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ON THE NUMBER OF INDEPENDENT SETS OF NODES IN A TREE 

R. Duttont, N. Chandrasekharant, and R. Brighamt* 
Department of Computer Science* 

Department of Mathematics"' 
University of Central Florida, Orlando, FL 32816 

(Submitted May 1991) 

1. INTRODUCTION 
In [4] Wilf shows that the number of maximal independent sets of nodes (Mrs) for a non-

empty tree on n nodes is bounded above by 

/•<V>-I2"/2"1 + 1 if" is even, /W-j2(n-i)/2 i f w i s o d d 

For each value of w, he gives a tree, depending upon the parity of«, that attains these bounds. 
The two general forms are shown below in Figure 1. 

(Pi 
(a) nodd (b) neven 

FIGURE 1 

Throughout, we assume nonempty trees and, following the notation in [4], let //(7) be the 
number of Mis's in a tree T. We will derive lower and upper bounds on ju(T) in terms of J3I(T), 
the maximum number of independent edges in T. 

First observe that, in any graph, two degree-one nodes having a common neighbor occur in 
the same Mis's. Thus, the number of Mis's is unaffected by the removal of one of these nodes. 
Such "pruning" can be repeated, and we formalize this fact as a lemma. Although the lemma is 
stated here for trees, it is actually valid for arbitrary graphs, and demonstrates, in some sense, the 
independence between the number of nodes and the number of maximal independent sets of 
nodes. 

Lemma 1: Let Tbe a tree and T the tree obtained by removing all but one degree-one neighbor 
from every node having two or more such neighbors. Then ju(T) = ju(T') and /?x(r) = Pi(T'). 

Any tree with diameter d, 2<d<4, can be reduced by Lemma 1 to one of the forms in 
Figure 1. The w-even case arises from trees containing two degree-one nodes that are distance 
three from each other. Define Te to be this set of trees and let TQ be the remaining trees with 
diameter between two and four. Notice that Kx and K2 are the only trees with diameter less than 
or equal to four that are not in TQ u T0. Neither are they reducible to a tree of Figure 1. For 
these, though, we know that ju(Kx) = 1 and ju(K2) - 2. We can determine exactly ju(T) for any 
tree J with diameter at most four. 
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Lemma 2: Let The a tree with diameter at most four and Px = PX(T). Then 

ifrereu{£2}, »(T)=$;1+l *T**W. 

Proof: All trees in TG ^ T0 must, by the above discussion, reduce to either the n even (with 
n = 2px) or the n odd (with « = 2j5x +1) case in Figure 1. The result then follows from/w) given 
above. Finally, since Pl(Kl) = 0, fi(Kx) = l, pl(K2) = l, and ju(K2) = 2, ^ a n d i ^ a^so satisfy 
the lemma. • 

The trees in TQ^J TQ will be called terminal trees or terminal subtrees when part of a larger 
tree, and will have an assigned root node u. With one exception, the root node must be selected 
from those nodes that, after pruning, would be nodes of maximum degree. The star Kln, the 
exception, must be rooted at a leaf node. The root of a terminal subtree S has a single neighbor 
not in S. The neighborhoods of all other nodes in S are a subset ofS. In a pruned tree, a subtree 
whose removal would disconnect the graph or leave an isolated Kx or J^ is not a terminal subtree. 
The trees in Figure 1 are terminal trees. The tree T in Figure 2 below is formed by removing a 
terminal subtree from T. All trees, other than Kx m&K2, are either themselves terminal trees or 
contain at least two terminal subtrees. Thus, for any pruned tree T with diameter at least five, 
there exist adjacent nodes u and v permitting J to be drawn in one of the two forms of Figure 2, 
where u is the root of a terminal subtree and v is in the subtree T. 

k 
(a) 

1 2 

FIGURE 2 

k 
(b) 

The structure of the graphs in Figure 2 corresponds to the structure in Figure 2 of Wilf s 
paper [4]. From this we see that Wilfs equation (2), a recursive equation solving ju(T), has a 
simpler form because of the pruning permitted by Lemma 2. We include it here, along with the 
conclusions of Lemma 2, where fix = PX(T) and k, a, and b are as in Figure 2. 

(i) M(T) = 
2"'-1 + l 

M(T-{a,b}) + 2kju(T') 

i fTe^utK,} , 
IfTeT^iKJ, 
otherwise. 

Part three applies when the diameter is at least five, and then px(T-{a9 b}) = Pl -1 and PX{T) is 
either px - k - 2 or px - k -1. In either case, the subtree T has at least three nodes. 

We use this result to obtain a lower bound on the number of MIS in a tree. Then we use 
another tree-reduction operation to determine new lower bounds, and also new upper bounds 
which normally improve those given by Wilf. Finally, we obtain bounds on the number of inde-
pendent sets (including nonmaximal) of nodes in an arbitrary tree. 
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2. IMPROVED BOUNDS 
Since ju(T) is essentially independent of the number of nodes in T, we look for bounds with 

respect to the edge independence number PX{T). The first, Theorem 1, is a lower bound for ju(T) 
that appeals to Lemma 1 and the Fibonacci numbers Fn. 

Sanders [3] exhibits a tree on 2n nodes and proves it has Fn+2 maximal independent sets of 
nodes. The tree, called an extended path, is formed by appending a single degree-one node to 
each node of a path on n nodes. In terms of their edge independence number, we have for such 
trees T that ju(T) = i^1+2, where fix = Pi(T) = n. We show next that, for a given value of fil9 no 
tree T with px(T) = px has a smaller number of maximal independent sets of nodes. Therefore, 
because of Lemma 1, extended paths actually represent, for each value of Pl9 an infinite class of 
trees satisfying the bound. 

Theorem 1: Let The any tree with fix = PX(T). Then //(J) >Fp+2m. 

Proof: If TeTQ<uTQ\u{Kl9K2}, then the result follows because Fp +2 is bounded above by the 
appropriate +1 or 2Pl value indicated in equation (1). Otherwise, we can use the recurrence 
formula in equation (1) inductively to conclude that ju(T) > F^+l+2kF^_k. It is straightforward 
to show, by another induction argument, that 2kF^_k>F^ . Therefore, //(7)>i^i+1+i<^ = 

Terminal subtrees can be removed from a tree T9 one at a time, until T is empty providing, in 
some sense, a count of the number of terminal subtrees in T. Since the order of removal is not 
unique, one might suspect that the subtrees obtained in such a removal scheme also may not be 
unique. This is indeed the case and can be verified by examining a few small examples. It also 
would seem the number found could vary depending upon the order of removal. We now show 
that this does not occur. 

Lemma 3: For any tree, every order of terminal subtree removal results in the same number of 
removed subtrees. 
Proof: Let tn^n(Tr) and tmSLX(T) be the minimum and maximum number of terminal subtrees that 
can be removed from a tree T, under any order of removal. If Th itself a terminal tree, the result 
holds since there is no option but to remove the entire tree. This also implies tndn(T) = 2 when-
ever 7max(7) = 2. Now, letting tm2iX{T) - m > 3, we show by induction that tr^n{T) also must equal 
m. For some k, 2 < k < *max(7), there exist terminal subtrees Sly S2,...,Sk of T, any one of which 
can be an initial subtree removed from T. There exist indices / and j , 1 <i^j<k, for which 
tn*x(T-Si) = tnmx(T)-l = m-l and / m i n ( r - ^ ) = / m i n ( r ) - l < m - l . By the induction hypoth-
esis, terminal subtrees can be removed in any order from T-St and T-Sj without affecting the 
number of such removals. Furthermore, Sj is a terminal subtree of T-St and St is one of T-Sj. 
Thus, tm(T-Si-SJ) = tmn(T)-2 = m-2 and tmin(T-Sj -St) = tm]n(T) -2 <m- 2, a contra-
diction implied by the induction hypothesis since T-Sj-St = T- St - Sj. Hence, tndn (T) -m • 

In view of Lemma 3, it is now possible to define, for any tree T, a new invariant t(T) to be the 
number of terminal subtrees removable from T. It is convenient to let ^K^ = t(K2) = 0. 

Theorem2: Let T be a tree with fix = fi^T) and t = t(T). Then 2A~' +2r - 1 </ / ( ! )< 2fil'. 
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Proof: If t(T) < 1, then Tis in 2̂  u T0 KJ {Kh K2} and both bounds follow from the first two cases 
of equation (1). Now consider the case in which J3X = 2t Then the lower bound is 2t+l - 1. A 
straightforward induction argument shows 2t+l-l<F2t+2; then Theorem 1 establishes that such 
trees satisfy the lower bound of the theorem. Now, assume T is a tree with t(T) = / > 2 and that 
the lower bound is satisfied by all trees with either fewer than t terminal subtrees or with t termi-
nal subtrees and It independent edges. Then, we can invoke the third part of equation (1) induc-
tively and have, referring to Figure 2, 

PX{T- {a, b})=pi-l;t-l< t(T- {a, b}) < t; 
Pl-k-2<pi{T')<pi-k-X t(T') = t-l. 

The lower bound decreases as px decreases and, when t decreases, the lower bound decreases if 
and only if Pl < 2t Thus, we must consider two cases: 

CaseL px<2t mdt(T-{a,h}) = t-l. Then 

ju(T) > {2&-f + 2'"1 -1} + 2k{2&-k-f-1 + 2f_1 -1} 
= 2A_f + 2f_1 - 1 + 2A"'~1 + 2k (2'_1 -1) > 2 A - ' + 2* - 1 . 

Case 2. px > 2t and t(T- {a, b}) = t. The result when Pl = 2t has already been established. 
We again use the recursive part of equation (1), where t{T- {a,b}) = t and PX{T- {a,b}) = pi-l, 
and proceed by induction on the value of px. It follows that 

M(T) > {2/?1"1-' + 2r -1} + 2k {2&-k-f-1 + 2'"1 -1} 
= 2^-1 + 2' - 1 + 2A"'"1 + 2k (2f"1 -1) > 2^ + 2r - 1 . 

establishes the lower bound. 
To verify the right inequality, we again use equation (1) inductively. The result was shown 

above for all trees with t{T) < 1. Assume Tis a tree with t{T) > 2 and that the result holds for all 
trees with edge independence number less than Pv Then pl-Pl{T)>3 and ju(T) <2y?1_1 + 
2*2A"*-1 = 2A. D 

When t(T) < 1, regardless of the value of Pi(T), equation (1) shows that equality holds on 
the right in the n odd cases of Figure 1 and on the left in the n even cases. Other trees can be 
obtained by appending an arbitrary number of degree-one neighbors to the degree-two nodes in 
either of the trees in Figure 1. This process produces all trees Tfor which t(T)= . 

The upper bound also is achievable, for any fix and t >2, by an infinite number of trees. 
Consider the tree in Figure 2(a). The recurrence in equation (1) can be iterated k times, on the 
first term, to give the equation ju(T) = fi(T") + (2k+l ~ 1)M(T'\ where T is the same as in Figure 
2, and T" is V with node v having node u as a degree-one neighbor. We call this the Iterated 
recurrence formula. From Lemma 1, if node v already has a degree-one neighbor, 
H(T") = ju{T) and the recurrence formula simplifies to ju(T) - 2k+lju{T). We now construct a 
tree T that has this property at each step of the iterated recurrence. Let Tx be any tree in TQ. For 
t > 2, let St be any tree in T0 with its identified root node u. Now, form Tt by adding an edge 
between node u in St and any node in Tt_r having a degree-one neighbor. Clearly, Px(Tt) = Px{St) 
+ A(^-i) ?

 a n d a n induction argument with ji(Tt) = 2k+1ju(Tt_l) shows that ju(Tt) = 2MT'\ The 
lower bound is also achieved, when t = 2, by any tree that can be pruned to P6, the path on six 
nodes. 
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We conclude this section with an upper bound on ju{T) for a restricted class of trees that will 
prove useful in the next section. Let J* be the collection of trees with every node being a 
degree-one node or having a degree-one neighbor. First, an upper bound independent of t(T) is 
given. 
Theorem 3: Let TGT* with J3X = # ( 7 > Then ju(T) < 2/?1"1 +1. 
Proof: If t( T) < 1, then T GTQ<U {K2} and equality follows from equation (1). Now, assume that 
TeT*, t(T) > 2, P^T) = fix = m > 3, and that the result holds for trees in 7* with fewer inde-
pendent edges. Identify a terminal subtree, as in Figure 2(b), and use the recurrence in equation 
(1). We have 7 - {a,b} and T both in 7* and (5X(T- {a,b})=pl - 1 . Here, we are guaranteed 
that PX{T') = /?! - k - 2. Therefore, by the induction hypothesis, 

ju(T) < 2&-2 + l + 2*(2/?1-*-3 + 1) = 2A"2 + l + 2/?1~3 + 2*. 

S i n c e l < ^ 1 ( r ) : = : A - ^ - 2
?

w e h a v e ^ ^ A - 3 a n d t h e n / / ( r ) < 2 A " 1 + l. D 

Lemma 4: Let 7 G 7* with ^ = /?x(7) and f - f (7). Then fix > It. 

Proof: lfT-K2, then/(7) = 0 and the conclusion follows. Iff = 1, then T GTG and, for all such 
trees, PX{T) >2-2t. Assume t > 1 and that the result holds for all trees with fewer terminal sub-
trees. Now, let 7 G 7* with t(T) = t. From previous discussions and Figure 2(b), we know that 
t(T') = t-l, $ ( 7 ' ) =fil-h-2, and T e 7 *. Therefore, by the induction hypothesis, 

A-Jfc-2 >2{t-\). 
Since k > 0, the result follows. D 

The bound of Theorem 3 can be improved when t(T) is known. We will again make use of 
the iterated form of the recurrence formula described after Theorem 2. 

Theorem* Let TGT*-{K2) wi th^ = # ( 7 ) and t = t{T). Then//(I) <3f-12/?1-2f+1+2f_1. 
Proof: When t = 1, the right-hand side reduces to 2^1_1 +1, the bound given in Theorem 3. Sup-
pose TG 7* with 7(7) = t>2 and that the result holds for all trees with fewer terminal subtrees. 
The iterated form of the recurrence in equation (1) is ju(T) = ju{T") + (2k+1 - l)ju(T'), where 7" is 
as described in the discussion following Theorem 2. Then p^T") -Px-k-\ and t -1 < t(T") < t 
and, since the bound increases as t decreases, we have by the induction hypothesis that 

^r)<3t-22Px-k-2t+2+2t-2 a n ( j / / ( r ) < 3 ' - 2 2 A - * - 2 ' + l + 2 ' - 2 . 

This gives 
ju(T) < 3f-22^-k-2t+2 + 2f~2 + (2k+l - i)(3'-22A-*-2r+i + 2f"2) 
_ Tt-22P\-k-2t+2 , Tt-2jPx-2t+2 _ 2t-220i~k-2t+l ^Iryt-l 

Suppose this bound is greater than 2t~l2Pl~2t+l + 2'"1. Then we have 

ryk+\rst-2 __ rA-\ Tt-lrjPx-2t+\ __ s<->t-2~/31-2t+2 . ^-2*0^-21+1} 

2t-\(2k _V}> 3r-22A-2r+i(1 _ 2-k^ o r 2t-l2k > 3r-22A-2r+i 

Since k<Px-2t, from the proof of Lemma 4, 2r"12A_2r >3f"V1_2r+1 or 2f"2 >3r"2, a 
contradiction. • 
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Trees achieving this bound are presented at the end of the next section. 

3. NUMBER OF INDEPENDENT SETS 

Now consider the number of independent sets of nodes in a tree. The counted sets must be 
distinct, but they need not be maximal, and we count the empty set. For example, the star Kln 

has 2n +1 independent sets of nodes. Denote this number by /i*(T). Prodinger & Tichy [2] have 
shown, for an arbitrary tree on n nodes, that Fn+2 < ju* (T) < 2n~l +1. The left inequality holds for 
a path on n nodes and the right for the star Kln_l. We shall derive these bounds in a manner 
which also exhibits a relationship between this and the original problem of counting the number of 
maximal independent sets of nodes. 

In this section, let 7* be the tree obtained from the tree T by appending a single pendant 
edge to each node of T. 

Lemma 5: For any tree T, //(J* ) = ju* (T). 

Proof: Let Thave nodes V(T) - {v1? v2,..., vn) and J* have additional nodes {wly w2, ...,wn}, 
where wi has v7 as its only neighbor, for 1 < i < n. For any set of nodes S, it is immediate that S is 
an independent set of nodes in T if and only if S*=S*u{wi\vi <£S} is a maximal independent set 
of nodes in T*. • 

If terminal subtrees are systematically removed from J* until it is empty, one finds, as will be 
shown in Lemma 6, that the collection of identified root nodes forms a minimum node cover of 
the original tree T. The number of these covering nodes is equal to J3X(T), a relationship that 
holds for amy triangle-free graph [1, p. 171]. Let fi0(T) be the node independence number of the 
tree T. Then, if J has n nodes, n - /?0(T) = PX{T) is the size of a smallest node cover of T. 

Lemma 6: For any tree T, t(T*) = /^(T). 

Proof: Induct on the value of t{T*), and first consider the case in which t(T*) = 0. Then T* = 
K^ and T = Kl9 and the base case is established. Now, suppose Tis a tree with t(T*) = m>\ and 
that the lemma holds for all similarly constructed trees 7* for which t(T*) < m. Let $ be any 
terminal subtree of 7*. Then t(T* -S) = t(T*) - I and, by the induction hypothesis, 

t(T*-S) = n-\SnT\-fi0(T-SnT) = n-fi0(T)-l. 
The result follows. D 

The number of nodes in Tis /^(J7*) and, from Lemma 6 and Theorems 1, 2, and 4, we have 
the following bounds on fi*{T). 

Theorem 5: Let 77be any tree on n > 2 nodes with fix - PX{T). Then 

max{Fw+2,2"-A +2 A -1} <^{T) <3^2"-2^+l+ 2^~\ 

It is known [2] that //*(i^) = i^+2, where Pn is the path on n nodes. Therefore, we have 
ju{T) - Fpi+2 for trees T constructed from a path on fix =PX(T) nodes with each node having one 
or more degree-one neighbors appended to it. These trees were introduced in the discussion prior 
to Theorem 1 and were shown to be a generalization of the extended paths given in [3]. The 
above has given an alternate proof for the number of MIS in such trees and reaffirms that they 
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represent an infinite class of trees having the smallest number of MIS for a given number of maxi-
mum independent edges. 

An infinite class of trees satissfying the bounds of Theorem 4 can be constructed with the aid 
of Lemmas 5 and 6. First, we will form a tree T for which /i*(7) = 3A_12W"2/?1+1+2^_1, the 
upper bound of Theorem 5. For any positive integers t and /?l3 2t<j3l, construct a star on 
Px -1 +1 nodes. Next, append a degree-one node to t - 1 of the leaf nodes of the star, as in 
Figure 3, and let this tree be T. Observe that PX{T) = t, t(T) = 1, and the number of nodes is flv 

1 2 0x-2t + \ 

1 2 t-l 

FIGURES 

Now consider the number of independent sets of nodes in this tree. First, examine the inde-
pendent sets of nodes not containing the center node v. Node v has fil - 2t +1 degree-one 
neighbors that can be members of an independent set of nodes in 2^1_2f+1 ways. It also has t - l 
degree-two neighbors, each with a degree-one neighbor. A degree-two node and its degree-one 
neighbor can contribute to an independent set of nodes in any of three ways: either node individu-
ally or neither node. Thus, there are 3f_1 ways to select independent sets of these nodes. 
Together, we have a total of 2t~l2^l~2t+l ways to form independent sets of nodes not including 
node v. When node v is included, only the t - 1 nodes distance two from v can be used. There 
are 2r_1 such sets. The total now is 3(-l2^~2t+l + 2'"1 and, since t^ft^T) and px is the number of 
nodes, Tis a tree that leads to the upper bound of Theorem 5. Now, for any n> 2/?1? construct 
J * by appending a degree-one node to every node of T. Then fli(T*)=/31, t(T*) = t, and 
Lemma 6 shows that the number of Mis in J * is 3'-^-2^+1 + 2f_1

3 the upper bound of Theorem 
4. To obtain the desired number of nodes n, merely append a total of n - 2f3l degree-one nodes to 
any node(s) already having at least one such neighbor. 
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1. INTRODUCTION 

A Lucas fundamental sequence {w„}*=0 is a nondegenerate binary recurrence sequence with 
initial conditions u0 = l, ux- P which satisfies the homogeneous second-order linear recurrence 
relation 

(1.1) Un = PUn-l-Qun-2>- ^ 2> 

where P and Q are integers [12]. 
If the associated auxiliary equation 

(1.2) x2-Px + Q = 0 

has roots a, /?, then 

(1.3) •u„ = (crl-/r1)/(a-fi). 
The Fibonacci, Mersenne, and Fermat numbers are all types of Lucas numbers. Their prop-

erties were studied extensively by Carmichael [5]. 
Many authors have generalized aspects of them by various alterations to the characteristic 

equations. Some of these may be found in Dickinson [6], Feinberg [7], Harris & Styles [8], 
Horadam [10], Miles [14], Raab [15], Williams [19], and Zeitlin [20]. Atanassov et al. [1] have 
coupled the recurrence relations in their generalizations. 

Lehmer [11] generalized the results of Lucas on the divisibility properties of Lucas numbers 
to numbers 

Uan-Pn)l(a-P), forn odd 
(14) £ =\ 

n [{an-[5n)l{a2-l32), for n even. 
It is a generalization of these numbers that we wish to consider in this paper. It is of interest 

to note in passing that McDaniel has also recently studied analogies between the Lucas and 
Lehmer sequences [13]. 

2. DEFINITIONS 

Following Carlitz [4], we define 

(2.1) f?)=(ank+k-pnk+k)/(ak-pk) 
and 
(2.2) g(

n
r) =(a"+k-{3n+k)/(ak-]3k) 

which are not necessarily integers, where k = r-l, and a and /? are the roots of (1.2) as before. 
For example, 
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so that these numbers are generalizations of the Lucas numbers. They are also generalizations of 
the Lehmer numbers if we let 

(2.3) £ = ) Jn-l> 

Us, 
for n odd, 
for n even, 

Carlitz [4] first defined the /w
(r) in another context and proved that 

where 

A - t 
n-s 

(f,5 = 0,l,...w) 

is a matrix of order n + 1. 
Examples of /„(r) and gn

r) now follow. When P = -Q=l and r = 2, 3, 4, in turn, we have: 

n 
f<2) 

J n 
/•(3) 

J n 

J n 

£' 
gi3) 

gi4) 

0 
1 
1 
1 
1 
1 
1 

1 
1 
3 
4 
1 
2 
3 
2 

2 
2 
8 
17 
2 
3 
5 
2 

3 
3 
21 
72 
3 
5 
4 

4 
5 
55 
305 
5 
8 
13 
2 

5 
8 

144 
1292 

8 
13 
21 
2 

6 ... 
13 ... 

377 ... 
5473 ... 
13 ... 
21 ... 
17 ... 

