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1. INTRODUCTION AND GENERALITIES

Let us consider the Fibonacci polynomials U, (x) and the Lucas polynomials V,(x) (or sim-
ply U, and V,, when no misunderstanding can arise) defined by the second-order linear recur-
rence relations

U,=xU, +U, ,(Uy=0U,=1), (1.1
and
Vi=xV V., (h=2V=x), : (1.2)
where x is an indeterminate. It is well known that the polynomials U, and V,, can be expressed by
means of the Binet forms

U,=(a"-B")/A (1.3)
and
V=o"+B", (1.4)
where
A=vx +4
a=(x+A)/2 (1.5)

B=(x-A)/2=-1/0=x—0.

Recall that further expressions for U, and V,, (e.g., see [1], [3]) are

1.6)
[ (n-1)/2] , (
_ n-1-j\ n-1-2;
U Z( R
and
T S L VTR an
= . = nz . .
"omn—j\J

where | a | denotes the greatest integer not exceeding a.

In [4] we considered the numbers F" and I obtainable by taking the first derivative of the

polynomials (1.6) and (1.7) at x =1, and studied their properties. The basic results established in
[4] are

T =[§U,,(x)] =(nL, - F,)/5 (1.3)

x=1
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SECOND DERIVATIVE SEQUENCES OF FIBONACCI AND LUCAS POLYNOMIALS

o =[%V,,(x)] - nE, (1.9)

x=1

where F, and L, are the usual Fibonacci and Lucas numbers, respectively. Observe that the num-
bers Fn(l) and IV are, respectively, denoted by F’ and L) in [4].

In this paper we consider the second derivative with respect to x of the polynomials (1.6) and
(1.7) and investigate some of their properties, thus keeping, in part, the promise made to the
reader in section 4 of {4]. In the concluding section, we offer a brief glimpse of the implications
of investigating the A derivatives of [/ (x) and V,(x)

1.1 Definitions

Let us define the polynomials U‘? and ¥®, which are also obtainable from (1.6) and (1.7),

as
2 [(n-3)/2] - )
UP="_y, = Z(n—l—Zj)(n—2—2j)(n . J)x"“J (n=1), (1.10)
dx P J
and
2 [(n-2)r2] YN —_1_93 _ .
yo :%Vn Y n(n 2])(n' 1 2])(njj)xn-z—zj (n>1). (1.11)
i=0 n-J
Observe that
UP =V® =0 [from (1.1) and (1.2)] (1.12)
and
UP=UP =P =0 (1.129

according to the convention that a sum vanishes whenever the upper range indicator is less than
the lower one. From (1.10)-(1.12") we can write the first few elements of the sequences {U,EZ)}:
and {V,,(z)}:, namely,

USZ) = U1(2) — U§2) =0 Vo(l) - V1(2) =0
UP =2 v® =2
UP =6x V® =6x
UP =12x* +6 v =12x" +8
U® =20x> +24x V® =20x* +30x
U =30x" +60x* +12 v =30x" +72x* +18 (1.13)
UP = 42x° +120x> +60x VD = 42x° +140x° +84x
U® =56x° +210x* +180x% +20 | V,® =56x° +240x" +240x” +32
UR =72x" +336x° +420x° +120x |V =72x" +378x° +540x> +180x
V@ = 90x® +560x° +1050x" +600x” +50.

In this paper we confine ourselves to studying some properties of the above sequences for the
case x=1. Since, letting x =1 in (1.1)-(1.5), we have the usual Fibonacci and Lucas numbers,
the sequences of integers {U®(1)} and {,®(1)} will be denoted by {£?} and {I{*} and defined
as Fibonacci and Lucas second derivative sequences, respectively.
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SECOND DERIVATIVE SEQUENCES OF FIBONACCI AND LUCAS POLYNOMIALS

From (1.13), the first few values of £ and I?) are

0123 4 5 6 7 8 9 10
EP|0 0 0 2 6 18 44 102 222 466 948 (1.14)
0 0 2 6 20 50 120 266 568 1170 2350

A large number of relationships involving £®, [P FO M F and I will be exhibited in
the following sections. Their proofs are not very complicated but they are rather lengthy, so, for
the sake of brevity, only some of them will be given in full detail.

2. EXPRESSIONS FOR F® AND L» IN TERMS OF FIBONACCI
AND LUCAS NUMBERS

Expressions for £ and I!¥ in terms of U, and ¥, can be obtained from the definitions
(1.10) and (1.11) and the Binet forms (1.3)-(1.5). Letting the bracketed superscript (*¥) denote
the kth derivative with respect to x and taking into account the results established in section 2 of
[4], we can write

U(z):d_zan‘ﬁn:_CiU(l):E’_"(aanﬂn)A_x(O‘n—ﬁn)

Tooddt A de " dx A
_[n(@"+B"A - x(e" - BV A - (A Pln(e” + A - x(o" - B")]
AG
[(* —=1)AU, A’ -3xA[nAV, —xAU,] [(n* - DA +3x*|U, - 3nxV, 91
A A
Analogously, we have
2 n_ nn
o = ii(“" +B") = iVn(l) _d n"-B")
dx dx dx A
. (C NP -(BMHV1A- AV (" - B")
= 0
na"+nB"—x(a"-B")/A _nnV,-xU,)
=n e = e : 22
Letting x =1 in (2.1) and (2.2) yields
F(z) _ (5”2 _Z)F;' _3nLn (2 3)
n 25 .
and
L(Z) — n(nLn — F;,) (2 4)
n 5 b .

whence the expressions for negative-subscripted elements of the Fibonacci and Lucas second
derivative sequences can be easily deduced, namely,
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(2) ( l)n+lF(2) (25)

and
I[D = (-1 [P, (2.6)
Observe that, from (1.8), (1.9), (2.3), and (2.4), we get the following equivalent expressions for

F® and I!?:

P =L -3FY -F)/5, 2.7)

and
I =nFE®. (2.8)

- 3. SOME IDENTITIES INVOLVING THE NUMBERS F® AND [®

Some simple properties of the numbers F® and LE,Z) can be derived from (1.8), (1.9), and
(2.3)-(2.8). First, let us state the following four identities.

Hdentity 1: @ +(-1)"F® =1 F® +F I +2mF,F®.

n+m

Hdentity 2: F® —(-1y"F® =F,I® + LF® +2nF,FO.

n+m
Hdentity 3: I3 +(-)"I?, =LY+ IP+2[PL).
Identity 4: I

‘n+m

~ )" L2 =nL FP +mL, FO +n* +m*)E,F,
For the sake of brevity, we shall prove only Identity 1.
Proof of Identity 1: From (2.3) we write

EQ +(-1)"F2), ={[5(n+m)* -

e -3(n+m)L

+(-nH" [S(n—m) -2]F,_,-3(-D"(n-m)L,_,1/25
= {[5(* +m*)=2][F,,,, + (-1)"F,_, ]+ 10nm F,,, — (-)"F,_,,]

—371[L +(_l) Ln—m]_3m[Ln+m ( 1) m]}/25 (31)

n+m

n+m

n+m

After some manipulations involving the use of (2.3), (2.4), (1.8), and the identities I,,-1,, [5,
page 59] a compact form of which is

By +(-D)'F,_ =FL,
Fe - (“l)th—k =LK,
the identity (3.1) can be rewritten as
E® 4 (-1)"E® =[5(n* +m*)F,L,, +10nmF, L, —2F, L, —3nL,L, —15mF,F, ]/ 25
=L, [(5n* =2)F, -3nL,]/25+mF,(mL, —3F,)/5+2nmF,L, /5
=L, E® +mF,(mL, ~F,)/5-2mF,F, | 5+2nmF,L_ /5
=L, E® +FI® +2mF,(nL,~F,))/5
=L FP+EI® 1omF,F®. 0
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Particular cases of Identities 1-4 are
Identity 5 (m=1in1d. 2): F@+FEQ =17,
Identity 6 (m=1in1d. 4): I2 +I®, = FO +@* +)E, = F® +nlV + F,.

n+l

Hdentity 7(m=2in1d. 2): FY)-F%=I®+2I".
Identity 8 (n=min1d. 2): F® =3F I®+[ F®.
Hdentity 9 (n=min1d. 3): ) =2[L I¥ +(IP)™.
Hdentity 10 (n=2m in1d. 2): E2 = FE [ID +4mI, FO1+[L,, +(-1)"]1E?.
Identity 11 (n=2m in1d. 3): I =3{IP[L,, +(~1)"1+2L, (I}

Next, we derive
Hdentity 12: FVIP — IVE® =[F, (51 +41) + 4(-1)"n’}/ 25.

Proof: From (1.8), (1.9), (2.7), and (2.8), we have

FOID _[OF® = (5p(FDY — n(IPY +3EPILP + F,IP7/5. (3.2)
Using the identities
(FOY? = I+ F? -2nF,, )/ 25, (3.3)
(LYY =n’F,, (3.4)
EOIO =p(nF,, - F*)/5, (3.5)
F LY =nF;, (3.6)

and the identity I, [5, page 56] [namely, 5F7 = IZ — 4(-1)* ], we find that (3.2) becomes

312 2 3 2
F,,(I)L;Z)~L(,,I)Fn(2) :(n Ln +nE12 - 2n En _n3E12 " 3n 1‘72"5—371}7;, +nE12)/5

5
=[(I2 -5FE*) +n’E,, +3nF*]/ 25 =[4(-1)"n’ + n*F,, + 3nF}]/ 25
=[nF(nL, +3F,) +4(~1y"n*1/25 = [SE,I® + 4nF}* + 4(-1)"n’]/ 25
=[E(ILP +4I0y+4(-1)"n’1/25. O

Let us conclude this section by giving the Simson formula analogs for £ and 2.

