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STRONG DIVISIBILITY LINEAR RECURRENCES
OF THE THIRD ORDER

Pavel Horak
T. G. Masaryk University, Brno, Czechoslovakia
(Submitted April 1990)

1. Introduction

A kth-order linear recurrent sequence U = {un:n =1, 2, ...} of integers,
satisfying the following property for greatest common divisors:

(Mi, MJ') = lu(i’j)l for all 7:, J > 1,

is called a kfh-order strong divisibility sequence (SDS). The notion of strong
divisibility was introduced by C. Kimberling in [3] for k'M-order linear recur-
rences {u,:7n =0, 1, 2, ...}.

All the second-order SDS's have been described in [2]. A characterization
of all the SDS's in certain subsystems of the system 7 of all the third-order
linear recurrences of integers was given in [1]. The purpose of this note is
to extend the results of [1] and to describe all the SDS's in further
subsystems of 7.

Let U denote the system of all the sequences u = {u,: n =1, 2,...} defined
by

uy =1, up = v 20, ug=pn =0

Up+3 = A* Upyp + b Uy + o u,, formn 21,

where v, u, a, b, and ¢ are integers. The system of all the strong divisibility
sequences from U will be denoted by D.

Notice that we may take u; = 1 without loss of generality as all the third-
order SDS's with up, # 0 # ug are exactly all the nonzero integral multiples of
the sequences from D.

Lemma 1.1: Let u = {u,} €U. Then uy|u, if and only if there exists an integer
f such that

(1) c=fe+ev-a-u.

Proof: From the above definition we obtain uy = v, u, = ay + bv + ¢ and the
assertion follows.

2. The Case a =b =c¢ =1

Let V denote the system of all the sequences from U satisfying the condi-
tiona=b=¢ =1, i.e., u = {u,} €V if and only if
uy =1, up = v 20, ug = p =z 0
(2) 1 s 42 3
Up+3 = Upyp T Uyl + Uy, for n 2 1.
The following theorem will show that there are no SDS's in V.

Theorem 2.1: The system of sequences V contains no strong divisibility sequen-
ces, i.e., VnD = @. :

Proof: Let us suppose that u = {u,} €VND. By Lemma 1.1, there exists an inte-
ger f such that

(3) w=fev-1
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and thus
uy = ve (f+ 1).
Then by (2):
us =ve (f+2) +u and ug = ve (2f + 3) + 2p.

From up|ug, uz|ug, and (v, u) = 1, we get v|2 and u|2f + 3. Then, using
(3), we obtain:

v =1, ulS or\)=—l,u[1 or \)=2,u[4 or v = -2, u‘Z.

But v, u are coprime, which leaves 10 possible pairs of v and p. For all of
them it is easy to find 7, J (always < 9) such that (u;, uj;) = lu(i, j)l' There—
fore u¢ D, a contradiction.

3. The Case p=1; a=b =1

Let W denote the system of all the sequences from U satisfying the condi-
tions w=1; a=5b =1, i.e., u = {u,} €W if and only if

) uy =1, up = v =0, ug =1
Un+3 = Uy + Uy + Uy, for n = 1.
Furthermore, let W;, W, denote the following subsystems of W:
Wi =f{u€W:u|u, and f = -1}
Wy ={u€W:up|luy, and f = -1}
where f is the integer from (1). Obviously, W; and W, are disjoint and
DNWCWUW,.

Proposition 3.1: The system of sequences W; contains no strong divisibility
sequences, i.e., WiND = 0.

Proof: Let UEW, ND; then b + f = 0 and, according to Theorem 3.1 of [1], we
get u = c or u = d where

c=1{1,2,1,0,1,2,1,0, ...}, 4 ={1,-2,1,0,1,-2,1,0, ...}.
But ¢, d ¢ ¥ and thus u ¢ ¥;, a contradiction.

Lemma 3.2: Let u = {u,}€W,. Then:

(5) c=Ff+v -1,
(6) uy, =ve (f+1) =0,
(7) ¢ = =v -1 (mod |uyl|)-.

Proof: The assertion (5) follows from (1), the assertions (6) and (7) follow
from uy, = 1 + v + ¢, from (5), and from the definition of W,.

Lemma 3.3: Let u = {u,} €WoND, such that f # 0. Then v # -1.

Proof: Let us suppose that uewW,ND, f# 0, and v = -1. Then from (6) and (4)
we get 0 2 u, = ¢ and consequently

Un+3 = Upso + Upyp (mod |uy|), for m z 1.

Thus, ug = 3 (mod qul) and from Mqlug we obtain u, = ¢ = *1, *3. But

1=u¢ D (by Theorem 2.1), a contradiction
=-1=f=20 [by (5)], a contradiction

3 = (ug, Uyg) # l“ll =u ¢ D, a contradiction
-3 = (ug, u7) = |u1|=>u¢0l, a contradiction.

Q000
I
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Lemma 3.4: Let u = {u,} €W,. Then uy|ug if and only if
vZ v+ 5 (mod |f+ 1]).

Proof: Using (7) and (4) we get us 1

(8) ug = V(v + 2) (mod |uy|), uy

and, finally,

I

v = v2 (mod qul), then
-2v2 = 3v + 1 (mod |uyl)

ug = v(vZ = v = 5) (mod |uyl).
But by (6), uy = v+ (f + 1) and, therefore:
uy|ug if and only if v2 - v = 5 = 0 (mod |f + 1]).

Lemma 3.5: Let u = {u,} €W, such that uy|ug and wuy|u;,. Then
33v + 60 = 0 (mod !f + ll).

Proof: From (7) and (6) we obtain ¢ = -v - 1 (mod 'f + l|). Using this fact,
(8), Lemma 3.4, (4), and the assumptions uqlug, uq[ulz, we get:

ug = -3v = 5 (mod |f + 1]), u7 = =5v = 9 (mod |f + 1)),
0 (mod |f + 1)), ug = 6v + 11 (mod |f + 1|),

u1g = 25V + 45 (mod |f + 1]), wuy; = 31v + 56 (mod |f + 1[),
and, finally,

Hi
i

Usg

1

“12 = 33v + 60 = 0 (mod |f + 1]).

t

Proposition 3.6: Let u

{u,} €Wy such that u,|ug and uy|u;,. Then f + 1]135.
Proof: From Lemma 3.4, we get:
(9) 1089v? = 1089v + 5445 (mod |f + 1]).
Similarly, from Lemma 3.5, we get:
(10) 1089v2 = 3600 (mod |f + 1]);
(11) 1089v = -1980 (mod |f + 1]).
Now, from (9), (10), and (11) we obtain
3600 = 3465 (mod |f + 1))
and thus, f + 1[135.

Lemma 3.7: Let u = {u,}€W,. Then us = 0 and

(12) urg v (F3-5f2~-2f+ 1) + f2 - 4Ff - 6 (mod |usl|).
Proof: From (5), (6), and (4) we get:

(13) us = V2f + vf + 1.

If ug = 0, then vf « (v + 1) = -1 and thus, v+ 1 = *1, a contradiction. Fur-
thermore, by a direct computation from (4), using (5), we get:

(14) u10 = V3F3 4+ 6v3F2 + 10V2F2 + 6V2F + 10vF + v.

From (13) we get v2f = —vf - 1 (mod |us|); using this fact in (14), we obtain
(12).

Proposition 3.8: Let u = {u,} €W, such that ug|u;g. Then
us|f% - 133 + 34F2 + 38F + 1.
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Proof: Let us denote a = 3 - 5f2 - 2f 4+ 13 B = 2 = 4f - 6. Obviously,
(15) a? - Bf (o = B) = a?2(V2Ff + vf + 1) —= (va + B)(afv + F(a - B)).
Then from u5|u10, (12), (13), and (15), we obtain

usla? - Bf(a - B) = F* = 133 + 34Ff2 + 38Ff + 1

which completes the proof of the proposition.

Now, let us denote by #Z the following subsystem of the system W:
H={ueW:c = -1},

i.e., w€f if and only if u = {1, v, 1, v, ...}. It is obvious that HCW,.

Proposition 3.9: Let u = {u,} €¥,. Then uepD if and only if u€df.

Proof: 1f u€ H, then clearly ueD. Conversely, let u€D; then (by Proposition
3.6), f+ 1]135. From Lemma 3.4 and from the fact that the congruence v? =
v + 5 (mod 9) has no solution, we get lf + l| = 9, 27, 45, 135. Therefore, we
obtain for f the following eight possibilities: f = 0, 2, 4, 14, -2, -4, -6,
-16. Now:

(i) 1let f = 0, then by (5), ¢ = -1; thus, u = {1, », 1, v, ...} €4.
(ii) 1let f = 0 and let us denote 6 = f* - 13f3 + 342 + 38f + 1. The possible
values of f and the factorization of the corresponding § are given in the
table:

£l 2 4 14 -2 -4 -6 -16
§ | 53 112 9941 181 1481 5101 181 - 701

But us|8 (by Proposition 3.8), which gives us 38 possible pairs {f, us}. For a
given pair {f, us}, we obtain the value v from (13). Obviously, v must be an
integer and v # 0, -1 [by (4) and Lemma 3.3]. By a direct computation, we
obtain the following solutions:

f=2,v=1, 3, -2, 4, and f = 4, v =5, —6.

For f =2, v = -4, we get (uy, uji) # ]u1|; for =4, v =15, we get (us, Ug) #
|#1], and in the remaining cases we get v2 # v + 5 (mod |f + 1|) and, there-
fore, by Lemma 3.4, uq*ug. Thus u ¢ 0D, a contradiction.

The following theorem gives a complete characterization of all the strong
divisibility sequences in the system W.
Theorem 3.10: Letu€¥W. Then u is a strong divisibility sequence if and only
if ue d.
Proof: The assertion follows immediately from Propositions 3.1 and 3.9 and from

the inclusion DNWC W] UW,.
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At the request of Professor Lester Lange and with the permission of Profes-
sor Leonard Gillman, we have simply lifted Professor Gillman's delightful,
melodic note, below, from page 375 of the June-July 1982 issue of The American
Mathematical Monthly. Students need to know that the well-known limit
mentioned involves the golden mean.

Gerald E. Bergum
Editor

MISCELLANEA

77.

Leonid Hambro, the well-known pianist, told me recently that he was about
to enter a billiards tournament in which he would play 12 games; he knew the
opposition, he said, and he estimated his odds for winning any particular game
as 8 to 5. "What do you think your chances are of sweeping all 12 games?" I
asked him. '"They're pretty small," he said. "The probability that I'll win
any one game is 8/13. To find the probability that I'll win all 12 you have to
take 8/13 to the 12th power. That's a pretty small number."

He did not have a calculator in his pocket. But he had a pencil and a
pad—and an inspiration. ''Hey!" he said. '"Those are Fibonacci numbers. The
ratio of successive terms approaches a limit (about .618), and very fast: even
a ratio near the beginning like 8/13 is very close to the limit." He scribbled
some additions. "The 12th Fibonacci number after 8 is 2584. Therefore 8/13 to
the 12th power is approximately the same as 8/13 times 13/21 and so on, twelve
times; everything cancels out except the 8 in the beginning and the 2584 at the
end. So the probability that I will win all 12 games is about 8/2584, or about
1/300. See, I told you it was pretty small."

—Leonard Gillman
The University of Texas at Austin
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ON A GENERALIZATION OF A RECURSIVE SEQUENCE
Péter Kiss and Béla Zay*
Teacher's Training College, Lednyka u. 4., 3301 Eger, Hungary

(Submitted April 1990)

1. Introduction

Let k and ¢t be fixed positive integers and let Gk t(”)’ n=0,1, 2, ..., be
a sequence of integers defined by

n if0<sn<t-1

(1) GE,t(”)z{ )
n—Gk,t(n-t) if n

kth

v

t,
where Gi,t denotes the
Gy, (M) = Gy, ,(m) and Gf ,(m) = Gy, (GE ¢ (m))

for ¢ > 1 and for any m 2 0.

iterated composition of G ., i.e.,

This sequence is a generalization of some which have been investigated earlier.
P. J. Downey & R. E. Griswold [1] (and later V. Granville & J. P. Rasson [3])
proved that the solution of recurrence (1) in the case kK = 2, t = 1 is given by

(2) Gy, 1(n) = [(n + Lul

for any n = 0, where p = (-1 + /E)/Z and [ ] denotes the integer part function.
In [1] a similar formula is shown for Gz’t(n) with arbitrary ¢t = 1.

Recently B. Zay [6] has shown some properties of the general sequence for
any k and t. Among others he proved that Gy, +(n) is defined for each nonnega-
tive integer n, the sequence is monotonically increasing, and that the general
case can be traced back to the case ¢ = 1 by

e () a0 s () - o [+ 1)

Gk, ¢ (n) =
n nl . n n
oG ([3]) +n - e 7] ae o ([g]) = e (34 1)
for any m 2 0. So it is enough to investigate the sequence with ¢ = 1. Fur-
thermore, we can suppose that kX > 2 since the case k = ¢t = 1 gives the sequence
Gy,1(n) = [(n + 1)/2], which can be considered as a trivial case.

Throughout this paper, k will denote a fixed integer with k > 2 and, for
brevity, we write G(n) instead of Gy, 1(n).
In general (if k > 2) the terms of the sequence ((n) cannot be expressed

similarly as in (2). In order to see it, let us suppose that there is an inte-
ger r and a positive real number w such that
(3) Gn) = [(n + r)w].
Then
(4) lim Gn) w.
"> o n

*This research was partially supported by the Hungarian National Foundation for Scientific
Research grant no. 273.
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On the other hand, by (1) we have
G _ Gk(n - 1) Gl - 1) G2(n-1) Gn-1) n-1
n Glnm-1) G20 - 1) Gn - 1) n -1 n

bl

therefore, Gi(n)

G(G*"Y(n)) and (&) imply the equation
w=1 - wk,

So w is the only positive real root of the equation z* + z - 1 = 0. But it can
be checked by numerical calculation that, in the case k = 3, equation (3), with
any integer »r, does not hold for all n. Namely, in this case, we have w =
0.6823..., G(2) = 1, G(18) = 13; thus, from

G(2) =1=1[(2+ r)w] and G(18) = 13 = [(18 + rw],

r <1 and r» > 1 would follow, respectively, which is impossible.
Thus, (2) really cannot be extended for any Xk > 2. But we shall show that
(4) holds for any k.

Theorem: For any integer Kk = 2,

1im G _

N> o

5

where w is the single positive real root of the equation x* + 2 - 1 = 0.

We note that the Theorem also holds if ¢ > 1 or XK = 1, which follows from
the results mentioned above.

2. Auxiliary Results

For the proof of our Theorem, we need the following lemmas.

Lemma 1: For any n > 0, we have

(5) Gn) = Gn - 1) + ¢,
and
(6) Gk(ny = Gk(n - 1) + ¢},

where €, and ¢, are 0 or 1.

Proof: Equalities (5) and. (6) hold for n = 1 and n = 2 since, by the definition
of the sequence,

G(0) =0, G*(0) =0, G(1) =1, G(2) =1, GK(1) =1, ¢*2) =1
for any kK 2 2. Assume that m = 2 and (5) holds for any n < m, i.e.,

Gn) = Gn - 1) + ¢,

for any » with O <»n < m and ¢, = 0 or 1. From this G(n) < n < m also follows
and so, by the assumption, we get
GZ(n - 1) if g, = 0
G(G(n)) = G?(n) = {Gz(n S+ ife, = 1,
where ) = 0 or 1. Continuing this process,
(7) Gk(n) = G*¥(n - 1) + ¢! (& =0 or 1)

follows for any 0 < n < m. By (1) we have
Gm) =m - G¥(m = 1) and Gm+ 1) =m+ 1 - ¢X(m)

from which, using (7), we obtain
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G(m + 1) - Gm) = 1 = (G¥(m) - 6¥(m - 1)) = €,,1 (€ps1 = 0 or 1).

Thus, (5), (7), and (6) also hold for mw = m + 1.
From these, the lemma follows by mathematical induction.

Lemma 2: Let {n;}]_, be a sequence of positive integers such that
Gny) = ng

for any 7 > 0. Then
Ny =Ng-1 t ng_p - €y

for any < 2z k, where ¢; = 0 or 1.

Proof: By the assumption of the lemma, using Lemma 1 and the definition of the
sequence G(n), for any 7 2 k we have

ng_1 = Gng) =ny; - Gy - 1) = n; - Gk(ni) + e/

ng - Gk_l(ﬂi_l) + E-Zi, =n; - Gk‘z(ﬂi_z) + Ei, = eee
=n; - G(ni‘k'{-l) + Ei' =n; - n;_ + Ei”
where eg = 0 or 1. The lemma follows from this assertion.

Lemma 3: Let {n;}°_, be an increasing sequence of nonnegative integers satis-
fying the recursion

ng =ngop tngox - gg (22 K),

where k > 2 is a fixed positive integer and e; = 0 or 1. Define a kt"-order
linear recurrence sequence {u;} of integers by u; = n; for 0 << < k - 1 and

Up = Up-1 t Ui-p

for ¢ = k. Further, let {F;} ., be a sequence of natural numbers defined by

Fo = F1 = Fr-1 =1 and

Fi = Fi_l + F’Il—k (7; = k).
Then :

ng = u; — §;
for any 7 2 0, where 0 < §; < F; - 1.

Proof: For 0 <7 <k - 1, the lemma evidently holds with &; = 0. If < = k and
n; = uj - &; with 0 < 85 < F; - 1 for any 0 < j < ¢, then

ng = Ng-1 ¥ Ng_p — &g

= uj-1 tug-p = (S + 8 +eg) = up - 8y,
where
OS6i=6i—l+6i—k+Ei SFi—1+F'_k_2+€1j SFi—l,
since the §;'s are integers. The lemma follows from the above by mathematical

induction on <.

Lemma 4: Let {v,},_, be a k'P-order linear recurrence sequence of positive
rational integers defined by the nonzero initial values vy, Vi, ..., Vgx-] and
by the recursion

Un = Up-1 + Up-g

for n = k. Denote by aj, 0y, ..., 0r the roots of the characteristic polyno-
mial xk — x*~! — 1. Then the terms of the sequence can be expressed as

(8) U, = apaf + a,ay + --- + qap (n 2 0),

where the a;'s (£ =1, 2, ..., k) are elements of the number field generated by
Ops Ops «s.5 Of OVeEr the rationals.
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Proof: This lemma is a special case of a more general well-known result, so it
is not necessary to prove it here.

Lemma 5: Let {v,},_, be the linear recurrence sequence defined in Lemma 4. If

0<z<
then there is a real number ¢ > 0, depending only on the characteristic poly-
nomial of the sequence, such that

0 < vy = mink(vi) and |u1| > I“il for 2 < 7 < k,

(9 lai| > ¢ - v,
where a; is defined by (8).

Proof: Ferguson [2] as well as Hoggatt & Alladi [4] proved that the roots of
the polynomial xk - zk=1 - 1 are distinct and that there is a dominant real
root o] with the largest modulus; thus, we may suppose that ‘“1[ > I“i' for 7 =
2, «o., k.

By (8), for the a;'s, we have the system equations:

ay + ao + e+ oa = Vg
ajoq + ajdn + oeee +oagpoyg = vV

.
.

I

k-1 k-1 k-1 — .
ajoy + a,0y, + e + Q; Oy Vp-13

thus,
Dy
(10) ay = Wk
where
1 1 L. 1 Vg 1 vee 1
OLI 0(42 e O(.k Ul 0,2 PR O(.k
D = |a% aZ ...af |, Dy = |v, ad ...af |,
k-1 k-1 k-1 ) k-1 k-1
af oy ceeoag Vo1 o3 ceeoap

and D # 0 since the a;'s are distinct. The determinant D; can be written in
the form

k . .
(ll) Dl = Z (—-l)z_lvi_l . D(t)’

=1
where
1 ce. 1
%) oo e Otk
@ - | i-2 i-2
D a5 17
7 7
al ce. ol
k-1 k-1
as ... af
is a (k - 1) x (k = 1) determinant rejecting the first column and the ith row
from D;.

It was proved in the lemma of [5] that
(12) D' =Dy.S,_; for any 1 < i < k,
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where
1 e 1
Oo cee Qg
cxé‘z ali“z
is a (k - 1) x (k - 1) Vandermonde determinant and Si_; is the elementary sym-

metrical polynomial of degree k - < of variables op, ..., a3 if Xk = ¢ > 0, and
Sp = 1. It is known that for the coefficients of a polynomial

b(x) = bgx™ + b1z 1 + ... + b,

we have

bj = (-1)7beS! (1 =4 <n)
where

50 =2 Bi Bi, -+ By
is the elementary symmetrical polynomial of degree j of the roots By, ..., B,
of b(x) (the sum runs over the distinct %, <7, < --. < 7; combinations of 1,
2, ..., n). Since Sy, Sy, ..., Sg-1 are the elementary symmetrical polynomials

of ay, ..., aj of degree 1, 2, ..., k = 1, thus §; + a;, Sy + S0, .., Sp-1 +
Sg-p01, Sg-107 are the elementary symmetrical polynomials of aj, ap, ..., oy of
degree 1, 2, ..., k - 1, k, respectively. So, for the coefficients of the poly-
nomial xk - 2¥71 - 1, we have

-1 = -(5; + o1)
0= 32 + Sioq

(13)
0 = (-D)*1(Sp_1 + Sk-pa1)
-1 = (-1)k - Sg_qa;.
Since a; is real, a; > 1, which implies that Sy = 1 - a; > 0. But, from this,

S, > 0 follows, and contiuing this process, by (13), we obtain the inequalities
(14) So; >0 (0 €27 < k-1)
and
(15) Sprp1 <0 (1220 +1<k-1).
Finally, by (11) and((lZ) we get
Dy = Do(vgSk-1 = V1Sk-2 + -++ + (-1)*71v,_180)

and, by (14) and (15), using the condition 0 < vg < v; for 1 < ¢ <k -1,

k k
© 2 V-1t
i=1

21| = 1Dg - > Sk
follows. By (10), this implies the lemma.

