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A MATRIX METHOD TO SOLVE LINEAR R E C U R R E N C E S 
WITH C O N S T A N T C O E F F I C I E N T S * 

Bol ian Liu 
South China Normal University, Guangzhou, P.R. of China 

(Submitted April 1989) 

In t h i s paper we provide a matr ix method to solve l i n e a r recur rences with 
constant c o e f f i c i e n t s . 

Consider the l i n e a r recur rence r e l a t i o n with cons tant c o e f f i c i e n t s 

(1) 
ln + k ~ alun+k-l + a2un+k-2 + + akun + (1.1) 

(1.2) 

where o^ and Ci are constants {% - 0, 1, 2, . .., k) and where <hn>nGN is a given 
sequence. 

In order to solve this recurrence relation generally, we first find the 
general solution <um>meN of the corresponding homogeneous relation 

(2) 
\Un + k alUn+k-l + a2Un+k-2 + 

CQ9 Ul 

+ akun 

^0 ^0' "1 ^1-
and then find a particular solution ^u^>meN of (1) satisfying the initial con-
ditions. Then <um + u^>meN is a solution of (1). 

The general method (see [1]) for solving recurrence (2) requires, as a 
first step, solving the corresponding characteristic equation 

(3) Xk - a ^ ' 1 - a2Xk~2 - ... - ak = 0. 

Generally, when k > 3, it is rather difficult to find the roots A^ of (3). 
Now we construct a matrix A such that (3) is the characteristic equation of 

A9 and then obtain the general solution of (1) from Am. 
Let A be the kx k companion matrix of the polynomial of (3): 

0 
0 

0 
. ak 

1 
0 

0 
ak- -1 

0 
1 

0 
ak-

. . . 

-2 

0 
0 

0 
0̂ 2 

0 
0 

1 
a 1 J 

Then the characteristic equation of A is (3) and, by the Hamilton-Cayley theo-
rem, 

(4) Ak - uxAk~l - a2Ak~2 - ... - akI = 0. 

Consider the following k* 1 matrices: 

C = (cQ, ol9 ..., ok_l)t , B- = (0, 0, ..., 0, fy)*, j = 0, 1, ... . 
Let 

(5) AmC + Am~1BQ + Am~2Bl + . . . + Ak~1Bm_k = (a{m\ . . . ) * . 

We w i l l p r o v e t h a t <a>me^ s a t i s f i e s ( 1 ) . By e q u a t i o n ( 4 ) , 

-This paper was written while the author was a v is i t ing scholar at the University of 
Wisconsin. 
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A MATRIX METHOD TO SOLVE LINEAR RECURRENCES WITH CONSTANT COEFFICIENTS 

k k 
AmC = £ a^-^C, Am-*-lBj = £ M"^'1"^-' J = 0, 1, 2, ... . 

Hence, ^=1 ^=1 
(6) (a^n + k \ . . . ) * = 4 n + / c C + An+k~lBQ + An+k~1Bl + . . . + ^ B n _ x + A ^ " 1 ^ 

k k k 
== E a ^ n + k ~ ^ + - L uiAn + k~l~iBo + • • • + Y.aiAk~iBn-l + Ak~lBn 

i=l i= \ i = 1 

== al(An + k-lC + f F ^ - 1 " ^ . ! ] + a2Mn + / c"2C + " ^ ^ + k " 2 _ i S { . 1 \ 

k I n~1 \ 
+ J^oiiA k"lBn.l + a 3 L4 n + fc-3(7 + E ^ n + ?c~3~ % - i ) 

i=2 V i = i / 

S i n c e 

and 

i = 3 \ ^= 1 / 

+ ^kAk'2Bn.k+l + ^ " l B n . 

(i+1) 
0 . . . 0 1 0 . . . 0 

A1 , i = 05 1, 2S . . . , fe - 1, 

AvBj = ( 0 , . . . ) * , when 0 < i < k - 2S 

Then, from ( 6 ) , we h a v e : 

(a(" + k>, . . . ) * = a 1 (a< n + k - 1 ) , . . . ) * 

+ a 2 ( a ( n + k - 2 ) , . . . ) * + ( 0 , 

+ a 3 ( a ( n + k - 3 ) , . . . ) * + ( 0 , 

. . ) * 
. . . ) * 

+ a J a ' " ' , . . . ) * + ( 0 , . . . ) * + (bn, • Y 
T h i s i s 

a(n + fe) = a1a( M + k _ 1 ) + a 2 a ( n + k _ 2 ) + • • • + a k a ( n ) + bn, 

and ( 1 . 1 ) i s s a t i s f i e d . 
By ( 5 ) , 

(a^, . . . ) * = A°C = ( e 0 , . . . ) * 

(dl\ . . . ) * = AC = ( c 1 5 . . . ) * 

t h a t i s , a ( i ) = ct , i = 0 , 1 , 2 , . . . , fe - 1 , and ( 1 . 2 ) a l s o h o l d s . Thus , 

(7) <wm>meS = <a^hmes 

i s a s o l u t i o n of ( 1 ) . Now we f i n d a c o m b i n a t o r i a l e x p r e s s i o n f o r a ( r a ) . 
f o rmula ( 5 ) , 

,(m) _ „ „(m) (8) aKm> = c 0 a i 7 + c^fl + e 2 a ^ + (m) . „ n(m) 

From 
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A MATRIX METHOD TO SOLVE LINEAR RECURRENCES WITH CONSTANT COEFFICIENTS 

We consider the associated directed graph D of A with weights 04, c^* . . . 5 a^ as 
drawn in Figure 1. 

Figure 1 

The Associated Digraph D of A 
(Arcs with no assigned weight have weight 1.) 

The definition of D is given as follows. If A = [a^j]9 then D is the digraph 
in which there is an arc (i, j) with weight a^ from i to j if and only if aij 
* 0 (i, Q - 1, . .., ri) . The weight of a walk in D is defined to be the product 
of the weights of all of the arcs on the walk. A™- is the sum of weights of 
all walks with length 777 from i to j (see [2]). We now have 

Lemma 1: a^) = a<"? + W). 

Proof: Consider the sum of weights of all walks with length 77? from 1 to j 
(j = 1, 2, 3, . .., n). For 1 < m < k - 1, 

a(m) = J1 if W = J - 1 
!j (0 otherwise. 

Clearly, 
(m + l-j) /l if m = j - i 
JJ (0 if j < m < k - 1. 

Now let m > k - 1. The walks of length m from 1 to j must be of the form 

1 -> 2 -> ••• > j -> ••• •> fc •> ••• ->J. 

Eliminating the path from 1 to j , we see that the preceding walks are in one-
to-one correspondence with the walks of length m - J + 1 from j to j . 

Since the weight of the path 1 -> 2 ~> 3 •> ••• •> J is 1, we have 

lj JJ 
J 

L e m m a 2; a(.m) = E « , . v . / ^ ^ " 1 1 (j = 1, 2, ..., fc - 1, fc), 
^ = 1 

where 

/(t) = 0 {t < 0 ) , /(0) = 1, 

and /<*>- Z /«! + « 2 + ••• + **\ a«i a|2... a 8 k 

s^> 0 (i =1, 2, ..., fc) 

Proof: From the digraph £>, it is not difficult to see that there are k classes 
of circuits from vertex k to k in D as given in the following table. 
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A MATRIX METHOD TO SOLVE LINEAR RECURRENCES WITH CONSTANT COEFFICIENTS 

NAME 

Cz 

CIRCUIT 

k -> k 
k •> ( k - 1) •> 

k + ( k - 2) -> ( k -

k •* 1 -> 2 -> . . . 

k 
l) + k 

-> k 

LENGTH 

1 
2 
3 

k 

WEIGHT 

a 2 
a 3 

Hence, any walk with length m from k to k must consist of S]_ C]_Ts, S2 CV S ' •••> 

The walks with length m from j to j, 1 < j < k - 1, have one of the j fol-
lowing forms: 

NAME 

Form 

Form 
Form 

Form 

( i ) 

(2) 
(3) 

( J ) 

J -*- • • • + 
p a t h - -

where k •> • • • 

Q + • • • + 
j + . . . + 

j -> . . . -> 

k -> 

> k 

k + 
k -> 

k -> 

CIRCUIT 

. . . + k - > - l - > 2 + • • • + < / 

means pass ing through many c i r c u i t s 

. . . + k -> 2 ^ 3 ^ . . . -> j 

. . . ^ k -> 3 -̂  4 -> . . . -> j 

. . . + k + j 

Clearly, the front path and the back path in form (£) 5 where i = 1, 2S . . . , j , 
together give a circuit C^-i+i. Namely5 there must be a circuit of length 
k - £ + 1. Thus9 for any fixed i (1 < i < j ) 3 

st>l, t = k-i + l 

st >0 (t = 1, ..., Zc) 1 < J < L 

For c o n v e n i e n c e s l e t 

f = f ( a i * OL2S , . * 3 ak) 

(t = 1, . . . , k) 

Hence5 

sL +2s 2 
st >0 ( t = 1 

i = 1 J J 

Lemma 3: For / w
5 we have t h e f o l l o w i n g r e c u r r e n c e : 

fw - «% - X ^-i+J (m-k + i-l) 

i= 1 
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Proof: Acco rd ing t o t h e p r e c e d i n g a n a l y s i s , 

aim) = E (Sl+ Sz+ ' " + Sk)aSlaS2 aSk = f{m) 
kk

 Sl + 2s2+.--+ksk=m \Sl9 S 2 , . . . , Sk) I 2 " ' k J ' 
s > 0 (t = 1, ...,k) 

By Lemma 2 , 

a 
k 

(m) _ v^ „ -p(m-k + i-l) 
kk Eak-i+lf 

i= 1 
Thus , 

k 

t = l 

Theorem: The s o l u t i o n of t h e r e c u r r e n c e r e l a t i o n (1) i s 
k J . .x m-k + l 

j = 1 i = 1 j = l 
(9) K„ = L«'J.i.Evi+i/("'*"'+i )+ I V / + 1 ^ - J , ) 

8 1 + s 2 + . . . + e k \ ? 1 „ e 2 „?* 
j=l J £=1 s1+2s2 + - - - + ^ = tfz-£+£-jVbl> b2> ' " " b ^ 7 fe 

y 2 ' 
s t >0 ( t - 1 , . . . , fc) 

/"-& + 1 , . , 
fST + S „ + - . . + S * \ s , fi2 ^ 

x2 * " * ak J = l w ~ Sl + 2sz+ ...+ksk=m-k-j + l^l> °2> " " °&' 
fit>0 ( t - 1 , ...,Zc) 

w» = a( m ) = T,c,_,a^ + E b.^ap-n 

Proof: By (7) and ( 8 ) , 
k m-k+l 

j = l J = i 

= L c j - i 2 > f c - i + N + Z* * j - i / (Lemmas 2 
«/= i i= i <? = x and 3 ) . ® 

Corollary 1: 

J = 1 i = 1 J = 1 

Proof: This formula follows by using Lemma 3 and (9). 

Corollary 2: The homogeneous recurrence (1) with constant coefficient has the 
solution 

j" = 1 i = 1 

Corollary 3: The recurrence relation 

(un+£ = aun + r + 6un + bn 
(10) ^ 

has the solution 

r- l fc- l . m-fc + i 

j = 0 j = r j = 1 

where 
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A MATRIX METHOD TO SOLVE LINEAR RECURRENCES WITH CONSTANT COEFFICIENTS 

f(m) =• E (X + yW^ (m>0). 
kx + (k-r)y =m ̂  U ' -r)y 

x, y > 0 

Proof: Let ak = $, ak-r = a' a n d ai = ° s otherwise, in (1). By (9), 

"m = E«H^"*"J ' + 1 )+ E c, 1(6.f(m-fe-</ + 1 ) + a / ( r a - / c - ^ + 1)) 
J = 1 J = P + 1 

777-fc + l 

+ E V i f ~J) 

c7 = 0 j = r + l j = l (Lemma 3 ) 
p - 1 fc - 1 77? - fc + 1 

j = 0 j = r j = 1 
where 

f(ra)= E p t V ^ . « 
a;, z/ > 0 

When £>„ = 0 in (10), Corollary 3 coincides with a result in [3]. When bn = 0, 
a = $ = l , Z = l, fc = 2, and cQ = ci = 1, 

N/2] ,„ _ fc 

2x+y =m\ y i k= 0 
x, z/ > 0 

which is the combinatorial expression of the Fibonacci series. 

Example 1: Fn+5 = 2Fn+l+ + 3Fn + {In - 1) 

F0 = 1, Fx = 0, F2 = 1, F3 = 2, £\ = 3. 

Solution: k = 5 , Z = 4 , a = 2 , 3 = 3 , 2?n = 2n - 1 

c 0 = 1, cl = 0 , c 2 = 1, o3 = 2S c 4 = 3 . 

By Formula ( 1 0 ) , one e a s i l y f i n d s 

m 3 "»g>'5 'm - 4* - 5)3,2n-5*-5 + 3
 K B-£/ 5 1(» - ^ - l^n-^-i 

[ ( n - 8 ) / 5 ] , 0 [ ( n - 4 ) / 5 ] , . 
+ 6 y in - kx - 8\ 3 a ; 2n-5a:-8 + 3 y ITl - hx - ^^x^n-Sx-i, 

x= 0 \ x ' x=0 ^ x I 

+ " ^ \ . ; _ ^ [ ( n - ^ ' ) / 5 1 / n - 4a: - 4 - j \ , S o n - 5 * - W E ( 2 j - 3 ) E ( » - ^ - * - ^ ) 3 - 2 " -
j = 1 jr = 0 v x ' 
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THE TETRANACCI SEQUENCE AND GENERALIZATIONS 

Marcellus E. Waddill 
Wake Forest University, Winston-Salem, NC 27109 

(Submitted January 1990) 

1. Introduction 

Mairy papers concerning a variety of generalizations of the Fibonacci se-
quence have appeared, primarily in The Fibonacci Quarterly* in recent years. 
Horadam [1] was one of the first to initiate this interest when he changed the 
two initial terms of the Fibonacci sequence from 0, 1 to HQ9 # I , arbitrary 
integers, while maintaining the recurrence relation. He remarked in [1] that 
there are fundamentally two ways in which the Fibonacci sequence may be 
generalized; namely, either the recurrence relation can be changed or the 
initial terms can be altered. The two techniques can be combined, of course. 
Of the two alterations, a change in the recurrence relation seems to lead to 
greater complexity in the properties of the resulting sequence. 

Some generalizations have been given names. The Tribonacci sequence, {Tn}, 
is defined by 

(1) Tn = Tn.Y + Tn„2 + Tn_3 (n > 3), T0 = 0, Tl = T2 = 1. 
A generalized Tribonacci sequence results when the recurrence relation is the 
same and TQ> T-±, T2 are arbitrary. The Tribonacci sequence and this particular 
generalization have been examined rather extensively in the literature. See, 
for example, [2], [3], [4], [5], [6], [7]. 

The Tetranacci sequence, {Mn}, is defined by 

(2) M„ = Mn_! + M„_2 + M„_3 + Mn_h (n > 4), M0 = M1 = 0, M2 = M3 = 1. 

The first mention of the Tetranacci sequence seems to have occurred in [2], 
and it has received further brief attention or reference in [8], [9], [10], 
[11], [12]. Some writers have used the name "Quadranacci" (Latin) instead of 
"Tetranacci" (Greek). We use the latter, as in [2]. 

The characteristics and properties of the Tetranacci sequence apparently 
have not been examined in detail, and that, along with an examination of the 
generalization which occurs when the four initial terms are chosen as arbitrary 
integers, is the purpose of this paper. 

As the recurrence relation and initial terms of Fibonacci-type sequences 
become more general, we quite naturally expect that the relationships among 
terms and the formal properties of the resulting sequences will become more 
complicated and complex, and this indeed is true. Nevertheless, by employing 
appropriate techniques, particularly by using vector and matrix methods, a 
number of properties of the Tetranacci sequence and generalizations and 
identities involving terms of these sequences are found and proved. 

2. Fundamental Properties 

As we begin an examination of the Tetranacci sequence and generalizations, 
two "companion" sequences emerge and are considered along with (2). These 
sequences are designated {Nn} and {Sn} and are defined as follows: 

(3) Nn = ffn_x + Nn_z + Nn_3 + Nn_h (n > 4), N0 = N2 = 0, Nl = N3 = 1, 

(4) Sn = Sn.l + £n_2 + 5'n_3 + Sn_h {n > 4), S0 = S3 = 1, Sx = S2 = 0. 

1992] 9 



THE TETRANACCI SEQUENCE AND GENERALIZATIONS 

The sequences {Nn} and {Sn} have the same recurrence relation as {Mn} but 
different initial terms. The initial terms are, in fact, two distinct permuta-
tions of the four initial terms of {Mn}» It can be shown also that these two 
companion sequences are further related to {Mn} by 

(5) Nn = Mn_x + Mn_2 + Mn_3 (n > 3), 

(6) Sn = Mn_! + Mn_2 (n > 2). 

We define the generalised Tetranacci sequence, {yn}5 as 

(7) ]ln = Un_x + Un_2 + \in-s + \ln-h (n ^ 4) 

where y0» Vi> ^2> ^3 a r e arbitrary integers. 
The analogous genevdtized companion sequences, {vn} and {on}, then become 

(8) vn = vn_: + vn_2 + vn_3 + vn_4 (n > 4) 

or, alternately, 

(9) vn = yn_x + yn_2 + un_3 (n > 3), 

where v0 = Ui - UQ» vx = u2 - UX, v2 = U3 - Vz> v3 = ^2 + Pi + Uo> 

and 

(10) an = an_! + an_2 + an_3 + an_4 (n > 4) 

or, alternately, 

(11) an = u ^ + un_2 {n > 2), 

where aQ = \x2 ~ Vi ~ Uo> al = ^3 "' ̂ 2 ~ ^l* °2 = ^1 + Uo> a3 * ^2 + ^1-

The choice of the initial terms of {vn} and {on} is not arbitrary but is deter-
mined by their relationship to {un}. 

The table below gives values of the three sequences {Mn}, {Nn}} and {Sn} 
for n = 0 to 18. 

n 

Mn 

#n 

^n 

0 

0 

0 

1 

1 

0 

1 

0 

2 

1 

0 

0 

3 

1 

1 

1 

4 

2 

2 

2 

5 

4 

4 

3 

6 

8 

7 

6 

7 

15 

14 

12 

8 

29 

27 

23 

9 

56 

52 

44 

10 

108 

100 

85 

11 

208 

193 

164 

12 

401 

372 

316 

13 

773 

717 

609 

14 

1490 

1382 

1174 

15 

2872 

2664 

2263 

16 

5536 

5135 

4362 

17 

10,671 

9,898 

8,408 

18 

20,569 

19,079 

16,207 

The analogue of Binetfs formula for the Fibonacci sequence can be derived 
for {Mn} and {un}. In [7] Spickerman and in [3] Waddill and Sacks derived the 
analogue of Binet's formula for the Tribonacci sequence and later in [8] Spick-
erman and Joyner generalized the result obtained in [7] to recursive sequences 
of order K. Since the Tetranacci sequence is a variation of the recursive 
sequence of order 4 in [8], the formula there may be adapted to give Binetfs 
formula for the Tetranacci sequence; namely, 

(12) Mn = A ^ + A2vl + A3r% + A^r%, 

where A± are constants and r^ are the four distinct roots of 

x4 - x^ - x2 - x - 1 = 0 . 

Binetfs formula for un is the same as (12) except that the A^ are functions 
of UQ, U]_, U2> U3. The Ai and 2^ in (12) may be computed routinely but the 
resulting formula is long and cumbersome; hence, it is not written explicitly 
here nor used in the sequel. 
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THE TE1RANACCI SEQUENCE AND GENERALIZATIONS 

A useful means of r ep re sen t ing the recur rence r e l a t i o n of the Te t ranacc i 
sequence i s by employing what we c a l l the T-matr ix s the analogue of the Q-
matr ix [13] which has been widely used in e s t a b l i s h i n g p r o p e r t i e s of the 
Fibonacci sequence. 

The ^-matr ix i s defined to be 

(13) 

1 1 1 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 

Induction proofs may be used to establish 

(H) Mr,-n-1 
n-2 
n-3 

(15) 

and 

(16) 

= 

= 

1 
1 
0 

_ 0 

1 
1 
0 
0 

1 
0 
1 
0 

1 
0 
1 
0 

1 
0 
0 
1 

1 
0 
0 
1 

1 ' 
0 
0 
0 

1 
0 
0 
0 

71-3 

n-3 

M3 
M2 
Ml 

. M0 _ 

^3 
y 2 

Vn-1 
y*-3 

1 1 1 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 

Mn + 2 Nn + 2 Sn + 2 Mn + l 
Mn + l Nn + l Sn+l Mn 
Mn Nn Sn Mn_! 
Mn-i ®n-\ Sn.l Mn_2 

The right side of equation (16) indicates a reason for calling {Nn} and 
{Sn} "companion" sequences of {Mn}i both occur naturally in successive powers 
of the T-matrix. 

Although up to this point, we have restricted the subscripts of the Tetra-
nacci sequence and generalizations to being nonnegative, we may remove that 
restriction and define {Mn}5 {Nn}> {Sn} and their corresponding generalizations 
for all n» 

By writing the difference equation (2) as 

(17) Mn = Mn+h - Mn + 3 - Mn + 2 - Mn + l , 

and choosing n < 0S then n + 4 5 n + 3 , n + 2 5 and n + 1 are all greater than n5 

which allows us to define Mn by the four terms immediately following it. That 
is, 

M_L = M3 - M2 - Mi - MQs 
M_2 = M2 - Mi - MQ ~ M_l5 

and so on. 
We may obtain another useful definition of Mn, n < 05 by using the T-matrix. 

We first write (14) as 

(18) 

Mn 

Mn + l 
Mn+2 
Mn + 3 

0 1 0 0 
0 0 1 0 
0 0 0 1 
1 1 1 1 

n ' M0 " 
M]_ 
M2 
M3 

Now, in (18), if we replace n by -n, we have, for n > 0, 
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(19) 

M-n 
M-7Z + 1 
M.n+2 

M-n + 3 

0 
0 
0 
1 

1 
0 
0 
1 

0 
1 
0 
1 

0 
0 
1 
1 

-n ' M0 ' 
Mi 
M2 

_ ^ 3 . 

= 
-1 - 1 - 1 - 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 

n ' M0 ' 
Mx 

Mz 

M3 

which defines Mn for n < 0; and this definition using the T-matrix is equiva-
lent to (17) . 

The sequences {Nn}, {Sn}, {yw}, {vn}, {on} may be defined for n < 0 in like 
manner. 

We now establish some interesting and useful identities. Using (15) and 
(16), we may write 

(20) 
Vn + p 
Vn+p-1 
y n + p - 2 
Vri+p-3 

1 1 1 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 

1 1 1 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 

n-3 U3 
^2 
^1 
^0 

Mp + 
M-t 

'p + 2 1]lp + 2 N„ 

Mv 
P + l 

Np 
M7 P - l il/7 

^p + 2 
^ p + 1 
sP 
Sr, 

M 

p - l tfp-i Af! 

fP + l 

P - l 
p - 2 

^ n - 2 
Vn-3 

From which we conclude that 

(21) y n + p = Mp + 2 p n + Np + 2Vn_x + 5 p + 2 u n _ 2 + Mp + lMn_3 

or 

(22) U n + p = Mn + 2np + ̂  + 2U p_ 1 + ^ + 2 U p - 2 + Mn+lvp_3. 
By replacing il/p + 2 an<^ ̂ p + 2 using (5) and (6), regrouping and then employing 

(9) and (11), we find that (21) and (22) may be written 

y. n + p Mp + 2^n + M
P + ^n + V » + M

P-l^n-l (23) 

or 

(24) yn + p = ̂ + 2 y p + «n+1vp + Mnap + tf„_l»V-l-

As special cases of (21) and (23), respectively, when p 

yn = Mn_lV3 + Nn_lVl + sn_lVl + Mn„2v0 
or 

Mn = Mn_iv3 + Mn_2v3 + Mn_3o3 + Mn_i+y2-

We next consider the sequence {Rn} which is defined by 

0, we have 

Rr M,, R , = S Rn Nn R0 = Mn 

R3n 
R3n-l 
R3n-2 
R3n-3. 

Mn + l 
Nn + l 
^n+l 

. Mn 

1 
1 
1 
1 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
1 
0 

n - 1 ^ 3 
R2 

R\ 
_ ^ 0 . 

and 

(25) 

The generating matrix of {Rn} is the transpose of the T-matrix, and the 
terms of {Rn} are generated in groups of three rather than singularly as in 
(14). It is evident that the sequence {Rn} is merely a meshing of the three 
sequences {Mn}, {Nn}, {Sn}, and, consequently, its terms are not as "spread 
out" as the terms of either of these sequences individually. This latter 
property become useful in establishing identities later on. 

The generalized sequence for {Rn} is designated {pn} and is defined as ex-
pected by 
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P2 = V 2 5 p3 

and 

(26) 

P 3n 
^3«-l 
P3n-2 
P3n-3 

= 
v„+l 
v n + l 
° n+l 

. V-n J 

"«n + l 
^n + 1 
^ft+1 

. Mn 

= 

Mn 

«n 
^n 
Mn-

1 1 
1 0 
1 0 
1 0 

Mn-l 
Nn-l 
S-n-1 

L Mn-2 

0 0 " 
1 0 
0 1 
0 0 j 

n-l 

K-2 ' 
^n-2 
^n-2 
^n-3 

p3 
P2 
Pi 

_ PO 

p3 
P2 

Pi 
PO 

Identities analogous to (21) and (23) may now be written for the sequences 
{vn} and {an}= Using (26) and writing 

(27) 
V-n + p 
^n + p 
°n + p 
^ n + p - 1 

1 1 0 0 
1 0 1 0 
1 0 0 1 
1 0 0 0 

p r 1 1 0 0 
1 0 1 0 
1 0 0 1 
1 0 0 0 

n-3 
^3 
V3 
°3 

L ̂ 2 J 

M 

M. 

p+2 
[P+2 
\p + 2 
P + l 

M. P + l 

' P + l 
Mr 

Mp 
NP 

M 

M. 

P - l M[ 

P - l 

p - 2 J ^ n - 1 

from (27) we conclude that 

(28) 

(29) 
f̂t + P 

°n + p 

Np+2^n + N. p + l v n v„ + Nno„ + /!/ p wn ' p - l ^ n - l J 

N u + N v + /I/ a + /!/ , y n + 2 P n + 1 p n P n - l p - l 
or hj (20) replacing u^ with v^5 we have 

( 3 0 ) 

( 3 1 ) 

S i m i l a r l y , 

Vn + p " Mp + 2Vn + V 2 V n - l + S p + 2 V n - 2 + M p + l V n - 3 ' 
Vn+p = M n + 2 V p + * n + 2 V p - l + 5 n + 2 V p - 2 + M n + l V p - 3 -

( 3 2 ) 

( 3 3 ) 

( 3 4 ) 

( 3 5 ) 

I 

(36) 

Jn+p 
7n + p 
J n + p 

Sp + 2^n + ^P + l V n + SP°n + ^ p - l ^ n - 1 
5 n + 2 ^ 5 n + l V p ^nC7p + Sn_lvp.l9 

Mp + 2°n + ^p + 2 ^ f t - l + Sp + 2°n-2 + M p + l Q n - 3 > 

°n+P = Mn + 2Op N a , + S o n + M , a „. n + 2 p - l n + 2 p - 2 n + 1 p - 3 
We may f u r t h e r g e n e r a l i z e ( 2 1 ) t o r e a d 

xn+ p = Mp+*c + 2^n-fc + N
P + k + 2^n~k-l + ^p + k + 2 ^ n - f c - 2 + V k + l ^n - fc -3> 

where k is any integer. Since {\in} has been defined for all n, all terms in 
(36) are defined even if a chosen value of k produces negative subscripts. 
Also equations (22)-(24) and (28)-(35) can be written in this more general way. 

