
D THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 

TABLE OF CONTENTS 

p-Adic Congruences for Generalized 
Fibonacci Sequences Paul Thomas Young 2 

On a Conjecture of Piero Filipponi ' Richard Andre-Jeannin 11 

Announcement on Sixth International Conference 14 

On Fibonacci Numbers and Primes of the Form Ak + 1 Neville Robbins 15 

Fourth International Conference Proceedings 16 

Cross-Jump Numbers Kanakku Puly 17 

On Sums of Reciprocals of Fibonacci and Lucas Numbers Derek Jennings 18 

Author of Title Index for Sale 21 

Fibonacci-Type Sequences and Minimal Solutions of Discrete 
Silverman Games Gerald A. Heuer and Ulrike Leopold- Wildburger 22 

Book Announcement: Generalized Pascal Triangles and Pyramids: 
Their Fractals, Graphs, and Applications by Dr. Boris A. Bondarenko 43 

Eulerian Numbers Associated with Sequences of Polynomials M.V. Koutras AA 

Referees 58 

A Lucas-Type Theorem for Fibonomial-Coefficient Residues John M. Holte 60 

Fibonacci Numbers and Fractional Domination of Pm xPn E.O. Hare 69 

Cycles in Doubling Diagrams Mod m AmosEhrlich 1A 

Congruences for a Wide Class of Integers by Using 
Gessel's Method A. Kyriakoussis 79 

Elementary Problems and Solutions Edited by Stanley Rabinowitz 85 

Advanced Problems and Solutions Edited by Raymond E. Whitney 91 

/ I VOl VOLUME 32 FEBRUARY 1994 NUMBER 1 



PURPOSE 
The primary function of THE FIBONACCI QUARTERLY is to serve as a focal point for 

widespread interest in the Fibonacci and related numbers, especially with respect to new results, 
research proposals, challenging problems, and innovative proofs of old ideas. 

EDITORIAL POLICY 
THE FIBONACCI QUARTERLY seeks articles that are intelligible yet stimulating to its 

readers, most of whom are university teachers and students. These articles should be lively and 
well motivated, with new ideas that develop enthusiasm for number sequences or the explora-
tion of number facts. Illustrations and tables should be wisely used to clarify the ideas of the 
manuscript. Unanswered questions are encouraged, and a complete list of references is ab-
solutely necessary. 

SUBMITTING AN ARTICLE 
Articles should be submitted in the format of the current issues of THE FIBONACCI 

QUARTERLY. They should be typewritten or reproduced typewritten copies, that are clearly 
readable, double spaced with wide margins and on only one side of the paper. The full name 
and address of the author must appear at the beginning of the paper directly under the title. Il-
lustrations should be carefully drawn in India ink on separate sheets of bond paper or vellum, 
approximately twice the size they are to appear in print. Since the Fibonacci Association has 
adopted Fi = F2 = 1, Fn+i = Fn + Fn-i,n> 2 and Li = 1, L2 = 3, Ln+i = Ln + Ln-i, n >2 as the stan-
dard definitions for The Fibonacci and Lucas sequences, these definitions should not be a part 
of future papers. However, the notations must be used. One to three complete A.M.S. 
classification numbers must be given directly after references or on the bottom of the last page. 
Papers without classification numbers will be returned. 

Two copies of the manuscript should be submitted to: GERALD E. BERGUM, EDITOR, 
THE FIBONACCI QUARTERLY, DEPARTMENT OF COMPUTER SCIENCE, SOUTH 
DAKOTA STATE UNIVERSITY, BOX 2201, BROOKINGS, SD 57007-1596. 

Authors are encouraged to keep a copy of their manuscripts for their own files as protection 
against loss. The editor will give immediate acknowledgment of all manuscripts received. 

SUBSCRIPTIONS, ADDRESS CHANGE, AND REPRINT INFORMATION 
Address all subscription correspondence, including notification of address change, to: 

RICHARD VINE, SUBSCRIPTION MANAGER, THE FIBONACCI ASSOCIATION, SAN-
TA CLARA UNIVERSITY, SANTA CLARA, CA 95053. 

Requests for reprint permission should be directed to the editor. However, general permission 
is granted to members of The Fibonacci Association for noncommercial reproduction of a 
limited quantity of individual articles (in whole or in part) provided complete reference is made 
to the source. 

Annual domestic Fibonacci Association membership dues, which include a subscription to 
THE FIBONACCI QUARTERLY, are $35 for Regular Membership, $40 for Library, $45 for 
Sustaining Membership, and $70 for Institutional Membership; foreign rates, which are based 
on international mailing rates, are somewhat higher than domestic rates; please write for 
details. THE FIBONACCI QUARTERLY is published each February, May, August and 
November. 

All back issues of THE FIBONACCI QUARTERLY are available in microfilm or hard copy 
format from UNIVERSITY MICROFILMS INTERNATIONAL, 300 NORTH ZEEB ROAD, 
DEPT. P.R., ANN ARBOR, MI 48106. Reprints can also be purchased from UMI CLEARING 
HOUSE at the same address. 

©1994 by 
The Fibonacci Association 

All rights reserved, including rights to this journal 
issue as a whole and, except where otherwise noted, 

rights to each individual contribution. 



GQie Fibonacci Quarterly 
Founded in 1963 by Verner E. Hoggatt, Jr. (1921-1980) 

and Br. Alfred Brousseau (1907-1988) 

THE OFFICIAL JOURNAL OF THE FIBONACCI ASSOCIATION 
DEVOTED TO THE STUDY 

OF INTEGERS WITH SPECIAL PROPERTIES 

EDITOR 
GERALD E. BERGUM, South Dakota State University, Brookings, SD 57007-1596 

ASSISTANT EDITORS 
MAXEY BROOKE, Sweeny, TX 77480 
JOHN BURKE, Gonzaga University, Spokane, WA 99258 
LEONARD CARLITZ, Duke University, Durham, NC 27706 
HENRY W. GOULD, West Virginia University, Morgantown, WV 26506 
A.P. HILLMAN, University of New Mexico, Albuquerque, NM 87131 
A.F. HORADAM, University of New England, Armidale, N.S.W. 2351, Australia 
CLARK KIMBERLING, University of Evansville, Evansville, IN 47722 
DAVID A. KLARNER, University of Nebraska, Lincoln, NE 68588 
RICHARD MOLLIN, University of Calgary, Calgary T2N 1N4, Alberta, Canada 
GARY L. MULLEN, The Pennsylvania State University, University Park, PA 16802 
SAMIH OBAID, San Jose State University, San Jose, CA 95192 
NEVILLE ROBBINS, San Francisco State University, San Francisco, CA 94132 
DONALD W. ROBINSON, Brigham Young University, Provo, UT 84602 
LAWRENCE SOMER, Catholic University of America, Washington, D.C. 20064 
M.N.S. SWAMY, Concordia University, Montreal H3C 1M8, Quebec, Canada 
D.E. THORO, San Jose State University, San Jose, CA 95192 
ROBERT F. TICHY, Technical University, Graz, Austria 
WILLIAM WEBB, Washington State University, Pullman, WA 99164-2930 

BOARD OF DIRECTORS 
THE FIBONACCI ASSOCIATION 

CALVIN LONG (President) 
Washington State University, Pullman, WA 99164-2930 
G.L. ALEXANDERSON 
Santa Clara University, Santa Clara, CA 95053 
ANDREW GRANVILLE 
University of Georgia, Athens, GA 30601-3024 
PETER HAGIS, JR. 
Temple University, Philadelphia, PA 19122 
FRED T. HOWARD 
Wake Forest University, Winston-Salem, NC 27109 
MARJORIE JOHNSON (Secretary-Treasurer) 
665 Fairlane Avenue, Santa Clara, CA 95051 
LESTER LANGE 
San Jose State University, San Jose, CA 95192 
JEFF LAGARIAS 
Bell Laboratories, Murray Hill, NJ 07974 
THERESA VAUGHAN 
University of North Carolina, Greensboro, NC 27412 



p-ADIC CONGRUENCES FOR GENERALIZED 
FIBONACCI SEQUENCES 

Paul Thomas Young 
Department of Mathematics, University of Charleston, Charleston, SC 29424 

(Submitted November 1991) 

1. STATEMENT OF RESULTS 

Let X, ju G Z and define a sequence of integers {y„}„>o by the binary linear recurrence 

r 0 = ° , Y\^\ and y n+l = Xy n +M7n-i f o r n>0- 0-1) 

It is well known [9] that the polynomial P(t) -\-Xt- jut2 has the property that 
oo 

W 1 = Xr/,~1 (i.2) 
«=1 

is the ordinary formal power series generating function for the sequence {yn+i}„>0 (cf. [12]. Fur-
thermore, it is easy to see [1] that when the discriminant A = X2 +4ju ofP(t) is nonnegative and 
X & 0, the ratios yn+l I yn converge (in the usual archimedean metric on U) to a reciprocal root a 
of P(t). In this article we show that ratios of these y n also exhibit rapid convergence properties 
relating to P(t) in the/?-adic metrics on Q. Precisely, we prove that for all primes/? and all posi-
tive integers m the ratios y r ly r_, converge/?-adically in Z; this is shown via congruences 
that extend those predicted by the theory of formal group laws (cf. [2], [7], [10]) or the theory of 
/?-adic hypergeometric functions (cf [13]). When/? does not divide ymA, these ratios converge 
to the quadratic character of A modulo /?; otherwise, the limit is p or zero. Moreover, when 
p>3 and/? divides A, one obtains a supercongruence (cf. [2], [5], and eqs. (1.6), (3.8) below). 
These results are then used to give formal-group-law interpretations of some generalized Lucas 
sequences {Xn} = {ylnlyn\, and of the sequence {7^} = {F5n / (5Fn)} (where {Fn} is the familiar 
Fibonacci sequence associated to X = ju = 1) which has been studied in [3]. The results are as 
follows. 

Theorem 1: (i) If/? is a prime not dividing ymAy then for all r e Z + we have 

— ^ - ^ ( A | / ? ) (mod/?rZ). (1.3) 
ymp^ 

(ii) If/? divides ymA, then for all r eZ+ such that y r_, * 0 we have 

Y r 
= L (mod/?rZ), (1.4) 

V-1 

where L = 0 or L =p according to whether or not/? divides // . 

(Hi) The congruence (1.4) holds modulo /?r+1Z if/?>2 and/? divides ym but not A; or if 
(A|/?) = 0 and either /? > 3 or/? = 3 and r > 1. 

2 [FEB. 
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Corollary 1: (i) For all primes p and all rn,r eZ+ we have 

?V=(A|/>)?V- (mod/Z). (1.5) 

(ii) Ifp divides ym but not A, then for all r e Z + we have 

where L = 0 or L=p according to whether or not p divides ju. 

Theorem 2: Suppose X = 1 and ju * - 1 , and for w > 0 set Xn = y2n I y n. Then the formal power 
series 

£(t) = T^L (1.7) 

is the logarithm of a one-dimensional formal group law over Z which is strictly isomorphic over 
Z to the formal multiplicative group law Gm(X, Y) = X + Y + XY. 

Theorem 3: Let {Fn} denote the usual Fibonacci sequence, i.e., the solution to (1.1) in the case 
A - ju - 1, and for n > 0 set Tn= F5n I {5Fn). Then the formal power series 

oo iYl 

T(*) = Z,T„- (1.8) 

is the logarithm of a one-dimensional formal group law over Z which is strictly isomorphic over 
Z to the formal multiplicative group law Gm(X, Y) = X + Y + XY. 

2. PRELIMINARY RESULTS 

The congruences (1.5) of Corollary l(i) are typical of those obtained from the theory of 
formal group laws; in fact (1.5) implies (via [10], Theorem A.8) that the formal differential 
co - P(t)~l dt is the canonical invariant differential on a formal group law over the ring 7Lp ofp-
adic integers when (A\p) ^ 0 (cf. eqs. (3.6), (3.7) below). Hazewinkel's book [7] is an excellent 
reference on formal group laws; the aspects of the theory most relevant to the present article are 
also summarized nicely in ([2], pp. 143-45; [5], §2.3; [10], Appendix). Our proof of Theorem 1, 
however, uses only the elementary theory of finite and /?-adic fields; for an exposition of these 
topics, the reader is referred to [8]. 

For p a prime number, Z Q and F d denote the ring of/7-adic integers, the field of/7-adic 
numbers, and the finite field of pd elements, respectively. We define K - ( ^ ( v A ) ifp does not 
divide A and K = Q ^ V A , y[p) ifp divides A. We let €)K denote the ring of algebraic integers 
ofK, WlK its unique maximal ideal, and K - DK IWlK the residue-class field of K; for x G€)K, 
x denotes its image in K. Let the positive integer d be defined so that K = F d; then, if x e €)K, 
the Teichmuller representative x of x is the unique element of €)K satisfying x = x (mod WlK) 
and xp = x. It is easily seen that x is given by the/?-adic limit x - limr_>o0 xp ' 

1994] 
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If p is an odd prime and D is an integer, then -/D ^Zp if (D\p) = 1 and Vl) £Zp if 
(D\p) = -l; here (-\p) denotes the Legendre symbol. For ease of notation, we extend the 
definition of (A\p) to the case/? = 2 by 

fl, if A = l(mod8), 
(A|2) = {-1, if A = 5 (mod 8), (2.1) 

[0, ifA = 0(mod4). 

This is analogous to the Legendre symbol in that VA e Z2 if (A |2) = 1 and vA £ Z2 if (A |2) = - 1 . 
If A ^0 then P(t) = (I-at)(l-ftt), where a, ft are distinct elements of €)K . It is well 

known, and easily computed from (1.2), that in this case we have the Binet form 

r.-^f (2.2) 
for Yn- I* follows that, for all primes/? and all positive integers m, r such that Y r-\ ^ 0, we have 

Ym? ampr-pmp> - i w l _ " ^ _ rh f /v"^ /?w^ :<&,(<*"* , / T ' ), (2.3) 

where O/JT, 7) = X ^ 1 + X ^ F + • • • + XYP~2 + Yp~l is the (two-variable) pih cyclotomic poly-
nomial. 

Considering P(t) sR[t], if A > 0 then a,ft GU, and if X * 0 then a * -ft; therefore, ;K„ * 0 
for all ft if A > 0 and X^O. However, when A < 0 one can have Y n - 0 in certain cases. We now 
show that this can only occur when P(t) is equal to l-t + t2,1-27 + 2/2, 1-37 + 372, or one of 
these polynomials with t replaced by kt for some integer k. We state Proposition 1 explicitly as 
follows. 

Proposition 1: Suppose P{t) = 1 - Xt - jut2 = (1 - at){\ - /it) with X, ju eZ, and let « e Z + . Then 
the following are equivalent: 

(A) a"=ft". 
(B) One of the following holds: 

(i) A = 0; 
(ii) n is even and X - 0; 

(III) ft is divisible by 3, and X - k, ju = -k2 for some £ e Z; 
fiv) ft is divisible by 4, and X = 2k, ju - -2k2 for some k GZ; 

(v) ft is divisible by 6, and X = 3k, ju = -3&2 for some k e Z. 

/ W / * Suppose a" =/?w. If ft = 1, then a = /?, so A = (a-ft)2 = 0, as in (i). Now suppose 
a^ ft; therefore, a, ft, and A are all nonzero, so a" = ft" implies (a I ft)n = 1. 

Choose m to be the minimal positive integer such that (a / ft)m = 1; then m > 1 and a I ft = C,m 

is a primitive mth root of unity. It follows that a" = /T if and only if ft is a multiple of m. If 
rn = 2, then a2 = ft2, so a = -/?, whence A = a +/? = 0, as in (ii). 

4 [FEB. 
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We now suppose m>2; then ^m does not lie In Q. The minimal polynomial of £m over Q is 
the //1th cyclotomic polynomial Om(X, 1), which is irreducible of degree <f>(m). [Here <f>(m) 
denotes Euler's totient.] But Cm = al j3 lies in the quadratic field Q(VA"), SO the minimal polyno-
mial of £m has degree 2 over Q. Thus, (j)(m) = 2, which occurs precisely when rn = 3, 4, or 6. 

Form = 3 we have <D3(X, 1) = X2 +X + 1 and £m = a/fi = ( - l±V = 3) /2 , so arg(a//?) = 
±2;r / 3. Since a and /? are complex conjugates, arg(a / p) = 2 arg(a), whence arg(a) = ±n/3 or 
+27T13. Therefore, a-k-(l± V-3)/2 for some real scalar k, whence P(t) = l-kt + k2t2. Since 
P(t) eZ[t]y we must have k GZ, precisely as in (iii). In this case, A = -3&2, 

For m = 4, we have <D4(X, 1) = X2 +1 and ^w = a/ /? = i V 1 ! , so arg(a//?) = ± A 7 2 . Thus, 
arg(a) = ±;r/4 or ±3/r/4, so a = £-(l±V-T) for some real scalar A. Therefore, P(t) = l-
2kt + 2k2t2

y and since P(/) <=Z[Y], we must have k eZ, precisely as in (iv). In this case, 
A = -4&2. 

Form = 6, we have «D6(X, 1) = X2 - X+ 1 and ^ = a I (3 = ( l±V I 3 ) /2 , so arg(a/j3) = 
±7r13. Thus, arg(a) = ±;r/6 or ±5;r/6, or a = & • (3 ± V-3)/2 for some real scalar k. There-
fore, P(i) = l-3kt + 3k2t2, and since P(t) eZ[7], we must have k eZ, precisely as in (v). In this 
case, A = -3k2. 

We have shown that (A) implies (B). Using the above calculations, we find that (B) implies 
(A) by direct computation. This concludes the proof 

When ym * 0, it is also well known that sm(n) = Xmn I Xm is an integer for all n eZ+. In fact, 
it is easily seen from the Binet form (2.2) that sm(n) satisfies the recursion (1.1) with X and ju 
replaced by Xm = am + /T and (~l)m~ljum =-am{3m, respectively, and the parameters Xm = 
XY m+2fJY m-\ and (~l)m~l jum clearly lie in Z. Our method will be to use (2.3) to deduce integral 
congruences for the integers Y r IY r-\ from the following /7-adic congruences for powers of a 
and p. 

Proposition 2: Suppose P(i) = 1 - Xt - pit2 = (1 - at){\ - pi) with X, ju eZ. 
(i) If(A\p) = 1, then amf = amf'X (mod/ZZ,); 

(ii) If (A \p) = - 1 , then ampr = pm/~l (mod pr€)K); 
(iii) Ifp>2 and (A\p) = 0, then ampr = a ^ " ' ^ /? w / _ 1

 s fim^ (mod//"1/2£)r ); 
(iVJ If (A|2) = 0, then amr~l ^/T2'"1 (mod2r£)^) and a"12''' = aw2' (mod2r-1Or). 

iVu^- If x,y,ps G O ^ mdx = y(modps£)K) write JC = j + z with z eps£)K; then 

x / ? = j ; / 7 + (2.4) 

and hence x^ = yp (mod / / + 1 0 ^ ) if jgp > 5 +1. Thus, we need only prove these results in the case 
r = 1 and in addition that a2m = a4m (mod2£)^) when (A|2) = 0; we may also assume m - 1 with 
no loss of generality. 

If (A\p) = 1, then d = 1, K = Qp9 £)K = Zp9 WK = pZp, and K = ¥p. The statement a p = a 
(modpZ^) is Fermat's little theorem, which proves (i) in the case r = 1. 
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p-ADIC CONGRUENCES FOR GENERALIZED FIBONACCI SEQUENCES 

If (A \p) - - 1 , then d - 2 and a, /? are conjugates in the unramified extension K of Qp (their 
minimal polynomial over Q is t2 + Xju~lt-ju~l). We note that p does not divide ju, since if/? 
divides // then A = 22 (mod4/?Z) and then (A|/?) = l. Therefore, a,/? are units in © r (since 
a/3=-ju), and a,/? are conjugates in K over F̂  (their minimal polynomial being t2 + X~ju~lt-
JTl). Since K = F 2 and xh>xp is the nontrivial automorphism of F 2 over Fp, we have ~ap - (5 

and f5p -~d\ therefore, ap = /3 and J3P =a modulo 3Kr. Since ^ is unramified, we have WlK -
p€)K, yielding the r = 1 case of (ii). 

If (A |/?) = 0, then q divides A = (a - (J)2, where q=p if/? > 2 and q = 4 if/? = 2. Therefore, 
a ^^(modg1 7 2©^), giving the middle congruence of (iii) and the first part of (iv) in the case 
r = 1. As in (i) and (ii) above, we have ap = a or /? (mod $RK) according to whether d - 1 or 
d = 2, which completes (iii) for r = 1, since 2ft = pll2£)K. Finally, if (A|2) = 0, then 2 divides 
X, and thus a,/? are roots of t2-JT1; this shows that K = F2 and so a,/? = 0 or 1 (mod 
21/2©^). Writing a = .y + z with ZG21/2€)K and J = 0 or 1, we use (2.4) to check that 
a2 Gy + 2£)K and a4 Gy + 4©^, proving the r = 2 case of the second statement of (iv). 

Remarks: This proposition and its proof remain valid for X, ju lying in Zp (not just in Z) pro-
vided one replaces the Legendre symbol with the Hilbert symbol. Furthermore, this proposition 
implies that, for each m e Z+ and each prime /?, the sequence {aw/? } is a /radically Cauchy 
sequence in ©^; the limit is the Teichmiiller representative am'. 

3. DEMONSTRATION OF THEOREMS 

Proof of Theorem 1: From Proposition 2(i), (ii), we have 

\ampr~\ if (A |/7) = 1, 
(mod//©*), (3.1) 

/ T ^ 1 , if (A |/7) = - 1 , 

and similarly for fimpr. Since O e Z[X, Y] and <J> (X, 7) = O (7, X), we have, in either case, 
-1 , r-\ 

^ - = <S>p{amp' \ T ' )^<S>p(amp\r') = -^<S>P{am,Pm)(™o&prDK) (3.2) 

dr 

provided ym r-\ * 0. Evaluating l im^^ amp using (3.1), we find that 

-\r, if(A|P)=-i. ( 3 3 ) 

If/? does not divide ymA = (a - P){am -pm), then am * /T ; therefore, ym _, * 0 for all r. Thus, 
we have 

amp-pmp 

^(am'r) = ̂ 4̂  = (A,/?)- (34) 

6 [FEB. 
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Together with (3.2) this shows that ympr''Ymp,-i = (A|/?) (modprQK); since both sides of this 
congruence are integers, the congruence must hold modulo prZ, completing the proof of (i). 

As in (3.2), one can see from Proposition 2 that, provided y r_, is always nonzero, one has 
®p(am, pm) as thep-adic limit of Y mr ly m r-i, and thus determine the value L as stated in part 
(ii) of the theorem. One may discover the stronger congruences of (iii) [which will be useful in 
the proofs of Corollary 1 (II) and Theorem 3], however, by making a simple algebraic 
manipulation. 

Suppose that/? divides ymA; then write xr = ampt , yr - (imp , zr = xr -yr, and 

Y r YP-VP (V 4-7V-VP (P~lf \ \ 

rmp^ xr~yr 
••pyf + E i k~l 

zr 
rP'1 

+ zr. (3.5) 
U=2V ' J 

lip divides ym=(am -(3m)l(a-(3) but not A = (a-{J)\ then am = /T (mod/?£)r); therefore, 
am=j3m. Since {ap,fip} = {a,0} and am = fim, we have am = fim eFp; thus, am = j3meZp. 
Note that a, (3 ^ 0 sincep does not divide A; hence, p does not divide ju = -a/?, and by Fermat's 
little theorem, / H ^ 1 ) = 1. From Proposition 2(i), (ii), we have ampr~l = am = fim = fimpr~l 

(modpr€)K). Therefore, the term pyp~l in (3.5) is congruent to p modulo pr+l€)K. The final 
term zp~l is zero modulo /?r(/?_1)CV, which shows that y r Iy r-\ = p (modp7'€)K); since both 
sides are integers, the congruence holds modulo prZ, as asserted in (ii). In fact, since 
r(p-l) > r +1 for p > 2 and r > 0, we see that the congruence (1.3) holds modulo pr~lZ when 
p > 2 and/? divides ym but not A. 

The case (A\p) - 0, A ^ 0 is similar; using Proposition 2(iii) we find that for p > 2 the term 
pyP~l in (3.5) is congruent to pJ3m{p~l) modulopr+l/2£)K, all terms within the summation in (3.5) 
are zero modulo pr+1/2£)K, and the final term zp~l is zero modulo /?(r_1/2)(/7"1)£)r. Thus, for 
p>2y we have y r ly r_i = L(modpr€)K) and, therefore, modulo prZ. In addition, since 
(r-l/2)(p-l) >r + l /2 for/?>3 or for /? = 3 a n d r > l , in these cases the congruence (1.4) 
holds modulo pr+lZ, since it holds modulo pr+l/2'€)K while both sides lie in Z. If (A|2) = 0, we 
find from Proposition 2(iv) that 2amr = L(mod2r£)K) and zr = 0(mod2r©^), giving the 
result in that case. 

Finally, if A = 0, then,P(/) = (I-at)2 for some a eZ, and a quick computation from (1.2) 
yields yn = nan~l. If X * 0, then a * 0; therefore, we have Y mr IY m r-\ = Z ? ^ (/7_1) GZ. As 
in Proposition 2(i), if/? does not divide a this lies in p + pr+lZ, whereas if a e/?Z, it is clearly 
congruent to zero modulo pr+1Z. 

Proof of Corollary 1: We first treat the case where A > 0 and X * 0 so that y n * 0 for all n. 
If/? does not divide ymA, part (i) follows directly from (1.4) upon multiplication by ym r.{. From 
Theorem l(ii), we find by induction on r that y r = 0 (mod/?r+1Z) if/? divides ^w, and y =0 
(mod/?rZ) if/? divides A. It then follows that both sides of (1.5) are zero modulo prZ if/? 
divides y mA. 

1994] 7 
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For (ii), we recall from Theorem l(iii) that the congruence (1.4) holds modulo /?r+1Z when 
p > 3 and/? divides A. In this case or in the case where/? divides ym, we obtain (ii) upon multi-
plication of (1.4) by y r_i. 

To extend these results to arbitrary A and X, we observe that if X' = X + pN mdy'n is 
defined by y'0 = 0,y[ = 1, and y'„+l = X'y'n + ju/'n-h t h e n Yn = Y n (mod/?^Z) for all n. It is clear 
that we may choose N large enough so that N > 2r, A' = (A')2 +4// > 0, and X' ^ 0. Since A' = 
A (mod/?Z), the results for any A, X follow from the results for A', Xf. 

