g(z) = zz , z0 = 1. Unfortunately, this fact is not proved 
but it seems very likely that it is > 1. 

We generalize one step further and ask for an analytic solution of 

(35) fq(z) = z*9 /(I) = /'(I) = 1, where fq{z) = /(/(••>/(g)•••)). 

mi • -i J ^ i J- • <7 times 

This leads us to define 

(36) \ n z: = f(z)i = l + f: bJ±-)(z - l)k , z © 1, 

for q = 1, 2S 35 . .. (the domain of validity should contain |z - 1| < q/2). It 
is then possible to define p/^ • z for p/g e Q+. Simply^ 

(37) 2 • a := I D (I D ... D (I D 3J...J =: i + £2,fc(p, q)U ™ D k * * C 1. 
p times 

It appears that bk(ps q) = bk(p/q)* There is no problem defining p/q a z 
for p/q E Q._9 We construct (-l)/q a z by requiring 

(-1) (£•*) E 

and we observe that (32) remains true for all rationals £i> ^2- Heres we can 
write 

(38) | D * = a + |(s - l) 2 + | ^ - l)(;s - I)3 + ..., 2 0 1. 

4.2 Ex tens ion to Complex Number s 

I t i s r e a sonab l e to expect t h a t a passage to the l i m i t can be j u s t i f i e d in 
( 3 8 ) . This would permi t us to de f ine t o z for t E IR by 

(39) t a z i= l im £ bJ^f) . (a - l ) * = £ M * ) 9 ^ " 1 ^ ^ 1 > 
J + co k = 0 W j / fe = Q 

where p?-/ 7̂-5 J = 1, 2S 3S . .., is any sequence of rational numbers converging 
to t [note that the coefficients bk(t) are reals for real values of t). 

Finally5 (.39) is extended to complex values of t by analytic continuation 
and (32) remains valid. We do not give details of our calculations, since the 
question concerning the radius of convergence is open. At the end of the 
process we obtain a representation of the form 

(40) c • s = z + c(s - i)2 + e(c - |)(s - D 3 + ••-, c C o s 2 6 I. 

We can define ac(as z) [see (2)] by requiring 

a^(a9 s) = c a ^ 

Some O b s e r v a t i o n s 

5 .1 Solution of a Func t iona l Equat ion 

We observe t h a t the f u n c t i o n a l equa t ion 

(41) fq(z) = a*, / ( 0 ) = 0, N e IN 
can be so lved . 
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Theorem 3: Let 21/ > 1 be an integer. There exists an analytic solution, in a 
neighborhood of the origin, of the equation (41) if and only if N = M^, M E IN. 
The solution is unique up to a multiplicative constant which must be an (!LzA\th 

root of unity, 

Proof: If N = Mq, then a solution of (41) is 
N-l 

f(z) = ozM, cM~^ = 1. 
We must prove that an analytic solution f(z), z 0 Q* exists only in that case. 

Equation (41) implies 

(42) f(z") = (/(3))», f(0) = 0, (N > 1). 

Let us assume for a moment that the solutions of (42) are of the form 

f(z) = czM, o® = o9 

for some positive integer M. Substituting in (41), we find that 

ZN = Cl + M+ •..+ Mq~l . zMq 

N-l 
i.e., N = M and cM~l = 1. Hence, we need only to prove that all the analytic 
solutions of (42) are of the indicated form. Let 

f(z) = X Amzm 

m= 1 

be a s o l u t i o n of ( 4 2 ) . We have 

J W ) = E V " " - ( / ( a ) ) * = E ••• E ^v, •••A^.-z k = ( / ( a ) ) » = JT . . . V^ ^ . . . ^ . ^ i + -

A/ 

= E E n^,-^, 
m = N Vi + • • • + V/y = 777 £ = 1 

whence v£> l (43) V UAv -f1* i f m = kN> kEm 
v , + • • • + v , v = 777 j t - i £ (0 o t h e r w i s e . 

v£ >i ' 

This relation, for m = N, gives ^f = Als i.e., i } = 0 or ̂ f_1 = 1. The 
following reasoning is easily adapted to the case Ai * 0 [we obtain the 
solution f(z) = Aiz], Let us suppose that Ai = 0. Let kG > 1 be the first 
index for which A^Q * 0. We prove by mathematical induction that AkQ+i = 0, £ 
= 1, 2, 3, ... [this gives us the solution f(z) = A^Qzko 9 AN

k(] = A k Q ) . 
First, we examine the relation (43) with m = Nk.Q + 1. If a v£ is less than 

k$9 then the corresponding term, in the left-hand member of (43), is equal to 
zero. Thus, we examine only the solutions of 

(44) Vl + v2 + ... + v^ = NkQ + 1, v£ > k0, 1 < £ < N. 

Let v^ = ... = v£g = A:0 (s < N) and Vj > k$ + 1, j * l\> . .., £s. In view 
of (44), we have 

Nk0 + 1 > sk0 +(/!/- s)(fc0 + 1), 

whence s > N - 1 and, in fact, s = N - 1. Since the right-hand member of (43) 
is zero, this relation is reduced to A^~ • A% +i = 0, i.e., A% +1 = 0. 

Now we suppose that ̂ 0 + i = ••• = ̂ 0+£-l = 0, £ > 1, and examine the rela-
tion (43) with m = NkQ + £. Let us consider the equation 

(45) vi + v2 + ••• + v^ = Nk0 + £, v£ > kQ, 1 < £ < N. 

If v £ l = . . . = v£ r = fc0 (r < N) , then vj > ?CQ + £ for j * £ x , . . . , lr ( i n o rde r 
to have 4V l . . . ^v^ * 0 ) , so t h a t NkQ + £ > rk0 + (N - r)(k0+ £ ) , whence r = 
N-l and (43) i s reduced to 
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NAN-ie A = Uk i f Nk0 + i = kN 
^o+£ [0 otherwise3 

for some integer k. The possibility Nk0 + £ = kN implies k = kQ + l/N; but 

k0 < k0 + fl < k0 + ^3 

so that ^ = 0 by hypothesis. In both cases, we conclude that ̂  = 0. D 

Remarks: The examples 

Z a 
/(*) = (1 - b))z + U)' 

show that other solutions of (41) are possible for N = 1. We may compare (42) 
with Wedderburn1 s functional equation gix2-) = [g(x)]2- + lax (see [1] for refer-
ences) . 

5.2 Solution of a Recurrence Relation 

There is a relation similar to 1 which may be solved without difficulty. 
Let Am, Bm, m = 1, 2, 3, ... be two sequences of complex numbers related by 

m ? 