In the vector on the left side of (15) the terms 

^ n 5 y n - l 5 ^ n - 2 5 yft-3 

are clearly adjacent terms of the sequence {un}. By using appropriate matrices 
we can write a vector in which the four terms are not adjacent but are "spread 
out1" in a prescribed manner. 
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By (21) we have, for arbitrary integers p, q, and v, 

(37) 

^n +p 
^n + q 

Mp+2 Np+2 Sp+2 Mp+l 
Mq+2 Nq + 2 Sq+2 Mq+l 
Mr + 2 Nr+2 Sr + 2 Mr + 1 
1 0 0 0 

Vn-2 
Vn-3 

Using (23), (28), and (32), we conclude that 

(38) 
an+p 
^n+q 

L Vn 

M 2 M Mp M Y 
Nq+2 Nq+1 Nq Nq^ 
Sr + 2 Sr + 1 Sr Sr-l 
1 0 0 0 

Equations (37) and (38) will be used later on. 

3. Linear Sums 

A number of linear sum identities were discovered and proved. We give some 
of these and write them in terms of the generalized Tetranacci sequence, even 
though each has as a special case the corresponding identity for the Tetranacci 
sequence. All the listed identities may be proved by induction, but that 
method of proof gives no clue about their discovery. We give one proof to 
indicate how these identities, in general, were discovered. 

We have 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

n i 
£ "i = ^Wn + 1 + 2yn + y„_! + 2yQ + nx - U 3 ] , 
= 0 J 

n ^ 
£ V2i+l = 3^2^2n+2 + V2n ~ y2n_! - 2yQ + 2Vl - 3y2 + y 3 ] , 
.= 0 J 

.£ V2i ' S^Vzn+i + U2„_! " P2n_2 + 4^0 ~ ̂  + 3^2 " 2 M ' 
;= 0 J 

X ^ 3 i = 9 f 4 ^ 3 n + l + 3 ^ 3 n ~ Hn-1 + V3n-2 + 5 ^ 0 " 5 ^ 1 " 3 ^ 2 + 2 ^ ' 
= 0 * 

E VU+1 = o[4y3n + 2 + 3y 3 n + 1 - n3n + y 3 n _ 1 + 2yQ + 7yx - 3u 2 - y3.' 

i= o 

i= o 

^= 0 

i= 0 

E ^ + 2 = 9 ^ 3 n + 3 + 3 ^ 3 n + 2 " ^ 3 n + l + ^3n " ^0 + ^1 + 6 ^ 2 ~ 4 ^ > 

i+w-1 

i = 0 

4n 

E U^ = E ^ = 3 K n + l + 2 ^ n - l + ^hn-2 + 2 ^0 + ^1 " ^ ' 
i = 1 -" " " J 

E ^ ; + i = E ^ = 3^^+2 + 2 >V + ^ - 1 " yo + ^i - ^ ' 
i = 1 ^ = 1 

n *f«+l -j 
E Vhi + 2 = E H = 3̂ ifW + 3

 + 2*V+1 + Hn " ^0 " 2 ^ 1 " ^ > 

n kn + 2 , 
X > ^ + 3 = , E ^ i = J ^ ^ + if + 2 î4n + 2 + VHn+1 " y 0 " 2 ^ 1 " 3 ^ 2 " ^ 3 ^ ' 
i= 1 i = 3 
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Proof of (39): We w r i t e t h e f o l l o w i n g o b v i o u s e q u a t i o n s ; 

^0 
H 
u2 

+ 
+ 
+ 

Vl 
p 2 

^ 3 

+ 
+ 
+ 

y 2 

^ 3 
H 

= 
= 
= 

N 
^ 5 
^6 

- ^ 3 
" H 
~ ^ 5 

xn-l + y n + y n + 1 = y n + 3 
J n + 3 ' ^n + y n + i + y n + 2 = vn+k 

Now, adding these equations, we have 

n n n 
E Vi + Z î + ^n + 1 ~ ̂ 0 + Z W + ̂ n + 1 + ^n + 2 
i= 0 i= 0 i= 0 

w + 4 

or 

^ = 0 

which may be reduced easily to (39) by using (7) and dividing both sides by 3. 
The remaining identities, (40)-(48), are derived using similar techniques. 

4 . Q u a d r a t i c , C u b i c , a n d Q u a r t i c I d e n t i t i e s 

An a p p l i c a t i o n o f t h e T - m a t r i x i s i n d e r i v i n g a n d p r o v i n g t h e q u a d r a t i c 
i d e n t i t y 
( 4 9 ) « 2 + i + M2+M2_i + 2M{Mn^ + ^ _ 2 ) = M ^ 

Proof of (49): By ( 1 6 ) , we h a v e 

(50) rjiln _ 

M2n + 2 N2n + 2 $2n + 2 M2n-l 
M2n+l N2n+l S2n+l M2n-2 
M2n ®2n S2n M 2 n _ 3 
M2n~l N2n~l S2n~l M2n~k 

Mn + 2 Nn + 2 Sn + 2 Mn + l 

Mn+l Nn+l Sn+l Mn 

M„ 
Mn-l 

Nn 
Nn-1 

Sn 

£>n-l 
Mn-1 
M„-3 

Now we c a r r y o u t t h e m a t r i x m u l t i p l i c a t i o n on t h e r i g h t s i d e of ( 5 0 ) a n d 
e q u a t e t h e e l e m e n t s i n t h e t h i r d r o w , f i r s t c o l u m n on b o t h s i d e s o f ( 5 0 ) t o 
o b t a i n 

MnMn+2 + NnMn+l + SnMn + Ml_Y M. 2n 
which is equivalent to (49). 

By equating corresponding elements in the fourth row, first column of (50), 
we obtain 

( 5 1 ) M , o^L - Ml + MM„ + Mz + 2M ,M = Mn '1n + 2L'1n r j n ' L n n - 3 n-\ n - l n - 2 2n - 1 " 
The g e n e r a l i z e d v e r s i o n s o f ( 4 9 ) a n d ( 5 1 ) a r e , r e s p e c t i v e l y , 

( 5 2 ) y 2 + i + y 2 + y 2 ^ + 2 p n ( y n _ 1 + y n _ 2 ) 

= y 3 ^ 2 n - l + Vz(V2n " ^ 2 n - l } + ^ 1 ^ 2 n - 2 + ^ 2 n - 3 } + ^ 2 n - 2 
a n d 

( 5 3 ) P n + 2 y n - vl + P n y n _ 3 + vl-x + 2 y n _ ! y n _ 2 

= P 3 U 2 n _ 2 + U 2 ^ 2 n - 2 " y 2 n - 6 } + M^n-3 + V2n-0 + ^ 2 n - 3 ' 
I n ( 5 2 ) , i f we l e t yQ = y , = 0 a n d y 2 = y 3 = l , we h a v e 

Ml^ + Ml + M2 , + 2M (M , + M , ) = « 9 , 
n + 1 n n-\ nK n-\ n-2/ 2n ' 

which is (49). By letting p = n - 1, uQ = u-̂  = 0, u^ = u3 = 1, and replacing n 
by n + 1 is (21), we obtain (49) also. However, (21) is not readily obtain-
able from (52) nor is (52) obtainable from (21). 
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The same technique used in the proof of (49) may be used to find and prove 
cubic i d e n t i t i e s . In t h i s case , we use the fac t t h a t for the T-matrix, 
(54) rn3n-2 — mn-lmn-lmn 

and again after expanding and equating appropriate corresponding terms on each 
side of (54), we obtain, for example, 

(55) M3n = Mn+2(R1 • CO + Mn+l(Rl • C2) + Mn(Rl • C3) + ̂ _x(i?! - £\) , 

where i?1 is the first row of Tn~l, Ci is the i t h column of Tn~l and • is the 
usual dot product of two vectors. The right side of (55) is clearly a cubic 
which we do not expand completely because of its length. 

The analogue of (55) for {un} may be written in a manner similar to the way 
in which we wrote (52). 

We may continue using the above technique to find quartic, quintic, and 
higher-ordered relations, but it is clear that one side (the side involving 
powers) of the equation becomes exceedingly long and complex. 

One of the oldest and perhaps best known identities for the Fibonacci 
sequence is 

(56) F F n+lrn-l 

which was derived first by R. Simson [14]. In [3], the identity analogous to 
(56) was found for the Tribonacci sequence. We now pursue a like identity for 
the Tetranacci sequence. The simplest one may be obtained as in [3] by 
considering the determinants of both sides of (16) to obtain 

(57) 

'n + 2 
n + l 
>n 
'n-l 

Mn + 1 
Mn 

Mn-l 
M„-2 

Mn 

Mn-Y 
Mn-2 
M„-3 

Mn-1 
Mn-2 

Mn-3 
M„-h 

Mn+2 
K + 1 

Mn- 1 

-1 
-2 
-3 

n-h 

Mn 

Mn-l 
Mn-2 

Mn + i 
Mn 
M»-i 
M„.o 

Mn+2 Nn+2 Sn+2 Mn+l 

Mn+i Nn+1 Sn+l M 
Mn 

Mn-l 
«n s„ 

Sn-i 
Mn-l 
Mn-2 

1 1 1 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 

( -1 ) n + l 

We shall not expand the left side of (57), but it is clearly a quartic 
consisting of 24 terms. 

We now consider some generalizations of (57). First, we rewrite (57) for 
the sequence {un} to obtain 

(58) 
Vn + 2 
^ n + 1 
Vn 
" n - l 

"n + l 
Vn 
" n - l 
" n - 2 

Vn 
" n - l 
" n - 2 
" n - 3 

" n - l 
" n - 2 
" n - 3 
" n - 4 

( - l ) n 
" 6 
" 5 
H 
" 3 

" 5 
"̂  
" 3 
" 2 

"̂  
" 3 
" 2 
" l 

" 3 
" 2 
" l 
" 0 

a quartic expression independent of n except for sign. 

Proof of (58): By (15), we have the following matrix equation: 

(59) 
" n + 2 
" n + l 
" n 

- " n - l 

" n + l 
" n 
" n - l 
" n - 2 

Un 
" n - l 
" n - 2 
" n - 3 

" n - l 
" n - 2 
" n - 3 
" n - t 

1 
1 
0 
0 

1 
0 
1 
0 

1 
0 
0 
1 

1 
0 
0 
0 

n-h " 6 
" 5 
" 4 
" 3 

" 5 
" 4 
" 3 
" 2 

" 4 
" 3 
" 2 
" l 

" 3 
" 2 
" l 
" 0 

Now, by taking determinants of both sides of (59), we have (58). 

As a special case of (58), consider the sequence {®n} where 0, 
= 1 , 0L,, = a-

becomes 
arbitrary. The, determinant on the right side of (58) then 
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4(a + 1) 
2(a + 1) 

(a + 1) 
a 

2(a + 1) 
(a + 1) 
a 
1 

a + 1 
a 
1 
0 

a 
1 
0 
0 

(60) 

which is a quartic polynomial in a. Consequently, an algebraic integer a = (3 
exists, which makes the determinant (60) zero. Thus, for any n, the sequence 
{an} whose initial terms are 0, 0, 1, 3> where |3 is chosen so as to make (60) 
equal 0, always results in 

= 0. 

To obtain a more general form of (58) , we first observe that the quartics 
on the left side of (57) and (58) involve seven adjacent terms in the sequences 
{Mn} and {un}, respectively . We use the technique in the proof of (58) along 
with (37) to show that the terms of the quartic may be "spread out," so to 
speak, and that the number of terms involved may be as great as 16. Specifi-
cally, we prove the following identity: 

a , 0 n + 2 
n + l 

«n 
a n - l 

a n + l 
an 
an-l 
a n - 2 

an 
an-l 
an-2 
a n - 3 

a n - l 
« n - 2 
a n - 3 
an-h 

(61) 

Vn+m+r V-n+p+r V-n+q+r Vn+r 
Vn+m+s Vn+p+s Vn + q + s Vn+s 
Vn+m + t Vn+p+t Vn+q+t Vn + t 
Vn+m Vn+p Vn+q Vn 

= (-D n-l 
Mr+1 

Ms + 1 
Mt + l 

Mr 

Me 
Mt 

Mr-l 
Ms-i 
Mt-l 

Vm + 3 
^m+2 
^m + l 
Vm 

ap + 3 
xp+2 ^q + 2 
dp + l Vq + l 

Vq + 3 
Vn 

^3 

v2 

Vp Vq 

like (58) a quartic expression independent of n except for sign. 

Proof of (61): By (37) and (20), we have the following matrix equation: 

(62) 
Vn + m + r Vn+p +r V-n+q+r Vn+ r 
Vn+m+s Vn+p+s Vn+q+s Vn+s 
Vn+m+t Vn+p+t Vn+q+t Vn +t 
Vn + m Vn + p Vn+ q - yV n 

Mr + 2 Nr+2 Sr + 2 MP+l 

Ms+2 *s+2 Ss+2 Ms+1 
Mt+Z Nt+2 St+2 Mt+1 
1 0 0 0 

Mr+2 Nr+Z Sr+2 Mr+1 

Ms+2 «s+2 Ss+2 M s + 1 
Mt+2 Nt+2 St+2 Mt+l 
1 0 0 0 

V-n + m Vn+p Vn+q 
Vn + ra-1 ̂ n + p-l V-n + q-1 
Vn+m-2 V„+p-2 Vn+q-2 
V-n + m-3 Vn+p-3 ^n + q-B 

% + 3 
Vm + 2 
Wm +1 

1 
1 
0 
0 

1 
0 
1 
0 

1 
0 
0 
1 

1 
0 
0 
0 

Vn 
Vn-l 
Vn-2 
Vn-3 

Vp + 3 
Vp+2 
Vp + l 
Vp 

Vq+3 
Vq+2 
Vq + l 

Vq 

^3 

vz 

v o 
We take determinants of both sides of (62) to obtain (61) since, by using (5) 
and (6) and well-known determinant properties, we can show that 
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MP + 2 

Ms+2 
Mt + 2 
1 

Nr + Z 

^ s + 2 
Nt+2 
0 

Dp+2 
$s + 2 
$t + 2 
0 

^s + 1 

0 

Mr + 1 

« S + 1 
«t + l 

UT 

Ms 

Mt 

Mr-l 
Ms-i 
Mt-l 

(63) 

For the sequence {Mn}, (61) becomes. 

Mn + m+ r Mn + p + r Mn+ q+ r Mn+r 

Mn+m+s Mn+p+s Mn+q+s Mn+ 

Mn+m+t Mn+p+t Mn+q+t 

M n + m M, n+ p M. n+ q 
Mn+t 

(-Dn-
Mr + l 
Ms + i 
Mt + l 

Mr 

Ms 
Mt 

Mr-l 
Ms-l 
Mt-l 

Mm+l 
Mp + i 
Mq + i 

Mm 
Mp 

Mq 

Mm-l 
Mp-i 
Mq-l 

Several s p e c i a l cases of (61) are worth mentioning. 
p = 2t, m = T = 3t, n a r b i t r a r y , to ob ta in 

(64) 
^n + ht ^n + 3t ^n + 2t ^n + t 
^n + 3t ^n + lt Vn + t Vn 

F i r s t , l e t q = t , s = 

= ( - I ) " " 
M3t+l 
Mat 
Mzt-l 

Mzt+1 
M2t 
Mzt-l 

M. t + l 
Mt 
M. t-l 

y 3 t + 3 y 2 t + 3 
p 3 t + 2 
V3t+1 

3t 

y 2 t + 2 
v2t+l 
»2t 

Vt + 3 
H + 2 
Vt + 1 
Vt 

^3 
y 2 

^0 

which displays an interesting symmetry. 
Another special case of (61), which displays even greater symmetry, is ob-

tained by letting q = t = n, p = s = 2n, m = r = 3n. We then have 

(65) 
»7n ^6n 

Vkn 
\i 3n 

(-I)"-

^5n 

^3n 
^2n 

«3n + l 
Mzn 
M3n-l 

W3n 
»2n 
Vn 

M2n+l 
M2n 
M2n-l 

M„ + i 
Mn 

Mn-i 

3n + 3 
3n + 2 
3n + l 
3n 

U 2 n + 3 
y 2 n + 2 
y 2 n + l 
^2n 

^n + 3 
^n + 2 
^ n + 1 
Pn 

^ 3 
y 2 

^ i 
^0 

Note how all terms in the determinant on the left of (65) are n units apart, 
whereas those on the right occur contiguously in groups of three or four, and 
the groups are n - 3 units apart. 

5. Concluding remarks 

Many number-theoretic properties for the Fibonacci sequence quite expectedly 
do not extend to the Tetranacci sequence. However, the following divisibility 
properties hold: 

(66) 

(67) 

(68) 

(69) 

M5n-1 E M5n E M5n+l E 0 (™od 2 ) , 

% « - 2 = M5n + 2 = 1 (mod 2 ) , 

% n E M 5 n + 1 E 0 (mod 4 ) , 
M5n-2 E 1 ( m o d 4 ) • 

Proof of (66) and (67) : We consider the sequence {Mn} (mod 2) and d i sp lay the 
r e s u l t s in the following t a b l e : 
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n 

Mn (mod 2) 

0 

0 

1 

0 

2 

1 

3 

1 

4 

0 

5 

0 

6 

0 

7 

1 

8 

1 

9 

0 

From the table, it is clear that {Mn} (mod 2) starts to repeat after five 
terms and, since the pattern of zeros and ones will then continue to repeat in 
the same order, we have 

Mt 4 = M5n_x = 0 (mod 2), M5 E M5n 

M3 = M3n_2 = 1 (mod 2) 

0 (mod 2), Me E M5n+l E 0 (mod 2), 

M2 E M5n + 2 E l (mod 2)» 

Since by (66), M5n_i> % n , M 5 n + 1 are even, it is clear that three arbitrary 
adjacent terms of the Tetranacci sequence may have greatest common divisor 
greater than one. However, we can show that the greatest common divisor of 

Mn9 Mn+l, Mn+Z, M n + 3, 

any four consecutive terms of {Mn},is one. 
This paper, quite clearly, is not intended as an exhaustive treatment of 

properties of the Tetranacci sequence and generalizations. Some fundamental 
identities and sufficient other results and techniques for proving them are 
given to indicate the rich and remarkable nature of this sequence and generali-
zations . 
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NEGATIVE ORDER GENOCCHI POLYNOMIALS 

A. F . Horadam 
University of New England, Armidale, Australia 

(Submitted January 1990) 

1. Introduction 

Elsewhere [2], I have investigated the properties of G^\x) , the Genocchi 
•polynomials of order k (>0), which were shown to be related to E^\x) , the 
Euler polynomials of order fe, and to B^\x)9 the Bernoulli polynomials of order 
k. 

When k = 1, we have the Genocchi polynomials of the first order, the sim-
plest polynomials of Genocchi type. 

If x = 0, the Genocchi numbers arise. 
Following Norlund ([4] and [5]), who pioneered the study of B^ \x) and 

E n~ (x) , the Bernoulli and Euler polynomials, respectively, of negative order, 
I here offer some of the most important properties of GJfk\x) , the Genocchi 
•polynomials of order -k (k > 0, n > -k) . So far as I am aware, the material in 
this contribution represents new information. 

The justification for seeking knowledge about the negative order polynomi-
als is stated by Norlund [4] . After saying that there is advantage in extend-
ing to negative order the notion of functions of positive order, Norlund 
continues: "On peut ainsi faire rentrer dans un meme cadre des fonctions qui 
apparaissent jusqu!ici comme distinetes»u [We can thus combine in one frame-
work functions which up to now appear as distinct.] 

Beyond this justification, I feel that the G^k^(x) have a vitality of their 
own which deserves recognition. 

Euler and Bernoulli Polynomials of Negative Order 

Norlund ([4] and [5]) defines the Euler polynomials of negative order -k by 

(1.1) t f^Vk...^) - (e"t+1) •••(*"»* +!>**-
n=0n' 2K 

and the Bernoulli polynomials of negative order -k by 

(1-2) ^0n\B" (*I"1---W*> - U i _ w t 

If U>i = 1̂2 = '•' = wk = ^5 t n e n (1-1) and (1*2) become 

:x 
n = 0 n' \ z / 

and 

(1-2)' t%B«\x) - ( ^ I f e ^ . 
n= 0 n° \ u / 

The definition to be given in (2.1) for Genocchi polynomials follows the 
modified forms (1.1) f and (1.2) f, though an extension to the patterns in (1.1) 
and (1.2) could be adopted. 

For subsequent comparison with corresponding forms for Gn (x) (k = 1, 2, 3, 
. . . ) , the first few expressions for E^~ \x) and B^~ (x) are: 
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( 1 . 3 ) E(
0-k\x) = 1 

E['k\x) = x + ^k 

E^k\x) = x* + kx +
 k{k+ 1 } 

E[-k\x) - x3 + hx* + 3 f e ^ + ^ + *£i*±_31 J 2 4 8 

< * > ( « ) = ** + 2 ^ 3 + tttfc+i!^ + * * ( * + 3 ) a + fc(fc+l)(y + 5fc-2) 
H 2 2 16 

and 

(1.4) B(
0'k\x) = 1 

B^Gr) = x + | 

B\-k\x) = ^ + 2^2 + im+-±ix +
 fe2(fe

8
+1) 

B^V) - ** + 2fcr3 + M M _ ± _ l l x 2 + fc2(Y 1 } , + fca5fc3+30fc2
+5fc-2) 

Putting fc = 1, we readily derive the table: 

(1.5) E{-l\x) B{
n'l\x) 

n = 0 1 1 

ft = 1 ^ + 2" X + 2" 

ft = 2 x 2 + x + y x 2 + a: + 3-

ft = 3 # 3 + | x 2 + \x + j x 3 + | x 2 + x + | 

ft = 4 x 4 + 2^r3 + 3x2 + 2x + \ xh + 2x3 + 2xz + x + j 

2. G e n e r a l i z e d G e n o c c h i Po lynomia l s of 
N e g a t i v e O r d e r 

Def in i t i on a n d B a s i c P r o p e r t i e s 

Define 

(2.1) t G<-kHx)-rK- = V^r-)*e** (k = 1, 2, 3, . . . ) , 
n=-k \n\l \ 2t I 

whence 
(2.1) ' G^~k\x) is undefined when n < -k, 

A-k) i.e., ft + A: > 0 is necessary for the existence of Gn (x) . 
Putting k = 0 in (2.1) leads to the situation covered in [2] when k = 0, so 

we exclude this repetition. 
Calculation in (2.1) gives us the first few Genocchi polynomials: 

(2.2) G(Sk\x) = \-k\\ 

Gffc+}l(a0 = |-fe + 11 I -faff + \k\ 

G^(X) -- ^^{^ + kx + ^^pl 
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^ V * ) - '-V,3 1'!*3 + f-2 + 3k{\+1)* + ^ V ^ 1 l-£ + 
3! 

3 | ! 

4 | ! 

L fc(fc + l ) ( k 2 + 5k - 2) 
16 

In particular, when k = I: 

(2.3) G^ar) = 1 

^Q (#0 — X + — 

G)~L)(x) = ~{xz + x + | r[-1}(x) = f { * 2 

^_1)(x) ~ix3 + |*2 + ~x + |1 = |(x + |)(x2 + x + 1) 

G(
3~l\x) = ~-ixh + 2x3 + 3x2 + 2x + | 

G^_1)(^) = ijx5 + |x4 + 5x3 + 5x2 + |a + | 

= i(x + o")(̂ Lf + 2x3 + 4x2 + 3x + 1) 

The Genocchi numbers Gn {n > 0) thus form the sequence 

(2 3) ' l/i I I I I U ' J ; 2\ ' 2' 35 4' 5s " 

while 

(2.3)" Gi|:» t ff("» . 2-12 + i a s n * - . 

Comparison of (2.1) with (1.1)' reveals that 

(2.4) G(
n-k\x) = {JnJ]

k)[E^kl(x). 
Differentiating both sides of (2.1) w.r.t. x leads to the Appell property 

U]* dG^\x) (_k) 
(2.5) ^ = nG^_k{(x), n + k > 1, n > 0, 
whence p ,_M 

d G (x) 
(2.6) ^ = n(n - 1) ••• (n - p + l)ff^(x), n - p > 0, 
so that, using (2.3), we have 

dn + lGJTk\x) 
(2.7) ^— = nl 

dxn+l 

Integration of (2.5) gives (with n -> n + 1) : 

(2.8) 6̂  k\x)dx = - ^ ^ . 
Jx n + 1 
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Summation Formula 

Theorem 1: 
n \ n \ f 

(2.9) £<-*>(* + y) = Z . , ., G^\x)yn'K j - - f e (n - j ) ! | j | ! 

Proof: m-t-m 

00 ^ I Y) I I • -J-

after rearranging the terms. 

Equate coefficients of tn/\n\\ and the result follows. 

For example, If k = n = y = 2, both sides of the formula (2.9) lead to the 
expression, also derivable from (2.2), 

1 M . . Q . , 3 ..9 . -,̂ 1 . . « 1 d"2)(x + 2) = f^ 4 + ̂ 3 + 4fx2 + 10-4 # + 924 

Furthermore, lfk=3, n - l 9 x = 0 , and z/ is replaced by x9 then (2.9) gives 

G['l\x) = | ( x 2 + 3x + 3) 

in conformity with (2.2). 

Complementary Arguments 

We say that x and -k - x are complementary arguments. 

Theorem 2: 

(2.10) ^ " ^ ( - ^ - *) = (-l)n + *G„(-fc)(a;). 

P r o o f : 

= (-1)* £ (-!)»<?<-*>(a:) — 

n = -k \n \ -

Comparison of the coefficients of tn/\n\l yields the result. 

Corollary 1: /„(-k), x . r 7 , 
^ (£; ;(x) if fc + n is even, 

(2.11) G{
n-k\-k - x) = { 

{-G{
n-k\x) if k + n is odd. 

Special cases of interest occur when x = 0 and (equivalently) x = -k. In 
either of these instances, consider also fc = 1. 
Corollary 2: In Theorem 2, replace x by x - (k/2). Then 

(2.12) 4"«(-x-f)= (-l)» + *G<-*>(* - £). 

If x = 0 in Corollary 2 (or # =' -k/2, k + n odd, in Corollary 1), 
then 

(2.13) £n_/0(-f) = 0> & + n odd, 
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i . e . . , G„ (x) has a z e r o when x = -k/2 f o r k + n odd . 

Thus , i n ( 2 . 2 ) , G\ + i(x) h a s a z e r o when x = -fc/2 f o r I odd . 