Remarks: One can easily determine from [4] with the aid of §5.8 in [7] that co = P(t)~l dt is the 
canonical invariant differential on the formal group law F(X, Y) over Z given by the rational 
function 

F(X,Y) = (X + Y-XXY)/(l + juXY) (3.6) 

(equivalently, Z*=1 ynTn I n is the logarithm of this formal group law). From this, it follows ([2]; 
[10], Theorem A. 8) that there exist congruences of the type 

rm^Hrmpr,(modprZp) (3.7) 

for some H eZp , when/? does not divide y [which is equivalent, via Corollary l(i), to the con-
dition (A|/?)^0]. What is surprising about Corollary 1 is that the congruences obtained also 
hold, and are in fact stronger, in the cases not predicted by the theory of formal group laws [i.e., 
when (A|/?) — 0]. Other congruences of the type 

c r=Hc r_x (mod/?arZJ (3.8) 

with a > 2 (called "supercongruences") have also been observed involving binomial coefficients 
[6] and the Apery numbers [2], and have been conjectured in [11]. 

Proof of Theorem 2: The statement that the formal power series (1.7) is the logarithm of a 
formal group law over Z which is strictly isomorphic over Z to Gm is equivalent to requiring that 
Xn eZ, Xx - 1, and for all primes/? and all m, r eZ+ the congruences 

VV i ( , n o d ^ z > (39) 

(cf. [2], pp. 143-45; [10], Theorem A.9). Assuming X = 1 and ju * - 1 , Proposition 1 tells us that 
yn is never zero, so Xn eZ for n > 0 and, from (2.3), we have Xn -an+pn. We have X = Xx - 1 
and A = /I2 +4// is odd, so it follows from Proposition 2(i), (ii), (iii), that the congruences (3.9) 
hold modulo pr~ll2€)K, but both sides are integers, so the theorem follows. 

Proof of Theorem 3: From [3] we know that Tn eZ for all n, and it is clear that TY -1. 
Therefore, as in Theorem 2, we must show that for all primes/? and all m, r e Z+, we have 

V 3 V < m o d ^ <3-10> 
From the definition of Tn, one has 

Tn=±Q5(a\fi"), (3.11) 
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where a, (3 are the reciprocal roots of the polynomial P(t) -\-t-t1 associated to X - /j = 1. 
Since A = 5, for all primes p*5 these congruences follow directly from Proposition 2(i), (ii), as 
in (3.2). To complete the proof, we take advantage of the fact that 

m5 -5(mod5r+1Z), (3.12) 
F«r 

which is a consequence of Theorem l(iii). Dividing by 5, we obtain 

T^=-^-^l(moA5rI), (3.13) _ mir 

"m5"' 5F ,r_ 

which proves the congruence (3.10) in the case/? = 5, completing the proof. 

Remark: The result (3.13) is not best possible; in fact, the congruence T^r = 1 (mod52rZ) has 
been shown in ([3], Lemma 2). 

4. CONCLUDING REMARKS 

In [3] it is noted that for k eZ+ the sequences {T(k, n)}n>0 given by T(k, n) = Fkn I {FkFn) 
are always integral in the three special cases k = 1 [T(l, n) = 1 for all n], k = 2 [T(2, ri) = Ln, the 
nth Lucas number], and k = 5 [7(5, ri) = Tn]. Our Theorem 2 and Theorem 3 explain that all three 
of these sequences occur as the expansion coefficients for the logarithms of formal group laws 
over Z which are strictly isomorphic over Z to the same formal group law Gm. 

For p&2 one may also approach these /?-adic properties of the sequence {yn} via its 
combinatorial form 

r„+1=f\n-k
kY2kMk (4.D 

[9], which may be expressed in terms of hypergeometric functions as 

r„+1 = ^ 2 ^ , ' * / 2 , ( l - » ) / 2 . _ 4 ; < / / 
-n j 

(4.2) 

We sketch the method here: Taking n + \ = mpr and letting r-^co, the parameters -nil, 
( l -w) /2 , and -n converge/>-adically to 1/2, 1, and 1, respectively. Using a suitable modification 
of the argument in ([13], Theorem 4.1) one can show that when/7 does not divide y p, the/?-adic 
limit of y r I y r_, is given by 

r f» i ^ 
(-4////L2) 

v l y 
(4.3) 

where (as in the notation of [13]) the symbol 2^\(x) denotes the/?-adic "analytic continuation" of 
2Fl(x)/ 2F1(xp). Since 2Fl(l/2,1; 1; x) = ̂ ( 1 / 2 ; ; x) = ( l-x)"1 / 2 , the same value for thep-adic 
limit in (4.3) is also obtained from limr^o0(c r Ic r_y), where 
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But clearly lim^^c r Ic r_Y) = l im^^ tf 1(/?_1)/2 = A(p_1)/2, which is seen to be precisely (A|p) 
from Euler's criterion 

(A|^)^A(/?-1)/2(modpZ) (4.5) 

and the fact that (±1) = ±1. The point is that the sequences {y„+i} and {A"/2} should have the 
same /?-adic congruence behavior because they arise from hypergeometric functions that are p-
adically proximate (when n + l = mpr) So, if one is willing to appeal to the/?-adic analytic prop-
erties of the combinatorial form (4.1), one may obtain a fair explanation for the occurrence of 
(A|/?) in Theorem l(i) when (A|/?) ^ 0 . But again, Theorem 1 (II) shows that thep-adic limit in 
(4.3) even exists when (A|/?) = 0 [which is equivalent top dividing y by Corollary l(i)], a fact 
that is not predicted by the theory of/?-adic hypergeometric functions (cf. [13], Theorem 2.3). 
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ON A CONJECTURE OF PIERO FILIPPONI 

Richard Andre-Jeannin 
IUT GEA, Route de Romain, 54400 Longwy, France 

{Submitted February 1992) 

1. INTRODUCTION 

Let us define a generalized Lucas sequence {Hn(m)} by 

H„(m) = Hn^m)+mHn_2(m), H0(m) = 2, Hx(m) = 1, (1) 

where m > 1 is a natural number. 
In a communication that appeared in a recent issue of this journal [1], P. Filipponi showed 

that 
Hp,(p) = l (mod//) (2) 

wherep is an odd prime, and he proposed also the following Conjecture: 

Hp,(p-l) = l (mod//) (3) 

where p > 5 is a prime number. 
Following a method introduced by Lucas ([2], p. 209; [3]), we shall prove here generaliza-

tions of (2) and (3), namely, 

Theorem 1: If p > 1 is a natural number, and if AW = 0 (mod p), then 

H M(m) = l (modps+ll s>0. 

Theorem 2: If p > 5 is a prime number and if m = -1 (mod/?), then 

H s(m) = l (modps+l\ $>Q. 

2e PRELIMINARIES 

Let us recall Waring's formula 
[p/2] 

xp +yp = (x + yy +p^ (-l)kCp,k(xy)k(x + yy~2k, 

where p is a natural integer, and 

In our proofs, we shall need the following three lemmas. 

Lemma 1: (i) If/? is a natural integer, then p,Cp^k is integral; 

(ii) Ifp is a prime, then C k is integral. 
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Proof: (i) The result follows from the relation 

^-M+fo-r1' 
* VV(P-4p-krl 

(ii) From the relation 

and since gcd(&, p-k) = 1, it is clear that & divides f^J"1) • 

Lemma 2: If /? = ±1 (mod 6) is a natural number, then YJ-k
p=i\-l)k Cp^k = 0. 

Proof: Let us put x = eZ7r/3 and>> = e /7r/3 in Waring's formula to get 

2cos/>;r/3 = l + / ? X ( - l ) * C / a , 
A : = l 

and the conclusion follows from this, since 2 cospn 13 = 1, when/? = ±1 (mod 6). 

Lemma 3: If/? is an odd integer, then (£p-l)p =~l (modps+l), £>0. 

Proof: The statement clearly holds for s = 0. Supposing that (£p-l)p = -l + Aps+l, where 
A is an integer, one can write 

( ^ - i / + 1 = ( - i + ^ + y 

= (-l)p+(^\-l)p-lAps+l +(P)(-l)p-2A2p2s+2 + .-. + Appp(s+l) ^ -1 (modps+2\ 

since p is odd and ff] = /?. 

Let us return to the recurrence relation (1). We have Hn(m) - an
m+ fin

m where am and f}m 

are the real numbers such that am + /3m - 1 and amf3m = -m. Following Lucas ([2], p. 212), we 
replace x (resp. y) by ap

m (resp. f3p
m ) in Waring's formula to get 

Hp„1(m) = HP,(m) + pX {-\)k{l+p)Cp,kmkp Hp~2k(m\ (4) 

where/? is a natural number. 

3. PROOF OF THEOREM 1 

The case/? = 1 needs no comment, since H1 = 1, so we suppose in the sequel that p > 2, and 
thus that [p/2] >1. 

Let us write Hn instead of Hn(m) in (4), to get 
[p/2] 

H• x =H> +(-\)l+r*pmrSH^+ £ {-\f{l+pS)
PCp^Hp;2k, (5) 

k=2 
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since CPtl = l. Notice that the last sum is empty foip = 2mdp = 3 and that pC k is an integer, 
by Lemma l(i). 

We proceed by induction upon s. The statement clearly holds for s = 0 since Hx = l. 
Now, let us suppose that 

ff,El (modps+l). 
By using an argument similar to the one used in Lemma 3, one can easily deduce from this that 

j y j s i (modP
My (6) 

Next we have, for every s > 0 and every p>2, ps >2S >s + \ and thus 
(a) pmpS =0 (modps+2). 

On the other hand we have, for every k > 2,kps > 22" = 2s+l > 5 + 2, and thus 
(b) / ^ ' E O (modps+2). 

Now, by using (6), (a), and (b) in (5), we have 

HpS+l=l (modps+2). 

This concludes the proof of Theorem 1. 

4. PROOF OF THEOREM 2 

We suppose now that p>5 is a prime number, and thus that /? = ±l(mod6). Let us put 
m = ^p - 1 in (4) and write Hn instead of Hn (£p -1) to obtain 

[p/2] 
H , =/7£+/>£C„,fc(<p-l)*'ff;-2*. (7) 

We proceed by induction on 5. The statement clearly holds for s = 0, since Hx = l. Suppos-
ing that H s = 1 (mod/?*4"1), we obtain 

Hp;2k = 1 (mod//+1), for 1 < k < [p/2], (8) 
and 

Hp
t=l (modps+2y (9) 

On the other hand, we have, by Lemma 3, 

(£p-l)kpS =(-l)k (modps+l). (10) 

By Lemma l(ii), CPtk is an integer, and by (8), (10), and Lemma 2, we obtain 
[p/2] [p/2] 

I,cp,k(tp-i)kpSHp;2k = I c A , ( - i ) ^ o (modP
s+ly (ii) 

k=l fc=i 

Now, by (7), (9), and (11), it is clear thatif ,+1 =1 (modp ). This concludes the proof of 
Theorem 2. 
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A well-known theorem of elementary number theory states: 
There exist infinitely many primes/? such that p = 1 (mod 4). (I) 

(See [1], p. 224.) 
One can prove (I) constructively by generating an infinite sequence {pn} of distinct primes 

such that pn = 1 (mod 4) for all n > 1. To obtain the sequence {pn}, let {un} be a sequence of 
natural numbers such that: 

(i) un>\ for all n > 1. 
(ii) Ifq is prime and q\un, then q = l (mod 4). 
(iii) (um, un ) = 1 for all m ̂  n. 

If we let pn be the least prime divisor of un for all n > 1, then the sequence {pn} yields the desired 
result. 

Let un =al+hl where an,bn are natural numbers such that (an,bn) = l and an # bn (mod 2). 
Then the sequence {un} satisfies (i) and (ii). If (iii) also holds, then {un} fulfills all our require-
ments. 

Customarily, one lets un = <f>n=22 +1, the n^ Fermat number. If n > 1, then 

^ = (22"-')2
+l2, 

where 22 and 1 are relatively prime and of opposite parity. Since it is also true that {/pm9 (f>n) 
- 1 for all m^n,we are done. 

An alternative procedure utilizes the Fibonacci sequence {Fn} or, more precisely, an infinite 
subsequence thereof. We need the following properties of Fibonacci numbers: 

Fik+l = FZ+F*+l. (1) 

(.Fm>Fn) = F(m,r,y ( 2 ) 

2\F„ iff 3|/i. (3) 
If n > 3, then F„ > 1. (4) 

(See [2].) 
Suppose we number the primes starting with 5 as follows: q{ = 5, q2 = 7, q3 = 11, etc. Let 

u„ = Fq for n > 1. Now (1) implies 

^ = 4^) + F k + 1 ) f o r a 1 1 ^ 1 

Since (X (?„ -1), X (q„ +1)) = 1, (2) implies 
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Since qn > 3 and qn is prime by definition, (3) implies 2 j i ^ , so 

Finally, if m * n, then qm * qn, so (qm,q„) = l Therefore, (2) implies (Fqm ,FqJ = 1. 

In summary, an infinitude of primes/? such that p = 1 (mod 4) can be obtained by considering 
the least prime divisors of the various Fibonacci numbers Fq, where q is prime and q > 5. 
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CROSS-JUMP NUMBERS 

Kanakku Piily 
c/o B. Sury, 106 Panini, TIFR, Homi Bhabha Road, Bombey 400005, India 

{Submitted March 1992) 

Consider any w-digit integer expressed in the base b. Divide it into a right part of r digits and 
a left part of n-r digits. To the left part add a number L <b and to the right part add some 
R <b. The addition is done modulo b and the "carry-over" is ignored. Transfer the left part to 
the right of the right part and we again get an /?-digit number. Apply this same process (which we 
call "cross-jumping") to the new number. Iterating this several times, we can ask if we get the 
original number back, and, if so, what is the least number TV of steps required? We prove that 

N = *?• 
(b,L+R)-(n,r) 

where (a, b) denotes the G.C.D. of two numbers a and b. We first illustrate this by an example. 

Example: We take b = 10, n = 8, r = 2, L = 4, R = 2. Starting with the number 56240317, the 
iteration gives 

56240317 
19562407 
09195628 
20091950 
52200913 
15522003 
05155224 

26051556 
58260519 
11582609 
01115820 
22011152 
54220115 
17542205 

07175426 
28071758 
50280711 
13502801 
03135022 
24031354 
56240317 

which gives back the original number in the 20th step. 

Let us prove our claimed formula for n. We denote the positions of the n digits from left to 
right by 1, 2, .., n, respectively. The positions change as a^>a + r -*a + 2r... for each a<n, 
where + is addition modulo n. For repetition of the original number, we should have some k > 0 
so that a + kr = a mod n. Clearly then, k = n/(n,r) is the least such k. The choice of £ only 
ensures that the positions of the original digits are the same after every k steps. Now, for any rn < 
k-nl (n, k), there is a corresponding a0 such that a0+mr = n. We have 

-(m-iy = n-r—>a0 +mr = n—>a0 + (m + l)r • • a0 + kr - a0, 

where we have written L, R over an arrow to indicate an increase in the value of that digit by L, 
R, etc. Thus, we have an increment of L + R in the value of each digit for every k steps. For 
repetition of the original number, this increment should be a multiple of £ and, therefore, TV must 
be a multiple of k as well as of kb/(L + R). This gives 7V= L.CM. of k and kb/(L + R), i.e., 

bn 
N = -

(b,L + R)'(n,r)' 
In our example, N=20. 

• > • > • > 
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In this paper we present some remarkable elementary identities for sums of powers of 
reciprocals of Fibonacci and Lucas numbers. The Fibonacci numbers are defined for all n > 0 by 
the recurrence relation Fn+l = Fn + Fn_x, where F0 = 0 and Fx = 1. The Lucas numbers Ln are 
defined for all n > 0 by the same recurrence relation, where L0=2 and Lx - 1. The general theo-
rems in this paper include as special cases the following results: 

n=\ r4n-2 A n=\ r4n-2 

L-^—=^L—T—> (2) 
«=1 ^2n-l z «=1 u2n-\ 

x^^ic-ir1^, (3) 
00 1 1 °° ri 

n=\^2n-\ *D n=lr2n 

Identity (3) appears on page 98 of [1]. Identity (4) is really just the complementary result of (3). 
Identities (1) and (2) are believed to be new. The above four results are just the first cases of the 
following theorems. 

Theorem 1: For k = 1, 2, 3, ..., we have 

Theorem 2: 

Theorem 3: 

Theorem 4: 

1 - 1 1 "(n-k)(n-k + l) — (n + k-l) 
^ n=l^4n-2 (2£)!„=i ^4n-2 

For k = 1, 2, 3, ..., we have 

y 1 _ 1 ^(n-k)(n-k + l)-'-(n + k-l) 

For k= 1, 2, 3, ..., we have 

1 - 1 (-1)* "(-l)n(n-k + l)(n-k + 2)-(n + k-l) 
5k^hF^~ {2k-l)\h F2n 

For k= 1, 2, 3, ..., we have 

y 1 _ 1 y ( # l - * + l)(/l-* + 2) —(/l + A-1) 
SZ?*_r(2*-l)!V5^ F2n 
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Theorems 1 and 2 are corollaries of the following Theorem 5. We note that Fn-^~rr, where 
a = ±b£ and fi = - ^ . So, if we let q: = q2 in Theorem 5, then put q = /?, we have Theorem 1. 
Similarly, setting q = J3 in Theorem 5 gives Theorem 2. 

Theorem 5: For \q\<l and & = 1,2, 3,..., we have 

hi}-qAn-2fM (2k)\h l-q4-2 

Theorems 3 and 4 are corollaries of the following theorem. 

Theorem 6: For \q\< 1 and & = 1, 2, 3,..., we have 

_ gfc(2n-i) ^ t ^ ( n - A : + l)(n-A: + 2)---(n + A:-l)g" 

To derive Theorem 3 from Theorem 6, we let q: = -q. Then q.-q2', and we set ^ = /? 
where J3=(l- J~5) 12. Theorem 4 follows similarly by setting q.-q2 then # = /?. 

Theorems 5 and 6 are proved in a similar way; therefore, we present only the proof of 
Theorem 5. 

Proof of Theorem 5: For \q\< 1 and k = 1, 2, 3,..., we have, by the binomial theorem, 

Y* __7 _ X^ (2Jfc+l)(2«-l) y« m ( m + 1) - - - (#2 + 2k - 1) (4„-2)(w-l) 
z, ( 1_^-2 ) 2 ,+i-z.^ z, ( U ) ! 

£ £, (2*)! 
with m\-m-k 

which, on interchanging the order of summation, 

1 ^{m-k)(m-k + \)~-(m + k-\)q2m-1 

This completes the proof of Theorem 5 and, hence, that of Theorems 1 and 2. 
In a similar way to Theorems 1-4, we can demonstrate the following results: 

^ n 5S^n{n-\) ... 

ttp.._£t^ (6) 
n=\ P2n L n=\ r2n-\ 

and 
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n=\^2n ° B = 1 t2n 

The above results are special cases of the following theorems. 

Theorem 7: For k = 0, 1, 2, 3, ..., we have 

1 * M _ 1 ^{n-k){n-k + \)--{n + k-l) 
5 /2 n=1^2n \ZkV-n=l A>«-1 

where (n - k)(n -k + l)---(n + k-l) is taken to be 1 when k = 0. 

Theorem 8: For £ = 0, 1, 2, 3, ..., we have 

where (n-k)(n-k + 1) ••• (n + k-I) is taken to be 1 when k = 0. 

Theorem 9: For £=1 ,2 , 3, ..., we have J L , A * , ~ > , . . . , 

1 y /i _ 1 y(n-k + l)(n-k + 2)---(n + k-l) 

Theorems 7-9 are corollaries of Theorems 10 and 11 below. 

Theorem 10: For \q\< 1 and & = 0,1,2,3,..., we have 

y nqn(2k+l) _ 1 y (n-k)(n-k + 1) •••(« + A:-l)?2"'1 

where («-A:)(«-^ + l)---(« + A:-l) is taken to be 1 when&= 0. 

Theorem 11: For |^|< 1 and k = 1,2,3,..., we have 

y ft?2"* _ 1 y(n-k + l)(n-k + 2)---{n + k-\)q2n 

As with Theorems 5 and 6, the proofs of Theorems 10 and 11 are very similar; thus, we 
present only the proof of Theorem 11. 

Proof of Theorem 11: For \q\< 1 and k =. 1,2, 3,..., we have, by the binomial theorem, 

^ ^ 2 " " ^ 2w,' " m(m + l)..-(m + 2k-2) 2n(w_1} 

i d - g 2 ^ " ^ / £ (2*-l)! * 
= V y "*("* +1) - fo + 2£ - 2) n(2m+2k-•2) 

£ i £ i • (2*-l)! 
with m\ = m-k + \ 
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OO OO i (m-k + l)(m-k + 2)---(m + k-l) 2mn 

£ S (2*-l)! nq =ir 
which, on interchanging the order of summation and summing £"=1 nq2m", 

1 y(m-k + \)(m-k + 2)-{m + k-\)q2m 

This completes the proof of Theorem 11. 

Theorem 7 follows by letting q: = q2, then<? = /? in Theorem 10. Theorem 8 follows by 
letting q\ = -q^ then q = /? in Theorem 10, and Theorem 9 follows by letting q: = q2, then q = /? 
in Theorem 11. 
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1. GAME THEORY BACKGROUND 

While the principal results of this paper seem to us to be of interest in their own right, and 
can be understood with no reference to game theory, the problems addressed arose in a game 
theory setting, and their solution has important consequences for the analysis of Silverman games. 
It seems appropriate therefore to sketch briefly the game theory background. Silverman games 
are two-person, zero-sum games in which, roughly speaking, the higher bid wins, unless it is too 
much higher than the other, in which case it loses. More precisely, let Sl and Su be sets of posi-
tive real numbers, and Tand v be parameters with T>\ and v> 0. The sets Sl andSn are the 
pure strategy sets for Players I and II, respectively. Each player chooses a number from his 
strategy set, and the higher number wins 1, unless it is at least T times as large as the other, in 
which case it loses v. The parameters T and v are referred to as the threshold and the penalty, 
respectively. If SY = Slh the game is symmetric, and in this case, if optimal strategies exist they 
are the same for both players, and the game value is 0. 

The prototype games are attributed to David Silverman, although the earliest published 
mention of such a game of which we are aware is by Herstein and Kaplansky ([3], p. 212). The 
symmetric game on an open interval was analyzed by R. J. Evans [1] for arbitrary T and v, and the 
symmetric game on discrete sets by Evans and Heuer [2]. An analogous symmetric game on 
[1, oo) is examined in [5]. Discrete games with Sl n £ n = 0 are examined in [4] and [8]. In [6] it 
is shown that when v > 1 Silverman games reduce by dominance to games on bounded sets, and in 
[7] this and other types of dominance are used to reduce discrete games with v > l to finite 
games, and their payoff matrices have a simple characteristic form. 

Many semi-reduced games can be further reduced in the sense that there still are proper sub-
sets Wx and Wu of the strategy sets, with the property that optimal mixed strategies for the game 
on Wl x Wu are optimal for the full game. This further reduction leads to games some of which 
are 2 x 2 and the rest of which fall into eight families, four of even-order games and four of odd-
order games (see [7]). It was our conjecture that when v > 1, no further reduction of any of these 
games is possible. This would mean that optimal mixed strategies for such a reduced game are 
minimal optimal strategies for the original game. We shall show here that, for the odd-order 
games, this is indeed the case, and using similar techniques we obtain explicitly the unique optimal 
mixed strategies and game values for these reduced games. The even-order cases will be treated 
in a forthcoming paper. 

22 [FEB. 



FIBONACCI-TYPE SEQUENCES AND MINIMAL SOLUTIONS OF DISCRETE SILVERMAN GAMES 

2* THE ASSOCIATED MATRICES 

Let B denote the payoff matrix of our reduced game and Kthe game value. Then B is always 
square, and as discussed in Section 13 of [7], the game is not further reducible if and only if there 
is a unique probability vector P, with all components positive, such that 

PB = (V,V,...,V). (2.1a) 

In this case there is also a unique probability vector Q such that 

and P and Q are the unique optimal mixed strategy vectors for the row player and column player, 
respectively. (We are writing vectors as row vectors.) 

Let B.j denote the jxh column of B. IfB is In +1by In +1, then (2. la) is equivalent to 

PB.j=V for/=l,2,...,2#i + l. 

With the understanding that P is to be a probability vector, this, in turn, is equivalent to 
2«+l 

P(B.j -B.J+l) = 0 for/ = 1,2,..., 2w, and ]T/?. - 1, with eachpi > 0. 

(2.2) 

(2.3) 
y=i 

Now let 4 be the 2?2 +1 by In +1 matrix, the /* row of which is (B.,-B,+l)' for / = 1, 2, ..., 
2n, and the (2« + l)th row of which is (1, 1, ..., 1). Then (2.3) is equivalent to 

AP'= (0,0,...,0,1)', (2.4) 

which has a unique solution if and only if A is nonsingular. Thus, it suffices to show that A is 
nonsingular and that a probability vector P with all components positive exists, satisfying (2.4). 

The four families of odd-order payoff matrices B and the associated matrices A are illustrated 
below. The variable x is 1 + v, and with v > 1 we have x > 2. Types (i), (ii), (iii), and (iv) here 
correspond to (8.0.54), (8.0.55), (8.0.5Q, and (8.0.5D), respectively, in [7]. The main diagonal 
and first superdiagonal of A consist entirely of Is, with two exceptions. In column a + 1, the pair 
(J) occurs in place of (J), and in column n + a + 2, (§) occurs. In general, the matrix A of type (i) 
has a columns preceding the first irregular one, then d regular columns, a central column, a regu-
lar columns, the second irregular one, and d regular ones, for a total of 2n +1 = 2a + 2d + 3 
columns. 

B-

( 0 
1 
1 
1 
1 
1 

-v 
- V 

-v 

-1 
0 
1 
1 
1 
1 
1 

-v 
- V 

-1 -1 
-1 -1 
-1 -1 
0 -1 
1 0 
1 1 
1 1 
1 1 
1 1 

-v 1 
-v -v -v -v -v 

-v -v -v 

V V V 
V V V 

V V 
V 

-1 
-1 
-1 
-1 
-1 
0 
1 

0 -
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A = 

1 1 0 0 0 0 

0 0 0 

0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 

-x 0 0 
0 0 0 1 1 0 0 0 0 
0 
X 
0 
0 
0 
0 
1 

0 
0 

-x 
0 
0 
0 
1 

0 
0 
0 

-X 
0 
0 
1 

0 
0 
0 
0 

-X 
0 
1 

1 
0 
0 
0 
0 

-X 
1 

1 
1 
0 
0 
0 
0 
1 

0 
1 
1 
0 
0 
0 
1 

0 
0 
1 
1 
0 
0 
1 

0 
0 
0 
0 
2 
0 
1 

0 
0 
0 
0 
1 
1 
1 

-x 
0 
0 
0 
0 
1 
1 

Type (i), parameters a > 0,d>0,n = a+d + l. Illustrated with a = 2,d = 2. 

