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STRONG DIVISIBILITY LINEAR RECURRENCES 
OF THE THIRD ORDER 

Pavel Horak 
T. G. Masaryk University, Brno, Czechoslovakia 

(Submitted April 1990) 

1. Introduction 

A kth-order linear recurrent sequence u = {un : n = 1, 2, ...} of integers, 
satisfying the following property for greatest common divisors: 

(u^, Uj) = |^(i, j)| for all i , j > 1, 

is called a kth-order strong divisibility sequence (SDS). The notion of strong 
divisibility was introduced by C. Kimberling in [3] for kth-order linear recur-
rences {un : n = 0, 1, 2, . . . } . 

All the second-order SDSTs have been described in [2]. A characterization 
of all the SDS*s in certain subsystems of the system T of all the third-order 
linear recurrences of integers was given in [1]. The purpose of this note is 
to extend the results of [1] and to describe all the SDSfs in further 
subsystems of T. 

Let U denote the system of all the sequences u = {un: n = 1, 2,...} defined 
by 

Ui = 1, Ui = v * 0, ẑ3 = y * 0 

wn + 3 = a • un + 2 + b • un + i + c • uny for n > I, 

where v, y, a, b, and a are integers. The system of all the strong divisibility 
sequences from U will be denoted by D. 

Notice that we may take Ui = 1 without loss of generality as all the third-
order SDSfs with ẑ2 * 0 * W3 are exactly all the nonzero integral multiples of 
the sequences from D. 

Lemma 1.1: Let u = {un}^U. Then u^\u^ if and only if there exists an integer 
/ such that 

(1) c = /• v - a ' u. 

Proof: From t h e above d e f i n i t i o n we o b t a i n u<i = v , Ui+ = a\x + bv + c and t h e 
a s s e r t i o n f o l l o w s . 

2 . The C a s e a = b = c = 1 

Let V denote the system of all the sequences from U satisfying the condi-
tion a = b = c = 1, i.e., u = {un} eV if and only if 

Ui = 1, Uo = v * 0, Mci = y * 0 
(2) i z d 

un+3 = un+2 + un+i + un, for n > 1. 
The following theorem will show that there are no SDS!s in V. 

Theorem 2.1: The system of sequences V contains no strong divisibility sequen-
ces, i.e. , VnD = 0. 

Proof: Let us suppose that u = {un} e Vn Z). By Lemma 1.1, there exists an inte-
ger / such that 

(3) y = /• v - 1 
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and t h u s 

UL± = v • ( / + 1) . 

Then by ( 2 ) : 

^5 = v • ( / + 2) + y and u& = v • ( 2 / + 3) + 2y . 

From u2\u^9 u^\u^9 and ( v , y ) = 1, we g e t v 12 and y | If + 3 . Then, u s i n g 
(3) , we o b t a i n : 

v = 1, y | 5 o r v = - 1 , u | l o r v = 2 , y14 or v = - 2 , y12-

But v, y are coprime, which leaves 10 possible pairs of v and y. For all of 
them it is easy to find i, j (always < 9) such that (u^9 Uj) * \u(i j)| • There-
fore \l£D> a contradiction. 

3. The Case y = 1; a = h = 1 

Let W denote the system of all the sequences from U satisfying the condi-
tions y = 1; a = b = 1, i.e., u = {un} €.W if and only if 

Ui = 1, Un = V * 0, MQ = 1 
(4) 

^n + 3 = wn + 2 + wn+l + °* un > for n > 1. 

Furthermore, let W\9 W2 denote the following subsystems of W: 
Wl = {u e W : u2\u^ and / = -1} 

W2 = {u e W: u2\ui+ and / * -1} 

where / is the integer from (I). Obviously, W\ and W2 are disjoint and 

D nW cwlu W2. 

Proposition 3.1: The system of sequences Wi contains no strong divisibility 
sequences, i.e., ^ n/} = 0 „ 

Proof: Let u £ ^ n D ; then i> + / = 0 and, according to Theorem 3.1 of [1], we 
get u = c or u = d where 

c = {1, 2, 1, 0, 1, 2, 1, 0, . . . } , d = {1, -2, 1, 0, 1, -2, 1, 0, . . . } . 

But C, d £ W and t h u s u ^ £/]_, a c o n t r a d i c t i o n . 

Lemma 3.2: Le t u = {un}£W2. Then: 

(5) o = jf • v - 1, 

(6) ^ = v ( / + 1) * 0 , 

(7) c = - v - 1 (mod l u ^ l ) . 

Proof: The assertion (5) follows from (1), the assertions (6) and (7) follow 
from Uu, - 1 + v + c, from (5), and from the definition of W2. 

Lemma 3.3: Let u = {un} eW2nD, such that f * 0. Then v * -1. 

Proof: Let us suppose that ueW2nDs f * 0, and v = -1. Then from (6) and (4) 
we get 0 2 u^ = c and consequently 

un + 3 = un + 2 + un + i (mod l^i+l), for n > 1. 

Thus, HQ E 3 (mod |ẑ .̂  |) and from U^\UQ we obtain Ui+ = c = ±1, ±3. But 

c = 1 => U f. D (by Theorem 2.1), a contradiction 
e = -1 =#> / = 0 [by (5)], a contradiction 
c = 3^>(u9, UIQ) * \ui\ =$>u £D, a contradiction 
c = -3 =^>(U6? ^7) 2 |ui|=^>u^Z^, a contradiction. 
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Lemma 3.4: Le t u = {un} G ^ . Then UI+\UQ i f and o n l y i f 

v 2 E v + 5 (mod | / + l | ) . 

Proof: Us ing (7) and (4) we g e t u5 = 1 - v - v 2 (mod | z<^ | ) , t h e n 

(8) u 6 = - v ( v + 2) (mod | w i j ) , u7 = - 2 v 2 - 3v + 1 (mod \uh\) 

and , f i n a l l y , 

uQ = v ( v 2 - v - 5) (mod | u i + | ) . 

But by ( 6 ) , Ui+ = v • (f + 1) a n d , t h e r e f o r e : 

UL+\UQ i f and o n l y i f v 2 - v - 5 E 0 (mod \f + l | ) . 

Lemma 3.5: Le t u = { w n } e ^ such t h a t UI+\UQ and Ui+\ui2- Then 

33v + 60 E 0 (mod \f + l | ) . 

Proof: From (7) and (6) we obtain o E -V - 1 (mod \f + 1 | ) . Using this fact, 
(8), Lemma 3.4, (4), and the assumptions U^\UQ, UL+\UI29 we get: 

u6 E -3v - 5 (mod |/+ l|), u7 E -5v - 9 (mod |f + l|), 

u8 E 0 (mod |/ + 1 j), u3 E 6v + 11 (mod |/ + l|), 

w10 = 25v + 45 (mod |/ + l|), w n = 31v + 56 (mod \f + l|), 

and, finally, 

U12 = 33v + 60 E 0 (mod |/ + 1|). 

Proposition 3.6: Le t u = {un} e W2 such t h a t U^\UQ and Uii\uiZ- Then / + l | l 3 5 . 

Proof: From Lemma 3 . 4 , we g e t : 

(9) 1089v2 E 1089v + 5445 (mod \f + l | ) . 

S i m i l a r l y , from Lemma 3 . 5 , we g e t : 

(10) 1089v2 E 3600 (mod \f + l | ) ; 

(11) 1089v E -1980 (mod \f + l | ) . 

Now, from ( 9 ) , ( 1 0 ) , and (11) we o b t a i n 

3600 E 3465 (mod \f + l | ) 

and t h u s , / + 1 | l 3 5 . 

Lemma 3.7: Le t u = {u n } <Eft/2. Then u5 * 0 and 

(12) M l 0 - E v ( / 3 - 5 / 2 - 2 / + 1) + f2 - kf - 6 (mod | u 5 | ) . 

Proof: From ( 5 ) , ( 6 ) , and (4) we g e t : 

(13) u5 = v 2 / + vf + 1. 

If U5 = 0, then vf • (v + 1) = -1 and thus, v + 1 = ±1, a contradiction. Fur-
thermore, by a direct computation from (4), using (5), we get: 

(14) u10 = v3/3 + 6v3jc2 + iov2/2 + 6v2/ + lOvf + v. 

From (13) we get v2/ E -v/ - 1 (mod | ẑ 51) ; using this fact in (14), we obtain 
(12). 

Proposition 3.8: Let u = {un}<EW2 such that w5|u10. Then 

u5\fLi - 13/3 + 34/2 + 38/ + 1. 
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Proof: Let us denote a = f3 - 5f2 - If + 1; 3 = f2 - kf - 6. Obviously, 

(15) a2 - 3/(a - 3) = a2(v2/ + v/ + 1) - (va + 3)(a/v + /(a - 3))-

Then from ^sl^io* (12), (13), and (15), we obtain 

u5\a2 - 3/(a - 3) = fk - 13/3 + 34/2 + 38/ + 1 

which completes the proof of the proposition. 

Now, let us denote by H the following subsystem of the system W: 

H = {new : c = -1}, 
i.e., u GH if and only if u = {l, V, 1, v, . . . } . It is obvious that H C W2. 

Proposition 3.9: Let u = { w j e ^ . Then u e £> if and only if u e # . 

Proof: If u £ 5 , then clearly u e P . Conversely, let uG£>; then (by Proposition 
3.6), / + 1 | 135. From Lemma 3.4 and from the fact that the congruence v2 = 
v + 5 (mod 9) has no solution, we get |/ + l| * 9, 27, 45, 135. Therefore, we 
obtain for f the following eight possibilities: f = 0, 2, 4, 14, -2, -4, -6, 
-16. Now: 

(i) let / = 0, then by (5) , c = -1; thus, u = {1, V, 1, y, . . .} eH. 
(ii) let / * 0 and let us denote 6 = / 4 - 13/3 + 34/2 + 38/ + 1 . The possible 

values of / and the factorization of the corresponding 6 are given in the 
table: 

/ 
6 

2 
53 

4 
ll2 

14 
9941 

-2 
181 

-4 
1481 

-6 
5101 

-16 
181 - 701 

But W51 6 (by Proposition 3.8), which gives us 38 possible pairs {/, u$}. For a 
given pair {/, U5}, we obtain the value v from (13). Obviously, v must be an 
integer and v * 0, -1 [by (4) and Lemma 3.3]. By a direct computation, we 
obtain the following solutions: 

f = 2, v = 1, 3, -2, -4, and / = 4, v = 5, -6. 

For / = 2, v = -4, we get (ui+, Un) * |^i|; f° r / = 4, v = 5, we get (w5, u6) * 
|^iI, and in the remaining cases we get v2 ^ v + 5 (mod | / + 1 | ) and, there-
fore, by Lemma 3.4, UI+\UQ. Thus u ̂  D, a contradiction. 

The following theorem gives a complete characterization of all the strong 
divisibility sequences in the system W. 

Theorem 3.10: LetueA/. Then u is a strong divisibility sequence if and only 
if U G H. 

Proof: The assertion follows immediately from Propositions 3.1 and 3.9 and from 
the inclusion D n W QWiU Wz-

Acknowledgment 

The author wishes to thank the referee for suggestions that led to an 
improved presentation of this paper. 

References 

1. P. Horak. "A Note on the Third-Order Strong Divisibility Sequences." Fibo-
nacci Quarterly 26. 4 (1988):366-71. 

1992] 101 



STRONG DIVISIBILITY LINEAR RECURRENCES OF THE THIRD ORDER 

2. P. Horak & L. Skula. "A Characterization of the Second-Order Strong Divisi-
bility Sequences." Fibonacci Quarterly 23. 2 (1985):126-32. 

3. C. Kimberling. "Strong Divisibility Sequences with Nonzero Initial Term." 
Fibonacci Quarterly 16. 6 (1978):541-44. 

At the request of Professor Lester Lange and with the permission of Profes-
sor Leonard Gillman, we have simply lifted Professor Gillman*s delightful, 
melodic note, below, from page 375 of the June-July 1982 issue of The American 
Mathematical Monthly. Students need to know that the well-known limit 
mentioned involves the golden mean. 

Gerald E. Bergum 
Editor 

MISCELLANEA 

77. 
Leonid Hambro, the well-known pianist, told me recently that he was about 

to enter a billiards tournament in which he would play 12 games; he knew the 
opposition, he said, and he estimated his odds for winning any particular game 
as 8 to 5. "What do you think your chances are of sweeping all 12 games?" I 
asked him. "They're pretty small," he said. "The probability that IT11 win 
any one game is 8/13. To find the probability that Ifll win all 12 you have to 
take 8/13 to the 12th power. That's a pretty small number." 

He did not have a calculator in his pocket. But he had a pencil and a 
pad—and an inspiration. "Hey!" he said. "Those are Fibonacci numbers. The 
ratio of successive terms approaches a limit (about .618), and very fast: even 
a ratio near the beginning like 8/13 is very close to the limit." He scribbled 
some additions. "The 12th Fibonacci number after 8 is 2584. Therefore 8/13 to 
the 12th power is approximately the same as 8/13 times 13/21 and so on, twelve 
times; everything cancels out except the 8 in the beginning and the 2584 at the 
end. So the probability that I will win all 12 games is about 8/2584, or about 
1/300. See, I told you it was pretty small." 

—Leonard Gillman 
The University of Texas at Austin 
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(Submitted April 1990) 

1. Introduction 

Let k and t be fixed positive integers and let Gk , 
a sequence of integers defined by 

(n), n = 0, 1, 2, ... be 

if 0 < n < t 1 
(1) 

where G 

Gk, t (") 
\n Gl 

k, t 

Tk, t 
denotes the kth 

G k, t (m) G k, t (m) 

(n - i) if n > £, 

iterated composition of G^ t, 

and Gl . (m) Gk,t(4:lM) 
for i > 1 and for any m > 0. 

This sequence is a generalization of some which have been investigated earlier. 
P. J. Downey & R. E. Griswold [1] (and later V. Granville & J. P. Rasson [3]) 
proved that the solution of recurrence (1) in the case fc = 2, t = 1 is given by 

(2) G 2, 1 (n) in + l)y] 
for any n > 0, where u = (-1 + /5)/2 and [ ] denotes the integer part function. 
In [1] a similar formula is shown for G^s t (n) with arbitrary t > 1. 

Recently B. Zay [6] has shown some properties of the general sequence for 
any k and t . Among others he proved that GJ<J t{n) is defined for each nonnega-
tive integer n, the sequence is monotonically increasing, and that the general 
case can be traced back to the case t = 1 by 

t • G k, 1 

GKtW 
G k, 1 

([ID 
([!]) 

i f Gk, 1 m) G k, 1 + 1 

+ n t if GK x (g]) , ffk, t (g + l]) 
for any n > 0. So it is enough to investigate the sequence with t = 1. Fur-
thermore, we can suppose that k > 1 since the case k = t = 1 gives the sequence 
Gl, \{yi) = [ (n + l)/2], which can be considered as a trivial case. 

Throughout this paper, k will denote a fixed integer with k > 2 and, for 
brevity, we write G(n) instead of 6^ i(n). 

In general (if k > 2) the terms of the sequence £(n) cannot be expressed 
similarly as in (2). In order to see it, let us suppose that there is an inte-
ger T and a positive real number oo such that 

(3) G(n) 
Then 

(4) 

[ (n + P)CO] . 

lim = a). 
n -̂  no ^ 

-This research was partially supported by the Hungarian National Foundation for Scientific 
Research grant no. 273. 
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On the other hand, by (1) we have 

G(n) _ _ Gk(n - 1) Gk~l(n - 1) G2(n - 1) G(n - 1) n - lm 

n Gk~l(n - 1) Gk-Z(n - 1) """ G(n - 1) n - 1 n ' 

therefore, Gv(n) = G(Gi-l(n)) and (4) imply the equation 

0) = 1 - 03 ^ . 

So a) is the only positive real root of the equation xk + x - 1 = 0. But it can 
be checked by numerical calculation that, in the case k = 3, equation (3), with 
any integer 23, does not hold for all n. Namely, in this case, we have co = 
0.6823..., G(2) = 1, £(18) = 13; thus, from 

G(2) = 1 = [(2 + r)a)] and £(18) = 13 = [(18 + r)w], 

v < 1 and p > 1 would follow, respectively, which is impossible. 
Thus, (2) really cannot be extended for any k > 2. But we shall show that 

(4) holds for any k. 

Theorem: For any i n t e g e r k > 2 , 

-, . G(n) 
l x m —^—- = a), 
n+ oo ^ 

where GO is the single positive real root of the equation x^ + x - 1 = 0. 

We note that the Theorem also holds if t > 1 or k = 1, which follows from 
the results mentioned above. 

2. Auxiliary Results 

For the proof of our Theorem, we need the following lemmas. 

Lemma 1: For any n > 0, we have 

(5) G(n) = G(n - 1) + en 

and 

(6) Gk(n) = Gk(n - 1) + £„', 

where en and ewf are 0 or 1. 

Proof: Equalities (5) and (6) hold for n = 1 and n = 2 since, by the definition 
of the sequence, 

G(0) = 0, Gk(0) = 0, G(l) = 1, c7(2) = 1, Gk(l) = 1, Gk(2) = 1 

for any k > 2. Assume that m > 2 and (5) holds for any n < m, i.e., 

c7(n) = G{n - 1) + en 

for any n with 0 < n < m and en = 0 or 1. From this G{n) < n < m also follows 
and so, by the assumption, we get 

(G2(n - 1) if en = 0 
G(G(«)) = G2(n) = < Zf„ „ _ 

|6-z(n - 1) + e„ if e„ = 1, 
where ê ' = 0 or 1. Continuing this process, 

(7) £fe(n) = Gk(n - 1) + e„' (e„f = 0 or 1) 

follows for any 0 < n < m. By (1) we have 

G(jn) = m - Gk{m - 1) and G(m + 1) = m + 1 - Gk(m) 

from which, using (7), we obtain 
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G{m + 1) - £(777) = 1 - {Gk(m) - Gk(m - 1 ) ) = em+l ( e m + 1 = 0 o r 1 ) . 

Thus , ( 5 ) , ( 7 ) , and (6) a l s o h o l d f o r n = m + 1 . 
From t h e s e , t h e lemma f o l l o w s by m a t h e m a t i c a l i n d u c t i o n . 

Lemma 2: Le t {n^}^=Q be a s e q u e n c e of p o s i t i v e i n t e g e r s such t h a t 

Girii) = ni-l 

f o r any i > 0 . Then 

ni = rii-i + ni.k - zt 

for any i > k, where e^ = 0 or 1. 

Proof: By the assumption of the lemma, using Lemma 1 and the definition of the 
sequence G{ri) , for any i > k we have 

ni-i = G{ni) = ni - Gk{ni - 1) = n^ - Gk(nl) + e/ 

= m - G^Hrii-O + E! = ^ - £fc"2(ni_2) + el = . . -

= «i " G(ni.k + l) + z{ = nt - ni_k + e/, 

where e^ = 0 or 1. The lemma follows from this assertion. 

Lemma 3: Let {n^}^° =0 be an increasing sequence of nonnegative integers satis-
fying the recursion 

™i = rii-i + ni„k - e- (i > fc), 

where k > 2 is a fixed positive integer and e^ = 0 or 1. Define a fcth-order 
linear recurrence sequence iu^}™^Q of integers by u^ = n^ for 0 < i < k - 1 and 

wi = Mi-1 + ui-k 
for i > k. Further, let {F^ }™= Q be a sequence of natural numbers defined by 
^0 = ^l = ••• = Fk-l = 1 and 

Fi = Fi.l + Ft.k (i > k). 
Then 

for an}̂  i > 0, where 0 < 6̂  < i^ - 1. 

Proof: For 0 <i < k - 1, the lemma evidently holds with 6 ^ = 0 . If i > k and 
ftj = Uj - 6j with 0 < 6j < Fj - 1 for any 0 < j < i, then 

?k = ^i-1 + ni-k ~ H 
= ui-i + ut.k - (6i_1 + 6i.k + e^) = ui - 6i9 

where 
0 < 6i = 6^! + 6 ^ + Ei < ff _! + F£_k - 2 + et < Ft - 1, 

since the Sj T s are integers. The lemma follows from the above by mathematical 
induction on i . 

Lemma 4: Let {vn}™=0 be a fcth-order linear recurrence sequence of positive 
rational integers defined by the nonzero initial values VQ, V\> ..., Vk-i and 
by the recursion 

Vn
 = vn-\ + vn-k 

for n ^ k. Denote by al5 a25 •••» 0Lk the roots of the characteristic polyno-
mial xk - xk~l - 1. Then the terms of the sequence can be expressed as 

(8) vn = axa" + a2a?J + •»• + aka^ (n > 0) , 

where the a^fs (i = 1, 2, ..., k) are elements of the number field generated by 
a •. , a?, ..., a, over the rationals. 
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Proof: This lemma is a special case of a more general well-known result, so it 
is not necessary to prove it here. 

Lemma 5: Let {vn}™=0 be the linear recurrence sequence defined in Lemma 4. If 

0 < VQ = min (Vi) and | ct x | > | ai | for 2 < i < k, 
0< i < k 

then there is a real number c > 0, depending only on the characteristic poly-
nomial of the sequence, such that 

(9) \a1\ > a • v0, 
where a\ is defined by (8). 

Proof: Ferguson [2] as well as Hoggatt & Alladi [4] proved that the roots of 
the polynomial x* - xk~l - 1 are distinct and that there is a dominant real 
root 04 with the largest modulus; thus, we may suppose that | ot ]_ | > | a^ | for i = 
2, ..., k. 

By (8), for the a^Ts, we have the system equations: 

CL\ + OL2_ + 

aidi + a2«2 + 
+ ak = v0 

thus, 

(10) 

where 

al 

a\ 

D 

^Y -l + 

D ' 

1 

al 
af 

; * -

a^a| 

1 

a2 

a? 

1 a£-

1 

-1 

+ 

. . 

. i 
• ak 

• 4 

• 4 

+ a7 a *ufc 
&-1 _ 

'*-! = 

fc-1 

. D\ = 

vo 
vl 
v2 

vk-l 

1 

a2 

a? 

a|-! . 

.. 1 

•• ak 

• • < l 

and ZJ * 0 since the a^ f s are distinct. 
the form 

k 
(ID #1 = Z (-l)*'1^-! • Z)U), 

i= 1 
where 

"l ... 1 
ak 

The determinant D^ can be written in 

^i) ^"2 

„*-l 

**-2 

vfe"l 

is a (fc - 1) x (k - 1) determinant rejecting the first column and the i t h row 
from £>]_. 

It was proved in the lemma of [5] that 

(12) D{i) = D0 • Sk_i for any 1 < i < k, , ' -
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where 

DQ = 

1 

.k-2 

is a (k - 1) x (k - 1) Vandermonde determinant and S-^-i is the elementary sym-
metrical polynomial of degree k - i of variables a.£, . . . , afc if /c - i > 0, and 
SQ = 1. It is known that for the coefficients of a polynomial 

b(x) = £0^n + b^-1 + + £n 

we have 

where 
bj = (-l^boS? (1 < j < n) 

SJ 2^ 3i 3? 
is the elementary symmetrical polynomial of degree j of the roots $i» 
of &(#) (the sum runs over the distinct i1 < i 2

 < < -ij combinations of 1, 
2, . . . , n) . Since 5]_, 5*23 . .., 5^-1 are the elementary symmetrical polynomials 
of a2> • • « > o^ of degree 1, 2, . .., k - 1, thus £]_ + cq, 5*2 + 5^^, . .., ^-i + 
5,^_2ai, ^k-ioq are the elementary symmetrical polynomials of 04, a25 . .., afc of 
degree 1, 2, . .., k - 1, fc, respectively. So, for the coefficients of the poly-
nomial xk - x^~l - 1, we have 

(13) 

-1 = -(Si + ai) 
0 = Si + S\<3,\ 

0 = ( - l ) ^ 1 ^ - ! + ^-2ai) 
-1 = (-l)fc • 5k_ i a i. 

Since 04 is real, 04 > 1, which implies that 5^ = 1 - cq > 0. But, from this, 
^2 > 0 follows, and contiuing this process, by (13), we obtain the inequalities 

S 2i > 0 (0 < 2i < k - 1) (14) 

and 

(15) S2i+l < 0 (1 < 2i + 1 < k - 1). 

Finally, by (11) and (12) we get 

and, by (14) and (15), using the condition 0 < VQ < Vi for 1 < i < k - 1, 

P i I = PC E y i - l ' l 5 ^- i l > v0 * \Do\ ° Z \Sk-i\ 
i= 1 i= 1 

follows. By (10), this implies the lemma. 

3. Proof of the Theorem 

Let I be a sufficiently large positive integer and define an integer 77? by 

log N 
L2 • log 3 

([ ] is the integer part function). Let ftg, ri\9 

numbers defined by 

(16) nm = N 

1992] 

and ft-i-l = G(ni) for 1 < i < m. 

be a set of natural 
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From Lemma 1 and its proof, it follows that G(n) < n for any n > 1, and so 

n 0 < m < ••• < nm = N 

for N sufficiently large so that n$ > 1. 
We show that there are no three consecutive equal terms in the sequence 

G(n) . For if 

G(n) = G(n + 1) = G(n + 2), 

then, by the definition of the sequence, 

(17) n - Gk(n - 1) = n + 1 - Gk(n) = n + 2 - Gk(n + 1) 

would follow. But G(n) = G(n + 1) implies that Gk(n) = Gk(n + 1) and so, by 
(17), we would obtain the equality n + 1 = n + 2, which is impossible. Thus, 
G(n + 2) > G(ri) + 1 for any n > 0, and so 

(18) G{n) > \ n . 

By (16) and (18), we get 

N = nm < 3 • G(wm) = 3 • nm_l < 32 • G(nn-i) = 32 • nm.2 

which, by the definition of m9 can be written in the form 

< 3mn0, 

(19) 
N 

l0 ~ -yl /N. 

By Lemmas 2-4 and their notations, using (16), we obtain 

(20) 
G(N) 'Lm-l *m-\ Jm-1 a^Y1 + + a7 a' k^k 

m-l 
"m-I 

, 7 7 2 - 1 

axarl + + ava k^k 

ax 

1 + $?r••••-m"1 - k«.-.'-v 7 7 2 - 1 

1 + — ( — ) + . . . + — ( — ) 6m/a 
a x \ a 1 / a 1 \ a 1 / a 1

 m 

By the proof of Lemma 5, it follows that there are complex numbers h\> b2y 
bfr, which depend only on the a^fs (i = 1, 2, ..., fc), such that 

k- l 
ai = Z M i 

£= 0 
and so, using that \a^ \ > c • UQ by Lemma 5, 

(21) 

fc- l 

£= 0 ZM; 
a • WQ 

follows. But Un- Ui for i = 0, 1, 2, , k - 1, Ui < nk„i for 0 < i < k - 1, 
and by (18) nilrti-i < 3 for any i > 0; thus, from (21), 

(22) 
a>; < b 

n0 

wi n 2 
Z? • — • — • n0 ni nk-2 

< b • 3 fc-1 _ 

follows for 2 < i, < k> where b and B are positive real numbers which do not 
depend on m and the n^fs. Since |otx | > |a^| for 2 < i < k, and 77? •> °°  as N -> °°, 
so by (22), 
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(23) l i m - M - M = l i m - M - M = 0 f o r i = 2 , 3 , . . . , L 
/y-»co « i \ a i / iiz-̂ oo a i \ a i / 

On t h e o t h e r hand , by Lemmas 3 and 4 , we g e t 

0 * 6„ < *„ - Cla? + C2a» + . . . + Cfc„» - e ia» (l + _£ ^ ( ^ ) ^ 

for any n > 0, where the oi
1s (i = 1, 2, ..., k) are complex numbers which are 

independent of n, 

limCa^/oq)72 = 0, 
n->- oo 

and it can be easily seen that c\ * 0. From these, it follows that there is a 
real number C > 0, depending only on the characteristic polynomial of the 
sequence {F^}, such that 

< C for any n > 0. 
"ll 

However, by (19) and Lemma 5, 

and so 

(24) lim(J-.^i)=lim(±.%) = 0. 

