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A NEW CHARACTERIZATION OF THE FIBONACCI NUMBERS
J.L. BROWN, JR.

The Pennsylvania State University

1. INTRODUCTION
Atheorem due to E. Zeckendorf(see [1] for proofand discussion)
asserts that every positive integer n can be represented uniquely as
a sum of distinct Fibonacci numbers such that no two consecutive Fib-
onacci numbers appear in the representation. With the definition
=1, u

u = 2,and u =u +u for n 21, Zeckendorf'stheorem
2 nt+2 n n

1 +1
yvields an expansion for each positive integer n in the form

®

n = .a.
3 0-11 ’
1

2 1.

where a, is either 0 or 1 for each i 21 and a.a..q = 0 for i
Thus each positive integer n canbe associated with a binary sequence
A,Gpy8g,0 ey Quye e vy where for given n, we see that ai(n) =1 if u,
appears in the Zeckendorf expansion of n; otherwise ai(n) = 0. The
constraint a.a; g = 0 for i 21 effectivelystatesthattwoconsecutive
1's can never appear inthe binary sequence corresponding to n. For
example, if n=17, then 17=1+3 +13 = uy +u3 + ug, SO that 17 is
associated with the binary sequence 101001. (It is clear that each such
expansion must haveall zeros to the right of some i= io dependingon.
n and these noncontributing zeros are suppressed.)

The question arises as to what occurs if, instead of disallowing
two consecutive non-zero coefficients in a Fibonacci expansion, we
disallow two consecutive zero coefficients. In other words, we wish
to consider representing an arbitrary positive integer n as a sum of
distinct Fibonacci numbers,

N
n = % B;u,
1
with binary coefficients satisfying BN =1 and B; * Bin 2 1‘ for

i=1, 2, ..., N-2. In the following, Theorem 1 affords a result dual



2 A NEW CHARACTERIZATION OF February

to the Zeckendorf theorem by showing that such an expansion always
exists for everypositive integer and moreover the expansion is unique
under the imposed coefficient constraints. Theorem 2, which is our
main result, shows that the expansion property of Theorem 1 together
with the uniqueness requirement is sufficient to characterize the Fib-
onacci numbers. This converse theorem for the dual representation

corresponds to Daykin's result [2] on the converse to Zeckendorf's

theorem,
2. A DUAL-ZECKENDORF THEOREM
Definition 1: The Fibonacci sequence {1} is defined by u, = 1,
u, = 2, and woo,Fuog + u for n 2 1.
Lemma 1:
Uy T 1 = uk+u.k_2 +uk_4+ +u.3 +uy for k odd.
(a)
Upig T 1 = uk—!-uk_2 +uk—4+"' ~l—u4+u2 for k even.
(b) Yol T Uk T ez T Uea T T Ukezpiz T zpn
where
p=1,2,..., 1% for k evenand p=1,2,..., k—é—l- for k odd.
k-1 !t
(c) Uiy - 2 = 3 uy for k 21, where 3
1 m
is defined to be zero for n < m.
Proofi. The straightforward inductive proof is left to the reader.

Our first theorem, as noted in the introduction, is essentially a

dual of the Zeckendorf theorem [1] :

Theorem 1: Every positive integer n has one and only one represen-
tation in the form

k
(1) n =3 Bu

1

where the Bi are binary digits satisfying
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(2) BB, 21 for i = 1,2,..., k-2
and
(3) B, =1

Fora given positive integer n, the value of k is determined as

the unique integer for which the inequality,

(4) uk+1-2<n Suk+2-2 ,
is satisfied.
Convention: It will be assumed without explicit mention in the re-

mainder of the paper that all expansion coefficients (subscripted var-
iables a and ) are binary digits, that is, digits having either the

value zero or the value unity.

Proof of Theorem: Let n bea positive integer satisfying inequality

(4). From (c) of Lemma 1, we obtain the equivalent inequality,

k-1 k
(5) I ui<nS.§‘,ui R
1 1
so that by the Zeckendorf theorem, the non-negative integer
k
3 u, - n
1

possesses an expansion in the form,

k @
(6) 3 u, -n = 3 au ,
1 1
with coefficients satisfying a.a = 0 for i21.
Note from (5) that
k k k-1
2 ow-n<iou- 3 u, = u o,

1 1 1
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which implies ai =0 for i 2 k in(6). Inparticular, ak = 0. Hence,
(6) may be rewritten
k k
3 u, - n = S aiui with a, = o,
1 1
or
k k
(7) n =73 (1 - ai)ui = 3 Biui with ,Bkzl ,
1 1

where we have defined Bi =1 - a, for i=1, 2, ..., k. Itis clear
i = ={(1 -~ - 2
from the relations a a ., 0 and a.a. (1 ,Bi)(l Bi+l) that Bi + Bi+1_1
for i=1, 2, ..., k- 2, as required.
To show uniqueness, assume there exists a positive integer n

with two representations:

m P
(8) n=3% Bu =% Bu ,
1 1

- ! - 1 = -
where Bm—Bp—l, 'Bi+'81+1 21 for i=1, 2, ..., m 2 and
1 ! 5 =
ﬁi+Bi+1 21 for i=1, 2, ..., p - 2.
If m # p, thenweassume m > p withoutloss of generality, and

from the coefficient constraints and Lemma 1, we have

m
by Biui Zum-hlrn-Z-I-um—l}+"' +u1,2 = Ym+l -l
1
while
p p m-1
5 B'wyy< ¥ ows ¥ owo=uw -2 .
1 1 1

(Here and in what follows, the subscript notation u, , servesto indi-
E]
cate the final term in a sum, the value of the final term being either

u; or u, depending on the parity of the index associated with the initial
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term in the sum.) This is in evident contradiction to (8) and we con-
clude m = p. ’

Now, define a = 1 - Bi and ai‘ = -Bi' for i=1, 2, ..., p.

Then a;a; g = ai'ai'._l_1 =0 for i=1, 2, ..., p -1, and (8) becomes

P P
3 (- ai)u:.L = 3 (1 -ai')u
1 1
or
p p
{9) T oau = > czl'ui
1 1

Since both sides of (9)are admissible Zeckendorf representations, the
uniqueness of such representations implies a, = ai‘ yfor i=1,2, ..., p
or equivalently ﬁi = Bi' for i=1, 2, ..., p, whichproves uniqueness

of the dual representation and completes the proof of Theorem 1.

3. THE CONVERSE THEOREM

Next, we will show that the expansion property expressed in
Theorem 1 actuallyprovides a characterization of the Fibonacci num-

bers.

Definjtion 2: An arhitrary sequence of positive integers, (v.},

i=1, 2, ... will be said to possess the dual unique representation

property (Property D) if and only if every positive integer n has a

unique representation in the form

p
{10) n =3 Bivi with Bp:l, and
1
> i = -
(11) Bi+Bi+1 21 for i=1,2,.00s p~-2 .
Corollary 1: A sequence () possessing Property D has distinct

elements; that is, v.__ # v. for m # n.
m’ 'n
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Proof: Assume m #n and VoS Vo Take m > n 21 withoutloss

of generality; then,

i
contradicting the assumed uniqueness of expansions satisfying (10) and
(11).

Lemma 2: If {V;} Possesses PropertyD, then V=Y and v, =u

where () is the Fibonacci sequence of Definition 1.

2’

Proof:  In orderto representthe integer 1 in the proper form [(10)-
(11)], itis clear thateither vy or v, mustbe equal to 1. If v, =1,
then v, = 2 necessarily and the Lemma is proved. In the remaining
case, v, = 2, v, = 1 and it Ffollows that vy = 3 and V= 6. At this
point, it is impossible to represent the integer 8 in proper form no

matter how the remaining (distinct) v, are chosen. Thus vy = l'=nu

1
and v, = 2 = u, as stated.
Theorem 2. If (Vi)» i=1, 2, ... is anarbitrary sequence of posi-
tive integers possessing Property D, then Vs for all i 21,
Proof: The assertionistruefor i=1 and i= 2 as proved in Lemma
2. Now, assume as an inductionhypothesis that Vi =y, v, S Uy eney

_ 5 . - .
V=T 9 for some k 2 2. We wishto show that Vil T U4y Recessarily.
Recall from Theorem 1 (noting vy =y for i=1, 2, ..., k by

the inductive assumption) that every positive integer n satisfying

k
0<n<y \f
1
has a representation
m
n = 3 ’Bivi ,
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where m < k, Brn: 1 and Bi+Bi+1 21 for i=1,2, ..., m- 2,
We show first that Vi1 2 Upige For, if not, then Vit < U

and

(12) v

Kt +Vk—1+vk—3+' .o +v1’ 2 < Uy +uk_1+uk_3+. .o +u1, 2=uk+2-1,

which implies

Viedl Vo1 T VY, 2 S 072 =

- M ®
<

From (12) and the remark in the preceding paragraph, we have

m
Vit i1 g Tty o = 2 By
1
with m <k, Bm =1 and Bi+Bi+1 >21 for i=1, 2, .c., m - 2.

Since both sides are inthe proper form and are not identical, uniqueness

is contradicted. Therefore Y+l 2 uk+l as asserted.

Now assume Vil > Uy We shall show that this assumption
also leads to a contradiction of gn1queness. If Vit > U then the
unique representation of the integer

k
3 u, +1
has the form 1
k k+m
- 1 > —
(13) 3 ui+1 > 'Bivi with m 2 2, Bk+m 1 and Bi+B_i+1 21
1 1

for i=1,2,..., ktm-2.

(For, if m < 2 in(13), then m =1 since Vi must certainly appear

+1
with non-vanishing coefficient. But

k+1
+ .+ =
T2 e e s T T 2 7 e e M3 T 2

k

= 3 ui+1’ so that (13) could not be valid.)
1
The foregoing argument also shows Bk+1 =0 in (13); hence

Bk = '8k+2. =1 from the coefficient constraints, and
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k k+m

Towtl = X By 2y otutuy oteeduy o=

1 1

k-1
T Vw21 T T Ve B2 ot
1

or uk Vit From Corollary 1, we infer (note vy = uk) that
(14) Viegz < U -
Now, consider the particular integer, N= Vi+2 + Vi + Vo2 +ooot Vl’ 2
which is in this admissible form of (10) - (11). We have
(15) k+2+vk+vk 2 to.. +v1’ o <u +(uk+uk 2 +.o . .+u1’ 2) =

=yt gl =t

or k

_ < -2 =
N = v o™V Ve ot vy S p-2 = 20w

1
Thus N also hasa representationinadmissible form involving at most
the first k members ofthe sequence {vi} , and uniqueness is contra-
dicted.

The inequality v is therefore untenable and we have

>u s
k+1 k+1
shown Vi1 = Uetr” The theorem then follows immediately by induction.

Thus, the dual unique representation property {(Property D) is a
property enjoyed only by the Fibonacci numbers and is therefore suf-

ficient to characterize the sequence {ui}.

Acknowledgement: Iwouldlike toacknowledge the contribution of Pro-

fessor Verner E. Hoggatt, Jr., whose catalytic comments led to the

theorems of this paper. Seealsoapaper by H. H. Ferns [3] this issue,
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SOME RESULTS CONCERNING POLYOMINOES

DAVID A. KLARNER
University of Alberta, Edmonton, Alberta

INTRODUCTORY REMARKS
An n-omino is a plane figure composed of n connected unit

squares joined edge on edge. In the early nineteen hundreds, Henry

Dudeney, the famous British puzzle expert, and the Fairy Chess Review

popularized problems involving n-ominoes which they represented as
figures cutfrom checkerboards. Solomon Golomb seems to have been
the first mathematician to treat the subject seriously when as a grad-
uate student at Harvard in 1954, he published ''Checkerboards and

Polyominoes' in the American Mathematical Monthly. Since 1954,

several articles have appeared (see References); in particular, R. C.
Read [9] and Murray Eden [2] have discussed the problem of finding or
estimating the number p(n) of n-ominoes for a given n. From their

results it is now known that for large n

n n
¢ < p(n) < c,

where ¢ and c, are certain positive constants greater thanl. In
the first part of this paper we enumerate a subset of n-ominoes and
provide an improved lower bound for p(n); later we discuss other
problems of this sort and conclude witha brief exposition of problems

dealing with configurations of n-ominoes.

MOSER'S BOARD PILE PROBLEM

In the following it will be convenient to have certain conventions.
We saythe regionbetween y = n-1 and y =n is the nth row and call
a rectangle of width one a strip, The firstsquare on the left in a strip
located in a row is called the initial square of the strip; an n-omino is
located in the plane when some square in the n-omino exactly covers
a square in the plane lattice. The setof allincongruent n-ominoes will
be denoted by P(n) and for convenience we think of the elements of
P(n) located in arbitrary regions of the plane. Ignoring changes in
position due to translations, each element of P(n) has eight or less

9
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positions with respect to 900 rotations about the origin and reflections
along the x or y axes; taking two n-ominoes to be distinct if one cannot
be translated to cover the other, we find a new set S(n) from P(n)
by including rotations and reflections of n-ominoes in P(n) in S(n).

The problem which is now to be discussed was probably first
posed by Leo Moser in private correspondence with the present author;
later he posed it in a different form at the 1963 Number Theory Con-
ference held at the University of Colorado. Eden [2] also discusses
the problem, but his results are not as complete as those given here.
The problem is to enumerate a subset B(n) of S(n) which contains
n-ominoes having the propertythat theycan be translated in such a way
that they are entirely in the first and second quadrants with exactly
one strip in the first row with its initial square at the origin and each
row after the first has no more than one strip in it. Such n-ominoes
may be visualizedas side elevations of board piles consisting of boards
of various lengths which generally have not been stacked carefully,
see Figure 1.

