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CYCLIC BINARY STRINGS WITHOUT LONG RUNS OF LIKE
(ALTERNATING) BITS

W. Moser

McGill University, Montreal, Canada H3A2K6
(Submitted February 1991)

1. A binary n-bit cvclic string (briefly #-CS) is a sequence of # 0's and 1's (the bits), with the
first and last bits considered to be adjacent (i.e., the first bit follows the last bit). This condition is
visible when the string is displayed in a circle with one bit "capped”: the capped bit is the first bit
and reading clockwise we see the second bit, the third bit, and so on to the #h bit (the last bit). In
an n-CS, a subsequence of consecutive bits is a run. Motivated by a problem of genetic
information processing, Agur, Fraenkel, and Klein [1] derived formulas for the number of #-CSs
withno runs 0 0 0 nor 1 1 1 (i.e., all runs of like bits have length < 2) and for the number with no
runs 0 1 Onor 1 0 1 (i.e., all runs of alternating bits have length < 2). These are the cases w = 2 of

L_,,(n) = the number of n-CSs in which all runs of like bits have length <w
and _
A.,,(n) = the number of n-CSs in which all runs of alternating bits have length <w.

In this note we prove the

Theorem:
2", if1<n<w-1,
LSw(n) = .
F,m+D,(n), fnzw,
and
27, ifl<n<w-1,
ASW (n) = .
F,(m)+)"D,(n), fnzw,
where

E (0)y=w, F,(n)=2"-1, 1<n<w-],

(D
Em=F,n-)+F,(n-2)+--+F, (n-w), n>w,
and
) D.(n)= w, ifn>landw+1|n,
@ W)= ~1, ifn=1landw+1fn.
Furthermore,

(3) L., (n)~ A, (n)~ca”

where ¢ is a constant (which depends only on w) and

2—i< a<2—l.
2v A
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CYCLIC BINARY STRINGS WITHOUT LONG RUNS OF LIKE (ALTERNATING) BITS

2. Consider for any n-CS
X=XX,%5...%,, X;,=0,1
the n-CS
T(xX)=ywy---Yn, V= {% :?32 :i'fl’ i=12,...,n (x,=x,).

i-1>

>

For example,

7(001110010110001111) =101001011101001000
7(101100011101010111)=011010010011111100
7(110011001100100000) =101010101010110000

Thus, when passing over the bits of x, 7(x) records the changes (from 0 to 1 or from 1 to 0) by a
1, and records no change (from 0 to 0 or from 1to 1) by a 0.
Of course

I(x) =1(x),

where ¥ is the complementary n-CS

- _J1, ifx; =0,
X=Y V3o Vns Vi = 0, ifx, =1

However, for any two different #-CSs # and v, both with first bit 1, 7(u) # T(v). Indeed, T is bi-
jective between the set of 2" n-CSs with first bit 1 and the set of 2" n-CSs with an even
number of 1's. Thus, an #-CS x with first bit 1 corresponds to an n-CS 7(x) with an even number
of 1's, and then a run of w like bits in x corresponds to a run of w—1 0's in 7(x), while a run of w
alternating bits in x corresponds to a run of w—1 1's in 7(x).

Hence,

x is an n-CS with first bit 1 and all runs of like bits have length <w
if and only if
T'(x) is an n-CS with an even number of 1's and all runs of 0's have length <w —1,

so we have

L., (n)=2B;_(n), nx>1,
where

B; (n) = the number of n-CSs with an even number of 1's and all runs of 0's have length <w .
Also,
x is an #-CS with first bit 1 and all alternating runs have length <w

if and only if

T'(x) is an n-CS with an even number of 1's and all runs of 1's have length <w -1
— if and only if

T(x) is an n-CS with an even number of 0's and all runs of 0's have length <w —1
if and only if

1993] 3



CYCLIC BINARY STRINGS WITHOUT LONG RUNS OF LIKE (ALTERNATING) BITS

nis even, m) has an even number of 1's and
all runs of 0's have length <w —1
or
nis odd, f(\;) has an odd number of 1's and
all runs of 0's have length <w —1,
and we have

AS w (H) = {

2B;_((n), ifniseven,
2By ((n), ifnisodd,
where

B? (n) = the number of n-CSs with an odd number of 1's and all runs of 0's have length <w.
In terms of B, (n) = B, (n)+ B, (n) and C, (n) = B. (n) - B.(n),

(4) LSw(n) = Bw-l(") +C‘w—l(n)’ ASW(”) = Bw—l(’1)+(_l)ncvw—l(’7)a nz 1

e

In order to determine B (n), B, (n), and B, (n), we naturally investigate (for n>1, k >0,
w>1) (n: k), = the number of n-CSs with exactly £ 1's (n—k 0's) and all runs of 0's have length
<w. Clearly

®) n:0) 1, 1<n<w,
n: =
Y0, n>w+l,
and
(2) I<n<w+k,
© (k) =
0, 1<k, k(w+1)<n,
where

(,,)_ nl/kl(n—k)!, 0<k<n,
k)~ 0, 0<n<k.

Consider an n-CS counted in (n: k), n>w+2, k>2. If the first bit is 1 (i.e., capped bit is
i), and the last 1 is followed by exactly i 0's (0 <i <w), delete this last 1 and the / 0's which
follow it and then we have an (n—1-1)-CS with £k —1 1's, first bit 1, and every run of O's has
length <w. If the first bit is 0, and the first 1 is followed by i 0's (0 <i <w), delete this first 1 and
the 7 0's which follow it and we then have an (n—1-i)-CS with k — 1 1's, first bit 0, and every run
of 0's has length <w. Hence,

(7 nk),=m-1k-1), +(n-2:k-1),++(n-1-w k-1, k=22, n=>w+2,

Of course,

Bi(n)=Y (n:2k),, Bo(n)= > (n:2k-1y,.
k=0 k=1

4 |FEB.



CYCLIC BINARY STRINGS WITHOUT LONG RUNS OF LIKE (ALTERNATING) BITS

From (5), (6), and (7), we deduce that

2™t I<sn<w,
Bi(n)=42""-1, n=w+l,
By(n—-1)+B.(n—-2)+---+B,(n=1-w), n>w+2,

2 1<sns<w+l,
B (n)=<B,(n=1)+--+B,(n—1-w)+n-2(w+1), w+2<n<2w+1,
Bi(n=1)+B.(n=2)+--+B.(n—1-w), n=2w+2,

B, (n) = B, (n)+ B, (n)

2", n=12,...w,

_J2" -1, n=w+l,
B,(n=-1)+---+B,(n—-1-w)+n-2(w+1), w+2<n<2w+l,
B,(n-1)+B,(n-2)+---+B,(n-1-w), n=2w+2.

Furthermore, the numbers C,, (n) = B¢ (n) — B%(n) are seen to satisfy

0, 1<n<w,

-1, n=w+l,
C,(n)=3w+1, n=w+2,

-1 w+3<n<2w+l1,

~{t’w(n—1)+Cw(n—2)+---+Cw(n—1—w)}, n>2w+2,

that s,
0, 1<n<w,
C,(m)y=3w+1, n2w+1, w+2|n,
-1, n>w+1l, w+2/n.

Now it is easy to verify that
Bw—l(n) = Fw(n)> nz w, 'Cw—-l(n) = Dw(”)) nz w,

where F, (n) and D, (n) are defined by (1) and (2), and this with (4) completes the first part of
the Theorem.

It is well known that any sequence {Hw (n)}n=0 which satisfies
H,(m=H,(n-1)+H, (n-2)+---+H, (n-w), nzw,
can be written

H,(n)= Zc,.af, n=0,12,..,
i=1

where &, = &, (i=1,2,...,w) are the roots of
®) ¥ =zt g2
and the ¢, =c™, (i=1,2,...,w) are determined by the w equations

n n n
qaj +co+---+c,a, =H, (n), n=0,1,...,.w-1.

1993] 5



CYCLIC BINARY STRINGS WITHOUT LONG RUNS OF LIKE (ALTERNATING) BITS

This depends on the fact that «,, ,,..., @, are distinct. This fact is easily proved: multiply (8) by

x—1to get x"*' —2x" +1 which has no multiple roots because it has no roots in common with its
derivative.

Cappocelli and Cull [2] have shown that exactly one of the roots of (8) is real and positive,
say a = «a,, and it satisfies

2 1
9 2-—<a<2-——,
) X X
while all the other roots satisfy

1
—<|a, <1, 1=2,3,...,w.
<l
It follows that H, (n) ~ ca”. This leads to
1+J§)n

2

L, (n) ~ Ay (n) ~ (

and for w>2, L_ (n)~ A, (n)~ca",where c is a constant (which depends only on w) and «
satisfies (9).

The following tables show F, (n), D, (n), L., (n), and 4., (n) forw =2,3,4.

n 0 1 23 4 5 6 7 8 9 10 11 12 13 14
F(mn 2 1 3 4 11 18 29 47 76 123 199 322 521 843
D, (n) -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -l
6
2

L., (n) 2 2 10 20 28 46 78 122 198 324 520 842
A, (n) 2 4 6 12 20 30 46 74 122 200 324 522 842

no 1 2 3 4 5 6 7 8 9 10 11 12 13
F(m) 3 1 3 7 11 21 39 71 131 241 443 815 1499 2757
D, (n) -1 -1 -1 3 -1 -1 -1 3 -1 -1 -l 30 -l
L.,(n) 2 4 6 14 20 38 70 134 240 442 814 1502 2756
A (n) 2 14 22 38 72 134 242 442 816 1502 2578

2 3 4 5 6 7 8 9 10 11 12 13

n 1
F(n) 4 1 3 7 15 26 51 99 191 367 708 1365 2631 5071
1

D,(n) -1 -1 -1 -1 4 -1 -1 -1 -1 4 -1 -1 -l
L., (n) 2 4 8 14 30 50 98 190 366 712 1364 2630 5070
A, (n) 2 4 8 14 22 50 100 190 368 712 1366 2630 5072

REFERENCES

1. Z. Agur, A S. Fraenkl, & S. T. Klein. "The Number of Fixed Points of the Majority Rule."
Discrete Math. 70 (1988):295-302.

