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recursion relation (6) yields the other set of alternate Fibonacci num-

bers as the sequence of cumulative sums, the total particle count.

5. CONCLUDING REMARKS
One is directed toadvanced problem H-50 December 1964, Fib-
onacciQuarterly, for the partitioning interpretation of the integer n of
the model for @(t) = kt.

Suppose one defines two sets of Morgan-Voyce polynomials

bO(x) =1, b}(x) =1+ x; Bo(x) =1, Bl(x) =2+x ,
both sets satisfying
(7) P )= (x+2)P_, (x)- P_(x), n20

It is easy to establish that
Pn(k) = An =k Bn—l(k)

T k)=A0+AI+...+A = b_(k)

ol
Thus for k=1, we againfind Bn_l(l) = an and bn(l) = anﬂ. See
corrected problem B-26 with solution by Douglas Lind inthe Elementary
Problem Section of this issue, where the binomial coefficient relation
mentioned in the note of Section 3 is shown. A future paper by Prof.
M. N. S. Swamydealing extensively with Morgan-Voyce polynomials will
appear in an early issue of the Fibonacci Quarterly.

Acknowledgment: The author is completely indebted to Dr. V. E.

Hoggatt, Jr., for bringing to his attention the theorem and its proof.

Additional references to work along the lines of generated composi-
tions — some of which yield numbers with Fibonacci properties — will

be found in the references at the end of this paper. (Seenote, page 94)
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MYSTERY PUZZLER AND PHI
MARVIN H. HOLT
Wayzata, Minnesota
A problem proposed by Professor Hoggatt is as follows: Does
there exist a pair of triangles which have five of their six parts equal
but which are not congruent ? (Here the six parts are the three sides
and the three angles.) The initial impulsive answer is no! The prob-
lem also appears in [1| as well as in the MATH LOG.
I have taken some time to work on the problem you suggested.
I think you will agree that the solution I haveis interesting. One prob-
lem, as you have stated it, is posed in a high school geometry text
entitled, "Geometry' by Moise and Downs, published by Addison Wesley
Company, (page 369).
In their solution key, they gave one possible pair of triangles

that work:

27 18

I discovered this after I solved the problem myself. But the above
solution does not do justice to the problem at all, since my old friend
1 is really the key to the solution. Note: Golden Mean = ¢ = r in what
follows.

I attacked the problem as follows: First, the five congruent parts
cannot contain all three sides, since the triangles would then be con-
gruent. Therefore, the five parts must be three angles and two sides
which means that the two triangles are similar. But, the two sides
cannot be in corresponding order, or the triangles would be congruent
either by ASA or SAS. So, the situation must be one of two possibilities

as I have sketched below: (My sketches are not to scale.)
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triangle 2

c
triangle 1

a.
possibility 1

b
possibility 2

In both cases, by using relationships from similar triangles, it follows

that %z % or b=ka and ¢ = kb = kza from possibility 2 and

b=ka and d=kb= kza from possibility 1.

or

ol o

2
b

So, the three sides of the triangle must be three consecutive
members of a geometric series: a, ak, akz, where k is a proportion-
ality constantand k >0 and k # 1. If k = 1, the triangles would both

be equilateral and thus congruent. Therefore, k # 1,

From myprevious article onthe Golden Section (Pentagon, Spring
1964) I worked out two problems on right triangles where the sides
formed a geometric progression and the constants turned out to beVT
and % . So, Iknew oftwomore situations where the original problem
could be solved. Then I began to consider various other values of k
and I beganto wonder what values of '"'k'"' will work. Inother words, for
what values of k will the numbers a, ak, and akZ be sides of a tri-
angle. Once we know this, then another triangle with sides 2 , a, ak

k
or ak, akz, ak3 willhave five parts congruent but the triangles would

not be congruent.

Inorder for a, ak and ak2 to be sides of a triangle, three state-

ments must be true:
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These are instances of the strict triangle inequality.

1. a +ak >ak? {a+Db >c)
2. a+ak2>ak (a tc >Dhb)
3. ak+ak2>a (b+c¢c >a)

[2>0, k>0, k#I1]
For Case 1, consider k >1
(a) k>1—->k2>k—>1+k2>k
therefore, a + akz > ak (condition 2 above)
(b) k>1——>k+1>l~>k2+k>1
therefore, akz + ak > a (condition 3 above)

(c) if k >1 show a +ak > ak2 (condition 1 above) ,

This part revolves aroundthe problem of finding out when 1 +k > kz,

or, graphically: For what x >1 will 1 +x =y be above y = XZ?

y4
y= 1l +x
2
\ / X
— v = x
2 3
Ve
Solving this problem produces the result that
k < }_‘*__2_\/_—;':)_ 2{ k<7 .

So, if 1 <k < r then the numbers a, ak, akz are the sides of the
triangle that can be matched with ?—( , a, ak or ak, akz, ak3 to solve
the original problem. {Incidentally: 1 < VT < r | Sothisfits in here. )

For Case 2, consider k <1
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(a) if k < l——>k2 < k.gkz <k +1 Therefore ak2 < ak +a
(condition 1)
(b) if k<l—=sl+k>1l->sa+ akz > ak (condition 2)
(c) Now, if k <1 show ak + ak2 > a. This is, essentially,finding
what values of k make k + k2 > 1.
Again, graphically, for what x <1 will the parabola y = x + XZ

be above the line y = 17?

|
2
y =xt+x
y=1
— x=1
. . -1 +V5
Solving this problem produces the result that k >———F— . If you
. . -1 +V5 | e .
will follow this closely, ———=—— is the additive inverse of the conjugate
. 1+J5 ° . .1 -V5
of r. (i.e., 1 = ————= . Therefore, the conjugate of 7 is —
. e 3 -1 + /5 .. -1+ V5
and its additive inverseis -———Z—.) So, if — <k <1 theprob-

lem is again solved. (Again, 1-1-—-2';—\/—2 < \/; <1, so mysecondproblem
fits here.)

Therefore, the complete solution can be summed up as follows,

v -1+
if k is a number such that 1 < k <L+7_3: r or _1_ZE<1<< 1.
Then the three sets of triangles with sides % , a, ak or a, ak, akz

or ak, ak%, or ak> can be used to produce two triangles with five
parts equal and the triangles themselves not congruent.

So, there are an infinite number of pairs of triangles that solve
this problem and once again, 7 proves to be an interesting number
and a key to the solution of interesting problems.

REFERENCES
1. Moise and Downs, Geometry, Addison-Wesley, p. 369.
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LADDER NETWORK ANALYSIS USING POLYNOMIALS

JOSEPH ARKIN
Spring Valley, New York

In this paper we develop some ideas with the recurring series

(1) B_=kB_| *kB_ B, =1, (k

2 0 and k2 £0) ,

-1 1

and show a relationship between this sequence and the simple network
of resistors known as a ladder-network.

The ladder-network in Figure 1 isan important network in com-
munication systems. The m-L sectionsin cascade that make up this

network can be characterized by defining:

(2) a) the attenuation (input voltage/output voltage) = A,
b) the output impedance = Z»
c) the input impedance = zZy-
Rl Rl Rl Rl

1 RZ ﬁ RZ i RZ RZ i
o o
Figure 1
A result obtained by applying Kirchhoff's and Ohm's Laws to
ladder-networkswith m =1, 2, 3, ..., R, = R,k,, wastabulated with

71 271°
the results in Table 1, where setting k1 =1, R2 =1 ohm, the network
in Figure 1 was analyzed by inspection [1] .

139
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m zO A z1
1 R, (k, +1) (k +1)R,
2
k. +1 \R kS+3k, +1 \R
2 : 2 (k243K +1) 1 1 2
2373 17751 R
2 3.2
k%+3k. +1\ R k> +5k5+6k, +1 \R
3 171 2 (kf+5kf+6k1+1) ! 5 1 1 )72
K2 +ak. +3 KS+4k. +3
17 17
Table 1

We observe that the nth row in Table 1, may be written

| m | %0 | & | “1 |
n | (Con 2V 1Ry | Con | (Con/Yan )Ry
where,
3 ac =x/fc tc L co =1,
b) Yn ~ k}/Z‘Yn-l +Yn-Z’ Yo = l/k}/z

It then remains to solve for Y, and Cn in (3), to be able to analyze
(Figure l) by inspection for any value of k1 (kl # 0), where R2 =1 ohm.
So that, in (1), we let

@ a) w = g e ra) Bz
b vo= (k- 4 4k2)1/2)/2 ,
where it is evident,
c) kl = w+v ,
and
d) k2 = - WV
Then, combining (c) and (d) with (1), leads to
(5) B = ((w' - v)B__| - wy(w-v)B_ )/(w-v)
Bn = ((W3-V3)Bn_2 - wv(wz—vz)Bn_S)/(w-v) ,
B = (W™ - v (wHv) - WV(Wn-l - vn_l)Bo)/(w—v) ,
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and we have n+l n4l

(6) B =¥ -V
n W -V
. . 1/2 . .
Where, in (1) we replace kl with k1 and k2 with 1, and combin-
ing this result with (3) and (6), leads to

(ki/z + (k1+4)1/2)n+1 ) (ki/z C(k +4)1/2)n+1

- 1 _
(02 ¢, = (1) 17271 = Pl),
1

)2

and

1]

b) oy, = i)/

(8) Theorem.
The attenuation (input voltage/output voltage = A) of m-L sec-
tions in cascade in a ladder-network is given by
2m-2

AT = ¥ C_((-C

T
ACo 1)/ Co2)
r=0

)

The proof of the theorem rests on the following
(9) Lemma.

The power series

n
-1nH* T B X,

r
r=0
is always a square, where Br is defined in.(1).

Proof of lemma.

Let
n
10 1 = (I-kx - k,x°)(3 B_x"
( ) - ( - 1X - ZX I‘X ) ’
r=0
then, by comparing coefficients and by (1), we have
(11) % = —(Bnkl +Bn-1k2) _ _Bn+1
- B k " Bk ’
n 2 n 2

. . . 2
and replacing x with (—Bn+1)/(Bnk2) in (l-klx-kzx ), leads to

2
x

(12) 1-k x-k,

2 2 2
= (BnkZ+Ban+lkl—Bn+l)/(Bnk2)

By (4, d) and (6) it is easily verified
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2 n
(13) B - BuiiBnar (-ky)™ s
so that
2 2 _ n  n+tl
(14) Bk P By Bntiky - By = G K

Then, replacing the numerator in (12) by the result in (14) leads to

2 : 2
(15) 1-k x-k,x = ((—I)Dk]g)/Bn ,
so that (10) may be written as
n
n_2 _ T
(16) (-1)’'B. = ¥ Bx
r=0

which completes the proof of the lemma.

(17) Theproof ofthe theorem is immediate, when in (11) and (16), we

replace n with 2m-2, k1 with ki/z, k2 with 1, and combine the

result with (7, a) and the values of the attenuation in Table 1.

REFERENCES
1. a) S. L. Basin, ''The Appearance of Fibonacci Numbers and the
Q Matrix in Electrical Network Theory, "' Math Mag., 36(1963)
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CONCERNING LATTICE PATHS AND FIBONACCI NUMBERS
DOUGLAS R. STOCKS, JR.
Arlington State College, Arlington, Texas
R. E. Greenwood [1] has investigated plane lattice paths from
(0, 0) to (n, n) and has found a relationship between the number of paths
in a certain restricted subclass of such paths and the Fibonacci se-
quence. Considering such paths and using a method of enumeration
different from that used by Greenwood, an unusual representation of
Fibonacci's sequence is suggested.
The paths considered hereare comprised of steps of three types:
(i)horizontalfrom (x, y) to (x + 1, vy); (ii) vertical from (x, y) to (x, y + 1);
and (iii) diagonal from (x,y) to (x +1, y +1).

H, H, Hy H, H

Figure 1

In the interest of simplicity of representation, we will here con-
sider the paths from Hi to Vi’ for each positive integer i. Note
that the number of paths from Hi to Vi is the number of paths from
(0, 0) to (i,i). However, instead of considering the total number of
paths from Hi to Vi as was done by Greenwood, we will count only
the number of paths from Hi to Vi which do not contain as subpaths
any of the paths from Hj to Vj’ for j <i. This number plus the
number of paths from Hi—l to Vi-l is the total number of paths from

Hi to Vi' The use of this counting device suggest the
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Theorem:
Let
1D =1
D-1 . .
ZD = [ 5 ], where [ ]denotes the greatest integer functior
3p 7 ®p.1 T 2pog
“p 7 %p.2*3p2

i

(2n), = (2m)p_, +(2n-1), ,

(2.n+l)D = (2.n+1)D‘1 + (Zn)D_l
with the restriction that kD =0 if k > D. For each positive integer
D, let D
(D) = % kD .
k=1
The sequence {f(D) ] D=1, 2, 3, ...}is the Fibonacci sequence.

The proof is direct and is therefore omitted.

The geometric interpretation of the numbers kD and (D) men-
tioned in the theorem is interesting. However, before considering this
interpretation it is necessary to define a section of a path. For this
purpose we willnow consider a pathas the point settowhich p belongs
if and only if for some step ((x, y), (u, v)) of the path, p belongs to the
line interval whose end points are (x, y) and (u, v). A section of a path
is a line interval which is a subset of the pathand whichis not a subset
of any other line interval each of whose points is a point of the path.

The above mentioned geometric interpretation follows: By defi-
nition f£(1) = 1. For each positive integer D 2 2, let Ly denote the
set of paths from HD to VD which do not contain as subpaths any of
the paths from Hj to Vj’ for j < D. £{(D) is the number of paths be-

longing to the set LD. k., is the number of paths in the subset X of

D

LD such that x belongs to X if and only if x contains as subsets

exactly k diagonal sections.
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Figure 2 portrays the five paths which belong to L5. In Figure
2a appears the one path of L5 which contains only one diagonal sec-
tion (l5 = 1). Thetwo paths of L, whichcontainexactly two diagonal
sections appear in Figure 2b (Z5 = 2). In Figure 2c the two paths of
L5 which contain exactly three diagonal sections are shown (35 = 2).

It is noted that 45 = 55 = 0.

Fig. 2b

25=2 35=2

fi(6) = 1 +2+2+0+0 = 5
Figure 2
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REPLY TO EXPLORING FIBONACCI MAGIC SQUARES*
JOHN L. BROWN, JR.

Pennsylvania State University, State College, Pennsylvania

Problem. For n 22, show that there do not exist any nxn magic
squares with distinct entries chosen from the set of Fibonacci num-

bers, u, =1, u, = 2, u = u +un for n >21.

