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1. INTRODUCTION

Let Wo’ W., ¢c#0, and d # 0 be arbitrary real numbers, and

1
define
— 2 -
(1.1) W ,=dW , -cW_ ,d"-4c#0, (n=0,1,...),
(1.2)  z_=(a"- ") /(a - p) (n=0,1,...),
(1.3) vn:an+gn n=0,1,...),

where o # B are roots of yz -dy +c =0. We shall define

- - n -
(1.4) W= (W VvV Wn)/c (n=1,2,...).
If W =0 and W, =1, then W =7, n=0,1,...; and if W = 2
o 1 n n o
and W1 = d, then Wn = Vn’ n=0,1,.... The phrase, Lucas func-

tions (of n) is often applied to Zn and Vn’ which may also be ex-
pressed in terms of Chebyshev polynomials (see (5.1) and (5.2)).

Inthis paper, general results (see section 3) have been obtained
that yield new even power identities (Theorem 1) for sequences de-
fined by (1.1). An additional result, Theorem 2, which contains
Theorem 1 as a special case, yields identities whose typical term is
the product of an even number of arbitrary terms taken from a given
sequence defined by (l.1). Particular applications will be given for

Fibonacci sequences and Chebyshev polynomials.

2. PRELIMINARIES

We shall need the following result:
Lemma 1. Let WO, Wl’ ¢c#0, and d#0 be arbitraryrealnum-
bers, and let Wn’ n=0,1,..., satisfy (1.1). Let m,p=1,2,...,
and define

P
(2.1) Qn,p,m,i,,...,1 )= 0 W =0Q (n=0,1,...),
! P gn1

241



242 POWER IDENTITIES FOR SEQUENCES Dec.

where is, s=1,2,...,p, are positive integers or zero. Then Qn

satisfies a homogeneous, linear difference equation of order p+l
with real, constant coefficients whose characteristic equation is

g(y) = 0, where

- J mp _ 3 .
2 YT V2 T ) (p=1,3,5,...);
(2.2) gly) = | o2/
- pm/z P- 2 _ mJ mp
- (p=2,4,6,...)

., p, denote arbitrary con-

Proof. Let A, B, and Cs’ s=0,1,..
stants. If a # p denote the roots of yZ -dy + ¢ =0, then

W= Ad" + Bp"
n

and

i mn i mn
mnti = Aa'®a + BRSSP .
s

Observing that

o]

Q = z

we can now conclude that Qn satisfies a homogeneous, linear dif-

ference equation of order p+l with real, constant coefficients, and

that am(p—s) Bms, s =0,1,...,p, are the distinct roots of tne cor-

responding characteristic equation g(y) = 0, where

P -
gly) = 1 (y - o pms)gms),

which simplifies to (2. 2) as follows:

Let Rs:am(p—s)ﬁms’ s =0,l,...,p. If p=1,3,5,...,

thereis an even number of roots, Rs’ and thus (p+1)/2 pairs, (y—Rj)-
"(y—Rp_j), j=0,1,...,(p-1)/2. Since aP=c, Vnz ™+ Bn, n=20,1,...,

we have R.+ R .= cm‘]V . R.R .= Cmp.
J p-J m (p-2j) -
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nt+2 n+l n

If p=2,4,6,.., there is an odd number of roots, RS, and thus
p/2 pairs, (y~R)(y-Rp_J.), i=0,1,...,(p-2)/2. The linear term,
y-—Rp/Z = y—cpm/z, accounts for the unpaired root, i.e., the middle
root, Rp/Z" This completes the proof of Lemma 1. Applications of
(2.2) for m =1 may be found in [1] , [2], [3], and [4].

In terms of the translation operator, E, where EJQn = Qn+j

B

j=0,1,..., set

(p-2)/2 :
_ 2 m}j _
T j:nO (B - Vm(P-ZJ)E te e, k=24 6sv)

Then, from (2.2), since g(E)Qn = (E-cpm/z)un = 0, we have

(2.3) u = u cmPR/2 (n=0,1,...:p=2,4,...).

We now define

p (p-2)/2 :
< (p) p-k _ 2 mj mp
(2- 4) k:O hk (d/(z N C))Y J:HO (Y C Vm(p—Zj)Y+C )

The coefficients h{(p) (d/(2 ¥c)), k=0,1,...,p, are also dependent
on m, which is notationally suppressed for simplicity. Using (2.4),

we may now rewrite (2. 3) as

(2.5) > nPla/z vey 1 ow .
k=0 k o=1 m(nt+p-k)+i
p p
- mpn/2 (p) -
=c > hrP(d/(2ve) n W
k=0 =1 PRt
(1’1—0,1, §P:2>4, )
Let p=29q, g=1,2,.... Since Vka = aka + Bka and c=
af, we can write (2.4) as
2q q
2 k 2 -k 2
2.6) z nZY @/ vay = ot ANy, g M
k=0 a- k=1



244 POWER IDENTITIES FOR SEQUENCES Dec.

q
: 0y - Crn(q—k)(lka)(Y ) Crn(q-k)BZrnk)
k=1
q ) i
= [y - MSe/e ™) [y - eesm T

Set y = ¢™M% in (2.6), which now simplifies to
2q (29) maqgk_k Zrnq2 mk mk
@1 > nfE (/e eE = o [ - (a/B)™] [x-(8/0)

Li=Rrte]

k=1

We now define

(2. 8) bf{zq) (d/(2V3)) = c“mqkhgq) (d/(2vE)) (k=0,1,...,2q) .

The, (2.7), with x replaced by y, now reads

Zq - q m m
@9 = b2 (a/(2veny® ek = o [y -tarer™ [y - /0™x]

4 2 -mk
= m (y" -V, iy D)

(m,q=1,2,...).
If we replace y by (1/y) in (2.9), we conclude that

(2q) _ (2q9) _
(2.10) b’ (d/(2 vc)) = bzq_k (d/(2ve)) (k=0,1,...,2q).

Our results will be expressed in terms of bgq) (d/(2Vc)). Recalling
(1.2) and that ¢ = af, we obtain from (2.9) for y =1

2q _ q
11y = D/ vey = (cnd cTmatat)/2 e gmk gmk2

k=0 k=1
— (-l)q(o. _ B)Zq C'mq(q+1)/2 ?I ZZ

- q
(4c—d2)q c mq(q+1)/2 I ZZ
-1 mk
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n+2 n+l n
since
2 2
(-1)%a - 0% = [2ap -(o® - 1] % =[2c - v, ],
and
vV, =dV, - ¢V = d2 2
2 1 “Vo T T oec.

