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CYCLIC BINARY STRINGS WITHOUT LONG RUNS OF LIKE 
(ALTERNATING) BITS 

W. Moser 
McGill University, Montreal, Canada H3A2K6 

(Submitted February 1991) 

1. A binary w-bit cyclic string (briefly w-CS) is a sequence ofn O's and l's (the bits), with the 
first and last bits considered to be adjacent (i.e., the first bit follows the last bit). This condition is 
visible when the string is displayed in a circle with one bit "capped": the capped bit is the first bit 
and reading clockwise we see the second bit, the third bit, and so on to the nth bit (the last bit). In 
an n-CS, a subsequence of consecutive bits is a run. Motivated by a problem of genetic 
information processing, Agur, Fraenkel, and Klein [1] derived formulas for the number of n-CSs 
with no runs 0 0 0 nor 1 1 1 (i.e., all runs of like bits have length < 2) and for the number with no 
runs 0 10 nor 10 1 (i.e., all runs of alternating bits have length < 2). These are the cases w = 2of 

L<w(n) = the number of n~CSs in which all runs of like bits have length < w 
and 

A<w(n) = the number of «-CSs in which all runs of alternating bits have length < w. 

In this note we prove the 

Theorem: 
\l\ \f\<n<w-\v 

\Fw{ri) + Dw(n), \in>w, L<w(n) = ' 

and 

where 

4w(") = 
12", i f l< rc<w- l , 

[Fw(n) + (-l)"Dw(nl ifnZw, 

(1) 
^w(0) = w, Fw(n) = 2n-l, 1 < ^ < ^ - 1 , 

Fw(n) = Fw(n-l) + Fw(n-2)+--- + Fw(n-w), n>w, 

w, if n> 1 and M> + 1|«, 
and 

1, ifn> 1 andw + lfn. 

Furthermore, 

(3) Z , > ) ~ 4 > ) ~ c a " 

where c is a constant (which depends only on w) and 

^ " 2 * 1 2 <a<2 . 
2 W 2W 
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2, Consider for any n-CS 

thew-CS 

T(x) = yiy2...yn, j/,={°> ^ = ^ i = l,2,...,n (x0=x„). 

For example, 

7(001110010110001111) = 101001011101001000 
7(101100011101010111) = 011010010011111100 
7(110011001100100000) = 101010101010110000 

Thus, when passing over the bits of x, T(x) records the changes (from 0 to 1 or from 1 to 0) by a 
1, and records no change (from 0 to 0 or from 1 to 1) by a 0. 

Of course 

T(x) = T(x), 

where x is the complementary n-CS 

x = y&iy3—yn> # 
_ f l , ifx,=0, 
~ \ 0 , ifx,=l. 

However, for any two different n-CSs u and v, both with first bit L T(u) ^ T(v). Indeed, T is bi-
jective between the set of 2n~l w-CSs with first bit 1 and the set of 2""1 n-CSs with an even 
number of l's. Thus, an w-CS x with first bit 1 corresponds to an «-CS T(x) with an even number 
of l's, and then a run of w like bits in x corresponds to a run of w -1 0's in T(x), while a run of w 
alternating bits in x corresponds to a run of w -1 l's in T(x). 

Hence, 
x is an n-CS with first bit 1 and all runs of like bits have length < w 

if and only if 
T(x) is an n-CS with an even number of Ts and all runs of 0's have length < w -1, 

so we have 

•Zsw(/i) = 2 ^ ( 1 1 ) , n>\ 

where 

B^(n) = the number of n-CSs with an even number of l's and all runs of 0's have length <w. 
Also, 

x is an n-CS with first bit 1 and all alternating runs have length < w 
if and only if 

T(x) is an n-CS with an even number of l's and all runs of l's have length < w -1 
if and only if 

T(x) is an n-CS with an even number of 0's and all runs of 0's have length <w-l 
if and only if 
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n is even, f(x) has an even number of l's and 
all runs of O's have length < w - 1 

or 
n is odd, T(x) has an odd number of l's and 

all runs of O's have length < w—l, 
and we have 

2BW_X(/?), if n is even, 

2B°w_x{n), if/? is odd, 
where 

B°(n) = the number of n-CSs with an odd number of l's and all runs of O's have length <w. 

In terms of Bw (n) = Be
w (n) + B°w (w) and Cw (n) = Be

w (n) - B°w (n), 

(4) ^ w ( / i ) = 5w.1(w) + Cw_1(/i), A<w(n) = Bw_l(n) + (-\yCw_l(nl n>\. 

In order to determine Be
w{n), B°(n), mdBw(n), we naturally investigate (for n>\ k>0, 

w > 1) (n : A)w = the number of n-CSs with exactly k l's (>?-& O's) and all runs of O's have length 
<w. Clearly 

' l , \<n<w, 
( 5 ) ( / ? : 0 ) ^ l n > _,i 

0, /? >w + l 
and 

(6) (n:k)v 

where 

l<n<w + k, 

\<ky k(w + \)<n, 

n\ [n\lk\{n-k)\, 0<k<n, 
k)~[0, 0<n<k. 

Consider an /7-CS counted in (n: k)w, n>w + 2, k>2. If the first bit is 1 (i.e., capped bit is 
1 ), and the last 1 is followed by exactly /' O's (0<i <w), delete this last 1 and the / O's which 
follow it and then we have an (n- l - / ) - C S with k - 1 l's, first bit 1, and every run of O's has 
length <w. If the first bit is 0, and the first 1 is followed by /' O's (0 < / < w), delete this first 1 and 
the / O's which follow it and we then have an (n- l - / ) - C S with k-\ l's, first bit 0, and every run 
of O's has length < w. Hence, 

(7) (n:k)w=(ri-l:k-\)w+(n-2:k-l)w+--- + (n-l-w:k-\)w,k>2, n>w + 2. 

Of course, 
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From (5), (6), and (7), we deduce that 

2 , \<n<w, 
2"-1-l, n = w + \, 
B°w(n-l) + B°(n-2) + ---+B°w(n-\-w), n>w + 2, 

B°w(n) = 
, 7 1 - 1 2"~l, \<n<w + l, 
Be

w(n-l)+---+Be
w(n-l-w)+n-2(w + \), w + 2<n<2w + l, 

Bl(n-\) + Be
w(n-2)+-+Be

w(n-\-w), n>2w + 2, 

Bw(n) = Bl{n) + B°w{n) 

2", n=\,2,...,w, 
2 " - l , n = w + l, 
Bw(n-l)+--- + Bw(n-l-w)+n-2(w + l), w + 2<n<2w + l, 
Bw(n-l) + Bw(n-2) + -+Bw(n-l-w), n>2w + 2. 

Furthermore, the numbers Cw (n) = Be
w (n) - B°w («) are seen to satisfy 

C » = 

o, 
- 1 , 
w + l, 
- 1 , 

l<n<w, 
n = w + l, 
n-w-\-2, 
w+3<n<2w+V 

{-{Cw(n-l) + Cw(n-2)+- + Cw(n-l-w)}7 n>2w + 2, 
that is, 

[0, l<n<w, 
Cw(n) = <w +1, n>w + l,w + 2\n, 

[-1, n>w + l,w + 2][n. 

Now it is easy to verify that 

B^i{n) = Fw{n\ n>w, •Cw_l(n) = Dw{n)9 n>w, 

where Fw(n) mdDw(n) are defined by (1) and (2), and this with (4) completes the first part of 
the Theorem. 

It is well known that any sequence \Hw\n)\ which satisfies 
Hw(n) = Hw(n-l)+Hw(n-2)+-- + Hw(n-w\ n>w, 

can be written 

#wO0 = X^<> « = 0,1,2,..., 
;=1 

where ai - a)w), (/ = l,2,...,w) are the roots of 
(8) zw-zw-l-zw~2-----z-l 

and the q -c\w\ (i = 1,2,..., w) are determined by the w equations 

cltfl+c2ar2+--- + cwcfw = Hw(n\ w = 0,l,...,w-l. 
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This depends on the fact that ax, a2,..., aw are distinct. This fact is easily proved: multiply (8) by 
x -1 to get xw+l - 2xw +1 which has no multiple roots because it has no roots in common with its 
derivative. 

Cappocelli and Cull [2] have shown that exactly one of the roots of (8) is real and positive, 
say a - ax, and it satisfies 

(9) 2 - — <a<2—-, 

while all the other roots satisfy 

—p=r<|a.| <1, /' = 2,3,...,w. 
M / 3 I ' I • 

It follows that Hw{ri) ~ can. This leads to 

L<2(n) ~ A<i(n) 

and for w > 2, L<w(n) ~ A<w(n) ~ can,where c is a constant (which depends only on w) and a 
satisfies (9). 

The following tables show Fw(ri), Dw(n), L<w{n), and,4<w(/z) forw = 2, 3,4. 

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
F2(n) 2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 
D2(n) -1 -1 2 - 1 - 1 2 -1 -1 2 - 1 - 1 2 -1 -1 
Ls2(/i) 2 6 6 10 20 28 46 78 122 198 324 520 842 

^2 00 

A(») 
43(") 

AW 

44(«) 

2 4 2 6 12 20 30 46 74 122 200 324 522 842 

1 2 3 4 5 6 7 8 9 10 11 12 13 
1 3 7 11 21 39 71 131 241 443 815 1499 2757 
-1 -1 -1 3 -1 -1 -1 3 -1 -1 -1 3 -1 
2 4 6 14 20 38 70 134 240 442 814 1502 2756 
2 4 8 14 22 38 72 134 242 442 816 1502 2578 

1 2 3 4 5 6 
1 3 7 15 26 51 

-1 -1 -1 -1 4 -1 
2 4 8 14 30 50 

7 8 9 10 11 12 13 
99 191 367 708 1365 2631 5071 
-1 -1 -1 4 -1 -1 -1 
98 190 366 712 1364 2630 5070 

8 14 22 50 100 190 368 712 1366 2630 5072 

REFERENCES 
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C O M P L E X FIBONACCI AND LUCAS NUMBERS, C O N T I N U E D 
FRACTIONS, AND THE SQUARE ROOT OF 

THE GOLDEN RATIO 

I. J. Good 
Virginia Polytechnic Institute & State University, Blacksburg, VA 24061 

(Submitted February 1991) 

1. INTRODUCTION 

The golden ratio <f> - (V5 +1) / 2 is mathematically ancient (see [3] for example), while both <f> 
and its square root are of historical architectural significance,l and are therefore points of contact 
between the "two cultures." (Compare the cultural and historical approach to the theory of 
numbers in [12].) It is pleasing that (f) and v^ have a further relationship in terms of continued 
fractions. The formula 

(i) ^ = i + J__L . . . 
i+ i+ 

is very familiar and it will be proved below that 
1 1 1 

w y v 2 + 2;+ 2 + 2/+ 2 + 2/ + 
where / = v - 1 . A similar result is 

(3) VTT772-l(V5+2)1/2
+-/(V5-2)1/2=l(l + /) + ̂  -

w 2 2 2 1+/+ !+/• 

^ h e golden ratio, or as Kepler, following Luca Pacioli [11], called it, the "divine proportion," and also its 
square root, are related to two of the most famous buildings of all time, the Parthenon at Athens and the Great 
Pyramid, respectively. 

The golden rectangle is exemplified by the face of the Parthenon ([7, pp. 62 and 63]; [13, p. 139]). The 
Parthenon was built only about half a century after the death of Pythagoras so the choice of ^, if it was deliberate, 
might well have been influenced by the Pythagorean philosophy, for $ occurs conspicuously in the theory of the 
pentagram, which was the badge of the Pythagoreans [7, p. 28]. 

Reference [4, p. 162], refers to the "perfect phi pyramid" whose square base is 2 by 2 units, the length of the 
apothem (the segment from the apex to the midpoint of a side of the base) is fc and the height is V .̂ Gardner says 
"Herodotus [the 'father of history'] was the first to suggest (c. 500 B.C.) that the area of the face of the Great 
Pyramid [of King Khufu (also called Cheops) at al-Jiza (Giza)] is equal to the square of the pyramid's height." 
This is another way of suggesting that the Great Pyramid is a perfect phi pyramid. But Gardner has now informed 
me that Fischler (1991), in a forthcoming article, has argued that the source of the alleged interpretation of 
Herodotus's wording goes back only to 1859. Herodotus's wording was seemingly incorrect. Nevertheless, 
according to [8] the measurements of the base are, in feet, 755.43, 756.08, 755.08, and 755.77, with an average of 
755.59, while the height is 481.4 feet, so the ratio of the height to half the base is close to 1.274, whereas ^0 = 
1.2720. The deviation from the perfect phi pyramid is much too small to be discernible by eye and small enough to 
be due to erosion. The Egyptian architect, two thousand years before Herodotus was born, might well have aimed 
at a perfect phi pyramid. Maybe the architect's plans will eventually be found entombed with his mummy. 
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COMPLEX FIBONACCI AND LUCAS NUMBERS 

The left sides of (3) can also be expressed as 

(3a) !{(l + 0V^ + (l-/)/V4 
We will see, in a corollary to Theorem 3, that there is another close relationship between (2) and 
(3). 

Some related "complex Fibonacci and Lucas numbers" will be investigated.2 

A condensed version of this work was published in [5]. 

2. PROOFS OF THE CONTINUED FRACTIONS 

To prove (l)-(3), and similar results, we can make use of the following special case of a 
theorem given, for example, by [6, p. 146]. 

The numerator pn and denominator qn of the nth convergent (n = 1, 2, 3, ...) of 

(4) A + — — -

are given by 

(5) Pn=K+2, <ln=F
n+l 

where 

(6) Fn = {x"-?)l{x-y) 

and 

(7) x = - ( ^ + V^2+4), y = ~(A-^A2+4), 

which are the roots of x2 - Ax - 1 = 0. Of course xy = - 1 . 

Reference [6] assumes that A is an integer. But everything in the (inductive) proof of the 
theorem in [6] is also applicable if A is any nonzero real or complex number and, in particular, 
when A = a + ib where a and b are integers, that is, when A is a Gaussian integer. 

It follows from the theorem that the infinite continued fraction (4) is equal to x if \x\>\y\ and 
to y if |.y|>|x|. If A is a positive integer, as in (1), then |x|>|^| and the continued fraction 
converges to x. The convergence is fast when \y I x\ is small. 

For the sake of simplicity, let us consider the special case where A-a^-ia where a is a 
positive integer. Then 

(8) x = — la + ia + ^4 + 2ia2 j , y = —la + ia- V4 + 2/a2 j , xy=-l, 

2Complex continued fractions can be used to solve problems in the theory of Gaussian integers similar to 
those solved for integers by using ordinary continued fractions. For example, one can solve a complex form of 
Pell's equation at least sometimes. This is shown, among other things, in my Technical Report 91-2 which, 
however, contains several incomplete proofs and conjectures. 
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where V denotes the complex square root with positive real part. By means of de Moivre's 
theorem (anticipated by Roger Cotes), and some trigonometry, we infer that 

(9) 

2x = a + /a + i(V4 + a4 +2) + i(^4 + a4 -2\ [ 

2y = a + ia-l^4 + a4 +2) +/(V4 + a4 - 2 ) [ 

(Note the checks that xy = - 1 and (x-y)2 = 4 + 2ia2.) It is straightforward to show that \x\ > \y\ 
by calculating 12xf -\2yf. Therefore, 

(10) ~N4 + a4 +2) +-N4 + a4 -2) ~{a+ia) + . 
2 V ; 2V 1 2 a + ia+ a + ia + 

Equations (2) and (3) are the special cases a = 2 and a=\. 

3. COMPLEX AND GAUSSIAN FIBONACCI AND LUCAS NUMBERS 

Let us write 

(11) F^=^p-, L^ = ? + rf ( £ * ! 7 , £ i 7 = - l ) 

where n is any integer (not necessarily positive) and £ and 77 might be complex (in which case we 
can think of F^n and L^n as complex Fibonacci and Lucas numbers). Note that 

F^=(-irlF^n, L^n = (-l)"Lln. 

The ordinary Fibonacci and Lucas numbers are Fn - F^n, and Ln - L^n. 

Theorem 1: The sequences {F^n} and {L^n} (n- 2 , -1 ,0 ,1 ,2 , . . . ) satisfy the recurrence 
relations 

(12) ^ = ( £ + 7 7 ) ^ + ^ - 1 
and 

The proofs are left to the reader. 

Vajda [13, pp. 176-84] lists 117 identities satisfied by the ordinary Fibonacci and Lucas 
numbers. Most of these identities apply equally to F^n and L^n and can be readily proved straight 
from the definitions (11). 

Theorem 2: A necessary and sufficient condition for F^n and L^n to be Gaussian (or natural) 
integers for all n is that £+ rj should be a Gaussian integer (or a natural integer, respectively). 

Proof: That the condition is necessary is obvious because £+77= L^x = F^2. That the condition 
is also sufficient follows inductively, both for positive and negative n, from the recurrence 
relations (12) and (13) because F^0, F^{, L^0, andZ^j are Gaussian integers, namely, 0, 1, 2, 
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and £+ 77, respectively, and because the recurrence relations (12) and (13) work backwards as 
well as forwards. 

In this paper we will be mainly concerned with the case in which £+ rj-a + ia where a is a 
positive integer, especially the cases a = 1 and a = 2 with which we began in the Introduction. 
Then ^ = x and r\-y where x and y are defined by equations (8) or (9). We write Fxn- F^a) 

and L - L^\ but when a is held fixed in some context we usually abbreviate the notations to 
Fn and Ln. We call F J ^ a n d Z , ^ Gaussian Fibonacci and Lucas numbers. Also we write 
Fn - fn+ if^ and Ly,=£n+i£f

ri to show the real and imaginary parts Some numerical values are 
listed in Tables I and 2 for the cases a = 1 and a = 2. These tables can be generated from the 
recurrence relations 

(14) F0=0, F, =1 , Fn+2={a + ia)Fn+x+Fn 

and 

(15) L0 = 2 , Li= a + ia, Ln+2 = (0 + #a)Zll+1 + Ln 

where n is any integer, positive, negative, or zero. 
Greater generality would be possible by writing (a + ib)Fn+l +(c + id)Fn on the right of (14) 

where a, b, c, and d are integers [and similarly for (15)], but simplicity is also a virtue, and there is 
plenty to say about the special case of F^a) and L^. 

Individual values of Fn and Ln. can be computed from the formulas 

n ind-iy/ _ - 1 -in{&+n)-iy/ 
(16) F„ = r e / S ,mdL„=r"eine

 + r-"e-'"^\ 
V 2 ( 4 + a 4 ) 

where 

2r = [(a + x ) 2 + ( a + J ) 2 ] ' / 2 , 

0- arctan , y/- arctan(<5/ y), 
[a + rj 

where 
\l/2 s- to o\l/2 o tA , „4\ l /2 r = (P+2)iU, s=(p-2)il1, p=(4+ay 

The notations r, 0, y/, J3, y, 8 are provisional and are introduced here only to simplify the 
printing of the formulas for Fn and Ln. and to make them easier to program. (I used a hand-held 
calculator, an HP15C.) In spite of the heirarchy of square roots, Fn and Ln. are, of course, Gaus-
sian integers, a fact that acts as an excellent check on computer programs. 

The tables can be used for checking and guessing various properties of the Gaussian 
Fibonacci and Lucas numbers. In this section I give a small selection of the most easily proved 
properties. 

The first few properties resemble formulas (1.0.14.16)—(10.. 14.9) of [6] and are almost as easy 
to prove as in the real case if one holds in mind that xy = - 1 and, for (19) and (21), that 
(x-y)2 = 4 + 2/a2. We have 

10 [FEB. 
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(17) 2rm+n — rmLn+rnLm, 

and in particular, 

(18) F2n = F„Ln; 

(19) Z*-(4 + 2/a2)F„2 = ( - ! ) % 
(20) F^-F„_{Fnn={-\r\ 

(20k) F„2-F„+kFn_k = (-irkFk
2, 

(21) L2
n-Ln_lLn+l=(-iy(4 + 2ia2). 

Two similar formulas (see [13, formulas (11) and (17c)]), convenient for "leaping ahead," are 

(22) F2n+l = F2
+l+F2 

and 
(23) L2n = L2

n+(-\rl2. 

A couple of results, corresponding to Theorem 179 of [6], and which readily follow inductively 
from the recurrence relations (14) and (15), are 

(24) (F„,Fn+l) = l, (Ln,Ln_l) = (2,a), 

meaning, for example, that Fn andFw+1 have no common factor other than the units ±1 and +/'; 
and, for all r and n, 

(25) Fn\Frn 

(meaning that Fn "divides" Frn). But the proof of (25) given by [6] for ordinary Fibonacci 
numbers does not extend so easily as for (17)-(24). Instead, the proof in [13, pp. 66 and 67] 
extends immediately, and has the merit of expressing Frn/Fn explicitly in terms of Lucas numbers, 
in fact as a linear combination. For example, 

(26) FjFn = L2n +(-1)", FjF„ = L4n +(-l)"JL2„ + 1. 

Several surprising formulas can be obtained by the methods of [1], For example, 
, ^ 1 1 1 1 , 2 
(27) — + — + — + — + --- = <y + l + 

Fx F2 F4 Fs a + ia 
and 
(28) A + ^ 3 _ + A. + ... = _;;. 

77 T7 T? 
1 3 r9 r21 

4. A RELATIONSHIP BETWEEN THE SEQUENCES {I™} AND 0^} 

Theorem 3: 

(29) 4 2 ) = / w 4 2 forall/i, 

where the vinculum indicates complex conjugacy. 
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Proof: (29) is true when n = 0, and when n=\, because 
Lf = 2 while Lf = 2 

4 2 ) = 2 + 2/, 4 1 ) = 0 + 0 2 + 2 = 2 + 2/, i 4 1 ) = 2 + 2/ = 42)-

So an inductive proof will follow if we can show that the sequences 
{42)}and{^:„} satisfy the 

same recurrence relation, where Kn = /'" 4« Ŷ definition 

The recurrence relation satisfied by L^ is, of course, 

^ = ( 2 + 2 0 ^ + ^ . 

To obtain the recurrence relation satisfied by {Kn}, note first that 
A>+2 ~ 4,2 A> ~ 4™~2 

which follows readily from (11). It is stated in [13, formula (17a)] for ordinary Lucas numbers, 
but it is equally clear for complex Lucas numbers and, in particular, for Gaussian numbers. On 
putting m = 2n we get, again in particular, 

^2h+2 ~ L2 L2n - L2fl_2 = (2 + 2i)L2n - L2n_2. 

Therefore, 

2̂«+2 _ ( 2 2z)Z,2w L2n_2. 

Multiply by in+l to get 
i : w + 1 = / ( 2 - 2 / ) ^ - / X _ 1 

= (2 + 2 / ) ^ , + ^ ! 
so the sequence^} does satisfy the same recurrence relation as {L^} as required. 

A more direct but slightly messy proof can be obtained from equation (8). Note that Z(
w

2a) * 
in 4"} unless a = 1. 

Corollary to Theorem 3 

(30) 1-i- l l 
2 

= 2 + 2/4-
2 + 2/+ 2 + 2/' + 1-/+ 1-/ + j 

Proof: From the theorem, we have 

(3D i^L^=L^/L^. 

Now, in the theorem at the start of Section 2, take A = 2 + 2i [when x is given by (9) with a = 2]. 
Then the continued fraction (4) equals 

lim (p„/q„) = lim(x"+2 -yn+2)I(xn+l - / + 1 ) = x (because |*|>b|) 
= l im(x"+ 1+jw + 1) /(x"+/) = lim 4 2

+ \ /4 2 ) 

so the right side of (31) tends to that of (30). Again, in (4), take A = 1 + /' to find that 
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1+7 
1+7 + 1 + 7 + 

Therefore, 
f 

1 + 7+- 1 1 

= Bm(ZS1/41)) = lim(/^2/z£i1).' 

/(I) r(l) \ 2 

V 
and hence, 

1 + 7 + 1 + 7 + 

(1) 
= l i m ^2±I.^Z±2. = l J m ±«±2_ 

r(l) rd) r(D 

1 - 7 + -
1 + 7 + 1 + 7 + : lim i Z & / 4 " . 

so the left side of (31) tends to that of (30) and this completes the proof. 
Equation (30) was discovered by the method shown above. A less interesting proof can be 

obtained from (2) and (3) or (3 a). 