It can be seen from this table and the recurrence relations that other properties for these 
sequences could be developed by treating them as cases of Horadam's Pyk_l+P2yk_2 = vk.{wn} 
[10]. 

3. RECURRENCE RELATIONS 

We also need the Lucas primordial sequence {v„}^=0 defined by the recurrence relation (1.1) 
with initial terms v0 = 2 and vx = P, so that the general term is given by 

(3.1) 
We can show that 

(3.2) 
and 

vw = o"+/ r . 

fir) _ f{r) _ Qr-\ Mr) 
Jn+1 ~ vr-\Jn Sd, Jn-l 

(3-3) g^ = vlgj,r)-Qgi% 
The latter is the same as (1.1) when v = 2 since vx = P. 
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Proof of (3.2): 

Vr-jP-QTWl = ((«* +Pk)(a"k+k -P"k+k)-{aP)k(a"k -/?"k))/(ak -f) 

= (a"k+2k -Pnk+lk+(ap)k{ank -pnk)-(ap)k(a"k -pnk))/(ak ~pk) 

= (a"k+2k-p"k+2k)/(ak-pk) 

= /J+i, as required. 

Proofof(3.3): 

^ - Qg% = ((« + P)(a"+k -Pn+k) - {aP){a"+k-l-p"+k-l))l{ak ~pk) 

= (a"+k+1 - p"+k+l + (ap){an+k-1 - pn+k~1)- (aP)(an+k-1 - pn+k-1))/(ak - pk) 

= (a"+k+1-pn+k+l)/(ak-pk) 

= g£i> as required. 

Thus, the ordinary generating functions will be given (formally) by 

(3-4) i / , ( , V = l / ( l -v^ 1 x + G-1x2), 
w=0 

and 

(3.5) I*Sr)*" = i-e| 
( (,. \ \ 

"r-3 

VMr-2 J 
/(l-v^ + Qx2). 

Proofof(3.4): 

(l-v^x + Q^x^f^x^f^^-f^v^x [by (3.2)] 
n=0 

(~2k r,2k 
= 1 + 

= 1. 

ak-pk (aK+pK) x [by (2.1)] 

Proofof(3.5): 

(l-v1x + £x2)]>><'V = & +(gp-g0-\)x 
n=0 

= 1 + v
+i-i*+i 

ak-pk (a+P)\x 

= 1 - 2 
uk-2 \x, as required. 

The g^ are related to the /„(r) by 

(3-6) gti=tf\ 
and to the Lucas primordial numbers vn by 
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(3-7) V„=P&i~QVr-2gi%-l 
and 

(3-8) v„=g£-k/gi%-
Proof of (3.7): 

Pgir)-Qvr-2gt\ = {(a+P)(a"+k -rk)-{aP)(ak-X +Pk~l){a" -P"))/(ak -fik) 

= (a"+k+1 - p"+k+1 + ak/3"+1 - a"+1pk )/(ak - pk) 

= (a"+l(ak -pk)+p"+\ak -pk))/(ak - pk) 

= vn+1, as required. 

Proofof(3.8): 

g^kvn={a"-p"){an
+p")l{ak-pk) 

= (a2"-p2")/(ak-pk) 
= gin-k, as required. 

4. GENERALIZATIONS OF BARAKAT'S RESULTS 
As an analog of Simson's relation, we have 

igVf-g^ugV^Q"-
Proof: The numerator of the left-hand side reduces to 

(ap)"a2k+(ap)"plk-2(ap)"(aP)k=(aP)"(ak-plc)2 

= Q"(ak-/?)2 

which is Qn times the denominator of the left-hand side. 
WhenP = -Q9 we are able to relate the /„(r) to the ordinary Lucas fundamental numbers, un, 

by means of a generalization of a result of Barakat [2] for the ordinary Lucas fundamental 
numbers. Barakat proved 

«* = I {n~mYlm(-Q) 
0<2m<n v

 m J 

5- f " w
m V - m w h e n P = - e . 

0<2m<n 

We define 
xn = u„/P = (a"+1-/r+1)/(<f-f?), 

and, for notational convenience, set yn - xn+l. Thus, from Simson's relation, which can be 
expressed as u\ - uk_^uk+l - (-P)k, we have 

(4-2) W i - W ^ ( - ^ ~ 2 . 
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Proof: If we divide the left-hand side of Simson's relation by P2, we get 

from which the result follows. 

A variation of equation (3.7) is then 

(4-3) ^ - i + ^ - 3 = vt . 

Proof: The numerator of the left-hand side is 

( a + 0 ( « * + 1 - ^ ) + (-ap)(a+P)(c?-x -/f~l) 

= a**2 -/?+2 - af?+1 + ct+xp- ak+1J3+ c??-<//? + a/?+l 

- vk • (a1 -ff) which gives the result (4.3). 

We Eire now in a position to assert a property which relates these generalized Fibonacci num-
bers to ordinary Fibonacci numbers and at the same time gives an iterative formula for the general 
term. This formula generalizes Barakat [2] and Shannon [16]. 

0<m+s<n^ ^ . ' 

Proof: 
OO 

] T / „ ( r V = (l-v.z + i-Pfz2)-1 [from (3.4)] 

= ( l - ( 6 l - 3 + ^ - . > + W ^ 2 ) " ' [from (4.3)] 

= (l-(P2xk_2 +Pyk-l)z + P3(xk_2yk_1 -xk_iyk_2)z2yl [from (4.2)] 

= ((l-Y'x^zXl-Py^-P'x^y^z2)-1 

= £ (1 - P\_2zy-\1 - Py^zr-'x^yUP^z2 

s=0 
°o / . \ 

\-s-l„s ^rn , .s rt?>s+2m2s+m 

s )Ki-ryk-\z. 

-)S+2m m+s 

s JU ~ ryk_lZ) xk_lxk_2yk_2Jr 
w=0 ,s=0v 

= £ %m+ss\l- py^ys-xxu*m^yup^lmz 

m=0 S=Q t=0 v y v y 

V V [fn\(n~m\s m-s n-m-s s pn+m n 
2L Z^ I 5 II S )Xk-lXk-2yk-l Jk-2r Z 

1*1=0 ( K W - I - K H V / V / 

ps+2m+t m+s+t 

n=0 0<m+s<n 
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So by equating coefficients of zn we find 
..2s „.m-s„Mn—m—s ryn+m , ( r ) = y (m\(n-myk-\uk-2uk F 

Jn JL-d I $ JI $ J -ps+m-s+n-m-s+s 
0<m+s<ny y v / r 

= Z (™)(n-m}n«t-l<m-SPm, as required. 
0<w+5<« 

For example, when r = 2 (and so k = 1), since / _ ^ = 0, 

/«(2)= i (n-m
my-imP" 

0<2/w<« 

0<2m<nv ' 

which agrees with the result due to Barakat above. Note that Bruckman [3] has provided a neater 
proof for (4.3) in the case when P = 1. 

5. CONCLUDING COMMENTS 

Other properties can be readily developed to relate the /„( r ) and g^ to other parts of the 
recurrence relation theory. For instance, we can prove that 

(5.i) {"}n^<+4 

where {j} is the analogue of the binomial coefficient used extensively in recurrence relation work 
(for example, Horadam [9]), and defined by 

{-} fl\ _ UnUn-l"Mn-j-\ 

Proof: 

ft}-1, 

J) u0ul...uj_l 

a"+1 -pn+l)(a" -j3")--(a"-J+2 -p"->+1) 
(a-/3)(a2-p2)-(aJ-/3J) 

= gP&.~rf&% [by (2.2)] 

- l\.8n-2i+4-
1=2 

As another instance, consider 

(5.2) /ir) =£*"((«/£)*). 
W+l 

where xn represents the rfi* reduced Fermatian of index x as mentioned by Whitney [18] and 
utilized by Shannon [17]. It is defined formally by xn = 1 + x + x2 + • • • + xn~l. 
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Proof of (5.2): 
( fr k^ •/ . . u\»\ 

a + • 
/7 \*Y a x 

v ^ 
= ̂ ((a^)*L-
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1. INTRODUCTION 

Pascal's triangle has long fascinated mathematicians with its intriguing number patterns. The 
triangle consists of the binomial coefficients of the expansion of (x+y)n, where n is a nonnega-
tive integer. When numbering the rows starting with 0 and the elements of each row starting with 
o 
Fi 

the terms 
gure 1. 

are / row \ 
\element/ ? where f n 1 _ n' flQ^iiTnino' 1c <YI Thp fit 

I t 1 , Clo d t i l l 111 l c^ #V _ i / * . A 111/ All 

element 0 

jf element 1 
rowO — • 1 / 

ft element 2 
rowl —+» i l / 

]P element 3 
row 2 — > • 1 2 1 / 

fr element 4 
row 3 — • 1 3 3 1 J . 

p element 5 
row 4 — ^ 1 4 6 4 1 * / , 

p element 6 
row5 - • 1 5 10 10 5 1 / e l e m e m 7 

row 6 

row 7 -

— • 1 6 15 2 0 15 6 1 J 

- • 1 7 2 1 3 5 3 5 2 1 7 1 

FIGURE 1. Eight rows of Pascal's triangle 

A multidimensional pyramid of multinomial coefficients can be generalized from the definition for 
Pascal's triangle. Each entry is represented as 

c \_ c\ 
a\a2,a\...,ak)-a

l\a2\a3\~.akr 

where c = a1 + a2 + a3 + • • • + ak. (Superscripts are used here to allow subscripts to take on a dif-
ferent meaning later in the paper.) This is the coefficient of the term xf x£ x% ... xa

k in the 
expansion of (xx + x2 + x3 + • • • + xk)c, where a1 is the exponent of xi9 i = l,2,...,k.. In the case 
where k — 3, a triangular pyramid of integers is formed with each of the lateral faces duplicating 
Pascal's triangle. The apex of the pyramid is formed by a single 1, and each triangle below corre-
sponds to a particular value of c. The vertices of each such triangle correspond to a1 = c7 a2 = c, 
and a3 = c. 

Consider the replacement of each element in Pascal's triangle by its remainder upon division 
by a prime p. This is called reducing to the least residue modulo/?. The set of nonzero entries in 
this reduced triangle corresponds to a fractal according to the following construction. Consider 
the first pn rows of Pascal's triangle, and call this set Ppn. For each pn, we construct a subset 
A » of the triangle with vertices (0,0), (1,0), and (y,l). The fractal generated will lie in this 
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triangle. Let a0 = (^,l), and let ab a2, ...,a H_l be equally spaced points of the segment joining 
(y,l) with (0,0) such that a „ is (0,0). Let hhb2,...,b B_1 be equally spaced along the segment 
joining ( | , l) with (1,0). Finally, let ch c2,..., c n divide the segment (0,0) to (1,0) into pn equal 
parts. Connect pairs of points of the form a^b^b^c^ anda2,c „_., to form/?2" triangular 
regions, -p

 2
P of them "pointing upwards" and (j? *1)p "pointing downwards." The first pn 

rows of Pascal's triangle have a total of(p
 2 entries. Now every integer in Pascal's triangle can 

be associated with a triangle which points up. Define the sets A » as follows: Ap» = {x\x belongs 
to a triangle associated with a nonzero entry in Pascal's triangle}. The fractal associated with 
Pascal's triangle modulo a prime number is the limiting set A' as n goes to infinity. For/? = 2, this 
set is the Sierpinski triangle. 

A2i: In 21 rows, there are 3 
nonzero entries in (2 *1)2 = 3 

upward triangles 

A22: In 22 rows there are 32 

nonzero entries in (22+l)22 

10 
upward triangles 

A2s: In 2 rows, there are 3 
nonzero entiles in (2i+l)23 _ 36 

upward triangles. 

A24: In 24 rows, there are 34 

nonzero entries in (2 ^1)2 =136 
upward triangles. 

FIGURE 2. Pascal's triangle reduced modulo 2: entries congruent to zero 
are shaded and nonzero entries are blackened 

Figure 3 shows 256 rows of Pascal's triangle reduced modulo 2. Willson [1] showed that a 
cellular automaton with a linear transformation, that is, one in which each entry is determined by 
some linear combination of entries in the previous row, may have fractional fractal dimension. 
Pascal's triangle satisfies this criterion. 
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FIGURE 3. Pascal's triangle modulo 2 

The fractals described by this construction have fractional fractal dimension. The fractal 
dimension D is defined as follows (see [2]): Let A be a compact subset of X, where (X,d) is a 
metric space. For each s > 0, let N(A, s) be the minimum number of closed balls of radius s 
which are needed to cover A. Then, the fractal dimension of A is given by 

*-»<> \n{lle) 

By a slight variation of the Box Counting Theorem, the dimension of the fractals can be deter-

Pn 

zero entries in the reduced Pascal triangle. Then 
mined by using s = -\ and N(A, s) - number of triangles in the first /?" rows associated with non-

^ ,. ln(# of nonzero entries in the first/?" rows) 
D = hm — -. 

*+» ln(/?w) 
In section 2, a theorem about divisibility of multinomial coefficients by powers of primes is 

proven. This theorem is used to prove that the fractal dimension of Pascal's triangle modulo a 
prime/? is 

ln[/?(/? + l ) /2 ] 
In/? 

This determination is supported with computer results in section 3. Finally, in section 4, a gen-
eralization of this formula is proven for the analog of Pascal's triangle which contains multinomial 
coefficients reduced modulo/?. 

2. THEORETICAL DETERMINATION OF DIMENSION 
OF PASCAL'S TRIANGLE 

The symbol pr\x means that/?r divides x with remainder zero. The symbol pr\\x means r is 
the largest integer for which pr\x. Throughout the paper, p will refer to a prime. 

First, we will work toward the dimension of Pascal's triangle reduced modulo/?. The follow-
ing lemma, proven by C. T. Long [3], will allow us to determine the requirements for divisibility 
of multinomial coefficients by a prime. 
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Long 9s Lemma: If p is prime, n = aQ + axp+a2p2 + a3p3 + • • • + arpr with ar =* 0 and 0 < a, < /? 
for each i <r, andpe\\n\, then 

_ n-(a0+al+a2 +a3 + ---+ar) 

Now we will apply this to determine the divisibility of multinomial coefficients. Let a1, a2, 
a3,..., ak be positive integers and let alj denote the coefficient of pJ in the base/? representation 
of a7, so that if a7 has mi digits in its base/? representation, then 

;=0 

The sum of these a1 is denoted by c, so that 
k m+s 

c = Yai = lLcjPJ> 

where m is the maximum value of #$. The Cj are the base p digits of c, and the additional s digits 
in c allow for large carries in the sum of the a1. 

Theorem 1—Multinomial Divisibility Theorem: For primes, P lLi a2 ̂  A iff r is the sum 
of the carries made when adding the a1 in base/?. 

Proof: Let d0,dld2,d3,..., dm+s_l be the carries when adding the a1, so that the sum of the digits 
in each position equals the digit for c in that position plus/? times the carry to the next digit in c: 

k (k \ fk A 
Xa0=C0+Pd0> d0+ I X = C1+M> 4 + Z 4 \ = C2+pd2,..., 
i=i v/=i J v/=i y 

dm-l+ I X m = Cm + M , , rf« = Cm+l + Pdm+\? 

dm+l - Cm+2 + Pdm+2> • • • > di *m+s-2 ' Cm+s-l + P^m+s-l •> ®m+s^l ~~ Cm 

Notice that extra digits beyond cm+l in c occur if the carry from the nft1 digit of c is greater than/?. 
Solving for the df, we have: 

r k \ 

Vi=i ) 
-cn 

• = d0, 

JTa[ - q + rfo 
/=i • = dl9.. 

7=1 
I X h^+^w-i 

• = ^L 

^m±LZ_!lw. —// Cm+s-l "*"^W.s-2 _ ^J ^J _ ^ n 
um+\i----> um+s-l? um+s-l cm+s w-

/»+$-! 
The sum of the carries is I X ? which equals 
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XX -*o+hrx -q+4>+-+ Cm +Jm-l \ + {-Cm+l +dm-l)+~' + {-Cm+s-l +dm+s-2) + {-C
m+s + 4 n + ^ l ) 

( k \ ( k 

V 1=1 J \ 1=1 
ZX + J>; n XX +*"+ XX Hc°+c* + - + 0 + K +di +-+<+s-i) 

m k 

; = 0 i = l 

//w+5 \ (m+s-l \ 

-YLcXr £ 4 
V/=o y V /=o y 

WI+5-1 

7=0 

Multiplying by/? on both sides, 
//w+s-l w k 

IK 
y = 0 i = l 

(m+s \ (m+s—I 

I>, + Z4 
V/=o y v /=o 

Hence, 

Dividing hyp - 1, we get 

(/>-!) 
(m+s-l \ 

1 4 
V /=o y 

/w A: 

y = o i = i 

(m+s 

XL* V/=0 

W+5-1 isx 
(m+s 

V/=o 

Since c = £/=1 a7, we can add c - Z/=1 a1, so that 

m+s-l 

7=0 

/ « A: 

I IX 
y = 0 / = i 

,/=o y 
+CW 

p-\ 

•s \ k ( m \ 

,,=0 J i=l\ J=0 J 
p-l p-\ 

By Long's Lemma, [c-J^=Q ct\I(p-f) is the highest power ofp which divides c\ Likewise, 
each (a1 -11™=$®))! (p-V) is the highest power ofp which divides a1. Thus, the previous 
expression simplifies to 

m+s— 1 
^dj= (highest power ofp which divides c!) - ^T (highest power of/? which divides a7!) 
7 = 0 7=1 

The highest power ofp which divides the multinomial coefficient . 2
 c ; — r is the highest power 

a \a \a I...a ! 
which will divide c\ minus the highest powers which divide each of the d. Therefore, 
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m+s-l l+s~l f ' r \ 
J ] 4 = highest power of/? which divides ( 1 2 k\ 
i=0 Kf* 9a 9 '"9° J 

This theorem can now be used to develop a more efficient method for determining entries in 
Pascal's triangle which are not divisible by/?, in order to determine the dimension of Pascal's trian-
gle. When computing the self-similarity dimension using pm rows, each entry corresponds to a 
triangle of length \lpm. If we consider covering the fractal with triangular boxes, the number of 
boxes needed to cover the fractal is equal to the number of entries which are not congruent to 
zero. The dimension is then 

ln(# nonzero entries) 
#rows-»ooln(# rows considered) 

Theorem 2—Dimension of Pascal's Triangle Modulo p: The fractal generated by Pascal's 
triangle •••modulo/? has fractal dimension 

ln[/?(/? + l)/2] 
In p 

Proof: Consider, entries (4 ] in Pascal's triangle, such that all ar > bt in the base/? representations : 

A^a0p°+alpl-ha2p2-ha3p3 + :'--hampm; . 
B = b0p° +blP

l+h2p2
 + ^ 3 + . : . + a ^ ; ; 

We require that am ̂  0 so that m cannot be reduced, but it is not necessary that bm ̂  0. Using the 
binomial case of Theorem 1, the highest power of/? which divides the term m is equal to the 
number of carries when (A - B) is added to B in base/?. 

A-B = (a0-b0)p°^(al-bl)pl+(a2-b2)p2^--Ham 

B^(A-B) = {b0 + (a0-b0))p0^bl + (^ 

Since each at > bt, and at < /?, no carries will occur when adding at -bt and br Conversely, if, for 
any i, bt >aj7 then the sum (at -bj) + bi will cause a carry so that p\(f\. Thus, in order to 
determine the entries which are not divisible by /?, we need only that the at > bt for each digit in 
the base/? representations. 

The next step will be to determine the fractal dimension of Pascal's triangle modulo /?. As 
discussed above, to find the dimension of this fractal, we find the number N of triangles of side 
length £ which correspond to nonzero entries. If we consider Pascal's triangle down to row pm, 
scaled to have side length 1, then the triangles have side length s-ll[pm, such that each triangle 
corresponds to exactly one entry. 

We are interested in determining how many entries fgj in Pascal's triangle, through the first 
pm rows, are not divisible by p. By the above argument, this is equal to the number of ways to 
choose A and B such that 0 < B < A < pm where 0 < bt< at < p for i = 0,\...,m. The number of 
ways to choose the first such pair of base p digits a0,&0 is /?(/? + !)/2 by a simple counting 
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argument. Therefore, the number of ways to choose m + l such pairs independently is 
[p(P +1) / 2]m. The number of boxes of size {IIpm) needed to cover the pm rows of the triangle 
is [p(p +1) / 2]m. Using the self-similarity definition of dimension, the fractal has dimension 

•. ln(# nonzero entries) r ln[pip +1) / 2]m 

Iim = lim ™->°° ln(/?mrows considered) »»-»«>• ln(pm) 

which simplifies to WPU>+1)/2]: 

3. COMPUTER VERIFICATION OF THEORETICAL RESULTS 

In 1989, N. S. Holter et al. [4] proposed without proof a dimension for Pascal's triangle 
modulo/?. Their formula agrees with the one determined here. Their determination was based on 
a computer program which considers all elements whose distance form the top of the triangle is 
less than n and counts the number of elements x which are not divisible by the modulus. The 
values Dn =^r are approximations to the dimension, and limn^o0Dn is the fractal dimension. In 
their paper, they reported values of Dn for n = 198, 500, and 1000. 

This experimental determination of dimension has two shortfalls. First, these cutoff values 
fall at different places in the approximations to the fractal, so that the figures cannot be rescaled to 
produce similar images. Second, since the determination is based on distance from the top rather 
than row numbers, the method sweeps out sectors rather than the triangular fractals studied here. 
These two problems make it difficult to determine the true limit, which is obscured by changes in 
marking places. Figure 4 illustrates these differences in the two determinations. (See, also, Table 
1 on page 119.) 

For this paper, a different experimental determination was performed using values of n which 
were powers of the modulus used. Also, triangles were used rather than sectors. Using this 
method and larger values of n, the values did approach the theoretically determined limit of 

In 3 * „~ *~^ 
= 1.58496.... 

In 2 
198 entries 

500 entries 

1000 entries 
,1024 Rows 

Holter's Determinations Reiter's Determinations 

FIGURE 4. Diagrams of cutoff values in computer determinations of the dimension 
of Pascal's triangle modulo 2 
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TABLE 1. Data from computer determinations of the dimension 
of Pascal's triangle modulo. 2 and 4 

Holter's 

1.5681 

1.5716 

1.5738 

# Rows in 
Pascal's Triangle 

198 
256 
500 
512 
1000 
1024 
2048 

Reiter' s 

1.577785 

1.580738 

1.582439 
1.583437 

Let c = c0p° + cj>1 + 

4. GENERALIZATION TO MULTINOMIAL ANALOG 
. OF PASCAL'S TRIANGLE 

Now we will generalize to multinomial coefficients and the fractals generated by them. Using 
a method similar to that in Theorem 2, the dimension of the fractals generated by the multinomial 
coefficients modulo/? will be determined and proved. 

Theorem 3—Multinomial Dimension Theorem: Consider a prime/? and a ^-dimensional pyra-
mid consisting of multinomial coefficients. The fractal formed when the entries which are not 
divisible by a particular prime/? are shaded has fractal dimension equal to lnp~^+^/ln/?. 

