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RECURSIONS AND PASCAL-TYPE TRIANGLES 

Rudolph M. Najar 
Department of Mathematics, California State University, Fresno, Fresno, CA 93740-0108 

(Submitted October 1991) 

INTRODUCTION 
Triangular arrays of numbers similar to or derived from Pascal's triangle frequently appear in 

the mathematical literature. (See, for example, [3], [5], and [8].) The purpose of this paper is to 
study a generalization of the array in [8]. In section 1, recursion formulas for the row and diag-
onal row sums are derived. In section 2, the determinants of a set of matrices associated with the 
triangular array of [8] are calculated. 

1. GENERAL PROPERTIES OF THE ARRAYS 

Consider a family of triangular arrays of numbers, indexed by the reals. For each a G R , the 
array is a doubly infinite set of numbers d(a; n, k); n, k e Z , such that: 

a. d(a;n,k) = 0, n<0; 
b. d(a; n,k) = 0, k < 0 or k > n; 
c. d(a; 0,0) = a, 
d. d{a\ 1, 0) = d(a; 1,1) = 1; and 
e. d(a;n, k) = d(a;n-2,k-l) + d(a;n-l,k-l) + d(a;n-l, £), n>2. 

The triangular array studied by Wong & Maddocks [8] corresponds to the case a = 1. Their gen-
eral term Mk%r corresponds to the term d(l;k+r,r) here. Tables 1, 2, and 3 contain the initial 
rows for the arrays d(l; n, k), d(0; n, k), and the general array d(a; n, &), respectively. As men-
tioned above, Table 1 appears in [8]. It also appears in [1]. 

TABLE 1. d(l;n9k) 
l 

1 1 
1 3 3 

1 5 5 1 
7 13 7 1 

TABLE 2. d(0;n,k) 
0 

i i 
1 2 1 

1 4 4 1 
1 6 10 6 1 

TABLES. d(a;n,k) 

a 
1 1 

1 2+a 1 
1 4+a 4+a 1 

1 6+a 10+3a 6+a 1 
1 8+a 20+5a 20+5a 8+a 1 

An examination of these arrays reveals that, for n > 2, 
d(a; n, k) = d(0; n, k) + a[d(l; n-2,k- 2)]. 
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RECURSIONS AND PASCAL-TYPE TRIANGLES 

Thus, calculations for any array d(a\ n, k) reduce to calculations on d(0; n, k) and d{\\ n, k). 

Definition 1: For fixed n, we call the sums 

(1) D(a; n) - ^d(a; n, k); and 
k=0 

(2) D*(a;n) = fj(-l)kd(a;n,k) 

the row sums and the alternating row sums, respectively, of the array d(a; n,k). 
It is immediate that, for n > 2, 
a. D(a; n) = D(0; n) + a[D(l; n - 2)]; and 
k D*(a; n) = D*(0; n) + (-a)[Z>*(l; n - 2)]. 

Theorem 1: The sequences {D(l; w)} and {D(0; n)} satisfy: 

(a) Z>(1; 0) = 1; D(l; 1) = 2; and, forw^2,Z)(l;w) = 2Z)(l;7i-l) + £)(l;w-2); 

f0, w odd, n > 0, 
(6j ,D*(1;?0H 

[ ( - iy \ ^ = 2m,w>0; 
(c> £>(0; 0) = 0; Z>(0; 1) = 2; and, for w > 1, £>(0; w) = 2D(0; TI -1) + Z>(0; w - 2); and 

frfj Forw£0,£>*(0;w) = 0. 

Proof of (a): The proof is by induction. Obviously, 

D(l; 0) = 1; D(l; 1) = 2; and Z>(1; 2) = 2D(1; 1) + Z>(1; 0). 
Assume the proposition is true for 2 < n < m. For n = m, 

m m 

D(l;m) = Xtf(l;wi,Jfc) = £ { r f ( l ; ^ ^ 
A;=0 fc=0 

= J r f ( l ;w-2 , J I : - l ) + ] [ { ( / ( l ; w - l , i - l ) + r f ( l ; » i - U ) } . 

The first summation is D(l; m-2). The second summation is 

{d(l;m-\,-l) + d(l;m-l,Q)} + {d(l;m-l,0) + d(l;m-l,l)} 
+ {d(l;m-l,l) + d(l;m-l,2)} + -- + {d(l;m-l,m-2) 
+ d(l;m-l,m-l)} + {d(l;m-l,m-l) + d(l;m-l,m)}. 

Recall that d(l; m - 1 , -1) = J( l ; w - 1 , m) = 0. Regrouping, the summation becomes: 

2£/(l;/if-l,0) + 2£/(l;wi-l,l) + --+2rf(l;wi-l,/ii-2) 
+ 2d(l;m-l,m-l) = 2D(l;m-l). 

Thus, D(l;m) = 2D(l;m-l)+Z)(l ;w-2). 
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The proofs of (b), (c), and (d) are similar. D 
The recursions (a) and (c) identify the sequences {D(\\ri)} and {D(0,n)} as Pell sequences 

[2]. The initial terms of the Z)(l; n) sequences are: 1, 2, 5, 12, 29, 70, 169, ... . This sequence is 
number 552 in Sloane [6]. The D(0; n) sequence starts: 0, 2, 4, 10, 24, 58, ... . The terms are all 
even. Dividing by 2 yields: 0, 1, 2, 5, 12, 29, 70, 169, ..., which is again Sloane's sequence 552. 

Given Definition 1 and Theorem 1, a simple calculation yields 

Corollary 1: The sequences {D(a; n)} and {D*(a; n)} satisfy: 
(a) D(a; 0) = a; D(a; 1) = 2; D(a\ n) = 2D(a; n -1) + D(a; n - 2), n > 2. 

/h\ r w \ f°> ft odd, 
-i) , w = 2/w. 

Definition 2: Sums of the form 

flj d(a;n) = d(a;n,0) + d(a;n-l,l) + d(a;n-2,2) + --, and 

(2) 5* (a;«) = J (a ;« , 0) - d(a; n -1,1) + rf(a; w - 2,2) - t/(a;« - 3,3) + • • •, will be called 
diagonal sums and alternating diagonal sums, respectively, for the array d(a\ n,k). 

Theorem 2: The diagonal sums <9(1; n) and d(0; n) satisfy: 

(a) 3(l;0) = d(l;l) = l; <9(1; 2) = 2; 
and 5(1; w) = 5(1; w-1) + 5(1; w-2) +3(1;H-3); w>3; 

(h) 5(0;0) = 0; 5(0;1) = 1; 5(0; 2) = 2; 
and 5(0; w) = 5(0; n-1) + 5(0; w-2) + 5(0;/?-3); n > 3. 

Proof: (a) Proved in [1] and [8]; (b) Direct calculation. D 

The initial terms of the 5(1; n) sequence are: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, ... . 
This is Sloane's sequence 406 [6]. This sequence appeared in [1], [4], and [7], where it is called 
the Tribonacci sequence. The terms of 5(0; n) are: 0, 1, 2, 3, 6, 11, 20, 37, ...; Sloane's sequence 
296. Both sequences have a three-term recursion; i.e., for both sequences, the recursion is of the 
form s(n) = s(n -1) + s(n - 2) + s(n - 3), n > 3. The difference between the two sequences reqults 
from different initial terms. Sequences with a three-term recurrence have been studied previously, 
e-g-> [4], [7]. The recursion relations for both 5(0; n) and 5(1; n) can be written in matrix form 
[7]. 

Theorem 3: The alternating diagonal sums 5*(1; n) and 5*(0; n) satisfy the relations: 

(a) 3*(1;0) = 5*(1;1) = 1; 5*(1; 2) = 0; and 
5*(1;n) = 5*(1;w-l)-5*(l;«-2)-5*(l;rc-3), w£3. 

(b) 5*(0;0) = 0; 5*(0;1) = 1; 5*(0;2) = 0; and 
5*(0;w) = 5*(a,Ai-l)-5*(0;w-2)-5*(0;/i-3), w>3.-. 
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Corollary 2: The diagonal sums d(a; n9 k) satisfy 
(a) d(a;0) = a; 3(a;l) = l; d(a;2) = 2; 
(b) d(a;n) = d(a',n-l) + d(a;n-2) + d(a;n-3); n>3. 

The alternating diagonal sums ct(a; n) satisfy 

(c) 7(a ;0) = a; ^ ( a ; l ) = l; d*(a;2) = 0; 
(d) cf(a;n) = Gt(a;n-l)-d*(a;n--2)~d*(a;n-3); n>3. 

2. THE ASSOCIATED MATMCES 
Rotate the array d(l; n, k) counterclockwise so that the diagonals become rows and columns 

to produce the following infinite matrix: 

' 1 1 1 1 1 
1 3 5 7 9 

,1 5 13 25 41 
M = 

1 7 25 63 129 
1 9 41 129 321 

The recursion relations for the triangle translate to the following relations for the terms mUj of the 
matrix: 

a. mXj = miX -1, for all z", j ; and 
b. niij = w^ +mt_lJ_l + my_1J? / > 1, j > 1. 

Let Mn be the (w x /?)-submatrix whose rows and columns are the first n rows and n columns of 
M, and \Mn\ the corresponding determinant. 

Theorem 4: For/ i>l , \Mn\=2n(n-l)/\ 

Proof: By induction. For n = 1, the result is immediate. 
For k > 1, the matrix can be changed by elementary row and column operations so that, in 

block form, 

Mk = 
2Mt k-i 

The rest follows. D 

ACKNOWLEDGMENT 
The author wishes to acknowledge the referees comments which substantially improved the 

paper and provided references the author was unfamiliar with. 
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May 10, 1993 
Dear Editor: 

May I inform you that I have just read with interest the paper "On Extended Generalized Stirling Pairs" 
by A. G. Kyriakoussis, which appeared in The Fibonacci Quarterly 31.1 (1993):44-52. I wish to 
mention that Kyriakoussis' ^'EGSP" ("extended generalized Stirling pair") is actually a particular case 
included in the second class of extended "GSN" pairs considered in my paper "Theory and Application 
of Generalized Stirling Number Pairs," J. Math. Res. and Exposition 9 (1989):211-20. His first char-
acterization theorem for "EGSP" is a special case of my Theorem 6 (loc. cit.). In fact, a basic result 
corresponding with his case appeared much earlier in the paper by J. L. Fields & M. E. H. Ismail, 
entitled "Polynomial Expansions," Math. Comp. 29 (1975):894-902. 

Thank you for your attention. 

Yours sincerely, 

L. C. Hsu 

Department of Applied Mathematics 
University of Manitoba 
Winnipeg, Manitoba, Canada R3T 2N2 
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REDUCED AND AUGMENTED AMICABLE PAIRS TO 105 

Walter E* Beck* 
Department of Computer Science, University of Northern Iowa, Cedar Falls, IA 50614-0507 

Rudolph M. Najar 
Department of Mathematics, California State University, Fresno, Fresno, CA 93740-0108 

(Submitted October 1991) 

1. PRELIMINARIES 

A reduced amicable pair is a pair of natural numbers, m and n, such that 

m = o(n)-n-1; n- a{m) -m-1, 

where d is the sum of divisors function. Jerrard and Temperley [4] studied numbers k satisfying 
k = a(k)-k±l which they named almost perfect numbers. Lai and Forbes [5] first studied 
reduced amicable pairs and discovered nine pairs with smaller number < 105. (They coined the 
name "reduced amicable pair.") In an earlier paper [1], we extended the search to pairs with 
smaller number < 106, finding six new pairs. Hagis and Lord [3] extended the list to 107, dis-
covering thirty-one new pairs, including two missed in [1]. The present paper extends the listing 
to 108. The paper [1] included a study of pairs m and n satisfying 

m = a(n) - n +1; n - a(m) -m + 1, 

called augmented amicable pairs and listed all pairs with smaller number less than 106. There 
were nine plus two other pairs both of whose elements exceeded one million. These arose from 
iterating the function s+(n) = o(n)-n + l on integers less than one million. A computer search 
extended the list to all pairs with smaller number less than one hundred million. Table 2 lists the 
pairs with one element less than ten million, except for powers of 2. Powers of 2 are fixed points 
of s+ and are not included here. A complete list of the 84 pairs up to 108 is available from either 
author. The searches were carried out on the CRAY Y-MP at the University of Illinois at 
Urbana-Champaign, on Sun 4 work stations at the University of Northern Iowa, and on NeXT 
and Macintosh Ilci stations at California State University, Fresno. Over half the search was run 
twice, once each at the latter two institutions. 

* The first author was partially supported by National Center for Supercomputing Applications under 
TRA910033N and utilized the CRAY Y-MP system at the National Center for Supercomputing Applications, 
University of Illinois at Urbana-Champaign. 
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2. TABLES OF REDUCED AND AUGMENTED AMICABLE PAIRS 

The tables of reduced and augmented amicable pairs follow. 

TABLE 1. Reduced Amicable Pairs from 107 to 108 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

12146750 = 

12500865 = 

13922100 = 

14371104 = 

22013334 = 

22559060 = 

23379224 = 

23939685 = 

26409320 = 

27735704 = 

28219664 = 

33299000 = 

34093304 = 

37324584 = 

40818855 = 

41137620 = 

49217084 = 

52026920 = 

52601360 = 

61423340 = 

62252000 = 

64045904 = 

66086504 = 

66275384 = 

68337324 = 

72917000= 

76011992= 

77723360 = 

89446860 = 

93993830 = 

94713300 = 

94970204 = 

97797104 = 

5(3).7.11.631; 

3(3).5.13.17.419; 

2(2).3(2).5(2).31.499; 

2(5).3.11.31.439; 

2.3(2).7.17.43.239; 

2(2).5.47.103.233; 

2(3).11.23.11551; 

3(3).5.7(3).11.47; 

2(3).5.7.257.367; 

•2(3).17.109.1871; 

•2(4). 11.109.1471; 

2(3).5(3).7.67.71; 

2(3).97.31.41.479; 

2(3).3(3).11.23.683; 

3.5.7.11.59.599; 

2(2).3.5.17.31.1301; 

2(2).7.47.149.251; 

2(3).5.11.23.53.97; 

2(4).5.7.29.41.79; 

2(2).5.11.23.61.199; 

2(5).5(3).79.197; 

2(4).13.367.839; 

2(3).11.750983; 

= 2(3).7.17.43.1619; 

2(2).3(3).11.23.41.61; 

= 2(3).5(3).13.71.79; 
:2(3).7.179.7583; 

2(5).5.511.13.43.79; 
:2(2).3(2).5.17.29231; 
: 2.5.7.727.1847; 

= 2(2).3(4).5(2).l 1.1063; 

2(2).7.107.31699; 
:2(4).19.23.71.197; 

16247745 = 

12900734 = 

31213899 = 

28206815 = 

37291625 = 

26502315 = 

26525415 = 

31356314 = 

41950359 = 

27862695 = 

32014575 = 

58354119 = 

43321095 = 

80870615 = 

42125144 = 

84854315 = 

52389315 = 

85141719 = 

97389039 = 

88567059 = 

93423519 = 

70112175 = 

69090615 = 

87689415 = 

141649235 

115780599 

87802407 = 

145810719 

197845235 

99735705 = 

240536075 = 

96751395 = 

114332175= 

3(2).5.127.2843 

1.7.11.19.4409 

3(2). 1549.2239 

5.7.13.47.1319 

5(3).7.17.23.109 

3.5.7.83.3041 

3.5.7(2).151.239 

2.11.23.31.1999 

3(3).ll.127.1031 

3(2).5.7.197.449 

3(3).5(2).43.1103 

3(2).29.47.67.71 

3(3).5.223.1439 

5.7.17.199.683 

2(3).23.179.1279 

5.7.13.251.743 

3(3).5.11.35279 

3(3). 13.107.2267 

3.11.17.173599 

2.7(3).17.61.83 

3(2).7.107.13859 

3.5(2).7.83.1609 

3(2).5.11.29.4813 

3.5.11.179.2969 

= 5.7.13.419.743 

= 3(2). 11.47.149.167 

= 3(3)7.11.157.269 

= 3(3).41.107.1231 

= 5.7.17.332513 

= 3(5).5.23.43.83 

= 5(2).13.37.83.241 

3(3).5.13.29.1901 

= 3(3).5(2).107.1583 

Conjecture 0: There are infinitely many reduced (augmented) amicable pairs. 

All pairs found have opposite parity. Since a(n) = m + n±l = a(m), m and n have the same 
parity iff a{n) = a{m) are odd iff odd prime factors in m and n occur only in even powers. Thus, 
we have 
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Conjecture 1: The numbers in a reduced (augmented) amicable pair are of opposite parity. 

For each pair, consider the ratio k of the larger number divided by the smaller. In Table 1 the 
ratios range from 1.0045786 to 2.53962; in Table 2 from 1.0011028 to 2.64749. Thus, 

Conjecture 2: For any p > 0, no matter how small, there exists a reduced (augmented) amicable 
pair such that 1 < k < 1 + /?. 

TABLE 2. Augmented Amicable Pairs to 107 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33, 
34. 
35. 
36. 

6160 = 2(4).5.7.11; 
12220 = 2(2).5.13.47; 
23500 = 2(2).5(3).47; 
68908 = 2(2).7.23.107; 
249424 = 2(4).7.17.131; 
425500 = 2(2).5(3).23.37; 
434784 = 2(5).3.7.647; 
649990 = 2.5.11.19.311; 
660825 = 3(3).5(2). 11.89; 
1017856 = 2(11).7.71; 
1077336 = 2(3).3(2).13.1151; 
1238380 = 2(2).5.11.13.433; 
1252216 = 2(3).7.59.379; 
1568260 = 2(2).5.19.4127; 
1754536 = 2(3).7.17.19.97; 
2166136 = 2(3).7.47.823; 
2362360 = 2(3).5.7.11.13.59; 
2482536 = 2(3).3.7(2).2111; 
2537220 = 2(2).3.5.7(2).863; 
2876445 = 3(3).5.11.13.149; 
3957525 = 3(3).5(2).ll. 13.41; 
4177524 = 2(2).3.13.61.439; 
4287825 = 3(2).5(2). 17.19.59; 
5224660 = 2(2).5.7.67.557; 
5559510 = 2.3.5.11.17.991; 
5641552 = 2(4).7.17.2963; 
5654320 = 2(4).5.7.23.439; 
5917780 = 2(2).5.11.37.727; 
6224890 = 2.5.7.17.5231; 
6274180 = 2(2).5.11.19(2).79; 
6711940 = 2(2).5.17.19.1039; 
7475325 = 3.5(2).ll.13.17.41; 
7626136 = 2(3),7.43.3167; 
7851256 = 2(3).7.19.47.157; 
7920136 = 2(3).7.233.607; 
9026235 = 3(5).5.17.19.23; 

11697 = 3.7.557 
16005 = 3.5.11.97 
28917 = 3(5).7.17 
76245 = 3.5.13.17.23 
339825 = 
570405 = 
871585 = 
697851 = 
678376 = 
1340865 
2067625 
1823925 
1483785 
1899261 
2479065 
2580105 
4895241 
4740505 
5736445 
3171556 
4791916 
6516237 
4416976 
7524525 
9868075 
7589745 
1005896J 
8024877 
7336455 
9087741 
9012861 
8273668 
9100905 

3.5(2).23.197 
2.5.11.3457 
5.11.13.23.53 
3(2).7.11.19.53 
2(3). 19.4463 
= 3(2).5.83.359 
= 5(3).7.17.139 
= 3.5(2).83.293 
= 3(3).5.29.379 
= 3(3).7.13.773 
= 3.5.29.41.139 
= 3.5.11.19.823 
= 3.13.31.4049 
= 5.7(2).11.1759 
= 5.11.13.71.113 
= 2(2). 19.29.1439 
= 2(2).41.61.479 
= 3.7.13.23869 
= 2(4).59.4679 
= 3.5(2).41.2447 
= 5(2).7.17.31.107 
= 3(2).5.227.743 
[ = 3.11.19.61.263 
= 3(2).7(2).31.587 
= 3.5.7.107.653 
= 3(3).13.17.1523 
= 3(2).ll. 13.47.149 
= 2(2). 13.107.1487 
= 3.5.11.19.2903 

10350345 = 3.5.19.23.1579 
9152505 
9843526 

= 3(2).5.23.37.239 
= 2.7.11.41.1559 

1993] 297 



ON INDEPENDENT PYTHAGOREAN NUMBERS 

3. THE UNITARY CASE 

In [2] searches for the unitary analogues of reduced and augmented amicable pairs to 105 

were reported. Except for trivial cases, none were found. The search has been extended to 106 

with no new results. 
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INTRODUCTION 

In a paper of Sypriya Mohanty and S. P. Mohanty (refer to [1]), the notion of an independent 
Pythagorean number is introduced and discussed. Recall that any Pythagorean triple (x, y, z) may 
be represented by 

x = 2uvt, y = t(u2-v2\ z = t(u2+v2) (1) 

where u and v are relatively prime natural numbers of opposite parity, that is, u + v = 1 (mod 2), 
(u,v) = l, u > v, and t some natural number. 

In the same paper, Definition 1 (p. 31) calls the area of a Pythagorean triangle a "Pythagorean 
number." And that of a primitive Pythagorean triangle a " primitive Pythagorean number." Thus, 
a Pythagorean number is a positive integer of the form 

A = -{2uvt)[t(u2 -v2)] = t2uv(u2 - v 2 ) , (2) 

where the natural numbers u and v satisfy the above conditions. 
When the Pythagorean triangle at hand is primitive, i.e., when t = 1, we obtain the general 

form of a primitive Pythagorean number described by 

B = uv(u2-v2). (3) 
The authors define the notion of an independent Pythagorean number and they prove that there 
exist infinitely many primitive Pythagorean numbers that are not independent (Theorem 10, p. 40). 
According to that definition (Definition 2, p. 40), a Pythagorean number is called independent if it 
cannot be obtained from another Pythagorean number by multiplying the latter by t1:, where t is a 
natural number > 1. 

Note that if a Pythagorean number is independent, it must be primitive. The converse, of 
course, is false, as the authors have proved: there exist (infinitely many) primitive Pythagorean 
numbers that are not independent. 

In this paper, we will address Problem 2 in the author's paper. Namely, find sufficient condi-
tions for an integer B to be an independent Pythagorean number. We will find families of primi-
tive Pythagorean numbers that are independent. First, we will state the two theorems of this 
paper, then their proofs. 

Theorem 1: Let u and v be natural numbers such that u + v = 1 (mod2),(u,v) = 1, mdu>v. 
Assume that either 

(a) all four numbers u,v,u- v, and u + v are squarefree (the case v = 1 included), or 

(b) the three integers u- v, u + v, and —• are all squarefree and —- odd (the case v = 1 included). 

Then the primitive Pythagorean number uv(u2 - v2) is independent. 
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Theorem 2: Let p > 3 be a prime and v > 1, w > 3 be odd squarefree natural numbers (the case 
v = 1 included) both of whose (distinct) prime divisors are all congruent to 1 mod p. Let n be a 
positive integer and r an odd prime distinct from p and the prime divisors of w. Assume that 
(u, v) - 1, where u - 2n • r • 2w. Furthermore, suppose that # - v is a squarefree integer such that 
each of its prime divisors is congruent to 1 modp and that u + v is a squarefree integer containing 
exactly one prime divisor q # 1 (mod /?), while the rest of its prime divisors, if any, are all 
congruent to 1 modulo p. Assume that n = 1 or n = 2. 

Then the primitive Pythagorean number uv(u2 - v2) is independent. 

