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ON GLAISHER'S INFINITE SUMS INVOLVING THE 
INVERSE TANGENT FUNCTION 

Allen R. Miller 
George Washington University, Washington, DC 20052 

H. M. Sr ivas tava 
University of Victoria, Victoria, British Columbia V8W 3P4, Canada 

(Submitted November 1990) 

1. Introduction 

In 1878s J. W. L. Glaisher [1] derived a number of results about certain 
infinite sums involving the inverse tangent function; in particular, he showed 
for complex 0 (0 < 101 < °°), that 

/IN v^ *. 2 0 2 IT _ /tanh TT0\ 
(1) > arctan —TT- = — - arctanl — . 

„^i n2 4 \tanir0 / 
This equation appears again in 1908 as an exercise in T. J. I1 a. Bromwichfs 
book [2, p. 259]. Generalizations of (1) are found in [3], [4, p. 276], and 
[5, p. 749]. 

Letting 0 -> 1- in (1), Glaisher also obtained the elegant result: 

(2) V arctan —5- = — TT. 
n=i n1 4 

A very simple derivation of (2) and a history of this series appeared recently 
in [6]. 

It is easy to see that the two members of (1) may differ by an integer mul-
tiple of TT; this pathology occurs often in many results of this type, since the 
inverse tangent function is a multiple-valued function. Hence, if we use only 
the principal value of the inverse tangent function, we must write (1) in the 
form 
ro\ v- 2 ° 2 l l _L \ _ /tanh TT0\ 
(3) > arctan —~- = -7 + m I71" "~ arctan — — 

rf^l n1 \4 / V tan TT0 / 
for some m e Z = {0, ±1, ±2, . . . } . 

In this paper we shall derive computationally more useful results than (3); 
our results will yield some interesting corollaries not available heretofore. 
Indeed we shall show, for complex 0 (0 < 161 < °°), that 
f/\ V̂  - 2 0 2 (a l \ *. / sin 2TT0 \ 

(4) > arctan —«- = I 0 - - TT - arctanl r— —-) 
rfrJ

l nl V 4/ Vcos 2TT0 - exp 2TT0/ 
where, here and in what follows, the principal value of the inverse tangent 
function is assumed. We shall also show that (3) and (4) are, in fact, equi-
valent. We shall then give (in Section 5) some generalizations of (4). 
Finally, in Section 6, we deduce some interesting particular cases of one of 
the general summation formulas which we obtain in Section 5. 

2. Derivation of the Summation Formula (4) 

To derive (4), we shall use the Euler-Maclaurin summation formula ([7, p. 
27]; see also [8, p. 521]) 

JlfW) = ff(x)dx +\f{0) +\f{n) + fnp(x)f>( 
k=o Jo L z Jo 

x)dx 
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where P(x), f o r r e a l x, i s a s a w - t o o t h f u n c t i o n : P(x) = x - [x] - 1 /2 . L e t t i n g 
f(x) = a r c t a n ( 2 0 2 / x 2 ) and n -> °°, we o b t a i n 

\ ^ *. 2 Q 2 f°° «- 2 e 2 ^ _, TT / o p f 0 0 ^ / x ^ ^ 
> arctan --«- = j arctan — ^ " ^ + T _ 40 I Fix)—r j-. 

Assuming 0 < 0 < °°  and making simple transformations in the integrals, we have 

(5) X arctan yj- = - | + 0 f arctan ~ d x - 2 f P(0/2^) ^ ^ 
fc = 1 K ^ Jo X JQ 1 + X 

The first integral on the right side of (5) can be evaluated in a number of 
ways or by using tables of integrals (cf. [5] and [9]). We omit the details 
and give the result: 

(6) J arctan(2/^2)A: = ir. 
Jo 

The saw-tooth function P(x) is a sectionally (piecewise) smooth periodic 
function with unit period. It can be represented by a Fourier series which is 
given by 

(7) P(x) = - - V \ sin(27Tte). 

The series given in (7) converges uniformly in every closed interval where P(x) 
is continuous. The saw-tooth function and its Fourier series representation 
are discussed in detail, for example, in [10, pp. 107-24]. 

To evaluate the second integral in (5), we use (7) and interchange the sum 
and integral, thus giving: 

(8) f P(0/2*)-^4 =-i £ \ rsin(2/20^)-^^.. 
JO 1 + X4 TT ]^l K JQ 1 + X* 

Using [9, p. 408, Sec. 3.727, Eq. (4)], we find that 

(9) J s in(2/207r /oO Xdx . - = £ exp(-207Tk)sin(207r/c) . 
J o 1 + X 2 

Hence, from (5), (6), (8), and (9), we obtain 
oo O Cj2 / 1 \ J 3 0 1 

Y] a r c t a n —j- = (e - y W + ^ j exp(-2eTrfe')sin(20irfe) ; 

and now, using [5, p. 740, Eq. (5)], we can write the sum on the right in closed 
form, thus giving (4), provided that 0 < 0 < °°. 

It can easily be shown that the right member of (4) is indeed an even func-
tion of 0 and that, as 0 approaches zero, it vanishes. Hence, (4) is valid for 
real 0 and (by appealing to the principle of analytic continuation) it is valid 
for complex 0 . This evidently completes the derivation of the summation 
formula (4). 

3. Equivalence of the Sums (3) and (4) 

Defining 
sin 2x 

cos 2x - exp 2x 
we note the easily verified identity 

tan x _ tan x - E,(x) 
tanh x 1 + £,(x) tan x" 
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S i n c e t a n x = t a n ( x - rm\) , f o r a l l m e Z , t h i s g i v e s 
t a n x _ t a n ( ^ - rrns) - £(x) 
t a n h x 1 + ^ ( x ) t a n ( ^ - rrm)' 

Taking the inverse tangent of both members of this equation and observing that 

arctan u - arctan v = arctan((u - v)/(1 + uv)), 

we obtain 
/ tan x \ 

arctanl J = (x - nnr) - arctan ^(x) . 
\tanh xl 

Now, using arctan x = IT/2 - arctan l/x, we deduce from this the identity 
IT /tanh x\ i sin 2x \ 

(10) - - arctan + mi\ = x - arctan 
2 \tan x I \cos 2x - exp 2x1 

for some m e Z. Replacing x by 6TT, (10) shows that the results in (3) and (4) 
are indeed equivalent. 

4. Special Cases of Equation (4) 

In (4), if we set 6 = k and 6 = k/2 (k = 1, 2, 3, . . . ) , we obtain 

(11) V arctan —«- = (k - yjir 
w= i nz \ 4/ 

and 

(12) ^ arctan ^ - ( f c - i ) f , 

respectively; now, splitting the sum in (11) into even and odd terms, and using 
(12), we deduce also that 

(13) ±Q arctan ( 2 n
2 f 1 ) 2 - f *• 

Equation (2) follows from (11) when k = 1. Equations (12) and (13) were 
also derived by Glaisher for k = 1. Ramanujan (circa 1903) derived (11), (12), 
and (13) for k = 1 [11, Ch. 2]. 

5. Generalizations of the Summation Formula (4) 

Letting f(x) = arctan(s2"/x2n) in the Euler-Maclaurin summation formula 
(cited already in Section 2), but now using [9, p. 608, Sec. 4.532, Eq. (2)] 
and [5, p. 396, Eq. (2)] to compute the two integrals, in basically the same 
way as (4) was obtained, we can derive the result 

(14) £ arctan f j - = U sec {- - f)f + ± (-1)* arctan( J ± ^ ) 
k=i k^n \ m III fe=i \cos £ - exp nv 

(0 < Isl < ~; n = i, 2, 3, . . . ) , 
where 

2fc - 1 0 . 2k - 1 
5 = 2irs cos — : TT, n = 2i\z s m —; IT. 

4n 4n For n = 1 and z - / 2 0 , (14) r e d u c e s t o ( 4 ) . For n = 2 , s e t t i n g a = i\x cos 
TT/8 and 3 = TT# s i n TT/8, we g e t 

"^ r / s i n 2a 
- a r c t a n (15) J ] a r c t a n ~r 

k= 1 * Vcos 2a - exp 2 3/J 
s i n 2g \~| _ TT 

DS 23 - exp 2a/J 4 ' 
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G l a i s h e r [1] o b t a i n e d , modulo an i n t e g e r m u l t i p l e of ir, t h a t 

(16) E a r c t a n ^ 
k = 1 

/tan a tanh a - tan 6 tanh B - tan a tan 6 - tanh a tanh B\ 
= arctanl—————— ). 

\tan a tanh a - tan g tanh 6 + tan a tan g + tanh a tanh £/ 
Hence, the difference of the right members of (15) and (16) is an integer mul-
tiple of TT„ 

By splitting the left member of (14) into even and odd terms, we easily 
find that 

?2.n 
(17) > arctan -— —z— = ~r sec 

k=o (2k + l) 2 * 4 
4n 

+ E (-Dk 

Zc = 1 

arctan \co 
sin g 

S ^ ~ e x P Tl 
J - arctanf-

sin g/2 
n/2) cos £/2 - exp 

(n = 1, 2, 3, . . . ) . 

Glaisher [1] also obtained results, modulo an integer multiple of ir, for the 
left member of (17) in the special cases when n - \ and n = 2. 

We note here that, in general, when an infinite sum of arctangent functions 
is given modulo an integer multiple of IT, the Euler-Maclaurin summation formula 
appears to be helpful in attempting to derive computationally more useful 
results. 

By using (14) and (17), we have, in addition, 

°°  h i S 2 n 7T 
E (~l)/c+1 arctan 
fc~ l 

+ E (-D* 
k= 1 

k2n 

arctanf— 
\co: 

sin g 
7) 2 arctan 

sin g/2 
DS g - exp n/ ~ "\cos £/2 - exp n 

In particular, letting n = 1 and 3 = /20, we get 

/-.̂ x Y ^ / , X ^ + I 202 u ^ l sin 2TT 

(18) E (-D arctan —?r = T - arctan' 

71) 

^ = 1 k2 ( 
Vcos 2ir( 

z-n-e) 4 " ' • " ^ " I c o s 2ir0 - exp 2T 

_L o .. / s i n TT9 \ 
+ 2 a r c t a n r . 

Vcos TT0 - exp TT0/ 
By using [4, p. 277, Eq. (42.1.10)], (18) may be written equivalently as 

2 0 2 . / s i n h vQ\ /-.^x V ^ / I N ^ + I ^ ° ~ _ / s i n h TT0\ IT 
(19) V ( -1 ) a r c t a n —«- = a r c t a n —: —) - 7 . 

fc 1 ^ \ s i n TT0 / 4 
8 . A S p e c i a l C a s e of F o r m u l a (18) 

I n (18) o r ( 1 9 ) , i f we s e t 0 = I (I = 1, 2 , 3 , . . .) , we deduce t h e i n t e s t -
i n g r e s u l t : 

(19) E ( - l ) f c + 1 a r c t a n 4 V = 7 U = 1, 2 , 3 , - - - ) » 

from which it easily follows that 

and 

E (-Dfc + 1 arctan 
fe= 1 

E (-Dk+1 arctan 
/ c = 1 

2 U 2 ^)fe2' 
k4 + 4£2m2 

2(£2 + m2)k2' 
kh - 4£2^2 

= 0 (TTZ = 1, 2, 3, ...) 

(m = 1, 2, 3, . . . ) ; 

A being a positive integer. 
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Equation (19) apparently was first derived by Ramanujan for the special case 
£ = 1 [11, Ch. 2] and it is also derived for £ = 1 by Wheelon [12, p. 46]. 
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Faculdade de Ciencias, Rua Ernesto de Vasconcelos, Bloco CI, Piso 3, 1700 Lisbon, Portugal 

(Submitted November 1990) 

1. Introduction 

In certain finite fields Wp of prime order p, it is possible to write the 
set of nonzero elements, without repetition, in such an order that they form a 
closed Fibonacci-type sequence. For example, in I ^ we may write 

1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 

which evidently has the required property. In [1], a similar example is given 
for]F109* It is implicit in [1], [12], that such sequences exist in 3Fp if ~Fp 
contains a so-called Fibonacci Primitive Root, or FPR: see below for defini-
tions. Here we show (Theorem 4.2) that such sequences exist in Wp if and only 
if Wp contains an FPR; moreover, when Wp does contain an FPR, we show that the 
only such sequences to exist are the "natural'1 ones: that is, the sequences of 
successive powers of FPRs. Of course, it was shown in [1] that if the sequence 
of successive powers of an element is to have this Fibonacci property, then the 
element in question must be an FPR, but here we allow for any sequence of 
elements. 

We also prove (Theorem 4.4) analogous results for Fibonacci-type sequences 
of the set of (nonzero) squares of ¥p. In this context, the sequence 

1, 4, 5, 9, 3, 

is a Fibonacci-type sequence of the squares of F ^ . 
It will be shown that, except for the fields IF̂  and IFg , these phenomena 

only occur in the fields of prime order. 
We wish to thank the referee for pointing out several references, and in 

particular for the information that part of Theorem 2.5 below is proved in 
[10]. 

2. Preliminaries 

In this section we collect some preliminaries from [3], [7], [8], [14], and 
[15]; p will always denote a prime, q will stand for a power of p, ~E?q will 
denote the field of order q, Wq will denote the multiplicative group of Wq, 
while Fn and Ln will, respectively, denote the nth Fibonacci and ntJri Lucas 
number. In addition, if z is an integer, then ~z will denote the image of z in 
Wp (in situations where the prime p is understood) . If g is an element of a 
group, then \g\ will denote the order of g. 

A ^--sequence in a finite field IF is defined to be a sequence 

(5 = (s0, sl9 sl9 . . .) (si e IF), 
where 

sn+2 = sn+l + Sn f o r ^ = 0, 1, 2, ... . 
Any ^-sequence in Wq is periodic with period r < q2 - 1:. see [7, Th. 8.7]. 

This means that 

Sn + r
 = sn f o r ?2 = 0, 1, 2, ..., 

and that v is the least natural number for which this holds. Following Wall 
[15], we write k(p) for the period of the Fibonacci sequence (mod p) ; note that 
De Leon [3] writes A(p) for this number, while Vajda [14] writes P(p, F). 

1992] 
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Theorem 2.1: ([7, Th. 8.16]). If r is the period of some ^-sequence in Wq, 
where q = pn, then r|fc(p). D 

Theorem 2.2: (Wall, [15]; see also [14, p. 91]). Let p be a prime. Then 

(a) k(p)\p - 1 if p E ±1 (mod 5). 
(b) k(p)\2(p + 1) if p = ±2 (mod 5). D 

The polynomial /(£) = t2 - t - 1 e fp[t] is what is called [7, p. 198], the 
characteristic polynomial of a O-sequence. We have 

Theorem 2.3: ([7, Th. 8.21]). Let p * 5 be a prime. Let s0, sx, ..., be a 
<!>-sequence in ]F̂ . Let f(t) = t2 - t - 1 6 ]Fp [t ] and suppose that ^, ft are the 
roots of f{t) in a splitting field W D Wq. Then there exist a, 3 e ]F such that 

ŝ  = ag^ + 6^, for i = 0, 1, 2, ... . D 

Lemma 2.4: Let p be an odd prime and let n e IN be such that 
ipn - l)/2|2(p + 1). 

Then p < 5 and n < 2. 

Proof: We have 

(p - l)(pn'1 + ... +1) 4(p + 1). 

But (p - 1, p + 1) = 2, because p is odd. Thus (p - 1)|8, and so p € {3, 5}. 
If n > 3 we may easily derive a contradiction, and the assertion follows. 

The first four parts of the following theorem are a combination of results 
from [3], [10], [11] , and [12] (but note that we are working in an extension 
field ]F D JFp rather than in IFp). Proofs of parts (a)-(c) can be found in Phong 
[10, pp. 68-69], or can be extracted from a careful reading of De Leon [3], 
together with Wall's result that kip) is even for p > 2: [11, Th. 4]. Part (d) 
is proved by Shanks [12, p. 164]. We supply proofs for completeness. 

Theorem 2.5: Let p > 7 be a prime. Let g, h be the roots, in a suitable ex-
tension field F 2 Wp9 of the polynomial 

fit) = t2 - t - 1 e Wp[t]. 
Then 

(a) Not both |̂ | and \h\ can be odd. If, say, \h\ is odd, then \g\ = 2|h|. 
(b) If both \g\9 \h\ are even, then \g\ = \h\ is divisible by 4. 
(c) If \g\, say, is even, then \g\ = kip). In particular, fc(p) is even. 

(d) We have #, ft € Wp if and only if p = ±1 (mod 5). 

(e) If |̂ |, say, is of the form pn - 1 or (pw - l)/2, for n e IN, then n = 1, 
# e IFp, and p = ±1 (mod 5). 

Proof: Since #, ft are the roots of fit) = t2 - t - 1, then # = 
\g\ = a and |ft| = b. 

(a) Suppose that b is odd, and note that b = |l/ft|. Since 
follows that \g\ = 2|l/ft|, and thus that a = 2b. 

(b) Suppose that a, b are both even. Then we have 

i = ga = (-i)a/fta = i/fta 

and so ha = 1. Similarly, ^^ = 1, and so a = b. Suppose that a = 2d with d 
odd. Then |g^| = 2 and so gd = -1, the unique element of order 2 in JF*. But 
then 

-1/ft. Write 

|-l| = 2, it 
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hd = (~l)d/gd = -1/-1 = 1, 

and so b is odd5 contrary to hypothesis. Assertion (b) now follows. 
_ (c)_ We adapt the proof of [3, Lem. 1]. It follows by induction that gn = 
F^g + -Fn_i for any natural number n (and similarly for hn) . Since Fk(p) = 0 and 
Fk(p)-l = ls it follows that gk^ = 1 and thus that a\k(p). Similarly, b\k{p). 
In particular^ k(p) must be even^ If Fa = 0, then 1 = ga = Fa _ x; thus, fc(p)|a 
and so fc(p)_= a. Similarly, if ^&_= 0* then fc(p) = b. Suppose then that 
Fa * 0 and 1^ * 0. Then 1 = ga = Fag + Fa.l and so g = (1 - Fa.{)lFa. Thus, 
as in [3], we have 

0 = {g1 - g - \)Fl 

- " ^ " « - l " *?-!> ~ ^a + 2 ^ ^ ) + 1 

= (~Da ~ La + 1. 

Thus, La = 1 + (-l)a. Similarly, Lfc = 1 + (-l)K 
Now, if a is even, then La = 2. But L% - 5F2 = 4 and so F̂  = 0, a contra-

diction. Thus, a must be odd. Similarly, b must also be odd. But this is in 
contradiction to (a). It follows that at least one of Fa , Fh must be zero, and 
assertion (c) follows. 

(d) We have (2g - l ) 2 = 5 e Wp . On the other hand, if w e Wp satisfies 
W2 = 5, then (1 ± w)/2 are the roots of f(t). Thus, gs h E Fp if and only if 
the element 5 is a square in Wp, and this occurs if and only if p E ±1 (mod 5), 
by the quadratic reciprocity law [5, Ths. 9? and 98]. 

(e) Suppose that \g\ = pn - 1 or (pn - l)/2. Then \g\ divides k(p) by (a) 
and (c) above. Suppose that p = ±2 (mod 5). Then k(p) | 2 (p + 1) by 2.2(b). 
Thus, in either case, (pn - 1) /2 j 2 (p + 1). This is impossible by Lemma 2.4, 
because p > 7. Therefore, we must have p E ±1 (mod 5), and so g e Wp by (d) . 
But now k(p) | (p - 1) by 2.2(a), whence (pn_1 + - - • + 1) | 2 and it follows that 
n = 1. D 

3. Fibonacci Primitive Roots 

Definition 3.1: Let /(£) = £2 - t - 1 e ]Fp [t] CWq[t] where q is a power of p. 
Suppose that ^ E Wq is a root of f(t) . 

(a) (Shanks, [12]). We call g a Fibonacci Primitive Root (FPR) in Wq if 
\g\ = q - 1; that is, if g is a primitive root inf^. 

(Jb*) We call g a Fibonacci Square-Primitive Root (FSPR) in Wq if g generates 
the subgroup of squares in Wq ; if q is odd, this means that 

\g\ = (q - l)/2. 
Fibonacci Primitive Roots and related topics have an extensive literature: 

see, for example, references [1], [3], [6], and [9]-[15]. 
In part (b) of the following result, the criterion for the existence of an 

FPR is proved in Theorem 1 of De Leon [3], while the assertions on the number 
of FPRs are proved by Shanks [15, pp. 164-65]. The exceptional cases to this 
theorem (p < 7) will be dealt with in 3.3 below. 

Theorem 3.2: Let p > 7 be a prime and let q = pn where n e M. 

(a) If Wq D Wp possesses an FPR or an FSPR, then Wq = Wp and p = ±1 (mod 5). 

(b) Wp possesses an FPR iff k(p) = p - 1. Further, if k(p) = p - 1, then 
(i) if p E 1 (mod 4), there are two FPRs; 

(ii) if p E -1 (mod 4), there is just one FPR (and one FSPR). 
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(c) Fp possesses an FSPR iff either 

(i) kip) = p - 1 and p = -1 (mod 4), when there is a unique FSPR; or 
(ii) kip) = (p - 1)/2. In this case, we must have p = 1 (mod 4), then 

(a) if p = 1 (mod 8) there are two FSPRs; 
(3) if p E 5 (mod 8), there is a unique FSPR. 

Proof: Again write fit) = t2 - t - 1 G ]Fp [£], and suppose that #, 7z are the 
roots of /(£) in the fieId F^ D lFp . 

(a) Suppose that g is an FPR or an FSPR in ~Fq . Then \g\ = pn - 1 or (pn -
l)/2, and so by 2.5(e), p E ±1 (mod 5) and n = 1. Thus, Wq = Fp. 

(bj If # is an FPR in ]Fp, then |^| = p - 1 is even and so k(p) = p - 1 by 
2.5(c). Further, p = ±1 (mod 5) by 2.5(d). 

Conversely, suppose fe(p) = p - 1. Let # be an even-order root of fit); 
then |^| = p - 1, by 2.5(c), and so ^ G I p by 2.5(e). Thus, g is an FPR in Wp. 
Now, if p E 1 (mod 4), then 4 |p - 1, whence \g\ = |/z | by 2.5(c), and so g, h 
are both FPRs. However, if p = -1 (mod 4), then p - 1 is twice an odd number. 
Thus, by 2.5(a) and 2.5(c), g has order p - 1, and so is an FPR, while h G ~Fp 
has order (p - l)/2, and so is an FSPR. 

(c) Suppose that h G ]Fp is an FSPR. Then \h\ = (p - l)/2, and so 

fc(p) G {p - 1, (p - l)/2} 

by 2.5(a) and 2.5(c). Suppose that kip) = p - 1. Then, by part (b), ]FP pos-
sesses an FPR, which must be the other root g of fit) . But then g is a non-
square in ]Fp, while In is a square and g = -l//z. Thus, -1 is a non-square in ]Fp 
and p E -1 (mod 4) by quadratic reciprocity. This proves the "only if" part of 
(c). 

If kip) = p - 1 and p E -1 (mod 4), then there is a unique FSPR in ~FP 
by (b). Suppose that kip) = (p - l)/2. S ince kip) is even by 2.5, then p = 1 
(mod 4). 

(a) If p E 1 (mod 8), then (p - l)/2 is divisible by 4 and so both roots of 
fit) have order (p - l)/2 by 2.5(a)-(c). These roots belong to Fp by 
2.5(e), and so there are two FSPRs in Wp. 

(3) If p E 5 (mod 8), then (p - l)/2 is twice an odd number. By 2.5(a)-
(c), one root of fit) has order (p - l)/2 while the other has order 
(p - l)/4. Again by 2.5(e), these roots belong tolp, and so there is 
a unique FSPR in Wp. 

Assertion (c) now follows, and the proof is complete. D 

The following proposition lists a collection of easily-verifiable facts 
concerning FPRs for primes p < 7. 

Proposition 3.3: We have 

(a) fc(2) = 3. Let £ be a root in Wk of fit) = t2 + t + 1 G ]F2[t] . Then 
1 + £ is the other root of fit). We have |£| = |l + £| = 3 , and so £ and 1 + C 
are both FPRs in F^; they are also FSPRs because all elements of W^ are 
squares. 

(b) fe(3) = 8. Let e be a root in IFg of p(£) = t2 + 1 e3F3[t]. Then /(£) = 
£2 - £ - 1 G]F3[t] has roots g = n - 1 and 7z = -n - 1 in Fg . Further, |#| = 
\h\ = 8, and so g9 h are FPRfs in I9. 

(c) fc(5) = 20. Because (£ - 3 ) 2 = £2 - t - 1 G]F5[t], then the element 3 G 
]F5 is a double root of fit) in ]F5. Further, 13 J = 4 , so that 3 is the unique 
FPR in!F5. Note that 2.5(c) definitely fails for p = 5. • 
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It should be noted that Brousseau [1] lists the FPRfs for those primes 
p < 300 that possess such, while Wall [15] gives the values of k(p) for all 
primes p < 2000. In section 5 below, we list the FPRs and FSPRs for those 
primes p < 2000 that possess such. 

It is proved in [11], on the assumption of certain Riemann hypotheses, 
that, asymptotically, the proportion C = 0.2657.. . of all primes possess an 
FPR; since, apart from p = 5, the only eligible primes p satisfy p = ±1 (mod 
5), then we are to expect that over half of these possess an FPR. It might be 
of interest to determine the proportion of primes that possess an FSPR. For 
example, there are 146 primes p < 2000 with p = ±1 (mod 5), of which 80 possess 
FPRs and 76 possess FSPRs (see the table in section 5). 

4. Complete ^-Sequences 

Let p be a prime and let q be a power of p. Let © = (SQ9 S^5 ^2* «••) be a 
^-sequence of period v in Wq. We call © a complete ^-sequence in Wq if P = 
q - 1 and if {SQS S]_, ..., sr-i} is precisely the set of nonzero elements of 
~Fq. If {SQ, Sis . .., sr-i} is precisely the set of nonzero squares of Wq, so 
that v = {q - l)/2 if q is odd, then © is called a square-complete ^-sequence 
in Wq . 

Lemma 4 A: Let f(t) = t 1 - t - l e w [t] and let g be a root of f(t) in a field 
I D f p = Then the ^-sequence © = (s0, sx, ...) in IF with s0 = 1, sl = g has 
period a = \g\> and 

{s0, sl5 ..., sa_x} = {1, g, ..., # - 1 }. 

In particular, if g is an FPR, or FSPR, in IF, then © is a complete- or square-
complete ^-sequence in F, respectively. 

Proof: This is clear. D 

We now give our characterization of complete ^-sequences for primes p > 7; 
the cases p < 1 are exceptional and will be dealt with later. It is worth 
observing that if © is a complete ^-sequence in Fp, then the sequence formed by 
multiplying the terms of © by a fixed nonzero element of ~FP is essentially the 
same sequence © with the terms all shifted by a fixed amount; we will thus not 
distinguish between such multiples. 

Theorem 4.2: Let p > 7 be a prime and let q = pn where n € M. Then there is a 
complete ^-sequence in JFq if and only if there is an FPR in TFq, and for this to 
happen we must have q = p. Further, any complete ^-sequence in Wp has the form 
(1, J, J2, ...) where j is an FPR in Fp, and conversely. 

Proof: Let f(t) = t2 - t - 1 € 3Fp [t ] , let g, h be the roots of f(t) in a split-
ting f ield ¥ D JFq. Suppose without loss that \g\ is even; then \g\ = k(p) by 
2.5(c). 

If j is an FPR in Wq, then the 0-sequence (1, J, J2, ...) is complete (in 
Wq) by Lemma 4.1. 

Suppose now that © is a complete ^-sequence in Wq• Then © has period q - 1 
and so q - l|fc(p) by 4.1. If p = ±2 (mod 5), then fe(p)|2(p + 1) by 2.2. Thus, 
< 7 - l | 2 ( p + l ) , which is impossible by 2.4 because p > 7. Therefore, we may 
assume that p = ±1 (mod 5). Then k(p)\p - 1 by 2.2; thus, q - 1|p - 1, and so 
q = p and k(p) = p - 1. Thus, g is an FPR in Wp. Note now that /(£) splits in 
Fp. By 2.3, there exist a, ^ e i p such that 

© = (a + 3, ag + j3/z, a#2 + $h2, . . . ) , 

and because © is complete, 

F* = {ag*1 + Sh1: 0 < i < p - 2}. 

1992] 299 



COMPLETE FIBONACCI SEQUENCES IN FINITE FIELDS 

But h = -l/g = g^~l)/2gP~2 = g^P~5^2. Thus, the map 

gt H> agi + 3#i(3P~5)/2, 0 < i < p - 2, 

is a permutation of W$. But then the polynomial 

p(t) = at + 3t(3P"5)/2 e Wp[t] 

is a permutation polynomial of JFp. But now Hermite's criterion for permutation 
polynomials (see [4, §84] or [7, Th. 7.4]) implies that, in particular, the 
reduction, P(t) say, of (p(t))4 (mod tp - t) has degree d < p - 1. A certain 
amount of calculation reveals that 

P(t) = 6a232tP_1 + «(£), 

where §(£) G 3Fp[t] has degree e < p - 2. It follows that a3 = 0, and so the 
only possibilities for © are (nonzero multiples of): 

(1, g, g2
5 . . . ) , 

and if, also, \h\ = p - 1, 

(1, h, h2, . . . ) . 

This completes the proof. • 

The next theorem characterizes the square-complete $-sequences for p > 7; 
again, the exceptional cases (p < 7) are dealt with later. The characteriza-
tion is almost a word-for-word "translation" of the previous result, but there 
are a number of technical differences in the proof. Hermitefs criterion is not 
directly applicable here, but we can apply ideas from its proof to get what we 
need. We will also need to know that the smallest prime p = ±1 (mod 5) for 
which k(p) < p - 1 is p = 29. This fact is given in Wall [15], but may easily 
be calculated by hand: we need only check the Fibonacci sequences mod 11 and 
mod 19. 

First we need a lemma; it is not new (see [4, §74]) but we indicate a 
proof. 

Lemma 4.3: Let G be a subgroup of W* with |&| = m. Then 

(a) ]T gm = m (considered as an element of IF*) , and 

(b) ]T gd = 0, for 1 < j < m - 1. 
geG 

Proof: 
(a) This follows because gm = 1 for all g e G. 

(h) The elements of G are precisely the roots of tm - 1 G TFq [t]. Then 

geG 
is the sum of the j t h powers of these roots, and the assertion follows by New-
ton's formula [4, §74] and [7, Th. 1.75]. • 

Theorem 4.4: Let p > 7 be a prime and let q = pn where n GIN. Then there is a 
square-complete ^-sequence in Wq if and only if there is an FSPR in Wq , and for 
this to happen we must have q = p. Further, any square-complete 0-sequence in 
Wp has the form (1, J, j 2 , ...) where j is an FSPR in Wp, and conversely. 