(46) Am = £ £ n Bv,, m = 1, 2, 3, ... . 
V = I V } + • • • + V r = 777 & - 1 

We have V£ " 
m v 

(47) Bm = £ £ (-1)2'-1 rUvt, m = 1, 2, 3, ... . 
p = l V 1 + - - - + V r = 777 £ = 1 

V £ > I 

Proof: Let 

/(*) := (1 - zYl , ^(s) := X Z ^ . 
7 7 7 = 1 

Using Faa di Bruno's formula in the form (20), we obtain 

</(,(.)»••>(. - 0> . £ f, , 
^ ' P = l v 1 + . - - + V r = 7 7 7 ^ = l 

whence £ 

/(<?(*)) - i + E 4 zm = 
m = 1 

It follows that 

and by comparison of the coefficients: 
7 7 ? " 1 

(48) Bm = Am - £ ^ - A > rc * 2« 
S = 1 

T h u s , m _ i / s - 1 
Bm= Am~ A^.A, - £ Am-s{&s ~ E A*-tBt 

s=2 \ t=l 
m - \ 777-1 s - 1 

= i l m - E ^ - ^ s + E Y,Am-sAs.tBt 
s= I s=2 t=1 

7 7 7 - 1 S - 1 

- E ^ - E ^ v 2 + E E^- 8 ^-* 5 f 
V ]_ = 77? V 1 + ^̂  2 = ^ S = 2 t = l 

At the nth step, we obtain 
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n r m - I Si - I 

= E (-1)'-1 E 0 \ + (-D" E E 
r = 1 vi + >. •• + vr = m I = i Si = n s2 = n - 1 

v, > 1 
8 „ _ ! - 1 

J ] Am-8l - • • ^ s„_ i - e „ ' 5 s „ , f o r n = 1 , 2 , . . . , (7W - 1) . s„ = l 

This g ives us 
7 7 2 - 1 V 

sm = E (-Dr_1 E n ^ . + H r 1 ^ 
P = l V i + • • • + V r = 777 £ = 1 

V£ > 1 
777 p 

- Z(-iy-x E n^vt . D 
2° = 1 v X + . . • + V r = 777 jl = 1 

V £ > 1 

5.3 An Identity 

Using (32)5 we can write 

3 f N ((a + /z) D z) - (a a z) (h • (a a s)) - (a D s) 
— (a D z) = lim = lim , 
da h + o h h + o h 

and (40) [with t, = h and z replaced by (an z) ] gives 

(49) -^(a n z) = ((a a s ) - I) 2 - |((a D s) - I)3 + •-• . 

On the other hand, (40) gives directly 

(50) ~{a a z) = (z - l)2 + (la - \){z - l)3 + •••, 

whence 

(51) ((a D z) - l)2 - |((a a s ) - l)3 + ... 

= {z - D 2 + [la - |)(s - I)3 + ..., 3(3 1, a 6 0. 

5.4 An Appearance of the Fibonacci Numbers 

The recurrence relation 1 (section 4.1) may be written in the form 

(52) i r k - ^ E E br- f[bVl, k>3. 
v£ >i 

To find a bound for |&k|(|#k| < 1), we may try to use (52) with k = r, k = 
v£ and make the substitutions. To do that, we need to take into account that 
(52) holds only for k > 2>. In particular, we must examine, separately, the 
solutions of V! + • • • + vr = k with 1 < \>e < 2, 1 < I < r. This leads us to 
evaluate the summation 

(53) £ E 1 =:, E Ppik, 2), 
2 l<v, <2 2 

where pr (k, 2) is the number of solutions of Vj +•••+ vr= fc, 1 < v£ < 2. This 
number is (^ r) ; indeed, if v£l =... = v£s = 1 and v£ = 2, £ * £1? ..., £s, then 
s • 1 + (P - s) • 2 = k, so that s = 2v - k and the number of solutions is 

\s) = \2r - k) = \k - r) 

(see also the Remark below). Hence, we obtain (see [4], p. 14, Problem 1): 
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(54) E pr(k, 2) = E L r_ ) = fk, k = 05 1, 25 .... 
j<r<k V \<v<kXK V> 

the kth Fibonacci number, 

Remark: Using the generating function 

and the Leibniz formula5 we deduce that the number of solutions, p (k, M), of 
the equation V]_ + • • • + vp = A:3 1 < v^ < M? is equal to 

(55) pr(k, M) = £ (-DJ'(J)f "JH" l ) , v < k < rM. 
In particulars r̂ --l 

M * . « = | H ) ' ( | ; « ; ' ) • ( , ! , ) . " * « * • • 
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Introduction 

The Fibonacci sequence {Fn} and the Lucas sequence {Ln} are well-known to 
the readers of this Journal. Several closed form formulas exist for Fibonacci 
and Lucas numbers, namely: 

(D Fn = a"a I g"» (2) Ln = a" + 6", 

where a = %(1 + 5%), 0 = %(1 - 5%) -

1 I 2 J / n N 1 2 , n 

<5> ^.=I (V) «' ^ l ^ ( V ) -
George E. Andrews, [1] and [2], derived an additional explicit formula for 

the Fibonacci numbers, which can be written as 

( 7 ) F- - i n
( - 1 ) f c ( [%(«-5W]) -

In [1], Andrews proved (7) by using a relation between the Fibonacci num-
bers and the primitive fifth roots of unity, namely: 

a = -2 cos(4ir/5), 3 = -2 COS(2TT/5). 

In [2], Andrews obtained (7) as a consequence of a polynomial identity. In 
this note, following Andrews, we derive a corresponding explicit formula for 
the Lucas numbers which is 

(8) %+l\ } n V[%(TZ - 5 k ) ] ) ' 
k ~ ~[ 5 J 

Preliminaries 
r^i . fn+3 -5ti 
UJ -9 • JL rn + l~J-k - 1 ^ A i +/'c+ QA L 2 J ^ n + 2 - /c _ i 

(9) ^ c ^ n * , , . , ^s^x^-s) ^ x__^_ 
do) ^ i - E ( - i ) k ( [ % ( B + i : j W ] + 1)-
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(,lz; m - — - — + for a l l ms r. 

^ ( ; : } ) • IQ " ^ - - • 
(14) L n = Fn+1 + Fn_lB 

Remarks: Equation (9) is the Theorem from [2] with a = -1. Equation (10) is 
obtained by taking the limit as x approaches 1 in (9) and then applying (5) . 
Equations (11) through (14) are elementary. 

Proof of (8): Equation (10) implies that 

(is) *•„.!- £ < - i > * ( f t ( M _ j : i k ) ] + 1)-
Replacing k by -k in (15), we get 

( i 6 ) * • „ . ! - £ ( - ! ) * ( [ % ( „ - ; ; 5 * > ] + i 
which implies, by using (11), that 

M<1 n - 1 
(17) Fn_, - S ( - D V n „ 2 „ [%(„-! + 5fc)] 

If we now use equation (12), we see that 

(18) *»-!- E(-l)fc([%(n:5fe)])-

Applying (13) to equation (18), we obtain 

(19) Fn^ = E (-Dk " ([%(n _ 5 f c ) ] ) . 

Equation (19) together with equations (7) and (14) yields 

(20) £„ - 1, (-D n ^[%(n _ 5k)]J, 

which is the same as (8) and the proof is complete,, (The limits of summation 
in (8) are determined by the criterion that 0 < [% (n - 5k)] < n.) 

Concluding Remarks 

The reader who consults [1] should take note that (i) Andrews1 middle ini-
tial is erroneously given as H.; (ii) on pages 113 and 117, the name "Einstein" 
should be "Eisenstein." Both errors were made without consulting Andrews and 
were not in his original manuscript. 

Acknowledgment 

I wish to thank the referee for his suggestions, which led to a simpler 
proof of (8). 

References 

1. George E. Andrews. "Some Formulae for the Fibonacci Sequence with Generali-
zations." Fibonacci Quarterly 7. 2 (1969):113-30. 

2. George E. Andrews. "A Polynomial Identity which Implies the Rogers-Ramanu-
jan Identities." Scripta Math. 28 (1970):297-305. 

