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ON THE NUMBER OF INDEPENDENT SETS OF NODES IN A TREE

R. Duttonf, N. Chandrasekharant, and R. Brighamt*

Department of Computer Science!
Department of Mathematics”
University of Central Florida, Orlando, FL 32816
(Submitted May 1991)

1. INTRODUCTION

In [4] Wilf shows that the number of maximal independent sets of nodes (MiS) for a non-
empty tree on n nodes is bounded above by

_J2"*1 41 ifniseven,
Sm)= {z(n'l)/ 2 if n is odd.

For each value of n, he gives a tree, depending upon the parity of n, that attains these bounds.
The two general forms are shown below in Figure 1.

(a) nodd (b) neven
FIGURE 1

Throughout, we assume nonempty trees and, following the notation in [4], let x(7) be the
number of MiS's in a tree 7. We will derive lower and upper bounds on g(7) in terms of f,(7),
the maximum number of independent edges in 7.

First observe that, in any graph, two degree-one nodes having a common neighbor occur in
the same Mis's. Thus, the number of Mis's is unaffected by the removal of one of these nodes.
Such "pruning" can be repeated, and we formalize this fact as a lemma. Although the lemma is
stated here for trees, it is actually valid for arbitrary graphs, and demonstrates, in some sense, the
independence between the number of nodes and the number of maximal independent sets of
nodes.

Lemma 1: Let T be a tree and 7 the tree obtained by removing all but one degree-one neighbor
from every node having two or more such neighbors. Then (7)) = w(7T") and B,(T) = B(T").

Any tree with diameter d, 2 <d <4, can be reduced by Lemma 1 to one of the forms in
Figure 1. The n-even case arises from trees containing two degree-one nodes that are distance
three from each other. Define 7, to be this set of trees and let 7, be the remaining trees with
diameter between two and four. Notice that X, and K, are the only trees with diameter less than
or equal to four that are not in 7, U 7. Neither are they reducible to a tree of Figure 1. For
these, though, we know that x(X,)=1and u(X,)=2. We can determine exactly (7)) for any
tree 7" with diameter at most four.
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ON THE NUMBER OF INDEPENDENT SETS OF NODES IN A TREE

Lemma 2: Let T be a tree with diameter at most four and B, = 5,(T). Then

1) = 257141 i TeTU{K,),
H 24 if TeT, U{K,}.

Proof: All trees in 7, U T, must, by the above discussion, reduce to either the n even (with
n=2p,) or the n odd (with n=2p, +1) case in Figure 1. The result then follows from f{r) given
above. Finally, since f,(K;)=0, u(K))=1, fi(K;)=1, and u(K,)=2, K, and K, also satisfy
the lemma. O

The trees in 7, U 1, will be called terminal trees or terminal subtrees when part of a larger
tree, and will have an assigned root node . With one exception, the root node must be selected
from those nodes that, after pruning, would be nodes of maximum degree. The star KX ,, the
exception, must be rooted at a leaf node. The root of a terminal subtree S has a single neighbor
not in . The neighborhoods of all other nodes in § are a subset of §. In a pruned tree, a subtree
whose removal would disconnect the graph or leave an isolated K or K, is not a terminal subtree.
The trees in Figure 1 are terminal trees. The tree 7" in Figure 2 below is formed by removing a
terminal subtree from 7. All trees, other than X, and X, are either themselves terminal trees or
contain at least two terminal subtrees. Thus, for any pruned tree 7" with diameter at least five,
there exist adjacent nodes # and v permitting 7 to be drawn in one of the two forms of Figure 2,
where u is the root of a terminal subtree and v is in the subtree 7".

k
(b)

FIGURE 2

The structure of the graphs in Figure 2 corresponds to the structure in Figure 2 of Wilf's
paper [4]. From this we see that Wilf's equation (2), a recursive equation solving (7)), has a
simpler form because of the pruning permitted by Lemma 2. We include it here, along with the
conclusions of Lemma 2, where S, = f,(T) and £, a, and b are as in Figure 2.

27141 if T eT U{K,},
) w(T)=12" if T'e 1, V{Ky},
w(T—{a,b})+25 u(T")  otherwise.

Part three applies when the diameter is at least five, and then £,(7—{a, b}) = f, -1 and B(T") is
either 3, —k—2 or , —k —1. In either case, the subtree 7" has at least three nodes.

We use this result to obtain a lower bound on the number of MiS in a tree. Then we use
another tree-reduction operation to determine new lower bounds, and also new upper bounds
which normally improve those given by Wilf. Finally, we obtain bounds on the number of inde-
pendent sets (including nonmaximal) of nodes in an arbitrary tree.

1993] 99



ON THE NUMBER OF INDEPENDENT SETS OF NODES IN A TREE

2. IMPROVED BOUNDS

Since u(7T) is essentially independent of the number of nodes in 7, we look for bounds with
respect to the edge independence number f,(7). The first, Theorem 1, is a lower bound for w(7)
that appeals to Lemma 1 and the Fibonacci numbers F,.

Sanders [3] exhibits a tree on 2n nodes and proves it has F, , maximal independent sets of
nodes. The tree, called an extended path, is formed by appending a single degree-one node to
each node of a path on 7 nodes. In terms of their edge independence number, we have for such
trees 7' that w(T) = Fg ,,, where B = B,(T) =n. We show next that, for a given value of ,, no
tree T with f§,(7) = f, has a smaller number of maximal independent sets of nodes. Therefore,
because of Lemma 1, extended paths actually represent, for each value of f,, an infinite class of
trees satisfying the bound.

Theorem 1: Let T be any tree with £, = #,(T). Then 1(T) > Fg .-

Proof: It T €T, 1, w{K;, K,}, then the result follows because Fjy ,, is bounded above by the
appropriate 277! +1 or 2/t value indicated in equation (1). Otherwise, we can use the recurrence
formula in equation (1) inductively to conclude that p(7) > Fj +2F Fp - It is straightforward
to show, by another induction argument, that 2 Fy x> Fy . Therefore, s(T)2Fp 1 +Fp =
Fppp O

Terminal subtrees can be removed from a tree 7, one at a time, until 7 is empty providing, in
some sense, a count of the number of terminal subtrees in 7. Since the order of removal is not
unique, one might suspect that the subtrees obtained in such a removal scheme also may not be
unique. This is indeed the case and can be verified by examining a few small examples. It also
would seem the number found could vary depending upon the order of removal. We now show
that this does not occur.

Lemma 3: For any tree, every order of terminal subtree removal results in the same number of
removed subtrees.

Proof: Let 1, (7) and 1., (T) be the minimum and maximum number of terminal subtrees that
can be removed from a tree 7, under any order of removal. If 7'is itself a terminal tree, the result
holds since there is no option but to remove the entire tree. This also implies 7,;,(7) =2 when-
ever 1, (T)=2. Now, letting ¢, (T) =m >3, we show by induction that 7, (7 also must equal
m. For some k, 2<k <t_, (T), there exist terminal subtrees S§,, S,, ..., S, of T, any one of which
can be an initial subtree removed from 7. There exist indices 7 and j, 1 <i=# j <k, for which
biax (T = 8)) = (1) —1=m—1 and £,,,(T—S;) = £, (T)—1<m—1 By the induction hypoth-
esis, terminal subtrees can be removed in any order from 7'-§; and 7'— §; without affecting the
number of such removals. Furthermore, S is a terminal subtree of 7§, and ; is one of 7' S
Thus, f,e(T—8;—8;) = tyax(1)=2=m-2 and 1, (T-S; - §;) =1y (T)—2<m—2, a contra-
diction implied by the induction hypothesis since -5, -8, =T-5;-S§,. Hence, #,,,(T)=m. O

In view of Lemma 3, it is now possible to define, for any tree 7, a new invariant #(7) to be the
number of terminal subtrees removable from 7. It is convenient to let #(K,) = #(K,) = 0.

Theorem 2: Let Tbe a tree with , = B,(T) and ¢ = #(T). Then 2/~ +2' —1< w(T) < 2%,
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ON THE NUMBER OF INDEPENDENT SETS OF NODES IN A TREE

Proof: If 1(T)<1,then Tisin ;U I, U {K,, K,} and both bounds follow from the first two cases
of equation (1). Now consider the case in which 3, =27 Then the lower bound is 2*' — 1. A
straightforward induction argument shows 2*' ~1< F,,,,: then Theorem 1 establishes that such
trees satisfy the lower bound of the theorem. Now, assume 7'is a tree with #(7) =17 >2 and that
the lower bound is satisfied by all trees with either fewer than ¢ terminal subtrees or with # termi-
nal subtrees and 27 independent edges. Then, we can invoke the third part of equation (1) induc-
tively and have, referring to Figure 2,

B(T—{a,b})=p-1 t-1<1(T—{a,b}) <1,
Pi—k-2<B(TY<B-k-1, t(T)=1-1
The lower bound decreases as 3, decreases and, when ¢ decreases, the lower bound decreases if
and only if B, <2¢ Thus, we must consider two cases:

Case 1. f, <2tand t(T—{a,b})=t-1 Then

ﬂ(]") > {zﬂl_t +2t‘1 _ 1} +2k {2ﬁl—k-f—l +2t—l _ l}
=27 4 2 14 2 2R 2 - 2 2R 2 -

Case 2. f3,>2tand t(T—{a,b})=1t. The result when f, = 2¢ has already been established.
We again use the recursive part of equation (1), where #(7'—{a,b}) =t and S,(T —{a,b}) =, -1,
and proceed by induction on the value of §,. It follows that

w(T)= 2P 42 1y 42k A oty
=2AT ot 142 R m ) > 2R 2 1

establishes the lower bound.

To verify the right inequality, we again use equation (1) inductively. The result was shown
above for all trees with #(7) <1. Assume 7'is a tree with 7(7) > 2 and that the result holds for all
trees with edge independence number less than f,. Then B, =£(7)>3 and (7)< A,
2kphk 08 g

When #(7T) <1, regardless of the value of 5,(7), equation (1) shows that equality holds on
the right in the » odd cases of Figure 1 and on the left in the # even cases. Other trees can be
obtained by appending an arbitrary number of degree-one neighbors to the degree-two nodes in
either of the trees in Figure 1. This process produces all trees 7 for which #(7) = .

The upper bound also is achievable, for any £, and 7>2, by an infinite number of trees.
Consider the tree in Figure 2(a). The recurrence in equation (1) can be iterated % times, on the
first term, to give the equation u(T) = u(T")+ (2" —1)u(T"), where T" is the same as in Figure
2, and 7" is 7" with node v having node u as a degree-one neighbor. We call this the iterated
recurrence formula. From Lemma 1, if node v already has a degree-one neighbor,
2(T") = p(T") and the recurrence formula simplifies to u(T) = 2*'u(T"). We now construct a
tree T that has this property at each step of the iterated recurrence. Let 7] be any tree in 7;. For
t>2, let S, be any tree in 7, with its identified root node #. Now, form 7, by adding an edge
between node # in S, and any node in 7,_; having a degree-one neighbor. Clearly, f,(7;) = 5,(S,)
+ B,(T_,), and an induction argument with p(T) = 2" u(T_,) shows that u(T)=2A")  The
lower bound is also achieved, when 7 = 2, by any tree that can be pruned to F;, the path on six
nodes.

1993] 101



ON THE NUMBER OF INDEPENDENT SETS OF NODES IN A TREE

We conclude this section with an upper bound on (7)) for a restricted class of trees that will
prove useful in the next section. Let 7* be the collection of trees with every node being a
degree-one node or having a degree-one neighbor. First, an upper bound independent of #(7) is
given.

Theorem 3: Let T e T* with 8, = B,(T). Then p(T) <277 +1.

Proof: If t(T)<1, then T' e T, U{K,} and equality follows from equation (1). Now, assume that
TeT*, «(T)=2, B(T)=,=m=>3, and that the result holds for trees in 7* with fewer inde-
pendent edges. Identify a terminal subtree, as in Figure 2(b), and use the recurrence in equation
(1). We have T—{a,b} and 7" both in 7* and B,(T—{a,b}) =, —1. Here, we are guaranteed
that §,(1") = B, —k —2. Therefore, by the induction hypothesis,

w(T)<2P72 142K (AF3 1) =2A2 1142873 L ok,
Since 1< ,(T") = B, —k —2, we have k <8, —3 and then (7)< 277 +1. O

Lemma 4: Let T € T* with B, = $,(T) and t = #(T). Then 3, > 2t.

Proof: If T =K,, then #(T) = 0 and the conclusion follows. If#=1, then 7 €7, and, for all such
trees, (1) =2 =2¢. Assume 7> 1 and that the result holds for all trees with fewer terminal sub-
trees. Now, let 7 € T* with #(7) = 1. From previous discussions and Figure 2(b), we know that
t(I")=t-1, B(T")=p,—k—2, and T" € T*. Therefore, by the induction hypothesis,

pi—k-222(t-1).
Since k£ >0, the result follows. 0

The bound of Theorem 3 can be improved when #(7) is known. We will again make use of
the iterated form of the recurrence formula described after Theorem 2.

Theorem 4: Let T e T* —{K,} with 8, = B,(T) and ¢ = t(T). Then p(T) <3242+ 4211,

Proof: When ¢ = 1, the right-hand side reduces to 2% +1, the bound given in Theorem 3. Sup-
pose T e T* with #(T)=1¢>2 and that the result holds for all trees with fewer terminal subtrees.
The iterated form of the recurrence in equation (1) is (7)) = u(T") + (2¥*' = 1) u(T"), where T" is
as described in the discussion following Theorem 2. Then S, (7")=f,—k—1and t—=1<#(T") <t
and, since the bound increases as ¢ decreases, we have by the induction hypothesis that

ﬂ( Tn) < 3t—-22ﬂl—k—2t+2 + 2t—-2 and ﬂ(T,) < 3t—22ﬂ1—k-—21+l + 2!—2 )
This gives
,u(T) < 3t—22ﬂ1—-k—2t+2 + 2t—2 + (2k+1 _ l)(3z—22ﬁ1—k—2t+1 + 2:—2)
— 3t~22ﬂl ~k-2t+2 + 3t—22ﬁ‘l “2t+2 3t—22ﬂ,—k—2t+1 + 2k+121—2

— 3!—22ﬂ1—k—21+1 +3I—22ﬂ1—21+2 +2k+12t—2
Suppose this bound is greater than 37'2472*1 1 2'"! " Then we have
2k+12!—2 _ 2[—1 > 31~12ﬂ1~2l+1 _ (31—22ﬂ]~2t+2 + 31—22ﬂ1—k—21+1) or
21—l(2k _ 1) > 3{-22ﬂl—2t+1(1 _ 2—k) or 21-—12]{ > 3!-22ﬂ1—2f+1 )
Since k<pf —2t, from the proof of Lemma 4, 27'2A7% 53"20A24 opoi=2 5302 4

contradiction. O
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Trees achieving this bound are presented at the end of the next section.

3. NUMBER OF INDEPENDENT SETS

Now consider the number of independent sets of nodes in a tree. The counted sets must be
distinct, but they need not be maximal, and we count the empty set. For example, the star K],
has 2" +1 independent sets of nodes. Denote this number by g*(7"). Prodinger & Tichy [2] have
shown, for an arbitrary tree on 7 nodes, that F,,, < u*(T)< 2" +1. The left inequality holds for
a path on n nodes and the right for the star K, ;. We shall derive these bounds in a manner
which also exhibits a relationship between this and the original problem of counting the number of
maximal independent sets of nodes.

In this section, let 7* be the tree obtained from the tree 7 by appending a single pendant
edge to each node of T.

Lemma 5: For any tree T, u(T*) = u*(T).

Proof: Let T have nodes V(T)={v,v,,...,v,} and T* have additional nodes {w;,w,,...,w,},
where w, has v, as its only neighbor, for 1<7 <n. For any set of nodes S, it is imnmediate that S is
an independent set of nodes in 7 if and only if $*=5U {w,|v, ¢S} is a maximal independent set
of nodesin 7*. O

If terminal subtrees are systematically removed from 7'* until it is empty, one finds, as will be
shown in Lemma 6, that the collection of identified root nodes forms a minimum node cover of
the original tree 7. The number of these covering nodes is equal to f,(7), a relationship that
holds for any triangle-free graph [1, p. 171]. Let £,(T) be the node independence number of the
tree 7. Then, if 7 has n nodes, n — B(T) = f,(T) is the size of a smallest node cover of 7.

