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1. INTRODUCTION AND GENERALITIES 

Let us consider the Fibonacci polynomials U„(x) and the Lucas polynomials Vn(x) (or sim-
ply Un and Vn, when no misunderstanding can arise) defined by the second-order linear recur-
rence relations 

Un=xUn.l+Un_2{U^0U^ll (1.1) 
and 

Vn = xVn_^Vn_2 (F0 = 2,F1 = x), (1.2) 
where x is an indeterminate. It is well known that the polynomials Un and Vn, can be expressed by 
means of the Binet forms 

t/„=(a"-j3")/A (1.3) 
and 

Vn=a"+P", (1.4) 
where 

a = (x + A)/2 (1.5) 
p = (x-A)/2 = -l/a = x-a. 

Recall that further expressions for Un and Vn, (e.g., see [1], [3]) are 

L(»-1)/2L .x 

u„= i in-yjyi-2j(n>D 
and 

L«/2j 

(1.6) 

where [«J denotes the greatest integer not exceeding a. 

In [4] we considered the numbers F^p and 1$ obtainable by taking the first derivative of the 
polynomials (1.6) and (1.7) at x = 1, and studied their properties. The basic results established in 
[4] are 

= {nLn-F„)IS (1-8) FP = ^-Un(x) 
ax x=l 
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LP = 
dx 

nF„. (1.9) 

where F„ and Ln are the usual Fibonacci and Lucas numbers, respectively. Observe that the num-
bers F„(1) and L® are, respectively, denoted by F^ and Lf

n in [4]. 
In this paper we consider the second derivative with respect to x of the polynomials (1.6) and 

(1.7) and investigate some of their properties, thus keeping, in part, the promise made to the 
reader in section 4 of [4]. In the concluding section, we offer a brief glimpse of the implications 
of investigating the kth derivatives of U„(x) and Vn(x) 

1.1 Definitions 
Let us define the polynomials U^2) and F„(2), which are also obtainable from (1.6) and (1.7), 

as 

and 

U?=i?U*= Z(^-l-2i)(^-2-27-)[W-)-
y=o 

J\x"-3-2j (»>1), 

V(2) = • 
dx 

L(«-2)/2j 

j=0 

n{n-2j){n-\-2j)fn - j\n-2-y 
n-j V J 

(»>1). 

Observe that 

and 
Off* = F0

(2) = 0 [from (1.1) and (1.2)] 

(1.10) 

(1.11) 

(1.12) 

(1.12) 

according to the convention that a sum vanishes whenever the upper range indicator is less than 
the lower one. From (1.10)-(1.12f) we can write the first few elements of the sequences {f/̂ 2)}°° 
and {Fw

(2)}°°, namely, 

U™ 
up 
up 
up 
up 
up 
um 

um 
TjV) 

=u™=u™= 
= 2 
= 6x 
= l2x2+6 
= 20x3+24x 
= 30x4+60x2 

= 42x5+120x3 

= 56x6+210x4 

= 72x7+336xf 

= 0 

4-12 
+ 60x 
+ 180x2 

+ 420x3 
+ 20 
+ 120x 

V(2)=V(2)=0 

V™=2 
V}2)=6x 
F4

(2) = 12x2+8 
V5

(2) = 20x3+30x 
V6

(2) = 30x4+72x2+18 
V7

(2) = 42x5+140x3+84x 
F8

(2) = 56x6 +240x4 +240x2 +32 
V9

(2) = 72x7 +378x5 +540x3 +180x 

(1.13) 

K (2) = 90x8 +560x6 +1050x4 +600x2 +50. 
In this paper we confine ourselves to studying some properties of the above sequences for the 

case x = 1. Since, letting x = 1 in (1.1)-(1.5), we have the usual Fibonacci and Lucas numbers, 
the sequences of integers {£/£2)(l)} and {F„(2)(l)} will be denoted by {F„(2)} and {Z^2)} and defined 
as Fibonacci and Lucas second derivative sequences, respectively. 
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From (1.13), the first few values of F^ and Z^2) are 

n 
F(2) 

42) 

0 1 2 3 

0 0 0 2 

0 0 2 6 

4 5 

6 18 

20 50 

6 7 

44 102 

120 266 

8 

222 
568 

9 

466 
1170 

10 

948 
2350 

(1.14) 

A large number of relationships involving F}2\ L^\ F^l\ l£\ Fn and L„ will be exhibited in 
the following sections. Their proofs are not very complicated but they are rather lengthy, so, for 
the sake of brevity, only some of them will be given in full detail. 

2. EXPRESSIONS FOR F( 2 ) AND L(2) IN TERMS OF FIBONACCI 
n n 

AND LUCAS NUMBERS 
Expressions for F^2) and Z^2) in terms of U„ and V„ can be obtained from the definitions 

(1.10) and (1.11) and the Binet forms (1.3)-(1.5). Letting the bracketed superscript (k) denote 
the Jfi1 derivative with respect to x and taking into account the results established in section 2 of 
[4], we can write 

72 
um=d2 <xn-Pn

=dLT<i)=d n(an + p")*-*(<xn-n 
dxz dx dx 

rn _ fl"M(l) A3 K a " + j3w)A-x(a"-/3")](1 )AJ-(AJ)(1)Ka" + j3")A-x(a77»j3")] 

[(n2 -l)Af/JA3 -3xA[nAV„ -xAUJ _ [(n2 -1)A2 +3x2]Un-3nxVn 

Analogously, we have 

dx dx dx A 

= n 
[(a")(I)-(j8")(1)]A-A(1)(a"-/3") 

na" + n/5"-x(a"-/?")/A _n(nV„-xUn) 
A2 A 

Lett ing x = 1 in (2.1) and (2.2) yields 

F(2) = (5n2-2)Fn-3nL„ 

and 
25 

7(2) = <nLn~F
n) 

5 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

whence the expressions for negative-subscripted elements of the Fibonacci and Lucas second 
derivative sequences can be easily deduced, namely, 
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F _ ( 2 ) = ( _ i r i F n ( 2 ) ( 2 5 ) 

and 

^=(-iye (2.6) 
Observe that, from (1.8), (1.9), (2.3), and (2.4), we get the following equivalent expressions for 
F^andZf: 

F^ = {n^-3F^-Fn)l5, (2.7) 
and 

42)=^„(1)- (2.8) 

3. SOME IDENTITIES INVOLVING THE NUMBERS F„(2) AND L™ 

Some simple properties of the numbers F„(2) andZ ,̂2) can be derived from (1.8), (1.9), and 
(2.3)-(2.8). First, let us state the following four identities. 

Identity 1: F™m + (-l)mF^m = LJ** + FJ%> + 2mFmF?\ 

Identity 2: F™, -{-l)mF^m = FmL? + L„F™ + 2nFnF%\ 

Identity 3: Z&, + {-l)m%]m = LJ™ + V 2 } + 21^1%. 

Identity4: ]%m-{-l)mI%lm = nL„F^ +mLmF? + («2 + m2)F„Fm. 

For the sake of brevity, we shall prove only Identity 1. 

Proof of Identity 1: From (2.3) we write 

F<H + ( - l ) f f l ^ = {[5(n + mf -2]Fn+m -3(n+m)Ln+m 

+ (-ir[5(n-m)2-2]Fn_m-3(-ir(n-m)Ln_m]/25 

= {[5(n2 +m2)-2][F„+m +(-irF„_m] + 10nm[Fn+m-(-lTFn_m] 

- 3 » [ 4 + m + ( - i r 4 _ J - 3 / W [ 4 + m - ( - i r Z „ _ J } / 2 5 . (3.1) 

After some manipulations involving the use of (2.3), (2.4), (1.8), and the identities \X-\A [5, 
page 59] a compact form of which is 

Fh+k+(-l) Fh_k = FhLk 

Fh+k ~ ( _ 1 ) Fh-k = LhFk> 

the identity (3.1) can be rewritten as 

F™m +(-l)m^_2i = [5(«2 +m2)FnLm + \0nmFmLn -2FnLm-3nLnLm-\SmFnFJI25 

= Lm[(5n2-2)Fn-3nLn]/25+mFn(mLm-3FJ/5 + 2nmFmLn/5 

= LmF™ + mF„(mLm -FJ/5-2mFnFm 15 + 2nmFmL„ 15 

= LmF^+FnL^ +2mFm(nLn -F„)/5 

= LmF?>+FnI™+2mFmF?\ n 
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Particular cases of Identities 1-4 are 

Identity 5 (m = 1 in Id. 2): F^\ + Fg\ = I%\ 

Identity 6 (m = 1 in Id. 4): Z ^ + 7&\ = F„(1) + («2 + \)Fn = F„(1) +»41) +F„. 

Identity 7 (m = 2 in Id. 2): F„(3 - i£> = 4 2 ) + 2Z£>. 

Identity 8 (n = m in Id. 2): F2<2) = 3FJ$ + LJ%\ 

Identity9{n = mmId. 3): Zg> = 2[LJ™ + (Z£>)2]. 

Identity 10 (n = 2m in Id. 2): F™ = Fm[I$> +4mIJ*T>]+[Lia + (-l)m]/*2). 

7<fe«% 7J (» = 2m in Id. 3): Z&> = 302\L2m + (-lT] + 2Lm(L%)2}. 

Next, we derive 

Identity 12: FJpI$> -$>F™ = [F„(5L(2)+4L^) + 4(-l)"n3]/25. 

Proof: From (1.8), (1.9), (2.7), and (2.8), we have 

/W-/W=[*KW^ (3.2) 
Using the identities 

{F^f = {n2L2
n+F2 -2nF2„)/25, (3.3) 

(^)2 = n2F2, (3.4) 

F^^=n(nF2n-F2)/5, (3.5) 

Fn^ = nF2, (3.6) 

and the identity I12 [5, page 56] [namely, 57̂ ? = Z,2 -4(- l)*] , we find that (3.2) becomes 

7ff >/ff > - 7ff7*2> = ("*% + "F"5 ~ 2n2p2" - »3F„2 + 3n'F2» ~ 3nF" + H F A / 5 

= [n\L2„ -5F2) +n2F2„ + 3rtF2]/25 = [4 ( - l )V +n2F2n + 3nF2]/25 

= \nFn(nLn + 3F„) + 4(-l) V ] / 25 = [5Fjg> + 4nF2 + 4 ( - l ) V ] / 25 

= [F„(5rt2) + 41$) + 4(-1)"«3] / 25. D 

Let us conclude this section by giving the Simson formula analogs for Z^(2) and I$2\ 

Identity 13: (F™)2 -F%F% = ***>-**» ^-^(-^(^-13) 

Identity 14: (L™)2 - / f l / f l = ̂  ~ 2 ^ ~ 4 g ^ 2 ( - l ) V -1) 
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Proof of Identity 14: Using (2.4) and identities I19,120 [5, page 59], 

Fh-kFh+k-FZ = {-ltMF* 

h_kLh+k-L2
h = 5{-\rkFZ, 

we can write 

(4 2 ) ) 2 - 4 M ? i =n\nLn -F„f /25-(n2 -l)[(n-l)L„_1-F„_l][(n + '0L„+1 -F„+l]/25 
= n2(n2L2„ +F„2 -2nF2n)/25-(n2 -\){{n2 - l)[L2„ -5(- l )"] 

- ( » - l ) [ F 2 n - ( - l ) " ] - ( » + l)[F2„ + (-l)"]+JF„2+(-l)"}/25. (3.7) 

After some manipulations involving the use of I12 [5, page 56] and the identities I15, I18 [5, page 
59] a compact form of which is Llh + 2(-l)/2 = Z2, the identity (3.7) can be rewritten as 

(42>)2 - 4,2_\42
+\ = [(2n2 - \)L2

n - 2nF2n +F2 + (-1)" (5«4 - 9n2 + 4)]/ 25 

= [2nX-2«F 2 „ + J F M
2 - I 2 +4( - l ) "+5» 2 ( - l )> 2 - l ) ] /25 

= [2n2L1„ -2nF2n -4F2 +5n2(-l)"(n2 - l )] /25. D 

Simson formula analogs for U^ and V^ may be obtained from (2.1) and (2.2), but their dis-
covery is left to the perseverance of the reader. 

4, SOME SIMPLE CONGRUENCE PROPERTIES OF F™ AND iS^ 

Letting m = 1 in Identity 1 and Identity 3, we obtain 
F%-m = ̂ +2FM (4.1) 

and 
& - & = $>+ 21™, (4.2) 

respectively. From (4.1) and (4.2), the recurrence relations 

F^ = F^+F^2+2F^ (F^ = F<V = 0) (4.3) 

and 
tf) = # ) . + J&+2ZS>1 (42)=42) = 0) (4.4) 

can be readily obtained, where the initial conditions have been taken from (1.14). The relations 
(4.3) and (4.4) allow us to state the following proposition. 

Proposition 1: F^ and L^ are even for all n. 

Further congruence properties of Fw
(2) and Z^2) can be easily established. 

Proposition 2: F„(2) = 0 (mod 6) for n = 0, ± 1, ± 2, ± 4, ± 5 (mod 12). 

Proposition 3: L^ = 0 (mod 6) for n = 0 (mod 3) or n = ±1 (mod 12). 

Proposition 4: I%} = 0 (mod 10) for n = 0, ± 1 (mod 5). 
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The proofs of Propositions 2-4 are similar, so, for the sake of brevity, we shall prove only Propo-
sition 3. 

Proof of Proposition 3: From (2.4) and Proposition 1, it is apparent that we have to find 
conditions for n(nLn-Fn) to be divisible by 3. The first condition is trivial: n = 0 (mod 3). The 
second condition is given by the solution of the congruence nLn =Fn (mod 3). The repetition 
period of the sequences {(Fn)3) and {(Ln)3) (the Fibonacci and Lucas sequences reduced modulo 
3) is 8 (see [2, page 55]), whereas the repetition period of the sequence of naturals reduced 
modulo 3 is 3. Since l.c.m.(3, 8) = 24, we have to inspect the elements of the sequences 
{{nLn)3}^ and {(Fn)3)l3 and look for the equality 

(nLn)3 = (Fn)3. (4.5) 

It is readily seen that (4.5) is fulfilled for n = 0, ± 1 (mod 12). • 

5. EVALUATION OF SOME SERIES INVOLVING F^2) AND L(^ 

In this section, several finite series involving F^ and L^ are considered and closed form 
expressions for their sums are exhibited. For the sake of brevity, only a few among them are 
proved in detail by using some results obtained in [4] and the further identities 

I,K-l),F^2t = -(nLn+i+2F„)/5 = -F<?l, (5.1) 
7=0 

£i(-l) 'Z„_2 / = nFn+x = L% -Fn+l, (5.2) 
7=0 

jrFiF„_i=(nL„-F„)/5 = F„m, (5.3) 
7 = 0 

£ ^ 4 _ , . = ( « + l ) ^ = Z « + i v (5.4) 
7=0 

The proofs of (5.1)-(5.4) can be carried out with the aid of the Binet forms (1.3)-(1.5) and [4, 
(3.1)]. Since they are rather tedious, they are omitted in this context. 

5,1. Results 

The following results have been obtained. 

Proposition 5: £ / ? 2 > = F™ -2(F„%-F„+4 + l). 
7=0 

Proposition 6: £ ^ = L%2 - 2(Z£>3 - Ln+4 + 2). 
7=0 

Proposition 7: £ f f k ( 2 ) = [5n2F2„_2 - (3n + 2)F2n +nF2„_7]/25. 
7=0 V J 

200 [AUG. 



SECOND DERIVATIVE SEQUENCES OF FIBONACCI AND LUCAS POLYNOMIALS 

Proposition 8: £ fa V > = »[(« - 1)Z2„_2 + 2F2„_2 ] / 5. 

We point out that several equivalent expressions for the above sums can be given. For example, 
we have 

Proposition 8': j ^ j / f = 4 - i ( ^ - \ + ̂ 1)+«[3F2„_2 +2(/i-l)(-l)"]/5. 

Finally, the following convolution identities have been established. 

Proposition 9: £i^(1)i7„_, = -F„( 2 ) . 

Proposition 10: £ A(1)-*V-* = - 4 2 ) • 
1=0 ^ 

Proposition 11: £ ^ ( 1 ) 4 - , - = - 4 2 ) + *»(1) • 
1=0 ^ 

Proposition 12: £ i fz , , . , . = | F „ < 2 ) + 2F„(1) + 4 ? + F„. 
/=0 

5.2 Proof's 

Proof of Proposition 5: From (2.7), (1.8), and (1.9), we have 

/=0 3 V/=0 /=0 /=0 J J \i=0 D i=Q J /=0 7 

Using the Binet forms (1.3)-(1.5) (with x = 1), [4, (3.1) and (3.2)] and identity \ [5, page 52] 

Z ^ = ^ + 2 - l , 
/=1 

we find that (5.5) becomes 

4 = 3 
^ 3(" 

V3 V/=o /=o y D V/=o /=o 

1 ' w 

/^2„,«+3 /o,-2 , 

: (4 + 2- l ) 

V^ 
n'a"" -(2n2 +2w-l)«"+ i + (» + l)2«"+1-q^ - « 

V 
«2j3"+3 - {In2 + 2« -1)0 n + 2 + (/i +1)2 p"+l - p2 - p 

-a 
( „~n+2 tn+1 , o \ nan+1-(n + l)ocn+i + oc npn+z-(n + l)pn+l +p 

P2 a 
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\[n2Fn+6 -{In1 + 2n-l)Fn+5 + (n + l)V„+4 -S~[nLn+4 -(n + l)Ln+3 + 4]~(F„+2 -1) 

3 2 
-"2^»+3 - 2"Fn+3 + F„+6 + n2F„+4 - - (nL„+2 - L„+3 )--F„+2-\0 

i r 3 3 
= dn2F„+2-2nF„+3 +Fn+6--{nLn+2 -2L„+2 -F„+2)-F„+2 + -(L„+3 + 2L„+2)-lO 

-l)F„+2 -2nFn+3 +Fn+6 - | [ ( w + 2 )4 + 2 -F„+2] + 3F„+3 -Ws-10 

= i[(»2 - l)F„+2 - 2»F„+3 + 3F^3 + Fn+6 - 3F$2 -10] 

= ^ [ ( 5 » 2 -2)F„+2 -3»Z„+2 -10»F„+3 -6 i„ + 2 + 5 ( 3 ^ +JF„+6)-5o]. 

The equality (5.6) 

(5.6) 

_. _) can be rewritten as 

An=±^5(n+2)2_2y 3(» + 2)L„+2 - 20(« + \)Fn+2 - 10»F„+3 + lOL„+4 

= ̂ ll-^[lOn(2F„+2+F„+3) + l0(2Fn+2-L„+4) + 50] 

= F<& ~[2nL„+3 -2(Ln+4 -2Fn+2)]-2 = F% + l(F„+5-F„-nL„+3)-2 

= ^-2^+^(Fn+4-Fn+3Ln+3)~2 = F^l-2F^3+2F„+4-2. D 

Proof of Proposition 7: From (2.7), we can write 

Bn=i(r>(2)=\\i{")^ -3tfrVi) -tfr> 
Now, from [4, (3.5), (3.10), (3.3)], we have 

i=0^ ' /=(A ' 

£ ( ^ ( 1 ) = ^ x /2 = ^ [ ( 2 » - 1 ) 1 ^ -F2„_J, 

; = 0 V 7 

respectively. Therefore, from (5.8)-(5.10) and (1.8), (5.7) can be rewritten as 

-50} 
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B = nF2n-i+n(n-\)F2„_2-
3(2n-l)L2n.l-3F2l_1 

10 In 

= —[lOnF^ + l0n2F2„_2 - \0nF2n_2 - fc iL,^ + 3L2n_, + 3F2n_, - 10F2„] 

= ^2Fin-2 + K 5 ^ i - 5^ -2 " 34«-i) - 2F2n] 

= ̂ 2F2n.2 + n(F2„_7 - 3F2n)-2F2n] D 

6. FURTHER RESEARCH 
The first and the second derivatives of polynomials (1.6) and (1.7) have been considered in 

[4] and in this paper, respectively. More particularly, several properties of the sequences of 
integers obtainable by taking the above mentioned derivatives at x = 1 have been investigated. 

The generalization to the analogous sequences {F%k)} and 0n
k)}, defined as 

Fm = 
dx 

•U„(x) 
L(«-i-l)/2j 

x=l J=° 

n-l-j f[(n-i-2j) 
i = l 

and 

L^ 
dx> 

•V„(x) 
L(«-fc)/2j 

= I -^-(n-Af[(n-i + l-2j) 

(»>1) 

(«>1) 

(6.1) 

(6.2) 

(with F^k) = 0 for k > 0 and Z ^ = 0 for k > 1), seems to be very interesting and will be the goal of 
a future work. In this section we confine ourselves to offering some conjectures about the prop-
erties of these sequences. 

Conjecture 1: L(k) = «F„(fc_1). 
Conjecture2: 4*> =(n-k + l)L{k^ ~2(tik}x + F^l)). 

Conjecture 3: F^k) = i£> + F% + *f£f1}. 
Conjecture* i f = ti^ + L^ + k ^ . 

Conjecture 5: F£\ +F%{ = L<-k). 

Conjecture 6: F^k) = lSk) = 0 (mod 2) for k > 2. 

Conjecture 7: I$k) = 0 (modrc) for k > 1. 

Moreover, we leave to the reader the proof of the following: 

4") = 4"-1)=n! (»>1), (6.3) 

i ( r - 2 ) = _ « + L w j ( n > 2 ) , 
2(n-l) ' 

L(.n-3)=Jl+l_n] ( 3 ) 

6(/i-l) 

(6.4) 

(6.5) 
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L(n-4)= " + 10 nl (n>4) (6.6) 
24(/i-2) 

Observe that (6.3)-(6.6) hold also for the minimum admissible value v of n, for which one has 
Ẑ ,0) = Lv. Analogous identities for F^ can be stated whence the validity of Conjecture 1 can be 
checked. More generally, all the conjectures and results presented above can be checked against 
the numerical triangles shown in Figures 1 and 2, which have been obtained by (6.1) and (6.2), 
respectively. It must be noted that F^k) = 0 for k > n - 1 , whereas L^ = 0 for k > n. 

\ k 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0 

0 
1 
1 
2 
3 
5 
8 
13 
21 

1 

0 
1 
2 
5 
10 
20 
38 
71 

2 

0 
2 
6 
18 
44 
102 
222 

3 

0 
6 
24 
84 
240 
630 

4 

0 
24 
120 
480 
1560 

5 

0 
120 
720 
3240 

6 

0 
720 
5040 

7 

0 
5040 

8 

0 

0 

2 
1 
3 
4 
7 
11 
18 
29 
47 

1 

1 
2 
6 
12 
25 
48 
91 
168 

2 

2 
6 
20 
50 
120 
266 
568 

3 

6 
24 
90 
264 
714 
1776 

4 

24 
120 
504 
1680 

5040 

5 

120 
720 
3360 

12480 

6 

720 
5040 

25920 

7 

5040 

40320 

8 

40320 

Fig. 1. Triangle Fn
(k) (0 <n,k< 8) Fig. 2. Triangle L(

n
k) (0<n,k<$) 

As indicated at the end of [4], the theory in this paper can be extended to cover Pell polyno-
mials and numbers, and Pell-Lucas polynomials and numbers. In this case, we first replace x by 2x 
in (1.1) and (1.2), differentiate, and then put x = 1. 
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1. RATIONAL CHEBYSHEV APPROXIMATIONS OF ANALYTIC FUNCTIONS 
We proceed to establish the main result of this paper: a general procedure to obtain rational 

Chevyshev approximations of analytic functions. Let f(z) be analytic at zQ. Then, by composi-
tion, g(z) - / (cos z + z0 -1) is analytic at the origin. Hence, we can write 

oo 2w 

g(z) = f(cosz + z0-l) = Y1gV"\0)—- ( L 1 ) 

If an explicit expansion of /(cosz + z 0 - l ) is not available, then successive coefficients in (1.1) 
are found directly from the formula for Maclaurin expansions, i.e., by simply calculating succes-
sive derivatives of (1.1) and setting z = 0. To wit, 

g(0) = f(z0), (1.2) 

*"(0) = - / ' (« , ) , (1.3) 

S(iv>(0) = 3/"(z0) + /'(z0X 0-4) 

^i>(0) = -15/ '"(20)-15/"(20)-/ ' (z0) , (1.5) 

g^(Q) = 105/(iv)(z0) + 210/"'(2o) + 63/"(zo) +/'(*„), (1.6) 

S(x)(0) = -945/W(z0)-3150/ ( i v>(z0)-2205/ '"(Z o)-255/"(z0)-/ ' (U (1-7) 

g™ (0) = 10395/(vi) (z0) + 51975/W (z0) + 65835/(iv) (z0) + 21120/ '"(z0) 
+ I023f"(z0) + f'(z0), (1.8) 

g(xiv)(0) = -135135/(vii)(z0)-945945/(vi)(z0)-1891890/(v)(z0)-12O120O/(iv)(z0) 

-195195/'"(z0)-4095/"(z0)-/ '(zoX (I-9) 
etc.; the derivatives of odd order at the origin being at zero, since g{z) is an even function of z. 