Proof: In entries f i 2
C

 k 1, let c denote the sum of the a\ i = 1,2,..., k 
c2p2 + c3p3 + • • • + cmpm, where Cj<p-1. According to Theorem 1, f x a2

c
 ak I is divisible by p 

if and only if at least one carry occurs in the summing of the base p. expressions of the d. In any 
set of a7 for which ( x a2

c
 ak j is not divisible by/?, there must not be a carry when adding the d 

in base/?. If no carries occur, then c- =a* +aj +aj + ~-+a* for eachj. Since Cj< p -1, we can 
write p -• 1 = a]+ a2 + a* + • • • + a* + z, where z - (p -1) - c; is a non-negative integer. Thus, we 
are partitioning p - 1 units into k + 1 base /? digits. These k + 1 digits are the k possible a1 and 
the z which "takes up the slack" in each digit. If we consider values of c which are only one digit 
in base/?, then each d is only one digit, so there are (p~l+k) choices for the set of d. This 
follows from the observation that there are [p~\+k) solutions among nonnegative integers to the 
equation xl+x2 + -- + xk+z = p-l. For each increase by one in the number of digits in the base 
/? expression of c, the number of entries which are not divisible by /? increases by a factor of 
[~k+k )• ^^e ^g^ts a r e n o t interdependent because we know there are no carries. Increasing the 
number of digits increases the number of rows and rescales the image by a factor of/?. Thus, the 
dimension of the fractal corresponding to the pyramid of multinomial reduced modulo/? is equal 
to 
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w-̂oo lnpm In/? 

Notice that when k = 2, this agrees with the result in Theorem 2. 

5. DISCUSSION 
As early as 1972, W. A. Broomhead [4] noted the self-similar nature of Pascal's triangle 

reduced modulo a prime. A great deal of study has been done on the specific case of mod 2, 
which generates Sierpinski's triangle. No work has been done on the dimension of the multi-
nomial coefficients as defined here. 

There are many extensions of this work which deserve further study. When the entries are 
reduced to their least residue mod w, where n is an integer other than a prime, the result is a pat-
tern with fractional dimension, but which is not strictly self-similar. The determination of the 
dimension of such a fractal is a natural extension. Because these fractals are the union of two 
fractals with different dimensions, they are not strictly self-similar. I conjecture that the dimension 
of such a fractal is equal to the dimension of the fractal corresponding to the largest prime factor 
of n. Recent work [5] done on the divisibility of entries in Pascal's triangle by products of primes 
could be the basis for rigorous proof. Other cellular automata and the fractals which they 
generate are also likely candidates for this type of dimensional study. 
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1. INTRODUCTION 
When examining a combinatorial sequence, generating functions are often useful. That is, if 

we are interested in analyzing the sequence a0, al? a2,..., we investigate the formal power series 

f(x) = a0+alx + a2x2-\— . 
In a recent paper [2], techniques are discussed that assist in finding closed-form expressions for 
the formal power series for a select, but large, set of combinatorial sequences. The methods 
involve using infinite matrices and the Riordan group. The Riordan group is defined in section 2 
of this paper. Each matrix, L, in the Riordan group is associated with a combinatorial sequence 
and with a matrix, SL, called the Stieltjes matrix. SL is defined in section 3. In this paper, we 
show that when SL is tridiagonal, then L= PCF, where the first factor P is a Pascal-type matrix, 
the second factor C involves the generating function for the Catalan numbers, and the third factor 
F involves the Fibonacci generating function. The following is an example: 

© 1 
1 . I 

11 1 
69 13 1 . 

"1 
1 1 o • 
1 2 1 v . 1 3 3 1 
1 4 6 4 1 
1 5 10 10 5 1 
1 6 15 20 15 6 1 . 

r i 
0 

- i 
0 
2 
0 

-5 

1 
0 

-2 
0 
5 
0 

1 
0 

-3 
0 
9 

1 
0 

-4 
0 

o : 

1 
0 1 

- 5 0 1 . 

r i 
1 1 0 • 
2 1 1 3 2 1 1 
5 3 2 1 1 
8 5 3 2 1 1 

13 8 5 3 2 1 1 . 

The matrices in the Riordan group are infinite and lower triangular. So the example shows only 
the first seven rows. The first factor on the right is the Pascal matrix. The first column in the 
second factor has C(-x2) as generating function, where 

is the generating function for the Catalan numbers. The third factor has the Fibonacci numbers in 
each column. See section 6 for further examples of this triple factorization. 

* Partially supported by NSF grant 634012. 

1 
3 1 
9 5 1 

27 18 7 1 
81 56 31 9 

243 162 109 48 
729 458 332 194 
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In section 2, we define the Riordan group R and list some properties that we use in the proofs 
of the propositions which are given in section 4. In section 3, we discuss the unique Stieltjes 
matrix SL associated with each L in the Riordan group. In this paper, we concentrate on the 
subset of R given by RT - {L GR:SL is tridiagonal}. In section 5, we derive a recurrence relation 
for the sequence associated with each member of RT, and we discuss the asymptotic behavior of 
these sequences. In section 6, we provide two examples involving well-known sequences. For 
each example, we give the triple factorization, the Stieltjes matrix, the recurrence relation and 
asymptotic behavior of the corresponding sequence. 

2. THE RIORDAN GROUP 

A detailed description of this group is given in [2]. Here we provide a brief summary. 
Let M = (rnjj)jj>o be an infinite matrix with elements from C, the set of complex numbers. 

Let cf(x) be the generating function of the j * column ofM That is 
00 

<*(*) = £ mn,i*"' 

We call M a Riordan matrix if ct(x) - g(x)[/(x)J, where 

g(x) = l + glx + g2x2+g3x3 + -~, and f(x) = x + f2x2+f3x3 + -~. 

In this case, we write M = (g(x), /(*)). We denote by R the set of Riordan matrices. R is a 
group under matrix multiplication with the following properties: 
(0 (*<*), fix)) * (h(x), t(x)) = {g(x)h(f(x)), /(/(x))). 
(ii) / = (1, x) is the identity element. 
(iii) The inverse of Mis given by 

M~l = 1 
> / ( * ) jK/(*)) 

where / is the compositional inverse of/ 
(iv) If (a0,alya2,...)T is a column vector with generating function A(x), then multiplying 

M = (g(x\ /(*)) on the right by this column vector yields a column vector with generating 
function B(x) = g(x)A(f(x)). 

3. STIELTJES MATRIX 

Let L be Riordan and let L be the matrix obtained from L by deleting the first row. For 
example, if I is the identity, we have 

/ = 

0 
0 
0 
0 

1 
0 
0 
0 

. • : 
0 1 
0 0 1 . 
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Observe that L = IL. There exists a unique matrix, SL, such that LSL = L. We call this matrix 
the Stieltjes matrix of L. 

Example: If 

Z = 

then 

1 x 1 _ l-x' l-x) 

s,= 

1 
1 1 
1 2 
1 3 
1 4 

"l 1 
0 1 1 
0 0 1 1 
0 0 0 1 

0 
1 
3 1 
6 4 1 . 

0 

1 . 

4. PROPOSITIONS 
Proposition 1: If L = (g(x), f(x)) is Riordan and SL is tridiagonal, then 

(a) SL=\ 

h 
X, 
0 
0 
0 

1 
b 
X 
0 
0 

1 
b 
X 
0 

0 
l 
b 1 
X b 1 . 

0) 

iVoq/; Let 

/ = jc(l+ft/ + l / 2 ) and g = 1 
1 - Z>0X - XyXf 

iff JS^ is as in (a). 

SL = 

b0 1 
Xy by 

0 A2 

0 0 

0 
l 
b2 l 
X3 h 1 . 

With c,(x) the generating function for the z* column of L, / > 0, we have c, = g/"'. By looking at 
the first column of LSL and L, we obtain b0xg + Xxxgf = g -1, i.e., 

1 
*(*) = l-h0x- Xxxf 

For / > 1, we obtain from LSL = L, 
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ci=x{ci_l+bici+Xi+]cM). 

o f = x(l+bif + Ai+1f2) 
.: 0 = (ft, - bj)f + (Xi+l - XJ+1)f2 for all i and; > 1. 

.-. ft, = bj and Xj+1 = XJ+l for all / and; > 1. 

.". we can take ft = ftj = ft2 = ft3 = • • • 

and A — A2
 = ylj — A^ = • • •. 

.-. / = x(l + ft/ + ¥ 2 ) -

Remark: If 5^ is tridiagonal, it has the form in (a) and then either 

(a) 

(b) 

X = 0 and/ = 
l-bx 

and# = l-bx 
1 - (Z>i +b0)x + (bb0 - XJx2 or 

* « A* l-bx-J(b2-4X)x2-2bx + l , 1 
2 * 0 and/ = — and g = . 

2Xx 1 - b0x - X{xf 
Proposition 2: If L = (g, / ) is Riordan; then SL = SL*+bl if and only ifL = PbL*, where 

0 
1 

1 - bx' 1 - bx 

1 
ft 1 
b2 2ft 1 
ft3 3ft2 3b 1 
ft4 4ft3 6ft2 4ft 1 

(cf. [3], p. 171) 

Proof: Note that 

v = 
0 
0 
0 
0 

1 
ft 
0 
0 
0 

1 
ft 
0 
0 

0 
1 
ft 1 
0 ft 1 . 

= bl+l. 

So, 
Z = PfrZ*^>/L = /P*Z* 

=> Z = P*Z* = P'Sp* I* = Pb(bl+I)L* = bPbL*+PbIL* 

= bL + PbL* = bL + PbL* SL* = L(bl + SL*). 

Conversely, suppose SL =bl + $L*. Then 

PbL* (ft/ + SL,) = MP*!* = PbL* = PbbIL*+PbIL* = Pb(bl + T)L* 
= PbL* = I(PbL*) = PbL* 
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Proposition 3: If L = {g, / ) is Riordan and 

SL = 

b + s 1 
X + S b 1 

0 X b \ 
0 0 X b 1 
0 0 0 A A 1 

then Z, = P6^, where 

s 
X + S 

0 
0 
0 

1 
0 
X 
0 
0 

1 
0 
X 
0 

1 
0 1 . ' 
X o A 

Su = 

Proof: This follows immediately from Proposition 2. 

Proposition 4 (PCFFactorization): In Proposition 3, Ẑ  = CxFeS, where 

Q=(c(^2),xc(;ix2)) 
with 

C(X) = 1 + X[C(JC)]2 = 
l -Vl-4x ^, i 

2x 
^ 

v " y 
l 

^^^ir^?-* 
Proof: Let J^ = (ft,/!). Then, from Proposition 1, we must have, when 2 ^ 0 , 

1 x l-Vl-4^x2 

/i= ^ a n d & = Ifoc 

fx = xc(Ax ) and gx = 

Now, from section 2, property 1, we have 

CA, = (c(^Vc(^)).(T-^,*) = (T 

\-sx-{X + S)xfl 

1 
l-ac-(Z + S)x2c(Jbc2)' 

c(Ax2) 
.2\T2 6xc(/?x )-<5[xc(/fo: )] 

,xc(Ax2) 

But 
1 c</lx2) 

^2 / ^ _ 2 2 \ i 2 l-8X-(A + S)xzc(Axz) l-axc(Axz)-Sxz[c(Axz)] 
o> 1 - sxc(Ax2) - 8x2[c{hc2)]2 - c(Ax2)-zxc(Ax2)-(A + S)x2[c(Ax2)]2 

ol-c(x2) + Ax2[c(Ax2)f=0. 
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5. RECURRENCE RELATIONS AND ASYMPTOTICS 

We have proved that when L = (/(x), g{x)) is Riordan and SL is tridiagonal with the form 

sL = 

h 
A, 
0 
0 
0 

1 
b 
X 
0 
0 

1 
b 1 
X b \ 
0 X b 1 . 

then 

and 

/(*) = Jlfxn = 1~fa~^2"4^x2"2fa + 1 

w=0 2/bc 

1 

„=0 , -v-v/w 
Using the J.C. P. Miller formula (see Henrici [3]), we obtain for fn the three-term recurrence 

(#i + 2)/„+1 = (2n + l)Z>/„ + (1 - »)(ft2 - 42)/„_1, 

and for gn the five-term recurrence 

nAg„ = [{In-3)bA-nB]g^ + [(In-3)bB + (3-n)(b2 -AX)A-nC]gn_2 

+ [(2n-3)bC + (3-n)(b2 -4X)B]gn_3 +[(3-n)(b2 -AX)C]g„_4 

where A-X-Xx, B- Xxb + Xx\ -2Xb0, C = X[ -XxbbQ + Xb^. For the asymptotics, we use the 
methods described in Wilf [4, Ch. 5]. For large n, we obtain 

fn 
where b2 > AX > 0. 

(n + \yV2(b+24l) 
IX^^n 

n+1/2 

Because there are too many cases to consider, we do not attempt to provide a general for-
mula for the asymptotic value of gn. However, the examples in section 6 illustrate the techniques 
involved. 

6. EXAMPLES 

Example 1—Big Schroder Numbers: If we take X - 2, b - 3, Xx = X + 8- 2, and b0 - b + s - 2, 
then 

j . l - 3 x - v x 2 -6x + l , l - x - v x 2 - 6 x + l 
f= and g = . 

4x 2x 
g is the generating function for the Big Schroder numbers [1]. 
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and 

L = (g,f)with SL 

2 
2 
0 
0 
0 

1 
3 
2 
0 
0 

1 
3 
2 
0 

0 
1 
3 1 
2 3 1 . 

L--p%FW--[^,T^-y{^),^)),[TL-,x) 
1 
3 
9 
27 
81 

1 
2 
6 
22 
90 

1 
6 
27 
108 

1 
5 
23 
107 

1 
9 
54 

1 
8 
49 

o : 
i 
12 1 . 

0 1 
1 
11 1 . 

[1 
0 
2 
0 
8 

1 
0 
4 
0 

o ;] 
i 
0 1 
6 0 1 . 

-1 1 
1 -1 

-1 1 
1 -1 

1 
-1 
1 

0 

1 
-1 1 . 

Recurrence Relations: Here A = 0, B = 2, C = 0, (n + 2)/„+1 = 3(2» +1)/„ + (1 - «)/„_! for n > 1. 
/ 0 = 0 , / 1 = l. ng„_l = 3(2n-3)gn_2+(3-n)gn_3, (n + l)g„ = 3(2n-l)g„_1 + (2-n)g„_2, for 

Asymptotics: 

fn = [*"]/'(*)' 
(n + \y3'2 (b+2VI)"+1/2 _ (» +1)"3/2 (3 + 2>/2 ) n+1/2 

2A3/4V^ 2 - 2 3 / 4 - ^ 

„ . „ l - x - V x 2 - 6 x + l 
2x 

For large «, 

&-It^K*'-«r + l)».2/ .-f iL+ 1>'"P + 2 j 5 ' 
«+l/2 

23/4V^ 

Example 2—Le2endre Polynomials: We require 

*oo= 1 

We take 
r 2 - l 

4x2 -2tx + l 

t2-l 
X = , b = t, Xy =X + S 

4 l 2 
and bn=.b + e = t. 
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Triple Factorization: 

L = 1 2 ( l - f t -Vx 2 -2 f t + l) 
V*2-2ft + l ' (f2-\)y ( f 2 - l ) /4 0 , ( f 2 - l ) /4 ' 

sL = 

t'-i 

o s-i 1 
0 0 £=l t 1 
0 0 0 ^ / 1 

Recurrence Relations: Here A = ±g-,B= '-^-, C = ±£-. (n + 2)/„+1 = (2#i +1)//„+(1 - »)/„_!, 
for «>1. / 0 = 0, / , = l. »g-„-(4»-3)rg-„_1 + (3-2») ( l+2r 2 )^_ 2 +(4»-9)^_3+(3-»)^_ 4 , for 
«>4 . g0 = l,g1 = t,g2=^t1-^,g3=^-^. 

Asymptotics: We assume that 72 > 1, so that the roots of x2 - 2tx +1 = 0 are real. Denote these 
roots by f and r with | f \ < \ r\. We obtain 

vl/2 [*"]/(*) = -p—^lix2 -2ft +1) 

- 2 ^ | 1 (H + l ) " 3 7 2 ^ _ ^ 1 / 2 

/2-lJ(r)"+1 -2V^ I f 
1 Vr)" l(r)2-l 

r - w n + lV «#" 

[x"]g(x) = [x"](xi-2ft + l> \ - l /2 <r)' W+l 

V^((r)2-1) 
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1. INTRODUCTION 
The representation of an integer n as a sum of k squares is one of the most beautiful problems 

in the theory of numbers. Such representations are useful in lattice point problems, crystallogra-
phy, and certain problems in mechanics [6, pp. 1-4]. If rk{ri) denotes the number of representa-
tions of an integer n as a sum of k squares, Jacobi's two- and four-square theorems [9] are: 

(1) r2(n) = 4[d1(Ti)-d,(n)] 

and 

(2) r4(p)=S Xr f 

d\n 
tf#0(mod4) 

where df{n) denotes the number of divisors of n, d = i (mod 4). In literature there are several 
proofs of (1) and (2). For instance, M. D. Hirschhorn [7; 8] proved (1) and (2) using Jacobi's 
triple product identity. S. Bhargava & Chandrashekar Adiga [4] have proved (1) and (2) as a 
consequence of Ramanujan's ^ summation formula [10]. Recently R. Askey [2] has proved (1) 
and also derived a formula for the representation of an integer as a sum of a square and twice a 
square. The authors [5] have derived a formula for the representation of an integer as a sum of a 
square and thrice a square. These works of Askey [2] and the authors [5] also rely on 
Ramanujan's ^¥x summation [10]. 

In 1951 P. T. Bateman [3] obtained the following formula for r3(n): 

(3) r3(n) = —SL(l,x)q(n)P(nl 
n 

where n = 4anu 4|nb 

[0 if/?! = 7 (mod 8), 
q{n) = \ra if ^ = 3 (mod 8), 

[3 • Ta~l if »j = 1,2,5, or 6 (mod 8), 

p odd 

b-l ( ~{-nlp2b) 
\ - i 

y=i v 
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(P(n) = 1 for square - free n\ and 
00 

L(S,%) ~ ^YjXim)m~S w^h Z(m)> the Legendre-Jacobi -Kronecker symbol: 
m=\ 

f-A\ fl if/if = 1 (mod 4), 
Z(m) = \— \ = \o ifw = 0(mod2), 

\mJ [-1 ifws3(mod4). 

In this note we obtain an alternate formula (13) for r3(n) which involves only partition func-
tions unlike Bateman's formula (3) which is expressed in terms of Dirichlet's series {6, pp. 54, 55]. 
To derive our formula (13) for r3(n), we employ G. E. Andrews' [1] generalization of 
Ramanujan's 1T1 summation: 

(4) 
(a-' - b~^(AUBUbq I a) Jm I bUgUAB I ab)x 

(-bU-aU-A/bU-A/aU-B/bU-B/a)„ 

= a-lf (-q'°UM/ab)m(-br tf (A)m(-aq/B)m(-B/b)" 

where 

and 
m=0 

(a)m=(a;q)m= (a'm
q\ , \q\<l. 

2. THREE-SQUARE THEOREM 
In this section we derive a formula for r3(n). the number of representations of an integer n as 

a sum of three squares. For convenience, we first transform Andrews' formula (4). 

Lemma 2.1 (G. E. Andrews'[1]): 

(A;q2U-A0/aqz;qX(-W,qX(-q/z-,qX(q2;qX(afa^qX (5) 

1 , ^ (l/a;q2U-AB/aqz;q2U-aqr) _ 
[l-(A/aq2)] £ {Jlq2-q2)m(Alaq2;q2X m+l 

-m 

n=i (aq \q )m(-A/aqz;q )„ 

\£\Pq\<\z\< \l\aq\ and \q\< 1 with none of the factors in the denominators of (5) being 0. 
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Proof: Equation (4) is equivalent to 

a-l[l-(a/b)](AUBUbq/aUaq/bUqUAB/ab)K 

[l + (B/a)](-b)K(-aU-A/b)x(-A/a)x(-B/b)x(Bq/a)a 

1 ^(-q/a)m(AB/ab)m(-b)m 

-a [\ + (B/a)]^0 (-Bq/a)m(-A/a) m+l 

r , (-b/B) f(A)m(-a/B)m+l(-b/B)-"'-1 

[l + (a/5)]~0 (-aUii-A/b)^ 

which, in turn is equivalent to 

(AUBUbq/aUa/bUqUAB/ab)x (6) 
(-bU-a)x(-A I b)a(-A I a)x(-B I b)x{-Bq I a)n 

^f(-qla)m{ABIab)m(-bY f(A)m(-a/B)m+1(-b/Bym-1 

Change b to -z, a to -qla', B to Via' in (6) to obtain 

(AUb'/a'U^'Uq/a'zUqUAb^zq)^ 
(7) 

(zUq/a'UA/zUAa'/qUb'/a'zUbX 

= j^ja'UAb'Izq)mzm
 | £(A)„(g/b')m+l(a'zIb'y(m+l) 

m=o (b')m(Aa' I q)m+l ffl=0 (q/a')m+i(A/z)m+l 

Change q to q2, a' to 1 / a, Z>' to /ty2, and z to - aqz in (7) to obtain (5). Hence, the lemma. 

Corollary 2.1: 

(8) 
f «> A 

\n=-co w)wi 

Proof: Putting a = /?= - 1 , 2 = 1, and A - q2 in (5), we have the second of the equations (8), the 
first being a well-known theta-function identity [10]. In fact, put z = 1, A = a = /? = 0 in (5) and 
use the easily verified Euler identity 

Before stating the main theorem of this section, we introduce two partition-counting func-
tions pm{n) and qm{n). 
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Definition 2.1: Given a partition ;r, lete(;r) denote the number of even parts in n. Define 
Pm(n) to be the set of partitions of n in which odd parts are distinct and all parts are less than or 
equal to 2m, Qm(n) to be the set of partitions of n in which even parts are distinct and all parts are 
less than or equal to 2m -1. We define 

(9) Pm(n)= I ( - l ) g ( ; r ) , 

(10) qm(n)= Z H m 

so that 

(ii) (-?;g2)m =zPmin)q», 
(-? ;q )m „=o 

(12) (f;^-'-Z?m(")g". 

Theorem 2.1: If r3(n) is the number of representations of n as sum of three squares and if 
pm(n) and qm(n) are as defined by (9)-(1.0), then 

n 

(13) r3(n) = X Z ( - i y [ 2 # > " ^ ~ m) + 49m(« - 2im - J»)]. 
m=l 0<i<(n-m)/2m 

Proof: Employing (11), (12), and the fact that 
m oo 

in (8), we immediately have (13). 

2im+m 
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It is well known that 

(a) F3n=Fn{5Fn
2+3(-\y} 

Less well known are: 
(b) F5n=F„{25F„4

+25(-iyF„2+5}; 

(c) Fln=Fn{\25Fn
6 + \15(-\TF* + 10FZ + l(-m. 