Moser noted thatif b(n) denotesthe number of elements in B(n),

then

(1) b(n) = I (a +a2 - 1)(a2 +a

1 -1)... (a

+ai—l)

3 i-1

where the summation extends over all compositions a, + a

1 R
of n. The relation in (1) can be established by the following combi-

+a.=n
i

natorial argument. For each composition ay + a, oot a, of n
there is a subset of B(n) consisting of n-ominoes which have a strip
of a, squares in the tth row (t=1, 2, ..., i); the number of n-

ominoes in each of these subsets is 1 if i =1 which corresponds to
the value of the empty product in the sum (in this there is a strip n
3" 1) ... (ai_1 +

+ a;- 1) if i 2 2. Thisfollows since there are exactly (at 1 + a, - 1)
th -

squares in the t row to the strip of

units long in the first row) and (a1 + a, - 1) (a2 + a

ways to join the strip of ay

a,_, squares in the row below and the total number of ways to connect

up the strips to form an n-omino would be the product of all of these

alternatives. The subsets correspondingto the compositions of n are
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exhaustive and disjointin B(n), so that b(n) is the sum of the number
of elements in each subset, which is (1).

The relation for b(n) given by (1) does not furnish a very handy
device for computing b(n), but as Eden has shown it is helpful in esti-
mating b(n)., Rather than attempt to sum (1) by purely algebraic
manipulations, we retain the geometric interpretation of the problem
so that combinatorial arguments can be more easily applied toward
finding a recursion relation for b(n).

To find a recursion relation for b(n) we define subsets Br(n)
(r=1, 2, ..., n) of B(n) which contain n-ominoes with a strip of
exactly r squares in the first row and let br(n) denote the number
of elements in Br(n). It is obvious that the subsets Br(n) (r =1, 2,

..., n) are exhaustive anddisjointin B(n) sothatwe have immediately

n
(2) b(n) = % b (n) .

T
r=1

By definition of Bn(n), bn(n) =1, Consider the elements of
Br(n) with r < n; each element of Br(n) consists of a strip of r
squares in the first row with some element of B(n-r) located in the
rows above the first, The situation can be appraised more concisely
when one considers the number of ways anelement of the subset Bi(n-r)
of B(n-r) can be attached to the strip of r squares in the first row
so that the n-ominoes formed will be an element of Br(n), Clearly
this can be done in r +1i - 1 ways, so that exactly (r +1i- 1) bi (n-r)
of the elements of Br(n) have an element of Bi(n-r) connected to the
strip of r squares in the first row. Since the subsets Bi(n-r)
(i=1, 2, ..., n-r) of B(n-r) are exhaustive, disjoint subsets, it

follows that

n-r
(3) br(n) = 3 (r+i-1) bi(n—r) for r < n
i=1
It will be seen presently that the relations in (2) and (3) are

enough to find the desired recursion relation for b(n)., Before this
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result can be given, we have to prove a few lemmas.

Lemma 1: If n>1, br(n) - br (n-1) = b{n-r).

-1
Proof: Using (3) it is seen that
n-r n-r
br(n) - br_l(n—l) = 3 (r+i-1)bi(n—r) - 3 (r+i—2)bi(n—r)
i=1 i=1
n-r
= 2 bl(n—r) H
i=1

but according to {2), the last expression is precisely b(n-r), so the

proof is finished.

Lemma 2: If n>1, b(n)=2 b(n-1) + bl(n) - bl(n-l).

Proof: Using relations for b(n) and b(n-1) given by (2), it is seen
that
n n-1
(5) b(n) - b(n-1) = 3 bin) - 2 bi(n-1)
i=1 i=1
n-1
= b+ 5 Ib(n)- bi_l(n-1)§ ;
i=2

but accordingto Lemma 1, b{n-i) can be substituted for b.l(n) - bi_l(n—l)
in the last member of (5) so that making this substitution and trans-

posing -b{n-1) from the first to the last member gives
n-1
(6) b(n) = bl(n) + 3 bn-i) .

i=1
Now using relations given by (6) for b(n) and b(n-1) we have
n-1 n-2

bl(n) + 3 b(n—i)—bl(n—l) - 3 b(n-1-i)

i=1 i=1
bl(n,) - bl(n—l) + b{n-1);

(7) b(n) - b(n-1)

il

it
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the desired result is obtained by adding b(n-1) to the first and last

members of (7).

Lemma 3: b1 (n) = 4 bl (n-1) - 4 b1 (n-2) + b1 (n-3) + 2 b(n-3).

Proof: Taking r =1 1in (3) gives an expression for bl(n); namely,
n-1

(8) b, (n) = P b, (n-1)
i=1

Using relations for bl(n) and bl(n—l) given by (8) and sub-

stituting b(n-2-i) for bi+1(n—1) - bi(n—Z) and b(n-1) for

n-1
s bi(n-1)

i=1

when they occur, it is seen that

(9) by(n) - by(n-1)= £ ib(n-1)- 3 ib(n-2)

= 3 bfn-1)+ T ib, (n-1) - I ib,(n-2)
i=1 i=1 i=1
n-2
= b(n-1)+ ¥ i gb

i=1

i (-1 - bi(n"2)§
n-2
= b(n-1) + ¥ 1 b(n-2-i)
i=1
Adding bl(n—l) to each member of the equality and dropping the
last term in the sum in the right member of (9) (since b(0) = 0) a new

relation for bl(n) is obtained:

n-3
(10) bl(n) = bl(n—1)+b(n-1) + 3 (n-2-1) b(i) .
i=1
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This time using expressions for bl(n) and bl(n-l) given by (10)

and again writing a relation for bl(n) - b,(n-1), one obtains after a

1
few algebraic manipulations

n-1
(11) bl(n) = Zbl(n—l) - bl(n—Z) - 2b(n-2) + X b(i) .

i=1

Repeating the same procedure as before only this time using ex-

pressions for bl(n) and bl(n—l) given by (11) yields

(12) by(n) = 3b, (n-1) - 3b; (n-2) + by (n-3) +b(n-1) - 2b(n-2) +2b(n-3);

but by Lemma 2, b(n-1) - 2b(n-2) = b, (n-1) - bl(n—Z) so that substi-

(
1
tuting the latter quantity for the former in (12) gives the desired result.
Theorem 1: b(l) = 1, b(2) = 2, b(3) = 6, b(4) = 19, and

b(n) = 5b(n-1) - 7b(n-2) + 4b(n-3) for n > 4.
Proof: The values of b(i) (i=1,.2, 3, 4) can be computed directly
from (1) or by taking b(l) = bl(l) =1 the relations in (2) and (3) can

be used together for the same purpose. Lemmas 2 and 3 provide the
linear difference equations involving bl(n) and b(n) which can be

used to find
(13) b(n) = 5b(n-1) - 7b(n-2) + 4b(n-3) ,

(14) by(n) = 6b (n-1) - 12b)(n-2) + 11b(n-3) - 4b(n-4),

1( 1(
which completes the proof.
The auxiliary equation for (13) has one real root greater than 3.2

so that for n sufficiently large

(15) b(n) > (3.2)"

We conclude from earlier remarks that B(n) contains at least
b(n)/8 incongruent n-ominoes, so that we can also replace b(n) in
(15) with p(n).

Having disposed of the more difficult problem first, we now turn
attentionto solving an easier and related problem which was posed and

solved by Moser.
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Let C(n) be the subset of B(n) which contains all n-ominoes
having the property that the initial square of the strip in the kth row
is no further to the left thanthe initial square of the strip in the (k-l)St
row. Recall from the definition of B(n) that the initial square of the
strip in the first row is always located at the origin. Using a combi-
natorial argument similar tothe one provided for the proof of (1), it is

easy to prove

(16) c(n) = z a, a

a1+a2+. . +ai=n

where c(n) denotes the number of elements in C(n). Applying the
methods he gave in [8] , Moser was able to show from (16):

Theorem 2: c(n) is equal to the (Zn-l)St Fibonacci number,

We will give an alternate proof using the same idea used in the
proof of Theorem 1. Let Ci(n) be the subset of C(n) which contains
all n-ominoes having strips of exactly i squares in the first row.
Clearly the subsets Ci(n) i=1, 2, ..., n) are exhaustive and dis-
joint in- C(n) so that letting ci(n) denote the number of elements in

Ci(n) we have
n
(17) cn) = 3 cn) .

Next, itis easyto see that cn(n) =1, andfor i < mn, ci(n) =1 c(n-1i)
since eachelement of C(n-i) canbe joined exactly i ways to the strip
of i squares in the first row so as to form an element of Ci(n); the
n-ominoes thus formed obviously comprise all the elements of Ci(n).

Substituting the expressions just found for ci(n) into (17) we obtain

n-1
(18) cn) = 1+ % ic(n-1) .
i=1

Using expressions for c(n) and c(n-1) givenby(18)we cancom-

bine the sums in c(n) - c(n-1) to find



16 SOME RESULTS CONCERNING POLYOMINOES February

n-1
c(n) - c(n-1) = 3 c(i) ,
i=1
or
n-1
c(n) = c(n-1) + I c(i)
i=1

Now using expressions for c(n) and c(n-1) givenby(19) we can

combine the sums in c(n) - c(n-1) and deduce
{20) c(n) = 3 c(n-1) - c(n-2).

It is easy to prove that the Fibonacci numbers with odd indices
satisfy the recurrence relationin (20). Also, using (16) we find c(l) = fl
and c¢(2) = £3 (fi denotes the ith Fibonacci number as usual) so that
the sequences {ci} and {fZi—l} must be identical. Editorial Note:

See H-50 Dec. 1964 and note notational differences.

N-OMINOES ENCLOSED IN RECTANGLES

R. C. Read [9] has treated the problem of enumerating the n-
ominoes which "fit" into a p x q rectangle. An n-omino is said to fit
ina px q rectangleif itis the smallestrectangle inwhich the n-omino
can be drawn with the sides of its squares parallel to the sides of the
rectangle. Read's methods give exact counts of the n-ominoes in the
sets considered; however, itis possible to obtain lower bounds for these
numbers with less effort using similar ideas. To illustrate we will
consider the problem of estimating from below the number sz(n) of
n-ominoes which fit in a 2 x k rectangle; we callthis set of n-ominoes
Sz(n). Two elements are distinct if they are incongruent, so Sz(n) is
a subset of P{(n).

First, we observe that each element of Sz(n) can be located en-
tirely in the first quadrant inrows 1 and 2 with a square located at the
origin. If each element of Sz(n) is situated in the way just described
in everyway possible, a new set U(n) is obtained where two elements

are distinct if one does notexactly cover the other. Clearly, u(n), the
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number of elements in U(n), is less than or equal to 452(1'1). Now
U(n) can bedivided intotwo sets U''(n) and U'(n) consistingrespec-
tively of n-ominoes having and not having a square in the second row
attached to the square at the origin. Let the number of elements in
U'(n) and U''(n) be u'(n) and u''(n) respectively, Now it is easy to

see that
(21) u'(n) = u'(n-1) +u"(h-1)

since every element of U'(n-1) and U'(n-1) can be translated a unit
to the right of the origin and a square located at the origin to give an
element of U'(n) andevery elementis obviously obtained in this fash-

ion. It is also easy to prove
(22) u''(n) = 2u'(n-2) + u''(n-2)

since everyelement of U''(n-2) andevery element of U'(n-2) and its
horizontal reflection can be translated a unit to the right of the origin
and two squares added (one at the origin, the other attached above it)
to form every element of U''(n).

Using (21) and (22) we can find

(23) u'(n) = u'(n-1) +u'(n-2) + u'(n-3)
and
(24) u'(n) = u''(n-1) + u"'(n-2) + u''(n-3),

so that it becomes evident from u(n) = u'(n) + u''(n) that
(25) u(n) = u(n-1) + u(n-2) + u(n-3) .

Since u(n)/4 & sz(n), (25) provides a relation for estimating
sz(n). The same procedure can be used for estimating the number of

elements in Sk(n) consisting of n-ominoes whichfitin kx q rectangles.

N-OMINO CONFIGURATIONS

Problems involving n-omino configurations have enjoyed a great
popularity among mathematical recreationists (4], [6]. We plan to
devote a small amount of space to giving an exposition of problems

whichmay be of interesttothe mathematician, Generallythese problems
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have the following form: given a region of area A and a set of n-
ominoes having a combinedarea also A; can one cover the region with
the set?

We say a set exactly covers a region when there is no overlap

and no part of the region is left uncovered. It would be interesting to
know necessary conditions that an n-omino be such that an unlimited
number of copies could be used to exactly cover the plane. A related
problem is to determine necessary conditions that some number of
copies of a given n-omino could be used to exactly cover a rectangle.

Thus, some easily proved necessary conditions are given by:

(1) if an n-omino has two lines of symmetry and a set of these n-
ominoes exactly covers a rectangle, then the n-omino is itself a
rectangle.