5. CONGRUENCE PROPERTIES 

Hardy & Wright [6, p. 149] prove that every ordinary (rational) prime divides some ordinary 
Fibonacci number (and therefore an infinity of them). To prove similar results we need to recall 
that a prime Gaussian integer a+i/3 (with a(5^ 0) can be defined by the property that a2 +01 is 
either 2 or an ordinary prime congruent to 1 modulo 4. For any such ordinary prime p, the 
corresponding Gaussian prime is unique up to conjugacy or multiplication by a unit (a power of/). 
This beautiful and famous theorem is proved, for example, in [10, p. 128]. Denote one of the 
Gaussian primes that corresponds top by pG and its complex conjugate by pG. Then, of course, 

(32) PGPG = P-

Using this notation we have the following divisibility result, the proof being an elaboration of that 
of Theorem 180 in [6]. 

Definition: We call a number pure if it is either purely real or purely imaginary. 

Theorem 4: Let a be fixed and let p = 1 (mod 4) be a rational prime, not a factor of 4 +a4. 
Then, 

(33) (i) F,2
s l (mod/>); 

(This, of course, makes an assertion about both the real and imaginary parts of F2.) 

(34) (ii) 

(35) (iii) \F/ = 

Fp is pure, modulo p\ 

= +1 
1 4 + a 4 ^ 

P J 
(the Legendre symbol is not 0 because/? does not divide 4 + a ); 

(36) (iv) p divides \F x\2 or\Fp+l\2 or both; 

(37) (v) pG (and^G) divides either F x orFp+l but not both apart from the uninteresting 
case in which/? divides a. 

1993] 13 



COMPLEX FIBONACCI AND LUCAS NUMBERS 

Thus every Gaussian prime divides some Gaussian Fibonacci number [and therefore, by (25), an 
infinity of them]. 

(vi) For n>2 wehaveL2„ =2 (mod2"). 

(vii) For n > 2 we have Fn = 2 (mod 2") 

Before proving this theorem, let us look at some numerical examples deduced from Tables 1 
and 2 combined with formulas (18), (22), and (23). These examples are shown in Table 3. Note, 
for example, that this table confirms Part (iii) of the theorem in that 4 +14 and 4 + 24 are squares 
(quadratic residues) modulo 29 but not modulo 13, 17, or 37. 

TABLE 1. Values of Fn andLM when a = 1 

n 

~-T 
0 

1 

j 2 

1 3 
4 

5 

6 

7 

8 
9 

10 

11 

12 

13 

14 

15 

/ 

1 
0 

1 

1 

1 

0 

-3 
-9 

-19 

-32 
-43 

-39 

5 

128 

377 

783 

1305 

/' 
0 
0 

0 

1 

2 
4 

6 

7 

4 

-8 

-36 

-87 

-162 

-244 
-278 

-145 
360 

e 
n -1 
2 

1 

2 

1 

-2 
-9 

-22 

-41 

-62 

-71 

-38 

89 

382 
911 

1682 

2511 

n 
-1 

0 

1 

2 

5 

8 

11 

10 

-1 

-32 
-95 

-198 

-331 

-440 

-389 

82 

1375 

n 

~W 
17 
18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 
30 

31 

32 

J n 

1728 

1513 

-367 

-5495 

-15,744 

-32,267 
-53,177 

-69,371 

-58,464 

21,693 

235,305 

656,909 

1,328,896 

2,165,489 
2,781,855 

2,249,009 

-1,161,856 

Jn 
1520 

3608 

6641 

9882 

11,028 

5166 

-16,073 

-64,084 

-149,528 

-272,076 

-399,911 

-436,682 

-179,684 

712,530 

2,698,335 

6,192,720 

11,140,064 

ln 
2818 

1361 

-3982 

-16,111 

-37,762 

-68,921 
-101,638 

-111,641 

-47,678 

176,841 
678,602 

1,564,201 

2,822,398 

4,110,751 

4,414,498 

1,619,999 

-7,803,902 

V n 
3968 

8161 
13,490 

17,669 

15,048 

-5045 

-58,918 

-165,601 

-336,160 

-549,439 
-708,758 

-579,595 

275,848 

2,518,651 

6,905,250 

13,838,399 

22,363,648 
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TABLE 2. Values of Fn and Ln when a = 2 

Fn=fn+if; Ln=tn+Wn 

n 
-1 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

fn 
1 
0 
1 
2 
1 

-12 
-63 

-186 
-319 

104 
3137 

f 
J n 0 

0 
0 
2 
8 

20 
24 

-58 
-464 

-1624 
-3504 

4 
-2 

2 
2 
2 

-10 
-62 

-198 
-382 

-82 
2818 

13,490 

-2 
0 
2 
8 

22 
32 

-38 
-440 

-1682 
-3968 
-3982 

n 
10 
11 
12 
13 
14 
15 
16 
17 
18 

20 

fn 
13,386 
34,625 
45,532 

-82,303 
-754, 290 

-2,740,095 
-6,150,960 
-5,063,807 
28,365,202 

540,965,316 

f 
J n -2358 

18,552 
103,996 
317,608 
574,606 
-41,760 

-4,989,104 
-22,321,888 
-59,760,494 

112,389,732 

in 
37,762 
58,918 

-47,678 
-708,758 

-2,822,398 
-6,905,250 
-7,803,902 
22,214,242 

~K] 
15,048 

101,638 
336,160 
678,602 
275,848 

-4,414,498 
-22,363,648 
-64,749,598 

TABLE 3(i), a = 1. Values modulo p 

p 
13 
17 
29 
37 

FP 
- 5 / 

4/ 
1 

-6 / 

n i 
i 
i 
i 

I^I2 

- i 
- i 

i 
- i 

*Vi 
-2 + 3/ 

( 3 + / ) ( 4 + 0 
0 

(2 / -3)(1 +f i ) 

•*V+i 
3-2/ 

(3-0(1 + 40 
1 + / 

(4 + 3 / ) ( l -6 / ) 

TABLE 3(ii), a = 2. Values modulo p 

p 
13 
17 
29 
37 

FP 

5/ 
-4 / 

1 
6/ 

K 
i 
i 
i 
i 

l^vl2 

- i 
- i 

i 
- i 

^ - i 

3(2 + 30 
-3(1 + 4/) 

0 
3(-13 +140(1 + 6/) 

fp+i 

-2(2-3/) 
(1 + 0(1-4/) 

2(1+/) 
1-6/ 

Proof of Theorem 4: From (7), where A - a + ia, we have (by the binomial theorem) 

2p~lF=2p-\xp-yp)/(A2+4) 1/2 

pAp~l +[ H ^ " 3 ^ 2 + 4) + [ P W 5 ( ^ 2 +4)2 + --- + (^2+4)(^1)/2 

v 3 ; v5y 
E E ( , 4 2 + 4 ) (/>-l)/2 (mod/?) since/? is prime. 
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Therefore, 
Fp = {A2 +4)(p~l)/2 (mod/?) (by Fermat!s theorem, not the "last" but not least) 

= (4 + 2ia2 ) ( ^ 1 ) / 2 - 2 ( ^ 1 ) / 2 (2 + ia2 ) ( ^ 1 ) / 2 . 

Therefore, 

(38) F2 ^2p-l(2 + ia2)p~l ^(2+ia2)p-1 (mod/?). 

and 

(39) \Fpf ^2p-\4 + a4Yp-l)/2 ^ (4 + a 4 ) ( ^ 1 ) / 2 (mod/?), 

again by Fermat's theorem. Part (iii) of the theorem now follows from (39) combined with 
Theorem 83 of [6]. 

From (38) we obtain 

(2 + ia2)F2^(2 + ia2)p 

= 2P + ipa2p (again by the binomial theorem) 
= 2 + ia2 [because/? = 1 (mod4) and is prime]. 

But (4 + a4, /?) = 1 and therefore (2 + ia2 ,/?) = !. Hence, F2 = 1 (mod /?), which is Part (i) of the 
theorem. 

To prove Part (ii), assume that Fp = a+ifi (mod p). Thus F2 = a2 -(? +2iaJ3. But F2 = 1 
and is therefore real, so aJ3= 0. Thus a - 0 or J3 - 0 so F is pure (mod /?). 

Part (i) combined with (20) shows that Fp_xFp+l =0 (mod/?). Since/? is not a Gaussian 
prime, it does not follow that/? divides either F x orFp+l, but Part (v) does follow because we 
must have Fp_xFp+l = 0 (mod pG and also mod pG). [The recurrence relation (14), together with 
Part (i), shows that pG cannot divide both Fp_x and Fp+l when p does not divide a. But 
sometimes both pG and pG divide F u or perhaps both divide F +l, and then/? divides either 
Fp_x or Fp+l but not both.] Then Part (iv) follows from Part (v). 

To prove Part (vi), note that 

L4 = 4(1 - a4 + 2/a2 ) - 2 = - 2 (mod 4) = 2 (mod 4), 

and the result then follows by induction from formula (23). 
To prove Part (vii), we have 

F4=2a[(l-a2) + (l + a2)] = 0 (mod4) 

whether a is even or odd. Then the result follows by induction from (18) combined with Part (vi). 

Lemma: For any integer n, L2n is of the form 2s + 2ti andZ2w+1 is of the form a±ai + 2au+2avi 
where s, /, u, and v are integers. 

Proof: Note first that it is irrelevant whether we take the plus sign or the minus sign. Now 
L0 = 2 and Lx=a + ai, so we can "start" an inductive proof, and we can readily complete the 
induction by means of the recurrence relation (15). 
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Theorem 5: Let/? be an odd (ordinary) prime. Then 
Ln = a + ia (mod p) ifp = 1(mod 4) 

(40) P 

Lp = a - ia (mod p) if p = 3 (mod 4). 

More informatively, 
Z^ = a + ia (modlap) ifp = 1 (mod4) 
Lp=a-ia (mod2qp) if/? = 3 (mod4). 

Proof: Wehzve Lp=xp+yp, so 

2p~lLp = AP+(P)AP-2(A2 +4) + ...+pA(A2 + 4)(p~l)/2 

Now 277-1 = 1 (mod/?), by Fermat's theorem, so 

Lp^Ap (modp) = (a+ ia)(2ia2)(p-l)/2 

: (a + /a) \-W»/2ap-l^(a + iay t(p-l)/2 

again by Fermat's theorem. Formulas (40) are therefore proved ifp divides a, so we shall now 
assume that it does not. Now, by [6, p. 75], we have 

f —1 = 1 if> = ±l (mod8) 

and equations (40) follow readily. But by the Lemma we have Lp-a + ia- M(2a) and (41) 
follows at once because (2a,p) = 1. [X - M(ju) means X = 0 (mod/i).] 

Corollary: (i) Ifp is an odd prime, then 

(42) \Lp\2^2a2 (mod/?). 

(ii) Ifp is an odd prime and a is not a multiple of/?, then \Lp\21(2a1) is an integer and 
is congruent to 1 modulo p. 

Proof: From (41), Lp is of the form a + ai + 2ap(s + it) where s and t are integers. Hence 

| Lp |2 = (a + 2aps)2 + (a + 2<z/rt)2 

= 2a2 (1 + 2/75 + 2pt + 2/? V + 2/?V ) 

and the Corollary follows at once. 

Comment Ifp is an odd number and fails to satisfy any of the conclusions in Theorems 4 and 5, 
then/? is composite, and if it does satisfy the theorems it can perhaps be described as "probably" 
prime or at least as a new kind of "pseudoprime." For example, Ln ^a±ia (modn) for any 
composite n shown in Table 1 or 2. 

Theorem 5 and its corollary are analogous to the theorem that the ordinary Lucas number 
L^p = 1 (mod/?); see, for example, [13, p. 80], where it is mentioned, with a reference, that 
Z^ 705 = 1 (mod 705) although 705 is composite. So the converse of our Theorem 5 is probably 
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false. Anyway, the converse would be too good to be true. It would be interesting to knbw 
whether any parts of Theorems 4 and 5 have "modified converses " 

Theorem 6: Every Gaussian number G = g +/g' (not just the Gaussian primes) divides some 
Gaussian Fibonacci number (apart from F0). (We are still regarding a as fixed.) 

Proof: The sequence of Gaussian Fibonacci numbers (mod G) must be periodic with period no 
more than (gg')2 - 1 . This follows by the argument given, for example, in [13, p. 88] with a 
minor modification to allow for the complexity of G. But 0 is one of the Fibonacci numbers, and 
is divisible by G, and the result follows. 

We next prove two congruence relations needed in Section 6. The first part sharpens Part 
(vi) of Theorem 4. 

Theorem 7: (i) L2„ = 2 (mod2w+2) when n > 3, for all a. 

(ii) Ln = 2 (mod 2n+2) when n > 3, while 1 < a< 5. 

[Part (i) can probably be sharpened, for example, xL^\ = 2 (mod 512), while Part (ii) might be 
true for all values of a.] 

Proof: We have 

L2={a + ia)Ll + LQ-2 + 2ia1 

so, by (23), 

Z4 = L^-2 = 2 - 4 a 4 + 8 / a 2 = ( - l ) a 2 (mod8). 

Therefore, again by (23), 

L8 = L 2 - l = [M(8) + (-l) f l2]2-2 = 2 (mod32). 

Therefore, 

Ll6. = L\ - 2 = [M(32) + If - 2 ̂  2 (mod 64), 

and so on, inductively, giving Part (i). 
To prove Part (ii), note first that it is true for n = 3 and for n = 4 as we can see for a = 1 or 2 

from Tables 1 and 2 and by calculations, not shown here, for a = 3, 4, and 5. We complete the 
proof inductively by noting first that 

^.2«+1 = ̂ ^ i - ( - i r ( ^ + ' 7 ) ( ' « = o,i;2,...) 

as follows easily from (11). On putting £= x and m = 2W_1, we infer that 
Lr+l = L2^ L2„_1+1 - (a + id) (n > 2) 

= 2Z,2B_,41 -(a + ia) (mod2w+1,«>4) [by Part (i)] 
= 2[M(2"-l) + a+ia]-(a+ia) (mod2"+1,w > 4) 

(by the inductive hypothesis) 
= a + ia (mod 2", ft > 4) 

and this completes the inductive proof 
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6. A PEMODICITY PROPERTY ; 

Periodicity properties, modulo a given integer, of ordinary Fibonacci and Lucas sequences, 
are surveyed by Vajda [13, Chapter vil]. Our final theorem reveals a very simple periodicity of 
the Gaussian Lucas sequences at least when a < 6. 
Theorem 8: For 1 < a < 5, the period of the sequence ... L_2, L_x, L0, Lx, L2,... (mod 2", n > 3) 
is a power of 2 not exceeding 2". 

In view of the recurrence relation, in order to prove that 2" is a period it is sufficient to prove 
that Lm = Lm+2„ for two consecutive values of m. By Theorem 7 this is achieved by taking m = 0 
and m = 1. 

The period (that is, the shortest period) must divide any known period and must therefore be 
a power of 2. There seems to be a 'tendency' for the period to be 2", for example, when a = 1 or 
3 the periods modulo 8, 16, and 32 are, respectively, also 8, 16, and 32. But, when a = 2, the 
period modulo 32 is only 8. 

7, LOOSE ENDS 

There are many loose ends in this work. For example, we wondered whether Part (ii) of 
Theorem 7 is true for all values of a, in which case the same is true for Theorem 8. As another 
example, if p = 1 (mod4) and /? > 5, is \F^\y2f always congruent to 0 or ±1 modulo/?? I have 
verified this for a = 1 and 2 and/? < 113, and for a = 3,p < 61. Note that \L^\2 /2, where/? is an 
odd prime, has a tendency to avoid having small factors, where the meaning of small increases 
when/? increases. The values for/? = 3, 5, 7, 11, 13, 17, and 19 are, respectively, 13, 101, 292, 
58741 (prime), 53 x 9257, 34227121, and 185878941. Neither of the last two numbers has a fac-
tor less than 100. (Both are beyond the scope of [9].) It seems reasonable to conjecture that 
when the prime /?—> oo and a^M(p), then the smallest factor of \L^\2 /(2a2) (which is an 
integer by the corollary of Theorem 5) also tends to infinity. The analogous property might be 
true also for the ordinary Lucas numbers L^p. It is possibly significant that 292 divides l ^ l 2 , 
293 divides \F7

(2)\2, and 892 divides \L{£f. ' 

How much of the theory goes through if a + ia is replaced by a + ib throughout? 

But the most interesting question is: Under what conditions is a "pseudoprime" a prime? 
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1. INTRODUCTION 

We are all familiar with the traditional presentation of the Fibonacci sequence in classes 
designed for liberal arts majors. We "wow" the students with pinecones and pineapples! We talk 
to them about the wondrous "appearance" of Fibonacci numbers in their world. But can we use 
Fibonacci to bring these students into our world? 

Is it possible for liberal arts majors to appreciate mathematics—apart from applications of the 
subject in art, nature, and other areas? Can we develop courses that instill in students a sense of 
excitement about making connections in mathematics, given the attitudes toward our subject that 
many of them bring to class? As Lynn Arthur Steen says: "For students in the arts and human-
ities, mathematics is an invisible culture—feared, avoided, and consequently misunderstood" (3). 

Designing requisite1 mathematics courses for liberal arts students is difficult. In attempting to 
give them a sense of mathematics, we often resort to overstressing its utility—reaching for areas 
outside of mathematics to validate the study of the subject. Or we assemble what appears to the 
students a collection of disjoint topics—offering little motivation for them to search for connec-
tions. 

The challenge is to draw the students into mathematics—generating in them an excitement 
about making mathematical connections and an appreciation of fundamental interrelationships 
between topics. I believe I have met this challenge by introducing Fibonacci via Pythagoras, and I 
want to share the experience!2 

2. RATIONALE 

Mathematics builds upon itself in a way that other sciences do not. Even topics developed in 
antiquity continue to be relevant today to mathematical growth—knowledge gives rise to new 
knowledge; problems generate new problems. One objective in teaching mathematical concepts is 
to give students a sense of how these ideas fit into the edifice we call mathematics. Examination 
of connections between mathematical topics is one way to achieve this goal. 

The connection between Fibonacci numbers and Pythagorean triples is well known (cf [6], 
[16], [17]). But this connection is not frequently used to introduce Fibonacci numbers. I propose 
a classroom lesson that involves students working with a familiar topic (Pythagorean triples) prior 
to connecting it to an unfamiliar one (Fibonacci numbers). In my experience, the preliminary 
work with triples motivates a discussion of this connection, and stimulates students to want to 

*In 1983, the largest public university system in the country—the California State University 
System—established a mathematics course as a graduation requirement for all students at any of its nineteen 
campuses. 

2The appendix includes an annotated list of books, journal articles, and videotapes that I used as resources for 
classroom discussion and projects. All numbers in brackets [ ] refer to the resources listed in this appendix. 
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learn more about the Fibonacci numbers. Perhaps more importantly, it creates in the students a 
genuine excitement about making mathematical connections. 

As an alternative to what is perhaps a traditional introduction to the Fibonacci numbers based 
on their "surprise" applications in nature—breeding rabbits, patterns in pinecones and pineapples, 
etc. (cf. [9], [12], [19]), my presentation enables students to experience this kind of "surprise" in 
connecting mathematical areas. The classroom experience begins with discussion of problems 
inspired by Pythagorean triples incorporating assignments and activities generating Pythagorean 
triples; then follows with an examination of connections between the products of Fibonacci and 
Pythagoras and an investigation of the historical and present-day significance of the Fibonacci 
numbers. This approach conforms to the goals expressed by Alvin White (1985) in his article 
"Beyond Behavioral Objectives": 

. . . our guidelines and teaching objectives should not have as their major target or focus the 
mastery of facts and techniques. Rather the facts and techniques should be the skeletal 
framework which supports our objective of imbuing our students with the spirit of 
mathematics and a sense of excitement about the historical development and the creative 
process. (3, p. 850) 

3. CLASSROOM LESSONS 

A. Pythagorean Triples 

I begin by proposing that Pythagorean triples give evidence of how problems generate new 
problems in mathematics. The students are amazed to discover that such integers were known in 
ancient civilizations 1200 years before Pythagoras. I try to give them a sense that what perhaps is 
more exciting is that these triples have inspired interesting problems in mathematics since the time 
of Pythagoras. My students learn, by perusing the list of resources, that the generation of 
Pythagorean triples is a topic that still fascinates some contemporary mathematicians (cf. [2], [5], 
[6], [10], [11], [14], [16], [17], [20], [22], [23]). 

I challenge the students to work in groups to discover common characteristics of 
Pythagorean triples with the goal of finding a generating form for them. I begin by asking the 
students to create triples, after we list the ones known to them. This induces a discussion of 
multiples of triples and a conjecture that multiples of triples are triples, motivating the need for a 
proof that this is indeed so. I form the class into small groups (four to five students per group) 
and ask them to form conjectures about characteristics of primitive Pythagorean triples [we had 
read and discussed Polya's heuristics for problem solving (1)]. The students work together, 
observing patterns and making guesses. For example, by looking at (3, 4, 5), (5, 12, 13), and 
(8, 5, 17), (12, 35, 37), they make the following conjectures: only one number of the triple could 
be even; when the smallest number of the triple is even, the difference between the two larger 
numbers is two; when the smallest number of the triple is odd, the difference between the two 
larger numbers is one; that five is a factor of some number of the triple; etc. Then, as a class, we 
discuss each group's conjectures, attempting to prove or disprove their hypotheses. Their 
conjectures introduce many interesting class discussions about numbers and their relationships. 
We explored, for example, questions of divisibility, prime factorization, what it means for integers 
to be relatively prime, etc. After the students play with the Pythagorean triples and examine some 
characteristics of these numbers, they are eager to find a systematic way to generate them. 
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Methods for obtaining Pythagorean triples cited in the Annotated List of Resources range 
from simple to sophisticated. I refer to several so the students can get a sense of the range of 
options (cf [10], [14], [20], [23]). One they particularly like is Kalman's method (cf. [20]) for 
generating Pythagorean triples from proper fractions. Kalman starts with a right triangle with 
angle A, such that tan A = a proper fraction, say plq. He then constructs another right triangle 
using 2A as one angle. Since tan 2 A = 2 tan A/ (I- tan2 A) = 2pq/ (q2 - /?2), the legs of the new 
triangle can be labeled 2pq and (q2 - p 2 ) . Using the Pythagorean Theorem to determine the 
length of the hypotenuse will produce an integer. This proves that Kalman's procedure always 
produces a Pythagorean triple when tan A is rational. With the "hands-on" experience of generat-
ing triples and the knowledge gained from exploring other attempts at generating triples using 
familiar objects (like fractions), the students are ready to venture into unfamiliar territory. 

B. Fibonacci Numbers 

Since the students have an understanding of the difficulties involved in generating Pythago-
rean triples and a look at the diversity of methods for doing so, they are ready to learn about the 
connection between the mathematical products of Fibonacci and Pythagoras. We read and 
discuss several articles describing the use of Fibonacci numbers to produce Pythagorean triples 
(cf. [6], [16], [17]). The students are intrigued with the connection. The discussion of Fibonacci 
and Pythagoras provides a historical perspective and the use of Fibonacci's numbers to generate 
Pythagoras' numbers illustrates how mathematics builds upon itself using newer techniques to re-
examine old problems. 

The videotape The Theorem of Pythagoras (cf. [2]) shows dynamical versions of dissection 
proofs of the Pythagorean theorem. For a classroom activity, I organize students into small 
groups to "play with" a cardboard model of a dissection proof, asking them to assemble pre-cut 
pieces to illustrate the proof. This gives them a sense of what is involved in a dissection proof I 
then follow with a classroom experiment based on the idea of dissection proof designed to show 
the students that evidence is different from proof and to prepare the way for a Fibonacci connec-
tion. I ask the students to construct an 8 x 8 square and calculate the area of 64. Then I direct 
them to dissect their model into a 5 x 13 figure as indicated: 

FIGURE 1 

They quickly assume this figure is a rectangle, so when I ask them to calculate its area, they 
compute an area of 65. This seems to "prove" that 64 (the area of the original square) is equal to 
65 (the area of the rectangle formed form the dissected pieces of the square). Our investigation of 
the new "rectangle" (via similar triangles) illustrates that the reconstructed figure is not truly a 
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rectangle. This activity reinforces the necessity of rigorous proof in mathematics and alerts 
students to the dangers of accepting visual evidence as proof. 