In this paper we are concerned with proving a general formula which encompasses the above 
identities. That is, expresses Fmn as a polynomial in Fn for odd m. Also we prove two additional 
formulas which express Fmn I Fn as a polynomial in the Lucas numbers Ln. Our first theorem is 

Theorem 1: 

F^=&-^^/[%k
+\y?, n,g*0. 

Taking q = 1, 2, and 3, respectively in Theorem 1 gives us (a), (b), and (c) above. From Theorem 
1 a couple of well-known results follow as corollaries. 

Corollary 1.1: For n>0,p prime, we have 

Proof: Take p-2q + \,p prime, in Theorem 1, and by Euler's criterion, we have 

Corollary 1.2: For prime/? and q, we have F = FpFq (mod pq). 

Proof: From Corollary 1.1 with n = 1 and n =q, we have 

FP' 
^ 

Hence, Fpq = FpFq (mod/?). 

Similarly, Fpq = FpFq (mod?). D 

(moAp) and Fpq =\ — \Fq (mod/?), respectively. 
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Proof of Theorem 1: First we need two lemmas. 

Lemma (i): 

,*,„ , , I v 2 w - 2 - A 1 . 1 2 . 1 

* + ^ T + ^ r + - + x + 7 l + 1 = g_5!!±l/-H-* + iY^lY 

Lemma (ii): 

_ f, +fc jw+i_f O T +j t + iY v A l Y* 

Nov/, from Fn = a ~" , where a+/3= 1 and a/?= - 1 , we have for integer p > 1, w > 1, 

(1.1) - ^ - = - !L-=XP-l + XP-ly + XP-y + ...+XyP-l+yP-\ 
Fn an~Pn 

where x=cf, y = /? = (-!)"/x. 

Nov/, for odd p, the RHS of (1.1) is 

( ^ ^ j ^ " 1 ^ P^ (mod4), 

( ^ + ̂ ) + ( - l ^ ^ 1 (mod4), 

andx + - ^=a"+^ r = a " + ( - l ) w ^ . So that 

(1.2) x + — = (a-j3)Fn for odd n. 
x 
I 

(1.3) x — = {a-p)Fn for even w. 
x 

Since a--/? = V5, we have, from (1.2) and (1.3), 

(1.4) [x + - J =5F„2 for odd w, 

f lY 2 
(1.5) x — = 5i^ for even?*. 
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So if we take p - 2rn +1, and assume n is even, we have, from (1.1), 

M*!"+^M*!"-J+?M+-+h?i+i-
Now apply Lemma (i) and use (1.5) to give Theorem 1 for even n. Similarly, setting p = 2m + l 
and assuming n is odd, we have, from (1.1), 

Hx"+^)i x2m-2+ l ,m-2,+"-+(-iri*2+i l+(-i)" 

Now apply Lemma (ii) and use (1.4) to give Theorem 1 for odd n. To complete the proof of 
Theorem 1, it only remains to prove Lemmas (i) and (ii). These can be proved by induction. For 
example, to prove Lemma (i), we set 

and use 

to give 

^H*2m+iW*2m-2+-i +•••+ (x
2+\\ + \ 

V x 

x2 + 
x2KX2m + x2m) 

x2m~2 +-,2m-2 + \ x2m+2 + 
.2m+2 

Hence, 

(1.6) 

x'+~\Pm(x) = Pm+1(x) + Pm_l(x). 

P*n(x) = \\x-z) +2\Pm(x)-Pm_1(x). 

Then substitute the summation on the RHS of the identity in Lemma (i) for Pm(x) and Pm_i(x) in 
(1.6). Some careful work then gives Pm+i(x) in the same form as the summation in Lemma (i). 
This proves Lemma (i). Lemma (ii) is proved in a similar manner, and this completes the proof of 
Theorem 1. D 

For our next theorem we need some additional lemmas; these can be proved by induction in a 
way similar to that used to prove Lemma (i). 
Lemma (in): 

w2w lm-2 ^+^|- |^z +^rl+-+(-1)m + IU2
+-r |+( f , _i 

v x: -r-zCS'HJ'. 
Lemma (iv): 

x2m + ik){^iM^7)Hrrtuh~ 2k 
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Again from (1.1) with p - 2m +1, and noting that 

(1.7) x-- = an+j3" = Ln foroddrc, 

(1.8) x + - = an+/3n = Ln for evenn. 

we have, from (1.7), (1.8), and Lemmas (iii) and (iv), 

Theorem 2: 

F{2q+l)n=F,i(-ir«^)fe*]^, n,q>o. 
k=0 ^ J 

A well-known formula follows as a corollary by taking n—\\ since 1^ = 1, we have 

CoraF/nipy 2.1; 

Our final theorem is similarly derived from the following two lemmas. 

Lemma (v): 

j.m-i 1 | \ jim-3 1 i , , / nwfv3 1 | , / i\/w-ifv 1 1_sp(m + k-l\(^ 1 
+ ... + ( - i r x ] - ^ + ( - l ) - I - ; = Z - * —^-j - +•••+ - i ru—r + -i x— = >. v7; , x-

Lemma (vi): 

M+U<M^H ^ - ' ^ ) + ( * 2 ~ 3 + p L i + - + ^ + " *"' 

Using Lemmas (v) and (vi) along with (1.1) gives 

Theorem 3: 

F2qn = F±{-ir^k\^k
k^\2r, n>0,g>l. 

k=i v J 

Again taking n = 1 gives us a well-known formula as a corollary. 

Corollary 3.1: 

A r = l V y 

The reader may notice that we appear to have one theorem missing. Namely, a theorem that 
expresses Flqn as a polynomial Fn. However, to obtain such a formula we would need to be able 
to express the LHS of Lemma (v) exactly in powers of (x+7) for odd n in (1.1), and the LHS of 
Lemma (vi) exactly in powers of (x-7) for even « in (1.1), neither of which is possible. 

AMS Classification number: 11B39 
• > • > • » 
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In 1949 the Indian mathematician D. R. Kaprekar discovered a curious relationship between 
the number 6174 and other 4-digit numbers. For any 4-digit number n, whose digits are not all 
the same, let ri and n" be the numbers formed by arranging the digits of n in descending and 
ascending order, respectively. Find the difference of these two numbers: T(n) = nf -nf!. Repeat 
this process, known as the Kaprekar routine, on T{ri). In 7 or fewer steps, the number 6174 will 
occur. Moreover, 6174 is invariant; that is, J(6174) = 6174. 

In the literature it is common to generalize the Kaprekar routine and apply it to any Ar-digit 
number in base g. Since there are only a finite number of &-digit numbers, repeated applications 
of T always become periodic. The result is not necessarily a single invariant; more frequently one 
or more cycles occur. The characterization of such cycles is a difficult problem which has not 
been completely solved. Among the questions studied are the following: Given k, for what 
value(s) of g does the Kaprekar routine produce a single invariant? When nontrivial cycles arise 
for a given g and k, how many cycles are there and what are their lengths? This author, among 
others, has studied these problems as well as many other fascinating questions associated with the 
above procedure. (See [1]-[12].) 

Recently I was describing the Kaprekar routine to faculty colleagues. To demonstrate that 
not all &-digit numbers in base 10 give rise to a constant, I chose to illustrate the routine for 
2-digit numbers. In that case, either one or two applications of J yields one of the numbers in the 
cycle 

63 -> 27 -» 45 -> 09 -> 81 -> 63. 
Embarrassingly, I made an arithmetic mistake, writing T(96) = 96 - 69 = 37 instead of J(96) = 27. 
Arleigh Bell, Associate Professor of Economics, asked what would happen if 10 or any other 
number r were always added to T(n). What would the cycles look like in that case? Could there 
be a Kaprekar constant for some number rl This paper is an answer to his questions. 

As is the usual practice, we will consider Bell's questions for a general base g. We will repre-
sent a 2-digit, base g number n = a'g + a, 0 < a', a < g, byn = [a' a]. The Bell modification of 
the Kaprekar routine is a function K^r, r^{n) defined in the following manner. Let \r' r] be a 
fixed 2-digit, base g number less than [1 g-l]; that is, r' = 0 or 1, 0 < r < g-1 if r' = 0, and 
0<r<g-2i£r' = l. Then, for n = [a' a] 

K{r,r](n)=\[a< a]-[aa'Mr* r]. 

When the context is clear, we will omit the subscript and simply write K{ri). To see why we 
require \r' r] <[1 g-l], note that 

\[a' a]-[a a']\=[\af -a\-l g-\a'-a\\ 

Now \a'-a\-l<g-2, so \[af a]-[a a']\<[g-2 1]. Thus, the restriction [r' r]<[\ g-l] 
insures that K(n) is a 2-digit number. 

Since there are only a finite number of 2-digit, base g numbers, the sequence 

n,K{n),K\n\K\n),... 
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must eventually repeat. If, for a given n, Kl (n) = n, where i is as small as possible, then we say 
that n is in a cycle of length /. We will denote a iT-cycle by (nv n2,..., nt), where nj+l - K(rij) for 
1 < j < i -1 and i\ = Kfa) We wish to characterize those n which are in cycles and to determine 
the lengths of these cycles. 

For n - [af a], d =\a'-a\ is called the digit difference of n. Observe that, if 0 < d, then 

\\a' a]-[a a']\=[d-l g-d\ 

Thus, i£n = [a' a],m = [bf b\ and d =\af - a\=\bf - b\, then K(n) = K(m). In particular, if n is a 
2-digit number whose digit difference is d, K(ri) equals 

[d r-d] ifr' = OandO<<i<r 
^x [d-l g-(d-r)] ifrf = Omdr<d<g 
( ) [rf + 1 r-d] ifr' = landO<rf<r 

[d g-(d-r)] ifrr = lmdr<d<g. 

Using (1), it is easy to see that the digit difference of K(n) is 
\r-2d\ ifr' = OandO<rf<r 
\g+r + l-2d\ \fr' = 0mdr<d<g 

W \r-l-2d\ ifr' = l andO<t /<r 
\g+r-2d\ if r' = 1 andr <d <g. 

We will denote the digit difference of K[r, r](n) in (2) by D^r, r](d) orD(d). Note that, if 
K([a' a]) = [bf b], then D(\a'-a\) =\bf -b\. Thus, each K^r, r]-cycle gives rise to a I\r, r]-cycle 
of the same length. If we can characterize the D-cycles, then we will have made substantial prog-
ress in characterizing the Z-cycles. That is, we will know how many such cycles there are and the 
length of each one. 

As an example, let g = 10, r' - 0, and r-1. That is, we wish to apply the routine to base 10 
numbers with 7, the added term. Using (2), we find 

D(0) = 7 D(l) = 5 D(2) = 3 D(3) = l D(4) = l 
D(5) = 3 D(6) = 5 Z)(7) = 7 D(S) = 2 D(9) = 0. 

Thus, the Z^-cycles are <1,5, 3) and (7). From these, it is easy to determine that the Z7-cycles 
are <34,16,52) and <70>. 

Examination of (2) shows that D(d) always has the form \s-2d\ for some s. Consequently, 
we will first study a function based on this observation. In particular, let s be a fixed positive inte-
ger. For d with 0 < d < s, define Fs(d) =\s-2d\. Since 0 < Fs(d) < s, cycles must occur. The 
following observations about F, collected in a single theorem for convenience, are obvious. 

Theorem 1: Let s and / be positive integers and let d be an integer satisfying 0 < d < s. Then 
(a) Fs(s) = s, so (s) is an Fs-cycle of length 1. 
(b) Fis(id) = iFs(d) 
(c) d is in an Fs-cycle if and only if id is in an Fis-cycle. In particular, {dud2,...,dn) is an 

Fs -cycle if and only if (idl9 id2,..., idn) is an i^-cycle. 
(d) FT

S (d) is congruent to either 21 d or -2ld modulo s. D 
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For convenience, we will use the notation Fl
s (d) = ±2*d (mod s) to represent statement (d) in 

Theorem 1. 

Theorem 2: Suppose 2k\s. Let d be an integer satisfying 0 < d < s. If d is in an Fs -cycle, then 
2k\\d. 

Proof: Since 2k\s, s = 2kt where 0 < k and t is an odd positive integer. Write d-2lw with 0 < / 
and w odd. W^F(d) = F(21w) = \2kt-21+lw\. So 

2i+l\\F(d) if 0 < / < £ - ! 
2k+l\F(d) ifi = k-l 
2k\\F(d) ifi>k-l 

Thus, 2J\FJ(d) f o r y < k - l and 2*||Fy(<i) fork + l<j. Consequently, d is in a cycle only if 
2k\\d. U 

Corollary 1: Suppose 2k\s. Let d be an integer satisfying 0 < d < s. Then d is in an Fs-cycle if 
and only if 2k ||d. 

Proof: First, suppose s is odd. By Theorem 2, it is sufficient to show that if d is odd, then it is in 
a cycle. Since £ and d are odd, (s+d)/2 and (s-d)/2 are both nonnegative integers less than 
or equal to s. One of these numbers is odd and the other is even. Moreover, F((s + d)/2) = d 
and F{{s-d)l2)-d. Consequently, d has an odd predecessor. Since this is true for all odd 
integers between 0 and s, d must be in a cycle. 

The case when s is even follows immediately using Theorem 2 and Theorem 1(c). • 

Corollary 2: An integer s has only one Fs -cycle, namely (s), if and only if s - 2k for some k. 

Proof: The proof is immediate using Theorem 1(a) and Corollary 1. D 

By the results above, to characterize F-cycles it is sufficient to determine cycles for odd s. 
Additionally, we need only consider those d which are odd, have gcd(J, s) = 1 and satisfy 
1 < d < s-2. We will call cycles containing such d nontrivial. All other cycles are trivial since 
they may be obtained using (a) and (c) of Theorem 1. 

We will illustrate the comments above by finding the F-cycles for s = 33. By Corollary 1, 
only odd integers are in a cycle. Nontrivial F-cycles for s = 3 and s = 11 are (1) and (1, 9, 7,3,5), 
respectively. Thus, by Theorem 1(c), 

(3) <11>, (3,27,21, 9,15>,<33> 

are trivial F-cycles for s = 33. We now want to calculate the nontrivial F-cycles. An efficient 
method, described for the general case and then applied to s = 33, is as follows. By Theorem 
1(d), F(d) is congruent to either 2d or -2d modulo s. For s and d odd, exactly one of the numbers 
2d or -2d is congruent modulo s to an odd positive integer less than s. So to compute the cycle 
containing d, it is sufficient to calculate ±2F'(d) = ±2F(FJ~l(d)), choosing the appropriate sign 
so that the result modulo s is an odd integer. Applying this to our example s = 33 with d = 1 
gives 1 , -2 = 31, 62 = 29, 58 = 25, 50=17, 34 = 1, which yields theF-cycle 

(4) <1,31,29,25,17). 
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At this point we check to see if all odd integers d, 1 < d < s, are accounted for. If not, we repeat 
the above procedure. In the present example, d= 5 is not contained in any of the cycles in (3) or 
(4). So we consider 5, - 1 0 = 23, 46 = 13, - 2 6 = 7, - 1 4 = 19, 38 = 5, which gives 

(5) <5, 23,13,7,19). 

Thus, there are five F33-cycles which are given in (3), (4), and (5). 
For future reference, we record the Fs -cycles for 0 < s < 15: 

s 
0 
1 
2 
3 
4 
5 
6 
7 

Fs - cycles 
<o> 
<1> 
(2) 
<1>, <3> 
<4> 
(1,3), <5> 
(2), <6> 
(1,5,3), <7> 

s 
8 
9 

10 
11 
12 
13 
14 
15 

Fs - cycles 
<8> 
(1,7,5) , (3), (9) 
<2,6>, <10> 
(1,9,7,3,5), (11) 
(4), (12) 
(1,11,9,5,3,7), (13) 
(2,10,6), (14) 
(1,13,11,7), (3,9), (5), (15) 

Theorem 3: Let s be an odd positive integer and let m be the smallest integer such that 2m = ±1 
(mod s). Then each nontrivial Fs -cycle is of length m and there are <f>(s)/2m such cycles, where 
<fi(s) is the Euler phi function. 

Proof: As before, we write ±1 to indicate that 2m is congruent modulo s to either 1 or - 1 . Sup-
pose d is odd with gcd(d, s) = l and i is the smallest integer such that Fl{d) - d. That is, we 
assume that d is a nontrivial cycle of length /'. By Theorem 1(d), F1(d) = ±21d (mod s), so 
±21d = d (mod s). Since gcd(rf, s) = 1, 21 = ±1 (mod s). Consequently, each cycle has length 
i-m. There are (j)(s)l2 odd positive integers less than s which are relatively prime to s. 
Therefore, there are (j)(s) 12m nontrivial F-cycles. D 

The smallest positive integer k such that 2k = 1 (mod s) is called the order of 2 modulo s and 
is denoted by ord^2. 

Corollary 3: Let s be an odd positive integer and let m be the smallest integer such that 2m = ±1 
(mod s). If 2m = + 1 (mod s), then each nontrivial Fs-cycle has length equal to ord^2; otherwise, 
the length equals (ord5.2)/2. 

Proof: If 2m = +1 (mod 5), then ord52 = m and the result follows immediately from Theorem 3. 
If 2m = - 1 (mod 5), then 22m = +1 (mod s). By a well-known theorem from Number Theory, 

k12m where k - ord22. If A: is odd, then k\m and m-kq for some q. But this implies that 2m = 
(2k)q = 1 (mod s), which is a contradiction. Thus, it must be the case that k is even and (k/2)\m. 
If (k/2)<m, thenm = (k/2)qwith \<q. But then 2(k/2)2 =1 (mod 5), which contradicts the 
choice of m. Thus, m- kl2- (ord^2)/2. D 

Corollary 4: Let/? be an odd prime. Then the length of each nontrivial i^-cycle equals 

/w = ord/,2/gcd(o'rd/,2,2). 

Proof: Let m be the smallest integer such that 2m = ±1 (mod/?). The proof of Corollary 3 shows 
that if 2m = - 1 (mod/?), then ordp2 is even and m = oxdp2l2 = ord/?2/gcd(ord/32, 2). 
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If 2m = 1 (mod/?) with m = ord;?2, then m must be odd. For if m were even, then (2m/2)2 = 1 
(mod/?). Since/? is prime, 2m/2 = ±1 (mod/?), which is a contradiction to the choice of m. Thus, 
m = ord;?2 = ord;?2/gcd(ord;32,2). D 

Corollary 5: Let 5 be an odd positive integer and suppose 2 is a primitive root of s. Then s has 
only one nontrivial Fs -cycle. 

Proof: Since 2 is a primitive root of s, ord^2 = </>(s). Moreover, there exists a unique positive 
integer / less than </>($) such that 2l = -1 (mod s). By Corollary 3, the length of each nontrivial 
cycle is (f>(s)/2. Consequently, by Theorem 3, there is only one such cycle. • 

We now state and prove three technical lemmas which will be useful when we apply this 
work to Z)-cycles. 
Lemma 1: Let s = g+r +1 and d be an integer satisfying r <d <g and r < F(d) < g. Then r < 
g/2. 
Proof: Suppose, to the contrary, that gl2<r. Since, by assumption, r<d, g/2<d, which 
implies g + r + \-2d<r. Also, d<g<g/2 + r so that 2d-(g+r + l) <r. Thus, 

Fs(d)=\g+r + l-2d\<r, 

which is a contradiction to the hypothesis. D 

Lemma 2: Let s-g+r and d be an integer satisfying r<d<g and r <F(d)<g. Then 
r<gl2. 
Proof: The proof is similar to that of Lemma 1. • 

Lemma 3: Let s-g + r. If r has a predecessor under Fs, then 2\g. 

Proof: Suppose there exists d such that Fs (d) = r. Then either g+r-2d-rox2d-{g + r) = r. 
So either d equals g/2 or r + g/2. In either case, 2|g. • 

We are now in a position to characterize £>-cycles. 

Theorem 4: Let g be a positive integer and r an integer satisfying 0<r <g-l. All i^.-cycles 
will be D^0 r]-cycles. lfr<g/2 and there exists a <i such that r <Fg+r+l(d) <g for 0 < /, then this 
Fg+r+i -cycle is also a Z|0 rj-cycle. 

Proof: Since the added term is [0 r] , the first two lines of (2) apply. From the first line, we see 
that all ̂ -cycles will be I\0 r]-cycles. In order for the second line to give I\0 r]-cycles, it must be 
the case that all din an Fg+r+l-cycle satisfy r <d <g. By Lemma 1, such cycles can occur only 
whenr<g72. D 

As a consequence of Theorem 4, in order to find all Z|0 rj-cycles for a given g, it is sufficient 
to examine all Fs -cycles for 0 < s < g + [(g +1) / 2]. For example, using (6), it is easy to find the 
I\0 r]-cycles for g = 10. These, as well as the corresponding K[0 r]-cycles, are: 
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r 
0 
1 
2 
3 
4 
5 
6 
7 
8 

g+r + l 
11 
12 
13 
14 
15 

I\or] -cycles 
<0>, <1, 9,7,3,5) 

(1), (4) 
<2> 

<1>, <3> 
(4), <5> 

<1,3), <5> 
(2), <6> 

0,5,3), <7> 
<8> 

^[Or]" cycles 
<0>, <45,9,81,63,27) 

(10), (37) 
(20) 

(12), (30) 
(40), (49) 

(32,14), (50) 
(24), (60) 

(34,16,52), (70) 
(80) 

(7) 

9 (1,7,5), (3), (9) (54,18,72), (36), (90) 

Theorem 5: Let g be a positive integer and let r be an integer satisfying 0 < r <g-2. All Fr_x-
cycles will be D^ rj-cycles. If r < g/2 and there exists a d such that r < Fg+r(d) <g for 0 < z, 
then this Fg+r-cycle is also a Efa r]-cycle. If 2\g, and if F^+r(r +1) = r for some j , then r is in a 
Lfa r]-cycle. 

Proof: Since the added term is [1 r ] , the third and fourth lines of (2) apply. From the third, we 
see that all Fr_l-cycles will be Z^ rj-cycles. In order for the fourth to give Z^ rj-cycles, it must be 
the case that all din an Fg+r-cycle satisfy r <d <g. By Lemma 2, cycles such as these can occur 
only when r < g 12. There is one more way in which JC^ rj-cycles can arise. Note that D^ r] (r) = 
r + l and Z^ r](r) = F^~l

r(r + l) for 2< / . So if, for some7, F^+r(r + l) = r , then r will be in a 
£|i rfcycle e v e n though it may not be in an Fg+r -cycle. By Lemma 3, in order for r to have an 
Fg+r predecessor, g must be even. • 

Finding D^ rj-cycles which do not contain r is similar to finding Z|0 rj-cycles. In particular, 
we examing Fs-cycles for 1 < s < g - 3 andg^s<g-\-[(g-l)/2]. For example, again using (6), 
it is easy to find these cycles for g = 10. 

r 
0 
1 
2 
3 
4 
5 
6 
7 

r - 1 

0 
1 
2 
3 
4 
5 
6 

# + r 
10 
11 
12 
13 
14 

D^ r] - cycles 
(2,6) 

(0) 
OX (4) 

(2) 
(1), (3) 

(4) 
(1,3), (5) 
(2), (6) 

K^ r ] - cycles 
(64,28) 

(11) 
(21), (48) 

(31) 
(23), (41) 

(51) 
(43,25), (61) 

(35), (71) 

(8) 

8 7 (1,5,3), <7> (45,27,63), (81) 

Missing from (8) are those Z|2 rj-cycles which contain r. The final theorems address this special 
case. 
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Theorem 6: L e t g b e an even positive integer. Whenr equals 1, g/2-2 org/2-l, then 

<2 ,g-3 ? . . . ,F ; + 1 ( l ) , . . . ? l )wi th2</ 

(9) (g/2-2,g/2-\,g/2) 
{gl2-\gl2) 

are D^ rj-cycles, respectively. 

