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RECURSIONS AND PASCAL-TYPE TRIANGLES

Rudolph M. Najar

Department of Mathematics, California State University, Fresno, Fresno, CA 93740-0108
(Submitted October 1991)

INTRODUCTION

Triangular arrays of numbers similar to or derived from Pascal's triangle frequently appear in
the mathematical literature. (See, for example, [3], [5], and [8].) The purpose of this paper is to
study a generalization of the array in [8]. In section 1, recursion formulas for the row and diag-
onal row sums are derived. In section 2, the determinants of a set of matrices associated with the
triangular array of [8] are calculated.

1. GENERAL PROPERTIES OF THE ARRAYS

Consider a family of triangular arrays of numbers, indexed by the reals. For each a €R, the
array is a doubly infinite set of numbers d(a; », k); n, k €Z, such that:
d(a;n, k)=0, n<0
d(a;n k)=0, k<Oork>n
d(a;0,0)=a,
d(a;1,0)=d(a;1,1)=1; and
d(a;n, k)=d(a;n-2,k-1)+d(a;n-1,k-1)+d(a;n-1,k), n=2.

e ap s

The triangular array studied by Wong & Maddocks [8] corresponds to the case a =1. Their gen-
eral term M, , corresponds to the term d(1; k +r,r) here. Tables 1, 2, and 3 contain the initial
rows for the arrays d(1;n, k), d(0; n, k), and the general array d(a; n, k), respectively. As men-
tioned above, Table 1 appears in [8]. It also appears in [1].

TABLE 1. d(I;n,k) TABLE 2. d(0; n, k)
1 0
1 1 1 1
1 3 3 1 2 1
1 5 5 1 1 4 4 1
1 7 13 7 1 1 6 10 6 1

TABLE 3. d(a; n, k)

a ‘
1 1
1 2+a 1
1 4+q 4-+q 1
1 6+a 10+3a 6+a 1
1 8+a 20+5a 20+5a 8+a 1

An examination of these arrays reveals that, for n>2,
d(a,n k)y=d(O,n, k)+ald(;n—2,k-2)].
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RECURSIONS AND PASCAL-TYPE TRIANGLES

Thus, calculations for any array d(a; n, k) reduce to calculations on d(0; n, k) and d(1; n, k).

Definition 1: For fixed n, we call the sums

(1) D(a;n)= Zn:d(a; n, k), and
k=0

@ D@m= (-¥d(an k)
k=0

the row sums and the alternating row sums, respectively, of the array d(a; n, k).
It is immediate that, for n>2,
a. D(a;n)=D(0;n)+a[D(1;n—-2)], and
b. D*(a;n)=D*(0;n)+(-a)[D*(1;n-2)].

Theorem 1: The sequences {D(1;n)} and {D(0; n)} satisfy:

(@) D(1;0)=1,D(1;1)=2; and, forn>2, D(1;n)=2D(1;n—-1)+ D(1; n—2),
nodd, n>0,

b

D", n=2mm=0,

(b) D*(,n)= {

(¢) D(0;0)=0;D(0;1)=2; and, forn=1, D(0;n) =2D(0;n—1)+ D(0; n—2); and
(d) Forn>0,D*(0;n)=0.
Proof of (@): The proofis by induction. Obviously,
D(1;,0)=1; D(1;1)=2; and D(1;2) = 2D(1; 1)+ D(1; 0).
Assume the proposition is true for 2 <n <m. For n=m,

D(1;m)= Zd(l; mk)=) {d,m-2,k-)+d(,m-1,k-1)+d(1;m-1,k)}
=0

k=0
=Y d(L,m-2,k-1)+Y {d(,m-1,k-1)+d(l;m-1,k)}.
k=0 k=0

The first summation is D(1;m—2). The second summation is

{d;m-1,-1)+d(I;m-1,0)} +{d(l;m-1,0)+d(];m—-1,1)}
+{d(;m-1,1)+d(;m-1,2)}+--+{d(l;m—-1,m-2)
+d(Lm-1,m-D)}+{d(,m-1,m-1)+d(1,m—1, m)}.

Recall that d(1; m—1,—-1) =d(1;m—1,m) =0. Regrouping, the summation becomes:

2d(,m-1,0)+2d(,m-1, ) +--+2d(, m—1,m-2)
+2d(1,;m—-1,m-1)=2D(1;m—1).

Thus, D(1, m) =2D(1; m—-1)+ D(1; m-2).

1993] 291



RECURSIONS AND PASCAL-TYPE TRIANGLES

The proofs of (b), (c), and (d) are similar. O

The recursions (a) and (c) identify the sequences {D(1; n)} and {D(0;n)} as Pell sequences
[2]. The initial terms of the D(1; n) sequences are: 1, 2, 5, 12, 29, 70, 169, ... . This sequence is
number 552 in Sloane [6]. The D(0; n) sequence starts: 0, 2, 4, 10, 24, 58, ... . The terms are all
even. Dividing by 2 yields: 0, 1, 2, 5, 12, 29, 70, 169, ..., which is again Sloane's sequence 552.

Given Definition 1 and Theorem 1, a simple calculation yields
Corollary 1: The sequences {D(a;n)} and {D*(a; n)} satisfy:

(@) D(a;0y=a; D(a;1)=2;, D(a;n)=2D(a,n-1)+D(a;n-2), n>2.

0, n odd,
a(-1)", n=2m.

® D' n>={

Definition 2: Sums of the form
(1) d(a;n)=d(a;n 0)+d(a;n—-1,1)+d(a,n—2,2)+---, and
(2) I (a;n)=d(a;n,0)—d(a;n-1,)+d(a;n-2,2)—d(a;n—3,3)+---, will be called
diagonal sums and alternating diagonal sums, respectively, for the array d(a; n, k).
Theorem 2: The diagonal sums d(1; n) and d(0; n) satisfy:
@ Jd1,0)=0L; D=1 d(1,2)=2;
and I(L;n)=d(1;n—-1)+d(1;n—-2)+d(L;n-3); n=3;
(b) 0(0,0)=0; d(0;1)=1; I(0;2)=2;
and d(0; n) = H0; n—1)+J(0; n—2)+ A0; n—3); n=3.

Proof: (a) Provedin[1] and [8]; (b) Direct calculation. O

The initial terms of the d(1; n) sequence are: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, ... .
This is Sloane's sequence 406 [6]. This sequence appeared in [1], [4], and [7], where it is called
the Tribonacci sequence. The terms of d(0; n) are: 0, 1, 2, 3, 6, 11, 20, 37, ...; Sloane's sequence
296. Both sequences have a three-term recursion; i.e., for both sequences, the recursion is of the
form s(n) = s(n—1)+s(n—2)+s(n—-3),n>3. The difference between the two sequences reqults
from different initial terms. Sequences with a three-term recurrence have been studied previously,

e.g., [4], [7]. The recursion relations for both J(0; n) and d(1; #) can be written in matrix form
[71.
Theorem 3: The alternating diagonal sums d*(1; ) and 8*(0; n) satisfy the relations:
(@) 2°(1,0)=0"(; ) =1, 2*°(1;2)=0; and
*(Ln)=0"(Ln-1)-9"(,n-2)-9"(L,n-3), n=3.
(b) 0%(0,0)=0; 9°(0;1) =1, 9*(0,2) =0; and
2*(0;n)=9"(0,n-1)-9"(0;n—2)- 0" (O;n-3), n=3.

292 : [Nov.
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Corollary 2: The diagonal sums d(a; n, k) satisfy

(@ d(a;0)=a; da;1)=1; d(a;2)=2;

(®) d(a;n)=d(a;n—1)+d(a,n-2)+d(a;n-3);, n>3.
The alternating diagonal sums J*(a; n) satisfy

(9 I(a0)=a, d(a)=1; d(a;2)=0;

(@ J(a;n)=(a;n-1)-d(a;n-2)~3(a;n-3); n>3.