(ii) if an n-omino fitsin a p x q rectangle and covers diagonally op-
posite corners of the rectangle, and a set of these n-ominoes can
be used to exactly cover a rectangle, then the n-omino is itself
a rectangle,

A rectangle exactly coveredwith a setof congruent n-ominoes is
minimal when no rectangle of smaller area can be exactly covered with
a set of the same n-ominoes containing fewer elements. It is easy to
prove that there is anunlimited number of minimal rectangles involving
either two or four n-ominoes. Figures 2, 3, 4 and 5 show instances of
minimal rectangles involving more than four n-ominoes. Are there
infinitely many cases of minimal rectangles which involve more than
four n-ominoes (no two cases involving similar n-~-ominoes)? Are there
minimal rectangles involving an odd number of n-ominoes whichare not
themselves rectangles ?

Note that the configurations depicted in Figures 1, 2, 3 and 4 are
symmetric with respect tothe centers of the rectangles. Can this al-

ways be done in minimal rectangles ?

GENERALIZATIONS OF N-OMINOES

In [5] , Golomb suggests that one could try to determine or esti-

mate the number of distinctways n equilateraltrianglesor n regular
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hexagons could be simply connected edge on edge. Using 1, 2, 3, 4,
5 or 6 hexagons 1, 1, 3, 7, 22 or 83 combinations respectively result;
so far no upper or lower bounds for the terms of this sequence have
been given.

There is no reason why regular k-gons could not be used for
cells in such combinatorial problems; overlapping of cells could be
permitted so long as no cell exactly covered another. Thus, where
at most four squares or three hexagons might have a vertex in com-
mon, at most tenpentagons might havea vertex in common. The num-
ber of distinct ways to join two regular k-gons is one; the number of
ways to join three regular k-gons is the greatest integer in k/2. Per-
haps it would not be difficult to determine in how many ways four or
five regular k-gons could be joined together edge on edge so that dis-
tinct simply connected figures are formed.

Still another generalization of n-ominoes which seems not to
have been considered is joining squares together edge on edge in three
or more dimensions. The number of ways of joining k cubes face on
face in three dimensions (including mirror images of some pieces) is
1, 1, 2, 8, 29, and 166 for k=1, 2, 3, 4, 5, and 6 respectively; no
bounds have been given for the terms of this sequence nor has much
been done in a serious vein connected with the packing of space with

these three dimensional analogues of polyominoes.
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ON THE REPRESENTATION OF INTEGERS AS SUMS
OF DISTINCT FIBONACCI NUMBERS

H.H. FERNS
University of Victoria, Victoria, British Columbia
This paper gives an elementarydiscussion of the problem of ex-
pressing an arbitrary positive integer as a sum of distinct Fibonacci

numbers. The recursive relation

(1) Fn+2 - Fn+1 * Fn

together with F,=F,= 1 is used as the definition of Fibonacci num-
bers. No use will be made of Fl in any representation.
As an example consider the integer 29. It may be expressed as

a sum of Fibonacci numbers in the following ways:

29 = F8+F6 = F8+F5+F4 = F8+F5+F3+FZ

1]

F7+F6+F5+F4 = F7+F6+F5+F3+FZ

From this example it immediately becomes apparent that we
shall need to impose some ''ground rules' if we are to differentiate
between the various types of representations. This leads us to the
following definitions.

A representationwill be called minimal if it contains no two con-
secutive Fibonacci numbers.

A representation is said to be maximal if no two consecutive
Fibonacci numbers Fi and F. are omitted from the representa-

i+l
tion, where F, & Fi < Fi+ < Fn and Fn is the largest Fibonacci

number involveé in the reprisentation.

Thus F8 + F6 is a minimal representation of the integer 29
while F7+F6+F5+F3+FZ is a maximal representation.

It follows that a maximal (minimal) representation may be trans-
formed into a minimal (maximal) one by the application or repeated
application of (1).

We shall first restrict our attention to minimal representations.

As an illustrative example of minimal representations we con-
sider the representations of all integers N such that

21
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<
]:7‘7,_N<F8

Thus N may be any one of the eight integers 13, 14, 15, 16, 17,18,
19, or 20. Now the smallest integer in this set, namely 13, cannot be
represented by the Fibonacci numbers FZ’ F3, F4, F5 and Fé, since
the largest integer under the minimal representation rule which they
can represent is
F6+F4+F2 = 12

Hence to represent all integers of this set requires FZ, F3, F4,
F5, F() and F7.

By trial we obtain the following representations

13 = F7; 14=F7+F2;15:F7+F3;16=F7+F4;
17 = F7+F4+F2; 18 = F7+F5; 19 = F7+F5+F2;
20 = F7+F5+F3

One of these integers, namely 13, requires only one Fibonacci
number to represent it. Four of them, namely, 14, 15, 16 and 18 re-

quire two and three of them 17, 19, and 20 require three.

Let U denote the number of integers N in the range 'Fn <
N<Frl+1 which require m Fibonacci numbers to represent them.
Then
U7’l=l; U7'2=4; U7’3=3 .
It is also evident that
Uz,1 P U2t Ug 3= Fg-Fy=Fg=8
Now it is known (1) that
_ . n
Uy = 0 ifm> [5]
Thus we may write
n
X Un,1= Fn+1 - Fn: Fn—l °
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Table I gives values of Un m for n=1, 2, 3, ..., 8, m=1,
2, 3, ..., 4.
We now discuss some properties of the function Un m*
£l

‘ Consider integers P, Q and R, defined bythe following relations

Fn <P < Fn-lrl; Fn—l £ 0« Fn; Fn_z <R < Fn-l
Thus
(2) v Pan+p, p=20,1,2, s Fn—l_l
(G Q=F_ %4, 9=0,1,2,..., F -1
(4) Ran_2+r, r=0,1,2,..., Fn-3-1
We arrange the integers P in two sets (A) and (B) as follows.
(A) P = Fn+p1, py = 0,1,2,..., Fn_z-l
(B) P=F +p,, p, = F_ . F L+, F_ 42, .., F HF_-F_ ,-1)
=F otr, r= 0,1,2,..., Fn_3—1

If k is a positive integer,(l) implies that

F +k=F +k+F
n n

n-1 -2
Hence for the set (A)
Fn+pl=Fn_1+p1+F -2
P=F_,+q+F_,
P:Fn+q

Comparing the last equation with (2) and (3) we see that the re-
presentation of an integer Q may be converted into a representation
ofaninteger P of the set(A)by replacing F o inthe former by Fn.

By this operation we mayderive the representations of Fn—Z of
the integers P from the representations of the integers (. Deriva-
tion of the representations of P in this manner leaves the number of

Fibonacci numbers unchanged.
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We have now to consider the integers P in the set (B).

We have
P=F 4p, p,=F_, F_ 4, F_42,..., F_,HF__ -F_ ,-1)
= Fn+Fn_2+r, r=0,1,2,..., Fn_3-1
= Fn+R by (4)

The last result implies that the representations of the integers
P in the set (B) may be derived from the representations of the inte-
gers R by adding Fn to each ofthe latter. This operation increases
by one the number of the Fi in the representation of P over that of

R from which it is derived.

By these two operations the representations of the Fn—l inte-
gers in Fn L P Fn+1 can be derived from the representations of
the F__, integers in F o £ Q< F and the F o integers in
F..2 £ Q< Fn—l'

The following equations follow from the above discussion:

un,m:un—l,m+un~2,m—l (o >2,m >1)
(5) un’ 1 =1

u =0 for 2m > n.

n, m

These equations indicate that the u o may be related to the

]

binomial coefficients (i) , which have the following properties:
- -1 -1
()= G+ (ID
(g) =1
(1)

Letting U = (Rl
n, m m-1

lations (5) with the Un

0 for k >r.

i

), these relations for the(li) become the re-

substituted for the woe Since (5) makes

3 t4

it possible to calculate any u with n > 2 and m > 1, these re-

lations characterize the u and so u =U :(n-m—1> for
n, m n, m n, m m-1

n>2 and m >1,
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The reader is referred to the paper ""A Combinational Problem"
by Lafer and Long in the November 1962 issue of the American Math-
ematical Monthly for an expositoryaccount of the inductive and deduc-
tive aspects of a similar problem. [3]

The proof of this is left to the reader.

We turn now to a discussion of maximal representation of inte-
gers as sums of Fibonacci numbers. In this discussion we shall use
a different technique, one that could have been used equally well in the
discussion of minimal representations.

As an example we consider the integers N such that F_-1Z<

7
N < F8—1. These are, 13, 14, 15, 16, 17, 18, 19 and 20. The reason
for using the range F7—1 SN < Fo 4y instead of F, <N <Fg will

become evident later.
Bearing in mind the definition of maximal representation we

derive the following representations

12 = F6+F4+F2; 13 = F6+F4+F3; 14 = F6+F4+F3+F2;
15 = F6+F5+F3; 16 = F6+F5+F3+F2; 17 = F6+F5+F4+F2;
18 = F, +F_+F +F 19=F6+F +F +F +F

6 5T 4Ty 57475372

These eight representations may be written compactly in the

following form.

12 = (1 0 1 0 1)
13 = (1 0 1 1 0 )
14 = (1 0 1 1 1)
15 = (1 1 0 1 0 )
16 = (1 1 0 1 1)
17 = (1 1 1 0 1)
18 = ( 1 1 1 1 0 )

19 = (1 1 1 1 1 )
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In this display wehave used the binary digits in conjunction with
Fibonacci numbers denoting place values. It should be noticed that
with this scheme two zeros cannot be in adjacent places in maximal
representation. For example (...100...) must be replaced by
(...011...) since Fi = Fi—l + Fi—2°
noting the positional values are arranged in ascending order from the

Also the Fibonacci numbers de-

right to left beginning with F,.
We now consider the general case. Let N be an integer defined

by

- < -
Fnl"N<Fn+1 1

Let Vn m denote the number of integers N in this interval which
3

require m Fibonacci numbers to represent them in maximal repre-

sentation.

Thus for the illustrative example given above

V7’3=3; V7’4=4; V7’5:1
Also
V7,37F7,4"Ve, 5= FgFy = Fg =8
E 13 . . _ < - . -
The largest integer in the interval Fn 1 s 1\I<Fn+1 1 is Fn+1 2

and since (2)

n-1
b Fi - Fn+2—2
i=2
it follows that
F -2 =(111...11) (n-2 digits)

n+l

in which no zeros appear and in which the left hand positional value is
F_

Fn+1—l instead of Fn

This explains the reason for taking the upper bound of N to be

+1°
The smallestinteger in the range in question is Fn—l and since
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i=2

it follows that there must be a ''one'' inthe first (left hand position) de-

fined by Fn-l' Further since (2)

F2+F4+F6+. . +Fn Fn-+l (n even)

F +Fg+F +...+F_=F__, (nodd)

it follows that the smallestinteger in the range in question is indicated
by

(1010...10) or (1010...101)
according as n is odd or even.

From these observations we conclude that

m > n-2 or n < m+2

Vn,m SO0 ;m < [n—gl—] or n >2(m+l)
n-2
z Vn,i = Fn+1_Fn - Fn—l
-5

Table II gives values of Vn m for n=2, 3, ... 12;m=1, 2, .,., 10.

t

We now establish the recursive relation

(6) A% =V

n, m n-l,m—1+Vn-2,m—1

Consider integers P, Q and R defined by

-1 € -
Fnl-P <Fn+11

F -1£Q <CF_-1
n

The Fibonacci positional representation of the integers Q are of

the type
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Fn-Z Fn-3 Fn-4 oo FZ

Q=( 1 a b ... c)

Adding Fn—l to each integer Q will produce Fn—Z integers

all of which will be within the interval

F +F -1£Q+F
1 n

< F +F -1
n-1 n- n

-1 n-1
This is equivalent to

- -1 £ -
Fn+1 Fn+Fn-l l_.Q+Fn_1 <Fn+1 1

- -1 ¢ < -
F_,-1<Q+F | <F -1

F _+F -l £Q+F < F -1
n n

-1

These F integers Q + F are all in the interval F -1 £ P<
n-2 n-1 n

Fnﬂ—l. Their positional representation takes the form

Q+F =( 1 1 a b ... c¢)

Hence the representations of Fn-Z of the integers P may be

derived from the integers Q by creatingan additional position defined
as Fn-l'
The Fn-3 integers R have positional representations of the

form

Adding Fn—l to each of these Fn-3 integers will result in integers
all in the interval
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That is, these Fn 3 integers are all within the interval F -1 < P<
- n

Fn_H-l. Each of them will have representations of the form

Fn--l F1'1—2 Fn-3 n-4 Fn—5 F2

R+F_ . =( 1 0 1 d e ... f)

F

Hence the representations of Fn“?) of the integers P may be
obtained from the representations of R by adding on the left two posi-

tional values namely Fn and Fn

Since the first operaltion resulti in a representation which has a
""one' in the second (from the left) place while the second operation
gives arepresentationwith a zeroin that place the two representations
are disjoint. Thus thereis no overlappingand all integers P are ac-
counted for by these two operations.

This completes the proof of (6).
It is readily verified that

(7) Vn,rn - (n—rrfx—IZ)

satisfies the recursive relation (6).