Proof: The last two cases are easily verified. For the first, by Corollary 1, 1 is in an i^+1-cycle; 
in particular 

< l , ^ - l ^ - 3 , . . . , ^ + 1 ( l ) , . . . , l > . 

Since Z^! rj(l) = 2 and D^ r](2) = g - 3 , applying the D^ ^-algorithm gives 

< 2 ^ - 3 , . . . , ^ + 1 ( l ) , . . . , l ) . D 

Theorem 7: Let g and r be positive integers. If r is in an D^ rj-cycle different from those in (9), 
then r <g/4-l. 

Proof: By Theorem 5, since r is in an D^ r]-cycle, F£+r(r + 1) -r for some 0 <j. If j = 1, then 
r = g 12 - , contradicting the hypothesis. Thus, 2 < j . Now, 

^r](r) = F^(r + l) = Fg+r(g-r-2)=\g-3r-4\. 

By Lemma 2 and Theorem 6, 1 <r < g/2-2 so thatZ^ r ] ( r) = g-3r-4. If r is in an Z^ r]-
cycle, then r < D^ r] (r). This implies r < g 14 - 1 . • 

For g= 10, by Theorem 6, the following D^x rj-cycles may be added to the list in (8): 

r E\ir]- cycles K[X r] - cycles 
1 <1,2,7,3,5) (56,20,29,74,38) 

^1UJ 3 <3,4,5) (58,40,49) 
4 (4,5) (59,50) 

By Theorem 7, these are the only D^ r]-cycles that contain r. Thus, (7), (8), and (10) comprise a 
complete list of all E[r, r] -cycles for g = 10. 
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INTRODUCTION 
In [1] the concept of a Niven number was introduced with the following definition. 

Definition: A positive integer is called a Niven number if it is divisible by its digital sum. 
Various articles have appeared concerning digital sums and properties of the set of Niven 

numbers. In particular, it was shown in [2] that no more than 21 consecutive Niven numbers is 
possible. Here, we will show, in fact, that no more than 20 consecutive Niven numbers is possible 
and give an infinite number of examples of such sequences. 

DIGITAL SUMS AND CARRIES 
In what follows, s{n) will denote the digital sum of the positive integer n. The formula 

n 
10' 

where the square brackets represent the greatest integer function, is well known and easily 
derived. Note that the sum has only a finite number of terms since MM = 0 where t > [log n] 

For integers m and «, we let c(m + n) denote the sum of the "carries" which occur when 
calculating the sum m + n. The following Lemma gives the relationship between $(m + n) and 
c(m + n). 

Lemma: Let m, n be positive integers. Then 
s(m + n) = s(m) + s(n) - 9c(m + n). 

Proof: Since 

s(m)-m-9^Ti 
t>\ 

m 
1(7 

and s{ri) -n- 9]T 
t>\ 10' 

it follows that 

s(m) + s(ri) -m + n-9^ 
t>\ 

m 
10' 10' 

r>i 

m + n - m 
To7 - n 

ltf" 
Noting that the expression 

m + n 
10' 

- m 
To7 - n 

is the carry that occurs when the (t-Vf right-most digit of n are added, the equality s(m + n) = 
s(m) + s(n)-9c(m + ri) follows. 
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In passing, the resder might be interested in proving that s{mn) = s{m)s{n)-9c{mn) where 
c{mn) is the sum of the carries that occur in calculating the product of m and n by the usual mul-
tiplication algorithm. Here, however, we are concerned with sequences of consecutive Niven 
numbers. 

CONSECUTIVE NIVEN NUMBERS 
To discuss consecutive Niven numbers, we will introduce the idea of a decade and a century 

of numbers. A decade is a set of numbers 

{10w,10« + l,...,10w + 9} 

for any nonnegative integer n and a century is a set of numbers 

{100/i,100w + l,..., lOOw + 99} 

for any nonnegative integer n. We first observe that in a given decade, either all the odd numbers 
have an even digital sum or all the odd numbers have an odd digital sum. To make the next 
observation, let E denote the statement "odd numbers which have an even digital sum" and O 
denote the statement "odd numbers which have an odd digital sum." We then note that the ten 
decades in a century alternate either O, E, O, E, O, E, O, E, O, E or E, O, E, O, E, O, E, O, E, O. 
Finally, we remark that in an E decade, none of the odd numbers can be Niven since their digital 
sum is even. Thus, the only way to get more than 11 consecutive Niven numbers is to cross a 
century boundary where the decades between centuries would be 

...,E, 0,E, 0 | 0 , E , 0,E, ... . 

Hence, we cannot have more than 21 consecutive Niven numbers and if a list of 21 consecutive 
Niven numbers exists, it would have to commence with an even Niven number of the form 

ltfn + 9t_fi 
where dr denotes the concatenation of r ds in the decimal representation of an integer. For exam-
ple, 

895(24)2037 = 89999924240007. 

Note that d does not have to be a digit. This notation will facilitate an efficient representation for 
certain large integers. 

It is not difficult to find sequences of consecutive Niven numbers. For example, the sequence 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 is an example of 10 consecutive Niven numbers. It is, of course, the 
smallest such sequence. Other sequences of 10 consecutive Niven numbers can be found, but if a 
sequence of 21 consecutive Niven numbers could be found, we would have an example of every 
possible sequence of k consecutive Niven numbers for k = 1, 2, 3, ..., 21. As suggested in the 
introduction, however, it will be shown that k cannot be larger than 20, and an infinite number of 
examples with k = 20 will be given. Determining an example with k = 20 involves working with 
large integers, solving systems of linear congruences, choosing integers with "good" digital sums, 
a lot of adjusting partial results, and a lot of luck and intuition. Without the use of a computer 
capable of manipulating large numbers, we could not have found the following sequence in a 
reasonable length of time. 
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Let 
a =4090669070187777592348077471447408839621564801 

2007115516094806249015486761744582584646124234 
1540855543641742325745294115007591954820126570 
087071005523266064292043054902370439430, '1120 

and 
b =2846362190166818294716429619770154544233311863 

4187301827478422658543387589306681088151446703 
2759507916140833155837906335537198825206802774 
8430283149755020972927459559360592362156911190. 

Then a has 1296 digits, b has 1298 digits, s(a) = 720, and s(b) = 10870. Also note that each of 
2464645030 
2464645031 

2464645039 
2464634960 
2464634961 

2464634969 
is a factor of a, and 

2464645030 divides b 
2464645031 divides b + \ 

2464645039 divides b + 9 
2464634960 divides b + 10 
2464634961 divides b + \l 

2464634969 divides 4 + 19. 

Now let m be any nonnegative integer and consider 
X~a3423103^w^-

Then x has 44363342786 + m digits, and is a Niven number with s(x) = 2464645030. Further-
more, by construction, each of x +1, x + 2, x + 3,..., x +19 is also a Niven number, and a sequence 
of 20 consecutive Niven numbers has been constructed. Also, since m is an arbitrary nonnegative 
integer, we have demonstrated an infinite number of such sequences. However, that the methods 
used in finding such a sequence cannot be used to find 21 consecutive Niven numbers, is revealed 
by the following discussion. 

Suppose that there exists a sequence x, x + l, x + 2,..., x + 19, x + 20 of Niven numbers. 
Then x = 9r-10 (mod lCf) where we may assume that the (t + l)st right-most digit of x is not a 9. 
Thus, 

(1) XEEO (mods(x)) (5) x = -4 (mods(x) + 4) 
(2) x = -1 (mod s(x) +1) (6) x == -5 (mod s(x) + 5) 
(3) x = -2 (mods(x) + 2) (7) x = -6 (mod s(x) + 6) 
(4) x = -3 (mods(x) + 3) (8) x = -7 (mods(x) + 7) 
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(9) x = -8 (mods(x) + 8) (16) x = -15 (mods(x) +15-9t) 
(10) x = -9 (mods(x) + 9) (17) x = -\6 (mod s(x) + 1 6 - 9t) 
(11) x ^ - 1 0 (mods(x) + 10-9r) (18) x==-17 (mods(x) + 17-9?) 
(12) x = - l l (mods(x) + l l -9f ) (19) JC = - 1 8 (mods(x) + 18-9/) 
(13) x = -12 (mods(x) + 12-9/) (20) x ^ - 1 9 (mods(x) + 19-9r) 
(14) x = -13 (mod s{x) + 13-9/) (21) x = -20 (mod s(x) + 11-9/) 
(15) x - - 1 4 (mods(x) + U-9t) 

It should be pointed out that the form of the moduli in the above list follow by the Lemma. That 
is, 

s(x + k) = s(x) + s(k) - 9c(x + k) 
= s(x) + s(k)-9(t-l). 

For example, 

and so the congruence 

may be written as 

Since 

s(x + 19) = s(x) + l0-9(t-l) = s(x) + l9-9t 

x + 19 = 0 (mods(x + 19)) 

x = -19 (mods(x) + 19-9r). 

x = -20 (mods(x) + l l -9 / ) , 

and x = - l l (mods(x) + l l -9r ) , 

we immediately have that 
9 = 0 (mods(x) + ll-9t), 

and so, s(x) +11 - 9t - 1, 3, or 9. Thus, 9t - s(x) = 2,8, or 10. However, since 

XEE9r_jO ( m o d l 0 r ) , 

we see that s(x) > 9t - 9, and it follows that 9/ - s(x) = 2 or 8. 
Suppose that 9t-s(x) = 8. Then, by congruences (11), (12), (14), (16), and (20), we have 

the system 
x = 0 (mod 2) 
x = 1 (mod 3) 
x = 2 (mod 5) 
x = 6 (mod 7) 
x = 3 (mod 11) 

which, by the Chinese Remainder Theorem, has the solution 

SEE6922 (mod2310). 

But, since x = 9,_10 (mod 10'), it follows that 5 is a factor of x. This cannot be the case if x = 
6922 (mod 2310). Hence, we must conclude that 9t - s(x) * 8. 
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Now suppose that 9t - s(x) = 2. Then the congruences (1) through (21) may be rewritten as: 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 

(11) 
respectively. 

Recall that if the system 

x = 0 (mod9f-2) 
x = ~l (mod9r-l) 
x = -2 (mod 9r) 
x = -3 (mod9f + l) 
x = -4 (mod9f + 2) 
x = -5 (mod 9t + 3) 
x = -6 (mod9r + 4) 
x = -l (mod 9t + 5) 
x = -8 (mod 9t + 6) 
x = -9 (mod 9t + 7) 

(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 

x = 7 (mod 9) 
x = S (mod 10) 
x = 9 (mod 11) 
x = 10 (mod 12) 
XEEH (mod 13) 

x = 12 (mod 14) 
x = 13 (mod 15) 
x = 14 (mod 16) 
x s l 5 (mod 17) 
x = 7 (mod 9), 

x = 6 (mod 8) 

x = r (mod/w) 
x = s (modn) 

has a solution, then gcd(m, n) is a factor of r—s. See, for example, [3, Th. 5-11]. Thus, by use 
of the pairings 

(4) with (13) 
(6) with (13) 
(7) with (13) 
(10) with (13), 

we have that 
gcd(10,9f + l) = l 
gcd(10,9f + 3) = l 
gcd(15,9f + 4) = l 
gcd(10,9f + 7) = l, 

respectively. The fact that x is even together with congruence (2), imply that t is even. But 

t = 2 (mod 10) 
t = 4 (mod 10) 
r = 6 (mod 10) 
r = 8 (mod 10) 

implies that 
implies that 
implies that 
implies that 

gcd(10,9f + 7 )* l , 
gcd(l 5, 9f + 4 ) * l , 
gcd(10,9f + l ) * l , 
gcd(10,9f + 3)* l , 

which contradict the above. So, it follows that 

t*2 (mod 10) 
t*A (mod 10) 
t£6 (mod 10) 
f #8 (mod 10). 

In addition, the pair of congruences x = 9t_fi (modl0r) and x = -7 (mod9r + 5) imply that 
gcd(ltf, 9t + 5) divides 9r-17, from which it follows that 5 cannot be a factor of gcd(10', 9^ + 5) 
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and so we have that t # 0 (mod 10). Hence, by assuming that 9t - s(x) - 2, the fact that t is even 
is contradicted, and we conclude that 9t-s(x)*2. So, the only two possibilities fo'r 9t-s{x) 
(by assuming that a sequence of 21 consecutive Niven numbers exists) are eliminated. We have, 
then, the following theorem. 

Theorem: There does not exist a sequence of 21 consecutive Niven numbers. 

CONCLUSION 

Finally, we must admit that we do not know whether or not the sequence of 20 consecutive 
Niven numbers given here, with m = 0, is the smallest such sequence. That is, whether or not the 
integer a3423mb is the smallest integer that a sequence of 20 consecutive Niven numbers can 
commence. During the construction of this integer, many alternate possibilities presented them-
selves, and as mentioned, much intuition and luck were involved. We would, therefore, like to 
challenge the reader to find the least integer that is the first term in a sequence of 20 consecutive 
Niven numbers. 
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1. INTRODUCTION 

The A*h convolution sequences for Fermat polynomials of the first kind (a%l(x)) and the second 
kind (b^lix)) are defined in this paper. Generating functions, recurrence relations, and explicit 
representations are given for these polynomials. A differential equation that corresponds to 
polynomials*of type (^fiO)) is presented. Finally, # h convolutions of mixed Fermat polyno-mials 
of (C^(JC)) are defined. In some special cases, polynomials of (c^O)) are transformed into already 
known polynomials of [a^m(x)) and of (b%l(x)). 

2. POLYNOMIALS a^Jx) 

A. F. Horadam [2] defined Fermat polynomials of the first kind ^(x) and the second kind 
B„(x) by 

(2.1) AJx) = x4_,(x) - 24_2(x), A_,{x) = 0, Ao(x) = 1, 

and 

(2.2) B„(x) = xflU(x) - 2b„_2(x), B0(x) = 2, B&) = x. 

Their generating functions are 

(2.3) {\-xt + 2t2)-l = fjAn{x)t" 

and 
i _ 9 / 2 °° 

(2.4) . = Y B„(x)t". 
\-xt + 2t2 ~ "V ' 

From (2.1) and (2.2), we can find a few members of the sequence of polynomials A^x) and 

Al(x) = x9 A2(x) = x2-2, ,43(x) = x3-4x, A4(x) = x4-6x2 + 4, 
and 

B?(x) = x2-4, 53(x) = x3-6x, 54(x) = x 4 -8x 2 +8 . 
H. W. Gould [1] studied a class of generalized Humbert polynomials Pn(m, x,y, p, C) 

defined by 

(C-mxt+ytmY = ±Pn(m,x,y,p,C)t\ 
n=Q 

where m > 1 is integer and the other parameters are unrestricted in general. The recurrence rela-
tion for the generalized Humbert polynomials is 
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CnP„ -m(n-1 -p)xPn_l + {n-m-mp)yPn_m = 0, n >m > 1, 
where we put P„ = Pn(m, x, y, p, C). 

In this paper we consider the polynomials [a™m(x)) defined by 

ai%(x) = P„{m,x/m,2,-(k + l),l). 

Their generating function is given by 

(2.5) F(x, t) = ( l -x / + 20~(*+1) = I O * > " -

Comparing (2.3) to (2.5), we can conclude that 
af)i (x) = Ai (x) [Format polynomials (2.1)]. 

Development of the function (2.5) gives 

n=0 n=0 n-

= y y (_2y ^+ IM«-iy x«-» 
w=0 V 

Comparison of coefficients of f in the last equation shows that polynomials [a^m(x)) possess 
explicit representation as follows: 

<*iw=|(-2y^^x-
/ = 0 I ! ( / I - IWI) ! 

If we differentiate the function F(x, t) (2.5) with respect to t, and compare coefficients of tn, 
we get the three-term recurrence relation 

The initial starting polynomials are 

<tfi(*) = 0, ^ ^ J f " , /i = l,2,. . . ,ro-l. 
« ! • • 

Then, if we differentiate the polynomials a^m(x) (2.6) s times, term by term, we get the 
equality [1]: 

Dsa^m{x) = (k + \)sal+
s%(x), n>s. 

Let the sequence (/r)"=o be given by fr =f(r), where 

'«-f'+»i(#H-l + 7J 
f(f) = (n-a 

m m-\ 

Let A be the standard difference operator defined by Afr = fr+l - fr9 and its power by 
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A°fr=fr, Akfr = A(Ak-lfr). 

We find that the next property of af^m{x) is very interesting. 
The polynomial a^m(x) is a particular solution of the linear homogeneous differential equa-

tion of the m^ order [4], 
m 

(2.7) /w )+IX*y *>=(), 
s=Q 

with coefficients as ($ = 0,1,..., /w) given by 

(28) «, = T V % 
2ms\ 

From (2.8), we get 
1 (n+m(k + X) 

an = — n \ 0 o i 
2m V m Jm_x 

2m V m )m_x \ m J^ 
Since 

we see that 

m-\ 

m 
f(t) = - tm + term of lower degree, 

1 (m-\ 
2m\ m 

m-\ 

For m = 2, the differential equation (2.7) is 

1 2^ „ 2* = 3 . « 1 _ 8 / —xyf+-(n + 2k + T)y = 0r 

and it corresponds to the polynomials a^\(x). 
For m = 2 and A: = 0, the equation (2.7) is 

^-lx^-lxy^l(ri^2)y = 0, 

and it corresponds to Fermat polynomials of the first kind A„(x). 

3. POLYNOMIALS b^Ux) 

In this section we introduce a class of polynomials (b^l(x)\ k eN. 

Definition 3.1: The polynomials b%l(x) are defined by 
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(3-1) F(x,t) = 
f ! _ 2 r V^ 

-JL^ii'V-
«=o \-xt + 2f 

Comparing (2.4) to (3.1), we can see that 

bn°l(x) = Bn(x) [Fermat polynomials (2.2)]. 
Expanding the left-hand side of (3.1), we obtain the explicit formula 

(3-2) o * ) - Z(-2yf *,+* V-L,m w . 
7=0 V ' 

For /w = 2 and k = 0, the formula (3.2) is 

That is, 

Bn(x) = A„(x)-2An_2(xy 

and it corresponds to the known relation between the Fermat polynomials ^(x) and Bn(x). 

4. MIXED FERMAT CONVOLUTIONS 

A. F. Horadam and J. M. Mahon [3] studied a class of polynomials [^-b\x)), mixed Pell 
polynomials. Similarly, we define and then carefully study polynomials (c££(x))9 mixed Fermat 
convolutions, where all parameters are natural numbers. 

Definition 4.1: The polynomials (4*'£(x)) are given by 

<4 1 ) f ( ' ' " ° ( i ' ; + 2 < r g S c " " ( " ' ' 
pn condition that s + r > 1. 

The polynomials (c£i?(*)) have some interesting characteristics, some of which are described 
in the results that follow. 

Theorem 4.1: The polynomials (c%„\xj) have the representation 

(4.2) O x ) = 2 (-2)fr T %^>(*). 
/=0 V J 

Proof: By using (4.1), we obtain 

w=0 

oo r—j 

(i-xt+2tmy+s~J yi-xt+2f 

= i2(-2yfr7-/)r^y)(^-
w=0 /=0 

If we compare coefficients of ?w in the last equality, we have (4.2). Using (4.1) again, we obtain 
the following representation: 
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c^\x) = ^atl]m{x)b^{x). 
k=0 

Also, w e see that 

F(x,t) = - (\-2tmy 
(l-xt+2tm) „=0 

From the last equality, w e can conclude that 
w=ov=o 

/=0 V J 

The Fermat polynomials of the first and of the second kind satisfy a three-term recurrence 
relation. But, mixed Fermat convolutions satisfy a four-term recurrence relation of unstandard 
form, which we prove in the following result. 

Theorem 4.2: The polynomials c^\x) satisfy the recurrence relation 

(4.3) <•;>(*) = -Imrcttr~l\x) + x(r + s&tfix)-2m(r + s)#%2(x), n>m. 

Proof: If w e differentiate F(x, t ) , (4.1), with respect to t, w e get 
00 00 00 

Z O ) ' " " 1 = -Imrt^^c^-^xr+ir + sXx-lmr-^c^ixy. 

Comparing coefficients of f in the last equality, we have (4.3). 

If we differentiate F(x,t), (4.1), with respect to x, k times, term by term, we find that the 
polynomials c^\x) satisfy the equality 

(4.4) Dkc^(x) = {r + s)kc^\x) («>*). 

Special Cases 
Starting with the equality 

(l-2tm)r+s (i-2tmy (i-2tmy 

we get 
(l-xt + 2tm)2r+2s (l-xt+2tm)r+s {\-xt+2tmy+r' 

n=0 «=o A«=o 
oo / n 

=1 i^u^w n=0\k=0 
\f, 

From the last equality, w e obtain 

(4.5) C,i+r)W=I^<
)
m«^)(x). 

k=0 
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For r = sy the equality (4.5) is 

k=0 

From the equalities (2.5), (3.1), and (4.1), we obtain: 

(4.6) c^\x) = a^\x\ forr = 0 
and 

(4.7) c^{x) = b^\x), for 5 = 0. 

According to (4.4), (4.6), and (4.7), we get the inequalities 

^ ^ \ x ) = {s)kal\k^(x), forr = 0 
and 

For r = 0, the equality (4.5) becomes 

fc=0 

According to (4.3) and (4.5), we have 

k=Q 

From the equalities (4.2) and (4.7), for j = s = 0, r = k +1, it follows that 

i=0 ^ ' 

Finally, from the equalities (4.2) and (4.6), for j - r = 0, s - k +1, we see that 
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Let (9^([0,1]), Tv) be the space of all closed non-empty subsets of the closed interval [0,1] 
equipped with the Vietoris topology. The basic open subsets of TV are given by 

V o r ^ ^ 0 ' 1 ] ; ^ * 0 and closed such that ylcU?=1G7? Gir^A*0\/i} 

for any collection G1?..., G„ of nonempty open subsets of [0,1]. 
Now let G1?..., Gm (m GN) be open intervals of 0,1] satisfying 

(1) [0,11 = 1 ^ 1 ^ 
(2) G ) nG / + 1 ^0Vi = l , . . , m - l 

(3) G / nG / = 0 for | / -7 |^2 . 