The culmination of this lesson is reading and discussing the article "Fibonacci Sequences and 
a Geometrical Paradox" (cf [15]) in which Horadam shows how the Fibonacci numbers can be 
used to describe the area that appears to be gained in rearranging the parts of the square to form a 
rectangle. Using Horadam's article as a guide, we again analyze our 5 x 1 3 rectangle rearranged 
from the 8 x 8 square (Fig. 1). We observe that the one unit gain in area can be described by the 
relationship 5 x 1 3 - 82 = 1, a particular example of connecting three successive Fibonacci numbers 
(Fn;Fn+l,Fn+2) by the generalized formula FnFn+1 -F2n+l - (-1)"+1. We then examine the 
relationship by considering the two cases, discovering: 1) when n is odd (as in our Fig. 1), the 
gain of one unit is the result of the appearance within the rectangle of a small parallelogram of 
unit area; 2) when n is even, the loss of one unit occurs because the unit parallelogram overlaps 
the dissected pieces. This gives the students visual evidence of how the Fibonacci numbers can be 
used to explain their dissection experiment, and how the results of their experiment can be 
expanded to include other cases. It is again, for them, yet another experience of utility within 
mathematics—the use of one mathematical topic to explain or clarify another. 

Now the students, appreciating the use of Fibonacci numbers within mathematics, are ready 
to explore the many directions that Fibonacci numbers can inspire outside of mathematics 
—describing natural phenomena, determining outcomes of games, providing economic solutions 
for ecological problems, etc. (cf. List of Resources). Because the students were tuned in to the 
idea of connections, these discussions and activities were more meaningful than they had ever 
been in any previous classes I had taught. 

4. CONCLUSION 

My presentation of Fibonacci numbers via Pythagorean triples at the beginning of the course 
helps students to see that mathematical concepts often interrelate. The success of this classroom 
experiment lies in getting students to appreciate these interrelationships—enabling them to experi-
ence satisfaction in making mathematical connections. They learn to appreciate utility within 
mathematics as well as exterior to it. This experience set the tone for the entire course. One 
student wrote: 

I never learned interesting things like this in high school algebra. This topic contributed the 
most to my intellectual growth this semester, because it grabbed my attention, and allowed me 
to be open to other new concepts that we would study throughout the semester. The Fibonacci 
sequence opened the door to my mind, for it made me realize that math is going on all around 
me, and that it's important for me to understand why. 

I encourage you to replicate this classroom experiment, and I welcome your reports about the 
results. 
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APPENDIX 

ANNOTATED LIST OF RESOURCES 

[1] Apostol, Tom. "The Pythagorean Theorem." In MATHEMATICS! California Institute of 
Technology, 1988. 

This is an award-winning 20-minute computer-animated videotape, with accompanying workbook, on 
history, proofs, and applications of the theorem. 

[2] Arpaia, P. J. "A Generating Property of Pythagorean Triples." Mathematics Magazine 44 
(1971):26-27. 

Based on the generating property of pairs of Pythagorean triples given by Courant and Robbins in 
What Is Mathematics?', this note establishes a generating property of any Pythagorean triple. 

[3] Basin, S. L. "Generalized Fibonacci Sequences and Squared Rectangles." American Math-
ematical Monthly 70 (1963):372-79. 

The author shows how generalized Fibonacci numbers can be used to generate squared rectangles (the 
problem of squaring a rectangle first appeared in the literature as a mathematical puzzle). The article 
concludes with an application (a ladder-network in communications systems) based on a model of the 
squaring of a rectangle of order n. This article is difficult, but not inaccessible to liberal arts majors. 

[4] Beran, Ladislav. "Schemes Generating the Fibonacci Sequence/ Mathematical Gazette 70 
(1986):38-40. 

The author shows that a resistance equation can be written in terms of the Fibonacci sequence and 
proves it by induction. 

[5] Bergum, Gerald, & Yocom, Ken. "Tchebysheff Polynomials and Primitive Pythagorean 
Triples.," In Two Year College Mathematics Readings, Washington, D.C: The Mathemati-
cal Association of America, 1981. 

This note illustrates and proves how to produce primitive integer-sides of a right triangle with hypote-
nuse cn when the set of integers {a,b,c} is primitive. 

[6] Boulger, William. "Pythagoras Meets Fibonacci." Mathematics Teacher 82*4 (1989):277-
81. 

Boulger makes a nice connection between Fibonacci numbers and Pythagorean triples and proves it. 
He also illustrates a relationship between Fibonacci numbers and the golden ratio. 

[7] DeTemple, Duane. "A New Angle on the Geometry of the Fibonacci Numbers." Fibonacci 
Quarterly 19.1 (1981):35-39. 

The author gives a very nice geometric visualization of the Fibonacci sequence by representing the 
Fibonacci numbers by gnomons (Pythagorean carpenter squares). 

[8] Federico, P. J. "A Fibonacci Perfect Squared Square.11 American Mathematical Monthly 
71 (April 1964):404-06. 

The author (following on Basin's paper [3]) describes how to construct "Fibonacci perfect squared 
squares." 

[9] Freeman, W. H. (publisher). "Scale and Form.1' In For All Practical Purposes, 1988. 
This is a 30-minute videotape that discusses Fibonacci numbers and gives applications in nature. This 
videotape supplements the mathematics textbook For All Practical Purposes. 

[10] Goodrich, Merton. f'A Systematic Method of Finding Pythagorean Numbers." Mathe-
matics Magazine 19 (1945):395-97. 

The author constructs a table to accomplish just what the title suggests. 
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[11] Hildebrand, W. J. "Generalized Pythagorean Triples." The College Mathematics Journal 
16.1 (1985):48-52. 

This article presents an algorithm to generate all possible integer triples (a,h,c) that are the sides of a 
triangle that contains angle C whose cosine is the rational number/?/*?. It also gives applications. The 
article assumes a knowledge of calculus and elementary number theory. 

[12] Honsberger, Ross. "A Second Look at the Fibonacci and Lucas Numbers." In Mathe-
matical Gems III Washington, D.C.: The Mathematical Association of America, 1985. 

This wonderfully written chapter demonstrates novel applications of Fibonacci numbers, proofs of 
many results, and sets of exercises for students. The author discusses the genealogy of the male honey-
bees and connections between Fibonacci and Lucas numbers. 

[13] Honsberger, Ross. "The Fibonacci Sequence." In Mathematical Morsels. Washington, 
D.C.: The Mathematical Association of America, 1978. 

The author discusses the problem of determining how many terms of the Fibonacci sequence are less 
than or equal to a given natural number N. 

[14] Honsberger, Ross. "Pythagorean Arithmetic." In Ingenuity in Mathematics. Washington, 
D.C.: The Mathematical Association of America, 1970. 

This short essay describes the arithmetic methods of the Pythagoreans and develops a procedure for 
generating Pythagorean triples. It is interesting reading for high school and college students and a 
good source of problems for instructors. 

[15] Horadam, A. F. "Fibonacci Sequences and a Geometrical Paradox." Mathematics Maga-
zine 35 (1962):IAI. 

The author recalls the geometric paradox of subdividing an 8 unit square with area 64 square units and 
rearranging it to form a 5 x 13 unit rectangle with area 65 square units. He notes how the relationship 
5xl3-82 =1 is a particular example of a result connecting 3 successive Fibonacci numbers. In the 
article, he extends the paradox to cover all sets of three consecutive Fibonacci numbers and generalizes 
the paradox by means of a generalized Fibonacci sequence. 

[16] Horadam, A. F. "On Khazanov's Formulae." Mathematics Magazine 36 (1963):219-20. 
The author outlines Khazanov's method for finding Pythagorean triples, and his owe method for find-
ing triples using a generalized Fibonacci sequence, then illustrates the connection between the two. 

[17] Horadam, A. F. "Fibonacci Number Triples.19 American Mathematical Monthly 68 (1961): 
751-53. 

The author explores the connection between generalized Fibonacci numbers and Pythagorean triples. 

[18] Hewlett, G. et al. "Consecutive Heads and Fibonacci." Mathematical Gazette 69 (1985): 
208-11. 

These authors discuss the use of Fibonacci to determine the expected number of tosses of a coin before 
two consecutive heads are obtained. They comment on the Roland article "Toss Fibonacci" (see 
below). 

[19] Jean, Roger, & Johnson, Marjorie. "An Adventure into Applied Mathematics with Fibo-
nacci Numbers." School Science and Mathematics 89*6 (1989):487-98. 

In this article, the authors illustrate how Fibonacci numbers arise in concrete situations: the genealogy 
of drones (bees), growth of sunflowers and pinecones, reflections on glass plates, economic solutions 
for the treatment of sewage in towns along a river bank, etc. They include a short bibliography with 
other resources of this type. 
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[20] Kalman, Dan. "Angling for Pythagorean Triples." The College Mathematics Journal 11.2 
(1986): 167-68. 

The author generates Pythagorean triples from common fractions. A knowledge of trigonometry is 
assumed. 

[21] Kuipers, L. posed the problem "No Fibonacci Pythagorean Triples." Solution given by 
M. Bicknell-Johnson in The Fibonacci Quarterly 21A (1989):88. 

The solver proves that there are no positive integers r, s, and t9 such that (Fr, Fs, Ft) is a Pythagorean 
triple. 

[22] Nishi, Akihiro. "A Method of Obtaining Pythagorean Triples." American Mathematical 
Monthly 944 (1987):869-72. 

This article, which develops what the title indicates, assumes a .knowledge of elementary number 
theory. 

[23] Ore, Oystein. "The Pythagorean Problem." In Invitation to Number Theory. Washington, 
D.C.: the Mathematical Association of America, 1967. 

This chapter introduces Pythagorean triples and develops the formula for generating them. It con-
cludes with problems related to Pythagorean triangles. Mathematical skill at the level of intermediate 
algebra is sufficient to comprehend this presentation. 

[24] Roland, Tim. "Toss Fibonacci." Mathematical Gazette 68 (1984): 183-86. 
The author gives some probability problems and makes what he calls "natural connections" with 
Fibonacci. 

[25] Tomkins, A., & Pitt, D. "Runs and the Generalized Fibonacci Sequence." Mathematical 
Gazette 69 (\9%S)\\09-YS. 

This article provides a nice entry into statistics and recursive relationships. The authors tackle the 
question of winning in a gambling system by increasing the amount staked each time one loses. They 
ask: "In a given number of races, on how many occasions are we to expect a run of losers of a certain 
length?" Generalized Fibonacci sequences provide an answer. 

[26] Vajda, S. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications 
New York: Halsted Press, a division of John Wiley & Sons, 1989. 

This book includes discussions in algebra, analysis, geometry, probability theory, and number theory. 
The author begins with a brief survey of problems that are solved by Fibonacci numbers, divisibility 
properties, generation of random numbers, game theory; the Golden Section and properties of platonic 
solids. 

[27] Vorob'ev, N. N. Fibonacci Numbers (translation of Chisla fibonachchi [Moscow-Lenin-
grad: Gostekhteoretizdat, 1951]). London: Pergamon Press, Ltd., 1961. 

This book contains a set of problems that were the themes of several meetings of a mathematics club of 
Leningrad State University in 1949-1950. It is a wonderful resource for liberal arts classes as it rarely 
requires any knowledge beyond high school mathematics. 

Subject Index 
Mathematical Subject Classification 
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859-51 Geometry 
859-01 History and Biography 
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1. INTRODUCTION 

Let {An}™=0 be a given sequence of numbers and let 

S(n) = ft(f\Ak,n = 0,l,. 

Let A{x) and S(x) denote the formal power series determined by the sequences {An}™=0 and 
{S(it)Co,thatis, 

A(x) = f,Anx", S(x) = ftS(n)x". 
n=0 n=0 

Recently, H.W. Gould [2] pointed out that 

In this paper we shall give a straightforward generalization of (1) and an application and a modifi-
cation of the generalization. 

2. A GENERALIZATION 

Let s, t be given complex numbers and let {An}™=0 be a given sequence of numbers. Denote 

S(n) = ±(iy-kskAk,n = 0,l,... 

Theorem 1: We have 

s(x)=-L-A( a 

l~tX \l-tX; 

Proof: The proof is similar to that of (1) given in [2]. In fact, 

h **k \ 7 l ^ un—kn—k :S(x) = ±x"± (n
kV-k

S
kAk = ± Akskxk ± f J ) 

„=0 £=(A / k=0 n=k^ ' 

= £ Akskxk (1 - txy'-1 = (1 - tx)-1 A(-^-\ 
k=o V* txj 

This completes the proof. 
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3. AN APPLICATION 
Let Fn9 /i = 0,1,. . . , be the Fibonacci numbers, and take F_n -(-l)n~1Fn. Letp, q be fixed 

nonzero integers such that p*q9 and let r be a fixed integer. L. Carlitz [1, Theorem 4] proved 
that 

^Fpn+r = i(iVkFqk+r (/I = 0,1,...) " 

if and only if 

A=(-iy-^-, n=i-\y^-. 
r r • 

q-p q-p 
We shall apply Theorem 1 to give a proof for this result. This result is given in Theorem 2 and in 
a slightly different form. 
Lemma 1: We have 

yF xn_ Fr+{-l)rFp_rx 

to P"+r " l - V + H ) ' * 2 ' 
where Ln is the rfi1 Lucas number and L_n = (-1)" Ln for n > 0. 

Lemma 2: We have 

Fr + ({-\yFq_rs-Fqt)x 
2 _i_ f / c X / ' - n 9 e 2 W 2 ' to t^k) 9k+r l-(2t + •Lqs)x + (tz+Lqts+(-iys')xz 

Lemma 1 is the same as formula (6) of [3]. Lemma 2 follows from Theorem 1 and Lemma 1. 

Theorem 2: We have 

(2) £(t\tH~kJF#+r = Fpn+r (» = 0,1,...) 

if and only if 

(3) s = FpIFq, t = {-\YFq_pIFq. 

Proof: By Lemmata 1 and 2, (2) holds if and only if, 

(4) (-l)rFq_rs-Fqt = (-iyFp_r, 

(5) 2t + Lqs = Lp, 

(6) t2+Lqts+(-\ys
2=(-\y. 

Solving (4) and (5) gives (3). It can be verified that (6) holds for those values of s and t. This 
completes the proof. 
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4. A MODIFICATION 

An interesting problem is to find a sequence {T(n)}™=0 such that 

(7) n»>=^} 
The solution is simple. It is given in Theorem 3. Applications of (7) are given in Theorem 4 and 
Theorem 5. 

Theorem 3: Let T(0) = AQ and 

(8) T(n) = ±(n
kZ1X"-kskAk, n = l,2,... 

Then (7) holds. 

Proof: We have 

T(x) = (l-tx)S(x). 

Thus, T(0) = S(0) = A0 and for n > 1, 

T(n) = S(n)-tS(n-l) = s"A„ + "£ 

-±{py^Ak. 
This completes the proof. 

Remark: Theorem 3 could also be proved in a similar way to Theorem 1. 

Theorem 4: If s * 0 and T(n), n = 0,1,..., is given by (8), then AQ - T(0) and 

Proof: By (7), 

V^ + ocy „=0 jt=iV / 

This proves Theorem 4. 

Let m be a nonnegative integer. Then we define Tm(n), n = 0,l,..., inductively by 
To(n) = An> " = 0,1,..., 

Tm+l(0) = Ao, Tm+l(n) = i(lZl\n-kskTm(nl n = l,2,... 

when m > 0. 

n-\ 
k rVA 
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Theorem 5: Ifs^l, then 

wo-i(Z:i)<*- s-l 

^n-k 

s™Ak,n = l,2,.... 

Proof: Theorem 5 can be proved by applying the formula 

Tm+1(x) - Tm 
sx 

\l-tx 
Remark: The transformations T and Tm have their analogues in the theory of arithmetic functions 
(see [4]). 
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The Frobenius problem [2; 3] is to find, for a given set al3..., am of relatively prime integers, 
the largest number which is not a linear combination of au...,am with nonnegative integer 
coefficients. 

Given a set a1?...,aw of relatively prime positive integers, let us agree to call a number 
representable if it is a linear combination of au...,am with nonnegative integer coefficients; 
otherwise, we call it nonrepresentable. 

The fact that every sufficiently large positive integer is representable (given relatively prime 
a\, • ••, am) has been rediscovered many times, and makes a good exercise in a course in elemen-
tary number theory. 

The Frobenius problem has a long history. (See [7] for a list of references.) In 1884, J. J. 
Sylvester [8] completely solved the problem for m = 2. He found that if a and b are positive inte-
gers such that (a, b) = 1, then every n>(a- l)(b-1) can be expressed in the form n = xa~hby 
where x, y are nonnegative integers, and ab-a-b cannot be so expressed. That is, the largest 
nonrepresentable number in this case is ab-a-b. Sylvester also found that among the 
(a-l){b-l) numbers 0,1,2, . . . ,ab-a-b, exactly half are representable and half are nonrepre-
sentable. 

When m = 3, no closed-form expression for the largest nonrepresentable number is known 
(except in some special cases), although there do exist explicit algorithms for calculating it. 

In the general case, various upper bounds are known for the largest nonrepresentable num-
ber, and closed-form expressions are known in a few special cases, for example, in the case that 
ax,..., am are in arithmetic progression [ 1; 6]. 

In this note we consider an aspect of the case m = 2 which seems not to have been examined 
previously. We start by defining two notations. 

For given a, b with (a, b) = 1, let NR(a, b) denote the set of numbers nonrepresentable in 
terms of a, b. Thus, NR(a, b) is the set of all those nonnegative integers n which cannot be 
expressed in the form n = xa + by, where x, y are nonnegative integers. Let 

S(a,b) = I,{n:n eNR(a,A)} 

equal the sum of the numbers nonrepresentable in terms of a and b. 
Although Sylvester showed that exactly y2(a-l)(b-l) of the numbers 0, 1, 2, .., ab-a-b 

are nonrepresentable, that is that 

|NR(a,6) |=i(a- l ) (f t - l ) , 
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additional information about the nonrepresentable numbers would be provided by an estimate of 
their sum S(a,b) = £{w \n eNR(a,&)}. 

A crude upper bound for S(a,b) is obtained by taking the sum of the y2(a-l)(b-l) largest 
integers in the interval [0, ab-a-b]. Similarly, a crude lower bound is obtained by taking the 
sum of the l/2(a-l)(b-1) smallest integers in the interval [0, ab-a-b]. This gives 

i ( a - l ) 2 ( 6 - l ) 2 ^ ^ -
© 4 o 4 

an upper bound of order % (ab)2 and a lower bound of order l/% (ah)2. 
C. W. Ho, J. L. Parish, & P. J. Shiue [4] found that if A is any finite set of nonnegative 

integers such that the complement of A (in the set of nonnegative integers) is closed under addi-
tion, then *E{n:n eA}<\A\2. Since the sum of two representable numbers is certainly a repre-
sentable number, we can take NR(a, b) in the place of A, and obtain 

% J ) = Z{/i:wGNR(fl,J)}^ |NR(a,Z?)|2 = - ( a - l ) 2 ( 6 - l ) 2 

4 
an upper bound for S(a,b) of order y4(ab)2, which considerably improves the previous upper 
bound. 

In this note we find that, in fact, 

S (a, b) = —(a- l)(b - l)(2ab -a-b-l\ 

so that the exact order of S(a,b) is y6(ab)2. 
For example, when a = 4, b = 7, the nonrepresentable numbers are 1, 2, 3, 5, 6, 9, 10, 13, and 

17, which sum to 

S(4,7) = 66 = - l ( 4 - l ) ( 7 - l ) ( 5 6 - 4 - 7 - l ) . 

For the remainder of the paper, a, b are fixed positive integers with (a, b) - 1. 
To calculate S(a,h), we use the following idea: 
For each n > 0, let r(n) be the number of representations of n in the form n = sa + tb, where 

s, t are nonnegative integers. That is, r(n) is the number of ordered pairs (s,t) such that 
n = sa + tb. 

For example, r(ab) = 2, since if ab = sa + tb, then (a, b) = 1 implies that a divides t and b 
divides s, so that the only possibilities for (s9t) are (b, 0) and (0,a). 

It is not hard to see that if 0 < n < ab-1, then either r(n) = 0 or r(n) = 1. For suppose that 
r(ri)> 2 and that n = sla + tlb = $2a + t2b where (without loss of generality) sx >s2. Then 0 = 
(sl - s2 )a + (tx -12 )b. Therefore, b divides sx - s2, so sx > b and n > ab. 

Now, we define 

ab-a—b 

n=0 
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Using the fact that r(n) - 0 or r{ri) - 1 for 0 < n < ab-1, we obtain 
ab-a-b 

/ ' ( I ) = £/i[ l-r(w)}= T{n: 1 < n < a b - a - b and r(n) = 0} 

= T{n:n eNR(a,Z>)} = S(a,b). 

Thus, the problem of finding S(a,b) has been reduced to calculating f'(l). It will turn out 
that 

„ , P(x)-l ( x ^ - l ) ( x - l ) 
f(x) = ———, where P(x) = - ^ — - . 
J W x - 1 W (x" - l ) (x*- l ) 

This remarkably simple formula for f(x) was discovered by Ali Ozluk, and appears in a 
more general setting (using al?...,am instead of a, b) in a paper by Ozluk & Sertoz [5]. For our 
case of m = 2, the calculations can be done as follows. 

Let 

V«=0 A«=0 / n=0 

Now, since (a,b) = 1, it follows that 
fl& 

/>(*) = ( x a o - l ) ( x - l ) 
(xa -l)(xb -1) 

is a polynomial, with leading coefficient 1. (This can be seen by factoring both the numerator and 
denominator into complex linear factors. Since (a,ft) = l, there are integers s, t such that 
as+bt = 1. Let £ be any complex number such that both £a= 1 and £b= 1; then £= £*= <f+6' 
= (£")'(£*)' = 1. In other words, no linear factor [except for (x-1)] appears twice in the 
denominator of P(x); hence, every linear factor in the denominator cancels against a linear factor 
in the numerator.) 

Since P(l) = 1 by L'Hospital's rule, we have that P^)~1 is also a polynomial, of degree 
ab-a-b, with leading coefficient 1. 

Now we write, 

P(x)-l_P(x)+J_ = ix«_1)m+ 1 
x - 1 x - 1 1-x 1-x 

= £r(»)*°*"+f;[l-r(«)]*" 
w=0 

ab-l 

n=ab «=0 

Since we know that this power series is really a polynomial of degree ab-a-b with leading 
coefficient 1, we can deduce that the power series coefficient of the (ab-a-b)**1 term is 1, and 
all later power series coefficients are zero. [Therefore, in particular, r(ab-a-b) - 0, r(n) = 1 
for ab-a-b <n<ab-\ and r(n) = r(n - ab) + 1 forn>ab, although we do not use these facts 
in what follows.] 

34 [FEB. 



A REMARK RELATED TO THE FROBENIUS PROBLEM 

Thus, we now have 
P / y \ 1 ab-a-b 

We now proceed to calculate f'{V) • Let y - xa. Then 

(^-IXJC'-I) h i t , 
and 

b-\ b-\ b-\ %,k k 

Y/-5V Y^-^-
f M = f ( x ) " ' = H *-o = *-» X~l =gW 

X~l (*-l)£xk £** 
fc=0 fc=0 

where 
b-l .Jk k b-l 

Now we use 
y — X X — X , i- jr+i ny-\ x 

z = = (x,c +xlc+i + ---+xalc l) 
x-l x-l 

to get 
S(x) = § ( x * + x * + 1 + - + xat-1). 

k=l 

Then, 

S(l) = §(a-l)*=4(a-l)(ft-l)A, A(l)=6, /i'(l) = ̂ (* - l ) . 