1991] 363 



DIVISIBILITY OF GENERALIZED FIBONACCI AND LUCAS NUMBERS 
BY THEIR SUBSCRIPTS 

R icha rd A n d r e - J e a n n i n 
Ecole Nationale d'Ingenieurs de Sfax, Tunisia 

(Submitted February 1990) 

1. Introduction 

In this paper, we shall extend some previous results ([2], [3], [4]) con-
cerning divisibility of terms of certain recurring sequences based on their 
subscripts. We shall use the generalized Fibonacci and Lucas numbers, defined 
for n > 0 by 

Un = a _ g and Vn = a- + 3", 

where a and 3 are two complex numbers such that P = a + 3 and Q = a3 are rela-
tively prime nonzero integers. We shall exclude from consideration the case in 
which and are roots of unity. Then Un and Vn are always different from 
zero [1]. We shall also give some applications to the equation 

an ± bn = 0 (mod n), 

where a > b > 1 are relatively prime integers. 
In what follows 5 a) (q) [resp. TA (q) ] denotes the rank of apparition of the 

positive integer q in the sequence {Um} (resp. {Vm}) > i.e., the least positive 
index OJ (resp. oo) for which q\U^ (resp. ^ I ^ ) . Recall that the integer b is an 
odd multiple of the integer a if a\b and 2J(£/a). The main result, which 
generalizes the one of Jarden [3], can be stated as follows. 

Theorem 1: Let n = p^p^2 ••• P^k - 2 be a natural integer. 

(i) If n > 2 divides some member of the sequence {Um}9 then Un = 0 (mod 
ri) if and only if the rank of apparition of any prime divisor of n also divides 
n. 

(ii) If n > 3 divides some member of the sequence {Vm}, then Vn = 0 (mod 
ft) if and only if n is an odd multiple of lcm(oo(p-,), ..., oo(p, )). 

2. Preliminary Results 

The following well-known properties will be necessary for our future 
proofs. Proofs of these results can be found in the papers of Lucas [5] or 
Carmichael [1] . 

(i) For each integer ft > 1, gcd(tf„, Q) = gcd(7n, Q) = 1. 
(ii) If p is a prime number such that p|§, then 0)(p) = p if and only if 

p\(a - 3 ) 2
5 and gcd(o)(p), p) = 1 otherwise. 

(iii) If q is a prime divisor of o)(p), with p * 2 and p|(a - 3 ) 2
5 then 

q < p. Moreover, we have 

(a) oo(pA) = o)(p)p^, 0 < y < A, 

(b) a)(PlAl ... p ^ ) = lcm(a)(pj1), ..., a)(p^)), and 

(c) n\Um if and only if u)(ft) |T7Z. 

(iv) If the prime number p divides some member of the sequence {Vm}, then 
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(a) u(p) < p, 
(b) gcd(aj(p), p) = 1, 
(c) o)(pA) = Ui(p)pv3 0 < u < X, p odd, 
(d) If 2x\Vm, then u>(2) = w(2A), and 

(e) If n = p̂ i ... p̂fc divides some member of the sequence {Vm}, 
then aj(n) = lcm(aKp^i) , • ••> w(p*k)), and, for n > 3, n | Vm if and only if 7̂ is 
an odd multiple of w(n). 

3. Proof of Theorem 1 

(i) Let n = pAi . . . p}^ > 2 be an integer which divides some member of the 
sequence {Um}. First, assume that n\Un. Then, for each 1 < i < k5 p-\Un, and 
a)(p̂ )|n. Second, assume that, for each i, u>(p.)\n. 

If p |(a - 3)2, then 

a)(pA0 = wCp^p^ = p^+1|n, 

since u^ < X^\ otherwise, 

a)(p£*) = w(pi)p_.yi |w, 

since gcd(a)(p̂  ) , p^ ) = 1, and \ii < X^. Thus, 

o)(n) = lcm((jo(pAi), . .., co(pAk))jn, and n\Un. 

(ii) Now, let n = p^1 . . . p^k > 3 be an integer which divides some member 
of the sequence {Vm}. First, assume that n is an odd multiple of lcm (aKp^, 
. .., o)(p, )). If p = 2, then 0)(p|O = aj(p̂ )|?z, whereas if p^ * 2, then o)(pxt) 
= oo(p.)p.yi |̂ s since gcd(aj(p^), p^) = 1, and u^ < A^. Therefore, n is an odd 
multiple of oo(n) = lcm(oo(pAi), . .., a)(pM), since n is an odd multiple of 
lcm (GO (p^, . .., Hd(p )) . Second, assume that n \ Vn, with ?2 > 3. We know that n 
is an odd multiple of lcm (oKp^1)? . .., ~b)(p}k)) = a)(n) . Therefore, n is an odd 
multiple of lcmCoKp^, ..., o)(pfe)), since aj(p^) = aj(pi)p^, p^ odd, or w(p^O 
= oJCpOs if p^ = 2. This concludes the proof of Theorem 1. 

Theorem 1 immediately yields the following Corollary, due to Jarden [3]. 

Corollary 1: (i) If Un E 0 (mod n) , and //? is composed of only prime factors of 
n, then also £/mn E 0 (mod 777ft) . 

(ii) If 7n E 0 (mod ft), and m is composed of only odd prime fac-
tors of ft, then also Vmn = 0 (mod mri) . 
Remark 1: By application of Theorem 1 and Corollary 1, numerical examples can 
be obtained. For instance, let ft = pX l ... pA k be an odd number, such that 
3 < p l < • • • < p., and n\Un. We have a K p ^ * 1, since [/-L = 1, and by §2(iii), 
w(pi) = Pis and pi | (a - 3)2? since a K p ^ is a factor of ft. This case can occur 
only if (a - 3 ) 2 admits an odd prime divisor. Moreover, we have 

w(pi) = Pi5 
or 

w(Pi) = PT1 .-• Pi'-V > £ = 2, ..., fc; uj < Xj, j = 1, ..., i - 1. 
Theorem 1 also yields the following Corollary. 

Corollary 2: If n\Un, then Un\Uv . 
Proof: If n\Un, and if p is a prime number such that p\Un, then w(p)|n|j/„, and 
the result follows by Theorem 1. 
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4. The Congruence an ± bn - 0 (mod n) 

In what follows, we assume that a > b ̂  1 are relatively prime integers and 
that e{n) denotes the rank of apparition of n in the sequence {am - bm]. The 
next result generalizes the main theorem of [4]. 

Theorem 2: Let n and ab be relatively prime. Then the following statements 
are equivalent: 

(i) Un E 0 (mod n). 
(ii) an - bn = 0 (mod ri) . 
(iii) n = 0 [mod e(n)]. 
(iv) n = 0 [mod e(p)], for each prime factor p of n. 

Proof: It is clear that (i) =*• (ii) => (iii) =* (iv) . Now, assume that n E 0 [mod 
e(p)] for each prime factor of n. If p|a -2?, then [§2(ii)] oa(p) = p\n. On 
the other hand, if p\a - Z?, then p\Un if and only if p\an - bn. Thus, a)(p) = 
e(p)\n. The conclusion follows by Theorem 1. 

Corollary 3: The equation an - bn E 0 (mod n) has 

(i) no solution if a = b + 1 and n > 2, 
(ii) infinitely many solutions otherwise. 