From (7) we find that

2(m+1)
2 Vs () (M () ()

i=m+2
Also from the paragraph following (5) and (7) we see that
v =U

n, m n, n-m-1
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ON THE REPRESENTATION OF INTEGERS AS February
Table I
Values OfUn,m n=1,2,...,8 m=1,2,...,4
NEERRERERE
F| <N <F, 1 10101 0:0
F,<N<F, 2 71107070
F, SN <F, 31 140{01}0
F, $N<F, 4 111110140
F,€N<F, | 5 [ 112[0]0
Fy <N« F, 6 11 13¢11]0
F,aN<Fg | 7 |1 413100
FguN<Fg{ 8 115 {6
Table II
ValuesofV1 n=2,3,4,...,12; m=1,2,3,...,10
nm 1121358 4 5 6 7 ] 87 9 {10
F,-1 <N <Fj-1 21 0(0j0f0% 0% 0f 010710 0
F;-1 <N <F,-1 3 110 0_50 0 0f 0o0loio 0
F -1 <N <F -1 4] 1 1!oio oio 00140 0
Fo-1SN <Fg-1 | 510 zglro of;fo o{oiol o
Fe-1 <N <F_-1 650 R ol 0] 0loiol o
Fo-lSN <Fg-1 | 7|0 0‘3?4 1 0} 010i0j o
Fg-1 <N <Fg-1 g8l otoil1ieée ] 5 1{ 0}0}0 0
Fg-1 <N <F -1 9 0joi0)4jl0 6 1{040 0
Flo-l SN <F -1 10 } 010 {0{1 |10 115 7411 {0 0
F -l SN <F -1 11 lo0jo0io0lol 512012118111 o0
F-leN<F -1l12 [ 00 ow; 44444 0o 1 1 {15 {35 128 o i
N. B. The entries in the vertical columns are rows of PASCAL's

arithmetic triangle so that the table may be easily extended.
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ON A GENERAL FIBONACCI IDENTITY
JOHN H. HALTON

University of Colorado, Boulder, Colorado

1. The Fibonacci sequence is defined by the recurrence relation

(1) Fn+2 - Fn+1 * Fn ’

together with the particular values

(2) FO:O,F1=1 .

It is easily verified that the unique solution™ of (1) and (2) is given by

n n

(3)  F_=(a -p)/(a-8) ,

where a and P are the roots of the equation
2

(4) : x =x+1 ,
namely
(5) a=3(1+45), p=5 (- /)= -a”} .

The sequence is thus defined for all integers n, positive or negative
or zero. From (l) and (2), we infer that (3) takes integer values for
all n, and we observe, by (3) and (5), that

+1
(6) F_=(-1""F

-n n

This sequence and its generalizations have been the subject of a
vast literature, anda verylarge number of identities of different kinds,
involving the Fibonacci numbers, can be demonstrated. It is the pur-
pose ofthis paper toshow how a considerable body of these may be ob-

tained as particular cases of a single identity.

*Direct substitution shows that (3) is a solution of (1) and (2). If Fl',1
were another solution, fn = Fn - FI'1 would satisfy a relation (1), with
fo = fl = 0. Induction on n now shows that fn = 0 for all n, so that
(3) is the unique solution, as stated.

31
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2, We begin by defining the function

- F o

(7) SO(n) - Fn * Fn+1 n+2

Then, immediately, by (1), we see that, for all integers n,

(8)

So(n) =0 .

Now consider the function

(9)

Sj(m, n) = F F +F 1Fnt1 " Fnt1 -

Then, by (1), for any m and n,

(10)

Sy(m +1, n)=S5/(m, n) +S (m -1, n)

Also, by (1), (2), (7), and (8), we have that

(11)

and

500, m) = F ) - F =0

S.(l, n) = So(n) = 0;

14

whence (10) yields, by upwardand downward induction on m, that, for

x

all integers m and n,

(12)

Sl(m, n) =0

Next consider the function

(13)

S,(r, m, n)= F_F_- (-1)7 (F ) .

m+ an+ r Fr F1rr1+n+1'

Again applying (1), we see that

(14)

Sz(r+l, m, n):SZ(f— 1, m, n+2)—SZ(1', m, nt+1l) .

Now, for any m or n, by (2), (9), and (12),

(15)

and

SZ(O,m, n)=F F -F_ F =0
m n m n

Sz(l, m, n) = Sl(m, n)=0 .

“We may also note that, for any fixed n, (10) is a relation of the form

(1).

Thus, as inthe previous footnote, we get (12), for all m and n.



1965 ON A GENERAL FIBONACCI IDENTITY 33

Thus, by upward and downward induction on 7 in (14), we find that,

for all integers ¢ , m, and mn,

(16) SZ(T, m, n) =0

Finally consider the function (with k 2 0)

k
=k kr k h_h_k-h
U7 sk vy my n) = F F - (1) Z (G FF L F o
h=0
It is well known that
ktl, _ k k
(18) (o = 6+
and
k
(19) (h)szhenh<OorO§ k<h

Thus we can show, by (13), (16), (18), and (19), that

(20) S3(k+ l, r, m, n) = FmS3(k, r, m, n) .

Also, by (13), (16), (17), and (19),

7

n
g
i
o
i
)

54(0, T, m, n)
(21)

and 83(1, r, m, n)= Sz(r, m, n)=0 .

N

Thus, by upward induction on k in (20), we get that, for all integers

r, m, and n, and all integers k 2 0,

{22) Sylk, 7, m, n)=0 .

*We observe that, while the inductive argumentleading to (12) assumes
an arbitrarily chosenand fixed n; the corresponding argument yield-
ing (16) assumes, at each step, that (16) holds for a consecutive pair

of values of 7, an arbitrary fixed value of m, and all values of n.
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This is the general identity promised above:

February

k _ kr h_h_k-h
(23) Fmfn= (-1)7" % (h)( D Fatk rthm
h=0 !
3. We may now look at some of the identities which are

particular cases of (23). On the left of each identity below
(k, 7, m, n) is shown. In some cases, the identity (6) is

move negative subscripts.

obtained as
, the vector

used to re-

K
(24) (K7, -m, -n): FLF = 3 (-1 HUCRIghgloh n-k r+hm
h=0
K
(25) (i 7, -m, -kron): PR F o= 3 ((-1m D Rgeh
h=0
K
(26) (k,r, m, -kr7): F;Fkr = 3 (h)( 1)h ! h I;Jr?n hm
h=1
K
K+ hph k-h
@7) (g romym): B = (1S OEDIEESE R L
h=0
K
K hphok-h
(28) (k, r,m,nr): FLF_ = (-1 I (91 FrFs 2 (n+k) r+hm
h=0
K
K kr < k., .h h_ k-h
(29) (k, 7, mr,n): Fman: (-1) 2 (h)(-l) F1'F(rn*l—l)1'Fn+(k+hm)r
h=0
k
hph k-h
(30) (k,7,m,0): = (h)( L F F  Frrthm = ©
h=0
K
K hehpkeh
(31) (k,r,m,%1): F_ = (-1) > (h)( ) FF  Fo

h=0
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(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(k, #1, m, Fk): F_F = TSR RPELHF

(k, £2, m, n): FII;F =3 (11:)(+1) F
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k h_h_ k-h

(o romr, 0): 2 (D F F Ly Flomm)r = O
h=0
k
kr ¢ Jk, ; h h_k-h
(k, 7, %1, n): F_ = (-1)7 2 ())(-1) F a1 Fnttcrsn
h=0
k
_ k _h_k-h
(7, %1, -kron): F o= 3 (OF,F 1 F o
h=0
k
_ k,_h_k-h
(k,r,i'l, —kf). Fkr = 2 (h)FTFTﬂ:lF:Fh
h=1
k
B kr « Jk, ;b _h_k-h
I ry#l,nr): F o= (-1)7 2 ()-1)F F (n+k) 7 +h
h=0
k
_ k, . krg k., . h h_k-h
(kyr,#2,n): F_ = (&) (-1)° 2 (W-DTFIFSOF o0
h=0

k h-1_h_k-h

ik
(k, 7, %2, -kr): F) = (£1)° 2 ()(-1)7 FFOF
h=1
k
k . _, .k« Kk, h_k-h
(k, £1, m, n):Fan— (-1)y" % (h)(_l) Fm:l:]. ntk+hm
h=0
k

k
k

—; h_k-h
n m=2~ n*2k+hm

h=0
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(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

ON A GENERAL FIBONACCI IDENTITY February

k
(k,7,%1,0): = (h)( 1)'F
h=0

k
k h_h_k-h -
(k, r,%2,0): 3, (h)('l) FTFTﬂ;ZFkTiZh— 0
h=0

k
h k-h
(k, i]-, m, O)~ 2 (h)( ) mil Fhl’nik -
h=0

k

K h_k-h
1 .
(k21 m, 211): FS = (DS 2 (EDESAE
h_.

k
— k
(k,l,l, —n): Fn—- 2 (h)Fn—k—h
h=0
k
k
(kL 1, -nk): F o= 3 G)F 0 ey
h=0
k
e k, _, h-1
(k,1,1,-k): Fy = 3 ()(-1) " Fp
h=0

B k h
(ks -1,2,-n): F_= 2 ()-1)F 0 oy
h=0
k
) ~ k
(k,2,-1,-2k): Fpy = 3 ())F
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(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)
(61)
(62)

(63)

(64)

(65)

(66)

ON A GENERAL FIBONACCI IDENTITY

k
(k -1,2,k): Fy = Z (lﬁ)(‘l)k_thh
h=0
k
(51,1,00 % ()-1"F,, =0
h=0
k
(k, 2, -1, 0): 2(11§><'1)th1<-}1 =0
h=0
k
(k, -1,2,0): % (E)('l)th-Zh =0
h=0

. = - L4 -
(1,7, m, n): Fan (-1) (Fm+an+r l:‘rl‘“rn~l~n+r

(1: T, m, -n): Fan - Fm+an-r - (-1) 7 m-ntr

2
(1,r,m,-m): F._ - F F___=1(1)

(1,7, m, n-r): FrFrn+n= Ttm n m n-r

(1, 7-k mtk, -m+k): ¥ F_  -F  F_

(1, #1, m, n): Fm+nil - Fan * Fm:tan:tI

(1,1, m,n-1): Fm+n= Fm+an + Fan—l

(1,2, m-1,n-1): Fm+n - Fm+an+1 - Fm-an-l

FZ +FZ

(1, £1, m, m): FZm:hl = 'm m=l

(1,1, m, m-1): FZm = Fm(Fm+1 + Fm—l)

2 2
(1,2, m-1,m-1): F, =F, . -F |

F = (-1)"FF

37

k+r
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2 _ m-1
(67) (1,1, m, -m): Fm - Fm+1Fm_1 = (-1)

.l _ m
(68) (1,2,m,-m): F_ - F_ L F_ -=(I)

(69) (1,1, m+l, -m+l): F 2(-1)™

m+1fm-1 " Fmt2Fm-2=

This rather long list includes most of the identities, derivable
as special cases of (23), which I have found in the literature, and a
number of others (including (23) itself, (24)-(32), (37)-(45), and (60)),

which I believe to be new and useful. *

4, We may now ask whatelse can be done with the family of identi-
ties (23)-(69). Some of the further developments will be demonstrated
below.

Putting n=m in (59) and dividing by Fm’ we obtain, by (65)
and (6), that

m
(70) (F FF_PF, = F  +(DTF .

m+l T+

Thus

m-Fr)-(—l)m(FT -F. ) .

T T-m

(71) [FmH tF_  -1- (-1)m] F, = (F,,

The usefulness of this identity is seen when we put 7 = rm +n and

sum from r =1 to r =t., The right-hand side telescopes to yield

' m
(72) S F — F(t+1)m+n - Fm+n - (-1) (th+n - Fn)
rm+n F + F -1 - (-
r=1 m+l m-1
(This result is known [1], but I believe that the line of proof is new.)

Certainparticular cases have been knownfor a long time; for instance,

EDITORIAL NOTE: A different form of the identity (23) appears in
anunpublished Master's Thesis entitled '"Moduls m properties of the
Fibonaccinumbers, '"written by John Vinsonat Oregon State University
in 1961. (Other parts of thatthesis appear as a paper by John Vinson
in the Fibonacci Quarterly, 1(1963) No. 2, pp. 37-45.)
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t
(73) X Foig~

r=1

Finez Fres T Feas  Fs ™ Figgi " Fayn

t
(74) % Fpirs) = Foqerras) " T2(14s) ™ Faqers) T F2s ™ Foqts)+1 ™ Fast1

r=1

t

(75) F

Fotts) ~ Fas

2 Fylrts)-1 =
r=1

and

o

3(e+l+s) ~ T3(l+s) T

t
z F."’)(r-l-s) = z(F

(76) r=1

1

—

-F, )= F

35) 7(F3(t+s)+z’ 3542)°

If we sum (64) from m=s+1 to m=s +t, put r = m - s, use

(75), and slightly rearrange the result, we obtain that

1
(77) 2 F = Z(FZ(’HS) t+s 2s s

Now rewrite (65), using (1), in the form

2
(78) FZm + Frn = ZFmFmil s

and sum (78) as before, using (74) and (77); then we get

—

+F2 - F 2

(FZ(t+s)+3 t+s 2s+3

(79) > F.

r=1

+sFr+s+1 Z

If we sum (73) with t=w - s, from s=v to s =w -1, we get

that
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w-1 W W u-1 W W
s 3 F, = by zpu: b (u-v)F = p3 uF +vF_ ., -
s=v  u=s+l u=v+l s=v u=v+l u=v+l
w-1
" VEG T Xt F) =W IF o s s P s
s=v
which yields
w
(80) > uFu:WFW+Z—FW+3-VFV+Z+FV+3 .
u=v+l

The same process of summation applied to (80) yields

w

2 2
(81) X wu Fu=w F oo~ @w-1)F

u=v+l

+2F_,T(2v-1)F . -2F

+3 +3 v+4

and we can evidently iterate the procedure to obtain the sum of umFu
for any positive integer m.