1 2 n+2 n+l
Proof. Trivial for n = 2,

If an nxn magic square existed for some n 2 3 with distinct
Fibonacci entries, then the requirement that the first three columns

add to the same number would yield the equalities:

(*) F. +F., +...+F, =F, +F, +...+F. =F_ +F +...+F .
| 2 'n 1 J2 In ky ky k,

Since the entries are distinct, we may assume without loss of gener-
alitythatFi>Fi> "'>Fi’F' > F. > ...> F. and
1 2 n 1 )2 n
Fk > Fk > .. > Fk .
1 2 n
Noting that the columns contain no common elements, and by rearrange-

ment if necessary, we assume Fi > F. > F, , again without losing

1 1 Ky
generality; thus, F. 2> F + 2.
B! Ky
Now
F. +F. +... +F. > F. S F y
i iy i i, = k1+2
while
k1
< = -
F, *F, +...+Fk_2 F. = F_ -1
1 2 n 1 1

This contradicts the equality postulatedin (*), and we conclude no magic

squares in distinct Fibonacci numbers are possible.

*The Fibonacci Quarterly, October 1964, Page 216.
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THE FIBONACCI NUMBER F, WHERE v IS NOT AN INTEGER

ERIC HALSEY
Redlands, California

INTRODUCTION

Fibonacci numbers, like factorials, are not naturally defined for
any values exceptinteger values. However the gamma function extends
the concept of factorialto numbers thatare not integers. Thus we find
that (1/2)! = /7/2. This article develops a function which will give
Fn for any integer n but which will furthermore give Fu for any
rational number u. The article also defines a quantity nA™ and de-

velops a function f(x,y) = Xﬁy where x and y need not be integers,

(1) DEFINITIONS

Let nA° = 1 (Definitions (1) hold for all n ¢ N)

Let
. n n
n./,?(1 (read 'm cardinal') = X kﬁo =3 1l=n
k=1 k=1
This gives the cardinal numbers 1, 2, 3, ...
Let n n
nAZ (read ''n triangular') = I kﬁl =% k
k=1 k=1
This gives the triangular numbers 1, 3, 6, 10,
Let n
nﬁa (read "n tetrahedral') = % kAZ
k=1

This gives the tetrahedral numbers 1, 4, 10, 20,

In general, let

n
nﬁm (read '"n delta-slash m') = z kAm_l
k=1
147
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This gives a figurate number series which can be assigned to the
m-dimensional analog of the tetrahedron (which is the 3-dimensional
analog of the triangle, etc.).

Let us construct an array (ai’ .}, where we assign to each a.

i,
an appropriate coefficient of Pascal's triangle.

1 11 1 1
1 2 3 4 5

(0 ) = 1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

It is clear that in this arrangement the usual rule for forming Pascal's

triangle is just

= +
(2) %, 7 M,5-1 7 Y-l

Buta comparison ofthis rule withthe definitions (1) shows that Pascal's

triangle can be written:
14

. S

1A

Y SV Y CHNE Y o
Y Y oY G o

where a; j = iAJnl. From the symmetry of Pascal's triangle,

a. .= a. .. Therefore
(3) W7 = W o™ = (g™

Pascal's triangle is a well-known generator of Fibonacci numbers in

the way shown in the following diagram.
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/ /

1 1 1 1:1:F1
2 |

6

3

2 = =
/1/ 4 5 o 1=1=F,

I3

J/ 1/3 10 15 ... 141 =2=F,
/1/4 10 20 35 ... 142=3=F,
/1 5 15 35 70 ... 14341 = 5 = F

We can apply the same course to our abstracted Pascal's triangle.

/ F1=14X0
425/ FZ:24XO
341(0/3¢g1 F, =340+ 140

e F, =480 + 24

SO

It is clear that, if we keep forming Fibonacci numbers from Pascal's

triangleinthisway, F_ = nAO + (n-2) ! + (11—4)A2 +... + (n—Zm)Am, or
g ¥, B

m
(4) F = % (n-20f
k=0

where we require that m be an integer and that 0 < n-Z2Zm £ 2, or in

other words that n/2 - 1 < m < n/2. Now let us prove

(5) Theorem 1 nf™ = n+2-1>

Proof: It is sufficient toperform induction on n. Let thetheorem be
E(n). Then if n =1, E(1l) states

<n+m—l) B <l+m—l> - ome
m - m T m! ’
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But by definition (1), (m+l)4(0 =1 for any (m+l) ¢ N. Then by equa-
tion (3) 147 =1 for m=0, 1, 2, 3, ... and E(l) is true. Now

let us assume that, for arbitrary m ¢ N, E(n) is true. Then

nAm - (n-l-m-l)

m

From the definitions (1) it can be seen that

- SR oo

Therefore the induction hypothesis can be restated

m-1 m-1 ntm-2) _ /nt+m-1
(6) 14 + 24 +...+< m_l)_< ™ )
Add (n:n“_‘Il) to both sides of equation (6) to obtain
m-1 m-1 n+tm-2 ntm-1
(7) 14 + 2/ S +( o )+ A
(n+m-1> <n+rn—l>»
= +
m m-1
n+m

The right-hand side of equation (7) is {( m ) by the standard identity

for combinations, so we have

m-1 m-1 (n+m—2) <n+m~1 _(n+m)
1A + 24 LEEEER A G m_l)~ ™ ,
or

lAm—l . 2‘ﬁm—-l I n:’nrr_IIZ>+ ((n+in-_hin-2>

_ ((n+1)+m—l> ’

m

which is E(n+l). Therefore E(n) implies E(n+l) and Theorem 1 is

true by mathematical induction.

Now let us prove

1
(8) Theorem 2 nf™ = [(n+m)f xn‘l(l_x)mdx]’l
0
Proof: r(n)= (n-1). (gamma function)
rim)r{n)

B(m,n) = B(n,m) = F{min) (beta function)
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Therefore
1 _ TI'(m+n)
B(m,n) = T(m)T(n) ’
and
L - T(n+2) _ (nH1)!
B(m+l, n-m+I) - Tm+)r(n-m+l) -~ m!I(n-m)!
T = () ()
Then
L -1
@ (:;) T I B(mAL, a-m) [(n+1)B(m+1,n-m+1)]

We can now substitute the right-hand side of equation (5) into equation

(9) to obtain
nf™ - (n+m'1> - [(ner)B(mﬂ,n)]'1 ,

m
where 1
B(m+l,n) = B(n, m+l) = fxn'lu-x)mdx
0
Therefore
1
114Xm = n+m f x (1-x) dx]
0

Both equations (5) and (8) assert that nﬁ(m = (m+1) An_l. Some inter-
esting special cases of equation (5) are
_ (n-1 (n o
nAO - ( ) n 1 | =1 H
1

= (7) = whr ot e

n-

and

™M
~
n
=

B=
|

_ <n+1 _ (ntl)! _ (n)(n+l)
2 T -1zl T 2

Now we can put equation (8) into equation (4) to obtain
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m 1
(10) F o= 3 [k jf STl ket
k=0 0

where m is an integer, n/2 -1 <m < n/2. But whereas equations
(4) and (5) have meaning only for integer arguments, equations (8) and
(10) can be used to find xﬁy and Fuswhere %, ¥y, and u are any
rational numbers.,

In particular

m 1
(11) F = % [(u-k) f Xu'Zk'l(l-x)kdx]'l ,
k=0 0

where m is an integer, u/2 -1 <m < u/2. The equation (11), and
the definite integral in it, are easily programmed for solution on a

digital computer. A few values of Fu follow.

u F
u

4,1000000 3.1550000

4,2000000 3.3200000

4,3000000 3.4950000

4, 4000000 3. 6800000

4.5000000 3.8750000 u P
4. 6000000 4, 0800000 v
4,7000000 4,2950000 0.1 1.0
4. 8000000 4,5200000 0.2 1.0
4, 9000000 4,7550000 . ;
5.0000000 5.0000000 : :
5.1000000 5.2550000 2.0 1.0
5,2000000 5.5200000 2.1 1.1
5. 3000000 5.7950000 2.2 1.2
5. 4000000 6.0800000 . )
5.5000000 6.3750000 : :
5, 6000000 6. 6800000 3.0 2.0
5.7000000 6.9950000 3.1 2.1
5.8000000 7.3200000 . )
5.9000000 7. 6550000 : :
6.0000000 8.0000000 4. 3.0

SOCKXHKKKKHKAK XK XK



ELEMENTARY PROBLEMS AND SOLUTIONS
Edited by A.P. HILLMAN

University of Santa Clara, Santa Clara, California

Send all communications regarding Elementary Problems and
Solutions to Professor A. P. Hillman, Mathematics Department, Uni-
versity of Santa Clara, Santa Clara, California. Anyproblem believed
to be new in the area of recurrent sequences and any new approaches
to existing problems will be welcomed. The proposer should submit
each problem with solution in legible form, preferably typed in double
spacing with name and address of the proposer as a heading.

Solutions to problems should be submitted on separate sheets in

the format used below within two months of publication.
B-64 Proposed by Vemer E. Hoggatt, |r., San Jose State College, San Jose, California

- RS . )
Show that LnLnH = L2n+1+( 1)7, where Ln is the n-th Lucas

=1, L2: 3, and Ln+2: Ln +Ln.

B-65 Proposed by Vemer E. Hoggatt, ., San Jose State College, San Jose, California

number defined by L

1 +1

. . 4
Let U and v be sequences satisfying u otau g

+dv =0 where a, b, ¢, and d are constants and let

4+pE3+qE2+rE+S. Show that '>rn=un+vr1 satisfies

+bu =0 and
n

V-n+2'+cvn-l~1
(E2+aE+b)(E%+cE+d) = E

try +syn =0

Yn+4:+pyn+3+qyn+2 n+l

B-66 Proposed by D.G. Mead, University of Santa Clara, Santa Clara, California

Find constants p, g, r, and s such that
Vnt+4 PV 43tV P8y, = 0

is a 4th order recursionrelationfor the term-by-term products PG

of solutions of u -u

nt2 -u = 0 and v

-2v -v_=0.
n n

+1 +2 +1

B-67 Proposed by D.G. Mead, University of Santa Clara, Santa Clara, California

Findthe sum 1°1+1°2+2°5+3°12+. .. +FnGn, where Fn =F +F

+2 " ntl n
and Gn+2:2Gn+1 +Gn.

153
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B-68 Proposed by Walter W. Horner, Pittsburgh, Pennsylvania

Find expressions interms of Fibonacci numbers which will gen-
erate integers for the dimensions and diagonal of a rectangular parallel-

opiped, i.e., solutions of

a2+b2+cz = dZ
B-69 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California

Solve the system of simultaneous equations:

2, 2
an+1+yFn =x ty

_ 2
XFn+Z+yFn+1 = x +2xy

where Fn is the n-th Fibonacci number.

SOLUTIONS
CHEBYSHEV POLYNOMIALS
B-27 Proposed by D.C. Cross, Exeter, England

Corrected and restated from Vol. 1, No. 4: The Chebyshev
Polynomials Pn(x) are defined by Pn(x) = cos{nArccos x). Letting

b= Arccos x, we have

cos ¢

X = Pl (X)5

cos (2¢) = ZcoquS -1= ZXZ -1= PZ(X),

cos (396)

il

4cos3¢ - 3cos ¢ = 4x3 - 3x = P3(x),

cos (4¢)

B}

8cos? b - 8cosz¢ t1=8xT-8xt+1= Py(x), etc.

It is well known that

PI1+Z(X) = ZXPnH(X) - pn(x)

Show that
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where

m = [n/Z] ,
the greatest integer not exceeding n/2, and

_ on-1
(1) Bon = 2

(2) Bit1,ntl = 28B40, 0 7 By nn1

(3) If s_= |B0nl + IBlnI +...0 04 len" then S ., =2S ., +S

Solution by Douglas Lind, University of Virginia, Charlottesville, Va.
By De Moivre's Theorem,
. n ..
(cos ¢ +isind) = cosng+1isinng

Letting x = cos ¢, and expanding the left side,

cosnp+isinng = (x+i VYl - x%)®

1

n
s (-1)/2 ) S T T

j=0

We equate real parts, noting that only the even terms of the sum are
real,

[n/Z] k 2k 2.k

: n, n-

cosne = P &= Z (1) (3)=x (L -x7). .
k=0

We mayprove from this (cf. Formula (22), p. 185, Higher Transcend-

tal Functions, Vol. 2 by Erdelyi et al; R. G. Buschman, 'Fibonacci
Numbers, Chebyshev Polynomials, Generalizations and Difference
Equations, " Fibonacci Quarterly, Vol. 1, No. 4, p. 2) that

n-2j-1

() B, - (12 (n-j-1)!
jrn it (n-2))!

From this, we have

(1) B = 22!
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It is also easy to show from (%) that

(2) Bivt,nt1 = 2B, 07 By n-1

Now (*) implies

- J
B, = (-1 ]Bj,nl ,
so that (2) becomes
(-1 IBj+1,n+l! =2 ()" ,Bj+1,n] + (- 1B, ol
or
IBj+1,n+1l =2 [Bj+1,n] ¥ ]Bj,n—ll

Summing both sides for j to [n—}l—], we have

(3) S = 2S +S
n n

n+l -1

Also solved by the proposer.

A SPECIAL CASE

B-52 Proposed by Vemner E. Hoggatt, Jr., San Jose State College, San Jose, California

Showthat F_ F F? = (-1)*™, where F_ isthe n-th Fib-

-2"n+2 " n
onacci number, defined by F1 = FZ =1 and Fn+2 = Fn+l n Fn'

Solution by Jobn L. Brown, |r., Pennsylvania State University, State College, Pa.

Identity XXII (Fibonacci Quarterly, Vol. 1, No. 2, April 1963,
p. 68) states:

= () EFE .

FnFm - F k" m+tk-n

n- ka +k

The proposed identity is immediate on taking m = n and k= 2.

More generally, we have

2 _ n-k_2 < <
Fn— Fn—an+k = (-1) F for 0S5k Sn

Also solved by Marjorie Bicknell, Herta T. Freitag, Jobn E. Homer, Jr., [.A.H. Hunter,
Douglas Lind, Gary C. MacDonald, Robert McGee, C.B.A. Peck, Howard Walton, ]obn
Wessner, Charles Ziegenfus, and the proposer.
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SUMMING MULTIPLES OF SQUARES

B-53 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California
Show that
2n - 1)F> +(2n-2)F2 4+ ... + F
(en - 1) + (2n 27 T ¥2n-17 Y2n

Solution by James D. Mooney, University of Notre Dame, Notre Dame, Indiana

Remembering that

n
2
2R sFE R
k=0
2 2
Clearlyfor n=1, FI =1-= FZ' Assume

we may proceed by induction.

