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A NEW CHARACTERIZATION OF THE FIBONACCI NUMBERS 

J.L. BROWN, JR. 
The Pennsylvania State University 

1. INTRODUCTION 
A t h e o r e m due t o E . Zeckendorf (see [1] for proof and discussion) 

a s s e r t s that eve ry positive in teger n can be r ep re sen t ed uniquely as 
a sum of dis t inct Fibonacci numbers such that no two consecutive F ib -
onacci numbers appear in the represen ta t ion . With the definition 
u, = 1, u~ = 2, and u . 0 = u ., + u for n 2 1, Zeckendorf' s theorem 1 2 n+2 n+1 n 
yields an expansion for each posit ive integer n in the form 

n = 2 a .u . , 
1 

where a. is e i ther 0 or 1 for each i >. 1 and a.a.t, = 0 for i >L 1 „ 
i i i + l 

Thus each positive integer n can be assoc ia ted with a binary sequence 
a,9a?9a~,, . ., a . , . . . , where for given n, we see that a.(n) = 1 if u. 
appea r s in the Zeckendorf expansion of n; o therwise a.(n) = 0. The 
cons t ra in t a.a.,, - 0 for i _> 1 effectively s ta tes that two consecutive l i+l J 

l ' s can never appear in the binary sequence cor responding to n. For 
example , if n = 17, then 17 = 1 + 3 + 1 3 - u, + u~ + U/, so that 17 is 
a ssoc ia ted with the binary sequence 101001. (It is c lea r that each such 
expansion mus t have al l ze ros to the r ight of some i = i depending on 
n and these noncontributing ze ros a r e suppressed . ) 

The quest ion a r i s e s as to what occurs if, ins tead of disallowing 
two consecutive non -ze ro coefficients in a Fibonacci expansion, we 
disal low two consecut ive ze ro coefficients,, In other words , we wish 
to consider r ep resen t ing an a r b i t r a r y positive in teger n as a sum of 
dis t inct Fibonacci number s , 

N 
n = 2 /3.u. 

1 

with b inary coefficients satisfying (3^ = 1 and £}, + ft. >. 1 for 
i = 1, 2, . . . , N-2 . In the following, Theorem 1 affords a r e su l t dual 
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to the Zeckendorf theorem by showing that such an expansion always 
exis ts for every posi t ive integer and m o r e o v e r the expansion is unique 
under the imposed coefficient cons t r a in t s . Theorem 2, which is our 
main resul t , shows that the expansion p roper ty of Theorem 1 together 
with the uniqueness r equ i r emen t is sufficient to c h a r a c t e r i z e the F ib -
onacci n u m b e r s . This converse theorem for the dual r ep resen ta t ion 
co r responds to Daykin's r e su l t [2] on the converse to Zeckendorf ' s 
t h e o r e m . 

2. A DUAL-ZECKENDORF THEOREM 
Definition 1: The Fibonacci sequence / u. \. is defined by u, = 1, 
u-> = 2, and u . n = u ., + u for n > 1. 2 n-2 n+1 n 
Lemma 1: 

(a) 

u k+l _ 1 = u k + Uk-2 + u k - 4 + • • • + u 3 + U l f ° r k ° d d -

Uk+1 " 1 = Uk + U k-2 + u k - 4 + • ' * + u 4 + U2 f o r k e v e n -

( b ) u k+l = Uk + Uk-2 + u k - 4 + • ' • + uk-2p+2 + u k -2p+l ' 

where 
k k-1 

p = 1, 2, 0 . o , •=- for k even and p = 1 , 2 , . . . , -y— for k odd. 
k-1 " n " 

(c) uic+l " ^ = 2 u- f ° r k > 1, where X 
1 m 

is defined to be ze ro for n < m. 

Proof. The s t ra ight forward inductive proof is left to the r e a d e r . 
Our f i rs t theorem, as noted in the introduction, is essen t ia l ly a 

dual of the Zeckendorf theorem [l] : 

Theorem 1: E v e r y posit ive integer n has one and only one r e p r e s e n -
tat ion in the form 

k 
(1) n = X jS.u. , 

1 

where the /3. a r e binary digits satisfying 
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(2) ^ i^ i+1 ^ 1 *or i = 1,2, . . . , k-2 

and 

(3) /3k = 1 . 

For a given posit ive integer n, the value of k is de te rmined as 
the unique in teger for which the inequality, 

(4) u k + 1 - 2 < n l u k + 2 - 2 , 

is sat isf ied. 

Convention: It will be a s sumed without explicit ment ion in the r e -
mainder of the paper that al l expansion coefficients (subscr ip ted v a r -
iables a and j3 ) a r e b inary digi ts , that i s , digits having ei ther the 
value ze ro or the value unity. 

Proof of Theorem: Let n be a posit ive in teger satisfying inequality 
(4). F r o m (c) of Lemma 1, we obtain the equivalent inequality, 

k-1 k 
(5) X u. < n < £ u. , • 

1 1 

so that by the Zeckendorf theorem, the non-negat ive in teger 

k 

p o s s e s s e s 

(6) 

a n expan sion in 

k 

2 

the 

u. 
I 

1 
1 

u. 
I 

: form, 

- n = 

- n 

00 

1 a.u. 
I I 

with coefficients satisfying a. a. .. = 0 for i >. 1. 
r & l l + l 

Note from (5) that 

k 

2 
l 

u. -I • n < 

k 

1 
1 

u. -
l 

k - 1 

2 
1 

u. 
1 u k ' 
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which impl ies a. - 0 for i >. k in(6) . I npa r t i cu l a r , a = 0o Hence, 
(6) may be rewr i t t en 

V u. - n = V, a.u. with a, = 0 , ^ i l i k 

k k 
(?) n = X (1 - a.)u. - 2 £.u. with £ k = 1 , 

1 1 

where we have defined /3. = 1 - a. for i = 1, 2, . . „ , k. It is c lea r 
l I 

from the re la t ions a . a . x l = 0 and a .a . , , ==(1 - fl.)(l-/3.,1 ) that |8. + jS.,,^1 i l+l I l+l v / r * M i + 1 ' Mi Mi+1 
for i = 1, 2, oo . , k - 2, as required,, 

To show uniqueness , a s s u m e the re exis t s a posi t ive in teger n 
with two r ep re sen ta t i ons : 

m p 
(8) n = 2 /S.u. = 2 jS.'u. , 

where ^ = 0 = 1, / ^ + £ i + 1 ^ * f o r i =. 1. 2, . . . , m - 2; and 
ySj' + / 3 . + 1 ' 2 1 for i = 1, 2, . . . . p - 2. 

If m / p, thenwe a s s u m e m > p without loss of general i ty , and 
from the coefficient cons t ra in t s and Lemma 1, we have 

2 jQ.u. > u +u 0+u . + . . . + u, ~ = u M i i m m - 2 m - 4 1,2 m+1 - 1 , 

while 

p p m - 1 
V fi. fu. < V u. < V u. = u ,, 
** Hi i ^ i ^ i m + 1 

2 

(Here and in what follows, the subscr ip t notation u, ? s e r v e s to indi-
cate the final t e r m in a sum, the value of the final t e r m being e i ther 
u, or u ? depending on the pa r i ty of the index assoc ia ted with the ini t ial 
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term in the sum. ) This is in evident contradiction to (8) and we con-
clude m = p. 

Now, define a = 1 - ]8. and a.' = 1 -£.» for i = 1, 2, . . . , p. 

Then a{ai+l = - a^a j^ =0 for i = 1, 2, . . , / p - 1, and (8) becomes a. a: 
i i.+l 

P 

1 

= 0 

(1 -

for i = 1 

a.)u. = 
i I 

., 2, 

P 
1 
1 

. . . , p - 1 

(•l-a.'Ju. 

or 

P P 
(9) 2 a.u. = 2 a.'u. . 

1 1 

Since both sides of (9) are admissible Zeckendorf representations, the 

uniqueness of such representations implies a. = a.' for i = l, 2, . . . , p 

or equivalently fi. - /3.' for i = 1, 2, . . . , p, which proves uniqueness 

of the dual representation and completes the proof of Theorem 1. 

3. THE CONVERSE THEOREM 

Next, we will show that the expansion property expressed in 

Theorem 1 actually provides a characterization of the Fibonacci num-

bers, 

Definition 2: An arbitrary sequence of positive integers, {v;}> 

i = 1, 2, o.. will be said to possess the dual unique representation 

property (Property D) if and only if every positive integer n has a 

unique representation in the form 

P 
"(10) n =• X fi.v. with B = 1, and 

\ * ' i i ' p 

1 

(11) £. + (3i+l 21 for i= 1,2, . . . . p - 2 . 

Corollary 1: A sequence lv . \ possessing Property D has distinct 

elements; that is, v 4 v f°r m 4 n» 
m ' n 
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Proof: Assume m 4 n and v = v . Take m > n > 1 without loss 
' m n 

of general i ty; then, 
m m -1 

2 v t =.• 2 v. , 
• i=l . • l 

contradict ing the a s sumed uniqueness of expansions satisfying (10) and 
(11). 

Lemma 2: If ( v. \ p o s s e s s e s P r o p e r t y D, then v = u, and v? = u~, 
where / u. \ is the Fibonacci sequence of Definition 1, 

Proof: In o rde r to r e p r e s e n t the integer 1 in the p rope r form [(10)-
(11 ) ] , it is c l ea r that e i ther v, or v " mus t be equal to 1. If v = 1, 
then v - Z n e c e s s a r i l y and the Lemma is proved. In the remaining 
case , v, = 2 , vn = 1 and it follows that v0 = 3 and v„ = 6. At this 

1 2 3 4 
point, it is imposs ib le to r e p r e s e n t the integer 8 in p roper form no 
m a t t e r how the remaining (distinct) v. a r e chosen. Thus v, = 1 = u, 
and v ? = 2 = u? as s ta ted. 
Theorem 20 If jv . \ , i = 1, 2, . . . is an a r b i t r a r y sequence of pos i -
tive in tegers posses s ing P r o p e r t y D, then v. = u. for al l i k 1. 

Proof: The a s s e r t i o n is t rue for i = 1 and 1 = 2 as proved in Lemma 
20 Now, a s s u m e as an induction hypothesis that v.. = u, , v? = u ? , • • • , 
v, = u, for some k >. 2„ We wish to show that v, , = u, . necessa r i ly . . 

Recal l from Theorem 1 (noting v. = u. for i = 1, 2, . . . , k by 
the inductive assumption) that eve ry posi t ive integer n satisfying 

0 < n < £ v. 
l 

has a r ep re sen ta t ion 

n. = I / Jv . 
I I 
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wher e m < k, /S = 1 and /3. + £ i + 1 > 1 for 1 = 1 , 2, . . . , m - 2. 

We show first that v, , , > u, . , . For, if not, then v. M <u, M k+1 k+1 k+1 k+1 
and 

( 1 2 ) V k+l + V k- l + V k-3 + - • • + V 1 , 2 < u k + l + u k - l + U k - 3 + ' • • + u l , Z^k+Z ' 1 ' 

which implies 

v k + l * V l + " - + V l , 2 ^ U k+2~ 2 = 1 Vi • 
1 

From (12) and the remark in the preceding paragraph, we have 
m 

V k + l + V k - l + V k - 3 + - - + V l , 2 ~~ 2 ^iVi ' 
1 

with m < k, R =• 1 and /?. + # . , , >- 1 for i = 1, 2, ... . , m - 2. Hm * i Mi+1 
Since both sides are in the proper form and are not identical, uniqueness 

is contradicted. Therefore v, . , > u. . . as asserted. 
k+1 k+1 

Now assume v, , > u, , • We shall show that this assumption 
also leads to a contradiction of uniqueness. If v, , , > u, , , then the 

unique representation of the integer 
k 

2 u. + 1 

has the form * 

k k+m 

(13) I u.+l = 1 0-v. with m > 2, ^ k + m = 1 and 0 ^ / 3 ^ > 1 

1 1 
for i = 1, 2, . . o , k+m-2. 

(For, if m < 2 in (13), then m = 1 since v , + 1 must certainly appear 

with non-vanishing coefficient. But 

k+1 
2 /3.v. > v, , , +u, , -hi, «+. . . +u, 9 > u, , , +u, , +u, ~+0 o . -hi, ? = Hi i k+1 k-1 k-3 1,2 k+1 k-1 k-o 1,6 

k 
= £ u.+l, so that (13) could not be valid.) 

1 
The foregoing argument also shows J3I__LI = 0 in (13); hence 

j3i = /9i , ? = 1 from the coefficient constraints, and 



3 

o r U k 2 

k 

1 
1 

Vk+2-

A N E W C H A R A C T E R I Z A T I O N O F 

k + m 

u.+l = 1 ft v. 
i * i l 

1 

= V k + 2 + U k + l " l 

F r o m C o r o l l a r y 

A{ 
II 

1, 

V k + 2 + U k + U k - 2 + -

k - I 

Vk+2 + 2 u i 
1 

we i n f e r (note 

+ 

V ] 

+ U T 

1 

, 2 : 

9 

, = uk> 

F e b r u a : 

t h a t 

try 

(14) v k + 2 < u k . 

Now, c o n s i d e r t h e p a r t i c u l a r i n t e g e r , N = v , ~ + v + v, ? + . . . + v , ?i 

w h i c h i s i n t h i s a d m i s s i b l e f o r m of (10) - (11) . 

( 1 5 ) V k+2 + V k + V k-2 + - ' ' + V 1 , 2 < u k + ( V U k - 2 + ' 

o r 

We h a v e 

• • + u l , 2 ) = 

= u k + u k + l " 1 

k 

-2 = 2 v. 
I 

1 

^ k - K T 1 

• N = v +V +V +D . . +V < U 
N k+2 k k - 2 1 , 2 - k+2 

T h u s N a l s o h a s a r e p r e s e n t a t i o n in a d m i s s i b l e f o r m i n v o l v i n g a t m o s t 

t he f i r s t k m e m b e r s of the s e q u e n c e { v . \ , and u n i q u e n e s s i s c o n t r a -

d i c t e d . 
T h e i n e q u a l i t y v, , , > u, , , , i s t h e r e f o r e u n t e n a b l e a n d w e h a v e ^ J k+1 k+1 

s h o w n v, , i = u, , , • T h e t h e o r e m t h e n fo l l ows i m m e d i a t e l y by i n d u c t i o n . 

T h u s , t he d u a l u n i q u e r e p r e s e n t a t i o n p r o p e r t y ( P r o p e r t y D) i s a 

p r o p e r t y en joyed on ly by the F i b o n a c c i n u m b e r s and i s t h e r e f o r e suf-

f i c i e n t to c h a r a c t e r i z e the s e q u e n c e / u . \ . 

A c k n o w l e d g e m e n t : I w o u l d l ike to a c k n o w l e d g e t he c o n t r i b u t i o n of P r o -

f e s s o r V e r n e r E . H o g g a t t , J r . , w h o s e c a t a l y t i c c o m m e n t s l ed to the 
t h e o r e m s of t h i s p a p e r . See a l s o a p a p e r by H . H. F e r n s [3] t h i s i s s u e . 
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SOME RESULTS CONCERNING POLYOMfNOES 

DAVID A. KLARNER 
University of Alberta, Edmonton, Alberta 

INTRODUCTORY REMARKS 
An n-omino is a plane figure composed of n connected unit 

squa res joined edge on edge. In the ea r ly nineteen hundreds , Henry 
Dudeney, the famous Br i t i sh puzzle expert , and the F a i r y Chess Review 
popular ized p rob lems involving n-ominoes which they r ep re sen t ed as 
f igures cut from checke rboa rds , Solomon Golomb seems to have been 
the f i r s t ma themat i c i an to t r e a t the subject se r ious ly when as a g rad-
uate student at Harvard in 1954, he published "Checkerboards and 
Po lyominoes" in the A m e r i c a n Mathemat ica l Monthly. Since 1954, 
s eve ra l a r t i c l e s have appeared (see References) ; in pa r t i cu la r , R„ C„ 
Read [9] and Mur ray Eden [2] have d i scussed the problem of finding or 
es t imat ing the number p(n) of n -ominoes for a given n. F r o m the i r 
r e su l t s it is now known that for l a rge n 

n , x n 
cx < p(n) < c 2 

where c, and c ? a r e ce r t a in positive constants g r e a t e r than 1. In 
the f i r s t pa r t of this paper we enumera te a subset of n -ominoes and 
provide an improved lower bound for p(n); la te r we d i scuss other 
p rob lems of this so r t and conclude with a brief exposit ion of p rob lems 
dealing with configurations of n -ominoes . 

MOSER'S BOARD PILE PROBLEM 

In the following it will be convenient to have ce r t a in conventions,, 
We say the region between y = n-1 and y = n is the n row and call 
a rec tangle of width one a s t r i p . The f i rs t square on the left in a s t r ip 
located in a row is called the ini t ial square of the s t r ip ; an n-omino is 
located in the plane when some square in the n-omino exactly covers 
a square in the plane la t t ice . The set of all incongruent n-ominoes will 
be denoted by P(n) and for convenience we think of the e lements of 
P(n) located in a r b i t r a r y regions of the plane. Ignoring changes in 
posit ion due to t r ans la t ions , each e lement of P(n) has eight or l e ss 

9 
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p o s i t i o n s w i t h r e s p e c t t o 90 r o t a t i o n s a b o u t t he o r i g i n and r e f l e c t i o n s 

a l o n g the x o r y a x e s ; t a k i n g two n - o m i n o e s to be d i s t i n c t if one c a n n o t 

be t r a n s l a t e d to c o v e r t he o t h e r , we find a n e w s e t S(n) f r o m P(n) 

by i n c l u d i n g r o t a t i o n s and r e f l e c t i o n s of n - o m i n o e s in P (n) in S(n) . 

T h e p r o b l e m w h i c h i s now to be d i s c u s s e d w a s p r o b a b l y f i r s t 

p o s e d by Leo M o s e r in p r i v a t e c o r r e s p o n d e n c e w i t h t he p r e s e n t a u t h o r ; 

l a t e r he p o s e d i t in a d i f f e r e n t f o r m a t the 1963 N u m b e r T h e o r y C o n -

f e r e n c e h e l d a t the U n i v e r s i t y of C o l o r a d o . E d e n [2] a l s o d i s c u s s e s 

t he p r o b l e m , but h i s r e s u l t s a r e no t a s c o m p l e t e a s t h o s e g i v e n h e r e . 