2. R. M. Capocelli & P. Cull. "Generalized Fibonacci Numbers Are Rounded Powers." In

Applications of Fibonacci Numbers, ed. G. E. Bergum et al., pp. 57-62. Kluwer Academic
Publishers, 1990.

AMS Classification Number: 05A05

e «% %
EXEXE XS



COMPLEX FIBONACCI AND LUCAS NUMBERS, CONTINUED
FRACTIONS, AND THE SQUARE ROOT OF
THE GOLDEN RATIO

I. J. Good

Virginia Polytechnic Institute & State University, Blacksburg, VA 24061
(Submitted February 1991)

1. INTRODUCTION

The golden ratio ¢ = (\/g +1)/2 is mathematically ancient (see [3] for example), while both ¢
and its square root are of historical architectural significance,! and are therefore points of contact
between the "two cultures." (Compare the cultural and historical approach to the theory of
numbers in [12].) It is pleasing that ¢ and V¢ have a further relationship in terms of continued
fractions. The formula

(1) ¢:1+L L

I+ 1+
is very familiar and it will be proved below that

()  V+2i=Jp+ilJp=1+i+ ! ! 1

242i+ 242+ 242+

where 7 =4/—1. A similar result is

3) m=%(\/§+2)”2+%i(x/§—2)”2:%(1+i)+ 1 S

1+i+ 1+4+i+

IThe golden ratio, or as Kepler, following Luca Pacioli [11], called it, the "divine proportion," and also its
square root, are related to two of the most famous buildings of all time, the Parthenon at Athens and the Great
Pyramid, respectively.

The golden rectangle is exemplified by the face of the Parthenon ([7, pp. 62 and 63]; [13, p. 139]). The
Parthenon was built only about half a century after the death of Pythagoras so the choice of ¢, if it was deliberate,
might well have been influenced by the Pythagorean philosophy, for ¢ occurs conspicuously in the theory of the
pentagram, which was the badge of the Pythagoreans [7, p. 28].

Reference [4, p. 162], refers to the "perfect phi pyramid" whose square base is 2 by 2 units, the length of the
apothem (the segment from the apex to the midpoint of a side of the base) is ¢, and the height is \/7¢ Gardner says
"Herodotus [the 'father of history'] was the first to suggest (c. 500 B.c.) that the area of the face of the Great
Pyramid [of King Khufu (also called Cheops) at al-Jiza (Giza)] is equal to the square of the pyramid's height."
This is another way of suggesting that the Great Pyramid is a perfect phi pyramid. But Gardner has now informed
me that Fischler (1991), in a forthcoming article, has argued that the source of the alleged interpretation of
Herodotus's wording goes back only to 1859. Herodotus's wording was seemingly incorrect. Nevertheless,
according to [8] the measurements of the base are, in feet, 755.43, 756.08, 755.08, and 755.77, with an average of
755.59, while the height is 481.4 feet, so the ratio of the height to half the base is close to 1.274, whereas V¢ =
1.2720. The deviation from the perfect phi pyramid is much too small to be discernible by eye and small enough to
be due to erosion. The Egyptian architect, two thousand years before Herodotus was born, might well have aimed
at a perfect phi pyramid. Maybe the architect's plans will eventually be found entombed with his mummy.
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COMPLEX FIBONACCI AND LUCAS NUMBERS

The left sides of (3) can also be expressed as

1 . .
(a) 5{(1+1)\/E+(1—z)/\/$}.
We will see, in a corollary to Theorem 3, that there is another close relationship between (2) and

3).
Some related "complex Fibonacci and Lucas numbers” will be investigated.2
A condensed version of this work was published in [5].

2. PROOFS OF THE CONTINUED FRACTIONS

To prove (1)-(3), and similar results, we can make use of the following special case of a
theorem given, for example, by [6, p. 146].

The numerator p, and denominator g, of the nth convergent (n= 1, 2, 3, ...) of

4 At —

are given by

(5) pn :Fn+2) qn = E1+1

where

(6) F,o=(x"=y")/(x-y)
and

% x:%(AwL\/AZ +4), y=—;—(A~\/A2 +4),

which are the roots of x> — A4x —1=0. Of course xy = —1.

Reference [6] assumes that A is an integer. But everything in the (inductive) proof of the
theorem in [6] is also applicable if 4 is any nonzero real or complex number and, in particular,
when 4 = a+ib where a and b are integers, that is, when A4 is a Gaussian integer.

It follows from the theorem that the infinite continued fraction (4) is equal to x if |x|>|y| and
to y if |y|>|x|. If 4 is a positive integer, as in (1), then |x|>|y| and the continued fraction
converges to x. The convergence is fast when |y / x| is small.

For the sake of simplicity, let us consider the special case where A =a+ia where a is a
positive integer. Then

(8) x :%{a+ia+\/4+2ia2 }, y:%{a+ia—v4+2ia2 }, xy =—1,

2Complex continued fractions can be used to solve problems in the theory of Gaussian integers similar to
those solved for integers by using ordinary continued fractions. For example, one can solve a complex form of
Pell's equation at least sometimes. This is shown, among other things, in my Technical Report 91-2 which,
however, contains several incomplete proofs and conjectures.

8 [FEB.



COMPLEX FIBONACCI AND LUCAS NUMBERS

where \ denotes the complex square root with positive real part. By means of de Moivre's
theorem (anticipated by Roger Cotes), and some trigonometry, we infer that

2x=a+ia+{(m+2)l/2 +,'(\/4+7—2)1/2}
©)
2y=a+ia—{(m+2)l/z +i(m_2)m}

(Note the checks that xy = —1 and (x - y)* = 4+2ia®.) It is straightforward to show that |x| > |y
by calculating [2x[* —|2y*. Therefore,

P :
(10) %(\/4+a4 +2)12+é<\/4+a4—2)1/2;—(a+ia)+ ! 1

a+ia+ a+ia+ '

Equations (2) and (3) are the special casesa=2 and a = 1.

3. COMPLEX AND GAUSSIAN FIBONACCI AND LUCAS NUMBERS

Let us write

an R =T L =& (&2 En=-D)
]

where #n is any integer (not necessarily positive) and £ and 77 might be complex (in which case we

can think of F;, and L, , as complex Fibonacci and Lucas numbers). Note that

Fy = (~1)”“F§’n, Ley=(1"Lg,.

The ordinary Fibonacci and Lucas numbers are F, = F,,, and L, = L ,.

Theorem 1: The sequences {f,} and {L;,} (n=----2,-1,0,1,2,...) satisfy the recurrence
relations

(12) Fep =S+ mFy, +Fp

and

(13) Lﬁ,n+1 = (§+ U)Lg,n +L§,n—l'
The proofs are left to the reader.

Vajda [13, pp. 176-84] lists 117 identities satisfied by the ordinary Fibonacci and Lucas
numbers. Most of these identities apply equally to /7, and L, and can be readily proved straight
from the definitions (11).

Theorem 2: A necessary and sufficient condition for F, and L,, to be Gaussian (or natural)
integers for all » is that £+ 77 should be a Gaussian integer (or a natural integer, respectively).

Proof: That the condition is necessary is obvious because £+ 7= L., = F,,. That the condition
is also sufficient follows inductively, both for positive and negative n, from the recurrence
relations (12) and (13) because F;O, Fey, L;o, and L;I are Gaussian integers, namely, 0, 1, 2,

1993] 9



COMPLEX FIBONACCI AND LUCAS NUMBERS

and £+ 7, respectively, and because the recurrence relations (12) and (13) work backwards as
well as forwards. :

In this paper we will be mainly concerned with the case in which £+ n=a+ia where ais a
positive integer, especially the cases a = 1 and a = 2 with which we began in the Introduction.
Then £=x and 7=y where x and y are defined by equations (8) or (9). We write F , = F9
and L, = I, but when a is held fixed in some context we usually abbreviate the notations to
F, and L, We call £ and I Gaussian Fibonacci and Lucas numbers. Also we write
F, = f +if) and L, = ¢, +il’, to show the real and imaginary parts Some numerical values are
listed in Tables 1 and 2 for the cases a = 1 and a = 2. These tables can be generated from the
recurrence relations

(14)  F=0, F, =1, F,,=(a+ia)F,

n n+l

+F,
and

(15) Ly=2, Ly=a+ia, L, ,=(a+ia)L

w1+ Ly
where 7 is any integer, positive, negative, or zero.

Greater generality would be possible by writing (a +ib)F,,, +(c +id)F, on the right of (14)
where a, b, ¢, and d are integers [and similarly for (15)], but simplicity is also a virtue, and there is
plenty to say about the special case of ¥ and .

Individual values of F, and L,. can be computed from the formulas

rneinf}—iy/ - r—le—m(9+7r)—n//

(16)  F = T ,and L, =r"e" +r e O
\/5(4 +a4)
where
12
2r :[(a+ 7)? +(a+5)2] ,
a+o
6= arctan , w=arctan(d/y),
aty
where

y=(B+2)"2, 5:('3_2)1/2’ B=(4+a*)"2.

The notations r, 8, w, 5, 7, & are provisional and are introduced here only to simplify the
printing of the formulas for /, and L,. and to make them easier to program. (I used a hand-held
calculator, an HP15C.) In spite of the heirarchy of square roots, F, and L,. are, of course, Gaus-
sian integers, a fact that acts as an excellent check on computer programs. ' ' ‘

The tables can be used for checking and guessing various properties of the Gaussian
Fibonacci and Lucas numbers. In this section I give a small selection of the most easily proved
properties. '

The first few properties resemble formulas (10.14.16)—(10.14.9) of [6] and are almost as easy
to prove as in the real case if one holds in mind that xy = —1 and, for (19) and (21), that
(x—y)* =4+2ia>. We have

10 '[FEB.
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(7)  2F,,,=F,L,+F,L,,

and in particular,

18) B, =FL,

(19) I} —(4+2ia*)F? =(-1)"4,

(20)  F2=F, Fppy=(-D"",

Q0k)  E}-Fyy k= (D)™ F7,

Q1) I2-L, L, =(-1)"(4+2ia%).

Two similar formulas (see [13, formulas (11) and (17c)]), convenient for "leaping ahead," are
(22) By = By +

and
(23) L, =L2+(-1)""2.