2. THE ASSOCIATED MATRICES

Rotate the array d(1; 7, k) counterclockwise so that the diagonals become rows and columns
to produce the following infinite matrix:

11 1

1 3 5 7 9

1 513 25 41
M=

1 7 25 63 129

1 9 41 129 321

The recursion relations for the triangle translate to the following relations for the terms m, ; of the
matrix:

a. m ;=m; =1, foral i, j, and
b.m=m ; +m_  +m_ ;1> j>1
Let M, be the (1 x n)-submatrix whose rows and columns are the first » rows and » columns of

M, and | M, | the corresponding determinant.

Theorem 4: Forn>1, |M,|= pn(n=1/2

Proof: By induction. For n =1, the result is imnmediate.
For k > 1, the matrix can be changed by elementary row and column operations so that, in

block form,
1 0
Mk =
[O 2M, k_l]

The rest follows. O

ACKNOWLEDGMENT
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I_ May 10, 1993
D

ear Editor: 1

May I inform you that I have just read with interest the paper "On Extended Generalized Stirling Pairs"
by A. G. Kyriakoussis, which appeared in The Fibonacci Quarterly 31.1 (1993):44-52. 1 wish to
mention that Kyriakoussis' “EGSP" ("extended generalized Stirling pair") is actually a particular case
included in the second class of extended "GSN" pairs considered in my paper "Theory and Application
of Generalized Stirling Number Pairs," J. Math. Res. and Exposition 9 (1989):211-20. His first char-
acterization theorem for "EGSP" is a special case of my Theorem 6 (loc. cit.). In fact, a basic result
corresponding with his case appeared much earlier in the paper by J. L. Fields & M. E. H. Ismail,
entitled "Polynomial Expansions," Math. Comp. 29 (1975):894-902.

Thank you for your attention.
Yours sincerely,

L. C. Hsu
Department of Applied Mathematics

University of Manitoba
" Winnipeg, Manitoba, Canada R3T 2N2

]

294 [Nov.



REDUCED AND AUGMENTED AMICABLE PAIRS TO 10°

Walter E. Beck*

Department of Computer Science, University of Northern Iowa, Cedar Falls, IA 50614-0507

Rudolph M. Najar

Department of Mathematics, California State University, Fresno, Fresno, CA 93740-0108
(Submitted October 1991)

1. PRELIMINARIES

A reduced amicable pair is a pair of natural numbers, m and », such that
m=o(n)-n-1, n=o(m)—-m-1,

where O is the sum of divisors function. Jerrard and Temperley [4] studied numbers £ satisfying
k =0(k)—k+1 which they named almost perfect numbers. Lal and Forbes [5] first studied
reduced amicable pairs and discovered nine pairs with smaller number <10°. (They coined the
name "reduced amicable pair.") In an earlier paper [1], we extended the search to pairs with
smaller number <10°, finding six new pairs. Hagis and Lord [3] extended the list to 107, dis-
covering thirty-one new pairs, including two missed in [1]. The present paper extends the listing
to 10%. The paper [1] included a study of pairs 7 and » satisfying

m=o(n)-n+1, n=oc(m)—-m+1,

called augmented amicable pairs and listed all pairs with smaller number less than 10%. There
were nine plus two other pairs both of whose elements exceeded one million. These arose from
iterating the function s, (n) = o(n)—n+1 on integers less than one million. A computer search
extended the list to all pairs with smaller number less than one hundred million. Table 2 lists the
pairs with one element less than ten million, except for powers of 2. Powers of 2 are fixed points
of s, and are not included here. A complete list of the 84 pairs up to 10® is available from either
author. The searches were carried out on the CRAY Y-MP at the University of Illinois at
Urbana-Champaign, on Sun 4 work stations at the University of Northern Iowa, and on NeXT
and Macintosh Ilci stations at California State University, Fresno. Over half the search was run
twice, once each at the latter two institutions.

* The first author was partially supported by National Center for Supercomputing Applications under
TRA910033N and utilized the CRAY Y-MP system at the National Center for Supercomputing Applications,
University of Illinois at Urbana-Champaign.
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ON INDEPENDENT PYTHAGOREAN NUMBERS

2. TABLES OF REDUCED AND AUGMENTED AMICABLE PAIRS

The tables of reduced and augmented amicable pairs follow.

TABLE 1. Reduced Amicable Pairs from 107 to 10®

1. 12146750 = 5(3).7.11.631; 16247745 = 3(2).5.127.2843

2. 12500865 = 3(3).5.13.17.419; 12900734 = 1.7.11.19.4409

3. 13922100 = 2(2).3(2).5(2).31.499; 31213899 = 3(2).1549.2239

4. 14371104 = 2(5).3.11.31.439; 28206815 = 5.7.13.47.1319

5. 22013334 = 2.3(2).7.17.43.239; 37291625 = 5(3).7.17.23.109

6. 22559060 = 2(2).5.47.103.233; 26502315 = 3.5.7.83.3041

7. 23379224 =2(3).11.23.11551; 26525415 = 3.5.7(2).151.239

8. 23939685 = 3(3).5.7(3).11.47; 31356314 = 2.11.23.31.1999

9, 26409320 = 2(3).5.7.257.367, 41950359 = 3(3).11.127.1031
10. 27735704 = 2(3).17.109.1871; 27862695 = 3(2).5.7.197.449
11. 28219664 = 2(4).11.109.1471; 32014575 = 3(3).5(2).43.1103
12. 33299000 = 2(3).5(3).7.67.71; 58354119 = 3(2).29.47.67.71
13. 34093304 = 2(3).97.31.41.479; 43321095 = 3(3).5.223.1439
14. 37324584 = 2(3).3(3).11.23.683; 80870615 = 5.7.17.199.683
15. 40818855 = 3.5.7.11.59.599; 42125144 = 2(3).23.179.1279
16. 41137620 =2(2).3.5.17.31.1301; 84854315 =15.7.13.251.743
17. 49217084 = 2(2).7.47.149.251; 52389315 = 3(3).5.11.35279
18. 52026920 = 2(3).5.11.23.53.97, 85141719 = 3(3).13.107.2267
19. 52601360 = 2(4).5.7.29.41.79; 97389039 = 3.11.17.173599
20. 61423340 =2(2).5.11.23.61.199; 88567059 = 2.7(3).17.61.83
21. 62252000 = 2(5).5(3).79.197; 93423519 = 3(2).7.107.13859
22. 64045904 = 2(4).13.367.839; 70112175 = 3.5(2).7.83.1609
23. 66086504 = 2(3).11.750983; 69090615 = 3(2).5.11.29.4813
24. 66275384 = 2(3).7.17.43.1619; 87689415 = 3.5.11.179.2969
25. 68337324 =2(2).3(3).11.23.41.61; 141649235 = 5.7.13.419.743
26. 72917000 = 2(3).5(3).13.71.79; 115780599 = 3(2).11.47.149.167
27. 76011992 = 2(3).7.179.7583; 87802407 = 3(3).7.11.157.269
28. 77723360 = 2(5).5.511.13.43.79; 145810719 = 3(3).41.107.1231
29. 89446860 = 2(2).3(2).5.17.29231; 197845235 = 5.7.17.332513
30. 93993830 = 2.5.7.727.1847: 99735705 = 3(5).5.23.43.83
31. 94713300 = 2(2).3(4).5(2).11.1063; 240536075 = 5(2).13.37.83.241
32. 94970204 = 2(2).7.107.31699; 96751395 = 3(3).5.13.29.1901
33, 97797104 = 2(4).19.23.71.197; 114332175 = 3(3).5(2).107.1583

Conjecture 0: There are infinitely many reduced (augmented) amicable pairs.

