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A MATRIX METHOD TO SOLVE LINEAR RECURRENCES
WITH CONSTANT COEFFICIENTS*

Bolian Liu

South China Normal University, Guangzhou, P.R. of China
(Submitted April 1989)

In this paper we provide a matrix method to solve linear recurrences with
constant coefficients.
Consider the linear recurrence relation with constant coefficients

Upsk = O1lypg-1 + Qplyypep + oo + 0gUy + by (1.1)
(D
Ug = Cps Uy = Cps eens Uy = Cp_; (1.2)
where a; and ¢; are constants (¢ = 0, 1, 2, ..., k) and where ¢bn>,ey 1s a given
sequence.
In order to solve this recurrence relation generally, we first find the
general solution <#m’,c.y of the corresponding homogeneous relation

2 {un+k = 0qU g T U o ooy

Ug = Cps Up = Cys ewns Up_ = Cp

and then find a particular solution <up), ., of (1) satisfying the initial con-
ditions. Then <%, + up’, .y is a solution of (1).
The general method (see [1]) for solving recurrence (2) requires, as a

first step, solving the corresponding characteristic equation
kK _ k-1 _ k-2 _ — =
(3) X oA ayA ces a, = 0.

Generally, when k > 3, it is rather difficult to find the roots A; of (3).

Now we construct a matrix 4 such that (3) is the characteristic equation of
A, and then obtain the general solution of (1) from A4".

Let A be the kx k companion matrix of the polynomial of (3):

0 1 0 e 0 0
0 0 1 ces 0 0
4 = . . . v . .
0 0 0 . 0 1
%% Cr-1 k-2 %y R3]

Then the characteristic equation of 4 is (3) and, by the Hamilton-Cayley theo-
rem,

(4) Ak = Akt g ak2 oLl - o T = 0.
Consider the following kx 1 matrices:

C = (Cgs Cps =ves 0 )bs B; = (0, 0, ..y 0, b)F, § =0, 1,
Let

(5) A"C + A" By + ATTEB L 4+ el + A¥T1B, o= (@™, L0t

We will prove that <a0m%n€N satisfies (1). By equation (4),

*This paper was written while the author was a visiting scholar at the University of
Wisconsin.
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A MATRIX METHOD TO SOLVE LINEAR RECURRENCES WITH CONSTANT COEFFICIENTS

k . ) k . .
A"C = Y o A", AmTITlB; = 2 0 AnTITTiEL, G =0, 1, 2,
Hence, =1 =1

(6) (@th, L)t = A"FRe 4 ogntRelpy 4o gntke2p 4oL 4 4kB, ) + AKTLB,

k . k . K .
= Yo AMRTIC 4 Y AMTRTLIiBy 4oL+ >0 AKB, ) + AT,

=1 =1 =1

n . n-1 .
= 0€1<A”+k_10 + Z An+k—1~7,Bi_1> + a2<An+k-ZC + Z An+k—2—'LBi_l>

i=1 =1

=2 =1

K i n-2 i
+ Z O"iAk_lBrz—l + 0L3<14n+k—30 + ZAn+k—3—LBi_l>

k " n-k+1 .
+ ZaiAk+l—iBn—2 + oee. + ock</l C + Z A"T B g
i=3 =1
+ o ART2B, g4y + AKTIB,.

Since (z+1)
0...010...0

A*B; = (0, ...)%, when 0 < 1 < k - 2,
and
Ak=1g, = (b,, ...)t.

Then, from (6), we have:

(@R, Lt = ap(artk-D ) ot
ay (@HR=D L)t + (0, ...)P
ag(a®*t k=3, L)t + (0, ...)°

+ o+

+ o, (@™, Lo+ (0, Lo)E A+ (B, LL)E
This is
qgm+k) = OLla(n+k—1)+.Otza(rwk-z)_f_,,_ + akaow + b,
and (1.1) is satisfied.
By (5),
(@®, ... =400 = (¢p, ...)°

(@D, . ) = AC = (c), ...t

.k-l t = gk-1lp = t
(@k~D, L 0F = 4AFTIC = (e, -,
that is, a® = ¢;, 4 =0, 1, 2, ..., k - 1, and (1.2) also holds. Thus,

(7) <Mm>m€lv = <a(m)>melv
is a solution of (l). Now we find a combinatorial expression for am,
formula (5),

(m — (m) (m) (m) (m) (m-1) (m=2)
(8) a cpal] + ciafy + cyafy + o-ee + ooy _qay + byay, + biay

+oeee by gay
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A MATRIX METHOD TO SOLVE LINEAR RECURRENCES WITH CONSTANT COEFFICIENTS

We consider the associated directed graph D of 4 with weights aj;, ap, ..., 0; as
drawn in Figure 1.

Figure 1

The Associated Digraph D of 4
(Arcs with no assigned weight have weight 1.)

The definition of D is given as follows. If 4 = [aij]’ then D is the digraph
in which there is an arc (Z, j) with weight a;; from ¢ to j if and only if ayj
20 (t, =1, ..., n). The weight of a walk in D is defined to be the product
of the weights of all of the arcs on the walk. A?? is the sum of weights of
all walks with length m from Z to J (see [2]). We now have

Lemma 1: a{m = q(m+1-9) .,

1j Jd
Proof: Consider the sum of weights of all walks with length m from 1 to g
(G=1, 2, 3, oo, n). For 1l <m<k-=-1,

a(m_)z{l ifm=g -1
1j 0 otherwise.
Clearly,
a(m+1—j)={1 ifm=g-1
Ji 0 if g <m< k- 1.
Now let m > kK - 1. The walks of length m from 1 to j must be of the form
1 22> e 27> cee > k> oo > 7.
Eliminating the path from 1 to J, we see that the preceding walks are in one-

to-one correspondence with the walks of length m - j + 1 from j to J.
Since the weight of the path 1 - 2 +» 3 » ... » j is 1, we have

oW = q+l-D. g
1j Jd

J
Lemma 2: ag.gf) = iglak‘“lf(m_kﬂ_l) F=1,2, ooy, k=1, K,

f'(t) =0 (t < 0), f‘(o) =1,

<Sl+82+--- +Sk)OLSlOL§2...
SL+ZSZ+...+ksk=m 31: 32’ ey Sp 1
§;20 (£=1,2, ..., k)

Proof: From the digraph D, it is not difficult to see that there are k classes
of circuits from vertex k to k in D as given in the following table.
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NAME CIRCUIT LENGTH WEIGHT
01 k > k 1 o3}
Cz k - (k - l) > Kk 2 0o
03 k - (k - 2) - (k - 1) > k 3 Q3
Ck k>1>2> ...>%k k Oy,

Hence, any walk with length m from X to k must comnsist of s; C;'s, sy C5'
Sy Ck'S.