2
2] Fy oo ¥ Fpny

[2(n-1) - 1] Fi‘ +[2(n-1)
= (20-3)F% + (2n-4)F> + ... + F - F
= (2n-3)F + (2n-4)F, +... 2n-3 -~ “2n-2

Then

2 2
(2n-1)F] +... +F, [(2n-3)F] +... + FZn_3] +
2n-2 2n-1

2 2 2
+ EFk+2 F =

k=0 k=0

2 2 2
2(F] +... +F5 )+ Fy =F;

2 2
- +

Fon2 P Fon 2Fon1 T Fon1F2n = Fonz t Fon2¥on

2

2 _
+F = F, 2 T 2F 2o 1 T Fon1 T

T F 1 Fap 2 T )

2.2 . Q.E.D

(Fopn-2 T Fan-1) 2n

Also solved by Marjorie Bicknell, J.L. Brown, [r., Douglas Lind, Jobn E. Homer, Jr.,
Robert McGee, C.B.A. Peck, Howard Walton, David Zeitlin, Charles Ziegenfus, and

the proposer.
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RECURRENCE RELATION FOR DETERMINANTS
B-54 Proposed by C.A. Church, Jr., Duke University, Durham, N. Carolina

Show that the n-th order determinant

ay 1 0 0 0 0
-1 aZ 1 0 0 0
0 -1 as 1 0 0
0 0 - a 0 0
f(n) = 4
0 0 0 0 a 1
n-1

0 0 0 0 -1 a

n

satisfies the recurrence f£(n) = anf(n-l) + f(n-2) for n > 2.

Solution by Jobn E. Homer, Jr., La Crosse, Wisconsin

Expanding by elements of the n-th column yields the desired re-
lation immediately.

Also solved by Marjorie Bicknell, Douglas Lind, Robert McGee, C.B.A. Peck,
Charles Ziegenfus, and the proposer.

AN EQUATION FOR THE GOLDEN MEAN
B-55 From a proposal by Charles R. Wall, Texas Christian University, Ft. Worth, Texas

Show that x - an - F = 0 has no solution greater than a,

n-1
where a = (1 +V5)/2, F_ is the n-th Fibonacci number, and n > 1.

Solution by G.L. Alexanderson, University of Santa Clara, California

For n>1 let p(x,n)=xn-an-F g(x)=x2-x-1, and

n-1’
h(x,n)=xn_2+xn-3+2xn-4+...+Fxn-k_l+...+F x+F .

k n-2 n-1
It is easily seen that p(x,n) = g(x)h(x,n), g(x) < 0 for -1/a < x < a,
g(a) =0, g(x) > 0 for x > a, and h(x,n) > 0 for x 20. Hence x=a

is the unique positive root of p(x,n) = 0.

Also solved by ]J.L. Brown, |r., Douglas Lind, C.B.A. Peck, and the proposer.
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GOLDEN MEAN AS A LIMIT
B-56 Proposed by Charles R. Wall, Texas Christian University, Ft. Worth, Texas
Let Fn be the n-th Fibonacci number. Let xOZ 0 and define

Xy Foys oo by x where

1 = T
f(x) = TxE_

For n > 1, provethatthe limit of x, as k goes to infinity exists and

k
find the limit. (See B-43 and B-55.)

Solution by G.L. Alexanderson, University of Santa Clara, Santa Clara, California

For n >1 let p(x) = x" - xF_- F__,. Let a=(1+V5)/2. As
in the proof of B-55, one sees that p(x) > 0 for x >a and that

p(x) < 0 for 0 <x < a., If x%x, > a, we then have

k
G d” > 9 F FF = bg)”
and so X > Xpq- It is also clear that X > a implies
(Xk+1)n - Xan * Fn—l > aFn * Fn—l = a’

and hence x Thus X > a implies X, > Xy > Xy > eee> 2.

K+l >
Similarly, 0 < x, < a implies 0 < X < x <Xy < Lee <2 In both

cases the sequence X X is monotonic and bounded. Hence x

1’
has a limit L. >0 as k goes to infinity. Since L satisfies

k

L = "VF_FLF. ,
n- n
L must be the unique positive solution of p(x) = 0.

Also solved by Douglas Lind and the proposer.

A FIBONACCI-LUCAS INEQUALITY
B-57 Proposed by G.L. Alexanderson, University of Santa Clara, Santa Clara, California

Let Fn and Ln be the n-th Fibonacci and n-th Lucas num-

ber respectively. Prove that
n
(F4n/n) > LoLgLygeee Ly o

for all integers n > 2.
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Solution by David Zeitlin, Minneapolis, Minnesota
Using mathematical induction, one may show that

n

F4n: 3 L4k-2’ n=1, 2, ...
k=1

If we apply the well-known arithmetic-geometric inequality to the un-

equal positive numbers LZ’ L6’ LIO’ e L4n-7’ we obtain for
n=2, 3, ...,
n
Elhyp2
Tan kel = VI, L L i
n n - 276710 °°° T4n-2 ’

which is the desired inequality.

Also solved by Douglas Lind and the proposer.
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BASIC PROPERTIES OF A CERTAIN GENERALIZED SEQUENCE
OF NUMBERS

A. F. HORADAM
The University of North Carolina, Chapel Hill, N. C.

1. INTRODUCTION

Let a, B be the roots of

(1.1) xz—px+q:0

where p, q are arbitrary integers. Usually, we think of a, B as

being real, though this need not be so.

Write
(1.2) d= (p% - 4q)}/2,
Then
(1.3) a=(p+d)/2, p=(p-d)/2
so that
(1.4) a+PB=p, ap=q, a-Pf=d.

Recently [6] , a certain generalized sequence %wn~§ was defined:

- . . = = = - >
(1.5) gwng = 3wn (a, b;p, q)% P wy=2a, wy=b, w =pw qw__,(n >2)

in which
(1. 6) w_ = Aa" + Bp",
where

. _b-ap _aa-b

(.7) AT BETTE
whence

(1.8) A+B=a, A-B=(2b-pa)d ', AB=ed ?
in which we have written

2 2
(1.9) e=pab-qa -b.

161
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Sequences like %Wni have been previously introduced by, for
example, Bessel-Hagen [l] and Tagiuri [l 1] , though in the available
literature I cannot find evidence of much progress from the definition
[11] to have discovered a few of the results listed hereunder.

‘ The purpose of [6] was to determine a recurrence relation for
the kth powers of w (k an integer), that is, to obtain an explicit

form for

wk(x) Z wi x™
n=0

Here, we propose to examine some of the fundamental arithmetical
properties of %Wn% . No attempt at all is made toanalyze congruence
or prime number features of %WHE . In selecting propertiesto gener-
alize we have been guided by those properties of the related sequences
(see 2. below) which in the literature and from experience seem most
basic. Naturally, the list could be extended as far as the reader's en-
thusiasm persists.

It is intended that this paper should be the first of a series in-
vestigating aspects of %Wn% . Organization of the material is as fol-
lows: in 2., various special (known) sequences related to wni are
introduced, while in 3, some linear formulas involving %Wn are es-
tablished, and in 4. some non-linear expressions are vobtained. Final-

ly, in 5., some comments onthe degenerate case p'2 = 49 are offered.

2. RELATED SEQUENCES

Particular cases of %an are the sequences ;unz R %vng, ihng ,
v;fni’ alng given by: .

(2.1) w (1, pip, g)=u (p, q)

(2.2) w (2, p;p, a)=v (p q)

(2. 3) W (r, r+s; 1, -1) :hn (r, s)
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2.4 w . - - —
(2.4) A Ll -l =f (=u (1,-1) =h (1,0))

(2.5) wo (2, L1, -1)=1_(=v_(1,-1)=h_(2,-1).

Historical information about these second order recurrence se-
quences may be found in Dickson [3] . Of course, fn is the famous
Fibonacci sequence, gln% is the Lucas sequence, and {u andgv E
are generalizations of these, while hn% discussed in [4]18 a different
generalization ofthem. Chiefproperties of un% , ;Vn , gfni and iln%
may be found in, for instance, Jarden [7] , Lucas [8] and Tagiuri [1 0]
and [11] , those of {fn§ especially being featured in Subba Rao[9]and
Vorob'ev [12] .

Two rather interesting specializations of (2.1) and (2. 2) are the
Fermat sequences %un (3, 2)} :gznﬂ __lz and %Vn 3, 2)2 =2Zn N 1; ,
and the Pell sequences %un (2, —1)§ and %vn(Z, —l)g. (See [1] or [8])..

From (1.6), (1.7) and (2.1) - (2.5) it follows that

n+l n+l
(2. 6) w =& P P
n
(2.7) v = o™+ "
(2. 8) N :(r+s-rﬁl)o‘lf—(r+s—r(11)ﬁ111
n \/5_
n+l Bn-l-l
(2.9) P S
n \/'5‘
_n n
(2.10) 1_=a] +8]
wherein
V5 V5
(2.11) q1:1+ 5,;31=1_5_,
2 2

that is, a ﬁl are the roots of

1’

(2.12) X% - x-1=0.
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Consequently, by (1.4)
(2.13) al+Bl=l, 0.1[31=-1, ay -{31: 5.

To assist the reader, and as a source of ready reference, the full set
of results for the five specializations of %wni will often be written
down, as in (2.6) - (2.10).

Obviously from (1.9), e characterizes the various sequences.

. 2
For %un% s gvni s %hn% s %fnz , iln% we derive e = -q, p~ - 4q,
2 2 .

r -rs-s, 1, 5 respectively.

By (1.6), (1.7) and (2. 6) we have

(2.14) Wn=aun+(b- pa) U ——-bun_l -qau 5,
with, in particular, the known [8] expressions

(2.15) v_=2u_ - pu

n n n-1 - 2q Yn-2 -

(Ultimately, of course, these yield 1 = 2f - f + 2f .)
n n n-1 n-2
Putting n =0 in(2.14)requires the existence of values for neg-
ative subscripts, as yet not defined. Allowing unrestricted values of

n therefore in (1. 6) we obtain

w =Aad+B ﬁ—n
-n
(2.16) ey _b )
=4 aly Yn-1
after simplification using
_ -ntl
(2.17) u_ =4 u o

which follows from (2. 6).
Combining (2.14) and (2.16) we have

"(au_ - bu
n

_ )
(2.18) w_=q " _ n w
n au + (b - pa.Tun_1 n

whence it follows from (2. 2) - (2.5) that

(2.19) v =qnv
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31‘ (u - u ) - su
-1 -1
(2.20) h—n: (_1)11 nru n+ su = % hn
n n-1
(2.21) £ = (-1)"¢

In particular,

21, -1 .
(2.23) w =Aad " +p :Paq b
so that
(2. 24) u_ =0
-1

(2. 25) vii=p

q
(2. 26) h o =s
(2.27) £,=0
(2. 28) 1. o= -1

165

Many of the simplest ;Wni are expressible in terms of %fng.

Besides (2. 4) we have

. _ n-1
(2.29) W (-1, 1; -1, -1) = (-1) fn
(2. 30) Wn( 1, -1; 1, -1)=—fn_3

. _ n-1
(2.31) wn( 1, 1; -1, -1) = (-1) fn-3

More generally,

(2.32) w_(a, b 1, -1) = af , +bf
(2. 33) w_(a, by -1, -1) = (-1)n§af - bf

Notice that
wo(ay, byspys qp) = -w (a5, byipy, q,)

(2. 34K provided
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Some sequences are cyclic. Examples are

(2.35) w (a, b; -1, 1)

for which a, B (= az) are the complex cube roots of 1 and

(2.36) w (a, b; 1, 1)

for which a, B (= az) are the complex cube roots of -1. Sequence
(2.35)is cyclicof order 3 (withterms a, b, -a - b) since a3n = ﬁ3n =1,
while sequence (2.36) is cyclic of order 6 (with terms a, b, -a +b,
-a, -b, a - b) since u3n= ‘33n = -1, so q6n= [36n =1 (n odd in this
case). (Refer (l.6)).

Geometric-type sequences arise when p =0 (so that by (1.5)

w -qwn_l) and q = 0 (so that WS pwn).

ntl
3. LINEAR PROPERTIES
From (1.5) and (1. 6) it follows that
k <g <
(3.1) W ga w 3(1 if -1 S B <1,
— - k . <
w1 g, Yok p if -1 2 a =1,
3.2 (p? + -0
(3.2) Wiz P -dw +pgw, ,=0,
and
(3.3 (p° + 4> =0
-3) PWo42 - (P - a) Watl T4 Wp1 7Y

Repeated use of QWy 1 = "Wy T pw (k=1, ..., n) leads to

the sum of the first n terms

n-1
(3.4 q . W= (p-1) (wy twy e, tw) - w
j=0

whence

—

n-

(3.5 (p-a-1) 2 wy= wog-w -(p - 1) (W - w)
j=0
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while the corresponding results for differences are

n-1
(3:6) a 2, (-1)ij=(p 1) (-w, +w,
=0 +H-12 1w )4 (-)®
T X wn) (-1) w

+pw

+1 1

and n-1 .
(e-a+1) 2 (1w,
(3.7) =0
_ n+l n+l
= (1" w_, Hwy -(ptl) 3(-1) w_ +w0§ .
Replace n by 2n in (3.4), (3.5) (3.6) and (3.7). Write
(3.8) U=WO+W2+...+W2n_2 ,
and
= +
(3.9) P—w1+w3 +W2n_1
Adding and subtracting (3.4), (3.6) give
(3.10) (1 +q)o =pp- (wzn—wo)
and
(3.11) (L+aq)p=potalw, 4 -w_)
for the sum of the even - (odd -) indexed terms of wol- Clearly by

(1.5) additionof (3.10) and (3.11) yieldsthe sum of the first 2n terms
(3.4) as expected. Solve (3.10) and (3.11) so that

(3.12)  {p% - (14a)?} 0 = (L+a)(w,, - wo) - pa (wy, | - W_))

and
(3.13)  {p° - (1+)? P = p (w, - wy) - alHQ)w, | - w_))

Using the alternative expression W, = bun_1 - qau_ . (2.14),

we have
S Watl V1 Yn " 9% Uh
B T W™ |

W =W

n+3

3% " 9%y
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whence
Wntr = Ve Un T 9 VWel) Ypa1
(3.14)
=w_u_-qw
n r

u

n-1 "r-1

on interchanging n and r. Equations (3.14) may also be obtained

from (1.5), (2.1) and (2.14). Of course

Wantr - Wr—j U’n+j -4 Wr-_j-l un+j-1
(3.15) w u -qw a
ntj r-j ntj-1 "r-j-1

1]

also.
Further, from (1.6) and (2. 7) it follows that

Wy +qrw
(3.16) nrr T =y
w T

n

thatis, the expressiononthe left is independentof a, b, n. Interchange

r and n in (3.16) and then set r = 0. Accordingly,

n -—
(3.17) wn+qvw_n—avn.