Analogue of the Multiplication Theorem 

More accurately, this analogue of the multiplication theorem [2] could be 
called a "division theorem" for negative first order Genocchi polynomials. As 
in [2], there are two cases to consider, one of which involves B^~1^ (x) . Unfor-
tunately, as for k > 0, this theorem does not extend beyond k = -1. 

Case I: m odd 
Theorem 3a: 

1 m- 2 

(2.14) G^p-^i- = -m-n^ £<-l)84-1)(* + s). 
Proof: 

t TTT "if (-l)aG£_1)(* + e) = m E ^ r ^ ( - D s ^ e
s * „__i |n| ! s__i gflx zr 

1 t.etete(-e-* + 1 - e* + ... + (-l)m-2eC«-2H) 

1 + g* 
2£ 

gta(-£-*)(l - gt + g2* _ ... + (-l)m-lg(m-l)t) 

1 + e* f(*-l) 1 + ̂ ^̂  . -, , 
— — e v K ^ u • —-9 since 777 is odd 

2v I -\- et 

ntv mt(x-l) « ( m t ) n (_1)/x _ l 

Therefore, 

— g m = - > 777-j—i &Y, \ • 

\ 2mt I nei1 \n\\ n \ rn I 

. -. . m-2 
(-i)/£^lJA = _m-n-l £ (-l)8^-1'^ + s), m odd. 

\ m I s =~i 

Case II: m even 

Theorem 3b: 
(2.15) £(-1}(^^) = 2m--"1 ̂  (-l)s^-1}(x + s) 

Proof; 

rc=-l l nl l s =-1 

= L \ f e t x • -e'^l - e* + e2t - e3t + ... + (-l)^1^"^), as in 
2t Theorem 3a 

_ _ — _ ^ — g t c x - i ; _ since m is even 
2v 1 + g* 

^ ( s - l ) i ^TTZ* _ i mt(x- 1) 

* (1 - e ^ ) = m ^ . ^ — ^ . e * 2t v J 2 mt 
m ^ Q t ) n

 p(-i)/x - 1 
2 ^ = o 

nV 0nP. Km)' 2 
Equate corresponding coefficients of tn/nl and the result follows. It is 

to be noted that, in the left-hand side summation, n = -1 and m even lead to 
the term 

±-?(-l + 1) = 0. 
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R e l a t i o n s b e t w e e n P o l y n o m i a l s of S u c c e s s i v e O r d e r s 

Theorem 4: ( * „(-

( 2 . 1 6 ) G{
n'l\x - 1) + G(

n'l\x) =! 2 

Theorem 4: ( „ ^( -2) , ,x , 
1 2nG^_{{x - 1) w = 1, 2 , 3 , 

^•2i}(a? - 1) n = - 1 , 0 . 

m! 
t \2 

it 
(1 + e"*) = 2t(l + e ) e*(*-D 

= 2^"2)(x - l ) ^ i - + 2G[\2\x - D-A- + ±2nG™{x - l )g 

Equate coefficients of tn/\n\l and the result follows. 

Clearly, the result can be extended to G„\x). 
With x + x + I in Theorem 4, we have 

( 2 . 1 7 ) G< " ( 1 + x) + G{
n
 l\x) ={ 2 

( i n - i | ! g " - 2 l ( a 0 n = - 1 ' °* 
w i t h a s t r a i g h t f o r w a r d e x t e n s i o n t o n - -k i f d e s i r e d . 

A companion r e s u l t i s 

Theorem 6: 

( 2 . 1 8 ) G(
n'l)(l + x) - G{

n~l\x) = 2 ^ (
n - 1 } ( | ) , (« > 0) . 

Proof: 

kr - (-2^-)(et - 1 ) e E f f „ ( l + x) - G ^ n ( x ) 
n= 0 

?2* - 1 2t.f 
It 

2n£fn-l\l)%> on u s i n g ( 1 . 2 ) ' , 
« = 0 

from which the formula follows. 

To generalize Theorem 6, we need to expand (e* - 1)^. After suitable alge-
braic manipulation, it ensues as in the proof of Theorem 6 that 

(2.19) t (-l)i-l())G{
n-k)U + x) = (-l)*-H2nfl£-k)(f) (n > 0). 

Theorem 7: 

(2.20) (n + l)^_1)(x) = n(ar + D ^ U O - |^0)(x) (n > 1) . 

Proof: Differentiate both sides of (2.1) for k - 1 w.r.t. £ partially, and then 
multiply by t. It follows that 

gta: 
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E q u a t e c o e f f i c i e n t s o f tn/n\ a n d t h e r e s u l t f o l l o w s . O b s e r v e ( s e e [ 2 ] ) t h a t 
G{^\x) = xn. 

The n = 0 t e r m , b e i n g a c o n s t a n t , does n o t c o n t r i b u t e t o t h e summation on 
d i f f e r e n t i a t i o n w . r . t . t p a r t i a l l y . 

P r o c e e d i n g i n t h e same manner , we may e s t a b l i s h t h e g e n e r a l i z a t i o n 

(2.21) {n + k)G{
n~k\x) = n(k + x)G{

n^\{x) - ^ k ' l \ x ) (n > 1 ) . 

In particular, when k = 2, the left-hand side of the first line of the proof in 
Theorem 7 (after partial differentiation and multiplication by t) becomes 

h - ̂ ^ + o + ± rt2\^> 
n= 1 

since the n = 0 term does not contribute, being a constant as far as partial 
differentiation w.r.t. t is concerned. 

G^~k\x) in Terms of G^1}(f(x)) 

Adopting a different technique, we are enabled to derive formulas connect-
ing G\~ \X) with negative first order Genocchi polynomials of appropriate func-
tions f(x) of x. When k = 2, 3, we have 

Theorem 8: If n > 0, 
„n+2 

(2.22) 
2(« + DG^ix) = 2{2- + ̂;1)1(f) + G™{x)} - f ^ , 

4(w + 2)(n + l)^i"3)(x) = 3|3^+1^(|) + G ^ U + 1)|. 

Proof: Consider 

V \ It I 2t\ 2 • 2t / 2t\ 2t / 2t2 

and 
(2.24) ( L ^ ) V * 3 (iJ^iX 3t.f + 3 /L,Lji)'(*+1). 
v ' \ 2t * 4t2\ 2 • 3t / 4t2V 2£ / 

Equate coefficients of tn/nl and the results follow. (xn+1 = G^z(x) by 
[2].) 

Determination of the somewhat complicated extensions of (2.22) for general 
k is left to the curiosity of the reader. Depending on the parity of k, we 
will obtain two separate expressions in the generalization. Nevertheless, 
there is a unifying principle in the proof, namely, the grouping of pairs of 
appropriate terms; when k is even, there will be additionally a single unpaired 
term. 

Similar kinds of results may be obtained for E\ (x) and B\ (x) on using 
(1.1)f and (1.2)'- However, in the case of Bernoulli polynomials we remark 
that, for k even, BJf \x) is expandable in terms of Genocchi polynomials. 

G^Hx) in Terms of ̂ ^(jr) 

Theorem 9: 

(2.25) G™W - ± , |W||, .^-"(iK" " W-
r=-i (n - P)!|p|! \2/\ LI 

Proof: . t t t ̂ _ i ^ t 
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j-»(i) ix _ i r + v + i 

}tli|-l|!t (e + D! \M \2)r\]\L0\x 2) ml 
Application of Cauchy's multiplication of power series and comparison of 

coefficients of tn/nl yield the desired result. 

Sums of Products 

What happens if we square both sides of (2.1)? Clearly, 

<"» u/^M^-^ui)--^^y 
= L G{-2\2x)- tn 

n=-2 \n\\ 

Comparison of coefficients of tn/\n\l yields a set of sums of products, ex-
pressible in general form as 

[̂  G{~l)(x^ 
2 Z gj"1}(x),n-^ n odd, 
j--i I" ~ 3\l 

(2.27) G(
n'2)(2x) = 

fn-l 
,(-1), 

2 £ g ^ t e ) , 0 " - ^ + ̂ ""(ar) n even. 

Furthermore, if we replace t by -t in one of the infinite sums in (2.26), we 
find 

<"»> C?-^I > wwi)U.c S-I , w^)--( i^1) * N 2 -t 

,(-2), „ t" 
n=-2 

;(-2) 
n=-2 |n| 

leading to formulas for £^ (-1) similar to those in (2.27). Observe that 

6^~2)(-l) = 0 when n is odd, by (2.13). 

Putting x - -1/2 in (2.27), we also obtain formulas for G„ (-1) in terms of 
4_1)(-l/2). 

Interested readers may wish to extend the above theory to unspecified k in 
G^~ (x) . Additionally, one may determine results corresponding to those in 
(2.27) for Euler and Bernoulli polynomials. 

3. Miscellaneous Theorems 

Use of BooleTs Theorem 

For a polynomial P(x), Boole rs theorem states that 

P(x + y) = VP(ar) + E1(y)VP'(x) + jjE2{y)VP»{x) + ±f3(y) VPr"(x) + -..,. 

where the symbol V (TnablaT) represents the operation of the mean of the func-
tion (see [2]) and E^(x) (i = 1, 2, 3, ...) are the Euler polynomials E^(x) 
obtained from (1.3) by replacing k by -1. Prime superscripts signify differ-
entiation w.r.t. x. 

Now 

VG{~l)(x) = |(^_1)(1 + x} + G(nX)(x)). by the definition of V 

28 [Feb. 



NEGATIVE ORDER GENOCCHI POLYNOMIALS 

^nG^lix) {n = 1, 2, 3 , . . . ) 
1 by Theorem 5. 

\n - 1 I ! n l 

Put z/ = 0 in Boole !s theorem and take P(x) = 6^_1)(20 -
Then Boole fs theorem becomes, for n > 0 ( 2 . 5 ) , 

G{
n-l\x) = VG^l\x) + El(0)VG(

n-l)\x) + jjEz(0) VG^l)'\x) + . . . , 
t ha t i s , 
Theorem 10: When n = 1, 2, 3 , . . . , 

(3.1) G{
n~l) = nG{

n~?l(x) + ^ ( 0 ) - nG^l'ix) + j^E2{0) . nG{^\\x) + . . . . 

For example, i f n = 2, the r igh t -hand s ide reduces to 

- | (x3 + | x 2 + | ^ + | ) [= ^ 2 _ 1 ) ^ a s i n ( 2 » 3 ) ] -

Genocchi Polynomials in Terms of Bernoulli Polynomials 

The Euler-Maelauvin theorem (see [3]) s t a t e s , in the case of polynomials 
G{~l\x) , t h a t 

G{
n~l)\x) = A 4 _ 1 ) ( 0 ) + Bi^kG^'ix) + -^r-kG{-l)'\0) + - - . , 

where B^(x) (i = 1, 2, 3, ...) are the Bernoulli polynomials B^ (x) obtained 
from (1.4) by replacing k by -1 and A is the symbol for the operation of taking 
the difference. 

Now, by (2.5), 

G(
n-iy(x) = nG{

n-}l{x) (n > 0) 
and, by the definition of A, 

(3.2) A^-1}Cr) = G{~l\l + x) - G^l\x) 

= 2nB{~l)(^\ by Theorem 6 (n > 0) . 

Then, by (2.5) and ( 3 . 2 ) , the Euler-Maclaurin theorem leads to 
Theorem 11: 
(3.3) nG^x) = 2n^B(

n-l)(0) + Bl {x)B^l)' (0) + ^ f - 4 _ 1 ) " ( 0 ) + . . . j (n > 1 ) . 

When n = 3, the theorem reduces to 

3^"1}U) = x* + f*2 + ̂  + \, 

which is true by (2.3). Theorem 11 enables us to display G„ \x) entirely by 
means of Bernoulli expressions. Both Theorems 10 and 11 (for k = 1) may be 
extended to cover the case when k is general. 
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Some THybrid1 Products 

Let us write 

G tn 

Z 4 1 } (* ) !T , G- -= E <#}(*> (-*)* 
(3.4) 

n= 0 n\ n= 0 

n--l W. I 
(-*)* 

rc = - 1 

where G is as defined in [2], G* refers to (2.1) when k = 1, and £_, 6* are ob-
tained from G9 G*9 respectively, by replacing t by - £ . Corresponding symbol-
ism E, . . . , Et9 B, . .., Bt relates to Euler and Bernoulli polynomials, where E 
and B are also defined in [2]. 

Then, by [2] and (2.1) 

(3.5) GG* = e2tx 

and 

(3.6) GGZ = -e'* , 

Equating appropriate coefficients yields the hybrid results 

(2x)n 

(-D n-1 
rt- 1 ! 

n + i/G^Oc) G^ktf) 
(3-7) E ., ' i ••, 

and n > • / i \ 

(3.8)
 nfl(°n ^ (-DW"^>) 
Similarly, 

(3.9) GLG* = -e* = (GGt)'1 

and 

(3.10) G-G* = e~ltx = (GG*)"1, 

yielding results corresponding to (3.7) and (3.8). The case G*G±i has been 
covered in (2.28). In addition, 

GtGz 
t\2. HF) -t(2x + 2) 

gives the summation (2.1) for G{~2){-{2x + 2)}. 
Moreover, 

(3.11) 

EE* 

E-E* 

>2tx 

3_B* = et 

G*E = \eltx 

GE* te 2tx 

t\2 

G*E* = t{±y-) e t'lX 

1 e it 1 2t.± 
—e 2 

G*B* = 

for example, among a variety of possible products. The last three equations in 
(3.11) give the summations (2.1) and (1.2) ' for 

30 [Feb. 



NEGATIVE ORDER GENOCCHI POLYNOMIALS 

^ ( ^ *£>(!), andfl^-i), 

respectively. 
Our theory may be extended to values of k > 1. 
Products of powers of the G, E9 and B symbols give rise to an immense num-

ber of identities, for example 
(GG-G*G±l = 1, 

(3.12) 1GE(E*)Z = tehtx, 
{G3G2(G*)ZB_B*(EI)3 = t3. 

To avoid tedium, we leave the challenge of exploring such possibilities, 
which may be continued almost ad infinitum, ad nauseaml , to the ingenuity and 
perseverance of the reader. 

4. Differential Equations 

Descending Diagonal Functions 

Arrange the G^~ (x) in (2.3) according to the following pattern: 

(4.1) G(_\l\x) = G[\l) 

G(-i>(a0 . G(-D + xG[\l) 

G['l\x) = G[~l) + xG™ + f^(-D 
G{

2~l\x) = G['l) + 2xG[~l) + x*G™ + ±X3G[\1) 

G{{l\x) = G{{1) + 3xG{{l) + 3x2G(1-1) + x 3 ^ ^ + ^ ^ 

^-D(^) = G<-I> + 4^^ 1 } + 6x24"1} + 4*3£(f1) + a^"1* + ̂ 5 ^ 1
1 ) 

in which 

(4.2) G(
n~l\x) = t 7 ^ll.-ii^ 1 ^ "' 

as in [2] for G(n1}(̂ ) . 
Imagine now that the terms are considered to lie in an infinite set of 

downward slanting "parallel lines" to form the following set of descending 
diagonal functions {g{~l)(x)} (n=-l, 0, 1, 2, ...) and their generating functions 
(k|<l): 
(4.3) g^\x) = G[\l)[l + x + \x2 + \x3 + ±x* + .. .) = G[\l\l - log(l - x)) 

^ V) = ̂o (1 + x + x + x + x + " • > = ^ o (1 " °°y 
g{{l\x) = G[~l)(l + 2x + 3x2 + 4a:3 + .--) = G["1){1 - x)~2 

g{~l)(x) = G ^ U + 3x + 6xZ + "••) = Gil)(l - ^ ) " 3 

with, generally, as in [2] for Gn (x), 
(4.4) ^_1)(x) = G ^ l - ^ ) " ^ + 1 ) . 
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(4 .5 ) 

Note t h a t 

9(n 

(-1) 

,(-D(a;) 

^ > ( 0 ) 
4-t0rr> 
w n 

nn+ln(-l) 

(1 + l o g 2)Gi\1} 

[9n 
W r i t e 

( 4 . 6 ) 

whence 

( 4 . 7 ) 

(1) is not defined. 

n > 0 

n > 0 

n = - 1 

D E Z?(ar, z/) = E ^ ( - 1
1
) ( ^ ) z / n ~ 1 = Z G „ " - l U ~ *) ' * 2 / 

3Z) 

W,yW-l 

" # • 

32/ 
(n ^-^f 

while, from (4.5), 

dg{
n-l\x) 

(4.8) (1 - x)- dx in + 1), 

0, 

,(-D (*). 

Observe in (4.6) that g_^ (x) has been omitted. 
Reverting now to (4.2), we may easily generalize this formula by replacing 

-1 by -k (three times). For what follows, the reader may find it helpful to 
construct a partial table like (4.1) from (2.2). An analysis of the cases 
k = 2, 3, ... then discloses the interesting nexus: 

(4.9) 9n t-
l\x) 9n 

("2)(X) 

G (-D G(-2) 
= (1 - x)~n+1 (n 
= 1 - log(l - x) (n 

0, 1, 2, 
-1) 

•) 

When n < - 1 , there is no such simple pattern as in (4.9) [though, excep-
y(-2) tionally, g_„ (x) is expressible in terms of g_-f (x)]. This unstructured situ-

ation results from the somewhat wayward behavior, as k varies, of 

r('k) (-*) (4.10) g^(tf) = G^Ul + 
1 

-k\\ 
-k + 1I \x + 

-fe + 2 1 ! 
2! 

-fe + 3 | ! 
3! 

which is aberrant on account of the unusual presence of. modulus factorials. 
The repetitive nature of the g^~^(x) is understood if we examine successive 

levels in the layout of 

G (-fc), A-k) i-k) (*), Gll^^x), G™z(x), 
corresponding to (4.1) 

Lder, for 

\-k + 3|! 

Consider, for example, the coefficients of x in G_k+^(x) and G_^+^{x), i.e., 

-k + 2 ! 
A-k) and 

-k + 4 ! (-fc) 
-fc + 3 | ! ~k + 3' 

respectively. Substituting k = 2 in the first case and k = 3 in the second, we 
have immediately 1 • £Q and 1 • £Q » i.e., the coefficient 1 is repeated. 

Rising Diagonal Functions 

Concentrate next on the infinite set of upward slanting "parallel lines" 
which form the following vising diagonal functions', 
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(4.11) h_^'(x) = G{~1> 
h{-l){x) = G(~l) 

- 1 ) 

h[~l)(x) = xG^ + G['l) 

h{~l)(x) = xG{~l) + G{
2'1) 

h{-l\x) = \x2G[\l) + IxG^ + G™ 

h{~l\x) = x2G(
Q-l) + 3xGlf1) + G^"° 

h{-l)(x) = ^G[\l) + 3x2G[-1} + kxG{{l) + G^1 

h{-l)(x) = ar3G<_1) + 6x2G({l) + 5xG{
k'l) + G^'l) 

h(~l\x) = \xhG{_~^ + Ax3G['l) + lOx2G(f1) + 6xG(
5'l) + G^ 

h{'l)(x) = xhG{~l) + Kta 3 G^° + l5x2G{'l) + lxG{'l) + G<_1) 

General ly , , 

(4.12) h(
n-1}(x) = t ' " " ^I.G^.xJ. 

Clearly, 
(4.13) h{;l)(0) = G{

n-l) = ^ _ 1 ) ( 0 ) . 
Consider 

(4.14) R = R(x, y) = E ^-\^)yn'1 

= (1 - xy2)~lG{-l) + y(l - xy2)-2G[-l) 

+ y2(l - xy )~3Gl{1) + . . . . 
Writ ing 

(4.15) * E (1 - xy2)-2G{~l) + 2/(1 - xy2)-*G[-l) + y2(l - xy2)-^^ + .-
and 
(4.16) c)> = (1 - xy2)~2G{{l) + 22/(1 - X2/ 2 ) - 3 ^^ 1 } + 3zy2(l - xy2)~hG{~l) + 
we readily obtain, as in [2], the partial differential equations 

dR 
9x 

(4.17) ||= yH 
and 

(4.18) |^ = 2xy^ + *, 

leading to 

on partially differentiating (4.17) w.r.t. y and (4.18) w.r.t. x and then apply-
ign Bernoulli!s theorem: 

d2R d2R 
dxdy dydx' 

Generally, \n+k] 
L ^ J In (4.20) h^khx) - L t J # ^ i ; V J ' . 

1992] 33 



NEGATIVE ORDER GENOCCHI POLYNOMIALS 

i.e., -1 in (4.12) has been replaced by -k (three times), and an extended theory 
for differential equations may be pursued corresponding to that given in [2]. 
Observe that, whereas in (4.20) the number G_^ has been omitted, in the gene-
ral case, the numbers G_^ > G^^ > •••> ^-k W ^ H D e missing. 

5. Concluding Remarks 

Many other properties of GJf \x) may be developed, but it is hoped that 
this exposition will give a flavor of the basic ingredients of the mixture. 
Further extensions could, for instance, involve relationships with B^k^ (x) and 
En~ (%) • As a guide to the possibilities, one might consult [2] for corre-
sponding material relating to G^kH%)> e.g., graphs, and for appropriate refer-
ences . 

In treating £„ \x), there is the obvious choice of deciding whether or not 
to exclude the cases n = -k, -k + 1, ..., -1. Inclusion of these values does 
add to complications in the theory. Without them, one can sometimes proceed 
from results in [2] for k > 0 to those established here, simply by replacing k 
by -k. This situation gives the continuity and unity mentioned by Norlund (for 
Euler and Bernoulli polynomials) in the French quote in the Introduction. 

Consideration of negative values of n in G^^(x) adds much to the complete-
ness of the theory and, despite the difficulties involved, enhances the enjoy-
ment of the work. 
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ON SOME NUMBER SEQUENCES RELATED TO 
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1. Pascal7 s Triangle Mod 2 

It is well known that striking patterns of triangles can be produced from 
Pascal's triangle by replacing each binomial coefficient by its residue with 
respect to a certain modulus. The arrays thus produced were considered by 
various authors; see, for instance, Gould [5], Gardner [1], Long [10], or Sved 
[17]. For example, Pascal's triangle mod 2 (Fig. 1) is the array of zeros and 
ones obtained by considering the parity of each entry in the usual Pascal 
triangle. It can be readily constructed using the basic recursion formula 

"•» G) - G : I) • C ; ' ) 
together with the rules for addition mod 2. (In Fig. 1, this array is shown 
"right-justified" for convenience in further discussions, with all entries 
resulting from coefficients of the form (̂ ) aligned in the rightmost column. 
Furthermore, for the sake of clarity, groups of zeros in this figure have been 
enclosed within triangular shapes.) 

We shall be concerned in this paper with some number sequences introduced 
via Pascal!s triangle mod 2. Gould [5] has considered the sequence obtained by 
reading the rows of this array as base two representations of numbers. We 
shall introduce analogously other number sequences and show how certain regu-
larities of such sequences follow directly from the patterns found within the 
array. It is our purpose in this paper to base our discussion essentially on 
the geometrical structure of Pascal's triangle mod 2. So we complete this 
introduction with a description of this geometrical structure. 

We. borrow the following terminology from Sved [16, 17], with the notation 
|rl representing the residue of (") mod 2 (0 < r < n). The cluster of order h9 
or h~cluster3 is the portion of the array formed by all the residues |"| for 
0 < n < 2h, and the zero-hole of order In {Jn * 0), or h-hole, is the (inverted, 
left-justified) triangular array made of ( 2 ^ - 1 ) decreasing rows of zeros, 
with (2^ - 1) entries in the first row down to a single entry in its last row. 
[Anticipating the forthcoming geometrical characterization of Pascal's triangle 
mod 2, see the following paragraph, the /z-hole thus corresponds to all residues 
|r| with 

(1.2) 2h < n < 2h + l - 1 and n - (2h - 1) < r < 2h.] 
For example, the clusters of orders 0, 1, and 2 are, respectively, 

1 
1 1 

1 1 0 1 
1, 1 1 , and 1 1 1 1 , 

while the zero-holes of orders 1 and 2 are of the form 

0 and 0 0 0. 
0 0 
0 
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i 

i i 

l ] l 

;',,-
|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 ( 
p o o o o o o o o o o o o o o o o o o o o o o o o t 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ( 
| 0 0 O O 0 O O 0 0 0 0 0 0 0 O 0 O O 0 0 O O O O O ( 

Figure 1 

The overall structure of Pascal's triangle mod 2 can be described as fol-
lows. Let us observe the array as it grows downward, thus producing successive 
(nested) clusters. Then the cluster of order h3 consisting of rows 0 down to 
2h - 13 is made of three clusters of order (h - 1) surrounding a zero-hole of 
order (h - 1) (see Fig. 2, where the three (h - l)-clusters have been labeled, 
respectively, I, II, and III). A formal proof of this characterization can be 
given by induction, using the recursion formula (1.1) (see Sved [16]). The 
geometrical pattern of the array could become even more striking by replacing 
all zeros by blanks in Figure 1. Note that when extending the process to an 
infinite number of rows, the limiting pattern is found to be "self-similar" 
with fractal dimension log23, as discussed in Wolfram [19] (see also the "Sier-
pinski gasket" described in Mandelbrot [12, p. 142]). 

This geometrical characterization of Pascal's triangle mod 2 allows us to 
state a few basic properties. 

(l.i) Row 2h - 1 consists of 2h ones: 111...Ill (2h lfs). 
(l.ii) Row 2h consists of two ones separated by 2h - 1 zeros: 100...001 

(2h - 1 0?s). 
(l.iii) More generally, row 2h + u, 0 < u < 2h, consists of two copies of row u 

separated by (2h - 1 - u) zeros. 

Result (l.i) follows from the fact that row 2h - 1, which is the bottom row of 
the h -cluster, is obtained by concatenating the bottom row of the (h - 1)-
cluster with itself. Property (l.ii) is then an easy consequence of (l.i) 
using mod 2 addition. As for property (l.iii), it expresses the fact that row 
2h + u, which is located in the (h + l)-cluster, is obtained by inserting, in 
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between two copies of row u of the /z -c lus te r , the (u 4- l ) t h row of the h-hole. 
[ i . e . , a sequence of (2h - 1 - u) z e r o s ] . These r e s u l t s can be rephrased as 
follows in terms of the p a r i t y of binomial c o e f f i c i e n t s . 

( l . i 1 ) Al l c o e f f i c i e n t s (2 l \ , 0 < r < 2h - 1, are odd. 

( l . i i T ) Coef f ic ien ts ( ) a re odd only for r = 0 and 2h. 

( l . i i i f ) 2h + u 
v 

2h + u 
2h + v for 0 < u < 2H and 0 < v < u. 

Figure 2. The c lus te r of o rde r h 
(The dotted line indicates the "principal diagonal" r) 

As was observed by Kung [9] or Sved [17], results (1. i)-(l. iiif) follow 
from a simple glance at the binomial array mod 2. However, the reader should 
note that all six of these properties can also be obtained as immediate conse-
quences of certain well-known facts about binomial coefficients. For instance, 
by a result due to Kummer [8, p. 116], one has the following: 

(l.iv) The exponent of 2 in the prime factorization of (") equals the number of 
borrows in the subtraction n - v in base two. 