Proof of Theorem 1: Suppose that 

uv(u2-v2) = t2.b (4) 

where b is a Pythagorean number and t some positive integer. Since b is a Pythagorean number, 
according to (2), b must be of the form 

b = T2-U-V(U2-V2), (5) 

for some positive integers T, [/and Vwhere 

t />F,17 + F = l(mod2) and (U,V) = 1. (6) 

Substituting for b in (4), we obtain 

uv(u2 -v2) = t2 -T2 U V (U2 -V2) or 
(7) 

uv(u-v)(u + v) = t2-T2UV(U2-V2). 
If hypothesis (a) is satisfied, then the product uv(u - v)(u + v) must be a squarefree integer, 

since each of the numbers uv, u- v, and u + v is squarefree, and these three integers are mutually 
coprime in view of (u, v) = l and u + v = 1 (mod 2). Then (7) clearly implies t2T2 = 1 => tT = 1 => 
f = r = i. 

If hypothesis (b) is satisfied, 4 must exactly divide the left-hand side of (7). Since uv = 0 and 
w ± v == 1 (mod 2), *2T2 must be odd and uv = 0 (mod 4). Dividing (7) by 4, we obtain 

^ . ( M - v ) ( M + v) = , 2 r 2 . ^ . ( C / 2 - F 2 ) (8) 
4 4 

Since the left-hand side of (8) is an odd squarefree integer, we have t2T2 = l=>tT= 1=> 
t = T = 1. Hence, uv(u2 - v2) is an independent Pythagorean number. 

Proof of Theorem 2: Evidently, according to the hypothesis, the Pythagorean number 
uv{u2 - v 2 ) must be of the form 

uv(u2 -v2) = uv(u-v)(u + v) = 2" -q-r2 -px -•-pm,, 

where all the odd primes qj,P\,'-,pm are distinct and px = • • • = pm = 1 (mod p). Suppose that 
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2n.q.r2.Pl...pm=t2ab(a-b)(a + h), (9) 

where the positive integers a and b have opposite parity, (a, b) = 1, and a > b. Assume that a is 

odd and b even (the case a even and b odd is treated in exactly the same way). We set b - 2k -B, 
B odd, and t = 2§ T in (9) to obtain 

2n -q-r2 •pl.-.pm = T2 -228+k -a-B(a-2k -B){a + 2k -B), (10) 
which gives 

4-r2 - A - Pm = T2 -a-B(a-2k -B)(a + 2k .£), (11) 

since we must have 25 4- k = n; with 1 < k < n, 5 > 0, and T odd. 
First, we will prove that (11) cannot be satisfied for T odd and T > 1. Let us assume to the 

contrary that (11) is satisfied for some T> 1 and T odd. In view of the fact that the left-hand side 
of (11) represents the unique factorization of the right-hand side of (11) into powers of distinct 
primes and because r2 is the only square of a prime, it is rather obvious that we must have T= r; 
hence, (11) implies 

q°pl'-pm=a-B(a-2k-B)(a + 2k>B). (12) 

Since pl^--~pm = l (mod/?), (12) clearly shows that \£q\aB, then a-2kB = 1 and a + 2kB = 1 
(mod/?); so 2a = 2 and 2k+lB = 0 (modp); therefore if q\aB, 

a = l and 5 = 0 (mod/?), (13) 

which is a contradiction, since/? as a divisor of 5 would divide the left-hand side of (12), con-
trary to the fact that/? is distinct from q, Pi,--,pm. Next, suppose that q\(a-2k -B) or that 
q\(a + 2k -B). Equation (12) clearly implies in such a case, a = B = l (mod /?). Also if 
q\a-2k°B^ we must have a-2k-B = q (mod/?); and since a = 1 (mod/?), we end up with 
2 = # + l (mod/?) => ^ = 1 (mod/?), contradicting the hypothesis again [note that a-2kB = q 
and a + 2k B = 1 (mod p) or vice versa]. 

Hence, we conclude that (11) is not possible with T> 1. Consequently, T = 1; thus, from 
t = 2d-T,w® obtain f = 25. We will show that 5 = 0. According to the hypothesis, n = 1 or 2. If 
w = 1, then, from 25 + k = w and £ > 1, we immediately obtain 5 = 0. For « = 2, again we must 
have 5 = 0, in view of 25 + k = n and k>\. Therefore, 5 = 0, and since we also have T = 1, it 
follows that t-2 T^=>t = 1. The proof is complete. 
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1. INTRODUCTION 
In [4], among other things, the connection between specially multiplicative functions and 

generalized Fibonacci sequences is discussed. In this paper we shall discuss the similar connec-
tion that exists between rational arithmetic functions of order (2, 1) (to be defined in section 2) 
and generalized Fibonacci sequences. The generalized Fibonacci sequence studied in this paper is 
the sequence {wn(a, b\ c, d)} or, briefly, {wn} of complex numbers, which is defined by 

w0 =a9wx = b, wn = cwn_x - dwn_2 (n > 2). 

This sequence has been extensively studied by Horadam (e.g., [2]). 
Section 2 motivates the study of rational arithmetic functions of order (2, 1), while section 3 

considers the main theme of this paper, namely, the connection between rational arithmetic func-
tions of order (2, 1) and the sequence {w.n}. Arising from this connection, identities are presented 
involving the sequences {wn} and {un}, where un = un(c, d) = wn(l, c\ c, d). The sequence {un} 
is particularly important as indicated in [4]. Finally, in section 4, an identity for rational arithmetic 
functions of order (2, 1) is proven with the aid of the identities of section 3. 

For general background on arithmetic functions, reference is made to the books by Paul 
McCarthy [3] and Sivaramakrishnan [6]. The basic concepts used in this paper are reviewed here. 

An arithmetic function/is said to be multiplicative if / ( I ) = 1 and/(m«) = f(m)f(n) when-
ever (m, n) = 1. If / ( l ) = 1 and/(m7i) = f(m)f(ri) for all m and /?, then/is said to be completely 
multiplicative. An arithmetic function/is said to be quasi-multiplicative if / ( 1 ) ^ 0 and there 
exists a complex number q such that qf(rnn) = f(m)f(ri) whenever (m, ri) = 1. It follows imme-
diately that q - / ( I ) . If / ( I ) * 0 and f(l)f(mn) = f(m)f(n) for all m and w, then/is said to 
be a completely quasi-multiplicative function. It is clear that each (completely) multiplicative 
function is (completely) quasi-multiplicative. 

For a prime number /?, the generating series of a multiplicative arithmetic function / to the 
base/? is defined by 

fP(x)=if(pn)xn 

(see [7]). Each multiplicative function is completely determined by its generating series (at all 
primes/?). It is easy to see that generating series can also be used in the context of quasi-multipli-
cative functions. 

The Dirichlet convolution f*g of two arithmetic functions/and g is defined by 

(f*g)(r>) = Tf(d)g(n/d). 
d\n 

It is clear that, for all primes/?, (f*g)p(x) - fp(x)gp(x), when/and g are multiplicative. 
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2. DEFINITION 
The arithmetic function J3 introduced by S. S. Pillai [5] is given by 

/?(«) = £ (M), 
k=l 

where (£, n) is the greatest common divisor of A; and n. The structure of j3 is 

p = I*I*e~l = I*I*ii9 (1) 

where I(n) = ?2, e(/?) = 1 (n > 1), and \i is the classical Mobius function (see [6, p. 8])„ The arith-
metic function p is an example of a rational arithmetic function of order (2, 1) in the terminology 
of Vaidynathaswamy [7], who called a multiplicative arithmetic function/a rational arithmetic 
function of order (r, s) if there exist nonnegative integers r, s and completely multiplicative func-
tions gu ...,gr, hl9...,hs such that 

f = gi*'~*gr*fhl*'~*Kl-
Conventionally, the identity function e0 is a rational arithmetic function of order (0, 0), where 
e0(l) = 1 and e0(n) = 0 for n > 1. 

By(l), 

Zi8(£/) = (/*/)(/!) = /IT(/I), 
d\n 

where T(W) is the number of positive divisors of n. The function nz(n) is a quadratic function 
[7], that is, a rational arithmetic function of order (2, 0). A quadratic function is also called a 
specially multiplicative function in the literature (see, e.g., [4]). If g is specially multiplicative and 
g = gi*gi> t h e n 

g(m)g(n)= £ gOw/i/^Xg^Xrf) (2) 
d\{m,n) 

for all m and n, or, equivalently, 

g(mn)= E ^(w/rf)^/^)M(^)fe^2)(^) (3) 
<i|(w,«) 

for all m and /? (see, e.g., [3, Th. 1.12]). Section 3 includes generalizations of these identities in 
terms of the sequences {wn} and {un}. 

A specially multiplicative function also satisfies 

g(™)(gig2)(n) ^gin/dMmndMd) 
d\n 

for all m and n (see [1, Prob. 4, p. 139]). Examination of whether a similar identity holds for /3 
shows that 

P(m)n = ]T T(« / d)P{mnd)ji{d) I d 
d\n 

for all JH and w. Section 4 shows that a similar identity holds for all rational arithmetic functions 
of order (2, 1). 
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3, CONNECTIONS WITH GENERALIZED FIBONACCI SEQUENCES 

Let g be a specially multiplicative function given by g = gi*g2, where gx and^2 are com-
pletely multiplicative functions, and let A be a completely quasi-multiplicative function. Let /be 
defined by / = g*h~l. Then flfil) is a rational arithmetic function of order (2, 1). Note that 
1 / / ( l ) = h(l). The generating series off and g to the base/? are 

i KP) 
f (x) ftO) W? and g (x)= i 

P ' l-g(p)x + (gig2)(p)x2' P l-g(p)x + (gig2)(p)x2 

The generating series of the sequences {w„} and {un} are 

„ a + (b- ca)x J . / \ _ v « _ * v(x) = 2*wnx = , y 2 > and ti(x)s 2,i/wx = - —T. 
rS 1-cx + A r^ l-cx + ax n=Q l ~ v x I" "-*" «=0 

Thus, for each arithmetic function / given by / = g*h l, where g is a specially multiplicative 
function and A is a completely quasi-multiplicative function, we have 

{/(/>")} = K ( / O X / ( / > ) ; *(/>), (glg2)(P))}, and {*(/>")} = {*/„(#(/?), (glg2)(j>))}. 

Example 1: For all primes/?, 

{p(p")} = {wn(\,2p-l;2p,p2)}, and {(]8*e)(p")} = {«„(2/>,/>2)}. 

Conversely, for each sequence {wn} with a ^ C, we have 

K ( a , A; c, </)} = {/(/>")}, and K ( c , </)} - {#(//•)}, 

where / = g*h~l, g being the specially multiplicative function given by g(p) = c, (gig2)(p) = ^ , 
and /* being the completely quasi-multiplicative function given by /i(l) = 1 /a, h(p) = c/a-h/a2. 
Namely, the above generating series gives 1 /h(l) = a,-h(p)Ih{\)2 -b-ca. 

Example 2: For all primes/?, 

K ( 2 , 1 ; 1, -1)} = {4} = {f(pn)l and K ( l , -1)} = {Fn+l} = {g(p")}, 

where h(l) = y2,h(p) = %9g(p) = 1, (glg2)(p) = - 1 , and Fn,Ln are the Fibonacci and Lucas 
numbers, respectively. 

Using the connection that wn - (gi*g2*h~l)(pn) and un = (gi*g2)(pn) it can be proved by 
some calculations that 

Wm+n = UmWn ~ Um-lWn-ld 0 > n > 1), (4) 
and 

UmWn = X Wm+n-2idi K n > !)• (5) 
i<m, n 

These identities may be considered as generalizations of the classical identities (2) and (3) for 
specially multiplicative functions. 
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There also exist identities that involve generalized Ramanujan sums in identities for specially 
multiplicative functions (see [6, Th. 124]). The following analogous identities are proposed for 
the sequences {wn} and {un}: Let {az} be a sequence of complex numbers, and k, q nonnegative 
integers. Let {jin} be the sequence given by /i0 = 1, /xx = - 1 , jin = 0 (n > 2). Then we have 

Z dium-iWn-i Z aA~J = X M'*W-2/ > (6) 
i<m, n j<i i<m, n 

jk<q ik<q 

YaWm+n-2idi Z « ; = H ^ ^ m - i ^ n - i • ( 7 ) 
i<m, n j<i i<m, n 

jk<q ik<q 

Note that with q = 0 and ocQ = l, (6) and (7) reduce to (4) and (5), respectively. 

4. AN IDENTITY 
This section presents the identity for rational arithmetic functions of order (2, 1) mentioned at 

the end of section 2. Let/be a rational arithmetic function of order (2, 1) given by 

f = g*h-l = gl*g2*h-1, 

where gx, g2, and h are completely multiplicative functions. Use is made of the identity (4) 
written in terms off: For all primes p and positive integers r and s, 

f{pr+s) = g(pr)f(ps) - g(?-1)f(p'-1)te1g2)(p)- (8) 

Theorem.: Iff is a rational arithmetic function of order (2, 1), then 

f{m){glg2){n) = Y,g(n/d)f(mndMd) (9) 
d\n 

for all m and n. 

Proof: By multiplicativity, it suffices to consider the case in which m and n are prime 
powers, say, m- pa\n -pb. Ifb = 0, both sides of (9) reduce to f{pa). If a - 0, h - 1, then (9) 
is obtained by (8) with r - s-\. Assume that a = 0,b>l, then the right-hand side of (9) is 

g(pb)f(pb)-g{pb-x)f(pb+ly 
By (8), this can be written as 

^ 6 ) [ ^ 6 _ 1 ) / ( / ' ) - ^ f e " 2 x ^ 2 ) ^ ) ] - ^ / " 1 ) ^ ( / ) / ( / ' ) - ^ ( / " 1 x ^ 2 ) ^ 
or, after simplification, 

(g&mig'iP^-giP^gip')}-
It can be verified that 

g2(pb-l)-g(pb~2)g(pb) = (glg2)(pb-1) 
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(see [6, Lemma, p. 287]). Since gxg2 is completely multiplicative, the left-hand side of (9) is 
arrived at. The case a, b > 0 could be considered in a similar way. The details are not included 
here. 

Remark: Identity (9) in terms of the sequences {wn} and {un} is: 

w„d = u„wm+n-un_lwm+n+l (m>0,n>l). 
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1. INTRODUCTION 

Several definitions of Fibonacci and Lucas numbers with real subscript are available in liter-
ature. In general, these definitions give complex quantities when the subscript is not an integer 
[1], P ] , [8], [9]. 

In this paper we face, from a rather general point of view, the problem of defining numbers 
Fx and Lx which are real when subscript x is real. In this kind of definition, the minimum require-
ment is, obviously, that Fx and Lx and the usual Fibonacci numbers Fn and Lucas numbers Ln 

coincide when x = n is an integer. Further, for all x, the fulfillment of some of the main properties 
possessed by Fn and Ln is desirable. Some of these definitions have already been given by other 
authors (e.g., [6], [10]). 

Here, after a brief discussion on some general aspects of these definitions, we propose two 
distinct expressions for both Fx and Lx and study some of their properties. More precisely, in 
Section 2 we give an exponential representation for Fx andZ,x, whereas in Section 3 we give a 
polynomial representation for these numbers. In spite of the fact that the numbers defined in the 
above said ways coincide only when x is an integer, they are denoted by the same symbol. Never-
theless, there is no danger of confusion since each definition applies only to the proper section. 

We confine ourselves to consider only nonnegative values of the subscript, so that in all the 
statements involving numbers of the form Fx_y and Lx_y it is understood that y<x. The follow-
ing notation is used throughout the paper: 

A(x), the greatest integer not exceeding x, 
jU(x), the smallest integer not less than x. 

2. EXPONENTIAL REPRESENTATION OF Fx AND Lx 

Keeping in mind the Binet forms for Fn andZ„ leads, quite naturally to consideration of 
expressions of the following types: 

Fx=[ax-f(x)a-'yj5 (2.1) 
and 

Lx=ax+f(x)a-x
9 (2.2) 

where a = (1 + V5)/2 is the positive root of the equation z2 -z-1 = 0, and/(x) is a function of 
the real variable x such that 

f(n) = ( - I f for all integers n. (2.3) 
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It is plain that the numbers Fx andZ^ defined by (2.1)-(2.3) and the usual Fibonacci numbers Fn 

and Lucas numbers Ln coincide whenever x = n is an integer. 
If we require that Fx andix enjoy some of the properties of Fn mdLn, we must require that 

fix) has some additional properties beyond that stated in (2.3). 

Theorem 1: Jf, for all x, 

then the fundamental relations 

and 

/ ( x + l) = - / ( * ) (2.4) 

K+2=Fx+i+Fx (2-5) 

Lx+2 = Lx+l+Lx (2.6) 
are satisfied. 

Proof: By (2.2) and (2.4), we can write 

Lx+l+Lx = ax+l+f(x + l)a-x-l+ax+f(x)a-x 

= ax+1 + ax+f(x)(a~x - a^'1). 

Since a2 = a +1 and a~2 = 1 - a~\ we have ax+l + ax = ax+2 and a~x - a~x~l = <x~x~2. 
Thus, 

Lx+l + LX = ax+2 +f(x)a-x~2 +f(x + 2)a~x-2 = Lx+2. Q.E.D. 

Theorem 2: If, for a particular x, 
f2(x) = f(2x), (2.7) 

then the identity 
FXLX = F2x (2.8) 

is satisfied. 

Proof: By (2.1) and (2.2), after some simple manipulations, we get 

FxLx=[a2x-f\x)a-2x]/j5. Q.E.D. 

Theorem 3: If the condition (2.4) is satisfied for all x, then the identity 
Lx=Fx_1+Fx+l (2.9) 

holds. 

The proof of Theorem 3 is analogous to that of Theorem 1 and is omitted for brevity. 

Parker [10] used the function 
f(x) = cos(7ix) (2.10) 

to obtain real Fibonacci and Lucas numbers with real subscripts. The function (2.10) satisfies 
(2.3) and (2.4) but does not satisfy (2.7). Other circular functions (or functions of circular func-
tions) might be used &sf(x). For example, f(x) = COS^TCX) and/(x) = co^lk{7tx) (k an odd inte-
ger) satisfy the above properties as well. Further functions might be considered. For example, 
the function 
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fix) = [a2 - sin2 (TDC)]1/2 -a + cosset) [a > 1), 
which describes the piston stroke as a function of the crank angle itx and the ratio a of the rod 
length to the crank radius, satisfies (2.3) but does not satisfy (2.4). 

In my opinion, the simplest function^) satisfying (2.3) and (2.4) is the function 

/ ( * ) = (-l)*(x) 

which leads to the definitions 

Fx=[ax-{-\)X{x)a-x]lS 

(2.12) 

(2.13) 
and 

Lx=ax + (-l) ̂ X^a~x (2.14) 

Observe that (2.12) can be viewed as a particular function of circular functions. In fact, this 
function and the special Fourier series 

/ ( x ) = l y s i n [ ( 2 * + l)TO] 
% k=0 2k + l 

(2.12) 

coincide, except for the integral values of x. 
As an illustration, the behavior of Fx vs x is shown in Figure 1 for 0 < x < 10. 

FIGURE 1. Behavior of Fx vs x for 0 < x < 10 

The discontinuities (observable for small values of x) connected with the integral values of x are 
obviously due to the greatest integer function inherent in the definition (2.13). 

The numbers Fx andZx defined by (2.13) and (2.14), respectively, enjoy several properties of 
the usual Fibonacci and Lucas numbers. For example, the following two propositions can be 
stated. 

Proposition 1: 5F2 =L2
x-4(-l)X(x). 

Proposition 2 (Simson formula analog): Fx_tFx+l -F2 - (-1) ( x \ 
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For the sake of brevity, we shall prove only Proposition 2. 

Proof of Proposition 2: From (2.13), we can write 

^-i^c+i - Fl = [<*2x ~ (-l)Hx+l)a~2 - (-ifi^a2 +(-l)Xix-l)+X(x+1)a~2x 

-a2x-a-2x+2(-\f{x)]l5 
= [-{-\)X{x)+la-2 -{-\)l{xyia2 +(-l)2X(x)oc-2x-oc-2x +2(-l)*(x )]/5 
= [(-l)X(x)(oc2+oc~2) + 2(-l)Hx)]/5 
= (-1)A(X)(Z2 +2)/5 = (-l)*(x). Q.E.D. 

Let us conclude this section by offering the sums of some finite series involving the numbers 
Fx andZx. These are 

n 

£a -*x+k ~ -ln+x+2 ~ *x+l> ( 2 . 1 5 ) 
Jfc=0 

where T stands for both F and Z, and 

i x . = i + f t , / ~-FiT+2VH {n>-2)> (216) 

±h,n = S~kn-yn in>-2). (2.17) 
k=l Llln L 

The proofs of (2.15)-(2.17) can be obtained from (2.13) and (2.14) with the aid of the geometric 
series formula. They are left to the interested reader. 

3. POLYNOMIAL REPRESENTATION OF Fx AND Lx 

Let us recall the well-known formula 

"•-it)'1) 
where [/is a suitable integral function of n, which gives the nth Fibonacci number. It is also well 
known (see, e.g., [5, p. 48]) that the binomial coefficient defined as 

0 J = \ [kj = ~f\ (k>lm integer) (3.2) 

makes sense also if a is any real quantity. 
In light of (3.2), some conditions must be imposed on the upper range indicator, U, for (3.1) 

to be efficient. In my opinion, the usual choice [/ = oo (see, e.g., [13, (54)]) is not correct. For 
example, for n = 5 and U = oo, we have the infinite series 
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= 1 + 3 + 1 + 0 + 0 - 1 + 7 - 3 6 + 1 6 5 -••• 

the sum of which is clearly different from 5. It can be readily proved that formula (3.1) works 
correctly if the following inequalities are satisfied 

X[(n-l)/2]<U<n-l (3.3) 

On the basis of (3.2) and (3.3), a polynomial representation of Fx can be obtained by simply 
replacing n by x in (3.1). Following the choice of Schroeder [12, p. 68] (i.e., U - X[(n-1) /2]), 
we define the numbers Fx as 

y=o V J J 

Observe that, under the convention that a sum vanishes when the upper range indicator is smaller 
than the lower one and taking into account that A(-x) = -/i(x), expression (3.4) allows us to 
obtain F0 = 0. 

Other choices of U are possible, within the interval (3.3). In a recent paper [1] Andre-
Jeannin considered the numbers G(x) (x > 0) obtained by replacing n by x and Uby m(x) in (3.1), 
m(x) being the integer defined by x12-1 <m(x) <x/2. It is readily seen that m(x) = /i(x12-1), 
and m(x) = A[(x -1) / 2] when x is an integer. Moreover, we can see that Fx and G(x) coincide 
for 2h-l<x<2h (h = 1, 2, ...), and both of them give the usual Fibonacci numbers Fn when 
x = n is an integer. 

As an illustration, we give the value of Fx for 0 < x < 9. 

Fx=0, fo r0<x<l , 
Fx = 1, for 1 < x < 3, 
Fx = x-l, for 3 < x<5, 
F x = ( x 2 - 5 x + 10)/2, for5<x<7, 
Fx - (x3 - 12x2 +59x-90)/6, for 7 < x < 9. 

The behavior of Fx vs x for 0 < x < 9 is shown in Figure 2 below. 

Replacing n by x in [4, (1.3)-(1.4)] leads to an analogous polynomial representation of Lx: 

Observe that, for x = 0, this definition gives the indeterminate form 0/0. So, LQ-2 cannot be 
defined by (3.5). As an illustration, we show the values of Lx for 0 < x < 8. 

Lx = l9 for 0 < x < 2, 
Lx=x + 1, for 2 < x < 4, 
Lx = ( x 2 - x + 2)/2, for4<x<6, 
Lx =(x3-6x2+17x + 6)/6, for6<x<8. 
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feT 

FIGURE 2. Behavior of Fx vs x for 0 < x < 9 

Also the numbers Fx andZx defined by (3.4) and (3.5), respectively, enjoy several properties 
of the usual Fibonacci and Lucas numbers. Sometimes these properties hold for all x, but, in most 
cases, their validity depends on the parity of A(x). We shall give an example for each case. The 
proof of the latter is omitted for brevity. 