Now, consider the expression 

g(z) « Ax cos z - A2g(z) cos z + A3 cos 2z - A4g(z) cos 2z + • • • 
+ A2s_l cos sz-A2sg(z) cos sz, (110) 

where the Ak's are constants to be determined, and the «in (1.10) is to be interpreted in the sense 
that the Maclaurin expansions of both sides agree through the first 25 terms. 

Note that both sides of (1.10) are, of course, even, as they should be. 
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Observe that the Cauchy product of g(z) and cos mz is 

• " » g^~2k\0)(-l)km2kz2n 

g(z)cosmz = > > ^-^— . (\ i i \ 

Since cos mz is entire, the above Cauchy product will have the same circle of convergence that 
equation (1.1) has (see [4]). 

Using (1.11) to equate powers of z in (1.10) we find, after multiplying through by (~l)n(2n)\, 

(-i)V2M)(o) = A -A2±{-\y-k(fX«"-2k\Q)+22"A, 
k=0 ^ * 

-A±{-\rk2lk{^X(2n-lk\^--^s2nA2s_x 
k=0 V J 

-A,±{-\rkH2^en-u\% (i.i2) 
k=o ^ ' 

where m is the binomial coefficient. 

Letting « = 0,1,2, . . . , - 2 J - 1 in (1.12), we find an algebraic system of 2s equations with Is 
unknowns for the determination of the As. Then, g(z) is found as 

,41cosz + v43cos2z + --- + ,425_1cossz 
1 + A2 cos z + A4 cos 2z + - • • + A2s cos sz 

Now, in equation (1.13), replace the above z by cos-1(z-z0 + 1), and make use of the defin-
ing equation for Chebyshev polynomials of the first kind Tn(z) - cos(n cos_1z), recalling the rela-
tion between f(z) and g(z) to obtain 

f(z) „ AJl(z-z0+l) + AJ2(z-z0+l) + --. + A2s_lTs(z-z0+l) 
r 0 ( r - z 0 + l ) + ̂ 2 r l ( r - r 0 + l ) + . - + ^ r , ( z - z 0 + l ) ' l j 

which gives a rational Chebyshev approximation of f(z) where the only restriction which has 
been assumed is analyticity of the function at z0. 

Power series of the form given in (1.1) are sometimes found Taylor-made in the literature. 
For instance, see [6], 

exp(cosz-l) = l - - z 2 + - z 4 - — / + ••-, (1.15) 
2 6 720 

where the general coefficient is 

t^.^i.l)^i^)^1QL^„.k.r)2iit (L16) 
n\(2n)\ £0 ~ r\ 

where (a)„ = a(a + l)(a + 2)•••(a + n-l), (a)0 = 1, a * 0 , is Pochhammer's symbol. In series 
(1.15), z0 = 0. 
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RATIONAL CHEBYSHEV APPROXIMATIONS OF ANALYTIC FUNCTIONS 

Also, see [5], 

logcosz = |;(-l) ' '(22' '-l)22"-152„z2n/[«(2«)!], (1.17) 
w = l 

where the B2n are Bernoulli numbers (see [1]). In the series (1.17), z0 = 1. 
It will be noticed that the coefficient of fU)(z0) in the sum for g(2/)(0), (/ = 1,2,..., 2s-1, 

7 = 1,2, . . . ,2s-1), exemplified in the list given at the beginning of this section, equations (1.2) 
through (1.9), is also the coefficient of cos jz, evaluated at z = 0, in 

-^(exp(cosz- l ) ) . 

This provides a simple computer algorithm for generating these coefficients. This observation is 
due to one of the authors (Rosenthal). 

2. ADAPTING THE ALGORITHM FOR THE GENERALIZED 
HYPERGEOMETRIC FUNCTION 

The method we have developed enables us to find, in simple fashion, a rational Chebyshev 
approximation for the generalized hypergeometric function pFq{z)\ 

^{al)n{a2)n'-{a )nzn 

pFq(al,a2,...9ap;bl9b2,...,bq;z) = l + 2,l „ / , (2.1) 

where none of the ft's is zero or a negative integer (see [14]). 
The derivative of (2.1) is given by (see [14]) 

a i a ^ ^ p F ( a 1 + l , a 2 + l , . . . , a + 1;^+1,62+1, ...,Z>+1; z). (2.2) 
bA'"ba 

The value of the hypergeometric function at the origin is 1. Hence, choosing z0 = 0, it is quite 
simple to determine successive derivatives of the pFq(z) at the origin to find, with the aid of 
equations (1.2) through (1.9), the values of g(z) and its derivatives at z = 0. 

Note that g(0) and its derivatives at the origin will be given as rational functions of the coef-
ficients of the pF (z). In particular, if these coefficients are themselves rational, then the rational 
Chebyshev approximation will involve only rational coefficients. 

As the reader no doubt knows, many known functions are special cases (at most with a multi-
plicative monomial) of the generalized hypergeometric function. We will choose Bessel functions, 

J"( z ) =T^°F l ("; 1 +";- } z 2) ' <2-3> 
to illustrate the algorithm. 

It will be recalled that we mentioned, following (2.2), that, if the parameters appearing in the 
hypergeometric function are rational numbers, then the A's, the solutions of the system of equa-
tions (1.12), are also rational numbers. This holds true in most of the important cases. For this 
reason, we found it desirable to make use of a program (we chose REDUCE [15]) that did not 
execute the operation of division, so that the 4̂'s would be given in fractional form. 
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We close this section by making â  comment that is probably obvious to the reader. If one 
wishes to go from a given s, the highest order of the Chebyshev polynomials in (1.14), to 5 + 1 in 
the system of equations (1.12), then the matrix of the coefficients for 5 + 1 will be the same as that 
for s, except that two rows and two columns will be added. Hence, knowing the inverse of the 
2s x 2s matrix one can find the inverse of the (2s + 2) x (2s+2) matrix by using the method of 
partitioning in the technique known as "inversion by bordering." 

3. ILLUSTRATING THE ALGORITHM 
We will now give some examples of rational Chebyshev approximations obtained by use of 

the procedure outlined in the previous section. To list the approximations, we will give them in 
the following format: 

f(z) „ azk(pQzn +Plz"-1 +p2z"~2 + ... + Pn_lZ+pn) 
Jy)~ b(qQzm+qlz>»-1+q2z>»-2+.~ + qm_lz + qm) ' 

where k+n<s, and m < s. For each s we will simply list the coefficients in (3.1). 

/ ( 2 ) = Jrp(2) 

5 = 2 

a = 4,k = 0,n = 2,p0 = 2,Pl = 0,p2 = -3; 
b = l,m = 2,q0 = 5,ql=0,q2=-l2. 

5 = 3 

a = -l,k = 0,n = 3,p0 = 69,Pl = 5l,p2 = -36&,p3 = -272; 
b = 1, m = 3, q0 = 23, qx = 17, q2 = 368, q3 = 272. 

5 = 6 

a = 12, k = 0, n = 6, p0 = 57 76742, pl = 0, p2 = -1838 79735, 
p3 = 0, p4 = 10070 89152, p5 = 0,p6 = -7895 61600; 

b = 1, m = 6, qQ = 60 35647, qx = 0,q2 = 3705 82236, q3 = 0, 
q4 = 97163 85024, q5 = 0,q6 = -94747 39200. 

The reader should observe that the magnitude of the coefficients increases quite rapidly with 
increasing s. We shall shortly see that the quality of the approximation also improves very rapidly 
as s increases. 

5=10 

a = 300,Ar = 0,w = 10, 

/V 
Pi. 
P4 
Pf, 
p*: 

PlQ 

= 2114 6357000545 36614, 
= -4 28033 7545019518 86781, 
= 28117868 03665 8189018624, 
= -6194 13498 85928 62663 77984, 
= 31326 83622 73236 69829 38624, 
= -23739 05902 96182 29215 88736; 

P\ 
/V 
/V 
Pi 
Po 

= 0, 
= 0, 
= 0, 
= o, 
= 0, 
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b = \, m = \0, 
?0 = 3272 5661414968 07057, g1 = 0, 
q2 = 9 84654 95148 64179 66500, q3 = 0, 
q4 = 1597 67150 04330 42594 24000, q5 = 0, 
gr6 = 15744170286 74100 8972160000, qn = 0, 
q% = 761762144097 57337 57624 32000, q9 = 0, 

g1Q = -71 21717 70888 54687 64766 20800. 

4. NUMERICAL VALUES AND GRAPHS OF SOME 
RATIONAL CHEBYSHEV APPROXIMATIONS 

In this section we present the results of evaluating the rational forms given in section 3. The 
runs for different values of the parameter 5 will be contrasted with the tabulated values given in 
[1]. The latter will be taken, for purposes of comparison, as exact values. 

z 
0. 
0. 
0, 
0, 
0, 
0. 
0, 
0. 
0, 
0, 
1. 
1. 
1. 
1. 
1. 
1. 
1, 
1. 
1 
1, 
2 
2 
2 
2 
2 
2 

,0 
,1 
,2 
,3 
,4 
.5 
,6 
,7 
.8 
,9 
.0 
.1 
.2 
,3 
.4 
,5 
.6 
.7 
.8 
.9 
.0 
.1 
.2 
.3 
.4 
.5 

Exact values 

M*) 
1.00000 
0.99750 
0.99002 
0.97762 
0.96039 
0.93846 
0.91200 
0.88120 
0.84628 
0.80752 
0.76519 
0.71962 
0.67113 
0.62008 
0.56685 
0.51182 
0.45540 
0.39798 
0.33998 
0.28181 
0.22389 
0.16660 
0.11036 
0.05553 
0.00250 
-0.04838 

00000 
15620 
49722 
62465 
82266 
98072 
48634 
08886 
73527 
37981 
76865 
20185 
27442 
59895 
51203 
76717 
21676 
48594 
64110 
85593 
07791 
69803 
22669 
97844 
76832 
37764 

00000 
66040 
39576 
38296 
59563 
40813 
97211 
07405 
50480 
22545 
57967 
27511 
64363 
61509 
74289 
35918 
39381 
46109 
42558 
74385 
41236 
31990 
22174 
45602 
97244 
68198 

Z 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

/(*) = •/„(*) 
s -

1.00000 
0.99748 
0.98983 
0.97662 
0.95714 
0.93023 
0.89411 
0.84607 
0.78181 
0.69433 
0.57142 
0.38991 
0.09999 
-0.42816 
-1.67272 
-8.00000 
10.60000 
4.53877 
3.31428 
2.79008 
2.50000 
2.31641 
2.19016 
2.09826 
2.02857 
1.97402 

2 

•/<>(*) 

00000 
95397 
05084 
33766 
28571 
25581 
76470 
32984 
81818 
96226 
85714 
59663 
99999 
90140 
72727 
00000 
00000 
55102 
57142 
26446 
00000 
79104 
39344 
98961 
14285 
59740 

00000 
48954 
74576 
23377 
42857 
39535 
58824 
29319 
18182 
41509 
28571 
86554 
99999 
84507 
27273 
00000 
00000 
04082 
85714 
28099 
00000 
47761 
26230 
93771 
71429 
25974 

Z 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

5 = i 

1.00000 
0.99750 
0.99002 
0.97762 
0.96039 
0.93846 
0.91198 
0.88114 
0.84615 
0.80725 
0.76470 
0.71876 
0.66972 
0.61786 
0.56347 
0.50684 
0.44827 
0.38803 
0.32640 
0.26364 
0.20000 
0.13571 
0.07101 
0.00610 
-0.05882 
-0.12359 

3 

•/<>(*) 

00000 
15615 
49376 
58545 
60396 
15384 
04400 
00848 
38461 
75847 
58823 
81580 
47706 
31995 
43875 
93150 
58620 
59978 
33264 
09994 
00000 
77853 
72744 
61531 
35294 
55056 

00000 
24048 
55860 
68055 
03960 
61539 
97800 
99939 
53846 
70970 
52941 
47647 
42202 
47767 
27840 
68493 
68966 
82478 
03326 
90056 
00000 
99314 
72169 
23532 
11765 
17978 

Error at z = 0.1: 1.20E-05 
Error at z = 1.5: 8.512 
Error at z = 2.5:-2.022 

Error at z = 0.1: 5.42E-10 
Error at z = 1.5: 0.005 
Error at z = 2.5: 0.075 
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5 = 6 s = 10 
z 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

Error 
Error 
Error 

• / < > ( * ) 

1.00000 
0.99750 
0.99002 
0.97762 
0.96039 
0.93846 
0.91200 
0.88120 
0.84628 
0.80752 
0.76519 
0.71962 
0.67113 
0.62008 
0.56685 
0.51183 
0.45541 
0.39800 
0.34001 
0.28186 
0.22397 
0.16672 
0.11054 
0.05581 
0.00291 
-0.04780 

at z = 0, 
at z = 1, 
at z = 2. 

00000 
15620 
49722 
62465 
82266 
98072 
48632 
08863 
73359 
36414 
88991 
28437 
39900 
81243 
88740 
42373 
34601 
38749 
77192 
89650 
01919 
95358 
77454 
53758 
01468 
55089 

.1: 0 

00000 
66040 
39576 
38249 
57938 
14225 
17224 
32675 
87120 
25774 
81058 
77746 
87712 
85951 
92599 
87263 
77972 
36571 
20127 
63377 
55021 
25093 
23837 
52507 
75270 
54713 

,5:-6.57E-06 
,5:-5.78E-04 

Z 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

Error 
Error 
Error 

• / < > ( * ) 

1.00000 00000 
0.99750 15620 
0.99002 49722 
0.97762 62465 
0.96039 82266 
0.93846 98072 
0.91200 48634 
0.88120 08886 
0.84628 73527 
0.80752 37981 
0.76519 76865 
0.71962 20185 
0.67113 27442 
0.62008 59895 
0.56685 51203 
0.51182 76717 
0.45540 21676 
0.39798 48594 
0.33998 64110 
0.28181 85593 
0.22389 07791 
0.16660 69803 
0.11036 22669 
0.05553 97845 
0.00250 76834 
-0.04838 37761 

at z = 0.1: 0 

00000 
66040 
39576 
38296 
59564 
40813 
97211 
07405 
50480 
22545 
57967 
27512 
64364 
61514 
74305 
35967 
39523 
46502 
43589 
76972 
47447 
46316 
54003 
13916 
39234 
81732 

at z = 1.5:-4.90E-14 
at z = 2.5:-2.86E-10 

The algorithm is seen to be very stable. As the value of s increases, the quality of the 
approximations improves notably. The last example above, J0(z) for s = 10, gives remarkable 
agreement throughout the range 0 <\z\< 2.5. 

5. ZEROS OF THE DENOMINATOR POLYNOMIALS OF THE 
RATIONAL CHEBYSHEV APPROXIMATIONS 

If in equation (1.10) we let s increase without bound, then both sides will represent the same 
function since their Maclaurin expansions agree for all terms. In this case, equation (1.13) will 
have an infinite series in both the numerator and denominator. The values of z for which the 
series in the denominator converges to zero will be singular points of g(z\ unless the series in the 
numerator also converges to zero there. As equation (1.13) stands, it being an approximate rela-
tion, it is conceivable that the right-hand side may have poles which are not singular points of the 
function g(z). This implies, of course, that the right-hand side of equation (1.14) may also have 
poles which are not singular points off[z). These would be the so-called spurious poles. Let us 
look at this phenomenon somewhat more closely for the example given in Section 3. 

The denominator polynomial of the rational Chebyshev approximation for the Bessel function 
J0(z) corresponding to s = 10 has real zeros at the points 

z = ±0.95778 12766 24968 22726 05909 45945. 
Yet, the graph given in Figure 1, and the table of values of this function do not seem to indicate 
any abnormal behavior in the neighborhood of this point. However, if we analyze the rational 
approximation within +E-18 of this point, then the rational form is seen to undergo marked oscil-
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lations with nearly infinite slope. Nevertheless, as soon as we are within +E-17 of the point in 
question, the erratic behavior disappears and the algorithm again represents the correct values of 
the Bessel function J0 (z). 

Figure 1 
This figure shows the Bessel function of the first kind of order zero, JQ (z) 
plotted against the rational Chebyshev approximation corresponding to s = 10. 
After z = 9, the Bessel function continues to oscillate, while the approximation 
separates from this behavior. The two functions move apart after z = 7. The al-
gorithm approximates the first zero of the Bessel function to be 2.40482 55580, 
and the second zero to be 5.51960 87207. These results compare favorably 
with the correct values 2.40482 55577 and 5.52007 81103 given in [1]. 

We shall now speak of the significance of these roots. The highly localized character of the 
oscillation indicates that the numerator polynomial also has zeros which are very close to the 
zeros of the denominator polynomial. This is indeed the case for all of the examples we studied. 
The numerator polynomial of the s = 10 approximation of the Bessel function, for instance, has 
real zeros at the points 

z = ±0.95778 12766 24968 22150 32913 84229 
which mattch the zeros of the denominator polynomial through seventeen decimal places. The 
oscillatory behavior is then simply a reflection of the computer's arithmetic inability to handle 0/0. 
The algorithm, we see, is a self-correcting one that introduces zeros in the numerator and denomi-
nator polynomials in a way that ensures the correct approximation to the function for a given 
value of s. 

In essence, our method provides a rational approximation Ps(z)IQs{z) such that its Taylor 
expansion about the point z0 agrees with the Taylor expansion of f{z) through the first 2s terms. 
This requirement may be written as 

Qs(z)f(z)-Ps(z) = (z-z0)2s+1fjck(z-z0)k 

and it is equivalent to the criterion for choosing the sth diagonal entry in the Pade table for z0 = 0. 
Because of the proximity of the real zeros of the numerator and denominator polynomials of 

the Bessel function approximation corresponding to s = 10, we chose to divide out the zeros and 
try out the outcome against the tabulated values given before. The resulting expression is: 
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a = 300, k = 0, n = 8 
p0 = 2114 63570 00545 36614.00000 00000 0, p1 = 0, 
p2 = -4 26093 90407 09759 89175.46176 79548 8, p3 = 0, 
p4 =277 26992 9353691260 65928.2780188600 0, p5 = 0, 
/76 = -5939 7828124995 7947189316.44693 04600 0, p 1 = 0, 
p% = 25 878 0063184966 4222173 861.61878 68000 0, 

b = l,m = S 

q0 = 3272 56614 14968 07057.00000 00000 0, ql = 0, 
q2 = 9 87657 02358 79227 26257.6835176325 9, q3 = 0, 
q4 = 1606 73172 24978 36037 41999.24516 09500 0, q5 = 0, 
q6 = 158915 63013 73742 21409 56470.0241510000 0, q1 = 0, 
q8 = 77 6340189554 89925 73188 73022.34814 00000 0 

The tabulated values resulting from this approximation are: 

z J0(z) 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

Error 
Error 
Error 

1.00000 00000 
0.99750 15620 
0.99002 49722 
0.97762 62465 
0.96039 82266 
0.93846 98072 
0.91200 48634 
0.88120 08886 
0.84628 73527 
0.80752 37981 
0.76519 76865 
0.71962 20185 
0.67113 27442 
0.62008 59895 
0.56685 51203 
0.51182 76717 
0.45540 21676 
0.39798 48594 
0.33998 64110 
0.28181 85593 
0.22389 07791 
0.16660 69803 
0.11036 22669 
0.05553 97845 
0.00250 76834 
-0.04838 37761 

at z = 0.1: 0 

00000 
66040 
39576 
38296 
59564 
40813 
97211 
07405 
50480 
22545 
57967 
27512 
64364 
61514 
74305 
35967 
39523 
46502 
43589 
76972 
47447 
46316 
54003 
13916 
39234 
81732 

at z = 1.5:-4.90E-14 
at z = 2.5:-2.86E-10 

These are exactly the same values, to fifteen-decimal accuracy, obtained with the s = 10 
approximation of the Bessel function J0(z) before the roots are divided out!—These results imply 
a substantial saving in computer time since the number of divisions required for a given approxi-
mation is reduced by two. 

A comment is in order, though it is probably obvious to the reader. The results shown in the 
above table were obtained by dividing the numerator polynomial by its real roots, and the denomi-
nator polynomial by its corresponding real roots. Slightly better accuracy is obtained (though the 
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above table does not indicate it) if we divide both numerator and denominator polynomials by 
either the real roots of the numerator or the real roots of the denominator since, in this case, all 
we are doing is dividing numerator and denominator of the s = 10 approximation by a common 
factor. 

It is worth emphasizing that the rational Chebyshev approximations our algorithm provides 
are not optimal, in the sense that error does not remain constant within the range of approxima-
tion. Rather, error is least when one is sufficiently near the point z0 and the quality of the approx-
imation deteriorates as we move away from the point in question. The importance of the method 
lies, we believe, in the extreme simplicity with which it can provide rational Chebyshev approxi-
mations of any accuracy for a wide variety of functions. These nonoptimal approximations may 
easily be used to obtain optimal Chebyshev approximations. Several algorithms have been devel-
oped to this effect. 

Let us speak now of the origin of the problem that has occupied us in the last five sections. 

6, SOME HISTORY 
About one hundred and twenty-five years ago, the Russian mathematician Pafnuty Lvovich 

Chebyshev (1821-1894) set himself the problem of finding the best rational approximation of a 
continuous function specified on an interval [a, h]. Specifically, he wanted to determine parame-
ters p0,pl9 ...,/?„; q0,ql9...,qm in the expression 

qaxm+qxxm 1+-+qm 

where m and n are given, and s(x) is a function continuous on [a, b], so that the deviation of Q(x) 
from a chosen continuous function f(x), 

# e = max| / (x)-e(x) | (6.2) 
^ Q<X<b 

shall be a minimum. 
Chebyshev established the beautiful existence theorem [6; 2]: 

The function P(x), which deviates least from the function /(*) than does any 
other function of the type exemplified by equation (6.1) is completely character-
ized by the following property: If the function can be expressed in the form 

P(x) = s(x)— - u-g~ = s(x) 

where 0 < d < /?, 0 < T < m,b0^0 and the fraction j ~ is irreducible, then the 
number N of consecutive points of the interval [a,b] at which the difference 
f(x)-P(x), with alternate change of sign, takes on the value Hp, is not less 
than m + n + 2-d, where d- min(cr, T); in case P(x) = 0, then N>n + 2, 

Chebyshev did not provide a constructive approach to the problem of finding the rational 
approximations whose existence is guaranteed by the above theorem. He, and E. Solotarev did 
work out one example, based on the theory of Jacobian elliptic functions, that meets the require-
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ments of the theorem [16]. Since that time, though, many people have sought to obtain an expli-
cit method of attack for determining these rational approximations [8; 9; 10]. The problem is 
especially complicated by the fact that the class of continuous functions is a very broad one. Most 
of the methods of attack that have been developed deal with a more restrictive class of functions: 
bounded variation, analytic, or the like. 

