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r e c u r s i o n re la t ion (6) yields the other set of a l t e rna te Fibonacci num-
bers as the sequence of cumulat ive suras, the total pa r t i c l e count. 

5. CONCLUDING REMARKS 
One is d i rec ted to advanced problem H-5Q December 1964, F ib-

onacci Quar te r ly , for the part i t ioning in te rp re ta t ion of the in teger n of 
the model for <p(t) - kt. 

Suppose one defines two se ts of Morgan-Voyce polynomials 
bQ(x) = 1, b}(x) = 1 + x; BQ(x) = 1, B ^ x ) = 2 + x , 

both sets satisfying 

(7) P
n + 2 ( x ) = (X + 2 ) P n + l ( x ) " P n ( x ) j n ~ ° • 

It is easy to es tab l i sh that 
P (k) = A = k B , (k) n n n-1 
T (k) = An + A, + . . . + A • = b (k) . n 0 1 n n 

Thus for k = 1, we again find B ,(1) = F n and b (1) = F~ ( 1 . See 
° n-1 2n n 2n+l 

c o r r e c t e d prob lem B-26 with solution by Douglas L ind in the E l e m e n t a r y 
P rob lem Section of this i s sue , where the binomial coefficient re la t ion 
mentioned in the note of Section 3 is shown. A future paper by Prof. 
M. N. S. Swamy dealing extensively with Morgan- Voyce polynomials will 
appear in an ea r ly i s sue of the Fibonacci Quar t e r ly . 
Acknowledgment: The author is completely indebted to Dr. V. E. 
Hoggatt, J r . , for bringing to his at tention the theorem and its proof. 
Additional r e fe rences to work along the lines of genera ted compos i -
tions -— some of which yield numbers with Fibonacci p rope r t i e s — w i l l 
be found in the r e fe rences at the end of this paper . (See note, page 94) 
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MYSTERY PUZZLER AND PH! 
MARVIN H. HOLT 
Wayzata, Minnesota 

A problem proposed by P r o f e s s o r Hoggatt is as follows: Does 
the re exist a pai r of t r i ang les which have five of thei r six pa r t s equal 
but which a r e not congruen t? (Here the six pa r t s a r e the th ree s ides 
and the th ree angles . ) The ini t ial impuls ive answer is no J The p rob-
lem a lso appea r s in | 1 | as well as in the MATH LOG. 

I have taken some t ime to work on the problem you suggested. 
I think you will agree that the solution I have is in te res t ing . One p rob-
lem, as you have stated it, is posed in a high school geomet ry text 
entitled, "Geomet ry" byMoise and Downs, published by Addison Wesley 
Company, (page 369)* 

In thei r solution key, they gave one possible pai r of t r i ang les 
that work: 

I d i scovered this after I solved the problem myself. But the above 
solution does not do jus t ice to the problem at all, since my old friend 
r is rea l ly the key to the solution. Note: Golden Mean = 96 = r in what 
follows. 

I at tacked the problem as follows: F i r s t , the five congruent pa r t s 
cannot contain all t h ree s ides , since the t r i ang les would then be con-
gruent , Therefore , the five pa r t s mus t be th ree angles and two sides 
which means that the two t r i ang les a r e s im i l a r . But, the two sides 
cannot be in cor responding o rde r , or the t r i ang les would be congruent 
e i ther by ASA or SAS. So, the si tuation mus t be one of two poss ib i l i t ies 
as I have sketched below: (My sketches a r e not to sca le . ) 
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t r iangle 1 

t r iangle 2 

poss ibi l i ty 1 

possibi l i ty 2 

In both c a s e s , by using re la t ionships from s imi la r t r i ang les , it follows 
that |:= or b = ka and c = kb = k a from possibi l i ty 2 and ~ = 3 or 

2 b d 
b = ka and d = kb = k a from possibi l i ty 1. 

So, the th ree s ides of the t r iangle mus t be th ree consecutive 
2 

m e m b e r s of a geomet r ic s e r i e s : a, ak, ak , where k is a p ropor t ion-
al i ty constant and k > 0 and k ^ 1. If k = 1, the t r i ang les would both 
be equi la te ra l and thus congruent . Therefore , k / 1. 

F r o m my previous a r t i c l e on the Golden Section (Pentagon, Spring 
1964) I worked out two p rob lems on right t r i ang les where the s ides 
formed a geomet r ic p r o g r e s s i o n and the constants turned out to b e / ^ " 
and y — «, So, I knew of two m o r e si tuat ions where the or iginal p rob lem 
could be solved. Then I began to consider var ious other values of k 
and I began to wonder what values of "kM will work. In other words , for 
what values of k will the number s a, ak, and ak be s ides of a t r i -
angle . Once we know th is , then another t r iangle with s ides ^ , a, ak 

2 3 k 

or ak, ak , ak wi l lhave five p a r t s congruent but the t r i ang les would 
not be congruent . 

I n o r d e r f o r a, ak and ak to be s ides of a t r i ang le , t h ree s t a t e -
ments mus t be t rue : 
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These a r e ins tances of the s t r i c t . t r i ang le inequality. 
1. a + ak > ak 2 (a + b > c) 

2. 

3. 

a + ak > ak 

2 
ak + ak > a 

[a > 0, k > 0, 

For Case 1, consider k > 1 

(a + c > b) 

(b + c > a) 

k ^ l ] 

(a) k > 1—>k > k ->1 + k > k 

the re fo re , a + ak > ak (condition 2 above) 

(b) k > l—>k + 1 > 1—>k + k > 1 

the re fo re , ak + ak > a (condition 3 above) 

(c) if k > 1 show a + ak > ak (condition 1 above) 

This pa r t revolves around the problem of finding out when 1 + k > k , 
2 or, graphical ly: For what x > 1 will 1 + x = y be above y = x ? 

2 • 1 

p™_^«—-
Jf— Y = 

2 
— y = x 

2 

1 + x 

Solving this problem produces the r e su l t that 

k < ~ or_ k < r . 
2 So, if 1 < k < r then the number s a, ak, ak a r e the s ides of the 

a 2 3 
t r iangle that can be matched with -- , a, ak or ak, ak , ak to solve 
the or iginal p rob lem. (Incidentally: 1 < v ^ < r . So this fits i n h e r e . ) 

For Case 2, consider k < 1 
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(a) 

(b) 

(c) 

MYSTERY PUZZLER AND PHI 
z z z 

if k < 1—->k < k ~ > k < k + 1 Therefore ak < ak + a 
(condition 1) 

Apri l 

if k < 1 —> 1 + k > 1 —>a + ak > ak (condition Z) 

Now, if k < 1 show ak + ak > a. This i s , essentially,finding 
Z 

what values of k make k + k > 1. 
2 Again, graphical ly, for what x < 1 will the parabola y = x + x 

be above the line y = 1 ? 

pm X7p y = l 

— X = 1 

-1 + /5~ Solving this problem produces the resu l t that k > ~ . If you 
-1 + / 5 will follow this closely, ^ is the additive inve r se of the conjugate 

of ^ . (i. e, j r = ^ . Therefore , the conjugate of r is « 
1 4 - /"cT I _L /C, 

and its additive inve r se is -= . ) So, if ^ < k < 1 the p rob -

-1 + v/5 / l n < 1, so my second problem lem is again solved. (Again, 
fits h e r e . ) 

Therefore , the complete solution can_be summed up as follows, 
1 + \/5 - I + /5 if k is a number such that 1 < k < ^ = r or ^ < k < 1. 

Then the three sets of t r i ang les with s ides -r- , a, ak or a, ak, ak 
or ak, ak 2 , or ak 3 can be used to produce two t r i ang les with five 
p a r t s equal and the t r i ang les themse lves not congruent . 

So, the re a r e an infinite number of p a i r s of t r i ang les that solve 
this problem and once again, r p roves to be an in te res t ing number 
and a key to the solution of in te res t ing problems,, 

REFERENCES 
1. Moise and Downs, Geometry , Addison-Wesley, p. 369. 

xxxxxxxxxxxxxxx 



LADDER NETWORK ANALYSIS USING POLYNOMIALS 
JOSEPH ARKIN 

Spring Valley, New York 

In this paper we develop some ideas with the r e c u r r i n g s e r i e s 

(1) B = k, B , + k^B OJ B n = 1, (k. and k0 / 0) , 
n 1 n-1 2 n-2 0 1 2 ' ' 

and show a re la t ionship between this sequence and the s imple network 
of r e s i s t o r s known as a Ladder-network. 

The ladder -ne twork in F igure 1 is an impor tan t network in com-
municat ion s y s t e m s . The m - L sect ions in cascade that make up this 
network can be cha rac t e r i zed by defining: 

(2) a) the at tenuation (input voltage/output voltage) = A, 

b) the output impedance = z , 

c) the input impedance v 

e ° 1 

1 R, 

- O - t -

* 2 > 
R~ 

Figure 1 

R, 

R_ 

R, 1 " 1 

R. 
* - • . 

A resu l t obtained by applying Kirchhoff's and Ohm's Laws to 
l adder -ne tworks with m = 1, 2, 3, . . . , R, = 'R~k-, was tabulated with 
the r e su l t s in Table 1, where sett ing k, = 1, R- = 1 ohm, the network 
in F igure 1 was analyzed by inspect ion [1] . 
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m 

L A D D E R N E T W O R K ANALYSIS 

A 

ApriL 

0 
R n 

V M R 2 
~k+Z~ 

k ^ + 3 k 1 + l \ R 2 

k^+4kx+3y 

( k ^ l ) 

( k ^ + 3 ^ + 1 ) 

( ^ + 5 ^ + 6 ^ + 1 ) 

T a b l e 1 

( k x + l ) R 2 

k x + 3 k +1 \ R 

' ^ + 5 ^ + 6 ^ + 1 \ R 2 

, k ^ + 4 k 1 + 3 / 

We o b s e r v e t h a t t he n th r o w in T a b l e 1, m a y be w r i t t e n 

m 

n 

zo 
( C 2 n - 2 / y 2 n - l ) R 2 

A 

C 9 
2n 

z i 

( C 2 i A 2 n - l ) R 2 

w h e r e , 
1/2 (3) a) C = k ; C , + C 9 , C n x ' n 1 n - 1 n - 2 0 

b) y r k, ' i n - 1 + y n - 2 ' y 0 = IA; 
1/2 

It t h e n r e m a i n s to s o l v e for y and C i n (3), to be a b l e to a n a l y z e 
J n n 

( F i g u r e 1) by i n s p e c t i o n for a n y v a l u e of k (k ^ 0) , w h e r e R = 1 o h m . 
So t h a t , i n (1), we le t 

(4) a) w = (kL + (k* + 4 k 2 ) l / 2 ) / 2 , 

b) v = 

w h e r e i t i s e v i d e n t , 

(kx - (k 2 + 4 k 2 ) l / 2 ) / 2 

c) k, W + V 

and 

d) k~ = - wv 

T h e n , c o m b i n i n g (c) and (d) w i t h (1), l e a d s to 

(5) B ((w - v )B , - w v ( w - v ) B 9 ) / ( w - v ) n - l n - L 
o o 2 2 

B = ((w ~v )B 0 - wv(w - v )B o ) / ( w - v ) , n n - 2 v ' n - 3 " 
• » • • • i 

B = ((w - v )(w+v) - wv(w " - v ) B 0 ) / ( w - v ) 
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and we h a v e , _ 
n+1 n+1 

(6) B = ™—--a— . 
n w - v 

1/2 
W h e r e , i n (1) w e r e p l a c e k, w i t h k, ' and k 9 w i t h 1, and c o m b i n -
ing t h i s r e s u l t w i t h (3) and (6), l e a d s to 

( k ; / 2
 + ( k 1 + 4 ) i / 2 ) n + 1 - ( k ! / 2 - ( k 1 + 4 ) 1 / 2 ) n + 1 

( 7 ) a ) C n = ~ ' 1/2 n + l = 0 ( k 1 ) , 
n ((k +4) ' ) 2 n l 

and . /,, 
b) y n = ^ ( k ^ / k } ^ . 

(8) T h e o r e m . 
T h e a t t e n u a t i o n ( input v o l t a g e / o u t p u t v o l t a g e = A) of m - L s e c -

t i o n s in c a s c a d e i n a l a d d e r - n e t w o r k i s g i v e n by 

2 m - 2 

A 2 = 2 c ( ( - c 7 1 ) / c 9 7 ) r ) . 
^ r 2 m - l " 2 m - 2 ; ' 

r=0 
T h e p r o o f of t he t h e o r e m r e s t s on the fo l lowing 

(9) L e m m a , 
T h e p o w e r s e r i e s 

n 

( - l ) n 2 B r x r , 

r = 0 
i s a l w a y s a s q u a r e , w h e r e B i s de f ined i n . ( l ) . 

P r o o f of l e m m a , 

Le t 
n 

(10) 1 = (1 -k jX - k 2 x 2 ) ( 1 B r x r ) , 
r=0 

t h e n , by c o m p a r i n g c o e f f i c i e n t s a n d by (1), we h a v e 
- ( B k. + B , k 9 ) - B , . 

,, . . n 1 n-.l 2 ' n+1 
(11) X = _ = - _ - , 

n 2 n 2 
2 

and r e p l a c i n g x w i t h ( - B > i ) / ( B k ? ) i n ^ - k j ^ - k ? * 1 ^ l e a d s t o 

(12) l - k l X - k 0 x 2 = ( B 2 k » + B B ^ . k , - B 2
x 1 ) / ( B 2 k 9 ) . x ' 1 2 x n 2 n n+1 1 n + l , / v n 2 ' 

By (4, d) and (6) i t i s e a s i l y v e r i f i e d 
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(13) B 2 - B , . B . = ( - k - ) n , 
n n+1 n-1 2 

so that 
(14) B2k„ + B B . . k . - B 2 = ( - l ) n k ^ + 1 . x ' n 2 n n+1 1 n+1 x ' 2 

Then, replacing the n u m e r a t o r in (12) by the r e su l t in (14) leads to 

(15) 1-k x - k ? x 2 = ( ( - l ) n k * ) / B 2 , 

so that (10) may be wr i t t en as 
n 

(16) ( - l ) n B 2 = 2 B x r , 
n r 

r=0 
which completes the proof of the l emma. 
(17) The proof of the theorem is immedia te , when in (11) and (16), we 

. _ . _ _ __ 
rep lace n with 21X1-23, k, with k , ' , k ? with 1, and combine the 
r e su l t with (7, a) and the values of the at tenuation in Table 1. 
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CONCERNING LATTICE PATHS AND FIBONACCI NUMBERS 

DOUGLAS R. STOCKS, JR. 
Arlington State College, Arlington, Texas 

Rs E. Greenwood [1] has invest igated plane Lattice paths from 
(0, 0) to (n, n) and has found a re la t ionship between the number of paths 
in a ce r t a in r e s t r i c t e d subclass of such paths and the Fibonacci s e -
quence. Considering such paths and using a method of enumera t ion 
different from that used by Greenwood, an unusual r ep re sen ta t ion of 
F ibonacc i ' s sequence is suggested. 

The paths cons idered he re a r e compr i sed of s teps of th ree types: 
(i) hor izonta l from (x, y) to (x + 1, y); (ii) ve r t i ca l from (x, y) to (x, y + 1); 
and (iii) diagonal from (x, y) to (x + 1, y + 1). 

V 5 
V 4 
V 3 
V 2 
V l 

H5 H 4 H 3 H2 HL 

F igure 1 

In the i n t e r e s t of s impl ic i ty of r epresen ta t ion , we will h e r e con-
s ider the paths from H. to V., for each posit ive in teger i. Note 
that the number of paths from H. to V. is the number of paths from 
(0, 0) to (i, i ) . However, ins tead of consider ing the total number of 
paths from H. to V. as was done by Greenwood, we will count only 
the number of paths from H. to V. which do not contain as subpaths 
any of the paths from H. to V., for j < i. This number plus the 
number of paths from H. . , to V. , is the total number of paths from 
H. to V.. The use of this counting device suggest the 
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Theorem: 

Le t 

i D = i 

2 = «—j L where denotes the g rea t e s t in teger functioi 

3 = 3 + 2 
D D- l D- l 

4D = V2 + 3D-2 

(2n)D = ( 2 n ) D - 2 + ( 2 n - l ) D - 2 

(2n+l ) D = ( 2 n + l ) D ^ + ( 2 n ) D - 1 

D, let D 

with the r e s t r i c t i o n that k n = 0 if k > D. For each posi t ive in teger 

f(D) = S k D . 
k=l 

The sequence {f(D) ] D = 1, 2, 3, . . . } is the Fibonacci sequence. 
The proof is d i rec t and is there fore omit ted. 
The geomet r ic in te rp re ta t ion of the number s k and f(D) m e n -

tioned in the theorem is in t e res t ing . However, before cons ider ing this 
in te rp re ta t ion it is n e c e s s a r y to define a sect ion of a path. For this 
purpose we will now consider a path as the point set to which p belongs 
if and only if for some step ((x, y), (u, v)) of the path, p belongs to the 
line in te rva l whose end points a r e (x, y) and (u, v). A sect ion of a path 
is a line in te rva l which is a subset of the path and which is not a subset 
of any other line in te rva l each of whose points is a point of the path. 

The above mentioned geomet r i c in te rp re ta t ion follows: By defi-
nition f(l) = 1. For each posi t ive in teger D > 2, let L~ denote the 
set of paths from H n to V n which do not contain as subpaths any of 
t h e p a t h s f r o m H. to V., for j < D. f(D) is the number of paths be-
longing to the set L n . k is the number of paths in the subset X of 
L n such that x belongs to X if and only if x contains as subse ts 
exactly k diagonal sec t ions . 
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F igure 2 p o r t r a y s the five paths which belong to L- . In F igure 
2a appea r s the one path of L- which contains only one diagonal s e c -
tion ( 1 - = 1). The two paths of L- which contain exact ly two diagonal 
sect ions appear in F igure 2b (2- = 2)* In Figure 2c the two paths of 
L c which contain exactly th ree diagonal sect ions a r e shown (3 r = 2). o 5 
It is noted that 4_ '= 5 r = 0. 

Fig . 2a 

f(5) 

Fig. 2b 
2 5 = 2 

1 + 2 + 2 + 0 + 0 
Figure 2 

= 5 

Fig. 2c 
3 5 = 2 
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REPLY TO EXPLORING FIBONACCI MAGIC SQUARES* 
JOHN L. BROWN, JR. 

Pennsylvania State Universi ty, State Col lege, Pennsylvania 

P r o b l e m . F o r n > 2, show t h a t t h e r e do not e x i s t a n y nxn m a g i c 
s q u a r e s w i t h d i s t i n c t e n t r i e s c h o s e n f r o m the s e t of F i b o n a c c i n u m -
b e r s , u, = 1, u , = 2, u , n = u . , + u for n > I . 

1 2 n+2 n+1 n 

P r o o f . T r i v i a l for n = 2 . 

If a n nxn m a g i c s q u a r e e x i s t e d for s o m e n > 3 w i t h d i s t i n c t 

F i b o n a c c i e n t r i e s , t h e n the r e q u i r e m e n t t h a t the f i r s t t h r e e c o l u m n s 

add to the s a m e n u m b e r wou ld y i e l d the e q u a l i t i e s : 

(*) F . + F . + . . . + F . = F . + F . +. . . + F . = F 1 + F . +. . . + F . . 
1 2 n J l J 2 J n 1 2 n 

Since the e n t r i e s a r e d i s t i n c t , we m a y a s s u m e w i t h o u t l o s s of g e n e r -
a l i t y t h a t F . > F . > . . . > F . , F . > F . > . . . > F . and 

X l X 2 \ h h ^ 
F k , > F k > ' • • > F k • 1 2 n 
Not ing t h a t t he c o l u m n s c o n t a i n no c o m m o n e l e m e n t s , and by r e a r r a n g e -

m e n t if n e c e s s a r y , we a s s u m e F . > F . > F , a g a i n w i t h o u t l o s i n g 
h h k i 

g e n e r a l i t y ; t h u s , F . > F + 2. 
1l k l 

Now 
F . + F . + . . . + F . > F . > F , , - , i , i 9 i ^ i , - k, +2 

1 2 n i l 

while 
ki 

Fk, + F k ?
+ - - - + F k - 2 F i = % + 2 - 1 • 1 2 n , 1 

T h i s c o n t r a d i c t s t he e q u a l i t y p o s t u l a t e d in (*), and we c o n c l u d e no m a g i c 

s q u a r e s in d i s t i n c t F i b o n a c c i n u m b e r s a r e p o s s i b l e . 

The F i b o n a c c i Q u a r t e r l y , O c t o b e r 1964, P a g e 216 . 
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THE FIBONACCI NUMBER Fu WHERE u IS NOT AN INTEGER 

ERICHALSEY 
Redlands, Cal i fornia 

INTRODUCTION 

Fibonacci number s , like fac tor ia l s , a r e not na tura l ly defined for 
any values except integer va lues . However the gamma, function extends 
the concept of factor ia l to numbers that a r e not i n t ege r s . Thus we find 
that (l /Z)I = ^/JT/2. This a r t i c l e develops a function which will give 
F for any integer n but which will fu r the rmore give F for any 
ra t ional number u. The a r t i c l e a lso defines a quantity n $ m and de-
velops a function f(x, y) = x ^ y where x and y need not be in tegers 0 

(1) DEFINITIONS 

Let n$ = 1 (Definitions (1) hold for all n c N) 

Let 

rdjL (read "n cardinal") = 2 k^ = 2 1 = n 
k=l k=l 

This gives the card ina l numbers 1, 2, 3, 

Le t 
2 1 

n$ (read "n t r i angula r" ) = 2 k$ = 2 k 
k=l k=l 

This gives the t r i angula r numbers 1, 3, 6, 10, . . . 
Let n 

n $ 3 (read "n t e t r ahedra l " ) = 1 k ^ 2 . 
k=l 

This gives the t e t r ahed ra l numbers 1, 4, 10, 20, . . 
In genera l , let 

n 
n$ (read "n de l t a - s l a sh m") = 2 k$ 

k=l 
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This gives a f igurate number s e r i e s which can be ass igned to the 
m-d imens iona l analog of the t e t r ahedron (which is the 3-dimensional 
analog of the t r iangle , e tc . ). 

Let us cons t ruct an a r r a y ( a. .), where we ass ign to each a. . 
an appropr ia te coefficient of P a s c a l ' s t r i ang le . 

1 1 1 1 
2 3 4 5 

3 6 10 15 

4 10 20 35 

5 15 35 70 

(a. .) 
i , 3 

It is c lear that in this a r r a n g e m e n t the usual rule for forming P a s c a l ' s 
t r iangle is just 

(2) a. . = a. . - + a. . . 

But a compar i son of this rule with the definitions (1) shows that P a s c a l ' s 
t r iangle can be wri t ten: 

1 / a 1 i^2 
i< 

2#° 2jLl 2 / . . . 2 ^ 

3^° 3JL1 3fi2 3Ar 

n(L n$ n£ 

where a. . = iA 
a. . = a. .. Therefore 

i»J J*1 

F r o m the s y m m e t r y of P a s c a l ' s t r i angle , 

(3) i ^ " 1 = j ^ 1 " 1 ; nfi™ = (m+l)^1 1"1 

P a s c a l ' s t r iangle is a well-known genera tor of Fibonacci numbers in 
the way shown in the following d i ag ram. 
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/ / / / / 
1 / 1 / 1 

/ 

2 

3 

4 

5 

1 1 

3 4 5 

6 10 15 

10 20 35 

15 35 70 

1 = 1 = F , 

1 = 1 = F_ 

1+1 

1+2 

1+3+1 = 5 = F r 

We can apply the same course to our abs t rac ted P a s c a l ' s t r i ang le . 
/ / / 

0̂ 

3^° /3tLl 3^ . 