Proof: Let f{t) = t2 - t - 1 G ]Fp [t], let #, 7z be the roots of f(t) in a split-
ting field F D Wq . Suppose without loss that \g\ is even; then \g\ = k(p) by 
2.5(c). ^ 

If j is an FSPR in 1F̂ , then the ^-sequence (1, j, j 2 , ...) is square-complete 
(in IF̂  ) by Lemma 4.1. 
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Suppose now that (5 is a square-complete ^-sequence in Wq. Then © has period 
(q - l)/2, and so (q - l)/2|/c(p) by 4.1. If p = ±2 (mod 5), then fc(p)|2(p + 1) 
by 2.2. Thus (q - 1)/2|2(p + 1), which is impossible by 2.4 because p > 7. We 
may therefore assume that p E ±1 (mod 5) 5 and so j, he Wp. Then fe(p)|p - 1 by 
2.2; thus q - 1|2(p - 1), and so q = p and 

fc(p) e {p - 1, (p - l)/2}. 

By 2.3S there exist a, 3 € IFp such that 

© = (a + 35 a# + 3^, a^2 + 3^2
S . . . ) . 

We consider separately the two possibilities for k(p). 

(i) Suppose that k(p) = p - 1. Since © has period (p - l)/2, then 

a + 3 = a#(P-1)/2 + 3^(p"1)/2. 

But \g\ = p - 1 and so g(P~U/2 = -l. If also 17z | = p - 1, then /z^P"1^2 = -l, 
and so a + 3 = -(ot + 3) = 0 . But then © contains the element 0, and so cannot 
be square-complete, a contradiction. Therefore \h\ = (p - l)/2, by 2.5, and so 
a + 3 = -a + 3- Thus a = 05 and so © must be (a nonzero, square multiple of) 

(1, h, h2, ...), 
and h is an FSPR in Wp. 

(ii) Suppose that fc(p) = (p - l)/2. By the Remark before Lemma 4.3, we may 
assume that p > 29. Since \g\ = fc(p), then # is an FSPR in Ip . By 3.2(c), 
p E 1 (mod 4), and so -1 is a square in JFp. We then have ^ - 1 = g(P~3)/2. an(j _^ 
= g^P-1)/\ whence 7z = -1/g = <7 ̂ 3p "7^l+. Write § for the subgroup of squares in 
3F*; then \Q\ = (p - l)/2. Since © is square-complete, we have 

Q = {agt + $hli 0 < i < (p - l)/2} 

= {a#* + 3#i(3p~7)/t|: 0 < i < (p - l)/2} 

= {ao + 3^(3P~7)A: c e 0 . 

Calculation now reveals that 

(ao + 3^3p-7)/4)8 = #(<*), 

where x(t) £ ]Fp [t] is a polynomial of degree at most (p - 3)/2 with constant 
term 70aLf3Lf. There are certain points that require care in the calculation 
here; for example, the second term in the expansion is 

8a 7^V 3P" 7 ) / I * = 8a73^(3P + 2 1 ) / 4 

= 8a73^(p-1)/2£(p+23)/if. 

Now (-(P-D/2 = i because o G Q9 while 1 < (p + 23)/4 < (p - l)/2 is the upper 
bound because p > 29 > 25. Thus, we obtain a term whose degree in o lies 
between 1 and (p - 3)/2. The constant term arises naturally as the "middle" 
term of the expansion, and all other terms have degree between 1 and (p - 3)/2. 
Now 4.3 gives both the first [since (p - 3)/2 > 8] and the last equality in the 
following chain: 

0 = £ °Q = £ (ac + 3^( 3 p" 7 ) / I f) 8 = £ * ( e ) = ((p - 1)72)700^3^ 

It follows (because p > 29 cannot divide 70) that a3 = 0. Thus, the only pos-
sible square-complete ^-sequences in Wp are (nonzero square multiples of) 

(1, g, g2, . . . ) , 

and if, also, h is an FSPR, 
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(1, h, 7z2, . . . ) . 

This completes the proof. D 

The following result mirrors Proposition 3.3, and deals with the primes 2, 
3, and 5. 

Proposition 4. 5: 
(a) The field TS?2 possesses neither a complete ^-sequence nor a square-com-

plete ^-sequence. If £ is as in 3.3(a), then 

1, C, 1 + C, and 1, 1 + £, £ 

are the only complete ^-sequences in IF^; they are also square-complete because 
all elements of IF* are squares. 

(h) The field F3 possesses neither a complete ^-sequence nor a square-com-
plete ^-sequence. If co is any element in IF 9 that is not in F3 then the $-
sequence with SQ = 1, s^ = w : 

1,0), 1 + 0), 1 + 2o), 2, 2o), 2 + 2o)5 2 + GO, 

is in JFg, but there are no square-complete ^-sequences. 

(c) The sequence 1, 3, 4, 2 is the unique complete (̂ -sequence in IF55 while 
this field possesses no square-complete ^-sequence. 

(d) If q is any of 2n, n > 3, or 3n, n > 3, or 5n, n > 2, then IF̂  possesses 
neither a complete f-sequence nor a square-complete ^-sequence. 

Proof: Most of these assertions are straightforward to verify. For part (d) , 
we use 2.1. • 

5. List of FPRs and FSPRs for Primes p < 2000 

We finish with a table of FPRs and FSPRs for those primes p < 2000 that 
possess such; as we have seen, the prime 5 is "singular" and we set it apart in 
the list. By 3.2, the only primes p < 5 eligible are those with p E ±1 (mod 5) 
and k(p) G {p - I, (p - l)/2}; all other primes are thus omitted from the list. 
For each eligible prime, we give the respective root(s) in Wp of /(£) - t2- -
t - 1 G fp[t] when they are either primitive (denoted by P) or square-primitive 
(denoted by Q) . We omit those roots that are not either primitive or square-
primitive. 

Information on the values of k(p) necessary to find the eligible primes was 
taken from Wall [15]. Certain of the calculations were performed by computer 
using the finite field facility in the Group Theory Language CAYLEY [2], 
although much of the work was carried out using nothing more than a pocket 
calculator. 

p FPR (P) or FSPR (Q) p FPR (P) or FSPR (Q) 

5 
11 
29 
41 
61 
79 
101 
131 
179 
191 
239 
251 

3P 
8P 
6Q 
7P 
18P 
30P 
23Q 
120P 
105P 
89P 
224P 
134P 

4Q 

35P 
44P 
50Q 

12Q 
75Q 
103Q 
16Q 
118Q 

19 
31 
59 
71 
89 
109 
149 
181 
229 
241 
269 

15P 
13P 
34P 
63P 
10Q 
IIP 
41P 
168Q 
148Q 
52P 
72P 

5Q 
19Q 
26Q 
9Q 
80Q 
99P 
109P 

190P 
198P 
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p . 
271 
349 
379 
401 
419 
439 
479 
499 
569 
599 
631 
659 
719 
751 
821 
929 
971 
1021 
1051 
1091 
1129 
1181 
1229 
1259 
1319 
1361 
1409 
1439 
1459 
1489 
1531 
1559 
1609 
1621 
1709 
1759 
1801 
1831 
1879 
1901 
1949 

FPR (P) 

255P 
206Q 
360P 
112Q 
399P 
370P 
229P 
275P 
337P 
575P 
HOP 
201P 
330P 
541P 
213P 
31P 
798P 
458Q 
73P 

212P 
328P 
534P 
745Q 

1224P 
920P 
83Q 
125Q 
701P 

1293P 
681P 
88P 

1520P 
636P 
1446Q 
601Q 
859P 
427P 
1053P 
1457P 
98P 

789P 

or FSPR (Q) 

17Q 

20Q 
290Q 
21Q 
70Q 

251Q 
225Q 
233P 
25Q 

522Q 
459Q 
390Q 
211Q 
609P 
899P 
174Q 

979Q 
880Q 
802P 
648P 

36Q 
400Q 
1279Q 
1285Q 
739Q 
167Q 
809P 
1444Q 
40Q 
974P 

901Q 
1375P 
779Q 
423Q 
1804P 
1161P 

p ; 
311 
359 
389 
409 
431 
449 
491 
509 
571 
601 
641 
701 
739 
761 
839 
941 
1019 
1039 
1061 
1109 
1171 
1201 
1249 
1301 
1321 
1399 
1429 
1451 
1481 
1499 
1549 
1571 
1619 
1669 
1741 
1789 
1811 
1861 
1889 
1931 
1979 

FPR (P) 

59P 
106P 
152P 
130P 
341P 
166P 
74P 

388Q 
298P 
137P 
279P 
27P 
119P 
92Q 

498P 
228Q 
526P 
287P 
602Q 
703Q 

1058P 
78P 

405Q 
268P 
453P 
240P 
547P 
283P 
39P 

1291P 
1020Q 
1044P 
855P 
136Q 
321Q 
1554Q 
186P 
1498Q 
824P 
988P 
1935P 

or FSPR (Q) 

253Q 
254Q 
238P 
280P 
91Q 

284P 
418Q 

274Q 
465P 
363P 
675P 
621Q 
670Q 
342Q 

494Q 
753Q 

114Q 
1124P 
845Q 
1034P 
869P 
1160Q 
883P 
1169Q 
1443P 
209Q 

568Q 
765Q 

1626Q 

1066P 
944Q 
45Q 
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As i t i s wel l known, the equat ion 
(1) X2 + 7/*+ = Zh 

has no solutions in the set of positive integers (one can find this equation in 
a number of sources including Dickson*s History of the Theory of Numbers [2]). 
The equation x2 + y^ - z^ serves as a classic result in the history of diophan-
tine analysis, and one of the first known examples where Fermat!s method of 
infinite descent is employed. 

Therefore, if 777 = 0 (mod 4) and n is even, the equation x2 + ym = z2n has 
no solution in positive integers x, y9 and 3. 

Now consider the diophantine equation x2 4- a2ym = z2n with m even. We will 
show that if a is a positive odd integer and if it has a prime divisor p = ±3 
(mod 8), then the above equation has no solution with (x, ay) = 1 and y odd, 
provided that n = 0 (mod 2). This author has shown in [3] that the equation 
x^ + p^y^ = s2, p a prime with p E 5 (mod 8), has no solution in the set of 
positive integers. It is known, however, that for certain primes of the form 
p = 1, 3, or 7 (mod 8), the latter equation does have a solution over the set 
of positive integers (for fruther details, refer to [3]). 

To start, we have 

Theorem 1: Let a be a positive odd integer with a prime factor p of the form 
p = ±3 (mod 8). Also, let m and n be positive integers with m and n both even. 
Then the diophantine equation x2 + a2ym = z2n with (x> ay) = 1 and y odd has no 
solution in the set of positive integers. 

Proof: Assume (x9 y, z) to be a solution to the equation 

(2) x2 + a2ym = z2n 

with (x, ay) = 1. 
Since m is even, m - 2k, the equation 

(3) x2 + a2y2k = z2n, 
describes a Pythagorean triangle with side lengths x, ayk, and zn. Accordingly, 
there must exist positive integers t and I of different parity, i.e., t + I = 1 
(mod 2), with (£, I) = 1 (t and I relatively prime), such that 

(4) x = 2t£, ayk = t2 - £2, zn = t2 + I2. 
From the second equation of (4), we obtain 

(5) ayk = (t - l)(t + £). 
In view of the fact that the integers t and I are relatively prime and of dif-
ferent parity, we conclude that t - I and t + I must be relatively prime and 
both odd; thus, (5) implies 

(6) t - I = aly\9 t + £ = a2y\ 
with yl9 y2 both odd and (yl9 yQ) = 1 = (a^, a^) and a^a^ = a. 

Equations (6) yield 

ajy\ + a2^2 _ a2^2 " al^l t 2 , I 2 
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and by substituting in the third equation of (4)5 we obtain 

2zn = a\y2k + a2y2k . 

By the hypothesis of the Theorem, n is even, n - 2$, and so we obtain 

(7) 2z™ = a\y2k + a2yf. 
According to the general solution of the diophantine equation 

2Z2 = X2 + Y2 with (X, Y) = 1 

(refer to [2] and also to the Remark at the end of the proof for comment on 
this equation), (7) implies 

(8) zB = P 2 + s2, ^ill\ = P 2 + ITS - s2, a2y2
 = ~p2 + 2rs + s l 

with (p, s) = 1 (and, in fact, P and s are of different parity). 
According to the hypothesis of the Theorem, a = ala2 is divisible by a prime 

p = ±3 (mod 8). Thus, a^ or a2 is divisible by p, say a-, . Then the second 
equation in (8) gives v2 + 2TS - s2 - 0 (mod p); (T + s)2 - 2s2 = 0; and so 

(9) (r + s ) 2 E 2s2 (mod p). 

But s and P + s are relatively prime, since P and 8 are; thus, neither of them 
is divisible by p [by (9)] and so congruence (9) shows that 2 is a quadratic 
residue modulo p, which is impossible according to the quadratic reciprocity 
law and since p = ±3 (mod 8) [recall that p = ±1 (mod 8) iff 2 is a quadratic 
residue mod p] . The argument is identical when a2 is divisible by p; the con-
gruence that yields the contradiction is 

(p + s)2 = 2 P 2 (mod p). 

Remark.: Given two positive integers a and b which are relatively prime, it can 
be shown through elementary means that every solution (with X, J, and Z 
relatively prime) (X, J, Z) in Z, to the diophantine equation 

(a2 + b2)Z2 = X2 + J2, 

must satisfy 

-am2 + 2bmn + an2
 y __ bm2 + lamn - bn2

 7 _ m2 + n2 
X - D , l - D , - D , 

where D is the greatest common divisor of the three numerators and where the 
integers m and n are relatively prime. In the case of the equation 

2Z2 = X 2 + Y2 

we have, of course, a = b = 1; so the parametric solution takes the form 

X = -m2 + 2mn + n2, Y = m2 + 2mn - n2, Z = m2 + n2 

with (X, Y) = 1, (jn9 ri) - 1, and m, n of different parity. If we set a = b = 1 
in the above formulas and require (X, J) = 1, then it is not hard to see that 
D = 1 or 2 according to whether m and n are of different parity or both odd 
with (jn9 n) - 1; but the case D = 2 reduces to D = 1 when w and n are both odd. 
To see this, we may set m = mf ~ n! and n = mr + nf with (jn!, n ; ) = 1 and 777f, 
nf of different parity. By solving the above formulas for mf and nr in terms 
of m and n, substituting for a - b - \ and Z) = 2 in the above formulas, we do 
see indeed that the case (m> n) = 1 and m + n = 0 (mod 2) reduces to that of 
(jn, ri) = 1 and 777 + n = 1 (mod 2) (and so D = 1). 

These elementary derivations of parametric solutions make essential use of 
the fact that the equation (a2 + b2)Z2 = X2 + Y2 is homogeneous. For further 
reading, you may refer to [1], 

306 [Nov. 



THE DIOPHANTINE EQUATION x2 + a2ym = z2n with (x, ay) = 1 

Corollary 1: If a satisfies the hypothesis of Theorem 1, there is no primitive 
Pythagoran triangle (primitive means that any two sides are relatively prime) 
whose odd perpendicular side is divisible by a and whose hypotenuse is an inte-
ger square. 

Proof: Suppose, to the contrary, that there is such a primitive Pythagorean 
triple, say (a^, yl9 z^9 so that x^ 4- y2 = z\9 (3^, y ^) = I, yl odd. Then we 
must, accordingly, have y\ = ay and z^ = z2

 s where y and z are positive inte-
gers. Substituting into the above equation, we obtain x\ 4- a2y2 = s^; since y-, 
is odd, so must be y in view of y^ = ay. But (#]_, y±) = (#l5 ay) = 1, which, 
together with the last equation, violate Theorem 1 for n = m = 2. Thus, a con-
tradiction. 

Comment: It is not very difficult to show that, given any positive integer p, 
there is an infinitude of Pythagorean triangles with a perpendicular side being 
a pth integer power; or with the hypotenuse a pth integer power. A construc-
tion of such families of Pythagorean triangles can be done elementarily and 
explicitly. Specifically, if a and b are odd positive integers which are 
relatively prime, define the positive integers 

M aP + bp
 A w ap - bp , 

M = and N = ; a > b. 

Then the triple (M2 - N2, 2MB 9 M2 4- N2) is a primitive Pythagorean triple such 
that M2 - N2 is the pth power of an integer. That the triple is Pythagorean is 
well known and established by a straightforward computation. To show that it 
is primitive, it is enough to observe that, in view of the fact that a and b 
are both odd (and so are ap and b9), M and N must have different parity (to see 
this, consider ap + bp and ap - bp modulo 4). If p is a prime divisor of M and 
N one easily shows that p must divide both ap and bp, an impossibility in view 
of (a, b) = 1. This establishes that (M, N) = 1. Finally, a computation shows 
M2 - N2 = apbp = (ab)p . 

To construct a primitive Pythagorean triangle whose even side is the pth 

power of an integer, it would suffice to take M = ap and N = 2p~l » bp (or vice 
versa) , with (a, 2? ) = 1, a and 2? positive integers and a odd. Here we assume 
p > 2 (for p = 1 the problem is trivial, in which case one must assume b to be 
even). By inspection, we have (M, N) = 1. And 2MN = 2ap * 2p~lbp = (2ab)p ; the 
triangle (M2 - N2, 2MF, M2 + /I/2) is a primitive one whose even side is a pth 

integer power. 
Now, let us discuss the construction of a primitive Pythagorean triangle 

whose hypotenuse is the pth power of an integer. In the special case p = 2n, 
the following procedure can be applied. We form the sequence 

\XQ9 I/Q, 2 Q ) , ..., \xn, yn, zn) 

by first defining 

x0 = M2
Q - < , yQ = 2M0NQ, zQ = M\ + N2

Q, 

where MQ and NQ are given positive integers, relatively prime, of different 
parity, and MQ > NQ» Then recursively define 

Mt = M\_l - B\_x and Ni = 2Mi_lNi_l, for i = 1, ..., n. 
It can easily be shown by induction that (M^, N^) = 1 and that (xi9 yi , zi ) is a 
Pythagorean triple, where 

It is also easily shown that z^ = s2_-,, which eventually leads to zn = s?n. The 
Pythagorean triple (xn, yn, zn) would then be a primitive one, with zn the pth 
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power of an integer p = 2n. More generally, if p > 2 is any integer, a primi-
tive Pythagorean triangle can be constructed such that the hypotenuse is the 
pth power of a prime p = 1 (mod 4). 

Specifically, if p is any prime such that p = 1 (mod 4), then p = a2 + 2?2, 
where the relatively prime integers a and b are uniquely determined. 

We have 

p2 = p* p = (a2 + b2)(a2 + b2) = (a2 - £ 2 ) 2 + {lab)2; 

one can easily check that a2 - b2 and lab must be relatively prime. Now, sup-
pose that p p _ 1 = M2 + N2, p > 3, for some positive integers M and 71/ such that 
(M, N) = 1. 

We have 

pP = pP-1 . p = (A/2 + # 2 ) ( a 2 + ^2) = (Afi> - 717a)2 + (Ma + 71/2?)2 

= (Mb + Na)2 + (Ma - Nb)2. 

We claim that 

(Mb - Na, Ma + Nb) = I or (Mb + Na, Ma - Nb) = 1. 

For, otherwise, there would be a prime q dividing Mb - 71/a and Ma + il/2? and a 
prime r dividing M2? + Na and Afa + Nb. But then, according to the above equa-
tion, both q and r would divide pp; hence, q ~ v - p . But this would imply 
that p must divide 1Mb, INa, IMa, and 2M>; consequently, p must divide (since p 
is odd) M?, to, Ma, and #&; however, this is impossible by virtue of (M, N) = 
(a, b) = 1. Thus, we have shown that, for given p > 2 and prime p = 1 (mod 4), 
there exist integers M, N, (M, N) = 1 such that pp = M2 + N2. Then the desired 
Pythagorean triple is (M2 - N2, 1MN, p p ) . 

Corollary 2: If in a primitive Pythagorean triangle the hypotenuse is an inte-
ger square, then each prime factor p of its odd perpendicular side must be con-
gruent to ±1 modulo 8. 

Proof: The result is an immediate consequence of Corollary 1. Indeed, if it 
were otherwise, that is, if the odd perpendicular side y had a prime factor 
p = ±3 (mod 8), then by setting y = py\, we would obtain 

xl + p2 . yl = s2s With (x9 -py^) = 1. 

But z = R2 by hypothesis, and so the last equation produces 

x2 + p2y\ = i?4, 

which is contrary to Corollary 1 with a = p. 

Theorem 2: Let m be a (positive) even integer, m = Ik, with fc odd, k > 3, and 
n even. Also, let a be an odd positive integer that contains a prime divisor 
p = ±3 (mod 8), and assume that b is a non-/cth residue modulo a, while 2 is a 
fcth residue of q, where q is some prime divisor of a; b some positive integer 
relatively prime to a. Moreover, assume that each divisor p of a/qe, where qe 

is the highest power of q dividing a, is a kth residue modulo q. Then the 
diophantine equation 

b2xm + a2ym = z2n\ (bxk)2 + (ayk)2 = (sn) 2 

has no solution in positive integers x, y, z with (bx, ay) = 1. 

Proof: By Theorem 1, there is nothing to prove when y is odd. If, on the other 
hand, y is even and x odd, with (bx, ay) = 1 and b2xm + a2ym = z2n, we see that 
bxk, ayk, and zn form a primitive Pythagorean triple, where k = ml2. In that 
case, of course, bx is odd and ay is even, and so we must have 
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(10) bxk = M2 - N2, ayk = 2MN, zn = M2 + N2 

with {My N) = 1 and M, # being positive integers of different parity. 
Let q be the prime divisor of a, as stated in the hypothesis. The second 

equation of (10) shows that q must divide M or N. Certainly the above coprime-
ness conditions show that q does not divide bx* On the other hand, by virtue 
of the fact that k is odd, we have (~\)k = -1. First, suppose M = 0 (mod q) . 
Then, if qe is the highest power of q dividing a, then since (M, /!/) = 1, the 
second equation in (1) shows that qe divides M; and 

N = ^ p 2 f
5 

where p is a divisor of a/qe and the exponent / equals 0 or k - 1, depending on 
whether N is odd or even, respectively. Thus, 

N2 = N2kp2» 22^; 

but p is a /cth residue of q by hypothesis; hence, so is p2. Also 2k~l is a fcth 

residue of q, since 2 is (by hypothesis) and 2 • 2k~l = 2k. Consequently, N2 

is a fcth residue and since (-1)^ = -1, the first equation in (10) clearly 
implies that b is also a kth residue of q9 contrary to the hypothesis. 

A similar argument settles the case N E 0 (mod q). 

Example: Take k = 3, and so /?? = 6, p = 29, g = 31, £ = 1, and a = p • ̂  = 899; 
then p E 5 (mod 8) and the cubic residues of 31 are ±1, ±2, ±4, ±8, and ±15; 
p = 29 is a cubic residue of q. Thus, if b £ ±1, ±2, ±4, ±15 (mod 31), the 
diophantine equation (bx^)2 + (899i/3)2 = z1* has no solution over the set of 
positive integers. 

Corollary 3 (to Th. 2) : Let a, b9 and k be positive integers satisfying the 
hypothesis of Theorem 2. Then, there is no primitive Pythagorean triangle with 
one perpendicular side equal to a times a kth integer power, the other b times 
a kth power, and the hypotenuse a perfect square. 

Proof: Apply Theorem 2 with m = n = 2. We omit the details. 
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East Carolina University, Greenville, NC 27858 

(December 1990) 

A generalization of the Fibonacci sequence to vectors was defined in 
Atanassov, Atanassova, & Sasselov [1]. In a later article, Atanassov [2] 
defined the four distinct (2, F) generalizations of the Fibonacci sequence and 
determined a solution for one of the cases in terms of the greatest integer 
function. Subsequently Lee & Lee [3] published solutions for all four (2, F) 
generalizations using the function f(ri) = tj, where j = n mod(fc) + 1 and tj is 
the j t h element of an ordered k-tuple [tl5 t2> . ..> £&]• The purpose of this 
paper is to present a solution to each of the four (29 F) generalizations of 
the Fibonacci sequence as 

(1) A linear combination of two second-order recursive sequences, and 
(2) a polynomial in a and 3 and sometimes a) and oj, where a = (1 4- /5)/2, 

3 = (1 - /5)/2, and OJ and co are the usual complex cube roots of 1. 

In order to find a solution to the four (2, F) generalizations of the Fibo-
nacci sequence, the following lemma is used. 

Lemma: Let p(x) = 1 + x + x2. The four recursive sequences defined by the 
four possible generating functions l/p(x) have the properties given in Table 1 
below, where w and GO are the complex cube roots of unity and a = (1 + /5)/2 and 
3 = (1 - /5)/2. 

Table 1 

Generating 
Function 

1 
1 - x - x2 

1 
1 + X + X2 

1 
1 - x + x2 

1 
1 + X - X2 

F L n 

Tn 

Sn 

Gn 

General Term 

_ an + 1 - 3n + 1 

a - 3 

0) - 0) 

= (-l)n ^ 
0) -

n.n + 1 _ 
= (-1)" 2 

a -

0) W + 1 

03 

3n + 1 

3 

Generated 
Series 

n= 0 

n= 0 

n= 0 

«» 0 

Recursion 
Relation 

Fn+2 = Fn + l + ^n 

~^n+2 = Tn+l + Tn 

Sn + 2 ~ $n+l ~ Sn 

&n+2 = ~ ^ n + 1 + &n 

The proof of the lemma is not shown; however, the lemma can be proved by-
separating the generating functions into fractions with linear denominators and 
then applying the binomial theorem for negative exponents. Note that, in the 
table, 

F0 = 1, F1 = 1, and Fn+2 = Fn+l + Fn for n = 2, 3, 4, ... . 

From the table, it is immediate that 
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^n = (~DnFn and Sn = (~l)nTnB 

It is also true that all four sequences may be extended to negative indices. 

Theorem: Let Pl
n = (Zn, Jn) and P* = (I„, Xn). Then the difference equation 

Pn+2 " *n+l + Pn> U * ̂  f o r J» k G tl, 2} 
with the initial conditions PQ = (a, e), pj = (£>, d ) , where a, b, c, and c? are 
arbitrary real numbers, defines the four distinct (2, F) generalizations of the 
Fibonacci sequence. 

Proof of the Theorem: The four distinct cases are considered separately. 

Case 1: Let J = 1 and k = 1. The system is 

Xn+2 = Xn+l + ^n s n > 05 

Jn + 2 = Yn+i + Yn> n > 0, with 

pj = (a, e) and P{ = (&, d) . 

Here5 the system is separable into two independent difference equations with 
each equation defining a generalized Fibonacci sequence. The required solution 
is 

Xn = aPn_2 + bFn-l anc* %n = cFn-2 + dFn„i for n > 0. 

Binet's formulas are 

an-i _ gn-1 an - 3n , v a""1 - 3n~1 , -, an - 3n 

n a - 3 a - 3 a - 3 a - 3 

Case 2: Let J = 1 and fe = 2. The system is 

*n + 2 = *n + l + ^ > « * 0> 

n̂ + 2 = *n + l + *„> n > 0, With 
pj = (a, e) and pj = (fc, d). 

Assuming a solution of the form 

* = fix) = E ^ x S I = g(x) = E ^ x S 
i= 0 i=0 

and substituting into the above system yields the system 

(1 - x)f(x) - x2g{x) = a + (fc — a)x 

-x^f^x) + (1 - ar)̂ (ar) = <3 + (d - c)# 

defining /(#) and g(x). Solving this system and applying partial fractions 
results in the following generating functions for f(x) and g(x): 

(a + c) + (-a - <5 + 2? + d)# (a - (?) + (-a + o + b - d)x 1 
1: - X - X2 1 - ̂  + X2 J 

(a + c) + (-a - c + b + d)x (-a + <?) + (a - < ? - & + d)# 1 
l - X - X 2 I - X + X1 J' 

Applying the lemma and collecting terms, the equations are 

/ ( * ) B j E [ ( a + ^ - 2 + (-<* + S ) £ Y - 2 + (^ + d)**- i + (2> - d ) ^ - i ] x * 
Z i = 0 

and 

z i = 0 

/ ( * ) = | 

^(^) = 2 
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Consequently, 
1 Xn = ^[(a + c)Fn„2 + (-a + g )S n _ 2 + (b + ^ D ^ - l + (& - d ) 5 n _ ! ] ? 

^n = | [ ( a + e)Fn_2 + (a - g ) 5 n _ 2 + (2> + d ^ - l + (-6 + a 7 ) ^ ^ ] . 

S u b s t i t u t i n g 
vn + l _ on + l 

and 5 n = (-1) n 0)' rc + 1 TW+1 

a - p 0 3 - a ) 

from the Lemma yields the analogs of BinetTs formulas 

1 
Xn = , t o ) ( £ ^ i ) t ( l t ^ 

+ (-a + g ) ( -D"- 2 ( : ,.w-l ,T«-1 
) + (2> - dX-i)*"1^ 

and 

*„ = (a 
V a - 3 / V a - 3 / 

+ (a - ̂ (-1)"-^"' "^n"1) + (-b + d){-ir-H^-=^-) 
\ 0) - 0) / \ 0 ) - 0 ) / 0) - 0) 

Case 3: For J = 2 and fc = 1, the system is 

Xn+2 == ¥n + i + Xn, n > 0, 

?n + 2 = Xn + 1 + ?n> n > 0S with 

Pj = (a, c) and P\ = (2>, a7)* 

Assuming a solution of the form 

i= 0 f = 0 

substituting into the system, solving for f(x) and #(#) and then applying par-
tial fractions gives the generating functions in the following forms: 

/(*) 
1 (a + g) + (-q -<? + 2? + a7)x, (a - g) + (a - g + Z? - a7)^ 

1 + x - xl 

g(x) = -z (a + g) + (-a - g + 2? + J)x (-a + g) + (-a + g - b + q7)^ 
1 - x - x^ 1 + x - ̂  

Applying the Lemma, collecting terms, and using the recursion relations from 
the Lemma yields the following forms for the generating functions: 

fix) = \ f; [(a + g)i^-2 + (a - g ) ^ _ 2 + (b + d ) ^ _ x + (6 - a 7 ) ^ ] ^ , 
z i- o 

£(*) = \ E [(a + e>^-2 + (s - a ) ^ _ 2 + (6 + d)Fi.l + (d - i ) ^ ] * 1 * 

Consequently, 

V-0 

f„ = ±[(a + C)FM_ 2 + (a - c)(?n_2 + (b + d)Fn_l + (b - <*)<?„_!] 
and 
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-[{a + c)Fn_2 + {o - a)Gn.2 + (b + d)Fn.l + (d - £)£n-i] 

Substituting for Fn and Gn in terms of a and 3 gives the following analogs of 
Binet ? s formulas: 

n 2 (a + o) 
n-1 „ on-I 

V a -

«" _ an 

+ (a - c)(-l)» 
n~ 1 _ D n- 1 

+ (& + d)[- M + (6 - dx- i )^-1 -

a 

n - ft" 

and 
a - 3 

(a + c) 
n _ l _ ftw-i 

\ a 
+ (a - c)(-l)"-l/a «" 1 _ an~1 

a - 3 

+ {b + J) 
a - 3 

+ (2> - d)(-l) n /a 
a - 3 

Note that 6^ = (-1)^^. Collecting terms in a, 2?, <?, and d gives 

Xn = |[aPn_2[l + (-1)"] + cFn.z[l - (-1)*] 

+ bFn_l[l + (-l)*"1] + dFn^[l - (-l)*"1]] 

and a similar form for J„e 

Case 4: For J = 2 and fe = 2, the system is 

^n+2 = ^n + 1 + ^n' n > 0, 

Yn+2 = ̂ n + 1 + ̂ n> n ^ ° > w i t h 

pj = (a, c) and P* = (i, a7). 