We will use (2.11) in the proof of Theorems 1 and 2.

3. TWO THEOREMS

Our first general result is as follows:
Theorem 1. Let Wo’ Wl’ c ;-/ 0, and d 74- 0 be arbitrary real
numbers, and define Wn by (l.1). Let nO:O,l,...;m,qzl,Z,.,.;
and r=0,1,...,9. Then, for n=20,1,..., we have
c-mrn 29 Cmrk

k=0

2r

(2q) -
bk (d/(2Ve)) Wm(n+2q—k)+no

(3.1)

U ot4

= ¢"M0 + (mq(4r-q-1)/2 (er) (4c - a5)2°T

q
w2 o aw w, o+ ewHT o z4.
1 o 1 fe) k=1 mk

where bf{ZQ) (@/(2Ve), k=0,1,...,2q, are defined by (2. 9).

Proof. Since a # P, the general solutionto(l.1) is Wn = Ad" + BB,
n=0,1,..., where A and B are arbitrary constants whose values

satisfy Wo =A+B and '\/V1 = Aa + BB. We readily find that

(3.2) (p-a)A =W B - W, ., (B-a)B=W, -aW_

Since a +pf=4d, c=ap, and (B-a)2 = d2 - 4c, we obtain from (3. 2)

(3.3) (d% - 4c)AB = (W2

-dW W +CWZ)
1 o 1 o

Using the binomial theorem and then interchanging summations, we
obtain

2r

-mrn 2q Cmr(Zq—k) b(Zq)
z m(n+k)+n0

3.4 S =
(3. 4) c o 2q-k

(d/(2Ve)) W
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2q

= Tmrn (QB)-mrk b(ZZCE)k(d/(Z\E))(Aamn+mk+no : Ban+mk+no)Zr
k=0

- Cmr(?_q_n) er (21») AsBZr—s (asﬁlr—s)mn-kno G((a/ﬁ)m(s—r))

where, by (2.9) with y = (a/ﬁ)n(s—r)’ we have

m(s-r)

k
b‘sz_)k (@/(2ve) [(a/pr™ts-2) ]

m
™ o

(3.5)  G({a/B) )

k=0

1}

; (/6™ ) (a/py™K]

k=1

i/ ™D (o))

Since 0 S r < q and O <s < 2r, we have -q < s-r Sq. Thus, for
05s < 2r, s # r, the sum in (3.5) vanishes; but for s = r, we ob-
tain the non-zero term G(1l) (see (2.10), (2.11)). Thus, from (3. 4),

we obtain
Zmrqtrn, 2r r 2q (2q9)
(3.6) 5= (hy (ap)t sz b)Y (@/(2v))
T k
k=0

which yields the desired result with substitutions from (2.11) and
(3. 3)

The following general result yields Theorem 1 as an important
special case:
Theorem 2. Let Wo’ Wl’ C 75 0, and d # 0 be arbitrary realnum-
bers and define Wn by (1.1). Let m,g=1,2,..., and tr:i +

1
i2+... +i2r’ where is, s=1,2,...,2r, (r=1,2,...,q), are posi-
tive integers or zero. Then, for n=20,1,..., we have

2q 2r
-mrn mrk | (2q)
(3.7) b c b (d/(2ve)) n W _
k=0 k s=1 m(nt+2q-k)+i
_ maldr-q-1)/2 (4c-a2) 3T (W2 - aw W, +cw’)* 4 2
= ¢ r V€ ( 1 o1 T, £I mk ’

k=1
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n+2 n+l n
with

(3.8) Kr =

(3.9) o(j, r) = i(lj) + i(zj) + i(3j) oo+ i(rj) G=1,2,..., (°T71y

where, for each j, o(j,r), as the sum of r integers, i(SJ), s =
1,2,...,r, represents one of the (er-l) combinations obtained by

h . 2 . . . .
choosing r numbers fromthe 2r-1 numbers, BT TR PR TRE

Proof. From Lemma 1, we have
2r 2r m(2r-s) ms,n
(3.10) Q= m W_ . = > C/p S
s=1 s s=0

where CS, s =0,1,...,2r, arearbitraryconstants independent of n.

Recalling the proof of Theorem 1, we have (see (3.7))

3 2q 2r
(3.11) S= ¢ ™" 3 cmr(zq'k)b(zzq_)k(d/(z Va)) 3 ¢ (pTiErTslymsyntk

k=0 s=0
-mrnt2mgqr 2r 2r-s s r%ln 2q (2q) m(s-r)
=c z C_(B" "a")T 2 by M (d/(2Ve)((a/B) )k
=0 k=0 “9
2mqr 2q (2q)
e s bY@V
T 1o k

We proceed now to evaluate Cr' From (3.10), we have

[aS]

2r
(3.12) I Wmn+i _ BZmrn
s=1 s s

r

c (a/p)™™®

Il b4

0

whichis a polynomial inthe variable (a/ﬁ)mn. Since Wn = Ad" 4 BBn,

we have

= I:Aais (a/p)™" + B[Sis] )

mn+i
s
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and thus
2r Zmrn 2r is mn i
(3.13)  m W_ .. =8 n [Ac®® (a/p)™™ + Bp's]
s=1 s s=1
Zmrn , 2r t 2r mn i
= pUERAT (/BB /a)(B/m)te]
s=

If we compare (3.12) and (3.13), and recall the definition of the ele-
mentary symmetric functions of the roots of a polynomial equation,

we conclude that

(%)

Tr r .
(3.14) c =A%t C)Y : (-B/A)Y @ (B/a)'s, k
k=1 s=1

n
—
>
s3]

2}
Nt
Qo

™

where for each fixed k, k=1,2,..., (er), each set of numbers,

is,k’ s=1,2,...,r, 1is one of the (2;) combinations obtained by
choosing r numbers from the 2r numbers, iS, s=1,2,...,2r. It
should be noted that since (3.13) is a symmetric function in the var-
iables is’ s=1,2,...,2r, the role of iZr in the definition of o(j, r)
(see (3.9)) was a convenient choice. Since a choice of r numbers
froma set of 2r numbers leaves another set of r numbers, we may
pair off related terms of the sum in (3.14), noting our role assigned

2r-1

to i Thus, since (er) =2 ( - ), and

2r

atr -0(j, I‘)ﬁa(j’ r) + ao(j’ r) Btr - o4 ) - ¢ 70 Vtr - 290, 7)

