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ON GLAISHER'S INFINITE SUMS INVOLVING THE
INVERSE TANGENT FUNCTION

Allen R. Miller
George Washington University, Washington, DC 20052

H. M. Srivastava
University of Victoria, Victoria, British Columbia V8W 3P4, Canada
(Submitted November 1990)

1. Introduction

In 1878, J. W. L. Glaisher [1] derived a number of results about certain
infinite sums involving the inverse tangent function; in particular, he showed
for complex 6 (0 < |6| < ®), that

292

(1) S arctan Py = — -

tanh W@)
n=1 4

arctan(
tan 7o

This equation appears again in 1908 as an exercise in T. J. I'a. Bromwich's
book [2, p. 259]. Generalizations of (1) are found in [3], [4, p. 276], and
[5, p. 749].

Letting 6 » 1- in (1), Glaisher also obtained the elegant result:

(2) 2: arctan j% =‘§ﬂ

n=1 n 4
A very simple derivation of (2) and a history of this series appeared recently
in [6].

It is easy to see that the two members of (1) may differ by an integer mul-
tiple of m; this pathology occurs often in many results of this type, since the
inverse tangent function is a multiple-valued function. Hence, if we use only
the principal value of the inverse tangent function, we must write (1) in the
form

= 262 /1 tanh 76
(3) -72;1arctan T = (4 + m)n arctan(tan ﬁe>
for some me€ Z = {0, *1, *2, ...}.

In this paper we shall derive computationally more useful results than (3);
our results will yield some interesting corollaries not available heretofore.
Indeed we shall show, for complex & (0 < |6! < «), that

= 202 1 sin 276
(4) 72;1arctan ne <e B Z)W N arCtan<cos 210 - exp Zne)

where, here and in what follows, the principal wvalue of the inverse tangent
function is assumed. We shall also show that (3) and (4) are, in fact, equi-
valent. We shall then give (in Section 5) some generalizations of (4).
Finally, in Section 6, we deduce some interesting particular cases of one of
the general summation formulas which we obtain in Section 5.

2. Derivation of the Summation Formula (4)

To derive (4), we shall use the Euler-Maclaurin summation formula ([7, p.
27]; see also [8, p. 521])

S £ = fnf(x)dx +1r0) + 1roy + fnP(x)f'(x)dﬂc
K=o 0 2 2 0
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ON GLAISHER'S INFINITE SUMS INVOLVING THE INVERSE TANGENT FUNCTION

where P(x), for real x, is a saw-tooth function: P(x) = x - [x] - 1/2. Letting
flx) = arctan(262/x2) and n + «, we obtain
> 202

Lo ® 262 ™ ® .’X}dx
arctan — = arctan —5-dx + — - 462]~ P(x)—/————.
,f:*o k2 fo %2 4 0 e + 2t

Assuming 0 < 6 < « and making simple transformations in the integrals, we have

2 262
5 arctan ——
SN o

-1+ Bf arctan %dx - Zf P(Gﬁx)ﬂg-
4 0 x 0 1+

The first integral on the right side of (5) can be evaluated in a number of
ways or by using tables of integrals (cf. [5] and [9]). We omit the details
and give the result:

(6) J;warctan(Z/xz)dx = T.

The saw-tooth function P(x) is a sectionally (piecewise) smooth periodic

function with unit period. It can be represented by a Fourier series which is
given by

1l -1 .
(7) P(x) =-= )Y, = sin(2mkx).

'ﬂk=1k

The series given in (7) converges uniformly in every closed interval where P(x)
is continuous. The saw-tooth function and its Fourier series representation
are discussed in detail, for example, in [10, pp. 107-24].

To evaluate the second integral in (5), we use (7) and interchange the sum
and integral, thus giving:

” zde _ 1 &KL [T xdx
(8) fop(e/'z'x)l 5 = Wkglkfoe*,ln(Z/fewkx)—l -

Using [9, p. 408, Sec. 3.727, Eq. (4)], we find that

9) .[ sin(2/§6ﬂkx)I££@§E = % exp(-26mk)sin(267Kk) .
0 .

Hence, from (5), (6), (8), and (9), we obtain

= 262 1 1 :
2;larctan %z = <6 - Z> +}2;1z exp(-20mk)sin(267Kk) ;

and now, using [5, p. 740, Eq. (5)], we can write the sum on the right in closed
form, thus giving (4), provided that 0 < 0§ < =,

It can easily be shown that the right member of (4) is indeed an even func-
tion of 6 and that, as 6 approaches zero, it vanishes. Hence, (4) is valid for
real 6 and (by appealing to the principle of analytic continuation) it is valid
for complex 0. This evidently completes the derivation of the summation
formula (4).

3. Equivalence of the Sums (3) and (4)

Defining

E(x) =

sin 2x

cos 2x - exp 22’
we note the easily verified identity

tan x tan & - E(x)

tanh * 1 + £(x) tan x’
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ON GLAISHER'S INFINITE SUMS INVOLVING THE INVERSE TANGENT FUNCTION

Since tan x = tan(x - mm), for all m € Z, this gives
tanx _ tan(x - mm) - g(x)
tanhx 1 + Z(x)tan(xz - mmw)’

Taking the inverse tangent of both members of this equation and observing that

arctan u - arctan v arctan((u - v)/(1 + ww)),

we obtain

tan x
arctan(——————) = (x - mw) - arctan &£(x).
tanh x

Now, using arctan ¥ = m/2 - arctan 1/x, we deduce from this the identity

tanh x
(10) % - arctan(—————-

sin 2x
) + mnm = x - arctan( )

tan x cos 2x - exp 2x

for some m € Z. Replacing x by 6w, (10) shows that the results in (3) and (4)
are indeed equivalent.

4. Special Cases of Equation (4)

In (4), if we set 6 = k and 6 = k/2 (k =1, 2, 3, ...), we obtain

> 2k? 1
(1) nz;larctan P (k - Z)ﬁ
and

& k2 1\7
(12) Eglarctan 2 = (k - E)E’

respectively; now, splitting the sum in (11) into even and odd terms, and using
(12), we deduce also that

hd 2k2 T
1 ) __2kE Ty
(13) n=()arctan G+ D)2 Zk

Equation (2) follows from (11) when k = 1. Equations (12) and (13) were
also derived by Glaisher for k = 1. Ramanujan (circa 1903) derived (11), (12),
and (13) for k =1 [11, Ch. 2].

5. Generalizations of the Summation Formula (4)

Letting f(x) = arctan(22"/x2") in the Euler-Maclaurin summation formula
(cited already in Section 2), but now using [9, p. 608, Sec. 4.532, Eq. (2)]
and [5, p. 396, Eq. (2)] to compute the two integrals, in basically the same
way as (4) was obtained, we can derive the result

© 52" m 1\ 7 - sin ¢
1 = T _DT, -1)k arct (—————)
(14) kzzlarctan oT (z sec 7 2>2 ;Z;l( 1)k arctan cos & — oxp T
(0 < |z] <e;ym=1,2, 3, ...),
where
£ = 213 cos ZE—:—l'n n = 272 sin gk-:—l

in " 4n "

For w = 1 and z = V26, (14) reduces to (4). For n
/8 and B = mx sin ©/8, we get

) L s 2
x sin 2a
15 t — = - ( >]
(15) kélarc an 7 [a arctan o5 29 — oxp 28

- [B - arctan( sin 28 >] -

cos 2B - exp 2a

2, setting o = TX cos

~=
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ON GLAISHER'S INFINITE SUMS INVOLVING THE INVERSE TANGENT FUNCTION

Glaisher [1] obtained, modulo an integer multiple of w, that

w o

16 arctan -

ae 3 -

tan o tanh a - tan B tanh B8 - tan o tan B - tanh a tanh B
tan o tanh o - tan B tanh B + tan o tan B + tanh o tanh B>'

= arctan(

Hence, the difference of the right members of (15) and (16) is an integer mul-
tiple of .