Lemma 6: For any tree T, «(T*) = (7).

Proof: Induct on the value of #(7*), and first consider the case in which #(7*) = 0. Then T* =
K, and T = K, and the base case is established. Now, suppose 7'is a tree with #(7*) = m >1 and
that the lemma holds for all similarly constructed trees 7* for which #(7*) < m. Let S be any
terminal subtree of 7*. Then #(7* — S) = #(T*) - 1 and, by the induction hypothesis,

HT*=S)=n—|S A T|-By(T-SAT)=n-B,(T)-1.
The result follows. O

The number of nodes in 7'is 5,(7*) and, from Lemma 6 and Theorems 1, 2, and 4, we have
the following bounds on z* (7).

Theorem 5: Let T be any tree on n>2 nodes with f, = 4,(7). Then
max{F, ,, 2" 4 2P —1} < ¢ (T) < 3471272041 oAt

It is known [2] that u*(B,) = F,,,, where P, is the path on n nodes. Therefore, we have
M(T) = Fg,, for trees T constructed from a path on f; = B,(7) nodes with each node having one
or more degree-one neighbors appended to it. These trees were introduced in the discussion prior
to Theorem 1 and were shown to be a generalization of the extended paths given in [3]. The
above has given an alternate proof for the number of MIS in such trees and reaffirms that they
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ON THE NUMBER OF INDEPENDENT SETS OF NODES IN A TREE

represent an infinite class of trees having the smallest number of MiS for a given number of maxi-
mum independent edges.

An infinite class of trees satissfying the bounds of Theorem 4 can be constructed with the aid
of Lemmas 5 and 6. First, we will form a tree 7 for which g*(7)=3A"12"2AH L 2A1 the
upper bound of Theorem 5. For any positive integers ¢ and f,, 2¢ < /3, construct a star on
P, —t+1 nodes. Next, append a degree-one node to ¢ — 1 of the leaf nodes of the star, as in
Figure 3, and let this tree be 7. Observe that §,(T) =¢, 7) = 1, and the number of nodes is f3,.

1 2 B —2t+1

FIGURE 3

Now consider the number of independent sets of nodes in this tree. First, examine the inde-
pendent sets of nodes not containing the center node v. Node v has f;—27+1 degree-one
neighbors that can be members of an independent set of nodes in 2#72*! ways. It also has 7 — 1
degree-two neighbors, each with a degree-one neighbor. A degree-two node and its degree-one
neighbor can contribute to an independent set of nodes in any of three ways: either node individu-
ally or neither node. Thus, there are 3'™' ways to select independent sets of these nodes.
Together, we have a total of 3™2%72*! ways to form independent sets of nodes not including
node v. When node v is included, only the # — 1 nodes distance two from v can be used. There
are 2" such sets. The total now is 3"2%72*1 4 2! and, since ¢ = B,(T) and f, is the number of
nodes, 7 is a tree that leads to the upper bound of Theorem 5. Now, for any n > 2/,, construct
T* by appending a degree-one node to every node of 7. Then B(T*)=p,, t(T*)=t¢, and
Lemma 6 shows that the number of MIS in 7* is 312A72*1 1 21 the upper bound of Theorem
4. To obtain the desired number of nodes n, merely append a total of n— 24, degree-one nodes to
any node(s) already having at least one such neighbor.
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CARLITZ GENERALIZATIONS OF LUCAS AND
LEHMER SEQUENCES
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1. INTRODUCTION

0 . . .
A Lucas fundamental sequence {un }n=0 is a nondegenerate binary recurrence sequence with
initial conditions #, =1, u; = P which satisfies the homogeneous second-order linear recurrence
relation

(1.1) u,=Pu,_ —Qu, ,, n=2,
where P and (Q are integers [12].
If the associated auxiliary equation
(1.2) x*~Px+Q=0
has roots «, S, then

(13) u, = (" =)/ (a~p).

The Fibonacci, Mersenne, and Fermat numbers are all types of Lucas numbers. Their prop-
erties were studied extensively by Carmichael [5].

Many authors have generalized aspects of them by various alterations to the characteristic
equations. Some of these may be found in Dickinson [6], Feinberg [7], Harris & Styles [8],
Horadam [10], Miles [14], Raab [15], Williams [19], and Zeitlin [20]. Atanassov et al. [1] have
coupled the recurrence relations in their generalizations.

Lehmer [11] generalized the results of Lucas on the divisibility properties of Lucas numbers
to numbers

(1.4) ) - {(a” ~f)/(a-P),  fornodd

(@"-p")/(a*-p*), forneven.

It is a generalization of these numbers that we wish to consider in this paper. It is of interest
to note in passing that McDaniel has also recently studied analogies between the Lucas and
Lehmer sequences [13].

2. DEFINITIONS

Following Carlitz [4], we define

(21) fn(r) — (ank+k "ﬂnk+k)/(.ak ___ﬂk)
and
(2.2) g = (@™ =gy 1 (" - )

which are not necessarily integers, where ¥ =r — 1, and aand f are the roots of (1.2) as before.
For example,
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D =@ - (a-p =g =u,

so that these numbers are generalizations of the Lucas numbers. They are also generalizations of
the Lehmer numbers if we let

2.3) p {(_21), for n odd,
23 n=

g, forneven,

Carlitz [4] first defined the £ in another context and proved that

fn(r) = tr(A-;ﬂ)

A, = [(nis)] (t,s=0,1,...n)

Examples of £ and g now follow. When P=-Q =1 and =2, 3, 4, in turn, we have:

where

is a matrix of order » + 1.

n 01 2 3 4 5 6
@ 11 2 3 5 8 13
f® 1 3 8 21 55 144 377
1 4 17 72 305 1292 5473
g 11 2 3 5 8 13
g® 12 3 5 8 13 21
& 13 3 4 % 2 17

It can be seen from this table and the recurrence relations that other properties for these
sequences could be developed by treating them as cases of Horadam's Py, , + P>y, s =v,.{w,}
[10].

3. RECURRENCE RELATIONS

We also need the Lucas primordial sequence {v,},_, defined by the recurrence relation (1.1)
with initial terms v, =2 and v, = P, so that the general term is given by

3.1 v,=d"+f".

We can show that

(.2) = =00
and

(3.3) gr(l?l = vlgr(tr) -0g (r—)l'

The latter is the same as (1.1) when v =2 since v, = P.
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Proof of (3.2):
vr_lfn(r) _Qr—lf(_rl) — ((ak +ﬂk)(ank+k —,B"k+k)—(aﬂ)k (ank _ﬁnk))/(ak —ﬂk)

— (ank+2k _ﬂnk+2k +(aﬂ)k(a"k _ﬂnk)__(aﬁ)k(ank _ﬁnk))/(ak _ﬂk)

— (ank+2k —ﬂnk+2k)/(ak —ﬂk)

=1 as required.

Proof of (3.3):
ngy - 08 = ((@+ A)a™ - f™) - (ap) (@™ - ) [(a* - )

( ntk+l n+k+1 +(aﬁ)(a"+k_l _ﬂm»k—l) _(aﬂ)(amk—l —ﬂ"+k_l))/(ak —,Bk)

— (an+k+1 _ﬂn+k+1)/(ak —'ﬂk)

=g\, asrequired.

Thus, the ordinary generating functions will be given-(formally) by

(3.4) 3 FOx =1/ (v, x+ 0 ),
n=0
and .
(3.5) Zg(')x" = ( (”'-3 ]x] /(l—le+Qx2).
n=0 L)
Proof of (3.4):

A=y, x+ Qr_lxz)i 0" = £+ (fl(r) - fO(r)vr—l)x [by (3.2)]
n=0

=1+(M (@ +p )}x [by (2.1)]
Py

=1
Proof of (3.5):

(1-vx+0x") Y gx" = g7 +(g{” - v )x
n=0
K+l pk+l
a” -
=l+|—————(a+p) |x
( o ( ﬂ)]
=1- Q( ]x as required.
U

The g\ are related to the £ by
(3.6) (r) - f(r)

and to the Lucas primordial numbers v, by
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(3.7 v, =P g( r—)l -Qv, —2gr(xr—)k—1
and

(3.8) Vo = gg;)—k /gr(l’;)k'
Proof of (3.7):

Pg = v, 480 = ((a+p)a™* - )~ (@)@ +fN@" - ) /(" - )
_ (an+k+l _ﬂn+k+1 +akﬂn+1 _ anHﬂk )/(ak _ﬂk)
=(a" (o =)+ (" - BN)) (@ - )
=V,,1, asrequired.
Proof of (3.8):
g, = (@ = ")a" + ")/ (a* - )
=@~/ (a* - )

=g . asrequired.

4. GENERALIZATIONS OF BARAKAT'S RESULTS
As an analog of Simson's relation, we have
(&) - gevy = 0"
Proof: The numerator of the left-hand side reduces to
(apfy’ & +(afy' f* ~2(ap)" (af)* = (ap)" (" - )
=0 -f)
which is Q" times the denominator of the left-hand side.

When P = —(, we are able to relate the £ to the ordinary Lucas fundamental numbers, u,,
by means of a generalization of a result of Barakat [2] for the ordinary Lucas fundamental
numbers. Barakat proved

w=3 (" preo”

. 0L2m<n

= Z (n ;nm)P"'"' when P =-Q.
0<2m<n

We define
%, =1,/ P =(a"™ - ™) /(- ),

and, for notational convenience, set y,=x,,,. Thus, from Simson's relation, which can be
expressed as u} —u,_ju,,, = (—P)*, we have

4.2) X Vi1~ X1V = (—P)k_z-
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Proof: If we divide the left-hand side of Simson's relation by P?, we get

XV~ %1 Vg = (= P)7?
from which the result follows.
A variation of equation (3.7) is then

(4.3) Py, + P2y 5=V,

Proof: The numerator of the left-hand side is
(a+/(&* =)+ (~ap)(a+ P =)
B B R B R PR o
= (" + /) -F)
=v,-(a? - f*) which gives the result (4.3).

We are now in a position to assert a property which relates these generalized Fibonacci num-
bers to ordinary Fibonacci numbers and at the same time gives an iterative formula for the general

term. This formula generalizes Barakat [2] and Shannon [16].

r) _ mjiyfn—m 2 —m—

osrmracn
Proof:
ifn(r)zn =(1-vz+(-P)* 2™ [from (3.4)]
(P + Py e+ (P Y (from (4.3)]

=(1- (szk—2 +Py,_y)z+ P’ (X2 Vo1 = X1 Vi—2 )22 )_1 [from (4.2)]
= ((1'P2xk—zz)(1 —Py,_42) - Psxk—Q’k—zzz )_1

s=0 m=0

- o (m+s —s— s+2m_2s+m
Z Z( )(1 Pyeaz) T Y P

o m m—s_.s s+2m_m+s
z Z(S)(l Py 2) T X i, P

m=0 s=0
0 m =<}
m\ 1+5) s m—s S+2m+t _mts+t

I (4 QA NI I N

m=0 s=0 t=0

- m\(n—m
_ - m—s_ n—m—s_.s n+m_n
—Z (s)( s )xklxk2.ykl Vi P2
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So by equating coefficients of z" we find

2s , m—s_  n—m—s pnt+m

70 = Z m\(n—m\U_ et P

n Ky K} Ps+m-—s+n—m—s+s
0<m+s<n

_ miyn—mjy m-s, 2s  n—-m-spm :
= > (s)( P )/k_zuk_luk P"™, as required.

0<m+s<n

For example, when r = 2 (and so k = 1), since /@ =0,

fn(l) — Z (i’l ;m)Pn—2um

0<2m<n
n—m)pn-m
-2 U
0<2m<n
which agrees with the result due to Barakat above. Note that Bruckman [3] has provided a neater
proof for (4.3) in the case when P = 1.
5. CONCLUDING COMMENTS

Other properties can be readily developed to relate the £ and g to other parts of the
recurrence relation theory. For instance, we can prove that

VLN
(.1 {j}Hg£1’32i+4
i=2

where {7} is the analogue of the binomial coefficient used extensively in recurrence relation work
(for example, Horadam [9]), and defined by

{n} _ unun—l' . 'un—j—l
J Uglhy. .. U

j-1

Proof:

{n} _ (an+1 _ﬁn+1)(an _an). ..(a"'j+2 _ﬂn—j+2)
J (a-pB)a’-p*)-(a’ - B))

=gPg...gu5h, by (22)]

J+l

— Q)
= Hgn—2i+4'
i=2
As another instance, consider

(5.2) 10 =p"((a! pY)

where x, represents the n reduced Fermatian of index x as mentioned by Whitney [18] and

utilized by Shannon [17]. It is defined formally by x, = 1+x+x% +---+x"".

n+l
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Proof of (5.2):

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

o (a )n+1_(ﬂ )n+1_— . [ Jk . (g)k " - g"(( k
= P H[ﬂ J+ +[/3 A\l Bf),,
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DETERMINING THE DIMENSION OF FRACTALS
GENERATED BY PASCAL'S TRIANGLE
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1. INTRODUCTION

Pascal's triangle has long fascinated mathematicians with its intriguing number patterns. The
triangle consists of the binomial coefficients of the expansion of (x+ y)", where » is a nonnega-
tive integer. When numbering the rows starting with 0 and the elements of each row starting with
0, the terms are (yfow,), where (Z)=F#’ assuming k <n. The first eight rows are shown in
Figure 1.

element 0

/ element 1

row0) —p 1

element 2

rowl —P 1 1

element 3

ow2 —p 1 2 1

element 4
row3 —P 1 3 3 1

element 5

rowd —Pp 1 4 6 4 1

element 6

5
ow5 —p» 1 5 10 10 5 1 element 7
row6 —p 1 6 15 20 15 6 1

row7 —p 1 7 21 3 35 21 7 1

FIGURE 1. Eight rows of Pascal's triangle

A multidimensional pyramid of multinomial coefficients can be generalized from the definition for
Pascal's triangle. Each entry is represented as

c c!
1 2 3 k1= "1, 2, 3, %k,
a’a,a"":a aI!aZ!GB!--'ak!’

where c=a' +a* +a® +---+a*. (Superscripts are used here to allow subscripts to take on a dif-
ferent meaning later in the paper.) This is the coefficient of the term xflxgzxf x,‘c’k in the
expansion of (x; +X, +x;+---+Xx,)°, whered' is the exponent of x;, i=1,2,...,k. In the case
where k =3, a triangular pyramid of integers is formed with each of the lateral faces duplicating
Pascal's triangle. The apex of the pyramid is formed by a single 1, and each triangle below corre-
sponds to a particular value of c. The vertices of each such triangle correspond to a' =c, a* =c,
and @’ = c.

Consider the replacement of each element in Pascal's triangle by its remainder upon division
by a prime p. This is called reducing to the least residue modulo p. The set of nonzero entries in
this reduced triangle corresponds to a fractal according to the following construction. Consider
the first p” rows of Pascal's triangle, and call this set P,». For each p”, we construct a subset
Ap,. of the triangle with vertices (0,0), (1,0), and (%1) The fractal generated will lie in this
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triangle. Let a=(4,1), and leta;, ay, @ ,_, be equally spaced points of the segment joining
(l ) with (0,0) such that a is (0,0). Let 8,5, ..., bp,,_1 be equally spaced along the segment

joining ( ) with (1,0). Fmally, let ¢, c,, ..., € , divide the segment (0,0) to (1,0) into p” equal

parts. Connect pairs of points of the form a;,b;b,c; and a, »Cpry» 1O form p*" triangular

i»Yis Yir Y
—‘# of them "pointing upwards" and (—’i—zi

rows of Pascal's triangle have a total of CaD) n‘;l)p -

regions, 'pointing downwards." The first p”
entries. Now every integer in Pascal's triangle can
be associated with a triangle which points up. Define the sets 4,» as follows: 4,» = {x|x belongs
to a triangle associated with a nonzero entry in Pascal's triangle}. The fractal associated with
Pascal's triangle modulo a prime number is the limiting set A" as # goes to infinity. For p = 2, this

set is the Sierpinski triangle.