A couple of results, corresponding to Theorem 179 of [6], and which readily follow inductively
from the recurrence relations (14) and (15), are

(24) (Fn’ Fn+1) = 1> (Ln’ Ln—l) = (2: Cl),

meaning, for example, that F, and F,,
and, for all » and n,

@5  ElE,

have no common factor other than the units +1 and +i;

(meaning that F, "divides" F,,). But the proof of (25) given by [6] for ordinary Fibonacci
numbers does not extend so easily as for (17)—(24). Instead, the proof in [13, pp. 66 and 67]
extends immediately, and has the merit of expressing F,, /F, explicitly in terms of Lucas numbers,
in fact as a linear combination. For example,

(26) Py, [F, =Ly, +(-1)", F,/F, =L, +(-1)" L, +1.

Several surprising formulas can be obtained by the methods of [1]. For example,

@n S+ iililioyii 2
kK F K a+ia
and
(28) ..l.l+.l_’3_+£+...:—y.
3 9 F‘27
4. A RELATIONSHIP BETWEEN THE SEQUENCES {L"} AND {L?}
Theorem 3:

(29) I[P = i”@ for all n,

where the vinculum indicates complex conjugacy.

1993] ' 1
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Proof: (29) is true when n =0, and when n = 1, because
ng) =2 while L%l) =2
[P =2+2i, IO =(1+i)* +2=2+2i, i [ =2+2i = [P

So an inductive proof will follow if we can show that the sequences {Lflz)} and {K,} satisfy the
same recurrence relation, where K, =i Ll) by definition

The recurrence relation satisfied by L(n ) is, of course,

2 : 2 2
12 =2 +2i) [P+ [P,

n+1

To obtain the recurrence relation satisfied by {K,, }, note first that

Lg,m+2 = L§,2L§,m - L:,m—z

which follows readily from (11). It is stated in [13, formula (17a)] for ordinary Lucas numbers,
but it is equally clear for complex Lucas numbers and, in particular, for Gaussian numbers. On
putting m = 2n we get, again in particular,

1= 1)~ 19, = Q201D - 19,
Therefore,
9, =2-2)I0 -1,

Multiply by i"*! to get
Kn+1 = 1(2 - 21)Kn - ian—l
=(2+20)K,+K,
so the sequence{K, } does satisfy the same recurrence relation as {Lf)} as required.

A more direct but slightly messy proof can be obtained from equation (8). Note that L(nza) #
i” L(Z"n) unless a = 1.

Corollary to Theorem 3:

2
. . 1
(30) 1[1n1+ ! ] =2+2i+ ! !

1—i+ 1-i+ 242i+ 2+42i+
Proof: From the theorem, we have
TN

Now, in the theorem at the start of Section 2, take 4 = 2 + 2i [when x is given by (9) with a = 2]
Then the continued fraction (4) equals

lim (p,/q,)=lim(x"? - y™*)/ (x™" - y") = x (because |x|>|y|)
n—»©
"y (X" +y™) =lim L2,/ 1P

= lim (x )

so the right side of (31) tends to that of (30). Again, in (4), take 4 = 1 + i to find that

12 [FEB.
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; 1 1 Dy _1; 1 1
T4 ce=lim(LY, /L7y =1lim (18, 1 ID).
Therefore,
2 1 1 1
RN E W [ N
1+i+ 1+i+ L rd, P
and hence,
2
1ot 1 R ON0)
i\ 1-i+ el =lmiL), /LY,
1+i+ 1+i+ "

so the left side of (31) tends to that of (30) and this completes the proof.

Equation (30) was discovered by the method shown above. A less interesting proof can be
obtained from (2) and (3) or (3a).

5. CONGRUENCE PROPERTIES

Hardy & Wright [6, p. 149] prove that every ordinary (rational) prime divides some ordinary
Fibonacci number (and therefore an infinity of them). To prove similar results we need to recall
that a prime Gaussian integer a+if8 (with afi# 0) can be defined by the property that o + 4> is
either 2 or an ordinary prime congruent to 1 modulo 4. For any such ordinary prime p, the
corresponding Gaussian prime is unique up to conjugacy or multiplication by a unit (a power of 7).
This beautiful and famous theorem is proved, for example, in [10, p. 128]. Denote one of the
Gaussian primes that corresponds to p by p; and its complex conjugate by p;. Then, of course,

(32) PcPc = P-

Using this notation we have the following divisibility result, the proof being an elaboration of that
of Theorem 180 in [6].

Definition: We call a number pure if it is either purely real or purely imaginary.

Theorem 4: Let a be fixed and let p=1 (mod 4) be a rational prime, not a factor of 4+a*.
Then,

(33) () F.=1(modp);
(This, of course, makes an assertion about both the real and imaginary parts of F ;_)

(34) (i) £, is pure, modulo p;
4
(S) (i) |F,P= (4“’ }: i1
P
(the Legendre symbol is not 0 because p does not divide 4 +a*);

(36)  (iv) pdivides [F, [ or|F,,[* orboth;

37) (v)  pg (and pg) divides either F,_; or F*,,; but not both apart from the uninteresting
case in which p divides a.
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Thus every Gaussian prime divides some Gaussian Fibonacci number [and therefore, by (25), an

infinity of them)].

(vi) For n>2 wehavel, =2 (mod2").

(vii) For n>2 we have F,, =2 (mod2")

Before proving this theorem, let us look at some numerical examples deduced from Tables 1
and 2 combined with formulas (18), (22), and (23). These examples are shown in Table 3. Note,
for example, that this table confirms Part (iii) of the theorem in that 4 +1* and 4 +2* are squares
(quadratic residues) inodulo 29 but not modulo 13, 17, or 37.

TABLE 1. Values of F, andL, whena =1

Fo=f,+if) L,={,+¢,
I R L , ’,
-1 I 0 -1 -1]16 1728 1520 2818 3968
0 0 0o 2 017 1513 3608 1361 8161
1 1 0 1 1]18 367 6641 ~3982 13,490
2 1 1 2 2|19 ~5495 9882 ~16,111 17,669
3 1 2 1 5120  —15,744 11,028 37,762 15,048
4 0 4 -2 8|21  -32,267 5166 68,921 —5045
5 -3 6 -9 11|22  -53,177 -16,073 -101,638  —58,918
6 -9 7 22 10|23  -69,371 —64,084 -111,641  —165,601
7 -19 4 41 1|24  -58,464 -149,528  —47,678  —336,160
8 32 -8 -62 -3225 21,693  -272,076 176,841  —549,439
9 -43 36 -71 -95|26 235,305 -399,911 678,602  -708,758
10 -39 -87 -38 —-198 |27 656,909 -436,682 1,564,201 579,595
11 5 -162 89 -331|28 1,328,896 179,684 2,822,398 275848
12 128 -244 382 -440 |29 2,165,489 712,530 4,110,751 2,518,651
13 377 278 911 -380 |30 2,781,855 2,698,335 4,414,498 6,905,250
14 783 -145 1682 82|31 2,249,009 6,192,720 1,619,999 13,838,399
15 1305 360 2511 137532 -1,161,856 11,140,064 -7,803,902 22,363,648

14
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TABLE 2. Values of F,, and L, whena =2

Fo=fu+if,  L,=L,+il),

n f,  fi 4, 4]~ /, 7! ‘, ‘
-1 1 0 ) 2110 13,386 -2358 37,762 15,048
0 0 0 2 011 34,625 18,552 58,918 101,638
1 1 0 2 12 45,532 103,996  —47,678 336,160
2 2 2 2 8|13 ~82,303 317,608  —708,758 678,602
3 1 8 10 22|14 —754,290 574,606 -2,822,398 275,848
4 -12 20 -62 32|15 2,740,095 ~41,760 —6,905,250 —4,414,498
5 63 24 198  -38|16 -6,150,960 —4,989,104 -7,803,902 -22,363,648
6 —186  —58 382 440 |17 -5063,807 -22,321,888 22,214,242 —64,749,598
7 -319 -464  -82 -1682|18 28,365,202 59,760,494

8 104 -1624 2818 -3968

9 3137 3504 13,490 —3982 |20 540,965316 112,389,732

TABLE 3(i), 2 = 1. Values modulo p

r K sz |Fp|2 Fo Fpn
13 -5 1 -1 ~2+3i 3-2i
17 4 1 -1 @G+@d+i) (@G-i)(1+4)
29 1 1 1 0 1+i
37 -6 1 -1 (2i-3)(1+6i) (4+3i)(1-6i)

TABLE 3(ii), a = 2. Values moduloe p

p Fp Fp2 IFP|2 Fp~1 Fp+1

13 5 1 -1 3(2+3i) -2(2-13i)
17 -4 1 -1 —3(1+4i) (1+i)(1-4i)
29 1 1 1 0 2(1+i)
37 61 1 -1 3(-13+14)(1+6i) 1-6i

Proof of Theorem 4: From (7), where A = a+ia, we have (by the binomial theorem)
-l _Apl 2 12
2P F, =277 (xP —yP) /(A7 +4)

:pA¢4+(§JAP4(A2+4)+(§)A””(A2+4f+~~+(A2+4f¢””

= (4% +4)P™Y'2 (mod p) since p is prime.
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Therefore,
F,= (A% +4)P"Y"? (mod p) (by Fermat's theorem, not the "last" but not least)

=4+ 2ia2)(P_l)/2 = o(p-/2 2 +ig? )(p—l)/2.
Therefore,
(38)  F;=2""(2+ia*)" = (2+ia’)"™ (mod p).
and
2
(39) le‘ =2P1 (4 +a4)(P_1)/2 = (4 +a4)(p-—l)/2 (mod p))

again by Fermat's theorem. Part (iii) of the theorem now follows from (39) combined with
Theorem 83 of [6].
From (38) we obtain
2 +ia2)Fp2 = (2+ia*)?
=2% +ifa*” (again by the binomial theorem )
=2+ia’ [because p =1 (mod 4) and is prime].
But (4+a", p) =1 and therefore (2 +ia’, p)=1. Hence, F, =1(mod p), which is Part (i) of the
theorem.