By splitting the left member of (l4) into even and odd terms, we easily
find that

2271

3 - Tz usl
(17) kz%)arctan Grr DT " a sec 5

n : i
_1vk _sin & @\ _ sin £/2
" k=1( b [arCtan<cos £ - exp n> arCtan<COS £/2 - exp ”/2>:|

(n=1, 2, 3, veu).

Glaisher [1] also obtained results, modulo an integer multiple of w, for the
left member of (17) in the special cases when n = 1 and n = 2.

We note here that, in general, when an infinite sum of arctangent functions
is given modulo an integer multiple of w, the Euler-Maclaurin summation formula
appears to be helpful in attempting to derive computationally more useful
results.

By using (14) and (17), we have, in additionm,

2n

& _1yk+1 g _T
2;1( 1) arctan o A

n . .
~1)k —sin & \ _ sin £/2
+~k=1( 1) [arctan(cos £ - oxp ﬂ> 2 arctan(COS £/2 = exp ﬂ/2> .

In particular, letting n =1 and 3 = V26, we get
e 202

18 -1)**1 arctan = —- - arctan

18 3D il (

sin 276 )
cos 216 - exp 2w

+ 2 arctan( sin 78 ).

cos m8 - exp 7O

By using [4, p. 277, Eq. (42.1.10)], (18) may be written equivalently as

kil 2
(19) 5 (=1)%*1 arctan 20° arctan(
k=1

sinh w0 il
k2 ) h

sin w6 4°

6. A Special Case of Formula (18)

In (18) or (19), if we set 6 = £ (& = 1, 2, 3,...), we deduce the intest-
ing result:

© 2
(19) Ez (-1)k+1 arctan %ﬁr = % (2 =1, 2, 3, «..)>»
k=1

from which it easily follows that

w0 2(22 - mZ)kZ
kgl (—l)k+1 arCtan[mT =0 (m=1, 2, 3, )
and
= 2082 + m2)k?
Z;;l(—l)k+l arCtan[—Eﬂ—:_ZEE%E— = g (m=1, 2, 3, )

2 being a positive integer.
1992] 293



2

ON GLAISHER'S INFINITE SUMS INVOLVING THE INVERSE TANGENT FUNCTION

Equation (19) apparently was first derived by Ramanujan for the special case
1 [11, Ch. 2] and it is also derived for & = 1 by Wheelon [12, p. 46].
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COMPLETE FIBONACCI SEQUENCES IN FINITE FIELDS
Owen J. Brison
Faculdade de Ciéncias, Rua Ernesto de Vasconcelos, Bloco Cl, Piso 3, 1700 Lisbon, Portugal

(Submitted November 1990)

1. Introduction

In certain finite fields ¥, of prime order p, it is possible to write the
set of mnonzero elements, without repetition, in such an order that they form a
closed Fibonacci~type sequence. For example, in F;; we may write

1, 8 9, 6, 4, 10, 3, 2, 5, 7,

which evidently has the required property. In [l], a similar example 1s given
for Figg9. It dis dimplicit in [1], [12], that such sequences exist in Fp if Ty
contains a so-called Fibonacci Primitive Root, or FPR: see below for defini-
tions. Here we show (Theorem 4.2) that such sequences exist in Fp if and only
if ¥p contains an FPR; moreover, when Fp does contain an FPR, we show that the
only such sequences to exist are the "natural" ones: that is, the sequences of
successive powers of FPRs. Of course, it was shown in [l] that if the sequence
of successive powers of an element is to have this Fibonacci property, then the
element in question must be an FPR, but here we allow for any sequence of
elements.

We also prove (Theorem 4.4) analogous results for Fibonacci-type sequences
of the set of (nonzero) squares of Fp. 1In this context, the sequence

1, 4, 5,9, 3,

is a Fibonacci-type sequence of the squares of Fp;.

It will be shown that, except for the fields F, and Fg, these phenomena
only occur in the fields of prime order.

We wish to thank the referee for pointing out several references, and in
particular for the information that part of Theorem 2.5 below is proved in
[10].

2. Preliminaries

In this section we collect some preliminaries from [3], [7], [8], [14], and
[15]; p will always denote a prime, ¢ will stand for a power of p, Fg will
denote the field of order g, F; will denote the multiplicative group of g,
while F, and L, will, respectively, denote the nth Fibonacci and n™! Lucas
number. In addition, if 2z is an integer, then % will denote the image of z in
Fp (in situations where the prime p is understood). If g is an element of a
group, then Igl will denote the order of g.

A 0¢-sequence in a finite field ¥ is defined to be a sequence

G = (30, 815 8925 ...) (37;6 ]F),
where
Sy 40 = Sy41 + 8, for m =0, 1, 2,

Any ®-sequence in Fy; is periodic with period r» < qz - 1: see [7, Th. 8.7].

This means that

Sy4yp =8y form=20,1, 2, ...,

and that » is the least natural number for which this holds. Following Wall
[15], we write k(p) for the period of the Fibonacci sequence (mod p); note that
De Leon [3] writes A(p) for this number, while Vajda [l4] writes P(p, F).

1992]



COMPLETE FIBONACCI SEQUENCES IN FINITE FIELDS

Theorem 2.1: ([7, Th. 8.16]). If r is the period of some ¢-sequence in Fq,
where g = p”, then r|k(p). 0

Theorem 2.2: (Wall, [15]; see also [l4, p. 91]). Let p be a prime. Then
(@ k(@)|p - 1 4if p = *#1 (mod 5).
(b) k(p)|2(p + 1) if p = 2 (mod 5). O

The polynomial f(t) = t2 - t - 1 € Ep[t] is what is called [7, p. 198], the
characteristic polynomial of a ®-sequence. We have

Theorem 2.3: ([7, Th. 8.21]). Let p # 5 be a prime. Let Sy, S}, ..., be a
d-sequence in Fq. Let f(%) = t2 - ¢t -1 € Fp[t] and suppose that g, h are the
roots of f(%) in a splitting field F D F;. Then there exist o, B € F such that

s; = og® + Bht, for i =0, 1, 2, ... . O

Lemma 2.4: Let p be an odd prime and let n € IN be such that
(pr - 1)/2]|2(p + 1).

Then p < 5 and n < 2.

Proof: We have
(p-DE"L+ .0 +1) 4p+1).

But (p - 1, p+ 1) = 2, because p is odd. Thus (p - 1)|8, and so p € {3, 5}.
If n 2 3 we may easily derive a contradiction, and the assertion follows.

The first four parts of the following theorem are a combination of results
from [3], [10], [11], and [12] (but note that we are working in an extension
field F D Fp rather than in Fp). Proofs of parts (a)-(c) can be found in Phong
[10, pp. 68-69], or can be extracted from a careful reading of De Leon [3],
together with Wall's result that k(p) is even for p > 2: [1l, Th. 4]. Part (d)
is proved by Shanks [12, p. 164]. We supply proofs for completeness.