(see (1.3)), we have

(3.15) C, = (AB)rKr (r=1,2,...,q) .
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Recalling definitions (2.11) and (3. 3),
(3.7) from (3.11).

we obtain our desired result

Remarks, For r =2, we have o(1,2) = il +iZ, a(2,2) = il + 13,
and 0(3,2) = iZ + 13.
For r = 3, we have
0(1,3):11+12 +13 , 0(6,3)211 +14+15,
e . _ .
g(2,3) = i ti, + iy , o0(7,3) = i, + iy + iy s
0(3,3) = i +12 +15 , 0(8,3) = iz +13 +15 ,
0(4,3):i1 -l'i3-l~14 , 0(9,3) = i +14+15,
(7(5,3):11 +13 +15 , 0(l10, 3)= 13+14+15,

S o

V =2, and K_=c'Mo (°T).  Thus, (3.7) yields (3.1) as a special

case. Indeed, using the binomial theorem on Wmn+n = Aa"%a™M™ +
pplog™mn o

If i =n,s=1,2,...,2r,then t_ -2 o(j,r)=2rn_ - 2rn =0,
r o o

, we obtain

2r
2r _ 2r s, 2r-s , s,2r-s,ng ,,m(2r-s) ms,n
L e TR

where, (see (3.10)) C_ = (%) ASB2T S(o5p%T %P0, s - 0,1,...,2r,
and thus Cr = ¢ Mo (er) (AB)T.
Consider the special case is =n, s = 1,2,...,2r-1, and

in £ n . Then o(j, r) = rn tr = (Zr—l)nO + i, and thus (see (3. 8))

_ rng 2r-1
Kr—c (r)v—no+i

2r

Next, consider the special case is = n. s =1,2,...,2r-2;

. . 2r-1 . . .
i1 # iz # n_. Of the set of ( - ) combinations for o(j, r), there

combinations which contain i . For these cases,
r-1 2r-1
2r-2 2r-2

. - . . - 2r-1y _ -
o(j, r) = (r—l)no + L and for the remaining ( . ) - | r-l) = ( . )
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combinations, we have o(j, r) = o . Thus, from (3.8), with tr=

(2r~2)r10 + i, q tis we obtain

(3.16) K =T lng 4y (*T- 2y, .
T 2r-1 ‘r-1""1 -1
2r 2r-1
rng 2r-2
+c ( V. .
r 1,1 + i, Zno

4. IDENTITIES FOR FIBONACCI SEQUENCES

Generalized Fibonacci numbers, Hn’ are defined by Hn+2 =
H +H , n=0,1,..., where H and H, are arbitrary integers.
n+l n o 1
In the mnotation of (1.2) and (1.3), we have Zn = Fn’ and Vn: L,
the Lucas numbers. The following result is an application of Theorem
1, where d = -c = 1:

Theorem 3, Define (see (2. 9))

2q q
2 . 2g-k 2 mk
(4.1) = qu)(—l/Z)yq = m (y - (-7, Ly +1)
k=0 k=1
(m,g=1,2,...).
Let nO:O,l,...; m,q = 1,2,...; and r = 0,1,...,q9. Then, for
n=0,1,..., we have
mrn 2q mrk , (2q) 2r
(4.2) (-1) k:.E—O (-1) by (-1/2) Hm(n+2q—k)+no
q
_ rng +(mq(gq+l)/2) 2r e d-T 12 T 2
= (-1) ( r) (-5) (H1 HoHl HO) kI=11 ka ,

2q
(4.3) (-1)TR 3 (o1)™mTER bfq) (-i/2) F

k=0

2r
m(n+2q—k)+n0

. q
- (_l)rno + (mq(q+1)/2) (er) (_5)(1 krzll FIZ-nk s
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2q
(4.4) (-1 = (-1)mrkbfq) (-1/2) ernr(

k=0 n+2q-k)+nO

- (_1)rno+(mq(q+1)/2) (Zr) (_5)q (IZII FZ .
T m

k=1

Remarks. For the same values of r, n_, m, and ¢, the constant
term on the right-hand side of (4.4) is (-5)r times as great as the
constant term on the right-hand side of (4. 3)

In the examples given below, valid for n=0,1,..., wehave set

D= H? - HoHl - HCZ). Applications of D in the ordering of Fibonacci
sequences are given in 5] .
mn 2 2 2
(4.5) (-1) (Hm(n+2)+no - LZrnI_Im(rH-l)i-no * Hmn+no)
=210 pF? (m =0,1,...5m=1,2,...) ,
m o
4 4 4 4 4 2
(4. 6) Hn+4 —4Hn+3 ~19Hn+2 —4Hn+1 + Hn = -6D"
n, .2 2 2 2 2,
(4.7) (-1) (Hm_4 +4Hn+3 —lf)I—In_'_2 +4Hn+l +Hn) = 10D ,
3 3 3 3 3
(4.8) H_ ( Hoys ~4H o H g "1 o s M 0 o P H
= 3D2 ,
2 2 2 2 2 2 2 2 2.2 _ 2
(4.9) Ho g H g -4H, (3H g 198, o g m4H g Ho oy P HH =D
n, .6 6 6 6
(4.10) (-1) (Hn+6 _14Hn+5 _90Hn+4 +350Hn+3
6 6 6, _ 3
_90Hn+2 —14Hm+1 + Hn) = 80D ,



252 POWER IDENTITIES FOR SEQUENCES Dec.

4 . 4 4 4 .4
(4.11) Hn+6 + 14Hn+5 ~90Hn+4 A350Hn+3 “90Hn+2
+140*  +u* - s1200%
n+l n
n,_2 2 2 2 2

(4.12) (-1)™(H,, -14HT o -90HT , +350H, , -90H, ,

n+b6 4 2

2 £ 2 —
-14H_ , +H) = 200D ,

5 5 5 5
(4.13) Hn+6Hn+7 _14Hn+5Hn+6 _90Hn+4Hn+5 +350Hn+3Hn+4
5 5 5 B n 3
_90Hn+ZHn+3 _14Hn+lHn+2 * Han-i—l = 40(-1)"D ’
3 3 3 3 3 3 3 3
(4.14) H_ oHo g 14H gl L ~90H 4 Hyp $350 H3H 1y
3.3 3 3 3.3 ntl 3
S90 Ho oM pg 14H G H o f Han+1 = 20(-1) b
8 8 8 8 8