27 2 20 N2
Identity 13: (F®Y: - FAED = 2n"L,, — 6nk,, +81;,12 : n()'Gn -13)
’L,, —2nF,, —4F} +5n*(-1)"(n* - 1)

25 '

. 2n
Hentity 14: (LYY~ LDL3, =
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Proof of Identity 14: Using (2.4) and identities Iy, I,y [5, page 59],
T o e G
Ly Ly — Ly = SCD"™ B2,
we can write
L = LALE =n* (nL, - F,)* 125 (0" = D[(n=D L, - F,_ J[(n+1) L, — F,,,1/25
= (B L%+ F} ~2nF,,) /25— (n* = 1){(n* ~ D[ L2 - 5(-1)"]
~(=DE, — ()" 1-@+D[E, +(-D)"1+ £ +(-D"}/25. (37)

After some manipulations involving the use of I, [5, page 56] and the identities 1,5, I,¢ [5, page
59] a compact form of which is L,, + 2(-1)" = L2, the identity (3.7) can be rewritten as

(LY - LA LR, =1@n? =)L, - 2nF,, + F +(=1)"(5n* - 9n* +4)]/ 25
=[2n*L,, - 2nF,, + F* — I2 + 4(-1)" + 50*(-1)"(n* - )]/ 25
=[2n’L,, - 2nF,, - 4F* +5n*(-1)"(n* - 1)]/25. O

Simson formula analogs for U® and V¥ may be obtained from (2.1) and (2.2), but their dis-
covery is left to the perseverance of the reader.

4. SOME SIMPLE CONGRUENCE PROPERTIES OF F® AND LY

Letting m =1 in Identity 1 and Identity 3, we obtain

F - F = P + 250 @
and
I8 1P =17 +2L), (4.2)
respectively. From (4.1) and (4.2), the recurrence relations
EP = FR+ ER+2EY, (R =P =0) @3
and
1= 10+ 12,4200, (=10 =0 @4

can be readily obtained, where the initial conditions have been taken from (1.14). The relations
(4.3) and (4.4) allow us to state the following proposition.

Proposition 1: F® and I are even for all n.

Further congruence properties of £ and I* can be easily established.
Proposition 2: Fn(z) =0 (mod6) forn=0,£1,+2 £4 +5 (mod12).
Proposition 3: Y =0 (mod6) forn=0 (mod3) orn= =+l (modI2).

Proposition 4: [ =0 (mod10) forn=0,%1 (mod5).
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The proofs of Propositions 2-4 are similar, so, for the sake of brevity, we shall prove only Propo-
sition 3.

Proof of Proposition 3: From (2.4) and Proposition 1, it is apparent that we have to find
conditions for n(nL, — F,) to be divisible by 3. The first condition is trivial: n=0 (mod 3). The
second condition is given by the solution of the congruence nl, = F, (mod3). The repetition
period of the sequences {(F,),} and {(L,);} (the Fibonacci and Lucas sequences reduced modulo
3) is 8 (see [2, page 55]), whereas the repetition period of the sequence of naturals reduced
modulo 3 is 3. Since l.c.m.(3, 8) = 24, we have to inspect the elements of the sequences
{(nL,),}E and {(F,),}E and look for the equality

(nL,); =E,)s. 4.5)
It is readily seen that (4.5) is fulfilled for =0, +1(mod 12). O

5. EVALUATION OF SOME SERIES INVOLVING F® AND L

In this section, several finite series involving F® and I'?) are considered and closed form
expressions for their sums are exhibited. For the sake of brevity, only a few among them are
proved in detail by using some results obtained in [4] and the further identities

n

Y (1) Fy; = ~(nl,y, +2F,) I 5=~F%), 5.1
i=0

YD Ly =0y = Lo = o, (52)

i=0

M-

i
o

FF, =L, ~F)/5=F®, (53)

n—i

M:

FL,, =@m+DF,=LY+F, (5.4)

Il
(=}

The proofs of (5.1)-(5.4) can be carried out with the aid of the Binet forms (1.3)-(1.5) and [4,
(3.1)]. Since they are rather tedious, they are omitted in this context.

5.1. Results

The following results have been obtained.

Proposition 5: ZE(Z) = F,,(f% - 2(}7”(25 -F, ., +)).

i=0

n
Proposition 6: Z ng) = Lﬁ)z - 2(L(,,1ﬂ23 -L,.,+2).
i=0

Proposition 7: ) (?)Fi(z) =[5n’F,,_, — (3n+2)F,, +nF,, ;1/25.
i=0
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Proposition 8: Z (?)L(z) =n[(n-1)L,, , +2F,, ,1/5.

i=0

We point out that several equivalent expressions for the above sums can be given. For example,
we have

Proposition 8': ) (7)4(2) =L, ,(I® + EMY+n[3F,, , +2(n-1)(-1)"1/5.
i=0
Finally, the following convolution identities have been established.
Proposition 9: > FVF, = %Fn@).
i=0

1
Proposition 10: Z IVF . = =5 I,

i=0

“ 1
Proposition 11: Z FVL . = > IP 4+ FO,
i=0

% 5
Proposition 12: Z L = > FO42FO 4 [O L

i=0
5.2 Proofs
Proof of Proposition 5: From (2.7), (1.8), and (1.9), we have

i=0 i=0

A, :ZE(2) (Z’L(l) 3ZF(1) ZE) (Z 2F.——ZzL —%ZE) (5.5
i=0 i=0 i=0
Using the Binet forms (1.3)-(1.5) (with x =1), [4, (3.1) and (3.2)] and identity I, [5, page 52]

k
ZE:Fk+2_1>

i=1
we find that (5.5) becomes

A,,:%_%(g;iza”—éizﬁi] (Z"x +le3] Fo— )}

1| 1 (na™-@n? +2n-D)a™? +(n+1)2a" - o® —
515 -B3
_nzﬂ"+3—(2n2 +2n~1)ﬁ"+2+(n+l)2[3"+1—ﬁ2—ﬂ)

3(no™ =+ o™ + o +nB”+2—(n+l)[3"“+B
5 B> o
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{ Fys—(@2n* +2n =) F s+ (n+1)*F,, ~8- %[”an —(n+1)L,,3+4] _%(‘F;HZ - 1)}
[ 2E1+3 ~2nF, 3+ Fy+n*F, , — (” itz ~ Lnas) = %an - 10:]

%[ By —2nF, 3+ Fpg - (n 2 = 2oy = Fpig) = Frp + < (Ln+3 +2L,,) - 10}
{(”2 DE,, —2nF, 3+ F, 6 - %[(” +2)L,,, — F,y, ] +3F, 53— 10}

= L[ Dy ~20F, iy +3F, 3 - 3F S ~10]

=~—[(5n ~2)F,, = 3L, ~10nF, 5 —6L,,, +5GF, 3 + F.) — 50| (5.6)

The equality (5 6) can be rewritten as
4, = {[5(n+2) =2|F,u; = 3(1+2) Ly, = 2001+ D)F,, ~ 10nF,5 +10L,,, ~ 50]
1
=F% - E[l On(2F, 15 + Fry3) +10(2F,5 = Lyp4) +50]
1
=F%}- g[ann+3 —2(Lys - 2Fn+2)] -2=FJ+ ( s~ Fn—nL,,3) =2

= FY - 2FD + 2 (= Fy +30) - 2= F - 2P 425, =2, O

Proof of Proposition 7: From (2.7), we can write

B,,:é( )F@) 5[20( )L(D 32( )F(I) 2(;( )F] 5.7

Now, from [4, (3.5), (3.10), (3.3)], we have

3 (7Y = 351 )2E = nb 4001-DF, (5.8)
i=0 i=0
1 1
Z(?)E‘” = B2 = 1@ =D Ly~ Fopa], (5.9)
i=0

ZC’)F =B, (5.10)

i=0
respectively. Therefore, from (5.8)-(5.10) and (1.8), (5.7) can be rewritten as
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Bn = %[nF‘Zn—l + n(n - 1)En—2 - 3(2n - I)L;r(')_l - 3F2n_1' - F‘Zn:|

1
= %[lonFén_l + lonzF‘gn_z - 10nF2n—2 - 6nl,2n_l + 3L2n_1 +3F2n_1 _ ]'OF‘Zn]
1
- E[S;ﬂ Fopey +1(5F0y =SBy =303, = 2|
1

= E[SnZan—z +n(F,,_5—3F,,)-2 an] 0

6. FURTHER RESEARCH

The first and the second derivatives of polynomials (1.6) and (1.7) have been considered in
[4] and in this paper, respectively. More particularly, several properties of the sequences of
integers obtainable by taking the above mentioned derivatives at x =1 have been investigated.