(See Singmaster [14] or Goetgheluck [4] for recent proofs.) Hence |"| = 1 if 
and only if there are no borrows in this subtraction. A direct algebraic proof 
of property (l.i) can be found in Vinogradov [18, p. 20]. Alternately, as 
observed by Roberts [13]5 (l.i) follows immediately from the fact that, for a 
fixed n, the number of odd binomial coefficients y^j is given by 2 1 , where 
#l(ft) represents the number of l!s appearing in the base two representation of 
n. This last result, stated in Glaisher [3], is easily justified using the 
following theorem of Lucas [11]: 

(l) -• ( # ( £ ! ) - CD < - 2>-
where (ft^ft^_^ no)two a n d O ^ f c - l ^0>1 are the binary representations 
of ft and 2>, respectively. (This last result of Lucas plays a central role in 
the "masking" relation used by Jones & Matijasevic [7] for encoding the history 
of calculations of a Turing machine. It is this latter work which has prompted 
the present author's interest in Pascal's triangle mod 2.) 
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2. Gould1 s Numbers 

Let us now use the binomial array just discussed to define a sequence 
^Gn}n>Q of natural numbers as follows: Gn is the number whose binary represen-
tation is given by the nth row of Pascalfs triangle mod 2. This sequence, 
which starts 

1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, ..., 

was considered by Gould [5] (see Sloane [15], sequence no. 988). We shall call 
the Gn*s Gouldrs numbers, 

We can use facts (1.i)-(l.iii) about Pascalfs triangle mod 2 to deduce some 
basic relationships among Gouldfs numbers. For instance, we have 

(2.1) G2h = 22h + 1 = Fh, 

where Fh denotes the hth Fermat number. This stems immediately from the parti-
cular form of row 2h [see (l.ii) above]. [Similarly, by (l.i), G^ ~\ - 21 - 1.] 
It then readily follows that for an arbitrary n = 2h + u9 0 < u < 2h, we have 

(2.2) ^7 7 * x2h +u 2h 

since the sequence of lfs and 0fs forming row 2h + u9 as described in (l.iii), 
can be directly seen as being the (binary) product of row 2h and row u. 

For n having the binary representation (nknk„i ... ̂ o^two * o n e t n e n deduces 
from (2.1) and (2.2) the remarkable relation 

k 

(2.3) Gn = n KK 

i = 0 
Indeed, writing n as a sum of powers of two, the digits n^ indicate the powers 
2^ needed for expressing n. Result (2.3) was stated by Gould [5] [see formula 
(50)] and a proof was given by Hewgill [6]. (Gould [5] stated another remarkable 
relation about GouldTs numbers, namely: ^2n+l ~ ^2n- This result is easily 
proved inductively from the geometrical pattern of the binomial array mod 2. A 
formal proof of the same result can be found in Garfinkel & Selkow [2].) 

When (2.2) is rewritten in the form 
(2.4) T2h +u Gnj2l + G» 

one obtains nice symmetrical representations. For instance, (2.4) yields the 
following for h = 3 and 0 < u < 8: 

GQ = 
GS = 

^10 ~ 
Gil = 
Glz -
G 1 3 = 
GXh = 

<a5 = 

257 = 
771 = 

1,285 = 
3,855 = 
4,369 = 
13,107 = 
21,845 = 
65,535 = 

1 
3 « 
5 « 

15 • 
17 
51 
85 
255 

• 256 + 
> 256 + 
» 256 + 
• 256 + 
• 256 +• 
» 256 + 
• 256 + 
• 256 + 

1 
3 
5 
15 
17 
51 
85 
255 

A suggestive interpretation of Gouldfs numbers can also be obtained from 
(2.4), using property (l.iii'). Let us recall that by definition the Gn*s sat-
isfy the equality 

(2.5) 2n-

Then (2.4) says that for n - 2^ + u this sum can be seen as made of two parts 
corresponding, respectively, to the successive values 0, 1, — 9 u and 2h, 2h + 1, 
..., 2h + u = n of the index r. In the former case one has, because of (l.iii1), 
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r= 0 
2n 

r= 0 r= 0 
o w -

so this partial sum corresponds to Gu shifted by a factor of 22 . In the lat-
ter case5 the terms sum directly to Gu because, for r = 2h + £, 0 < i < us one 
can write5 again by (l.iii1), 

2u-

Figure 1 nicely illustrates the situation, since it has been displayed in such 
a way that in each /i-cluster, the column corresponding to the term of weight 
22" in the binary expansion of G2h+u is easily located. 

3. Along Fibonacci Diagonals 

We now want to use the binomial array mod 2 to introduce other sequences of 
numbers. Among remarkable lines in the (standard) Pascal triangle are the 
Fibonacci diagonals, i.e., those slant lines whose entries sum to consecutive 
terms of the Fibonacci sequence. When the binomial coefficients are displayed 
in the shape of a right-justified triangle, similar to Figure 1, the nth Fibo-
nacci diagonal, starting at (Q), contains all those entries obtained by moving 
successively two columns to the right and one row up. By the basic formula 
(1.1), the nth Fibonacci number fn (where fo=fi = l and fn+2 ~ fn+l + fn) ^s 

the sum of all coefficients thus obtained: 

[i] 
fn - E ( n ; r ) . r = 0 

with [x] indicating the integer part of x. For instance, 

^ = (o) + (?)+(2)+(3)+(4)=1 + 8 + 21 + 20 + 5 = 55-
In analogy with the way Gould1s numbers were defined, we now want to intro-

duce a sequence {Hn}n>0 of natural numbers whose binary representations are 
given by the Fibonacci diagonals in Pascal fs triangle mod 2. Let us use An, 
n > 0, to represent the string of digits found along the nth Fibonacci diagonal 
mod 2 (for instance, Ag = 10101). Then Hn is the number represented in base 
two by An. We thus have, analogously to (2.5), 

f] n - T 
v 

[ ! ]-(3.1) En = £ 
r = 0 

so that, e.g., Hs = (10101) 
two — 21. The first values of the ^-sequence are: 

1,1,3,2,7,5,13,8,29,21,55,34,115,81,209,128,465,337,883, ... . 

As might be expected, the Hn* s satisfy some nice generation rules, and we 
will make use of the geometry of Pascal fs triangle mod 2 to give proofs of 
these rules. Before doing so, however, it is interesting to redisplay the 
entries of Figure 1 so that the nth diagonal An becomes the nth row in the new 
array (see Fig. 3). Some striking patterns can be observed in this array. 

For instance, it is readily seen, for those values listed, that kih-l c o n ~ 
sists of a one followed by a string of 2^_1 - 1 zeros, so that 

H, 2h -1 = 2
2"-1"1. 

Also, the staircase pattern of Figure 3 appears to be made of symmetrical parts 
that could be directly described by introducing a terminology based on "clus-
ters" and "holes," as was done for Figure 1. For example, rows 0 down to 14 
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can be seen as being separated in two layers by row 7; the lower layer (rows 8 
to 14) is made of three sections, namely a copy of the upper "cluster" (rows 0 
to 6) that has been shifted down by 8 rows and to the left by 4 columns, next 
to an upside down copy of this same part (i.e., a mirror image of rows 0-6 in 
row 7), the remaining entries in between these blocks being filled with a 
"hole" of zeros. Thus, A9 consists of a copy of A]_ (1) and a copy of A5 (101) 
separated by one zero, while A13 consists, conversely, of A5 and Aj separated 
by three zeros. 

0: 1 
1: 1 
2: 1 1 
3: 1 0 
4: 111 
5: 10 1 
6: 110 1 
7: 10 0 0 
8: 1 1 1 0 1 
9: 10 10 1 
10: 110 111 
11: 10 0 0 10 
12: 1 1 1 0 0 11 
13: 10 10 0 0 1 
14: 110 10 0 0 1 
15: 10 0 0 0 0 0 0 
16: 1 1 1 0 10 0 0 1 
17: 10 10 10 0 0 1 
18: 110 1 1 1 0 0 11 
19: 10 0 0 10 0 0 10 
20: 1 1 10 0 110 111 
21: 10 10 0 0 10 10 1 
22: 110 10 0 0 1 1 1 0 1 
23: 1 0 0 0 0 0 0 0 1 0 0 0 
24: 1 1 1 0 10 0 0 0 110 1 
25: 1 0 1 0 1 0 0 0 0 0 1 0 1 
26: 110 1 1 1 0 0 0 0 0 111 
27: 1 0 0 0 1 0 0 0 0 0 0 0 1 0 
28: 1 1 1 0 0 110 0 0 0 0 0 11 
29: 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 
30: 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 
31: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
32: 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 
33: 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 

Figure 3 

Such observations about the geometrical pattern of Figure 3 will be made 
more precise in the following sections, where the main results of this paper 
will be established. 

4. The Principal Diagonals 

Going back to Pascal's triangle mod 2 (Fig. 1), we call the Fibonacci diag-
onal A2h _ 1 the principal diagonal of the cluster of order h. It thus consists 
of all entries of the form 

for 0 < v < 2h'1 - 1. \2h - 1 - r\ 
I r J 

We now prove a few basic properties of principal diagonals. 

Lemma 4.1: A2h ml = 100 ... 0 (2h~1 - 1 zeros). 

This result could be obtained directly from property (l.iv): it suffices to 
note that 

2h - 1 0, unless r = 0, 
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since, for v > 0, a borrow certainly occurs when subtracting p from 2h - 1 - p 
(in base two representations). The following is an alternate proof, based 
solely on the geometrical observations introduced above. We use the notation 
An,r for the pth element \n~r\ of string An, 0 < r < [|j , so that 

An,0An, 1 A -0-
Proof: The elements k2

h-itr> 0 < v < 2h~l 

according to the value of the index p. 

(i) 0 < r < 2h~2 

1, can be separated in two groups, 

1. By property (l.iii1), we have 

hh -i, 
2h - 1 - v )h-l + (2 h-l - 1 p) 7h-l 1 - P 

2h~l-l,r 
so that the portion of A2n _i corresponding to the given range of p is identical 
to the principal diagonal of the (h - 1)-cluster. 

(ii) 2h~2 < v < 2h~l - 1. It is readily checked that the bounding conditions 
(1.2), as modified for the zero-hole of order (h - 1) , are satisfied by the two 
components of each entry A2h_1}J1. Thus, this portion of A2^-i is entirely in-
cluded in the (h - l)-hole. 

The proof of the Lemma can then be completed by an easy induction on h. The 
base case can be read directly from Figure 3 and the induction step follows 
from (i) and (ii): the first portion of A2^_i5 which by the induction hypothe-
sis is of the form 100... 0 (2h~2 - 1 zeros), gets juxtaposed to the second 
portion made of 2h~2- zeros, so to give the desired form for the principal 
diagonal of the /z-cluster. II 

It follows from the preceding proof that the principal diagonal A2^_1 of 
the cluster of order h goes through this cluster in a very regular way. For 
instance, when p = 2h~2, we get the entry 

ih-l . oh-2 + r I 
yh-2 

this tells us that the diagonal A2/z _ i "enters" the 
entry of its middle row. Similarly, for p = 2h~l -

2h-l 

(h - l)-hole at the first 
1, we have the entry 

ih-l 1 

so that the last element of A2h _ L is found at the end of the first row of the 
(h - l)-hole. When combined with the fact that the principal diagonal starts 
at the leftmost entry of the cluster, this information on specific entries of 
A2h _x leads to the dotted line of Figure 2, which represents this principal 
diagonal. We now want to make explicit certain types of symmetry within the h-
cluster connected to the principal diagonal. 

It is trivially true that each line of the Pascal triangle mod 2 is symmet-
rical (with respect to its middle), i.e., remains the same when inverted from 
left to right: this indeed is even true of the (standard) Pascal triangle 
itself, because of the basic relationship 

( " ) - ( n ). 
\v) \n - P/ 

We now want to prove a symmetry property concerning the columns. We show that 
the principal diagonal A2^ _ L can be seen as an "axis of vertical symmetry" for 
the portions of the columns determined by the /z-cluster, in the sense that the 
entries above and under the principal diagonal, on each such portion of column, 
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are pairwise identical. For instance, the principal diagonal Aj_5 of the 4-
cluster cuts it in such a way that the section of column 5 included in this 
cluster is separated into 110-011 by A15, and that column 12 is separated into 
100010-0-010001 (with the middle 0 belonging to A 1 5 ) . 

Lemma 4.2: The cluster of order h is "vertically symmetrical" with respect to 
its principal diagonal A2^-i. 

Proof: The proof is by induction on h, with basic cases being easily verified. 
Let us consider, for a given r such that 0 < r < 2h - 1, the portion of the rth 

column inside the /z-cluster (which we shall call abusively the "rth column of 
the /z-cluster"). There are then two possible cases: 

(i) 0 < r < 2 h-l , 1. By the geometry of the binomial array mod 2, column r, 
which is entirely included in the (h - l)-cluster II (see Fig. 2), is a copy of 
the analogous column of the (h - 1)-cluster I, so the symmetry property fol-
lows from case (i) of the proof of Lemma 4.1 and from the induction hypothesis. 

(ii) 2h~l < v < 2h - 1. Column r then consists of three parts: a vertical 
string in the (h - l)-cluster I and another one in III separated by a vertical 
section of the (/z - l)-hole (see Fig. 2). Clearly, again because of the geo-
metry of the array, the parts in I and III are identical and each is self-
symmetrical, by the induction hypothesis. It thus remains to show that A2^_]_ 
cuts the (/z - l)-hole symmetrically. But this is an easy consequence of the 
fact just mentioned above that A2^-i enters the (/z - l)-hole at the first ele-
ment of the middle row of this hole and ends at the last element of the first 
row. B 

A consequence of Lemma 4*2 is that the symmetry with respect to the princi-
pal diagonal A2^-i inside the /z-cluster can also be seen as acting along diag-
onal lines, in the sense that two strings "parallel" and "equidistant" to A2^-i 

112 I 
0 IS will be identical. For instance, A^2 = 1110011, whose first entry is 

identical to the string determined by the line of the same slope starting at 
15 . More generally, any entry Q , with V < 2h - 1, which is located at the 
top of column 2h - 1 - V of the /z-cluster, is surely equal to the bottom entry 
on this same column inside the /z-cluster, namely, 

2h - 1 
2h - 1 - v 

Now, if we issue from these two entries two lines parallel to the diagonal 
A2T?_I, we will obtain identical strings, because we then encounter pairs of 
entries, located on same columns, which are equidistant from the principal 
diagonal, hence equal by Lemma 4.2. We thus have 

Lemma 4.3: The cluster of order 
its principal diagonal A2^_i. m 

is "obliquely symmetrical" with respect to 

5. The Geometry of An 

Given n = 2h + u with 0 < u < 2} 1, we present in this section some rules 
for expressing the nth Fibonacci diagonal hn in terms of diagonals depending on 
u (note that for u = 2h 

This diagonal A2
h +u> which contains the entries 

1, the rule for An is given by Lemma 4.1 above). 

2h +u, r 
+ U 

V 
for 0 < r < 2h + >h-l 

I 2 ̂  + u I 
can be found in the cluster of order (h + 1), starting at entry | 0 | and mov-
ing upward diagonally. It thus consists of three parts corresponding, respec-
tively, to the regions of the (h + 1)-cluster being cut by this diagonal (see 
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Fig. 4): the head of h2h is made of all the entries A2h+ u,r belonging to the 
/z-cluster II, the body is the part included in the h-hole and the tail comes 
from the /z-cluster I. We now prove some basic results about the Fibonacci 
diagonal A2^+u. 

/ • • • ^ 
It'—• 

/ II 

. . • • • • • • • ' ^ 

I 

.-<^ 

II 

Figure 4. The Fibonacci diagonal A2h + U *n t n e (h + 1)-cluster 

Lemma 5.1: The head, the body* and the tail of A2^+M consist, respectively, of 
the entries h2h+u>r such that 

a) head: 

b) body: 

c) tail: 

u\ 
2J 0 < v < 

+ 1 < v < u 

u + 1 < v < 2h~l 

Proof: The verification involves routine calculations. For example, the range 
of v for the head follows from the stipulation to stay inside II and from the 
slope of Fibonacci diagonals being 1/2. For other cases, we need to identify 
the values of v for which conditions (1.2) are satisfied. For instance, for v 
= [u/2] + 1, we get 

2h + «.[!] + 1 
2h + A -

. 2 . 

~u 
2 

f 

and (1.2) can easily be verified for 0 < u < 2h - 1. The value of r can be in-
creased up to u while remaining in the h-hole, and we then get 

= l2hl 
A 2 h + u, u u 

which again satisfies (1.2). But, for r = u + 1, we have 

2h + u, u + l 
2h - 1 
u + 1 

which, is above the zero-hole of order h and thus in the tail of h2
h + u* ^°  

complete the proof, we just note that in the case u = 0 , the body is void since 
the head then consists of the single element A2^, o = 1> which is the first 
entry of row 2h

 9 located at the apex of the ^-cluster II, while the next 
element h2ht ± = 1 is in I and thus belongs to the tail. El 
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Lemma 5.2: The head and the tail of A2Jz+w are, respectively, l\u and A2h-2-u-

Proof: For r such that 0 < r < ^ , we have 

\2h + u - r\ 
*2h + u, r 

\u - r 
v 

AU, V ' 

where the second equality is true by (l.iii1), since we have 0 < u - v < 2^ and 
0 < r < u - r. This shows that the head of A2^+w is Au. In the case of the 
tail, let us notice that its first entry, namely, 

A 2 h + w, u + l I u + 1 

is located at the bottom of column u+l inside the /z-cluster I. From the dis-
cussion preceding Lemma 4.3, the top entry of this column is 

\2h - 2 -

I °  
i.e., the first element of &2h-2-w ^e then conclude by the "oblique symmetry" 
of Lemma 4.3. M 

It should be noted here that our assumption that u < 2h - 1 ensures that 
2h - 2 - u > 0. 

Before closing this section, we would like to comment further on the rela-
tionship between the entries making up the tail of &2h+u an& t n e diagonal 
&2h-2-w By" Lemma 5.1(c), these entries are of the general form 

(5.1) A 2h +u, r 
2n + u - r , for v = u + 1, 2n + u 

We just noted in the proof of Lemma 5.2 that for the first of these entries we 
can write, by "oblique symmetry," 

A 2h + u, u + 1 
2n - 1 
u+l 0 

More generally, for r ranging over the values indicated in (5.1), this same 
"oblique symmetry" described in Lemma 4.3 gives us 

(5.2) 

where t 

2n + u 2 - u 
t 

- v - u - 1, i.e., t takes on, successively, the values 0, 1, ... up to 

\2h + u\ 
u 1. 

Another equivalent way of expressing this relationship is that the element 

(5.3) \2n + u - v , with u+l < v < m can be directly rewritten, by a simple change of variable, as 

(5.4) 2h - I - s 
u + I + s , where 0 < s < ^ - u - 1 

(note that this last expression still represents an element of the diagonal 
^2h+u^' ^n turn, by the symmetry property of Lemma 4.\3, entry (5.4) becomes an 
element of A2h-2-u9 namely, 

^ n \2h - 2 - u - t\ , .-. . n ^ , ̂  \2h + u] . 
(5.5) , where, again, 0 < t < -z - u - 1. 
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These remarks w i l l be used in the proof of the next r e s u l t . 

6. Calculating the Hn
?s 

We are now in position to give some calculation rules for the numbers Hn. 

Proposition 6.1: (i) #2^-i = 2^ 

(ii) B 2n + u H + H?h_9_ , for 0 < u < 2h - 1, 

Proof: Case (i) follows immediately from Lemma 4.1. The idea behind the proof 
of case (ii) is that the value of B^h + u c a n ^e obtained in three steps by look-
ing consecutively at the head, body, and tail of A2^+u as described in Lemmas 
5.1-5.2. Taking into consideration the shifting of Au when it becomes the head 
of A2^+us t n e result is then transparent. 

To be more precise, let us evaluate, for n = 2h+ u, the three partial sums, 
£]_, 5*2 5 and 53, obtained from (3.1) according to the ranges of r identified in 
Lemma 5.1. We first get: 

["u 
L2 

si - E r = 0 

1 
n - r 

v 

u - r 
v 

M - z 
p = 0 

u - v 
V 

m-
where the second equality follows from (l.iii1). This first partial sum thus 
corresponds to the shifting of Au by 2^_1 positions in order to get the head of 
A2fc+M-

The second partial sum is 

5, = •£ 
fi + 1 

n - v 
v 

2L2J 

It was already observed in the proof of Lemma 5.1 that, for the given values of 
I3, we have 

\2h + u -
v 0, so that S2 0. 

Finally, we turn to the last partial sum, £3. From the discussion surround-
ing expression (5.2) [or equivalently (5.3)-(5.5)], we can write 

s3 = £ 
r = u + 1 

n - v 
v 

[ ? ] -
t = o 

2 - u - t 
t 

M~u~: 
LZh -2-u' 

The value of this partial sum thus corresponds to the tail of A2^+u being given, 
by "oblique symmetry," by &2h-2-u' m 

Proposition 6.1, case (ii), provides us with nice symmetrical representa-
tions for the Hn's, as was the case with Gould's numbers. For instance, for 
h = 3 and 0 < u < 7, we have the following expressions: 

#8 
#9 
10 
11 

= 29 = 1-16 + 13 
= 21 = 1 • 16 + 5 

55 = 3 • 16 + 7 
34 = 2 • 16 + 2 

Hl2 = 115 = 7- 16 + 3 
#13 = 81 = 5 • 16 + 1 
# m = 209 = 13 * 16 + 1 
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By r e s t r i c t i n g t h e s e q u e n c e {Hn}n>0, r e s p e c t i v e l y , t o e l e m e n t s of even and 
of odd r a n k s , we o b t a i n t h e two s u b s e q u e n c e s 

1, 3 , 7 , 1 3 , 2 9 , 5 5 , 115 , 209 , 4 6 5 , 8 8 3 , 
and 

1, 2 , 5 , 2 1 , 3 4 , 8 1 , 128, 337 , 546 , 

To these sequences would correspond triangular arrays that could be obtained 
from Figure 3 by deleting appropriate alternate rows. The behavior of these 
new sequences is very close to that of the Hn's and it is possible to deduce 
for them results entirely analogous to those presented in Lemmas 5.1-5.2 and 
Proposition 6.1. We omit the details. 

Using the tools developed above, we can now easily prove other properties 
of the Hn's. For example, we have the following two results. 

Proposition 6.2: H2n = H2n_1 + H2n+l. 

Proof: From (3.1), we can write directly 

H2n-l + E 2n+l 
n- 1 

E 
s = 0 

2n 
2n-l-s + £ 

r = 0 

(6.1) In + 1 
0 2" + L 2n - P 

p - 1 

2n + 1 -
p 

2n + 1 
p 

2n-

Now let us observe that from the basic relation (1.1), it follows that 

2n + 1 
p 

2n 
p • 1 

2n - P 

p 
(mod 2), 

So, by substitution of the right-hand side of this congruence into the coeffi-
cient of the large summand of equation (6.1), we obtain 

(mod 2). 2n -
p -

p 

1 
+ 2n -

p -
p 

1 
+ 2n - P 

p 
- 2n - p 

p 
2n| Moreover, the coefficient of the first term can be trivially replaced by . Q 

Hence, we finally get 

I 2n 
H-In-I + H 2rc+l 

r = 0 
# 2n« 

Proposition 6.3: H2h_2 + #2fc = 2 * ^2^+1* 
P r o o f : H2h_z + H2h = ( # 2 * _ 3 + E2h _x) + (#2fc_x + H2h+l) by P r o p o s i t i o n 6 .2 

= ( # 2 ^ - 3 + ^ ) + H2h + i 
= (# x • 2 2 " " 1 + H2h_3) + H2h + l 

- H2h+i + ^o^ + l ^^ P1"0?08!*1!011 6.1. M 
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1. In t roduct ion 

We report solutions to the following general problem: 

Fix a base b and a positive integer k . Does every set of positive 
integers {#]_, . .., xk] have an integer multiplier m > 1 such that 
none of mxi, . .., mxk contains the digit 1 in various positions of 
its base b representation? 

It has been known for more than a century ([1], p. 454) that every positive 
integer x has a multiple mx consisting of repetitions of any prescribed string 
of digits followed perhaps by zeros. But the structure of a set of numbers 
{mxi, . .., mxk] is not so easy to stipulate, even if we merely require that the 
digits differ from 1. Related questions are discussed in [1] Ch. XX, [2] Ch. 
IX, and, in connection with the generation of pseudo-random numbers, [3] Sec. 
3.2. 

2. Summary of Results 

Let the base H e a positive integer > 2, and let the variables k9 m9 n9 
Xi, ..., xk denote positive integers. Our results are the following: 

Result 1: (i) If 2k < b, then for any set {#]_, ..., xk} there is an m such 
that none of mxi, ..., mxk has leftmost digit 1. 

(ii) If 2k > b, then there exist sets { } such that for any 
m at least one of mxi, ..., mxk has leftmost digit 1. 

Result 2: (i) If b is not a prime power, or if b = pn for some prime p and 
k < n(pn - p n _ 1 ) , then for any set {xi, ..., xk} there is an m such that none 
of wx\y ..., mxk has rightmost nonzero digit 1. 

(ii) If b = pn and k > n(pn - p n - 1 ) , then there exist sets {xl5 ..., 
xk} such that for any m at least one of mx\, . . . , mxk has rightmost nonzero digit 
1. 

Result 3: If k < b - 2 when b is prime, or k < the smallest prime factor of b 
when b is not prime, then, for any n and any set { }, there is an m 
such that none of wx\9 ..., mxk has the digit 1 among its n rightmost nonzero 
digits (a string of consecutive digits the last of which is the rightmost 
nonzero digit of the number). 

3. The Leftmost Digit Case 

Given a set of positive integers x1? ..., xk, we express them in scientific 
notation by xi = a^b1^1 with k^ in {0, 1, 2, ...} and ai in [1, b) O Qs and order 
them so that al < ' ••• < ak. 

Proposition 3.1: Let b be > 3. The following are equivalent: 

(3.1.1) for each integer 77? > 1 at least one of mxi, ..., mxk has leftmost 
digit equal to 1; 

and 
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(3.1.2) | < ̂  and ^ ± ± < 2, for all i = 1, . . . , k - 1. 

Proof: Suppose (3.1.1) fails for some m. Then each mxi has leftmost digit > 2. 
Choose j such that 2i«7' < xl < bJ + l

5 and let n = j - kx. If (3.1.2) is true, an 
induction shows that mat < bn + l for each i (mai+i < 2mat < 2bn + l implies that 
mai + i < bn+l). This gives a contradiction since 2bn + l < mbai ^ 2™a-k < bn + l . 