The main purpose of this paper is to calculate the number 

(4) «(G1;...,Gm) = max|{^(G)W; ^ U % , w , / c { l , . . . , m ] | 

where A ranges over ^([O,1]) and where each 9^.). is a basic open set of rv. Obviously, 
w(Gj) = 1; we shall investigate the case where m > 2. This problem was raised by the attempt to 
find a Hausdorff function h with zero local measure [2,3], but non-a-finite Hausdorff measure 
[1] for S^([0,1]). The calculation uses Fibonacci numbers [4]. 

Lemma 1: There exists \ G 2F([0,1]) which gives a maximum for (4) such that 

(5) ^ c U ^ / Q n G , ) . 

Proof: Without loss of generality, we may assume 

14, o(G, oG,+1)|< 1 for / = 1,..., i«-1 
and 

\A0nGl\(Gi_lvGl+1)\<\fori = 2,...,m-l 
as well as 

14, o(Gt \G2)|< 1 and \A, o(Gw XG^)!* *• 

Now let z0 E{2,..., m-A) (the cases /0 = 1 and /0 = m can be handled in the same way) and sup-
pose that 

W ^ n G / o \ ( G l r | U G ! o + 1 ) 

for a set A^ giving the maximum for (4). If4, e ^(G,)ie/> t h e n z0 e / . Hence, 4 , \{x} would also 
give the maximum. Deleting all such points, we obtain the desired set. D 

Now let xi sGir\Gi+lfori = l,...9m-l mdE = {xi;i = 1,...,m-\). 
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um+2 

Lemma 2: For m > 2, 

\{9(Gi)iei;E^(Gi)iei,I^{ly...,m}} 

where um+2 is the (m + 2)th Fibonacci number, i.e., ux = u2 = l and um+l = um + w ^ for /w > 2 (see 
[4]). 

Proof: Clearly E e2F(G) for / cz {1,..., m} if and only if 

(6) / ' £ / , / g{l,...,/w-l} implies z + l e / . 

Let us now consider the hypergraphs 

<s#w = {/c{l,.,.,}; /satisfies (6)} 
and 

88w = {/ cz {1,..., m]; m el and / satisfies (6)}. 

We see that 

(7) Am+l = {l^{m + l}; Izdm}^mm. 

Since {/Kj{m + l}; / G ^m}oSSw = 0 , it follows that 

using the fact that \{I u {m +1}; / G ,s4w}| =| s&m\. We partition 28w+1 as follows: 

(9) a w + 1 = { / G ^ + 1 ; n i G / J u f / G a ^ ; m * / } . 

It is 

(10) | { / ^ ^ + 1 ; a i e / } H 9 U 

If/ G2$W+1 and m£l, then m-lsl, implying that 

(11) \{l£mm+l;mzl}\=\®m+l\. 

Because of {/ G 2SW+1; /w G /} o {/ G2SW+1 ; /w £ /} = 0 , we obtain 

(12) l ^ + i l H ^ M ^ + i l -
We conclude, with | % |= 1 and | % |= 2, that 

(13) l^+i l=l + Z l 
A : = l 

for w > 1 using (8). This gives, together with (12), that 

(14) l-^UHSUI-
Let (um)meN be the sequence of Fibonacci numbers with ux = w2 = 1 and z/w+2 = um+l+um, then it is 
easy to see that 

(15) | a U = « W D 
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Lemma 3: 
(16) um+k+2 < um+2uk+2 for m > 2 and k>\. 

In particular, uk+4 < 3uk+2 for k>l. 

Proof: Using the well-known relation ui+j - u^Uj +uiuJ+l [4] with i - m +1, j = k +1 we obtain 
from f/fc+1 < %+2 that 

UmUk+l < UmUk+2 

UmUk+l < (Um+2 ~ Um+l)Uk+2 

UmUk+l + Um+lUk+2 < Um+2Uk+2 

Theorem 1: For m>2, 

Um+k+2 < Um+2Uk+2 • D 

//^ /^ \ J32 if m is even 
«(Cr 1 ? . . . ,Cj m ) = < m-3 

[5(3~) ifmisodd. 
Proof: Let ^ c; [0,1] be a finite set with property (5) giving maximum. Then 

(17) A = UU\j (*<>») 

with 4, = {x x+ 1 , . . . . x + j t } such that 
' J J J J J 

(18) /7+yt7+l</y + 1forl<7<l - 1 . 

Let n^ =n(Gu...,Gw) andn^ the number of ^(Q)/e/ which contain 4> .. The condition (18) 
guarantees that a set &(Gt)ieI containing AQJ cannot contain another ^ ., with j ^ f. Now, let 

be any collection which contains 4) i> •••> 4) i i then 3F o> , J G(l? •-, ^} contains A$. Con-
versely, we can split the collection (G7)/e/ if 8F(G/)/e/ contains 4) too I subcollections giving fam-
ilies of sets SF o) for/ <={1,..., 1} which contain 4) , by using (18) again. Thus, we conclude 
that 

i 
n4>=UnAoj (whevQnA0J=%+4y 

We claim now that | \ j,\ = with the possible exception of one index j for which | \ j \ = 2. We 
claim, moreover, that there is a gap of one point xi between AQJ and \j+x for j = 1,..., £-1. 
First it should be clear that for a set \ giving maximum for n{Gx ..., Gm) the gap between its 
components \ j and \j+x is at most one point. If there is a component \ j with |4),7|^ 3 t h e n 

we could delete, say xr+l and the set 4>U*/.+i} is contained in 
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Ukj+4 

sets 9 (̂G.).e/ which contradicts the assumption that A^ already gives the maximum by using 
Lemma 3. Hence | \ j | = 1 or 2 for all j . Assuming that | \ j| = | \ J + l | = 2 , then 

is contained in more sets ^(Gt)ieI
 t n a n A$ since \ j and \ J + i give the factor 5 for the resulting 

product n{Gx . . . ,GW). but three points give the factor 3 and 25 < 27. Furthermore, one can 
change the order of the 4 ) , / s t 0 a consecutive one for the sets \ j with \\j\ - 2. Thus, there 
exists at most one \ j with \\j\ = 2. If m is even, then | 4 ) l ~ f with ^ gap points, i.e., 
14),jr| = l for all components of A$, but the last component contains two points. This gives the 
announced result for n(Gx ..., Gm). • 
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Editor on Leave of Absence 
The Editor has been asked to visit Yunnan Normal University in Kunming, China for 
the Fall semester of 1993. This is an opportunity which the Editor and his wife feel 
cannot be turned down. They will be in China from August 1, 1993 until around 
January 10, 1994. The August and November issues of The Fibonacci Quarterly will be 
delivered to the printer early enough so that these two issues can still be published 
while the Editor is gone. The Editor has also arranged for several individuals to send 
out articles to be refereed which have been submitted for publication in The Fibonacci 
Quarterly or submitted for presentation at the Sixth International Conference on 
Fibonacci Numbers and Their Applications. Things may be a little slower than normal 
but every attempt will be made to insure that things go as smoothly as possible while 
the Editor is on leave in China. PLEASE CONTINUE TO USE THE NORMAL 
ADDRESS FOR SUBMISSION OF PAPERS AND ALL OTHER 
CORRESPONDENCE. 
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(Submitted July 1991) 

Burke and Bergum [1] called a (finite or infinite) family of /A-order linear recurring 
sequences a (finite or infinite) regular covering if every natural number is contained in at least one 
of these sequences. If every natural number is contained in exactly one of these sequences, they 
called the family a (finite or infinite) disjoint covering. They gave examples of finite and infinite 
disjoint coverings generated by linear recurrences of every order n. In the case of the Fibonacci 
recurrence un+2 =un+i + urn they constructed a regular covering which is not disjoint and asked 
whether a disjoint covering in this case exists as well. The following theorem answers this 
question. 

Theorem: There is an infinite disjoint covering generated by the linear recurrence un+2 - un+1 + un. 

We first state some easy properties of the Fibonacci numbers, Fx = F2 = 1, Fn+2 = Fn+l+Fn 

for« = l,2,.... Le t a = j ( l + V5)and/?=4(1-V5). Wehave 

(1) a < l , -1<J3<0 
and 

(2) a\0\=l. 

For the Fibonacci numbers, the Binet formula 

(3) F» = ̂ f f ("SN) 

holds. 
For all i eN, let uf u ui2 eN and the sequences (uUn)n^ be defined by 

( 4 ) UUn+2=UUn+l+UUn' 

Then we have 
( 5 ) uun = Fn-iuu2 + Fn-2Uui 

and 

(6) \n+l = a\n+Pn~2(P\2+\l) 

for all i9n E N , « > 2 . 

Proof of the Theorem: We will construct sequences (^ w)weN of natural numbers for all i eN 
generated by (4). 

Start with (ut n)n^ = (Fn+l)nEN and assume that (ut n)neN has been constructed for i = 1, 2, 
..., k -1 for some k eN, k > 2, and that uin = ujm if and only if m = n and / = j (/ <k,j< k). 
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Now we construct (uktn)nGN with the same property. Let Vt = {uJ9fl\n GN, j = 1,23..., /}. 
By (1), (3), and (4), we have N\^_ 2 * 0 . Thus, we can choose 

(7) i i w = min(N\Fw). 

We will show that there are uk^2 G N with 

(8) %,2>%,i 

and 

(9) ii^2>max{nt2|j = l , 2 , . . . , * - l} , 

such that the sequence (%jW)weN generated by (4) has the following property P: 

(P) If i < ky then uka n i=- uu m for all w, wi G N. 

Let M^ = max{%jl3 ul>2, u2^ ..., %-i,2}- Then % 2̂ > M^ is equivalent to (8) and (9). 
Let 5^ G R be sufficiently large. More precisely 

(10) Sk>Aa\A{>\) 

and 
(11) ^>5(^ - l ) ( ( log4^) / loga ) 2 +M, 

(e .g . :^ - ( (5 (^- l ) / log 2 a ) 2
 + l)M,). 

To prove the existence of %j2
 E(^4? ^ ] ^ N such that (%JW)WGN ^as property (P), we first 

count the number of those integers % ) 2 G ( M b ^ ] n N such that (ukt„)„^ does not have 
property (P). For these %? 2, there are m,n GN and i G {1,2,..., k -1} with 

(12) Uk,«=*l,m' 

From (7), (8), and (9), we get n > 2 and m > 3. By (5) we can write (12) as follows: 

^ K - 1 % , 2 + ^ - 2 % , l = Fm-lUi,2+Fnt-2UUl-

We obtain 

(13) n<m 

and by (3) also 
an-l~pn~l an-2-(3n-2 _am-l-pm-1 / " 2 - / ? f f l " 2 

^ — % , 2 + ^ % , 1 " ^ \ 2 + ^ «l,i-

Since «i i 2 ^ ̂  and |/?|< a/2, we get 

g^'-nr1 «""2-i^r2 «"~2+î r2 

la™"1 {a""2 

2a"-1 ''2 2a"-1 u M 

1993] 163 



A DISJOINT SYSTEM OF LINEAR RECURRING SEQUENCES 

Observing (10), this implies 

SSk +4(Sk +4«-1«M) * a"""'l(au
i,2 +"u> > ASa"""-1 

2Sk>am-"-1 

(14) ]^2SL>m_n_l 
log a 

We have uk n+1 ^ wz w+1. Otherwise we would get from (12) and (4) that uk £ = ut m_n+i for all 
£ G N . In particular, ukl = uim_n+l would contradict (7). 

Using this and (6), (12), (1), (13), (8), (9), (2), and uka <Sk,we get 

l-\Uk,n+l~Ui,m+l\ 

^i^r2(iM,2M%,ii+i^2i+iH-,ii) 
<i^r24%,2<a-^2>4^ 

a"-2<4Sk 

log 45^ „ 
log a 

Combining this with (14), we obtain 

tog 25^ ,^og2Sk log 4 ^ ^^Aog4Sk 
(15) m<—-—-+w + l< —-—^ + —-—- + 3<3—-—L . 

log a log a log a log a 
Now we will give an upper bound for the number of triples {n,mj) such that ukn -uim^ 

l<i<k-l. In this case (15) holds. First, fix / and m. 
Since 2<n<m, there are at most m - 2 possible values for n. Since 

3 < m < (3 log 45^ ) / log a, for fixed /', 
there are at most 

2^ loga J [ loga J 
' l o g 4 ^ 2 

log a 

possible pairs (w, n). 
Finally, since l<i <k-l, there are at most 

, lna4.V. X 

5(*-l) 
log4^ 
log a 

possible triples (n,m,i). To each triple such that uhn-uim, l<i<k-l belongs exactly one 
ukt2 ^(Mk, ̂ I n N , because for two different values of ukl and the fixed value of uk 1? the 

164 [MAY 



A DISJOINT SYSTEM OF LINEAR RECURRING SEQUENCES 

recurrence (4) would give two different values of ukf„9 both of which cannot be equal to ut n. 
Consequently, there are at most 

5 ( £ - l ) | ^ - ^ 
^ log a 

values of % 2 e(Mkt Sk]nH such that ukin=ujm for some n,m,l<i<k-l. Therefore, the 
number of values ukA e(Mk} ^ ] n N such that uk * uim for all n, m, 1 < / < k -1 is at least 

Sk-Mk-5(k-l)\ (lQg4^ 
log a 

which is positive by (11), and hence the choice of such an uk2 is possible. 
This induction on k shows that there are infinitely many sequences (%?w)weN- Every natural 

number occurs in one of these sequences by (7). It occurs exactly once by property (P) which 
holds for these sequences. 
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1. INTRODUCTION 
The purpose of this article is to extend an idea in [1] to the generalized sequence {Wn} 

defined [2] for all integers n by the recurrence relation 

(i . i) 
in which 
(1.2) 
where a, b, p, q are arbitrary integers. 

The explicit Binetform is 

(1.3) 

where 

(1.4) 

W = {b-a/3)a"-{b-aa)pn 

a-fi 

a = 

are the roots of 
(1.5) 

p + y]p2+4g R p-^+M 
2 ' P 2 

x -px-q = Q. 

From (1.4), or (1.5), we deduce that 

(1.6) a+fi=p, afl=-q, a-(5=^p2+4q = A 

and 

(1.7) 
f ^ = 4f, f+q- 2 
a +q = Aa, (3 +q = ~-A/3 
a2-q = pa, P2-q = p(3. 

Special cases of {Wn} which interest us are 

(1.8) 

the Fibonacci sequence {Fn} 
the Lucas sequence {Ln} 

the Pell sequence {Pn} 
the Pell -Lucas sequence {Qn} 

p = l,q = l,a = 0,b = l 
p = l,q = l,a = 2,b = l 
p = 2,q = l,a = 0,b = l 
p = 2,q = l,a = 2,b = 2. 

2. THE ASSOCIATED SEQUENCE [w^k)] 

Define the first associated sequence {Wfp} of {Wn} from (1.1) by 

(2-l) W^ = pWn+l+qWn_v 
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Repeat the operation in (2.1) to obtain 

(2.2) » f > = pW^+qW® = (b-aP)&a2+V)2®n~2-(b-™)(PP2 +<?)2/?*"2 

A 
on using (1.3) and (2.1). 

Generally, 

(2.3) rf'^P^+qW*^ 
where W^k) (k = 1,2,3,...) represents the Ifi1 repetition of the association process (2.1). We may 
call {W^ } the associated sequence of{Wn} of order k 

(2.3)' Convention: 0*o) = Wn. 

Induction, with appeal to (2.3), may be used to establish the Binet form 

(2.4) »**) 

in which 

Aan-k-Bpn~k 

(2.5) ) D _ ^ _ ^ 2 , ; ^ 
A = {h-aP)(pa2 + qf 
B = (h-aa)(p/32+qf 

As we expect, {W^k)} is a recurrence sequence like {W„}9 for, by (2.4), 

pW^HqW^ =-{p(Aa"+l~k-Bj3"+l-k) + q(Aan-k-Bj3"-k)} 
A 

(2.6) = 1 {(pa + <?M a""" - (/>£ + q)Bfir"k} 
A 

"~ vvn+2 

on putting x = a, x = /? in turn in (1.5). Thus, (1.1) is valid for {w£k)}. Consequently, (1.5) is 
also true for {W„(k)}. 

Next, we define {°W<-k)}, the conjugate sequence of{w£k)}, by 

(2.7) llW> = Aark+Bprk. 

It readily follows, on using (1.7), that 

(2.8) °W^ = p°W<£P + q°Wtl? 

and on using (1.5), that 

(2.9) ^W^V^-
That is, both the association and recurrence properties which are features of {W^k)} apply equally 
well to { W ^ } . 

1993] 167 



ASSOCIATED SEQUENCES OF GENERAL ORDER 

3. PROPERTIES OF {W£k)} 

Some consequences of our definitions and ideas now follow. Proofs of these results, obtain-
able from the preceding information, are left for the pleasure of the reader [employing (1.7) and 
(2.4)]. 

Firstly, we have the Sirnson formula 
Theorem 1: 

(3.1) 

More generally, 

(3.1)' 

Theorem 2: 

(3.2) 

w£w& - [tfff=-(-qrl-kAB. 

a_-(-q)n"-kAB(ar-prf 

^(n-k\j\P 
i=0 , ; * i 2 

n-k-i 

wft = \ 
\n-k 

(y) Wnk) (»-^even) 

^-Wf (»-*odd). 

W^+qW?^=bW™+aqW?k\ 

AB 

Theorem 3: 

(3.3) 

Theorem 4: 

(3.4) ^ f - ^ * ¥ = ̂ ( f t « 1 + fl?,W^)) + (- l) , M r9 , , + 1-*4^ 

(Not a pretty sight!) 

Theorem 5: 

(3.5) [^lf-p3Uf^f-^U^k)f = 3pq^^k)W^l 

This neat cubic property is derivable directly from (2.6), or, with more effort, from (2.4). 

Theorem 6: 

(3-6) [W^f -p2{W«lf -q2[W^f = 2riW<&W?\ 

This quadratic property which is easily deducible from (2.6) may be employed to produce a 
somewhat unattractive expression for 2pq T^0 W<k)W$. 

All the above results (linear and nonlinear) for W^k) may be echoed for °W*£\ Just one 
illustration (namely, the corresponding Sirnson formula) should suffice. Remaining results could 
be paralleled by the interested reader. 

Theorem la: 

(3.1a) ^ M i - W f = (-qT~l-kABA2. 

This theorem can be extended as in (3.1)' for W^k). 
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Some hybrid results involving mathematical cross-fertilization of W^k) and °W^ are worth 
mentioning. For example, 

Theorem 7: 
(3.7) ^ ) C WW = bW«k)+aqW<£l 

When a = 0, b = 1, q = I, we see that (3.7) leads to Fn
(k)L(k) = F%k) andPn

(k)Q^ = P£k) [cf. 
(1.8)] which are outgrowths of well-known results occurring for k = 0. [See (4.18).] In particu-
lar, P3

(2)e3
(2) = 137 x 386 = 52,882 = P6

(4) [see (4.9) and (4.10)]. 
Another interesting result is 

Theorem 8: 

(3.8) ^ V ^ f - i = A2»f}. 
Thus, when k - 0, q = 1 we have (1.8) 

£ „ + 1 + 4 - i = 5K> Qn+\+ Qi-i =*p
n-

Observe that 

4W = 4 , 4(2) = 54 = e 4(3) = 5/^ = 54, 4(4) = 54? = 524,.-. 
Generally, 

(3.9) 
p{2m+\) -S^L 

L™ = 5»>L„ 

L?m-l) = 5mF„. 

Consequently, the association process effectively stops after two operations on Fn or Ln. 
However, for the Pell and Pell-Lucas numbers, for which p = 2, the association process is never-
ending. [For P„' to equal Qn, we would require PJ = Pn+l + Pn_x, which is contrary to (4.1).] 

4. ASSOCIATED PELL SEQUENCE 

As our special application of the general theory, we consider the Pell sequence {Pn} defined 
in (1.8) by the recurrence relation 
(4.1) P„+2=2Pn+l + P„ 
in which 
(4.2) P0 = 0 , ^ = 1 
with Binet form 

where 
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(4.4) a = l + V2, fi = l-<J2 
are the roots of 
(4.5) x 2 - 2 x - l = 0. 

From (4.4) 
(4.6) a+p = 2i aP=-\ a-p = 2jl. 

The associated Pell sequence of order k, {P^}, is given by 

(4.7) P„W = 2P„^+P„(_V) (**1) 

for which the Binet form is 

(4.8) p{k) _ (7 + 4j2fa"-k-(7-4j2fp"-
" ~ 2V2 

Some elements of the first few sequences {P„(i)} are: 

^ 
0 
1 
2 
3 
4 

-1 
1 

-2 
13 
-8 
205 

0 
0 
3 
6 
63 
228 

1 
1 
4 
25 
118 
661 

2 
2 
11 
56 
299 
1550 

3 
5 
26 
137 
716 
3761 

4 
12 
63 
330 
1731 
9072 

5 
29 
152 
797 
4178 
21905 

6 ••• 
70 ••• 
367 ••• 
1924 ••• 
10087 ••• 
52882 ••• 

(4.9) 

The conjugate sequence { Q^} for which 

(4.10) Qik) = PnVr+P^ 
has the Binet form 

(4.11) ef) = (7 + 4V2)^ w ^ + (7-4V2)Vw^-
One has also 

(4.12) s[*)=2Q^ri)+a^ri). 
Interested readers might wish to list the first few members of some of the {Q^}, as was 

done for {I*k)} in (4.9). For example 

Qf) = 386 = 56 + 330 = P2
(2) +P4

(2). 

Paralleling results in section 3, we have, for instance 

Theorem 1': 

(4.13) tf+ltf-l - [Pnh)f = (-i)n+hnk 

since AB = \lk in the case of Pell numbers, by (1.4), (1.8), and (2.5). There is an obvious exten-
sion analogous to that in (3.1)'. 
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Theorem 2f: 

(4.14) £[nlk)® = \ 
\{4lTuP^ (n-Jfceven) 

&£$>' (n-koM). 
Theorem 3f: 

Theorem 4r: 

(4.16) [ ^ f - t ^ ] 2 - " 2 ^ 1 ^ i + (- i r*-2-17* 
4 

Other special cases for Pell numbers, as in Theorems 5 and 6 and (2.6), follow. 
Results involving Q^k) include (say) 

Theorem laf: 

(4.17) QX-l-iQ^ f =(-ir+1+fc-8-17. 
Theorem 7f: 

(4.18) pmg) = fg) 
[already noted after (3.7)]. 

Reverting momentarily to {W%k>*}, we can use previously applied techniques to demonstrate 
that 

(4.19) bw<& +eqW<S = wn+Mk)+qWnw{k\ 
From (1.8), it follows that 

(4.20) P ' t ^ P ^ + P ^ , 
which expresses the (n + 2)th term of the associated sequence in terms of the (w + l)* and 72th Pell 
numbers. When k - 4, n - 3, for example, 

P^> = P4pW+P3pW = 12 x 1550 + 5 x 661 = 21,905. 

If k ~0 , then (4.20) leads directly to (4.1). Thus, in a pleasing way, (4.20) appears as a 
mathematical offspring of the definition of Pell numbers. 