The generalization to the analogous sequences {F*)} and {Z{)}, defined as

k L(n—k-1)/2] N k
125’”:[%,;1/,,(@] = 2 [(”‘}‘J)gm—i—zj)} (n=1) 6.1

x=1 J=0
and

k L(n-k)2] N K
Lszk)z[dix?Vn(x)] =y [_n_(n;])n(n—Hl—Zj)iI (n=1) (6.2)

=1 j=0 LP—J i=1

(with F® =0 for k >0 and Il = 0 for k > 1), seems to be very interesting and will be the goal of
a future work. In this section we confine ourselves to offering some conjectures about the prop-
erties of these sequences.

Conjecture 1: I = nF*™Y,

Conjecture 2: I = (n—k +1) L[ -—2(L§,k_ )+ FED )
Conjecture 3: F® = F®) +F%) + kE&D.

Conjecture 4: I = IO, + IV, + lr* D

Conjecture 5: F%) + F4) = [®)

Conjecture 6: F*) = L<nk )=0 (mod?2) fork >2.
Conjecture 7: IV =0 (modn) fork > 1.

Moreover, we leave to the reader the proof of the following:

L(nn) — Lg’_l) — n| (n 2 1), (63)
(n-2) _ _”inu n>2
, 2= (nz2), (6.4)
G Pt P
V=g 29, 65)
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o 24(1-2) nt (nz4). (6.6)

Observe that (6.3)-(6.6) hold also for the minimum admissible value v of n, for which one has

I = L. Analogous identities for £*) can be stated whence the validity of Conjecture 1 can be
checked. More generally, all the conjectures and results presented above can be checked against
the numerical triangles shown in Figures 1 and 2, which have been obtained by (6.1) and (6.2),

respectively. It must be noted that £ = 0 for k > n—1, whereas L) = 0 for k& > n.

NF 001 2 3 4 s 6T 8 0o 1 2 3 4 5 6 7 8
010 2
11 o 11
21 1 3 2 2
372 2 2 0 4 6 6 6
413 5 6 6 0 7 12 20 24 24
515 10 18 24 24 0 11 25 50 90 120 120
6|8 20 44 84 120 120 0 18 48 120 264 504 720 720
7113 38 102 240 480 720 720 0 29 91 266 714 1680 3360 5040 5040
8121 71 222 630 1560 3240 5040 5040 O 47 168 568 1776 5040 12480 25920 40320 40320
Fig. 1. Triangle £® (0<n, k <8) Fig. 2. Triangle I (0<n, k <8)

As indicated at the end of [4], the theory in this paper can be extended to cover Pell polyno-
mials and numbers, and Pell-Lucas polynomials and numbers. In this case, we first replace x by 2x
in (1.1) and (1.2), differentiate, and then put x =1.
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1. RATIONAL CHEBYSHEV APPROXIMATIONS OF ANALYTIC FUNCTIONS

We proceed to establish the main result of this paper: a general procedure to obtain rational
Chevyshev approximations of analytic functions. Let f(z) be analytic at z,. Then, by composi-
tion, g(z) = f(cosz+z,—1) is analytic at the origin. Hence, we can write

5} 2n
g(z)= f(cosz+z,-1) = ng()g”")(m(;j. (1.1)

If an explicit expansion of f(cosz+z,—1) is not available, then successive coefficients in (1.1)
are found directly from the formula for Maclaurin expansions, i.e., by simply calculating succes-
sive derivatives of (1.1) and setting z =0. To wit,

8(0) = f(z), 1.2)
g"(0)=—/"(z), (1.3)
gM(0) = 31"(z0) + f'(z), (1.4)
g(0) = =157"(z9) ~ 15/ "(20) ~ £ '(z), (1.5)
g0 (0) =105 (z5) + 210 "(z5) + 63 £ "(25) + f'(2,), (1.6)
g9(0) = —945 M (24) — 31501 ™ (25) — 22051 "(25) — 255 "(2,) — 1 (20)s (1.7
g% (0) =10395 £ (24) + 519751V (2,) + 65835 F ™ (z5) + 211201 ""(z,)

+10231"(z0) + f'(2,), (1.8)
g%V (0) = —135135 7 (z,) — 945945 £ D (2,) — 1891890 f © (z,) — 12012001 ™ (z,)

1951951 "(z,) - 40951 " (z,) — " (2,), (1.9)

etc.; the derivatives of odd order at the origin being at zero, since g(z) is an even function of z.
Now, consider the expression

g(2)~ A, cosz— A,g(z)cosz+ A;cos2z— A,8(z)cos 2z +---
+ Ay, cossz— A, 8(z)cos sz, (1.10)

where the 4,'s are constants to be determined, and the ~ in (1.10) is to be interpreted in the sense
that the Maclaurin expansions of both sides agree through the first 2s terms.
Note that both sides of (1.10) are, of course, even, as they should be.
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Observe that the Cauchy product of g(z) and cosmz is

i i g(2n—2k)(0)(_l)km2k22n

g(z)cosmz=n=o 2 el (1.11)

Since cosmz is entire, the above Cauchy product will have the same circle of convergence that
equation (1.1) has (see [4]).
Using (1.11) to equate powers of z in (1.10) we find, after multiplying through by (-1)"(2n)!,

780 = 4=~ 4,30 (3 s 0+ 27 4,
k

=0

—4, Z (_1)n_k 2% (%Z)g(zn—%) (0)+---+ SznAzs—l

k=0
- AZSkZ;(- 1)”"‘s2"@',§)g‘2"‘2"’(0), (1.12)

where (7{) is the binomial coefficient.

Letting n=0,1,2,...,2s—1 in (1.12), we find an algebraic system of 2s equations with 2s
unknowns for the determination of the A's. Then, g(z) is found as

A cosz+ Aycos2z+---+ A4, cossz

g(2)~ (1.13)

1+ A, cosz+ A, cos2z+-+-+ A, cossz

Now, in equation (1.13), replace the above z by cos™'(z— z, +1), and make use of the defin-
ing equation for Chebyshev polynomials of the first kind 7 (z) = cos(n cos ' z), recalling the rela-
tion between f(z) and g(z) to obtain

AL (z-zp + D)+ AL (z—zy+ D)+ + Ay, [ T(z2—2,+1)
Toz—z2+ D+ ATz 2 + Dot Ay L(—2 +1)

f(@)~= (1.14)

which gives a rational Chebyshev approximation of f(z) where the only restriction which has
been assumed is analyticity of the function at z,.
Power series of the form given in (1.1) are sometimes found Taylor-made in the literature.
For instance, see [6],
1, 31 4

exp(cosz—l)zl—%zz+gz —%z 4., (1.15)
where the general coefficient is
an_l(—l)ka(—n)kn—i_IM(n—k—r)z,,, (1.16)
n!(2n)! o s r!

where (@), = oo +1)(x +2)--- (o +n-1), (@), =1, a#0, is Pochhammer's symbol. In series
(1.15), z, = 0.
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Also, see [5],

logcosz=Y (-1)"(2*" - 1)2*"' B, ,2*" /[n(2n)!], (1.17)

n=1
where the B,, are Bernoulli numbers (see [1]). In the series (1.17), z, = 1.

It will be noticed that the coefficient of f*(z,) in the sum for g®7(0), ((=1,2,...,2s—1,
J=12,...,2s-1), exemplified in the list given at the beginning of this section, equations (1.2)
through (1.9), is also the coefficient of cos jz, evaluated at z=0, in

2j

d
F(exp(cos z-1)).

This provides a simple computer algorithm for generating these coefficients. This observation is
due to one of the authors (Rosenthal).

2. ADAPTING THE ALGORITHM FOR THE GENERALIZED
HYPERGEOMETRIC FUNCTION

The method we have developed enables us to find, in simple fashion, a rational Chebyshev
approximation for the generalized hypergeometric function , F,(z):

- (al)n(aZ)n“ '(ap)nzn

F (a,a,,..,a,;b,b,, .. b ;z)=1+ X @n
TR i B (B), (B,),m!
where none of the b's is zero or a negative integer (see [14]).
The derivative of (2.1) is given by (see [14])
e M) : .
m qu(al +1,a2 +l, ...,ap +1; bl +1, bZ +1, ...,bq +1, Z). (22)

The value of the hypergeometric function at the origin is 1. Hence, choosing z, =0, it is quite
simple to determine successive derivatives of the ,F,(z) at the origin to find, with the aid of

equations (1.2) through (1.9), the values of g(z) and its derivatives at z = 0.
Note that g(0) and its derivatives at the origin will be given as rational functions of the coef-
ficients of the ,F,(z). In particular, if these coefficients are themselves rational, then the rational

Chebyshev approximation will involve only rational coefficients.
As the reader no doubt knows, many known functions are special cases (at most with a multi-
plicative monomial) of the generalized hypergeometric function. We will choose Bessel functions,
z/2)"
Jn(Z)=ﬁ OE(—; 1+n;-%22), (2.3)
to illustrate the algorithm.

It will be recalled that we mentioned, following (2.2), that, if the parameters appearing in the
hypergeometric function are rational numbers, then the A4's, the solutions of the system of equa-
tions (1.12), are also rational numbers. This holds true in most of the important cases. For this
reason, we found it desirable to make use of a program (we chose REDUCE [15]) that did not
execute the operation of division, so that the A's would be given in fractional form.
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We close this section by making a’comment that is probably obvious to the reader. If one
wishes to go from a given s, the highest order of the Chebyshev polynomials in (1.14), to s+1 in
the system of equations (1.12), then the matrix of the coefficients for s+1 will be the same as that
for s, except that two rows and two columns will be added. Hence, knowing the inverse of the
2s x 2s matrix one can find the inverse of the (2s5+2) x (2s+2) matrix by using the method of
partitioning in the technique known as "inversion by bordering."