Again, replace m by 7 +m in(63)andapply (61) to the result.

This gives

Fr+m+n - (FT+1Fm+l * l:‘r Frn)Fn-Fl h (Fr Frn * Fr-lFrn-l)Fn—l
or, by (1),
(82) Ftmtn ” ¥, +1Fm+an+l tE, Fan B Fr -lFm—an-l :

In particular,

.3 3 3
(83) F3m B 1:‘rn+1 + Fm - Fm-l
and
(84) F3m = FmFm+lFm+2 + Fm—lFmFmH - Frn-Z.Frn—lFm :

We may note, at this point, that (83) can be put in yet another form,
with the help of (67):
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3 2 2
E = F + (F - F B E E F
( ) m+l * m+l m-1 + rn—l)

1
0!

3 , 2
m * Fm [(Fm+1 - Fm-l) Jr3F1'1’1+1Frn-1]
=F +F {FZ +3[F2 +(-1)m]}
m m " m m
or

3 m
(85) F, =5F  +3(-1)7F_ .

By summing (83)and (84)from m=s +1 to m = s +t, and using (76),

we obtain respectively that

t
301 3 3
(86) 2 F s " 2Fs(ieyo1 ~ 2Fps1 - Fagor T2F )
r=1
and
t t
3 t+s s
(87) p Fr+s—lFr+sFr+s+1 = X Fr+s+(—1) F1:-|-s—1 - (-1) Fs—l
r=1 r=1

If we multiply (67) by Fm and sum from m=s+1 to m=3s +t, we

get that

t t t
z Fi%-s -z Fr+s—1Fr-l-sFr+s-l~1 = Z (-1)r+s—1Fr+s :
r=1 r=1 r=1
A comparison of this last result with (87) yields
t
(88) ) (_1)r+SFr+s = (_1)t+SFt+s—l B (—I)SFs-l *

This last result maybe verified by combining (73) and (74), or by sum-
ming the identity (derived from (1)),

r+s r+s-2 r+s-1

(89) (-1)" °F = (-1) F F .

r+s-2 (-1) r+s-1

As a final illustration of the large family of identities springing

from (23), we consider the generalizations of (66) and (83), analogous
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to that of (1) in (70). First we obtain a few results analogous to (85).

Clearly
F +F )= (F “F ) t4F | F
( m+l m-1" 7 ( m+1 -1 m+l m-1 "~
thus, by (1) and (67),
2 2 m
(90) (F_y tF, ) =5F +4-1)7
and therefore, by (65),
2 4 m_2
(91) B, = 5F. +4(-1)TFC
Also, by (1),
_ 1
(92) Fn+l * Fn-l - Fn+2 B Fn-Z - —Z—(Fn+3 * Fn-3) ’

whence, by (85) and (67),

_ 2 m
(93) F3m+l * F3rn-1 - (Fm+l + Fm-l) [SFm +(-1) ]

Putting 2r for ¢+ and 2m for m in (70), we get, by (64), (66), and
(67), that

2 2 2 2
r+m+l ~ T r4m-1 r-m+l =~ T r-m-1

(94) [spfn +2(-1)"F, =F

Alternatively, on squaring (70), we obtain, by (58) and (90), that

2 m 2 2 2 mr._2 T+m_2
[s£2 +a(-1)™]r2 = ¥2+F%__ +2(-1)7[F7-(-1) Fm] ,
whence
2 mT_2 r2 2 2
(95) [SFm+2(-1) 177 +2¢-1) FC o= Fp, tF_ .

We see that (94) yields (66) on putting one for m and m for r. Fi-
nally, put 37 for r and 3m for m in(70). Then, by (85) and (93),

we get
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2 m _ 3 T+m
(F sy *Foy) [BFZ +(-1) ]F3r-5Fr+m+3(—l) P+

+ 5(-1)me’_m +3(—177Fr_m

3 m_3 T4+m
5Fr+m+5(—1) F _m+3(—1) (Fm+1+Fm—1)Fr

3 m
5Fr+m+5(—l) F

1

1

Thus, by (65),

3 m_3
+F_F; +(-D)7F .

T-m

(96) F_F, F, =F, - (-1)7(F

This identityis new, but we can find in the literature [2] the particular

cases when m =1 and m = 2, namely (83) (with 7 for m) and

3 3 3
(97) 3F, =F,,, - 3F, +F,,

REFERENCES
1. K. Siler, ""Fibonacci Summations, ' Fibonacci Quarterly, 1(1963)

No. 3, pp. 67-69.

2. Fibonacci Quarterly, 1{1963) No. 2, p. 60,
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REQUEST

The Fibonacci Bibliographical Research Center desires that any
reader findinga Fibonacci reference, send acard giving the reference
and a brief description of the contents, Please forward all such in-
formation to:

Fibonacci Bibliographical Research Center,

Mathematics Department,

San Jose State College
San Jose, California



ADVANCED PROBLEMS AND SOLUTIONS

Edited by VERNER E. HOGGATT, JR.
San Jose State College, San Jose, California

Send all communications concerning Advanced Problems and
Solutions to Verner E. Hoggatt, Jr., Mathematics Department, San
Jose State College, San Jose, California. This department especially
welcomes problems believed to be new or extending old results, Pro-
posers should submit solutions or other information that will assist
the editor. To facilitate their consideration, solutions should be sub-
mitted on separate signed sheets within two months after publication

of the problems.

H-52 Proposed by Brother U. Alfred, St. Mary’s College, California

Prove that the value of the determinant:

2 2 2
Yn Yn+2 Yn+4
2 2 2
Yntz  Ynta Unt6
2 2 2
Ynt4  “n+6  “n+8
is 18 (-1)*"1,
H-53 Proposed by V.E. Hoggatt, Jr., San Jose State College, San Jose, California

and S.L. Basin, Sylvania Electronics Systems, Mt. View, California
The Lucas sequence, L1 =1, L2 = 3; Ln+2 = Ln+1 + Ln for
n 2 1, is incomplete (see V. E. Hoggatt, Jr. and C. King, Problem
E-1424 American Mathematical Monthly Vol. 67, No. 6, June-July 1960
p. 593) since every integer n, is not the sum of distinct Lucas num-
bers. OBSERVE THAT 2, 6, 9, 13, 17, ... cannot be so represented.
Let M(n) bethe number of positive integers less than n which cannot
be so represented. Show

M(Ln) - Fn—l
Find, if possible, a closed form solution for M(n).
H-54 Proposed by Douglas Lind, Falls Church, Va.
If Fn is the nth Fibonacci number, show that

¢(Fn) = 0 (mod 4), n >4
where ¢(n) is Euler's function.

44
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H-55 Proposed by Raymond Whitney, Lock Haven State College, Lock Haven, Penn.

Let F(n) and L(n) denote the nth Fibonacci and nth Lucas
numbers, respectively.

Given U(n) = F(F(n)), V(n) = F(L(n)), W(n) = L(L(n)) and
X(n) = L(Fn), find recurrence relations for the sequences U(n), V(n),
W(n) and X(n).
H-56 Proposed by L. Carlitz, Duke University, Durbam, N.C.

Show
bt n
s Fk - (Fk/Fk+1) Kk >1
el EoF 2 FondF i kjrl - ’
. i
i=1

H-57 Proposed by George Ledin, Jr., San Francisco, California

If Fn is the nth Fibonacci number, define

n n
G, = X kF_ by Fy
k=1 k=1
and show
(1) lim (G -G) =1
N> o n+l n
(ii) lim (Gn_H/Gn) =1
n—> «
Generalize,

H-58 Proposed by Jobn L. Brown, Jr., Ordnance Research Laboratory, The Penn. State
University, State College, Penn.
Evaluate, as a function of n and k, the sum

cee F. F,. ,
2 2i, +2 21k+1+2

s F,. ., F,.
211+Z 212+ K

i +ij+. .. i =

11 12+ +1k+1 n
where i 1y dgs vy hn constitute an ordered set of indices which
take on the values of all permutations of all sets of k+l nonnegative

integers whose sum is n.

REPROPOSED CHALLENGE
H-22 Proposed by Verner E. Hoggatt, [r., San Jose State College, San Jose, California
If Plx) = T (1+x % = 3 R@n=x" ,

i=1 n=0
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then show

(1) R(F - 1) = n

2n

(ii) R(N) >n if N > an -1 .

INVERSION OF FIBONACCI POLYNOMIALS
P-3 Proposed by Paul F. Byrd, San Jose State College, San Jose, California
in "Expansion of Analytic Functions in Polynomials Associated with
Fibonacci Numbers, " Vol. I, No. 1, Feb, 1963, pp. 16-29,

Verify the reciprocal relationship

[n/2]
S =" 20T O T Ve @ 20)
r=0
where [k/Z]
g 0 = 2 (0™ 295 (k20)

m=0

Solution by Gary McDonald, St. Mary’s College, Winona, Minnesota

Verification by induction: (Equation numbers refer to P, F. Byrd's

article,
For n= 0, we have 1 = Yl(x) which agrees with (2.2). Assuming (1)
true for n = k, we can write
k+1 1 [k/2] k, k-2r+1
+ r -2r
* T oK DO g (89 N
r=0
Recalling (2.1), we have
k+1 1 [k/zj k, k-2r+1 [k/z:l k, k-2r+1
+ r -2r+ r -2r
* TR 2D T Yerz-2e® 0 T O Q) e Y2, )
r=0 r=0
. 2
- r -2r+l
F 20| M2 E OO T N2 ™) -
r=1
T [k/2]-1
- s (_l)r(k)k—ZrH y (x) + C

r' k-r+¥l ‘k-2r
r=0
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where [ :| [ ]
B k/2] +1f k \k-2[k/2] +1
c={1 ([k/z])k_“’T_—- [&/2] F1 k-2 [k/2])
Letting j=r +1 in the second 3 for xk+l,
k+1 Lie/2] k, k-2r+l
_ T -Zr+
TR NerzB) 2 G0 o Vw2
r=1
[k/2]
1 ko k+3-2j
PN mrg ey T C)
j=1
or combining coefficients of Yi(x)
k+1 1 \ [x/2) k, k-2r+1
. r ~2r+
(2) E TR et 2D [‘-r)m‘:r
’ r=1
‘ k | k+3-2r
TG0 e } Yerz 2 T C

We can reduce the quantity in brackets as follows:

ky k-2r+1 k \k+3-2r _ | k, (k-2r+l)(k+2-71) k 1
(r) k-r+l1 +(r—l)k+2.—r _l:(r) k-r+l +(r_1)(k+3—2r)] <k+2—r>

. T.

) K! k! (k+3-27) 1
= [(k-rﬂ“'“‘) r (k-2rtl)(k+e-r) 4 e ayT (r—l)l]<k+2—r>

~ [(k—2r+1)(k+2—r) +r(k+3—2r):\ (k+1)!
= K+ K-+ s (k¥2-7)

B [k2+3k—2rk—2r+2 ] (k+1)!
= &) (KT T eI (K+2-1)

k+2-2r k+1
k+2-r T :

Therefore from (2),

k 1 /2] k+l, k+2-2

+1 r k+ +2-2r

S i R I T T
r=1

Note that:

B 0 k+l, k+2-0
2) Va2 B = G0 O ) s Yot
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48
b) When k is even C = 0, and [7] = [1{%—{1
When k is odd, then[ :] -li—l and
e
C=(-1)"° .‘.‘71 ",3__5’_5— Y, ()
2
k+1
[_er‘] k! 4 Y (x)

k1, 3+k 1

(———) (=)

If we let r = [k—;l] in the 3, of equation (3), we have

%] Bl e s

(k+1)! y
”‘—’E“I’kﬂ , k*i p () = (-1 z(k+1)k T B3 Y (%)
S S S HEOE 1

[k-i—l]
k! 4
- 1 R, 3 1™
() =)
= C, k odd.

Therefore, we may combine Yk+2( ) and C into the § in (3) and

write
k+1
I:T]
k+1 1 r k+l, k+2-2r
* " KA 2D C0) g a2 o
r=0
from which we conclude
1 [n/Z:I 2r+1
n _ rn n-2r
<= ow 2R T T 2 20
r=0

DEFERRED ANSWER

H-34 Proposed by P.F. Byrd, San Jose State College

Derive the series expansions

)

Joila) = Ii(a) + 2

m=1

0™ (@)1 (a) L,
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(k=0, 1, 2, 3, ...) for the Bessel functions J of all even orders,

2k
where Ln are Lucas numbers and In are modified Bessel functions.
The solution willappear in a fine paper by the proposer to appear

later in the Quarterly.

FIBONACCI AND MAGIC SQUARES
H-35 Proposed by Walter W. Horner, Pittsburgh, Pa.
Select any nine consecutive terms of the Fibonacci sequence and

form the magic square

ug u, U
Y3 Y5 Y7
uy u9 u,
show
ugl ug + 1.13u5u7 + u4uguZ =
u8u3u4 + u1u5u9 + u6u7uz
Generalize.

Solution by Maxey Brooke, Sweeny, Texas and F.D. Parker, SUNY, Buffalo, N.Y.

If Un satisfies the general second order difference equation, then

Uy U, Uj
u, U U, | =0
U, Uy U

arbitrary. The expan-

since Un = aUn+l + BUn with U1 and U

+2 2
sion of this determinant yields products whose subscripts add up to the
requisite 15 and yields the equality asked for in the problem.