Ay In 2! rows, thereare3 Ay, In 2% rows there are 3*
s e (242! : s (224127

nonzero entries in ~~—-—=3 nonzero entries in ~——-—=10

upward triangles upward triangles

: vV&vvvf
b A\4 V,&V VA’ V&V b AL A4 VAV
'VVVVVVVVVVVVVY
Ay In 23 rows, there are 3° Ay In 2* rows, there are 3*
(22412 e (201)2Y
nonzero entries in == =36 nonzero entres in ~—-—= 136

upward triangles. upward triangles.

FIGURE 2. Pascal's triangle reduced modulo 2: entries congruent to zero
are shaded and nonzero entries are blackened

Figure 3 shows 256 rows of Pascal's triangle reduced modulo 2. Willson [1] showed that a
cellular automaton with a linear transformation, that is, one in which each entry is determined by
some linear combination of entries in the previous row, may have fractional fractal dimension.
Pascal's triangle satisfies this criterion.
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FIGURE 3. Pascal's triangle modulo 2

The fractals described by this construction have fractional fractal dimension. The fractal
dimension D is defined as follows (see [2]): Let A be a compact subset of X, where (X,d) is a
metric space. For each &> 0, let N(4, £) be the minimum number of closed balls of radius &
which are needed to cover A. Then, the fractal dimension of 4 is given by

D = lim MV(4,8)
>0 In(1/£)

By a slight variation of the Box Counting Theorem, the dimension of the fractals can be deter-
mined by using & = # and N (4, €) = number of triangles in the first p” rows associated with non-
zero entries in the reduced Pascal triangle. Then

D=lim In(# of nonzero entries in the first p” rows) .

> In(p")

In section 2, a theorem about divisibility of multinomial coefficients by powers of primes is
proven. This theorem is used to prove that the fractal dimension of Pascal's triangle modulo a
prime p is

In[ p(p+1)/2]
Inp '

This determination is supported with computer results in section 3. Finally, in section 4, a gen-
eralization of this formula is proven for the analog of Pascal's triangle which contains multinomial
coefficients reduced modulo p.

2. THEORETICAL DETERMINATION OF DIMENSION
OF PASCAL'S TRIANGLE

The symbol p"|x means that p” divides x with remainder zero. The symbol p'|x means r is
the largest integer for which p|x. Throughout the paper, p will refer to a prime.

First, we will work toward the dimension of Pascal's triangle reduced modulo p. The follow-
ing lemma, proven by C. T. Long [3], will allow us to determine the requirements for divisibility
of multinomial coefficients by a prime.
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Long's Lemma: If p is prime, n=ay+a,p+a,p’ +a,p’ ++--+a,p” with a#0and 0<g,<p
for each i <7, and p°®|n!, then

_n—(ay+a +a,+a;+---+a,)

p-1 '

Now we will apply this to determine the divisibility of multinomial coefficients. Let o', a®,
a,...,a" be posmve integers and let a denote the coefficient of p’ in the base p representatlon

of @', so that if @’ has m, digits in its base p representation, then

;
i__ iJ
=3 dp
J=0

The sum of these @' is denoted by c, so that

k
=Z :Zcp’
i=1 Jj=0

2

where m is the maximum value of m,. The ¢; are the base p digits of ¢, and the additional s digits
in c allow for large carries in the sum of the @'

Theorem 1—Multinomial Dlvlslblllty Theorem: For prime p, p H[

) iff 7 is the sum
of the carries made when adding the a' in base p.

a',a%,ad%,...,a

Proof: Letd,,d,d,,d,,...,d,,. be the carries when adding the @', so that the sum of the digits
in each position equals the digit for c in that position plus p times the carry to the next digit in ¢:

k ko ko
Y ay=cy+pdy, d, +(Za;)=cl+pdl, di+(Za’2):c2+pd2,...,
i=1

i=1 i=1

m—1+(za J_c +p dm: m+1+pdm+1’
dm+1 = cm+2 +pdm+2’ E] dm+s—2 = Cm+s—1 +pdm+s—l’ dm+s—l = cm+s

Notice that extra digits beyond c,,,, in ¢ occur if the carry from the mt digit of ¢ is greater than p.
Solving for the d;, we have:

k k k
(Zag)—co (Zaij~cl+d0 (Zaﬁn]—chrdm_l
i=1 :d i=1 _d i=1 :d

0> g PIEES] m»>

p p p
Cun t d “Crs1 t dm+s— _ —
- dm+1> e dm+s—1’ dm+s—1 “Cmis = 0.
p p
m+s—1

The sum of the carries is Y _d;, which equals
i=0
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DETERMINING THE DIMENSION OF FRACTALS GENERATED BY PASCAL'S TRIANGLE

m+l m—l +-- +( +5—1 + d +:—2) + ("Cm“, +dm+.r—1)

(i‘,a{;]—cﬁ[g ']-c,+d +o +( Zk:a;, —c, +d,

P
i [Za:;}[ga;)+(Zagj+---+[ga;}(co+c,+---+cm,)+(d +d, +-+d,, )
P

p

Multiplying by p on both sides,

Bal {52 (2]
oo S 58w )

w |55 (3)

4 = ==t

Hence,

Dividing by p — 1, we get

Since ¢ =Y @', we can add c—X¥ @', so that

p-1
m+s k X m
c—(Zc,) dla -4,
iz0_ ) _i=I\ =0
p-1 ) 2

m+s

By Long's Lemma, (c— 0 ,)/ (p-1) is the highest power of p which divides ¢! Likewise,
each (ai -2 a})/(p—l) is the highest power of p which divides a’. Thus, the previous
expression simplifies to

m+s—1
Zd (highest power of p which divides c!)— z (highest power of p which divides a'!)
i=0 i=1

The highest power of p which divides the multinomial coefficient - is the highest power

l 2' 3, .

which will divide ¢! minus the highest powers which divide each of the a'. Therefore,
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m+s—-1
>'d, = highest power of p which divides (al . _ ak)'
i=0 ’ PRXES)

This theorem can now be used to develop a more efficient method for determining entries in
Pascal's triangle which are not divisible by p, in order to determine the dimension of Pascal's trian-
gle. When computing the self-similarity dimension using p™ rows, each entry corresponds to a
triangle of length 1/p™. If we consider covering the fractal with triangular boxes, the number of
boxes needed to cover the fractal is equal to the number of entries which are not congruent to
zero. The dimension is then

In(# nonzero entries)
#rows— In(# rows considered)

Theorem 2—Dimension of Pascal's Triangle Modulo p: The fractal generated by Pascal's
triangle modulo p has fractal dimension -

In[p(p+1)/2]
Inp
Proof: Consider entries (g) in Pascal's triangle, such that all g, > 4, in the base p representations :
AA:a0p°+a1p1+a2p2+a3p3+--i+amp"'; L 7
B=bp° +bp' +b,p* +bp*+---+b,p"

We requlre that a,, # 0 so that m cannot be reduced, but it is not necessary that b, #0. ‘Using the
binomial case of Theorem 1, the hxghest power of p which divides the term (é) is equal to the
number of carries when (4 — B) is added to B in base p. '

A=B=(ay~by)p° +(a,—b)p" +(a, ~b,)p* + - +(a, —b,)p"
B+(A~B)=(by+(a, —by))p° +(b; + (4, _bl))Pl + o+ (b, + (@, —b,))P"

Since each g, 2 b, and g, < p, no carries will occur when adding a; — b, and b,. Conversely, if, for
any i, b >a,, then the sum (4, —b,)+5, will cause a carry so that p|(4). Thus, in order to
determine the entries which are not divisible by p, we need only that the g, >, for each digit in
the base p representations.

The next step will be to determine the fractal dimension of Pascal's triangle modulo p. As
discussed above, to find the dimension of this fractal, we find the number N of triangles of side
length & which correspond to nonzero entries. If we consider Pascal's triangle down to row p”,
scaled to have side length 1‘; then the triangles have side length £ =1/ p”, such that each triangle
corresponds to exactly one entry. ‘

We are interested in determining how many entries {4

7 ( B) in Pascal's triangle, through the first
p" rows, are not divisible by p. By the above argument, this is equal to the number of ways to
choose A and B such that 0< B< A< p” where 0<h <ag,<p fori=0,1,...,m. The number of
ways to choose the first such pair of base p digitts‘ao,b0 is p(p+1)/2 by a simple counting
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argument.  Therefore, the number of ways to choose m+1 such pairs independently is
[p(p+1)/2]". The number of boxes of size (1/p™) needed to cover the p™ rows of the triangle
is [p(p+1)/2]". Using the self-similarity definition of dimension, the fractal has dimension

. _In(# nonzero entries) _ lim. In[ p(p+1)/2]"
m—= In( p"rows considered) m->w In(p™)

>

In[p(p+1)/2]

which simplifies to
In(p)

3. COMPUTER VERIFICATION OF THEORETICAL RESULTS

In 1989, N. S. Holter et al. [4] proposed without proof a dimension for Pascal's triangle
modulo p. Their formula agrees with the one determined here. Their determination was based on
a computer program which considers all elements whose distance form the top of the triangle is
less than » and counts the number of elements x which are not divisible by the modulus. The
values D, = Eg; are approximations to the dimension, and lim,_,,
their paper, they reported values of D, for n =198, 500, and 1000.

This experimental determination of dimension has two shortfalls. First, these cutoff values
fall at different places in the approximations to the fractal, so that the figures cannot be rescaled to
produce similar images. Second, since the determination is based on distance from the top rather
than row numbers, the method sweeps out sectors rather than the triangular fractals studied here.
These two problems make it difficult to determine the true limit, which is obscured by changes in
marking places. Figure 4 illustrates these differences in the two determinations. (See, also, Table
1 on page 119.)

For this paper, a different experimental determination was performed using values of » which
were powers of the modulus used. Also, triangles were used rather than sectors. Using this
method and larger values of n, the values did approach the theoretically determined limit of

D, is the fractal dimension. In

In3
——=158496....
In2
198 entries
500 entries
42
1000 entries ,"!" \
AN A
e!;. A4
S~_
Holter's Determinations Reiter's Determinations

FIGURE 4. Diagrams of cutoff values in computer determinations of the dimension
of Pascal's triangle modulo 2
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TABLE 1. Data from computer determinations of the dimension
of Pascal's triangle modulo 2 and 4

# Rows in
Holter's Pascal's Triangle Reiter's

15681 198

256 1577785
15716 500

512 1580738
15738 1000

1024 1582439

2048 1583437

4. GENERALIZATION TO MULTINOMIAL ANALOG
OF PASCAL'S TRIANGLE

Now we will generalize to multinomial coefficients and the fractals generated by them. Using
a method similar to that in Theorem 2, the dimension of the fractals generated by the multinomial
coefficients modulo p will be determined and proved.

Theorem 3—Multinomial Dimension Theorem: Consider a prime p and a k-dimensional pyra-
mid consisting of multinomial coefficients. The fractal formed when the entries which are not
divisible by a particular prime p are shaded has fractal dimension equal to ln(” - i*k)/ln p.

Proof: In entries (a‘,a’,c...,a")’ let ¢ denote the sum of the a’,i =1,2, ..., k. Let c=cp’ +¢p'+
P’ +ep’ +++c,p", where ¢; <p-1 According to Theorem 1, a’,az,c...,a") is divisible by p
if and only if at least one carry occurs in the summing of the base p expressions of the a'. In any
set of @ for which (a',az,c.._,a") is not divisible by p, there must not be a carry when adding the o'
in base p. If no carries occur, then ¢, = a} +af +aj3. +- +af for eachj. Since ¢; < p—1, we can
write p—1= ajl. +af +aj3. 4o +af +2z, where z =(p—1)—c; is a non-negative integer. Thu;, we
are partitioning p — 1 units into k + 1 base p digits. These k + 1 digits are the k possible a' and
the z which "takes up the slack" in each digit. If we consider values of ¢ which are only one digit
in base p, then each d' is only one digit, so there are |7 'i*k) choices for the set of @'. This
follows from the observation that there are (¥~ i*k solutions among nonnegative integers to the
equation X, +x, +---+x, +z = p—1. For each increase by one in the number of digits in the base
p expression of ¢, the number of entries which are not divisible by p increases by a factor of

P= i*k . The digits are not interdependent because we know there are no carries. Increasing the
number of digits increases the number of rows and rescales the image by a factor of p. Thus, the
dimension of the fractal corresponding to the pyramid of multinomial reduced modulo p is equal

to
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p-1+kY p-1+k
ln( k )_ln( k

lim =
mao  Inp" Inp

Notice that when & = 2, this agrees with the result in Theorem 2.

5. DISCUSSION

As early as 1972, W. A. Broomhead [4] noted the self-similar nature of Pascal's triangle
reduced modulo a prime. A great deal of study has been done on the specific case of mod 2,
which generates Sierpinski's triangle. No work has been done on the dimension of the multi-
nomial coefficients as defined here.

There are many extensions of this work which deserve further study. When the entries are
reduced to their least residue mod », where # is an integer other than a prime, the result is a pat-
tern with fractional dimension, but which is not strictly self-similar. The determination of the
dimension of such a fractal is a natural extension. Because these fractals are the union of two
fractals with different dimensions, they are not strictly self-similar. I conjecture that the dimension
of such a fractal is equal to the dimension of the fractal corresponding to the largest prime factor
of n. Recent work [5] done on the divisibility of entries in Pascal's triangle by products of primes
could be the basis for rigorous proof. Other cellular automata and the fractals which they
generate are also likely candidates for this type of dimensional study.
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1. INTRODUCTION

When examining a combinatorial sequence, generating functions are often useful. That is, if
we are interested in analyzing the sequence a,, a,, a,, ..., we investigate the formal power series

f)=a,+ax+ax*+--- .

In a recent paper [2], techniques are discussed that assist in finding closed-form expressions for
the formal power series for a select, but large, set of combinatorial sequences. The methods
involve using infinite matrices and the Riordan group. The Riordan group is defined in section 2
of this paper. Each matrix, L, in the Riordan group is associated with a combinatorial sequence
and with a matrix, §;, called the Stieltjes matrix. §, is defined in section 3. In this paper, we
show that when S is tridiagonal, then L = PCF, where the first factor P is a Pascal-type matrix,
the second factor C involves the generating function for the Catalan numbers, and the third factor
F involves the Fibonacci generating function. The following is an example:

1

3 1
9 5 1 0
27 18 7 1 _
81 56 31 9 1 -
243 162 109 48 11 1

729 458 332 194 69 13 1

(1 M1 71 1
11 0 1 11

1 2 1 0 -1 0 1 0 2 1 1 0

1 3 3 1 0 2 0 1 3211

14 6 4 1 2 0 -3 0 1 532 11

1 510 10 5 1 0 5 0 -4 01 /|8 53211

16152 156 1 ./|-5 0 9 0 -50 1 .//]13 8 5 3 2 11

The matrices in the Riordan group are infinite and lower triangular. So the example shows only
the first seven rows. The first factor on the right is the Pascal matrix. The first column in the
second factor has C(~x?) as generating function, where

- 1 (2n
Cx)= ———( )x"
() ;) n+1\7"
is the generating function for the Catalan numbers. The third factor has the Fibonacci numbers in
each column. See section 6 for further examples of this triple factorization.

* Partially supported by NSF grant 634012.
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In section 2, we define the Riordan group R and list some properties that we use in the proofs
of the propositions which are given in section 4. In section 3, we discuss the unique Stieltjes
matrix §; associated with each L in the Riordan group. In this paper, we concentrate on the
subset of R given by R, = {L € R:S§ is tridiagonal}. In section 5, we derive a recurrence relation
for the sequence associated with each member of R, and we discuss the asymptotic behavior of
these sequences. In section 6, we provide two examples involving well-known sequences. For
each example, we give the triple factorization, the Stieltjes matrix, the recurrence relation and
asymptotic behavior of the corresponding sequence.

2. THE RIORDAN GROUP

A detailed description of this group is given in [2]. Here we provide a brief summary.

Let M = (mj); ;5 be an infinite matrix with elements from C, the set of complex numbers.
Let ¢;(x) be the generating function of the it column of M. That is

0
cz(x) = Z mn,ixn'
n=0

We call M a Riordan matrix if ¢,(x) = g(x)[f (x), where
g)=l+gx+gx?+gx’ +--, and f(x)=x+fox* + fx° +---.

In this case, we write M =(g(x), f(x)). We denote by R the set of Riordan matrices. R is a
group under matrix multiplication with the following properties:

@ (8(0), £ () * (A(x), () = (gCIA(f (1)), £(f (x))).
@i)) I =(1, x) is the identity element.
(iii) The inverse of M is given by

S ( 1
M "(g(i(x»’f (x))’

where f is the compositional inverse of 1.