The p r o b l e m i s to e n u m e r a t e a s u b s e t B(n) of S(n) w h i c h c o n t a i n s 

n - o m i n o e s h a v i n g the p r o p e r t y t h a t t h e y c a n be t r a n s l a t e d in s u c h a w a y 

t h a t t h e y a r e e n t i r e l y in the f i r s t and s e c o n d q u a d r a n t s w i t h e x a c t l y 

one s t r i p in the f i r s t r o w w i t h i t s i n i t i a l s q u a r e a t t he o r i g i n a n d e a c h 

r o w a f t e r t h e f i r s t h a s no m o r e t h a n one s t r i p in i t . Such n - o m i n o e s 

m a y b e v i s u a l i z e d a s s i d e e l e v a t i o n s of b o a r d p i l e s c o n s i s t i n g of b o a r d s 

of v a r i o u s l e n g t h s w h i c h g e n e r a l l y h a v e not b e e n s t a c k e d c a r e f u l l y , 

s e e F i g u r e 1. 

M o s e r n o t e d t ha t if b(n) d e n o t e s the n u m b e r of e l e m e n t s in B(n) , 

t h e n 

(1) b(n) = X (a 1 + a 2 - l ) ( a 2 + a 3 - 1) . . . ( a . ^ + a. - 1) 

w h e r e the s u m m a t i o n e x t e n d s o v e r a l l c o m p o s i t i o n s a, + a ? . 0 . + a. = n 
of n . The r e l a t i o n in (1) c a n be e s t a b l i s h e d by the fo l lowing c o m b i -
n a t o r i a l a r g u m e n t . F o r e a c h c o m p o s i t i o n a , + a~ + , . . + a. of n 

° 1 Z I 
t h e r e i s a s u b s e t of B(n) c o n s i s t i n g of n - o m i n o e s w h i c h h a v e a s t r i p 
of a s q u a r e s in t he t r o w (t = 1, 2, . . . , i ) ; t he n u m b e r of n -
o m i n o e s in e a c h of t h e s e s u b s e t s i s 1 if i = 1 w h i c h c o r r e s p o n d s to 

t he v a l u e of t h e e m p t y p r o d u c t in t he s u m (in t h i s t h e r e i s a s t r i p n 

u n i t s long in t he f i r s t row) and (a , + a~ - 1) ( a ? + a~ - 1) . . . (a . , + 
+ a . - 1) if i > 2„ T h i s fo l lows s i n c e t h e r e a r e e x a c t l y (a^ , + a , - 1) l ., J t - 1 t 
w a y s to j o i n the s t r i p of a s q u a r e s in t he t r o w to the s t r i p of 

a , s q u a r e s in t he r o w be low and the t o t a l n u m b e r of w a y s to c o n n e c t 

up the s t r i p s to f o r m a n n - o m i n o wou ld be t h e p r o d u c t of a l l of t h e s e 

a l t e r n a t i v e s , , T h e s u b s e t s c o r r e s p o n d i n g to t he c o m p o s i t i o n s of n a r e 
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exhaustive and disjoint in B(n), so that b(n) is the sum of the number 
of e lements in each subsets which is (1). 

The re la t ion for b(n) given by (1) does not furnish a ve ry handy 
device for computing b(n), but as Eden has shown it is helpful in e s t i -
mat ing b(n). Rather than a t tempt to sum (1) by pure ly a lgebra ic 
manipula t ions , we re t a in the geomet r ic in te rpre ta t ion of the problem 
so that combinator ia l a rguments can be m o r e eas i ly applied toward 
finding a r e c u r s i o n re la t ion for b(n)Q 

To find a r e c u r s i o n re la t ion for b(n) we define subsets B (n) 
(r = 1, 2, . . . , n) of B(n) which contain n-ominoes with a s t r ip of 
exactly r squares in the f i r s t row and let b (n) denote the number 
of e lements in B (n). It is obvious that the subsets B (n) (r = 1, 2, 
. . . , n) a r e exhaustive and disjoint in B(n) s o t h a t w e have immedia te ly 

n 
(2) b(n) - X br(n) . 

r = l 

Bv definition of B (n), b (n) = 1. Consider the e lements of 
J n n B (n) with r < n; each e lement of B (n) cons is t s of a s t r ip of r r r 

squa res in the f i r s t row with some element of B(n-r) located in the 
rows above the f i r s t . The si tuation can be appra i sed m o r e concisely 
when one cons iders the number of ways an e lement of the subset B.(n-r) 
of B(n-r) can be at tached to the s t r ip of r squa res in the f i r s t row 
so that the n-ominoes formed will be an e lement of B (n). Clear ly 
this can be done in r + i - 1 ways, so that exactly (r + i - 1) b. (n-r ) 
of the e lements of B (n) have an element of B.(n-r) connected to the 

r i 
s t r ip of r squa res in the f i r s t row. Since the subsets B-(n-r) 
(i = 1, 2, . . . , n - r ) of B(n-r) a r e exhaust ive, disjoint subse ts , it 
follows that 

n- r 
(3) b (n) = 1 (r + i - 1) b . (n- r ) for r < n . 

i=l 

It wil l be seen p resen t ly that the re la t ions in (2) and (3) a r e 
enough to find the des i r ed r e c u r s i o n re la t ion for b(n). Before this 
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r e su l t can be given, we have to prove a few l e m m a s . 

Lemma 1: If n > 1, b (n) - b T(n-1) = b(n-r) 0 

r* r - 1 
Proof: Using (3) it is seen that 

n - r n - r 
br(n) - b r _ x ( n - l ) = 2 ( r+ i - l )b . (n - r ) - 2 ( r+i -2)b . (n-r ) 

i=l i=l 

n - r 
= 2 b . (n-r ) , 

i=l 

but according to (2), the las t exp res s ion is p r e c i s e l y b(n-r ) , so the 
proof is finishedo 

Lemma 2: If n > 1, b(n) = 2 b(n- l ) + b (n) - b ^ n - 1 ) . 

Proof: Using re la t ions for b(n) and b(n- l ) given by (2), it is seen 
that 

n n-1 
(5) b(n) - b (n- l ) = 2 b (n) - 2 b . (n- l ) 

i=l i=l. 

n-1 
= bx(n) + 2 jb.(n) - b . ^ n - l ) ! ; 

i=2 

but according to Lemma 1, b(n-i) can be subst i tuted for b.(n) - b. (n-1) 
i n the las t m e m b e r of (5) so that making this subst i tut ion and t r a n s -
posing -b (n - l ) from the f i r s t to the las t m e m b e r gives 

n-1 
(6) b(n) = bx(n) + 2 b(n-i) . 

i=l 

Now using re la t ions given by (6) for b(n) and b(n- l ) we have 

n-1 n-2 
(7) b(n) - b(n- l ) = b ^ n ) + 2 b(n-i) - b ^ n - 1 ) - 2 b ( n - l - i ) 

i=l i=l 
= b ^ n ) - b , ( n - l ) + b(n- l ) ; 
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the des i r ed r e su l t is obtained by adding b(n- l ) to the f i rs t and last 
m e m b e r s of (7). 

Lemma 3: t^ (n) = 4 b ^ n - 1 ) - 4 b ^ n - 2 ) + b ^ n - 3 ) + 2 b(n-3). 

Proof: Taking r = 1 in (3) gives an express ion for b, (n); namely, 

n-1 
(8) bx(n) = X i b . ( n - l ) . 

i=l 

Using re la t ions for b, (n) and b, (n-1) given by (8) and sub-
stituting b(n-2-i) for b . + , ( n -1 ) - b.(n-2) and b(n- l ) for 

n-1 
2 b . (n- l ) 
i=l 

when they occur , it is seen that 

n-1 n-2 
(9) bx(n) - b ^ n - 1 ) = 2 i b . (n - l ) - 2 i b.(n-2) 

i=l i=l 

n-1 n-2 n-2 
= 2 b (n-1) + 1 i b . + 1 ( n - l ) - 2 i b.(n-2) 

i=l i=l i=l 

n-2 
= b(n- l ) + 2 i ) b . + 1 ( n - l ) - b .(n-2)j 

i=l 

n-2 
= b(n- l ) + 2 i b(n-2-i) . 

i=l 
Adding b, (n-1) to each m e m b e r of the equality and dropping the 

las t t e r m in the sum in the r ight m e m b e r of (9) (since b(0) - 0) a new 
re la t ion for b, (n) is obtained: 

n -3 
(10) b ^ n ) = b ^ n - 1 ) + b(n- l ) + 2 (n-2-i) b(i) . 

i=l. 
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This t ime using express ions for b, (n) and b , ( n - l ) givenby(lO) 
and again wri t ing a re la t ion for b, (n) - b (n-1), one obtains after a 
few a lgebra ic manipulat ions 

n-1 
(11) b ^ n ) = 2^(11-1) - b (n-2) - 2b(n-2) + 1 b(i) . 

i=l 

Repeating the same p rocedure as before only this t ime using ex-
p r e s s i o n s for b, (n) and b ^ n - l ) given by (11) yields 

(12) bx(n) = Sb^n-1 ) - 3bx(n-2) + ̂  (n-3) + b(n-1) - 2b(n-2) + 2b(n-3); 

but by Lemma 2, b(n- l ) - 2b(n-2) = b , ( n - l ) - b, (n-2) so that subs t i -
tuting the la t te r quantity for the fo rmer in (1 2) gives the des i r ed r e su l t . 

Theorem 1: b(l) = 1, b(2) = 2, b(3) = 6, b(4) = 19, and 
b(n) = 5b(n- l ) - 7b(n-2) + 4b(n-3) for n > 4. 

Proof: The values of b(i) (i = 1,.2, 3, 4) can be computed d i rec t ly 
from (1) or by taking b(l) = b, (1) = 1 the re la t ions in (2) and (3) can 
be used together for the same purpose . Lemmas 2 and 3 provide the 
l inear difference equations involving b, (n) and b(n) which can be 
used to find 

(13) b(n) = 5b(n- l ) - 7b(n-2) + 4b(n-3) , 

(14) bx(n) = 6b (n-1) - 12b (n-2) + l l b (n -3 ) - 4b(n-4), 

which completes the proof. 
The auxi l ia ry equation for (13) has one r ea l root g r e a t e r than 3„ 2 

so that for n sufficiently large 

(15) b(n) > ( 3 . 2 ) n . 

We conclude from e a r l i e r r e m a r k s that B(n) contains at least 
b(n)/8 incongruent n -ominoes , so that we can a l so rep lace b(n) in 
(15) with p(n). 

Having disposed of the m o r e difficult p roblem f i rs t , we now turn 
at tent ion to solving an e a s i e r and re la ted problem which was posed and 
solved by Mose r . 
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Let C(n) be the subset of B(n) which contains all n -ominoes 
having the p rope r ty that the init ial square of the s t r ip in the k row 

st is no fur ther to the left than the ini t ial square of the s t r ip in the (k-1) 
row. Recal l from the definition of B(n) that the ini t ial square of the 
s t r ip in the f i r s t row is always located at the origin. Using a combi-
na tor ia l a rgument s imi l a r to the one provided for the proof of (1), it is 
easy to prove 

(16) c(n) = . 2 a. a 2 . . . a. ^ 
a, +a~+. ... +a.=n 1 Z i 

where c(n) denotes the number of e lements in C(n). Applying the 
methods he gave in [8] , Moser was able to show from (16): 

st Theorem 2: c(n) is equal to the (2n-l) Fibonacci number . 

We will give an a l t e rna te proof using the same idea used in the 
proof of Theorem 1. Let C.(n) be the subset of C(n) which contains 
al l n -ominoes having s t r ips of exactly i squares in the f i rs t row. 
Clear ly the subsets C.(n) (i = 1, 2, . „ . , n) a r e exhaustive and d i s -
joint in C(n) so that lett ing c.(n) denote the number of e lements in 
C.(n) we have 

i 

n 
(17) c(n) = 2 c.(n) . 

i=l 

Next, it is easy to see that c (n) = 1, and for i < n, c.(n) = i c(n-i) 
since each element.of C(n-i) can be joined exactly i ways to the s t r ip 
of i squa res in the f i r s t row so as to form an e lement of C.(n); the 
n -ominoes thus formed obviously compr i se all the e lements of C.(n). 
Substituting the express ions just found for c.(n) into (17) we obtain 

n-1 
(18) c(n) = 1 + 2 i c(n-i) . 

i=l 

Using express ions for c(n) and c (n- l ) given by (1 8) we can com-
bine the sums in c(n) - c (n- l ) to find 
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n-1 
c(n) - c (n - l ) = £ c(i) , 

i=l 

or 

n-1 
c(n) = c (n - l ) + £' c(i) . 

i=l 

Now using express ions for c(n) and c (n- l ) given by (19) we can 
combine the sums in c(n) - c (n - l ) and deduce 

(20) c(n) = 3 c (n - l ) - c(n-2) . 

It is easy to prove that the Fibonacci numbers with odd indices 
satisfy the r e c u r r e n c e r e l a t i on in (20). Also, using (16) we find c(l) = f, 
and c(2) = f~ (f. denotes the i Fibonacci number as usual) so that 
the sequences {c.} and {f?. ,} mus t be ident ical . Edi tor ia l Note: 
See H-50 Dec. 1964 and note notational di f ferences . 

N-OMINOES ENCLOSED IN RECTANGLES 

R0 C. Read [9] has t r ea t ed the problem of enumera t ing the n-
ominoes which "fit" into a p x q rec tang le . An n-omino is said to fit 
in a p x q rec tangle if it is the sma l l e s t rec tangle in which the n-omino 
can be drawn with the s ides of its squa res pa ra l l e l to the s ides of the 
rec tang le . Read ' s methods give exact counts of the n-ominoes in the 
se ts considered; however, it is poss ib le to obtain lower bounds for these 
number s with less effort using s imi l a r i deas . To i l lus t r a t e we will 
consider the problem of es t imat ing from below the number s?(n) of 
n -ominoes which fit in a 2 x k rec tangle ; we call this set of n -ominoes 
S?(n). Two e lements a r e dis t inct if they a r e incongruent, so S~(n) is 
a subset of P(n). 

F i r s t , we observe that each e lement of S?(n) can be located en-
t i r e ly in the f i rs t quadrant in rows 1 and 2 with a square Located at the 
or igin. If each e lement of S?(n) is s i tuated in the way jus t desc r ibed 
in e v e r y w a y poss ib le , a new set U(n) is obtained where two e lements 
a r e dist inct if one does not exactly cover the other0 Clear ly , u(n), the 
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number of e lements in U(n), is less than or equal to 4s ? (n ) . Now 
U(n) can be divided into two se ts U"(n) and U'(n) consist ing r e s p e c -
tively of n -ominoes having and not having a square in the second row 
at tached to the square at the or igin. Let the number of e lements in 
U'(n) and U"(n) be u'(n) and u"(n) respec t ive ly . Now it is easy to 
see that 

(21) uf{n) = u ' ( n - l ) + u" (n - l ) 

since eve ry e lement of U"(n-1) and U ' (n- l ) can be t r ans la ted a unit 
to the right of the or igin and a square located at the origin to give an 
e lement of U'(n) and every e lement is obviously obtained in this fash-
ion. It is a lso easy to prove 

(22) u"(n) = 2u'(n-2) + u"(n-2) 

since every e lement of U"(n-2) and every e lement of U'(n~2) and its 
hor izonta l ref lect ion can be t r ans l a t ed a unit to the right of the origin 
and two squa re s added (one at the origin, the other at tached above it) 
to form eve ry e lement of U"(n). 

Using (21) and (22) we can find 

(23) u ' (n ) = u ' ( n - l ) + u ' ( n - 2 ) + u ' ( n - 3 ) 

a n d 

(24) uM(n) = u " ( n - l ) + u"(n-2) + uM(n-3), 

so that it becomes evident from u(n) = u'(n) + u"(n) that 

(25) u(n) = u (n - l ) + u(n-2) + u(n-3) . 

Since u(n)/4 < s?(n) s (25) provides a re la t ion for es t imat ing 
s ? (n ) . The same p rocedure can be used for es t imat ing the number of 
e lements in S,(n) consis t ing of n -ominoes which fit in k x q r ec t ang le s . 

N-OMINO CONFIGURATIONS 

P r o b l e m s involving n-omino configurations have enjoyed a g rea t 
popular i ty among ma themat i ca l r e c r ea t i on i s t s [4] , [6] . We plan to 
devote a smal l amount of space to giving an exposit ion of p rob lems 
which may be of i n t e r e s t to the mathemat ic ian . Genera l ly these p rob lems 
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have the following form: given a region of a r e a A and a set of n-
ominoes having a combined a r e a a lso A; can one cover the region with 
the s e t ? 

We say a set exact ly covers a region when the re is no over lap 
and no pa r t of the region is left uncovered. It would be in te res t ing to 
know n e c e s s a r y conditions that an n-omino be such that an unl imited 
number of copies could be used to exactly cover the plane0 A re la ted 
problem is to de te rmine n e c e s s a r y conditions that some number of 
copies of a given n-omino could be used to exactly cover a r ec tang le . 
Thus, some eas i ly proved n e c e s s a r y conditions a r e given by: 

(i) if an n-omino has two lines of s y m m e t r y and a set of these n-
ominoes exactly covers a rec tangle , then the n-omino is i tself a 
rec tang le . 

(ii) if an n-omino fits in a p x q rectangle and covers diagonally op-
posi te c o r n e r s of the rec tangle , and a set of these n -ominoes can 
be used to exactly cover a rec tangle , then the n-omino is i tself 
a rec tang le . 
A rec tangle exactly covered with a set of congruent n -ominoes is 

min imal when no rec tangle of sma l l e r a r e a can be exact ly covered with 
a set of the same n-ominoes containing fewer e l e m e n t s . It is easy to 
prove that the re is an unl imited number of min ima l rec tang les involving 
e i ther two or four n -ominoes . F igu res 2, 3, 4 and 5 show ins tances of 
min ima l rec tang les involving m o r e than four n -ominoes . Are the re 
infinitely many cases of min ima l rec tang les which involve m o r e than 
four n -ominoes (no two cases involving s imi l a r n-ominoes) ? Are the re 
min ima l rec tangles involving an odd number of n -ominoes which a r e not 
themse lves r e c t a n g l e s ? 

Note that the configurations depicted in F igures 1, 2, 3 and 4 a r e 
s y m m e t r i c with r e spec t to the cen te r s of the r ec t ang le s . Can this a l -
ways be done in min imal r e c t a n g l e s ? 

GENERALIZATIONS OF N-OMINOES 

In [5] , Golomb suggests that one could t r y to de te rmine or e s t i -
mate the number of dis t inct ways n equi la te ra l t r i ang les or n regu la r 
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hexagons could be simply connected edge on edge. Using 1, 2, 3, 4, 

5 or 6 hexagons 1, 1, 3, 7, 22 or 83 combinations respectively result; 

so far no upper or lower bounds for the terms of this sequence have 

been given. 