Also solved by the proposer.
GOLDEN SECTION IN CENTROIDS
H-36 Proposed by ]|.D.E. Konbauser, State College, Pa.

Consider a rectangle R. From the upper right corner of R re-
move a rectangle S (similarto R  andwith sides parallel to the sides
of R. Determine the linear ratio K= LR/LS if the centroid of the
remaining L shaped region is where the lower left corner ofthe re-

moved rectangle was.
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Solution by John Wessner, Melbourne High School, Melbourne, Florida

G
A T i O
GO:LR
P CD:LS
BpiI——— - — = Ely
OD:mLS
OE:aLR
C D
<——.

X

The centroid of AGPB is at %aLS + LR% , % aLR and has weight
o s . R 1

1aLRgLs - LR%. Similarly the centroid of BEDC is at 5 LS’

5 a ;LS + LR% and has weight a LS st - LR% . The centroid ofthis

remainder must be at P and have x-coordinate

%Lga%L -L % 1a§L +LR§ §L -LR} L

S S S R
L =
R 3 _ LZ %
R
or upon expanding
2 3 3
2L frs - tot=13- 17 .

Division by L3 gives
R 2 3
2ig* -1t =17 -1

After removing the obvious root +1 we have KZ - K-1=0 which
has as its positive root y= (1 + JE)/Z.

Editorial Comment: The above property is shared by many
geometric figures including the ellipse. A short paper later will show
this.

Also solved by David Sowers and the proposer.

A FASCINATING RECURRENCE

H-37 Proposed by H.W. Gould, West Virginia University, Morgantown, West. Va.

Find a triangle with sides n+l, n, n-1 having integral area.
The first two examples appear to be 3, 4, 5 with area 6; and 13, 14,
15 with area 84.
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The proposer's paper comprehensively discussing this problem
will soon appear in the Quarterly.
NO SOLUTIONS RECEIVED
H-38 Proposed by R.G. Buschman, SUNY,Buffalo, N.Y.
(See Fibonacci Numbers, Chebyshev Polynomials, Generaliza-
tions and Difference Equations Vol. 1, No. 4, Dec. 1963, pp. 1-7.)
Show (w , + (-b)¥ un_r)/un =\ .

CORRECTED
H-40 Proposed by Walter Blumberg, New Hyde Park, L.1., N.Y.
Let U, V, A and B be integers, subject to the following con-
ditions (i) U >1, (i) (U, 3)=1; (i) (A, V) =1;

(iv) V= \/(UZ -1)/5 .
Show A2U+BV is not a square.
CONVOLUTIONS AND OPTICAL 2-STACK
H-39 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California
Solve the difference equation in closed form

Cn+2 = Cn+1 * Cn + Fn

+2
where Cl =1, C2= 2, and Fn is the nth Fibonacci number. Give
two separate characterizations of these numbers.

Solution by L. Carlitz, Duke University, Durbam, N.C.

Since C2 = Cl + C0 + FZ we have also CO =0, If we put
city=3 C_ ",
0
then it follows from
C:n+2 - Cn+1 * Cn * Fn+2
that ®
(1-t-t5)c(t) = 2 F_ t" = 5 .

0 1-t-t
Thus
(1) clt) = —5—27 )

(1-t-t%)

Expanding we get
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Cit) =t 2 ({r+l){t+tT)

n=0 r=0
so that n
B ro, _ n-r
C= 2 (o) T)= T (@)% .
r=0 2r<n

Another explicit expression that follows from (1) is

n-1
C;n—l = X Fr Fn—r
r=1
Next is we differentiate
t 5 = Fntn
1-t-t 0
we get
2 o
1+t n

, =3 (t)F_ t

(1-t-t%) 0

which yields
C, + Cn-Z = (n-H)Fn_‘_1

A consequence of this ié ’
c = z (-1)Nn- 264 F
2k < n
Finally consider the number

C' = AnF + BnL
n n n

n-2k+1  °

We find that

1 _ 1 - - y
Cn-l-Z Cn+1 Cn A(Fn+Z+Fn) * B(Ln+2+Ln)
Since
Ln+2 * Ln = 5<Fn+2-Fn)
we get
! _ 1 _ (- _
Cn+2 Cn+1 Cn (A+5B)F1H_2 + (A SB)FI1

February
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Hence for A= 6, B=1/10 it follows that

1 - 1 _ -
Cn+2 Cn-H Cn Fn+2

Clearly
C =n/2F +n/l0L_ +aF_+bL
n n n n n

Taking n=0 we get b=0, For n=1 we get a=2/3. Therefore
we have
n L +2F

n+1 n

ann/Z Fn+n/10 Ln+2/5 F_= =

Also solved by Ronald Weimshenk, Jobn L. Brown, Jr., Donald Knuth, H.H. Femns and the proposer.

Editorial Note: Another characterization, besides the convolu-
tion
n+l
c s rE : (n+1)Ln+2+2Fn+1
ntl r n-r "5 !
r=1

is the number of crossings of the interface, in the optical stack in prob-

lem B-6, Dec. 1963, p. 75, forallrayswhich are reflected n-times.
If fo(x) =0, fl(x) =1, and fn+2(x) = an+l (x) + fn(x) ,

the Fibonacci polynomials, then

1
fn(l) = Fn and fn(l) = Cn—l .

P00 00 0 0.0 0.0 0. 0.0, 6,04

MATH MORALS
Brother U. Alfred
A tutor who tutored two rabbits,
Was intent on reforming their habits.
Said the two to the tutor,
""There are rabbits much cuter,

But non-Fibonacci, dagnabits. u”

b3
The author has just taken out poetic license #F ., according to one

97

clause of which it is permissible to corrupt corrupted words.
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PRODUCTS OF ODDS
SHERYL B. TADLOCK*

Madison College, Harrisonburg, Virginia

The following are used in the proofs of the identities:

Fo= g Lp= 8 e (B = (-7,

where —_ I3
14y _1 -5
B = > and Q= —s

1. F F,.  =F° .  +F°

2k+1 T 2§41 T Tktj+l k-j

. . 2 . .92
FZ N FZ ) Bk+3+1 _ ak+‘]+1 N f3k-J _ ak-_]
k+j+1 k-j B -a B-a

i p2KHA2it2 | 2KH242 5 g KA 5 0 K- 02k-2), 2k-2]
- 2
(B - a)
2k+1, . 2j+1 -2j-1 2k+1, 2j+1 -2j-1
I (- T T S C U - S
- 2
(B - a)
k+j -2j
_2(Ba) Y (Ba+t(pa) )
2
(B - a)
Recalling that ﬁ_z‘]—l = (-1)—2‘]_1c12‘]+l = ~aZJ+1
-2j-1 -2j-1,23+1 2i+1
and L

and thatthe lastterm hasthe value of 0, the above expression becomes

2k+1, _23+1 23j+1 2k+1,.2j+1 2j+1
2 I (- S S Y- S (- S i )

Fietjn TPk PR
2k+1 2k+1 2j+1 2j+l
_ S [
(B - a) (B - a)
But the right-hand side is of the form F2k+1 F2j+1' Therefore,
2 2

Flrpnn Y e = FaenFon

":Stude nt
54
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2o Lownlejn = L12<+j+1 - L12<-j +4(-1)
Lyrest Lojon - (BEHL 4 2L 2541 | 254,
_ p2kI2Zit2 | ZKR2jH2 | g2ktl Zjtl 2kt 2jtl
| 2kH2jH2 | 2K2j42 | glHHL KoL gej itk kejgiky
Observing that ﬁk'jaj"k ) (-1)j'kpk'jﬁk_j i (_1)j-k62k—2j

and .o . . . . . -
qk—_]s_]—k: (_l)J—kak—Jak—J - (_1)_]—ka2k-2_)

and adding and subtracting 2[?>k+‘]+lak+‘]+1 the above expression be-
comes
_ L2k+2j+2 | 2k+2j+2 | k+j+l k+j+l k-j-1 k-j+l
L2k+l L2j+l =B +a +2B a -20 a
K+j+1 -k 2k-2] i-k_2k-2j
+(Ba) (-1 TR 4 (1)) TR
_ RIH2IHZ | I KL 2ke2)+2
k+j+1 -k 2k-2] j-k 2k-2j
F(Ba)” T2+ (-1 TR 4 (1)) T T
k+-1 . k+j+l.2 k++l, . j-k,.2k-2j, 2k-2] k-j
A e I O D I O S i e O V)
2 02541 q2k-2j o k-j k-j . 2k-2j o k-j k-j
= Lk+j+l+( 1) (B +2B87 Ya +a -2 Ya )
k-j, ..2j+1
o o - 2enfIen
Noting that ~2(-1) —J(_1)2.3+1 - _2(_1)k—_](_1) - Z(rl)k-']
we have
2 k-j , k-j2 k-j ke
Lok+1F2j41 ™ Lrige - [‘B ta ") - 2(Ba) ]*2( 1)

2 2

k-j k-j
Liajar - Ty - 26057 + 201

2 2 k-j k- j
Litj41 - Lk_j +2(-1)°7 + 2(-1)

Therefore,

2 2 k-j
Lokt L2j+1 - Lk+j+1 B Lk-j ta(-1) :
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By using the identity L‘:‘l - 51;;2l = 4(-1)" (Vol. 1, No. 1, p. 66,

this Quarterly), it can easily be shown that

2 2 k-j .2 2 2 2
- LE 4 a(- - L2 - = -
Lietjpr = Loy T 40D Lictjrr = 9Fko = 5F g1~ Tiej

Thus, we have proofs of the following Fibonacci identity and the analogous

Lucas identities for products of odds:

2 2
(1) Forn T2+ 7 Frtjn © Fiej
2 2 k-
(2) Lokt T2541 = Daeajrr ~ Doy T 401
) 2
(3) Loxt1 2541 = Dretjrr ™ 2F s
2 2

(4) Lokt P2541 7 2Frjn - Teej

These four identities correspond closely to those given for prod-

ucts of evens in this Quarterly, Vol. 2, No. 1, p. 78.

SOOI HKXHK XXX

NOTICE TO ALL SUBSCRIBERS! !!

Please notify the Managing Editor AT ONCE of any address change.
The Post Office Department, rather thanforwarding magazines mailed
third class, sends them directly to the dead-letter office. Unless the
addressee specifically requests the Fibonacci Quarterly be forwarded
at first class rates to the new address, he will not receive it. (This
will usually cost about 30 cents for first-class postage.) If possible,
please notifyus AT LEAST THREE WEEKS PRIOR to publicationdates.
February 15, April 15, October 15, and December 15,



EXPLORING SCALENE FIBONACCI POLYGONS

Proposed by BROTHER U. ALFRED on page 60, October 1963
“The Fibonacci Quarterly”
C.B.A. Peck

The sequence of Fibonacci numbers may be defined by

= = = 2
(1) FO 0, Fl 1, and Fn Fn—l + Fn—Z forn 2 2.

We describe a way of deciding when a set S of m distinct numbers
drawn from the sequence FZ, FB’ F4, ... corresponds to the sides
of some plane polygon with m sides. If theydo we call S a (scalene
Fibonacci) polygon, for short.

To prove the result, we find it convenient to use the following

identities, easilyprovedfrom (1) byinductionon k and n, respectively:

k
= 2
{(2) Fn Fn—Zk + 3 Fn—?_i+1 for n24 and 0 < 2k < n,
i=1
n-2
{(3) F > L F, for n 2 1 (the sum is zero if n = 1, 2, 3).
i=2

Suppose once and for all that Fn is the largest number in S. If
we denote by S{n, k) the set of numbers appearing in (2), then S is a
polygon if and only if it properly contains some S{n, k). If it equals

S(n, k) for some k we call it a degenerate polygon.

Proof: If Fn—l %ES, then by (2) S contains no S{n, k). By (3) Fn
exceeds the sum of the other numbers in S, which shows that S is not
evena degenerate polygon. Now suppose that Fn_1 £S5 (sothat n 2 3)
and proceed downwardthrough the sequence in (1), starting with Fn—l
and stopping short of Fl' The numbers alternate in and out of S until
one of two things happens.

1. S is foundto containno S{n, k), either because the alterna-
tion stops at an adjacent pair not in S, say Fn-Zj’ Fn—Zj—l with
n-2j-1 2 2, or continues to the bottom (here we set n-2j-1 =1 or 0 ac-
cordingas n isevenorodd). Thenevery number in S other than Fn

occurs in either

57
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n-2j-2 Jj
2 Fpor XOF o
i=2 i=1
The first sum <Fn—2j by (3), whence the sum of each < Fn by (2).

Thus S is again not even a degernate polygon.
2. Thealternation stops with anadjacentpairin S, say Fn-ZkH s

F with n-2k 2 2, so that S(n,k) is in S. Then (2) shows that

n-2k
S is a (degenerate) polygon if there are (no) numbers in S besides
those in S(n, k), on the grounds that Fn (£) the sum of the other num-
bers in S.

Couldtwo sets of numbers drawnfrom F F4, ... be pro-

2 ¥
portional to the lengths of the sides of a single polygon? This is not
possible, at any rate, when the numbers in each set are distinct, for
suppose that we did have two scalene Fibonacci polygons with largest
sides Fn and FN (N >n) proportional to a third polygon, hence to
each other, say in the ratio P > 1. We have just seen that if Fn is
the largestnumber in such a set, then Fn—l must belong to it. Since
the largest and second largest sides correspond, we have PFn = F
and PFn—l = FN—l'
further applications of (1) yield finally PFO = FN—n' By (1), the L.h.s.
is zero and the r.h.s. positive, which is absurd.