Using the fact that 

k 

we get that 

k + (k + l) + ---+(ka-l) = -ka(ka~l)--k(k-l) = -(k2(a2-l)-k(a-l)), 

gXl) = bt(k + (k + l) + --- + (ka-l))Jf\(k2(a2-l)-k(a-l)) 
k=l k=l^ 

= ka2-l)^k2-^(a-l)^k = ka2-l)^(b-l)b(2b^l)-^(a-l)^(b-l)b 
2 k=x 2 k=i 2 6 2 2 

12 4 
Finally, we get 

Ki)g'(i)-g(\)h'(i)= i 
(/i(l))2 12 

J(fl,6) =/>(!)= "^* V, ,~X2 = ^(a-l)(*-l)(2al , -a-&-l) . 
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RATIONAL NUMBERS WITH NON-TERMINATING, NON-PERIODIC 
MODIFIED ENGEL-TYPE EXPANSIONS 

Jeffrey Shallit 
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(Submitted April 1991) 

In a recent paper [3] Kalpazidou, Knopfmacher, & Knopfmacher discussed expansions for 
real numbers of the form 

m A l l l l l 

(1) A = a0 + + 
ax ax + l a2 (a2 + l)(a2 +1) a3 

which they called a "modified Engei-type" alternating expansion. Here a0 is an integer and aY is a 
positive integer for / > 1. If aM > af, this expansion is essentially unique. To save space, we will 
abbreviate (1) by A - {a0,a1?a2?_}. 

They say, "The question of whether or not all rationals have a finite or recurring expansion 
has not been settled." (By "recurring" we understand "ultimately periodic") 

In this note, we prove that the rational numbers -—^ (r an integer > 2) have modified Engel-
type expansions that are neither finite nor ultimately periodic. 
Theorem: Let r be an integer > 1. Then 

- - = {a0,al9a2,...} 
2r + l 

where a0 = 0, and a2i_x = bi9 a2i = 2bt -1 for i > 1, and bx - r, bn+l = 2b% -1 for n > 1. 

Proof: As in [3], we have 

a0 = [_̂ 4j, Al = A-aQ, an -\\l An\ fom> 1, and 

An+1 = (l/an-An)(an + l) for/i>l. 

From this we see that a0 = [j^j = 0 • 

We now prove the following four assertions by induction on n: (i) A2n_x - -2f^', (ii) a2n_l
 = 

bn; (iii) A2n = bj£l
+l); and (iv) a2n =2b„-l. 

It is easy to verify these assertions for n = 1, as we find 
_ 2 _ 2 . 

2r+l 26,+l> (i) A 

(") « i=[drj = r = * i ' 

(iv) ol=[^J = L ^ a J = L2r-l + 7i rJ = 2 r - l = 24 i - l . 
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Now assume the result is true for all i<n. We prove it for n + 1: 

(i) A 

(ii) «2»+i = 

i H - l - l - An ( « 2 » + 1 ) = 
a 2n 2Z>„-1 *„(2*„+l) 

|(2ft„) = 4*„2-l 2i„+1 + l 

1 

_ An+l _ 
= 

26„+1 + l 
2 

= A. «+i-

(iii) *2n+2 •f-u 
l«2«+l 

(iv) a, w+2 
1 

^2»+l ( « 2 n + l + l ) = A>+1 2 A „ + 1 + 1 —tal+l) = — k ^ *„+i(2*„+i + l) 

2ft„+1-l + 
1 

*«+i + l 
= 2*„+1-l. 

a2«+2 . 

This completes the proof. D 

Corollary: For r > 2 , the rational numbers -^r have non-terminating, non-ultimately-periodic 
modified Engel-type expansions. 

Additional Remarks: 

* For r = 1, the theorem gives the ultimately periodic expansion 

273 = {0,1, 1,1,1,...}. 

• For r > 2, the expansion is not ultimately periodic; e.g., 

2/5 = {0, 2, 3, 7, 13, 97, 193, 18817, ...}. 

In this case, we have the following brief table: 

n 
1 
2 
3 
4 
5 
6 

«» 
2 
3 
7 
13 
97 
193 

K 
2 
7 
97 

18817 
708158977 

1002978273411373057 

4 
2/5 
3/10 
2/15 
8/105 
2/195 

89/18915 

The sequence b^fy,... = 2,7,97,18817,708158977,..., corresponding to r = 2, appears to 
have been discussed first by G. Cantor in 1869 [1], who gave the infinite product 

*-HBH 
For more on this product of Cantor, see Spiess [9], Sierpinski [7], Engel [2], Stratemeyer 
[10; 11], Ostrowski [6], and Mendes France & van der Poorten [5]. The sequence 2, 7, 97, 
18817, ... was also discussed by Lucas [4]. It is sequence #720 in Sloane [8]. 
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• The sequence bx,b2,... - 3,17,577, 665857,..., corresponding to r = 3, was also discussed 
by Cantor [1], who gave the infinite product 

Also see the papers mentioned above. The sequence was also discussed by Wilf [12], and it 
is sequence #1234 in Sloane [8]. 

• It is easy to prove that hn+l = BT where BQ = lyBl = r9 and Bn = 2rBn_x - Bn_2 for n > 2. This 
gives a closed form for the sequence (hn): 

(r + V r 2 - l ) + ( r - V r 2 - l ) 
K+i = ~ • 

• 3/7 is the "simplest" rational for which no simple description of the terms in its modified 
Engel-type expansion is known. The first forty terms are as follows: 

3/7 = {0, 2, 4, 5, 7, 8, 10, 25, 53, 62, 134, 574, 2431, 13147, 27167, 229073, 315416, 435474, 771789, 
1522716, 3853889, 7878986, 7922488, 8844776, 9182596, 9388467, 14781524, 135097360,1374449987, 
1561240840, 4408239956, 11166053604, 12014224315, 23110106464, 553192836372, 900447772231, 
1189661630241,2058097840143484, 6730348855426376, 12928512475357529,...}. 

More generally, it would be of interest to know whether it is possible to characterize the 
modified Engel expansion of every rational number. 
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Author and Title Index for 
The Fibonacci Quarterly 

The AUTHOR, TITLE, KEY-WORD, ELEMENTARY PROBLEMS and ADVANCED 
PROBLEMS indices for the first 30 volumes of The Fibonacci Quarterly have been 
completed by Dr. Charles K. Cook of the University of South Carolina at Sumter. 
During their summer meetings, the board of directors of THE FIBONACCI 
ASSOCIATION voted to publish these completed indices on a 3.5-inch high density 
disk. The price for a copyrighted version of the disk will be $40.00 plus postage to those 
individuals that are not members of THE FIBONACCI ASSOCIATION. Members will 
only need to pay $20.00 plus postage. 

For additional information or to order a disk copy of the indices, write to: 

PROFESSOR CHARLES K. COOK 
DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF SOUTH CAROLINA AT SUMTER 
1 LOUISE CIRCLE 
SUMTER, SC 29150 

The indices have been compiled using WORDPERFECT on an IBM compatible 
machine. Should you wish to order a copy of the indices for another wordprocessor like 
WORDSTAR or for use on a MACINTOSH or another non-compatible IBM machine 
please explain your situation to Dr. Cook when you place your order and he will try to 
accommodate you. DO^NOT SEND YOUR PAYMENT WITH YOUR ORDER. You 
will be billed for the indices and postage by Dr. Cook when he sends you the disk. 

A star is used in the indices to indicate when a elementary or advanced problem has 
still not been solved. Furthermore, Dr. Cook is working on a SUBJECT index and will 
also be classifying all articles by use of the AMS Classification Scheme. Those who 
purchase the indices will be given one free update of all indices when the SUBJECT 
index and the AMS classification of all articles published in The Fibonacci Quarterly are 
completed. 
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Moll and Venkatesan showed in [2] that the set of Fibonacci numbers is not context-free. 
Recall that a language is CF (context-free) if and only if there exists a context-free grammar gene-
rating it. It Is only natural to ask where exactly in Chomsky's Hierarchy the Fibonacci numbers 
lie. By the Hierarchy Theorem (Theorem 9.9 of [1]), we have the following proper containments: 

Regular sets c CFL's e CSL's c RE's 

RE's (recursively enumerable languages) are defined to be those sets generated by unrestricted 
grammars. Unrestricted grammars are simply grammars In which all the productions are of the 
form a -> /?, where a and /? are arbitrary strings of grammar symbols, with a^s. By definition, 
CSL's (context-sensitive languages) are generated by CSG's (context-sensitive grammars). 
CSG's are very much like unrestricted grammars, with the added condition that for all produc-
tions a->fi, \a\<\fi\. 

In this paper we offer a CSG G generating the language of unary Fibonacci numbers, 
L = {07|i = Fn}, hence demonstrating the title claim. But before doing this, It will prove useful to 
construct an unrestricted grammar G' for L. 

THE UNRESTRICTED GRAMMAR Gf 

Formally define G'= (y'9T,P',S)9 where V'= {S,A,B9C,D,E,F,G,H9J,K,L9M,N9P}, 
T = {0}, and P' is given by the list of productions: 

1) 
2) 
3) 
4) 
5) 
6) 
7) 
8) 
9) 

10) 
11) 
12) 
13) 

S - » 0 
S-^AEQBOCD 
AE->AH 
HQ-*F0 
F00-^0F0 
F0B-+BF0 
H)C-»GCQ 
0G-»G0 
BG->GB 
AG-±AH 
AHB^ABJ 
BJO -> OBK 
K0-^0K 

U] 
15] 
16] 
n; 
is; 
19; 
20; 
21; 
22; 
23; 
24; 
25; 
26> 

KC-»LC0 
0L-»LQ 
BL-+BJ 
BJC-+BM 
MO^OM 
MD-+NCD 
(W-»M) 
BN-+NB 
AN-+AE 
AE^P 
P 0 - » 0 P 

) PB-^P 
) PCD-»s 

Observe that there are two starting productions. Production 1 generates the nonrecursive base 
cases; production 2 generates all other Fibonacci numbers Fn, with n>2. In general selection of 
production 3 eventually leads to a string of the form 

(*) AE0....050...0CD. 
The 0's between A and B represent unary Fn_l9 while those between B and C represent Fn_v 
Repeated selection of production 3 "increments" (*), while choosing production 23 outputs Fn by 
eliminating the markers. 
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In summary, productions 1 and 2 enable us to generate either the base or recursive case. 
Productions 3 through 11 move Fn_2 into the space between C and D; productions 12 through 22 
perform the updating and restoration of the string to the form of (*). Finally, productions 23 to 
26 output the answer. It is easily verified that G' generates exactly L. D 

Because Gf is an unrestricted grammar that generates L, L is recursively-enumerable. Note 
that Gr is not a CSG because the left-hand sides of productions 23, 25, and 26 are longer than 
their right-hand sides. 

THE CONTEXT-SENSITIVE GRAMMAR G 
We use the method of Example 9.5 of [1] to create a context-sensitive grammar G which 

mimics G'. Instead of the "single" variables of G', we use "composite" variables that combine 0 
with each of its possible contexts. For example, the single nonterminal [AEO] replaces the two 
variable string AE in a particular context. 

Formally define G = (V,T,P,[S]), where V= {[S\, [AEO], [BOCD], [AHO], [AFO], [ABFO], 
[OCD], [ABO], [POCD], [FO], [AO], [BFO], [BO], [GCOD], [COD], [GCO], [OD], [ABGO], [GO], 
[BGO], [GBO], [AGO], [CO], [AGBO], [AHBO], [ABJO], [BKCOD], [BKO], [BJO], [BKCO], 
[KCOD], [KO], [KCO], [BLCO], [LCO], [BLO], [LO], [BJCO], [BMO], [MOD], [OMD], [MO], 
[ONCD], [NOCD], [BNO], [OCD], [NBO], [ANO], [NO], [PO], [PBO], [POCD], [OPCD]}, and P is 
given by the following list of productions, which are grouped according to the production of G' 
they mimic: 

1) [SI-+0 

2) [S] -> [AE0][B0CD] 

3) [AEO] -> [AHO] 

4) [AHO] -> [AFO] 

5) [ABP0][0CD] -»[AB0][F0CD] 
[ABF0]0 -» [AB0][F0] 
[F0][0CD] -> 0[F0CD] 
[AF0]0 -> [A0][F0] 
[BF0]0 -> [B0][F0] 
[F0]0 -> 0[F0] 

6) [AF0][B0CD] -> [ABFO][0CD] 
[AF0][B0] -> [ABF0]0 
[F0][B0] -> [BFO]0 

7) [POCD] -> [GCOD] 
[F0][C0D] -> [GC0][0D] 

14) 

15) 

16) 

[BKCOD] - • [BLC0][0D] 
[KCOD] -> [LC0][0D] 
[BKCO] -> [BLC0]0 
[KCO] -»[LC0]0 

[B0][LC0] -> [J5L0][C0] 
0[LC0] - • [L0][C0] 
[B0][L0] -> [BL0]0 

[BLCO] -
[BLO] -> 

-> [BJCO] 
[BJO] 

17) [BJCO] -> [BMO] 

18) [BM0][0D] -> [B0][M0D] 
[MOD] -> [OMD] 
[BM0]0 -> [B0][M0] 
[M0][0JD] -> 0[MOD] 
[M0]0 -> 0[M0] 

19) [OMD] -> [ONCD] 

8) [^B0][GC0D] -> [ABG0][C0D] 
0[GC0D] -> [G0][C0D] 
[4B0][G0] -> [v45G0]0 
0[G0] -> [G0]0 
[BQ][G0] -> [BG0]0 
t40][GB0] -> [AG0][B0] 
0[GC0] -> [G0][C0] 

20) [0MX>] -> [7V0CD] 
[50][A^0O)] -> [BN0][0CD] 
[A0][NB0] -»[4M)][B0] 
0[M)CD] -> [M)][0CD] 
[B0][JV0] -^ [57V0]0 
0[NB0] -+ [N0][B0 
[A0][N0] -> [v4M)]0 
0[N0] -> [A 0̂]0 
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21) [BNO] -> [NBO] 

22) [ANO] -> [AEO] 

23) [i4£0] -> [PO] 

24) [P0]0 -> 0[P0] 
[P0][P0] -• 0[PP0] 
[P0][0C£>] -> 0[P0CD] 
[POCD] -» [0PC£>] 

25) [PPO] -» [PO] 

26) [OPCD] -> 0 

9) [,4PGO] -> [,4GP0] 
[AGO] -» [GBO] 

10) [4GB0] -» [Af/PO] 
[4G0] -» [AffO] 

11) [dflBO] -> [ABJO] 

12) [APJ0][C0D] -> [40pjRTCQD] 
[ABJ0]0 -> [40][M0] 
[A0][PJ0][C0] -» [,40]0[Mr0] 
[fi/0]0 -> 0[fl£0] 
[PJO][CO] -> opra)] 

13) [P£0][C0£>] -> [P0]|XC0£>] 
[M:O]O -> [PO][XO] 
[£0][C0] -> 0|XC0] 
[BX0][C0] -> [P0][̂ C0] 
[£0]0 -> 0[£0] 

It is straightforward to see that S => a ' (i.e., a string a ' is derived from 5) through G' if and only 
if [$] => a with G, where a is formed from af by grouping with a 0 all markers (i.e., elements of 
V - {$}) appearing between it and the 0 to its left, and also by grouping the first 0 with any 
markers to its left and with the last 0 any markers to its right; e.g., if a! is ,400J?0ZC0Q0D, then a 
is [^40]0[50][^C0]0[0D]. Observe that the right side of every production of G is at least as long 
as the left side. Clearly, G is a context-sensitive grammar. • 

Thus, we have 

Theorem: L is a context-sensitive language. 

Proof: Immediate from construction of G. • 

REFERENCES 

1. J. Hopcroft & J. Ullman. Introduction to Automata Theory, Languages, and Computation. 
New York: Addison-Wesley, 1979. 

2. R. Moll & S. Venkatesan. "Fibonacci Numbers are Not Context-Free." Fibonacci Quarterly 
29.1(1991):59-61. 

AMS Classification Numbers: 68Q50, 68Q45 

1993] 43 



ON EXTENDED GENERALIZED STIRLING PAIRS 

A. G. Kyriakoussis 
University of Athens, Panepistemiopolis, Athens 157 10, Greece 

(Submitted April 1991) 

1. INTRODUCTION 
Following Carlitz's terminology (see [2] and [3]), we define a generalized Stirling pair (GSP) 

as follows: 
Definition 1: Let /and g belong to the commutative ring of formal power series with real or 
complex coefficients and let 

(1) Y,M",k)t"/n\ = (f(t))k/k\ 

(2) £ ^ ( H , * ) / " / I I ! = (*(*))*/*! 
n>0 

Then {Ax(n,k), A2(n,k)} is called a GSP if and only iff and g are reciprocal (inverse) of each 
other, in the sense that 

/te(0) = #(/(0) = * with /(o) = g(p) = o. 
From Carlitz [1], we have that {A^n^k), A2(n,k)} is a GSP if and only if the double sequences 
of numbers Ax{n,k) mdA2(n:)k) satisfy the orthogonality relations 

m m 

(3) Y.A (m>n) A2 (»»*) = Z A2 (m> n)Al(n,k) = 8mk, 
n-k n=k 

where 5mk is the Kronecker symbol, or, equivalently, they satisfy the inverse relations 
n n 

(4) an = Y*Al(n>k)bk, h=Y*A2(n>k)ak, 

where n = 0,1,2,..., and either {ak} or {bk} is given arbitrarily. That is, a GSP is characterized 
by a pair of orthogonality or inverse relations. 

Note that the pair of Stirling numbers of the first and second kind is a special case of a GSP 
[g(t) = e>-l,f(t) = 1n(l + t)]. 

In the present paper, we define an extended generalized Stirling pair, say {B^n^h), 
B2{n,k)}, which covers in particular the above known results and other interesting pairs of 
numbers with combinatorial interpretations. Moreover, similar relations to the orthogonality ones 
are established which characterize this extended generalized Stirling pair. 

Finally, recurrence and congruence relations concerning the numbers Bj(n,k), i = l,2, are 
obtained. 

It is worth mentioning the following result, due to Carlitz (see [2]), which also leads to ortho-
gonality relations. Let {fk(z)} denote a sequence of polynomials such that 

degA(z) = *; /fc(0) = 0for*>0; ( l + f>„x" ln\ ] = £ / * (z)x* / *! 
V n=l J k=0 
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Put 

Then 

f^(-irkFl(n,k)F(kJ) = ±^^ 

The functions Fx(z9z-k)9 F(z9z-k) are called a Stirling pair, and a generalization is given in 
[3]. Note that for fk(z) the Norlund polynomial Bk(z) defined by 

=f;^(z)x*/*! 
ex-l k=0 

where z is an arbitrary complex number (see [9, ch. 6]), the numbers Fx{n9n-k) and F(n9n-k) 
reduce to the ordinary Stirling numbers of the first kind (signless) and the ones of the second kind, 
respectively. 

2, THE DEFINITION OF THE {B1(n,k), J?2(n9ifc)}-SPECIAL CASES 
We define an extended generalized Stirling pair (EGSP) as follows: 

Definition 2: Let h9f9 and g belong to T and let 

(5) ^ { n W ln\ = h(t)(f(t))k lk\, h(t)*0, 
w>0 

(6) ^B2(n9k)tVn\ = ——-(g(t))k/k\ 

Then {Bx(n9K)9 B2(n9k)} is called an extended, generalized Stirling pair (EGSP) if and only iff 
and g are reciprocal of each other. 

Note that if {Bl(n9k)9 B2(n9k}} is an EGSP, then Bt(n9k) = 09 i = 1,2 if £ > n. For h(t) = 1, 
the pair {Bl(n9k)9 B2(n9k)} reduces to the one {Ax{n9k)9 ^ («,&)}. Some interesting special 
cases of extended generalized Stirling pairs are given below. 

1. For h(t) = e\ f(t) = t, g(t) -1, we have the pair 

I) (-ir'Q 
2. For h(i) -eXt

9 2 a real number ./{t)-^-1, g(i) = 1«(1 + ?), we have the pair 

{ ( - ly -^ faM) , R{n,k,X)} 
where Ri(n9k9X) mdR(n9k9A) are the weighted Stirling numbers of the first and second 
kind, respectively (see [5]). Since Rl(n9k9-a) = {-l)n~ksa{n9k) mdR(n,k,-a) = Sa(n9k) 
where sa{n9k) and Sa{n9k) are the noncentral Stirling numbers of the first and second kind, 
respectively (see [8]), we have that {sa(n9k)9 Sa(n9k)} is also an EGSP. 
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3. For h(t) = (\ + t)\ s a real number, / ( f ) = (l + f ) r - l , r & real number, r * 0 , g(t) = 
(l + f ) 7 - ! , we have the pair {G(n,k,r,s), G(n,k,l/r,-s/r)}. When both r and s are 
positive or negative integers, we have that |}G(w,&,r,s) is the number of ways of putting n 
like balls into k different cells of r different compartments each and a (control) cell of s 
different compartments with limited or unlimited capacity (see [6]). 

4. For h(t) = (1 - ff-\ 0, X real numbers, / ( r ) = [ l - ( l - 0*] / 0 and g(t) = (1 + &f -1 where 
ju0=l, we have the pair {(-iy-kSx(n,k9A + O\0), S(n,k,X\0)} where Sfak^ff) and 
5 ( J I , £ , A | 0 ) are the degenerate weighted Stirling numbers of the first and second kind, 
respectively (see [7]). 

Letting X - 0, we see that the degenerate numbers of Carlitz [4] 

{i-iy-'s^kiei s(n,k\e)} 
form a GSP, since Sx{n,k, 0\0) = Sx(n9k\ff). 

Letting 0= 0, we see again that {{-l)n~k Rx{n, *, X), R(n, k, X)} is an EGSP. 

3. CHARACTERIZATIONS 
An EGSP is characterized by a pair of orthogonality relations, as we show in what follows. 

Theorem 1: The numbers Bj(n,k), i = 1,2, are given by the relations (5) and (6), respectively. 
Then, {Bx{nyk), B2{n,k)} is an EGSP if and only if the following orthogonality relations, 

m m 
(7) ^B^m^B^k) = YB,{m^)B2{n,k) = Smk, 

n-k n=k 

hold, where 8mk is the Kronecker symbol. 

Proof: Setting t -> g(t) in (5) and using (6), we get 

(8) (/(g(0))*/*l=EA(^*)Z^(w,»)/,"/w! 
n=k m=n 

a f ffl ^ 

= £iI^(».w)A(».*)r/'»! 
m=k \<n=k J 

Similarly, setting f -» / ( f ) in (6) and using (5), we get 

Kg(f(t))) m=k\n=k J 

The "if part: Substituting the relations (7) into relations (8) and (9), we have 

(f(g(t))f = tk, k = 0,1,2,..., 
and 

<g(f(t)))k=t*, k = 0,1,2,..., K*) ,„,s,^k_,k 
Kg(f(t))) 
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from which we deduce that 

The "only if part: Suppose that f(g(t)) = g(f(t)) = t from relations (8) and (9), then we 
have 

tk/k\=^\]TB2(m,n)Bl(n,k)[tm/m\ 
m=k \<n=k J 

co f m 1 

= Z\2si(m,n)B2(n,k)\t'"/m\ 
m=k [_n=k J 

Equating coefficients oftm/m\,wQ obtain the relations (7). 
By the following theorem, we show that an EGSP is characterized by a pair of relations 

similar to the orthogonality relations. 

Theorem 2: The numbers B^n^k), / = 1,2, are given by (5) and (6), respectively, and the num-
bers Aj(n,k) / = 1,2, are given by (1) and (2), respectively. Thus, {B^n^k), B2(n,k)} is an 
EGSP if and only if 

(10) £A(w,/t)^(/t,*) = f jV* 
n=k V J 

where hf9 j = 0,1,2,..., are the coefficients in the expansion 

j=o 
or 

(11) ftB2(m,n)Ai{n,k) = (™\C-k 
n=k ^ ' 

where h* ,j = 0,1,2,..., are the coefficients in the expansion 
i °° — - ^ = Y,titJ/j\. Kgit)) po J 

Proof: From relation (5), we get 

fjBl{m,k)tm Im^hjin j^A^r^f lr\ 
m=k j=Q r=k 

oo I m-k oo m-Kf \ 

= 1 I [™)hjAl(m-j,k)\tm lm\ 
m=k[j=0\J J J 

Equating coefficients oftm/m\,wQ obtain 

B1(m,k)=fi[fjhm_JA1(j,k). 