There is no reason why regular k-gons could not be used for 

cells in such combinatorial problems; overlapping of cells could be 

permitted so long as no cell exactly covered another. Thus, where 

at most four squares or three hexagons might have a vertex in com-

mon, at most ten pentagons might have a vertex in common. The num-

ber of distinct ways to join two regular k-gons is one; the number of 

ways to join three regular k-gons is the greatest integer in k/2. Per-

haps it would not be difficult to determine in how many ways four or 

five regular k-gons could be joined together edge on edge so that dis-

tinct simply connected figures are formed. 

Still another generalization of n-ominoes which seems not to 

have been considered is joining squares together edge on edge in three 

or more dimensions. The number of ways of joining k cubes face on 

face in three dimensions (including mirror images of some pieces) is 

1, 1, 2, 8, 29j and 166 for k = 1, 2, 3, 4, 5, and 6 respectively; no 

bounds have been given for the terms of this sequence nor has much 

been done in a serious vein connected with the packing of space with 

these three dimensional analogues of polyominoesD 
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ON THE REPRESENTATION OF INTEGERS AS SUMS 
OF DISTINCT FIBONACCI NUMBERS 

H.H. FERNS 
University of Victoria, Victoria, British Columbia 

This paper gives an e l emen ta ry d iscuss ion of the problem of ex-
p ress ing an a r b i t r a r y positive in teger as a sum of dist inct Fibonacci 
n u m b e r s . The r ecu r s ive re la t ion 

(1) F 4.7 = F .1 + F 
n+2 n+1 n 

together with F , = F~ = 1 is used as the definition of Fibonacci num-
b e r s . No use will be made of F , in any rep resen ta t ion . 

As an example consider the integer 29. It may be expressed as 
a sum of Fibonacci numbers in the following ways: 

29 = F + F , = F + F +F = F + F + F +F v *8 6 8 5 4 8 5 3 2 

= F + F , + F +F = F + F , + F +F +F *7 6 5 4 7 6 '5 ̂ 3 2 

F r o m this example it immedia te ly becomes apparent that we 
shall need to impose some "ground r u l e s " if we a r e to differentiate 
between the var ious types of r ep re sen t a t i ons . This leads us to the 
following definitions. 

A rep resen ta t ion will be called min imal if it contains no two con-
secutive Fibonacci n u m b e r s . 

A rep resen ta t ion is said to be maximal if no two consecutive 
Fibonacci numbers F. and F . , , a r e omitted from the r e p r e s e n t a -

l i+l 
tion, where F~ L̂. F . < F. ,, 5L F and F is the l a rges t Fibonacci 2 I i+l n n to 

number involved in the r ep resen ta t ion . 
Thus Fft + F/ is a min imal r ep resen ta t ion of the in teger 29 

while F^+F/ +F,-+F0+F~ is a max imal r ep resen ta t ion . 7 6 5 3 2 
It follows that a max imal (minimal) r ep resen ta t ion may be t r a n s -

formed into a min imal (maximal) one by the applicat ion or repea ted 
applicat ion of (1). 

We shall f i r s t r e s t r i c t our attention to min imal r ep r e sen t a t i ons . 
As an i l lus t ra t ive example of min imal r ep resen ta t ions we con-

s ider the r ep resen ta t ions of all in tegers N such that 
21 
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F ? < N < F 8 

Thus N may be any one of the eight in tegers 13, 14, 15, 16, 17,18, 
19, or 20. Now the smal les t in teger in this set, namely 13, cannot be 
r ep re sen ted by the Fibonacci numbers F ? , F~, F ,, F,- and F / , since 
the l a rges t in teger under the min ima l r ep resen ta t ion rule which they 
can r e p r e s e n t is 

F 6 + F 4 + F 2 = 1 2 

Hence to r e p r e s e n t all in tegers of this set r equ i r e s F ? , F~, F ., 
FJ-J F / and F ? . 

By t r i a l we obtain the following represen ta t ions 

13 = F ? ; 14 = F ? + F 2 ; 15 = F ? + F 3 ; 16 = F ? + F 4 ; 

17 = F - + F . + F , ; 18 = F^+F^; 19 = F„+F._+F9; 7 4 2 7 5 7 5 2 

20 = F ? + F 5 + F 3 . 

One of these in tege r s , namely 13, r equ i r e s only one Fibonacci 
number to r e p r e s e n t i t . Four of them, namely, 14, 15, 16 and 18 r e -
quire two and th ree of them 17, 19, and 20 requ i re t h r e e . 

Let U denote the number of in tegers N in the range F ^. 
n, m to to n 

N<F ,, which requ i re m Fibonacci numbers to r e p r e s e n t them. 
Then 

U 7 f l = l ; U 7 > 2 = 4 ; U 7 i 3 = 3 

It is a lso evident that 
U 7 , 1 + U 7 , 2 + U 7 , 3 = F 8 - F 7 = F 6 

Now it is known (1) that 

U = 0, if m > [ 2 ] 
n, m L 2 J 

Thus we may wr i te 

n 
1 U . = F ,. - F = F . n, i n+1 n n-1 

i=l 
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Table I gives values of U for n = 1, 2, 3, . . . . 8 ; m = 1. 
to n, m ' 

2, 3, . . . , 4 . 
We now d i scuss some p rope r t i e s of the function U 

n, m 
Consider in tegers P, Q and R, defined by the following re la t ions 

F < P < F ^ . ; F < Q < F ; F ~ < R < F , 
n n+1 n-1 n n-2 n-1 

Thus 

(2) P = F n + P f p = 0 , 1 , 2 , ...-," F n _ r l 

(3) n - 1 ' H ' H " " ' " " » • • • • • • x
n - 2 

(4) R - F n _ 2 + r , r = 0 , 1 , 2 , . . . , F ^ - l 

We a r r a n g e the in tegers P in two se ts (A) and (B) as follows. 

(A) P = F n + P l , P l = 0 , 1 , 2 , . . . , F n _ 2 - 1 

(B) P = F n + p 2 , pz= F n . 2 , F n _ 2 + l , F n _ 2 + 2 F n _ 2 + ( F n _ r F n _ 2 - l ) 

= F n _ 2 + r , r = 0 , 1 . 2 , . . . , F ^ - l 

If k is a posit ive integer ,(1) impl ies that 

Hence for the set (A) 

• F + k = F _ + k + F ~ n n-1 n-2 

F- + p, = F , + p, + F . n ^1 n-1 r l n-^ 
P = F , + q + F 9 n-1 ^ n-2 
P = F + q n 

Comparing the las t equation with (2) and (3) we see that the r e -
presen ta t ion of an integer Q may be converted into a r ep resen ta t ion 

• of anin tegex P of the set (A) by replacing F , in the fo rmer by F . 
By this operat ion we m a y d e r i v e the r ep resen ta t ions of F 7 of 

the in tegers P from the r ep resen ta t ions of the in tegers Q. Der iva-
tion of the r ep resen ta t ions of P in this manner leaves the number of 
Fibonacci numbers unchanged. 
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We have now to consider the in tegers P in the set (B). 
We have 

P = F +p7, p~ = F _, F ? + l , F ?+2, . . . , F _+(F . - F 7-l) n 2 ^2 n-2 n-2 n-2 n-2 n-1 n-2 

= F +F ^+r, r = 0, 1, 2, . . . , F . - 1 n n-2 n-3 

= ' F +R by (4) 

The las t r e su l t impl ies that the r ep resen ta t ions of the in tegers 
P in the set (B) may be der ived from the r ep resen ta t ions of the in te-
g e r s R by adding F to each of the la t te r . This operat ion i n c r e a s e s 
by one the number of the F . in the r ep resen ta t ion of P over that of 
R from which it is der ived. 

By these two operat ions the r ep resen ta t ions of the F , in te-
ge r s in F <L P < F -, . can be der ived from the r ep re sen ta t ions of 6 n n+1 ^ 
the F ~, in tegers in F , £ Q < F and the F 0 in tegers in n-2 & n-1 n n -3 to 

F 7 < Q < F . . n-2 n-1 
The following equations follow from the above d iscuss ion: 

u = u , +u ~ , (n > 2, m > 1) 
n, m n - l , m n-2 , m-1 

u = 0 for 2m > n. 
n, m 

These equations indicate that the u may be re la ted to the 
^ n, m J 

binomial coefficients ( ) , which have the following p r o p e r t i e s : 

( 5 ) = 0 for k > r . 

Letting U = ( , ), these re la t ions for t h e ( , ) become the r e -
to n, m \ m -1 / ' v k ' 

lations (5) with the U subst i tuted for the u . Since (5) makes 
n, m n, m 

it possible to calculate any u with n > 2 and m > 1, these r e -
r * n, m , 

lations c h a r a c t e r i z e the u and s o u = U = ( , j for 
n, m n, m n, m \ m-1 / 

n > 2 and m > 10 
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The r e a d e r is r e f e r r e d to the paper "A Combinational P r o b l e m " 
by Lafer and Long in the November 1962 i ssue of the Amer ican Math-
emat ica l Monthly for an exposi tory account of the inductive and deduc-
tive aspec t s of a s imi l a r p rob lem. [3] 

The proof of this is left to the r e a d e r . 
We turn now to a d i scuss ion of max imal r ep resen ta t ion of in te -

ge r s as sums of Fibonacci n u m b e r s . In this d i scuss ion we shall use 
a different technique,. one that could have been used equally well in the 
d i scuss ion of min imal r ep re sen t a t i ons . 

As an example we cons ider the in tegers N such that F -1 <. 
N < F 0 - l . These a r e , 13, 14, 15, 16, 17, 18, 19 and 20. The r ea son o 
for using the range F -1 <, N < F instead of F ? < N < F g will 
become evident l a te r . 

Bear ing in mind the definition of max imal r ep resen ta t ion we 
der ive the following r ep resen ta t ions 

12 F6+F4+F2; 13 = F6+F4+F3; 14 = F 6 + F 4 + F 3 + F2; 

15 = F6+F5 +F3; 16 = F ^ F ^ + F ^ 17= F ^ + F ^ ; 

18 = F6+F5+F4+F3; 19 F 6 + F 5 + F 4 + F 3 + F 2 

These eight r ep re sen ta t ions may be wr i t t en compact ly in the 
following form. 

12 

13 

14 

15 

16 

17 

18 

19 

0 

0 

0 

1 

1 

1 

0 

0 

1 

1 

1 

0 

1 

1 

1 

1 

0 

1 

1 

1 ) 

o ) 

1 ) 

o ) 

1 ) 

1 ) 

o ) 

1 ) 
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In this display we have used the b inary digits in conjunction with 
Fibonacci numbers denoting place va lues . It should be noticed that 
with this scheme two ze ros cannot be in adjacent p laces in max ima l 
r ep resen ta t ion . For example (. . . 100. 0 . ) mus t be rep laced by 
( . , . 0 1 1 . . o ) since F . = F . , + F . o0 Also the Fibonacci number s de-

1 i - l i - 2 

noting the posi t ional values a r e a r r anged in ascending o rde r from the 
r ight to left beginning with F ? . 

We now consider the genera l c a s e . Let N be an in teger defined 
by 

F -1 <. N < F , , - 1 n n+1 

Let V denote the number of in tegers N in this in terva l which 
n, m ° 

r equ i r e m Fibonacci numbers to r e p r e s e n t them in max ima l r e p r e -
sentat ion. 

Thus for the i l lus t ra t ive example given above 
v = 3* V = 4 - V = 1 
v 7 , 3 ' 7 ,4 ' V7, 5 

Also 

V +F +V = F - F = F , = 8 
V 7 , 3 7 ,4 V 7 , 5 *8 7 6 

The l a rges t in teger in the in te rva l F -1 < N<F ^ , - 1 is F ^ , - 2 & & n n+1 n+1 
and since (2) 

n-1 
2 F . = F , ? - 2 ^ 1 n+2 

it follows that 

i=2 

F -2 = (111. . .11) (n-2 digits) 

in which no ze ros appear and in which the left hand posi t ional value is 
F , . This explains the r ea son for taking the upper bound of N to be 
F , , - 1 instead.of F . , . n+1 n+1 

The sma l l e s t in teger in the range in quest ion is F -1 and since 
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n-2 

V F. = F -2 < F -1 i n n 
i=2 

it follows that there must be a "one" in the first (left hand position) de-

fined by F , . Further since (2) 
J n-1 v ' 

F0+F/1+F,+. . . +F = F ,, (n even) 
2 4 6 n n+1 ' 

FQ+F-+F„+. . . +F = F M (n odd) 
3 5 7 n n+1 

it follows that the smallest integer in the range in question is indicated 

by 

(1010. . . 10) or (1010...101) 

according as n is odd or even. 
From these observations we conclude that 

/ m > n- 2 or n < m+2 

V = 0 if 
n ' m ~ \m < p ^ ] or n>2(m+l 

n-2 

I V . = F X 1 -F = F . 
n, I n+1 n n-1 

• n - 1 
i «-[¥] 

Table II gives values of V for n = 2, 3, . , . I 2 ; m ~ l s 2, . , . , io . 

We now establish the recursive relation 

(6) V • ' = V . ,+V 9 , 
K ' n, m n - l , m - l n-2,-m-l 

Consider integers P, Q and R defined by 

F -1 < P < F , . -1 n n+1 

F .• - 1 <- Q < F - 1 n-1 n 

F 0 - l < R < F . -1 n-2 n-1 

The Fibonacci positional representation of the integers Q are of 

the type 
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F F F F 
n-2 n -3 n -4 " 2 

Q = ( 1 a b . . . c ) 

Adding F , to each integer Q will produce F _ in tegers 
& n-1 ° r n-2 ° 

all of which will be within the in te rva l 
F , + F , - l ^ . Q + F , < F _+F -1 . n-.l n-1 n-1 n-1 n 

This is equivalent to 

F ,, - F +F . -1 < Q + F . < F ,. -1 n+1 n n-1 n-1 n+1 

F X 1 - F , - F 7 + F , - l < Q + F ! < F , , - 1 n+1 n-1 n-2 n-1 n-1 n+1 

F _F -1 < Q + F < F -1 
n+1 n-2 - W n-1 n+1 

F +F . - 1 C Q + F . < F , . - 1 n n-3 n-1 n+1 

These F 0 in tegers Q + F , a r e all in the in te rva l F -1 < P < 
n-2 ° n-1 n 

F , - 1 . Their posi t ional r ep resen ta t ion takes the form 

n-1 n-2 n-3 n -4 2 
Q + F . = ( 1 1 a b ' . . .. c ) 

n-1 
Hence the r ep resen ta t ions oi F ? of the in tegers P may be 

der ived from the in tegers Q by crea t ing an additional posi t ion defined 
as F , . n-1 

The F « in tegers R have posi t ional r ep resen ta t ions of the 
form 

F . F A F . . . . F 7 n -3 n -4 n-5 2 
R = ( 1 d e . . . f ) 

Adding F , to each of these F 0 in tegers will r e su l t in in tegers to n-1 n -3 ° ° 
all in the in te rva l 

F , + F „- l < R + F , < F , + F . - 1 n-1 n-2 n-1 n-1 n-1 

F -1 < R + F . < F _L1 - F 0 - l n n-1 n+1 n-1 
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That i s , these F « in tegers a r e al l within the in terval F -1 < P < 
n-o n 

F . - 1 . Each of them will have r ep resen ta t ions of the form 

n-1 n-2 n-3 n-4 n-5 ° e o 2 
R + F . n-1 

Hence the r ep resen ta t ions of F 0 of the in tegers P mav be 
r n -3 & J 

obtained from the r ep resen ta t ions of R by adding on the left two pos i -
tional values namely F , and F ~. 

J n-1 n-2 
Since the f i rs t operat ion r e su l t s in a r ep resen ta t ion which has a 

"one" in the second (from the left) place while the second operat ion 
gives a r ep re sen ta t i on with a ze ro in that place the two rep resen ta t ions 
a r e disjoint . Thus the re is no overlapping and all in tegers P a r e a c -
counted for by these two opera t ions . 

This completes the proof of (6). 
It is readi ly verified that 

(7) v = ( m -) 
x . n, m Vn-m-2 / 
sa t isf ies the r e c u r s i v e re la t ion (6). 

F r o m (7) we find that 

2(m+l) 
X v ^ . ( £ ) • ( ? ) • ( » ) + . . . • ( » ) 

i=m+2 

Also from the pa rag raph following (5) and (7) we see that 
V = U 

n. m n, n - m - 1 
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Table I 
Values of U n = 1, 2, . . . , 8 m == 1, 2, . . . , 4 

F e b r u a r y 

1 " Km] 
F , I N ^ ' F , j 1 

[ I L | 

PFTYN < F ~r i 
2 i 1 rv3 < N < Yp 

\ F , S N < F c 
1 4 

F 5 1 N < F 6
 1 

F 6 " l N < F 7 

| F 7 i N C F 8 ' 

fFgVN < F / 

3 

4 

5 

6 

7 

: 8 

1 1 2 j -3 | 4 

_ u 4—X J 0 ! 0 | 0 | 0 j 

1 1 
1 

° 
0 

r 1 1 1 
j -

o I 
0 

0 

2 j 0 

l"j 3] 1 

rTTrtr 
j | 5 | 6 

i 1 

0 

0 | 

0 

0 

0 

0 

! l ! 
I ' 

Values of V 
Table II 

n = 2, 3, 4, . . . , 12; m = 1, 2, 3, . . . , 10 

3 4 5 6 8 10 

F 2 - l < N < F 3 - 1 2 0 0 0 \ 0 0 J 0 0 0 0 

F Q -1 I N < F , - l \ 3 
D 4: J 

1 I 0 j 0 I 0 0 0 {• 0 ) 0 
! S \ 

F . - l I N < F _ - 1 
4 D 

F , - 1 £ N < F , - l 5 o 

4 1 j 1 S CM 0 0 I 0 o I o I o j 
0 1 0 o i o i o 

F 6 - l 1 N < F -1 6 I 0 1 I 3 | 1 0 0 1 0 

F ? - l <_ N < F g - l 0 I 3 

F 8 - l £ N < F 9 - 1 0 | 0 j 1 i 6 

4 1 
— I i_ 

o s o I o 

0 0 0 

F 9 - 1 < N < F 1 0 - 1 | 
I 

0 | 0 j 4 J 10 • j 6 
X 

i o 
- — . - 1 — ~ 
10 j 15 

5 | 20 
\ 

1 15 j 

^O"1 ^ N ^ l l - 1 ) 1 0 1 ° 
F1 -1 1 N < F 1 7 - l [ i l l 0 

F _ - l < N < F 1 0 - l | 12 | 0 12 13 

0 I 0 J 1 

T{ 0 f 0 
0 * 0 ) 0 

i x 

l 0 

21 j 8 t 1 

N. B. The en t r i e s in the ve r t i ca l columns a r e rows of PASCAL'S 
a r i thme t i c t r iangle so that the table may be eas i ly extended. 