Proposition 3: Fx_l+Fx¥l = Lx. 

Proof: From (3.5), the binomial identity available in [11, p. 64], and (3.4), we can write 

X(x/2) 

y=o L 
xmx-j-~iJ 

l(xl2), . -

• X+l 

A,(JC/2)-1 

;=0 y=-i 

x-2-j 

By virtue of the assumption [5, p. 48], 

\ \ \ = 0 (k > 1 an integer), 

by using the equality 
A(x/2) - l = A[(x-2)/2], 

and definition (3.4), the previous expression becomes 

X[{x-2)l2]t 

(3.6) 

(3.7) 

y=o \ J J 
Proposition 4: 

Fr+R x+l 

• x+2> 

~ Jx-X{xl2)-l Px+2 I A(x/2) + l 

if A(x) is even, 

if A(x) is odd. 

Let us conclude this section by considering a special case [namely, n = (2k +1) / 2] of the 
well-known identity FnLn - Fln. The numerical evidence shows that 

F(2k+l)/2L(2k+l)/2 ~ Fik+l SW- (3.8) 
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The values of g(k) for the first few values of k are shown below: 

g(0) = l g(4) = 2.9375 
£(1)=1 #(5) =3.734375 
g(2) = \5 g(6) = 6.4921875 
g(3) = 1.75 g(7) = 8.57421875. 

I was able to find neither a closed form expression nor sufficiently narrow bounds for g{k). Estab-
lishing an expression for this quantity is closely related to the problem of expressing Fx andZx as 
functions of Fx^ and L^, respectively (x = k + 1/2 in the above case). This seems to be a chal-
lenging problem the solution of which would allow us to find many more identities involving the 
numbers Fx and Lx. Any contribution of the readers on this topic will be deeply appreciated. 

4. CONCLUDING REMARKS 

In this paper we have proposed an exponential representation and a polynomial representa-
tion for Fibonacci numbers Fx and Lucas numbers Lx that are real if x is real. Some of their 
properties have also been exhibited. 

As for the polynomial representation, we point out that other sums, beyond (3.1) and [4, 
(1.3)-(1.4)] [see (3.5)], give the Fibonacci and Lucas numbers. These sums can be used to obtain 
further polynomial representations for Fx and Lx. For example, if we replace n by x in the expres-
sion for Fibonacci numbers available in [2], we have 

*-XH)W-':W (41) 
Observe that (4.1) and (3.4) coincide for 0 < x < 5. Getting the polynomials in x given by (4.1) 
for higher values of x, requires a lot of tedious calculations. As an illustration, we give the value 
ofFxforO<x<8. 

Fx = 0, for 0 < x < 1, 
Fx = 1, for 1 < x < 3, 
Fx = x-l, for 3 < x<5, 
Fx = (-x4 + 10x3 -23x2 + 14x)/24, for 5 < x < 6, 
i7c=(-x5+15x4-85x3+285x2-454x + 120)/120, fo r6<x<7 , 
F x = ( - x 5 + 15x4-65x3+105x2-54x-120)/120, fo r7<x<8. 

Plotting these values shows clearly that definition (4.1) is rather unsatisfactory if compared with 
definition (3.4). We reported definition (4.1) here for the sake of completeness and because it 
might be interesting per se. 
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Formulas for determining the Fibonacci numbers Fln and F2n_l in terms of Fn and Fn_l are 
well known as are some higher reduction formulas. For example, formulas for F3n and F3n_l are 
assigned as homework in Alfred [1], and in Chapter 17 of Dickson [3] there is a formula for Fpn 

whenp is odd. This note describes a technique for constructing "simplified" formulas for Fin and 
Fin_x in terms of Fn a n d i ^ . Two families of recursively defined polynomials can be used to 
parametrize these formulas. This parametrization can be applied to the study of the period of the 
Fibonacci sequence modulo m. These periods have been the subject of considerable study; see 
[4], [6], and [7] as well as [2] which contains generalizations to continued fractions. The period 
of the Fibonacci sequence modulo m is often close to the modulus in size, but Ehrlich [4] showed 
that the period of the Fibonacci sequence was surprisingly small for Fibonacci moduli and many 
other small periods do appear. His work utilized the reduction formulas for F2n and F2n_v We 
can generalize this result using the simplified reduction formulas for Fin and Fin_x for each even 
multiplier i. 

INTRODUCTION 

It is well known that the Fibonacci numbers can be computed by taking powers of a matrix. 
Namely, if 

T = (3 3K? 0-""ft I) 
Consider the matrix U, given below, that captures the symmetry of Tn and the fact that the (2, 2)-
entry is sum of the entries in the first row. Its powers, U\ can be used to get information about 
Tm. In particular, when a = Fn_{ and b = Fn, the first row gives reduction formulas for Fin_x and 
Fin in terms of Fn_x and Fn 

U = 
\ 

b a + b 
,U2 

u3 = 

fa2+b2 2ab+b2 ^ 
2ab+b2 a2 + lab + 2b2 

a3 + 3ab2+h3 3a2b + 3ab2+2b3 

3a2b + 3a*2 + 2b3 a3 + 3a2* + 6ab2 + 3b3 

The first row of U2 gives the reduction formulas: 

r2n-l - rn-\ ^ rn > r2n ~ jLrn-lrn ^ rn • 

Those equations and simple variations are well known. The first row of U3 gives additional, less 
well known reduction formulas: 
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F3n-\ = Fn-l + 3F
n-lFn> F3n = 3Fn-\Fn + 3Fn-lFn +2Fn • 

Higher reduction formulas can be produced by computing higher powers of U. It is easy to see 
that the entries in U1 are homogeneous polynomials of degree i in the variables a and b. Many 
other formulas for Fin and Fin_x in terms of Fn and Fn_x are possible since 

Fli = Ft-Fn-xFn +(-1)". 
In particular, consider simplifying the polynomials in U2 and U3 by the corresponding relation 

a2=b2-ab + (-l)n. (*) 
(One can think of this as a simplification that introduces a new formal parameter n, or as two 
separate simplifications, depending on whether n is even or odd.) The relation can be applied to 
a1 for all /' > 2. The result can be simplified again and the process repeated until the variable a 
appears only linearly. We say that a polynomial that has been simplified in this way is a-simpli-
fied. For example, the a-simplified form of the first row of U2 is 

((-l)"-ab + 2b2, 2ab + b2). 

The a-simplified form of the first row of U3 is 

((-l)na-(-l)"b + 5ab2, 3(-l)"h + 5b3). 

These give other reduction formulas for Fibonacci numbers: 

F2n-l=(-iy+F„(2F„-F„_l), F2„=F„(2F^1+F„), 

^ - i = (~ l ) " (^ i -Fn) + 5F„_tf, F3n = 3(-l)"F„ +5Fn
3. 

These formulas are simpler because of the reduction that took place. In fact, since these a-simpli-
fied formulas have few multiplications, they are useful for very rapid computation of large 
Fibonacci numbers, see [5]. Consider one more example as a preview. The first row of U6, a-
simplified, then written in a special way, and with n = 0 is: 

(l + b(3 + 5b2 )(-(a(l + 5b2 )) + 6(7 + 1 Ob2)), b(2a + b){\ + 5b2 )(3 + 5b2 )) 

This is interesting because, when reduced modulo any factor of b(3 + 5J2), this is congruent to 
(1, 0). This leads to repetition of the Fibonacci sequence at this stage modulo that factor. 

These a-simplified formulas can be computed directly by raising U to the appropriate power 
and applying identity (*) repeatedly, but in the next section we see that they can be computed 
quickly using simple recursive formulas. Properties of these a-simplified polynomials are 
established. In the last section, we use the special form of these a-simplified reduction formulas 
to see that for many infinite families of moduli, the Fibonacci sequence reduced by that modulus 
has a short period. 

PARAMETRIZING THE a-SIMPLIFIED REDUCTION FORMULAS 

We begin by defining the following intertwined polynomials in one variable b and with the 
parameter n giving a choice of sign. Only even indices are used for later convenience. 
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R, = 0, R2 = 1, Ry = S2j_2 + (-l)"R2J_4 fory > 2, 

[S0 = 2, S2 = 1, S2J = 5b2R2j_2 +(-l)nS2J_4 for;>2. 
1 ( * * ) 

Of course, this gives two sequences of polynomials, one sequence for odd n, the other for n even. 

Let i^y designate the sequence when n is even and R^j designate the sequence when n is odd. 

Lemma 1: 
(i) The polynomials R2j and S2j only include even degree terms. 
(ii) deg(R4j_2) = 2j-2, deg(S4j_2) = 2j-2, 
(iii) deg(R4j) = 2j-2, dQg(S4j) = 2j. 

(iv) The polynomial R%j has positive coefficients and R^j is identical except that every other even 
degree coefficient, beginning with the second highest, is the opposite of the corresponding 
coefficient of 0%. 

(v) The polynomial S2j has positive coefficients and S2J is identical except that every other even 
degree coefficient, beginning with the second highest, is the opposite of the corresponding 
coefficient of S2J . 

Proof: (i) This is true for j = 0 and j = 1 and is preserved by the recursive definitions in 
(**). 

(ii) and (iii) These are true for j = 0, 1. [Notice that deg(i?o) = -2 is an acceptable 
convention since RQ = 0 = Ob~2.] Checking the induction step for the four cases is direct: 

deg(i?4y+2) = deg(S4y + (-1)"i?4y_2) = max(2j, 2j-2) = 2/, 
degOV2) = deg(5b2R4j+(-iyS4j_2) = max(2 + 2/ - 2 , 2 J - 2 ) = 2y, 
deg(i?4y+4) = degC^a +(-l)wi?4;) - max(2j, 2j-2) = 2 j , 
deg(54y44) = deg(5Z>2i?4y+2 +(-l)n54 y) = max(2 + 2 j , 2y) - 27+ 2. 

Notice that in each case the highest-order term does not involve (-1)" so that the highest coeffi-
cients are positive and there is no possibility of cancellation. 

(iv) and (v) First we claim that R2j and S2j are homogeneous in the expressions b2 

and (-1)". The claim is true when j = 0 andj = 1. By parts (ii) and (iii) deg(i?2y) = ^%{S2j_2) 
and deg(*S2/) - 2 + deg(i?2y_2), thus, this homogeneity is preserved by the recursive definitions in 
(**); hence, the claim is true. As noted above, the highest terms of R2j and S2J do not involve 
any powers of (-l)w; by the claim, each term with lower powers of b2 will have complementary 
powers of (-1)"; hence, the alternation of signs when n is odd. • 

As an example, Sn =2{-lfn + 45(-l)2nb2 +150(-1)"64 + 125Z>6 has degree 6 and S^ =2 + 
4562 -15064 + 125b6. Table 1 contains the first few R%j and S2j polynomials. 
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Lemma 2: For j > 1, 

fi) ^ ^ ^ - ^ A - C - l ) 0 " ^ , 
(ii) i V A , + 2 -%S2/ = - ( - l ) ^ " . 

Proof: We prove (i) and (ii) simultaneously by induction. When j = 1, R4S0 - R2S2 = 
1-2-1-1 = (-1)0"7 and Ro$4-R2S2=0-S4-l-l = -(-lfn. Assuming (i) and (ii) hold for7, we 
see: 

R2j+4S2j ~ R2J+2S2j+2 = (S2j+2 + ( _ 1 ) " ^ 2 ; )$2J " ( ^ 2 ; + i'1)"R2j-2)S2j+2> b Y d e f -

=(-iy(R2Js2J-R2J_2s2J+2)=(-iyn 

using the induction hypothesis about part (ii). This completes the induction step of part (i). The 
induction step for part (ii) can be handled in a similar manner. • 

TABLE 1. The Polynomials R2j and S2j for Small j 

R%=0 = Ob'2 

R°2=l 

R°4=l 
R°6=3 + 5b2 

R%=2 + 5b2+25b4 

R?0 = 5 + 25b2 = 5(1 + 5b2 + 5b4 ) 

R?2 =3 + 20b2+25b4 = (l + 5ft2)(3 + 5ft2) 
R?4 = 7 + 70b2 +125ft4 +125ft6 

Rf6 = 4 + 50ft2 +I50b4 +125b6 = (2 + 5b2 )(2 + 20b2 + 25ft4) 
R?8 = 9 + 150ft2 + 675ft4 +1125ft6 +625ft8 

= (3 + 5ft2)(3 + 45ft2 +I50b4+125b6) 
R20 = 5 + 100ft2 + 525ft4 + 1000ft6 + 625ft8 

= 5(1 + 5ft2 + 5ft4 )(1 +15ft2 + 25ft4) 

Si =2 

S°2=l 

S°4=2+5b2 

S°6=l + 5b2 

S8°=2+20ft2+25ft4 

51°0=l+15ft2+25ft4 

(S1
0

2=2 + 45ft2+150ft4+125ft6=(2 + 5ft2)(l + 20ft2+25ft4) 
S,°4 = 1 + 30ft2 + 125ft4 + 125ft6 

S,°6 = 2 + 80ft2 + 500ft4 + 1000ft6 + 625ft8 

S,°8 = 1 + 50ft2 + 375ft4 + 875ft6 +625ft8 

= (l + 5ft2Xl+45ft2+150ft4+125ft6) 
S20 =2 + 125b2 + 1250b4 + 4375ft6 + 6250ft8 +3125ft10 

= (2 + 5ft2)(l + 60ft2 + 475ft4 + 1000ft6 + 625ft8) 

We are now able to parametrize the a-simplified formulas for the powers of U in terms of 
these polynomials. 

Theorem 3: For j > 1, define the following vector with entries that are polynomials in a and b 
(linear in a) and which includes the parity parameter n: 

Mj) = ( ( - i r +bR1J(-aS2J +b(5(-l)"R2J_2 +2S2J)), b(2a + b)RyS2j). 

The first row of U2j after being a-simplified is given by v(j). 

Proof: 
v(l) = ( ( - I f + bR2(-aS2 + 6(5(-l) '% + 2S2)), b(2a + b)R2S2) 

= ((-!)" -ab + 2b2,2ab + b2) 

as required. 
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Assuming this is true for j , we want to show it for j + 1; i.e., we need to show that the a-
simplified form of v(j)U2 is v(j +1). 

The second component of the a-simplified form of v(j)U2 is obtained by multiplying v(j) 
times the a-simplified form of the second column of U2: 

v(j)-(b(2a + b),(-iy +ab + 3b2) = b(2a + b)((-l)J" + 5(-l)nb2R2jR2 ._2 + (-!)»RyS2J + 5b2R2jS2J) 

= b(2a + b){5b2R2j{{-\)nR2j_2+S2j) + ̂  

using (-l)(y_1)" +R2jS2J - R2J+2S2J_2 fr°m Lemma 2(i). Then using the recursive definitions of 

R2j+2 and then S2J+2, we see the above is b(^a + b)R2j+2S2J+2 as required. 
The first component of the a-simplified form of v(j)U2 can be shown to be the first 

component of v(j +1) in a straightforward, but more tedious, manner. However, it is convenient 
to first simplify the identity required for the first component using the identity obtained above for 
the second component. We leave the details for the reader. • 

As an example, consider j = 4. By Theorem 3 we see the first row of IIs after being a-
simplified is: 

((-l)4" + bR,((2b - a)Ss + Sbi-lfR,), b(2a+b)R,Ss) 

where i^ = 3(-l)" +5b2,R^ = 2(-l)"+5b2, and Sg = 2(-l)2" +20(-l)"Z>2 +25b4 as can be seen 
from Table 1 and Lemma 1. Now letting a = Fn_x and b = F„,we get 

F^ = 1 + F„(2(-1)" +5F„2)((2JF„ -F„_1)(2 + 20(-l)"F„2
 +25F„4) + 5F„(-l)"(3(-ir +5F„2)) 

and 
FSn=F„(2F„_1+Fn)(2(-iy +5Fn

2)(2 + 20(-l)"Fn
2 +25Fn

4). 

In particular, when n = 3, we have F3 = 2, F2 - 1, so 

F23 - 1 + 2(-2 + 20)((4 -1)(2 - 80 + 400) -10(-3 + 20)) - 28657 
and 

F24 = 2(4)(-2 + 20)(2 - 80 + 400) - 46368, 

which are correct. 

Corollary 4: Let j > 1. The first row of U2j+l after being a-simplified is given by 

((-iyna-(-iyhR2JS2J +5ah2R2JR2J+2, 

(-iy»h + 2(-iyhR2JS2J +5b3R2JR2j+2). 
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Proof: Multiplying out v(j)U and reducing a2 by (*) gives 

((-iy"a-(-irbR2JS2J +5{-\)nab2R2jR2J_2 +5db2RlJS2J, 

(-iy»b + 2(-iybR2jS2j +5(-i)"b3R2JR2J_2 + 5b3R2JS2J). 

The recursive definition for R2j+2 simplifies that into the desired result. D 

Notice in particular that the second component depends on h but not on a. Thus, we get a 
formula for î 2/+i)n m terms of Fn alone. As an example, consider y = 3. Corollary 4 gives the a-
simplified form of the first row of U1 as: 

(-(-iybS6S6 +a((-V)3"+5b2R6Rs), (-1)3" b+bR6(2(-iy S6 + Sb2B,)) 

= (-3(-l)3"b-20(-\)2"b3 -25(-i)"b5 +a((-l)3" +30(-l)2"b2 + 125(-l)"b4 + 125b6), 

7(-l)3"b + 70(~l)2"b3 + 175(-l)"b5 + 125b7). 

So, if n is even, a = Fn_l, and b = Fn,we see: 

Fln„h=-3F„-20F„3-25Fn
5+Fn_1(l + 30Fn

2 + l25Fn
4 + 125F„6), 

Fln=7F„+70F3 + n5Fn
5 + l25F„7. 

In particular, if n = 2, Fn_x -Fx-\ and Fn = F2 = 1, so 

F13 = - 3 - 2 0 - 2 5 + 1 + 30 + 125 + 125 = 233 
and 

Fl4 =7 + 70 + 175 + 125 = 377 

as is easy to check. Of course, there are similar formulas when n is odd. 

SHORT PERIODS MODULO M 

As noted earlier, it is well known that the Fibonacci sequence is purely periodic when 
reduced modulo an integer m. We write & = k(m) to designate the period of the Fibonacci 
sequence modulo m. For example, consider the Fibonacci sequence and its residues modulo 
eight: 

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 
0 1 1 2 3 5 0 5 5 2 7 1 0 1 1 2 3 

The repetition of the 0-1 pair at Fl2-Fl3 guarantees that the sequence modulo eight will repeat. 
Therefore, £(8) = 12. In general, we have 

Lemma 5: The period k = k(m) is the smallest positive number such that Fk = 0 (mod m) and 
Fk+l ^1 (mod m). 

Proof: By definition, k is the smallest positive integer such that Fk+n = Fn for all n > 0. It is 
clear that this implies Fk = F0 = 0 and Fk+l = Fx = 1. If there is any other occurrence of these 
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congruences, namely, Fj =0 = F0mdFJ+l = l = Fu then by adding those equation we see 

Fj+2 = F2 anc* by induction FJ+n = Fn for all n > 0. Thus, j > k by the definition of £, and we see 
that k is the smallest positive number satisfying the desired congruences. • 

Lemma 6: If Fc = 0 and Fc+l = 1 modulo /w, then &(ra)|c. 

Proof: We can write c = #£(/w) + r where 0 < r < k(m). Now F^+w = Fn modulo m implies 
that we can add multiples of k(rn) to the index and get a congruent number: 0 = Fc = Fc_gk^ = Fr 

and l = Fc+l =Fc+l_gk(^m) - Fr+l. Since r<k(m), we know by the previous lemma that r = 0. 
Hence, c = ^i(w) and so k(m) divides c. D 

The next theorems give techniques for generating many infinite families of moduli m with 
very small periods modulo m. The examples all have period bounded by a constant times the log-
arithm of the modulus. Ehrlich [4] showed that to be the case for the Fibonacci moduli; these 
would be given by the families below with trivial choice of gib) = h. 

Theorem 7: Let n be even and g(b) be any polynomial that divides bB%-(b) and let m = g{Fn) 
and k = k(m). Then k divides 2jn. 

Proof: If we let a = Fn_x and b = Fn in Theorem 3, we see that since all the terms of v(J) are 
divisible by bR^jib) except the term (-1);", we get 

(F2J„_1,F2jn) = v(j)^((-iy\0) modm 
= (1,0) since n is even. 

Thus, F2jn = 0 and F2jn+i = 1; thus, k divides 2jn by Lemma 6. • 

Theorem 8: Let n be odd and g(b) be any polynomial that divides bR^j{b) and let m - g(Fn) and 
k = k(m). Then 

(i) if7 is even, k divides 2jn; 

(ii) if7 is odd, then k divides 4jn. 

Proof: Again we let a = Fn_x and b - Fn in Theorem 3 to get 

(F2jn-uF2jn) = vU)^((-iy\0) modm. 

(i) If7 is even, then this is (1, 0); thus, F2Jn = 0 and F2jn_l = i^^+i = 1; hence, k divides 2jn 
by Lerruma 6. 

(II) If7 is odd, then this is (-1, 0); thus, F2n = 0 and F2jn_l = 1. In the first section we saw 
identities F2s_l = F?_x +FS

2 md F2s = 2FS_XFS + F / , with j = 2jn we see F4/n-1 s (-1)2 +02 = 1 
and FAjn = 0. So i^JW+1 = 1 and k divides Ajn by Lemma 6. • 
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Since m is exponential in n (becasue the Fibonacci numbers are), these theorems give exam-
ples where the periods are bounded above by a constant times the logarithm of the modulus. 
Lower bounds will be considered after considering some examples. 

Table 2 shows the periods for moduli generated by taking g(b) = bRl(b) with n odd. Table 3 
gives periods for even n for the corresponding polynomial. 

Table 4 gives the periods for moduli near 196400. This gives some idea of how small the 
period £(196418) = 108 that also appears in Table 2 is relative to "typical" values. 

TABLE 2. Periods for Moduli Generated 

with «(ft) = ***(*) 

TABLE 3o Periods for Moduli Generated 

withg(b) = hR°6(b) 

n 

1 
3 
5 
7 
9 
11 
13 
15 
17 
19 

K 
1 
2 
5 
13 
34 
89 
233 
610 
1597 
4181 

™ = g(Fn) 

2 
34 
610 
10946 
196418 
3524578 
63245986 
1134903170 
20365011074 
365435296162 

k(m) 

3* 
36 
60 
84 
108 
132 
156 
180 
204 
228 

n 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 

Fn 

1 
3 
8 
21 
55 
144 
377 
987 
2584 
6765 

m = g(Fn) 

8 
144 
2584 
46368 
832040 
14930352 
267914296 
4807526976 
86267571272 
1548008755920 

k(m) 

12 
24 
36 
48 
60 
72 
84 
96 
108 
120 

Period is less than the maximum allowed 
by the theorems. 