A substantial advance was made by H. Pade in his now classic thesis of 1892 [13]. Pade's 
method, mentioned briefly at the end of the last section, yields excellent rational approximations 
of analytic functions by means of solutions of a system of linear algebraic equations [18]. The 
method is an extension of some earlier work of Frobenius [6]. However, it does not provide 
rational Chebyshev approximations. It is known that rational forms in Chebyshev polynomials 
yield better accuracy than ordinary rational forms [16]. 

Maehly gave a method for obtaining rational Chebyshev approximations of functions of 
bounded variation on the unit interval [12; 16]. It has the substantial disadvantage of requiring 
that the given function be first expanded in a series of Chebyshev polynomials. If the function is 
anywhere complicated, these expansions may be devilishly hard to obtain. 

To the best of our knowledge, no method is known for obtaining rational Chebyshev approxi-
mations that is better, more direct, or more powerful than the one we have presented in this 
paper. The method was discovered by one of the authors (Castellanos) as a result of his work on 
formulas to approximate n while in preparation of "The Ubiquitous n," Math. Magazine 61.2-3 
(April-June 1988). The delicate and time-consuming task of carrying the algorithm into a work-
ing computer program was done by the other author (Rosenthal). 
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INTRODUCTION 
A palindrome is a finite sequence of positive integers which is unchanged when written in 

reverse order. Sometimes such sequences are referred to as symmetric (see [3] and [5]). The 
objective of this paper is to show how some simple properties of palindromes can be used to 
obtain results in elementary number theory. We give new elementary proofs of known results and 
what appear to be some new results. 

In §1 we prove some elementary properties of palindromes and their associated finite contin-
ued fractions. In §2 we apply the properties established in §1. The reader will note that the 
application of Proposition 4 of §1 constitutes a method for obtaining the results of §2. 

1. ELEMENTARY PROPERTIES OF PALINDROMES 

Let n be a nonnegative integer. We call a sequence of positive integers a = {a(0), a(l), ..., 
a(n)} of length /i + l a palindrome if a(i) = a(n-i) for 0 < i < n. 

Example: Let n be a nonnegative integer and define the sequence a by 

for 0 < / <n. The condition for a to be a palindrome is the well-known binomial coefficient 
identity (»)=(/_,.). 

We are especially interested in sequences of positive integers generated by the division 
algorithm (see [1]). Explicitly, if P and Q are relatively prime integers such that 1 < Q < P. Then 
(see [1], p.325) P and Q uniquely determine two sequences of positive integers a and r as 
follows: 

P = a(0)Q + r(0), 0 < r(0) < g; 
0 = a(l)r(O) + r(l), 0<r(l)<r(0); 

r(i - 2) = a(i)r(i -1) + r(/), 0 < r(i) < r(i -1); (1) 

r(n -3) = a(n - \)r(n -2) + r(n-l\ 1 = r(n -1) < r(n - 2); 
r(n -2) = a(n)r(n -1) = a(n). 

Since a{ri)-r(n-2)> 1, we have a(n)>2. We call a the sequence of quotients and r the 
sequence of remainders determined by the pair (P, Q). For any integer c we define 

The equations in (1) are equivalent to 
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A r(i-\)\ r{i-2)\ fQY0<i<n 

where r(-2) = P, r ( - l ) = <2, and r(n) = 0. Hence 

Aa(0)Aa(l) ''' Aa(n)[()j ~ \^QI ( 2 ) 

Let a be any sequence of positive integers of length n +1. If we define 

Pt Q 
P 0 ) ~ (/) «0'-l) °" ^«(0)' w) 

then it is known (see [6]) that 

P / /a=[a(0) ,a( l ) , . . . ,a (w)]=a(0) + -
a(l) + -

a(2) + -. 1 (4) 

a(i-l)+ l 

a(i) 

a finite simple continued fraction. The elementary properties of continued fractions that we need 
can be found in [1]. In what follows we denote the greatest integer function by [ ]. 

Lemma 1: Let a = {a(0), a(l),..., a(n)} be a sequence of positive integers of length w + l> 2. 
If 

A A •. • A -1 n &" ) 
^ain^ain-l) Az(0) ~ ^p^ Qn__J> 

then Pn I Qn is not an integer and \Pn IQJ = a(0) 

/Vw/ ' Using (3) and (4), we have Pn/Q„ = a(0) +1 / [a(l), a(2),..., a(w)]. So we need 
only show that [a(l), a(2),..., a(w)]> 1 to obtain the result. To that end, we note that because 
w + 1 >2, [a(l),a(2), . . . ,a(w)]>a(2)> 1. Thus, 

K l ) , a(2),..., a(/i)] = a(l) + l/[a(2), a(3),..., a(n)]> a(l). 

Now, since a(l) > 1, the conclusion follows. D 
The following Lemma, accounting for a difference in notation, can be found as an exercise in 

[6, p. 251]. Since we use it in an essential way, we provide a proof for the sake of completeness. 

Lemma 2: If a and fi are two sequences of positive integers of lengths n + l and /w + 1, respec-
tively, then 

Aa(n)Aa(n-l) • • • 4z(0) = Af3(m)Ap(m-l) ''' A0(O) (5) 

if and only if n - m and a = /3. 

Proof: We will proceed by induction on the length of the sequence a. If n +1 = 1, 
thenw = 0 and 
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a ( 0 ) *)~A A -A -(P» 
Qn-1 

Thus, a(0) = Pm I Qm is an integer. So, by Lemma 1, m < 1. Now detffj *1 ] = - 1 , for any integer 
c, where det( ) is the determinant. So, if m = 1, we would have -1 = det(^( 0 ) ) = d e t ( ^ 1 ) ^ 0 ) ) 
= 1. Thus, m = 0 and a(0) = /?(0) 

Now assume our result is true when the length of a is less than n +1, with w > 1. We first 
note that m > 1. Because, if m = 0, we argue as above, with the roles of a and /? interchanged, 
and conclude that n = 0. Multiplying both sides of (5) on the left by 4 , we have 

A A --• A - A A ...A - I m+l ^m 

Because (a(0), a(l),..., a(w), 1} and {j3(0),fi(l),...,fi(jn), 1} both have length bigger than 2, we 
have by Lemma 1 that a(0) = [[ i^+2 I Qm+2 1 = A0)- Finally, multiplying both sides of (5) on the 
right by the inverse of Aa^, we have 

Aa(n)Aa(n-\) "* 4z ( l ) ~ ^J3(m)^j3(m-1) "* ^/?(1)-

Hence, by the induction hypothesis, {a(l), a(2),..., a(n)} = {/?(l),/?(2), ...,/?(m)} and, thus, 
w = mand a = /?. D 

Proposition 1: If a is a sequence of positive integers of length n + l, then a is a palindrome if 
and only if the matrix 

is symmetric. 
Proof: Since each Aa^ is symmetric, the transpose of (6) is 

So by Lemma 2 the result follows. • 

Proposition 2: If a is a palindrome of length n + l and 

A*(w) a(«-l) ""* ̂ a(O) = l p " n " • ( ' ) 

Then 

a2=(- ir (modP„). 
Proof: By Proposition 1, i^_x = Qn. Since the determinant of Aa^ is -1 for all z, we have, 

by taking determinants in (7), (-l)w+1 = PnQn_x - Q? and, thus, Q2 = (-1)" + PnQn_v D 

Now we give an elementary proof of an easy extension of a result which can be found in [3]. 

Proposition 3: Let P and Q be integers such that 1 < Q < P and Q2 = ±1 (mod P). Then there 
exists a palindrome a of length n + l with 

A A . . . /f 
(Q Qn-l) 

where g2 = (-1)" (mod P). Further, a is uniquely determined by P and Q. 
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Proof: Let a be the sequence of quotients in the division algorithm determined by the pair 
(P,Q). Set 

Aa(n)Aa(n-\) " Az(0) ~ I pn Q n \ (8) 

Taking the transpose in (2) we have (l 0)Aa^Aa^n_^ -• Aa^ = (P g). Thus, Pn~P and 

Taking determinants in (8), we have (-1)"+1 = •?„&_, - g 2 and, thus, Pn_xQ = (-1)" + PQ,_V 

Further, because Q2 = ±l (modP), we have 

P„_^- (± l ) ( - l ) "e (modF) . (9) 
Next, because 

A A ---A -1 ^ Pn~l I 
Az(0) Az(l) Aa{n) ~ ]^Q g J ' 

we have PI Pn_x = [ a(n), a(n -1),. . . , a(0)] > a(n). We know, from (1), that a(n) > 2 and, thus, 
Pn_x < P / 2. Now, if Q < P12, then (9) implies that Q = Pn_l. So, by Proposition 1, a is a palin-
drome. 

Suppose P / 2 < g < P. Then 1 < PIQ < 2 and a(0) = [P / g ] = 1. Next, if we multiply both 
sides of (8) on the left by 

AA A-1 -f1 ° 
we have 

Taking the determinant, we have P ( g - Q„_x) -(P- P„-X)Q = (-1)" and, so, 

(P-Q)P„_1-P(P„_l-qn_1) = (-iy+\ 

Hence, (P - g ) ^ = (-1)"+1 (mod P). Because P-Q = -Q (mod P), we have (P - Qf s ±1 
(mod P) and, thus, 

P ^ - - (± l ) ( - l ) " + 1 (P -0 (modP). (10) 

Since P - g < P12 and Pn_x < P12, (10) implies that P - g = P ^ . That is, Q = P - Pn_r and, so, 
by Proposition 1, {a(0), a(l),..., a(n -1), a(w) -1,1} is a palindrome. 

Now we prove uniqueness. Let a be the palindrome constructed above and (3 another of 
length m +1 with 

4Z(H)4Z(«-1) * * * 4z(0) ~\Q Q I anC^ ^(m)^(w-l) ' ' ' 4 (̂0) ~ I g R 

Taking determinants, we have P g ^ - g 2 = (-1)"+1 a n d P P - g 2 = (-If+1. Thus, g 2 ^ ( - l ) " 
(mod P) where, because P > 2, we must have (-1)" = (-l)m. Hence, P(g„_i - P ) = 0 and, thus, 
R - Qn_x. Finally, by Lemma 2, a - /?. D 
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Corollary 1: Let P and Q be integers such that 1< Q < P and Q2 = ±1 (mod P). If a is the 
sequence of quotients in the division algorithm determined by the pair (P, Q), then a or {a(0), 
a(l),.. . , a(n -1), a(ri) -1,1} is a palindrome. 

Proof: It follows from (1) that a{ri) > 2. Further, the palindrome referred to in Propositioin 
3 was shown to be either a or {a(0), a(l),..., a(n -1), a(n) -1,1}. • 

Proposition 4: Let a be a sequence of positive integers of length n +1 and n a nonnegative inte-
ger such that 

^a{n)Aa(n-l) ''' ^a(O) = \ p Q P ^ ^ 

where Q2 = ±1 (mod P) and 1 < 2 < P, with P > 2. Then we have exactly one of the following 
possibilities: 

(a) a is a palindrome and Q2 = (-1)" (mod P). 
(h) a(n) = 1, {a(0), a(l),..., a(n - 2), a(n -1) +1} is a palindrome, and Q2 = (-l)n+l (mod P). 
(c) a(w)>l, {a(0),a(l) , . . . ,a(w-l) ,a(w)-l , l} is a palindrome, and 0 2 = (-l)"+1 (modP). 

Proof: If a(w) > 1, then a is clearly the sequence of quotients in the division algorithm for 
the pair (P,Q). Hence, by Corollary 1, either a or {a(0), a(l),..., a(w-l) , a(w)-l , 1} is a 
palindrome. Now, if a is a palindrome, then by Proposition 2, g2 - (-1)" (modP). Next, if 
{a(0), a(l),. . . , a(n -1), a(n) -1,1} is a palindrome, then multiplying both sides of (11) by 

we have 

AA A -A -( P Q 

So, by Propositions 1 and 2, P - Pn_x = Q and Q2 = (-I)"4"1 (mod P). 
If a(«) = 1, then multiplying both sides of (11) on the left by 

we have 

A A'1 A~l-(l °) 

^a(n-l)+l^a(n-2) ''" 4z(0) ~ I P - P Q-Q \ 0-%) 

So, again, {a(0), a(l),..., a (n -2 ) , a ( ^ - l ) + l} is the sequence of quotients in the division algo-
rithm for the pair (P, Q). Hence, by Corollary 1, {a(0), a(l),..., a(n - 2), a(w -1) +1} or a is a 
palindrome. If w = l, we understand {a(0), a(l),..., a(/?-2), a ( ^ - l ) + l} to be {a(0) + l}. 
Now, if {a(0), a(l),..., a(n-2), oc(n-l) + l} is a palindrome, then (12) and Proposition 2 give 

g 2 ^( - l )" + 1 (modP) . 
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Next, we show that two of these possibilities cannot hold at the same time. Clearly (b) and 
(c) cannot both be true. If (a) and (b) or (a) and (c) hold, then Q2 = (-1)" (mod P) and Q2 = 
(-lf+l (mod P). That is 1 = -1 (mod P), which is impossible since P > 2. D 

If a is a sequence of positive integers of length w + 1, we obtain a sequence a* of length n by 
deleting a(0). Specifically, a*(z) = a(i +1) for 0 <z < n -1. That is, a* = (a(l), a(2),..., a(n)}. 
Further, if a(n) > 1, we form a sequence a* of length w + 1 by deleting a(0) and replacing a(n) 
by {a(w)-l , l}. That is, a* = {a( l ) , . . . , a («- l ) ,a («) - l , 1}, where a*(z) = a(z + l) for 0<z< 
n - 2, a*(w ~ 1) = a ( w ) ~ 1 a n^ cx*(w) = 1. 

Proposition 5: If a and a* are both palindromes, then a(i) = a(0) for 0<i<n. 

Proof: If 0 < i < n-1, then a(z +1) = a,(z) = a„(w - 1 - i ) - a(i). D 

Proposition 6: If a(w) > 1 and both a and a* are palindromes, then we have two possibilities: 
(a) If n is odd, then a(0) = a{ri) - 2 and a(z') = 1 for 1 < i < n ~ 1. 
(&) If w is even, then a(0) = a(w) = c> 1. Further, a(2&-l) = l f o r l < £ < w / 2 and a(2k) = 

c-lforl<k<n/2. 
Proof: If 0 < z < w - 2, then a*(z -1) = a(z) = a(n -z) = a*(w - z -1) = a*(z +1) = a(z + 2). 

Hence, "l=a*(7z) = a*(0) = a(l) = a ( 2 t - l ) for \<k<\nl2l Further, a(2) = a(2Jt) for 
1 < k < \n 12J, where a(2) = a*(l) = a*(w -1) = a(w) - 1 = a(0) - 1 

So, if n is even, we have proved (b). If n is odd, thena((w -1) / 2) = a(n - (n -1) / 2) = 
a((« + l)/2). Since one of ( « - ! ) / 2 and (n + l) /2 is even and the other odd, we must have 
a(i) = 1 for 1 < z < n -1. Further, since 1 = a(2) = a(0) - 1 , we also have a(0) = a{n) = 2. D 

2. APPLICATIONS 
In what follows, we sill prove four propositions. Propositions 7 and 10 are known results 

and we give new elementary proofs. Propositions 8 and 9 are of the same general type as 
Proposition 7 and are apparently new. 

We define a sequence of polynomials as follows: JX(X) = 0, J0(X) = 1 and Jk+1(X) = 
XJk(X) + Jk-i(X) for k > 0 or, equivalently, for & > 1, 

Remark 2: It is easy to see that {Fk = Jr .̂_1(l)|A: > 0} is the sequence of Fibonacci numbers. 

The following is an elementary proof of a result of Owings (see [2]). 

Proposition 7: If P and Q are integers with 1 < Q < P, Q2 = -1 (mod P) and P2 = -1 (mod 0 , 
then there exists an odd integer k such that 

Q = Fk and P = Fk+2, 

where i^ is the kih Fibonacci number. 
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Proof: If Q = 1, then Q2 = -1 (mod P) and P > Q implies that P = 2. Hence, Q = Fl and 

P = P3. Next, if Q = 2, then g2 = - 1 (mod P) implies that P = 5. So Q = F3mdP = F5. 
From now on, we will assume that Q > 2. By Proposition 3 there is a palindrome a of even 

length w +1 such that 

^ ^ ...̂  -fp e 
^ia(«)/1a(»-l) ^a(O) " " I n n 

and Q2 = (-1)" (mod P). We will prove that a* is a palindrome. To that end, we note that 

A A A -( Q P-oc(0)Q 

Since P - a(0)g = P (mod Q) and P2 = -1 (mod 0 , we have that (P - a (O)0 2 = -1 (mod Q). 
Now, because Q > 2, we have by Proposition 4 exactly one of the following possibilities: 

(a) (a(l), a(2),..., a(w)} is a palindrome with ( P - a(O)02 = (-1)""1 ( m o d 0 ; 
(b) a(«) = land{a( l ) , . . . , a ( / i -2) ,a( / i - l ) + l} is a palindrome with ( P - a ( O ) 0 2 =(- ! )" 

(modg); 
fiq) a(#) > 1 and a* = {a(l),..., a(w -1), a(/z) -1,1} is a palindrome with (P - a (O)0 2 = (-1)" 

(modg). 

The case (a) cannot hold since n-\ is even, and the two congruences, P-oc(0)Q = P 
( m o d 0 and P2 = - l ( m o d 0 , imply that l = - l (mod0 . Contradicting that Q>2. Now, 
suppose oc(n) = 1 and {oc(l),..., oc(n - 2), a(n -1) +1} is a palindrome. Since n is odd, it follows 
that n > 2 and, thus, a(n -1) = a(l) = a(n -1) +1 yields a contradiction. Hence, we have shown 
that a{ri) > 1 and a* = {a(l),..., a(n -1), a(n) -1,1} is a palindrome. 

Because a and a* are both palindromes and n is odd, we have, by Proposition 5, that 
a(0) = a(?i) = 2 and a(/) = 1 for 1 < i < n -1. Hence, 

But, from (13) we have 

Aa{n)Aa(n-l) ''' 4x(l) ~ A2 Ax A2. 

1 "u °j _U-2(i) ^-3(i)J-
Hence, 

^ ^ " " ^ - A (J»-iW ^ -2(1)L _f-/n+3(l) -/„+i(l)l 

We have already observed that Fi+1 = JJ(1) for / > 0. Thus, the result is established. • 

Proposition 8: If P and Q are integers with 1 < Q < P, P2 = ±1 (mod Q) and g2 = -(±1) (mod 
P), then there exist integers k > 0 and c > 1 such that .4(c) = Q and .4+1(c) = P. 
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Proof: If Q = 1 then, for any P > 1, we have / 0 (P) = g and ̂ ( P ) = P. Next, if g = 2, then 

Q2 = -(±l)(modP) implies that P = 3 o r P = 5. If P = 3, we have J2(l) = 2 and J3(l) = 3. For 
the case P = 5, we have ,/1(2) = 2 and J2 (2) = 5. 

From now on, we will assume that Q>2. By Proposition 3, there is a palindrome a of 
length n + l such that 

A A -A -(P Q 

where g2 = (-1)" (mod P). We will show that a* is a palindrome. To that end, we note that 

A A A -( Q P-<*(0)Q 
Mn)Aa(n-D ''' 4*(1) " [Q^ Q _ OC^Q^ 

Now, since P - a(0)Q = P (mod Q), it follows that (P - oc(0)Q)2 = -(-1)" (mod Q). Therefore, 
because Q > 2, we have, by Proposition 4, exactly one of the following possibilities: 

(a) «, = {a(l),a(2),...,a(w)} is a palindrome with ( P - a ( O ) 0 2 = (-1)""1 (mod 0 ; 
(b) a(w) = land{a( l ) , . . . ,a (w-2) ,a(w-l) + l} is a palindrome with ( P - a ( O ) 0 2 = (-!)" 

(modg); 
(c) a(w)>land{a(l) , . . . ,a(w- ' l ) ,a(w)-l , l} is a palindrome with ( P - a ( O ) 0 2 =(-1)" 

(modg). 

If either (b) or (c) holds, it follows, by Proposition 3, that(P - a(O)0 2 = (-1)" (mod 0 . Since 
P-a(0)Q^P(modQ) andP2 =-(-l)n (modg), we have (-1)" = - ( - ! ) " ( m o d 0 , but Q>2 
makes tMs impossible. So a* is indeed a palindrome. 

By Proposition 5, a(i) = a(0) = c for 0 < i < n. That is, a = {c, c,..., c). Thus, 

and hence our result. D 
We need another sequence of polynomials as follows: H_X(X) = 0, H0(X) = 1 and, for k > 0, 

#fc+i W = ( * + 1)#* (x) - Hk-i(x)- Equivalently, for k > 1, 

1 Oj -^ k _ , (J f ) -Hk_2(X)) 

Proposition 9: Suppose P and Q are integers with 1 < Q < P, Q2 = 1 (mod P), P2 = 1 (mod 0 , 
and P^Q + 1. Then there exist integers k and c such that Hk(c) = Q and Hk+l(c) = P. 

Proof: By Proposition 3, there exists a Palindrome a of odd length n + l such that 

'P 2 4z(«)4z(#i-i) • • • 4*(0) - \Q g^_i 
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We will prove first that a* is also a palindrome. To that end, we observe that 

A A A -( Q P-a(0)Q } 
^(„)^(„-i) - Aam ~ [Q^ Q-a(0)Q„J 

Now Q > 2 since, otherwise, Q2 = 1 (mod P) implies that P = 3. That is, P = Q + l, a case we 
have excluded. Next, P - a(0)Q = P (mod Q) gives (P - a(0)g)2 = 1 (mod 0 . Now, since 
Q > 2 and (P - oc(0)Q)2 = 1 (mod Q) we have, by Proposition 4, exactly one of the following 
possibilities: 

(a) (a(l), a(2),..., a(n)} is a palindrome and (P - a(0)Q)2 = (-If-1 (mod 0 ; 

(b) a(n) = 1, (a(l), ..., a(« -2 ) , a(«-1) +1} is a palindrome and (P- a (O)0 2 = (-1)" (mod 

0; 
(c) a(n)>l,a* = {a(l),...,a(n-l),a(n)-l,l} is a palindrome and (P-a(O)g) 2 = (-!)" 

(rnodg). 

If (a) were true, we would have (P- oc(0)Q)2 = -1 ( m o d 0 , since « - 1 is odd. However, 
(P - oc(0)Q) = P (mod Q) and P2 = 1 (mod 0 give 1 = -1 (mod 0 , contradicting the conclusion 
that Q > 2. 

Next, if (b) is true and n>2, with a and {a(l),..., a( / i -2) , a(n-l) + l) both palindromes, 
implies that a(n -1) = a(l) = a(« -1) +1, which is clearly impossible. So, if (b) is true, we have 
n - 2 and, thus, a = {1, oc(l), 1}. However, in this case, Q = a(l) +1 and P = a(l) + 2, a case we 
have excluded. Hence, a{ri) > 1 and a* is a palindrome. 

Since a and a* are both palindromes and n is even, we have, by Proposition 6, that a(0) = 
a(n) = c>l,l = a(l) = a(2k-l) for \<k<nl2 and a(2£) = c - l for \<k<nl2. If n = 2, 
then 

^ J ...̂  - ^ ^ -fc+1 -^Y1 °] 
An easy induction on n gives, in general, that 

U ->) 
Now, recalling that (x+x ~^\= {"'^ Z^",(

(x))we h a v e 

A A -A - M ^ -Hnn(X)\(\ 0)_(H„/2+l(c) Hnl2{c)\ 

and thus our result. D 

Remark 3: In the above result c = | P / 0 . Furthermore, by Leme's Theorem (see [4]), 
«<51ogl o(0,andsoA:=«/2<(5/2)log l o(0<(5/2)log l o(P/2) . 

A A - A - f C + 1 -T2)'2' 
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If D is a nonsquare, positive integer, then it is known (see [1]) that 0 = [JD] + J~D has an 
infinite purely periodic continued fraction expansion. Let/? be the smallest period of 0. Our 

notation is 0=[a0, a1?..., a J . We now give an elementary proof of a known result (see [5]). 