XXXXXXXXXXXXXXX 



ON A GENERAL FIBONACCI IDENTITY 

JOHN H. HALTON 
University of Colorado, Boulder, Colorado 

1. The Fibonacci sequence is defined by the recurrence relation 

< L > Fn+2 = F n + l + F n • 

together with the particular values 

(2) FQ = 0, F1 = 1 . 

It is easily verified that the unique solution'1' of (1) and (2) is given by 

(3) F n = (a11 - pn)/(a - p) , 

where a and (3 are the roots of the equation 

(4) 
namely 

(5) 

(4) x2 = x + 1 

1 ( 1 + ^5), p = 1 ( 1 - /5 ) 

The sequence is thus defined for all integers n, positive or negative 

or zero. From (1) and (2), we infer that (3) takes integer values for 

all ns and we observe, by (3) and (5), that 

(6) F = (- l)n + 1F . 
x ' -n n 

This sequence and its generalizations have been the subject of a 

vast literature, and a very large number of identities of different kinds, 

involving the Fibonacci numbers, can be demonstrated. It is the pur-

pose of this paper to show how a considerable body of these may be ob-

tained as particular cases of a single identity. 

Direct substitution shows that (3) is a solution of (1) and (2), If F' 

were another solution, f = F - F1 would satisfy a relation (1), with 
n n n J v " fA - f1 = 0. Induction on n now shows that f = 0 for all n, so that 0 1 n 

(3) is the unique solution, as stated. 

31 
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2„ We beg in by de f in ing t h e func t i on 

(7) S n (n) = F + F , . - F , 9 . x ' O n n+1 n+2 

Then , i m m e d i a t e l y , by (1), we s e e tha t , for a l l i n t e g e r s n, 

(8) SQ(n) = 0 . 

Now c o n s i d e r the func t ion 

(9) S, (m, n) = F F + F , . F , . - F , , . . 
1 m n m+1 n+1 m+n+1 

T h e n , by (1), fo r a n y m a n d n, 

(10) S ^ m + 1, n) = S ^ m , n) + S ^ m - 1, n) . 

A l s o , by (1), (2), (7), and (8), we h a v e t h a t 

S L (0 , n) = F n + 1 - F n + 1 = 0 

(11) 

a n d { S ^ l , n) = SQ(n) = 0; 

w h e n c e (10) y i e l d s , by u p w a r d and d o w n w a r d i n d u c t i o n on m , t h a t , fo r 
a l l i n t e g e r s m and n, 

(12) S j f m , n) = 0 . 

Nex t c o n s i d e r the func t ion 

(13) S , ( r , m , n) = F F - ( - l ) f ( F , F , - F F , , ) . v ' 2 X ' m n * ' v m + r n+ r r m + n + r 

A g a i n a p p l y i n g (1), we s e e t h a t 

(14) S2( r + 1, m , n) = S ( f - 1, m , n+2) - S2( f, m , n + 1) . 

Now, fo r a n y m o r n, by (2), (9), and (12), 

S o (0 , m , n ) = F F - F F = 0 2 ' m n m n 
(15) 

a n d f S ? ( l , m , n) = S, (m, n) = 0 

We m a y a l s o no t e t h a t , fo r a n y f ixed n, (10) i s a r e l a t i o n of t he f o r m 

(1) . T h u s , a s i n t h e p r e v i o u s f o o t n o t e , we ge t (12), fo r a l l m a n d n . 
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Thus, by upward and downward induction on r in (14), ' we find that, 
for al l i n t ege r s r , m, and n, 

(16) S2(r , m, n) = 0 . 

Final ly cons ider the function (with k > 0) 

k 
(17) S~(k, r , m, n) = F k F - {- l ) k f 1 ( k ) ( - l ) h F ^ F k T h F ,. ,, 

3 m n xn,x ' r f+m n+k r+hm 

h=0 

It is well known that 
(18) <h > = 0 + ( h- l } 

and 

(19) (£) = 0 when h< 0 or 0 < k < h . 

Thus we can show, by (13), (16), (18), and (19), that 

(20) S3(k + 1, r , m, n) = ' F m S 3 ( k , r, m, n) . 

Also, by (13), (16), (17), and (19), 

S«(0, r , m , n) = F - F = 0 3 n n 
(21) 

and J S~(l, r , m, n) = S^(T3 m, n) = 0 

Thus, by upward induction on k in (20), we get that, for al l i n t ege r s 
r, m, and n, and all in tegers k 2 0, 

(22) S3(k, rs m, n) = 0 

We observe that, while the inductive a rgument leading to (12) a s s u m e s 
an a r b i t r a r i l y chosenand fixed n; the cor responding a rgument yie ld-
ing (16) a s s u m e s , at each step, that (16) holds for a consecutive pai r 
of values of r , an a r b i t r a r y fixed value of m, and al l values of n. 
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T h i s i s t he g e n e r a l i d e n t i t y p r o m i s e d a b o v e : 

(23) FkF = ( - D k r s (5(-i)hF>^:h F +v +. L 
m n x ' vh / v ' f r + m n + k r + h m ? h=0 

3 . We m a y now look a t s o m e of the i d e n t i t i e s w h i c h a r e o b t a i n e d a s 
p a r t i c u l a r c a s e s of (23) . On the left of e a c h i d e n t i t y be low, t h e v e c t o r 

(k, r , m , n) i s s h o w n . In s o m e c a s e s , t he i d e n t i t y (6) i s u s e d to r e -

m o v e n e g a t i v e s u b s c r i p t s . 

k 
(24) (k, r , - m , - n ) : F k F = 2 ( k ) ( _ 1 } ( m - 1 M k - h ^ k - h x ' x ' ' ' ' m n ** V x ' f r ~ m n - k r + h m 

h=0 

/oc \ /i • i \ i-k „ v /^\ / i x ( m - l ) ( k - h ) _ h _ k - h „ 
(25) (k, f, - m , - k r - n ) : F F ,, = Z (, ) ( - l ) F * F , . F 

x ' m n + k r xh r r . -m : 
n+hm 

h=0 

(26) ( k , r , m , - k r ) : F ^ F k r = 2 (JX-D^^^F^ 
h= l 

(27) (k, r,m,m): F k + 1 = ( - l ) k f 2 ( 5 ( - l ) h F ? F k ; h F, , , , ,_ . 
v r v .' s ' ' m s ' xri ' r r+m k r + ( h + l ) r 

h=0 

(28) (k, r, m , n r ) : F k F = ( - l ) k f 2 ( k ) ( - 1 ) h F h F k ~ h F , ,. . ,, v ' v ' ' ' ' m n r ' vh / v ' r r + m (n+k) r+hm 
h=0 

(29) (k, r , m r , n) : F k F = ' ( - l ) k f 2 ( k ) ( - l ) h F h F /
 k T ^ F ..*.,' , N ' v ' ' ' ' m r n ' h ' r ( m + l ) r n+(k+hm)r 

h=0 

(30) (k, r , m , 0) : 2 (k)(-J. ) h F h F k T h F , ,, = 0 \ / \ > 9 » j xfa,x/ r r + m k r + h m 
h=0 

(31) (k. r .m,±l); F ^ = (-l>k' 1 <£)<-1 ^ F ) ^ r + h m ± 1 

h=0 
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k 

(32) ( k , r , m r , 0 ) : 2 ^ - ^ V ^ / J ^ , F / l r + , * = 0 

n r (m+l)r (k+hm)r 

k 
(33) ( k . r . ± l . n ) : F R = ( -1 ) 1 " 2 ^ ( " D ^ F ^ F ^ ^ 

h=0 

(34) ( k . , . ± l . - k r - n ) : F n + k f = S & F J F ^ F ^ 

k 
(35) < k . r . ± l , - k r ) : F k r = S ^ F ^ F ^ F ^ 

h=l 

k 
(36) ( V , * l . n r ) : F ^ = ( - i f 2 ( f r - U ^ F ^ F ^ , ^ 

h=0 

(37) ( k . r . ± 2 . n ) : F n = <±1 ) k ( - 1 ) k ' 2 £ > ( - n ^ ^ n + k ^ h 

k 
(38) (k, r , ± 2 , - k r ) : F ^ = ( ± l ) k 2 (£)(- 1 ) h " l F > ^ F ± 2 h 

h=l 

(39) ( k . ± l . m f n , : F ^ F n = ( - D k 2 fy-^^n±k+hm 

h=0 

(40) ( k ) ± l , m ) ? k ) : F ^ F ^ ( ± D k 2 # < - 1 ^ ' F ^ 
h=l 

(41) ( k , ± 2 , m , n ) : F ^ = 2 ft^F^F^Zk+hm 
h=0 
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k 
(42) ( k . r ^ l . 0 ) : 2 ( ^ ( - l > h ^ ; j F k r ± h = 0 

h=0 

k 
(43) (k,r,±2,0): 2 fy-^>^kr±Zh = 0 

h=0 

k 
(44) (k.il.m.O): S ( J ) ( - D h F m

k X ± k = 0 

k 
(45) ( k , ± l , m , ± . l ) : F ^ = ( - l ) k 1 ( ^ ) ( - l ) h F ^ ± V h m ± k ± 1 1 

k 

(46) (k . l . l . -n ) :F a S = X <£)Fn_k_h 

h=0 

k 
(47) ( k , l , l , - n k ) : F n k = X <*>F ( n _ 1 ) k _ h 

h=0 

k 
(48) (k, 1,1, -k) : F k = 2 (^) ( - l ) h "" 1 F h 

(49) (k, 2, - 1 , - n ) : F n 

(50) (k, - 1 , 2 , -n): F n 

(51) (k, 2, - 1 , -2k): F 
h=0 

." S ( h ) F n - 2 k + h 
h=0 

k 

= 2 ^ - ^ n + k - Z h 
h=:0 
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k 

(52) (k, - l , 2 , k ) : F k = X ( h H " 1 ) k ' h F 2 h 
h=0 

k 
(53) (k, 1,1,0): X ( h X - ^ ^ k + h 2 ° 

h=0 

k 

(54) (k ,2 , - 1 , 0 ) : 2 ( h ) ( - 1 ) h F 2 k - h = 0 

h=0 

(55) (k, - 1 , 2 , 0 ) : £ ( h J < - 1 ) h F k - 2 h = ° 
h=0 

(56) ( l , r , m , n): F F = ( - l ) f ( F , F , - F F , . ) \ / \ » > 9 / m n m+r n+ r r m+n+r ' 

(57) ( l , r , m , - n ) : F F - F X F = ( - l ) n ~ f F F , 
v ' * » » » ' m n m + r n - r r m - n + r 

(58) ( l , r , m , -m) : F 2 - F ^ F = ( - l ) m " r F 2 

(59) ( l , r , m , n - r ) : F F , = F ^ x F - ( - l ) f F F 
x ' v 5 ' ' ' r m+n r+m n m n- r 

(60) (1, r -k , m+k, -m+k): F , J . - F , F _ = ( - l ) m ~ f F F, 
v ' x ' ' ' ' m+k m - k m + r m - r r k+r 
(61) ( l , ± l , m , n ) : F , . , = F F + F . , .F . , v ' x ' ' ' m+n±l m n m±l n±i 

(62) (1, l , m , n-1) : F ^ = F , , F + F F , x ' x ' ' ' ' m+n m+1 n m n-1 

(63) (1, 2, m - 1 , n-1) : F ^ = F , . F ,. - F , F , v ' v ' ' ' ' m+n m+1 n+1 m - 1 n-1 

(64) ( l , ± l , m , m ) : F 9 , , = F 2 + F 2 . x ' 2m±l m m±l 

(65) (1, l , m , m - l ) : F 9 = F - ( F ,, + F . ) x 2m m m+1 m - 1 

(66) ( l , 2 , m - l , m - l ) : F 9 = F 2 , , - F 2 , 
2m m+1 m - 1 
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(67) (1, l ,m, -m): F 2 - F , . F 1 = ( - l ) m " 1 
x ' \ > > > m m+1 m-1 

(68) (1,2, m, -m): F 2 - F , ? F 7 = ( - l ) m 
x % m m+2 m-2 x ' 

(69) (1, l ,m+l , -m+1): F , . F _ - F , 7 F - .= 2 ( - l ) m 

m+1 m-1 m+2 m-2 ' 

This rather long list includes most of the identities, derivable 

as special cases of (23), which I have found in the literature, and a 

number of others (including (23) itself, (24)-(32), (37)-(45), and (60)), 

which I believe to be new and useful. ^ 

4. We may now ask what else can be done with the family of identi-

ties (23)-(69). Some of the further developments will be demonstrated 

belowo 

Putting n = m in (59) and dividing by F , we obtain, by (65) 

and (6), that 

(70) (F , . + F J F = F , +( - l ) i i a F x ' v m+1 m-1 r r +m x ' r-

Thus 

(71)|~F x 1 +F . - 1 - {- l )m]F r = (F j_ - F ) - ( - l ) m (F r - F ) . 
v 'L m+1 m-1 J T v r +m T' X ' s r r -m' 
The usefulness of this identity is seen when we put r = rm + n and 

sum from r = 1 to r = t. The right-hand side telescopes to yield 

t F - F ( - l ) m (F - F ) 
,_„. _, _ (t+l)m+n m+n tm+n ny 

(72) 2 F -

m v 
m 

r m + n F + F - 1 - ( - l ) m 

r=l m+1 ^m-1 K } 

(This result is known [1] , but I believe that the line of proof is new. ) 

Certain particular cases have been knownfor a long time; for instance, 

EDITORIAL NOTE: A different form of the identity (23) appears in 

an unpublished Master's Thesis entitled "Moduls m properties of the 

Fibonacci numbers, "written by John Vinson at Oregon State University 

in 1961. (Other parts of that thesis appear as a paper by John Vinson 

in the Fibonacci Quarterly, 1(1963) No. 2, pp. 37-45.) 
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(73) I F , = F. , 1 , 9 - F. ... + F. , - F = F+, ^ - F ^ , N r+s t+1+2 1+s t+s s t+s+2 s+2 
r=l ' 

t 

(74) X F 2( r + S ) = F2(t+l+s)~ F2(l+s)~ F2( t+s)+ F2s = F2(t+s)+l "* F2s+1' 
r=l 

(75) 2 F2( r+s)-l " F2(t+s) " F2s 3 

r=l 

and 

t 

(76) r=l 
2 F3(r+s) 4(F3(t+l+s) ~ F3(l+s) + 

+ F - F ^ = — ( F - F ) 
* 3 ( t + s ) r 3 s ' 2 i r 3 ( t + s ) + 2 r 3 s + 2 ; 

If w e s u m (64) f r o m m = s + 1 to m = s• + t, pu t r = m - s, u s e 

(75), a n d s l i g h t l y r e a r r a n g e t h e r e s u l t , we o b t a i n t h a t 

t 

<77> £ F r + B = - i < F 2 ( t + f l ) + F t + B - F 2 B - F B ) • 
r=l 

Now rewrite (65), using (1), in the form 

(78) F0 ± F 2 = 2F F J_. , 
x ' 2m m m m±i 

and sum (78) as before, using (74) and (77); then we get 

(79) I Fr+sFr+s+l ~ 4^F2(t+s)+3 + Ft+s " F2s+3 " Fs^ ' 
r=l 

If we sum (7 3) with t = w - s, from s = v to s = w - 1, we get 

that 
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w-1 w w u-1 w w 
2 2 F =• 2 2 F = 2 (u-v)F =' 2 u F + vF x , -

u u u u v+2 
s=v u=s+l u=v+l s=v u=v+l u=v+l 

w-1 
- v F , , = 2 (F , 9 - F , . ) = (w - v)F x 9 - F , Q + F ^ , w+2 w+2 s+2 w+2 w+3 v+3 

s=v 

which yields 

w 
(80) 2 u F = w F , 0 - F , Q - v F , , + F ^ . 

u w+2 w+3 v+2 v+3 

u=v+l 

The same p r o c e s s of summat ion applied to (80) yields 
w 

(81) 2 u 2 F = w 2 F , 7 - ( 2 w - l ) F . • 4 ~ + 2 F ,A + ( 2 v - l ) F ,- - 2F ,, 
x ' u w+2 s ' w+3 w+4 v ' v+3 v+4 

u=v+l 

and we can evidently i t e ra t e the p rocedu re to obtain the sum of u F 
for any posi t ive in teger m . 

Again, rep lace m by r + m in (63) and apply (61) to the r e su l t . 
This gives 

F = (F F + F F ) F — ( F F + F F )F 
r+m+n r+1 m+1 r m n+1 r m r -1 m - 1 n-1 

or , by (1), 

(82) F r + m + n = F r + 1 F m + 1 F n + 1 + F r F m F n - F _ 1 F m _ 1 F n _ 1 . 

In pa r t i cu l a r , 
3 3 3 

(83) F = F + F - F 
v 3m m+1 m m - 1 
and 

(84) F = F F F + F F F - F F F 
* 3m m m+1 m+2 m - 1 m m+1 m - 2 m - 1 m 
We may note, at this point, that (83) can be put in yet another form, 
with the help of (67): 
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F~ = F 3 + (F ,. - F . ) ( F 2 , T + F ,. F . + F 2 . ) = 3m m m+1 m - l / x m+1 m+1 m - 1 m - 1 ' 

= F + F [~(F - F ) + 3 F F 1 = 
in m L m+1 m - 1 m+1 m ~ U 

= F3 +F ( F 2 + 3 [ F 2 + ( - l ) m ] l 
m m ( m L m J J 

or 
(85) F~ = 5 F 3 + 3 ( - l ) m F 

3m m m 
By summing (83) and (84) from m = s + 1 to m = s + t, and using (76), 
we obtain respec t ive ly that 

t 
(86) £ F 3 = i ( F _ . , x , - 2 F 3 . - F . . + 2 F 3 .) ^ r+s 2 ' 3( t+s)- l t+s-1 3 s - l s - 1 ' 

r=l 

and 
t t 

(87) 2 F x , F , F , , , = 2 F 3 , + ( - l ) t + S F . , , - ( ~ 1 ) S F , . x ' r+s -1 r+s r+s+1 r+s t+s-1 v s-1 
r=l r=l 

If we mul t ip ly (67) by F and sum from m = s + l to m = s + t, we 
get that 

t t t 
2 F 3 , , - S F , i F ^ F x _,_ = 2 ( - l ) r + S " " 1 F , ^ r+s ^ r+ s -1 r+s r+s + 1 x ' r+s 

r=l r=l r=l 

A compar i son of this las t r e su l t with (87) yields 

t 
(88) 2 ( - l ) r + S F r + s M - D t + S F t + s . 1 - ( - l ) S F s . 1 . 

r=l 

This las t r e su l t m a y b e verif ied by combining (73) and (74), or by sum-
ming the identi ty (derived from (l))9 

(89) ( - D r + S F r + s = ( - l ) r + S " 2 F r + s . 2 - ( - D ^ - ' F ^ . J • 

As a final i l lus t ra t ion of the la rge family of ident i t ies springing 
from (23), we cons ider the genera l iza t ions of (66) and (83), analogous 
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to that of (1) in (70). First we obtain a few results analogous to (85). 