/ • 

F 3 = 3<X° + l ^ 1 

F 4 = 4^° + Zfk1 

It is c lea r that, if we keep forming Fibonacci numbers from P a s c a l ' s 
t r iangle in this way, F = n^ + (n-2)$ + (n-4)$ + . . . + (n-2m)$ , or 

(4) 1 (n-2k)£K 

k=0 

where we requ i re that m b e a n integer and that 0 < n-2m.< 2, or in 
other words that n /2 - 1 <_ m < n / 2 . Now let us prove 

(5) Theorem 1 ^m _ (n+m-1 ] 

Proof: It is sufficient to per form induction on n. Let the theorem be 
E(n). Then if n = 1, E(l) s ta tes 

/ n + m - l \ _ / l + m - l \ _ mj_ _ . 
\ m / \ m / ml 
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But by d e f i n i t i o n (1), ( m + l ) $ = 1 for a n y (m+1) t N . T h e n by e q u a -

t i o n (3) 1 ^ = 1 for m = 0, 1, 2, 3, . . . and E ( l ) i s t r u e . Now 

le t us a s s u m e tha t , for a r b i t r a r y m i N, E(n) i s t r u e . T h e n 

Mm / n + m - l \ 
n ^ = ( m ) • 

F r o m the d e f i n i t i o n s (1) i t c a n be s e e n t h a t 

. v m - 1 Mm - 1 . . *m -1 ^m 
1$ + 2 ^ + . . . + nfi = n^k 

T h e r e f o r e the i n d u c t i o n h y p o t h e s i s c a n be r e s t a t e d 

(6) i f 1 + Z ^ ' 1 + . . . + ( ^ m I 2 ) = (n +™- 1) • 

Add ( 1 ) to bo th s i d e s of e q u a t i o n (6) to o b t a i n 

(7) lA""1 iZfi"-1 + . . . +("l m i 2 ) + (°i"i') 

T h e r i g h t - h a n d s i d e of e q u a t i o n (7) i s ( ) by t he s t a n d a r d i d e n t i t y 
fo r c o m b i n a t i o n s , so we h a v e 

o r 

I^111-1+ z^m-1+ .. . +(n^mi2)+(( n +^!!r"2) 
( ( n + l ) + m - l \ 

w h i c h i s E ( n + 1 ) . T h e r e f o r e E(n) i m p l i e s E(n+1) and T h e o r e m 1 i s 

t r u e by m a t h e m a t i c a l i n d u c t i o n . 

Now le t u s p r o v e 
1 

(8) T h e o r e m 2 n ^ m = [ (n+m) f xn'l(l - x ) m d x J " 1 

0 

P r o o f : r (n ) = ( n - l ) I ( g a m m a func t ion) 

B ( m , n) = B(n, m ) = -1 . ' ~}-—- (be ta func t ion) 
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Therefore 

1 _ r(m-fn) 
B(m, n) " r(m)r(n) ' 

and 

1 r(n+2) _ (n+l)! 
, n-m+1) r(m+l) r(n-m+l) ml (n-m)! 

- ( n 4 ^ v , = (n+l) C) . 
ml (n-m): 

Then 

(9) ( n ) = 7-xrvoT-4i m = [(n+l)B(m+l,n-m+l)] "l . 
w / \m/ (n+l )B(m + l, n-m+1) Lx ' J 
We can now substitute the right-hand side of equation (5) into equation 

(9) to obtain 

n£m = ( n + ™ _ 1 ) = [ ( n + m ^ m + ^ n ) ] - 1 , 

where -, 

B(m+l,n) = B(n5m + 1) = J x11™1 (1-x)mdx . 

0 

Therefore 

1 

n£m = [(n+m) J x11"l (1 - x ^ d x ] " 1 . 

0 

Both equations (5) and (8) assert that n$ = (m+l)£ " . Some inter-

esting special cases of equation (5) are 

JD / n - l \ (n - l ) I , 
n^ = ( o ) = k^nr = l * 

vl / n \ n! 
^ = ( l ) = ( n - l ) i l l = n ' 

a n d 

v , J _ / n + 1 \ - (n+1)i _ (n)(n+l) 

k=l. 

Now we can put equation (8) into equation (4) to obtain 
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1 
n - 2 k - F (10) F n - I [(n-k) J x — ^ l - x ^ d x ] " 1 , 

k=0 0 

where m is an in teger , n /2 - 1 < m < n / 2 . But whe reas equations 
(4) and (5) have meaning only for integer a rgumen t s , equations (8) and 
(10) can be used to find x $ / and F t where x, y, and u a r e any 
ra t ional n u m b e r s . 

In pa r t i cu l a r 
m 1 

(11) F , = 1 [<u-k) J x ^ ^ ^ d - x ^ d x ] " 1 , 
k=0 0 

where m is an in teger , u /2 - 1 < m < u /2 e The equation (11), and 
the definite in tegra l in it, a r e eas i ly p r o g r a m m e d for solution on a 
digital computer . A few values of F follow. 

4. 
4. 
4. 
4. 
4. 
4. 
4. 
4. 
4. 
5. 
5. 
5* 
5. 
5. 
5. 
5, 
5. 
5, 
58 
6. 

1000000 
2000000 
3000000 
4000000 
5000000 
6000000 
7000000 
8000000 
9000000 
0000000 
.1000000 
2000000 
3000000 
4000000 
5000000 
.6000000 
7000000 
8000000 
.9000000 
0000000 

3. 
3. 
3. 
3. 
3. 
4. 
4. 
4. 
4. 
5. 
5. 
5. 
5. 
6. 
6. 
6. 
6. 
7. 
7, 
8. 

1550000 
3200000 
4950000 
6800000 
8750000 
0800000 
2950000 
5200000 
7550000 
0000000 
2550000 
5200000 
7950000 
0800000 
3750000 
6800000 
,9950000 
3200000 
6550000 
0000000 

0. 1 
0 . 2 

4 . 0 

1.0 
1.0 

1.0 
1. 1 
1.2 

2 . 0 
2 . 1 

3 . 0 

xxxxxxxxxxxxxxx 



ELEMENTARY PROBLEMS AND SOLUTIONS 
Edited by A.P. HILLMAN 

University of Santa Clara, Santa Clara, California 

Send all communicat ions regard ing E lemen ta ry P r o b l e m s and 
Solutions to P r o f e s s o r A. P . Hillman, Mathemat ics Depar tment , Uni-
ve r s i t y of Santa Clara , Santa Clara , California. Any problem believed 
to be new in the a r e a of r e c u r r e n t sequences and any new approaches 
to exist ing prob lems will be welcomed. The p ropose r should submit 
each problem with solution in legible form, preferab ly typed in double 
spacing with name and a d d r e s s of the p roposer as a headinge 

Solutions to p rob lems should be submitted on separa te sheets in 
the format used below within two months of publication. 

B - 6 4 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California 

Show that L L ,, = L~ , ,+(-1) . where L is the n-th Lucas n n+1 2n+l n 
number defined by L, = 1, L0 = 3, and L l 0 = L M + L . y 1 2 n+^ n+1 n 
B - 6 5 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California 

Let u and v be sequences satisfying u , J a u , ,+bu =0 and n n n+2 n+1 n 
v . T+CV ,, +dv =0 where a, b, c, and d a r e constants and let 

n+Z n+1 n A % 7 
(E2+aE+b)(E2+cE+d) = E 4 +pE +qE + r E + s . Show that y =u +v sat is f ies 

y j / i + p y j -2+qy . o + r y . i + s y ~ ° 
7n+4 r / n + 3 n / n + 2 7n+l Jn 

B - 6 6 Proposed by D.G. Mead, University of Santa Clara, Santa Clara, California 

Find constants p, q, r, and s such that 
y n + 4 + p y n + 3 + q y n + 2 + r y n + 1 + s y n = o 

is a 4th o rde r r e c u r s i o n re la t ionfor the t e r m - b y - t e r m products y =u v 
3 r J n n n of solutions of u l 0 - u M - u = 0 and v , 0 - 2 v ,, -v = 0. n+2 n+1 n n+2 n+1 n 

B - 6 7 Proposed by D.G. Mead, Uni versity of Santa Clara, Santa Clara, California 

Find the sum 1' 1 +1 * 2+2B 5+3' 12+. . . +F G , where F ^ = F ,. +F 
n n n+Z n+1 n 

and G n + 2 = 2 G n + 1 + G n . 
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B - 6 8 Proposed by Walter W. Horner, Pittsburgh, Pennsylvania 

Find express ions in t e r m s of Fibonacci numbers which will gen-
e ra t e in tegers for the dimensions and diagonal of a rec tangula r pa ra l l e l -
opiped, i. e. , solutions of 

2 , , 2 , 2 ,2 
a +b +c = d 

B - 6 9 Proposed by Werner E. Hoggatt, Jr., San Jose State College, San Jose, California 

Solve the sys tem of s imultaneous equations: 

x F ,, +yF = x +y n+1 J n J 

x F n + 2 + y F n + l = x 2 + 2 x y 

where F is the n- th Fibonacci number . n 

SOLUTIONS 

CHEBYSHEV POLYNOMIALS 

B - 2 7 Proposed by D.C. Cross, Exeter, England 

Correc ted and r e s t a t ed from Vol. 1, No. 4: The Chebyshev 
Polynomials P (x) a r e defined by P (x) = cos(nArccos x). Letting 
(f>= Arccos x, we have 

:os <f> - x = P (x), 

cos (2$) = 2cos 0 - 1 = 2x - 1 = P ? (x) , 

cos (3<f>) = 4cos 0 - 3cos <j> = 4x - 3x = P~(x), 

cos (40) = 8 c o s 4 0 - 8 c o s 2 0 + 1 = 8 x 4 - 8x2 + 1 = P 4 (x) , e tc . 

It is well known that 

Pn+2<x> = 2 x P n + l< X > " P n ( x > ' 

Show that 
m 

P (x) = I B. x n ' 2 j 
nx j n 

j=0 
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where 
m = [n/2 J , 

the g rea t e s t in teger not exceeding n / 2 , and 

(1) B = 2 n _ 1 
' on 

(2) B . , , x l = 2 B . . . - B. . 
j + l , n + l j + l , n j , n - l 

(3) I f S = | B I + | B . | + . . . + | B I, then S 10 = 2S , . + S 
n ' on ' ' I n 1 ' m n ' n+2 n+1 n 

Solution by Douglas Lind, University of Virginia, Charlottesville, Va. 

By De Moivre ' s Theorem, 

(cos <f> + i sin </>) - cos n 0 + i sin rub 

Letting x = cos <fi, and expanding the left side, 

/——2 n 
c o s n 0 + i s i n n 0 = (x + i vl - x ) 

. n . 
= 2 (- l ) j / 2 (Jxn- j ( l - x V / 2 • 

j=o 

We equate r ea l p a r t s , noting that only the even t e r m s of the sum a r e 
r ea l , 

[n/2] k 
cos n<£ = P j x ) = h X ( - l ) k (2^) x n " 2 k ( l - x2) . 

k=0 
We m a y p r o v e from this (cf. Fo rmula (22), p. 185, Higher T ranscend-
tal Funct ions , Vol. 2 by Erde ly i et al; R. G. Buschman, "Fibonacci 
Numbers , Chebyshev Polynomia ls , General iza t ions and Difference 
Equat ions, " Fibonacci Quar te r ly , Vol. 1, No. 4, p. 2) that 

(*) 

F r o m this , 

(1) 

B. J, n 

we have 

11 \ - l / O \1L-J-Xf. 

H (n-Zj): 

B = 2n~l . o, n 
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It is a lso easy to show from (*) that 

(2) B. ,, ,, = 2 B. ,, - B. • . 
j + l , n + l J + l , n J, n-1 

Now (*) impl ies 

J ,n ' j , n ' 
so that (2) becomes 

B. = (-1)J | B . 

("D j + 1 | B . + 1 + J = 2 ( - l ) j + 1 |B . + T I + ( - D J + 1 |B. , 1 j + l , n + l J ' j + l , n J ' j , n - l 

B . , , , , = 2 B . , T + B . .. 
1 j+1, n+1 ' ' j+1, n1 j , n -1 

Summing both sides for j to I —=—J, we have 

(3) S ,. = 2 S + S . 
v ' n+1 n n-1 

Also solved by the proposer. 

A S P E C I A L C A S E 

B - 5 2 Proposed by Venter E. Hoggatt, Jr., San Jose State College, San Jose, California 

Showthat F 0 F ^ - F 2 = ( - l ) n + 1 , where F is the n - th F ib -n-2 n+2 n x n 
onacci number , defined by F , = F~ = 1 and F 0 = F , + F . 

3 1 2 n+2 n+1 n 
Solution by John L. Broivn, Jr., Pennsylvania State University, State College, Pa. 

Identity XXII (Fibonacci Quar te r ly , Vol. 1, No. 2, Apr i l 1963, 
p . 68) s t a t e s : 

F F - F . F ,. = ( - l ) n ~ k F, F ,. n m n -k m+k k m+k-n 

The proposed identi ty is immedia te on taking m = n and k = 2. 
More general ly , we have 

F Z - F _ F „ = ( - l ) n " k F , 2 for 0 < k < n . n n -k n+k k 

Also solved by Marjorie Bicknell, Herta T. Freitag, John E. Homer, Jr., J.A.H. Hunter, 
Douglas Lind, Gary C. MacDonald, Robert McGee, C.B.A. Peck, Howard Walton, John 
Wessner, Charles Ziegenfus, and the proposer. 
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SU MMIN G M U L T I P L E S O F S Q U A R E S 

B - 5 3 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California 

Show t h a t 

(2n - 1 ) F ? + (2n - Z)Y* + . . . 4- F ^ _ = F!T 1 2 Zn-1 2n 

Solution by James D. Mooney, University of Notre Dame, Notre Dame, Indiana 

Remember ing that 

I F,2 = F F , , , ^ k n n+1 
k=0 

2 2 
we m a y proceed by induction. C lea r ly fo r n = 1, F , = 1 = F - . Assume 

[2(n- l ) - l ] ? \ + [>(n- l ) - 2] T\ + . . . + F ^ ^ ^ = 

= (2n-3)F2 + (2n-4) F 2 + . . . + F 2 n _ 3 = F ^ . 

Then 
( 2 n - l ) F j + . . . + F 2 n _ x = [ (2n-3)F j + . . . + F 2 n _ 3 ] + 

2n-2 2n- l 

2(F? + . . . + F 2
 9) + F 2 . = F 2

 ? + 1 F 2 + 2 F ? > v 1 2n-2 2n- l 2n-2 k k 
k=0 k=0 

F 2 n - 2 + F 2 n - 2 F 2 n - l + F 2 n - l F 2 n = F 2 n - 2 + F 2 n - 2 F 2 n - l + 

+ F 2 n - l ( F 2 n - 2 + F2n-1> = F 2 n - 2 + 2 F 2 n - 2 F 2 n - l + F 2 n - 1 = 

<F2n-2 + F 2 n - l ) 2 = F 2 n " Q ' E " D ' 

Also solved by Marforie Bicknell, J.L. Brown, Jr., Douglas Lind, John E. Homer, Jr., 
Robert McGee, C.B.A. Peck, Howard Walton, David Zeitlin, Charles Ziegenfus, and 
the proposer. 
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RECURRENCE RELATION FOR DETERMINANTS 

B - 5 4 Proposed by C.A. Church, Jr., Duke University, Durham, N. Carolina 

Show that the n- th o rde r de te rminant 

ax 1 0 0 

-1 a 2 1 0 

0 -1 a . 1 

0 0 

Apri l 

£(n) 

~3 
-1 

0 

0 

0 

0 

0 

0 

0 

0 

n-1 
-1 

sat isf ies the r e c u r r e n c e f(n) - a f (n- l ) + f(n-Z) for n > 2. 

Solution by John E. Homer, Jr., La Crosse. Wisconsin 

Expanding by e lements of the n- th column yields the des i r ed re-
lation immedia te ly . 

Also solved by Marjorie Bicknell, Douglas Lind, Robert McGee, C.B.A. Peck, 
Charles Ziegenfus, and the proposer. 

AN EQUATION FOR THE GOLDEN MEAN 

B - 5 5 From a proposal by Charles R. Wall, Texas Christian University, Ft. Worth, Texas 

Show that x - x F - F , = 0 has no solution g r ea t e r than a, n n-1 to 

where a = (1 + >/fT)/2, F is the n- th Fibonacci number , and n > 1. 

Solution by G.L. Alexanderson, University of Santa Clara, California 

For n > 1 let p(x, n) = x - x F - F , , g(x) = x - x - 1, and 
i , x n-2 n -3 , - n - 4 . , „ n -k -1 . . _ , _ 
h(x, n) = x + x + 2 x + . . . + F , x + . . . + F 0 x + F . . 

k n-2 n-1 
It is eas i ly seen that p(x, n) = g(x)h(x, n), g(x) < 0 for - l / a < x < a, 
g(a) = 0, g(x) > 0 for x > a, and h(x, n) > 0 for x > 0. Hence x = a 
is the unique posi t ive root of p(x, n) = 0. Also solved by J.L. Broum, Jr., Douglas Lind, C.B.A. Peck, and the proposer. 
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GOLDEN MEAN AS A LIMIT 
B - 5 6 Proposed by Charles R. Wall, Texas Christian University, Ft. Worth, Texas 

Let F be the n- th Fibonacci number . Let x^ > 0 and define n 0 
x, , x„, . 0 . by x. .. = f(x, ) where 1 Z J k+1 k 

f(x) = n \ /F . + x F . n-1 n 
For n > 1, prove that the limit of x, as k goes to infinity exis ts and 
find the l imit . (See B-43 and B-55. ) 

Solution by G.L. Alexanderson, University of Santa Clara, Santa Clara, California 

For n > 1 let p(x) = X
n - x F - F . . Let a = (1 + \[5)/2. As r v n n-1 

in the proof of B-55, one sees that p(x) > 0 for x > a and that 
p(x) < 0 for 0 < x < ae If x, > a, we then have 

(x ) > x F + F = (x ) 
k k n n-1 k+1 

and so x, > x. , , . It is a lso c lear that x, > a impl ies k k+1 k 
(x. ^ ) n = x, F + F , > a F + F . = a11 

k+1 k n n-1 n n-1 
and hence x, , , > a. Thus x > a impl ies x > x, > x^ > . . . > a. k+1 o r o 1 Z 
Similar ly , 0 < x < a impl ies 0 < x < x. < x_ < . . . < a. In both ' • o o 1 Z 
ca ses the sequence x , x, , . . . is monotonic and bounded. Hence x, n o 1 k 
has a l imit L > 0 as k goes to infinity. Since L sat is f ies 

L = n^Y+rr , 
n-1 n 

L mus t be the unique posit ive solution of p(x) = 0. 

Also solved by Douglas Lind and the proposer. 

A F I B O N A C C I - L U C A S I N E Q U A L I T Y 

B - 5 7 Proposed by G.L. Alexanderson, University of Santa Clara, Santa Clara, California 

Let F and L be the n- th Fibonacci and n- th Lucas num-n n 
ber respec t ive ly . P rove that 

( F 4 n / n ) n > L 2 L 6 L 1 0 . . . L 4 n _ 2 

for all in tegers n > 2. 
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Solution by David Zeitlin, Minneapolis, Minnesota 

Using mathemat i ca l induction, one may show that 

n 
F 4 n = 2 L 4 k - 2 ' n = 1, 2f . . . 

k=l 

If we apply the well-known a r i t h m e t i c - g e o m e t r i c inequality to the un-
equal positive numbers LOJ L, , L. AJ . . . , L . „, we obtain for 

2 o 10 4n-Z 
n = 2, 3, 

n 
2 L 4 k - 2 

4n k=l _ _ _ _ N / L 2 L 6 L 1 0 . . . L ^ ^ 

which is the des i r ed inequality. 

Also solved by Douglas hind and the proposer. 

XXXXXXXXXXXXXXX 
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BASIC PROPERTIES OF A CERTAIN GENERALIZED SEQUENCE 
OF NUMBERS 

A. F. HORADAM 
The Universi ty of North Carol ina, Chapel H i l l , N. C. 

1. INTRODUCTION 

Let a, (3 be the roots of 

(1.1) x2 - px + q = 0 

where p, q are arbitrary integers. Usually, we think of a, p as 

being real, though this need not be so. 

Write 

d = (p - 4q) ' p 

a= (p +d)/2, P= (p - d)/2 

a + P = p, aP = q, a - P = d. 

Recently [6] , a certain generalized sequence |w j was defined: 

(1.5) j w l = jwn (a, b;p, q)| : wQ = a, w ^ b , w n = p w n 4 - q w n _ 2 ( n ^ Z) 

in which 

(1.6) w = Acin + Bpn , 

where 

(I 1) A - b " aP R - a a " b 

1 1 - 7 » A " a - p ii5 " a - P 
whence 

(1.8) A + B = a, A - B = (2b - pa)d-1 , A B = e d"2 

in which we have written 

2 2 
( 1 . 9 ) e = pab - qa - b . 

161 

(1 . 

(1 . 
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Then 

3) 

that 

• 4 ) 
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Sequences like jw [ have been previous ly introduced by, for 
example , Besse l -Hagen [ l ] and Tagiur i [l l] , though in the avai lable 
l i t e r a tu re I cannot find evidence of much p r o g r e s s from the definition 
[11] to have d i scovered a few of the r e su l t s l is ted he reunde r . 

The purpose of [6 J was to de te rmine a r e c u r r e n c e re la t ion for 
the k powers of w (k an in teger) , that i s , to obtain an explicit 
form for 

wk(x) 2 _ 
n=0 

k n w x 

Here , we propose to examine some of the fundamental a r i t hme t i ca l 
p r o p e r t i e s of jw 1 . No a t tempt at a l l is made to analyze congruence 
or p r i m e number fea tures of 5w t . In select ing p r o p e r t i e s to gene r -
al ize we have been guided by those p r o p e r t i e s of the re la ted sequences 
(see 2. below) which in the l i t e r a tu r e and from exper ience seem mos t 
bas ic . Natural ly , the l ist could be extended as far as the r e a d e r ' s en-
thus ia sm p e r s i s t s . 

It is intended that this paper should be the f i r s t of a s e r i e s in-
vest igat ing a spec t s of jw I . Organizat ion of the m a t e r i a l is as fol-
lows: in 2» , var ious special (known) sequences re la ted to Iw [ a r e 
introduced, while in 3. some l inear formulas involving jw I a r e e s -
tabl ished, and in 4. some non- l inear express ions a r e obtained. F ina l -

2 iy, in 5 . , some comments on the degenera te case p = 4q a r e offered,, 

2. RELATED SEQUENCES 

P a r t i c u l a r ca se s of 5w I a r e the sequences ^u I , 5v t , jh I , 
j f n j , j l n [ given by: 

(2.1) w n (1, p; p, q) = u n (p, q) 

(2.2) w n (2, p; p, q) = Vn (p, q) 

(2.3) w (r, r + s ; 1, -1) = h (r, s) 
n n 
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(2.4) w n ( 1 ; 1; 1, -1)= f n ( = u n ( l , - l ) = hn(l,0)) 

(2.5) w n (2 , 1; 1, -1)= l n ( = v n ( l , - l ) = h n (Z , - l ) ) . 