To prove Part (ii), assume that /', = a+iff(mod p). Thus Fp2 = o - +2iaf But sz =1
and is therefore real, so @f=0. Thus a=0 or #=0so0 F, is pure (mod p).

Part (i) combined with (20) shows that F_,F,; =0 (mod p). Since p is not a Gaussian
prime, it does not follow that p divides either F,_, or F-,,;, but Part (v) does follow because we
must have F,_F ., =0 (mod p; and also mod pg). [The recurrence relation (14), together with
Part (i), shows that p; cannot divide both F,, and F,,, when p does not divide a. But
sometimes both p; and p; divide F,_;, or perhaps both divide F,,;, and then p divides either
F, ,or I, but not both.] Then Part (iv) follows from Part (v).

P
To prove Part (vi), note that

L, =4(1-a* +2ia*)-2=-2 (mod4) =2 (mod4),

and the result then follows by induction from formula (23).
To prove Part (vii), we have

F, =2a[(1-a*)+(1+a*)]=0 (mod 4)
whether a is even or odd. Then the result follows by induction from (18) combined with Part (vi).

Lemma: For any integer n, L,, is of the form 2s+2# and L,, ., is of the form a*ai+2au+2avi
where s, f, u, and v are integers.

Proof: Note first that it is irrelevant whether we take the plus sign or the minus sign. Now
L,=2 and L, =a+ai, so we can “start” an inductive proof, and we can readily complete the
induction by means of the recurrence relation (15).
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Theorem 5: Let p be an odd (ordinary) prime. Then
(40) L,=a+ia (mod p) ?fp =1 (mod4)
L,=a-ia (mod p) if p=3 (mod4).
More informatively,
L,=a+ia (mod2ap) if p=1 (mod4)

(41) . .
L, =a-ia (mod2ap) if p=3 (mod4).

Proof: Wehave L, =x"+y", so
2771 L, = AP +(5_’)A”‘2(A2 +4) + - + pA(A* +4)PD2

Now 277" =1 (mod p), by Fermat's theorem, so

LP = AFf (mod p) = (a+ia)(2ia2)(p—1)/2
= (a+ia) *2‘ jPD2gp-1 (a+ia) ,2_ j(PD72
p p

again by Fermat's theorem. Formulas (40) are therefore proved if p divides a, so we shall now
assume that it does not. Now, by [6, p. 75], we have

[3) —1 ifp=+1 (mod8)
p
and equations (40) follow readily. But by the Lemma we have L, -a¥ia= M(2a) and (41)
follows at once because (2a,p)=1. [A= M () means A =0 (mod p).]
Corollary: (i) If p is an odd prime, then
(42)  |L,[=2a* (mod p).
(1) If p is an odd prime and a is not a multiple of p, then |L,, [ /(2a®) is an integer and

is congruent to 1 modulo p.
Proof: From (41), L, is of the form a +ai+2ap(s +it) where s and 7 are integers. Hence

|Z, ? = (a+2aps)* + (a+2apt)*

=2a*(1+2ps+2pt +2p*s* +2p*1?)

and the Corollary follows at once.

Comment: If p is an odd number and fails to satisfy any of the conclusions in Theorems 4 and 5,
then p is composite, and if it does satisfy the theorems it can perhaps be described as "probably"
prime or at least as a new kind of "pseudoprime." For example, L, # atia (modn) for any
composite # shown in Table 1 or 2.

Theorem 5 and its corollary are analogous to the theorem that the ordinary Lucas number
L,,=1(mod p); see, for example, [13, p. 80], where it is mentioned, with a reference, that
L4705 =1 (mod 705) although 705 is composite. So the converse of our Theorem 5 is probably
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false. Anyway, the converse would be too good to be true. It would be interesting to know
whether any parts of Theorems 4 and 5 have "modified converses."

Theorem 6: Every Gaussian number G = g+ig’ (not just the Gaussian primes) divides some
Gaussian Fibonacci number (apart from F)). (We are still regarding a as fixed. )

Proof: The sequence of Gaussian Fibonacci numbers (mod G) must be periodic with perlod no
more than (gg’)* ~1. This follows by the argument given, for example in [13, p. 88] with a
minor modification to allow for the complexity of G. But 0 is one of the Fibonacci numbers, and
is divisible by G, and the result follows.

We next prove two congruence relatlons needed i in Section 6 “The first part sharpens Part
(vi) of Theorem 4.

Theorem 7: (i) L, =2 (mod2"?) when n>3, forall a.
(i) L, =2 (mod 2"%) when n>3, while 1<a<5.

[Part (i) can probably be sharpened, for example, nglz) =2 (mod 512) whlle Part (i1) might be
true for all values of a.]

Proof: We have

L, =(a+ia)L, + L, =2 +2ia*
so, by (23),

L,=12-2=2-4a"+8ia’ = (-1)"2 (mod8).
Therefore, again by (23),

Ly=L1:~1=[M(@8)+(-1)"2] -2=2 (mod32).
Therefore,

L =1:~2=[M(32)+2] -2=2 (mod 64),

and so on, inductively, giving Part (3).

To prove Part (ii), note first that it is true for n =3 and for n =4 as we can see fora=1 or 2
from Tables 1 and 2 and by calculations, not shown here, for a = 3, 4, and 5. We complete the
proof inductively by noting first that

L§,2m+l = Lf,mLf,m+1 - (_1)’"(5_{, T]) (m = O> l, 2: ) »
as follows easily from (11). On putting £=x and m = 2" we infer that
L2,,+1 =Lpi L, —(a+ia) (n2 2)
=2L,.  —(a+ia) (mod 2! 1> 4) [by Part (1)]
=2[M 2" +a+ial-(a+ia) (mod2™ n>4)
(by the inductive hypothesis)
=a+ia (mod2",n>4)

and this completes the inductive proof.
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6. A PERIODICITY PROPERTY

Periodicity properties, modulo a given integer, of ordinary Fibonacci and Lucas sequences,
are surveyed by Vajda [13, Chapter viI]. Our final theorem reveals a very simple periodicity of
the Gaussian Lucas sequences at least when a < 6.

Theorem 8: For 1<a <35, the period of the sequence ... L_,, L, L,, L, L,,... (mod2" n>3)
is a power of 2 not exceeding 2".

In view of the recurrence relation, in order to prove that 2" is a period it is sufficient to prove
that ,, =L . for two consecutive values of m. By Theorem 7 this is achieved by taking m = 0
andm=1. :

The period (that is, the shortest period) must divide any known period and must therefore be
a power of 2. There seems to be a 'tendency' for the period to be 2", for example, when a =1 or
3 the periods modulo 8, 16, and 32 are, respectively, also 8, 16, and 32. But, when a = 2, the
period modulo 32 is only 8.

7. LOOSE ENDS

There are many loose ends in this work. For example, we wondered whether Part (i) of
Theorem 7 is true for all values of a, in which case the same is true for Theorem 8. As another
example, if p=1 (mod4) and p>5, is |1‘7((;_)1)/2 [* always congruent to 0 or +1 modulo p? I have
verified this for @ =1 and 2 and p < 113, and for a =3, p < 61. Note that [L{) /2, where p is an
odd prime, has a tendency to avoid having small factors, where the meaning of small increases
when p increases. The values for p =3, 5, 7, 11, 13, 17, and 19 are, respectively, 13, 101, 292,
58741 (prime), 53 x 9257, 34227121, and 185878941. Neither of the last two numbers has a fac-
tor less than 100. (Both are beyond the scope of [9].) It seems reasonable to conjecture that
when the prime p — o and a# M(p), then the smallest factor of |L(;) f /(2a*) (which is an
integer by the corollary of Theorem 5) also tends to infinity. The analogous property might be
true also for the ordinary Lucas numbers L ,. It is possibly significant that 29 divides |,
29° divides | E® >, and 897 divides L.

How much of the theory goes through if a +ia is replaced by a +ib throughout?

But the most interesting question is: Under what conditions is a "pseudoprime" a prime?
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1. INTRODUCTION

We are all familiar with the traditional presentation of the Fibonacci sequence in classes
designed for liberal arts majors. We "wow" the students with pinecones and pineapples! We talk
to them about the wondrous "appearance" of Fibonacci numbers in their world. But can we use
Fibonacci to bring these students into our world?

Is it possible for liberal arts majors to appreciate mathematics—apart from applications of the
subject in art, nature, and other areas? Can we develop courses that instill in students a sense of
excitement about making connections in mathematics, given the attitudes toward our subject that
many of them bring to class? As Lynn Arthur Steen says: "For students in the arts and human-
ities, mathematics is an invisible culture—feared, avoided, and consequently misunderstood" (3).

Designing requisite! mathematics courses for liberal arts students is difficult. In attempting to
give them a sense of mathematics, we often resort to overstressing its utility—reaching for areas
outside of mathematics to validate the study of the subject. Or we assemble what appears to the
students a collection of disjoint topics—offering little motivation for them to search for connec-
tions.

The challenge is to draw the students into mathematics—generating in them an excitement
about making mathematical connections and an appreciation of fundamental interrelationships
between topics. I believe I have met this challenge by introducing Fibonacci via Pythagoras, and I
want to share the experience!?

2. RATIONALE

Mathematics builds upon itself in a way that other sciences do not. Even topics developed in
antiquity continue to be relevant today to mathematical growth—knowledge gives rise to new
knowledge; problems generate new problems. One objective in teaching mathematical concepts is
to give students a sense of how these ideas fit into the edifice we call mathematics. Examination
of connections between mathematical topics is one way to achieve this goal.

The connection between Fibonacci numbers and Pythagorean triples is well known (cf. [6],
[16], [17]). But this connection is not frequently used to infroduce Fibonacci numbers. I propose
a classroom lesson that involves students working with a familiar topic (Pythagorean triples) prior
to connecting it to an unfamiliar one (Fibonacci numbers). In my experience, the preliminary
work with triples motivates a discussion of this connection, and stimulates students to want to

In 1983, the largest public university system in the country—the California State University
System—established a mathematics course as a graduation requirement for all students at any of its nincteen
campuses.

2The appendix includes an annotated list of books, journal articles, and videotapes that I used as resources for
classroom discussion and projects. All numbers in brackets [ ] refer to the resources listed in this appendix.
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learn more about the Fibonacci numbers. Perhaps more importantly, it creates in the students a
genuine excitement about making mathematical connections.