Theorem 2.5: Let p = 7 be a prime. Let g, h be the roots, in a suitable ex-
tension field F 2 Fp, of the polynomial

f(t)y =t2-t-1€F[t].
Then
(@) Not both |g| and |%| can be odd. If, say, |k| is odd, then [g| = 2]|A]|.
(b) 1f both |g|, |k| are even, then |g| = |h| is divisible by 4.
(c) 1f |g|, say, is even, then |g| = k(p). 1In particular, k(p) is even.
(d) We have g, h € F, if and only if p = *1 (mod 5).

(e) 1If Ig], say, is of the form p” - 1 or (p"-1)/2, for n € N, then n = 1,
g€ Fp, and p = *1 (mod 5).

Proof: Since g, h are the roots of f(t) = t2 - t - 1, then g = -1/h. Write
gl = @ ana |n] = .
(@) Suppose that b is odd, and note that b = |L/h|. Since |-1| = 2, it

follows that |g| = Z]I/hl, and thus that a = 2b.
(b) Suppose that a, b are both even. Then we have

1 =ga=(-1)%/h% = 1/h8

and so A% = 1. Similarly, gb= 1, and so a = b. Suppose that aq = 2d with d

odd. Then |gdl = 2 and so g4 -1, the unique element of order 2 in Fj. But
then
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nd = (-1)d/gd = -1/-1 = 1,

and so b is odd, contrary to hypothesis. Assertion (b) now follows.

(c) We adapt the proof of [3, Lem. 1]. It follows by induction that g» =
g + F, -1 for any natural number n (and similarly for %"). Since Fy(p = 0 and
(-1 =1, it follows that gk® = 1 and thus that a|k(p). Similarly, b|k(p).
In particular, k(p) must be even. If F, = 0, then 1 = ga = F,_y; thus, k(p)|a
and so k(p) = a. Similarly, if ¥, = 0, then k(p) = b. Suppose then that
Fo # 0 and F, # 0. Then 1 = g4 =F,g+ F,_; and so g = (1 - F,_1)/F,. Thus,
as in [3], we have

0= (g% -g- 1)F?
-(F? - EF -F2)) - (F, +2F,_)) + 1

a“a-1

(-1)% - I, + 1.
Thus, I, = 1 + (-1)®. Similarly, I, = 1 + (-1)°.

iG]

]

Now, if a is even, then L, = 2. But [Z - 5F2 = 4 and so F, = 0, a contra-
diction. Thus, a must be odd. Similarly, b must also be odd. But this is in
contradiction to (a). It follows that at least one of F,, F, must be zero, and
assertion (c) follows.

(d) We have (2g - 1)2 =5¢€ Fp. On the other hand, if w € Fp satisfies

w2 = 5, then (1 * w)/2 are the roots of f(t). Thus, g, h € Fp if and only if
the element 5 is a square in Fp, and this occurs if and only if p = *1 (mod 5),
by the quadratic reciprocity law [5, Ths. 97 and 98].

(e)  Suppose that Ig[ = pn -1 or (p* - 1)/2. Then Ig[ divides k(p) by (a)
and (c) above. Suppose that p = *¥2 (mod 5). Then k(p)]Z(p + 1) by 2.2(b).
Thus, in either case, (p” - 1)/2[2(p + 1). This is impossible by Lemma 2.4,
because p 2 7. Therefore, we must have p = #1 (mod 5), and so g € Fp by (d).
But now k(p)](p - 1) by 2.2(a), whence (pn_1 + -0 + 1) |2 and it follows that
n=1. [

3. Fibonacci Primitive Roots

Definition 3.1: Let f(t) = t2 - t - 1 € F,[t] C T, [t] where g is a power of p.
Suppose that g € F; is a root of f(%).
(a) (Shanks, [12]). We call g a Fibonacci Primitive Root (FPR) in Fg if
Ig] = g - 1l; that is, if g is a primitive root in Fy.

(b) We call g a Fibonacci Square-Primitive Root (FSPR) in F; if g generates
the subgroup of squares in F,;; if ¢ is odd, this means that

lgl = (¢ - 1)/2.

Fibonacci Primitive Roots and related topics have an extensive literature:
see, for example, references [1], [3], [6], and [9]-[15].

In part (b) of the following result, the criterion for the existence of an
FPR is proved in Theorem 1 of De Leon [3], while the assertions on the number
of FPRs are proved by Shanks [15, pp. 164-65]. The exceptional cases to this
theorem (p < 7) will be dealt with in 3.3 below.

Theorem 3.2: Let p 2 7 be a prime and let g = p” where n € IN.
(a) 1f Fy D> Fp possesses an FPR or an FSPR, then Fgy =TFp and p = *1 (mod 5).
(b) Ty, possesses an FPR iff k(p) = p - 1. Further, if k(p) = p - 1, then

(1) 4if p = 1 (mod 4), there are two FPRs;
(ii) 4if p = -1 (mod 4), there is just one FPR (and one FSPR).
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(c) T, possesses an FSPR iff either

(1) k() =p -1 and p = -1 (mod 4), when there is a unique FSPR; or

(ii) k(p) = (p - 1)/2. 1In this case, we must have p = 1 (mod 4), then
(a) 1if p =1 (mod 8) there are two FSPRs;
(B) 1if p = 5 (mod 8), there is a unique FSPR.

Proof: Again write f(¢) = t2 - ¢t - 1 €T, [t], and suppose that g, h are the
roots of f(%¢) in the field Fq D Fp.

(a) Suppose that g is an FPR or an FSPR in Fy. Then |g| = p” - 1 or (p”* -
1)/2, and so by 2.5(e), p = *1 (mod 5) and n = 1. Thus, Fy = Fp.

(b) If g is an FPR in Fp, then Igl =p -1 is even and so k(p) = p - 1 by
2.5(c). Further, p = *1 (mod 5) by 2.5(d).

Conversely, suppose k(p) = p - 1. Let g be an even-order root of f(%);
then Igl =p -1, by 2.5(c), and so g € Fp by 2.5(e). Thus, g is an FPR in Fp.
Now, if p = 1 (mod 4), then 4|p - 1, whence |g| = |k| by 2.5(c), and so g, &
are both FPRs. However, if p = -1 (mod 4), then p - 1 is twice an odd number.
Thus, by 2.5(a) and 2.5(c), g has order p - 1, and so is an FPR, while % € Fp
has order (p - 1)/2, and so is an FSPR.

(c) Suppose that 4 € F, is an FSPR. Then |n| = (p - 1)/2, and so

k(p) € {p - 1, (p - 1)/2}

by 2.5(a) and 2.5(c). Suppose that k(p) = p - 1. Then, by part (b), Fp pos-—
sesses an FPR, which must be the other root g of f(£). But then g is a non-

square in F,, while % is a square and g = -1/A. Thus, -1 is a non-square in Fp
and p = -1 (mod 4) by quadratic reciprocity. This proves the "only if'" part of
(c).

If k(p) =p -1 and p
by (b). Suppose that k(p) =
(mod 4).
(o) If p =1 (mod 8), then (p - 1)/2 is divisible by 4 and so both roots of
f(£) have order (p - 1)/2 by 2.5(a)-(c). These roots belong to Fp by
2.5(e), and so there are two FSPRs in Fp.
(B) If p = 5 (mod 8), then (p - 1)/2 is twice an odd number. By 2.5(a)-
(c), one root of f(¢) has order (p - 1)/2 while the other has order
(p - 1)/4. Again by 2.5(e), these roots belong to Fp, and so there is
a unique FSPR in Fp.