(iv) If (ay,ap,a,...)" is a column vector with generating function A(x), then multiplying
M =(g(x), f(x)) on the right by this column vector yields a column vector with generating
function B(x) = g(x)A(f (x)).

3. STIELTJES MATRIX

Let L be Riordan and let L be the matrix obtained from L by deleting the first row. For
example, if / is the identity, we have

~i

1l
SO OO
SO O -
SO
O -
—
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Observe that L = IL. There exists a unique matrix, S, such that LS, = L. We call this matrix
the Stieltjes matrix of L.

Example: 1If
! 0
11
1 x 121
L: _ | =
(1—x’1—x] 1331 ’
1 4 6 41
then
11 0 -
011 :
S =10 0 1 1
0 0 0 1 1

4. PROPOSITIONS
Proposition 1: 1f L = (g(x), f(x)) is Riordan and S, is tridiagonal, then

B 1
A, b1 0
0 A b1
@ Sc=lo 0 4 b 1 ’
0 0. 0 A b 1
®) f=x(+bf + %) and g=——— iff S, isasin (a).
1-byx — Axf
Proof: Let
-bo 1 ‘D i
A b1
s,=lo 4, & 1
0 0 A, b 1
L. . . . . -

With ¢ (x) the generating function for the i column of L, 7 > 0, we have ¢, = gf ’. By looking at
the first column of LS, and L, we obtain byxg +A,xgf =g -1, i.e,
1
X) = ——————.
) 2y

For i >1, we obtain from LS; = L,
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6 =x(6_1 + b6 + A14164)-
&' =x(gf" +bgf + Angf™)
< f=x(+bf +’1i+1f2)
0= (bz _bj)f +(’1i+1 "/11'+1)f2 forall 7andj>1.

by=b;and A;,, =4, foralliandj>1
we cantakeb=5b =b, =b;=---

and A=A, = Ay = Ay =---.

f =x(+bf + Af%).

Remark: If S, is tridiagonal, it has the form in (a) and then either

x 1-bx
a ﬂ,:O ﬂd = d =
. NS = e M= G hyer by A
®) %0 andf =120 V@ —44)x* - 2bx +1 andge— L
2 1-byx—Axf

Proposition 2: If L= (g, f) is Riordan, then S, =S, .+&I if and only if L = P’L*, where

o -
b 1 U
1 x B 26 1 .
pb = = £ [3], p. 171
(l—bx’l—bx) B 3 31 | (B e 17D)
b* 4b® 6b* 4b 1
L -
Proof: Note that
b 1
0 b 1 0
oo 51 a7
SP,, 000 b 1 =bl+1
0000UB 1

So,
L=P°L*=JL=IPL*

= L = P’L*= P’S,,1*= P*(8] + )L*= bP*L*+ P*IL*
=bL+P°L*=bL+ P’L*S;« = L(bI + S,x).
Conversely, suppose S; =bI +S5;.. Then

PPL*(BI +S;4) = bIP’L*= P°L*= P°bIL*+P°IL*= P"(bI +I)L*
=P L*=(P’L*)= P L*.
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Proposition 3: If L= (g, f) is Riordan and

LEY;
A+6
0
0

=R O

O N
S
R S VRN

—

then L = P’L,, where

O O =

OO DO
O =

O~

Proof: This follows immediately from Proposition 2.
Proposition 4 (PCF Factorization): In Proposition 3, I, = C,F, 5, where
C, =(c(Ax?), xe(Ax?))
J1- i 2n
c(x) =1+ xc(x)]* = 1 21 ax _ L ( )x", and F, 5 = (—1— x).
x n ’

“n+l 1-ex—&x*’

with

Proof: Let L, = (g, f;)- Then, from Proposition 1, we must have, when A # 0,

f_l— 1-42x7 YR 1
T ok S e —(A+o)f,
S, = xc(Ax?) and g, = !

1-&x— (A +8)x*c(Ax?)
Now, from section 2, property 1, we have

c(Ax?)

‘ 2 2 1 2
Ciliog = (e(), xe2x") ) (r;‘gf ) (l_muxz)_axcaxz)f » ¥eAAx >)~

But
. 1 B c(Ax?)
1-&x—(A+8)x%c(Ax?) - exc(Ax?) — & [e(Ax)T
& 1- axe(Ax?) - 8 [c(AxH)] = c(Ax?) — exc(Ix?) - (A + 6)x*[c(Ax?) ]

< 1-c(x?) + Ax*[c(Ax?)] =0.
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5. RECURRENCE RELATIONS AND ASYMPTOTICS
We have proved that when L = (f(x), g(x)) is Riordan and §; is tridiagonal with the form

A b1
g |0 4 b1
LZo 0 A b 1
0 00 A b1
then
& 1-bx (B —4A)x* —2bx +1
f(X)—Z(:)fnx = e
and

1
C1-byx—Axf (x)

5= 25"
Using the J.C. P. Miller formula (see Henrici [3]), we obtain for f, the three-term fecurrence
(7 +2) f1 = @+ DB, +(1-m)(B* - 4D f,.y,
and for g, the five-term recurrence
nAg, =[(2n-3)bA-nBlg, , +[(2n-3)bB+(3-n)(b* —41)A-nClg,_,
+[(2n—-3)bC +(3-n)(b* - 44)Blg, 5 +[(3-n)(b* —-44)Clg,_,
where A=A1-1,, B=Ab+Ab,—24b,, C =1~ Abb,+ Ab}. For the asymptotics, we use the
methods described in Wilf [4, Ch. 5]. For large n, we obtain

f (n+1)—3/2 (b+2_\/Z)n+l/2
n 22'3/4.\/;

where % > 44> 0.

Because there are too many cases to consider, we do not attempt to provide a general for-

mula for the asymptotic value of g,. However, the examples in section 6 illustrate the techniques
involved.

6. EXAMPLES
Example 1—Big Schroder Numbers: If we take A=2 b=3,4,=A+56=2, andb,=b+¢£=2,
then
f= 1-3x—Vx? —6x+1 and g= 1-x—x?—6x+1
: 4x 2x '

g is the generating function for the Big Schroder numbers [1].
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2 1
23 1 0
B ) o2 31
L=(g, f)with §; = 002 3 1
0002 31
and
1 x 1
L=PCF ,=| ——,—— |*(c(2x?), xc(2x?)) * X
2o (1—3x 1—3x) (e, xe(2x?)) 1+x’
M1 1 1
31 0 o1 0 Jl-1 1 0
|9 6 1 2 0 1 1 -1 1
27 27 9 1 0 4 01 -1 1 -1 1
81 108 54 12 1 ||8 0 6 0 1 1 -1 1 -1 1
[ 1 1
2 1 0
16 5 1
Tl22 23 8
90 107 49 11 1

Recurrence Relations: Here A=0,B=2,C=0,(n+2)f,,,=3C2n+1)f,+(1-n)f,_, forn>1

.ﬁ) = Oa .fi =1 ng,.1= 3(21’1 - 3)gn—2 +(3 —n)gn—:ia (n+ 1)gn = 3(2]’1— l)gn—-l + (2 ~”l)gn—Za for
nz2 g,=1g=2

Asymptotics:
f :[xn]f(x) ~ (n+1)—-3/2 (b+2ﬁ)n+1/2 _ (n+1)—3/2(3+2_\/5)n+1/2
n 224 In ‘ 2.2 Ix )
— — 2 —
g, =[x"]g(x) =[x |1 XYF Z0xH L
2x
For large n,

N (n+1)—3/2 (3+2‘/_2_)n+1/2

23/4‘/;

g =~ ¥ - 6x 412 =2,

Example 2—1Legendre Polynomials: We require
1

§)= Vx2—21x+1-

We take

-1 2

A= b=t ,11:,1+5=-’-211, and b, =b+e=t.

b 3
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Triple Factorization:
1 2(1-tx—Vx* =20 +1) .
L= 2 ’ 2 =P C(rz-l)/4Fo (-1)/4°
N (@ =1 ’

» ) 4

S
0 £ ¢ 1

S, = 4 2

0 o ¢ 1
0 o0 o £ ¢

Recurrence Relations: Here A= l‘fz, B= Lzz_ﬂ, C= %. n+2) [, =Cn+Dtf,+(1-n)f,_,,

forn>1. f,=0, f,=1 ng,=(4n-3)tg,_ ,+(3-2n)(1+21*)g, ,+(4n-9ig, ., +(3—n)g,_,, for
n>4 g=1,g=1,8=3"-1,g=3-%

Asymptotics: We assume that #* > 1, so that the roots of x* —2£x+1=0 are real. Denote these
roots by 7 and 7 with |F|<|F|. We obtain

[x"1f (x) = —;—ZZTl[x"“](xz -26c+1)"?
N(—z) 1 (n+1)‘”(1_5)“
2-1) ™ 2Jn 7

(P

[x"1g(x) =[x"]1(x* - 26 +1)"* ~

(7)n+l

nm(@?-1)
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1. INTRODUCTION

The representation of an integer 7 as a sum of k squares is one of the most beautiful problems
in the theory of numbers. Such representations are useful in lattice point problems, crystallogra-
phy, and certain problems in mechanics [6, pp. 1-4]. If 7,(n) denotes the number of representa-
tions of an integer » as a sum of k squares, Jacobi's two- and four-square theorems [9] are:

6] r(n) = 4{d\(n) - dy(n)]
and
¥)) r(m) =38 Zd

d#0 glx’;od 4

where d;(n) denotes the number of divisors of n, d =i (mod 4). In literature there are several
proofs of (1) and (2). For instance, M. D. Hirschhorn [7; 8] proved (1) and (2) using Jacobi's
triple product identity. S. Bhargava & Chandrashekar Adiga [4] have proved (1) and (2) as a
consequence of Ramanujan's |'¥, summation formula [10]. Recently R. Askey [2] has proved (1)
and also derived a formula for the representation of an integer as a sum of a square and twice a
square. The authors [5] have derived a formula for the representation of an integer as a sum of a
square and thrice a square. These works of Askey [2] and the authors [5] also rely on
Ramanujan's ;'¥; summation [10].
In 1951 P. T. Bateman [3] obtained the following formula for r;(n):

16
3) r3<n>=7;\/512(1, 0amPn),
where n=4, 4|n,

0 if n, =7 (mod8),

qn) =427 if n, = 3 (mod 8),
3.2 ifn, =12,5, or 6(mod38),

b-1 o 2b =
P(n): H 1+2p_1+p—b 1_[_(_n{_p_)i|l N
P j=1 p p
podd
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(P(n) = 1 for square - free n), and
L(S,p) = Z y(m)m™S with y(m), the Legendre-Jacobi - Kronecker symbol:
m=1

4 1 if m=1(mod4),

x(m)= (—) =<0 ifm=0(mod?2),

- m -1 ifm=3(mod4).
In this note we obtain an alternate formula (13) for r,(n) which involves only partition func-
tions unlike Bateman's formula (3) which is expressed in terms of Dirichlet's series {6, pp. 54, 55].
To derive our formula (13) for r(n), we employ G. E. Andrews' [1] generalization of

Ramanujan's ,'¥|, summation:

(@ = 57)A)(B)(bq ! ), (aq 1 b).(9)..(AB/ ab),,

“ (D) (-a),(—A4/b) (A a),(-B/b)(-B/a),
_ a—li (-q/a),(A4B/ab),(-b)" b—li (A, (-aq/B),(-B/ b)'”’
m=0 (—B/a)mﬂ(—A/a)mH m=0 (_a)mﬂ(_A/b)mH
where
(@) = (@) = l'_I(l—aq"’)
and )
@, = @), =D i1
(a9";9).

2. THREE-SQUARE THEOREM

In this section we derive a formula for r;(7). the number of representations of an integer n as
a sum of three squares. For convenience, we first transform Andrews' formula (4).

Lemma 2.1 (G. E. Andrews’ [1]):
) (4,91 (4B 042,97 (~28:9) (-9 2,97 (@9 (2Ba*; 07,
(—A/ qz;9%) (4] a4*;4%)o(-292;9) o (B9 7,67) (4%, 4) (BG4
_ 1 & (1 "), (~AB! oqz,4")(—ad)™)
= 7t Z 2. 2 2.2 z
[1-(A4/e9)] o B59)u(Alaq”q97),n
© 1 . 2 A 2 _ m
+Z( /ﬂ;q 2m( sq )m—l( gq) Z—m
m (979,41 aqz,q°),,
if | fg|<|z|< 1/|agq| and |g|<1 with none of the factors in the denominators of (5) being 0.
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Proof: Equation (4) is equivalent to
a '[1-(alb))(A),(B),(bq/a),(aq/b)..(9). (4B ab),,
[+B/a))-b),(-a),(-4/b) (-Ala), (-B/b), (Bq/a),

1 z( q/a),(AB /ab), (-b)"
[1+(B/a)] ~ (=Bq/a),(-4/a),,

p1 (b1 B) Z(A) w(=a/B),.,(=b/B)™""
@/ B, (@) (=A478)m

which, in turn is equivalent to

(A)w(B)(bg/ a)(a ). (q)(AB/ ab).,
(—0)o(~) o (— A/ bYo(- A/ @) o(-Bb).,(-Bq / a),,

—Z(

Q)
410, (AB/aB), (D" | (A B/ B
(-Bq/a),(-A1 @) aZo  (Dpa(A/B)yy
Change b to —z, ato —q/a’, B tob'/a’ in (6) to obtain

(A, (6" /@) (20") (G ] 4'2) (e (AD" ] 29),
(D)o(q/ @)o(A] 2)o(Ad" | @) (" 4'2) (D).

Z (@ ) (4’ / zq),,2" Z (A),(q /b)), (a'z/ by "D .
m=0 (b )m(Aa ‘/q)erl m=0 (C]/tl’)m+1(A/z)m+1

()

Change ¢ to ¢*, a’ to1/ a, b’ to fg*, and z to — gz in (7) to obtain (5). Hence, the lemma.

Corollary 2.1:
w 3 _ 2 3 3
o (5] Lol
i (:4°). (~4%:4).
1% (~¢.4%) a” " (a%4%) 4"

el (B Y& M= (Rl O I

Proof: Putting a=pf=-1, z=1, and 4= g* in (5), we have the second of the equations (8), the
first being a well-known theta-function identity [10]. In fact, put z=1, A= a=£=0 in (5) and
use the easily verified Euler identity
(4,9 =1 (4,4 (-0" 4"
Before stating the main theorem of this section, we introduce two partition-counting func-
tions p,,(n) and q,,(n).
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Definition 2.1: Given a partition 7, let e(x) denote the number of even parts in 7. Define
P, (n) to be the set of partitions of » in which odd parts are distinct and all parts are less than or
equal to 2m, O, (n) to be the set of partitions of » in which even parts are distinct and all parts are
less than or equal to 2m—1. We define

©) P =Y (1P,
7eP, (n)
10) g,m= > ()",
€0y, (n)
so that
49w < "
11 GG I
an ey Z(:)pm(n)q :
12) G IS
@GP ="

Theorem 2.1: If r;(n) is the number of representations of n as sum of three squares and if
P,(n) and q,,(n) are as defined by (9)-(10), then

(13) r(n) = zn: Y (-1[2p,,(n—2im—m)+4q,,(n—2im—m)].

m=1 0<i<(n-m)/2m

Proof: Employing (11), (12), and the fact that

q i }w: ( 1)1 2im+m
- q
1 q2m i=0

in (8), we immediately have (13).
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SOME POLYNOMIAL IDENTITIES FOR THE FIBONACCI
AND LUCAS NUMBERS

Derek Jennings
University of Southampton, Highfield, Southampton, SO9 5NH, England
(Submitted June 1991)

It is well known that
@ B, =FE,(5F2+3(-1")
Less well known are:
(b) F, = F,{25F} +25(-1"F? +5);
(c) F,=F{125FE° +175(-1)"E} +70F* +7(-1)"}.