The walks with length m from J to Jj, 1 £ J < k - 1, have one of the
lowing forms:

NAME CIRCUIT

Form (1) J > e k> cee 2 k>l 2> o0 > g

where k » ... > k means passing through many circuits

Form (2) j—>...—>k+...—>k+2—>3—>...—>j
Form (3) Jr oo 2k > e >k >3 >4 > 00 > g

—>k—>g

¥

For& ) g e >k

Clearly, the front path and the back path in form (Z), where 7 = 1, 2,
together give a circuit Cy-;4+1. Namely, there must be a circuit of
k -1 -+ 1. Thus, for any fixed 7 (1 < 7 < j),
(m) d
at = ( _
I T s v2s, 4 wkep=m \T12 oo eees (Spogy Dy ees
5420, txk-1+1
sg21, t=k-1+1

J
R S
DT > 517 92 Sk) ol a2 ... ofk,
) k-i+1 Sy 5 Sn s sees S 172 k
i=1 s +28p+ .- +ksp =m~k+i-1"1 2 k

8, 20 (£=1, ..., k)

g1t+spt+ e+ (Sk—’i+l - 1)+ ---+Sk>0('.i1u§2
S

1 <

For convenience, let

f(M)= f(m)(ocl, Ops eoes uk)

§1F 8, + oo+ 5y

8, +28y + .-+ +key =m (81, Sos eees Si
5. 20 (=1, ..., k)

S1 g52 Sk
)ul O

Hence, i
(m) _ (m-k+7-1) .
a;; = .Elock_iﬂf s, 1 <g<k. m

i=

Lemma 3: For f(™, we have the following recurrence:

k
(m) _ (m) _ i—-k+7-1
7= agy Zlak—i+1f(” eoh,

7=

1992]
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Proof: According to the preceding analysis,

(rn) - 81t 8o+« + 551\ 57 sy sg _ p(m)
A =(8 s s )o1 %) ceeagk=
31+232+"'+k5’k m 1° 23 s k
s 20 (t=1, ...,k
By Lemma 2,
(m) k (m-k+7-1)
Tk = _Zlak—i+lf .
i=

Thus,
(m) _ (m) (m-k+7- 1)
f - Cl Z O - z+lf B

Theorem: The solution of the recurrence relation (1) is

k k+1
= (m—-k - J+L) (m+1-k-j)
(9) u,,,—_Zc_IZock i ZbJ ¥i
j=1 Jj=1
k J
s,+8,+.--+s
Up = D.C. - 2 04 41 (1 2 k) fla "'O‘k
m R J-1 : 7+ _ . \875 8,5 ...5 Sp 2
Jg=1 =1 S1+28p +---tkg=m-k+7-571 2
520 (=1, ...,Kk)
m-k+1
+ Y b » Sp+ 8yt i tsy) o1 s o
j J-1 . \8 s,...,s;< 12“‘k'
J=1 S1+28,+ - -tks=m-k-j+1°1% °2
20 (=1, ..., k)

Proof: By (7) and (8),

(m m "L o=
—_ m) _ m A m-
Uy, = a = ZcJ 1975+ jgl bJ 197 %
K grnti=g " k+1 (m-k+1-4)
- m— _
E: c;_1a5; + 2: b'7 1%k (Lemma 1)
k J m-k+1
(m-4-k+1) (m-k+1-3)
2: c;_ ]_z:ak i1 + 2 b(7 i (Lemmas 2
- j=1 and 3). ®
Corollary 1: ; 1
k-1 L. m-= . .
_ (m-k+1) (m-k-g+1) (m+1-k-g)
Up = o 1 + _Zlcj—l _Zlo‘k—iﬂf * .Zl bjaf :
J= 7= i=

Proof: This formula follows by using Lemma 3 and (9).

Corollary 2: The homogeneous recurrence (1) with constant coefficient has the
solution

_ (m-k+1) (m=-k - J+L)
Uy = 01 Zlc -1 Zo‘k i+l
j=

Corollary 3: The recurrence relation
Up+x = OUyyp + Bun + bn
(10)
Ug = Cgs Uy = Cps wees Up_] = Cpq (12 1 <k - 1)
has the solution
r-1 X k-1 3 m-k+1
_ (m=-k-3) (m=3) (m+1-k-g
= > c;Bf + 2oif + 2, b; . f 9,
J=0 Jg=r Jj=1
where

6 [Feb.
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f(m) - Z (.%‘ + y) 8%aY (m = 0).
kr+((k-ryy=m Y
x,y2z0

Proof: Let oy = B, 0 _, = a, and a; = 0, otherwise, in (1). By (9),
r k
k-7 1 s
Uy = ,Zlcj—lsf(m J+1)+ Z cj_]_(Bf(m k ‘7+l)+ocf(m k J+P+l))
j= J=r+1

m-k+1

(m+1-k-4
+ .}:l b. 1 f" 7
iz

r (m-k—-j+1) k ( X m=-k+1 Lok
_ch—lﬁf +‘Z cj—lfm J+1) 4 Z bj_lf(m+ k-3
Jg=0 J=r+l g=1 (Lemma 3)
K mek-p S amep | T (m+1-k-3)
k- _ mAl -k -,
T RS T SR Y VAL
Jj=0 j=r Jg=1
where
Fim = > (ery)B“”ay. B
kx+ (kK-r)y=m Y
x,y20
When b, = 0 in (10), Corollary 3 coincides with a result in [3]. When by = 0,
a=8=1,1=1, k=2, and ¢y = ¢; = 1,

Uy = o fTTD 4 o OV o pnoD) g pn-)

which is the combinatorial expression of the Fibonacci series.
E.X’ample 1: F}’L+5 = 2Fn+q + 3F‘VL + (27’1 - ].)
Fo=1, Fy =0, Fp =1, F3 =2, F,, = 3.

Solution: k=5,1=4, 0=2,8=23,Db,=2n-1

ey = 1, e, = 0, e, = 1, ey = 2, e, = 3.

By Formula (10), one easily finds

[(n=5)/5] [(n-7)/51]
_ n - 4x — 5\, xn-5x-5 no— 4% = T\ qeon-5z-7
Fpo=3 ;Z% ( x >3 2 +3 ;Z% ( x )3 2
[(n-8)/5] [(n-4)/5]
n - 4x -~ 8\ ,x,n-52-8 n o= 4x — 4\ zon-5z-4

+ 6 x};o ( - )3 2 + 3 xgjo ( . )3 2

n-4 [(n=-4=7)/5] _ _ _ = .
+ Z (27 - 3) (n chx 4 J>3x2n—5x-4~g_

Jj=1 x=0
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THE TETRANACCI SEQUENCE AND GENERALIZATIONS
Marcellus E. Waddill
Wake Forest University, Winston-Salem, NC 27109

(Submitted January 1990)

1. Introduction

Many papers concerning a variety of generalizations of the Fibonacci se-
quence have appeared, primarily in The Fibonacei Quarterly, in recent years.
Horadam [l] was one of the first to initiate this interest when he changed the
two initial terms of the Fibonacci sequence from 0, 1 to Hy, H;, arbitrary
integers, while maintaining the recurrence relation. He remarked in [1] that
there are fundamentally two ways din which the Fibonacci sequence may be
generalized; mnamely, either the recurrence relation can be changed or the
initial terms can be altered. The two techniques can be combined, of course.
Of the two alterations, a change in the recurrence relation seems to lead to
greater complexity in the properties of the resulting sequence.

Some generalizations have been given names. The Tribonacci sequence, {T,},
is defined by

(l) Tn = 71—1+Tn-2+T71-3 (7’[23), TO = 0, T]_ =T2= 1.

A generalized Tribomacci sequence results when the recurrence relation is the
same and Ty, Ty, Ty are arbitrary. The Tribomacci sequence and this particular
generalization have been examined rather extensively in the literature. See,
for example, [2], [3], [&4], [5], [6], [7].

The Tetranacci sequence, {M,}, is defined by

(2) M?’L = M?’L"l + Mn_z + Mn—3 + Mn—L\L (7’L > 4), MO = Ml = O, Mz = M3 = 1.

The first mention of the Tetranacci sequence seems to have occurred in [2],
and it has received further brief attention or reference in [8], [9], [10],
[11], [12]. Some writers have used the name "Quadranacci" (Latin) instead of
"Tetranacci" (Greek). We use the latter, as in [2].

The characteristics and properties of the Tetranacci sequence apparently
have not been examined in detail, and that, along with an examination of the
generalization which occurs when the four initial terms are chosen as arbitrary
integers, is the purpose of this paper.

As the recurrence relation and initial terms of Fibonacci-type sequences
become more general, we quite mnaturally expect that the relationships among
terms and the formal properties of the resulting sequences will become more
complicated and complex, and this indeed is true. Nevertheless, by employing
appropriate techniques, particularly by using vector and matrix methods, a
number of properties of the Tetranacci sequence and generalizations and
identities involving terms of these sequences are found and proved.