Proof: If a - b admits at least one prime divisor p, then px\UpX > for each pos-
itive integer A, by Corollary 1. On the other hand, if a - b = 1 , then Q = ab 
is even and n must be odd. But this case cannot occur since, if p was the 
least prime factor of n, we would have, by Remark 1 above, 

o)(p) | (a - b)1. Q.E.D. 

Corollary 4: The equation an + bn = 0 (mod n) admits infinitely many solutions. 

Proof: If 7j_ = a + 2? admits an odd prime divisor p, then px\Vp\, for each A > 1, 
by Theorem 1 and Corollary 1. On the other hand, suppose that 

Vi = a + b = 2m, m > 2. 

Thus a and 2? are odd and 

V2 = (a + b)1 - lab = 2(22m"1 - Q), 

where 22"7"1 - Q > 1 is odd, since Q is also odd. Thus, 72 admits an odd prime 
divisor p, and 2p is an odd multiple of lcm(u)(2), w(p)) = 2 . By Theorem 1 and 
Corollary 1, we have 

2pa|^2pa5 a > 1. Q.E.D. 
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Introduction 

A day hardly goes by without hearing that some lucky person has become an 
"instant millionaire" by winning a lottery. Recently, one of the authors was 
visiting relatives in Florida when a sequence of winning lottery numbers was 
announced. (In the Florida state lottery, one chooses six distinct integers 
from 1 to 49.) Someone suggested that a person might just as well choose 1, 2, 
3, 4, 5, and 6 as any other sequence. In fact, why not choose any six consecu-
tive integers . . . what difference does it make? The chances are the same as 
any other sequence of six distinct integers! 

This led to the following analysis of the least interval between consecu-
tive members of a sequence of six integers. Here, we are concerned with the 
set of possible lottery tickets for the Florida state lottery. That is, the 
set of all possible six distinct integers from 1 to 49. The calculation given 
below can be generalized to "r integers from 1 to n are chosen." The generali-
zation will be given at the end of this article. For clarity, however, we will 
use Florida's lottery as an example of the technique involved. 

In what follows, we let L be the set of all possible Florida lottery 
tickets. That is, 

L = {(tl5 t 2 , t 3 , t4, t5, t6) : 1 < t l < t2 < t 3 < tk < t5 < t6 < 49}. 

We also define the function / on L by: 

f(ti> t2> t3, ti+, t5, t§) = min{t^ + 1 - t i : i = 1, 2, 3, 4, 5}. 

Thus, if t € L, we can think of f(t) as the "smallest space" on the ticket t . 
Our purpose is to determine the mean smallest space with respect to the members 
of L. That is, 

will be determined. 

Determina t ion of t h e Mean of t h e Smallest Spaces of L 

Consider the set of 5-tuples, 

D = {(dl9 dl9 d3, dk5 d5) : 5 < dl + d2 + d3 + dh + d5 < 48; di > 1}, 
and the function F i L -> D defined by 

F((ti, t 2 , £3, £i+, £5, ^6)) = (£2~^1' ^3*~^2' £4-^3' £5-^1+5 t § - t 5 ) . 
It is clear that F is a function from L onto D. This will enable us to effi-

ciently determine 

Zfw 
t€L 

by use of a particular partition of D. If d € D, we note that 
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#{t e L : F{t) = d} = 49 - s, 

where # is used to denote the number of elements in a set and where 

d = (d\> d2, d%, di+9 d5) and s - d\ + d2 + d^ + d^ + d$. 

For d = (di, d25 6?3, c^, c?5) e Z?, we define 

s(d) = dx + d2 + ̂ 3 + ̂i+ + d5 

a(d) = min{c?]_, 6?2» 3̂> Î+J ^5} 

77z(c?) = #{£ : £^ = a{d)}. 

When the context is clear, we will just write s, a, or m. We now see that 

fit) = a{F(t)), 

and that 
5 < s < 48, 
1 < a < 9, 

and 1 < ?T? < 5. 

For each triple (£, j, /c) with 5 < £ < 48, 1 < j < 9, and 1 < m < 5, we de-
fine 

îjfc = ̂  e D : SW) = ^' a(& = J'> m(d) = k} 
and note that 

^ = {Dijk : 5 < i < 48; 1 < j < 9; 1 < fc < 5} 

is a partition of D. Since 

(*) E / ( * ) = E (U> - i)3(#Dijk)9 
teD Vijke@ 

we proceed to determine the right side of (*) by first considering each k = 1, 
2, 3, 4, and 5. For this, we use the following theorem. Its statement and 
proof are found in [1: Theorem 2.4.3; pp. 145-46], 

Theorem: For integers r, r-,, r2» •••» r
n > t n e n u m D e r of solutions to 

Xi + X2 + ••• + Xn - V 

x- > r- for i = 1, 2, . .., ft 
is 

/n - 1 + r - P 1 - P 2 - • • • - pn\ 
\ n - 1 / 

Thus, if we let s and a be given, we use the above theorem to find the number 
of solutions to 

di + d2 + d$ + di+ + d$ = s 

di > vi\ i = 1, 2, 3, 4, 5, 

for m - 1, 2, 3, 4, and 5. For example, if m - 1, di = a for some £ and dj ^ a 
+ 1 for j * £. Since there are (̂ j ways to choose the di and, by the theorem, 

Xi + x2 + x$ + Xi+ = s - a 

X£ > a + I; i = I, 2 , 3 , 4 
has 

/ s - 5a - 1> (s - 5
3
a ~') 

solutions, it follows that 
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S i m i l a r l y , we o b t a i n 

*De.a.3-(l)(8-^-1) - l o f - 5 - - 1 ) , 

# D — ^ - ( s K 8 " ! ? " 1 ) - ( s " - i - 1 ) -
and 

It should be noted here that we will use the convention 

/n \ _ (1, if n = -1; 
\-l/ \0, otherwise 

and 

D = 0 if i < /c. 

Thus, for fixed s and a, 

£»- -£$(•;?*-'). 
K = 1 fc= 1 

and by [2 : Formula 2 1 ; p . 5 8 ] , we have 

k=l 
Hence5 

48 9 5 48 9 5 
£ / ( « = £ L E(49 - i)0Wm) = E L (49 - i)3 Z#Dijk 

t e L i = 5 J = 1 fe = 1 i = 5 j = 1 fc = 1 

which is5 by the above, 

- 5a + 4\ _ Is - 5a - 1 
J&ak \ 4 j \ 4 

48 9 r , 

i = 5 ,7 = 1 L V 

. [ / i - 5j + 4\ /£ - 5j - 1 
i = 5 j 

and by t e l e s c o p i n g the i nne r sum, 

•i £ ( « - < - « • * ) - £ E ("r T" 5 / + 4) 
i = 5j'=l ^ 7 j = 1 i = 0 

by [2: Formula 25; p. 58] . We have, then, that the mean "smallest space" on a 
(Florida) lottery ticket is 

Zf(t) E ( 5 4 ; 5 i 

teL = J = l x b 

(?) (?) 
which is approximately 1.8£ 

Distribution 

Of interest, also, would be a list of how lottery tickets are distributed 
with respect to the "smallest space" concept. For example, how many of the 
(4|) Florida state lottery tickets have a "smallest space" of 3? 
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This can be answered r e a d i l y by n o t i n g t h a t by o m i t t i n g the j f a c t o r i n the 
summand of (*) and summing wi th a f ixed j , we have t h a t the number of F l o r i d a 
l o t t e r y t i c k e t s wi th a " s m a l l e s t space" of a i s 

n E (49 - i)#Diiks 
ijk 
j = a 

which simplifies to 

(54-5.) _ ( « - * ) 

Hence, we can construct the following list of how the Florida lottery tickets 
are distributed with respect to the "smallest space" idea. 

smallest 

r 2 
3 
4 
5 
6 
7 
8 
9 

sp< ace number ' of such 
6924764 
3796429 
1917719 

869884 
340424 
107464 

24129 
2919 

84 

tickets 

Thus, it can be observed that close to 91% of all possible Florida state 
lottery tickets have a "smallest space" of 1, 2, or 3. It seems, then, that it 
might be wise to choose a lottery ticket that has a "smallest space" of 1, 2, 
or 3 and avoid those with a "smallest space" greater than 3. 