3. ILLUSTRATING THE ALGORITHM

We will now give some examples of rational Chebyshev approximations obtained by use of
the procedure outlined in the previous section. To list the approximations, we will give them in
the following format:

f(Z) ~ azk (pOZn "'_plzn—1 +p2zn_2 + '“+pn-—lz+pn) (3 1)
b(goz" + 2" + @2 4 G2+ q,,) .

where k +n<s, and m<s. For each s we will simply list the coefficients in (3.1).
f(2)=J(2)
s=2

a=4,k=0,n=2,p,=2,p,=0,p, =-3;
b:lam:2)q0:5’q1:0:q2=—12‘

s=3

a=-1,k=0,n=3, py=69, p, =51, p, =-368, p;, =-272;
b=1,m=3,q9,=23,9,=17,q, =368,q;, =272.

s=6

a=12,k=0,n=6, p,=5776742, p, =0, p, = —1838 79735,
py =0, p, =1007089152, ps =0, p, = —7895 61600,

b=1,m=6,q,=6035647,9,=0,q, =370582236,q, =0,
q, = 9716385024, g; = 0, g, = —94747 39200.

The reader should observe that the magnitude of the coefficients increases quite rapidly with
increasing s. We shall shortly see that the quality of the approximation also improves very rapidly

as s increases.
s=10

a=300,k=0,n=10,

Do =2114 63570 0054536614, D=0,
P, =—4280337545019518 86781, p; =0,
P, =28117868 03665 8189018624, ps=0,

D¢ =—6194 13498 85928 62663 77984, p, =0,
D =3132683622 73236 69829 38624, p, =0,
DPio = —23739 05902 96182 29215 88736;
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qe = 761762144097 57337 57624 32000,
g, = —7121717 70888 54687 64766 20800.

b=1 m=10,

g = 3272 56614 14968 07057,

g, = 984654 95148 64179 66500,
g, = 1597 67150 04330 42594 24000,
g = 15744170286 74100 89721 60000,

ql:0>
q3:O:
g5 =0,
q7:03
q9: >

4. NUMERICAL VALUES AND GRAPHS OF SOME

RATIONAL CHEBYSHEV APPROXIMATIONS

In this section we present the results of evaluating the rational forms given in section 3. The
runs for different values of the parameter s will be contrasted with the tabulated values given in
[1]. The latter will be taken, for purposes of comparison, as exact values.

N

. PR e e . . o« o . e« e e e e o
N WD OWDMITNHNARWN- OWOAIN T WN O

DO DI DI DI B b bk pd ek b ok b e b s O OO OO OCOOOO

1993]

Exact values

Jo(2)

1.00000
0.99750
0.99002
0.97762
0.96039
0.93846
0.91200
0.88120
0.84628
0.80752
0.76519
0.71962
0.67113
0.62008
0.56685
0.51182
0.45540
0.39798
0.33998
0.28181
0.22389
0.16660
0.11036
0.05553
0.00250
-0.04838

00000
15620
49722
62465
82266
98072
48634
08886
73527
37981
76865
20185
27442
59895
51203
76717
21676
48594
64110
85593
07791
69803
22669
97844
76832
37764

00000
66040
39576
38296
59563
40813
97211
07405
50480
22545
57967
27511
64363
61509
74289
35918
39381
46109
42558
74385
41236
31990
22174
45602
97244
68198

f(2)=Jy(2)
s=2
z Jo(2)

e & s s = e »

N B W OOWR IR WNFHOWERIDNDNEWN O

. o

o e e o

DO DI D b b i b ot fod ok pod ok e D D O O OO OO O

Error at z
Error at z
Error at z

1.00000 00000
0.99748 95397
0.98983 05084
0.97662 33766
0.95714 28571
0.93023 25581
0.89411 76470
0.84607 32984
0.78181 81818
0.69433 96226
0.57142 85714
0.38991 59663
0.09999 99999
-0.42816 90140
-1.67272 72727
-8.00000 00000
10.60000 00000
4.53877 55102
3.31428 57142
2.79008 26446
2.50000 00000
2.31641 79104
2.19016 39344
2.09826 98961
2.02857 14285
1.97402 59740

00000
48954
74576
233717
42857
39535
58824
29319
18182
41509
28571
86554
99999
84507
27273
00000
00000
04082
85714
28099
00000
47761
26230
93771
71429
25974

V4

e o e ® ® ® e ° e 9 e =

v o s @

o o e e e

NN NN i b L e = = OO0 O0O0O0O0O

e e e s @

NBWNMOOWRER IR WNHRHROWDITAODERWN O

Error
Error
Error

1.00000
0.99750
0.99002
0.97762
0.96039
0.93846
0.91198
0.88114
0.84615
0.80725
0.76470
0.71876
0.66972
0.61786
0.56347
0.50684
0.44827
0.38803
0.32640
0.26364
0.20000
0.13571
0.07101
0.00610
-0.05882
-0.12359

at z
at z
at z

3
Jo(2)

00000
156615
49376
58545
60396
15384
04400
00848
38461
75847
58823
81580
47706
31995
43875
93150
58620
59978
33264
09994
00000
77853
72744
61531
35294
55056

nwon u
N~ O
O O =
SO w;
SO w

00000
24048
55860
68055
03960
61539
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s=6 s=10

Jb(z) Jb(z)
1.00000 00000 00000 1.00000 00000 00000
0.99750 15620 66040 0.99750 15620 66040
0.99002 49722 39576 0.99002 49722 39576
0.97762 62465 38249 0.97762 62465 38296
0.96039 82266 57938 0.96039 82266 59564
0.93846 98072 14225 0.93846 98072 40813
0.91200 48632 17224 0.91200 48634 97211
0.88120 08863 32675 0.88120 08886 07405
0.84628 73359 87120 0.84628 73527 50480
0.80752 36414 25774 0.80752 37981 22545
0.76519 88991 81058 0.76519 76865 57967
0.71962 28437 77746 0.71962 20185 27512
0.67113 39900 87712 0.67113 27442 64364
0.62008 81243 85951 0.62008 59895 61514
0.56685 88740 92599 0.56685 51203 74305
0.51183 42373 87263 0.51182 76717 35967
0.45541 34601 77972 0.45540 21676 39523
0.39800 38749 36571 0.39798 48594 46502
0.34001 77192 20127 0.33998 64110 43589
0.28186 89650 63377 0.28181 85593 76972
0.22357 01919 55021 0.22389 07791 47447
0.16672 95358 25093 0.16660 69803 46316
0.11054 77454 23837 0.11036 22669 54003
0.05581 53758 52507 0.05553 97845 13916
0.00291 01468 75270 0.00250 76834 39234

-0.04780 55089 54713 -0.04838 37761 81732

N
N

. .

e e e o s e e o e ® s e o » o o .
N W= OWOITNNERWN=HOWO TN WN O
. PR

NN DIDN b b b b b bk ok pd ek = OO OO O0OOCOOOOO
P B . . . .
RN NN b ok b ok ok i b pd b el O O OO O OO OOCO
e e o e o e s e & ° o = e e e o o s e . . .

N WNHOORRINANNEBEWNNHOOIIDNIOWN O

Error at z = 0.1: O Error at z = 0.1: 0
Error at z = 1.5:-6.57E-06 Error at z = 1.5:-4,90E-14
Error at z = 2,5:-5.78E-04 Error at z = 2.5:-2.86E-10

The algorithm is seen to be very stable. As the value of s increases, the quality of the
approximations improves notably. The last example above, J,(z) for s = 10, gives remarkable
agreement throughout the range 0 <|z|<2.5.

5. ZEROS OF THE DENOMINATOR POLYNOMIALS OF THE
RATIONAL CHEBYSHEV APPROXIMATIONS

If in equation (1.10) we let s increase without bound, then both sides will represent the same
function since their Maclaurin expansions agree for all terms. In this case, equation (1.13) will
have an infinite series in both the numerator and denominator. The values of z for which the
series in the denominator converges to zero will be singular points of g(z), unless the series in the
numerator also converges to zero there. As equation (1.13) stands, it being an approximate rela-
tion, it is conceivable that the right-hand side may have poles which are not singular points of the
function g(z). This implies, of course, that the right-hand side of equation (1.14) may also have
poles which are not singular points of f{z). These would be the so-called spurious poles. Let us
look at this phenomenon somewhat more closely for the example given in Section 3.

The denominator polynomial of the rational Chebyshev approximation for the Bessel function
Jy(2) corresponding to s = 10 has real zeros at the points

z=10.95778 12766 24968 22726 05909 45945.

Yet, the graph given in Figure 1, and the table of values of this function do not seem to indicate
any abnormal behavior in the neighborhood of this point. However, if we analyze the rational
approximation within +E-18 of this point, then the rational form is seen to undergo marked oscil-
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lations with nearly infinite slope. Nevertheless, as soon as we are within £E-17 of the point in
question, the erratic behavior disappears and the algorithm again represents the correct values of
the Bessel function J,(z).