Historical information about these second order recurrence se-

quences may be found in Dickson [3] . Of course, Jf I is the famous 

Fibonacci sequence, il I is the Lucas sequence, and Ju [ and Jv I 

are generalizations of these, while Jh 1 discussed in [4] is a different 

generalization of them. Chief properties of ju I , Jv [ , Jf [ and il [ 

may be found in, for instance, Jarden [7] , Lucas [81 and Tagiuri [10] 

and [l l] , those of Jf I especially being featured in Subba Rao [9j and 

Vorob'ev [l 2] . 

Two rather interesting specializations of (2. 1) and (2. 2) are the 

Fermat sequences Ju (3, 2)1 =J2 - l l and Jv (3, 2)1 = j2 + l [ , 

and the Pell sequences Ju (2, -1)[ and Jv (2, -1)1 . (See [l] or [8]).. 

From (1.6), (1.7) and (2.1) - (2.5) it follows that 

n+1 fln+l 
(2.6) u =£ ^ £ 

' n d 

(2. 7) vn = an + pn 

(2.8) h _ (r + s - r P ^ a " - (r + 8 - r a ^ p " 

n+1 -n+1 
(2 -9 ) f _ al " h 

n ^5 

(2.10) 1 = a? + p!1 

v ' n i l 

wherein 

/9 n\ l + N / ^ o 1 -^5 (2.11) ax = -, , px = — 

that is, a, , (3 are the roots of 

(2.12) x2 - x - 1 = 0. 
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Consequently, by (1.4) 

(2. 13) ax + Px = 1, a 1 P 1 = - 1 , c^ - ^ = 5. 

To a s s i s t the r e a d e r , and as a source of ready re fe rence , the full set 
of r e su l t s for the five specia l iza t ions of Jw { will often be wr i t t en 
down, as in (Z. 6) - (Z. 10). 

Obviously from (1 . 9), e c h a r a c t e r i z e s the var ious sequences . 
F ° r j U n j >2 jVn( ' j h n | ' j f n [ ' \* n\ W e d e r i v e e = ^ ^ " ^' 
r - r s - s , 1, 5 respec t ive ly . 

By (1 . 6), (1 . 7) and (Z. 6) we have 

(Z0 14) w = au + (b - pa) u , = bu , - q a u 0 , 
v ' n n v r ' n-1 n-1 ^ n-Z 
with, in pa r t i cu l a r , the known [8] express ions 

(Z. 15) v = Zu - pu , = pu , - 2q u - . 
x ' n n c n-1 r n-1 ^ n-Z 
(Ultimately, of cou r se , these yield 1 = Zf - f . + Zf ~. ) 7 7 n n n-1 n-Z 

Putt ing n = 0 in(Z. 14) r e q u i r e s the exis tence of values for neg-
ative subsc r ip t s , as yet not defined. Allowing u n r e s t r i c t e d values of 
n therefore in (1 . 6) we obtain 

C w' = A a" n + B (3~n 

(2.16) 
N = q Kî V-l* 

after s implif icat ion using 

(Z. 17) u = q u ^ , 
x ' -n ^ n-Z 

which follows from (Z. 6). 
Combining (Z. 14) and (Z. 16) we have 

(au - bu -,) /o i o\ -n ' n n - 1 ' 
(Z.18) w = q r- , w 
v ' -n H au + (b - pa u T n 

n r n-1 
whence it follows from (Z. Z) - (Z. 5) that 

(2; 19) v = qn v 
' -n ^ n 
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\r (u - u , ) - su A 
( 2 . 2 0 ) h = ( - l ) n « - 2 l l 2 l i ? h 

- n r u -f s u , n 
n n - 1 

< 2 - 2 1 > ^ n ^ " 1 ^ 

In p a r t i c u l a r , 

( 2 . 2 3 ) w , = A a" 1 + (3"1 = P a " b 

-1 q 

u l - 0 

so 
(2 . 

(2 . 

(2. 

t h a t 
24) 

25) 

.26) 

- 1 
V = p 

h - l - s 

( 2 . 2 7 ) f = 0 

(2 . 28) l = -1 

M a n y of the s i m p l e s t Iw \ a r e e x p r e s s i b l e in t e r m s of jf 1 

B e s i d e s ( 2 . 4 ) we h a v e 

( 2 . 2 9 ) w
n

( _ 1 ' 1 ; - 1 ' _ 1 ) = < " 1 ) n " 1 f
n 

( 2 . 3 0 ) w n ( 1, - 1 ; 1, -1 ) = -fn_3 

( 2 . 3 1 ) w n ( 1, 1; - 1 , -1) = ( - l ) n _ 1 f n 3 . 

M o r e g e n e r a l l y , 

( 2 . 3 2 ) w n (a, b; 1, -1 ) = afn_2 + b f ^ 

( 2 . 3 3 ) w (a, b; - 1 , -1) = ( - l ) n k f 9 - bf A y n I n -Z n-1) 

N o t i c e t h a t 

w n ( a l f b i ; p r q x ) = - w n ( a 2 , b 2 ; p 2 > q 2 ) 

(2. 34)<[provided 
a 2 = ' a r b2 = " b i ' P2

 = p r q2 = qr 
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Some sequences a r e cycl ic . Examples a r e 

(2.35) w n (a, b; - 1 , 1) 

2 for which a, (3 (= a ) a r e the complex cube roots of 1 and 

(2.36) w n (a, b; 1, 1) 

2 for which a, (3 (= a ) a r e the complex cube roots of - 1 . Sequence 
(2. 35) is cyclic of o rde r 3 (with t e r m s a, b, -a - b) since a = p = 1 , 
while sequence (2.36) is cyclic of o rde r 6 (with t e r m s a, b, -a + b, 

, u\ • 3n 0 3n , 6n Q6n , , , , . ^ . 
-a , -b , a - b) since a = p = - 1 , so a = p = l ( n odd m this 
case ) . (Refer (1.6)) . 

Geomet r ic - type sequences a r i s e when p .= 0 (so that by (1.5) 
w n + 1 = - q w n 4 ) and q = 0 (so that w n + 1 = p w j . 

3. LINEAR PROPERTIES 

F r o m (1.5) and (1.6) it follows that 

(3.1) w 
n w , n-1 

CL 

P.. 

k 
w (a 
w . > /P n - k ( 

if 
if 

-1 < p < 1 , 

-1 < a < 1 , 

2 (3. 2) w n + 2 - (p - q) w n + pq w n ^ x = 0 , 

and 

(3 . 3) P W n + 2 - (p2 - q) w n + 1 + q 2 w n _ x = 0 . 

Repeated use of qw, , = -w, ,, + pw (k = 1, . . . , n) leads to 
the sum of the f i r s t n t e r m s 

n-1 
(3. 4) q 2 ] w^ = (p -1) (w2 + w 3 + + wn) - w n + 1 + pW]L 

j=0 

whence 
n-1 

(3.5) (p - q - 1) ^ w = w n + 1 - wx -(p - 1) (wn - wQ) 
j=0 
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while the cor responding r e s u l t s for differences a r e 
n-1 

(3.6) q ] T (-1)J w. = (p +1) (-w2 + w 3 

j=0 
• • • + ( - 1 ) n _ 1 W n ) + ( - 1 ) I l w n + l + p W l 

and n - X 

(P - q + D X (-1) w . 
(3.7) j " ° 

= ( - l ) n + 1 w n + 1 +w1 -(p+1) j ( - l ) n + 1 w n + wQ [ . 

Replace n by 2n in (3. 4), (3. 5) (3. 6) and (3. 7). Write 

(3.8) < 7 = w 0 + w 2 + . . . + w 2 n _ 2 , 

and 

(3.9) P = wx + w 3 + . . . + w 2 n _ 1 . 

Adding and subtract ing (3. 4), (3. 6) give 

(3.10) (1 +q) (J = - p p - ( w 2 n - wQ) 

and 

(3.11) (1 +q ) p = p O +q(w2 n_1 - w_x) 

for the sum of the even - (odd -) indexed t e r m s of ^w \ . Clear ly by 
(1.5) addition of (3. 10) and (3. 11) yields the sum of the f i rs t 2n t e r m s 
(3. 4) as expected. Solve (3. 10) and (3. 11) so that 

(3.12) j p 2 - ( l+q)2[ a = ( l+q) (w 2 n - wQ) - pq ( w ^ ^ - w ^ ) 

and 

(3.13) j p 2 - ( l+q)2[ 9 = p ( w 2 n - wQ) - q ( l+q) (w 2 n _ 1 - w ^ ) . 

Using the a l te rna t ive express ion w = bu , - qau ~ (2. 14), 
we have 

( n+1 I n ^ 0 n-1 
/ w i o = w~ u - q w, u , \ n+^ 2 n n 1 n-1 
f w . 0 = w0 u - q w~ u , V n+3 3 n n 2 n-1 



1^8 BASIC PROPERTIES OF A CERTAIN Oct. 

whence 
C w , = w u - q w , u , \ n+r r n ^ r - 1 n-1 

(3.14) < 
i = w u - q w 1 u 1 
I n r ^ n-1 r - 1 

on interchanging n and r . Equations (3.14) may a lso be obtained 
from (1.5) , (2. 1) and (2. 1.-4). Of course 

(3.15) 

w , • = w . u ,. - q w . . u , . , n+r r - j n+j ^ r - j - 1 n+j-1 

n+j r - j ^ n+j-1 r - j - 1 

a l so . 
Fu r the r , from (1 . 6) and (2. 7) it follows that 

, r w . + q w 
/o i £\ n + r n-r 
(3.16) = v 

w r 
n 

t h a t i s , the expres s ion on the left is independent of a, b, n. Interchange 
r and n in (3. 16) and then set r = 0. Accordingly, 

(3. 17) w + q w = a v . 
n ^ . -n n 

Observe a l so from (1 . 6) and (2. 6) that 

r w . - q w u , 
(3.18) - £ ± I n " r r _ 1 

s u , 
7 . - q w s -1 
n+s ^ n - s which [lo] is an in teger provided s divides r . 

Two binomial r e su l t s of i n t e r e s t may be noted. F i r s t l y , from 
(1.6) it follows that 

(3.19) w 2 n = ( " q ) Z ( j>(-£> w--< 

where we have used the fact a^ - pa + q = 0, (3^ - pp + q = 0. 
Start ing from (1 . 3) and (1 . 6), we read i ly der ive 

2 n w = A(p + d ) n + B(p - d ) n 
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[n/2] 
(3.20) 2 n w n = a Z p n _ 2 j d Z J ( J ) [n - l j 

j=o 2J — 
+ ( 2 b - p a ) Z ( * J p ^ ^ d 2 ; 

J=0 J 

whence follow the known [ l ] exp res s ions 

(3.21) 2 n u n = [ n £ ] ( J + +
1

1 ) p n - 2 J d 2 J 
j=0 

(3.22) 2 n " 1 v n = ^ ( J ) p n - 2 J d 2 J 

j=0 

[ n / 2 ] n+1 i 
(3.23) 2 n f n = £ <2 j+V 5 

j=0 

n /2] 
(3.24) 2 n _ l l

n
= Z ( 2 j ) ^ * 

j=0 

Suitable subst i tut ions in the above r e su l t s lead to the specia l c a s e s 

K l * j V n | ' J M ' j f n j and j l n j ; for example , for j f n j , in (3.4) for 

< T + P = f 2 n + l - 1 ' 
and in (3. 14) with r = n, 

£n + f n - l = f 2 n = £ <& f
n - k ' k=0 

using (3. 19). 
If we wr i t e 

(3.25) % _ _ r 
Wn+1 

so that, by (1 .5) , 

(3.26) r = l , r 
n - p - q r x ' n-1 - p - q r 2 
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enabling us t o e x p r e s s the l imit of the ra t io as a continued fract ion. 
Somet imes , when q = - 1 , it is notationally convenient to wr i te 

a - e " = smh f] + cosh n 
Q O 'O 

- 7] - sinh T) - cosh n p = -e o 'o b 
o 

whe re (1.2) 

- o -1 
(3. 28) cosh T) = ' , sinh r\ = £• , tanh t) - p d 
* • ' o 2 ' 'o 2 o ^ o 
Zero suffices signify that q = - 1 . 

Combining this hyperbolic notation with the r e m a r k s immedia te ly 
preceding (3.27), and proceeding to the l imit ( refer (3.1)) , wevsee that 
for p - 1, q == - 1 , that i s , for \h I (and i ts specia l iza t ions Si \, Si (), 

n . 1 -r\\ 
T- r - e 
h .. a n i l "1 

cosh 7| - sinh r\ 

1 + 
1 + 1 

1 2 
(observe that by (2.12) — = g is a root of x + x - 1 = 0 so t h a t 

i ttl 

g - — } leading to the continued fract ion. ) 
F u r t h e r m o r e , (3.27) and (3.28), with (1.5) , imply 

(3130) w =(A + (~l)nB ) sinh n rj + (A - (-1 ) n B ) cosh n ri 
o, n o x ' o 'o x o % ' o' 'o 

Hyperbol ic expres s ions for the special ized sequences a r e then, from 
(2.6) , (2.7) , (2.9) , (2.10), 

sinh (n + 1) 77 
u = T———— (n odd) 

n cosh ' 
(3.31) J ° cosh (n + 1) 71 , x 

'o (n even) cosh 
o 
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v = 2 s i n h n T) (n even) 
( 3 . 3 2 ) ' n ° 

2 c o s h n r) (n odd) 

w i t h c o r r e s p o n d i n g e x p r e s s i o n s for f , 1 r e s p e c t i v e l y , i n w h i c h r\ 

i s r e p l a c e d by T] . A h y p e r b o l i c e x p r e s s i o n for h i s g i v e n in [5] . 

4 . N O N - L I N E A R P R O P E R T I E S 

E s s e n t i a l l y , t he p r o b l e m in o b t a i n i n g n o n - l i n e a r f o r m u l a s ( as in 

the l i n e a r c a s e ) i s to d e t e c t t he a p p r o p r i a t e c o e f f i c i e n t s ( func t ions of 
k p , q) of w . B a s i c n o n - l i n e a r ( q u a d r a t i c ) r e s u l t s h a v e a l r e a d y b e e n 

r e c o r d e d in [6 J , n a m e l y ; 

(4 . 1) a w , + ( b - p a ) w , . - w w - qw , w , , x ' m + n r m + n - 1 m n ^ m - 1 n - 1 

2 2 
(4 . 2) a w 0 + ( b - p a ) w~ , = w - qw , = w . , w , - q w w 0 , v ' 2n v r ' 2 n - l n ^ n - 1 n+1 n - 1 ^ n n - 2 

iA o\ 2 n - 1 
(4 . 3) w ., w , - w = q e . 
x ' n+1 n - 1 n n 

O b v i o u s l y , f r o m (4 . 3) w i t h n = 0, 

(4, 4) e = q (wl w ^ x - wQ) 

w h i c h m a y be c o m p a r e d w i t h ( 1 . 9), u s i n g ( 1 . 5) and (2 . 23 ) . 

An e x t e n s i o n of (4 . 3) i s , by ( 1 . 6) and (2 . 6) , 

/ A r\ 2 n - r 2 
(4 . 5) w , w - w = e q u , . 
v ' n + r n - r n n r - 1 

P u t t i n g r = n in ( 4 . 5 ) , we h a v e 

2 2 
(4. 6) w + e u T = a w 0 
x ' n n - 1 2n 

I n t e r c h a n g e r and n in ( 4 . 5 ) , t h e n s u p p o s e r =. 0. We d e d u c e 

/ A ~7\ 2 . - n 2 
(4 . 7) w w = a + e q u , . 
x ' n - n ^ n - 1 
(n = 1 r e d u c e s (4. 7) to (4. 4) . ) 

S p e c i a l i z a t i o n s of (4 . 1) a r e , on m u l t i p l i c a t i o n by 2 and u s e of 

( 1 . 2 ) , ( 1 . 4 ) , ( 2 . 6 ) , ( 2 . 7 ) a n d (2 . 15) , t h e k n o w n [8] r e s u l t s 
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(4. 8) 2 u , 1 = u . 1 v + u , v 
x m+n-1 m - 1 n n-1 m 

and 

(4. 9) 2 v . . = v v . + d u 1 u 1 . 
' m+n m n m - 1 n-1 

Next, by (4.6) , we der ive , using (2. 6), (2.7) , (1 . 2) and (1 . 4), 

(4.10) • u- . , = u , v 
x ' 2n- l n-1 n 
and 

(4. 11) 2 v , = v 2 + d2 u 2
 1 

2n n n-1 

with 
i A i o\ 2 0 n , 2 2 I 0 n 
(4. 12) v . = v - 2q = d u , + 2q . 

2n n n-1 ^ 
Again, (4.1) with m = 2n gives an exp res s ion for w~ from 

which we deduce, by (4. 10), (2 .6) , (2.7) and the r e c u r r e n c e re la t ion 
for v~ , 3n 
/A i o\ 3n- l 2 n 
(4. 13) — = v - q 
x u T n H • • 

n-1 
and 

V-2 0 
/ A i A \ 3 n L 0 n 

(4. 14) = v - 3q 
x ' v n n 

n 
Resul t s (4. 10) - (4. 14) occur in Lucas [8] in a sl ightly adjusted 

notation. 
Coming now to the sum of the f i r s t n t e r m s , we use the f i rs t 

half of (4. 2). 
Write 

(4.15) ^ = Z w 
n-1 

2 
j=0 j 

Then, it follows that 

2 
(4.16) (1-q) r = a ( 7 + ( b - p a ) p - j ^ n - 1 + ( b " P a ) w 2 n - l 1 
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whence r may be found from (3. 12) and (3. 13). 

Repeating the first half of (4. 2) leads to 

(4.17) w ^ - q 2 w ^ x = b w 2 n + 1 + <b- p a ) q w 2 n - 1 . 

From (1. 6), (1.8) and (2.6), 

(4. 18) w w - w w .. = q e u , u ., , 
• n-r n+r+t n n+t ^ r-1 r+t-1 

whence t = 0 gives (4.5) 

Repiac 

for j) yields 

Replacing w by u in (3. 14) and (3. 15) (with -j substituted 

x . - u u - q u , u T = U . u , . - q u • i u . . , n+r n r n-1 r-1 n-j r+j ^ n-j-1 r+j-1 

whence 
u u - u . u , . = q (u , u , - u . , u . . ,) n r n-j r+j ^ n-1 r-1 n-j-1 r+j-1 

(4.20) { n-j , . 
x ' ^ - q J (u . u . . . - u ,9.) 

^ j r-n+j r-n+2j n-j+1 - q J u. -, u , . -
H j -1 r-n+j-1 

by repeated application of (4. 19) and replacement in the first half of 

(4. 19) of n by r-n+j and r by j to obtain an expression for u , , . 
(un = 1). Note that (4.20) is the special case of (4.18) for which 

w = u so that e = -q (n, r, j in (4. 20) replaced by n - r, n + r + t, n n ^ 
respectively and (2.17) used). 

In particular, it follows from (4.20) with j = 1 that 

(4. 21) u , u -> - u ^ u , ~ q u , . 
v ' n-1 r-2 n-2 r-1 ^ r-n-1 

Moreover, (4.21) and w = b u -, - qau 0 give for the se-x •' n n - 1 n n-2 & 

quences (w \ and jw' ( 

(4.22) w' w - w w' = q (a* b - a b!)(u n u ~ - u • *, u- , ) 
v ' n r n r n x ' n-1 r-2 n-2 r-1 

= q (a'b - a b') u , 
^ x ' r-n-1 

Cubic expressions in w are generally quite complicated, so we 

derive only the sum of the first n cubes, Cube both sides of(1.5)and 

then use (1.5) again. Thus 
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(4. 23) w ,, = p w - q w , - 3 pq w * w w , . 
x • ' n+1 r n n n-1 ^ n-1 n n+1 
But, from (4. 3), 

(4. 24) w , w w ,, = w + q e w , 
v ' n-1 n n+1 n ^ n 

so that from (4. 23) and (4. 24) it follows that 
O O Q. *2 ' "2 

(4. 25) w n + 1 + (3 pq - p ) w n + q w ^ = -3 pq11 e w n . 

Now a calculat ion involving (1.6) and the summat ion of geomet r i c 
s e r i e s leads to 

n-1 . ^ 1 o 
(4.26) £ q J w = — — 3 j w x - q w 0 - q n ' ( w n - q w ^ x) \ . 

j = 1 i -pq+q 

Write 
n - 1 

(4.27) co = X w 3 

j=0 J 

Combining (4. 25), (4. 26) and (4. 27), we find 

(4,28) ( l+3pq-p 3 +q 3 )a ; = ^ E S £ _ j w ^ q ^ - q * 1 " V n q K ^ \ 
1-pq+q 

3 3 3 3 3 
+q w

n _ r w
n
 + ( l+3pq-p ) wQ 

Appropr ia te subst i tut ion in the above formulas of 4. Lead to co r -
responding r e su l t s for the special sequences (2.1) - (2 .5) . Fo r in-
s tance , applying (4. 16) and (4. 28) to if I , we have r ^ _ 

i f2n-rVi! • 
co = I J'f3 + f3 + St-l)11"*1 f , + z\ 4 < n-1 n x ' n-2 > 

re spec t ive ly . 

5. DEGENERATE CASE 

Throughout the ana lys i s of the na ture of Jw [ , the hypothesis 
2 2 

that p $ 4 q has been a s s u m e d . But suppose now that p = 4C1. The 
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s imples t degenera te case occurs when p = 2, q = 1 (a = p = 1) for 
which exis ts the t r iv ia l sequence (n ^ 0) 

(5.1) vn(2, 1) : 2, 2, 2, 2, 2, . . . . 

and the sequence of na tu ra l numbers (n > 0) 

(5.2) u n (2 , 1) : r, 2, 3, 4, 5, . . . , 

that i s , u = n+1 and v = 2 . For negative n, (2. 19) impl ies v =v . n n to r ~n n 
that i s , eve ry e lement of ju (2, 1)£ is 2, while (2. 17) impl ies 
u = -u 2 , that i s , like e lements of Ju (2, 1)1 a r e the posit ive and 
negative in tege r s in o r d e r . 

General ly , in the degenera te case , 

( 5 . 3 ) a = p = £ . 

The ma in fea tures of the degenera te case , as they apply to ju I 
and 5v | a r e d i scussed in Car l i tz [2] , with acknowledgement to 
Riordan. Brief comment s , as they re la te to Sw I , a r e made in [6 J . 
In pass ing , we note that Car l i tz [2] has es tabl ished the in te res t ing r e -
lat ionship between degenera te 

K < P . £ > ( 
and the Eu le r i an polynomial A, (x) which sat isf ies the differential 
equation 

A ,, (x) = (1 + nx) A (x) + x(l - x) ^ - A (x) , n+1 n dx n 
2 

where A (x) = A, (x) = 1, A~(x) = 1+x, A Ax) = 1 + 4x + x . 
Finally, it mus t be emphas ized that jh [ and i ts specia l iza t ions 

j f | and jl | can have no such degenera te c a s e s , because p - 4q 
then equals 5 ( + 0). 
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r e a d e r finding a Fibonacci r e fe rence , send a card giving the re fe rence 
and a brief descr ip t ion of the contents . P l ea se forward al l such in-
format ion to: 

Fibonacci Bibl iographical R e s e a r c h Center , 
Mathemat ics Depar tment , 

San Jose State College, 
San Jose , California 



NON-FIBONACCI NUMBERS 
H. W. GOULD 

West Vi rg in ia Universi ty, Morgantown, W. Vi rg in ia 

In o rde r to unders tand the p rope r t i e s of a set it is often worth 
while to study the complement of the set . When The Fibonacci Assoc i a -
tion and this Quar t e r ly were being es tabl ished, the w r i t e r began to 
think about non- Fibonacci number s as well as about Fibonacci n u m b e r s , 
but what is known about non- Fibonacci numbers ? With the hope of gen-
era t ing m o r e i n t e r e s t in non-Fibonacci number s , I posed as the f i rs t 
p rob lem in this Quar te r ly , p roblem H - 1 , the quest ion of finding a for-
mula for the n- th non-Fibonacci number . The purpose of the p r e sen t 
paper is to d i scuss the problem and give a solution to it . 