In the matrix A of type (ii), there are three irregular columns. The parameters here are c and 
d, and the pattern is c + 1 regular columns, the column with the (§), d regular columns, the central 
column, c regular columns, two columns with (fj in place of []], and d regular columns. We illus-
trate it here with c=\, d = 2;n = c+d + 2 = 5, so again B and A are 11x11. 

B = 

0 -1 
0 
1 
1 
1 
1 

-v 1 
-v -v 
-v -v -v 
-v -v -v -V - V - V - V - V 

-1 
-1 
-1 
0 
1 
1 
1 
1 
1 

V V V V 
V V V V 

V V V 
V V 

V 

0 -

0 -
1 0 

A = 

1 1 0 0 0 0 0 0 0 0̂ 1 
0 1 2 0 0 0 0 -x 0 0 0 
0 0 0 1 0 0 0 0 -x 0 0 
0 
0 
X 
0 
0 
0 
0 
1 

0 
0 
0 

-x 
0 
0 
0 
1 

0 
0 
0 
0 

-X 
0 
0 
1 

1 
0 
0 
0 
0 

-X 
0 
1 

1 
1 
0 
0 
0 
0 

-X 
1 

0 
1 
1 
0 
0 
0 
0 
1 

0 
0 
1 
1 
0 
0 
0 
1 

0 
0 
0 
0 
2 
0 
0 
1 

0 
0 
0 
0 
0 
2 
0 
1 

-x 
0 
0 
0 
0 
1 
1 
1 

0 
-X 

0 
0 
0 
0 
1 
1 

Type (ii), parameters c>0,d>0,n = c + d + 2. Illustrated with c=l,d = 2. 

We illustrate type (iii) below. 
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( o 

B = 
-v 
-v 
-v 
-v 
-v 

A = 

-1 
0 

- v 1 1 
- v - v 1 
-V -V - V 
-v - v -v -v 

V V V 
V V V 

-1 v v 
V 

0 0 0 0 - x 
2 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 

0 0 

0 -
1 < 

0 0 0^ 

0 0 

0 
X 
0 
0 
0 
0 
1 

0 
0 

-x 
0 
0 
0 
1 

0 
0 
0 

-x 
0 
0 
1 

0 
0 
0 
0 

-x 
0 
1 

1 
0 
0 
0 
0 

- x 
1 

1 
1 
0 
0 
0 
0 
1 

0 
1 
1 
0 
0 
0 
1 

0 
0 
1 
1 
0 
0 
1 

0 
0 
0 
0 
2 
0 
1 

0 
0 
0 
0 
1 
1 
1 

- x 
0 
0 
0 
0 
1 
1 

Type (Hi), parameters a>0,h>0;n = a + h + 2. Illustrated with a = 2,b = l. 

In the matrix A of type (iii), shown above, there are again three irregular columns. The 
parameters are a and b7 and the pattern of columns is: a regular columns, two columns with ftl in 
place of fj], b regular columns, the central column, a regular, one with (°) and b + 1 regular, 

Finally, in matrix^ of type (iv), there are two irregular columns. The parameters are denoted 
c and b, and the pattern of columns is c + 1 regular, one with fgj ? b regular, the central column, c 
regular columns, one with f§], and b + 1 regular. We illustrate type (iv) below, with c = 2, b - 1; 
w = c + 6 + 2 = 5. 

B-
—v 
-v 
-v 
-v 
—v 

- 1 
0 
1 

.1 
1 
1 
1 

- V 
- v 
- V 
- v 

- 1 
- 1 

0 
1 
1 
1 
1 
1 

- v 
-v 
-v 

1 
1 
1 
1 

-v 
-v 
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A = 

1 0 0 0 0 

0 0 

> 0 0 0\ 
0 0 0 

0 0 0 0 -x 0 0 
1 0 0 0 0 
i : 

0 
0 

-x 
0 
0 
0 
0 
1 

0 
0 
0 

-x 
0 
0 
0 
1 

0 
0 
0 
0 

-X 
0 
0 
1 

0 
0 
0 
0 
0 

-X 
0 
1 

1 
1 
0 
0 
0 
0 

-X 
1 

0 
1 
1 
0 
0 
0 
0 
1 

0 
0 
1 
1 
0 
0 
0 
1 

0 
0 
0 
1 
1 
0 
0 
1 

0 
0 
0 
0 
0 
2 
0 
1 

-x 
0 
0 
0 
0 
1 
1 
1 

0 
-X 

0 
0 
0 
0 
1 
1 

Type (iv), parameters c > 0,b>0;n = c + b + 2. Illustrated with c = 2,b = 1. 

Main Theorem: For x > 2, every matrix in these four two-parameter families is nonsingular, and 
the unique vector P satisfying (2.4) has all components positive. 

When the diagonal of the payoff matrix B consists entirely of zeros the game is symmetric, 
and has been shown in [2] to have a unique optimal mixed strategy. It follows in that case that 
the associated matrix of (2.4), which we denote A*, is nonsingular. This matrix A* is like those in 
the four families above, but without the irregularities; i.e., the main diagonal and the first super-
diagonal consist entirely of Is. We shall in each instance prove that A is nonsingular by exhibiting 
a matrix D such that AD- A*, and prove that a completely mixed (all components positive) 
vector P satisfying (2.4) exists by exhibiting it. The task of obtaining such a D is lightened sub-
stantially by the observation that in each of the four classes, the matrix A differs from A* in at 
most two columns. It suffices, therefore, to show that these columns of A* lie in the column 
space of A, and we accomplish this by producing columns Dmj such that AD.j = A* for the appro-
priate j . 

We illustrate here using the case a = d = 1 in type (i). Then n = 3, and the matrices A and A* 
are 7x7. 

A = 

1 
0 
0 

-x 
0 
0 
1 

2 
0 
0 
0 

-x 
0 
1 

0 
1 
1 
0 
0 

-x 
1 

0 
0 
1 
1 
0 
0 
1 

-x 
0 
0 
1 
1 
0 
1 

0 
-x 

0 
0 
0 
2 
1 

0] 
0 

-x 
0 
0 
1 
1 

This matrix differs from A* only in columns 2 (= a +1) and 6 (= n + a + 2). The column Da+l 

given by (4.0.2), and in this illustration it is 

f -2(x + 2)T0+x(x + 2)7;+2 ^ 
x(x + 2)E2 +1 

2 

IS 

D2 = 
-2x(x + 2)El + x1 (x + 2)E_{ + x 
-2x(x + 2)E0 + x2 (x + 2)E0 + x 
-2x(x + 2)E_l + x2 (x + 2)El + x 

-(x + 2)T2 + l 
-2(x + 2)71 + x(x + 2)r0+2 
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If A = x(x + 2)R2 [see (4.0.1)], the reader may verify, using identities (3.2), (3.0.5), (3.0.3), (3.8), 
and (3.9), and particular values of En and Tn given by (3.0.10) and (3.0.13), that AD2 = AA*2, 
where A?2 = (1,1, 0, 0, - x, 0, l)f (This is then a special case of Theorem 4.1.) 

3. THE POLYNOMIAL SEQUENCES 

We shall describe the matrix D in terms of six Fibonacci-like sequences of polynomials, and 
use Fibonacci-like properties of these sequences to prove that AD = A*. Each sequence is a par-
ticular solution to the recursion 

Ym+1 = (x2-2)Ym-Ym_1 + C, (3.0.1) 

where the constant C is 0, 1, or 2. For some earlier work on sequences generated by a recursion 
like (3.0.1) without the (x2 - 2 ) coefficient (see [9] and [10]). 

Define polynomial sequences Em,Rm,Gm,Tm,Hm, and Km as follows: 

E0 = l,E1=x2-1, Em+l = (x2 -2)Em -E^ +1. (3.0.2) 

Rm = Em-Em_l. (3.0.3) 

G^K-K-v (3.0.4) 
Tm=Em+Em_v (3.0.5) 

Hm=Rm+Rm_l= Em-Em_2 = Tm- Tm_v (3.0.6) 
Km=Hm-Hm-l=R

m-Rm-2=Gm+Gm-l = Tm-2Tm-l+Tm-2- ( 3 . 0 . 7 ) 

In (3.0.6) and (3.0.7) the first equality is to be understood as the definition; the others follow 
immediately. One sees further at once that 

R„, Gm, Hm, and£m satisfy (3.0.1) with C = 0, (3.0.8) 
and that 

Tm satisfies (3.0.1) with C = 2. (3.0.9) 

The recursion (3.0.1) can be used to extend the sequence in both directions, and we regard 
each of the sequences as being defined for all integers m. From the recursions, one finds readily 
the following: 

£_, = E_2 = 0, E_3 =E0-l, andE_m = Em_v (3.0.10) 
R, = 1, R_, = 0, R_2 = - 1 , andR_m = -Rm_2. (3.0.11) 

G0 = G_l = l,andG_m = Gm_l. (3.0.12) 
T0 = 1, 71, = 0, T_2 = 1, and T_m = Tm_2. (3.0.13) 
H0 = 1, H_, = - 1 , andH_m = -Hm_v (3.0.14) 

Kx=x2-2, K0 = 2, mdK_m=Km. (3.0.15) 

Theorem 3.1: Every polynomial Em with m > 0 takes only positive values for x > 2. The same is 
true of each of the other sequences defined by (3.0.2) to (3.0.7). 
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Proof: It is a routine exercise to prove by induction that Em+l >Em>0forx>2 and all m. 
The same goes for each of the other sequences. 

Following are some further properties of these polynomials that we will find useful. 

x2Em = Tm + Tm+1-\. (3.2) 

This is immediate from (3.0.2) and (3.0.5). 
Similarly, from the recursion (3.0.8) for Gm and (3.0.7), we have 

x2Gm = Km+1+Km, (3.3) 

and from the recursion (3.0.8) for Rm and (3.0.6), 

x2Rm = Hm+l + Hm. (3.4) 

From (3.0.8) and (3.0.4) we obtain 

(x2-4)R„,=Gm+1-Gm, (3.5) 

and from (3.0.2), (3.0.3), and (3.0.4), we have 

Similarly we obtain 
(x2-4)Em + l = Gm+l. (3.6) 

(x2-4)Tm+2 = Km+1. (3.7) 

From (3.0.9) we have that (x2 -2)Tt - TM - Tt_x = -2. Upon summing this for 0 < /' < m, adding 
Tm+l -Tm-\ to both sides, and using (3.0.13), we obtain 

(x2~4)^T1 = Tm+1-Tm-2m-3. (3.8) 
/=0 

In exactly the same way, using (3.0.2) and (3.0.10), we obtain 
m 

(x2 -4)£Et = Em+l -Em-m-2. (3.9) -2 _ 
7=0 

Theorem 3.10: For all integers r and m, 

GrHm+GmHr=2Rr+m. (3.10.1) 

Proof: For fixed r, both members are sequences indexed by m satisfying the homogeneous 
difference equation (3.0.1), as noted in (3.0.8). It will suffice, therefore, to show equality in 
(3.10.1) for m =-I and m = 0. But from (3.0.4) and (3.0.6) we have -G^H^IR^ and 
Gr +Hr = 2R,, which, in view of (3.0.12) and (3.0.14), establishes (3.10.1) for m = -1 and m = 0. 

Theorem 3.11: For all integers r and m, 

GrRm+GmRr_l=Rr+m. (3.11.1) 

Proof: This is proved in the same way as (3.10), using (3.0.4). 
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In much the same way, one shows 

^r^-m ~ ̂ r-lKn-1 = Gr+m ? 

K^m-Ki-l^r = Rr+m> 

Kr+lHm +KmHr = X K+m> 

GrHm - GmHr = 2Rm_r_1, 

G^ - G ^ ^ . ! = Rm_r, 

GrRm ~ (jr+i-Kyn-i ~ Gr_m, 

RrGm — Rmijr — Rr_m_l, 

K^m+l ~*\n^r+l = ^^r-m-V 

(3.12) 

(3.13) 

(3.14) 
(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

Many further identities of this type could be given, but these are the ones used in the 
remainder of the paper. 

4. GAMES OF TYPE (I) 

Suppose that 4̂ is a matrix of type (i) with parameters a and d. Then A is 2n + lx2n + l, 
where n = a + d + l. To show that there is a matrix D such that AD = A*, as discussed in Section 
2, is equivalent to showing that each column of A* is in the column space of A. However, with 
the exception of the two irregular columns, every column of A is itself a column of A*, so we 
have only to show that columns a + l and n + a + 2 of A* are in the column space of A. Let D.j 
and A*- denote the 7th column of D and A*, respectively. What we shall actually exhibit are 
columns D , such that AD, = M*, for /' = a +1 and n + a + 2, where 

A = x(x + 2)Rn_1 (n = a + d + l). (4.0.1) 

This suffices, in view of the fact that, by Theorem 3.1, A > 0 for x > 2. 
The column D.a+l is defined as follows: 

4 , a+i = -2(x + 2)Ta_t + x(x + 2)Tn_aH_2 +2 for 1 < 1 < a; 

dj}a+1 = -2x(x + 2)En+a_j+x2(x + 2)Ej_a_3-¥x for a+ 2 <i <n + a + l; (4.0.2) 
<tn+a+2,a+l= - ( * + 2 ) 1 ^ + 1; 

^, f l + i="2(x + 2)r2wffl+1_/+x(x + 2)3;_w_fl.3+2 forw + a + 3 < / < 2 / i + l. 

Theorem 4.1: Let 4̂ be a matrix of type (i) as described in Section 2, with parameters a and <i. 
With Z).fl+1, A, and A* as defined above, we have 

AD.a+l = AA:+1. (4.1.1) 

Proof: The column 4^+i has Is in rows a, a + l, and 2w + l , -x in roww + a + 1, and all 
other elements are 0. Thus, we need to show that the following equations are satisfied: 
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" / , a+l + " / + 1 , a+l X"n+i+l, a+.i ~" ^ 

" a , a+l + ^ " a + 1 , a+l ~~ X " « + a + l , a+: 

^ a + 2 , a+l ~~ ̂ ^ n + a + 2 , a+. 

"i, a+l + "; '+l, a+l ~ X"n+i+l, a+ 

~~*:"/> a+l ~*~ **«+/', a+l "• ^n+i+l, a+. 

~ ~ ^ a + l , a+l "*" ^n+a+1, a+ 

~X"a+2, a+l + 2dn+a+2, a+l + ^n+a+3, a+l 

—Xa7 a + 1 + aw+/-s a + 1 + ^n+i+l, a + 

f o r l < / < a - l ; 
= A; 
= A; 
= 0 fora + 2<i<n; 
= 0 for 1 < / < a; 
= -xA; 
= 0; 
= 0 fora + 3</ '<^: 

2«+l 

(4.1.2) 
(4.1.3) 
(4.1.4) 
(4.1.5) 
(4.1.6) 
(4.1.7) 
(4.1.8) 
(4.1.9) 

(4.1.10) 

Since the second subscript is a + 1 in every case, there should be no confusion if we drop it; 
i.e., we will write dt for df a+l. To establish (4.1.2) note that, for 1 < / < a - 1 , we have 

dx +di+x-xdn+m = -2(x + 2)Ta_, + x(x + 2)Tn_a_2M +2-2(x + 2)Ta_i_1 
+ x(x + 2)T„_a_l+i + 2 + 2x2(x + 2)Ea_i_l -x\x + 2)E„_a_2+i -x2 

= -2(x + 2)(Ta_i + Ta_i_1-x2Ea_,_l) 
+ x(x + 2)(7/„_a_2+;. + Tn_a_w - x2E„_a_2+i) + 4 - x2 

= (x-2)(x + 2) + 4-x2 =0, by (3.2). 

For (4.1.3), we have 
da + 2da+1 - xdn+a+1 = -2{x + 2)7/0 + x(x + 2)Tn_2 + 2 + 2x(x + 2)E„_X + 2 

+ 2x2(x + 2)E_l - x3 (x + 2)E„_2 - x2 

= x(x + 2)(T„_2 + 2En_1-x2E„_2-l), by (3.0.10) and (3.0.13) 
= A, by (3.2), (3.0.5), and (3.0.3). 

For (4.1.4), note that 

da+2-xd„+a+2 = x(x + 2)(T„_l -2En_2) = A, by (3.0.10), (3.0.5), and (3.0.3). 

Both (4.1.5) and (4.1.6) are immediate from (3.0.5). 

For (4.1.7), we have 

-xda+1 +dn+a+l = -x2(x + 2)(En_1 -En_2) = -xA, by (3.0.3) and (3.0.10). 

For (4.1.8), 

-xda+2 + 2d„+a+2 + dn+a+3 = 2{x + 2){x2En_2 - Tn_x - Tn_2 +1) = 0, by (3.2). 

For (4.1.9), we have, for a + 3 < i < n, that 

-xdt +dn+i +dn+M = 2(x + 2)(x2E„. -T -T 
^n+a+l-i xn+a—i 

) 
+ x(x + 2XTM+T1_a_2-x2Ei_a_3) + 4-x2 

= 0, by (3.2). 

Finally, for (4.1.10), we have 
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2n+l a-\ n-2 

£«/, =-2(x + 2)£2;+x(x + 2) YJTi+2a + x{x + 2)E„_l+\ 
i-\ i=Q i=n-a-l 

n-2 n-2 

-2x(x + 2)Y,Ei+x1{x + 2)YJEi+nx~(x + 2)Tn_l+\ 

-2(x + 2)^? ; + x(x + 2) J j ; + 2 ( / i - a - l ) 
i=a 1=0 

= (x2 - 4 ) " f ?: + x(x2 -4 ) " f E,^x(x + 2)En_l -(x + 2)Tn_, +»(x + 2). 
i=0 7=0 

With the use of (3.8) and (3.9) we obtain, upon simplification, 
2w+l 
X 4 = (1 - Tn_x - Tn_2) + x(En_h- £„_2 - r„_,) + (x2 + 2x)E„_l. 
/=1 

Then, using (3.2), (3.0.5), and (3.0.3), we have 
2w+l 
£ j ; = -*2£„-2 -2x£„_2 + (x2 + 2x)£„_1 = (x2 +2x)(£„_1 -E„_2) = A, 
i=l 

and the proof is complete. 
The column D.n+a+2 is defined as follows: 

du n+a+2 = "2(x + 2)7_+/_2 + x(x + 2)Ta_t +2 for 1 < i < a; 
da+\, n+a+2 = ~(X + ^Wn-l + ^ 

4 , « + . + 2 = - 2 ^ + 2)£z_a_3+x2(x + 2)^ + a _ / +x fora + 2</<w + a + l; (4.1.11) 
dn+a+2, n+a+2 ~ X\X + ^)^n-\ + ^ 

4 , n+a+2 = "2(* + 2)7?_„_a_3 + x(x + 2)72lI+a+1_,. +2 for n + a + 3 < i < 2n +1. 

Theorem 4.2: With .4, .4*, and A as in Theorem 4.1, and -D.„+a+2 as defined in (4.1.11), we have 

AD„+a+2=AA:+a+2. (4.2.1) 

Proof: The column A*n+a+2 has -x in row a + 1, 1 in rows n + a + l,n + a + 2, and 2« + l, 
and 0 in each of the remaining rows. We need to show that the following equations are satisfied: 

dU n+a+2 + 4+1, «+«+2 " ^ + / + 1 , n+a+2 = ° for 1 < / < a - 1; (4.2.2) 

"a,«+a+2 + ^da+l, n+a+2 ~ xdn+a+\, n+a+2 = ^ (4.2.3) 

da+2,n+a+2 ~ xdn+a+2, n+a+2 ~ ~x&', (4.2.4) 

di, n+a+2+ 4 + l , n+a+2 ~ xdn+r+l, n+a+2 = ° for a + 2 < I </i; (4.2.5) 

- ^ / , W + a + 2 + dn+i,n+a+2 + dn+i+l,n+a+2 = ° for 1 < / < ^ (4.2.6) 

-X"a+l,«+tf+2 +dn+a+\,n+a+2 ~ &', \ 4 - ^ - ' / 

- X a a + 2 5 „ + a + 2 + ^n+a+2, n+a+2 + dn+a+3, n+a+2 ~ ^ (4.Z.5J 

-^,»+fl+2+^+/,«+a+2+^+/+i,w+fl+2 = ° fora + 3<7<w; (4.2.9) 
2w+l 

2X„+ a + 2=A. (4.2.10) 
/=1 
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Again we drop the second subscript, which is n + a + 2 in every instance. Thus, we write df for 
di,n+a+2- To show (4.2.2) we note that, for 1 < /' < a - 1 . 

dt + dM ~ Xdn+M •= - 2 ( * + 2)(Tn+i-a-2 + ^-M-a-1 ~ ^E„M_a_2 ) 

+ x(x + 2)(Ta_I+Ta_i_l-x2Ea_i_1) + 4-x2 

= 0, by (3.2). 
For (4.2.3), 

da + 2da+1 - xd„+a+1 = -2(x + 2)(T„_2 + r„_! - x2E„_2 ) + x(x + 2) + 4-x2 

= 0, by (3.2). 

For (4.2.4), da+2 -xd„+a+2 = -x2(x + 2)(En^ -E„_2) = -xA, by (3.0.3). 

For (4.2.5), note that, for a + 2 < i < n, 

d, +di+l-xd„+i+1 = -2x(x + 2)(Ei_a_z+Ei_a_2 -Ti_a_2) + x2(x + 2)(E„+a_i+En+a_i_1-T„+a_i) 
= 0, by (3.0.5). 

For (4.2.6), we have, for 1 < /' < a, that 

-xd, +d„+i+dn+i+1=2x(x + 2)(T„+i_a_2 -En+i_a_3-E„+i_a_2) + x2(x + 2)(Ea_i + Ea_i_1-Ta_i) 
= 0, by (3.0.5). 

For (4.2.7), -xda+1 +d„+a+l = x(x + 2)(Tn_1~2E„_2) = A, by (3.0.5) and (3.0.3). 

For (4.2.8) we have, using (3.0.10) and (3.0.13), 

-xda+2 + 2dn+a+2 + dn+a+3 = -x3 (x + 2)E„_2 + 2x(x + 2)En_1 + x(x + 2)Tn_2 +A-x2-2(x + 2) 
= x(x + 2)(-x2En_2 + 2En_x + T„_2 -1) 
= A, by; (3.2), (3.0.5), and (3.0.3). 

For (4.2.9), note that, for a + 3 < /' < n, 

-xd, + d„H + dn+i+l = 2(x + 2)(x2Ei_a_i - %_a_3 - %_a_2) 
+ x(x + 2)(-x2E„+a_i + r„+fl+1_7. + Tn+a_t ) + 4-x2 

= 0, by (3.2). 

Finally, (4.2.10) follows from (4.1.10) since the elements of D.n+a+2 are precisely those of 
D.a+1 but reordered. This completes the proof. 

We turn now to the solution of (2.4). Let Ube the column with components 
ui = GdKa+i-i forl<i<a; 

ut = xGaGi-a-2 for a + 2 < i < n +1; (4 2 11) 
u,, = xGn+aJrX_iGd for« + l<7<n + a + l; \ • • ) 

"n+a+2 ~~ ̂ a > 

Uj = Kj_„_a_2Ga for n + a + 3 < / < 2« +1. 

(Note that w„+1 occurs twice but that the two expressions agree.) 
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Theorem 4J: With U as defined by (4.2.11), the column Pf = U/(x + 2)Rn_l satisfies (2.4), 
namely APf = (0, 0,..., 0, l)f, for the matrix A of type (i), and has all components positive for 
x > 2. The vector P is thus the unique optimal strategy for the row player in the reduced game of 
type (i). 

Proof: That all components are positive for x > 2 is clear from Theorem 3.1. To prove that 
(2.4) is satisfied, we show that A U = (0,0,..., 0, A)f, where A = (x + 2 ) ^ . 

For 1 < i < a -1, we have 

AiJJ = ut +ui+1-xun+i+l = Gd(Ka+l_f +Ka_t -x2Ga_i) = 0, by (3.3). 

Also, 

AaU = ua+2ua+l--xuri+a+l = Gd(K1+2-x2) = 0, by (3.0.15), 

and 
A+hU = Ua+2 ~ XUn+a+2 = xG

aG0 ~ xGa = 0, 

since G0 = 1. 

For a + 2 < i < n9 

A1.U = ut +ui+1-xun+i+l = xGa{Gt_a_2 + G/_a_1 - iw- i )> 

and, for n +1 < i < n + a9 

Af.U = -xUi_n + ut + uM = xGd (-Kn+a+1_f + Gn+a+l_t + Gn+a_t), 

and both of these are 0 by (3.0.7). 

Next, 
A„+a+l.U = -xua+l +un+a+l = -xGd +xGd = 0, 

and 

An+a+2.U = -xua+2 +2un+a+2 +un+a+3 = Ga(-x2 + 2 + 1^) = 0, by (3.0.15). 

For n + a + 2<i< In, we have, by (3.3), 

AiJJ = -xut_n +ut +ui+l = Ga(-x2G;_„_a_2 + Kt_n_a_2 +Ki_n_a_l) = 0. 

Finally, using (3.0.7), (3.0.4), (3.0.14), and (3.0.12), we have 
2«+l ( a \ d a-\ ( d \ 

i=l V /=1 / /'=0 /=0 V /"=1 / 

= ( G A +GaHd) + x(GaRd +GA-i) 

(recall that rf = « - a - l ) , and in view of (3.10.1) and (3.11.1) this is equal to (x + 2)i?„_1? as 
claimed. This completes the proof. 

For the column player's optimal strategy, we use the vector W = (wlt w2,..., ^2n+\) defined by 
(4.3.1) below: 
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wi = x(x2 - 4)Ra_fHd for 1 < j < a; 
Wa+l=2Ha+xHd; 

w. =(x2-4)HaHi_a_2 fora + 2<i<n + a + i 
wt = (x2 - A)Hn+a^_tHd for n +1 < i < n + a +1; 2 ,,„ „ , . . . . . . . . ( 4 3 1 ) 

w, = x(x2 - 4)/7fl^._IM_3 for ̂  + a + 3 < i < In +1. 

Theorem 4.4: For x > 2, the vector Q = WIx{x + 2)Rn_l, where fFis defined by (4.3.1), has all 
components positive and satisfies (2.16) for the batrix B of type (i). This is therefore the unique 
optimal strategy for the column player. 

Proof: The proof is very similar to that of the preceding theorem, and we omit the details. 
The game value, V^, for the reduced game of type (i) is now easily computed as well. It is 

given by the product PB.j for any column J5 • of the payoff matrix. Using the middle column, we 
have 

( n 2n+l 

V® = PB.n+1 = 
n 2n+l \ / 

"2> + I > /(* + 2)^-1' 
V i = l 

and with the use of (3.0.7), (3.0.4), (3.17), and (3.18), we obtain (4.5.1) below. 