Again, assuming a solution of the form 

i= 0 i= 0 

substituting into the system, solving for f(x) and g(x), and using partial 
fractions gives the following forms of the generating functions: 

fix) 1 (q + o) + (-a - g + b + d)x (a - a) + (a - o + & - d)x 
1 - x - xl 1 + X + X1 

g(x) = - (a + a) + (-a - a + fc + d)x (-a + g) + (-a + c - b + d)x 
I - x - xz 1 + X + X1 

Applying the series from the Lemma, collecting terms, and using the recursion 
relations from the Lemma to combine terms gives 

£ = 0 

Thus, 

and 

z i= o 

Zn = \[{a + e)F„-2 + (-a + c)Tn_2 + (b + d)Pn_x + (6 - d)^_x] 

yn = 2 [ ( a + C)F""2 + (a " C^Tn-2 + (̂  + d)^n-l + (~& + ^) T„ _ x ] . 
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Substituting for Fn and Tn in terms of a, 3, a), and GO gives the analogs of 
Binetfs formulas: 

r„ =f[(a + c ) ( ^ -
• ) 

+ (-a + c) 

and 

1^1 

\ a - 3 / \ a) - a) /J 

Tn-1 

(a + <?) 

+ (b + d) 

/an~1 - t 
\ a - t 

lan - 3n\ 
\ a - 3 / 

,n-l 
+ (a - c) 

( ! 

,n-l TW-1 

+ (-& + d) tu>n - oon\"[ 
V 03 - CO /J 

In this paper we have expressed the solutions to the (2, F) generalizations 
of the Fibonacci sequence as a linear combination of the terms of two recursive 
sequences of order 2. Since the coefficients of the terms of the recursive 
sequences are linear functions of the initial terms of the (29F) sequences, it 
is possible to rearrange the solutions into the form of a linear combination of 
the initial terms, where coefficients are functions of the terms of the second-
order sequences involved. 
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1. Some Preliminaries 

Let G be a finite graph. A perfect matching in G is a selection of edges 
in G such that each vertex of G belongs to exactly one selected edge. There-
fore, if the number of vertices in G is odd, then there is no perfect matching. 
We denote by K(G) the number of perfect matchings of £, and refer to it as the 
K number of G. 

By a polygonal chain Py, s we mean a finite graph obtained by concatenating 
s k-gons in such a way that any two adjacent fc-gons (cells) have exactly one 
edge in common, and each cell is adjacent to exactly two other cells, except 
the first and last cells (end cells) which are adjacent to exactly one other 
cell each. It is clear that different polygonal chains will result, according 
to the manner in which the cells are concatenated. 

L A A L 

A 

L L 

L A L 

L 

Figure 1 Figure 2 

Figure 1 shows a hexagonal chain P5jll. The LA-sequence of a hexagonal 
chain is defined in [11] as follows. A hexagonal chain P6j s is represented by 
a word of the length s over the alphabet {A> L}. The i t h letter is A (and the 
corresponding hexagon is called a kink) iff 1 < i < s and the i t h hexagon has 
an edge that does not share a common vertex with any of two neighbors. 
Otherwise, the i t h letter is L. For instance, the hexagonal chain in Figure 1 
is represented by a word LAALALLLALL9 or, in abbreviated form LA2LAL^AL2. The 
LA-sequence of a hexagonal chain may always be written in the form 

P6<#1, . .., xn> = LXlALx^A ... ALXn
9 

where xl > 1, xn > 1, xi > 0, for i = 2, 3, . . . , n - 1. For instance, the LA-
sequence of the hexagonal chain in Figure 1 may be written in the form 

P6<1, 0, 1, 3, 2> = LAL°ALAL3AL2
B 

It is well known that the number of a hexagonal chain is entirely determined 
by its M-sequence, no matter which way the kinks go ([1], [10], [12]). In [1] 

'cWork partially supported by the NSERC of Canada. 
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the term "isoarithmicity" for this phenomenon is coined. Thus, 

P6<a;1, x , . . ., xn> 

represents a class of isoarithmic hexagonal chains. 
Figure 2 above shows a square chain £\, n- We introduce a representation 

of square chains in order to establish a mapping between square and hexagonal 
chains that will enable us to obtain the K numbers for square chains. A square 
chain P^t8 is represented by a word of the length s over the alphabet {A, L}, 
also called its LA-sequence. The i t h letter is A iff each vertex of the ith 

square also belongs to an adjacent square. Otherwise, the ith letter is L. 
For instance, the square chain in Figure 2 above is represented by the word 
LAALALLLALL, or, in abbreviated form LAZLAL3AL2. Clearly, the L4-sequence of a 
square chain may always be written in the form 

Ph<xl9 ..., xn> = LXlALXzA ... ALXn, 

where Xi > 1, xn > 1, xi > 0, for i = 2, 3, ..., n - 1. For example, the LA-
sequence of the square chain in Figure 2 may be written in the form 

PLf<l3 0, 1, 3, 2> = LAL°ALAL3AL2. 

We show below that all square chains of the form 

L L±\X J , a a a a Xy^/ 

are isoarithmic. 
We will draw pentagonal chains so that each pentagon has two vertical edges 

and a horizontal one which is adjacent to both vertical edges. The common edge 
of any two adjacent pentagons is drawn vertical. We shall call such a way of 
drawing a pentagonal chain the horizontal representation of that pentagonal 
chain. From the horizontal representation of a pentagonal chain one can see 
that it is composed of a certain number (>1) of segments; namely, two adjacent 
pentagons belong to the same segment iff their horizontal edges are adjacent. 
We denote by 

i C\X] , Xo* • a . , Xyi' 

the pentagonal chain consisting of n segments of lengths #]_, #£» •••»#«» where 
the segments are taken from left to right. Figure 4a below shows 

P5<3, 2, 4, 8, 5>. 

Notice that one can assume that X\ > 1 and xn > 1. 
Among all polygonal chains, the hexagonal chains were studied the most ex-

tensively, since they are of great importance in chemistry, namely, benzenoid 
hydrocarbon chains. Each perfect matching of a hexagonal chain corresponds to 
a Kekule structure of the corresponding benzenoid hydrocarbon. The stability 
and other properties of these hydrocarbons have been found to correlate with 
their K numbers. The classical paper [10] contains a general algorithm for the 
enumeration of Kekule structures (Z numbers) of benzenoid chains and branched 
catacondensed benzenoids. The algorithm is modified in [6]. An alternative 
derivation for the case of unbranched chains is described in [4]. In [17] 
Tosic proposed an algorithm of time complexity 0(n) for calculating the number 
of Kekule structures of an arbitrary benzenoid chain composed from n linearly 
condensed segments. The explicit formulas, in terms of the Fibonacci numbers, 
for the number of Kekule structures for a zigzag chain were given in [20], [3], 
and [5]. We will re-derive the formula for K numbers of zigzag chains as a 
special case of a new general formula. A treatise on three connections between 
Fibonacci numbers and Kekule structures is presented in [2] and [15]. A 
procedure for producing algebraic formulas for the K number of an arbitrary 
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catacondensed benzenoid is elaborated in [1]. Two different explicit formulas 
for the K number of an arbitrary benzenoid chain are given in [18] and [19]. A 
whole recent book [7] is devoted to Kekule structures in benzenoid hydrocar-
bons. It contains a list of other references on the problem of finding the 
"Kekule structure count" for hydrocarbons. 

In [14] Gutman & Cyvin investigated the connection between the square and 
hexagonal chains, and derived the number of a graph QPtqS which is a chain 
composed of p + q + 1 squares, and, in our notation, is denoted by 

LA?-lLAq-lL: K(Qp> q) = Fp + q+2 + Fp + 1Fq + 1. 
In the present paper, we investigate the K number of an arbitrary square chain; 
the above formula will follow as a special case of a general result. 

In [8] and [9] Farrell investigated the K numbers of pentagonal chains of 
particular forms. The obtained results are special cases of a general formula 
which will be deduced here. 

2. K Numbers of Hexagonal Chains 

Recently Tosic and Bodroza [18] proved a recurrence relation and a formula 
for the K numbers of hexagonal chains using a notation that counts every kink 
twice. Motivated by the possibility of mapping square and pentagonal chains to 
hexagonal ones, here we use a different notation that leads to a new recur-
rence relation and formula. The proofs are omitted because they can be 
obtained along the same lines as the proofs of Theorems 1 and 2 from [18]. 

The K formula for a single linear chain (polyacene) of X\ hexagons, i.e., 
P§<Xi> is deduced in [10] and [7]. We define Pg< > as the hexagonal chain with 
"no hexagons." 

Theorem 1: Z(P6< >) = 1, K(P&<xl>) = 1 + xx, 

Z(P6<xl5 ..., xn.l9 xn>) = (xn + l)K(Ps<Xi, ..., ffn-i>) 

+ Z(P6<xl3 ..., xn.2>) for n > 2. 

Theorem 2: Z(P 6 <x l 3 . . . , xn_ls xn>) = 

Fn+l + S 
0 < il < ... <ik<ni i <k<n 

Fn+l-iji,-^ - • • • F*:-.- *"-• *-• *-• k H ~ lk-1 2 - 2 - ^ 1 2-1 i \ 2-2 

3. K Number of a Square Chain 

H 

Theorem 3: K(P^<xls 

3 4 

. ^ B * 

1992] 

Figure 3 
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Proof: Referring to Figure 3, it is easy to see that if in a square chain some 
(or all) structural details of the type A, B, and C are replaced by A*, B* , and 
C*, respectively, the K number will remain the same. By accomplishing such 
replacements, each square chain can be transformed into a hexagonal chain with 
the same M-sequence. Therefore, a square chain and corresponding hexagonal 
chain represented by the same Li4-sequence have the same K number. For example, 
the square chain in Figure 2 can be transformed into the hexagonal chain in 
Figure 1. Note that the corner squares of a square chain correspond to the 
linear hexagons, and vice versa, in this transformation. D 

Thus, the K numbers for square chains are also given by Theorem 2. It is 
clear that all other properties concerning the K numbers of square chains can 
be derived from the corresponding results for hexagonal chains and that the 
investigation of square chains as a separate class from that point of view is 
of no interest. 

Note that the formula 

K(Qp, q) = Fp + q+2 + Fp+lFq + l 

of Gutman & Cyvin [14] for the chain LA9 LAq L can be derived from Theorem 2 
as a special case. Namely, in the M-sequence of Qp qi we have 

n = p + q - l ; Xi=xp=xp+q_i=l; xi = 0 for i * 1, p, p + q - 1, 
and 

K(Qp,q) = Fp+q + Fp+q -lFl + Fq FV + FlFp+q~l + FqFp-\F\ + F\Fp+q-2F\ 

+ FiF^Fp + F1Fq.lFp„lFl 

= (Fp + q + 2Fp + q . l + Fp + q_2) + (Fp + Fp-!)Fq + (Fp + Fp_l)Fq_l 

= Fp+q+2 + Fp+lFq + Fp + lFq-l 
= Fp+q + 2 + Fp + lFq + l* 

K Number of a Pentagonal Chain 

First, recall a general result concerning matchings of graphs. Let G be a 
graph and u9 x9 y, V its distinct vertices, such that ux, xy, yv are edges of 
G, u and V are not adjacent, and x and y have degree two. Let the graph H be 
obtained from G by deleting the vertices x and y and by joining u and v, 
Conversely, G can be considered as obtained from H by inserting two vertices (x 
and y) into the edge of uv. We say that G can be reduced to H, or that G is 
reducible to H; clearly K(G) = K(H) [13]. 

Theorem 4: If Xi + x2 + • • • + %n is odd, then 

K(P5<xl9 ..., xn>) = 0. 

Otherwise (i.e., if the sequence ^ j , x2, ...5 xn contains an even number of odd 
integers), let 

s(j'l), sUz)> •••» s(jt) (Ji < J2 < •"' < J*) 

be the odd numbers in the sequence 

S(P) = xl + -•• + xP (r = 1, 2, ..., ri), 

and let s(j0) = -1 and s(jt+1) = sn + 1; then 

Z(P5<o;1, ..., xn>) 

= ^t + 2 + E (Ft + 2.ir)/2* YlisUi) ~ s ( i - i ) - 2)F, , £ _ r 
o = i 0 < ^ 1 < . . . <ir < t+1 r £ = i £ £ 

1< r<t+ 1 
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Proof: Clear ly a pentagonal chain cons i s t i ng of p pentagons has 3p + 2 v e r t i c e s . 
Hence, a pentagonal chain with an odd number of pentagons has no pe r fec t match-
ing. Therefore, we assume t h a t i t has an even number of segments of odd 
l eng th . 

(a) oT 1 

(b) 

nrm 
Figure 4 

Consider a horizontal representation of P<X]_, x2s . .., xn> (Fig. 4a). Label 
the vertical edges 0, 1, . . . , sn, from left to right. Clearly no edge labeled 
by an odd number can be included in any perfect matching of P$<Xi, x2, . ..> xn> 
since there are an odd number of vertices on each side of such an edge. By 
removing all edges labeled with odd numbers, we obtain an octagonal chain 
consisting of sn/2 octagons (Fig. 4b). This octagonal chain can be reduced to 
a hexagonal chain with sn/2 hexagons (Fig. 1). It is evident that in the 
process of reduction, each octagon obtained from the two adjacent pentagons of 
the same segment becomes an L mode hexagon, while each octagon obtained from 
the two adjacent pentagons of different segments becomes a kink. The number of 
kinks is t, since each kink corresponds to an odd s(r). It means that this 
hexagonal chain consists of t + 1 segments. Let y^ be the number of L mode 
hexagons in the ith segment. Then 

2/1 = (s(Ji) - l)/2 = (sUi) - s(j0) - 2)/2 

ht+l = (s(n) " s^'t) - D/2 =(s(jt+i) - sUt) - 2)/2, 

and, for 2 < i < t , 

yt = (s(j{) - s(Ji-i) - 2)/2. 

Since reducibility preserves K numbers, it follows that 

K(P5<xl9 x2, ..., xn>) = Z(P6<z/l5 y 2 , ..., y t + i>) 
r 

= Ft + 2 + . . ]£ . Ft+2-ir FI yi^i.-ii-i > 
0=^o<^l<•••<^ r,<t+l £ = 1 

1 <r<t+ 1 

which gives, by taking into account the values for y^9 the expression in Theo-
rem 4. • 

Now we shall consider some special cases of Theorem 4 in order to derive 
some useful consequences. As a first specialization, we shall take the regular 
pentagonal chains, defined as follows. If all segments of a pentagonal chain 
are of the same length m(xi = x2 = • • • = %n

 = m)» w e s aY that it is a regular 
'pentagonal chain and denote it by P$<mn> (similar notation will be used for a 
regular subchain of a chain). 

Theorem 5: Let m and n be positive integers, m odd and n even > 6. Then 

K(P5<mn>) = (m + l)2(Fn/2 + Q{n.2) 2{m - l))/4 + (m + D(F{n.2)/2 

+ Q{n-h)l2^ ~ D ) + F{n-h)l2 + S(n-6)/2<> " D» 
where r+l 

1n{m) = X mVX\FH-i,-Y for n > 1 and «0(77z) - 0. 
0= iQ < ii < • •• < ir < ir+i < n+ 1 £=1 

1 < p < n 
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Proof: Let m = 2k + 1, n = 2p. Then t = p + 1 and ̂ x = z/p + i = k9 y^ = 2fe, for 
-£ = 2, 3, . . . , £. Hence 

Z(P5<mn>) = K(P5<k, 2kp~1, k>). 

Applying Theorem 1 and property Z(P5<#1, . .., xn>) = K(P5<xn, . .., #i> ) we obtain 

K(P5<k, 2kp~l, k>) = (k + l)K(P5<2kp~l, k>) + Z(P5<2fep~2, k>), 

Z(P5<2£cp_1, fc>) = (fc + l)Z(P5<2fep"1>) + Z(P5<2fcp~2>), 
an d Z(P5<2kp~2, fe>) = {k + l)Z(P5<2kp~2>) + Z(P5<2fcp~3>). 
It follows that 

K(P5<k9 2kp'1f k>) = (k + 1)2Z(P5<2^P"1>) + 2(k + l)Z(P5<2kp~2>) 

+ Z(P5<2fcp~3>). 
Thus, 

K(P5<mn>) = l/4(m + l)2Z(P5<w - i(*-2)/2>) + (m + l)Z(P5<w - i("-̂ )/2>) 
+ K(P5<m - i(^-6)/2>)8 

The statement follows by applying Theorem 2. Q 

We note that all results by Farrell in [9] and other papers concerning the 
numbers of perfect matchings of pentagonal chains are very special cases of 
Theorem 5 (which is a special case of Theorem 4). 

Corollary 1: K(P5<l2k>)' =* Fk + 2. 

Proof: Follows as a special case of Theorem 5 when m = 1. Then, obviously, 
Qn{l) = 0 and we have, for n = 2k9 

K(P5<1^>) = Fk + 2Fk.x + Fk.2 = Fk + 2. 0 
Clearly, in this special case, the process of reduction results in a zigzag 

hexagonal chain, with the M-sequence LAk~2L. This is in accordance with the 
previously known result for the number of zigzag hexagonal chains derived in 
[20], [3], and [5]. 

Corollary 2: Let Xi, x2, . .., xn be all even positive integers, n > 1. Then 
K(P5<xl3 ..., xn>) = (xl + ••- + xn)/2 + 1. 

Proof: Since all partial sums s(r) in Theorem 4 are even, no kink is obtained 
in the process of reduction to a hexagonal chain. Thus, a linear hexagonal 
chain consisting of h = (x\ + x2 + sse + xn)/2 hexagons is obtained (i.e., 
Pe<h> = Lh). According to [7], we have K(P6<h>) = h + 1; hence, 

K(P5<xl9 ..., xn>) = h + 1. D 

In the special case of Corollary 2, when n = 1, we obtain a uniform penta-
gonal chain, i.e., a pentagonal chain consisting of only one segment. Several 
results concerning the matchings of the uniform pentagonal chains, including 
the Z number, are deduced in [8] by application of matching polynomials, which, 
in the case when the perfect matchings are in question, is a very involved 
technique. Here we generalize the result by deriving the formula for the Z 
number of an arbitrary pentagonal chain, using a much simpler technique. 

Corollary 3: Let m be an odd positive integer >1. Then 

K(P5<m2>) = (m2 + 2m + 5)/4; Z(P5<wLf>) = (m3 + 2m2 + 5m + 4)/4. 
Proof: Follows as a special case of Theorem 5. 

320 [Nov. 



FIBONACCI NUMBERS AND THE NUMBERS OF PERFECT MATCHINGS OF SQUARE, PENTAGONAL, AND HEXAGONAL CHAINS 

Acknowledgment 

We wish to thank the referee for suggestions that led to an improved pre-
sentation of the paper. 

References 

1. A., T. Balaban&I. Tomescu. "Algebraic Expressions for the Number of Kekule 
Structure of Isoarithmic Catacondensed Benzenoid Polycyclic Hydrocarbons." 
MATCH 14 (1983):155-82. 

2. A. T. Balaban & I. Tomescu. "Chemical Graphs—XL—Three Relations between 
the Fibonacci Sequence and the Numbers of Kekule Structures for Non-
Branched Catacondensed Polycyclic Aromatic Hydrocarbons." Croat. Chem. 
Acta 57.3 (1984):391-404. 

3. D. Cvetkovic&I. Gutman. "Kekule Structures and Topology—II—Catacondensed 
Systems." Croat. Chem. Acta 46(1974):15. 

4. S. J. Cyvin. "Number of Kekule Structures of Single-Chain Aromatics." 
Monatsh. Chem. 114 (1983):13-20. 

5. S. J. Cyvin. "Kekule Structures and the Fibonacci Series." Acta Chim. 
Bung. 112 (1983):281. 

6. S. J. Cyvin& I. Gutman. "Topological Properties of Benzenoid Systems—Part 
XXXVI—Algorithm for the Number of Kekule Structures in Some Pericondensed 
Benzenoids." MATCH 19 (1986):229-42. 

7. S. J. Cyvin &I. Gutman. Kekule Structures in Benzenoid Hydrocarbons3 Lec-
ture Botes in Chemistry 46. Berlin: Springer-Verlag, 1988. 

8. E„ J. Farrell&S. A. Wahid. "Matchings in Pentagonal Chains." Discr. Appl. 
Math. 7 (1984):31-40. 

9. E. J. Farrell. "On the Occurrences of Fibonacci Sequences in the Counting 
of Matchings in Linear Polygonal Chains." Fibonacci Quarterly 24.3(1986): 
238-46. 

10. M. Gordon & W. H. T. Davison. "Resonance Topology of Fully Aromatic Hydro-
carbons." J. Chem. Phys. 20 (1952):428-35. 

11. I. Gutman. "Topological Properties of Benzenoid Systems—An Identity for 
the Sextet Polynomial." The or. Chim. Acta 45 (1977):309. 

12. I. Gutman. "Topological Properties of Benzenoid Systems—XXI—Theorems, 
Conjectures, Unsolved Problems." Croat. Chem. Acta 56. 3 (1983):365-74. 

13. I. Gutman. "Perfect Matchings in a Class of Bipartite Graphs." Publ. de 
lrInst. Math. (Belgrade)s Nouvelle serie 45. 59 (1989):11-15. 

14. I. Gutman & S. J. Cyvin. "A Result on 1-Factors Related to Fibonacci Num-
bers." Fibonacci Quarterly 28.1 (1990):81-84. 

15. H. Hosoya. "Topological Index and Fibonacci Numbers with Relation to Chem-
istry." Fibonacci Quarterly 11. 3 (1973):255-69. 

16. L. Lovacz & M. D. Plummer. Matching Theory. Budapest: Akademiai Kiado, 
1986 

17. R. Tosic. "A Fast Algorithm for Calculating the Number of Kekule Struc-
tures of Unbranched Benzenoid Chains." MATH/CHEM/COMP 1988. Proc. Int. 
Course and Conf. on Interfaces between Math., Chem. and Comp. Sci. , 
Dubrovnik, June, 1988. Elsevier Publishers B.V., 1989, pp. 123-26. 

18. R. Tosic & 0. Bodroza. "An Algebraic Expression for the Number of Kekule 
Structures of Benzenoid Chains." Fibonacci Quarterly 29.1 (1991):7-11. 

19. R. Tosic & 0. Bodroza. "On the Number of Kekule Structures of Unbranched 
Benzenoid Chains." MATCH 24 (1989):311-16. 

20. T. F. Yen. "Resonance Topology of Polynuclear Aromatic Hydrocarbons." 
Theor. Chim. Acta 20 (1971):399. 

AMS Classification numbers: 05C70, 05B50, 05A15 

1992] 321 



ON A DIGRAPH DEFINED BY SQUARING MODULO n 

Earle L. Blanton, Jr. 
Box 754, Moultrie, GA 31768 

Spencer P. Hurd 
The Citadel, Charleston, SC 29409 

Judson S. McCranie 
1503 East Park Avenue, Apt. V-ll, Valdosta, GA 31602 

1. Introduction 

Let us begin by defining the digraph Gn. We identify the vertices of Gn 
with the set {0, 1, 2, . .., n - 1}. The ordered pair (a, b) is an edge of Gn 
if and only if a2 = b modulo n . Our general aim is to show how the number-
theoretic properties of n and n - 1 are closely associated with certain "geo-
metric" properties of the digraph Gn. The most fundamental results for prime 
moduli are established in Section 2. In Section 3 we are able to extend these 
results and at the same time to give a framework in which to view a series of 
theorems about primitive roots. In the last section we determine the cycle 
structure for Gp for an arbitrary prime p, and we use this structure to 
classify primes according to their cycle "signature." 

Some examples of these digraphs are shown in the diagrams. For the digraph 
G13 (which is more or less typical since the sequence a9 a2 , a2 , ..., a2 , ... 
mod n must eventually repeat for any a and any n ) , we observe that there are 3 
connected components which vary in size. Each component consists of a directed 
cycle and a tree or "tail" appended to some or all of the elements in the 
cycle. The tail is called a complete binary tree if it has a greatest vertexs 
called the node, if every vertex in the tail has indegree 0 or 2, and if each 
directed path from an extremity of the tail to the cycle has the same length. 
In G13, the cycle vertex 9 has a tail {10, 6, 7} with node 10. 

r\ 4-» 3 -»9 4-10 

2 11 6 7 12 

5 8 
Figure 1. G 13 

13 28 6 35 15 26 12 29 

^ V ^ V \f 
t \ l / \ , / 
40 25 31 

g \~ 10 —»8 

S* A T 4, 
3 38 M 27 16 < 37 

T T 
4 23 

^ / " \ / " \ 
V ,2 39 8 33 

Af\ TIF; /iP\ /IF; 

17 24 it 30 7 34 19 22 
Figure 2. G 41 
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1 16 

7» t ̂  7« t ̂  
11 g 19 6̂  ^ 14 

3 17 2 18 

Figure 3. G20 

The component of G13 containing 0 is a singleton. If y E y2- (mod n) , then 
(2/, 2/) is an edge, and we call 2/ a loop or sink. The vertices 0 and 1 are 
always sinks. There are many questions one might ask. We will consider the 
following: 

1. Given an n, which vertices in Gn are in a cycle and which are in a 
tail? 

2. How many components has Gn? What are the various cycle sizes? Why are 
the sizes different? 

3c How and why do the tails differ? 
4. Are there other sinks besides 0 and 1? 
5. To what extent do the digraphs characterize n? 

2. The Prime Modulus Case 

In what follows, p will always denote an odd prime. A few observations are 
immediate. The congruence x2 = b (mod p) has 2 solutions, say a and p - a, or 
no solutions [4, p. 84], This has useful and interesting consequences. 

Lemma 0: (a, b) is an edge of Gp if and only if (p - a, b) is an edge. Put 
another way, if (a, b) and (a;, b) are different edges, then a + af= p. 

Proposition 1: Every vertex in Gp except 0 has indegree 2 or indegree 0. Whe-
ther n is prime or not, every vertex in Gn has outdegree 1. 

Proposition 2: If y is any vertex in a cycle of Gps then the tail for y is empty 
or is a complete binary tree. 

If y = 0, then obviously y has both indegree and outdegree 1 and has no 
tail. Otherwise, as y is in a cycle and y * 09 there is an edge, say (a, 2/), 
with a also in the cycle (this a is the same as y if y is a sink, that is, if 
y2- = y) . But, in any case, this means (p - a, y) is a new edge and p - a is 
not in the cycle. Thus, p - a is the node of the tail of y. There are no 
other edges into y since p is prime. By Proposition 1, either p - a has inde-
gree 0 and the tail consists only of p - a itself, or p - a has indegree 2 and 
there are vertices b\ and b^ so that (JD\9 p - a) and (2?2» P ~ a) a r e edges. But 
now Proposition 1 applies in turn to b\ and b^_ in the same way as for p - a. 

Finally, we recall the theorem that, if p is a prime and if gcd(f, p) = 1, 
then xk E v (mod p) has either gcd(fc, p - 1) solutions or no solutions at all 
[7, p. 49]. It follows from this theorem, by induction on the distance from 
the node, that at every level, say distance w from the node, there are 2W ver-
tices in the tail at that level. Therefore, it follows that all vertices of 
indegree zero (the extremities of the tail) are at the same bottom level. 
Thus, the tail is a complete binary tree. D 

These propositions are false if n is not prime (see G 2Q* for example). 
Let us recall some standard terminology. If p is an odd prime, and if x2 E 

a (mod p) has a solution (resp., has no solution), then a is called a quadratic 

t 
10 

15 
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residue (resp., nonresidue) mod p, and satisfies a = 1 (mod p), (resp., = 
-1). In our situation, the numbers at the extremities of the tails are all 
quadratic nonresidues. We call them sources, and there are (p - l)/2 of them. 

We need a few additional ideas from number theory. Let (j) denote the usual 
Euler totient function. (All of the following can be found in [4, Chs. 9-12].) 
Euler?s Theorem says that, if gcd(a, n) = 1, then a^n^ = 1 (mod n) . Suppose 
now that gcd(a, n) = 1. Then there is a least positive exponent, say t, such 
that at E 1 (mod n) . One says "i is the order of a mod n" or "t is the 
exponent to which a belongs mod n." Further, it follows, for any exponent s 
with a3 = 1 (mod n) , that t|s. In particular, t|c|)(n). If the exponent t to 
which a belongs mod n is §(n) itself, then a is called a primitive root of n. 
Every prime number p has exactly (f)(p - 1) primitive roots. 

Now suppose that g is a primitive root mod p. Then ^, as a vertex of Gp, 
is a source and lies at the extremity of a tail for some vertex, say h9 which 
is an element of a cycle. Note that In = g2i/ for some "minimal" y. We say that 
y is the length of the tail. It follows from Proposition 2 that there are 2^_1 

sources in the tail for h and that there are altogether 2 ^ - 1 vertices in the 
tail. Suppose now that the cycle has length x. Then there is a directed path, 
along the directed edges, in which a repetition first occurs, as follows: 

g •> g2 -> . . . -> g2 E h •+ h2 + • • • + h2* E h. 

Since h2- E h (mod p) , we have /z2 _1 E 1 (mod p) . Combining results, 

(2) ^(2*-l)= ! ( m o d p ) . 

Clearly, as the repetition did not occur sooner, the numbers y and x are the 
smallest possible such that (2) is true. 

Proposition 3: If p - 1 = 2wq for some odd number q, then every tail in Gp with 
a primitive root at its extremity has length W. 

Proof: Suppose g is a primitive root for p and that p - 1 = 2wg for some odd 
number q. Then g belongs to the exponent p - 1, and, by (2) and the discussion 
above, it follows that 2^(2X - 1) is a multiple of p - 1. Necessarily, then, 
q\lx - 1 and 2W|2^, and w < y. However, it is impossible that W < y, as this 
implies that the path beginning with g would be at least one step shorter than 
it actually is. Hence, w = y. D 

Proposition 4: Suppose that p - 1 = 2wq for some odd number q. Let h be a ver-
tex of Gp in a cycle of length x as in path (1) with a primitive root for a 
source. Then, 

(a) h has order q. 
(b) 2X - 1 is the smallest Mersenne number divisible by q. 
(c) q = gcd(2* - 1, 4>(p)). 
(d) x\<\>(q) , and x - q - 1 if q is prime and 2 is a primitive root for q. 

Proof: Part (a) follows on untangling quantities: 

1 E g*^ = g2Wcl = [g2W]q = hq. 

Part (b) is argued above, since x is the smallest integer making the path (1) 
repeat a vertex. Also, from (a) and (b), 

q = gcd(2* - 1, q) = gcd(2* - 1, *(p)). 

This proves part (c). For part (d), 

q\lx - 1 -* 2X E 1 (mod 4). 

Now by part (b) , # is the order of 2 mod q, and so the rest follows by Eulerf s 
Theorem mod q. Q 
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Proposition 4 summarizes parts of the earlier comments and emphasizes the 
connection between q in the factorization of p - 1 and the cycle length x. Let 
us give another application of this factorization to show that all tails have 
the same length when n is prime. 