We begin with the concept of complementa ry sequences . A s e -
quence is an o rde red seto Two sets of na tura l n u m b e r s , say A and 
B, a r e called complementa ry if they a r e disjoint and thei r union is the 
set of al l na tura l n u m b e r s . Many examples a r e avai lable: Even num-
b e r s and odd number s ; p r i m e s and n o n - p r i m e s ; k- th powers and non 
k- th power s . But the r e a d e r may not r ea l i ze that formulas can be 
wr i t t en down for such sequences . Of course , even and odd number s 
a r e genera ted eas i ly by 2n and 2n- l where n is any na tura l number , 
but it is not as well known that a bonafide formula for the n- th non 
k- th power is given by the express ion 

n + [V n + [̂ ~ k £ 2 

where square b racke t s indicate the in tegra l p a r t of a number . Such a 
formula is quite enter ta ining, and is a special case given by Lambek 
a n d M o s e r [l l] in a genera l study of complementa ry sequences . They 
give seven examples , as well as a genera l r e su l t . 

A r e m a r k a b l e pa i r of complementa ry sequences was d i scovered 
about forty y e a r s ago by Samuel Beatty at the Univers i ty of Toronto. 
He posed his d i scovery as a problem in the Amer i can Mathemat ica l 
Monthly [2] . We may state Beat ty ' s theorem in the following equivalent 

177 
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fo rm, If x and y a r e i r r a t i ona l number s such that l / x + 1/y •= 1, 
then the sequences [nx] and [ny] , n = 1, 2, 3, . • . , a r e complementa ry . 

This theorem has been r ed i scove red a number of t imes since 
1926, The short l ist of r e f e rences at the end of this paper will give 
some idea of what is known about complementa ry sequences . Beat ty ' s 
r e su l t has been fair ly popular in Canada. Bes ides the work in Canada 
by Lambek and Moser , the re was the work of Coxeter , and the m a s -
t e r ' s thes is by Ian Connell (published in pa r t in [3 J ). The in te res t ing 
extension by Myer Angel [ i j was wr i t t en when he was a second year 
student at McGill Univers i ty . Our ma in i n t e r e s t he re is in the 1954 
paper of Lambek and Moser . 

Let f(n), n= 1, 2, 3, . . . , be a non-dec reas ing sequence of pos i -
tive in tegers and define, as in [l Ij and [8, ed i to r ' s r e m a r k s ] , the ! in-
v e r s e 1 f by 

f (n) = number of k such that f(k) < n = X 1 . 
1 < k 

f(k) < n 
Thus f is the d is t r ibut ion function which one would expect to study 
in connection with any sequence. If f defines the sequence of p r i m e 
number s , then f' (n) = ^(n- l ) = number of p r i m e s < n. Note a lso that 
f = f. We shall a l so define F(n) = f ' (n+ l ) . Next, define r ecu r s ive ly 

FQ(n) = n; F ^ n ) = n + F ( F k ^ ( n ) ) , k > 0 . 

Moser and Lambek showred that if Cf(n) is the sequence complementa ry 
to f(n), then 

Cf(n) = k
L ™ „ Fk(n) . 

What is m o r e , they showed that the sequence F, (n) a t ta ins i ts l imit 
Cf(n) in a finite number of s teps when this l imit is finite. In fact one 
need not go beyond k = Cf(n) - n. 

Thus the n- th non-p r ime number is the l imit of the sequence n, 
n + fl'(n), n+ n(n + n"(n)), . . . . Often two steps a r e sufficient to a t ta in 
the l imit . Thus the n - th na tu ra l number which is not a perfec t k- th 
power is given by the exp res s ion enunciated at the outset of this paper . 
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The n- th na tu ra l number not of the form [e | with m > 1 is 
n + [log(n + 1 +[log(n+l)] ) ] . 

As for the Fibonacci and non-Fibonacc i number s , let f(n) = f 
' n 

be a Fibonacci number , defined r ecu r s ive ly by f , . = f + f , with 
1 J n+1 n n-1 

f. = 1 , f? = 2, Let g designate the non-Fibonacci n u m b e r s . The 
following table will i l l u s t r a t e the calculat ions involved. n 1 
~ —-f 

1 [ 
2 1 
3 

4 

5 : 

6 

7 

8 

9 
10 

11 
12 

13 

14 

15 

16 

17 

18 

19 
20 

21 

22 

23 

24 

25 

26 

27 

f n 
_ _ 

2 

3 

5 

8 

13 

21 

34 

55 

89 
144 

233 

377 

610 

987 

\ 

\ 
i 

j 

i 

i 
I 
f 
i 

f 

1 
i 

1 

Hn) 
™ _ _ 

1 

2 

3 

3 

4 

4 

4 

5 

5 

5 

5 

5 

6 

6 

6 

6 

6 

6 

6 

6 

7 

7 

7 

7 

7 

7 

F(n) 

1 

2 

3 

3 

4 

4 

4 

5 

5 

5 

5 

5 

6 

6 

6 

6 

6 

6 

6 

6 

7 

7 

7 

7 

7 

7 

7 

A 

2 

4 

6 

7 

9 
10 

11 

13 

14 

15 

16 

17 

19 
20 

21 

22 

23 

24 

25 

26 

28 

29 
30 

31 

32 

33 

34 

B 

2 

3 

4 

4 

5 

5 

5 

6 

6 

6 

6 

6 

6 

6 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

8 

C 

3 

5 

7 

8 

10 

11 

12 

14 

15 

16 

17 

18 

19 
20 

22 

23 

24 

25 

26 

27 

28 

29 
30 

31 

32 

33 

35 

D 

3 

4 

4 

5 

5 

5 

5 

6 

6 

6 

6 

6 

6 

6 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

8 

« n s E [ 
4 j 
6 j 
7 1 
9 j 

10 | 

11 

12 

14 

15 

16 

17 

18 

19 
20 

22 

23 

24 

25 

26 

27 

28 

29 
30 

31 

32 

33 

35 

F 

0, 67 

2. 10 

2.95 

3.55 

4.02 

4.39 

4.71 

4.99 

5. 24 

5.45 

5. 65 

5.84 

6.00 

6. 15 

6. 30 

6.43 
: 6.55 

i 6.67 

j 6. 79 

j 6.90 

7.00 

7.09 

j 7. 19 

j 7. 28 

1 7-36 

j 7.44 

! 7.52 
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In the table, successive columns indicate the steps in evaluation 

of the limit g = Cf(n) as follows: 

A = n + F(n), 

B = F(n + F(n)), 

C = n + F(n + F(n)), 

D = F(n + F(n + F(n))), 

E = n + F(n + F(n + F(n))) 0 

Three iterations were found necessary to generate the non-Fibonacci 

numbers g , at least up to n = 40. It is left as a research problem 

for the reader to determine if more than three iterations are ever 

necessary. 

It is evident that to obtain an elegant formula for g we have 

then two problems: (a) the number of steps required to find Cf(n); (b) 

a neat formula for the distribution function F(n) or equivalently the 

inverse f (n). 

The study of F or f corresponds to the study of the distribu-

tion of prime numbers, but because of the regular pattern of distribu-

tion we can supply a fairly neat.formula for F(n). It was noted by K, 

Subba Rao [13] that we have the asymptotic result: 

F(n) ~ \^MJL 9 a s n-^oo x ' log a 
where 

1 + \/5 
a = — - — . 

As a matter of fact one can prove much more. We have the following 

THEOREM. Let F(n) = number of Fibonacci numbers f ^ n. Then 

F(n) ~ !"Qg n + log J5 - 1 = 2 . 08 log n + 0. 67 ' log a & a & 

and, for n > n , F(n) is the greatest integer 1 this value0 Column F 

in the table gives the value of the expression 2.08 log n + 0.67 as 

computed from a standard 10-inch slide rule. Even this crude cal-

culation is good enough to show how closely the formula comes to F(n). 
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Thus we have the following approximate formula for the n- th 
non-Fibonacc i number : 

g = n + F(n + F(n + F(n)» , 

with 

F(n) = [logan + \ loga5 - l ] for n > 2 , 

= [2 ,08 log n 4- 0, 67] 

We shall conclude by noting some cur ious generat ing functions for 
the d is t r ibut ion function (or inverse ) f (n). For any non-dec reas ing 
sequence of posi t ive in tegers f(n), we have [8 , ed i to r ' s r e m a r k s ] 

x 2 xf ( n ) = (1 - x) 2 f(n) x n , 
n=l n=l 

a n d 

n f(k) f(n) n 
2 2 A = 2 I „ A , 

k=l j=l J , K j=l k=l +£ (j) J , K 

the l a t t e r identi ty holding for an a r b i t r a r y a r r a y of number s A. , , 
being m e r e l y an example of summing in the one case by rows and in 
the other case by columns f i r s t . As an example with applicat ion to 
formulas involving the Fibonacci numbers we may note that 

f i f 

n k n n 
2 2 A = 2 2 A . 

k=l j=l J , K j=l k=l + F ( j - l ) J ' K 

In this formula, take A = 1 ident ical ly. Then we find the formula 
J> k 

f 
2 F ( k - 1) = n f n - fn+2 + 2 , (F(0) = 0) 

k=l 

this being but one of many in te res t ing re la t ions connecting f and 
F(n). F r o m Theorem 2 of [l l] we have that the sequences n + f and 
n + F ( n - l ) a r e complementa ry . The r e a d e r may find it of i n t e r e s t to 
develop the cor responding formulas for non-Lucas numbe r s or other 
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r e c u r r e n t sequences , In a for thcoming paper [lO] Holladay has given 
a very genera l and closely reasoned account of some r e m a r k a b l e r e -
sults for complementa ry sequences . If a pe r sona l r e m a r k be allowed, 
his paper is an outgrowth of d i scuss ions concerning problem H- l and 
the applicat ion of complemen ta ry sequences to ce r t a in p rob lems in 
game theory . 

As a final r e m a r k , the re is the quest ion of the d is t r ibut ion of 
non-Fibonacci number s and ident i t ies which they may satisfy. It is 
hoped to d i scuss other p r o p e r t i e s of non-Fibonacc i number s and other 
formulas for them in a la ter pape r . 
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Correc t ions to "Summation Fo rmu lae for Multinomial Coefficients" 
by Selmo Tauber , Vol. Ill, No. 2: 

(5) line 3 (p. 97) N+l 

(6) las t line (p. 97) k 
2 I ^ X ^ , . . . etc 

a=l 

(8) lines 3 and 4, upper index of mult , coeff. (p. 99) 

N+h+1 
N+q-1 

RENEW YOUR SUBSCRIPTION! ! .' 

All subscr ip t ion cor respondence should be add res sed to Bro ther U, 
Alfred, St. M a r y ' s College, Calif. All checks ($4.00 per year) should 
be made out to the Fibonacci Associa t ion or the Fibonacci Quar te r ly , 
Manuscr ip t s intended for publication in the Quar te r ly should be sent 
to Verne r E. Hoggatt, J r . , Mathemat ics Depar tment , San Jose State 
College, Sari Jose , Calif. All manusc r ip t s should be typed, double-
spaced. Drawings should be made the same size as they will appear 
in the Quar te r ly , and should be done in India ink on e i ther vellum or 
bond paper . Authors should keep a copy of the manusc r ip t sent to the 
ed i to r s . 

The Quar t e r ly is entered as thi rd c lass mai l at the St. Mary ' s College 
Pos t Office, California, as an official publication of the " Fibonacci 
Associa t ion. 



TWO FIBONACCI CONJECTURES 

DMITRI THORO 
San Jose State College, San Jose, California 

Consider the problem of solving, in posit ive in t ege r s , the follow-
ing Diophantine equation (suggested by the Editor): 

(1) F n x + F n + 1 y = x 2 + y 2 . 

F i r s t let us note that (1) always has the t r iv ia l solution (F , F , , ) , 
3 n n+1 ' 

i. e. , x = F , y = F ,, . Does (1) ever have a non- t r iv ia l solut ion? If 
n is fixed, we know from analytic geomet ry that the re a r e at mos t a 
finite number of solut ions. However, we shall soon see that for in-
finitely many n (1) has at leas t two non- t r iv ia l solut ions. 
Theorem 1. If n > 1 and n = 1 (mod 3), then 

F F 
n+2, n+2 2 2 

and 
F F 

n+2, n-1 2 2 

a r e non- t r iv ia l solutions of (1). 

Proof. Since n = l (mod 3), F = F + 2 ;=0 (mod 2) which guaran tees 
that the quotients involved a r e indeed i n t e g e r s . One m a y immedia te ly 
verify that they satisfy (1). 

Theorem 2. If (x , y ) i s a solution of (1), than u = 2x - F , 
o o o n V = 2y - F ,, is a solution of Jo n+1 

(2) u 2 + v 2 = F 2 n + r 

Proof. This is an immedia te consequence of the identi ty (Lucas , 1876) 

F 2 + F * = F 9 ,. . n n+1 2n+l 

If u = u and v = v is a solution of (2) with (u , v ) 4 {£\,« o o o o' ' P 
F , 1 ) (or any of the other 7 solutions of (2) obtained bychanging signs 
or in terchanging F and F n ) w e shall cal l (u ,v ) a non- t r iv ia l solu-
tion of (2). 

184 
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Theorem 3. If n ^ 1 (mod 3), then (1) has a non- t r iv ia l solution if 
and only if (2) has a non- t r iv ia l solution. 

Proof. 
(a) If (x , y ) is a non- t r iv ia l solution of (1), then by Theorem 2, 
u = 2x - F , v = 2y •* F (1 is a solution of (2). If 2x - F = ± F o n J o n+1 o n n, 
then x = F (and hence y = F ,, or 0) or x = 0, a contradic t ion. o n Jo n+1 ' o 
If 2x - F = ± F . , , x = F , T / 2 or x <0 which is imposs ib le o n n+1 o n+2/ o c 

since F ,~ is odd and we a r e consider ing only posi t ive solutions of (1). 
(b) Let us a s s u m e u > 0 , v >0 is a non- t r iv ia l solution of (2). 

o o v ' 
F is even if and only if w = 0 (mod 3); thus by hypothesis F^ ,, is 

w 2 2 2n+l odd. But F T ., = u + v , hence u and v mus t be of different 2n+l o o o o 
par i ty . Moreover , for the same r ea son F and F .. mus t a l so be 
of different pa r i ty . Thus (interchanging names if neces sa ry ) we may 
be su re that 

u + F v + F ,, o n , o n+1 
2 2 ~ 

is an in teg ra l solution of (1). If 

u + F o n = F n 

we would, as before, get a contradic t ion. 
The r e a d e r is invited to show that the number of non- t r iv ia l solu-

tions of (1) is always even. 
Now the prob lem of r ep resen t ing a number as the sum of two 

squa re s has rece ived cons iderable at tention. The following resu l t , 
known to F e r m a t and o thers was proved by Euler : 

2 
If N = be >0 , where b is s q u a r e - f r e e , then N i s r ep re sen t ab l e 

as the sum of two squa re s if and only if b has no p r i m e fac tors of the 
form 4k + 3. 

Theo rems on the number of such r ep re sen ta t i ons can be found in 
v i r tua l ly every introductory, text on number theory . 

Thus by Theorem 3 if n | 1 (mod 3) and F^ ,-• is a p r i m e of: 
form 4k+l, the only solution of (1) in posi t ive in t ege r s is (F , F . ) 
s ince eve ry p r i m e of the form 4k+l is the sum of two squa res in e s -
sent ia l ly only one way. 
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It is in te res t ing to note that the per t inent identi ty 

(a2 + b2) (c 2 + d2) = (ac ± bd)2 + (ad + be) 2 

was given by Fibonacci in his Liber Abaci of 1202. This can be used 
to expedite numer i ca l inves t iga t ions . However, one needs to beware 
(or at leas t be aware) of such accidents as the following: 

Let n >o, n = 2 (mod 3); 
(i) If n < 32 (and n f 17), then 2n+l is a p r i m e . 
(ii) If n < 17, both 2n+l and F ? ,, a r e p r i m e s ! 

Another useful resu l t is 

Theorem 4. F~ , E 1, 2, or 5 (mod 8). 

2 2 
Proof. We shall use the identi ty F ? ,, = F + F , . If g is odd,. 
then g2 = 1 (mod 8). Thus if F and F ,, a r e both odd, F_ = 2 

& - * ' n n+1 2n+l 
(mod 8). Since two consecutive Fibonacci numbers a r e re la t ive ly 
p r i m e , the only remaining possibi l i ty is that F and F , a r e of 
different par i ty ; in this case we get F ? , = 1 or 5 (mod 8). 

The r e a d e r may prove that in genera l F ^ 4 (mod 8). 
Finally, this problem suggests the following conjectures: 

Conjecture 1. There a r e infinitely many values of n for which (1) 
has only a t r iv ia l solution. 
Conjecture 2. F ? +1 is never divisible by a p r ime of the form 4k+3. 
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FIBONACCIOUS FACTORS 

ROBERT B. ELY, III 

1. INTRODUCTION 

In e a r l i e r i s sues of the Quar t e r ly there have been shown and 
proven answer s to the following quest ions about the basic s e r i e s (1, 1, 
2, 3, 5 - - - ) . 

(1) By what p r i m e s a r e the var ious t e r m s , U ., d iv is ib le? 
(2) At what points do var ious p r i m e s f i r s t appear a s f ac to r s? 
(3) At what per iods do they r e a p p e a r ? 

In this paper we deal with answer s to the same quest ions as to 
the genera l s e r i e s (a, b, a + b, a + 2b, 2a + 3b ). 

20 PERIODS OF REAPPEARANCE ARE THE SAME 

Our task is simplified if we answer the last quest ion f irst : 

If k is the per iod at which a p r i m e r epea t s i ts ze ro r e s idues 
in the basic s e r i e s , k is a lso the period of ze ro r e s idues in any 
genera l s e r i e s . 

Suppose that a p r ime f i rs t divides the nth t e r m of a given s e r -
ies (a, b, a + b ) and let the (n- l ) th t e r m be c. Then modulo p, 
(which we herea f te r abbrevia te to M[p") the s e r i e s runs in this neigh-
borhood as c, 0, c, c, 2c, 3c e tc . The t e r m s after the zero a r e 
those of the basic s e r i e s each mult ipl ied by c. Now if x^ io [p, so 
a l so c x i o if c =£ o [p. Again, if x = o [p, so a l so cx= o [p. This 
means that in the two s e r i e s (1, 1, 2, - - - ) and (c, c, 2c ) the 
ze ros appear at the same t e r m s 

3. SUMMARY OF PREVIOUS RESULTS AS TO FIRST APPEARANCES 

(1) There a r e some t e r m s of the basic s e r i e s divisible by any p r ime 
one may choose, 
(2) The t e r m U , . . . i s divis ible by U , U, U . . . E. G. v abc J a b c 

U12 * 144 
is divisible by 

187 
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u 2 = i 
U 3 = 2 
U 4 = 3 
U 6 = 8 

(3) Such a t e r m U ., for which n is composi te , may a lso have 
other fac tors , called "pr imi t ive p r ime d i v i s o r s ; " and the genera l form 
of these p r i m e s is de te rmined by the following ru les (but the i r identity 
mus t be found by t r i a l and e r r o r ) . 

(A) If n is odd; p is of the form 2 kn ± 1 
(B) If n = 2 ( 2 r + l ) ; p is of the form nk .± l 
(C) If n = 2 m (2 r + 1); p is of the form nk/2 - 1 

Examples a r e l is ted in the F e b r u a r y 1963 Quar te r ly at pp. 44-45 . 
(4) The fact that n is p r ime does not imply that U is p r i m e . E . g . , 
U U 19 = 4181 = 37 x 113; even though 19 is p r i m e . However, the con-
v e r s e is t rue : If U. is p r ime , so a lso is n. 

n ^ 
(5) The even p r i m e , 2, is a factor of every th i rd t e r m of the s e r i e s ; 
and the odd p r i m e 5 is a factor of every 5th t e r m . 
(6) All other odd p r i m e s a r e of the forms ± 1 and ± 3 [10. They 
appear and r eappea r as factors according to the following ru les : 

(a) If p= ± 1 [10, it will f i rs t appear when the n of U. = —j—J 

d being some posi t ive integer ; and will r eappear every nth t e r m 
thereaf ter ; 

D 4" 1 

(b) If p5 ± 3 [10, it will f i rs t appear when n = ±--3—, and every 
nth t e r m thereaf te r , d again being some posi t ive in teger . E. g. , 

3 divides U4 and every 4th t e r m thereaf te r 7 
11 
13 
17 
19 

U8 
uio " 
U? M 

U9 " 
U18 " 

" 8 t h 
10th " 

" 7th " 
9th " 
18th " 

(c) The ru les for de termining the divisor , d, of p =fc 1 in (6) 
have not yet been given. Examinat ion of the p r i m e s less than 80 give 
d = 1, 2 or 4 in all c a se s except 47, where it is 3. However, in the 
range from p = 2,000 to 3,000, given in the F e b r u a r y 1963 i s sue at 
pp. 36-40, d has values ranging from 1 to 78. 
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(7) Nothing has thus far been said about the appearances and per iods 
of composi te fac tors , ab (a / b ) , nor fac tors which a r e powers , pC. 

4. NEW ANSWERS TO THE QUESTION OF FIRST APPEARANCES 

(1) "By what factors a r e the t e r m s of the genera l s e r i e s (a, b, a + b, 
a + 2b, + 3b . . . ) d i v i s i b l e ? " 

It can be shown that if A, B and C denote any th ree success ive 
2 t e r m s in this s e r i e s , then B - AC = ± a constant, no m a t t e r which 

th ree t e r m s a r e chosen, and no m a t t e r what the values of A and B 
(the f i r s t two t e r m s ) . 

Specifically, work on the f i rs t few t e r m s of the genera l s e r i e s 
shows what this constant mus t be 

b - a (a + b) = b - ab - a 

or (a + b) 2 - b (a + 2b) = a2+ 2ab + b 2 - ab - ab2 

= - b +• ab + a 

2 2 
= -(b - ab - a ) 

2 How can we make use of this constancy of B AC to de te rmine 
the poss ibi l i ty of a given p r i m e , p, as a factor of some t e r m in the 
genera l s e r i e s ? By changing the equation to a congruence [p. If any 
t e r m , C, of the s e r i e s is divisible by p; then C and i ts two immedia te 
p r e d e c e s s o r s mus t sat isfy the congruence 

B 2 - ACE ± (b2 - ab - a2) [p 

But we a r e a s suming CEO [p. This e l iminates the t e r m - AC. Hence 
2_ 2 2 

we mus t have B - ±. (b - ab - a ) [p. 
In other words , once we know the f i r s t two t e r m s , a and b of 

a genera l s e r i e s ; we know that the only possible factors for t e r m s of 
2 2 

the s e r i e s a r e those for which ± (b - ab - a ) is a quadra t ic r e s idue . 
P r i m e s of which this is not t rue cannot be the modulus in the congruence 

B 2 E ± (b2 - ab - a2) [p.-
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However, it does not folLow from the necess i ty of this condition 

that it is a l so sufficient. E. g. , 1, 4, 5 . . . is never divisible by 89. 
Never the les s , Brother Alfred has shown that the re a r e some p r i m e s 
which a r e fac tors of a l l Fibonaccious s e r i e s . 
(2) We can no longer say that U , is divisible by U , Uv and U , 
as a single example will show. Consider 3, 7, 10, 17, 27, 44, 71 , 
115, 186, 301. U1 Q = 301 is divisible by U2 = 7, but not by IL = 27. 
(3) Neither can we say of a genera l s e r i e s that if U. is p r i m e , so 
too is n. Vide 2, 5, 7, 12, 19, 31 . . . for which U/ is p r i m e but 6 
is not. 
(4) (a) Nor do we have in the genera l s e r i e s a set of p r imi t ive p r i m e 
fac tors , in view of (2) above. 