All pairs found have opposite parity. Since o(n) =m+n+1=0c(m), m and n have the same
parity iff (n) = o(m) are odd iff odd prime factors in m and » occur only in even powers. Thus,
we have
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ON INDEPENDENT PYTHAGOREAN NUMBERS

Conjecture 1: The numbers in a reduced (augmented) amicable pair are of opposite parity.

For each pair, consider the ratio & of the larger number divided by the smaller. In Table 1 the
ratios range from 1.0045786 to 2.53962; in Table 2 from 1.0011028 to 2.64749. Thus,

Conjecture 2: For any >0, no matter how small, there exists a reduced (augmented) amicable

pair such that 1<k <1+ .

TABLE 2. Augmented Amicable Pairs to 10’

1. 6160 = 2(4).5.7.11; 11697 = 3.7.557

2. 12220 = 2(2).5.13.47; 16005 = 3.5.11.97

3. 23500 = 2(2).5(3).47, 28917 = 3(5).7.17

4. 68908 = 2(2).7.23.107; 76245 =3.5.13.17.23

. 249424 = 2(4).7.17.131; 339825 = 3.5(2).23.197

6. 425500 = 2(2).5(3).23.37; 570405 = 2.5.11.3457

7. 434784 = 2(5).3.7.647; 871585 = 5.11.13.23.53

8. 649990 =2.5.11.19.311; 697851 = 3(2).7.11.19.53

9, 660825 = 3(3).5(2).11.89; 678376 = 2(3).19.4463
10. 1017856 = 2(11).7.71; 1340865 = 3(2).5.83.359
11. 1077336 = 2(3).3(2).13.1151; 2067625 = 5(3).7.17.139
12. 1238380 = 2(2).5.11.13.433; 1823925 = 3.5(2).83.293
13. 1252216 = 2(3).7.59.379; 1483785 = 3(3).5.29.379
14. 1568260 = 2(2).5.19.4127; 1899261 = 3(3).7.13.773
15. 1754536 = 2(3).7.17.19.97; 2479065 = 3.5.29.41.139
16. 2166136 = 2(3).7.47.823; 2580105 =3.5.11.19.823
17. 2362360 = 2(3).5.7.11.13.59; 4895241 = 3.13.31.4049
18. 2482536 = 2(3).3.7(2).2111; 4740505 = 5.7(2).11.1759
19. 2537220 = 2(2).3.5.7(2).863; 5736445 =5.11.13.71.113
20. 2876445 = 3(3).5.11.13.149; 3171556 = 2(2).19.29.1439
21. 3957525 = 3(3).5(2).11.13.41; 4791916 = 2(2).41.61.479
22, 4177524 = 2(2).3.13.61.439; 6516237 = 3.7.13.23869
23. 4287825 = 3(2).5(2).17.19.59; 4416976 = 2(4).59.4679
24, 5224660 = 2(2).5.7.67.557, 7524525 = 3.5(2).41.2447
25. 5559510 = 2.3.5.11.17.991; 9868075 = 5(2).7.17.31.107
26. 5641552 = 2(4).7.17.2963; 7589745 = 3(2).5.227.743
27. 5654320 = 2(4).5.7.23.439; 10058961 = 3.11.19.61.263
28, 5917780 = 2(2).5.11.37.727, 8024877 = 3(2).7(2).31.587
29. 6224890 = 2.5.7.17.5231; 7336455 = 3.5.7.107.653
30. 6274180 = 2(2).5.11.19(2).79; 9087741 = 3(3).13.17.1523
31 6711940 = 2(2).5.17.19.1039; 9012861 = 3(2).11.13.47.149
32. 7475325 =3.5(2).11.13.17.41; 8273668 = 2(2).13.107.1487
33, 7626136 = 2(3).7.43.3167, 9100905 = 3.5.11.19.2903
34. 7851256 = 2(3).7.19.47.157; 10350345 = 3.5.19.23.1579
35. 7920136 = 2(3).7.233.607; 9152505 = 3(2).5.23.37.239
36. 9026235 = 3(5).5.17.19.23; 9843526 = 2.7.11.41.1559
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3. THE UNITARY CASE

In [2] searches for the unitary analogues of reduced and augmented amicable pairs to 10°
were reported. Except for trivial cases, none were found. The search has been extended to 10°
with no new results.
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INTRODUCTION

In a paper of Sypriya Mohanty and S. P. Mohanty (refer to [1]), the notion of an independent
Pythagorean number is introduced and discussed. Recall that any Pythagorean triple (x, y, z) may
be represented by

x=2uvt, y=tu* —v?), z=1t(u* +v?) €))

where # and v are relatively prime natural numbers of opposite parity, that is, #4+v =1 (mod 2),
(u,v) =1, u>v, and 7 some natural number.

In the same paper, Definition 1 (p. 31) calls the area of a Pythagorean triangle a "Pythagorean
number." And that of a primitive Pythagorean triangle a " primitive Pythagorean number." Thus,
a Pythagorean number is a positive integer of the form

A= %(Zzlvt)[t(u2 —v3)] = Puv(u® —v?), )

where the natural numbers « and v satisfy the above conditions.
When the Pythagorean triangle at hand is primitive, i.e., when # = 1, we obtain the general
form of a primitive Pythagorean number described by

B =uv(u* —v?). 3)
The authors define the notion of an independent Pythagorean number and they prove that there
exist infinitely many primitive Pythagorean numbers that are not independent (Theorem 10, p. 40).
According to that definition (Definition 2, p. 40), a Pythagorean number is called independent if it
cannot be obtained from another Pythagorean number by multiplying the latter by 72, where 7 is a
natural number > 1.

Note that if a Pythagorean number is independent, it must be primitive. The converse, of
course, is false, as the authors have proved: there exist (infinitely many) primitive Pythagorean
numbers that are not independent.

In this paper, we will address Problem 2 in the author's paper. Namely, find sufficient condi-
tions for an integer B to be an independent Pythagorean number. We will find families of primi-
tive Pythagorean numbers that are independent. First, we will state the two theorems of this
paper, then their proofs.

Theorem 1: Let u and v be natural numbers such that #+v=1(mod2),(»,v)=1, and u >v.
Assume that either

(a) all four numbers u, v, u—v, and u +v are squarefree (the case v =1 included), or
(b) the three integers #—v, u+v, and % are all squarefree and 4> odd (the case v = 1 included).

Then the primitive Pythagorean number #v(u® —v?) is independent.
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Theorem 2: Let p>3 be a prime and v>1,w >3 be odd squarefree natural numbers (the case
v =1 included) both of whose (distinct) prime divisors are all congruent to 1 mod p. Let n be a
positive integer and r an odd prime distinct from p and the prime divisors of w. Assume that
(u,v) =1, where u=2"-r-2w. Furthermore, suppose that # — v is a squarefree integer such that
each of its prime divisors is congruent to 1 mod p and that # + v is a squarefree integer containing
exactly one prime divisor ¢ #1 (mod p), while the rest of its prime divisors, if any, are all
congruent to 1 modulo p. Assumethatn=1orn=2.

Then the primitive Pythagorean number uv(x> —v?) is independent.
Proof of Theorem 1: Suppose that
w@® -v)=1*-b “)

where b is a Pythagorean number and 7 some positive integer. Since b is a Pythagorean number,
according to (2), b must be of the form

b=T*.UVU*-V?), )
for some positive integers 7, U and V where
U>V,U+V =1(mod2) and (U,V)=1 ©6)
Substituting for b in (4), we obtain

w@? v =t*.T*.U-V-(U*-V?) or o
wu-v)u+v)=1>-T*.U-V-(U*-7?).

If hypothesis (a) is satisfied, then the product uv(u —v)(u+v) must be a squarefree integer,
since each of the numbers uv, u—v, and u +v is squarefree, and these three integers are mutually

coprime in view of (#,v)=1and u+v=1(mod2). Then (7) clearly implies P2 =1=1r=1=
t=T=1.