2. Fundamental Properties

As we begin an examination of the Tetranacci sequence and generalizations,

two '"companion" sequences emerge and are considered along with (2). These
sequences are designated {N,} and {S,} and are defined as follows:

(3) Ny = Nyy + Npog + Nyog + Vypoy (02 4), Ng =Ny =0, I} =1N3=1,

(4) S?’L = n-1 + Sn_2 + Sn_a + Sn_l_} (7’[ > 4), ‘SO = 33 = l, S]_ = 52 = 0.

1992] 9



THE TETRANACCI SEQUENCE AND GENERALIZATIONS

The sequences {N,} and {S,} have the same recurrence relation as {M,} but
different initial terms. The initial terms are, in fact, two distinct permuta-
tions of the four initial terms of {M,}. It can be shown also that these two
companion sequences are further related to {M,} by

(5) Ny =My y +My_p + M3 (n23),

(6) Sy =My +M,_o (n2z2).

We define the generalized Tetranacci sequence, {u,}, as
(7) p = Up-1 F Wpop + Uyog + ey (002 04)

where up, Wy, Mo, W3 are arbitrary integers.
The analogous generalized companion sequences, {v,} and {0, }, then become

(8) V, = Vo1 F V0 v+ vy (2 4)

or, alternately,

9 Va = Hp-1 * Hu-2 + Hy-3 (1 2 3),

where vo=1) = Wg> V1 = Hp = M1s V2 = M3 = Mg, V3 = Mz + up + ug,

and

(10) Op = Op-1 + Oy + 0,3 + 0,2y (2 4)

or, alternately,

(11) Op = Hp-1 T Hpy-p @ 2 2),

where 0g = Wy = W; = Mp> 01 = Wz = Mp = H1» Op = My + Hgs 03 = My + Wy

The choice of the initial terms of {v,} and {o,} is not arbitrary but is deter-
mined by their relationship to {uj,}.

The table below gives values of the three sequences {¥,}, {VN,}, and {S,}
for m = 0 to 18.

n{0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M,{O O 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 10,671 20,569

N,|O 1 O 1 2 &4 7 14 27 52 100 193 372 717 1382 2664 5135 9,898 19,079

S,/L 0 0 1 2 3 6 12 23 44 85 164 316 609 1174 2263 4362 8,408 16,207

The analogue of Binet's formula for the Fibonacci sequence can be derived
for {M,} and {u,}. 1In [7] Spickerman and in [3] Waddill and Sacks derived the
analogue of Binet's formula for the Tribonacci sequence and later in [8] Spick-
erman and Joyner generalized the result obtained in [7] to recursive sequences
of order K. Since the Tetranacci sequence is a variation of the recursive
sequence of order 4 in [8], the formula there may be adapted to give Binet's
formula for the Tetranacci sequence; namely,

- n n n n
(12) M, Alrl + A,r7 + A3r3 + Arl,
where A; are constants and »r; are the four distinct roots of
gt - x3 - x?2 -2z -1=0.

Binet's formula for p, is the same as (12) except that the A, are functions
of uwg, W1s> Mo, u3. The A4; and r; in (12) may be computed routinely but the
resulting formula is long and cumbersome; hence, it is not written explicitly
here nor used in the sequel.
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THE TETRANACCI SEQUENCE AND GENERALIZATIONS

A useful means of representing the recurrence relation of the Tetranacci
sequence 1is by employing what we call the T'-matrix, the analogue of the ¢-
matrix [13] which has been widely used in establishing properties of the
Fibonacci sequence.

The T-matrix is defined to be

(13) T =

OO = =
O = O
_0 O =
OO O -

Induction proofs may be used to establish

M, 11 1 1|3 M3 ]
Mpoy | _ |1 0 0 0 My
(14) u,_, O 1 0 o0 M, |’
| M3 | O 0 1 0 | | Mg |
Uy, 1 1 1 é n-3 Ug_
Uy -1 _ 1 0 0 U2
15 n = s
(15) Up-2 0 1 0 0 'S
L Hn-3 Lo 0 1 0] L Ho |
and ~
1 1 1 1" My 4o ) Sn+2 My 41
(16) 1 o0 0 O = | Mav1r Vpwr Spel My
0 1 0 O M, v, Sy M, 4
Lo 0 1 0 My-y  Npoy  Spoy Myop

The right side of equation (16) indicates a reason for calling {N,} and
{S»} "companion" sequences of {M,}: both occur naturally in successive powers
of the T-matrix.

Although up to this point, we have restricted the subscripts of the Tetra-
nacci sequence and generalizations to being nonnegative, we may remove that
restriction and define {M,}, {WN,}, {Sy} and their corresponding generalizations
for all =.

By writing the difference equation (2) as

(17) My = Myyry = Mpig = Myyp = Myys

and choosing n < 0, then n + 4, w + 3, n + 2, and n + 1 are all greater than 7,
which allows us to define M, by the four terms immediately following it. That
is,

M_1=M3—M2—M1—Mo,

M.y =My — My = My = M_y,

and so on.
We may obtain another useful definition of M,,n < 0, by using the T-matrix.
We first write (14) as

n

M, o 1 o o]
My 0o 0 1 o] |m
(18) Mpsp 0 0 0 1| |M
M43 11 1 1| | o

Now, in (18), if we replace n by -n, we have, for n > 0,
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My 0 1 0 0™ M -1 -1 -1 -1 |"| My
(19 Mysr | _ ] 0 0 1 0 My | 1 0 0 O My

M_pio 0 0 0 1 M, 0 1 0 0 My |?

M43 1 1 1 1| My 0 0 1 o0 M3

which defines M, for n < 0; and this definition using the 7T-matrix is equiva-
lent to (17).

The sequences {N,}, {S,}, {un}, {va}, {0,} may be defined for n < 0 in like
manner.

We now establish some interesting and useful identities. Using (15) and
(16), we may write

Un+p I 1 1 1 P[1 1 1 1]73] usg
(20) Un+p-1 _ 1 0 0 O 1 0 0 O Ho
Hrtpos 01 0 0 0100 "
Mt p- 3 0 0 1 0 00 1 0 1o
| Mpvp Wpep Spaz Mpa My
= | Mpe1 Dpr1 Sper Mp Hr-1 ||
Mp p Sp o My Wn-2
L Mp-1 Tp-1 Sp-1 Mpp Wn-3
From which we conclude that
QL) ey = Mgty + oty F Siply T Mgl g
or
(22) Wpap = My by + W ou, g + 6'n+2“p—2 + My Hpoge

By replacing Ny+y and Sp4+p using (5) and (6), regrouping and then employing
(9) and (11), we find that (21) and (22) may be written

(23) Hptp = M%+2un + M;+1vn + M?cn + Mp—l“

n-1

oY

(24) Mptp = Mn+2“p + Mn+1vp + Mnop + Mn-l“p—r

As special cases of (21) and (23), respectively, when p = 0, we have

Mo = My qug + W quy + 5, 1y + M, o

or

Wy = My_jug + My_pvg + My_303 + My_yhp.
We next consider the sequence {7, } which is defined by

RO = Ml’ Hl = 82’ Rz = N2, B3 = M2

and
R3, M1 1 1 0 0 |7 1f Ry

(25) Ban-1| = | Vusr L0 1 0 By
B3p-2 Sp+1 1 0 0 1 s
R3n-3 My, 1 0 00 Ry

The generating matrix of {%,} is the transpose of the ZIT-matrix, and the
terms of {A,} are generated in groups of three rather than singularly as in
(14). It is evident that the sequence {F,} is merely a meshing of the three
sequences {M,}, {N,}, {S,}, and, comnsequently, its terms are not as '"spread
out" as the terms of either of these sequences individually. This latter
property become useful in establishing identities later om.