Conclusion 

As stated earlier, the above could be generalized to a lottery where r num-
bers from the sequence 1, 2, 3, ..., n are chosen. Using the same technique as 
before, it is easily shown that the mean of the "smallest space" of all possi-
ble lottery tickets where r numbers are chosen from 1, 2, 3, ..., n is 

[ — 1 
L^-iJ/n - (p - l)(j - 1)\ 

(?) 
and that the number of such lottery tickets with a "least space" of a is 

in - (r - l)(a - 1)\ _ In - (r - l)a\ 

Of course, another approach in investigating lottery tickets might be to 
analyze the collection of lottery tickets with respect to the "largest space" 
on a ticket. This should also be of interest, and we encourage the reader to 
make such an analysis. 
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Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to 
Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 
USA. Correspondence may also he sent to the problem editor by electronic 
mail to 72717.3515@compuserve.com on Internet. All correspondence will be 
acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be 
received within six months of publication of the problem. Solutions typed in 
the format used below will be given preference. Proposers of problems should 
normally include solutions. 

Notice to p r o p o s e r s : To e n s u r e t h a t no submiss ions h a v e b e e n misfiled b y t h e 
new e d i t o r , all p r o p o s e r s h a v e b e e n not if ied abou t t h e s t a t u s of t h e i r p rob lems 
t h a t a r e st i l l on file. If you h a v e submi t t ed a problem for t h e E lemen ta ry 
Problem sect ion and h a v e not r e c e i v e d not i f icat ion r e g a r d i n g i t s s t a t u s , p l ease 
con tac t D r . Rabinowi tz . 

BASIC FORMULAS 
The F ibonacc i numbers Fn and the Lucas numbers Ln5 s a t i s f y 

Fn+2 = Fn+l + Fn> F0 = °» Fl = ^ 
Fn + 2 = Ln + i + LnS L 0 = 2 , L]_ = 1. 

Also , a = (1 + / 5 ) / 2 3 3 = (1 - / 5 ) / 2 , Fn = (an - B H ) / / 5 , and Ln = an + 3 n . 

PROBLEMS PROPOSED IN THIS ISSUE 

B-7QQ Proposed by Herta T. Freitag, Roanoke, VA 

Prove t h a t for p o s i t i v e i n t e g e r s m and n9 

am(uLn + Ln_1) = an(aLm + L m _ 1 ) . 

B-701 Proposed by Herta T. Freitag, Roanoke, VA 

In t r i a n g l e s ABC and DEF, AC = DF = 5F2n, BC 
AB = BE = 5F2n + l - L2n + i + ( - l ) n _ 1 . Prove t h a t LACB = LDFE. 

B-702 Proposed by L. Kuipers, Sierre, Switzerland 

For n a p o s i t i v e i n t e g e r , l e t 

xn = Fn + and yn = Fn + 
Ln + Fn + l + 

1 1 
Ln + T7— Fn+\ + : — 

(a) Find closed form expressions for xn and yn. 
(b) Prove that xn < yn when n > 1. 
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B-703 Proposed by H.-J. Seiffert, Berlin, Germany 

Prove that for a l l posi t ive integers n, 

y Ln-kph = _L 
k= l J 

B-704 Proposed by Paul S. Bruckman, Edmonds, M/A 

Let a and b be fixed in tegers . Show that if three integers are of the form 
ax2 + by2- for some integers x and y, then the i r product i s also of th i s form. 

B-705 Proposed by H.-J. Seiffert, Berlin, Germany 
F2n IT2 

n= 1 
(a) Prove that £ ,. 

(b) Find the value of ]T 
F2n 

2n\' 
• ' " ' ( . ) 

SOLUTIONS 
edited by A. P. Hillman 

Triangular Divisibility 

B-676 Proposed by Herta T. Freitag, Roanoke, VA 

Let Tn be the n t h t r iangular number n{n + l ) / 2 . Characterize the posi t ive 
integers n such that 

i = 1 
T 

n 

Solution by Hans Kappus, Rodersdorf, Switzerland 

I t i s immediate that 
n 

Y^Ti = (n + 2)Tn/3. 
i= 1 

Therefore, Tn divides £^ = ,T. if and only if n = 1 (mod 3) . 
AZso solved by R. Andre-Jeannin, Charles Ashbacher, Wray Brady, Paul S. 
Bruckman, Russell Euler, Guo-Gang Gao, Russell Jay Hendel, Joseph J. 
Kostal, L. Kuipers, Carl Libis, Graham Lord, Bob Prielipp, Don Redmond, H.~ 
J. Seiffert, Sahib Singh, Paul Smith, Lawrence Somer, W. R. Utz, and the 
proposer. 

More Triangular Divisibility 

B-677 Proposed by Herta T. Freitag, Roanoke, VA 

Let Tn = n{n + l ) / 2 . Characterize the posi t ive integers n with 

i= 1 
Y.T}. 

^ = 1 
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Solution by Hans Kappus, Rodersdorf, Switzerland 

A s t r a i g h t f o r w a r d c a l c u l a t i o n shows t h a t 

y m 2 = ^ -i- ore -t- i n -t- z jn"- + fan + 1 ^ 
^ * 10 * 3 ±n 10 ^ i i 3 

by the result of B-676. Working mod 105 we see that 3n2 + 6n + 1 is a multiple 
of 10 if and only if 

n = 1 (mod 10) or n = 7 (mod 10). 

Also so lved by R. Andre-Jeannin, Charles Ashbacher, Paul S. Bruckman, 
Russell Euler, Joseph J . Kostal, L. Kuipers, Carl Libis, Graham Lord, Bob 
Prielipp, H.-J. Seiffert, Sahib Singh, Paul Smith, and the proposer. 

N o n t r i a n g u l a r N u m b e r s 

B-678 Proposed by R. Andre-Jeannin, Sfax, Tunisia 

Show t h a t Li+n and £1^ + 3 a r e never t r i a n g u l a r numbers. 

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

We s h a l l use the fo l lowing known r e s u l t s i n our s o l u t i o n : 

(1) L^ - 2 = 5F2n fo r each p o s i t i v e i n t e g e r n; 
2 

(2) L^ +2 + 2 = 5F„ +i for each nonnegative integer n. 

Note: (1) is (Jig) and (2) is (i"17) on p. 59 of Fibonacci and Lucas Numbers by 
Verner E. Hoggatt, Jr. (Boston: Houghton Mifflin, 1969). 