If hypothesis (b) is satisfied, 4 must exactly divide the lefi-hand side of (7). Since #v = 0 and
u+v=1(mod?2), £*T? must be odd and uv = 0 (mod 4). Dividing (7) by 4, we obtain

%v—-(u—v)(u+v):t2T2-%V—-(U2—V2) 8)
Since the left-hand side of (8) is an odd squarefree integer, we have 1’72 =1=(T=1=

t =T =1. Hence, uv(u® —v?) is an independent Pythagorean number.

Proof of Theorem 2: Evidently, according to the hypothesis, the Pythagorean number
uv(u* —v*) must be of the form
w(@® v =uv(u—-v)u+v)=2"-q-r*-p, - P>,

where all the odd primes q,r, p,,---, p,, are distinct and p, =---= p, =1(mod p). Suppose that
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2".q-r*-p,--- p, =t*ab(a-b)(a+b), )
where the positive integers a and b have opposite parity, (a,5) =1, anda>b. Assume that a is

odd and b even (the case a even and b odd is treated in exactly the same way). We set b = 2% - B,
B odd, and # =2°T in (9) to obtain
2".q-r*-p - p, =T7-22"* .q.B(a-2* - B)(a+2* - B), (10)
which gives
qr*p - py=T"a-Bla-2*-B)a+2*-B), 1n
since we must have 286 +k =n; with 1<k <n,6 >0, and T odd.
First, we will prove that (11) cannot be satisfied for 7 odd and 77> 1. Let us assume to the

contrary that (11) is satisfied for some 7> 1 and 7 odd. In view of the fact that the left-hand side
of (11) represents the unique factorization of the right-hand side of (11) into powers of distinct

primes and because 7 is the only square of a prime, it is rather obvious that we must have 7 = r;
hence, (11) implies
q-p, - p, =a-Bla-2"-B)a+2*-B). (12)

Since p, =---= p,, =1 (mod p), (12) clearly shows that if glaB, then a—2*B=1and a+2*B=1
(mod p); so 2a =2 and 2**' B =0 (mod p); therefore if g|aB,

a=1 and B=0 (mod p), (13)

which is a contradiction, since p as a divisor of B would divide the lefi-hand side of (12), con-
trary to the fact that p is distinct from ¢, p,, -, p,,. Next, suppose that g| (a—2%-B) or that
gl(a+2*-B). Equation (12) clearly implies in such a case, a=B=1 (mod p). Also if
gla—2*.B, we must have a—2%-B=gq (mod p); and since a = 1 (mod p), we end up with
2=g+1 (mod p) = ¢ = 1 (mod p), contradicting the hypothesis again [note that a—2*B=gq

and a+2* B =1(mod p) or vice versa].

Hence, we conclude that (11) is not possible with 7> 1. Consequently, 7 = 1; thus, from
t=2°.T, we obtain 7 =2°. We will show that § =0. According to the hypothesis, 7 =1 or 2. If
n =1, then, from 26 +%& =n and k£ > 1, we immediately obtain § =0. For n = 2, again we must
have § =0, in view of 20 +k =nand k >1. Therefore, § =0, and since we also have T = 1, it

follows that 7 =2°T=17=1. The proof is complete.
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A NOTE ON RATIONAL ARITHMETIC FUNCTIONS
OF ORDER (2, 1)
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1. INTRODUCTION

In [4], among other things, the connection between specially multiplicative functions and
generalized Fibonacci sequences is discussed. In this paper we shall discuss the similar connec-
tion that exists between rational arithmetic functions of order (2, 1) (to be defined in section 2)
and generalized Fibonacci sequences. The generalized Fibonacci sequence studied in this paper is

the sequence {w,(a, b; c,d)} or, briefly, {w,} of complex numbers, which is defined by

wy=a, w=b, w,=cw

1 —dwn—2 (n 2 2)

n—

This sequence has been extensively studied by Horadam (e.g., [2]).

Section 2 motivates the study of rational arithmetic functions of order (2, 1), while section 3
considers the main theme of this paper, namely, the connection between rational arithmetic func-
tions of order (2, 1) and the sequence {w,}. Arising from this connection, identities are presented
involving the sequences {w,} and {u,}, where u, =u,(c,d)=w,(1,¢c;c,d). The sequence {u,}
is particularly important as indicated in [4]. Finally, in section 4, an identity for rational arithmetic
functions of order (2, 1) is proven with the aid of the identities of section 3.

For general background on arithmetic functions, reference is made to the books by Paul
McCarthy [3] and Sivaramakrishnan [6]. The basic concepts used in this paper are reviewed here.

An arithmetic function f'is said to be multiplicative if £ (1) =1 and f (mn) = f(m) f (n) when-
ever (m,n)=1. If f(1)=1and f(mn) = f(m) f (n) for all m and n, then f'is said to be completely
multiplicative. An arithmetic function £ is said to be quasi-multiplicative if f(1)#0 and there
exists a complex number g such that gf (mn) = f(m) f (n) whenever (m,n) =1. It follows imme-
diately that g = f(1). If f(1)#0 and f(1)f(mn)= f(m)f(n) for all m and n, then fis said to
be a completely quasi-multiplicative function. It is clear that each (completely) multiplicative
function is (completely) quasi-multiplicative.

For a prime number p, the generating series of a multiplicative arithmetic function f to the
base p is defined by

1,0 =3 F(p")x"
n=0

(see [7]). Each multiplicative function is completely determined by its generating series (at all
primes p). It is easy to see that generating series can also be used in the context of quasi-multipli-
cative functions.

The Dirichlet convolution f * g of two arithmetic functions fand g is defined by

(f*g)(m) =3 f(d)g(n/d).

dn

It is clear that, for all primes p, (f *g),(x) = f,(x)g,(x), when f and g are multiplicative.
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2. DEFINITION
The arithmetic function f introduced by S. S. Pillai [5] is given by

By =" (k. m),
k=1

where (k, ) is the greatest common divisor of k¥ and n. The structure of 3 is
B=1IxIxe ' =I%*p, €))

where I(n)=n,e(n) =1(n=>1), and y is the classical Mobius function (see [6, p. 8]). The arith-
metic function f is an example of a rational arithmetic function of order (2, 1) in the terminology
of Vaidynathaswamy [7], who called a multiplicative arithmetic function f a rational arithmetic
function of order (r, s) if there exist nonnegative integers 7, s and completely multiplicative func-
tions g, ..., g, A, ..., h, such that

A R AN

Conventionally, the identity function ¢, is a rational arithmetic function of order (0, 0), where
e,(1)=1and ey(n) =0 forn>1
By (1),
2. B(d)y= (I *I)(n) = n(n),

din

where 7(n) is the number of positive divisors of n. The function n(#n) is a quadratic function
[7], that is, a rational arithmetic function of order (2, 0). A quadratic function is also called a
specially multiplicative function in the literature (see, e.g., [4]). If g is specially multiplicative and

g=g*g,, then

gmgm =Y. gmn/d*)(g,g,)d) 2)
d|(m, n)

for all m and n, or, equivalently,

glmny=3. g(m/d)g(n/ d)u(d)(glgz)(d) (3)
di(m, n)

for all m and n (see, e.g.,, [3, Th. 1.12]). Section 3 includes generalizations of these identities in
terms of the sequences {w,} and {u,}.
A specially multiplicative function also satisfies

g(m)(g:8,)(m) =2 g(n/d)g(mnd )p(d)

din

for all m and » (see [1, Prob. 4, p. 139]). Examination of whether a similar identity holds for f
shows that

Bmyn = w(n/ d)p(mnd)u(d)/d

dn

for all m and n. Section 4 shows that a similar identity holds for all rational arithmetic functions
of order (2, 1).
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3. CONNECTIONS WITH GENERALIZED FIBONACCI SEQUENCES

Let g be a specially multiplicative function given by g= g *g,, where g, and g, are com-
pletely multiplicative functions, and let /# be a completely quasi-multiplicative function. Let f be

defined by f = g*h™'. Then f/f(1) is a rational arithmetic function of order (2, 1). Note that
1/ f(1) = A(1). The generating series of f and g to the base p are
1B
h(1)  h(1)? 1
, and g,(¥)= :
’ T 1-g(p)x +(g18)(0)X’

\ =
75 1- g(p)x+(£:18,)(p)x

The generating series of the sequences {w, } and {u,} are

1
1-cx+dx?’

o s a+{b—ca)x =
wx)= ) wx' =————, and u(x)= ) u,x =
()gn v’ ()Z:,)

Thus, for each arithmetic function f given by f = g*h™', where g is a specially multiplicative
function and 4 is a completely quasi-multiplicative function, we have

(P} =w,(f D), f(P); g(p). (£&)(P))}, and {g(p")} = {u,(2(P), (88:)(P))}-
Example 1: For all primes p,

B} =w,1,2p-L2p, p")}, and {(B*e)p")} = {u,2p, P*)}.