Proposition 5: Suppose p - 1 = 2wq for some odd number q. If h * 0 is any ver-
tex in a cycle for Gp, then the order of h (mod p) is odd and w is the length 
of the tail for h. All vertices in the same cycle have the same order. Con-
versely, if the order mod p of a vertex / in Gp is odd, then / i s in a cycle 
for Gp. 

Proof: Since h * 0, h has a source by the argument in Proposition 2. So let o 
be a source for h. Note that c is necessarily an odd power of some primitive 
root, since an even power could not be a source because it would have a square 
root. Then, by replacing g by c in (1) and (2), it follows that the order of h 
is odd and that the tail for h has length at least W, But if the tail were 
longer, then the repetition in (2) would occur at least one step sooner, a con-
tradiction. Now suppose h and J are any two vertices in the same cycle. Say h 
has order t and j has order s. Note that h2* E j (mod p) for some u. There-
fore s 

J* E [h^]1 E [ht]2U E 1 (mod p). 

This shows s\t. A symmetric argument shows t\s, Hence, s = t, and it follows 
that all vertices in the cycle with In have the same order. 

Suppose that the vertex / has odd order d (mod p) . Then q = dv for some 
odd integer V. Let g be a primitive root for p. Then, for some least positive 
integer r, f = gr (mod p) . Thus, 1 E fd E g ^ (mod p) . This implies rd is a 
multiple of 2wq, and so v is a multiple of 2WV. Thus, 

P = 2w+k°sv9 for fe > 0, s odd. 

Now let c = gsv . Since sv is odd, c is a source for a cycle vertex, say h. 
Thus, since the tail length is w, c2" E h (mod p). It follows that 

^ E [c2«]2^ = [?sU]2»+* = gr = f ( m o d p ). 

This shows that / i s in a cycle, k steps away from h. A different argument for 
this converse gives a little additional information. Note that 2*^' E 1 (mod 
d) , by Euler's theorem, since gcd(d, 2) = 1. This means 2 ^ ^ - 1 = ds for some 
integer s. Then 

/ 2 ^ ) - l E [fd]S = x ( m o d p)_ 

But on multiplying by f, we obtain f2 = f (mod p). This congruence shows that 
/ i s in a cycle, and moreover, that the cycle has length less or equal to $(d). 
This completes the proof. • 

We note that if n is not prime, then the tails in Gn need not all have the 
same length (e.g., see G 2 Q ) • 

3. Some Applications 

The next few propositions explore the extent to which the digraph Gp deter-
mines or characterizes w or q9 where p - 1 = 2wq. Along the way, we obtain not 
only relatively easy proofs of some familiar results about primitive roots, but 
also a framework which the digraphs provide for illustrating and investigating 
questions about primitive roots. 

We refer the reader to Table 1 which contains cycle data for Gp with 
5 < p < 79, and p = 2wq + 1, for q odd. A cycle of maximum length will be 
called a long cycle. From Propositions 4 and 5, we suspect that these long 
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cycles are cycles with primitive roots for sources, and this usually turns out 
to be the case. For those examples in which q is also prime, the cycle struc-
ture is simpler. Further, if w = 1 (that is, p = 2q + 1), the number of prim-
itive roots is q - 1, and there are only q quadratic nonresidues (sources). 
Except for the tail p - 1 for the sink 1, the tails consist of the primitive 
roots alone. Thus, there are q - 1 primitive roots and q - 1 vertices in the 
cycles containing them. Are these 2q - 2 vertices in the same component? That 
is, is there only one long cycle? Sometimes, yes, as for G7, Gll5 G23, and G59. 
But sometimes not, as in G47. What splits the long cycle into parts? 

Table 1. Cycle Data for Gp 

p 
5 

7 

11 

13 

17 

19 

23 

29 

31 

37 

41 

p - 1 = 2 k q 
22 

2(3) 

2<5) 

22(3) 

2 4 

2 (3 2 ) 

2(11) 

2 2 ( 7 ) 

2(3X5) 

2 2 ( 3 2 ) 

2 3 (5 ) 

Cycl 
Length 

1 

1 
2 

1 
4 

1 
2 

1 

1 
2 
6 

1 
10 

1 
3 

1 
2 
4 

1 
2 
6 

1 
4 

es 
Qty 
2 

2 
1 

2 
1 

2 
1 

2 

2 
1 
1 

2 
1 

2 
2 

2 
1 
3 

2 
1 
1 

2 
1 

P 
43 

47 

53 

59 

61 

67 

71 

73 

79 

p-1 = 2 k q 
2(3X7) 

2(23) 

2 2 (13) 

2(29) 

2 2 ( 3 X 5 ) 

2(3X11) 

2(5X7) 

2 3 ( 3 2 ) 

2(3X13) 

Cycl es 
Length Qty | 

1 
2 
3 
6 

1 
11 

1 
12 

1 
28 

1 
2 
4 

1 
2 
10 

1 
3 
•4 
12 

1 
2 
6 

1 
2 
12 

2 
1 
2 
2 

2 
2 

2 
1 

2 
1 

2 
1 
3 

2 
1 
3 

2 
2 
1 
2 

2 
1 
1 

2 
1 
3 

Proposition 6: Suppose p = 2wg + 1 for some odd prime q. Then Gp has 3 cycles 
if and only if 2 is a primitive root for q. More precisely, if x is the expo-
nent to which 2 belongs mod q, then x is the length of a long cycle, and there 
are (q - l)/x cycles of this maximal length. The total number of cycles is 2 + 
(q - l)/x, and the only cycle lengths that occur are 1 and x. 

Proof: First, we prove that there are exactly q vertices in cycles which have 
tails. In each tail, the "bottom row" consists of sources, and in all the 
tails there are (p - l)/2 of these; the next row is half as large, and so on. 
The total number of vertices in tails is 
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(p - l ) /2 + (p - l ) /4 4- . . . + (p - 1)/2W = 2wq(l/2 + . . . + 1/2W) 

= ^(2W_1 + 2W~2 + . . . + 1) 

= 2 \ - ? . 

Now n - (2wq - q) = 4 + 1. So all but 4 + 1 vertices are in tails. There are 
no sources (or tails) for the trivial sink 0. The sink 1 has a tail. The 
other q - 1 vertices which have tails are in non-sink cycles. 

Now, the number of quadratic nonresidues (sources) which are not primitive 
roots is 

(p - l)/2 - *(p - 1) = 2wq/2 - <b(2wq) 

= 2w~lq - 2w~1(q - 1) = 2w~l. 

This is precisely the number of sources for the sink 1, and, by Proposition 
4(a), none of these are primitive roots, since the cycle vertex 1 does not have 
order q. All other sources are primitive roots and thus lead to vertices in 
cycles of the same length x as in path (1). The number of such cycles is 
{q - l)/x since there are exactly q - 1 vertices in the remaining cycles, by 
the first argument. We have shown that two cycles are the two loops 0 and 1 
and that the rest have the same size x. Q 

Corollary 7: If q is prime and p = 2wq + 1, w > 1, then the sources which are 
not primitive roots all lie in the tail for the sink 1. 

In 1852, V. A. Lebesgue put Corollary 7 differently. He said any quadratic 
nonresidue, say g9 is a primitive root for p unless g^-w~ + 1 = 0 (mod p) ; the 
congruence would imply, in our context, that the source g leads to the node 
p - 1 and, of course, in one more step to the loop 1. A list of historical 
references appears in the last section. 

Question: Suppose that all of the non-sink cycles of Gp have the same size. 
Then must p = 2wq + 1 for some odd prime ql 

The answer to the question is "no." The prime p = 26 * 23 * 89 + 1 = 131009 
gives a counterexample. G131009 n a s 2 cycles of length 1 (the two sinks) and 
186 cycles of length 11. This is the smallest counterexample. The largest 
prime counterexample we found has 1252 digits. Full details of these examples 
appear in the next section. 

The counting arguments in Proposition 6 can easily be extended to prove the 
following proposition. 

Proposition 8: Suppose q is odd, and p = 2wq + 1. Then 

(a) The number of primitive roots for p is 2w~l$(q). 

(h) The number of nonresidues for p is 2w~lq. 

(c) The number of sources that are not primitive roots is 2w~l(q - <$>(q))-

(d) The number of sources in each tail is 2w~l. The number of vertices in 
each tail is 2W - 1. The number of vertices in tails is 2wq - q. 

(e) The number of vertices in non-sink cycles is q - 1. 

Proposition 9: Suppose p = 3 (mod 4), i.e., that p = 2q + 1 for q odd. Then r 
is a quadratic residue for p if and only if p - v is a quadratic nonresidue. 

Proof: If v is a residue, it is in a cycle, since tails have length 1. Thus, 
p - v is the node (source) for the vertex r2- which is in the cycle with v. • 

Proposition 10: Gp has exactly two components if and only if p is a Fermat 
prime. 
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Proof: If Gp has exactly two components, then one consists of the sink 0. All 
the other vertices must be in the other component and necessarily lead to the 
sink 1. Now 2 is in the tail somewhere. Therefore, there is a path starting 
with 2 and terminating at the node p - 1. But then p - 1 is congruent to a 
power of two [and the power is a power of two as in path (1)]. Thus, p divides 
I2- + 1 for some t > 0. On the other hand, for some W, there are 2W - 1 ver-
tices in the tail for 1. Thus, Gp consists of the sink 0, the sink 1, and the 
2W - 1 vertices in the tail for 1. It follows that p = 2W + 1. In order that 
there be no remainder in this long division, 

Q 

2W + l|22t + 1 , 

some partial remainder in the division such as - 2 2 ~kw + 1 is zero. Therefore, 
for some k9 2t - kw = 0. It follows that w is a power of 2. This means p is a 
Fermat prime: p = 2W + 1 and w is a power of 2. 

For the converse, suppose p is a prime and p = 2 2 + 1 for some t > 0. Then, 
by Proposition 8, the tail for the sink 1 has 22* - 1 elements. The whole com-
ponent containing 1 has 22 elements. It follows that the component containing 
1 and the sink 0 comprise all of Gp. D 

The next two corollaries are well known, but the proofs are nice applica-
tions of the digraphs. 

Corollary 11: If p = 2W + 1 is prime, then w is a power of 2. 

Proof: By Propositions 5 and 8, tails for Gp have length w and there are 2W - 1 
vertices in the tail for 1. The vertices for Gp include the sink 0, the sink 
1, and the tail for 1. This gives 1 + 1 + (2W - 1) = 2W + 1 = p vertices. As 
all of Gp is accounted for, we see that there are only two components. By Pro-
position 10, p is a Fermat prime, and so w is a power of 2. 

Corollary 12: Every source of Gp is a primitive root if and only if p is a Fer-
mat prime. 

Proof: First, suppose all sources are primitive roots. If g is a source for 1, 
then the order of g is a power of two, and the desired result follows by Corol-
lary 11. Conversely, when p is a Fermat prime, there are only two components 
by Proposition 10. Thus, all the sources (and all the primitive roots) are 
sources for the sink 1. Let g be any source. Then g2w ~ l (mod p) ; so g has 
order a power of two, some divisor of 2W. But if g^y = 1 (mod p) and y < w, 
then the path from g to 1 would be shorter, a contradiction. Hence, y = w and 
g is a primitive root. • 

Proposition 13: Exactly one source of Gp fails to be a primitive root for p if 
and only if p = 2q +1 for some odd prime q and p - 1 is the source not a primi-
tive root. 

Proof: The second direction follows from Proposition 8(c) and Corollary 7. Now 
suppose only one source, say g\ is not a primitive root. Then gJ must lead to 
the loop 1 as, otherwise, some other source g" leading to 1 would be a primi-
tive root with order a power of two, and by the previous results, p would be a 
Fermat prime, and every source would be a primitive root, a contradiction. 
This same argument shows that the tail to which the source gr belongs must have 
only one source. Thus, the tail consists of only the node. Since all the 
tails have the same length, by Proposition 5, p - 1 = 2q for some odd number q. 
Hence, there are q sources, and by hypothesis, q - 1 of them are primitive 
roots. There are also q residues of which q - 1 are in non-sink cycles. If h 
is any of these vertices in non-sink cycles, by Proposition 4, the order of h 
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is q. Therefore, the non-zero vertices of Gp have only the orders 1 (the sink 
1), 2 (the nonresidue p - 1 = gr), 2 (the q - 1 primitive roots), and q (the 
q - 1 vertices in non-sink cycles). This accounts for all the non-zero verti-
ces of Gp and none has order some proper divisor of q* However? if g is a pri-
mitive root, then g has order 2q. If kj = q for 1 < k, J < q, then the element 
g2k would have order j, a proper divisor of q. But there is no such vertex. 
It follows that q is prime. • 

We now give a new proof of a result of Baum [2]. Like Wilansky [15], we 
will not use quadratic reciprocity. The argument is made easier using the 
representation for Gp. We assume familiarity with the Legendre symbol and its 
properties (see [4], [7]). 

Proposition 14: Suppose p = 2q + 1 and that q is an odd prime. It follows that: 

(a) If q = 1 (mod 4), then 2 and q + 1 are primitive roots for p (and p - 2 
and q are residues). 

(b) If q = 3 (mod 4), then p - 2 and q are primitive roots for p (and 2 and 
q + 1 are residues). 

(c) In either case, 2(-l) is a primitive root for p. 

Proof: (a) Using the Legendre symbol and noting that p E 3 (mod 8) in this case 
so that (2|p) = -1, we have 

1 = (l|p) = (2q + 2|p) = (2(q + 1) |p) = (2|p)(<7 + l|p). 

It follows that q + 1, like 2, is a quadratic nonresidue mod p. By Proposition 
9, since q + 1 is a source, q is a residue; likewise, as 2 is a source, p - 2 
is a residue. But by Proposition 13, these sources are primitive roots since, 
clearly, neither is p - 1. The proof for (b) is similar, and (c) follows from 
(a) and (b). 

Proposition 15: Suppose q is odd and p = 2wq + 1, w > 2. Then it follows that: 

(a) g is a primitive root mod p if and only if p - g is also, and b is a 
source but not a primitive root if and only if p - b is also. 

(bj If w > 3, then ±2 and ±2mq (0 < m < w) are never primitive roots for p. 

(cj If w = 2 and if (7 is prime (that is, p = 4^ + 1), then 2, p - 2, 2q, and 
2q + I are primitive roots for p; also, ̂  and 3 ^ + 1 are residues. 

Proof: For (a), since W > 2, tails have length at least two, and so the tails 
are not merely nodes. Thus, by Lemma 0, the sources come in pairs a and p - a 
with a1 E (p - a ) 2 (mod p ) , and both lead to the same cycle vertex. By Propo-
sition 4, sources which are primitive roots lead to cycles in which each vertex 
has order q. There are <K<?) such vertices, each of which has a tail with 2w~l 

sources. But by, Proposition 8, there are altogether 2w~l §(q) primitive roots. 
Thus, no source which is not a primitive root could also lead to a vertex of 
order q. Therefore, if one member of a pair a and p - a is a primitive root 
(or is a source not a primitive root), then so is the other. 

For (b), since p E 1 (mod 8), we have (2|p) = 1. Thus, 2 and p - 2 are not 
sources. Now, 

1 = (l|p) = {-2wq\p) = (2u\p)(-q\p) = (-q\p). 
So -q Is a residue, and by part (a) so is q. It follows that ±2mq is a residue 
for 0 < m < w. 

For (c), (2 Jp) = -1, since p E 5 (mod 8). Thus, 2 is a source. By Corol-
lary 7, 2 must be a primitive root because, otherwise, 2 is a source for the 
sink 1, and then we would have 22 = p - 1 = kq = the node for 1, an impossibil-
ity. It follows from part (a) that p - 2 is also a primitive root. Now 
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(2|p)(2<? + l|p) = (p +-l|p) = 1. 

Thus, 2q + 1 is a source and clearly must be a primitive root for, otherwise, 
by Corollary 7 again, 

(2q + i ) 2 = 4q2 + kq + 1 E 4q2 = p - 1 = 4q, 

which would imply q = 1, an impossibility. By part (a) again, 2q is a primitive 
root. Since tails have length 2, p - 1 is not a source. Hence, 

1 = (p - l|p) = (4<?jp) = (q\p) . 
Thus, q Is a residue, and by part (a) so is 3q + 1. D 

4. Cycles and Signatures for Arbitrary Prime Moduli 

In this section we consider an arbitrary prime p with p = 2Wq + 1 where q 
is odd, w > 1, and begin with a nice generalization of Propositions 4 and 6. 

Proposition 16: Suppose p = 2wq + 1 and q is odd. If d is a divisor of (7, then 
there are §(d) vertices in Gp, all in cycles, of length x = x(d), where x is de-
termined from 2X - 1, the smallest Mersenne number divisible by d. The number 
of cycles corresponding to d of length x(d) is 

<\>(d)/x(d). 
For any cycle length 2/, the number of cycles of length y is 

E {<|>(d)/a;(d) : 3d, x(d) = y}. 
The total number of cycles of Gp is 

1 + E {<f>(d)/a;(d) : d\q}. 

Proof: For each divisor d of q, there are <$>(d) vertices of order d (mod p) [4, 
p. 80], and by Proposition 5, they are all together in the same cycle or 
cycles. It follows that there are (\)(d)/x(d) cycles containing these vertices. 
Since 

E i<\>(d) : d\q] = q, 
this accounts for all of the q vertices in cycles with tails (Proposition 8) . 
The only other cycle is the sink 0. It follows that there are altogether 

1 + Zi^(d)/x(d) : d\q} 
cycles. D 

We are now in a position to explain all the data in Table 1. For example, 
for p = 61, we have d = 1, 3, 5, and 15. For d = 1, the corresponding cycle is 
the sink 1. For d = 3, the corresponding cycle has length c]>(3) = 2, and both 
cycle vertices have order 3 mod 61. For d = 5, the corresponding cycle has 
length (f)(5) = 4. The remaining eight cycle vertices are in the other two 
cycles of length 4, corresponding to d = 15, and 0(15) = 8. The sources for 
these eight vertices are the primitive roots of 61. Since, in this last case, 
there are two cycles of length 4 instead of one of length 8, we know that 
2^ - 1 is the smallest Mersenne number divisible by 15. 

The example of the prime p = 26 * 23 * 89 + 1 = 131009, referred to in section 
3, is of special interest. Cycle data for this p is summarized in Table 2. 
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Table 2. Cycle Data for G 

d9 an odd 
divisor of 

V ~ 1 

1 
23 
89 

23(89) 

There is one 

p = 1 + 26 • 23 • 

§(d) , the number 
of vertices 
of order d 

1 
22 
88 

22(88) 

additional taill( 

89 

3SS 

= 131009 

Number 
of 

cycles 

1 
2 
8 

176 

cycle for 

Order of 
2 mod d 

(cycle length) 

1 
11 
11 
11 

the sink 0. 

By Proposition 8, there are q = 23(89) = 2047 vertices in cycles with tails. 
These are the nonzero elements of G 1 3 1 QQ 9 of odd order. By Proposition 16, for 
each divisor d of q, there are $(d) elements with order d. These d are listed 
in Table 2. Since the smallest Mersenne number divisible by 23 (i.e., 21 1 - 1) 
is also the smallest Mersenne number divisible by 89, there are only two cycle 
lengths, 1 (2 cycles) and 11 (186 cycles), but q is not prime. Therefore, the 
converse to Proposition 6 does not hold. In the example, all non-sink cycles 
must have the same length 

11 = x(23) = #(89) = x(q)> 

but the ten cycles corresponding to d - 89 and to d = 23 have sources which are 
not primitive roots. 

We were interested in whether counterexamples to a possible converse of 
Proposition 6 were rare. Therefore, in Table 3, we give a list of all primes 
of the form 1 + 2W • 23 • 89 which have fewer than 1300 digits. Each of them has 
the same 188 cycles (two sinks and the rest of length 11)—the tails get large! 

All our computer data was generated by the third author (J. S. M. , corre-
spondence welcome) on a Dell 310 microcomputer with a 20 mHz 80386 CPU. 

Table 3. A List of Primes of the Form 1 + 2W • 23 • 89 

w 
80 
296 
354 
428 
2118 
2856 
2960 

Number of 
digits 

28 
93 
110 
133 
641 
864 
895 

Computer 
in 

time 
seconds 

1 
1 
1 
2 
68 
159 
176 

Note: values of 
W were checked 
up to w = 4332. 

Prime numbers 
were obtained 
also for w = 6, 
14, 18, 48, 60. 

Our first algorithm to check for primality proceeded in three steps, each 
of which used UBASIC [8] routines for handling large integers. First, we 
checked for small prime factors less than or equal to 131071. If n passed this 
test, we applied Fermatfs Theorem in step 2. That is, pick a prime, say p, and 
see if pn~l ~ 1 (mod ri) . If 1 is not the result, then n is certainly composite, 
but n can pass this test and be composite. If n passes step 2, then step 3 
uses the method of Lucas & Lehmer [6, §4.5.4]: "if there is a number x for 
which the order of x modulo n is equal to n - 1, then n is prime. . . . The 
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order of x will be ft - 1 iff (i) xn~l (mod ft) = 1; and (ii) ^O-D/P (mod ft) is 
not 1 for all primes p\n - 1." 

This test is convenient because we know the factorization of ft - 1; never-
theless, we reduced the time factor for larger ft by using Prothfs test instead 
of steps 2 and 3 (see [3], p. 92, or [10]): "Let ft - 2wq + 1, where W > 1, 0 < 
q < 2 , and 3\q. Then ft is prime if and only if 2^n~l)/1 E -1 (mod ft)." In this 
test, 3 can be replaced by any quadratic nonresidue of ft. The time lengths in 
Table 3 correspond to the use of ProthTs test (when q < 2W). 

Since 2 2 3 - 1 = 47(178481) and since the order of 2 is 23 with respect to 
47 and 178481, another set of numbers of the form 1 + 2W * 47 * 178481 was inves-
tigated. This form gives primes for w = 6, 24, 42, 134, 204, 806, 3660, and no 
other if w < 4352. The prime number corresponding to w = 3660 has 1109 digits. 

One last set of examples concerns primes of the form 1 + 2W* 233 m 1103 • 2089 
(which correspond in similar fashion to 2 2 9 - 1). Primes occur for W = 12, 
144, 312, 548, 644, 3284, and 4128, and for no other w < 4364. If w = 4128, 
then the prime number has 1252 digits. Although ours is a respectably large 
prime to be both discovered and proved prime on a standard (unmodified) micro-
computer, the current record has over 2000 digits (personal correspondence, S. 
Yates; see also [16]). 

Proposition 17: Suppose p = 2wq + 1 and q is odd. The length x(q) of the long-
est cycle of Gp is the least common multiple of the set of cycle lengths. 

Proof: Suppose x(di) and x(d2) are the orders of 2 mod d\ and mod d2, respec-
tively. If d1\2m - 1, that is, if 2m = 1 (mod d\), then m is a multiple of 
x(d-i), and likewise for d2. Clearly, if 

m = lcm(x(di), x{d2)), 
then 2 m - 1 is the smallest Mersenne number divisible by d\ and d2* The propo-
sition now follows by induction on the set of divisors of q. Q 

For each entry p = 2wq + 1 in Table 1, let us call the corresponding two-
column matrix for the length and quantity of cycles the signature of p corre-
sponding to q. Since the two columns are determined only by the factorization 
of q, we will suppress (notationally) the mention of p and will denote this 
matrix by S(q) . In Table 1, we observe that 19, 37, and 73 have the same sig-
nature S(9). The primes listed in Table 3 all have the same signature S(q) for 
q = 23(89). 

It is convenient to use the notation S(q) even if there are no primes cor-
responding to a particular q. In this case, we say the signature S(q) is 
"empty." If the matrix S{q) has, say, m rows and entries s^j , then 

m 

T,sHsi2 = % + X-
i= 1 

There is a natural equivalence relation, say 5, on the set of primes defined by 
PiSp2 if and only if p, and p2 have the same signature. It will cause no con-
fusion if we associate nonempty signatures with the corresponding equivalence 
class. 

Whether any of these equivalence classes of S is infinite is an interesting 
and apparently open question. Perhaps the most closely examined class in this 
regard is that with signature 5(1), the Fermat primes. Sierpinski asked whe-
ther there were infinitely many primes of the form 2 W3 X + 1 for some w and x 
[12]. If not, then there are infinitely many x such that the signatures S(3X) 
are empty. This problem is still unsettled. 

Interestingly, Sierpinski has proved that infinitely many other signatures 
are indeed empty [1], [5], [13]. In particular, if 

q = 1 (mod [232 - 1] • 641) and q = -1 (mod 6700417), 
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then every integer in the sequence {2wq + 1 : w = 1, 2, ...} is divisible by at 
least one of the primes in the "covering set" {3, 5, 17, 257 5 641, 65537, 
6700417}. Numbers q such that S(q) is empty are called Sierpinski numbers, and 
discovering the smallest such q is an open problem [5]. The smallest known 
Sierpinski number is q = 78557, with covering set {3, 5, 7, 13, 19, 37, 73}. 
Are there any Sierpinski numbers that do not have a finite covering set? 

The idea of iteratively squaring some integer (or iterating a quadratic 
function), and reducing modulo n each time, occurs in computer-generated se-
quences of random or pseudorandom numbers [6] and in certain factorization 
methods [9]- Also, D. Shanks [11] suggests using a "cycle graph" (not digraph) 
to analyze the multiplicative group of least positive residues prime to n. 
Later Shanks suggests constructing a digraph somewhat similar to ours but with 
edges (a, a2 - 2). However, we have not seen the digraphs used here in the 
literature. 

Many of our results about primitive roots were known 140-160 years ago. 
From Chapter VII of [3] we find that in 1830 M. A. Stern proved that, if q and 
p = 2q' + 1 are odd primes, then 2 or -2 is a primitive root of p according to 
whether p = 8n + 3 or 8n + 7, and that, if n = kq + 1, then ±2 are primitive 
roots (rediscovered by P. L. Tchebychev in 1845 and V. Bouniakowski in 1867. 
See also Shanks [11, Ths. 38-40]). F. J. Richelot in 1832 (and later M. Frolov 
in 1893) proved that, if p = 2m + 1 is prime, then every quadratic nonresidue 
is a primitive root. 

E. Desmarest and V. A. Lebesgue separately proved in 1852 (and later G. 
Wertheim in 1894) that, if q and p = 2wq + 1 are odd primes, then any quadratic 
nonresidue g of p is a primitive root unless g2W~ + 1 = 0 (mod p ) . F. Landry 
in 1854 also proved this and added that, if p = 2m + 1, where m is prime, then 
the quadratic nonresidue h was a primitive root of p if h * p - 1. Allegret in 
1857 proved that, if q is odd, then q is not a primitive root of 22-xq + 1. 
More recently, Baum [2] and Wilansky [15] proved most of our Proposition 14, 
having observed Propositions 9 and 13 also. Corollary 11 is well known (see p. 
58 of Stewart [14]). 

If the modulus is not prime, then most of our results fail to be true. 
Tails need not have the same lengths. In fact, the length of a tail must be 
redefined. Since a cycle vertex may have indegree greater than 2, tails need 
not have nodes. The sink 0 can have a tail longer than that for vertices in 
non-sink cycles. Given any k > 1, there are infinitely many n so that Gn has 
2^ sinks. All the cycles can be sinks. A single long cycle is rare. These 
and other facts will be explored in a later paper. 

References 

1. R. Baillie, G. Cormack, & H. C. Williams. "The Problem of Sierpinski Con-
cerning fc- 2n + 1." Math, of Comp. 37 (1981) : 229-31. 

2. John D. Baum. "A Note on Primitive Roots." Math. Mag. 38 (1965):12-14. 
3. Leonard E. Dickson. History of the Theory of Numbers. Vol. I: Divisibility 

and Primality. New York: Chelsea, 1952 (rpt. of the 1919 ed., Carnegie 
Institute). 

4. Underwood Dudley. Elementary Number Theory. 2nd ed. New York: W. H. Free-
man and Company, 1978. 

5. G. Jaeschke. "On the Smallest k Such That k * 2n + 1 Are Composite." Math. 
of Comp. 40 (1983):381-84. 

6. Donald E. Knuth. Seminumerioal Algorithms: The Art of Computer Program-
ming. Vol. 2. Reading, Mass.: Addison-Wesley, 1969. 

7. Ivan Niven & Herbert S. Zuckerman. An Introduction to the Theory of Num-
bers. 3rd ed. New York: Wiley, 1972. 

1992] 333 



ON A DIGRAPH DEFINED BY SQUARING MODULO n 

8. Walter D. Neumann. "UBASIC: A Public Domain BASIC for Mathematics." 
Notices of the A.M.S. 36.5 (1989) :557-59. 

9. J. M. Pollard. "Monte Carlo Methods for Index Computation (mod p)." Math. 
of Comp. 32 (1978):918-24. 

10. Raphael M. Robinson. "The Converse of Fermat!s Theorem." Amer. Math. 
Monthly 64 (1957):703-10. 

11. Daniel Shanks. Solved and Unsolved Problems in Number Theory. Washington, 
D.C.: Spartan Books, 1962. 

12. W. Sierpinski. A Selection of Problems in the Theory of Numbers. New 
York: Pergamon Press, Macmillan, 1964. 

13. W. Sierpinski. "Sur un probleme concernant les nombres k • 2n + 1." Elem. 
Math. 15 (1960):73-74; "Corrigendum," ibid. 17 (1962):85. 

14. B. M. Stewart. Theory of Numbers. 2nd ed. New York: Macmillan, 1964. 
15. Albert Wilansky. "Primitive Roots without Quadratic Reciprocity." Math. 

Mag. 49 (1976):146. 
16. Samuel Yates. Known Primes with 1000 or More Digits. October 1990. Pub-

lished annually by the author. 

A M S Classification Numbers: 05C20, 11A07, 05C75* 

THE FIBONACCI CONFERENCE IN SCOTLAND 

Herta T. Freitag 

Ever since our previous Meeting at Wake Forest University in North Carolina, the 1992 Conference had been 
awaited with keen anticipation. Finally, the announcement appeared: "sponsored jointly by The Fibonacci 
Association and The University of St. Andrews, THE FIFTH INTERNATIONAL CONFERENCE ON 
FIBONACCI NUMBERS AND THEIR APPLICATIONS will be held at The University of St. Andrews, Scotland, 
from July 20th to July 24th 1992. Co-chairmen of the Local Committee are George M. Phillips and Colin M. 
Campbell, whereas the International Committee is co-chaired by A. N. Philippou and A. F. Horadam." 

The participation, 80 in number, 12 of whom are women mathematicians, practically doubled previous 
attendances. All five continents were represented. From Europe there were 36; 29 came from America, 10 from 
Asia, 4 from Australia, and 1 from Africa. Among the 24 countries represented by Conference participants, the 
United States provided the largest contingent of 25 followed by Scotland and England, each with 8, and four 
countries—Austria, Canada, Italy, and Japan—each providing four registrants. 

In all our Conferences do we greatly appreciate A. N. Philippou, "FATHER OF OUR INTERNATIONAL 
CONFERENCES ," as he had initiated our FIRST meeting at Patras University in Greece in 1984. And in all our 
Conferences (and I do hope that in his proverbial modesty he will not censure this remark) we always cherish our 
conviction that a program, designed by our esteemed and beloved editor, Professor G. E. Bergum, spells excellence, 
even if—alas—this time double sessions would become necessary. 