Observe also from (1. 6) and (2. 6) that

r
(3.18) Watr © % Ynor Yol
. - =

Yso1
w -4 W o s-

n+s

which [10] is an integer provided s divides r.
Two binomial results of interest may be noted. Firstly, from

(1. 6) it follows that

n .
(3.19) LN LU S L G el
j=0

where we have used the fact a2 - pa +q =0, [32 -pB+qg=0.
Starting from (1. 3) and (1. 6), we readily derive

znwn =A(p + )" + B(p - ).
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[n/2]
n -2j 42j
(3.20) 2% w_=a Z ped g%l (l?jj) [n-1]
j=0 2
F2b-pa) 2 (1)) pP AT a2
j0
whence follow the known [1] expressions
) s
n _ n+l n-2j ,2j
(3.21) 2 u = (2j+1) P d
j=0
[n/2] .o
n-1 3 n n-2j ,2j
(3.22) 2 v, = Z (Zj) p d
j=0
/2] :
n 3 n+l j
(3.23) 2 fn_ Z (2j+1) 5
j=0
n-1 _ /2] n j
(3.24) 2 1n = Z (Zj) 5
j=0

Suitable substitutions in the above results lead to the specialcases

for iuni, avnz, %hn%, 3fn§ and %1n§ ; for example, for-%fn},in (3. 4)

o+pP = f2n+1-1,
and in (3.14) with r = n,
n
2 n
7+ f =f = Z () f ,
-1 2 k=0 k! 'n-k
using (3.19).
If we write
(3. 25) Yno_ ,
Wn+1 n
so that, by (1.5),
(3. 26) r ———1——-——-, r L ) eeeesoas ,

n p-qr
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enabling us to. express the limit of the ratio as a continued fraction.

Sometimes, when q = -1, it is notationally convenient to write

a_ = en0 = sinh 7 + cosh
o o o)

(3.27)
Bo - _e—T)o = sinh no - cosh %

where (1. 2)

d
(3.28) coshn =3°, sinhn =2, tanh n =p a’!
’ o 2’ o~ 2’ o o

Zero suffices signify that q = -1.
Combining this hyperbolic notation withthe remarks immediately

preceding (3.27), andproceedingto the limit (refer (3.1)), wezsee that

for p=1, q=-1, thatis, for %hnf (and its specializations%fn}, ilni),
h
n 1 -
R -7 ~—— =€
n+l |

cosh 7]1 - sinh nl

—r
1 + 1
p + L

P‘i—'

(observe that by (2.12) =g is a root of x2 +x - 1 =0 sothat
1

leading to the continued fraction.)

1
&= 1+g’
Furthermore, (3.27) and (3.28), with (1.5), imply

. _ n . n
(3.30) Yo n —(Ao + (-1) B_)sinhn n_ +(A_ - (-1) BO) coshn g .

Hyperbolic expressions for the specialized sequences are then, from
(2.6), (2.7), (2.9), (2.10),

sinh (n + 1) U

Un T cosh (n odd)

(3.31)

cosh (n + 1) N, (n even)

cosh
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v_= 2 sinh n 7 (n even)
(3. 32) n ©
= 2 coshn U (n odd)
with corresponding expressions for fn’ ln respectively, in which 1,

is replaced by m- A hyperbolic expression for hn is given in [5] .

4, NON-LINEAR PROPERTIES

Essentially, the problem in obtaining non-linear formulas (as in
the linear case) is to detect the appropriate coefficients (functions of
p, q) of Wi. Basic non-linear (quadratic) results have already been

recorded in [6] , namely:

(4.1) aw, o + (b-pa) Wotnel - Ve Wn T W1 W1 0

e ‘b 2 2 _

(4.2) a%on (b-pa) Won-1 "% T Wno1 T Watl Wno1 "W, Who2
2 _ n-1

(4.3) Wn+1 wn—l - Wn -4 €

Obviously, from (4.3) with n =0,

(4. 4) e=gq (w1 W

- W

1 0)

which may be compared with (1.9), using (1.5) and (2.23).
An extension of (4. 3) is, by (1. 6) and (2. 6),

(4.5) Wotr Vnor W= e4d u
Putting r = n in (4.5), we have

(4. 6) w? teu ?
n

n-1-2%2

n
Interchange r and n in (4.5), then suppose r = 0. We deduce

_ 2 -n 2
(4.7) w ow_ =a teq u

(n=1 reduces (4.7) to (4. 4).)
Specializations of (4.1) are, on multiplication by 2 and use of
(1.2), (1.4), (2.6), (2.7) and (2.15), the known [8] results
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(4. 8) Zum+n—1 =u vn+un_1 \%
and

2
(4.9) va_m—vm vn+d U1 Yo

Next, by (4.6), we derive, using (2.6), (2.7), (1.2) and (1.4),

(4.10) u, Eu v

and

(4.11) 2 vy = vetdlul )
with

(4.12) Von = VIZ; - an = d2 un?l + an

Again, (4.1) with m = 2n gives an expression for Wi from
which we deduce, by (4.10), (2.6), (2.7) and the recurrence relation

for v, ,

3n
(4.13) ol 2 gt
n-1
and
v
3n _ 2 n
(4.14) ";IT——Vn- 3q

Results (4.10) - (4. 14) occur in Lucas [8] in a slightly adjusted
notation.

Coming now to the sum of the first n terms, we use the first
half of (4.2).

Write

n-1
(4.15) r=D Wt .
=0 7

Then, it follows that

(4.16) (1-q) 7= ag+ (b-pa)p - {qu_l t(b-pa) wy 0}
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whence T may be found from (3.12) and (3.13).
Repeating the first half of (4. 2) leads to

2 2 2

(4.17) Wi~ 9 W

= b W, o4l + (b -pa)g Wl
From (1.6), (1.8) and (2. 6),

n-r
(4.18) Wa-r "ntr+t - Vn Yo+t - 4 eu

whence t =0 gives (4.5).

Replacing wo by u_ in (3.14) and (3.15) (with -j substituted

n
for j) yields

(4.19) u =u u -quk

ntr - Un %r n-1 Yr-1 7 Yn-j Br4j T T 80no5-1 Prd4jel
whence »
R N T i A LIS R S S (NS}
4,20 n-
( ) =q 7 )

uj ur—n+j - ur—n+2j
_ n-j+l a
=4 Y1 Yrontj-1

by repeated application of (4.19) and replacement in the first half of
(4.19)of n by r-nt+j and r by j toobtainanexpressionfor U n+2j
(u0 = 1). Note that (4.20) is the special case of (4.18) for which
w o =u 8o that e = -g {n, r, j in (4. 20) replaced byn - r, n+r +.t,
respectively and (2.17) used).

In particular, it follows from (4.20) with j =1 that

n-1

(4.21) Un-1%r-2 " %p-2 Yr-1 7 4

u

r-n-1

Moreover, (4.21) and W= b u ] -9qau _, give for the se-

quences %wn% and gwl'ii

(4.22) W1"1 W= W w; =qgf(a'"b-a b')(un_1 u._,-u

1)

u
n-2 r-

no i 1
g (a'b - ab') U1
Cubic expressions in w, ~—are generally quite complicated, so we
derive only the sum of the first n cubes. Cube botl sides of(l.5)and

then use (1.5) again. Thus
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(4.23) w’ S . w?

ntl ~ P Wp o9 VWup - 3qun_1 an

n+l
But, from (4. 3),
-1

3 n
=wn+q e w R

(4. 24) w .

n-1 "n "ntl
so that from (4. 23) and (4. 24) it follows that

3 3, .3 3 3 n
(4. 25) wn+1+(3pq—p)wn+q wn_l——3pq ew

Now a calculation involving (1. 6) and the summation of geometric

series leads to

(426)11—l Jwo=—2 tw -®w. - (w -q? )
‘ qu—I— +3§1qW0q‘ quwn-—li'
s patq
Write
n-1
(4.27) w= 2w .
=0 J

Combining (4. 25), (4.26) and (4.27), we find
(4.28)  (1+3pq-p>+q”) @ = 2Rty Py g™ Liw, qPw_ )|
3 1 0 n n-1
l-pq+q
3.3 3 3, .3
+q wo 1"V, + (1+3pg-p7) Wy
Appropriate substitution inthe above formulas of 4. lead to cor-

responding results for the special sequences (2.1) - (2.5). For in-

stance, applying (4. 16) and (4. 28) to %fn } , we have f:%ifzn_l—fi_l % s
1 (.3 3 n-1
w=g £+ 30y vz

respectively.
5. DEGENERATE CASE

Throughout the analysis of the nature of 3Wn§" the hypothesis

that p2 % 4q has been assumed. But suppose now that p'2 = 449. The
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simplest degenerate case occurs when p=2, q=1 (a=f=1) for

which exists the trivial sequence (n =0)

(5.1) Vn(?_, 1y 2, 2, 2, 2, 2, ...

and the sequence of natural numbers (n > 0)

(5.2) un(Z, 1y «+ 1, 2, 3, 4, 5, ... ,

thatis, u = n+l and v, E 2, Fornegative n, (2.19)implies V SV
that is, every element of %un (2, 1)2 is 2, while (2.17) implies

-n
negative integers in order.

u_ = -u o, that is, like elements of %un (2, 1)% are the positive and

Generally, in the degenerate case,

(5.3) a:ﬁ=% .

The mainfeatures of the degenerate case, as they apply to %un E
and %vng are discussed in Carlitz [2], with acknowledgement to
Riordan. Brief comments, as they relate to wot, are made in [6] .
In passing, we note that Carlitz [2] has established the interesting re-

lationship between degenerate

and the Eulerian polynomial Ak(x) which satisfies the differential

equation

A0 = (1 +mx) A_(x) +x(1 - ) g_x A_(x) .

where Ao(x) = Al(x) =1, Az(x) = 1+x, A3(x) =1 +4x + XZ.

‘ Finally, it must be emphasized that %hng and its specializations
‘2fn% and %lnz can have no such degenerate cases, because p2 - 4q

then equals 5 (% 0).
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Mathematics Department,
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NON-FIBONACCI NUMBERS

H. W. GOULD
West Virginia University, Morgantown, W. Virginia

In order to understand the properties of a set it is often worth
while to study the complement of the set. When The Fibonacci Associa-
tion and this Quarterly were being established, the writer began to
think about non- Fibonaccinumbers as wellas about Fibonacci numbers,
but what is knownabout non- Fibonaccinumbers ? With the hope of gen-
erating more interest in non-Fibonacci numbers, I posed as the first
probleminthis Quarterly, problem H-1, the question of finding a for-
mula for the n-th non-Fibonacci number. The purpose of the present
paper is to discuss the problem and give a solution to it.

We begin with the concept of complementary sequences. A se-
quence is an ordered set. Two sets of natural numbers, say A and
B, arecalled complementary if they are disjoint and their union is the
setofall natural numbers. Many examples are available: Even num-
bers and odd numbers; primes and non-primes; k-th powers and non
k-th powers, But the reader may not realize that formulas can be
written down for such sequences. Of course, even and odd numbers
are generated easilyby 2n and 2n-1 where n isanynaturalnumber,
but it is not as well known that a bonafide formula for the n-th non

k-th power is given by the expression
k K
n + n + [,/n ] , k22 ,

where square brackets indicate the integral part of a number. Such a
formula is quite entertaining, and is a special case given by Lambek
and Moser [1 1:] ina general study of complementary sequences. They
give seven examples, as well as a general result.

A remarkable pair of complementary sequences was discovered
about forty years ago by Samuel Beatty at the University of Toronto.
He posed his discovery as a problem in the American Mathematical

Monthly [2] . We may-state Beatty's theorem in the following equivalent

177
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form. If x and y are irrational numbers such that 1/x +1/y =1,
thenthe sequences [nx] and [ny] , n=1,2,3,..., are complementary.

This theorem has been rediscovered a number of times since
1926. The short list of references at the end of this paper will give
some idea of what is known about complementary sequences. Beatty's
resulthas been fairly popular in Canada. Besides the work in Canada
by Lambek and Moser, there was the work of Coxeter, and the mas-
ter's thesis by Ian Connell (published in part in [3] ). The interesting
extension by Myer Angel [l] was written when he was a second year
student at McGill University. Our main interest here is in the 1954
paper of Lambek and Moser.

Let f(n), n=1,2,3,..., bea non-decreasing sequence of posi-
tive integers and define, as in [l 1] and [8, editor's remarks] , the 'in-

verse' f by

f*(n) = number of k such that f(k) < n = > 1.
<

f(k) < n
Thus f is the distribution function which one would expect to study
in connection with any sequence. If f defines the sequence of prime
numbers, then f*(n) = m(n-1) = number of primes < n. Note also that

POPOS
SRk

f =1, Weshallalsodefine F(n) = f*(n+1). Next, define recursively

Fo(n)zn; Fk(n):n+F(Fk_l(n)), k>0

Moser and Lambek showed thatif Cf(n) isthe sequence complementary
to £f(n), then

lim

Ci(n) = K —> Fk(n)

What is more, they showed that the sequence Fk(n) attains its limit
Ci(n) ina finite number of steps when this limit is finite. In fact one
need not go beyond k = Cf(n) - n.

Thus the n-th non-prime number is the limit of the sequence n,
n + 7(n), n+ 7(n + 7(n)), ... . Oftentwo steps are sufficient to attain
the limit. Thus the n-th natural number which is not a perfect k-th

power is given by the expression enunciated at the outset of this paper.
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The n-th natural number not of the form [em] with m 21 is

n + [log(n +1 +[log(n+1)] )]..
As for the Fibonacci and non-Fibonacci numbers, let f(n) = fn

be a Fibonacci number, defined recursively by fn 1= fn + fn with

+ -1
fl =1, fz = 2., Let g, designate the non-Fibonacci numbers. The

following table will illustrate the calculations involved.

n £ fm)  F(n) A B C D g =F F
A 0 1 2 2 3 3 4 0. 67
2 2 1 2 4 3 5 4 6 2.10
3 3 2 3 6 4 7 4 7 2.95
4 5 3 3 7 4 8 5 9 3.55
5 8 3 4 9 5 10 5 10 | 4.02
6 13 4 4 10 5 11 5 11 4.39
7 21 4 4 11 5 12 5 12 4,71
8 34 4 5 13 6 14 6 14 4.99
9 55 5 5 14 6 15 6 15 5.24
10 89 5 5 15 6 16 6 16 5. 45
11 | 144 5 5 16 6 17 6 17 5. 65
12 | 233 5 5 17 6 18 6 18 5.84
13 | 377 5 6 19 6 19 6 19 6.00
14 | 610 6 6 200 6 20 6 20 6.15
15 | 987 6 6 21 7 22 71 22 6.30
16 6 6 22 7 23 7 23 6. 43
17 6 6 23 7 24 7 24 6.55
18 6 6 24 71 25 7 25 6. 67
19 | 6 6 25 71 26 7 26 6.79
20 | 6 6 26 7 21 7 27 6. 90
21 | 6 7 28 7 28 71 28 7.00
22 7 7 29 7 29 7 29 7.09
23 7 7 30 7 30 7 30 7.19
24 7 7 31 7 31 7 31 7.28
25 7 7 32 71 32 7 32 7. 36
26 7 7 33 7 33 7 33 7.44
27 | 7 7 34 8 35 8 35 7.52
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Inthetable, successive columns indicate the steps in evaluation

of the limit g, = Ci(n) as follows:

H

n + F(n),

F(n + F(n)),

n + F(n + F(n)),

F(n + F(n + F(n))),
E=n+Fn+ Fn+ F(n))).

1]

g aw >
f

1

Three iterations were found necessary to generate the non-Fibonacci
numbers - at least up to n=40. Itis left as a research problem
for the reader to determine if more than three iterations are ever
necessary.