TABLE 4. Some Periods Near 196400 

m 
196400 
196401 
196402 
196403 
196404 
196405 
196406 
196407 
196408 
196409 
196410 
196411 
196412 

k(m) 
29400 
27720 
49416 
62028 
105672 
340 
56112 
43608 
147300 
197604 
196440 
12064 
98208 

m 
196413 
196414 
196415 
196416 
196417 
196418 
196419 
196420 
196421 
196422 
196423 
196424 
196425 

k(m) 
352 
196416 
9840 
480 
364 
108 
728 
240 
99216 
31032 
704 
25080 
264600 

Table 5 gives periods for g(b) = Ri0(b) with n even. These moduli get large quickly while 
the periods stay small. Table 6 gives values for a nontrivial divisor of bRl2. 
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TABLE 5. Periods for Moduli Generated TABLE 6. Periods for Moduli Generated with 
with g(b) = Rf0(b) a Factor of bRl2(b): g(b) = -b + 5b3 

n 

1 
3 
5 
7 
9 
11 
13 
15 

Fn 

1 
2 
5 
13 
34 
89 
233 
610 

m = g(Fn) 

4 
38 
620 
10972 
196486 
3524756 
63246452 
1134904390 

k(m) 

6* 
18* 
60 
84 
108 
132 
156 
180 

n 

2 
4 
6 
8 
10 
12 
14 
16 

Fn 

1 
3 
8 
21 
55 
89 
377 
987 

m = g{Fn) 

55 
2255 
104005 
4873055 
228841255 
10750060805 
505019869255 
23725155368255 

k(m) 

20 
40 
60 
80 
100 
120 
140 
160 

Notice that in these examples the periods k(m) were exactly the quantity that Theorems 7 and 8 
give as a multiple of the period except for a few small moduli in Table 2 and Table 6. In general, 
it appears that the bounds given in the theorems are met for sufficiently large n. While we cannot 
prove such a theorem, we can show that the periods cannot be much smaller than the given period 
for sufficiently large n for the full polynomial factors. 

Lemma 9: Let X be the golden ratio, then for n > 1 we have: xn~2 ̂ Fn< xn~l. 

Proof: The theorem is true for n - \ and n = 2 by direct computation: x~l < Fl = 1 = T°, 

x° = F2 = 1 < T. If it is true for n and n - 1, we can add inequalities to get: 

T»-3 + xn-l < p p < n-2 n-\ 
y I V —A. w _ | J. n _ y i * 

This simplifies to xn~l < Fn+l < xn, using x2 = x +1, completing the induction. • 

In Lemma 9, notice that strict inequality must hold for n > 3 since Fn is an integer. 

Lemma 10: Let m > 2 be a modulus and X the golden ratio, then k(m) > °^™*. 

Proof: We can pick n so that xn~l <m< xn. Since Fn < xn~l it is not possible for Fj to be 
reduced to zero modulo m for any j<n. Therefore, k{m)>n. However, m<xn implies 
n > \og{m) I log(r) and, hence, the conclusion. D 

While the upper bounds on k(m) given in Theorems 7 and 8 are 2jn or 4jn, we can show that 
for sufficiently large n that k{m) is not many factors smaller than those bounds. However, we 
conjecture that equality holds for sufficiently large n. 

Theorem 11: Suppose g(b) is R^j(b) or bR^-{b) withy > 3 where e is 0 or 1. Also let m = g(Fn) 
where n has the same parity as e and let k = k(m). Then k{m) > 03jn for sufficiently large n. 

Proof: In Lemma 1 and Table 1 we see the highest-order term of Ry (b) is at least five times 
bJ~l orbJ~2. Therefore, for sufficiently large n, m> Fj~2. From that inequality and Lemmas 9 
and 10, we see that, for sufficiently large n, 
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log(r) log(r) 10 

since (J-2)lj>y3 and ( « - 2 ) / « > % forw>20. D 
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1. INTRODUCTION 

It is well known that Euclid's algorithm for computing the greatest common divisor (gcd) of 
two integer numbers is more than two thousand years old and, as it turns out, it is the oldest 
known algorithm. Interest in computing a gcd of two polynomials first appeared only in the 
sixteenth century and the problem was solved by Simon Stevin [13] simply by applying Euclid's 
algorithm (for integers) to polynomials with integer coefficients. However, from the computa-
tional point of view, Euclid's algorithm applied to polynomials with integer coefficients is very 
inefficient because of the growth of coefficients that takes place and the eventual slowdown of 
computations. This growth of coefficients is due to the fact that the ring Z[x] is not a Euclidean 
domain, and hence, divisions (as we know them) cannot always be performed. 

For example, take the two polynomials px(x) = x3 -7x4-7 andp2(x) = 3x2 - 7 which have 
very small coefficients. Observe that, over the integers, we cannot divide px(x) hyp2(x) (since 3 
does not divide 1) and, hence, we have to introduce the concept of pseudo-division, which always 
yields a pseudo-quotient and pseudo-remainder. According to this process, we have to premulti-
ply Pi(x) by the leading coefficient of p2(x) raised to the power 2 [that is, we premultiply 
Pi(x) by 9 = 32] and then apply our usual polynomial division algorithm. [Below we denote the 
leading coefficient (1c) of a polynomial p(x) by lc(p(x)) and its degree by deg(j?(x)).] 

In the general case where deg(pl(x)) = n, and deg(p2(x)) ~m, we premultiply px{x) by 
lc(p2(x))n~m+l. In this was we know for sure that all the polynomial divisions involved in the 
process of computing a greatest common divisor of px{x) and p2(x) will be carried out in Z[x]. 
That is, in general, we start with 

HP2 (x)Y~m+l Pi (*) = qx (x)p2 (x) + p3 (x), deg(ft (x)) < deg(p2 (x)) (1) 

and applying the same process p2(x) and p3(x), and then to p3(x) and /?4(x), etc. (Euclid's 
algorithm), we obtain a polynomial remainder sequence (prs) 

Pi (*), P2 (xl P3 (*)> -,Ph (xl Ph+i O) = °> 

where ph(x) ^ 0 is a greatest common divisor of px(x) and p2(x), denoted by gcd(/?1(x), p2(x)). 
The reader should compute the prs of the above example and verify that the coefficients grow 
rather rapidly (even when we start with such very small coefficients!!) Answer: qx{x)-3x, 
p3(x) = -42x + 63, q2(x) = -126x-189,p4(x) = -441, q3(x) = 18522x-27783, and p5(x) = 0. 

Note that we are dealing with exact integer computations and, for reasons that cannot be 
discussed here, the length of the integers involved is taken into consideration when we analyze the 
complexity of an algorithm. (Generally speaking, the complexity of an algorithm refers to the 
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according to this number that the various algorithms are being compared for efficiency.) For an 
introduction to Computer Algebra, the area that deals with exact integer computations, see [3]. 

Therefore, the problem with the above approach is that the coefficients of the polynomials in 
the prs grow exponentially and, hence, slow down the computations. We wish to control this 
coefficient growth without having to compute gcd's of coefficients (because that in itself can be 
time consuming). In what follows, we use the following conventions: if nt = deg(j?z(x)) and we 
have rij -ni+l - 1, for all /, the prs is called complete, otherwise, it is called incomplete; moreover, 
a polynomial p(x) is called primitive if its coefficients are relatively prime. 

As we will see immediately below, using pseudo-divisions, the problem of controlling the 
coefficient growth was originally solved (at least partially) by Sylvester in his 1853 paper and fully 
by Habicht in 1948. Equivalently, as we will see in §2, the problem can be solved by triangulariz-
ing the matrix corresponding to what we call Sylvester's form of the resultant (and which form is 
different from the one people are used to), thus avoiding explicit polynomial pseudo-divisions. It 
turns out that Sylvester's paper of 1853 is the basis for both classical methods to restrict the 
coefficient growth (see Figure 1 below) and, thus, we have one more case indicating the 
importance of mathematics of the last century, and its connection with computational mathematics 
as done today. 

<- Sylvester1 s paper of 1853 -> 

i i 
The pseudo-divisions The matrix-triangularization 
subresultant prs method subresultant prs method developed 
initiated by Sylvester in 1853 and by the author in 1986. 
completed by Habicht in 1948. 

FIGURE 1. 

Overview of the historical development of the two classical subresultant prs methods for restricting the 
growth of coefficients. The method developed by Sylvester should be used only when the prs is com-
plete, whereas the one by Habicht should be used when the prs is incomplete, something which we do 
not know apriori. (Actually, Habicht's method also can be used when the prs is complete, at additional 
computational cost.) The matrix-triangularization method can be identically used for both kinds of 
prs's. 

To see how Sylvester's results can be applied in the pseudo-divisions method, observe that 
(1) can also be written, for any two successive polynomials pt(x) and/?/+1(x) of the prs, as 

l c ( f t + 1 ( x ) ) * - ^ ' > , ( x ) = ft(xW^ (2) 

i = 1, 2, ..., h - 1, where j3/ is the integer which we want to divide out of the coefficients of 
Pi+i(x)- That is, if a method for choosing j37 is given, the above equation provides an algorithm 
for constructing a prs. The obvious choice j8/ = 1, for all i, is called the Euclidean prs; it was 
described above and, as we saw, it leads to exponential growth of coefficients. Next, choosing j3y 

to be the greatest common divisor of the coefficients pi+2(x) results in the primitive prs, and it is 
the best that can be done to control the coefficient growth. (Notice that here we are dividing 
Pi+i(x) by ^ e greatest common divisor of its coefficients before we use it again.) However, as 
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we indicated above, computing the gcd of the coefficients for each member of the prs (after the 
first two, of course) is an expensive operation and should be avoided. 

So far, in order both to control the coefficient growth and to avoid the coefficient gcd comp-
utations, either the reduced or the (improved) subresultantprs have been used. In the reduced 
prs (developed by Sylvester) we choose 

0, = 1 and ft =lc(Pi(x)y->-"<+\ i = 2,3,...,h-l, (3) 

whereas, in the subresultant prs (developed by Habicht) we have 

ft = (-i)".-"2+1 and ft = {-\)">-"M+l\c{pi(x))H?~nM, i = 2,3,..., A-1, (4) 
where 

tf2=lc(ft(*))">-"' and if,=lc(A(x))"'--'"^L-/"-'-"'\ i = 3,4,... ,A-l. 

That is, in both cases above, we divide pj+2(x) by the corresponding j3y before we use it again. 
Consider again the above-stated example where we are dealing with a complete prs and, 

hence, (3) and (4) yield exactly the same results [note that, using (4), we have to perform some 
extra computations]; the reader should verify that, in both cases, we obtain /3X = 1 and, hence, 
p3(x) = -42x + 63 whereas /32 = 9 and, hence, p4(x) = -49 (= 441/9) instead of p4(x) - -441 
obtained before. Note that, with this approach, we were able to reduce the coefficients of p4(x), 
but there is no way to reduce the coefficients of p3(x)! 

The reduced prs algorithm is recommended if the prs is complete, whereas if the prs is incom-
plete the subresultant prs algorithm is to be preferred. The proofs that the j3/s shown in (3) and 
(4) exactly divide pi+2(x) were very complicated [7] and have up to now obscured simple divisi-
bility properties [13] (see also [5] and [6]). For a simple proof of the validity of the reduced prs, 
see [1]; analogous proof for the subresultant prs can be found in [10] and [3]. A very simple 
proof of Habicht's theorem can be found in the recent work of Gonzalez et al. [9]. For some 
interesting comments regarding priority rights for the development of these prs algorithms see 
[11] and Historical Notes to Chapter 5 in [3, p. 282]. 

In contrast to the above prs algorithms, the matrix-triangularization subresultant prs method 
avoids explicit polynomial divisions. In what follows, we present this method and show how to 
solve the example mentioned above. 

2. SYLVESTER'S FORGOTTEN FORM OF THE RESULTANT 

Consider the two polynomials in Z[x], px(x) = cnxn + cn_lx"~l -\ \-c0 and p2(x) - dmxm + 

dm_xxm~l + -"+dQicn&0,dm^0,n>m. In the literature, the most commonly encountered forms 
of the resultant of px(x) mdp2(x) (both known as "Sylvester's" forms) are: 
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resB(p1(x\p2(x)) = 

and 

resT(pl(x),p2(x)): 

0 
u n - l 

u « - l 

0 0 
\dm dm_l 

*"n S7-I 
0 0 

0 dm dm_x . - d0 0 

0 0 

"-n-1 

dm dm_l 

u n - l 

0 
0 

0 
im 

0 
0 

dm 
dm-\ 

... 

... 

dm-\ 

dm 

... 
d0 

cn 
dm-\ 

d0 
0 

cn-

0 
0 

where in both cases we have m rows of c's and n rows of ds; that is, the determinant is of order 
m + n. Contrary to established practice, we call the first di Bruno's and the second Trudi's form 
of the resultant [3] (di Bruno was sanctified by the Roman Catholic Church in the 1980s). Notice 
that r e s^ /^x ) , p2(x)) = ( - l ^ ' ^ r e s ^ i j ^ x ) , p2(x)). For these two forms of the resultant, the 
following theorem holds. 

Theorem 1 (Laidacker [12]): If we transform the matrix corresponding to res5(/?1(x),/?2(x)) 
into its upper triangular form TB(R) using row transformations only, then the last nonzero row of 
TB(R) gives the coefficients of a greatest common divisor off px(x) and/?2(x). 

Theorem 1 indicates that using these forms of the resultant we can obtain only a greatest 
common divisor of px(x) mdp2(x) but, in general, none of the remainder polynomials. 

In order to compute both a gcd(/?1(x),/?2(x)) and all the polynomial remainders we have to 
use Sylvester's form of the resultant. We choose to call Sylvester's form the one described below; 
this form was "buried" in Sylvester's 1853 paper [14] and is only once mentioned in the literature 
in a paper by Van Vleck [15]. Sylvester indicates [14, p. 426] that he had produced this form in 
1839 or 1840 and some years later Cayley unconsciously reproduced it as well. This form is of 
order In (as opposed to n + m for the other two forms) and can be written as follows [p2 (x) has 
now been transformed into a polynomial of degree n by introducing zero coefficients]: 
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™*s(Pi(x), &(*)) = 

u « - l 
d„ 
0 
0 

0 • 
0 • 

d„-i 
cn 

dn 

•• 0 

•• 0 

•• 
•• 

Cr 
d, 

0 
0 

dn 

''n-l 
d, 

0 
0 
0 
0 

«- i 

(S) 

Sylvester obtained this form from the system of equations [14, pp. 427-28] 

A(*) = 0 
p2(x) = 0 

xpl(x) = 0 
x-p2(x) = 0 

x2 •p1(x) = 0 
x2-p2(x) = 0 

c""1 

,-«-! 
x" ~-Pl(x) = ® 
x -p2(x) = 0 

and he indicated that if we take k pairs of the above equations, the highest power of x appearing in 
any of them will be xn+k~l. Therefore, we shall be able to eliminate so many powers of x that 
xn~k will be the highest power uneliminated and n - k will be the degree of a member of the 
Sturmian polynomial remainder sequence generated by px(x) mdp2(x). Moreover, Sylvester 
showed that the polynomial remainders thus obtained are what he terms simplified residues; that 
is, the coefficients are the smallest possible obtained without integer gcd computations and with-
out introducing rationals. Stated in Sylvester's words, the polynomial remainders have been freed 
from their corresponding allotrious factors. 

It has been proved [15] that if we want to compute the complete polynomial remainder 
sequence px{x),p2(x),p3(x), ...,ph(x), degfjt^x)) - n, deg(p2(x)) = m,n>m, we can obtain the 
(negated) coefficients of the (i + lf1 member of the prs, i = 0, 1, 2, ..., h - 1, as minors formed 
from the first 2/ rows of (S) by successively associating with the first 2/ - 1 columns [of the (2/) 
by (In) matrix] each succeeding column in turn. 

However, instead of proceeding as in [15], and in order to handle incomplete prs's as well, 
we transform the matrix corresponding to the resultant (S) into its upper triangular form and 
obtain the members of the prs with the help of Theorem 2 below. We also use Dodgson's integer-
preserving transformation algorithm [8], which works as follows: Suppose that 

r(0)=r.. v V ij= 1, ...,w 
are the matrix elements at the beginning of the algorithm (0th iteration). There are n iterations 
performed, and in the kth one (indicated here) the following actions are taken: (a) the elements of 
the kxh column located below the k^ (diagonal) element are being turned to zero, (b) all the 
elements located in rows and columns greater than k get updated as shown below, and (c) all the 
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other elements of the matrix remain unchanged. In this way, at the end of the process, all the 
elements of the matrix located below the diagonal are zero. That is, we have: let 

^ = 1, and rfj0)=rU9 i,j = l,...,n; 
then for k < i, j < n, 

r,w: = (yi££,)-' '** rkj 

ik rij 
(D) 

Of particular importance in Dodgson's algorithm is the fact that the determinant of order 2 is 
divided exactly by r^2^ (a very short and clear proof of (D) is described in Bareiss's paper 
[4]—see also the Historical note at the end of this paper) and that the resulting coefficients are the 
smallest that can be expected without coefficient gcd computations and without introducing 
rationals. Notice how all the complicated expressions for j3; in the reduced and subresultant prs 
algorithms are mapped to the simple factor r ^ j ^ of this method. 

It should be pointed out that using Dodgson's algorithm (D) we will have to perform pivots 
(interchange two rows) which will result, in a change of signs. We define the term bubble pivot as 
follows: if the diagonal element in row / is zero and the next nonzero element down the column is 
in row i + j , j > 1, then row i +7 will beccome row / after pairwise interchanging it with the rows 
above it. (Note that, after a bubble pivot, ex-row i becomes row i + 1, whereas with regular pivot 
it would have become row i +j.) Bubble pivot preserves the symmetry of the determinant. 

The following theorem helps us locate the members of the (complete or incomplete) prs in 
the final, triangularized, matrix. 

Theorem 2 ([2]): Let px(x) and/?2(x) be two polynomials of degrees n and m, respectively, 
n>m. Then, using Dodgson's algorithm (D), transform the matrix corresponding to 
TGSs(Pi(xX PiO0)) mt0 lts uPPer triangular form TS(R); let nt be the degree of the polynomial 
corresponding to the /th row of TS(R), i = 1, 2, ..., 2w, and let pk(x), k > 2, be the kth member 
of the (complete or incomplete) polynomial remainder sequence of px(x) and/?2(x). Then if 
pk(x) is in row i of TS(R), the coefficients of pk+l(x) (within sign) are obtained from row / +j of 
TS(R), where j is the smallest integer such that ni+j <nr [If n = m, associate both px(x) and 
p2(x) with the first row of Ts(R).] 

Therefore, we see that, based on Theorem 2, we have a new method for computing the 
polynomial remainder sequence and a greatest common divisor of two polynomials. This new 
method uniformly treats both complete and incomplete prs's and provides the smallest coefficients 
that can be expected without coefficient gcd computation. 
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3. THE MATRIX-TMANGULARIZATION SUBRESULTANT PRS METHOD 

The inputs are two (primitive) polynomials in Z[x], px(x) = cnxn +cn_lxn~l + ••• +c0 and 

Step 1: Form the resultant (S), ress (jp^x), p2(x)), of the two polynomials Pi(x) and p2(x). 

Step 2i Using Dodgson's algorithm (D) (and bubble pivot), transform the matrix corre-
sponding to the resultant (S) into its upper triangular form TS(R); then the coefficients of all the 
members of the polynomial remainder sequence of px(x) and p2(x) a r e obtained from the rows of 
TS(R) with the help of Theorem 2. 

The computing time of this method is given by the following theorem (see [2]). 

Theorem 3: Let px (x) = cnxn + cw_1xw~1 H— + c0 and p2 (x) = dmxm + dm_lxm~l + —b d0, cn ^ 0, 
dm^Q,n>m,he two (primitive) polynomials in Z[x] and, for some polynomial P(x) in Z[x] let 
IP^ represent its maximum coefficient in absolute value. Then the method described above com-
putes a greatest common divisor of p^x) and p2(x) along with all the polynomial remainders in 

time 0(n5L(\p\co )2) where \p\w = maxfl/?^, |/?2l<» ) andZfl/?^) is t n e length, in bits (or even the 
logarithm) of the maximum coefficient (of the two polynomials) in absolute value. 

Proof: The result follows by combining (a) the well-known result that in the matrix-triangu-
larization procedure there are performed 0(n3) multiplications and (b) the fact that we are now 
using exact integer arithmetic and, hence, each multiplication is executed in time 0(n2L(\p\ao)2) 
(see [2] and [3]). • 

Below, we present the example stated in the introduction solved using this new approach; the 
reader should observe that the coefficients obtained for p3(x) are smaller than those obtained 
using the reduced (or the improved, for that matter) subresultant prs algorithm. 

Example: Let us find the polynomial remainder sequence of the polynomials px{x) = x3 -lx + 1 
and p2{x)-3x1 -1 using the matrix-triangularization procedure described above. Below, the 
matrix on the left side is the starting one, and the one on the right side is the final (transformed) 
one, obtained after application of Dodgson's method (D). 

1 
0 
0 
0 
0 
0 

0 
3 
1 
0 
0 
0 

- 7 
0 
0 
3 
1 
0 

7 
- 7 
- 7 
0 
0 
3 

0 
0 
7 

- 7 
- 7 
0 

0 
0 
0 
0 
7 

- 7 

=> 

1 
0 
0 
0 
0 
0 

0 
3 
0 
0 
0 
0 

- 7 
0 
9 
0 
0 
0 

7 
- 7 
0 

-42 
0 
0 

0 
0 

-21 
63 
196 
0 

0 
0 
0 
0 

-294 
-49 

The *-ed row indicates that a (normal) pivot was performed between the third and fourth rows. 
With the help of Theorem 2 we see, from the transformed matrix, that the polynomial remainders 
(within sign) are p3(x) - -42x + 63 and/?4(x) = -49 (as obtained before); also note that, using 
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this approach, there is no way For us to obtain the quotients. The smaller coefficients for p3(x) 
are obtained if we save the row before picot; in our example, the row before pivot was p3(x) -
-14*+ 21, which was then changed to p3(x) = -42x + 63. Thus, the remainder polynomials are 
p3(x) = -14x + 2l and/?4(x) = -49 and, in this case, we did manage to reduce the coefficients of 
ftW! 

REFERENCES 
1. Alkiviadis G. Akritas. "A Simple Validity Proof of the Reduced prs Algorithm." Computing 

38 (1987):369-72. 
2. Alkiviadis G. Akritas. "A New Method for Computing Greatest Common Divisors and 

Polynomial Remainder Sequences." NumerischeMathematik 52 (1988): 119-27. 
3. Alkiviadis G. Akritas. Elements of Computer Algebra with Applications. New York: Wiley 

Interscience, 1989. 
4. E. H. Bareiss. "Sylvester's Identity and Multistep Integer-Preserving Gaussian Elimination." 

Math Comp. 22 (1968):565-78. 
5. W. S. Brown. "On Euclid's Algorithm and the Computation of Polynomial Greatest Com-

mon Divisors." J. Assoc. Comput. Machinery 18 (1971):476-504. 
6. W. S. Brown. "The Subresultant prs Algorithm. ACM Transactions on Mathematical 

Software 4 (1978):237-49. 
7. G. E. Collins. "Subresultants and Reduced Polynomial Remainder Sequences." J. Assoc. 

Comput. Machinery 14 (1967): 128-42. 
8. C. L. Dodgson. "Condensation of Determinants." Proc. Royal Soc. London 15 (1866): 150-

55. 
9. L. H. Gonzalez, T. Recio Lombardi, & M.-F. Roy. "Specialization de la suite de Sturm et 

sous-resultants." Preprint No. 8-1990, Department of Mathematics, Statistics and Computa-
tion, University of Cantabria, 39071 Santander, Spain. 

10. W. Habicht. "Eine Verallgemeinerung des Sturmschen Wurzelzaehlverfahrens." Commen-
tariiMathematici Helvetici 21 (1948):99-116. 

11. Donald E. Knuth. The Art of Computer Programming. Vol. II, 2nd ed.: Seminumerical 
Algorithms. Reading, Mass.: Addison-Wesley, 1981. 

12. M. A. Laidacker. "Another Theorem Relating Sylvester's Matrix and the Greatest Common 
Divisor." Math. Magazine 42 (1969): 126-28. 

13. R. Loos. "Generalized Polynomial Remainder Seqiemces." In Computer Algebra Symbolic 
and Algebraic Computations, Computing Supplement 4:115-37. Ed. B. Buchberger, G E. 
Collins, and R. Loos. New York: Springer Verlag, 1982. 