= -1 (mod 4), then there is a unique FSPR in Fp
(p - 1)/2. Since k(p) is even by 2.5, then p = 1

Assertion (c) now follows, and the proof is complete. [J

The following proposition lists a collection of easily-verifiable facts
concerning FPRs for primes p < 7.

Proposition 3.3: We have

(@) k(2) = 3. Let ¢ be a root in F, of f(¢) = t2 4+ ¢t 41 € Fy[£]. Then
1 + ¢ is the other root of f(¢). We have lg[ = Il + Z;I = 3, and so ¢ and 1 + ¢
are both FPRs in I, ; they are also FSPRs because all elements of T, are
squares.

(b) k(3) = 8. Let ¢ be a root in Fgq of p(t) = t2 + 1 € Fy[t]. Then f(%)
t2 -t -1 € F3[¢] has roots g =n-1and A= -n - 1 in Fg. Further, Ig[
|h| = 8, and so g, h are FPR's in Fq.

(c) k(5) = 20. Because (t - 3)2 = t2 - t - 1 € F5[t], then the element 3 €
F5 is a double root of f(¢) in Fg. Further, |3] = 4, so that 3 is the unique
FPR in F5. ©Note that 2.5(c) definitely fails for p = 5. [
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It should be noted that Brousseau [1] 1lists the FPR's for those primes
p < 300 that possess such, while Wall [15] gives the values of k(p) for all
primes p < 2000. In section 5 below, we list the FPRs and FSPRs for those
primes p < 2000 that possess such.

It is proved in [11], on the assumption of certain Riemann hypotheses,
that, asymptotically, the proportion ¢ = 0.2657... of all primes possess an
FPR; since, apart from p = 5, the only eligible primes p satisfy p = 1 (mod
5), then we are to expect that over half of these possess an FPR. It might be
of dinterest to determine the proportion of primes that possess an FSPR. For
example, there are 146 primes p < 2000 with p = #1 (mod 5), of which 80 possess
FPRs and 76 possess FSPRs (see the table in section 5).

4. Complete ¢-Sequences

Let p be a prime and let g be a power of p. Let &= (sy3, Sy, S, ...) be a
¢-sequence of period r in Fg. We call & a complete ®-sequence in Fq if r =
q - 1 and if {sy, s1, ..., S,-1} is precisely the set of nonzero elements of
Fy. 1f {sg> 815 +..s 8p-1} 1s precisely the set of nonzero squares of Fy, so

that » = (¢ - 1)/2 if g is odd, then © is called a square-complete ®¢-sequence
in IFq.

Lemma 4.1: Let f(t) =t2-t - 1€ F [t] and let g be a root of (%) in a field

FDOTFp. Then the ¢-sequence & = (gp, 81, ...) in F with s5 = 1, s; =g has
period a = Igl, and
{805 815 vves 8q-1} =11, g, ..., g7t}

In particular, if g is an FPR, or FSPR, in F, then @ is a complete~ or square-
complete ®-sequence in F, respectively.

Proof: This is clear. []

We now give our characterization of complete ¢-sequences for primes p = 7;
the cases p < 7 are exceptional and will be dealt with later. It is worth
observing that if & is a complete ®¢-sequence in Fp, then the sequence formed by
multiplying the terms of © by a fixed nonzero element of Fp is essentially the
same sequence & with the terms all shifted by a fixed amount; we will thus not
distinguish between such multiples.

Theorem 4.2: Let p 2 7 be a prime and let g = p” where # € N. Then there is a
complete ®-sequence in F; if and only if there is an FPR in F;, and for this to
happen we must have ¢ = p. Further, any complete ®-sequence in Fp has the form

(1, 4, 42, ...) where j§ is an FPR in Fp, and conversely.
Proof: Let f(t) =t2-¢t - 1 € Fpl[t], let g, h be the roots of f(Z) in a split-
ting field F D> Fq. Suppose without loss that lgl is even; then |g| = k(p) by
2.5(c).

If § is an FPR in T4, then the ¢-sequence (1, J, J%, ...) is complete (in
Fg) by Lemma 4.1.

Suppose now that & is a complete d-sequence in F;. Then & has period q - 1

and so g - llk(p) by 4.1. If p = %2 (mod 5), then k(p)[Z(p + 1) by 2.2. Thus,
q - 1}2(p + 1), which is impossible by 2.4 because p = 7. Therefore, we may
assume that p = *1 (mod 5). Then k(p)lp - 1 by 2.2; thus, ¢ - 1|p - 1, and so
q = p and k(p) = p - 1. Thus, g is an FPR in Fp. Note now that f(%) splits in
Eb. By 2.3, there exist a, B € Fp such that

G = (o + B, ag + Bh, ag? + BhZ, ...),
and because © is complete,

Fy = {ag? + ght: 0 < i < p - 2}.
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But h = -1/g = g~ D/2gr=2 = 4Bp=5/2 Thys, the map
gi b agt + Bgi(3p—5)/2’ 0 <1 < p - 2,

is a permutation of Fj. But then the polynomial
p(t) = ot + Bt(3p‘5)/2 c ]Fp[t]

is a permutation polynomial of Fp. But now Hermite's criterion for permutation
polynomials (see [4, §84] or [7, Th. 7.4]) implies that, in particular, the
reduction, P(¢) say, of (p(t))L+ (mod tP - t) has degree d < p - 1. A certain
amount of calculation reveals that

P(t) = 6a2p2tP1 4+ g(¢t),

where Q(t) € Ep[t] has degree e < p - 2. It follows that aB = 0, and so the
only possibilities for & are (nonzero multiples of):

(1, g, g% --2)s
and if, also, |k| =p - 1,
(1, h, k%2, ...).
This completes the proof. [I

The next theorem characterizes the square-complete &-sequences for p = 7;
again, the exceptional cases (p < 7) are dealt with later. The characteriza-
tion is almost a word-for-word '"translation" of the previous result, but there
are a number of technical differences in the proof. Hermite's criterion is not
directly applicable here, but we can apply ideas from its proof to get what we
need. We will also need to know that the smallest prime p = *1 (mod 5) for
which k(p) < p - 1 is p = 29. This fact is given in Wall [15], but may easily
be calculated by hand: we need only check the Fibonacci sequences mod 11 and
mod 19.

First we need a lemma; it is not new (see [4, §74]) but we dindicate a
proof.

Lemma 4.3: Let G be a subgroup of F,; with |G| = m. Then

(a) 2: g™ = m (considered as an element of E;), and
geag

(b) 3 g7

geG

0, for 1 <4 <m - 1.

Proof:
(a) This follows because g™ = 1 for all g € G.
(b) The elements of G are precisely the roots of ¢t - 1 € F,[t]. Then

2 g7

geiG
is the sum of the jth powers of these roots, and the assertion follows by New-
ton's formula [4, §74] and [7, Th. 1.75]. 0O

Theorem 4.4: Let p = 7 be a prime and let g = p” where n € N. Then there is a
square-complete ¢-sequence in Fg; if and only if there is an FSPR in Fg, and for
this to happen we must have g = p. Further, any square-complete ®-sequence in
Fp has the form (1, j, j2, ...) where j is an FSPR in Fp, and conversely.

Proof: Let f(t) = t2 -t -1¢€ Fplt], let g, h be the roots of f(¢) in a split-
ting field F D ;. Suppose without loss that Igl is evenj; then Igl = k(p) by
2.5(c).