From (20), (23), and (24), 

G(ilO 1 
lim N ai 

follows, where 04 is the single positive root of the equation xk - xk~^- - 1 = 0. 
But, if a is a root of the polynomial xk - xk~l - 1, then 1/a is a root of xk + 
x - 1, thus 1/OL]_ = 0) and the theorem is proved. 
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ON A THEOREM OF MONZINGO CHARACTERIZING THE PRIME DIVISORS 
OF CERTAIN SEQUENCES OF INTEGERS 

R. B . McNeill 
Northern Michigan University, Marquette, MI 49855 

(Submitted May 1990) 

In [1], M. G. Monzingo extended a problem found in Elementary Number Theory 
by David M. Burton concerning the common divisors of two successive integers of 
the form n 2 + 3 by establishing 

Theorem 1 (Monzingo): Let p be an odd prime. If p is of the form 4Z + 1, then 
p is the only prime that divides successive integers of the form n2 + K, and p 
divides successive pairs precisely when n is of the form bp + 2Z, for any inte-
ger Z?. If p is of the form 4Z + 3, then p is the largest prime that divides 
successive integers of the form n2- + (3Z + 2 ) , and p divides successive pairs 
precisely when n is of the form bp + (2Z + 1), for any integer b. Furthermore, 
p will be the only prime divisor if and only if p = 3. 

The purpose of this note is to generalize these results to the general 
quadratic. Specifically, we prove the following 

Theorem 2: Let p be an odd prime and define P(n) = a2n2 + a in + a0* where n 
and all coefficients are integers and a2 * 0. If p divides P(n) and P(n + d) , 
where d is an integer not divisible by p, then p divides a^d2 - a2 + ka^a^ and 
n satisfies the equation 

(2n + d)a2 + ai E 0 mod p. 

Proof: Suppose that p divides P(n) and P(n+ d). Since p divides the difference 
of these integers, and p does not divide d9 p divides Q(n) = {In + d)a2 + #i> 
i.e., n satisfies 

(2n + d)a2 + ax E 0 mod p. 

In addition, p divides nQ(n) - 2P(n), i.e., p divides i?(w) E n(a2d - a^) - 2ag. 
Finally, p divides (a2^ - ai)$(n) - 2a2R(n), and the result is established unless 
(perhaps) either n = 0 or a2d - #i = 0. Since it is straightforward to verify 
directly that p divides c&d2- - a? + 4aQa2 in each of these cases, the theorem 
is established. 

Remark: Theorem 1 (Monzingo) follows easily from Theorem 2 after selecting d = 
1, a2 = 1, ai = 0, and a0 = K or a0 = 3Z + 2, depending on whether p = 4Z + 1 
or p = 4Z + 3, respectively. 
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ZECKENDORF R E P R E S E N T A T I O N S USING N E G A T I V E 
F I B O N A C C I NUMBERS 

M. W. B u n d e r 
The University of Wollongong, Wollongong, N.S.W. 2500, Australia 

(Submitted May 1990) 

It is well known that every positive integer can be represented uniquely as 
a sum of distinct, nonconsecutive Fibonacci numbers (see, e.g., Brown [1])-
This representation is called the Zeckendorf representation of the positive 
integer. Other Zeckendorf-type representations where the Fibonacci numbers are 
not necessarily consecutive are possible. Brown [2] considers one where a 
maximal number of distinct Fibonacci numbers are used rather than a minimal 
number. 

We show here that every integer can be represented uniquely as a sum of 
nonconsecutive Fibonacci numbers F^ where £ < 0 and we specify an algorithm 
that leads to this representation. We also show that no maximal representation 
of this form is possible. 

We note that for all integers i, 

F^ = (-l)i+1Fi 
and 

(1) *"*+i = Fi + Fi-i-
We note further that FQ = 0, F-i, F-3> ^-5, ... are positive and F_2* F-i** 

... are negative. Also for i > 1, 

\F-i\ < \F-i-l\-
The f o u r lemmas be low w i l l show t h a t t h e a l g o r i t h m t h a t f o l l o w s them i s 

e f f e c t i v e . 

Lemma 1: I f n9 k > 0 and -F.2k - n < F-2k-l ~ 1 t h e n , f o r some £ , k > £ > 0 , 

~F-2k+2i-l ^ n - F_2k-l < -F-2k + 2i + l < 0 . 

I f n = F_2k-l ~ 1» t h e n 

n - F_2k-l = - ^ - l -

Proof: I f -F-2k ^ n < F_2k - l - 1* t h e n 

1 < F-2k-l " W < F_2k-l + F-2k> 
i . e . , 

1 < F_zk-l - n < F_2k+l = F2k-l° 
Now e v e r y i n t e g e r p > 1 i s i n a r a n g e 0 < F2m-s < V - F2m-l w n e r e m - 2 . 
We m u s t , i f p = F_2k-l ~~ n» t h e n have m + £ = k + 1 f o r some £ > 0 and s o : 

0 < F2k-2l-l < F-2k-l ~ n < F2k„2l+ll 
t h u s , 

-F-2k+2l-l ^ n - F-2k-l < -F-2k + 2SL + l < ° -
Lemma 2: I f n, k > 0 and F_2k+l K n - ~F-2k t h e n , f o r some £ , k > £ > 0 : 

0 < -F-2k+2l + 2 < n - F-2k+l ^ ~-F-2k + 2l-

Proof: i f F_2/c+i < n < -F-2k> t h e n 

0 < n - F-2k+l * ~F-2k - F-2k+\> 
so 

0 < Yl - F-2k+l ^ -F~2k + 2 = F2k-2-
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Now e v e r y p o s i t i v e i n t e g e r p i s i n t h e r a n g e 

0 * Fzrn-H < V ± F2m~2 

where m > 2 . 
We m u s t , i f p = n - F-2k+l> t h e n have m + £ = k + 1 f o r some I, k > I > 0 , 

and so 
0 ^ F2k-2l-2 < n - F_2k+l ^ F2k-2l> 

i . e . , 
0 - ~F-2k + 2Z+2 < n - F_2k+1 ^ ~F-2k + 2Z' 

Lemma 3: I f n < 0 , k > 0 , and 1 + F _ 2 ^ < ft < -F-zk+1 t h e n , f o r some I, k > I > 0, 
0 - ~^-2£ + 2£+2 < n ~ F-2k ~ ~F-2k+2l-

I f n = F_2k + 1, 

w - F-2k = h i -
p r o o f : I f 1 + F_2k < n < ~F-2k+l> t n e n 

1 < n - F_2k ^ -F-2k + 2 = F2k-2 
and a s i n t h e p roof of Lemma 2 , 

0 < Flk-2i-2 < n - F_2k < F2k-2z f o r some %, k > I > 0 ; 
t h u s , 

0 < -F_2k + 2Z + 2 < n - F_2]< < ~F-2k + 2JL' 

Lemma 4: I f n < 0 , k > 0 , and -F„2k-l-n <F-2k ~ l t h e n , f o r some I, k > I > 0, 

~F-2/c + 2 £ - l ^ n "" F-2k < ~F-2k + 2z + l < ° -
I f ft = F_ 2 ^ - 1, 

ft - *L 2 k = F_2. 

Proof: I f -F-2fe- l - n < ^-2fc ~ ! ' t n e n 

1 < F-2k ~ n < F_2k + F-Zk-l = F-2k+l> 
so 

1 < F_2k ~ n < F2k-i 

a n d , a s i n t h e p roof of Lemma 1, 
0 < ^ 2 k - 2 £ - l < F-ik - n < F2k-2i + l where k > I > 1, 

i . e . , 
-^-2fc + 2 £ - l ^ n - F_2A: < ~F-2k + 2l + I < ° • 

Algorithm Z: Th i s a l g o r i t h m p r o d u c e s , f o r a g i v e n i n t e g e r , t h e p romised sum of 
F i b o n a c c i number s . 

(1) I f n = F_i f o r some i , t h e n s t o p . 

(2) I f n > 0 and f o r k > 0 , F2k < n < F2k + i> i . e . , -F-zk < n < F-2k-l> w r i t e 
n = F_2k-l + ( n ~ F-2k-0> a n ( l a P P l y t h i s a l g o r i t h m t o n - F-2k-l> g i v i n g 
t h e n e x t t e rm i n t h e sum. 

(3) I f w > 0 and f o r k > 0 , F2k-i < n < F2k, i . e . , F.2k+l < n < -F.2k > w r i t e 
ft = F-2k+l + (^ ~ F-2k + l) * a n d a p p l y t h i s a l g o r i t h m t o n - F-2k + i> g i v i n g 
t h e n e x t t e rm i n t h e sum. 

(4) I f n < 0 and f o r k > 0 , F2k-i < -ft < F2j<>' i . e . , F_2k < n< -F-2k+l> w r i t e 
n = F„2k + (n - F_2k^ > a n c* a p p l y t h i s a l g o r i t h m t o n - F-2k> g i v i n g t h e 
n e x t t e rm i n t h e sum. 
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(5) If n < 0 and for k > 0, -F2k < -n < F2k+l9 i°e-* -F„2k_l < n < F„2k, write 
n = F-zk + (w - F_2k)9 and apply this algorithm to n - F-2k , g i v i n g the 
next term in the sui . 

The algorithm terminates when, eventually, 

n-F.ix -F.i2 . . . -F.im - * _ w 

Lemma 5: Algorithm Z produces a representation of any nonzero integer n as a 
sum of Fibonacci numbers i^ where i < 0 and any two of the ifs differ by at 
least 2. 

Proof: If after the application of (2), n - F-2k-l * ̂ -j f° r a ny <7> w e have, by 
Lemma 1: 

-̂ -2fc + 2£-l < w - ̂ -2/c-l < -^-2k + 2£+l < 0' where A > 0. 

By applying (4) or (5), the algorithm next considers n - F-2k-l "" F-2k + 2i * 
If after (3), n - F-2k+i * F-j> by Lemma 2s 

0 < -^-2fe + 2ii + 2 < n - F..2k+l < -F-.2k + 2l9 where I > 0. 

By (2) or (3), the algorithm next considers n - F„2k+i - £7-2fc+2£ + l° 
If after (4), n - F_2k * F-j * by Lemma 3: 

0 < -F.2k + 2l + 2 < n - F„2k < -F.2k + 2i9 where £ > 0. 

By (2) or (3) the algorithm next considers n - F„2k - ̂ -2fc+2£ + ls 

If after (5), n - F-2k * F-j, by Lemma 4s 

-F-2k + 2JL-l < n ~ F-2k < ~F-2k + 2l + l < 0> w h e r e ^ > 0. 

By (4) and (5), the algorithm next considers n - F„2k - F-.2k + 2z. 
Thus, if the first stage of the algorithm produces n - F-i (i > 0), the 

second produces n - F_i - F_i+p9 where p > 2 and -i + p < 0. 
The same applies to later stages of the algorithm which therefore produces 

Fibonacci numbers with subscripts at least two apart. 
The next two lemmas are required to prove the uniqueness of this represen-

tation. 
k 

Lemma 6: (i) Y.F-2i = 1 - F~2k-\% 
i = i 

k 
( i i ) 2 > - 2 i + l = ~F-2kl 

i= 1 
k 

( i i i ) Y,F-i = 1 - J'-k+l-
i= 1 

Proof: The proof is simple and is therefore omitted here. 

Lemma 7: If i\ > i2 > — > ih > 0 and, for 2 < j < fe, i j - i j + i ^ 2, 

"F-i1+l < T,F-ik * -F-i.-l i f il i s odd> 
and 

-F- i - l < Z! ^-ife ~ ""F~̂ i +1 if ^l i s even. 

Proof: If i i is odd, by Lemma 6: 

F. ix + F_^ + 3 + 2 ^ + 5 + . . . + F_2 < £ F_; < F_; + F_± + 2 + • • • + F_x 
fe = 1 * * 1 

ft 
F_^ + 1 - F-i +2 < £ F_; < - F . ^ _ i , 

k=l 
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h 
so, - ^ + 1 < 1 - ^-i1 + i ̂  £ ?-ik < -F-ix -l-

1 k* 1 x 

If ^1 is even, by Lemma 6: 

JLij + F-ix + 2 + • • • + F_2 < £ *Lifc < F-^ •+ ̂  + 3 + • • • + F.3 + F-X 

Theorem 1: Algorithm Z expresses every integer n as a unique sum of a minimal 
number of distinct Fibonacci numbers F^ , where i ^ 0. 

Proof: If n = 0, n = F0. 
If n * 0, by Lemma 5 the algorithm produces a sum of the form 

n = ]T F-.£k , where £k > i^ + i + 2. L 
fc- 1 

If the representation were not unique or not minimal, we would also have 
m 

n = J2 F-j\ > where j k > j\+i + 2, and poss ib ly m < h. 
fc« l 

Let -ip and -jp be the f i r s t of these s u b s c r i p t s , i f any, t h a t a re d i s t i n c t 
and assume ip > j p . Then 

h m 
n - F.ix - . . . - F_i = £ F-ik = T/-Jk • 

k=p k=p 
If ip and j p are odd, then, by Lemma 7, 

h m 
I > _ > -*-*, +i and -F.j ! > £ F-jk • 

k= p k-p 

Also, ip - 2 > j p , and so -^-ip+i ^ " ^ - j p -1> which is impossible. 
If ip is odd and j p is even, then 

h m 
Z2F; is positive and ^ F-j is negative 
fc-P fc=p 

by Lemma 7. 
Similarly, if ip is even and j p is odd, then 

^F_i is negative and £-F-j- is positive 
k = P k=p k 

by Lemma 7. 
If ip and j p are both even, then ip - 2 > j p , and by Lemma 7, 

£ i ^ < - F i + 1 and - ^ ! < £F_j 
k=p * v k=p K 

and also 

~Fip + 1 - ~F~3p - 1 » 
which is impossible. 

Thus, for 1 < k < m> ik = j k . 
If m < h, we have by the above: 

m ft 
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h 

If h > m + 1, then by Lemma 7S if i m + 1 is odd, -F.im + l + l < 0, and if im + l 
is even, then 0 < -F-im+1 + 1, both of which are impossible. 

If h = m + 1, then F_^ = 0S which is impossible because i^ * 0. 
Therefore, the representation of n is unique and minimal. 

As any representation of a number n as a sum of Fibonacci numbers 
ft 

Y^F-iv ' where ii > in > • • - > iy. > 0, 
fc- l 

can be changed to 
h- 1 

k= 1 

it is clear that there can be no maximal number of Fibonacci numbers in a given 
sum. 
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0. Introduction 

The Fibonacci sequence and its related higher-order sequences (tribonacci, 
quatranacci, /c-nacci) are generally viewed as sequences of integers. In 1960, 
Wall [4] considered Fibonacci sequences modulo some fixed integer m ; i.e., 
Fibonacci sequences of elements of Zm. He proved that these sequences were 
periodic for any m. Shah [3] partially determined for which integers the 
Fibonacci sequence modulo m contained the complete residue system, Zm. The 
papers of Wall [4] and Shah [3] provided the motivation for Wilcox's [5] study 
of the Fibonacci sequence in finite abelian groups. 

This paper is in the spirit of [3], [4], and [5]. It addresses not only 
the traditional Fibonacci (2-nacci) sequence, but also the fc-nacci sequence, 
and does so for finite (not necessarily abelian) groups. 

1. Definitions and Notation 

A k-nacci sequence in a finite group is a sequence of group elements XQ, 
XI, X2> x^y ...» xn, ... for which, given an initial (seed) set XQ , ..., Xj-i, 
each element is defined by 

{^o^i ••• %n-i f° r j ^ n < k ) 

xn-kxn-k + l ••• xn-\ for n > k) 
We also require that the initial elements of the sequence, XQ, ..., Xj-i, gen-
erate the group, thus forcing the fc-nacci sequence to reflect the structure of 
the group. The /c-nacci sequence of a group G seeded by XQ, . . . , xj-i is 
denoted by F^(G; XQ, ..., Xj_j). 

The classic Fibonacci sequence in the integers modulo m can be written as 
F2(1m\ 0, 1). We call a 2-nacci sequence of group elements a Fibonacci 
sequence of a finite group. 

A finite group G is k-nacci sequenceable if there exists a fc-nacci sequence 
of G such that every element of the group appears in the sequence. 

A sequence of group elements is periodic if, after a certain point, it con-
sists only of repetitions of a fixed subsequence. The number of elements in 
the repeating subsequence is the period of the sequence. The sequence a, b, c, 
d, b, c, d, b, Cy d, ... is periodic after the initial element a and has period 
3. We denote the period of a /c-nacci sequence Fk(G; XQ, ..., Xj-\) by P^iG; 
xQ, ..., Xj-i). A sequence is simply periodic with period k if the first k 
elements in the sequence form a repeating subsequence. For example, a, b, c, 
d, e, a, b, c, d, e, ... is simply periodic with period 5. 

2. Theorems 

Theorem 1: A fc-nacci sequence in a finite group is simply periodic. 

"This work was supported by NSF grant DMS-8900507. 
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Proof: L e t n b e t h e o r d e r o f G. S i n c e t h e r e a r e nk d i s t i n c t fc-tuples o f e l e -
m e n t s o f G, a t l e a s t o n e o f t h e ^ - t u p l e s a p p e a r s t w i c e i n a fc-nacci s e q u e n c e o f 
G. T h e r e f o r e , t h e s u b s e q u e n c e f o l l o w i n g t h i s k-tuple r e p e a t s ; h e n c e , t h e k-
n a c c i s e q u e n c e i s p e r i o d i c . 

S i n c e t h e s e q u e n c e i s p e r i o d i c , t h e r e e x i s t n a t u r a l n u m b e r s i a n d J , w i t h 
i > j , s u c h t h a t 

xi + 1 = xj+1' xi + 2 = Xj + 2S xi + 3 ~ xj+3 9 ' ' ' ' xi + k = xj + k' 

By t h e d e f i n i n g r e l a t i o n o f a / c - n a c c i s e q u e n c e , we know t h a t 

xi = xi + k(xiHk.l))~l(xi + (k-z:>)~1 . . . (xi+l)~l 

a n d 
Xj = xj + k(xj + {k.l)) l(xj + {k_z)) 1 . . . (xj + l) l , 

Hence, x^ = Xj5 and it then follows that 

x i - 1 = xj- 1' xi-2 ~ xj-2' • • • » xi-j = xj-j = ^0 * 

Therefore, the sequence is simply periodic. 

This is a generalization of a theorem of Wall [4], which states that F(Zm; 
0, 1), the classically seeded Fibonacci sequence of the integers modulo m, is 
simply periodic. From the proof of Theorem 1, we have \G\k as an upper bound 
for the period of any fc-nacci sequence in a group G. 

We will now address the periods of /c-nacci sequences in specific classes of 
groups., A Group Dn is dihedral if 

Dn = <a, b : an = b2 = e and ba = a~lb>. 

The order of the group Dn is In. Note that in a dihedral group generated by a 
and b, 

(ab)2 = abab = aa~lb2 = e and (ba)2 = baba = baa~lb = e. 

Theorem 2: Consider the dihedral group Dn for some n > 3 with generators a, b. 
Then Pk(Dn; a, b) = P^(Dn; fc, a) = 2k + 2. 

Proof: Let the orders of a and & be n and 2, respectively. If fc = 2, the pos-
sible sequences are 

a, b, ab, a"1, a2Z?, a2?, a, Z?, ... 
and 

Z?s a, a-12?, 2?, a-1, afr, b, a, ..., 

both of which have period 6. If k > 3, the first k elements of Fk(Dn; a, b) 
are 

XQ = a, Xi = Z?, x2 = a£>, x3 = (ab)2, ..., 2^-1 = (ab)2 

This sequence reduces to 

a, £>, a&, e, e, ..., e, e 

where Xj = e for 3 < j < k - 1. Thus, 

X k = 

X k + 2 

Xk+A 

k-l 

n ̂  = 
i = 0 fc + 1 

= n ^ 
i = 2 fc+3 

= n ** 
i = 4 

aZ?aZ? = 

= aZ?a~ 

= e, 

1 = a2b, 

= a~la2bab = e 

Xk+l . . ^ = 1 

k 

k + 2 
I~I ̂  = a_ 1a 2Z? = a£>, 
f = 3 

It follows that x, . = e for 4 < rj < k. We also have: 
k + j d 
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k+k k+k+l 
xk+k+i = II xi = a~la2bab = e, xk+k+2 = Yl xi = a2bab = a, 

£ * fc+ 1 i=k + 2 
fc+fe+2 k + k 4 3 

xk+k+3= n ^ = aha = &> ^ + ? c + 4 = n xi = <*&• 
£- k+3 i- fc+4 

Since the elements succeeding #2fc + 2> #2fe+3> 2̂fe+4» depend on a, b9 and ab for 
their values, the cycle begins again with the 2/c+ 2nd element; i.e., #Q = x2k + 2m 

Thus, the period of Fjc(Dn; a, b) is 2k + 2. If we choose to seed the sequence 
with the generators in the other order, we see that the sequence b9 a9 ba9 
(ba)2, (ba)h, (£>a)8, ..., (&a)2 "3 reduces to b9 a, fca, e, e> . . . , e9 e and the 
proof works similarly. 

If a group is generated by i elements, then it is said to be an i-genevated 
group. 
Theorem 3: If G is a 2-generated group with generators a and b9 and the iden-
tity element appears in ^(G; a, i>) or F2(G; b9 a), a Fibonacci sequence of G, 
then G is abelian. 
Proof: Without loss of generality consider the sequence F2(G; a, £>) and suppose 
the identity, e9 is the n+ 1st element of this Fibonacci sequence for some 
natural number n. The nth element of the sequence may be any element of the 
group. Thus, we have a sequence 

a, b9 ..., s, s, ... . 
What precedes s? Only s-1 could satisfy the defining relation for the n - 1st 
position. Similarly, s2 must be in the n - 2nd sequence position, s~3 in the 
n-3r d, and so on, forming the sequence 

CL9 U, . . . , o , o , o , 0 , 0 , o , 5, ... . 

Since these elements have exponents generated using the relation Ui-i = -w^-i + 
w.£, which is equivalent to w^ = Ui-\ + u^-i* we find the Fibonacci sequence of 
integers occurring in the exponents of s9 with alternating signs. Hence, a 
Fibonacci sequence of the group has one of two forms: 

(i) n odd: The sequence is 
S U " , S~Un~l , s"n-2 , ..., S 5 , S " 3 , S2

9 S " 1 , S 1 , 6. 

In this case, we have 

sUn = a, s"""-1 = i> 
(which implies s"«-i = b~l), and sw"~2 = a i . Since 

SM«-1 SMn-2 = S
un-l + un-2 = £Un , 

we have b~lab = a, or ab = &a. Therefore, the group is abelian. 

(ii) n even: The sequence is 
s~Un , 8w*-i , s"Wn"2 , ..., s5, s~3, s2, s'1, s1, e. 

In this case, we have 

s-un = a> swn-i - 2? 

(which implies s"""-* = Z?"1), and s"""-2 = ab. Since 

we have 2?_1aZ? = a, or ab - ba. Therefore, the group is abelian. 
The converse of Theorem 3 does not hold. Consider the abelian group 

A = <a, bi a9 = b2 = e and ba = a£>>. 

118 [May 



FIBONACCI SEQUENCES IN FINITE GROUPS 

The Fibonacci sequences of this group ares 

a, b, ab, a, a2b, a3b, a5, a8b, ahb, a3, a7b, ab, a8, b, 
a8b, a8, a7b, a8b, ah, ab, asb, a6, a2b, a8b, a, b, ab, ..., 

and 
b, a, ab, a2b, a3, a5b, a8b, ah, a3b, a7b, a, a8b, b, a8, 
a8b, a7b, a8, ahb, ab, a5, a8b, a2b, a8, ab, b, a, ab, ... . 

The elements e, a2, and a7 do not appear in either sequence. 

Corollary: A 2-nacci sequenceable group is cyclic. 

Proof: Let G be a 2-nacci sequenceable group. Then G is either 1- or 2-gener-
ated. If G is 2-generated, then since e appears in the 2-nacci sequence of G, 
we can construct the sequence in terms of an element s G G as in the proof of 
Theorem 3. Every element of G appears in its 2-nacci sequence, and therefore 
all the elements of G may be represented in terms of a single element, s. 
Hence, G is 1-generated, or cyclic. 

For k > 3, /c-nacci sequenceable groups are not, in general, abelian. The 
dihedral group of six elements is 3-nacci sequenceable. 

Theorem 4: If the identity element appears in a Fibonacci sequence of a 2-gen-
erated group, then the collection of subscripts of the sequence elements x^ for 
which Xi = e contains a sequence which has an arithmetic progression. 

Proof: By Theorem 3 the group G = <a, b> is abelian. Hence, the nth term of 
the sequence has the form aUn~l bUn. By a theorem of Wall [4], we know that the 
terms where un = 0 (mod m) have subscripts that form a simple arithmetic 
progression. Thus, the sequences of elements a, a, a2, ..., aUn and b, b, bz, 
b3, ..., bUn both have e occurring in positions whose subscripts form arith-
metic progressions, with the period of the occurrence of e depending on the 
order of a and b» The period of this induced occurrence of e In a, b, ab, ab2, 
a2b3, ... will be the least common multiple of the period of e in a, a, a2, ... 
and the period of e in b, b, b2, b3, ... . Hence, the positions of e in a, b, 
ab, ab2, a2b3, ... will have subscripts which contain an arithmetic progres-
sion. 

3. An Open Question 

It is clear that a homomorphic image of a fe-nacci sequenceable group is k-
nacci sequenceable. The extension of a fe-nacci sequenceable group by a fc-nacci 
sequenceable group is not necessarily /c-nacci sequenceable. In fact, the 
direct product of fc-nacci sequenceable groups is not necessarily fc-nacei 
sequenceable. 