Sk-z] > vo+ Do

=1

3. Proof of the Theorem

Let N be a sufficiently large positive integer and define an integer m by

3 log WV
"= 2+ 1log 3
([ ] is the integer part function). Let ng, 715 «..r 7
numbers defined by

n be a set of natural

(16) Ny =N and n;-7 = G(ny) for 1 <7 < m.
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From Lemma 1 and its proof, it follows that G(n) < n for any n > 1, and so
n0<n1<...<nm=]\7

for NV sufficiently large so that ng = 1.

We show that there are no three consecutive equal terms in the sequence
G(n). For if

Gn) =Gn+1) =Gn + 2),
then, by the definition of the sequence,
(17) n-6G*m-1)=n+1-6¥n) =n+2-G¥n + 1)
would follow. But G(n) = G(n + 1) implies that Gkn) = Gk(n + 1) and so, by
(17), we would obtain the equality n + 1 = n + 2, which is impossible. Thus,
Gn + 2) 2 Gn) + 1 for any n = 0, and so

(18) G(n) =2 <n.

W=

By (16) and (18), we get
N=n, <3Gy =3*n,-1 =32« Gnyp-1) = 3%2<n,9 < ... <3"n,

which, by the definition of m, can be written in the form

(19) ny >£2 /I—V.

Z 3n
By Lemmas 2-4 and their notations, using (16), we obtain
_ -1 m-1 _
(20) G My_y _ Upoy = Spoy o] A e+ g0 Sm-1
N Uy = Op ajal + oo + qayp - Sy
a. /o m=1 a. /o m=1 1
2(%2 k (%% m-1
R cee + —{-— - =
_1 ! a1<°‘1> ot al<°‘1) ay Sn1/q
a1 Ay [A\T Qg [0, \™ )
1+ —§<—3) + eee 4 —5<—k) .« 8,/0]
a1\* a1\%
By the proof of Lemma 5, it follows that there are complex numbers bj, by, ...,

by > which depend only on the a;'s (¢ = 1, 2, ..., k), such that
k-1
a; = Z byu;
=0
and so, using that |a;| > ¢+ uy by Lemma 5,
k-1
2 biu;
=0

c Uy

i
ay

(21)

follows. But u; =n; for 2 =0, 1, 2, ..., k =1, n; <ng_-y for 0 <7 < k - 1,
and by (18) n;/n;-1 < 3 for any 7 > 0; thus, from (21),
Nr-1 ny nz Nr-1

no mn Ng-2

%

(22) < b Sb,3k~1=B

follows for 2 < 7 < k, where b and B are positive real numbers which do not
depend on m and the n;'s. Since |aj| > |a;| for 2 < 2 <k, and m > » as I > =,
so by (22),
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-1 m
ai (o \"TH L agfag\" .
(23) %ii ET<aI> kiﬂ a;(g;) =0 for <=2, 3, ..., k.

On the other hand, by Lemmas 3 and 4, we get

- n n az\"
0 <6, <F, =cjay + G0, + eee + ckak = clal(} + 22201<ET> )

for any n 2 0, where the ¢;'s (¢ =1, 2, ..., k) are complex numbers which are
independent of #,

lim(a;/ay)™ = 0,

N> o
and it can be easily seen that ¢; # 0. From these, it follows that there is a
real number C > 0, depending only on the characteristic polynomial of the
sequence {F;}, such that

6pn

o7

< C for any n 2 0.

However, by (19) and Lemma 5,

lay| > couy=ceng 2c- Vi

and so
1 Sp- 1 8
(24) lim( . ,’:_}) = lim( . 2) = 0.
N+ o al Otl N> oo a]. OLl
From (20), (23), and (24),
G(N) 1
lim —— = —
IV—»I: n o]

follows, where a; is the single positive root of the equation xk- k-1 -1 = 0.
But, if o is a root of the polynomial xk - x¥~1 - 1, then 1/0 is a root of zk +
x - 1, thus 1/a; = w and the theorem is proved.

Acknowledgment

The authors would 1like to thank the referee for his helpful and detailed
comments.

References

1. P. J. Downey & R. E. Griswold. "On a Family of Nested Recurrences.'" Fibo-
nacel Quarterly 22 (1984):310-17.

2. H. R. P. Ferguson. "On a Generalization of the Fibonacci Numbers Useful in
Memory Allocation Schema; or All About the Zeros of zk - zk"1 -1, k > 0."
Fibonaccei Quarterly 14 (1976):233-43.

3. V. Granville & J. P. Rasson. "A Strange Recursive Relation." J. Number
Theory 30 (1988):238-41.

4., V. E. Hoggatt, Jr. & K. Alladi. '"Limiting Ratios of Convolved Recursive
Sequences." Fibonacci Quarterly 15 (1977):211-14.

5. P. Kiss. "On Some Properties of Linear Recurrences.'" Publ. Math. Debrecen
30 (1983):273-81.

6. B. Zay. "Egy Rekurziv Sorozatrdl." (Hungarian) Acta Acad. Paed. Agriensis,
to appear.

*okok ok ok

1992] 109



ON A THEOREM OF MONZINGO CHARACTERIZING THE PRIME DIVISORS
OF CERTAIN SEQUENCES OF INTEGERS

R. B. McNeill

Northern Michigan University, Marquette, MI 49855
(Submitted May 1990)

In [1], M. G. Monzingo extended a problem found in Elementary Number Theory
by David M. Burton concerning the common divisors of two successive integers of
the form n2 + 3 by establishing

Theorem 1 (Monzingo): Let p be an odd prime. If p is of the form 4K + 1, then
p is the only prime that divides successive integers of the form n2 + K, and p
divides successive pairs precisely when n is of the form bp + 2K, for any inte-
ger b. If p is of the form 4K + 3, then p is the largest prime that divides
successive integers of the form n2 + (3K + 2), and p divides successive pairs
precisely when 7 is of the form bp + (2K + 1), for any integer b. Furthermore,
p will be the only prime divisor if and only if p = 3.

The purpose of this note is to generalize these results to the general
quadratic. Specifically, we prove the following

Theorem 2: Let p be an odd prime and define P(n) = a,n? + an + ay, where 7
and all coefficients are integers and a, = 0. If p divides P(n) and P(n + d),
where d is an integer not divisible by p, then p divides a%dz - a% + 4aqa,, and

n satisfies the equation
(2n + d)as + a; = 0 mod p.

Proof: Suppose that p divides P(n) and P(n+d). Since p divides the difference
of these integers, and p does not divide d, p divides @(n) = (2n + d)a, + a,
i.e., n satisfies

(2n + d)ay + a1 = 0 mod p.

In addition, p divides ng(n) - 2P(n), i.e., p divides R(n) = n(asd - ay) - 2ag.
Finally, p divides (a»d - a1)@(n) - 2a,R(n), and the result is established unless
(perhaps) either n = 0 or ad - a; = 0. Since it is straightforward to verify
directly that p divides a%d2 - a% + 4apa, in each of these cases, the theorem
is established.

Remark: Theorem 1 (Monzingo) follows easily from Theorem 2 after selecting d =
+ 1

1, ap =1, a; = 0, and ay = K or apg = 3K + 2, depending on whether p = 4K
or p = 4K + 3, respectively.
Reference
1. M. G. Monzingo. "On Prime Divisors of Sequences of Integers Involving

Squares." Fibonacei Quarterly 26.1 (1988):31-32.
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ZECKENDORF REPRESENTATIONS USING NEGATIVE
FIBONACCI NUMBERS

M. W. Bunder

The University of Wollongong, Wollongong, N.S.W. 2500, Australia
(Submitted May 1990)

It is well known that every positive integer can be represented uniquely as
a sum of distinct, nonconsecutive Fibonacci numbers (see, e.g., Brown [1]).
This representation is called the Zeckendorf representation of the positive
integer. Other Zeckendorf-type representations where the Fibonacci numbers are
not mnecessarily consecutive are possible. Brown [2] considers one where a
maximal number of distinct Fibonacci numbers are used rather than a minimal
number.

We show here that every integer can be represented uniquely as a sum of
nonconsecutive Fibonacci numbers F; where ¢ < 0 and we specify an algorithm
that leads to this representation. We also show that no maximal representation
of this form is possible.

We note that for all integers <,

F-i = (_l)i-l-lFi
and
(1) Fiy1 = Fy + Fypog.
We note further that Fy = 0, F_y, F_3, F_g, ... are positive and F_,, F_y,
... are negative. Also for 7 > 1,
|F_z| < |Fosa].

The four lemmas below will show that the algorithm that follows them is
effective. ‘

Lemma 1: If n, k > 0 and -F_y; < n < F_5;_1 — 1 then, for some %, k > £ > 0,
“F_oks2e-1 S = Fogp-1 < =F_gpaoe+1 < 0.

If n = F—Zk—l - 1, then
n = F_gx_1 =-F_1.

PY’OOf.' If ‘F-Zk <n < F—Zk—l - 1, then

1L < Fpp-y —n<Fogoy +F gy,
i.e.,
L <Fogp-1-7n<Fooper = Fop-1-
Now every integer p > 1 is in a range 0 < Fy,_-3 < p < Fy,_; where m = 2.
We must, if p = F_5,_1 — 7n, then have m + & = k + 1 for some & > 0 and so:

0 < Fog-20-1 < Fogg-1 =71 =< Fop2e415
thus,

“Fogg+o0-1 <n = Fogp-1 < ~Foopegesr < 0.

Lemma 2: 1f n, k > 0 and F_p,1 < n < —F_o; then, for some %, kK > & > 0:
0 = =F_gpsnesz <71 = Fogper < -Foppiog-

Proof: If F_p 41 < n < -F_5,, then

0 <n = Fogpser < -Fopp = Foprais
so
0 <nm = Foppyr < ~Foppap = For-2.
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Now every positive integer p is in the range

0 < Fopoy <p < Fopop

where m = 2.

We must, if p = n - F_o;,1, then have m+ ¢ = k + 1 for some &, kK > £ > 0,
and so

o
IN

Fop—pg-2 <m = Foppy1 S Fog-ny»

0 < =Fprsopsn <7 = Fogpa1 < =Fopgio-

Lemma 3: 1If n < 0, k > 0, and 1+ F_y, <n<-F_y,,1 then, for some &, k > & > 0,

If n

0 < =Fopsopen <7 = Fogp < -Fogpypy.
= F‘Zk + 1,
n - F—Zk = F“l'

Pr’OOf: If 1 + F"Zk < n < _F-Zk"'l’ then

L <n=Foop <-Fgpsp = Foxp

and as in the proof of Lemmna 2,

thus,

0 S Fop_pgp < n=F_p <Fop_p, for some &, kK > & > 0;

0 < ~Fogrsonsp <71 = Fogp < =Fppyog-

Lemma 4: 1If n < 0, k > 0, and -F_o; 1 <n <F_p — 1 then, for some %, k > & > 0,

If n

“Fogke20-1 S = Fogp < =Fgrygeser < 0.
=Fox -1,
n - F—Zk = F—Z'

PV’OOf.' I1f _F—Zk-l <n < F—Zk - 1, then

SO

and,

L <Foop —n < Fogp + Fogp-1 = Fogrsts

L < Fogp =n< Fyy
as in the proof of Lemma 1,

0 < FZk—ZJL—l < F-Zk - n < FZk—Zl*f'l where kK > & > 1,

“Fogrs2n-1 S = Fogp < =Foppyops1 < 0.

Algorithm .Z: This algorithm produces, for a given integer, the promised sum of
Fibonacci numbers.

(1)
(2)

(3)

(4)

112

If n = F_; for some %, then stop.

If n > 0 and for k > 0, sz < n < F2k+l’ i.e., —F_Zk <n < F—Zk"l’ write
nm=~F_p_1+ (n - F_y,_-1), and apply this algorithm to »n - F_,, -1, giving
the next term in the sum.

If n > 0 and for kK > 0, Fyp-) < n < Fop, ice., F_opyq <n < -F_p, write
n=F_ory1 + (n - F_gx4+1), and apply this algorithm to n - F_,;,1, giving
the next term in the sum.

If n < 0 and for k > 0, Fyp_y < -n < Foy, i.e., F_py < m < =F_5; 41, write
n=~F_o + (n- F_5), and apply this algorithm to n - F_, , giving the
next term in the sum. '
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(5) If n <0 and for kK > 0, ~Fpp < -n < Fppy1s ieeey, =F_pp_ 1 <7 < F_p, write
n=F_g + (n - F_y5), and apply this algorithm to n - F_,5, giving the
next term in the sum.

The algorithm terminates when, eventually,

moFeg = Fegy eee =Py, ey
Lemma 5: Algorithm Z produces a representation of any nonzero integer # as a
sum of Fibonacci numbers F; where © < 0 and any two of the {'s differ by at

least 2.

Proof: 1f after the application of (2), n - F_o,-1 % F_; for any j, we have, by
Lemma 1:
“Fogk+20-1 <M = Fopg-1 < =Fopgeoe+1 < 0, where & > 0.

By applying (4) or (5), the algorithm next considers n — F_op_1 = Foppyog -
If after (3), n — F_op4+1 2 F_;, by Lemma 2:

0 < =Foksge+2 <7 = Fogps1 < —F_pk4py > where & > 0.

By (2) or (3), the algorithm next comsiders 7 — F_op41 — Foopyop+1-
If after (4), n — F_y, # F_;, by Lemma 3:

0 < _F_2k+2£+2 <n - F-—Zk < —F_2k+22, where £ > 0.

By (2) or (3) the algorithm next considers 7 — F_j, ~ F_opi0041-
If after (5), n — F_y, # F_j, by Lemma 4:

“F_op+20-1 <M = Fopp < =F_pk42941 < 0, where £ > 0.
By (4) and (5), the algorithm next comsiders n — F_ox — F_or404 -
Thus, if the first stage of the algorithm produces n - F.; (< > 0), the
second produces n — F_; - F_;,p, where p > 2 and -2 + p < 0.
The same applies to later stages of the algorithm which therefore produces
Fibonacci numbers with subscripts at least two apart.

The next two lemmas are required to prove the uniqueness of this represen-
tation.
k
Lemma 6: (i) 2. F_p; =1 = F_pp-13

=1

K
(i1) 2:f12i+1 = —F_ox;
i<

k
(iii) 2 F; =1 = Fpyp.

=1
Proof: The proof is simple and is therefore omitted here.

Lemma 7: If i3 > i3 > -+« > 43 > 0 and, for 2 < j < h, 75 - 1541 2 2,
h
_F—i1+l < kglF-ik = —F_.,;I -1 if 7; is odd,
and

h
“Fog -1 < ;E Fop, < -F_j +1 if 71 is even.
=1
Proof: 1f ©; is odd, by Lemma 6:
F_il + F'il +3 + F"’:1+5 +eee + F-Z

IA
'™
&
X
I

<F-il +F_.,;1+2 +eoee + Fy

Fogp + 1 -F g 42

A

1]
&

~

< -Fog -1,
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h
S0, _F-i1+l <1 - F"il"'l < kle_ik < —F_.,:1 -1

If 7 is even, by Lemma 6:

h
Fgy +Foysp+ -or +Fy < kle‘”" SFoy +F g 43+ oo +Fg+F )
- h
1 -F g 1< ZF-Lk < =F_i +1-
=1

Theorem 1: Algorithm Z expresses every integer # as a unique sum of a minimal
number of distinct Fibonacci numbers F;, where ¢ < 0.

Proof: 1f n = 0, n = Fy.
If n # 0, by Lemma 5 the algorithm produces a sum of the form
h
n = E F_y, » where Tr 2 ix+1 + 2.
k=1

If the representation were not unique or not minimal, we would also have

m
n= 3 F_j » where ji 2 jp,1 + 2, and possibly m < h.
k=1

Let -7Zp and -jp be the first of these subscripts, if any, that are distinct
and assume %ip > j,. Then

h m
no=Fogy = oo = Fog )y = 2Py = ZF"jk'
k=p k=p
If ip and j, are odd, then, by Lemma 7,
h m
2 F. >-Fy.1 and =-Fj 2 2 F ;.
k=p k=p

Also, ip -2 = jp, and so ‘F—ip+1 > -F..jp -1, which is impossible.
If ip is odd and Jp is even, then

h m
kgpF_,;k is positive and kgpF_jk is negative

by Lemma 7.
Similarly, if ip is even and j, is odd, then

h m
kz-:pF_ik is negative and kz F_; 1is positive
- =p

by Lemma 7.
If 7p and j, are both even, then Zp - 2 2 j,, and by Lemma 7,

h m
ZF—ik < '"Fip +1 and _F—ip -1 < Z F_jk
k=p k=p
and also
“Fip el S 7o, -1
which is impossible.

Thus, for 1 < k <m, g = J-
If m < h, we have by the above:

m h
n = ZF—ik = ZF—ik’
k=1 k=1
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SO

If # > m+ 1, then by Lemma 7, if %,,; is odd, “F_i,+1 < 0, and if Zp4
is even, then 0 < -F_; ., +1, both of which are impossible.

If h =m+ 1, then F_;, = 0, which is impossible because i, # 0.

Therefore, the representation of # is unique and minimal.

As any representation of a number 7 as a sum of Fibonacci numbers

h
kglF_ik > where 2y > 49 > ««« > 1 > 0,

can be changed to

h-1
kglF—ik g1 T Fog -0

it is clear that there can be no maximal number of Fibonacci numbers in a given
sum.
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FIBONACCI SEQUENCES IN FINITE GROUPS

Steven W. Knox*
The College of Wooster, Wooster, OH 44691
(Submitted May 1990)

0. Introduction

The Fibonacci sequence and its related higher-order sequences (tribonacci,
quatranacci, k-nacci) are generally viewed as sequences of integers. In 1960,
Wall [4] considered Fibonacci sequences modulo some fixed integer m; i.e.,

Fibonacci sequences of elements of Z,. He proved that these sequences were
periodic for any m. Shah [3] partially determined for which integers the
Fibonacci sequence modulo m contained the complete residue system, Z,. The

papers of Wall [4] and Shah [3] provided the motivation for Wilcox's [5] study
of the Fibonacci sequence in finite abelian groups.

This paper is in the spirit of [3], [4], and [5]. It addresses not only
the traditional Fibonacci (2-nacci) sequence, but also the k-nacci sequence,
and does so for finite (not necessarily abelian) groups.

1. Definitions and Notation

A k-naceil sequence in a finite group is a sequence of group elements X,
L1, Xy, X35 e-+s Ty> ... for which, given an initial (seed) set Zp, ..., Tj-1,
each element is defined by

Lox] +.. Ty-1 for g <m < Kk

Ly-yLp-f+1 =+ Ty-1 for m =2k

We also require that the initial elements of the sequence, Xy, ..., Xj-1, gen-—
erate the group, thus forcing the k-nacci sequence to reflect the structure of

the group. The k-nacci sequence of a group ( seeded by xp, ..., Zj-1 1is
denoted by F (G; g5 +-.» xj_l).

The classic Fibonacci sequence in the integers modulo m can be written as
Fy(Zy; 0, 1). We call a 2-nacci sequence of group elements a Fibonacci

sequence of a finite group.

A finite group G is k-nacci sequenceable if there exists a k-nacci sequence
of G such that every element of the group appears in the sequence.

A sequence of group elements is periodic if, after a certain point, it con-
sists only of repetitions of a fixed subsequence. The number of elements in
the repeating subsequence is the period of the sequence. The sequence a, b, ¢,
d, by, ¢, dy by, ¢y d» ... is periodic after the initial element g and has period
3. We denote the period of a k-nacci sequence Fy(G; Zg, ---» Xj-1) by Pr(G;
©gs +--» Xj-1). A sequence is simply periodic with period k if the first k
elements in the sequence form a repeating subsequence. For example, a, b, ¢,
d, e, a, b, ¢» dy €5 ... is simply periodic with period 5.

2. Theorems

Theorem 1: A k-nacci sequence in a finite group is simply periodic.

*This work was supported by NSF grant DMS-8900507.
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Proof: Let n be the order of G. Since there are nk distinct k-tuples of ele-
ments of &, at least one of the k-tuples appears twice in a k-nacci sequence of
G. Therefore, the subsequence following this k-tuple repeats; hence, the k-
nacci sequence is periodic.

Since the sequence is periodic, there exist natural numbers 7 and J, with
1 > J, such that

Li4l = Tj+l> Lo T Lj42s Li43 T Ljp3s oves Lipkp = Ljyk-
By the defining relation of a k-nacci sequence, we know that

€ = Tpar(@ia-1) T @ir-2) Tt oo (pa)7h
and

T = T (@i 1) @) T e (@) T
Hence, x; = Zj, and it then follows that

xi_l = .’L'j_l, Li-o = .’ij_z, PP xi_j . .’ZTJ'_ = Xg-
Therefore, the sequence is simply periodic.

This is a generalization of a theorem of Wall [4], which states that F(Zp;

0, 1), the classically seeded Fibonacci sequence of the integers modulo m, is
simply periodic. From the proof of Theorem 1, we have ]G{k as an upper bound
for the period of any k-nacci sequence in a group G.

We will now address the periods of k-nacci sequences in specific classes of
groups. A Group D, is dihedral if

D, =<a, b:a* = b2 =¢ and ba = a lb>.

The order of the group D, is 2n. Note that in a dihedral group generated by «
and b,

(ab)? = abab = aa"'b? = ¢ and (ba)? = baba = baa~'b = e.