1993] 47 



ON EXTENDED GENERALIZED STIRLING PAIRS 

Multiplying both sides of the above relation by A2(n, k) and summing for all n '= k, k + l,...,m, 
we obtain 

m m m s \ 

(12) X2*L(m,#i)4(#i,*)= £ XnK_y4C/>)4(».*)-

The "if" part: Comparing the relations (12) and (10), we get 

Multiplying both sides by tm lm\ and summing for all m = k, k +1,..., we have 
fk oo m j fK °° m j / \ 

77*(0=Z I Y\nlK-jMJ,n)A2in,k)tmlm\ 
K- m=k j=k n=k^J ' 

=i f ZAo,«)A(»^)f7Wm/'M! 
j=k m=j n=k 

or 

77= I l4C/»4(»,*)^r 

from which we obtain 
j 

YdA2(j,n)Al{n,k) = Sjk. 
n=k 

Consequently, {Ax{n,k)y ^(w,£)} is a GSP or, equivalently, f(g(t)) - g(f(t)) = t. 

The "only if9 part We have that f(g(t)) = g(f(t)) = t or, equivalently, the relations (3) 
hold. Consequently, relation (12) becomes 

JtB1(m,n)A2(»,k) = t{n!)h».-jSjk ={fjK-k-

Remark 1: The relations (10) and (11) lead to the inverse relations 

4(»,*) = l(*)C*^0»,ii). 

4. RECURRENCES 

Let {Bx(n,k\ B2(n,k)} beanEGSP. 

Differentiating both sides of relation (5) and of relation (6) with respect to t, we can easily 
obtain the following recurrences: 
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where fj, j = 0,1,..., and ajt j = 0,l,..., are, respectively, the coefficients in the expansions 

/ ( 0 = £ / / / . / ! and A'(0M(0 = ! > / / . / ! , h'(t) = ?-h(t) 
and 

y=i 7=0 dt 

(14) 52(» + l^) = X^ ; . + 1 5 2 (« -7^ ) + X ^ . + 1 5 2 ( « - 7 ^ - l ) 

where gJ} j = 0,1,..., and /?,, 7 = 0,1,..., are, respectively, the coefficients in the expansions 

S(0 = ! > / / . / ! and 1 
h(g)(t)) Kg(t))) p0 

HWIjl 

Remark 2: Let {B^n.k), B2(n,k)} be an EGSP. From the definition of Bell polynomials (cf. 
Riordan [10]), 

/ n\gk (fiy(f2f |X '^ Yn(gfl>gf2>- ->gfn) = Jl 

where the sum extends over all ?i-tuples Oi?J2>~'Jn) °f nonnegative integers such that 
Ji+ J2 + * * *+ in ~ & an(^ h+ 2j2 + * * * + nJn ~ n> o n e maY obtain the following system of linear 
equations, 

(15) yn(gfl,...,gfn) = sHl (ii = l,?,...X 
from which we conclude that, for any given sequence {fj}, the sequence {gj} can be determined. 

We also have 

fey / f e > - < w » 7 w M ) s ^ ^ 
=-Ea«42:*i«iB!<'-.')r 

s>0 S- /SO r=i r\ 

y>o U=o /=o v yJ 7! 

from wliich we get 

(16) /^t^i t f /Vr+AW), 7 = 0,1,... 
7=0 r=i ^ ' 

From relations (15) and (16) we have that, for any given sequences {f} and {hj}9 the sequences 
{^} and {fij} can be determined. 

Consequently, having the recurrence (13), we may conclude the one (14). 
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An interesting special case of the above situation is given by the following Proposition. 

Proposition 1: Let {Bx{n,k), B2(n,k)} be an EGSP and the numbers Bx{n,k) satisfy the 
triangular array recurrence relation 

(17) 51(« + l?A:) = (c1«4-c2A: + C3)51(«,A:) + c4JS1(«,A:-l) 

where ct, i - 1,2,3,4 constants, k = 0,1,..., n +1, n = 0,1,2,..., with initial conditions 

^(0,0) = 1, Bl(n9k) = 0i£n<k9 

then the numbers B2 (n, k) satisfy the triangular array recurrence relation 

(18) B2(n + l,k)- Cry Ci , C'i 

—n—Lk- — 
V C4 C4 CAj 

B2(n9k)+-B2(n9k-l) 
cA 

where k = 0,1,..., n +1, n = 0,1,..., with initial conditions 

52(0,0) = 1, B2(n9k) = 0 if n<k. 

Proof: Multiplying both sides of (17) by f /n\, summing for all n = 0,1,..., and using relation 
(5), we have that (17) holds if and only if 

(19) m = *m and/'(0 = ^ 7 ^ . 
\-cJ l~ c i (0 

Moreover, 

( 1 \ = -c3(l/h(g(t))) 
Hg(t))J c2t + c4 

and 

(c2/c4)t + l 

which, on using (6) and (19), gives (18). 

5. CONGRUENCES 

Let {Bx(n9k)9 B2(n,k)} be an EGSP and {Ax(n9k)9 A^fak)} be the corresponding GSP 
given by Definitions 2 and 1, respectively. In this section we are interested in integer pairs. A 
question now arises: Under what conditions on h{t) and/(7) are the above numbers integers? 

Supposing that h(t) mdf(t) are Hurwitz series, in the sense that the coefficients h} ,7 = 0, 1, 
..., and fj,j = 0, 1, ..., in their expansions are integers, and that h(0) = f(0) = 1; it can easily be 
proved, on using Taylor's expansions and the relation f(g(t)) = t, thatg(t) and l/h(g(t)) are 
also Hurwitz series. In this case, the numbers Ai(n9k)9 z' = l,2, mdBi(n,k)9 *'=.1,2, are inte-
gers, as we can easily see from their definitions and the fact that if / ( 0 ) = 0 and/(/) is a Hurwitz 
series, then (f(t))k I k\9 k = 0,1,..., is also a Hurwitz series, and that Hurwitz series are closed 
under multiplication. 

We have already proved the following Proposition. 
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Proposition 2: Let {B1(n9k)9 B2(n,k)} be an EGSP and {A^k), A2(n,k)} be the corre-
sponding GSP. If h(t) and/(r) are Hurwitz series with h(0) = f'(0) = 1, then Bt{n9k)9 i = 1,2, 
and 4 (n, £), i = l,29 are integers. 

Now, from the proof of Theorem 2, we have 

(20) ^ (m,*) = f ; ( j ) V y 4 ( M ) , * = 1,2,...,w 

and, similarly, 

(21) 52(nf,*) = f ; ^ C / ^ 2 ( 7 , * X * = l,2,...,m. 

Using (20) and (21) and the fact that U\ = 0 (mod/?) for each prime/?, except (P\ = (p) = 1, we 
obtain the following congruence: 

(22) Bi{p9k)^Ai{p9k) (mod/?), / = 1,2, 
for each prime/?, £ = 1,2,..., /?, while ^(/?,0) = hp, B2(p,0) = h*p and 4(/?,0) = 0, z = 1,2. 

Also, using relations (7) and 

Bx(jnjri) - B2(m,m) = 1, 

we obtain 
m-\ 

B2(m,k) = -YdBl(mJ)B2{j,k) 
j=k 

and 
m—\ 

Bl(m,k) = -YdB2(mJ)Bl(j,k) 
j=k 

from which, on using (22) and (10), we get 

Bt (/?, k) = 4 (/?, k)^0 (mod /?), i = 1,2, 

for each prime/?, & = 1,2,...,/?-1. 
As examples of integer EGSP's we give, using Proposition 2, the special cases of EGSP's 

referred to in the present work (§2) for X, s, 0 integers and r = ±1. 
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GENERALIZED PASCAL TRIANGLES 
AND PYRAMIDS 

THEIR FRACTALS, GRAPHS, AND APPLICATIONS 

by Dr. Boris A. Bondarenko 
Associate member of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 

Translated by Professor Richard C. Bollinger 
Penn State at Erie, The B eh rend College 

As stated by the author in his preface, this monograph is devoted to the more profound questions 
connected with the study of the Pascal triangle, and its planar as well as spatial analogs. It also 
contains an extensive discussion of the divisibility of the binomial, trinomial, and multinomial 
coefficients by a prime p, as well as the distributions of these coefficients with respect to the 
modulus p, or ps, in corresponding arithmetic triangles, pyramids and hyperpyramids. Particular 
attention is also given to the subject of fractals obtained from the Pascal triangle and other 
arithmetic triangles. The author also constructs and investigates matrices and determinants whose 
elements may be binomial, generalized binomial and trinomial coefficients, and other special values. 
Furthermore, the author pays particular attention to the development of effective combinatorial 
methods and algorithms for the construction of basis systems of polynomial solutions of partial 
differential equations, including equations of higher order and with mixed derivatives. The 
algorithms he proposes are invariant with respect to the order, and the iteration, of operators arising 
in connection with the differential equations. Finally, the author also discusses non-orthogonal 
polynomials of binomial type, and polynomials whose coefficients may be Fibonacci, Lucas, Catalan, 
and other special numbers. 
The monograph first published in Russia in 1990 consists of seven chapters, a list of 406 references, 
an appendix with another 126 references, many illustrations and specific examples. Fundamental 
results in the book are formulated as theorems and algorithms or as equations and formulas. 
The intention of the translator is to make the work of Dr. Bondarenko widely accessible because he 
feels that Dr. Bondarenko has done the mathematical community a valuable service by writing a 
useful and interesting compendium of results on Pascal's triangle as well as its ramifications. 
The translation of the book is being reproduced and sold with the permission of the author, the 
translator and the "FAN" Edition of the Academy of Science of the Republic of Uzbekistan. The 
book, which contains approximately 250 pages, is a paper back with a plastic spiral binding. The 
cost of the book is $31.00 plus postage and handling where postage and handling will be $6.00 if 
mailed to anywhere in the United State or Canada, $9.00 by surface mail or $16.00 by airmail to 
anywhere else. A copy of the book can be purchased by sending a check made out to THE 
FIBONACCI ASSOCIATION for the appropriate amount along with a letter requesting a copy of 
the book to: RICHARD VINE, SUBSCRIPTION MANAGER, THE FIBONACCI ASSOCIATION, 
SANTA CLARA UNIVERSITY, SANTA CLARA, CA 95053. 

52 [FEB. 



MULTINOMIAL AND g-BINOMIAL COEFFICIENTS 
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1. INTRODUCTION 
Hexel and Sachs [3] examined the rfi1 row of Pascal's triangle and worked out formulas for 

the number of occurrences of each residue modulo p, where p is any prime. ¥orp > 3 the formu-
las are very involved. Davis & Webb [1] recently considered the same problem modulo 4, and 
they pointed out that a composite modulus requires an approach different from the one in [3]. To 
date, 4 Is the only composite modulus for which formulas for the number of occurrences of each 
residue have been obtained. It appears to be very difficult to find results of this type for arbitrary 
composite moduli. 

The purpose of the present paper is to extend the results of [1] and [3] to multinomial and 
q-binomial coefficients. Thus, in section 3 we examine the ^-binomial coefficients H , 0 < r <n, 
and determine the number of occurrences of each residue modulo 4. In section 4 we consider the 
same problem modulo p, and we obtain explicit formulas for p = 3. For p > 3, we show how 
formulas can be worked out in terms of the results of [3]. Similarly, in section 6 we examine the 
multinomial coefficients («1? «2, ...,nr) such that nx +n2 + ••• + nr =n, and we find formulas that 
enable us to compute the number of occurrences of each residue modulo 4. In section 7 we 
consider the same problem modulo/?. An explicit formula forp = 3 Is determined, and formulas 
for p > 3 are found In terms of the results of [3]. In sections 2 and 5 we state the basic properties 
of the ^-binomial and multinomial coefficients that, we need, and we also explain the notation used 
in this paper. 

2, g-BINOMIAL COEFFICIENTS^ PRELIMINARIES 
The ^-binomial coefficient is defined by 

(2.1) 
y=i q l 

1 

for q an indeterminate and n a nonnegative integer. When considering M modulo j , for any j , 
unless otherwise stated q will always be a rational number, q~ulv, with gcd(w,v) =gcd(u,j) = 
gcd(v, j) = 1 The g-binomial coefficient Is a polynomial In q, and for q = 1 it reduces to the ordi-
nary binomial coefficient. It is clear from (2.1) that, for r > 0, 

(2.2) 

(2.3) 

n 
r 

n 
r 

= n-\ 
r-\_ 

n 
n-r 

+ qr ~n-\ 
r 

1993] 53 



MULTINOMIAL AND 0-BINOMIAL COEFFICIENTS MODULO 4 AND MODULO P 

As much as possible, we shall use the notation of [1].. Thus, if 
k 

(2.4) « = X ai2' ( e a c h ai ~ ° 0I" X)' 
/=0 

we define 

7=0 

Similarly, we define 

C(»)-tc,, £>(*) = £</„ 
7=0 7=0 

where ct = 1 if and only if a/+1 = 1, a, = 0, and dt = (<z/+1)(tf/). That is, C(«) is the number of "10" 
blocks and D(n) is the number of "11" blocks in the base 2 representation of n. The same 
notation was used in [1]. 

We shall also use the notation 

\"l =7 if and only if r? \ = j (modw) (0<j<w-l), 

and N^w\q;n) is the number of ones, N^w\q;n) is the number of twos, N^w\q;n) is the number 
of threes, etc., in the set 

o l {"}„'-{"}. 
In [2] Fray proved a rule for finding the highest power of a prime p dividing M. The 

following lemma is a special case of that rule. 

Lemma 2.1: help be a prime number and let e be the smallest positive integer such that qe = 1 
(mod £>). Write n, r, and n-r uniquely as 

k 
(2.5) n = a_l-\-e-a = a_l+e^aip1 (Q^a^Ke, 0<af<p), 

7=0 

k 
(2.6) r = b_l+e-b = b_l+eYdbipi {0<b^<e, Q<bt<p), 

7=0 

k 
(2.7) n-r = w_l+e^wipi (0<w_x<e, Q<wt<p). 

7=0 

We can write 
b^+w^ =es0+a_l 

eQ+bQ+w0=pe1+a0', 

£k-i+bk-i+Wk-i=P£k+ak-u 
£k+h+wk=ak> 

with each si - 0 or 1. Then H is relatively prime to/? if and only if si - 0 for each /'. 
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Note that (2.5)-(2.7) are possible by the division algorithm. Also note that whenp = 2, we 
have e = 1 and a_x = b_x - w_x = 0. 

Fray [2] also proved the following useful lemma. 

Lemma 2.2: Let n and r have expansions (2.5) and (2.6). Then 

a - i 

* - i . 
tf„ V «i 

hkh b
k | (mod/?). 

The second congruence of Lemma 2.2 follows from a well-known theorem of Lucas. 
Let aj(p;n) denote the number of g-binomia! coefficients H , r = 0,l,...,n, divisible by 

exactly pJ (that is, divisible by pJ but not by pJ+l). Fray [2] proved that if n has expansion (2.5), 
then 

®o(P',n) = O-i + 1)Oo +1) '•• (% + 1). 
In particular, forp = 2, let 

aj(n) = aj(2;n), 
so 

«o(«) = 2B(n). 
The writer [4] proved that 

(2.8) ax(ri) = 
C | « _ ^ j 2 ^ ) - 1 if ^ 3 (mod4), 

C(n)2B{n)-1 if 9 = 1 (mod 4). 

3. g-BINOMIAL COEFFICIENTS MODULO 4 

We shall use the notation of section 2, and for convenience we let 

Hi-
Nj(n) = N^(q;n). 

Also define 

N(n) = (N1(n),N2(n),N3(n)). 

First we take care of some trivial cases. If q = 0 (mod 4), we see from (2.1) that 

{"} = 1 (r = 0,!,...,») 

l{q = 2 (mod 4), we see from (2.1) that 

1993] 55 



MULTINOMIAL AND Q-BINOMIAL COEFFICIENTS MODULO 4 AND MODULO P 

If q = 1 (mod 4), then 

[n\ (n {-}= r l (mod 4), 

and the results of [1] can be used. 
In the remainder of this section we shall assume q = 3 (mod 4). We shall also use the 

notation of section 2. 
We know from (2.3) that 

N2(n) = C\ 

Note that 

c(n-aA = \C{n) if n * 2 (mod 4), 
V 2 ) \c{n)-l if/? = 2 (mod4). 

It is clear from (2.2) that 

<?•*> { " H ^ l K ^ f ; 1 } (m°d4>' 
and the following lemmas are clear from (2.1), (2.5), and Lemma 2.1. 

Lemma 3.1: When k > 1, N(2k) = (2,1,0). 

Lemma3.2: Let n = 2k + L, where 0<L<2k. Then 

{"H (mod2) (£<r<2^) . 

The analogous results for ordinary binomial coefficients are proved in [1]. By (3.1) and 
Lemmas 3.1 and 3.2, we see that the g-binomial Pascal triangle modulo 4 for q = 3 (mod 4) has 
the following form: 

1 
1 1 

101 
1 1 1 1 

1 0 2 0 1 

(2* row) 10... 0 2 0... 0 1 
(2*+lrow) 1 10.. . 0 2 2 0... 0 1 1 

By using (3.1) and comparing this triangle with Pascal's triangle modulo 4 (see [1]), we see 
that the two triangles satisfy the same recursive relations. That is, in Part 1 and Part 2 of [1], we 
can replace (• • •) by {• • •}. We shall not reproduce all those relations here, but we note the follow-
ing. 
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Lemma33: Suppose n = 2k + L, 0<L<2k 

(a) I(L<2k-\thm 

{"} IS < 
ifO<r<L, 

[=0 (mod2) ifL<r<2k. 

(b) l?2k~l<L<2k,iherv 

{"} is < 

= 0 (mod 2) 

If 0 < r < 2 k-i 

+ 2{r_^_x| (mod4) If 2k~l <r<L, 

I f Z < r < 2 \ 

Because of the symmetry of the triangle, I.e., property (2.3), we now have all the information 
we need. 

Recall that D{n) > 0 if and only if the base 2 representation of n has a " 11" block. 

Theorem 3.1 If D(n) = 0, or n = 3 + $rn withD(m) = 0, thenJV1(/i) = 2i?(',) 3ndN3(n) = 0. 

Proof: We use induction on «. The theorem is true for « < 3 ; assume it Is true for all non-
negative integers less than n. If n satisfies the hypotheses of the theorem, then n - 2k + L with 
L < 2k~\ and eitherD(L) = 0orL = 3 + %y with D{y) = 0. Thus, 

Nl(L) = 2B{L) and N3(L) = 0. 

Note that B{n) = 5(Z) +1. We know 

;}-f-0 If 0 < r < Z, 

[=0 (mod2) I fZ<r<2*. 

Since M = l n \ and 2k > nl 2, we have 

Nx(n) = 2NX(L) = 2 ^ and #3(/i) - 0. 

This completes the proof. 

Theorem 3.2: If D(n) > 0 and n * 3 + &w with D(/w) = 0, thenNx(n) = N3(n) = 2B(n)~\ 

The proof of Theorem 3.2 is the same as the proof of Theorem 6 in [1], with (•••) replaced 
by {• • •}. We shall not reproduce It here. 

In summary we have: 

© If D(n) = 0 or n = 3 + Hm with D(m) = 0, then 

N(n) •• _ iB(n) ,c !!z£°.X*<"y\o\ 
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• If D(n) > 0 and n * 3 + 8m with D{m) = 0, then 

2#(«)-i A n~ao V^W-i 2j5(w)~1 f 
N(n) = 

4. g-BINOMIAL COEFFICIENTS MODULO P 

In this section we assume/? is an odd prime and w has expansion (2.5). We shall use the fol-
lowing notation: 

Let Aj be the number of coefficients at (-1 < i <k) in (2.5) that are equal toy. 

Let t be the order of 2 modulo/?, and for m > 0 let t(m) be the smallest nonnegative solution 
x to 2* = m (mod/?), if one exists. 

Recall that N^\q; n) is the number of ^-binomial coefficients M congruent to m modulo/?. 

Theorem 4.1 Suppose n has expansion (2.5) with 0 < a_x < 1 and 0 < at < 2 for each i > 0. 

(a) If 2* = m (mod /?) has no solutions x, then Njf\q; n) = 0. 

(h) If2x = m (mod /?) has solutions, then 

(4.1) N^{q; n) = 2* i^t(mf+jt)2A^m)-Jt, 

where t(m) + st < A^ < t(m) + (s+l)t. 

Proof: We see from Lemma 2.2 that to have M = m (mod/?) we must have h integers / such that 

( j W f ) and 2h=m (mod/?). 

Thus, part (a) is clear. Now 2h = 2t{jn) (mod/?) implies 2h = t(m) (modt), so h = t(m) + jt for 
some j . There are (AA ways to have h terms (f); there are two choices, for each of the remaining 
A^-h terms (f), namely, bt -0 or ft,r =2; there are two choices for each of the Al terms (l

b\ 
namely, bt = 0 or bt - 1. Thus, we have (4.1), and the proof is complete. 

Corollary: If/? = 3 [and thus q = ±1 (mod 3)], we have 

N[3\q;ri) = --2*(3A* +1) and N!?\q;ri) = -.2*(3* -1). 

Proof: Since/? = 3, we have all the hypotheses of Theorem 4.1 with t(l) = 0, t{2) = 1, and t = 2. 
Thus, 

The formula for N^3\q; n) is proved in a similar way, thus completing the proof. 
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Af>(3;») = 

By Lemma 2.2, it is clear that 

l2^>(l;a) if^, = l, 
where a is defined by (2.5) and N^\l; a) is the number of binomial coefficients (f\ that are con-
gruent to m modulo p. Thus, when a_x = 0 or 1, the formulas of [3] can be used to evaluate 
N^i/Z,n) • More generally, define y(r) to be the smallest nonnegative solution to 

\x = m (mod/?). 

Then the following theorem is clear from Lemma 2.2. 

Theorem 4.2: Ifn has expansion (2.5) mdy(r) is defined as above, then 

r=0 

For example, letp = 5 and q = 3 (mod 5), so e = 4. We have 

|X(5)(l;a) if « = 0 (mod 4), 
pJVPOja) i f / i s l (mod 4), 
12#1

(5) (1; a) + 7\ff (1; a) if n = 2 (mod 4), 
[2#1

(5)(l;a) + 2#2
(5)(l;a) ifw = 3 (mod 4). 

Theoretically, then, we can evaluate Njf\q; n) for any q by using Theorem 4.2 and the for-
mulas of [3]. 

For completeness, we note that for p - 2 and q # 0 (mod 2) we have 

^ ( ? ; « ) = K + l)(a1 + l ) - ( a i + l) = 25W, 

where n has expansion (2.4). 

5, MULTINOMIAL COEFFICIENTS: PRELIMINARIES 

The multinomial coefficient is defined by 

(5.1) (Wi,W2> —>«r) = —j 1 7 ( « l + - - + « r = ^ ) -

Obviously (5.1) reduces to the ordinary binomial coefficient for r = 2. In this paper we consider 
(5.1) for all compositions (ordered partitions) of n into r parts. The order of the terms %. . . ,nr is 
important; we are distinguishing between (0,0,1,2) and (1,0,0,2), for example. Note that 0 can 
be one or more of the parts. It is well known that the number of compositions of n into r parts is 

("•'i- . . . . . 
Fray [2] proved the following rule for determining the highest power of a prime p dividing 
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Lemma 5A: Let n have base/? representation 

(5.2) n = ̂ ajP
J' (0<a y < J p ) 

andlet w = wl + n2+--- + /ir. For/ = l,...,r, let ni = Jlkj=0aUj.pJ (0<a ; ; </?). If 

^0+aU+";* + ar>l=/?ffl+alV 

where each £;• = 0,1, ..., o r r - 1 . Then the highest power of p dividing fa,n2, ...,«r) is / , 
where 5= £o + ̂ i + ""'+fifr-i-

We shall use the notation i?(«), C(n), and JD(«) given in section 2. 
Let w have basep expansion (5.2) and let 6^ fa n) be the number of multinomial coefficients 

fa, n2,...,nr) divisible by exactly pJ. The writer [5] proved 

e>(nn>=(\+_v1)('"r
+:r1)-{\+-r1} 

Forp = 2, we have 

(5.3) <%\r;n) = rJ*»\ 

and the writer [4] proved 

(5.4) 0{2\r- n) = C(n)^XB^1 + D(n)(rXB^\ 

For w = 0,1,..., j - 1 , we define N^lfa) as the number of multinomial coefficients (n1? w ,̂ 
..., nr) such that fa, r^,..., nr) = w (mod j). 