Theorem 4.5: For x > 2, the game value V^ for the reduced game of type (i) is given by 
(x-2)Ra_d_l 

(° (* + 2)JU 
Moreover, 

?(i)>0, (̂i) = 0, orF( i )<0 according as a> d, a = d9 or a <d. (4.5.2) 

Proof: The assertion (4.5.2) follows from Theorem 3.1 and (3.0.11). 

5. GAMES OF TYPE (ii) 

In a matrix A of type (ii), only columns c + 2,n + c + 2, and/? + c + 3 differ from the corre-
sponding columns of A*, so to show nonsingularity of A it would suffice to show that these three 
columns of A* lie in the column space of A. However, we can simplify the problem further by the 
observation that the type (ii) matrix A with parameters c, d differs from the type (i) matrix A' 
with parameters a' = c + l,d' = d only in column n + c + 2 = n + af + 1, and in this column, Af 

agrees with A*. Thus, it suffices to show that A*n+c+2 lies in the column space of the type (ii) 
matrix A. To that end, we use the column D defined by (5.0.1) below, and show that AD = 
xGn-\£n+c+2> wWch suffices in view of Theorem 3.1. 

for 1 < / < C + 1; 

forc + 3 < / < » + c + l; ( J Q J } 

forw + c + 4</<2w + l. 

dt 
dc+2 

dt 

®n+c+2 

^n+c+3 

d, 

- ^n+i-c-2 

= # / ! - i ; 
- -xGf_c_3 
= xRn_l; 
= - i ; 
= ~-^i-n-c-3 
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Theorem 5.1: Let A be a matrix of type (ii) with parameters c and d, and let A* be the associated 
matrix of the same dimensions as A as described in Section 2. With D as defined in (5.0.1), we 
have 

AD = XG„_XA:+C+2. (5.1.1) 

Proof: The column A*n+a+2 has -x in row c +1, 1 in rows n + c +1, w + c + 2, and 2/? +1, and 
0 in each of the remaining rows. We need only show, therefore, that the following conditions are 
fulfilled: 

dt + di+l-xdn+i+l =0 for 1 <i < c; (5.1.2) 
dc+l + 2dc+2 -xdn+c+2 = -x2Gn_x; (5.1.3) 

dc+3-xdn+c+3=0; (5.1.4) 
di+di+l-xdn+j+l=0 for c + 3<i<n; (5.1.5) 
-xdi_n+di+dM =0 forn + l<i<n + c; (5.1.6) 

-xdc+l +dn+c+l = xGn_x\ (5.1.7) 
-xdc+2 +2dn+c+2 = xGw_i; (5.1.8) 

-x< + 3 +2rfw+c+3 +d„+c+4 = 0; (5.1.9) 
-xdi_n+di +di+l =0 forn + c + 4<i<2n; (5.1.10) 

2«+l 

Y,di=xGn_l. (5.1.11) 

For (5.1.2) we have, for 1 < i < c, 

4 + dM ~ Xdn+i+l = -Kn+i-c-2 ~ Kn+i-c-l + ^ ^ - ^ 2 = °> by (3.3). 

For (5.1.3), 

= x2G„_1, by (3.3), (3.4), and (3.0.7). 

For (5.1.4), dc+z - xdn+c+3 = -xG0 + x = 0, by (3.0.12). 

For (5.1.5), note that, for c + 3 < i < n, 
d, +di+l-xd„+M = -x(G,_c_3 + G,_C_2 -^_ c _ 2 ) = 0, by (3.0.7). 

For (5.1.6), we have, for n + l<i <n + c, 
-xdt_„ + d, +di+1 = x(Ki_c_2 - G,_c_3 - G,_c_2) = 0, by (3.0.7). 

For (5.1.7), -xdc+l +d„+c+l = xiK^ -G„_2) = xG„_u by (3.0.7). 

For (5.1.8), observe that 
-xdc+2 +2d„+c+2 = *(-#„_, + 2 ^ ) = xGn_u by (3.0.6) and (3.0.4). 

For (5.1.9), we have 

- x ^ + 3 + 2 ^ + c + 3 + < + c + 4 = x 2 G 0 - 2 - ^ =0, by (3.0.12) and (3.0.15). 

rfc+l - 2dc+2 ~ xdn+c+2 = ~ ^ - l + 2 ^ 2 - l ~ X Ki-l 
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For (5.1.10), we note that, for « + c + 4 < i < 2w, 

-xdt_n +dt + di+1 = x2Gt_n_c_3 -Kt_n_c_3 - JT,_W_C_2 = 0, by (3.3). 

Finally, for (5.1.11), we have 
2«+l n-l n-2 

7 = 1 7 = 1 7 = 0 

From (3.0.7) and (3.0.15), we obtain 
n-l 

7 = 1 

and from (3.0.4) and (3.0.11), 
n-2 

^Gi=Rn_2, 
7=0 

so that 
2«+l 

Y.di = X(Rn-l -Rn-l) = XGn-n 
7 = 1 

and the proof is complete. 
We turn now to the solution of (2.4) for matrices A of type (ii). Let D be the column with 

components as given in (5.1.12) below. 

dt = (x2 - 4)GdHcU_t for 1 < i < c +1; 
dc+2=2Gd; 

di = x(x2 - 4)RcGf_c_3 for c + 3 < i < n +1; 
dt =x(x2-4)Rn+1+c_jGd forn + l<i<n + c + l; (5.1.12) 

®n+c+2 = %Gd > 

dn+c+3 = (x2-4)Rc; 
di = (x2 - 4)RcKi_n_c_3 for n + c + 4 < i < In +1. 

Note again that the two expressions for dn+l agree. 

Theorem 5.2: Let A be the matrix of type (ii) with parameters c and d. Let Pt - DI {x + 2)Gn_1, 
whereD is as defined by (5.1.12). ThenP satisfies (2.4), namely APf = (0, 0,..., 0, l)r, and has all 
components positive for x > 2. 

Proof: That all components are positive for x > 2 is clear from Theorem 3.1. To prove that 
(2.4) is satisfied, we show that AD = (0,0,..., 0, A), where A = (JC + 2)G„_1. Let Ai. denote the 
Ith row of A. 

For 1 < i < c, 

AiD = dj +di+l-xdn+i+l = (x2-4)Gd(Hc+l_i +Hc_j-x2Rc_i) = 0, by (3.4). 

Also, 
Ac+lD = dc+l + 2dc+2 -xdn+c+2 = (x2 -4)Gd -x2Gd= 0. 
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Next, 
AC+2D = dc+3 - xdn+c+3 = x(x2 - 4)RCGQ - x(x2 - 4)RC = 0. 

For c + 3 < i < n9 

A,.D = dt +di+l-xdn+i+l = x(x2 -4)Rc{Gl_c_3 + Gt_c_2 -KM) = 0, by (3.0.7). 

For » + 1 < / < H + C, 

4JD = -xdt_n +di +di+1 = x(x2 -4){-Hn+c+l_i +Rn+c+l_i +i^+c_/) = 0, by (3.0.6). 

We have 
An+c+lD = -xdc+l +d„+c+l = x(x2-4)Gd(-H0+Ro) = 0, 
An+c+2-D - ~xc*c+2 + 2dn+c+2 = 0, 

and 
An+C+3D = -xdc+3 + 2d„+c+3 +dn+c+4 = (x2 -4)Rc(-x2G0 + 2 + ^ ) 

= 0, by (3.0.12) and (3.0.15). 

For n + c + 4<i<2n, 

A,D = -xdt_n +dt +dM = (x2 -4)Rc{~x2Gi_n_c_3 + X 7 „ 3 + Ki_n__c_2) = 0, by (3.3). 

Finally, 
2w+l 

7 = 1 

= (*2 - 4 ) G , X ^ +2G, + x(x2 -A)RcfjGi+x(x2 -4)Gd^R, 
/=0 i'=0 7=0 

f d ^ 
v /=i y 

= (x2 - 4)Gdrc + (x + 2)G„ + x(x2 - 4)RcRd + x(x2 - A)GdEc_x + (x2 - A)RcHd, 

using, in turn, (3.0.6), (3.0.13), (3.0.11), (3.0.3), (3.0.10), (3.0.7), and (3.0.14). Upon factoring 
out (x + 2) and separating into even and odd parts, we obtain 

i 2n+l 
— 2 > , = (-2(GdTc +HdRc) + Gd +x2{RcRd + Ec_fid)) 

+ x((GdTc + HdRc)-2(RcRd+Ec_1Gd)). 

The odd part is 0, since Gd(Tc-2Ec_l) + Rc(Hd-2Rd) = GdRc-RcGd, by (3.0.5), (3.0.3), 
(3.0.6), and (3.0.4). Thus, we have 

i 2n+l 

^ 1 4 - (*2 ~ 4 X « +Ec_lGd) + Gd 

= (Gc+l-Gc)Rd + GcGd, by (3.5) and (3.6), 
= Gc+iRd-GcRd_l 
= Gc+d+l = Gn_u by (3.12). 

This completes the proof. 
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For the optimal strategy for the column player, we use the vector W with components as 
given in (5.2.1) below. 

w, = x(x2 - A)Gc+l_iHd for 1 < i < c'+1; 

(5.2.1) 

Wc+2 

W, 

w, 
W„+c+2 
W » + C + 3 

- 2Kc+l; 
= (x2-4)Kc+1Hi_c_3 

= (x -4)K„+c+2_iHd 

= (x2-4)Hd; 
= xKc+l; 

for c + 3 < / < n +1; 
for n +1 < i < n + c +1 

w,. = x{xz - 4)^c+1i^_w_c_4 for w + c + 4 < / < 2w +1. 

Theorem 5.3: For x > 2, the vector Q = WI x{x-¥l)Gn_l, where JF is the vector defined by 
(5.2.1), has all components positive, and satisfies (2.1b) for the matrix B of type (ii). Therefore, 
this is the unique optimal strategy for the column player in the game with payoff matrix B. 

The proof is similar to the proof of the preceding theorem, and we omit the details. 
The middle column, B.n+l is the same for all four types of reduced matrix, and we use it again 

to compute the game value, V^. With D as given by (5.1.12), we have 

v<® = 

f n 2n+l \ I 

- I 4 + E 4 /(* + 2)GU 

and with the use of (3.0.6), (3.0.4), (3.0.3), (3.0.7), (3.5), (3.6), (3.7), (3.17), and (3.19), we 
obtain (5.4.1) below. 

v& = r;:™ , CAI) 

Theorem 5.4: For x > 2, the game value, F(ii), for the reduced game of type (ii) is given by 

(x~2)Gc_d 

(x + 2)Gc+d+l 

and 
Vm > 0 for all c and d. (5.4.2) 

Proof: The assertion (5.4.2) follows from (3.0.12) and Theorem 3,1. 

6. GAMES OF TYPE (iii) 

The payoff matrix for a game of type (iii) is sufficiently closely related to that for a game of 
type (ii) that we may use our results from Section 5 to obtain the corresponding theorems here. 
The key observation is the following. 

Remark 6.1: Let B be the payoff matrix for a game of type (iii) with parameters a and b, and let 
B' be the payoff matrix for a game of type (ii) with parameters cf = b and d' = a. If we change all 
signs in B, transpose about the main diagonal, and then transpose about the lower left to upper 
right diagonal, we obtain the matrix B'. 
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The matrix -B* obtained after the first two steps in Remark 6.1 is the payoff matrix of the 
game B with the roles of the players reversed. The third step obviously also preserves rank, so 
uniqueness of solutions P, Q, and Fto 

PB = (T,V,...,V) (6.1.1) 
and 

BQ* =(V,V,...,Vy (6.1.2) 

follow from uniqueness of solutions to 
P ' 5 ' = (F' ,F' , . . . ,F') (6.1.3) 

and 
B'Q'1 = {V\V\...Jf). (6.1.4) 

Moreover, the transposition of -Bf about its counterdiagonal sends row / of -B* to column 
In +1 - / of B', and column y of -Bf to row 2n + l-j ofBf. Thus we see that, if P\ Q', and V 
satisfy (6.1.3) and (6.1.4), and we define P to be the vector Q with the order of the elements 
reversed, Q to be Pf reversed, and V = -V, then P, Q, and V satisfy (6.1.1) and (6.1.2). We 
summarize this in the next theorem. 

Theorem 6.2: Let B be the payoff matrix of a game of type (iii), with x > 2 and Bf the associated 
payoff matrix of type (ii) as described above. Let P\ Q\ and V be, respectively, the optimal 
strategy for the row player, the optimal strategy for the column player, and the game value for B', 
and let P and Q be, respectively, Q reversed and P' reversed. Then P and Q are the optimal 
strategies for the row and column players, respectively, for the game B, and the game value, V^, 
is given by 

(x-2)Gb_a 

(x + 2)Gb+a+l 
Vm=-V' = - ; * ^ b - a . (6.2.1) 

The game value is negative for all values of b and a. 

7. GAMES OF TYPE (iv) 

The type (iv) matrix A, with parameters c and A, is a 2^ + 1x2^ + 1 matrix, where n = c + 
b + 2. In this matrix A, only column c + 1 differs from the corresponding column of A', where A' 
is the type (iii) matrix with parameters a' = c and b' -b. We shall establish nonsingularity of A by 
exhibiting a column D such that 

AD=A!c+iA, (7.0.1) 

where A'c+l is column c + 1 of A' and A = x(x + 2)Rn_l. The column D is defined by (7.0.2) 
below. 

dt = -x(x + 2)Hb+i for 1 < / < c; 
dc+l = x(x + 2)Gn_u 

dc+2 = 2x(x + 2)En_2 -x; 
di=-x2(x + 2)Ri_c_3 forc + 3 < / < ^ + c + l; (7.0.2) 

dt = -x(x + 2)Hi_rh_c^3 for w + c + 3 < i < In +1. 
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Theorem 7.1: Let A be a matrix of type (iv) with parameters c and Z>, and x > 2. Let A' be the 
matrix of type (iii) with parameters a' = c and b' - b. Then the column D defined by (7.0.2) satis-
fies (7.0.1) and thus A is nonsingular. 

Proof: The column A'c+l has a 2 in row c (if c > 0), -x in row n + c +1, 1 in the last row, 
and 0 in all other rows. 

For 1 < / < C , AiD = di+di+l-xd„+i+v If 7 < c, this is x{x + 2){-Hb+i-Hb+i+l+x2RbM\ 
which is 0 by (3.4). If i = c, we have AiD = x(x + 2)(-Hn_2 + Gn_x - x2R„_2 ) = 2x(x + 2)i^_x = 
2A, by (3.4), (3.0.4), and (3.0.6). 

For rows c + 1 and c + 2, we have 

4+i.£> = dc+i + 2 ^ + 2 " *^ + c + 2 = *(* + 2)(G„_1 + 4E„_2 - x2En_2 -1) = 0, by (3.6), 
and 

4+2 £ = ^ + 3 " <+c+3 =X2(X + 2 ) ( - ^ + flo) = 0. 

For c + 4 < i < n, 

Ai.D = di +dM-xdn+i+i = x\x + 2){-Ri_c^ -R,_c_2 +HM) = 0, by (3.0.6). 

For n +1 <"7 < n + c, 

4 . i ) = - ^ , _ „ + f l ' , . + ^ + 1 = x2(x + 2)(//,+ft_„-JR,_c_3-i?i_c_2) = 0, by(3.0.6), 

since 77 = & + c + 2. 

With 7 = 77 + c +1, we have 

An+c+lD = -xrfc+1 + </w+c+1 = - x 2 ( x + 2)(G„_1 +i?„_2) = -xA, by (3.0.4), 
and 

An+C+2D = -xdc+2 + 2dn+c+2 + < + c + 3 = x2 + 2x - x(x + 2)H0 = 0. 

For 77 + c + 3 < i < 277, 

4.Z) = -x4_„ + 4 + rf/+1 = x(x + 2 ) ( - x 2 i ^ _ c _ 3 +Hi_n_c_, +Hi_r^c_2) = 0, by (3.4). 

Finally, 
2«=1 f w-2 w-2 A 

^W> = E4=*(* + 2) -I#,+Gn_1+(x + 2)£;i_2-x;£^. 
/=! V /=0 /'=0 / 

By (3.0.3) and (3.0.10), Zf-0
2i^. =£„_2, and by (3.0.6) and (3.0.13), T^IQ Ht = Tn_2. Thus, 

2w+l 

5 > , = *(* + 2)(-rB_2 + G„_! + 2£„_2), 

and with the help of (3.0.5), (3.0.4), and (3.0.3), this is easily seen to be equal to A. This com-
pletes the proof. 
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We turn now to the solution of (2.4) for the matrix A of type (iv). Let D be the column with 
components as defined in (7.1.1) below. 

4 - ( x 2 - 4 ) i f c + 1 _ ^ f o r l < i < c + l; 
dc+2=xRc+2Rb; 

dt = x(x2 - 4)i?^_c_3 for c + 3 < i < n +1; 
di=x(x2-4)Rn+1+c_iRb forn + l<i<n + c + l; 

di = (x2 - 4) J^_w_c_3i?c for n + c + 3 < i < In +1. 

Theorem 7.2: Let >4 be the matrix of type (iv) with parameters c and b. Let P* =D/(x + 2)Rn_l, 
where D is defined by (7.1.1). Then P satisfies (2.4) and has all components positive for x > 2. 
Thus, P is the unique optimal strategy vector for the row player in the game of type (iv). 

Proof: That all components are positive is clear from Theorem 3.1. To prove that (2.4) is 
satisfied, we show that AD = (0, 0,..., 0, A), where A = (x + 2)Rn_v 

For 1 < / < c, 

A,.D = dt +di+l-xdn+M = (x2-4)Rb(Hc+1_i +Hc_i -x2Rc_t) = 0, by (3.4). 

For rows c + 1 and c + 2, we have 

Ac+lD = dc+l + 2dc+2 - xdn+c+2 = (x2 - 4)H0Rb + 2xRc + 4Rb - 2xRc - x2Rb = 0, 
and 

AC+2D = dc+3 - xdn+c+3 = x(x2 -4)RC(R0 - H0) = 0, 

since H0 = R0 = lby; (3.0.11.) and (3.0.14). 

For c + 3<i <n, 

A,D = d, +dM - xd„+i+i = x(x2 - 4)Rc(Ri-c-3 +Ri-c-2 - Hf-c-2 = °> by (3 0-6)-

For n + \<i <n + c, 

AtJD = -xdt_n +dt +di+l = x(x2 -4)Rb(-H„+c+l_i +R„+c+l_l +R„+C_i) = 0, by (3.0.6). 

For the next two rows, we have 

A„+c+hD = xdc+l +dn+c+l = x(x2 -4)Rb(H0-R0) = 0, 
and 

An+C+2.D = -xdc+2 +2d„+c+2 +d„+c+3 = (-x2 + 4)Rc+(-2x + 2x)Rb +(x2 -4)H0RC = 0. 

For n + c + 3<i <2n, 

AiD = -xd,_„ +dt +dM = (x2 -4)Rc(-x2Ri_„_c_3+Hi_„_c_3+Hi_„_c_2) = 0, by (3.4). 

Finally, using (3.0.6), (3.0.13), (3.0.3), and (3.0.10), we have 
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2n+l 
2 A2„+i-D= 1 4 = (x2 - 4 ) ^ £ # ; +(x + 2)(Rc + Rb) 

/=1 i=0 

+ x(x2 -4)RXRi+x(x2 - 4 ) ^ § ^ + (x2 - 4 ) ^ £ # , 
1=0 /=0 i=0 

= (x2 -4)(i?,7; + i ^ ) + (x + 2)(i?c +i^) + x(x2 -4)(i?c£, +i?^c„1). 

Upon factoring out (x + 2) and separating into even and odd parts, we obtain 
| 2«+l 

r 5 > , = (R„(x2Ec-i ~2TC +1) + ̂ ( x 2 £ 6 -2Tb +1)) + x(Rb(Te -2Ec_y) + Rc(Tb -2Eb)). 
x + 2 ,., 

The odd part is easily seen to be 0 using (3.0.5) and (3.0.3), and with the help of (3.2), (3.0.6), 
and (3.13), we see that the even part is Rb+C+1. Since n = b+c + 2, we have 

A2n+lD = (x + 2)R„_1, 

and the proof is complete. 

To describe the optimal strategy for the column player, we use the vector W defined in 
(7.2.1) below. 

wi = ^c+i-i^+i for 1 < i < c +1; 
Wc+2 =Kc+U 

Wt = Kc+iKi-c-2 for c + 3 < / < rc +1; 
wt = Kn+c+2-iKb+i forw + l < / < / i + c + l; 

Wn+c+2 =Kb+l> 
wf = xZc+1Gz_„_c_3 for n + c + 3 < / < In +1. 

Theorem 7.3: The vector Q = W/x(x + 2)Rn_l, where J^is defined by (7.2.1), has all compo-
nents positive for x > 2, and satisfies (2.1Z>) for the matrix B of type (iv). Therefore, this is the 
unique optimal strategy for the column player in the game with payoff matrix B. 

The proof is straightforward and is left to the reader. 

With D as given by (7.1.1), we again express the game value F(iv) in the form 

V -
2«+l \ 

V /=! i=n+2 J 
l(x + 2)Rn_l, 

and using (3.0.6), (3.0.3), (3.7), (3.6), (3.21), and (3.20), we obtain (7.4.1) below. 

Theorem 7.4: The game value F(iv) for the reduced game of type (iv) with x > 2 is given by 

( x - 2 ) * ^ 
(,v) (x + 2)Rb+c+l 

Moreover, 

F(iv) > 0, F(iv) = 0, or F(iv) < 0 according as b > c, b - c, or b < c. (7.4.2) 
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With the theorems of Sections 4-7 we have now established the irreducibility of the 
Silverman games in the four classes of odd order games which arise in Chapter 8 of [7], and have 
given game values and optimal strategies explicitly in terms of the various parameters involved. 
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1. INTRODUCTION 

The well-known Eulerian numbers may be defined either by their generating function or as 
the coefficients of f'+n~k), k = 0,1,..., n, in the factorial expansion of tn. During their long history 
they were extensively studied (and frequently rediscovered) especially with respect to their 
number-theoretic properties and their connection with certain combinatorial problems (see [2], 
[3], [18], [19], and references therein). In the last decades, several interesting extensions and 
modifications were considered along with related combinatorial, probabilistic, and statistical 
applications ([4]-[8], [10], [12], [13], [15]). 

The present paper was motivated by the problem of providing a unified approach to the study 
of Eulerian-related numbers, which on one hand will be general enough to cover the majority of 
the known cases and give rise to new sequences of numbers, but on the other will show up the 
common mathematical properties of the quantities under investigation. 

In Section 2 we consider the expansion of a polynomial pn(t) in a series of factorials of order 
n and introduce the notion of /^-associated Eulerian numbers and polynomials. Explicit expres-
sions, recurrence relations, generating functions, and connection to other types of numbers are 
discussed. In Section 3 we first indicate how well-known results can be directly deduced through 
the general formulation and in the sequel discuss some additional interesting special cases. 
Section 4 deals with several statistical and mathematical applications. Finally, in Section 6, we 
proceed with a further generalization through exponential generating function considerations. A 
brief study of the most important properties of the generalized quantities is also included. 

2. THE /^-ASSOCIATED EULERIAN NUMBERS AND POLYNOMIALS 

Let {pn(t),n = 0,1,...} be a class of polynomials with the degree of p„(t) being n and 
po(f) = 1. The coefficients An^ of the expansion of pn(f) in a series of factorials of degree w, 
namely 

Pn(0 = ±Ajt + n
n-k) (2.D 

k=0 V J 

will be called the pn-associated Eulerian numbers. 
The respective polynomial 

4,(0 = £ 4 u ' * (2-2) 

will be referred to as the /^-associated Eulerian polynomial. 
In Proposition 2.1 we provide an expression for A„,k and An(i) through the polynomials 

Pn(i). 
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Proposition 2.1: 

"• An,k=±(-l)f* + l)pn(k-j). 
j=o V J J 

b. An(t) = (i-ty+lfjPnu)tJ. 
j=0 

Proof: Making use of expansion (2.1) for t-h-j and interchanging the order of summa-
tion, we obtain 

;=0 \ J J r=o j=0 \ J J\ 

By virtue of Cauchy's formula, we have 

»-l)<^+,)("+^;y^)=(-•)'-'|(";lX*T-l>(-l)'"'^ 
and the first part of the proposition follows immediately. Finally, substituting the explicit expres-
sion of A„ik in An{t) yields 

^ ( o = | z ( - i ) ' ^ n 
[7=0 V J J J [y=o J y=o 

It is worth mentioning that the numbers An^k can be expressed through finite difference 
operators as follows: If E is the displacement operator, V = 1 - E~l and 

p u)-lp»(t) iro-t-k 
t^}}) \0 otherwise 

then 
An,k={v"+lEkpn(t)lo. 

A lot of numbers used in Combinatorial Analysis can be defined as coefficients of the 
expansion of a polynomial in a series of factorials. Well-known cases are the (usual and non-
central) Stirling numbers of the second kind, the Lah numbers ([16], [18], [19], and references 
therein), and the Gould-Hopper numbers ([9], [14]). The author [17] stated some general results 
for the numbers Pn k appearing in the expansion of an arbitrary polynomial pn (t) in a series of 
factorials, i.e., 

/>»(') = IX*(0*- (2-3) 

The next proposition furnishes the connection between the two double sequences of numbers 
4 u andP,u. 

Proposition 2.2: The /^-associated Eulerian numbers Afhk are related to the numbers Pn^k 

defined by (2.3), by 
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4,.t = !.<•-»'-'jfyztyr,.!. (24) 

: ;=0 

Proof: Proposition 2. lb, by virtue of (2.3) yields 

A(0 = (l-0^1i^.yZ(0y^=2:7i^/(l-0',"/, 

and expanding (1 - t)n~J we deduce that 

y=0 k=j^ J J k=0[j=0 V ^ J 

Comparing the last expression to (2.2), we immediately derive equality (2.4). The truth of (2.5) 
can be easily verified by inverting relation (2.4). • 

We are now going to prove a result referring to recurrence relations satisfied by the numbers 
Ank when a certain recurrence holds true for the polynomials pn(f). More specifically, we have 

Proposition 2.3: If there exists a relation of the form 

^ + i ( 0 = ( ^ + / ? j A ( 0 + ( r ^ + ^ ) ^ - i ( 0 ? ri>\, (2.6) 
connecting three polynomials with consecutive indices, then the numbers An^ satisfy the next 
recurrence relation 

(2.7) 
+ [yn{n-2k+2)-28nUn-i,k-i+[-7n{n-k + 2) + 8Mn-i,k-2^ *>\. 