Theorem 2: Consider the dihedral group Dn for some n = 3 with generators a, b.
Then Py (Dn; a» b) = P (Dy3 by a) = 2k + 2.

Proof: Let the orders of a and b be n and 2, respectively. If kK = 2, the pos-
sible sequences are

a, b, ab, a~, a?b, ab, a, b,
and

b, a» a~tb, b, a’l, ab, b, as «--»

both of which have period 6. If k > 3, the first k elements of F(D,; a, D)
are

zg =a, x1 = b, xp, = ab, x3 = (ab)2, ..., xTx-1 = (ab)27°.

This sequence reduces to

a, b, ab, e, e, I
where x; = ¢ for 3 < j < k - 1. Thus,
k-1 k
x = [l x; = abab = e, w,, = Il @; = bab = a7,
=0 =1
k+1 k+2
Tyro = [l x; = aba™l = a?p, x5 = Il =ala?b = ab,
=2 =3
k+3 1.2
Ty = [l ;= ata®bab = e.
=4
It follows that x,, .= e for 4 < j < k. We also have:

k+g
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k+k k+k+1
Ty ra1= x; = ala?bab = e, T, 4,,= z; = a’bab = a,
i=k+1 i=k+2
k+k+2 k+k+3
Lpks3 = x; = aba = b, ke ™ ']] x; = ab.
i=k+3 i=k+4

Since the elements succeeding ®ox4+2s L2k+3> X2k+4» depend on a, b, and ab for
their values, the cycle begins again with the 2k+ 204 element; i.e., g = Log+2-
Thus, the period of Fyx(D,; a, b) is 2k + 2. If we choose to seed the sequence
with the generators in the other order, we see that the sequence b, a, ba,
(ba)2, (ba)*, (ba)8, ..., (ba)2*"® reduces to b, a, ba, e, @5 ..., e, e and the
proof works similarly.

If a group is generated by 7 elements, then it is said to be an i-generated
group.
Theorem 3: If G is a 2-generated group with generators ¢ and b, and the iden-

tity element appears in F,(G; a, b) or Fy(G; b, a), a Fibonacci sequence of G,
then G is abelian.

Proof: Without loss of generality consider the sequence F,(G; a, b) and suppose
the identity, e, is the n+ 15t element of this Fibonacci sequence for some
natural number n. The ntP element of the sequence may be any element of the
group. Thus, we have a sequence

Ay Dy vuey 85 €5 vun

What precedes s? Only s~! could satisfy the defining relation for the n - 15t
position. Similarly, s2 must be in the 7z - 284 gsequence position, 8”3 in the
n- 3%, and so on, forming the sequence

a, by ..., 578, 85, 573, 52, 571, gl, o, ... .

Since these elements have exponents generated using the relation uj;-p = -u;-1 +
uU;s which is equivalent to u; = u;_; + u;_p, we find the Fibonacci sequence of
integers occurring in the exponents of s, with alternating signs. Hence, a
Fibonacci sequence of the group has one of two forms:

(i) 7n odd: The sequence is

u

s¥n, g7¥n-1 | gUn-2 = . g5 g73 g2 g1 gl .

In this case, we have

Sun = q, s_un-l = b
(which implies s*r-1 = p~1), and s#n-2 = gb. Since
ghn-1 ghn-2 = ghn-1tUn-2 = gl

we have b lab = a, or ab = ba. Therefore, the group is abelian.
(ii) »n even: The sequence is

—u
S ny,

skn-1 , g™¥n-2 0 g5 g73, g2 g1, gl ¢,

In this case, we have

g”Un = a, shn-1 = b
(which implies s™ %1 = b'l), and s™*"2 = gb, Since
g~Un-1 g=Un-2 = g=(Un-1+ Up_3) - g=Un ,

we have b"lab = a, or ab = ba. Therefore, the group is abelian.
The converse of Theorem 3 does not hold. Consider the abelian group

A =<a, b: a2 = b2 = ¢ and ba = aby.
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The Fibonacci sequences of this group are:

a, b, ab, a, a®b, a3b, a®, a®b, a*b, a3, a’b, ab, a®, b,

adb, a8, a’b, abb, a*, ab, a®b, ab, a2b, a®b, a, b, ab, ...,
and

b: A, ab, azb: a3’ asb’ asb’ al+’ a3b’ a7b, as asb, b, CZB,

abb, a’b, ab, a%*b, ab, aS, abb, a?b, a®, ab, b, a, ab, ... .

The elements e, a2, and a’/ do not appear in either sequence.
Corollary: A 2-nacci sequenceable group is cyclic.

Proof: Let G be a 2-nacci sequenceable group. Then G is either 1- or 2-gener-
ated. If G is 2-generated, then since ¢ appears in the 2-nacci sequence of G,
we can construct the sequence in terms of an element s € G as in the proof of
Theorem 3. Every element of G appears in its 2-nacci sequence, and therefore
all the elements of (G may be represented in terms of a single element, s.
Hence, G is l-generated, or cyclic.

For k = 3, k-nacci sequenceable groups are not, in general, abelian. The
dihedral group of six elements is 3-nacci sequenceable.

Theorem 4: 1f the identity element appears in a Fibonacci sequence of a 2-gen-
erated group, then the collection of subscripts of the sequence elements x; for
which x; = e contains a sequence which has an arithmetic progression.

Proof: By Theorem 3 the group G = <a, b> is abelian. Hence, the nt term of
the sequence has the form g%:-1 p¥n. By a theorem of Wall [4], we know that the
terms where u, = 0 (mod m) have subscripts that form a simple arithmetic
progression. Thus, the sequences of elements a, a, a®, ..., a*n and b, b, b2,
b3, ..., b both have ¢ occurring in positions whose subscripts form arith-
metic progressions, with the period of the occurrence of ¢ depending on the
order of ¢ and b. The period of this induced occurrence of e in a, b, ab, ab?,
a?b3, ... will be the least common multiple of the period of e in a, a, a?, ...
and the period of ¢ in b, b, b2, b3, ... . Hence, the positions of ¢ in a, b,
ab, ab?, a?b3, ... will have subscripts which contain an arithmetic progres-
sion.

3. An Open Question

It is clear that a homomorphic image of a k-nacci sequenceable group is k-
nacci sequenceable. The extension of a k-nacci sequenceable group by a k-nacci
sequenceable group is not necessarily k-nacci sequenceable. In fact, the
direct product of k-nacci sequenceable groups is mnot necessarily Xk-nacci
sequenceable.

We refer to the abelian group

A=<a, b: a% = b2 = e and ba = ab>.
The group <b> has a Fibonacci sequence
Fo(<b>; e, b) = e, b, by, €5, ...,
and hence is 2-nacci sequenceable. The group <a> has a sequence
Fo(<ars e, a) = e, a> a, a2, a3, a°, a8, a*, a3, a7, a, a8, e, a8, ab,
a’, ab, a*, a, a5, ab, a2, a8, a, e, a, a, ...

and hence is 2-nacci sequenceable. We have already seen that A4, the direct
product of <a> and <by>, is not 2-nacci sequenceable.
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Question: Are all nonsimple k-nacci sequenceable groups nontrivial extensions
of a k-nacci sequenceable group by a k-nacci sequenceable group? That is, does
a nonsimple k-nacci sequenceable group have a k-nacci sequenceable normal sub-
group?
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MORE BINOMIAL COEFFICIENT CONGRUENCES

D. F. Bailey
Trinity University, San Antonio, TX 78212
(Submitted May 1990)

1. Introduction

In 1878 Edouard Lucas gave the following result for computing binomial co-
efficients modulo a prime [3], [4].

Theorem 1.1: If p is a prime, n, r, ngs and r, are nonnegative integers, and
np and r, are both less than p, then

np + ”0) - (n)(no>
(rp + ry) ~ \r/\r (mod p) .
We have recently derived the following variations of Lucas' Theorem (see
(11).
Theorem 1.2: 1f n and r are nonnegative integers, and p is prime, then
npy - (7 2
(rp) = (r) (mod p<).

Theorem 1.3: If n and »r are nonnegative integers, and p is a prime greater
than 3, then

() = (2) toa 50,

In [2] we have also obtained the following congruences which bear a strong
resemblance to the theorem of Lucas.

Theorem 1.4: I1f p is prime, » and r are nonnegative integers, and < is an in-
teger strictly between O and p, then

(% o) = v (5 )(E) os

r+ 1/\7
Theorem 1.5: 1f p 2 5 is prime, #n, m, and k are nonnegative integers, k < p,
and 7 is an integer strictly between 0O and p, then

2
(npz +mz; + i) =+ 1)(n Z l)(kpp+ i> (mod p%).

In this paper we show that in fact an infinite sequence of results like
those above hold. 1In our proofs we need the following result (see, e.g., [5]).

1

Theorem 1.6: If p is prime, n = p®, and pt divides k while p**l does not divide
k, then p° % divides () and p®~ **ldoes not divide (%)

2. Main Results

Our first result is as follows.

Theorem 2.1: If p > 5 is prime, n and m are nonnegative integers, s and all
the a; are integers with s > 1, 0 < ap <p, and 0 < gy <p for k = 1, 2, ...,
s - 1, then
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( " )

npe + ag_1p° Tl + .-+ arp + ag

= m ps +1
=(+D (n + l)(as—lps'l + eee +ajp + ao> (mod p?*7).

Proof: Theorems 1.4 and 1.5 show that the conclusion of the theorem is valid
for s =1 and s = 2. We assume therefore that the theorem's conclusion holds
for some s 2 2 and consider the assertion

s+1

( "
nptl + agps + ... +a1p+ao)
=+, 7)) pe (mod p?+2)
- n+ 1 a5p5+...+a1p+a0> mod p )
If m = 0 the assertion above is merely that 0 = 0. Likewise, if m = 1 one

can check that our inductive assertion holds trivially. Therefore, we assume
the validity of the inductive assertion for some m 2 1 and consider first the
case in which » = 0. Then we must treat

(m + l)ps+1 agpf+ ---+ ajp +ag mps+l ps+l
(asps""-- +alp+ao> B jgo <asps+"' +a0—j)< J )
We first show that whenever 0 < j < agzp® + --- + a;p + ag, we have
s+1 s+1
1 mp .)<p . ) = s+2y
(D (asps+"'+alp+ao_J J 0 (modp )
To this end, let j = b,p® + --- + byp + by and note that, if by # 0, then
Theorem 1.6 shows that
s+1
(p . ) =0 (mod po*l).
J

Moreover, by Theorem 1.1,

( mps+1 ) _ ( mps+l

asp® + --- +ay - 4 csp3+---+f30)

_ (m\(O 0 0y _

= (0)e)epny) o (o) =0 (mod o,
since not all the ¢; are zero. Hence, we have the product in (1) congruent to
0 modulo p3+2 as desired. If, on the other hand, by = 0, we see that

( ' mps+1 _ mps+1 >

asp® + -+ + ag - j> (csps + --- +c1p +ag

and that this last is congruent to zero modulo p®*!

Likewise, one can argue that

since ag # 0 by hypothesis.

(piil) =0 (mod p),

and again the product in (1) is congruent to O modulo pet2,
Therefore, we have established that

(m + l)ps+1 _ mps+1 ps+l c42
(asps +...+ ap + ao) - (asps +eee+ a0)4_<asps +eoe + a0> (mod p*™%)
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and by the inductive hypothesis this is congruent modulo ps+2 to
s+1
(m + 1)(asp3 + ...+ ap + a0>
which is the desired result.
Next we assume " # 0 and consider

ps+l

1
(nps+1 _E_ma:pi)QSJrl + aO) - j=ZO <nps+l + aspzpj—i—%.- + ag - J)(pi; )

As previously, one can show that all terms in the above sum are congruent to 0

modulo p®*2 save those where j = 0, § = p°*!, or j = a,p% + --- + ap. So, thus
far, we have

( (m + l)ps+1 )

np3+1 + a,ps + ... + a; + ag

s+1

s+1 1
(nps"l + aspsmi cee +app + ao) * (ng‘ilﬂasps fs-+-- + a0>

s+1
+2
((n - l)ps+1 + agp® + --- + ajp + ao) (mod p®*<).

Now consider the terms on the right-hand side of the above congruence. By the
inductive assumption

mps+l
(nps” tap® t .- tap ao)

_ m p3+1 s+2
= (n+ l)(n + l)(asps +.--+ap+ a0> (mod p )
Moreover, since
mps+1 _m _ ps+l _ o+l
(nps”) (n) =0 (mod p) and (aspS + oo+ ao) = 0 (mod p7),

s+1 s+1 m s+1
(m s+1)( s p ) = ( >( s p ) (mod ps+2) .
np asp + ... + ao n asp 4+ e + ao
And calling on the inductive assumption once again, we see that

mps+1
((” - Dp**h + aeps + oo +ap + a0>

- n(rg)(asps +--p-s—:1a1p + a0> (mod p?*%).

Thus, we conclude that

( (m + 1)ps*l )

np®th + agpe + .-+ ajp + ag

= [(n + 1) (n + 1) + (n) + n(n)](asps Foeee +oay (mod p®*<).
But this last expression is obviously

s+1

m+ 1 p )
+ ap + agl’

(n + l)<n + l)(asp34—---
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This completes the induction and establishes the theorem.
Our next result generalizes that of Theorem 1.3.

Theorem 2.2: 1f p > 5 is prime and k, r, and s are all nonnegative integers,
then
(kps +1)

s+1

rp

1]

(igi) (mod p®*3).

Proof: We proceed by induction. For s = 0 the assertion is identical with that
of Theorem 1.3. We therefore assume the result for some s 2 0 and consider the
assertion

W ()= () .

Obviously assertion (2) holds for » = 0. Thus, we fix » 2> 1, assume (2)
holds for all smaller »r, and establish our assertion by induction on k. Asser-
tion (2) clearly holds for k < r, so we assume its validity for some fixed
k > r and consider

5+2 s+1
(k + 1)ps+2\ _ 14 kp°+2 pst2y & kps +2 po+2

( rps+2 ) - iz%)(rp5+2 - i)( 7 ) - ;g% (rps+2 - Zp)( lp ) + B
where B is the sum of those terms of the form

( kps+2 )(ps+2

rps+2 - 4 : ) for 7 not a multiple of p.

As in Theorem 2.1, it is easy to show that each summand in B is congruent to 0

modulo p®*%. Therefore, we have
s+1
(k + 1)ps+2\ _ P kps+2 ps+2 st

(3) ( IapS"’ ) - ZZ‘—‘:O (pps+2 - Zp)( Zp ) (mOd p )'
Now we consider a particular summand in (3) with 0 < L < p°*l so that

L =agp® + as-1p® 1 + -+ + a;p? where a; # 0 and 0 < g < s.
Then

ps+2 ps+l—qpq+1

( lp ) N ((asps"q + oee. + aq)pQ+1)

ps+1—q q

q+3
((asps"q +agp T+ e+ aq)pq) (mod p*™%)

by inductive assumption. But this simply says
ps+2) _ ps+1) q+3
( p )= ( 1 (mod p9*°).
One can also show
s+1
(pz ) = 0 (mod ps+1'q),

( kps+2 ) - ( kps+1 Z) (mod pa+3),

Pps+2 _ Zp Pps+l _
and
kps+2 _ _
(rps+2 - Zp) =0 (mod p®*179).
Therefore,
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(p;;2>(rpskf;+_2 Zp) = (pSZﬂ)(Ppskfzﬁ_z Zp) (mod p°*H)

(p2f1><rpj%§rtlzp> , <p2fl)(Pp§€i+j Z) (mod ps+u).

It follows then that

oA ) = B0 L) mod g,

Now if we note finally that the inductive hypotheses on kX and » insure that

(igiﬁ) = (igiﬁ) (mod p?+¥)

1

holds, as does a similar statement with » replaced by » — 1, we see that

s+1
(64 D57 L5 (L)) s .

I’ps+2 ;,,ps+1

But this clearly gives
(k + ]_) s+2 k + 1) s+1
( l,,ps+€ ( rps+ ) (mod p+h).
This completes the inductive proof of assertion (2) and establishes the
theorem.

Remark: Professor Ira Gessel has called the author's attention to a result
which implies Theorem 2.2. See Ira Gessel, "Some Congruences for Generalized
Euler Numbers," Can. J. Math. 35.4 (1983):687-709.

References

D. F. Bailey. "Two p3 Variations of Lucas' Theorem." J. Number Theory 35.2
(1990):208-15.

D. F. Bailey. "Some Binomial Coefficient Congruences." Applied Math. Let-
ters 4.4 (1991):1-5.

N. J. Fine. "Binomial Coefficients Modulo a Prime." Amer. Math. Monthly 54
(1947):589-92.

Edouard Lucas. "Sur les congruences des nombres eulériens et des coeffi-
cients différentiels des fonctions trigonométriques, suivant un module
premier." Bull Soc. Math. France 6 (1878):49-54.

David Singmaster. "Divisibility of Binomial and Multinomial Coefficients by
Primes and Prime Powers." A Collection of Manuscripts Related to the
Fibonacci Sequence. Santa Clara, Calif: The Fibonacci Association, 1980,
pp. 98-113.

skkockokk



k-REVERSE MULTIPLES
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Loyola College in Maryland, Baltimore, MD 21210
(Submitted May 1990)

We begin with the simple observation that 4+ (2178) = 8712. That is, when
2187 is multiplied by 4, the result is 8712 which is 2178 with the digits
reversed. Since 4 is the multiplier that produces the reversal of digits, we
call 2178 a 4-reverse multiple. More generally, let x be an n-digit, base g
number

n-1

(1) x = 2 agt
i=o

with 0 < g; < g and g,_; # 0. Then x is called a k-reverse multiple if, for
some integer k, 1 < k < g,

n-1

(2) ke = 3 ap-1-:9%.
i=0

Previously, most work on k-reverse multiples has focused on either finding
all those less than a given m [1], or characterizing, for a given 7, those with
n—-digits. This latter problem seems to be quite difficult and has been
completely solved only for the 2- and 3-digit cases (see [1] and [3]).
Additionally, various schemes have been advanced for calculating these
multiples (see [2] and [3]). Beyond this, it has been noted that once a
k-reverse multiple is known, it may be used to create others. For example, it
is easily verified that 21782178 and 21978 are also base 10, 4-reverse
multiples.

What has not been discussed previously is how to find all k-reverse multi-
ples once those with a small number of digits are known. For example, in base
11, 118 and 1298 are 7-reverse multiples. While it is clear that 118118 is a
7-reverse multiple, it is not as obvious that 11918 is also such a multiple.
This question, of how to form multiples having a large number of digits from
those with a small number, is the focus of our discussion. As we will see, the
solution has a graphic representation.

We begin by supposing that x is an n-digit, base g, k-reverse multiple.
From (1) and (2), we obtain the following set of equations by comparing corre-
sponding digits of kx:

kag = a1 + 7y

ka;, +ry =a,., + ryg
(3) kai + ri—l = an__l_i + I’ig

ka,_, + rp-3 = aj + r,_2g9

ka, 1 + 7,_, = q
where 0 < r; < g for 7 =0, «e., W — 2. The last equation implies ag # O since
ay,-1 # 0. The r;'s are the so-called "carry numbers." As we will see, these

numbers determine the character of k-reverse multiples.
To determine whether there are any k-reverse multiples for a given g and k,
we consider the equations in (3) two at a time. For convenience, let r-j =r,_;

= 0. At the (Z+1)5t step, 2 =0, 1, ..., we examine the pair of equations
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kag triop = ay-1-4t g
(4
kan—l-i t Pyp-4 = A4 tr,_1-.9

where r;_; and r,_-1-; are known from the previous step. That is, we seek non-
negative integers a;, d,-1-;, ¥;, and P,_5_, which, in addition to (4), satisfy

0 < ao, a?’L—l

(5)

a; < g, 1 =0,1, ..., n-1
and
(6) I‘i<g,i=0, 1, eeey n — 2.

The equations in (4) along with the inequalities in (5) imply tighter restric-
tions in (6). That is the content of the following lemma.

Lemma 1: Suppose there exist nonnegative integers which satisfy (4) and (5)
for 2 =0, 1, ..., n — 1. Then the following hold:

0 < ry
(7

r;, < k for 2 =0, ..., n - 2.
Proof: Solving (4) for a; gives
(8) a; = (krgg = kepoy + Ppoyo5g = rpop-) /(K2 - 1).
Letting ¢ = 0 and using r_y=r,_-7 = 0 in (8) gives
ag(k? = 1) = krgg = r,_5.

Hence, 0 < ry since 1 < k, 0 < ap, and 0 < »,_>.

To show the second part of (7), suppose r;_; < k; note that when 7 = 0, the
supposition is valid. Then from the general equation in (3) we have

r,g < kag +r;) < ka;, + k =k(a; +1) < kg
and hence r; < k. [J

One convenient way to proceed is to look for nonnegative integers a; and
Qa,-1-4 satisfying (5) such that

ka; + r;-1 = ap-1-4 (mod g)
(9
0 <a; +ry1-49 - kay-1-; <k

where r;_; and r,_;-; have been determined in the previous step. If the a's

exist, then »; and r,_,_, can be found by (4):

]

(ka; + r;_1 = ay-1-9)/g

r
(10)
Ppop-y = Qp * Py_1-;9 = Kay_1- ;.

The restrictions in (9) guarantee the r's in (10) are nonnegative.