As an alternative to what is perhaps a traditional introduction to the Fibonacci numbers based
on their "surprise" applications in nature—breeding rabbits, patterns in pinecones and pineapples,
etc. (cf. [9], [12], [19]), my presentation enables students to experience this kind of "surprise" in
connecting mathematical areas. The classroom experience begins with discussion of problems
inspired by Pythagorean triples incorporating assignments and activities generating Pythagorean
triples; then follows with an examination of connections between the products of Fibonacci and
Pythagoras and an investigation of the historical and present-day significance of the Fibonacci
numbers. This approach conforms to the goals expressed by Alvin White (1985) in his article
"Beyond Behavioral Objectives":

.. our guidelines and teaching objectives should not have as their major target or focus the
mastery of facts and techniques. Rather the facts and techniques should be the skeletal
framework which supports our objective of imbuing our students with the spirit of

mathematics and a sense of excitement about the historical development and the creative
process. (3, p. 850)

3. CLASSROOM LESSONS
A. Pythagorean Triples

I begin by proposing that Pythagorean triples give evidence of how problems generate new
problems in mathematics. The students are amazed to discover that such integers were known in
ancient civilizations 1200 years before Pythagoras. I try to give them a sense that what perhaps is
more exciting is that these triples have inspired interesting problems in mathematics since the time
of Pythagoras. My students learn, by perusing the list of resources, that the generation of
Pythagorean triples is a topic that still fascinates some contemporary mathematicians (cf. [2], [5],
[6], [10], [11], [14], [16], [17], [20], [22], [23]).

I challenge the students to work in groups to discover common characteristics of
Pythagorean triples with the goal of finding a generating form for them. I begin by asking the
students to create triples, after we list the ones known to them. This induces a discussion of
multiples of triples and a conjecture that multiples of triples are triples, motivating the need for a
proof that this is indeed so. I form the class into small groups (four to five students per group)
and ask them to form conjectures about characteristics of primitive Pythagorean triples [we had
read and discussed Polya’s heuristics for problem solving (1)]. The students work together,
observing patterns and making guesses. For example, by looking at (3, 4, 5), (5, 12, 13), and
(8,5, 17), (12, 35, 37), they make the following conjectures: only one number of the triple could
be even; when the smallest number of the triple is even, the difference between the two larger
numbers is two; when the smallest number of the triple is odd, the difference between the two
larger numbers is one; that five is a factor of some number of the triple; etc. Then, as a class, we
discuss each group’s conjectures, attempting to prove or disprove their hypotheses. Their
conjectures introduce many interesting class discussions about numbers and their relationships.
We explored, for example, questions of divisibility, prime factorization, what it means for integers
to be relatively prime, etc. After the students play with the Pythagorean triples and examine some
characteristics of these numbers, they are eager to find a systematic way to generate them:.
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Methods for obtaining Pythagorean triples cited in the Annotated List of Resources range
from simple to sophisticated. I refer to several so the students can get a sense of the range of
options (cf. [10], [14], [20], [23]). One they particularly like is Kalman’s method (cf. [20]) for
generating Pythagorean triples from proper fractions. Kalman starts with a right triangle with
angle A, such that tan 4 = a proper fraction, say p/q. He then constructs another right triangle
using 24 as one angle. Since tan24 =2tan A/ (1—tan> 4) =2pq/(g* — p*), the legs of the new
triangle can be labeled 2pq and (¢* — p*). Using the Pythagorean Theorem to determine the
length of the hypotenuse will produce an integer. This proves that Kalman’s procedure always
produces a Pythagorean triple when tan A is rational. With the “hands-on” experience of generat-
ing triples and the knowledge gained from exploring other attempts at generating triples using
familiar objects (like fractions), the students are ready to venture into unfamiliar territory.

B. Fibonacci Numbers

Since the students have an understanding of the difficulties involved in generating Pythago-
rean triples and a look at the diversity of methods for doing so, they are ready to learn about the
connection between the mathematical products of Fibonacci and Pythagoras. We read and
discuss several articles describing the use of Fibonacci numbers to produce Pythagorean triples
(cf. [6], [16], [17]). The students are intrigued with the connection. The discussion of Fibonacci
and Pythagoras provides a historical perspective and the use of Fibonacci’s numbers to generate
Pythagoras’ numbers illustrates how mathematics builds upon itself using newer techniques to re-
examine old problems.

The videotape The Theorem of Pythagoras (cf. [2]) shows dynamical versions of dissection
proofs of the Pythagorean theorem. For a classroom activity, I organize students into small
groups to "play with" a cardboard model of a dissection proof, asking them to assemble pre-cut
pieces to illustrate the proof. This gives them a sense of what is involved in a dissection proof. I
then follow with a classroom experiment based on the idea of dissection proof designed to show
the students that evidence is different from proof and to prepare the way for a Fibonacci connec-
tion. I ask the students to construct an 8 x 8 square and calculate the area of 64. Then I direct
them to dissect their model into a 5 x 13 figure as indicated:

3 5
\ 8 5
N\ B T
5 * 5 ~
c X\ S~ 4 i3
\\ 5 |\\ H C 5
: B 13 N
1 ~
31 D 4 13 ' D ~—
5 8
8
FIGURE 1

They quickly assume this figure is a rectangle, so when I ask them to calculate its area, they
compute an area of 65. This seems to "prove" that 64 (the area of the original square) is equal to
65 (the area of the rectangle formed form the dissected pieces of the square). Our investigation of
the new "rectangle" (via similar triangles) illustrates that the reconstructed figure is not truly a
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rectangle. This activity reinforces the necessity of rigorous proof in mathematics and alerts
students to the dangers of accepting visual evidence as proof.

The culmination of this lesson is reading and discussing the article “Fibonacci Sequences and
a Geometrical Paradox” (cf. [15]) in which Horadam shows how the Fibonacci numbers can be
used to describe the area that appears to be gained in rearranging the parts of the square to form a
rectangle. Using Horadam’s article as a guide, we again analyze our 5 x 13 rectangle rearranged
from the 8 x 8 square (Fig. 1). We observe that the one unit gain in area can be described by the
relationship 5x 138 =1, a particular example of connecting three successive Fibonacci numbers
(F,,F,.,, F,,) by the generalized formula F,F, —F, ., =(-1)"'". We then examine the
relationship by considering the two cases, discovering: 1) when 7 is odd (as in our Fig. 1), the
gain of one unit is the result of the appearance within the rectangle of a small parallelogram of
unit area; 2) when 7 is even, the loss of one unit occurs because the unit parallelogram overlaps
the dissected pieces. This gives the students visual evidence of how the Fibonacci numbers can be
used to explain their dissection experiment, and how the results of their experiment can be
expanded to include other cases. It is again, for them, yet another experience of utility within
mathematics—the use of one mathematical topic to explain or clarify another.

Now the students, appreciating the use of Fibonacci numbers within mathematics, are ready
to explore the many directions that Fibonacci numbers can inspire outside of mathematics
—describing natural phenomena, determining outcomes of games, providing economic solutions
for ecological problems, etc. (cf. List of Resources). Because the students were tuned in to the
idea of connections, these discussions and activities were more meaningful than they had ever
been in any previous classes I had taught.

4. CONCLUSION

My presentation of Fibonacci numbers via Pythagorean triples at the beginning of the course
helps students to see that mathematical concepts often interrelate. The success of this classroom
experiment lies in getting students to appreciate these interrelationships—enabling them to experi-
ence satisfaction in making mathematical connections. They learn to appreciate utility within
mathematics as well as exterior to it. This experience set the tone for the entire course. One
student wrote:

I never learned interesting things like this in high school algebra. This topic contributed the
most to my intellectual growth this semester, because it grabbed my attention, and allowed me
to be open to other new concepts that we would study throughout the semester. The Fibonacci

sequence opened the door to my mind, for it made me realize that math is going on all around
me, and that it’s important for me to understand why.

I encourage you to replicate this classroom experiment, and I welcome your reports about the

results.
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APPENDIX

ANNOTATED LIST OF RESOURCES

[1] Apostol, Tom. "The Pythagorean Theorem." In MATHEMATICS! California Institute of
Technology, 1988.

This is an award-winning 20-minute computer-animated videotape, with accompanying workbook, on
history, proofs, and applications of the theorem.

[2] Arpaia, P. J. "A Generating Property of Pythagorean Triples." Mathematics Magazine 44
(1971):26-27.
Based on the generating property of pairs of Pythagorean triples given by Courant and Robbins in
What Is Mathematics?, this note establishes a generating property of any Pythagorean triple.

[31 Basin, S. L. "Generalized Fibonacci Sequences and Squared Rectangles." American Math-
ematical Monthly 70 (1963):372-79.
The author shows how generalized Fibonacci numbers can be used to generate squared rectangles (the
problem of squaring a rectangle first appeared in the literature as a mathematical puzzle). The article
concludes with an application (a ladder-network in communications systemns) based on a model of the
squaring of a rectangle of order n. This article is difficult, but not inaccessible to liberal arts majors.

[4] Beran, Ladislav. "Schemes Generating the Fibonacci Sequence." Mathematical Gazette 70
(1986):38-40.
The author shows that a resistance equation can be written in terms of the Fibonacci sequence and
proves it by induction.

{5] Bergum, Gerald, & Yocom, Ken. "Tchebysheff Polynomials and Primitive Pythagorean
Triples.," In Two Year College Mathematics Readings, Washington, D.C: The Mathemati-
cal Association of America, 1981.
This note illustrates and proves how to produce primitive integer-sides of a right triangle with hypote-
nuse ¢” when the set of integers {a, b, ¢} is primitive.

[6] Boulger, William. "Pythagoras Meets Fibonacci." Mathematics Teacher 82.4 (1989):277-
81.
Boulger makes a nice connection between Fibonacci numbers and Pythagorean triples and proves it.
He also illustrates a relationship between Fibonacci numbers and the golden ratio.