The generalized sequence for {R,} is designated {p,} and is defined as ex-
pected by
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THE TETRANACCI SEQUENCE AND GENERALIZATIONS

Pg T Hy1s P =62’ Po = Voo Pg T Hoy

and

P3n [ Hus 1 1 0 o |l P3
(26) Pan-1 = Vn+1 = 10 10 Py
3n-2 om+1 10 01 pl
P3,-3 | Uy, 1 0 0 O Py

Mn+1 My Mn—l Mn—Z O3

= | Musr Wy Nuoy Npop P2

Sp+1 On Sp-1 Sn-2 Pl

L My Myy Mp_p Mu_3 Po

Identities analogous to (21) and (23) may now be written for the sequences
{v,} and {o,}. Using (26) and writing

I p

Wntp 1 1 00 1 1 0 0 (™3] uy
(27) Vn+p _|l1 010 1 01 0 Vs

Tn+p 1 0 0 1 1 0 0 1 O3

M po1 1 0 0 0 1 0 0 0 0,

Moyy Mppy HMp o My Hn
= Zp+2 Nprr p zp—l Vn s
Speo Sper Sp S Oy
L Mp+1 MP Mp—l Mp—z un—l
from (27) we conclude that
(28) Vatp = Np+2pn + Np+1vn + Nyo, + Np—l“n—l’
(29) Vptp = Nn+2“p + Nn+1vp + thp + Nn-l“p—l’
or by (20) replacing p; with v;, we have
(30) Vyrp = M%+2vn + N?+2vn_l + S%+2vn_2 + Mb+1vn 3
3D Vrp = MooV T V0V 1 T S0V T M Vg
Similarly,
(32) Optp = S?+2un + Sp+lvn + Spon + Sp_lpn_l,
(33) Opap = Spyolp + 5,01V + Sx0p + 5, 1Hpo1>
(34) Oprp = My 00, + Ny 00, 1 + 5,150, o + My 0, 55
(35) Oy = M0t 00 T T Y Ty
We may further generalize (21) to read

(36) Worp = Mownioty g & ooV T SppneoMn-n-2 T MpynaiHp-x-3>
where k is any integer. Since {u,} has been defined for all n, all terms in

(36) are defined even if a chosen value of k produces negative subscripts.
Also equations (22)-(24) and (28)-(35) can be written in this more general way.
In the vector on the left side of (15) the terms

Un’ Un_19 Un_za Un_a

are clearly adjacent terms of the sequence {p,}. By using appropriate matrices
we can write a vector in which the four terms are not adjacent but are '"spread
out" in a prescribed manner.
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By (21) we have, for arbitrary integers p, g, and r,

Hp +p Mpro Nprp Spen Mpyy Hy
(37) Unag | = | Yqu2 Dguo Sgun Mou Hpoa

Hysp Mr+2 Nr+2 Sr+2 Mr+1 Hyoo

My 1 0 0 0 B3

Using (23), (28), and (32), we conclude that

Hutp Mpso Mpay Mp My )| Mg
(38) Vn+q Ngvo gy Ng Uy Vi

n+r Sr+2 r+l1 Sr 5 -1 On

Uy, 1 0 0 W,
Equations (37) and (38) will be used later on.

3. Linear Sums

A number of linear sum identities were discovered and proved. We give some
of these and write them in terms of the generalized Tetranacci sequence, even
though each has as a special case the corresponding identity for the Tetranacci
sequence. All the 1listed identities may be proved by induction, but that
method of proof gives no clue about their discovery. We give one proof to
indicate how these identities, in general, were discovered.

We have
« 1
(39) _Eg)ui = g[un+2 + 2u, * U, 20 +oug - pa],
5
n 1
(40) ,EO Hoza1 = FL2Mpu40 F Mg, = Mg, o1 = 20 T 20y = 3wy * ougls
;5
C 1
(41) ;::O‘Jzz' = 3l20gne1 + Mooy T Mg Foug —uy F 3up - 2ugl,
. 1
(42) 1.Z:O”szi = gléug, 1t Mg, = Mg, o1 Mg,y F 5Mg ~ Uy - 3wy + 2ugl,
z 1
(43) 2 Mgin = glélg, o + Bugy — Mg, Fug, oyt 20+ 7uy = 3wy - gl
20
w 1
(44) ,20“3“2 = glhbg,es ¥ 305,05 ~ Mg Mg, — g o+ buy — dugl,
<
n Ly -1 1
(45) ,21“47, = izo Hp = Flbg gy + 20y, 00 F My F 20w - ougls
4 -
n Ln 1
(46) _Zlu“’l*‘l =izlu,,; = g[p“‘n,',z + ZUHn + an_l - UO + Ul - U3];
= =
n L4n+1 1
(47) ,Zlquz = 2oHe = gl T 2u g Fowy, - oug - 20 - gl
1= 1=
n Un+2 1
(48) 7;2—:1“””3 = 223 Wy = Sl F 20,00 F iy © Mg T 2ZHp - 31y gl
14 [Feb.
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Proof of (39): We write the following obvious equations;
“O + Hq + Ho = My - U3
Hp Ty tug = ug -y
Ho + H3 + Wy, =~ U5

I
-
o

L Uyt Hual T Hugg = Huyo
Mo M4 Mgy = Wpgge

Wyt T

_.l...

Now, adding these equations, we have

n n "

2. He F Z T D e R T (T (S R TN T
=0 =0 =0
or

31_2:.0“7; = Mpgy T 2Wpgy T My P 2Up tg - UG

which may be reduced easily to (39) by using (7) and dividing both sides by 3.
The remaining identities, (40)-(48), are derived using similar techniques.

4. Quadratic, Cubic, and Quartic Identities

An application of the T-matrix is in deriving and proving the quadratic
identity

2 2 2 _

(49) Mo+ My + M+ 2M(M, ) + M, o) =M, .

Proof of (49): By (16), we have
Monio Nowio Sopyo Mopoa Mpvo Muvo Suvo Myt

(50) T2n = M2n+1 N2n+1 82n+l M2n—2 = M%+l Nn+1 Sn+1 Mn
Moy Noy Son Mpy —3 My Ty Sn My
Moy -1 Nop-1 Son-1 Moy-y My-1 Npoy Sp-1 My-g

Now we carry out the matrix multiplication on the right side of (50) and
equate the elements in the third row, first column on both sides of (50) to
obtain

M M + WM + S,M, + M2, =M

ntn+2 nn+l n-1 2n
which is equivalent to (49).
By equating corresponding elements in the fourth row, first column of (50),

we obtain

2 2 —
(51) M M, - M2+ MM+ ME_| F2M M, o= My .
The generalized versions of (49) and (51) are, respectively,
2
(52) W2+ 2 2+ 2u, (g Fou, )
= Mglg, o1 T up(hg, = Mg og) F (g, 5+ Hpuo3) + Mgly,
and
2
(53) Hopoln 7 Hi + HyHy-3 + Un 1 + 2“n—1“n—2

= Mglg, g T Hp(hg, g = Hou_g) + g, g+ My ) + Hghy, 5
In (52), if we let Mg = Hp = 0 and By = g = 1, we have

2 2 2

Mo+ Moo+ ML+ 2M (M, + M, 2) =M,

which is (49). By letting p =n - 1, Mg = M; = 0, u, = My = 1, and replacing =n
by n + 1 is (21), we obtain (49) also. However, (21) is not readily obtain-

able from (52) nor is (52) obtainable from (21).
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The same technique used in the proof of (49) may be used to find and prove
cubic identities. 1In this case, we use the fact that for the T-matrix,

(54) T3n—2 - T”‘IT”’lTn,

and again after expanding and equating appropriate corresponding terms on each
side of (54), we obtain, for example,

(55) M3y = Myyp(By = C1) + Mpyy(By = Co) + My (Fy 2 C3) + My ) (Fy» Cy)s

where F; is the first row of 771, ¢; is the £'h column of 77”71 and - is the
usual dot product of two vectors. The right side of (55) is clearly a cubic
which we do not expand completely because of its length.