The above procedure is successful when, at each step, there are nonnegative
integers a; and a,._;-; which satisfy (5) and (9). The following graphical
notation will be convenient. If r,_j_;, P;_1, Gu_1-4 G;s Py-0-;5 and r, sat-
isfy (4), (5), and (7), then we will write

(ry-1-4 ;1)
(1) (Ap-1-45 a;)

(rn-2-4» Pi)
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and conversely. Thus, we hope to generate a graph, or more precisely, a rooted
tree in which a path from the root to a node has the following form and labels:

(0, 0)
(@n-15 ag)
(r,-25 79)
(@n-25 ai)
(ry-3> r1)
(12) |
|
(Pr-1-45 7i-1)
(@p-1-45 @5)
(Ppg-55 73)

We will use this notation in the examples below. Since 0 < r; < k, there can
be at most k2 different pairs of r;'s used as node labels in the tree. If a
node is labeled with an r-pair that has already appeared in the tree, the tree
can be pruned after this node, since no new information will be obtained beyond
this point. When needed for analysis, a pruned tree can be extended by repli-
cating earlier sections of it. Before proceeding further with the exposition,
we look at the tree for the 4-reverse multiple, 2178.

Example 1: g = 10, k = 4.
Let us begin by considering (9) with ¢ = 0. The various possibilities are:

ag a,-1 = bag ag - 4a,-;
1 4 -15
2 8 -30
3 2 -5
4 6 -20
(13) 5 0 5
6 4 -10
7 8 =25
8 2 0
9 6 -15

Only ag = 8 satisfies the required condition
OSa0—4an_l<k=4.

Using (10), it can be shown that r,_, = 0 and ry = 3. Continuing in this man-
ner and using the above notation, the following is obtained:

(0, 0)
(2, 8)
(0, 3)
{(L 7)
(3, .3)
(14) (7, 1) 9, 9)
(3, 00 (3, 3)
(8, 2)
(0) 0)
(0, 0) (2, 8)

(0, 0) (0, 3)
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The tree is not continued any further since (0, 0), (0, 3), and (3, 3) have
appeared previously. The careful reader will observe that

(0, 0)
| 0, 0
(0, 0)

appears at the end of the tree, but not initially. This will always be the
case since the equations in (4) are satisfied by the trivial or zero solution.
Although r; # 0, the r-pair (0, 0) is permissible after the first step. [

The following question arises immediately. How do we use such a tree to
find k-reverse multiples? The next two theorems provide answers.

Theorem 1: For a given g and k, suppose a tree of the form (12) exists; that
is, suppose nonnegative solutions to (4), (5), and (7) exist. Then there is an
n = 27 + 2-digit number satisfying (2) if and only if r,_,_; = r;,. In this
case, x is given by

(15) T = Ay 1QAyep vee Apo1-70; «-- A10Q-

Proof: In forming (12), the equations to be considered at the (Z+ 1)t step are
ka; trioy =dp-pt1Ng

(16)
Kay-1-5+ T ng-¢ = ag +t ryo1-49

The two quantities in bold type are the r's to be determined at this step. If
n = 27 + 2, then this is the last set of equations to be considered. Since

n-2-1=@Qi+2) -2-1=1,

r,_o-;=r; and the conclusion follows. Conversely, if »,_,_; = r;, then we
may stop with (16) by letting n - 2 — ¢ = 7 to give n = 27 + 2. [J

Corollary 1: For base g, suppose there are k-reverse multiples. Let 7 be an
even number. Then there exists an n-digit multiple if and only if the corre-
sponding infinite tree contains a path of length »n/2 from the root to a node
designated by (u, u).

Proof: This is simply a restatement of Theorem 1. [J

Example 1 continued: By Corollary 1, to find all base 10, 4-reverse multiples
with an even number of digits, we traverse the tree in (14) stopping at nodes
of the form (4, u#). Thus, we see that (3, 3) gives rise to a 4-digit multiple.
To find this number, we use (15) of Theorem 1. We read it off from the a-
pairs, starting at the root, reading down the left-hand side and then back up
the right. Thus, we find that 2178 is a 4-reverse multiple. So, too, are the
following numbers:

219978, 21782178, 21999978,
2178002178, 2197821978, 2199999978.

Of course, there are infinitely many, but these are the ones with the least
number of even digits. It should be remembered that the tree is actually infi-
nite, and that pruned branches may be extended when needed to obtain additional
desired numbers.

Theorem 2: For a given g and k, suppose a tree of the form (l2) exists; that
is, suppose nonnegative solutions to (4), (5), and (7) exist. Then there is an
n = 27 + 3-digit number satisfying (2) if and only if

(k - 1)](1’,1_2_7;9 - Z’,L') and 0 < (I’n_z_ig - TL)/(Z( - ].) < g.

In this case, x is given by
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n-1-¢Ma; -.. a1ag

where M = (r,_o,_;9 - r;)/(k - 1).

Proof: 1f n = 2¢ + 3,

then there are an odd number of equations in (3).

After

(Z+ 1) steps, we are left with

(18) kai+1 + r;
Since n - 2 - 1 =171 + 1,
(19)

= Ap-2-7 Ft Pi419-

(18) becomes

Kajoy + 7y = apyy  Pnon-9-

Because r; and r,_,_; are already known, we must have

(20)

ai41 = (Py-p-;9 -

)/ (k - 1).

Thus, after determining r,_,_, and r;, we can stop if and only if

(k = 1) | (ngerg = 72)

and

0 < (ryon-y9 ~ 2,0/ (k-1) <g.

When this occurs, x is given by (17). [

In order to apply Theorem 2 to a tree, we must check at each step to see if

(k - I)I(Pn_z_ig - Y’i) and 0 <

(ry-9-39 — r;)/(k = 1) < g. Thus, in Example 1,

since 3|(3+ 10 - 3) and 0 < (3 «10 - 3)/3 < 10, the r-pair (3, 3) yields the 4-

reverse multiple 21978.
process.

Theorem 3: For a given
is, suppose nonnegative

The following theorem simplifies this tedious checking

g and k, suppose a tree of the form (12) exists; that
solutions to (4),

(5), and (7) exist. Then there is an

n = 27 + 3-digit number satisfying (2) if and only if the graph contains
(Pro1-45 Pi-1)
, (An-1-¢5 az)
(Pp-2-15 73)
(@p-9-55 @341)
(rys Pyop-q)-
Further, when this occurs, a,-p-; = Az41 = M = (ry_p_;9 - r;)/(k - 1).
Apopg-y = agy1 = M = (Py_p-yg9 - re)/(k = 1).

The desired n-digit number x is given by (17).

Proof: Suppose there is a 27 + 3-digit k-reverse multiple.
the above graph exists by assumption.
Equations (4) at

piece.

ka; iy
(21)

+ 7

Kap-p-; + Pn_3-; =

From (19) and (20) in

The first piece of
We must show the existence of the second
the (Z+2)" step are

= Ay-2-¢ t Piy19

ai+1  t Pp-2-:9-.

the proof of Theorem 2, we have

kM + r; = M + Yy-9-:9-

Thus, one solution to (21) is
An-2-1 = M; aj+1 = M
Pp-3-i = Pi5  Pisl = Pu-2-4

and the result follows.

Now suppose for a given g
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(Pp-2-i> 77)
: (@n-2-4> ai41)
(l"i > Z’n_z_i) .

By hypothesis, (4) becomes
Kaje1 4+ 7; = ayp g+ Puopoig
(22)

kay_ o ;+ 7 = a1 + Py_p 49

Subtracting one equation from the other gives a;;1=d,-»-;. From this, it fol-
lows that (k - 1)|(#n-9-;9 - ;) and au_p_; = a;41 = (p-9-s9 — )/ (k - 1), so
by Theorem 2 there exists an n = 27 + 3-digit k-reverse multiple. [J

Corollary 2: For base g, suppose there are k-reverse multiples. Let 7 be an
odd number. Then there exists an n-digit multiple if and only if the corre-
sponding infinite tree contains a path of length (n - 1)/2 from the root to
nodes designated by (u, v) followed by (v, u).

Proof: This is simply a restatement of Theorem 3. [

The importance of Corollaries 1 and 2 cannot be overstated. Suppose it is
known that for a given g there are k-reverse multiples. Then we wuse the
procedure suggested by (9) to create a pruned tree. By traversing the tree,
replicating earlier sections when necessary, and stopping at those pairs which
have the form given in the above corollaries, we are able to find all k-reverse
multiples for a given n. This procedure is illustrated in the following
example.

Example 2: g = 19, k = 14.
The tree in this case is:

(0, 0)
‘(1,15)
(1, 11)
| @, 1
(8, 13)
(11, 8)
(6, 6)
| 8, 1)
(13, 8)
(17, 2) - (18, 17)
(11, 1) (12, 12)
(15, 1) (s, 16) | a7, 18)
(0, 0) (1, 11) (8, 13)
(0, 0) (1, 15)
(0, 0) (1, 11)

By Corollaries 1 and 2, we can traverse the tree stopping at (6, 6), (12, 12),
(11, 1), and (0, 0). The first two nodes give l4-reverse multiples with an
even number of digits, while the third gives rise to those with an odd number
of digits. The pair (0, 0) of course always accounts for multiples with both
an even and an odd number of digits. So there are 6-, 10-, 11-, 12-, ...-digit
l4~-reverse multiples.

Those with the least number of digits are:

1211817 15
1211818 17 11 8 17 15
1211817 16 2 11 8 17 15
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It would be difficult, using these, to see that

1211818 17 11 8 18 17 11 8 17 15

and
1211817 16 2 11 8 18 17 11 8 17 16 2 11 8 17 15

are also k-reverse multiples. Yet, using the tree, it is clear that they are.[]
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ON THE EQUATIONS U, = Ugqx?, WHERE q IS ODD,
AND V, = Vgx?%, WHERE g IS EVEN

Richard André-Jeannin
IUTGEA, Route de Romain, 54400, Longwy, France
(Submitted May 1990)

1. Introduction

Let {w,} be the sequence satisfying the second-order linear recurrence
(1.1) Wy = PW,_1 + W,_», 1 € Z,

where w,, w; are given integers and p is an odd positive integer.

Of particular interest are the generalized Fibonacci and Lucas sequences,
{U,(p)} and {V,(p)}, respectively, which are defined by (l1.1) and the initial
conditions

Uo(p) =0, Ul(p)

1,
and

Volp) = 2, Vi(p) = p.
Cohn [2] has proved the two theorems below, which we shall need later.
Theorem 1: The equation V,(p) = 2 has:

(1) 4if p = 1, two solutions n = 1, 3;

(2) 4if p = 3, one solution n = 3;

(3) 4if p 2 1 is a perfect square, one solution n = 1;
(4) mno solution otherwise.

The equation V,(p) = 222 has the solution n = 0, and for a finite number of
values of p also n = *6, but no other solutions.

Theorem 2: The equation U,(p) = 22 has:

(1)- the solutions n = 0, and n = *1;

(2) 1if p is a perfect square, the solution n = 2;
(3) 4if p = 1, the solution n = 12,

(4) no other solutions.

Recently, Goldman [3] has shown that if L, = Lymx?, where Lon is prime, then
n = *2™, Adapting Cohn's and Goldman's method, we shall prove here the follow-
ing theorems.

Theorem A; Let g > 2 be an even integer. Then V,(p) = Vq(p)x?2, if and only
if n = *q.

Theorem B: Let g 2 3 be an odd integer. Then the equation U, (p) = Uq(p)x2 has
the solutions

(1) n =0, and n = %q,
(2) if p=1o0r 3, g =3, and n = 6,

and no other solutions.

2. Preliminaries

The following formulas are well known (see [1], [4], [5]) or easily proved
(recall that p is odd). For the sake of brevity, we shall write U, and V,,
instead of U,(p) and V,(p).
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(a) U, = (-1)*1U,, and V., = (-1)"V,,
(b) Uzn = Uth,

(¢) if d = ged(m, n), then Uy = ged(U,, U,),
(d) if g = 3, then Uq|U, iff q|m,
(e) if g = 2, then Vq|V, iff g|n, and n/q is odd,

(f) if an odd prime number divides Vy; and Vi, then v,(q) = v,(k), where
vy(s) is the 2-adic value of the integer s,

(g) 2|V, iff 3|n,

(h) if k = 2 (mod 6), then V3 = 3 (mod 4),

(1) gecd(Uy, Vn) =1 or 2,

(3j) 4if {wy,} is a sequence satisfying (1.1), then, for all integers n, X,

K. o_
Wopor + (D w, = w1 V-

The following fundamental lemma (see [2], [3]) is recalled here with a new
proof.

Lemma 1: If {w,} is a sequence satisfying (1.1), and kX an even number, then,
for all integers n, ¢

Woyoke = (-1)Pw, (mod V).

Proof: By (j) we have, since k is even
Wy42k = —W, (mod Vi),

and the proof follows by induction upon ¢. Q.E.D.

We shall also need the next result.

Lemma 2: If g and k are integers, with ¢ odd and k = *2 (mod 6), then
ged(Uqg, V) = 1.

Proof: By (h) and (i), notice that gecd(Uy, V3) = 1, since Vi is odd. Let
d = ged(q, k) = ged(g, 2k).

By (b) and (c), we have
gcd(Uq, Vi) |ged(Ug, Usy) = Ugs

and U, |Up, since d|k. Thus,
ged (Ugs Vi) |Uss

and so gecd(Ug, Vi) = 1, since ged(Uy, Vi) = 1. Q.E.D.

3. Proofs of Theorems

Proof of Theorem A: Assume that V, = quz, where g 2 2 is even, and n # #q.
Since Vhth, it follows from (e) that

n= (1 + 435)q, § = 0
= +xq + 2.3%k,
where 2jg = 3"k, and kK = *2 (mod 6). By Lemma 1 and (a),
Vy = ~Vaiqg = ~Vg (mod Vz),

since g is even; hence,
~Vg = Vygz? (mod V).

Since 2jgq = 3%k, then vy(k) > vy(q), so by (f) and (g), gcd(Vg, Vz) = 1 since
Vx is odd; hence, '
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-1 = 22 (mod V),
which is impossible, since V3 = 3 (mod 4). Q.E.D.
Proof of Theorem B: Assume that U, = Usx?, where ¢ 2 3 is odd, and n = %q.
Since Uq\Un, it follows from (d) that q‘n.
Assume first that n is even, n = 2jq, and note that j 2 1, since # even and
negative would imply that U, < 0. By (b), we get
UjqViq = Ugx?s
hence,
Ki = yz or qu = 2y2,
since Ug|Ujq and ged(Ujq, Viq) = 1 or 2.
If j = 1, then V4 = y2 or Vg = 2y?, which imply by Theorem 1 that p = 1 or
3, and g = 3, n = 6; it can be verified that
Ug(1l) = U3z(1).22 and Ug(3) = U3(3).62.

If § 2 2, then Vig = yz must be rejected by Theorem 1, since Jg > 3 and
Vig = 2y? can be satisfied only if jg = 6, by Theorem 2, i.e., for ¢ = 3, J =
2, and n = 12. However,
UlZ = U3x2
can be written, by (b),
UsV3Vg = Usx? or ViV = x2.
Since Vg = 2y2, then V3 = 232, and this is impossible by Theorem 1.
Second, assume that U, = quz, where n is odd,
n = (x1 + 43)q, § = 0,
= +q + 2.37k,
where kK = *#2 (mod 6). Then, by Lemma 1 and (a),
U, = ~-Usq = -Ugq (mod Vi)
since ¢ is odd. Therefore, by Lemma 2 and hypothesis,
-1 = 22 (mod Vi)

which is impossible, as above. Q.E.D.
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BOUNDS FOR THE CATALAN NUMBERS

A. V. Boyd
University of the Witwatersrand, Johannesburg 2050, South Africa
(Submitted May 1990)

1. Introduction

For the simple symmetric random walk on a two-dimensional lattice, it is
well known (see, e.g., Feller [4], p. 361) that the probability of the origin
begin revisited at the 2nth step is

2
MZn = 4_271(2””) ) (7’l = Oy ]-: 29 '-');

and the Catalan number

_ 1 2n
Cn _n+1(7fz)

(see Constantine [2], p. 61) is expressible as

22n
- 2

In a study of the transient behavior of the random walk Downham & Fotopoulos
[3] have shown after much computation that

1 <1 1 + 1 . . 1 i 1 + 1 + 1 )
= {1 - — u — {1 - —
™ 4n - 32n? o 4n - 32n2 3218
for n =1, 2, ..., and this leads to inequalities for ¢, which we strengthen by

using standard analytical techniques. It is shown that, for k = 3 and every
positive integer #,

1+ f(n, k) < iy <1+ f(n, k) + x4
where 2
2 e (1)
Fn, k) = ;é% nn+1) ««« M +2r-1)
and
N (k - 2)!
%+l Tarn+ D enmn+ 1) - (n+ k- 1)

For any positive integer n,
lim €+l < 0
k+w
and so both the bounds given by the inequalities tend to 1/wnu,, as K increases;

hence, uy, can be approximated as accurately as desired.
Explicitly, for k = 3, the above results give

1 1 3 1

- +
Tt Y+ D T e s D v T amtn ¥ D2 T D)
| 1 3
> > 1+ — + +
THUD , 4n 32n{n + 1) 128n(n + 1)Y(n + 2)

and these are stronger than the inequalities of Downham & Fotopoulos.
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2. Proof of the Inequalities

It is easily verified that

1\ )2
_ F(n+§) 1 /F(n)r(n+ 1)
2n =\ 1\ I

) ) T )

and then, by Gauss's theorem (see Whittaker & Watson [5], p. 281):

F(a, b; ¢3 1) = 522)5(2)1—"(2 — ZZ;; for Re(¢ — a - b) > 0,

it follows that

l/ﬂnf(—%, —%; n; l) since 7 is a positive integer

l/wn{l + f: vr}

U2n

I

r=1
where
{_1.1.2. .(1,_2)}2
2 2 2 77 2 ~ Ugp-n(r = 1)!
T T plun+1) - +r-1) b4brm(n+1) --- W+ r - 1)°
Since v, > 0 (¥ 2 1), it follows that up, < 1/mm and so, if r > 3, then
V. < (r - 2)!/m < (r - 3)! .
r T 4rmn+1) --- +r-1) 4mn+ 1)-.- (n+r-1)°
hence, for k 2= 4,
- 13 (r - 3)!
r};kv,, < 41Trgkn(n+ 1) «-« (n+r -1)
_ (k - 4)! k-3 L (k-3)(k-=-2)
bomn +1) -+ M+ k-2 +k~-1 @w+k-1@m+k)
- (k - 4)! _ . _1- -
TG D ik pFk -3 etk -1 1) -1}
_ (k - 4)! fr(n + k - NIr(n +1) 1}
baimn + 1) --- (n+ k- 2)T(n + 2)T(n + k - 2)
by Gauss's theorem, since n > —1. This simplifies to
ki o < (k - 3)!
=T nm+1)-4mn+1) --- (n+k-2)"
From
L+ k i k (k = 2)!
rzzjlvp <1 +pz=:1vr <1 +rz=:10,. + T D AT D - G kD

it then follows that, for k > 3,

1
1L + f(n, k) < Triia <1+ f(n, k) + g4
where
(k = 2)! _ 1
0 < gy < gkl = 81k - Dk + 0 as k > «.
1992]
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3. Numerical Comparisons

The following table shows some bounds given in the cases k = 3 and kK = 4 as

well as the bounds obtained from the inequalities of Downham & Fotopoulos. For
problems related to the computation of the integer ¢, when n is large, see
Campbell [1].
n Uon Cn
Lower Upper Lower Upper
Bound Bound Bound Bound
D & F | .24868 .25863 .9974 1.0171
1|k =3/|.24942 .25073 .9989 1.0015
k =4 |.249778 .250429 .99956 1.00086
Up = .25 cy1 =
D & F | .140 504 141 126 1.99914 2.00356
2|k =131].140 560 .140 698 1.99954 2.00052
k = 4 | .140 605 .140 660 1.99986 2.00025
Uy = .140 625 Cop =
D & F |.031 045 161 .031 046 156 16795.935 16796.204
10 | k = 3 |.031 045 315 .031 045 481 16795.977 16796.022
k =4 |.031 045 390 .031 045 416 16795.997 16796.004
uzg = .031 045 401 c1g9 = 16796
D& F |.003 175 151 061 .003 175 151 160
100 | k = 3 |.003 175 151 085 .003 175 151 088 c100 = -896 5199 x 10°7
k =4 ).003 175 151 086 636 .003 175 151 086 683
Uzgg = -003 175 151 086 657
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PROJECTIVE MAPS OF LINEAR RECURRING SEQUENCES
WITH MAXIMAL p-adic PERIODS
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1. Introduction

Let a = X;>gp;at be the p-adic expansion of an nth-order linear recurring
sequence o of rational (or p-adic) integers. In this paper the projective map
¢q: o + 04-1 is shown to be injective modulo pd for linear sequences having
maximal modulo pd periods.

Let R be the ring of rational (or p-adic) integers, p a prime number. For
a polynomial f(x) = ZZ=Ocixl € R[x] and a sequence o over R, define the opera-
tion

f@a =Y ¢, Lfa
=0

where L is the left-shift operator of sequences. o is said to be an n*M-order
linear recurring sequence modulo pd [or over R; = R/(pd)] generated by f(x) if
f(x) is monic and f(x)a = 0 (mod pd). It is well known ([3], [&], [6], [7])
that the residue sequence o mod pd is ultimately periodic with the period

(1) per(a)ps < pd~l(p” - 1).
Definition: An nt*h-order linear sequence o attaining the upper bound in (1) is
said to be primitive over F;. Furthermore, o is primitive over R if it is

primitive over R; for all d > 2.