[7] DeTemple, Duane. "A New Angle on the Geometry of the Fibonacci Numbers." Fibonacci
Quarterly 19.1 (1981):35-39.
The author gives a very nice geometric visualization of the Fibonacci sequence by representing the
Fibonacci numbers by gnomons (Pythagorean carpenter squares).

[8] Federico, P. J. "A Fibonacci Perfect Squared Square." American Mathematical Mownthly
71 (April 1964):404-06.
The author (following on Basin's paper [3]) describes how to construct "Fibonacci perfect squared
squares.”

[9] Freeman, W. H. (publisher). "Scale and Form." In For All Practical Purposes, 1988.

This is a 30-minute videotape that discusses Fibonacci numbers and gives applications in nature. This
videotape supplements the mathematics textbook For Al Practical Purposes.

[10] Goodrich, Merton. "A Systematic Method of Finding Pythagorean Numbers." Mathe-
matics Magazine 19 (1945):395-97.
The author constructs a table to accomplish just what the title suggests.
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[15]

[16]

[17]

[18]

[19]

26

CONNECTIONS IN MATHEMATICS

Hildebrand, W. J. "Generalized Pythagorean Triples." The College Mathematics Journal
16.1 (1985):48-52.

This article presents an algorithm to generate all possible integer triples (a,b,c) that are the sides of a

triangle that contains angle C whose cosine is the rational number p/q. It also gives applications. The
article assumes a knowledge of calculus and elementary number theory.

Honsberger, Ross. "A Second Look at the Fibonacci and Lucas Numbers." In Mathe-
matical Gems III. Washington, D.C.: The Mathematical Association of America, 1985.
This wonderfully written chapter demonstrates novel applications of Fibonacci numbers, proofs of
many results, and sets of exercises for students. The author discusses the genealogy of the male honey-
bees and connections between Fibonacci and Lucas numbers.

Honsberger, Ross. "The Fibonacci Sequence." In Mathematical Morsels. Washington,
D.C.: The Mathematical Association of America, 1978.
The author discusses the problem of determining how many terms of the Fibonacci sequence are less
than or equal to a given natural number V.

Honsberger, Ross. "Pythagorean Arithmetic." In Ingenuity in Mathematics. Washington,
D.C.: The Mathematical Association of America, 1970. ’
This short essay describes the arithmetic methods of the Pythagoreans and develops a procedure for
generating Pythagorean triples. It is interesting reading for high school and college students and a
good source of problems for instructors.

Horadam, A. F. "Fibonacci Sequences and a Geometrical Paradox." Mathematics Maga-
zine 35 (1962):1-11.
The author recalls the geometric paradox of subdividing an 8 unit square with area 64 square units and
rearranging it to form a 5 x 13 unit rectangle with area 65 square units. He notes how the relationship
5x13-8% =1 is a particular example of a result connecting 3 successive Fibonacci numbers. In the
article, he extends the paradox to cover all sets of three consecutive Fibonacci numbers and generalizes
the paradox by means of a generalized Fibonacci sequence.

Horadam, A. F. "On Khazanov’s Formulae." Mathematics Magazine 36 (1963):219-20.
The author outlines Khazanov’s method for finding Pythagorean triples, and his own method for find-
ing triples using a generalized Fibonacci sequence, then illustrates the connection between the two.

Horadam, A. F. "Fibonacci Number Triples." American Mathematical Monthly 68 (1961):
751-53.

The author explores the connection between generalized Fibonacci numbers and Pythagorean triples.

Howlett, G. et al. "Consecutive Heads and Fibonacci." Mathematical Gazette 69 (1985):
208-11. p
These authors discuss the use of Fibonacci to determine the expected number of tosses of a coin before

two consecutive heads are obtained. They comment on the Roland article "Toss Fibonacci” (see
below).

Jean, Roger, & Johnson, Marjorie. "An Adventure into Applied Mathematics with Fibo-
nacci Numbers." School Science and Mathematics 89.6 (1989):487-98.
In this article, the authors illustrate how Fibonacci numbers arise in concrete situations: the genealogy
of drones (bees), growth of sunflowers and pinecones, reflections on glass plates, economic solutions

for the treatment of sewage in towns along a river bank, etc. They include a short bibliography with
other resources of this type.
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Kalman, Dan. "Angling for Pythagorean Triples." The College Mathematics Journal 17.2
(1986):167-68.

The author generates Pythagorean triples from common fractions. A knowledge of trigonometry is
assumed.

Kuipers, L. posed the problem "No Fibonacci Pythagorean Triples." Solution given by
M. Bicknell-Johnson in The Fibonacci Quarterly 27.1 (1989):88.

The solver proves that there are no positive integers #, s, and ¢, such that (F,, F,, F,) is a Pythagorean
triple.

Nishi, Akihiro. "A Method of Obtaining Pythagorean Triples." American Mathematical
Monthly 94.4 (1987):869-72.

This article, which develops what the title indicates, assumes a knowledge of elementary number
theory.

Ore, Oystein. "The Pythagorean Problem." In Invitation to Number Theory. Washington,
D.C.: the Mathematical Association of America, 1967.
This chapter introduces Pythagorean triples and develops the formula for generating them. It con-

cludes with problems related to Pythagorean triangles. Mathematical skill at the Ievel of intermediate
algebra is sufficient to comprehend this presentation.

Rolard, Tim. "Toss Fibonacci." Mathematical Gazette 68 (1984):183-86.

The author gives some probability problems and makes what he calls "natural connections" with
Fibonacci.

Tomkins, A., & Pitt, D. "Runs and the Generalized Fibonacci Sequence." Mathematical
Gazette 69 (1985):109-13.
This article provides a nice entry into statistics and recursive relationships. The authors tackle the
question of winning in a gambling system by increasing the amount staked each time one loses. They
ask: "In a given number of races, on how many occasions are we to expect a run of losers of a certain
length?" Generalized Fibonacci sequences provide an answer.

Vajda, S. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications
New York: Halsted Press, a division of John Wiley & Sons, 1989.
This book includes discussions in algebra, analysis, geometry, probability theory, and number theory.
The author begins with a brief survey of problems that are solved by Fibonacci numbers, divisibility

properties, generation of random numbers, game theory; the Golden Section and properties of platonic
solids.

Vorob’ev, N. N. Fibonacci Numbers (translation of Chisla fibonachchi [Moscow-Lenin-
grad: Gostekhteoretizdat, 1951]). London: Pergamon Press, Ltd., 1961.
This book contains a set of problems that were the themes of several meetings of a mathematics club of
Leningrad State University in 1949-1950. It is a wonderful resource for liberal arts classes as it rarely
requires any knowledge beyond high school mathematics.
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FORMAL POWER SERIES FOR BINOMIAL SUMS OF
SEQUENCES OF NUMBERS

Pentti Haukkanen

Department of Mathematical Sciences, University of Tampere, P.O. Box 607, SF-33101 Tampere, Finland
(Submitted March 1991)

1. INTRODUCTION

Let {A4,},_, be a given sequence of numbers and let
S(n) = Z(Z)Ak, n=01,...
k=0

Let A(x) and S(x) denote the formal power series determined by the sequences {4,},_, and
{S(n)}y, that is,

A(x) = i Ax", S(x)= iS(n)x".

n=0 n=0

Recently, H. W. Gould [2] pointed out that

(1) S(x) = _l_A[L)

1-x \1l-x

In this paper we shall give a straightforward generalization of (1) and an application and a modifi-
cation of the generalization.
2. A GENERALIZATION

Let s, ¢ be given complex numbers and let {4,} ., be a given sequence of numbers. Denote
S(n) = Z(Z)t"'kskAk, n=0,1,...
k=0

Theorem 1: We have
Sy = A(_S&)

1-1x 1-x

Proof: The proof'is similar to that of (1) given in [2]. In fact,

S(x)= i x" zn: (2) t"'kskAk = i Akskxk i (Z)t""kx”'k
k=0 n=k

n=0 k=0
=3 A stk (- = (1t ‘IA(—SX-).
2 s (1= = (- T
This completes the proof.
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3. AN APPLICATION

Let F,, n=0,1,..., be the Fibonacci numbers, and take F_, = (-1)""'F,. Let p, q be fixed
nonzero integers such that p # ¢, and let r be a fixed integer. L. Carlitz [1, Theorem 4] proved
that

By = 3 J Fer 0101
if and only if
F F
A=) =1, p=(-)"—*.
Fop Fyzp
We shall apply Theorem 1 to give a proof for this result. This result is given in Theorem 2 and in
a slightly different form.

Lemma 1: We have

iF x" = B+ Fyp
pn+r . P27
o 1-Lx+(-)"x

where L, is the nh Lucas number and L_, = (-1)"L, forn>0.

Lemma 2: We have

> ﬁ:(@’ " Fpy =

n=0 k=0

F+((-1)F,_,s-Fjt)x
1-(2t+ Lys)x + (G Lts+(-1)? sH)x?

Lemma 1 is the same as formula (6) of [3]. Lemma 2 follows from Theorem 1 and Lemma 1.

Theorem 2: We have

@ X (3)r s e =P (1=0,1,.)

k=0

if and only if

3) s=F,/F, t=(-1)"F,_,/F,

Proof: By Lemmata 1 and 2, (2) holds if and only if,
4) (D' F_s-Ft=(-D)'F,,,

%) 2t+L;s=1L,,
(6) 12+ Lts+(-1)7s* = (-7

Solving (4) and (5) gives (3). It can be verified that (6) holds for those values of s and 7. This
completes the proof.
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4. A MODIFICATION
An interesting problem is to find a sequence {7(n)},_, such that

(7 T(x)= A(—Sx—).

1-&x

The solution is simple. It is given in Theorem 3. Applications of (7) are given in Theorem 4 and
Theorem 5.

Theorem 3: Let T(0) = A, and

8) T(n) = Z(’,: :Dt"‘kskAk, n=12,..
k=1
Then (7) holds.

Proof: We have
T(x)=(QQ-1x)S(x).
Thus, 7(0)=S(0) = 4, and forn>1,

n—1
T(m)y=Sn)-tS(n-1)= s"An 4+ Z[(Z) _(n]: l)]tn—kskAk
k=0
S(n—=1Y -
= (Z_l)t kskAk.
This completes the proof.

Remark: Theorem 3 could also be proved in a similar way to Theorem 1.