Clearly 

2 ? 
(F + F ) = (F - F ) + 4F F 
1 m+1 m-r l m+1 m-l} * m + l m-1 ' 

thus, by (1) and (67), 

(90) (F , . + F . ) 2 = 5F2 + 4 ( - l ) m , w ' v m+1 m-1 m 

and therefore, by (65), 

(91) F 2 - 5 F 4 + 4 ( - l ) m F 2 . 
Zm m m 

Also, by (I), 

(92) F , . + F = F - F • = I (F , % + F ) ; ' n+1 n-1 n+2 n-2 2 n+3 n-3 

whence, by (85) and (67), 

<93> F 3 m + 1 + F 3 m - 1 = < F
m + l + Fr»-1> [ 5 F L + ^ 1 • 

Putting 2r for f and 2m for m in (70), we get, by (64), (66), and 

(67), that 

(94, [ 5 F ^ + 2 ( - l , m ] . F 2 r = FZ
T+m+l - F 2 ^ + F 2 _ m + 1 - F 2 . ^ . 

Alternatively, on squaring (70), we obtain, by (58) and (90), that 

r 5 F 2 + 4 ( - l ) m > 2 = F* + F 2 + 2 ( - l ) m r F 2 - ( - l ) r + m F 2 1 , L m x ' J 7 r+m r-m L r v ' m J 

whence 

(95) T5F2 +2 ( - l ) m ~ |F 2 + 2 ( - l ) r F 2 = F 2 + F 2 

x ' L m X / J r x / m r +m r - m 

We see that (94) yields (66) on putting one for m and m for r . Fi-

nally, put 3r for r and 3m for m in (70). Then, by (85) and (93), 

we get 
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(F ,. + F ,) [ 5 F 2 + ( - l ) m ] F Q = 5 F 3 + 3 ( - l ) f + m F , + m+1 m - 1 ' L m v ' J 3r f+m v ' r+m 

+ 5 ( - l ) m F 3 + 3 ( - l ) r F 
r - m s ' r - m 

^ 5 F r
3

+ m + 5 ( - l ) m F j _ m + 3 ( - l ) r + ™ ( F m + 1 + F m _ 1 ) F r 

= 5 F j + m + 5 ( - l ) m F r
3 _ m + ( - l ) m ( F m + 1 + F m _ 1 ) ( F 3 r - 5 F 3 ) . 

Thus, by (65), 

(96) F F„ F . = F 3 ^ - ( - l ) m ( F ., + F 1 ) F 3 + ( - l ) m F 3 

m 2 m 3r f+m m+1 m - 1 r x ' r - m 
This identity is new, but we can find in the l i t e r a tu re [2] the pa r t i cu la r 
ca ses when m = 1 and m = 2, namely (83) (with f for m) and 

(97) 3 F 3 r = F r + 2 " 3 F r + F l 2 • 
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1. K. • Siler , "Fibonacci Summations , " Fibonacci Quar te r ly , 1(1963) 
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REQUEST 

The Fibonacci Bibl iographical R e s e a r c h Center d e s i r e s that any 
r e a d e r finding a Fibonacci r e fe rence , send a card giving the re fe rence 
and a brief descr ip t ion of the contents . P l ea se forward al l such in-
format ion to: 

Fibonacci Bibl iographical R e s e a r c h Center , 
Mathemat ics Depar tment , 
San Jose State College 
San Jose , California 



ADVANCED PROBLEMS AND SOLUTIONS 

Edited by VERNER E. HOGGATT, JR. 
San Jose State College, San Jose, California 

Send all communicat ions concerning Advanced P r o b l e m s and 
Solutions to Verner E. Hoggatt, J r . , Mathemat ics Depar tment , San 
Jose State College, San Jose , California. This depar tment espec ia l ly 
welcomes p rob lems believed to be new or extending old r e s u l t s . P r o -
p o s e r s should submit solutions or other information that will a s s i s t 
the edi tor . To facil i tate the i r considerat ion, solutions should be sub-
mit ted on sepa ra t e signed sheets within two months after publication 
of the p r o b l e m s . 

H - 5 2 Proposed by Brother U. Alfred, St. Mary's College, California 

Prove that the value of the de terminant : 

n 
2 
n+2 
2 
n+4 

u 

u 

u 

n+2 
2 
n+4 

2 
n 

u 

u +6 

"n+4 
2 

Un+6 

n+8 
,n+l is 18 (-1) 

Proposed by V.E. Hoggatt, Jr., San Jose State College, San Jose, California H-53 and S.L. Basin, Sylvania Electronics Systems, Mt. View, California 
The Lucas sequence, L, = 1, L? = 3; "n+2 L ,. + L for n+1 n 

n -̂  1, is incomplete (see V. E. Hoggatt, J r . and C. King, P rob lem 
E - 1 4 2 4 A m e r i c a n M a t h e m a t i c a l Monthly Vol. 67, No. 6, June- July 1 960 
p . 593) since eve ry in teger n, is not the sum of dis t inct Lucas num-
b e r s . OBSERVE THAT 2, 6, 9, 13, 17, . . . cannot be so r e p r e s e n t e d . 
Let M(n) be the number of posit ive in tegers less than n which cannot 
be so r e p r e s e n t e d . Show 

M(L ) = F . 
n n- i 

Find, if poss ib le , a closed form solution for M(n). 
H - 5 4 Proposed by Douglas Lind, Falls Church, Va. 

If F is the nth Fibonacci number , show that n 
*<F ) 0 (mod 4), n > 4 

where <f)(n) is E u l e r ' s function. 

44 
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H-55 Proposed by Raymond Whitney, Lock Haven State College, Lock Haven, Penn. 

Let F(n) and L(n) denote the nth Fibonacci and nth Lucas 

numbers, respectively. 

Given U(n) = F(F(n)), V(n) = F(L(n)), W(n) = L(L(n)) and 

X(n) = L(F ), find recurrence relations for the sequences U(n), V(n), 

W(n) and X(n). 

H ~ 5 6 Proposed by L. Carlitz, Duke University, Durham, N.C. 

Show 

x F* - (V*W k >, 
^ F F T T T F F ~ "k+I > " • 

, n n+28 * ° n+k n+k+1 „ _ 
n=l 7f F. 

i=i x 

H - 5 7 Proposed by George Ledin, Jr., San Francisco, California If F is the nth Fibonacci number, define n 

G 
n 

and show 

(i) lim (G , . - G ) = 1 w ^ x n+1 n 
n~> °° 

(ii) lim (Gn+1/Gn) = 1 . 
n-> a. 

Generalize. 
H - 5 8 Proposed by John L. Brown, Jr., Ordnance Research Laboratory, The Penn. State 

University, State College, Penn. 
Evaluate, as a function of n and k, the sum 

2 F2L +2 F2i9+2 9 e # F2L +2 F2i, , , 4-2 ' 
. . . , 1 2 k k+1 
x1 +i2+. . .+ik + 1=n 

where L, i? , i~, . . . , i , + , constitute an ordered set of indices which 

take on the values of all permutations of all sets of k+1 nonnegative 

integers whose sum is n„ 

REPROPOSED CHALLENGE 

H - 2 2 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California 
CO Tj-» CO 

If P(x) = n (1 + x x) = X R(n) xn , 

i=l n=0 
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t h e n show 

(i) 

(ii) 

R ( F ~ - 1) = n 
2n ' 

R(N) > n if N > F 0 - 1 . 2n 

I N V E R S I O N O F F I B O N A C C I P O L Y N O M I A L S 

P - 3 Proposed by Paul F. Byrd, San Jose State College, San Jose, California 

in " E x p a n s i o n of A n a l y t i c F u n c t i o n s in P o l y n o m i a l s A s s o c i a t e d w i t h 

F i b o n a c c i N u m b e r s , " Vo l . I, No . 1, F e b . 1963 , p p . 1 6 - 2 9 . 

V e r i f y t he r e c i p r o c a l r e l a t i o n s h i p 

[n/2] 
X

n = <Ln 2 ( - l ) r (n) Hl2£+i ( x ) ( n ^ Q ) 
2 xr n - r + 1 r n + l - 2 r v ' x ' 

r=0 

w h e r e [k/2] 
X k + 1 (x) = I ( k

m
m ) ( 2 x ) k ' 2 m ( k > 0) 

m = 0 
Solution by Gary McDonald, St. Mary's College, Winona, Minnesota 

V e r i f i c a t i o n by i n d u c t i o n : ( E q u a t i o n n u m b e r s r e f e r to P„ F . B y r d ! s 

a r t i c l e , 

F o r n = 0, we h a v e \ - Y (x) w h i c h a g r e e s w i t h (2„ 2) . A s s u m i n g (1) 

t r u e fo r n = k, we c a n w r i t e 

[k/2] 
k+1 1 ^ , i x r .kx k - 2 r + l ,-, x v , s 

x = TFFT ^ { ' l ) ^ - E T F F T ( 2 x ) y k + l - 2 r ( x ) • 
Z r = 0 

R e c a l l i n g (2 . 1), we h a v e 
~[k/2] 

k+1 1 
,k+ l 

.k+1 

X ( - l ) r ( k ) ^ l l l i i _̂ 
[k/2] 

V k - r + 1 ' k + 2 - 2 r 
, x „ , -, , r . k k-2r+l 
(X)- I (-1) (J-TTT^XT-yL. V k - r + 1 ' k - 2 r (x) 

r = 0 r=0 

[k/2] 
y k + 2 ( x ) + 2 ( - i ) ^ ) ^ ± i y k + 2 . 2 r 

r = l 

" [k/2]-l 
- s (-i)r(k)^."-r.t- y, 

(x) 

r ' k - r + 1 k - 2 r (x) + C 
r = 0 
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where 
C = ( [k/2] +l/ k \k-2[k/z] + 1 

' \[k/2]/k- [k/2] + 1 rk- 2 [k/2] (x) . 

Letting j = r + 1 in £he second X f ° r x 

[k/2] 

k+1 

k+1 1 
,k+l r k + 2 (x ) + S ( - i ) r ( ^ ) ^ ^ y k + 2 . 2 r 

r=l 
(x) + 

[ k / 2 ] 
J . k . k+3-2j 

or combining coefficients of y. (x) 

[k /2 ] 
(2) "k+1 = Jn <! W > + s i-1'' k k -2 r+ l 

V k - r + 1 
r=l 

l r - l ' k+2~r y k+2-2r ( x ) • c ( 

We can reduce the quantity in bracke ts as follows: 
/k\ k " Z r + 1 +/ k ^k+3-2r 
V k-r+1 l r - l ' k + 2 - r [^Mar">^.""H(^ 

r k- n 7 x n n j . 9 xx k!(k+3-2r) "1 / 1 \ 
= [(k-r+i)!r; ( k - 2 r + 1 ) ( k + 2 - r ) + (F^+irn^IT:JVkT2r7J 

(k-2r + l ) (k+2-r) + r ( k + 3 - 2 r ) ] 
k+1 J (k-r 

(k+1)! 
+1)1 r! (k+2-r) 

|k +3k-2rk-2r+2 
L (k+i) 

k+2-2r / k + l \ 
k+2-r \ r ) ' 

(k+i): 
(k- r+l)I ri (k+2-r) 

Therefore from (2), 

(3) k+1 1 
,k+l 

[ k /2 ] 
/ \ , v / -, xr .k+L k+2-2r v 

yk + 2(x) + 2 (-1) ( r ) T T Z - F Yk+Z_2r 
r=l 

x) + C 

Note that: 

a) w ^ - ^ O S J ^ v2-oW 



48 A D V A N C E D P R O B L E M S AND S O L U T I O N S F e b r u a r y 

b) When k i s e v e n C = 0, and [ | ] = [ ^ ~ ] . 

When k i s odd, t h e n ~- J = ? and 

C = (-1) 

= (-1) 

ese. 2 J 3+_k ' 1 
2 

VAx) 

m k - l v .k+1 3+k I yT(x) 

If we l e t r = —— in t he X of e q u a t i o n (3), we h a v e 

L 2 J ( k + l ) i 
(-1 

2 y . . . . 1 2 J (k+ l )k i 4 
k + 1 . , ,k+l k+3 V x ' ~ l ' 2 ( k + l ) , k - l . , , k + I . , k+7 V (x) 

= (-D [̂ ] 
(^L)K^L): k+3 * 

y,(x) 

= C, k odd . 

T h e r e f o r e , we m a y c o m b i n e Y, _(x) and C in to the £ in (3) and 

w r i t e 

[JH] 
x = -rrrr- 2 ( -1 ) ( _ ) , . 9 „ Y, . 9 . (x) , , k+ l r ' k + 2 - r ' k + 2 - 2 r v 

r=0 

f r o m w h i c h we c o n c l u d e 

l>/2] 
x

n
 = _L 2 i - i f f lg ; 2 ^ 1 r. V n - r + 1 ' n + l - 2 r (x), n > 0 

r:=0 

D E F E R R E D A N S W E R 

H - 3 4 Proposed by P.F. Byrd, San Jose State College 

D e r i v e the s e r i e s e x p a n s i o n s 
OD 

J 9 1 (a) = lha) + 2, ( - l ) m + k I .,(<*) I , ( a ) L , ? v k% ' • ' m+k v ' m - k 2m 2kx 

m = l 
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(k= 0, 1, 2, 3, ) for the Besse l functions J of all even o r d e r s , 
Zj£ where L a r e Lucas numbers and I a r e modified Besse l functions. n n 

The solution will appear in a fine paper by the p ropose r to appear 
la ter in the Quar t e r ly . 

FIBONACCI AND MAGIC SQUARES 
H~ 3 5 Proposed by Walter W. Horner, Pittsburgh, Pa. 

Select any nine consecut ive t e r m s of the Fibonacci sequence and 
form the magic square 

u 8 

| u 3 

i U 4 

u l 

u 5 

U 9 

u 6 

u ? 

u 2 ' 

show 

Generalize. 

U8U1U6 + U3U5U7 + U4U9U2 

ugu3u4 + U lu 5u 9 + u6u?u2 

Solution by Maxey Brooke, Sweeny, Texas and F.D. Parker, SUNY, Buffalo, N.Y. 

If U sat isf ies the genera l second o rde r difference equation, then 

U, 

u„ 

u_ 

un 

ur 

ur 

u. 
U, 

Ur 

= 0 

s ince U , -, = &U ,, + SU with U, and U0 a r b i t r a r y . The expan-n+2 n+1 ^ n 1 Z 
sion of this de te rminan t yields products whose subsc r ip t s add up to the 
requ is i t e 15 and yields the equality asked for in the p rob lem. 
Also solved by the proposer. 

G O L D E N S E C T I O N IN C E N T R O I D S 

H - 3 6 Proposed by J. D.E. Konhauser, State College, Pa. 

Consider a rec tangle R. F r o m the upper r ight co rne r of R r e -
move a rec tangle S ( s imi la r to R and with s ides pa ra l l e l to the s ides 
of R. Determine the l inear ra t io K= L / L c if the centroid of the 
remaining L shaped region is where the lower left co rne r of the r e -
moved rec tangle was . 
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Solution by John Wessner, Melbourne High School, Melbourne, Florida 

G 
O 

F e b r u a r y 

D 

G O r L R 

CD =: 

OD = 

OE = 

Ls 
a L 

a L 

T h e c e n t r o i d of A G P B i s a t * | L + L i.i .1 R 
a n d h a s w e i g h t 

a L R \ L^ - L [ . S i m i l a r l y t h e c e n t r o i d of B E D C i s a t -j L^ , 

y a Lq + L R I and h a s w e i g h t a L q j L~ - L p | . The c e n t r o i d of t h i s 

r e m a i n d e r m u s t be a t P a n d h a v e x - c o o r d i n a t e 

L ZLSaIVLR! + H L S + L R I I V L R I LR 
R -K-4I 

o r u p o n e x p a n d i n g 

2 L R I L S - L R I L S - L R 

D i v i s i o n by L g i v e s R 
K 3 - l 

A f t e r r e m o v i n g the o b v i o u s r o o t +1 we h a v e K - K - 1 = 0 w h i c h 

h a s a s i t s p o s i t i v e r o o t y = (1 + \]5)/2. 

E d i t o r i a l C o m m e n t : T h e a b o v e p r o p e r t y i s s h a r e d by . m a n y 

g e o m e t r i c f i g u r e s i n c l u d i n g the e l l ipse , , A s h o r t p a p e r l a t e r w i l l s h o w 

t h i s . 

Also solved by David Sowers and the proposer. 

A F A S C I N A T I N G R E C U R R E N C E 

H - 3 7 Proposed by H.W. Gould, West Virginia University, Morgantown, West. Va. 

F i n d a t r i a n g l e w i t h s i d e s n + 1 , n, n - 1 h a v i n g i n t e g r a l a r e a . 

T h e f i r s t t w o e x a m p l e s a p p e a r t o be 3 , 4, 5 w i t h a r e a 6; a n d 1 3 , 14, 

15 w i t h a r e a 8 4 . 
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The p r o p o s e r ' s paper comprehens ive ly d i scuss ing this problem 
wil l soon appear in the Quar t e r ly . 

NO SOLUTIONS RECEIVED 
H - 3 8 Proposed by R.G. Buschman, SUNY,Buffalo, N.Y. 

(See Fibonacci Numbers , Chebyshev Polynomia ls , Genera l i za -
t ions and Difference Equations Vol. 1, No. 4, Dec. 1963, pp. 1-7.) 

Show (u + ( -b ) r u ) /u = \ . 
n+r n- r n r 

CORRECTED 
H - 4 0 Proposed by Walter Blumberg, New Hyde Park, L.I., N.Y. 

Let U, V, A and B be in t ege r s , subject to the following con-
ditions (i) U > 1, (ii) (U, 3) = 1; (iii) (A, V) = 1; 

(iv) V - ^/(U2 - l ) / 5 
2 

Show A U+BV is not a squa re . 
CONVOLUTIONS AND OPTICAL 2-STACK 

H - 3 9 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California 

Solve the difference equation in closed form 
Cn+2 = Cn+1 + C n + F n+2 ' 

where C, = 1, C0 = 2, and F is the nth Fibonacci number . Give 1 Z n 
two sepa ra t e cha rac t e r i za t i ons of these n u m b e r s . 
Solution by L. Carlitz, Duke University, Durham, N.C. 