N
By (1), we have, then, PFn—Z = FN—Z’ and n-2

An interesting exercise is to use this argument (with suitable
amplification of the last sentence) on any two Fibonacci polygons such
that in at least one of them there are numbers whose subscripts differ
by only one or two. We need something stronger for such polygons as
Fn’ Fn-3’ Fn-3’ Fn—3, Fn—3’ Fn—3'

The generalization of (2) which seems to be called for is some

characterization of the coefficients in inequalities of the form

F
n

N

n
3 a; Fi
i=2

where the ai's are nonnegative integers.

XXX KAKKX KK AKX XX K



NOTE ON THIRD ORDER DETERMINANTS

BROTHER U. ALFRED
St. Mary's College, California

The recent exhaustive investigation of nine-digit determinants
by Bicknell and Hoggatt that appearedin the Mathematics Magazine of

May-June, 1963, raises an interesting question [1] . Given that

(S GVANe]

4
8
1

~N oY

or any equivalent arrangement producing the same set of products
has a maximum value of 412, would we obtain a maximum for any
other nine consecutive positive integers using the same relative ar-
rangement? This note will offer a negative answer and indicate the
maximum for all positive values.

First, a small amount of theory is in order. If a third order
determinant has elements a; and afixed quantity b isadded to each

element the resulting determinant would be:

a, +b a, +b a,+b

1 2 3
a4+b a5+b aé+b
a7+b a8+b a9+b

Subtract the second column from the third and the first from the sec-

ond to obtain

al +b az—a1 a3 - a2
a4+b ag - ay ag - ag
a7+b a8—a7 ag—a8

from which it is evident that the value of the altered determinant is
D+Ab,

where D is the value of the original determinant and A is the sum

of the three minors formed from the second and third columns. Fx-

panded and grouped appropriately we obtain

59
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A= (a1a5+a5a9+a9al) + (a2a6+a6a7+a7az) + (a3a4+a4a8+a8a3)

- (a1a6+a6a8+a8al) - (a3a5+a5a7+a7a3) - (a2a4+a4a9+a9a2)

This coefficient A gives the change in the value of the determinant
as we add 1 to each of its elements. See [2] for another use.

It should be noted that the groups in A are the same as those
for the positive and negative terms of the determinant expansion and
hence any alteration of the arrangement of determinant elements which
leaves the expansion unchanged will also be without effect on A .

An independent investigation shows that the maximum value of
A is 81 whenthe elements of the determinant are the nine digits, while
the value of A for the determinant giving a maximum of 412 is only
80. Thus, the smaller valued determinantwith A = 81 will eventually
overtake the larger as the elements of the determinants are increased
uniformly.

By calculating )\ for the largest values given in the table of
Bicknell and Hoggatt (Ref. 1, p.152)\is found to be 81 for 405 = 630-225a
and 630-225c. Adding n to each element of 630-225a, for example,
will produce a determinant of value 405 + 81n; doing likewise for the
original maximum determinant of value 412 produces a value of

412 + 80n. To find when these will be equal, set
405 + 81ln = 412 + 80n

the solution being n = 7.
Thus, if we have nine consecutive positive integers beginning
with m, the maximum value that can be achieved is 412 + 80m if

m X 8; the maximum possible is 405 + 81m if m > 8.

REFERENCES
1. Marjorie Bicknell and Verner E. Hoggatt, Jr., '""An Investigation
of Nine-Digit Determinants, '' Mathematics Magazine, 36(1963),
147-152.
2. Marjorie Bicknell and Verner E. Hoggatt, Jr., '""Fibonacci Ma-
trices and Lambda Functions, "' The FibonacciQuartérly, 1{1963)

April, pp. 47-52.
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MORE ON FIBONACCI NIM
JEREMY C. POND and DONALD F. HOWELLS*

Sussex, England and San Jose State College, San Jose, California

Fibonacci Nim [1] was originally stated as follows:

""Consider a game involving two players in which initially there
is a group of 100 or less objects. The first player may reduce
the pile by any Fibonacci number (member of the series 1, 1, 2,
3, 5, 8 13, 21, ...). The second player does likewise. The
player who makes the last move wins the game. "

Let persons A and B be playing the game which A wins. If A is
to win he must be able to reduce the pile to zero on his final move.
Thus A must draw from O+Fn (n=1, 2, 3, ...) on his final move.

Looking at the sequence of the number of objects from which A
must draw to win on the final move, 1, 2, 3, 5, ..., we see that 4 is
the first positive integer missing. If B is forcedto play with 4 objects
remaining, A can certainly win the game.

Now suppose A gets the opportunity to draw from 4+Fn(5, 6, 7,
9, 12, ...). A will be able to reduce the pile to 4 objects and can
continue to win.,

The smallest positive integer that is not contained in the union
of the sets {O+Fn} and {4+Fn} is 10. If B is forced to draw from
a pile of 10 objects, B cannot reduce the pile to 4 or 0 but B will leave
A in a position to reduce the pile to 4 or 0 and thus A can win.

Now we wish to generate the sequence of positions from which it
isunsafe to draw (0, 4, 10, ...). Let U,=0. Then U2 is the small-

1
est positive integer which is not equal to U1 +Fn (n=2, 3, ...). U3
is the smallest positive integer which is not equal to U1+Fn or U2+Fn
n=2, 3, ...).
Therefore Ur (r=2, 3, ...) is the smallest positive integer

whichis notequalto Ut+Fn’ where t=1, 2, ..., r-1 and n=2, 3,...

“Student
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U
r
¥, 0 1 2 3 5 8 13 21 34 55 89
4 5 6 7 9 12 17 25 38 59 93
10 11 12 13 15 18 23 31 44 65 99
14 15 16 17 19 22 27 35 48 69
20 21 22 23 25 28 33 41 54 175
24 25 26 27 29 32 37 45 58 179
30 31 32 33 35 38 43 51 64 85
36 37 38 39 41 44 49 57 70 91
40 41 42 43 45 48 53 61 74 95
46 47 48 49 51 54 59 67 80
50 51 52 53 55 58 63 71 84
56 57 58 59 61 64 69 77 90
60 61 62 63 65 68 73 81 94
66 67 68 69 71 74 719 87 100
72 73 74 15 17 80 85 93
76 77 78 79 8l 84 89 97
82 83 84 85 87 90 95
86 87 88 89 91 94 99
92 93 94 95 97 100
96 97 98 99

The firstplayer can always win ifhe starts on some position not

equal to Ur (r=1, 2, ...) and always reduces the pile to some Ur.

0
76
169
254
332
410
488

Here are all the values of Ur thus far computed:

4
82
176
260
338
416
494

572 576

Ul b W NV

10

86
186
264
342
420
498

14

92
192
270
348
426
504

20

96
196
274
352
430
510

24
102
202
280
358
436
514

30
108
206
284
364
442
520

36
112
212
290
368
446
524

40
118
218
296
374
452
530

46
122
222
300
378
456
534

The following observations can be made:

8)

r+l

If U

r+l
Thus the average difference of U

+2

+

= Ur+ some non-Fibonacci number.

-U =4, then U
T r

50
128
228
306
384
462
540

56
132
232
310
388
468
552

60
138
238
316
394
472
556

-Ur+17!4 since 4+4=8=Fy.
-U_25, r=1,2,3,...

1 "r

The density of {Ur} in the positive integers must be £ 1/5,

66
150
242
322
400
478
562

72
160
248
326
406
484
566

The probability that the starting personcan winis 2 4/5 if noth-

ing is known about the starting position of the game.

The following questions are left unanswered:

Is there a closed form solution for ;Ur$ ?
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2. What is the limiting density of {'U } in the positive integers?
r
Similar results are found when one considers ''Lucas Nim!"

analogous to Fibonacci Nim.

REFERENCES
1. Brother U. Alfred, ''Research Project: Fibonacci Nim, ''Fib-
onacci Quarterly, 1(1963), No. 1, p. 63.

2. Michael J. Whinihan, '"'Fibonacci Nim, " Fibonacci Quarterly,
1(1963), No. 4, pp. 9-13.

XK KKK XX KX XK
ON SUMS F2x f2
x y

BENJAMIN SHARPE
State University of New York at Buffalo

Formulas for the sum of the squares of Fibonacci numbers are:

2 2
(1) Foee T ¥ = Froiok-2 Frnraksr T Fax-1 Fons2k-1
2 F? +Fe = F F
(2) ni2k+l T Fn T Forn Fontoks
2 2
(3) Foizk - Fn = Fox Fonsok
4 F? F°=F . F _+F, F
(4) nt2k+l ~ "n T n-1 " n+2 2k ~ 2nt2k+2

Validity of the above is established by using:

1 ' n ,n n, .n 1 +/5 1-J5
= - - = + = = ’ = -1 .
R A R Sl b
For example:
2 2,
5(Fn-l-2k+1 B Fn) N
(a2n+4k+2 + an+4k+2) _ (GZn n an) _ 2an‘an (a2k+1 52k+1 -1y =

L, -2(-1)™-2) =L

n-1
Lontak+2 - Y2n 2ntaksz " Ton ~ P L

5Fn 1 Frez T ok Fantanez) =
(a2n+l + B2n+1) + (a2n+4k+2 +62n+4k+2) _ an-lﬁn-l(a3+[33) i
- oZkpek(Znt2 glntl)
Lontaicrz * Lomat = Lonaa) = (D77 Ly = Lyy - Ly - (D77 Ly,

XHXHHX KKK KKK XKKKK



PHYLLOTAXIS
E.J. KARCHMAR
Control Data, Pale Alto, California

Leaves are commonly arranged on the plant stem according to a
pattern. If the pattern is ''whorled, ' several leaves arise from the
same node, at intervals along the stem. If the pattern is ''distichous, '
the arrangement is two-ranked. However, the most common pattern
of arrangement is ''spiral. "

The most accurate method for studying plant phyllotaxis is by
transecting the apical bud and making observations on the cross-sec-
tion. When one examines such a cross-section, the most striking
feature to meet the eyeis the spiral appearance of the arrangement of
leaf primordia. It has been found that there is a definite, heritable
spiral appearance of the arrangement of leaf primordia. It has been
found that there is a definite, heritable spiral arrangement which can
be designated (in most cases) by two numbers: the number of spirals
which turn in one direction, and the number which turn in the other
(these curves are called ''parastichies''). The intersections of these
two spiral systems delineate ''quasi-squares, '" within which are found
the leaf primordia (2, 4, 40).

In anoverwhelming number of species (434 species in the Angio-
spermae and 44 species in the Gymnospermae were found by T. Fujita
in 1938) the parastichy numbers fall in the Fibonacci Sequence, the
most common pairs of numbers being 2:3 and 3:5 (see Appendix) (40).
When the parastichy numbers do not fall in the Fibonacci Sequence,
they regularly fall into one of the other summation series (see Appendix,
footnote).

It has also beenfound by investigatorsinthe field (2, 14, 40) that
the angle between adjacent leaf primordia is, in a convincing number
of cases, approximately 137°30'. This is variously called the ''ideal
angle, '' the ''divergence angle, "' and the "Limitdivergenz.' Thisangle
can be obtained mathematically by applying the limiting value of the
Fibonacci Sequence un/unH:
360° - (0.6180)(360°) = 137°930",

64
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Phyllotaxis has been a field of interest for centuries. Since
1900 several theories have been offered as explanation of some of the
phenomena of phyllotaxis. Some experimentationhas been done to de-
termine the effect of environment or mechanical damage on phyllotaxis
(6, 11, 21, 25, 42); and some X-ray and chemical effects on the de-
velopment of leafarrangementhave been noted (17, 20, 22, 23). How-
ever, after 1920 very little has been published on this subject; per-
haps the feeling is that there are so many more fruitful and less
""mysterious'' areas of botanical interest, that this one is best left
alone. Also, the subject seems to lie more properly in the realm of
biophysics, which is a relatively new field,

The spiral arrangementdiscussed in (1) above is not peculiar to
plants. It is also found in the shells of foraminifera (4), nautili, and
other animals. It is the opinion of Church (4, p. 48) that the factor

common to both plants and the foraminiferais ''the building of new units

one at a time, — and it thus appears that this is the essential factor

behind all such presentation of Fibonacci relations, to all time. "

Church also feels that the Fibonacci phyllotaxis is phylogenetic-
ally primitive (4, p. 13).

"...very admirable spiral arrangements, in which Fibonacci
symmetry may be distinctly traced, obtain in the case of many
of the more massive Brown Seaweeds (Phaeophyceae-Fucoideae),
in the orientation of the more or less frondose or leaf-like lat-
eral ramuli; leaving little doubt that the phyllotaxis-mechanism
is, in fact, a still older function of the axis of marine types of
vegetation, and that the presentation of such phenomena, even in
a more elaborated and special form, can be but the continuation
and amplification of factors of marine phytobenthon; and that it is
to the seathat one mustlook for the originand primary intention
of this remarkable relation.'" (4, pp. 37-38)

There seems to be little doubt that the primary mechanism re-
sponsible for Fibonacciphyllotaxy is genetic in nature, rather than be-
ing a function of growth conditions such as availability of, and need
for, illumination. In the words of Church,

"It can only be concluded that the plant is somehow biased from
the first infavour of members arranged one by one in a Fibonacci
sequence; and the suggestion immediately offers that this may
be in some way the expression of the inheritance of the equip-
ment of a preceding phase and the solution of a much older prob-
lem.'" (4, p. 53)
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I suggest that, by a consideration ofa type of order and symmetry
so basic to living matter, one may perhaps gain some insight into the

problem of the origin of that order.