(b) Thus we a r e fa i r ly l imited, as to ru l e s for the forms of c e r -
tain, poss ible or imposs ib le p r i m e factors of the genera l s e r i e s . We 
make he re only two observa t ions : 

(i) For p r i m e s of the form p = 4k + 3, e i ther a or -a is 
a res idue for any value of a. Hence these p r i m e s a r e poss ib le , but not 
n e c e s s a r i l y ce r t a in fac tors of any genera l s e r i e s . / 

(ii) On the other hand, for p r i m e s of the form p = 4k + 1, 
the re can be values of a for which nei ther a nor -a is a r e s idue . 
E . g . , nei ther 2 or -2 is a res idue [5; and nei ther ±2 nor ±5 nor 
±6 a r e r e s idues [13. Hence these p r i m e s a r e imposs ib le factors of 
genera l s e r i e s for which the ini t ial t e r m s a r e co r r ec t l y chosen. 

E . g . , no t e r m s of the s e r i e s 1, 63, 64, 127 a r e ever divisible by 
5, 11, 13 or 17, since ± (63Z - 64) = ± (3969-64) = ± 3905 i s a non-
res idue of each of these p r i m e s . 

Hence let us put as ide for the moment the m o r e pa r t i cu l a r ru les 
of forms of fac tors of the genera l s e r i e s , and turn to the place of f i r s t 
appearance of poss ib le fac to rs . The in te rva ls of r eappea rance a r e as 
in the basic s e r i e s . 
(5) F i r s t let us review 2 and 5. If any s e r i e s is reduced 2, we have 
only four pa t t e rns , depending on choice of ini t ial t e r m s 

1, 1, 0, 1, 1, 0, 1, 1, 0, . . . . . 
0, 0, 0, 0, 0, 0, 0, 0 . . . . . . 
1, 0, 1, 1, 0, 1, 1, 0 . . . . . . . 
0, 1, 1, 0 
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That is to say: one of the f i rs t th ree t e r m s mus t be even; and t h e r e -
after e i ther al l or every 3rd t e r m is even. 

For 5, the si tuation is a Little m o r e complex,, Actual computa-
tion of f i r s t appea rances for the var ious combinations of r e m a i n d e r s 
of the f i r s t two t e r m s enables us to make the following table: 

If the second t e r m has a r ema inde r of 

0 1 2 3 4 
and the 
f i r s t a 

r ema inde r 
of 

rr" 
2 

f 2 

I 2 

1 2 

1 

5 

N 
4 

3 

1 

4 

5 
3 

N 

1 

N 

3 

5 

4 

. 1 
3 

4 

N 

5 

[5 

the en t r i es show the number of the smal les t t e r m divisible by 5, where 
N signifies nnonee " Thus we see that 5 may f i rs t appear as a factor 
of any t e r m from the 1st to the 5th5 or be suppressed ent i re ly; by 
p rope r choice of f i r s t t e r m s . However, as the r e a d e r can eas i ly v e r -
ify, if 5 appea r s once as a factor, it r e a p p e a r s in eve ry 5th t e r m 
the rea f t e r . 
(6) Now, as before, let us tu rn from these two special ca ses of 2 
(the only even pr ime) and 5 (the only one E 5 [10) and consider the r e -
maining ones of the forms ±1 and .±3 [10., We make the following 
conjec tures : 

(a) By p roper choice of ini t ial t e r m s we c a n m a k e any such p r i m e , 
p, f i rs t appear as a factor of any t e r m whose number (rank)<p; or, if 
p is of the form 4 k + 1, we can suppress it a l toge ther . 

(b) If such a p r ime appea r s at all , it will r eappea r at the same 
in te rva l as in the basic s e r i e s . 

To tes t these conjec tures , let us make tab les , as for 5, for 7 
and 11 . 
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0 1 2 3 4 5 6 

Oct. 

J l ~ 
2 

I J 2 -

12 
2 

[HT~ 
!| 2 

i 

8 

5 
6 

7 
4 

3 

1 

7 
8 

4 

5 

3 

6 

1 

4 

6 

8 

3 

7 

5 

1 

5 

7 

3 

8 

6 

4 

1 

6 

3 

5 
4 

8 

7 

1 | 
3 ' -

4 

7 
6 

5 

8 

Note the absence of N ' s ; since 7 is always a factor of some t e r m s of 
any genera l s e r i e s . 
For 11: b, 

Second t e r m 

10 

0 

1 l 
\\ 2 

2 

j] 2 
| j 2 

I Z 

j | 2 

1 2 
! 2 

J j Y 
2 

1 

1 

10 

6 

N 

5 

7 

9 
N 

8 

4 
3 

2 

1 

9 
10 

N 
6 

8 

N 

4 

5 

3 

7 

3 

1 

5 

8 

10 

7 
4 

6 

9 
3 

N 

N 

4 

N 

9 
4 

10 
5 

N 
3 

6 

7 

8 

5 

4 

N 
7 

N 

10 

3 i 

8 

9 
5 

! 6 
L _ 

6 

6 

5 

9 
8 
3 

10 

N 

7 

N 

4 

7 

8 

7 
6 

3 

N 

5 

10 

4 

9 
N 

8 

1 

N 

N 

3 

9 
6 

4 H 

7 

9 
1 

7 

3 

5 i 
4 

N 
8 

6 ' 

10 1 N 
8 | 10 
5 ] 9 

10 

3 J 
—-j-j 

8 j 
N | 
9 1 

N | 
! 6 1 

10 1 
L _ J 

Observing these th ree tab les , we see the following common fea tures : 
(i) The top line is always a l l l ! s ; 
(ii) The left column is always a l l 2 ' s , except for the top ent ry . 
(iii) One diagonal is a l l 3' s. 
(iv) The other diagonal is a l l k ' s (where k will be seen to be the 

constant of r eappea rance , in this case 10), except for the upper left 
c o r n e r . 

(v) The nth line (except the top) is line 1 "spaced out" at i n t e r -
vals of m from the 3. 

(vi) Hence only line 1 need be computed. 
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Some of the fea tures a r e obvious: 
(i) The top line of l ' s mean only that a (in the s e r i e s a, b, 

a•+ b . . . ) ~ o [p. Hence the f i r s t ze ro is at the f i rs t t e r m , 
(ii) The left column of 2's is s imi l a r ly expl icable . The excep-

tion of 1 at the top left co rne r is because both a and b = o, and the 
e a r l i e r of the two is a, the 1st t e r m . 

(iii) The diagonal of 3rs is due to thei r r ep resen t ing s e r i e s in 
which the f i r s t two t e r m s a r e a, p -a , p. The a ' s vary; but p in the 
3rd t e r m does not. 

(iv) The ident i t ies in the other diagonal r e p r e s e n t genera l s e r i e s 
of which the f i rs t two t e r m s a r e both a (2, 2, 4 „ . . , 3, 3, 6 . . . , 
4, 4, 8 . . . ). The t e r m s of each of these s e r i e s a r e those of the basic 
(1, 1, . . . ) each mult ipl ied by a. Consequently if any t e r m in the basic 
s e r i e s gave a r ema inde r [p it would a lso give a r ema inde r (usually 
different) when mult ipl ied by a constant . On the other hand, if the nth 
t e r m , U. , of the basic s e r i e s = o [p; so a lso a U E o [p. That is to 
say, the e a r l i e s t ze ro r ema inde r in (a, a, 2a . . . ) occur s at the same 
t e r m , r e g a r d l e s s of the value of a. 

(v) The "spacing out" of Line 1 to get the en t r i es in Line n of 
the table is explicable s imi l a r ly . If x = o [p so a lso k x E o [p while 
if x £ o [p so a l so kx ^ o [p9 in the f i rs t case for any value of k, 
and in the second so long as k i o [p. 

This means that the occu r rence of ze ros in any s e r i e s (a, b, 
a + b . . . ) is unchanged if each t e r m in the s e r i e s is mult ipl ied by the 
same constant, k £ o [ p . In other words , while non-ze ro r e m a i n d e r s 
may vary, p will occur as a factor of p r ec i s e ly the same t e r m s in 
s e r i e s (1, 2, 3, 5 . . . ), (2, 4, 6, 10 . . . ), (3, 6, 9, 15 . . . ) e tc . Hence 
the en t r i es in line 1 and col. 2, line 2 and col. 4, line 3 and col. 6 of 
the table mus t be the same; and s imi la r reasoning shows how the r e s t 
of the spacing out follows the same pattern„ 

(vi) Final ly we mus t cons ider line " 1 " of the table . To fill it 
out the ha rd and obvious way r e q u i r e s us to run out, reduced [p, the 
var ious s e r i e s (1, 2, 3, 5 . . . ), (1, 3, 4, 7 . . . ), (1, 4, 5, 9 . . . ) un-
til we r each a ze ro in each; and then make cor responding en t r i e s in 
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line 1. This done, spacing out as per (v) will compLete the table . 

An a l te rna t ive , or a c r o s s - c h e c k can be made as follows: Sup-
pose we run out the basic s e r i e s for a p r i m e we have not yet considered, 
13* The s e r i e s reduced [13 to the f i rs t ze ro is 1, 1, 2, 3, 5, 8, 0. 

Attached is a table par t ia l ly filled in, with the invar iable 1st row 
of l ' s , left column of 2 ' s , diagonal of 3 fs , and diagonal of 7 's (the 
ze ro per iod of the basic s e r i e s ) . There a r e other en t r i e s , which we 
now explain. 

For [13 

Remainder of Second Term (b) 

0 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 2 3 5 8 0 marked / / / 
8 8 3 11 1 12 0 " \ \ \ 

12 12 11 10 8 5 0 " ^ ^ 
5 5 10 2 12 1 0 " UN 

The ent ry in (1, 1) is 7; because we have just seen that 7 is the 
z e r o - p e r i o d of the basic s e r i e s . There is s imi l a r ly a 6 in the square 
(1, 2) because after a look at the basic s e r i e s , we see that if we s t a r t 
a n e w s e r i e s with f i r s t t e r m s 1, 2, instead of 1, 1; we a r r i v e at 0 after 
6 t e r m s ins tead of 7. In fact, as the 7 and 11 tables have i l lus t ra ted 
a l ready , the ent ry in square (1, 2) of the table is always k - 1 , where 
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k is the number of the f i rs t ze ro t e r m in the basic s e r i e s . S imi lar ly 
t h e e n t r y i n the square (2, 3) is always k-2; and in the square (3, 5) it 
is k - 3 ; e tc . ; because as we select la ter and la ter p a i r s of t e r m s in the 
basic s e r i e s to s t a r t new s e r i e s , we reduce one by one the number of 
the f i rs t t e r m in which zero a p p e a r s . Hence we can, without fur ther 
computat ion than the basic s e r i e s reduced [p, fill in a number of en-
t r i e s on var ious lines of the ze ro appearance table (see the at tached 
figure for 1 3). 

Moreover , we can use these en t r i e s , with a li t t le m o r e t r i a l and 
e r r o r , to work back to values in line 1 of the table . For example , let 
us again look at the 13 table . The period of z e r o - a p p e a r a n c e s being 7 
(as we have seen from the bas ic se r i e s ) and 3, 5 being the 4th and 5th 
t e r m s in the basic s e r i e s , we know that 0 appea r s at the (7-3)th t e r m 
in a new s e r i e s (3, 5, 8, 0 . . . ), Suppose we mult iply the new s e r i e s , 
t e r m by t e r m , by such a factor (9) as makes a st i l l newer s e r i e s with 
the f i r s t t e r m 1. 

We have 3 x 9, 5 x 9, 8 x 9, Ox 9 - - - [13 
or 27 , 45, 72, 0 - - - [13 
or 1 , 6, 7, 0 - - - [13 

Hence from the ent ry of 4 in square (3, 5) we can check the same en-
t ry in (1, 6); both mus t be and a r e 4. 

Here we note an in te res t ing point. Still working with modulus 
13, we have the basic s e r i e s 

1, 1, 2, 3, 5, 8, 8, f i rs t ze ro 7 
from which we get 1, 2, 3, 5, 8, 0, ze ro 6 

2, 3, 5, 8, 0 ze ro 5 
3, 5, 8, 0 ze ro 4 
5, 8 ze ro 3 

We have found the en t ry in the table (first zero) for 3, 5 was the same 
as for (1, 6). S imi lar ly we have seen that (1, 2) is s imply 1 less than 
(1, 1). Again (2, 3) E (14, 21) 5 (1, 8); and (5, 8) = (40, 64) = (1, 12). 
However, this gives us en t r i e s in line 1 only for c la ims 1, 2, 6, 8 and 
12. We have no data for the remain ing columns, i . e . for s e r i e s be -
ginning (1, 3) (1, 4) (1 , 5) (1, 7) (1, 9) (1, 10) and (1, 11). 
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One might at first imagine that these deficiencies were due to the 

fact that we had only run our basic series out to the first zero, instead 

of continuing beyond this restricted period to the full period, when not 

only zero but all remainders [13 repeat: 1, 1, 2, 3, 5, 8, 0, 8, 8, 3, 

11, 1, 12, 0, 12, 12, 11, 10, 8, 5, 0, 5, 5, 10, 2, 12, 1, 0. How-

ever, the reader will find that the new entries in squares (8, 8) (8, 3) 

(3, 11) etc. still "run back" to the same set of 5 entries on line 10 

There are no entries on line 1 in columns 3, 4, 5, 7, 9, 10 and 

11; because series with first terms 1 and second terms 3, 4, 5, 7, 9, 

10 and 11 have no terms divisible by 13J Recall our test, of whether 

p could be a factor of a series beginning (1, b, 1 + b), i. e. 9 i s 
2 

± b - b ~1 a r e s i d u e of p ? It w i l l be found t h a t 

± ( 3 2 -

± ( 4 2 -

± ( 5 2 -

* ( 7 2 • 

± ( 9 2 -

- 3 -

- 4 -

- 5 -

- 7 -

- 9 -

1) 

1) 

1) 

1) 

1) 

E 5 o r 8 

~11 or 2 

= ± 19= 6 or 7 

= ±.41= 2 or 11 

= ±.71 = 6 or 7 

± (102 - 10 - 1) =±89 = 11 or 2 

± ( l l 2 - 11 - 1) =± 109=5 or 8 

are none of them residues [130 

Consequently there must be entries of N (for "never") in each 

of Columns 3, 4, 5, 7, 9, 10 and 11 of Line 1. 

TO SUMMARIZE as to the appearances of p as a factor of terms 

in a general series (a, b, a *b). 

If p is prime 
2 2 

(i) It will never appear unless =b (b - ab - a ) is a residue of p. 
(ii) If it can appear per (i), and does so, it will reappear at the 

same interval as in the basic series. 

(iii) To determine the place of first appearance there is no sim-
pler method known to the writer than to reduce a and b [p and then 
run the series out to the first zero. However, this can be quite a bit 
simpler than running out the series, itself. E.g., what, if any, terms 
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a r e divisible by 19 in the s e r i e s 119, 231, 350, 581? Note 
119 = 5 [19 231 = 3 [19 
Hence the f i rs t 3 t e r m s = 5, 3, 8 and 3 2 - 5. 8 = -31 = 112 = 7, a r e s -
idue; so that 1 9 is a possible factor, then we have 5, 3, 8, 11, .0. I . e . , 
the 5th t e r m 931 is so divis ible . Moreover , since the ze ro period of 
the basic s e r i e s is 18; this is a lso the period in our given s e r i e s ; and 
the 23rd, 41st and every 18th t e r m thereaf te r is divisible by 19. 

If p is composi te , the ru les for ze ro appea rances can be der ived 
from the ru les of i ts p r i m e factors in a manner eas i ly i l lus t ra ted by 
two examples : 

(1) What, if any, t e r m s a r e divisible by 143 in the s e r i e s 

1, 6, 7, 13 - - - ? 

Since 143 = 11 x 1 3 we f i rs t check poss ibi l i ty of both p r i m e s as fac tors 

62 - 6 - 1 = 29 ~7 [11 and 3 [13 
-7= 4 is a res idue of 11; and 3 is a res idue of 13. 

Hence both p r i m e s a r e poss ib le fac tors 
Moreover , it can eas i ly be found that ze ro [l 1 appea r s at the 

6th t e r m with a per iod of 10; while ze ro [13 appea r s at the 4th t e r m 
with a per iod of 7. 

Hence the number n, of the f i rs t t e r m divisible by 143 mus t sa t -
isfy the congruences . 

n ^ 6 [10 
and n = 4 [l 3 

The min imum solution is 56. Hence the 56th t e r m is the smal les t d i -
visible as r equ i red by 143. 

(2) On the other hand, the re a r e cases in which, while the re may 
be t e r m s of a s e r i e s divisible by each of two (or more ) p r i m e s , t he re 
may be none divisible by both (or al l) . Consider 

1, 7, 8, 15, 23 
As the r e a d e r can check, the 4th t e r m and every 5th thereaf te r is d i -
visible by 5; while the 8th t e r m (99) and every 10th thereaf te r i s d i -
visible by 11 . However, the re is no t e r m divisible by 55. This is 



198 FIBONACCIOUS FACTORS Oct, 

due to the fact that the re is no solution to the s imultaneous congruences 

n = 4 [5 (a number ending in 4 or 9) 

n E 8 [ 10 (a number ending in 8) 

No number sat isf ies both condit ions. 
Thus the re is no fixed and s imple t e s t for divisibi l i ty of a gen-

e r a l s e r i e s by a composi te number . One mus t de te rmine for each p r i m e 
factor of the composi te modulus , (i) the t e r m at which it f i r s t appea r s 
and (ii) the per iod at which it r e a p p e a r s thereaf te r . Then one mus t 
t e s t the congruences express ing these two conditions for each p r ime 
in the composi te modulus; and ei ther solve them or find them to be 
insoluble . 

To complete this analys is would r equ i r e a t tack on the problem of 
ze ro appearances in both the basic and genera l s e r i e s for moduli which 

c a r e powers of p r i m e s , p . However, this d i scuss ion is postponed 
pending publication of a proof by J. H. E„ Cohn that in the basic s e r i e s 
no t e r m s a r e exact squa re s , except U. , UT and U'^. 

Beyond this we offer only these Conjectures : 
In the bas ic s e r i e s 
(i) If the k t e r m is the f i r s t one divisible by p, then the 

c-1 choice of f i r s t two t e r m s , and will not be g rea t e r than the (p )th 
t e r m . 

(ii) There will be no f i rs t appearance , if the f i r s t t e r m s a r e 
2 2 c 

chosen so that ± (b - ba - a ) a r e nonres idues [p . 
(iii) If the re is a f i rs t appearance , the re will be r eappea rances 

at the same per iod as in the basic s e r i e s . 
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A GENERATING FUNCTION FOR FIBONACCI NUMBERS 

R. G. BUSCHMAN 
State Universi ty of New York, Buffalo, N. Y. 

Since in te res t ing ident i t ies for ce r t a in number theore t ic func-
tions can be der ived from their generat ing functions, in pa r t i cu l a r gen-
era t ing functions for Dir ichlet s e r i e s , the following problem seemed 
to be of i n t e r e s t . 

P rob lem: Find a generat ing function G which yields the F ib -
onacci number s in the coefficients of a Dir ichlet s e r i e s . 

F i r s t we note that we mus t wr i te the s e r i e s in the form 

00 

(1) G(s) = 2 f c n" S , 
v n n 

n=l 
since the s e r i e s d iverges for c = 1, the f 's i n c r e a s e too rapidly . 
P a r t of the goal i s , as a resu l t , to find a s imple express ion to use for 
c . n 

One a t tempt at the solution proceeds as follows. Consider the 
m o r e genera l difference equation, 

(2) u 0 , u r u n + 1 = a u n + bu n _ 1 ( n * l ) , 

from which we can wr i te 

U n = [z2(ul " Z l V ' Z?(U1 " z2uO)3/<z2 " Z l ) 

with z, z ? = -b , z +z? = a, z ^ z?„ Substituting into the Dir ichle t 
s e r i e s we have 

CD CO CO 

(3) X u c n. = A(zn) £ c z_ n + A(z_) £ c zT n" 
n n 1 n c Z n l 

n= 1 n= 1 n= 1 

where the function A is defined by 

2 2 
A ^ ) = (u Q z 1 -u 1 z 1 ) / ( z 1 +b ) = ( u

1 " z
1

u
0 ) / < z 2 " z l ) 

199 
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Since c m u s t be chosen to guarantee the convergence of the s e r i e s 
n i i i i 

in (3), it is convenient to se lec t c = c and then | c z 7 | < 1, | c z . | < 1. 
n Cd L 

Hence equation (3) can be wr i t t en 
00 

(4) £, u c n = A(zj) F(az.., s) + A(z ) F(az , s ) , 
n=l 

where F(z, s) is a function d i scussed by Truesde l l [2] . Fu r the r 
00 

F(z, s) = £ z n = z $(z , s, 1) , 
n=l 

where <£ denotes the Lerch Zeta-function - some of the p rope r t i e s of 
which a r e known [1:1.11] . This allows the resu l t to be exp res sed in 
var ious fo rms . 

The difference equation (2) can be r ewr i t t en for c u = v in 1 n n 
the form 

2 vn> v , , v ,, = acv + be v , (n > 1) . 0 1 n+1 n n-1 = 
For the Fibonacci case it is convenient to set c = l / 2 , so that the gen-
era t ing function for 2 f , that is 

CO 

G(s) = 2 (2"nfn) n" S , 
n=l 

can be wr i t t en in the form 
(5) G(s) = (2 / / "5 ) J F [ ( l + y - 5 ) / 4 , s] - F [(1 - S5)/4, s] j . 

To make efficient use of this generat ing function one needs to 
have avai lable ident i t ies involving the function F(z, s), espec ia l ly such 
ident i t ies as involve p roduc t s . Analogous to the ^-function, an infinite 
product expansion for F(z, s) in t e r m s of s, with fixed z, might be 
helpful. 

REFERENCES 

1. A. Erdely i , et a l . , High Transcendenta l Funct ions, Vol. l9 

McGraw-Hil l , New York, 1953. 
2. C. A. Truesde l l , "On a Function which occurs in the Theory of 

the S t ruc ture of P o l y m e r s , " Ann. of Math. 46(1945), pp. 144-151. 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by VERNER E. HOGGATT, JR. 
San Jose State College, San Jose, California 

Send all communicat ions concerning Advanced P r o b l e m s and 
Solutions to Verne r E. Hoggatt, J r . , Mathemat ics Depar tment , San 
Jose State College, San Jose , California. This depar tment espec ia l ly 
welcomes p rob lems believed to be new or extending old r e s u l t s . P r o -
p o s e r s should submit solutions or other information that will a s s i s t 
the editor,. To facil i tate the i r considerat ion, solutions should be sub-
mit ted on sepa ra t e signed sheets within two months after publication 
of the p r o b l e m s . 