14. J. J. Sylvester. "On a Theory of the Syzygetic Relations of Two Rational Integral Functions, 
Comprising an Application to the Theory of Sturm's Functions, and that of the Greatest 
Algebraical Common Measure." Philosophical Trans. 143 (1853):407-548. 

15. E. B. Van Vleck. "On the Determination of a Series of Sturm's Functions by the Calculation 
of a Single Determinant." Ann. Math. Second Series 1 (1899-1900): 1 -13. 

16. F. V. Waugh & P. S. Dwyer. "Compact Computation of the Inverse of a Matrix." Ann. 
Math. Statis. 16 (1945):259-71. 

Historical Note: Note that we depart from established practice and give credit to Dodgson—and 
not to Bareiss [4]—for the integer-preserving transformations; see also the work of Waugh and 
Dwyer [16] where they use the same method as Bareiss, but 23 years earlier, and they name 
Dodgson as their source—differing from him only in the choice of the pivot element [16, p. 266]. 
Charles Lutwidge Dodgson (1832-1898) is the same person widely known for his writing Alice in 
Wonderland under the pseydonym Lewis Carroll. 

AMS numbers: 68C20; 68C25; 01A55 
. • > < • • > 

332 [NOV. 



ON THE STRUCTURE OF THE SET OF DIFFERENCE SYSTEMS 
DEFINING (3, F) GENERALIZED FIBONACCI SEQUENCES 

W. R. Spickerman, R. L. Creech, and R. N. Joyner 
East Carolina University, Greenville, NC 27858 

(Submitted November 1991) 

The (2, F) generalized Fibonacci sequences were defined in [1] and [2]. In [3] K. Atanassov 
extended the definition to the case of three sequences and listed thirty-six systems defining the 
(3, F) generalized Fibonacci sequences. Ten of these thirty-six systems were discarded as trivial 
and the remaining twenty-six were placed in seven classes termed "groups." In this paper the 
structure of the systems of three second-order difference equations defining the (3, F) generalized 
Fibonacci sequences is developed. This development is based on the following definitions of the 
permutations on the letters a, b, and c: 

a->a a-^b a-^c 
i: b-^b a: b->a = (ah) ft: h->b = (ac) 

c->c c->.c c->a 

a->a a-^c a-^b 
y: b-*c = (hc) 8: h->a = (ach) e: b^>c = (abc) 

c->b c-^b c-^a 

Note that 5 = a/3 where a/3 indicates that the permutation /3 is applied first, followed by oc. 
Similarly, e = fta. 

These definitions give rise to the following multiplication table for the six permutations: 

i 
a 
P 
7 
8 
e 

i 

i 
a 
P 
r 
8 
e 

a 

a 
i 
e 
8 
r 
P 

P 
P 
8 
i 
£ 

a 
7 

_L 
r 
e 
8 
i 

P 
a 

8 
8 
P 
Y 
a 

e 
i 

e 

e 

r 
a 
P 
i 

8 

The six permutations of the letters a, b, and c form a group which is isomorphic to the symmetric 
group S3. The group of permutations of the letters a, b, and c will be denoted by Sc. 

Using these preliminaries, the (3, F) generalizations of the Fibonacci sequence may be 
defined. 

Definition: Let Q, 1 <i < 6, be six real numbers; X0 = {a0,b0,cQ} - {Q,C2,C3}; Xx - {a^b^c^ 
= {C4,C5,C6}; and let p, a, and r be permutations ofSc. Then the solutions 

^=<^>o"=fe^^}>:={<«/>r.^>o"^>r} 
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of the difference system 

pXM=aXM+%Xi9 />0, (1) 

with initial conditions XQ, Xl3are the (3, F) generalizations of the Fibonacci sequence. Since 
there are six permutations in Sc, there are a total of 216 systems of form (1). The systems of 
form (1) can be represented by ordered triples of permutations of Sc. Thus, 

(p, a, r) represents pXi+2 = aXi+l + xXi, / > 0. 

Consequently, the triple (/, 5, e) represents the equations 

bi+2=ai+l+Ci> ' ^ 0 , 

which is S30 in Atanassov [3]. Two different systems (p, <7, r) and (p', a\ T') may not define 
distinct (3, F) sequences. For example, with given initial conditions X0, Xl9 the system 

(e,i,8) = Ci+2=bM-¥Oi9 7>0 , 
ai+2=CM+bi 

defines the same sequence as S30 = (/, 5, e) since the same equations determine the successive 
terms of the sequences. Observe that the two systems (/', 8, e) and (e, /, 5) are row equivalent. 
In general, two systems (p, o", T) and (p', a\ r ') are row equivalent if and only if one system can 
be obtained from the other by multiplication of the permutations of the other system by the same 
permutation. That is, 

Definition: Let p, cr, T, p',cr', T' be six permutations of Sc. Then the systems (p, o", r) and 
(p', o~', r ' ) are row equivalent if there exists a permutation rj in Sc such that rj(p, cr, r) = 
(77p,?7o-,77T)= (p',o-',T'). 

Since there are six permutations in Sc, there are six systems that are row equivalent to a given 
system (p, cr, T) . Thus, the 216 systems are partitioned into thirty-six equivalence classes of row 
equivalent systems which are the systems considered by Atanassov in [3]. For example, the 
systems S30 and S22 of Atanassov are 

[S30] = [(i, 8, £)] = {(/, S, e), (e, /, 8), (a, j3, y), (y, a, 0), (j3, y, a), (5, e, i)}, and 

[522] = [(/, a, /3)] = {(/, a, J8), (a, f, 5), (0, e, /), (y, 5, e), (5, y, a), (e, P, y)}, 

where [(p, cr, r)] indicates the equivalence class of (p, o", r ) . Since each equivalence class 
contains one system that has the identity as the first permutation, the classes may be uniquely rep-
resented by an ordered pair of permutations (0, i//) where <j> and y/ are permutations of Sc. 

A relation is now defined on the equivalence classes of row equivalent systems. 
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Definition: Let 0, y/, (j)\ and y/' be permutations of Sc. The ordered pair (</>, y/) is equivalent to 
the ordered pair (0',V')> written ((j),yf) = (0',V')> if there exists a rj in Sc such that 
0' = rj^rj"1 and y/' = r)i//r)"\ 

Since 0 = /0/*"1 and y/ = /y/T1, the relation is reflexive. Suppose (0, y/) = (0', y/'). Then, for 
some jU and ji~l in £c, 0' = ju^/i"1 and y^MW1""1- Therefore, for r) = id~\(j) = ri^fri~l and 
y = rjv '̂Tj"1. Hence, the relation is symmetric. Suppose (0,vO = ( 0 \ v O and (<p',y/f) = 
(0", y/"). Then, for some rj and ji in Sc, 0' ^rj^r)"1, y/' = rjy/T)_1,0" = /10'jU-1, and 1//" = 
fiy/'ji"1. Consequently, 0" = ji^fT1 = jir\<\)rfl}Tl = p<pp~l and y^" = fiy/'ji'1 = / i^y^r}"1^1 

= py/p~l for p = /irj. Hence, by definition, (0,yO = (0",y")> and the relation is transitive. 
Thus, the relation is an equivalence relation. The definition of equivalent systems requires that 
there exists rj in Sc such that (j) and <j>', y/ and y/' belong to the same conjugate classes for that rj. 

It is well known that the conjugate classes of £3 are the permutations with the same cycle 
structure (see [6]). Since Sc is isomorphic to S3, the conjugate classes of Sc are: 
C{i} = {/*}, C{a} = {a, j3,7}, C{8} = {§, £}, where C{<7} denotes the conjugate class of a. Let 
(0, y/) denote the equivalence class of (0, y/). If 0 and y/ belong to different conjugate classes, 
then the recursion systems in the equivalence class (0, y/) are the ordered pairs with <j> a member 
of C{(j>} and y/ a member of C{y/}. Thus, there is one equivalence class for each pair of 
conjugate classes in Sc. The classes and the corresponding schemes of Atanassov [3] are: 

(i^O = {(i, a), (/, /?), (i, y)} = {S5, S10, S2}, 
(Ij) = {(i,8),(i,e)} = {S9,S6}, 
(^7) = {(a,;), (/3,1), (y,0} = {S13, S27,S3}, 
(5j) = {(5,i),(e,i)} = {S25,S15}, 

( M ) = {(a,'5),(P,8), (y,8), (P,e), (y, e)} = {S21> S35, Sn, S1S,S32,S8}, 

(8, a) = {(8, a) , (8, P), (8, y), (e, a), (e, /3), (e, y)} = {S29 

If cj!) and y/ belong to the same conjugate class of Sc, and <f> = y/, then <p' and y '̂ must also 
belong to the same conjugate class and <p' = y/f. Consequently, there are as many classes of this 
type as there are conjugate classes in Sc, namely, three. Moreover, there are as many systems in 
each class as there are permutations in C{0}. The classes of this type are: 

(U) = {(U)} = {S1), 
(^) = (a,a),(P,PUy,Y)} = {Si7,S36,S4}, 

(8^) = {(8,8),(e,e)} = {S33,S20}. 

If (j) and y/ belong to the same conjugate class, but Q'&y/, then <j>' and y/f are distinct and also 
belong to the same conjugate class. There are as many equivalence classes of this type as there 
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are conjugate classes in Sc which contain at least two distinct permutations, namely, two. There 
are as many systems in each class as there are combinations of distinct permutations in one conju-
gate class. The systems of this type are: 

( a j j ) = {(a, P), (a, y), (/?, a), (j3, y), (y, a), (y, j3)} = {S22,514,S31, S28, S7, S12}, 
( £ i ) = {(8, £),(£, 5)] = {S30,5,3}. 

Hence, the thirty-six systems defined by Atanassov [3] belong to eleven equivalence classes as 
listed above. 

Theorem: Let (0,vO and (0 ' , y ' ) be two systems, let (JQ)* and (Z;)^ be solutions to ( 0 ,y ) 

and (0', yf'), respectively, and let rjX0 = Z0 and rjXj = Z r then (0, y ) and (0', y ' ) are equiva-

lent systems if and only if (rjX,.)* = (Zy)*." 

Proof: Suppose (0, vO an(* (0', V') a r e equivalent systems. Then Z2 = 0'ZX +y/'Z0. Since 
the systems are equivalent, for some ?] in ^ , 

Z2=rj0?]"1Z1+r]vn"1Zo=r]0Ar
1+r]vd(ro 

The theorem is true for / = 2. Assume that it is true for all k<n for some integer n > 2: Zw+1 = 
0'ZW -\-y/fZn_l. So again, since the systems are equivalent, 

= rt(j)X„+ri\i/X„_l = riXn+l, 
the theorem holds for all / > 0. 

Now assume that (u^j)^ = (Z7)^. Then 

xl+2=4XM+\itxl9 i>o. 

Since rf% = X, for all a /" > 0, 

7]-1Z/+2-0T]-1Z/+1+vn]-1Z7, 

which is row equivalent to 

r\r\-%+2 = iJ0n_12i+i + * 7 0 r t - Z,+2, / > 0. 

But. Zi+2 = 0'Z7+i +W% f°r ? ^ °- Therefore, 0' = rj^rj-1 and y ' = H W ^ and the systems are 
equivalent. Thus, the theorem holds. As a result of the above theorem, only one system in each 
equivalence class need be solved since the solutions to the systems in an equivalence class are 
related to each other by a permutation of Sc. Therefore, all (3,F) generalized Fibonacci 
sequences are determined by solving eleven systems. Furthermore, four of these systems, namely, 
(/,/),(/, a) , (a,/), and (a, a ) , can be written in terms of generalized Fibonacci sequences and 
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(2, F) generalized Fibonacci sequences. Generalized Fibonacci sequences are discussed in [4] 
and the (2,F) generalized Fibonacci sequences are developed in [1], [2], [5], and [7]. 
Consequently, only seven new systems need to be solved in order to generate the solutions to all 
eleven equivalence classes. 
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Let 

G. J. Rieger 
Institut fur Mathematik, Technische Universitat Hannover, Welfengarten 1, 3 Hannover, Germany 

(Submitted December 1991) 

[x, >>,...,*] = * + 
y+. 

+-

be a simple continued fraction. In the representation of an element of Q\Z as a simple continued 
fraction, we normalize by z > 2. A "unit fraction" ^ = [0, a] for a > 2 is a very short, simple con-
tinued fraction. One may ask if the sum, difference of two unit fractions (with relatively prime 
denominators) can have arbitrarily many terms in its simple continued fraction. We use the 
Fibonacci numbers to show that the answer is "yes." 

Letting 4-+ 4 - = [°>^ - 1 , P J for ft > 2, we find pn -»0 - I±VI = 
K, 

[1, 1, 1, ...] as n-^co. 

Letting ~ \~ = [0, Fn,on] for n > 1, we find that an —» 1 + 0 as /? —> oo. 
" Fn+\ 

The rates of convergence can easily be estimated. For this, instead of using ^±-y, it is better to 
a b 

use 
1 1 
a b +a 

0,a,-
a 

and 1 - + -
1 

a b2+a2-a 
0 ,a - l , l , - (1) 

where 2<a<b. Starting with -^ = 2 = [2] and y- = f = [1,2], it is easy to show by induction that 

Lemma: For n > 4, we have 

n+\ = [1,...,1,2] for n>\. 
n-l 

F2 
rn+\ _ 
F2 

2,!,. . . ,! , 3, »- l 

H-3 
F. n-2 

(2) 

(3) 

Proof: Subtracting 2 from both sides of (3) gives, equivalently, 

F2 

Ai+1 *rn 

• = [!,...,!, B where B = 
n-3 

**n-\ 

'F n-2 

But 
[l,...,\,B = BF"-2+F"~:i 

n-3 
BFn_3+F„_4 
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Multiplying the right-hand side by ^ and substituting for B, the numerator turns out to be F2 
rn-\ » 

and the denominator is F2
+l - 2F2, as it should be. 

Letting a = Fn9b = Fn+1, we have (a,b2 +a) = \ and (a,b2 + a2 -a) = 1. Using (3), (2), and 
(1), we have 

1 =[0,Fn,2,1,..., 1,3,1,..., 1,2] for/?>3 (4) 
W-3 77-4 

and 

F« F^+Fn 

1 
- + -

1 
F F,+F-F 

= [0 ,^-1 ,1 ,2 ,1 , . . . , 1,3,!,...,!,2] for n>3 . (5) 

For any value of n > 4, (4) has 2n-2 terms and (5) has 2n - 1 terms. Instead of (1), we could 
use [Dr. Gottsch, private communication] 

1 1 
b b2+b + a2 0,6,1, and — + 1 

b 2b2-b + a2 0 ,6 - l ,U , -

This means one additional term 1 each. Letting a = Fn,b = Fn+l, we have (b, b2 +6-ha2) = 1 and 

(b, 2b2 -b + a2) = l. In the analogues of (4) and (5), we also have one additional term 1 each, 
namely, 

1 1 .2 r, .-[0,FW+1,1,2,!,. . . ,!, 3,! , . . . ,! , 2] for n>3 
Fn+l Fn+1+Fn+1+Fn n-3 n-4 

and 

T—+—r2 =T = [ 0 , ^ - 1 , 1 , 1 , 2 , 1 , . . . , 1,3,1,...,1,2] for «>3. 
w+l ^ «+l -1 «+l "•" 2 n n-3 n-4 

This proves 

Theorem: For every integer m > 5, resp. w > 6, there exist integers bm>am>\ with (Z>w, aw) = 
1, resp. <iw > cm > 1 with (rfw, cm) = 1, such that the simple continued fraction of -~-y~, resp. 
7-+ 7-, has exactly w terms. 

By 2" +3*, i + i , i+7"> i + i"' Theorem 1 holds for m>\ mdm>2. We have 

0 w = : ^ - = [!,...,!] for /?>0 
F„ n+l w+1 

without normalization. For every real Ji between (j)n_l and 0W, we have 

/J = [l,...,l,...] for^>0. (6) 

We also have 
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Trivially, we observe that every real ju with 

0 < £ < 0 + f-2"-2 (7) 
or with 

<i>-<t>-2n-2<n«i> (8) 
satisfies (6). 

For primes/?, q, let q>p2+p, [i-^j-. Then we have /1>1, ~ j = [09p9/x]. M = M 
should satisfy (7), which means (pp2 +p<q <<f>p2 +p + (j)~2n~2p2. For x> x0, there exist primes g 
with x < q < x + x2/3, by Hoheisel (see [1]) and others. We use this with x = (f)p2 + p and choose 
p > x0 so that 

<r2"-y^(#>2+/>)2/3; 
by §2p2 > <j)p2 +p, the choice p > x0 + 03w+5 is sufficient. By the "Bertrand postulate" (and espe-

cially by Hoheisel), p < 2(x0 +$3w+5) can be satisfied. This proves 

3 V 3 — - — = [0,/>„,i,..-,i,...]. (9) 
CeU>{ n>0 Pn,qneP P„ ?„ ^ — ' 

pn<qn<C" 

For primes/?, g, let q> p2 - /? , A = p+q
 2. Then we have A>1, ~ + - = [0,/7-l, A]. ju = A 

should satisfy (8), which means (after rewriting) 

fp"-p<q<^p"-p+(j)-^-\p+q-p"y (io) 

Since p + q-p2 >p + (<p2p2 ~p)~p2 - #>2, the condition §2p2 -p<q<(j)2p2 -p + §~2np2 is 
sufficient for (10). As above, we apply Hoheisel. This proves 

3 V 3 — + - = [0,^-1,1,...,i,...]. (ii) 
C e i , ! n>0 Pn,qneP Pn <ln "~^ ' 

Pn<qn<cn 

In (9) and in (11), we have qn> Fn. 

On examining the argument, we see that p and q in (9) and also in (11) can be taken from 
arbitrary sets czN which satisfy conditions of types Bertrand and Hoheisel, respectively. 
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1. INTRODUCTION 

In a recent article [2], the authors showed that, for any positive integer k, 

7 l ^ ) * = ( f ) logfe* + 0(log*4*) 

where s(n) denotes the digital sum of the nonnegative Integer n and log x denotes the base 10 log-
arithm of x. It was conjectured that, for any positive integer k, 

^z^=ff]log"x+0(lo8t"lx)-
n<x V ̂  / 

During a presentation of this result, Carl Pomerance asked if there was any evidence for this 
better "big-oh" term. At the time, the conjecture was based solely on two results, one by Cheo 
and Yien [1] which states that 

7 l ^ ) = ^ o g x + 0(l) 
x^f N ' 2 

n<x ** 

and the other by Kennedy and Cooper [3] which states that 

5 > ( " ) 2 = ( f | log2x + 0(logx) 
n<x 

In this article we will show that 

ion-i rc\\k 

10" 

i 10"-1 fQ\k 

F S ^ - ( ! ) • * •<<»"> 
This provides more evidence for this better "big-oh" term. 

In [1], Cheo and Yien found that 

1 ^ ' 9 
10" tn 2 7=0 

In a similar manner, Kennedy and Cooper [3] showed that 

1 ! ^ i 2 81 2 33 
—- y$(iY =— nl+ —n. 
10" S 4 4 

Furthermore, using MAPLE, the following formulas were calculated: 

1993] 341 



SUMS OF POWERS OF DIGITAL SUMS 

1 MU* 3 729 3 891 2 
V shy = rr + n\ 

10" S 8 8 
1 i<£i 6561 4 8019 3 3267 2 3333 

> s(i) = n + JT + « n, 
10" ̂  16 8 16 40 
1 Mĵ i 5 59049 5 120285 4 147015 3 29997 2 
10" S 32 16 32 16 

1 M^i 531441 6 3247695 5 3969405 4 1080783 3 329967 2 15873 
10" to 64 64 64 64 32 4 

1 M^i 7 4782969 7 40920957 6 83357505 5 56133 4 20787921 3 999999 2 
yj(iy = w' + n + n rr rr+ nz, 

10" to 128 128 128 128 64 8 
1 ̂  o 43046721 8 122762871 7 750217545 6 76284747 5 1372208607 4 V sCif = rf + «7 + rf + «5 H4 

10" S 256 64 128 32 256 

67777479 3 371095263 2 33333333 
+ n + w «. 

64 320 80 
These results were obtained by initially considering the function 

/(x) = (i+x+x2 + -+x9y\ 
We then repeatedly differentiated, multiplied by x, and substituted x = 1. However, when an 
exponent of 9 was used, the computation became too big for the memory of the computer. 
Nevertheless, these results reinforced our belief that the conjecture is true. We proceeded to 
delve more deeply into the generating function. 

2. HIGHER DERIVATIVES 

Because of the form of the function which was initially differentiated, i.e., 

( i+x+x 2 + -.-+x9y\ 
we set out to find a formula for 

d" 
•g{x)\ dxr 

where n and m are positive integers and g is an arbitrary, continuously differentiable function. 
After investigating the situation using the computer algebra system DERIVE, we noticed the fol-
lowing pattern. 

Lemma 1: Let n and m be positive integers and g be a continuously differentiable function. Then 

dm 

gn= £>(»-l).••(«-«, nm + l)g"-">~ "^~ 
*-*-*- «1+2n2+ • • • +mnm=m 

m\ :(g(lY(g{2)r2-(g{m)Tm, (l!)w^1!(2!)"2«2!-.-(m!)"^w! 

where nlyn2,.,nm are nonnegative integers. 
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The proof of this result is by induction on m. However, it might be noted here that Lemma 1 
is just a special case of Faa di Bruno's formula [4] which states that if/(x) and g(x) are functions 
for which all the necessary derivatives are defined and m is a positive integer, then 

dxl ;f(g(*))= S ml 
»,+2»2 + •••+mnm=m n\'"nm-

( .«, + •••+/»„ ^ 
/ m*)) 

dxm6KJ 

V J V 1! 

where n1,n2,...,nm arenonnegativeintegers. 

3. MAIN RESULT 

We will need one final lemma before we can state and prove the main result. To do this, we 
let 

and for any positive integer k, 

Using fk, we have the identity 

f0(x) = (i+x+x2+---+x9y 

fk(x) = x-fk-l(x)-

10"-1 

5>r=/*(i). 
7=0 

With these definitions in mind, we can state the following lemma. 

Lemma 2: For any positive integer m, 

/mw=i{7}^/o0 )w> 
where {•} denotes a Stirling number of the second kind. 

Proof: We shall prove this result by induction on m. The result is clearly true for m = 1. 
Now assume that the result is true for any positive integer m>\. By the definition of fm+l and 
the induction hypothesis, we have 

fm+l (*) = *•/;(*) = *-i(£{7}*'/o(0 (x) j 
Next, by the product rule and simplification, we have 

=i({7}«'+I/o(wl)(x)+{7}-fe'/o(0w 
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Finally, by simplification and the fact that 

we have that 

= { 7 } * / o ( 1 ) « + i ^ 

Thus, the result is true for m + 1. Therefore, by induction, Lemma 2 is true for any positive 
integer m. 

Finally, we have the main theorem. 

Theorem: For all positive integers n and k, 
10"-1 / o A * 

z=0 

Proof: We first use Lemma 2 to obtain 
10"-1 

0"-l / Q Y 

5>(/)* = - nk\0n+O(nk-ll0n). 

1 U ' - 1 fc f i } 

E^=A(i)=i;i7o(o(i). 

Next, by Lemma with gn = / 0 and the fact that /0(x) = (1 + x + x2 + • • • + x9 ) " , we have that 

X J f }l7o(0(l) = ̂ 10w"*45* +O(/i*-110w) = f-1 nkl0n+O(nk-l10n). 

This proves our main result. 