Conversely, for each sequence {w,} with a # G, we have

w,(a,b;c,d)}={f(p")}, and {u,(c,d)}={g(p")},
where f = g*h™', g being the specially multiplicative function given by g(p)=c, (g,£,)(p) =4,
and h being the completely quasi-multiplicative function given by (1) =1/a, h(p)=c/a-b/a*.
Namely, the above generating series gives 1/ h(1) = a, —h(p)/ h(1)* = b —ca.
Example 2: For all primes p,

{wn(27 1’ 1’ - 1)} = {Ln} = {f(pn)}7 and {un(la - 1)} = {EI+1} = {g(pn)};

where h(1)= Y%, h(p)=Y%,g(p)=1,(gg)(p)=-1, and F,, L, are the Fibonacci and Lucas
numbers, respectively.

Using the connection that w, = (g, *g, *h ") (p") and u, = (g,* &,)(p") it can be proved by
some calculations that

Wy =W, —t, W _d (mn=1), @)
and
i
uw, = Z Woinod (mn21). )
i<m,n

These identities may be considered as generalizations of the classical identities (2) and (3) for
specially multiplicative functions.
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There also exist identities that involve generalized Ramanujan sums in identities for specially
multiplicative functions (see [6, Th. 124]). The following analogous identities are proposed for
the sequences {w,} and {u,}: Let {o;} be a sequence of complex numbers, and &, g nonnegative
integers. Let {{,} be the sequence given by py=1,1, =-1, 4, =0 (n=2). Then we have

i i
Zd Ui Wi Z ol = Z AW, g5 (6)
i<m,n JSi i<m,n
Jk<q ik<q
i i
Z wm+n—2id z aj - Z aid um—iwn—i . (7)
i<m,n J<i i<m,n
Jk<q ik<q

Note that with ¢ =0 and &, =1, (6) and (7) reduce to (4) and (5), respectively.

4. AN IDENTITY

This section presents the identity for rational arithmetic functions of order (2, 1) mentioned at
the end of section 2. Let fbe a rational arithmetic function of order (2, 1) given by

= *h_l = % *h_l’
g &1* &

where g, g,, and & are completely multiplicative functions. Use is made of the identity (4)
written in terms of £ For all primes p and positive integers 7 and s,

F@) =g )-8 (P& (). ®

Theorem: If fis a rational arithmetic function of order (2, 1), then

J(m)(818,)(m) =X g(n/ d)f (mnd)i(d) ©)

dln
for all m and ».

Proof: By multiplicativity, it suffices to consider the case in which m and »n are prime
powers, say, m= p° n=p’. If b=0, both sides of (9) reduce to f(p*). If a=0,b=1, then (9)
is obtained by (8) with » =s=1. Assume that @ =0, b > 1, then the right-hand side of (9) is

g @) -g@" O (™.
By (8), this can be written as
g@"g@ ™7 (P)-g(P X&)~ 8@ g f(P) - 8(p" ) 8:182)(P)]

or, after simplification,
(58)P)Ng" (P -g(P" ("]
It can be verified that
gD -g(P"eg(r") = (2g)@"™)
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(see [6, Lemma, p. 287]). Since g,g, is completely multiplicative, the left-hand side of (9) is

arrived at. The case a,b > 0 could be considered in a similar way. The details are not included
here.

Remark: 1dentity (9) in terms of the sequences {w,} and {u,} is:

WAd=UW, =ty Wyiny (M=0,n>1).

n—1"m
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REAL FIBONACCI AND LUCAS NUMBERS
WITH REAL SUBSCRIPTS

Piero Filipponi
Fondazione Ugo Bordoni, 1-00142 Rome, Italy
(Submitted November 1991)

1. INTRODUCTION

Several definitions of Fibonacci and Lucas numbers with real subscript are available in liter-
ature. In general, these definitions give complex quantities when the subscript is not an integer
(11, [31 [81, [9]. '

In this paper we face, from a rather general point of view, the problem of defining numbers
F, and L, which are real when subscript x is real. In this kind of definition, the minimum require-
ment is, obviously, that ¥, and L, and the usual Fibonacci numbers F, and Lucas numbers L,
coincide when x = n is an integer. Further, for all x, the fulfillment of some of the main properties
possessed by F,, and L, is desirable. Some of these definitions have already been given by other
authors (e.g., [6], [10]).

Here, after a brief discussion on some general aspects of these definitions, we propose two
distinct expressions for both F, and L, and study some of their properties. More precisely, in
Section 2 we give an exponential representation for F, and L,, whereas in Section 3 we give a
polynomial representation for these numbers. In spite of the fact that the numbers defined in the
above said ways coincide only when x is an integer, they are denoted by the same symbol. Never-
theless, there is no danger of confusion since each definition applies only to the proper section.

We confine ourselves to consider only nonnegative values of the subscript, so that in all the
statements involving numbers of the form F,_, and L,_,, it is understood that y < x. The follow-
ing notation is used throughout the paper:

A(x), the greatest integer not exceeding x,
u(x), the smallest integer not less than x.

2. EXPONENTIAL REPRESENTATION OF F, AND L,

Keeping in mind the Binet forms for F, and L, leads, quite naturally to consideration of
expressions of the following types:

F,=[o” - f(x)o"]/5 @1
and )
L =a+f(x)a™, (2.2)
where or = (1+ \/g) /2 is the positive root of the equation z2 —z—1=0, and f(x) is a function of
the real variable x such that

S (n)=(-1)" for all integers . 2.3)
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It is plain that the numbers F, and L, defined by (2.1)-(2.3) and the usual Fibonacci numbers F,
and Lucas numbers L, coincide whenever x = n is an integer.

If we require that F, and L, enjoy some of the properties of F, and L,, we must require that
f(x) has some additional properties beyond that stated in (2.3).

Theorem 1: .1If, for all x,

fx+)=-f(x) 24
then the fundamental relations

Fp=Fn+F, (2.5)
and

L.,,=L+L, (2.6)

are satisfied.
Proof: By (2.2) and (2.4), we can write
Log+L =o+ f(x+Da™ " +o* + f(x)o™™
=o™ M ra”+ f(x) (o -,

—-x-1 —-x=2

Since a’=a+lando?=1-a"', we have o™ +a = anda™-a =
Thus,

Lo+l =0+ f(x)o™ 2+ f(x+2)a™**=L_, QED.

Theorem 2: 1If, for a particular x,

I = f@2x), @7
then the identity
F.L =F,, (2.3)

is satisfied.
Proof: By (2.1) and (2.2), after some simple manipulations, we get
F.L =[a* - f2(x)a”*]//5. QE.D.
Theorem 3: If the condition (2.4) is satisfied for all x, then the identity
L =F_ +F, (2.9)
holds.
The proof of Theorem 3 is analogous to that of Theorem 1 and is omitted for brevity.