We refer to the abelian group 

A = <a, b: a9 = b2 = e and ba = ab> . 
The group <b> has a Fibonacci sequence 

F2(<b>; e, b) = e, b, b, e, ..., 

and hence is 2-nacci sequenceable. The group <a> has a sequence 

j?2(<a>; 05 cfi = 3̂ &> a> a2> o3, a5, a8, a1*, a3, a7, a, a8, e, a8, a8, 
a7, a6, a4, a, a5, a6, a2, a8, a, e, a, a, — 

and hence is 2-nacci sequenceable. We have already seen that A9 the direct 
product of <a> and <b>, is not 2-nacci sequenceable. 
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Question: Are all nonsimple k-naccl sequenceable groups nontrivial extensions 
of a fc-nacci sequenceable group by a fc-nacci sequenceable group? That is, does 
a nonsimple fc-nacci sequenceable group have a fc-nacci sequenceable normal sub-
group? 
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1. Introduction 

In 1878 Edouard Lucas gave the following result for computing binomial co-
efficients modulo a prime [3], [4]. 

Theorem 1.1: If p is a prime, n, r, n^, and rQ are nonnegative integers, and 
HQ and r0 are both less than p, then 

K:S)MXS) <«*?>• 
We have recently derived the following variations of Lucas1 Theorem (see 

[ i ] ) . 
Theorem 1.2: If n and v are nonnegative integers, and p is prime, then 

Theorem 1.3: If n and p are nonnegative integers, and p is a prime greater 
than 3, then 

S)MJ) <-f3>-
In [2] we have also obtained the following congruences which bear a strong 

resemblance to the theorem of Lucas. 

Theorem 1.4: If p is prime, n and r are nonnegative integers, and i is an in-
teger strictly between 0 and p, then 

U " S < ) 2 " + » U i ) ( ! ) <™op2>-
Theorem 1.5: If p > 5 is prime, n, 777, and k are nonnegative integers, k < p, 
and i is an integer strictly between 0 and p, then 

U * •"£ • < ) s ( - + " ( - " I)(*PP+ *) <"o<lp3)-
In this paper we show that in fact an infinite sequence of results like 

those above hold. In our proofs we need the following result (see, e.g., [5]). 

Theorem 1.6: If p is prime, n = ps, and pt divides k while pt+l does not divide 
k, then p s _ t divides (*) and p s _ t + 1does not divide (") . 

2. Main Results 

Our first result is as follows. 

Theorem 2.1: If p > 5 is prime, n and 777 are nonnegative integers, s and all 
the a^ are integers with s > 1, 0 < ag < p> and 0 < a^ < p for k = 1, 2, ..., 
s - 15 then 
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/ mps \ 
\nps + as-ips~l + ... + aip + a0) 

= (w + 1) ( ™ M s-l _, ^ _, ^ ) (mod p s + 1 ) . 
\n + l/\afl-ips x + ... + Gxp + a0/ F 

Proof: Theorems 1.4 and 1.5 show that the conclusion of the theorem is valid 
for s = 1 and s = 2. We assume therefore that the theorem's conclusion holds 
for some s > 2 and consider the assertion 

/ mps+l \ 
\nps+l + aspS + ... + aip + aQJ 

E (n + 1)( !f ,)( s ^ pS+J _>_ ) (mod p s + 2 ) . 
\n + lf\asps + ... + a\p + a0/ ^ 

If m = 0 the assertion above is merely that 0 = 0. Likewise, if 77? = 1 one 
can check that our inductive assertion holds trivially. Therefore, we assume 
the validity of the inductive assertion for some m > 1 and consider first the 
case in which n = 0. Then we must treat 

/ (77? + l)ps + 1 \ asPs+"--+ aiP+aQ, mps + l \/pS + 1\ 
\asps + ... + dip + a0) A* \asps + ... + aQ - jl\ j /" 

(pS^) = 0 (mod ps + 1 ) . 

We first show that whenever 0 < j < asps + ... + aip + ag, we have 

(1) ( 8 +
 Wf + 1 ,_ .)(P7X) = 0 (modp«+2). 

VasPs + ••• + axp + a0 - j/\ J / * 
To this end, let j = bsps + ... + b^p + Z?0 and note that, if &g * 0, then 

Theorem 1.6 shows that 

* + l\ 

J 

Moreover, by Theorem 1.1, 

/ mps + l \ = / mps + l \ 
\asp8 + . . . + a0 - Q) \osps + . . . + cQ) 

•AZK)L.\) -Om-° ("dp)-
since not all the c^ are zero. Hence, we have the product in (1) congruent to 
0 modulo ps + 2- as desired. If, on the other hand, Z?0 = 0> w e s e e t n a t 

/ mps+l \ - ( mps+l \ 
\asps + - -. + a0 - j) \csps + . -. + cip + a0) 

and that this last is congruent to zero modulo p s + 1 since ag ^ 0 by hypothesis. 
Likewise, one can argue that 

(PV ) E 0 (mod p), 

and again the product in (1) is congruent to 0 modulo p s + . 
Therefore, we have established that 

/ ( m + l ) p » - n x / mp« + i x / p ^ v + 2 ) 
\ a s p s + . . . + ^ p + a 0 / \ ^ S P S + • • • + a0/ w s P s + • • • + ag/ 
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and by t h e i n d u c t i v e h y p o t h e s i s t h i s i s c o n g r u e n t modulo ps+z t o 
8+1 

(m + l'\asps + . . . + axp + aQ) 

which i s t h e d e s i r e d r e s u l t . 
Next we assume n * 0 and c o n s i d e r 

s + 1 
/ (777 + l ) p s + 1 \ =

 Py- / mps+l \(PS + l\ 
\nps+i + aspS + ... + aoj 2-^ \nps + i + asps + ... + a0 - j7\ j / 

As previously, one can show that all terms in the above sum are congruent to 0 
modulo ps+2 save those where j = 0, J = ps + 1, or j = asps + ••• + aQ. So, thus 
far, we have 

/ (T?7 + l)ps+1 \ 
\nps + l + asps + ... + ai + <ZQI 

I mps + l \ /77?ps+1\/ p s + 1 \ 
\nps+1 + asps + ... + aip + a0/ \nps+l)\asps + ••• + a0/ 

(in - l)ps + 1 + a^« + • • • + alP + a0) ( m o d p S + 2 ) " 

Now consider the terms on the right-hand side of the above congruence. By the 
inductive assumption 

/ mps+l \ 
\nps+l + asps + ... + aYp + a0) 

= (« + 1)( !! i)( « a. P 8 1 1 -u V <m ° d P S + 2 ) ' 
Moreover, since 

cs^u. r:.1.+j -° o(a,P. r : . 1 . + j <-< p-2>-
And calling on the inductive assumption once again, we see that 

/ mps+l \ 
\ ( n - l ) p s + 1 + asps + . . . + axp + a 0 / 

= *H( « a. ^ l 1 a. ) ^ ° d PS + 2 ) ' 
U / W s p s + . - . + alP + aQ) ^ 

Thus , we c o n c l u d e t h a t 
(T?7 + l ) p s + 1 

/ (777 + L)pa^x \ 
\nps + 1 + asps + . . . + a^ + a 0 / 

But this last expression is obviously 

( n + l ) ( W + 1 ) ( PS+l V 
v y \n + l/\asps + - • • + axp + aQ) 
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This completes the induction and establishes the theorem. 

Our next result generalizes that of Theorem 1.3. 

Theorem 2.2: If p > 5 is prime and k, r, and s are all nonnegative integers, 
then 

fkps+l\ = (kp (&..) = K ) <»^"3>-\rpa xI \rp 
Proof: We proceed by induction. For s = 0 the assertion is identical with that 
of Theorem 1.3. We therefore assume the result for some s > 0 and consider the 
assertion 

«> (g«Hg:!) <»<p->-
Obviously assertion (2) holds for v = 0. Thus, we fix v > 1, assume (2) 

holds for all smaller r, and establish our assertion by induction on k. Asser-
tion (2) clearly holds for k < r, so we assume its validity for some fixed 
k > T and consider 

Kk + l)ps+2\ _ v V kPs + Z \(Ps+2\ - v V kPs+2 \(Ps+2\ + 7? 
\ rps+2 I " £*Q

 {rps+2- - i)\ i ) ~ A 0 W s + 2 - Zp/v lp J 
where B is the sum of those terms of the form 

/ kvs+2 \/vs + 2-\ 
Vpps + 2 _ i)\ I ) f o r ^ n o t a multiple of p. 

As in Theorem 2.1, it is easy to show that each summand in B is congruent to 0 
modulo ps + i+. Therefore, we have 

Now we consider a particular summand in (3) with 0 < l < ps+l so that 

I = a s p s + as-ips~l + . . . + aqpq where aq * 0 and 0 < g < s. 
Then 

\ £p / l ( a s p s - ^ + . . . + aq)p«+l) 

E l(asps-<? + ae_ipa^-^ + ... + a*)?*) ( m ° d P } 

by inductive assumption. But this simply says 

One can also show 

(pSz+1) E 0 (mod ps + 1-«), 

(rp^+2+_ Jp) = (rpXl\ Z) (mod p<? + 3), 
and 

Therefore, 
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K)[r;tr. lP) * (nxx1- *) <- ^> 
and 

KX^r.1 lp)^rn^ciz) W r t . 
It follows then that 

Now if we note finally that the inductive hypotheses on k and r insure that 

($«) = (£::) <-*••*> 
holds, as does a similar statement with r replaced by r - 1, we see that 

(%un<£u^)(<r) <-*>*«>• 
But this clearly gives 

riiiO^iir1) (-p-«). 
This completes the inductive proof of assertion (2) and establishes the 

theorem. 

Remark: Professor Ira Gessel has called the author's attention to a result 
which implies Theorem 2.2. See Ira Gessel, "Some Congruences for Generalized 
Euler Numbers/1 Can. J. Math. 35. 4 (1983):687-709. 
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We begin with the simple observation that 4* (2178) = 8712. That i s , when 
2187 is multiplied by 4, the result is 8712 which is 2178 with the digits 
reversed. Since 4 is the multiplier that produces the reversal of digits, we 
call 2178 a 4-vevevse multiple. More generally, let x be an n-digit, base g 
number 

n- 1 
(1) x = £ a^gi 

i= 0 
with 0 < CLI < g and an_i * 0. Then x is called a k-vevevse multiple if, for 
some integer k> 1 < k < g9 

n- 1 
(2) kx = £ ^n-i-iQ1-

i= 0 
Previously, most work on /c-reverse multiples has focused on either finding 

all those less than a given m [1], or characterizing, for a given n, those with 
n-digits. This latter problem seems to be quite difficult and has been 
completely solved only for the 2- and 3-digit cases (see [1] and [3]). 
Additionally, various schemes have been advanced for calculating these 
multiples (see [2] and [3]). Beyond this, it has been noted that once a 
^-reverse multiple is known, it may be used to create others. For example, it 
is easily verified that 21782178 and 21978 are also base 10, 4-reverse 
multiples. 

What has not been discussed previously is how to find all /(-reverse multi-
ples once those with a small number of digits are known. For example, in base 
11, 118 and 1298 are 7-reverse multiples. While it is clear that 118118 is a 
7-reverse multiple, it is not as obvious that 11918 is also such a multiple. 
This question, of how to form multiples having a large number of digits from 
those with a small number, is the focus of our discussion. As we will see, the 
solution has a graphic representation. 

We begin by supposing that x is an n-digit, base g9 ^-reverse multiple. 
From (1) and (2), we obtain the following set of equations by comparing corre-
sponding digits of kx: 

ka.Q = an.l + r0g 
kax + r0 = a„_2 + vxg 

(3) ka^ + p._! = a n _ w + vtg 

kan_z + rn_3 = ax + rn_2g 
kan-l + rn-2 = a0 

where 0 < v^ < g for i - 0, ..., n - 2. The last equation implies a§ * 0 since 
an-l * 0- The z>£ ! s are the so-called "carry numbers." As we will see, these 
numbers determine the character of ̂ -reverse multiples. 

To determine whether there are any fc-reverse multiples for a given g and k, 
we consider the equations in (3) two at a time. For convenience, let T-\ = rn_ j_ 
= 0. At the (i+l) s t step, i - 0, 1, ..., we examine the pair of equations 
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(4) <̂  

'^n-l-t + Vn-Z-i = O-i + *n-l-i9 

where ^ -1 and Pn_^_^ are known from the previous step. That is, we seek non-
negative integers a^, an-i-i9 v^ , and ^n-z-i which, in addition to (4), satisfy 

(5) 

and 
(6) 

(0 < aQ, an.l 

{at < g, i = 0, 1, 

v- < g9 i = 0, 1, 
The equations in (4) along with the inequalities in (5) imply tighter- restric-
tions in (6). That is the content of the following lemma. 

Lemma 1: Suppose there exist nonnegative integers which satisfy (4) and (5) 
for i = 0, 1, ..., n - 1. Then the following hold: 

(0 < P 0 

(7) 
\Vi < k for i = 0, ..., n - 2. 

Proof: Solving (4) for at gives 

(8) at = (kr^g - kri.l + rn.l.ig - rn_2_f)/(k2 - 1). 
Letting i = 0 and using P_1 = Pn_1 = 0 in (8) gives 

aQ(k2 - 1) = kr0g - rn_2. 
Hence, 0 < r0 since 1 < k9 0 < aQ5 and 0 < Pn-2' 

To show the second part of (7), suppose ^i-\ < k; note that when i = 0, the 
supposition is valid. Then from the general equation in (3) we have 

vtg < kdi + ri_i < kai + k = k{at + 1) < kg 
and hence v^ < k. D 

One convenient way to proceed is to look for nonnegative integers ai and 
an-\-i satisfying (5) such that 

(kat + r i . l E an-i-i (mod g) 
(9) < 

10 < at + rn_l_ig - kan.l. i < k 
where ^i-\ and Pn_^_^ have been determined in the previous step. If the afs 
exist, then r^ and vn_^_i can be found by (4) % 

ivi = (kat + r i . l - an-l.i)/g 
(10) 1 

irn-2-i = ai + vn-\-i9 ~ kan-i-i. 
The restrictions in (9) guarantee the r!s in (10) are nonnegative. 

The above procedure is successful when, at each step, there are nonnegative 
integers ai and an_x_^ which satisfy (5) and (9). The following graphical 
notation will be convenient. If r„_2--z> vi-\> an-l- i> ai * Tn-2-i* an<^ Ti s a t~ 
isfy (4), (5), and (7), then we will write 

(11) 

O n - W * ri-0 
(an-l~i> ai) 

&n-2-i> p;) 
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and conversely. Thus, we hope to generate a graph, or more precisely, a rooted 
tree in which a path from the root to a node has the following form and labels: 

(0, 0) 

(a„_i, a0) 

(an-2> CL\) 

On-3> ^l) 
(12) I 

We will use this notation in the examples below. Since 0 < v^ < k9 there can 
be at most k2- different pairs of P^ T s used as node labels in the tree. If a 
node is labeled with an P-pair that has already appeared in the tree, the tree 
can be pruned after this node, since no new information will be obtained beyond 
this point. When needed for analysis, a pruned tree can be extended by repli-
cating earlier sections of it. Before proceeding further with the exposition, 
we look at the tree for the 4-reverse multiple, 2178. 

Example 1: g = 10, k = 4. 
Let us begin by considering (9) with i = 0. The various possibilities are: 

OLQ an-\ E ^a0 a0 ~ ^an-\ 

4 
8 
2 
6 
0 
4 
8 
2 
6 

-15 
- 3 0 

- 5 
- 2 0 

5 
- 1 0 
-25 

0 
-15 

Only (ZQ = 8 satisfies the required condition 

0 < a0 - 4an_x < k = 4. 

Using (10), it can be shown that Pn-2 = 0 and PQ ~ 3. Continuing in this man-
ner and using the above notation, the following is obtained: 

(7, 1) 

( 3 , 
(8, 2) 

( 0 , 
0) / 
( 0 , 0) 

( 0 , 

( 0 , 

( 3 . 

0) 

^0) 

( 0 , 

0) 
(2, 8) 

3) 
(1, 7) 
3) 

^ \ (9, 
( 3 , 3) 

(2, 8) 
3) 
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The tree is not continued any further since (0, 0), (0, 3), and (3, 3) have 
appeared previously. The careful reader will observe that 

(0, 0) 
| (0, 0) 

(0, 0) 

appears at the end of the tree, but not initially. This will always be the 
case since the equations in (4) are satisfied by the trivial or zero solution. 
Although P0 * 0, the p-pair (0, 0) is permissible after the first step. D 

The following question arises immediately. How do we use such a tree to 
find /c-reverse multiples? The next two theorems provide answers. 

Theorem 1: For a given g and k, suppose a tree of the form (12) exists; that 
is, suppose nonnegative solutions to (4), (5), and (7) exist. Then there is an 
n = 2i + 2-digit number satisfying (2) if and only if rn-2-i = ri • I n this 
case, x is given by 

(15) x = an_3_an_2 ... &n-l-iai ••• aiao-

Proof: In forming (12), the equations to be considered at the (i+l)s t step are 

+ ri_l = an_l_i + rtg 

kan_l_i + rn_2_i = at + rn_l_ig 

The two quantities in bold type are the P!s to be determined at this step. If 
n - 2i + 2, then this is the last set of equations to be considered. Since 

n - 2 - i = (2i + 2) - 2 - i = i, 
rn„2-i= vi and the conclusion follows. Conversely, if Tn_2-i = vi > then we 
may stop with (16) by letting n - 2 - i = i to give n = 2i + 2. • 

Corollary 1: For base g, suppose there are /(-reverse multiples. Let n be an 
even number. Then there exists an n-digit multiple if and only if the corre-
sponding infinite tree contains a path of length n/2 from the root to a node 
designated by (u, u). 

Proof: This is simply a restatement of Theorem 1. Q 

Example 1 continued: By Corollary 1, to find all base 10, 4-reverse multiples 
with an even number of digits, we traverse the tree in (14) stopping at nodes 
of the form (u, u). Thus, we see that (3, 3) gives rise to a 4-digit multiple. 
To find this number, we use (15) of Theorem 1. We read it off from the a-
pairs, starting at the root, reading down the left-hand side and then back up 
the right. Thus, we find that 2178 is a 4-reverse multiple. So, too, are the 
following numbers: 

219978, 21782178, 21999978, 
2178002178, 2197821978, 2199999978. 

Of coxrrse, there are infinitely many, but these are the ones with the least 
number of even digits. It should be remembered that the tree is actually infi-
nite, and that pruned branches may be extended when needed to obtain additional 
desired numbers. 

Theorem 2: For a given g and k , suppose a tree of the f o rm (12) exists; that 
is, suppose nonnegative solutions to (4), (5), and (7) exist. Then there is an 
n - 2i + 3-digit number satisfying (2) if and only if 

(k - \)\{rn.2.ig - rt) and 0 < (r„-2-i^ " *i) I & ~ D < 3-
In this case, x is given by 

(16) 
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(17) x = an_1an_2 ... an^Y-i^ai ••• &i&o 

where M = (rn_2-i9 ~ *{,) / (k ~ D • 

Proof: If n = 2i + 3 , then there are an odd number of equations in (3). After 
(i+ 1) steps, we are left with 

(18) kai + l + vi = an_2-i + n+i9-
Since n - 2 - i = i + l, (18) becomes 

(19) kai + l + vi = ai + l + rn_2_ig. 

Because v^ and ¥n_2-i are already known, we must have 

(20) ai + l = (r n _ 2 -^ - ^)/(fe - 1). 

Thus, after determining vn-2-i and i3^ , we can stop if and only if 

(k - l)|(r„_2_^ - r^) and 0 < {vn.2-i3 " ^ ) / ( ^ ~ D <. #• 

When this occurs, x is given by (17). Q 

In order to apply Theorem 2 to a tree, we must check at each step to see if 
(k ~ I)\(rn-Z-z9 ~ vO a n d °  - (rn-2-i9 ~ ri)I(k - 1) < g. Thus, in Example 1, 
since 3|(3 • 10 - 3) and 0 < (3 •10 - 3)/3 < 10, the r-pair (3, 3) yields the 4-
reverse multiple 21978. The following theorem simplifies this tedious checking 
process. 

Theorem 3: For a given g and k, suppose a tree of the form (12) exists; that 
is, suppose nonnegative solutions to (4), (5), and (7) exist. Then there is an 
ft = 2i + 3-digit number satisfying (2) if and only if the graph contains 

-2-i> n ) 

(an-2-i> ai+0 

(ri9 rn.2_i). 

Further, when this occurs, an-2-i = ai+i = M = (rn.2-i9 - vt)/(k - 1). 
an.2-i = ai+l = M = (rn.2-i9 - i-)I(k - 1). 

The desired ft-digit number x is given by (17). 

Proof: Suppose there is a 2i + 3-digit A:-reverse multiple. The first piece of 
the above graph exists by assumption. We must show the existence of the second 
piece. Equations (4) at the (i + 2 ) n d step are 

(kai + l + vt = an.2-i + ri + lg 
(21) < 

\kan-2-i + Vn-S-i = <*i + l + Iin-2-i9-
From (19) and (20) in the proof of Theorem 2, we have 

kM + rt = M + rn.2-i9-

Thus, one solution to (21) is 

an_2-i = M; ai+l = M 

and the result follows. 
Now suppose for a given g and k there exists a graph containing 

O n 
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By hypo thes i s , (4) becomes 
kai+l + vt = a n _ 2 _ i + rn_2_ig 

kan_z_i + vi = a i + 1 + rn_1_igB 

Subtracting one equation from the other gives OLi + i = a n _ 2 - ̂- From this, it fol-
lows that (fc - 1) \(rn-2-iG ~ vi ) a n d an-2--£ = a-i + l = (rn-2-iG ~ ^ ) / ( ^ " 1)' s o 

by Theorem 2 there exists an n = 2i + 3-digit /(-reverse multiple. • 

Corollary 2: For base ^, suppose there are fc-reverse multiples. Let ft be an 
odd number. Then there exists an ft-digit multiple if and only if the corre-
sponding infinite tree contains a path of length (ft - l)/2 from the root to 
nodes designated by (u, v) followed by (v, u). 

Proof: This is simply a restatement of Theorem 3. D 

The importance of Corollaries 1 and 2 cannot be overstated. Suppose it is 
known that for a given g there are /(-reverse multiples. Then we use the 
procedure suggested by (9) to create a pruned tree. By traversing the tree, 
replicating earlier sections when necessary, and stopping at those pairs which 
have the form given in the above corollaries, we are able to find all /(-reverse 
multiples for a given ft. This procedure is illustrated in the following 
example. 

Example 2: g = 19, k = 14. 
The tree in this case is: 

(0, 0) 
| (1, 15) 

(1, ID 
| (2, 17) 

(8, 13) 
| (11, 8) 

(6, 6) 
| (8, 11) 

(13^8) 
(17, 2) / X^ (18, 17) 

(11, 1) (12, 12) 
(15, 1) / \ ( 1 6 , 16) | (17, 18) 

(0,0) (1, 11) (8, 13) 
<°» °) X \ (l, 15) 

(0, 0) (1, 11) 

By Corollaries 1 and 2, we can traverse the tree stopping at (6, 6), (12, 12), 
(11, 1), and (0, 0). The first two nodes give 14-reverse multiples with an 
even number of digits, while the third gives rise to those with an odd number 
of digits. The pair (0, 0) of course always accounts for multiples with both 
an even and an odd number of digits. So there are 6-, 10-, 11-, 12-, ...-digit 
14-reverse multiples. 

Those with the least number of digits are: 

1 2 11 8 17 15 
1 2 11 8 18 17 11 8 17 15 
1 2 11 8 17 16 2 11 8 17 15 

(22) 
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It would be difficult, using these, to see that 

1 2 11 8 18 17 11 8 18 17 11 8 17 15 
and 

1 2 11 8 17 16 2 11 8 18 17 11 8 17 16 2 11 8 17 15 

are also ^-reverse multiples. Yet, using the tree, it is clear that they are.Q 
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R i c h a r d A n d r e - J e a n n i n 
IUTGEA, Route de Romain, 54400, Longwy, France 

(Submitted May 1990) 

1. In t roduct ion 

Let iwn] be the sequence satisfying the second-order linear recurrence 

(1.1) wn = pwn_1 + Wn_l9 n E Z, 

where WQ, U>I are given integers and p is an odd positive integer. 
Of particular interest are the generalized Fibonacci and Lucas sequences, 

{Un(p)} and {Vn(p)}, respectively, which are defined by (1.1) and the initial 
conditions 

U0(p) = 0, UY(p) = 1, 
and 

V0(p) = 2, Fx(p) = p. 

Cohn [2] has proved the two theorems below, which we shall need later. 

Theorem 1: The equation Vn(p) = x2 has: 

(1) if p = 1, two solutions n = 1, 3; 
(2) if p = 3, one solution n = 3; 
(3) if p ^ 1 is a perfect square, one solution n - 1; 
(4) no solution otherwise. 

The equation Vn(p) = 2xz has the solution n - 0, and for a finite number of 
values of p also n = ±6, but no other solutions. 

Theorem 2: The equation Un(p) = x2 has: 

(1) the solutions n = 0, and n = ±1; 
(2) if p is a perfect square, the solution n = 2; 
(3) if p = 1, the solution n = 12, 
(4) no other solutions. 

Recently, Goldman [3] has shown that if Ln = L2
m^2

9 where L2^ is prime, then 
n = ±2m. Adapting Cohnfs and Goldman's method, we shall prove here the follow-
ing theorems. 

Theorem A; Let q > 2 be an even integer. Then Vn (p) = Vq(p)x2, if and only 
if n == ±q. 

Theorem B: Let q > 3 be an odd integer. Then the equation Un(p) = Uq(p)x2 has 
the solutions 

(1) n = 0, and n = ±q, 
(2) if p = 1 or 3, q = 3, and n = 6, 

and no other solutions. 

2. Preliminaries 

The following formulas are well known (see [1], [4], [5]) or easily proved 
(recall that p is odd). For the sake of brevity, we shall write Un and Vn , 
instead of Un(p) and Vn (p). 
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(a) U_n = {-l)n + 1Un, and 7_n = (-l)nVn, 
(b) U2n = UnVn, 
(c) i f d = gcd(m, n ) , t h e n i/d = gcd(£/m, Un) , 
(d) i f <? > 3 , t h e n £/̂  | i/w i f f q\m9 

(e ) i f q > 2 , t h e n Vq \Vn i f f <?|n, and n/<^ i s odd, 
( f ) i f an odd p r ime number d i v i d e s Vq and Vk, t h e n V2(q) = V2(k), where 

V2(s) i s t h e 2 - a d i c v a l u e of t h e i n t e g e r s , 
(g) 2\Vn i f f 3 |w, 
(h) i f fc = ±2 (mod 6 ) , t h e n Vk E 3 (mod 4 ) , 
( i ) gcd(£/ n , Vn) = 1 o r 2 , 
(j) if {un} is a sequence satisfying (1.1), then, for all integers n, k, 

wn + 2k + (~1^ Wn = wn + kVk ' 

The following fundamental lemma (see [2], [3]) is recalled here with a new 
proof. 

Lemma 1: If {wn} is a sequence satisfying (1.1), and k an even number, then, 
for all integers n, t 

wn + 2kt E '(-D* *>„ (mod Vk). 

Proof: By (j) we have, since k is even 
wn + 2k E ~Wn (mod 7fe), 

and the proof follows by induction upon t . Q.E.D. 