Since C 2 = C, + C 0 + F - we have a l so C = 0. If we put 

c(t) = x c n t n , 

then it follows from 
n+2 n+1 n n+2 

that 

Thus 

( l - t - t 2 ) C ( t ) = 1 F n t n = —* 
1-t-t 0 

(1) C(t) = - y 
2 

( l - t - r ) 
Expanding we get 



52 ADVANCED PROBLEMS AND SOLUTIONS F e b r u a r y 

00 r 
C(t) = t 2 (r+l)( t+t2) 

r=0 

= 2 (r + l ) t r + 1 2 (l)tS 

r=0 s = 0 
n 

= 2 t n + 1 2 (r+l)( r ) f n - r 
n=0 r=0 

so that n 
C ,, = 2 (r+l)( r ) = 2 ( n - r + l ) ( n ~ r ) . n+1 / x n - r ' v /x r ' 

r=0 2 r < n 
Another explicit exp res s ion that follows from (1) is 

n-1 
C , = 2 F F n-1 r n - r 

r=l 
Next is we differentiate 

t = 2 F t n 

we get 

i - t - t 2 " „ n 

2 °° 
1 + t 2 (n+l)F^^ t n 

2 " ^ x ' n + 1 
(1- t - t ) 0 

which yields 

A consequence of this is 

C + C 7 = (n+l)F ,. n n-2 n+1 

C = 2 ( - l ) k ( n - 2 k + l ) F , , ,, n n-2k+l 
2k < n 

Final ly cons ider the number 
C = AnF + BnL n n n 

We find that 

Since 

we get 

C1 , 9 - C' . - C» = A(F X 9 + F ) + B(L , 9 + L ) n+2 n+1 n n+2 n n+2 n 

L , 9 + L = 5(F - F ) n+2 n n+2 n 

C'_i_o " C' , - C = (A+5B)F , 9 + (A-5B)F n+2 n+1 n v ' n+2 v n 
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Hence for A = 6, B = 1/10 it follows that 

Clear ly 
n+2 n+1 n n+2 

C = n /2 F + n/10 L + a F + bL n n ' n n n 
Taking n = 0 we get b = 0o Fo r n = 1 we get a = 2 /3 0 Therefore 
we have 

n L + 2F 
C = n /2 F + n / l O L + 2/5 F = £ l i . 

n ' n ' n n 5 
Also solved by Ronald Weimshenk, John L. Brown, Jr., Donald Knuth, H.H. Ferns and the proposer. 

Edi tor ia l Note: Another charac te r i za t ion , bes ides the convolu-
tion 

31+1 (n+l)L , 9 + 2 F ,_ 
C ,. = 1 F F = Jl+5 2+i f 

n+1 r n - r 5 
r=l 

i s the number of c ro s s ings of the in ter face , in the optical s tack in p r o b -
lem B-6, Dec. 1963, p . 75, for al l r ays which a r e ref lected n - t i m e s , 
If fQ(x) = 0, fx(x) = 1, and fn + 2(x) = xfn+1 (x) + y x ) , 
the Fibonacci polynomials , then 

f (1) = F and f ' ( l ) = C , . n n n n - 1 

XXXXXXXXXXXXXXX 

MATH MORALS 
Bro the r IL Alfred 

A tutor who tu tored two rabb i t s , 
Was intent on re forming the i r habi ts0 

Said the two to the tutor , 
"There a r e rabbi ts much cuter , 
But non-Fibonacci , dagnabi ts . " ' 

The author has jus t taken out poetic l icense # F q according to one 
c lause of which it is p e r m i s s i b l e to cor rup t cor rup ted w o r d s , 

XXXXXXXXXXXXXXX 



PRODUCTS OF ODDS 

SHERYL B. TADLOCK* 
Madison College, Harrisonburg,Virginia 

The following are used in the proofs of the identities: 

F = 
3n n 5 - a 

n p - a , L = Pn + an. ( N = ( - D n , 

where 
1 +/5 and a 1 - •, 5 

F F = F + F 
2k+l 2j+l k+j+1 k-j 

2 2 
F , , . , . + F. . k+j+1 k-j 

pk+j+l _ Qk+j+l 

~r^r 

2 > 
P k - j - ak"J' 

T ^ c T 

= P 2 k + 2 j + 2 + a 2 k + 2 j + 2 - 2(Pa) k + J + 1 -2(Pa) k -V k - 2 J+a 2 k - 2 J 

„2k+l/Q2j+l „-2j-l. , 2k+l, 2j+K -2j- l , P (P J + P J ) + a (a + a J ) 

2(pa)k+j(Pa + (Pa)-2j) 

(P- a)2 

Recalling that p • 2 j - l l x - 2 j - l 2j+l 2j+l 
•1) J a J = -a J 

and a - 2 j - l = ( . i r 2 j - l p 2 j + l = _p2j+l 

and that the last term has the value of 0, the above expression becomes 

F 2
 + F 2 P 2 k + i (p 2 j + 1 - a2 j+1) - a 2 k + 1 (p 2 j + 1 - a2j+1) 
k+j+1 k-j (P . Q ) ' 

_ (p2 k + 1 - a2 k + 1)(p2J+ 1 - a2J+1) 

(P- a) (P - a) 

But the right-hand side is of the form F?k+1F2'+1' Therefore, 

Fk+j+l + F k - j F2k+lF2j+l 

Student 
54 
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2- L 2 k + l L 2 j + l = Lk+j+l " Lk~j + 4("l) 

T m 2 k + l ^ 2k+lW A2j+l ^ 2j+l 
L 2 k + l L 2 j + l = ( P + a > ( P + a > 

= p2k+2j+2 + a2k+2j+2 + p2k+lQ2j+l + ^ k + l ^ j + 1 

= P
2 k + 2 J + Z

 + a 2 k + 2 J + Z
 + p k + J + 1 a k + J + 1 ( p k - J J + k

 + a k ^ p J - k ) 
Observing that , , 2 

Pk J a J k = (-1)J k p k Jpk J = (-1)J kpZ ^J 

k-i0i-k , ,J -k k-i k-i . , ,j-k 2k-2i a J p J = ( - 1 ) J a J a J = ( - 1 ) J a J 

and adding and subtract ing 2p J a J the above expres s ion be-
comes 

L 2 k + 1 L 2 J + 1 = P 2 k + 2 J + 2 + a 2 k + 2 J + 2
+ 2 P

k + J + 1 a k + J + 1 - Z P ^ J - ^ ^ ^ 1 

+ (Pa)k+J + 1 ( ( - l ) J - k p 2 k " 2 J + ( - l ) J " k a 2 k - 2 j ) 
= p2k+2j+2 + 2 p k + j + l ak+j+l + Q2k+2j+2 

+ (Pa)k+J + 1 ( - 2 + ( - l ) J - k
P

2 k - 2 J + ( - l ) J - k a 2 k - 2 J ) 

= ( p k + J " 1 + a k + j + 1 ) 2 + ( - l ) k + J + 1 ( - l ) J " k ( p 2 k " 2 J + a 2 k - 2 j - 2 ( - l ) k - J ) 

= Lk+j + l + ( - D 2 J + 1 ( P 2 k _ 2 J +2p k "Ja k "J + a 2 k " 2 J - 2 (3 k - j a k - j ) 

- 2 ( - l ) k " J ( - l ) 2 j + 1 . 
Noting that . 2 t . 1 ) k - j ( _ 1 ) 2 j + l = _2(_x } k - j ( _ 1 } = 2 ( _ 1 } k - j 

we have 

L2k+lL2 j + l = Lk+ j +l - K " j + a k " j ) 2 " 2 <^ ) k " j ] + 2(-1>k"J 

2 T 2 , . , . n k - j + 2 ( _ 1 ) k - j 

There fo re , 

^j+l-^-i + Z ^ J + Z ^ 

L 2 k + l L 2 j + l = L k + j + l - L k - j + 4 ( - 1 ) k " J 
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By using the identity \} - 5F2 = 4(-l)n (Vol. 1, No. 1, p. 66, 
this Quarterly), it can easily be shown that 

Li2 . - I " L? . + 4(-l)k~j = L?, .,_ - 5F? . = 5F? , . , , - L? . . k+j+1 k-j v k+j+1 k-j k+j+1 k-j 

Thus, we have proofs of the following Fibonacci identity and the analogous 

Lucas identities for products of odds: 

(1) F F = F 2 + F2 

v ; *2k+l 2j+l k+j+1 k-j 

< 2 > L 2 k + 1 L 2 . + 1 = I ^ + j + 1 - I ^ _ j + 4 ( - l ) k - J 

2 2 
( 3 ) L2k+lL2j+l = Lk+j+l " 5 F k - j 

2 2 
( 4 ) L2k+lL2j+l = 5Fk+j+l " Lk-j ' 

These four identities correspond closely to those given for prod-

ucts of evens in this Quarterly, Vol. 2, No. 1, p0 78. 

xxxxxxxxxxxxxxx 
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February 15, April 15, October 15, and December 15. 



EXPLORING SCALENE FIBONACCI POLYGONS 

Proposed by BROTHER U. ALFRED on page 60, October 1963 
"The Fibonacci Quarterly" 

C.B.A. Peck 

The sequence of Fibonacci numbers may be defined by 

(1) Fn = 0, F, = 1, and F = F • . + F . for n 2 2. 
0 1 n n-1 n-Z 

We describe a way of deciding when a set S of m distinct numbers 

drawn from the sequence F?i F«, F . , . . . corresponds to the sides 

of some plane polygon with m sides. If they do we call S a (scalene 

Fibonacci) polygon, for short. 

To prove the result, we find it convenient to use the following 

identities, easily proved from (1) by induction on k and n, respectively: 

k 
(2) F = F 0 1 + X F r n for n ^ 4 and 0 < 2k C n, x n n-2k n-2i+l 

i=l 

n - 2 
(3) F > 2 F. for n ^ 1 (the sum is zero if n = 1, 2, 3)„ 

i=2 

Suppose once and for all that F is the largest number in S. If 

we denote by S(n, k) the set of numbers appearing in (2), then S is a 

polygon if and only if it properly contains some S(n, k). If it equals 

S(n, k) for some k we call it a degenerate polygon. 

Proof: If F ^ S, then by (2) S contains no S(n, k). By (3) F 

exceeds the sum of the other numbers in S, which shows that S is not 

even a degenerate polygon. Now suppose that F , £ S (so that n 2. 3) 

and proceed downward through the sequence in (1), starting with F , 

and stopping short of F, . The numbers alternate in and out of S until 

one of two things happens. 

1. S is found to containno S(n, k), either because the alterna-

tion stops at an adjacent pair not in S, say F ?., F ? . , with 

n-2j-l 2. 2, or continues to the bottom (here we set n-2j-l = 1 or 0 ac-

cording as n is even or odd). Then every number in S other than F 

occurs in either 

57 
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n -2 j -2 j 
V F . or X F - . , , . 
^ i ^ n-2i+l 

i=2 i=l 
The f i r s t sum < F - . by (3), whence the sum of each < F by (2). n-2j 7 n 7 

Thus S is again not even a degernate polygon. 
2. The a l te rna t ion stops with an adjacent pair in S, say F ? , , , 

F -,, with n-2k ^ 2 , so that S(n, k) is in S. Then (2) shows that 
S is a (degenerate) polygon if the re a r e (no) numbers in S bes ides 
those in S(n, k), on the grounds that F (4) the sum of the other num-
be r s in S. 

Could two sets of numbers drawn from F ? , F^ , F . , . . . be p r o -
por t ional to the lengths of the s ides of a single polygon? This is not 
poss ib le , at any ra t e , when the numbers in each set a r e dist inct , for 
suppose that we did have two scalene Fibonacci polygons with l a rges t 
s ides F and FKT (N > n) propor t iona l to a third polygon, hence to 
each other, say in the ra t io P > 1. We have just seen that if F is 
the l a rges t number in such a set, then F , mus t belong to it . Since 
the l a rges t and second l a rges t s ides cor respond , we have P F = F M 

and P F , = FXT , . By (1), we have, then, P F 0 = FAT 0, and n-2 n-1 N- l J n-2 N-2 
fur ther applicat ions of (1) yield finally P F n = F . By (1), the l .h . s. 
is ze ro and the r . h . s. posi t ive, which is absurd . 

An in te res t ing e x e r c i s e is to use this a rgument (with suitable 
amplif icat ion of the las t sentence) on any two Fibonacci polygons such 
that in at leas t one of them the re a r e numbers whose subsc r ip t s differ 
by only one or two. We need something s t ronger for such polygons as 

n n -3 n-3 n - 3 , n -3 n -3 
The genera l iza t ion of (2) which s e e m s to be called for is some 

cha rac t e r i za t ion of the coefficients in inequali t ies of the form 

F i 2 a. F. n ^ 1 1 
i=2 

where the a . ' s a r e nonnegative i n t ege r s . 

XXXXXXXXXXXXXXX 



NOTE ON THIRD ORDER DETERMINANTS 

BROTHER U. ALFRED 
St. Mary's College, California 

The recent exhaustive invest igat ion of nine-digi t de te rminan t s 
by Bicknell and Hoggatt that appeared in the Mathemat ics Magazine of 
May-June , 1963, r a i s e s an in te res t ing question [ l ] . Given that 

9 4 2 
3 8 6 
5 1 7 

or any equivalent a r r a n g e m e n t producing the same set of products 
has a maximum value of 412, would we obtain . a maximum for any 
other nine consecutive posit ive in tegers using the same re la t ive a r -
r angemen t? This note will offer a negative answer and indicate the 
max imum for all posit ive va lues . 

F i r s t , a smal l amount of theory is in o rde r . If a th i rd o rde r 
de te rminan t has e lements a. and a fixed quantity b is added to each 
e lement the resul t ing de te rminan t would be: 

a l + b 

a 4 + b 

a ? + b 

a z + b 

a_ + b 

+ b 

a 3 + b 

a 6 + b 

a 9 + b 

Subtract the second column from the third and the f i rs t from the sec-
ond to obtain 

a + b 

a 4 + b 

a ? + b 
~5 "4 
a0 - a_ a

9 " a£ 

from which it is evident that the value of the a l t e red de te rminan t is 

D + A b , 

where D is the value of the original de te rminant and A is the sum 
of the th ree mino r s formed from the second and thi rd columns. Ex-
panded and grouped appropr ia te ly we obtain 
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A = ( a ] [ a 5 +a 5 a 9 +a 9 a 1 ) + ( a ^ ^ + a ^ + a ^ ^ + ( a 3 a 4 + a 4 a g + a 8 a 3 ) 

- (a1a6+a6a8+aga1) - ( a ^ + a ^ + a ^ ) - ( a ^ + a ^ + a ^ ) 

This coefficient X gives the change in the value of the de te rminan t 
as we add 1 to each of i ts e l emen t s . See [2] for another u s e . 

It should be noted that the groups in A a r e the same as those 
for the posi t ive and negative t e r m s of the de te rminan t expansion and 
hence any a l t e ra t ion of the a r r a n g e m e n t of de te rminan t e lements which 
leaves the expansion unchanged will a lso be without effect on A . 

An independent invest igat ion shows that the maximum value of 
A is 81 when the e lements of the de te rminant a r e the nine digi ts , while 
the value of A for the de te rminan t giving a maximum of 412 is only 
80. Thus, the sma l l e r valued de te rminant with A = 81 will eventually 
over take the l a rge r as the e lements of the de te rminan t s a r e inc reased 
uniformly. 

By calculat ing A for the l a rges t values given in the table of 
Bicknel landHoggat t (Ref . 1, p . 152)Ais found to be 81 for 405 = 630-225a 
and 630-225c. Adding n to each e lement of 630-225a, for example , 
will produce a de te rminan t of value 405 + 81 n; doing l ikewise for the 
or iginal maximum de te rminan t of value 412 produces a value of 
412 + 80n. To find when these will be equal, set 

405 + 81n = 412 + 80n 

the solution being n = 7. 
Thus, if we have nine consecutive posi t ive in tegers beginning 

with m, the max imum value that can be achieved is 412 + 80m if 
m iL 8; the maximum possible is 405 + 81m if m ^ 8. 

REFERENCES 
1, Mar jor ie Bicknell and Verne r E. Hoggatt, J r . , "An Investigation 

of Nine-Digit De te rminan t s , "Ma thema t i c s Magazine, 36(1963), 
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2. Mar jor ie Bicknell and Verne r E. Hoggatt, J r . , "Fibonacci Ma-
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JEREMY C. POND and DONALD F. HOWELLS* 
Sussex, England and San Jose State College, San Jose, California 

Fibonacci Nim [1] was or iginal ly stated as follows: 
"Consider a game involving two p layers in which ini t ial ly the re 
is a group of 100 or less objects . The f i rs t p layer may reduce 
the pile by any Fibonacci number (member of the s e r i e s 1, 1, 2, 
3, 5, 8, 13, 21, . . . ). The second player does l ikewise. The 
p layer who makes the last move wins the game. " 
Let pe r sons A and B be playing the game which A wins . If A is 

to win he mus t be able to reduce the pile to ze ro on his final move . 
Thus A mus t draw from 0+F (n = 1, 2, 3, . . . ) on his final move . 

Looking at the sequence of the number of objects from which A 
mus t draw to win on the final move, 1, 2, 3, 5, . . . , we see that 4 is 
the f i rs t posit ive in teger m i s s ing . If B is forced to play with 4 objects 
remaining, A can cer ta in ly win the game. 

Now suppose A gets the opportunity to draw from 4+F (5, 6, 7, 
9, 12, . „ . ). A will be able to reduce the pile to 4 objects and can 
continue to win. 

The sma l l e s t posi t ive in teger that is not contained in the union 
of the sets (0+F ) and {4+F ) is 10. If B is forced to draw from 1 n] A • n ' 
a pile of 10 objects, B cannot reduce the pile to 4 or 0 but B will leave 
A in a posit ion to reduce the pile to 4 or 0 and thus A can win. 

Now we wish to genera te the sequence of posi t ions from which it 
is unsafe to draw (0, 4, 10, . . . ). Let U,=0. Then U^ is the s m a l l -
es t posit ive integer which is not equal to U, +F (n = 2, 3, . . . ). U~ 
is the sma l l e s t posit ive in teger which is not equal to U, +F or U ? +F 
(n= 2, 3, . . . ) . 