Conversely, suppose (3.1.2) fails. If a.+ l > 2aj for some j , set mi = ki 
for i < j and mt = kt + 1 for i > j . Then it is straightforward to verify that 
the inequalities 

a7+l ak 

can be r e w r i t t e n a s : 
(2hmi ) (hmi + 1 

( 3 . 1 . 3 ) m a x < ^ — : 1 < i < k\ < m i n < ^ : 1 < i < k 

(3.1.3) is also true when b/2 > akl a\ provided mi = ki for every i. According-
ly, we can find rational numbers of the form m/bq strictly between the two 
bounds in (3.1.3). Then 

2o z ^ < mxi < b z H 

for all i , and (3.1.1) fails. H 

Part (i) of Result 1 is an immediate consequence of Proposition 3.1 since 
(3.1.1) can only be true if 

* ^ a* /*2\ <_^k_\ < 2,_2 
ak = /^2\ 9 e /

 ak \ 
al \ai) °' * \ak _i) 2 

and this cannot occur if 2k < b. 
A set Y is called a multiple of {#i, ..., tf^} if and only if Y = {???̂ ]_, ..., 

7772̂ } for some positive integer m. Y is called a quasimulti-vle (in base £>) of 
{#1, ..., x̂ .} if and only if 

J = Ow' • a?i • bnW, ..., m' • xk* bn(k)} 

where /??; is a positive integer and n(l), ..., n(k) are nonnegative integers. 
For example, {6, 9, 15 } is a multiple of {2, 3, 5}, and {9, 600, 150} is a 
quasimultiple (in base 10) of {2, 3, 5}. 

Part (ii) of Result 1 follows from the next proposition. 

Proposition 3.2: Let 2k > b. Then every quasimultiple {x\9 ..., xk } of {1, 2, 
..., 2k~1} has property (3.1.1). There are other sets with this property if 
and only If 2k > b. 

Proof: The set T= {1, 2, ..., 2k~1} satisfies (3.1.2) if 2k > b. Hence, it 
satisfies (3.1.1). Since (3.1.1) is preserved under quasimultiplication (mul-
tiplication by powers of b merely adjoins zeros on the right), quasimultiples 
of T also satisfy (3.1.1). 

If {xi, ..., xk} has property (3.1.1) and is indexed as in Proposition 3.1, 
then (3.1.2) can be rewritten as 

(3.2.1} ! < fill , b , (f2\ (_^\ , 2*-i. 

I f 2fc == fe, ai + i/<2i must e q u a l 2 f o r each i . Then 

^ = 2t~1a1& * for each i, 

where a.\ = X\lb l is a fraction of the form m/2q with 777 odd. It follows easily 
that Xi = m* 2!?Ii , where each mi is a distinct integer mod k. Hence {xi, . .., 
x^} is a quasimultiple of T. On the other hand, if 2k > b9 we can choose frac-
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tions vt = CLi + i/ai satisfying (3.2.1) with each inequality satisfied strictly 
and the product less than mln{b, 2k~1}. We also choose a fraction a\ > 1 such 
that ai • 1*2 vk <'b* All °f these fractions can be taken to have the 
form m/bq with m odd. Multiplying each ai = a\ • r2 P{ by the smallest 
power of b that makes the product an integer, we get x^1 s satisfying (3.1.2), 
and hence (3.1.1). Since each x is odd, {#]_, . . . , xk} cannot be a quasimul-
tiple of T. m 

4. The Rightmost Digit Case 

Proposition 4.1: Let b be neither a prime nor a prime power. Then for any set 
of positive integers X\9 ..., xk there is an integer m > 1 such that none of 
mxi, ..., mxk has rightmost nonzero digit 1. 

Proof: Express b as the product of two relatively prime integers r and s that 
are greater than 1. Let t be the highest power of v that occurs in any of X\9 
..., xk, and let m = st + 1. 

If for some i the rightmost nonzero digit of mx^ is 1, then 

mxi = st+lxi = bn~l (mod bn) 

for some positive integer n. So rn~* divides x^ and n - 1 < t. Removing the 
common factor sn~l from the equation above, we conclude that s divides a power 
of r. Since this is impossible, all of the integers rnx^ have rightmost nonzero 
digit distinct from 1. ® 

Proposition 4.2: Let b = pn where p is a prime. Then the following are equiva-
lent: 

(4.2.1) for each integer m > 1 at least one of mx\, ..., mxk has rightmost 
nonzero digit 1, 

and 

(4.2.2) for each positive integer c in {1, ..., b - 1} that is relatively 
prime to p and each integer i in {0, ..., n - 1}, there is an x in 
{#]_, ..., xk] such that y E cp^ (mod pn + i) where z/ is the quotient 
obtained by dividing x by the highest power of b in x. 

Proof: Suppose that (4.2.2) holds. To establish (4.2.1), we assume without 
loss of generality that m is a positive integer not divisible by b. Then 
m = aps, where a is a positive integer not divisible by p, and 0 < s < n - 1. 
Because a and £> are relatively prime, there are integers c and <i such that ao + 
bd = 1 with 1 < <? < i> - 1. If s = 0, let i = 0 and choose a;, y as in (4.2.2) 
so that y = c (mod 2?). Then my E mo E I (mod £>) . So 7772/ has rightmost digit 1, 
and (4.2.1) holds for mx. If s > 1, let i = n - s and choose #,2/ as in 
(4.2.2) so that 2/ = cpn~s (mod p 2 n _ s ) . Then 

my E acpn (mod p2n) E pn (mod p2n) E b (mod £>2) . 

Thus, my has its two rightmost digits equal to 10, mx has rightmost nonzero 
digit 1, and (4.2.1) holds. 

Conversely, suppose (4.2.1) holds. Remove all powers of b from each xi, 
and the resulting set {y\9 ..., yk} still satisfies (4.2.1) with none of the 
y^s divisible by b. Let c be any integer from 1 to b - 1 relatively prime to 
p. Choose integers a and d such that ao + bd = 1 and 1 < a < b - 1. Let 
77? = ap71"1 with 0 < i < n - 1, and by (4.2.1) choose y in {y1 , ..., z/fc} such 
that 7??z/ has rightmost nonzero digit 1. Then 

my E apn"ly = Z?s (mod Z?s + 1) for some s > 0. 

Since p does not divide a, and £> does not divide y9 s = 1 and p^ divides 2/. 
Then 
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ay - pl (mod pn + i) and y = (aa + bd)y = op*1 (mod pn + i), 

as required in (4.2.2). B 

Corollary 4.3: Let b = pn. Then there exist sets {xl9 . .., a;fe} which satisfy 
(4.2.1) if and only if k > n(pn - pn~l). 

Proof: The number of positive integers c in {1, . . . , £ - 1} relatively prime to 
p is p n - p n - 1 , and the number of equations of the form y = opi (mod pn + i), 
with c as above and 0 < i < n - 1, is n(pn - p n _ 1 ). It is easy to see that no 
integer y satisfies two different equations of this form. Thus (4.2.2), and 
hence (4.2.1), can be satisfied precisely when k ^ n(pn - p n _ 1 ) . m 

Parts (i) and (ii) of Result 2 follow at once from Proposition 4.1 and 
Corollary 4.3. 

5. Strings of Rightmost Digits 

Lemma 5.1: Let (z\, ..., zk) be an ordered fc-tuple of positive integers sat-
isfying 

k 
(5.1.1) ]Tgcd(2>, zt) < b - 2. 

i= 1 
Then, for every ordered k-tuple (y\s ..., yk) of integers, there is an integer 
m in {1, ..., b - 1} such that none of the equations 
(5.1.2) mzi = yi (mod b), i = 1, ..., fe, 

is true. 
If it is assumed that 

k 
(5.1.3) Y,gcd(b, zt) < b - 1, 

i= 1 
the conclusion above holds for some integer m in {0, ..., b - 1}. 
Proof: By elementary number theory ([4], p. 102), the equation mz^ = z/̂  (mod b) 
has a solution m in the integers mod b if and only if y^ is divisible by gcd(Z), 
Zi). When such a solution exists, there are exactly gcd(Z?, z^) of them. If we 
assume the worst, then equations (5.1.2) all have distinct solutions. This 
leaves 

k 

i= 1 
(> 0) 

integers 77? among the integers 1, 2, ..., b - 1 to satisfy the conditions of the 
lemma. 

The last statement is proved similarly. • 

The n rightmost nonzevo digits of x refers to the string of n successive 
digits in x whose rightmost member is the rightmost nonzero digit of x. Thus, 
e.g., in base 10 the three rightmost nonzero digits of 740,500 are 4, 0, and 5. 

Proposition 5.2: Let foi, ,.., xk} be a set of positive integers whose right-
most nonzero digits satisfy (5.1.1), and let n be a positive integer. Then 
there exists an integer m in {1, .. ., bn - 1} such that none of mxi, ..., mxk 
has the digit 1 among its n rightmost nonzero digits. 

Proof: Let sl5 ..., zk be the rightmost digits of Xi, ..., xk, none of them 
zero without loss of generality. By Lemma 5.1, choose rriQ, the rightmost digit 
of m, in {1, ..., b - 1} so that the equations 

, i\ mQ%i - 1 (mod b) for i such that gcd(Z?, z^) = 1 
ITIQZI = 0 (mod b) for i such that gcd(2?, z^) > 1 
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(i = 1, . .., k) are all false. Then mQz^ (mod b) 9 the rightmost digit of mxiy 
is in the set {2, . .., b - 1} for each £. 

If the first j digits of m from right to left—m 0 , . .., ^j-i—have already 
been chosen, then the (j + l ) t h digit of mxi will equal mjz^ + u^j (mod £>)> 
where Uij is an integer depending on the first j digits of m and Xi and the 
(j 4- l)th digit of xi. By Lemma 5.1, choose m-j in {1, ..., b - 1} so that none 
of the equations 

rrijZi E l - uij (mod b), i = 1, ..., k, 

holds. For j > n, set Wj = 0. Then 777 is as required, m 

Proof of Result 3: Let q be the smallest prime factor of b. The rightmost non-
zero digits Zi of Xi satisfy gcd(b, z^) < b/q. If 

(5.3.1) k -(|) < b - 2, 

then (5.1.1) is true and Proposition 5.2 yields Result 3. 
When b is prime or k < q ~ 1, the hypotheses in Result 3 ensure that (5.3.1) 

holds. Thus, we need only consider the case when b is composite and k = q. 
Suppose until further notice that gcd(2?, z^) is smaller than b/q for at 

least one i. Then the left side of (5.1.1) is bounded above by (q - I)(b/q) + 
p', where rr is the second largest factor of b, the largest being v = b/q. 
If rf < v - 2, (5.1.1) applies again. If not, b = 6 or 4. 

If £> = 6, then q = 2 and {^1} ^2) is a pair. Either JTIQ = 1 fails to sat-
isfy each of the two equations (5.2.1) or else one of Zi and z^_ is 1. In the 
latter case, 

gcd(Z?, zi) + gcd(£, z2) < 3 + 1 < 6 - 2, 

and (5.1.1) is fulfilled. In the former case, the induction in Proposition 5.2 
can proceed using (5.1.3) since 

gcd(&, zx) + gcd(Z?, S 2 ) < 3 + 2 < 6 - 1 

and 77?j can be chosen equal to zero if necessary (for j > 1) . 
If b = 4, then q = 2 again. An argument similar to the last one applies 

except when {s^, z2) = {1» 2}. Then m0 = 3 can be used to falsify equations 
(5.2.1), and 2 + 1 < 4 - 1 ensures that (5.1.3) applies to the later digits of 
m. 

Finally, suppose gcd(Z?, z^) = r for each i, - 1, ..., q. Then each Xi -
y^T8 with s > 1, where Vs is the largest power of v dividing all x^ . Then {y\, 
..., z/̂ } is covered by the earlier arguments since not all y^ f s are divisible 
by v. If none of /m/i, ..., 7772/̂  has l's among the n rightmost digits, the same 
is true for 

(̂ s77?)̂ 1, ..., (qsm)xq ^my^8, ..., myqb3. m 

6. Further Questions 

1. To what extent do these results apply to other digits (or strings of 
digits) and other positions? For example, under what conditions can we ensure 
that the two rightmost nonzero digits differ from 1? 

2. Can the hypotheses of Result 3 be weakened, or are they necessary as 
well as sufficient? 

3. What are the smallest multipliers needed in Results 1, 2, and 3? The 
proofs provide upper bounds, but calculations suggest that much smaller multi-
pliers will often suffice. 
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4.. Under what conditions can lrs be eliminated in every position? Result 
1 shows that 2k < b is a necessary condition. However, even the following ele-
mentary question remains unanswered for bases > 4: Are there numbers x and y 
such that for every m at least one of mx or my contains the digit 1? 
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1. Introduction 

Let X be a finite set with |x| = n. A metric on J is a real valued func-
tion d defined on all pairs of points of X and satisfying the triangle inequal-
ity: 

(1) d{i, j) + dU> k) > d(i, k) 
for all triples (i, j , k) of points of I. We allow d(i9 j) = 0 for some pairs 
(i, j ) ; so we use the term "metric" for denoting what is usually called semi-
metric. We set d(i, j) = d(j, i) for all pairs (i, j) and d(i, i) = 0 for all 
points i of L The pair (X, d) is called a metric space. The j^-metric on Rm 

is defined by: 

d(x, y) = 1 ar - y\Y = £ \xt - y^ |. 
1 <i <m 

A metric space (X, d) is isometrically £^-embeddable if there exist points XQ9 
XI, ,.., a;„ in some space Rm such that 

d(i> j) = \xi - xA-^ for all 0 < i < j < n. 
The family of all metrics d on X which are isometrically £^-embeddable forms a 
cone: C(X) - Cn, called cut cone (or Bamming cone). The cut cone Cn is gen-
erated by the cut metrics ds for subsets S of X, where 

ds(i, j) = 1 if \S n {i, j}| = 1 and ds(i, j) = 0 otherwise. 

Therefore, a metric d on X is isometrically £i-embeddable if and only if d is 
the conic hull of cut metrics: 

d = 2 ^5^5' with A^ > 0. 

The cut metrics J5 correspond, in graph terminology, to the cuts 6(S); we shall 
use the latter terminology here. The study of the &i-embeddable finite metric 
spaces, i.e., of the cut cone Cn, was started in 1960 in [5] and continued, 
e.g., in [1], [3], [6], [8], [9], and [10]. If d is rational valued, then d is 
isometrically j^-embeddable if and only if kd is isometrically embeddable into 
the vertex set of the hypercube of Rm for some integers k, m ([2]). 

Given a vector v = (v^j )i <i < j <n.> the inequality V. x < 0 is called valid 
over the cut cone Cn if it is satisfied by all points of Cn or, in other words, 
by all metrics on n points which are isometrically li~embeddable. The roots of 
inequality v.x < 0 are the cuts 6(5) satisfying equality: V.6(S) = 0. The rank 
of inequality V.x < 0 is the rank of its set of roots. Geometrically, valid 
inequalities correspond to faces of the cone Cn while valid inequalities of 
highest possible rank: 

(") " 1 = n{n - l)/2 - 1 

define facets of Cn . 
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Many e x a m p l e s o f v a l i d i n e q u a l i t i e s o v e r t h e c u t c o n e Cn a r e k n o w n ; f o r 
e x a m p l e , 

(a ) t h e h y p e r m e t r i c i n e q u a l i t i e s ( [ 5 ] , [ 1 1 ] , [ 8 ] ) of t h e form 

Z \bjdd, j) £ 0 , 
1 <i <j<n 

where b\> . . . , bn a r e i n t e g e r s s a t i s f y i n g 
Z h = 1; 

1 <i <n 
including triangle inequality (1) as a special case for b = (1, 1,-1, 0, . .., 0). 

(b) the bicycle odd wheel inequality [4], defined on 2k + 3 points {0, 0f, 
1, 2, ..., Ik + 1} for k > 1 by 

(2) d(0, 0') - Z W(0, i) + d(0f, i)) + Z ^(i, j) < 0, 
1 <i <2k + 1 (i,J)6C 

where (7 denotes the cycle (1, 2, ...,2fc+l). 

(c) the parachute inequality [8], denoted as Par2&+i> defined on the 2k + I 
points {0, 1, 2, ..., fe, lf, 2f, ..., k'} by: 

Z d(i, J) - Z W(0, i) + d(0, £') 
(i, j) e p I <i <k-l 

(3) Par 2k+le( 

+ d(fc, if) + d(k\ i)) - d(fe, kr) < 0, 
where P is the path (fc, k - 1, ..., 2, 1, 1 f, 2f, . .., (fc - 1) ', fc')-

(d) the Fibonacci inequality [10], denoted as Fib2/C5 defined on the 2k 
points {0, 0',' 1, 1', 25 2', ..., (fc - 1), (fe - 1) '} by 

(4) Yih^.d = £ <W» J) " Z W(°» ^ + ^° > *')) 
(i,j)eQ I <i <k-l 

Z W(0', i) + d(0'., £')) £ 0, 
1 <i <£: -2 

where £ is the path (k - 1, fc - 2S . .., 2, 1, 1', 2', . .., (fc - 2) ', (fc - 1) ') -
We call the above inequality (4) the Fibonacci inequality, since its number of 
roots is related to the Fibonacci number fk (fi = f^_ = 1, fk + 2 = fk + 1 + fk^ ' 

See Figures 1-3 for the graphic representation of inequalities (2) and (3) 
on seven points and inequality (4) on six points (a plain line indicates coef-
ficient +1 and a dotted line indicates coefficient -1). 

1 * * 1 ' 0 

/ / \ \ 

^ L ^ v 

Figure 1 
The Bicycle Odd Wĥ .el Inequality 

on 7 Points 

Figure 2 
The Parachute Inequality 

2r 1' /l 2 

\ / 

Figure 3 
The Fibonacci Inequality 

In this note., we consider the Fibonacci and parachute inequalities, their 
number of roots in terms of Fibonacci numbers, their rank, their symmetries, 
and the connections with the bicycle odd wheel inequality (2). 
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2. Parachute and Fibonacci Inequalities: Equality Case 

Given a path A = (1, 2, . . . , ri) 9 a subset 5 of [1, n ] is called alternated 
along path A if 

\S n {i, i + 1}| < 1 for a l l i 
and pseudo-alternated along path A if 

|5 n {£, i + 1}| = 1 for all i 
and 

\S n {j» J + 1}| = 0 or 2 for some j e [1, n - 1]. 

One observes easily that, for n even, the number of pseudo-alternated sub-
sets 5 along path A - (1, . .., ri) for which nodes 1, n belong to 5 is equal to 
n - 1; an easy induction on n shows that the number of alternated subsets of 
[1, n] along path (1, 2, . .., n) is equal to the Fibonacci number fn + 2 (where 
[1, n] denotes the set of integers 1, 2, 3, -->, ri) . 

Call a cut 6(S) symmetric if, for £= 1, 2, ...,&:, i belongs to 5 if and only 
if £' belongs to 5, i.e., the involution 

a = 11 W ) 
I <i <k 

belonging to the symmetric group Sym(2fe + 1 ) leaves 5 invariant. 
We describe below the roots of the parachute inequality. 

Proposition 1: The roots of the parachute inequality Par2k + l a r e t n e cuts 6(5) 
for which 5 is a subset of [1, k] u [lr, kr] of one of the following four types: 

Type 1: nodes k9 kr belong to 5 and 5 is pseudo-alternated along path P. 
Type 2: nodes k, kr do not belong to S and 5 is alternated along path Q. 
Type 3: for k odd, node k belongs to 5, node kT does not belong to S and 

(a) or (b) holds: 

(a) S = {2', 4', ..., (fe - 1) ', k} U T, where T is a subset of {1, 
2, ..., fe - 2} alternated along path {1, 2, ..., k - 2}; 

(b) S = {&, 1 ', (fe - l)'}ufuF, where T is a subset of {2, 3, ..., 
fe - 2} alternated along path (2, 3, ..., k - 2) and 7 is a sub-
set of {2', 3',..., (fc - 2) '} such that 7u {1 ', (fe - 1) ' } is 
pseudo-alternated along path (1', 2f, ..., (k - 1) f ) • 

Type 3;: similar to type 3, exchanging nodes i, if for all i = 1, 2, ..., k. 

There are 2k - 1 roots of type 1, all of them linearly independent and the 
only symmetric root among them is 6({1, 3, ..., k, 1', 3', ..., kr}) for k odd 
and 6({2, 4, ..., fe, 2', 4', . .., fc'}) for fe even. There are fZk roots of type 
2, their rank is (2k{1) ~ 2k + 3 and there are fy symmetric roots among them. 
The roots of type 3, 3' exist only for k odd; there are altogether 2(fk + 
(k - l)fk-i) such roots and there are no symmetric roots among them. 

Proposition 2: (i) The number of roots [including zero, i.e., cut 6(<J>)'] of the 
parachute inequality Par2fc+i is equal to /2fc + ^fk-l + %fk-2 + 2k - I for k 
odd and f^k + 2k - 1 for fe even, while the number of (nonzero) symmetrJ-C roots 
is always the Fibonacci number fk. (ii) The parachute inequality P:ar2Hi i s 

facet inducing for k odd; for k even, it has rank (2/c2_1) + 2' but it is not 
valid. 

Proof of Propositions 1 and 2: Given a subset S of [1, fe] u [1', k']> we set 

s = |5n[l, k - 1]| and s' = |5n[l', (fe - 1) '] | . 

In order to characterize which cuts 6(5) are roots of the parachute inequality 
VsLTzk+i, w e distinguish four cases: 

= 1, . .., n - 1, 

=1, ...,j-l, j + 1 , ...,n-l 
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Case 1: k, kra S 

Then 6(5) is a root of Par2fe+1 if and only if |6(5)np| = 2k - 2, i.e., all 
edges of P but one are edges of S(S), i.e., 5 is pseudo-alternated along path 
P. So there are 2k - 1 such roots, among them only one symmetric root: 

&({k, ..., 3, 1, 1', 3', ..., kf}) for k odd 
and 

6({fc, ..., 4, 25 2f, 4', ..., k'}) for k even. 

Case 2: k, kf<£S 
Then 6(5) is a root of Par2?<+1 if and only if |6(5)np| = 2(s + s') = 2\s\, 

i.e., 5 is alternated along the path (k - 1, ..., 1, 1', ..., (k - 1)') on 2k - 2 
nodes, so there are f2k

 s u c n roots. Among them, the number of symmetric roots 
(including zero) is equal to the number of alternated subsets along path (2, 3, 
..., k - 1), i.e., to fk. 

Case 3: kaS, kr£S 
Then 6(5) i s a roo t of P a r 2 k + l i f and only i f | 6 ( 5 ) n p | = k + 2s . Since 

| 6 ( 5 ) n p | = |6(5) n P a t h ( k , . . . , 1, 1 ') | + | 6(5) n Pa th ( l ' , . . . , k')\, 
with the first term being less than or equal to 2s + 2, we have to distinguish 
two cases. 

Case 3a: | 6(5) n Path(lf, . . . , k f ) | = k - l 

If k is even, then, necessarily, 1 ' G 5, contradicting the fact that 

|6(5) nPath(l, 1', ..., k')| = 2s + 1. 

If k is odd, then 

5n{l', 2 \ ..., k'} = {2', 4', ..., (k - 1)'} 
and 

16 (£) nPath(l', 1, 2, ..., k)\ = 2s + 1, 

i.e., 5 is alternated along path (1, 2, ..., k - 2) ; so there are Ĵ, such roots. 

Case 3b: |6(5)n Path(l', ..., k')\ = k - 2 

If k is even, then, necessarily, 1 f <£ 5, contradicting the fact that 

16(5) nPath(lf, 1, 2, ..., k) | = 2s + 2. 

If k is odd, then, necessarily, lf, (k - l) fe5 and, since 

| 6 (5) nPath(l f, 1, . .., k) | = 2s + 2, 

5 is alternated along path (2, 3, . .., k - 2) , while 5 is pseudo-alternated 
along path (1', ..., k'); so there are (k - l)/k-l such roots. 

Case 4: Identical to Case 3, exchanging nodes i, i 1 for i = 1, ..., k. 

Hence, the total number of roots is: 

2k - 1 + f2k + 2fk + 2(k - 1 ) ^ _ ! 

= 2k - 1 + f2k + 2 k ^ _ ! + 2 j V 2 for k odd 
and 

2k - 1 + f2k for k even, 
while the number of nonzero symmetric roots is fk, stating Proposition 2(i). 

We now prove Proposition 2(ii). It was proven in [8] that Par2?i+i is facet 
inducing for k odd and that it is not valid for k even. We now consider Par2^+1 

for k even; the set of its roots is Pi U P2 , where P^ denotes the set of roots 
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of type i (Proposition 1), for i = 1, 2. To facilitate the computation of the 
rank of the set of roots, we use the following notion of intersection vector: 
for a subset S of [1, k] u[l', kf], define the vector u(S) of {0, l}k(2k+l) b y 

^(^ij = 1 if i, J € 5 and Tf(S)tj = 0 otherwise 

for all £, J (not necessarily distinct) in [1, /c]u[lf, fc']. Given a family of 
subsets (5a: aGi) of [1, fc]u[l', fcf]> the family of cut vectors (6(5a): ae^) 
is linearly independent if and only if the family of intersection vectors 
(fr('Sa): a^A) is linearly independent (see [8]). 

First, we check that all roots in i?x = {S(Sa)i a e A} are linearly indepen-
dent. For this, we take a linear combination of their intersection vectors: 

Z ^a^(Sa) = 0. 
a<=A 

To verify that Xa - 0 for all a, observe that, for each root 6(Sa) of i?i, one 
can find a pair (i, j) such that {i, j} Q Sa 9 while {i, j} ^ S^ for the other 
roots S(Sb) of i?x [for instance, take the pair (k - 1, k) for the root 6({fe, 
fc - 1, fc - 3, ..., 2, 1', 3', ..., fc'})]. 

Next, we check that the rank of the family Rz is 

( 2 \ ~ l ) - 2 k + 3. 

For this, observe first that the subfamily R^_ of R^ consisting of all possible 
singletons and pairs of [1, k - 1]U [1', (k - 1) '] has full rank equal to 

Ik - 2 + [2k ~ 2) - (2k - 3) = p 2 ~ *) - (2fc - 3) 

(easy if one considers the intersection vectors) . Then, note that, for every 
cut 6(S) of i?2* nodes k, kF do not belong to S and S is alternated along Q, 
implying that 

Xkk = Xk'kr = Xkk' = Xki ~ Xk' i = Xi, i+l = °  

for i t [I, k - 1] U [1 ', (k - 1) ']> where # = TT(5) for 5(5) e i?2. Therefore, we 
deduce that the rank of i?2 is less than or equal to 

(2*2+1) " (6k -A) = ( 2 V ) - ^ " 3 > -

Finally, we verify that the family i?j U R' is linearly independent, thus 
stating that the rank of face Par2fe+1 for k even is 

2k-i + {2k~l) - <2*-3) = ( 2 W 2 -
Again, we take a linear combination of the intersection vectors 

EAa^(5J + Zvsv(T0) = 0, 
where the first sum is over the intersection vectors corresponding to cuts in 
i?l and the second one corresponds to cuts in Rr

z. It is enough to show that 
Xa = 0 for all a. For this, for the roots &(Sa) of i?j having {i, i + 1}C Sa 
for some i9 by looking at the coordinate (iy i + 1) in the above linear combi-
nation we obviously obtain that Xa = 0. For remaining roots 6(Sa) of i?l5 look-
ing at coordinate (k, i) with ieSa also yields Aa = 0. H 

Given a vector z; = (^j )x <£ <t7-<n and two points, say 1 and n, the vector 
obtained from V by collapsing points 1 and n into the single point 1 is the 
vector v' = (^•) 1^ < J -^_ 1 defined by 

v\i = y H + vin f o r 2 < i < n - 1 and tff. = v.. f o r 2 < i < j < n - l . 
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The Fibonacci inequality Fib2k c a n D e obtained precisely by collapsing 
points k, kf into a single point 0f in the parachute inequality Par2£+1. Using 
this observation, the roots of Fib2^ correspond to the roots of Par2fc+i of 
types 1 and 2. So, Fib2£ and Par2fc + 1, for k even, have the same rank, but 
FiD2fe i s valid while Par2fc+1 is not. Observe also that Fib2fe coincides (up to 
renumerotation of the points) with the inequality obtained by collapsing in the 
bicycle odd wheel inequality (2) point 0 and one point of cycle C. From the 
above two facts follows the next result. 