We shall also need the next result. 

Lemma 2: If q and k are integers, with q odd and k E ±2 (mod 6), then 

gcd(^, 7fe) = 1. 

Proof: By (h) and (i), notice that gcd(Uk, Vk) = 1, since Vk is odd. Let 

d = gcd(q, k) = gcd(<?, 2k). 

By (b) and (c), we have 

gcd(Uq, Vk)\gcd(Uq, U2k) = Ud, 

and Ud\Uk9 s i n c e d\k. Thus , 

gcd(Uq, Vk)\Uk, 

and so gcd(Uq, 7^) = 1, s i n c e gcd(Uk, Vk) = 1. Q.E.D. 

3 . P r o o f s of T h e o r e m s 

Proof of Theorem A: Assume t h a t Vn = Vqx2, where q > 2 i s e v e n , and n * ±g.. 
S ince Vq\Vn, i t f o l l o w s from (e) t h a t 

n = (±1 + 4 j ) q , j * 0 
= ±4 + 2.3rfe, 

where 2jq = 3rk, and k = ±2 (mod 6). By Lemma 1 and (a), 

Vn = -V±q = -Vq (mod 7 k ), 

since q is even; hence, 

-7<j E 7^x2 (mod 7fc). 

Since 2jq = 3Pfc, then V2(k) > V2(q), so by (f) and'.(g) , gcd(7^, Vk) = 1 since 
Vk is odd; hence, 
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-1 = x2 (mod Vk) , 

which is impossible, since Vy. = 3 (mod 4 ) . Q.E.D. 

Proof of Theorem B: Assume that Un = Uqx2, where q > 3 is odd, and n * ±q. 
Since Uq\Un, it follows from (d) that q\n. 

Assume first that n is even, n = 2jq, and note that j > 1, since n even and 
negative would imply that Un < 0. By (b), we get 

Ujq Vjq = UqX ; 
hence, 

Vjq = y2 o r Vjq = 2^2' 

s i n c e Uq\Ujq and gcd(£/jq , F jq) = 1 o r 2 . 
I f j = 1, t h e n 7^ = z/2 o r Vq = 2y2, which imply by Theorem 1 t h a t p = 1 o r 

3 , and q = 3 , n = 6; i t can be v e r i f i e d t h a t 

£ / 6 ( l ) = f / 3 ( D - 2 2 and tf6(3) = / 7 3 ( 3 ) . 6 2 . 

If j > 2, then F/^ = y2- must be rejected by Theorem 1, since jq > 3 and 
Vjq = 2y2 can be satisfied only if jq = 6, by Theorem 2, i.e., for ̂  = 3, J = 
2, and n = 12. However, 

u12 = t / 3 ^ 
can be written, by (b), 

USV3V& = Uzxz or V3V6 = x2. 

Since Fg = 2z/2, then F3 = 2s 2, and this is impossible by Theorem 1. 
Second, assume that Un = UqX2, where n is odd, 

n = (±1 + 4j)<?, j * 0, 
= ±q + 2.3pfc, 

where fc = ±2 (mod 6 ) . Then, by Lemma 1 and (a), 

Un = " ^ = " ^ (mod 7fc), 

since q is odd. Therefore, by Lemma 2 and hypothesis, 

-1 = x2 (mod Ffe), 

which is impossible, as above. Q.E.D. 
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1. Introduction 

For the simple symmetric random walk on a two-dimensional lattice, it is 
well known (see, e.g., Feller [4], p. 361) that the probability of the origin 
begin revisited at the 2nth step is 

u2„ = 4~2n(nn)2' (n = °* l' 2' •••); 
and the Catalan number 

e = l (2n) n n + l\n I 
(see Constantine [2], p. 61) is expressible as 

22n , 

In a study of the transient behavior of the random walk Downham & Fotopoulos 
[3] have shown after much computation that 

J_A 1 . 1 

for n = 1, 2, ..., and this leads to inequalities for cn which we strengthen by 
using standard analytical techniques. It is shown that, for k > 3 and every 
positive integer n, 

1 1 \ 1 / 1 1 1 \ 
1 + ^ < u2n < — 1 + o + o 

4n 3 2 n 2 / i\n \ kn 32n2 32n3/ 

where 

and 

•nnuzn 

fin, k) - •£ r 
' n ( n + 1) • • • ( n + p - 1 ) 

(k - 2)1 
k + l 4TT(?Z + 1) • n(n + 1) • • • in + k - 1 )" 

For any p o s i t i v e i n t e g e r n , 

l i m Efc+i = 0 
k + 00 

and so both the bounds given by the inequalities tend to l/imu2n as k increases; 
hence, uzn can be approximated as accurately as desired. 

Explicitly, for k = 3, the above results give 
1 1 3 1 

1 + — + -^—, ~ T V + .~~ , ^ + , ._,.. • M 2 , 4n 32n(n + 1) 128n(n + 1) (n + 2) 4im(n + l ) 2 ( n + 2) 

1 1 1 3 
> 1 + — + + i\nu2n 4n 32n(n + 1) 128n(n + 1) (n + 2) 

and these are stronger than the inequalities of Downham & Fotopoulos. 
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2 , P r o o f of t h e I n e q u a l i t i e s 

I t i s e a s i l y v e r i f i e d t h a t 

i r V n + 2 / f 1 / T ( n ) r ( n + 1) 

and then, by Gauss's theorem (see Whittaker & Watson [5], p. 281): 

F{a, b; a; 1) = ^ _ a ) r ( c _ b\ for Re(C - a - b) > 0, 

it follows that 

U2n ~ 1/TfnFi—j, —«; n ; 11 s i n c e n i s a p o s i t i v e i n t e g e r 

= 1 / i rn / l + £ vr\ 

whore 

Vy = 
\ 2 " 2 ° 2 \ r 2 / J ^22>-2<> ~ 1 ) ! 

r r\n(n + I) • •- (n + r - 1) 4 m (n + 1 ) • • • (n + P - 1 ) " 

S i n c e y p > 0 {v > 1 ) , i t f o l l o w s t h a t w2 n < l/irtt and s o , i f r > 3 , t h e n 

y < ( y - 2 ) ! / T T < ( r - 3) ! . 
r kvn(n + 1 ) • - - (n + 3? - 1) 4ira(n + 1 ) - - - (n + r - 1) ' 

h e n c e , f o r k > 4 , 

y y < i y ( * - 3)! 
r = k r 4 T r ^ n ( n + 1 ) . . . (n + r - 1) 

= (k - 4 ) i ( k - 3 + (k - 3 ) ( k - 2) + _ ) 
4irn(n + 1) • • • (w + k - 2) V + k - 1 (n + k - 1) (n + k) / 

- (k - 4)1 {F(k - 3 , 1 ; n + k - 1 ; 1) - 1} 
4irn(n + 1 ) . . . (n + k - 2) 

= (k - 4 ) ! f r ( n + k - l ) r ( n + 1) _ ) 
4frn(n + 1 ) . . . (n + k - 2 ) \ r ( w + 2 ) r ( n + k - 2) ) 

by GaussTs theorem, since n > -1. This simplifies to 

f , (fe - 3)! 
P = ̂ P < (w + 1) • 4irw(n + 1 ) . . . (n + k - 2) " 

From 
k ro k (k - 2 ) ! 

1 + 7 y r < 1 + y ^ f r < 1 + T^ 1\> + -; ;—7T ; 7 ;—7^ 7 ;—7: TV 
^ r

 2frJ
l
 T ~ T (n + 1) • 4irn(n + 1 ) — (n + k - 1) 

i t t h e n f o l l o w s t h a t , f o r k > 3 , 

1 + / ( n , k) < — ± — < 1 + / ( n , k) + e f c + 1 
7TAtW2n 

where 
(fe - 2 ) ! 1 n 7 

0 < e , , < — — = - = ——- — T -> 0 a s k -> «>. 
K+l 8iTk! 8ir(k - l ) k 
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3. Numerical Comparisons 

The following table shows some bounds given in the cases k = 3 and k = 4 as 
well as the bounds obtained from the inequalities of Downham & Fotopoulos. For 
problems related to the computation of the integer cn when n is large, see 
Campbell [1]. 

n 

1 

2 

10 

100 

D & F 
k = 3 
k = 4 

D & F 
k = 3 
k = 4 

D & F 
fc = 3 
fc = 4 

D & F 
fc = 3 
k = 4 

w2n 

Lower Upper 
Bound Bound 

.24868 .25863 

.24942 .25073 

.249778 .250429 

w2 = -25 

.140 504 .141 126 

.140 560 .140 698 

.140 605 .140 660 

uh = .140 625 

.031 045 161 .031 046 156 

.031 045 315 .031 045 481 

.031 045 390 .031 045 416 

u20 = .031 045 401 

.003 175 151 061 .003 175 151 160 

.003 175 151 085 .003 175 151 088 

.003 175 151 086 636 .003 175 151 086 683 

u20Q = .003 175 151 086 657 

^n 

Lower Upper 
Bound Bound 

.9974 1.0171 

.9989 1.0015 

.99956 1.00086 

c1 = 1 

1.99914 2.00356 
1.99954 2.00052 
1.99986 2.00025 

c2 = 2 

16795.935 16796.204 
16795.977 16796.022 
16795.997 16796.004 

c10 = 16796 

cl00 * .896 5199x 105 7 
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1. Introduction 

Let a = £i> o Via^ >̂e t n e p-adic expansion of an nth-order linear recurring 
sequence a of rational (or p-adic) integers. In this paper the projective map 
<\>di a -*- o^_]_ is shown to be infective modulo pd for linear sequences having 
maximal modulo pd periods. 

Let R be the ring of rational (or p-adic) integers, p a prime number. For 
a polynomial f(x) = Y,- = 0c^x'1 ^ R[X] and a sequence a over R9 define the opera-
tion 

n f(x)a = J2 °i^a 
i= 0 

where L is the left-shift operator of sequences. a is said to be an nth-order 
linear recurring sequence modulo pd [or over Rd = R/(pd)] generated by f(x) if 
f(x) is monic and f(x)a E 0 (mod pd) . It is well known ([3], [4], [6], [7]) 
that the residue sequence a mod pd is ultimately periodic with the period 

(1) per(a)pd < pd~Hpn - D . 

Definition: An nth-order linear sequence a attaining the upper bound in (1) is 
said to be primitive over R^. Furthermore, a is primitive over R if it is 
primitive over Rd for all d > 2. 

The arithmetical properties of this special class of sequences have been 
studied in [1], [2], [3], and [6]. Write a in its p-adic form 

a = a0 + pax + p^^2 + •••* 

where the a^'s are p-ary sequences, and consider the dth projective map 

*d: a * ad-l-
The purpose of this paper is to prove that $d is a modulo pd injection on the 
set of f(x)-generated Rd-primitive sequences. More precisely, our main result 
is 

Theorem 1: Suppose a and a' are nth-order primitive sequences generated by 
f(x) over Rd. Then &d_l = a^_i i f a n d only if a E a' (mod pd). 

The proof is given in Sections 3 and 4. 

2. Primitive Sequences and Polynomials over Rd 

For a monic polynomial f(x) € R[x], define its modulo pd period as follows 

per(/(aO)pd = min{£ > 0\xt E 1 mod(f(x), pd)}. 

Let T = per(/(x))p. By definition, there is an h(x) e R[x] so that 

(2) xT E 1 + phl(x) (mod f(x)). 
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For i > 1, let 

(3) hi + i(x) = E (typ*-*-%(*)*• 
i < r <p 

I t follows immediately that 
(4) x^~lT E 1 + p^hiix) (mod fix)), 1 < i < d, 

which implies 
(5) per(f(x))pi \pi~1T < p1-1^71 - 1), 1 < i < d. 

Similar to the case of sequences, f(x) is said to be primitive over R^ if 

per(/(ar))pd = pd~Hpn ~ 1) . 

By (4) and (5), this is clearly equivalent to the fact that f(x) is primitive 
over GF(p) (i.e., T = pn - 1) where GF(p) denotes the finite field of order p, 
a prime, and 

(6) ht(x) £ 0 mod(/(#), p), 1 < i < d. 

By the inductive definition of h^(x), when i > 2 we have 

(/zx(x) mod(p, f(x)), if p > 3, 
(7) Mx) = < 

(/z2(x) E hl(x) + /zx(x)2 mod(2, f(x)), if p = 2. 

Therefore, (6) is equivalent to 

(0, mod(p, f(x)), if p > 3, or p = 2 and d = 2, 
(8) Mx) ̂  < 

(O, 1 mod(2, f(x)), if p = 2 and <2 > 3. 
An explicit criterion for f(x) to be primitive over i?j is given in [2], 

Ward had shown in [6] that an f(x)-generated linear sequence a is primitive 
over Rfi if and only if a t 0 (mod p) and f(x) is primitive over Rj. Now assume 
this is the case and write 

i > 0 
For \ < i < dy notice that per(a)pi |per(/(x))pi = p7'~1T, we have 

(9) (x^"lT - l)a = (xpt'lT - 1) Y,akPk E P i(^ P" _ l T- D ^ (mod pi + 1 ) . 

On the other hand, applying (4) to a gives 

(10) (xp%'lT - l)a E pihi(x)a (mod pi + l ) . 

From (9) and (10), we obtain the relation over GF(p) 

„._, (hi(x)a,Q, if p > 3, or p = 2 and i = I, 
(11) (xp" T - l ) a i = /z;(x)a0 = < 

(/22(^)aQ5 if p = 2 and i > 2. 

In what follows, discussions of p-ary sequences are over GF(p). 
For any ̂ (x) € £F(p)[x], denote by £(<7(x)) the set of sequences over GF(p) 

generated by g(x) . Let rriQ = a0, 

(12) ^ •= (xp" T - l)ai = hi(x)m0, I < i < d. 

Clearly, mi9 i = 0, 1, ..., are primitive sequences in G(f0(x)). They are the 
key factors in our approach to proving the main theorem. The following Lemma, 
which will play a technical role in Sections 3 and 4, can be derived from (11) 
and the theory of primitive sequence products ([4, Ch. 8], [5]). 
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Lemma 1: (i) The product of two primitive sequences over GF(p) is not zero. 
(ii) Let A = Z^^p^A^ be any f(x)-generated sequence over Rd. If 

there is a p-ary primitive sequence m E Gif^ix)) such that 

m\d_i = m\d_2 mod G(xT - 1), 

then A = 0 (mod pd~l). 

3, Proof of Theorem 1 for p > 3 

Let p = I^>0P-P^ be the p-adio form of a' - a. We want to show that 
ad-l = ad-l imPlies P = 0 (mod pd~l) . 

Assume on the contrary that p = pe3, with 0 < e < d - 1 and 

B = E ^iPi t 0 (mod P)-
i >o 

Obviously, 3 is generated by f(x) over Rd-e» By (11), 

m = (x? - l)Bd_e_! 

is a primitive sequence generated by f(x) over GF(p). On the other hand, let 

a = (a(t))t>0, af = (af(t))t>0, Bd-e-1 = (3(t))t>0 

and define the "borrow" sequence 6<f-i = (6(t))t>o by 

(0, if a'(£) mod pd~l > a(£) mod pd~l, 
6(t) = < 

(l, otherwise. 

Then 
6(t) = (adf_!(t) - ad_i(£) - S(£)) mod p = (-6(t)) mod p = 0 or p - 1 

for all i. Therefore, the GF(p)-primitive sequence 
r.d-e-2 

m = (xP - l)3d-e-i 
consists of at most three elements: 0, 1, and p - 1. When p > 5, this is im-
possible because a primitive sequence contains all p elements in GF(x). Now, 
assume p = 3, and write m = (m(t))t>0* From the equation 

3(t + pd~e~2T) - B(t) = 77z(£) 

and the fact that 3(t) = 0 or 2 for all t, we have B(t) = 2 when m(t) = 1, and 
B(t) = 0 when m(t) = 2. Hence, 

m(t) (£) = m(t)(m(t) + l) for all t > 0, 

or equivalently, 

(13) m&d-e-i = m(m + 1). 
Applying the operator xp - 1 to both sides of (13) gives rise to m2 = 0, 
which contradicts (i) of Lemma 1. 

So Theorem 1 has been proved for p > 3. 

4. Proof of Theorem 1 for p = 2 

When p = 2, our main theorem is obviously equivalent. 

Theorem 2: Let a and ar be as in Theorem 1. Then for d > 2, 
ad-i + ad-i € G(fo&)) i f a n d o n l y i f a = a ' ( m o d zd~l). 
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The "if" part is clear. To prove the other direction, we need some prepa-
rations. Suppose p = a' - a and co = a + a', with 2-adic expansions 

p = £ 2ipi and o> = £ 2 X . 
i > 0 i > 0 

Let 6̂  = a^ + a[y then over GF(2) we have 

(14) a). = 0; + y., 

(15) Pi = ei + 6* 

where ŷ  is the "carry" from a mod T1 and a' mod 2%, and 6̂  is the "borrow" 
defined by a mod 2V and a' mod 2% . Denote by 6̂  the binary complement of 0^, 
it is easily seen that 

(16) 6i = 0 ^ ! ^ . ! + Vl«i-l» 

(!7) Ti = ^-icti-i + 0;-iY;-i. 

Lemma 2: Suppose a and a' are f(x)-generated primitive sequences over R^. If 
8d-l " £(^T + 1). then 

Qd-2md-2 = OTd-2 

where e = 0 or 1. Furthermore, we have p = 0 (mod 2d_1) or co = 0 (mod 2d~ ), 
respectively, according to e = 0 or 1. 

Proof: The fact that (̂ T + l)0j-i = 0 implies mi = m[ and 6{ G ^ 2 ' " ^ + 1) for 
all i < d - 1. 

If d = 2, we have w0 = #?Q, and the conclusion holds. 
Now assume d > 3. Notice that p = 0 (mod 2), and 

P' = p/2 = Z 2^pi + 1 
i > o 

is generated by /(x) over ^ - i - From (11) it follows that 

(x2d~3T + D p ^ = hd_z(x)Pl e G(f0(x)). 
On the other hand, by the observation that per(6 -2)\2d'3T and 

(18) pd_x = V : + 6d_2ad_2 + 6d_26d_2, 

we have 

(19) ( * ^ + Dp,.! = e d _ 2 ( * ^ + i)„d_2 = ed_2md_2. 

Therefore, §d-2md-2 = emd-2 with e = 0 or 1. 
If e = 0, i.e., ®d-2md-2 = °> t h e n ~®d-2md-2 = Wd-2* F r o m (18) a n d (15)> w e 

can derive 

ffld-2Pd-l " ffld-28d-l +
 md-2&d-2 H Wd-2Pd-l m ° d G(XT + X ) 

which leads to p E 0 (mod 2^_1) by Lemma 1. 
The case of e = 1 can be shown in a similar way. The proof is thus com-

pleted. 

Corollary: If (xT + 1)02 = 0, then a = a' (mod 4). 

Proof: Assume, on the contrary, that e = 1 and 0i^i = rn\. Since mQ = mfi and 
01 e £(/o(^))> we have 0i = mi. 

On the other hand, the fact that a) = 0 (mod 4) and wj = 0i +^o implies 0^ 
= 7??0. Therefore 

™l = 0i = rn0 

which is impossible by (12) and (8). 
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Now we are in a position to give an inductive proof of the remaining part 
of Theorem 2: 

0d_! E G(fQ(x)) implies a E af (mod 2d~l). 

The conclusions for d = 2 and 3 are proved above. 
Suppose d > 4 and the theorem holds for d - 1. If it fails for' d9 we would 

have Qd-2md-2 ~ md-2 an& ^ E 0 (mod 2 d _ 1 ) . Consequently, 

^d-2 = ed-2 + Yd-2 = 0> 
wd-l = ed-l + "6d-2<*d-2 + 6d-2 e G(fo(x))9 

(20) ^d-2^d-l = wd-20d-l + ^d-2 = md-2^d-l + ^d-2)-

Since Wd-2> wd-l> an<^ ^d-1 e ^(/o(x))' by Lemma l(i)5 equation (20) leads to 

°d-l + md-2 = Wd-1 = 6d-l + V 2 a d - 2 + 9d-2> 

and hence rn^-2 = ®d-2ad-2 + ®d-2« Multiplying both sides by 0j-2 gives 
md-2 = 6d-2^d-2 = 9d-2-

Now we have reduced the case to J - 1. By the inductive assumption, we have 
p E 0 (mod 2"~2), and hence 

a = (a) - p)/2 = 0 (mod 2d_3) 

which contradicts the fact that a is primitive over Rd and d > 4. 
The theorem is thus proved. 
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Introduction 

A Pythagorean triple is an ordered triple of positive integers (x, y, z) 
with x2- + y2- = z2. It is called primitive if x and y have no common factors. 
In recent work, A. G. Schaake & J. C. Turner have discovered an unexpected rep-
resentation for the primitive Pythagorean triples: they are precisely the 
triples of the form 

x = (Q - R)/N, y = (P + S)/N9 z = (Q + R)/N 
where P/Q is the value of a continued fraction of the form 

[0; ul9 u2, -..> ui9 v, 1, j, (v + 1), ui9 ..., u2, ul], 

R/S is the previous convergent of that continued fraction, and N depends on the 
entries but is either (j + 1) or 2(j + 1). This work was drawn to my attention 
by the review [4]; Professor Turner was then kind enough to send me relevant 
parts of their privately published book and research report [2], [3]. The 
representation is derived there as part of a more general investigation, with 
the equation rewritten in the form ps = qv - 1. In this paper, I shall isolate 
the material bearing directly on Pythagorean triples, proving a slightly 
simpler variant of their result and showing how closely it is related to the 
usual parametrization of Pythagorean triples. The only unfamiliar step will be 
an identity on continued fractions that we can easily prove from scratch. 

1. An Identity on Continued Fractions 

We briefly recall some of the basic information about continued fractions 
(see, e.g., [1], Ch. IV). For positive integers U\ , . .., um, the continued 
fraction [0; U\> ..., um] is a number between 0 and 1 defined inductively by 
[0; u] = l/u and 

[0; ui, ..., um] = l/{ui + [0; u2, ...> um]}. 
If we define two sequences p. and q • by the initial values 

Po = °> <?0 = !» Pi = !> <7l= ui 
and the recursion relations 

then p. and q• are relatively prime and 

[0; ul9 ..., um] = ymlqm. 
Every fraction between 0 and 1 occurs as some [0; u^, ..., um]9 and the expres-
sion is unique so long as we require the last entry um to be bigger than 1. 

Lemma: Let [0, ] = A IB be a continued fraction, and let [0; , g] = C/D. 
For any u, then 

*This work was supported in part by the U.S. National Science Foundation Grant no. DMS8701690. 
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[0; u, , g] = D/(uD + C) 
and 

[0; u, ~~~, g9 u] = (uD + B) / (u2D + uB 4- uC + A). 
Proof: Clearly, 

£/(w£> + O = l/{w + [0; ~~~, #]}. 

Similarly, 

£/(u£ + A) = [0; M, ~ ~ ~ ] . 

Then the recursion relations show us that the numerator of [0; u, , g> u] is 
uD + B and the denominator is u(UD + C) + (w5 + 4). D 
Theorem 1 (Schaake & Turner): Let [0; un, un_l5 ..., ul5 w] be a continued 
fraction with the Ui and w positive integers, w > 1, and n > 0. Let its value 
be p/g. Then the continued fraction 

[0; un, ..., 2̂ 2* W]_, w - 1, w + 1, U]_, U25 ...» un] 
has numerator pq + (-l)n and denominator q2, and the previous convergent 

[0; un9 ..., u2» ui> w - 1, w + 1, Ui> 2̂2? • ••» un-i] 
has numerator p2 and denominator pq - (-l)n . 

Proof: We prove this by induction on n (which is why the entries in the contin-
ued fraction have been numbered backward). The case n - 0 is straightforward: 
we have [0; w] = l/w and [0; W - 1] = l/(w - 1), while [0; w - 1, w + 1] has 
numerator (w + 1) and denominator (&? + l)(u - 1) + 1 = W2. 

Assuming the result for n9 let us consider the fractions for n + 1. If p/q 
is the value for n, the lemma shows that 

[0; un + 1, w„, ..., u2, uxs w] = q/iqun + i + p}. 
In short, the new numerator p! is q9 and the new denominator qT is qun + i + p. 
Applied to the longer fractions, the lemma now shows that 

[0; un+1, ..., w2> wl3 w - 1, u + 1, ux, u2s • ••> wn] 

= q2/{un+1q2 + P4 + (-Dn> = (pf)2/<P V - (-l)n + 1L 
while 

[0; un + 1, ..., u2, ui9 w - 1, w + I, u\, ul9 ..., un+i] 
has numerator equal to 

un+l(q2) + {pq - (-l)n} = p V + (-l)n+1 

and denominator equal to 

un + iiq2un + i + pq + (-l)n> •+• i(pq ~ (-1) )un + 1 + p2} = (qf)2'. D 

Example: Suppose we start with [0; 3, 5, 2]. Computing the sequence of values 
(Pj > qj) by the recursion, we get (0, 1), (1, 3), (5, 16), and (11, 35). For 
[0; 3, 5, 1, 3, 5, 3], the sequence is (0, 1), (1, 3), (5, 16), (6, 19), (23, 
73), (121, 384), and (386, 1225). We see, e.g., that 386 = (11) (35) + (-1)2 

and 1225 = (35)2. 

Remark 1: I have stated the theorem for positive integers, but the proof shows 
that it is a purely formal identity. 

Remark 2: In Schaake & Turner, Theorem 1 occurs as a special case (the formal 
result of setting j . = 0) in a more general statement ([3], pp. 92-96); in our 
notation, it says that the continued fraction 

[0; un9 ..., u2> ul9 (w - 1), 1, j, w9 ui9 ul9 ..., un] 
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has numerator (j + l)pq + (-l)n and denominator (j + l)q2 , while the previous 
convergent has numerator (j + l)p2 and denominator (j + l)pq - (~l)n . The in-
duction argument given here will also establish that statement. Their proof is 
slightly different, and in [2] the result is viewed primarily as a computa-
tional simplification. From my present viewpoint, the more general expression 
simply winds up introducing a common factor of (j + 1) in the Pythagorean 
triples, and so it is not needed. 

2. Relation to Pythagorean Triples 

Now we recall the standard analysis of Pythagorean triples, as in ([1], pp. 
153-55). If (x, y, z) is a Pythagorean triple, then so is (mx, my, mz) for any 
positive integer m . Every Pythagorean triple arises in this way from a 
uniquely determined primitive triple. Setting x = x/z and y = y/z, we thus get 
a correspondence between the primitive triples and the points with rational 
coordinates on the first quadrant of the unit circle. What we might call the 
"standard" rational parameter for the circle is 

t = y/(x + z) = y/(x + 1); 
the values x and ~y (with squares adding to 1) can be recovered as 

x = (1 - t2)/(l + t2) and y = 2t/(l + t2). 

We get positive values for x and ~y exactly when 0 < £ < 1. If t = p/q in low-
est terms, we have 

x = (p2 - q2)/(p2 + q2) and y = 2pq/(q2 + p2). 
The obvious Pythagorean triple corresponding to this value of t then is 

x = p2 - q2, y = 2pqs z = p2 + q2. 