If j is an FSPR in F4, then the ®-sequence (1, J, F%,...) is square-complete
(in Fgq) by Lemma 4.1.
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Suppose now that & is a square~complete ®-sequence in Fy;. Then & has period

(g - 1)/2, and so (g - 1)/2|k(p) by 4.1. If p = *2 (mod 5), then k(p)|2(p + 1)
by 2.2. Thus (¢ - 1)/2|2(p + 1), which is impossible by 2.4 because p27. We
may therefore assume that p = #1 (mod 5), and so g, % € F,. Then k(p)lp - 1 by
2.2; thus ¢ - 1|2(p -~ 1), and so ¢ = p and

k(p) e {p - 1, (p - 1)/2}.
By 2.3, there exist a, B € Fp such that

6= (a + B, ag + Bh, ag? + BRZ, ...).
We consider separately the two possibilities for k(p).

(1) Suppose that k(p) = p — 1. Since & has period (p - 1)/2, then

o+ B = ag(p“l)/z + Bh(P—D/Zﬂ
But |g| = p - 1 and so g®P"V/2 = -1, If also || =p - 1, then AP D/2 = -1,
and so o + B = ~(a + B) = 0. But then & contains the element 0, and so cannot

be square-complete, a contradiction. Therefore Ihl = (p - 1)/2, by 2.5, and so
o+ B =-a+ B. Thus o = 0, and so G must be (a nonzero, square multiple of)

(l’ h’ hzy ---)’
and h is an FSPR in Fp.

(ii) Suppose that k(p) = (p - 1)/2. By the Remark before Lemma 4.3, we may
assume that p > 29. Since |g| = k(p), then g is an FSPR in Fp. By 3.2(c),
= 1 (mod 4), and so -1 is a square in Fp. We then have g”l = g(p_g)/2 and -1
= g~ D/% yhence h = -1/g = g®-D/% yrite @ for the subgroup of squares in
E;; then |Q1 = (p - 1)/2. Since & is square-complete, we have
Q = {ag? + Bht: 0 <12 < (p - 1)/2}
{og? + BgtBr-7/%: 0 < ¢ < (p - 1)/2}

{ac + peBp~D/%: ¢ € @},

Calculation now reveals that
(ae + Bc(3p—7)/4)8 = z(c),

where x(%) € Fp [t] is a polynomial of degree at most (p - 3)/2 with constant
term 700%8%. There are certain points that require care in the calculation
here; for example, the second term in the expansion is

80‘78070(3p"7)/4 = 80L7Bc(3p +2D /4%

= 8a7Re(P-D/2,(+23)/4

Now ¢P~D/2 = | pecause ¢ € §, while 1 < (p+ 23)/4 < (p = 1)/2 is the upper
bound because p = 29 > 25. Thus, we obtain a term whose degree in ¢ lies
between 1 and (p - 3)/2. The constant term arises naturally as the "middle"
term of the expansion, and all other terms have degree between 1 and (p - 3)/2.
Now 4.3 gives both the first [since (p - 3)/2 2 8] and the last equality in the
following chain:
0=Y c8 =73 (ac+ 8BP-7/")8 = 5 x(c) = ((p - 1)/2)70a"s".
ceEQ ceq ceq

It follows (because p = 29 cannot divide 70) that af = 0. Thus, the only pos-
sible square-complete ¢-sequences in F, are (nonzero square multiples of)

(]-3 g 92, ---)’

and if, also, h is an FSPR,
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(1, hy, B2, ...).
This completes the proof. [J

The following result mirrors Proposition 3.3, and deals with the primes 2,
3, and 5.

Proposition 4.5:

(a) The field F, possesses neither a complete ¢-sequence nor a square-com-
plete 9-sequence. If ¢ is as in 3.3(a), then

1, ¢z, 1 + ¢, and 1, 1+¢, ¢

are the only complete ¢-sequences in IF,; they are also square-complete because
all elements of Fi are squares.

(b) The field F3 possesses neither a complete d-sequence nor a square-com-
plete ¢-sequence. If w is any element in Fg that is #not in F3 then the o-
sequence with sy =1, s = w:

1, w, 1+ w 1+ 20, 2, 20, 2 + 20, 2 + w,
is in Fg, but there are no square-complete d-sequences.

(c) The sequence 1, 3, 4, 2 is the unique complete ®-sequence in Fs, while
this field possesses no square-complete ®-sequence.

(d) If g is any of 2", n 2 3, or 3", n > 3, or 5%, n 2 2, then F, possesses
neither a complete d-sequence nor a square-complete d-sequence.

Proof: Most of these assertions are straightforward to verify. For part (d),
we use 2.1. [

5. List of FPRs and FSPRs for Primes p < 2000

We finish with a table of FPRs and FSPRs for those primes p < 2000 that
possess such; as we have seen, the prime 5 is "singular" and we set it apart in
the list. By 3.2, the only primes p < 5 eligible are those with p = *1 (mod 5)
and k(p) € {p - 1, (p - 1)/2}; all other primes are thus omitted from the list.
For each eligible prime, we give the respective root(s) in Fp of f(¥) = t2 -
t - 1 € Fp[t] when they are either primitive (denoted by P) or square-primitive
(denoted by Q). We omit those roots that are not either primitive or square-
primitive.

Information on the values of k(p) necessary to find the eligible primes was
taken from Wall [15]. Certain of the calculations were performed by computer
using the finite field facility in the Group Theory Language CAYLEY [2],
although much of the work was carried out using nothing more than a pocket
calculator.

p FPR (P) or FSPR (Q) p FPR (P) or FSPR (Q)
5 3P

11 8P 4Q 19 15P 5Q
29 6Q 31 13P 19Q
41 7P 35P 59 34P 26Q
61 18P 44P 71 63P 9Q
79 30P 50Q 89 10Q 80Q
101 23Q 109 11P 99p
131 120P 12Q 149 41P 109P
179  105P 75Q 181  168Q

191 89P 103Q 229  148Q

239 224P 16Q 241 52P 190P
251 134P 118Q 269 72P 198P
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p FPR (P) or FSPR (Q) p FPR (P) or FSPR (Q)
271 255P 17Q 311 59P 253Q
349 206Q 359 106P 254Q
379  360P 20Q 389 152P 238P
401 112Q 290Q 409 130P 280P
419 399P 21Q 431 341P 91Q
439 370P 70Q 449  166P 284p
479 229P 251Q 491 74P 418Q
499  275P 225Q 509  388Q
569  337P 233P 571 298P 274Q
599 575P 25Q 601 137P 465P
631 110P 522Q 641 279P 363P
659  201P 459Q 701 27P 675P
719  330P 390Q 739 119P 621Q
751 541P 211Q 761 92Q 670Q
821  213P 609P 839  498P 342Q
929 31pP 899P 941  228Q
971 798P 174Q 1019 526P 494Q
1021  458Q 1039  287p 753Q
1051 73P 979Q 1061  602Q
1091  212p 880Q 1109  703Q
1129  328p 802Pp 1171 1058P 114Q
1181 534P 648P 1201 78P 1124P
1229 745Q 1249  405Q 845Q
1259 1224P 36Q 1301 268P 1034P
1319  920P 400Q 1321 453P 869P
1361 83Q 1279Q 1399  240P 1160Q
1409 125Q 1285Q 1429 547P 883P
1439  701P 739Q 1451  283P 1169Q
1459 1293Pp 167Q 1481 39P 1443Pp
1489 681P 809P 1499 1291P 209Q
1531 88P 1444Q 1549 1020Q
1559 1520P 40Q 1571 1044P 568Q
1609 636P 974P 1619 855P 765Q
1621 1446Q 1669  136Q
1709  601Q 1741 321Q
1759  859Pp 901Q 1789 1554Q
1801 427P 1375P 1811 186P 1626Q
1831 1053P 779Q 1861 1498Q
1879 1457Pp 423Q 1889  824P 1066P
1901 98P 1804P 1931  988p 944Q
1949  789P 1161P 1979 1935P 45Q
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THE DIOPHANTINE EQUATION x?2 + a?yMm = z2n WITH (x, ay) = 1