Therefore U (r = 2, 3, . „ . ) is the sma l l e s t posit ive in teger 
which i s not equal to U.+F , where t = 1, 2, . . . , r - 1 and n = 2, 3, . . . ^ t n 

Student 
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u 
r 

n °  
4-
10 
14 
20 
24 
30 
36 
40 
46 
50 
56 
60 
66 
72 
76 
82 
86 
92 
96 

1 
5 
11 
15 
21 
25 
31 
37 
41 
47 
51 
57 
61 
67 
73 
77 
83 
87 
93 
97 

2 
5"~ 
12 
16 
22 
26 
32 
38 
42 
48 
52 
58 
62 
68 
74 
78 
84 
88 
94 
98 

3 
7 
13 
17 
23 
27 
33 
39 
43 
49 
53 
59 
63 
69 
75 
79 
85 
89 
95 
99 

5 
9 
15 
19 
25 
29 
35 
41 
45 
51 
55 
61 
65 
71 
77 
81 
87 
91 
97 

8 
12 
18 
22 
28 
32 
38 
44 
48 
54 
58 
64 
68 
74 
80 
84 
90 
94 
100 

13 
17 
23 
27 
33 
37 
43 
49 
53 
59 
63 
69 
73 
79 
85 
89 
95 
99 

21 
25 
31 
35 
41 
45 
51 
57 
61 
67 
71 
77 
81 
87 
93 
97 

34 
38 
44 
48 
54 
58 
64 
70 
74 
80 
84 
90 
94 
100 

55 
59 
65 
69 
75 
79 
85 
91 
95 

89 
93 
99 

The first player can always win if he starts on some position not 

equal to U (r = 1, 2, ...) and always reduces the pile to some U . 

Here are all the values of U thus far computed: 

0 4 10 14 20 24 30 36 40 46 50 56 60 66 72 
76 82 86 92 96 102 108 112 118 122 128 132 138 150 160 
169 176 186 192 196 202 206 212 218 222 228 232 238 242 248 
254 260 264 270 274 280 284 290 296 300 306 310 316 322 326 
332 338 342 348 352 358 364 368 374 378 384 388 394 400 406 
410 416 420 426 430 436 442 446 452 456 462 468 472 478 484 
488 494 498 504 510 514 520 524 530 534 540 552 556 562 566 
572 576 

The following observations can be made: 

1. U ., = U + some non-Fibonacci number. r+1 r 
20 If U ± 1-U =4, then U ,,-U ,,9̂ 4 since 4+4=8=F/. r+1 r r+2 r+1' o 
3. Thus the average difference of U ,,-U =5, r=l, 2, 3, . . . 

to r+1 r 
4. The densi ty of (U } in the posit ive in tegers mus t be ^ l /5„ 
5. The probabi l i ty that the s tar t ing pe r son can win is Z. 4 /5 if noth-

ing is known about the s ta r t ing posi t ion of the game. 
The following quest ions a r e left unanswered: 

10 Is the re a closed form solution for ] U r | ? 
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2 . What i s t he l i m i t i n g d e n s i t y of ( U } in the p o s i t i v e i n t e g e r s ? 

S i m i l a r r e s u l t s a r e found w h e n one c o n s i d e r s " L u c a s N i m " 

a n a l o g o u s to F i b o n a c c i N i m . 

REFERENCES 
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ON SUMS F 2 ± F2 

X y 
BENJAMIN SHARPE 

State University of New York at Buffalo 

F o r m u l a s fo r t h e s u m of t he s q u a r e s of F i b o n a c c i n u m b e r s a r e : 
2 2 

( 1 ) F n + 2 k + F n = F n + 2 k - 2 F n + 2 k + l + F 2 k - 1 F 2 n + 2 k - l 
2 2 

( 2 ) F n + 2 k + l + F n = F 2 k + 1 F 2 n + 2 k + l 
2 2 

( 3 ) F n + 2 k " F n = F 2 k F 2 n + 2 k 

2 2 
( 4 ) F n + 2 k + l ' F n = F n - 1 F n + 2 + F 2 k F 2 n + 2 k + 2 

V a l i d i t y of t he a b o v e i s e s t a b l i s h e d by u s i n g : 
,_, 1 . n 0 n , _ n , 0n 1 + J 5 Q 1 - J 5 a , 
F = - ( a - P ), L = a + P , a = v , p = v , a P = -1 . 

n ^5 n 

F o r e x a m p l e : 

5 ^ * , , , - F 2 ) = v n+2k+l n ' 

( a 2 n + 4 k + 2 + p 2 n + 4 k + 2 ) _ ( a 2 n + p 2 n } _ 2 Q n p n ( Q 2 k + l p 2 k + l _ 1 } = 

L 2 n + 4 k + 2 " L 2 n ^ ( - l ) n ( - 2 ) = L 2 n + 4 k + 2 - ^ - ( - l ) 1 1 " 1 ^ 

5 ( F n - l F n + 2 + F 2 k F 2 n + 2 k + 2 ) = 

, 2n+l • a 2 n + l x ^ , 2n+4k+2 _,_ a 2 n + 4 k + 2 x i i - l ^ n - l , 3 , A 3 N (a + P ) + (a + p ) - a P (a +P ) -

2 k a 2 k , 2 n + 2 , f t 2 n + 2 . - a p (a +p ) = 

L 2 n + 4 k + 2 + ( L 2 n + l " L2n+2-) " (~l) L 3 = L 2 n + 4 k + 2 " L 2 i T ( - 1 ) L 3 e 
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PHYLLOTAXIS 

EJ.KARCHMAR 
Control Data, Palo Alto, California 

Leaves a r e commonly a r r anged on the plant s tem according to a 
pa t t e rn . If the pa t t e rn is "whorled, " s eve ra l leaves a r i s e from the 
same node, at in te rva l s along the s tem. If the pa t t e rn is "dis t ichous, " 
the a r r a n g e m e n t is two-ranked . However, the mos t common pa t te rn 
of a r r a n g e m e n t is " sp i r a l . " 

The mos t accu ra t e method for studying plant phyllotaxis is by 
t r ansec t ing the apical bud and making observat ions on the c r o s s - s e c -
tion. When one examines such a c r o s s - s e c t i o n , the mos t s t r iking 
feature to mee t the eye is the sp i ra l appearance of the a r r a n g e m e n t of 
leaf p r i m o r d i a . It has been found that the re is a definite, he r i t ab le 
sp i ra l appearance of the a r r a n g e m e n t of leaf p r imord i a . It has been 
found that the re is a definite, he r i t ab le sp i ra l a r r a n g e m e n t which can 
be designated (in mos t cases) by two number s : the number of sp i ra l s 
which tu rn in one direct ion, and the number which tu rn in the other 
(these curves a r e called "pa ra s t i ch i e s " ) . The in te r sec t ions of these 
two sp i ra l sys t ems del ineate " q u a s i - s q u a r e s , " within which a r e found 
the leaf p r imord i a (2, 4, 40). 

In an overwhelming number of species (434 species in the Angio-
spe rmae and 44 species in the Gymnospermae were found by T. Fujita 
in 1938) the pa ras t i chy numbers fall in the Fibonacci Sequence, the 
mos t common pa i r s of numbers being 2:3 and 3:5 (see Appendix) (40). 
When the pa ras t i chy numbers do not fall in the Fibonacci Sequence, 
they r egu la r ly fall into one of the other summat ion s e r i e s (see Appendix, 
footnote). 

It has a lso beenfound by inves t iga tors in the field (2, 14, 40) that 
the angle between adjacent leaf p r imord ia i s , in a convincing number 
of c a s e s , approximate ly 137 30 ' . This is var ious ly called the "ideal 
angle, " the "divergence angle, " and the "Limi td ivergenz . " This angle 
can be obtained mathemat ica l ly by applying the l imiting value of the 
Fibonacci Sequence u / u , , : ^ n' n+1 

360° - (0.6180)(360°) = 137°30'o 
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PhyLlotaxis has been a field of i n t e r e s t for cen tu r i e s . Since 
1900 seve ra l theor ies have been offered as explanation of some of the 
phenomena of phyliotaxis0 Some exper imenta t ion has been done to de-
t e rmine the effect of environment or mechanica l damage on phyllotaxis 
(6, 11, 21, 25, 42); and some X - r a y and chemica l effects on the de-
velopment of leaf a r r a n g e m e n t have been noted (17, 20, 22, 23). How-
ever , after 1920 very little has been published on this subject; p e r -
haps the feeling is that the re a r e so many m o r e fruitful and less 
" m y s t e r i o u s " a r e a s of botanical in te res t , that this one is best left 
alone0 Also, the subject s eems to lie m o r e p roper ly in the r ea lm of 
biophysics, which is a re la t ive ly new field* 

The sp i ra l a r r a n g e m e n t d i scussed in (1) above is not pecul ia r to 
p lan t s . It is a l so found in the shel ls of foramini fera (4), nauti l i , and 
other an ima l s . It is the opinion of Church (4, p . 48) that the factor 
common to both plants and the foramini fera is "the building of new units 
one at a t ime, — and it thus appea r s that this is the e s sen t i a l factor 
behind all such p resen ta t ion of Fibonacci re la t ions , to all t ime . " 

Church a l so feels that the Fibonacci phyllotaxis is phylogenet ic-
ally p r imi t ive (4, p . 13). 

" . . . v e r y admirab le sp i r a l a r r a n g e m e n t s , in which Fibonacci 
s y m m e t r y may be dis t inct ly t raced , obtain in the case of many 
of the m o r e m ass ive Brown Seaweeds (Phaeophyceae-Fucoideae) , 
in the or ienta t ion of the m o r e or less frondose or leaf-l ike la t-
e r a l ramul i ; leaving little doubt that the phy l lo tax i s -mechan ism 
is , in fa-ct, a s t i l l older function of the axis of m a r i n e types of 
vegetation, and that the p resen ta t ion of such phenomena, even in 
a m o r e e labora ted and specia l form, can be but the continuation 
and amplif icat ion of fac tors of m a r i n e phytobenthon; and that it is 
to the sea that one mus t look for the or igin and p r i m a r y intention 
of this r e m a r k a b l e re la t ion . " (4, ppQ 37-38) 
There s eems to be little doubt that the p r i m a r y mechan i sm r e -

sponsible for Fibonacci phyllotaxy is genetic in nature., r a t h e r than be-
ing a function of growth conditions such as avai labi l i ty of, and need 
for, i l lumination. In the words of Church, 

"It can only be concluded that the plant is somehow biased from 
the f i r s t infavour of m e m b e r s a r r anged one by one in a Fibonacci 
sequence; and the suggest ion immedia te ly offers that this may 
be in some way the expres s ion of the inher i tance of the equip-
ment of a preceding phase and the solution of a much older p r o b -
lem. " (4, pe 53) 
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I suggest that, by a cons idera t ion of a type of o rde r and s y m m e t r y 
so basic to living ma t t e r , one may perhaps gain some insight into the 
problem of the origin of that o rde r , 

Edi tor ia l Comment: A mimeographed 46 en t ry annotated bibl iography 
is avai lable on r e q u e s t f r o m the Fibonacci Associa t ion . Send r eques t s 
d i rec t ly to Bro ther U. Alfred, St. Mary ' s College, California 94575. 

XXXXXXXXXXXXXXX 

CORRECTIONS: Volume 2, Number 3 

In the poem "A Digit M u s e s " by Bro ther U. Alfred, page 210, we wish 
to say "oh pshaw, no phi! " since PHI was omitted from the end of the 
sixth l ine. 

Page 204: The symbol cf> was omitted from the numera to r of the las t 
displayed equation. The numera to r i s , of course , 0 ( x ) . 

CORRECTIONS: Volume 2, Number 4 

Page 290: Title should have rr in the blank after the second word in 
the t i t le and the eighth displayed equation should have a + and a - r e -
spect ively in the blanks between the second and th i rd t e r m s and the 
th i rd and fourth t e r m s . 

Page 281: Missing symbol in the f i r s t displayed equation i s , of cou r se , 
a summat ion symbol . 
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FIBONACCI FANTASY: THE SQUARE ROOT OF THE Q MATRIX 

MARJORIE BICKNELL 
Adrian Wilcox High School, Santa Clara, California 

The m a t r i x 

O 
1 1 

1 0 

has many well known fascinating p rope r t i e s , one being that 

ol 
n+1 

F l_ n n - 1 . 

where F is the nth Fibonacci number . The Q m a t r i x a lso has a n 
Fibonacci square root, which can be exhibited after making a s imple 
definition. 

We extend the re la t ionships 

F k = ( a k - /3k)/( a - £ ) , a = (1 + / 5 ) / 2 , |3 = (1 - f5)/2, 

toa l low k to equal any in t eg ra lmu i t i p l e of one-half. Considering odd 
mul t ip les of one-half for a moment , it is easy a lgebra ica l ly to obtain 

.2 rT , o-./ i v 'n+ l - i F(2n+l)/2 = [L2n+1 + ^ 'J/* 
and 

L ^ 2 n + l ) / 2 = L2n+1 + ^'V*' i rr, 
di rec t ly from the extended definition. So then, all Fibonacci or Lucas 
numbers whose subscr ip t s a r e odd mult iples of one-half a r e complex. 
Also, combining the two equations d i rec t ly above yields 

2 2 i 
L (2n+l) /2 " 5 F ( 2 n + l ) / 2 = 4 i ( - 1 ) 
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Returning to the Q matrix, a square root of Q is given by [I] 

,V2 _ Q 

"F / F / 
3/2 1/2 

L F 1 / 2 F - l / 2 - l , 

for, by applying the extended definition and simplifying, 

= 0 , F 3 / 2 + F l / 2 = 1 ' F?/2+F?i/2 

a n d F3/2Fl/2 + Fl/2F-l/2 " l 

As suggested by the second of these equalities, we can write 

F - l / 2 = i F l / 2 • 

By taking the determinant of the square root of Q, 

2 
1 = F 3 / 2 F - l / 2 " F l / 2 ' 

Also, that 

Qn/2 = 

F(n+2)/2 

F /•? 

*— n/2 

F n /2 ~] 

F (n -2 ) /2 -

can be established by induction, using the extended definition and al-

gebraic manipulation. By equating corresponding elements of equal 

matrices, from (Q ' ) = Q , we obtain 

* (n+2)/2 n/2 " n+1 

and 

F(n+2)/2Fn/2 + Fn/2F(n-2)/2 F n 

Taking the determinant of Q yields 

^ i.l,n/2 = F(n+2)/2F(n-2)/2 " F n /2 

The reader can easily establish that 
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F = F / F + F F , 
(2n+3)/2 3/2 n+1 n 1/2 ' 

F (2n+3) /2 = F (n+3) /2 F (n+2) /2 + F ( n + l ) / 2 F n / 2 

2n+l "" F ( 2 n + l ) / 2 L ( 2 n + l ) / 2 ' 

F ( 2 n + l ) / 2 F ( n + 3 ) / 2 F n / 2 + F(n+1 ) / 2 F ( n - 2 ) / 2 ' 

Let us pursue a m o r e genera l r esu l t . It can be es tabl ished by 
induction that 

Q p / r _ 
" F F 

(p+r ) / r p / r 
L F / L- p / r ( p - r ) / r J , r / 0 , 

if we fur ther extend the definition of Fibonacci numbers to include sub-
sc r ip t s which a r e ra t ional n u m b e r s . Taking the de te rminan t yields 

.2 
(-1) 1 } p / r 

(p+r ) / r ( p - r ) / r " p / r 

As an example , since 
2 2 

Q p / r
 Q

r / P = Q(P +r ) / r P ? 

cons idera t ion of the e lements of these m a t r i c e s leads to 

V+ r
2

+ r p, /rp = F ( P + r ) / / ( r + P ) / P + ^/^^P ' 
which is a genera l case of the fami l iar identity 

F = F F + F F 
m+n+1 m+1 n+1 m n 

In genera l , it s e e m s that ident i t ies which hold for in tegra l sub-
sc r ip t s a lso hold for our specia l ized ra t ional subsc r ip t s . What if the 
Fibonacci subscr ip t were a complex n u m b e r ? J. C. Amson [2] has 
answered this quest ion while demons t ra t ing an analogy to the fami l iar 
c i r cu l a r and hyperbolic functions. 
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Am son defined modified Lucas functions as 

luc z = (w - w )/2A, coLuc z = (w + w ) /2 , 

where z is a complex number and w and w a r e the roots of the 
2 2 2 

quadra t ic equation x = Px - Q, with d i sc r iminan t A = P - 4Q. 
(Notice that luc z = ( F j / 2 , coluc z = (L ) /2 when P = 1, Q = - 1 . ) 
Algebraical ly , we see that, among other ident i t ies , 

Q luc(-z) = - luc z 

Q coluc(-z) = coluc z 

luc 0 = 0, coluc 0 = 1 

luc 2z = 2 luc z coluc z 

luc(z + z?) - luc z coluc z + coluc z. luc z ? 

Q iuc(z1 - z„) = luc z, coluc z ? - coluc z, luc z ? 

2 coluc(z + z~) = coluc z, coluc z ? + A luc z ] luc z^ 

z 2 
Q coluc(z, - z ? ) = coluc z. coluc z? - A luc z, luc z ? 

2 2 2 
coluc z + A luc z = coluc 2z 

coluc z - A luc z = Q 

(coluc z + A luc z) = coluc nz + A luc nz. 

Compar i son of these Lucas functions with those der ived from the 
c i r c u l a r functions defined by 

, iz -izx / o . / iz , - izx / o 
s m z = (e - e ) /2i , cos z = (e + e )/2 

or those from the hyperbol ic functions defined s imi l a r ly by 

sinh z = (e - e ) /2 , cosh z = (e + e ) /2 

r evea l s a close analogy. Also, in the specia l case that the quadra t ic 
equation is x = x + 1, we see a fami l iar l is t of Fibonacci ident i t ies 
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emerging for complex subsc r ip t s . This fine re fe rence [2] was brought 
to our at tention by Prof. Tyre A. Newton. 
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LETTER TO THE EDITOR 

P. NAOR 
The University of North Carolina 

Chapel Hi l l , N.C. 

I read with g rea t i n t e r e s t your recent paper "On the Order ing of 
the Fibonacci Sequences . " The genera l idea underlying your o rder ing 
p rocedure is excellent , but the r ep resen ta t ion can be improved and 

(possibly obscure) re la t ionships may be brought to light. 
Consider (for the t ime being) sequences for which D ^ 11. For 

r ea sons which will soon become c lea r I prefer to define the number f 
(in your notation) as the f i r s t t e r m in the sequence, 0 , say. You co r -
rec t ly pointed out that "a negative sequence may be obtained from a 
posit ive sequence by changing the signs of all t e r m s " . . . ; however , 
the re is another ( ra the r s imple) operat ion which es tab l i shes an .equiva-
lence between two sequences . Consider a sequence 

. <£_4> 0_3> <£ 2 j 0_1> 0O> 0 1 > 0 2 > <py 04> • 

and a s s u m e , for c o n v e n i e n c e , t h a t the m o n o t o n i c p o r t i o n i s p o s i t i v e . 