As immediate corollaries, we have: 

(10 Lhn = 2 (mod 5); 

(2 0 ^ n + 2 E 3 (mod 5). 

Next, we establish the following results. 

Lemma 1: The sequence of triangular numbers Tn is periodic modulo 5 with a 
period of 5. 

Proof: It suffices to show that Tn+$ = Tn (mod 5) where n is an arbitrary posi-
tive integer. 

T T (n + 5)(n + 6) _ w(n + 1) = (n2 + lln + 30) - (n2 + n) 
-L-n + 5 -*-n 2 2 2 

= 5n + 15 = 0 (mod 5). 

Lemma 2: Let n be a positive integer. Then Xn is congruent to 0, 1, or 3 mod-
ulo 5. 

Proof: The claimed result follows from Lemma 1 and the table given below. 

n 
-Ln 

Tn (mod 5) 

1 

1 

1 

2 

3 

3 

3 
6 

1 

4 
10 

0 

5 
15 

0 

The fact that L^n is never a triangular number follows from (1') and Lemma 2. 
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Since, from (1 ') and (2 ') , 

Lkn + 3 = 2L^in + 2 " Lhn > Lkn + 3 = 2(3) - 2 (mod 5), 

we have 

£ifn + 3 E 4 (mod 5) . 

Thus, ^i+n + 3 is never a triangular number by Lemma 2. 

Also solved by Paul S. Bruckman, H.-J. Seiffert, Sahib Singh, and the 
proposers. 

Product of 4 Lucas Numbers 

B-679 Proposed by R. Andre-Jeannin, Sfax, Tunisia 

Express Ln_2^n-l^n+l^n+2 a s a polynomial in Ln. 

Solution by Guo-Gang Gao, Universite de Montreal, Montreal, Canada 

I t is easy to prove that L2n = L„ - ( - l ) n 2 . Then 

Ln-lLn+2 = (an~2 + 3n""2)(an + 2 + 3n+2) 
= LZn + (-l)n-2Lli 

Similarly, 

Therefore, 

L\ + ( - D n 5 . 

Ln-lLn+l = Ln ~ ( " l ) n 5 . 

.Also soZved by Paid S. Bruckman, Russell Euler, Herta T. Freitag, Russell Jay 
Hendel, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Paul Smith, Lawrence 
Somer, and the proposer. 

Congruence 

B-681 Proposed by H.-J. Seiffert, Berlin, Germany 

Let n be a nonnegative integer, /c > 2 an even integer, and r E {0, 1, . . . , 
k - 1}. Show that 

Fkn + T E (Ffe + r - Fr)n + Fr (mod Lk - 2) . 

Solution by Guo-Gang Gao, Universite de Montreal, Montreal, Canada 

Let us f i r s t prove that 

F = F T, - F 
k(n+l)+r Lkn + r±Jk rk(n-l)+r> 

where k ^ 2 is an even integer and v > 0. Notice that 

(a x 3)^ = (_!)k = 1 B 
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= (ak(n+l)+r „ $k(n + l)+r^ + _(afc(n-l) + r _ $k{n-l) + r\ 

= F + F 
k(n + l) + r ^ L k(n-l) + r° 

Use m a t h e m a t i c a l i n d u c t i o n f o r t h e p r o o f : 

(1 ) I t i s t r i v i a l l y t r u e when n = 0S 1 . 

( 2 ) Assume t h a t t h e c l a i m h o l d s f o r up t o n* 

Thens by t h e i n d u c t i v e h y p o t h e s i s , we h a v e t h e f o l l o w i n g : 

k(n + l) + r = Fkn+rLk ~ Fk{n-\)+v 

= ((Fk + r ~ Fr)ri + Fr)Lk 

- i(Fk+r - Fr)(n - 1) + Fr) (mod Lk - 2) 

= 2((Fk + r - FT)n + Fv) 

- ((Fk + r - Fr)(n - 1) + Fp) (mod Lk - 2) 

= (Fk + r - Fr)(n + 1) + Fr (mod Lk - 2) . 

T h i s c o m p l e t e s t h e p r o o f . 

Also solved by Paul S. Bruckman, Bob Prielipp, and the proposer. 

L u c a s T r i a n g u l a r N u m b e r s 

6 - 6 8 2 Proposed by Joseph J. Kostal, University of Illinois, Chicago, IL 

Let T(n) be the triangular number n(n + l)/2. Show that 

T(L2n) - 1 = ^Fkn + L2n) ' 

Solution by C. Georghiou, University of Patras, Patras, Greece 

We h a v e 

T(L0 ) - 1 = (L2, + Ln - 2 ) / 2 = (L, + L 9 ) / 2 , 
v zn y K 2n 2n J v Hn 2ny 

s i n c e i t i s w e l l known t h a t L | - 2 = LL+n . 

A l s o solved by Charles Ashbacher, Scott H. Brown, Paul S. Bruckman, David 
M. Burton, Russell Euler, Piero Filipponi, Herta T. Freitag, Guo-Gang Gao, 
Russell Jay Hendel, L. Kuipers, Y. H. Harris Kwong, Carl Libis, Bob 
Prielipp, Don Redmond, H.-J. Seiffert, Mohammad Parvez Shaikh, Sahib Singh, 
Lawrence Somer, and the proposer. 

L T - C o m p o s i t e 

B - 6 8 3 Proposed by Joseph J. Kostal, University of Illinois, Chicago, IL 

L e t L(n) = Ln and Tn = n(n + I)12. Show t h a t 

L(T2n) = L(2n2)L(?i) + ( - l ) n + 1 L ( 2 n 2 - n) . 

Solution by C. Georghiou, University of Patras, Patras, Greece 

We h a v e L(T2n) = L(2n2 + n). But 
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L(2n2 + n) - L(2n2)L(n) = a
lnl + n + $^2+n _ a2n2+n _ 32n*+n 

- a 2 n 2 3 n - a n 3 2 n 2 

= - ( a B ) n [ a 2 n 2 " n + 32«2-«] 
= {-l)n + lL{2n2 - n ) , 

which proves the a s s e r t i o n . 

Also solved by Charles Ashbacher, Paul S. Bruckman, David M. Burton, 
Russell Euler, Piero Filipponi, Herta T. Freitag, Guo-Gang Gao, Russell Jay 
Hendel, L. Kuipers, Y. H. Harris Kwong, Bob Prielipp, Don Redmond, H.-J. 
Seiffert, Sahib Singh, Lawrence Somer, and the proposer. 

B-680 Will be published in the next issue as an error was detected just before publication. 
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Please send all communications concerning ADVANCED PROBLEMS AND 
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK 
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially 
welcomes problems believed to be new or extending old results. Proposers 
should submit solutions or other information that will assist the editor. To 
facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-459 Proposed by Stanley Rabinowitz, Westford, MA 

Prove that for all n > 3, 

13/5 - 19r ( n ? 2 10 L2n+l + 4.4(-l) 

is very close to the square of an integer. 

H-460 Proposed by H.-J. Seiffert, Berlin, Germany 

Define the Fibonacci polynomials by 

FQ(x) = 05 Fl(x) = 1, Fn + 2(x) = xFn+1(x) + Fn (x). 
Show that, for a l l positive reals xs 

V 1 // 2 - 2 &M - i2U " D ^ + l U * ) + (2tt + l)F2n.l(2x) 1 
( a ) ^ lfyx + s l n ^j = 4x(^ + DF2n(2x) 2x2? 

n~l ' fcir\ (b) 111 l / (^2 + sin2 — ) ~ n/(x/x2 + 1), as n ^ w , 
/ < = 1 

(c) ^ l / s i n 2 | ^ = 2(n2 - l ) / 3 . 