Konstantine Dabmian Zelator (formerly K. Spyropoulos)

Carnegie Mellon University, Pittsburgh, PA 15213
(Submitted December 1990)

As it is well known, the equation
(1) x2 + yt =z

has no solutions in the set of positive integers (one can find this equation in
a number of sources including Dickson's History of the Theory of Numbers [2]).
The equation x2 + y” = z" serves as a classic result in the history of diophan-
tine analysis, and one of the first known examples where Fermat's method of
infinite descent is employed.

Therefore, if m = 0 (mod 4) and 7n is even, the equation x2 + ym = 22" has
no solution in positive integers x, y, and 2.

Now consider the diophantine equation z2 + azym = 22" with m even. We will
show that if g is a positive odd integer and if it has a prime divisor p = *3
(mod 8), then the above equation has no solution with (x, ay) = 1 and y odd,
provided that # = 0 (mod 2). This author has shown in [3] that the equation
xt + pzy“ = 52, p a prime with p = 5 (mod 8), has no solution in the set of
positive integers. It is known, however, that for certain primes of the form
p =1, 3, or 7 (mod 8), the latter equation does have a solution over the set
of positive integers (for fruther details, refer to [3]).

To start, we have

Theorem 1: Let a be a positive odd integer with a prime factor p of the form
p = *3 (mod 8). Also, let m and 7 be positive integers with m and » both even.
Then the diophantine equation 22 + a2y™ = 32" with (x, ay) = 1 and y odd has no
solution in the set of positive integers.

Proof: Assume (x, y, 3) to be a solution to the equation
(2) x2 + g?ym = z2»
with (x, ay) = 1.
Since m is even, m = 2k, the equation
(3) 2 + a?y?k = z2n,

describes a Pythagorean triangle with side lengths x, ayk, and 2". Accordingly,

there must exist positive integers ¢ and % of different parity, i.e., ¢ + & =1
(mod 2), with (¢, &) =1 (£ and & relatively prime), such that

(4) x = 2th, ayk = t2 - 92, 2" = t2 + 22,
From the second ‘equation of (4), we obtain
(5) ayk = (t - (@& + ).

In view of the fact that the integers ¢ and % are relatively prime and of dif-
ferent parity, we conclude that ¢ - 2 and ¢ + & must be relatively prime and
both odd; thus, (5) implies

(6) t—JL=a1y7f, t+2=a2y§

with y;, y, both odd and (y;, y,) = 1 = (a;, a,) and a;a, = a.
Equations (6) yield
ayk + ayk ayk - a,yk
Y1 2Y2 2Y2 1Y

= - = < =—————-—-————1
¢ 2 o b 2
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and by substituting in the third equation of (4), we obtain
= 2,2k 2,,2k
23" aty{* + azys;*.
By the hypothesis of the Theorem, n is even, n = 28, and so we obtain
28 = ,2,,2k 2,,2k
(7) 2248 = aty{* + asys©.
According to the general solution of the diophantine equation
222 = ¥2 + Y2 with (X, ¥) =1
(refer to [2] and also to the Remark at the end of the proof for comment on
this equation), (7) implies
(8) 28 = r2 + 82, ayf =1r?+ 2rs - 82, a,ys = -r? + 2rs + 52
with (», s) = 1 (and, in fact, » and s are of different parity).
According to the hypothesis of the Theorem, a = a;a, is divisible by a prime
p = *3 (mod 8). Thus, a, or a, is divisible by p, say ay - Then the second
equation in (8) gives P2+ 2ps - 82 = 0Q (mod p); (r + 8)2 — 282 = 0; and so
(9) (r + 8)2 = 282 (mod p).
But s and r + s are relatively prime, since » and 8 are; thus, neither of them
is divisible by p [by (9)] and so congruence (9) shows that 2 is a quadratic
residue modulo p, which is impossible according to the quadratic reciprocity
law and since p = *3 (mod 8) [recall that p = *1 (mod 8) iff 2 is a quadratic

residue mod p]. The argument is identical when a, is divisible by p; the con-
gruence that yields the contradiction is

(r + 8)2 = 2r? (mod D).

Remark: Given two positive integers a and b which are relatively prime, it can
be shown through elementary means that every solution (with X, Y, and Z
relatively prime) (X, Y, Z) in Z, to the diophantine equation

(a? + b2)z2 = 2 + y2?,
must satisfy

—am? + 2bmn + an? bm? + 2amn - bn? m? + n?
X= D ,-Y= D 3Z=—'D—s

where D is the greatest common divisor of the three numerators and where the
integers m and »n are relatively prime. In the case of the equation

222 = X2 + y2

we have, of course, a = b = 1; so the parametric solution takes the form

X =-m?2+ 2mm + n2, ¥ =m2+ 2mm - n?, 7 =m2+ n?
with (X, ¥) =1, (m, n) = 1, and m, n of different parity. If we set a =b =1
in the above formulas and require (X, Y) = 1, then it is not hard to see that
D = 1 or 2 according to whether m and n are of different parity or both odd

with (m, n) = 1; but the case D = 2 reduces to D = 1 when m and »n are both odd.
To see this, we may set m =m' - n' and n = m' + n' with (m’', n') = 1 and m',
n' of different parity. By solving the above formulas for m' and n' in terms
of m and 7, substituting for a =b = 1 and D = 2 in the above formulas, we do
see indeed that the case (m, ) = 1 and m +n = 0 (mod 2) reduces to that of
(my ) =1 and m+n =1 (mod 2) (and so D = 1).

These elementary derivations of parametric solutions make essential use of
the fact that the equation (a? + b2)Z2 = X2 + Y2 is homogeneous. For further
reading, you may refer to [1].
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Corollary 1: If a satisfies the hypothesis of Theorem 1, there is no primitive
Pythagoran triangle (primitive means that any two sides are relatively prime)

whose odd perpendicular side is divisible by a and whose hypotenuse is an inte-
ger square.

Proof: Suppose, to the contrary, that there is such a primitive Pythagorean
triple, say (xl, Yi» zl), so that x% + y% = z%, (xl, yl) =1, y; odd. Then we
must, accordingly, have y; = ay and 2z, = 32, where y and 2z are positive inte-
gers. Substituting into the above equation, we obtain x2 + azyz = z”; since y,
is odd, so must be y in view of y; = ay. But (1, y;) = (x;, ay) = 1, which,
together with the last equation, violate Theorem 1 for m = m = 2. Thus, a con-
tradiction.

Comment: It is not very difficult to show that, given any positive integer o,
there is an infinitude of Pythagorean triangles with a perpendicular side being
a pth integer power; or with the hypotenuse a ot integer power. A construc-
tion of such families of Pythagorean triangles can be done elementarily and

explicitly. Specifically, if a and b are odd positive integers which are
relatively prime, define the positive integers
P [ (S P
M = 2—{§£L- and N = g—j?llg a > b.