(4. 15) HnJ‘_8 -33Hn+7 -747 Hn+6 +3894 Hn+5 +16270 Hn+4

8 8 8 8 4

+ 3894 H_ . -747 H_,, -33H | +H_ =2520D" ,

6 6 6 6 6
(4.16) H_ o +33H> , -747 H - 3894 H _ +16270 H’ ,
6 6 6 6 n+l _3

-3894 Hn+3 -747 Hn+2 + 33Hn+l + H 3600(-1) D

n

Two identities, (4.6) and a special case of (4.5), with m=1 and

no = 0, have been given previously in [6] .
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n+2 n+l n

5. IDENTITIES FOR CHEBYSHEV POLYNOMIALS

Chebyshev polynomials [7, pp. 183-187] of the first kind, Tn(x),
and of the second kind, Un(x), are solutions of (1.1) when d = 2x and
c=1. Thus, W_=T (x) for W_=1, W, =x; W_= U _(x) for

n n o 1 n n
W =1, W, =2x; Z =1U (x); and V_ = 2T _(x).
o 1 n n-1 n n

We will now show that the Lucas functions Zn and Vn of (1.1),

where ¢ #0 and d # 0 are arbitraryrealnumbers, canbe expressed

in terms of Chebyshev polynomials as follows:

(5.1) z

. cn/ZUn(d/(Z\/E)) (n=0,1,...),

(5.2) v = 2c7/2 T (d/(2VE) (n

n

1
(=}
-
—
-
—

n+l
then multiply both sides by c(ntl)/2,  Thus, using (5.1), we have
Zo =0, Z1 =1, and Zn_[»2 = dZnJrl —cZn, n=0,1,....

n+2(X) = 2x Tn+1(X) - Tn(x), set x = d/(2 vc) and then

multiply both sides by 2¢(n+2)/2, Thus, using (5. 2), we have VO = 2,
Vl =d, and Vn+2 = an+1 —cVn, n=20,1,....

The following result is an application of Theorem 1, where
d=2x and c = 1:

Theorem 4. Define (see (2.9))

Proof. Since U (x) = ZxUn(x) - Un—l(x)’ set x=d/(2Ve) and

Since T

29 (2q) d

2q-k 2
(5.3) 3z b Uy = g (vy°-2T, . (x)y+1)(m,q=1,2,...).
k 2mk
k=0 k=1
Let n0=0,1,...; m,q=1,2,...; and r = 0,1,...,q. Then, for
n=20,1,..., we have

292 ) 2T

(5.4) k (X)Tm(n+2q—k)+no

i q d
=49 ash v

k=1
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2r
m(n+2q-k)

2

Umk-l(x)

2q
(5.5) = bLZq)(x)U
1

() = 49T (BT)(1-x%)97F
k=0 +no r

3.0

k

Remarks. Identities (5. 4) and (5. 5) yield trigonometric identities by
recalling thatif x = cos@, then Tn(cose ) = cos(nf )and Un(cose ) =
sin(n+l) 8/(sin@). Since sin(if) = isinh@® and cos(if)=coshf, ident-
ities for the hyperbolic functions are then obtained from the cor-
responding trigonometric identities. Additional complicated identities

can be obtained from (5. 4) and (5.5) by differentiation with respect to

x. Some sample identities, valid for n=20,1,..., are given below:
2 2 2
(5.6) Tm(n+2)+no (x) - 2TZm(X)’I‘m(n-I'l)+no (x) + mn+n (x)
2,..2 _
=2(l-x )Um_l(x) (m_l,Z,...,nO—O,l,...),

6 4

4 2, 4 4, 2
(5.7) Th, ) ~(1ex™-12x") T () + (64x°-96x +40x%-2) T2 ()

4 2.4 4 2 2.2
-(l6x " -12x )Tn+1(x) + T (x)= 24x (1-x7)" ,

(5. 8) Ti+4(x)Tn+5(x) -(16x4-12x2)Tf’1+3(x) T, ()

+(64x6-96X4+40x2-2)Ti_l_,(x) T, 5(x) - (1 6x4—12x2)Ti+1 (T, ()

3 3 2.2
+ Tn(x)Tn+1(x) = 24x7(1-x")

Let
Al (%) = 64x6 - SOX4 + 24X2 -2

10 6

Az(x) =1024x" " - 2304x8 +1792x" - 56Ox4 + 64x2 -1 s

A3(x) = 4096x12 - 12288x10 +14080x8 - 7552x6 + 1856x4 - 176x2 + 4

Then

)+ AT, () - ALl T

6 6
(5.9) T _,elx)- A ()T a3

nt5 (=

. Az(x)T2+Z(x) - Al(X)T2+1(x) + Ti(x) - 80x%(1-x%)2(4x%-1)%
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+2 n+l n
(5.10) Tf1+6(x) - AI(X)T§+5(X) +AZ(X)Ti+4(X) i A3(X)Ti+3(x)
4
+ AT () - AL GITL, () + Ta) = 96 (1-x7) (4P 1)2

(5.11) T2 ((ITo 206 = A )T ST (x) + A, ()T, ()T, ()

S ASBIT) 0T, 400 + A, T) G TR 360 = &) (TS (I T) ()

2

+ Ti(x)T ) = 1653 (252 43)(1-x0) (4xP-1)

|
n+1'¥
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OMISSION AND INFORMATION

The '"Factorization of 36 Fibonacci Numbers F, with n > 100" by
L. A. G. Dresel and D. E. Daykin should have included the following
references.

1. Dov Jarden Recurring Sequences, Israel, 1958, contains
many factorizations of first 385 L, and Fp. This is being reissued
soon and will be available again from the Fibonacci Association.

2. Brother U. Alfred and John Brillhart '""Fibonacci Century
Mark Reached'' FQJ, Vol. I, No. 1, p. 45, Feb., 1963.

3. Brother U. Alfred "Fibonacci Discovery' contains factors
of first 100 Fp and first 50 L,. See ad this issue page 291.

The factors available now allows one to factor higher Fibonacci Num-
bers since ¥, =L F .

Zn n" n
John Brillhart reports that in a short time he will have published a
report containing all the prime factors less than 230 of F, for
n < 2000 and of L for n <1000. This is exciting news.