In this paper we are concerned with proving a general formula which encompasses the above
identities. That is, expresses F,, as a polynomial in F, for odd m. Also we prove two additional
formulas which express F,,, / F, as a polynomial in the Lucas numbers Z,. Our first theorem is

Theorem 1:

< 2g+1 k+1
_  nyn(g+ky 4“4 k(q+kKk+ 2k
PEZqH)n _E];( 1) q+k+15 ( 2k +1 )E‘z » n»qZO-

Taking g = 1, 2, and 3, respectively in Theorem 1 gives us (a), (b), and (c) above. From Theorem
1 a couple of well-known results follow as corollaries.

pn p n ( no d p)‘

Proof: Take p=2q+1, p prime, in Theorem 1, and by Euler's criterion, we have

b (s
52 5(5) (mod p).

Corollary 1.2: For prime p and g, we have F,, =F,F, (modpq).
Proof: From Corollary 1.1 with n =1 and n =¢, we have

5 5 .
F,= (;) (mod p) and F, = (EJF" (mod p), respectively.

Hence, F,, = F,F; (mod p).
Similarly, F,, = F,F, (modgq). O
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Proof of Theorem 1: First we need two lemmas.

Lemma (i):
1 P 1 2 2m+1 k+1Y 1Y
xz’”+—)+(x2’" 24 )+---+ 4= |+1= —(m+ -
( x*" x> 2 x? ,;,m+k+l 2k+1 \¥ 7y
2m 1 2m—-2 1 m+lf 2 1 m
x +;ﬁ - x +x2’”‘2 +o+ (D" x +F +(-1

L mee 2m+1 (mik+1 1)
iR iy R

=0 m+k+1 x

Now, from F, = “n'ﬁn , Where a+ =1 and affi= -1, we have for integer p>1, n>1,

a—

F pn _ pgpn
(11) %:%: xp-l+xp_2y+xl"3y2+...+xyP"2+yP"1’
n &y = Pn

where x=a", y=4"=(-1)"/x.
Now, for odd p, the RHS of (1.1) is

(xp’l +

(xp—l+ :_l)+(_l)n(xp—3 +%)+...+(_1)"(x2+_1_2)+1’ psl (mod4),
x x X

1 A s 1 1 .
x"“)+(_l) (x" 3+F)+---+(x2+y)+(—l) , p=3 (mod4),
and x+1 =" +—-=a" +(-1)"B". So that
(1.2) x+—1—:(a—ﬂ)E, for odd ».
X

(1.3) x—l=(a—-ﬂ)Fn for even n.
X

Since a—B=+/5, we have, from (1.2) and (1.3),

2
(1.4) (x+%) =5F* for odd n,

2
(1.5) (x - ;lc—) =SF? for evenn.
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So if we take p=2m+1, and assume » is even, we have, from (1.1),

pn _ 2m 2m—2 2

Now apply Lemma (i) and use (1.5) to give Theorem 1 for even n. Similarly, setting p=2m+1
and assuming #» is odd, we have, from (1.1),

I 4 -1 1 1
4 2m 2m-2 m+l] .2 m
_1"__—Lx ;+_T”T)_(x +x2m_2)+...+(_1) +(x +_x_2)+(..1) .

n

Now apply Lemma (ii) and use (1.4) to give Theorem 1 for odd n. To complete the proof of
Theorem 1, it only remains to prove Lemmas (i) and (ii). These can be proved by induction. For
example, to prove Lemma (i), we set

1

FXE T P N 1_ toet| X+ |+
m 2m 2m—2 2
X X X

and use
2 1 2m 1 _ 2m-2 1 2m+2 1
(x+;2— x +xw-x +x2”"2+x ++W
to give
. 1
(xz +F)Pm(x) = Pm+l(x) +1 —l(x)‘
Hence,
. 7
1.6) Boa(x)= {(x —;) + 2}Pm(JC) — B, (%)

Then substitute the summation on the RHS of the identity in Lemma (i) for P,(x) and P,_;(x) in
(1.6). Some careful work then gives £, ,(x) in the same form as the summation in Lemma ().

This proves Lemma (i). Lemma (ii) is proved in a similar manner, and this completes the proof of
Theorem 1. [

For our next theorem we need some additional lemmas; these can be proved by induction ina
way similar to that used to prove Lemma (i).

Lemma (iii):

1 1 1 “ +k 1 >
2m 2m-2 mll 2 m 2 : m
(x +__2;)_(x + 2m—2)+ “es +(_l) (x +__2)+(__1) kzo( )(x_.__) .

Lemma (iv):

k
x*" +L)+ (xz’”‘z +—1——] e +(x2 +i)+ 1= Zm: (—1)m+k(m+ k)(x+ 1)2
2 22 2 P 2k x )
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Again from (1.1) with p =2m+ 1, and noting that

(1.7) x—%:a"+ﬂ”:l,n for odd 7,

1
(1.8) x+;:a"+ﬁ"=Ln for even n.

we have, from (1.7), (1.8), and Lemmas (iii) and (iv),
Theorem 2:

3 nilgriy( g+ K 2x
Fogin = Fn}%(*D 2k Jn> g0

A well-known formula follows as a corollary by taking #» = 1; since Z; =1, we have

Corollary 2.1:
L(q+k
‘F;q+1 = Z(QZk )
k=0

Qur final theorem is similarly derived from the following two lemmas.

Lemma (v):
1L w31 iyl 3yt 1Y & (m+k-1 izk_l
S O ey

Lemma (vi):

k-1
2m1 1 ) ( (23 1 ) ( 3 1) ( ) m+k(m+k l)( 1)2
; +—— |+ + Fo | X+ — 1 X+— .
(’C ] 23 P Z( ) 2k -1 X

Using Lemmas (v) and (vi) along with (1.1) gives
Theorem 3:
n +k-1
By = FZ( 1)¢ “)(‘“")(q k1 )lz" L n>0,g>1

Again taking n = 1 gives us a well-known formula as a corollary.

Corollary 3.1:
q
_ g+k-1
'EQ"ZQ(Zk—l)'

The reader may notice that we appear to have one theorem missing. Namely, a theorem that
expresses £, as a polynomial F,. However, to obtain such a formula we would need to be able
to express the LHS of Lemma (v) exactly in powers of (x+<) for odd » in (1.1), and the LHS of
Lemma (vi) exactly in powers of (x—+1) for even n in (1.1), neither of which is possible.

AMS Classification number: 11B39
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A VARIATION ON THE TWO-DIGIT KAPREKAR ROUTINE

Anne Ludington Young
Department of Mathematical Sciences, Loyola College in Maryland, Baltimore, MD 21210
(Submitted June 1991)

In 1949 the Indian mathematician D. R. Kaprekar discovered a curious relationship between
the number 6174 and other 4-digit numbers. For any 4-digit number n, whose digits are not all
the same, let #»' and »” be the numbers formed by arranging the digits of » in descending and
ascending order, respectively. Find the difference of these two numbers: 7(n) =n'—n". Repeat
this process, known as the Kaprekar routine, on T(n). In 7 or fewer steps, the number 6174 will
occur. Moreover, 6174 is invariant; that is, 7(6174) = 6174.

In the literature it is common to generalize the Kaprekar routine and apply it to any k-digit
number in base g. Since there are only a finite number of %-digit numbers, repeated applications
of T always become periodic. The result is not necessarily a single invariant; more frequently one
or more cycles occur. The characterization of such cycles is a difficult problem which has not
been completely solved. Among the questions studied are the following: Given %, for what
value(s) of g does the Kaprekar routine produce a single invariant? When nontrivial cycles arise
for a given g and %, how many cycles are there and what are their lengths? This author, among
others, has studied these problems as well as many other fascinating questions associated with the
above procedure. (See [1]-[12].)

Recently T was describing the Kaprekar routine to faculty colleagues. To demonstrate that
not all A-digit numbers in base 10 give rise to a constant, I chose to illustrate the routine for
2-digit numbers. In that case, either one or two applications of 7 yields one of the numbers in the
cycle

63 —>27—->45—->09 > 81— 63.

Embarrassingly, I made an arithmetic mistake, writing 7(96) = 96 — 69 = 37 instead of 7(96) = 27.
Arleigh Bell, Associate Professor of Economics, asked what would happen if 10 or any other
number » were always added to 7(n). What would the cycles look like in that case? Could there
be a Kaprekar constant for some number #? This paper is an answer to his questions.

As is the usual practice, we will consider Bell's questions for a general base g. We will repre-
sent a 2-digit, base g number n=a'g+a, 0<a’, a<g, byn=[a’ a]. The Bell modification of
the Kaprekar routine is a function K}, ,;(n) defined in the following manner. Let [#' 7] be a
fixed 2-digit, base g number less than [1 g-1]; thatis, 7’ =0orl, 0<r<g-1if ' =0, and
0<r<g-2ifr'=1 Then, forn=[a’ a]

Ky y(m)=lla’ al-[a a')+r" 7]
When the context is clear, we will omit the subscript and simply write K(n). To see why we
require [’ r]<[1 g—1], note that

la" a]-[a a']=[la’-al-1 g-|a’-al]

Now |a'—al-1<g-2, so|[a’ a]-[a a']|<[g—2 1] Thus, the restriction [’ r]<[l g—1]
insures that K(»n) is a 2-digit number. -
Since there are only a finite number of 2-digit, base g numbers, the sequence

n, K(n), K*(n), K>(n), ...
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must eventually repeat. If, for a given n, K'(n)=n, where i is as small as possible, then we say
that » is in a cycle of length i. We will denote a K-cycle by (n,, n,, ..., n;), where n;, = K(n;) for
I<j<i-landnm = K(n) We wish to characterize those n which are in cycles and to determine
the lengths of these cycles.

For n=[a' a], d =|a’ —a is called the digit difference of n. Observe that, if 0 <d, then

[a" a]-[a a')=[d -1 g-d]

Thus, if n=[a’ a], m=[b" b], and d =|a’ —a|=|b’ - b|, then K(n) = K(m). In particular, if n is a
2-digit number whose digit difference is d, K(n) equals

[d r—dj ifr'=0and 0<d <r
) [d-1 g-(d-r)] ifr'=0andr<d<g
[d+1 r-d] ifr'=land 0<d<r

[d g-(d-r)] ifr=landr<d<g.

Using (1), it is easy to see that the digit difference of K(n) is

|r —2d| ifr'=0and 0<d<r
> |g+r+1-2d| ifr'=0andr<d<g
@ IF-1-2d|  ifr'=1land 0<d<r

|g+r—2d| ifr'=landr<d<g.

We will denote the digit difference of K. ,;(n) in (2) by L}, ,;(d) orD(d). Note that, if
K([a' al)=[b" b], then D(|la’—al) =|b"—b|. Thus, each K, , -cycle gives rise to a [}, ,,-cycle
of the same length. If we can characterize the D-cycles, then we will have made substantial prog-
ress in characterizing the K-cycles. That is, we will know how many such cycles there are and the
length of each one.

As an example, let g=10, ' =0, and r =7. That is, we wish to apply the routine to base 10
numbers with 7, the added term. Using (2), we find

D(0)=7 D(1)=5 D(2)=3 D@B)=1 D#)=1

D(5)=3 D(6)=5 D(7)=7 D®)=2 D(9)=0.
Thus, the D,-cycles are (1,5,3) and (7). From these, it is easy to determine that the K;-cycles
are (34,16, 52) and (70). _

Examination of (2) shows that D(d) always has the form |s—2d| for some s. Consequently,
we will first study a function based on this observation. In particular, let s be a fixed positive inte-
ger. For d with 0<d < s, define F,(d)=|s—2d|. Since 0< F,(d)<s, cycles must occur. The
following observations about F, collected in a single theorem for convenience, are obvious.

Theorem 1: Let s and i be positive integers and let d be an integer satisfying 0<d <s. Then
(@) F.(s)=s, so (s)isan F,-cycle of length 1.
®) F,(id)=iF,(d)
(c) disin an F-cycle if and only if id is in an F,-cycle. In particular, {d,,d,,...,d,) is an
F.~cycle if and only if (id,,id,, ...,id,) is an F-cycle.
(d) F!(d) is congruent to either 2'd or —2'd modulo s. [J
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For convenience, we will use the notation F; (d) = +2'd (mod s) to represent statement (d) in
Theorem 1.

Theorem 2: Suppose 2°|ls. Let d be an integer satisfying 0<d <s. Ifdis in an F,-cycle, then
2¥)d.

Proof: Since 2* [s, s=2%t where 0 <k and #is an odd positive integer. Write d = 2'w with 0 <i
and w odd. Then F(d)=F(2'w)= 12"1 - 2’+’wl_ So

2YF@) ifo<i<k-1
2"M|Fd) ifi=k-1
2Y|F@) ifi>k-1

Thus, 2"|F /(d) forj<k-1 and 2* "Ff (d) fork+1<j. Consequently, d is in a cycle only if
2|d. O

Corollary 1: Suppose 2°||s. Let d be an integer satisfying 0<d <s. Thend is in an F,-cycle if
and only if 2*|d.

Proof: First, suppose s is odd. By Theorem 2, it is sufficient to show that if d is odd, then it is in
a cycle. Since s and d are odd, (s+d)/2 and (s—d)/2 are both nonnegative integers less than
or equal to 5. One of these numbers is odd and the other is even. Moreover, F((s+d)/2)=d
and F((s—d)/2)=d. Consequently, d has an odd predecessor. Since this is true for all odd
integers between 0 and s, d must be in a cycle.

The case when s is even follows immediately using Theorem 2 and Theorem 1(c). O

Corollary 2: An integer s has only one F,-cycle, namely ¢s), if and only if s = 2* for some k.
Proof: The proof is immediate using Theorem 1(a) and Corollary 1. O

By the results above, to characterize F-cycles it is sufficient to determine cycles for odd s.
Additionally, we need only consider those d which are odd, have gcd(d,s)=1 and satisfy
1<d<s-2. We will call cycles containing such 4 nontrivial. All other cycles are trivial since
they may be obtained using (a) and (c) of Theorem 1.

We will illustrate the comments above by finding the F-cycles for s = 33. By Corollary 1,
only odd integers are in a cycle. Nontrivial F-cycles for s =3 and s =11 are (1) and (1,9, 7,3, 5),
respectively. Thus, by Theorem 1(c),

3) (11), (3,27,21,9,15), (33)

are trivial F-cycles for s = 33. We now want to calculate the nontrivial F-cycles. An efficient
method, described for the general case and then applied to s = 33, is as follows. By Theorem
1(d), F(d) is congruent to either 2d or —2d modulo s. For s and d odd, exactly one of the numbers
2d or —2d is congruent modulo s to an odd positive integer less than s. So to compute the cycle
containing d, it is sufficient to calculate +2F"(d) = +2F (F"~'(d)), choosing the appropriate sign
so that the result modulo s is an odd integer. Applying this to our example s = 33 with d = 1
gives 1,-2=31, 62=29, 58=25, 50=17, 34 =1, which yields the F-cycle

)] Q,31,29,25,17).
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At this point we check to see if all odd integers d, 1< d <s, are accounted for. If not, we repeat
the above procedure. In the present example, d = 5 is not contained in any of the cycles in (3) or
(4). So we consider 5, —10=23, 46=13, —-26=7, —14=19, 38 =5, which gives

(5) (5,23,13,7,19).

Thus, there are five F;;-cycles which are given in (3), (4), and (5).
For future reference, we record the F;-cycles for 0<s<15:

(1,3, <5 13 (1,11,9,5,3,7), {13)
(2), (6) 14 (2,10,6), (14)
(1,53), <7y | 15 (L, 13,11, 7), <3,9), {5), (15)

s F,-cycles s F,-cycles

0 <0) 8 (®)

1 D 9 (1,7,5),(3), (9
2 (2) 10 (2,6), (10)

3 (D), (3) 11 (1,9,7,3,5), {11)
4 &) 12 &), {12)

5

6

7

Theorem 3: Let s be an odd positive integer and let m be the smallest integer such that 2" = +1
(mod s). Then each nontrivial F,-cycle is of length m and there are ¢(s)/2m such cycles, where
#(s) is the Euler phi function.

Proof: As before, we write *1 to indicate that 2™ is congruent modulo s to either 1 or —1. Sup-
pose d is odd with gcd(d, s)=1 and i is the smallest integer such that F'(d) =d. That is, we
assume that d is a nontrivial cycle of length i. By Theorem 1(d), F'(d)=+2'd (mod s), so
+2'd =d (mod s). Since ged(d, s)=1, 2’ =+1 (mod s). Consequently, each cycle has length
i=m. There are ¢(s)/2 odd positive integers less than s which are relatively prime to s.
Therefore, there are ¢(s)/2m nontrivial F-cycles. O

The smallest positive integer k such that 2* = 1 (mod s) is called the order of 2 modulo s and
is denoted by ord,2.