Theorem 4: If s#0 and T(n), n=0,1, ..., is given by (8), then 4, = 7(0) and
—n < n— "'1 n—.
A =s kz_l(—n k(z_l)t “T(k), n=1,2,... .
Proof: By (7),

A(x) = T( ud ) = T(0)+ i x"s“"f: (Z:D(—t)”’k T(k).

S+ix =0 k=1

This proves Theorem 4.

Let m be a nonnegative integer. Then we define 7, (n), n=0, 1, ..., inductively by
Iy(n)=4,, n=0,1,..,
- (n—1) n
T (0)= g, Tya(m) = kz}(ﬁ V), n=12,

when m > 0.
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Theorem 5: If s #1, then

m n-k
Tm(n)=Z(Z:ll)t"“k[s IIJ sS4, n=1,2,... .
k=1

S —

Proof: Theorem 5 can be proved by applying the formula

Ty (¥)=1T, [—”‘—)

-1
Remark: The transformations 7 and 7, have their analogues in the theory of arithmetic functions
(see [4]).
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A REMARK RELATED TO THE FROBENIUS PROBLEM

Tom C. Brown
Simon Fraser University, Burnaby, B.C., Candada V5A 1S6

Peter Jau-shyong Shiue
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(Submitted March 1991)

The Frobenius problem [2; 3] is to find, for a given set a,, ..., a,, of relatively prime integers,
the largest number which is not a linear combination of ay,...,a, with nonnegative integer
coefficients.

Given a set a,,...,a,, of relatively prime positive integers, let us agree to call a number
representable if it is a linear combination of ay,...,a, with nonnegative integer coefficients;
otherwise, we call it nonrepresentable.

The fact that every sufficiently large positive integer is representable (given relatively prime
a,...,a,) has been rediscovered many times, and makes a good exercise in a course in elemen-
tary number theory.

The Frobenius problem has a long history. (See [7] for a list of references.) In 1884, J. J.
Sylvester [8] completely solved the probiem for m = 2. He found that if a and b are positive inte-
gers such that (a,b) =1, then every n>(a—-1)(b—1) can be expressed in the form n = xa +by
where x, y are nonnegative integers, and ab—a—b cannot be so expressed. That is, the largest
nonrepresentable number in this case is ab—a—-b. Sylvester also found that among the
(a-1)(b—1) numbers 0,1,2,...,ab—a—b, exactly half are representable and half are nonrepre-
sentable.

When m = 3, no closed-form expression for the largest nonrepresentable number is known
(except in some special cases), although there do exist explicit algorithms for calculating it.

In the general case, various upper bounds are known for the largest nonrepresentable num-
ber, and closed-form expressions are known in a few special cases, for example, in the case that
ay, ..., a, are in arithmetic progression [1; 6].

In this note we consider an aspect of the case m = 2 which seems not to have been examined
previously. We start by defining two notations. '

For given a, b with (a,b) =1, let NR(a, b) denote the set of numbers nonrepresentable in
terms of a, b. Thus, NR(a, b) is the set of all those nonnegative integers » which cannot be
expressed in the form n = xa + by, where x, y are nonnegative integers. Let

S(a,b)=>{n:n eNR(a,b)}

equal the sum of the numbers nonrepresentable in terms of @ and . .
Although Sylvester showed that exactly % (a—1)(b—1) of the numbers 0, 1, 2, .., ab—a-b
are nonrepresentable, that is that

[NR(@8)|=(@-DG-D),
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additional information about the nonrepresentable numbers would be provided by an estimate of
their sum S(a,b) =X {n:n eNR(a,b)}.

A crude upper bound for §(a,b) is obtained by taking the sum of the ¥ (a—1)(b—1) largest
integers in the interval [0, ab—a—b]. Similarly, a crude lower bound is obtained by taking the
sum of the Y (a—1)(b—1) smallest integers in the interval [0, ab—a —b]. This gives

%(a—l)Z(b—l)z —%(a—l)(b—l) <S(a,b) s%(a—l)z(b—l)z —i(a—l)(b—l),

an upper bound of order % (ab)* and a lower bound of order % (ab)>.

C. W. Ho, J. L. Parish, & P. J. Shiue [4] found that if 4 is any finite set of nonnegative
integers such that the complement of 4 (in the set of nonnegative integers) is closed under addi-
tion, then Y{n:n € A} <|A[*. Since the sum of two representable numbers is certainly a repre-
sentable number, we can take NR(a,b) in the place of 4, and obtain

S(a,b)=X{n:n eNR(a,b)} < |NR(a,b)}* = %(a ~1)2(b-1)>

an upper bound for S(a,b) of order ¥ (ab)?, which considerably improves the previous upper
bound.
In this note we find that, in fact,

S(a,b) = %(a— 1)(5-1)(2ab-a-b-1),

so that the exact order of S(a,b) is ¥ (ab)®.
For example, when a = 4, b = 7, the nonrepresentable numbers are 1, 2, 3, 5, 6, 9, 10, 13, and
17, which sum to

S(4,7)=66= %(4—1)(7—1)(56—4—7—1).

For the remainder of the paper, a, b are fixed positive integers with (a,b) = 1.
To calculate S(a,b), we use the following idea:

For each n>0, let (n) be the number of representations of » in the form n = sa +tb, where
s, t are nonnegative integers. That is, 7(n) is the number of ordered pairs (s,f) such that
n=sa+tb.

For example, r(ab) =2, since if ab= sa +1tb, then (a,b) =1 implies that a divides 7 and b
divides s, so that the only possibilities for (s,#) are (b,0) and (0,a).

It is not hard to see that if 0 <n<ab-1, then either »(n) =0 orr(n) =1. For suppose that
r(n)> 2 and that n=sa+1,b=s,a+1t,b where (without loss of generality) s, >s,. Then 0 =
(s, —8,)a+(t, —t,)b. Therefore, b divides s; —s,, sos; >b and n>ab.

Now, we define

ab—a-b

f)= Yl-rmk".

n=0
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Using the fact that #(#) =0 orr(n) =1 for 0<n <ab-1, we obtain
ab-a-b

M= D n[l-r(n)]=X{n:1<n<ab-a-b and r(n) =0}

n=1

=2{n:n eNR(a,b)} = S(a,b).

Thus, the problem of finding S(a,b) has been reduced to calculating f'(1). It will turn out
that

P(x) , Where P(x) = M—l)

(" -D(x" -1
This remarkably simple formula for f(x) was discovered by Ali Ozluk, and appears in a
more general setting (using a,, ..., a,, instead of a,b) in a paper by Ozluk & Sertoz [5]. For our
case of m = 2, the calculations can be done as follows.
Let

Sf(x)=

A(x)=1/1-x)(1-x") = (Z x"")(z x””) =Y r(nmx".
n=0 n=0 n=0
Now, since (a,b) =1, it follows that

(P -D(x-1)

S (- -

is a polynomial, with leading coefficient 1. (This can be seen by factoring both the numerator and
denominator into complex linear factors. Since (a,b)=1, there are integers s, # such that
as+bt=1. Let ¢ be any complex number such that both ¢°=1and ¢*=1; then ¢=¢'= ™
=(&%*(¢"" = 1. In other words, no linear factor [except for (x—1)] appears twice in the
denominator of P(x); hence, every linear factor in the denominator cancels against a linear factor
in the numerator.)

P(x)

_ ' P(x) -1 :
Since P(1) = 1 by L’Hospital's rule, we have that —~— is also a polynomial, of degree

ab—a — b, with leading coefficient 1.
Now we write,

P(x)“l _ P(x) + 1 — (xab —l)A(x)+ 1
x-1 x-1 1-x -x
= Zr(n)x“b“’ +Z[1 r(n)x"
n=0
= Z [r(n—ab)+1-r(n)]x" +ail[l r(n)]x".
n=ab n=0

Since we know that this power series is really a polynomial of degree ab—a —b with leading
coefficient 1, we can deduce that the power series coefficient of the (ab—a —b)th term is 1, and
all later power series coefficients are zero. [Therefore, in particular, r(ab—a—-5b)=0, r(n)=1
for ab—a—b<n<ab-1, and r(n) =r(n—ab)+1 for n> ab, although we do not use these facts
in what follows.]
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Thus, we now have

x ab-a—-b
B 2 [1-r (K" = /()

We now proceed to calculate  f’(1). Let y =x*. Then

ab _ b-1 b-1
p(x):(La_._l)SxTL)zzyk Y x
x*-Dx"-1) 5 k=0
and
bz E b-1 yk —xk
f(x):P(x)_l k=0 =0 — k=1 x—1 =g(JC)
-1 b-1 ' b-1 . h(x) ?
(x-1Y x X
k=0 k=0
where
b-1 yk —xk b1
gx)=Y , h(x)=) x".
k=1 X~ k=0
Now we use
Kk ak  _k
Y "3; _Xx "f ___(xk VL O +xak—-1)
x— x—
to get
g(x)= Z(x +xk* - x ! ).
Then,
51 1 1
g)= Z(a— Dk = E(a -D)(b-1Db, h(1)=b, h'(1) = Eb(b -1).
k=1
Using the fact that
k+(k+D)+--+(ka-1) =%ka(ka —l)—%k(k—l) =%(k2(a2 - -k(a-1)),
we get that

g = Z(k+(k+1)+ ~+(ka-1))=

k=1

1
=—(a
5

=b(a-1

Finally, we get

S(a,b)=7'(1)=

1993]

2y A ——(a DY k=
k=1

b-1

k=1

b 1)((61 +)2b-1)

Mg M) -gMAA) _
(h(1)*

b-1

1

)

€

12

NIH

(k*(@® =1)~k(a-1))

(a —l)é(b—l)b(Zb—1)—%(a~1)%(b—l)b

(a-1)(b-1)(2ab-a-b-1).
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RATIONAL NUMBERS WITH NON-TERMINATING, NON-PERIODIC
MODIFIED ENGEL-TYPE EXPANSIONS

Jeffrey Shallit

Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Shallit @ Graceland. Waterloo.ED4
(Submitted April 1991)

In a recent paper [3] Kalpazidou, Knopfmacher, & Knopfmacher discussed expansions for
real numbers of the form

1 1 1 1 1
)] A=ay+—- —_—t
a a+1 a, (a+1)(a,+1) a4

which they called a “modified Engel -type” alternating expansion. Here q, is an integer and g, is a
positive integer for i >1. If a,,, > a;, this expansion is essentially unique. To save space, we will
abbreviate (1) by 4 = {ao,al,az,...}.