A VARIANT OF PASCAL’S TRIANGLE
H. W. Gould*
West Virginia University, Morgantown, W. Va.
1. INTRODUCTION
Professor Charles A. Halijakhas called my attention to the fol-

lowing interesting variant of Pascal's triangle [7]

(1.1) 11 4 3 3 1

1 1 8 7 21 15 20 10 5 1

The law for formationis evident. One alternately adds together
two elements or brings down a single element in order to obtain a new
element in the nextrow. It appears that the elements turn out to be
binomial coefficients. More interestingly, it appears that the ele-
ments in any row add to give a Fibonacci number: 1, 2, 3, 5, 8, 13,
21, 34, 55, 89, 144, etc.

The object of the present note is to verify these observations and

to develop some other relations suggested by the array of numbers.

2. RECURRENCE RELATIONS

We may symbolize the array (1.1) as follows:

0
AO
1 1
AO A
2 2 2
AO A1 A2

etc.

*Supported by National Science Foundation Research Grant GP-482.
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If we let A?, j=0,1,2,...,n, designate an arbitrary element
of the array then we may use the defining recurrence relation (law of
formation) to give an inductive definition of the array (1.1). Indeed

we may say that the conditions

n+l n
(2.1) Aokl T Aok
n+l n n
(2.2) Ajl = AN AL
(2.3) A?:O,j>norj<0,
(2. 4) AD=1, n=0,1,2,... , Ai:l,

are sufficient to define the array (l.1). We may combine (2.1) and
(2.2) into a single recurrence relation
n+l n 1+ (-1)

2.5 AT = AT 4 AT
(2.5) N j-1 2 j

if we desire.

It is not difficult to conjecture (and prove by induction) that

-k
(2. 6) Arzlk =<n ,
k

n-1-k
(2.7) AL = )
2k+1 N

and, again, these may be expressed in the single formula

(2. 8) Al = " —[%UH)J

J 1.
[20)
where |x] would mean the integral part of x (the ''greatest integer

in x'").

3. FIBONACCI NUMBERS
The Fibonacci numbers, Fn’ may be defined by the conditions

F,.=0, F, =1,and F
n

0 = Fn+Fn- 1’ Explicitly it is easy to show that

1 +1
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/2]
<“ _ k) R S

(3.1) F 4 3
1
n K= 0 k 21r1+1 5

and this well-known formula provides the clue to our next results.

We have

Theorem 1. For the array (1.1) we have
n o S
(3.2) 2 Af=F ., . n20
i=0

Proof.

n /2] [(n-1)/2]

s A=z sy Al 4 s AR

iz o0 k=0 2k k= 2k+1

as desired to show.
Next we may establish

Theorem 2. For the array (1.1) we have

(3. 3)

1 T~

-1)) A -

(-1) Aj Fn—l
This would also be true for n = 0 if we extend the Fibonaccisequence
backwards as is usually done. As for the'proof, the same steps as

used for Theorem 1 give us at once Fn - Fn or F_ as claimed.

+1 -1

4, A GENERAL POLYNOMIAL
We now define the polynomial An(x) by

n .
(4.1) A= ¥ AT
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In view of (2.6) and (2.7) we have
[n/2] -k [(n-1)/2] /n-1-k

(4.2) A )= 3 < > NS S ( ) A
k=0 k k=0 k

The polynomial An(x) satisfies a simple recurrence relation

which we may find as follows. By means of (2.5) we have

n+1 ntl n+1 n 1 n+1 n 1 n+1l .
s AT Y= 3 Al X +s 3 Al 5= (1Al
j=1 Y j=1 7 j=1 j=1

or

n+1 . n . n n
s Ao s an It +% s, A?XJ+%. 3 Al (-x),
j=o0 j=0 7 j=0 j=o0

or therefore

(4. 3) 2 A 4(x) = @x + DA_(x) + A_(-x).

It would be possible to set down a closed expression for An(x)

by means of the summation formula

[1’1/2] -k k ntl 1
(4. 4) xt 2 -, x=_"" ,
kg 0 ( k ) (-1 +u)” (1+u)2

but this does not seem to simplify very nicely. It would be of interest
to evaluate An(x) for values of x other than x=1 and x = -1, how-

ever., We remark that (4.4) may be written in the alternative form

(4.5) [n}/LZ] n -k 2n—Zka:unﬂ-vnJrl (=1 +Vx +1 ,
o\ .y vel-VETl

5. LUCAS NUMBER VARIANT OF PASCAL'S TRIANGLE
Using the same law of formation as we imposed to generate rows

in (1.1) we may form the array
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1

1 1 9 8 27 20 30 16 9 2.

where the only difference is that we use a different initial value in the
second spot on the second row., Let us symbolize the array by using
the notation JESJr.l inthe same way we discussed AT, We first observe
thatthe rows add to give the Lucas numbers: 1, 3, 4, 7, 11, 18, 29,
47, 76, 123, 199, etc. In other words, we have, evidently, the two

relations
n
(5.2) 3 = L ,
=0 J n+l
and
n i n
5.3 -1y B, = L s
( ) ; E 0 (-1) 3 n-2

Explicitly, we have

[n/2]
p2

(5. 4) I =
T ok=o0

n- k

The array (5.1) may be specified by the conditions
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(5.5) Br?_llt}l-l - ng’

(5. 6) Blzlltl = By1 + By

(5.7) B?:O,j>n or j <0,
(5. 8) B®=1,n=0,1,2,... , Bl =2,

We may combine (5.5) and (5. 6) by writing

1y
(5.9) phtl _ gn +l_i(_1_)_BJI_1,
2

and we conjecture on the basis of (5.4) and the above that

n -k
n _ n
(5.10) BZk————n_k< k>,
and
(5.11) gt __n-1 nobok sloo
: 2kl T n -1 - K N » By :

The two relations could be combined into a single expression, however,
the result is not as simple as was the case with (2. 8).
Associated with the Lucas variant of Pascal's triangle we may

consider the polynomial

n .
= o
(5.12) Bn(x) jzo Bj x” .

1

In view of the recurrence (5.9), just as in the case of (2.5), we may

show that the companion relation to (4. 3) is

(5.13) ZBn+1(X) = (2x + I)Bn(x) + Bn(-x) .

The formula

(5.14) [nz{ZJ = (n ) k) g2k k_pu t v,
= k



1965 A VARIANT OF PASCAL'S TRIANGLE 263

where

u=1l+vx+1l, v=1-Vx+1,

could be used to give a closed form for (5.12).