Corollary 3: Let s be an odd positive integer and let m be the smallest integer such that 2" = +1
(mod 5). If 2" =+ 1 (mod s), then each nontrivial F,-cycle has length equal to ord,2; otherwise,
the length equals (ord,2)/2.

Proof: 1f 2" = +1 (mod s), then ord 2 = m and the result follows immediately from Theorem 3.

If 2" = — 1 (mod s), then 2*” = +1 (mod s). By a well-known theorem from Number Theory,
k|2m where k = ord,2. If kis odd, then k|m and m = kq for some ¢g. But this implies that 2" =
(2¥)7 =1 (mod s), which is a contradiction. Thus, it must be the case that k is even and (k /2)|m.
If (k/2)<m, then m=(k/2)q with 1<q. But then 2*»? =1 (mod s), which contradicts the
choice of m. Thus, m=£k /2= (ord,2)/2. O

Corollary 4: Let p be an odd prime. Then the length of each nontrivial F,-cycle equals
m=ord,2/gcd(ord,2,2).

Proof: Let m be the smallest integer such that 2” =+1 (mod p). The proof of Corollary 3 shows
that if 2” = -1 (mod p), then ord 2 is even and m=ord ,2/2 = ord 2/ ged(ord ,2, 2).
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If 2" =1 (mod p) with m=ord ,2, then m must be odd. For if m were even, then 2" =1
(mod p). Since p is prime, 2™ = +1 (mod p), which is a contradiction to the choice of m. Thus,
m=ord,2=ord,2/gcd(ord,2,2). O

Corollary 5: Let s be an odd positive integer and suppose 2 is a primitive root of s. Then s has
only one nontrivial F_-cycle.

Proof: Since 2 is a primitive root of s, ord,2 = ¢(s). Moreover, there exists a unique positive
integer 7 less than ¢(s) such that 2’ =1 (mod s). By Corollary 3, the length of each nontrivial
cycle is ¢(s)/2. Consequently, by Theorem 3, there is only one such cycle. O

We now state and prove three technical lemmas which will be useful when we apply this
work to D-cycles.

Lemma 1: Let s=g+r+1 and d be an integer satisfying r <d <gandr <F(d)<g. Thenr <
g/2.

Proof: Suppose, to the contrary, that g/2<r. Since, by assumption, r <d, g/2 <d, which
implies g+7r+1-2d <r. Also, d <g<g/2+rsothat 2d - (g+r+1)<r. Thus,

F(d)=|g+r+1-2d|<r,
which is a contradiction to the hypothesis. O

Lemma 2: Let s=g+r and d be an integer satisfying » <d <g and r <F(d)<g. Then
r<g/2.

Proof: The proof'is similar to that of Lemma 1. O

Lemma 3: Let s=g+r. Ifr has a predecessor under F,, then 2|g.

Proof: Suppose there exists d such that F (d) =r. Then either g+r—-2d =ror2d—(g+r)=r.
So either d equals g/2 or r + g/2. In either case, 2|g. U

We are now in a position to characterize D-cycles.

Theorem 4: Let g be a positive integer and r an integer satisfying 0<r <g—1. All F,-cycles
will be [}, ,4-cycles. If r < g/2 and there exists a d such that » <}§ +1(d) < g for 0<1i, then this
Fgiri-cycle is also a ), ,j-cycle.

Proof: Since the added term is [0 r], the first two lines of (2) apply. From the first line, we see
that all F;-cycles will be D, ,;-cycles. In order for the second line to give I}, ,j-cycles, it must be
the case that all d in an F,

wrrr1-Cycle satisfy r <d <g. By Lemma 1, such cycles can occur only
whenr<g/2. O

As a consequence of Theorem 4, in order to find all I}, ,j-cycles for a given g, it is sufficient
to examine all F;-cycles for 0<s< g+[(g+1)/2]. For example, using (6), it is easy to find the
Dy ,-cycles for g = 10. These, as well as the corresponding Kj, ,-cycles, are:
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r g+r+l D, -cycles Ko r -cycles
0 11 ©), €1,9,7,3,5) (0, (45,9,81, 63,27)
112 @D, 4 (10), (37)
2 13 2) 20)
3 14 @, 3 (12), (30)
4 15 &, 5 (40}, (49)
@) 5 1,3, {5 (32,14), {50)
6 2), <6 (24), <60)
7 ,5,3), (T {34,16,52), (70)
8 ®) {80)
9 (L,7,5), 3), (9 (54,18,72), (36), (90)

Theorem 5: Let g be a positive integer and let » be an integer satisfying 0<r<g-2. All F_,-
cycles will be I}, ,-cycles. If r <g/2 and there exists a d such that r <I§ ~(d)<g for 0<i,

then this F,, -cycle is also a [}, ,-cycle. If 2|g, and if F:g{r,(rJrl) =r for some j, then 7 isin a

Dy -cycle.

Proof: Since the added term is [1 r], the third and fourth lines of (2) apply. From the third, we
see that all F;_,-cycles will be [, ,;-cycles. In order for the fourth to give I}, ,-cycles, it must be
the case that all din an F,, !
only when r < g/2. There is one more way in which I}, ,-cycles can arise. Note that [}, ,(r) =

r+1 and D{l r](r)zlfgi;:(r+l) for 2<i. So if, for some j, };f;r(rJrl):r, then r will be in a

~cycle satisfy r <d <g. By Lemma 2, cycles such as these can occur

D, ,-cycle even though it may not be in an F,, -cycle. By Lemma 3, in order for 7 to have an

F,,, predecessor, g must be even. [

Finding [}, ,j-cycles which do not contain 7 is similar to finding [, ,j-cycles. In particular,
we examing F,-cycles for 1<s<g-3andg<s<g+[(g—1)/2]. For example, again using (6),
it is easy to find these cycles for g = 10. ‘

r r-1 g+r D[l "- cycles K[l "n- cycles
0 10 (2,6) (64, 28)
1 0 11 {0) {11
2 1 12 D), 4) 21), (48)
3 2 13 2) 31
(®) 4 3 14 D), 3 (23), (41)
5 4 4) 1)
6 5 (1,3, (5 (43,25), (61)
7 6 (2), <6) (35), <71
8 7 (1,5,3), {T) (45,27,63), (81

Missing from (8) are those [}, ,-cycles which contain . The final theorems address this special
case.
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Theorem 6: Let g be an even positive integer. When r equals 1, g/2—-2 org/2 -1, then
2,8-3,.., g+1(l) , 1) with 2 <i

© (g/2-2,8/2-1,g/2)
(g/2-1,g/2)

are [}, ,-cycles, respectively.

Proof: The last two cases are easily verified. For the first, by Corollary 1, 1 is in an F,,,-cycle;
in particular

Lg-1,g-3,..,Fpu(D),..
Since I}, (1) = 2 and I}, ,4(2) = g -3, applying the [}, ,]-algorithm gives
(2,8-3,.., Fuy(D),..,1). O
Theorem 7: Let g and r be positive integers. If risinan I}, ,j-cycle different from those in (9),
thenr<g/4-1

Proof: By Theorem S, since 7 is in an [}, ,-cycle, F, ..(r+1)=r for some 0 <j. Ifj=1, then

r=g/2— , contradicting the hypothesis. Thus, 2 < j. Now,

[] r] (r) g+r(r + 1) g+r (g r— 2) '—lg 3r— 4|

By Lemma 2 and Theorem 6, 1<r<g/2-2 so thatDﬁ1 A(r)=g-3r—4 Ifrisinan I} -
cycle, then r < D[31 (7). This implies r <g/4-1. O

g+r

For g = 10, by Theorem 6, the following I}, ,j-cycles may be added to the list in (8):
r D, -cycles K, » -cycles

1 (1,2,7,3,5) (56,20,29,74,38)
(10) 3 (3.4.5) (58, 40, 49)
4 @45 (59,50)

By Theorem 7, these are the only I}, ,)-cycles that contain 7. Thus, (7), (8), and (10) comprise a
complete list of all I}, ,-cycles for g = 10.

r'r]
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ON CONSECUTIVE NIVEN NUMBERS

Curtis Cooper and Robert E. Kennedy

Department of Mathematics, Central Missouri State University, Warrensburg, MO 64093
(Submitted June 1991)

INTRODUCTION

In [1] the concept of a Niven number was introduced with the following definition.
Definition: A positive integer is called a Niven number if it is divisible by its digital sum.

Various articles have appeared concerning digital sums and properties of the set of Niven
numbers. In particular, it was shown in [2] that no more than 21 consecutive Niven numbers is
possible. Here, we will show, in fact, that no more than 20 consecutive Niven numbers is possible
and give an infinite number of examples of such sequences.

DIGITAL SUMS AND CARRIES
In what follows, s(#) will denote the digital sum of the positive integer ». The formula

s(ny=n- 92 [T’Z?]’

231

where the square brackets represent the greatest integer function, is well known and easily
derived. Note that the sum has only a finite number of terms since |-%-| = 0 where ¢ >[logn]

For integers m and n, we let c(m+n) denote the sum of the "Carries" which occur when
calculating the sum m+n. The following Lemma gives the relationship between s(m+n) and
c(m+n).

Lemma: Let m, n be positive integers. Then
s(m+n) = s(m)+s(n)—9c(m+n).
Proof: Since

s(m)=m— 92 [ILZ'_} and s(n)=n- 92 [—'L},

!
2] t21 10

s(m)+s(n)=m+n- 9; ([—1%} + [%D
g5 o )

is the carry that occurs when the (z —1)" right-most digit of 7 are added, the equality s(m+n)=
s(m) +s(n) —9c(m+n) follows.

it follows that

Noting that the expression
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In passing, the resder might be interested in proving that s(mn) = s(m)s(n) —9c(mn) where
c(mn) is the sum of the carries that occur in calculating the product of 7 and » by the usual mul-
tiplication algorithm. Here, however, we are concerned with sequences of consecutive Niven
numbers.

CONSECUTIVE NIVEN NUMBERS

To discuss consecutive Niven numbers, we will introduce the idea of a decade and a century
of numbers. A decade is a set of numbers

{10n,10n+1, ..., 10n+9}
for any nonnegative integer » and a century is a set of numbers
{100n,100n+1, ..., 1001 + 99}

for any nonnegative integer n. We first observe that in a given decade, either all the odd numbers
have an even digital sum or all the odd numbers have an odd digital sum. To make the next
observation, let E denote the statement "odd numbers which have an even digital sum" and O
denote the statement "odd numbers which have an odd digital sum." We then note that the ten
decades in a century alternate either O, E, O, E, O,E, O, E, O, EorE, O,E, O, E, O,E, O, E, O.
Finally, we remark that in an E decade, none of the odd numbers can be Niven since their digital
sum is even. Thus, the only way to get more than 11 consecutive Niven numbers is to cross a
century boundary where the decades between centuries would be

..E,0,E,0|0,E, O,E, ....

Hence, we cannot have more than 21 consecutive Niven numbers and if a list of 21 consecutive
Niven numbers exists, it would have to commence with an even Niven number of the form

10'n+9,_,0

where d, denotes the concatenation of r d's in the decimal representation of an integer. For exam-
ple,
89,5(24),0,7 = 89999924240007.

Note that d does not have to be a digit. This notation will facilitate an efficient representation for
certain large integers.

It is not difficult to find sequences of consecutive Niven numbers. For example, the sequence
1,2,3,4,5, 6,7,8,9, 10 is an example of 10 consecutive Niven numbers. It is, of course, the
smallest such sequence. Other sequences of 10 consecutive Niven numbers can be found, but if a
sequence of 21 consecutive Niven numbers could be found, we would have an example of every
possible sequence of k consecutive Niven numbers for k=1, 2, 3, ..., 21. As suggested in the
introduction, however, it will be shown that & cannot be larger than 20, and an infinite number of
examples with & = 20 will be given. Determining an example with £ = 20 involves working with
large integers, solving systems of linear congruences, choosing integers with "good" digital sums,
a lot of adjusting partial results, and a lot of luck and intuition. Without the use of a computer
capable of manipulating large numbers, we could not have found the following sequence in a
reasonable length of time.
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a =4090669070187777592348077471447408839621564801
2007115516094806249015486761744582584646124234
1540855543641742325745294115007591954820126570
087071005523266064292043054902370439430, ,,,

and

b =2846362190166818294716429619770154544233311863
4187301827478422658543387589306681088151446703
2759507916140833155837906335537198825206802774
84302831497550209729274595593605923621569,,,40.

Then a has 1296 digits, b has 1298 digits, s(a) = 720, and s(b) = 10870. Also note that each of

is a factor of a, and

Now let m be any nonnegative integer and consider

2464645030
2464645031

2464645039
2464634960
2464634961

2464634969

2464645030 divides b

2464645031 divides b+1
2464645039 divides b +9
2464634960 divides b+10
2464634961 divides b+11

2464634969 divides b+19

X = A34931030,,).

Then x has 44363342786 + m digits, and is a Niven number with s(x) = 2464645030. Further-
more, by construction, each of x+1,x+2,x+3,..., x+19 is also a Niven number, and a sequence
of 20 consecutive Niven numbers has been constructed. Also, since m is an arbitrary nonnegative
integer, we have demonstrated an infinite number of such sequences. However, that the methods
used in finding such a sequence cannot be used to find 21 consecutive Niven numbers, is revealed
by the following discussion.

Suppose that there exists a sequence x,x+1,x+2, ..., x+19, x+20 of Niven numbers.
Then x=9,.,0 (mod10’) where we may assume that the (¢ +1)* right-most digit of x is not a 9.

Thus,
(1
(2)
3)
(4)
148

x=0 (mod s(x))
=-1 (mod s(x) +1)
=-2 (mod s(x) +2)
=-3 (mod s(x) +3)

)
(6)
)
©)

x=—4 (mod s(x) +4)
x=-5 (mod s(x)+5)
x=-6 (mod s(x) +6)
x=-7 (mods(x)+7)
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(9) x =-8 (mod s(x) +8) (16)  x=-15 (mod s(x)+15-9¢)
(10) x=-9 (mod s(x)+9) (17)  x=-16 (mod s(x) +16 - 9)
(11)  x=-10 (mod s(x)+10-9) (18) =-17 (mod s(x) +17 - 9¢)
(12)  x=-11 (mod s(x)+11-9¢) (19)  x=-18 (mod s(x) + 18— )
(13)  x=-12 (mods(x)+12-9%) (20)  x=-19 (mod s(x)+19-97)
(14) =-13 (mod s(x) +13-9) (21)  x=-20 (mod s(x)+11-9%)

(15) =-14 (mod s(x) +14 - 9)

It should be pointed out that the form of the moduli in the above list follow by the Lemma. That

i, S(e+k) = 5(x) +s(k) = 9c(x + k)

=s(x)+s(k)-9(t-1).
For example,
s(x+19) =s(x)+10-9(r - 1) = s(x) +19-9¢
and so the congruence
x+19=0 (mod s(x +19))

may be written as
x=-19 (mods(x)+19-9r).
Since

x=-20 (mod s(x)+11-9¢),
and x=-11 (mod s(x)+11-91),
we immediately have that
9=0 (mods(x)+11- 9t),
and so, s(x)+11-9¢=1,3,0r 9. Thus, 9¢-s(x) =2, 8, or 10. However, since
x=9,,0 (mod10%),
we see that s(x) > 979, and it follows that 97 —s(x) =2 or 8.

Suppose that 97— s(x) =8. Then, by congruences (11), (12), (14), (16), and (20), we have
the system

LIRS SR S I
1 1

which, by the Chinese Remainder Theorem, has the solution
X =6922 (mod2310).
But, since x =9, ;0 (mod10"), it follows that 5 is a factor of x. This cannot be the case if x=

6922 (mod 2310). Hence, we must conclude that 97 — s(x) # 8.
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Now suppose that 97 —s(x) =2. Then the congruences (1) through (21) may be rewritten as:

respectively.