Proof: Employing Proposition 2. la and replacing pn+i(k-j) by virtue of (2.6), we obtain 

4»i.* = («»*+/» ji(-i)y("}^(*-y)-ant(-iyy("y2)^(*-y) 

Recurrence (2.7) is easily deduced by introducing the expressions 

"J2KH"-HA +2|,:,I+I,:,I. (ry-^4j-Hj-2 
in the four summands appearing above, and making repeated use of Proposition 2. la. • 
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It is worth mentioning that, in the special case yn - 8n = 0 [i.e., when the polynomials pn(t) 
have real roots], the resulting numbers An k consistitute a triangular array of numbers. 

In the remainder of this section we shall establish a connection between the exponential 
generating function (egf) of the polynomials pn(t) and the respective egf of the /^-associated 
Eulerian polynomials. The basic assumption made here is that the egf 

of the sequence of polynomials p„(t), n = 0, 1, ..., can be expressed in the form 

P(t,u) = g(u)exp[t(F(u)-F(0))] (2.8) 

with g(0) = 1. This setting is general enough to include a lot of important special cases with 
diverse applications to combinatorics, physics, and mathematical analysis itself, as will be 
indicated in the next section. We mention here in brief that the special case g(u) = 1 leads to the 
well-known exponential Bell polynomials which have been studied in great detail (see [1], [18], 
[19]). 

Proposition 2.4: If the polynomials pn(t),n = 0, 1, ..., have egf of the form (2.8), then the egf of 
the ^-associated Eulerian polynomials 

A(t,u) = ftArl(t)^-

is given by 

A(t, u) = g((l - t)u) J"' (2.9) 

where f{u) = Qxp[F(u)-F(0)]. 

Proof: By virtue of Proposition 2. lb, we find that 

n=0[j=0 J n- j=0 

and on making use of (2.8) we easily deduce the desired expression (2.9). D 

It is easily seen that A(t,u) is the double generating function of the numbers An^k and 
writing 

oo r oo » i 
k=0[n=k m ) 

we conclude that the (single) egf of the numbers An k,n = ky k + \,..., may be obtained by 
computing the coefficients of tk in the power series expansion of A(t, n) with respect to /. This 
is, in general, a difficult task. 
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3. SPECIAL CASES 

In this section we shall treat some important special cases of ^-associated Eulerian numbers, 
o6tameaf 6y making certain choices of the polynomials pn(t). 

a. If pn(t) - (t+r)n', then the expansion formula (2.1) indicates that Ank are the cumula-
tive numbers used by Dwyer ([12], [13]) to express the ordinary moments of a frequency 
distribution in terms of the cumulative totals. Now we have 

P(t,u) = e^», F(u) = u, f(u) = e", g(u) = er", an = \, Pn=r, r„=0, S„ = 0, 

and applying Propositions 2.1-2.4, we deduce that 

4 a = Z H ) ' ^ *)(* +r~jT ( s e e D w y e r [12], Theorem HI, p. 292), 

An(t) = (l-tr1ftU+r)"t\ 

where S_r(n, k) are the non-central Stirling numbers of the second kind (see [16]), 

4 + u =(k+r)Anfk+(n-k + 2-r)An,k_l (Dwyer[12], p. 294), 

1-t 
A(t, u) = exp[r(l - t)u] 1-t exp[(l-t)u] 

We mention here that the corresponding /^-associated Eulerian polynomials are closely related to 
the quantities Hn(r\t), which were studied in detail by Carlitz [2]. Note also that, for r = 0, the 
numbers Ank coincide with the usual Eulerian numbers (see [2], [18], [19]) 

A,k=t(Mn1l\k-jr (3i) 
;=0 V J J 

while SQ(n, k) - S(n, k) are the Stirling numbers of the second kind. 

b. If pn(t) = (st + r)n, then Proposition 2.1a yields 

;=o \ J J 

where A(n, k, s, r) are the composition numbers. These numbers, as pointed out in [7], have 
many applications in combinatorics and statistics. It is obvious that to comply with our general 
setting, we must take 

P(t,u) = (l + u)"+r, F(u) = slog(l + u), f(u) = (\ + uY, g(u) = (l + u)r, 
oc„=s, pn=r-n, yn=d„ = 0, 
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and applying Propositions 2.1-2.4 we may derive the explicit expressions, recurrence relations, 
and egf of AnJc given by Charalambides [7]. Note that the numbers Pnk = G(n, k\ s, r) of Propo-
sition 2.2 which appear in the expansion 

k=0 

are the so-called Gould-Hopper numbers (see [9], [14]). Note also that the limit l i m ^ ^ $~"AnJc 
yields the Dwyer numbers mentioned in a. We finally mention that the special case r = 0 corre-
sponds to the numbers 

A,k = t(-l)J^jiy<*-J))n = s"A,k(S-1) (3.2) 

where AnJc(-) are the polynomials studied by Carlitz ([4], Ch. 7). As Carlitz, Roselle, & Scoville 
[5] pointed out, for s < 0, the number of ordered sets (ii,i2, • ..,/„) with/, e{l, 2, ...,|s|} and 
showing exactly k increases between adjacent elements, is equal to 

\AnJn\ = {-\yA„,kln\. 

c. The author [17], motivated by the problem of providing explicit expressions for the dis-
tribution of two-sample sums from Poisson and binomial distributions, one of which is left-
truncated, introduced the r - q polynomials 

r(t;s9r) = — f x V ^ l , qrj(t;r) = —\xre-t^] . 
"V J dx"[ J*=i " dxn[ J*=i 

Both sequences of polynomials comply with the restrictions set in the general context and give 
rise to two double sequences of numbers which, to our knowledge have not appeared in the litera-
ture yet. More specifically, we have 

(i) The polynomials rn{t\ s, r) satisfy the recurrence 

rn+l(t; s, r) = (r + st-n)r„(t; s, r) + rnr„^(t'9 s, r), n > 1, 
r0(t;s,r) = l, rx(t;s,r) = $t + r 

and have egf 

r(t,u;S,r) = fdrn(t;s,r)^- = (l + uy'eru. 

Therefore, 

F(u) = slog(l + u), f{u) = (l + u)s, g(u) = eru, a„=s, 0„=r-n, y„=0, S„=rn, 

and applying Propositions 2.2-2.4 for the numbers defined by the expansion 
rt+n-k^ 

4=0 
we conclude that 

A+i,k=(sk + r-n)An^k+[s(n-k + 2) + n-r]An^k_x + m[An_hk -2An_uk_x + An_hk_2], n>\9 

Ao = 1> Ao = r> Ai = s-r, 
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Ait, u) = ± ±AnJ> U- = e^'> n
1 ; ' . 

k 

An,k = T.(-Vk-JJ\"kJM(''J;s,r), 
7=0 y Jy 

where i?(ft, &; s, r) are the numbers appearing in the convolution of two-sample sums from a 
binomial and a zero-truncated Poisson distribution (see [17]). Note that the numbers An^k defined 
above give, in particular for r = 0, the quantities (3.2). 

(ii) For the polynomials qn(t; r), we have 

9n+i(tlr) = (r + t-n)qn(t;r)^-ritq„_l(tX n > 1, 
q0(t;r) = l, ql(t;r) = t + r, 

q(t,u;r) = fjqn(t;r)^- = (l + u)ret\ 

Hence, 

F(u) = u, f(u) = eu
9 g(u) = (l + u)r, a„ = l, 0„=r-ri, yn=n, S„ = 0, 

and applying Propositions 2.2-2.4 for the numbers defined by the expansion 

k=o 
we obtain 

\k-\ An+l,k=(r-n + k)A^k+(2n-k-r + 2)A^ 

+n{kA„_lk+(n-2k + 2)An_lk_l-(n-k + 2)An_hk_2}, n>\ 

\-t 
«=oit=o " ! l - r exp [ ( l - / )w] 

7=0 
where 

e(n,-t;r) = Xf"W^(7^) 
y=t 

(3.3) 

are the numbers appearing in the convolution of two-sample sums from a Poisson and a zero-
truncated binomial distribution (see [17]). As can easily be verified from egf (3.3), the special 
case r = 0 yields the usual Eulerian numbers (3.1). 

d. The Hermite Polynomials 

2 dnet2 

Hn(t) = (-iyet 

dtn 
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satisfy the recurrence 
H„+1(t) = 2tH„(t)-2nH„_1(t), n>\, 

H0(t) = l, Hv{t) = 2t, 
while their egf is 

Thus, 
F(u) = 2i#, f(u) = e2\ g(u) = e~ul, an = 2, .fin = r „ = 0, Sn = -2n, 

and the next results for the Hermlte-associated Eulerian numbers An^k are immediate conse-
quences of Propositions 2.1-2.4: 

A,& -=t(-iy(,,;1)ffl>(*-^ 

#„( ' ) = I X * ( 0 * , where P„,, = - ^ £ f j l ^ K > ' 

. 4 H . I . * = 2 * 4 U + 2 ( « - * ' + 2 H , * - I - ^ ( A - i . * - 2 4 u - i + 4i-i.*-2}» "^!» D 4 ) 

rft=o " ! l - rexp[2( l -0«] 

e. Another important class of polynomials encountered in several applications, especially in 
mathematical physics, consists of the (generalized) Laguerre polynomials lS^(t), defined by 

L(p)(t) = -e'rp— [e-'f^l n = 0,l,...,p>-\. 
" W n! dt" 

Considering the polynomials 

Ln(t;p) = n\L^(t) = e'r^[e-'t"+"l n>0,p>-l, 
at 

we get [making use of the respective results on L^n
p\t)] 

L0(t;p) = l, Li(t;p) = -t + p + l, 

Therefore, 

0 0 iin oo r f 

u-\ l ^ - I J 
a „ = - l , fin = 2n + p + l, r„=0, Sn = -n(n + p), 

\t\<l 

1994] 51 



EULERIAN NUMBERS ASSOCIATED WITH SEQUENCES OF POLYNOMIALS 

and applying Propositions 2.1-2.4, we deduce the following properties of the Laguerre-
associated Eulerian numbers Ank\ 

4.* = i(-i)y("t1]4(*-./;/>), y-o v J , 

L„{t) = fdP„,k(t)k, where P ^ = ^ £ f c { k y, 
k=0 * ! / = 0 V J J 

^ u = ( 2 « + / ' + l -*K,t - (3n- t+/ ' + 3 )4w 
-n(n + p){A„_lk -24_1>t_, + 4_u_2}, » ^ 1, 

^,«)=iix/4= 1 1-/ 
^oto "' n\ [l-(l-t)uY+l i - . e x p f ^ ^ } ' 

4. APPLICATIONS 

In the present section we consider a number of applications involving the /^-associated 
Eulerian numbers and polynomials. 

The first application refers to the computation of the mean value of polynomial functions of 
logarithmic random variables. More specifically, consider a random variable X with the 
logarithmic series distribution 

1 6X 

P[X = x] = ~ , x = l,2,..., 0<$<\, 
log(l-0) x 

and let pn{-) be a polynomial of degrees. Then 

v„=E[Xpn(X)] = clf,p„(x)dx-pn(0)\ C = - l / log( l -0 ) , 

and employing the ^-associated Eulerian polynomials An(t), we may write, by virtue of Proposi-
tion 2. lb, 

v w = c { ( l - ^ - " - ^ ( ^ - / > n ( 0 ) } . (4.1) 

Formula (4.1) is useful for the derivation of recurrence relations for the quantities vn [mean value 
of an (n + l)-degree polynomial with no constant term] by making use of the respective recur-
rence relations of the Eulerian polynomials An{6). Note also that, under the assumptions made in 
Proposition 2.4, the egf of vw, n = 0, 1, ..., is given by 

00 un 0f(M) 
\-9f{u)' 

We mention in particular (see Section 3, cases a and b) that 
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YJE[X{X + rY]U- = c.^-—; 
„=o «! 1-te" 

r+s V i r r w v^ \ iu 0(1+ w) 
2,£[AX&r + r ) J — = c- v 

„=0 n\ 1 -0(1 +1/)5 

The second statistical application of the /?„-associated Eulerian numbers is in the computation 
of the polynomial mean of a frequency distribution with the use of cumulative totals. This method 
was used by Dwyer [12], [13] for the computation of the moments and by Charalambides [7] for 
the factorial moments. The main advantage of the method lies in the fact that the many 
multiplications involved in the usual computation process are replaced by additions. Since the 
generalization presented here is rather straightforward, we omit the details and state only the 
results. Let fx denote a frequency distribution and 

C/* = 5 X Cm+lfx=C(CmfxX m = 1,2,..., 
j>x 

the successive frequency cumulations. Then, employing Dwyerss successive cumulation 
theorem, we may easily deduce that for any polynomial /?„(•), 

where An k are the Eulerian numbers corresponding to pnQ). 
As a last application, we consider the problem of evaluating the sum of the values of a 

polynomial pn(-) over the first m + 1 nonnegative integers, namely, S = H™=o p„(x) • Because of 
(2.1) we may write 

x=Q k=0 v J k=0 x = 0 v 

and since the inner sum equals (m+;;f+1), it follows that 

lP,M-iAjm+"„-+1 + i) (42) 
x=0 k=0 v y 

Consider in particular the next two special cases: 
(i) Let pn(f) = p3(t) = (st)3. Then, by virtue of (3.2) (or employing the respective recur-

rence relation for An^k) we get A30 = 1, A3l = (s)3, A32 = 4($ + l)3., A33 = (s + 2 ) 3 , and 
(4.2) yields 

Z(^)3=[ 4 Y^\ 4 J + 4 0 + 1)3[ 4 J + (̂  + 2)3^ 
(ii) Let p„(t) = H2(t) denote the Hermite polynomial of degree 2. Recurrence (3.4) yields 

A ^ = - 2 , A 2 l = 8, A ^ = 2, and, therefore, 

X # 2 ( * ) = -2I 3 J + 8 [ 3 J + 2 [ 3 J = 3 i2m + m~3)-
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5. THE GENERALIZED /^-ASSOCIATED EULERIAN NUMERS 
AND POLYNOMIALS 

Carlitz & Scoville [6] introduced the generalized Eulerian numbers in connection with the 
problem of enumerating (a, 6)-sequences (generalized permutations). These numbers, which are 
also related to Janardan's [15] generalized Eulerian numbers (used for the statistical analysis of an 
interesting ecology model), were extensively studied by Charalambides [8]. Recently, Charalam-
bides & Koutras [10] considered an alternative ecology model and introduced a double sequence 
of numbers that are asymptotically connected with the numbers of Carlitz & Scoville. 

In the present section we provide a unified approach to generalizations of this kind, bringing 
into focus the common properties of them and supplying the means for further extensions. 

Let {pn(t\ n - 0,1,...} be a class of polynomials with egf given by (2.8). Then, the numbers 
A^k{a,h) with egf 

A(t,u;a9b) = f, iA^k(a7b)tk^ = g((l~t)u)r((l-t)u)\ } " * \ (5.1) 

will be called generalized /^-associated Eulerian numbers. Similarly, the polynomials 
n 

A„(t;a,b) = '£A„tk(a,b)tk 

k=0 

will be named generalized /^-associated Eulerian polynomials. It is evident that 

A„ik(P,l) = A„tk, An{f, 0,1) = 4,(0. 

Proposition 5.1: 

b. 4,.t(«,6)=t(-i)f+;+*)(a+^*^'-1)p>+*-70. 

Proof: Expanding the term [1 - tf((\ - t)u)l{a+b) of (5.1) yields 

A(t,U-,a,b) = (l-ty+bfj(a+by-iy{g((l-t)u)fa+J((l-t)u)}, 

and applying (2.8) on the extreme right term, we obtain 

A(t,u;a,b) = (l-trbti(a + by-iyPAa + j ) ^ ^ . 

The first part of the proposition is readily established by interchanging the order of summation and 
considering the coefficient ofunln\ in the resulting power series. The second part follows imme-
diately from a by expanding (1 - t)n+a+b and performing the multiplication of the two series. D 

We note that, in particular, for p„(t) = tn mdpn(t) = (st)n, the numbers appearing in [6], 
[8], [15], and [10], respectively are obtained. 
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Taking the limit as f -> 1 in (5.1), it follows that 

limA(t,u-,a,b) = [l-f\0)ur-b=i(a+b^n~l)[f'(0)Tu", 

implying 

An(l;a,b) = fdA^k(a,b) = (a + b+n-l)n[f'(0)T. (5.2) 
k=0 

Hence, 

fn(x;a,b) = P[X = x} = ">xK , x = 0,l,2,...,/i, (5.3) 

defines a legitimate probability function (provided that the ratios are nonnegative for all x = 0, 1, 
..., ri) which will be called generalized /^-associated Eulerian distribution. It is straight-
forward that the probability generating function of (5.3) can be expressed as 

E[tx]=Yf(x;a,by= MifiV 
to (a + *+/i- l)B[/ ' (0)]" 

while the factorial moment generating function is expressed as 

to r\ (a + A + / i - l )„[ / ' (0)r 

The next proposition provides recurrence relations for the numbers A„t k (a, b) and is useful 
for tabulation purposes [we recall also formula (5.2), which can be employed as a convenient 
check]. 

Proposition 5.2: Under the assumption that (2.6) is true, the numbers Antk(a9 b) satisfy the next 
recurrence relation: 

+ [ ( ^ % n + ^ J A - u ( ^ * ) + [ r „ ( « + * - 2 4 - a + i ) - 2 J j A - 1 ) W k * ) (5.4) 

+ [-yn{n + b-k + l) + 8n}An_hk_2{a,b\ n>\. 

Proof: It is not difficult to verify that the auxiliary functions 

C„(t;a,b) = ±{a+by-iy+Jp„(a + j) = ta(l-ty^a+bUn(t;a,b) 

satisfy the difference-differential equation 

Cn+l(t;a,b) = t — {anCn(t;a,b) + rnC^ at 
Replacing Cn(t;a,b) in terms of An(t;a,b), we obtain a difference-differential equation for 
An(t; a, b), and (5.4) is finally obtained after some lengthy but rather straightforward calculations. 
We mention that a proof similar to the one used in Proposition 2.3 could also be established; how-
ever, it is much more complicated. • 
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In the remainder of this section we are going to state some interesting results for generalized 
/^-associated Eulerian numbers whose generating polynomials have real roots, i.e., 

(5.5) A,+i(0 = tl(akt+fik) = (a„t+/3„)p„(t\ n > 0, 
k=0 

Po(t) = l 
In this case we have: 

1. The numbers A„9 k (a, b) satisfy the triangular recurrence relation 

^ u ( M ) = [(*+*)*„+£ J 

2. The probability function f(x;a,b) and the respective factorial moments u^(n;a,b) = 
E[(X)r ], r = 0,1 , . . . , satisfy the recurrences 

(a + h + n)f'(0) (a + b + n)f'(0) 

/ 1 ZA rian(n + b-r + l)-/3n] an(a + b + n-r) 
^(r)V ' (a + i + / i ) / ' (0) ^( r 1)V ' ; ( a + i + n ) / ' ( 0 ) ^ r > v ? ' ; 

3. If aan + {fn ^ 0 for all n = 0, 1, ..., then the polynomials 4 , ( f ; a , b) have n distinct real 
nonpositive roots (an easy way to prove this is to verify first that 

En(t;ayb) = (l-ty{n+a+b)t/3"/a"+aAn(t;ayb) 

satisfies a difference-differential equation of the form 

a„t'^-E„(t;a,b) = E„+1(t;a,b)). 
at 

Hence: 
(a) A„9 k (a, b) is a strictly concave function of &; 

(b) the distribution {fn(x\a,b), JC = 0 , 1 , ...,«} is unimodal either with a peak or with a 
plateau of two points (see [11]); 

(c) Any random variable Xobeying (5.3) can be expressed as a sum of n independent zero-
one random variables. 

We recall that the generalized Eulerian numbers studied in [6], [8], [10], [15], along with 
their generalizations produced by the choices pn(t) = (t + r)n,pn(t) = (st + r)n (see Section 3, 
cases a and b), own the properties 1-3 above, since they are generated by polynomials of the form 
(5.5). 
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A LUCAS-TYPE T H E O R E M F O R 
F I B O N O M I A L - C O E F F I C I E N T RESIDUES 

John M. Holte 
Gustavus Adolphus College, St. Peter, MN 56082 

(Submitted April 1992) 

1. INTRODUCTION 

A remarkable theorem of Lucas ([8], pp. 229-30) states that the value of the binomial 
coefficient (£) is congruent, modulo a prime /?, to the product of the binomial coefficients of the 
respective base-/? digits of n and k. In other words, if 

n - E rijpJ, where 0 < «;. < p for each/ 
and 

k - S kjpJ, where 0<kj<p for each/', 
then 

f 

>n £> | (mod/?). (1) 

For example, since 2280 = (643 5)7 and 1823 = (5213)7, we have 

Formula (1) is equivalent to Lucas's earlier generalization of an 1869 result of H. Anton ([1], pp. 
303-06; [7], p. 52; [2], p. 271): 

?M«!vv£)te) <™ .̂ <2) 
where n div/? denotes the integer quotient of n by/?, and n mod/? its remainder. For short proofs, 
see [3] and [9]. For our purposes, it is better to reformulate this theorem in terms of 

B{m,ri) = B(m div/?, ndivp) B(m mod p, nmodp) (mod/?). (3) 

[If (m + ri) divp-m divp + n div/? and (m + n) modp = mmodp + nmodp, then this just re-
expresses (2); if not, then, again by (2), both sides may be shown to be congruent to 0.] Repeated 
application of (3) yields the following counterpart of (1): 

B(m,n) = nB(mj9nj) (mod/?), (4) 

where ntj and nj are the base-/? digits of m and n, respectively. Our goal is to obtain formulas 
corresponding to (3) and (4) for Fibonomial coefficients. 

In analogy with the usual definition of binomial coefficients 
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j=0 

we define the FIbonomia! coefficients by 

C(m, n) = m + n 
m 

m-l J7 

-U-^- fa"*0)' (5) 

where Fk denotes the kth Fibonacci number, and an empty product is taken to be 1 (see [8], §9; 
also [4] and [5]). Some values of C(m,ri) are tabulated in Table 1; there C(0, 0) appears at the 
upper left corner. We note that, for m, n > 0, 

C(7w,0) = l, C(0,w) = l, and C(m,ri) = C(n,m). 

TABLE 1: Fibonomial Coefficients 

1 
1 
1 
1 
1 
1 
1 

1 
1 
2 
3 
5 
8 
13 

1 
2 
6 
15 
40 
104 
273 

1 
3 
15 
60 
260 
1092 
4641 

1 
5 
40 
260 
1820 
12376 
85085 

1 
8 

104 
1092 
12376 
136136 
1514513 

1 
13 
273 
4641 
85085 

1514513 
27261234 

1 
21 
714 

19635 
582505 

16776144 
488605194 

1 21 714 19635 582505 16776144 488605194 14169550626 

Using the identity 
F

m+n=Fm+lFn+FmFn-l 0" , W £ 0) ( 6 ) 

and the definition, (5), one may deduce (see [4]) the key recurrence formula for m,n>\: 

C(m, n) = Fm+lC(mv n -1) + F^C{m -1, n\ (7) 

This is the Fibonomial counterpart of the Pascal triangle recurrence, 

B(m, n) = B(m, n -1) + B(m -1, n). 

[Alternatively, by symmetry, we also have 

C(m, n) = i ^ C O , n -1) + Fn+lC(m -1, w). 

Then, in terms of the Lucas numbers Lk = Fk_l +Fk+l, we have, by addition, the symmetric recur-
rence formula 

2C(m, n) = LmC(m, n-l) + LnC(m - 1 , /i). ] 

From (7) it follows that the Fibonomial coefficients must be integers ([8], p. 203). 
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2. COMPUTING FIBONOMIAL COEFFICIENTS MODULO A PRIME 

To state our theorem, we need to introduce 
r = r(p):=tmn{k>0:p\Fk}, 

the rank of apparition ofp in the Fibonacci sequence, and 

t = t{p): = the period of (Fk mod p). 

It is known [10] that, for any prime/?, t/r = 1,2, or 4. 

Theorem: Assume p is a prime number ^ 5. Let m' = m div r, m" = (mmod t) div r, m* =m 
mod t, and similarly for n. Then 

C(m, n) = £(»!', n'){B(rn", n")'1 mod/?}C(wf*, /?*) (modp), 

where the term in braces is the modulo-p multiplicative inverse of B(m", n"). 
Notice that the first factor here is a binomial coefficient and is the same as the first factor in 

(3) except that r replaces p. The last factor is a Fibonomial coefficient from the initial t x t 
(instead of p x p) block of Fibonomial coefficients. We observe that the peculiar middle factor 
can only be: 1 if 11 r = 1; 1 or 2_1 mod p, if 11r = 2; and the mod-p inverse of 1, 2, 3, 4, 6, 10, or 
20, if tlr = 4. The omitted prime, p = 5, can be handled by the proposition we shall give later, 
from which we shall derive Theorem 1. 

By repeated application of Lucas's theorem, we get our counterpart of formula (4). It is not 
so tidy as the binomial case, depending as it does on the use of two mixed-radix representations: 

m = mkpk~lr + m^^^r -\— + m1/?°r + m0, 

where 0 < m0 < r and 0 < mj <p for j > 1, 

and m = m"'t+m"r+rnQ, 

where 0<m" <t Ir, 0<m'"<oo? and m* =m,,r+mQ, 

and similarly for n. Then, for a prime p * 5, we have our main formula: 

C(m,n)HE Y[B(jnj9nj){B(m"9n"yl modp}C(m*,n*) (mod/?). (8) 

As an example, let us compute C(23, 12) mod 3. Here p = 3, r = 4, t = 8, 

m=1.31-4 + 2-3°-4 + 3 
= 2-8 + 1-4 + 3 

and « = l-31-4 + 0.3°.4 + 0 
= 1-8 + 1-4 + 0 

So C(23,12) = B(l, 1)5(2,0){B(l, l)"1 mod 3}C(7,4) (mod 3) 
^2.1-{2-1mod3}-l (mod3) 
s 2 - l - 2 - l s l (mod 3). 
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The value for C(7, 4) mod 3 was obtained from Table 2, which was generated by means of the 
basic recurrence formula. It also includes enough additional values to corroborate our answer for 
C(23, 12). 