6. GENERALIZATION
A general array suggested by the two cases we have discussed

may be set down as follows:

a
a b
a a b
a a atb b
(6.1) a a 2a+b a+b b
a a 3a+tb 2a+tb atz2b b
a  a  4atb 3atb  3a+3b a+2b b
a a 5a+b 4a+b 6a+4b 3a+3b a+3b b
a a 6a+b 5a+b 10a+5b 6a+4b 4a+6b a+3b b

We may define the array by the following conditions:

0o_ 1 _ 1
(6.2) Cy=0,=2 Cj=h
(6. 3) C?:O,ﬁ j>mnorj<o,
ntl n 1+(—1)j n > S
(6. 4) Cj —CJ._1+————2—— Cj’ n=21, j=2 0.

For the recurrence (6.4) we have imposed the condition that n > 1.

We do this for the following reason. Choose Cg = a. Then, by (6. 4),

we have C(l) = C(_)1 + Cg = Cg provided we impose (6.3). But then we
have C% = Cg +0 =a, not b. Toavoidthis difficulty we may define
Ci = b. For the next row we have then
2 1 1 _ _
CO—C_1+CO—O+a—a,
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Thus a simple condition to attach to the recurrence is that n21.
Another waytoproceed would be to define Cg = b and Cé = a. Every-
thing would be the same exceptthe topmost element, and the recurrence
would hold in all cases. However, then the niceness of the array(5.1)
would suffer by having Bg = 2 which would not fit so well with the
Lucas numbers. There is a certain arbitrariness in combining the
various properties which seem to be of interest. Because of this, the
reader may find it instructive to examine other possible definitions.

From our definition it is easy to show that the row-sums are

given by
n

(6.5) S(a,b)= ¥ Ccl=aF +bF , n=>0

: n’ . < J n+l n’ -

j=0

interms ofthe Fibonacci numbers. Thus we find S (1,1) = Fn+l + Fn
= Fn+2 as before. Also, Sn(l,Z) = Fn+1 + ZFn e Fn+l + Fn+Fn
:Fn+2+Fn:Ln+l as before. (Itis easily provedthat Ln:Fn+l+Fn—1')

The arbitrariness involved inthe first two rows, however, shows

up again whenwe consider the alternating row-sums. We find these are

Tn(a, b) =

nHMB

(-1)Jc§‘:b, a-b, b, a, a+h, 2a+Db, 3a+2b,

i=0

and, except for the first such sum, we can show that

(6. 6) T (a,b) =

[T 3o W]

(-1)] c’jfl =aF__, +bF_,, n21.
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Remark: The usual definition of Fibonacci numbers with negative

index is

so that the doubly infinite sequence of Fibondacci numbers is
.., 5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5,

In view of this, the formula (6.7) breaks down for n =0 as it then

gives the value -a + 2b instead of the value b. However, for n=2 1

agreementis found. In particular, when a =1 = b, we have Tn(l, 1)

= F + F = F as in (3.3) A similar result holds for the
n-2 n-3 n-1

Lucas number variant (5.1).

7. FURTHER RELATIONS FOR THE POLYNOMIAL An(x)

Bymeans of relation (4. 2) we may show readily that An(x) satis-

fies the second-order recurrence relation

(7.1) A L (x)=A

2
2 + x An(x) .

n+1 )

In fact we have

»
>
%
1
= ™M

Using the fact that
p-k p-ky _
P+ 270

it then readily follows that
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+2 - R
2 _ n 2k
An-l-l (x) +x An(X) = s ( . ) x"T+ P
< gnt2 << ntl
0Sk S5 0SkE3S

- An+2(x)'

Associated with An(x) we may next introduce a related poly-

nomial Kn(x) defined by

_.n 1, n_n-j
(7.2) Kn(x) =x An(;(—) = Aj x

N MB

Relation (7.1) then becomes
(7. 3) Kn+2(x) = xKnH(x) + Kn(x), with Ko(x) =1, Kl(x) =x+1.

This recurrence relation is of the same form as one studied by Cata-
lan [4] . This is mentioned by Byrd [3].
It may be of interest to indicate how the Q-matrix technique {1] may

be applied to a study of Kn(x). Define

x 1
(7.4) Q=< > .
10

Then

(7.5) Q" = B 09 , n2>1,

£ £ (%)
where the f's are Fibonacci polynomials defined by
(7.6) £n+2(x) = an+l(X) + fn(x), fo(x) =0, fl(x) = 1.
It is easily shown that

(7.7) Ky(x) = £ () +£(0)

From (7.7) we have next

j+l _ jt+l h]
(-1) KJ.(X) = =17 ) - (-1) fj(X)
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whence

n -
(7.8) TR = ()T )

i=0 !
sothat the Fibonaccipolynomials fn(x) may be expressed in terms of
the K or A polynomials very easily,
We next observe that (7.5) and (7. 7) yield
K (x) K

n n-1 n n-

(7.9) Q

From this resultit is possible to evaluate the determinant of the K's

as follows. To begin with, IQn] = ’an = (—l)n. Then we find that
K_(x) K (x) .
n n-1 :’Qn+Qn—l’:lQn-l(Q+I)l, I:(é ?) ,
Koo (x) K- Z(X)
- lQn—1] . IQ""II
- (—l)n—lx

We may state the result more elegantly in the form

Knn‘-l (=) Kn<x)

(7.10) =(-1)yx
K () K &)
This may be compared with the relation
Fn+a Fn-!—a+b
(7.11) (- FF
F1‘1 Fn-I—b a’b

for the ordinary Fibonacci numbers (FO =0, Fl =1, Fn+2 1

which was posed as a problem inthe American Mathematical Monthly[8].

=F + F )

n n
In particular, this raises the question about a similar generalization
of the determinant (7.10). Indeed, we shall now prove by induction

that
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Kn+a(x) Kn+a+b(x) _ (_l)n Ka Ka+b - (—Un(K K -K

).
a b a+b
Kn(x) Kn+b(x) KO Kb

(7.12)

This will be true for all integers if we define

(7.13) K__(x) =K (-x)

as is suggested by recurrence relation (7. 3).
As for the proof of (7.12), we may first show that (as is obvious

for n = 0)

(7.14) K . K K K

_ n
n+l n+b * n ntb+l ~ (-1) (KlK KoK

b~ 0 1+b) ’

where, for brevity, we omit writing x which will remain unchanged.