Parker [10] used the function
S (x) = cos(mx) (2.10)
to obtain real Fibonacci and Lucas numbers with real subscripts. The function (2.10) satisfies

(2.3) and (2.4) but does not satisfy (2.7). Other circular functions (or functions of circular func-

tions) might be used as f{x). For example, f(x)= cos"(mx) and f(x) = cos"* (nx) (k an odd inte-

ger) satisfy the above properties as well. Further functions might be considered. For example,
the function
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f(x)=[a® —sin®(mx)]"* —a+cos(mx) (a= 1),

which describes the piston stroke as a function of the crank angle mx and the ratio a of the rod
length to the crank radius, satisfies (2.3) but does not satisfy (2.4).

In my opinion, the simplest function f{x) satisfying (2.3) and (2.4) is the function

Jf(x)=(=D)* (2.12)
which leads to the definitions
F =[a* —(-)*®g*1/45 (2.13)
and
L =o* +(-1)"®q* (2.14)

Observe that (2.12) can be viewed as a particular function of circular functions. In fact, this
function and the special Fourier series

fx) = 4 i sin[(2k + 1) 7x]

2.12
Ty 2k+1 (2.129

coincide, except for the integral values of x.
As an illustration, the behavior of F, vs x is shown in Figure 1 for 0 < x <10.

60+ |
50 2
40

30+ 3 a /

0 — 1

0 2 4 6 8 10

FIGURE 1. Behavior of I, vs x for 0<x <10

The discontinuities (observable for small values of x) connected with the integral values of x are
obviously due to the greatest integer function inherent in the definition (2.13).

The numbers F, and L, defined by (2.13) and (2.14), respectively, enjoy several properties of
the usual Fibonacci and Lucas numbers. For example, the following two propositions can be
stated.

Proposition 1: 5F* = I% —4(-1)"®.

Proposition 2 (Simson formula analog): F,_|F_ —~F? = (=),
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For the sake of brevity, we shall prove only Proposition 2.

Proof of Proposition 2: From (2.13), we can write

E._F

x+1

2 - [aZx _ (_ 1)1(x+1)a—2 _ (—I)M’H)az n (—l) 1(x—1)+/1(x+1)a—2x
—o - 4 2(-1)*P/5
_ [_(_l)l(x)+la—2 _ (_l)l(x)~la2 + (_l)zl(x)a—zx —a +2(_1)Z(x)]/5
=[(-D*® (02 + o2y +2(-1)M]/5
= (-D)*(L, +2)/5=(-)**®. Q.E.D.

Let us conclude this section by offering the sums of some finite series involving the numbers
F,and L,. These are

z +k: n+x+2 ];c+1a (2.15)
k=0

where T stands for both F and L, and

F&n—l)/n + Fi/n

1
ZFk/,, (n=2), (2.16)
-2 Ly, -2
n \/g — L
L, = O (n>2). (2.17)
k=1 Ll/n -2

The proofs of (2.15)-(2.17) can be obtained from (2.13) and (2.14) with the aid of the geometric
series formula. They are left to the interested reader.
3. POLYNOMIAL REPRESENTATION OF F, AND L,
Let us recall the well-known formula
F = z(”’ 1=J ) (.1)
7=0 J

where U is a suitable integral function of 7, which gives the n™ Fibonacci number. It is also well
known (see, e.g., [5, p. 48]) that the binomial coefficient defined as

(g) -1, (Z) _ala- 1)"];'(a_k ) (k > 1 an integer) (3.2)

makes sense also if a is any real quantity.

In light of (3.2), some conditions must be imposed on the upper range indicator, U, for (3.1)
to be efficient. In my opinion, the usual choice U = (see, e.g., [13, (54)]) is not correct. For
example, for n =5 and U = o, we have the infinite series
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AR

the sum of which is clearly different from 5. It can be readily proved that formula (3.1) works
correctly if the following inequalities are satisfied

Al(n=1)/21<U <n-1 (.3)

On the basis of (3.2) and (3.3), a polynomial representation of F, can be obtained by simply
replacing n by x in (3.1). Following the choice of Schroeder [12, p. 68] (i.e., U = A[(n—1)/2]),
we define the numbers F, as

A(x-1)/2] .
x—1-
E= Y ( ; J) (3.4)
J=0 ~

Observe that, under the convention that a sum vanishes when the upper range indicator is smaller
than the lower one and taking into account that A(—x)=—p(x), expression (3.4) allows us to
obtain F = 0.

Other choices of U are possible, within the interval (3.3). In a recent paper [1] André-
Jeannin considered the numbers G(x) (x > 0) obtained by replacing n by x and U by m(x) in (3.1),
m(x) being the integer defined by x/2—-1<m(x) <x/2. It is readily seen that m(x) = pu(x/2-1),
and m(x) = A[(x—1)/2] when x is an integer. Moreover, we can see that F, and G(x) coincide
for 2h—-1<x<2h (h=1, 2, ...), and both of them give the usual Fibonacci numbers F, when
X =nis an integer.

As an illustration, we give the value of F for 0 <x <9.

F. =0, for0O<sx<],

F.=1 for1<x<3,

F,=x-1, for3<x<5,
F,=(x*-5x+10)/2, for 5<x <7,
F,=(x’-12x* +59x~90)/6, for 7<x <9.

The behavior of F, vs x for 0< x <9 is shown in Figure 2 below.

Replacing 7 by x in [4, (1.3)-(1.4)] leads to an analogous polynomial representation of L. :
A(x/2) e i
L=% 29 (3.5)
j=0 J

Observe that, for x = 0, this definition gives the indeterminate form 0/0. So, L, =2 cannot be
defined by (3.5). As an illustration, we show the values of L, for 0 <x <8.

L.=1 forO<x<2,

L, =x+1, for2<x <4,

L, =(x*—x+2)/2, for4<x<6,

L, =(x*-6x*+17x+6)/6, for 6 <x <8.

X
x—J
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35 )
30 ]
25 / :

204
< /.
/.

5 -
0

0 2 4 6 8 10

FIGURE 2. Behavior of F, vsxfor 0<x<9

Also the numbers F, and L, defined by (3.4) and (3.5), respectively, enjoy several properties
of the usual Fibonacci and Lucas numbers. Sometimes these properties hold for all x, but, in most
cases, their validity depends on the parity of A(x). We shall give an example for each case. The
proof of the latter is omitted for brevity.

Proposition 3: F,_+F_ =1L,.
Proof: From (3.5), the binomial identity available in [11, p. 64}, and (3.4), we can write
2(x/2) . . A(x/2) . A(x/2)-1 .
_ X—j x=1-7Y\|_ x—1-j\_ XxX—2—j
L= 2, [( J )*( j-1 )]‘E‘“* 2 ( j-1 )‘Fx“““ Zz ( J

By virtue of the assumption [S, p. 48],

(—xk) =0 (k 21 an integer), (3.6)
by using the equality
AQe/2)-1=A[(x~-2)/2], G.7)

and definition (3.4), the previous expression becomes

I —F Al(x~2)/2] x—2—j _F P D
x T x-i—l+ Z ] - x+1+ x-1- QE .

j=0
Proposition 4:
E., if A(x) is even,

F,+F,, = - -
o+ P Em—("xé(fz’fi 11), if A(x) is odd.

Let us conclude this section by considering a special case [namely, n=(2k +1)/ 2] of the
well-known identity F, L, = F;,. The numerical evidence shows that

F(2k+1)/2L(2k+1)/2 =Fyp — gk). (3.3
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The values of g(k) for the first few values of k are shown below:
g0)=1  g(4)=29375
g)=1  g(5) =3734375
g(2)=15  g(6)=64921875
g(3)=175 g(7)=857421875.