Editorial Comment: A mimeographed 46 entryannotated bibliography

is available on requestfrom the Fibonacci Association. Send requests

directly to Brother U, Alfred, St. Mary's College, California 94575.
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CORRECTIONS: Volume 2, Number 3

In the poem "'A Digit Muses' by Brother U. Alfred, page 210, we wish
to say ''oh pshaw, no phil'' since PHI was omitted from the end of the

sixth line,

Page 204: The symbol ¢ was omitted from the numerator of the last

displayed equation. The numerator is, of course, b (x).

CORRECTIONS: Volume 2, Number 4

Page 290: Title should have # in the blank after the second word in
the title and the eighth displayed equation should have a + and a - re-
spectively in the blanks between the second and third terms and the

third and fourth terms.

Page 281: Missing symbolin the firstdisplayed equation is, of course,

a summation symbol,

KKK AKX K XXX K



FIBONACCI FANTASY: THE SQUARE ROOT OF THE Q MATRIX

MARJORIE BICKNELL
Adrian Wilcox High School, Santa Clara, California

1 1
QO =
1 0

has many well known fascinating properties, one being that

The matrix

F F
n

¥ F

n n-1

where Fn is the nth Fibonacci number. The Q matrix also has a
Fibonacci square root, which can be exhibited after making a simple
definition.

We extend the relationships

k k
a
Lk + 8

L= @ - ga-p), a= VB2, B=0 - ()2,

1l

F

1]

toallow k toequal anyintegralmultiple of one-half. Considering odd

multiples of one-half for a moment, it is easy algebraically to obtain

2 . n+l
Foniy/2 = [Longy 2D ]/5

and

2 . n .
= + - = V-
Lint1)/z = Lansr P EEDS 4 V-1,
directly from the extended definition. So then, all Fibonacci or Lucas
numbers whose subscripts are odd multiples of one-half are complex.

Also, combining the two equations directly above yields

2 2

Liznt1)/2 = 5F(2nt1y /2 = HEDT

67
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Returning to the Q matrix, a square root of Q 1is given by [1]

F F
Ql/Z 3/2 1/2

Fypp Fand
for, by applying the extended definition and simplifying,
2 2 2 2
+ = =
Fspt =l FiptFhnp=0

nd -
a F3/2F1/2 + FI/ZF-I/Z 1 .
As suggested by the second of these equalities, we can write
Faipz = %

By taking the determinant of the square root of Q,

. 2
L= By -Fip
Also, that

n/2 F(n—l—Z)/Z Fn/z
Q =

Fo/2 Fa-2)/2

can be established by induction, using the extended definition and al-

gebraic manipulation. 2By equating corresponding elements of equal

matrices, from (Qn/z) = Qn, we obtain
2 2 _
Fatzyz ¥ o2 © Fan

and

Fiai2y/2¥n/2 t ¥n/2Fm-2)/2 = Fa

Taking the determinant of Qn/2 yields

2 n/2 _ .n
Fini2)/2Fm-2)/2 = Fnje = C70 =14

The reader can easily establish that
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F(2n+3)/2 F3/2Fn+1 * FnFl/Z ’

Fient3)/2 = Fa3y/2Fmr2)/2 * Ty 2¥ny2
Fontl = Flnt1)/2Ment1y /2

Foant)y/z = Fme3)/2¥n/2 T Fmiy/2¥m-2)/2

Let us pursue a more general result. It can be established by

induction that

e | Teen/e o

Fo/r Fony/ed, 240,

if we further extend the definition of Fibonacci numbers to include sub-

scripts which are rational numbers. Taking the determinant yields

_ p/r _ _ 2
(-1) = Fony/rFpeny/r T Fp/ro

As an example, since

2, 2
oP/T /P _ olpTHrT) /TP
consideration of the elements of these matrices leads to

F F

F +F L, F_,
(p24+r24+rp) /rp (p+r)/r” (r4p)/p " p/r /P

which is a general case of the familiar identity

Fm+n+1 - Fm+].Fn+I + Fan

In general, it seems that identities which hold for integral sub-
scripts also hold for our specialized rational subscripts. What if the
Fibonacci subscript were a complex number? J. C. Amson [2] has
answered this question while demonstrating an analogy to the familiar

circular and hyperbolic functions.
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Amson defined modified Lucas functions as

luc z = (w” - \TVZ)/ZA, coluc z = (w” + v—vz)/Z,

where 2z is a complex number and w and w are the roots of the

quadratic equation x2 = Px - Q, with discriminant L\Z = P2 - 4Q.

(Notice that luc z = (FZ)/Z, coluc z = (LZ)/Z when P=1, Q= -1.)

Algebraically, we see that, among other identities,
z
Q7 luc(-z) = - luc z

choluc(-z) = coluc z
luc 0 = 0, coluc 0 =1
luc 2z = 2 luc z coluc z

luc(z1 + ZZ) = luc 2 coluc z, + coluc zq luc z,

Q* lu(:(z1 -z = luc z, coluc zy - coluc z, luc z

Z) 1

1 2

coluc(z, + z,) = coluc z, coluc z, + Aziuc z. luc z.

1 2 1 2 1 2
0% col ) = col 1 A%l 1

co uc(z1 - 2,) = coluc z; coluc z, - uc z; luc z,

coluczz + Azluczz = coluc 2z
coluczz - Azlluczz = Q%
(coluc z + A luc z)" = coluc nz + A luc nz.

Comparison of these Lucas functions with those derived from the
circular functions defined by
iz

sinz = (e'? - e %) /21, cosz = (e'? +e7%)/2

or those from the hyperbolic functions defined similarly by

z

sinh z = (e“-e %)/2, coshz = (e” +e”%)/2

reveals a close analogy. Also, in the special case that the quadratic

equation is x = x + 1, we see a familiar list of Fibonacci identities
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emerging for complex subscripts. This fine reference [2] was brought

to our attention by Prof. Tyre A. Newton.

REFERENCES
1. The square root of Q was suggested by Maxey Brooke in a letter.
2. J. C. Amson, ''Lucas Functions, " Eureka: The Journal of the
Archimedeans, (Cambridge University), No. 26, October, 1963,
pp. 21-25.
3. S. L. Basin and Verner E. Hoggatt, Jr., "A Primer on the Fib-

onacciSequence, Part II, "' Fibonacci Quarterly, 1:2, pp. 61-68.
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LETTER TO THE EDITOR

P. NACR
The University of North Carolina
Chapel Hill, N.C.

I read with great interest your recent paper '""On the Ordering of
the Fibonacci Sequences.'' The general idea underlying your ordering
procedure is excellent, but the representation can be improved and
(possibly obscure) relationships may be brought to light.

Consider (for the time being) sequences for which D 2 11. For
reasons which will soon become clear I prefer to define the number f
(in your notation)as the first termin the sequence, ¢, say. You cor-
rectly pointed out that ''a negative sequence may be obtained from a
positive sequence by changing the signs of all terms'...; however,
there is another (rather simple) operation which establishes an -equiva-
lence between two sequences, Consider a sequence

e By by b By e PP Py by

and assume, for convenience, that the monotonic portion is positive.

It is easy to verify that ¢ is positive (negative)'if n 1is even (odd)
where n is anon-negative integer. Next viewan associated sequence
{¢'} defined by

gb;n if n is even

1
¢:l:n
¢:I:n: %n if n is odd.

Itis elementaryto showthat {@'} is a Fibonacci sequence (with
the monotonic part positive) - thus Fibonacci sequences typicallyappear
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in pairs - { @'} being { @} - although the possibility of a sequence

out a priori. Now for a series to be self-associated in the following
must hold - 4)_1 =+ ¢, sothat the central term ¢ becomes

("So: Py - P = 2y

and, if we areinterested onlyin sequences whichare not integral mul-
tiples of other sequences, it becomes clear that one, and only one,
such sequence exists, to wit

cesese, =4, 3, -1, 2,1, 3, 4, .....

whose D equals 5. Let this sequence be denotedas the ordinary self-

associated sequence. However, there exists in addition an extraordi-

nary self-associated sequence. If we admit (which we did not before)
the possibility qSO = 0, we have

P = Pu
and the only "'prime'' solution is the Fibonacci sequence
..... . =3, 2, -1, 1, 0, 1, 1, 2, 3, .....

You note, of course, that in this single case f equals ¢ _ and not

. This sequence is indeed extraordinary in several respects: In
contradistinctionto all other sequences it has the property that ¢ is
positive (negative) if n is odd (even). Also ¢ <T P, is triein
this case whereas in all other cases the inequalityoholds in"the opposite
direction. Anexceptional behavior of D will be discussed inthis letter.

It is then my proposal to characterize the Fibonacci sequences
not by (f , fl) but rather by (¢ ,, qSH) This representation has
numerousoadvantages: The two mﬁ%ual].y dual Fibonacci sequences may
be represented by one pair of brackets, e.g., what you represent as
(1,4) and (2, 5) would become in my notation (-2, 1) and (-1, 2); both in
one representation would be written as [2, 1] with the agreement that
the larger (in absolute value) number precedes the smaller number.
The ordinary self-associated (or self-dual) sequence would be {1,1 ]
whereas the extraordinary self-dual sequence deserves special nota-
tion, e.g. (1,1).

Consider now the quantity D as defined in your paper

2 2
D-fl—flf_o-fo

In terms of (;51 and ¢+1 this becomes

D= ¢%1 "3 P +¢il “ldy - ‘?S~1)Z - PP
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Again since for the original Fibonacci sequence ¢ is differently
defined (interms of your f's)we get D = -1 in this cas® on my defini-
tion but this is not disconcerting. To my mind the original Fibonacci
sequence is sufficiently extraordinary (on comparison with other such
sequences) that it deserves a- D with a sign different from that of the
others. Inspection of the D's aspresented in your paper leads me to
the following conjectures (I am inclined tothinkthat (a) itis not difficult
to prove them, (b) it has been done so before - thus I have not taken
the trouble).

Let prime numbers of the form 10n* 1 be represented by 8K+
We have then
(1) The set of feasible D's is madeup of -1, 5, all gy's, all prod-

' ; . _ ab c

ucts of g, 's which we denote by Qm (i. e. Q.= & gj,..gk), all
numbers of the form 5gy, and allnumbers of the form 5Q . In other
words a necessary condition for an integerto be a D is that it belongs
to the set { -1, 5, gxs Qm’ 58y 5Qm} .
(2) Each number in the above set may indeed be found in the list of
D's. In other words, the above is also a sufficient condition.

(3) The number of sequences associated with a given value of D is
simply related to its factorizationproperties, I reserve a final formu-
lation of my conjecture on this part until I have seen more ''experi-
mental material, '"i.e., a table of D's (with associated sequences)
between 1000 and 2000. It is already obvious that for -1 and 5 we get
the self-dual sequences and foreach g; and 5g; we have one pair of

dual sequences. Asfor a Qm it is obvious that if it equals gi (a >1)

k
the number of associated pairs is a function of the degree of '""com-
positeness'' and this should be looked into a little more carefully by
means of an extended Table. Finally, the number of pairs of Fibonacci
sequences associated with 5Qm is identical with the number of pairs
associated with Qm.

we have again one associated pair, but for the case Qm = g?gg’. ..af

If youare aware of literature relating tothese conjectures, kindly
let me know., Also if you have an extended table of the D's I should
appreciate a copy.

I hope some of my remarks may have been of use for ordering
and classification purposes.

XXRKORKHKRX XXX XXX KX



ELEMENTARY PROBLEMS AND SOLUTIONS
Edited by A.P. HILLMAN

University of Santa Clara, Santa Clara, California

Send all communications regarding Elementary Problems and
Solutions to Professor A. P. Hillman, Mathematics Department, Uni-
versity of Santa Clara, Santa Clara, California. Any problem be-
lieved to be new in the area of recurrent sequences and any new ap-
proaches to existing problems will be welcomed. The proposer should
submit each problem with solution in legible form, preferably typed in
double spacing with name and address of the proposer as a heading.

Solutions to problems listed below should be submitted on se-

parate signed sheets within two months of publication.

B-58 Proposed by Sidney Kravitz, Dover, New Jersey
Show that no Fibonacci number other than 1, 2, or 3 is equal to

2 Lucas number.

B-59 Proposed by Brother U. Alfred, St. Mary’s College, California
Show that the volume of a truncated right circular cone of slant

height Fn with Fn and Fn the diameters of the bases is

-1 +1

3 3
,ﬁn(FnH - Fn_l)/24

B-60 Proposed by Vemer E. Hoggatt, Jr., San Jose State College, San Jose, California

Show that LZnLZn+2 - 5F2n+1 =

n-th Fibonacci number and Lucas number,respectively.

1, where F_ and L _ are the
n n

B-61 ' Proposed by J. A H. Hunter, Toronto, Ontario
Define a sequence Ul’ UZ’ ce. by U1 =3 and

U = U .+n4n+1 for n>1 .

n n-1

Prove that Un = 0 (mod n) if n Z 0 (mod 3).
B-62 Proposed by Brother U. Alfred, St. Mary’s College, California<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>