H - 6 1 Proposed by P. F. Byrd, San Jose State College, San Jose, California (corrected) 

Let 

f . = 0 for 0 < n < k - 2 , L , , = 1 and n, k k - l , k 
k 

f . = S f . , for n > k . n, k . l n - j , k 

Show that 

Hence 

1 ^ f n , > ^ 1 j . 1 
2 i , , , 2 2 k 

n + 1 i k 

l im lim n, k _ 1_ 

H - 6 5 Proposed by J. Wlodarski, Porz-Westhoven, Federal Republic of Germany 

The units digit of a posit ive in teger , M, is 9. Take the 9 and put 
it on the left of the remain ing digits of M forming a new in teger , N, 
such that N = 9M. Find the sma l l e s t M for which this is poss ib le . 

201 
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H - 6 6 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va., and 
Raymond Whitney, Pennsylvania State University, Hazelton Campus, Hazelton, Pa. 

Let 

2 a.y , . = 0 
j=o J n + J 

be a l i n e a r h o m o g e n e o u s r e c u r r e n c e r e l a t i o n w i th c o n s t a n t c o e f f i c i e n t s 

a . . Le t t he r o o t s of the a u x i l i a r y p o l y n o m i a l 

2 a . x = 0 be r , , r~ , . . . , r 
j=0 J 1 Z 

a n d e a c h r o o t r . be of m u l t i p l i c i t y m . (i = 1 ,2 , . . . , m ) . J e s k e ( L i n -

e a r R e c u r r e n c e R e l a t i o n s - P a r t i , F i b o n a c c i Q u a r t e r l y , Vo l . 1, No . Z,, 

p p . 6 9 - 7 4 ) s h o w e d t h a t 

oo *. m . - l 
n m r . t I 

2 y V = 2 e 1 £ b..tJ . 
n=0 n E r i= l j=0 1J 

He a l s o s t a t e d t h a t f r o m t h i s we m a y o b t a i n 

m . - l m I 
z^x y = 2 rn 2 b . . n J . 
("> n i= l x j=0 1J 

(i) Show t h a t (*) i s in g e n e r a l i n c o r r e c t , (ii) s t a t e u n d e r w h a t c o n d i -
t i o n s i t y i e l d s t he c o r r e c t r e s u l t , and (ii i) g ive t he c o r r e c t f o r m u l a t i o n . 

H - 6 7 Proposed by J. W. Gootherts, Sunnyvale, California 

Le t B = ( B n , B , , . . . B ) and V = ( F , F , , , . . . F , ) be x 0 1 n m m+1 m + n 
two v e c t o r s in E u c l i d i a n n + 1 s p a c e . The B 4 ' s a r e b i n o m i a l c o -
e f f i c i e n t s of d e g r e e n and the F 

b n 
n u m b e r s s t a r t i n g a t a n y i n t e g e r m . 

e f f i c i e n t s of d e g r e e n and the F , . ' s a r e c o n s e c u t i v e F i b o n a c c i & m + i 
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Find the Limit of the angle between these vectors as n approaches 
infinity. 

H - 6 8 Proposed by H. W. Gould, Wes t Virginia University, Morgantown, West Virginia 

Prove that 

n . 2 
2 1 > =JL— , n >1 

k=l k n+2"1 

with equality only for n = 1,2. 

H - 6 2 Proposed by H. W. Gould, West Virginia University, Morgantown, West Virginia 
(corrected) 

Find all polynomials f(x) and g(x), of the form 

r 
f(x+l)= X a .x , a. an integer 

j =o J J 

S 
g(x) = 2 b .x , b. an integer 

j = 0 J J 

such that 

2 jx2f3(x+l) - (x+l)2g3(x)( + 3 j x2f2(x+l) - (x+l)2g2(x)( 

+(2x+l) |xf(x+l) - (x+l)g(x)| = 0 . 

H - 6 9 Proposed by M. N. S. Swamy, University of Saskatchewan, Regina, Canada 

Given the polynomials B (x) and b (x) defined by, 

b (x) = x B ,(x) + b , (x) (n > 0) 
n x ; n-1 n-1x ' v ' 

B (x) - (x + 1) B , (x) + b . (x) (n > 0) n n-1 n-1 ' 

b0(x) = B0(x) = 1 
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it is poss ib le to show that, 

B (x) = I (n+r+1) xr , 

a n d 

n 
b (x) = 1 n+r \ r /n+rN 

0 Vn-ry x 

It can a lso be shown that the ze ros of B (x) or b (x) a r e all r ea l , 
n n 

negative and dis t inct . The problem is whether it is poss ib le to fac tor-
ize B (x) and b (x). I have found that for the f i rs t few values of n, n ' n ' 
the r e su l t 

n 
B ( X ) = 77 

n r=I 
2 

x + 4 cos ( iTTl/ Z 

holds . Does this resu l t hold good for all n? Is it poss ible to find a 
s imi la r r esu l t for b (x) ? n 

SOLUTIONS 

FROM BEST SET OF K TO BEST SET OF K+l ? 

H - 4 2 Proposed by J. D. E. Konhauser, State College, Pa. 

A set of nine in tegers having the p rope r ty that no two pa i r s have 
the same sum is the set consis t ing of the nine consecutive Fibonacci 
number s , 1, 2, 3, 5, 8, 1 3, 21, 34, 55 with total sum 14Z. Start ing with 1, 
and annexing at each step the sma l l e s t posit ive in teger which p r o -
duces a set with the stated p rope r ty yields the set 1, 2, 3, 5, 8, 13, 21, 30, 
39 with sum 122. Is this the best r e s u l t ? Can a set with lower total 
sum be found? 

P a r t i a l solution by the p r o p o s e r . 
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Partial answer. The set 1, 2, 4, 5, 9, 14, 20, 26, 35 has total sum 

ll6o For eight numbers the best set appears to be 1, 2, 3, 5, 9, 15, 20, 

25 with sum 80. Annexing the lowest possible integer to extend the set 

to nine members requires annexing 38 which produces a set with sum 

118. It is not clear (to me, at least) how to progress from a best set 

of k integers to a best set for k + 1 integers. 

Comments by Murray Berg, Oakland, California 

The set given above in the partial solution is invalid since 

1+5 = 4+2 = 6 and the problem asks for distinct sums for different pairs. 

Comments by the Editor 

An apparent solution summing to 118 was received but was dis-

carded since the sum was larger than the partial solution given above. 

Please resubmit if you read this. 

AT LAST A SOLUTION 

H - 2 6 Proposed by L. Carlitz, Duke University (corrected) 

Let R. = (b ), where b = (^L'\) (r, s = 1, 2, . . . . k+1). Then 
Ki rs rs KTI _ti 

show 

Rn _ / x / r - l w k + l - r k+1-r-s+j r+s-2j j - l \ 
k ^ i ( J - l M s - j ) F n - l Fn Fn+iy 

Letting R, = (a ), we evaluate a by extending the proposer' s 

method of solving B-16 (Fibonacci Quarterly, Vol. 2, No. 2, pp. 155-

157). Using Carlitz's notation, we may easily show by induction that 

the transformation 

x' = y 

y' = x + y 

induces the transformation 
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T k : 

> _ 

,k-i , 
X y ' 

x y 
,k-l 

,0 , k 
(0 )y 

,1, k-i , .1. k 
(L)xy + (0)y 

,k- l , k-1 , , .k-1, k-1 , ,k- l . k 
( k - l ) x y + . . . + l ! )xy + ( 0 )y 

y ' k = <£)xk + ( ^ J x ^ y + . . . + (k)xyk _ 1 + (k)yk 

Carlitz also showed that the T?- is given by 

(1) 
M) F ,x + F y n-1 n 

F x + F y n n+1' 

so that T\ induces the transformation 

k+1 
(2) Tj: I ^ ( k - r + l , W, r -1 = s k+l-B s-1 { r = 1 ; 2> . . . > k + 1 ) > 

k I j = 1 rs 

We note here a misprint in the B-16 solution: the last transformation 

should begin with T. instead of T, . To evaluate a , we substitute & 2 1 rs 
(1) into (2) to obtain 

_, k+l-s s-1 _ .k+l-r ,_ , „ x r - l 
T a x y = (F ,x + F y) (F x + F ,,y) 

T rs ' s n - 1 nJ' % n n+17' s=l 
k+1 -r , _L1 , 

k+l-r jk . 
. ' v i ' n-1 n 
1=0 

1-r-i.^i k+l- r - i i 
y 

r - 1 , , . > i • • 
— , r - l x . _ r - l - J ^ J r - l - j j 

X 2 ( 1 )F J F^ + 1 x V 
j=0 J 

n+r 

i=o j=o x J n - x n n + 1 
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k+1 - s s -1 We equate coefficients of x y , summing all terms of the last 

sum with i+j = s-1, and since j i s - 1 we find 

s- 1 _ y , k+ l - r u r - l k+2-r-s+j r+s-2-2j j 
rs " J 0

l s - l - j M j - l , F n - l F n Fn+1 

g 
_ v .k+l - r w r - l . k+1-r-s+j r+s-2j„j-l 
" j = l S"J M J - 1 ) n-1 F n Fn+1 ' 

ANOTHER LATE ONE 

H - 3 8 Proposed by R. G. Buschman, SUNY, Buffalo, N. Y. 

(See Fibonacci Numbers, Chebyshev Polynomials, Generaliza -

tions and Difference Equations; Vol. 1, No. 4, Dec. 1963, pp. 1-7.) 

Show 

(u , + (-b)ru )/u = X . n+r n-r7/ n r 

Solution by Douglas hind 

Let z1 / z? be the roots of z - az - b = 0, and note a = z, + z?, 

™b = z, z? . We recall from the article that 

Un = j (UJ-ZJUQJZJ - ( t l j -Z^Jz* [ /(Z2-Z l ) 

and 

*n = I (a""2z
1)z2 " ( a - 2 z 2 ) z i ' } /(Z2"Z1^ * 

Now 
1 • n x n 

A = z0 + z 
n 2 1 

since a-2z,= z?~z] = -(a-2z ), so that 

\ \i \ n + r / v n + r . / u\r/ \ n"T 

UnAr = ) ( u r Z l U 0 ) z 2 " ^U1~Z2U0)Z1 + ( " b ) ( u r Z l U 0 ) z 2 
- ( - b ) r ( u r z 2 u 0 ) z ^ r [ / ( z 2 - Z l ) 

= u , + (-b)ru n+r n~r 

the desired result. 

Also solved by Clyde Bridget and the proposer. 



THE FIBONACCI NUMBERS AND THE "MAGIC NUMBERS 

J. WLODARSKI 
Federa l Repub l i c of Germany 

It was r epor ted h e r e (The Fibonacci Quar te r ly , i s sue 4, 1963) 
that one of the fundamental a s y m m e t r i e s in the world of a toms is a s y m -
m e t r i c a l d is t r ibut ion of f ission f ragments by m a s s number s resul t ing 
from the bombardment of mos t heavy nuclei (by t h e r m a l neu t rons) . 

The problem of this type of the a s y m m e t r y is one of mos t diffi-
cult p rob lems in the branch of f i s s ion-phys ics . 

It s eems that by the he re mentioned a s y m m e t r y the re is a con-
nect ion between the Fibonacci number s (. . . 34, 55, 89, 144, . . . ) and 
the so-ca l led "mag ic" numbers (2, 8, 20, 28, 50, 82 for protons and 
2, 8, 20, 28, 50, 82, 126 for neutrons) , which a r e well known in 
nuc lear phys ics . 

O o L 

As a m a t t e r of fact the f i ss ion-nucleus Q ?U p o s s e s s e s 144 
neutrons and consequently a sufficient quantity of neut rons to form two 
neu t ron - she l l s : one with 50 neutrons and the other with 82 neu-
t r o n s . If the r e s t of 12 neut rons [144 - (50 + 82)] divide in two equal 
p a r t s , the whole number of neut rons in the heavy fragment is 82 + 6 = 
88 (89) + and in the light f ragments 50 + 6 = 56 (55). ^ 

T O / 

The 92 protons of the nucleus Q?U can a lso form two shel ls 
with "mag ic" number s of pro tons : 28 and 50 respec t ive ly . If the r e s t 
of protons [92 - (28 + 50)] = 14 divide in the same manner as the r e s t 
of the 12 neu t rons , the whole number of protons in light f i ss ion-f ragment 
should be: 28 -r 7 = 35(34) and in the heavy fragment: 50 + 7 = 57(55). 

These number s of protons (35 and 57) and the neut rons (56 and 
88) in both f i s s ion- f ragments of the nucleus Q?U conform r a the r 
well the mos t exper imenta l r e s u l t s . 

+ The number in pa ren thes i s is the n e a r e s t Fibonacci number . 

1) Mukhin, K. N. , Introduction to Nuclear P h y s i c s . Moskow, 
USSR (1963), p . 350. 

xxxxxxxxxxxxxx 
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AN ELEMENTARY METHOD OF SUMMATION 

D. G. MEAD 
Universi ty of Santa Clara, Santa Clara, Cal i fornia 

The p u r p o s e of t h i s n o t e i s to p r e s e n t a n e l e m e n t a r y m e t h o d fo r 

s u m m i n g the f i r s t n t e r m s of a s e q u e n c e w h i c h s a t i s f i e s a g i v e n h o m o -

g e n e o u s l i n e a r r e c u r s i o n r e l a t i o n e The m e t h o d i s , i n f ac t , a s i m p l e 

e x t e n s i o n of t h a t n o r m a l l y u s e d fo r s u m m i n g a g e o m e t r i c p r o g r e s s i o n , 

w h i c h w e f i r s t r e c a l l . 

Le t : 

S = a + a r + a r + . . . + a r 

Then : 

T h e r e f o r e : 
- r S - a r - a r 

n n+1 
. - a r - a r 

S( l - r ) = a - a r n+1 

and if r / 1, 
n+1 

S = 1 - r 

We now t u r n to t h e g e n e r a l c a s e . If fo r e v e r y p o s i t i v e i n t e g e r j , 

G. s a t i s f i e s 
J 

(1) G . ,, + 2 c G . , , . = 0 , j+k i = 1 I j+k-i 

w h e r e t h e c . a r e f ixed q u a n t i t i e s , we w r i t e , a s a b o v e 

S = G, + G~ + G~ + . . . . + J G, , , + G, , - + . . . + G | 
1 2 3 i k+1 k+2 n I 

t i 0 , 8 = 0 , 0 , + c , G~ + . . . + g c , G, + c , G , , , + . . . + c , G , |+ c , G 1 1 1 1 2 I l k 1 k+1 1 n-1.5 1 n 

C2S: 

k 

c 2 G 1 + . c 9 G , , + c ~ G , + . . . + c ~ G ^i+c-G , + c ~ G 2 k - 1 2 k 2 n - 2 i 2 n - 1 2 n 

c v G i + c v G ? + . . . + c , G , ; + . . . + c , G ^ i- k 2 k n-ks k n 

209 
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Since, adding ver t i ca l ly and using (1), the sum of the t e r m s inside 
the dotted lines is ze ro , we see: 

S(l +c][ +. . • + c k ) = Gx(l +c][ +. . . + c k ) +G2(1 +c x +. . , + c k ) + . . . + G k 

+ G (c. + c 0 +. . . + c. ) + G , (c0 +. . . + c. ) + -„ . + c. G . , . . n 1 2 k . n-1 2 k k n-k+1 

If 1 + c, + c . + , . . + c. , / 0, we can solve for S. 
1 2 k-1 

The same method can be used to find 

n t 
X i G- » for a given t, 

i=l 1 

if the G. satisfy (1)„ To facil i tate the presenta t ion , we collect some 
terminology and factsa 

Let E be the opera to r with the p rope r ty that 

EG. = G. ,, . 
I l+l 

To say that G. sat isf ies (1) is equivalent to the s ta tement that the 
opera to r 

v k 
0(E) = EK + 2 c. EK"X 

i=l 1 

when applied to any G., yields ze ro (E being the identi ty operator), , 
The assoc ia ted polynomial 

k k k - i 
0(x) = x + X c.x 

i=l 1 

is cal led the c h a r a c t e r i s t i c polynomial.'** The specia l role of the num-
ber one in our genera l iza t ion is now eas i ly stated, for 

1 + c, + . . . + c, ^ 0 
1 k ' 

if and only if unity is not a root of the c h a r a c t e r i s t i c polynomial . 

0(x) is unique if we a s s u m e 0 ( E ) G. = 0 for al l posi t ive j impl ies 
the degree of 0 (x) > k. 
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It is known ( [2] , pp. 548-552) that if 0(E)G. = 0, then B ^ - j ^ G . 
J J J j 

sa t isf ies 

[0(E)] t B. = 0, for t > 1. 

If 0(1) / 0 then if,(l) ^ 0, where i//(x) = [0(x)] , and the method jus t 
desc r ibed can be used to find 

n n t -1 
T = 2 B. = 2 • j G. 

j=l J j=l J 

Writing 

we find: 

0(x) = x + 2 d x "1, 
i=l 

kt - j kt-1 
p n T = I P-B. + X r . B . 

where 

k t - j kt 
p. = 1 + X d. and r . = £ d. . 

J i=i x J i = j+ i x 

Since 0(E)G. = 0 and B. = j G.? one can eas i ly obtain T in t e r m s of 

1 k-1 n-k+2 n 
The assumpt ion that unity not be a root of the c h a r a c t e r i s t i c 

polynomial has been c r i t i ca l to our d i scuss ion so far . We now a s s u m e 
\G.{ sa t i s f ies 

X(E) G. = 0 
J 

where X(E) is a polynomial with X(l) = 0o Fac tor ing out al l the fac-
t o r s x - 1 in X(x), we obtain 

X(x) = (x - l ) a 0(x), where 0(1) 4 0. 
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Lett ing C. = </>(E)G.3 we note: 

n -k k-1 
6(1)S = <t>Q . ^ G. = . ^ G . q . + . ^ C. + ^ G . s. 

where 

v k v • 
X(x) = x* + 2 c..xK_1 

i = l 1 

k- j k 
q. = 1 + X c. and s. = 2 c. 

J i=l X J i=j+L * 

However, it is known ( [2 ] , pp. 548-552) that if (E - l ) a C. = 0, 
then C. is a polynomial of degree < a ~ . l . If we a s s u m e the formulas 
for 

n 

j=l 

a r e known, for j a posi t ive in teger , the only problem remain ing is 
a-1 that of de termining the polynomial C. = d_ + d. j + . . . + d . j . It ° j 0 1 a-1 

is easy to show that the difference opera to r E - l when applied to a 
polynomial of degree r yields a polynomial of degree r - 1. T h e r e -
fore (E - 1) C-. involves only d . , d 7 . . . , d. and the sys tem of 
l inear equations on the d. obtained by computing (E - 1)JC-., j = 0, 1, 
2, . . . , a - 1 can c l ea r ly be solved for the d.. 

The above is a genera l iza t ion of the technique used by E r b a c h e r 
and Fuchs to solve problem H-17. [4 J 

Example : A s s u m e that for each posi t ive in teger j , G. sa t is f ies 
X(E)G. = 0, where X(x) = (x - I ) 3 (x3 - 3x2 + 4x + 2) = (x -1 ) 3 <#(x). If 
GL = G2 = G 3 = G 4 = G = 0, G6 = 1, then C1 = 0(E)G 1 = 0, C 2 = 0(E) 

*G2 = 0, C 3 = 0(E) G3 = 1. With C. = dQ + d} j + d2 j 2 , we find 
(E - 1 ) 2 C1 = 2d2 = 1, (E - 1) CL = dl + 3d2 = 0 and C = dQ + c^ + o^. 
Hence C- = 1 - (3/2) j + j 2 / 2 and 
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n - 3 
< £ ( 1 ) S = 4 S = 2 G , - 2 G 9 + G . + 1 (1 - ( 3 j ) / 2 + j / 2 ) + 3 G + 6 G i + 2 G 0 i L 5 . ^ ' ' n n-1 n-2 

n - 3 
2 (1 - (3j)/2 + f/Z) + 30^ + 6G , + 2G^ . 

In conclusion, we have seen how the e l emen ta ry method used to 
sum a geomet r ic p r o g r e s s i o n can be general ized to find the sum of the 
f i r s t n t e r m s of a sequence "which sat isf ies a l inear homogeneous r e -
curs ion reLation. It may be worth stating that this method is applicable 
to a sequence whose t e r m s a r e products of cor responding t e r m s of 
sequences each of which satisfy a l inear homogeneous r e c u r s i o n r e l a -
tion (see [ l ] pp. 42-45 for a specia l case) . 

We propose as a problem for the r eade r : Find in closed form 
the sum of the f i rs t n t e r m s of the sequence Jw { : 

1, 2, 10, 36, 145, . . . 

where w ' = F G with F ^ = F ,. + F (F, = F9 = 1) and n n n n+2 n+1 n 1 & 
G , ? = 2G ,. + G (G1 = 1, G9 = 2).-n+2 n+1 n 1 2 
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ON IDENTITIES INVOLVING FIBONACCI NUMBERS 

V. C. HARRIS 
San Diego State College, San Diego, Cal i fornia 

Rather extensive l i s t s of ident i t ies involving Fibonacci number s 
have been given by K. Subba Rao [l] and by David Zeitl in [2] . Addi-
t ional ident i t ies a r e p resen ted h e r e , with the feature that summat ion 
by pa r t s has been used for effecting the proofs (except for identity £3). 

Let f = 0 and f, = 1 and let f =f , + f , for n > 2. Then o 1 n n-1 n-Z 

& 2 kfk = nfn+2 - fn+3 + 2 
k=0 

(2) 1 (Dkkfk = l - l l V ) ^ . ! + l-D*'1*^ - Z> n = 2 

k=0 

<3> 2 ( - i ) k f 2 k = [ ( - D n ( f 2 n + 2 + £ 2 n ) - i ] / 5 
k=0 

(4) I ( - l ) k £
2 k + l = ' [ < - 1 ) n < f 2 n + 3 + f 2 a + l > + 2 ] / 5 

k=u 

<5) * k f 2 k = ( n + 1 ) f 2 n + l - f 2 n + 2 
k=0 

(6) * k f 2k+l = ( n + 1 ) f 2 n + 2 - f 2 n + 3 + 1 

k=0 

(7) 1 ( - D ^ k = ^ ^ Z n + Z + <n+1>f2n>/5 
k=0 

(8) £ <-Dkkf2k+l = t - D ^ Z n + S + <n + 1>f2n+l>/5 " l ' b 

k=0 

214 
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n 2 , , 2 (9) 2 k f 2 k = ( n + 2 ) f 2 n + 1 - ( 2 n + l ) f 2 n - 2 
k=0 

(10) 2 k 2 f 2 k + 1 = ( n 2
+ 2 ) f 2 n + 2 - (2n+l ) f - 1 

k=0 

t") X 1 4 = < 2 n + 1 > f
2 n f 2 n + l - 4 + l + 1 

k=0 

n k n (12) 2 X (-1) kf ^ = (-1) (n+l ) f ,« , , * ' i n m + 3 k v ' x ' m + 3 n + l 
k=0 

- ( ( - l ) n f .-a . 9 + f i ) / 2 > m = 2 3 3 , . „ 8 vv ' m+3n+2 m - l 7 / 

n , 
(13) 3 X ( - l ) K k f , . , = ( - l ) n ( n + l ) f , A ,„ A ' i n m+4k x ' x m + 4 n + 2 

k=0 
- ( ( - l ) n f m + 4 n + 4 + f m ) A m = 2 . 3 , . . . 