Equation (4.19) in conjunction with (1.8) also yields a result for Fibonacci numbers similar to 
(4.20), namely, 

(4.21) F^2 = Fn+lF^+FnF^\ 

5. NEGATIVE VALUES OF k AND n 

As {Wn} was defined in (1.1) for all integers n, the results we have obtained for {W^k^} apply 
irrespective of whether n is positive or negative. Indeed, the tabulation in (4.9) gives a brief indi-
cation of this aspect which could be extended to other negative subscript values. 
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But what happens if A: is negative? 
The Binet form for {w£~k)} is readily written down from (2.4) by replacing k by -k, and the 

theory for negative subscript k follows as for the case of k positive. Unhappily, computation does 
not always produce pleasing formulas. Indeed, the calculation of, say, W^k\W^~k^]~l leads to 
some unlovely algebra. 

However, things are easier if we consider a particular instance of the general sequence, say, 
the Pell sequence. Calculation using (4.8) leads to 

(5.i) p^\p^k)il=(iy+k+l • (i7>*. 
Application of (5.1) with the assistance of (4.8) allows us to compute numerical values of 

p(~k^ for particular values of n and k to our heart's content. A short tabulation of P^ for k < 0, 
= 0, >0is[cf (4.9)]: 

(5.2) 

&x - 2 
-1 
o-1 
2 

- 2 
-56 
172 

11 
17 

»2 
7 

-20 

-1 
25 

1 ? 2 
- 4 
17 
1 

- 2 
13 

0 
-6 
172 

3 
17 
0 
3 
6 

1 
13 

172 

2 
17 
1 
4 

25 

2 v 
20 
172 

7 
17 
2 ••• 

11 ••• 
56 ••• 

(5.3) 

Thus, 

Calculation gives [see (3.1)' and (4.13)] 

2 . . „+r+k-l (a - P ) n n^-k &^-[^k)] =(-D" 8 

pf»P^-[pr}2=4 
17 

-,(17)-*. 

One may readily reinterpret the earlier theory for k > 0 in terms of k < 0. 
Similar procedures apply to Q^k) on use of (4.11). 
Likewise, the elementary properties of F^~k) and I^~k) can be established. 
Discovery of other formulas pertinent to associated sequences is offered to the curiosity of 

the reader. While this brief exposition is only an introduction to the topic, it does allow us to 
savor something of the flow of ideas from definition (2.1). 

Finally, it may be mentioned that, in analyzing the nature of associated sequences, the author 
first examined {P^} before proceeding to the generalization. This approach was helpful in 
investigating some of the more awkward features of the general theory. 
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1. INTRODUCTION AND PRELIMINARIES 
Fibonacci pseudoprimes of the lstfo>?<i(l-F.Psps.) have been defined [6] as composite inte-

gers n for which the Lucas congruence Ln = 1 (mod n) is satisfied. 
The aiim of this paper is to establish the following 

Theorem: There do not exist even Fibonacci pseudoprimes of the Ist kind. 

With regard to this problem, Di Porto and Filipponi, in [4], conjectured that there are no 
even-Fibonacci pseudoprimes of the 1st kind, providing some constraints are placed on their 
existence, and Somer, in [12], extends these constraints by stating some very interesting theorems. 
Moreover, in [1], a solution has been found for a similar problem, that is, for the sequence 
{Vn(2,1)}, defined by F0(2,l) = 2, ^(2,1) = 3, F„(2,1) = 3F^1(2,1)-2FW_2(2,1) = 2,, + 1 Actu-ally 
Beeger, in [1], shows the existence of infinitely many even pseudoprimes n, that is, even n such 
that 2" s=2 (modn) <=>F„(2,1) = 2 + 1 = ̂ (2,1) (modw). 

After defining (in this section) the generalized Lucas numbers, Vn(m), governed by the posi-
tive integral parameter m, and after giving some properties of the period of the sequences 
{Vn(m}} reduced modulo a positive integer t, we define in section 2 the Fibonacci pseudoprimes 
of the mfhkind(m-F.'Psps.) and we give some propositions. Finally, in section 3, we demonstrate 
the above theorem. 

Throughout this paper, p will denote an odd prime and Vn(m) will denote the generalized 
Lucas numbers (see [2], [7]), defined by the second-order linear recurrence relation 

(1.1) Vn(m) = mVn_l(m)+V„_2(m); V0(m) = 2, Vl(m) = m, 

m being am arbitrary natural number. It can be noted that, letting m - 1 in (1.1), the usual Lucas 
numbers Ln are obtained. 

The period of the sequence {Vn(m)} reduced modulo an integer t>\ will be denoted by 
'P(t){V„(m)}. For the period of the sequence {Vn(m)} reduced modulo/?, it has been established 
(see [8], [13]) that 

(1.2) ifj(m2+4,p) = l, thenP(p){F>)}|(i?-l), 

(1.3) if J(m2+ 4,/>) = - l , thm¥ip){Vn(m)}\2(p + ll 

where J(a,ri) is the Jacobi symbol (see [3], [10], [14]) of a with respect to n, and x\y indicates 
that x divides j . 

*This work was carried out in the framework of an agreement between the Italian PT Administration and the 
Fondazione Ugo Bordoni. 
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Moreover, it can be immediately seen that 

(1.4) if gcd(m2+4,p) = p, [i.e., m2^-4 (mod/?)], thenR } { F » } = 4, 

and, if m is an odd positive integer, 

(1.5) P(2){^(^)} = 3; Vn(jn) s 0 (mod2) iff n = 0 (mod3). 

Note that, according to (1.2), (1.3), and (1.4), the period of any generalized Lucas sequence 
reduced modulo a prime/? is a divisor of A(p) = 1cm(p -1,2(p +1)), that is, 

(1.6) P(p){Vn(m)}\A(p). 

Finally/observe that, if m is a positive integer such that m2 = -1 (mod?), then Y is of the 
form 

0-T> ' = 2*11/'/'. 

where /^ are odd rational primes of the form (see [8], [14]) 

p.=4hj+l, &G{0,1} dndkj >0. 
In this case, it follows that 
(1.8) P(0{F>i)} = 12 and V^m)^Vs{m)^m (modf). 

2. THE FIBONACCI PSEUDOPRIMES; DEFINITION 
AND SOME PROPOSITIONS 

The following fundamental property of the numbers Vn(m) has been established [11]: If n is 
prime, then, for all m, 
(2.1) Vn(m) = m (modri). 

The composite numbers n for which the congruence (2.1) holds are called Fibonacci 
pseudoprimes of the mth kind (m-F.Vsps.) [6]. 

First, let us give some well-known results (see [5], [9]) that will be needed for our further 
work. Let <ibe an odd positive integer. 

(2.2) V2d(m) = [Vd(m)f+2, 

(2-3) V2kd(m) = [V2k.ld(m)]2-2; k>\, 

(2.4) Vhd(m) = Vh(Vd(m)); h>\. 

To establish the theorem enounced in section 1, we state the following propositions. 

Proposition 1: Let m = 2r +1 be an odd positive integer. 
If n- 2k(2s +1), (k > 1, s > 1), is an even composite integer such that n = 0 (mod 3), then 

n is not an m-F.Psp., that is, 

(2.5) If« = 0(mod6), then Vn(m)^m(modri). 
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Proposition 2: Let m = 2r +1 be an odd positive integer. 

(2.6) If* = 2 \ k > 1, then V2* (m) ^ -1 (mod 2*). 

From this proposition, it follows that 

(2.7) If it > 1, then 2k is a (2* -1) -F.Psp. 

Proposition 3: Let m = 2r +1 be an odd positive integer. 

(2.8) If n = 2*(2s +1) # 0 (mod3), Jfc > 1, s > 2, then Vn(m) = -1 (mod2k). 

Proof of Proposition 1: lfn = 0 (mod 6), from (1.5) we have 

(2.9) Vn(m)^0(mo&2\ 

whence we obtain 
(2.10) Vn(m) = ®£m = 2r + l (mod 2), 
which implies that 
(2.11) Vn(m)^m(mod2k)^>Vn(m)^m(modn). Q.E.D. 

Proof of Proposition 2 (by induction on k): The statement is clearly true for k = 1. Let us sup-
pose that the congruence 

(2.12) r2JM(m) - -1 (mod2*"1), * > 1 
holds. Observing that (2.12) implies [J^*_,(/w)]2-=l(mod2*) and, according to (2.3), we can 
write 
(2.13) V2k(m) = [V2k^(m)f -2^-l(mod2k). Q.E.D. 

Notice that, with the same argument, it is also possible to state that 

(2.14) If m = (2r +1), then V^ (m) = -1 (mod 2k+l) and F2* (w) # -1 (mod 2k+2). 

Proof of Proposition 3: lfn-2k (2s +1), from (2.4) we can write 

(2.15) Vn(m) = V2t(V2s+l(m)); 

moreover, if n =# 0 (mod 3), we have [see (1.5)] 

(2.16) V2s+l(m) = 1 (mod 2) => V2s+l(m) = 2h + l,h>0, 

whence, according to Proposition 2, we obtain 

(2.17) V2k(V2s+l(m)) = V2k(2/i +1) = -1 (mod2*). Q.E.D. 

3. THE MAIN THEOREM 

Let n be an even composite number. First, observe that 1^-1 (mod 2k) for all k>\. Propo-
sitions 1, 2, and 3 and the above obvious remark allow us to assert: 
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(a) If n = 0 (mod 3), then n is not an 1-F.Psp., according to Proposition 1; 
(b) n - 2k, (k > 1), is not an 1-F.Psp., according to Proposition 2; 
(c) n = 2k(2s+1) # 0 (mod 3), (k > 1, s > 2), is not an 1-F.Psp., according to Proposition 3. 

Therefore, in order to demonstrate the Theorem, "There do not exist even l-F.Psps.,,f it 
remains to prove the following 

Proposition 4: Let 

(3.1) ^#0(mod3),rf>l 

be an odd integer, d>\. If n = 2d is an even composite integer, then Ln # 1 (mod n\ that is, n = 
2dv$> not an 1-F.Psp. 

Proof (ah ahsurdo): Let us suppose that 

(3.2) 4 = Z2rf = l(mod2rf)=>LZJsl(modrf); 
by (2.2) we obtain 
(3.3) [ZJ2 = Z 2 , - 2 - l - 2 - - l ( m o d r f ) 
which implies [see (1.7), sec. 1] 

(3.4) d = ]Jp';.\pj = 4hj + l,kJ>0. 
J 

Notice that (3.4) makes the d £ 0 (mod 3) hypothesis unnecessary. 
Under the conditions (3.1) and (3.4), we have 

(3.5) rf = l(modl2)orrf = 5(modl2), 

and we can find a positive integer m such that 

(3.6) w2 = -l(modrf); 

then, from (1.8) and (3.5), we can write the congruence 

(3.7) Vd(m) = m(modd), 
which implies 
(3.8) WdWf ^rn2^-l(modd). 

Therefore, by (3.3) and (3.8), we obtain the congruence 

(3.9) [Ldf ^[Vd(m)f (modd), 

and, in particular, if/? is the smallest prime factor of d, we can write 

(3.10) [Ldf = [Vd(m)f (mod/?) => ^ s ±Vd(m) (mod/?). 

First, observe that gcd(d, A(/?)) = 1, then we can find an odd positive integer d' such that 

(3.11) d-d'ssl (mod AQO); 

taking into account the equality (2.4), from (1.6), (3.10), and (3.11), we obtain 

176 [MAY 



NONEXISTENCE OF EVEN FIBONACCI PSEUDOPRIMES OF THE 1ST KIND 

(3.12) VAh)=U* ^ - 1 ^ ( ± W 
whence we obtain the congruence 

m = ±l(modp) 
which contradicts the assumption 

m2 =-1 (modd)=>m2 = -l(modp). Q.E.D. 

ADDENDUM 

About six months after this paper had been accepted for publication, I became aware of the 
fact that an alternative proof of the nonexistence of even 1-F.Psps. has been given by D. J. White, 
J. N. Hunt, and L. A. G. Dresel in their paper "Uniform Huffman Sequences Do Not Exist," pub-
lished in Bull. London Math Soc. 9 (1977): 193-98. 
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THE MOMENT GENERATING FUNCTION OF THE 
GEOMETRIC DISTRIBUTION OF ORDER k 

Michael J. J. Barry and Anthony J. Lo Bello 
Department of Mathematics, Allegheny College, Meadville, PA 16335 

(Submitted August 1991) 

Let X be the random variable denoting the number of trials until the occurrence of the k^ 
consecutive success; the trials are independent with constant success probability/? (0<p<\) . 
The probability density function / of X has been determined by Philippou and Muwafi [3]. (See 
also Philippou, Georghiou, and Philippou [4].) In this note we show that the moment generating 
function of X exists, and we determine a formula for it by means of the following recurrence. For 
two other recursive formulas of/, see [1] and [2]. 

Proposition: The probability density/ofXsatisfies the following relations. (Here, q = l-p.) 

(a) f(k)^. 
(b) f(n) = qpk if k + l<n<2k-l 
'(c) f(n) = qf(n-V) + gpf(n-^+ 

Hence, for n >2k, the terms f{n) satisfy a linear recursive relation of order k whose auxiliary 
equation is xk - qxk~l ~ qpxk~2 - • - qpk~l = 0. 

Proof: Clearly the formula holds f o r n - k . Suppose now that k + l<n<2k-l. The first run of 
& consecutive successes ends on the nth trial. These k successes are preceded by a failure, which 
in turn is preceded by any sequence of n - k - 1 outcomes. Thus, / ( « ) = qpk. Now let n>2k, 
and consider a sequence of n Bernoulli trials where the first run of k consecutive successes ends 
on the nih trial. The first failure must occur on or before the k^ trial and may occur on any of the 
first k trials. For 1 < j < k\ let Ej be the event that the first run ofk consecutive successes occurs 
on the nth trial and that the first failure occurs on the fh trial. Clearly f(ri) equals the sum of the 
probabilities of the Ej. We claim that the probability of Ej is qpJ~lf(n-j). Points in Ej consist 
of j -I successes, followed by a failure, followed by any sequence ofn-j outcomes consistent 
with the first run of k consecutive successes ending on the rP trial, and so by independence the 
probability of Ej is as claimed. 

Having established these properties for/, we proceed to our main result. 

Theorem: The moment generating function M(t) of X exists on some open interval containing 0 
and is given by 

ju/rt = pkekt = P^-Pe') 
W \-qe<-qPelt-.--qpk-lekt l-e< +(l-p)p

k
e^t' ' 

The proof of the theorem will be given after establishing the following lemma. 

Lemma: The roots of the auxiliary equation are distinct and have absolute value less than 1. 

Proof: We have seen that, for n>2k, the terms f(n) satisfy a linear recursive relation of order k 
whose auxiliary equation is 

xk-qxk~l-qpxk~2 - <-qpk~l = 0. 
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We now investigate this equation. Let e(x) denote the polynomial 
xk - qxk~l - qpkk~2 qpk~l in x, 

and let f(x) = (x- p)e(x) = xk+l - xk + qpk. Now 

/ ' ( * ) = (* + l)x* -kxk~l = (Jt + l )** - 1 ^ 
k + l 

has roots 0 and •£—. Since 0 is not a root of/,/has a repeated root if and only if -i— is a root of 
/ But 

/ k + l) U + l 
k Y+1 ( k Y 

Since 

(1 - x)x 

k + l 

k 1 

+qp 
- l 

i + l U + l 
+ qpk. 

k + l 
f k V 
U+u <0 

on [0, 1] with equality if and only if x = - ^ , we see that — is a root of/if and only if/7 = -£- . 
/£ T I Ar + i Ar + l 

Thus,/has a repeated root (of order 2) If and only if/? = -^-. Hence, the roots of e are distinct. 
We turn now to the absolute values of the roots of e(x). We will show that if z is a (com-

plex) number with \z | > 1, then z is not a root of the equation e(x) = 0. 
i k k-l k-2 k-l\-^ i \k i \k-l i \k-2 k-l 
\z -qz -qpz qp \>\z\ -q\z\ -qp\z\ qp 

>\zf-q\z\k-qp\z\k qpk'l\z\k 

>\z\k~q\z\kl-pk 

l-p 
= \z\k-\zf(l-pk) = pk\zf>0. 

Thus, all roots of the equation e(x) = 0 have absolute value less than 1. 

Proof of the Theorem: Let z1,z2,...,zk be the distinct roots of the auxiliary equation; then, from 
the theory of difference equations, we know that there exist (complex) constants q, c2,..., ck such 
that 

/ (« ) = cyz[ + c%zl + --- + ckzk if n>k. 

Now the series Z"=jfc crfe* =c, 5 £ t (*,«')" converges to f g j i i f | z / | < l , that is, if f <-In|z,|. 
Let m = min{ - ln| z1 |, - ln| z21,..., - ln| zk |} Then the moment generating function 

M(o=fyy(») 
n=k 

exists on the interval (-ooym). The proof of the theorem now follows by substituting e* for s in 
the formula of the probability generating function yk(s) of [4, Lemma 2.3]. Alternatively, recast-
ing the proposition above, we have 

(*) k-i. f(n + k) = qf(n + k~l) + qp(n + k-2) + --+qp!c f{n\ n>\ 
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with / ( 1 ) = / ( 2 ) = —= / ( * - l ) = 0 mdf(k) = pk. Therefore, 

00 00 

W) = Z ^ / W = elaf(k) + Ze(n+k)'f(rr + k) 
n-k n-\ 

= e V + ? Z e ( " + * V ( " + * - l ) + ^ Z e ( " + ^ 7 ( « + Ar-2) + - - -+^- 1 £e ( " + f c ) 7 («Xby(*) > 

00 00 OO 

= e V + ? e T e < " + * r _ 1 ) ' / ( « + ' t - l ) + 2 P e 2 ( £ e
( " + t - 2 ) 7 ( « + / t - 2 ) + - - - + ^ 1 e f e Z e " < / ( " ) 

= eHpk + ge'Af (f) + qpe2tM(t) + • • • + qpk-leh M(t), 
from which the proof follows. 

jFmal Comment: From the moment generating function, one can calculate all the moments that 
are of interest. For example, when p = y2, the mean of X is given by ju- 2 (2* -1 ) , and the 
variance of Xby a2 = 4(2* - 1 ) 2 - (4k - 6)(2* -1) - 4k; the following table displays the skewness 
factor a3 and the kurtosis factor a4 for k = 1, ..., 10. Note that as & increases, a 3 and a4 

approach the skewness factor 2 and the kurtosis factor 9, respectively, of the Exponential Distri-
bution. 

k a, aA 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

2.211320344 
2.035097747 
2.010489423 
2.003133201 
2.000918388 
2.000262261 
2.000072886 
2.000019756 
2.000005243 
2.000001368 

95 
9.144628099 
9.042749454 
9.012677353 
9.003699063 
9.00105334 
9.00029223 
9.00007913 
9.000020986 
9.000005473 
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ELEMENTARY PROBLEMS AND SOLUTIONS . 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to 72717.3515@compuserve.com on 
Internet. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. 

BASIC FORMULAS 
The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+l + Fn, FQ = 0, Fx = 1; 

AH-2 - A H - I + 4 ? A) - 2, i^ -1. 

Also, a = (l + V5)/2, 0 = ( l - V 5 ) / 2 , F„ = {an-fin)l45, mdLn = an+/5n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-736 Proposed by Herta T. Freitag, Roanoke, VA 
Prove that (2Ln + Ln_3) / 5 is a Fibonacci number for all n. 

B-737 Proposed by Herta T. Freitag, Roanoke, VA 
A right triangle, one of whose legs is twice as long as the other leg, has a hypotenuse that is 

one unit longer than the longer leg. Let r be the inradius of this triangle (radius of inscribed 
circle) and let ra,rb,rc be the exradii (radii of circles outside the triangle that are tangent to all 
three sides). 

Express r, ra,rb, and rc in terms of the golden ratio, a. 

B-738 Proposed by Daniel C Fielder & Ceceil O. Alford, Georgia Institute of Technology, 
Atlanta, GA 

Find a polynomial f(w, x, y, z) such that 

J (Ai> Ai+i' A?+2> A7+3) ~ 25/ {rn, rn+l, rn+2, A7+3) 
is an identity. 
B-739 Proposed by Ralph Thomas, University of Chicago, Dundee, IL 

Let S = I y-1 / > 0, j > 0 >. Is S dense in the set of nonnegative real numbers? 

B-740 Proposed by Thomas Martin, Phoenix, AZ 
Find all positive integers x such that 10 is the smallest integer, n, such that n\ is divisible by x. 

1993] 181 



ELEMENTARY PROBLEMS AND SOLUTIONS 

B-741 Proposed by Jayantibhai M. Patel, Bhavan rs R A. College of Science, Gujarat, India 

Prove that F*+s + 33 lF*+4 +F* is always divisible by 54. 

SOLUTIONS 

Coefficients of a Maclaurin Series 

B-709 Proposed by Alejando Necochea, Pan American University, Edinburg, TX 

Express 
i dn r t 
n\dtn [l-t-t2 

in terms of Fibonacci numbers. 

Solution by Douglas E. Iannucci, Riverside, RI 

Since 11 (1 - 1 -12) is the generating function for the Fibonacci sequence, we have 

t=o i l l 

(see [2], pp. 52-53). Thus 

t 
n\df l-t-t2 n\dtn E^/ 

£ k(k - l)(k -2)--{k-n + \)Fktk-" 
,k=n 

= Fm. 

Several solvers blithely proceeded to differentiate the power series for t/ (l-t-t2) term by term 
(as above) without justifying that this produces correct results. Several solvers quoted Taylor's 
Theorem, but this did not convince me. The procedure is valid by the following ([IJ, p. 26): 

Theorem: In the interior of its circle of convergence, a power series may be differentiated term 
by term. The derived series converges and represents the derivative of the sum of the original 
power series. Furthermore, if f(z) = TJ™=0anzn is a power series with radius of convergence 
R > 0, then f[z) has derivatives of all orders; and for \z\< i?, we have 

/w(z) = X»("-1)-("-^+1K^ 
References: 

1. EinarHille. Analytic Function Theory. Vol. I. New York: Blaisdell, 1959. 
2. S. Vajda. Fibonacci and Lucas Numbers, and the Golden Section—Theory and Applica-

tions. Chichester: Ellis Horwood Ltd., 1989. 

Also solved by Glenn Bookhout, Wray Brady, Paul S. Bruckman, Joseph E. Chance, Russell 
Euler, C Georghiou, Russell Jay Hendel, Joseph J. Kostal, Igor 01 Popov, Bob Prielipp, Don 
Redmond, H.-J. Seiffert, Sahib Singh, Ralph Thomas, and the proposer. 
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Pell-Lucas Congruences 

B-710 Proposed by H.-J. Seiffert, Berlin, Germany 
Let Pn be the n*1 Pell number, defined by P0 = 0, P, = 1, Pn+2 = 2Pn+l + Pn, for n > 0. Prove 

that 

00 P3n+i=L3n+i (mod5), 
(b ) P3n+2^-L3n+2 ( m o d 5 ) . 

(c) Find similar congruences relating Pell numbers and Fibonacci numbers. 