It is evident that to obtain an elegant formula for g, we have
thentwo problems: (2) the number of steps required to find Ci(n); (b)
a neat formula for the distribution function F(n) or equivalently the
inverse f*(n).

The studyof F or f* corresponds to the study of the distribu-
tionof prime numbers, but because of the regular pattern of distribu-
tion we can supply a fairly neat formula for F(n). It was noted by K.
Subba Rao [1 3] that we have the asymptotic result:

log n

F(n) ~ Tog &

, as n—>eo

where

As a matter of fact one can prove much more. We have the following

THEOREM. Let F(n) = number of Fibonacci numbers fk € n. Then

logn

Fo) ~ geo + log V5 - 122.08 log n +0.67

and, for n > n, F(n) isthe greatest integer < this value. Column F
in the table gives the value of the expression 2.08 logn + 0.67 as
computed from a standard 10-inch slide rule, Even this crude cal-

culationis good enough to show how closely the formula comes to F(n).
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Thus we have the following approximate formula for the n-th

non-Fibonacci number:

gn=n+F(n+F(n+F(n))),

with

1
|:1ogan t5 log 5 - 1:} for n 22,

=
2
I

K

[2. 08 log n + 0. 67]

We shall conclude by noting some curious generating functions for
the distribution function (or inverse) f (n). For any non-decreasing

sequence of positive integers I(n), we have [8, editor's remarks]

s )
sk

x 3 Xf (n):(l - x) pX f(n) = ,

n=1 n=1
and
n (k) f(n) =n
2 E A = 2 E ok A,
S R S R A

the latter identity holding for an arbitrary array of numbers Aj K’
te

being merely an example of summing in the one case by rows and in

the other case by columns first, As an example with application to

formulas involving the Fibonacci numbers we may note that

f f
n k n n
3 3 A =3 % A
k=1 j=1 & j=1 k=1 + F(j-1)

js k
Inthis formula, take Aj k= 1 identically. Then we find the formula
f
n
kél F(k—l)znfn—fn+2+2, (F(0) = 0)
this being but one of many interesting relations connecting fn and
F(n). From Theorem 2 of [lﬂwe have that the sequences n + fn and

n + F(n-1) are complementary. The reader may find it of interest to

develop the corresponding formulas for non-Lucas numbers or other
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recurrent sequences, In a forthcoming paper [10] Holladay has given
a very general and closely reasoned account of some remarkable re-
sults for complementary sequences. If a personal remark be allowed,
his paper is an outgrowth of discussions concerning problem H-1 and
the application of complementary sequences to certain problems in
game theory.

As a final remark, there is the question of the distribution of
non-Fibonacci numbers énd identities which they may satisfy. It is
hopedtodiscuss other properties of non-Fibonacci numbers and other

formulas for them in a later paper.
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TWO FIBONACCI CONJECTURES
DMITRI THORO

San Jose State College, San Jose, California
Consider the problem of solving, in positive integers, the follow-
ing Diophantine equation (suggested by the Editor):
- XZ + VZ.

(1) F x +F_ v

First let us note that (1) always has the trivial solution (Fn’ Fn+1)’
i.e., x = Fn’ y = Fn+1' Does (1) ever have a non-trivial solution? If
n is fixed, we know from analytic geometry that there are at most a
finite number of solutions. However, we shall soon see that for in-

finitely many n (1) hasatleasttwo non-trivial solutions.

Theorem 1. If n>1 and n =1 (mod 3), then

Fn‘-l-2 s Fn+2
—Z )

Fov2, Faol
—

and

are non-trivial solutions of (1).

Proof. Since n=1 (mod 3), Fn-l = Fn+2 =0 {mod 2) which guarantees
that the quotients involved are indeed integers. One may immediately

verify that they satisfy (1).

Theorem 2. If (xo, yo) is a solution of (1), than u = Zxo - Fn,

V= Zyo - Fn+1 is a solution of

(2) R

Proof. Thisisan immediate consequence of the identity {Lucas, 1876)
Fn2 * Fnil - FZn+1‘

If u=u  and v=v_ isa solution of (2) with (ugs v,) # (Fye
Fn+1) (or any of the other 7 solutions of (2) obtained bychanging signs

or interchanging Fn and Fn_l_l)we shall call (udvo) a non-trivial solu-

tion of (2).

184
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Theorem 3. If nZl (mod 3), then (1) has a non-trivial solution if

and only if (2) has a non-trivial solution,

Proof.
(a) If (Xo’ yo) is a non-trivial solution of (1), then by Theorem 2,

u=2x -F , v=2y -F is a solution of (2). If 2x - F =%+ F
o n o n o n n

+1
then x = F_(and hence y_ = F
o n o

3

ntl OF 0) or x = 0, a contradiction.

If Zxo - Fn= =F 4 %, = Fn+2/2 or x_ <0 which is impossible

o

since F is odd and we are considering only positive solutions of (1).

+2
(b) Let us assume ug >0, v, >0 1is a non-trivial solution of (2).

FW is even if and only if w =z 0 (mod 3); thus by hypothesis F is

- 2n+l
odd. But =u +vo, hence u and VO must be of different

Font1 = %

parity. Moreover, for the same reason Fn and Fn-l-l must also be

of different parity. Thus (interchanging names if necessary) we may

be sure that

ug +Fn, Vo + Fn+l
2 2

is an integral solution of (1). 1If
u, + Fn
—z
we would, as before, get a contradiction.

The reader is invited to show that the number of non-trivial solu-
tions of (1) is always even.

Now the problem of representing a number as the sum of two
squares has received considerable attention. The following result,
knownto Fermatand others was proved by Euler:

If N= bc2 >0,where b issquare-free, then Nis representable
as the sum of two squares if and only if b has no prime factors ofthe
form 4k + 3.

Theorems on the number of such representations can be found in
virtually every introductory. text on number theory.

Thus by Theorem 3 if n# 1 (mod 3) and F is a prime of

2n+l
form 4k+l, the only solution of (1) in positive integers is (Fn, Fn+1)
since every prime of the form 4k+l is the sum of two squares in es-

sentially only one way.
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It is interesting to note that the pertinent identity

@ + %) (c? +d%) = (ac £ ba)? + (ad T be)?

was. given by Fibonacci in his Liber Abaci of 1202. This can be used
to expedite numerical investigations. However, one needs to beware
(or at least be aware) of such accidents as the following:

Let n>o, n= 2 (mod 3);
(1) If n< 32 (and n+# 17), then 2n+l is a prime.

(ii) If n< 17, both 2n+l and F are primes!

2n+l
Another useful result is
Theorem 4. anﬂ =1, 2, or 5 (mod 8).
Proof.  We shall use the identity F, , = FZ + F2, . If gis odd
roo.2 e shall use the identity 2ntl = Fp atl” gi ,
then g =1 (mod 8). Thus if Fn and Fn-l-l are both odd, F2n+1 =2

(mod 8). Since two consecutive Fibonacci numbers are relatively
prime, the only remaining possibility is that Fn and Fn-!—l are of
2n+l = 1 or 5 (mod 8).

The reader may prove that in general Fn Z 4 (mod 8).

different parity; in this case we get F

Finally, this problem suggests the following conjectures:
Conjecture 1. There are infinitely many values of n for which (1)

has only a trivial solution.

Conjecture 2. F2n+1 is never divisible bya prime of the form 4k+3.
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FIBONACCIOUS FACTORS
ROBERT B. ELY, Il

1. INTRODUCTION

In earlier issues of the Quarterly there have been shown and
provenanswers to the following questions about the basic series (1, 1,
2, 3, 5---).

(1) By what primes are the various terms, U , divisible?
(2) At what points do various primes first ap;ear as factors?
(3) At what periods do they reappear?
In this paper we deal with answers to the same questions as to

the general series (a, b, a + b, a + 2b, 2a + 3b ---).
2. PERIODS OF REAPPEARANCE ARE THE SAME

Our task is simplified if we answer the last question first:

If k is the period at which a prime repeats its zero residues
in the basic series, k 1is also the period of zero residues in any
general series.

Suppose that a prime first divides the nth term of a given ser-
ies (a, b, a *+ b ---) and let the (n-l1)th term be c. Then modulop,
(which we hereafter abbreviate to ''[p'') the series runs in this neigh-
borhood as ¢, 0, ¢, ¢, 2c, 3c etc. The terms after the zero are
those of the basic series each multiplied by c. Now if xz o [p, so
also cx%o if c%_o [p. Again, if x= o [p, soalso cx=o [p. This
means that in the two series (1, 1, 2, ---) and (c, c, 2c ---) the

zeros appear at the same terms

3. SUMMARY OF PREVIOUSRESULTSAS TO FIRST APPEARANCES

(1) There are some terms of the basic series divisible by any prime

one may choose.

(2) The term Ua
U, =144

12
is divisible by

is divisible by Ua’ U U ... E.G.

bec *°° b c

187
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U U, =1
U3 =2
U4: 3
U6 =8
(3) Such a term Uni, for which n is composite, may also have

other factors, called '"primitive prime divisors;' and the general form
of these primes is determined by the following rules (but their identity
must be found by trial and error).

(A) If n is odd; p is of the form 2 kn %1

(B) If n=2(2r*1); p is of the form nk %1

(C) If n=2"(2r+1); p is of the form nk/2 - 1
Examples are listed in the February 1963 Quarterly at pp. 44-45.
(4) The factthat n is prime does notimplythat Un is prime. E.g.,
U U119 = 4181 = 37 x 113; even though 19 is prime. However, the con-
verse is true: If Ul.,1 is prime, so also is n.
(5) The even prime, 2, is a factor of every third term of the series;
and the odd prime 5 is a factor of every 5th term.
(6) All other odd primes are of the forms#1 and # 3 [10. They
appear and reappear as factors according to the following rules:

(a) If pz=x1l [l0, it will first appear when the n of U, = %’
d being some positive integer; and will reappear every nth term

thereafter;

pt 1
d
nth term thereafter, d again being some positive integer. E.g.,

(b) If p=+3 [l0, it will first appear when n = , and every

3 divides U4 and every 4th term thereafter

7 it U8 " [N Sth " "
11 " UlO " [N lOth (R} "
13 " U? 1 (B 7th 1Al n
17 " U9 " r 9th t "
19 A1 U18 1 r 18th [N 1"

(c) The rules for determining the divisor, d, of p+1 in (6)
have not yet been given. Examination of the primes less than 80 give
d=1, 2 or 4 in all cases except 47, where it is 3. However, in the
range from p = 2,000 to 3,000, given in the February 1963 issue at
pp. 36-40, d has values ranging from 1 to 78.
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(7) Nothing has thus far been said about the appearances and periods

of composite factors, ab (a #b), nor factors which are powers, pc.

4, NEW ANSWERS TO THE QUESTION OF FIRST APPEARANCES

(1) "By what factors are the terms of the general series (a, b, a +b,
at2b,t+ 3b...) divisible?"

It can be shown that if A, B and C denote anythree successive
terms in this series, then B2 - AC = £+ a constant, nomatter which
three terms are chosen, and no matter what the values of A and B
(the first two terms).

Specifically, work on the first few terms of the general series

shows what this constant must be

bznab—a2

1

bz—a(a+b)

2

or (aﬂ'ﬂb)2 -b(at+2b)=a"+ ZaLber2 - ab - ab2

~ b%+ ab+a’

i

= —(b2 - ab - az)

How canwe make use of this constancy of B‘2 - AC to determine
the possibility of a given prime, p, as a factor of some term inthe
general series? By changing the equation to a congruence [p. If any
term, C, ofthe seriesis divisible by p; then C and itstwo immediate

predecessors must satisfy the congruence

B2 . AC= % (b% - ab - a%) [p

Butweareassuming C=0 [p. Thiseliminatesthe term - AC, Hence
2 2

we must have B "= £ (b~ - ab - az) [p-

In other words, once we know the first two terms, a and b of
a general series; we know that the only possible factors for terms of
the series are those for which #+ (b2 - ab - az) is a quadratic residue.
Primes of which this is nottrue cannot be the modulus in the congruence

BZE + (b2 - ab - az) [p.
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However, it does not follow from the necessity of this condition
that it is also sufficient. E.g., 1, 4, 5 ... is never divisible by 89.
Nevertheless, Brother Alfred has shown that there are some primes
which are factors of all Fibonaccious series.

(2) We cannolonger say that Upe is divisible by 0., Uy and UC,
as a single example will show. Consider 3, 7, 10, 17, 27, 44, 71,
115, 186, 301. U;o = 301 is divisible by U, =7, but not by U5 = 27.
(3) Neither can we say of a general series that if U_ is prime, so
too is n. Vide 2, 5, 7, 12, 19, 31 ... for which U6 is prime but 6
is not.

(4) (2) Nor dowehavein the general series a set of primitive prime
factors, in view of (2) above.

(b) Thus weare fairly limited, as to rules for the forms of cer-
tain, possible or impossible prime factors of the general series. We
make here only two observations:

(i) For primes of the form p = 4k+ 3, either a or -a is
aresidue for any value of a. Hence these primes are possible, but not
necessarily certain factors of any general series. /

(ii) On the other hand, for primes of the form p = 4k + 1,
there can be values of a for which neither a nor -a is a residue.
E.g., neither 2 or -2 is a residue [5; and neither #2 nor 5 nor
+6 are residues [13. Hence these primes are impossible factors of
general series for which the initial terms are correctly chosen.

E. g., noterms ofthe series 1, 63, 64, 127 are ever divisible by
5, 11, 13 or 17, since % (63Z - 64) = = (3969-64) = £ 3905 is a non-
residue of each of these primes.

Hence let us put aside for the moment the more particular rules
of forms of factors of the general series, and turn to the place of first
appearance of possible factors. The intervals of reappearance are as
in the basic series.

(5) Firstletus review 2 and 5. If any series is reduced 2, we have
only four patterns, depending on choice of initial terms

> 0, v

’ H ’
B ] ’
3 sy U, 1, 1, U  oeee00o0

1
0
1
0

O = O =
_ 0 O =
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That is to say: one of the first three terms must be even; and there-
after either all or every 3rd term is even.

For 5, the situation is a little more complex. Actual computa-
tion of first appearances for the various combinations of remainders

of the first two terms enables us to make the following table:

If the second term has a remainder of

0 1 2 3 4 (5
e o [ATI[AI
remainder 1 2 5 41 N| 3
of 2z N[5]|3]4
3112¢ 413151 N
4 4121 3j] N| 4165

the entries show the number of the smallest term divisible by 5, where
N signifies ''none.'" Thus we see that 5 may first appear as a factor
of any term from the lst to the 5th, or be suppressed entirely; by
proper choice of first terms. However, as the reader can easily ver-
ify, if 5 appears once as a factor, it reappears in every 5th term
thereafter.

(6) Now, as before, let us turn from these two special cases of 2
(the only even prime) and 5 (the only one = 5 [10) and consider the re-
maining ones of the forms #1 and.+3 [10. We make the following

conjectures:

(a) Byproper choice of initialterms we canmake any such prime,
p, first appear as a factor of any term whose number (rank)<p; or, if

p is of the form 4 k + 1, we can suppress it altogether.