The analogue of (55) for {u,} may be written in a manner similar to the way
in which we wrote (52).

We may continue using the above technique to find quartic, quintic, and
higher-ordered relations, but it is clear that one side (the side involving
powers) of the equation becomes exceedingly long and complex.

One of the oldest and perhaps best known identities for the Fibonacci
sequence is
(56) Friifoy = FZ = (1),
which was derived first by R. Simson [14]. 1In [3], the identity analogous to
(56) was found for the Tribonacci sequence. We now pursue a like identity for
the Tetranacci sequence. The simplest one may be obtained as in [3] by
considering the determinants of both sides of (16) to obtain

Myro Mpiy My My _y Myyo My_y My My 41
(57) Myyy My Mpoy Mp_p — Myyy Mpp Myoy My

My, My,_1 My_p M,_3 M, My_3 My_» M,_1

My_y My_p My_3 My_y Mpoy My My-3 My_p
Mytrp Npyo Spez Muyy 111 1"

_ Mus1 Npy1 Sner M = _ 1 0 0 0 = (_1)n+l

My ‘N, Sy M, 4 0 1 0 O ’
My_1 Npy-y Sp-1 My-»p 0 0 1 O

We shall not expand the left side of (57), but it is clearly a quartic
consisting of 24 terms.

We now consider some generalizations of (57). First, we rewrite (57) for
the sequence {u,} to obtain

Hut2 Hu4l Hn Hp-1 Mg M5 Hy M3
(58) Hue1  Hn Hn-1 Hu-2| = -y s Hae Mz Mol

Hn Hpo1 Hu-o Mg My Mg Hp By

Hp-1 Hp-2 Hu-3 Hy-y Hz My My Ho

a quartic expression independent of » except for sign.

Proof of (58): By (15), we have the following matrix equation:

Mupo Hpsl Hno Hpog L O L BT T T T
(59) Husl  WHn Hpo1 Hpep | o | 10 000 s My Mz Hp
Mo Myl Hpop Hpo3 0 1 00 My M3 Hp o Wy
Mol Hpo2 Wpo3 Wy 00 10 M3 My Wy Mg

Now, by taking determinants of both sides of (59), we have (58).

As a special case of (58), consider the sequence {0,} where ag = a; = 0,
a, =1, a, = o, arbitrary. The, determinant on the right side of (58) then
becomes
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4(a +1) 2(a+1) a+1 «
20+ 1) (o +1) a 1
(60) (0 +1) o 1 0’
a 1 0 0
which is a quartic polynomial in o. Consequently, an algebraic integer o = B

exists, which makes the determinant (60) zero. Thus, for any »n, the sequence
{0,} whose initial terms are 0, 0, 1, B, where B is chosen so as to make (60)
equal 0, always results in

Ope2 %n+l On %y -1
%pt1 On %p-1 %n-2| = 0.
Oy O,_1 Oyu_p O,_3
-1 %n-2 Gn-3z O%uoy

To obtain a more general form of (58), we first observe that the quartics
on the left side of (57) and (58) involve seven adjacent terms in the sequences
{M,,} and {u,}, respectively. We use the technique in the proof of (58) along
with (37) to show that the terms of the quartic may be "spread out," so to
speak, and that the number of terms involved may be as great as 16. Specifi-
cally, we prove the following identity:

Hn+m+r Hn+p+r Hn+g+r Hn+r

(61) Hptm+s Hn+p+s Hn+g+s Hn+s
Ho+m+t Hn+p+t Hn+g+t Hn+e
Wy m Hu+p Hn+gq Hn

My, My Ma_p||Hm+3 Fp+3 Hg+z M3
= (_l)n—l M%+l Ms Ms—l Um+2 Up+2 Uq+2 Hy ,
Mgy, My My_p||Fm+1 Fp+l Hg+1 M1
Hm Hp Hg Ho
like (58) a quartic expression independent of 7 except for sign.

Proof of (61): By (37) and (20), we have the following matrix equation:

Ho+m+r Hu+p+r Hn+g+r Hutr

(62) Witm+s Hn+p+s Hn+g+s Hn+s
Hu+m+t Hn+p+t Hun+gq+tt Hu+t
Hn+m Un+p L\n+q ~ - HUn
Mpyo Npyo Spyp Mpig 1 Wit m Hu+p Hn+q Uz
- Mgyo Nevo Sgin Msy Hpem-1 Hp+p-1 Hu+g-1 Hn-1
Mepo Nego Sevn Mpsn Hp+m-2 Hun+p-2 Hn+g-2 Hn-2
L1 0 0 0 JL Wn4m-3 Hn+p-3 Hpsq-3 Hn-3
[ M i s Mperp |1 1 1 1" 3w u u i
r+2 r+2 r+2 r+l m+3 p+3 q+3 3
= | Mgyo Ngyn Ssyn Msyl 1 000 Wn+2 Mp+2 Hga2 Mo
Meyp Niyo Spyp Mg 0 1 0 0 Hn+1 Mp+1 Hg+1 ™1
|1 0 0 0 0 0 1 O U, Up Ugq u,

We take determinants of both sides of (62) to obtain (61) since, by using (5)
and (6) and well-known determinant properties, we can show that
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Mr+2 Nr+2 Sr+2 Mr+1

Mpyq1 M, M,_
Ms+2 ]Vs+2 Ss+2 Ms+1 = MP L M:r’ Mr L
M N S M s+1 s s-1]-.
t+2 t+2 t+2 t+1 M M M

1 0 0 0 t+1 t t-1

For the sequence {M,}, (61) becomes.

Mot m+r Mn+p+1’ Mn+q+r Myt

Mpyy My Mp_y||Mpyy My Mp-y

(63) Mn+m+s Mn+p+s Mn+q+s Mn+s =(_1)n—1 Ms+1 Ms Ms—l Mp+l Mp Mp-l
My vm+t Mn+p+t Mrz+q+t My + ¢ M M ¥ i M Y

Myt m Mpvp My q M,, t+1 t t-1 q+1 q q-1

Several special cases of (61) are worth mentioning. First, let g = ¢, s =
p=2t, m=1r = 3t, n arbitrary, to obtain

Hovet  Hu+s5t Hn+ur  Hn43g
(64) Hnese  Hpsue  Hu+3e Huaoe
Hpsue  Hna3r  Huaoe Mo+t
Hui3e  Hu42e Hure  Hn

H M u H
M3t+l M2t+l Mt+1 3t+3 2t+ 3 t+3 3

= (-1)"" 1My, My, My ﬁ3t+2 ﬁ2t+2 Et+2 :jz ,
M3 1 Moy -1 My 3t+1 2t+1 t+1 1
Mg Hog 37 Ho

which displays an interesting symmetry.
Another special case of (61), which displays even greater symmetry, is ob-
tained by letting g = ¢t =#un, p =s = 2n, m = r = 3n. We then have

W7, Hen Hon  Hyy
(65) Hon Hon  Hun M3y

W5y My, Mgy Hoy

Hyp  H3p Hyy Hy

u u u u
M3pe1 Mopi1 My 1‘l3n+3 u2n+3 11n+3 u3
= (-1)»-! M3, My, M, 3n+2 2n+2  Fn+2 21,
My M, | M, H3n+1 Housrl Hu+l M
" " U3y Hop Hn Ho

Note how all terms in the determinant on the left of (65) are »m units apart,
whereas those on the right occur contiguously in groups of three or four, and
the groups are n — 3 units apart.