TABLE 2« Fibonoraials mod 3 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 
i : 
2 ] 
3 ] 
4 ] 
5 ] 
6 ] 
7 ] 
8 1 
9 ] 
10 ] 
11 ] 
12 ] 
13 ] 
14 ] 
15 ] 
16 1 
17 1 
18 ] 
19 ] 
20 ] 
21 1 
22 1 
23 ] 

I 1 
I 1 
L 2 
I 0 
I 2 
I 2 
I 1 
I 0 
[ 1 
1 1 
I 2 
[ 0 
[ 2 
1 2 
I 1 
1 0 
[ 1 
I 1 
[ 2 
L 0 
1 2 
1 2 
I 1 
I 0 

1 
2 
0 
0 
1 
2 
0 
0 
1 
2 
0 
0 
1 
2 
0 
0 
1 
2 
0 
0 
1 
2 
0 
0 

1 
0 
0 
0 
2 
0 
0 
0 
1 
0 
0 
0 
2 
0 
0 
0 
1 
0 
0 
0 
2 
0 
0 
0 

1 
2 
1 
2 
2 
1 
2 
1 
0 
0 
0 
0 
1 
2 
1 
2 
2 
1 
2 
1 
0 
0 
0 
0 

1 
2 
2 
0 
1 
2 
2 
0 
0 
0 
0 
0 
2 
1 
1 
0 
2 
1 
1 
0 
0 
0 
0 
0 

1 
1 
0 
0 
2 
2 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
2 
2 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
2 
0 
0 
0 
2 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
2 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 

1 
2 
2 
0 
2 
1 
1 
0 
1 
2 
2 
0 
1 
2 
2 
0 
2 
1 
1 
0 
1 
2 
2 
0 

1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
2 
2 
0 
0 
2 
2 
0 
0 
2 
2 
0 
0 

1 
0 
0 
0 
2 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
2 
0 
0 
0 
1 
0 
0 
0 

Exercises for the Reader: (a) Find C(7, 4) mod2; (b) find C0759, 984) mod 7. 

[Answers: (a) 5(1, 0)5(0,1){5(0,0)"1 mod2}C(l, 1) = 1 (mod 2); cf. C(7, 4)=582505 from 
Table 1; (b) 5 (4 ,2)5(3 , 3)5(2,4){5(1,1)"1 mod 7}C(15, 8) = 1 (mod 7); using Table 3 below.] 

3. DEDUCING THE RESIDUES OF THE FIBONOMIALS MOD/? 

Let p be a fixed prime. Let r, t, m', n\ m", n", m*, and n* be as in the Theorem. Also, let 
m0 = m mod r and n0=n mod r. 

We shall deduce the residues of C(m, n) mod p in the following steps: 

Step 1: Show C(m, n) = 0 (mod p) for (m9 n) in the (r -1) x (r -1) triangles where m0+n0> r. 

Step 2: Calculate C{mfr,rir) mod/? (/**',«'= 0,1,2,...). 

Step 3: Determine the remaining values mod/? from the basic recurrence relation (7). 
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TABLE 3. Fibonomials mod 7 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 

1 
1 
i 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

1 
1 
2 
3 
5 
1 
6 
0 
6 
6 
5 
4 
2 
6 
1 
0 

2 

1 
2 
6 
1 
5 
6 
0 
0 
1 
2 
6 
1 
5 
6 
0 
0 

3 

1 
3 
1 
4 
1 
0 
0 
0 
6 
4 
6 
3 
6 
0 
0 
0 

4 

1 
5 
5 
1 
0 
0 
0 
0 
1 
5 
5 
1 
0 
0 
0 
0 

5 

1 
1 
6 
0 
0 
0 
0 
0 
6 
6 
1 
0 
0 
0 
0 
0 

6 

1 
6 
0 
0 
0 
0 
0 
0 
1 
6 
0 
0 
0 
0 
0 
0 

7 

1 
0 
0 
0 
0 
0 
0 
0 
6 
0 
0 
0 
0 
0 
0 
0 

8 

1 
6 
1 
6 
1 
6 
1 
6 
2 
5 
2 
5 
2 
5 
2 
5 

9 

1 
6 
2 
4 
5 
6 
6 
0 
5 
2 
3 
6 
4 
2 
2 
0 

10 

1 
5 
6 
6 
5 
1 
0 
0 
2 
3 
5 
5 
3 
2 
0 
0 

11 

1 
4 
1 
3 
1 
0 
0 
0 
5 
6 
5 
1 
5 
0 
0 
0 

12 

1 
2 
5 
6 
0 
0 
0 
0 
2 
4 
3 
5 
0 
0 
0 
0 

13 

1 
6 
6 
0 
0 
0 
0 
0 
5 
2 
2 
0 
0 
0 
0 
0 

14 

1 
1 
0 
0 
0 
0 
0 
0 
2 
2 
0 
0 
0 
0 
.0 
0 

15 

1 
0 
0 
0 
0 

"o 
0 
0 
5 
0 
0 
0 
0 
0 
0 
0 

To get started, we note that, for binomial coefficients, we have B(m, n) = 0 (mod/?) if m mod 
p + n mod p>p. Similarly, forFibonomial coefficients, we have 

Lemma 1: C(rn, ri) = 0 (mod p) if m0+n0> r. 

Proof #1: It follows from Knuth & Wilfs extension of Kummer's theorem to Fibonomial 
coefficients ([6], Theorem 2) that p\C(m,n) if and only if there is at least one carry across or to 
the left of the radix point when m/r and n/r are added in base/?. 

If m mod r + n mod r>r, then there will be a carry across the radix point. D 

Proof #2: This time we appeal to another theorem of Lucas ([8], p. 206): 
gcd(Fm,Fn) = Fgcd(mny 

It follows from this theorem that all the Fibonacci numbers divisible by any prime power ps have 
indices of the form kr(ps), where r{ps) is the rank of apparition of ps. Now consider C(m,n) = 
C{m'r + mQ,nfr +n0): 

m'r+mQ-l 

C(7W, ft) — J[ ^-T(m'+n'y+mQ+nQ-j I ^m'r+mQ-j • 
7=0 

Our hypothesis is that mQ+n0>r. Therefore, F{m,+n,+l)r is a numerator factor, and so the factors 
that are divisible hyp are the m' + l numerator factors 

F T? 7? 
r(m'+n'+l)r ? r(m'+n')r ? • • • ? r(n'+l)r 

and the w! denominator factors 
F F J? 
rm'r ? r{m'-X)r > • • • > rr • 

64 [FEB. 



A LUCAS-TYPE THEOREM FOR FIBONOMIAL-COEFFICIENT RESIDUES 

Furthermore, by the consequence of Lucas's theorem noted above, every factor F s in the 
denominator is matched by such a factor in the numerator, without using the extra numerator 
factor Fim,+„.+l)r. So p\C(jn9n). D 

In preparation for the next step, we note the following formula: 

Fkr+X^Fkr-V^Ftl (™>d/>) (**<>). (9) 

Since F^. = 0 (mod p), the first congruence is clear. The second then follows by applying iden-
tity (6) with n = r and m = r -1,2r -1 , . . . , (k - \)r -1. 

Lemma 2: C(m'r, n'r) = B(m', n')F™i"' (mod p). 

Proof: To simplify the notation, let us suppress the primes on m and n during this proof. If 
m - 0 or n = 0, then 

C(mr, nr) = 1 and B(m, n)F™ = l - i £ , = 1. 

Now assume m > 1 and n > 1. Applying the basic Fibonomial recurrence (7) and Lemma 1 
repeatedly, we get 

C(mr, (n - l)r +1) = Fmr+1C(mr, (n - l)r) + F(„_1)rC(mr - 1 , (n - l)r +1) 
s F

mr+iC(mr, (n - l)r) (mod p); 

C(mr, (7i - l)r + 2) = F^CQnr, (n - \)r +1)+JF(„_1)r+1C(/«r - 1 , (» - l)r + 2) 
sFMrflC(i«r,(/i-l)i- + l) (mod/7) 
s Fmr+iC(mr, (n - l)r) (mod />); 

C(/wr, (» - l)r + r -1) = Fmr+lC(mr, {n-\)r+r-2) + F{„_l)r+r_2C(mr -l,(n-l)r + r-1) 
sFmr+iC(mr,(n-\)r+r-2) (modp) 
= Fmr+lFm7ZlC(mr> (" ~ 1>") ( m o d P) 

7r-\ = F£1C(mr,(n-l)r) (modp). 

C((m-\)r + r-\,nr) = F^\C((m-\)r,nr) (modp). 
Similarly, _ t 

Then 
C(mr, nr) = Fmr+1C(mr, nr-l) + Fnr_xC(mr - 1 , nr) 

- F ^ d m r , ( n - m + F^Cdm-iy,nr) (modp). 

By(9), Fr
mr^Fr

mr_x=F™x (modp) a n d F ^ s F ^ , (modp). So, for/w, n > 1, 

C(i«r, nr) = Fr
r^C(mr, (n - l)r) + Fr™ C((/» - \)r, nr) (mod p). (10) 

Let C'(m, n): = C(mr, nr). Then (10) becomes 

C'(m,n) = Fr
r^C'(m,n-\) + Fr

r^C'(m-\,n) (modp), (11) 

a recurrence formula that uniquely determines the values of C'(m, n) for m,n>\, given the boun-
dary conditions 
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C'(m90)- 1 and C'(0,n) = \ (m,n> 1). (12) 

Hence, to complete the proof, we need only verify that C"(m,ri): = B(m,ri)F™" mod/? satisfies 
(11) and (12). The boundary conditions (12) are readily verified. Modulo/? we have 

F^C'im, 7i -1 ) + F^C'Qn -1, n) = Fr™B(m, n - l)Fr
r^n~l) + Fr

r
n_xB(m -1, n)F^l)n 

= F™B(m, n -1) + F ^ O w - 1 , w) 

= F™fB(m, n) [by the Pascal triangle rule] 
sC"(w,w) , 

showing that (11) is satisfied. D 

We can refine Lemma 2 a little. By (9), 

F™;n'=F2 , , , (mod/?). 
r * r m'n'-l v ^ 7 

Here 

rm' = r(m div r)-m-m mod r = {m mod f -JW mod r) (mod7) = #i"r, 

where m" = (m mod 7) div r. Because t is the period of the Fibonacci sequence modulo/?, 
Frm>rn'-l=Frm"rn»-\ ( ^ o d / ? ) , 

and so Lemma 2 becomes 

C(»fV,nV) = 5 ( m ' , « ' ) ^ V v < - i (mod/;). (13) 

We shall complete our determination of the Fibonomial coefficient residues by applying the 
basic recurrence formula (7), C(m,ri) = Fm+lC(m,n-l) + Fn_lC(m-l,ri), to the determination of 
C{mfr +m0, n'r+n0) mod p from C(m'r, n'r). By Lemma 1 we have 

C(m'r + m 0 , f t ' r - l ) = 0 (mod/?) ( I < w 0 < r ) (14) 
and 

C(/w'r - l ,« ' r+w0)=s0 (mod/?) ( l < « 0 < r ) (15) 

and by Lemma 2 we know.C(/w'r,w'r) mod/?. We observe that application of the basic recur-
rence formula (7) with these boundary conditions will uniquely determine CQn'r +m0,n'r +n0) 
for 0 < m0, n0 <r, and that this solution matrix is proportional to the value C(mfr, n'r). Also, the 
solution matrix depends on the coefficients used, namely, Fm,r+l,...,Fm,r+r_l and F„v_1?..., 
Fn,r+r_2. Accordingly, we may make this 

Definition: Let A(m',n';m0,n0) be the solution C(m'r +rn0,n'r + n0) of the basic recurrence 
formula (7) satisfying the boundary conditions (14), (15), and (the possibly contrary-to-fact con-
dition) C(m'r,n'r) = 1. 

Since the coefficients Fk mod/? have period r, and since mrr + m0 =m"r+m0 and n'r + nQ = 
n"r+n0 (mod i) , we have A(m\ n'\ m0, n0) = A(m", ri'\ m0,nQ) (mod/?). Thus, we have proved 

Lemma 3: C(m, ri) = C(mrr, nrr)A(rn", n"\ m0, n0) (mod/?). 

By (13) and Lemma 3, we now have our general proposition. 
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Proposition: C(rn, n) = B(m\ n')Fr2 A(m", ri'\ mQ,n0) (modp). 

As an example, let us determine C(437, 151) mod 5. Here/? = 5, r = 5, and t = 20. 
m' = 437 div 5 = 87 = (322)5; w' = 151 div 5 = 30 = (110)5; 
#?0 =437 mod 5 = 2; «0 = 151 mod 5= 1; 
m" = 437 mod 20 div 5 = 17 div 5 = 3; n" = 151 mod 20 div 5 = 11 div 5 = 2. 

So C(437,151) ^ 5(3,1)5(2,1)5(2, 0)^2 3.2_^(3,2; 2,1) == 4 • 3 • 1 • 4 • 4 s 2 (mod 5). (We looked 
up the last factor in Table 4.) 

TABLE 4. A(m", n"; m0, %) forp = 5 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

1 
1 
2 
3 
0 

3 
3 
1 
4 
0 

4 
4 
3 
2 
0 

2 
2 
4 
1 
0 

1 
2 
1 
0 
0 

4 
3 
4 
0 
0 

1 
2 
1 
0 
0 

4 
3 
4 
0 
0 

1 
3 
0 
0 
0 

2 
1 
0 
0 
0 

4 
2 
0 
0 
0 

3 
4 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
3 
4 
2 
1 

1 
3 
4 
2 
1 

1 
3 
4 
2 
1 

1 
3 
4 
2 
1 

1 
3 
3 
1 
0 

3 
4 
4 
3 
0 

4 
2 
2 
4 
0 

2 
1 
1 
2 
0 

1 
1 
4 
0 
0 

4 
4 
1 
0 
0 

1 
1 
4 
0 
0 

4 
4 
1 
0 
0 

1 
4 
0 
0 
0 

2 
3 
0 
0 
0 

4 
1 
0 
0 
0 

3 
2 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
4 
1 
4 
1 

1 
4 
1 
4 
1 

1 
4 
1 
4 
1 

1 
4 
1 
4 
1 

1 
4 
2 
2 
0 

3 
2 
1 
1 
0 

4 
1 
3 
3 
0 

2 
3 
4 
4 
0 

1 
3 
1 
0 
0 

4 
2 
4 
0 
0 

1 
3 
1 
0 
0 

4 
2 
4 
0 
0 

1 
2 
0 
0 
0 

2 
4 
0 
0 
0 

4 
3 
0 
0 
0 

3 
1 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
2 
4 
3 
1 

1 
2 
4 
3 
1 

1 
2 
4 
3 
1 

1 
2 
4 
3 
1 

1 
2 
3 
4 
0 

3 
1 
4 
2 
0 

4 
3 
2 
1 
0 

2 
4 
1 
3 
0 

1 
4 
4 
0 
0 

4 
1 
1 
0 
0 

1 
4 
4 
0 
0 

4 
1 
1 
0 
0 

1 
1 
0 
0 
0 

2 
2 
0 
0 
0 

4 
4 
0 
0 
0 

3 
3 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

Finally, we get the formula stated in our Theorem by observing that in most cases we can find 
the r x rA-blocks hidden in the initial t x t C-block. In this block 

C(in"r + m0,ri"r + n0) = B(m\n^F^^Aim",«";m0,n0) (mod/?) 

and m' = m" and ri = n". So, if B(m", n") ± 0 (mod /?), then 

Fr*nfn--Am"> ""'> "*» ̂ ) s *0*"> O ^ C ^ ' V +/!%,/!'> +/%) (mod />). (16) 

Here 0<m",n" <tlr. Since t/r<4, the possible values of B(m",n") are 1, 2, 3, 4, 6, 10, and 
20. The only case where some value of B(m'\n") =0 (mod p) is /? = 5; then tlr = 4, and 
5(1,2) = 5(2,1) = 10 and 5(2,2) = 20 are not invertible mod 5. So, if p * 5, we may use (16) in 
the Proposition to determine the residue modulo/? of the Fibonomial coefficient C(/w, //) in terms 
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of the binomial coefficients B(m',n') and B(m",n") and the Fibonomial coefficient C(m"r + 
mQ,n"r+nQ) = C(m*,n*), thus proving our Lucas-type theorem for Fibonomial-coefficient 
residues. 
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1. INTRODUCTION 

The product of two paths, PmxPn, is also known as the mxn complete grid graph, Gmn, 
having vertex set ZmxZn, where Zk denotes the set {1,2,..., k). Two vertices, (/', j) and (r, s), 
are adjacent when | / - r |+ . | j -5 |= l . Thus, |F|=Jwiand \E\=2mn-(m + n). 

Let G = (V, E) be a graph and v GV(G) . Then the closed neighborhood of v, denoted N[v], 
is the set {V}^J{U GV(G)\UV GE(G)}. 

The definition of fractional domination, as introduced by Hedetniemi et al. [3] is as follows: 
If g is a function mapping the vertex set, V(G), into some set of real numbers, then for S a subset 
ofV(G),let g(S) = £g(v) o v e r a l l s . Let \g\= g(V(G)) = g(vl) + g(v2) + - + g(v„). Areal-
valued function g: V(G) -> [0,1] is a, fractional dominating function if for every v eV(G), 
g(N[v]) > 1. A dominating function is minimal if for every v GV(G) with g(v) > 0, there exists a 
vertex u <EN[V] such that g(N[u]) = 1. The fractional domination number of G, denoted y ^(G), 
is the minimum, |gj, over all minimal dominating functions g. 

A real-valued function g: F(G) -> [0,1] is & packing function if, for every v G F ( G ) with 
g(v) < 1, there exists a vertex w G JV[v] where g(N[u]) - 1. Then the {upper) fractional packing 
number of G, denoted Py (G), is the maximum |g] such that g" is a maximal packing function. 

The fractional parameters are related by the following. 

Proposition 1.1: For every graph G, Pf(G) - y /-(G) (Domke [1]). 

The formula of Proposition 1.2 computes the fractional domination number for P2x Pn. No 
general formula is known for y f{Pm x Pn), for m>2, but fractional domination numbers for any 
graph may be computed using linear programming. 

Proposition 1.2: yf(P2 x Pn) - {n + l)l2 + §nl2\-\_nll\-l)l(2n + 2) =« /2 + fw/2]/(w + l). 

Proof: It has been shown that ^^ (P2 x i^) = |"/z / 2] = (n +1) / 2 when n = 1 (mod 2), and that 
^ r ( P 2 x P J = (w2 +2w)/2(w + l) when n ^ 0(mod2) (Hare [4]). 

Values of fractional domination numbers for Pm x Pn for several small (m,n) pairs may also 
be found in [4] and [5]. It would be interesting if a formula could be found for the arbitrary mxn 
complete grid graphs, as has been found for the 2-packing number [2]. In the remainder of this 
paper we develop upper and lower bounds for the fractional domination number of Pm x Pn.. 

2. BOUNDS FOR THE FRACTIONAL DOMINATION NUMBER 

Let Dm=3FlFm+F2Fm_l =3Fm+Fm_l, where D stands for "denominator." We denote a 
vertex in the /th row and j i h column of Gmn (= Pm x Pn) by v; ; . The following develops upper 
and lower bounds for y APmx Pn) which depend only on m. 
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Proposition 2.3: Let m > 2, n > 2,1 < j < n, and g(vt .) = i^iy_i+i I Dm• T n e n 

g(N[vlj]) = l=g(N[v2J). 

Proof: 
g(N[vu ,]) = g(yY y_i) + ̂ (vj j) + g(vj y+1) + #(v2 j) 

= 3F1Fm/Dm+F2Fm_1/Dm = l. 

= (FlFm+3F2Fm_l+F,Fm_2)/Dm. 

Since 3 / ^ , + F 2 i v ! = F,Fm + 3F2JFm_! + F3JFm_2, it follows that g(N[v2J]) = 1 By symmetry, 

g(N[vmj]) = g(N[v^lj]) = l 

Proposition 2.4: Let m> 3,n > 2,1 </ <m-1,1 < j <n, and gty j) = FjFm_i+l IDm. Then, 
g(N[vlj]) = g(N[vlJ]) = l. 

Proof: 
g(N[vij]) = g(vi_1j) + g(viJ_l)+g(vi!j) + g(vi!j+1) + g(vi+hJ) 

= (Fi-lFm-i+2 + ^FiFm-i+l + Fi+\Fm-i) >'Dm-

g(M?i+uj$ = «(v/>/) + ̂ (vw>y_1) + g(vI.+lfy) + g(v/+1>/+1) + g(v/+2iy) 

~ (FiFm-i+l + 3-^+l^m-l + Fi+2Fm-i-l) 'Dm-

Since ^ F ^ j + 3/;/v_,+1 +FMFm_i = FiFm_i+1+3Fi+1Fm_i +Fi+2Fm_i_1, it follows that 

From Proposition 2.3, g(iV[v2>y]) = 1, sog(N[vt y]) = 1 for all i, 1 < / < m. 

Theorem 2.5: Let Cm = g(Vlj) + g(v2j) + • • • + g(vmJ) where s(v,,y) = FiFm_i+1/Dm. Then, 
when m > 3, the sum of the function values over all vertices in column y is given by Cm I Dm where 
Cm = £^,m(F

i
F

m-i+i)Dm and yf(PmxPn)<nCm+cr, where cy <2[m/3]Fm/Dm. 

Proof: Since g(N[vUj]) = lfor 2<j<n-l, all vertices in columns 2 through w-1 are 
dominated. In order to dominate column 1, let g(yitl) be modified as follows: 

For \<i<m, let <r = max{g(vM ,,),£<>, ,7),#(vz+1,)}. 

Case 1. m = 0 mod 3. 
If / = 2 mod 3, then g{vt x) = FtFm_i+l IDm+a. 

Case 2. w = lmod3. 
If 2i = (m + l\ theng(viA) = 2FiFm_i+l/Dm. 
Else If [(/ = 2 mod 3) and (2/ < m +1)] or [(i = 0 mod 3) and (2/ > /w +1)], then 
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Case 3. m = 2 mod 3. 
If 2i = m, theng(viA) = 2FiFm_i+lIDm. 
Else If [{i = 2 mod 3) and (2/ < m)] or [(/ = 1 mod 3) and (2i - 2 > m)], then 
g(v,,i) = FiFm_M/Dm+a. 

Observe that this assignment produces g(N[vul]) > 1 for all vertices in column 1. To show 
that g is minimal, observe that g(N[vij]) = i for l<i<m and 2<j<n-l, except when 
8(y\,])*FiFm-i+\lDm. Thus, only the case when g(vul) *FtFm_i+l IDm must be examined. In 
the above procedure, each modification produces an assignment such that (̂A [̂vI._1>1]) = l, 
g(N[vi, i ]) = 1, or g(N[vi+l n ]) = 1. Thus, g is minimal. 

To also dominate the vertices of column n, let cy be twice the functional value added to 
column 1 by the above modification. It is straightforward to show by induction on /', 1 < / < m -1, 
that Fm = F^F^ + iyJv,.!. Thus, Fm > FMFm_t. Let j = i +1. Then Fm > FjFm_J+l, which 
yields 2[m/3](FmIDm)>cy. 

Such a minimal dominating function is given for P3 x Pn by: 

g(\j) = giv3,j) = 2/7, fori <j<n, 
g(v2,;) = 1 /7 , for 1 <7 <», and 
g(v2A) = g(v2,„) = 3/7. 

Thus, ^ / (P 3 xP„)<«(5 /7) + 4/7. 

3. BOUNDS FOR THE FRACTIONAL PACKING NUMBER 

From Proppositions 2.3 and 2.4 and the definition of fractional packing, it is clear that when 
g(vi,j) = FjFm_j+1/Dm for all / and j , then g is a maximal packing function and \g\-nCm. 
However, the following improved bounds are easily obtained. 

Proposition 3.6: 
Pf(P3xPn)>nC3 + 2/7, for«>3, C 3 =5/7 . 
Pf(P4xP„)>nC4 + 4/U, for»>4, C4 = 10/11. 
Pf(P5xP„)>nC5+ 8/IS, for«>5, C5=20/18. 
Pf(P6xPn)>nC6 + lS/29, forn>6, C6=38/29. 

Proof: The following assignments of g produce maximal packing functions. 

For P3xPn. 
giyUi) = s(\J = g(yxl) = g(vx„) = 3ii = FJD„ 

^( v 2 ,2) = ^(v2,»- i ) = 0, and 
g(vi,j) = FtFm-i+i I Ds» otherwise. 
Thus, Pf (P3 xPn)>n(5/7) + 2/7. 

For every vertex in rows 1 and 3, g[N(vi j)] = l, except for columns 1 and n. However, 
g[N(v2, i)] = g[N(v2, n) = 1, so g is maximal. 
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For P x P ' 
g(\i) = S(vl„) = g(v4,1) = g(v4J = 5/U = F5/D4, 
g<?2.i) = g(v2,„) = g(v3A) = g(v3i„) = 3/11 = F4/D4, 
g(v2,i) = g(v3,i) = g(v2,n-i) = g(v3,n-i) = °> and 
g(vi,j) = FiF»-i+i,D4> otherwise. 

For every vertex in rows 1 and 4, g[N(vtj)] = 1, so g is maximal. 
For P5 x Pn. 

givu) = g(\n) = g(v5.i) = g(v5.«) = */™ = F6'D5, 
^v 2 i I ) = ̂ (v2>„) = 5(v4il) = g(v4,„) = 5/18 = ^ /1 )5 , 
g(v2,i) = g(v2,n-i) = g(v4,2) = g(v4,n-i) = 0, and 
g(v,, j) = FiFm-,+\ IA, otherwise. 

For every vertex in rows 1, 3, and 5 except vertices v3 2 and v3„_,, g[N(vUj)] = \, so g is 
maximal. 

For P6 x Pn. 
gi\i) = g(\J = g(ve,i) = g(y6,n) = 13/29 = F7 ID6, 
^(v2,i) = ^(v2,n) = ^(v4,1) = ^(v4>„) = 8/29 = F6/JD6, 
g(V2,2) = g(V2,n-l) = g(V4,2) = g(V4,n~l) = °> 
^(V3,l) = ^(v3 ,„) = 8 / 2 9 , 

g(v4A) = g{vA,„) = H29, and 
g(v,,j) = F,Fm-M/D6, otherwise. 

For every vertex in rows 1, 3, 4, and 6 except v3 2, v4 2, v3n__x, and vAn_l,g[N{vi j)] = 1, so g is 
maximal. 

Theorem 3.7: When m>6,n>m, Pf(PmxPn)> nCm + 4(Fm_1 / Dm ). 

Proof: For .Pm x Pn: 

g ( v u ) = <?(vi,«) = sOVi) = <?Omj„) = Fm+1/Dm, 
#02,i) = g02,„) = g(vm_u) = ̂ (v„,_1;„) = Fm/Dm, 
g(V3,1) = #(V3, „ ) = g(Vm-2,1) = g(ym-2, n) = FmID,m 
g(v2,2) = g(vm-\,2) = ^(V2,n- i ) = £<>Vi,„-i) = °> and 
g(vij) = F

l
Fm-i+ilDm, otherwise. 