Proposition 3: The Fibonacci inequality FIb2^ is valid over the cut cone for 
any k > 3 and its rank is 

Its roots are the cuts 6(S - {ks kf} + {0f}) for S of type 1 and 6(5) for S of 
type 2. So, Fib2^ has 2k - 1 + f2j< roots and fk nonzero symmetric roots. 

3. Symmetries of the Parachute Inequality 

The following two operations on facets of the cut cone Cn are given in [8]: 
(a) permutation—given a vector V = (̂ ij)i <£ < f <n an<^ a permutation a of Sym(n) , 
set v°j = ^a(i)o(j) f° r 1 - ^ < J - nl then, inequality V°»x < 0 is said to be 
permutation equivalent to v.x < 0. (b) switching— given vector v and a root 
6(S) of inequality V.x < Q, set v?- = -V^ if \S n {<£, j}\ = 1 and vfj = V--
otherwise; then, inequality Vs.x < 0 is said to be switching equivalent to 
V.x < 0. If inequality V.x < 0 is valid (resp. facet Inducing) over the cut 
cone Cn9 then both inequalities V° .x < 0, Vs. x < 0 are valid (resp. facet 
inducing) over Cn. In [7] it is sh'own that permutation and switching (by any 
cut) are the only symmetries of the cut polytope. The automorphism group 
Aut(y) of inequality V.x < 0 is the group {o e Sym(n) : V° = v} and its group 
PS(i?) of double symmetries is the group {oe Sym(n) : V° = Vs for some root 6(5) 
of v.x < 0}; so kut(v) C PS(y) and PS(y) is the group of permutations which act 
simultaneously as switchings. So any facet yields many equivalent ones by 
switching and permutation. For instance, facet Par 7 yields precisely 7560 
equivalent facets of Cj. 

The example of facet Pary presents a lot of beautiful symmetries that we 
describe in more detail. The automorphism group of Par7 is the subgroup of 
Sym(7) generated by the involution a = (11 f) (22f)(33 ! ) , so it is isomorphic to 
Sym(2). The group PS(Par7) of double symmetries of Par7 is the dihedral group 
D7. 

Facet Par7 has 21 roots (so it is a simplicial facet) partitioned into 3 
classes: 

Ra = {6(^)1 ie[0, 6]}, Rb = {6(2^): ie[09 6]}, 

and Rc = { 6 ( ^ ) : ie[0, 6]}, 

where ai for i = 0, 1, . .., 6 denote, respectively, the sets 

<fr, {2}, {2f}, {1, 3, 2'}, {1', 3 \ 2}, {2, 1'}, {2f
9 I}, 

b^ for i = 0, 1, ..., 6 denote, respectively, the sets 

{2, 2'}, {lf}, {1}, {2, 3, lf, 3'}, {2f, 3', 1, 3}, {2, 3'}, {2', 3}, 

and c^ for i = 0, 1, ..., 6 denote, respectively, the sets 

{1, 3, 1', 3'}, {1', 3}, {1, 3'}, {1', 3f, 3}, {1, 3, 3f}, 

{1, 2, 3'}, {!', 2', 3}. 
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Each class Ra, R^9 Rc is the union of four orbits of Aut(Pary) (one of size 1 
for the symmetric root and three of size 2). Denote by Fa = Pary, Fb, Fc the 
facets obtained by switching Par7 by the symmetrical roots a§9 b§9 CQ9 respec-
tively. The facets Fa , Fh 9 FQ axe not permutation equivalent; however, they 
have the same automorphism group: {id9 a}. 

We consider the following involutions: 

TTJ = (03) (13')(1'2'), TT2 = a^a, TT3 = (02) (1 '3 ') (32 ') , 

TT̂  = a i r 3 a , TT5 = ( 0 1 ) ( 2 1 ' ) ( 2 ' 3 ' ) » TT6 = a i r 5 a . 

Then, it turns out that, for ie [1, 6], the facet obtained by switching of Par 7 
by root 6(a^) [resp. 6(£>i), 6(c^)] coincides with the facet obtained by permu-
tation of Par7 by TT̂  . Therefore, Par7 has three nonpermutation equivalent 
switchings. Its group of double symmetries is the dihedral group D7 with gene-
rators a, T\£ for 1 < i < 6. 

Finally, we mention two more curiosities on the roots of Par7: 
(a) all subsets of {1, lf, 2, 27, 3, 3'} can be generated by taking symmet-

ric differences of members of the set {ai : i e [1, 6]}, or of {b^i i e [1, 6]}, or 
of {oil ie[l, 6]}. 

(b) CQ is the complement of Z?QA{0}, C^ = bi A{x} with x = 3, 3', 2, 2', 1, 
1', for i = 1, 2, 3, 4, 5, 6, respectively. 

Most of the above symmetries are lost for the parachute facet Par2^+i with 
k > 5 9 k odd. The automorphism group of Par2^+i is still the group of order 2 
generated by the involution 

II (iif). 
1 <i <k 

The number of orbits of the set of roots of Par2k+l i-s: 

3/k/2 + full + (k - 1)A_! + k 
(number of symmetric roots plus one-half of number of nonsymmetric roots). It 
is known that the number of orbits of the set of roots is an upper bound for 
the number of nonpermutation equivalent switchings (see [7]); we conjecture 
that equality holds for Pa^/c+i, k odd, k > 5 (but equality does not hold for 
Par7). 

4. Concluding Remarks 

It turns out that both the parachute inequality and the bicycle odd wheel 
inequality can be decomposed as integer combination of triangle inequalities 
with all coefficients +1 except one coefficient -1. For instance, the para-
chute facet Par2k+i for odd k can be decomposed as follows: 

Par2/£ + 1.a; = £ (T(a^ , i, i + 1) + T(ai9 ir
9 (i + 1) ')) 

1 <i <k- 1 
+ T(o, 1, l') - T(0, k, kr), 

where ai = k for i odd and a^ = a^t = 0 for i even, and 

T(a, b9 o) = xbc - xab - xao 

denotes the left-hand side of the triangle inequality on nodes a, b9 c. A nice 
property of inequalities v.x < 0 which can be "triangulated" is that v.S(S) is 
even for all cuts 6(5). On the other hand, the Fibonacci face Fib2& ^s t n e s u m 

of triangles; for instance, for k even, we have: 

¥±b2k.x = X CT(0, 2i, U + 1) 4- T(0, (2i) ', (2i + 1) ') 
1 <i < (k -2)/2 

+ T(0>9 (2i - 1) ', (2i) ') + r(0, 1, 1'). 
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Furthermore, we checked that any parachute, Fibonacci, or bicycle odd wheel 
inequality reduces, by consecutive collapsing, to some triangle inequality (the 
same holds for their switchings, see [6]). 
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0. Introduction 

This work can be considered the natural extension of a previous study about 
the same subject. In fact, the authors have studied [4], from a mathematical 
point of view, a particular numerical triangle, called DFF, characterizing the 
transfer function of an electrical ladder network formed by a cascade of N 
identical coupled cells. 

The present paper deals with the study of another new triangle named DFFz 
from the authorsT initials and from the fact that it characterizes the equiva-
lent impedances determination of the same type of electrical network. In par-
ticular, this triangle is strictly related to Thevenin's equivalent impedance 
which can be expressed by the ratio of two polynomials: the one related to DFFz 
and the other to DFF triangle. 

The DFFz triangle is shown to have a noteworthy interest from the mathe-
matical point of view, because some of its properties are connected with Fibo-
nacci numbers. 

1. The Generating Polynomials 

The DFFz triangle can be formed in the following manner (with an> k being 
the general coefficient). 

We define [3]: 

(1.1) aUi k = 0 if n < k 
(1.2) aHt k = 1 if n = k 

(1.3) anjk = n + 1 if k = 0 

while the other elements of the triangle can be derived from the recursive 
formula 

n- 1 

(1.4) anyk = an.lik + £ aa>k_1 i f n > k, 
a= 0 

In this manner, we have the DFFz triangle for values of anjk: 

n^ 

0 
1 
2 
3 
4 
5 
6 

0 

1 
2 
3 
4 
5 
6 
7 

1 

1 
4 
10 
20 
35 
56 

2 

1 
6 
21 
56 
126 

3 

1 
8 

36 
120 

4 

1 
10 
55 

5 

1 
12 

6 

1 
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Thus , f o r example , a^ 1 = 4 and a 6 2
 = 126. 

The g e n e r a t i n g p o l y n o m i a l Pn(x) i s d e f i n e d [1] a s 
n 

(1.5) Pn(x) = £ an,kxk> 
k = 0 

where 7 
DkPn (x) 

( 1 . 6 ) an> k =- fc! ;c = 0 

From t h e DFFz t r i a n g l e , i t i s p o s s i b l e t o o b t a i n t h e e x p r e s s i o n s of t h e 
p o l y n o m i a l f o r s m a l l v a l u e s of ns namely , 

( 1 . 7 ) 
Po0*0 = 1 
Pl(x) = 2 + x 
P 2 ( # ) = 3 + i*x + x1 

P3(x) = 4 + 10a; + 6x2 + a:3 

and so on . 
From ( 1 . 1 ) , ( 1 . 2 ) , ( 1 . 3 ) , ( 1 . 4 ) , and ( 1 . 5 ) , we have 

n n n n - 1 
(1.8) Ylan,kx k = lL an-l,kxk + 12 E aa,k-lxk 

fe= 1 fc= 1 fc= 1 cc= 0 

From (1.8), using (1.1), (1.2), (1.3), and (1.5), we have 
n-l a + 1 

k-l (1.9) Pn(aO - anj 0 = Pn_!(^) - an - 1 0 + x X IX,fc-i 
a = 0 Zc= 1 

2T 

w - 1 
(1.10) Pn(*) - in + 1) = Pn_x(^) - n + *£>„(*) 

a= 0 

«- 1 
(1.11) Pn(tf) = 1 + Pn_l(x) + X ^ P a W 

a =0 

which is the recursive formula for the polynomials. 
With the initial condition PQ(X) = 1, it is easy to obtain the polynomials 

(1.7). Furthermore, we can also use (1.6) to find the triangle coefficients. 
In order to find the polynomials, we must apply the previous method. Let 

(i.i2) f(x, t) = f; pn(x)tn. 
Then 

Dn[f(x, t)] 
( 1 . 1 3 ) Pn{x) = -

n\ t = o 
From ( 1 . 1 1 ) and ( 1 . 1 2 ) , we have 

n- 1 
( 1 . 1 4 ) f(x, t) = X [1 + Pn-l(x)]tn + X £ E P a W t n 

rc= 1 n = 1 a = 0 

t S [ l + P „ _ 1 ( a : ) ] t n " 1 + x £ t n [ P 0 ( x ) + P i (a:) + • • • + P „ - i ( a r ) ] 
n = 1 n- 1 

t 
n= 1 

t 
n= 1 

t [ l + / ( a ; , £ ) ] + x _ t 

- t 2 + t ( 2 + x) 

+ a?[l + / ( # , £ ) ] 1 - t 

t ( 2 + x) + 1 
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If we develop the denominator in (1.14) in p a r t i a l f r a c t i o n s , we obta in 

1, 
l/ty(#) - l / ty(#) (1.15) f(x9 t) = r . .. + L^^^L 

where 
t - b(x)/2 t - c(x)/2 

y(x) = (x2- + i\x)l^2-, b(x) = 2 + x + y, and c(x) = 2 + x - y. 
From the binomial expansion in (1.15), and after simplification, we also 

have 
(1.16) fix, t) = yb{x. ) l1 +,?1Uu)/2j } + yc(x)\l +

n5i c(x)12 - 1 

= y I—M t T 
/?l\yc(x)lc(x)/2] 

£ 
•>n + l 1 

n>iy(x) 

from which we have, using (1.12): 
2n+l ( l 

(1.17) P„(tf) 

2/2>U) !_*(#)/2J 

1 • * » , 
[c(x)]n+l [b(x)]n+l 

Jx2 + to ([2 + x - /^2 +.4x]n + 1 [2 + x + /x2 + 4x]n + 1) 

Furthermore, considering the binomial expansion, we are able to put Pn(x) 
in the following better way: 

(I-18> P"w = ̂ {(^¥b + 1)lofflte + 2,""v 

V^2 + 4X / ^=o VAZ/ j 

From t h i s equat ion, on d i s t i n g u i s h i n g the case of odd In from t h a t of even 
h, we can wr i t e 

(1.19) Pn(x) = j» \ /z/2 
/z = 0 (mod 2) 

+ 
h = 

From ( 1 . 6 ) , we have 
1 (2.1) ani k\2n 

£ [IVX + 2)n-hxh/2(x + 4) 
^ o d 2 ) V / 2 / 

£ ( " ) (* + 2)n-h + lx^-l^Hx + 4 )^- x ) / 2 

1 (mod 2) \ n j 

2. Determination of aR} k 

h E0 (mod 2) w w j = 0 

Z?*-'[* + 2 ]" -* + L ( ^ E ( ) ^ J ' [ ^ ( / 2 - 1 ) / 2 ( X + 4 )^ - 1 ) / 2 ] 
/z =1 (mod 2) \n'j=Q^3 ' 

Dk~J[x + 2 ] n ~ / z + ] 

J x = 0 
Considering L e i b n i z ' s formula, we may wr i t e 

(2.2) D*[xh/2 (x + 4)*/2 ] = £ ( J ' V ^ / 2 W x ^ 2 > - w 

• ( / ^ J t f ~m)\{x+ 4 ) ^ " ^ . 
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(2.3) Di[x&-WHx + 4)<*-i>/2] = £ (J')({h ~ 1}/2)mlx(^-i 
Jrr^n \m / \ m l 

) / 2 ) -m 
m= 0 

( 
(h - l ) / 2 \ , . 

a - m 
) ( j - m)!(x + 4 ) ( ( ? ! - 1 ) / 2 ) - J ' " 

( 2 . 4 ) Dk-\{x + Z)n-h] = (I _ ^ ( f c - j ' ) ! ( x + 2^-h-k+j_ 

( 2 . 5 ) Z)fe-^'[(a; + 2 ) " - ? ! + 1] = (H ~k^+- l)(k - j)l(x + 2 ) n - / ! + 1 - f e + J . 

From e q u a t i o n s ( 2 . 3 ) , ( 2 . 4 ) , and ( 2 . 5 ) , and from t h e p r o p e r t i e s of b i n o m i a l 
c o e f f i c i e n t s , ( 2 . 2 ) becomes 

( 2 . 6 ) a n > , 
2 [ h =0 (mod2)V n / j = 0 m=0 \K- «7 ' 

\ m '\Q - mi J 

* . . i „ a > z o £or v)/2)((V-"/2)<-+«<*-""-'*' ^E 1 (mod 2) v , w j = 0 m= 0 

/o; = 0 

When x = 05 t h e m-sums (which c o n t a i n t h e 3;-term) e x i s t i f and o n l y i f 
m - (h - l ) / 2 and m = h/29 r e s p e c t i v e l y . So we can w r i t e 

(2.7, «..,. i_Jl)tUh-nmtV->h-k-i 

(h - l ) / 2 \/n - h + l \ 9 / z - f c _ j - i , ^ / n \ A / U - l ) / 2 \/n - h + 1\ 9 , 
x . = 1 ^ ^ U J A w " (& " D/2A fc-J / ft E l (mod 2) x j = (T 

E q u a t i o n ( 2 . 7 ) i s t h e wanted e x p r e s s i o n which p e r m i t s us t o d e t e r m i n e an> ^ 
by s u b s t i t u t i n g f o r n and k. 

3. The Proper t ies of an$k 

3.1 The row sums of the t r iangle are equal to 
Fibonacci numbers with even s u b s c r i p t s 

From t h e e x p r e s s i o n of Pn(x)s when x = 13 we have 

( 3 . 1 ) Pn(l) = * r [ ( 3 + /5)n + l - (3 - / 5 ) ^ + 1 ] . 

From B i n e t ! s f o r m u l a , we have 

( 3 . 2 ) F2n + 2 ~ ~7~ 

I f we n o t i c e t h a t 

(3.3) ( 1^ ) 2 =^ I , 
t h e n ( 3 . 2 ) becomes 

7l + /5\2n + Z _ (1 - V5\2* + 2 

1 
(3-4) F2n + 2 = — 

V3 + / 5 \ n + 1 _ /3 - / 5 \ w + r 
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In t h i s manner, we have 
Pn (1) = Fln + 2y 

where FQ = 0 , F2 = 1, Fh 3, ... . 

3.2 The sums of the triangle diagonals 
give the powers of 2 

From a direct inspection of DFFz triangle and (1.4), we have that the sum 
of the elements of an upward-slanting diagonal is equal to the sum of all ele-
ments which are above this diagonal PLUS ONE and, consequently, it is equal to 
the sum of all superior upward-slanting diagonals plus one. This sum value is 
a power of 2. 

In fact, if we define 
n 

12 = 12 an-r,r> 
r= 0 

it is possible to write 

E n = E n - 1 E « . 

= 2 ( Z n ~ 2 + £ n - 3 

E 1 + i + i 

* E1
 + 2) 

= 2 * - 2 ( X 1 + 2) 

= 2", 

s ince ^ = 2 . 
4. Conclusions 

The principal aim of this paper has been the determination of a closed ex-
pression of the general coefficient aUy £ of a new numerical triangle, named 
DFFz, which characterizes Theveninfs equivalent impedance of a ladder network 
whose elementary cells are directly coupled. Moreover, the authors present 
some of the interesting mathematical properties of the triangle, one of which 
is connected with Fibonacci numbers. 
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1. Introduction 

In this paper, the notion of Fibonacci word is introduced and the structure 
of these words is investigated. 

Let s$ be a nonempty set and let x and y be two words in the alphabet^. A 
Fibonacci sequence of words derived from x and y is a sequence of words W\9 W29 
W^y . . . with the property that 

wl = x, w2 = y, wn+i = wnwn-i or wn.lwn. 
The pair x and y are called the initial words of the Fibonacci sequence of 
words; the words wnwn-\ and wn-\Wn are called the immediate successors of wn 

and wn is their immediate predecessor. We remark that the Fibonacci sequence 
of words considered by Knuth [3, p. 85] is the one obtained as above by letting 

wn+i = wnwn„i for all n > 3 

and the one considered by Higgins [1] and Turner [4, 5] is obtained by letting 

wn+i = wn-iWn for all n > 3. 

Let SP be the set of all such sequences of words derived from x and y; let 
^n be the collec tion of words which happen to be the nth term of some members 
of 5^ For example, 

^i = {#}> SP2
 = ty^> -^3 = ^yx> xy}> ^ = iyxy* yyx> xyy}-

Denote the union of 5^ (n - 1, 2, ...) by y. Members of SPn (resp. £f) are 
called the nth Fibonacci words (resp. Fibonacci words). Note that each word 
has an obvious representation in terms of x and y . Throughout this paper, we 
consider only such a representation. 

Lemma 1: Let W be a Fibonacci word. Then the following statements are true. 

(i) If w starts (resp. ends) with an x9 then w cannot end (resp. start) with 
an x. 

(ii) If w starts (resp. ends) with a y9 then w cannot end (resp. start) with 
a yy. 

(iii) There cannot be three or more consecutive occurrences of y and there 
cannot be two or more consecutive occurrences of x in w. 

Proof: The result is proved by mathematical induction. 

Let £/*n(x, •) [resp. «5^(«, y) ] denote those nth Fibonacci words which start 
with an x (resp. end with a y) and let 

^n(x, y) = S?n(x, •) n yn(., y). 

Define ^(x9 • ) , S^{ •, y) , etc., in a similar way. 

Corollary 2: 

SPn = .££(*, z/) u yn(z/, y) u 5̂ (2/, a?) for all n; 

9> = SS(X, y) U y(y, y) U #>(y, x) . 

Using finite binary sequences, let us label the Fibonacci words as follows: 
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(1.1) wY = x w2 

and, in general, we have 

yx 

1 / * 
w3 = xy<\ n 

< 

<l 

»i° 
< 

= yxy 

= yyx 

= xyy 

= yxy 

(1.2) ^ • " ' - ^ J "+1 

(w^2-.-n-2 wrir2-"'»-i if rn - 1 

where n > 4, P^, P23 •••> ^ - l € t ° ' !}• W e sometimes write 7j^lP2" 'Pn~2 (x, y) to 
indicate the initial words. For simplicity we write w®n (resp. w\) if n > 3 and 
p 1 ~ p2 = " " ' = rn-2 = 0 (resp. 1). We sometimes write UY and it?2 for W-, and u2, 
respectively. Note that 

(i) the superscript PiP2-oaPn-2 indicates how the Fibonacci word Wn
l z'" n~2 

is obtained frpm x and y; 

(ii) the Fibonacci word z^.^ ' n" is always an immediate predecessor of the 

Fibonacci word w + o " " ' 

(iii) the same Fibonacci word may have several different labels; 

(iv) Knuth's Fibonacci sequence of words is {w^} while Higginsf and Turnerfs 

is wl9 w2, w\, ..., w^9 .... 

Define the reverse operation R by setting R(XiX2' - -xm^ = xm • - *%ix\ -> where 
Xi> . .., xm e {x, y}. A word w = Xix2.. «xm is said to be symmetric if R(w) = w. 
For example, the words yxy and xyyx are symmetric. 

Theorem 3: 
(i) If w e yn, then R(w) e ^ . Moreover, if n > 3 and TJ = W*lTl'' 'rn~2 where 

the pfs are 0 or 1, then R(w) = WS
n
lS2"°Sn~2 where s^ = 1 - v^ , j = 1, 2, 

..., n - 2. 

(ii) If V is an immediate predecessor of u, then i?(i>) is an immediate prede-

cessor of R(w). 

Proof: Suppose that the results are true for all positive integers less than n. 
Let w = w^lT2'-'Tn-1 where P1 S P2, •••> ^-2 e ^ ° » ^ • I f pn-2 = °> t h e n W = vu 
where 

V = ̂ ^l^'-^n-a e y is an immediate predecessor of w 
. n-\ n-1 

and 

u = Wn^z"" M_Lf e ^n-2 i s a n immediate predecessor of y. 

Clearly i?(w) = R(u)R(v). By the induction hypothesis, 

-2 

is an immediate predecessor of 

where s • = 1 - p •, j = 1, 2, ..., n - 3. Hence, R (v) is an immediate prede-
cessor of R(w) and 

R(u) = ̂ ia
2
2-" f l^ e yn_2 
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R{w) = R{u)R{v) = w°nil*-••*«-•> ww-°«-3 

where sn_2 = 1. The case rn_2 = 1 is proved similarly. 

2. Factorization of w£ into a Product of Symmetric Factors 

Let i>5 = y, u5 = xyyx, yg = yxy, wg = yxyxy• For n S 7, put 

where cn equals xy if n is even and equals yx if n is odd. We sometimes write 
un(x9 y) and Vn(x, y) for un and vn, respectively. Plainly, all un

}' s and y„'s 
are symmetric. 

Theorem 4: For n > 5, we have 
(i) wO = Vnun; (ii) ^„cn_1 = ZJO^; 

(iii) wn = c?n_1^.2; (iv) tfl = Mni>n-
Proof: Clearly the results are true for n - 5 and 6. Suppose n > 6 and that 
the results hold for all integers less than n. Then 

y„Cn-! = yn-2Mn-2yrc-2Cn-l = Wn-2Un-3 = "5-15 

"n = R(cn)(vn_lCn) = en_xw°_2; 

This proves (i)-(iii). Assertion (iv) is a consequence of Theorem 3 and the 
fact that un and Vn are symmetric. 

Let w be a word in the alphabet^. Designate the length of w by / (w) . In 
the following lemma we compute the length of the words w„9 un, and Vn. 
Lemma 5: For n > 3, we have 

(i) /(*>0) = /(^.i) + /(w° _2); n_2 

(ii) /(^) = Fn_2l(x) + Fn_1l(y) = £ /(̂ ?(x, z/)) + /Q/). 
For n > 5, we have 

(iii) /(wn(a;, 2/)) = l(w°n_2) + /(ar) + Uy) = (̂ n_4 + l)/(a?) + (Fn_3 + l)/(z/); 

(iv) l(vn(x, y)) = /(^_x) - /Or) - /(y) = (Fn„3 - l)l(x) + (Fn_2 - l)l(y). 
Proof: Both (i) and (ii) are proved by induction on n and both (iii) and (iv) 
follow from (i) , (ii), and Theorem 4. 

3. Cyclic Shift on Fibonacci Words 

In this section, our main result states that every nth Fibonacci word is a 
cyclic shift of every other nth Fibonacci word. A cyclic shift operation Tn 
acting on words in the alphabet si that have lengths n is given by 

Tn(clc2...cn) = c2c3...cncl9 

where c^> c2, ..., cn e si. 

Theorem 6: Every Fibonacci word in ̂  is a cyclic shift of w„. More precise-
ly, for n > 3, we have 
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7(w° ) 

k = nL2/(w9+1)^ ^ { F . ^ K x ) +Fj6(y))rj. 
i = l j = i 

Proof: The result is trivial for n = 3. Suppose that n > 3 and the result is 
true for all integers less than n and greater than or equal to 3. 

r x = 0: 

^n (a, y) = w„li 2 ( # , 2/#) 

= T^iw^.^y, yx)) = T*(w°(a;, y)) 
where 

n - 2 n - 2 n _ 2 
&1 = Z /(w?(j/, 2/tf))r. = Z / ( w 7

0
+ 1 O r , 2/))*V = £ / W + i ( * > 2/))*V = &• 

J = 2 J J j = 2
 J J j=l J + i J 

Px = 1: 

(3.D ^ - ' - M * , y) = w„r1
3-r-2(j/, ̂ ) 

where 

&1 = "]£ Krf.(y, xy))r. = ̂  /(w)° y-0(a, j/))*,- = £ A^+iGn, j/))^. 
J = 2 j = 2 J = 2 

By Theorem 4 and (iv) of Lemma 5, we have 

w\{x> y) = un(x, y)vn(x, y) = Tl(Vn)(w°n(x, y)) 

•x - ±-z - • • • = r n _ 2 

w\{x, y) = TkHwl°---°(x, y)), 
where 

n- 2 
k2 = Z l(Wj+i(x> 2/))> 

J'=2 
so that 

wio-••<>(*, ̂ ) = Tk3(^(x5 y))s 

where 

(3.2) fe3 = -k2 + l(w^_l(x9 y)) - l(x) - Uy) 

= ^IlkwHx, y)) = -l(w°(x, y)) + l{y) 

= -/(w°(a:, z/)) + / ( ^ U , 2/)), 

in view of (ii) of Lemma 5. Combining (3.1) and (3.2), we have the desired 
result. 

In the case that x and y are distinct alphabets, it turns out that 5^ con-
sists of all the cyclic shifts of w^. 