5. Concluding remarks

Many number-theoretic properties for the Fibonacci sequence quite expectedly
do not extend to the Tetranacci sequence. However, the following divisibility
properties hold:

(66) Ms, 1 = Ms,, = Ms,,7 = 0 (mod 2),
(67) Ms, 5 = Ms,4p = 1 (mod 2),

(68) Ms, = Ms,,1 = 0 (mod 4),

(69)  Ms,_, = 1 (mod 4).

Proof of (66) and (67): We consider the sequence {M,} (mod 2) and display the
results in the following table:
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n 0 1 2 3 4 5 6 7 8 9

M, (mod 2) 0 0 1 1 0 0 0 1 1 0

From the table, it is clear that {M,} (mod 2) starts to repeat after five
terms and, since the pattern of zeros and ones will then continue to repeat in
the same order, we have

ML‘_ = M5n_1 =0 (mod 2), M5 = Msn =0 (mod 2), M6 = M57L+1 =0 (mod 2),
M3 M5n—2 =1 (mod 2), M2 = M5n+2 =1 (mod 2).

Since by (66), Ms,, 1, Ms,, Ms,,1 are even, it is clear that three arbitrary
adjacent terms of the Tetranacci sequence may have greatest common divisor
greater than one. However, we can show that the greatest common divisor of

Mys Myy1s Myyos Myyss

any four consecutive terms of {M,},is one.

This paper, quite clearly, is not intended as an exhaustive treatment of
properties of the Tetranacci sequence and generalizations. Some fundamental
identities and sufficient other results and techniques for proving them are
given to indicate the rich and remarkable nature of this sequence and generali-
zations.
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NEGATIVE ORDER GENOCCHI POLYNOMIALS
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1. Introduction

Elsewhere [2], I have investigated the properties of G;M(x), the Genocchi
polynomials of order k (20), which were shown to be related to E{(x), the
Euler polynomials of order k, and to Bém(x), the Bernoulli polynomials of order
k.

When k = 1, we have the Genocchi polynomials of the first order, the sim-
plest polynomials of Genocchi type.

If x = 0, the Genocchi numbers arise.

Following NOrlund ([4] and [5]), who pioneered the study of Bg%j(x) and
Eﬁ'm(x), the Bernoulli and Euler polynomials, respectively, of negative order,
I here offer some of the most important properties of Gé'm(x), the Genocchi
polynomials of order -k (k > 0, n 2 -k). So far as I am aware, the material in
this contribution represents new information.

The justification for seeking knowledge about the negative order polynomi-
als is stated by NOrlund [4]. After saying that there is advantage in extend-
ing to negative order the notion of functions of positive order, Norlund
continues: "On peut ainsi faire rentrer dans un méme cadre des fonctions quti
apparaissent jusqu'ici comme distinctes." [We can thus combine in one frame-
work functions which up to now appear as distinct.]

Beyond this justification, I feel that the G$®(x) have a vitality of their
own which deserves recognition.

Euler and Bernoulli Polynomials of Negative Order

Norlund ([4] and [5]) defines the Euler polynomials of negative order -k by
e

=" (- VI 4 1) L. (@Y 4 1)et®
(1.1 > FE’S D@lwy .. wy) = (e ) oK (e )
n=0""

and the Bernoulli polynomials of negative order -k by

£ (k) (e"f - 1) ... (ePF - et
1.2 —B L Wye..W = .
(1.2) ,;::071! G 2 Wi w T
If wy =wy, = --- =w, =1, then (1.1) and (1.2) become

I

o no + ko,
(1.1) 7 Z t_!EVE k)(x) <g> eb-'r

n= 072 2
and
E (k) el = 1Nk i
! = =
(1.2) n;)n!Bn () ( - > et

The definition to be given in (2.1) for Genocchi polynomials follows the
modified forms (1.1)’ and (1.2)', though an extension to the patterns in (1.1)
and (1.2) could be adopted.

For subsequent comparison with corresponding forms for Gi{k>(x) (k =1, 2, 3,

..), the first few expressions for Eﬁ'm(x) and B;'m(x) are:
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NEGATIVE ORDER GENOCCHI POLYNOMIALS

(1.3)  E§¥@ =1
1

El(“k)(ac) =2 + 2k
Ez('k)(x) = x2 + kx + Eg:—l)
2
Eé'b(x) - 23 4 3502 4 3k(k + D, , k2 + 3)
2 4 8
2 2 _
Eﬁ““(x) = 2%+ 2ked + 3k(k2+ 1)x2 . k (k2+ B)x + k(k + 1)(ﬁ6-+ 5k - 2)
AR REAREEE
(1.4)  BSP@) =1
(-k) _ k
BT(x) =+
(-k) _ .2 k(3k + 1)
By () s + kx + — 17
R 2
B(Jo(x) - 23 +-§kx4v+ k(3k + l)x + k“(k + 1)
3 2 4 8
2 3 2 _
B('“(x) B N k(3k + 1)x2 " k= (k + 1)x " k(15k>+ 30k*+ 5k - 2)
o 2 2 240
Putting kK = 1, we readily derive the table:
(1.5) ESY (@) BS V(@)
n =20 1 1
n=1 x + % x +%
n =2 x2+x+% x2+x+%
n=3 ©3 + 322 + 3z + 5 23+ 322 + 0+
no=+4 ozt + 203 + 322 + 2c + 5 at+ 223 + 222 + x4+

2. Generalized Genocchi Polynomials of
Negative Order

Definition and Basic Properties

Define

©

(2.1) ZkG’S_k)m[zT' - () et k=1, 2,3, .00,

2t

whence
(2.1)" G;Jo(x) is undefined when »n < -k,
i.e., m+ k 2 0 is necessary for the existence of G,(l_k)(x).
Putting Xk = 0 in (2.1) leads to the situation covered in [2] when k = 0, so

we exclude this repetition.
Calculation in (2.1) gives us the first few Genocchi polynomials:

2.2) ¢ = |-k

-k) 1
Gfk+1(x) = |-k + 1> + sk
- -k + 2!
Gfkli)z(x) = ———————l 1 | {xz + kx + k(e + 1) 2+ 1)}
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NEGATIVE ORDER GENOCCHI POLYNOMIALS

(=K) “k 3! 3k 3k(k + 1 k2(k + 3
Gy 3 () =——§!——L{x3+~2~x2+ ( A )JL'+ ( 3 )}

(k) [_k 4“ 3k(k + 1) k2(k + 3)
G_k+q(x) = —4,—{9{,‘L‘L + 2kx3 + 5 x2 5

+ k(k + 1) (k2 + 5k - 2)}
16

In particular, when k = 1:

2.3) P =1

- 1
GeP@ =+

(-1) _1f 0 1
Gy (%) Z{x + x + 2}

(-1) 1§33, 32,3 .1 1\, .2
G2 (x) 3{x + zx + 2x + 5 3(x + 2>(x + x4+ 1)
V) = Lat 4 203 + 322 + 220 + 1

3 4 2

(-1) _Llfs 5 u 3 2 .5, .1
G4 (x) S{x + zx + 5x° + 5x¢ + 5% + >

_1( Ly, u 3 2
=sle T §>(x + 2x° + 4xc + 3x + 1)

.......................................................................

The Genocchi numbers Gé_n (n 2 0) thus form the sequence

1 1 1 1 1
! = = —_ = —
(2'3) 2{13 2, 39 4; 5, ---}5

while

(-1) . A(-1) _nm+ 1
(2.3)" Gn—l - Gn = T -+~ 1 as n > o,

Comparison of (2.1) with (l1.1)' reveals that

[ ]!