1

0 i 2 3 4 5 6 7 3 \

Figure 1

This figure shows the Bessel function of the first kind of order zero, J,(z)
plotted against the rational Chebyshev approximation corresponding to s = 10.
After z=9, the Bessel function continues to oscillate, while the approximation
separates from this behavior. The two functions move apart after z=7. The al-
gorithm approximates the first zero of the Bessel function to be 2.40482 55580,
and the second zero to be 5.51960 87207. These results compare favorably
with the correct values 2.40482 55577 and 5.52007 81103 given in [1].

We shall now speak of the significance of these roots. The highly localized character of the
oscillation indicates that the numerator polynomial also has zeros which are very close to the
zeros of the denominator polynomial. This is indeed the case for all of the examples we studied.
The numerator polynomial of the s = 10 approximation of the Bessel function, for instance, has
real zeros at the points

z=20.95778 12766 24968 22150 32913 84229

which match the zeros of the denominator polynomial through seventeen decimal places. The
oscillatory behavior is then simply a reflection of the computer's arithmetic inability to handle 0/0.
The algorithm, we see, is a self-correcting one that introduces zeros in the numerator and denomi-
nator polynomials in a way that ensures the correct approximation to the function for a given
value of s.

In essence, our method provides a rational approximation P.(z)/(Q,(z) such that its Taylor
expansion about the point z, agrees with the Taylor expansion of f(z) through the first 2s terms.
This requirement may be written as

0./ (@)~ P(2) = (2~ 2" S (2 20)"

and it is equivalent to the criterion for choosing the s diagonal entry in the Padé table for z,=0.

Because of the proximity of the real zeros of the numerator and denominator polynomials of
the Bessel function approximation corresponding to s = 10, we chose to divide out the zeros and
try out the outcome against the tabulated values given before. The resulting expression is:
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a=300,k=0,n=8

Py =2114 63570 00545 36614.00000 00000 0, P =0,
P, =—426093 90407 09759 89175.46176 79548 8, pP;=0,
Dy =27726992 93536 91260 65928.2780188600 0, ps=0,
Ps = —5939 7828124995 7947189316.44693 046000, p, =0,
Pg = 25878 0063184966 4222173861.61878 680000,

b=1m=38
G, = 3272 56614 14968 07057.00000 00000 0, q,=0,
q, =9 87657 02358 79227 26257.68351763259, q;=0,

q, =1606 73172 24978 36037 41999.24516 09500 0, qs =0,
qs = 15891563013 73742 21409 56470.02415100000, g, =0,
qs =77 6340189554 89925 73188 73022.34814 00000 0

The tabulated values resulting from this approximation are:

Jo(2)

.00000 00000 00000
.99750 15620 66040
.99002 49722 39576
97762 62465 38296
.96039 82266 59564
.93846 98072 40813
.91200 48634 97211
.88120 08886 07405
.84628 73527 50480
.80752 37981 22545
.76519 76865 57967
.71962 20185 27512
.67113 27442 64364
.62008 59895 61514
.56685 51203 74305
.51182 76717 35967
.45540 21676 39523
.39798 48594 46502
.33998 64110 43589
.28181 85593 76972
.22389 07791 47447
.16660 69803 46316
.11036 22669 54003
.05553 97845 13916
.00250 76834 39234
.04838 37761 81732

nN

COC0O0O0O0OOOOCOOO0DO0OO0OO0OO0OOOOCO O
.

1

NN ik = == =m0 0O0O0O0COQ
e e s e s e o e o 4 e e o 3 s o s e ® e e w e o & o
N WNFOOURITNAEHWN= OWOE TN O WN =O

Error at z = 0.1: 0
Error at z = 1.5:-4,90E~-14
Error at z = 2.5:-2.86E~-10

These are exactly the same values, to fifteen-decimal accuracy, obtained with the s = 10
approximation of the Bessel function J,(z) before the roots are divided out!—These results imply
a substantial saving in computer time since the number of divisions required for a given approxi-
mation is reduced by two.

A comment is in order, though it is probably obvious to the reader. The results shown in the
above table were obtained by dividing the numerator polynomial by its real roots, and the denomi-
nator polynomial by its corresponding real roots. Slightly better accuracy is obtained (though the
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above table does not indicate it) if we divide both numerator and denominator polynomials by
either the real roots of the numerator or the real roots of the denominator since, in this case, all
we are doing is dividing numerator and denominator of the s = 10 approximation by a common
factor.

It is worth emphasizing that the rational Chebyshev approximations our algorithm provides
are not optimal, in the sense that error does not remain constant within the range of approxima-
tion. Rather, error is least when one is sufficiently near the point z, and the quality of the approx-
imation deteriorates as we move away from the point in question. The importance of the method
lies, we believe, in the extreme simplicity with which it can provide rational Chebyshev approxi-
mations of any accuracy for a wide variety of functions. These nonoptimal approximations may
easily be used to obtain optimal Chebyshev approximations. Several algorithms have been devel-
oped to this effect.

Let us speak now of the origin of the problem that has occupied us in the last five sections.

6. SOME HISTORY

About one hundred and twenty-five years ago, the Russian mathematician Pafnuty Lvovich
Chebyshev (1821-1894) set himself the problem of finding the best rational approximation of a
continuous function specified on an interval [a, 5]. Specifically, he wanted to determine parame-

ters Py, Pir > P> Qo> G - @ i the expression

Lty
1

X"+ px™
O(x) = s(x) 2L AT
qox +qx

(6.1)

t--+q,

where m and » are given, and s(x) is a function continuous on [a, ], so that the deviation of {J(x)
from a chosen continuous function f(x),

Hg = max| f(x) - Q(x)| (6.2)
shall be a minimum.
Chebyshev established the beautiful existence theorem [6; 2]:

The function P(x), which deviates least from the function f(x) than does any
other function of the type exemplified by equation (6.1) is completely character-
ized by the following property: If the function can be expressed in the form

agx" " +ax™ "+ a, A(x
Pl = o) S e ) 225
byx"" +bx +--4b, . B(x)
A(x)

where 0<o<n,0<t<m,by#0 and the fraction is irreducible, then the

B(x)
number N of consecutive points of the interval [a, b] at which the difference
f(x)— P(x), with alternate change of sign, takes on the value H,, is not less

than m+n+2—d, where d = min(0, 7); in case P(x}=0, then N 2n+2.

Chebyshev did not provide a constructive approach to the problem of finding the rational
approximations whose existence is guaranteed by the above theorem. He, and E. Solotarev did
work out one example, based on the theory of Jacobian elliptic functions, that meets the require-
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ments of the theorem [16]. Since that time, though, many people have sought to obtain an expli-
cit method of attack for determining these rational approximations [8; 9; 10]. The problem is
especially complicated by the fact that the class of continuous functions is a very broad one. Most
of the methods of attack that have been developed deal with a more restrictive class of functions:
bounded variation, analytic, or the like.

A substantial advance was made by H. Padé in his now classic thesis of 1892 [13]. Padé's
method, mentioned briefly at the end of the last section, yields excellent rational approximations
of analytic functions by means of solutions of a system of linear algebraic equations [18]. The
method is an extension of some earlier work of Frobenius [6]. However, it does not provide
rational Chebyshev approximations. It is known that rational forms in Chebyshev polynomials
yield better accuracy than ordinary rational forms [16].

Maehly gave a method for obtaining rational Chebyshev approximations of functions of
bounded variation on the unit interval [12; 16]. It has the substantial disadvantage of requiring
that the given function be first expanded in a series of Chebyshev polynomials. If the function is
anywhere complicated, these expansions may be devilishly hard to obtain.

To the best of our knowledge, no method is known for obtaining rational Chebyshev approxi-
mations that is better, more direct, or more powerful than the one we have presented in this
paper. The method was discovered by one of the authors (Castellanos) as a result of his work on
formulas to approximate 7 while in preparation of "The Ubiquitous 7z," Math. Magazine 61.2-3
(April-June 1988). The delicate and time-consuming task of carrying the algorithm into a work-
ing computer program was done by the other author (Rosenthal).
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Author and Title Index

The AUTHOR, TITLE, KEY-WORD, ELEMENTARY PROBLEMS, and ADVANCED PROBLEMS indices for
the first 30 volumes of The Fibonacci Quarterly have been completed by Dr. Charles K. Cook.
Publication of the completed indices is on a 3.5-inch high density disk. The price for a copyrighted
version of the disk will be $40.00 plus postage for non-subscribers while subscribers to The Fibonacci
Quarterly need only pay $20.00 plus postage. For additional information, or to order a disk copy of the
indices, write to:

PROFESSOR CHARLES K. COOK

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF SOUTH CAROLINA AT SUMTER

1 LOUISE CIRCLE

SUMTER, SC 29150

The indices have been compiled using WORDPERFECT. Should you wish to order a copy of the indices for
another wordprocessor or for a non-compatible IBM machine, please explain your situation to Dr. Cook
when you place your order and he will try to accommodate you. DO NOT SEND YOUR PAYMENT WITH
YOUR ORDER. Youwillbe billed for the indices and postage by Dr. Cook when he sends you the disk. A
star is used in the indices to indicate unsolved problems. Furthermore, Dr. Cook is working on a
SUBJECT index and will also be classifying all articles by use of the AMS Classification Scheme. Those
who purchase the indices will be given one free update of all indices when the SUBJECT index and the AMS
Classification of all articles published in The Fibonacci Quarterly are completed.
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INTRODUCTION

A palindrome is a finite sequence of positive integers which is unchanged when written in
reverse order. Sometimes such sequences are referred to as symmetric (see [3] and [5]). The
objective of this paper is to show how some simple properties of palindromes can be used to
obtain results in elementary number theory. We give new elementary proofs of known results and
what appear to be some new results.