This triple is in fact the primitive one if either p or q is even. If both of 
them are odd, then the primitive triple for parameter t = p/q is 

x = (p2 - q2)/2, y = pq, z = (p2 + ^2)/2. 

The classification is sometimes stated a bit differently, so I should add 
one further remark. Interchanging x and y in a Pythagorean triple gives 
another Pythagorean triple. On the rational parameter, this corresponds to the 
operation sending t to (1 -t)/(l + t) . If t = p/q in lowest terms, the new 
value is (q - p) / (q + p ) . This new numerator and denominator have at most a 
common factor of 2. If either p or q is even, then the fraction is in lowest 
terms and has odd numerator and denominator. If both p and q are odd, then 
either p - q or p 4- q (but not both) is divisible by 4; hence, when we cancel 
the common factor of 2, we get a fraction where either the numerator or the 
denominator is even. Thus, the two possible types of t are interchanged by the 
interchange of x and y. Specifically, the p/q with either p or q even give the 
primitive triples in which y is even, while the p/q with both p and q odd give 
the primitive triples where x is even. 

We can now prove the main result, showing how the continued fraction is 
related to the rational parameter. 

Theorem 2: 

(a) For n > 0 and any positive integers w9 U\, u2, *.., un with w > 1, let 
P/Q be the value of the continued fraction 

[0; un9 ..., U2> Ui, w - 1, w + 1, ui, U2, ...» un], 
and let R/S be the value of its previous convergent 

[0; un, ..., u2, Ui, w - 1, w + 1, ui» u2, ...* wn_i]. 
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Set 217 = 2 if both Q and R are odd, and set N = 1 otherwise. Define 

X = (Q - R)/N9 Y = (P + S)/N, Z = (Q + R)/N. 
Then (J, I, Z) is a primitive Pythagorean triple. 

(b) Every primitive Pythagorean triple arises in this way from exactly one 
sequence W, U\> u^, . .., un. 

(c) The rational parameter for the triple is precisely [0; un, un_]_, . .., 
ul9 w]. 

Proof: Set t = p/q = [0; un, . .., u2s Mj, w] . By Theorem 1, we know that 

P = pq + (-1)% « = q2, R = p2
5 S = pq - (-l)n . 

Thus, S - R = <?2 ~ P2 and § + P = q2 + p2 and P + S = 2pq. The standard theory 
shows then that (X, J, Z) is the primitive triple corresponding to parameter t , 
As each t arises from a unique sequence, the same is true for the triples. D 
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1. Introduction 

In this article we use the elementary theory of symmetric functions and the 
theory of characters of representations of the symmetric group to derive iden-
tities involving generalized Fibonacci and Lucas numbers. Not all the identi-
ties obtained are new; what is possibly of greater interest is the approach, 
which may lead to further results. We have included some preparatory material 
on partitions, Schur functions and characters in Sections 2, 3, and 5. Proofs 
of the statements made there may be found, among many other places, in [1] and 
[2]. Character calculations similar to those carried out in this paper are 
found in [3]. 

Let a and b be any two unequal complex numbers. Define the Lucasian pairs 
{Un} and {Vn} by 

Un = a* ~ I", Vn = an + bn; n = 0, 1, 2, ... . 

Then Un and Vn satisfy the recurrences 

Vn + 2 = PUn + l ~ QUn> Vn+2 = PVn + l - QVn , 
where P = a + b, Q = ab, P1 - kQ * 0. In case P = 1, Q = -1, put Un = Fn9 Vn = Ln. 
Then Fn and Ln are the Fibonacci and Lucas numbers, respectively. 

Let p i > p2 ^ • • • ̂  Qk be positive integers. One of our basic identities 
has the form rn-, 

UJ 
(1.1) VPl VPz ... VPk = Z^P1,P2,....pk;j2/»-2j + l 

j = 0 

where the A1 s are simply expressible in terms of Q and certain characters of 
the symmetric group. An identity inverse to (1.1) is also obtained. For cer-
tain choices of {p]_, p2» •••» P^ }» t n e relevant characters can be fairly readily 
computed. In this way we obtain, for instance, the identity 

In Section 7 we use a different approach to derive identities involving Lucas 
numbers and certain generalized binomial coefficients. 

2. Partitions and Tableaux 

^ m - 2 , - + l =Pm~2+1U2< 

A p a r t i t i o n i s a f i n i t e sequence of nonnegative i n t e g e r s : 
X = ( X ] _ , \^i . . . 5 Xt) 

in nonincreasing order. A part of A is a nonzero member of {\\9 X^* •••> At}-
The number of parts is the length, £(A), of A. The sum |A| — A j , X^> •••5 ~Xk> 
where k = £(A) is the weight of A. A is said to be a partition of |A|. Occa-
tionally we use an "exponential" notation for A: 

A = l31 2 3 2 ... m$™. 
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Here, 3i is the number of times i occurs in the sequence (A^, A2, ..., A^). 
[A], the diagram of A , is the set of all points {I, j) in Z2 such that 

1 < j < \im Thus, the diagram of (3, 3, 2, 1) is 

Sometimes it is convenient to use squares rather than dots. Let A and u be 
partitions with |x| = |u|. A semi-standard tableau of shape A and content u is 
an arrangement of \i1 lfs, y2

 2?s> U3 3*s, etc., in the squares of the diagram 
of A so that the rows are nondecreasing and the columns are strictly increas-
ing. For example, the semi-standard tableaux of shape (4, 2) and content (3, 
2, 1) are 

1 
2 

1 
3 

1 2 and 1 
2 

1 
2 

1 3 

Figure 1 

Partitions may be ordered lexicographically. That is, 

A > y if Ai uj_ or if A]_ = \ii and A2 ^2 

or if A]_ = ul5 A2 = U25 an<^ ^3 > ^3? etc. 

Semi-standard tableaux of shape A and content y can exist only if A > y. (This 
condition is not sufficient.) 

3. Schur Functions 

We shall be working in the ring Z[xl5 x2, ..., xn] of polynomials in n inde-
pendent variables with integer coefficients. Such a polynomial is symmetric if 
it is invariant under all permutations of the variables. For each n-tuple 
a = (04, a2, ..., an) in Nn

9 we denote by xa the monomial 

If A is a partition of length < n, the polynomial 

^A^l' ^2' • • • » %n) = L ^ ^ y 
where the summation is over all permutations a of {A]_, A2, 
ric. The power sums 

, A^} is symmet-

i= 1 
are symmetric, as are the products 

Pp = Pp, Pp, ••• Pp, (P = (PL P2' . P,)) 2 L ^k 

With every partition A we can associate another type of symmetric function, 
called a Schur function, or 5-function. Let A be a partition (A1? A2, ..., Xn) 
and put 6 = (n - 1, n - 2, ..., 1, 0). Define 

ix + 6 = det(x^' + n _ J ' ) , 1 < i < n, 1 < j < n. 

Then 
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a6 = det(x^"J) = FI (xi - Xj) 
1 <i<j<m 

is the Vandermonde determinant. Clearly, a6 divides &A+6« The quotient 

( \ - Ci~k+^ 
SX ~~ s \ \ x l > x2> •••> xm) ~ „ 

a6 

is a symmetric homogeneous polynomial of degree | X | which is called a Schur 
function. 

The sets Mm = {mx \ i(X) < m} and S = {sx\i(X) < m} are Z-bases for Am9 the 
set of symmetric polynomials in m variables with coefficients in Z. Thus, for 
example, we may express the polynomials sx as integral linear combinations of 
the polynomials mu. We have 

(3.1) sx = £ ^ j P m y . 
|u| = |x| 

It is possible to show that the Kostka number KXy y is the number of semi-stand-
ard tableaux of shape X and content u. Therefore, Kx^ y is a nonnegative integer 
that vanishes if X < u. 

To express the polynomials pp as integral linear combinations of Schur 
functions, we require the characters of Y,m» the symmetric group on m letters. 
We have 

<3-2) PP = £ , 4sx> 
M = IPI 

where Xp is the character of the irreducible representation of Z m determined 
by X evaluated at the conjugate class of Hm consisting of permutations with 
cycle-partition p. 

Inverse to (3.2) is the relation 

(3-3) s > = ^ | P l ? m
c ^ 

where op is the number of permutations with cycle-partition p; i.e. 

ml 

ly^ 2Y* . . . ^ ( Y l ) ! ( Y 2 ) ! . . . ( y j ! 

w i t h p = lYl 2Y2 . . . /7?Ym and IpI = m. 

4. Basic Identities 

If there are only two independent v a r i a b l e s x^ and X£, and i f £(u) > 3 , then 
77?y = 0. In t h i s case (3.1) may be put in the form 

L2J 
( 4 . 1 ) Sx(xl9 X2) = Z^ K\,(k, n -k)m(k, n- k)(xl> X2> ' 

k= 0 

where n - |x|. There can be no semi-standard tableau of shape X and content u 
if £(A) > £(u) because each of the £(A) rows of the tableau must be headed by a 
distinct integer chosen from a set of £(|i) integers. Thus, the only nontrivial 
case of (4.1) occurs when l(X) < 2. In this case it is not hard to see that, 
if 0 < j < jj] and 0 < k < [|] , we have 

KU,n-j), (k,n-k) = 1 if k > j , and 
KU,n-j), (k,n-k) = 0 if k < J, 

whence 
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[f] 
sU> n~ j)(xl9 x2) = X m,k n_k)(xls x2) 

k = j 

o r 

( 4 . 2 ) Sti,n-j)(xl> X2) = 

= x^x^x^'2^ + x^-2J~lx2 + . . . + x^~2J) 

f^ «, \ //v.n-2,7 + 1 _ rrn~2j+ l\ 
ytAj -J tAj r\ J \^tAj •] *Xi r\ J 

X1 •— X - ; 

With £/n and Vn defined as in the introduction and p = (p l 5 p25 . . . 5 p„) , put 

( 4 . 3 ) Vp = 7 P l Fp2 . . . FPfe . 

T h e n , f r o m ( 4 . 2 ) , we h a v e 

(4.4) Sti,n-3)(*> W = Q3Un-2j+l> 

Moreover, 

PP(a, b) = Vr 

so that, with |p| = n, (3.2) becomes 

[8 r , . 
(4.5) 7P = ^ ( / ' " " J V V y + 1 -

J = 0 . . 

our first basic identity. For example, in the Fibonacci case, taking p = (5, 
3, 2) and referring to the table of characters of S 1 0 in [1]> we have 

(-1) y<5\t'2))Fll-2J = FH " ("1)̂ 9 + F7 ~ 0- ̂ 5 + ("1)̂ 3 " 2Fl 
= 89 + 34 + 13 - 0 - 2 - 2 = 132 
= 11 • 4 • 3 = L5L3L2 = L(Si 3j 2 ) . 

From (3.3) we get our second basic identity 

(4 .6 ) 
[QjnlUn.2j+l = X cpx(/*""J ,Vp, where 0 < j < | 

|p| = n 

f0 = E ^PXp^p5 i f * U ) ^ 3. 
| P | = « 

5. Special Cases of the First Basic Identity 

In some cases it is not difficult to compute XpJ,n~J^« We use the Murnaghan-
Nakayama Rule, which permits an inductive calculation. This requires some pre-
liminary explanation. 

Let (i , j) be the point in the ith row (counting downward) and j t h column 
(counting to the right) in [p], the diagram of p. The hook Hif - consists of 
the point (i , j) together with the points of [p] directly to its right and 
directly below. The number of points in H^ j , the length of the hook, is 
denoted by h{,3j. The points (k, j ) , k > i , form the leg of #£, j . The number 
of points in the leg of H^ . is called the leg-length and is denoted by t̂,j'» 
The point of #£ • furthest to the right of (i , j) is called the hand of the 
hook, while the point of H? • furthest below (i , j) is called its foot. To 
Hit j corresponds a portion of the rim of [p] which is of the same length. It 
consists of the points on the rim between the hand and the foot. To H^> |' , 
for example, there correspond the encircled points of [5, 3, 1] as follows: 

• ' .© © © 
0 0 
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The a s s o c i a t e d p a r t of t h e r i m , i?£ ^ , i s c a l l e d a r i m - h o o k . I t i s i m p o r t a n t t o 
n o t i c e t h a t t h e r e s u l t 

of removing R? • from [p] i s a g a i n t h e d i ag ram of a p a r t i t i o n ; e . g . , 

[ 5 , 3 , l]\R{l'l> 1} = • = [ 2 , l 2 ] . 

The Murnaghan-Nakayama Rule is the following: Let \ and p be partitions of 
m, with 

p = (l3, 2 3 2 . . . k^ . . . m^). 

Suppose $j, > 1 and let 

(I31 2 3 2 ... k3k~l . . . m^), 

Then 

(5.1) X
X

D = E. (-DP 
i, j 

Thus, by removing one occurrence of k from p and all k rim-hooks from A, we can 
express Xp in terms of characters of lower order. Repeated application of this 
procedure allows us to compute Xp for anY A an<i P • 

Let us assume that j < ml2. In case p = (r, im~r) w e can compute Xp
 m~0>) 

inductively by removing 1-hooks from [j, m - j ] . The Murnaghan-Nakayama Rule 
yields 

m 

(5.2) 

ti,m-j) = Y(j-l.m-j), (j, m-j-1) -f f 7 < 

lyti>j) = Y ( J " 1, J) i f 7 = -
A(P, l"1-2") A r , j_m-r»- 1 -LJ- r/ 2 

Note the resemblance between (5.2) and the binomial recurrence. It is not hard 
to show, using induction on m, that 

(5.3) «-m-(":^G:l) -G-;: . ) ' 
If r = 1, (5.3) becomes 

(5.« # • • - » - ( " ; * ) - ( ; : l) 
(Remark: (5.4) may also be obtained from the Frame-Robinson-Thrall formula for 
the degree of an irreducible representation of ]£n.) 

When r = 2, (5.3) can be written 

(5.5, ,«.;:/». (« : ' ) . ( ; : J). 
Using t h e same method a s t h a t used t o e s t a b l i s h ( 5 . 3 ) , we can show t h a t 

C5 6} yU,m-3) = W - r - s \ _ /TTZ - r - s\ (m - r - s \ /TTZ - P - s\ 

' J AP, s,!"'—* \ j ; v j - i / \ j - r / Vj - r - i/ 
/77Z - 2» - S \ _ / W - 3? - S \ 
\ J - s ) \j - s - 1/ 

/772 - 2» - S \ _ / 772 - P - S \ 

\j - r - s) \j - r - s - l) ' 

152 [May 



SCHUR FUNCTIONS AND FIBONACCI IDENTITIES 

lm - v - 3\ lm - v - 3\ , (m - r - 3 
r, 2, i"»-r-2 \ j ) V J - 4 

\ + /m - r - 3\ lm - r - 3\ 
/ V j - r / \j - r - 4/ 

If 8 = 25 we have 

(5.7) yU>rn-j) 
X P, 2,1--

and if, in addition, r = 4, then 

(5.8) XW.»-J) = (m - ~>) - (m. ~ 7). K } X4,2,i-6 \ 3 I \j - 8/ 

Each of (5.3) through (5.8) yields, via (4.5), a Fibonacci identity. We 
have, for example, 

[i] 

[i] 

(5.5)' .E/[(ffl}3) - ( j : J)]^.„+1 = T 2 ^ = p - x . 

(5.8)' .E^[(m;.7) - ( j : J)]^.y+1 = vr 6 w = p-7ff8. 
An expression similar to (5.6) but involving 2q+l binomial coefficients may-

be given for 
v(j »"*-«/) 

In case t^ = 2^ , 1 < i < <f— 1, this expression may be simplified to give the 
expected generalization of (5.4), (5.5) and (5.8)1 
fR en yti>m-3) /TTZ - 2 + 1\ lm - 2 + 1\ 
15.9) X 2 , 4 s 8 , . . . , 1q~li im-lq+2 ~ \ • / " \ J - 2 / * 
yielding the Fibonacci identity 

m (s.» - ?y[r r ' ) - r 7: ;4 m-2j+l 1 2 4 F2« 

If we reason similarly with rectangular partitions, i.e., partitions of the 
form tk we obtain, from (4.5), the formulas 

2 
7* = £ (*)«*'7( {k-li)t k odd, 

and 

7,* • ̂  ( j y ' 7 t t . „ , + ( £ ) + I 1̂7 ]S2 fe even. 

However, these identities are well known and not especially difficult to prove 
directly (see [4]). 

6. Special Cases of the Second Basic Identity 

If X = (n), then Xp is t n e identity character and (4.6) gives 

(6-D E CPFP = W^n+1-
|p| -n 
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If X = ln, then Xp = e(p)> t n e alternating character. That is, e(p) = 1 if 
the permutations with cycle-partition type p are even and e(p) = -1 if these 
permutations are odd. From (4.6) we deduce 

(6.2) £ CpepVp = 0 if n > 3. 
| p | - * 

If X = (1, n - 1), then xA is t n e so-called "natural" character and Xp = 

Yi - — K - - . . . . . . ww^w-. . . _ _ , A p 

ber of elements left fixed by permutations with cycle-partition p. From (4.6) 
we have 

1 where p = lYl 2Y2 ... nYn . In other words, Xn ^s o n e l e s s than the num-
sments left fixed by permutat 

£ <?p(Yi(p) " DVQ = QnlUn-l 

\p\=n 

which , i n c o n j u n c t i o n w i t h ( 6 . 1 ) g i v e s 
X e(p)Yi(p)£P = £ CP7P + e^!^-i = «Ktfn+i + e^n-i) 

| p | = n \p\ =n 

or , f i n a l l y , 

( 6 . 3 ) £ ^ p Y i ( p ) ^ = w!H/„ = nlViUn. 
\p\ = n 

Lastly, if X = (2, l n ~ 2 ) , then xA is t n e character conjugate to the natural 
character, i.e., 

Xp2'1""2 = £(P)(Y1(P) " D-

Then, (4.6) yields, using (6.2), 

(6.4) £ ope(p)yl(p)Vp = 0 if n > 4. 
|P|-« 

The f o l l o w i n g c h a r t i l l u s t r a t e s ( 6 . 1 ) t h r o u g h ( 6 . 4 ) f o r n = 4 i n t h e F i b o n a c c i 
c a s e . 

-p e ( p ) Y I ( P ) ^P ^ P ^ P £p£p£p ^ p Y i ( p ) ^ p ^ p e ( p ) Y l ( p ) ^ P 

1 1 1 4 1 1 1 4 4 
21 6 - 1 2 3 18 - 1 8 36 -36 

2 3 1 0 9 27 27 0 0 
31 8 1 1 4 32 32 32 32 

4 6 - 1 0 7 42 - 4 2 0 0 

sums 120 = 4 ! F 5 0 72 = 4 ! £ \ 0 

A G e n e r a l i z a t i o n 

Using a d i f f e r e n t a p p r o a c h , we g e n e r a l i z e t h e i d e n t i t i e s e s t a b l i s h e d i n 
S e c t i o n 6. F i r s t , s e v e r a l a d d i t i o n a l c o n c e p t s w i l l be i n t r o d u c e d . 

Le t 
P = 1Y1 2 ^ ... ^n a n d 0 = XBl 262 ... „Sn 

be partitions. We define the "generalized binomial coefficient" (JM by 

»•» (°) = a;)(g) • • • (£) 
when the quantities on the right are ordinary binomial coefficients. (£) is 
itself an ordinary binomial coefficient when p and a are suitable rectangular 
partitions. Clearly (£) = 0 if yi < fa for some i, 1 < i < n. 

I f Yi - &£> ! - ^ - n> w e define the partition p - a by 

(7.2) p - a = iYi-ei2
Y2-82 ... nY*-3*. 

Let 
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(7.3) z9 - ^ - lTl2Y2 ... nY«Tl!T2l ... yn I 

(sp is the order of the centralizer of a permutation of cycle-type p). It is 
easy to show that 

«•« o 
whenever p - a is defined. 

The Pth elementary symmetric function er(xi> . .., #OT) is the sum of all 
products of r distinct variables x^ so that e0 = 1 and 

er = 2~< xii xi2 ' ' ' Xir ' 
1 < ^1 < ^2 < • • • < i r < m 

The rth complete symmetric function 7zr(#]_, . .., *cOT) is the sum of all mono-
mials of total degree P, so that, for example, 

I L Q ^tXj -I ^ «A/ rt , 0 0 0 3 e/O»j / ""™ «A> -I l" «Ay Q "T" • • • ™f" «A> -t *AJ r\ "1 • " • "T" e/O -i tk) ryOu Q l" e * e o 

In particular9 HQ = 1 and fe^ = e^. For r < 0, it is convenient to put hr - er 
= 0. 

Our generalizations of the results of Section 6 are based on the identities 

0.5, £ P P P - ^ 
and 

v
 £p(a) _ ^ P a ^ - M 

(7.6) 2-r — Pp ~ ~ • 
|p| = n *P Z° 

We prove only (7.5); the proof of (7.6) is similar. 
Our proof of (7.5) is based on (7.4) and the identity 

is. = (7-7) Z ir = hn. 
| p | - n B p 

(For a proof of (7.7) , see [2] , p. 17.) 
Noting that p = p p , we have 

(S) _ y, (S) = Po_ y Pp̂ o _ ̂  y £r 
So PP P o , ^ „ 3 P

 P P - o a a | D f r „ * p - o 2 a • . £ _ , , Zv — Pp = P0 L, -J- Pp-a = i~, 4-
| p | ' - n SP P | p | - n 3 p P S ° | p | - n 

= — K-\„\r 
thus proving (7 .5) . 

Observing that 

/zr(a5 i ) F af + a ' " ^ + . . . + b r = g __ g. - * 7 r + 1 , 

we find, on putting xx = al5 x2 = b2* x3 = xh = -•. = 0 in (7.5), the identity 

|p"[-n p °  
which, using (7.3), can be written 

nleaV0Un- iai+1 

(7.9) £ ^P(S)FP 
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L i k e w i s e , s i n c e 

ei(a, by 0 , . . . ) = a + b = P, 

e2(a, b, 0 , . . . ) = ab = Q, 

er(a9 b, 0 , . . . ) = 0 , i f r > 3 , 

we obtain from (7.6), 
/ D \ e0c0n\PV0 

(7.io) z ^ h ^ = —n— 
i f \a\ = n - 1, 

(7.H) L ep(Jk^P = — — — 

i f | a | < n - 2, and 

i f | a | < n - 3 . 
If we specialize a to be a partition of length 1, i.e., a = A:1, then (CT) = 

yk(p), ea = (-l)*"1, ca = (fc - 1)!, and (7.9), (7.10), (7.11), and (7.12) yield 

(7.13) £ £pYk(p)FP = £ > 
|p|-n * 

_ (-l)"n!P7A: 
(7.14) £ epCpYfc(p)^p = £ if k = n - 1, 

|p| = * 

" {-l)n-ln\QVk 

(7.15) £ epCpYfe(p)^p = 1 if fc = « - 2, 
j IPI -« and 

(7.16) £ S^pYfc(p)7p = 0 if k < n - 3, 

|p|-n 

which are generalizations of (6.3) and (6.4). 
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1. Introduction 

Let S = {xi> x2, . .., xn} be a finite ordered set of distinct positive inte-
gers. The nxn matrix [S] = (s^- ), where stj = (xi9 Xj), the greatest common 
divisor of Xi and Xj9 is called the greatest common divisor (GCD) matrix on S 
(see [2]). In [6], H. J. S. Smith showed that if 5 is a factor-closed set, 
then the determinant of [5], det[S], is cj)(#i) <K#2) ••• • f e ) ' where $(x) is 
Euler?s totient function. A set S of positive integers is said to be factor-
closed if all positive factors of any member of S belong to 5. In [2], we 
considered GCD matrices in the direction of their structure, determinant, and 
arithmetic in Zn, the ring of integers modulo n. In [1], we generalized 
Smith1s result by extending the factor-closed sets to a larger class of sets 
called gcd-closed sets. A set S = {#]_, X 2 , . .., xn} as above is said to be 
gcd-closed if for every i and j = 1, 2, ..., n, (x^, Xj) Is in S. Every factor-
closed set is gcd-closed, but not conversely. 

Using structure theorems in [2], Zhongshan Li [4] obtained the value of the 
determinant of a GCD matrix defined on an arbitrary ordered set of distinct 
positive integers, and proved the converse of Smith's result. Since the 
formula derived in [4] is valid for any GCD matrix, it also solves the problem 
stated in [5] for arithmetic progressions. 

In this paper we shall provide another formula for the determinant of a GCD 
matrix based on the class of gcd-closed sets. Li's formula comes as a corol-
lary. We also use this new formula to find closed-form expressions for the 
determinants of some special GCD matrices. 

2. Preliminary Results 

It was remarked in [2] that the determinant of the GCD matrix defined on a 
set S is independent of the order of the elements of S, Thus, if S = {x1? x2> 
..., xn}, we may henceforth assume that xl < x2 < ••• < xn. Given this natural 
order on 5, we let B(x^) denote the sum 

d\xi 
d\xt 
t < i 

for all i = l , 2, ...,n. We note that B{xi) = $(xi) for all i if and only if 
S is factor-closed. 

The following proposition can be found in [1]. 

Proposition A: Let S = {xls x2, . ••> ^n) be gcd-closed with x^ < x2 < ••• < xn. 
Then, for every i and J = 1, 2, ..., ns 

(xi9 Xj) = X B(xk). 
Xk\(xi, Xj) 

It is clear that any set S of positive integers is contained in a gcd-
closed set. By ~S we mean the minimal such gcd-closed set, or god-closure of 5. 
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It is worthwhile to observe that S usually contains considerably fewer elements 
than any factor-closed set containing S. We now prove a structure theorem for 
GCD matrices. 

Theorem 1: Let 5 = {xi, x29 ..., xm} be the gcd-closure of S = {y\9 y2> •••» 
yn} with Xi < x2 < -'• < xm and y\ < y2 < ••• < yn. Then [5] is the product of 
an n * m matrix A and the incidence matrix C corresponding to the transpose of 
A. 
Proof: Define A = (a^) via 

(B(Xj) if Xj divides yi, 

{ 0 otherwise. 
aij 

If we let C = (cij) be the incidence matrix corresponding to the transpose of 
A9 then the (i, j)-entry of AC is equal to 

n 
£ aik°ko " E <*ifc " X *(**)» 

which is equal to (z/̂  , z/̂ ) by Proposition A and the fact that 5 is gcd-closed. 

Remark 1: In the above theorem, 5 may actually be replaced with any gcd-closed 
set containing S. 

The following corollaries appeared in [1]. 

Corollary 1: If 5= {xi9 x29 . . . 9 xn] is gcd-closed with Xi < x2 < • • • < xn9 then 

det[5] = B(xi)B{x2) ... B(xn). 
Corollary 2 (Smith): If S = {a?!, #2> •••» ^n} Is factor-closed, then 

det[£] = <^(xi)(\>(x2) <t>(xn)' 

Corollary 3: Le t S = { x l s x2, . . . , # „ } be g c d - c l o s e d . Then 

d e t [ 5 ] = <t>(Xi)$(x2) . . . <|>(#n) 

if and only if 5 is factor-closed. 