(2.4) 670 = TR () -
Differentiating both sides of (2.1) w.r.t. x leads to the Appell property
(21 (-£)
G, "™ (x) -1
(2.5) g - nG, {(x), n+ k>1, n >0,
whence dpG,(l_k)(x) »
(2.6) ———255——— =nn-1) «-- (n - p+ l)Gn_p(x), n-p=0,

so that, using (2.3), we have
n+1 ~(=k)
d G, (@) _

|
(2.7) ) n!
Integration of (2.5) gives (with n » n + 1):
x+1 (=k) (-k)
_ G (1l +x) -6 (x)
(2.8) f R (@) doe = L ntl
x n+ 1
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NEGATIVE ORDER GENOCCHI POLYNOMIALS

Summation Formula

Theorem 1:
%) < |n]!
(2.9) >+ y) = 2,

— R @)y
PN I SAPIRRE 4

Proof: o w ©
(-k) th (L4 et\k o (-k) tr ymem
n;an (x + y)|”|! = ( 77 ) et® oty —r;kGr (x)!r’[!mgo =
SR ]! (-k) n-j _t
= — G T
D S e TN FTER A M T

after rearranging the terms.
Equate coefficients of t?/|n|! and the result follows.

For example, if Xk = n = y = 2, both sides of the formula (2.9) lead to the
expression, also derivable from (2.2),

. 1 1 1
6Pz + 2) = 150+ 2+ 47a? + 105 + 957

Furthermore, if Kk = 3, n =1, x = 0, and y is replaced by x, then (2.9) gives
@) = 2 + 3z + 3)

in conformity with (2.2).

Complementary Arguments

We say that x and -k - x are complementary arguments.

Theorem 2:
(2.10) ¢Sk - z) = (1R ().
Proof:

(k) t? (1 + et\k (~k-x)t _ (_ k(l + e't>k —tx
L2 Ok e - (=) e - T @

(—l)k i (_l)n GSL_k) (x)_én__

s 'n’!

D N A
=k {n|!

I

Comparison of the coefficients of t"/ln‘! yields the result.

GS%)(x) if ¥k + n is even,

Corollary 1:
(2.11) GEF(-k - ) = {

-¢$M(x)  if k + n is odd.

Special cases of interest occur when x = 0 and (equivalently) & = -k. In
either of these instances, consider also k = 1.

Corollary 2: In Theorem 2, replace x by x - (k/2). Then

(2.12) Gf{k)(-x - 12?) = (—l)”+kG,(l'k)<x - %)

If x = 0 in Corollary 2 (or x = -k/2, k + n odd, in Corollary 1),
then

(2.13) Gﬁ[")(—%) =0, k+ 7 odd,
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NEGATIVE ORDER- GENOCCHI POLYNOMIALS

i.e., Gé_b(m) has a zero when x = -k/2 for k + »n odd.

Thus, in (2.2), Gf;?z(x) has a zerc when x = -k/2 for & odd.

Analogue of the Multiplication Theorem

More accurately, this analogue of the multiplication theorem [2] could be
called a '"division theorem'" for negative first order Genocchi polynomials. As
in [2], there are two cases to consider, one of which involves B%‘l)(x). Unfor-
tunately, as for k > 0, this theorem does not extend beyond k = -1.

Case I: m odd

Theorem 3a:

-z -1 "L 1
(2.14) GSV(E==) = sl T (D765 (@ + 8).

Proof: - o=t i
nZ:_1W s;d -0°6C V(@ + ) =S=Z_1 e ot g8t
= l—lege—tetx(—e“t F 1 —et 4 oo + (=1)M"2om-2)t)
- 1—;;—75@“5(—6*)(1 S ot 4 e - ... 4 (=1)m-lolm-De)
—l—te—tet(m"l)- Lte? em, since m is odd
2t 1+ et
(L) L geoge

Therefore,

(-n(x =1 lm.2 s o(-1)
M=) = oy - “x + , m odd.
G, ( > m ;—1( 1765« s) o

Case II: m even

Theorem 3b: ,
-— m-= -

(2.15) BTV(EZ2) = n 1Y (DPE V(w4 ).
m s =-1

Proof:

S Y ()E D@ + 8

n=—1|n‘! s=-1

t
= _lLe._etx. _e—t(l — ot + g2t _ e3t + .. F (_l)m"le(m—l)t), as in
2¢ Theorem 3a
t — mt
= —%e—et“‘l)ll—;%;, since m is even
t(z-1) me _ o mi(z-1)
=_.e____...(]_ _emt) =m-lag——————oe m
2t 2 mt
m S (me)" (—1)(.90 - 1) . 1.2)"
= 2;::0 1 B —), on using (1.2)
_mttl &t (e - 1
T2 ,?;O n!B” ( m )
Equate corresponding coefficients of ¢"/n! and the result follows. It is
to be noted that, in the left-hand side summation, n = -1 and m even lead to
the term

Lom_i+1) =o.
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NEGATIVE ORDER GENOCCHI POLYNOMIALS

Relations between Polynomials of Successive Orders

Theorem 4:

i 26 2 (x - 1) n
(2.16) {5V - 1) + ¢S () =

2 (-2)
Tn——_—I—I—'-Gn 1(.%‘ -1) n

]

1
—
-
(@)

Proof:
o - - 1+ et _ 1+ et
L 67w - 1+ o 1>(x)]|n|! = (et 4 () et
_ 1 -;tetetx(l + e—t) = 2t<l_gt_et>zet(z—l)
- 2042 t! (-2) D t
= 267 (x )l_2|!+2¢;_1 (z -1 l l +22nc; A

Equate coefficients of t”/|n|! and the result follows.
Clearly, the result can be extended to GﬁJO(x).

With * » £ + 1 in Theorem 4, we have

Theorem 5: ZnG( 2)(ac) nw=1, 2, 3, ;

(2.17) P00 + z) + ¢SV () = 2
—¢H@ n=-1,0,
[n - 1177

with a straightforward extension to n = -k if desired.

A companion result is

Theorem 6:

2.18) ¢SV + 2 - ¢{V(x) = z”B;‘”(a—zc), (n > 0)

Proof:

-1 e D e [ (LR ety e e
[ZG (1 +2) - Gy (oc)]n, (F2) et - De

_ o3 p-D(x\t" ) ,
=2 ég%B” (2>n!’ on using (1.2)7,
from which the formula follows.

To generalize Theorem 6, we need to expand (et - 1)X. After suitable alge-
braic manipulation, it ensues as in the proof of Theorem 6 that
(2.19) Z( 1)d- 1( 6SPG + @) = (DFER(S) (= 0).

Jg=0

Theorem 7:
(2.20) (n + DESP(@) = n(@ + D@ - G(O)(x) (n=1).

Proof: Differentiate both sides of (2.1) for kX = 1 w.r.t. ¢ partially, and then
multiply by t. It follows that

1 (-1) nt _ (l + e®\ s, et (tet - (1 + et)>
) +n>;16 @ = (Pt + 5 o t
t t
- (Lﬁ)emm + 1) - (Ltﬁ)etx _ e
26 2t 2t 2 [Feb.



NEGATIVE ORDER GENOCCHI POLYNOMIALS

Equate coefficients of ¢”"/»n! and the result follows. Observe (see [2]) that
G(O)( —
o (x) = x™.

The » = 0 term, being a constant, does not contribute to the summation on
differentiation w.r.t. ¢ partially.