(14) 121 2 ( - l ) k k f m + 5 k M - D n [ ( 5 5 n + 3 5 ) f m + 5 n + 1 
k=0 

- 2 5 f m - 5 n + 2 + ( 2 2 n + 1 8 ) W 5 n ] 

- [ 2 0 f m + l - 1 7 f m - 1 0 f m - l ] - m = 1 ' 2 ' 

n k 
(15) 2 2 :f. = fn+4 - (n+3) 

k=0 k =0 K l n 

n K 
(16) 2 k 2 f = ( n + D f + 4 - f + 6 + 5 - n ( n + l ) / 2 

k=0 k x = 0 k l 

(17) 2 k \ = ( n 2 + 2 ) f n + 2 -. ( 2 n - 3 ) f n + 3 - 8 
k=0 

(18) 2 k 3 f k = ( n 3 + 6n - 12)f + 2 - ( 3 n 2 - 9n + 1 9 ) f n + 3 + 50 
k=0 
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(19) 2 k4f, = (n4 + 12n2 - 48n + 98)f 
k=0 k n ^ 

- (4n 3 - 18n2 + 76n - 159)fn+3 - 416 

(20) 
k=o k n n + 1 

(21) 2 _ 1 
, S n

 fk fk+l = 2 fn+2 fn+l fn k=0 

(22) 
n ? l 
2 f f i , , = i (f , , f ,, f - (-1) f . + 1 ) 

, „ k k+2 2 n+3 n+1 n n-1 
k=0 

(23) 
v

2
n
 £J = i < + l £ n ^ - 1 > n £ n - l + 1 ^ n - X 

k=u 

{24) 5 kf ^EiKtiV^'Vi'-iW: 
k=0 k 

2 
n+1 

+ (~l)n(3f - 2f , ) + 5 
^ ~ n n _ 1 4 

The well-known method of summat ion by p a r t s i s es tabl ished from 

the identity 
u k A v k = A (ukvk) - v k + 1 A u k 

On summing the re r e su l t s 

£ u, A v, = u. v, 
k = 0 k k k k 

n+1 n 
" S v k+l A u k 0 k=0 k + i k 

Of cour se , a suitable choice of u, and A v, is e s sen t i a l jus t as it is 
in in tegra t ion by p a r t s . In o rde r to find v^ from Av]j r e su l t s in [ i j 
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and [2] have been used when needed. Also, any constant term in v, 
can be omitted in the two terms of the right member. 

To prove (1), let u ' = k and A v = f . Then A u , = 1 and 

k-1 
v, = 1 f. = f. x l -1 . k i = Q 1 k+1 

Omitting the constant -1 from v, , we find 

1 k f k = kfk+i 
k=0 k k + 1 

n+1 n 

n " * H k + Z = < n + 1 » f n t Z - W 1 - V 0 k=0 

nf , 0 - (f ,„ - f x o) + 2 n+2 x n+4 n+2; 

= nfn+2 " fn+3 + 2 

To prove (2), let u , = k and 

, k . k - 1 
A V ( - 1 ) \ = 2 (-D'f. - 2 (-1)% K i=o i=o x 

A k 
Then Au, = 1 and v, = (-1) f, ? - l . Omitting the term -1 from v., 
with k > 2 

x k-2 

2 (-l)kkfk = I (~l)kkfv - 1 = M - l ^ f . 
k=0 k=2 k-2 

n+1 n , 
- 2 ( - i ) \ . r i 

2 k=2 K l 

n _ 1 k 
( - D V D ^ . ! + 1 (-D \ - 1 

k=l 

= (-l)n(n+l)f + (~l)n~l£ 7 - 2 
n-1 n-2 

To prove (3) and (4), together, write in (3) u, = (-1) and 

k k-1 
A v k = * hi' * f2i 1=0 i=0 
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k - 1 So that A u k = 2 ( - l ) " and v k = f2k^ Then 

A= X (-Dkf2k- S ( - ^ z k ^ - ^ z k l 
k=0 Z k k=l Z k Z k " i 

= ^ ' ^ z m r ^ ^ 

n+1 n 
- 2 X ( - l ) k + 1 f 2 k + 1 " ^ 

1 k=0 ^ k + i 

where 

B = X (-1) f 
k=0 2k + r 

In (4) let u k = ( - l ) k and A v k = f 2 k + 1 so A U R = 2 ( - l ) k + 1 and vfe= f^. 
Then 

B = k ? 0 <"1)kf2k+l = ("1)kf2k 

= ^ ^ W z + ^ ^ Z n + Z 

n+1 n , . 
- 2 X (- i r+ 1f . 

0 k=0 

- 2A 

2k+2 

Solving gives the r e s u l t s . 
To obtain (5) let u, = k and then v, = f-, , . This gives 

n 
2 k f 2 k = k f 2 k - l k=0 

n+1 n 
- X 

0 k=0 2 f2k+l = ( n + 1 ) f 2 n + l " f 2 n + 2 

The o thers a r e proved s imi la r ly , except that (23) was obtained 
from (21) and (22). Note that the same method could be used to extend 
the r e s u l t s . 
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CONCERNING THE EUCLIDEAN ALGORITHM 

R. P. KELISKY 
IBM Watson Research Center, Yorktown Heights, New York 

In m o s t d i scuss ions of the in teger solutions of the equation 

(1) ax + by = 1, (a, b) = 1, 

r e fe rence is made to the fact that an in teger solution of (1) may be ob-
tained by using the Eucl idean a lgor i thm. With the r e s t r i c t i on that 
a > b > 1 we shal l show that in the x - y plane the solution of (1) ob-
tained by the Eucl idean a lgor i thm is the la t t ice point on the line (1) which 
is n e a r e s t the origin. This is probably not a new resu l t , but we cannot 
find a re fe rence to it in the l i terature, , Dickson [l, pp. 41-521 gives 
other a lgor i thms for solving (!) for which it is known that the a lgor i thm 
yields the la t t ice point on (1) which is n e a r e s t the origin. 

Suppose a > b, (a, b) = 1, and a ^ 1 (mod b) and cons ider the 
Eucl idean a lgor i thm applied to the in tegers a and b. One obtains the 
well-known sequence of equations: 

a = b 

r l = r 2 

r , < r 9 n -1 n-2 

r = r q + r 
n-2 n-1 n n 

with r = 1. The r equ i r emen t that a ^ 1 (mod b) is equivalent to 
r > 1, and hence the Eucl idean a lgor i thm will r equ i re at leas t a s e c -
ond stepo Hence n ^ 2 and r . > 2„ 

^ n-1 ~ 
To obtain a solution of (1) one then de r ives the following sequence 

of equations in which, for notational convenience, a = r , and b = r • 

l l 

^2 

q 3 

+ V 

+ r2 , 

+ Ty 

1 < r1 < b 

1 < r 2 < r x 

1 < r < r 
3 2 

L n - 3 n - 2 ^ n - 1 n - 1 

219 
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1 = r ~ r ~ - q r 1 
n n-Z n n-1 

- q r Q + ( l + q q ^ r •̂n n -3 ^n ^ n - 1 ' n-2 

(3) = P . r . . + Q. r . 
1 n - i - 1 l n - i 

= P r . + Q r n . 
n - 1 n 0 

The P . and Q. a r e polynomials in the q. and the solution (P , Q ) 
l l • r J n n n 

will be called the Eucl idean a lgor i thm solution of (1)0 It is de te rmined 
uniquely by the a lgor i thm desc r ibed by the equations (2) and (3). 

Lemma 1: | p I < 4 b and | Q I < I a . 
1 n ' 2 ' n ' 2 

Proof: We f i r s t prove by induction 

(4) |p. | < I r . 2 n - i 
and 

(5) | Q . | < 2 r
n _ i - l f o r i = l - . - n , 

with equali ty poss ib le in (4) only if i = 1. We have 

1 = P . r . . + Q. r 
I n - i - 1 l n - i 

and since 

r . 0 = r • n q . + r n - i - 2 n - i -1 ^n- i n- i 

it follows that 

1 = Q. r . 9 + (P. - q .Q.)r . 1 I n - i - 2 x I ^n- i r n - i - 1 

and we have the r e c u r r e n c e re la t ions 

(6) P . + 1 = Q. 

and 
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(7) Q = P. - q .Q. 
l + l l ^ n - i i 

with P. = 1 and Q_ = -q . To prove that | p . I = 1 % i- r , rec 
1 1 ^n ^ ' 1 ' 2 n-1 

a l l 
that r , > 2. Similarly, 

Q , 
'n-2 

V i 

. n-2 ^ 1 < < r r , 2 n-2 n-1 

From (6) it follows that |p | < I r ' , and from (7) |Q | < I r 

since 

Q , 

2 n-2' 

P , - < L . , Q , I > |Pi I +q. 

2 n-3 

1 H n- l~ l n-1 lQl 

< ^ - r n + q , • •«• * r 0 2 n-1 ^n-1 2 n-2 

2 rn-3 

Now suppose that 

l p k l < 2 r n - k a n d l Q k l < 7 r n - k - l 

for k = 2, . . . . , i. Then from (6) 

|p, ' ' 

and 

k+1 

Q k+1 

Q k l < 7 r n - k . l ' 

< | p k ~ V - k Q k l = l p k l + V k l Q
k l 

< i r 2 xn-k + qn-k(Zrn-k-l) 

2 rn-k-2 # 

This completes the induction. Since r , = a and r0 = b, we have 

proved the lemma if we take i = n in (4) and (5). 

It seems intuitively clear that there cannot be two lattice points 

on (1) which are equidistant from the origin if a / b. The proof of this 

is straightforward but for completeness we give it here. 
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Lemma 2: If a > b > 0 and (a, b) = 1, the re do not exist two d i s -
tinct lat t ice points on ax + by = 1 which a r e equidistant from the origin. 

Proof: Suppose (a, (3) and (<f, */) a r e dist inct lat t ice points 
on the given line which a r e equidistant from the origin. Then 

(8) a2 + p2 = f2 + 1Z 

and act + bp = a f + b*7 = 1. We solve for p in t e r m s of a, r\ in t e r m s 
of £, and substi tute these in (8) to obtain 

(9) (a2 - f 2 ) b 2 = 2a(a - f ) - a 2 ( a 2 - £ 2 ) . 

Since a / f by hypothesis , 

(10) (a + £)b 2 = 2a - a 2 ( a + f ) . 

But this impl ies that a | ( a + f ) s i n c e (a, b) = 1, and a lso that (a + f ) )2a. 
Hence, a + <f = ± a, or a + <f = ± 2a. If a + <jf = ± a, then (10) impl ies 

2 2 
the Diophantine equation a + b = ± 2 which is imposs ib le if a / b. 
If a + £ = ± 2a, then a + b = ± 1. Clear ly the re is no solution to 
this equation such that a ^ b ^ 0 and (a, b) = 1. 

It is well known that if (x , yn) is any lat t ice point on (1) then all 
of the lat t ice points on (1) a r e given by the equations 

x = x n - bt 

y = y0
 + a t 

where t runs over the set of al l i n t ege r s . We can now prove our 
Theorem. If a > b > 1 and (a, b) = 1 then the Euclidean a l -

gori thm solution of (1) is the lat t ice point on (1) which is n e a r e s t the 
or igin. 

Proof. F i r s t suppose that a ^ l (mod b). Denote the Eucl idean 
a lgor i thm solution of (1) by (P , Q ). Clear ly the set, S, of posit ive 

2 o11 n 2 2 in tegers (P - bt) + (Q + at)^ has a sma l l e s t m e m b e r . If P + Q & x n x n n n 
is not the sma l l e s t number in S then there exis ts an in teger t ^ 0 such 
that 

P 2 + Q 2 > (P - bt) 2 + (Q + a t ) 2 
n n n n 
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or 

0< (aZ + b2) Itl < 2 |p b - Q a l . 
1 ' J n n j 

But from the lemma we have 

0 < (a2+b2) | t | < 2( |p | b + |Q |a)< a2 + b2. 
j j — i n j ' n' 

This is impossible; hence t = 0 and (P , Q ) is the smallest number 
n n 

in S. 
The only remaining case is if a= 1 (mod b) and a> b ^ 1. Here 

the Euclidean algorithm is complete in one step and P. = 1 and 

Q, = - q, = - (a - l) /b. The expression S(t) = (P, - bt)2 + (Q + at) 2 

can be rewritten 
2 . ,- c-a | , 1 

c l t - I F 1 +7i 
b 

2 2 
where c = a + b . Now S(t) is a minimum for t=t*=(c-a)/bc, but 
b > 1 and ĉ » a imply that c(b-l) + a > 0, or 0 < t- <: 10 There-

fore, the integer t for which S(t) is a minimum is either 0 or 1. 

It is easy to show that S(l) > S(0) if (c-a)/bc < 1/2. But 

— < I and b > 1; be b 

hence (P, , Q, ) is the point on ax + by = 1 whichis nearest the origin. 

This completes the proof of the theorem. 

It is an easy consequence of this theorem that if a and b are 

consecutive Fibonacci numbers, a > b > 1, then the Lattice point P on 

the Line ax + by = 1 which is nearest the origin has Fibonacci coordi-

nates. In fact, if a = F . , , then P is (F , , - F ) where n is 
m+1 n-1 li-

the greatest even integer not exceeding m. This foLlows readily from 
the identity 

F , , F . - F F = (-l)nF ... 
m+1 n-1 m n m-n+1 
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A STRIP METHOD OF SUMMING LINEAR FIBONACCI EXPRESSIONS 

BROTHER U. ALFRED 
St. Mary's College, California 

Given a l inear Fibonacci express ion such as 

362880 F , , . - 2177280 F ^ n + 5594400 F J_. n - 8013600 F 11C r+21 r+19 r+17 r+15 

+ 6972840 F , . . - 3759840 F . . . +1225230 F 1 0 - 223290 F tn r+13 r+11 r+9 r+7 

+ 19171 F , c - 512 F , , + F _,_. r+5 r+3 r+1 

we wish to e x p r e s s this , for example , as 

A F ,, , + B F . . . r+11 r+10 

The formulas for doing so a r e well known being 

a n d 

F = F F + F F 
n k+1 n -k k n -k -1 

F n F k F n+k+l " Fk+1 F n+k 

However, the d i rec t p r o c e s s can be rep laced by a s t r ip method in 
which the given coefficients a r e a r r anged in descending o rde r of F 
subsc r ip t s , one space being allowed for each subscr ip t , even though 
ce r t a in subsc r ip t s may be miss ing in the given l inear express ion . 
This may be done conveniently on ruled paper , the s t r ip employed 
having the same spacing in i ts rul ings as the paper . 

The s t r ip cons i s t s of the Fibonacci number s in descending o r d e r . 
To obtain the coefficient of the higher subscr ip t Fibonacci number in 
the summation, place the 1 above the ze ro at the place of the h igher 
subscr ip t , mult iply each number on the s t r ip by the cor responding 
given coefficient and add the r e s u l t s . To find the coefficient of the 
lower subsc r ip t Fibonacci number , do l ikewise with the 1 below the 
ze ro opposite the posit ion of the lower subscr ip t Fibonacci number . 

The work is shown for the example given at the beginning of 
this note. 
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STRIP 
89 
55 
34 
21 
13 
8 
5 
3 
2 
1 
1 
0 
1 
-1 
2 
-3 
5 
-8 
13 
-21 
34 

STRIP 

55 
34 
21 
13 
8 
5 
3 
2 
1 
1 
0 
1 
-1 
2 
-3 
5 
-8 
13 
-21 
34 
-55 

UPPER SUBSCRIPT CALCULATION 
GIVEN COEFFICIENTS 

362880 

-2177280 

5594400 

-8013600 

6972840 

-3759840 (F r + U ) 

1225230 

-223290 

19171 

-512 

1 

LOWER SUBSCRIPT CALCULATIONS 
GIVEN COEFFICIENTS 

362880 

-2177280 

5594400 

-8013600 

6972840 

-3759840 (F 

1225230 

-223290 

19171 

-512 

1 

r+10' 

PRODUCTS 

32296320 

-74027520 

72727200 

-40068000 

13945680 

-3759840 

1225230 

-446580 

95855 

-6656 

34 
1981723 

PRODUCTS 

19958400 

-45722880 

44755200 

-24040800 

6972840 

0 

-1225230 

669870 

-153368 

10752 

-55 

1224729 
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The final r e su l t would thus be 

1981723 F . . . + 1224729 F ,. n r+11 r+10 

In ca r ry ing out these calculat ions it goes without saying that the prod-
ucts need not be wr i t ten out but may be cumulated on a ca lcu la tor . 

XXXXXXXXXXXXXXX 

THE FIBONACCI ASSOCIATION ANNOUNCES 

The appearance of a booklet entitled: "Introduction to Fibonacci Dis-
covery" by Bro ther U. Alfred, Managing Editor of the Fibonacci 
Quar te r lyk As the t i t le impl ies the aim of this publication is to p r o -
vide the r e a d e r with the opportunity to work out var ious facets of the 
Fibonacci numbers by himself. At the same t ime, there is sufficient 
help in the form of answer s and explanations to r e a s s u r e him r e g a r d -
ing the c o r r e c t n e s s of his work. 

The t r ea tmen t is re la t ive ly brief, there being some sixty pages in al l . 
The m a t e r i a l was set up by typewri te r and subsequently l i thographed. 
The books have a paper cover and a r e held together by glue binding. 
P r i c e per copy is $1.50 with a quantity p r ice of $1. 25 when four or 
m o r e copies a r e o rde red at once. The following topics a r e t rea ted : 

Discover ing Fibonacci F o r m u l a s 
Proof of Fo rmu la s by Mathemat ica l Induction 
The Fibonacci Shift F o r m u l a s 
Explicit F o r m u l a s for the Fibonacci and Lucas Sequences 
Division P r o p e r t i e s of Fibonacci Numbers 
General Fibonacci Sequences 
The Associa ted " L u c a s " Sequence 
The Fibonacci Sequence and P a s c a l ' s Triangle 
The Golden Section 
Mat r i ces and Fibonacci Numbers 
Continued Frac t ions and Fibonacci Numbers 
This booklet should provide the means of becoming acquainted with 
Fibonacci number s and some of the i r main ramif ica t ions . It should 
se rve as a useful r e fe rence for r e a d e r s of the Fibonacci Quar te r ly who 
wish to l ea rn about the main aspec t s of Fibonacci n u m b e r s . It should 
a lso prove of value to groups of competent high school or college stu-
dents . While not r ecommended for the "p ro" , it might be a useful 
r e fe rence to have on hand to loan to students or fellow faculty m e m b e r s 
who want to know something about Fibonacci n u m b e r s . 

The booklet is now avai lable for pu rchase . Send all o r d e r s to: 
Brother U. Alfred, Managing Editor , St. Mary ' s College, Calif. 
(Note. This a d d r e s s is sufficient, since St. Mary ' s College is a post 
office.) 



A NEAR-GOLDEN RECTANGLE AND RELATED RECURSIVE SERIES 

MARJORIE BICKNELL AND JAMES LEISSNER 
Adrian C. Wilcox High School, Santa Clara, California 

Thomas Jefferson High School, San Antonio, Texas 

The rec tangle whose diagonals form equi la te ra l t r i ang les with i ts 
widths has some su rp r i s ing p r o p e r t i e s , including a re la ted Fibonacci -
like s e r i e s of i n t ege r s . Before d iscuss ing this rec tangle , for l a te r 
compar i son , we cal l to mind another r ec tang le . The famous Golden 
Rectangle has the p rope r ty that when a full-width square is cut from 
one end, the remain ing pa r t has the same propor t ions as the or iginal 
rec tangle , the ra t io of length to width being (1 + V5)/2. Joseph Raab 
d i scussed other golden-type rec tang les [_lj , which have the p rope r ty 
that when an in tegra l number k of full-width squares a r e cut from one 
end, the remaining pa r t has the same propor t ions as the or iginal r e c -
tangle . These golden-type rec tang les a l so have re la ted s e r i e s of in te -
g e r s . 

In the rec tangle whose diagonals form equi la te ra l t r i ang les with 
i ts widths, the ra t io of length to width is ^ 3 , ce r ta in ly not "golden." 
But after cutting a full-width square from one end, the re appea r s a 
gl i t ter as the ra t io of length to width becomes (1 + ^)/2. Operat ing 
s imi l a r l y on this rec tangle , the ra t io becomes ^3 + 1, and repeat ing the 
p r o c e s s one last t ime makes the ra t io of length to width again ^ 3 . 

/ ' 

2 - V3(e-2 V3 - 3 

5 - S% - 1-jj 

V3 

6 0 ° 
2 - VJ 
...,y, -.,.. 

V3 - 1 

2fc| X ± 
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Some m o r e "nea r -go lden" rec tang les appear as m o r e genera l 
c a s e s of removing squa re s of the width in a rec tangle to obtain r e c -
tangles s imi l a r to the or ig inal . To simplify the d iscuss ion , we will 
designate a rec tangle by a capi tal le t te r and i ts ra t io of length to width 
by the corresponding sma l l l e t t e r . 

F r o m a rec tangle R with width x and length y + mx, remove 
the total number m of full-width squa res contained in R to obtain 
rec tangle P . F r o m P, remove the total number n of full-width 
squa re s contained in P to form rec tangle R'0 

ky-^fe 

• y + mx 

* r x - ny — * 

x ny 

JL 

R ! 

If R1 is s i m i l a r to R, then r1 = r so that y / (x - ny) = (y + m x ) / x . 
Solving for x / y 1 p, we find 

I—2~2 
(mn + ^/m n + 4mn)/2n, 

/ 2 2 
p = (mn + \*m n + 4mn) /2m, 

(Note that R:R' = rp, and that m = n = 1 yields the Golden Rectangle . ) 
When we cut full-width squa re s from P , if we remove an in tegra l 

number n less than the total number of full-width squa res avai lable , 
and if R1 and R a r e s imi l a r , 

s/ r = ( ^ (m+n)^ + 4 + m i ) A 
p = ( V(m+n)2 + 4 + m + n ) / 2 . 
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(Note again the Golden Rectangle for m = 1 and n = 0, when P = R ' . ) 
Suppose that we remove the full amount of avai lable full-width 

squa re s in forming P and R', but R! and R a r e not s im i l a r . If a 
rec tangle T, s imi l a r to R, can be obtained from R' by the r emova l 
of an in tegra l number q of squares of the width of R', then 

r = t = (M n 2 (m+q) 2 + 4n(m+q) + n(m - q))/2n, 

p = (^ n 2 (m+q) 2 + 4n(m+q) + n(m + q))/2(m + q), 

r1 = ( V n 2 (m+q) 2 + 4n(m+q) + n(m + q) /2n. 

Again, q = 0 and m = 1 yields the Golden Rectangle , with 
r = p = rf = (1 + >/5.)/2. Also, q = m = n = 1 yields (for R and T) the 
rec tangle with diagonals forming equi la te ra l t r i ang les with i ts widths, 
with p = (1 + N / 3 ) / 2 . 

The s im i l a r i t y of form between the ra t io (1 + N 3 ) / 2 , he rea f t e r 
called 0 , and the golden ra t io given above, suggests that we seek a 
Fibonacci - type s e r i e s assoc ia ted with powers of 0 . Consider the fol-
lowing: 

e --
e2-. 
0 3 : 

e4 = 
0 5 : 

< ? 6 = 

= (1 + v/3)/2 

= (2 + ^3)/2. 