I was able to find neither a closed form expression nor sufficiently narrow bounds for g(k). Estab-
lishing an expression for this quantity is closely related to the problem of expressing F, and L, as
functions of F},, and L, ,,, respectively (x = k + 1/2 in the above case). This seems to be a chal-
lenging problem the solution of which would allow us to find many more identities involving the

numbers F and L. Any contribution of the readers on this topic will be deeply appreciated.

4. CONCLUDING REMARKS

In this paper we have proposed an exponential representation and a polynomial representa-
tion for Fibonacci numbers F, and Lucas numbers L, that are real if x is real. Some of their
properties have also been exhibited.

As for the polynomial representation, we point out that other sums, beyond (3.1) and [4,
(1.3)-(1.4)] [see (3.5)], give the Fibonacci and Lucas numbers. These sums can be used to obtain
further polynomial representations for F, and L,. For example, if we replace n by x in the expres-
sion for Fibonacci numbers available in [2], we have

A(x=1)/5]

- -1
Fo= ) (—1)’(/1[();—361—5])/2])' .1)

j=—=A(x/5)

Observe that (4.1) and (3.4) coincide for 0 < x < 5. Getting the polynomials in x given by (4.1)
for higher values of x, requires a lot of tedious calculations. As an illustration, we give the value
of F, for 0<x <8.

F.=0, for0<x<],

F,. =1, for1<x<3,

F.=x-1, for3<x<S5,

F, = (—=x* +10x’ - 23x* +14x) /24, for 5< x <6,

F, = (-x" +15x* —85x +285x* — 454x +120) /120, for 6 < x <7,
F, = (=X +15x* —65x® +105x* — 54x —120) /120, for 7 < x <8.

Plotting these values shows clearly that definition (4.1) is rather unsatisfactory if compared with
definition (3.4). We reported definition (4.1) here for the sake of completeness and because it
might be interesting per se.
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EDITOR ON LEAVE OF ABSENCE

The Editor has been asked to visit Yunnan Normal University in Kunming, China, for the Fall
semester of 1993. This is an opportunity that the Editor and his wife feel cannot be turned down.
They will be in China from August 1, 1993, until approximately January 10, 1994. The August and
November issues of The Fibonacci Quarterly will be delivered to the printer early enough so that
these two issues can be published while the Editor is out of the country. The Editor has also
arranged for several individuails to send out articles to be refereed which have been submitted for
publication in The Fibonacci Quarterly or submitted for presentation at the Sixth International
Conference on Fibonacci Numbers and Their Applications. Things may be a little slower than
normal, but every attempt will be made to insure that all goes as smoothly as possible while the
Editor is on leave in China. PLEASE CONTINUE TO USE THE NGRMAL ADDRESS_ FOR
SUBMISSION OF PAPERS AND ALL OTHER CORRESPONDENCE.
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FIBONACCI NUMBERS: REDUCTION FORMULAS
AND SHORT PERIODS

Clifford A. Reiter

Lafayette College, Faston, PA 18042
(Submitted November 1991)

Formulas for determining the Fibonacci numbers F;, and F,, ;| in terms of F, and F,_; are
well known as are some higher reduction formulas. For example, formulas for F;, and F;, , are
assigned as homework in Alfred [1], and in Chapter 17 of Dickson [3] there is a formula for F,,,
when p is odd. This note describes a technique for constructing "simplified" formulas for F,, and
F,_, in terms of F, and F,_,. Two families of recursively defined polynomials can be used to
parametrize these formulas. This parametrization can be applied to the study of the period of the
Fibonacci sequence modulo m. These periods have been the subject of considerable study; see
[4], [6], and [7] as well as [2] which contains generalizations to continued fractions. The period
of the Fibonacci sequence modulo m is often close to the modulus in size, but Ehrlich [4] showed
that the period of the Fibonacci sequence was surprisingly small for Fibonacci moduli and many
other small periods do appear. His work utilized the reduction formulas for /, and F,, ,. We
can generalize this result using the simplified reduction formulas for F,, and F;

in—1

for each even
multiplier 7.

INTRODUCTION

It is well known that the Fibonacci numbers can be computed by taking powers of a matrix.

Namely, if
F, K 01 F_, F
=2 1):( ),thenT"z("l ”)
(Fl K)o E, Fy,
Consider the matrix U, given below, that captures the symmetry of 7" and the fact that the (2, 2)-
entry is sum of the entries in the first row. Its powers, U', can be used to get information about

T™. In particular, when a = F,_, and b = F,, the first row gives reduction formulas for F,_; and
F, interms of F,_; and I, .

a b 2 2 2ab bZ
U= U= a“ +b o ab + i
b a+b 2ab+b*> a’ +2ab+2b
U3 = a® +3ab* + b’ 3a*b +3ab® +2b°
3a’b+3ab® +2b° o’ +3a’b + 6ab” +3b°
The first row of U? gives the reduction formulas:
FvZn—I :Fnz-—l +E12’ F‘Zn :ZFH—IF;‘I +P;12'

Those equations and simple variations are well known. The first row of U? gives additional, less
well known reduction formulas:
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F;in—l = Fn3—l +3F;1—1Fr?’ Ein = 3Fn2-1F;l +3‘F;1—1Fn2 +2F;13'
Higher reduction formulas can be produced by computing higher powers of U. It is easy to see
that the entries in U’ are homogeneous polynomials of degree i in the variables @ and 5. Many
other formulas for ¥, and F;,_, in terms of F, and F,_, are possible since
Fl = F} =F  F 4+ (-1)"

In particular, consider simplifying the polynomials in /> and U? by the corresponding relation
p p

a* =b* —ab+(-1)". (*)
(One can think of this as a simplification that introduces a new formal parameter n, or as two
separate simplifications, depending on whether » is even or odd.) The relation can be applied to

a' for all i >2. The result can be simplified again and the process repeated until the variable a
appears only linearly. We say that a polynomial that has been simplified in this way is a-simpli-

fied. For example, the a-simplified form of the first row of U? is
(1" -ab+2b%, 2ab+57)
The a-simplified form of the first row of U is
(-D"a—(-1)"b+5ab>, 3(-1)"b+5b").

These give other reduction formulas for Fibonacci numbers:

Fypy =(1)"+F,QF, - F,.), F,,=F,QF,,+F),

Fyy = (F1' (B —F) +SE,F], Fy, =3(-1)"F, +5F,.
These formulas are simpler because of the reduction that took place. In fact, since these a-simpli-

fied formulas have few multiplications, they are useful for very rapid computation of large

Fibonacci numbers, see [5]. Consider one more example as a preview. The first row of U°®, a-
simplified, then written in a special way, and with n =0 is:

(1+b(3 +55%)(~(a(l+5b)) +b(7+106%)), b(2a+b)(1+567)(3+55))

This is interesting because, when reduced modulo any factor of 5(3+5b%), this is congruent to
(1,0). This leads to repetition of the Fibonacci sequence at this stage modulo that factor.

These a-simplified formulas can be computed directly by raising U to the appropriate power
and applying identity (*) repeatedly, but in the next section we see that they can be computed
quickly using simple recursive formulas. Properties of these a-simplified polynomials are
established. In the last section, we use the special form of these a-simplified reduction formulas

to see that for many infinite families of moduli, the Fibonacci sequence reduced by that modulus
has a short period.

PARAMETRIZING THE a-SIMPLIFIED REDUCTION FORMULAS

We begin by defining the following intertwined polynomials in one variable b and with the
parameter n giving a choice of sign. Only even indices are used for later convenience.
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RO = O, R2 - 1, R21 = S2j_2 +(_1)nR2j_4 for] > 2,
* %

So=2, $,=1, 8, =Ry, +(-1)"S,,., forj=2. (++)

Of course, this gives two sequences of polynomials, one sequence for odd », the other for # even.

Let R} ; designate the sequence when 7 is even and R ; designate the sequence when 7 is odd.