Proceeding in the same manner, we may establish the generalization

(2.21) (0 + WEP@ = 0k + DR @ - 7% V@ =D,

n-1

In particular, when k = 2, the left-hand side of the first line of the proof in
Theorem 7 (after partial differentiation and multiplication by %) becomes

2 _(d+x S (-2), Nt
, — + 0+ nz=:1G” (@)
since the n = 0 term does not contribute, being a constant as far as partial

differentiation w.r.t. ¢ is concerned.
G,(l_k)(x) in Terms of G,(n“l)(f(x))

Adopting a different technique, we are enabled to derive formulas connect-
. (~k) . . . . . . £ 3
ing G, () with negative first order Genocchi polynomials of appropriate func
tions f(x) of x. When k = 2, 3, we have

Theorem 8: 1f n =2 0,
2n + 1)65P ()

n+2
2{27L+1G7(1—+l}.(§> + G(‘l)(x)} _x

1 3
(2.22) . . 926 nt n o+ 2
4n+ 2)(n + DG, (x) = 3{3n+1an+2(§> + 6N + 1)}.

Proof: Consider

t 2 2t X t tx
(2.23) <1_i_e_) ottt = £<1_iﬁ_>32t-§ + _2_<_l_"i>etx _ €

2t 2¢6\ 2 ¢ 2¢ 26\ 2t 2¢2
and 3 ( 1
1 + et> tx 3 (1 + e3t> 3t.% 3 (1 + et)t x +
. —_— = —5(—7— 3+ =\ .
(2.24) ( 2t ¢ 422\ 2 « 3¢ G2\ 2%

Equate coefficients of ¢"/n! and the results follow. (xnt2 = Grgg_)z (x) by
[21.)

Determination of the somewhat complicated extensions of (2.22) for general
k is left to the curiosity of the reader. Depending on the parity of k, we
will obtain two separate expressions in the generalization. Nevertheless,
there is a unifying principle in the proof, namely, the grouping of pairs of
appropriate terms; when kK is even, there will be additionally a single unpaired
term.

Similar kinds of results may be obtained for E(n'k)(x) and B%’k)(x) on using
(1.1)" and (1.2)'. However, in the case of Bernoulli polynomials we remark
that, for k even, B,(l_k)(x) is expandable in terms of Genocchi polynomials.

Gé_l)(x) in Terms of Gf;”(%)

Theorem 9:

n
Dy __nlt ey - Ly
(2.25) Gn () ngl (n - r)! II;I!GI’ (2><x ) )
Proof: ©

- t" (1 + et _(L+ety £ (a-3)t
,/;_IG" (x)ln]! ‘< 2% )etx '( 2% )ez et ?
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NEGATIVE ORDER GENOCCHI POLYNOMIALS

-1)(1 1>S+l s+1
= Gy (E> (x"i t

=s§1 -1tz ' (s + D! +{r§00(_1)(%>%}{mio(x B %)m:]_""} )

Application of Cauchy's multiplication of power series and comparison of
coefficients of ¢"/n! yield the desired result.

Sums of Products

What happens if we square both sides of (2.1)? Clearly,

(2.26) ( Y ag-1><x>i’l>( > 65V (@)L )
n=-1 I”l' =-1 I [

(1 er et>22t.2x

Z ¢$? (2m)

T

Comparison of coefficients of t”/[nl! yields a set of sums of products, ex-
pressible in general form as

(3] 4D
2 2 6f 1)(oc)—”L(L n odd,
ji=-1 I JI!
(2.27) 5P (2x) = X
[n_ ] ¢
2 3 65 (= )l’?—Jl, + G5 (@) n even.
j=-1

Furthermore, if we replace ¢ by -t in one of the infinite sums in (2.26), we
find

(2.28) ( Z G( 1)(.%,)I ]'>< Z G( 1>( )( ) > _(l ;tet>2e_t

n=-1 n=-1 I l'
o~ (-2) t
= -3 §PCnE,
=Z—2 n )|”I!
leading to formulas for GSQ)(—I) similar to those in (2.27). Observe that
G¢C?(-1) = 0 when 7 is odd, by (2.13).

Putting x = -1/2 in (2.27), we also obtain formulas for GgQ)(—l) in terms of
eV (-1/2).

Interested readers may wish to extend the above theory to unspecified k in
G(Z‘(x) Additionally, one may determine results corresponding to those in
(2.27) for Euler and Bermoulli polynomials.

3. Miscellanéous Theorems

Use of Boole's Theorem

For a polynomial P(x), Boole's theorem states that
P(x +y) = VP(z) + B (y)VP'(x) + lE’z(y)VP”(x) + lEs(y)VP"’(x) boeee,

where the symbol V ('nabla') represents the operation of the mean of the func—
tion (see [2]) and E;(x) (Z =1, 2, 3, .) are the Euler polynomials E (x)
obtained from (1.3) by replacing k by —l. Prime superscripts signify dlffer-
entiation w.r.t. .

Now

el (z) = %(G;-U(l +x) + ¢5V(@) by the definition of V
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NEGATIVE ORDER GENOCCHI POLYNOMIALS

nG {7 (x) (m=1, 2,3, ...)

= " by Theorem 5.
i—n—:_ﬂ'—G( )(JC) (n=-1, 0)

Put y = 0 in Boole's theorem and take P(x) = Gé_n(x).

Then Boole's theorem becomes, for n > 0 (2.5),

6TV @) = W6 @) + B TETD (@) + L (076D (@) +
that is,

Theorem 10: When n = 1, 2, 3, ...,
(3.1) ¢SV = uelH @) + B 0) - 16l (@) + = 5 (0) « ne A @) + ..
For example, if n = 2, the right-hand side reduces to
(3 3.2, 3 l) _ A(-D) )
3<x + Zx + Zx + 5 [= G2 (x) as in (2.3)].

Genocchi Polynomials in Terms of Bernoulli Polynomials

The Fuler-Maclaurin theorem (see [3]) states, in the case of polynomials
¢V (x), that
- ' - _ ’ Bz(x) 1y
6y @) = 86T(0) + By@)seTV (@) + —aeGPT0) 4 -

where B;(x) (¢ = 1, 2, 3, ...) are the Bernoulli polynomials Bgn(x) obtained
from (1.4) by replacing k by -1 and A is the symbol for the operation of taking
the difference.

Now, by (2.5),
e (@) = ne{ @ (> 0)
and, by the definition of A,
3.2)  acSP@ =eSPa v - eSP@

= ZHBEJJ(%> by Theorem 6 (n = 0).

Then, by (2.5) and (3.2), the Euler-Maclaurin theorem leads to
Theorem 11:

(3.3 nel @) = z”{B;'”(O) + By (@)BSV(0) + 2( “)

=BV 0) + } (n > 1).

When n = 3, the theorem reduces to

3 3x

(-1 23 2
3G, (x) = + % + 5> 2,

which is true by (2.3). Theorem 11 enables us to display G;ﬁ)(x) entirely by
means of Bernoulli expressions. Both Theorems 10 and 11 (for k¥ = 1) may be
extended to cover the case when k is general.
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Some 'Hybrid' Products

Let us write
_ - " _ < -t)"
6= Y, o= Y ¢P@tl,
n=0 n. n=20 n.
(3.4)
s = S (=D t" A N C PN Gl
G* = G (x)——, G* = G (x)———
n;1 i [n]1 ng:_l i [n]!
where G is as defined in [2], G* refers to (2.1) when kK = 1, and G_, G* are ob-
tained from G, G*, respectively, by replacing ¢ by -t¢. Corresponding symbol-
ism F, ..., E*, B, ..., B%* relates to Euler and Bernoulli polynomials, where &
and B are also defined in [2].
Then, by [2] and (2.1)

(3.5) GG* = g2t*

and

(3.6) GGX = -¢7?.

Equating appropriate coefficients yields the hybrid results

nt 1 Gg-l)(x) G () 2x)"
(3.7) Z( a .[n_Jj|!)=

j=1 n!
and o e
(3.8) ”f(Gn () (-1 Gn_jm) (!
j=i\ ! |n-g1! ln-1]1
Similarly,
(3.9)  G.G* = —e? = (GG)7}

and
(3.10) G_G* = e~2t= = (GG*)~1,

yielding results corresponding to (3.7) and (3.8). T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>