In §1 we prove some elementary properties of palindromes and their associated finite contin-
ued fractions. In §2 we apply the properties established in §1. The reader will note that the
application of Proposition 4 of §1 constitutes a method for obtaining the results of §2.

1. ELEMENTARY PROPERTIES OF PALINDROMES

Let n be a nonnegative integer. We call a sequence of positive integers a = {a(0), a(1), --.,
a(n)} oflength n+1 a palindrome if a(i) = a(n—i) for 0<i<n.

Example: Let n be a nonnegative integer and define the sequence « by

. n n!
a@) =\ |=———,
® (’) (n—i)li!
for 0<i<mn. The condition for & to be a palindrome is the well-known binomial coefficient
identity (;‘)=(n'_’ ,.).
We are especially interested in sequences of positive integers generated by the division
algorithm (see [1]). Explicitly, if P and Q are relatively prime integers such that 1< QO < P. Then

(see [1], p.325) P and Q uniquely determine two sequences of positive integers « and r as
follows:

P =a(0)0+r(0), 0<r(0)<Q;
Q= a(r(0)+r(), 0<r(1) <r(0)
F(i—2) = aliyr(i—1)+7(), 0<r(@)<r(i—1); (1)

r(n-3) _ a(n-Dr(n-2)+r(n-1), l=r(r-1)<r(n-2);
r(n-2)=a(mrn-1)=a(n).

Since a(n)=r(n-2)>1, we have a(n)>2. We call a the sequence of quotients and r the
sequence of remainders determined by the pair (P, Q). For any integer ¢ we define

_(c 1
(6 )

The equations in (1) are equivalent to
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Aa(i)(r(ri(;)l)) = (;8 : %))), for0<i<n,
where r(-2) = P,r(-1)=Q, and r(n) =0. Hence

Aa(O)Aa(l) o Aa(n)(%)) = (5) 2

Let « be any sequence of positive integers of length #+1. If we define

E O\ _
(Pi—l Qj—]) h Aa(i)Aa(i'l) ot Aa(O)) (3)

then it is known (see [6]) that

P10, =[a(0), a(l),..., a(n)]= a(0) +

a(l)+
a(2)+ -, 1 4

ai-1)+

a(i)
a finite simple continued fraction. The elementary properties of continued fractions that we need

can be found in [1]. In what follows we denote the greatest integer function by [ J.

Lemma 1: Let a={a(0), a(l),..., a(n)} be a sequence of positive integers of length 7+1> 2.
If

£ 0,
Aa(n)Aa(n-l) Aa(O) = (Pn—l 0 _1),

then P,/ (), is not an integer and [P, / Q,] = a(0)

Proof: Using (3) and (4), we have P,/Q, = a(0)+1/[a(1), a(2),...,x(n)]. So we need
only show that [a(1), a(2), ..., a(n)]> 1 to obtain the result. To that end, we note that because
n+1>2 [a(), a(2),...,a(n)]= a(2) > 1. Thus,

[a(]), a(2), ..., a(n)]= a(Q) +1/[a(2), a(3), ..., a(n)]> a(]).
Now, since (1) > 1, the conclusion follows. O

The following Lemma, accounting for a difference in notation, can be found as an exercise in
[6, p. 251]. Since we use it in an essential way, we provide a proof for the sake of completeness.

Lemma 2: If a and J are two sequences of positive integers of lengths n+1 and m+1, respec-
tively, then

AxmyAain1) - Aa0) = ApemyApm-1) -+ Ap(0) 5)
ifand only if n=m and a=p.

Proof: We will proceed by induction on the length of the sequence a. If n+1=1,
thenn=0 and
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a(0) 1)_ (B On
( 1 0)_Aﬂ(M)Aﬂ(m—l)'”Aﬂ(0)_(Pm_l 0. )

Thus, a(0)= P, /0, is an integer. So, by Lemma 1, m<1. Now det (f (1)) = -1, for any integer
¢, where det( ) is the determinant. So, if m =1, we would have —1= det(4,q,) =det( A4z Ag0))
=1 Thus, m=0 and a(0) = £(0)

Now assume our result is true when the length of « is less than n+1, withn>1. We first
note that m>1. Because, if m =0, we argue as above, with the roles of a and f interchanged,
and conclude that n= 0. Multiplying both sides of (5) on the left by 4;, we have

| P O,
Ay Aoy = A gy - Agoy :( B Q:)'

Because {a(0), a(1), ..., a(n), 1} and {B(0), B(1), ..., f(m), 1} both have length bigger than 2, we
have by Lemma 1 that a(0)=[ P,,,/ O,., 1=/(0). Finally, multiplying both sides of (5) on the
right by the inverse of 4,,, we have

Aatmy Aatn- " Aaqy = Apony Apon-1) ** Apary-
Hence, by the induction hypothesis, {a(1), a(2), ..., a(n)} = {1, B(2), ..., f(m)} and, thus,
n=mand a=4. 0O

Proposition 1: If « is a sequence of positive integers of length n+1, then « is a palindrome if
and only if the matrix

) . Ag(nyAan-1) *** Aa(o) (6)
is symmetric.

Proof: Since each A, is symmetric, the transpose of (6) is

A

a

©Aaqty " Aan)-

So by Lemma 2 the result follows. O

Proposition 2: 1If a is a palindrome of length n+1 and

P, 0 )
A,nA A= " no 7
a(n)“a(n-1) (0) (Pn—l Qn—l ( )

0p =(-1)" (mod R)).

Proof: By Proposition 1, P, , =(,. Since the determinant of 4, is -1 for all i, we have,
by taking determinants in (7), (-1)"*' = PO, , - 02 and, thus, 0? = (-1)"+P,Q, ,. O

Then

Now we give an elementary proof of an easy extension of a result which can be found in [3].

Proposition 3: Let P and Q be integers such that 1< Q < Pand Q> = +1 (mod P). Then there
exists a palindrome « of length n+1 with

P Q0
Aa(n)Azz(n—l) Aa(O) = (Q 0, _1)

where 07 = (-1)" (mod P). Further, « is uniquely determined by P and Q.
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Proof: Let a be the sequence of quotients in the division algorithm determined by the pair

(P,0). Set

B, 0,
Aa(n)Aa(n—l)“'Aa(O):(P 1 Qn—l) v

Taking the transpose in (2) we have (I 0)4,., 4ynt) ** Auy = (P O). Thus, P,=P and
0,=0.

Taking determinants in (8), we have (-1)""' = PO, ~0? and, thus, P,_,Q = (-1)"+PQ, ,.
Further, because 0 = =1 (mod P), we have

B, =—(ED)(-1)"Q (mod P). ®
Next, because

P P,_
Aa(O)Aa(l) Aa(n) = (Q 0 _11),

we have P/ P,_, =[a(n), a(n-1), ..., a(0)]= a(n). We know, from (1), that a(n) >2 and, thus,
P_,<P/2. Now,if Q< P/2,then (9)implies that 0= P,_;. So, by Proposition 1, « is a palin-
drome.

Suppose P/2<Q<P. Then1<P/Q <2 and a(0)=[P/Q]=1. Next, if we multiply both
sides of (8) on the left by

- 1 0
AlAa(n)—lAa(ln) = (1 _1)
we have

P
A]_Aa(n)—-lAa(n—l) ‘” Aa(o) = (P - ‘F;'I—l Q - Qn-—l )

Taking the determinant, we have P(Q -0, ,)—(P - PF,_,)0 =(-1)" and, so,

(P-DF —P(F— 9= (G}
Hence, (P-Q)P, ,=(-1)"" (mod P). Because P—(Q=-0 (mod P), we have (P - 0) =+l
(mod P) and, thus,

P, =—(xI)(-1)™" (P~ Q) (mod P). (10)
Since P~Q<P/2and P,_; <P /2, (10) implies that P—Q =P, ,. Thatis, Q=P - F,_; and, so,
by Proposition 1, {a(0), (1), ..., a(n—1), a(n)—1,1} is a palindrome.

Now we prove uniqueness. Let « be the palindrome constructed above and £ another of
length m+1 with

P 0O P Q
Aumy Aaen-n) *** Aao) :(Q Qn—l) and Agimy Apomy =+ Apco) :(Q R)‘
Taking determinants, we have PQ, —(0*=(-1)"" and PR-Q*=(-1)""". Thus, 0*=(-1)"
(mod P) where, because P > 2, we must have (-1)" = (-1)". Hence, P(Q,_,— R) =0 and, thus,
R=0Q, . Finally,byLemma2, a=4. O
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Corollary 1: Let P and Q be integers such that 1<Q < P and O* =+1 (mod P). If « is the
sequence of quotients in the division algorithm determined by the pair (£, J), then ¢ or {0(0),
a(l), ..., n—1), a(n)—1, 1} is a palindrome.