In column 1, g[N(v}A)] = g[N(v2A)] = g[N(vml)] = g[N(vm_x x)} = 1. For all vertices in column 
2 except v2 2, v3 2, vm_i 2> and v

m-i 2> g[^(vi,i)]= *• F°r a'l vertices in colums 3 through « - 3, 
g[-W(v/,;)] = 1. Thus, every vertex is adjacent to some vertex (possibly itself) with g[N(vij] = 1 
and g is maximal. Column summations yield a net gain of 4Fm_l I'Dm. 

Corollary 3.8: When m>6,n>m, then Pf(PmxPn)>mn/5 + (2n/5)(Fm/Dm) + 4(Fm^/Dm). 
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Proof: It is well known that, for m > 4, 

7 = 1 , W 

Then 
Pf(PmxPn)>nCm+4{Fm_JDm) 

= mn/5 + (2n/5)(FJDm) + 4(Fm„1/Dm). 

The recurrence Cm - Fm I Dm + Cm_x + Cm_2 follows immediately and, for large m, Cm is approxi-
mately ml 5 + 0.145. 

4. CONCLUDING REMARKS 

It has been shown in this paper that 

»(5/7) + 2/7<x/( JP3xP„)<»(5/7) + 4/7 , 
«(10/ll) + 4/11 < Yf{PA xP„)<«(10/ll) + 12/l l , 
«(20/18) + 8/18<^/(JP5xP„)<«(20/18) + 20/18, 

«(38/29) + 18/29</ / (P 6 xP„)<«(38/29) + 32/29 

and, for m>6,n>m, 

nGm+A{Fm_JDm)<yf{PmxPn)<nCm+2\ml3jFmIDml 

where Cm = S2=1, m ( ^ + 1 ) / Dm and Dm = 3Fm + F ^ . 

Although the methods of linear programming can be used to calculate y f for individual 
graphs, no exact construction is known for y f{Pm x Pn) for m > 2 Thus, the bounds presented in 
this paper provide a useful addition to our knowledge of domination parameters on grid graphs. 
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1. INTRODUCTION, NOTATIONS, AND A THEOREM 

By "doubling diagram mod m" we mean the directed graph whose vertices are 0 and the 
natural numbers less than m, with directed arcs (arrows) from each vertex x to 2x reduced modulo 
m. 

^ „5 i O ^„3 r^2 %Q- ^ ^ 
c2y c°y \ c^J m = 2 m = 3 ^ ^ - ' 3 
/w = 4 w = 5 m = 6 m = l 

I gave pages with the diagrams for w's from 2 to 31 to a group of students, and asked them 
to find regularities. This took place at the School of Education of Tel Aviv University, in an 
elective course for non-mathematicians, intended to improve their ideas about mathematics. The 
students recognized some known phenomena (see [1]), including the fact that, for an odd m, all 
the vertices are arranged in cycles. Suzanah Erseven, a prospective English teacher, examined the 
numbers of cycles in the diagrams for the odd m's, and found that the sequence of these numbers 
consists of two even numbers and two odd numbers, alternately. Her discovery is reformulated 
here as Theorem 1. Its proof is the central topic of this paper. 

Notations: In the following, the variable m will denote the modulus of the diagram, and will be 
limited to odd numbers. 

L(m) is the number of vertices in the cycle of 1, 
C(m) is the number of cycles with vertices that are relatively prime to m, and 
T(m) is the total number of cycles in the doubling diagram modulo m, including the cycle of 0. 
<p{ri) is the Euler function (number of natural numbers less than and relatively prime to n). 

A number m will be called "O.K.11 if it agrees with the following theorem. 

Theorem 1: m = ±l (mod 8) => T(m) is an odd number. 
m = ±3 (mod8) => T(m) is an even number. 

2. PROOF OF THEOREM 1 

The proof of Theorem 1 will emerge from some propositions and results. Let us start with 
these. 

Since a chain of n arrows leads from x to x iff x-2n = x (modm), that is, iff m\x(2n -1), it 
follows that 
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I. L(m) is the minimal n such that m\2n - 1 , and it divides any other n with this property. 
II If x is prime to m, then its cycle is also of length L(m) (and all the vertices in this cycle are 

relatively prime to m). 
III. The length of any cycle in the doubling diagram mod m divides L(m). [m|2L(m) - 1 hence 

m\x(2L^m) -1) hence L(m) arrows from x end at x.] 
IV. C(m) • L(rn) = <p{m). (This follows from II) 

Since 2x = y (mod m) <=> 2kx = ky (mod km), it follows that 

V. If we multiply by k the values of the vertices of a cycle in the doubling diagram mod m, we 
get a cycle in the doubling diagram mod km. 

VI. L(m)\L(km). (This results from III and V.) 

Proposition 1: For every prime number p&2, L(pn+1) is equal to either /?•£(/?") orL(pn). 

Proof: Denote L{pn) by X. Then pn\Lx - 1 , that is, 2X = 1 ( m o d / ) , hence 2X = 1 (mod/?), 
and so are all of the powers of 2X. From this, it follows that 1+2X + 22X + • • - + 2{p~l)X is divisible 
by/?, and therefore 2 ^ - 1 , which is the product of this sum and 2X -1, is divisible by pn+l. By 
this and by II we have that L(pn+l)\Ap, and by VI we have that X\L(pn+l). U 

Remark a:. Let k = (2X -1) / pn. Then 

1 + 2A + 22^ + - - - + 2
(P"1)A =1 + (>fcpw +1) + (^pw +1)2 + - - - + (^7" -f-1)^-^ 

= p + ^ " - ( l + 2 + ..- + (p - l ) ) + p 2 " - ( - ) 
= P + kpn-p.{p-l)l2 + p2n.{:.). 

The second term on the extreme right side is divisible by p1 (even for n = 1, since p^2), so the 
total sum is not a multiple of p2. Therefore, if 2X - 1 is divisible by /?w but not by pn+l

9 then 
2Xp -1 is divisible by Jp"+1 but not by pn+1. From this one gets that if, for some n, L(pn+l) * 
L(pn), then L{pn+l) * L(pn) for all bigger w's. 

Remark b: Computer runs show that, for all prime numbers up to 100,000, there are just two 
cases where L{pn+l) - L(pn). These are Z(10932) = 1(1093) - 364 and Z(35112) = £(3511) = 
1755. 

Remark c: A theorem similar to Proposition 1 together with Remark a, but (still?) without 
examples as in Remark b, was proved by Wall [2] for the length of the period of the Fibonacci 
series reduced mod m. 

Lemma 1: If m - p is O.K., so is m - pn. 

Proof: <p(pn+l) = pn+l -pn - p-(p{pn). From this, together with IV and Proposition 1, it 
follows that C(pn+1) is either equal to C(pn) or else/? times greater. In any case, they are both 
even or both odd numbers. 

By V, the vertices in the doubling diagram mod pn+l that are the multiples of/? form a sub-
diagram congruent to the diagram mod pn, that is, they form T(p") cycles. So T(pn+l) = 
T{pn)+c(pn+ly 
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If p = ±1 (mod 8), then so is every pn. In this case T(p) is an odd number (we've assumed 
m - p is O.K.), so C(p) is an even number (they differ just by the cycle of 0); hence, all the 
C(pnys are even numbers and, therefore, all the T(pnys are odd numbers. 

If p = ±3 (mod 8), then p2 = 1, p3 = ±3, p4 = 1, and so on. In this case T(p) is an even 
number, so C(p) is an odd number; hence, all the C(/?")'s are odd numbers and, therefore, the 
T(p"y$ are even numbers and odd numbers, alternately. D 

Proposition 2: If mx and m2 are relatively prime to each other and to 2, then 

L{ml m^)- Lcm.^/Wj), L(rn2)). 

Proof: 2X -1 |2^ - 1 (the quotient is a sum of a geometric sequence). By I it follows that 
both ml and rr^ divide 2lcm^mi>),L^m2^ - 1 ? and so does their product. Hence, L{mlm2) divides 
1. c. m. ( Z ^ ) , L(m2)). Their equality follows from VI. • 

Remark: Wall [2] proves a similar theorem for the lengths of periods of the Fibonacci sequence 
reduced mod m (not limited to odd numbers). But this does not point at a special similarity 
between the Fibonacci sequence and the geometric sequence 1, 2, 4, ... . In [3] I suggested a 
generalization of both Wall's theorem and Proposition 2. Let a(i) be any sequence such that 
reducing its elements modulo m gives, for some zrc's, a periodic sequence (the period does not 
have to start at the very beginning). Let P(m) be the length of the period, and let mx and m2 be 
any two numbers for which P is defined. Then P(l. c.m.(mly m^)) -1.c.m. (P(ml)J P(m2)). This 
result, like Theorem 1, emerged from a suggestion of a student of mine (in a mathematics club for 
high school students). 

Proposition 3: If m1 a n d ^ are prime to each other and to 2 and different from 1, then 
C{ml n^) is an even number. 

Proof: Let us recall two properties of the Euler q> function: (a) If nx and n2 are relatively 
prime, then (p(nx n2)- (p{nx)• (p(n2). (b) If n ̂  2, then q>{ri) is an even number. 

Now, 

Cijnymj)-(p(mx m2)/L(mx-rr^) 
= (pim^ • (p(rrh)l 1- c m. {L{jn^ L(m2)) 
= <p(ml)/L(ml) ^(m2)/Z(/w2)g.c.d.(Z(w1),Z(/722)) 
= C(ml).C(nh).g.cAXL(m1), 1 ^ ) ) . 

At least one of the last three factors is an even number since, if C(m) is an odd number, then 
L(m), which equals <p{m) I C{m), is an even number. D 

Lemma 2: If ml and rr^ are as in Proposition 3 and are both O.K., then sois m = rnlm2. 

Proof: By V, those vertices in the diagram mod m that are multiples of mx form T(m2) 
cycles, and the multiples of n^ form T ^ ) cycles. Together they form TQn^ + T(m2) - 1 cycles, 
since the cycle of 0 is the only one that is counted both in TQrii) and in T(m2). 

Let us partition the other vertices into classes in the following way: For each pair dx and d2 
that are proper divisors of ml and m^, respectively, let us form the class of all the vertices that are 
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multiples of dx • d2 but not of any greater factor of m. We are going to show that the elements of 
such a class form an even number of cycles. Indeed, if we divide the elements of the class by 
dl-d2, we get the vertices of the doubling diagram modulo ml I dx and m^l d2 satisfy the condi-
tions of Proposition 3. 

It follows that T(m) is an even number <=> T{ml) 4- Tim^) - 1 is an even number o just one of 
T(mx\ TX/^) is an even number <=> just one of mu m2 is = ±3 (mod 8) <=> m = ±3 (mod8). D 

Lemma 3: Every prime number p ^ 2 is O.K. 

Proof: p divides 2p~l -1. Therefore, it divides either 2ip~l)n -1 or 2ip~l)n +1. 
Ifp divides 2(/?~1)/2 + 1 , then (p-l)/2 arrows of the diagram modp lead from 1 to - 1 (more 

precisely, top - 1). In one turn around the cycle of 1, the number of arrows from 1 to - 1 is equal 
to the number of arrows from - 1 to 1, so (p-l)/2 arrows make an odd number of half-turns 
around this cycle [that is, (p-l)/2 = an odd number -L(p)/2]. Since C(p) = (p -1)/ L(p) = 
((p -1 ) / 2) / (L(p) 12), it is an odd number and since, for a prime p, T(p) = C(p) +1, it follows 
that in our case T(p) is an even number. 

Ifp divides 2(;?~1)/2 - 1 , then (p -1 ) / 2 arrows lead from 1 to 1, hence (p - 1 ) / 2 is a multiple 
of L(p), hence C(p) = (p -1 ) / L(p) is an even number, so T(p) is an odd number. 

To complete our proof, we have to show that p\2^p~l^/2 - 1 <=>/? = ±1 (mod 8). 
Corollary 2.28 (or Theorem 3.1a) in Niven-Zuckerman [4], with a = 2, says that/? divides 

2(/7_1)/2 - 1 iff there is a solution for x2 = 2 (modp). Problem 10 on page 73 (solved by the last 
part of Theorem 3.3) says that x2 = 2 (modp) has a solution iff p = ±1 (mod 8). D 

Proof of Theorem 1: By Lemma 3, Lemma 1, and Lemma 2. D 

3. ANOTHER POINT OF VIEW AND ANOTHER THEOREM 

An exercise in long division in base 2 will show that L(m) is the length of the period of the 
binacy fraction for Xlm. Moreover, C(m) is the number of classes of fractions-in-lower-terms with 
the denominator m and with binary expansions whose periods are equal to each other up to a 
cyclic permutation, while T(m) may be described in the same way, omitting the words "in-lower-
terms." 

The analog of Theorem 1 for the base 10 is the following: 

Theorem 2: Let m be relatively prime to 10, and consider the number of different periods in the 
decimal expansions of fractions with the denominator m. This number is an odd number iff 
m = ±l or ±3 or ±9 or ± 27 (mod 40). 

The proof is similar to that of Theorem 1 with some self-evident modifications, but two addi-
tional lemmas are needed. For convenience, I am going to write "m is like 1" for m = ±1 or ±3 or 
±9 or ±27 (mod 40), and "JW is like 7" for m = ±7 or ± 11 or +17 or ± 19 (mod 40). 

Lemma 4: The product of two numbers like 1 and the product of two numbers like 7 are like 1; 
the product of a number like 1 and a number like 7 is like 7. 

Proof: By checking the different cases. D 
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The next lemma is needed for the last half of the proof of the base-10 version of Lemma 1. 

Lemma 5: Let m b e a natural number prime to 10. For each integer i from 0 to (m -1) / 2, let us 
write rt for the residue of 10/ when reduced mod m, and let n be the number of T-'S that are 
greater than mil. With this notation, n is an even number iff m is like 1. 

Proof: Numerical checks show that the lemma holds for every m<50. We have to demon-
strate that, if the lemma holds for some w > 1 0 , then it holds also for ra + 40. Let us assume 
m>ll 

Consider the sequence 0, 10, 20, ..., 5m - 5. Reducing its elements modulo m to get their rf 's 
consists of five stages: In the first stage we subtract 0-m, in the second stage l-m, and so on 
until the fifth stage, where we subtract 4m's. Each stage starts by yielding an rt of one digit, fol-
lowed by all the other numbers less than m, which end with that digit. (The fifth stage is not inter-
rupted by the end of the sequence, since adding 10 to the last element gives a number > 5m.) 

The rt 's we get in this way are different from each other, since m is relatively prime to 10, so 
they consist of all the integers from 0 to m - 1, having one of certain five digits for their last digit. 
Consequently, every ten successive integers in [0, m-1] include exactly five r7 's. 

Replacing m by m' = m + 40 does not change the above-mentioned set of five digits since, if 
I0i-jm = r with 1 < (m-l)/2 andy <4 , then \0(i + 4j)-jmf = r and /' + 4 / < ( / w ' - l ) / 2 . The 
set of the r7 's associated with mf that are greater than m' 12 include the old rt 's that are greater 
than ml 2, plus twenty new rf 's bigger than m-l, less ten rt 's that are between m/2 and m' 12. 

It follows that the n associated with m' is an even number iff the n associated with m is an 
even number. • 

This lemma, together with Theorem 3.2 of [4] (a lemma of Gauss), are used instead of 
Problem 10 at the end of the proof of the base-10 version of Lemma 3. Theorem 3.2 says, for 
a- 10, that if m is a prime number different from 2 and from 5, then the congruence x2 = 10 
(mod m) has a solution iff the n we have defined in Lemma 2 is an even number. Lemma 5 itself 
now completes the proof. 
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1. INTRODUCTION AND PREPARATORY RESULTS 

Let Pn,n = 0,1,2,..., be a sequence of integers that is defined by its exponential generating 
function/^) as 

That i s ^ ) is a Hurwitz series in x. 
As regards Bell numbers [fix) = exp{exp{x}-l}], Lunnon, Pleasants, & Stephens [4] and 

Gessel [1] showed that, for each positive integer n, there exist integers a0,aly ...,arj_1 such that, for 
all m > 0, n > 0, 

Pm+f1+an_lPm+n_l + "'+a0Pm^0 (modw!). (2) 

Also, as regards tangent numbers [/(x) = tanx], Ira Gessel [1] showed that, for each posi-
tive integer n, there exist integers bub2, •.-,bn_l such that, for all m > 0, n > 1, 

Pnnm +h„-lPm+n„l + '"+blPm+l = 0 (mod (7i-l)!w!). 

In the same paper, congruences similar to the above are obtained concerning the derangement 
num-bers and the numbers defined by fix) - (2-exp{x})_1 and/(x) = exp{x + x2 /2} . In the 
same area of research, Kyriakoussis [3] proved the congruence (2) in the case in which 

OO 

fix) = exp{g-(x)}, for g(x) = X CjXJ I j , 

where the Cj,j = l,2,..., are integers.In [1], Gessel obtained the above congruence by introducing 
the following method: 

Using Taylor's theorem and (1), we have 

f(x+y) = fJf{k\*)ykik\, fw(*) = ̂ £P-- (3) 

Setting y - S(z) in (3), where the function S(z) is a Hurwitz series in z with S(0) - 0 and 
S'(0) - 1 and multiplying both sides by some Hurwitz series H(z) with 7f(0) = 1, we get 

H(z)f(x + S(z))=fif^\x)H(z)(S(z))k/kl 
k=0 

If the flmctions H(z) and Siz) are chosen appropriately, the coefficients of^z" on the left will be 
integral. Then the coefficients of ̂ r^- on the right is divisible by n\. 
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In other words, Gessel's method can be applied to a given Hurwitz series fix) if and only if 
there exist Hurwitz series S(z) and H{z) with S(0) = 0, S'(0) = 1, and H(0) = 1, such that, for all 
integers m and n, the coefficients of~-z" in H(z)f(x + S(z)) is an integer. That is, 

co co m 

H(z)f(x + S(z))=Z I0(I», /I)^J-Z", (4) 
m=0 n=0 m 

where the numbers Q(m, ri) are integers for all m and n. 
In this paper we establish a necessary and sufficient condition on the function fix), given by 

(1), for Gessel's method to be applied, and we show the corresponding congruence concerning the 
numbers P„, n = 0,1,2,... . Moreover, we consider a wide class of functions^) to which Gessel's 
method can be applied. 

It is well known that Hurwitz series are closed under multiplication and that, if f(x) and g(x) 
are Hurwitz series with g(0) = 0, then the composition (f°g)(x) is also a Hurwitz series. In 
particular, (g(x))k I k! is a Hurwitz series for any nonnegative integer k. 

Hurwitz series in two variables are of the form 
^m i t " 

where the numbers amn are integers. The properties of these series we will need follow from those 
for Hurwitz series in one variable. 

We also need the following results: 

a. Let s~l(x) be the inverse function of the Hurwitz series s(x) with s(0) = 0. Then s~l(x) is 
also a Hurwitz series with s~l(0) - 0, if 4-s(x)\ = s'(0) = 1. 

^* 'x—0 

b. Let h(x) be a Hurwitz series. Then the function -j^-r = (h(x))~l is a Hurwitz series if and only 
ifA(0) = l. 

2. THE MAIN RESULTS 

A necessary and sufficient condition for Gessel's method to be applied is given by the follow-
ing theorem. 

Theorem 1: Let f(x) be the exponential generating function of the integers P„, n - 0,1,2,..., as 
given by (1). Then Gessel's method can be applied to the Hurwitz series f(x) if and only if there 
exist Hurwitz series s(y) and h(y) with s(0) - 0, s'(0) = 1, and h(0) - 1, such that 

f(x+y) = h(y)\ TGn(x)(s(y)y (5) 

where the functions Gn (x), n - 0,1,2,..., are Hurwitz series in x. 

Proof: From relation (4) we can easily obtain relation (5), setting z - s(y) where s is the 
inverse function of £ [^(^O))]-1 = h(y) and 2^ = 0 gO, n)xm lm\ = G„(x) 
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From our comments in section 1, we can easily see that s(y) andh{y) are Hurwitz series my 
with s(0) = 0, ̂ '(O) = 1, and h(0) = 1. Conversely, from relation (5) we obtain, in the same way, 
relation (4). 

Example 1: f(x) = tan x and we have 
00 

f(x+y) = tanx + (secx)2^(tanx)w_1(tan3;)". 

Consequently, h(y) - 1, G0(x) = tanx, Gn(x) = sec2x(tanx)"_1, n = l, 2,..., s(y) = tanjy, s_1(z) = 
arctanr, and Theorem 1 can be applied. 

Now we show the corresponding congruence concerning the numbers P„, n - 0,1,2,... . 
From relations (1) and (3), we obtain 

f(x+y)=ZI.p*»* 
m=0 k=0 m\ k\ 

Comparing relations (5) and (6), we obtain 

m=0 k=0 m] K-
ZG„(x)(s(y)y 
n=0 

(6) 

(7) 

Setting y = s l(z) in (7) and multiplying both sides by (h(s l{z))) l, we obtain 

w =o fc=o zw! *! 
O0 OO 

m=0 n=0 m\ n\ 

where the integers Q(m, n) are given by the relation 

flQ(m,n)xm/m\ = G„(x). 
m=0 

(8) 

(9) 

From our comments in section 1, we can define the integers D(n, k), k = 0,1,..., n, n = 0, 1, 2, ..., 
by 

YD(n,k)z"ln\ = (h(s-l(z))) u_^{s-\z)f 
n=k k\ 

(10) 

Substituting (10) into (8) we get, on using the relation D(0,0) = i, 
oo oo / n 

m=0 n=0\k=0 

Equating coefficients of ^-^-, we get 

xm zn \ y.m n oo oo 

— — =T Yn\Q{m,ri)-
jm\ n\ m=0n=0 ml n\ 

^D{n,k)Pm+k=n\Q(m,n). 
k=0 

(11) 
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Now we consider a wide class of Hurwitz series fix) to which Gessel's method can be applied, 
by the following theorems. 

Theorem 2: Gessel's method can be applied to the Hurwitz series^), if 

f(x) = (l+Mx)Tepc, (12) 
where the constants a, J3, and y are integers and the function g(x) is a Hurwitz series such that 

gix + y) = ^iH„(xXs(y))n, H0(0) = 0, (13) 
n=0 

where the function s(y) is a Hurwitz series in>> with s'(0) = 1? ^(0) = 0, and the functions Hn{x), 
n = 0,1,2,..., are Hurwitz series in x. 

Proof: From relation (12) we have, on using (13) and some well-known rules of multiplica-
tion of series 

f(x+y) = [l+0g(x+y)aeyix+y)] = 

7 7 = 1 

l+/3H0(x) + ^Hn(x)(s(y)y 

[l+yStf0(*)]V<*+'\ 

0y(x+y) 

where H*(x) = J3Hn(x)/[\ + 0Ho(x)] or 

f(x+y) = [l+fiH0(x)Yer™±(« 
]=Q 

=[I+/H'0(X)]V^> i+5;[5 a 

^H:(x)(s(y)r 

£ (s(y)T 2 K (*)K (x)- H*nj (x) 
m=j 

where the inner sum is extended over all orderedy'-tuples (nl7n2, ...,rij) of positive integers such 
that nx + n2 H vrij =m or 

f{x+y) = e"[\ + pH«(xj\aeHl + Yj Z^s^w-^cx) poor 
or 

/ (^j)=Mj)iGm(*wr, (14) 
m=0 

where /K» = e^, G0(x) = [ l + ^ o W f ^ and 

^ GM(*) = [l + /Br0(*)]V 

(the inner sum is extended as before). 

£^ ) i / / ; (*)•••#;,(*) m = l,2,..., 
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Since Gm(x), m = 0,l,2,..., are Hurwitz series in x and s(y), h(y) are Hurwitz series in y with 
s(0) = 0, .s'(0)-l, and/?(()) = 1, we have, on using relation (14) and Theorem 1, that Gessel's 
method can be applied. 

Example 2: f(x) - (l+/?tanx)a, a an integer. We have y = 0, g(x) - tanx, and 
00 

g(x + y) = tanx + (l + tan2 x)]T (tanx)"-1 (tan j;)". 
n=l 

Consequently, s(y) = tany,H0(x) = tanx, Hn(x) = (l + tan2 x)(tanx)w~1,« = 1,2,..., and Theorem 
2 can be applied. 

Example 3: f(x) = £?>*(l-/?(ex - l))"a, where a, fi, y are integers. We have g(x) = -(ex -1) 
and g(x + y) = -(ex -l)-ex(ey -I) Hence, s(y) = ey-l, HQ(x) = -(ex -1), Hl(x) = -ex, and 
Theorem 2 can be applied. 

Note that the above function f(x) is the exponential generating function for the moments for 
the Meixner polynomials. 

Theorem 3: Gessel's method can be applied to the Hurwitz series f(x) if 

/ ( x ) = exp{F(x)}, (15) 

where F(x) is a Hurwitz series in x such that 

F(x + y) = Z(x) +fXO0(K*)y IA (16) 

where L(x) is a Hurwitz series in x with Z(0) = 0, I^fy) is a Hurwitz series in y with i^,(0) = 0, 
Rj (y), 7 = 1,2,..., are power series in s(y) with integer coefficients, s(y) is a Hurwitz series in y 
with 5(0) = 0, $'(0) = 1, and r(x) is a Hurwitz series in x with r(0) = 0. 

Proof: Introducing the exponential Bell polyomials Bn=Bn(b1,b2,'...,bn),n = 0,l,2,...9 that 
may be defined by their exponential generating function as 

£ 5 / 7 / i ! = exp{#0} 
w=0 

where ^(f) = ZJLi ̂ ^ /y!, we get 

expK* y O0(r(x)y / j ! = I X W(j) , . . . , ^ ( j ) ) ( r (x ) r //il. (17) 

Explicit expressions for Bn = Bn(blyb2,...7bn) as functions of bx, &2,..., bn are given in Kendall 
& Stuart ([2], p. 69). 

Since Rj(y\ j - 1,2,..., are power series in £(>>), we have that Bn,n = l,2,..., are also power 
series in s(y). Therefore, 

JB„(JR1(j),...,^(j)) = ^ a „ i / ( ^ ) ) ' ) /i = l,2,..., (18) 
j=0 

where the numbers an y, 1 = 0,1,2,..., are integers. 
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From relation (15) we have, on using relations (18), (17), and (16), 

f(x+y) = h(y)fjGi(x)(s(y)y, (19) 
7=0 

where h(y) = exp[i^0/)] and G,(x) = {^p[L(x)]}^=0anJ(r(x)y ln\, i = 0,1,2,... . Since 
i?o(0) = L(0) = r(0) = 0, we have that h(y) is a Hurwitz series in y with h(0) = 1 and Gt (x),i = 0, 1, 
2, ..., are Hurwitz series in x. We also have s(0) = 0 and s'(0) = 1. Consequently, using Theorem 
1, we conclude that Gessel's method can be applied. 