What caused the big increase in attendance? 
It may have been the fact that The University of St. Andrews is held in high esteem the world over. It may 

have been the magnetism, mathematical as well as personal, of the set of co-chairmen. 
Soul-searching choice decisions had to be made for the overlapping sessions as there were 68 papers, 6 of 

them presented by women mathematicians who hailed from Bulgaria, China, Italy, Scotland, and (two of them) 
from the U.S. At least three "non-mathematicians" gave papers, one a research astronomer, two electrical engi-
neers. The ages ranged from 33- to 83+, an age span of 50 years! And the distance traveled by speakers ranged 
from zero (four St. Andrews faculty members gave papers) to approximately 12,000 miles (the journey from New 
Zealand). 

Please turn to page 367 
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Edward K. Hinson 
University of New Hampshire, Durham, NH 03824 
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1. Introduction 

A triple (a, b, c) of natural numbers is a pythagorean triple if a2 + b2= c2, 
that is, if there exists a right triangle whose sides are lengths a, b, and c. 
If gcd(a, b) = 1, then the triple is primitive. The family of such triples was 
among the earliest mathematical objects to be completely characterized. 

Theorem 1: Every primitive pythagorean triple (x9y9 z) with x even and x , y, 
z > 0 is given by 

x = 1st, y = s2 - t2, a = s2 + t2 

for positive integers s, t such that gcd(s, t) = 1 and s t t (mod 2). Conver-
sely, each such pair s, t gives a primitive pythagorean triple by the formula. 

In this paper we pursue alternate descriptions of the family of pythagorean 
triples. We approach this by way of functions which map the set of triples 
into subsets of R in which their distribution can be represented topologically 
and algebraically. 

2. The Counting Function v 

We wish to characterize pythagorean triples in terms of two parameters: the 
positive differences between the lengths of the hypotenuse and the respective 
legs. In order that this be unambiguous, we must verify that any pair (a, b) 
in N x N, a < bs corresponds to at most one triple. But this amounts to 
showing that the quadratic equation 

(1) x2 + (x + a ) 2 = (x + b)2 

has at most one natural number solution—an easy exercise using the quadratic 
formula. Thus, we have a function 

v0 : (N u {0}) x N ^ {0, 1}, 

where VQ(CL, b) = 1 if and only if there exists a natural number solution for 
the equation (1). 

One can formulate this more concisely. Let S = Q n [0, 1), the set of all 
rational points in the unit interval except the right endpoint 1. Define 

v : S •> {0, 1} 
by 

v(a/b) = v0(a, b). 
For v to be well defined, it suffices that, for all a, b, d in N, we have 

vo(a, b) = v0(aJ, bd). 

But this holds since 

(b - a) + /2b (b - a) e N 
if and only if 

d(b - a) + d/2b(b - a) = {db - da) + J2(db)(db - da) e N. 
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Note that any common divisor of x, x + a, and x + b must divide both a and 
b. Since every fraction can be represented in lowest terms, it follows that a 
one-to-one correspondence exists between the elements of v-1(l) and the primi-
tive pythagorean triples. Considering S to have the topology induced by the 
usual one on R we may use v to represent the primitive triples in S and study 
them from a topological viewpoint. 

For example, consider the infinite family of triples 

(2) {In + 1, In2 + In, In1 + In + 1), n e N. 
Under v these correspond to the rational numbers 

2n2 - 1 

Thus, in the real unit interval I = [0, 1], the accumulation point 1 of the set 
v-1(l) reflects the asymptotic equality of the longer leg and the hypotenuse in 
the family (2). 

We shall use the following basic property of v in the next section. 

Proposition 2: Let a, b be natural numbers. If a is even and b is odd, then 
v(a/b) = 0. 

Proof: It suffices to show that v2b(b - a) cannot be an integer. Under the hy-
potheses, both b and b - a are odd; thus, there is not the second factor of 2 
necessary In 2b(b - a) for it to be a square. 

3. A Density Theorem for v 

Most of the easily represented families of triples yield sequences in I 
converging to 1; e.g., 

(2n, nz - 1, n2 + 1), 
(4n2, nh - 4, nh + 4), 
(2w + 1, In1 + In, In2 + In + 1). 

But there may be many other accumulation points of v""*(l). We can use Theorem 
1 to determine the inverse images of the counting function v. 

Theorem 3: The sets v-1(0) and v_1(l) are both dense In the real unit interval 
I with respect to the usual metric. 

Proof: We shall use Proposition 2 to show the density of v"1(0)« Since v(0) = 
v(l) = 0, choose v in (0, 1) and e > 0. Choose b to be an even natural number 
satisfying l/(b2 + 1) < e/2. Now for some nonnegative integer a the Interval 
(p - e, v + e) contains both a/(b2 + 1) and (a + 1)/(b2 + 1). Exactly one of a 
and a + 1 is even (say itfs a ), and now v(a/(b2 + 1)) = 0 by Proposition 2. 
Since e is arbitrary we have r in the closure of v~1(0)» 

To show the density of v_1(l) in I it suffices to show that every neighbor-
hood in I contains some alb with v(a/b) = 1. Choose r and e from (0, 1) such 
that 0 < e < min{p, 1 - r}. We can restrict ourselves (thus slightly strength-
ening the result) to those triples whose longer leg has even length, i.e., for 
which 1st > s2 - t2 in the characterization of Theorem 1. Solving the quadra-
tic inequality resulting from the substitution y = sit gives s < (I + V2)t as a 
necessary and sufficient condition for this restriction. Thus, by Theorem 1, 
we wish to find relatively prime s and t9 exactly one of which is even* so that 

1st - (s2 - t2) 
(3) T - e < o ^ o— o7 < r3 + s « 
v J (s2 + t2) - (s2 - t2) 
Again using y = s It and the quadratic formula^ and setting i?= 1 - r - e , we 
have (3) if and only if 
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(4) /R < — ( I " l) < ̂  + 2e. 

The density of Q in R insures that relatively prime s0 and t0 exist which sat-
isfy (4). Furthermore3 i/R + 2e < 1 implies that SQ < (1 + /2")£Q. I f exactly 
one of SQ and £Q is even, we may take s = SQ, t = £Q and be done. If sg and £Q 
are both odd, choose N > 0 odd and large enough so that 

^ i (NsQ + 1 \ . 
/R < 4=1—^ - 1 < /i? + 2e. M ^0 

Let s and £ be the numerator and denominator, respectively, of the lowest terms 
representation of (NSQ + 1)/Nt$; it follows from the choice of N that s is even 
and t is odd. In this way we can construct a rational a/b with v(a/b) = 1 and 
| (a/2?) - r| < e, and the theorem is proved. 

4. A Representation in the Multiplicative Positive Rationals 

There is another formulation of the counting function which is of interest. 
Define a function 

n : Q + + {0, 1} 
by 

T}(a/b) = v(a/(a + b)) 
and note that it, too, Is well defined. There is again a one-to-one correspon-
dence between primitive triples and the elements of rT^l). Realizing n as 
v o f9 where f : Q + •> [0, 1) is given by f(x) =x/(l + x) , allows one to deduce 
from the continuity of / that n_1(0) and rT^l) are both dense in Q+. 

The natural multiplicative closure in Q + suggests the possibility of an 
induced closure in n~ *(()), T T ^ I ) , or related subsets. But direct calculations 
yield 

n(7) = n(|) = l, n(|) - n(|) - n(±) - 0, 

which taken together show the failure of closure in n~1(0) and n"1(l). One may 
observe some slight structure, however, from the following point of view. Let 

and 
j-t 

Clearly, I contains 1, and thus one has a chain I QI'Q Q + of nonempty sets. 
In fact, we can further characterize the elements of J. 

Proposition 4: Let p and q be in Z+ with gcd(p, q) = 1. Then p/q is in I if and 
only If r)(p/q) • r\(q/p) = 1 if and only If p and q are each squares and p + q is 
twice a square. 

Proof: The first equivalence is immediate. Note that 

f(p/q) = p/(p + q) and fiqlp) = q/(p + q) 
and so r](p/q) • r\(q/p) = 1 if and only If both 

/2(p + q)q and fl{p + qjp 
are integers. Suppose that p, q9 and (p + q)/2 are each squares. Then the 
above radicals are clearly integers. Conversely, if 

/2(p + q)q and /2{p~T~qYq 
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are both integers , then so i s 
/2Tp + q)q • /2(p + ^)p = 2 (p + ( 7 ) / ^ 

and thus pq is a square. Moreover, since they are relatively prime, each of p 
and q must be a square. Letting p be a square, it follows from the integrality 
of /2(p + q)p that (p + q)/2 is also a square, as required. 

One sees as a. corollary that a given p/^ from ri~"1C1) is in I if and only if 
p and q are squares. This observation is useful in proving the following 
result. 

Proposition 5: Let ps pi, q, and qi be positive integers. 

(i) If pilqi is in I", i = 1, 2, then PiPz^i^z i s i n ̂ "'» 

fizj for any positive rational p/q9 Ir contains (p/q)2; 

(Hi) if p/q is in I, then (p/q)n is in I' for all n > 1. 

Proof: If, under the hypothesis of (i) , p-iPo + ^1^2 ̂ s t w i c e a square, then 
PlP^lq^z i s i n "̂ ̂ y Proposition 4. If p^p2 + ^1^2 i s n o t t w i c e a square then 

n(P1P2/^1^2) • n(^1^72/p1p2) = 0; 

but each factor must be 0 since, otherwise, the above remark would force their 
product to be 1. A similar argument proves (ii) immediately, and (iii) follows 
from (ii) using Proposition 4. 

As in the previous section, one may wish to know the accumulation points of 
I and Ir in the nonnegative half-line R + U {0}. 

Theorem 6: The sets I and Ir are dense in R+. 

Proof: The density of Ir will follow from that of I by the inclusion J C J'. We 
know from Proposition 4 that p/q is in I if and only if p and q are squares and 
p + q is twice a square. Note that such p/q, in lowest terms, correspond to 
the primitive solutions of the diophantine equation u2- + V2- = 2W2- when p = u2-
and q = V2. One may calculate that 

(b - a)2 + (b + a)2 = 2c^-
if and only if (a, b, 0) is a pythagorean triple. Thus, it will suffice to show 
that as a and b vary among primitive pythagorean triples (a, b, c) the fractions 
ib - a) I (b + a) are dense in the interval (0, 1). We argue as in Theorem 3. 
Characterizing the primitive triples as in Theorem 1, restricting our attention 
to those triples in which 1st > s2 - t2 and setting y = s/t gives 

b - a 2y - y2 + 1 

b + a~~ 2y + y 2 - l ' 

But now, differentiating this expression with respect to the real variable y 
shows that its range on the restricted domain (v2 - 1, v2 + 1) is all of R+; as 
in Theorem 3, the restriction above on s and t holds in this interval. We com-
plete the proof by using the technique of Theorem 3 to produce s/t corre-
sponding to primitive pythagorean triples arbitrarily close to any rational in 
(0, 1). 
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1. Introduction and Generalities 

One of the most important problems to be faced when using public-key cryp-
tosystems (see [7] for background material) is to generate a large number of 
large (> 10100) prime numbers. This hard to handle problem has been elegantly 
by-passed by submitting randomly generated odd integers n (which are, of course, 
of unknown nature) to one or more -probabilistic primality tests. If n fails a 
test, then it is surely composite, whereas, if n passes the tests, then it is 
said to be a probable prime and is accepted as a prime. More precisely, the 
term "probable prime" stands for prime number candidates until their primality 
(or compositeness) has been established [6, p. 92]. 

In [2] we proposed a simple method for finding large probable primes. To 
make this paper self-contained, we recall briefly both this method and the def-
initions given in [2] and [3] of which this paper is an extension. 

Let the generalized Lucas numbers Vn(m) (or simply Vn) be defined as 

(1.1) Vn = an + $n, 

where 

(a = -1/3 = (jn + A)/2 

lA = (m2 + 4 ) 1 / z . 

It is known (e.g., see [2]) that the congruence 

(1.3) Vn = m (mod n) 

holds if n is prime. In [2] we analyzed some properties of the m-Fibonaoci 
Pseudoprimes (m-F.Psps.) , defined as the odd composites satisfying (1.3) for a 
given value of m9 and proposed to accept an integer n of unknown nature as a 
prime if (1.3) is fulfilled for m = 1, 2, ..., M, where M is an integer somehow 
depending on the order of magnitude of n. 

The above mentioned method is rather efficient from the point of view of 
the amount of calculations involved but traps are laid for it by the existence 
of M-strong Fibonaooi Pseudoprimes (M-sF.Psps.) defined in [3] as the odd com-
posites n which satisfy (1.3) for 1 < m < M. 

A correct use of this method for cryptographic purposes would imply the 
knowledge of the largest M for which at least one Af-sF.Psp. exists below a 
given limit (say, 10 1 0 0 ) . An attempt in this direction is made by the authors 
in this paper (see also [3]) by finding formulas for generating M-sF.Psps. for 
arbitrarily large M (section 3). In section 4 some numerical results are pre-
sented from which we could get the hang of the order of magnitude of such lar-
gest value of M. 

2. Preliminaries 

Let us rewrite the quantity A [cf. (1.2)] as 

(2.1) A = (fl 2dp°Al/2 = n 2 S P ^'(FI 2 r p ^ V / 2 W e {0, 2, 3}; r, c- e{0, 1}), 

where p. are distinct odd primes. Both the power to which they are raised in 
the canonical decomposition of A2 and the value of d depend, obviously, on m. 
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First, we state the following lemmas. 

Lemma J; p. is of the form 4fe + 1 (k e M = {1, 2, . . . }) for any j (and m) . 
Proof (reductio ad ahsurdum) : Let us assume that the congruence 
(2.2) A2 = m1 + 4 = 0 (mod 4^+3), 

where 4fe + 3 is a prime, holds. The congruence (2.2) implies that rri2- = -4 (mod 
4fc + 3), that is, it implies that -4 is a quadratic residue modulo 4fc + 3. 
Now, by using the properties of the Legendre symbol, we have 

Uk + 3) Ufe + 3/ Ufc + 3A4fc + 3/ ( i; 1 1 , 

which contradicts the assumption. Q.E.D. 

Lemma 2: p. is a quadratic residue modulo any prime of the form kp. + 1. 
3 V 

Proof: From Lemma 1 and [4, Th. 99, p. 76], we can write 

Then, let us state the following 

Theorem 1: Let q€ be odd rational primes such that [cf. (2.1)] 
(2.3) q. = 1 (mod 8* ft p?3) 

and let 

(2.4) « - f I ? t ? ( a e {0, 1}) 
i 

be an odd (square-free) composite. Moreover, define A(n) as 
(2.5) A(w) = lcm(^ - 1). . 

If ft - 1 E 0 (mod A(ft)), then 7n = w (mod ft), that is ft is an w-F.Psp. 

Proof: By considering congruences defined over quadratic fields [4, Ch. XII], 
from the definition of a and (2.1) we have 

2« = m + n 2s
P^(n2rpf)1/2 

j J V 3 J ! 

whence, due to the p r ima l i t y of q.9 the congruence 
(2.6) (2a)?i = 2^a?i = m** + ( i j^ 'p / ' )* ' ( [J 2*p/') * f / 2 (mod ^ ) 

can be written. By using Fermatfs little theorem, (2.6) becomes 

(2.7) 2a« i m + J! ̂ ' ( l l 2 ^ ' ) ( ^ "1)/2 ( II 2 ^ f ' 1 (mod <?.). 
3 3 3 

From (2.3), Lemma 2, and [4, Th. 95, p. 75], (2.7) can be rewritten as 

2a^ E 77Z + fl 25p^'(n 2rp^')1/2 = 2a (mod ^ ) , 

whence, we have 

(2.8) aqi E a (mod ^ ) , a^'1 E 1 (mod ^ ) . 

By hypothesis [i.e., ft - 1 = 0 (mod ̂  - 1)] and (2.8), we have 

an~l E 1 (mod ̂ ) 

and, consequently, 

an_1 E 1 (mod fl 3^) (i-e., mod ft), 
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whence 

(2.9) an = a (mod n). 

Analogously, it can be proved that 

(2.10) gn E 3 (mod n). 

Finally, from (2.9) and (2.10) we have 

Vn(jri) = an + 3n = a + 3 = m (mod n) . Q.E.D. 

3. Generating M-sF.Psps. 

In this section a simple method for generating M~sF.Psps., which are also 
Carmichael numbers, is discussed. 

Let us consider any expression [5, p. 99] of the form 
h h 

(3.1) n(T) = n 0<-iT + 1) = IlPi (h * 3; ki9 T e M) 
i= 1 i= 1 

which gives Carmichael numbers n(T) for all values of T such that P^ (i = 1, 2, 
... , 7z) is prime. 

For n(T) to be an m-F.Psp. by Theorem 1, we must impose that 

(3.2) P. = 1 (mod 8r n Py- (™)) (i = 1, 2, ..., /-z), 
j 

where [cf. (2.1)] the primes p-(m) (with Oj = 1) are all distinct odd primes 
which appear in the canonical decomposition of m2- + 4 raised to an odd power 
and v = 1 (0) if d = 3 (*3), that is, if m - 2 is (is not) divisible by 4. 

Due to the particular structure of the factors P^ , (3.2) can be fulfilled 
by simply imposing that 

(3.3) T = 8Pfl p. (m)t ( t eiN) 
so t ha t 

(3.4) n(t) = n ^ = n (fei8rn R - W ^ I)-
i = 1 i = 1 x j J ; 

Recalling that the congruence n(t) - 1 E .0 (mod lcm (P̂  - 1)^ ) holds by con-
struction, Theorem 1 ensures that n(t) is an m-F.Psp. (and a Carmichael number) 
for all values of t such that P^ is prime (i = 1, 2, ..., h). 

Now, it is clear that if we wish to construct an M-sF.Psp. (A? > 2), we must 
simply multiply 8/q by the least common multiple of all distinct primes p. (jn) 
(m = 1, 2, ..., M). 
( 3 . 6 ) CM = l c m ( p . (TT?))^^ 

1 < m < M 

t hus , g e t t i n g the number 
h 

( 3 . 7 ) nM{t) = J! Wukit + 1) 
i = 1 

which is an M-sF.Psp. (and a Carmichael number) for all values of t such that 
all the h factors in the product (3.7) are prime. 
An Important Remark: An Af-sF.Psp. constructed by using the above method may 
be an (M + a)-sF.Psp. (a > 1) as well. For this to happen (see also [2, Th. 
6]) it suffices that either 
(3.8) ^M + a = ^M 
or 
(3.9) t0 E 0 (mod lcm(pj- (???))j, M+l<m<M+a) > 
where t0 is any value of t such that [cf. (3.7)] 86^/qt + 1 is prime (i = 1, 2, 
..., h). 
1992] 341 



GENERATING M~STRONG FIBONACCI PSEUDOPRIMES 

It should be noted that a so-obtained M-sF.Psp. may be an (M + a)-sF.Psp. 
even though (3.8) and/or (3.9) are not satisfied. This fact will be investi-
gated in a further work. Some numerical examples of the said occurrences will 
be shown in section 4. 

4. Numerical Results 

Some simple expressions of the form (3.1) are 

(4.1) n(T) = (6T + 1)(12T + I)(1ST + 1), 

(4.2) n'(T) = n(T)(36T + 1), 

(4.3) n"(T) = (12T + 1)(24T + 1)(36T + I)(12T + 1)(144T + 1). 

A computer experiment to find M-sF.Psps. was carried out on the basis of 
the simplest among them [namely, (4.1)] which was discovered by Chernick [6] in 
1939. 

According to the procedure discussed in section 3 [cf. (3.7)], we see that, 
since for m = 1 we have A = v5, the numbers 

(4.4) n2(t) =(5 • 8 • 6t + 1)(5 • 8 • lit + 1) (5 • 8 • 18£ + 1) 

= (240£ + l)(480t + l)(720t + 1) 

are 2-sF.Psps. (and Carmichael numbers) for all values of t such that all three 
factors on the right-hand side of (4.4) are prime. The smallest among them is 
n2(20) = 663,805,468,801. 

Following this procedure, we sought numbers nM(t) (M = 3 , 4, ...) which are 
A/-sF.Psps. not exceeding 101 0 0. 

The number of digits (//d) of the smallest Af-F.Psps. found in this way is 
shown against M in Table 1. 

Table 1 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

#d 

8 
12 
16 
16 
18 
18 
29 
29 
29 

M 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

#d 

29 
29 
36 
45 
45 
51 
51 
51 
65 
71 

M 

29 
21 
22 
23 
24 
25 
26 
27 
28 
29 

#d 

76 
61 
61 
61 
61 
61 
61 
95 
98 
98 

By means of our experiment we could not find any 30-sF.Psp. below 101 0 0. 
Just as an illustration, and for the delight of lovers of large numbers, we 

show the smallest (98 digits) 29-sF.Psp. found by us: 

41,703,652,779,296,795,260,673,920,462,490,602,986,625,330,278,308, 
957,565,652,181,464,065,185,928,126,878,406,976,583,823,233,761. 

This remarkable number is, as previously mentioned, also a Carmichael number. 
Its canonical factorization (three 33-digit prime factors) is available upon 
request. This number [namely, ?I2Q(23)] has been constructed to be a 28-sF.Psp. 
[see An Important Remark above and paragraph (vi) of the Remark below). The 
authors would be deeply grateful to anyone bringing to their knowledge a 29-
sF.Psp. smaller than n23(23) and/or a 30-sF.Psp. < 101 0 0. 
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Remark: It must be noted that (cf. Table 1), due to the fulfillment of (3.8), 

(i) the numbers n3(£) [cf. (3.7)] which are 3-sF.Psps. are 4-sF.Psps. as 
well s 

(H) the numbers n5(t) which are 5-sF.Psps. are 6-sF.Psps. as well, 

(Hi) the numbers n8(£) which are 8-sF.Psps.. are 11-sF.Psps. as well, 

(iv) the numbers n15(t) which are 15-sF.Psps. are 16-sF.Psps. as well, 

(v) the numbers n22(t) which are 22-sF.Psps. are 26-sF.Psps. as well, 

(vi) the numbers n2s(t) which are 28-sF.Psps. are 29-sF.Psps. as well. 

Moreover, due to the fulfillment of (3.9), the smallest n2i(t) which is a 21-
sF.Psp. [namely, n2i(488)] is a 22-sF.Psp. Therefore, by (v) , it is a 26-
sF.Psp. as well. 

Finally, the smallest n^5(t) which is a 15-sF.Psp. [and, by (iv), a 16-sF.-
Psp.] is, rather surprisingly, a 17-sF.Psp. This number [namely, ^15(378)] has 
51 digits and is the smallest 17-sF.Psp. with which we are acquainted. 
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Addendum 

Professor W. Miiller (Universitat Klagenfurt, Austria) communicated to us 
that on March 30, 1992, Dr. R. Pinch (University of Cambridge, UK) proved the 
existence of the ° o-spspSpSo These exceptional numbers satisfy the congruence 
(1.3) for all values of the parameter m. The smallest among them is 

443372888629441 = 17 • 31 • 41 • 43 • 89 • 97 • 167 • 331. 
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1. Introduction 

Let 1 = a\ < a,2_ < • • • be an infinite strictly increasing sequence of posi-
tive integers. Let n be a positive integer. We write 

(1.1) n = a(1) + a(2) + ... + a(s), 

where a^ is the greatest element of the sequence < n, a^) is the greatest ele-
ment < n - aQ), and, generally, a^i) is the greatest element <n- aQ) - a^) ~ 
• •• - #(£_i). This algorithm for additive representation of positive integers 
was introduced in 1969 by Katai([2], [3], [4]). Lemoine had earlier considered 
the special cases a^ = i k , k > 2 ([5], [6]), and ai = i(i + l)/2 ([7]). (See 
[10] for further information and note also [1].) The above algorithm is, in 
turn, a special case of a more general algorithm introduced by Nathanson ([9]) in 
1975. 

The following basic definitions and results are taken from [8] and [10]. 
We denote here the set of positive integers by N. 

Let 1 = a| < a2 < • • • be an infinite strictly increasing sequence of posi-
tive integers with the first element equal to 1. We call it an A-sequence and 
denote by A the sequence itself or sometimes the set consisting of the elements 
of the sequence. We denote the number s of terms in (1.1) by h(n). If the set 
{n e N|/z(n) = m] is nonempty for some m e N, we say that ym exists and define 
ym to be the smallest element of this set. If ym exists for every m £ N, we 
say that the 1-sequence exists and we denote the sequence 1 - y\ < yz < '"' by 
Y. The elements ym are also called minimal elements. 

Theorem 1.1 (Lord) : Let yk be given (k e N) . Then y^ + i exists if and only if 
there exists a number n € N such that 

Furthermore, if y^+i exists, then y^+i = yk + am9 where m is the smallest num-
ber in the set 

{n e N\an+l - an - 1 > yk). 

Proof: [8], [10, p. 9]. • 

It follows that the 7-sequence exists if and only if the set 

{an + i - an \n e N} 
is not bounded. 

For technical reasons, we sometimes wish to start the ^-sequences and Y-
sequences with an element a0 = 0 or z/0 = 0, respectively. The following result 
is from [10, p. 14]. 

Theorem 1.2: Suppose that B : 0 = b0 < 1 = b\ < bz < ... is an infinite sequence 
of nonnegative integers. Then B is the Y-sequence for some ,4-sequence if and 
only if it satisfies the following conditions: 

(a) For every n € N, either 
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(1) bn + l - bn = bn - Z?„_i, or 
(2) bn + l > 2bn + 1. 

(b) The condition (2) in (a) holds for infinitely many n e N. 

In section 2 of this paper we determine, given a sequence B satisfying the 
conditions (a) and (b) above, all ^-sequences A such that Y = B (Theorem 2.1). 
In section 3 we establish how many such ^-sequences there are (Theorem 3.5). 
Fibonacci numbers make their appearance there (after Definition 3.1). For 
other connections of Fibonacci numbers with the Lemoine-Katai algorithm we 
refer to [11] and especially to [12], which also provides part of the motiva-
tion for this paper. 

2. Determination of All A-Sequences Having a Given Y-Sequence 

Theorem 2.1: Let the sequence B : 0 = b0 < 1 = b\ < b2 < - • • satisfy the condi-
tions (a) and (b) of Theorem 1.2. For the /1-sequence ^4:1 = a\ < a2 < • • • , we 
have Y = B if and only if the following conditions hold: 

(a) A n [bl9 b2] = {1, 2, ..., bz - 1}. 

(b) Let ft > 1. If bn+i - bn = bn - bn-i, then A n [bn , bn+i] = 0. 

(c) Let n > 1. If bn+l > 2bn + 1, then A n [bn, bn+i] = {as , ..., a t } , 
where a s < ••• < a t , and 

(2.1) bn + 1 < a s < 2&n - £„_i, 

(2.2) a-£ + 1 - a^ < bni i = s, ..., t - 1 (if £ > s), 

(2.3) at = bn+l - bn. 

Proof: The "if" part can be proved in almost exactly the same fashion as the 
corresponding part in the proof of Theorem 1.2. In fact, we only have to sup-
press "= 0" on page 16, line 7 in [10]. Notice also that the condition 

as < 2bn - bn.l 
in (2.1) means that (2.2) holds also for i = s - 1. To see this, observe that 

(2.4) as_! = bn - b n . l , 

which follows easily using conditions (a), (b), and (c). 
To prove the "only if" part we suppose now that , 4 : 1 = ai < a2 < -•• Is a n 

^-sequence such that Y = B. We must prove that conditions (a), (b) , and (c) 
hold. Condition (a) is trivial. Let ft > 1 and suppose that 

From our definitions, it follows easily that 

(2.5) A n B = {1}. 

Suppose that condition (b) is not true. Then, using (2.5) and B = J, we 
would get 

^n + !> yn + 2> •••> yn + Q/n ~ Mn -1) > n A 

= {bn + 1, ..., bn + l] n A * 0, 

and so, by [10, Th. 1.13, p. 13], 

bn+l > 2bn + 1, 

a contradiction. 
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Suppose now that n > 1 and bn + i ^ 2bn + 1. Suppose further that (a) holds 
and that (b) and (c) hold for all nr€ N , 1 < nf < n if n > 2. We prove that 
(c) holds for n. Since bn + 1 < bn + i - bn < bn + i and since, by Theorem 1.1, 
2/n + l " y-n = bn + l ~ bn ^ A, we see that 

A n [bn, bn+i] = {as, ..., at} 

with as < • • • < at and fen + i - bn = a^ for some /z, s < h < t . We must prove that 
h = t . By Theorem 1.1 and the definition of /z, we get 

ct-h + l ~ a/z ~ 1 - ^n-
Ifh<t, then we would get 

tf/z + 1 - a^ - 1 < &n + 1 - (i„ + 1 - 2>„) - 1 = &„ - 1 < 2v* 

a contradiction. It follows that (2.3) holds. 
If we had a^+i - a^ > bn for some i, s - l < i < t - l , then we would have 

a^+i - at - 1 > bn and so, by Theorem 1.1, 

bn+i ^ bn + ai < bn + at = fe„+i, 

a contradiction. This proves (2.2). Finally, (2.1) follows from (2.5) and the 
case i = s - 1 above, noticing that using our induction hypothesis we get (2.4) 
as before. Theorem 2.1 is now proved. Q 

3. The Number of A-Sequences Having a Given Y-Sequence 

Suppose that B : 0 = b$ < 1 = h\ < b2 < ••• satisfies conditions (a) and (b) 
of Theorem 1.2. Let n > 1 and suppose that bn+i > 2bn + 1. Let I(ri) be the 
number of different sequences as < ••• < at satisfying conditions (2.1), (2.2), 
and (2.3). We are going to evaluate I{n). For that, we need the following 

Definition 3.1: Let j'eN. Let u(/}, i = 1, 2, . .., be such that 

U) (2i~l for i = 1, 2, ..., j, 

Ui = W - i + ••• + wf-j for l > <?'• 
In particular, we have uSf* = 1, i = 1,2, ..., and zA2) = i^+i, £ = 1, 2, ... 

(where F^+i denotes the Fibonacci number). 
Lemma 3.2: Let a, fe e Z, a < 2?, j e N. The number of all possible sets {^2, 
..., Oy} (k is not fixed), where 

a = ci < o2 < ••• < ̂  = &, <?£ £ Z, £ = 1, ..., k, 
and 

<% + 1 - ̂  < j , £ = l, ..., k - 1, 
is u(J'} 

Proof: If b - a < j , then any subset of the set {a +!,...,£> - 1 } , arranged as 
a sequence o2

 < •*" < cfc-l* gives rise to a permissible sequence 

a = oi < o2 < • • • < <?£ = £>. 
There a r e 2? - a - 1 members i n t h e s e t { a + 1 , . . . , & - ! } . 

I f b - a > j , t h e n tf2
 m u s t be one of t h e numbers a + 1 , a + 2 , . . . , a + J , 

and we u s e i n d u c t i o n . • 

Theorem 3.3: Le t n > 1 and bn + l > 2bn + 1 . 
(a) J ( « ) = 2 ^ + i - 2 * „ - l , i f 2 2 ? n _ Z ? n _ 1 > bn + l _ ^ . 