Remark 2: It was actually shown in [4] that the converse of Corollary 2 is 
true. 

3. The Value of det[5] 

The (i, j)-entry of the matrix A in Theorem 1 may be written as eijB(Xj) 9 
where eij = 1 if Xj divides yi9 and 0 otherwise. Let E be the n* m matrix 
(eij). Thus, C = EJ

 9 the transpose of E. If A is the m x m diagonal matrix 
with diagonal (B(xx), 5(^2)» •••> B(xm)), we have that 4C = #A#T. 

Now let k\9 k2, ..., fc„ be distinct positive integers such that 

1 < ki < k2 < > - • < kn < m9 

and let #(&!, fc2» •••» &n)' denote t n e submatrix of # consisting of the &ith, ..., 
?Cnth columns of E. Define <̂fc1,...,fen) similarly. It is clear that 

det il(felf...,fcn) - B(xkl)B(xki) ... 5(a:kn) • det %lf...iJk||), 

since 
A{kl9...,kn) = #(fci, ...,fcn) 8 ̂» 

where D is the n x n diagonal submatrix of A with diagonal (#(##.)»••*> 5(#£n)). 
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The f o l l o w i n g theorem g i v e s t h e v a l u e of d e t [ 5 ] i n t e rms of B{xY), B(x2), 
. . . , B(xm). 

Theorem 2: Le t S and S be a s i n Theorem 1. Then d e t [ 5 ] i s g i v e n by t h e sum 

£ ( d e t E{kl, . . . , k n ) ) B(xk) . . . £ ( * * „ ) -

Proof: From Theorem 1, [S] = AC. Now apply the Cauchy-Binet formula (see [3], 
p. 22) to obtain 

det[5] = det (AC) = £ . d e t i ^ , . . . , ^ -det (%1? ..., kn )) T ; 
1 < ki < k2 < • • • < kn< m 

the result follows from the preceding remarks. 

Corollary 4 (Li [4] , Theorem 2): Let S be as in Theorem 1 and let £* = {tfls x2, 
, , . , xm} be the minimal factor-closed set containing 5, with Xi < x2 < ̂ 3 < 
• • • < #m. Then 

det[5] = . £. (det E{kl3 ...,*n) )2§(xki) ... ^(xkJ . 
I < ki < kz< • • - < kn<m 

Remark, 3: By using a proof similar to that occurring in Li's paper for the 
converse of Corollary 2 (see [4], Theorem 3), one may establish the converse of 
Corollary 1. 

4. Determinants of Special Matrices 

Although the matrices E(klt ..., kn) in Theorem 2 are (0, 1)-matrices, it is 
not true in general that det E^lt ,.., kn) = ±1- ^n this section, we consider 
certain sets 5 which have the property that every such submatrix E (klt ...,£„) 
has determinant equal to 1 or -1, and thus find a closed-form expression for 
det[5]. 

A set S = {xl9 x2, .-., xn] is said to be a fe-set if (xi3 Xj) = k for every 
i , j = 1, 2, ..., n. For example, {6, 9, 15, 21, 33} is a 3-set. Let 5 be a 
k-set. Then either 5 = 5 u {£:} or 5 = '5. 

Case 1. If X]_ < x2 < • • • < ocn and fc = xl3 then 5 is gcd-closed, and B(xi) 
= Xi - k for i = 2, 3, ..., n. Hence, by Corollary 1, 

det[£] = k(x2 .- k) ... (xn - /c) . 

Case 2. Suppose k * xl so that 5 = {A: = x0, xl5 x2, . .., xn}. By Theorem 
2, 

det[5] = D (det E(t t }) 25(x tl )B(x t ) ... £(tftn). 
0 < tL < t2 < • • • < tn < n l' 

Lemma 1: det E (tl5 ..., tn) - ±1°  

Proof: if (tls . .., t„) = (0, 2, 3, .. ., n) or (1, 2, 3, . . ., n), then E (tl, ..., tn) 
is a lower triangular matrix with diagonal (1, 1,..., 1). Thus, det #(£lf ...,£„) 
= 1. If 

(tl5 ..., tn) = (0, 1, ..., s - 1, s + 1, ..., n) for 2 < s < n, 

then Rows of £( tl, ..., tn) is (1, 0, 0, . .., 0). Moreover, the submatrix of 
E(ti tn) formed by removing Column 1, i.e., 

( ! ) 
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and Row s i s t h e (n - 1) x (n - 1) i d e n t i t y m a t r i x . Hence, 

det E(tl, . . . , t n ) = ± 1 . 

T h i s c o m p l e t e s t h e p r o o f . 

Now B(XQ) = k and B(x^) = x± - k f o r i > 0 . Thus , by Theorem 2 , 

fc) . . . (#„ - fc) 
det[S] = fe.f Z — -

U= 1 ( ^ - k) + (#i fe) (a;„ - k). 

Cases 1 and 2 above may therefore be combined into the following theorem. 

Theorem 3: If 5 = {xi, x2, ..., xn} is a k-set with #]_ < x2 < ••• < xn, then 

det[S] = k(x2 - k) ... (xn - k) 

+ [fe(a?i - k) ... (*„-&)] 1+ * 
k xo - k 

+ .. 
1 

Corollary 5: Let 5 = {x ]_, #2> • • • ' xn} consist of pairwise coprime positive in-
tegers. If Xj < x2 < ••• < xn, then 

det[5] = (x2 - 1) ... (xn - 1) 

+ [(*1 - 1) ••• (#* " D ] 1 + Xn - 1 

Corollary 6: Let pl5 p2> • • • > Pn
 be Primes with p\ < p2 < 

p2, ..., p }, then 

det[5] = (Pl - 1) ... (Pn - l) 

= KPi) ••• *(pn)[l + 

1 + 

1 

1 

1_ 

If 5 tpi» 

*(Pl) 

Pi 

+ -

Pn 

<KPjJ 
Finally, in view of Lemma 1, and for lack of a counterexample, we make the 

following conjecture and leave it as a problem. 

Conjecture: Let S and S be as in Theorem 3, with n > 3. If det #(fclfk2, ...,fc„) = 
±1 for every choice of &]_, k2, ..., fcn, then either S is gcd-closed or 5 is a 
fc-set for some positive integer k. 
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1. Introduction 

The usual operation of the Euclidean algorithm uses the least positive 
remainder at each step of division. However, the Euclidean algorithm can be 
modified to allow positive or negative remainders provided the absolute value 
of the remainder is less than the divisor in each step of division. 

For example, in computing the greatest common divisor of 3 and 5, there are 
three Euclidean algorithms in this extended sense: 

5 = 3(2) - 1 5 = 3(1) + 2 5 = 3(1) + 2 
3 =1(3) + 0 3 = 2(1) + 1 3 = 2(2) - 1 

2 = 1(2) + 0 2 = 1(2) + 0 

the first of which uses the least absolute remainder at each step and which is 
shorter than the others. 

A theorem of Kronecker, see Uspensky & Heaslet [3], says that no Euclidean 
algorithm is shorter than the one obtained by taking the least absolute remain-
der at each step of division. 

Goodman & Zaring [1] have shown that the number of steps of division in the 
least positive remainder Euclidean algorithm exceeds the number of steps in the 
least absolute remainder Euclidean algorithm by just the number of negative 
remainders occurring in the least absolute remainder variant. 

We became interested in exactly which pairs M and N of positive integers 
have their greatest common divisor, denoted gcd(Af, N) , computed in strictly 
fewer steps by the least absolute remainder (LAR) Euclidean algorithm than by 
the least positive remainder (LPR) Euclidean algorithm. 

Accordingly, a computer program to graphically display such pairs was writ-
ten in Applesoft BASIC (see Figure 1) and can be modified easily for other 
BASICs. The program uses counters DC and ADC to count the number of steps of 
division needed by the LPR and LAR Euclidean algorithms, respectively, in 
computing gcd(A/, N) with M > N. The program lights a pixel on the monitor at 
screen location (M, N) provided ADC < DC in this computation. 

When performing the LAR Euclidean algorithm, the program (lines 320-390) 
chooses between the quotient Q with least positive remainder R and the quotient 
Q + 1 with the alternative negative remainder AR and, if R = ABS(AR) , then it 
breaks the tie by selecting Q and R in agreement with [1]. 

The resulting image (see Figure 2) reveals some interesting features of the 
distribution of the lit (black) points (M, N) in the range 1 < M < 191, 
1 < N < 191, with M > N. Some of these are described in Section 2. 

2. Analysis 

Definition: If M > N is a pair of positive integers for which the LAR Euclidean 
algorithm is shorter than the LPR Euclidean algorithm, then we will say that M 
is a Kronecker number for N and also that (M, N) is an (ordered) Kronecker 
pair. 
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90 REM STUDY OF LAR VERSUS LPR ALGORITHMS 
110 REM DC COUNTS STEPS OF LPR ALGORITHM 
120 REM ADC COUNTS STEPS OF LAR ALGORITHM 
125 HGR2:REM HI-RES GRAPHICS PAGE IN MEMORY 
128 HC0L0R=3:HPL0T 0,0 TO 0, 191 TO 191,191 
130 FOR N=1 TO 191 
140 FOR M=N TO 191 
150 DC=0:ADC=0 
170 GOSUB 240 
180 GOSUB 310 
190 IF ADC>=DC THEN 220 
200 REM PLOT ONLY KRONECKER PAIRS 
210 HPLOT M, 192-N 
220 NEXT M 
230 NEXT N 
235 GOTO 999 
240 REM ROUTINE FOR USUAL LPR ALGORITHM 
250 M1=M:N1=N 
255 Q=INT(M1/N1) 
260 R=M1-N1*Q 
270 DC=DC+1 
280 M1=N1 
290 N1=R 
300 IF R>0 THEN 255 
305 RETURN 
310 REM ROUTINE FOR LAR ALGORITHM 
320 M1=M:N1=N 
325 Q=INT(M1/N1) 
330 R=M1-N1*Q 
340 AR=M1-N1*(Q+1) 
345 ADC=ADC+1 
350 IF R<=ABS(AR) THEN 380 
360 M1=N1 
370 N1=ABS(AR):G0T0 400 
380 M1=N1 
390 N1=R 
400 IF N1>0 THEN 325 
410 RETURN 
999 END 

Figure 1 Figure 2 

Looking again at Figure 2, we observe the densest region of contiguous 
Kronecker pairs that is bounded by the lines N = (2/3)Af and N = (1/2)M. 

Considering the coordinates of lit points in this region, we construct a 
table (see Table 1) of Kronecker numbers M for each N, along with the lengths 
of the blocks of these consecutive M. 

N 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Table 

Consecutive 
Numbers 

5 
7 
8, 9 
10, 11 
11, 12, 
13, 14, 
14, 15, 
16, 17, 
17, 18, 
19, 20, 
20, 21, 
22, 23, 

13 
15 
16, 
18, 
19, 
21, 
22, 
24, 

1 

Kronecker 
M > 

17 
19 
20, 
22, 
23, 
25, 

N 

21 
23 
24, 
26, 

25 
27 

Block 
Length 

1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 

Table 1 suggests the next result. 
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Theorem 1: ( i ) For N=2t+1, t > l 9 t h e t c o n s e c u t i v e i n t e g e r s 

(3/1/ + l ) / 2 , (3/1/ + 3 ) / 2 , . . . , 2/1/ - 1 

a r e a l l Kronecker numbers f o r N. 

( i i ) For N = 2 t , t > 25 t h e £ - 1 c o n s e c u t i v e i n t e g e r s 

(3/1/ + 2 ) / 2 , (3/1/ + 4 ) / 2 , . . . , 2/1/ - 1 

are all Kronecker numbers for N. 

Proof: We prove part (i). 
For a fixed integer t > 1 and any one of the integers (3/l/ + l)/2, (3/1/+ 3)/2, 

. .., 2/1/+ 1, say (3/1/ + fe)/2, where 1 < k < N - 2 and k is odd, the LAR Euclidean 
algorithm must decide, in the first step of division, between the two choices 

(3/1/ + k)/2 = /1/(1) + (N + fe)/2, 

i n which (N + k)/2 < N b e c a u s e k < N - 2 , o r 

(3/1/ + fc)/2 = /l/(2) + (k - / l / ) /2 , 

in which ABS((fe - N)/2) < N because N > -k. 
The decision is made for the latter choice according to the comparison 

ABS((k - /l/)/2) <(/!/+ fe)/2, 

which is true since N - k < N + k. 
The result now follows from the Goodman & Zaring result. 

Part (ii) of the theorem is proved similarly. 

Corollary 1: For each t > 2, we may specify a positive integer N and t consecu-
tive integers that are all Kronecker numbers for N. 

Proof: Immediate. 

Lemma 1: If M is a Kronecker number for N, then M + Nk is also a Kronecker 
number for N9 for all integers fc > 1. 

Proof: Suppose the LAR Euclidean algorithm for gcd(M, N) is 

M = Nqi + e^!, ̂ i < N, 
N = ̂ 1^2 + g2p2* p2 < pl* 

px = r2q3 + e3p3, P 3 < P2, 

so that gcd(M, N) = rs + i and each ^ = ±1. 
Since M is a Kronecker number for /!/, at least one e^ = -1, by the Goodman & 

Zaring result. 
The LAR Euclidean algorithm for M + Nk and N is then 

M + Nk = N(ql + k) + eiri, 
N = ̂ 1^2 + e2 p2' 

with the same set of values vi and e± . Hence, at least one negative e^ occurs 
and, again by the result of Goodman & Zaring, M + Nk is a Kronecker number for 
N. 
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Once more observing the patterns in the lit points in Figure 2 we see that, 
for each second coordinate /!/, the values of first coordinates fall into certain 
progressions. 

Theorem 2: For each integer N > 3 there are arithmetic progressions of inte-
gers M > N that are all Kronecker numbers for N. More precisely, 

(i) if /!/ = 2t + 1, t > 1, then the arithmetic progressions 

{Nk + t + 1}, {Nk + t + 2}, ..., {Nk + t + (N - l)/2}, k > 1, 

consist of integers each of which is a Kronecker number for /!/, and 

(ii) if N = 2t, £ > 2, then the arithmetic progressions 

{tffc + t + 1} , {Nk + t + 2 } , . . . , {tffc + t + (/!/ - 2 ) / 2 } , k > 1, 
consist of integers each of which is a Kronecker number for 21/. 

Proof: We prove part (i). 
By Lemma 1, since the common difference in each progression is /!/, it is 

enough to show that the first term in each progression is a Kronecker number 
for /!/. 

When k = 1 the first terms are, respectively, 

N+t+l,N+t+2, ...9 N + t + (N - l)/2. 
Since t = (N - l ) / 2 , these terms a r e , r e s p e c t i v e l y , 

(3/1/ + l ) / 2 , (3/1/ + 3 ) / 2 , . . . , 2/1/ - 1, 
which are Kronecker numbers for N by Theorem 1. 

In the above theorems we have begun with the smaller value N of a Kronecker 
pair and then constructed the companion number M. In the reverse direction, we 
offer the next result. 

Theorem 3: (i) If M is odd, M > 7, then M is a Kronecker number for both 
(M ± l)/2. 

(ii) If M is even, M > 8, then M is a Kronecker number for both 
(M ± 2)/2. 

Proof: (i) We prove the case (M + I)12. The LPR Euclidean algorithm here is 

M = (l)((Af + l)/2) + (M - l)/2, 
(M + l)/2 = (1)((M - l)/2) + 1, 
(M - l)/2 = ((M - 1)/2)(1) + 0, 

done in three steps, while the LAR Euclidean algorithm begins 

M = (2)((Af + l)/2) + -1, 

because ABS(-l) < (M - l)/2, since M > 3, and continues 

(M + l)/2 = ((M + 1)/2)(1) + 0, 

done in two steps. 
Similarly, we can show that M is also a Kronecker number for (Af - 1) /2. 

(ii) We prove the case (M + 2)/2. The LPR Euclidean algorithm here 
begins 

M = (1)((M + 2)/2) + (M - 2)/2, 
(M + 2)/2 = (l)((Af - 2)/2) + 2, 

and the next division [by 2 into (M - 2)/2] is the last step, or next to last, 
according as (M - 2)/2 is even or odd. So this routine takes three or four 
steps, accordingly. 
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The LAR Euclidean algorithm begins 

M = (2)((M + 2)/2) + -2, 

because ABS(-2) < (M - 2)/2, since M > 6, and there are either one or two steps 
more according to the parity of (M + 2)/2. Since (M + 2)/2 and (M - 2)/2 have 
the same parity, this means that the LAR variant is accomplished in one step 
less than the LPR Euclidean algorithm. 

Similarly, we can show that M is a Kronecker number for (M - 2)/2. 

3. The Fibonacci Numbers 

The Fibonacci numbers, which are defined by the relations F± = F^ = 1 and 
Fn = Fn_i + Fn_2 f° r n - 3, play an extremal role in questions relating to the 
number of steps in the LPR Euclidean algorithm. For example, in [2] Shea shows 
that the pair of integers with the smallest sum whose gcd takes exactly k steps 
using the LPR Euclidean algorithm is i^+i?

 Fk+2- Not surprisingly, the Fibo-
nacci numbers enter our investigation in a similar way. 

Theorem 4: Any positive integer n may be specified as the difference in the 
number of steps of division performed in computing gcd(M, N) by the LPR and LAR 
Euclidean algorithms. In fact, this difference n is attained in the compu-
tation of both gcd(F2n+25 ^2n+3) a n d gcd(^2n+3' F2n + 0 • 
Proof: It is well known that the LPR Euclidean algorithm applied to consecutive 
Fibonacci numbers Fy, and F^+i takes k - 1 steps of division, each with quotient 
1 and hence with sequence of remainders F^_l5 ^ _ 2 , Fk-3> •••5 ^2> a n d 0# 

The first quotient in the LAR Euclidean algorithm applied to Fk and F^+i is 
2 with remainder -F^-2' If k is an even integer, then each subsequent divi-
sion uses a quotient of 3, because of the inequality 

2F2t < F2t + 2 < ?>F2t f o r all t > 2, 
which may be proved by induction on t. Thus, the sequence of remainders is 
~Fk-2> ~Fk-h> ~Fk-€>> •••» ~F2> a n d ^. So there are k/2 steps of division. 

Hence, the difference in the number of steps of the two methods is 

(k - 1) - k/2 = (k - 2)/2. 

As k varies over the even integers, k > 4, this difference (k - 2)/2 varies over 
all the positive integers. For k = 2n + 2 in particular, gcd(F2n+2> ^2n+3) 
shows a. difference of exactly n steps of division. 

The rest of the theorem is proved similarly. 

As noted by an anonymous referee, it seems interesting to point out that, 
whereas the usual Euclidean algorithm leads to the familiar continued fraction 

F2k+3/F2k+2 = (1; 1> 1> •••> D> 2k + 1 ones, 

the least absolute remainder Euclidean algorithm leads to 
F2k+3/F2k+2 = (2; "3, -3, ..., -3), k threes. 
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(Submitted Ju ly 1990) 

Let x be an n - d i g i t , base g number 
n- 1 

(1) X = ] T a ^ 
i= 0 

with 0 < a^ < g and an-\ * 0. If, for some integer k9 where 1 < k < g, 
n- 1 

(2) kx = £ an-i-i9i 

i= 0 
then x is called a k-reverse multiple, Previously, this author showed that all 
^-reverse multiples may be found using rooted trees [3]. A more detailed 
examination of these trees is the focus of this paper. 

If x is a ^-reverse multiple, then we obtain from (1) and (2) the following 
equations 

(3) kai + ri_l = an^l. i + vig, i = 0, . . ., n - 1, 

where 0 < r^ < g for i = 0, ..., n - 2 and r_]_ = Pn-i = 0. Letting i = n - 1 in 
(3) gives aQ ^ 0 since #„-i * 0. To determine whether there are any £:-reverse 
multiples for a given g, we consider the equations in (3) two at a time. At 
the (i + l) s t step, i = 0, 1, . .., we examine the pair of equations 

(4) ) 
(fea„_1_i + Vyi-l-i = ai + r'n-l-i9 

seeking nonnegative integers a^, an_i_^, r^ , and rn_2--z; less than g9 where ^i-\ 
and vn_i_^ are known from the previous step. The following graphical notation 
is convenient. If P„_I_^, ^ -1, an_j_^, a^9 rn-2-i> and ^ satisfy (4), then we 
will write 

O n - W ^i-l) 

(5) (a^-!-^ a,-) 

(pM_2_i, r^) 

(Implicit in this notation is the assumption that the aTs and rfs are nonnega-
tive integers less than g.) 

When a given g has fc-reverse multiples, we are able to generate a rooted 
tree. We call the root of the tree O n-i, F-\) = (0, 0), the 0th level and the 
node designated by (rn_2-i:> ri)> t n e (̂  + l) s t level. Since 0 < ri < g > there 
are only a finite number of possible distinct nodes. If a node is labeled with 
a pair that has already appeared in the tree, the tree can be pruned. The 
following theorem shows how a tree is used to determine ^-reverse multiples. 
The proof appeared in [3] and hence is omitted here. 

Theorem 1: For a given g, suppose there are A:-reverse multiples; that is, sup-
pose a tree exists. There is a 2i + 2-digit or a 2i + 3-digit number satisfy-
ing (2) if and only if the tree contains at the i, i + 1, and i + 2 levels, 
respectively, 
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O n - l - i > n - l ) ( s n - l -

(an-l-i> ai) 

( r , r) 

"i-\> (level i) 

(level I + 1) 

(level £ + 2) 

where, in the second case, B = {gs - t ) / (k - 1). In these cases, x is given, 
respectively, by 

x = an^lan-2 • • • an_i_,-a7-. . . . a^n n = -2% + 2 

x = 2?n_12?n_2 . . . bn.l.iBbi . . . bYb^ n = 2i + 3. D 

Theorem 1 shows the connection between a rooted tree and /(-reverse multi-
ples. A node of the form (i5, r) gives rise to a /(-reverse multiple with an 
even number of digits. Consecutive nodes (s, t) and (t, s) produce a multiple 
with an odd number of digits. The following example illustrates the use of 
this theorem. 

\®n - 1 - i» b-L) 

(si t) 
(B, B) 

(t, s) 
, B = {gs - t)/{k -

a n - l - i a i • • • a\0-Q 

2 > n - l - - •Bbi . . . bxb0 

Example 1: g = 10, k = b. 
We begin by letting vn-\ P_X = 0 in (4) and solve the system: 

4a0 + 0 an_x + 10P 0 

an + 0. 

The only solution is i)
n-2=z 0? po = ^5 a n - l = 25 and ag = 8. This gives the node 

and edge labels for the first level of the tree. We continue in this manner 
and obtain the following pruned tree: 

(6) 
(7 , 1) 

( 3 , 
( 8 , 2) 

(0>-
(0, 0) / 

(0, 0) 

( 0 , 

( 0 , 

( 3 , 

0) 

0) 

0) 

1 (2' 
3) 

1 (1' 
^ 3 ) 

(3 

\ . ( 2 , 8) 
( 0 , 3) 

8) 

7) 

( 9 , 9) 
, 3) 

The tree is not continued any further since (0, 0), (0, 3), and (3, 3) have 
appeared previously. 

Observe that the node label (0, 0) follows (0, 0) at level 5, but not at 
level 1. This will always be the case since the equations in (4) are satisfied 
by the trivial or zero solution. Although PQ * 0, the node label (0, 0) is 
permissible after the first level. 

By Theorem 1, the node (3, 3) at the second level gives rise to the 4-digit 
4-reverse multiple 2178. Moreover, the consecutive nodes (3, 3) and (3, 3) 
produce the 5-digit multiple 21978. Extending this portion of the pruned tree 
shows that all numbers of the form 219...978 are 4-reverse multiples. Thus, 
there are n-digit 4-reverse multiples for all n > 4. 

The relationship between the node and edge labels and verifying that a spe-
cific base g number x is, in fact, a /(-reverse multiple may be demonstrated by 
performing base g multiplication of x by k, explicitly indicating all carries 
from one digit to the next. It should be noted that when some x is known to be 
a /(-reverse multiple this computation provides an alternate way to obtain some 
of the node labels. 
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For example, 21782178 is a base 10 4-reverse multiple [corresponding to the 
path from the root to node (0, 0) at level 4 in (6) above]. The multipli-
cation verifying this fact is: 

0 
2 

3 
1 

3 
7 

0 
8 

0 
2 

3 
1 

3 0 
7 8 

x 4 
8 7 1 2 8 7 1 2 

The carries from the node pairs and the digits of x form the edge labels. 
From Theorem 1, the digits of 21782178 are the first elements of the edge 

labels from the root to node (0, 0) at level 4 followed by the second elements 
for the same edge labels taken from node (0, 0) at level 4 back up to the root. 
Similarly, the carry numbers noted above the digits of x are the elements of 
the node labels along the path. The first four carries are the first elements 
of the node labels from level 1 to level 4, and the second four carries are the 
second elements of the same node labels from level 3 back up to level 0. The 
root is always labeled (0, 0) and by Theorem 1 (since 21782178 has an even 
number of digits) the node label at level 4 must have both digits the same. D 

The following examples illustrate some characteristics exhibited by trees 
for ^-reverse multiples like the one shown in (6). We will use bold type for a 
node that determines a fe-reverse multiple with an even number of digits and 
underlining for one that determines a ^-multiple with an odd number of digits. 
Further, since we recognize the existence of /^-reverse multiples graphically by 
particular types of node labels, we will omit the edge labels. There is no 
loss in doing this, for we may always use (4) to solve for 

+ ri9 - Ti-OHM?- - 1), 
.-z-,)/^2 - 1). 

le 

an. 
at 

2: 

( 0 , 

• l - i = (fer„-i 
= (krig 

9 " 

( 5 , 

0) 

• 1 1 , 

a, 

- kr 

k = 

( 0 , 

( 1 , 

_5) 

-iff 

i - \ 

7. 

0) 

5) 

( 5 , 

- krn-2-
+ r„_!- . 

"(6 , 6) 

1) ( 6 , 

-i H 

i<3 -

Jl 
By Theorem 1, the node (1, 5) along with its child (5, 1) determines a 3-digit 
multiple and (6, 6), a 4-digit one. Both (5, 1), with its child (1, 5), and 
(6, 6), with its child (6, 6), give rise to 5-digit multiples. In fact, there 
are n-digit 7-reverse multiples for n > 3. • 

Example 3: g = 19, k = 14. 
(0, 0) 
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In this case, there are n-digit 14-reverse multiples for n = 6 and n > 10. Q 

Although we require r^ < g, in the examples above it happens that vi < k. 
In [3] this was shown always to be the case. 

In many instances the entire pruned tree can be determined from just an 
initial branch. The following theorem gives one way in which this can be done. 