Proposition 10: We claim that {ax,a2,..., ap_x} is a palindrome. 

Proof: Set a={a(0),a(l) , . . . ,a(/?)}, where a(i) = alforO<i<p-l and a(p) = a0. 
Setting 

A A ---A -\PP~1 @P~1^ 

we have (see [1], p. 329) 

OP* l+P» 2 
e = [a(0),a(l),...,oc(p-ll9] = - ^ ^ - . 

eQp_i+Qp_2 

Thus, 6 is a root of the quadratic polynomial equation 

f(X) = Qp_,X2 + (Qp_2 - Pp_x)X- Pp_2 = 0. 

However, the minimal polynomial of 0 over the rational numbers is 

m(X) = X2- a(Q)X + (a(0)2 - AD)2 - AD) 14. 

Because m(X) divides the polynomial f(X), we have Qp_2 - Pp_x = -0^(0)2^. That is, 

PP-i = ®(o)qP-i+QP-2 = QP, 
where 

P (? ^ 
2P-i) 

A A • • • A -1 p p 

So, by Proposition 1, a = {a0, a1? . . . , a r l , a0} is a palindrome. Thus, it follows that {a1? ...,ap_{} 
is a palindrome. • 

Remark 4: If P is a positive integer such that P > 1 and P is a product of primes congruent to 1 
modulo 4 or twice such a product, then there exists an integer Q with 1 < Q < P12 and Q2 = -1 
(modP). By Proposition 3, there is a palindrome « e = {a(0), a(l),... , a(w)} of even length 
LQ = n +1 such that P IQ = I>(0), a(l),..., a(n)]. We define the index of P by 

7(P) = min{ZBie}. 

It is clear that for any integer of our type, I(P) = 2 if and only if there is a positive integer m such 
that P = m2 +1. The following seem to be natural questions: 

(1) Are there infinitely many integers P of index /, for / an even integer bigger than 4? 
(2) Let Mbe a positive integer such that M>2. Are there infinitely many primes P, with 

P = \ (mod 4) and I(P)<M1 
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In (1) we have restricted ourselves to I(P) > 4 , because the curious reader will find it easy to 
produce an infinite number of P with I{P) = 4. Further, (2) simply generalizes the question: "Are 
there infinitely many primes of the form m2 +1? 

Remark 5: In Proposition 7 we describe all pairs of positive integers P and Q with P2 = 1 
(mod Q) and Q2 = 1 (mod P). This problem was posed by Tom Cusick of the University of Buf-
falo at a meeting of the Seaway Number Theory Conference in May 1991. We understand that he 
also has a description by a different method. 
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1. INTRODUCTION 
The Fibonacci sequence applies to many diverse areas in science and technology [1,2]. In a 

book review by Brother Alfred Brousseau, a significant observation was made which will surely 
be true for all time: "Enter the magic door which leads to the wonderful world of Fibonacci" [3]. 
The author found the magic door and is overwhelmed at the beauty of the landscape. This paper 
will present those findings that helped the author locate the "magic door" and to be fascinated by 
what is inside. Many other investigators have significantly helped light the way for these findings 
[5, 6, 7, 8]. 

2, PMELIMMAMIES 

In Figure 1(a), a two wire transmission line having a characteristic impedance of Z0 ohms is 
shown. The input terminals are marked a-b. If a resistive load whose value is chosen equal to 
the characteristic impedance is placed at a quarter or odd quarter wavelength from the input ter-
minals, the input impedance will be equal to the characteristic impedance and will result in a 
"matched" line condition. In fact, as long as the load is matched to the characteristic impedance 
of the line, it can be placed anywhere along the line without changing the input impedance. From 
an ideal point of view, this is a desired condition; but, it is not achieved in practice whenever two 
or more loads are connected to the line. At this point, it will be practically advantageous to 
normalize all connected loads to the characteristic Impedance of the line. All connected loads 
equal to Z0 will have the normalized value of 1 or unity and will be referred to as unit loads. If an 
actual load value is needed, the normalized value can be multiplied by Z0 ohms. The next step, as 
well as succeeding steps, will be to periodically "load" the line at quarter wavelength % or odd 
quarter wavelength intervals with unit loads and to determine for each load the resultant input 
impedance.- Figure 1(b) shows two loads connected across the line. The second load and asso-
ciated quarter wavelength section of line places in parallel with the first unit load another unit load 
which when combined on a parallel resistor basis results in an equivalent load of one half unit. 
This equivalent load at the input terminals produces a value of two unit loads because of the 
inversion properties of a quarter wavelength section of line. The two unit loads and the input 
value of two are coincidental. If a third unit load is connected across the line at a quarter wave-
length from load 2, a total of three loads are connected and the length of the line is three quarter 
wavelength long relative to the input terminals a-b. This is shown schematically in Figure 1(c). 
Since the previous results showed that the input impedance is equivalent to two unit loads, this 
places two unit loads In parallel with one unit load which results in an equivalent load of %. At 
the input terminals, the input impedance becomes %. If this process is continued for W sections, 
it is found that the normalized input impedance of a periodically loaded transmission line is equal 
to the ratio of two Fibonacci numbers, namely, Fn+\/F . This is shown in Figure 1(d). Such a line 
will be referred to as a "Fibonacci Transmission Line." And if this line is extended in the limit to 
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large values of"«," the normalized input impedance is found to be the "golden ratio," namely, 
1.618... [8]. 
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FIGURE 1 
Periodically Loaded Transmission Line 
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3. ANALYSIS 

There are many important parameters associated with every transmission line. Some of these 
parameters, such as the normalized input impedance, reflection coefficient, along with voltage and 
power ratios are shown in Table 1. Importantly, all parameters are functions of the Fibonacci 
numbers and related functions. 

TABLE 1 
Fibonacci Transmission Line Parameters 

n 
ZIN 
Zo 

T 

VSWR 
VlN 
vs 

PIN 

PA 

1 

1 

0 

1 
1 
2 

1 

2 

2 
I 
3 

2 
2 
3 

4 . 1 
^ 9 

3 
3 
2 

1 
5 

3 
2 
3 
5 

4 . A 
^ 25 

4 
5 
3 

2 
8 

5 
3 
5 
8 

^ 64 

5 
8 
5 

3 
13 

8 
5 
8 
13 

4.-4L 
n 169 

n 
Fn+\ 
Fn 
Fn-X 
Fn+2 

Fn+i 
Fn 

Fn+\ 
Fn+2 

A Fn+\Fn 

»—> 00 

1.6180... 

-0.2360... 

1.6180... 

0.6180... 

0.9442... 

The input impedance for a section of lossless transmission line is given by (see [9]), 

AAT _ 

where 

Z0(ZL+jZ0tmbl) 
(Z0+jZLta.nb\) (1) 

Z0 == characteristic impedance 
ZL = load impedance 
b = phase constant = 211 / X 
X = wavelength = vlf 
v = wave velocity along the line 
/ = frequency of voltage and current waves on the line 
/ = length along the line 

For the special case when the line is equal to a quarter wavelength, equation (1) becomes 

Z]N -
(Z0)2 

(2) 

In Figure 1(b), the input impedance of the second load and line is Z0 ohms. This equivalent impe-
dance when combined with load #1 becomes 

zL = Z0z0 

(ZQ+Z0) 2' 

When the value of ZL is used in equation (2), the input impedance becomes 

Zm - 2Z0. 

1993] 

(3) 

(4) 
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If another cell, as shown in Figure 1(c), is connected to the first two cells, the equivalent load can 
be determined by combining the resistive loads, 

using equation (2), the input impedance becomes 

—o^o =f±o. ( 5 ) 
(2Z0+Z0) 3 

^=f |Vo- (6) 

For Figure 1(d), the input impedance for n sections is given by 

\Zo\n>\, (7) 7 -fe±!A 
m { F , 

where Fn+1 and Fn are two consecutive Fibonacci numbers. For large n, equation (7) becomes 

Zm = l im[%MZ0 =(1.61803...)Z0. (8) 

The reflection coefficient and voltage standing wave ratio are important parameters that 
describe the behavior of transmission lines in relation to another connected transmission line or to 
a connected load. The reflection coefficient is defined as the ratio of reflected to incident voltage 
or current wave amplitudes. In general, it will be a complex quantity having amplitude and angle 
values. In terms of a connected load, it is determined by 

T = zL-z0 ^ 
ZL+Zo 

For a Fibonacci transmission line, (9) becomes 

= -^-;n>l (10) 
Fn+2 

The voltage standing wave ratio is determined by the ratio of maximum to minimum voltage 
amplitudes along the line. In terms of the reflection coefficient, 

VSWR = - ^ . (11) 
i-iri 

Using (10), the VSWR is 

VSWR = ̂ -;n>l (12) 
F 

The circuit shown in Figure 2 will be used to determine the input voltage to a Fibonacci transmis-
sion line. The generator impedance is made equal to Z0 for convenience. By using the voltage 
divider rule, the input voltage can be written as 
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IN 
ZJN + ^ 0 

(13) 

IN n+1 

n+2 
n>\. 

The last parameter considered is the ratio of input power, Pm9 to available power, PA 

V1 
P -LML-

rIN - 7 > 
LIN 

(14) 

(15) 

p — _A 
4Z0' 

f 17 \ PIN _ *Fn+lFn = (F^-jF^y = x Fn_y 

(Fn+2y (Fn+2y \Fn+2 J 
a-r2 

(16) 

(17) 

V s Y 
f Z o — I 

FIGURE 2 
Fibonacci Transmission Line Circuit 

It is interesting to consider what if situations for Fibonacci Transmission Lines (FTL) and 
ladder-type electrical networks. First, for an n loaded FTL: What is the resultant input impedance 
of an FTL if each of the n loads of Z0 ohms is replaced by another FTL which has m - Z0 ohm 
loaded sections? A schematic of the what if FTL is shown in Figure 3. 

FIGURE 3 
Fibonacci Transmission Line of Fibonacci Transmission Lines 
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From basic transmission line theory, if an impedance Zx is connected as a load in a % section 
of line having a characteristic impedance of Z0, as shown in Figure 4(a), the input impedance is 

Z ^ " z,' (18) 

If another identical load, Z1? is connected, as shown in Figure 4(b), the input impedance is 

Z]N, -
z?+z2

0 

Zi 

If a third load, Z1? is connected, as shown in Figure 4(c), the input impedance is 

Z2(2Z2+Z2) 
ZlN3 ~' (zt+ztfc ' 

If a fourth load, Zl5 is connected, as shown in Figure 4(d), is 

•'IN. (2Z2+Zl)zx 

If a fifth load, Z1? is connected, as shown in Figure 4(e), the input impedance is 

Z0
2(3Z1

4+4Z1
2Z0

2+Z0
4) 

£>Tkl. — (zt+3Z2
xZl+Z4

0)Zx 

7 V 
Let flj be the parameter for the normalized Zx impedance, ax = j - = -f±, then: 

7 _ Zp _ ZQ _ Z0 

Zx J£L ax 

(19) 

(20) 

(21) 

(22) 

(23) 

Z]N2 -

£ r\T„ — " •'IN: 

zl+z2
0 

z, 

2Z\ +Zl 
7 \ 72+72 

l(^a2); 

Z0(l + 2a2 

ax I l+af 

_ Z 0 (l + 3a2+a2) 
Z"«V (l + 2a2) ' 

Z0 ( l+4a 2
+ 3a ; ) 

W3 ^ ' ( 1 + 3 ^ + a * ) ' 

(24) 

(25) 

(26) 

(27) 
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The polynomials in the numerator and denominator are Jacobsthal polynomials ( 

J„(x) = Jw_1(x) + x/w_2(x) 
with Jx(x) = J2(x) = 1. 

In the Fibonacci transmission line structure, 

i 
bo - r z 1 M l . 

( a ) ONE LOAD. Z , 

X 
~A ' 

X 
'A ' 

t z , 

L z 1 N 2 
(b) TWO IDENTICAL LOADS. Z, 

X 
~ A ' 

X 
'A' 

I 
be- h z, z, 

(c) THREE IDENTICAL LOADS. Z, 

X 

*" 
b « 

- 4. — 

I 
» . •• • 

iz, 

X 
4. *" 

iz, 

* , 
4 » 

iz, 

X _ 
4_ » l 

z, 

Z|N '«• (d) FOUR IDENTICAL LOADS. Z, 

X 
"4- * 

X 
".4- " 

X 
"4- " 

X 
'A ' 

h_± z, h 
Z.N. 

(e) FIVE IDENTICAL LOADS, Z, 

FIGUME 4 
Periodically Loaded Transmission Lines 
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Using the Jacobsthal polynomials, the input impedances can be rewritten as: 

A) J 2 . 
ZlN, ~ ' 

ax
 v ' ax J2 

(^ _Z6\l + 2ai 
AIN3 ~ 

a, 

2 ^ 

l+a, i / 

zSL.lA. 

Finally, for n connected Zx loads, 
_ Z0 J„+1(aj) 

«i 4 , ( « i ) 

The general term of the Jacobsthal polynomials is given by 

^l + 7n-4a 2 Y f l - A / l + 4a1
2 

4,(ai) = 
1 

•y/H-40? 

(30) 

(31) 

(32) 

(33) 

(34) 

For the case a2 = 1, the Jacobsthal sequence is the Fibonacci sequence. Other expressions for 
Jacobsthal polynomials are: 

Jin 
J„ = , 1 • sinh 

VlW 
In 1 + ̂ 1 + 4a2 

2AK 
(35) 

,2« 2V«1 
/„ = , cosh 7l + 4a2 

In 
l + 7 l + 4a2 

V 2V< 
(36) 

If each matched load in a Fibonacci transmission line is replaced by another Fibonacci trans-
mission line, as shown in Figure 3, the resultant input impedance is given by 

Z(i) _ 7 
V^Wy v-4 

(37) 

where the superscript number in parentheses represents the first replacement of each connected 
load by an m-loaded FTL. In the special case m - n, Z$ becomes 

7<i) _ 7 
-IN 

\Fn+\J •Jnifll) . 
(38) 

If a second replacement of each Z0 in the first replacement transmission line is made, the input 
impedance becomes 
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z(2) - z K w+1 

\F„ 
where 

iv a: = —— and a2 = 
F„ 

F. 
F n+l 

4*1 fa) 

4+1 fa) 
4 fa) 

If a third replacement is made, the input impedance becomes 

Z(3) - Z ' F ^ 
V-*n+l J 

where 

F. 
a, =-

«+i 

4+1 fa) 
4 fa) 

4fa) 
F„ 4+ifa). 

4 fa) 
4+1 fa) 

4+ifa) 
4fa) 

4+1 fa) 
. 4fa) . 

(39) 

(40) 

Next, for ladder electrical networks, the input resistance for m half-T sections is given by equation 
(9) in reference [8]. Rewriting the reference equation, 

Z IN 
2m+l 

V ^2m J 

R\ m>\ (41) 

where R is the value in ohms of each resistor in the ladder network. The ladder network is shown 
schematically in Figure 5(a). Like the FTL, if each resistor R in the ladder is replaced by n half-7 
sections in a ladder configuration with individual input impedance of 

7 _ I ^2n+l 

is 
\R\ n>h 

In J 

the resultant input impedance of a ladder of ladders is 

7 _ I ^2m+l 
^IN ~ is 2m J 

2n+l 

K 
\R; m>\ andn> 1. 

In J 

For the special case m = n, the input resistance is 

7 _ [ ^2n+l 
\ 2 

'IN is 
R; n>\. 

2n J 

(42) 

(43) 

(44) 

An implementation of a ladder of ladders is shown in Figure 5(b). 
To conclude this development, the FTL and ladder will be extended to include K and M 

replacements or iterations of the basic symmetrical networks, respectively. After K replacements, 
the input impedance, Z$\ can be written as 
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ZjN - °{ F„ 
\(-»K K 

n Jn+M) i(-ir 

Jn(al) 
K>V (45) 

and, for the symmetrical ladder network, the input impedance is 

7 _ | ^2n+l 

" "in 

M+l 

R; n > l a n d M = 0 , ± l , ± 2 , . . . . (46) 

A brief look inside the M door shows that the input impedance ranges from an open circuit to a 
short circuit as M increases positively or negatively, respectively. Interestingly, for ladder 
networks, the equivalent resistance of each element increases for positive M and decreases for 
negative M. This suggests series paths for positive M and parallel paths for negative M. Figure 6 
shows a ladder of ladders for different values of M. 

R R 
- W r -

n © IR ® 
i J 

R 

R ® 

R R 
-vw-—9 a 

R © JR 
— — l b 

• - Z . N 

(a) m HALF—T SECTION LADDER NETWORK 

r~n r~n 

(b) m HALF-T SECTION LADDER OF LADDERS 

FIGURES 
Ladder of Ladders Network 
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1 HALF-T SECTION 2 HALF-T SECTIONS 

Z I N - 2 R 
M—O 

R R 
-WSf—i WV— 

Z t N - ^ R 

R 

•ZIN = 4R 

M=1 

R 

?« 
R R 

| R JR 

- z t N - R 

FIGURE 6 
Ladder Iterations 

4. CONCLUSIONS 
The results of this investigation shows that the Fibonacci sequence and related functions can 

be used to analyze periodically loaded wave transmission structures. This is an important result 
that opens new doors to a variety of transmission systems investigations. For example, these 
results can be used to analyze local area networks (LAN) that use transmission lines to tie 
computers togather or for array-type antennas excited by transmission lines and used for either 
reception or transmission. Another important finding of this investigation is the extension of 
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Fibonacci transmission lines and ladder networks to higher-order structures by an iterative 
process. Importantly, the results presented in this paper open many new doors which lead to new 
doors and more doors or doors {doors[doors(doors)]...}. In conclusion, the world of Fibonacci 
provides many opportunities for new and exciting discoveries. 
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1. INTRODUCTION 

Let R = {Rn}™ be a second-order recurrent sequence (generalized Fibonacci sequence) of 
integers defined by 

Rn = ARn_l-BRn_2 (forn>l), 

where the initial terms are R$ = 0, Rx = 1, and A and B are fixed nonzero integers. Let a and j8 be 
the roots of the characteristic polynomial x2 - Ax + B. We will assume that the discriminant 
D = A2 -AB > 0 and D is not a perfect square. From this, it follows that the sequence R is not 
degenerate, i.e., a I j3 is not a root of unity. In this case, a and j3 are two irrational real numbers 
and |a |^ | j3| , so we can suppose that |a|>|]3|. Also, 0<j3iffO<v4-i?. And 0< j3<l holds iff 
0<B(A-B-l). 

It is well known that the terms of R can be given by 

K ~^T ^7F~ (1) 

Furthermore 

lim ^ - = a (2) 
n->co Rn 

(see, e.g., [3] or [6]). 
Limit (2) implies that a can be approximated by the rational numbers Rn+1/Rn. The second 

author, P. Kiss [5], proved that when B = 1 this approximation is good in the sense that 

\ a - ^ 1 
c-% 

holds for some c and infinitely many n. 
It was also proved in [5] that this inequality holds for infinitely many n only when |2?]="1. 
In this paper the points Pn = (Rrl9-Rn+l) will be considered from a geometric point of view, as 

points on the Euclidean plane. G. E. Bergum [1] and A. F. Horadam [2] showed that the points 
Pn = (x, y) lie on the conic section Bx2 - Axy + y2 +eBn = 0, where e = ARi)Rl-BR^ -R2, and 

* Research supported partially by the Hungarian National Foundation for Scientific Research (Grant No. 1641) and 
the National Scientific and Engineering Research Council of Canada. 
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the initial terms RQ andRl are not necessarily 0 and 1. In their treatment of this equation, they 
showed that in the case \B\= 1, when the conic is a hyperbola, the asymptotes of the hyperbola are 
the lines y - ax andj = px. This corresponds to limit (2). For the Fibonacci sequence, when 
yl = 1 andi? = - l , C. Kimberling [4] characterized those conies satisfied by infinitely many 
Fibonacci lattice points (x, y) = (Fm9 F„). 

In this paper we again investigate the geometric properties of Pn in both the two- and three-
dimensional cases. 

2. THE TWO-DIMENSIONAL CASE 
Let us consider the points Pn = (Rn, Z^,+1), n = 0, 1, 2, ..., on the plane whose coordinates are 

consecutive elements of the sequence R. Then (2) shows that the slope of the vector OPn tends to 
a. But it is not obvious that the points Pn approach the line y - ax, as n —» oo. The following 
theorem shows that this is the case, however. 

Theorem 1: Let dn denote the distance from the point Pn = (Rn, i^+1) to the line y-ax. Then 
lim.n_>00 dn - 0 if and only if |j31 < 1. 

Proof: The distance dx from a point (x0,y0) to the line y = ax is given by 

ab.J'o 
ax0-y0 

Jo1 + 1 
(3) 

so, using (1), we have 

d = 
aRn~Rn+l 

Va2+1 
= 

a"+1-/?"a a"+1-j3"+1 

a-/5 a - ^ 
Va2+1 

_ l/JP 
Va2+1 

(4) 

from which the theorem follows. 

Remark: | J 3 |<1 holds when |5 + 1 |< |4 

This theorem implies that the points Pn converge to the line y - ax if | j3| < 1, but not neces-
sarily that these lattice points Pn are the nearest (in the sense of Theorem 2) lattice points to 
y = ax in all cases. For, let dx denote the distance between the lattice point (x, y) and the line 
y - ax, and let dn be the distance mentioned in the theorem. We prove 

Theorem 2: For integers u, v, denote by duv the distance from the lattice point (u, v) to the line 
y-ax and let dn be the distance defined in Theorem 1. Then when \B\ = 1, there is no lattice 
point (x,y) such that dx <dn and |x|<|i?J. Furthermore, for sufficiently large n, this holds if 
and only if |-B|='l. 

Proof: First suppose | 5 | = 1. In this case, obviously, |j3|<l and a is irrational. Assume 
that for some n there is a lattice point (x, y) such that dx y <dn and |x| < \R7\. Then, by (3) and 
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(4), \ooc-y\<\p\n follows. From this, using (1) and the fact that |aj3| = [i?|=l, we obtain the 
inequalities 

a~A lftl"_ ,1 = | l - ( / ? / « r U l - ( j 3 / a ) " | 
Ixl |a|"l*l ^ ' D „ , / H -2 •JD-X-4D-\R„X\ 

In [5] it was proved that if \B\ = 1, and/?, # are integers such that (p, q) - 1 and 

(5) 

a 43-q2 

then /? / q has the form pi q- Rj+i I Rj for some i. The proof also shows that (5) holds only if 
x = Rj 2ind y - Ri+1 for some i, if/? is large enough. So x = i^ is a term of the sequence R. The 
sequence R is a nondegenerate one with D>0 and |-B| = 1. So it can easily be seen that |i^|, 
\Rt+i\, ..., is an increasing sequence if Hs sufficiently large. Furthermore, by (4), dk >dj \ik <j. 
Thus, i < n and dt > dn follows, which contradicts d{ -dx y<dn. So the first part of the theorem 
is proved. 

To complete the proof, we have to prove that if \B\ > 1, then there are infinitely many pairs of 
lattice points (x, y) such that */ < d„ and |x| < |i?J for any sufficiently large n. 

Suppose \B\ > 1. If f/3| < 1, then, by (4), dn -> oo as n -» oo? so there are lattice points (x, y) 
such that dXty <dn and |x|<|i?J for any sufficiently large n. 