(b) I{n) = J] w ^ , if 2bn - &n-1 < bn + 1 - fc„, where 
t = ̂  
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g = bn + 1 - 3bn + bn.l and h = bn + l - 2bn - 1. 

(c) In case (b), if (bn + l - bn) - (bn + 1 ) < bn, then 

Proof: These results follow easily from Theorem 2.1, the definition of I(n), and 
the use of Lemma 3.2. Q 

1 if and only if Corollary 3.4: Let n > 1 and bn + 1 > 2bn + 1. We have J(n) 

(a) bn+l = 2&n + 1, or 

f W ^n + l = 2Z?n + 2 and 2?n - £„_! + 1. 

Proof: The "if" part is clear. To prove the "only if" part, we suppose that 
neither (a) nor (b) holds. Then we must have bn+i > 2bn + 2. 

(1) If bn+i - 2bn + 2, we must have 

2bn - bn.l > bn + 2 - bn+i - bn. 

According to Theorem 3.3S we have 

I(n) = 2bn+l ' 2bn ~l = 2 2 " 1 = 2. 

(2) Let £ n + 1 > 2bn + 3. If 2bn - &„_! > £n+i 
Theorem 3.3, we have 

>2>n+l ' 2bn -1 

&n_ 1 > 2. It follows that. 

then, according to 

I(n) = 2L 

On the other hand, if 2bYi 

I(n) > u(bn) = 

> 23™1 = 4. 

then, again by Theorem 3.3, 

Xbn) UKn
+\ ~2bn-l ~ U 3 - l 

(bn) = nj{bn) 

In the last inequality, we use the fact that bn > 1 
and the proof is complete. • 

> 1. 

which follows from n > 1, 

Theorem 3.5: Let B : 0 1 = bi < fci be an infinite sequence of non-

(3.1) 1(B) I(n) [we define J(l) = 1] 

negative integers satisfying the conditions (a) and (b) of Theorem 1.2. Let 
1(B) denote the number of different ^-sequences for which I = B. Then !"(#) is 
finite if and only if there exists n$ £ N such that bn + i <2bn+ 1 for all n > UQ. 
In that case 

n 
1 < n < n0 

bn + l > 2bn+ 1 
Proof: From Theorem 2.1 it is clear that 1(B) is finite if and only if for some 
point on we always have I(n) = 1 for n satisfying bn+i > 2bn + 1. From Corol-
lary 3.4 we know exactly when I(n) = 1. It remains to observe that condition 
(b) of Corollary 3.4 can hold for at most one n. D 
Examples 3.6: 

(a) ([10, p. 16], [12, p. 296]) Let B be defined by b0 = 0, & n + 1 = 2bn + 1, 
n = 0, 1, ... . Then bn = 2n - 1 for every n G N and by (3.1) we get 1(B) = 1. 
The only ^-sequence A satisfying I = 5 is given by an = 2n" 1, 2, 

fb) Let us modify the example given above by taking B % 0, 1, 3, 10, 17, 24, 
31, 63, 127, ..., 2n - 1, ... 
(c)], we get 1(B) = 1(2) = 6. 

Using (3.1) and Theorem 3.3 [we can use (b) or 
The six ̂ -sequences for which Y = B are given by 

1, 2 , 4 , 5 , 6, 7 , 32 , 64 , 
1, 2 , 4 , 6, 7 , 32 , 64 , 
1, 2 , 4 , 
1, 2 , 4 , 
1, 2 , 
1, 2 , 

5 , 7 , 3 2 , 64 , 
7 , 3 2 , 64 , 

5 , 6, 7 , 32 , 64 , 
5, 7, 32 , 64 , 

2 \ 
2 n , 
2 \ 
2 \ 
2 n , 
2 n , 
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(c) We modify t h e examples g i v e n above and t a k e B: 0 , 1 , 3 , 17 , 3 1 , 6 3 , 
127, . . . . We a g a i n o b t a i n 1(B) = 1(2). Th i s t ime we have t o u se p a r t (b) of 
Theorem 3 . 3 t o c a l c u l a t e 1(2). The r e s u l t i s 

1(B) = 1(2) = z/9
3) + u{^l = 149 + 274 = 4 2 3 . 
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1, Introduction 

Euler !s $-function $(m) for m a natural number is defined to be the number 
of natural numbers not exceeding m which are relatively prime to 77?. Euler?s 
Theorem states: If m is a natural number and a is an integer such that (a, m) = 
1, ttfen aHm) E 1 (mod m) . It is well known that if m > 1 and 

is mfs unique representation as a product of pairwise distinct prime numbers, 

the" • < - > - ( > - £ ) ( ' - £ ) - ( ' - £ ) • 
For a discussion of Eulerfs ^-function, see [19], pages 180-83 and 185-90. For 
clarity of notation, 

GCD(a, b) = (a, b) 

occasionally will be used for the greatest common divisor of a and b* Also, 

LCM[a13 a2, ..., at] 

will be used for the least common multiple of ai, a<i> ..., at. As will be seen, 
the ^-function is useful for generating sequences of rational numbers which are 
used to construct generalized Kummer congruences. 

This paper is concerned with sequences {UJ}-Q of rational numbers. It 
will be supposed that each such rational number is written as a quotient of 
relatively prime integers. A rational number so written is said to be in 
standard form. It is immaterial for this discussion whether the denominator be 
positive or negative. 

The purpose of this paper is to develop a method which will generate 
sequences of rational numbers (en-sequences) which satisfy Kummer!s congruence 
(see line 9 in Definition 3) and especially Theorem 7. The sequences are 
manifold: they include Bernoulli, Euler, and Tangent numbers as well as 
Bernoulli and Euler polynomials. Some additional applications will also be 
given. For example, Kummerfs congruences involving reciprocals of Bernoulli 
(Theorem 9) and Euler numbers (Theorem 8) will be given. A ring structure for 
some of these sequences will be observed (section 7) , and finally some 
additional examples will be given (section 8)• 

The Bernoulli polynomials {B -(x)}J=Q are defined by 

text ^ „ , NtJ' (1) ^n-^-^h' j = o 

and the Bernoulli numbers {Bj}T=Q are defined by the generating function 

(2) - r H " = £ Bi IT-

ex - 1 j=0 0 -

See [2.1], pages 167 and 35. 
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A rational number a in standard form is a p-integev for the prime number p 
provided the denominator of a is relatively prime to p. See [1], pages 22 and 
385. Rummer's congruence says: If p is a prime number and k t 0 (mod p - 1) 
where k is an even natural number, then B^/k is a p-integer and 

(3) 7 * \ = T" (modP)-
k + p - 1 k 

In the paper [11] Fermat?s Little Theorem was generalized to sequences 
{ujl^Q °f rational numbers which include sequences of the form {aJ}J=0 where a 
is a rational. Basically, [11] investigated sequences {uj}j=0 having the prop-
erty Up E Ui (mod p) for p a prime number. It is to be observed that Up E U]_ 
(mod p) can be formed umbrally from ap E a (mod p ) by identifying superscripts 
with subscripts and changing a to w. Here congruences (mod mn) are investigated 
with m > 1 a natural number. 

Definition 1: Let m > I be a natural number and let a be a rational number in 
standard form. The rational number a is said to be an m-integev or to be m-
integval provided the denominator of a is relatively prime to m . If m is a 
prime number, then of course a is simply a p-integer. 

The main results of this paper follow Theorem 1. However, Theorem 1 is 
important for Definition 3. See the remarks immediately following Definition 
3. 

Definition 2: Let m > 1 be a natural number and suppose m = p^p^2 ••• P^ is its 
unique representation as a produce of pairwise distinct prime numbers. The 
height him) of m is defined to be 

(4) h(m) = max (an-) . 
l < j < t J 

If m = 1, then h{m) is defined to be 0. 

Theorem 1 follows from results in [9] or can be easily proved directly. 

Theorem 1: Let m > 1 be a natural number and suppose a is an m-integer. Then 

(5) a * W + *('»>_ a*(*) = o (mod m). 

If m - p a prime number, then 
/Z(T?7) = h(p) = 1 and <|>0?7) = (j)(p) = p - 1 

so that Theorem 1 says ap - a E 0 (mod p) , which is Fermat * s Theorem. If (a, 77?). 
= 1, then Theorem 1 is Euler*s Theorem. 

Using Eulerfs Theorem, if a is an 777-integer, v an integer, g a natural num-
ber, and if v is negative I la is also an 777-integer, Theorem 1 and induction 
give 

(6) arHM + Km)]' _ armmn° = 0 (mod 777). 

To see this, note that ar is an m-integer whether r is positive or negative. 
From (6) for n a natural number with r and k integers, 

(7) ak^aTMml + Mm)}* _ ar[Km)]*y = 0 ( m o d m W ) > 

(See the second paragraph after Definition 4.) 

Here, a and 1/a are both 777-integers if either k or v is negative. This says 
that 
(8) ^(.D^^y-^t^^^wF^tM^Fj^ E 0 ( m o d w , ) o 

j = 0 ^ 7 

Viewing (8) umbrally gives the inspiration for the following Definition. 
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Definition 3: L e t m = LCM[T7Z1(, m2> . . . , mt] > 1 w h e r e 777ls m2, . . . , 77Zt a r e n a t u r a l 
n u m b e r s . The s e q u e n c e iuj}™= o f r a t i o n a l n u m b e r s w r i t t e n i n s t a n d a r d f o r m 
s u c h t h a t e a c h e l e m e n t of 

W ( n - j)a(m) + B W + y ^ ) ) ^ 0 

i s an 77?-integer where 01(777), 3 (w) , and y ( ^ ) a r e i n t e g e r s such t h a t 

/ ( w , J ) = (n - j)a(7??) + 3(m)j + YOH) ^ 0 

i s an e n -S£^w£nee u i t / z s / z i / t (01(777), 6 (m) , y(m)) with respect to m -provided 

(9) ^(-DjQ)uf(n}j) = 0 (mod 7 7 7 ^ 2 . . . 77??*), 

where ri\> n2> . .., n are whole numbers such that n^ + n2 + ••• + nt = n. This 
is5 of course, equivalent to 

i > i W " w ( n ) .} =0 ( , o d ^ . . . m ? ' ) . 
j = 0 w 7 

In other words, n\> n2, ..., nt forms a whole number partition of the natural 
number n. (See the comments immediately following Theorem 8 and Definition 4.) 
It is easy to see that (9) can be replaced with the modulus 

{LCM[7??l5 77725 . . . , 777t] } n . 

(See the third paragraph below.) It is this form of (9) that will be used. 

To say, for two rational numbers a and b, that a = b (mod m) for 777 > 1 a 
natural number simply means (a - b)jm is an m-integer. 

Theorem 1 does, as seen above, generalize Euler?s Theorem. However, Theo-
rem 1 is not the main generalization with which this paper is concerned. A 
sequence that is an <2n-sequence with shift (a(777), 3(w)» y(m)) could be called a 
generalized Euler sequence. Thus, this paper is not so much concerned with 
congruences of the form ar + s = av (mod m) (see [5], [7], [9], [15]) as it is 
with sequences that satisfy (9). Kummerfs congruences are related to congru-
ences of the type (9) with the modulus 

{LCM[777l5 ml9 . .., 7rzt]}n = mn. 

Because of the special role that Euler?s ^-function plays in finding many such 
congruences, it seems appropriate to refer to sequences named by Definition 3 
as generalized Euler sequences. 

In light of (8), one possible choice for 01(777) and 3(77?) is 

a (m) = Pa i(m) and 3(777) = r&i(m) 

where r i s an i n t e g e r and a 1(777) and 61(777) a r e such t h a t , f o r some i n t e g e r s T\9 

r2, • • <• s vt 5 s l > s 2» •••> st a n c* some n a t u r a l numbers g±, g2, . . . , gt; 

I ' l U O l ) + Mmi)}91 + sl = r2[<S>(m2) + h(m2)]92 + s2 

= rt[<t>(mt) + h(mt)]gt + st = 04(777) 
and 

r^himO]91 + s i = r2[h(m2)]92 + s2 

= . . . = rt[h(mt)]9t + st = ex(m). 
To keep t h i s s h i f t from b e i n g t r i v i a l , 04(777), 31(777), r * 0 , and ax (777) * B i (m) . 
Th i s s h i f t ( a ( m ) , 3(777), y W ) i s a natural shift. I t i s c l e a r t h a t f o r a n a t -
u r a l s h i f t 

Z ( - D J ' ( ^ ) ^ f ( n , j ) = 0 (mod m^?772
2 . . . 777?*) f o r an 777-integer. 
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The reason for th i s i s 
(aa(m) - a^m))ni = 0 (mod m?*) 

so that 
t 
n (aa(m) - a^m))ni = (a a W - a

SMfl + n2+" 
i= 1 

= J2 (-DJ'(")a/(w,</) = 0 (mod m " 1 ^ 2 ... < * ) , 
3 = 0 v^ 7 

where n,, n2, . .., nt are whole numbers such that n1 + n2 + ... + nt = n. Note 
that a(/??) and $(jn) depend upon m^, m^, ...5 ̂  ; Pj, ̂ 2* ••••> ^t > sl> s 2 ' •••> 
s^ ; and g\ , g^* •••>#£• Special care is needed when any of the r's or sfs are 
negative. Note also, since the expression is divisible by m^lm^z . .. m^* for 
any whole number partition of n = n^ + n2 + • • • + n-t, it will be divisible by 
[LCM[tfZ]_, 7772, ...j mt]]n s o t n a t "t̂ j}7TO=o being a n ̂ -sequence with respect to 
77? = LCM[w1} 77725 . . . , 777̂  ] implies that 

i.(-^(^)ufin,d)
 E °  (mod{LCM[m1, m2, . . . , mt]}n) 

and conversely. Thus, for each way of writing 77? as LCM[^i, ̂ 2* ...s wt] there 
is the possibility of a separate congruence (mod mn). The simplest way of sat-
isfying this is, of course, m = LCMfw] . From now on, m will denote LCM[#?]_, 77?2J 
..., 77?̂] for some natural numbers TT?̂ , 77725 . .., 77?t. As will be seen, other ways 
of writing 777 besides 777 = LCM[TT7] do indeed lead to different expressions E 0 
(mod 777n) . See section 8 for some examples. [mi , 77725 . . . 5 mt ] is called an LCM-
partition of m when 777 = LCM[mi, 77725 ...5 rnt] and 777ls 7772, . . . , mt are all natural 
numbers > 1. 

Definition 4: Let {UJ}J=0 be a sequence of rational numbers written in standard 
form such that each element of {W(n_ j)a(m) + $(m)j + y(m) }̂ _ i-s a n ̂ -integer where 
a (777), $(777), and y(777) are integers such that J 

f(n, j) = (n - j)a(m) + $(m)j + y(w) > 0. 
If 

n 
X (~1)J( ')uf(n 7") E °  (mod 777̂ ), where 777 = LCK[mi9 mi* ...5 mt] > 1 
j = 0 \J / J ' JJ 

for some natural numbers 777 ̂, 77725 . . . , mt} then this congruence is a generalised 
Rummer congruence. 

From the above, if {UJ}J=Q is an en -sequence with shift (a (777), $(m) , y (77?)) 
with respect to 777, then it satisfies a generalized Kummer congruence. 

A remark on §(jri) and h(jri) is needed: these functions are convenient to use; 
however, if for some natural number 777 > 1 there exist A(m) and B(m) such that 
for every 777-integer a, aA{jn) - aB^ = 0 (mod 777), then .4(777) could be used in 
place of (j)(777) + h(m) , and 5(77?) in place of h(jn) . Consequently, many of the 
results in this paper can be generalized somewhat by just such a consideration. 
However, because of the convenience of finding and working with 0(777) and h(jri) , 
the results are stated in terms of these two functions. Furthermore, some of 
the parity properties of §{m) are used in the proof of Theorem 2, so it was 
felt that it was better to state the results in terms of natural shifts. 

There exist sequences {UJ}J=0 with shifts other than the natural shift 

(r[<$>(m) + h(m)]g, r[h(m)]g, y(m)) . 
For example, using Theorem 5, if p is an odd prime and a is a p-integer such 

that , , ( 1 Y 
(a, p) = 1 and < > for 1 < ̂  < n 

I (i - j)ap + aj)-=() 
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a re a l l p - i n t e g e r s , then the sequence {l/j}J=l i s an en-sequence with s h i f t 
( a p , a, 0) with respec t to p , The condi t ion 

1 
is a p-Integer for 1 < i < n 

(i - j)ap + aj 
is equivalent to p > n. Thus {l/j}J=1 is an en-sequence with shift (ap, a, 0) 
when p > n, Here 77? = LCM[p] . 

From the above definition, it is clear that linear combinations of en~ 
sequences with common shift (aim), 6(777), y W ) with respect to the same natural 
number m > I are also en -sequences with shift (a (777), $(m)s y (m)) when the 
coefficients defining the linear combinations are all 777-integers. In parti-
cular, multiplying each term of an ^-sequence by an 7??-integer gives an en-
sequence. 

It is possible to couch condition (9) in terms of the difference operator 
A, here defined by Aux = ux + t - ux. If 

x = n 6(777) + y(777) and t = a (777) - 6(w), 

then it turns out that 
n 

&nUx = X (-1)J(7;W(«,€7)-
j = 0 x w ' 

Note that if 
a (777) = <|>(777) + h(m) and 8(m) = h(jri) 9 

then the increment t is just $(m) . This will be returned to later in connec-
tion with the Factor and Product Theorems, 

Let. {Zrj}™=0 be the sequence of Lucas numbers. It is well known that 

(10) Ld = (1 \ ^)J + (^Y^f > J * 0. (See [13], page 26.) 

Although (10) represents Lj in the form aJ + 6J» neither a nor 6 is rational. 
By the main theorem of [11], {Lj}"j=0 is an ex-sequence for any prime number p 
with shift (p, 1, 0); i.e., for p a prime number, Lp = Lx (mod p) . However, 
simply because Lj is the sum of powers of (1 + v5)/2 and (1 - v\5)/2, this is 
not sufficient for {Lj}JB 0 t o be an en-sequence with arbitrary shift. Indeed, 
{Lj}J=0 is not even an e2 -sequence with shift (p, 1, 0) for the prime number 
p = 3 since L6 - 2L^ + L2 ^ 0 (mod 3 2 ). Hence, it does not follow that if each 
term of the sequence {u }^= 0 of rationals is of the form 

Uj = X^ + x| + • • - + Xg 

then the sequence is an e„-sequence with even reasonable shifts. 

2. Buler Polynomials and Numbers 

The Euler polynomials En (x) of degree n and argument x are given by the 
generating function 

(11) -^ r - J] - ^ — . (See [21], page 175.) 

A well-known formula involving the Euler polynomials is 

(12) £ (-D^'V1 = l^n(^ + 1) + (-1)^„(0)}, 
i- 1 Z 

where n = 1, 2, 3, ..., and N = 1, 2, 3, ... . (See [16], page 30.) 
Using the notation Introduced in Definition 3, replace n by fj = f(n5 j) in 

(12) so that 
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(13) £ (-l)N~HTj = ±{Ef. (N + 1) + (-l)NEf. ( 0 ) } . 

To (13) , apply the opera tor 

£ (-!>'• QK' 
j = 0 V ^ 7 

so t ha t 
T'Z 71/ 

d4) Z c - i W ^ Z c - D " - ^ ^ -
j = o w 7 i = l 

Expanding the l e f t s ide of (14) gives 

(15) £ ( - D J ' ( ^ ) ( - D / v - 1 [ a ^ - ( 2 a ) ^ + (3a)^' - + . . . + ( - l ) * " 1 ^ ) ^ ] 
j = 0 V ^ 7 

= ( - D ^ - ^ a ^ ^ t a 0 1 ^ - a ^ > ] n - (2a)Y(w) [ (2a)a ( m ) - ( 2 a ) 6 ( w ) ] n 

+ - . . . + (-l)N-l(Na)Y(m)](Na)a(m) - (/i/a)^w) ] n } . 

Now if a(m) and 3(w) are such that 

[(ia)a(m) - {ia)^m)]n = 0 (mod mn) for i = 1, 2, . . . , N 

where m = LCM[tf?i, m^_, ...> w t ] ' which they will be for the natural shift (a(m) 9 
BOH), y(^))> then by (7) for aY(/7?), (ia)a(m), (ia)6(m) all w-integral for i = 1, 2, 
3, ..., N, (15) will be E 0 (mod mn). Because of the conditions needed for all 
these numbers to be m-integers, it is supposed that r > 0 and y(jn) > 0. 

Suppose that a(77?) = rai(m) and $>(m) = r$i(m) . For m^ = 2 where i = 1, 2, 
. .., £, the parity of f(n, j) is the parity of vv^ + y + npsj, which will be 
even if r and y(jn) are both even. On the other hand, if m^ > 2 for some i = 1, 
2, ..., £, all of the numbers f(n9 j), 0 < j < n, have the same parity. To see 
this, use the fact that (J)(̂ i) is even when m^ > 2. From (15) and (14), 

(i6) ii:o(-i)'GK( n , J"V.j)^+ ! > + ic-1^ ^^^(^^'"'V^^o) 
= 0 (mod mn). 

It is well known that, for f(n, j) even, Ef(ntj^(0) = 0. (See [21], page 179.) 
Now f(n, j) is even when 3i(^) is odd and np + y(m) is even when Si(w) is even 
and y(m) is even. 

Next, suppose that m is odd so that 1/2 is /77-integral. In this case, for 
N E -(1/2) (mod mn) and f(n9 j) odd, then 

Enn,3'){i) = °> 
whereas, if f(n, j) is even 

Efinfj)(l) = 0 [letting N = 0 (mod /7?n)]. (See [21], page 179.) 

Hence, in (14), 

£ (-l^Q^.^CO) = 0 (mod /a*) 

when /(n, j) is even or when m is odd. Since n is a natural number in (12) and 
f(n, j) replaces n, it follows that f(n, j) > 1. This establishes the following 
theorem. 
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Theorem 2: Le t m = LCM[T??1S m2, . . . , mt] > 1 w i t h 777 x , ???2, . . . , mt a l l n a t u r a l 
numbers and a , y (777) , and x a l l 77?-integers . Suppose 

f(n, j ) = (n - j)rai(m) + r$l(m)j + y(m) > 1 f o r 0 < j " < n9 

where v > 0 and y(???) > 0. Assume one of the following statements holds: 

(1) m^ = 2 for i = 1, 2, . .., t, and r and y(w) are both even; 
(2) m is even and m^ > 2 for some i = 1, 2, ..., t, $IOTO and y(m) are both 

even; 
(3) m is even and m^ > 2 for some i = 1, 2} . .., t, and nr + 7(777) is even 

but 3i(w) is odd; 
(4) /7? is odd. 

Then i& Ef(n, j)(x)\- = Q a r e a H m-integers and {aJEj (x) }^= Q is an en-sequence 
with the natural shift (a (77?), $(777), Y ( W ) ) * 

T̂ he hypothesis of Theorem 2 cannot be weakened to simply: 777 > 1 is a natu-
ral number. To see this, let 7?? = 4 = LCM[4] , n = 1, ̂  = r = y (???) = 1. None of 
the four hypotheses is satisfied if T\ - 1 and s^ = 0. If the weakened hypoth-
esis is valid, then 

(17) E (-l)J'(^5-2j^) = #5(*) "
 E3^ 

J = 0 •*h 11^2 1 \ / QT*2 / 5 5x* ^ bxA 1\ / 3 3^rz , 1\ _ n . A ., lxb - -y- + — -j - (̂d — + -^J = 0 (mod 4) 

which is false. 
For 77? > 2 and 7?? odd9 the coefficients of the Euler polynomials are all 777— 

integers. To see this, use 

(18) En(x) = 2"nX(^)(2^ ~ Dn-jEj, 

where {Ej}^=0 is the sequence of Euler numbers. The Euler numbers are all 
integers and, furthermore, Et = 2tEt(l/2). (See [21], pages 177, 39, and 42.) 

The above observations along with Theorem 2 establish Theorem 3. 

Theorem 3: Let 77? = LCM.[mi9 m2y . .., mt] > 1 with 77?ls 7T725 ••-, mt all natural 
numbers and a an 777-integer. Suppose 

f(ns j) = {n - j)rai(tn) + r&i(m) J + Y(T7?) ^ 1 for 0 < j < n9 

where v > 0 and y(???) > 0. Then {a*]Ej}™= is an en-sequence with the natural 
shift (a(777), 6(777), Y(T?7)). 

The Euler numbers form secant coefficients since 

sec^= £ t-iy-2±—9 
j = o (2j;« 

which is convergent for \x\ < it/2. The number #2rc + l = °  f o r n - ° 9 (See [1&] > 
pages 202 and 203.) 

3. Bernoulli Numbers and Polynomials 

The above results open the way to exploration of Bernoulli polynomials and 
Bernoulli numbers with respect to forming en-sequences. A useful relationship 
is 

07-Z+ 1 

(19) En(x) 
n + 1 

Bn + l \ 2 ) " Bn + l\2) for n = 0, 1, 2, ... . 

(See [21], page 177.) Using this and the hypothesis of Theorem 2, we have 

>«7 + W «°> { f ^ h - m - %•.(!)]}• 
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i s an en-sequence w i t h n a t u r a l s h i f t (a(m) , 3(777), y(m)) f o r t h e n a t u r a l number 
77? = LCM[777l5 77?2s • • •» 777̂ ] > 1. H e r e , b o t h a and x a r e m - i n t e g e r s . 

In (20) l e t x = 0 so t h a t 

Bi+A\) = ( ^ 7 1 " L ) ^ + 1 a n d ^" + l ( 0 ) = Bi+19 f ° r «/ = 1» 3 , 5 , . . . . 
(See [ 2 1 ] , page 171 . ) 

A f t e r s i m p l i f i c a t i o n and u s i n g # 2 j + l = 0 f ° r <7 = 1» 2 , 3 , . . . , (20) g i v e s 

Theorem 4: Le t 777 = LCM[TT7I, 7772» . . -> w t ] > 1 w i t h 7771, 77?2> . . . » 777̂  a l l n a t u r a l 
numbers and l e t a be an 7??-integer. Suppose 

f(n, j) = (n - j)a(7??) + S(m)j + y(m) > 1 f o r 0 < j < n, 

where v > 0 and y(m) > 0. If m is odd, then 

U I f(n, 3) + lfjmQ 

are all m-integers and 

(2D {(2, - - !)«**» ^ } ; o 

is an en -sequence with the natural shift (a(m) , $(777), y(jn)) . 
It is important in working with these £n-sequences to first put the terms 

in standard form and then reduce the expression (mod mn). 
Theorem 4 generalizes some well-known results. With the hypotheses of 

Theorem 4, (21) says 

J = 0 
(22) Y f-lV /^ — - V̂ [iH<KM) + Mm)]y-rl 
^ ; /~y J \J7 [ r [*("?) + /z(/?0F - r[h(m)]g]j + k 

= 0 (mod 7?7n) , 

where fc = r [ $(777) ]^n + Y(777) + 1 . Here m = LCM[7??] . Th i s l a s t c o n d i t i o n i s e q u i -
v a l e n t t o s a y i n g k > p[$(m)]9n. If m = p (a pr ime n u m b e r ) , r = g = 1, t h e n (22) 

g i v e s (?ip~l)l]'*k)ji 

<«> t^(T (P:l'p;rk -- 0 <- p-). * > * - D». 
The Bernoulli, Genocchi, Lucas, and Euler numbers are closely related (see 

[14]). In particular, 

(24) Gn = 2(1 - 2n)Bn and Rn = (1 - 2^"1)5n, 

where Gn and i?„ are the Genocchi and Lucas numbers, respectively. With the 
same hypothesis as Theorem 4, m = p = LCM[p] and r = ̂  = 1 gives as examples 

(25) £ ( - D ^ l T ^ T T = 0 (»»d p"), and 

L (-DJ'(n) ,„ n-+, / ^ - ^ ^ = 0 (mod pn). 
j-o W/(l - 2(P"1>J + fc-1)((p - l)j + k) 

For a f u r t h e r d i s c u s s i o n of t h e s e number s , s e e [6] and [ 2 5 ] . 

4. The Factor and Product Theorems 

I n (21) i t i s c l e a r t h a t {2J + l - 1}J= 0
 i s a n ^ - s e q u e n c e w i t h n a t u r a l s h i f t 

(a (777), 3(777), y(7??)) f o r t h e n a t u r a l number 7?7 = LCM[777i, 7772, . . . , mt] . T h i s s u g -
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g e s t s t h e p o s s i b i l i t y of " f a c t o r i n g 1 ' a s equence of t h e form {VLAV A } • _ n . To t h a t 
J • J d d J - U 

end, consider 
(26) LnuxVx = £ (?)(**"*"*) (A**VKn-i)t), 

where 

(27) A"u, = £ (-l)^W+(?W)t. 
j = 0 V / 

Here, the difference operator is defined by hux = ux + t - ux . (See [10], pages 
6 and ls respectively.) Rewriting (26) using (27) gives 

(28) X (-DJU 
j = 0 W 7 

• £0(*)C?;<-»T j > « — ) ( i 0 (->'(>..<.-,.) • 
To express this in a form needed for e^-sequences, let 

(29) x + (n - j)t = (n - j)a(m) + $(m)j + y(m), so that 

x = n$(m) + y(m) and t = a (777) - 3(w)» 

Substituting these in (28) yields 
n * /n\ 

(3° ) X* ^"1^ w ) U ( " - J)a(m) + S(m)j + yOn^Cn- j)a(m) + 6(m)j + y(m) 
j = 0 Xty ' 

8 ( X ("^ Q)^-j)a(m) + B(m)j + -

- £ 
i = 0 

• Y(m) 

. , 777* 

Using this, the Factor Theorem is obtained. 

Theorem 5 (Factor Theorem) : Le t m = L C M ^ , 77?2s . - . , mt] w i t h w 1 ? 77?2s 
n a t u r a l number s . I f 

(a ) iujvj}C°-=0
 i s a n e n - s e q u e n c e w i t h s h i f t (a(m) , 3(777) , y ( ^ ) ) ; and 

(b) {^J}J -=O i s a n ^ - s e q u e n c e w i t h s h i f t (a(m) , 3(TT7) , (n - i) a(m) + y(m)) , f o r 
i = 1, 2 , . . . , n - 1; and 

(c) {Wj}J= 0 i s an e n _ ^ - s e q u e n c e w i t h s h i f t ( a ( m ) , $(777), $(777) £ + y(m)) f o r i = 
1, 2 , * . . , n - 1, t h e n 

1) I f (jn9 ^na(m) + y(m)) = 1 and {VJ }J= 0 ^ s a n s n - s e q u e n c e w i t h s h i f t (a(m) , 
3 (w) , Y(77?)) , t h e n {wj}J = 0 i s an e n - s e q u e n c e w i t h s h i f t (01(777), 3(777), y ( w ) ) ; 

2) I f (m, ^n3(OT) + T(m)) = 1 a n d { W J } J = O ^ s a n ^ n ~ s e c l u e n c e w i t h s h i f t (a(m)9 
3 0?0, y(m)) , t h e n {7j>j}ro

=0is an e n - s e q u e n c e w i t h s h i f t (a (777), 3 (w) , y(m)) » 

An e x a m i n a t i o n of i d e n t i t y (30) a l s o l e a d s t o t h e P r o d u c t Theorem. 