Then the triple (M2 - N2, 2MN, M? + N2) is a primitive Pythagorean triple such
that M2 - N2 is the pth power of an integer. That the triple is Pythagorean is
well known and established by a straightforward computation. To show that it
is primitive, it is enough to observe that, in view of the fact that a and D
are both odd (and so are a” and b°), M and N must have different parity (to see
this, consider a” + b° and a® - b° modulo 4). 1If p is a prime divisor of M and
N one easily shows that p must divide both a¢° and b»°, an impossibility in view
of (a, b) = 1. This establishes that (M, N) = 1. Finally, a computation shows
M2 - 12 = afbP = (ab)®.

To construct a primitive Pythagorean triangle whose even side is the pth
power of an integer, it would suffice to take M = g” and N = 2° 1« b? (or vice
versa), with (a, b) = 1, a and b positive integers and a odd. Here we assume
p 2 2 (for p =1 the problem is trivial, in which case one must assume b to be
even). By inspection, we have (M, N) = 1. And 2MN = 2q°f - 2p-1p0 = (2ab)?; the
triangle (M2 - N2, 2MN, M? + N2) is a primitive one whose even side is a pth
integer power.

Now, let us discuss the construction of a primitive Pythagorean triangle
whose hypotenuse is the ptP power of an integer. 1In the special case p= 27,
the following procedure can be applied. We form the sequence

(@gs Ygs Bg)s «ovs (Xus Yps 3n)
by first defining
= 2 2 = - 2 2
xo =My - Nys Yo = 2MgNy, 24 = My + Vg,

where M, and Ny are given positive integers, relatively prime, of different
parity, and My > Ng. Then recursively define

_ 2 2 — Fo—
M; = Mi—l - Ni—l and v, = ZMi—INi—l’ for 2 =1, ..., 7.
It can easily be shown by induction that (M;, N;) =1 and that (x;, y;, 2;) is a
Pythagorean triple, where
2 2
i = M‘i - Ni’ y,b = ZM,I:N.;, 3

2 2
X 7'=M7;+N,L'.

It is also easily shown that z; = Z%—l’ which eventually leads to 3z, = z%". The
Pythagorean triple (%,, Y,» %,) would then be a primitive one, with z, the pth
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power of an integer p = 2". More generally, if p > 2 is any integer, a primi-
tive Pythagorean triangle can be constructed such that the hypotenuse is the
pth power of a prime p = 1 (mod 4).

Specifically, if p is any prime such that p = 1 (mod 4), then p = a2 + b2,
where the relatively prime integers a and b are uniquely determined.

We have

P2 =pep = (@ + b2 (a? + b?) = (a® - D)2 + (2ab)?;

one can easily check that a? - b2 and 2ab must be relatively prime. Now, sup-
pose that pp_l = M2 + N2, p >3, for some positive integers M and N such that

M, vy = 1.
We have
p? =p° lep = (M2 + N2)(a? + D2) = (Mb - Na)? + (Ma + Nb)2

(Mb + Na)? + (Ma - Nb)2.

We claim that
(Mb - Na, Ma + Ib)

1 or (Mb + Na, Ma - Nb) = 1.

For, otherwise, there would be a prime g dividing Mb - Na and Ma + Nb and a
prime » dividing Mb + Na and Ma + Nb. But then, according to the above equa-
tion, both ¢ and r would divide pP; hence, ¢ = r =p. But this would imply
that p must divide 2Mb, 2Na, 2Ma, and 2Nb; consequently, p must divide (since p
is odd) Mb, Na, Ma, and Nb; however, this is impossible by virtue of (M, N) =
(a, b) = 1. Thus, we have shown that, for given p = 2 and prime p = 1 (mod 4),
there exist integers M, N, (M, N) = 1 such that p° = M2 + N?. Then the desired
Pythagorean triple is (M2 - N2, 2mm, pP).

Corollary 2: If in a primitive Pythagorean triangle the hypotenuse is an inte-
ger square, then each prime factor p of its odd perpendicular side must be con-
gruent to *1 modulo 8.

Proof: The result is an immediate consequence of Corollary 1. Indeed, if it
were otherwise, that is, if the odd perpendicular side y had a prime factor
p = 3 (mod 8), then by setting y = py;, we would obtain

x2 + p?ey2 = 22, with (x, py,) = 1.
But z = R2 by hypothesis, and so the last equation produces

22 + p2y? = R4,
which is contrary to Corollary 1 with a = p.
Theorem 2: Let m be a (positive) even integer, m = 2k, with k odd, k¥ = 3, and
n even. Also, let a be an odd positive integer that contains a prime divisor
p = *3 (mod 8), and assume that b is a non-k'P residue modulo ¢, while 2 is a
kth residue of g, where g is some prime divisor of a; b some positive integer
relatively prime to a. Moreover, assume that each divisor p of a/g¢, where ge

is the highest power of ¢ dividing a, is a k™ residue modulo g. Then the
diophantine equation

bem + azym = z271; (bxk)z + (ayk)z = (Zn)Z
has no solution in positive integers x, y, 8 with (bx, ay) = 1.

Proof: By Theorem 1, there is nothing to prove when y is odd. If, on the other
hand, y is even and x odd, with (bx, ay) = 1 and b2x™ + a?y™ = 22", we see that
bxk, ayk, and z" form a primitive Pythagorean triple, where k = m/2. 1In that
case, of course, bxr is odd and ay is even, and so we must have
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(10) baxk

with (M4, ) 1 and M, N being positive integers of different parity.

Let g be the prime divisor of a, as stated in the hypothesis. The second
equation of (10) shows that ¢ must divide M or N. Certainly the above coprime-
ness conditions show that g does not divide bx. On the other hand, by virtue

M2 - N2, ayk = 2MN, 2" = M2 + N2

of the fact that k is odd, we have (-1)*¥ = -1. First, suppose M = 0 (mod q) .
Then, if g¢ is the highest power of ¢ dividing a, then since (M, N) = 1, the
second equation in (1) shows that g¢ divides M; and

n = nkp2f,

where p is a divisor of a/q¢ and the exponent f equals 0 or k - 1, depending on
whether N is odd or even, respectively. Thus,

N2 = N2kp2 . 22f;

but p is a kth residue of ¢ by hypothesis; hence, so is p?. Also 2K71 is a ktP
residue of g, since 2 is (by hypothesis) and 2 o 2k=1 = 2k Consequently, N?
is a k'M residue and since (-1)%¥ = -1, the first equation in (10) clearly
implies that b is also a k'™ residue of g, contrary to the hypothesis.

A similar argument settles the case N = 0 (mod g).

Example: Take k = 3, and som =6, p =29, g =31, e =1, and a =p-q = 899;
then p = 5 (mod 8) and the cubic residues of 31 are *1, *2, *4, *8, and *15;
p = 29 is a cubic residue of q. Thus, if b # *1, %2, *4, *15 (mod 31), the
diophantine equation (bx3)2 + (899y3)2 = g% has no solution over the set of
positive integers.

Corollary 3 (to Th. 2): Let a, b, and kK be positive integers satisfying the
hypothesis of Theorem 2. Then, there is no primitive Pythagorean triangle with
one perpendicular side equal to a times a k' integer power, the other b times
a kB power, and the hypotenuse a perfect square.