Theorem 7: Let x and y be distinct alphabets a and bs respectively. Then a 
word W in the alphabet {a5 M is an nth Fibonacci word if and only if W is a 
cyclic shift of wj. 

Proof: The "only if" part is contained in Theorem 6. The "if" part is a conse-
quence of the following Lemma (about Fibonacci numbers) whose proof is easy and 
is therefore omitted. 
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Lemma 8: Let n > 3. For all 0 < v < Fn - 1, the equation 
n- 2 

j = i 

has at least one solution p ^ P2, ..., Pn_2 in {0, 1}. 

We remark that this lemma also leads to the known representation theorem 
which states that every positive integer can be represented as a sum of a 
finite number of Fibonacci numbers in which each Fibonacci number occurs at 
most once. 

4. The Case x and y Are Alphabets 

As in the last theorem of Section 3, let x and y be distinct alphabets a 
and b, respectively. Let qn = u^0101'*" (n - 1, 2, . . . ) . In this section, we 
locate the aTs in qn and show that all the shifts of qn (resp. w%) are distinct 
and hence that 5^ consists of precisely Fn Fibonacci words. The main result is 
based on the following two lemmas. 

Lemma 9: Let n > 3. Then jFn_i (resp. jFn.2), 0 < j < Fn - 1, is a complete 
residue system modulo Fn. 

Lemma 10: (a) Let n be an odd integer greater than 4. 

(i) For 1 < j < Fn_L±, let k be the unique number such that 

(4.1) 1 < k < Fn_2 and jFn-3 E k (mod Fn.2). 

Then there exists a unique r- such that 

(4.2) 1 < r^ < Fn_2 and k = rjFn.l (mod Fn) . 

( i i ) For 1 < i < F w _ 3 , l e t fc be t h e u n i q u e number such t h a t 

( 4 . 3 ) Fn.2 + 1 < k < Fn and iFn.3 = fc - Fn.2 (mod i ^ _ i ) . 

Then t h e r e e x i s t s a u n i q u e t± such t h a t 

( 4 . 4 ) 1 < t i < Fn.2 and k = tiFn_1 (mod F n ) . 

F u r t h e r m o r e , 

( 4 . 5 ) {r- : 1 < j < Fn.h} u {tt : 1 < i < F n _ 3 } = { 1 , 2 , . . . , Fn„2}. 

(b) Let n be an even integer greater than 4. 

(iii) For 1 < j < Fn-.3, let k be the unique number such that 

1 < k < Fn_l and jFn.2 = k (mod Fn-i) . 

Then there exists a unique Pj such that 

I < v. < Fn.2 and fe E 1 ^ - 2 (mod F„) . 

(iv) For 1 < i, < Fn-.i+, let k be the unique number such that 

Fn_l + 1 < k < Fn and iFn_h = k - Fn.1 (mod Fn_2) . 

Then there exists a unique £^ such that 

1 < t t < Fn_2 and k = t-iFn-2 (mod Fn) . 

Furthermore, 

{p^ : 1 < j < ̂ . 3 } u { ^ : 1 < i < Fn_h] = {1, 2, ..., Fn_2}. 

Proof: We prove (a) only. 

(i) Let j and k satisfy condition (4.1). We show that (4.2) holds. Write 

k = jFn_3 " sF-n-2 where s is an inteeer. 
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Since 
-Fn_2 < -k < jFn_3 - k = sFn_2 < jF„_3 - 1 < F„_iA-3 " 1 = Fn-5Fn-2> 

we see that 0 < s < Fn„5, Thus5 

k = jFn_3 - sFn_2 = (2j + s)Fn.l - (j + s)Fn = pFn_x (mod Fn) , 

where 1 < r = 2j + s < 2JP„_i+ + Fn_5 = Fn_2. This proves (4.2). 

(ii) Let i and k satisfy condition (4.3). We show that (4.4) holds. Write 

(4.6) k = iFn.3 + Fn_2 - SjPn_! = (2i - s - D ^ - i " (i - D ^ 

E tFn_! (mod F n ) , 

where s is an integer and t - 2i - s - 1. From (4.6), we have 

Fn__2 + 1 < k < tFn_l = fc + ( i - 1)F„ < i^n + ( i - 1)F„ 

= £FW < Fn-?~Fn = Fn-iFn_2 - 1 < F n „ 1 F n _ 2 , 

so that : 1 < t < Fn_2. Th i s p r o v e s ( 4 . 4 ) . 
Now we p rove ( 4 . 5 ) . I t i s c l e a r t h a t t h e s e t s 

A = {v- : 1 < j < Fn_ i +} and 5 = {tt : 1 < i < Fn_3} 

a r e c o n t a i n e d i n { 1 , 2 , . . . , F n _ 2 } . To p rove e q u a l i t y i n ( 4 . 5 ) , we show t h a t A 
has Fn^ht e l e m e n t s , B has Fn„3 e l e m e n t s , and t h a t A and B are d i s j o i n t . 

(a) I f rj = Tj , where j - ^ and j 2 l i e be tween 1 and Fn-i+9 t h e n 

kdl E rJiFn.l = rJ2Fn.l E k J 2 (mod Fn) . 

Since b o t h kjx and kj2 l i e be tween 1 and F n _ 2 ) t h i s i m p l i e s t h a t kjY = kj2 and 
so 

JlFn-S E JlFn-3 ( m o d ^n-2> • 
Since Fn-2 and i^-3 are relatively prime, we have j \ =• J2. Hence, all the rfs 
are distinct. 

(b) A similar proof shows that all the V s are distinct. 

(c) If Vj € Ay t i e B9 and r^ = t^ , then k = kr (mod Fn) , where VjFn-\ = k 
and tj,Fn^i = kr (mod Fn) , and both fc and fcf lie between 1 and Fn . Therefore, 
we have k = kr. But this is impossible because fc ̂  ^n-2 + 1 > ^f- Thus, 4 and 
B are disjoint. 

This proves (4.5), and the proof is complete. 

In part (a) of Lemma 10, two injective mappings 

r: j e {1, 2, ..., Fn_h] ^ 2- e {1, 2, .. ., Fn_2} 

t : i e {1, 2, ..., Fn.3] ^ t i e {1, 2, ..., Fn_2} 

are defined by (4.1) and (4.2) and by (4.3) and (4.4), respectively. The dis-
joint union of their ranges gives the whole of {1, 2, ..., Fn_ 2}. Part (b) of 
Lemma 10 has an analogous meaning. 

Now write qn = ala2> . .aF where a^ e {a, M . 

Theorem 11: Let n be a positive integer greater than 3. Let t = Fn„i if n is 
odd and t = ^ - 2 if n is even. Then ak = a if and only if k = jt (mod Fn) for 
some 1 < j < Fn..2. 

Proof: The results are clearly true for n < 7. Now suppose that n > 1 and n is 
odd. Then qn = qn_2qn_l where 

qn_2 = ala2...aFn_2 and 9 n - 1 = a^_2 + 1 ...a^. 
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By t h e i n d u c t i o n h y p o t h e s i s , t h e f o l l o w i n g s t a t e m e n t s a r e t r u e : 

( i ) For 1 < k < Fn-2> w e have 

ak = a i f and o n l y i f k E j T n _ 3 (mod Fn.-2) f ° r s o m e 1 - J - Fn-i+. 

( i i ) For F n _ 2 + 1 < k < Fn , we have 

ak = a if and only If k - Fn~2 - J^n-3 (mod i^-i) for some 1 < j < Fn-$. 

The result now follows from Lemmas 9 and 10. For even n the proof is similar. 

Let w = c-yC1.'*cn where Cj equals a or b. We designate by S(w) the sum 
(mod ri) of the indices j for which Cj - a . 

Corollary 12: Let n be a positive integer greater than 2. For odd n9 let 

s = Fn _ 2 and £ = Fn _ i; 

for even n, let 

s = Fn_i and t = Fn-2-

Suppose that 1 < j < Fn - 1 and TJsqn = ^ ^ . . . ( ^ where c^ <E {a Z? } and T = 
TF . Then 

(i) ck = a if and only if fc E (j + r)t (mod Fw) for some 1 < r < Fn_2-

(ii) S(T*8qn) - S{T^~l)sqn) E 1 (mod F„), and S(T*8qn) = S(qn) + j (mod F„). 

(iii) ^Js^7n (0 < j < Fn - 1) are Fn distinct shifts of qn. 

(iv) TJ^n (0 < j < Fn - 1) are Fn distinct shifts of qn. 
Proof: 

(i) By Theorem 11, we have 

ck = a **• k + js E vt (mod Fn) for some 1 < r < Fn_2 
** k E (j + p)t (mod F„) for some 1 < r < Fn_2-

Fn-2 Fn-2 
(ii) S(TJsqn) - S{T^~l)sqn) = £ (j + r)t - £ U + * ~ D* 

p = l r = l 

E Fn_2t E 1 (mod Fn). 

Statement (iii) follows from (ii); statement (iv) is a consequence of (iii) and 
Lemma 9. 

Corollary 13: Let n, s, and t be the same as in Corollary 12. 

(i) If 0 < j < Fn_2 ~ 1> then TJs^n starts with an a. 

(ii) If Fn_2 ^ J ^ 2Fn_2 - 1, then TJ'sqn starts with a ba. 

(iii) If 2F„_2 < j < Fn - 1, then T*7'3^ starts with a bba. 

(iv) If FM_2 < J < F„_i - 1, then TJsq starts with a b and ends with a 2?. 

Proof: Write T ' 7 ^ = ^i^2-*-^„ where ck e {a, b]. We shall use Lemma 1, (i) 
of Corollary 12, and the fact that i E iFn_2~k (mod Fn) where i = 1, 2, and 3. 

(i) If 0 < Q < Fn_2 ~ If then cx = a because j + 1 < Fn_2 < J + Fn_2-

(ii) If F„_2 ^ j ^ 2Fn_z ~ 1J then the inequalities 

J + 1 < 2Fn_z < 3 + K-z 

imply that o2 = a and hence e\ = b, according to Lemma 1. 

(iii) If 2Fn_2 ^ J < Fn - I, then the inequalities 
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j + 1 < Fn < 3Fn_2 < j + Fn_2 

imply that c3 = a and cF = a; hence c\ = c2 = b. 

(iv) If Fn_2 < J < Fn_l - 1, then cx = b, by (ii) , and since 

Fn - 1 E -Fn.zt E Fn-1t and J + 1 < Fn _ x < 2Fn_2 < j + Fn_2, 

we have £o _•. = a, so that cP = b. 

Theorem 14: Let ft be a positive integer. Then 

L%| = ̂ ; |S^(a, fc)| = Fn_2 = |yn(6, a) |; 
|yn(i, 6)| = ̂ n-3; l^n(^ - ) | = \^n(°, b)\ = Fn^. 

Proof: The results follow from Theorem 7 and Corollaries 12 and 13. 

5. Two Algorithms 

In this section, the initial words are again taken to be alphabets a and b. 
Two algorithms will be given. Algorithm A constructs the Fibonacci word for 
which the multiplications involved are preassigned by means of a finite binary 
sequence as in (3.1) and (3.2). Algorithm B tests whether a given word in the 
alphabet: a and b is a» Fibonacci word or not. 

For simplicity, we replace a by 1 and b by 0 in both algorithms so that 
Fibonacci words are represented by binary sequences. 

Since 

where 
n- 2 

and ^ ~1 

(TFn ~\w^) if n is odd 

{T*n~l L (w®) if n is even, 

it follows that w = TJ'sqn where 

{Fn_2 if ft is odd 

Fn„i if n is even, 

i kFn-l if ft is odd 

(mod Fn) 
kFn_i - 1 if ft is even, 

and fc = fei + 1. Thus, the positions of the 1f s in w can be determined by Cor-
ollary 12. 
Algorithm A: Input a positive integer ft and a binary sequence 2^, r2, 
p 0. This algorithm constructs the Fibonacci word w 

n - Z °  

!

Fn_x if ft is odd w-2 

Fn_2 if ft is even, 'z-=1 

and j satisfying 
if ft is odd 

(mod Fn) 
if ft is even, 
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2) For r = 1, 2, ..., Fn„z, let cm = 1 if m = (J + r) t (mod Fw) and 1 < m 
< Fn; let <?m = 0 otherwise. 

3) w = cx, c2, . . . , ̂  . 

We now_ turn to the identification of Fibonacci words. First, observe that 
n = [(ln(/5(Fn + l/2)))/ln(a)], where a = (1 + /5)/2. 

Algorithm B: Input a positive integer In and a binary sequence w = C\> c2, • ••> 
c?̂  . This algorithm tests whether or not w is a Fibonacci word. 

1) Let n = [(ln(/5(fe + 1/2)))/ln(a)]. 
2) If h * Fn, then w £ Sf. 
3) If h = F„, let 

f^n-l if n is ° dd 
(Fn_2 if n is even. 

4) Compute the sum S of all indices i such that c^ - 1 and count the num-
ber /?? of 1? s in w, 

5) If m * Fn-2> t h e n ^ $ Sf. 
6) If /7? = Fn„2, let j be such that 1 < j < Fn and 

J = S - Fn_2(Fn_2 + l)t/2 (mod Fn). 
7) For p = 1, 2, . .., Fn_2, let k be such that 1 < k < Fn and k = (j + r)£ 

(mod ^„) . If ck * 1 for some p, then ZJ ̂  9J; otherwise w e î . 

Note that in step 6, j E ^(U) - S(q ) (mod Fw) and so either 

!

F„_o if n is odd , 1 z (the latter case 

TP .<: . in step 7) 
i^n _ ]_ if n is even, 

or u ^ ^ (the former case in step 7). 
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In [1], it was shown that there are 36 different schemes of generalization 
for the Fibonacci sequence in the case of three sequences. Ten of these are 
trivial and the other 26 are grouped into seven classes. The elements of each 
class are equivalent with exactness up to a substitution of their members. 
Thus, for every class, we shall give the recurrent formulas of the members of 
one of its schemes, using the notation in [1], 

Everywhere, let 

<ZQ = C ̂ , DQ — Or), CQ — 0 ̂  s &\ = L̂j.s ^ 2 = 5s ^2 == 6s 

and assume that n > 0 is a natural number where (7is C^* -aa> ^6 a r e given con-
stants and x is one of the symbols a, b, and c. Class I contains the schemes 
S§ and £9, where 

!

an+l = an + 2 + ^n 
&n + 2 = ^n+1 + ^ n 

<?rc + 2 = °n+l + an°  

The recurrent formula for this scheme is 

xn + 6 = -^n + 5 ~ ->xn + 4 ~*~ ̂ n + 3 "•" xn > 

that is, 
an + 6 = ^an + 5 ~ ^an + h "*~ an + 3 + an» 
^n + 6 = 3^n + 5 ~ 3&n + i+

 + ^n + 3 + ^n) 
Gn + 6 = 3cn + 5 - 3^n + Lf + On + 3 + Cn„ 

Class II contains the schemes 5i5 and S259 where 

^z + 2 = c n + l + ̂ rc 
C n + 2 = an + 1 + Cn. 

The recurrent formula for this scheme Is 

Xn + S ~ ^xn + h "*" xn + 3 ~ ~>xn + 2 ~*~ xn° 

Class III contains the schemes #20 and ^335 where 

!

an + 2 = ^n+1 + bn 

bn+2 = °n+l + cn 
Cn+2 = &rc + l + arc• 

The recurrent formula for this scheme is 

xn + 6 = xn + 3 "*" -^^n + 2 ~*~ -^^n + 1 ~*~ *^n 8 

Class IV contains the schemes 6*23 and £33, where 
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(an+2 = hn+i + on 
sir- \hn + 2 = en + i + an (cf. [3]) 

{on + z = an + i + hn" 

The recurrent formula for this scheme is 

**7z + 6 = ^^n + 3 ~*~ *^nm 

Class V contains the schemes S7, £12* $lk> ^22 > ̂ 28 > anc* ^31» where 

!

an + 2 = an + l + hn 

hn + 2 = cn+l + ^n 
cn + 2 = ^n + 1 + cn • 

The recurrent formula for this scheme is 

^•z + 6 = ^n + 5 "*~ ^-^n + k ~ ^^n + 3 "*~ ^n + 2 ~" ^n' 

Class VI contains the schemes SQ9 £>H> ^18» ^21 > ̂ 32> anc^ ^35> where 

!

an+2 = an + 1 + Z?n 
hn + 2 = cn + l + ^n 
cn + 2 = ^w+1 + <^w 

The recurrent formula for this scheme is 

^n + 6 ~ ^n + 5 ^"n + 4 = ^n + 2 ~*~ ^n + 1 "•" %n * 

Class VII contains the schemes S\§9 ^19? ^2k> ^26» ^29> anc^ ^34* where 

!

an+2 = hn + i + an 

hn+2 = ^n+1 + °n 
Cn + 2 = <ZW + 1 + & n -

The recurrent formula for this scheme is 

^n + 6 ~ ^n + k ~*~ ^ n + 3 ~*~ ^^n + 2 ~ ^n + l "" ^n* 

Using the data given above and some ideas from [3], we can construct eight 
different schemes of generalized Tribonacci sequences in the case of two se-
quences. We introduce their recurrent formulas below. 

Everywhere let 

C\9 Dr\ - 6*25 CL\ - Co, 3' D\ Ch.9 do — Oc, cG, 
and assume that n > 0 is a natural number, where C]_, 6*2, . .., Cg are given con-
stants and x is one of the symbols a or b. 

The different schemes are as follows: 

ian + 3 ~ &n + 2 ~*~ ®-n + 

[hn + 3 = hn + 2 + bn + 

I an + 3 = an+2 + ^n + 

[hn + 3 = ^n + 2 + a?-z + 

(an + 3 = ^n + 2 + an + 

\hn+3 = an + 2 + ^n + 

(an + 3 = hn + 2 + hn + 

[hn+3 = an + 2 + an + 

+ an 

9 

+ ^ n 

+ an 

9 

+ £n 

+ an 
9 

+ &n 

+ &n 
9 

+ hn 

(an + 3 = an + 2 + an + 

\hn+3 = hn+2 + hn+ 

ian+3 = an+2 + hn+ 

l ^ n + 3 = hn+2 + ^ ^ + 

(an + 3 = Z?n + 2 + ^ n + 

\hn + 3 ~ an + 2 + ^n + 

(an + 3 = ^n + 2 + ^ n + 

[hn + 3 = a n + 2 + a n + 

+ bn 

+ an 

+ bn 
i 

+ an 

+ hn 
1 

+ a n 

+ hn 

+ ar 

( c f . [ 3 ] ) . 
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The first scheme is trivial. All of the others are nontrivial; they have 
the following recurrent formulas for n > 0: 

- for T 2: Xn + § ~ ^xn + b + xn + k " 2^n+3 - Xn + 2 + xn* 

- for 23: xn + § = 2xn + $ - xn + i+ + 2^n + 3 - xn + 2 ~ xn; 
- for li+i xn + § = 2xn + $ - xn + hf + ^n + 2 "*" 2xn + ]_ + xn; 

- for T 5: xn + § = 3^n + n. + 2# n + 3 - xn + 2 - 2^n + ̂  - xn; 

- for ig: ̂ n + 5 = 3^n + i4 + ^^+2 +
 xnl 

- for T 7 : xn + e = ^n + i+ + 4xn+ 3 + xn + 2 - xn; 

- for TQ 1 xn + § = xn + Li. + 2xn + 3 + 3xn + 2 + 2xn + i + #„. 
The proofs for these facts can be shown by induction, using methods similar 

to those in [2] or [3]. 

An open problem is the construction of an explicit formula for each of the 
schemes given above. 
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1. Introduction 

In a recent article in this journal, T. Moore [4] used a microcomputer to 
make a study of the length of the Euclidean algorithm in determining the 
greatest common divisor of two nonzero integers m9 n. Our intention is to make 
a similar study of the lengths of the subtractive Euclidean algorithm. Recall 
that to determine for example gcd(ll, 3) by the subtractive algorithm we 
perform the operations: 

11 - 3 = 8, 8 - 3 = 5 , 5 - 3 = 2 , 3 - 2 = 1 , 2 - 1 = 1 , 1 - 1 = 0 ; 

a total of six steps. By contrast, the ordinary Euclidean algorithm yields 

11 = (3) (3) + 2 
3 = (D(2) + 1 
2 = (2)(1), 

in only three steps. However, if we use the Euclidean algorithm to express 
11/3 as a regular continued fraction, 

4f = 3 + —l~r E [ 3 > l> 2 ] > 
i + -

2 
we notice that the partial quotient 3 corresponds to the number of subtractions 
of 3 above, etc. In general, it is easy to see that the length of the subtrac-
tive Euclidean algorithm for (m, n) is equal to the sum of the partial quo-
tients in the regular continued fraction expansion of m/n. 

2. Analysis 

Following the approach of T. Moore [4], we begin our investigation by rep-
resenting the pair of integers m9 n as a lattice point (jn, n) in the plane and 
plotting this point only if it has a subtractive length equal to the fixed 
value in which we are interested. In view of the equivalence of the subtrac-
tive length to the sum of the continued fraction partial quotients for (jn9 n) , 
we can implement the subtractive algorithm computations merely by changing line 
280 in the basic program given by Moore [4, fig. 1] for the Euclidean algorithm 
to read 

280 DC = DC + INT(NlfMl). 
It is also necessary to swap m and n in the case m > n. The graphic results 
from four different choices of subtractive lengths are shown in Figure 1 below 
for all pairs (m, ri) belonging to the range -320 < m < 320, -175 < n < 175. The 
range of coordinates here is a consequence of the EGA resolution of an IBM 
compatible computer. 
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(a) k = 2 (b) k = 3 

M-: 

(c) k = 5 (d) fe= 6 

Figure 1 

Screendumps showing all integer pairs (m, ri) in the range -320 < m < 320, 
-175 < n < 175 5 whose gcds are obtained in exactly k steps of the 

subtractive Euclidean algorithm 

In contrast to the output from the ordinary Euclidean algorithm [4, fig. 
2] 5 the patterns shown here are surprisingly regular. In each case, the pairs 
(7??, ri) having subtractive length k are seen to lie on 2k straight lines. Since 

gcd(±77Zs ±ri) = gcd(m9 ri) = g c d ( n , m), 

we can restrict our attention to the pairs m > 19 n > I > and m > n. A mathe-
matical description of these pictures is then given by the following theorem. 

Theorem 1: For any fixed integer k > 1, the pair of coprime positive integers 
(m, ri) with m > n has subtractive length k iff m/n = [al5 a^, ..., ar] 9 where 

a l + a 2 + e " 9 + a r = ^ 5 a i ~ l » I < i < r - I and av > 2 . 
Furthermore, there are 2 ^ such coprime pairs which, together with their mul-
tiples and symmetry, make up the lattice points lying on the 2k lines in the 
corresponding diagram. 

Proof: If (m, ri) has subtractive length k9 then, by previous remarks, 

— = [al5 a2j --.j ar] where a\ + a2 + • - • + ccr = ks a^ > l9 1 < i < v. 

In addition, av > 2 since a value ar = 1 corresponds to the final step 
rk-l = (l) * rk + 0 

in the Euclidean algorithm, which contradicts 0 < v, < v\-\~ Since 

jm m 
— = ~, j > 1, 
QYI n 
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we can restrict our attention to m, n coprime; the multiples jm9 jn thus give 
the other integer points lying on the line determined by (/??, ri) . The number of 
lines is therefore determined by the number of solutions in positive integers, 
#]_, , .., aT of the equation a\ + • • • + ar - k where ar > 2. Since any solution 
with ar = 1 can be paired uniquely to a solution 

ll + {ar-i+ 1) = k, with ar-i + 1 > 2, 

the quantity we require is half of the total number of solutions to a\ + • • • + 
ar - k in positive integers. Now, for fixed p, the number of such solutions is 
(r-i) (see, e.g., Brualdi [1, p. 38]). Since v can take on any value from 1 to 
ks the total number of solutions is 

and the result follows. 

It is interesting to note that for each k various integer pairs consisting 
of Fibonacci and Lucas numbers occur among the coprime pairs with subtractive 
length k. In particular, the pairs 

(Fk+l> Fk^ > (Fk+1> Fk-0> (Lk-I> Lk-l) > (Lk-l> Lk-3)> (Lk-l> Fk^ 

are included in the set. To see this, we can use the recurrence relationships 
for the Fibonacci and Lucas numbers to derive the following continued fraction 
expansions, the partial quotients of which sum in each case to k: 

Fk 
Fk+i 
Fk-l 
Lk-\ 
Lk-Z 
Lk-l 
Lk-3 
Lk-1 

F, k 

[1, • 

[2, 1 

[1, • 

[2, 1 

[1, 2 

1, 2] (k - 2 ones), k > 2, 

.,1,2] (k - 4 ones), k > 4, 

1, 3] (fe - 3 ones), k > 3, 

1, 

1, 3] {k - 5 ones), k > 5, 

1, 2] (k - 5 consecutive ones), k ^ 5. 

In addition, it is well known that among the pairs (m, n), with m > n> that 
require k steps of the ordinary Euclidean algorithm, the Fibonacci pair (i^+l> 
Fk) is the smallest. By contrast, we show (F^ + i, Fk) is the largest coprime 
pair that has subtractive length k. [The smallest such pair is, of course, 
(k, l).] 

To see this, suppose inductively that Z^/i^-i is the largest pair requiring 
k - 1 subtractive steps. Now to each of the 2^~3 positive integer pairs (<?£_]_, 
cf^-l), with c?k-i ^ dk-\ with subtractive length k - 1, we can associate two of 
the 2k~z pairs of subtractive length k9 namely, (Ak, 

Ck-1 °k-l + dk-l 

,) where 

1 + Bk dk-i 

and (A{, By) where 

= 1 + 
A r 
Rk 1 

dk-i 

Gk-l + dk-l 
Dk Gk-l/dk-i Ck-l 

By our inductive hypothesis, the largest pairs of the forms (Ak, Bk) and (A£, 
B{) will be Fk+1/Fk_l and Fk+i/Fk , respectively. The latter pair gives the 
result. 
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3. Estimates for Almost All Pairs 

We can use the above results to derive some elementary bounds for lengths 
of the subtractive Euclidean algorithm valid for almost all pairs (777, ri) with 
1 < n < x, 1 < 77? < x, as x -> 00. For convenience, we denote the subtractive 
length for the pair (m, n) by L(m9 n) and the set of all x2 pairs (m, ri) with 
1 < 77? < x, 1 < n < x by S(x) . We first show that the proportion of pairs in 
S(x) for which c log2# < L(ms ri) < x9 -> 1 as x -* 00 for any 0 < c < 1. 

For any fixed positive integer k, the pairs in S(x) with subtractive length 
k lie on at most 2^_1 straight lines. Each such line contains at most x such 
pairs. It follows that for any 777 GIN, the number of pairs in S(x) with sub-
tractive length < 7?? is not greater than Y,k=l2k~lx = x{2m - 1). Thus, the pro-
portion of pairs with subtractive length < m is bounded above by 2m/x. This 
tends to zero as x -> °°  provided m < c log^x, for any 0 < c < 1. 