Solution by PaulS. Bruckmam, Edmonds, WA 
We may readily form the following short table of Pn and Ln modulo 5: 

n Pn (mod 5) Ln (mod 5) 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0 
1 
2 
0 
2 

-1 
0 

-1 
-2 

0 
-2 

1 
0 
1 

2 
1 

-2 
-1 
2 
1 

-2 
-1 
2 
1 

-2 
-1 
2 
1 

Inspection of the foregoing table shows that Pn repeats every 12 terms and Ln repeats every 4 
terms. Thus, to discover the relations between the Pn's and Zw's (mod 5), it suffices to consider 
the first 12 terms of the sequences involved. Parts (a) and (b) of the problem then follow imme-
diately by inspecting this table and confirming the congruences. 

To find relations between the P„'s and Fn's, we form a similar array tabulating Pn and Fn 
modulo 5. We find that Fn repeats every 20 terms. Thus, it suffices to consider the first 60 terms 
of the sequences involved (since lcm[12, 20] = 60). We omit the tabulation, but the 60-line table 
is straightforward to create. Inspecting that table, we find 

P = F 
x 15n+a \5n+a 
P =-F 

1 \5n+a — * \5n+a 
np = -F 
^J \5n+a ~ -1 \5n+a 
2P = F 
^J \5n+a — J \5n+a 

(mod 5) 
(mod 5) 
(mod 5) 
(mod 5) 

fora e{-l,0,l} 
for a G {-4,0,4} 
for a e {-2,0,2} 
for a e {-7,0,7} 

This last set of congruences repeat every J5 entries (rather than every 60) because of the fact 
that Pn+l5 EE 2Pn (mod 5) and Fn+l5 s 2Fn (mod 5) . 

Georghiou, Prielipp, Somer, and Thomas found the following congruences modulo 3: 

^ - " ^ (mod3) 

Pin+i^F2n+i (mod3) 

which can also be expressed as Pn = (-l)"+lFn (mod 3). 
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Also solved by Charles Ashhacher (parts a and b), Herta T. Freitag, C Georghiou, Russell Jay 
Hendel, Joseph J. Kostal, Bob Prielipp, Stanley Rabinowitz, Lawrence Somer, Ralph Thomas, 
and the proposer, 

Cosh, What a Product! 

B-711 Proposed by Mihdly Bencze, Sacelef Romania 

Let r be a natural number. Find a closed form expression for 

nh - + -
1 

Solution by°H.-J. Seiffert, Berlin, Germany 

It is known that sin nz and sinh nz have the following product expansions: 

and 

sin nz = nz\\ 

sinh nz = 7tz^\ 

1-

1 + -
2 \ 

(1) 

(2) 

which are valid for all complex z (see [1], series 4.3.89 and 4.5.68; [2], p. 350; [3], p. 37, section 
1.431; or [4], series 1016 and 1078). 

Thus, 

k=l 

=n 
k=\ 

oo 

=n 

L4r ' - n i ' - ^ n 
( 4 r V 
1-

a 
2r\( 

1 + a 
2r\( 

/ 

a 

o2r\f 

1 P Ar\ 

1- a 
2r\ 

n 1+ a 
2r \ oo ( 

1 0 
>2r\ 

J 
0 

tf2r\ 
1-^ 

V / n 
o2r\ 

sin(;rar) sinh(;rar) sin(^5r) sinh(^/?r) 

;ra na n(3r nf5r 

= —j sin( ;rar) sin( TT/T ) sinh( nar) sinh( ;r/?r). 

Editorial note: The step wherein we pass to a product of four infinite products needs some 
justification. The infinite product Il*=1(l + x J is said to be absolutely convergent if the series 
E^=1 \xn\ is convergent (see [2], p. 159). All the infinite products used above are absolutely con-
vergent. It is known that the factors of an absolutely convergent infinite product may be 
rearranged arbitrarily without affecting the convergence of the product (see [5J, p. 530). Thus, 
we are permitted to equate Ilakbk and Y\ak Ylbk, which justifies the above procedures. 
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The result can be simplified further. Using the formulas 

sin x siny = -[cos(x ~y)- cos(x+y)] and sinh x sinh y = -[cosh(x+y) - cosh(x - y)] 

(see [1], formula 4.5.38), we find that 

P = —f cos(^Fr <JT) - co$(nLr) cosh(jzlr) - cosh(^Fr V5 H 

References: 
1. Milton Abramowitz & Irene A. Stegun. Handbook of Mathematical Functions. Washing-

ton, DC: National Bureau of Standards, 1964. 
2. G. Chrystal. Textbook of Algebra. Part 2. New York: Dover, 1961. 
3. I. S. Gradshteyn & I M. Ryzhik. Tables of Integrals, Series and Products. San Diego, CA: 

Academic Press, 1980. 
4. L. B. W. Jolley. Summation of Series. 2nd rev. ed. New York: Dover, 1961. 
5. Edgar M. E. Wermuth. "Some Elementary Properties of Infinite Products." Amer. Math. 

Monthly 99 (1992):530-37. 
Also solved by Paul S* Bruckman, C Georghiou, Igor 01 Popov\ and the proposer. 

Another Lucas Number 

B-712 Proposed by Herta T. Freitag, Roanoke, VA 

Prove that for all positive integers ny a(^J5an - Ln+l) is a Lucas number. 

Solution by Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

Since V5 = a - J8 and a/3 = - 1 , we have 

a(V5aw - 4 + 1 ) - a[(a - j8)a" - (an+l + /T+1)] 
= an+2-pan+l-an+2-apn+l 

Most solutions were similar. Redmond found an analog for Fibonacci numbers: a(oc" -Fn+l) = 
Fn. Haukkanen found this too, as well as -P(45pn + Ln+l) = Ln and fi(pn -Fn+l) = Fn. 
Redmond also generalized to arbitrary second-order linear recurrences. 

Also solved by Richard Andre-Jeannim, Charles Ashbacher, Mohammad K Azarian, M. A. 
Ballieu, Seung-Jin Bang, Glenn Bookhout, Scott H. Brown, Paul S. Bruckman, Leonard A. 
G. JDresel, Russell Euler9 Piero Filipponi, Jane Friedman, Pentti Haukkenen, Russell Jay 
Hendel, Carl Libis, Graham Lord, Dorka 01 Popova, Bob Prielipp, Don Redmond, H.-J. 
Seiffert, Sahib Singh, Lawrence Somer, Ralph Thomas, and the proposer. 

Complex Pythagorean Triple 

B-713 Proposed by Herta T. Freitag, Roanoke, VA 
(a) Let S be a set of three consecutive Fibonacci numbers. In a Pythagorean triple, (a, Z>, c), 

a is the product of the elements in S; b is the product of two Fibonacci numbers (both larger than 
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1), one of them occurring in S; and c is the sum of the squares of two members of S. Determine 
the Pythagorean triple and prove that the area of the corresponding Pythagorean triangle is the 
product of four consecutive Fibonacci numbers. 

(b) Same problem as part (a) except that Fibonacci numbers are replaced by Lucas numbers. 
Solution by Paul S. Bruckman, Edmonds, WA 

Part (a): Let S = (Fn_l9 Fn, Fn+l). Since we require a - Fn_lFnFnJrX to be the side of a trian-
gle, we must have n > 2. Also, if n = 2, then a = 2, which cannot be the side of a Pythagorean 
triangle. Thus, n>3. Since the sequence (Fn)™=2 is increasing, the hypothesis implies that 
c < F2 + F2

+l = F2n+l. Also, we must have c > a. Thus, we are to have Fn^yFnFn+l <F2n+l. This 
inequality can be satisfied only for a finite number of n. In fact, it holds only for n < 4. Thus, the 
only possible solutions are generated by n = 3 or n = 4. 

If n = 3, we obtain the value a = F4F3F2 =3-2-1 = 6. Since c > a, we must have c - 32 + 22 

=13 or c = 32 +12 = 10. However, 132 - 6 2 = 133, which is not a perfect square; so we reject that 
possibility. Since 102 - 62 = 82, we try b = 8. However, 8 = 8-1 = F6F2, which is the only factor-
ization of 8 into two factors that are Fibonacci numbers. Since F2 = 1, we must also reject this 
possibility. 

If n = 4, we obtain a = F5F4F3 =5-3-2 = 30. The only possible value for c is F$ +F2 = 
52 +32 = 34. This yields b2 = 342 -302 = 162, so b = 16. We can factor 16 as a product of two 
Fibonacci numbers in only one way; namely, 16 = 8-2 = F6F3, and both factors are larger than 1. 
Moreover, F3 divides a. Therefore, this is a valid solution and is, indeed, the only solution: 

(a,b7c) = (F5F4F3,F6F3yF5
2+F2) = (5'3'2yS-2,52+32) = (30,\6,34). 

For this unique solution, the area of the triangle formed by sides of length a, b, and c is equal to 
y2-30-\6 = 240 = 2• 3• 5• 8 = F3F4F5F6, as required. 

Part (b): Bruckman's analysis of part (b) was similar, yielding the unique solution 

(a,ft,c) = (Z0Z1Z2,Z0Z3,Z24-Z2) = (2-1-3,2-4, l2+32) = (6,8,10). 

In this case, the area of the triangle formed by a, b, and c is equal to j^-6-8 = 24 = 2-l-3-4 = 
LQLXL2L3, the product of four consecutive Lucas numbers, as required. 
Some solvers found a solution but did not prove that it was unique. Thus, they did not 
technically prove that the area of the triangle must be the product of four consecutive Fibonacci 
numbers. 
Also solved by Charles Ashbacher9 Leonard A. G. Dresel; Jane Friedman, Marquis Griffith & 
Ryan Jackson (jointly); Russell Jay Hendel, Bob Prielipp, H.-J. Seiffert, Sahib Singh, 
Lawrence Somer, and the proposer. 

Editorial Note: Problems B-707 andB-708 were also solved by Igor Ol. Popov. 

• > • > • > 
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PROBLEM PROPOSED IN THIS ISSUE 

H-475 Proposed by Larry Taylor, Rego Park, NY 
Professional chess players today use the algebraic chess notation. This is based upon the 

algebraic numbering of the chessboard. The eight letters a through h and the eight digits 1 
through 8 are used to form sixty-four combinations of a letter and a digit which are called "symbol 
pairs." Those sixty-four symbol pairs are used to represent the sixty-four squares of the chess-
board. 

Develop a viable arithmetic numbering of the chessboard, as follows: 
(a) Use twenty-five letters of the alphabet (all except U) and nine decimal digits (all except 

zero) to form 225 symbol pairs; choose sixty-four of those symbol pairs to represent the sixty-
four squares of the chessboard. 

(b) There are thirty-six squares from which a King can move to eight other squares. Let the 
nine symbol pairs representing the location of the King and the squares to which it can move 
contain all nine decimal digits. 

(c) There are sixteen squares from which a Knight can move to eight other squares. A 
Queen located on one of those sixteen squares, moving one or two squares, can go to sixteen 
other squares. Let the twenty-five symbol pairs representing the location of the Knight or the 
Queen and the squares to which the Knight or the Queen can move contain all twenty-five letters 
of the alphabet. 

(d) Let the algebraic Square a8 (the original location of Black's Queen Rook) correspond to 
the arithmetic Square A\\ let the algebraic Square hi (the original location of White's King Rook) 
correspond to the arithmetic Square Z9. 

H-476 Proposed by H.-J. Seiffert, Berlin, Germany 
Define the Pell numbers by P0 = 0, Px = 1, Pn = 2Pn_x + P„_2, for n > 2. Show that, for all 

positive integers n, 
p - V /_ 1 \[(3k+3-2n)/4]jpkl?\(n + k \ 

k=Q ^ ' 
4j(2n+k 

where [ ] denotes the greatest integer function. 
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H-477 Proposed by Paul S. Bruckman, Edmonds, WA 

Let 

Fr(z) = zr-r£akzr-l-\ (1) 
k=0 

where r > 1, and the ak's are integers. Suppose Fr has distinct zeros 6k, k = 1, 2, ..., r, and let 

Vn = fj6ln = 0,l,2,.... (2) 

Prove that, for all primes/?, 

^sa^Cmod/O. (3) 

SOLUTIONS 
Editorial Notes: Paw/ 51 Bruckman'$ name was omitted as a solver ofH-435. 

A number of readers pointed out that exponent "u" was missing in two places in H-472. 
Larry Taylor feels that the solution ofH-454 as published was not complete, or at least was 

not what was intended. We therefore offer Mr. Taylor's solution here. 

Mix and Match 

H-454 Proposed by Larry Taylor, Rego Park, NY 
(Vol 29, no. 2, May 1991) 

Construct six distinct Fibonacci-Lucas identities such that 
(a) Each identity consists of three terms; 
(b) Each term is the product of two Fibonacci numbers; 
(c) Each subscript is either a Fibonacci or a Lucas number. 

Solution by the proposer 
Let j , k, n, and t be integers. It is known that F-Fn+k = FkFn+j -Fk^jFn(-X)3. 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 

Let j -
Letj--
Letj--
Lety = 
Let j --
Let j - -

- A> * _ A+i>n - A-ij 
= Ft,k = Lt+1, n = Ft_{, 
= Ft_uk = Ft,n = Ft+1; 
- i't-i' k = Lt,n = Lt+y, 

= Ft_1,k = Ft+1,n = Ft; 
= Ft_2,k = Ft+2,n = Ft. 

In each of the six identities, each of n + k,n+j,k-j is either a Fibonacci or a Lucas 
number. 

Simply Wonderful 

H-458 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 29, no. 3, August 1991) 

Given an integer m>0 and a sequence of natural numbers a0,au...,am, form the periodic 
simple continued fraction (s.c.f) given by 
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0 = [ao;a1,a2,...,a2,a1,2aQl (1) 

The period is symmetric, except for the final term 2aQy and may or may not contain a central term 
[that is, am occurs either once or twice in (1)]. Evaluate 0 in terms of nonperiodic s.c.f.'s. 

Solution by Russell Jay Hendel, Bowling College, Oakdale, NY 

Let n denote the length of the period of 0. We claim 

Theorem: 02 = a% + 2MaQ + N, where, for n > 5, 

A/ = [0;a1,a2,...,a2,a1] 
N/M = [0;al,a2,...,a2l 

Remark 1: For n < 4, we have: 

7i = 4: M = [0;a1,a2,a1] iV7M = [0;al3a2] 
w = 3: M = [0;al,al] N/M = [0;aj 
n = 2: M = [0;al] N/M = [0] 
n = l: M = [0] JV = 1. 

These initial cases were verified using DERIVE. The study of the initial cases also aided discovery 
of the general pattern. 
Remark 2: Results on the continued fractions of quadratic irrationals are well known. Some 
standard references are [2; pp. 310-88] or [3; pp. 197-204]. Standard textbook exercises study 
partial quotients of continued fraction expansions of 0 for small n (e.g., [2; p. 388, Probs. 4-7] or 
[3; p. 204, Probs. 1 and 2]). Note that older notations, e.g., [3], sometimes differ from modern 
ones by starting the continued fraction with ax instead of a0 

Remark 3: Let Ck= pk / qk denote the k^ convergent of (0- a0)_1 for k = 0,1,2,.... In parti-
cular, (1) implies pn_l I qn_x = [at, a2,..., a2, ax, 2a0 ]. The following facts, used in the sequel, are 
well known (see [1; CF4 and CF1] and [2; p. 385, Eq. 10.17]). 

Pn-l = (2ao)Pn-2 +<ln-2i Qn-1 = ( 2 a 0 > ^ - 2 + ^ - 3 - ( 2 ) 

1/M = [a1,a2,...,a2,a1] = /?W_2/^_2>1; M/N = [al,a29...,a2] = qn_2/qn_3>l. (3) 
A real 

x>\ (4) 
satisfies the quadratic equation 

qn-l*2 + kn-2 - Pn-l )X ~ Pn-2 = ° (5) 
if and only if 

x = (0-aoyl. (6) 

Proof of the Theorem: Substitution, using (2), transforms the theorem assertion into the follow-
ing equivalent claim, which we will prove: 
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V Pn-2 Pn-2 
Let 

1 
x = 

at+2^-a0+^-a0 
Pn-2 Pn-2 

Then (3) implies (4) and straightforward expansion using (2) demonstrates (5). Equations (4) and 
(5) imply (6) and the result immediately follows. 

References: 

1. Attila Petho. "Simple Continued Fractions for the Fredholm Numbers." J. Number Theory 
14 (1982):232-36. 

2. Kenneth H. Rosen. Elementary Number Theory and Its Applications. Reading, Mass.: 
Addison Wesley, 1984. 

3. James E. Shockley. Introduction to Number Theory. New York & Chicago: Holt, Rinehart, 
and Winston, 1967. 

Also solved hy the proposer. 

Kind of Triggy 

H-460 Proposed by H.-J. Seiffert, Berlin Germany 
(Vol. 29, no. 4, November 1991) 

Define the Fibonacci polynomials by F0(x) - 0, Fx{x) = 1, Fn+2(x) = xFn+l(x)+Fn(x).. Show 
that, for all positive reals x,t 

(a) Tllix2 I sin2 ** ) = (2n-l)F2n+l(2x) + (2n + l)F2n_l(2x) 1 
S 7 V 2/i J 4x(x2 + l)F2n (2x) 2x2 ' k=U v - / 4x(x'+l)F2n(2x) 

(b) £ y *2+sin2 — \~n/Mx2 + l l asw^oo, 

(c) § l / s i n 2 ^ r = 2 ( ^ - l ) / 3 . 

Solution by Paul 8. Bruckman, Edmonds, WA 

The auxiliary equation for Fn(2x) is given by 

z 2 - 2 x z - l = 0, (1) 

whose roots r and s are given by 

r = x+y, s = x-y, where.y-{x2 + 1)1/2. (2) 

If we set 
x>sinhfl, 6 = 0, (3) 
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we obtain 

and 
T = e ' , s = -e~\ (4) 

y = cosh 0. (5) 
Moreover, Fn (2x) = (r" - sn) I (r - s), from which we obtain 

F2n(2x) = sinh 2??0/cosh 0; (6) 

F2n+l (2x) = cosh(2/i +1)01 cosh & (7) 

We may also easily verify the following identities: 

F2n+l(2x) + F2n^{2x) = 2cos\i2n0- (8) 

F2n+l(2x)-F2„_l(2x) = 2xF2n(2x). (9) 

From the recurrence relation defining the i^'s, it readily follows that the leading term of F2n(2x) 
is (2x)2w_1. Moreover, we see from (6) that F2fJ(2x) = 0 if and only if 2n0 = Mn, k = 0, ±1, ±2, 
..., ±(n-1), or, equivalently, 2n0 = ±fo>, & = 0,1, ...,n-1. Thus, i^„(2x) = 0 if and only if 
x = sinh 0 - sinh(±feVr / 2ri) = ±; sin(£;r / 2w). From this, we obtain the factorization: 

F2n(2x) = 22w-1xJI(x2 + sin2 *^/2/i). (10) 

Taking the logarithm and derivative in (10), we obtain 

- ^ ~ \ - ^ T = "fix* + s i » 2 ^ / 2 " ) _ 1 - Sn(x), say. (11) 
x-t'2n\Zx) ^x k=l 

Here and in the sequel, the prime symbol denotes differentiation with respect to x. 
On the other hand, we may differentiate in (6), using the useful results: 

y' = x/y = coth0; (12) 

0' = l / j / = sech0. (13) 

Then 

Thus, 

2F2n(2x) = sech20[cosh 6-In cosh 2w#sech#- sinh 2n0- sinh 0 sech#] 
= (x2 + I)~l[2ncosh2n0-Unh0sinh2n0] 

= (x2 + iyl[F2n+l(2x)+F2„_l(2x)]n-(x2
 + \y\xly)yF2n{2x). 

0 2n(F7„,J2x) + F7„ ,(2x)) 1 1 
^(2X)/XF2 W(2X)-I/2X2^ \ 2 : ^ 2 , L ;:A - ^ 1 - 7 - 7 7 4x(x2 + l)F2w (2x) 2(x2 +1) 2x" 

( 2 / ^ i ^ ^ L J 
4x(x2+l)F2„(2x) 4x(x2+l)i^2„(2x) 2(x2+l) 2x2 

using (9), this simplifies to: 
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F2n(2x) 1 _ (2n-l)F2n+l(2x) + (2n^l)F2n.l(2x) 1 
xF2n(2x) 2x2 4x(x2+l)F2w(2x) 2 r 

Comparison of (11) and (14) establishes part (a) of the problem, i.e., Sn(x) = Tn(x). 
Also, we may express Tn(x) in the following form: 

2n cosh2«0 - tanh 0 sinh 2n0 1 
£(*) = -2 . i \ „ - u o™zs o^2 2(x /y)(xz +1) sinh 2nd 2xL 

ny coth2n0 1 1 _ncoth2n0 2x 2 + l 
xy2 2(x2+l) 2x2 xy 2x2(x2+l) 

or, since 2x2 + l = 2sinh2 0= cosh20 and 4x2(x2 + l) = 4x 2 j 2 = (2 sinh 0 cosh #)2 = sinh220, 
we obtain 

o , x ^ ^ x w • , « xi 2cosh2# 
5„(x) = T„(x} = cothlnd- (is) 

W x 2 + 1 sinh 20 
exof 4?? 0) +1 

Now lim coth2?20 = lim —— - — = 1. Therefore, it follows from (15) that 
«->oo «-»<*> e x p ( 4 / 2 0 ) - l 

s"ix)~«?tv* a*n^">' (16) 

which is part (b) of the problem. 
We see from (15) that 

5ll(jc) = 2iicoth2ii^-csch 2$-2cosh2$-csch220 = £/„(£), say. (17) 

From the definition in (3), it follows that lim S„(x)'= S„(0) = U„(0}= lim U„(0), provided that 
x-»'G 0-><x> 

either limit exists. Also, it appears easier to evaluate this limit by expansion, rather than attempt 
to apply L/Hopital's Rule. Toward this end, we require the following expansions: 

cothz - z~l(1 + z2 13 + 0(z4)); csch z = z~\l - z2 16 + 0(z4)); 
coshz - 1 + \z2 + 0(z4); csch2z = z~2(1 - z 2 / 3 + 0(z4)). 

Here, "big-O" functions are defined as z -» 0. Then 

U„(0) = —(l + 4n202/3 + ---)(l/20)(l-202/3 + ---)-2(l+202 + ---)(l/402}(l-402/3 + ---), 

where the "..." notation refers to terms that are 0(0*}. Then 

" + 0(6>2) UM= l 
ie2 

2 , - 2 n/,2 , 2 2 l + - ( 2 w z - l ) ^ - l - T 6 > 

or t/„(tf) = | ( / i 2 - l ) + 0(tf2). (18) 

It follows from (18) that t/„(0) = S„(0) (the limit exists) = %(n2 -1) , which is part (c). 
Also solved by the proposer. 
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