The arithmetical properties of this special class of sequences have been
studied in [1], [2], [3], and [6]. Write a in its p-adic form

o = 0g +p0{,1 +p2062 b I
where the a;'s are p-ary sequences, and consider the d™® projective map
$g: 0 > 0g-1-

The purpose of this paper is to prove that ¢; is a modulo pd injection on the
set of f(x)-generated R;-primitive sequences. More precisely, our main result
is

Theorem 1: Suppose a and o' are n*M-order primitive sequences generated by
f(x) over R;. Then ay_; = a; ; if and only if o = o' (mod pd).

The proof is given in Sections 3 and 4.

2. Primitive Sequences and Polynomials over Ry

For a monic polynomial f(x) € R[x], define its modulo pd period as follows
per (f(®))pa = min{t > OIxt = 1 mod(f(x), p9)}.
Let T = per(f(x))p. By definition, there is an h(x) € E[x] so that
(2) 2T =1 + phy(x) (mod f(x)).
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For 7 =2 1, let

(3) @) = X (D)prioitin @

i<r<p r
It follows immediately that
(4) 2P 7T 21+ pin; @) (mod f(x), 1 <i<d
which implies
(5) per (f(x))pi |p*~ 1T < pt-l(p* - 1), 1 <4 <d.

Similar to the case of sequences, f(x) is said to be primitive over R; if
per (f(x))pa = pdl(p” - 1).

By (4) and (5), this is clearly equivalent to the fact that f(x) is primitive
over GF(p) (i.e., T = p" - 1) where GF(p) denotes the finite field of order p,
a prime, and

(6) h;(x) 20 mod(f(x), p)» 1 < < d.
By the inductive definition of %;(x), when ©Z = 2 we have

hy(x) mod{p, f(x)), if p > 3,
(7 hi(x) =

ho(x) = hi(x) + hy(x)2 mod(2, f(x)), if p = 2.
Therefore, (6) is equivalent to

0, mod(p, f(x)), if p > 3, or p =2 and d = 2,

(8) hy(x) # {
2 and d = 3.

0, 1 mod(2, f(x)), if p

An explicit criterion for f(x) to be primitive over Ry is given in [2].
Ward had shown in [6] that an f(x)-generated linear sequence o is primitive
over Fy if and only if a # 0 (mod p) and f(x) is primitive over R;. Now assume
this is the case and write

a = D o;pt.
iz0

For 1 < 7 < d, notice that per(a)pilper(f(x))pi = pi'lT, we have

i- i-1lp . i-1 .
(9) @ - Do = @F T - 1) Yapk = pi@P T - Da; (mod pitl).
k=17

On the other hand, applying (4) to o gives

i-1 . .
(10) (P T_ Do = pth;(x)a  (mod p1+1).
From (9) and (10), we obtain the relation over GF(p)

i-1p hi(x)og, if p 23, or p =2 and 7 = 1,
(11) (.x'p - Doy = hi(x)ozo =

ho(x)ag, if p = 2 and 7 2 2.

In what follows, discussions of p-ary sequences are over GF(p).
For any g(x) € GF(p)[x], denote by G(g(x)) the set of sequences over GF(p)
generated by g(x). Let my = ags

(12)  my o= @2 oy = hy@my, 1< i< d.

Clearly, m;, © = 0, 1, ..., are primitive sequences in G(fg(x)). They are the
key factors in our approach to proving the main theorem. The following Lemma,
which will play a technical role in Sections 3 and 4, can be derived from (11)
and the theory of primitive sequence products ([4, Ch. 8], [5]).
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Lemma 1: (i) The product of_two primitive sequences over GF(p) is not zero.
(i1) Let A = X;.op*A; be any f(x)-generated sequence over Rj. Lf
there is a p-ary primitive sequence m € G(fy(x)) such that

Mig-1 = mig—p mod G(xT - 1),
then A = 0 (mod pd-1).

3. Proof of Theorem 1 for p = 3

Let p = X, 0, p? be the p-adic form of a' - a. We want to show that
aé_l = 0gz_; implies p = 0 (mod pd'l).
Assume on the contrary that p = p®B, with 0 < e < d - 1 and

B =2 B;p* # 0 (mod p).

120
Obviously, B is generated by f(x) over Fg-.. By (11),
m = (xpd—E'Z _ l)Bd_e_l
is a primitive sequence generated by f(x) over GF(p). On the other hand, let
a = (a(t))esg> o' = (a'(¥))rs05 Ba-e-1 = (B(E))g=20

(8(¥))t =20 by

and define the "borrow" sequence §g-3

0, 4if a'(¢) mod pd_l > o(%) mod pd"l,
§(t) =
1, otherwise.
Then
B(E) = (af_1(t) — ag_1(t) - 6(¢)) mod p = (-8(¢)) mod p =0 or p - 1

for all ¢. Therefore, the GF(p)-primitive sequence

d-e-2
m = (xp - 1)Bg-e-1

consists of at most three elements: 0, 1, and p -~ 1. When p 2 5, this is im-
possible because a primitive sequence contains all p elements in GF(x). Now,
assume p = 3, and write m = (m(¢))¢>q. From the equation

B(t + p?79721) - B(t) = m(t)

and the fact that B(¢f) = 0 or 2 for all £, we have B(¢t) = 2 when m(¢) = 1, and
B(t) = 0 when m(t) = 2. Hence,

m(t) (£) = m(t) (m(£)+1) for all ¢t = 0,
or equivalently,
(13) mBg-e-1 = m(m + 1).

d-e-2
Applying the operator xP -~ 1 to both sides of (13) gives rise to m? = 0,

which contradicts (i) of Lemma 1.
So Theorem 1 has been proved for p z 3.

4. Proof of Theorem 1 for p = 2

When p = 2, our main theorem is obviously equivalent.
Theorem 2: Let o and o' be as in Theorem 1. Then for d = 2,

ag_q + aé_l € G(fy(x)) if and only if o = o' (mod 2d-1y,
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The "if" part is clear. To prove the other direction, we need some prepa-
rations. Suppose p = a’' - o and w = o + o', with 2-adic expansions
o =_§: 2%p, and w= 2 2%w;.
220 120

Let 6; = a; + o}, then over GF(2) we have

(14) m'=ei+Yi,

T

(15) Di = 97’ + 67,

where y; is the "carry" from o mod 2% and o' mod 2%, and §; is the "borrow"
defined by o mod 2* and o' mod 2%. Denote by ©,; the binary complement of 6;,
it is easily seen that

(16) 8; = 8;-705-1 + 6;18;-1,

(17) Yy = 0p-10-1 F 051751

Lemma 2: Suppose o and o' are f(x)-generated primitive sequences over Ky. If
04-1 - G(xT + 1), then

Oq-2mg-p = emg-o

where ¢ = 0 or 1. Furthermore, we have p = 0 (mod 241y or w = 0 (mod 2d- 1y,
respectively, according to € = 0 or 1.

Proof: The fact that (x” + 1)64-1 = 0 implies m; = m} and 6. €G@2 T + 1) for
all 7 < d - 1.

1f 4 = 2, we have my = m§, and the conclusion holds.
Now assume d > 3. Notice that p = 0 (mod 2), and

P! = 0/2 = 3 2%y,
120
is generated by f(x) over Rj_;. From (11) it follows that

@277 4 Doy = hy_,@p, € G(f().

On the other hand, by the observation that per($ _g)IZd'3T and

(18) Pg-1 = 8g-1 F 85505 5 + 05 585 5
we have
s i
(19) @277+ Do,y = 0, ,@2T 4+ Doy, = 65 ymy_,-

Therefore, 645_omy_o = emy_, with € = 0 or 1.
If € =0, i.e., 65_omy_5 = 0, then 04;_,my;_, = my;_,. From (18) and (15), we
can derive
= = T
Mg_oPg-1 = Mg_p84.1 T Mg 58, 5 = My_pp4_ mod G(x™ + 1)
which leads to p = 0 (mod Zd_l) by Lemma 1.

The case of € = 1 can be shown in a similar way. The proof is thus com-
pleted.

Corollary: 1If (xT + 1)6, = 0, then a = o' (mod 4).

Proof: Assume, on the contrary, that € = 1 and 63m; = my. Since my = m§ and
01 € G(fo(x)), we have 6 = my.

On the other hand, the fact that w = 0 (mod 4) and w; = 61 + mg implies 93
= mgy. Therefore

my = 8 =my
which is impossible by (12) and (8).
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Now we are in a position to give an inductive proof of the remaining part
of Theorem 2:

64-1 € G(fy(®)) implies a = o (mod 2971).

The conclusions for d = 2 and 3 are proved above.
Suppose d 2 4 and the theorem holds for d - 1. If it fails for d, we would
have 04_om3-» = my_p and w = 0 (mod 24-1). Consequently,

Wg-2 = 0g-2 + vg-2 = 0,
wg-1 = 03-1 + Bg-p0g-2 + 84-2 € G(fo(x)),
(20)  mg_pwg-1 = Mg-20q-1 + mg-p = ma-2(0q-1 + mg-2).
Since mg-o, wg-1, and H4-1 € G(fp(x)), by Lemma 1(i), equation (20) leads to

g1 t Mgy = wg-1 = 0451 F 855055 + 855,

and hence mg-, = 0g-204-2 + 0g-o. Multiplying both sides by 64-2 gives

M- = Og-oMg-2 = 03-3.

Now we have reduced the case to d - 1. By the inductive assumption, we have
p = 0 (mod 242y, and hence

a=(w=1p)/2 =20 (mod 2d-3)

which contradicts the fact that o is primitive over R, and d =z 4.
The theorem is thus proved.
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Introduction

A Pythagorean triple is an ordered triple of positive integers (x, ¥y, 3)
with 2 + y2 = z2. It is called primitive if x and y have no common factors.
In recent work, A. G. Schaake & J. C. Turner have discovered an unexpected rep-
resentation for the primitive Pythagorean triples: they are precisely the
triples of the form

x=(@-R/N, y=(@+9/V, z=(Q+R)/N
where P/§ is the value of a continued fraction of the form
[O; ul’ uz, LI ) ui’ U, l’ j, (U+l), ui, soey U.z, u]_]y

R/S is the previous convergent of that continued fraction, and N depends on the
entries but is either (j + 1) or 2(J + 1). This work was drawn to my attention
by the review [4]; Professor Turner was then kind enough to send me relevant
parts of their privately published book and research report [2], [3]. The
representation is derived there as part of a more general investigation, with
the equation rewritten in the form ps = gqr — 1. In this paper, I shall isolate
the material bearing directly on Pythagorean triples, proving a slightly
simpler variant of their result and showing how closely it is related to the
usual parametrization of Pythagorean triples.  The only unfamiliar step will be
an identity on continued fractions that we can easily prove from scratch.

1. An Identity on Continued Fractions

We briefly recall some of the basic information about continued fractions
(see, e.g., [l], Ch. IV). For positive integers uj, ..., Up, the continued
fraction [0; u#3, ..., u,] is a number between 0 and 1 defined inductively by
[0; u] = 1/u and

[0; uys -vus Upl = L/{uy + [05 up, «.vs Upll.
If we define two sequences P; and q; by the initial wvalues
Po =0, qp=1,p1 =1, q1 =4
and the recursion relations
Pje1 = Ujeal; T Pjo1s G541 = Y195 + d5-10
then p; and g; are relatively prime and
(05 u1s «ovs Uyl = Du/qp-

Every fraction between 0 and 1 occurs as some [0; u#3;, ..., U,], and the expres-
sion is unique so long as we require the last entry #u, to be bigger than 1.

Lemma: Let [0, ~~~] = A/B be a continued fraction, and let [0; ~~~, g] = C/D.
For any u, then

*This work was supported in part by the U.S. National Science Foundation Grant no. DMS8701690.
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[05 Uy, ~~~y g] = D/(uD + C)
and
[0; ts ~mms g> 4] = (uD + B)/ (u2D + uB + uC + 4).

Proof: Clearly,

D/(uD + C) = 1/{u + [0; ~~~, gl}.
Similarly,
B/ (uB + A) = [0; u, ~~~].
Then the recursion relations show us that the numerator of [0; u, ~~~, g, u] is

uD + B and the denominator is u(UD + C) + (uB + 4). 0O

Theorem 1 (Schaake & Turner): Let [0; u,, U,-1> ...> U], W] be a continued
fraction with the u; and w positive integers, w > 1, and n 2 0. Let its value
be p/q. Then the continued fraction

[05 %Ups wvus Ugs, U, W= 1, W+ 1, U, Ups oees Unl

has numerator pqg + (-1)" and denominator g2, and the previous convergent
[05 %5 wvns Uns Uy, W= 1, W+ 1, U, Ups wees Uy-1]

has numerator p? and denominator pg - (-1)".

Proof: We prove this by induction on # (which is why the entries in the contin-
ued fraction have been numbered backward). The case n = 0 is straightforward:
we have [0; w] = 1/w and [0; w - 1] = 1/(w - 1), while [0; w - 1, w + 1] has
numerator (w + 1) and denominator (w + 1)(w - 1) + 1 = w2.

Assuming the result for n, let us consider the fractions for n + 1. If p/q
is the value for 7, the lemma shows that

(05 Ups1s Uns «ves Ups Uy W] = q/{quys1 + ple

In short, the new numerator p' is ¢, and the new denominator ¢q' is qu,,1 + p.
Applied to the longer fractions, the lemma now shows that

[O; Upy4ls cees Ups, U, W — 1, w+ 1, Uls UDs eoes un]
= q%/{up+19% + pg + (-1)"} = (p)2/{p'q" - (-)"*1},
while '
[05 Upsys eves Uy Uy, W= 1, W+ 1, U, Ups eees Upyl]
has numerator equal to
Un41(q2) + {pq - (-1)"} = p'q’ + (-1)n*1
and denominator equal to
Uns1{q%Uns1 + pq + D"} + {(pq = (=1) Jups1 + p?} = (@)% O

Example: Suppose we start with [0; 3, 5, 2]. Computing the sequence of values
(ps» qj) by the recursion, we get (0, 1), (1, 3), (5, 16), and (11, 35). For
[0; 3, 5, 1, 3, 5, 3], the sequence is (0, 1), (1, 3), (5, 16), (6, 19), (23,
73), (121, 384), and (386, 1225). We see, e.g., that 386 = (11)(35) + (—1)2
and 1225 = (35)2.

Remark 1: I have stated the theorem for positive integers, but the proof shows
that it is a purely formal identity.

Remark 2: In Schaake & Turner, Theorem 1 occurs as a special case (the formal
result of setting § = 0) in a more general statement ([3], pp. 92-96); in our
notation, it says that the continued fraction

[O; uﬂ,’ s e u?_, uls (w - 1), ]-, j9 W, u]_’ UZ, LR ) un]

1992] 145



CONTINUED FRACTIONS AND PYTHAGOREAN TRIPLES

has numerator (J + l)pg + (-1)" and denominator (J + l)qz, while the previous
convergent has numerator (J + l)p2 and denominator (j + 1l)pg - (-1)". The in-
duction argument given here will also establish that statement. Their proof is
slightly different, and in [2] the result is viewed primarily as a computa-
tional simplification. From my present viewpoint, the more general expression
simply winds up introducing a common factor of (J + 1) in the Pythagorean
triples, and so it is not needed.

2. Relation to Pythagorean Triples

Now we recall the standard analysis of Pythagorean triples, as in ([1], pp.
153-55). If (x, y, 2) is a Pythagorean triple, then so is (mx, my, mz) for any
positive dinteger m. Every Pythagorean triple arises in this way from a
uniquely determined primitive triple. Setting ¥ = x/2 and ¥ = y/z, we thus get
a correspondence between the primitive triples and the points with rational
coordinates on the first quadrant of the unit circle. What we might call the
"standard" rational parameter for the circle is

t=yl(x+23)=y/&+ 1);
the values T and 7 (with squares adding to 1) can be recovered as
ZT=(1-t2)/(1+t%2) and 7 = 2t/(1 + t2).

We get positive values for ¥ and ¥ exactly when 0 < ¢t < 1. If ¢ = p/q in low-
est terms, we have

T = (p* - )/ (p* + q*) and 7 = 2pq/(q* + p?).
The obvious Pythagorean triple corresponding to this value of ¢ then is
@=p?-q? y-=2pq, z=p>+q>

This triple is in fact the primitive one if either p or ¢ is even. If both of
them are odd, then the primitive triple for parameter ¢ = p/q is

x = (p?2 - q2)/2, y =pq, =z = (p? + g?)/2.

The classification is sometimes stated a bit differently, so I should add
one further remark. Interchanging & and y in a Pythagorean triple gives
another Pythagorean triple. On the rational parameter, this corresponds to the
operation sending ¢t to (L - £)/(1l + t). If t = p/q in lowest terms, the new

value is (¢ - p)/(q + p). This new numerator and denominator have at most a
common factor of 2. If either p or ¢ is even, then the fraction is in lowest
terms and has odd numerator and denominator. If both p and g are odd, then

either p - g or p + g (but not both) is divisible by 4; hence, when we cancel
the common factor of 2, we get a fraction where either the numerator or the
denominator is even. Thus, the two possible types of ¢ are interchanged by the
interchange of x and y. Specifically, the p/g with either p or g even give the
primitive triples in which y is even, while the p/q with both p and ¢ odd give
the primitive triples where x is even.

We can now prove the main result, showing how the continued fraction is
related to the rational parameter.

Theorem 2:

(a) For n» 2 0 and any positive integers w, ujy, Uy, -.-, U, with w > 1, let
P/@ be the value of the continued fraction

[05 Ups ocoes Ups UL, W = 1, W+ 1, U, Ugs veus Unls
and let R/S be the value of its previous convergent

[0; Upys cees Ugy U, W — 1, w+1, Uls U2y eees un_l].
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Set N = 2 if both ¢ and R are odd, and set N = 1 otherwise. Define
X=@Q-R/N, Y= (P+39/N, 7= (Q+R/N.
Then (X, Y, Z) is a primitive Pythagorean triple.

(b) Every primitive Pythagorean triple arises in this way from exactly ome
sequence W, Uy, Ugs «ees Up.

(c) The rational parameter for the triple is precisely [0; U,» Uy-15 ---»
Uy, ZJ].
Proof: Set t = p/q = [0; uns «<.» Uy, U], w]. By Theorem 1, we know that

P=pg+ (-)*, Q=q?% R=p2 5=pq- (-1)".
Thus, § — R = g2 - p2 and Q + R = g% + p2 and P + S = 2pq. The standard theory

shows then that (X, Y, Z) is the primitive triple corresponding to parameter t.
As each t arises from a unique sequence, the same is true for the triples. [J
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1. Introduction

In this article we use the elementary theory of symmetric functions and the
theory of characters of representations of the symmetric group to derive iden-
tities involving generalized Fibonacci and Lucas numbers. Not all the identi-
ties obtained are new; what is possibly of greater interest is the approach,
which may lead to further results. We have included some preparatory material
on partitions, Schur functions and characters in Sections 2, 3, and 5. Proofs
of the statements made there may be found, among many other places, in [1] and
[2]. Character calculations similar to those carried out in this paper are
found in [3].

Let a and b be any two unequal complex numbers. Define the Lucasian pairs
{U,} and {V,} by

n n
Un=a7:—2, V, =a*+Db"; n=0,1, 2, ...
Then U, and V, satisfy the recurrences
Upwo = PUpyy = QUys Vs = PVyyy = @Vy,

where P =a+b, @ = ab, P2-4Q # 0. In case P =1, Q = -1, put U, = F,, V, = L,,.
Then F,, and L, are the Fibonacci and Lucas numbers, respectively.

Let p; 2 pp 2 ¢+ 2 Pk be positive integers. One of our basic identities
has the form n
H
(1.1) Vﬁ Vo, «-- V% =.§: Am,oz,.“,ok;jUn—2j+l

Jj=0
where the A's are simply expressible in terms of § and certain characters of
the symmetric group. An identity inverse to (l.l) is also obtained. For cer-

tain choices of {pl, P25 eoes pk}, the relevant characters can be fairly readily
computed. In this way we obtain, for instance, the identity

m
3]
m- 29+ 1 m=- 27 + 1\] ~j _ pm-27+1
(1.2) j;) [( J ) - ( g - 249 )jIQ Um—2j+1 = pr Upa -
In Section 7 we use a different approach to derive identities involving Lucas
numbers and certain generalized binomial coefficients.

2. Partitions and Tableaux

A partition is a finite sequence of nonnegative integers:

A= (}\l, )\2, c ooy )‘t)

in nonincreasing order. A part of A is a nonzero member of {A;, Ap, ..., Atl.
The number of parts is the length, %()\), of A. The sum |A| = Ay, Ap, ...s Az
where k = 2(A) is the weight of A. ) is said to be a partition of |X|. Occa-
tionally we use an "exponential' notation for A:

A= 1P1282 B,

148 [May



SCHUR FUNCTIONS AND FIBONACCI IDENTITIES

Here, B; is the number of times 7 occurs in the sequence (A1s Aoy vy Ag).
EA], the diagram of A, is the set of all points (<, J) in Z2 such that
1 <g < X;. Thus, the diagram of (3, 3, 2, 1) is

Sometimes it is convenient to use squares rather than dots. Let A and u be
partitions with ]Tl = ]u]. A semi-standard tableau of shape A and content u is
an arrangement of u; 1l's, uy 2's, p3z 3's, etc., in the squares of the diagram
of A so that the rows are nondecreasing and the columns are strictly increas-
ing. For example, the semi-standard tableaux of shape (4, 2) and content (3,
2, 1) are

1 1 ]_ :Z and ]. 1 1 :3
213 212

Figure 1

Partitions may be ordered lexicographically. That is,
A > pdif Xy > pyp or if Ay = yp and Ay > uy
or if A} = u;, Ap = pyp, and A3 > u3, etc.
Semi-standard tableaux of shape A and content u can exist only if XA > py. (This

condition is not sufficient.)