6. MULTINOMIAL COEFFICIENTS MODULO 4 

The notation for this section comes from sections 2 and 5. For convenience we shall use 

so that 
(6.1) Nra(n)=6f?\r;n) 
and 

^,o(") = ("+;"1)-^,1(«)-Arr ; 2(«)-^3(«). 

We also define 

By (5.4) and (6.1), the only problem, then, is to find Nrj(n) and JVr 3(«). 

Theorem 6.1: If D(n) = 0, thenN^fa) = r5(w) and Nr^(n) = 0. 
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Proof: Suppose D(n) = 0 and n = nl+n2 +°~ + nr. Tf(nl9n29...,nr)$0 (mod 2), then by Lemma 
5.1 we know if ay; =0 thenayj =0 fori = l,...,r. Also, if aj = 1 thena7j = 1 for exactly one i. 
Since 

(6.2) ft,, *)-(;)(Vl"Tl"' 
and since D(n -nx «,-) = 0 for/ = 1,..., r, we see that none of the binomial coefficients on 
the right side of (6.2) is congruent to 3 modulo 4. Thus, (n^r^, ...,nr) = 1 (mod4), and the 
proof is complete. 

Hence, if D{n) = 0, we have 

The situation is much harder if D{n) > 0. We shall use the following notation: 

[0 otherwise. 
Since 

we have 

^M(") = Z [ / I ( » , 0 - ^ - U ( " - 0 + / 3 ( » , 0 - ^ - U ( » - 0 ] -
/=0 

We refine this in the next theorem by using the facts that if (% T^, ...,nr) # 0 (mod 2), then in 
Lemma 5.1 each st = 0, and 

Theorem 6.2: Let n have base 2 representation (2.4). Then, for r > 3, 

Arr;1(») = ^_1^»)+i+X(^-if("-V3(»,0+I[/i(»,0-/3(»>0K-u("-0, 
i i 

where each sum is over all integers / such that 0<i<n and 

j = Hej2J ( 0 < ^ < ^ ) 

To illustrate Theorem 6.2, suppose 

(6.3) n = 2k-l+2k. 
Then, using Theorem 6.1 and the results of [1], we know f3(n, i) = 1 for i = 2k~l and / = 2k, and 

Nr_u(2k-l) = Nr_u(2k) = r~l 
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Theorem 6.2 gives us 

K,i(") = Nr_u(n) +1 + 2(r -1) - 2(r -1) = Nr_u(n) +1. 

Thus, if»is given by (6.3), we have 

(6.4) NrA(n) = r, Nr^n) = r2-r. 

Now consider 

(6.5) » = 2i+2fc_1 + 2 t ( 0 < s < £ - 2 ) . 

Then, using [1] and (6.4), we have 

fx (n, i) = 1 for i = 2* and / = 2k~l + 2k, 
f3(», i) = 1 for i = 2 M , 2k, 2s + 2fc_1, and 2 ' + 2k, 

_ J ( r - l ) 2 forx = 2i + 2fc-1 andx = 2s + 2*, 
^ U ( r - 1 forx = 2*-1+2*,2',2*-1, and2*. 

Theorem 6.2 gives usNrl(n) = Nr_ll(n) + 2r-1. Thus, if n is given by (6.5), we have 

Nr£n) = r\ Nr<3(n) = r3-r2. 

Using this method on the other cases ofB(n) = 3, we can prove the following. 

Theorem 6.3: Suppose B(n) = 3 and D{n) > 0. Then 

|(r2' w f t V + f 3V'r3 ~r2] ifD(n)=i? 

#r (") = ]) W W - 7 
( r 3 - 2 r 2 + 2 r , C ( / i / 2 V + 2 ^ ^ 2 r 2 - 2 r ] ifD(n) = 2. 

We could next look at the case B(n) = 4 and get similar results. In general, after examining 
the case B(n) =j, we can move to the case B(n) =7 + 1. As j increases, the formulas become 
much more complicated. 

7. MULTINOMIAL COEFFICIENTS MODULO P 

Let /? be an odd prime and recall that N^(n) is the number of multinomial coefficients 
(nx,n1,...,nr) such that (w^w^,...,/^) =m (mod/?). 

Let w have base/? expansion (5.2) and let Aj be the number of coefficients at (0 < at < k) that 
are equal to j . 

We shall use the definitions of t and t{m) given at the beginning of section 4. 

Theorem 7.1: Let « have expansion (5.2) and suppose that 0 < a7 < 2 for each at. Let #2 be a 
positive integer. 

(is) If there are no solutions to 2X = m (mod/?), then#r
(^(ft) = 0. 

(b) If there are solutions to 2X = m (mod/?), then 
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CM) <2<») = ^ | ( , ( m f + j 7 ) Q 
where t(m) + st<A2< t(m) + (s+l)t. 

t(m)+jt 
^A2-t(m)-jt 

Proof: Suppose {nl,n2,...,nr)=m (mod p). Since m > 0, in Lemma 5.1 we must have st = 0 for 
/ = 0,1,..., k -1. In (6.2) we see that each binomial coefficient on the right side will be congruent 
to 2W modulo p for some w > 0, and we must have 

(7.2) h = Z(w) and 2h=m (mod/?). 
Thus, part (a) is clear. We now count the number of ways (7.2) can happen. Pick h of the A2 

rows adding up to 2, and pick two positions in each of these rows for l's. There are i^jX] waYs 

of doing this. In the remaining A^-h rows, pick one position in each row for a 2. There are 
„A,-h ways of doing this. We see from the last part of Lemma 2.2 that when the binomial 
coefficients on the right side of (6.2) are broken down in terms of their coefficients modulo p, 
then we have 

(nlyn2,...,nr) = 2h=m (mod/?). 

As we saw in the proof of Theorem 4.1, h- t(m) + jt for some j , and (7.1) follows. This com-
pletes the proof. 

Corollary: Let/? = 3. Then 

+ \r 

N%(n) = ±.rA> r + (a) 
We now prove a theorem analogous to Theorem 6.2. It follows immediately from 

(/I1,/l2,...,Wr) = ^J(/l2,. . . ,Wr). 

Theorem 7.2 let m be a positive integer and suppose (") # 0 (mod/?). Letg(j) be the smallest 
positive integer such that (n) -g(j) = m (mod p). Then 

<p2(")=I^Lo)("-7X 
J 

where the sum is over ally such that 0<j<n and ("1 # 0 (modp). 
Ifn has the base/? expansion (5.2), then in Theorem 7.2 the sum is over ally such that 

k 

j=TeiPj (o<^<^). 
;=0 
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For example, let p = 5, r = 3, w = 11 = 1 + 2 • 5. Then 

^if? (11) = ^if? (H) + ̂ if? (10) + 7V<f3) (6) + ̂ (f3) (5) + + î <f> (0) 
= 4 + 2 + 0 + 0 + 2 + 1 = 9. 

Similarly, we can show that W$(l l ) = 9. 
Theoretically, then, if we know the values of N^(n)9 we can use Theorem 7.2 to find 

N^(n) for any r. 
For completeness, we can use (5.3) to obtain N™(l) = rB{n). 
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1. INTRODUCTION 
The Fibonacci cube [6] is a new class of graphs that are inspired by the famous numbers. 

Because of the rich properties of the Fibonacci numbers [1], the graph also shows interesting 
properties. For a graph with AT nodes, it is known [6] that the diameter, the edge connectivity, 
and the node connectivity of the Fibonacci cube are in the order of 0(log N), which are similar to 
the Boolean cube (or hypercube, «-cube, cosmic cube [9]). A possible application of the 
Fibonacci cube is in the interconnection of large-scale multi-computers or distributed networks. 
Here we show that the Fibonacci cube has attractive recurrent structures (called self-similarity, 
§2) in the following sense: 
1. A Fibonacci cube can be decomposed into subgraphs which are also Fibonacci cubes by 

themselves; 
2. By suitably defining equivalence classes of vertices in the Fibonacci cube and merging the 

edges between vertices in different classes in a natural fashion, the resulting graph (of the 
equivalence classes) is again a Fibonacci cube. 
This structural recurrence is useful to derive (divide-and-conquer) algorithms for a parallel 

computer based on the Fibonacci cube [6]. It is also useful to derive the embeddings of other 
types of graphs [8]. (See also §4 for discussions.) 

This paper is organized as follows. Section 2 defines the Fibonacci cube based on the 
Fibonacci representation of integers. Section 3 provides a characterization of the new graph and 
discusses various decompositions. Section 4 briefly summarizes the results that are presented and 
discusses possible applications. The rest of Section 1 lists notations to be used throughout this 
paper. 

A graph G is a pair (V, E), where V denotes the set of vertices (or, alternatively, nodes) and 
E the set of edges. The following terminology and notations will be used [3]: 
• We write G2 e Gx (or, alternatively, Gt 3 G2) if G2 is a subgraph of Gx. Write Gx = G2 if the 

two graphs are isomorphic. 

• A subgraph of a graph G = (V, E) induced by a subset of its vertices, V e V, is the graph 
(V\ E>). where E' = {(/, j)eE:i, j e F } 

• We write Gl^>G2 to denote the graph (V1UV2,E1KJE2), and Glr^G2 to denote (fjoJ^, 
E1r\E2), and UJL/Q = G 1 u G 2 u - u G r 

• If G2r\G3> = ($, (/>), i.e., they are disjoint, then we write Gx = G2^G3 instead of G2 uG3) to 
emphasize that Gx consists of two disjoint subgraphs. Also, for convenience, write 
U7=/ Gl-m-G if the graphs are all isomorphic, i.e., Gt = G for 1 < i < m. 
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2. DEFINITION OF FIBONACCI CUBE 
The Fibonacci cube can be defined by using the Fibonacci representation of integers. 

Definition: Assume that i is an integer, and 0 < i < Fn9 where n > 3. The order-n Fibonacci code 
(or, simply, Fibonacci code, if n is implicit) of i is a sequence of n-2 binary digits 
(Vi,...,b3,b2)F, where 
I. hj -bj+l = 0 for 2 < j < {n-2), and 

Example: By Zeckendorfs theorem [10], any natural number can be uniquely represented in its 
Fibonacci code. The Fibonacci representation of an integer N > 0 can be obtained by using the 
following greedy approach [4]. First find the greatest Fk that is less than or equal to N9 assign a 
" 1 " to the bit that corresponds to Fk9 then proceed recursively for N- Fk until the remainder is 0. 
The unassigned bits are 0's. Here the integers from 1 to 20 are given in this notation: 

0 = (000000),, 1= (000001),, 2 = (000010),, 3 = (000100),, 4 = (000101),, 5 = (001000),, 
6 = (001001),, 7 = (001010),, 8 = (010000),, 9 = (010001),, 10 = (010010),, 11= (010100),, 

12 = (010101),, 13 = (100000),, 14 = (100001),, 15 = (100010),, 16 = (100100),, 17 = (100101),, 
18 = (101000),, 19 = (101001),, 20 = (101010),. 

Remarks: Notice that in the Fibonacci code, the rightmost bit corresponds to F2. rather than Fv 

Note also that no consecutive l's appeared in the Fibonacci codes; to represent a number between 
0 and Fn -1 requires n- 2 bits. Therefore, to represent the number 21 = (1000000)^ requires an 
additional bit (cf. the preceding example). • 

Let I = (bn_l9...9b39b2) and J = (cn_1,...,c39c2) denote two sequences of 0's and l's. The 
Hamming distance between / and J, denoted by H(I,J), is the number of bits where the two 
sequences differ. 
Definition [Fibonacci Cube of Order nj: Let F(i) denote the Fibonacci code of i. The 
Fibonacci cube of order n, denoted by Tn9 is a graph (Vn9 E„)9 where V„ = {09l9...9Fn-l) and 
En = {QJ):H(F(i),FU)) = l, 0<iJ<Fn-l}. Define T0 = (£ ft. • 

Figure 1 shows the Fibonacci cubes Tt for 1 < 7 < 7. 
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FIGURE 1. Fibonacci Cubes 
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Remarks: 
1. The definition of Fibonacci cube parallels that of Boolean cube (hypercube). Specifically, the 

Boolean cube of dimension n, denoted by Bn, is a graph (V^ En), where Vn - {0,1,..., 2n -1} 
and (ij) eEn if mdorAy if H(IB,JB) = I, where IBmdJB denote the (ordinary) binary 
representation of/ andj, 0 < /, j < 2n -1 (Fig. 2). 

2. The preceding definition of the Fibonacci cube can be modified to accommodate a Fibonacci 
cube of size (i.e., number of nodes) Nfoi an arbitrary integer N > 1 [6], However, as we will 
see, when the size of the cube is a Fibonacci number, the Fibonacci cube has a recurrent 
structure and hence is more desirable. 

0000 0001 D 1000 1001 

FIGURE 2. A Boolean Cube 

3, RECURSIVE DECOMPOSITIONS OF THE FIBONACCI CUBE 
In [6] it is shown that the Fibonacci cube of order n, where w>2, contains two disjoint 

subgraphs that are isomorphic to T ^ and Fw_2, respectively (with proper renaming of the vertices 
in Tn_2); moreover, there are exactly Fn_2 edges linking the two subgraphs together. 

Theorem 1 (Characterization of the Fibonacci Cube): Let Tn - (Vn, En) denote the Fibonacci 
cube of order n, where n > 2. Let LOW(w) (resp., HIGH («)) denote the subgraph induced by the 
set of nodes in {0,1, ...9F„_l -1} (resp., {i^_1? .~9F„-1]). Then 

1. LOW(TI) = 1 ^ and HIGH(n) = Tn_2; 

2. L e t O ^ i ^ F ^ - l a n d F ^ ^ j ^ F , - ! . (i, j) GY„ if and only if j-i = Fn_v 

Proof: (We refer to [6].) • 

Example: (Fig. 1). F6 can be decomposed into two subgraphs that are isomorphic to F5 and F4, 
respectively. There are F4 = 3 edges connecting the two subgraphs. 

The above characterization can be expressed in terms of Fibonacci codes. 

Corollary 1: Assume that n > 2. Let G0 (resp., Gx) denote the subgraph of Tn induced by the 
set of vertices {i\i = {0bn_2bn_v..b2)F} (resp., {J:j = (lbn_2bn_v..b2)F)). Then 

2. Let / = (0bn_2bn_3...h2)F GG0 mdj = (Ib^K-i-hDF eGv (/, j) GF„ if and only if bk = bf
k 

foin-2>k>2. 

Proof (outlines): 

Statement 1: Let i = (bn_1...b2)F. There are two cases: 
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1. 0 < i < Fn_x, in this case bn_x = 0. 
2. Fn_x < / < F„, in this case bn_l = 1. 
The result then follows by observing that G0 = LOW(w) and Gx = fflGH(w). 
Statement 2 follows from Statement 2 of Theorem 1. • 

3.1 A Generalization 

A generalization of Theorem 1 can be obtained by applying the decomposition recursively. 
Recall that U7=/ Gt = m- G if Gt = G for all 1 < i < m. 

Example: In Figure 1 we see that T6 contains a subgraph T5 and a subgraph T4 (after renaming 
vertices). Since T5 can be decomposed into a subgraph T4 and a subgraph T3, so T6 contains two 
disjoint T4 and one F3. Using the notations introduced, we will write T6 z> (2 • F4 ^ T3). 

Theorem 2: Assume that 2<k<n. The Fibonacci cube of order n (Yn) admits the following 
decompositions: 

(h) r„ s (Fn_k+l • r̂  w F„_^ • r^) . 
iVoo/* We will prove Statement (a) by induction on n. 

(Basis) If n = 2, then k = 2 and the statement can be easily verified. 
(Hypothesis) Assume that the statement is true for n<N. 
(Induction) Consider the case n — N +1. By Theorem 1, T^+i consists of one T^ and one 

TN_X. By hypothesis, for any k between 2 and N-l, TN (resp., r ^ ^ ) may be divided into Fk 

copies of F^_£+1 and Fk_x copies of TN_k (resp., Fk_x^copies of r(Ar_1H/r_1)+1 and Fk_2 copies of 
!(#_!)_(£_!)). Together, the number of copies of F(Ar+1)_()t+1)+1 is Fk +Fk_x = Fk+l and the number 
of copies of r(Ar+1)_(£+1) is Fk_x + Fk_2 =Fk= ^+i)-i > which completes the proof in the case 3 < k 
< N. The case k = 2, N + 1 can be easily verified. 

Statement (b) can be proved similarly [6]. D 

Remarks: Note that the decompositions listed in the preceding lemma are based on the following 
property of Fibonacci numbers: Fn - FkFn_k+l + Fk_l-Fn_k, which holds true for all integers k and 
n [4]. In Theorem 2, the first term Fk-Fn_k+l corresponds to a subgraph of Tn which is either 
divided into (i) Fk copies of F„_^+1 or (ii) Fn_k+l copies of F^. (The second term Fk_l • Fn_k also 
suggests two possible decompositions.) Note that the decomposition in (ii) can be derived from 
(i) as follows. [Constructing (i) from (ii) is similar.] Each subgraph Tk. of (ii) is essentially con-
structed by taking one node from each of the Fk copies of Tn_k+l in (i). By construction, no two 
subgraphs from the two decompositions in (i) and (ii) share more than one node. Such 
decompositions will be referred to as orthogonal decompositions. D 

Example: Take F6 (Fig. 3) for instance. Let k = 3 and note that S = F6 = F3-F4 + F2-F3=2-3 + 
1-2. By Theorem 2, T6 can be decomposed into (Part 1) two copies of F4 and (Part 2) one copy 
of r3. In Figure 3(a), Part 1 consists of two subgraphs whose vertex sets are, respectively, 
{0,1,2} and {5,6,7}. Note that, by Theorem 2, an alternative (and orthogonal) decomposition of 
Part 1 would be to divide the same set of nodes into three copies of F3, where each F3 is formed 
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by taking one node from each copy of F4. In Figure 3(b), for example, the nodes in Part 1 are re-
partitioned into the following sets {0,5}, {1,6}, and {2,7}. Notice that no two subgraphs from 
the first partition and the second partition share more than one common node. Thus, the two par-
titions of Part 1 are orthogonal. Similarly, nodes in Part 2 can be redivided into two copies of 

Parti x Parti 

(a) A Partition of the Cube (b) Part I Re-partitioned 

(c) Deriving a Quotient Fibonacci Cube 

FIGURE 3, Decomposition of a Fibonacci Cube 

In terms of the Fibonacci codes, we have the following corollary. 

Corollary 2: Assume that n>2. Let k and d denote two integers, where 1 <k <n-2 and 
0<d<Fn_k-l. Let Gn{k,d) denote the subgraph of Tn induced by the set of vertices in 
{(K-A-2-A)F •• (h-A-2"A-k)F = d), Then 
1. Gn(k, d) = Tn_k if bn_k=0,md 

2. Gn(k,d) = T„_k_lifbn_k=l 

Proof: The argument parallels that of Theorem 2 (replace all instances of Theorem J. with Corol-
lary 1) [8]. • 

3.2 Quotient Fibonacci Cubes 
We will identify another level of recurrence with the decompositions of the Fibonacci cube in 

which the graph Tn is scaled down to a smaller Fibonacci cube. In fact, for any Tn and any integer 
k, where l<k <n-2, we can define a Quotient Fibonacci Cube Tnlk as described in the 
following. (See [2]; cf. Theorem 2.) 

We describe the idea in intuitive terms followed by a formal definition. Consider the first 
decomposition [i.e., Decomposition (a)] listed in Theorem 2. Let each of the Fk+l = Fk+Fk_l 

subgraphs (Tn_k+l or Tn_k) be considered as an equivalence class. Then each node vin Tn I k cor-
responds to such an equivalence class. The edges between two equivalence classes vx and v2 are 
given by ( vu v2) ^Tn Ik if and only if {(v1? v2):vlev1 and v2 G V2} ̂  f (In other words, the 
edges connecting nodes in two subgraphs are merged into one.) Then the resulting graph Tnl k 
of the equivalence classes is itself a Fibonacci cube (as will be proved). A similar observation 
applies to Decomposition (b). 
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Example: Consider T6 again [cf. Fig. 3(c)]. By considering each of the two copies of F4 (indi-
cated as Part 1 in Fig. 3) and the F3 (Part 2) as a single node (an equivalence class) then merging 
the edges connecting them (as described in the preceding remarks), the resulting graph is isomor-
phic to r4. 
Definition Assume that 1 < k < n-2 and 0 < d < Fk+2 -1. Let Gn(k, d) denote the subgraph of 
Tn induced by the set of vertices in {(hn_ihn_2...b2)F • (bn-ibn_2...hri_k)F

 = d}. Then the Quotient 
Fibonacci Cube Tnl k = (Vn/ k,En/ k) is given by: 

1. (V„/k = {G„(k,d):0<d<Fk+2-1}, and 

2. (G„(k,d), G„(k,d'))eEn/k if and only if d*d'md {(v„v2) er„ :vl eG„(k,d), v2 e 
G„(k,d')}*j 

Theorem 3: Let T„lk be the quotient Fibonacci cube as defined before, where \<k<n-2. 
Thenr„/^ = rfc+2. 

Proof (outlines); It is straightforward to verify the theorem for k = 1. For example, in Theorem 
1 (which corresponds to the case in which k = 1), the vertices in LOW(«) [resp.? HIGH («)] can 
be taken as an equivalence class vt (resp., v2), and edges connecting LOW(w) and HEGH(w) can 
be taken as a single edge ( vl9 v2). The resulting graph F„ /1 = ({vl9 v2}? {( vl9 v2)}) is isomorphic 
to r3. 

The general case can be proved inductively by noting that each of the subgraphs can be 
decomposed recursively and there are links between these subgraphs (Theorem 1). • 

Example: Figure 4 shows that Tn 14 can be derived from Tn in four refining steps. In the first 
step (when k = 1) decomposing Tn into (a) rn-1 and (b) Tn_2. By interpreting the edges between 
r ^ j and Tn_2 as a single edge, the resulting graph is F^ / 1 , which is isomorphic to F3 (cf. Fig. 1). 
In the subsequent steps (k = 2, 3, 4), Part (a) and Part (b) are recursively decomposed. The 
resulting graph F„ /4 is isomorphic to F6 (cf. Fig, 1). 

- w - l 

r - F 
1 TI/4 - L 6 

FIGURE 4. A Quotient Fibonacci Cube 
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3.3 Other Recursive Decompositions of Fibonacci Cubes 
There are other conceivable ways to decompose the Fibonacci cube. We list the following 

while omitting the details of their proofs. 
Lemma 1: Let Tn denote the Fibonacci cube of order n. Assume that n>\. Then 

(a) r 2 „ D ( G ; w G 3 ^ G 5 V . - ^ J , whereG;=F^for^ = 1,3,5,..., (2«- l ) . 

(b) Tn+2^{G{\*)GiwG^—y&)Gh where G'k =Tk for k = 1,2,3,...,«. 

Proof (outlines): Part (a) of this lemma is inspired by the known recurrence of Fibonacci num-
bers: F2n = 

^i<k<n ̂ 2k-\ • Specifically, the graph T2n can be decomposed into a copy of T2n_l and a 
copy of T2n_2. The latter can be decomposed further into T2n_3 and T2n_4. Decompose T2n_4 
again and we have T2n_5 and so on. 

Part (b) is based on Fn+2 = Hi<k<nFk + l. • 
Example Again consider T6. Since 6 = 2-3, by Lemma 1(a), it can be decomposed into three 
subgraphs: T1? F3, and F5. Also, since 6 = 4-1-2, by Lemma 1(b), it can be decomposed into one 
Fl3 one F2, one F3, and one F4, and all of the subgraphs are disjoint. 

4. DISCUSSION AND CONCLUSION 
A possible application of the Fibonacci cube is in the interconnection of large-scale multi-

computers, where a node corresponds to a processor and an edge to a communication link. In 
[6], it is shown that the Fibonacci cube contains about 1/5 fewer edges than the Boolean cube for 
the same number of vertices. Considering the relative sparsity in connections and the asymmetry 
in structure, it may well be expected that the Fibonacci cube cannot be as flexible as the Boolean 
cube, and certain functionality may be lost. For example, in the context of interconnection 
networks, the communication delays may become greater than that based on the Boolean cube, 
and the power of embedding (i.e., emulating other types of graphs) may be inferior to the Boolean 
cube. Nevertheless, because of the rich properties of Fibonacci numbers, we have been able to 
show here that the Fibonacci cubes can be flexibly decomposed into subgraphs of same kind (we 
are tempted to call this property self-similarity). In [8], by using these recursive decompositions, 
it is shown that the Fibonacci cube is flexible enough to embed common graphs such as linear 
arrays, rings, certain kinds of meshes, tori (mesh with wraparound), and trees, all with perfect 
dilation and expansion. 