4. QUESTIONS 

We conclude this paper with some open questions: 

Can we find an exact formula for 
i 10"-1 

— 5>(09 

and is there a general exact formula for 
10"-1 

10" ^ 
1 ^ , r t t 

J = 0 
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for all positive integers n and kl Finally, despite the fact that we now have more compelling evi-
dence, we still have not established the conjecture that, for any positive integer k, 

v l ^ ^ f f l V x + OOog*-1*). 
X n<x \ZJ 
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INTRODUCTION 

Repeating decimals containing the Fibonacci and Lucas numbers when their repetends are 
viewed in retrograde fashion, reading from the rightmost digit of the repeating cycle toward the 
left, have been explored in [1], [2], [3], [4], and [5]. Here, the sequences of generalized Fibonacci 
numbers u(n; p, q) which can be interpreted as sums along diagonals in Pascal's binomial coeffi-
cient triangle [6] and extended to multinomial coefficient arrays [7] are found within repetends, 
both as read left to right and as read right to left. 

1. BINOMIAL DIAGONAL SUMS 

Let u(n;p,q) be the sum of terms found along the rising diagonals of Pascal's binomial 
coefficient array written in left-justified form, 

1 
1 1 
1 2 1 (1.1) 
1 3 3 1 
1 4 6 4 1 

Call the top row the zero* row and the left-most column the zero* column. Then u(n; p, q) 
is the sum of those elements found by beginning in the zero* column and w* row and taking 
steps/? units up and q units right throughout the left-justified array. Note that u(n\ 1,1) = F„+1, the 
(n + Xf1 Fibonacci number. The sequence u(n\ p, 1) has the generating function [7] 

1 = f>(#r,/>,!)*" (1.2) 
L x x n=0 

which converges for \x\< 111. From the generating function, the recursion for the u(n; p, 1) is 

u(n;p,l) = u(n-l;p,l) + u(n-l-p;p,l\ n>p + l, 
where u{n\ /?, 1) = 1 for n = 0, 1, ..., p. 

Then, taking x = 1 /10 in (1.2), the decimal representation of the fraction 

lO^1 

lO^ 1 -10^-1 
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has successive terms u(n;p7l) appearing as successive digits in its repetend until carrying 
disguises the pattern. When/? = 1, we display the Fibonacci numbers in the well known 

100/89 = 1.12358 
13 
21 ... 

where the decimal is moved from the usual 1/89 so that the left-most digit is u(0; 1,1) = FV We 
also have 

1.00 
.11 
.0121 
.001331... 

or H - l l / 1 0 2 -f-112 /104 H— = 102 /(102 -11) = 100/89 by summing the geometric series. 
Similarly, for u(n;p,l), since (lO^ + l)* displays the coefficients of the &* row of Pascal's 
triangle interspersed by (p-1) zeros, we can sum elements that are/? units up and 1 unit over by 
summing the geometric series 

l + (10^+l ) /10^ + 1 +(10^+l ) 2 /10 2 ^ + 2 + . . »=10^ 1 / ( l0 / ? + 1 - (10 / ? + l ) ) . 

From [1], since 10(10p + 1 ) - 1 = lO^4"1 + 9, the repetend of the fraction 1/(10P+1 + 9) ends in 
powers of (10p +1), and thus gives u(n; p, 1) reading from right to left in the repetend. Again, 
we have the symmetric coefficients of Pascal's triangle interspersed with (p-l) zeros, so, for 
example, forp = 2, powers of 101 appear from the right as 

1 
101 

10201 
1030301 

104060401 

making as a sum .. .6432111 where u(n; 2,1): 1,1,1,2,3,4,6, . . . . Notice that we are summing 
elements that are up 2 and over 1 in the Pascal array (1.1), applying the Pascal connection of [1]. 

So far, the sequences u(n;p, 1) mimic the Fibonacci sequence in these applications. How-
ever, u(n; 1, q) is more challenging. 

Start with u(n\ 1,2): 1,1,1,2,4, 7,12,21, . . . , which has zero column elements in its definition. 
Then u(n; 1,2) has the associated sequence v{n\ 1,2): 0,1,2,3,5, 9, . . . , n = 0,1,2, . . . , formed by 
summing up 1 and over q throughout array (1.1) but starting with column one instead of column 
zero. Consider 

10.00 
.11 
.00121 
.00001331 
.00000014641... 

which is 1 /10"1 +11 /102 4-112 /105 + • • • = 104 / (103 -11) = 10000 / 989. The coefficients of suc-
cessive powers often appearing are 1,0,1,1,1,2,2,3,4,5,7, 9,12,16,21,. . . , where the odd terms 
give u(n; 1,2) and the even terms give v(n; 1,2), and we see powers of 11, and 989 = 103 - 1 1 . 
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Now, 102 -11 — 1 = 1099 gives powers of 11 shifted in groups of 2 to make the same sum from the 
right in 1/1099, which ends in 

1211101 
1331 

14641 

which sums to ...975432211101, where the w(»; 1,2) and the v(n; 1,2) are interleaved. 
Now, u{n; 1,3) begins on column zero, and has two related sequences v(n; 1,3) and 

w(n; 1, 3) that begin with columns one and two in array (1.1): 

u(n; 1,3): 1,1,1,1,2,5,11,... 
v(n; 1,3): 0,1,2,3,4,6,11,... 
w(n; 1,3): 0,0,1,3,6,10,.... 

Then 1 /10"2 +11/102 +112 /106 + • • • = 106 /(104 -11) = 1000000/9989 = 100.11012..., where 
the coefficients of 10* are the three sequences interleaved with u(n; 1,3) appearing as every third 
term. That is, 

100.00 
.11 
.000121 
.0000001331 
.00000000014641... 

which sums with coefficients 

1,0, 0,1,1,0,1,2,1, U , 3,2,4,6,5,6,10, U, 11,.... 

Now, 9989 = 104 -11 , and 103 • 11 - 1 = 10999. The three sequences u{n; 1,3), v(n; 1,3), and 
w(n, 1,3) are interleaved from right to left in the decimal repetend of 1/10999. 

In general, u(n; 1, q) appears as one of q sequences that interleave from left to right in 
102* / (10?+1 -11) and from right to left in the repetend of 1 / (10? -11-1). The q sequences are 
formed by summing up 1 and over q throughout array (1.1), beginning with column k, k=0, 1, ..., 
q-\. 

Things get more peculiar if we take q^l.p^l. Take/7 = 2, q = 2, and let v(»; 2,2) be the 
related sequence beginning at column one: 

u{n, 2,2): 1,1,1,1,2,4, 7,11,17,27,44, 72,117,189,... 
v(«;2,2): 0,1,2,3,4,6,10,17,28,45,72,116,.... 

We have to split Pascal's triangle into even and odd rows: 

10.000 
121 
.0014641 
.000016(15)(20)(15)61 
.000000 1 8 ... 

348 [NOV. 



RETROGRADE RENEGADES AND THE PASCAL CONNECTION II 

which is 1 /10_ 1 +112 /103 +114 /107 + • • • = 100000 / 9879 = 105 / (104 - l l 2 ) , and which has for 
coefficients of successive powers of 10 from left to right 

1,0,1,2,2,4,7,10,17,28,. . . 
while 

11 
.001331 
.000015(10)(10)51 
.000000 1 7 ... 

has sum 11 /102 +113 /106 +115 /1010 + • •• = 1100 / 9879 with coefficients of successive powers of 
10 given by 

1,1,1,3,4,6,0,17,27,45, . . . , 

where we see in both sequences that every second term of u(n; 2,2) is interleaved with every sec-
ond term of v(n; 2 ,2) . Now, 104 - 1 1 2 = 9879 and 112 • 102 - 1 = 12099 so 1/12099 has powers 
of 112 in groups of 2 digits to give the same interleaved sequence from right to left as in the even 
split above. 

If we take/? = 3 and q = 2, 

u{n- 3,2): 1,1,1,1,1,2,4, 7,11,16,23,34,52,.. . 
v(n; 3,2): 0,1,2,3,4,5,7,11,18,29,45, 68, . . . 

then l / l O ^ - t - l l V l O ^ l ^ / l O ^ l f / l O ^ + ' . ^ l O ^ O O 5 - ! ! 3 ) has as coefficients of 10* 
from left to right 

1,0,1,3,4,7,16,29,52,.. . , 

where every second term comes from every third term in u(n; 3,2) and v(n; 3,2). There are three 
similar cases, where the other two come from l l 2 /103 -hiI5 /108 + 118 /1013 + ••• 
= 11 2 -10 2 / (10 5 -11 3 ) and 11/102 +114 /107 +117 /1012 + •» = 1 M 0 3 /(105 - l l 3 ) . Now, 
103 -113 — 1 = 1330999, and the repetend of 1/1330999 has powers of 113 appearing in groups of 
3 from right to left, and has the primary interleaved sequence appearing from right to left. 

In general, for u{n;p,q), q>\, p>l, the primary case of q sequences interleaved where 
every q^ term is every pm one in the q sequences, appears from left to right in the coefficients of 
10* in the decimal expansion of the fraction W+2q~l I {W+q -llp) while the repetend has the 
primary7 case appearing right to left in the repetend of 1/(10^ -\\p - 1 ) , where powers of l\p 

appear in groups of q from right to left. If we take q = 1 in the formula for u(n\ /?, q), we get 
10p + 1I{\0p + l -llp), which makes every p^ term of u(n;p,l) appear, in contrast to 
l O ^ 1 / ( lO^ 1 - 10p - 1 ) , which makes all terms of u(n\ p, 1) appear. 

These representations of u(n; p, q) come from summing the geometric series 

1 I F l l 2 ^ iQ/**q-i 
101"* + l O ^ 1 + \Q2p+q+l + ' " ~ W+q-llp ' 
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where 11^ gives coefficients of every /?th row of Pascal's triangle, 10*+1 gives a separate place 
value for each coefficient, the ratio 11* / 10*+g moves/? rows up and q columns over in the array 
(1.1), 1 / \0l~q puts all zero terms of the q sequences to the left of the decimal point, and w(l; /?, q) 
is the coefficient of 1/10 in the decimal expansion. Summing all columns down catches all sum-
mands in the infinite sum, and makes q sequences interleaved. The repetend of 1 / (\0q • 1 1* -1), 
read from right to left, ends in pth powers of 11 moved over q columns, again giving q interleaved 
sequences. 

It is possible to make decimals for u(n; /?, q) that list every term of the q interleaved 
sequences if (/?, q) = 1. If we sum 

1 10*+ 1 10*+1 iQP+2g-i 

we have lined up the array to give successive terms of u(n\ p, q), n = 0, 1, 2, ..., interleaved with 
the successive terms of the other q-\ related sequences. Note that 10*+1 = 10...01,(/?-l) 
zeros, will give coefficients of rows of Pascal's triangle interspersed with (p -1) zeros, when 
raised to powers. The ratio (10*+l)/10*+g gives successive rows shifted/? units over and q 
units up to line up coefficients for summing. Then, u(l;p,q) is the coefficient of 1/10 and 
u(0;p,q) appears to the left of the decimal point, as do the zero terms of the other (q-l) 
sequences. The terms of the sequence u(n; /?, q) are interspersed with the terms of the q related 
sequences as before. However, if ( /? ,q)^\ , coefficients will not line up for proper summing to 
make u(n; /?, q). If/? = g, we get u(n; /?, q) as given by the fraction 

103*"1 _ 10*-1-(10p)2 

102* -10* - 1 " ~ (10*)2 - (10*)1 - 1 

where u(n; 1,1) is given by 102(102 —101 — 1) from our earlier fraction for u(n;p,l). If we 
replace 10 by 10*, we write a fraction where u{n\ 1,1) appears as every /?th term, interspersed by 
(/? -1) zeros, and we get the fraction for u(n; /?, /?) except for a shift of (/? -1) places in the deci-
mal point. We also line up previously derived sequences whenever ( /? ,q)^\ . Let (/?,q) = d. 
Then the fraction for u(n;p,q) gives the sequences u(n;p/d,q/ d) as every dth coefficient, 
interspersed so that the q/d sequences are interleaved, but the decimal point is moved (d -1) 
places to the right. When (p,q) = l, u(n;p,q) is given from the right in the repetend of the 
fraction 1 / [10^ • (10* +1) -1] appearing as part of the q interleaved sequences. 

Of course, [7] gives the generating function for u(n\ /?, q) as 

( 1 " X ) 9 , = Y u(n; /?, q)xn 

(l-x)q-xp+q „r0
 V 'F'V 

which converges for | x |< l /2 . Taking x = 1/10 and simplifying, the decimal expansion of 
9q~l • 10*+2^_1 / (9q • 10* -1) had u(n; /?, q) appearing as coefficients of 10* from left to right but 
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carrying makes the pattern disappear quickly. The pattern continues longer if we use x = 1/10*, 
k > 1, and look at groups of A: digits. This representation, however, does not lead to the same 
sequences being found in patterns from right to left except when q = 1. 

2. TRINOMIAL DIAGONAL SUMS 

The coefficients appearing in expansions of the trinomial (1 + x + x2 ) n , n - 0 ,1,2, . . . , written 
in left-justified form, are 

1 1 
2 3 2 1 
3 6 7 6 3 1 ( 2 1 ) 
4 10 16 19 16 10 4 1 
5 15 30 45 51 45 30 15 5 1 

Call the top row the "zero111 row" and the left column the "zero* column." Let u(n; p, q) be the 
sum of the term in the left column and the nth row and the terms obtained by taking steps/? units 
up and q units right throughout the array. Then, from [7], 

JT-_r = ftf(w;/,,l)x-. (2.2) 
l-x-xp+i-x w=l 

As in §1, the decimal expansion of 102p+1 / (102/?+1 - (102/? +10^+1)) has u(n; p, 1) as the coeffi-
cients of successive powers of 1/10 where u(0; p, 1) appears left of the decimal point, and powers 

o f O O ^ + lO ' + l) appear as 

(10 2 / ? +10 p +l ) ( lO^ + l O ' + l ) 2 102/?+1 

+ 102/7+1 + 104^+2 +'"~\o2P+l- (102 ' + 10 '+1)" 

Since 10(102/? +10p + 1) -1 = 102/?+1 + 10/H"1 +9, the repetend of l/(102/7+1+10^+1+9) ends 
in i#(«; p91) as in the binomial case. Note that/? = 1 gives the Tribonacci case reported in [1]. As 
before, the case for u(n\ p, 1) is simple because the known generating function almost takes care 
of it, but we are on our own when q > 1. 

Now, suppose that/? = 1, and consider u(n\\9q\ q>\. Then the decimal expansion of 
\®2q+lI(\Qq+2 -111) gives q interleaved sequences as in the binomial case from left to right, 
while the repetend of 1/(10* -111-1) gives q interleaved sequences from right to left. 

The case for u(n; p, q) is given from left to right by I02p+2q~l/(I02p+q - 1 1 lp), which gen-
erates every pm term of q interleaved sequences. Each of the q sequences is generated by starting 
in the k^ column, /1th row, and summing elements found by taking steps of up p, right q, 
throughout array (2.1), for k = 0, 1, ..., q - 1. Similarly to the binomial case, we sum 
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1/101_9+ l l l p /102 ' + 1+l l l 2 p /104 / ? +*+ 1 . . . , where the geometric ratio is l l l ' / l O 2 ^ * to select 
every /7th row and move q units right in the array, 11 lp contains 2p + 1 terms, and the zero term 
for each sequence appears to the left of the decimal point. The repetend of the fraction 
1/(10* -11 lp -1) will have the same interleaved sequences appearing from right to left and will 
show powers of 11 lp diagonalized from the right. 

Similarly to the binomial, we can write every term of the q interleaved sequences for 
u(n\ p, q), (p, q) - 1 from left to right by summing 

1 \02p + 10^+1 ( IQ^+lO'+l ) 2
 102/H-2g-i 

101"* + 1 0 2 / 7 + 1 + 104p+*+1 +'"~ \02p+q-\02p -10'-1 

and the same q sequences appear from right to left in the repetend of 1/(10^ • (102p + \0P +1) -1). 

3. MULTINOMIAL DIAGONAL SUMS 

Write the coefficients appearing in expansions of the multinomial (1 + x + x2 H— + xw)", n = 
0, 1, 2, ..., in left-justified form. Call the top row the zeroth row and the left column the zero* 
column. Let u(n; p, q) be the sum of the term in the zero* column and 72th row and the terms 
obtained by taking steps/? units up and q units right throughout the array. Then, from [7], 

i x XP+I J»i ... x^x=IM(";p> r>x"-
1 - X - X — X — "'• — X n-Q 

Thus, the decimal expansion of 10w/?+1 /(10m/7+1-(10w/7 + 10(w-1)p + —+ 10 + 1)) has u(n;p,l) 
appearing as coefficients of successive powers of 1/10, where u(0; p, 1) appears left of the deci-
mal. The repetend of the fraction l/(10M/7+1+10(w"1)/?+1+ 10(m~2)p+1+ --- + 10p+1+9) has 
u(n\ p, 1) appearing from right to left as before. We expect that the repetend 1/(10* • 11... lp -1), 

where (m + 1) l's appear in the multiplier of 10*, would generate the /7th terms of q interleaved 
sequences related to u(n\ p, q) from right to left as before, and that the repetend of the fraction 

10^+2*~V(10w;?+*-(ll...l)p) would generate those same interleaved sequences from left to 

right because we still have a "Pascal connection" available. The (mp + 1) coefficients of the pth 

row are generated by (11... l)p (there are m + 1 l's), and the geometric ratio is (11... \)P I \Qmp+q 

to select every /7th ro'w and move q units right, so we sum 1/101"*+(ll...l)/?/10w/?+1 + 

(11... l)2p I \02mp+q+l +.. . to form \0mP+2q~l / (10w/?+* - (11... 1)'). As before, we can write all 
the terms of u(n\ p, q), (p, q) = l, interleaved as part of the q sequences, left to right by 

IQW+q _ ( 1 0 ^ +10("-1)/7 +..• 10' +1 
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and from right to left in the repetend of 
1 

10^ • (iow/7+io(m~i)/? H- - - -+10^ -f-1) - r 
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INTRODUCTION 

A sequence of polynomials is a Fibonacci Sequence if it satisfies the recursion: 

fn*2(x) = ffnn(x) + fn(x) &T » > 0. (1) 

Two well-known Fibonacci sequences are the Fibonacci Polynomials, {Fn(x)}, defined using (1) 
with Fl(x) = lmdF2(x) = x9 and the Lucas Polynommials, {Zw(x)}, defined using (1) with 
Ll(x) = 2mdL2(x) = x ([1], [3], [4], [11], [12], [22], [23]). In addition to being Fibonacci 
sequences, these polynomials produce Fibonacci and Lucas numbers, respectively, when evaluated 
at+1. 

Here we examine a sequence of polynomials {Gn(x)} originating from multidimensional con-
tinued fractions with all one's. The golden ratio is a root of the quadratic polynomial in this 
sequence; hence, there is justification to consider the roots of the other polynomials in this 
sequence to be higher-order golden ratios. Surprisingly, these polynomials also form a Fibonacci 
sequence, and Fibonacci and Lucas numbers result when evaluated at +1 and - 1 , respectively. 

It turns out that the Fibonacci and Lucas polynomials, as well as this new sequence are exam-
ples of a larger class of Fibonacci polynomial sequences. We develop an explicit formula for this 
class and show specifically how the Fibonacci numbers are involved when evaluated at ±1. 

1. DEFINITION OF THE GOLDEN POLYNOMIALS {Gn(x)} 

The continued fraction 

1+ 
1 + -

satisfies the equation 
x = l + — 

x 

which is readily converted to the polynomial equation x2 - x -1 = 0. We define G2 (x) to be this 
second-degree polynomial, and denote its positive root as g2. This root is the value of the contin-
ued fraction in (2), namely, the golden ratio 

i-r-Vs g2=~T' 
Now consider a continued fraction of the form 
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1 + -
1 + -

(3) 

1 + -
V ! + •• 

Whereas the sequence of denominators in the continued fraction in (2) could be written in a list, 
the denominators of (3) would require a binary tree of all l's. This continued fraction can be 
written as 

1 
x = l + -

x + -
1 

or as the polynomial equation G3(x) = x3 - x 2 - 1 = 0, which has the value of (3) as a solution. 
Analogously, we designate this single positive root by g3 as an indication that it is a root of the 
third-degree polynomial G3(x). 

This process can be extended. Consider the family of recursive equations of the form 

x = l + - 1 

x + -
x + -

x + -
(4) 

n-\ x's 

These equations represent multidimensional continued fractions of all l's that have n - 1 branches 
at each level. For each n, this equation can be transformed into an n^ degree polynomial 
equation G„(x) = 0. (For n = 1, there are no x's on the right side, so it is natural to define 
Gl(x) = x-l.) 

In this way, we get a sequence of functions {G„(x)}. Since each function G„(x) has a 
positive maximal root gn [17], we also obtain a sequence of positive numbers {gn}. In Section 5, 
we will see that there is justification to consider these roots to be higher-order golden ratios. 
Because of this, we will refer to these polynomials {Gn(x)} as the "Golden Polynomials." 

For example, we can write the coefficients for some of these polynonjials as shown in Figure 
1. Whereas the sum of the coefficients in the 17th row of Pascal's triangle is 2", the sum shown 
here is -Fn_l (proven in Corollary 2.4 below). For other approaches to the generalization of the 
continued fraction algorithm, the reader is referred to Bernstein [2] and Szerkeres [21]. 
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n = l 1 -1 
n = 2 1 - 1 - 1 
« = 3 1 - 1 0 - 1 

« = 4 1 - 1 1 - 2 - 1 

n = 5 1 - 1 2 - 3 - 1 - 1 

w = 6 1 - 1 3 - 4 0 - 3 - 1 

n = l 1 - 1 4 - 5 2 -6 - 2 - 1 

« = 8 1 - 1 5 - 6 5 -10 - 2 - 4 - 1 

n = 9 1 -1 6 -7 9 -15 0 -10 -3 -1 

n = \0 1 - 1 7 - 8 14 -21 5 -20 -5 - 5 - 1 

FIGURE 1 

2. FIBONACCI POLYNOMIAL SEQUENCES 

A convenient way to express the Fibonacci recursion in (1) is to define the functional 

®(J,g) = X'f(x) + g(x). 
Similarly, we can represent a Fibonacci sequence generated by this functional by 

W i , /<,} = (/„ l/„+2 = ®<yB+i, /„) for n > 0}. 

This notation emphasizes that the entire sequence depends only on the two seed functions. 
All Fibonacci sequences can be represented in this way. For example, 

<D{x, 1} = {1, x, x2 +1,...} = {Fn(x)} = the Fibonacci Polynomials; 

<J>{x, 2} = {2, x, x2 +2,...} = {Ln(x)} = the Lucas Polynomials. 

It is clear that there are many such sequences, and we let 3F denote the set of all sequences gener-
ated in this way. Other approaches to the structure of Fibonacci-type polynomials have been 
pursued in Horadam [14], Shannon [19], and Dilcher [9]. 

A number of simple properties are evident. 

Observation 2.1: 

a. <D(c-f,c-g)-c-<E>(/,g) for any constant c. 

*• ®(fl,gl) + ®(f2>g2) = ®(fl+f2,gl+g2l 
c. {fn}^o{-f„}e®. 

* {fn}Agn}^^{fn+gn}^-
ft If hn= * ( / „ , gn\ where {fn},{gn}e&, then {^}e5 . 

To show that {Gn{x)} is a Fibonacci sequence, we will need the following lemma. 
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Lemma 2.2: The polynomial numerator and denominator obtained by simplifying the expression 
1 

x + -
x + -

1 
x + -

are Fn+l(x) andFw(x) respectively. 