= (5 + 3 >/3)/4 

= (7 + 4^3) /4 

= (19 + ll>^3)/8 

= (26 + 15^3)/8 

= (1)0 + 0 

:= '(1)0 + 1 / 2 

= (3/2)0 + 1/2 

= (4/2)0 + 3 /4 

= (11/4)0 + (4/4) 

= (15/4)0 + (11/8) . 

The n u m e r a t o r s of e i ther the coefficients of 0 or the constant addends 
and the coefficients of ^3 form the following s e r i e s : 1, 1, 3, 4, 11, 
15, 41, 56, . . . It can be proved by induction that this s e r i e s is de -
fined by 

2n ~ 2n- l 2n-2 

2n+l 2n 2n- l 



230 A N E A R - G O L D E N R E C T A N G L E A N D R E L A T E D Oct . 

w h e r e P , = P ? = 1. A s e c o n d s e r i e s : 1, 2, 5, 7, 19, 26, . . . , h a v i n g 

the s a m e r e c u r s i o n f o r m u l a s a s t he a b o v e , a p p e a r s in the c o m p u t a t i o n 

of p o w e r s of 0. We s h a l l caLl t h e n th t e r m i n t he s e c o n d s e r i e s R . 
n 

If 0 = (1 + ^ 3 ) / 2 a n d 0 = (1 - ^ 3 ) / 2 , i t i s no t d i f f icu l t to show 

by i n d u c t i o n t h a t 
Pn= (en -f1)/ ^-z^-n^ , 

R n = ( 0 n
+ 9 S n ) / 2 & - n / 2 3 , n = l , 2, 3, . . . . 

w h e r e [x] i s the La rges t i n t e g e r i n x . The s e r i e s j u s t de f ined b e a r a 

s t r i k i n g r e s e m b l a n c e to the F i b o n a c c i and L u c a s s e r i e s a s de f ined by 

t h e B i n e t f o r m u l a in t e r m s of the g o l d e n r a t i o , w h e r e t he n th F i b o n a c c i 

and n th L u c a s n u m b e r a r e g i v e n r e s p e c t i v e l y by 

rp a n - p n n , R n , 1 + ^5 a 1 - ^S 
F = - — , L - a + 6 for a = , p = . 

J 5 n 2 2 

U s e of the a b o v e f o r m for P and R and s t a n d a r d l i m i t t h e o r e m s 
n n 

l e a d s to 
L i m i t P 0 / P ~ , = $ and L i m i t R 0 / R 0 , = d> ; 

2n ' 2 n - l 2n ' 2 n - l r 

n-> co n—>co 
L i m i t P 0 M / P , =2(9 and L i m i t R_ , . /R~ = 2 0 . 

2 n + l ' 2n 2 n + l ' 2n 
n__^co n-a*00 

F i n a l l y , a s n i n c r e a s e s , R / P o s c i l l a t e s a b o u t i t s l i m i t , N / 3 . 3 n ' n 
A l s o e s t a b l i s h e d by i n d u c t i o n a r e f o r m s for p o w e r s of #0 

0 n
 = { P 0 ) / 2 B n - D / 2 ] + p / 2 [ n /2 ] = + p ^ / £ [ ( n + l ) / 2 ] 

X '̂ n n - 1 ' n n " 

a n d 

r n = ( - 2 ) n ( P n + 1 / 2 t n / 2 ] - P n 0 / 2 D 1 1 " 1 ) / 2 ] ) . 

F o r c o m p a r i s o n , if 

IjtJl = a , t h e n a*1 = (L + F \ f5 ) /2 , 
? n n ' 

w h e r e F i s the n t h F i b o n a c c i n u m b e r a n d L the n t h L u c a s n u m b e r . n n 
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Other t h e o r e m s , a lso possible to es tabl i sh by induction, a r e : 
2n 
1 P . = P ? ,, - (P 9 . + l ) / 2 , . , I 2n+l x 2n- l '' 

i=l 
2n+l 

1=1 

2(2n-l) 
v P = P P - p 

.""% i 2n 2n+l 2n-1 
1=1 

P P , , - P n P , ? = (~ l ) n + 1 . 
n n+3 n+1 n+2 

Considering the even o rde red e lements and the odd o rde red e l e -
ments of the s e r i e s sepa ra te ly leads to 

P 2 n = 4 P 2 n - 2 " P 2 n - 4 
p = 4 p „ p 
^2n+l ^ 2 n - l ^ 2 n - 3 ' 

which in turn can be used to prove the following re la t ionships between 
R and p , and summat ion formulas for even or odd e lements of the n n 
s e r i e s P, : n 

R9 = P 9 , + P 9 , 2n 2n- l 2n 

Zn Zn-1 LTI 

n 
2 P 9 . = ( P . ,, - l ) / 2 = (3P 9 - P 9 9 - l ) / 2 , . . 2i x 2n+l " x 2n 2n-2 ; / 

i= l 
and 

n V P 9 , 1 = P 9 = ( P 9 ,~ - P 9 x l ) / 2 . ^ 2 i - l 2n 2n+3 2n+l ' / 

i=l 
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FACTORIZATION OF 36 FIBONACCI NUMBERS Fn WITH n>100 
L. A. G. DRESEL AND D. E. DAYKIN 

Reading U n i v e r s i t y , England 

The Fibonacci numbers F are defined by F, = F>= 1 and 
n J 1 2 

F ,, = F + F , for n > 1. We present be Low the factorization of n+1 n n-1 ^ 
certain F with n> 100. The factors of F before the double n n 
asterisk are improper factors of F (they divide F with m < n), 
and those behind the double asterisk are proper factors of F . All the 

factors shown are believed to be primes. We obtained the results on 

the Elliott 80^-computer at Reading University, and we hope to discuss 

our methods and extend the table in a later paper. 

F102 =• 23 * 1597 * 3571 * 6376021 ** 919 * 3469 

F104 = 3 * 7 * 233 * 521 * 90481 ** 103 * 102193207 

F105 = 2*5 * 13 * 61 * 421 * 141961 ** 8288823481 

F106= 953 * 55945741 ** 119218851371 

F108 = 24 * 34 * 17 * 19 * 53 * 107 * 109 * 5779 ** 11128427 

F110 = 5 * ll2 * 89 * 199 * 661 * 474541 ** 331 * 39161 

F112 = 3 * 72 * 13 * 29 * 47 * 281 * 14503 ** 10745088481 

F114 - 23 * 37 * 113 * 797 * 9349 * 54833 ** 229 * 95419 

F116 = 3 * 59 * 19489 * 514229 ** 347 * 1270083883 

F117 = 2*17 * 233 * 135721 ** 29717 * 39589685693 

F118 = 353 * 2710260697 ** 709 * 8969 * 336419 

F120 = 25 * 32 * 5 * 7 * 11 * 23 * 31 * 41 * 61 * 2161 * 2521 ** 241 * 20641 

F126 = 23 * 13 * 17 * 19 * 29 * 211 * 421 * 35239681 ** 1009 * 31249 

F128 = 3 * 7 * 47 * 1087 * 2207 * 4481 ** 127 * 186812208641 

F129 = 2 * 433494437 ** 257 * 5417 * 8513 * 39639893 

F130 = 5 * 11 * 233 * 521 * 147 36206161 ** 131 * 2081 * 24571 

F132 = 2 4 * 32 * 43 * 89 * 199 * 307 * 9901 * 19801 ** 261399601 

F134 = 269 * 116849 * 1429913 ** 4021 * 24994118449 
F138 = 23 * 137 * 139 * 461 * 829 * 18077 * 28657 ** 691 * 1485571 

F140 = 3 * 5 * 11 * 13 * 29 * 41 * 71 * 281 * 911 * 141961 ** 12317523121 

F1.44 = 26 * 33 * 7 * 17 * 19 * 23 * 47 * 107 * 1103 * 103681 ** 10749957121 

F147 = 2 * 13 * 97 * 421 * 6168709 ** 293 * 3529 * 347502052673 

F148 = 3 * 73 * 149 * 2221 * 54018521 ** 11987 * 81143477963 
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n 

F150 = 2J 

F156 = 2 4 

F162 = 23 

* 5 

> 32 

* 17 

2 
-Ml * 31 * 61 * 101 * 151 * 3001 * 230686501 ** 12301*18451 
* 79 * 233 * 521 * 859 * 90481 * 135721 .** 12280217041 
* 19 * 53 * 109 * 2269 * 4373 * 5779 * 19441 ** 3079- 62650261 

F165 = 2 * 5 * 61 * 89 * 661 * 19801 * 474541 ** 86 461 * 518101 * 900241 

F168 = 25 * 32 * 72 * 13 * 23 '* 29 * 83 * 211 * 281 * 421 * 1427 * 14503 
** 167 * 65740583 

F174 = 23 * 59 * 173 * 19489 * 514229 * 3821263937 ** 349 * 947104099 

F180 = 2 4 * 33 * 5*11 * 17*19 * 31 * 41 * 61 * 107 * 181 * 541 * 2521 
* 109441 ** 10783342081 

F190 = 5 * 11 * 37 * 113 * 7 61 * 9349 * 29641 * 677 35001 ** 191 * 41611 
* 87382901 

F198 = 23 * 17 * 19 * 89 * 197 * 199 * 9901 * 19801 * 18546805133 ** 991 
* 217 9 * 1513909 

F204 = 2 4 * 32 * 67 * 919 * 1597 * 3469 * 3571 * 63443 * 6376021 ** 409 
* 66265118449 

F210 = 23 * 5*11 * 13 * 29 * 31 * 61 * 71 * 211 * 421 * 911 * 141961 * 
8288823481 ** 21211 * 767131 

F216 = 25 * 34 * 7*17 * 19 * 23 * 53 * 107 * 109 * 5779 * 103681 
* 11128427 ** 6263 * 177962167367 

F228 = 2 4 * 32 * 37 * 113 * 229 * 797 * 9349 * 54833 * 95419 * 29134601 
** 227 * 26449 * 212067587 

xxxxxxxxxxxxxxxxx 

LETTER TO THE EDITOR 

ERIC HALSEY 
Redlands, Cal i fornia 

Re: My a r t i c l e The Fibonacci Number F where u is not an in teger 
in is sue number 2 of the cu r r en t volume of the Quar t e r ly . I have d i s -
covered tha t , due to excess ive has te and t imidi ty on my par t , I placed 
undue r e s t r i c t i ons on the le t te r u. This var iable can a s s u m e not only 
al l ra t ional va lues , as stated in the a r t i c l e , but al l r ea l values as well . 
Obviously, only for ra t ional values can a complete numer i ca l e x p r e s -
sion of F be obtained. 

u 



COMMENTS ON "THE GENERATED, COMPOSITIONS 
YIELD FIBONACCI NUMBERS" 

HENRY WINTHROP 
University of South Florida, Tampa, Florida 

The following explanations will serve to round out the paper men-

tioned above which appears in Th^Fibona^ 3, No. 2, 

131-4). 

The expression F(h., <fi) of model display (1) designates the par-

titions of the integer, i, in which the partitions are expressed as func-

tions in <p and in which the coefficient of each partition represents the 

number of possible permutations of that partition. 

The general term of model display (3) can be given as 

(1) = ik + [(i-1) + 2 ]!k2 + [(i-2) + 4] Ik3 + . . . 
1 i -2>J3! (i-3)!5! 

+ [i-(n-l) + 2(n-l)] I kn + . . . + k1 

irrn)!(2n-l): ~~ (i-n)!(2n-l)l 

where the coefficient of k is the n-th term of the 2r-th order of the 

figurate numbers. 

A discussion of figurate numbers of various orders will be found 

in Higher Algebra by Hall and Knight (Macmillan, 1936, 4th edition), 

pp. 319-22. 

The following additional references to the paper in question will 

be found of value by the reader. 

1. H. Winthrop, "Mathematics In The Social Sciences," School 

Science and Mathematics, 1957, Vol. 57, pp. 9-16. 

2. H. Winthrop, "On The Use of Difference Equations In Behavioral 

Diffusion Theory, " School Science and Mathematics, 1958, Vol. 

58, pp. 1-6. 

3 0 H. Winthrop, "A Kinetic Theory Of Socio-Psychological Dif-
fusion, " Journal of Social Psychology, 1945, Vol. 22, 31-60. 

4. H. Winthrop, "Experimental Results In Relations To A Mathe-

matical Theory Of Behavioral Diffusion, " Journal of Social Psy-

chology, 1958, Vol. 47, 85-99. 

Continued on page 240. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by A. P. HILLMAN 
University of Santa Clara, Santa Clara, California 

Send a l l c o m m u n i c a t i o n s r e g a r d i n g E l e m e n t a r y P r o b l e m s a n d 

S o l u t i o n s to P r o f e s s o r A . P . H i l l m a n , D e p a r t m e n t of M a t h e m a t i c s 

a n d S t a t i s t i c s , U n i v e r s i t y of N e w M e x i c o , A l b u q u e r q u e , New M e x i c o . 

E a c h p r o b l e m o r s o l u t i o n s h o u l d be s u b m i t t e d i n l e g i b l e f o r m , p r e f e r -

a b l y t y p e d i n d o u b l e s p a c i n g , on a s e p a r a t e s h e e t o r s h e e t s i n t h e f o r -

m a t u s e d b e l o w . S o l u t i o n s s h o u l d be r e c e i v e d w i t h i n two m o n t h s of 

p u b l i c a t i o n . 

D e n o t e x by e x ( a ) . Show t h a t t h e fo l lowing e x p r e s s i o n , c o n -

B - 7 0 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

D e n o t e x by 

t a i n i n g n i n t e g r a l s , 

I e x ( J ex( J e x ( . . . / ex( f x d x ) d x ) . . . dx )dx )dx 
^0 ^0 JO JO JO 

e q u a l s F , , / F , _, w h e r e F i s t h e n - t h F i b o n a c c i n u m b e r . 
n n+1 ' n+2 n 

B - 7 1 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

F i n d a " 2 + a ~ 3 + a - 4 +. . . , w h e r e a = (1 + 5 ) / 2 . 

B - 7 2 Proposed by ]. A. H. Hunter, Toronto, Canada 

E a c h d i s t i n c t l e t t e r i n t h i s s i m p l e a l p h a m e t i c s t a n d s fo r a p a r t i c -

u l a r and d i f f e r e n t d i g i t . We a l l know h o w r a b b i t s l ink up w i t h t h e 

F i b o n a c c i s e r i e s , s o now e v a l u a t e o u r R A B B I T S . 

R A B B I T S 

B E A R 
R A B B I T S 

A S 

A S E R I E S 

B - 7 3 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

P r o v e t h a t 

n n i • • i 2 n + r - 2 m _ 
2 2 (?) (k+TTl) = l + 2 2 (mTX) . 

k=0 j=0 J m = 0 p=0 p 

235 
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where ( ) = 0 for n < r . 
V 

B - 7 4 Proposed by M. N. S. Swamy, University of Saskatchewan, Regina, Canada 

The Fibonacci polynomial f (x) is defined by 1 = 1, f? = x, 
and f (x) = xf . (x) + f _(x) for n > 2. Show the following: n n-1 n-2-

n 
(a) x 2 f (x) = f ,. + f -1 . 
N ' , r n+1 n 

r=l 
(b) f , ,. = f , 1 f ,. + f f . * m+n+1 m+1 n+1 m n 

(c) f (x) S (n V ZJ l , 
j=0 J 

where [kj is the g r ea t e s t in teger not exceeding k. Hence show that 
the n - th Fibonacci number 

O - D / 2 ] n . j_ i 
F = s (n •! ) . 

i=o J 

B - 7 5 Proposed by M. N. S. Swamy, University of Saskatchewan, Regina, Canada 

Let f (x) be as defined in B-74. Show that the der ivat ive n 
, n-1 

f (x) = X f (x) f (x) for n > 1. n x ' , rx ' n - r x ' 
r=l 

SOLUTIONS 
ONE, TWO, THREE — OUT 

B - 5 8 Proposed by Sidney Kravitz, Dover, New ]ersey 

Show that no Fibonacci number other than 1, 2, or 3 is equal to 
a Lucas number . 

Solution by Douglas Lind, University of Virginia, Charlottesville, Va. 

Since L, = F, , + F, ,, , the a s s e r t i o n is equivalent to 

(I) F = F + F 
{L) n * k - l k+1* 
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If k > 3, the n > k+1 and (1) is clearly impossible since 

Fl 1 + F l XI < F l + F l _L1 = F T XO - F -

k-1 k+1 k k+1 k+2 n 
Impossibility for k ^ 3 implies impossibility for k i -3 since only 

signs are different. For -3 < k < 3 we find F 9 = L = 1, 
— & — l 

F~ = L = 2, F, = L, = 1, and F . = L~ = 3, corresponding to k = - 1 , 

0, 1, and 2 respectively. Hence these are the only solutions. 

(The crux of this problem is solved in the discussion of equation (12) 

in Carlitz ' "A Note on Fibonacci Numbers, M this Quarterly 1 (1964) 

No. 2 pp. 15-28). 
Also solved by J. L. Brown, Jr.; Gary C. McDonald; C. B. A. Peck; and the 
proposer. 

B - 5 9 Proposed by Brother U. Alfred, St. Mary's College, California 

Show that the volume of a truncated right circular cone of slant 

height F with F , and F in the diameters of the bases is & n n-1 n+1 

^ " < F n + l - F n - l ) / 2 4 . 

Solution by Douglas Lind, University of Virginia, Charlottesville, Va. 

It is we 11-known that if h is the height of the frustrum of a right 

circular cone, s the slant height, and r and r the radii of the 

bases, then the volume V is 

V = (rrh/3)(rj + r } r 2 + r^) 

= (rr/3) \ / 7 ^ ( r 2 - r 1 ) 2 ( r J + r ^ + r 2 ) . 

For this problem r, = F . / 2 , r 0 = F , , / 2 and s = F , so that r 1 n - 1 ' 2 n+1' n 

V = 5 \ / F 2 - (F , , - F T ) 2 /4 (F2 . + F . F , 1 +F2 )/4 3 v n x n+1 n - 1 ' ' x n-1 n-1 n+1 n+1" 

77 V F 2 - F 2 / 4 (F 2
 1 +F .F x l + F 2 ) / l2 n n' x n-1 n-1 n+1 n+1" 

\/377 F (F2 . + F . F ,_ + F 2 , 1 ) / 2 4 n n-1 n-1 n+1 n+1" 
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- V I , ( F n + 1 - F n . 1 ) ( F ^ 1 + F n _ l F n + 1 + F^+1)/24 

= ^ F n + 1 " Fn-1>/2 4 ' 

We remark that the area A of the curved surface of the frustrum is 

A = n F (F , . + F , )/2 = {n/2)F L . 
n n+1 n -1" ' n n 

Also solved by Carole Bania, Gary C. McDonald, Kenneth E. Newcomer, 
C. B. A. Peck, M. N. S. Swamy, Howard L. Walton, John Wessner, Charles 
Ziegenfus, and the proposer. McDonald also added the formula for the 
curved surface. 

B - o O Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California 

2 Show that L^ L~ x o + 5F0 , 1 = 1 , where F and L are the 2n 2n+2 2n+l n n 
n-th Fibonacci number and Lucas number, respectively. 

Solution by 2nd Lt. Charles R. Wall, U. S. Army, A. P. 0., San Francisco, Calif. 

Using my second answer to B-22 (Vol. 2, No. 1, p. 78), 

L2(n+1) L2n = 5F(n+l)+n + L(n+l)-n 

= 5 F 2n + l + L l 

= 5 F Ll + 1 

Thus 
2 

L2n+2L2n " 5F2n+l = l ' 
Also solved by J. L. Brown, Jr.; J. A. H. Hunter; Douglas Lind, Kathleen Marafino, 
Gary C. McDonald, C. B. A. Peck, Benjamin Sharpe, M. N. S. Swamy, Howard L. 
Walton, John Wessner, Kathleen M. Wickett, David Zeitlin, Charles Ziegenfus, and 
the proposer. Also by David KLarner. 

MODULO THREE 

B - 6 l Proposed by J. A. H. Hunter, Toronto, Ontario 

Define a sequence U, , U?, . . . by U, =3 and 

U = U , + n 2 + n + l for n > 1 . 
n n-1 

Prove that U = 0(mod n) if n $ 0 (mod 3). 

Solution by John Wessner, Melbourne, Florida 
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An a l te rna t ive r ep re sen t a t i on for U is n n 7 
U n = 1 (k^+k+1). 

k=l 
Upon expanding the individual sums involved we obtain 

U n = [n(2n+l)(n+l)/6] + [n(n+l)/2] + n = (n/3) [(n+2)(n+l)+3] . 

Hence, U =• 0(mod n) if and only if (n+l)(n+2) = 0(mod 3). This con-
dition obtains if and only if n ^ 0(mod 3). 

Also solved by Robert J. Hursey, Jr., Douglas Lind, Gary C. McDonald, Robert 
McGee, C. B. A. Peck, Charles R. Wall, David Zeitlin, and the proposer. 

UNIQUE SUM OF SQUARES 

B - 6 2 Proposed by Brother U. Alfred, St. Mary's College, California 

Prove that a Fibonacci number with odd subscr ip t cannot be r e p -
re sen ted as the sum of squa re s of two Fibonacci number s in m o r e than 
one way. 
Solution by J. L. Brown, jr., Pennsylvania State University, State College, Pa. 

F r o m the identi ty F 0 ,, = F + F, ,, , (n> 1) it follows that 3 2n+l n n+1 
•2 
n+2° 

F n ., < (F + F , , ) = F 2 Therefore , any r ep resen ta t ion 
2n+l x n n+1 ' •«+?. 

F . ., = F, + F 2 (k < m) m u s t have both k and m < n+1. Then 2n+l k m x ' 
k > n (otherwise Ff + F Z < F^ + F z ^ , = F , ,. for k > 2). 1 k rn n n+1 2n+l ' 

Also solved by Douglas Lind, Joseph A. Orjechouski and Robert McGee (jointly), 
C. B. A. Peck, and the proposer. 

A N I S O S C E L E S T R I A N G L E 

1 3 - 6 3 An old problem whose source is unknown, suggested by Sidney Kravitz, Dover, 
New Jersey. 

In A ABC let s ides AB and AC be equal . Let t he re be a 
point D on side AB such that AD = CD = BC. Show that 

2cos $ A = AB/BC = (1 + \/5)/2 , 

the golden mean . 

Solution by John Wessner, Melbourne, Florida 

By inspect ion of the figure and the law of cos ines 

AD2 = CD 2 + A C 2 - 2CD* AC cos f A. 
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Since AD = CD = BC and AB = AC, it follows immedia te ly that 

2 cos $ A = AC/CD = AB/BC. 

The second r e su l t comes from the fact that 

$ B = $ BDC = $ A + $ DCA = 2 $ A 

and hence 

$ A = 36° and 2 cos A = (1 + >/5)/2. 

(See N. N. Vorobyov: The Fibonacci Numbers (New York, (1961) p . 56. ) 

Also solved by Herta Taussig Freitag, Cheryl Hendrix, Kathleen Marafino, and 
Carol Barrington (jointly), ]. A. H. Hunter, Douglas Lind, James Leissner, C. B. A. 
Peck, Kathleen M. Wickett, and the proposer. 
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ASSOCIATION PUBLISHES BOOKLET 

Brother U. Alfred has just completed a new booklet entitled: Int roduc-
tion to Fibonacci Discovery. This booklet for t e a c h e r s , r e s e a r c h e r s , 
and bright students can be secured for $1.50 each or 4 copies for 
$5.00 from Brother U. Alfred, St. M a r y ' s College, Calif. 