The recursive nature of the Fibonacci cube also has implications to the design and analysis of 
algorithms for parallel computers that are based on the Fibonacci cube. For example, to find the 
sum (product, maximum, and other associative operations) of a sequence of numbers, the data 
items can be distributed on the nodes (processors) of the Fibonacci cube. The sum can be found 
in a divide-and-conquer fashion, which matches well with the recursive decomposition of the 
graph. In [6], by using this approach, several routing algorithms have been designed for computer 
architectures based on the Fibonacci cube. 

Perhaps trie most interesting (and plausible) application of the self-similarity is in fault-
tolerant computing. Again consider a parallel computer based on the Fibonacci cube. When 
some links or nodes of the computer fail, other functioning links and nodes may still be 
reconfigured to a smaller (but similar) graph and continue to operate (albeit with a degraded 
performance). In a multiple-processor system, one can also take advantage of this self-similarity 

1993] 71 



FIBONACCI CUBES—A CLASS OF SELF-SIMILAR GRAPHS 

to allocate processing resources to multiple users (each user could be assigned a subcube of some 
size). 

We call for further investigation of this new class of graphs. 
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appeared in Germany. The editor has been told that the book was written by Professor 
Heinz Liineburg, a mathematics professor at the University of Kaiserslautern. The 
book's title was said to be LEONARDI PISANI LIBER ABACI ODER 
LESEVERGNUGEN EINES MATHEMATIKERS. The publisher was reported as BI 
Verlag, Mannheim, and the cost was said to be 68 Deutsch Marks. 
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1. INTRODUCTION AND SUMMARY OF RESULTS 

It is by now well known that the parities of the binomial coefficients show a fractal-like 
appearance when plotted in the x-y plane. Similarly, if f(n,k) is some counting sequence and/? 
is a prime, we can plot an asterisk at (//,&) iff(n,k) # 0 (mod/?), and a blank otherwise, to get 
other complex, and often interesting, patterns. 

For the ordinary and Gaussian binomial coefficients and for the Stirling numbers of the 
second kind, formulas for the number of asterisks in each column are known ([12], [2], [4], [1]). 
Moreover, in each row the pattern is periodic, and formulas for the minimum period have been 
bound ([2], [3], [6], [7], [12], [13], [9], [15]) in all three cases. 

If KM, the signless Stirling number of the first kind, denotes, as usual, the number of permuta-
tions of/? letters that have k cycles, then for fixed k and/? we will show that there are only finitely 
many n for which m =£ 0 (mod/?), i.e., there are only finitely many asterisks in each row of the 
pattern. Let v(n,k) be the number of these. 

To describe the generating function of the v(n,k) we first need to define a special integer 
modulo p. We say that a nonnegative integer n is special modulo/? if 

n mod p - <P-\. 

This means that // is a 1- or 2-digit/?-ary integer and, in the addition of// to its digit reversal, there 
is no carry out of the units place. We denote by Np the (finite) set of all special integers modulo 
/?, and we write Np(x) for the polynomial HneN *w;e.g., N3(x) - 1 + x + x2 + x3 + x4+x6. 

Finally, we denote by c the finite sequence that is defined by c (0) = 1 and 

cp0)- n<p-\ £ 0 (mod/?) ( l < / < / ? - l ) . 

We write C (x) for the polynomial HQ<J<P-IC (i)x'', e-g-> C3(x) = l + 2x + x 

* Supported in part by the United States Office of Naval Research. 
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Theorem A: The number v(&, /?) of n > 0 such that M # 0 (modp) is given by 

A;>0 ;>0 

As an illustration of Theorem A, take/? = 3. Then C3(x) = l + 2x + x2, and so 

£v(*,3)x* =(l + 2x + x 2 ) f ] # 3 ( x y ) 

= l + 3x + 4x2 +5x3 +7x4 + 7x5 +7x6 +9x7 +8x8 +12x10 

+ 12xn+12x12+16x13+15x14+13x15+15x16 + 12x17+---. 

Thus there are, for example, 12 values oin for which ["J is not a multiple of 3. In Corollary 
2.2 below we will see that the largest of these is W\ = 1*̂1 (which has 59 decimal digits). 

Along the way to proving Theorem A we will find the following result, which seems to be of 
independent interest. 

Theorem B: Let k > 0 and p be a fixed integer and prime, respectively. Then the following two 
sets are equinumerous: 

• The set of all j <k I (/?-1) for which the binomial coefficient (*~(/p1)7l ^ 0 (mod /?), 
and 

• The set of all partitions of the integer k into parts that are powers of/?, and in which the 
multiplicity of each part is special modulo/?. 

Although we find Theorem B by means of generating functions, the form of the result 
suggests that there may be a natural bijection between the two sets. We will give such a bijection 
also. 

Our results dualize, in an interesting way, results of Carlitz [1]. He studied similar questions 
for the Stirling numbers of the second kind. More precisely, he studied the number of k for which 
rA is not divisible by p and deduced infinite product-generating functions for these numbers that 
are quite similar to ours. His results are complete if/? = 2, 3, 5, but only partial for other values 
of/?. The duality of the questions and the similarity of the answers are arresting. 

2. AN ANALOG OF LUCAS'S CONGRUENCE 

Lucas's congruence ([2], [8]) for binomial coefficients asserts that 

$:E)-OT <modp) 
if n\ k\ f?0, and k0 are nonnegative integers with n$ and&0 less than/?. It is easily proved by 
viewing (x + l)">+"° = (x + iy'p(x + lf° as an identity over GF(p)[x] and using the "freshman" 
((jt + i y = x ' + l) and binomial theorems. By imitating this proof we can get a somewhat similar 
congruence for the residue modulo/? of M. 
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Recall that 

k 
w - 1 
k~\ 

0 for n > 0, 

for n, k > 0, 

0 for k > 0, and = 1. 

Further recall that the ordinary generating function for l\n^\ is 

sn(x) = x(x + l)(x + 2) • • • (x + n - 1). 

For the remainder of this section, all of our computations will take place in the polynomial 
ring GF(p)[x]. To begin with, note that s0(x) = 1 is the only sn(x) with a constant term, and 
that 

(1) sp(x) = xf 

in GF(p)[x] since both sides of (1) are polynomials of degree/? with simple roots r = 0,1,. . . , 
p - 1 and leading coefficient 1. 

Lemma 1: For all n, 

(2) sn(x)^x"'(x^~iy'Sno(x) (mod/7) 

where n' = \nI/? J, n0 = n modp. 

Proof: We have n - n'p + nQ with 0 < nQ < p. Then 

5„ (x) = J"J(x + tp)(x + //? +1) • • • (x + tp + p - 1) • f | (x + /?'/? + u) 
t=0 u=0 
n'-\ nQ-\ 

= Ylx(x + l)---(x + p-l)Yl(x + n) = sp(xfs„o(x) 
1=0 II-O 

=(jc"-xr'-^(x) 
where empty products are interpreted as 1. • 

If we simply equate coefficients of like powers of x on both sides of (2), we obtain the known 

Proposition 2.1: Let p be prime and let n and k be integers with 1 < k <n. Let nf - |_/?//?J, 
n^-n mod/7. Define integers / andj as follows: 

(3) k-ne = j(p-l)+i ( 0 < / < / ? - l If/?0 = 0; 
0 < / ' < / ? - ! ifn0 >0). 

Then 

(4) :(-!)" (mod/?). 

Corollary 2.2: For a fixed &, the set {w : m # 0 (mod/?)} is finite. Its largest element ispk and 
its smallest is k. 
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Proof: If n> pk, then in (3) above j < 0 and so M = 0 (mod /?). If n- pk, then ri = /?0 = /' = 
y' = 0 and [ f 1 = {-if (mod /?). If n = A: then «' = 7, w0 = /', and [fl = 1 (mod p). If w < k, then 
either 77' < j or w0 </. In either case, M = 0 (mod/?). D 

Comments: There are other approaches to Proposition 2.1. One [5] uses a double induction, 
first on k with |_w / p] = 1, and then on |_« / /?J. Another [11] uses abelian group actions to prove 
an additive congruence for \n+

k
p\ and then induction on n. 

To obtain a more explicit form of the congruence (4) for k <n<pk, we can use the follow-
ing iterated form of Lucas's congruence: If (ris,ris_u ...,n'Q)p and Us>Js-\>--->Jo)P

 a r e the/?-ary 
representations of the nonnegative integers ri andy, then 

71 = s s~l 

j ) yjsAJs-ij Uo 
(mod/?). 

Therefore, 

(5) s (-!)"'- w 
Js )\Js-\ J \Jo 

(mod/?) 

where k^ej+i, 0<i<e; n = eri + r^ <e, and (ris,ris_Y, . . . , ^ ) p and (jsJs-h---Jo)P
 a r e t h e 

/?-ary expansions of?/ andy as before. 

3. EVALUATION OF |{* : [»] ^ 0 (modp)}\ 

For completeness, and since its proof is now quite simple, we recall the following result [10]. 

Theorem 3.1: For n fixed, the number h(n,p) of Stirling numbers of the first kind that are not 
multiples of the prime/? is given by 

h{n,p) = (ns + \){ns_x +1) • • • {n, +!)//(%/?) 

where (ns, ns_x,...,n^) is the/?-ary representation of «. 

Proof: We count the nonzero terms of the polynomial sn(x) G G F ( / ? ) [ X ] , making use of (2). The 
number of nonzero terms in sn (x) eGF(p)[x] is by definition h(n0,p), and the degrees of any 
two of its nonzero terms differ by less than p-\. To count the nonzero terms in (xp~l -\)n' 
GF(p)[x], we make use of the following well-known [2] corollary of Lucas's congruence (in 
iterated form): If (ms, ms_x, ...,rr^)p is the/?-ary representation of m, then the number of nonzero 
terms of (a+b)m eGF(p)[a,b] is Hs

J=0(mj + l). Since (ns, ns_x, ...,n{) is the/?-ary representa-
tion of ri, it follows that (x^ - 1 - ! ) " ' E G F ( / ? ) [ X ] has (ns + l)(ns__l + l)-~(nl + l) nonzero terms, 
the degrees of any two of which differ by at least / ? - ! . Therefore, sn(x) <=GF(/?)[x] has 
(ns + l)(ns_x + !)••• (nx + l)h(n0,p) nonzero terms. 
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4. EVALUATION OF \{n: [j] # 0 (mod/?)}| 

We now consider the more difficult problem of determining for fixed k the number of n such 
that m is a nonmultiple of/?. In this section we will reduce this to a problem concerning binomial 
coefficients, and in the next section we will solve the latter problem. For/? prime and k > 0 define 

b{k,p) = 

Theorem 4.1 Let cp(0) = 1 and 

^ 0 (mod/;) 

\j:k-(p-l)j*0 and C * ~ ^ . - 1 ^ 1 # 0 modp)\\ 

cP(j) = n < / ? - ! ^ 0 (mod/?) ( l < / < / ? - l ) . 

Then for all k>0, 
(6) v(k,p) = c(0)b(k,p) + c(l)h(k-l,p) + -.-+c(p-l)b(k-p + l7p). 

Proof: For k and p fixed, let each n such that k <n< pk determine HQ, n', i and7 as in Proposi-
tion 2.1. Then 

'k-i-(p-i)f v(k,p) = n:k <n<kp and 

j:k-i-(p-l)j>0md 
P-\ p-\ 

-IS 
z'=0 n0=i 

p-\ 
7=0 
p-\ 

= 2,cp(i)b(k-i,p). D 
;=0 

=£0 (mod/?) 

£ - / - ( / ? - l ) 7 
7 

^ 0 (mod/?)i 

lj:k-i-(p-l)j>0md(k ' ( / ? ^ I ^ O (mod/?) | 

Comment; The first few coefficient sequences cp are: 

c 2 : ( l , l ) ; c,: (1,2,1); c5: (1,4,3,2,1); c, : (1,6,5,3,3,2,1); 
c n : (1,10,7,8,7,6,5,4,3,2,1). 

5. DETERMINATION OF THE 6(£9jp) 

Theorem 5,1: Let k = pm+ r with 0<r <p and w > 0. Then 
(7) b(k,p) = b(mp+r,p) = b(m,p) + b(m-l,p) + — +b(m-p + r + l,p). 

Proof: In the following computation, all binomial coefficients m mentioned are implicitly 
assumed to be "classical" (i.e., a and b are nonnegative integers), and since the argument hinges 
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on Lucas's congruence, one of the details that should be checked is that if they start out as such, 
then they remain so throughout the computation. 

b(pm + r,p) = 

P-\ 

= 1 
p-r-l 

= 1 

tfpm+r-(p-i)ty0 (modp) 

p~\ 

J=p-

s:]p(m-(p-l)s^+l)+r+j-p^0 {modp) 

where the last sum is the empty sum if r = 0. Applying Lucas's congruence to the last two sums, 
we get 

p-r-l\ 
b(pm + r,p) = £ 

;=0 
p-\ 

J=P-

p-r-l 

; = 0 

r^-(P-l)s-jJryyQ {mQdp) 
m-(j>-l)s-j + i)(r + j-p 

s: 

s:\m-->-(P-l>\lO (modp) 

^ 0 (modp) 

p-r-l 

6. PROOFS OF THEOREMS A AND B 

From the recurrence relation of Theorem 5.1 it is easy to obtain the generating function of 
the {&(•, /?)}, as follows. Define Bp(x) = YJk>0b(k,p)xk. Then multiply both sides of (7) by 
xmp+r and sum over m > 0, 0<r <p-l. There results 

m>0 r=0 y=0 

= Zxr^\^b(m-j,p)x^^=Bp(x^fixr'^ZxA. 
r=Q j=0 m>0 [r=0 ;=0 J 

The quantity in curly braces in the rightmost member is exactly the generating function Np(x) 
that was defined in section 1 above. Hence, Bp(x) - Np(x)Bp(xp) and, therefore, by iteration, 
the generating function of the b(-, p) is 

(8) Bp(x) = Y[Np(x"J) = ^b(k,p)xk. 

The infinite product that occurs in (8) is well known (e.g., [14, Eq. (3.16.4)]) to generate the 
number of partitions of the integer k into powers of/?, each taken with a multiplicity that is special 
modulo/?, as defined in section 1 above, and the proof of Theorem B is complete. 
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Theorem A now follows from this result and Theorem 4.1. Indeed, equation (6) above, when 
translated into generating function terms, states that the generating function of the {y(k,p)} is 
C (x)B (x)9 as claimed. D 

7. BIJECTIVE PROOF OF THEOREM B 

As promised in the introduction, we will give here a byective proof of Theorem 6. We let 
H(n,(P, Ytt) denote the set of all partitions of the integer^ into parts that all belong to (P, each 
having a multiplicity that belongs to 7/1. Set Pp = {pl : / > 0} and 7Rp{a:a is special for p}. 

We will exhibit an explicit bijection between the sets 

A»,p = ljc{0X-.-,ln/p$:r (P. ^ j # 0 (modp) 

B„;p=n(n,<pp,%). ' -'- ! , • • . ; :. 

To do this, note first that Lucas's theorem gives a simple criterion for deciding whether a 
given j belongs to Anp; it says that 

n-{p-r)j\JbkYbk_A_(bQ 
J J \akJ\ak-\J \aoJ 

where the /3's and the a's arethe/?-ary digits of n-(p- X)j and of j , respectively. In particular, 
the left side is not congruent to 0 provided that a\ <bt for all i. 

We will now define a mapping ^:{o,l,...,[w/pj}->II(/7, ^ ,N) as follows: ^(y) is that 
partition of the integer n in which, for all 7, the part p1 occurs with multiplicity bt + (/?- l)a7, and 
no other parts occur. Since Y,atpl and n - (p - l)y* = E/\p', it is clear that ^(7) is indeed a parti-
tion of n into powers of p. 

To show that 0 restricts to a bijection between ^,> and5wp, it is necessary to check that for 
j e A„ the image $ j ) is in Bnp, and that the restriction is invertible. Consider then a j e A^?p, 
i.e., ay" for which az < bt for all /'. Now the number of parts of size p1 in 0(y) is 

bi+(p-l)ai=pai+(bi-aiy 

Since 0<a; <£>• < /? - l , the multiplicity of p1 is (^(^ -at)) inp-ary notation, and thus belongs 
to W,p. We have shown that ^ ( 4 ^ ) <= £„j/7. 

Finally, if n^Bn^p is given, define ^(^) eA„ ^y itsp-ary expansion—the 7thdigit of ^(;r) is 
a7, where 7̂  = (a/5 c7)p is the multiplicity of/?7 in n. So 

iK^) = (^,^_i,-.. ,^o)^ and n-py/(7r) = (ck,ck_u...,c0)p. 

Further, n-(p-1)y/{n) = ((ak+ck), (#*_i +<*_i),...,(a0 + c0))p. The last expression is a legiti-
mate /?-ary expansion because each rr^ is special for/?, and moreover it shows that 

It is clear that y/and <f) are inverses. 
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Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTLONS to Dr. STANLEY 
RABINOWLTZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to 72717.3513@compuserve.com on 
Lnternet. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

A7+2 ~ A?+i+ A? > A ) = A L\ = 1. . • 

Also, a = (l + V5) /2 , jff = ( l - V 5 ) / 2 , Fn = ( a " - / T ) / V 5 , andLn = an+j3\ 

PROBLEMS PROPOSED IN THIS ISSUE 

B-730 Proposed by Herta Freitag, Roanoke, VA 

For n > 0, express the larger root of x2 - Lnx + (-1)" = 0 in terms of a, the larger root of 
x2-x-K-iy>o. 
B-731 Proposed by H.-J. Seiffert, Berlin, Germany 

Evaluate the determinant: 

lF° 
\F2 

Generalize. 

B-732 Proposed by Richard Andre-Jeannin, Longwy, France 

Dedicated to Dr. A. P. Hillman 

Let (wn) be any sequence of integers that satisfies the recurrence 

where p and q are odd integers. Prove that, for all n, 

Wn+6^Wn (mod 4). 
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B-733 Proposed by Piero Filipponi, Rome, Italy 

Write down the Pell sequence, defined by P0 = 0, Px = 1, and Pn+2 = 2Pn+l + Pn for n > 0. 
Form a difference triangle by writing down the successive differences in rows below it. For 
example, 

0 1 2 5 12 29 70 169 ••• 
1 1 3 7 17 41 99 

0 2 4 10 24 58 
2 2 6 14 34 

0 4 8 20 
4 4 12 

0 8 
8 

Identify the pattern that emerges down the left side and prove that this pattern continues. 

B-734 Proposed by Paul $. Bruckman, Edmonds, WA 

If r is a positive integer, prove that 

L5r^L5r.x (mod5r). 

B-735 Proposed by Curtis Cooper & Robert E. Kennedy\ Central Missouri State Asylum for 
Crazed Mathematicians, Warrensburg, MO 

Let the sequence (yn) be defined by the recurrence 

yn+l = %yn + 2 2 j v i " 1 9 0 J V 2 + 2 8 J V 3 + 987JV_ 4 " 700^_5 -I652yn_6 + I652yn_7 

+ 700yn_s-987yn_9-28yn_l0+l90y„_u-22yn_n-8yn_l3 +yn_l4 

for n > 15 with initial conditions given by the table: 

n 
T~ 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

yn 
1 
1 
25 
121 
1296 
9025 
78961 
609961 
5040025 
40144896 
326199721 
2621952025 
21199651201 
170859049201 
1379450250000 

Prove that yn is a perfect square for all positive integers n. 
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SOLUTIONS 

A Sum Involving F\ 

B-703 Proposed by H.-J. Seiffert, Berlin, Germany 

Prove that for all positive integers ft, 

k=\ 5 

Solution by Bob Prielipp, University of Wisconsin, Oshkosh, WI 

Our solution will use the following known result (see Identity I39 on page 59 of [1]): 

U\ p4
 = Elm ~4(-l)mFm 

5 
To establish the desired result, it is sufficient to show that 

n p\ F2 , -4" 
y 
^ 4k 5 . 4 » fc=l 

From (*), we have 

£4* £ 5-4* 5£ 4fc 4*-1 

v y 
l V i _ F 2 

> 4" 2 , v y 
(by telescoping) 

F 2 , - 4 " 
2' 
5.4" 

TTze proposer gave the generalization: 
-2 An r?2 n pl , -An pj-

Z An-k pA _ fm2tt+l___ 2m 

k=l 

for all positive integers m and n. The proof is similar. No reader gave any generalizations 
involving L4

k. Apparently there is no closed form for TPk=iF\ or even Y?k=lF k. For which 
constants a, c, r can Hl=ic F\ be expressed in closed form? 

Reference: 
1. Verner E. Hoggatt, Jr., Fibonacci and Lucas Numbers (Santa Clara, CA: The Fibonacci 

Association, 1979). 

Also solved by Paul S. Bruckman, Herta T. Freitag, C Georghiou, Russell Jay Hendel, Hans 
Kappus, Graham Lord, Ray Melham, Blagoj S. Popov, Sahib Singh, and the proposer. 

Products of Terms of the Form ax2 + by2 

B-704 Proposed by Paul S. Bruckman, Edmonds, WA 

Let a and b be fixed integers. Show that if three integers are of the form ax1 -\-by2 for some 
integers x and y, then their product is also of this form. 
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Solution by Ray Melham, University of Technology, Sydney, Australia 

By expanding both sides, it is seen that 

(axf + by\)(cD% + byl)(ay% + by]) 

= 0(0x^X3+bxtf^ +bylx2y3-byly2x3f+b(axlxzy3 -ax1y2x3-aylx2x3-byly2y3f. 

This proves the result. 

Flanigan notes that the above identity holds in any commutative ring with identity. The proposer 
showed that the product of two integers of the form ax2 + by2 can be written in the form 
X2 + abY2 by means of the identity 

(a$ +by2
l)(ax2

2 +by2) = (axlx2 +byly2)2+ab{xly2 - x2yx)2. 

He then showed that the product of a number of the form (ax2 +by2) and a number of the form 
X2 +abY2 can be written in the form (ar2 +bs2) by means of the identity 

(ai^ + bv2)(u2 + abv^) - a(uxu2 +bvlv2)2 +b(u2vl -au^)2. 

Also solved by F. J. Flanigan, C. Georghiou, Russell Jay Hendel, Hans Kappus, H.-J. 
Seiffert, and the proposer. Most of the solutions were similar to that given above. 

An Application of a Series Expansion for (arcsinx)2 

B-705 Proposed by H.-J. Seiffert, Berlin, Germany 

(a) Prove that Y — ^ - = iL. 

(b) Find the value of X F?" -
- 1 n 2 ' 2 " 

Nearly identical solutions by Russell Eider, Northwest Missouri State University, Maryville, MO; 
C. Ceorghiou, University ofPatras, Patras, Greece; Hans Kappus, Rodersdorf Switzerland; and 
Bob Prielipp, University of Wisconsin, Oshkosh, WI. 

We start with the known result (see [1], [2], or [3]): 

Y s , = 2(arcsinx)2 

which converges for |x|< 1. In particular, for x = a / 2 and x = /? /2 , we have 

A a2" J . a\2
 A A J32n J . p ^ 

> -—7—r- = 2 arcsin — and > — 7 — ^ = 2 arcsm — 

Now, from problem B-674 [FQ 29.3 (1991):280], we know that cos^/5•= a/2 and cos3W5 
J3/2. This implies that 
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Thus, 

.3K . (K KX In a , . 
sin — = sin = cos— = — and sin 

10 U S) 5 2 
. a 3K t . B K 

arcsin — = — and arcsin — = . 
2 10 2 10 

n\ . ( K 3K\ 3 K B 
— = sin \- cos— = —. 
10 J I 2 5 J 5 2 

Therefore, 

(a) 

and 

(b) 

^2n 

n=\ In 

In 

= 2 3/r 
10 

K 

10 5 

In 
2_ 03K 

110 
K 

10 
4V5^_ 

125 

References: 
1. Bruce C. Berndt, Ramanujaris Notebooks, Part 1 (New York: Springer Verlag, 1985, p. 262. 
2. I S . Gradshteyn & I. M. Ryzhik, Tables of Integrals, Series and Products (New York: Aca-

demic Press, 1980), p. 52. 
3. L. B. W. Jolley, Summation of Series, 2nd ed. rev. (New York: Dover, 1961), p. 146, series 

778. 
Also solved by Paul S. Bruckman and the proposer. 

An Exponential Inequality 
B-706 Proposed by K. T. Atanassov, Sofia Bulgaria 

Prove that for n > 0, m 
K+e 

\An 

>K. 