H-461 Proposed by Lawrence Somer, Washington, D. C. 

Let { n̂} = w(as Z?) denote the Lucas sequence of the f i rs t kind satisfying 
the recursion relation 

Un + 2 ~ ^ ^ n + 1 ~̂~ blin 9 

where a and b are nonzero integers and the initial terms are UQ = 0 and u\ = 1. 
The prime p is a primitive divisor of un if p|un but p\um for 1 < m < n - 1. 
It is known (see [1], p. 200) for the Fibonacci sequence {Fn} = w(l, 1) that, 
if p is an odd prime divisor of ̂ 2n+l» where n > 1, then p E 1 (mod 4). 
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(i) Find an infinite number of recurrences u(a, b) such that every odd 
primitive prime divisor p of any term of the form ^2n + l o r uhn satisfies p = 1 
(mod 4), where n > 1. 

(ii) Find an infinite number of recurrences u(as b) such that every odd 
primitive prime divisor p of any term of the form u^n or Ui+n + 2 satisfies p = 1 
(mod 4), where n > 1. 

Reference 

1. E. Lucas. "Theorie des Fonctions Numeriques Simplement Periodiques." Amer. 
J. Math. 1 (1878):184-240, 289-321. 

SOLUTION 

Either Way 

H-441 Proposed by Albert A. Mullin, Huntsville, AL 
(Vol. 28, no. 2, May 1990) 

By analogy with palindrome, a Validrome is a sentence, formula, relation, 
or verse that remains valid whether read forward or backward. For example, 
relative to prime factorization, 341 is a factorably validromic number since 
341 = 11 • 31, and when backward gives 13 • 11 = 143, which is also correct. (1) 
What is the largest factorably validromic square you can find? (2) What is the 
largest factorably validromic square, avoiding palindromic numbers, you can 
find? Here are three examples of factorably validromic squares: 

13 • 13, 101 •101, 311 • 311. 

Solution by Paul S. Bruckman, Edmonds, WA 

Suppose n = 0x02...Qr is in denary notation; we write 

n' = QrQr..i.. .©!. 

Given two natural numbers m and n, we say the product m x n is validromic if and 
only ±f mx n = mr x nr. A natural number n is said to be a validromic square 
root if and only if: 
(1) (n2) ' = in')2-. 
Let V denote the set of validromic square roots; we also write n € V if equation 
(1) holds. In this case, we also call n2- a validromic square. 

Some interesting properties of such numbers are derived by analyzing the 
familiar "long multiplication" process, somewhat modified. The multiplication 
for nz = n x n is indicated below: 

(2) 

u l u r u 2 u r 
h6r-l e 2 6 r - l 0 3 e r - l 

r- 1 r 
0 0 , v r - 1 

ao 

ef 
s i 
ai 

0 i e 2 ' 
e 2 0 l • 

s2 . 
a2 . 

. . er_2
02 

•• e r - l 6 l 

' • Sr-1 

•• ar-l 

6 r - l 0 2 

M l 
Sr 
ar 

e r 0 2 

Sr+l • 
ar + l ' 

* S 2 r - 2 

' a 2 r - 2 

S2r-1 
a2r-l 
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In th is product, the terms Q^dj are not reduced (mod 10) as they would nor-
mally be3 nor are the columnar sums sk. Therefore, 

Qv = Z* O^-,-) or more precisely, 

1 < i , j < r 

min(fes v ) 
(3) sk = £ e A + l - i > fe " 1. 2, . . . . 2r - 1. 

i =max(A: - r + 1, 1) 

Thus, the terms 0^6^ and the sums s^ are not necessari ly denary d i g i t s . How-
ever., the ak s (indicated below the sk

1 s) are denary d i g i t s , obtained by the 
process of "carrying forward and bringing down11 familiar to any schoolchild. 
We do not preclude the poss ib i l i ty aQ = 0. 

Next, we carry out the similar mult ipl icat ion for (n*)2- = n?xnft 

u r - l 
8 r - l 

(4) 

e , e 
r -1 r 

u r ° l ° r - l ° l 
8 r - l 6 2 e r - 2 6 2 

J 3 ° r - 1 ° 2 u r - l D l u r - 1 
e 2e r 6 l e r 

U2U1 
6162 

As in the first product, we allow b§ = 0. The observation that the columnar 
sums sk in (4) are identical to those in (2) (except in reverse order) is a 
consequence of their consisting of the same components 6^0j, albeit in permuted 
order. In fact, we see that if we reverse the order of the r "product-rows11 in 
(4) , then reverse the order of the digits in each such row, we obtain the 
corresponding product-rows of (2). 

Using the notation introduced, we call the product n x n proper if and only 
if, for all i, j'e{l, 2, . .., r}, ke{l, 2, . .., 2r - 1}, the products 6i Qj and 
the sfe?s are all denary digits. Otherwise, we say that the product n x n is 
improper* We now prove a useful characterization of validromic square roots. 

Theorem 1: n e V if and only if n x n is proper. 

Proof: First, suppose n x n is proper. Looking at (2) and (4), it is clear that 
aQ = bQ = 0, and moreover that ak = sk = b2r_k, /c = 1, 2, . .., 2r - 1. Equiva-
lently, (n2) f = (nf)2, or neV. 

Conversely, suppose that sk * ak for some k. Let sk = ak5 for all k > h9 
but s h = ah + 10(3^ for some J^ > 1. Inspection of (4) yields: 

b2r-h = ah* b u t blr-h-l = sh+l + ^h (mod 1 0 ) 5 

if 7z = 2r - 1, we define s 2 r
 = ^2P = 0- If dh ^ 0 (mod 10), then 

blr-h-1 E a/z + l + 7̂z (mod 1 0 ) * s o ^2r-7z-l * ah+l-
If dh = 0 (mod 10), then 

y2r-h -1 =
 ah+l> b u t h2. r-h-2 

3h+2 + ^fr + l *h + 2 + Jh+1 (mod 10), 

where dh+l = dh/10« We apply the same argument until we find a nonzero remain-
der that is not a multiple of 10; eventually, there exists a value of k such that 
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b^v-k * ak' Thus, if nxn is improper, then n£V. This completes the proof of 
Theorem 1. 

The theorem just proved greatly facilitates the search for validromic 
square roots (and validromic squares). A by-product of its proof is that if 
neV and n has v digits, then n2- has 2r - 1 digits; to avoid trivial variants, 
we adopt the convention that, if n = 6102.«.epeF, then 0} * 0, dr * 0. Thus, 
n2 < 102r~ , which implies the following 

Corollary: If n e V has v digits, then n < [I0r~^] = 3162,.. . 
O digits) 

Let nv denote the largest r-digit validromic square root. Then, by the 
Corollary, n\ < 3, n2 ^ 31, n$ < 316, etc. We readily find that n^ = 3 (trivi-
ally), and ri2 = 31. There are other useful observations that may be made to 
facilitate extension of these initial results. 