Theorem 2: I f 

(u, 

s) 
(a, 
v) 

b) 
then (v, 

( s , 

u) 
{b, 
r) 

a) 

Proof: By hypothesis, the equations in (4) must be satisfied. Switching the 
order of the two equations gives the desired result. Q 

As an illustration of Theorem 2, consider the tree in Example 3. Suppose 
we know 

(0, 0) 
I 

(1, ID 
(8, 13) 
• I 

(6, 6) 

Then Theorem 2 allows us to derive 

(6, 6) 

(13, 8) 

(11, 1) 
I 

(0, 0) 

immediately without using (4). 
We will use the notation 

[r, s] 
(7) I [a, b] 

[u, v] 
to indicate solely that the equations in (4) are satisfied by integers; that 
is, 

(8). 
Kb + s = a + vg, 
ka + u = b + rg. 

Thus, the notation in (7) does not imply that the integers are nonnegative and 
less than g. As before, when these latter restrictions do occur,, we will use 
the (., .) notation instead of [., . ] . The next two technical lemmas will be 
useful in the theorems that follow. 

Lemma 1: Suppose there are integers such that 

[r, s] 
[a, b] 

[u, v] 
with s, u < g and 0 < r, v. Then 0 < a, b. 

Proof: Eliminating b from the equations in (8) and rearranging, we find 

a(k2 - 1) = k(rg - u) + (vg - s). 
Thus, given the hypotheses, 0 < a. Similarly, 0 < b. 0 
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Lemma 2: Suppose there are integers such that 

[r, s] 
I [a, b] 

[u, v] 
with 

(10) 
(0 < s, u, 
p, v < ks 

[? * k - l9 v * k - I, s * Q, or u * 0. 
Then a, b < g. 
Proof: From (9) we have 

a(k2 - 1) = krg - ku + vg - s 
< g(kr + v) 
< g(k(k - 1) + (fc - 1)) 
= g(kz - 1). 

Given the restrictions in the third part of (10), one of the above two inequal-
ities must be strict. Thus, a < g. Similarly, b < g. • 

Theorem 3: If there are integers such that 
(P, s) and (P', sr) 

(11) I (a, b) | (a', b>) 
(u, v) (ur, vr) 

then 
( p + v', s + sf) 

(12) (a + a ' , b + 2?') 
(u + ur, v + v ' ) 

so long as 

{s + s', u + uT < g, 
r + rr, v + vr < k, 
r + rr * k - I, v + vf * k - 1, s + s1 * 0, or u + ur * 0. 

Proof: By hypothesis, (8) must be satisfied by P, s, . .., and by v', sf, ... . 
Adding the corresponding equations gives the desired equations for (12). Since 
all the numbers in (11) are nonnegative, those in (12) must be also. By Lemma 
2, a + aT and b + br must be less than g. 0 
Theorem 4: If there are integers such that 

(P, s) and (P', sr) 
I (a, 2>) | (a', 6') 

(w, u) (uf, v1) 
(13) 

then 

(p - p', 5 - 5') 

(14) I {a - a\ b - bf) 
(U - Ur

9 V - Vr) 

so long as 

fO < s - sr, u 
{0 < r - r'y v V 
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Proof: By hypothesis, (8) must be satisfied by p, s, . .., and by vf , sf, ... . 
Subtracting the corresponding equations gives the desired equations for (14). 
Since all the integers in (13) are less than g9 those in (14) must be also. By 
Lemma 1, a - a' and b - b! are positive. • 

The above theorems allow the completion of all or at least large portions 
of a pruned tree when only an initial piece is known. Suppose, in Example 1, 
only 

(05 0) 

(15) (0, 3) 

(3,' 3) 

were known. We would be able immediately to derive the rest: 

(3. 3) 

(3, 0) (3, 3) 

(0, 0). 

The left side follows from Theorem 2; the right from Theorem 3, since 

(0, 0) and (3, 3) imply (3, 3) 

(0, 3) (3, 0) (3, 3). 

Note that by the restrictions in Lemma 2, 

(0, 0) and (3, 0) do not imply (3, 0) 

(0, 3) (0,1 0) (0, 3). 

Thus, we are able to derive the entire pruned tree for Example 1 knowing only 
(15) or5 equivalently, knowing only that 2178 is a 4-reverse multiple. Simi-
larly , a careful examination of the trees in Examples 2 and 3 shows that each 
follows5 respectively, from the 3-digit number 118 and the 6-digit number 
1 2 11 8 17 15. 

It may sound very restrictive to assume that we know an initial portion of 
a tree. However, this is equivalent to assuming that a /c-reverse multiple for 
a given g is known. The problem then is to find or characterize all other 
multiples and this is done using the associated pruned tree. Hence, if we know 
an n-digit fe-reverse multiple for some small n, then we do know an initial 
portion, of the tree. The problem is then to complete the tree quickly and 
easily. As an illustration, consider the following, more complicated, example. 

Example 4: g = 44, k = 27. 
The 6-digit number 

(16) 1 7 18 5 24 31 

is a base 44, 27-reverse multiple; this can be verified through multiplication: 

1 
11 

7 
3 
18 

15 19 
5 24 31 

x 27 
31 24 5 18 7 1 

The carry numbers are numbers in the node labels of the initial portion of the 
tree, so we have 
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(0, 0) 

(4, 19) 
. I 

(11, 15) 

(3, 3) 

We complete the tree using the above theorems. For example, by Theorem 3 

(4, 19) and (3, 3) imply (7, 22) 
I I I 

(11, 15) (15, 11) (26, 26) 
In the tree that follows, the superscript j on a particular node indicates that 
it was derived using Theorem J, J = 2, 3, 4. So in the above case, we would 
write (26, 26)3. 

(0, 0) 
I 

(4, 19) 

(11, 15) 

(17) 

(4, 19)3 (11, 15)2 

Note that the theorems above do not guarantee that the pruned tree of (17) 
is complete and that no branches are missing. The next theorem addresses this 
concern. 

Theorem 5: Suppose g has a /(-reverse multiple; further, suppose the tree con-
tains 

(?> s) 
(18) (a, b) y / \ (a', b') 

(u, v) (ur, v!) 
where u > u! and V < V'. Then 

[0, 0] 

[a - a', b - bf] 
[u - ur, v - vr] 

where 0 < u - ur < k, -k < v - v ' < 0, -g < a - ar < 0 and -g < b - b! < 0. 
Proof: Recall that if (18) occurs in a tree, then each number in the node label 
must be less than k and each number in the edge label must be less than g. 
Thus, all the claims in the conclusion follow immediately except for a - ar, 
b - b! < 0. From (9) we know that 

a - a1 = (-k(u - ur) + (v 
Hence, a - ar < 0. Similarly, b -

- v')g)/(k2 

br < 0. • 

1). 

Suppose, for a given g, that we know some ^-reverse multiple and thus are 
able to obtain the initial portion of the tree. We apply Theorems 2, 3, and 4 
whenever possible until all branches end with nodes that have appeared pre-
viously. At this point, we are in the position of asking if there are any 
missing branches. By Theorem 5, if there are no integers c, d, t , w for which 
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(19a) 

where 

(19b) 

[0, 0] 

| [-e, -d] 

[t, -w] 

0 < t < k, 0 < w < k, 0 < c < g, 0 < d < g, 

then we can be assured that there are no missing branches in the tree. 
In all the examples considered thus far, (19) is never satisfied. 

ify this for Example 1, we must consider the equations 

-kd = -c - lOw 
-he + t = -d. 

To ver-

(20) 

obtained from equations (4). Eliminating d in (20) gives 4t = 15c - lOw; thus, 
5|t. However, 0 < t < 5. Consequently, there are no solutions to (20) and, 
hence, to (19). Thus, by Theorem 5, the tree in (6) is complete. 

Theorem 6: Suppose g has a ^-reverse multiple and the tree contains 

(r, s) 

(a, b) 
(u, v) 

Further, suppose 

[0, 0] 

[-o, -d] 

[t, -w] 

with 0 < t < k, 0 < w < k, 0 < c < g, and 0 < d < g. Then 

(p, s) or (r, s) 

(a - c, b - d) \ (a + c, b + d) 

(u + t , v - w) (u - t , v + w) 

so long as either the three conditions u + t < g9 0 < V - w, and 0 < r or the 
two conditions 0 < u - t and V + w < k are fulfilled. 

Proof: The first piece follows from Lemma 1; the second from Lemma 2. Q 

The following example illustrates the use of Theorem 6. 

Example 5: g = 40, k = 13. 
The 5-digit number 

(21) 2 24 30 1 34 

is a 13-reverse multiple. As in Example 4, the number in (21) gives the ini-
tial portion of the tree which has node labels (0, 0), (8, 11), and (9, 0) . 
There is just one solution to (19); namely, 

[0, 0] 

-10] 

We now use Theorems 2, 3, 4, and 6 to complete the tree: 
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The double bar edges leading to nodes without a superscript indicate that none 
of the above theorems apply. In these cases the nodes were found using (4) . 
Note that there are only 3 such instances. On the other hand, the 16 super-
scripted nodes were found easily using the theorems indicated by the super-
script as in Example 4. 

As we have noted, there is just one solution to (19). We used this solu-
tion in conjunction with Theorem 6 to find 3 nodes. If the tree contained any 
missing nodes, then by Theorem 5 equations (19) would have another solution. 
Since, that is not the case, the tree is complete. 
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ON REPRESENTATIONS OF NUMBERS BY SUMS 
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(Submitted July 1990) 

1. Introduction 

We begin our discussion with a definition, 

Definition: As usual, 

Z: = {0, ±1, ±2, . . . } , N: = {0, 1, 2, . . . } , Pi = N\{0}. 

Then, for each n e N, 

v2{n) : = \{(x, y) e Z2\n = x2 + yz}\, 

tz(n) : = \{(x, y) e N2\n = x(x + l)/2 + y(y + 1)/2}|. 

Also, for each n £ P and each i e {1, 3}, 

d\n 
d= i, (mod 4) 

We can now s t a t e two theorems. 

Theorem 1 (Jacobi) : For each n e P, 

v2{n) = Mdi(n) - d3(n)}. 

Theorem 2: For each n e N9 

t2(n) = dx(4n + 1) - d3(4n + 1) . 

Clearly, r2(0) = t2(0) = 1. Next, we observe that, for positive integers, 
Theorem 2 can be deduced from Theorem 1. In this note we give an independent 
proof of Theorem 2. Our proof is based on the triple-product identity 

(1) 0(1 - x2n)(l - ax2n~l)(l - a~lx2n-1) = Y.{-l)nxn2an, 
i 

which is valid for each pair of complex numbers a, x such that a * 0 and \x\ < 1. 
Hirschhorn [2] showed how to deduce Jacobi's theorem from the triple-product 
identity. The reader will doubtless note that our method is similar to that of 
Hirschhorn. 

2. Proof of Theorem 2-

Separating even and odd terms on the right side of (1), and then again 
using (1) to replace the series in the resulting identity by infinite products, 
we get 

f[ (1 - oo2n)(l - ax2n~l){\ - a-lx2n~l) 
l 

= YJx^1a2n - axJ2x^n^n + ^a2n 

= ft (1 - ̂ 8n)(l + a2x8n-^)(l + a~2xQn-^) 
l 

- (a + a~l)x 0(1 - xQn)(l + a2x8n)(l + a~2x8n). 
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With Da denoting d e r i v a t i o n with r e spec t to a , we then opera te on both 
s ides of the foregoing i d e n t i t y with aDa to get 

(2) - f l ( l - x 2 * ) ( l - axln~l)(l- a-lxln-l)f^vk(x)(ak-a-k) 
1 l 

= 2 (\(l~ xQn) (1 + a2xQn~^) (1 + a~2xQn-^) J^ {-l)k-lvk{x^)(<a2k - a~2k) 
i l 

-{a-a~l)x ft ( 1 - ̂ 8 n ) (1 + a~2x8n) (1 + a~2x8n) 
i 

-(a+a~l)2x n ( l - ^ 8 n ) ( l + a 2 ^ 8 n ) ( l + a - 2 x 8 " ) V ( - l ) * " 1 ^ (x8) (a2k - a~2k) 9 
l i * 

where, for convenience uk(x) : = xk ° (I- xk)~l
9 Vk(x) : = xk •(1-x2*)"1, fe £ P, 

and x is a complex number with |x| < 1. Now, in (2), let a = i and divide the 
resulting identity by -2i to get 

ft (1 - x2")(l + x^~2) £ (-l)*i>2fc+i(*) - x ft(l - * 8 * ) 3 , 
i o i 

or, equivalently, 
oo / i _ « ,8n \3 * ™2fc+1 

*n„ ( ' / „_„ - E (-D* — l (1 - x2n)(l + x^'2) o 1 ~ x*k + 2 

Hence, 
00 f 1 _ 7»OfI *\ / - oo <y*2.K~i~ 1 oo oo 

1 ( 1 - Xm 4 ) Z 0 1 - X*k+2- fc=0 j - 0 

Owing to a well-known identity of Gauss ([1], p. 284), it then follows that 
(1 - x8n)2 

\2 £t2(n)*W1 - x(fx2^^^\2 = aft — ^—^~ 

= ]C ( - l ) k £ #(2j + l)(2fc+l) = j p x 2m+l V- („1)(J- l ) /2 
fc=0 j = 0 m=0 d|'2m + l 

= Z > ^ + 1 E (-D(d"1)/2 + f > ^ + 3 E (-l)««l)/2. 
n=0 d\i+n + l w = 0 <*K«+3 

Equating c o e f f i c i e n t s of l i k e powers of x9 we ge t , for each n £ N, 
t 2 ( n ) - £ ( - i )U-D/2 - V i - £ i 

d |mn+l d\Hn + l d|if« + l 
d = 1 (mod if) i = 3 (mod 4) 

= dx(4n + 1) - d3(4n + 1), 

£ (-l)W-D/2 = 0. 

This proves Theorem 2. In passing we note that the second conclusion fol-
lows easily from the following independent argument. For each n € N and each 
divisor d (and codivisor dT) of 4n + 3, exactly one of the pair {d, df) is = 1 
(mod 4) and exactly one is E 3 (mod 4). Hence, 

(-DW-D/2 + ^ i d ' - i m . . o. 

Summing over all of these pairs, we obtain the desired result. 
Finally, we prove that Theorems 1 and 2 are actually equivalent. To this 

end, we first recall the following well-known result. 
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Theorem: For an a r b i t r a r y p o s i t i v e in teger n > 1, l e t 

i-1 

denote its prime-power decomposition. Then, n is representable as a sum of two 
squares if and only if, for each i E {1, 2, . .., r} such that p. = 3 (mod 4), 
e^ is even, 

It then follows that counting representations of positive integers by sums 
of two squares can be restricted to positive integers of the form 2̂ (47c + 1), 
/, k E N. Equivalence of Theorems 1 and 2 will then be an easy consequence of 
the following lemma. 

Lemma: If for each k e N, 

S = 5 (7c) : = { ( * , 2/) e N x p 14k + 1 = x2 + z/2} 
and 

T = T(fe) : = {(i, j) E N2|fc = i(i + l)/2 + JU + l)/2}, 
then 

Proof: To see this we define a function 0 : T •> 5 as follows: for each (i, j)eT, 
( (0, 2i + 1), if i = j, 

Q(i> J): = < (i - Js i + J + 1)» if £ > j\ 
((£ + j + 1, j - £), if i < j. 

Simple calculation reveals that 6 is single-valued, and always 0(£, j)eS* So, 
we proceed to show that 0 is one-to-one from T onto S» 

Suppose that (g, h), (£, j) E T, and 0(0, h) = 0(i, j). If (a) g = h, then 

6(0, W : = (0, 2 0 + 1 ) . 

Therefore, 0(i, j) E N x p must also have first coordinate equal to 0: that is, 
9(i5 j) = (0, y), with i = j and 2/ = 2i + 1. So, 20 + 1 = 2i + 1, whence g = i , 
whence 0 = h = i = J, whence (0, 7z) = (£, j) . If (b) g > h9 then 

0(0, 7z): = (̂  - 7z, ̂  + 7z + 1). 

Therefore, 0(i, j) = (x, y) E P2
5 with x < y, whence x = i - j and y = £ + j + 1, 

whence i - j = g - h and i + j + l=g + h + l , whence (£, j) = (0, 7z) . If (c) 
g < h, then 

0(0, fc): = (0 + h + 1, h - g). 

As before, we must have: 

0 + In = i + j and -0 + 7z = -i + j, 

whence (0, 7z) = (£, j) . Thus, 0 is one-to-one. 

Pick any (x, y) E S(k), and split two cases: (i) x = 0 or (ii) x > 0. Under 
(i) we have 

kk + 1 = 02 +. yz
9 whence y = 2i + 1, for some £ E N. 

Hence, for £ = j : = (y - l)/2, we have 

(ff, 2/) = (0, 2£ + 1) = 0(£, j), where (£, j) E T(fe) . 

Under case (ii) we split two further subcases: (ii') x < y or (ii") x > y. Then 
under (ii') we put £ - j = x and i + j + I = y to find 

£ = (x + 2/ - l)/2 and j = {-x + y - l)/2. 
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Thus, i > j , i - j = x9 and i + j + 1 = y, whence (x9 y) = 8(i, j). [Clearly, 
(i, j) E T(fc) . ] Under (ii") we put i + j + 1 = x and -i + j = 2/ to find 

i = (x - y - l)/2 and j = (x + 2/ - 1) /2. 

As before, i < j and (x, 2/) = 8(i, j) , where (i, j) e T(k). This proves that 0 
is onto 5. 

Now let us assume that Theorem 2 holds. Then, for each k E N, 

|S(fc)I = \T(k)I = di(4fe + 1) - d3(^k + 1). 

Therefore, 

r2{i±k + 1) = I {(a;, y) e Z2 14fe + 1 = x2 + 2/2}| 

= 4{dx(4^ + 1) - d3(4k + 1)}, 

since each solution (x, y) e S yields 4 solutions (±x, ±y) e Z2. 
Conversely, let us assume that Theorem 1 holds. Then, for each k E N, 

\S(k)\ = p2(4fe + l)/4 = diihk + 1) - d3(4fc + 1), 

whence (owing to our Lemma), 

t2(k) : = \T(k)I = dY(kk + 1) - d3(4fc + 1), 
as well. 

Since r2(2^(4fe + 1)) = P2(4fe + *)> equivalence of Theorems 1 and 2 follows. 
Owing to the equivalence of the two theorems, our proof of Theorem 2 is a 

new one for both theorems. 
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ACCELERATION OF THE SUM OF FIBONACCI RECIPROCALS 

Peter Griffin 
California State University, Sacramento, CA 95819 

(Submitted July 1990) 

The topic of Aitken acceleration (sometimes called f!Aitkenfs A2 process") 
appears in many numerical analysis texts but is usually confined to the 
solution of equations by fixed-point iteration. (Interesting examples of this 
occur in [4] and [6], wherein x = 1 + 1/x, equivalent to the characteristic 
equation of the Fibonacci difference relation, is solved by iteration.) Con-
spicuous in suggesting its applicability in other contexts are [1], [2], [5], 
and [7]. 

Briefly, a convergent sequence xl9 x2s . .., xn with limit x is amenable to 
acceleration if the ratio of consecutive errors is approximately constant 
(x - xn)/(x - xn_l) ~ v. It follows that v is approximately the ratio of con-
secutive differences r ~ (xn - xn-i)l(xn-\ - %n-2)- Substituting this value of 
v into the approximation for the ratio of errors, solving for x, and re-
labeling x as x* yields the more rapidly converging sequence 

Xn = Xn - (Xn - Xn_i) I (Xn - 7.Xn_Y + xn-2' = xn ~ (A«) /An, 

where the second form uses the A notation for first and second differences, 

An = xn - xn_l and A2 = An - An_x. 

An occasionally mentioned use other than functional iteration is the accel-
erated convergence of Taylor series [5], often possible because of the behavior 
of the error term. A trivial but revealing example of this is the geometric 
series; acceleration of any three consecutive partial sums takes us directly to 
the limit since the ratio of errors (or differences) is, in fact, exactly 
constant. 

Because of its intriguing resemblance to a geometric series, the sum of 
Fibonacci reciprocals provides a dramatic illustration of both the increase in 
speed of convergence attainable and the rarely mentioned possibilities of 
repeated acceleration. To be sure, in 1972 Brousseau achieved at least 83-
digit accuracy in 

s = E 1/^/ = 3.3598856662... 
j= i 

by evaluating ^ Q Q = IL = il/Fj to 400 digits (see [3] for an extensive bibli-
ography) , but this need not detract from what can be learned by pursuing this 
example. 

Although S7 = 5047/1560 = 3.235... has a relative error of 4%, it and the 
six previous partial sums themselves can be accelerated with pencil-and-paper 
arithmetic to produce 1391/414 = 3.359903..., with relative error only .0005%. 
Accelerating the information provided by the first seven terms has reduced the 
inaccuracy in our estimate of S by a factor of 7000. 

~» — q A A 2 ryo-k h-k A 2 * r^rk-k A * * h2.-k-k ^-k-k-k 

«̂ n " °n tin &n ^n Bn Bn ^n ^n n n 

1 
2 1/1 
5/2 1/2 -1/2 3 
17/6 1/3 -1/6 7/2 1/2 
91/30 1/5 -2/15 10/3 -1/6 -2/3 27/8 
279/120 1/8 -3/40 101/30 1/30 1/5 121/36 -1/72 
5047/1560 1/13 -5/104 403/120 -1/120 -1/24 84/25 -1/900 23/1800 1391/414 
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Observe that the ratios of consecutive differences are close to 1/a, -1/a , and 
1/a5 in the three stages of acceleration, where a = (v5 + l)/2 = 1.618... . 

An explanation for this lies in the Binet formula for the j t h Fibonacci 
number 

Fj = aHl ~ (-l/a2)J')//5, 

from which 

Thus, a partial sum is given by 

Sn - t UFj = ^ t E(-DJ"fc/«(2k+1)j" 
j = 1 fe = 0 j = 1 

and the error, or tail, is the double sum 
00 00 00 { —1 \ 

S - Sn - /5 E E (-l)**/a<2*+W = /5 E (_i; 

Each stage of the acceleration will eliminate the currently dominant compo-
nent of the error term, in this case successively peeling off those of order 
(l/a) n, (-1/a3 ) n , ( l / a 5 ) n , etc. [7]. Generally, if the error in a sequence is 
E ^ a " , with 1 > \ai\ > |a2| > •••> then acceleration changes the error by 
removing the a^ term, altering the coefficients of the other a", and possibly 
introducing new terms of order 

a 2 • 

In the Fibonacci case the orders of the new terms happen to coincide with those 
of terms already present. Acton [1] points out that when convergence is near, 
roundoff error can be amplified by the process, causing later accelerations to 
wander off the mark. 

Another possibility for approximating S is to correct the partial sums Sn 

by estimating their tails as u/Fn, making use of the well-known asymptotic 
Fn+j ~ a^Fn (the inherent "geometric" character of the Fibonacci reciprocals). 
For example, S7 + a/F7 - 3.35972... is already quite good, and repeated 
acceleration of the first seven such corrected terms produces 3.35988567, 
competitive with four accelerations of the first nine partial sums themselves, 
the correction being equivalent to starting with one acceleration already 
achieved. 

Incidentally, passing to the limit in the expression for Sn gives an alter-
native formula for S itself, apparently not widely known: 

s = E i/tf, = ^ E (-n* 
f^i J k=oa2k+l - (~l)k 

= /5[l/(a - 1) - l/(a3 + 1) + l/(a5 - 1) - . - . ] . 

And yes, this too can be accelerated, about as well as Sn + a/Fnl 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to 
Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 
USA. Correspondence may also be sent to the problem editor by electronic 
mail to 72717.3515@compuserve.com on Internet. All correspondence will be 
acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be 
received within six months of publication of the problem. Solutions typed in 
the format used below will be given preference. Proposers of problems should 
normally include solutions. 

Dedication. This year's column is dedicated to Dr. A. P. Hillman in recogni-
tion of his 27 years of devoted service as editor of the Elementary Problems 
Section. Devotees of this column are invited to thank Abe by dedicating their 
next proposed problem to Dr. Hillman. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+Z = Fn + l + Fn> ^0 = °» ^1 = * » 

Fn + 2 = Fn + 1 + Fn> F0 

Also, a = (1 + / 5 ) / 2 , 3 = (1 

PROBLEMS PROPOSED IN THIS ISSUE 

B-712 Proposed by Herta T. Freitag, Roanoke, VA 

Prove that for a l l positive integers n, a(/5an - Ln+i) is a Lucas number. 

B-713 Proposed by Herta T. Freitag, Roanoke, VA 
Dedicated to Dr . A. P. Hillman 

(a) Let S be a set of three consecutive Fibonacci numbers. In a Pythago-
rean t r ip le , (a, b, o), a is the product of the elements in S; b is the product 
of two Fibonacci numbers (both larger than 1), one of them occurring in S; and 
c is the sum of the squares of two members of S. Determine the Pythagorean 
tr iple and prove that the area of the corresponding Pythagorean triangle is the 
product of four consecutive Fibonacci numbers. 

(b) Same problem as part (a) except that Fibonacci numbers are replaced by 
Lucas numbers. 

B-714 Proposed by J. R. Goggins, Whiteinch, Glasgow, Scotland 
Dedicated to Dr . A. P . Hillman 

Define a sequence Gn by GQ = 0, GY = 4, and Gn + 2 = 3Gn + l-Gn - 2 for n > 0. 
Express Gn in terms of Fibonacci and/or Lucas numbers. 

= 2, L1 = 1. 

- /5) /2, Fn = (an - 3 n ) / /5 , and Ln = an + 3 n . 
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B-715 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 
Dedicated to Dr . A. P . Hillman 

Prove t ha t i f s > 2, 
Fm = 0 (mod Fs2) if and only if m E 0 (mod sFs) . 

B-716 Proposed by Stanley Rabinowitz, MathPro Press, Westford, MA 
Dedicated to Dr. A. P. Hillman 

If a and b have the same parity, prove that La + Lb cannot be a prime larger 
than 5. 

B-717 Proposed by L. Kuipers, Sierre, Switzerland 

Show that 

2 A (-I)" L2n+l 
arctan - = 2L ' T T T ' 

5 n=o In + 1 22n+l 

SOLUTIONS 
Edited by A. P. Hillman 

Differences in {1, 2} 

B-688 Proposed by Russell Euler, Northwest Missouri State U., Maryville, MO 

Find the number of increasing sequences of integers such that 1 is the 
first term, n is the last term, and the difference between successive terms is 
1 or 2. [For example, if n = 8, then one such sequence is 1, 2, 3, 5, 6, 8 and 
another is 1, 3, 4, 6, 8.] 

Solution by H.-J. Seiffert, Berlin, Germany 

Let An denote the set of all sequences having the desired properties. If 
\An\ denotes the number of elements of An, then clearly \Ai | = | A^ | = 1. We 
shall prove that \An\ = Fn. This is true for n - 1, 2. Assume that it holds 
for all k E {1, . . . , n - 1} in > 3) . If B„ and Cn denote the set of all 
sequences of An, where the second term from the right equals n - 2 and n - 1, 
respectively, then we obviously have 

| Bn J = J A n _ 2 I and | Cn | = | A n _ i | . 
Since An = Bn U Cn and Bn n Cn = 0, the induction hypothesis gives 

\An\ = \Bn\ + \Cn\ = |i4„_2| + Mn-ll = Fn-2 + Fn-1 = Fn' 

This completes the induction proof. 