3. Schur Functions

We shall be working in the ring Z[x;, %y, ..., £,] of polynomials in » inde-
pendent variables with integer coefficients. Such a polynomial is symmetric if
it is dinvariant under all permutations of the variables. For each n-tuple
a = (a1, 0p, «., 0y) in V", we denote by x* the monomial

0 = 0] n0p an
x xPtay? L.

If A is a partition of length < »n, the polynomial

My (X1 Loy oeey Tp) = P X%,
where the summation is over all permutations a of {A;, Ap, ..., A;} is symmet-
ric. The power sums
n
Pp = 2 %]
=1

are symmetric, as are the products

Py = Po Do, +++ Dy, (p = (p1> P25 ~vvs Pg))
With every partition A we can associate another type of symmetric function,
called a Schur function, or S-function. Let A be a partition (A1, Az, ..., X,)
and put § = n -1, n -2, ..., 1, 0). Define

Njtn-g . .
Ay g = det(x;? 9y, 1 <72 <mn, 1 <g<n.

Then
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as; = det(x]™7) = I @ - =

lsi<jsm
is the Vandermonde determinant. Clearly, a; divides a,,,. The quotient

Dyt

8y, = 5, (T15 Xgs wue, Tp) = a5

is a symmetric homogeneous polynomial of degree |X| which is called a Schur
function.

The sets My = {m,|2(X) <m} and S = {s,|2(}) < m} are Z-bases for A,, the
set of symmetric polynomials in m variables with coefficients in Z. Thus, for
example, we may express the polynomials s, as integral linear combinations of
the polynomials m,. We have

(3.1) 8y = Ky, umy .
[ul =[x
It is possible to show that the Kostka number X, , is the number of semi-stand-
ard tableaux of shape A and content u. Therefore, X, , is a nonnegative integer
that vanishes if A < y.

To express the polynomials p, as integral linear combinations of Schur
functions, we require the characters of X ,, the symmetric group on m letters.

We have
(3.2)  p, = 2. xleys
Al =1el
where Xé is the character of the irreducible representation of 2, determined
by A evaluated at the conjugate class of X2, consisting of permutations with
cycle-partition p.
Inverse to (3.2) is the relation
1

(3.3) s, =— 2 ecxp
Yoom Ty P

where ¢, is the number of permutations with cycle-partition p; i.e.,

m!
e, =
1272 oom (v Pyt e (v !
with o = 1" 2"2 (.. m' and [p| = m.

4. Basic Identities

If there are only two independent variables x; and x5, and if 2(u) = 3, then
my = 0. In this case (3.1) may be put in the form

2]

(4.1) s, (x> x3) =g%@xhn-mm@m-mmd’xﬁ’

where #n = [k‘. There can be no semi-standard tableau of shape A and content u
if L(A) > 2(u) because each of the 2(A) rows of the tableau must be headed by a
distinct integer chosen from a set of 2(u) integers. Thus, the only nontrivial
case of (4.1) occurs when Z(é) < 2. In this case it is not hard to see that,

if 0 =g < [%} and 0 < k < [E]’ we have

K(j,ﬂ—j),(k,n—k) =1 4if k > j, and
0 if k < 4,

Kig,n-9), (kyn-x)

whence
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H

Z,m(k, n- (&5 2)
k=g

s(J, n = J)(xy, x,)

Jopd (pm=27 n-24-1 n-24
xz(xl + x] x, + + xh 7))

or . .,
_ @@y @AY - apn2it

Ly - L2

(4:2) a5,y 7)

With U, and V, defined as in the introduction and p = (py, Pgs «+-» 0, ) > put
(4.3) Vo = Vo Vo, ... Vp
Then, from (4.2), we have
(4.4) i nosar B) = QU piv1.
Moreover,

p,(as b)
so that, with Ipl =7, (3.2) becomes

P

2 . o
(4.5) Vo = Z X(OJ’YZ-J)QJUn—zjﬂ’

our first basic identity. For example, in the Fibonacci case, taking p = (5,
3, 2) and referring to the table of characters of 2, in [1], we have

(-1) X(j’lo_j)F“—zj =F11 - (-1)Fg + Fy7 = 0+ Fg + (-1)F3 = 2F,

(5,3, 2)
89 + 34 + 13 -0 -2 -2 =132
11 4+ 3 = L5L3L2 = L(S, 3, 2)*

]

From (3.3) we get our second basic identity

Qj”!Un-2j+l = cpx(‘j "o J)V where 0
pl=n

IA

e

IA
NI

(4.6)

v
(OS]

0= 2, coxpVp> if 2())

[o]=n

5. Special Cases of the First Basic Identity

In some cases it is not difficult to compute xg’”"j). We use the Murnaghan-
Nakayama Rule, which permits an inductive calculation. This requires some pre-
liminary explanation.

Let (¢, J) be the point in the Z'™M row (counting downward) and J*™ column
(counting to the right) in [p], the diagram of p. The hook H , j consists of
the point (Z, J) together with the points of [p] directly to its right and
directly below The number of points in HS j» the length of the hook, is
denoted by h . The polnts (k, 4), k > i, form the leg of H! ,j- The number
of points in the leg of [:/L j 1s called the leg-length and is denoted by JL R
The point of H )7 furthest to the right of (¢, J) is called the hand of the
hook, while the p01nt of H , ; furthest below (Z, J) is called its foot. To
Hf j corresponds a portlon of the rim of [p] which is of the same length. It
consists of the points on the rim between the hand and the foot. To H% 3,1,
for example, there correspond the encircled points of [5, 3, 1] as follows:

I ORENORNO)
N ORNO
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The associated part of the rim, Rﬁ’j, is called a rim-hook. It is important to
notice that the result

[pI\R], ;

of removing Rf’ from [p] is again the diagram of a partition; e.g.,

J

[5, 3, INEY 2D =« = [2, 12].

The Murnaghan-Nakayama Rule is the following: Let A and p be partitions of
m, with

o = (15,282 (L kB LLomBm).
Suppose B, 2 1 and let
mo= (181282 kBTl pBmy,

Then

A A
(5.1) X} = 2 (-1)P X?T\Rij.
i, J
ni =k
Thus, by removing one occurrence of kK from p and all X rim-hooks from A, we can
express Xé in terms of characters of lower order. Repeated application of this
procedure allows us to compute Xé for any A and p.

Let us assume that § < m/2. 1In case p = (, 1™ T) we can compute xéj’m'j)
inductively by removing l-hooks from [j, m — j]. The Murnaghan-Nakayama Rule
yields
e  imed N . om
X((;],, Tm-i; = X(;? lm-r:-fj)"' X(Ii’lrfn_;-qu) if g < 2

(5.2)
7, J) — i-1,4 e . _m

Note the resemblance between (5.2) and the binomial recurrence. It is not hard
to show, using induction on m, that

Gom-g)y - (M-1Pry _(m-7r m = ry _ m-r
Gy )= (G -GIN G -G
If » = 1, (5.3) becomes
Gom=g) o (M= 1y _(m -1
(5.4)  Xin ( J ) (j-z)
(Remark: (5.4) may also be obtained from the Frame-Robinson-Thrall formula for

the degree of an irreducible representation of X,.)
When r» = 2, (5.3) can be written

(5.5) (mop = (M) - (T2,

2, 1m72 J J -4
Using the same method as that used to establish (5.3), we can show that
(F>m=3) _(m-1r -8\ _ m-r - 8 m-r-8\ _(m-7r-3s
5.6) L= 20 (j—1)+(j—r) (j—r—l)

(5500 -G )
RN e P E
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If s = 2, we have

(5.7) y{m-9)

r,2, 1m-p-z

]
—_—
3
I
s
!
w

P P R A I ()
and if, in addition, r = 4, then
o g - (7)1

Each of (5.3) through (5.8) yields, via (4.5), a Fibonacci identity. We
have, for example,

2]

(5.4) Z Qj[(m p 1) - (nf - ;)]Um—2j+l = V] = P,

j=0 dJ J
3
-5 j=0Qj [(m; 3) - (? : 2>]Um—2j+1 = Vrl”_zvz = P""3Uq,
m
2

itym - 17 m =7 - -
(5.8)" j;OQJ[< J ) - (,j - 8)]Um—2j+l = VI7OV,V, = P70

An expression similar to (5.6) but involving 29*! binomial coefficients may
be given for
(Fsm=4)

th’ t2’ e, tq, 1m—(t1+j..+tq)
In case t; = 2%, 1 <1 < g~ 1, this expression may be simplified to give the
expected generalization of (5.4), (5.5) and (5.8):
. (J>m=3) _ (m -2 + 1) (m -2 + 1)
(5-9)  Xa,4,8,..., 2071, 1m-2q+2 g - -2 ,

yielding the Fibonacci identity

Hiy

-9 j=oQJ[(m ) ;q ") - (m _J'zi qu)] In-24+1

-2%9+2
VT VZVH e qu

q
= pm-2 +1U2q .

If we reason similarly with rectangular partitions, i.e., partitions of the
form t* we obtain, from (4.5), the formulas

k-1

I
AR (i>Q7’tV(k—2i)t k odd,

and
L] t

% AP % Tk
2:(i)taWk—2ﬁt + (%k)QZ k even.

vE

However, these identities are well known and not especially difficult to prove
directly (see [4]).

6. Special Cases of the Second Basic Identity

If » = (n), then Xé is the identity character and (4.6) gives
(6.1) Do Vy = nllyyq.
lo]=n
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If » = 1%, then Xé = ¢(p), the alternating character. That is, e(p) = 1 if

the permutations with cycle-partition type p are even and e(p) = -1 if these
permutations are odd. From (4.6) we deduce
(6.2) D Coeolp =0 if n = 3.
[of=n
If \ = (1, n - 1), then y* is the so-called "natural'" character and xé =
vy, - 1 where p = 171272 ... »n'*. 1In other words, X4 is one less than the num-

ber of elements left fixed by permutations with cycle-partition p. From (4.6)
we have

Z CQ(YI(Q) - ]-)Vp = Qn!Un_l
lol=n
which, in conjunction with (6.1) gives

2 cle)v1(PIy = X eV + @ulUy_ 1 = n! (Uns1 + QUy-1)
lo]=n lol=n
or, finally,
(6.3) > coy1(p)Vy = nlPU, = nlViU,.
lol=n

Lastly, if A = (2, 1772), then x* is the character conjugate to the natural
character, i.e.,

X2 = e(0) (y1(p) - 1)
Then, (4.6) yields, using (6.2),
(6.4) S ocoe(@y1(p)Vp = 0 if 7 > 4.

fol=n

The following chart illustrates (6.1) through (6.4) for n = 4 in the Fibonacci
case.

p Co e(p)  vi(p) Ip colip coeplp cov1(p)Lp cpe(p)y1(p)Llp
1 1 4 1 1 1 4 4
21 .6 -1 2 3 18 -18 36 -36
2 3 1 0 9 27 27 0 0
31 8 1 1 4 32 32 32 32
4 6 -1 0 7 42 =42 0 0
sums 120 = 4!Fg 0 72 = 4\F, 0

A Generalization

Using a different approach, we generalize the identities established in
Section 6. First, several additional concepts will be introduced.
Let

o = 1M2Y2 . u¥n  and o = 1P 282 . pB»

be partitions. We define the '"'generalized binomial coefficient" (g) by

@ (2= () - ()

when the quantities on the right are ordinary binomial coefficients. (2) is

itself an ordinary binomial coefficient when p and ¢ are suitable rectangular
partitions. Clearly <z) =0 if y; < B; for some 7, 1 <7 < n.

If v; 2 B8;, 1 <7 <n, we define the partition p - o by
(7.2)  p-o=1""Fgv2 % B

Let
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1
(7.3) 2z =Z—‘; = 172" Ay iyt eyt

(2p is the order of the centralizer of a permutation of cycle-type p). It is
easy to show that

7.4 () - 2

o BgBp-0g

whenever p — ¢ is defined.

The »'M elementary symmetric function ep(@1, «.., Tm) 1is the sum of all
products of r distinct variables x; so that ey = 1 and
ep = . . Z . xilxiz co e .’X,'.,:r.
1<) <ip<ece<ipsm

The rth complete symmetric function %p(%y, ..., &) is the sum of all mono-
mials of total degree r, so that, for example,

= 23 3 2
ha(@ys Tys eees ZTy) = XY +ZZ + coe + X{Ly + oo+ X XL F oo

In particular, hg = 1 and A; = e¢;. For r < 0, it is convenient to put hr = ep
= 0.
Our generalizations of the results of Section 6 are based on the identities

p
(7.5) Q _Beltnlel
' lo?;n Be i B
and
P
(7.6) EE&QZZ’ L huka LA
' IoF;n 2o ? Ro |

We prove only (7.5); the proof of (7.6) is similar.
Our proof of (7.5) is based on (7.4) and the identity

Pp
(7.7) — = hp.
Iog;n Bo i
(For a proof of (7.7), see [2], p. 17.)
Noting that p =pp , we have
p
)

o), ) nog B P

Zp p=-0 ZUIDI‘?I Zp_g 29 |Ti="‘|°| ZI“

: -

lel=n lel=n
p

== Ty |of >
Rg

thus proving (7.5).

Observing that
ar+l — pr+l

he(a, b) = al +a* b+ -0 + b7 = =———F = Ups1s
we find, on putting ) = ay, & = by, &3 = & = --- = 0 in (7.5), the identity
p
(0)Vp Vo
R R U

[o] =7
which, using (7.3), can be written

7.9 ¥ c(?)n -

loj=n lo]!

nlegVoln - o] +1
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Likewise, since
ei(a, b, 0, ...)
ep,(a, by, 0, ...) =ab =@,
eq(a, by, 0, ...) =0, if » = 3,

I
Q
+
o
!
-

we obtain from (7.6),

egCoM PV,
(7.10) 3 ep(g>cpvp _ EoCon!Fls
[p]=n |O|
if |o| =n -1,
€5 Con ! QVs
(7.11) Y (el =
lel=n <O> lo]
if |o| < n - 2, and
e =
(7.12) % EQ<O>CQV0 0

if |o] <n - 3.
If we specialize o to be a partition of length 1, i.e., o = kl, then (g) =

yk(p), €5 = (-1)k-1, ce = (k- 1)!, and (7.9), (7.10), (7.11), and (7.12) yield

ﬂ!VkU -
(7.13) ¥ vl = — g,
[o]=n
(-1)"n! PV,
(7.14) 2 epeov(@)Vp = ———— if k=n -1,
lp]=n
(-7~ n1gy,
(7.15) Y epcovi(p)Vp = ————— if k=7 - 2,
and lof=n
(7.16) 3 e ey @)V, = 0 if k < m = 3,
lel=n

which are generalizations of (6.3) and (6.4).
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1. Introduction

Let S = {xl, L5 «u.s Xp} be a finite ordered set of distinct positive inte-
gers. The nxn matrix [S] = (sy;), where s;; = (x;, x;j), the greatest common
divisor of %; and &j, i1s called the greatest common divisor (GCD) matrix on S
(see [2]). In [6], H. J. S. Smith showed that if S is a factor-closed set,
then the determinant of [S], det[S], is ¢(xy) ¢(xy) ... ¢(x,), where ¢(x) is
Euler's totient function. A set S of positive integers is said to be factor-
closed if all positive factors of any member of S belong to S. In [2], we
considered GCD matrices in the direction of their structure, determinant, and
arithmetic in Z,, the ring of integers modulo n. In [l], we generalized
Smith's result by extending the factor-closed sets to a larger class of sets
called gcd-closed sets. A set S = {xl, X9, ...5 Xn} as above is said to be
gcd-closed if for every 2 and J =1, 2, ..., 7n, (x;, ;) is in 5. Every factor-
closed set is gcd~-closed, but not conversely.

Using structure theorems in [2], Zhongshan Li [4] obtained the value of the
determinant of a GCD matrix defined on an arbitrary ordered set of distinct
positive integers, and proved the converse of Smith's result. Since the
formula derived in [4] is valid for any GCD matrix, it also solves the problem
stated in [5] for arithmetic progressions.

In this paper we shall provide another formula for the determinant of a GCD
matrix based on the class of gcd-closed sets. Li's formula comes as a corol-
lary. We also use this new formula to find closed-form expressions for the
determinants of some special GCD matrices.

2. Preliminary Results

It was remarked in [2] that the determinant of the GCD matrix defined on a
set 5 is independent of the order of the elements of S. Thus, if 5 = {x;, x;,
.5 Ty}, we may henceforth assume that x; < &, < -+« < x,. Given this natural

order on S, we let B(x;) denote the sum
B(x;) = 3 ¢(d),
dlx;
dfz,
t<1
for all ¢ =1, 2, ..., n. We note that B(x;) = ¢(x;) for all < if and only if
S 1is factor-closed.
The following proposition can be found in [1].
Proposition A: Let S = {xz;, %3, ..., Tn} be ged-closed with x] < xy < -+ < Zyp.
Then, for every 2 and J = 1, 2, ..., 7,
(g, %) = 22 Blay).
xk[(xi,xj)
It is clear that any set S of positive integers is contained in a gecd-
closed set. By 5 we mean the minimal such gcd-closed set, or ged-closure of S.
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It is worthwhile to observe that S usually contains considerably fewer elements
than any factor-closed set containing S. We now prove a structure theorem for
GCD matrices.

Theorem 1: Let S = {xy, %3, ..., Ty} be the gcd-closure of S = {y1, Yos «.e>
Ynt with ] < Zp < +vv < @y and y; < Yp < +++ < Yp. Then [S] is the product of
an 7 xm matrix A and the incidence matrix C corresponding to the transpose of
A.

Proof: Define A = (a;;) via
{B(xj) if x; divides y;,

aij
0 otherwise.
If we let C = (e¢;;) be the incidence matrix corresponding to the transpose of

A, then the (Z, j)-entry of AC is equal to

n
> AikCrj = 2 ap = 2 B(xy) s
k=1 xx |ys x| (yys 47)

xk'!/j

which is equal to (¥;, Y;) by Proposition 4 and the fact that S is gecd-closed.

Remark 1: In the above theorem, S may actually be replaced with any gcd-closed
set containing S.

The following corollaries appeared in [1].

Corollary 1: I1If S={xy, x5, ...,%x} is gcd-closed with &} < &y < ... < &,, then
det[S] = B(xy1)B(xs) ... B(xy).

Corollary 2 (Smith): 1f S = {x;, %3, ..., &y} is factor-closed, then
det[S] = ¢(x1)d(xy) ... ¢(xp).

Corollary 3: Let S = {x;, x5, ..., &} be gcd-closed. Then
det[S] = ¢(x1) (@) ... $(xn)

if and only if S is factor-closed.

Remark 2: It was actually shown in [4] that the converse of Corollary 2 is
true.

3. The Value of det[S]

The (Z, J)-entry of the matrix A in Theorem 1 may be written as e;;B(%x;),
where e¢;; = 1 if x; divides y;, and 0 otherwise. Let £ be the n xm matrix
(e;5). Thus, C = ET, the transpose of E. If A is the mxm diagonal matrix
with diagonal (B(x;), B(x3), ..., B(xp)), we have that AC = EMNET.

Now let K1, Ko, ..., K, be distinct positive integers such that

1 <ky <ky<-oee <ky<m,

and let Ex,,k,,...,k, denote the submatrix of E consisting of the kith, ...,
kot columns of EZ. Define Ay, ..., k, similarly. It is clear that

det A(kl)---’kn) = B(xkl)B(xkz) cee B(xkn) * det E(kl,--.,k") N
since

Akyyoon k) = By ok *Ds

where D is the nx n diagonal submatrix of A with diagonal (B(xkl),..., B(xk,)) -
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The following theorem gives the value of det[S] in terms of B(xy), B(xy),
.5 B(xy).

Theorem 2: Let S and S be as in Theorem 1. Then det[S] is given by the sum

(det E(kl’ “"kn)) B(xkl) cee B(-x'kn).
15k1<k2<...<k <m

ns

Proof: From Theorem 1, [S] = AC. Now apply the Cauchy-Binet formula (see [3],
p. 22) to obtain

det[S] = det(AC) = > det Ay, ..., ky *det (B, .. k)"
Isky<ky<.oo<ky,sm !

the result follows from the preceding remarks.

Corollary 4 (Li [4], Theorem 2): Let S be as in Theorem 1 and let S* = {x, x,,
...s Ty} be the minimal factor-closed set containing S, with ] < x, < X3 <
< Zp. Then

det[S] = 3 (det By, ..., ke )20(xg) oo d(2g,)-

l<ky<ky<---<kp<m

Remark 3: By using a proof similar to that occurring in Li's paper for the
converse of Corollary 2 (see [4], Theorem 3), one may establish the converse of
Corollary 1.

4. Determinants of Special Matrices

Although the matrices E(ky, ..., k,) in Theorem 2 are (0, 1l)-matrices, it is
not true in general that det E(x,, ...,x, = *l. In this section, we consider
certain sets S which have the property that every such submatrix E(k,, ..., k,)

has determinant equal to 1 or -1, and thus find a closed-form expression for
det[S].

A set S = {xy, 3, ..., X,} is said to be a k-set if (x;, x;) = k for every
i, J =1, 2, ..., n. For example, {6, 9, 15, 21, 33} is a 3-set. Let S be a

k-set. Then either S =S U {k} or S = S.

Case 1. If x; < %y, < --» <, and K = x|, then S is gcd-closed, and B(x;)
=x; - k for 2 =2, 3, ..., n. Hence, by Corollary 1,

det[S] = k(zp = k) ... (&, - k).

Case 2. Suppose k # x] so that S = {k = 2y, ©;, %9, ..., &n}. By Theorem

2,

det[S] = > (det By o e ) 2B(@e)B(xe,) oo B(2e,).