Now, in fact, by means of (7. 3) we have

n —_
(-1) [Kn+lKn+b ) KnKn+b+1]“ (-1)

B n
=(-1) Kn+l Kn+b+2 -

n x )- K

Kn+1 (K nKn+b+1]

ntbi2 T Fniptl

K TR b ]

. ondl
=07 KK - KonKaspiz)

sothatthe expression is unchanged when n is replaced by n+ 1. By
induction, then, relation (7.14) follows.

Inthe same way, we could show that (7.12) holds for a = 2, that
is,
(7.15) K

= (-l)n(KZK K. K

n+25nb T Kafainia b~ 0 2+b)

We may complete the argument by an induction on a. Suppose

that (7.12) holds for fixed n,b anduptoacertainvalue of a(2l). Then

K K - K K

n
n+a n+b n nta+b ~ (-1) KaKb - K

OKa+b
and

Kn+a—lKn+b - KnKn-i-a.-1+b - (_l)n Ka—le - KOKa--l-Fb ’

and if we multiply the first of these by x, add to the second, and re-

call the basic recurrence relation (7. 3), we obtain prccisely
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K K "K K, - K, K

n+a+l n+b ~ KnKn+a+1 +b (-1) a+l™ b atl+b 7

sothat the induction goes through. This proof is nothing more than a
variant ofa similar proof for Problem E 1396, relation (7.11) above,
suggested by Mr. John H. Biggs who was then a graduate student at
'~ West Virginia University. Clearlythe same technique may be used in
other cases wherea recurrence relation of a suitable sort is presup-
posed. Thus (7.12) also holds for fn(x) in place of Kn(x).

We should like to mention still another interesting relation in-
volving the polynomial Kn(x). The reader may find it worthwhile to
carry out an inductive proof that

a

(7.16) Kn(x) + (-1)"K (x) + XKn-I—a(X) =0

nt+2a

When a =1 this becomes again (7.3). It is possible to base a proof
of (7.12) on this relation. The idea traces back as far as George
Boole [2], and may have further unsuspected possibilities. Under
miscellaneous propositions, in Chapter XII, pp. 229-231, Boole uses
aninvariance technique which may be of interest. By (7.16) we have

(omitting x for brevity)

a = -
Kn (1) Kn+2a - XKn+a

This relation being true for all integers n,a, we next replace n by
n + b, and we have, for arbitrary n,a, b,

+(-1)*K xK

K nt+2a+b s n+a+tb

n+b

Here, -x playsthe part of the number p in Boole's argument. We
may eliminate -x from the last two relations by multiplying the for-

mer by K the latter by Kn , and equating the resulting left-

nta+tb’
hand members. This yields

+a

(-1)*K @ K_K

K K n+aKn+2a+b = (-1) Kn+2aKn+a+b * n nta+b

nt+a nt+b *
Multiplying through by (—1)n we have, transposing terms,

nta
)

n = - -
(7.17) (-1) [KnJraKn-Fb_ KnKn+a+b]_—( 1 I:Kn+2aKn+a—b Kn+aKn+2a+b].
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Call the left-hand member of this F(n). Then the crux of Boole's
argument would be that (7.17) asserts that F(n) = F(n + a). This be-
ing so for a perfectly arbitrary integer a, as we supposed to begin
with, then it follows that F(n) is invariant with respect to n. Hence

we have only to set n = 0, and we find that

F(n) = F(0) = K K - KJK_,,

and this of course is precisely what we claimed in relation (7.12).

The beauty of Boole's method is that one may oftentimes begin
with a non-linear recurrence relation (difference equation), such as
(7.12) is indeed, and relate this back to a linear relation, as (7.16)
actuallyis. The methodis especiallyusefulinthe study of determinants
of polynomials which satisfy suitable recurrence relations.

The relations (7.11) and (7.12) may be called Turdn relations,
and the reader is referred to [5, 6] for pertinent journal references
and some variations. A detailed bibliography on the Turdn expressions
(and Turan inequalities) would contain over 110 references to journal

articles and books accordingtothe author's current file on the literature.
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ON A GENERATING FUNCTION ASSOCIATED
WITH GENERALIZED FIBONACCI SEQUENCES

Lo Ko[odner(”(m
Carnegie Institute of Technology, Pittsburgh, Pennsylvania
Let p, q, a and b becomplexnumbers and assume that q # 0

and q # p_Z. Let the sequence un(p, q;a, b) be the solution of the re-

currence relation

= - >
(1) u Zpun_ 1”99, nz2,
with the "'initial condition'

(2) u, =2, u; = b + pa.

Here and below we omit arguments whenever they are obvious.

If p=1/2 and g = -1, the above sequence reduces to un(l/Z,
-l;a,b) = Hn’ the generalized Fibonacci sequence. Further, un(l/Z,
-1;0,1) = Fn, the Fibonacci sequence, and un(l/Z, -1;2,0) = Ln, the
Lucas sequence.

(k)

For anyinteger k, definethe function x—>u" (x;p, q;a, b)= u(k)(x)

by the formula

(k) _ k n
(3) u (X)—Osgim(un) X .

Since, asis easily verified, u_ < A s" where s = Ip] +V ]p’z + ’q],

the series in (3) converges at least for x <s . A few years ago
Carlitz [1] summed the series for u(k) in special cases when a =1,
b = p (using the present notation) and a = 2, b =0. For related re-
sults see also the(pa;pers by Gould [2] and Riordar1(1£)3] . A. F. Horadam
3

they can be summed by using methods analogous to those employed by

recently studies the generating functions u and indicated that

Carlitz, whichare rather complicated. The objective of this paper is

to give a straightforward derivation of a formula for u(k) with any

a and b.
Theorem. If un(p, g;a, b) is defined by (1-2) and u(k) is defined by
(3), then

272
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o~ . .
Wy S Pk By gy a0 D A, g, e ait O

i . k 2
O£7<k/2 l - Z‘q U-k_z-y(P: q;l, O)X + q x
k
1 +(-1)HA
+( ( k/2, k ’
401 - qk/zx]
where. A, and B_, with ¥ < [k/2] are homogeneous forms in a,

and b of degree k defined by

1-k k., 2 .0 z k-27, K-27-2j ]
AL =2 N R - B) (%) a )
; j
0<£2jSk-27
_ol-k k., 2 v z k-27, k-27-2j-1 .j
B, k=2 (E7-pD (511 2 B

0 £2j+1 Sk-2v

. 2, 2
with B =b"/(p” - q).
Note that in the last term in the formula for u(k)(x) the first
factor is zero if k is odd so that we should not be concerned by the

fact that A is not defined when k is odd.

k/2,k 5
Our proof exploits the fact that the zeros of z~ - 2z cos § + 1,
-i0

. i6
with any 6 real or complex, are e and e whose powers are

easily managéd. Let a and 6 be such that

(4) azzq, p=acos@ .