Solution by Wray Brady, Chapala, Jalisco, Mexico 
Let 

k = KC 

K+e 

1.4 

We note that a « 1.618 and k « 1.694, so that a< k. Furthermore, since col and - l < / ? < 0 , 
we have \j3n |< 1 < an for n > 0. Thus, 

Vs VI 
77*e proposer also sent in several other inequalities involving Euler's constant and Catalan's 
constant; however, they were all of the form kn > Fn where k was some constant larger than a. 
The conclusion then follows similarly from the fact that Fn < oP. Gilbert showed by taking limits 
that a is the smallest number with this property. In other words, if Fn< kn for all n> 0, then 
k> a. Several respondents noted the stronger inequality, Fn < cP~l (see page 57 of [1]). 
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Reference: 
1. S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section—Theory and Applications 

(Chichester: Ellis Horwood Ltd., 1989). 

Also solved by Charles Ashbacher, Glenn Bookhout, Paul S. Bruckman, Joseph E. Chance, 
C Georghiou, Peter Gilbert, Pentti Haukkanen, Douglas E. Lannucci, Russell Jay Hendel, 
Bob Prielipp, Mike Rubenstein, H.-J. Seiffert, Lawrence Somer, Ralph Thomas, and the 
proposer. 

Simple Pythagorean Triple 

B-707 Proposed by Herta T. Freitag, Roanoke, VA 

Consider a Pythagorean triple (a, b, c) such that 
n 

a = 2 Z^ 2 a n d c = Fm+i, n>2. 
7 = 1 

Prove or disprove that b is the product of two Fibonacci numbers: 

Solution by H.-J. Seiffert, Berlin, Germany 

From equations (I3) and ( I n ) of [1], we have a-2FnFn+l and c- F2
+l+F2. Since, in a 

Pythagorean triple, b2 -c2 -a2, we find that 

" ~ AJ+I ~ A? — \rn+l - Pn)(Pn+l +Pn) = rn_xbn+2, 

which shows that b is always the product of two Fibonacci numbers. 

Reference: 
1. Verner E. Hoggatt, Jr., Fibonacci and Lucas Numbers (Santa Clara, CA: The Fibonacci 

Association, 1979). 

Also solved by Charles Ashbacher, M. A. Ballieu, Wray Brady, Scott H. Brown, Paul S. 
Bruckman, Joseph E. Chance, C Georghiou, Russell Jay Hendel, Joseph J. Kostal, Bob 
Prielipp, Sahib Singh, Lawrence Somer, Ralph Thomas, and the proposer. Many of the solu-
tions were similar to the featured solution. One solution was received that did not contain the 
solver fs name. 

Exponential Summation 

B-708 Proposed by Joseph J. Kostal, University ofLllinois at Chicago, JL 

00 i^ f _ 9^ J 
Find the sum of the series ]T *—j -

k=\ 6 

Solution 1 by Glenn Bookhout, North Carolina Wesleyan College, Rocky Mount, NC 

We use the well-known generating functions for Fn andZ,„ (see page 53 of [1]). They are 
given by the equations 

00 t 
Z,rkfk 

and 
(0 E^*-,-,- ,* 

k=0 I I I 
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00 1 — t 

(2) I V " 
Since 

*=o \~t-t2 

lim —— = a 
k^oo Fk 

by formula (101) of [1], the power series (1) converges for \t\< 1 / a by the Ratio Test. Similarly, 
since 

lim —— = a 
£->*> Lk 

the power series (2) also converges for 11\ < 1 / a. 
Substituting 1/2 for t in power series (1) gives 

00 77 

0) I $- = 2. 

Substituting 1/3 for / in power series (2) gives T^=0(Lk 13k) - 3 so 

It follows from equations (3) and (4) that 

^ 3kFk-2kLk 
JL, rk L 

k=l 6 

Seiffert and Bruckman proceeded similarly, but used the power series 

^ r k f(l + 2f) , , _! 
it=i i - r - r 

Several readers blindly substituted values into equations (1) and (2) without first noting the 
radius of convergence of these series. 
Reference: 
1. S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section—Theory and Applications 

(Chichester: Ellis Horwood Ltd., 1989). 

Solution 2 by C Georghiou, University of Pair as, Greece 

We have the following (converging) geometrical series: 

3kak _ a _A ^ 3kflf° _ fi 
k=l 

—;— = and > , -
k=l 6k 2-a t 6k 2-P 

Using the Binet form, Fk = (of - fr)l (a-p), we get 

"a p ^3kFk_ 1 
*=i ^ a-fi 2-a 2-p = 2 

where we have simplified by using the identities a+P= 1 and a/?= - 1 . 
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In the same way, from 

a X 2k ak 

and £ 2kj3k 

k=l 3-/? 
and the Binet form, Lk = ak +ft, we get 

= 1. 
00 r%k J a B 

k=i 3-a 3-fi 

Therefore, the given sum evaluates to 2 - 1 = 1. 

Solution 3 by W. R Spickerman, R N. Joyner, & R L. Creech (jointly), East Carolina 
University, Greenville, NC 

oo jj oo r 

L**i = l 5 - and S2 = £ £ . 
j f c = l fc=l J 

Both series are seen to converge by the Ratio Test. Hence, the series consisting of the differences 
of successive terms of these series converges to S1-S2. That is, 

f 3kFk-2kLk _ 
Lmmi r k L~i ryk X - W Q 

k=\ ° k=l z k=l J i § - i #=*.-**• 
Multiplying the series for Sx by 1, 1/2, and 1/4, respectively, we find that 

V 2 4 ±k-£3 F, oo i 

1 ^ - J 2 <t-i • ^ - 2 ) -

fc=3 

Since the Fibonacci sequence satisfies the recurrence Fk = Fk_1+Fk_2, the summation in this last 
equation is 0. Therefore, 

1 
Sx 

Fx+F2_2 
4 L 4 

so Sx = 2. Similarly, 
5 _2Ll+L2 _5 
9 2 9 9 

so ^ = 1. Hence, the desired sum is Sx - S2 - 2 -1 = 1. 

Redmond generalized by showing that for sequences defined by Pn- aPn_1 - bPn_2 and Qn = 
aQn-\ -hQn-i (with Q2 * 4b), and real numbers A, B, andC, we have 

f AkPk+BkQk^A 
2 . Ck | 
k=0 

cQ{C-AP) + Cl(C-Aa) d^C-Bfi + d^C-Ba) 
(C-Aa)(C-AJJ) (C-Ba)(C-Bj3) 

where a and J3 are the roots of the characteristic equation, x2 -ax+b = 0, chosen so that 
a-j3= ^a2 -4b and with initial conditions such that the Binet forms are Pn - cQan+cxpn and 
Qn-d0an"rdlfin. The series converges if maxQAa/ C\,\AJ3/ C\,\Ba/C\,Bfi/ C\) < 1. 

Also solved by Wray Brady, Scott H. Brown, Paul S. Bruckman, Joseph E. Chance, Russell 
Euler, Herta T Freitag (2 solutions), Douglas E. lannucci, Russell Jay Hendel, Bob Prielipp, 
Don Redmond, H.-J. Seiffert, Sahib Singh, Ralph Thomas (2 solutions), and the proposer. 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to 
RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems 

PROBLEM PROPOSED IN THIS ISSUE 

H-474 Proposed by R. Andre-Jeannin, Longwy, France 

Let us define the sequence {£/„} by 

U0 = 0, U, = \, Un = PU„_x-QU„_2, neZ, 

where P and Q are nonzero integers. Assuming that Uk ^ 0, the matrix Mk is defined by 

Mk= — 
Uk 

k>i 
KiQkl1 -QkU,_kJ 

where / = -^/(-l). 

Express in a closed form the matrix Mn
k, for n > 0. 

Reference: A. F. Horadam & P. Filipponi. "Choleski Algorithm Matrices of Fibonacci Type and 
Properties of Generalized Sequences." Fibonacci Quarterly 29.2 (1991): 164-73. 

SOLUTIONS 

How Many? 

H-456 Proposed by David Singmaster, Polytechnic of the South Bank, London, England 
(Vol. 29, no. 3, August 1991) 

Among the Fibonacci numbers, Fn, it is known that: 0, 1, 144 are the only squares; 0, 1, 8 are 
the only cubes; 0, 1, 3, 21, 55 are the only triangular numbers. [See Luo Ming's article in The 
Fibonacci Quarterly 27.2 (1989):98-108.] 

A. Let p{m) be a polynomial of degree at least 2 in m. Is it true that p(m) = Fn has only finitely 
many solutions? 

B. If we replace Fn by an arbitrary recurrent sequence fn, we cannot expect a similar result, 
since fn, can easily be a polynomial in n. Even if we assume the auxiliary equation of our 
recurrence has no repeated roots, we still cannot expect such a result. For example, if 

A = 6 / ^ - 8 / ^ , f0=2,f = 6, 
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then 

fn=2n+4", 
so every fn is of the form p(m) = m2 +m. What restriction(s) on fn, is(are) needed to make 
/„ = p(m) have only finitely many solutions? 

Comments: The results quoted have been difficult to establish, so part A is likely to be quite 
hard and, hence, part B may well be extremely hard. 

Solution by Paul S. Bruckman, Edmonds WA 

To simplify the problem somewhat, we assume that (/„)J=1 is an increasing sequence of posi-
tive integers, and that the /w's satisfy a homogeneous linear recurrence of order d (d>2). 
Furthermore, we assume that the roots of the characteristic equation of fn are distinct. Let these 
roots be denoted by zy, j - l,2,...,<i, with \zx\< \z2\< •-• < \zd\. Then constants cij exist such that 

o) / i .=E a /* ;> /i=0,1,2,.... 
7=1 

We shall also suppose that the sequence (/?(«))* is an increasing sequence of positive integers 
from some point on. Let e denote the degree ofp (e>2). Then constants bj exist such that 

(2) p(z) = fjbJzJ. 

Under these assumptions, we shall prove the following 

Theorem: fn - p{mn) for infinitely many n, where the m^s are positive integers, if and only if 
fn - p(z") for all n. If these conditions are met, we must also have: 

(i) p(0) = 0; (iii) zx is an integer > 1; 
(ii) d = e; (iv) z}.= z{, j = 1,2, ...,d. 

Proof: If fn = p(z") for all n, clearly fn = p(mn) for infinitely many n, with mn -z\. Conditions 
(i), (ii), (iii), and (iv) must then follow. 

Conversely, suppose /„ = p(mn) for infinitely many n, for some sequence {mn)™=l of positive 
integers. Then, for some subsequence (^)J=1 of positive integers, we must have 

(3) Lk=P(mnk\ k = \,2,.... 

Given any e + 2 consecutive elements nl+t,n2+t, ...,ne+2+t (t = 0,1,2,...), we may form the 
(e + l)th divided difference ofp with respect to mn , m„ , •••,mne+2+t • Since p is a polynomial, 
this expression must vanish. \Thus Ae+lm^+j, mn^,..., /̂ „e+2+/ (p) = 0, or 

e+2 

(4) 5Xr/>KJ = 0> t = 0,1,2,..; 
k = \ 

where 
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e+2 

(5) %=nK-\J • 
Then, 

e+2 e • e e+2 

IXrI>/KJ =Z*>Zc^K+<) =0-
£=1 ;=0 7=0 fc=l 

Since this is true for all 7 > 0, and the bys are assumed not to all equal 0, it follows that 
e+2 

(6) 5 > * . r K J =0, / = 0,1,2,..., /=0 , l , . . . , e . 

On the other hand, due to (3), we also have the following: 
e+2 e+2 d d e+2 

Jfc=l fc=l ; = 1 7 = 1 fc=l 

Again, since this is true for all t > 0, and all the a-'s are assumed not all equal to 0, we must have: 
e+2 

O) 5X,* ;* + '=o , f = o,i,2,..., j = i,2,...,d. 
k=l 

Comparing (6) and (7), since these are true for all t > 0, the two expressions must be identically 
equal. Therefore, the following is implied: 

(8) bQ = 0; d = e; (mnJ=z^<, f = 0,1,2,..., j = l,2,,.,d. 

We see that (8) implies conditions (i)-(iv) of the Theorem. As a result, we have: 

(9) fnk=Mk\ * = 1,2,... . 
Thus, 

d 
Jnk 

Using the same argument as before (with k replacing t), it follows that 

(10) aj=bj9 j = l,2,...,d. 

Therefore, for all n, 

or 
(11) f„ = ptf),n = 0,\,2,.... 

Note that mn - z\ for all n\ since the mn's are to be integers, it must follows that zx is an integer. 
Also, since (#0J=1 is increasing from some point on, we must have zx>\\ in fact, (w^)*=1 is 
increasing for all n. This completes the proof of the Theorem. 
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We can now readily dispose of the problem. Since Fn = S'^tf1 - f5n) = 5~*[(-l)"/rn-j3n], 
we see that Fn cannot be expressed as a polynomial in /3n (nor, indeed, is /? greater than 1, must 
less an integer). Therefore, the equation 

0 2 ) Fn=P(mn)> where deg(/?) > 2, 

necessarily has only a finite number of solutions, for all acceptable given polynomials/?. 
The conditions sought for part B of the problem are those imposed by the conditions of the 

Theorem. Unless fn = p(z") for all n, where zx is an integer greater than 1, the equation 
/„ = p(jnn) m u s t n a v e a finite number of solutions. 

Note that the conditions of the Theorem are satisfied by the example cited in part B, with 
mn =2\ zx = 2, p(z)=z2 +z. 

True or Not? 

H-457 Proposed by Piero Filipponi, Fond U. Bordoni, Rome, Italy 
(Vol 29, no. 3, August 1991) 

Let f{N) denote the number of addends in the Zeckendorf decomposition of N. The 
numerical evidence resulting from a computer experiment suggests the following two conjectures. 
Can they be proved? 

Conjecture 1: For given positive integers k and n, there exists a positive integer nk (depending 
on k) such that f(kFn) has a constant value for n > nk. 

For example, 

24FW = Fn+6 + F„+3 + Fn+l + F„_4 + Fn_6 for n > 8. 

By inspection, we see that nx = 1, nk ^J2 for k = 2 or 3, n4 - 4 and nk - 5 for 5,< k < 8. 

Conjecture 2: For k > 6, let us define (i) ju, the subscript of the smallest odd-subscripted Lucas 
number such that k < L and (ii) v, the subscript of the largest Fibonacci number such that 
k > Fv + Fv_6. Then, nk - max(//, v). 

Solution by Paul S. Bruckman, Edmonds, WA 

We suppose n > 2. As we know, any natural number u has a unique Zeckendorf representa-
tion (Z-rep. for short) which is given by: 

(1) w = ^ ^ . F / 5 where 0} = 0 or 1, 0j0J+l = O, j = 2, 3, . . . , r - 1, and 0r = 1. 

We shall show that Conjecture 1 is true, Conjecture 2 false. Moreover, the following "observa-
tions" are the correct ones for nk. nx = 2, nk - 4 for 2 < k < 4, nk = 6 for 5 < k < 11, nk = 8 for 
12 < k < 29, etc.; in general: 

(2) nk - 2m + 2, where m is determined by Z^^j < k < Llm+X, m - 1, 2,. . . . 

Therefore, 

(3) ^ = 1 + / i , where // is as defined by the proposer. 
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To prove the assertions in (2) and (3), it will suffice to prove (4) and (5) below. 
(4) Given k such that L2m_l <k<Llm, then for all n>2m+2 there exists a Z-rep. for kFn 

given by: 
2w-l 

kF„ = £ ^Fn+J, where 6%, = C - i = 1. 
j=-2m 

(5) Given k such that Llm <k<L2nH.i9 then for all n>2m+2 there exists a Z-rep. for kFn 

given by: 
2m 

kF- = X0fF„ + y > where ^ = C = l. 
j=-2m 

In these expressions, the 0^)!s are dependent on k but not on n. In the sequel, we shall frequently 
employ sums of the type 

For brevity, we shall denote such a sum by S(r, s), If we wish to emphasize that 0 ^ = 1, we 
shall use the notation S(r, s); similar notation makes the symbols £(>, s) and S(r_, 5) self-explana-
tory. Of course, all such sums are understood to be Z-reps. Some preliminary lemmas are needed 
to prove (4) and (5). 

Lemma 1: 

(6) (i)2F„ = Fn+1+Fn_2, (n)3Fn = Fn+2 + F„_2, (iii) 4F„ = Fn+2 + F„ + Fn_2. 

We omit the proof, as this is readily verified. Note that the right member of the expressions 
in (i)-(iii) are Z-reps., with r = -2, and are therefore valid for all n>4. Since f(kFn) = 2, 
k = 2,3, and/(4F„) = 3 for all n > 4, it follows that nk = 4 for k = 2,3,4. Of course, Fn = Fn 
for all ?2 > 2, so nx -2. 

Lemma 2: 

W ^Irrfn ~ ^n+2m + K-2m • 

This is also readily verified. Note that the right member of (7) is of the form S(-2m,2m), 
and is in fact the unique S(-2m9 2m) of minimum length. Thus, f(L2mFn) - 2 for all n > 2m + 2; 
hence, nr = 2m + 2. 

Lemma 3: 
m 

W ^2/w+l A? ~ 2 ^ ^n+2j ~ A?+2w+2 + A i - 2 m - 2 ~ A?+2w ~ A i - 2 m • 
j=-m 

We omit the proof, leaving it as an exercise. Note that Lim+X = Lim+2- L^^ which leads to 
the second relation in (8), using Lemma 2. The sum in (8) is a Z-rep. of the form S(-2m, 2m) „ 
valid for all n > 2m + 2. Hence, f(L2m+lFn) = 2m-f 1 for all w > 2m + 2, and ^r = 2m + 2. 
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We now proceed to the proof of (4) and (5), by induction on m. Let T denote the set of all 
positive integers m for which (4) and (5) are both true. (4) is true for m = 1 (k = 2), and (5) is 
true for m = l (k = 3,4), by Lemma 1. Therefore, leT. Suppose 1, 2, ..., msT (the inductive 
hypothesis). We break-up our proof into six subcases: 

Cascl. Suppose 5F2m < k < 1^^. Then L2n^l < k - Z ^ < L^. Using (4) (supposed true 
for m), we have: 

2m-l 

(k - L2m+1)Fn = £ ®TFn+j for all n > 2m + 2. 
j=-2m 

Then, by Lemma 3, 
kFn = S(-2m, 2 IH-1 ) + F„+2m+2 + Fn_2m_2 - F„+2m - F„_2m 

= S(-2m + 2, 2nLzl) + F„+2m+l + F„_2m_2 

= S(-2m-2,2m_+l), for all n>2m + 4, 

which is the statement of (4) for m + 1. 

Case2. Suppose IL^ <k <5F2m. ThenZtol_2£*-£toH.1S.Z2M_1. Using (5) for m-\, 

(k - L,^ )FV = S(-2m + 2,2m - 2) for all n > 2m. 

Then, by Lemma 3, 
kFn = S(-2m±2,2m-2)+JF„+2m+2 + F„_2m_2 -JF„+2ffl -F„_2m 

= S(-2m±l, 2m - 2 ) + F„+2m+1 + iv2m_2 

= S(-2m-2,2m + 1), for all w > 2m + 4, 

which is the statement of (4) for m + ,1, 

Case 3. Suppose L , ^ <A: <2L,m. ThenZ^,, <k-Llm <L2m. By (4), form, 

(A--i^,)Fn = S(-2m, 2m-I) for all «>2m + 2. 

Then, by Lemma 2, 
£F„ = S(-2m, 2m-1) + FB+2m +F„_2m 

= S(-2m + 2,2m - 3) + 2Fn_2m + F„+2M_! + F„+2m 

= S(-2m + 2,2m - 3) + F„_2m+l + Fn_2m_2 + Fn+2m+1. 

If ^ 2 = 0. then 

# r = 1S'(-2m±J, 2m+ 1) + ^„_2m_2 = S(-2m-2.2m +1). 

If ^ 2 = 1. then ^ 3 = 0, and 

£F„ = S ^ m + 4,2m - 3) + F„_2m+2 + F„_2m+l + F„_2m_2 + F„+2m+1 

= S(-2m + 4,2m+ 1) + F„_2m_2 + F„_2m+3. 
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Since 6^kJ+l = 0^_3 = 1, we must have O^f = 0 for at least one j with -m + 2 < 7 < m - 3, and cer-
tainly C ) - 4 - = ^ 2 = C ) = 0- T h u s> kF, = S(-2m + 2r +1, 2m +1) + iy2f f l_? for some r > 0 , 
which i m p l i e s ^ = S(-2m-2, 2m + 1) for all ft > 2m + 4. This is the statement of (4) for m +1 . 

Combining cases 1, 2, and 3, we see that if mL2m+x < k < F2mJt2 •> then the assertion of (4) for 
m +1 is valid. Thus, m e T implies (4) for m +1. 

Case 4. Suppose L2m+2 <k< 2Llm+x. Then L ^ < k-I^m+x < I^m+X. By (5), form, 
(k - L2m+x)Ffl = S(-2m, 2m) for all ft > 2m + 2. Then, by Lemma 3, 

kFn = S(-2m, 2m) + F„+2m¥2 + Fn_2m_2 - Fn+2m - Fn_2m 

• = £ ( -2m + 2, 2 m - 2 ) + Fn+2m+2 + F„_2m_2 

= S(~2m-2, 2m + 2) for all ft > 2m + 4, 

which is the statement of (5) for m +1. 

Case 5. Suppose 2L2m+l<k <5F2m+l. ThznL2m_x<k-Llm+2<L2m.. By (4), for m, 
(k - Lim+iWn = S{-2m, 2m-1) for all ft > 2m + 2. Then, by Lemma 2, 

£F„ = S(-2m, 2m -1 ) + F„+2w+2 + iy 2 m _ 2 

= S(-2m-2, 2m_±2) for all ft > 2m + 4, 

which is the statement of (5) for m +1. 

Case 6. Suppose 5F2m+l <k< Z^2+3. ThenZ^, < £ - L ^ < Z ^ . Then, using (5), for m, 
(& - L2m+2)Fn = iS\-2m, 2m) for all ft > 2m + 2. Then, by Lemma 2, 

&F„ = S(-2m, 2m) + F„+2wri.2 + F„_2w_2 

= S(-2m-2, 2m+ 2) for all ft > 2m + 4. 

This is the statement of (5) for m +1. 

Combining cases 4, 5, and 6, we see that if L2m+2 <k < L2m+?) and m eT is assumed, then (5) 
holds for m + 1. Combining this conclusion with the conclusion of case 3, we see that m GT 
implies (m +1) e T. Since 1 e T, the proof of (4) and (5) by induction is complete. 

These relations, in turn, imply the truth of the original assertions [(2) and (3)]. For (4) and 
(5) they may be combined as follows: 

(9) Given k such that L2m_x < k < L2m+l, then for all ft > 2m + 2, 

kFn = S(-2m, 2m), and 0% + C - i = 1-

We see from (9) that nk = 2m+ 2, where 2m +1 = //, as defined by the proposer. This proves (3). 
Q.E.D. 

Editorial Note: Russell Hendel's name was omitted from the list of solvers of H-453. 
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Introduction to Fibonacci Discovery by Brother Alfred Brousseau. Fibonacci Association 
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Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. FA, 1972. 

A Primer for the Fibonacci Numbers. Edited by Marjorie Bicknell and Verner E. Hoggatt, 
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Fibonacci's Problem Book. Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. FA, 
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The Theory of Simply Periodic Numerical Functions by Edouard Lucas. Translated from 
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A Collection of Manuscripts Related to the Fibonacci Sequence—18th Anniversary Vol-
ume. Edited by Verner E. Hoggatt, Jr. and Marjorie Bicknell-Johnson. FA, 1980. 
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