If |p | = 1, then <i„ is a constant and there are infinitely many points (x, y) such that dx y < dn 

and |x| < \Rr\ for some n, since |i^|-> °o as n -> oo. 
If |/31 < 1, then by (4) and |5 | > 1, we have 

a-
R 71+1 

K 
\P\" JB\"\l-(p/ay\^ Q 

(6) 

for any fixed Q > 0 if n is sufficiently large. In this case, the roots a, j3 are irrational numbers 
since, if the roots of the polynomial x2 -Ax + B are rational, then they are integers; so 0 < | J31 < 1 
would be impossible. It is known that if rk =ylx is a convergent of the continued fraction 
expansion of a , then 

a - y 
2\x\ 2 • (7) 

Lety, and hence x, be large enough and let the index n be defined by |i?„_1| < |x| < \Rn\. From (3), 
(4), (6), and (7), we obtain the inequalities 

d„> Q 

\K\Ju2 + i 
and dr „ < 1 

2|x|Vo^ + 1 
But, by (1), 
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Q Q 1 1 
1^,1" I J ^ a K l - C / J / a n / O - O S / a r 1 ) > 2 | / U " 2\x\ 

and so dx y < dn with |x| < | i^ | , which completes the proof of the theorem. 

Lastly, we give equations that are satisfied by the lattice points (Rrl, R„+i). 
Theorem 3: All lattice points (x, y) = ( i^ , i?w+1) satisfy one of the equations 

(i) y = ax + c(x)'\xf or (ii) y - ax - c(x)-\xf, 

where 8 = log| j3 |/log|a| and c(x) is a function such that l im^^ c(x) = ^ . 

Remark: This shows that the sequence of lattice points ( i^, i?„+1) tends to the line y = ax only if 
8 <0, i.e., iff |/31 <1, as proved in Theorem 1. 

Proof: By (1), we have 

an-pn apn-pn+l
 n an 

^a^+-V/H°^+ / r (8) 
and 

l3,|=JjL(l-(0/a)"). (9) 

From (9), we have n = 'og | f i"l |0 'l^"£" where e„ = log(l - (/3 / a)") and e„ -> 0 as n -> oo since log|a| 

| j3/a |<l. This implies that 

r = ± (lofe|/31-log|31 + log | /3 | - log^_£„-log[^ | | = f^K 
y\ log\a\ log|«| log|a| J ' "' K J 

where 5 = log|/?|/log|a| and 

log|j3| £„-log|/3[ 
log| a I logv£>-log|a| 

(11) 

since en -> 0 as n -> oo. 
From (8), (10), and (11), the theorem follows. 

Remark: The lattice points (i^,i?„+1) safisfy $ for every « if /3 > 0. If /3 < 0, then the lattice 
points satisfy alternately (i) and (ii). 

3. THE THREE-DIMENSIONAL CASE 

Now we consider the three-dimensional vectors ( i^, i^+1, i^+2). Since by (1), 

—— — - a > a , as n -» oo, 
^ a-jB 1-05/a)" 
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i?„+1 /R„ -> a, as n -> oo, by (2), and 

That is, the direction of the vectors (i?„, i?„+1, i?„+2) tends to the direction of the vector (1, a, a 2 ) . 
However, the sequence of the lattice points Pn = (Rn, i?„+1, i^+2) does not always tend to the line 
passing through the origin and parallel to the vector (l ,a, a 2 ) . We will prove the analog of 
Theorem 1. 

Theorem 4: let L be a line defined by x = t, y - at, z - a2t, t eU. Furthermore, let dn be the dis-
tance from the point (i?„, i^+1, i^+2), n = 0, 1, 2, ..., to the lineX. Then l im^^ dn - 0 if and only 
ifi/?i<i. 

Proof: It is not difficult to show that the distance from the point (x0, y0, z0) to the line L is 

(x0cc2 -zoy +(x0a-y0y +(y0a2 -zQay (12) 

This notation is necessary for Theorem 5. 
By (12) and (1), we have 

d = (j3"+2 -a2li")2 +(j3"+1 -aj3")2 +(«j3"+2 -«2j3"+1)2 

( a - j 3 ) 2 ( l + a " + a 4 ) 

V 1 + o r + a V 1 + o r + a 

where we have used a + j5 = A and a/3 = B since a and J8 are the zeros of the polynomial 
x2 - Ax + B. From this, the theorem follows. 

Theorem 2 can also be generalized to the three-dimensional case, i.e., to state that the lattice 
points (i?„, Rn+l, Rn+2) are the nearest lattice points to the line L iff \B\ - 1. 

Theorem 5: Let L be the line defined in Theorem 4. Let dn and dx^z be the distances defined in 
Theorem 4 and its proof. Then, for sufficiently large n, there is no lattice point (x, y, z) such that 
dXtytZ <dn and |x|<|i?„| if and only if |2?| = 1. 

Proof: Suppose \B\ = 1. Then, since 0 < D = A2 -45, a is irrational because ^42 ±4 is not a 
perfect square. 

Let (x, y, z) be a lattice point such that 

dx,y,z<dn (14) 
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for some n and |JCJ < |i?J. By Theorem 4 dx y z < e follows for any e > 0 if n is sufficiently large. 
But then, by (12), \xa2 -z\,\xa-y\, and \ya2 -za\ are sufficiently small. If j x a - j l is a small 
number then, since a2 - Aa -B, \xa2 -z\ = \Axcc - (z + Bx)\ can be small only if z + Bx = Ay, 
i.e., only if z = Ay - Bx. In this case 

\xa2 -z\ = A-\xa-y\ and \ya2 -za\ = \(z-Ay)a+By\ = \B\-\xa-y\ 

are also small. Thus, from (12), (13), and (14), 

x» y>z 

1 + a +oc 

and so, using |x| <| i?J and \ap\ = \B\ - 1, we get 

A2+B2+l , , [om A2+B2 + l -2 T.\xa-y\<\p\n -2 

a 
y <\K = i l-(p/a)n l-(p/a)n 

x\ \a\n\x\ | ^ | . V D - | X | VD-|xf 

From this, as above, we obtain x - ^,9 y = i^+1, and z = 4y - Bx - i?,+2 for some natural number 
/, if n is sufficiently large. Thus, dx y z - dt. But by (13), dk < dn only if k > n, so / > n and \x\= 
|^|>|i?„|, which contradicts the assumption |x|<|i^|, since the sequence |i?J is ultimately 
increasing. 

To complete the proof, we have to show that in the case |j3|<l there are infinitely many 
lattice points (x, y, z) for which dxy2 < dn and |x|<|i^| for some n. Such points trivially exist by 
(13), when |j31 > 1 or when |/J | = 1, so we can suppose that |j81 < 1. 

Suppose \B\>\ and |j3| < 1. In this case a is irrational. Let r - y I x be a convergent of the 
continued fraction expansion of a and let z be an integer defined by z - Ay -Bx. Then, by the 
elementary properties of continued fraction expansions of irrational numbers, using also the fact 
that a2 = Aa - B, we have 

2 
| x a - j | = j d !a-^l 

2|*T 

\xa2 - z\ -1 Axa - (z + Bx)\ = | Axa - Ay\=| Ax\ • a- y .Mil 
2|JC|' 

and 
| ya2 - za\ = \{z - Ay)a+By\ = \Bx\ u-y-\ 

2\x\ 

This, together with (12), implies the inequality 
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1 A2+B2+l c 
d„ „ , <- forc = J - T 

v Vl+a2+cc4
; 

(15) x'y'z 2\x\ Vl+a2+a4 2|x| 

Let n be a natural number defined by \R^^ < \x\ < \R„\, For this n, by (13) and (15), we have 

Vl+or +a \a\ 
_\B\" c_ 1 c(l-(B/a)"-l)\B\" >_c_>d 

loci"'1 \oc\ 1^,1 \a\.jD 2\x\ w 

if x and hence n is large enough, since |J?|>1. This shows that, for any lattice point (x,y,z) 

defined as above, there is an n such that dx^z <dn and |x| < |i?J. This completes the proof. 

Lastly we prove the three-dimensional analog of Theorem 3. 

Theorem 6: The coordinates of the lattice points (x, y, z) = (Rn:> i?„+1, i^+2) satisfy the system of 
equations 

x = t 
y-a 
z = a2t + A'c(t)\t\° or z = oczt-A-c(t)\t\° 
y = oct + c(t)\tf or y = at - c(t)\tf 

where 5 = log| J3 |/log|a| and c(t) is a real-valued function for which l im^^ c(t) = -JD . 

Proof: By (1), it can easily be shown that 

Rn+2=a2RnH^mn-oc2Rn^A^\ (16) 

From (8), (10), (11), and (16), the theorem follows. 
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ON THE RECIPROCALS OF THE FIBONACCI NUMBERS 

Scott H. Hochwald and Jingcheng Tong 
Department of Mathematics and Statistics, University of North Florida, Jacksonville, FL 32224 

(Submitted September 1991) 

A well-known result concerning partial sums of the reciprocals of the natural numbers 
1 + 1/2 + 1/3 + —hl/w, is that they never equal an integer (for n>\). A similar result 
concerning partial sums of the Fibonacci numbers, Fx = l,F2 = 1, Fn - Fn_l+Fn_2 (n > 3), is 
trivial because 

. 1 1 1 1 1 1 1 1 
3 <- + - + — + - + - + - + — + — + ---<4. 

1 1 2 3 5 8 13 21 
However, some interesting questions arise if we consider integer multiples of the reciprocals. 
Specifically, since Fm+l/Fm>l, the "integer status" of F2 /Fx+F31F2 + ••• + Fn+l IFn is worth 
investigating (n > 3). 

Since (Fn9Fm) = F(nm) [1; Th. VI], the following result tells us that F2IF{+F3/F2+ — 
+F„+l / F„ is never an integer for n > 3. 
Theorem 1: If {Cj} is an arbitrary sequence of integers for which Fq\cq whenever q is an odd 
prime, then the sum q /FY + c21F2 + -~+'cnlFn can never be an integer for n > 3. 

Proof: If n > 3, then, by Bertrand's Postulate [2; p. 343], there is at least one odd prime 
number/? in the interval ]n12, n\ For 1 < / < n, let Ft = (F{F2 • • • Fn) IFf. We then have 

~ \Fp i£i*p 
[1 ifi = p 

because (Fp,Fj) = F^pj) = Fx = 1 for j'*p and \<j<n. Now 

Cl \°2 \ \°n
 = =

C l ^ l + C 2 ^ 2 + " , + ^ 
M 1*2 Fn FXF2 "• Fn 

Since Fp\FiF2 ~-F„, F^c^ for /' * p , and Fp \cpFp [by hypothesis and (Fp,Fp) = 1], it follows 
that 

qF1+qF2 + » > v + ^ 
m-Fn-' 

can never be an integer.' 

Theorem 1 is a special case of a result that will be stated shortly. Theorem 1 was singled out 
because it is easily digested and its proof also works in a more general setting. 

Let P and Q be relatively prime integers, and let U„ and V„ be the generalized Fibonacci and 
Lucas sequences, respectively, defined by (see [1] for information on these sequences): 

Un=PUn_l-QUn_2,U0 = 0,Ul = l and V„ = PV^-QV^Vo =2,Vx = P. 
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Since (Un, Um) - U^m) [1; Th. VI], it seems that we should be able to replace the Fs by the 
Us in Theorem 1 and its proof and have a more general result. This is not the case, however, 
because Um = 0 and Uj = ±1 are possibilities for values of m, j > 2. If we require P & Q, so that 
P = l = Q and P = -1 = Q are eliminated, then the discussion following Theorem I in [1] tells us 
that Un and Vn are nonzero for n > 1. Thus, we require that P *Q. 

The "revised proof of Theorem 1 would be invalid if Up-±l. This can happen. In fact, if 
P = 2 and Q = 3, then it is easily seen that U3 = 1. Certainly, if P > 0 and Q < 0, then Un>\ and 
Vn > 1 for n > 1. For other values of P and Q, the situation is not easily resolved; thus, we reflect 
this in the statement of the general result. 

Theorem 2: Let P and Q be chosen so that \Uq\ > 1 for all odd primes q. If {Cj} is an arbitrary 

sequence of integers for which Uq j cq whenever q is an odd prime, then the sum 

cl/Ul+c2/U2 + -'+cn/Un can never be an integer for n > 3. 

Proof: If we replace F's by t/'s, F's by f/'s, etc., in the proof of Theorem 1, then we get a 
proof of the fact that, for n > 3, cx I Ux + c2 / U2 + • '• * + c„ I Un is never an integer. 

The situation is more complicated for the J^'s. For example, if P = 4 and Q = 7, then Vl = 4, 
V2 = 2, and V3 = -20, so \IVX + \IV2 + (-5)/V3 = 1. The following results reveal the source of 
the complication and a condition that eliminates it. 

Recall that Vn = PV„_, - QVn_2, V0 = 2, Vx = P, and (P, 0 = 1. 

Lemma 1: If/ is a natural number, then (Vi,P)-P when i- is odd and (^-, P) = (2, P) when /' is 
even. Furthermore, if m is odd and j is a natural number that is relatively prime to m, then 

(Vm, Vj)- P wheny is odd, (Vm, Vj) = (2, P) wheny' is even, and (P~lVm,Vj) = 1 wheny is even. 

Proof: (Ti9P) = (PV^ -QV,_2, P) - ( -2^_2 , P) - (^_2, P) [since (P, 0 = 1]. This 
implies that (ViyP) = (Vf_2, P) = (J^_4, P) = .-•• = (F1? P) - P when i.is odd and (Fy, P) = (F0, P) = 
(2, P) when z is even. 

We now consider natural numbers m and j where m is odd and 7 is relatively prime to m. 
Since (U2m, U2j) = U{2m^2j) = U2 = P and U2n = UnVn for any natural number n, it follows that 
P = ( t / - ^ , [/;F,). This shows that (Vm ,Vj)\P. This and the facts that (Vi9P) = P when z is odd 
and (Vi9 P) - (2, P) when z is even imply that (Vm, Vf) = P when7 is odd and (Vm, Vj) = (2, P) 
wheny is even. Since (2, P) = 1 if P is odd, it follows that (P~LVm, Vj) = 1 when P is odd mdj is 
even. If P is even, then 

( P - % , 2) = ( P " 1 ^ ^ ! - QVm_2), 2) = ( ^ - P~lQVm_2,2) 
= (--P_ 1fi^2.2) [since (Fm_I; 2) = (P, 2) = 2] 
= (^"1^-2> 2) [(Q, 2) = 1 since (Q, P) = 1]. 
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This implies that (P~lVm92) = (p-%,2) = 1. That is, P"lVm is odd. Thus, (P'lVm9Vj) = 1 also 
when P is even andy is even. 

Remark 1: It is not always true that (P~lVm,Vj) = 1 when j is odd [again, m is an odd natural 
number and (w, j) = 1]. For example, ifP = 6 and Q = 1, then V0 = 2,VX= 6,V2 = 34, V3 = 198, 
and (6"1Fr

3,F1) = (33,6) = 3. Actually, one can prove by mathematical induction that there exist 
integers kn and rn such that 

_UnP3+nP(-Q)(n-1)/2 if wis odd, 

\rnP2 + 2 ( - 0 w / 2 if n is even. 

This form of Vn shows that and hence (P~lVm ,Vj) = (m, P). 

Theorem 3: Let P and 0 be chosen so that \P"lVq\> 1 for all odd primes 9. If {Cj} is an arbi-

trary sequence of integers for which P~lVq \cq whenever q is an odd prime, then the sum 

<\ IVX +c2 IV2 + •••+£„ IVn can never be an integer for n > 3. 

Proof: Let/? be an odd prime number in the interval ]n 12, n] and let 

^ vy2-vn f j ^ . ^ 

Since there are at least [(w-3)/2] odd numbers in the set {1,2,...,7-l,z + l,...,/?-l,/? + !,...,«} 
and (J^ ,P) = P when A: is odd, it follows that 

Vpp[(n-3)/2] |c_^ for/* p . 

This is not the case for cpVp9 as we now demonstrate. 

VpP^-m\\CpYp^p^VpP^-m\\cm^^ (since F1=JP) 

__,... p-[i"-m]v2v3-v„ 
<5> P V \C : — ~ 
w v P*P y 

p 

Since there are exactly [(n - 3) / 2 ] odd numbers in the set {2,3,...,/?-1, /? +1,...,«}, 
• ' ( Y •• 

cr 
> V / = i ) \ ; = i 
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By hypothesis, P'lVp\cp9 and by Lemma 1, {P~lVpJ2i) = \ and (P'lVp9P~lV2J+l) = 1 (since 

2j +1 is not divisible by/?). This implies VpP[(n~3)/2] \ cpVp. Thus, as in the proof of Theorem 1, 
we conclude that cx I Vx + c2 IV2 + • • • + cn I Vn can never be an integer for n > 3. 

sum 
Corollary 1: IfP and Q are chosen so that \Uq\>\ [\P lVq\> 1] for all odd primes q, then the 

u2 u3 un+l ^ - + _ 2 L + . . .+_«±L 

^ u2 un 

can never be an integer for n > 3. 

P W / - If g is an odd prime, then (Uq+1, Uq) = ^ = 1 [(J^+1, P"Vg) = 1 by Lemma 1]. 

Corollary 2: Let A:be a fixed positive integer. Let P and Q be chosen so that \Uqk\> \Uk\ for all 
odd primes q. If {c^} is an arbitrary sequence of integers for which UqkU^ \ cq whenever q is an 
odd prime, then the sum clIUk

Jtc2lU2k +---+cn/Unk can never be an integer for n > 3. 

Remark 2: If a and /3 are the roots of x2 - Px + Q - 0, then it is well known that 

U»=^—f- andF w =a" + /3" . 

These forms establish the well-known facts that 

Unk = VkU{n_l)k - QkU{n_2)k and Vnk = VkV{n_l)k - Q%_2)k. 

Furthermore, using Vnk = VkV(n_l)k - QkV^n_2)k and mathematical induction, it is easy to see that 
Vk\V(2i+i)k whenever i is a positive integer. Also, for k = 2, 3, 4,..., 

(Vk,0 = (PVk-X-QVk_2,Q) = ( P J ^ , 0 = ( T w , 0 = - = ( ^ 0 = 1. 

Proof of Corollary 2: If £/„ = C/^C/;1, then #n = Vjfi^ - QhUn_29 a generalized Fibonacci 

sequence, and |C/ |> 1 for all odd primes q. It then follows from Theorem 2 that, if Uq \ cq when-

ever q is an odd prime, then cl/Ul+c2/U2 + -'+cn/Un is never an integer for n>3. Thus, if 

UqkUk
l \cq whenever q is an odd prime, then Uk(cl/Uk+c2/U2k + ••• + £„ / ^ ) *s n e v e r a n 

integer for # > 3, and consequently, cl/Uk+c2/U2k+--+cn/ Unk is never an integer for n > 3. 

Corollary 3: Let A: be a fixed positive integer. Let P and Q be chosen so that \P~lVqk\ > 1 for all 

odd primes q. If {c.} is an arbitrary sequence of integers for which P~lVqk \ cq whenever q is an 
odd prime, then the sum cx I Vk + c2 IV2k + • • • + cn I Vnk can never be an integer for n > 3. 
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Proof: If Vn = Vnk, then Vn - V^^ - QkVn_2, a generalized Lucas sequence, and | P"lVq \ > 1 

for all odd primes q. Since P T^ J Ĉ  , the result follows from Theorem 3. 

Corollary 4: If {Cj} is an arbitrary sequence of integers for which q \cq whenever q is prime, 
then the sum cx I l + c2 / 2+ •*• + c„ //? can never be an integer for n > 2. 

Proof: If C/„ = «, then C/w = 2Un_l - Un_2. That is, {n} is a generalized Fibonacci sequence 
for which Theorem 2 applies. 

Corollary 5: Let P and Q be chosen so that \Uq\ > 1 [|P_1J^|> 1] for all odd primes q. If {Cj} is 

an arbitrary sequence of integers for which Uq \ cq [P~lVq | cq] whenever q is an odd prime, then 
the sum clIUl +c2 /U3 + ••• +cw /U2n_x [cxIVX +c2 /V3 + ••• +cwIV2n_{\ can never be an integer 
forw>2. 

Proof: Consider the statement of Theorem 2 [Theorem 3] and just take c2j = U2j 

[c2j=V2jl 

Remark 3: Results for U* s and V* s with even subscripts are special cases of Corollaries 2 and 3. 
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In [1] the author studied Fibonacci words; the study was motivated by the consideration of 
Fibonacci strings and Fibonacci word patterns by Knuth [5] and Turner [6, 7], respectively. It 
was shown in [1] that all the /1th Fibonacci words can be obtained from any particular /2th Fibo-
nacci word, for example w®, by shifting in a cyclic way the letters in it. Also it was shown that 
each of the Fibonacci words w° («>3) has a representation as a product of two symmetric 
words. In this paper, we show that every Fibonacci word has such a representation and that this 
representation is unique (Theorem 3). Furthermore, we prove that, for each positive integer n 
that is not a multiple of 3, there is precisely one symmetric Fibonacci word of length Fn, where Fn 

denotes the n^ Fibonacci number, while there are no symmetric Fibonacci words of length Fn if n 
is a multiple of 3 (Theorem 7). 

Let X be an alphabet and let X* be a free monoid of words over X with identity 1. Denote by 
£(w) the length of a word w. Define the reverse R and the shift T on X*l{ 1} by 

R(ala2...an) = ana„_1...al9 

T(ala2...a„) = a2...arfll9 

where ai e X, 1 < i < n. 
A word w e X* is said to be symmetric if w = 1 or R(w) = w. Let if denote the set of all sym-

metric words overXand if2 = {W:I/,VG3)}\{1}. The representations uv and vu where u, v e6P, 
are considered to be the same if v = 1. 

Fibonacci words are defined recursively as follows. Fix two distinct letters a and b and put 

wx=a, 
w2=b, 
Wj = ba, w\ = ab, 
wf = bob, w°4

l = bba, w\° = abb, w\l = hah. 

In general, suppose that n > 5, rl5 r2,..., rn is a finite binary sequence and that the words 

wn-2 •> wn-\ 

have been defined. Then set 
wn-l wn-2 ll rn-2 u> 

n-2 wn-\ lL 'n-2 ~ l-

For simplicity, we write w°n if n > 3 and rx = r2 = • • • rn_2 = 0. Each wrf2 ~r"-2 is called an n* Fibo-
nacci word derived from the initial letters a and b and is known to have length Fn. 

* This research was supported in part by the National Science Council Grant NSC 81-0208-M-033-03. 
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Among all the Fibonacci words, some of them are symmetric but some of them are not. For 
example, the Fibonacci words bab, babab, bababbabbabab are symmetric while the Fibonacci 
words abb, bba, ababb are not. Nevertheless, it turns out that each Fibonacci word is a unique 
product of two symmetric words. To prove this unique representation theorem (Theorem 3 
below), we need some known results about Fibonacci words (see [1]) and products of two sym-
metric words (see [2]). The proof of Lemma 1 can be found in [1]. 

Lemma 1 (Theorems 4 and 7 and Corollary 12(iv) of [1]): 

(a) Each w°n (n > 1) is a product of two symmetric words, that is w°n etf2. 
(b) There are exactly Fn distinct Fibonacci words of length Fn9 namely, TJ(w°n), 0<j< 

F„-l 
In Theorem 2.4 of [2] it was proved that a word has more than one representation as a 

product of two symmetric words if and only if it is a power of another word which is itself a 
product of two symmetric words. The following lemma contains Theorem 2.1 of [2] and only 
part of the result just mentioned because we do not need to use the full power of it to prove the 
unique representation theorem. For completeness, we include a proof. 

Lemma 2 (Theorems 2.1 and 2.2 of [2]): 

(a) y1 is invariant under T, that is, T(if2) e if2. 

(b) If a word has more than one representation as a product of two symmetric words, then it 
is a power of another word. More precisely, if/?, r, m are positive integers such that 
r <p<m and if, in the word w = axa2.. .am, the sub words 

axa2...ap, ap+i...am 

ala2...ar,ar+l...am
 ( 1 ) 

are symmetric words, then w - (aYa2 ...ad)mld where d-{p-r,m). 

Proof: (a) If w = axa2.. .am is a symmetric word, then 

Tw 
al 
a2ax 
(a2-am-l)(amai) 

m = l, 
m = 2, 
m>2. 