If we consider only coprime pairs in S(x), then the corresponding result is 
as follows: The proportion of coprime pairs in S(x) for which c log^ < L(m, n) 
< x, -> 1 as x ->- °°  for any 0 < c < 2. In this case, the number of coprime pairs 
with subtractive length < 77? is at most E^=12fe~1 = 2m - 1. Now, by Theorem 330 
of Hardy & Wright [2], the number of coprime pairs in S(x) is asymptotically 

—7s—h0(x log* x) as x -> oo. 

Hence, the proportion of coprime pairs in S (x) with subtractive length < 777 is 
bounded above by 

TT2 2m /log X\ 
9 + 0( o— as x -> °°, 

6 x^ \ x2 1 
which tends to zero, provided m < o log2^ for any 0 < c < 2. 

4. Final Remarks 

A graphical representation led us to various observations as well as esti-
mates for the length of the subtractive Euglidean algorithm by elementary 
means. By a much deeper analytical approach, Knuth & Yao [3] have shown that 
for fixed 777 the average length of the subtractive algorithm over all pairs (m, 
ri) with 1 < n < m is 

6 i r~ 2 ( ln m)2 + 0 ( l n 777(lnln 7?7)2). 
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Dedication. This yearfs column is dedicated to Dr. A. P. Hillman in recogni-
tion of his 27 years of devoted service as editor of the Elementary Problems 
Section, Devotees of this column are invited to thank Abe by dedicating their 
next proposed probleift to Dr. Hillman. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn + 2 = Fn+l + ?n> ^0 = 0S Fl = 1; 
Ln + 2 = Ln + l + Ln> L0 = 2> Ll = l • 

Also, a = (1 + /5)/25 3 = (1 ~ /5)/2, Fn = (aw - 3n)//55 and Ln = an + 3n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-706 Proposed by K. T. Atanassov, Sofia, Bulgaria 

Prove that for n > 0S 

_JljLV'^>F 
TT + e) n' 

B-707 Proposed by Herta T. Freitag, Roanoke, VA 

Consider a Pythagorean tr iple (a, b9 o) such that 
n 

a = 2 E Fi a n d c = F2n+l> n > 2. 
i= 1 

Prove or disprove that b is the product of two Fibonacci numbers. 

B-708 Proposed by Joseph J. Kostal, University of Illinois at Chicago, IL 

Find the sum of the series 

k= 1 

3kFv_I_2j^L1 

6* 
B-709 Proposed by Alejando Necochea, Pan American University, Edinburg, TX 

t 1 dn 

Express — — n\ dtn \ - t - t* 
in terms of Fibonacci numbers. 

t = o 
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B-71Q Proposed by H.-J, Seiffert, Berlin, Germany 

Let Pn be the nth Pell number, defined by P0 = 0, Px = 1, Pn + 2= 1Fn+l + Pn 
for n > 0. Prove that 

(a) P3n+i = L3n+1 (mod 5), 

0>) P3n+2 E -^3n + 2 (mod 5). 
(c) Find similar congruences relating Pell numbers and Fibonacci numbers, 

B-711 Proposed by Mihdly Bencze, Sacele, Romania 

Let v be a natural number. Find a closed form expression for 

SOLUTIONS 

Edited by A. P. Hillman 

Fibonacci Analogues 

B-680 Proposed by Russell Jay Mendel & Sandra A. Monteferrante, 
Dowling College, Oakdale, NY 

For an integer a > 0, define a sequences XQ, X\, . . . by XQ - 0S Xi = 1, and 
^n + 2 = axn + l + ^n f ° r n > 0. Let J = (a2 + 4)1//2« For n > 25 what is the near-
est integer to dxn1 

Solution by H.-J. Seiffert, Berlin, Germany 

If a = 0, then xn is 0 for n even and is 1 for n odd. If a = 1, then (#„) 
is the sequence of Fibonacci numbers. 2 is the nearest integer to v5Fn = f̂en 
for n = 2 and #„_i + xn + ̂  = Fn_i + Fn + i = ^n is t n e nearest integer to v5Fn = 
dxn for n > 3 (see B-659) . Now le t a > 2 and n > 2. I t is well known that xn 
= (£n - on)/d and xn_]_ + xn + 1 = bn + cn, where 2? = (a + J)/2 and c = (a - d) /2. 
a > 2 implies the inequalities 

(1) \Q\ < 1 and -1/4 < c2 = ac + 1 < 1/4. 

Thus, we have 

\dxn - (#„_! + #w + 1) | = \bn - on - (bn + cn) \ 

= 2 |^ | n < 2 | c | 2 = l\ao + l | < 1/2. 

This shows that xn_j + ^n +i is the nearest integer to dxn. 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, Guo-Gang Gao, Lawrence 
Somer, and the proposers. 

Straight Line Separating (Fn, Fn + 1) from (Fn + 1 , Fn + 2 ) 

B-684 Proposed by L. Kuipers, Sierre, Switzerland 

(a) Find a straight line in the Cartesian plane such that (Fn, Fn + i) and 
(Fn+l9 F-n + l) a r e o n opposite sides of the line for a l l positive integers n. 

(b) Is the line unique? 
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Solution by Paul S. Bruckman, Edmonds, WA 

Let Pn = (Fn, Fn+i) 5 n = 1, 2, . . . , denote points in the Cartesian plane. 
We use the ident i ty 

(1) Fn+l = aFn + 3 n , n = 1, 2, . . . . 

Since 3n and (3n have opposite signs (and are necessarily nonzero) , we see 
that (Fn+i - aFn) and (Fn + 2 - «Fn+1) have opposite signs. This implies that Pn 
and Pn+i lie on opposite sides of the line L, defined by 

(2) L = {(x, y) : y = ax}. 

Therefore, L satisfies the conditions of part (a). 
Suppose Lr = {(x, y):y = vx + s] is any line with this same property, where 

T and s are real. Since Lf must intersect the segment PnPn + \ for each n$ the 
following inequalities must hold: 

(3) vFn + s > Fn+l, rFn+l + s < Fn+2* n = 1, 3, 5, ... . 

Then, using (1), (a - r)Fn + 3n < s < (a - r)Fn+l + 3n+ 1
5 or 

(4) ^ - 2 < a - r < S B , n = 1, 3, 5, ... . 

Taking limits in (4) as n •> », we see that either end of the inequalities 
approaches 0; therefore, r = a. Moreover, we must have 

(5) 3n < s < 3n+ 1
5 n = 1, 3, 5, ... . 

Again taking l imits as n •> °° in (5), we conclude that s = 0. Thus, we conclude 
that Lf = L, i . e . , the desired l ine L is uniquely described by (2). 

Also solved by Charles Ashbacher, Piero Filipponi, C. Georghiou, Russell Jay 
Hendel, Hans Kappus, Y. H. Harris Kwong, Mohammad Parvez Shaikh, 
Lawrence Somer, and the proposer. 

Approximation to k as a Function of Fk 

B-685 Proposed by Stanley Rabinowitz, Westford, MA, and Gareth Griffith, 
University of Saskatchewan, Saskatoon, Saskatchewan, Canada 

For integers n > 2, find k as a function of n such that 

*fc-l *n < Fk. 

Solution by Lawrence Somer, Washington, B.C. 

I t follows from the Binet formula for Fk that 

/5Fk + 3k = ak. 

Note that 0 < Bk < .5 if ?C > 2 is even and -.5 < $fe < 0 if k > 3 is odd. Thus, 
it follows that if k > 2 is even, then Fk is the largest integer 77? such that 

(1) ak~l < f5m < ak. 

It also follows that if k > 3 is odd, then Fk is the smallest integer 7?? such 
that 

(2) a?< < /Em < ak + 1. 

Using (1) and (2) and taking logarithms to the base a, we have that 
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k = [loga(/5n + .5)] + 1, 

where [x] denotes the greatest integer less than or equal to x* 

Also solved by Paul S, Bruckman, Piero Filipponi, C. Georghiou, Russell Jay 
Hendel, and the proposers. 

Some Nearly Geometric Progressions 

B-688 Proposed by Jeffrey Shallit, U. of Waterloo, Ontario, Canada 

Let a and b be integers with 0 < a < b. Set CQ = a, 0\ = b, and for n > 2 
define on to be the least integer with Qn/on_l > cn_llcn_1« Find a closed form 
for on in the cases: 

(a) a = 1, b = 2; (b) a = 2, b = 3. 

Solution by C. Georghiou, University of Patras, Patras, Greece 

(a) We will show that cn = Fzn + l' Suppose that i t is true for n = k - 1, 
and n - k. Then, from the definition of cn we have 

ek+1 = l4/ck_1] + 1 
where, as usual, [x] denotes the greatest integer less than or equal to x. 

Using the known identity ^2k+3^2k-l ™ ̂ 2k+l ~ 1 > w e § e t 

Ck'°k-l = F2k+l'F2k-I = F2k + 3 ~ l'F2k-l> 
from which i t follows that e^+i = F2k+3° ^he proof is completed by noting that 
the assertion is true for n = 0 and n = 1. 

(b) In a similar way we show that cn = 2n + 1. Assuming that 

^ _ 2 = 2k _ 1 + 1 and ek = 2k + 1, 

we get 

^ + i = icV°k-\^ + l = [ ( 2^ + 2^ + 1 + D/C2^"1 + D ] + 1 = 2fc+1 + l 
and at the same time 

eQ = 2°  + 1 and ^ = 21 + 1. 

Also solved by Paul S. Bruckman, Russell Euler, Herta Freitag, Russell Jay 
Hendel, Carl Libis, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence 
Somer, and the proposer. 

B-687 Proposed by Jeffrey Shallit, University of Waterloo, Ontario, Canada 

Let cn be as in Problem B-686. Find a closed form for on in the case with 
a - 1 and b an integer greater than 1. 

Solution by Lawrence Somer, Washington, D. C. 

Let {Hn} denote the second-order linear recurrence which has in i t i a l terms 
HQ = 1, Hi = b and satisfies the recursion relation 

Hn+Z = (b + l)Hn+l - (b - l)Hn. 

We claim that cn = Hn. Clearly, cQ = HQ and ̂  = #j. To prove our result, it 
suffices to show that 
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( ! ) Hn+l/Hn+l > En+llEn 

and 

(2) (Hn+2 - l)/Hn+l < Hn+l/Hn, 

Thus, i t su f f i ces to prove t h a t 

(3) H ^0H„ > # 2 , 
v y n + 2 w n +1 
and 

One can easily show by induction that 

(5) En > bn 

and 

(6) H ~H - #2 = (b - l)n . 
v / n-k- 2. n n+L K 

Thus, from (6), we have that 

(7) H M0E = #2 + (b - l)n > # 2 5 
v J n + 2 n n + L n + L 
which establishes inequality (3). From (5) and (7), we obtain 

H M0H = #* + (fc - l)n < # * , + bn < H2, + Hn, 
n + 2 n n + L v ' n + L n + L n ' 

which establishes inequality (4). Hence on - Hn* The closed form for Hn is 
obtained using standard recursion theory. 

Also solved by Paul S. Bruckman, C. Georghiou, Russell Jay Hendel, and the 
proposer. 
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Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND 
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK 
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially 
welcomes problems believed to be new or extending old results. Proposers 
should submit solutions or other information that will assist the editor. To 
facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-482 Proposed by loan Sadoveanuv, Ellensburg, WA 

Let G(x) = xk + aixk~l + ••• + ak be a polynomial with o a root of order p . 
If G^\x) denotes the p t h d e r i v a t i v e of G(x), show tha t {npon-P/G(p\c)} i s a 
so lu t ion of the recurrence un = an~k - a\Un-\ - a<iUn-<2_ - . . . - a^un-j<> 

H-463 Proposed by Paul Bruckman, Edmonds, WA 

Establish the identity 

^ , ,/ zn \ ^ ( l + z + z2) , , 
(1) T\§{ri)[ «-] = — 9 9 , s e l , \z\ < 1, 

and $ i s the Euler ( t o t i e n t ) func t ion . 
As spec i a l cases of (1 ) , ob ta in the following i d e n t i t i e s : 

(2) I > ( 2 n ) / F 2 n s = A / L 2
S s = 1, 3, 5, . . . ; 

n= 1 

(3) £ H 2 n - 1 ) / L ( 2 n _ 1 ) s ="- F s / 5 / L 2
5 s = 1, 35 55 . . . ; 

n = 1 

(4) £ Hn)IFnB = (Ls + D / ^ f / 5 , s = 2, 4, 6, . . . ; 
n= 1 

(5) £ ( - l ) B _ 1 * ( w ) / ^ a = (Ls - D/Ft/5, 8 = 2, 4, 6, . . . ; 
. 7 J = 1 

(1/F^/S, s = 1, 3 , 5, . . . ; 
(6) £ ( - l ) " - 1 $ ( 2 n ) / F 2 n s = <̂  

" = 1 ( /5 /L2 , s = 2, 4, 6, . . . ; 

(7) £ ( - l ) " " 1 $ (2n - l ) / f ( 2 „ - i ) 8 = LJF}/5, s = 1, 3 , 5, . . . ; 
n = 1 

(8) f ] ( - l ) " - 1 $ ( 2 n - l ) / £ ( 2 n _ 1 ) s = Fs/5/L2, S = 2, 4, 6, . . . . 
ft = 1 
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H-464 Proposed by H.-J. Seiffert, Berlin, Germany 

Show t h a t 
[n/2] 

X \v)An-2k ~ Fn> 
• = n \ A V / k= 0 where 

A. = (_i)[(J + 2)/5] _ ( ( -1) [J75]+ ( - l ) [ (J + t f) /5]J/2. 

[ ] denotes the g r e a t e s t i n t ege r function* 

H-465 Proposed by Richard Andre-Jeannin, Tunisia 

Let p be a prime number, and l e t r-,, r^, . . . , rs be n a t u r a l i n t ege r s such 
t h a t s > 2, P1 < p , and 

fe = s 

A: = 1 
Show that the number 

1 (rl + r2 + . . . + r B ) ! 

i s an i n t e g e r . 

SOLUTIONS 

An Odd Problem 

H-442 Proposed by Piero Filipponi, Rome, Italy 
(Vol. 28, no. 2, May 1990) 

Prove that the congruence 
(d-3)/2 ( i (mod d) if (d + l)/2 is even 
II (2i + D 2 = < 
i=i (-1 (mod d) if (d + l)/2 is odd 

holds if and only if d is an odd prime. 

Solution by the proposer 

Let n be an even integer. The equality 

1 (n-2)/2 
(1) w! = T7T II tn(n + 2) ~ 4i(i + 1)] 
\ 2 i= 0 

can be proved readily by writing n = 2m and rewriting (1) as 

'•" ]_ m - 1 m - 1 

(2m) I = -^ PI t 4 m ^ + 1) " 4i(i + D ] = I\ (m - i)(m + i + 1). 
2 i= 0 £= 0 

, " Let d be an odd integer. By (1) we have 

1 (d-3)/2 

(2) (d - 1)1 = — - r J] [^ - 1 - 4i(i + 1)]. 
2d~l i=o 

If d is a prime, by using Fermatfs little theorem, we obtain the congruence 
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(<*-3)/2 (<*-3)/2 

(3) (d - 1)1 = n ("I ~ 4i2 " *i) = I! t"(2i + I)2] (mod d). 
i= 0 £= 0 

By using Wilson!s theorem, ((d -1)1 = -1 (mod J) iff d is prime); thus, by (3) 
we get 

(d-3)/2 (<f-3)/2 

II [~(2i + D 2] = (-l)(d-1)/2 fl (2i + l)2 = "I (mod d) 
i=0 i= 1 

iff cZ is prime, that is, 

( < f - 3 ) / 2 
II (2i + I ) 2 = (-1)^ + 1>/2 (mod d) iff d i s prime. 

i = l 
Also solved by P. Bruckman, R. Hendel, and L. Somer. 

Another Odd One 

H-443 Proposed by Richard Andre-Jeannin, Tunisia 
(Vol. 28, no. 3, August 1990) 

Let us consider the recurrence 

Wn = ™>n-l + Wn-2> 
where m > 0 is an integer and Un, Vn the solutions defined by 

UQ = 0, Ul = 1; 7Q = 2, 7X = m. 

Show that, if ̂ is an odd divisor of m2 + 1, then 

Vq E m (mod qO . 

Solution by H.-J. Seiffert, Berlin, Germany 

Firs t , we prove that 

(1) Vq E mkVq.3k (mod q), k = 0, . . . , [ 9 /3 ] , 

where [ ] denotes the greatest integer function. 
Obviously, (1) is true for k = 0. Assuming that i t holds for fc, where 

0 < fe < [? /3] , 

we obtain 

Vq = mkVq_3k = mk(mVq.3k.l + V3fc-2> 

= 77z*(m2 + l)Vq-3k-2 + rnk+lVq__3k„3 

= rnk + lVq_3{k + l) (mod (7). 

This completes the induction proof of (1). 

For any odd prime divisor p of q, the congruence m2 = -1 (mod p) shows that 
-1 is a quadratic residue mod p ; hence (see T. M. Apostol, Introduction to 
Analytic Number Theory, Springer-Verlag, 1976, Theorem 9.4, p. 181), p = 1 (mod 
4). This holds for any odd prime divisor p of q* Since q is odd, we also have 
q = 1 (mod 4). In (1), we take k = [q/3]. Hence, we have 0 < q - 3k < 2. The 
case q = 3k would imply m2 E -1 (mod 3), which contradicts Fermatf s little 
theorem. If q = 3k + 1, then q E I (mod 4) implies that k is divisible by 4. 
From m2 = - 1 (mod g) and (1), we get 

Vq E mkVl = mk + l E (-l)*/2/7z = ,77 (mod <?) . 
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I f q = 3k + 2 , t h e n q odd and q = 1 (mod 4) y i e l d /c E 1 (mod 4 ) . Now m2 s - 1 
(mod q) and (1) g i v e 

Vq = 77zk72 = /?^(/?72 + 2) = mk(m2 + 1) + mk = mfe 

= ( _ D ( k - i ) / 2 w = m ( m o d q ) m 

This completes the solution. Finally, it should be noted that (1) also follows 
from the identity 

vq = (m2 + 1 ) i : ro«%-3j--2 + ^ v s * * 
J = 0 

v a l i d for k = 0, . . . , [ q / 3 ] . 

Also solved by P. Bruckman, F. Howard, L. Somer, and the proposer. 

Summing It Up 

H-444 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol. 28, no. 3, August 1990) 

Show t h a t , for n= 0, 1, 2, . . . , 
[n/2] 
E (-D^-2k+2)/5](n

k), 
fc-o 

( 5 , n-2k) = 1 

where (r, s) denotes the g r e a t e s t common d iv i so r of r and s and [ ] the g r e a t e s t 
i n t ege r funct ion. 

Solution by Paul Bruckman, Edmonds, WA 

We employ a genera t ing function technique to prove what appears to be a 
very remarkable i d e n t i t y . Define 

( i ) 

and 

£*7 ~ E (• 
k = Q 

( 5 , rc -2fc) = 1 

\hn- 2k + 2)] / n x 
n = 0 , 1, 2 , 

(2) ^U) = E GnXn-
n= 0 

Then (formally, at least), 

V- / i J"^(n + 2)1 n + 2k(n + 2 ^ \ 
n,k=0 V * 7 

(n , 5) = 1 Now 

fc= 0 
) * ~ = 2- I o, )\k)l\ k ) * " % ? n ( n + 1), ' T T £r*!y-ir/)(?)/rn-" fc = 0 fc = 0 

(i<» + 1>)*(i<« + 2>) >2fc 

fc = 0 

2*1 

(n + l ) f c 

n + 1 n + 2 
2 5 2 ; 4x 2 

n + 1 

fc! 
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(the "standard" hypergeometric function). Hence, 

[n + 1 n + 2 
(3) g(x) = L ( 

n = 0 
(n, 5) =1 

rkn+2)] 
-1) L 5 J a ? w - 2

Fl 2 ' 2 ; to2 

n + 1 

We w i l l u se t h e f o l l o w i n g known t r a n s f o r m a t i o n s of t h e h y p e r g e o m e t r i c f u n c t i o n : 

(4) 2 r l 
a, 

; w (1 - w)'a
1Fl 

a, c - b 
9 I - w 

(5) 2 r l 

a , & 

(Theorem 20, p . 60, of [1]) 

2a , 2b 

a + b + -
; 4s (1 - z) ~ 2*1 

a + & + 
; ^ 

(Theorem 25, p . 67, of [1]) 

I n ( 4 ) , l e t 

a = -r-(n + 1 ) , b = y ( n + 2 ) , £ = n + 1, w = 4 x 2 . 

We thus obtain 

~n + 1 n + 2 
2 r l (6) 

In ( 5 ) , l e t 

2 s 2 ; 4x 2 

n + 1 
= (1 - 4 x 2 ) 2 . 2Fl 

n + 1 n 
2 ' 2 ; 
n + 1 

-4x^ 
1 - kxl 

1 1 1 
a = - ( n + 1 ) , b = -n, z = - ( 1 - 6 ) , 

where 6 = 6(#) = (1 - 4 x 2 ) 2 ; n o t e t h a t 

4 s ( l - s ) = (1 - 6 ) ( 1 + 0) = - 4 ^ 

Then 

2 * 1 

n + 1 n 
2 ' 2 ; 
w + 1 

- 4 ^ 
1 - 4x 2 

T Uy -

" 2*1 

1 - 4a;2' 

n + 1, n "] 
; 3 i 

w + 1 
i*o ; 3 

( « ) • 

fc = 0 k=0 

T h e r e f o r e , u s i n g (3) and ( 6 ) : 

[i(n+2)l 
-1)L5 - i ^ n ( l g(x) = E ( ~ D L 5 'ixn(i - zy 

n = 0 
(n, 5) =1 

•n&n + l 

We now make the substitution, y = 0x(l -a) 1. Thus, 

z/ = 2x6(1 + 0)"1 = 2̂ 0(1 - 0)(1 - 02)"1 = " 2 x ( 1 "2
6" }, 
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1 
1 _ (l _ Ax2)2 

(7) y = ^ U
2 a , ^ ^ . 

We then obta in 

(8) g(x) = 0 X! ( - l )L 5 ( n + J z/n
? where 2/ i s given by (7 ) . 

n = 0 
( n , 5 ) = 1 

Next, we obtain a closed form for g(x), as follows: 

*(*> = e £ E (-i)B( 5 m + r + 2 )] ,sm +, . 6 g (_1)mj/5m £ ( - D B ^ ' * " ] ^ 
/77= 0 r = 1 772=0 r = 1 

= e £ (-y^(y + y * - y * - *,*> = W ^ Y ^ 
h e n c e , 

( 9 ) ^(a?) = 02/(1 - 2 / 2 ) ( l - 2/ + 2/2 - 2/3 + yh)~l. 

To evaluate £7(2:) as an explicit function of x9 we employ the readily verifiable 
result: 

(10) y2 = y/x - 1. 

Using (10), we obtain 

y3 = 2/2/^ - y = -z/ + -Q//ff - 1) = — + (1/x2 - 1)2/; 

ly4 = -y/x + (I/2;2 - l)y2 = -2//ar + (l/;c2 - 1) (y/x - 1) 

= 1- x~2 + -(^T2 - 2). 
a: 

Therefore, 

(1 - y + y2 - 2/3 + yh) = 1 + x~l - x~2 - y(x~l + x~2 - x~3), 

after simplification, or 

(11) 1 - y + y2 - 2/3 + y^ = x~3(y - x) (I - x - x2). 
Also, 

02/(1 - 2/2) = 02/ + 0 ( X _ 1 + ( 1 ~ 2 T 2 ) 2 / ) = - 6 ( 2 / ~ X)X~2 + 202/. 

Therefore, 

(12) g(x) = ^ ( ^ r | - l)(l - x - x2)~K 
\y-x 

From (10), xy = y - x; therefore, x 

2x2y _ x = zx2^ _ i = 2x - 2/ = to2 - 1 + (1 - 4x2)2
 = (1 _ 4 a ? 2 ) i = e - i . 

2/ - a: # 2 / 2 2/ ox? 
* 1 - (1 - te2)2 

Hence, we finally obtain 

(13) g(x) = x(l - x - x2)~l. 
We recognize g(x) in (13) as the generating function of the Fibonacci numbers; 
more specifically, 

(14) g(x) = £ Fnxn. 
n= 0 

Comparison with (2) yields the desired result: 
(15) Gn = Fn9 n = 0, 1, 2, ... . Q.E.D. 
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R e f e r e n c e : 

1. E. D. R a i n v i l l e . Special Functions. New York: C h e l s e a , 1960. 

Also solved by S. Rizavi and the proposer. 

M u - v e O v e r 

H-445 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol. 28, no. 3, August 1990) 

P l e a s e r e f e r t o t h e volume of The Fibonacci Quarterly c i t e d above f o r a com-
p l e t e s t a t e m e n t of t h i s p r o b l e m . 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

For | 3 | < 1, we have 

(*> f > w ( i *" m) = f > ( w ) i > ( 2 / c - 1 ) w = t 1 Z v(nld)\z". 
n=l V z } n-\ k=l n=l\ d\n J 

\ d odd / 
Le t n = 2st, where t i s odd and s > 0 . Then t h e s e t of odd d i v i s o r s of n 

i s p r e c i s e l y t h e s e t of d i v i s o r s of t . Thus , 
( 1 i f s = 0 and t = 1; 

X \x{nld) = u ( 2 s ) E \i{t!d) = <-l i f s = t = 1; 
^l« d\t I 0 o t h e r w i s e . 

d odd 
F u r t h e r m o r e , (2k - l)n i n (*) i s odd i f f n i s odd . Hence, we c o n c l u d e t h a t f o r 
| * | < 1, 

£ y ( w ) ( 7 7 7 ^ ) = ^ and £ ^ n ) ( i J*g2*) = -*2> 
n odd \ ± <s / n e v e n \ i <s / 

which l e a d t o ( 1 ) . For ( 2 ) - ( 7 ) , we s h a l l u se t h e i d e n t i t i e s : 

1 1 3 m s 1 3 m s 

and Jb Fms ( - 1 ) ^ - 3 2 m s Lms (-l)ms + 3 2 m s * 

(2) F o r , - 1 , 2 , 3 , . . . , ^ E ^ = E ^ ( 7 7 ^ ) = ^ ' ftrtl* 2ns rn even 

2 ms 
(3) For s = 1 , 3 , 5 , . . . , £ U

r
( 2 " ~ 1 } = - £ n 0 " ) ( — ^ 

rc = 1 ^(27-z - l ) s m odd 

Qns \ 
„ . - ., - ..2a 

12 ns 
V(n) - / ° r a s 

(4) For s = 2 , 4 , 6 , . . . , * £ ^ = £ y ( n ) -

«> ' " • • - • « ^ ? 1
t u ^ ! ! i - - . ? 1 - ' " ' ( T ^ - = Q S . ols 

1 ^ ( - l ) n " 1 y ( 2 w - 1 ) 1 ^ , J ( i B 6 ) m 
(6) For a - 1 ,3 ,5 i £ ^ i i - J ^ M - i £ ^ r ^ 

/ 5 n = 1 i ? ( 2 n - l ) s l n odd V l - ( t g S ) 

(7) For 8 = 2,4,6,..., £ W^Tn-l) = 1 / ( i g . ) " 
« - l ^ (2«- l ) s * n ^dd V I - ( i B s ) 2 r a 

Aiso s o l v e d b y C. Georghiou, H.-J. Seiffert, and the proposer. 
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