Proof: 1t follows from (1) that o«(n) > 2. Further, the palindrome referred to in Propositioin
3 was shown to be either o or {0(0), (1), ..., c(n—1), a(n)—1,1}. O

Proposition 4: Let o be a sequence of positive integers of length #+1 and » a nonnegative inte-
ger such that

rQ
AsmyAain-1y " Aoy = (p 0 —1)’ (1mn)

n-1

where 0% = %1 (mod P) and 1<Q < P, with P >2. Then we have exactly one of the following
possibilities:
(@) o is a palindrome and Q% = (~1)" (mod P).
(B) on)=1, {o(0), o(1),..., c(n—2), o(n—1)+1} is a palindrome, and 0% = (~1)"*"' (mod P).
() a(n)>1, {a(0), (1), ..., c(n—1), o(n)—1,1} is a palindrome, and 0% = (~1)"*' (mod P).

Proof: If a(n)> 1, then o is clearly the sequence of quotients in the division algorithm for
the pair (P,(Q). Hence, by Corollary 1, either o or {o(9), ol(1), ..., (n—1),0(n)—1,1} is a
palindrome. Now, if o is a palindrome, then by Proposition 2, 0% = (~1)" (mod P). Next, if
{(0), a(l), ..., a(n—1), (n) -1, 1} is a palindrome, then multiplying both sides of (11) by

4 (10
A Ay~ 1450 = (1 ) ]),

we have

P 0
AlAa(n)—lAa(n—l) Aa(O) = (P -P_, 0-0 _1)-

So, by Propositions 1 and 2, P— P, ; = Q and 0* = (~1)""" (mod P).
If oi(m) = 1, then multiplying both sides of (11) on the left by

- - 1 0
Aa(n—1)+1Atx(ln—1)A1 = (1 — 1)

we have

P 0
Aa(n—1)+1Aa(n—2) Aa(O) = (P -P., 0-0 _1)» (12)

So, again, {a(0), o(1), ..., a(n—2), a(n—1)+1} is the sequence of quotients in the division algo-
rithm for the pair (P, ). Hence, by Corollary 1, {c(0), c(1), ..., a(n—2),0(n—1)+1} or ois a
palindrome. If n=1, we understand {0(0), (1), ..., (n—2), e(n—1)+1} to be {a(0)+1}.
Now, if {(0), &(1), ..., (n—2), a(n—1)+1} is a palindrome, then (12) and Proposition 2 give
0% = (-1)™ (mod P).
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Next, we show that two of these possibilities cannot hold at the same time. Clearly (b) and
{c) cannot both be true. If (a) and (b) or (a) and (c) hold, then O0? = (~1)" (mod P) and O =
(=) (mod P). Thatis I =—1 (mod P), which is impossible since P >2. 0

If o is a sequence of positive integers of length 7+ 1, we obtain a sequence o, of length » by
deleting o(0). Specifically, o, (i) = o(i +1) for 0<i<n—1. Thatis, ¢, = {o(1), ®(2), ..., a(n)}.
Further, if o(n) > 1, we form a sequence o of length n+1 by deleting o(0) and replacing oi(n)
by {a(m)—1,1}. That is, of = {a(1),..., 0(n-1), a(n)— 1,1}, where a*(}) = o(i +1) for 0<i <
n-2, c*(n—-D=oa(n)-1and a*(n)=1

Proposition 5: If o and o, are both palindromes, then o(7) = o(0) for 0<i<n.

Proof: 1f0<i<n-1, theno(i+D) = ()=, (n-1-)= o). O
Proposition 6: If o(n)>1 and both & and o are palindromes, then we have two possibilities:
fa) Ifnisodd, then (0)=o(n)=2 and a(i)=1for 1<i<m-1

(b} If n is even, then a(0)=a(n)=c>1. Further, a2k-)=1for 1<k <n/2 and o(2k)=
c—~1forl<k<n/2.

Proof: If O<i<n-2, then o*(i-D=a(i)=o(n-i)=a*(n—i-1)=o*@+1) = o(i +2).
Hence, 1=o*(n)=a*(0)=0(l)=a(2k-1) for 1<k<[n/2]. Further, o(2)=0(2k) for
1<k <[n/2], where a2) = o*() = o*(n—1) = o(n) ~ 1= o(0) - 1.

So, if n is even, we have proved (b). If » is odd, theno((n—-1)/2)=a(n—-(n—-1)/2) =
o(n+1)/2). Since one of (n—1)/2 and (n+1)/2 is even and the other odd, we must have
o) =1 for 1 <i <n—1. Further, since 1 = a(2) = 0(0) -1, we also have a(0) = o(n)=2. O

2. APPLICATIONS

In what follows, we sill prove four propositions. Propositions 7 and 10 are known results
and we give new elementary proofs. Propositions 8 and 9 are of the same general type as
Proposition 7 and are apparently new.

We define a sequence of polynomials as follows: J;(X)=0,Jy(X)=1 and J,,(X)=
X (X)+J,_(X) for k 20 or, equivalently, for k >1,

(Jik-l((XX)) f,fiigri):()f é)k- (13)

Remark 2: Tt is easy to see that {F, = J,_;(1)|k =0} is the sequence of Fibonacci numbers.
The following is an elementary proof of a result of Owings (see [2]).

Proposition 7: If P and Q are integers with 1< Q < P, 0% = —1(mod P) and P* =1 (mod 0),
then there exists an odd integer & such that

Q=F, and P=F,,,

where F, is the k™ Fibonacci number.
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Proof: 1f Q=1, then 0* =—1(mod P) and P> () implies that P=2. Hence, Q= F, and

P=F,. Next,if Q=2,then 0 = -1(mod P) implies that P=5. So Q=F,and P=F;.
From now on, we will assume that Q > 2. By Proposition 3 there is a palindrome o of even
length #+1 such that

P Q
Aa(n)Aa(n—l) Aa(u) = (Q o) _1)

and 0% = (-1)" (mod P). We will prove that o* is a palindrome. To that end, we note that

P-o(0
Aa(n)Aa(n_1) Aa(l) = (le 0- ao(cé)égl)

Since P— 0(0)Q = P (mod Q) and P? =—1(mod ), we have that (P — 0(0)0)* = -1 (mod Q).
Now, because () > 2, we have by Proposition 4 exactly one of the following possibilities:

(@ {o(1), a(2), ..., (n)} is a palindrome with (P — c(0)0)* = (=1)""" (mod Q);

() o(n)=1and {a(l), ..., o(n—2), c(n—-1)+1} is a palindrome with (P—c(0)Q)* =(-1)"
(mod Q);

(© o(n)>1and or* = {(1), ..., (n—1), a(n) - 1,1} is a palindrome with (P — a(0)Q)* = (-1)"
(mod Q).

The case (a) cannot hold since n—1 is even, and the two congruences, P —o(0)Q =P
(mod Q) and P?=-1 (mod (), imply that 1=—1 (mod Q). Contradicting that 0>2. Now,
suppose o(n) =1 and {c(1),..., (n—2), o(n—1)+1} is a palindrome. Since 7 is odd, it follows
that »>2 and, thus, a(n—1) = (1) = a(n—1) +1 yields a contradiction. Hence, we have shown
that ou(n) > 1 and o* = {0(1), ..., a(n—1), o(n)—1, 1} is a palindrome.

Because o and o are both palindromes and » is odd, we have, by Proposition 5, that
o(0)=0(n)=2 and oi) =1 for 1 <i <n-1 Hence,

-1
Ay Aan-n  Auqy = AT 4,

o

=i 8] =(0 )

But, from (13) we have

Hence,

n— — Jn— (l) J- (1) — Jn+ (l) Jn+ (1)
4 IAZ‘Ai(Jn_ia) J,,-i(l))"“z“(fni(l) J-i(l))'

We have already observed that F;,, = J,(1) for i 20. Thus, the result is established. O

Proposition 8: If P and Q are integers with 1< 0 < P, P2 = +1(mod Q) and Q* =—(£1) (mod
P), then there exist integers £ > 0 and ¢ > 1 such that J,(c) = Q and J,,,(c) = P.
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Proof: 1If O =1 then, for any P >1, we have J,(P)=Q and J;(P) = P. Next, if Q =2, then

Q% = —(+1) (mod P) implies that P =3 or P=5. If P =3, we have J,(1)=2 and J;(1)=3. For
the case P =5, we have J;(2) =2 and J,(2) =5.

From now on, we will assume that O >2. By Proposition 3, there is a palindrome o of
length n+1 such that

P
Aoy Aty Aty = ( ; QQ_ 1)

where 0% = (~1)" (mod P). We will show that o* is a palindrome. To that end, we note that
Ay Ay = Ay = .
o(m) Zer(n-1) M (Qn—l Q - a(O)Qn—l

Now, since P~ o(0)Q = P (mod Q), it follows that (P — a(0)Q)* = —(~1)" (mod Q). Therefore,
because () > 2, we have, by Proposition 4, exactly one of the following possibilities:

(@ o, ={o(l), 0(2),...,(n)} is a palindrome with (P — 0(0)Q)* = (-1)""" (mod Q); 7
() o(n)=1and {a(l),...,0(n—2), (n—1)+1} is a palindrome with (P - o(0)Q)* =(-1)"
(mod 0);
(¢) o(n)>1and {()), ..., n—1), (m)—1,1} is a palindrome with (P-o(0)Q)* =(-1)"
(mod Q).
If either (b) or (c) holds, it follows, by Proposition 3, that(P — 0(0)Q)* = (=1)" (mod Q). Since
P-a(0)0 = P (mod Q) and P* =—(-1)" (mod Q), we have (-1)" = —(-1)" (mod Q), but Q0 >2
makes this impossible. So ¢, is indeed a palindrome.
By Proposition 5, o(i) = 0(0) =c for 0<i<n. Thatis, a¢={c,c,...,c}. Thus,

(e Y _(Jw(© J,©
A =(§ o) =(5 Q)
and hence our result. O

We need another sequence of polynomials as follows: H_;(X) =0, Hy(X) =1 and, for k£ >0,
H, (X)=(X+)H (X)—- H,_,(X). Equivalently, for k >1,

(0 ) (e )

Proposition 9: Suppose P and Q are integers with 1<Q < P, 0* =1(mod P), P* =1 (mod Q),
and P # Q+1. Then there exist integers £ and ¢ such that H,(c)=(Q and H,,,(c)=P.