Theorem 6 (Product Theorem) : Le t 777 = LCM[77?ls /r/2' •••> w^J > 1 w i t h 77?j, W2? 
„ . . , mt n a t u r a l numbers . I f 

(a ) {^j}J=o i s an en_ —sequence w i t h s h i f t ( a(/7z), 3 (w) , $(m)i + y(m)) f o r i = 
0 , 1, 2 , . . . , n - 1; and 

(b) {2;j }J= 0 i s an ^ - s e q u e n c e w i t h s h i f t (01(777), &(m) , (n - i)a(m) + y(m)) f o r 
i - 1, 2 , . . . , n ; t h u s , ^-ujvj^7= Q ^ S a n 0 n - s e q u e n c e w i t h s h i f t (a(m) , 
3(m), Y W ) . 
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Using m > 1 being odd and y(m) > 0 arbitrary, Theorem 4 together with the 
Factor Theorem and Theorem 1 yields 

Theorem 7: Let m = LCM [#?]_, m<i> •-.> m^] > 1 with m\ 9 m^* . .., mt all natural 
numbers. If 

(a) f(n9 j) = (n - j)rai(m) + r$i(m) + y(m) is an odd natural number for 0 < 
j < n; and 

(b) v > 0, y(m) > 0, g is a natural number; and 

(c) GCT){m9 2 - l) = 1 or, equivalently 
/ i r£ i (m)+ y(m)+ 1 v 

GCD(m, 2 X - l)= 1 for t = 1, 2, . . . , n, 

( Bnn,j) + i \n (Bi+i r 
then \~nr{ ., > are a l l m-integers and- \ . > is an ^-sequence with 

'A^j JJ T ^/j = o w "•" -*-/</=o 
the natural shift (a(m) 9 &(m), y(m)). 

In Theorem 7 let m = p = LCM[p] be an odd prime number and suppose v- g = 1 
and k = n + y + 1. Then (c) becomes 

(p, 2i + /c"n - 1) = 1, i = 1, 2, ..., w. 

If (p, 2k - 1) = 1, then fc £ 0 (mod p - 1) since p|(2P_1- 1) by Fermatf s Little 
Theorem. Theorem 7 gives 

This congruence is well known (see [3], [4], [18], [22], [23], [24], [26]). 
The paper [22] has many references to these and related congruences. It is 
clear that Theorem 7 with m = p = LCM[p] does not remove the restriction k t 0 
(mod p - 1). 

In Theorem 7 let m = pt, where p is an odd prime number and £ is a natural 
number. Then 

(j)(w) = <(>(?*) = pt~l(p - 1) and 7z(7w) = 7z(p*) = £• 

Further, suppose that y(m) = y{pt) > 0 , r > 0 , g l s a natural number and n = 1. 
Then Theorem 7 gives 

^ [ p ^ C p - D + t ^ + Y+l Brt9+y+l 
(32) — — E — (mod p*), 

v[pt-l{p - 1) + t]9 + y + 1 rt^ + T + 1 
when (p, 2 t + Y + 1 - 1) = 1. In (32) let t = 1 and y = 2k - 2. This then is Rum-
mer^ congruence with the hypothesis (p, 22?c - 1) = 1. Similar congruences 
immediately follow from Theorem 7 for m = pt and n an arbitrary natural number. 

Repeated use of the Product Theorem allows for variations of the previous 
results. Thus, for m > 1 an odd natural number {a3E^\h Ej+b2 ••• Ej+bt^i=o i s 

an en-sequence with shift (r[$(m) + h(m)]g , r[h(m)]g , y{m)) where p > 0, y(jri) > 
0, a^, a25 ..., at; b\9 b2> ...» b-t are whole numbers and a is an m-integer. 
One application of this is to let 

CL\ = a 2 = ••• = at = 1 and b\ = b2 = • • • = bt = 0 

so that {EJ-}J=Q is an en-sequence. For example, let m = p = LCM[p] be an odd 
prime number and let n = 2. Then, for £ any natural number, 

E2P+y " 2 ^ + Y + I + #Y + 2 E °  (mod P 2 )-

Here, y = y(p) > 1 and r = 1. For example, letting p = 7 and y = 2, this says, 
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a f t e r r e d u c t i o n , f o r e v e r y n a whole number 

40n - 2 • 47n + 5n E 0 (mod 49) . 
It is possible to combine both the Factor Theorem and the Product Theorem* 

Since {1}J= 0 is an en-sequence with respect to the odd natural number m > 1 and 
for j even, Ej (l/Ej ) = 1, it follows that for the natural shift with v > 0, 
y(m) > 0, and f(n9 j) even, for 0 < j < n and { l/#/-(w, j) }J= 0 consisting of m-
integers, then {l/Ej}- even , is an ^-sequence. From Theorem 3 it follows that 

Ef(n,j+i) E Ef{n,o) (mod m) for 0 < j + 1 < n, 

so that if (m9 #/(n>j)) = 1 for any j = 0, 1, 2, ..., n, then {l/#f(n> j)}^ 0 con-
sists of w-integers, This establishes 

Theorem 8: Let w = L C M t ^ , m29 . .., ^t] > 1 with /?7l5 T?^? - • • » ̂ t natural num-
bers ,»be an odd natural number. Suppose 

f(n9 j) = (n - j)rai(m) + r$l(m) + y W 

i s an even n a t u r a l number where r > 0 and y(/72) > 0 . I f (/??, Ef{n, j)) = 1 f°r a t 

l e a s t one j = 0 , 1, 2 , . . . , n , t h e n t h e s equence {l/Ej}- e v e n i s an g n ~ s e q u e n c e 
f o r t h e n a t u r a l s h i f t ( a ( m ) , 3(/TZ)5 y ( w ) ) . 

I n Theorem 8, what i s meant by s a y i n g ( l / ^ j K-even ^ s a n £ w ~ s e c l u e i l c e ? For 
t h a t m a t t e r , what i s meant by s a y i n g {^j}j of the form F ^ s a n £ n - s e c l u e n c e ? Th i s 
s i mp ly means : 

(a ) f(n9 j ) i s of t h e form F f o r 0 < J < n , 

(b) {u f(n ? j ) } - = o a r e a H w - i n t e g e r s , and 

(c ) J2 (~1)J ' ( ^ ) u f ( n , j) = ° ^ m o d m " ) where /?? = LCM[wls w23 •••> w t ] > * w i t h 77?ls 

77?2? • - • s Kit n a t u r a l number s . 

S ince 

fBj+l , «/ + 1\ 
l J + 1 5^ + ! J j o d d 

i s an £ n - s e q u e n c e w i t h s h i f t ( r a 1 ( w ) , P 3 I ( W ) , y ( w ) ) , ^ > 0 and y(m) - 0 f o r t h e 

odd n a t u r a l number 777 = L C M ^ , w25 . . . , tf?t] > 1» Theorem 7 g i v e s c o n d i t i o n s f o r 
{Bj+l/(j + 1)}^ o d d t o be an en-sequence, and [f(n,j) + 1] / ( % n , j ) + 1) w i l 1 b e a n 

m - i n t e g e r when 

GCDL J ^ ) + M - 1. 
V /(w, j) + 1/ 

This implies 

Theorem 9: L e t 7?? = LCM[/??1, m2* <>°»s m t ] > 1 w i t h ml9 m2, . . - , m* a 1 1 n a t u r a l 
numbers and m odd . I f 

(a ) / ( n , j ) = (n - j ^ p a ^ m ) + 2*3 i ( w ) + y(w) i s an odd n a t u r a l number f o r 0 < 
j < n; and 

(b) v > 0 and y(m) > 0; and 
/ irai(m) + Y M + 1 \ 

(c) GCD(̂ /77S 2 - 1) = 1 or, equivalently3 

GCD(m,2 i r B l ( m ) + Y ( n ) + - l i ) . 1 for i - 1, 2, .... n; and 

/ Bf(n, j) + 1 \ • 
(d) (T??, : ) = 1 for at least one j = 0, 1, 2, . .., n, 

\ f(n9 j) + 1/ 
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(fin, j) + l)n U + l)°° 
then <—- > are all m-integers and < — > is an e -sequence with 

I Bf{n,j) + 1 ) j = 0 I #7 + 1 )j = 0 n a t u r a l s h i f t (a(77?), $(777), jim)) . 

5. The Tangent Numbers 

The tangent numbers {Tj }J=Q are d e f i n e d by t h e g e n e r a t i n g f u n c t i o n 

(33) tan x = £ - 4 ^ . 
j = 0 </ • 

It is well known that ^-f = 0, J > 0, and 

(34) T2n-i = (-l)n_14n(4n - 1)-^- is a positive integer. 

For a discussion of these numbers, see [12], page 273. Theorem 4 together with 
these observations gives 

Theorem 10: Let m = LCM[wl5 T^, ...3 mt] > 1 with mi, m2, . . . 9 mt natural num-
bers be an odd number and suppose 

fin, j) = (n - j)ra1(m) + r&i(m)j + 7(777) ̂  1 

for 0 < j < n, r > 0, and y(m) > 0. Then { (- l) ( j '~ 1 ) / 2 ^ } . i s an en-sequence 
with the n a t u r a l s h i f t (pa 1(777), r 31(777), y (77?) ) . 

6. Miscellaneous Resul ts 

A formula analogous to (12) for Bernoulli polynomials is 
N -, 

(35) E tn = ^Ti(Bn + l(N + 1) - Bn + l ) , 
i = 1 

where both n and 71/ are natural numbers (see [16], page 26). Let 

fin, j) = fj = in - j) ra i (777) + 2?Bi(w) + Y(T??), 

where 772 = L C M ^ , m2, . . . , 7771] > 1 and mi, m2, . . . , mt a r e n a t u r a l n u m b e r s . I n 
( 3 5 ) , r e p l a c e n by f- ( so t h a t j j > 0) and t o t h i s a p p l y t h e o p e r a t o r 

so t h a t 
7 = 0 \31 

3f. iN + 1) - S f . 1 

•O+i 
06) E E C - D ' G ) ^ = E ( - D J ( 5 ) 

i= 1 j = o V J / j = o V J / 

Using Theorem 1, t h i s i m p l i e s 
Theorem 11: Le t 7?? = LCM [77? l 9 7772, . . . , 777t] > 1 w i t h m-^, m2, . . . , mt n a t u r a l num-
b e r s , and l e t 

fj = fin, j ) = in - j)ra1(77z) + r$i(m) + y(m) > 1 

f o r 0 < j < n, v > 0 , and y(m) > 0 . I f a; i s an 7??-integer, t h e n 

( ^ . + 1 ( x ) - Bf.+l)-

I fj + 1 / j - o 
a r e a l l 777-integers and 

t J + 1 i j = 0 
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i s an en-sequence w i t h t h e n a t u r a l s h i f t (a(m) , 3 0 ) , y O ) ) . H e r e , n i s a n a t -
u r a l number . 

Now B2k + 1 = 0 f o r k = 1, 2 , 3 , . . . , so t h a t , i f f(n, i ) + 1 > 3 i s an odd 
numbers t h e n 

1"?7^ -N , T > a r e a 1 1 ^ - i n t e g e r s and <—=—-——-> i s an e - s e q u e n c e * 
U ^ ) J ; + i ) j = o w + J- )j=o 

With t h e s e o b s e r v a t i o n s . Theorems 11 and 7 y i e l d 

Theorem 12: Le t w = LCM[w1? m1, **«, mt] > 1 w i t h m\, m2, . . . , mt n a t u r a l num-
b e r s , and suppose 

fin, J ) = in - j)ral(m) + P 3 I ( W ) + y(m) > 1 

for 0 < j < ft, v > 0, and y W ^ 0* Suppose also that # is an ^-integer. If 
fin, «j) + 1 > 3 and /(ft, j) is even for 0 < j < ft, or if 

GCD(w, 2 - l)= 1 or, equivalently, GCD[m, 2 - l) = 1 

f o r 

and 

1 < ^ < n 

{Bf(n, 
Xfin, 

, t h e n 

J ) + 1. 

( x ) \ -

are all m-integers 
y = o 

is an e -sequence with natural shift (rai(m) , r&i(m), y(w0)« Here, n is a nat-
ural number, 

Varieties using these results can easily be made. For example, in Theorem 
12, since x is an m-integer, -x is also an m-integer, and it follows that 

,-+l(tf) - Bj + i(-x)} 

I J + 1 Ij-o 
is an en-sequenceo Here, the even powers of x axe missing since 

Bj + i(x) - Bj + i(-x) 
J + 1 

is an odd function of x* By the same reasoning 

t J + 1 Jj-o 
is an ^-sequence. Here, the odd powers of x are missing since 

Bj+i(x) + Bj + i(-x) 

is an even function of x» Similar remarks can, of course, be made concerning 
the Euler polynomials. 

7. Binomial Rings 

As has been seen, the Product Theorem allows for various combinations in-
volving ^-sequences. This will now be investigated. 

Definition 5: A sequence {Uj}J=0 is said to be well behaved to k where k ±$ a 
natural number with respect to m > 1 and a and 3 integers provided for every 
natural number n < k it is an en_^-sequence with shift (a, $, $£ + y) for i = 
0S 1, 2, . . . , • n - 1 and it is an e^ -sequence with shift (a, $, (ft - £ ) a + y) 
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for i - 1, 2, . .., n where the conditions to be a shift are satisfied in each 
instance and y is arbitrary. This means that y is chosen from the set of all 
integers S which is such that if y0 £ 5, $i + yg £ S for i = 0, 1, 2, . .., 
n - 1 and (n - i)a + yg £ S for i = 1, 2, . .., n and the shift conditions are 
satisfied for all values j E S for the given values a and $. 

Note that if {wj}™-=0 is a well-behaved sequence to k and if k\ < k is any-
natural number, then {Wj}^=0 is also well behaved to k\. When the phrase 
"{idj}°?= Q is a well-behaved sequence" is used, it will be supposed "to arbitrary 
k a natural number." Unless otherwise stated, the shift that will be used for 
well-behaved sequences is (2*04 (m) y r$i(m) , y(m)) where r and y(m) are whole 
numbers. 

One of the examples of a well-behaved sequence for any k a natural number 
that has been given is the sequence {Ej } =̂ 0 of Euler numbers with the shift 
(pa 1(777), r$i(m) , y (???)) for r a fixed whole number and y an arbitrary whole num-
ber with 77? = LCM[TT7I, 7772» •••> mt\ > 1 with mi9 m^9 . . . 9 Mt natural numbers. 

It is clear by the Product Theorem that the "product" 

({WJ}J-O^J>J-O = Wyj}J-o) 
of well-behaved sequences all with respect to 7??, a(777) and 6(77?) is also a well-
behaved sequence. Indeed, it is this that motivated Definition 5. 

Definition 6: Let k9 m = LCM[T7?]_, 7772, ...5 mt] > 1 and 77?̂ , 77?2 * . . . 9 mt be natural 
numbers. Let 

R[ ) = {(^n> ^l5 •••» ^pl^o5 x\> •••» xk a r e a H 777-integers} 

and suppose 

(XQ, X^9 . . . , # f c )> ( T / Q 5 ^ l 5 • • • » 2/fc' G \7??/" 

Then 

(a) (xQ9 xY, ..., #fc) = (yQ9 2/x, ..., z/k) provided 2^ = z/̂  (mod mk) 
for 0 < i < k; 

(b) (a?0, xl$ ,.., #*) + (z/0, yl9 ..., z/fc) = GrQ + yQ9 xx + yl9 ..., xk + z/k); 

(c; V^Q) ĵ_5 ..., x^J • (T/QJ z/1» ..., yk) — \X ^y Q 9 *^\}j\9 •••» ^k^k^* 

(d) If a is any 77?-integer, a(xQ, #,, ..., 2^) = (axQ, ax-,, ..., axk) ; 

(e) Let n be any integer. If #", x^, . .., #£ all exist (mod 777*0, then 
( *Y* T* T* I ( /ytrL rytYl /y»?2\ 

It is clear that #(n) is a commutative ring with identity e = (1, 1, ..., 
1) . R\) is called the ring of (k + I)-tuples of m-integers (mod 777fe) and, fur-
thermore, by the Product Theorem, there exist subrings #( ) of R( \ such that 
if (xQ, xx, ..., xk) e Blfy then 

(37) Y, (-l^(k')xj E °  (mod ^ ) . 
j-o X J / 

Any such subring of #(m) is called a binomial ring. 
Let {Uj}?0 be a well-behaved sequence. It is clear that 

generates a binomial ring. These observations establish 

Theorem 13: Let {̂ ij }J»0 f o r * - ^ - ̂  a 1 1 b e well-behaved sequences to fc with 
respect to 77? = IiCM^, 77?2J ...» 7771] > 1 and fixed a(777) and 3(777). Let g(x\9 xz> 
..., xt) be a polynomial with m-integer coefficients. Let y-- = #-£/(&,,/)• Then 
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(#(#10> #20* •••» #to)> #(#11* #21' •••» ytl)> •••» #Q/lfc» #2/<* ..., #^)) is an 
element of a binomial ring. 

Definition 7: An element (#0, a^, . .., #k) e i? (*) is said to be principal pro-
vided (XQX-^ . .. or̂  , 7??) = 1. 

It is clear that If x = (xQ9 xl9 . . . , a;k) is a principal element of #(£)» 
then {x, x2, x3, . ..} is a cyclic group under multiplication. Furthermore, it 
is the principal elements that have multiplicative inverses. 

Suppose that {^j}J=o i-s a well-behaved sequence to k with respect to m = 
LCM[w1? 7??2S •.., mt] > 1, a(m) 9 and $(m). Suppose also that {a^}, {&£>, and 
{iq} are all sequences of whole numbers. Then { WJ' + ̂ . } ? Q is a well-behaved 
sequence to k. Let o^ , 3^s c^s d, and ^ be any m-integers. It follows that 

08). j ( (£n(<v;: \ + ^)^ + ^ ) " [ " _ o 
is well behaved to k with respect to m9 a, and 3. Here, the sum and the prod-
uct are finite and f E 0 (mod mk). Other variations besides (38) can, of 
course3 be given. 

As has been seen, {EJ}-Q is well behaved to any k a natural number for 
m > 1 an odd number with shift (rai(m)9 r$i(m)9 y(m)) for v and y(ffz) whole num-
bers . 

As an example of a binomial ring constructed from the Euler numbers, let 
m = 5 = LCM[5] and k = 3. Here, using the natural shift 

/(3, J) = (3 - j)r(<|>(5) + H5)]9 + r[fe(5)]^j + y(5) 

= (3 - j)5 + j + 1 = 16 - 4j, 

where p = ̂  = y = 1. Here, y was chosen to be 1 since, for even y, the corre-
sponding Euler number is 0, and this is trivial. Other choices can, of course, 
be made for r, g9 and y(m). For the above choices, 

Eie = 1 9 3 9 1 5 1 2 1 4 5 = 20 (mod 5 3 ) , 

El2 = 2 7 0 2 7 6 5 = 15 (mod 5 3 ) , 

#8 = 1 3 8 5 = 10 (mod 5 3 ) , 

£\ = 5 E 5 (mod 5 3 ) . 
Thus, j2\ 

(20, 15, 10, 5) is a member of a binomial ring Bl J. 

Since (#, a:, #, #) is also a member, it follows that 

(20 + x)n - 3(15 + x)n + 3(10 + x)n - (5 + x)n = 0 (mod 125) 

for n any whole number and x any integer. 
To construct another element of such a s(3) , let r = # = 1 and y = 3. Then 

/(3, j) = 18 - 4j, so that 

# 1 8 = - 2 4 0 4 8 7 9 6 7 5 4 4 1 E 5 9 (mod 125), 

Elh = -1 9 9 3 6 0 9 8 1 = 19 (mod 125), 

ff10 = -5 0 5 2 1 = 104 (mod 125), 

tf6 = -6 1 = 64 (mod 125). 
Thus, n 

(59, 19, 104, 64) is a member of a S(^j. 

Combining this with the previous element, for x and y any integers, m and n any 
whole numbers, 
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(20 + ̂ )m(59 + y)n - 3(15 + ̂ )w(19 + y)n + 3(10 + x)m(lOh + y)n 

- (5 + x)m{6h + y)n = 0 (mod 125). 

This can actually be made a little stronger. If 

(20 + x, 15 + x, 10 + x, 5 + x) and (59 + y9 19 + z/, 104 + y, 64 + z/) 

are both principal, then m and ft can be any integers. 

8. Some Additional Results with (mod{LCM[ml5 m2, ..., mt]}n) 

The examples in this paper have been concerned with congruences (mod mn) . 
The case, with m - p = LCM[p] and p a prime number, is, of course, well known 
in connection with Kummerfs congruences. Some additional examples will be 
given here. 

The natural shift (a(w), 3(7??), y(w)) with m = LCM[T??19 TT?2» * • . , rnt] will be 
used. Here 

(39) 01(777) = z»a 1(777), 3(777) = P 3 1(777), 

with 

(40) 04(777) = rl[(f)(mi) + h(mt)]91 + sx = 2*2[<|>0"2) + M w 2 ) ] ^ 2 + s2 

= ... = Pt[(j>(^) + Kmt)]9* + st 
and 

(41) 3i(w) = rilTzfai)]*1 + S l = r2[h(m2)]92 + s2 = • • • = rt[h{m^]9t + st, 

for some integers P i , P 2 , •••> pt » s l ' s2» •••> st» a n d some natural numbers 
^1» £72 > • * ' > 9f ^s w a s remarked earlier, special care is needed for any of 
the p ! s or s?s to be negative. It will be supposed that a 1(777) , $1(77?), v * 0 
and a 1(777) * $1(77?) to keep the results from being trivial. 

First, an example using Theorem 3 will be given. Let m = 15 = LCM[3, 5] 
and n = 3. In this case, (f)(3) = 2 and (f)(5) = 4 so that v^ , p^ ; si » s 2 » ^ l 5 ̂ 2 
are required such that 

(42) rl[2 + I]91 + sx = P 2 [ 4 + l]^2 + s2 and rx • I91 + s± = r2 * I92 + s£. 

Clearly, a choice is Pi = 2, P2 = 1; Si = 0, S2 = 1; g \ = g2
 = 1 anc^ ^ = 1 so 

that a(777) = 6 and 3(777) = 2 so that /(3, j) = (3 - j) • 6 + 2j + y = 18 - 4j + y 
so that Theorem 3 gives 

(̂ 3) ^j (~1)M '/^IS-^j+y E 0 (mod 153) where y is a whole number. 

Evidently, other choices for Y\> V2, s ^ s2$ g\> gz i n (41) c a n be made. 
On the other hand, if 777 = 15 = LCM[15], then 

/(3, J) = (3 - j)r[*(15) + h(l5)]9 + r[h(l5)]9 + y. 

Let p = £7 = 1 so that 

/(3, j) = (3 - j)(9) + j + y = 27 - 8j + y 

(44) X (-D^-Ky-Sj + Y E 0 (mod 153). 

and 

_ i-iri 
j-o 

An example using Theorem. 7 is given by 777 = 35 - LCM[5, 7 ] . Here, (f)(5) = 4, 
ft(5) = 1, (f)(7) = 6, and 7z(7) = 1 so that P i 3 r2, Si, and s2 are needed such that 

5PI + Si = 7P2 + s25 
(45) 

Pl + Sl = p2 + s2. (Here, ̂ x = g2 = 1.) 
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A choice for these numbers is P X = 3, r2 = 2, s1 = 0, and s2 = 1. This gives 
ax (7??) = 15 and $1(777) = 3. Choose r = 1. From Theorem 7, it is required that 
(35, 2 3 + ^ + 1 - 1) = 1 and (1 - j)15 + 3j + y + 1 is even. In this case, n = 1. 
A choice for y = y(m) satisfying this is y = 6. Thus, Theorem 7 says that 

?22 
22 -"Tl/K-o are b ° t h 3 5 ~ i n t e § e r s and .^(° ° 1)J'C-)2?-"l2j' E °  (m0d 35)' 

Notice that another congruence (mod 35) can easily be given by letting m = 35 = 
LCM[35]„ In this case, (j)(35) = 24 and M35) = 1. Thus, a choice of a(35) = 25 
and 3(35) = 1, To satisfy the hypothesis of Theorem 7, it is required that 
(35, 2 1 + y + 1 - 1) = 1 and (1 - j) • 25 + J + y + 1 = 26 - 24j + be even. y = 0 
works. Thus, according to Theorem 7, 

t26 - 24^-0 ^ 35™inteSers and .g^-^Hj^e - 24j = °  ( m ° d 35)°  
More generally, let a and 2? be natural numbers such that m = LCM[a, b] > 1 

is odd» Then it is required to find P 1 S P2* s l ' s2» f° r #1 = 92 = 1 such that 

ri[<Ka) + Ma)] + si = 2>2[<K£) + Mi)] + sl9 
(46) 

ri?z(a) + Si = r2h(b) + s2-

A choise for r\ and Sj satisfying this is 

LCM[([)(a), <(>(&)] 
P = — and Si = 0. 
1 +(a) X 

For this choice, 
. . v LCM[<()(a), +(i)][<|)(a) + Ma)] 

a(m) = — — 

and 
_ , r LCM[(()(a), *(&)]fe(a) 

$(m) = — , 
*(a) 

so that, by Theorem 7, if 
ir LCM[0(a), Mb)] Ha) , 

fLCM[a, i], 2 *(a) - l)= 1 for i = 1, 2, 3, . 

then B nr LCM[<Ka), <K&)U(a) ^ ^ 
V i v W {*LCM[»(qM(b)]J+ « g ) + ? + !} 

( ^ /T0 W / r , , ,7 N 1. nv LCM[(f>(a), +(&)]^(a) 
J 0 p LCM[(()(a), *(6)]j + ' / + y + 1 

<|)(a) 
E 0 (mod{LCM[a, i]}n). [Here, y = j(m)]. 

Notice that since there exist a and b such that 

LCM[<|>(a), *(*)] * ^(LCM[a, i]) 

(for example, a = 15 and 2? = 35) it follows that (48) is essentially different 
from what would be obtained simply by letting m = LCK[m] for m = LCM[a, b]. 

The reader might enjoy examining the congruences obtained from 

m = 105 - LCM[105] = LCM[3, 5, 7] = LCM[15, 7] = LCM[21, 5] 

= LCM[3, 35] - LCM[15, 35] - LCM[21, 35] = LCM[15, 21] 

for these various LCM-partitions of 105. 

n9 
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Continued from page 334 

Our home during the Conference was a University dormitory. John Burnet Hall, formerly a hotel and still 
providing the comfort of such. Colleges and Universities have the reputation of offering dull, institutionalized fare. 
Our food, taken at the dorm's cafeteria, constituted an enjoyable counterexample. 

St Andrews is an ancient institution. And during its nearly six centuries of existence, it has maintained 
vigorous scholarly impact across the whole academic spectrum. St. Andrews has been called "a gem of a Univer-
sity"—uniquely Scottish by history and beautiful location, yet unusually cosmopolitan. 

The Conference's social events rounded off, and enhanced, our academic sessions. The traditional mid-
conference's afternoon excursion took us to Falkland, a Renaissance Palace, which grew out of the medieval 
Falkland Castle. At once did we get lured into the quaintness of an historically rich palace and became enchanted 
by the charming multi-coloredness of the garden. 

To convey the congenial and happy atmosphere at our Conference—dinner adequately would require a 
vocabulary far richer than mine. Interspersed with inspirational short talks and remarks, animated by delicious 
banquet fare and, most of all, by having our whole group gathered together, it was simply delightful. 

And, finally, the Conference itself. 
Erudite and always carefully prepared papers ranged over the heights and depths of "purity" and "applic-

ability," once more illustrating the startling way in which these two facets of mathematics are duals of each other. 
And while we speak with many different accents, we understand each other on a much more significant level. 
Almost immediately, friendships blossomed or ripened, as the love of our discipline and the enthusiasm for it were 
written over all the faces of the "Fibonaccians" as some of us like to refer to ourselves. That one week in Scotland, 
kindled by the serenity of the Scottish landscape and enhanced by the spirit of our Scottish hosts and co-mathema-
ticians, gave us experiences which were both mentally enriching and personally heartwarming. 

Finally, it was "farewell." But it is with much happiness that we can say: "Auf Wiedersehen in two years at 
Pullman, Washington." 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to 
Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 
USA. Correspondence may also be sent to the problem editor by electronic 
mail to 72717.3515@compuserve.com on Internet. All correspondence will be 
acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be 
received within six months of publication of the problem. Solutions typed in 
the format used below will be given preference. Proposers of problems should 
normally include solutions. 

Dedication. This y e a r f s column i s dedicated to Dr . A. P . Hillman in r ecogn i -
t ion of h i s 27 years of devoted se rv ice as e d i t o r of the Elementary Problems 
Sect ion. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn + l + ?n> ^0 = 0 ^ 1 = 1; 

Ln + 2 = Ln + l + L
n> L0 = 2> Ll = *•• 

Also, a = (1 + /5)/2s 6 = (1 - /5)/2, Fn = (an - $n)//5, and Ln = a" + 3n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-724 Proposed by Larry Taylor, Rego Park, NY 
Dedicated to Dr . A. P . Hillman 

Let n be a p o s i t i v e i n t e g e r . Prove t ha t the numbers Ln_iLn+i9 5F%> L^n/Ln, 
L2n > F^n/Fn9 L%5 5Fn-lFn+l a r e ^n a r i t hme t i c progress ion and find the common 
d i f f e rence . 

B-725 Proposed by Russell Jay Hendel, Patchogue, NY 
and Herta T. Freitag, Roanoke, VA 

Dedicated to Dr . A. P . Hillman 
(a) Find an i n f i n i t e se t of r i g h t t r i a n g l e s each of which has a hypoten-

use whose length i s a Fibonacci number and an area t h a t i s the product of four 
Fibonacci numbers. 

(b) Find an i n f i n i t e se t of r i g h t t r i a n g l e s each of which has a hypoten-
use whose length i s the product of two Fibonacci numbers and an area tha t i s 
the product of four Lucas numbers. 

B-726 Proposed by Florentin Smarandache, Phoenix, AZ 
Dedicated to Dr . A. P . Hillman 
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Let dn - Pn + i - Pn , n = l s 25 33 * a « 3 where Pn i s the nth prime. Does the 
s e r i e s 

00 1 
n= 1 a ^ 

converge? 

B-727 Proposed by loan Sadoveanu, Ellensburg, WA 
Dedicated to Dr . A, P9 Hillman 

Find the genera l term of the sequence (an) defined by the recurrence 
_ an+l + an 

1 ^ un+lun 
with ^ i n i t i a l va lues aQ = 0 and a-, = (e2- - l)/(e2 + 1)* where e i s the base of 
n a t u r a l logar i thms . 

6-728 Proposed by Leonard AB.G. Dresel, Reading, England 
Dedicated to Dr . A. P, Hillman 

If p > 5 i s a prime and n i s an even i n t e g e r , prove t ha t 
(a) i f Ln E 2 (mod p ) , then Ln = 2 (mod p 2 ) ; 
(b) i f L^ E -2 (mod p ) s then Ln = -2 (mod p 2 ) . 