(b) If such a prime appears at all, it will reappear at the same

interval as in the basic series.

To test these conjectures, let us make tables, as for 5, for 7
and 11.
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0 1 2 3 4 5 6
0 1 1 1 1 1 1 1
1 2 {8 1714145 6| 3
242 15 81617 31 4
342 (61418131517
442 1715 3181446
5 2 1441317 61815
6 | 2 13 615 414]7 8

Note the absence of N's; since 7 is always a factor of some terms of

any general series.

For 11: b,
Second term

0 1 2 3 4 5 6 o g 5 10
0 1l1 1 1 1 ~ 1 1 i i )
1 2 10 9 5 N P 3 5 N - .
2 2 6 |10 8 9 N 5 z 3 3 -
3 2 N N | 10 4 7 '9 3 T g -

4 2 5 6 7110 N ) 3 5 3 1\.,1”,
5 2 7 8 4 5 10 3 N 6 N 5
6 2 9 N 6 N 3710 5 P g 5
7 2 N 4 9 3 8 N 710 5 3 z
8 2 8 5 3 6 9 7 TT1% N <
9 2 4 3 N 7 5 N 9 5T 1o A
10 2 3 7 N 8 6 4 ’ N 5 57110

Observing these three tables, we see the following common features:

(i) The top line is always all 1's;

(ii) The left column is always all 2's, except for the top entry.

(iii) One diagonal is all 3's.

(iv) Theother diagonalisall k's (where k will be seen to be the
constant of reappearance, in this case 10), except for the upper left
corner.

(v) The nth line (except the top)is line 1 ''spaced out' at inter-
vals of m from the 3.

(vi) Hence only line 1 need be computed.
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Some of the features are obvious:

(i) The top line of 1's mean only that a (in the series a, b,
a+b...) 2 o [p. Hence the first zero is at the first term.

(ii) The left column of 2's is similarly explicable. The excep-
tion of 1 at the top left corner is because both a and b = o, and the
earlier of the two is a, the l1st term.

(iii) The diagonal of 3's is due to their representing series in
whichthe first two terms are a, p-a, p. The a's vary; but p in the
3rd term does not.

(iv) The identities inthe other diagonal represent general series
ees 3, 3, 6...,

4, 4, 8...). Theterms of each of these series are those of the basic

of which the first two terms are both a (2, 2, 4.

(1, 1, ...)eachmultipliedby a., Consequentlyifany term in the basic
series gave a remainder [p it would also give a remainder (usually
different) when multiplied by a constant. On the other hand, if the nth
term, U, of the basic series = o [p; so also a Un Z o [p. Thatisto
say, the earliest zero remainder in (a, a, 2a ...) occurs at the same
term, regardless of the value of a.

(v) The ''spacing out'' of Line 1 to get the entries in Line n of
the tableis explicable similarly. If x =o [p so also kx=o [p while
if x ;é o [p soalso kx $ o [p, in the first case for any value of k,
and in the second so long as k% o [p.

This means that the occurrence of zeros in any series (a, b,
a +b...)is unchanged if each term in the series is multiplied by the
same constant, k%o [p. In other words, while non-zero remainders
may vary, p will occur as a factor of precisely the same terms in
series(l, 2, 3,5 ...), (2, 4, 6, 10...), (3, 6, 9, 15...) etc. Hence
the entries in line 1 and col. 2, line 2 and col, 4, line 3 and col. 6 of
the table must be the same; and similar reasoning shows how the rest
of the spacing out follows the same pattern,

(vi) Finally we must consider line ''l'' of the table. To fill it
out the hard and obvious way requires us to run out, reduced [p, the
various series (1, 2, 3, 5 ...), (1, 3, 4, 7...), (1, 4, 5, 9...) un-

til we reach a zero in each; and then make corresponding entries in
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line 1. This done, spacing out as per (v) will complete the table.

An alternative, or a cross-check can be made as follows: Sup-
pose we run out the basic series for a prime we have not yet considered,
13. The series reduced [13 to the first zerois 1, 1, 2, 3, 5, 8, O.

Attachedis a table partially filled in, with the invariable l1st row
of 1's, left column of 2's, diagonal of 3's, and diagonal of 7's (the
zero period of the basic series). There are other entries, which we

now explain.

For [13
Remainder of Second Term (b)
o 1 2 3 4 5 6 7 8 9 10 11 12
ol1 | 1|11 |1rlrl1]1j1]1]1 1 1
I, - N
2| 2 7 5 3 [l
T - i
Remainder 3 2 7 /,/: 3 \‘S\
of 4l 2 7 3
T
First 5SCZ& H7” 7 'mll
Term 6 2 713
(a) 7, 2 307
a5 \ﬁ >
2ZZ N\ == R
9] 2 3 7
10) 2. FRE p == 7
11:;\2.\:% 3 | =
ANV 11 T I I O B
1 1 2 3 5 8 0 marked ///
8 8 311 1 12 o v ANSY
12 12 11 10 8 5 0 v ==
5 5 10 2 12 1 0 r i

The entry in (1, 1) is 7; because we have just seen that 7 is the
zero-period of the basic series. There is similarly a 6 in the square
(1, 2) because after a look at the basic series, we see that if we start
anew series withfirst terms 1, 2, instead of 1, 1; we arrive at 0 after
6 terms instead of 7. In fact, as the 7 and 11 tables have illustrated

already, the entry in square (1, 2) of the table is always k-1, where
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k is the number of the first zero term in the basic series. Similarly
the entry in the square (2, 3) is always k-2; and in the square (3, 5) it
is k-3; etc.; becauseas we select later and later pairs of terms in the
basic series to start new series, we reduce one by one the number of
the first term in which zero appears. Hence we can, without further
computation than the basic series reduced [p, fill in a number of en-
tries on various lines of the zero appearance table (see the attached
figure for 13).

Moreover, we can use these entries, with a little more trial and
error, to work back to values in line 1 of the table. For example, let
us again look at the 13 table. The period of zero-appearances being 7
(as we have seen from the basic series) and 3, 5 being the 4th and 5th
terms in the basic series, we know that 0 appears at the (7-3)th term
in a new series (3, 5, 8, 0 ...). Suppose we multiply the new series,
term by term, by such a factor (9) as makes a still newer series with

the first term 1.

We have 3x9, 5x%x9, 8x9, Ox9 --- [13
or 27 , 45, 72, 0--- [13
or 1 3 6, 7, 0 --- [13

Hence from the entry of 4 in square (3, 5) we can check the same en-
try in (1, 6); both must be and are 4.
Here we note an interesting point. Still working with modulus

13, we have the basic series

1, 1, 2, 3, 5, 8, 8, first zero 7

from which we get 1, 2, 3, 5, 8, 0, zero 6
2, 3, 5,8, 0 zero 5

3, 5,8, 0 zero 4

5, 8 zero 3

We have found the entry in the table (first zero) for 3, 5 was the same
as for (1, 6). Similarly we have seen that (1, 2) is simply 1 less than
(1, 1). Again (2, 3) = (14, 21) = (1, 8); and (5, 8)=(40, 64)= (1, 12).
However, this gives us entries in line 1 only for claims 1, 2, 6, 8 and
12, We have no data for the remaining columns, i.e. for series be-

ginning (1, 3) (1, 4) (1, 5) (1, 7) (1, 9) (1, 10) and (1, 11).



196 FIBONACCIOUS FACTORS Oct.
One might at first imagine that these deficiencies were due to the
factthat we had only run our basic series out to the first zero, instead
of continuing beyond this restricted period to the full period, when not
only zero but all remainders 13 repeat: 1, 1, 2, 3, 5, 8, 0, 8, 8, 3,
i1, 1, 12, o, 12, 12, 11, 10, 8, 5, 0, 5, 5, 10, 2, 12, 1, 0. How-
ever, the reader will find that the ﬁew entries in squares (8, 8) (8, 3)
(3, 11) etc. still '"'run back'' to the same set of 5 entries on line 1,
There are no entries on line 1 in columns 3, 4, 5, 7, 9, 10 and
11; because series with first terms 1 and second terms 3, 4, 5, 7, 9,
10 and 11 have no terms divisible by 13! Recall our test, of whether
p could be a factor of a series beginning (1, b, 1 +b), i.e., is

+ b2 - b-1 aresidue of p? It will be found that

:i:(32~3— 1)=5 or 8

:l:(42—4~ 1)=11 or 2

:I:'(52—5— 1) =x19=6 or 7

(72 -7-1)=241=2 or 11
2

+{97 -9-1)=x71=6o0r 7

+ (10‘2 -10-1)=+89=11 or 2
+ (114211 -1)=%109=5 or 8
are none of them residues [13.
Consequently there must be entries of N (for ''never'') in each
of Columns 3, 4, 5, 7, 9, 10 and 11 of Line 1.
TOSUMMARIZE as tothe appearances of p as a factor of terms
in a general series (a, b, a +Db).
If p is prime
(i) Itwillnever appearunless & (b2 - ab - az) is a residue of p.
(ii) If it can appear per (i), and does so, it will reappear at the
same interval as in the basic series,
(iii) Todetermine the place of first appearance there is no sim-
pler method known to the writer than to reduce a and b [p andthen
run the series out to the first zero. However, this can be quite a bit

simpler than running out the series, itself. E.g., what, if any, terms
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are divisible by 19 in the series 119, 231, 350, 581? Note
119=5 [19 231=3 [19
Hence the first 3 terms = 5, 3, 8 and 32 -5.8=-31=112=7, ares-
idue; sothat19is a possible factor, then we have 5, 3, 8, 11, 0. I.e.,
the 5th term 931 is so divisible. Moreover, since the zero period of
the basic series is 18; this is also the period in our given series; and
the 23rd, 4lst and every 18th term thereafter is divisible by 19.

If p iscomposite, the rulesfor zero appearances can be derived
from the rules of its prime factors in a manner easily illustrated by
two examples:

(1) What, if any, terms are divisible by 143 in the series
1, 6, 7, 13 --- ?
Since 143 = 11 x 13 we first check possibility of both primes as factors

62 -6 -1=29=7 [11 and 3 [13

-7T= 4 is a residue of 11; and 3 is a residue of 13.

Hence both primes are possible factors

Moreover, it can easily be found that zero [l1 appears at the
6th term with a period of 10; while zero [13 appears at the 4th term
with a period of 7.

Hence the number n, ofthe first term divisible by 143 must sat-

isfy the congruences.

n=6 [10
and n=4 [13

The minimum solution is 56. Hence the 56th term is the smallest di-
visible as required by 143,

(2) Onthe other hand, there are cases in which, while there may
be terms of a series divisible by each of two (or more) primes, there

may be none divisible by both (or all). Consider

1, 7, 8, 15, 23
As the reader can check, the 4th term and every 5th thereafter is di-
visible by 5; while the 8th term (99) and every 10th thereafter is di-

visible by 11. However, there is no term divisible by 55. This is
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due to the fact that there is no solution to the simultaneous congruences
n=z4 [5 (a number ending in 4 or 9)
nZ= 8 [10 (a number ending in 8)

No number satisfies both conditions.

Thus there is no fixed and simple test for divisibility of a gen-
eral series by a composite number. One mustdetermine for each prime
factor of the composite modulus, (i) the term at which it first appears
and (ii) the period at which it reappears thereafter. Then one must
test the congruences expressing these two conditions for each prime
in the composite modulus; and either solve them or find them to be
insoluble.

To complete this analysis would require attack on the problem of
zero appearances in both the basic and general series for moduli which
are powers of primes, pC. However, this diécussion is postponed
pending publicationofa proof by J. H. E. Cohn that in the basic series
1 UZ and U’_l,.

Beyond this we offer only these Conjectures:

no terms are exact squares, except U

In the basic series

(i) If the kth term 1is the first one divisible by p, then the
choice of first two terms, and will not be greater than the (pc—l)th
term.

(ii) There will be no first appearance, if the first terms are
chosen so that =* (b2 - ba - az) are nonresidues [pC.

(iii) If there is a first appearance, there will be reappearances

at the same period as in the basic series.
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A GENERATING FUNCTION FOR FIBONACCI NUMBERS

R. G. BUSCHMAN
State University of New York, Buffalo, N. Y.

Since interesting identities for certain number theoretic func-
tions can be derived from their generating functions, in particular gen-
erating functions for Dirichlet series, the following problem seemed
to be of interest.

Problem: Find a generating function G which yields the Fib-
onacci numbers in the coefficients of a Dirichlet series.

First we note that we must write the series in the form

(1) G(s) = X f c n 7,

since the series diverges for ¢, = 1, the fn's increase too rapidly.
Part of the goal is, as a result, to find a simple expression to use for
c_.
n

One attempt at the solution proceeds as follows. Consider the

more general difference equation,

(2) Uy, u u = au + burl

1’ n+l

from which we can write
_ n _ _.n _ _
R Y R U L L PACPIY

with 212, = -b, zlJrz2 =2, z, '7'/ Zs- Substituting into the Dirichlet

series we have
(3) Su ¢ n :A(zl)zczn— +A(ZZ)2czn

where the function A 1is defined by

.A(zl) = (uozf—ulzl)/(zf+b) = (ul—zluo)/(zz—zl) .

199
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Since ¢ ~must be chosen to guarantee the convergence of the series
in (3), it is convenientto select c,=c and then !czzl <1, lczll <1,
Hence equation (3) can be written

@

n_-s
(4) h u c'n = A(Zl) F(azz, s) + A(ZZ) F(azl, s) ,
n=1
where F(z,s) is a function discussed by Truesdell [2] . Further
F(z,s) = X zon % = 2 $(z,s,1),

n=1
where ¢ denotes the Lerch Zeta-function - some of the properties of
which are known [1:1.11] . This allows the result to be expressed in
various forms.
The difference equation (2) can be rewritten for M u =V, in
the form

2
0 V1o ¥ = acvn+bc Vo1 (n 2 1)

For the Fibonacci case it is convenientto set c = 1/2, so that the gen-

erating function for Z—nfn, that is

)

G(s) = 2 (z'nfn) n %,

n=1
can be written in the form

(5) G(s) = (2//5) %F[(1+ V5)/4,s] - F[(1-V5)/4, s]§ .

To make efficient use of this generating function one needs to
have available identities involving the function F(z, s), especially such
identities as involve products. Analogoustothe (-function, an infinite
product expansion for F(z,s) in terms of s, with fixed =z, might be
helpful.
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the Structure of Polymers, "' Ann. of Math. 46(1945), pp. 144-151.
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ADVANCED PROBLEMS AND SOLUTIONS
Edited by VERNER E. HOGGATT, JR.

San Jose State College, San Jose, California

Send all communications concerning Advanced Problems and
Solutions to Verner E. Hoggatt, Jr., Mathematics Department, San
Jose State College, San Jose, California. This department especially
welcomes problems believed to be new or extending old results. Pro-
posers should submit solutions or other information that will assist
the editor. To facilitate their consideration, solutions should be sub-
mitted on separate signed sheets within two months after publication

of the problems.