Lemma 1:

() The polynomials R,; and S,; only include even degree terms.

(i) deg(R, j—2) =2j-2, deg(S, j——Z) =2j-2,

(i) deg(Ry;) =2j-2, deg(S,;) =2/

(iv) The polynomial Ry ; has positive coefficients and R ; 1s identical except that every other even
degree coefficient, beginning with the second highest, is the opposite of the corresponding

coefficient of Ry,

(v) The polynomial S; ; has positive coefficients and Sa ; 1s identical except that every other even
degree coefficient, beginning with the second highest, is the opposite of the corresponding
coefficient of S '

Proof: (i) This is true for j = 0 and j = 1 and is preserved by the recursive definitions in
(ii) and (iii) These are true for j = 0, 1. [Notice that deg(X,) =—2 is an acceptable
convention since R, = 0=0b"2.] Checking the induction step for the four cases is direct:

deg(Ry;,,) = deg(S,; + (D" Ry;_,) =max(2/,2j-2) =2},

deg(Sy;1,) = deg(5b2R4j +(=D)"S8y;p)=max(2+2j-2,2j-2) =2},

deg(Ry;.4) = deg(Syun + (- Ry ;) =max(2/,2) _2) =27,

deg(Sy;4q) = deg(5b” Ry, +(=1)"S,;) = max(2+2,2j) = 2j+2.
Notice that in each case the highest-order term does not involve (—1)" so that the highest coeffi-
cients are positive and there is no possibility of cancellation.

(iv) and (v) First we claim that R,; and S,; are homogeneous in the expressions b*
and (-1)". The claim is true when j = 0 and j = 1. By parts (i) and (iii) deg(R,,) = deg(S,,_,)
and deg(S,,) =2 +deg(R,;_,), thus, this homogeneity is preserved by the recursive definitions in
(*%); hence, the claim is true. As noted above, the highest terms of R,; and §S,; do not involve
any powers of (—1)"; by the claim, each term with lower powers of 5% will have complementary

powers of (—1)"; hence, the alternation of signs when nis odd. O

As an example, S;, =2(=1)*" +45(=1)*"b* +150(~1)"b* +125b° has degree 6 and S}, =2+
45b% —150b* +125b°. Table 1 contains the first few R{ ;and Sfj polynomials.
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Lemma 2: For j>1,
() RyjirSyyn—RopSyy = (D7,
() Ry 28550 — RS, = —(-DYm,
Proof: We prove (i) and (ii) simultaneously by induction. When j = 1, RS, - R,S, =

1-:2-1-1 = (-1)"" and R,S,-R,S, =0-8,-1-1=—(-1)*". Assuming (i) and (ii) hold for j, we
see:

Ry 11482 = RajinSajua = (Spjaa + (C1)"' Ry )y = (S5 + (1) Ry ;)5 42, by def.
= (“l)n (RZjSZj - R21-2521+2) = (—l)jn

using the induction hypothesis about part (ii). This completes the induction step of part (i). The
induction step for part (ii) can be handled in a similar manner. O

TABLE 1. The Polynomials R} ; and S; ; for Small j

Ry =0=0b"" s0=2

R =1 8! =1

R} =1 Sy =2+5b"

R? =3+5b" 83 =1+5b*

R =2+5b* +25b* S =2+20b% +25b*

RY, =5+25b% = 5(1+5b* +5b*) 8% =1+15b% +25b*

R, =3+20b” +25b" = (1+ 5b*)(3+5b%) S0 =2+45b% +1506* +1256° = (2 + 5b>)(1+ 205 +25b*)

R}, =7+70b% +125b* +125b° Sy =1+30b% +125b* +125b°

Ry =4+50b% +1506* +125b° = (2 +5b7)(2 +20b” +25b") | S =2 +80b” +5005* +10005° + 6255°

R, =9+150b% +675b" +1125b° + 625b° 8% =1+50b +375b" +875b° + 625b°
=(3+5h*)(3+45b* +150b* +125b°) = (1+5b>)(1+45b* +1506* +125b°)

R, = 5+100b% +525b* +10006° + 6255° 89 =2+1256% +12505" +4375b° +62506° +3125b"°
=5(1+5b% +5b" )1+ 15b% +25b*) =(2+5b*)(1+60b% +475b" +1000b° +625b°)

We are now able to parametrize the a-simplified formulas for the powers of U in terms of
these polynomials.

Theorem 3: For j>1, define the following vector with entries that are polynomials in @ and b
(linear in @) and which includes the parity parameter »:

v(j)= ((— )" +bR,; (—aS2 ;HB((=1)"Ry ;5 +285,; )), b(2a+b)R,;S,; )
The first row of U after being a-simplified is given by v(j).
Proof:
v(1) = ((=1)" +BRy(~aS, +b(S(-1)" R, +25,)), b(2a + H)R;S,)
=((-1)" -ab+26 2ab+5")

as required.
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Assuming this is true for j, we want to show it for j + 1; i.e., we need to show that the a-
simplified form of v(7)U? is v(j +1).
The second component of the a-simplified form of v(j)U? is obtained by multiplying v(j)
times the a-simplified form of the second column of U?:
v(j)-(bQa+b),(=1)" +ab+36?)=b(2a +b)((~1)" +5(=1)"B*R, Ry, + (=1)"R, S, + 5°R, S, )
=b(2a+b)(5b2R2 H(CD"Ry, 5 +5,,)+ (D" R, 58, j_z)

using (-1)V7V" + R, 82 =Ry 408, 5 from Lemma 2(i). Then using the recursive definitions of
R, ., and then S, ,,, we see the above is b(2a+b)R, ,,S5, ., as required.

The first component of the a-simplified form of v(j)U* can be shown to be the first
component of v(j+1) in a straightforward, but more tedious, manner. However, it is convenient
to first simplify the identity required for the first component using the identity obtained above for
the second component. We leave the details for the reader. O

As an example, consider j = 4. By Theorem 3 we see the first row of U® after being a-
simplified is:

(-1 +BRy((2b - a)S, +5b(-1)" R ), b(2a +B)RyS; )
where R, = 3(~1)" +5b%, Ry = 2(=1)" +5b, and Sg = 2(~1)*" +20(~1)"b* +25b* as can be seen

from Table 1 and Lemma 1. Now letting a=F,_, and b= F,, we get

Fypy = 14+ F,(2(-1)" + 5F2 | (2F, = F,)(2+20(-1)" F? + 25F,} )+ SF,(<1)"(3(-1)" + 5F}))
and
Fy, = F,QF,  +F,)(2(-1)" +5F} )2+20(-1)" F} +25F})

In particular, when n =3, we have F; =2 F, =1, so

Fypy = 1+2(=2+20)((4 - 1)(2 - 80+400) — 10(-3 +20)) = 28657
and
F,, = 2(4)(-2+20)(2 — 80+400) = 46368,

which are correct.
Corollary 4: Let j>1. The first row of U*/* after being a-simplified is given by
(-D"a-(-1)"bR, S, +5ab* Ry R, .,

(-D"b+2(- l)anZjSZj + 5b3R2/'R2j+2 )
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Proof: Multiplying out v(j)U and reducing a* by (x) gives

(-D7"a-(-1)"BR,;S,, +5(-1)"ab’R, R, _, +5ab’R, S, ,
()b +2(=1)"BR, S, +5(-1)"B Ry Ry ;_, +55°R, S, ;).
The recursive definition for R;;,, simplifies that into the desired result. [

Notice in particular that the second component depends on b but not on a. Thus, we get a
formula for F(,;.,,, in terms of F, alone. As an example, consider j = 3. Corollary 4 gives the a-
simplified form of the first row of U” as:

(~(-1"BRS; +a((~1)"" +5b*ReRy ), (<) +bRy(2(~1)" S +5b*Ry))
= (-3(-1)*"b-20(-1)*"5* - 25(=1)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>