0sty<tr<---<tysn

Lemma 1: det E(tl’-"’tn) = +].
Proof: If (ty, ..., tn) = (0, 2, 3, ..., n) or (1, 2, 3, ..., n), then E (¢, ..., ¢,)
is a lower triangular matrix with diagonal (1, 1, ..., 1). Thus, det E(y . . ¢,
= 1. If

(£15 «ees Tp) = (0, 1, «o.y, 8 -1, 8+ 1, ..., n) for 2 <5 <n,
then Row s of E(¢y, ..., ¢,) is (1, 0, 0, ..., 0). Moreover, the submatrix of
E(ty, ..., t,) formed by removing Column 1, i.e.,

1

1

1
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and Row ¢ is the (m - 1) x (n - 1) identity matrix. Hence,
det E(tb -Nrtn) = *1.
This completes the proof.

Now B(xy) = k and B(x;) = x; - k for © > 0. Thus, by Theorem 2,

n (xl—k) (xn—k)
det[S5] = k- + (xy — k) ++o (x, - k).
7,‘;1 (z; - k) ! §
Cases 1 and 2 above may therefore be combined into the following theorem.
Theorem 3: 1If S = {xy, %y, ..., Z,} is a k-set with x; < %, < ... < x,, then
det[S] = k(xy = k) «++ (x, — k)
+ [k(xy - k) --- (x—k)]l+———l———+-.-+—l——.
1 i kK x, - k x, - K
Corollary 5: Let S = {xy, %5, ..., ©,} consist of pairwise coprime positive in-
tegers. If Xy < xy < ... < xy, then
det[S] = (x, = 1) --+ (xy = 1)
1 1
+ [(x] - 1) cee (x"_l)][l+52—-——_1+"'+5;_—:_l]'
Corollary 6: Let pj, Pz, -..» P, be primes with p; < pp < .-+ <p,. If S = {pp,
Pos «-.» P }, then
det[S] = (p; - 1) --- (p —1)[1+—————l +...+_____1 ]
. n p1 - 1 P, - 1

1 1
$(py) -- ¢<pn>[1 tToo +_“¢<p;>]'

Finally, in view of Lemma 1, and for lack of a counterexample, we make the
following conjecture and leave it as a problem.

Conjecture: Let S and S be as in Theorem 3, with n > 3. If det E(k,, kg +..» ky) =
t1 for every choice of ki, ko, ..., k,, then either S is gcd-closed or S is a
k-set for some positive integer k.
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ON THE LEAST ABSOLUTE REMAINDER EUCLIDEAN ALGORITHM
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To the memory of my friend and mentor Fr. Thomas E. Lockary, C.S.C.

1. Introduction

The usual operation of the Euclidean algorithm uses the least positive
remainder at each step of division. However, the Euclidean algorithm can be
modified to allow positive or negative remainders provided the absolute value
of the remainder is less than the divisor in each step of division.

For example, in computing the greatest common divisor of 3 and 5, there are
three Euclidean algorithms in this extended sense:

5 3(2) -1 5 3(1) + 2 5=13(1) +2

3 1(3) + 0 3 2(1) +1 3=2(2) -1
2 1(2) + 0 2 =1(2) +0

1
]

the first of which uses the least absolute remainder at each step and which is
shorter than the others.

A theorem of Kronecker, see Uspensky & Heaslet [3], says that no Euclidean
algorithm is shorter than the one obtained by taking the least absolute remain-
der at each step of division.

Goodman & Zaring [1] have shown that the number of steps of division in the
least positive remainder Euclidean algorithm exceeds the number of steps in the
least absolute remainder Euclidean algorithm by just the number of negative
remainders occurring in the least absolute remainder variant.

We became interested in exactly which pairs ¥ and N of positive integers
have their greatest common divisor, denoted gcd(M, V), computed in strictly
fewer steps by the least absolute remainder (LAR) Euclidean algorithm than by
the least positive remainder (LPR) Euclidean algorithm.

Accordingly, a computer program to graphically display such pairs was writ-
ten in Applesoft BASIC (see Figure 1) and can be modified easily for other
BASICs. The program uses counters DC and ADC to count the number of steps of
division needed by the LPR and LAR FEuclidean algorithms, respectively, in
computing gcd(M, N) with M > N. The program lights a pixel on the monitor at
screen location (M, N) provided ADC < DC in this computation.

When performing the LAR Euclidean algorithm, the program (lines 320-390)
chooses between the quotient ¢ with least positive remainder R and the quotient
@ + 1 with the alternative negative remainder AR and, if R = ABS(AR), then it
breaks the tie by selecting ¢ and F in agreement with [1].

The resulting image (see Figure 2) reveals some interesting features of the
distribution of the 1it (black) points (M, N) in the range 1 < M < 191,
1 <NV <191, with M 2 N. Some of these are described in Section 2.

2. Analysis

Definition: 1If M 2 N is a pair of positive integers for which the LAR Euclidean
algorithm is shorter than the LPR Euclidean algorithm, then we will say that M
18 a Kronecker number for N and also that (M, N) is an (ordered) Kronecker
pair.
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Looking again at Figure 2,

ON THE LEAST ABSOLUTE REMAINDER

REM STUDY OF LAR VERSUS LPR ALGORITHMS

REM DC COUNTS STEPS OF LPR ALGORITHM
REM ADC COUNTS STEPS OF LAR ALGORITHM
HGR2:REM HI-RES GRAPHICS PAGE IN MEMORY
HCOLOR=3:HPLOT 0,0 TO 0, 191 TO 191,191
FOR N=1 TO 191

FOR M=N TO 191

DC=0:ADC=0

GOSUB 240

GOSUB 310

|F ADC>=DC THEN 220

REM PLOT ONLY KRONECKER PAIRS
HPLOT M, 192-N

NEXT M

NEXT N

REMMROUThNE FOR USUAL LPR ALGORITHM

M1
Q= INT(M1/N1)
R=M1-N1#*
DC=DC+1
M1=N1

N1=R

lF 5>0 THEN 255

REM ROUTINE FOR LAR ALGORITHM
=M:N1=N

i
Q= lNT(M1/N1)
R=M1-N1#*Q

AR=M1- N1*(Q+1)
ADC=ADC+1

IF E<=ABS(AR) THEN 380

M1=N1
N1=ABS(AR):GOTO 400
M1=N1

N1=R

IF N1>0 THEN 325

RETURN
END

Figure 1

EUCLIDEAN ALGORITHM

Figure 2

(1/2)M.

we observe the densest region of contiguous
Kronecker pairs that is bounded by the lines N = (2/3)M and N =

Considering the coordinates of 1it points in this region, we construct a
table (see Table 1) of Kronecker numbers M for each N, along with the lengths
of the blocks of these consecutive /.

Table 1

Consecutive Kronecker Block
N Numbers M > N Length
3 5 1
4 7 1
5 8, 9 2
6 10, 11 2
7 11, 12, 13 3
8 13, 14, 15 3
9 14, 15, 16, 17 4
10 16, 17, 18, 19 4
11 17, 18, 19, 20, 21 5
12 19, 20, 21, 22, 23 5
13 20, 21, 22, 23, 24, 25 6
14 22, 23, 24, 25, 26, 27 6

Table 1 suggests the next result.
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ON THE LEAST ABSOLUTE REMAINDER EUCLIDEAN ALGORITHM

Theorem 1: (i) For N = 2t + 1, ¢t = 1, the t consecutive integers
@G+ 1)/2, BV +3)/2, ..., 20 -1
are all Kronecker numbers for /.
(ii) For NV = 2¢t, t 2 2, the t - 1 comsecutive integers
B+ 2)/2, BV +4)/2, ..., 20 -1
are all Kronecker numbers for WN.

Proof: We prove part (i).
For a fixed integer ¢ > 1 and any one of the integers (3N+1)/2, (30V+3)/2,
.y 2V +1, say (3V + k)/2, where 1 < k < N - 2 and k is odd, the LAR Euclidean
algorithm must decide, in the first step of division, between the two choices

3V + k)/2 = N(1) + (W + k)/2,
in which (¥ + k)/2 < N because kK < N - 2, or
3V + k)/2 = N(2) + (k- N)/2,

in which ABS((k - N)/2) < N because N > -k.
The decision is made for the latter choice according to the comparison

ABS((k - I)/2) < (N + k)/2,

which is true since NV - k < N + k.
The result now follows from the Goodman & Zaring result.

Part (ii) of the theorem is proved similarly.

Corollary 1: For each t 2 2, we may specify a positive integer N and ¢ consecu-
tive integers that are all Kronecker numbers for /.

Proof: Immediate.

Lemma 1: If M is a Kronecker number for N, then M + Nk is also a Kronecker
number for N, for all integers k 2= 1.

Proof: Suppose the LAR Euclidean algorithm for ged(¥, V) is

M = qu + e1ry, ry < N,
N = r1qo t e9¥p, Yy < I,
ry = roqgz + e3ry, rz < Irp,

[l

Ts = Ys+19s+2
so that gcd(¥, N) = rgyy and each ¢; = #l.
Since M is a Kronecker number for N, at least one ¢; = -1, by the Goodman &

Zaring result.
The LAR Euclidean algorithm for M + Nk and N is then

M + Nk N(ql + k) + e|1rys
N = ri1go + €9T 0,

Yg = Psi119s+2

with the same set of values r; and e¢;. Hence, at least one negative e; occurs
and, again by the result of Goodman & Zaring, M + Nk is a Kronecker number for
n.
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Once more observing the patterns in the 1lit points in Figure 2 we see that,
for each second coordinate N, the values of first coordinates fall into certain
progressions.

Theorem 2: For each integer N > 3 there are arithmetic progressions of inte-
gers M > N that are all Kronecker numbers for N. More precisely,

(i) 4if ¥ =2t + 1, t 2 1, then the arithmetic progressions
Nk + ¢+ 1}, Nk + ¢t + 2}, ..., (Nk+¢t+ (W -1)/2}, k21,
consist of integers each of which is a Kronecker number for N, and
(ii) 4if N = 2¢t, t 2 2, then the arithmetic progressions
vk + ¢+ 1}, Nk + ¢t + 2}, ..., Nk +t+ (W-2)/2}, k21,
consist of integers each of which is a Kronecker number for N.

Proof: We prove part (i).

By Lemma 1, since the common difference in each progression is N, it 1is
enough to show that the first term in each progression is a Kronecker number
for M.

When k = 1 the first terms are, respectively,

N+t+1, V+t+2, ..., N+t + @V -1)/2.
Since t = (N - 1)/2, these terms are, respectively,
3V + 1)/2, (3V + 3)/2, ..., 2N - 1,
which are Kronecker numbers for N by Theorem 1.

In the above theorems we have begun with the smaller value N of a Kronecker
pair and then constructed the companion number M. 1In the reverse direction, we
offer the next result.

Theorem 3: (i) If M is odd, M =7, then M is a Kronecker number for both
M+ 1)/2.

(ii) 1If M is even, M 2 8, then M is a Kronecker number for both
M+ 2)/2.

Proof: (i) We prove the case (M + 1)/2. The LPR Euclidean algorithm here is

M= ()(WM+1)/2) + M- 1)/2,
M+ 1)/2 = ()M -1)/2) +1,
M-1)/2 = (W -1)/2)(1) + 0,

done in three steps, while the LAR Euclidean algorithm begins
M= (2)(M+1)/2) + -1,
because ABS(-1) < (M - 1)/2, since M > 3, and continues

M+ 1)/2 =M+ 1)/2)(1) + 0,

done in two steps.
Similarly, we can show that M is also a Kronecker number for (M - 1)/2.

(ii) We prove the case (M + 2)/2. The LPR Euclidean algorithm here
begins
M= (1)M+2)/2) + (X - 2)/2,
M+ 2)/2=(1)(M=-2)/2) + 2,
and the next division [by 2 into (M - 2)/2] is the last step, or next to last,

according as (M - 2)/2 is even or odd. So this routine takes three or four
steps, accordingly.
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The LAR Euclidean algorithm begins
M= (2)(M+2)/2) + -2,

because ABS(-2) < (M - 2)/2, since M > 6, and there are either one or two steps
more according to the parity of (M + 2)/2. Since (M + 2)/2 and (¥ - 2)/2 have
the same parity, this means that the LAR variant is accomplished in one step
less than the LPR Euclidean algorithm.

Similarly, we can show that M is a Kronecker number for (M - 2)/2.

3. The Fibonacci Numbers

The Fibonacci numbers, which are defined by the relations F; = F, = 1 and
Fy =F,_1 + F,_», for n 2 3, play an extremal role in questions relating to the
number of steps in the LPR Euclidean algorithm. For example, in [2] Shea shows
that the pair of integers with the smallest sum whose gcd takes exactly k steps
using the LPR Euclidean algorithm is Fyyi1, Fgx4o. Not surprisingly, the Fibo-
nacci numbers enter our investigation in a similar way.

Theorem 4: Any positive integer »n may be specified as the difference in the
number of steps of division performed in computing ged(¥, N) by the LPR and LAR
Euclidean algorithms. In fact, this difference # is attained in the compu-
tation of both ged(Fp,42, Fo,+3) and ged(Fo,4r35 Fopty)-

Proof: It is well known that the LPR Euclidean algorithm applied to consecutive
Fibonacci numbers F, and Fy,; takes k - 1 steps of division, each with quotient
1 and hence with sequence of remainders Fy_y, Fy-o, Fy-35 ..., Fp, and 0.

The first quotient in the LAR Euclidean algorithm applied to Fj and Fy4; is
2 with remainder -Fj_,. If k is an even integer, then each subsequent divi-
sion uses a quotient of 3, because of the inequality

2Fy, < Fopyo < 3Fy, for all ¢t 2 2,
which may be proved by induction on ¢. Thus, the sequence of remainders is
~Fy-9s =Fx-y>, =Fx_gs -..» =Fp, and 0. So there are k/2 steps of division.
Hence, the difference in the number of steps of the two methods is
(k = 1) - k/2 = (k- 2)/2.

As k varies over the even integers, k > 4, this difference (k - 2)/2 varies over
all the positive integers. For k = 2n + 2 in particular, gecd(Fo,425 F2u+3)
shows a difference of exactly 7n steps of division.

The rest of the theorem is proved similarly.

As noted by an anonymous referee, it seems interesting to point out that,
whereas the usual Euclidean algorithm leads to the familiar continued fraction

F2k+3/F2k+2 = (1; 1, l, co ey l), Zk + 1 ones,
the least absolute remainder Euclidean algorithm leads to

Foxs3lFoxso = (25 -3, =3, ..., =-3), k threes.
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TREES FOR k-REVERSE MULTIPLES
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Let « be an n-digit, base g number

n-1 i
(1) x = > a;g°
=0
with 0 € a¢; < g and a,-1 # 0. If, for some integer k, where 1 < k < g,
n-1 .
(2) ki = 2: An-1-79°
1=0

then x is called a k-reverse multiple, Previously, this author showed that all
k-reverse multiples may be found using rooted trees [3]. A more detailed
examination of these trees is the focus of this paper.

If x is a k-reverse multiple, then we obtain from (1) and (2) the following
equations

(3) ka; + riop =a,-1-;+r;9, 1 =0, ..., n -1,

where 0 < r; <g for ¢ =0, ..., n - 2and r_; =r,_; = 0. LettingZ=7n-11in
(3) gives ag # 0 since a,-; # 0. To determine whether there are any k-reverse
multiples for a given g, we consider the equations in (3) two at a time. At
the (¢ + 1)st step, 2 =0, 1, ..., we examine the pair of equations

ka; +r;,.1 =a

n-1-7z * r.g

(4)

Kap-1-3 + Ppon-y = a4 t Ty-1-49
seeking nonnegative integers a;, a,-1-;> ¥;, and r,_5_; less than g, where r;_;
and r,_j_; are known from the previous step. The following graphical notation
is convenient. If P,_1-;, P;-15 Qu-1-4> Azs Pn-2-;, and r; satisfy (4), then we
will write

(Pp-1-4> 7i-1)
(5) (Ap-1-40 a;)
(Pn—Z—i’ Pi)

(Implicit in this notation is the assumption that the a's and r's are/ nonnega-
tive integers less than g.)

When a given g has k-reverse multiples, we are able to generate a rooted
tree. We call the root of the tree (¥,_1, r_-7) = (0, 0), the 0th level and the
node designated by (¥,-5-;, ¥;), the (¢ + 1)St level. Since 0 < r; < g, there
are only a finite number of possible distinct nodes. If a node is labeled with
a pair that has already appeared in the tree, the tree can be pruned. The
following theorem shows how a tree is used to determine k-reverse multiples.
The proof appeared in [3] and hence is omitted here.

Theorem 1: For a given g, suppose there are k-reverse multiples; that is, sup-
pose a tree exists. There is a 27 + 2-digit or a 27 + 3-digit number satisfy-
ing (2) if and only if the tree contains at the Z, ¢ + 1, and 7 + 2 levels,
respectively,
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(po1-45 7i-1) (8n-1-4> 8:-1) (level %)
(@p-1-4> a;) (Br-1-4> be)
(r, r) (s, t) (level © + 1)
(B, B)
(t, 8) (level 7 + 2)
where, in the second case, B = (gs - £)/(k - 1). 1In these cases, & is given,

respectively, by

27 + 2
22 + 3. [

L = Apy-1Ay-2 oo Ap-1-:04 ce. Ay I

x = bn—lbn—Z PR bn—l—iBbi N blbo "

Theorem | shows the connection between a rooted tree and k-reverse multi-
ples. A node of the form (r, r) gives rise to a k-reverse multiple with an
even number of digits. Consecutive nodes (s, ¥) and (¢, s) produce a multiple
with an odd number of digits. The following example illustrates the use of
this theorem.

Example 1: g = 10, k = 4.
We begin by letting r,_1 = r_y = 0 in (4) and solve the system:

4610 + 0 = Ay + 101"0
ban,_1 + ry-o =ag + 0.

The only solution is »,_.,=0, rg=3, a,-1=2, and ay =8. This gives the node
and edge labels for the first level of the tree. We continue in this manner
and obtain the following pruned tree:

(0, 0)
| @, 8
(0, 3)
(1, 7)
(6) (3,.3)
70 7 N, 9)
(3, 0) (3, 3)
8. 2) |
(0, 0)
© 0 7 @, 8

(0, 0) (0, 3)

The tree is not continued any further since (0, 0), (0, 3), and (3, 3) have
appeared previously.

Observe that the node label (0, 0) follows (0, 0) at level 5, but not at
level 1. This will always be the case since the equations in (4) are satisfied
by the trivial or =zero solution. Although »; = 0, the node label (0, 0) is
permissible after the first level.

By Theorem 1, the node (3, 3) at the second level gives rise to the 4-digit

4-reverse multiple 2178. Moreover, the consecutive nodes (3, 3) and (3, 3)
produce the 5-digit multiple 21978. Extending this portion of the pruned tree
shows that all numbers of the form 219...978 are 4-reverse multiples. Thus,

there are n-digit 4-reverse multiples for all n = 4,

The relationship between the node and edge labels and verifying that a spe-—
cific base ¢ number x is, in fact, a k-reverse multiple may be demonstrated by
performing base g multiplication of x by k, explicitly indicating all carries
from one digit to the next. It should be noted that when some x is known to be
a k-reverse multiple this computation provides an alternate way to obtain some
of the node labels.

1992] 167



TREES FOR k-REVERSE MULTIPLES

For example, 21782178 is a base 10 4-reverse multiple [corresponding to the
path from the root to node (0, 0) at level 4 in (6) above]. The multipli-
cation verifying this fact is:

0 3 3 0 0 3 3
21 7 8 2 1 7

0
8
X 4
8 7 1 2 8 7 1 2
The carries from the node pairs and the digits of x form the edge labels.

From Theorem 1, the digits of 21782178 are the first elements of the edge
labels from the root to node (0, 0) at level 4 followed by the second elements
for the same edge labels taken from node (0, 0) at level 4 back up to the root.
Similarly, the carry numbers noted above the digits of x are the elements of
the node labels along the path. The first four carries are the first elements
of the node labels from level 1 to level 4, and the second four carries are the
second elements of the same node labels from level 3 back up to level 0. The
root is always labeled (0, 0) and by Theorem 1 (since 21782178 has an even
number of digits) the node label at level 4 must have both digits the same. [

The following examples illustrate some characteristics exhibited by trees
for k-reverse multiples like the one shown in (6). We will use bold type for a
node that determines a k-reverse multiple with an even number of digits and
underlining for one that determines a k-multiple with an odd number of digits.
Further, since we recognize the existence of k-reverse multiples graphically by
particular types of node labels, we will omit the edge labels. There is no
loss in doing this, for we may always use (4) to solve for

Ap-1-1 = (KPpo1-39 = kvpp_ g + 139 - ;1) /(K% = 1),
a; = (krgg = kregoy + Ppoyoyg = Trop- )/ (K2 = D).
Example 2: g = 11, k = 7.
(0, 0)

(1, 5)
(5, 1) (6, 6)

(0, 0) (1, 5 (5, 1) (6, 6)

By Theorem 1, the node (l, 5) along with its child (5, 1) determines a 3-digit
multiple and (6, 6), a 4-digit onme. Both (5, 1), with its child (1, 5), and
(6, 6), with its child (6, 6), give rise to 5-digit multiples. In fact, there
are n-digit 7-reverse multiples for n = 3. [J

Example 3: g = 19, k = 14.
(0, 0)

(1, 11)

|

(8, 13)
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In this case, there are n-digit l4-reverse multiples for n = 6 and » > 10. [J

Although we require r; < g, in the examples above it happens that r; < k.
In [3] this was shown always to be the case.