Proof: The lemma is easily verified for n = 1 and n = 2. Now assume the lemma holds for all 
k<n. We can then write the expression with n x's as follows: 

x + -
x + 

1 
1 

x + — 
...J 

= x + - V = *+T-
i _xF,(x) + F„_1(x)^i^+1(x) 

x + -
v • * • / 

n-\ x's 

*;(*) 
,^,-iW 

Fn(x) F„(x) 

Noting that the consecutive Fibonacci polynomials share no common factors, and that {Fn(x)} = 
<D{x, 1} G 2?, this completes the proof. D 

We now show that the sequence of Golden Polynomials {Gn(x)} is a Fibonacci sequence. 

Theorem 2.3: {Gn(x)}e&. 

Proof: Substituting Fn(x) andi^_x(x) into (4) gives 

1 , . 1 _F„(x) + F„_l(x) 
x = l 

F«(x) 

n-l x's 

(5) 
Simplifying, we have 

Gn(x) = xFn(x)-(Fn(x) + Fn_1(x)) = 0. 

By Observations 2.1.c and 2.1.d and Lemma 2.2, we have {-(i^W + i^l^x))} e^„ By Obser-
vation 2,. 1 .e, it follows that {Gn(x)}e&. D 

The Golden Polynomials are easily seen to be 

{Gn(x)} = ®{x-\-l}. 

During the proof we discovered a relationship between these polynomials {Gn(x)} and the 
Fibonacci Polynomials {Fn(x)}. Rewriting (5), we have Gn(x) = (x-l)Fn(x)-Fn_l(x). Evalua-
ting at ±1 gives 
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Corollary 2.4: 
a. G„(l) = - i v 1 . 
b. GM(-1) = (-1)"4_1. 

This establishes another connection between continued fractions and the Fibonacci and Lucas 
numbers. 

3. A SIMPLE GENERALIZATION 

A familiar method of generalizing the golden ratio (Coleman [7], Raab [18], Bicknell & 
Hoggatt [4]) is to define "silver" and various other metallic ratios by forming a rectangle of 
dimensions 1 by x and removing c unit squares (see Figure 2 below). If the remaining rectangle is 
similar to the original, then x is called a "generalized golden ratio." 

# 1 # 2 # 3 # c - 1 # c 

FIGURE 2 

It is easily demonstrated that these numbers are precisely those that are expressed by contin-
ued fractions of period 1. If we then consider multidimensional continued fractions of period 1 
and write them recursively as before, we would have a sequence of polynomials corresponding to 
each positive integer. For example, the cubic continued fraction of period 1, with c as the con-
stant in the denominators, i& 

x = c + -
1 

• = c + - 1 

(c+- ) + ( C + - ) 
x + -

(c+-..) + 
( C + - ) 

Simplifying gives the third-degree polynomial H3(x, c) = x3 -ex2 -c. In this way, we obtain the 
sequence {Hn(x, c)} = <J>{x-c, -c} where the coefficients of Hn(x,c) are the same as those 
Gn(x) with every other coefficient having an additional factor of c. In fact, these polynomials 
satisfy the relation Hn(JC, c) = (1 /2){(1 + c)G(x) + (1 - c)G(-x)]. Theorem 2.3 is easily extended 
to these polynomial sequences as well, i.e., {Hn(x, c)} G3* . 

4. AN EXPLICIT FORMULA FOR FIBONACCI SEQUENCES 

Consider the Fibonacci sequences of the form ®{ax + b, c}. This class includes both the 
Fibonacci and Lucas Polynomials as well as the Golden Polynomials {Gn(x)} and generalized 
Golden Polynomials {Hn(x; c)}. Here we examine an explicit formula for the functions in such a 
sequence. 
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We will use the following notational conventions: 

a. Binomial Coefficients: C „ ^ r J = f ! H ) ! 

' \KJ [0, iork<0ovk>n. 
b* Greatest Integer Function: \x\ = k, for the greatest integer function. 

fl if k is even, 
c. Parity Function: 8k 

[0 if k is odd. 

Theorem 4.1: For fn(x) e®{ax + Z>, c}, 

/„(*)=ix***-*, 
where ^,> t =5n>jt -(a-5t +*- ( l -5 t ) ) + 5'fI_jft_2-(c-5k) 

^-Lfj-o 
and 5„>k = 

L*J J 

Proof: The formula is verified by direct computation for72 = 1 and n = 2: 

/1(x) = (a-l + 6-0 + c-0)jc + (a-0 + i - l + c-0) = or + A, and 

/2(x) = ( a 4 + *-0 + c-0)x2+(a-0 + 6-l + c-0)x + (a-0 + 6-0 + c-l) = ox:2+*x + c. 

Proceeding by induction, we write 
W+l /I 

n+l-k . \T* n „n-k 

fc = 0 Jfc=0 

«+l « 

= K+1,0X"+2 +K>UlXn+1 + "f((K+i,k+2 +Rn,k)x"-k) + Rn,n-
k=0 

It now becomes a matter of verifying that the coefficients are correct. The first two terms are: 

^ , + i ,o=^i ,o( f l - 1 + *-1) + 0-c(l) = a."5r
ll+lfo 

~ a'^n,0 = # * 1 = A " ^ „ + l , 0 = a ' ^n+2,0 = ^n+2,0 

~®'tn,0 = 0 - l = D' C „ + l j o ~ ^ ' ^«+2,1 = Ki+2,1 • 

Now consider the constant term 
K,n = Sn,n(a-8k+b-(l-8k)) + Sn_hn_2c-8k. 
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If n is odd, n = 2m + 1, and we have 

^ n ^ b ' S u n=b-Cmm = b • 1 = b• Cm+l m+l =b-Sn+2fn+2 - Rn+2,n+2-

Ifn is even, n = 2m, and then 

S! — c -n-r - S! 
Lfn,n~^m-l,m u ^m+l,m+2 un+2,n+2> 

Substituting these in, we have 

Rr,,n=a'Sn,n+C'Sn-l,n-2=a'0 + C ' 1 

~ a ' ^n+2, n+2 + C' \ + l , n ~ Ki+2, n+2 • 

All of the other coefficients are of the form: 

,̂-f-l, >t + ̂ , >t-2 = [^-1, ^ + ̂  Xr-2 K^' ^^ + * • (1 - 5^ )) 4- [^^D^^ ^_2 + ^ . ^ (^_2)_2 ]^ • 5^ ). 

It will suffice to show that Sn+li k + S„t k_2 - $n+2, k • Writing j = [k 12], we have 

Sn+l,k +Sn,k-2 ~ Cn-j,j +Cn-j,j-l ~ Cn+l-j,j ~ $n+2,k 

by the well-known additive relationship of Pascal's triangle. • 

Noting that {Gn(x)} = cD{jt - 1 , -1}, we have an explicit formula for the Golden Polynomials. 

Corollary 4.2: G„(x) = £ ( ($ , .* -S„^k_2)8k -S„,k(l-8k))x-k. 
k=\ 

We can also make a number of simple observations about this type of sequence. 

Corollary 4.3: For each fn e <&{ax + b, c}, 

a. (the leading coefficient of fn(x)) = (the leading coefficient of fx(x)) = a. 

b. (the trace of /„(*)) = (-1)" • (the trace of f0(x)) = (-1)" -c. 

c. (the norm of fn(x)) = (the norm of fx(x)) = b. 

* fm(0) = /0(0) = c and / ^ ( O ) - ^(0) = b. 

We can now see how Fibonacci numbers are present in all sequences of this type. 

Corollary 4.4: For each fn e<D{ax +b, c}, 

fn(l) = a.Fn+b.Fn+c-F„_l and fn{-\) = (-!)»(a-Fn-b-Fn+c-F^). 
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Proof: Theorem 4.1 can be expressed more conveniently as 

k=0 
A: even 

k=0 
£odd 

k=0 
keven 

Evaluating at 1 gives 

/„(l) = «E^+JI^a+cIW-2 

which can be found in [4]. Applying this to the first sum in each of (6)-(8), we have 

k<n 

£j$n,k ~ LJ 
k=0 

keven 
k=0 

keven w j 
= F. 

Similarly, the second and third sums become 
n n 

JlSn,k=Fn and X Sn-l,k-2 = Fn-V 
k=0 

fcodd 
k=0 

keven 

(6) 
k=0 k=0 k=Q 

k even k odd k even 

Evaluating at -1 gives 

/„(-!) = ' 

n n n 
a HSn,k ~b JlSn,k +C HSn-l,k-2 

k=0 k=0 ' k=0 
k even k odd k even 

n n n 

~a 2 X * +b X Sn,k~C Y,Sn-l,k-2 
k=0 k=0 k=0 

k even k odd k even 

We simplify these sums using the Fibonacci identity 

Fn+\ ~ 2 J j I 

for n even, 

for n odd. 

(7) 

(8) 

Substituting these into equations (6)-(8) gives the results. D 

5. HIGHER-ORDER GOLDEN RATIOS 

The applications of the golden ratio to geometry and the Fibonacci numbers are well docu-
mented ([5], [15]). Since the root g2 has the value of the golden ratio, it is natural to ask if the 
other maximal roots {gn} have similar properties. It appears that this is the case. In the four 
examples that follow, we examine how the {gn} can be considered generalizations of the golden 
ratio to higher dimensions. 
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5.1 Geometric Properties 
Consider a square of side x (labeled "square A" in the diagram below), containing a unit 

square (square B). Extending the sides of the unit square forms a third square of side x - 1 
(square C). 

FIGURE 3 

Note that the ratio of (the side of A) to (the side of B) is equal to the ratio of (the side of B) to 
(the side of C) only if x is the golden ratio, g2. That is x 11 = 1 / (x -1). Note also, however, that 
the ratio of (the area of A) to (the side of B) is equal to the ratio of (the area of B) to (the side of 
C) only if x is g3. That is x211 = l2 (x -1). 

A golden cuboid is a solid of unit volume having sides in the ratio of g2 :1:1 / g2 (Huntley 
[15]). It has the property that removing a slice off the top of dimensions 1/ g2 : 1 : II g2 leaves a 
smaller solid with the ratio of the volumes being g2. We can analogously define a "platinum 
cuboid" of dimensions g3:!:!/ g3. If instead of removing a slab of dimensions II g3 :l:l/g3, we 
add such a slab, the resulting ratio of volumes is g3 (see Fig. 4). 

FIGURE 4 

5.2 Continued Fractions and Continued Radicals 

By definition, the {gn} are precisely those numbers that can be expressed by multidimensional 
continued fractions using all l's. This is perhaps the strongest argument to consider these 
numbers as higher-order golden ratios. 

It is perhaps worth noting, since 1993 is the 400th anniversary of Vieta's continued radical 
expression for % (Smith [20]), that continued radicals were used extensively in past centuries 
(Cohen [6] and Shannon [19]). The golden ratio can also be expressed by continued radicals. 
That is, 
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Similarly, g3 can be expressed with continued cube roots as 

&=>/i+(i+o+o+-)!)¥=>/i+(ft)'-
5.3 Rational Sequences 

The golden ratio, g2, is the limit of consecutive Fibonacci numbers. This can be expressed as 

p, \P\ = ?i = 1, 
g2 = lim -*- where ^0t = pk_x, 

*—fc [pk=Pk-l+qk-1-
Similarly, there is a rational sequence that converges to g3 defined by 

g3 = lim — where \ 
k^qk 

A = ?i = 1, 

1k = Pk-\+<ll-\ -ql 

Instead of the Fibonacci numbers, the convergents are 1/1, 3/2, 19/13, 797/550, ..., etc. In fact, a 
rational sequence can be constructed for each gn using the Fibonacci Polynomials Fn_x(x) and 
Fn_2(x). Specifically, for a sequence that converges to gn+1, begin with pl=ql = l, then continue 

P^ <FAi)^M) l+^M 

5.4 Generated Integer Sequences 

The Fibonacci and Lucas numbers are integer sequences generated by the golden ratio and its 
real conjugate using the Binet forms. In a similar way, we can define the sequence g3 by 

g3
+h3+h3 ' 

where h$ and h$ are the complex conjugate roots of G3. It can be shown that {un} is the integer 
sequence defined by the recursive formula un+3 - un+2 +un with initial values u0 = 39ux = 1, and 
u2 = 1. This gives a "delayed" Fibonacci-type sequence (3), 1, 1, 4, 5, 6, 10, 15, 21, 31, 46, 67, 
98, ..., etc. See [8] for additional information on this. 
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(Submitted January 1992) 

1. INTRODUCTION 

As a generalization of the equation 0(x) + 0(&) = 0(x + /t), 0-partitions and reduced 0-
partitions and reduced 0 -partitions of positive integers were considered by Patricia Jones [1]. 
That is., n = ax + —\-at is a 0 -partition if i > 1 and <j)(n) = §{ax) + ' ' ' + 0(a/)> where 0 is Euler's 
totient function. Furthermore, a 0 -partition is reduced if each of its summands is simple, where a 
simple number is known as 1 or a product of the first primes. 

In [1] the author conjectured that every nonsimple number has exactly one reduced 0-
partition. Here, we show that the conjecture is false. In fact, we will see that the positive integers 
satisfying the conjecture are quite rare. The main purpose of this paper is to give a complete 
characterization of positive integers that have exactly one reduced 0 -partition. 

Throughout the paper, let/? and q denote distinct primes, especially, pi denote the Ith prime, 
and AQ = 1, Al; = Ylp<p P be the Ith simple number. 

It is shown in [1] that every simple number has no 0 -partitions and every nonsimple number 
has a 0 -partition as follows: 

(I) n = pa~lt + • • • + pa~lt if n = pat for a > 1 and/? j /; 
p 

(II) n - j H h j + qj if n = pj where/? and q do not divide^' and q < p. 
p-q 

This gives algorithms from which we can obtain at least one reduced 0 -partition of any non-
simple number. 

A nonsimple number is called semisimple if it has exactly one reduced 0-partition. 

Our main result is the following: 

Theorem: Let n be nonsimple. Then n is semisimple if and only if 
(i) n is a prime or n - 32, or 

(ii) n = aqx ••• qkA, with a(qx -pi+l)'-(qk -pi+i)<pM, where / > 1, k > 0, 
qi>q2>'">qk>Pi+i a r e Primes and ̂  is a positive integer. 

We will present the proof of the Theorem in Section 3. 
It can be seen from the Theorem that (pi+l -1)4 and/?/+24 are semisimple. For k > 2, the 

smallest semisimple number is 2 x 3 x 5 x 7 x 11 x 13 x 19 x 23 = 19 x 23 x A6. 

* Research supported by the National Natural Science Foundation of China. 
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2. LEMMAS 

First, we state without proof a basic and simple lemma. 

Lemma 1: Let n be semisimple and n - ax -\—+ at be any of its (j) -partitions. Then every at is 
simple or semisimple. 

Lemma 2: Let n be odd. Then n is not semisimple except n = p or 32. 

Proof: Using the algorithms (I, II), we know that one of pq and pa (oc> 1 mdpa >32) 
equals «, or a summand of some (j> -partition ofn. We have the reduced <p -partitions of pq and 
pa as follows: 

pq= 1 + ... + 1 + 2 + ---+2 = l+--- + l + 2 + ---+2 + 6, 
(p-2)(q-2)-2 p+q-1 (p~2)(q-2) p+q-5 

pa =l + ..- + l + 2 + --2= 1+--+1 +2 + - . + 2 + 6. 
^7-^2) ^7-^ P^-\P^2 v"~^cr" 

Now the result follows from Lemma 1. D 

Lemma 3: Suppose 
w = l + .-. + l + 4l + ... + i41 + ...4-+--- + 4-

XQ XJ Xi 

is a 0 -partition. Then n is not semisimple if Xj > pJ+l +1 for some 1 < j < i. 

Proof: It is sufficient to show that 

(pJ+l + l)AJ = AJ + ->. + AJ 

pj+i 

is not the only reduced 0 -partition of (pJ+\ + l)Aj. 
Since ^ / 2 is not simple, it has a reduced (j) -partition 

Aj/2 = l + '-' + l + Al + '~ + Al + ~- + Aj_x + • • • + ^y.i 
•^ * yj-i 

which is obtained by algorithm (II). (Notice that y£ * 0 for 0 < £ < j -1) . Hence, 

<KAj) = (fcAj /2) = y0 +y${Ax) + • • • +yj_l(t>(AJ_ly 
It follows that 

(Py+i + fM/= 1 + " + 1 + 4 + ••• + 4 + - + ̂ - i + - + i4y_1 + i4y+1 (1) 

is a reduced (j) -partition. • 

Lemma 4: Let n = mAi with /* > 1, pi+1 j m and/?2
+y |/w for somey > 1. Then n is not semisimple. 
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Proof: Put m'=m/p^j. Then 

n = m'Ai +>-+m'Ai 

Pi-j 

is a 0-partition. Hence, if the reduced <j) -partition 

n = Ai+- + Ai + A1+l + - + Ai+l + - + A1+t + - + AH 

is obtained by following the algorithms (I, II), then xi > pi+j > pi+1. Thus, by Lemma 3, n is not 
semisimple. • 

3. PROOF OF THE THEOREM 

It is evident that primes and 32 are all semisimple. By Lemma 2 and Lemma 4, we need to 
consider only n = aqx • • • qkAi as given in the Theorem. 

Write qj -pi+i =0Cj fori <j < A: and pi+2- pi+\ = j8. Then ocx >a2 >- .ock and ay >/? for 
\<j<k-l. 

It is easy to see from the definition that n has a reduced (j> -partition if and only if there are 
nonnegative integers x0,xl,...,x£ such that 

(2) 

(3) 

fl — XQ ~T X% /L-t -}-•••-{- XpAn, 

0(/i) = x0 + x$(Ai) + * • • + x${At). 

Further, n is semisimple if (x0, Xj,..., x£) is unique. 
For n - aqx "-qkAi,we have a reduced 0-partition 

J 11 = ^4+--.+a/+ik4+i t , 

[0(/i) - a,<H4)+• • • +<wK4>*)> 

which is obtained by the algorithm (II). On the other hand, we have the (j> -partition 

Let the reduced 0-partitions 

[Mai • -' <ik-iA) = A<K4 ) + •••+ */+jk-i0(4+*-i X 
and 

J #1 * • • Qk-iA+i= c/+i4+i+ *• c/+ifc 4+&' 
W i • • • ft-i4+i) = <7+i0(4+i)+ • • • +<7+*0(4+* X 

be obtained by the algorithm (II). Then at = abiak,ai+J = a(bi+jak +ci+J) for 1 < j < k-1 and 
ai+k = aci+k. It is not difficult to show by induction on k that 

a^acci—a^bi =al-ak_l and cM = (ax - /?) • • • ( a w - J8). 

(4) 

(5) 
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We now proceed by induction on k to prove that at > ai+l > - • > ai+k. When A: = 0, there is 
nothing to show. Suppose that k > 0 and the conclusion holds for k - 1. From this, we can 
assume that 

bi>bi+i>'">bi+k-i and ci+l>--->ci+k. 
Thus, 

ai+J -ai+j+l = a[(bi+j-^.^a* + ci+j -ci+j+l]>0 for 1 < j <k-1. 

It remains to show that at > ai+l. We claim that at = [fai+l +a(ocl - /3) • • • (ock - /?) which implies 
the conclusion. In fact, it is obvious for k = 1. Assume it holds for k -1 > 0. From this, it fol-
lows that bi=pbM+(al-P) — (ak_l-P) = pbi+l+cM. Thus,a;. =abiak = a(pbj+l + ci+l)ak 

= a(pbj+lak+pci+l) + aci+l(ak-p) =Pai+l+a(al-P) — (ak-p). Recall that at <pi+1. 

Set 
S = S(n) = {x = (x0, x1?..., xi+k)\x satisfies (2)}. 

Then a = (aQ, ...,a/_1,a/, ...,ai+k) sS, where aQ = •••a/_1 = 0 and ai9 ...,ai+k are as in (3). Define 
on S an order " >-" as x >• x[ if x; > x'j, for some j > 0, and xj+£ > x'J+i for £ > 0. Since 

j+ifc /+fc - l 

every solution of (2) is contained in S, and similarly, we can show that a is the maximal element 
of the totally ordered set (S, >•). If S ^ {a}, we let b_ be the maximal element of (£\{a}, >-) and 
distinquish two cases as follows: 

(i) bj >pJ+l for some l<j<i + k. Put 

t = (Po +y<>A +yu •••>bj-i +yj-i,bj,bJ+i+K ...,&,-+*) 
where y$9y\,...,yj-\ are as in (I). Then it follows that t_ eS. Since t>h, then t = a. In fact, 
this is impossible since, in formula (1), yt * 0, £ = 0,1, . . . ,y - l , always holds. This contradicts 
a0 = Q. 

(ii) fi7 <pj+l,j- 1,3, ...,/ + &. Since a>-£? there is an £, i <£ <i + k, such that a£ >x£ and 
a£+j =bt+J forj>0. Write c~at -x\ and c} ~x^ -a.,j = 0,1, ...,£~l Then 

^-i *-i 
c 4 = HCJAJ and c<K4)=Y*cfi(Aj)' 

j=o y=o 
Thus, 

y=i 

Set Gj=(j)(AJ)/AJ. Then ov >cjy+1 for/ > 1, and 0 < ( 1 - < T < / ) / ( 1 - C T / ) <1 for 1< j < £ Put 
^ = ( 1 - ^ ) 7 ( 1 - ^ ) . Then 
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y=i ; = i ; = i 

lf£ = i (when k = 0 this is always the case), then c. = x® for 0<j<£. In this case, 

cAi<H\cj\Aj = lLcjAj^cAi> 
7=1 7=1 

which is a contradiction. I f />i , then a ^ > at > I, and 

£-1 1-2 
cAt < Z lc; 1^/ - 07* " 2 H - i + HPJ+IAJ =At~ At-i + At-i + ' ' ' + Ai < At 

which again yields a contradiction. By the preceding discussion, we have shown S = {a}, i.e., q_ 
is unique. The proof is complete. D 

4. CONCLUDING REMARKS 

We mention here that it would be interesting to find the set S(ri) for any nonsemisimple 
number n. We guess that there is a unique x = (x0, xlv...) in S(n) such that o < xj <pJ+l for 
j > 1. In this case, S(n) can be derived exclusively by using the algorithms (I, II) and formula (1). 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to 72717.3515@compuserve.com on 
Internet All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

A?+2 = A»+i + A? > L0 = 2, Lx- 1. 

Also, a = (l + V5) /2 , /? = ( l - V 5 ) / 2 , Fn = (an-0")/ JT, and Ln = ocn+pn. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-748 Proposed by Herta T. Freitag, Roanoke, VA 

Let uk - Fkn I Fn for some fixed positive integer n. Find a recurrence satisfied by the 
sequence (uk). 

B-749 Proposed by Richard Andre-Jeannin, Longwy, France 

For n a positive integer, define the polynomial P„(x) by P„(x) = xn+2 -xn+l -Fnx-Fn_v 

Find the quotient and remainder when Pn{x) is divided by x2 - x-1. 

B-750 Proposed by Seung-Jin Bang, Albany, CA 

Find a linear transformation T: R2 -> R2 such that T(Fn, Ln) = (Fn+l, Ln+l). 

B-751 Proposed by Jayantibhai M. Patel, Bhavan's R A, College of Science, Gujarat State, 
India 

Prove that 6Lt1+3L3n+4 + 7 and 6LrlL3n+5 -7 are divisible by 25. 

. B-752 Proposed by Richard Andre-Jeannin, Longwy, France 

Consider the sequences (Un) and (Vn) defined by the recurrences Un= PUn_l-QUn_2, 
n>2, with U0=09Ux = l9 and V„ = PVn_x -QVn_2, n>29 with V0 = 29VX = P9 where P and Q 
are real numbers with P > 0 and A = P2 - 4Q > 0. Show that for n > 0, U„+l > (P12)Un and 
Vn+l>{PI2)Vn. 
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B-753 Proposed by Jayantihhai M. Patel, Bhavan's R A. College of Science, Gujarat State, 
India 

Prove that, for all positive integers n, 

= 36. 