Proof: By Proposition 3, there exists a Palindrome o of odd length #+1 such that
P Q )
AgemyAoinn *** Ageoy = .
o(n)“*o(n~-1) o(0) (Q Qn—l
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We will prove first that o* is also a palindrome. To that end, we observe that

P-o(0
Aot Aagrn = Aay = (Qg—l 0- Oﬂo((é)s)Qg_l)‘

Now Q> 2 since, otherwise, 0* =1 (mod P) implies that P =3. That is, P =(Q+1, a case we
have excluded. Next, P-a(0)Q =P (mod Q) gives (P - o(0)0)* =1(mod Q). Now, since
0>2 and (P- a(0)Q)* =1(mod Q) we have, by Proposition 4, exactly one of the following
possibilities:

(@ {o(1), 0(2), ..., o(n)} is a palindrome and (P — a(0)Q)* = (=1)"" (mod Q);
®) on)=1{c(l),..., (n—2), a(n—1)+1} is a palindrome and (P - o(0)Q)* =(~1)" (mod

OF
© om)>1 0 ={o(l),.., on—-1), a(n)—1,1} is a palindrome and (P-a(0)Q)* =(-1)"

(mod Q).

If (a) were true, we would have (P — a(0)Q)* = —1(mod Q), since n—1 is odd. However,
(P - a(0)Q) = P (mod Q) and P* =1(mod Q) give 1=-1(mod Q), contradicting the conclusion
that 0> 2.

Next, if (b) is true and #»>2, with o and {o(1), ..., (n—2), e(n—1) +1} both palindromes,
implies that a(n—1) = a(1) = a{n—1)+1, which is clearly impossible. So, if (b) is true, we have
n=2 and, thus, o= {1, x(1),1}. However, in this case, J=o1)+1and P = (1) +2, a case we
have excluded. Hence, o((n) > 1 and o is a palindrome.

Since o and o* are both palindromes and 7 is even, we have, by Proposition 6, that o(0) =
on)y=c>1L1=a(l)=02k—1) for 1<k <n/2 and a(2k)=c-1 for 1<k <n/2. If n=2,
then

2
+1 -1Y{(1 O
Aa(n)Aa(n—l) Aa(O) = A A4 = (c 1 0 ) (0 —1)'

An easy induction on #n gives, in general, that

(n+2)/2
c+1 -1 1 O
Aa(n)Aot(n—l) Aa(O) :( 1 0) (0 _1)-

k
Now, recalling that (X N 1 ”01) = ( éi:((XX)) :g:g(g)we have

A A | :(HH/ZH(X) —H,,(X) )(1 0): (Hn/zu(c) H,,(c) )
) ~orn=D #(0) H(X) —H, (N0 -1 H,p(c)  Hypy(0)

and thus our result. 0

Remark 3: 1In the above result ¢=[P/Q]. Furthermore, by Leme's Theorem (see [4]),
n<S5log;,(Q), and so k =n/2 <(5/2)log;o(Q) <(5/2)log,,(P/2).
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If D is a nonsquare, positive integer, then it is known (see [1]) that 6 = ﬂ\/ﬁ]lJm/B has an
infinite purely periodic continued fraction expansion. Let p be the smallest period of 8. Our

notation is 6=[ay, a, ..., a,;]. We now give an elementary proof of a known result (see [5]).

Proposition 10: We claim that {a},a,, ...,a,_,} is a palindrome.

Proof: Set o={0(0), (l),..., c(p)}, where a(i)=a,for0<i<p-1 and o(p)=aq,.
Setting

P -1 Q -1
Aap-Aa(p-2) " Ao = (P;_z 2

we have (see [1], p. 329)

0P, ,+P,,

-1
0=[c(0), (), ...,(p-1),0]= —————BQ”_I 0.,
Thus, 6 is a root of the quadratic polynomial equation
f(X)= 0, X* +(Qpy = P, )X = P, , = 0.
However, the minimal polynomial of 6 over the rational numbers is
m(X) = X?-a(0)X +(a(0)-4D)* -4D)/ 4.
Because m(X) divides the polynomial f(.X), we have 0, , - P,

Pp—l = a(o)qp-l +Q -2 = Qp’

1= -0(0)Q,,. Thatis,

where

p 0
Ao(p) Ao " Aao) = ( P 5 Q,,:)’

p-1

So, by Proposition 1, o= {a,,qy, ...,a

-1, } is a palindrome. Thus, it follows that {a;, ...,a, |}
is a palindrome. O

Remark 4: If P is a positive integer such that P >1 and P is a product of primes congruent to 1
modulo 4 or twice such a product, then there exists an integer Q with 1<Q < P/2 and 0* = -1
(mod P). By Proposition 3, there is a palindrome oy = {(0), a(1), ..., a(n)} of even length
Ly =n+1 suchthat P/Q=[a(0), o(1),..., cn)]. We define the index of P by

I(P) =min{ L,|Q}.

It is clear that for any integer of our type, /(P) =2 if and only if there is a positive integer m such
that P =m* +1. The following seem to be natural questions:
(1) Are there infinitely many integers P of index /, for i an even integer bigger than 4?
(2) Let M be a positive integer such that M >2. Are there infinitely many primes P, with
P =1 (mod4)and I(P)<M?
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In (1) we have restricted ourselves to /(P) >4, because the curious reader will find it easy to
produce an infinite number of P with /(P) = 4. Further, (2) simply generalizes the question: "Are
there infinitely many primes of the form m” +1?

Remark 5: 1In Proposition 7 we describe all pairs of positive integers P and Q with P? =1
(mod Q) and O? =1 (mod P). This problem was posed by Tom Cusick of the University of Buf-
falo at a meeting of the Seaway Number Theory Conference in May 1991. We understand that he
also has a description by a different method.
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by Dr. Boris A. Bondarenko
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Translated by Professor Richard C. Bollinger
Penn State at Erie, The Behrend College

This monograph was first published in Russia in 1990 and consists of seven chapters, a list of 406 references,
an appendix with another 126 references, many illustration and specific examples. Fundamental results in the
book are formulated as theorems and algorithms or as equations and formulas. For more details on the contents of
the book, see The Fibonacci Quarterly 31.1 (1993):52.

The translation of the book is being reproduced and sold with the permission of the author, the translator, and
the "FAN" Edition of the Academy of Science of the Republic of Uzbekistan. The book, which contains approxi-
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surface mail or $16.00 by airmail elsewhere. A copy of the book can be purchased by sending a check made out to
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FIBONACCI TRANSMISSION LINES

C. Bender
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1. INTRODUCTION

The Fibonacci sequence applies to many diverse areas in science and technology [1, 2]. Ina
book review by Brother Alfred Brousseau, a significant observation was made which will surely
be true for all time: "Enter the magic door which leads to the wonderful world of Fibonacci" [3].
The author found the magic door and is overwhelmed at the beauty of the landscape. This paper
will present those findings that helped the author locate the "magic door" and to be fascinated by
what is inside. Many other investigators have significantly helped light the way for these findings
[5,6,7, 8]

2. PRELIMINARIES

In Figure 1(a), a two wire transmission line having a characteristic impedance of Z, ohms is
shown. The input terminals are marked a—»5. If a resistive load whose value is chosen equal to
the characteristic impedance is placed at a quarter or odd quarter wavelength from the input ter-
minals, the input impedance will be equal to the characteristic impedance and will result in a
"matched" line condition. In fact, as long as the load is matched to the characteristic impedance
of the line, it can be placed anywhere along the line without changing the input impedance. From
an ideal point of view, this is a desired condition; but, it is not achieved in practice whenever two
or more loads are connected to the line. At this point, it will be practically advantageous to
normalize all connected loads to the characteristic impedance of the line. All connected loads
equal to Z, will have the normalized value of 1 or unity and will be referred to as unit loads. If an
actual load value is needed, the normalized value can be multiplied by Z, ohms. The next step, as
well as succeeding steps, will be to periodically "load" the line at quarter wavelength % or odd
quarter wavelength intervals with unit loads and to determine for each load the resultant input
impedance. Figure 1(b) shows two loads connected across the line. The second load and asso-
ciated quarter wavelength section of line places in parallel with the first unit load another unit load
which when combined on a parallel resistor basis results in an equivalent load of one half unit.
This equivalent load at the input terminals produces a value of two unit loads because of the
inversion properties of a quarter wavelength section of line. The two unit loads and the input
value of two are coincidental. If a third unit load is connected a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>