Since q #0 and p # qz, a#0 and cosf§ # +1. Since the function
z —> cos z is onto the complex plane, a number 8 satisfying (4) exists;
it may be, or course, a complex number. Note that azsinZG:

o? - fcos? = q - p'2 #0,
n

Set u_=a v_. Then v_ = 2(cosf)v -V (n 2.2) from

n n n n-1 n-2
which it follows, by using well known results for linear recurrences
with constant coefficients, that v, =s elne +t e—1n0 with some s and

t which are determined by the ''initial conditions' (2). We now con-

clude that
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0 -in@

(5) (p>q;a, b) = a'(s el e )y .

u
n

Setting n = 0,1 in succession we get
(6") s+tt=a

and a(cos 6 )(s +t) + ia{sin §)(s - t) = b + pa, whence it follows, on
using (6') and (4), that

(6" s - t = b/(ia sin 6).

The expressions for s and t may be easily obtained but will
not be neededhere. On the other hand we note that if s =t = 1/2 then
a=1 and b =0, while if s = -t=1/2 then a =0 and b= ia sin §.
Thus it follows from (5) that

il

o™ cos ng un(p, q;1,0),

(7)

a” sin né a(sin 0)un(p, q;0, 1),
(4)

We are now ready for the evaluation of u(k)(x). Using the bi-

identifications which will be used in the sequel.

nomial theorem, we get

(8) (s o1Pf 4 (o inO)k _ z (1;) Y k-7 _in(27-K)f
0L 7 <k

B z (1;) (s t)7(sk-27ein(k—27)0 + tk_zve-in(k-zj)e)

0<v<k/2

#2701 0N e

where the last equality follows by pairing off terms with ¥ and k - 7,
and where the last term is to be set equal to zero if k is odd. On
substituting (5) in (3), using (8), interchanging the order of summation,

and finally summing geometric series we obtain
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(9) i .
) o T L S S LU
0= 7<k/2 n=0
b K27 ko (ko270
#2701 DS Y
n=0
k-2 k-2
- 2 (st)| T - Rz
l - xa e 1- e '
0< v <Kk/2
27 DS 0
1 - xa
Observing that a2k= qk, ak= qk/Z if k 1is even, akcos(k-Z‘Y)e =

q"u, . (p»q:1,0) and asin(k-27) =q"a(sin 8)u, ,.(p,q;0,1) if
k-27 (k) . k-27
27 < k, see formulae (7), the form for u' '(x) assertedin the theorem

follows from (9) if we define

k-27, tk“zv], 27 <k,

(10) A, = (st s

K-27 _ k-2

B, , = i(f)(st)7 [s Ja sin §, 27 <k.

¥

It remains to evaluate A‘y k and B‘Y,k in terms of a and b.

Let B =|b/(ia cos 0_)12 = bz/(p2 : q). From (6') and (6') we get:
st = (2% - B)/4,
27, 2

whence (st)’ = 27°"(a“ - 5)7,

S 4 T - 2T () (5o )] T [(40)- (50 ) = 21 TR D, b5 a™ 2 gl
0<2j<m
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st = 27 ([(s4t)+(s-1)) - [(s+t) - (s-1)] )
_,l-m b m m-2j-1 .j
=2 igsing 2 i) 2 B

0<2j+1 Em

Substituting these in (10) we get the stated result. This completes the
proof of the theorem.

It might not be superfluous to point out some special cases which
may be obtained from the theorem. If p = 1/2 and q = -1, then
u(k)(x;l/Z, -1;a,b) = H(k)(x;a, b), the generating function for kth powers
of the generalized Fibonacci sequence Hn(a,b). In this case the for-
mulae for A‘y,k 2nd B'Y,k do not simplify appreciably except that
we have now PB=4b" /5, while un(l/Z, -1;0,1)=F_ and un(l/Z, -1;1,0) =
Ln/Z. Furthermore, if also a =0 and b =1, then A'y,k =(0l Lf)/lg
is odd and B, =0 if k is 1ven~,k;vzhile By o = (-1) (x) 5
if k is odd and A‘Y,k =2(-1) () 5

if k is even. The theorem
then yields the well known formulae

k

f (¥) F

T . L S R

0<Y<(k-1)/2 L7 Ty pyxox
(11)4
if k isodd,
k Y k
(k) _ _k/z z (7)(2(‘1) - Lk_z'yx) (k/Z)

F'7(x) =5 [ ~ 5 T K/Z I

L 0<v<k/2 1-(-1) Lk-Z‘YX+X (-1) - x

if k is even,

Lastly, if p=1/2, g=-1, a=2 and b =0, we get Ay = 2(1.;) and

B‘Y, k= 0 whence
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k
(2 - (-1)'L
(12) L) ) = z Y ) k-zv’: ,
0<7v<k/2 L-(D)TL oy + (1)
k
. kg2 .1+ (-1k
1-(-1)k/2x 2

In conclusion we note that by squaring the two equalities in (7)

and adding we get the identity

(13) a" = [u (b, a1, 0] % + (a-p%) [u (p, 50, 1)] °

If p=1/2 and g = -1, the identity (13) simplifies to the well-known

identity
n 2 2
(14) 4 (-1) -Ln -5Fn .
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A PERMUTATIVE PROPERTY OF CERTAIN MULTIPLES
OF THE NATURAL NUMBERS

W. D. Skees

Digital Computer Laboratory
University of Illinois

I. INTRODUCTION
In number theory one encounters such numbers as
.105263157894736842

(the period of 2/19) and . 102564 (the period of 4/39) one of whose very
interesting properties will be treated here. If the terminal digit be
removed from the end of the number and placed at the beginning, the

result is the product of that digit and the original number.

Examples:
.105263157894736842 .102564
~ and
x 2 x 4
.510526315789473684 . 410256

The purpose of this paper will be to investigate the existence and

characteristics of such numbers.

2. DEFINITIONS

A positive number G will be called a gauntlet if it has a cyclic
permutation withthe propertythat, when the natural number g making
up its last n digits be moved to the first n digits' positions of the
number, thenthe result is exactly the product gG. When such a num-
ber G existsfora natural number g we will occasionally write G(g)
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