H-61 Proposed by P. F. Byrd, San Jose State College, San Jose, California (corrected)

Let
— < - —
£, =0 for 0 $n Sk-2, f; ;=1 and
k
fn,k: § fn-j,k for n 2 k
j=1
Show that
f
%<i n, K <%+Zk as Ne—>ow ,
nt+tl,k
Hence
lim lim fn,k _1
k—> = n-—»® fn+1,k 2

H-65 Proposed by J. Wlodarski, Porz-Westhoven, Federal Republic of Germany

The units digit of a positive integer, M, is 9. Take the 9andput
it on the left of the remaining digits of M forming a new integer, N,
such that N = 9M. Find the smallest M for which this is possible.

201
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H-66 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va., and
Raymond Whitney, Pennsylvania State University, Hazelton Campus, Hazelton, Pa.

Let

k
a.,y ,.=0
j=0
be a linear homogeneous recurrence relation with constant coefficients

aj. Let the roots of the auxiliary polynomial

and each root . be of multiplicity m, (i=1,2,...,m). Jeske (Lin-
ear Recurrence Relations - Partl, FibonacciQuarterly, Vol. 1, No. 2,

pp. 69-74) showed that

- 7 i
T oy = T e
n=0 B i=

m n
" y. = X r. .
(*) nooD b5 4

(i) Show that (*) is in general incorrect, (ii) state under what condi-

tions it yields the correct result, and (iii) give the correct formulation.

H-67 Proposed by J. W. Gootherts, Sunnyvale, Califomia

Let B=(B,, B B) and V=(F_, F ... F ) be
0 n m

| A m+l’ m+n
two vectors in Euclidian n +1 space. The Bi's are binomial co-

efficients of degree n and the Fmﬂ's are consecutive Fibonacci

numbers starting at any integer m.
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Find the limit of the angle betweenthese vectors as n approaches

infinity.

H-68 Proposed by H. W. Gould, West Virginia University, Morgantown, West Virginia

Prove that

v
]

5

v

n
1
2 "FT—‘ R
k=1 k n+2

with equality only for n =1, 2.

H-62 Proposed by H. W. Gould, West Virginia University, Morgantown, West Virginia
(corrected)

Find all polynomials f£(x) and g(x), of the form

r .
f(x+l) = 3 a.x, aj an integer

S .
glx) = 2 b.xJ, bj an integer

such that

2 {x°E2xt) - ()PP} + 3§ P ) - )l |

#2x41) § xf(xH) - (x+1)g(x)§ =0

H-69 Proposed by M. N. S. Swamy, University of Saskatchewan, Regina, Canada

Given the polynomials Bn(x) and bn(x) defined by,

bn (x) = x Bn_l(x) + bn—l(X) (n > 0)
Bn(x) = (x +1) Bn-l(x) + bn—l(x) (n >0)
by(x) = Bplx) =1
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it is possible to show that,

n

Bn(x) =3 <n+r+1> oF ,

n-r
r=0

and

n
b (x) = I n+r> %% .

n r=0 n-r

It can also be shown that the zeros of Bn(x) or bn(x) are all real,
negative and distinct. The problem is whether it is possible to factor-

ize Bn(x) and bn(x). I have found that for the first few values of n,

the result

n :
_ Z Ir . b4
Bn(x) = I-T—_T-ll:x + 4 cos (m) z-jl

holds. Does this result hold good for all n? Is it possible to find a

similar result for bn(x)?

SOLUTIONS

FROM BEST SET OF K TO BEST SET OF K+17?
H-42 Proposed by |. D. E. Konhauser, State College, Pa.

A set of nine integers having the property that no two pairs have
the same sum is the set consisting of the nine consecutive Fibonacci
numbers, 1,2, 3,5,8,13, 21, 34, 55 withtotal sum 142. Starting with 1,
and annexing at each step the smallest positive integer which pro-
duces a set withthe stated property yields the set 1, 2, 3,5, 8,13, 21, 30,
39 with sum 122. Is this the best result? Can a set with lower total

sum be found?

Partial solution by the proposer.
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Partial answer. The set 1,2,4,5,9,14, 20, 26, 35 has total sum
116. For eight numbers the best set appears to be 1,2, 3,5,9, 15, 20,
25 with sum 80. Annexing the lowest possible integer to extend the set
to nine members requires annexing 38 which produces a set with sum
118. It is not clear (to me, at least) how to progress from a best set

of k integers to a best set for k +1 integers.

Comments by Murray Berg, Oakland, California

The set given above in the partial solution is invalid since

1+5 = 442 = 6 andthe problem asks for distinct sums for different pairs.

Comments by the Editor

An apparent solution summing to 118 was received but was dis-
carded since the sum was larger than the partial solution given above.

-Please resubmit if you read this.

AT LAST A SOLUTION

H-26 Proposed by L. Carlitz, Duke University (corrected)

r-1

(k+1-2) (I‘, s = ]-’ 2; PP .k+1). Then

Let Rk = (brs)’ where brs =

show

s . ..
r-1, k+l-r _k+tl-r-s+j_r+s-2j_j-1
f ) s-j )Fn—l Fn Fn-l-l

Letting RE = (ars), we evaluate a by extending the proposer's
method of solving B-16 (Fibonacci Quarterly, Vol. 2, No. 2, pp. 155-
157). Using Carlitz's notation, we may easily show by induction that

the transformation

induces the transformation
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.
k 0, k
Xl - (O)Y
k-1 k- 1.k
x'" Tyt = (xy 7+ ()y
Tk:<
k-1 k-1, k-1 k-1 k-1 k-1, k
X'Yl = (k-l)x y LTI i § 1 )XY +( 0 )y
k_ k. k k. k-1 ke k-1, k k
1 _
{ YU E LX) Tyt F(xy )y
-Carlitz also showed that the Til is given by
x(n) = F x+F vy
(1) " . n-1 n
I e
¥ n nt+l-
so that TE induces the transformation
k+1
2) ™. (X(n))k—r-l-l (n))r—l - s a Xk+1—s s-1 (r=1,2,...,kH),
k ¥ 1 rs ¥
J.."Z 1

We note here a misprint in the B-16 solution; the last transformation

n

should begin with T,

instead of Trll. To evaluate a.g we substitute

(1) into (2) to obtain

k+1
k+l-s s-1 : k+l-r, r-1
Sgl rs™ y - (Fn—lx * FnY) (an * Fn+ly)

k+l-r
= X |
i=0

ktl-r “ler-i_3i ktl-r-i i
i En T R v

r-1

X 3
j=0

r-1 _r-1-j_j r-1-jj

k+tl-r r-1
= X DI
i=0 j=0

k+‘1 -r)(r—.l )Fk+1 —r—1Fr—1+1—_]F_]

j Xk—i—j itj
i J n-1 n n+l ¥
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We equate coefficients of Xk+l-sys—1, summing all terms of the last

sum with i+j = s-1, and since j <s-1 we find

s-1
a = (

k+l-r, r-1 k+2 r- s+JFr+s 2- ZJF_]
520 s-1-j

)(_] 1) n+l

|
1M @

ktl=-r k+l -r-stjrts-2j_j-1
& DG DFS F Foa -

ANOTHER LATE ONE
H-38 Proposed by R. G. Buschman, SUNY, Buffalo, N. Y.

(See Fibonacci Numbers, Chebyshev Polynomials, Generaliza -
tions and Difference Equations; Vol. 1, No. 4, Dec. 1963, pp. 1-7.)
Show
r —
(un+r *(-b) Yn- )/un = A

Solution by Douglas Lind

Let 24 % z, be the roots of z2 - az - b =0, andnote a = zy +z2,

-b = Zy%5. We recall from the article that

wy = {(ap-zyug)zg - (uy-zug)a] | /lay-z

and
_ _ n n _
= g(a 22))7, - (a-22,)2] }/(z2 7))
Now
. n
An = ZZ + z
since a-Zzlz zy-2y = f(a-Zzz), so that
.I_ -
un)\r = i(u -z uo)z - (u -z uo)zn Ty (—b)r(ul-zluo)zg *

- <-b>r<u1~22uo>2’i"r§ /zy-21)

1]

r
un+r +(-b) un—r

the desired result.

Also solved by Clyde Bridger and the proposer.



THE FIBONACCI NUMBERS AND THE “MAGIC”’ NUMBERS

J. WLODARSKI
Federal Republic of Germany

It was reported here (The Fibonacci Quarterly, issue 4, 1963)
that one of the fundamental asymmetries inthe world of atoms is asym-
metrical distribution of fission fragments by mass numbers resulting
from the bombardment of most heavy nuclei (by thermal neutrons).

The problem of this type of the asymmetry is one of most diffi-
cult problems in the branch of fission-physics.

It seems that by the here mentioned asymmetry there is a con-
nection betweenthe Fibonacci numbers (... 34, 55, 89, 144, ...) and
the so-called ''magic' numbers (2, 8, 20, 28, 50, 82 for protons and
2, 8, 20, 28, 50, 82, 126 for neutrons), which are well known in
nuclear physics.

6 possesses 144

23
929
neutrons and consequentlya sufficient quantity of neutrons to form two

As a matter of fact the fission-nucleus

neutron-shells: one with 50 neutrons and the other with 82 neu-

trons. If the rest of 12 neutrons [144 - (50 + 82)] divide in two equal

parts, the whole number of neutrons in the heavy fragment is 82 + 6 =

88 (89) ' and in the light fragments 50 + 6 = 56 (55), *)

The 92 protons of the nucleus 92U'236 can also form two shells
with "magic'' numbers of protons: 28 and 50 respectively. If the rest
of protons [92 - (28 + 50)] = 14 divide in the same manner as the rest
ofthe 12 neutrons, the whole number of protons inlight fission-fragment
should be: 28 + 7 = 35(34) and in the heavy fragment: 50 + 7 = 57(55).

These numbers of protons (35 and 57) and the neutrons (56 and
88) in both fission-fragments of the nucleus 92U 3 conform rather

well the most experimental results.

+ The number in parenthesis is the nearest Fibonacci number.

1) Mukhin, K. N., Introduction to Nuclear Physics. Moskow,
USSR (1963), p. 350.

HOKKAKHKAKKIXKKX
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AN ELEMENTARY METHOD OF SUMMATION
D. G. MEAD

University of Santa Clara, Santa Clarg, California
The purpose of this note is to present an elementary method for
summing the first n terms of a sequence which satisfies a given homo-
geneous linear recursion relation. The method is, in fact, a simple
extension of that normallyused for summing a geometric progression,

which we first recall.

Let:
2 n
S=a+t+ar t+tar +.. . tar
Then; 2 n _ ntl
-rS= -~ar-ar -. . . -ar - ar
Therefore:
S(1 -r)=a- arn+l
and if r # 1,
a - arn+1
S = 1 -r .

We now turnto the general case. If for every positive integer j,

Gj satisfies

(1) G .

J+k+2 c. G =0,

i=1 b jtk-i

where the c; are fixed quantities, we write, as above

e

_ %
S—Gl_+G2+G3+... .+ Gk+1 +Gk+2 +... +Gn i
[
= H
CIS c1G1+ch2+... +EC1Gk +C1Gk+1+_... +C1Gn-1§+C1Gn

H H

CZS= CZG]. +... +§C2Gk"1 +C2Gk +... +C2Gn_2§+C2Gn_1+C2
: :

ckS: ickGl +C.kG2 +... +can_k§+... +Can

209
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Since, adding vertically and using (1), the sum of the terms inside

the dotted lines is zero, we see:

S(1 +c¢ l14+c, +...+c

+...+ck)=Gl( 1 k-l)

+G2(1+c +...+ck_2)+... +G

1 1 k

+Gn(cl+c +...+tc )—fG

) " , Feeete) e G

n-1tc k k n-k+l°

If 1+c1+c2+... +Ck—l

The same method can be used to find

# 0, we can solve for S.

St

S i'G., for a given t,

i=1 b

if the Gi satisfy (1). To facilitate the presentation, we collect some
terminology and facts.

Let E be the operator with the property that

EG; = Gy
To say that Gj satisfies (1) is equivalent to the statement that the

operator

K
HE) =E+ 3 c, E
i1

k-1

when applied to any Gj’ yields zero (EO being the identity operator),

The associated polynomial

k .
bx) = x5+ T xS
i=1 *
is called the characteristic polynomial. * The special role of the num-

ber one in our generalization is now easily stated, for

L+c) +... +ck7! 0

if and only if unity is not a root of the characteristic polynomial.

>'<<]5(x) is unique if we assume Y (E) Gj = 0 for all positive j implies
the degree of ¥ (x} 2 k.
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Itis known ([2], pp. 548-552) thatif ¢'(E)Gj =0, then Bj = jt'l G.
J

satisfies

[p(E)] * B, =0, for t21.

If ¢(1) #0 then (1) # 0, where Y(x) = [¢'(X)]t’ and the method just

described can be used to find

o S |
T= 3% B.= X j G. .
17 e J
Writing
kt
U (x) = th +s dixkt—l,
i=1
we find:
kt-j kt-1
paT= 32 p.B.+ X r i
0 =1 520 n-j
where
kt-j kt
p.=1+ 3% d. and r.= X d. .
J i=] ' L s

Since ¢>(E)Gj =0 and Bj = thj, one can easilyobtain T 1in terms of
Gl’ e Gk—l;Gn—k+2’ cees Gn'
The assumption that unity not be a root of the characteristic

polynomial has been critical to our discussion sofar. We now assume
3G.% satisfies
J
X(E) Gj =0

where X(E) is a polynomial with X(1) = 0. Factoringout all the fac-

tors x -1 in X(x), we obtain

X(x) = (x - 1)* b(x), where (1) # 0.
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Letting Cj = ¢(E)Gj, we note:

n k n-k k-1
(1) = > > 3
1 =2 | .= . G.q. + . Cc. + . G .s.,
S =93 0y Gy= 5 Gt D S5 5 Cang S
where
k .
X(x) = xk + X ¢ xk—l,
i=1
k-j k
g.=1+ 3 ¢ and s.= X c.
J i=1 i=j+1 *

However, it is known ([2], pp. 548-552) that if (E - 1) C; =0,
then Cj is a polynomial of degree £ a -.1. Ifweassumetheformulas

for

n
5P
j=1
are known, for j a positive integer, the only problem remaining is
that of determining the polynomial Cj = dO + dlj LI da_lja-l. It
is easy to show that the difference operator E-1 when applied to a
polynomial of degree r vyields a polynomial of degree r - 1. There-
fore (E - 1)jC1 involves only da-l’ da—Z oo, d. and t}'1e system of
linear equations onthe di obtained by computing (E - l)JCI, j=0,1,
2, ..., a-1 can clearly be solved for the di'
The above is a generalization of the technique used by Erbacher

and Fuchs to solve problem H-17. [4]

Example: Assume that for each positive integer j, Gj satisfies
X(E)G, = 0, where X(x) = (x - 1) (53 - 3x% +4x +2) = (x-1)° B(x). If
Gy =G, =G;3=G, =G =0, G, =1, then C1=<;I$(E)G1=0,2 C2=¢(E)
G, = O?: = 1, With Cj = dO + dl'j + dzj , we find

+3d, =0 and C1 = do +d1 +d2.