They say, "The question of whether or not all rationals have a finite or recurring expansion
has not been settled." (By "recurring" we understand "ultimately periodic.")

In this note, we prove that the rational numbers 725 (r an integer > 2) have modified Engel-
type expansions that are neither finite nor ultimately periodic.

Theorem: Let r be an integer > 1. Then

2
2r+1

={a,,a,,a,,...}
where a, =0, and a,,_, =b,, a,, =2b —1fori>1, and b,=7, b,,, =2b>~1forn>1.
Proof: Asin [3], we have
ay=|A|, 4=A-a,, a,=|1/A4,|forn=1, and
A.,=0/a,-A4,)(a,+1) forn>1
From this we see that a, = l_ﬁj =0

We now prove the following four assertions by induction on n: (i) 4,,, = ﬁ; @) a,,, =
b,; (i) 4,, = m, and (iv) a,, =2b,-1.

It is easy to verify these assertions for 7 = 1, as we find

(i) 4 =525 =7

241 2hD>
(ii) [A%J:r=b1;
voe (1 _ 1 — b+1 .
(iii) = (7_ 2r+1)(r +1)= r(;’rl) B b1(2]b1+1) ’

(v) a,= [Aﬂ |22 || 2r -1+ 4 | =2r—1=25 -1
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Now assume the result is true for all i <n. We prove it forn+ 1:

) 1 1 b +1 2 2
=| —- a, +1)= - % 2b,) = = )
(1) A’2n+l (azn AQn)( 2n ) (an 1 bn (an + 1) )( n) 4b3 -1 2bn+1 +1

.. 1 2b,,,+1
(ll) a2n+1 = [A2n+1 J = [ +21 J = bn+1'

1 1 2 b +1
i 4 | _ 4 +1) = _ (5., +1)=——1t1 _~ .
( ) 2n+2 ( ot 2n+1 )(a2n+l ) (b 2b .+ 1)( n+l ) bn+1 (2bn+1 + 1)

n+l n+1

(v)  an,=|——|=| 2@ tD | oy g Ly
Aynir by +1 by +1

This completes the proof. O

Corollary: For r>2, the rational numbers 72 have non-terminating, non-ultimately-periodic
modified Engel-type expansions.

Additional Remarks:

e For r = 1, the theorem gives the ultimately periodic expansion
23={0,1,1,1,1, ..}.

e Forr =2, the expansion is not ultimately periodic; e.g.,
2/5=1{0,2,3,7,13,97, 193, 18817, ...}.

In this case, we have the following brief table:

n| a, b, A,

1] 2 2 2/5

2| 3 7 3/10
317 97 2/15

44 13 18817 8/105
5197 708158977 2/195
6 [ 193 | 1002978273411373057 | 89/18915

e The sequence b,,b,,...=2,7,97,18817, 708158977, ..., corresponding to r = 2, appears to
have been discussed first by G. Cantor in 1869 [1], who gave the infinite product

oo tfodfo)

For more on this product of Cantor, see Spiess [9], Sierpinski [7], Engel [2], Stratemeyer
[10; 11], Ostrowski [6], and Mendés France & van der Poorten [5]. The sequence 2, 7, 97,
18817, ... was also discussed by Lucas [4]. It is sequence #720 in Sloane [8].
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The sequence b,,b,,...=3,17,577, 665857, .
by Cantor [1], who gave the infinite product

et

Also see the papers mentioned above. The sequence was also discussed by Wilf [12], and it
is sequence #1234 in Sloane [8].

corresponding to r = 3, was also discussed

"3

It is easy to prove that b,,, = B,, where B;=1,B, =r, and B, =2rB,_, - B, , forn>2. This
gives a closed form for the sequence (5,):

r+yri-1 "+ F—yr?-1 "
. \/——2 2

n+l
2

3/7 is the "simplest" rational for which no simple description of the terms in its modified
Engel-type expansion is known. The first forty terms are as follows:

3/7 =40, 2,4,5,7, 8, 10, 25, 53, 62, 134, 574, 2431, 13147, 27167, 229073, 315416, 435474, 771789,

1522716, 3853889, 7878986, 7922488, 8844776, 9182596, 9388467, 14781524, 135097360,1374449987,

1561240840, 4408239956, 11166053604, 12014224315, 23110106464, 553192836372, 900447772231,
1189661630241, 205809784(143484, 6730348855426376, 12928512475357529, ...}.

More generally, it would be of interest to know whether it is possible to characterize the
modified Engel expansion of every rational number.
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Author and Title Index for
The Fibonacct Quarterly

The AUTHOR, TITLE, KEY-WORD, ELEMENTARY PROBLEMS and ADVANCED
PROBLEMS indices for the first 30 volumes of The Fibonacci Quarterly have been
completed by Dr. Charles K. Cook of the University of South Carolina at Sumter.
During their summer meetings, the board of directors of THE FIBONACCI
ASSOCIATION voted to publish these completed indices on a 3.5-inch high density
disk. The price for a copyrighted version of the disk will be $40.00 plus postage to those
individuals that are not members of THE FIBONACCI ASSOCIATION. Members will
only need to pay $20.00 plus postage.

For additional information or to order a disk copy of the indices, write to:

PROFESSOR CHARLES K. COOK

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF SOUTH CAROLINA AT SUMTER
1 LOUISE CIRCLE

SUMTER, SC 29150

The indices have been compiled using WORDPERFECT on an IBM compatible
machine. Should you wish to order a copy of the indices for another wordprocessor like
WORDSTAR or for use on a MACINTOSH or another non-compatible IBM machine
please explain your situation to Dr. Cook when you place your order and he will try to
accommodate you. DO NOT SEND YOUR PAYMENT WITH YOUR ORDER. You
will be billed for the indices and postage by Dr. Cook when he sends you the disk.

A star is used in the indices to indicate when a elementary or advanced problem has
still not been solved. Furthermore, Dr. Cook is working on a SUBJECT index and will
also be classifying all articles by use of the AMS Classification Scheme. Those who
purchase the indices will be given one free update of all indices when the SUBJECT
index and the AMS classification of all articles published in The Fibonacci Quarterly are
completed.
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UNARY FIBONACCI NUMBERS ARE CONTEXT-SENSITIVE

Vamsi K. Mootha (student)
Stanford University, Stanford, CA 94305
(Submitted April 1991)

Moll and Venkatesan showed in [2] that the set of Fibonacci numbers is not context-free.
Recall that a language is CF (context-free) if and only if there exists a context-free grammar gene-
rating it. It is only natural to ask where exactly in Chomsky’s Hierarchy the Fibonacci numbers
lie. By the Hierarchy Theorem (Theorem 9.9 of [1]), we have the following proper containments:

Regular sets € CFL’s © CSL’s c RE’s

RE’s (recursively enumerable languages) are defined to be those sets generated by unrestricted
grammars. Unrestricted grammars are simply grammars in which all the productions are of the
form a — f, where « and £ are arbitrary strings of grammar symbols, with a # ¢. By definition,
CSL’s (context-sensitive languages) are generated by CSG’s (context-sensitive grammars).
CSG’s are very much like unrestricted grammars, with the added condition that for all produc-
tions @ — B, |a|<|f.

In this paper we offer a CSG G generating the language of unary Fibonacci numbers,
L={0')i = F,}, hence demonstrating the title claim. But before doing this, it will prove useful to
construct an unrestricted grammar G’ for L.

THE UNRESTRICTED GRAMMAR G’

Formally define G'=(V',T,P’,S), where V'={S,4,B,C,D,E,F,G,H,J,K,L,M N, P},
T = {0}, and P’ is given by the list of productions:

N S->0 14) KC—LCO
2) S§-— AEOBOCD 15) 0L - L0
3) AE—A4H 16y BL—BJ
4)  HO—FO 17) BJC —»BM
5)  F00 — OF0 18) M0O— 0M
6) FOB — BF0 19) MD — NCD
7y  FOC — GCO 20) ON—>NO
8 0G—->GOo 21) BN-—NB
9) BG-GB 22) AN—AE
10) AG—>AH 23) AE->P
11) AHB —ABJ 24) PO0— 0P
12) BJ0O - 0BK 25) PB—P
13) K0—0K 26) PCD->¢

Observe that there are two starting productions. Production 1 generates the nonrecursive base
cases; production 2 generates all other Fibonacci numbers F,, with n>2. In general selection of
production 3 eventually leads to a string of the form :

(+)  AEO0...0B0...0CD.

The 0’s between 4 and B represent unary F,_,, while those between B and C represent F,_,.
Repeated selection of production 3 "increments" (x), while choosing production 23 outputs F, by
eliminating the markers.
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In summary, productions 1 and 2 enable us to generate either the base or recursive case.
Productions 3 through 11 move F,_, into the space between C and D; productions 12 through 22
perform the updating and restoration of the string to the form of (x). Finally, productions 23 to
26 output the answer. It is easily verified that G’ generates exactly L. O

Because G’ is an unrestricted grammar that generates L, L is recursively-enumerable. Note
that G' is not a CSG because the left-hand sides of productions 23, 25, and 26 are longer than
their right-hand sides.

THE CONTEXT-SENSITIVE GRAMMAR G

We use the method of Example 9.5 of [1] to create a context-sensitive grammar G which
mimics G'. Instead of the “single” variables of G’, we use "composite" variables that combine 0
with each of its possible contexts. For example, the single nonterminal [A£0] replaces the two
variable string AE in a particular context.

Formally define G=(V,T,P,[S]), where V = {[S], [AE0], [BOCD], [AHO], [AF0], [ABFO0],
[0CD], [ABO0], [FOCD], [FO0], [40], [BFO], [BO], [GCOD], [COD], [GCO0], [0D], [ABGO], [GO],
[BGO], [GBO0], [AGO], [CO], [AGBO], [AHBO], [4BJ0], [BKC<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>