If w = (axa2 ...ap)(ap+1...am) where/? is a positive integer less than m, and the words axa2 ...ap 

and ap+l...am are symmetric, then 

ka2-am)ai P = \ 
Tw = <a2a3...ama1 P = 2, 

l(a2...ap_l)(apap+l...amal) p>2. 
Therefore, (a) follows. 

(b) First, note that since the sub words in (1) are symmetric, we have 
ak = ap+l-k = <*r+\-k (* = 1, 2 , . . . , Iff) 
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with indices modulo m. Hence 

ak=ap_r+k (* = 1,2,...,&I) (2) 

with indices modulo m. Now choose positive integers i and j such that i(p~r)-jm = d. Then, 
according to (2), we have 

ak ~ ai(p-r)+k ~ ajm+d+k = ad+k (k =l,2,...9m) 

with indices modulo m. This proves (b). 

Theorem 3 (Unique representation theorem): Every Fibonacci word has a unique representa-
tion as a product of two symmetric words. 

Proof: Lemma 1 and Lemma 2(a) imply that every Fibonacci word belongs to if2. Suppose 
that some Fibonacci word w has more than one representation as a product of two symmetric 
words. Then, Lemma 2(b) implies that w = uc for some word u and c > 2. But then T£(-u)w = w. 
Since 1 < £(u) < ^(w), this contradicts Lemma 1(b). This proves the theorem. 

Now we determine all the symmetric Fibonacci words. Let 

fl if n is a multip le of 3, 
[0 otherwise, 

and let 
fl if n is odd, 
[0 if n is even. 

Let Pi = a,p2=b,pn=ws
n

lS2"Sn-2, forra>3, and let q„=w^2-tn'29 forT?>3. For odd n, let 
s - Fn_2 and t = Fn_{, for even n, let s = Fn_x and t = Fn_2. 

For n > 2, let us list the Fn Fibonacci words of length Fn in the following order (Corollary 
12(iv)of[l]): 

T V ^ • . • > ^ F " " 1 ) V (3) 

If n is a multiple of 3, then the number of terms in (3) is even, it will be shown in Theorem 7 
that there are no symmetric words in the list; however, if n is not a multiple of 3, the number of 
terms in (3) is odd and, again, it will be shown in Theorem 7 that only the middle term of (3) is a 
symmetric Fibonacci word. 

Lemma 4: lfn>2 is not a multiple of 3, then pn = Tjsqn where j = {Fn -1) / 2. In other words, 
pn is the middle term of the sequence (3). 

Proof: As was proved in section 5 of [1], pn = TJsqn where 

{ mFn_l if n is odd, 

(modFJ (4) 
mFn_l-l if n is even, 

where m = 1 + E ^ 2 Fi+lst. It follows from the identity^ + F4 + F7 + • • - F3k_2 = F3k 12 (k > 1) that 
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\\Fn_x if» = l(mod3), 
\±F„+1 if»-2(mod3). 

Thus, if n = 1 (mod 3), then 
j^(F„_2Fn-l)/2 = Fn(Fn_2-l)/2 + (F„-l)/2 = (Fn-l)/2-(modF„y, 

ifn = 2 (mod 3), then 

j = (Fn
2-l)/2 = F„(F„-l)/2 + (F„-l)/2 = (Fn-l)/2(modF„). 

This proves the lemma. 

Lemma 5 (Corollary 12(i) of [1]): Let n be a positive integer greater than 2 and l< j <Fn-l. 
Then the k^ letter in TJsqn is an V if and only if k = (j + r)t (mod Fw) for some l < r < i ^ _ 2 . 

Lemma 6: If w is a positive integer greater than 2, then R(TJsqn) = T(<F"~l~j)sqn, for all 0< j < 
F„-\. 

Proof: Let 0 < y < Fn-l. Suppose that the kth letter in Tjsqn is an V . Then, by Lemma 
5, k = (j+r)t (mod F„) for some 1 < r < F„_2. Therefore, 1 < F„_2 +1 - r < Fn_2 and 

{(Fn-l-j) + {Fn_2+l-r))t^Fn_2t-(j+r)t 
^Fn_2t-k = Fn + l-k (moAFn). 

This proves that (Fn + l -£ ) t h letter in T{Fn~l~j)sqn is also an V , again by Lemma 5. Conse-
quently, the result holds. 

The above lemma can also be proved by observing that w%r2'"r"-2 - TJsqn where y satisfies (4) 
with w = l + Z/ti2^+i'} (section 5 of [1]) and that R(w^2-r"-2) = wv/2-v"-2, where v,-= l-ry, 
1 <i<n- 2 (Theorem 3(i) of [1]). 

Theorem 7: Let /? be a positive integer greater than 2. 

(a) If w is not a multiple of 3, then /?„ is the only symmetric Fibonacci word of length Fn. 
(b) If n is a multiple of 3, then no Fibonacci word of length Fn is symmetric. 

Proof: Let 0 < j < Fn - 1 . Since F„ - 1 - j = j o j = -|-(F„ -1) , we see from Lemma 6 that 

R(T*qn) = T*qnoj = ±(Fn-l). (5) 

(isj If w is not a multiple of 3, then Fn is odd; thus, among the Fibonacci words in (3), 
pn = r l ( "_1)^w is the only symmetric one, according to (5) and Lemma 4. 

(h) If n is a multiple of 3, then, clearly, (5) implies that TJsqn is not symmetric for all 
0<j<Fn-l. 
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A SUMMATION RULE USING STIRLING NUMBERS 
OF THE SECOND KIND 

L. C. Hsu 
Dalian University of Technology, Dalian 116023, China 

(Submitted September 1991) 

1. A SUMMATION RULE 
Recall that Stirling numbers of the second kind may be expressed as follows (cf, e.g., [1], 

[2]): 

where A/0m is the 7th difference of xm at x = 0 so that S(m, j) = 0 for; > m, S(m, 0) = 0 for 
/H>land£(0,0) = l. 

Summation Rule: Let F(n, k) be a bivariate function defined for integers n,k>0. If there can 
be found a summation formula or a combinatorial identity such as 

t,F(n,kjfy = </>(«,j) (7>0), (1) 

then for every given m > 0 we have a summation formula or a combinatorial identity such as 
n m 

£F(« , k)km = 5>(». j)j\S(m, j) (2) 
k=0 j=0 

which may be called a companion formula of (1). 
Generally, (2) would be practically useful when n is much bigger than m. 

Proof: It is known that Stirling numbers of the second kind satisfy the following basic 
relation [which is often taken as a definition of S(n, k)]: 

m 

where (x)j : x(x -1 ) . . . (x - j +1) (J> 1) is the falling factorial with (x)0 : = 1. Now, substituting 
(3) into the left-hand side of (2), changing the order of summation, and using (1), we easily obtain 

n m n m 

Z ^ . W" = 5>(w, jy^Fip, k)(k)j = Zj\S(m, j)<j>(n, j). 
k=o y=o k=o j=o 

Notice that the special case for m = 0 is also true. Hence, (2) holds for every m > 0. • 

Remark Sometimes in applications of the rule function F(n, k) may involve some independent 
parameters. Moreover, for the particular case in which F(n, k) > 0, so that (j)(n, 0) > 0, the left-
hand side of (2) divided by (j)(n, 0) may be considered as the mih moment (about the origin) of a 
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discrete random variable Xthat may take possible values 0, 1, 2, ..., n. This means that (2) may 
sometimes be used for computing moments whenever F(n, k) I <j)(n, 0) just stands for probabili-
ties (0 < k < n), and the factorial moments 0(«, j)/(j>(n, 0) are easily found via (1) (cf. David and 
Barton [3]). 

2. VARIOUS EXAMPLES 
For the simplest case F(n, k) = 1, we have 

This leads to the familiar formula 
™-m-&% 
n m / 1 \ 

lkm = Y(%\yS(m,j). (4) 

Actually there are many known identities of type (1) in which F(n, k) may consist of a binomial 
coefficient or a product of binomial coefficients. See, e.g., Egorychev [4], Gould [5], and 
Riordan [8]. Consequently, we may find various special summation formulas via (2). We now list 
a dozen formulas, as follows: 

Z*"(*y«"^ =±(fyJj\S(m,j), (5) 
where p + q = l and p > 0. 

U^r-trti"'j/^jj,m/>- (6) 

£(";*)•-£(,;#i>«* A « 
k=oK J y=ov J ' 

ty)fu}"=p-^'tv)^'^ A <I0> 
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(12) 

t{fLtty-W*^ fc=0 ;=0 n-J 
\pS(m,j\ 

where a and /3 are real parameters. 

i^fkT"; k}m-iyyfj) Jis<*j)> 
k=0 

lur/>"-"*"=s(2^y)(">!^.^. 
H, n+l 

j+y 
WS(m,j), 

(13) 

(14) 

(15) 

(16) 

where Hk: = l + j + — \-j , (k > 1), are harmonic numbers. 
Though most of the above formulas [except (5)] appear unfamiliar, or are difficult to find in 

the literature, they are actually companion formulas of some known identities. In fact, (5) is 
known as the mth moment of the binomial distribution of a discrete random variable. Formulas 
(6) and (7) represent companion formulas of the pair of Moriarty identities (cf [4, (2.73) and 
(2.74)]; [5, (3.120) and (3.121)]). Also, (9) and (12) are just companion formulas of the 
following identities: 

|MM";r*1^ 
and 

[nil] n - k\(k n + \ 
2y+ 1 

due to Knuth and Marcia Ascher, respectively (cf. [5, (3.155) and (3.179)]). Moreover, (16) may 
be inferred from the known relation (cf, e.g., [1, pp. 98-99]). 

Whi%\ H, 1 
«+i 

7 + 1 
(17) 

The verification of the rest of the formulas is left to the interested reader. 
Evidently, both (8) and (9) imply (4) with s = 0, and (13) yields the Vandermonde convolu-

tion identity when m = 0. Moreover, it is easily found that (16) leads to an asymptotic relation, 
for n —» oo? of the following, 

n Mw+1 

!kmHk 
k=l m + l\ m + \ 

logft + y - - 1 

where y: = limn(Hn -logn) = 0.5772... is Euler's constant. 
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3, AN EXTENSION OF THE SUMMATION RULE 
In what follows, we will adopt the notations: 

(x\h)n : = x(x-h)(x-2h)~-(x-nh+h), (x\h)0 = 1, 

Here (*) is known as the generalized binomial coefficient (cf. Jordan [7, ch. 2, §22). Now, 
suppose that a and f3 SLTQ two distinct real numbers. Consider the following pair of expressions 
for polynomials (x\a)n and (x\p)n\ 

(*|a)„ = iX(/i,*|/3)(*|/3)t , (18) 

( x l / J ^ i ^ / a i a X x I a ) * . (19) 

The coefficients Sa(n, k\P) and Sp(n, k\oc) involved in (18) and (19) are uniquely determined, and 
they may be called a pair of symmetrically generalized Stirling numbers associated with the 
number pair (a, /?). Consequently, the ordinary Stirling numbers of the first and second kinds are 
associated with the number pair (1,0), and are usually denoted by the following: 

Sx(n9 k) ss s(n, k) : = ̂ (/i, k\0\ S2(n, k) = S(n, k) : = iS0(w,*|l). 

Certainly, all the well-known properties enjoyed by the ordinary Stirling numbers, e.g., recurrence 
relations, orthogonality relations, and inversion formulas, etc., can be readily extended to these 
generalized Stirling numbers. For example, a simple recurrence relation may be deduced from 
(19), namely 

Sp(n,k\a) = Sp(n-l,k-l\a) + (ka-nf5 + l3)Sp(n-l,k\oc\ (k>l). (20) 

Recall that there is a general form of Newton's expansion for a polynomial f(x) of degree n, viz., 

/W = iTTT-</(°)> (21) 

where Ak
af(0) is the A:* difference (with increment a) of f(x) atx = 0. Thus, comparing (21) 

with (19) and (18), we find (with aji * 0), 

k\ak Sa(n,k\a) = —1-Ak
a(x\P)f, (22) 

x=0 

Sa(«,k\fi=-±jrAk
pWa)n (23) 

x=0 

Here, it is easily observed that Sp(n, k\a) = 0fork>n, and Sp(0,0|a) = Sp(n,n\a) = 1. More-
over, notice that for J8 = 0 (23) should be replaced by 
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SJn, k\G) = — Mm \ttB{x\a)n 
1 (d 

x=0 k\\dx 
(x\a)„ 

x=0 

Extended Summation Rule: Let F(n, k) be defined for integers n7k>0. If there can be found 
a summation formula such as 

k=0 \JSa 

then for every m > 0 we have a summation formula of the form 

n flr\ m 7*1 

YF^Mm) =T,G(n>j)—M>»,j\«y 

Also, suppose that the following series is convergent to g(j) for every j > 0: 

(24) 

(25) 

k=o ^J Set 

Then we have a summation formula, as follows: 
0 0 / lr \ m 7 ! 

I / ( d ; =IsgU)-$p(rnJ\cx) 

Proof: Notice that (19) implies 

1 m 

, =-iIiJ\Sp(m,J\a) 

(26) 

(27) 

(28) 

Thus, both of the implications (24) => (25) and (26) => (27) can be verified in a manner similar to 
that used to prove (1) => (2). In fact, the verification of (27) can be accomplished by substituting 
(28) into the left-hand side of (27) and by using (26), in which the change of order of summation 
is justified by the convergence of the series (26). Moreover, it is evident that 

*.<fc*i«>={j tin 
so that (25) and (27) will transform back to (24) and (26), respectively, when J3 = a. Hence, (27) 
holds for every real number /?. D 

Examples: For the case a = 1, we may write 

Sp(mJ\l) = -AJ(x\p)f (29) 
\x=0 

In particular, we have 

SQ(m, j\l) = S{m, j), S^m, j\\) = ^ | ( j _ fj, 

where S^m, j | l )(- l)w is known as Lah's number. 
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Making use of the rule (24) => (25) (with a = 1), it is readily seen that each of the formulas 
from (5) through (16) may be generalized to the form in which km is replaced by f*l and S(m, j) 
by the following: Sp(m, j | l) lm\. Thus, for instance, (13) and (16) may be replaced, respectively, 
by: 

(30) i{kXny-kXi)A{ny-lJ)^(m.M 
k=0 P 1=0 

ft / 7 \ rri / , - | 

k=i s ; *=zni ;= i 
H, 77+1 

j+y m\ SpfaM- (31) 

In particular, for j3 = 0,1, - 1 , we have fM =km/m\, fM = (M, and (k) =(k+™ l \ so that either 

(30) or (31) may yield at least three special identities of some interest. Indeed, (31) implies (16), 
(17), and the identity 

Moreover, as a simple consequence of (30), one may take x = y - n and j3 = 0 to get 
2 

n\ um_^(2n-j 
fc=ov J y=ov y 

This is an example mentioned in Comtet [2, ch. 5, p.. 225]. 
To indicate an application of the rule (26) => (27), let us consider the simple example with 

f{k) = qk: 

Consequently, we obtain 

fc=0v 

u^r-k^'™ (32) 

This may be used to evaluate an infinite series involving both generalized binomial coefficients and 
Fibonacci numbers. Denote a = X(l + V5),ft = X(l-V5), and let p>a. Then the following 
series, 

»-t(i)rt. 
fc=0v yp 

is obviously convergent for every m> 0, where/^ = (ak+l - bk+l) / ̂ . Certainly one may com-
pute the series by means of (32) as follows: 

*-£t(i]>'<»w-0'p>w]=£f Vsfc fc=0V y /3 

a 
V+1 

P " a . 

( i. Y + 1 

.p-ft m! 
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In particular, we have 

±kmp-kFk=-^f\\ — \ - I T ^ I \P-S(mJ). 
k=0 V J y=o 

\ / + l / u V+1 

p-aj \p~b 
Finally, it may be worthy of mention that, for the case a = 1, relation (26), apart from the 

factor (-1); just stands for the 5*-transformation of the given sequence {/(&)}, which is con-
nected with quasi-Hausdorff transformations (cf. Hardy [6, §11.19]). Moreover, it may be 
remarked that the rule (24) => (25) can still be generalized. Let the functions h(x, m) and g(x, j) 
be related by 

m 

h(x, m)^ *(">> JMX> J)> (33) 
j=o 

where the t(m, j) are complex numbers. Define 

ftF(ft,k)g(kJ) = <P(n,j). (34) 

Then we have 
n m 

XF{n, k)h(k, m) = £ H», Mm, J)- (35) 
k=0 j=0 

This extended rule (34) => (35) may even be used to obtain some interesting formulas involving 
Comtet's generalized Stirling numbers whose definitions may be found in [9]. However, we will 
omit the details here. 

ACKNOWLEDGMENT 
The author wishes to thank the referee for supplying useful comments with a remark. 

REFERENCES 
1. M. Aigner. Combinatorial Theory, Ch. 3. New York: Springer-Verlag, 1979. 
2. L. Comtet. Advanced Combinatorics. Dordrecht: Reidel, 1974. 
3. F. N. David & D. E. Barton. Combinatorial Chance, Ch. 3. London: Griffin, 1962. 
4. G. P. Egorychev. "Integral Representation and the Computation of Combinatorial Sums." 

Transl Math Monograph. AMS 59 (1984). 
5. H. W. Gould. Combinatorial Identities. Morgantown, 1972. 
6. G. H. Hardy. Divergent Series, Ch. 11, §11.19.. Oxford: Clarendon Press, 1949. 
7. Ch. Jordan. Calculus of Finite Differences. New York: Chelsea, 1950. 
8. J. Riordan. Combinatorial Identities. New York: Wiley, 1968. 
9. T. Tomescu. Introduction to Combinatorics, Ch. 4. London: Collet's, 1975. 
AMS numbers: 05A19, 05A10, 05A15 

262 [AUG. 



MANDELBROT?S FUNCTIONAL ITERATION 
AND CONTINUED FRACTIONS 

Michael I. Ratllff 
Northern Arizona University, PO Box 5717, Flagstaff, AZ 86011-5717 

(Submitted September 1991) 

Functional Iteration which gives rise to the Mandelbrot set is concerned with functions of the 
form g(x) = x2 + c, where c is a point in the complex plane. This paper provides an algorithm 
which uses Newton's method and Mandelbrot-type functional iteration to produce a sequence of 
rational numbers that converges quadratically to the square-root of any given positive integer, and 
has a best approximation property. The algorithm is then modified so that convergence can be 
accelerated to any power of 2 order. 

NEWTON'S METHOD VERSUS CONTINUED FRACTIONS 

Let n be any given positive integer that is not a perfect square. We can find 4n by using 
Newton's method with the equation f(x) = x2-n = 0. For an arbitrary choice of positive x0, the 
sequence 

2 2 

(1) *fc+l 
xl -n xl +n K ™- v - K , k >0, 
2xu 

-> 0 T X k + i = -
2xh 

will converge quadratically to the square-root of n. We say the sequence {tn} converges linearly 
or quadratically (a = 1 or 2) to t if: 

(i) lim tn=t, 
»->-O0 

(ii) lim*rw+1"J = A, whereO<A<oo. [4] 
*+«\tn-t\a 

On the other hand, using continued fractions, we can obtain a sequence of rational numbers, 
pk/qk, which converges linearly to the square-root of n. Each of these methods of obtaining 4n 
has its advantages. Newton's method converges faster than does the continued fraction method, 
but continued fractions have the best possible approximation property. That is, 

< 
Ik 

implies that q>qk. 

What we seek to do is find a method that has the advantages of both Newton's method and 
the continued fractions method. 

NEWTONfS METHOD AND MANDELBROT ITERATION 

Let yk=xl~n, then (1) implies 

(^ 
> W ~ xk+i n ~ 

v 2xk j 

\2 (JI 
-n-\ 

V 2xk J 
yl 

40* +») 
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Let yk = l/zk and invert the above equation to obtain zk+l = 4zk + 4nz%, which becomes 
wk+i 4wk . wl .r , x wk 
-J^±-—^- + 4n——-, if we let zk =—-. 
An An \6n 4n 

Finally, setting wk=vk-2, the equation above becomes 
V*+I = Y £ - 2 . (2) 

But this is just Mandelbrot-type iteration with functions of the form g(x) = x2 +c, where in this 
case c = -2. 

RESULTS FROM THE THEORY OF CONTINUED FRACTIONS 
The following points are known from the theory of continued fractions [2]: 

(i) The continued fraction expansion of 4n - (aQ, ax, a2,..., ar_x, 2a0 ). (3) 

(ii) There exists a smallest subscript, s, such that the convergent pjqs has the property 

p2
s-nq* = l (4) 

(iii) s = (l + r mod2)r- l . 

(iv) If p, q are any integers that satisfy the equation p2 -nq2 = I, then plq is actually a 
continued fraction convergent to 4n, say p - pj and q-q^ 

(v) If t is a positive integer such that j = s + (l + r mod 2)(t - l)r, then 

Pj +4nqj = (ps + 4nqs)\ and conversely. (5) 

(vi) For all positive integers m, if j = $(l + r mod2)mr, then the continued convergent 
Pj/Qj satisfies (4). 

A NEW SEQUENCE 

Newton's method, (1), allows us arbitrary choice of x0. This gives rise to an arbitrary choice 
of v0 in (2). We seek to choose v0 so that the sequence (2) is closely related to the sequence, pk, 
given by the continued fraction expansion of 4n. 

Let us define the sequence {v^}, k = 1,2,... by letting 

vQ=2psmdvk+l = v2
k-2, for&>0. (6) 

Notice that this definition is the same as (2). This leads us to the following theorem. 

Theorem 1: The sequence {v^}, k > 0, is the same as the sequence {2pJk}, where 

7J t=j + (l + rmod2)(2*-l)r. (7) 
Before we prove Theorem 1, we state the following 

Lemma: Ifjk=s + (l + r mod 2)(2* - \)r, k > 0, then 
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Proof: From(v), 

PjM
 + ^"?A+, = (Ps+^9.) and ph + Sqh = (p, + ^q,) 

So, 

= Pl+n(il+2Phclh^n-

We obtain pj = p2
jk +nq2

Jk, by equating the rational parts of both sides of the previous equation. 
We return to the proof of Theorem 1. We use induction to prove our result. When k - 0, 

j 0 = s, so 2pj0 = 2ps = v0, by definition 6. Let us assume the result holds for some positive inte-
ger &. Then 

v*+i = ̂ l ~ 2 = (2ph f ~ 2 = 2(2/4 - !)• (9) 

From (vl), we conclude that 

2 / £ - l = / £ + » ^ = P w u s i i i g ( 8 ) . 

Putting this into (9), it follows that vk+1 = 2pjk+l, and the theorem is proved. 

QUADRATIC CONVERGENCE 

It is also known from the theory of continued fractions [1] that, ifplq is a convergent for TITI, 
then 

c(w) 
* 2 9 

<—r-, where c(») > 0. 

That is, the error in estimation of -Jn by plq is of the order 1/g2. Now, for the sequence of 
approximations Pjklqjk (which are also continued fraction convergents), we have 

1 
,2 

(error at stage (* + !))_ qjM ~^ (^ ~ ̂  using (2)A4l and ^ ^ ^ h ( 1 0 ) 
(error at stage k) ( x V 4/i v; 

v ^ y 

jfc+l 

Since v̂  -> oo as k -> QO, the right-hand side of the last equation converges to 1/4/?; this confirms 
that pj jqjk converges to 4n quadratically. 

THE ALGORITHM 
1. Let n be given, n a positive integer that is not a perfect square. 
2, Use the continued fractions algorithm for 4n [3] to find 

(i) Vw = <a0,al,...,ar_1,2a0), and 
(ii) ps, qs„ where s is the smallest positive integer such that p2

s -nq] = 1 
0 = (l + rmod2) r - l ) . 
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3. v0 = 2p,, and vk+i = v\ - 2, for k > 0. 

4. Define jk=s+(l+r mod 2)(2* - \)r, then 

^=Y>anH* W - l 

are such that Pjk/qjk is a continued fraction convergent to Vw, and the sequence PJk/qJk con-
verges quadratically to 4n. 