(E-1)°C =2d,=1, (E-1)C, =d

Hence Cj=1 - (3/2)] +%/2 and

Q
]
by
8
Q
w
1

1
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n-3
e } Ca .2
$(1)S=45=2G, -2G, +G, + JEl(l (33)/2 +j /2)+3Gn+6Gn_1+2Gn_2
n-3 >
= j§1 (1 - (35)/2 +3°/2) + 3G, +6G, _; +2G__,

In conclusion, we have seen how the elementary method used to
sum a geometric progression can be generalized to find the sum of the
first n terms of a sequence which satisfies a linear homogeneous re-
cursionrelation. It may be worth stating that this method is applicable
to a sequence whose terms are products of corresponding terms of
sequences each of which satisfy a linear homogeneous recursion rela-
tion (see [l] pp. 42-45 for a special case).

We propose as a problem for the reader: Find in closed form

the sum of the first n terms of the sequence ;wn% :
1,2,10,36,145, . . .

where w_=F G with F F + F (F1= F2= 1) and
n n n

n n+2 - " n+l
C7n+2 - ZGn+1 * C'n (Gl =1 GZ = 2).
REFERENCES
1. Dov Jarden, Recurring Sequences, Jerusalem, 1958,
2. C. Jordan, ''Calculus of Finite Differences,'' Chelsea, New
York, Ed. 1950.
3. James A. Jeske, ''Linear Recurrence Relations, Part I," The
Fibonacci Quarterly, Vol. 1, No. 2, pp. 69-74.
4. Problem H-17, The Fibonacci Quarterly, Proposed in Vol. 1,

No. 2, 1963, p. 55 and solved by Joseph Erbacher and John Allen
Fuchs in Vol. 2, No. 1, 1964, p. 51.
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ON IDENTITIES INVOLVING FIBONACCI NUMBERS
V. C. HARRIS

San Diego State College, San Diego, California
Rather extensive lists of identities involving Fibonacci numbers
have been given by K. Subba Rao [1] and by David Zeitlin [2]. Addi-
tional identities are presented here, with the feature that summation
by parts has beenused for effecting the proofs (except for identity 23),

Iet £f =0 and f, =1 andlet f =1 + £ for n 2 2. Then
o 1 n n n

-1 -2
n
(1) kEO Kfy =nf o ~f 5 +2
o k 1
(2) 130 (1)'kf, = ((DMat)E | +(-1)777f -2, n22
o k n
3) Z, UM ek [0 gy + 55 -1 /5
n k n >
(4) Zo Y e 7 [0 045 + 4y +2 ] /5
n
(%) kED k= D00 - fonte
n
(6) kEO Kokt = @iy 5 - 63 +1
o k n
(7) 130 (-1)7kf,, = (1) (nf, ., + (n+1)f2n)/5
o k n
(8) k§0 (-1) Kby g = (-D)HnE, o+ (b, )/5 - 1/5

214
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(9)

(10)

(11)

(12)

(13)

©(14)

(15)

(16)

(17)

(18)
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L2 2
Ez k ka = (n +2)f2n+l - (2n+l)f2n -2
o2 2
kfo Kty = (20 4 - (@t 4y - L
2n 2 2
kEO Iy = @ntl)f, G~ fonn T
o k n
2 kEO LR gy = U D s
n _ .
- (D st )/2, m=2,3, .
e k n
3 kfo LR e = G
n —_—
S e HE)/3 m=2,3, ..
a k n
121 kEO (-1)V"kf_ oy = (-1)" [(55n+35)f o .,
- 25 g oot (22n+18)£m_‘_5n]
-[2of , -17f -10f T m=1,2, ...
n k
s f =f - (nt3)
k=0 k=0 X1 ntd
n k
T k X £ = (ntl)f - f +5 - n(ntl)/2

n+4 n+6

-A2n-3)f__, - 8

23 3 2
go Kf = (@ +6n - 12)f - (30" - 9n +19)f 4 +50
- . »
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n

4. 4 2
(19) g, kfk—(n +12n -48114—98)fn_*_2
k=0
_(4n> - 180% + 76n - 159)f__, - 416
n+3
o2
(20) k§o B = fan
n
2 1
(21) % f f1<+1 A fn+2 fn+1 fn
k=0
o2 1 n
(22) kEO fkfld-Z 3 (fn+3 fn-l-l fn - (-1) fn—l +1)
n
3 _ 1 2 n >
(23) 5:: fk ) (fn+1 fn - (-1) fn—]. +1) n2l
k=0
a 3 2 n 1 2
(24) Eo kfk = -——nzl oty -G ) -7 fr2fnn

+(-1)*3f_ - 2f ,)+5
T n n-]. Z

The well-known method of summation byparts is established from

the identity

Of course, a suitable choice of uy and A Vi is essential just as it is

in integration by parts. In order to find vy from A vy results in [1]
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and [2] have been used when needed. Also, any constant term in Vi
can be omitted in the two terms of the right member.

= A = =
To prove (1), let u, =k and 8v, ={f . Then Auk 1 and

k-1
v, = % f . =f1 -1
k ico 1 k+1
Omitting the constant -1 from Vi we find
n ntl n
S kf, = kf S 1-f = (n+l)f - (£, ,-1-f)
k=0 k k+l l o k=0 kt2 n+2 nt4 1
=ofio m Bhpg - fhgp) T2
= nfn+2 - fn+3 +2
To prove (2), let uy = k and
Kk k i k-1 i
Avi= (-1 = 3 (D' - 3 (D'
i=0 i=0

_ _ Kk _ ‘s _
Then Auk =1 and Ve = (-1) fk—Z 1. Omittingtheterm -1 from Vi
with k 22

n n n+l n
TRk = 3 DRk -1 = k(-1 e D TS Lo S |
k=0 ko =2 k k-2 |, Nt k-1
n n-1 k
LR R
n n-1
= (D)@ F D) -2

To prove (3) and (4), together, write in (3) U = (-1)k and
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k-1
So that Auk— 2(-1) and v, =f, ;. Then
n n n+l n
k k k k+1
A= 3 (-1)f,, = 3% (-1)f,, =(-1)f -2 3 (-1 -2
k=0 2k k=1 2k 2k-1 1 k=0 2k+1
_ n+l
= (-1) f2n+l -1+ 2B,
where
n
k
B= X (-1)f .
o 2k +1

so Au, = 2(-1)™! and v.o=f .

- (LK -
In(4)let w =(-1)" and Av, =f, k k 2k

"Then

n n+l n

k k+1

B= 2 (-1)f = (-1)°f -2 X (-1t
k=0 2k+1 2k | 4 =0

= (1) ¢ +2(-1)"f

2nt2 2A

2n+2

Solving gives the results.

"

To obtain (5) let uy = k and then Vi ka-l' This gives

n n+l

n
> kf,, = kf - 3 f = (n+1)f - f
k=0 2k 2k-1 0 k=0 2k+1 2n+l 2n+2

The others are proved similarly, except that (23) was obtained
from (21) and (22). Note that the same method could be used to extend

the results.
REFERENCES

1. K. Subba Rao, ''Some Properties of Fibonacci Numbers, '' Amer-
ican Mathematical Monthly, Vol. 60, 1953, pp. 680-684.
2. David Zeitlin, '"On Identities for Fibonacci Numbers, " American

Mathematical Monthly, Vol. 70, 1963, pp. 987-991.
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CONCERNING THE EUCLIDEAN ALGORITHM

R. P. KELISKY
IBM Watson Research Center, Yorktown Heights, New York

In most discussions of the integer solutions of the equation
(1) ax +by=1, (a,b)=1,

reference is made to the fact that an integer solution of (1) may be ob-
tained by using the Euclidean algorithm. With the restriction that
a > b >1 we shall show that in the x-y plane the solution of (1) ob-
tained by the Euclideanalgorithm is the lattice point on the line (1) which
is nearest the origin. This is probably not a new result, but we cannot
find a reference to it in the literature. -Dickson [l, pp. 41-52] gives
other algorithms for solving (1) for which itis known that the algorithm
yields the lattice point on (1) which is nearest the origin.

Suppose a > b, (a, b) =1, and a#_ 1 (mod b) and consider the
Euclidean algorithm appliedto the integers a and b. One obtains the

well-known sequence of equations:

= <
a b q + s 1< T b
= <
b r, a4, + T 1 r, < ¥y
= < <
r r, d3 + T, 1 T, r,
Tn-3 7 Tn-2 9n-1 * Tn-1’ 1< Th-1 <Tno2
n-2 7 Tn-1 9n * Tn

with ro = 1. The requirement that a # 1 (mod b) is equivalent to
T > 1, and hence the Euclidean algorithm will require at least a sec-
ond step. Hence n 2 2 and LI 2 2,

To obtain a solution of (1) one then derives the following sequence

of equations in which, for notational convenience, a = r 1 and b= ro:

219
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() = PiThan Ty

n -1 n 0

The Pi and Qi are polynomials in the q; and the solution (Pn, Qn)
will be called the Euclidean algorithm solution of (1). Itis determined

uniquely by the algorithm described by the equations (2) and (3).

1 1
Lemma 1: anl<2-b and Iin <za .
Proof: We first prove by induction
<!
(4) Ipil= Z "n-i
and
(5) la.| <1 for i=1,...,n
i 2 "n-i-1 ’ T

with equality possible in (4) only if i = 1. We have

+Q. r .,

l=P.r .
i "n-i-1 i n-i

and since

. = . .+ .
n-i-2 Tn-i-1 9n-i * Tn-i

it follows that

L= Qr 2ot (Bp-a, s 5

and we have the recurrence relations
(6) P. = Q.

and
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(7) 0. = P.-q_ .Q

i+l i n-i i

. _ - . < 1
with P1 1 and Ql =-q. To prove that 'Pl l =13 7T 1 recall

that T 2 2. Similarly,

1
T
IQl, =4y v [ n_2J< rn-Z < ; Th-2 7
n-1 n-1
From (6) it follows that ’le < -;— T and from (7) IQZ] < %—rn_?’
since
IQz’ = IP]_ - qn-lQll é Ipl’ +qn_1 IQI ’
1 1,
<zttt 77 Tao2
1
= 72 %n-3
Now suppose that
1
Pl <zr g and o] < 5 T k-1
for k=2,...,i. Then from (6)
1
ka+1’ - lel S ZThk-1
and
Qe = 1P - a0 L € TPl o
1 1
< Z Tn-k * 9n-x (7 rn—k—l)
1
= Z "n-k-2

This completes the induction. Since r,=a and ry = b, we have
proved the lemma if we take i =n in (4)and (5).

It seems intuitively clear that there cannot be two lattice points
on(l)which are equidistant from the origin if a # b. The proof of this

is straightforward but for completeness we give it here.
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Lemma 2: If a>b>0 and (a,b) =1, there do not exist two dis-
tinct lattice pointson ax + by = 1 whichare equidistant from the origin.
Proof: Suppose (a, B) and (£,M) are distinct lattice points

on the given line which are equidistant from the origin. Then
(8) R

and aa + bp = af +by=1. Wesolvefor P intermsof a, 7 in terms

of &, and substitute these in (8) to obtain

(9) (@ - £%4b% = 2a(a - €) - a%(a” - £9).

Since a # & by hypothesis,

(10) (@ + £)b% = 2a - a%(a + &).

But this implies that a I(a + 'f) since (a, b) = 1, andalsothat(a + £) IZa.
Hence, a+ £=+a, or a+ & =x2a. If a+ £ =+a, then (10) implies
the Diophantine equation a2 + bZ = + 2 which is impossible if a # b.
If o+ & =+2a, then a2 + b2 =+ 1. Clearly there is no solution to
this equation such that a >~b>0 and (a,b) = 1.

Itis well known thatif (xo, yo) is any lattice point on (1) then all

of the lattice points on (1) are given by the equations

x = x, - bt

0
y:yo+at

where t runs over the set of all integers. We can now prove our

Theorem. If a>b>1 and (a,b) =1 then the Euclidean al-
gorithm solution of (1) is the lattice point on (1) which is nearest the
origin.

Proof. First suppose that a i 1 (mod b). Denote the Euclidean
algorithm solution of (1) by (Pn, Qn)' Clearly the set, S, of positive
integers (Pn - bt)2 + (Qn + at)2 has a smallest member. If Pi + Qi
isnot the smallest numberin S thenthere existsaninteger t# 0 such

that

2 2 2 2
PC+Q°> (P - bt)" +(Q_ +at)
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or
0< (2% +b%) |t] <2|P b-0q al.
n n
But from the lemma we have

o< %) Jt] s2(p_ | b+l o)< a® + b

This is impossible; hence t=0 and (Pn, Qn) is the smallest number

in S.
The only remainingcaseisif a = 1 (mod b) and a> b> 1. Here
the Euclidean algorithm is complete in one step and P‘1 =1 and
Ql =-q = - (a - 1)/b. The expression S(t) = (P1 - bt)Z + (O1 + at)2
can be rewritten
c-a z 1
clt - —b—c—l + 1;7

where c¢ = a.2 + bz. Now S(t) is a minimum for t=t¥=(c-a)/bc, but
b >1 and ¢c> a imply that c¢(b-1)+a >0, or 0< t¥ <1, There-
fore, the integer t for which S(t) is a minimum is either 0 or 1.
It is easy to show that S(1)> S(0) if (c-a)/bc < 1/2. But '

| 0
1
w
A
p—
o
B
o
en
g
—

b
hence (Pl’ Ql) is the pointon ax + by = 1 whichis nearest the origin.
This completes the proof of the theorem.

It is an easy consequence of this theorem that if a and b are
consecutive Fibonaccinumbers, a > b > 1, then the lattice point P on
the line ax + by = 1 which is nearest the origin has Fibonacci coordi-
then P is (F

nates., In fact, if a=F - Fn) where n is

m+l’ n-1’
the greatest even integer not exceeding m. This follows readily from

the identity

_ n
En+ Fn—l - Fan = (-1) Fm-n+1'
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A STRIP METHOD OF SUMMING LINEAR FIBONACCI EXPRESSIONS

BROTHER U. ALFRED
St. Mary’s College, California

Given a linear Fibonacci expression such as

362880 - -
Fr+21 2177280 Fr+19 + 5594400 Fr+17 8013600 Fr+15
+6972840 Fr+13 - 3759840 Fr-l—ll +1225230 Fr+9‘ 223290 Fr+7
+ 19171 Fr+5 - 512 Fr+3 + Fr-l-l

we wish to express this, for example, as

AF +BF
T r

+11 +10

The formulas for doing so are well known being
Fo % Fll Foox P e Frked
and

" Fr P - Fran ok

However, the direct process can be replaced by a strip method in
which the given coefficients are arranged in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>