F3 

F3 

F3 
rn+\ 
Fn+2 

F3 

Fn+l 

Fn+2 

F3 
rn+3 

F3 
rn+\ 
Fn+2 

Fn+3 

F3 

Fn+2 

F3 
rn+3 
Fn+4 

F3 
rn+5 1 

SOLUTIONS 

Convolution Solution 

B-720 Proposed by Piero Filipponi, Fond V. Bordoni, Rome, Italy 
(Vol 30, no. 3, August 1992) 

Find a closed form expression for Sn - Hh+k==2ri
 FhFk •> where the sum is taken over all pairs of 

positive integers (h, k) such that h + k = In and h < k. 

Solution by Russell Euler, Northwest Missouri State University, Maryville, MO 
Using the Binet formula, we have 

n 1 » 

h=l •> h=l 

>2n n2n al"+pin-p a 
2/7 I 

nLj2n P '- ~~~ a 

n+l 

l-alp \-pia 
The sum was evaluated by the standard formula for the sum of a geometric progression: 

V = r ~ r n+l 

h=\ \-r 
Upon simplifying, we find that 

S^HnL^+F^-i-l)"]. 

Most sums of this form can be found by the same method. Other, equivalent formulas found 
by solvers were: (n^ + F^J/5, nF2

n HF
2n-i + ( - 1 ) ^ - 1 ) ] / 5 , [(n + l)L2„ ~LnFn+l}/5, 

(n + l)F„2 -[F2n+1 - (2 /n , 1)(-1)»]/5, and [{5n + l)L2n + L2n_2 -5(-l)"]/25. 
Seiffert mentions the related convolution ([1], p. 118): 

2n-l 1, I FjF2n-j = - [(2n - l)F2n+l + {In + \)F2n_x ]. 
/ = i 

Reference: 
1. V. E. Hoggatt, Jr., & Marjorie Bicknell-Johnson. "Fibonacci Convolution Sequences." The 

Fibonacci Quarterly 15.2 (1977): 117-22. 
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Also solved by Paul S. Bruckman, Russell Euler, Graham Lord, Dorka 01 Popova, Bob Prie-
lipp, H.-J. Seiffert, Tony Shannon, Sahib Singh, and the proposer, 

Brittany Climbs Some Stairs 

B-721 .Proposed by Russell Jay Mendel, Bowling College, Oakdale, NY 
(Vol 30, no. 3, August 1992) 

Brittany is going to ascend an m step staircase. At any time she is just as likely to stride up 
one step as two steps. For a positive integer k, find the probability that she ascends the whole 
staircase in k strides. 
Editor's Comment: Only one correct solution was received We therefore begin by analyzing 
where most solvers went wrong. 

Those "solvers" fell into two camps: Camp A believes the answer is [jL^I2k\ Camp B 
believes the answer is [JAIFm+h Both camps agree that the number of distinct ascents with k 
strides is f O and that the total number of different ways of climbing the stairs is Fm+\ (see [2], p. 
10). 

Let us look at a staircase with 3 steps (the case m = 3). Camps A and B would have us 
believe the probabilities as shown in the corresponding tables below. In these tables, p(k) denotes 
the probability that Brittany ascends in k strides. 

k 
p(k) 

1 
0 

2 
2 
3 

3 
I 
3 

k 
P(k) 

1 
0 

2 
2 
4 

3 
I 
8 

Camp A Camp B 

Camp A cannot be correct because their probabilities do not add up to 1. 
Camp B notes that there are 3 types of ascents, 2 +1,1 + 2, and 1 +1 +1. They assume each 

method of ascent is equally likely. Since there are 2 ascents of length 2 and 1 ascent of length 3, 
this determines the probabilities shown in their table above. The probabilities add up to 1. How-
ever, Camp B cannot be correct because they believe ascents that begin with a stride of 1 step 
(1 + 2 and 1 + 1 + 1) occur twice as often as ascents that begin with a stride of 2 steps (2 +1). Yet 
we know that on Brittany's first stride, she is just as likely to stride up 1 step as 2 steps. 

To try to settle this discrepancy, I decided to watch Brittany during the past year and record 
data about her ascents. Fortunately, she climbs the Tower of London frequently, and I was able 
to record data on 4000 ascents of 3-step staircases. It turns out that 3015 ascents were of length 
2 and 985 were of length 3. This suggests that the correct probabilities are those given in the 
table below: 

k 
p(k) 

1 
0 

2 
3 
4 

3 
1 
4 

Observed Probabilities 

These probabilities can be confirmed by the following transition tree. Each node represents a 
state during the ascent. The edges show whether Brittany makes a stride of 1 or 2 steps from 
each state. The probability of reaching each state is given to the right of that state. We assume 
that all paths out of a state are equally likely, since at any time, Brittany is just as likely to stride 
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up 1 step as 2 steps. Of course, when Brittany is one step away from her goal, she is forced to 
make a final stride of 1 step. 

One can see from this transition tree that the probability of a 3-stride ascent is 1/4. Next, we 
move on to the general solution. 

Solution by Peter Griffin, California State University, Sacramento, CA 

There are two mutually exclusive ways to ascend m steps in k strides. 
If the final stride was a double-step, then Brittany made rn-k-l double-steps in her first 

k-\ strides. The number of ways this could happen is L^l_i)- Each of the k strides in the 
complete ascent occurred with probability 1/2. 

If the final stride was a single step, then the last stride was forced and thus was taken with 
probability 1. In her first k-\ strides, Brittany must have made m-k double-steps (each with 
probability 1/2). The number of ways this could happen is (*:£]. 

Thus, the probability of ascending the whole staircase in k strides is 

3k-mf k 
h [m-k 

The proposer indicated that his proposal generalizes Problem 10 on page 407 of [1] and that 
this problem is a natural example of a discrete probability space that can be represented by a 
tree whose paths are not all the same length. 

References: 

1. Billstein, Libeskind, & Lott. Mathematics for Elementary School Teachers: A Problem Solv-
ing Approach. 4th ed. Redwood City, CA: Benjamin/Cummings, 1990. 

2. S. Vajda. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications. 
Chichester: Ellis Horwood Ltd., 1989. 

Four incorrect solutions were received. 
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Fibonacci Integrand 
B-722 Proposed by H.-J. Seiffert, Berlin Germany 

(Vol 30, no. 3, August 1992) 

Define the Fibonacci polynomials by F0(x) = 0, Fx(x) = 1, andF„(x) = xFn_x(x) + Fn_2(x), for 
n > 2. Show that for all nonnegative integers /?, 

r— 
J° (x2 

dx K 

+ l)F2n+1(2x) 4n + 2 

Solution by Hans Kappus, Rodersdorf, Switzerland 

The Binet formula for the Fibonacci polynomials ([2], p. 99) is 

F»(x) = 
1 

i. x^+4 
x + Vx2+4 Y U xz+4 - y 

Thus, the integral turns out to be 

J>oo 

0 
2dx 

^u~i[(x+V^T7)2w+1 - (x - 4xrVifn+l ]' 
The substitution x = sinh t gives 

z = r dl 
n Jo cosh[(2« + l)f]" 

Finally, the substitution t = 01 (In +1) gives 
/„ = I sech 9d6- [arctanfsinh 0)T = . 

n 2w + l J o 2n + ll Jo An + 2 
We have used the following well-known results about hyperbolic functions (see §4.5 of [1]): 

d sinh z 
dz 

and 

= coshz, cosh2 z- sinh2 z - 1, (coshz + sinh z)n - cosh/iz + sinhnz, 

J sech z dz - arctan(sinh z). 

References: 
1. Milton Abramowitz & Irene A. Stegun. Handbook of Mathematical Functions. Washing-

ton, D.C.: National Bureau of Standards, 1964. 
2. P. Filipponi & A. F. Horadam. "Derivative Sequences of Fibonacci and Lucas Polynomials." 

In Applications of Fibonacci Numbers. Vol. 4, pp. 99-108. Dordrecht: Kluwer, 1991. 

Also solved by Seung-Jin Bang, Paul S. Bruckman, Piero Filipponi, Igor 01 Popov, and the 
proposer. 
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The Great Divide 

B-723 Proposed by Bruce Dearden & Jerry Metzger, U. of North Dakota, Grand Forks, ND 
(Vol. 30, no. 3, August 1992) 

(a) Show that, for WEE 2 (mod 4), F„+l(F? + Fn -1) divides Fn"(F* +Fn + 1)-1 . 
(b) What is the analog of (a) for n = 0 (mod 4)? 

Solution by H.-J. Seiffert, Berlin, Germany 
It is easily verified that, for all positive integers k, 

2k-\ F 2k+\ F 2k _ - , 

Ev;=2t , ;—-. (i) 

SW^i^2"^1", (2) 
r=0 ^ 

i(-D^^=i"("ir^+v (3) 
r=0 

2 + ^ 4 f c + 2 + ^ 4 £ + 2 + ^4k+2^4k+3 ~ ^4k+3F2k+l, V V 
and 

Ft = F«-iF«*i "(-I)"- (5) 
(a) If w is a positive integer with w = 2 (mod 4), then there exists a nonnegative integer k, such 
that n = 4A: -f 2. Now in formula (1), replace & by 2& +1 and set x = F4k+2 to obtain 

J74k+2rj72 , 7 7 x -, 4£+l 
/ I - r4k+2 \r4k+2 ~1~r4k+3) ~ x _ V 77 77 J 

Note that the left side of this equation, 0, is an integer, showing that F"(F„ +Fn+l) - 1 is divisible 
by JP„2 +Fn-\. It remains to show that Q is divisible by Fn+V 

Using result (5) with n - 4k + 2, we find 
2fc 2fc 2fc 2k 

Q = £^+l^+2 +X^+2^+] s Z ( - l ) r ^ r + 1 + F 4 t + 2 £ ( - 1 ) ^ + 2 (modF4,+3). 
r=0 r=0 r=0 r=0 

Applying results (2) and (3) followed by (4) gives 

Q a 2+FM+LM+FML^ m ̂ ^ m Q ( m o d ^ 

Thus, 0 is divisible by Fn+1 = F4k+3. 

(b) By the same method, one can prove that, for n = 0 (mod 4), 

Fn+i(FZ-Fn-l) divides F;(i^2-Fw+1) + 1. 

,4/so solved by Paul S. Bruckman and the proposers. 
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Edited by 
Raymond E0 Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-481 Proposed by Richard Andre- Jeannin, Longwy, France 

Let <j)(x) be the function defined by 

where r>2 is a natural integer. Show that (j)(x) is an irrational number, if x is a nonzero rational 
number. 

H-482 Proposed by Larry Taylor, Rego Park, NY 
Let7, k9 m, and n be integers. Let An(m) - Bn(m-l) + 4An(m-1) and Bn(m) - ABn(m-1) + 

5An(m-1) with initial values An(0) = Fn, Bn(0) = L„. 

(A) Generalize the numbers (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) to form an eleven-term arithmetic 
progression of integral multiples of An+k{m + j) and/or Bn+k(m + j) with common difference 

(B) Generalize the numbers ( 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 ) 1 0 form a ten-term arithmetic pro-
gression of integral multiples of An+k(m + j) and/or Bn+k(m + j) with common difference An(m). 

(C) Generalize the numbers (1, 1, 1, 1, 1, 1, 1, l ) to form an eight-term arithmetic progres-
sion of integral multiples of An+k(m + j) and/ or Bn+k(m+j) with common difference An(m). 

Hint: 4f(l) = - l l ( - i r ^ l l ( - l ) . 

Reference: L.Taylor. Problem H-422. The Fibonacci Quarterly 283 (1990):285-87'. 

SOLUTIONS 

A... Periodic 
H-464 Proposed by H.-J. Seiffert, Berlin, Germany 

(Vol 30, no. 1, February 1992) 

Show that I [ j k - 2 t = ^ , where AJ=(-lfJ+^ -((-1)^1 H-lf^)h. [ ] 

denotes the greatest integer function. 
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Solution by C. Georghiou, University ofPatras, Patras, Greece 
First, note that Aj is periodic with period 10 and with AQ = A5 = 0, Ax - A2 = As = A9 = 1, 

and A3 - A4 = A6 = A7 = -I. Its (ordinary) generating function is 

g(z) = (z + z 2 - z 3 - z 4 - z 6 - z 7 + z 8 + z 9 ) / ( l - z 1 0 ) 
= (z + z 2 - z 3 - z 4 ) / ( l + z 5 ) -z ( l - z ) ( l + z ) / ( l - z + z 2 - z 3 + z 4 ) 

z 2 - z + l - z *+z2 

Second, let 

„=0VAr=0^ ' J «,Ar=(A ' «=0 

w/2 + l/2,w/2 + l „ 2 

« + l 

where 2FX[ ] is the Gauss hypergeometric series (see solution of H-444). But 

iFi 
a, a + 1/2. 

la 
= 22a-1(l-z)-1/2[l + (l-z)1 / 2] , 

(see M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions [New York: Dover, 
1965] Entry 15.1.14, p. 556), and therefore, by setting d = (l-4x2)1 / 2 we obtain 

™-%<&um Now 

and 

l + d 2x 
2x l + d 

= d/x l + d 2x 
- + =l/x 

1 + dY f 2x 
2x ) + l + d 

2x l + d 

= l / x 2 - 2 . 

Therefore 

/oo= l-x-x 
which is the generating function of Fn, and the assertion follows readily. Note that the problem is 
the same as H-444. 
Also solved by P. Bruckman and the proposer. 

BGood 

H-465 Proposed by Richard Andre-Jeannin, Tunisia 
(Vol 30, no. 1, February 1992) 

Let/? be a prime number, and let rx,r2,...,rs be natural integers such that $>2,rl<p, and 
Hk=[ krk = p. Show that the number 
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B, 1 ( r i +r2 + - + r , ) ! 

is an integer. 

Solution by Paul S. Bruckman, Edmonds, WA 

Let Bs = Br^ for brevity. Let N denote the set of positive integers. We may express Bs 

as follows: 
<r,+Y...»,-D. 

From the condition ££=1 Ar̂  = /?, with l<rk, k = 1,2,..., s, it follows that r̂  </?. Then, we see 
from (1) that Bs = AIB, say, where gcd(i?, p) = 1. 

Also, there are s distinct ways to express Bs, as follows: 

B,=Uk/rk,k = \,2,...,s, (2) 

where Uk is the multinomial coefficient defined as follows: 

Uk=h+'2 + -+r.-W. (3) 
r1\r2\...(rk-l)\:.r,l 

As we know, the Uk's are positive integers. Therefore, rkBs GN. Therefore, BsY,sk=ikrk = 
pBs GN. This implies that either rkBs GN, or else Bs-Alp for some integer A; however, as 
we have seen, this latter contingency is impossible, so we are done. 

Also solved (partially) by the proposer. 

A Unique Answer 

H-466 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 30, no. 2, May 1992) 

Let p be a prime of the form ax2 + by2, where a and b are relatively prime natural numbers 
neither of which is divisible by/?; x andj are integers. Prove that x and y are uniquely determined, 
except for trivial variations of sign. 

Solution by Don Redmond, Southern Illinois University, Carbondale, IL 

Suppose that there are two representations, say, p-ax2 + by2 mdp = ar2 + bs2, where we 
may assume that x, y, r, and s are natural numbers. Then (x, y) - (r, s) = 1. If we eliminate b 
between the two representations, we have p(y -s ) = a(r y -s x ). 

Since p\a, we see that p\(r2y2 -s2x2), and so, for some choice of sign, we have 

ry = ±sx (mod p). (1) 

Also, the two representations give 

p2 = (ax2 + by2 )(ar2 +bs2) = (axr ± bys)2 + ab(ry + sx)2. (2) 
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If ry - sx, then (x, y) = 1 = (r, s) implies that r = x and s = y. 
If ry ^ sx, then (1) and (2) imply that \ry ±sx\= p, a = b - 1, and oxr +&JAS* = 0. This implies, 

since x2 +y2 = r2 +$2 = p, that x = s andj = r. 
Thus/? has essentially only one representation. • 

Also solved by R Isreal and the proposer. 

Many Congruences 

H-467 Proposed by Larry Taylor9 Rego Park, NY 
(Vol 30, no. 2, May 1992) 

Let (an,hn, cn) be a primitive Pythagorean triple for n = 1, 2, 3, 4, where an,bn, cn are posi-
tive integers and bn is even. Let p = \ (mod 8) be prime; r2+$2z=t2 (mod p), where the 
Legendre symbol f^±H!l\ = 1. 

Solve the following twelve simultaneous congruences: 

K,*i ,<i)s(r , .s ,f) , 
(a2,b2c2) = (r,s,-tl 
(a3,b3,c3) = (s,rJX 
(a4,b4,c4) = (s, r, -1) (modp). 

For example, if (r, s9 i) = (3,4,5) (mod 17), 

(a1,ft1,c1) = (3,4,5), 
(«2,62,^2) = (105,208,233), 
(03,6,,^) = (667,156,685), 
(a4,ft4,c4) = (21,20,29). 

Solution by Paul S. Bruckman, Edmonds, WA 

All congruences are assumed to be (mod/?), unless otherwise specified. Some definitions and 
notational remarks are in order. A pair of integers (w, v) is said to be a generator of the primitive 
Pythagorean triple (p.P.t.) (a, b, c) if the following conditions hold: 

u>v>0; u£v(mod2); gcd(w,v) = 1. (1) 

In that event, we have 
a = u2-v2; b = 2uv; c = u2+v2. (2) 

We also write (u, v) GG(G, b, c), meaning that (u, v) satisfies (1), and (2) holds. 

The hypothesis implies that r and t have the same parity, since 1 i£±£l I = 1 is a stronger state-

ment than [2"'(f+r)j = 1; also, it is implied that s is even. Since [\s] = [\(t + r)]^\(t -r)\, it fol-

lows that *(r r) 1 = 1. Therefore, there exist integers w and V such that 

( f | , ) 2 s l ( / + r ) j ( v , ) 2 s ± ( , _ r ) . ( 3 ) 

By adding or subtracting the congruences in (3), we obtain 

t = (w)2 + (v)2, r ss (w)2 - (V)2. (4) 
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Also, 4(ufv)2 = t2-r2 = s2; thus, by an appropriate choice of signs for w and/or v , we have 

s = 2ufvf. (5) 
There is nothing in the hypotheses to suggest that (r,s,t) is a p.P.t, even though (r,s,t) = 
(3,4,5) in the example, which is indeed a p.P.t.; we could just as well have been given (r, s, t) = 
(37,-30, 73), which also satisfies the hypotheses for/? = 17, yet 372 + 302 * 732. Nor is it likely 
that our initial choice of w and v satisfying (3) and (5) satisfy (1). However, we see that by add-
ing suitable multiples of/? to w and /or v , we do obtain a new pair (uu vx) that satisfies (1). It is 
then true that (uh vx) e G(ah 1\, q), where (au \ , q) = (r, s, t). To use the data of the example, 
we may take (uh v{) = (2, 1) as the solution of (3) and (5), with/? =17, (r, s, t) = (3,4,5), also 
satisfying (1), since (2,1) e G(3,4,5). 

Next, we observe that since p = l (mod 8), there exist solutions / and/of the following 
congruences: 

i2 = -\ / - 2 - i . (6) 

In fact, there are two solutions for each congruence in (6). We will need to choose the signs of/ 
and7 such that appropriate generators (un, v„) may be found for (an, bn7 cn\ n - 2, 3,4. Thus, for 
n = 2, and for an appropriate solution / of (6), we claim that (u2, v2) is found from the following: 

u2=ivh v2 = -iul. (7) 

Proof: Given (7), then u2-v2 = i2 (v2 - u\) = u2 - v\ = r; 2u2v2 = -2i2ulvl = 2ulvl = s; and 
u2 +v2 =i2(u2 +v2) = -u2 -v2 =-t. Also, we determine w2andv2 that satisfy (1). It then 
follows that (u2, v2) GG(a2,b2,c2), with (a2,b2,c2) = (r,s,-t). In this example, we take 
j = -4, w2=-4-l , v2=4-2. We find that we may take (u2, v2) = (13, 8), and that (13, 8) e 
G(105,208,233); also, (105,208,233) = (3,4, - 5). 

Next, we claim that, by an appropriate choice of/, we have: 

«3 s 7 (" i+Vi) , ^3=J(U\-Vi)- (8) 

Proof: u\ - v2 = y'2 • 4I/Jvx = 2w1v1 = s; 2u3v3 = 2j2 (u2 - v2 ) = u2 - v2 = r; and u\ + v2 = 
2j2(u2 +Vi) = u2 +v2 =t. In the example, 7 = 3; then, w3 = 3-3,v3 = 3-1. We may take 
(u3, v3) = (26, 3), and we find that this pair generates (a3,b3, c3) = (667,156, 685) = (4, 3,5). 

Finally, we claim that, for appropriate / andy, we have 

w4 = y(^i-viX v4 = -v(ui+vi); (9) 
equivalently, 

u4 = -iv3, v4=iu3. (10) 

Proof: u\-v\= i2(v2 -u3) = u2-v2 =s; 2u4v4 = -2i2u3v3 = 2u3v3 = r; and u2
4+vl = 

-i2(v2 + u2) = -u\ - v2 = -t. In this example, take / = 4. Then u4 = -4• 3 = 5 and v4 = 4• 26 = 2. 
We find that (5, 2) eG(21, 20,29), where (21,20,29) = (4, 3,-5). 
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To summarize, (un, vn) eG(an,bn,cn), n = 1,2,3,4, where 

w1
2=2"1(r + r), v1

2=2"1(7-r); w2=/v1? v2=-/w1; 
% s M + vi), v3 s y(«i - vO; w4 » -iv3, v4 = m3; 

(wi,Vj) and the values of/ and j are obtained as appropriately chosen solutions of (3), (5), and 
(6), so as to satisfy (1) for each (un, vn). 

Also solved by the proposer. 

A Very Odd Problem 

H-468 Proposed by Lawrence Somer, Washington, D. C. 
(Vol 30, no. 2, May 1992) 

Let {v„}0<„<00 be a Lucas sequence of the second kind satisfying the recursion relation 
vn+2 = avn+l+bvn, where a and b are positive odd integers and v0 =2,vx= a. Show that v2n has 
an odd prime divisor p = 3 (mod 4) for n > 1. 

Solution by Russell Jay Hendel, Patchogue, NY 

If a is odd, then a2 = 1 (mod 4) and 2a = 2 (mod 4). It follows that the congruence classes 
modulo 4 of the sequence v0, v1? v2,..., are 2, a, 3, a(3 + 6), 3,3a£, 2, a,... .Since this sequence has 
period 6, v6w±2 = 3 (mod 4), implying that at least one of the prime factors of v6n±2 is congruent to 
3 modulo 4. 

v2n is either of the form v6n or v6n±2. Therefore, we have to deal with the case v2n. First we 
note that vn\vnk for any odd integer k. This follows because the Binet form of vn is yn +8n with 
y = (a + J {a2 + 4b}) I2,y +*8 -a.y8- b. Therefore, if k is an odd integer, the formula xk +yk -
(x + y){xk-l+yk-l-xy{xk-2+yk-2) + (xy)2(xk^ implies, with x = y\ 
y = S\ that vn\v„k. 

Proceeding as in [1], for each integer n, 6n - 2m(6nf + 3), for some integers m and «'. Since 
2m = ±2 (mod 6), there is a prime /? = 3 (mod 4) such that p divides v2Wi. Since 6n 12m is odd, p 
also divides v2n and the proof is complete. 

Reference: 
1. Sahib Singh. "Thoro's Conjecture and Allied Divisibility Property of Lucas Numbers." The 

Fibonacci Quarterly 18.2 (1980): 135. 

Also solved by P. Bruckman, K Andre-Jeannin, and the proposer. 
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