Proof: Apply Theorem 2 with m = n = 2. We omit the details.
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ON THE (2, F) GENERALIZATIONS OF THE FIBONACCI SEQUENCE

W. R. Spickerman, R. N. Joyner, and R. L. Creech
East Carolina University, Greenville, NC 27858
(December 1990)

A generalization of the Fibonacci sequence to vectors was defined in
Atanassov, Atanassova, & Sasselov [1]. In a later article, Atanassov [2]
defined the four distinct (2, F) generalizations of the Fibonacci sequence and
determined a solution for one of the cases in terms of the greatest integer
function. Subsequently Lee & Lee [3] published solutions for all four (2, F)
generalizations using the function f(n) = £;, where j = n mod(k) + I and ¢; is
the j®" element of an ordered k-tuple [£y, %y, ..., tix]. The purpose of this
paper is to present a solution to each of the four (2, F) generalizations of
the Fibonacci sequence as

(1) A linear combination of two second-order recursive sequences, and
(2) a polynomial in o and B and sometimes w and W, where o = (1 + /g)/Z,
B=(l~-¥5)/2, and w and & are the usual complex cube roots of 1.

In order to find a solution to the four (2, F) generalizations of the Fibo-
nacci sequence, the following lemma is used.

Lemma: Let p(x) =13 xx xz2. The four recursive sequences defined by the
four possible generating functions 1/p(x) have the properties given in Table 1
below, where w and @ are the complex cube roots of unity and o = (1 + V5)/2 and

B = (1L - V5)/2.

Table 1
Generating Generated Recursion
Function General Term Series Relation
1 R Bn+1 o
—_—s F, = — Fx" F = F + £
l_x_xZ n o - B ngon n+2 n+1 n
1 wn+l _ —(Bn+1 x
—_—_ T, = — T x™ - =T + T
1 + 2 + x2 n w - n2=:0n n+2 n+1 n
1 u)71+1 - E-)n+1 ©
—_— S, = (-1 ——7F— S, x" S = 3 -5
1—.7c+x2 n ( ) w -0 71;0” n+2 n+1 n
1 atl — Brz+1 ©
—_— G, = (-1)" G, x" G = -G + G
1 + 2 - x2 n (-1 o - B n§=:0 n n+2 n+l n

The proof of the lemma is not shown; however, the lemma can be proved by
separating the generating functions into fractions with linear denominators and
then applying the binomial theorem for negative exponents. Note that, in the
table,

Fo=1, F1 =1, and F,4p = F,,.3 + F, for n = 2, 3, 4,

From the table, it is dimmediate that
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G, = (-)"F, and S, = (-1)"T,.
It is also true that all four sequences may be extended to negative indices.
Theorem: Let Prll = (X,, Y,) and P,% = (Y, X,). Then the difference equation
1 j .
Piyp =Pl + P n=0; for j, k € {1, 2}

with the initial conditiomns P(l) = (a, ), P% = (b, d), where a, b, ¢, and d are
arbitrary real numbers, defines the four distinct (2, F) generalizations of the
Fibonacci sequence.

Proof of the Theorem: The four distinct cases are considered separately.
Case 1: Let j =1 and k = 1. The system is
Xpyo = Xy +X,, n 20,
Yyip = Yyi1 + ¥,, 7 2 0, with
Py = (a, ¢) and P} = (b, d).

Here, the system is separable into two independent difference equations with
each equation defining a generalized Fibonacci sequence. The required solution
is

X, =aF,_o + bF,_y and Y, =cF,_, + dF,_; for n 2 0.

Binet's formulas are
n-1 _ pn-1 n _ pn n-1 _ pn-1 n - pn
Xn=a°‘ 8 + b2 B and Yn=ca 8 + d= B
o - B a - B a - B o - B

Case 2: Let J =1 and k

2. The system is
0,

0, with

(a, ¢) and P} = (b, d).

v

Xn+2 = Xn+1 + Yn’ n

[\

Yovo = Ypy1 + X, 7
1
Py

Assuming a solution of the form
X =f(x) = ) Xxt, Y=g = ) Yzt
=0 =0
and substituting into the above system yields the system
(1 - 2)f(2) - z2g(x)

~x2f(xz) + (1 - x)g(x)
defining f(x) and g(x). Solving this system and applying partial fractions
results in the following generating functions for f(x) and g(x):

if@+e) + (~a-c+ b+ dDx (a-¢)+ (~a+c+b-dx

fl@) =+ : + : ,

2 1-z-x l-x+x

a+ (b -a)x
c+ (d- e)x

1[(a+c)+(—a—c+b+d)x (—a+c)+(a—c—b+d)xi|
g(@) =5 1 -x - x2 * 1 -2+ 22 )

Applying the lemma and collecting terms, the equations are

f(x) = % .io[(a +C)F; g+ (ma+¢)S;op + (b + d)F;_1 + (b - d)S;-1]x?

and o
g(x) = % 'ZO[(a +C)F;p + (@=-¢)Sz-p + (b + DF; -1 + (b + d)S; - ]x".

i=
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Consequently,
X, = %[(a + e+ (~a+e)S,.0+ b+ DF, 1+ b - DS,11,
v, = %[(a +e)F o+ (@a-¢)S,_p+ (b +dF,_1+ (b +d)S,_1].
Substituting

from the Lemma yields the analogs of Binet's formulas:

X, = % [(a + c)<9312—§—§f:i> + B+ d)(ﬁg—f—§f>
+ (-a + c)<_1)"-2(931i—1—%fli) RGO I C

el |l

B
S
|

and

v, = [(a + c)(“n—i~:—§f:i> + (b + d)(92—5—§2>

B | =

1 -1

(a - c)(—l)”"z(EZ:B—:—%f——> + (-b + d)(_l)n—l(ﬁg;:_._

+

i
eligl
i
S
—t

[\

Case 3: For J = 2 and k = 1, the system is
Kpy2 = Ypyr + Xy, 7

0,
_Yn+2 = X?’L+]_ + Yn, n 2 O, with

Pé (a, ¢) and P% (b, d).

It
i

Assuming a solution of the form
X=f@ =2 Yab, Y=g = ¥z,
i=0 i=0

substituting into the system, solving for f(x) and g(x) and then applying par-
tial fractions gives the generating functions in the following forms:

_ll@a+e)+ (ca-e+ b+ dx (a~¢)+ @a@-c¢c+b-dx
f@) =5 [ 1 - % = 22 + 1+ 2 - x2 J’

1@+ +(ca-c+b+dDx  (-a+e)+(-a+c-Db+ d)x]
g(z) = 2 [ 1 - x - x? * 1+ 2~ x2 ’

Applying the Lemma, collecting terms, and using the recursion relations from
the Lemma yields the following forms for the generating functions:

flx) = % ii [(a+ DF;p + (a=)Gip + (b + DFoy + (b - DGyoq)a?,
i=0
g(x) = % 53 [(@+e)Fsp+ (¢ - a)Gig + (b + DF;_y + (d - b)G;_1]x".
i=0
Consequently,
E, =@+ e)F,_, + (a=-0)G, o+ (b+DF,_| + (b~ DG,

and
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1
Yn = E[(Cl + C)Fn_z + (C - a)Gn_Z + (b + d)F,,L_]_ + (CZ - b)Gn——l]'

Substituting for F, and G, in terms of a and B gives the following analogs of

Binet's formulas:

-1 _ -1 n-1 _ pn-1

X, = % [(a + c)<gi——~ 8" > (a - c)(—l)”(g———~—~§——~>
o ~ <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>