In what follows, we suppose that nr = 6162°••®v E V (with the conventions as 
described previously). First, we surmise that 0! = 3 for all r; this is easily 
proved. Clearly, this is true for r = 1 and r = 2. If r > 2, define 

then 
mT = 3 0 0 ... 0 1; 

m2 = 9 0 0 ... 0 6 0 0 ... 0 1, and (jn'r)2 = 1 0 0 . . . 0 6 0 0 . . . 0 9 , 

so mv E V. Since nv > mr, by definition of nr9 thus 0]_ > 3. But the Corollary 
implies Q\ < 3. Hence, 0]_ = 3. 

Clearly, if n > m and m x m is improper, so is nxn. This observation allows 
us to reject all candidates for nr which exceed a previously excluded candidate 
and differ from it in only one or more digits. However, a much more powerful 
result may be inferred, which greatly reduces our search for nr. Given that 
0 1 = 3 and 0P = 1, then the formula in (3) implies: 

sk - 20i0fe = 60^, for k = 2, 3, ..., r. 
However, sk must be a digit; this implies 0̂  = 0 or 1. Therefore, nv must be 
composed of "binary" digits, except for Its leading digit, which is 3, and its 
last digit must equal 1. 

Proceeding largely by trial and error, with the tools developed thus far, 
we find nr, at least for the initial values of r. We begin from the left with 
01 = 3, then affix as many consecutive l?s as possible to the right. When one 
or more 0's must be used, we try to minimize the number of such 0's, and to 
push them as far to the right as possible, subject only to the condition that 
0P = 1. As we proceed, we keep track of the rejected candidates, so as to 
reduce our search. Thus, if 0]_02.-.6r is such a rejected value for nr, then we 
know that nr+i < 0]_02-• • O^l. Proceeding in this fashion, we find the following 
values of nr, up to v = 15 (though we could have continued the table, by these 
same methods): 

(5) 

Inspection of the foregoing table leads to the conjecture that Qk is constant 
for all sufficiently large r; a rigorous proof of this premise seems possible 
but was not attempted. A related observation is that, for sufficiently large 
k, the values of Qk do not affect the leading digits of n£. 

1 
2 
3 
4 
5 

3 
31 
311 
3111 
31111 

6 
7 
8 
9 
10 

311101 
31111 01 
31111 001 
31111 0101 
31111 01001 

11 
12 
13 
14 
15 

31111 01000 1 
31111 01010 01 
31111 01010 001 
31111 01010 0011 
31111 01010 00001 
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To s t r e s s dependence of r (as we l l as k), we use the expanded n o t a t i o n -
0 ( r ) - 0 s ( P ) = q 

If 2^ represents the minimum value of r such that 6^} = 0fc5 a constant for all 
T > pfcJ we can tabulate our apparent results as follows: 

K. 

1 
2 
3 
4 
5 
6 

rk 

1 
2 
3 
4 
7 
7 

_Iii 
3 
1 
1 
1 
1 
0 

k 

1 
8 
9 

10 
11 
12 

vk 

9 
9 

12 
11 
12 
16 

h 
1 
0 
1 
0 
0 
1 

13 15 0 
14 21 1 

(6) 3 3 1 9 12 1 15 16 0 
16 17 0 
17 26 1 
18 19 0 etc. 

Of course, in order to form this table, we first need to compute nT for 
r » 18; even then? we cannot always be certain that the values in (6) are cor-
rect, at least for the higher values of k. However, if we can accept these 
values as gospels we may then extend the table of n P

f s . 
The number of terms 6^0^ in s^ is maximized when k = r, and such number is 

T. A necessary (but not sufficient) test, therefore, is that s^ be a digit. 
Other values of s ^ also need to be tested., of course; since the ones most 
likely to fail are the ones whose terms contain 0 ]_ = 3, we test those first. 

We illustrate by finding n^, assuming that (6) is correct. We note that 

(2 7) „ 1 ^ fl(27) fl(2 7) _ 9 V f l fl(27) 4- ft2 T H f h A ( 2 7 ) - 1 » 

£= 1 £= 1 

thus, 

42
7

7) - 2 ( e £ > 1 + e£7>e2+ e(|57)e3 + 6 ^ 6 , + e(
2

2>5 + e%h7 + e ( 2 7 ) e 9 ) + e f , 
- 2 ( 3 + e(

2
2
6
7) + e(

2
2
5
7) + e(

2\7) + e(
2
2
3
7) + e(

2
27) + e(2

9
7)) + 1. 

(2 7) (2 7) 

To maximize n 2 7 5 we may attempt 0ig - 1; however, since s 2 7 is to be a digit, 
this forces 0 ^ = Q(fP = 0(^7) = 0(225?) = © ^ = °. A t t h i s P o i n t * nothing can 

(9 7) (? 7) 
be inferred about 0 2 Q or 0 2 2 ; f o r tnis* w e need to consider the following: 

42o? ) = £ e ( r ) e 2 2 i 7 - i - 2(e(
2

2
0

7 )91 + e ( 2 7 ) e 2 + 6 1 7 e , + e 1 4 e 7 + e 1 2 e 9 ) 
i= 1 

= . 2(0(|o7) + 1 + 1 + 1 + 1 ) , 

(27) assuming 0,g = 1. In order for this last expression to be a digits we must 

have 0(22o7) = 0. Likewise, we find that 0(2g7) = 1 implies s(2227) = 2(0(2227) + 1 + 1 + 
(2 7) 

1 + 1 ) , which can only be a digit if 0 2 2 = 0. Therefore, we surmise that n27 
is given by using the values of Qk shown by (6) for its first 18 digits, then, 

with 0(i297)022O7)* • • 92277) = 100000001. Testing this as a candidate for n £ 7 , we find 

that it works; hence, we conclude that n 2 7 is as just described. 

Continuing in this fashion, we may extend (5) and (6) by alternating back 
and forth between tables. With considerable effort, the following additional 
values of nr were derived (manually) by these methods: 
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r nr 
16 31111 01010 01000 1 
17 31111 01010 01010 01 
18 31111 01010 01000 001 
19 31111 01010 01010 0101 
20 31111 01010 01000 00001 
21 31111 01010 01010 01000 1 
22 31111 01010 01010 01000 01 
23 31111 01010 01010 01000 001 
24 31111 01010 01010 01010 0001 
25 31111 01010 01010 00000 00001 
26 31111 01010 01010 01010 00010 1 
27 31111 01010 01010 01010 00000 01 
28 31111 01010 01010 01010 00000 001 
29 31111 01010 01010 01010 00010 0001 
30 31111 01010 01010 01000 10000 00001 

In theory, one could extend these results indefinitely, however, without the 
aid of a computer, human endurance wanes. It seems quite plausible that a 
program might be devised, enabling extension of the foregoing tables to an 
arbitrary degree. The aim of such extension would be to discover any lurking 
pattern in the sequence of "binary" digits among the 6^fs, as k increases. It 
may be surmised that, having discovered such a pattern, one might be able to 
prove its validity rigorously. This exercise is left for the interested 
reader. 

As for this particular solver, he gave up the effort at p = 30. Therefore, 
to "answer" both parts of the problem simultaneously (since neither nr nor n^9 
clearly, are palindromes), the largest validromic square found was ^3Q, where 

3̂0 31111 01010 01010 01000 10000 00001. 

Note: The proposer noted that 441 
to squares is unnecessary. 

21*21, so that the restriction of factors 
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