B-729 Proposed by Lawrence Somer, Catholic University of America, 
Washington, D. C, 

Dedicated to Dr . A. P . Hillman 
Let (Hn) denote the second-order recurrence defined by 

#n + 2 = a^n + 1 + bH-ri» 
where HQ = 0S Hi = l9 and a and 2? are integers. Let p be a prime such that 
p\b. Let k be the least positive integer such that H^ ~ 0 (mod p). (It is well-
known that fc exists.) If Hn f 0 (mod p ) , let i?w = Hn + iH~l (mod p) . 

(a) Show that Rn + i?^_n =-a (mod p) for 1 < n < k - 1. 
(b) Show that RnRk_n_i = -i (mod p) for 1 < n < fe - 2* 

Acknowledgment 

The editor of Elementary Problems and Solutions wishes to thank Clark 
Kimberling for his help in proofreading material for this section. 

SOLUTIONS 

A Radical Limit 

6-698 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Consider the sequence of real numbers a^9 a^ •••> where a^ > 2 and 

(1) an+l = a2 - 2 for n > 1. 

Find lim bn, where 
n + <*> 

(2) h = a* + 1 for n > 1. 
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Solution 1 by Hans Kappus, Rodersdorf, Switzerland 

We c l a i m t h a t 

lim bn = / a 2 - 4. 
n^-oo 

This follows from the formula 

(a? - 4)qg+1 
( } h» = ~V2 T~ 

an+i - 4 
and the obvious fact that {an} is an increasing sequence so lim an - °°. 

n-»- oo 

To prove (3), we proceed by mathematical induction. We have 

2 a2 (a-j_ - 4)a2 (&i - ^)^2 (ai ~ 4)a2 

1 af (a? - 4)af (af - 2 ) 2 - 4 a§ - 4 
so formula (3) is true for n - 1. Assume now that (3) holds for some integer 
n - k - 1. Then, from bk = ^_iak + ]./̂ 5 w e n a v e 

b2 = ^2-la^+i = (a! " 4 ) 4 + i = (4 - *K+i = (af - 4)a2
+1^ 

fe a£ (a2 - h)ak (a\ - 2 ) 2 - 4 a£+1 - 4 

which completes the induction. 

Solution 2 by loan Sadoveanu, Ellensburg, WA 

Using the recurrence relation in the form 

an+i - an = (an + I){an - 2) 
implies, by induction, that an + i > an > 2 for all n > 1. 

Let xn be defined by 

(4) CLn/2 = cosh #„ . 

This is possible since the hyperbolic cosine defined on (0, °°) and valued in 
(1, oo) is a one-to-one function. 

We recall some facts concerning hyperbolic functions [1]: 

(5) cosh z = -
2 

&z — G~z 

(6) sinh z = — 

(7) coshes - sinh2s = 1 

(8) sinh 2z - 2 sinh z cosh z 

(9) cosh 2z = 2 cosh2s - 1 

/ir>\ ^i_ C O S h S 

(10) coth z = —7—; 
sinh z 

Applying (4) to (1) gives 
2 cosh xn - (2 cosh xn„i)2 - 2 

or 
cosh xn = 2 cosh2^.! - 1 = cosh 2xn-i 

by (7). Thus, xn = 2xn_1. Repeated application of this formula yields 

xn = 2n~lxl. 

370 [Nov. 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Now 
aia2 ••• an = (2 cosh xx)(2 cosh 2xx) -.. (2 cosh 2n~1x1) 

sinh 2̂ x sinh tej sinh 2nxx sinh 2nxx 

sinh #1 sinh 2#i sinh 2n_1x1 sinh #]_ 

using (6) and cancelling. Therefore, 

CLn+l sinh X\(2. cosh xn+1) 
bn = = — • 

a\ai ••• an sinh 2n#]_ 

sinh #]_ 
= —-—— (2 cosh xn + i) = 2 sinh Xi coth #„, i, 

s inh xn+i 
1 

^2x 1 + 0 
lim coth x = lim :—irL— = l i m = = 1 . 
x^oo x->oo ex - e x

 x+™ 1 1 - 0 
Thus, g2ar 

lim bn = 2 sinh X]_ lim coth xn+i = 2 sinh X]_ 

But 

2/cosh2x1 - 1 = A cosh2x1 - 4 = /a| - 4. 

Reference 

1. Abramowitz & Stegun. Handbook of Mathematical Functions. Nat ional Bureau of 
Standards, Washington, DC, 1966. 

Also solved by Paul S. Bruckman, Blagoj S. Popov, and the proposer. 

A Solution Using Periodic Orbi ts 

B-699 Proposed by Larry Blaine, Plymouth State College, Plymouth, NH 

Let a be an in teger g r ea t e r than 1* Define a funct ion p(ft) by 

p ( l ) - a - 1 and p(n) = an - 1 - £ p(d) for n > 2, 

where 2 denotes the sum over all d with 1 < d < ft and <i|ft. 
Prove or disprove that n\p(n) for all positive integers ft. 

Solution by the proposer 

Consider the function /: [0, 1) •> [0, 1) defined by 

/(#) = ax (mod 1), 
i.e. , 

f(x) = ax - k for fc/a < x < (k + I) la, /c = 0, 1, ..., a - 1. 

We use the customary notation 

fl(x) = f(x)9 fn+Hx) = /(/"(a)) for ft = 1, 2, ..., 

and for x <E [0, 1) we define the orbit of x to be the sequence 

XQ = x, xn = fn(x) for n = 1, 2, ... . 

We say that # is an ft-periodic point if XQ = xn, but XQ * #£ for i = 1, 2, ..., 
ft - 1. 
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Now, if .r is n-periodic, then fn(x) = x. The converse is not quite true: 
fn(x) = x if and only if x is £?-periodic for some positive integer d for which 
d\n (including, of course, d = 1 and d = n). An easy calculation shows that 
there are exactly a - 1 1-periodic points and an - 1 points for which fn(x) = 
x. It follows by induction that p (n) is the number of n-periodic points. 
Since these points fall into equivalence classes (periodic orbits) of the form 
{XQS XI9 . .., xn„i}3 it follows that n\p(n) in all cases. 

Also solved by Paul S. Bruckman and Russell Jay HendeL 

The proposer asks whether a proof can be given using elementary number theo-
retic techniques. Although our two other solvers gave proofs using nelementaryn 

number theory_, their proofs were not as simple as the proposerfs. Eendelfs 
proof ran for three pages and Bruckmanrs proof involved the Mobius inversion 
formula and a generalized form of Fermat!s Little Theorem, 

But It Doesn't Look Symmetric 

6-700 Proposed by Herta T. Freitag, Roanoke, VA 

Prove that for positive integers m and n, 
am(aLn + Ln_x) = un{uLm + Lm_l). 

Solution by Paul S. Bruckman, Edmonds, WA 

Let f(jn9 n) = am (aLn + L n _ i ) . Using a3 = -1» we find t h a t 
aLn + Ln.l = a ( a n + 3n) + a n _ 1 + 3 n _ 1 

= an+l - 3 n _ 1 + a n _ 1 + 3 n ~ 1 

= a n ( a - 3) = a n / 5 . 
Therefore, f(m, n) = am+n/5, from which we see t h a t f(m, n) = f(ns m). 

Solvers found various methods of showing that f(rn3 n) is symmetric: 
Melham showed that f(m5 n) = a

m+n + l + am + n~l» 
Singh showed that f(m, n) = am+n~1(a2 + 1 ) . 
Brown notes that the result follows from problem B-538 (/5an = aLn + Ln.-i) . 
Haukkanen generalized by showing that the following are symmetric in m and n: 

3"(3£n + £ n - i ) , a™{aFn + Fn^) 9 &m($Fn + Fn^) . 

Also solved by Michel Ballieu, Brian D. Beasley, Glenn Bookhout, Scott H. 
Brown, Russell Euler, C. Georghiou, Pentti Haukkanen, Russell Jay Hendel, 
Joseph J. Kostal, Graham Lord, Ray Melham, Blagoj S. Popov, Bob Prielipp, 
H.-J. Seiffert, Sahib Singh, Lawrence Somer, and the proposer. 

A Pair of Tr iangles with Common Sides 

B-701 Proposed by Herta T. Freitag, Roanoke, VA 

In t r i a n g l e s ABC and DEF, AC = DF = 5F2n, BC = Ln+2Ln_1, EF = Ln+lLn_2, and 
AB = BE = 5F2n+1 - L2n + l + ( - l ) * " 1 . Prove t h a t LACB = LDFE. 
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Solution by the proposer 

Let Ln+1 = xs Ln = y9 b = 5F2n, c = AB, a = Ln+2Ln_ls d = Ln+1Ln__2, e = DF, 
and / = DE. Since 

5Fin = 5i^L„ = (Ln + i + Ln_x)Ln = (2Ln + 1 - Ln)LnS 

^n + l^n-2 ~ ^n + l(2-Z/n " ^ n + l ) * 
and 

5^2n+l - i 2 n + l + ( " I ) " " 1 = L2n + L2n+2 - L2n+l + ( - l ) " " 1 , 
and where, fur thermore, 

L2n + L 2 n + 2 = L n +1 + L n a n d L 2 n + 1 + ("l)n = - ^ n + l - ^ * 
we the re fo re have 

a ~ x2 - y2
 9 b ~ y (2x - y) = e, c = x2 - xy + y2 = / , c? = #(2z/ - x) . 

Now, using the Law of Cosines for triangle ABC, we find 

cos C lab 
However, a2 + b2 - c2 = 2x3y - x2y2 - 2xy3 + y^ = ab. Thus, cos C = 1/2; hence 
ZC = TT/3„ 

Similarly, for triangle DEF s 

d2 + e2 - f2 = ~2x3y + 5x2^2 - 2xy3 = de, 
from which we get cos F = 1/2; hence IF = LC = TT/3. 

Comment by the editor: 
With the same notation as in Solution 1, it is straightforward to show that 

a2 ~ a2 + ad + d2 and a + d = b. 
By the Law of Cosines, this tells us that there is a triangle ABC with 

sides of length AB = c, B£ = as and GA = d and that Z,4£5 = 120° . 

d B,E 

Extend s ide AG pas t £ for a d i s t ance a to the point C. Then, s ince Z5£C = 
60°, t r i a n g l e BGC Is e q u i l a t e r a l and BC^a* Draw a l i n e through 4 p a r a l l e l to BG. 
and meeting CB extended a t F» Thus, Z,4F(7 = LGBC - 6 0 ° ; t h e r e f o r e , A.4FC i s a l so 
e q u i l a t e r a l . Thus BF = d and AF = a + d = i . 

Giving l a b e l s D and Z? to po in t s A and 5 , r e s p e c t i v e l y , we thus see our two 
t r i a n g l e s ABC and DEF of the problem proposal and have a l so shown tha t LACB = 
LBFE = 60° . 

AZso solved by Paul S. Bruckman, C. Georghiou, Russell Jay Hendel, Ray 
Melham, Bob Prielipp, and H.-J. Seiffert. A wonderful 6-page solution (with 
7 lemmas) was also received, but the solver forgot to print his or her name on 
the solution sheets, so proper credit cannot be assigned. 
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A Comparison of Continued Fractions 

B-702 Proposed by L. Kuipers, Sierre, Switzerland 

For n a positive integer, let 
1 

Fn + 

Ln + 
1 

and y n = Fn + 
Fn + 1 + 

F„ + ?n + 

£„ + V̂z + l + 7" 

(a) Find closed form expressions for xn and yn. 
(b) Prove that x n < y n when n > 1. 

Solution to part (a) by C. Georghiou, University of Patras, Patras, Greece 

Assuming convergence, we have 

1 
xn ^n ~* -r— and 2V = F„ H —T 

Ly, + Fn+l + 

Solving these equations for xn and z/n, respectively, we find 

I 1 + / 1 + FnLn J 
and zv 

^ 
1 + / 1 + 

^n^n+1 J 
(The negative roots of the quadratics must be rejected since xn and yn are 
clearly positive.) 

Solution to part (b) by Sahib Singh, Clarion University of Pennsylvania, 
Clarion, PA 

It is obvious that x^ = y - ^ . For n > l9 from the well-known formula L n = 
Fn + i + Fn-i, we see that Fn+i < L n . Applying this inequality to the formulas 
for x n and y n shows that y n > x n when n > 1. 

Most solvers ignored the question of convergence. Unless you know that the con-
tinued fractions converge3 the operations above cannot be justified. 

Proof of convergence by H.-J. Seiffert, Berlin, Germany 

For positive integers a and b9 let 

1 
z = a + 

b + 
a + 

b + 

If p k / q k denotes the kth convergent of z, then, for all positive integers k: 
PQ = a> Pi = ab + 1» <70 = lj ?i = *' 
?2* = a P 2 k - l + P 2 f c - 2 ' P 2 ^ + l = ^ 2 f c + P 2 f c - 1 * 
?2fc = a^2*-l + ^ 2 / < - 2 > <?2Zc+l = 6?2* + ?2*-l' 
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I t follows that the sequences {p2k) and (q2k) satisfy 

p0 = a, p2 = a(ab + 2), p2k = (afc + 2)p2fc_2 - V2k-h' 
q0 = 1, <72 = aZ? + 1, <72fe = (a& + 2)^2A,_2 - <72fc-4* 

These are second-order linear recurrences; and using standard methods, we find 
t h a t P2k = a(*?+ 1 - t|+1)/Z> and q2k = ( ( t x - l)t\ - (t2 » l)*£)/0 
where £x = (qZ> + 2 + ff)/2 and i 2 = (afc + 2 - D)/2 are the roots of t2 - (a& + 2)£+ 1 = 0 
and £ = /ab(ab + 4 ) . 

Since ^i > t 2 > .0, we find that / /^?\ / C + 1 \ 

lim = lim —r ?- = lim J L X I U J_JLJJ.l -i y JLJL.IU , •% >J_ '] 

k + *q2k fc + . (tl - l)t\- (t2 - l)t\ k + ~ {t l} 1 t2 - l(t2\k 

a at^ 
t \ 1;

l \tl 

In a similar manner, we find that 

lim 
k +oo tfzk+l 

has this same value. Thuss 

lim — 
fc + co <7fc 

exists and the continued fraction converges to this value. 

One could also have noted convergence by quoting from a standard text on con-
tinued fractions^ such as Theorem 3.5 from [1]3 which states that any simple 
continued fraction (positive entries and, l?s in the numerators) converges. 
Seiffert1s proofs thought not only proves convergence and finds the limit3 but 
also gives the value of all the convergents. 

Reference 

1. C. D. Olds. Continued Fractions. Washington D.C.: Mathematical Associa-
tion of America (New Mathematics Library), 1963. 

Also solved by Charles Ashbacher, Paul S. Bruckman, Russell Euler, Herta T. 
Freitag, C. Georghiou, Russell Jay Hendel, Hans Kappus, Carl Libis, Graham 
Lord, Ray Melham, Bob Prielipp, H.-J. Sieffert, Sahib Singh, and the 
proposer. 
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Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND 
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK 
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially 
welcomes problems believed to be new or extending old results. Proposers 
should submit solutions or other information that will assist the editor. To 
facilitate their consideration, all solutions should be submitted on separate 
signed sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-471 Proposed by Andrew Cusumano & Marty Samberg, Great Neck, NY 

S t a r t i n g w i t h a s equence of f o u r o n e s , b u i l d a s equence of f i n i t e d i f f e r -
ences where t h e number of f i n i t e d i f f e r e n c e s t a k e n a t each s t e p i s t h e t e rm of 
t h e s e q u e n c e . That i s , 

Si S2 S3 

1 1 1 1 1 1 1 1 1 1 1 1 
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1 2 4 7 11 16 1 2 4 7 11 16 
1 2 4 8 15 26 42 

Now, reverse the procedure but start with the powers of the last row of differ-
ences and continue until differences are constant. For example, if the power 
is two, we have 

1 4 9 16 25 1 4 16 49 121 256 etc. 
3 5 7 9 3 12 33 72 135 
2 2 2 9 21 39 63 

12 18 24 
6 6 

The sequence of constants obtained when the power is two is 

2, 6, 20, 70, ..., 

while the sequence of constants when the power is three is 

6, 90, 1680, 34650, .... 

Let N be the number of the term in the original difference sequence and M 
be the power used in forming the reversed sequence. Show that the constant 
term is 

X(N, M) = SJLLMIL N = l 2, 3, ..,, M = 2, 3, 4, ... . 

For example, 

x(2, 3) = ^ = 90. 2° 
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H-472 Proposed by Paul S. Bruckman, Edmonds, WA 

Let Z(n) denote the Fibonacci en t ry -po in t of the n a t u r a l number ft, t h a t i s , 
the smal les t p o s i t i v e index t such t h a t n\Ft. Prove t h a t n = Z(ft) i f and only 
i f ft = 5 or ft = 12 ° 5 , for some u >. 0. 

H-473 Proposed by A. G. Schaake & J. C. Turner, Hamilton, New Zealand 

Show t h a t the following [ 1 , p8 98] i s equivalent to Fermat !s Last Theorem. 
"For ft > 2 the re does not e x i s t a p o s i t i v e in t ege r t r i p l e (a9b9c) such t h a t 

the two r a t i o n a l numbers r/s, p/q9 with 
r = o - a , p = 2? - 1, 

i= 1 i= 1 

are penultimate and final convergents5 respectively, of the simple continued 
fraction (having an odd number of terms) for p/q*u 

Reference 

1. A. G. Schaake & J. C. Turner. New Methods for Solving Quadratic Viophantine 
Equations (Part I and Part II). Research Report No. 192, Department of 
Mathematics and Statistics, University of Waikato, New Zealand, 1989. 

Editorial comment: Please note that in the May 1992 issue of this quarterly, 
the first solution (A Triggy Problem), which is actually Problem 446, was 
erroneously identified as Problem 466. 

SOLUTIONS 

Sum Problem 

H-435 Proposed by Ratko Tosic, University of Novi Sad, Yugoslavia 
(Vol. 27, no. 5, November 1989) 

(a) Prove that, for n > 1, 

F , + V F • F. . . . F- • F-
0<vY< ... <tk<n K K k l z l 

1 <k < n 

I — I 

where Yx\ is the greatest integer < x. 

(b) Prove that, for ft > 3, 

y r-nn _ kF • F- . F- • F- 9 • ik 

v < %i< . . . < ik<n 
l<k<n 

^ n + 3 + ^ i ; % - 3 e 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

(a) Let Sn denote the sum on the l e f t of the given i d e n t i t y . Note t ha t Sn can 
be r e w r i t t e n as X ^ o ^ r c , ^ 5 where 
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Sy, v — . Z-J. FA FA . . . FA J 
n>K J 2 , . . . , j k + 1 > 0 J l <?2 Jk + 1 

3 i + ' " + Jk+l = n+l 

which i s p r e c i s e l y t h e c o e f f i c i e n t of xn + l i n 

T h e r e f o r e , Sn i s t h e c o e f f i c i e n t of xn + l i n 

" / _ _ _ £ _ _ \fe + 1 x l I l 

h = o \ L ~ X — X k=0 

Hence, we conclude that 
i n + 1 , , i 

J- v- n + 1 

1 

1 - 2x - x2 2/2Vl + (1 - /2)x 1 - (1 - Sl)x 

-^= E [(1 + /2)n - (1 - /2)"]xn. 
2/2 n=0 

n + l 

S" ' 2/2 .,-0 E ( " J ' ) I ^ - < ^ 1 - E „&Vi)*'-
£:=0 

(b) Let Tn denote the sum on the left of the given identity, then 

Tn = 2(-lf + 1 t Tn>k, 
where 

k= l 

which i s e x a c t l y t h e c o e f f i c i e n t of arn~"3 i n 

> 0 ^ ( - 2 ^ ) • • • ( - 2 ^ * ) ^ W 

E ^4(E^ V j = -1 / \i = l 
Hence, we have 

k-1 / l x \ 2 / -2a; 
x 1 - x - x z / \ 1 - x - x 

fc-1 

1 a? -2a: 
E c-ir+lr ^ = 2x3 - + — - — j ) y —? 

n ^ o V^ 1 - a; - x 2 / ^ - A 1 - x - x2 

2a:(1 - a ; ) 2 

fc-l 

2 - 3a; 2 - x 
(I - x - xl) (1 + x - a?2) 1 - a; - a;2 1 + a; - a; 2 ' 

I t i s c l e a r t h a t 
1 1 1 

1 + a; - a?2 (1 + otar)(l + frr) a 

where a = (1 + / 5 ) / 2 and 3 = (1 - / 5 ) / 2 . Thus , 
1 

Ll + aa; 1 + $a;J 

= E LJ1J*—r^—-** - E (-Dn^+1^, 
1 + x - a;2

 n = 0 a - 3 - n + i w = 0 

which i m p l i e s t h a t 

2 - 3a: 2 - x 
= E K 2 ^ + l - 3F n ) + ( - 1 ) * + 1 ( 2 ^ + 1 + * ; ) ] * » . 

1 -• a: - a;2 1 + x - a ? 2 n=o 

T h e r e f o r e , we c o n c l u d e t h a t f o r n >. 0 , 

^ = ( 2 ^ + 1 + F„) + (-l)n + l(2Fn + l - 3 F J = Fn + 3 + ( - l ) « / l * V 3 . 

AZso solved by N. A. Volodin. 
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Mix and Match 

H-454 Proposed by Larry Taylor, Rego Park, NY 
(VoL 29, no. 2, May 1991) 

Construct six distinct Fibonacci-Lucas identities such that 

(a) Each identity consists of three terms; 
(b) Each term is the product of two Fibonacci numbers; 
(c) Each subscript is either a Fibonacci or a Lucas number. 

Solutions hy Stanley Rabinowitz, Westford, MA 

Solution Set 1 
Here are six identities that meet the requested conditions, although they 

are probably not what the proposer intended: 

Fn FFn 
F*z\ 
FT? FT? 

E 3 Fn 

% \ 
F*0 \ 

FF, FLn 

+ 
+ 
+ 
+ 
+ 
+ 

* > 3 * > , , 

F?3
 FLn 

F F , \ 

*>. \ 
Fr Fp 

u 3 "n 
Fr Fr 

L3 Ln 

= FF FF 

= FF FT 

= Fr FF 
L3 hn 

= Fr FT 
L3 Ln 

= * > 5 **n 

- F*S % 

Solution Set 2 
If numerical identities are acceptable, then we have the following identi-

ties (found by computer search): 

F2F3 + FI^FQ = F5F7 

F2FQ + ̂ 5^u = ̂ 3^13 

F2FlQ + F5FU = F7Fl3 

F3F7 + FL+FQ = F2Fn 

^3^13 + ̂ 8^18 = ^5^21 

F5F2l + FQF3i+ = ̂ 13^29 

FQFlQ + FnF2l = F3F23 

^13^2 9 + ^18^34 = ^5^47 

where all the subscripts are distinct in each example. 

Solution Set 3 
The numerical identities in Solution Set 2 suggest the following identities 

involving one parameters £: 

[Fh+, Fk+i + F^+2
 F^i " Fh Fh+3 i f l i s n o t d i v i s i b l e by 3 

iFrp FT = Fr, FT + FT? Fr I f 3 I % . 

We will prove these by proving the equivalent single condition: 

CD FFi + k hi + l " (-DFi FFi + 2
 FLi + 2 = Fh Fh + 3. 
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To v e r i f y i d e n t i t y ( 1 ) , we a p p l y t h e known t r a n s f o r m a t i o n 

^FmFn = Lm + n " ( ~ 1 ) Lm-n 

This identity can be shown to be true because, of the six terms, it can be 
grouped into pairs of terms that cancel. Specifically, 

( 2 ) L * i + i f + £ i + l = LFi+Li + 3 

Equation (2) follows from the identity 

Fi+l+ + Li + i = Fi + Li + 3, 

which is straightforward to prove. 
To prove equation (3), we use the fact that L_n = (-1) Ln> so that 

LFi + 2-Li + 2 = L-^i+2 + ̂ + 2 

since a simple parity argument shows that i^ + 2 ~ ^i + 2 ^s always even. Then we 
note that Fi + L.̂  + 2 = ̂ t + l (mod 2), which also follows from a simple parity 
argument. Thus, 

(-l)Li + i = (-1)^ + L i + 2 

and we see that equation (3) is equivalent to 

Fi + h " Li+l = ~ ^ + 2 + Li + 2> 

which we again leave as a simple exercise for the reader. 
For equation (4), we have similarly that F^ E L^ + 3 (mod 2), and hence equa-

tion (4) is equivalent to the easily proven 

Fi + 2 + Li + 2 = ~Fi + Li + 3, 

where again we note that F^ - L^ + q) is always even. 
Finally, we note a second identity analogous to (1): 

(5) FF FT - (-1)F* FF FF. „ = Ft FF o 

whose proof is similar and is omitted. 
Equations (1) and (5) appear to generate all the numerical examples I have 

found. If we let i, have the forms 3k - 1, 3k, and 3k + 1, we get the six iden-
tities : 

FF3k+3
 FL3k + FF3k+1

 FL3k+l = FF3k.x FL3k + 2 

FF3k + * FL3k+l
 = FF3k + 2

 FL3k + 2 + FF3k
 FL3k+3 

Fv„ FT + Fjp FT
 = FTP FT 

*3k + 5 L3k + 2 *3fc + 3 L3k+3 *3k+l L3k+h 

FF3k
 FL3k + FF3k.2 FF3k+1 = ^ . i ^ F 3 , + 2 

FF3k+l
 FL3k+1 = * V 3 k - i ^V3 f e + 2

 + FF3k
 FF3k+3 

FF3k+2 FI>3k + 2
 + FF3k FF3k+3 = ^ 3 f c + l ^ 3 * + -

which are probably the ones the proposer had in mind. 

Also solved by P. Bruckman and the proposer. 
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Squared Magic 

H-455 Proposed by T. V. Padma Kumar, Trivandrum, South India 
(Vol. 29, no. 3, August 1991) 

Characterize, as completely as possible, all "Magic Squares" of the form 

al 

h 
°1 

<*1 

a 2 

b2 

°Z 

dz 

a3 

h 
C3 

*3 

aK 

K 
°h 
d, 

sub jec t to 
l . 

2 . 

3 . 

4 . 

5 . 

6. 

7 . 

8. 

9 . 

10. 

1 1 . 

12. 

13 . 

14. 

15 . 

16. 

17. 

18. 

19. 

t he following c o n s t r a i n t s 
Rows, columns, 
al 

°1 
a\ 
°Z 
a 3 
a2 

al 

h 
4 
4 
4 
4 
4 
4 
a\ 

ai 

+ ah 

+ ^ i 
+ a2 

+ e„ 
+ ak 

+ a 3 

+ *1 
+ cx 

+ a\ 

+ 4 
+ «5 
+ 4 
+ C | 

+ bi 
+ bi 
+ b2 

+ di 
+ c„ 
+ b1 

+ d3 

+ ^3 
+ d2 

+ 0 l 

+ dx 

+ <Z§ 

+ df 
+ 4 
+ a§ 

+ e | 

+ 4 

+ «i 
+ *3 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

• 
and d i a g o n a l s have 1 

dk = b2 + b3 

dh = a2 + a3 

b2 - &i + c2 

dh = cx + d2 

dh = bx + b2 

d3 = bl + °\ 
a2 + b2 + a3 

o2 + d2 + <̂ 3 

4 - 4 + 4 
d | - a | + 2>§ 

4 = 4 + 4 
4 + 4 + 1̂ 
4 + 4 + 4 
4 + 4 + 4 
4 + 4 + *g 
a \ + dl + o2 

ala2 + ^3^1+ + ^1^2 + ^3^4- = 

a l ^ l + C l ^ l + a2p2 + C2^2 * 

+ c 2 

+ b2 

+ dx 

+ a 3 

+ cx 

+ \ 

- * -
= a 2 

+ ** 

+ 4 
+ al 

+ H 
+ 4 
+ 4 
+ 4 
+ *3 

°\C2 
a-3bz 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

:he same 

°3 " 

*3 = 
d2 = 

K = 
a2 -

°k = 

c 3 + 
a 3 + 

4 
*l 
% 

%-

4 = 
4 = 
4 = 
ak -

°3°h 
a3d3 

al 
c2 

a3 
al 

h 
K 

°h 
ak 

M 

M 

M 

M 

h 
+ 

+ c 

sum 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

^ 1 
c 3 
ak 

a2 

b, 

d2 

h 

cl 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

ah + bh 

d2 + d3 

b3 + bh 

dx + d2 

°3 + °h 

d3 + o \ 

bk + oh 

a2 + d2 

ixd2 + dzdh 

2<A + c A 

Solution by Paul S. Bruckman, Edmonds, WA 

We first apply constraints 1-9 and 17? which are linear in nature. We find 
that these constraints are satisfied with 4 degrees of freedom, that is, with 4 
of the 16 unknown quantities still undetermined. We may choose any 4 of the 16 
quantities as arbitrary and determine the other 12 from these, so as to satisfy 
1-9 and 17. For example, if we leave a p a2, a 3, and bl as arbitrary, our magic 
square will look as follows: 

= 3Z/2 
= 3X/2 
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al 

hl 

2 ~ a 3 

1 & 
2 " a l 

a 2 

-a2-b1 

a\ + a 2 

+a 3 - f 

2 ~ a 2 

- a 3 + & i 

a 3 

- a 3 

2 " a l 

2 " ^ 1 

k- ai 

-a2-a3 

a2 + a3 

-bx 

2 _ a 2 

a\ + a2 

I t i s a tedious but t r i v i a l exe rc i se to ve r i fy t h a t the q u a n t i t i e s shown above 
s a t i s f y c o n s t r a i n t s 1-9 and 17, and a l so c o n s t r a i n t s 10-12, 18, and 19. As for 
c o n s t r a i n t s 13-16, we may a l so ve r i fy t ha t these are s a t i s f i e d by the above 
q u a n t i t i e s , provided the following s i ng l e condi t ion ho lds : 

(*) M = 2k2 - 2k(2al + 2a2 + a 3 + bx) + kb\ + 4Z?1(a1 - a 3 ) 

+ 4a 2 ( a 1 + a 3 ) + 4(a^ + a | + a | ) . 

The condition in (&) removes one additional degree of freedom, thereby leaving 
only 3 undetermined quantities, say a-,, a~, and a3. If we require that the 
magic square's entries be integers, this imposes additional constraints on the 
entries, subject to the Diophantine solutions of (*). If» in addition, we 
require that the entries be distinct, further restrictions apply. 

As may be shown, the corner entries of any 3 x 3 square contained within the 
large square must add up to k9 as well as the corner entries of the large 
square itself. Moreover, the entries of any 2'x 2 square contained within the 
large square must total k. 

An example which satisfies all 19 conditions (though not the condition that 
a0 = the entries be distinct) is the following, taking k 

3, and a? = 5: 
18, M. = 208, ax = 4, 

4 

2 

4 

8 

3 

9 

3 

3 

5 

1 

5 

7 

6 

6 

6 

0 

If we take k = 34, M 748, ax = 5, 11, a3 = 8, we obtain a "conventional" 
magic square (where all entries are integers; in fact, the integers from 1-16) 
There are many such magic squares possible; this is only one such: 

5 

16 

9 

4 

11 

2 

7 

14 

8 

13 

12 

1 

10 

3 

6 

15 

Also solved by the proposer. 
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