It i s e a s y to v e r i f y t h a t 0 i s p o s i t i v e ( n e g a t i v e ) if n i s e v e n (odd) 
w h e r e n i s a n o n - n e g a t i v e i n t e g e r . Nex t v i e w a n a s s o c i a t e d s e q u e n c e 
{ 0 ' } de f ined by 

0 ' = 0 if n i s e v e n 
±n ^n 

d>\ = <6_ if n i s odd . 
< ±n r' + n 

It i s e l e m e n t a r y to show t h a t { 0 ' } i s a F i b o n a c c i s e q u e n c e (wi th 
t h e m o n o t o n i c p a r t p o s i t i v e ) - t h u s F i b o n a c c i s e q u e n c e s t y p i c a l l y a p p e a r 
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in p a i r s - { (f>n } being { 0 } - although the poss ibi l i ty of a sequence 
being s e If - a sso c iate d (a nd thus appear ing to be single) cannot be ruled 
out a p r i o r i . Now for a series"To"Be~"self-associated in the following 
mus t hold - <f> - + tp so that the cen t ra l t e r m 0 becomes 

and, if we a r e in t e res t ed only in sequences which a r e not in tegra l mu l -
t iples of other sequences , it becomes c l ea r that one, and only one, 
such sequence ex i s t s , to wit 

. . . . . . . -4 , 3, - 1 , 2, 1, 3, 4, . . . . . 

whose D equals 5. Let this sequence be denoted as the o rd ina ry self-
assoc ia ted sequence,, However, the re exis ts in addition"an exTra_ordi-
n a r y se l f -assoc ia ted sequence. If we admit (which we did not before) 
tEe~possibility <f> = 0, we have 

and the only "prime1 1 solution is the Fibonacci sequence 

. . . . . . - 3 , 2, - 1 , 1, 0, 1, 1, 2, 3, . . . . . 

You note, of cou r se , that in this single case f equals <f> and not 
4>i 0 This sequence is indeed ex t r ao rd ina ry in s eve ra l r e s p e c t s : In 
contradis t inct ion to all other sequences it has the p r o p e r t y that (f> is 
posi t ive (negative) if n is odd (even). Also <p < ] <f>• , J is t rue in 
this case whereas in al l other cases the inequali ty nolds in the opposite 
d i rec t ion . An exceptional behavior of D will be d i scussed in this l e t t e r . 

It is then my proposa l to c h a r a c t e r i z e the Fibonacci sequences 
not by (f , f, ) but r a the r by ( 0 1 , <f>, ). This r ep re sen t a t i on has 
numerous advantages : The two mutual ly dual Fibonacci sequences may 
be r ep re sen t ed by _one pa i r of b racke t s , e. gD , what you r e p r e s e n t as 
(1, 4) and (2, 5) would become in m y notation (-2, 1) and ( -1 , 2); both in 
one r ep re sen ta t ion would be wr i t t en as [2, l] with the ag reemen t that 
the l a rge r (in absolute value) number p r e c e d e s the s m a l l e r number . 
The o rd ina ry se l f -assoc ia ted (or self-dual) sequence would be [1 ,1 ] 
whe reas the e x t r a o r d i n a r y sel f -dual sequence d e s e r v e s specia l nota-
tion, e. g. (1 ,1) . 

Consider now the quantity D as defined in your paper 

? 2 
D = ff - f. f - r 

1 1 o o 
In t e r m s of <j> and <f> this becomes 
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Again since for the or iginal Fibonacci sequence <f> is differently-
defined (in t e r m s of your f's) we get D = -1 in this cas% on m y defini-
t ion but this is not disconcerting,, To my mind the or iginal Fibonacci 
sequence is sufficiently e x t r a o r d i n a r y (on compar i son with other such 
sequences) that it d e s e r v e s a D with a sign different from that of the 
o t h e r s . Inspection of the D's as p resen ted in your paper leads me to 
the following conjectures (I am inclined to think that (a) i t i s not difficult 
to prove them, (b) it has been done so before - thus I have not taken 
the t rouble) . 

Let p r i m e number s of the form lOn ± 1 be r e p r e s e n t e d by g-, . 
We have then 
(1) The set of feasible D's is made up of - 1 , 5, all g^ ' s , al l p rod-
uc ts of g iJs which we denote by Q ( i . e . Q = g . g . . . . g j j a l l 
number s of the form 5gk> and a l l n u m b e r s of the form 5Q . In other 
words a n e c e s s a r y condition for an in teger to be a D is that it belongs 
to the s&TJ^TTT, gk, Q m , 5gk, 5Q m } . 
(2) Each number in the above set may indeed be found in the l i s t of 
D ' s . In other words , the above is a l so a sufficient condition. 
(3) T h e n u m b e r of s e q u e n c e s a s s o c i a t e d w i t h a g i v e n v a l u e of D i s 
s i m p l y r e l a t e d to i t s f a c t o r i z a t i o n p r o p e r t i e s . I r e s e r v e a f ina l f o r m u -
l a t i o n of m y c o n j e c t u r e on t h i s p a r t u n t i l I h a v e s e e n m o r e " e x p e r i -
m e n t a l m a t e r i a l , " i . e . , a t a b l e of D ' s (wi th a s s o c i a t e d s e q u e n c e s ) 
b e t w e e n 1000 a n d 2 0 0 0 . It i s a l r e a d y o b v i o u s t h a t fo r - 1 and 5 we g e t 
t h e s e l f - d u a l s e q u e n c e s and fo r e a c h g k a n d 5 g k w e h a v e one p a i r of 

a d u a l s e q u e n c e s . A s fo r a Q i t i s o b v i o u s t h a t if i t e q u a l s g (a > 1) 
m Ac 

w e h a v e a g a i n one a s s o c i a t e d p a i r , bu t fo r t h e c a s e Q = g a g . . . . aP & / m toi &j k 
t h e n u m b e r of a s s o c i a t e d p a i r s i s a f u n c t i o n of t h e d e g r e e of " c o m -
p o s i t e n e s s " a n d t h i s s h o u l d be l o o k e d in to a l i t t l e m o r e c a r e f u l l y by 
m e a n s of a n e x t e n d e d T a b l e . F i n a l l y , t h e n u m b e r of p a i r s of F i b o n a c c i 
s e q u e n c e s a s s o c i a t e d w i t h 5Q i s i d e n t i c a l w i t h t h e n u m b e r of p a i r s 
a s s o c i a t e d w i t h Q , m 

If y o u a r e a w a r e of l i t e r a t u r e r e l a t i n g to t h e s e c o n j e c t u r e s , k i n d l y 
l e t m e k n o w . A l s o if y o u h a v e a n e x t e n d e d t a b l e of t h e D ' s I s h o u l d 
a p p r e c i a t e a copy* 

I h o p e s o m e of m y r e m a r k s m a y h a v e b e e n of u s e fo r o r d e r i n g 
and c l a s s i f i c a t i o n p u r p o s e s . 

xxxxxxxxxxxxxxx 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by A.P. HILLMAN 
University of Santa Clara, Santa Clara, California 

Send all communications regarding Elementary Problems and 

Solutions to Professor A. P. Hillman, Mathematics Department, Uni-

versity of Santa Clara, Santa Clara, California. Any problem be-

lieved to be new in the area of recurrent sequences and any new ap-

proaches to existing problems will be welcomed. The proposer should 

submit each problem with solution in legible form, preferably typed in 

double spacing with name and address of the proposer as a heading. 

Solutions to problems listed below should be submitted on se-

parate signed sheets within two months of publication. 

B - 5 8 Proposed by Sidney Kravitz, Dover, New Jersey 

Show that no Fibonacci number other than 1, 2, or 3 is equal to 

^ Lucas number. 

B - 5 9 Proposed by Brother V. Alfred, St. Mary's College, California 

Show that the volume of a truncated right circular cone of slant 
height F with F , and F ., the diameters of the bases is & n n-1 n+1 

^ F n + l - Fn-1>/2 4 • 

B - 6 0 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California 
2 Show that L0 L„ LO - 5F0 , , = 1, where F and L are the 2n 2n+2 2n+l n n 

n-th Fibonacci number and Lucas number,respectively. 

B-61 Proposed by J. A. H. Hunter, Toronto, Ontario 

Define a sequence U,, U?, . . . by U, = 3 and 

U = U , + n2 + n + 1 for n > 1 . n n-1 

Prove that U = 0 (mod n) if ng 0 (mod 3). 

B - 6 2 Proposed by Brother U. Alfred, St. Mary's College, California 

Prove that a Fibonacci number with odd subscript cannot be rep-
resented as the sum of squares of two Fibonacci numbers in more than 
one way. 

74 
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B - 6 3 An old problem whose source is unknown, suggested by Sidney Kravitz, Dover, New Jersey 

In A ABC let s ides AB and AC be equal . Let the re be a 
point D on side AB such that AD = CD = BC. Show that 

2cos 3-A = AB/BC = (1 + N/5 ) /2 ., 

the golden mean . 

SOLUTIONS 

A BOUND ON BOUNDED FIBONACCI NUMBERS 

B - 4 4 Proposed by Douglas Lind, Falls Church, Virginia 

Prove that for every posit ive in teger k the re a r e no m o r e than 
k k+1 

n Fibonacci number s between n and n 
Solution by the proposer. 

Assume the maximum, 

(1) n k < F x l , F , 9 , . . . , F , < n k + 1 . 
x ' r+1 r+2 r+n 
Now 

n-1 r+n-1 

** r+j ** 

= F r + n + l 

r 

P . - 2 

r+2 

F . 

• 

But by (1), 

and hence 

n-1 
2 F , • + F , 7 > n - n k 
** r+j r+2 

» k + 1 

r+n+1 

thus proving the proposi t ion. 
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ANOTHER SUM 
B - 4 5 Proposed by Charles R. Wall, Texas Christian University, Ft. Worth, Texas 

Let H be the n- th genera l ized Fibonacci number , i. e. , let n te 

H, and H~ be a r b i t r a r y and H IO = H ., + H for n > 0. Show 1 2 7 n+2 n+1 n 
that nHj + ( n - l ) H 2 + (n--2)H3 + + H = H J . - ( n + 2 ) H 0 - H 1 , n n+4 ' 2 1 
Solution by David Zeitlin, Minneapolis, Minnesota. 

In B-20 (see Fibonacci Quar te r ly , 2(1964) p. 77), it was shown 
that 

n 
1 H j = Hn+2 ' H 2 ' 

j=l 
In B-40 (see Fibonacci Quar te r ly , 2(1964), p . 155), Wall proposed that 

X JH. = (n + l)H _ - H . . . + H, + H , n+2 n+4 1 2 

Thus, the des i r ed sum 
n n n 
2 [(n+1) - j] H.. = (n+1) 2 H. - 2 JH. 

j=l j=l j=l 

[ (n+ l )H n + 2 - ( n + l ) H 2 ] - [ ( n + l ) H n + 2 - H n + 4 + H 1 + H 2 ] 

= H n + 4 - (n+2)H2 - Hj . 

Also solved by Douglas Lind, Kenneth E. Newcomer, Farid K. Shuayto, Sheryl B. Tadlock, 
Howard L. Walton, Charles Zeigenfus, and the proposer. 

A C O N T I N U A N T D E T E R M I N A N T 

B - 4 6 Proposed by C.A. Church, Jr., Duke University, Durham, North Carolina 

Evaluate the n- th o rde r de te rminan t 
a+b ab 0 0 

1 a+b ab 0 
0 1 a+b ab 

D = 1 0 0 1 a+b 
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Solution by F.D. Parker, SUNY, Buffalo, N.Y. 

We denote the value of the de te rminan t of o rde r n by D(n), and 
2 2 

notice that D(l) = a + b and D(2) = a + ab + b . Expanding D(n) by 
the f i r s t row, we see that 

D(n) = (a + b) D(n- l ) - ab D(n-2) . 

This is a homogeneous l inear second o rde r difference equation; 
if a T* b, the solution which fits the ini t ial conditions is 

D(n) = ( a n + 1 - b n + 1 ) / ( a - b ) .. 

If a = b, the solution which fits the ini t ial conditions is D(n) = (1 + n) a . 
Also solved by Joel L. Brenner, Douglas Lind, C.B.A. Peck, David Zeitlin, and the proposer. 

Lind, Peck, and Zeitl in pointed out that B-46 is a specia l case of B-13 . 
Peck a l sono ted that B-46 is an example of a c lass of continuants men -
tioned by J. J. Sylvester in the Phi losophical Magazine, Ser ies 4, 5 
(1853)446-457. (See T. Muir, His tory of the Theory of Dete rminants 
(Dover) Vol. I, p . 418,) Brenner noted that B-46 and s imi l a r p rob -
lems occur as Nos. 217, 225, 234, e tc . in Faddeev and Sominski, 
P r o b l e m s in Higher Algebra, a t r ans la t ion of which will soon be pub-
l ished by W. H. F r e e m a n . 

CONSECUTIVE COMPOSITE FIBONACCI NUMBERS 

B - 4 7 Proposed by Barry Litvack, University of Michigan, Ann Arbor, Michigan 

Prove that for every posi t ive integer k the re a r e k consecut ive 
Fibonacci number s each of which is compos i te . 

Solution by Sidney Kravitz, Dover, New Jersey 

Let F be the n - th Fibonacci number . We note that F > 1 n n 
for n > 2, that F . divides F . and that j is a d i v i s o r of (k+2)! + j 
for 3 i j 1 k+2. Thus the k consecutive Fibonacci number s 

F ( k + 2 ) ! + 3 ' F(k+2)I + 4 ' " " F(k+2)I + k + 2 

a r e divisible by F~, F,9 . , • , F, ? r e spec t ive ly . 

Also solved by R.W. Castown, Douglas Lind, F.D. Parker, and the proposer. 
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A BINOMIAL EXPANSION 

B - 4 8 Proposed by H.H. Ferns, University of Victoria, Victoria, British Columbia, Canada 

Prove that 

r "• 1 r 
, (-2 F if r is an even positive integer 

2 (-Z)\)Fk= \ r
 r

 / 2 
, , v 2 F -2(5) / if r is an odd positive integer, 

where F , ? = F . + F (F] = F~ = 1) and find the corresponding sum 

in which the F, are replaced by the Lucas numbers L, . 

Solution by D.G. Mead, University of Santa Clara, Santa Clara, California 

Let S be the given sum. By the Binet formula, 

F n = (a11 - bn)/(a-b) 

where a = (1 + /5)/2 and b = 1 - a. Then a - b = y/fT = 1 - 2a = 2b - lf 

and 

S + (-2)r F r = I Q ( -2 ) k F k 

k=0 
r 

= 2 0 C(-2a>k " <-2b)k] 

= (1 - 2a)r - (1 - 2b)r 

_ ( / 5 ) r [1 - ( - l ) r ] 

The desired conclusion follows immediately. 

Similarly one sees from L = a + b that the corresponding 

sum for the Lucas num bers is -2 -2rL + 2( \/ 5)T for r even and 

- 2 + 2 L for r odd™ r 

Also solved by the proposer. 
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AN ALPHAMETIC 

B - 4 9 Proposed by Anton Glaser, Pennsylvania State University, Abington, Pennsylvania 

Let <fi r e p r e s e n t the le t te r "oh". T W 0 
IS 

THE 
0NLY 
EVEN 

79 

Given that T, W, 0 , L, V, P , and TW<£ a r e 
Fibonacci number s , solve the c ryp ta r i thm 
in the base 14, introducing the digits 
«» /3, Y , and 5 in base 14 for 10, 11, 
12, and 1 3 in base 10. PRIME 

Solution by Charles Ziegenfus, Madison College, Harrisonburg, Virginia 

With a little calculat ion one obse rves that the Fibonacci number 
cor responding to TW<£ is 2584. Thus, T = § , W = 2, ' <f> = 8, P = 1, 
L = 3 or 5, and V = 3 or 5» Next we note that 8 + E + (2 or 3) = 1R, 
so that E = 4 + R or E = 3 + R0 Tabulating these r e s u l t s : 

R 
E 

0 

4 

6 
a 

7 

3 
4 

7 

6 

9 

7 
a 

9 

y 

F u r t h e r , 8 + S + E + Y + N = k E or S + Y + N = k 0 - 8 = 6, 16, or 26 
in base 14. There a r e no poss ib le choices for S, Y, N such that 
S + Y + N = 6 or 26. Thus S, Y, N can be chosen from (0, 9 , $ } ; 
( 4, 7, 9 ) ; {4, 6, a } 0 Tabulating this with the previous r e su l t we ob-
tain: 

R 

E 

S, Y, N 

6 
a 

4, 7, 9 
or 

0, 9, /3 

7 

0 
4, 6, a 

4 

7 

0, 9, 0 

7 
a 

0, 9, 0 

9 
y 

4, 6, a 

Fu r the r , 

T + W + 0 + I + S + T + H + E + 0 + N + L + Y + E + V + E + N 

- P - R - I - M - E is a mult iple of 8 . 
We reduce the above to 6 + (2° E - R) + H + N - M = S • k, 

On substi tut ing the poss ib le values for R and E we fur ther r e -
duce this problem to the following ca se s : 
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a. 
b. 
c. 
d. 
e. 

R = 6 and E = a, 7 + N + H - M = 8' k. 
R = 7 and E = 0 , 8 + N + H - M = S"k. 
R = 4 and E = 7, 3 + N + H - M = 8' k. 
R = 7 and E = a, 6 + N + H - M .= S 'k . 
R = 9 and E = y9 8 + H + N - M = 8 'k 0 

F r o m the previous table we observe that there a r e exact ly th ree choices 
for N. Using these in the above cases reduces the problem to an 
equation involving only H and M and only th ree choices for t hese . 
Thus we obtain two dis t inct solutions (actually four since S and Y 
can be in terchanged) . 

0 

S or Y 
M 

1 

P 

P 

2 

W 

W 

3 

V 

V 

4 

H 

S or Y 

5 

L 

L 

6 
R 

R 

7 

M 

N 

8 

<P 
<t> 

9 
N 

S or Y 

a 

E 

E 

0 
S or Y 

I 

y 
I 

H 

8 
T 

T 

Also solved by the proposer and partially solved by J.A.H. Hunter. 

A N D A N O T H E R SUM 
B - 5 0 Proposed by Douglas Lind, Falls Church, Virginia 

Prove that 
n 
1 T2F2 - (n)F. 1 = F2 , 

j = 0 

Solution by David 7.eitlin, Minneapolis, Minnesota. 

Since 
n 
1 

j=0 
F7 = F F , . , j n n + r 

X (n) F . = F 9 = F L = F (F ,, + F . ), sy j Zn n n n n+1 n-1 
j=o 

the des i r ed sum is 
2F F ,, - F F ,, - F F " = F (F ,. - F . ) = F 2 

n n+1 n n+1 n n-1 n n+1 n - 1 ' n 

Also solved by H.H. Ferns, Farid K.Shuayto, Sheryl B. Tadlock, and the proposer. 

XXXXXXXXXXXXXXX 