In many instances the entire pruned tree can be determined from just an
initial branch. The following theorem gives one way in which this can be done.

Theorem 2: If (r, s) then (v, u)
\ (> b) | b a)
(u, v) (s 1)

Proof: By hypothesis, the equations in (4) must be satisfied. Switching the
order of the two equations gives the desired result. [

As an illustration of Theorem 2, consider the tree in Example 3. Suppose
we know
(0, 0)
(l,lll)
(8,|13)
(6, 6)
Then Theorem 2 allows us to derive
(6, 6)
(13% 8)
(11, 1)
(O,‘O)

immediately without using (4).
We will use the mnotation

[r, s]

(7)

[u, v]

to indicate solely that the equations in (4) are satisfied by integers; that
is,

8) {kb +8 =a+ vg,

ka + u =b + rg.
Thus, the notation in (7) does not imply that the integers are nonnegative and
less than g. As before, when these latter restrictions do occur,. we will use
the (., .) notation instead of [., .]. The next two technical lemmas will be

useful in the theorems that follow.
Lemma 1: Suppose there are integers such that
[z, s]
la, b]
[u, v]
with 8, u < g and 0 < r, v. Then 0 < a, b.
Proof: Eliminating b from the equations in (8) and rearranging, we find
a(k? - 1) = k(rg - u) + (vg - 8).
Thus, given the hypotheses, 0 < a. Similarly, 0 < b. U
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Lemma 2: Suppose there are integers such that
[r, s]
| [, b]
[u, vl
with
0 <38, u,
(10) r, v < Kk,
rzk-1,v=zk-1, s =0, or u=0.
Then a, b < g.

Proof: From (9) we have

a(k? - 1) = krg - ku + vg - s
< g(kr + v)
<g(k(k - 1) + (k- 1))
= g(k? - 1).

Given the restrictions in the third part of (10), one of the above two inequal-
ities must be strict. Thus, a < g. Similarly, b <g. [

Theorem 3: If there are integers such that

(r, 8) and (', 8')

(11) (a, b) ( (a', ")
(u, v) w', v"

then
(r +r', s+s8")

(12) (a+a', b+ b

(u+u', v+ov"
so long as

s+s', u+u' < g,

r+2r',v+v'<k,

r+r»' zk-1,v+0v"'2k-1, s+s" =20, or u+u'=0.
Proof: By hypothesis, (8) must be satisfied by », 8, ..., and by »', s', ... .
Adding the corresponding equations gives the desired equations for (12). Since

all the numbers in (ll) are nonnegative, those in (12) must be also. By Lemma
2, a+a’' and b + b’ must be less than g. [J

Theorem 4: If there are integers such that

(r, s) and (r', s")
(13) (a, b) (a's b")
(u, v) (u', v')
then

(r - r', s ~-38"
(14) \ (@-a's b-b"
wu-u'sv-2v"
so long as
{O <s-s8',u-u',
O<r-2r',v-0'
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Proof: By hypothesis, (8) must be satisfied by », &, ..., and by r', s', ...
Subtracting the corresponding equations gives the desired equations for (14)
Since all the integers in (13) are less than g, those in (14) must be also. By
Lemma 1, @ - a’ and b - b’ are positive. [J

The above theorems allow the completion of all or at least large portions
of a pruned tree when only an initial piece is known. Suppose, in Example 1,
only

(0, 0)

(15) (0,13)
(3,‘3)

were known. We would be able immediately to derive the rest:
(3, 3)

(3, 0 3, 3)
(O,|O).
The left side follows from Theorem 2; the right from Theorem 3, since
(0, 0) and (3, 3) dmply (3, 3)
(09|3) (3, 0) (3, 3).
Note that by the restrictions in Lemma 2,
(0, 0) and (3, 0) do not imply (3, 0)
(O,IB) (0,‘0) (0, 3).

Thus, we are able to derive the entire pruned tree for Example 1 knowing only
(15) or, equivalently, knowing only that 2178 is a 4~reverse multiple. Simi-
larly, a careful examination of the trees in Examples 2 and 3 shows that each
follows, respectively, from the 3-digit number 118 and the 6-digit number
1211 8 17 15.

It may sound very restrictive to assume that we know an initial portion of
a tree. However, this is equivalent to assuming that a k-reverse multiple for
a given g is known. The problem then is to find or characterize all other
multiples and this is done using the associated pruned tree. Hence, if we know
an #n-digit k-reverse multiple for some small »n, then we do know an initial
portion of the tree. The problem is then to complete the tree quickly and
easily. As an illustration, consider the following, more complicated, example.

Example 4: g = 44, k = 27.
The 6-digit number

(16) 17 18 5 24 31

is a base 44, 27-reverse multiple; this can be verified through multiplication:

4 11 3 15 19
1 7 18 5 24 31

x 27
31 24 5 18 7 1

The carry numbers are numbers in the node labels of the initial portion of the
tree, so we have
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(0, 0)
(4,!19)
(11[ 15)
(3,‘3)
We complete the tree using the above theorems. For example, by Theorem 3

(4, 19) and (3,|3) imply (7, 22)
(11, 15) (15, 11) (26, 26)

In the tree that follows, the superscript J on a particular node indicates that
it was derived using Theorem j, J = 2, 3, 4. So in the above case, we would

write (26, 26)3.

(o,|o)
(4,119)
(11, 15)
(3, 3) (7, 22)3
(17) 1
(15, 11)2 (22, 7Y™ (26, 26)3

PN |
(19, 4)2 (23, 23)3 (15, 11)2 (22, 702 (26, 26)°3

(0, 0)2 (4, 19)3 (11, 15)2

Note that the theorems above do not guarantee that the pruned tree of (17)

is complete and that no branches are missing. The next theorem addresses this
concern.

Theorem 5: Suppose g has a k-reverse multiple; further, suppose the tree con-
tains

(r, 8)
(18) (a, b) ///\\\ (a’, b")
(u, ) (u', v"

where v > u' and v < v'. Then
[0, 0]
’ la -a', b -b']
fu~-u"y v-2v"]
where 0 < u - u' <k, -k <v -v'" <0, .g<a-a'" <0and -g <b - >b" <0.

Proof: Recall that if (18) occurs in a tree, then each number in the node label
must be less than %X and each number in the edge label must be less than g.
Thus, all the claims in the conclusion follow immediately except for a - a',
b - b'" < 0. From (9) we know that

a-a' = (k(u-u")y + (v -0v"g9)/k% - 1).
Hence, ¢ - a’' < 0. Similarly, b - b’ < 0. [

Suppose, for a given g, that we know some k-reverse multiple and thus are
able to obtain the initial portion of the tree. We apply Theorems 2, 3, and 4
whenever possible until all branches end with nodes that have appeared pre-
viously. At this point, we are in the position of asking if there are any
missing branches. By Theorem 5, if there are no integers ¢, d, ¢, w for which
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[0, 0]
(19a) [-c, -d]
[, -w]
where
(19b) 0<t<k, 0fsw<k, 0<e<g, 0<dc<gyg,

then we can be assured that there are 70 missing branches in the tree.
In all the examples considered thus far, (19) is never satisfied. To ver-
ify this for Example 1, we must consider the equations

-4d = -¢ - 10w

(20) ~4e + t = —d.

obtained from equations (4). Eliminating d in (20) gives 4t = 15¢ - 10w; thus,
SIt. However, 0 < ¢t < 5. Consequently, there are no solutions to (20) and,
hence, to (19). Thus, by Theorem 5, the tree in (6) is complete.

Theorem 6: Suppose g has a k-reverse multiple and the tree contains
(r, s)
(a, b)

(us v)

Further, suppose

[0, 0]
) [-c, =d]
[t, -wl
with 0 < ¢ <k, 0 <w <k, 0 <¢ <g, and 0 < d < g. Then
(r, s) or (r, s)
(a - ¢, b-4d) (a + ¢, b+ d)
(uw +t, v - w) (u - t, v+ w

so long as either the three conditions u + ¢ < g, 0 <v - w, and 0 < r or the
two conditions 0 < # - ¢ and v + w < k are fulfilled.

Proof: The first piece follows from Lemma 1; the second from Lemma 2. []
The following example illustrates the use of Theorem 6.

Example 5: g = 40, k = 13.
The 5-digit number

(21) 2 24 30 1 34

is a l3-reverse multiple. As in Example 4, the number in (21) gives the ini-
tial portion of the tree which has node labels (0, 0), (8, 11), and (9, 0).
There is just one solution to (19); namely,

[0, 0]
[8,l~10].

We now use Theorems 2, 3, 4, and 6 to complete the tree:
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(0, 0) [0, 0]
\ \
(8, 11) [8, -10]
(9, 0) (1, 10)°
/ \
(0, N! (6, 6)
\
(11, 8)2 (10, 1)2 (2,”11)6
|
(0, 0)2 (8, 11)3 (11, 8)2 (1, 4)
(4, 1) (12, 12)3

(3, 12)6 (11, 2)2 (4, D2 (12, 12)3
|
(12, 3)3 (6, 6)2

l
(1, 4)2

The double bar edges leading to nodes without a superscript indicate that none
of the above theorems apply. In these cases the nodes were found using (4).
Note that there are only 3 such instances. On the other hand, the 16 super-
scripted nodes were found easily using the theorems indicated by the super-
script as in Example 4.

As we have noted, there is just one solution to (19). We used this solu-
tion in conjunction with Theorem 6 to find 3 nodes. If the tree contained any
missing nodes, then by Theorem 5 equations (19) would have another solution.
Since that is not the case, the tree is complete.
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ON REPRESENTATIONS OF NUMBERS BY SUMS
OF TWO TRIANGULAR NUMBERS

John A. Ewell
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(Submitted July 1990)

1. Introduction

We begin our discussion with a definition.
Definition: As usual,
Z:={0, *1, *#2, ...}, N:={0, 1, 2, ...}, P:= I\{0}.
Then, for each n € /W,

ro(n) = |{(x, y) € 22|n = 22 + y2}|,
tom): = |{(x, y) € N?|n =x(x + 1)/2 + y(y + 1)/2}].
Also, for each n € P and each 7 € {1, 3},
d.b(n) = Z 1.
dln
dz=17 (mod4)

We can now state two theorems.
Theorem 1 (Jacobi): For each n € P,
rom) = 4{dy(n) - ds(n)}.
Theorem 2: For each n € N,
to(n) = dy(4n + 1) - dz(4n + 1).

Clearly, r,(0) = £,(0) = 1. Next, we observe that, for positive integers,
Theorem 2 can be deduced from Theorem 1. In this note we give an independent
proof of Theorem 2. Our proof is based on the triple-product identity

(1) [T - 22 - a2 (1 - a1y = 3 (-1)ra’ar,
1 —o

which is valid for each pair of complex numbers a, x such that a # 0 and ]x]< 1.
Hirschhorn [2] showed how to deduce Jacobi's theorem from the triple-product
identity. The reader will doubtless note that our method is similar to that of
Hirschhorn.

2. Proof of Theorem 2

Separating even and odd terms on the right side of (1), and then again
using (1) to replace the series in the resulting identity by infinite products,

we get
fi (1 - xZn)(l _ axZn—l)(l _ a—len—l)
1

- ixlmzaZn . ixun(nﬂ)azn

]

iﬁ (1 - x8) (1 + a2x8~%) (1 + a 228 1)
1

- (a+aba fi(l - 287) (1 + a2x®) (1 + a™%xf).
1
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With Dg denoting derivation with respect to a, we then operate on both
sides of the foregoing identity with al, to get

(2) -JT-227)(1-ax? 1) (1- a la2n1) 37 vy () (ak - a7k)
1 1
= 2 n (1- x8")(l+a2x8”"q)(l+a'2x87‘—4) Z (_1)k—lvk (xk) (a?_k _ a—2k)
1 1
~(a-a Dy [T (1-28)(1+a 2x8) (1 + a” 2x8")
1
~(a+a )2z [] (1- @87) (1+a2x8) (1+a~2287) 3 (-1)* 1oy (28) (a2 - a~2k),
1 I
where, for convenience u;(x) : = xke (1-2%)71, v, (x) : = ak « (1-x2%)"1, k€ P,
and x is a complex number with |z| < 1. Now, in (2), let a = i and divide the
resulting identity by -27 to get
[;[ (1 - 22n)(1 + x"=2) 3 (~Dkvyy,1(x) =« [1[(1 - x87)3,
0

or, equivalently,

o (1 - x8n)3 o p2k+1
=11 2 wgy T & OV T
1 (1 = x2n) (1 + xtn=2) ) 1 - xhk+
Hence, 8ny2 2k+1
« (1 - x2°7") > xRkt = d .
cfj—7 = -k ——— = (-1)k @7+ 1D(2k+ 1)

Owing to a well-known identity of Gauss ([1], p. 284), it then follows that

0 " 1 o 3 (l - x8n)2
2 ta(mxntl = x{zxZn(rHl)}z Y | it
0 0 I (1 — x8rn-4)2

3RS 2@iHD@AD o D g2mtl T (o1)@-Di2
= i m=0

k=0 j=0 dl2m+1
= Y oattl T (cp@-bi2 oy ixun+3 T (-1)@-Diz
n=0 dlun+1 n=10 dlun+3

Equating coefficients of like powers of x, we get, for each n € N,

ty(n) = E (_1)(d-l)/2 = Z 1 - Z 1
dlume 1 dlum+1 dlsn+1
d =1 (mody) d =3 (mod &)

dl(lm + 1) - d3(4ﬂ + 1),

]

2: (_1)(d—1V2

d|un+i3

0.

This proves Theorem 2. In passing we note that the second conclusion fol-
lows easily from the following independent argument. For each # € N and each
divisor d (and codivisor d') of 4n + 3, exactly one of the pair (d, d') is = 1

(mod 4) and exactly one is = 3 (mod 4). Hence,
(-D@-DI2 4 (- -Diz2 = o,

Summing over all of these pairs, we obtain the desired result.
Finally, we prove that Theorems 1 and 2 are actually equivalent. To this
end, we first recall the following well-known result.
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Theorem: For an arbitrary positive integer n > 1, let

i=r e.
n = n pll
=1
denote its prime-power decomposition. Then, # is representable as a sum of two
squares if and only if, for each 7 € {1, 2, ..., »} such that p, =3 (mod 4),
e; 1is even.
It then follows that counting representations of positive integers by sums

of two squares can be restricted to positive integers of the form 27 (4k + 1),
fs kK € N. Equivalence of Theorems 1 and 2 will then be an easy consequence of

the following lemma.

Lemma: I1f for each k€ N,

S =5k):={(x, y) e N % P|4k + 1 =x2 + yz}
and
T=1Tk):={(Z, §)€ N2|k = 2(Z + 1)/2 + j(G + 1)/2},
then
|s] = |z].
Proof: To see this we define a function 6:7 + S as follows: for each (Z, J) €T,
(0, 22 + 1), if 7 = g,
0(i, J): =< (1 -g, 1 +4+ 1), if i > g
Z+g+1,g9-1), if 7 < 4.

Simple calculation reveals that 6 is single-valued, and always 68(<, j)€S. So,
we proceed to show that 6 is one-to-one from T onto S.

Suppose that (g, k), (¢, J) € T, and 6(g, h) = 6(Z, j). If (a) g = h, then
0(g, W)t = (0, 2g + 1).

Therefore, 6(Z, J) € N x P must also have first coordinate equal to 0: that ig,
6(<, J)=(0, y), with 2 = j and y = 2¢ + 1. So, 2g + 1 = 27 + 1, whence g = <,
whence g = h = ¢ = j, whence (g, h) = (¢, §). If (b) g > h, then

8(g, h): (g-h, g+h+1).
Therefore, 6(Z, ) = (x, y) € P2, with & < y, whence x = < —_j andy = 2+ J + 1,
whence 7 - j =g -hand 2 +J+ 1 =g+ h + 1, whence (Z, §) = (g, h). If (c)
g < h, then

8(g, h):

As before, we must have:

(g+h+1, h - 9g).

g+h=714+gj and -g+h=-1+g,
whence (g, k) = (¢, j). Thus, 6 is one-to-one.
Pick any (x, y) € S(k), and split two cases: (i) x = 0 or (ii) x > 0. Under
(i) we have
4k + 1 = 02 + y2, whence y = 27 + 1, for some ¢ € N.
Hence, for 7 = j: = (y - 1)/2, we have
(x, y) = (0, 22 + 1) = 6(Z, J), where (2, J) € T(K).

Under case (ii) we split two further subcases: (ii') x < y or (ii”) x > y. Then
under (ii') we put © - J =x and © + J + 1 =y to find

i=(+y-1)/2 and J=(=z+y-1)/2.
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Thus, 7 > j, © = j =%, and ¢ + J + 1 = y, whence (x, y) = 0(Z, J). [Clearly,
(Z, §) € T(k).] Under (ii") we put ¢ + j + 1 =x and -2 + J = y to find

(x+y - 1)/2.

i=(x-y-1)/2 and g

As before, 7 < j and (x, y) = 6(Z, J), where (Z, J) € T(k). This proves that 6
is onto S.
Now let us assume that Theorem 2 holds. Then, for each k € N,

[SR)| = |T(k)| = dy(4k + 1) - da(4k + 1).
Therefore,
vy (4k + 1) = [{(x, y) € 22|4k + 1 = 22 + y?2}|

4{d1(4k + 1) - d3(4k + 1)},

since each solution (x, y) € S yields 4 solutions (x, *y) € z2.
Conversely, let us assume that Theorem 1 holds. Then, for each k € N,

[S(K)| = rp(4k + 1) /4 = dy(4k + 1) - d3(4k + 1),
whence (owing to our Lemma),
to(k) : = |T(k)| = dy(4k + 1) - da(4k + 1),

as well.
Since P2(2f(4k + 1)) = ry(4k + 1), equivalence of Theorems 1 and 2 follows.
Owing to the equivalence of the two theorems, our proof of Theorem 2 is a
new one for both theorems.
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ACCELERATION OF THE SUM OF FIBONACCI RECIPROCALS
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The topic of Aitken acceleration (sometimes called "Aitken's A2 process")
appears in many numerical analysis texts but is usually confined to the
solution of equations by fixed-point iteration. (Interesting examples of this
occur in [4] and [6], wherein x = 1 + 1/x, equivalent to the characteristic
equation of the Fibonacci difference relation, is solved by iteratiom.) Con-
spicuous in suggesting its applicability in other contexts are [1], [2], [5],
and [7].

Briefly, a convergent sequence Xj, L5, ..., &, with limit x is amenable to
acceleration if the ratio of consecutive errors is approximately constant
(@ - x,)/(x - x,-1) ~r. It follows that » is approximately the ratio of con-
secutive differences r ~ (x, - x,-1)/(%,-7 — £,-2). Substituting this value of
r into the approximation for the ratio of errors, solving for x, and re-
labeling x as x¥ yields the more rapidly converging sequence

xk o=, - (2, - xn—l)z/(xn = 2L, + Xpop) =X, - (An)z/A%’
where the second form uses the A notation for first and second differences,
Dbp =T, - xyo1 and A2 = A, - Ap,_q-

An occasionally mentioned use other than functional iteration is the accel-
erated convergence of Taylor series [5], often possible because of the behavior
of the error term. A trivial but revealing example of this is the geometric
series; acceleration of any three consecutive partial sums takes us directly to
the 1limit since the ratio of errors (or differences) is, in fact, exactly
constant.

Because of its intriguing resemblance to a geometric series, the sum of
Fibonacci reciprocals provides a dramatic illustration of both the increase in
speed of convergence attainable and the rarely mentioned possibilities of
repeated acceleration. To be sure, in 1972 Brousseau achieved at least 83-
digit accuracy in

S5 =3 1/F; = 3.3598856662...
J=1
by evaluating 5,4, = 2%@?1/53 to 400 digits (see [3] for an extensive bibli-
ography), but this need not detract from what can be learned by pursuing this
example.

Although S; = 5047/1560 = 3.235... has a relative error of 47, it and the
six previous partial sums themselves can be accelerated with pencil-and-paper
arithmetic to produce 1391/414 = 3.359903..., with relative error only .0005%.
Accelerating the information provided by the first seven terms has reduced the

inaccuracy in our estimate of S by a factor of 7000.

X, = Sn Ay, A% x; Az A%* x;* Ag* A%** xﬁ**

1

2 1/1

5/2 1/2 -1/2 3

17/6 1/3 -1/6 7/2 1/2

91/30 1/5 -2/15 10/3 -1/6 -2/3 27/8

279/120 1/8 -3/40 101/30 1/30 1/5 121/36 -1/72

5047/1560 1/13 -5/104  403/120 -1/120 -1/24  84/25 -1/900  23/1800  1391/414
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Observe that the ratios of consecutive differences are close to 1/a, —l/u3, and
1/a% in the three stages of acceleration, where o = (/g + 1)/2 = 1.618...
An explanation for this lies in the Binet formula for the Jth Fibonacci

number

Fj o= od(1 - (-1/a?)7) /Y5,
from which

1/F; = 55 S (-1/a2)7%.

of =0

Thus, a partial sum is given by

n [ n . .
Spo= 2 U/F; =V5 5 3 (1) Ja@k+ D
j=1 k=0 gj=1
and the error, or tail, is the double sum

5.5, =/5% Y (c1)ikja@kHDi = /35S .
kgo j=z;+1( ) /e ,;0 (a2k+l _ (_l)k)(u2k+l)n

(_1)k+ kn

Each stage of the acceleration will eliminate the currently dominant compo-
nent of the error term, in this case successively peeling off those of order
(L/a)™, (-1/a3)*, (1/a5", etc. [7]. Generally, if the error in a sequence is
Z:ciaz, with 1 > |a1| > ]azl > ..., then acc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>