M
@
3
4
®)
©)
™)
®)
©)
(10)
(11)

x=0 (mod97-2)
x=-1 (mod 97 -1)
x=-2 (mod9¢)
x=-3 (mod97+1)
x=-4 (mod9t+2)
x=-5 (mod 97 +3)
=-6 (mod 97 +4)
x=-7 (mod9¢+5)
x =-8 (mod 97 +6)
=-9 (mod97+7)
x=6 (mod38)

Recall that if the system

x=r (modm)
x=s (modn)

(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
@n

x=7 (mod?9)

x=8 (mod10)
x=9 (mod11)
x=10 (mod12)
x=11 (mod13)
x=12 (mod 14)
x=13 (mod15)
x =14 (mod16)
x=15 (mod17)
x=7 (mod9),

has a solution, then gcd(m, n) is a factor of ¥—s. See, for example, [3, Th. 5-11]. Thus, by use

of the pairings

we have that

respectively. The fact that x is even together with congruence (2), imply that 7 is even. But

(4) with (13)
(6) with (13)
(7) with (13)
(10) with (13),

gcd(10,97+1)
gcd(10,9¢ +3)
ged(15,91+4)
gcd(10,9¢+7)

nononon

1
1
1
1

>

=2 (mod10) impliesthat gcd(10,97+7)=1,
t=4 (mod10) impliesthat gcd(15,9¢+4) =1,
t=6 (mod10) impliesthat gcd(10,97+1)#1,
t=8 (mod10) impliesthat gcd(10,97+3) =1,

which contradict the above. So, it follows that

t#2 (mod10)
1#4 (mod10)
t#6 (mod10)
t#8 (mod10).

In addition, the pair of congruences x=9, |0 (mod10') and x=-7 (mod97+5) imply that
ged(10°, 97 +5) divides 9,_,7, from which it follows that 5 cannot be a factor of gcd(10°, 97 +5)

150

[MAY



ON CONSECUTIVE NIVEN NUMBERS

and so we have that 7 # 0 (mod10). Hence, by assuming that 97— s(x) = 2, the fact that ¢ is even
is contradicted, and we conclude that 97 —s(x)#2. So, the only two possibilities for 97— s(x)
(by assuming that a sequence of 21 consecutive Niven numbers exists) are eliminated. We have,
then, the following theorem.

Theorem: There does not exist a sequence of 21 consecutive Niven numbers.

CONCLUSION

Finally, we must admit that we do not know whether or not the sequence of 20 consecutive
Niven numbers given here, with m = 0, is the smallest such sequence. That is, whether or not the
integer dy4,3,030 is the smallest integer that a sequence of 20 consecutive Niven numbers can
commence. During the construction of this integer, many alternate possibilities presented them-
selves, and as mentioned, much intuition and lick were involved. We would, therefore, like to
challenge the reader to find the least integer that is the first term in a sequence of 20 consecutive
Niven numbers.
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Author and Title Index

The AUTHOR, TITLE, KEY-WORD, ELEMENTARY PROBLEMS and ADVANCED PROBLEMS
indices for the first 30 volumes of The Fibonacci Quarterly have been completed by Dr. Charles K.
Cook. Publication of the completed indices is on a 3.5-inch high density disk. The price for a
copyrighted version of the disk will be $40.00 plus postage for non-subscribers while subscribers to The
Fibonacci Quarterly will only need to pay $20.00 plus postage. For additional information or to order
a disk copy of the indices, write to:

]

o

<

PROFESSOR CHARLES K. COOK

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF SOUTH CAROLINA AT SUMTER
1 LOUISE CIRCLE

SUMTER, SC 29150

The indices have been compiled using WORDPERFECT. Should you wish to order a copy of the
indices for another wordprocessor or for a non-compatible IBM machine please explain your situation
to Dr. Cook when you place your order and he will try to accommodate you. DO NOT SEND YOUR
PAYMENT WITH YOUR ORDER. You will be billed for the indices and postage by Dr. Cook when
he sends you the disk. A star is used in the indices to indicate unsolved problems. Furthermore, Dr.
Cook is working on a SUBJECT index and will also be classifying all articles by use of the AMS
Classification Scheme. Those who purchase the indices will be given one free update of all indices when
the SUBJECT index and the AMS classification of all articles published in The Fibonacci Quarterly are
completed.
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(Submitted June 1991)

1. INTRODUCTION

The kth convolution sequences for Fermat polynomials of the first kind (a,(,{‘,),,(x)) and the second
kind (5,(x)) are defined in this paper. Generating functions, recurrence relations, and explicit
representations are given for these polynomials. A differential equation that corresponds to
polynomials-of type (a,‘,f?,,(x)) is presented. Finally, A" convolutions of mixed Fermat polyno-mials
of (¢{(x)) are defined. In some special cases, polynomials of (c5:x)) are transformed into already
known polynomials of (a%,(x)) and of (5,(x).

2. POLYNOMIALS a),(x)

A. F. Horadam [2] defined Fermat polynomials of the first kind 4,(x) and the second kind
B,(x) by

@1 4,(x) = x4, ,(x) =24, ,(x), 4,(x)=0, 4,(x)=1,
and
(22) B.(x) = xB,_1(x) =~ 2b, ,(x), By(x) =2, Bi(x)=x.
Their generating functions are
(2.3) (1-xt+25)7"' = i A (x)t"
n=0

and

1-27 i ,
(2.4) m = EBn(x)t .

From (2.1) and (2.2), we can find a few members of the sequence of polynomials 4, (x) and
B.(x):

A(x)=x, 4(x)=x>-2, A4(x)=x-4x, 4,(x)=x"-6x"+4,
and

By (x) = x*—4, By(x)=x’-6x, B,(x)=x"-8x*+8.

H. W. Gould [1] studied a class of generalized Humbert polynomials P,(m, x, y, p,C)
defined by

(C—mxt +yt™P =Y P,(m,x,y, p,C)t",

n=0

where m>1 is integer and the other parameters are unrestricted in general. The recurrence rela-
tion for the generalized Humbert polynomials is
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CnF —~m(n—1-p)xP,_ +(n-m-mp)yP,_,, =0, n>m=1
where we put P, = P,(m, x, y, p,C).
In this paper we consider the polynomials (a®.0) defined by
al) ()= P,(m,x /m,2,— (k +1),1).

Their generating function is given by
(2.5) F(x,t)=(Q—xt+2my® D = Za(k) ()"
n=0

Comparing (2.3) to (2.5), we can conclude that
(O) 2(x)=A4,(x) [Fermat polynomials (2.1)].
Development of the function (2.5) gives

Za(k) (x)tn — i (k :l—'l)n tn (x - 2tm—l)n
n=0 .

— Z Z( ) (k+l)n AT - (m-1i xn—mz n

n=0\ i=0 ll(n ml)'

Comparison of coefficients of #" in the last equation shows that polynomials («%,(x)) possess
explicit representation as follows:

(k + 1)rz—(m—l)i xn—mi'
il(n—mi))

(2.6) af(x) = Z( 2y

If we differentiate the function F(x, t) (2.5) with respect to 7, and compare coefficients of 7",
we get the three-term recurrence relation ‘

na,(,f‘zn(x) =x(n+ k)a(’f)l,m(x) ~2(n+mk)a® (x), n>m.

—m, m

The initial starting polynomials are

k+
a(()f‘,)n(x):o, aff’)n(x):(—n'l)ﬂ_xn’ nZI,Z,_.,,m—l,

Then, if we differentiate the polynomlals aff,)n(x) (2.6) s times, term by term, we get the
equality [1]:
D’alh) (x) = (k+1),a?) (x), nxs.

snsm

Let the sequence (f,),_, be given by f, = f(r), where

n—i+m(k+1+t))

m-1

f@O)=(n-1 )(
Let A be the standard difference operator defined by Af, = f,,, — f,, and its power by
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Nf,=f, Kf=AA"f)

We find that the next property of aff,),,(x) is very interesting.

The polynomial a,(f,),, (x) is a particular solution of the linear homogeneous differential equa-
tion of the mth order [4],

m
2.7 ym 4 Z ax‘y® =0,

5s=0

with coefficients a, (s=0,1,..., m) given by

2.8) a,=—_uf,
2ms!
From (2.8), we get
a = Ln(n +m(k + l))
2m m m-1
. —1—[(n— l)(n—1+m(k+2)) _n(n +m(k +1)) J
2m m m-1 m m-1
Since
m-1\"" .
f@)=-——| " + term of lower degree,
m
we see that

. __L(m_—l)'""
" 2m\ m '

For m = 2, the differential equation (2.7) is

1, 2k =3 n
X -y = (n+2k+2)y =0,
( 2 )v P 8( )y =0,

and it corresponds to the polynomials a,(,f‘% (x).

For m=2 and k =0, the equation (2.7) is

12 3 n
1-=x* [y"—=xy'+—(n+2)y=0,
( 2 )y =4 8( )y

and it corresponds to Fermat polynomials of the first kind 4, (x).

3. POLYNOMIALS 5%) (x)

In this section we introduce a class of polynomials (b,(,f‘m(x)), keN.

Definition 3.1: The polynomials %) (x) are defined by
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m k+1 ©
G.1 F(x,0)= [—1—“%’—_) =3 b5 ()",

1—xt+2¢" o
Comparing (2.4) to (3.1), we can see that
b,SO% (x)=B,(x) [Fermat polynomials (2.2)].
Expanding the left-hand side of (3.1), we obtain the explicit formula

(3.2 b,S,’?,,(x):'f(—z)i("jl)af,’izm-,m<x>.
i=0

For m=2 and £ =0, the formula (3.2) is

by (x) = ag(x) - 242, ,(x).
That is,
B,(x)=4,(x)-24, ,(%).

and it corresponds to the known relation between the Fermat polynomials 4,(x) and B, (x).

4. MIXED FERMAT CONVOLUTIONS

A. F. Horadam and J. M. Mahon [3] studied a class of polynomials (z{**)(x)), mixed Pell
polynomials. Similarly, we define and then carefully study polynomials (c,(,f’,,f)(x)), mixed Fermat
convolutions, where all parameters are natural numbers.

Definition 4.1: The polynomials (c,‘,f;;)(x)) are given by

a-2"y
(I—xt+2")

=2 G (O,

n=0

@.1) F(x, 1) =

on condition that s+7 > 1.

The polynomials (c,(,f;;)(x)) have some interesting characteristics, some of which are described
in the results that follow.

Theorem 4.1: The polynomials (c,(,f;;)(x)) have the representation
r=j (r "j .
42 &)= 2 ("7 i,
i=0
Proof: By using (4.1), we obtain

- o Y
> = 12"y 1 ( R ]

= A—xt+20"Y* \(1-xt +21"

- S S pwr

n=0 i=0

If we compare coefficients of #” in the last equality, we have (4.2). Using (4.1) again, we obtain
the following representation:
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B0 (x) = Za‘ik‘,>,,,<x)b,£f;”(x).

Also, we see that
F(x t) — & — (1 _ 2tm)ria(r+s—l) (x)tm — i i (_Z)i(f.'}(ﬁs'—l) (x) i
’ (1—xt+26™) r S n=0\i=0 )

From the last equality, we can conclude that
r (r -
0= Y2 (] .
i=0

The Fermat polynomials of the first and of the second kind satisfy a three-term recurrence
relation. But, mixed Fermat convolutions satisfy a four-term recurrence relation of unstandard
form, which we prove in the following result.

Theorem 4.2: The polynomials c(s ") (x) satisfy the recurrence relation

(4.3) nc0(x) = =2mrelte D (x) + x(r + 5)ch 0 () = 2m(r + $)cH D (x), n>m.

n-m,m —m, m
Proof: 1f we differentiate F'(x, ), (4.1), with respect to 7, we get
>ncD ey = —2mrt™ lzc““ D"+ (r+5)(x - 2mt™ )Zc“+1 D",
= n=0 n=0
Comparing coefficients of 7" in the last equality, we have (4.3).
If we differentiate F'(x,1), (4.1), with respect to x, k times, term by term, we find that the
polynomials cff”f )(x) satisfy the equality

(4.4) DD (x) = (r +9), 550 (x) (n2k).

Special Cases
Starting with the equality
a-2m"  (1a-2"y _@a-=2my
A=xt +2¢")*2 (=xt +21")* (Q—xt +2™)""’

we get

I IE —(Zc‘f’,;’(x)t" Zcf,,’;:’(x)t"]
n=0

n=0 n=0
DI LSRN
n=0\k=0
From the last equality, we obtain
(4.5) o (x) = Z (e (%),
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For r = s, the equality (4.5) is
o (¥) = Zc‘i,?m ()7 ().

From the equalities (2.5), (3.1), and (4.1), we obtain:

(4.6) ¢ M(x) =al,P(x), forr=0
and
4.7 ¢ (x) =57, (x), fors=0.

According to (4.4), (4.6), and (4.7), we get the inequalities

Dkaf: D(x) = (5), a8 D(x), forr=0

n-k,m

and
Dkbr(:,r:nl)(x) =("ke f,’ikr)m(x), fors=0.

For r = 0, the equality (4.5) becomes
cpm (%) = Zaff e (OB ().
According to (4.3) and (4.5), we have

ny ¢ (el (x) = =2mscChe oD (x) + 2xse D (x) - 4msc D (x), nzm.

—k,m n-m, m n-Lm n—-m,m

From the equalities (4.2) and (4.7), for j=5=0, r =k +1, it follows that
B () = Z( (4} @
Finally, from the equalities (4.2) and (4.6), for j=r =0, s=k +1, we see that

a®),(x) = kzﬂ( 2y (" + l)aﬁ’ii,.,-,m(x)
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HYPERSPACES AND FIBONACCI NUMBERS

Herman Haase
Math. Institut, Friedrich-Alexander-Universitét, Bismarckstr. 1%, W-8520 Erlangen, Deutschland
(Submitted June 1991)

Let (% ([0,1]), 7;,) be the space of all closed non-empty subsets of the closed interval [0, 1]
equipped with the Vietoris topology. The basic open subsets of 7, are given by
Fq,..q6,= {A €[0,1]; A# O and closed suchthat AcU_, G, G A# @Vi}

for any collection G, ..., G, of nonempty open subsets of [0, 1].
Now let G, ..., G,, (m €N be open intervals of 0, 1] satisfying

)] [0,1]=UL, G
() GG, #QVi=1,..,m-1
(3) G,NG, =3 for|i— j|=2.

The main purpose of this paper is to calculate the number
@ MGy ) = {5 A4 T, T Ll

where A ranges over % ([0,1]) and where each %, is a basic open set of 7,. Obviously,
n(G,) =1; we shall investigate the case where m>2. This problem was raised by the attempt to
find a Hausdorff function 4 with zero local measure [2, 3], but non-o-finite Hausdorff measure
[1] for & ([0, 1]). The calculation uses Fibonacci numbers [4].

Lemma 1: There exists A, € & ([0, 1]) which gives a maximum for (4) such that
©) 4 € U,;(G,NG)).
Proof: Without loss of generality, we may assume

Ay (GGl fori=1,...,m-1
and
|4, "G \(G,_,vG) <1 fori=2,...,m-1
as well as
|4, N (G\Gy)|<1 and |4, (G, \G,,_))ISL

Now let 7, €{2,..., m—1} (the cases i, =1 and i, =m can be handled in the samekway) and sup-
pose that

{x} = 4, "G, \(G, 1 UG,.1)

for a set 4, giving the maximum for (4). If4, € ¥ (G),er» then iy 1. Hence, 4,\{x} would also
give the maximum. Deleting all such points, we obtain the desired set.[]

Now let x, eG, NG, fori=1,..,m—land E={x;i=1,..,m—1}.
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Lemma 2: Form>2,

'{@(Gi)isl  Ee @(Gi)iEI S e § R m}}} )

where u,,,, is the (m +2)™ Fibonacci number, i.e., wm=uy=landu,,  =u,+u,
[4D).

Proof: Clearly E €%, for I < {l,...,m} if and only if

for m>2 (see

©6) iel, ieg{l,...,m—1} implies i+1el.
Let us now consider the hypergraphs

4, ={Ic1,..,}; Isatisfies (6)}

and

B, ={I {1,...,m}); m eland ] satisfies (6)}.
We see that
@) Ay ={Io{m+1}; ITed, }oB,.