AN EXAMPLE 
Let us consider an example of the algorithm where n = 19. Then we can use the continued 

fraction algorithm to find: 
Vl9= (4,2,1,3,1,2,8). 

In this case, we notice that r = 6, and that s = (l + r mod 2)r - 1 = 5. Thus, again using the 
continued fraction algorithm for convergents, we obtain: 

i 
a 

P 
1 

0 
1 

1 
0 

0 
4 
4 
1 

1 
2 
9 
2 

2 
1 

13 
3 

3 
3 

48 
11 

4 
1 

61 
14 

5 
2 

170 
39 

6 ••• 
8 

1421 ••• 
326 

Since s=5, the convergent p5/q5 = 170/39 satisfies (4). Thus, v0 = 340, and v1=g,(v0) = 
3402 - 2 = 11598, which implies that 

/?.. =57799 and #, = n p ^ — = 13260. 
* ~ — *h y 1 9 

Similarly, v2 = g(l 15598) = 1155982 - 2 = 13362897602, and 

p = ^ - = 6681448801 and q7 = J ^ =1532829480. 
Fjl 2 72 V 19 

Continuing in this manner, we obtain sequences {pj } and {qjk} of integers such that the 
sequence {pjk jqjk} is a sequence of continued fraction convergents which converge to sfl9 with 
quadratic order. 

CONCLUSION 

We note that we obtained the sequence ,vk+l =v\-2,k>0, by iteration of the function 
g(x) = x2 - 2 and starting at v0 = 2ps. We can ask, "What happens if we iterate g twice?" That 
is, let us define the sequence 

"*+i = S2(uk) = g(g(»k)) = 4 -4i/£ +2, k > 0, 

with u0 - 2ps. Using arguments similar to the ones given above, we can show that uk = 2pt , 
where 
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4 = s + (1+r mod 2)(22* ~ 1>. 

Furthermore, if qtk is obtained from pik by the use of (4), then Pik/qek define a sequence of con-
tinued fraction convergents which converge to n with order 22. 

These methods generalize to prove 

Theorem 2: Let m be a positive integer, and let us define the sequence {tk}, k > 0, as follows: 

*o = 2ps, h+i = gm(hl 
where g(x) = x2 - 2 and gm is the nf-fold iteration of g. Then tk = 2ph , where 

hk=s + (l + r mod 2)(2m/c - l)r. 
Also, if 

then the sequence 

is a sequence of continued fraction convergents which converge to 4n with order of convergence 
equal to 2m. 

REFERENCES 
1. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers, 5th ed., pp. 138 
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2. I. Niven & H. Zuckerman. An Introduction to the Theory of Numbers, 4th ed., pp. 204-12. 
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3. Ibid., pp. 215-16. 
4. R. L. Burden & J. D. Faires. Numerical Analysis, 4th ed., p. 60. London: PWS-Kent, 1989. 
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EDlTOJli^^ ~ 1 
The Editor has been asked to visit Yunnan Normal University in Kunming, China, for the Fall 
semester of 1993. This is an opportunity that the Editor and his wife feel cannot be turned down. 
They will be in China from August 1, 1993, until approximately January 10, 1994. The August and 
November issues of The Fibonacci Quarterly will be delivered to the printer early enough so that 
these two issues can be published while the Editor is out of the country. The Editor has also 
arranged for several individuals to send out articles to be refereed which have been submitted for 
publication in The Fibonacci Quarterly or submitted for presentation at the Sixth international 
Conference on Fibonacci IMum&ers and Their Applications. Things may be a little slower than 
normal, but every attempt will be made to insure that all goes as smoothly as possible while the 
Editor is on leave in China. PLEASE CONTINUE TO USE THE NORMAL ADDRESS FOR 
SUBMISSION OF PAPERS AND ALL OTHER CORRESPONDENCE. 
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THE RABBIT PROBLEM REVISITED 

Francois Dubeau 
Departement de mathematiques et d'informatique, Faculte des sciences, Universite de Sherbrooke 

2500, boul. Universite, Sherbrooke (Quebec) J1K 2R1, Canada 
(Submitted September 1991) 

INTRODUCTION 

In Liher Abaci (1202), Leonardo da Pisa posed and solved the following problem. 
A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many 
pairs of rabbits can be produced from that pair in a year if it is supposed that every month 
each pair begets a new pair which from the second month on becomes productive? 

The sequence obtained to solve this problem—the celebrated Fibonacci sequence 1, 1, 2, 3, 5, 8, 
13, 21, ...—appears in a large number of natural phenomena (see [2], [6]) and has natural appli-
cations in computer science (see [1]). 

Here we reformulate the rabbit problem to recover two generalizations of the Fibonacci 
sequence presented elsewhere (see [7], [8]). Then, using a fixed-point technique, we present an 
elementary proof of the convergence of the sequences of ratios of two successive generalized 
Fibonacci numbers. The limits of these sequences will be called here generalized golden num-
bers. Finally, we reconsider electrical schemes to generate these ratios (see also [3]). 

1. THE RABBIT PROBLEM REVISITED 

The modifications to the rabbit problem we would like to consider here are the possibility 
that the mature rabbits produce more than one new pair of rabbits, and also the possibility of an 
increase in the productivity.during the first few months. These two considerations lead to the 
following reformulation of the rabbit problem. 

A certain man put a pair of newborn male-female rabbits in a place surrounded on all sides by 
a wall. How many pairs of rabbits can be produced from that pair in a year if it is supposed 
that each month 
(a) a /-month old pair of male-female rabbits gives birth to (/' - \)s pair(s) of male-female 

rabbits until it is r-months old, and 
(b) a more than r-month old pair of male-female rabbits continues to give birth to (r - l)s 

pairs of male-female rabbits? 

In this formulation it is assumed that s is a positive integer. 
Let un be the total number of pairs of male-female rabbits at the nth month, and v'ln be the 

number of/-month old pairs of male-female rabbits at the nth month. Since v°n is the number of 
newborn pairs of male-female rabbits at the nth month, we have 

un=un_l+v% and v<=v°_;. (1) 

T h e n v£ = 0 forrc = - l ? - 2 , - 3 ? . . . (2a) 

v0° = l (2b) 
r +oo 

V„° = I ( / - 1 K + ] > > - 1 K for« = 1,2,3,... . (2c) 
i=\ i-r+l 
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Using (1), (2c) becomes 

and it follows that 

vJ^IVi, 
i=2 

un = 0 for n = - 1 , - 2 , - 3 , . . . 

n0 = l 

w„ - w„_! + J X ^ , forTI = 1,2,3,... . 
/=2 

(3a) 

(3b) 

(3c) 

Remark 1: For r = 2 we have the multi-nacci sequence of order s recently considered by Levine 
[7]. One interesting property of these sequences is 

^ - ^ + A - i = ( - s ) " -

Remark 2: For 5 = l w e have the r-generalized Fibonacci sequence introduced by Miles [8] and 
also studied by Flores [4] and Dubeau [3]. 

From these two remarks, we can call a r-generalized multi-nacci sequence of order s the 
sequence of un* s generated by (3). 

2e CONVERGENCE OF RATIOS 

In this section, we extend the method presented in [3] and [5] to obtain the limit of the 
sequence of ratios tn = unlun_x (n - 1,2, 3,...). Since the un'$ form an increasing sequence, we 
have tn > 1 for n - 1,2,3,.... From (3c) we have 

/„ = l + *£^(/ i*l ) , 
1=2 Un-\ 

and using the definition of t„, we obtain 

1 + *Z—I /i = l , . . . , r - l , 

* „ = < 
;= i 

1 l + s^—i n = r,r + l,r + 2,.... 
'TlVy 

The results of this section are then mainly based on the following two remarks. 

Remark 3: tn depends only on the preceding r - 1 values tn_h tn_2,..., *„_(r_i), and we can write 
tn = / Vn-l ? • • •, tn-(r-l) )• 

Remark 4: If /„_1?..., ?„_(>_!) are all greater than or equal to & > 0, then tn <fib,..., b) and if 
tn_i,..., ^_(r-i) are all less than or equal to b > 0, then tn> f(b,...,b). 
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Let us use the function /(•,...,•) to define another function F(-) as follows: F(x) = 
/ (x , . . . , x) or, explicitly, 

F(x) = \ + sJ^-^- forx^O. (4) 
7=2 X 

The convergence result we look for will be obtained from the study of the function F(-). The 
next lemma summarizes the main properties of F(). 

Lemmal: Let s>0 , r e{2,3,4,...} andx^O. Then 

[l + s(r-l) ifx = l, 
(a) F(i) = 1 5 ( x ^ - l ) . . t 

1 + r l f jC^l ; 
xr'1 (x-1) 

(h) FQ) is a strictly decreasing continuous convex function for x > 0; 

fiq) lim F(x) = +oo and lim F(x) = 1; 

(î > the equation x = F(x) has a unique solution T in the interval (0, + oo) and z is the unique 
positive root of the polynomial 

p(x) = xr-xr-l-s^xr-\ • /=2 

Remarks 3 and 4 and the fact that tk > 1 (A: > 1) suggest the construction of a sequence 
( M S such that 

bx = 1 < J* for £ > 1, 
f* < F(bl) = h2 forAr>l + ( r - l ) , 

b3=F(b2) < tk for£>l + 2 ( r - l ) , 
tk < F(h3) = b4 forifc>l + 3 ( r - l ) , 

b5=F(b4) < tk forA>l + 4 ( r - l ) , 
etc. 

We have the following results about the sequence {bt]^v 

Lemma 2: Let {^}£°i such that bx = 1 and bM = F(b£) for ^ = 1,2,3,..., then 

(a) the subsequence {#2*-i}£a is strictly increasing and the subsequence {b2e}^ is strictly 
decreasing; 

(b) for all / and j > 1, we have &2/_i < *2y» 

(c) there exists a positive constant /3 < 1 such that 0 < b2i+2 - b2M < f32i$(r -1) for I = 1,2, 
3,...; 

(d) the sequence {̂ }£Ti converges to the unique positive real root of the polynomial 

p(x) = xr-xr-l-sj^xr-\ 
j=2 
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Proof: (a) and (b) follow from l = bl<b2=F(bl), and if 0<a</3 , then l<F(fi)<F(a). To 
prove (c) we use (4) and consider 

7=2 

0 < b2£+2 -b2M = F(b2M) -F(b2£) = s j 

r - 2 / 

EI 

M-l 
_1_ 

- S®2t ®2£+\ ) 
u2lu2l+l 7=0 y=0 ^2^^2^+1 

1 <s(b2l-b2£+l) 

VlftllL+l 

(r-2 i V r - 2 i "\ 

jLad 7 7 X—rf 7 / 
V7=0 °2£ J\i=0 °2i+l J 

But 

then 

(Pitli ~l) y 1 = (Pn+i 1)b a n d y_JL_ 
,=n Dop b / = 0 02^+i #2^+1 l / ^ + l V 7=0 ^ 

f 
0 < ^2^+2 ^2M-1 - \®2£ V2M, 1 - i.r-1 

°2l+\ J 

Also, 1 < bk < 1 + s(r -1), then 1 < bk < [1 + s(r - 1)] , and it follows that 

0<1- ur-l 
< 1 -

1 
[1 + ^ - 1 ) 1 ̂r = P<1-

Hence, 0<b2£+2-h2M ^(b2e-b2M)p. Similarly, we can prove 0<b2£-b2M ^(b2i-b2£_l)[5, 
and we can conclude that 

o<b2£+2-b2£+1<ii2(b2£-b2£_l)<"'<ji2£(b2-bly 

But b2-b1 = s(r-l), and the result follows. Finally, from (c), the upperbounded increasing 
subsequence l^^+ilS m& the lower bounded decreasing subsequence {^2^)S both converge to 
the value z defined in Lemma 1. D 

Figure l,on the following page, describes the construction and the convergence of the 
sequence {b£}^0. 

We are now ready to prove the main results. 

Theorem 1: Let s> 0,r e{2, 3,4,5, ...},un as given by (3), and tn = un/un_1 forn>l. The 

sequence {tn}*=i converges to the unique positive root z of the polynomial 

p(x) = xr-xr-l-sYdxr-i. 
7=2 

Proof: From the way the sequences {tk}lZ\ and {fy}^ are generated, we have 

tk>b2M fork >l + 2£(r-I) and tk <b2i fork>l + (2£ + l)(r-l). 

The result follows from Lemma 2. • 
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y 

i 

; N̂ -

6 , = 1 bzb 

/ y = x 

?Xh b2 

FIGURE 1. Graph of y=F(x) 

Theorem 2: Let xbe considered as a function of x and 5. Then 

(a) for any fixed s > 0, we have 

and 

(i) T= forr = 2, 
2 

(ii) z increases as r increases, 

(Hi) lim = 1 + sfs; 
r-»+oo 

(b) for any fixed I, r ~ v^ for large s. 
Proof: For r - 2, r is the unique positive root of p(x) = x — x — s, which corresponds to 

the given formula. Because F(x) increases as r increases for fixed x and s, z increases as r 
increases. Also F(\ + Js) = \ + 4s- 4S 

a+^y T
<i+V^7 

then 

I+VS-- S < T < i+Vs 

and limr_>+00 T = 1 + yfs.. Also, from those formulas and inequalities, we obtain r~ Vs when 5 is 
large. D 

The table below presents values of % for some r and $. The last line of this table for r - +QO 
indicates lim^.^ r = 1 + Vs. 
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When r = 2 and s = 1, T corresponds to the golden number. For 5 = 1 andr e{2,3,...}? T 
has been called the r-generalized golden number. Hence, for s> 0 andr e{2, 3,...}, we could 
call T the r-generalized golden number of order s. 

Table of f Values for Given r and s 

\ s 
r > 

2 
3 
4 

5 

6 

1 7 
8 

9 

[ 10 
11 
12 

1 13 
14 

15 

16 
17 

IS 

19 

20 

21 

22 

23 

24 

25 

1 + « 

1 

1.6180340 

1.8392868 

1.9275620 

1.9659482 

1.9835828 

1.9919642 

1.9960312 

1.9980295 

1.9990186 

1.9995104 

1.9997555 

1.9998778 

1.9999389 

1.9999695 

1.9999847 

1.9999924 

1.9999962 

1.9999981 

1.9999990 

1.9999995 

1.9999998 

1.9999999 

1.9999999 

2.0000000 

2. 

2 

2.0000000 

2.2695308 

2,3593041 

2.3924637 

2.4054051 

2.4106054 

2.4127271 

2.4135994 

2,4139595 

2.4141084 

2.4141700 

2.4141955 

2.4142061 

2.4142105 

2.4142123 

2.4142130 

2.4142133 

2.4142135 

2.4142135 

2.4142135 

2.4142136 

2.4142136 

2.4142136 

2.4142136 

2.4142136 

3 

2.3027756 

2.5986745 

2.6868102 

2.7160633 

2.7262912 

2.7299574 

2.7312869 

2.7317715 

2.7319486 

2.7320134 

2.7320371 

2.7320458 

2.7320490 

2.7320501 

2.7320506 

2.7320507 

2.7320508 

2.7320508 

2.7320508 

2.7320508 

2.7320508 

2.7320508 

2.7320508 

2.7320508 

2.7320508 

4 

2^615528 

2.8751298 

2.9611061 

2.9874051 

2.9958519 

2.9986240 

2.9995422 

2.9998475 

2.9999492 

2.9999831 

2.9999944 

2.9999981 

2.9999994 

2.9999998 

2.9999999 

3.0000000 

3.0000000 

3.0000000 

3.0000000 

3.0000000 

3.0000000 

3.0000000 

3.0000000 

3.0000000 

3. 

5 

2.7912878 

3.1179423 

3.2017404 

32257176 

32328999 j 

32350925 

32357669 

32359750 

32360392 

32360591 1 

32360652 

32360671 

32360677 

32360679 

32360680 1 

32360680 

32360680 

32360680 

32360680 

3.2360680 

3.2360680 

32360680 

32360680 

32360680 

32360680 | 

3. ELECTRICAL SCHEMES 

The method presented in [3] to generate the sequences of ratios {«„ /«„_i}£°i using electrical 
schemes can also be used here. Indeed, if 

n = -&-
k=2 J J 

which correspond to 1 + s(r -1) resistances connected in series. Also 

au 
*j+i *j+i 1 

Jc=2 

1 - + S I: I l 
UjMIUj_x £lUjMluj-k 

•+S% 

(5) 

(6) 

^/-1,/+1 k=2^j-k,i+k 

which correspond to l + s(r-1) resistances connected in parallel. Here, again, it is assumed that s 
is a positive integer. 
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Those two formulas, (5) and (6), suggest the following process to generate the resistances 
Q,f/• (7 = 0,1,2,... , and i = - ( r - 1 , . . . , - 1 , 0 ,1 , . . . , r - l ) : 

(a) generate fi^y (/ = - ( r -1 ) , . . . , - 1 ) using (6) with Qj_li+l and s of each Clj_kJ+k for A: = 
2, ...,/•; 

( b ) n 7 f 0 = i; 

(c) gernerate fl^,. (/ = 1,2,3,..., r -1 ) using (5) with H^ ,-_i and s of each Q^,ti_k for A: = 2, 
...,r. 

Note that the ratios we are interested in correspond to Qj x (J = 0,1,2,3, . . .) . 
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ERRATUM FOR "COMPLEX FIBONACCI AND LUCAS NUMBERS, CONTINUED 
FRACTIONS, AND THE SQUARE ROOT OF THE GOLDEN RATIO" 

The Fibonacci Quarterly 31.1 (1993):7-20 

It has been pointed out to me by a correspondent who wished to remain anonymous that the 
number 185878941, which was printed in the "loose ends" Section 7 on page 19 of the paper, has 
a factor 3. This, however, was a misprint for 285878941, which is (t\9+l'w)l2, and the same 
correspondent has checked that this is a prime by using Mathematica. The misprint was important 
because it appeared to undermine one of the interesting conjectures on that page (and incidentally 
calls into question my ability to "cast out 3s"!). The same correspondent pointed out that 
34227121 = 137x249833. 

I. J. Good 
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CIRCULAR SUBSETS WITHOUT ^-SEPARATION 
AND POWERS OF LUCAS NUMBERS 

John Konvalina and Yi-Hsin Liu 
Department of Mathematics and Computer Science, University of Nebraska at Omaha, Omaha, NE 68182-0243 

(Submitted September 1991) 

Let n, q, kbe integers, n>l,q>l,k>0. Consider 1, 2, ..., n displayed in a circle so that n 
follows 1. Then the integers i, j (1 < j <j<n) are said to be (circular) q-separate xii + q-j or 
j + q-n = i. Let Cq(n,k) denote the number of ^-subsets of {1, 2, ..., n} without ^-separation 
(no two integers in the subset are ^-separate). The (total) number of subsets without ^-separation 
is Cq (n) = E£>o Cq (n, k). In this note we prove that 

Cq(ri) - Ld
m, where d = gcd(«, q), m =-n/d, (1) 

as follows. Partition the cycle {1,2,..., n} into d disjoint cycles Sj (reduced modulo ri)\ 

Si = {i9i + qJ + 2q,...J + {m-\)q}, l<i<d. (2) 

The cardinality of each St is m, and Cq (n) is equal to the product of the number of subsets of 
each Sf not containing a pair of consecutive elements. Thus, Cq(ri) = {Cl(m))u. But it is an old 
result that C1(w) = Z„, since Q(w) can also be interpreted as the number of circular subsets 
without adjacencies (1 and n are adjacent). 

The case q = 2 of (1) is 
_ , x \liiii if wis even, C2(n) = \ n n ' given in [2]. 

[Ln it n is odd, 
It should be noted that (1) is the special case x = 1 of the polynomial identity 

j:Cq(n,k)xk=((a(x))m^mT)d 

d = gcd(n,q\ m = n/d, a(x) + fi(x) = I, ga(x)fi(x) = -x, 

established in [2], where the proof involves the same partitioning (2). In the special case x = 2, 

(3) becomes Z**° Cq(n, k)2k = (2m +(-l)M)d, d = gcd(n, q\ m = n/d. 

This has a pleasing combinatorial interpretation, namely, it is the number of 2-colored circular 
subsets of {1, 2, ..., n) without g-separation. 

REFERENCES 
1. J. Konvalina & Y.-L. Liu. "A Combinatorial Interpretation of the Square of a Lucas 

Number." Fibonacci Quarterly 29.3 (1991):268-70. 
2. W. O. J. Moser. "The Number of Subsets without a Fixed Circular Distance." J. Combin. 

Theory A 43 (1986): 130-32. 
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THE CONNECTIVITY OF A PARTICULAR GRAPH 

Marc S. Ordower* 
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 

(Submitted November 1991) 

Let G be a graph with vertex set N = {1, 2, 3, ...} and edge set E where {a, b) e E if and only 
if a2 + b2 = c2 for some c in JV. From the standard parameterization of Pythagorean triples, it is 
easy to deduce that 1 and 2 are isolated vertices and that 3 and 4 together comprise a connected 
component of G. Our result concerns the connectivity of the rest of the graph. 

Theorem: N \ {1,2,3,4} is connected in the graph G 

Proof: One may verify that 8, 15, 20, 21, 72, 30, 16 is a path in G between 8 and 16. Note 
also that {a,b}eE implies that {ca,cb) GE for all CGN. Therefore, by multiplying the 
elements in the above path by the appropriate power of 2, we find a path in G between 2k and 
2*+ 1forall£>3. 

Next, given n>5, we recursively find a path Pn:n = n0,nl, ...,nr =2k for some k>3 
according to the following algorithm: factor nf = p^ where pi is the largest prime factor of nt; if 
pi - 2 then we are done; otherwise, set ni+l = ^—#*,. 

We make two observations to verify that this algorithm generates the desired path. First, 
note that 

£1 m - — rn, 
v 2 

implies that {nt, ni+l} e E. 
Second, note that all prime factors of ^-~- (p an odd prime) are strictly less than/?. Hence, 

for all /G{l ,2 , . . . , r -1}, if n^p^m; where gcd(pi,mi') = l, then pt = pi+l =-•• pi+Si_x >pi+sr 

Therefore, the algorithm terminates after a finite number of steps. D 

Corollary: l£H is the graph with vertex set N and edge set E9 where {a,b} eEf,a>b if and 
only if a2 -b2 = c2 for some c EN, then N \ {1,2} is connected. 

Proof: One notes that, for all {a, b) eE, there exists a c GN such that {a, c}, {6, c} ei? ' . 
Also note that {3,5}, {4,5} GE'. • 

REFERENCE 
1. J. A. Bondy & U. S. R. Murty. Graph Theory with Applications. New York: Elsevier; 

London: Macmillan, 1976. 

AMS number: 11D16 
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* Supported by an NSERC undergraduate research award and Simon Fraser University. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited hy 
Stanley Rablnowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOL UTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-42J2 USA. Correspondence 
may also be sent to the problem editor by electronic mail to 72717.3515@compuserve.com on 
Internet. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

A7+2 " Ln+i +Ln7 LQ = 2, Lx = l. 

Also, a = (l + V5)/2, £ = ( l -V5)/2 , Fn = (an-J3n)/y[59md Ln = an+(3n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-742 Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri State University 
Warrensburg, MO 

Pell numbers are defined by PQ = 0, Px = 1, and Pn+l = 2Pn + Pn_x, for n>\. Show that 

B-743 Proposed by Richard Andre-Jeannin, Longwy, France 

Find the modulus and the argument of the complex numbers 

B + i4aJr2 , a+iJ]3 + 2 
u = and v = . 

2 2 
B-744 Proposed by Herta T. Freitag, Roanoke, VA 

Let n and k be even positive integers. Prove that L2n +LAn +L6n +--- + L2kn is divisible by 
4-
B-745 Proposed by Richard Andre-Jeannin, Longwy, France 

Show that 
1 00 1 00 

«=1 ̂ 2n n=\ ^ 2 « - n / 2 n + l 
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B-746 Proposed by Seung-Jin Bang, Albany, CA 

Solve the recurrence equation an+l = Aa\ + 3aw, n > 0, with initial condition a0 - 1 / 2. 