Also solved by Charles Aschbacher, Glenn Bookhout, Paul S. Bruckman, 
Russell Jay Hendel, Douglas E. Iannucci, Norbert Jensen, Carl Libis, Ray 
Melham, Bob Prielipp, Sahib Singh, Lawrence Somer, Shanon Stamp, and the 
proposer. 
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Numbers with Even Zeckendorf Represen ta t ions 

B-689 Proposed by Philip L. Maria, Albuquerque, NM 

Show t h a t Fn
2 - 1 i s a sum of F i b o n a c c i numbers w i t h d i s t i n c t p o s i t i v e even 

s u b s c r i p t s f o r a l l i n t e g e r s n > 3 . 

Solution by Lawrence Somer, Washington, D. C. 

I t f o l l o w s by i d e n t i t y T 1 0 on page 56 of H o g g a t t f s Fibonacci and Lucas Num-
bers t h a t 

rn rn-2 nln-l' 
Thus, 

Ft- 1 -Fln_2 + (F^2 - 1). 
The result now follows by induction upon noting that 

F% - 1 = 22 - 1 = 3 = Fh and F 2 - 1 = 32 - 1 = 8 = F6. 

Also solved by Paul S. Bruckman, Herta T. Freitag, Russell Jay Hendel, 
Douglas E. Iannucci, Norbert Jensen, Joseph J. Kostal, Ray Melham, Alex 
Necochea, Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the proposer. 

Golden Geometric Progress ions 

B-690 Proposed by Herta T. Freitag, Roanoke, VA 

Let Sk = al0k + l +am + 2 + a 1 0 k + 3 + . . . + a m + 1 ° , where a = ( l + / 5 ) / 2 . F ind 
p o s i t i v e i n t e g e r s b and c such t h a t Sk/alQk + b = c f o r a l l n o n n e g a t i v e i n t e g e r s 
k. 

Solution by Paul S, Bruckman, Edmonds, WA 

sv = y aiofe+i = am(«u - «\ = «^Ii(aio _ 1} Jk £ alOfc + - = a 1 0 ^ ^ = ^ ) = ^ T ^ 1 0 - D 

= a10fe + 2 . a 5 ( a 5 + 35) = l l a 1 0 * + 7 . 
We s e e t h a t t h e v a l u e s b = 7 , c = 11 s o l v e t h e p r o b l e m . 

Also solved by Tareq Al-Naffouri, Glenn Bookhout, Russell Jay Hendel, 
Norbert Jensen, Ray Melham, Bob Prielipp, H.-J. Seiffert, Sahib Singh, and 
the proposer. 

Rectangles in Similar Rectangles 

B-691 Proposed by Heiko Harborth, Technische U. Braunschweig, W. Germany 

H e r t a T. F r e i t a g a sked w h e t h e r a g o l d e n r e c t a n g l e can be i n s c r i b e d i n t o a 
l a r g e r g o l d e n r e c t a n g l e ( a l l f o u r v e r t i c e s of t h e s m a l l e r a r e p o i n t s on t h e 
s i d e s of t h e l a r g e r one) . An answer f o l l o w s from t h e s o l u t i o n of t h e g e n e r a l -
i z e d p r ob l e m: Which r e c t a n g l e s can be i n s c r i b e d i n t o l a r g e r s i m i l a r r e c t a n g l e s ? 

Solution by Russell Jay Hendel, Dowling College, Oakdale, NY 

A l l n o n s q u a r e r e c t a n g l e s can be i n s c r i b e d i n l a r g e r s i m i l a r r e c t a n g l e s . 
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Indeed, suppose a given rectangle, i?l5 has sides a and b with a * b. Set 

c = {max(a, b)}2/{min(a, b)} 

and consider the rectangle, R2i with sides max(a, 2?) and c. 
R2 is similar to i?l9 because 

c/max(a, 2?) = max(a, &)/min(a, 2?), 

i?]_ can be inscribed in R2, with common side max(a, b) 9 because c > min(a, b) , 
and R2

 i s larger than i?1 because c > *min(a, b) when a * b> This completes the 
proof. 

Editor's Note: The proposer made the tacit assumption that all the vertices of 
the smaller rectangle are interior points of the sides of the larger one. With 
this assumption, Paul S. Bruckman, Herta T. Freitag, and the proposer showed 
that the rectangles have to be squares. 

A Fibonacci Factorization 

B-692 Proposed by Gregory Wulczyn, Lewisburg, PA 

9 9 9 

Let G(as b, c) = -4 + L2a + L2b + F
2c + F2aF2bF2c - Prove or disprove that 

each of Fa + b + c, Fb + C_as Fc + a_b5 a n d Fa + b_c is an integral divisor of G(a, b, c) 
for a l l odd positive integers a, b, and c. 

Solution by Russell Jay Hendel, Dowling College, Oakdale, NY 

We prove the stronger assertion 

25Fa + b+cFa+b-cFa-b + cFc + b-a = L2aL2bL2o + L2a + L2b + L2e " 4 ' 

The proof is verbatim identical to the published solution to B-669, Vol. 29, 
no. 2, p. 185, with, however, the word odd replaced by even. 

"From the identity 

5Fm + nFm-n = F 2m " ( ~ 1 ) F 2n 

we get [setting (-\)a+b+c = e) 

25Fa + b + cFa + b-cFa-b + cFc+b-a = ^L2a + 2b ~eL2c^L2o ~eL2a-2b^ 
o 

= L2c^-L2a+2b + L 2 a - 2 i J ~ eL2o ~ eL2a + 2bL2a -2b 

= L2c^L2aL2b^ - e L l a ~ ^Lha + Lkb^ 

= L2aL2bL2a " e ^ L + L\b + L\e " ^> 

and for a, b, and e odd (actually for a + b + c odd), the given identity is 
established.!? 

Also solved by Paul S. Bruckman, Norbert Jensen, Bob Prielipp, and the 
proposer. 
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A Combinatorial Problem 

B-693 Proposed by Daniel C. Fielder & Cecil 0. Alford, Georgia Tech, 
Atlanta, GA 

Let A consist of all pairs {x, y] chosen from {1, 2, ..., 2n], B consist of 
all pairs from {1, 2, ..., n}, and C of all pairs from {n + 1, n + 2, ..., 2n}. 
Let S consist of all sets T = {P\, P2> •••» ^k^ w i t n t n e ^i (distinct) pairs in 
A. How many of the T in S satisfy at least one the the conditions: 

(i) Pi n P- * 0 for some i and j, with i * j\ 

(ii) P^ E B for some i, or 

(iii) Pi E C for some i? 

Solution by Philip L. Mana, Albuquerque, NM 

Let C(n, fc) denote (&) . There are C(2w, 2) pairs in 4; thus C(C(2n, 2), fc) 
sets T in S. The sets T meeting none of the conditions (i), (ii), (iii) can be 
written in the form 

U= {{xl9 yl}, {x2, yz~i> •••> {xk> y ^ 
with the Xi a set of k integers chosen from {1, 2, ..., n} and satisfying 

xl < x2 < ''' < xk 

and the yi a permutation of k distinct integers from {n + 1, n + 2, ..., 2n}. 
The number of such sets U is 

C(n, k)P(n, k) = klffi; 
hence, the number of s e t s T s a t i s f y i n g a t l e a s t one of the condi t ions i s 

C(C(2n, 2 ) , k) - C(n, k)P(n, k). 

Also solved by the proposers, who indicated that the problem arose in a 
combinatorial study in parallel processing. 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND 
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK 
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially 
welcomes problems believed to be new or extending old results. Proposers 
should submit solutions or other information that will assist the editor. To 
facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-466 Proposed by Paul S. Bruckman, Edmonds, WA 

Let p be a prime of the form ax2 + by2-, where a and b are relatively prime 
natural numbers neither of which is divisible by p; x and y are integers. 
Prove that x and y are uniquely determined, except for trivial variations of 
sign. 

H-467 Proposed by Larry Taylor, Rego Park, NY 

Let (an9 bn9 on) be a primitive Pythagorean triple for n = 1, 2, 3, 4 where 
ctns bns cn are positive integers and bn is even. Let p = 1 (mod 8) be prime; 
v2 + s2 = t2 (mod p) where the Legendre symbol 

nt + p ) / 2 \ = 

Solve the following twelve simultaneous congruences: 

(al5 bi9 ci) = (r, s9 t), 

(a2, b2> o2) E (r> s9 -t), 

(a3s J3, o3) = (s, r9 t) 9 

(ah9 bh9 oh) = ( s , r9 -t) (mod p ) . 
For example, i f (r9 s9 t) E (3 , 4, 5) (mod 17), 

( a l 5 Z?x, cx) = (3 , 4, 5 ) , 
( a 2 , bl9 c2) = (105, 208, 233), 
( a 3 , fc3, e 3 ) = (667, 156, 685), 
( a 4 , ZP^, oh) = (21 , 20, 29) . 

H-468 Proposed by Lawrence Somer, Washington, DC 

Let {vn}™=0be a Lucas sequence of the second kind s a t i s f y i n g the recurs ion 
r e l a t i o n 

vn+2 = avn+i + bvns 

where a and b are p o s i t i v e odd in t ege r s and VQ = 2, V\ = a . Show tha t t>2rz n a s 

an odd prime d iv i so r p E 3 (mod 4) for n > 1. (This was proved by Sahib Singh 

1. 
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for the special case of the recurrence {Ln} on page 136 of the paper !lThoroTs 
Conjecture and Allied Divisibility Property of Lucas Numbers" in the April 1980 
issue of The Fibonacci Quarterly.) 

SOLUTIONS 

A Triggy Problem 

H-466 Proposed by J. A. Sjogren, U. of Santa Clara, Santa Clara, CA 
(Vol. 28, no. 4, November 1990) 

Establish the following result: 

Let n be a whole number and, for any rational number q, let [q] be the 
greatest integer contained in q. Then 

fn = n (3 + 2 cos 2-f). 

Here, an empty product is to be interpreted as unity. 

Solution by Paul S. Bruckman, Edmonds, WA 

We consider the Chebychev polynomials of the second kind, defined as fol-
lows : 

nn+l _ hn+l 
(1) Un(x) = a _ h > n = 05 1, 2, ..., 
where 

(2) a = a(x) = x + /x2 -1,2? = b(x) = x - /x2 - l. 

It may be shown that Un(x) = 0 iff x = cos(ir/c/(n + 1 ) ) , k = 1, 2, . . . , n. 
The Un(x) are polynomials of degree n, and their leading term is (2x)n. There-
fore, 

(3) U„(x) = 2* ft(x - cos ~~j). 

It follows that 
n -I 

Un(ix)Un(-ix) = kn fl (x2 + cos2 I ) . 

By a change in variable from n to n - 1: 
n - 1 . IV \ 

(4) Un-i(ix)Un-i(-ix) = 0 ^x2 + 2 + 2 cos — J . 
fc= i v n ; 

In particular, setting x = 1/2, we obtain: 

( 3 + 2 cos 
fc= l 

Next, using (1) and (2), we obtain 

a(i/2) = ~i(l ± /5) = ia or ^3, 

where a and 3 are the usual Fibonacci constants; also 

b(i/2) = -i(l + /5) = i3 or ia, 

respectively. In either case, 

tf„-l(i/2) = i""1^. 

(5) /7n_1(i/2)^_1(-i/2) = Yl (3 + 2 cos ^ ) . 
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L i k e w i s e , 

Un-l(-i/2) = {-ir~lFna 

Consequently, 

(6) Un.l(i/2)Un.l(-i/2) = F%, n = 1, 2, 3, ... . 

Now, let An denote the product expression indicated in the statement of the 
problem. For brevity, let Qk = 3 + 2 cos (2fciT/n) . Note that 0n_k = 6̂ . We 
consider two cases: 

C a s e 1: n = 2m 
7 7 7 - 1 7 2 - 1 

Then An = f l ®k
 = FI ©fc - A l s o , 9m = 1. 

k = 1 A: = m+ 1 

n- 1 
Hence, ^ = f\ h-

k = 1 

C a s e 2: n = 2m + 1 
777 ? 1 - 1 7Z - 1 

Then An = f l 6fc = f l 6 k , so ^ = f l 6 k . 
fe= 1 k = m+I k= 1 

I n e i t h e r c a s e , we have 

]2 (7) Al =nf\(3 + 2 cos ^ 

Comparing this last expression with (5) and (6), we see that 

(8) Al = F%, n = 1, 2, ... . 

Since 0^ > 1, we see that An > 1. From this it follows that 

(9) An = Fn, n = 1, 2, ... . Q.E.D. 

Also s o l v e d b y S. Rabinowitz and H.-J. Seiffert. 

R i n g s T r u e 

H-448 Proposed by T. V. Padmakumar, Trivandrum, South India 
(Vol. 28, no. 4, November 1990) 

I f n i s any number and a\> a2> >*-, ccm
 a r e p r ime t o n (n > a\, a 2 j . ••* £777)5 

t h e n (a]_a2 • >• a m ) 2 = 1 (mod n ) . [The number of p o s i t i v e i n t e g e r s l e s s t h a n n 
and pr ime t o i t i s d e n o t e d by $(n) = ^ - ] 

Solution by R. Andre-Jennin, Tunisia 

Put Z /nZ = {0, 1, . . . , (n - 1 ) } , and U = { a l s a 2 , . . . , a m } . By h y p o t h e s i s , 
£/ i s t h e m u l t i p l i c a t i v e group of t h e i n v e r t i b l e e l e m e n t s of t h e r i n g Z /nZ . 

I t i s c l e a r t h a t t h e map x -> x~l i s a o n e - t o - o n e mapping of U on to i t s e l f . 
Hence, 

a T 1 = aoW, f o r i = 1, . . . , m, 

where a is a permutation of {1, 2, ..., m]. 
Thus, in the ring Z/nZ, 

(ala2 ... a m ) ~ 1 = a~l ... a^1 = aa(1) ... ^CT(m)= ̂ 1 ••• 5*» 

and so _ 
(a 1 ... a w ) 2 = 1, 
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o r , i n o t h e r w o r d s , 

(ai . . . CLm)2 = 1 (mod ft) . 

Also solved by D. Redmond and the proposer. 

A R e c u r r e n t T h e m e 

H-449 Proposed by loan Sadoveanu, Ellensburg, WA 
(Vol. 29, no. 1, February 1991) 

Let G(x) = xk + a\Xk~l + • • • + ak be a p o l y n o m i a l w i t h c a s a r o o t of o r d e r 
p . I f G^v\x) d e n o t e s t h e p t h d e r i v a t i v e of G(x), show t h a t 

(nPcn-p) 
\—77^ / is a solution to the recurrence 
\G{p\o)) 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

The r e s u l t i s t r i v i a l i f c = 0 , so we s h a l l assume t h a t o * 0 . W r i t e 

G(x) = (x - c)pE(x), 

where H(c) * 0 . Le t 

g(x) = xkG(l/x) and h(x) = xk~pH(l/x) 

such that ^(x) = (1 - cx)p h(x) , where h(l/c) * 0. Denote the generating func-
tion of u„ by U(x). It is straightforward to check that 

/ ^ \ xk 

g(x)U(x) = g(x)i 2] unXn) = ̂ iO) + 1 _ g x 

for some polynomial Wj(x) which depends on MQ, U\9 . .., w^-i- Therefore, 

(1 - ox)w-i (x) + xk (1 - ox)Wi (x) + xk 
(1) tf(ar) = = —ri . 

(1 - cx)g(x) (1 - ox)p + Lh(x) 
It follows that the characteristic equation for the recurrence is 

(x - c)p+1H(x) = 0. 

Hence, un = npon is a solution. We now proceed to improve this result. 
There exist a polynomial z^C^) and constants A\> ..., Ap+i such that 

wz(x) Ai Av+i 
(2) U(x) = -^ + — + . L p -1 n(x) 1 - ox (1 - £x)p + 1' 

Consider 
/£ + ft - 1> ?/!-,)<->"• (1 - £#)* w = 0 

Since \J^i X) is a polynomial in ft of degree t - 1, it is clear that 

i4p+1/(l - cx)p+l 

is the only expansion in which the coefficient of xn contains ftp. Indeed, this 
coefficient is precisely Ap+inpan/p I . Equating the numerators in (1) and (2), 
we obtain 

(1 - ox)wl(x) + xk = wz(x) (1 - cx)P + 1 + h(x){Al(l - ox)p + . . . + Ap + l } . 
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Thus 

Ar P+l h{l/o) cpH(c)' 

From the observation 

(p + l)lH(c) = ~-~7{(x - c)P + lH(x)}\ = ——r{{x - c)G(x)}\ 
ax*L \X=G dxp + L ' 

(p + l)Gip\c): 

we conclude that 

11 = — £ — 

p! £(p)(c) 

is a solution to the given recurrence relation. 

Also solved by P. Bruckman, R. Andre-Jeannin, and the proposer. 

Comparable 

H-450 Proposed by R. Andre-Jeannin, Tunisia 
(Vol. 29, no. 1, February 1991) 

Compare the numbers 

n = 1 r n 

and 

er = 2 + F . 
„-i V ^ n - l + (-1)^"1)(2^ + (-1)") 

Solution by P. Bruckman, Edmonds, WA 

We le t 

(1) An = 2Fn
2 + ( - I f , n = 05 1, 2, . . . , 

(2) Dn = FnAnAn-l9 n = 1, 2, 3, . . . . 

We will prove the identi ty: 

1 1 2 F _ui 2Fn 
(3) f = f + _ ^ L ± 1 - » n = 1, 2, 3, . . . . 

The right member of (3) is equal to 

jr-[AnAn-i + 2Fn(Fn+iAn„i - FnAn) ] ; 
u n 

therefore, i t suffices to prove the identi ty: 

(4) AnAn.l + 2Fn(Fn+lAn.l - FnAn) = 1, n = 1, 2, 3, . . . . 

Let Sn denote the lef t member of (4). We see from (1) that A0 = Ai = 1; hence, 
Si = 1. I t suffices to prove that Sn+i - Sn = 0, n = 1, 2, . . . , for this would 
imply (4). We f i r s t require some basic iden t i t i e s : 

(5) An = F2 + Fn+iFn_i = F2
+i - FnFn_i = F2.x + « + 1 ; 
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( 6 ) An+i An Zrn+irnl 

( 7 ) A-n + l " An-1 = 2F2n \ 

( 8 ) Fn+lAn + l + FnAn-l = A
n(Fn+Z + 2Fn ) • 

P r o o f of ( 5 ) : S ince i ^ + i ^ - ! - F2 = ( - i f , 

^ n = 2 ^ n + ^ n + l ^ n - 1 ~ Fn = Fn + ^ n + 1 ^ - 1 = ( ^ n + 1 " ^ z - 1 ) + Fn+lFn-l 

F F nLn~\ ~ Fn + l ~ Fn+lFn-l + Fn-\ ~ Fn+l " Fn-\(Fn+l ~ Fn - 1 ) " Fn + l 

= Fn_1 + Fn+l(Fn + l - Fn_l) = Fn.l + FnFn+l. 

Proof of (6): An + l - An = F*+l + Fn + 2 F n - F*+l + FnFn.l 
= Fn(Fn + 2 + ^ - l ) = Fn(Fn+l + Fn + ^Vz + 1 - ^ ? ) = 2 F n + 1 ^ n . 

P r o o f of (7): An + 1 - An-l = 4+1 + ^ + 2^ " 4-1 - W - 2 
= ( ^ n + 1 " F n - 0 (Fn+ I + ^ n - l ) + ^ n ( ^ n + 2 ~ Fn-l) 

= ^ n ^ n + Fn(Fn+l + Fn ~ Fn + Fn-\) = 2 ^£ n
 = 2F2n • 

P r o o f of f f l ; F n + 1 4 „ + 1 + ^ n _ x = F n + 1 ( 4 w + 2 F n + 1 F n ) + Fn (An - 2FnFn.l) [by (6)] 

= (Fn+l + ^ „ ) 4 „ + 2Fn(F*+l - FnFn_0 = Fn + 2 4 n + 2FnAn [ u s i n g ( 5 ) ] 

= (Fn + Z + 2* l „ )4 n . 

T h e r e f o r e , 

^n+l ~ bn = An + iAn + 2Fn+1 (Fn + 2An - Fn+iAn + i) - AnAn-\- 2kn(kn+\An-i - hnAn) 

= An(An + i - An_i) + 2An (Fn + Fn+lFn + 2) - 2Fn + i (Fn+ iAn + i + FnAn.l) 

= An(2F2n) + 2AnAn+1 - 2Fn + 1An(Fn + 2 + 2Fn) [ u s i n g ( 5 ) , ( 7 ) , ( 8 ) ] 

= 2An(F2n + An + i - Fn+l(Fn+2 + 2Fn)) 

= 2An(F2n + Fn + Fn + lFn + 2 - Fn+lFn + 2 - 2FnFn+l) = 2An{F2n - F „ ( 2 F „ + 1 - F „ ) ) 

2An(F2n - Fn(Fn+l + ^ . i ) ) = 2An(F2n - FnLn) 0. 

This completes the proof of (4), and hence of (3). 
We may now sum both sides of 93) over all natural numbers n, observing that 

all sums are absolutely convergent. The left sum is equal to 

n= 1 un 
er - 2. 

Let un = 2Fn+i/An. The right sum is equal to 

n = 1 En 

We conclude: 

(9) 0' = 0. 

l n - \ = f -
n = 1 ̂  n 

lQ 0 2 (using the fact that 
un •> 0 as n •> °°) . 

Comment: This very interesting result furnishes us with a series equivalent 
to the much-studied series H™=ll/Fn, but converging much more rapidly than the 
latter series. Thus, 

0 3 + 1/3 + 1/42 + 1/399 + 1/4655 + 1/50568 + ... = 3.3599. 

192 



BOOKS AVAILABLE 
THROUGH THE FIBONACCI ASSOCIATION 

Introduction to Fibonacci Discovery by Brother Alfred Brousseau. Fibonacci Association 
(FA), 1965. 

Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. FA, 1972. 

A Primer for the Fibonacci Numbers, Edited by Marjorie Bicknell and Verner E. Hoggatt, 
Jr. FA, 1972. 

Fibonacci's Problem Book, Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. FA, 
1974. 

The Theory of Simply Periodic Numerical Functions by Edouard Lucas. Translated from 
the French by Sidney Kravitz. Edited by Douglas Lind. FA, 1969. 

Linear Recursion and Fibonacci Sequences by Brother Alfred Brousseau. FA, 197L 

Fibonacci and Related Number Theoretic Tables. Edited by Brother Alfred Brousseau. FA, 
1972. 

Number Theory Tables. Edited by Brother Alfred Brousseau. FA, 1973. 

Tables of Fibonacci Entry Points, Part One. Edited and annotated by Brother Alfred Brous-
seau. FA, 1965. 

Tables of Fibonacci Entry Points, Part Two. Edited and annotated by Brother Alfred Brous-
seau. FA, 1965. 

A Collection of Manuscripts Related to the Fibonacci Sequence—18th Anniversary Vol-
ume. Edited by Verner E. Hoggatt, Jr. and Marjorie Bicknell-Johnson. FA, 1980. 

Fibonacci Numbers and Their Applications. Edited by A.N. Philippou, G.E. Bergum and 
A.F. Horadam. 

Applications of Fibonacci Numbers, Volumes 2 and 3. Edited by A.N. Philippou, A.F. 
Horadam and G.E. Bergum. 

Please write to the Fibonacci Association, Santa Clara University, Santa Clara CA 95053, 
U.S.A., for current prices. 



SUSTAINING MEMBERS 
I. Adler 

*H.L. Alder 
G.L. Alexander son 
S. Ando 
R. Andre-Jeannin 

*J. Arkin 
D.C. Arney 
C. Ashbacher 
M.K. Azarian 
N. Balasubramania 
L. Bankoff 
M. Berg 
J.G. Bergart 
G. Bergum 
G. Berzsenyi 

*M. Bicknell-Johnson 
P. Bien 
P.S. Bruckman 
M.F. Bryn 
G.D. Chakerian 
C. Chouteau 

C.K. Cook 
J.W. Creely 
P.A. DeCaux 
M.J. DeLeon 
J. Desmond 
H. Diehl 
V. Dudley 
T.H. Engel 
D.R. Farmer 
D.C. Fielder 
F. Firoozbakht 
Emerson Frost 
Anthony Gioia 
R.M. Giuli 
H.W. Gould 
P. Hagis, Jr. 
H. Harborth 
Y. Harris Kwong 
P. Haukkanen 
A.P. Hillman 

*A.F. Horadam 
F.T. Howard 
R.J. Howell 
S. Howell 
R.E. Kennedy 
C.H. Kimberling 
A. Knopfmacher 
R.P. Kovach 
J. Lahr 
J.C. Lagarias 
L.H. Lange 
C.T. Long 
Br. J.M. Mahon 

*J. Maxwell 
F.U. Mendizabal 
M.G. Monzingo 
J.F. Morrison 
K. Nagasaka 
S.A. Obaid 
D.J. Pedwell 

A. Prince 
S. Rabinowitz 
S. Sato 
J.A. Schumaker 
A.G. Shannon 
L.W. Shapiro 
J.R. Siler 
D. Singmaster 
J. Sjoberg 
L. Somer 
M.N.S. Swamy 

*D. Thoro 
J.C. Turner 
T.P. Vaughan 
K. Velupiliai 
J.N. Vitale 
M. Waddill 
J.E. Walton 
G. Weekly 
R.E. Whitney 
B.E. Williams 
* Charter Members 

INSTITUTIONAL MEMBERS 
ACADIA UNIVERSITY LIBRARY 
Wolfville, Nova Scotia 

THE BAKER STORE EQUIPMENT 
COMPANY 
Cleveland, Ohio 

CALIFORNIA STATE UNIVERSITY 
SACRAMENTO 
Sacramento, California 

ETH-BIBLIOTHEK 
Zurich, Switzerland 

FERNUNIVERSITAET HAGEN 
Hagen, West Germany 

HOWELL ENGINEERING COMPANY 
Bryn Mawr, California 

KLEPCO, INC. 
Sparks, Nevada 

MATHEMATICS SOFTWARE COMPANY 
Evansville, Indiana 

MISSOURI SOUTHERN STATE COLLEGE 
Joplin, Missouri 

PRINCETON UNIVERSITY 
Princeton, New Jersey 

SAN JOSE STATE UNIVERSITY 
San Jose, California 

SANTA CLARA UNIVERSITY 
Santa Clara, California 

SIMON FRASER UNIVERSITY 
Burnaby, B.C. Canada 

UNIVERSITY OF NEW ENGLAND 
Armidale, N.S. W. Australia 

UNIVERSITY OF ROMA 
"LA SAPIENZA" 
Roma, Italy 
UNIVERSITY OF TECHNOLOGY 
Sydney, N.S.W. Australia 

WAKE FOREST UNIVERSITY 
Winston-Salem, North Carolina 

WASHINGTON STATE UNIVERSITY 
Pullman, Washington 

JOVE STATISTICAL TYPING SERVICE 
2088 Orestes Way 

Campbell, California 95008 