Since {Iw{m+1}; I e A, }nB, =, it follows that
®) | =] A H B, |

using the fact that ‘{] ufm+1}; I e ﬂm}i =|d4,|. We partition %, as follows:

m+

(9) %m+1:{] E%mﬂ; mEI}U{IE%mH; mgé]}
Itis
(10) I €Byurs m e} |=[%,]

If7 €RB,,, and m eI, then m—1el, implying that
an I €B,; me1}=|RB, ]
Because of { €RB,,,,; mel}n{l €B,,,; mel}=, we obtain
(12) | %m+l l:l %m I+I %m-f-l I
We conclude, with |9, |= 1 and |9, |= 2, that
(13) |&Qm+1l=1+2|%kl
k=1
for m=>1 using (8). This gives, together with (12), that
(14 | | =B |-

Let (u,,),,cy be the sequence of Fibonacci numbers with #, =u, =1 and u,,,, = u,,, +u,, then it is
easy to see that

(15) |sd,,|=t,,, O
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Lemma 3:

(16) !}

ikt S Ut p form=2 and k = 1.

In particular,-u,,, <3u,, fork > 1.

Proof: Using the well-known relation w,, ; = u_u, +uu,,, [4] withi=m+1, j=k+1 we obtain
from u,, <u,,, that
Upthsy <Uplh iy
Uythy gy < (U = U1 s
Unlh1 + Uy ithiesr < Upaolern

Upiisz <Uppgllyyy. U

Theorem 1: Form=>2,

(G, G,)= 3% if m is even
s m) T m-3 . .
! 537) ifmisodd.

Proof: Let 4, c[0,1] be a finite set with property (5) giving maximum. Then
a7 Ay=Ui 4, (E<m)

with 4, ;= {x,.j s X 415 - X 4k, } Such that

(18) Ij+ki+1<ij, forl<j<l-1

Let ny =n(G,...,G,) and n 4,,, the number of F,,., Which contain 4, ;. The condition (18)

guarantees that a set %,  containing 4, ; cannot contain another 4, , with j# j'. Now, let

4
(gz(Gi(j))iEI )
" f=l

be any collection which contains 4, |, ..., 4, ,; then %( 6Oy, 7 Jje{l, ..., f} contains 4,. Con-
’ ’ i Jiel;

versely, we can split the collection (G;),; if ¥, , contains 4, into | subcollections giving fam-

ilies of sets 375( forj efl,..., £} which contain 4, ; by using (18) again. Thus, we conclude

that

Gi(j))ielj

¢
ny = ano’j (where My, = Uy ia)-

j=
We claim now that |4, ;|= with the possible exception of one index j for which | 4, =2 We
claim, moreover, that there is a gap of one point x; between A, ; and 4, 4 for j=1.., £-1
First it should be clear that for a set 4, giving maximum for n(G, ..., G,,) the gap between its
components 4, ; and 4, ;,, is at most one point. If there is a component 4, ; with | 4, ;|>3 then
we could delete, say X;, 41 and the set 4,\{ X, +17 18 contained in
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n(Gl,...,Gm)(3ukj+2)

u
kj+4

sets F(g,,, which contradicts the assumption that A, already gives the maximum by using
Lemma 3. Hence |4, ;|=1or2 forall j. Assuming that | 4o, j1=14p, j+1|= 2, then

(4p\ {xij+1a X DY {xij+2}

J+1
is contained in more sets ¥,  than 4, since 4, ; and 4, ;,; give the factor 5 for the resulting
product 7(G; ..., G,,). but three points give the factor 3 and 25 < 27. Furthermore, one can
change the order of the 4 ;'s to a consecutive one for the sets 4, ; with |4, ;|=2. Thus, there
exists at most one 4, ; with |4, ;|=2. If m is even, then |4)|=% with 2 gap points, i.e.,
|4, ;|=1 for all components of 4,, but the last component contains two points. This gives the
announced result for n(G, ...,G,). O
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Editor on Leave of Absence

The Editor has been asked to visit Yunnan Normal University in Kunming, China for
the Fall semester of 1993. This is an opportunity which the Editor and his wife feel
cannot be turned down. They will be in China from August 1, 1993 until around
January 10, 1994. The August and November issues of The Fibonacci Quarterly will be
delivered to the printer early enough so that these two issues can still be published
while the Editor is gone. The Editor has also arranged for several individuals to send
out articles to be refereed which have been submitted for publication in The Fibonacci
Quarterly or submitted for presentation at the Sizth International Conference on
Fibonacci Numbers and Their Applications. Things may be a little slower than normal
but every attempt will be made to insure that things go as smoothly as possible while
the Editor is on leave in China. PLEASE CONTINUE TO USE THE NORMAL
ADDRESS FOR SUBMISSION OF PAPERS AND ALL OTHER
CORRESPONDENCE.
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A DISJOINT SYSTEM OF LINEAR RECURRING SEQUENCES
GENERATED BY u,,, =u,,, +u, WHICH CONTAINS

EVERY NATURAL NUMBER

Joachim Zéllner
Wallaustr. 77, D-6500 Mainz, Germany
(Submitted July 1991)

Burke and Bergum [1] called a (finite or infinite) family of nth-order linear recurring
sequences a (finite or infinite) regular covering if every natural number is contained in at least one
of these sequences. If every natural number is contained in exactly one of these sequences, they
called the family a (finite or infinite) disjoint covering. They gave examples of finite and infinite
disjoint coverings generated by linear recurrences of every order n. In the case of the Fibonacci
recurrence u,,, =u,,, +u,, they constructed a regular covering which is not disjoint and asked
whether a disjoint covering in this case exists as well. The following theorem answers this
question.

Theorem: There is an infinite disjoint covering generated by the linear recurrence u,,, =u,,, +u,.

We first state some easy properties of the Fibonacci numbers, /;=F, =1, F, ,=F,  +F,

n+l.
forn=12,.... Let a=1(1++v5) and B=1(1-v5). We have

1) a<l, -1<f<0
and
@ alBl=1
For the Fibonacci numbers, the Binet formula
3) ‘ F =22 (eN
NG (neN)
holds.
Foralli eN, let %, ;, 4, , eN and the sequences (i ),y be defined by
(4) ui, n2 = ui, n+l + ui, n
Then we have
(5) U, = F gt o+ Fy g
and
6) U ey = 0, + B BY, 5 1)

foralli,neN,n>2.

Proof of the Theorem: We will construct sequences (%, ,),ey Of natural numbers for all i N
generated by (4). :

Start with (¥ ,),ev = (Fr41)nen and assume that (%, ),y has been constructed for i =1, 2,
..., k—1for some k €N, k>2, and that 4, , =, , ifand onlyif m=nandi=j (i<k,j<k).
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Now we construct (, ,),oy With the same property. LetV; = {u, ,|n €N, j=12,..,i}.
By (1), (3), and (4), we have N\V,_, # &. Thus, we can choose

Q! w1 = min(N\V, ;).

We will show that there are #, , €N with

®) 0 > Uy )

and

©) U >max{y ,li=1,2,.. k-1},

such that the sequence (u; ,),ov generated by (4) has the following property P:
(0] Ifi <k, thenw, ,#u , foralln,meN.

Let M, =max{u, 1,1 5,4 ,,...,%.; »}. Then u, , > M, is equivalent to (8) and (9).
Let S, €R be sufficiently large. More precisely

(10) Sez4au,; (>1)
and
(11) S, > 5(k - 1)((log 4S,) /log @)’ + M,

(e.8.: S, =((5(k-1)/log* @)* + )M, ).

To prove the existence of u, , e(M,, S, ]NN such that (u, ,),y has property (P), we first
count the number of those integers u, , €(M,, S, ]NN such that (#, ,),n does not have
property (P). For these u, ,, there are m,n eNand i €{1,2,..., k -1} with

(12) uk,n :ui,m'
From (7), (8), and (9), we get n>2 and m > 3. By (5) we can write (12) as follows:

Foy o+ B gy y = F gt o+ Fp oty
We obtain
(13) n<m
and by (3) also
an—-l _ﬁn—l an—Z _ﬁn—2 am—l _ﬂm—l am—2 _ﬂm—Z

"T”k,ﬁ NG U= NG U 5+ 5 U .

Since u;, , <8 and |B|< /2, we get

_ - 2 -2 -2 -2
e e
k k,2 an—1+‘ﬁln41 i,2 an—1+|ﬁln—]l i1 an—l_lﬂln—l s
1 ,,m1 1 ,m2
2 -1
2 U, + = u—4a .
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Observing (10), this implies
8S, +4(S, +4a u, )= " " (am, , +u, ) > 4ga" !
28, > o™t
log2s§,
_logg_ak_ >m-—

n-1

(14)

We have u, ., #u, ,,,. Otherwise we would get from (12) and (4) that ; , =4, ,,_,., for all
£ eN. In particular, u, , =#, ,,_,., would contradict (7).
Using this and (6), (12), (1), (13), (8), (9), (2), and u;, , < §,, we get
1<ty i1 = 8y ol

=|au, ,+ ﬂn_z(ﬂ”k,z Uy 1) — Uy — ﬁm—z(ﬂ”i, 2+ )|

<|p? |Buy 5+ 1 1| +1B] 2 | Bu; 5+ |

<BI? (18w, oy 5|+ B ol + 1w 51

< ,Bl"_24uk, , <a D48,

a"*<48S,

<085 o
loga

Combining this with (14), we obtain

< log2s$, ntl< log2s§, +log4Sk 43 S3log4Sk .

loga loga loga loga

(15)

Now we will give an upper bound for the number of triples (n,m,i) such that u, , =u ,,
1<i<k-1. In this case (15) holds. First, fix i and m.

Since 2 <n <m, there are at most m—2 possible values for n. Since

3<m<(3log4S,)/loga, forfixedi,

2
1{3log4sS, 1 3log4s, APT log4S,
2\ loga log loga
possible pairs (m, n).
Finally, since 1<i <k —1, there are at most

2
S(k - l)(log4Sk]

logx

there are at most

possible triples (n,m,i). To each triple such that u, ,=u, ,,, 1<i<k-1 belongs exactly one

i,m>

U, €(My, S, 1NN, because for two different values of u, , and the fixed value of u, ,, the
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recurrence (4) would give two different values of u, ,, both of which cannot be equal to U ,.
Consequently, there are at most
2
5(k — 1)(19_5_45_k)

loga

values of u, , €(M, S,]NN such that u, , =u , for some n,m,1<i<k-1. Therefore, the

1

number of values u, , e(M, S, 1NN suchthat u, , #u, , forall n,m,1<i<k-1is at least

2
S, - M, —5(k - 1)(M) ,
loga

which is positive by (11), and hence the choice of such an #u, , is possible.

This induction on & shows that there are infinitely many sequences (u, ,),y. Every natural
number occurs in one of these sequences by (7). It occurs exactly once by property (P) which
holds for these sequences.
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EXE X

GENERALIZED PASCAL TRIANGLES
AND PYRAMIDS
THEIR FRACTALS, GRAPHS, AND APPLICATIONS

by Dr. Boris A. Bondarenko
Associate member of the Academy of Sciences of the Republic of Uzbekistan, Tashkent

Translated by Professor Richard C. Bollinger
Penn State at Erie, The Behrend College

This monograph was first published in Russia in 1990 and consists of seven chapters, a list of 406
references, an appendix with another 126 references, many illustrations and specific examples.
Fundamental results in the book are formulated as theorems and algorithms or as equations and
formulas. For more details on the contents of the book see The Fibonacci Quarterly, Volume 31.1,
page 52.

The translation of the book is being reproduced and sold with the permission of the author, the
translator and the “FAN” Edition of the Academy of Science of the Republic of Uzbekistan. The
book, which contains approximately 250 pages, is a paper back with a plastic spiral binding. The
price of the book is $31.00 plus postage and handling where postage and handling will be $6.00 if
mailed to anywhere in the United States or Canada, $9.00 by surface mail or $16.00 by airmail to
anywhere else. A copy of the book can be purchased by sending a check made out to THE
FIBONACCI ASSOCIATION for the appropriate amount along with a letter requesting a copy of
the book to: RICHARD VINE, SUBSCRIPTION MANAGER, THE FIBONACCI ASSOCIATION,
SANTA CLARA UNIVERSITY, SANTA CLARA, CA 95053.
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ASSOCIATED SEQUENCES OF GENERAL ORDER

A. F. Horadam

The University of New England, Armidale 2351, Australia
(Submitted July 1991)

1. INTRODUCTION

The purpose of this article is to extend an idea in [1] to the generalized sequence {I¥,}
defined [2] for all integers n by the recurrence relation

(1.1) Woia = PW, 0 +9W,
in which
(12) Wy=a, W= b

where a, b, p, q are arbitrary integers.
The explicit Binet form is

(1.3) W (b-ap)a”—(b-aa)p”
n a—-ﬂ
where
(1.4) q= PP 4G P +Ag
2 ’ 2
are the roots of
(1.5) x?—px—q=0.
From (1.4), or (1.5), we deduce that
(1.6) a+f=p, afi=-q, a-f=yp’+4g=A
and

Brq=4, Z4q=-4
(1.7) az+q=Aa, ﬂz+q=-A/3
a'-q=pa, B -q=pp

Special cases of {i¥,} which interest us are

the Fibonacci sequence {F,}: p=1,g9g=1,a=0,b=1

(1.8) the Lucas sequence {L,}: p=1,q9g=1a=2,b=1

: the Pell sequence {P,}: p=2,9=1,a=0,b=1
the Pell - Lucas sequence {Q,}: p=2,9=1a=2,b=2.

2. THE ASSOCIATED SEQUENCE {W,,(")}
Define the first associated sequence {W"} of {W,} from (1.1) by
2.1) WD = pWy+qW,,.
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Repeat the operation in (2.1) to obtain

22) WO = p D + g ® = (b-ap)(pa’ +9)a"? — (b-aa)(pp’ +q)* B
- n n+ n— A
on using (1.3) and (2.1).
Generally,
23) w0 = pWD +qW D

where W,fk) (k£=1,2,3,...) represents the k% repetition of the association process (2.1). We may
call {W*)} the associated sequence of {W,} of order k.

(2.3) Convention: WO =w,.
Induction, with appeal to (2.3), may be used to establish the Binet form
n-k n-k
(2.4) o - Ad” " —BF"
g A
in which
A=(b-ap)pa’+q)
2.5) \B= 2, Sk
B=(b-aa)(ph +9q)

As we expect, {W,,(k )} is a recurrence sequence like {7, }, for, by (2.4),

1 n+l- n+l- n— n—
P+ = (p(4a™™ ~ BF™ ) +q(4a”" - B}

2.6) = {(pa+Aa" - (pp+q)BF™)
-

on putting x = &, x =f in turn in (1.5). Thus, (1.1) is valid for {W,,(k) }. Consequently, (1.5) is
also true for {W®}.
Next, we define {°W(,f )}, the conjugate sequence of {W,,(k) 1, by

2.7 W = 4a"* + B
It readily follows, on using (1.7), that
28 WP = pWID + g WD

and on using (1.5), that
2.9) Wi = pPWEL+q WS,

That is, both the association and recurrence properties which are features of {#*) } apply equally
well to {W¥}.
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3. PROPERTIES OF {W®)}

Some consequences of our definitions and ideas now follow. Proofs of these results, obtain-
able from the preceding information, are left for the pleasure of the reader [employing (1.7) and

2.4)].

Firstly, we have the Simson formula

Theorem 1:

G W -0 = ~(-qy - as
More generally,
N i - - =GO AN )
Theorem 2:
62) (775 ) @k W = (f) k W(:) o keven
i=0 S W (n—k odd).
Theorem 3:
(33) AT+ 0T = bW +aqiyl®.
Theorem 4:
(G4) LAY UADIE z%(bw,fﬁl +aqg W)+ (—1)"‘kq"“-k4%§i_
{(Not a pretty sight!)
Theorem 5:
(3.5) Y - PWAT - ' WET = 3pgW QW Ow R,
This neat cubic property is derivable directly from (2.6), or, with more effort, from (2.4).
Theorem 6.
(3.6) AT - AT " WP = 2pgW QW0

This quadratic property which is easily deducible from (2.6) may be employed to produce a
somewhat unattractive expression for 2pg X7, W OW.

All the above results (linear and nonlinear) for W*) may be echoed for W . Just one

n

illustration (namely, the corresponding Simson formula) should suffice. Remaining results could
be paralleled by the interested reader.

Theorem Ia:

(3.1a) : WE WD _[WEP = (~g)" 4ABA.

n+l "’ n-

This theorem can be extended as in (3.1)’ for "
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