B-747 Proposed by Piero Filipponi, Fond U. Bordoni, Rome, Italy 
Let 

00 1 00 1 

Si = Y and S2 = Y . 
£2(-iyL2n_x-i ^c-iyz^+i 

Prove that Sx/ S2 =V5. 

SOLUTIONS 

Recurrence with a Twist 

B-714 Proposed by J. R Goggins, Whiteinch, Glasgow, Scotland 
(Vol 30, no. 2, May 1992) 

Define a sequence Gn by G0 = 0, Gx = 4, and Gn+2 - 3GW+1 - Gn - 2 for n > 0. Express G„ in 
terms of Fibonacci and/or Lucas numbers. 

Solution by Graham Lord, Stanford CA 

We claim that G„ = 2Z2w_1 +2. To see this, note that 

^2»+3 ~ Lln+2 + ^2«+l ~ 2Z2w+1 + Z2„ = 2L2n+l + (Z>2„+1 ~ ^2«-l) ~ ^^2«+l ~ ^2«-l-

Doubling and adding 2 to both sides gives 
2Z2„+3 + 2 = 3(2Z2„+1 + 2) - (2Z2„_1 + 2) - 2. 

Thus, Gn and 2L2n_l +2 both satisfy the same recurrence. Since they also have the same initial 
values, they must represent the same sequence. 

Solvers submitted many other correct solutions, including F2n+2 + F2n_4 + 2, L2n + Z2„_3 + 2, 
Lin +Fm-2 +^2«-4 +2, 5F2ll - L 2 n + 2, Z ^ + 5 / ^ +2, a/*J 6F2/? -2F2w+1 +2. 

4̂foo solved by Richard Andre-Jeannin, Mohammad K. Azarian, Seung-Jin Bang, Brian D. 
Beasley, Paul S. Bruckman, Leonard A. G Dresel, Russell Euler, Piero Filipponi, Herta T. 
Freitag; Jane Friedman, Marquis Griffith, Ryan Jackson & Mika Wheeler (jointly); Russell 
Jay Hendel, Christos. Kavuklis, Harris Kwong, Carl Libis, Dorka 01. Popova, Bob Prielipp, 
Don Redmond, H.-J. Seiffert, Sahib Singh, and Ralph Thomas. 

DivisibiSitv by Fibonacci Squares 
B-715 Proposed by Piero Filipponi, Fond U. Bordoni, Rome, Italy 

(Vol 30, no. 2, May 1992) 

Prove that, if s > 2, 
Fm = 0 (mod F? ) if and only if m = 0 (mod sFs). 

Solution by Bob Prielipp, University of Wisconsin, Oshkosh, WI 

Our solution will use the following known results (where u is an integer larger than 2): 
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(1) FU\FV if and only if u\v. (For a proof, see [1], p. 39.) 
(2) F* \Fur if and only if Fu \r (For a proof, see [2], p. 3.) 

Let s be an integer larger than 2. 

If Fm - 0 (modF,2), thenF/ | iv By result (1) we have s\m. Thus, m = js for some integer 
j . Hence, i%2|i^ soFJj by result (2). Therefore, j = kFs for some integer t Thus, m = js = 
ksFs, making m = 0 (mod si^). 

Conversely, if m = 0 (modsFs), then m = fcsF, for some integer k. Since Fs\kFs, by result (2) 
we have i f | i ^ , SO /r2|F«- Hence, Fm - 0 (modi?). 

Somer proved that, ifk>2 and s>2, then 

Fm=0 (modFs
k) if and only if m = 0 (mod^i^- 1) , 

where d = 2 if both k>3 and s = 3 (mod 6) and d-\ otherwise. 
Seiffert gave an analog for Lucas numbers if s>\\ Lm=0 (mod I?s) if and only if m = 0 

(mod sLs) and rn/s is odd. 

References: 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 
2. V. E. Hoggatt, Jr.,. & Marjorie Bicknell-Johnson. "Divisibility by Fibonacci and Lucas 

Squares." The Fibonacci Quarterly 15 (1977):3-8. 
Also solved by Paul S. Bruckman, Leonard A. G. Dresel, H.-J. Seiffert, Sahib Singh, 
Lawrence Somer, and the proposer. 

The Sum of Two Lucas Numbers 

B-716 Proposed by Stanley Rabinowitz, MathPro Press, Westford, MA 
(Vol 30, no.2, May 1992) 

If a and b have the same parity, prove that La + Lb cannot be a prime larger than 5. 

Solution by Russell Jay Hendel, Patchogue, NY 

The problem tacitly assumes that a, b > 0 since, if we allow negative subscripts, then a = 5 
and b = -3 have the same parity, but L5 + L_3 = 11 + (-4) = 7, a prime larger than 5. Accordingly, 
assume a ,b>0. 

Without loss of generality, further assume that a > b. Let n - {a + b) 12 and m = {a-b)l2. 
Since a and b have the same parity, m and n are integers and 0<m<n. 

We make use of the following well-known formulas (see [1], p. 177): 

L„+m+(-lTLn_m = LmLn, (1) 

Ln+m ~ (~ l T Ln-m = 5FmFn • ( 2 ) 

If m is even, then by result (1) we have La+Lb= Ln+m + Ln_m = LmLn and this product is 
composite unless n-\ and m - 0, in which case La-\-Lb-2, which is not larger than 5. 
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If m is odd, then by result (2) we have La + Lb = Ln+m + Ln_m = 5FWF„ and this product is 
composite unless -Fw = Fn = 1, in which case La+Lb = 5, which is not larger than 5. 

Reference: 
1. S. Vajda. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester: Ellis Horwood Ltd., 1989. 
Also solved by Glenn Bookhout, Paul S. Bruckman, Leonard A. G Dresel, Herta T. Freitag, 
Harris Kwong, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Ralph Thomas, and the proposer. A 
partial solution was submitted by Charles Ashbacher. 

Expanding arctan as a Lucas Series 

B-717 Proposed by L. Kuipers, Sierre, Switzerland 
(Vol 30, no. 2, May 1992) 

Show that 
2 A (-1)" L 

arctan— = > -— 
5 ~ 2/f + l 2 

2«+l ' 

Composite solution by Bob Prielipp, University of Wisconsin, Oshkosh, WI and Graham Lord, 
Stanford, CA 

We use the following well-known facts: 

If Tari converges to A and Z#„ converges to B, then H(an +bn) converges to A + B, (1) 

a r c t a n x - Y - t ^ x u + 1 , |x|< 1, (2) 

x + y 
arctanx + arctany = arctan , xy < 1. (3) 

1-xy 
[For (1), see [1], p. 376. For (2), see [2], p. 51. For (3), which is related to the familiar formula 
tan(x+j/) = (tanx + tan>^/(l-tanxtanj/), see [2], p. 49.] 

We will also use the facts that Ln = an + /}", a + fi = 1, ap = -1 and note that \j3\<\a\< 2. 
Then, if |z|>|a|, 

f (-ir ^w+i = y(-irr«Yw+1,y(-i)V^Y"tl 

„t-02» + l 22"+1 %2n + l{z) „=o2" + l U J 

= arctan! — I + arctan r ^ f/̂  (a+p)iz z 
nJ — + arctan — = arctan- . - arctan-^— 
\z) U ; l-aj3/z2 z2 i 

zz + l 

The original proposal is a special case of this result, with z =2. 
Bruckman showed that 

2x ^ ( - 1 ) " Lm+i(x) arctan— = Y -^-^- • ^" + 1 \ ' , 5 ~02n + \ 22n+l 

where Zw(x) = a{x)m + /?(x)m, a(x) = (x + Vx2+4) /2 and /?(x) = (x - Vx2+4) /2. 
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Seiffert showed that 
i + 2V5 ^{-\y F2 

^arctan 2u 
2n+l 

V5 3 ^02n + l 22n+l 

and, ifp and q are natural numbers of different parity with q>p + 2, then 

Redmond showed that if Pn = cQa" + cxj3n. where a, J3, c0 and cx are arbitrary real numbers, then 

~Qan + b xan+b °Jo 1 + f 1Jo l + ta 

for \x\> max(| a\, |/?|). He used this to obtain some interesting results, such as 
00 ( i\n 

^03« + 123w+1 6 19 3 4 9 

References: 
1. R. Courant. Differential and Integral Calculus. Vol. I. London: Blackle & Son, Ltd., 1937. 
2. I. S. Gradshteyn & I. M. Ryzhik. Tables of Integrals, Series and Products. San Diego, CA: 

Academic Press, Inc., 1980. 
Also solved by Richard Andre-Jeannin, Seung-Jin Bang, Paul S« Bruckman, Leonard A. G. 
Dresel, Russell Euler, Hero Filipponi, Russell Jay Hendel, Harris Kwong, Igor 01 Popov, 
Don Redmond, H.-J. Seiffert, Ralph Thomas, and the proposer. 

Golden Power 

B-718 Proposed by Herta T. Freitag, Roanoke, VA 
(Vol 30, no. 3, August 1992) 

Prove that [{Fn +Ln)a + (Fn_l + L^)] / 2 is a power of the golden ratio, a. 

Solution by John Ivie, Saratoga, CA 

This follows from the two well-known identities: 

Fn+Ln=2Fn+l (1) 
and 

an=Fna + F^l9 (2) 

which can easily be proved by means of the Binet formulas. 
We thus have that 

{Fn + Ln)a + ( f ^ + L„_x) = 2Fn+la + 2Fn ^ f a + F=an+i 
2 2 n+l n 

Also solved by Charles Ashbacher, Michel Ballieu, Seung-Jin Bang, Brian D. Beasley, Scott 
H. Brown, Paul S. Bruckman, Charles K Cook, Russell Euler, Jane Friedman, Pentti 
Haukkanen, Hans Kappus, Joseph J, Kostal, Graham Lord, Dorka 01 Popova, Bob Prielipp, 
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H.-J. Seiffert, Tony Shannon, Sahib Singh, Lawrence Somer, Ralph Thomas, and the 
proposer. 

A Pell Factorization 

B-719 Proposed by Herta T. Freitag, Roanoke, VA 
(Vol 30, no. 3, August 1992) 

Let Pn be the rP Pell number (defined by P0 = 09PX = 1, and Pn+2 = 2Pn+l + Pn for n > 0). Let 
a be an odd integer. Show how to factor P2

+a + P2 into a product of Pell numbers. 
How should this problem be modified if a is even? 

Solution by Paul S. Bruckman, Edmonds, WA 

We establish the following identity, valid for all n and a: 

P2 -(-\\a p2 - P P 
1 n+a V V A n Aa*2n+a' 

Proof: We employ the Binet formula: Pm = (um - vm) IJ$, where u = 1 + V2 and v = 1 - 4l. 
Note that uv = - 1 . Then 

p^-i-iyp^^2"*2* -2{-\y+a +v2n+2a -(-iy{u2n ~2{-\y +v2n)] 

= l[u
2n+2a + v2n+2a ~(-l)a{u2n + v2")] 

= ±i/2n+fl(i/fl - v a ) + ±v2n+a(va ~ua) 

Therefore, 
( i^a+P„2, if a is odd; 

l ^ - i ^ 2 , if a is even. 
a 2n+a I ^ 2 D 2 

P/a awrf Somer note that the result is valid not only for Pell numbers, but more generally for 
any sequence that satisfies the recurrence relation un+2 = kun+l + un with u0 =0 and ut - 1. 

Popova shows, by induction, the more general result 
2/w-l 

V V rn+ka - rar2mar2n+{2m-l)a ' r2a> 
k=0 

where a andm are arbitrary positive integers. 

Also solved by Charles Ashbacher, M A. Ballieu, Russell Euler, Hans Kappus, Juan Pla, 
Dorka 01 Popova, Bob Prielipp, H.-J. Seiffert, Tony Shannon, Lawrence Somer, and the 
proposer. 

Errata: The name of the second proposer of Problem B-738 (Vol. 31, no. 2, 1993) should be 
Cecil O. Alford. 
Brian D. Beasley was inadvertently omitted as a solver for Problems B-712 and B-713. 
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Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-478 Proposed by Gino Taddei, Rome, Italy 
Consider a string constituted by h labelled cells cu c2?..., ch. Fill these cells with the natural 

numbers 1, 2, ..., h according to the following rule: 1 in c1? 2 in c2, 3 in c4, 4 in c7, 5 in cn, and 
so on. Obviously, whenever the subscript j of Cj exceeds h, it must be considered as reduced 
modulo h. In other words, the integer n (\<n<h) enters the cell cj(^nh), where 

and the symbol (a) denotes a if a < b, and the remainder of a divided by b if a > b. 
Determine the set of all values of A for which, at the end of the procedure, each cell has been 

entered by exactly one number. 

H-479 Proposed by Richard Andre-Jeannin, Longwy, France 

Let \Vn } be the sequence defined by 

V0 = 2, VX = P9 and Vn = PV„_X - QVn_2 for n > 2, 

where P and Q are real or complex parameters. Find a closed form for the sum 

H-480 Proposed by Paul S. Bruckman, Edmonds, WA 
Let/? denote a prime = 1 (mod 10). 

(a) Prove that, for all p # 1 (mod 1260), there exist positive integers k, u, and v such that 

(i) k\u2; 

(ii) /? + 5* = (5f/-l)(5v-l). 

(b) Prove or disprove the conjecture that the restriction /?# 1 (mod 1260) in part (1) may be 
removed, i.e., part (a) is true for all p = 1 (mod 10). 
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SOLUTIONS 

Bunches of Recurrences 

H-461 Proposed by Lawrence Sorrier, Washington, D. C 
(Vol 29, no. 4, November 1991) 

Let {un} = u(a, b) denote the Lucas sequence of the first kind satisfying the recursion relation 
un+2 = aun+1 + bun, where a and b are nonzero integers and the initial terms are u0 = 0 and ux = l. 
The prime/? is a primitive divisor of un if p\un butp\um for 1 < m < n-1. It is known (see [1], p. 
200) for the Fibonacci sequence {Fn} = u(l, 1) that, ifp is an odd prime divisor of F2n+1, where 
n > 1, then p = 1 (mod 4). 

(i) Find an infinite number of recurrences u(a, b) such that every odd primitive prime 
divisor/? of any term of the form u2n+l or uAn satisfies p = 1 (mod 4), where n > 1. 

(ii) Find an infinite number of recurrences u{a, b) such that every odd primitive prime 
divisor/? of any term of the form uAn or u4n+2 satisfies p = 1 (mod 4), where n>\. 

Reference 

1. E. Lucas. "Theorie des fonctions numeriques simplement periodiques." Amer. J. Math. 1 
(1878): 184-240, 289-321. 

Solution by Paul S. Bruckman, Edmonds, WA 

We write P ePD(un) if/7 is an odd primitive prime divisor of un. The following well-known 
result is stated in the form of a lemma. 

Lemma: Suppose m- x2 +y2, where x,y e Z + . Ifp is any odd prime divisor of m, such that 
/?jgcd(x, y), then/? = 1 (mod 4). 

Next, we indicate some easily-derived results for a (generalized) Lucas sequence of the first 
kind: 

rn -sn 

%= , /i = 0 , l ,2 (1) 
r-s 

where 
r = \(a + 0)9 s = ±(a-6l 9 = (a2+4hy. (2) 

Note that 
r + s = a, r-$ = 6, rs = -b. (3) 

Also, define the (generalized) Lucas sequence of the second kind as follows: 

vn=rn+s\ /i = 0,1,2,. . . . (4) 

As we may readily verify: 
w2»=«»v„; (5) 

U2n+l=bul+u2n+V (6) 

Also, it is clear that the un*$ and v^'s are integers for all n. 
We will establish the following result, solving part (i) of the problem: 
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Ifa = j 2 - / , h = l2f, where/,; eZ+,gcd(/,y) = l, thenps l(mod4) 
for all prime/? such that/? sPD(u2n+l) orp ePD(u4n), n>\. 

Proof of (*): We note that 62=a2+4b = (i2 - j 2 ) 2 + 4i2j2 = (i2 + / ) 2 , so 0 = i2 + / . 
Also, r = i2,$ = -j2. We see from (6) that u2n+l = X2 +72 , where X = ijun,Y = un+v Also, 
from (4), v2n = X2+Y*9 whtrtXi =i2\Y{ = j 2 n . If p ePD(u2n+l\n>l, then p\u2n+l, p\un, 
p\un+l. We cannot have p\ij9 for otherwise, Jp|Ar=>/?|7 = i/w+1, a contradiction. Therefore, 
/?| X, p\Y. Then, by the lemma, p = l (mod 4). 

If pePD(u4n),n>l, then ^K„,/?!%„. Note that w4n=w2wv2w by (5). Thus, p\v2n = 
X2+Y2. Since gcd(i,y*) = l, also gcd(X1,71) = l. By the Lemma, /?==1 (mod 4). This 
completes the proof of (*). 

Also, we shall prove the following result, which solves part (ii): 

lfa = i2 + j2,b = -i2}2, where i, j eZ+, gcd(i, j) = 1,i > j , then 
/? = l(mod4) for all primep such that p GPD(u4n) orp GPD(u4rj+2),n> 1. 

Proof of (**): We note that 62 =a2 +4b = (i2 +j2)2 -4i2j2 =(i2 -j2)2, so 6 = i2-j2. 
Also, r = i2,s = j 2 , and so vw = Z2

2+72
2, where X2 =/w,72 = / . Tf pePD(u2n), n>\ then 

^ 2 « , i ? R - - U s i n § (5X PK = X%+Y?. Since gcd(i,./) = l also gcd(Ar
2,72) = l. By the 

Lemma, /? = 1 (mod 4). Since In - 4n! or 4n' + 2, we see that.(**) is proven. 

In summary, we that / and j in (*) and (**) are arbitrary natural numbers, subject only to the 
condition that gcd(z, j) = 1 [and / >j in (**)]. Hence, there are infinitely many sequences u(a, b), 
with a and b as given in (*) and (**), that provide solutions to the two parts of the problem. 
Also solved by the proposer. 

Root of the Problem 

H-462 Proposed by loan Sadoveaanuv, Ellenshurg, WA 
(Vol 30, no. 1, February 1992) 

Let G{x) = xk +axxk~l+ --+ak be a polynomial with c a root of order p. If G(/7)(x) 
denotes the p^ derivative of G(x), show that {npcn~p I G{p){c)} is a solution of the recurrence 
un = cn~k - axun_x - a2un_2 akun_k. 

Solution by C. Georghiou, University ofPatras, Patras, Greece 
We will use the operator method of Difference Calculus (see, e.g., Marray R. Spiegel, 

Calculus of Finite Differences and Difference Equations [New York: McGraw-Hill, 1971], p. 
156). Let G{x) = (x-c)pg(x). Then g(c) = G{p)(c)Ip\ (* 0). The given recurrence is written 
as G(E)un = cn, where E is the shift operator, i.e., Eun - un+l. Therefore, the solution is 

" G(E) (E-c)pg(E) (E-c)p g(c) G(p)(c) (cE~c)p G{p)(c) Ap 

Now, from the Summation Calculus, we have 
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p\ £1 (p-k)\ 
where, as usual, r£k) -n{n-V) . . . («- k + 1) is the factorial function, and Ax, A2,...,Ak are arbi-
trary constants. But it is known that 

np =n™+YdSfnw (2) 

where 5 ^ are the Stirling Numbers of the Second Kind. If we choose Ap_k =k\S^ I p\ then 
(1), in view of (2), becomes A"pl = np Ip\ and the assertion follows readily. 
Also solved by P. Bruckman andF. Flanigan. 

Fee Fi Fo Fum 

H-463 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 30, no. 1, February 1992) 

z(l + z + z2) Establish the identity: ]T O(w) — 
(1-z2)2 ' (1) 

where z E C , |Z|< 1, and O is the Euler totient function. As special cases of (1), obtain the follow-
ing identities: 

f>(2/ i) /F2 l t f = V5/Z*, 5=1,3,5,...; (2) 

Y,<t>(2n-l)/L{2n_1)s = Fsyf5/L2
s, 5=1,3,5,...; (3) 

flQ(n)/Flu = (Ll+l)/F?j5, 5 = 2,4,6,...; (4) 

f ( - l ) - 1 * ( i i ) / / V , = (4-l) / /5;2V5, 5 = 2,4,6,...; (5) 
«=1 

„=i N/5/Z*, 5 = 2,4,6,...; 

X(- i r 1 0(2»- l ) / J F ( 2 „_ 1 ) , = 4 / F / V 5 , 5 = 1,3,5,...; (7) 

X( - i r 1 0 (2» - l ) /L ( 2 „_ 1 ) ,=F i V5 /Z 2 , 5 = 2,4,6,.... (8) 
«=1 

Solution by Harris Kwong, SUNY College at Fredonia, Fredonia, NY 
For|z|<l, 

m z ™ 

«=1 A ^ «=1 godd 
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For odd t and s > 0, the coefficient of**, where k-2st, is 

2 > ( 2 ' d ) = O(2 ' )2>(«0 = * ( 2 > * = 
# # 

[25-1/ i fs>0, 
/ if 5 = 0. 

Therefore, 

and 
770dd A ~ ^ «=1 ( I - * J 

r " °° r 2 

neven x ^ n=l ^x L ) 

which prove (1). Letting a = (1 + V5) / 2 and j3 = (1 — V5) / 2 , we have a/3 = -1 and the identities 

1 1 1 _ pm 

41 Fns am-p"s (-l)m-p2ns' 
1 1 _ pm 

Lm~ am + pns~ {-\)m + p2m' 

p2s _ (ap)2s \llL) if* is odd 
(l-p2s)2 [as-(apypsf [V5F2 ifs is even. 

ps(l + p2s) = (aPY[as + (apyps] = |-i%V5/ Z,2. if s is odd, 
(1 -0 2 ' ) 2 ~ [ocs-(apyps]2 ~{LS/5F2 ifsiseven. 

P2s _ (aP)2s _ fl/57? if s is odd, 
(l + p2s)2~[as + (apypsf~\vL2

s ifsiseven. 

Ps(l-P2s) = (apy[as-(apyps] = \-L,15F2 if sis odd, 
(1 + 02*)2 ~ [ccs+(ccpypsf ~\F,SIL2, ifsiseven. 

To prove (2)-(8), proceed as follows: 
(2) For odd s, it follows from (A), (**), and (C) that 

1 ^ 0(2«) ^ _ . , pm p 2s j 

•v5n=1 F2ns „even \~p2m {\-p2sf L2
S 

(3) For even s, it follows from (B), (*), and (D) that 

f,g(2w-l) v /T Ps(l + PS)_FSS 
2L. j Zs^V'K _ nlm n - r t 2 ^ 2 f2 ' 
n=l ^(2n-l)s nodd • P V1 P ,> ^ j 

(4) For even s, it follows from (A), (1), (C), and (D) that 

(A) 

(B) 

(C) 

(D) 

(E) 

(F) 
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Iy^) = y^ r = ps(l + P2s) + p2s ^Ls+1 

(5) For even s, it follows from (A), (1), (C), and (D) that 

l fr n„-i<s(/Q_ f^r, (-PT P\\+P2s)-P2s 4 - 1 

(6) It follows from (A), (**), and (E) that 

J _ y M ) „ - i O ( 2 « ) = _ y (iff')" = p2s jUSFf if^isodd, 
<J*£i F2ns ntLK)l-(iP')2" (} + P2sf \\IL] ifsiseven. 

(7) For odd s, it follows from (A), (*), and (F) that 

1 £ ( i r l O ( 2 n - l ) _ l ^ 0 ( n ) (ffT _ 0'(l-j82 ')_ 4 
V5£r F(2„_I}, /Bti wi-(/ffy- (i+/32y 5/7 

(8) For even 5, it follows from (A), (*), and (F) that 

^ 1 Q ( 2 n - l ) _ l ^ (ipy =PS(1-P2S)_FSJ5 
£1 ' k2n_l)s - ? £ U l - ( # ' ) 2 " ~ d + /32j)2 " ^ ' 

4̂feo solved by C Georghiou, P. Haukkanen, R Hendel, and the proposer. 
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