Example 4: f(x) = expJEJl x ctxl I / ] , cx,, i = 1,2,..., integers. We have F(x) = £ * x ctxl I i and 

F(x+y)=flcl(x+yy n=f>, /otp.Vy-' 

= F(x) + F(y) + fj(ci /OZp/Vy--' =F(*) + FC) + £JRy0'y /J!, 
where 

=/+i v J ; ; i=i 
y , 7=1,2,. . . 

Thus, L(x) = F(x),R0(y) = F(y),Rj(y),j = 1,2,..., are power series in y with integer coeffi-
cients, s{y) = j / , r(x) = x, and Theorem 3 can be applied. 

Note that, for q = 0,i = 3,4,..., the above / (x ) is the exponential generating function for the 
moments for the Hermite polynomials. 

Example 5: f(x) = exp{a(ex -1) - px), a and J3 integers. We have F(x) = a(ex -1) + /& and 
F(x+y) = a(ex+y -1) +/3(x + j/) = F(x) + F(y) + ( ^ - l)a(ex -1). Consequently, Z(x) = F(x), 
R^iy) = i 7 ^ ) , ^i(y) = ^ - 1 , ^Cv) = ^ - 1 , r(x) = a(ex -1), and Theorem 3 can be applied. 

Note that, for /? = 0, the above f(x) is the generating function for the moments for the 
Charlier polynomials. 
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Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also he sent to the problem editor by electronic mail to 72717.3515@compuserve.com on 
Internet. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+1 +Fm F0 = °> Fl = ^ 
A?+2 = AH-I + A> A - 2, Ll = 1. 

Also, a = (l + V5) /2 , / ? - ( l - V 5 ) / 2 , Fn = (an-fin)/ JF, md Ln = an+(3n. 
The Pell numbers Pn and their associated numbers Qn satisfy 

Fn+2 ~ 2Pn+\ + Pn, F0 ~ ®? A ~ ^ 

I f / ? = 1 + V 2 a n d ? = l - V 2 , then Pn={pn-qn)l 4% and g„ = (/?" +qn)l2. The Pell-Lucas 
numbers, i^ , are given by R^ =2Qn. For more information about Pell numbers, see Marjorie 
Bicknell, "A Primer on the Pell Sequences and Related Sequences," The Fibonacci Quarterly 
13,4(1975):345-49. 

PROBLEMS PROPOSED IN THIS ISSUE 

The problems in this issue all involve Pell numbers. See the basic formulas above for defini-
tions. 

B-754 Proposed by Joseph J. Kostal, University of Illinois at Chicago, IL 

Find closed form expressions for 

±Pk and £ & • 
k=\ k=\ 

B-755 Proposed by Russell Jay Hendel, Morris College, Sumter, SC 

Find all nonnegative integers m and n such that Pn = Qm. 

B-756 Proposed by the editor 

Find a formula expressing Pn in terms of Fibonacci and/or Lucas numbers. 
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B-757 Proposed by H.-J. Seiffert, Berlin, Germany 

Show that for n > 0, 

r«> Pz„-^F„+2 (mod 13), 

(b) ^ + , - ( - 1 ) L ( " + 1 ) / 2 J ^ - I (mod 7). 

B-75S Proposed by Russell Euler, Northwest Missouri State University, Maryville, MO 

Evaluate 

Jt=0 3 

B-759 Proposed by H.-J. Seiffert, Berlin, Germany 

Show that for all positive integers k and all nonnegative integers n, 
n J7 p _ p J7 

Z J7 P - k k(n+2) rkrk(n+2) 
pku+iyk(n-j+i) - on r 

SOLUTIONS 

A 7-Term Arithmetic Progression 

B-724 Proposed by Larry Taylor, Rego Park, NY 
(Vol. 30, no. 4, November 1992) 

Let n be a positive integer. Prove that the numbers Ln_xLn+l, 5F2,L$nl'Ln, L2n,F3ri/'Fn, L2
n, 

5Fw_ji^+1 are in arithmetic progression and find the common difference. 

Solution by Y. H. Harris Kwong, SUNY at Fredonia, NY 

Using the basic formulas Fn = (aw - / ? " ) / V s , Ln = an+J3n and the identities a2 +/?2 = 3, 
a/3 = -l, it is easy to show that the seven numbers form the arithmetic progression L2n + k(-l)n, 
k = -3,-2,...,2,3, with common difference (-1)". 

For example, 

L„_xLn+l = (a-1 + / T - V - 1 +/?"+1) = a2" +f" + ( « / ? ) - V +P*) = L2n- 3(-l)". 
The other parts follow in a similar manner. 

Most solutions were similar. The arithmetic progression can also be expressed as L2
n+k(-l)n, 

£ = - 5 , - 4 , - 3 , . . . , ! . 
Also solved by M. A. Ballieu, Seung-Jin Bang, Brian D. Beasley, Scott H. Brown, Paul S. 
Bruckman, Charles K. Cook, Leonard A. G. Dresel, Russell Euler, Piero Filipponi, C Geor-
ghiou, Pentti Haukkanen, John Ivie, Russell Jay Mendel, Joseph J. Kostal, Carl Libis, 
Graham Lord, Igor Oh Popov, Bob Prielipp, H.-J. Seiffert, A. G Shannon, Sahib Singh, 
Lawrence Somer, Ralph Thomas, and the proposer. 
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An Infinite Set of Right Triangles 
B-725 Proposed by Russell Jay Hendel, Patchogue, NY and Herta T. Freitag, Roanoke, VA 

(Vol 30, no. 4, November 1992) 

(a) Find an infinite set of right triangles each of which has a hypotenuse whose length is a 
Fibonacci number and an area that is the product of four Fibonacci numbers. 

(b) Find an infinite set of right triangles each of which has a hypotenuse whose length is the 
product of two Fibonacci numbers and an area that is the product of four Lucas numbers. 

Solution by the proposers 

Recall that A-x2 -y2, B = 2xy, mdC = x2 +y2 form a Pythagorean triangle with area 
xy(x-y)(x + y). 

(a) Let x = Fn, y = Fn_l9 and use the fact that F2 +F2_X = F2n_l (see [1]). 
(b) Let x - Ln+1,y = Ln, and use the fact that L2

n +L2
n+1 = F5F2n+l (see [1]). 

Reference: 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester: Ellis Horwood Ltd., 1989, p. 29. 
The proposers also found an infinite set of right triangles whose hypotenuse is a Pell number 
and whose area is the product of four Pell numbers. Shannon noted that if (H„) is any sequence 
that satisfies the recurrence Hn = Hn_l +Hn_2, then the triangle with sides HnHn+3,2Hn+lHn+2, 
and 2Hn+1Hn+2 +H2 is a Pythagorean triangle with area i ^ i ^ i f ^ i f ^ . However, he was 
unable to put the length of the hypotenuse, 2Hn+lHn+2 +H2, into a simpler form. 
Also solved by Paul S. Bruckman, Charles K Cook, Leonard A. G Dresel, Daniel C Fielder 
& Cecil O. Alford, C Georghiou, Igor 01 Popov, Bob Prielipp, H.-J. Seiffert, A. G. Shannon, 
Sahib Singh, and Lawrence Somer. 

A Diverting Sum 

B-726 Proposed by Florentin Smarandache, Phoenix, AZ 
(Vol 30, no. 4, November 1992) 

Let dn = Pn+l -Pn,n = l,2,3,..., where Pn is the nth prime. Does the series 
oo i 

^ d 
w=l un 

converge? 
Solution by C Georghiou, University ofPatras, Greece 

The series diverges! This can be seen by noticing that 
d - P - P < P 
un ~ rn+l rn ^ rn+l • 

We use the well-known fact ([1], p. 17) that the series of the reciprocals of the prime numbers 
diverges and the standard Comparison Test ([2], p. 777) which says that if Hak diverges and 
bk >ak>0 for all k, then Y,bk diverges. 
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References: 
1. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. 5th ed. Oxford: 

Oxford University Press, 1979. 
2. George B. Thomas. Calculus and Analytic Geometry. 3rd ed. Reading, MA.: Addison-

Wesley, 1960. 

Several solvers invoked Bertrand's Postulate ([1], p. 343). Seiffert asks if the series 

y(-l)" 
^ d 

diverges. He notes that this would follow from the twin prime conjecture ([1], p. 5). 

Also solved by Charles E. Chace & Russell Jay Hendel, Leonard A. G Dresel, Piero Filipponi, 
H.-J. Seiffert, Sahib Singh, and the proposer. 

It's a Tanh 

B-727 Proposed by loan Sadoveanu, Ellensburg, WA 
(Vol 30, no. 4, November 1992) 

Find the general term of the sequence (an) defined by the recurrence 

_an+l+an 
a^.n — 

with initial values a0 = 0 and ax = (e2 -1 ) / (e2 +1), where e is the base of natural logarithms. 

Solution by C. Georghiou, University ofPatras, Greece 

Let bn be defined by an = tanh bn. This is possible because the hyperbolic tangent defined on 
[0, oo) and valued in [0,1) is a one-to-one function. Note that ax - (el -e~l)/(el +e~l) = tanh 1 
from the formula tanh x = (ex - e~x) I (ex + e~x). From the well-known formula 

tanh x + tanh y 
tanh(x + j ) : 

1 + tanhx tanh j ' 

we get bn+2 = bn+l +bn with b0 = 0 and bx - 1. Therefore, bn-Fn, and the answer to the problem 
is an - tanhi^. (The tanh formulas can be found on page 24 in [1].) 

Reference: 
1. I. S. Gradshteyn & I. M. Ryzhik. Tables of Integrals, Series and Products. San Diego, CA: 

Academic Press, 1980. 

Several solvers gave the equivalent answer an = (e2Fn -1 ) / (e2Fn +1). In this form, Lord notes 
that "e" could be any constant. The proposer solved the problem for a0 andax being arbitrary 
constants in (-1, 1), but the answer is a complicated expression. 

Also solved by Tareq Alnaffouri, Richard Andre-Jeannin, Seung-Jin Bang, Brian D. Beasley, 
Paul S. Bruckman, Charles K. Cook, Leonard A. G Dresel, Russell Jay Hendel, Y. H. Harris 
Kwong, Carl Libis, Graham Lord, Samih A. Obaid, Igor 01 Popov, H-J. Seiffert, A. G 
Shannon, Sahib Singh, Ralph Thomas, and the proposer. 
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When Does Mod y Imply Mod g2? 

B-728 Proposed by Leonard A. G. Dresel, Reading, England 
(Vol 30, no. 4, November 1992) 

Ifp > 5 is a prime and n is an even integer, prove that 
(a) WLn=2 (modp), then Ln = 2 (mod p2); 
(b) if Ln = -2 (mod /?), then Ln = -2 (mod p2 ). 

Solution by A. G. Shannon, University of Technology, Sydney, Australia 

We have Ln = an + pn (with ap = -1) and n = 2k. Let x = iw + 2. We want to show that if 
p\x,thmp2\x. Noteth<itx = Ln±2 = (ak±(--l)kf3k)2. If p\x, then p\L2

k orp\5F2. In either 
case, sincep is a prime larger than 5, we must have p2\x. 

Several solvers noted thatp could be any prime not equal to 5. 
Also solved by Richard Andre-Jeannin, Paul S. Bruckman, Russell Jay Hendel, Y. H. Harris 
Kwong, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, and the proposer. 

Binet to the Rescue Again 

B-729 Proposed by Lawrence Somer, Catholic University of America, Washington, DC 
(Vol 30, no. 4, November 1992) 

Let (Hn) denote the second-order linear recurrence defined by Hn+2 -aHn^x+bHn, where 
HQ = 0, Hx = 1, and a and b are integers. Letp be a prime such that p\b. Let k be the least posi-
tive integer such that Hk=0 (mod p). (It is well known that k exists.) If Hn 4 0 (mod p\ let 
Rn^H^Hfimo&p). 

(a) Showthat Rn+Rk_n =a(modp) for \<n<k-\. 
(b) Show that J^R^^ = -b (mod p) for 1 < n < k - 2. 

Solution by A. G. Shannon, University of Technology, Sydney, Australia, and by Y. H. Harris 
Kwong, SUNY at Fredonia, NY (independently). 

We will first prove the identity 
Hn+\Hk-n + HnHk-n+\ = Hk + aHnHk-n> ( * ) 

which is valid for all integers n and k. The Binet form [1] giving the explicit value for Hn is 

where A = (a + 4a2 +4b)l2 andB = (a- Va2 + 4b)/2 are the roots of x2 = ax + 6. Straight-
forward algebra allows us to check the identity 

(A"+1 -Bn+l){Ak~n -Bk-") + (An -Bn)(Ak~n+l -Bk~n+l) 

= {A-B)(Ak-Bk) + {A + B){An-Bn){Ak-n-Bk-n) 

from which (*) follows since A + B -a. 
(a) From the definition of Rn9 we have HnRn = Hn+l (mod/?). From (*) and the fact that 

Hk = 0 (mod/?), we get 
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aHrflk-n = Hn+lHk_n + HnHk_n+l (mod /?) 
= HnHk-nRn + HnHk_nRk_n (mod p) 

and the result follows since Hn^0 (mod/?) for 1 < n < k -1. 
(b) Using part (a) and the definition of R^ gives 

HnHk-n-ARk-n-l = Hn+l^k-n ( m ° d P) 
^Hn(aHk_n-Hk_n+l) (mod/?) 

^~bHnHk-n-l ( m o d / ? ) 

and again the result follows for primes/? that do not divide b. 

Reference: 
1. Ivan Niven, Herbert S. Zuckerman, & Hugh L. Montgomery. y4« Introduction to the Theory 

of Numbers. 5th ed. New York: Wiley & Sons, 1991, p. 199, Th. 4.10. 

Also solved by Paul S. Bruckman, Leonard A. G. Dresel, H.-J. Seiffert, and the proposer. 

A Golden Quadratic 

B-730 Proposed by Herta T. Freitag, Roanoke, VA 
(Vol 31, no. 1, February 1993) 

For H > 0 , express the larger root of x2 - Lnx+ (-!)" -0 in terms of a, the larger root of 
x2-x-\(-l)n\=0. 

Solution by F. J. Flanigan, San Jose State University, San Jose, CA; Sahib Singh, Clarion 
University of Pennsylvania, Clarion, PA; and A. N. V Woord, Eindhoven University of Tech-
nology, the Netherlands (independently) 

From Ln = a" + J3n and a(5 - - 1 , we have 

x2-Lnx + (-\y = x2-(an+j3n)x + (a/]y=(x-an)(x-j3n)7 

and since a > \f3 \ > 0, the largest root is an. 

Haukkanen notes that the roots of x2 + Lnx + (-1)" = 0 are x = -J3n and x = -an; the roots of 
x2 - SFnx- (-l)n - 0 are x = a" and x = -fin; and the roots of x2 + ^5Fnx - (-1)" = 0 are 
x = ft" and x = -an. 
Also solved by Richard Andre-Jeannin, M. A. Ballieu, Seung-Jin Bang, Brian D. Beasley, 
Paul S. Bruckman, Joseph E. Chance, the Con Amore Problem Group, Elizabeth Desautel & 
Charles K. Cook, Leonard A. G. Dresel, Russell Euler, Pentti Haukkanen, Russell Jay 
Hendel, John Ivie, Ed Kornt-ved, Carl Libis, Don Redmond, H.-J. Seiffert, Lawrence Somer, 
J. Suck, Ralph Thomas, and the proposer. 

Errata: Russell Jay Hendel was inadvertently omitted as a solver for Problems B-718, B-719, 
B-720 and B-722. 
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Raymond E* Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H°483 Proposed by James Nicholas Boots (deceased) & Lawrence Somer, The Catholic 
University of America, Washington, D. C 

Let m > 2 be an integer such that 

Lm = \{mo&m) (1) 

It is well known (see [1], p. 44) that if m is a prime, then (1) holds. It has been proved by H. J. A. 
Duparc [3] that there exist infinitely many composite integers, called Fibonacci pseudoprimes, 
such that (1) holds. It has also been proved in [2] and [4] that every Fibonacci pseudoprime is 
odd. 

(i) Prove that 
Ll^ + L^-e^Oimodm). 

In particular, conclude that if m is prime, then Lm_x = 2 or - 3 (mod m). 

(ii) Prove that 
Fm-2-Lm-lFm-l = l ( m o d / l f ) . 

References 

1. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms a" ±/3n." Ann. 
Math., Second Series 15 (1913):30-70. 

2. A. Di Porto. "Nonexistence of Even Fibonacci Pseudoprimes of the 1st Kind." The 
Fiboncci Quarterly 31.2 (1993): 173-77. 

3. H. J. A. Duparc. "On Almost Primes of the Second Order," pp. 1-13. Amsterdam: 
Rapport ZW, 1955-013, Math. Center, 1955. 

4. D. J. White, J. N. Hunt, & L. A. G. Dresel. "Uniform Huffman Sequences Do Not 
Exist." Bull London Math. Soc. 9 (1977): 193-98. 

H-484 Proposed by J, Rodriguez, Sonora, Mexico 

Find a strictly increasing infinite series of integer numbers such that, for any consecutive three 
of them, the Smarandache Function is neither increasing nor decreasing. 
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*Find the largest strictly increasing series of integer numbers for which the Smarandache 
Function is strictly decreasing. 

H-485 Proposed by Paul S. Bruckman, Everett, WA 

If x is an unspecified large positive real number, obtain an asymptotic evaluation for the sum 
S(x), where 

s(*) = Z(-i)Z(p); (i) 
p<x 

here, the p's are prime and Z(p) is the Fibonacci entry-point of/? (the smallest positive n such that 

D I S -

SOLUTIONS 

Sum ProbSem 
H-469 Proposed by H.-J. Seiffert, Berlin, Germany 

(Vol 30, no. 3, August 1992) 

Define the Fibonacci polynomials by 
F0(x) = 0, F1(x) = l, Fn(x) = xFn_l(x) + Fn_2(xl forn>2. 

Show that for all positive integers n and all positive reals x: 
Jc7T 

1 v 2 + 4 2 " - 2 C 0 S o 7 
1 _ x + 4 V / i\k+n+i 2 n - l E,„_,(x) 2 n - l S 

2/1-1 

(b) 1 =x(x2+4)2g (-1)*+" 
^ ( * ) 4n t t J

0 j c 2 + 4 c o s 2 ^ ' 
2/i 

Solution by Paul S. Bruckman, Everett, WA 
From the given recurrence relation and the initial conditions, we readily establish that F„{x) 

is a monic polynomial in x of degree « - 1 . In particular, 

a" -B" 
Fn{x) = ̂ ^ - , (1) 

a- p 
where 

a = a ( x ) = 4 ( x W x 2 + 4 ) , /? = /?(*) = | ( x - V x 2 +4) . (2) 

If we make the substitution 
x = 2sinh<9, (3) 

we obtain a = e0, fi = -e 6\ 2cosh 6 - Vx2 + 4. This leads to the alternative formulation: 

/^ •W = ̂ z 2 » : (4) 
cosh 0 
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^, ( * ) = 
sinh 2n6 

cosh0 (5) 

Proof of Part (a): We readily find the zeros of F2n_l(x) from (4) {In-2 in number); we 
shall suppose that n > 1 initially. 

Denoting these by xk, we obtain: 

^ = ^ or ~yk =yk> w h e r e ^ = 2 s i n h — — = 2ismt//k9 2 ( 2 « - l ) 

and ^ = 
(2£ - l ) ; r 
2 ( 2 w - l ) s 

(6) 
£ = 1,2,...,/?-!. 

Note that the y/^'s are distinct and 0 < ^ < y ;r for each &; thus, the x^'s are distinct. Therefore, 
the xk's are simple poles of the function l/F2n_l(x). By the residue theory, we may find 
constants Ak such that 

k=1\x-yk x + yk 

In fact, the Ak's are determined from the following: 

Ak = lim *-yk 

^ » ^ » - i ( x ) 

(7) 

(8) 

Then, applying L'Hopital's Rule, 

J__d_ 
Ak dx 

J^ - iO) ; = Fin-i(yk)-

Now dx I d9 = 2 cosh #, which implies that d61 dx = ycosh#. Hence, by (4), we obtain: 

F2n-\(x) = y(cosh6T 3 [(2»- l)cosh(9sinh(2«-l)(9-sinh 6>cosh(2»- 1)0]. 

Then sirih(2n-\)iif/k = /'sin(#--*•)# = - / ( - l ) * , and cosh(2n-l)iy/k = co^/c - ^K = 0. Thus, 

^ViCVt) = " ' ( - I ) * ( 2 " - 0 / 2 c o s - 2 ^ , and Ak = ̂ ^ - c o s 2 y/,. 
2n-l 

Then, using (7), we obtain: 

_2i "-' 
l / ^ - i W = " r X ( - l ) * c o s V * [ ( * - . ) / t ) " 1 - ( * + .y*)"1] 

?7 "~1 

2/ Z(-D* 2 « - l 
2 4/ sin ^ 

cos ^ . - ^ 
8 ^ ( - l ^ c o s V i t S i n ^ . 

k=\ xz +4sin2 y/k 2n-\k=x x2+4$m2y/k 

Substituting n - k for k yields: 
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2n-l ^ xz+4cos <pk 2n-\ 

Now, substituting 2n -1 - k for k yields: 

,/F (Y,- 8 V(-l)^+1sin2^cos^, 
2n-l £n x^+4cos <pk 

By addition, we obtain: 

2/2-1 j^J x 2 + 4 c o s (pk 

We may also include the term for k - 0 in the sum indicated in (9), since this term vanishes. 
Note that we have the following series manipulation: 

i / 7 - / \ /o ix-i2^2 / ixit+w+i *2 + 4 - x 2 - 4 c o s 2 c ^ l/F2„.1(x) = (2/i-l) SC"1) ° o s ^ — ^ - , 
k=o * +4 cos ^ 

or 

i /^.W = f ± T 2 I ( - i ) M ^ - ^ — + | = ^ ^ , do) 
2n-l £?0 xz+4cos<pk 2n-\ 

where 
5„= 2 | ; 2 ( - i )*cos^ . ( i i) 

A:=0 

Comparing (10) with the desired answer to part (a), we see that it only remains to show that 
Sn = 0. This is readily determined as follows: 

2n-2 

Sn = Re J ] (" 1)* expOl/r / {In -1)) 
&=0 

^Rc M-expQWQjf-l))2"-1 L R J l + exp(/>) , = Q 
\ 2 « - l 

1 + exp(/7r / (2« -1)) J """ [ 1 + exp(/> / (2« -1)) 

Thus, part (a) is proved for n > 1. Also, we see that the indicated formula gives the correct 
expression for n = 1. This completes the proof of part (a). 

Proof of Part (b): We suppose n>0. From (5), we find that F2n{x) has 2n-l simple 
zeros, given by z0 - 0, zk or - zk — zk, where zk -2 sinh( kin 12ri) - 2i sinh E>k, and %k = kn /2n, 
£ = 1, 2, . . . , w - 1 . As before, we find that 

\IF2n(x) = BJx + YJ 
k=\ 

where 
x-zk 

- ^ - + - ^ - 1 (12) 
V X Zk X + Zk J 

Bk=Km-—\ = \IF{n{zk), k = 0,l,...,n-l. (13) 
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We find that F{n(x) = j(cosh<9)~3[2ncosh6cosh2«0-sinh 0sinh2w0], using (5). Then 
cosh2/«£fc =cosA7r = (-l)* and sinh2/w^ =/sinA^ = 0; hence, F{n(zk) -n{-\)k cos"2 <^, and 
5^ = -±(-1)* cos2 ^ (note that B0 = 1/w). Then 

1 I""1 
1/F2ll(x) = — + - X ( - l ) " c o s 2 ^ [ ( x - 2 / S i n ^ ) - 1 + ( x + 2 / s i n ^ r 1 ] 

/?x n k=l 

= ± + 2 x g ( - l ) * c o s 2 ^ 
«x w fc=1 x + 4 sin %k 

Replacing khyn-k yields: 

i/F2.(x)=J-+^g(-irt
 2

si"2^2, 
wx w jri x +4cos ^ 

Now, replacing kby 2n-k also yields: 
2w-i ™ 2 

1 / 4 W - + - Z(-ir 2
si" ** 

Then, adding the last two expressions, we obtain: 

2 2x 2^LT 2x 2/F2n(x) = — + —'£Ul x~\ 
nx n 

where 
\k+n 

k=0 

uk=(-iy 
sin2 gk 

x + 4 cos %k 

Thus, we find that 

4wj^0 x 2 + 4 c o s 2 ^ 4/? ^ 0 4n 
where 

2/7-1 

^ = ( - l ) / : + " ( x 2 + 4 c o s 2 ^ / 2 ^ ) - 1 , and r f l = ^ H ) * . 

Clearly, Tn-0. Therefore, the last result reduces to the expression given in part (b). Q.E.D. 

Also solved by Hans Kappus and the proposer. 

Characteristically Common 

H-470 Proposed by Paul S. Bruckman, Everett, WA 
(Vol 30, no. 3, August 1992) 

Please see the issue of The Fibonacci Quarterly shown above for a complete presentation of 
this lengthy problem proposal. 
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Solution by the proposer 
Proof of Part (A): We begin with the definition of pr(z), namely, pr(z) =\zlr - Ux

r)\, where 
Ir is the rxr identity matrix. Thus, 

z-a0 
-1 
0 

6 
0 

-a , 
z 

-1 

6 
0 

- a 2 •• 
0 •• 
z 

6 •• 
o •• 

• ~ar 

0 
0 

6 
z 

r-\ 

PrW = 

Expanding along the last column, we obtain: pr(z) = (-l)r ar_xAr_x(z) + zpr_x(z), where Ar_x{z) is 
the determinant of the ( r - l ) x ( r - l ) matrix whose elements atj are defined by: a2J = zSl+x 7 -
^ •; thus, this matrix is upper triangular, and so Ar_x(x) - (-l)r_1, the product of the diagonal 
entries. Hence, pr(z) = zpr_x(z)-ar_Y. We note that px(z) = z-aQ; thus, p2(z) -z(z-aQ)-ax -
z2-a0z-al; p3(z) = z(z2 -a0z-
have: 

•al)-a2=z -a0z -axz-a2\ and we see, in general, that we 

Pr(z) = Gr(z). D (*) 

Proof of Part (C): We suppose r>\. Clearly, the desired relation is valid for n = 1. 
Suppose it is valid for some value of n > 1. Then (U^fH^ = U[r){U[r))"'xH[r) or, by the 
inductive hypothesis: 

{U\r))"H[r) = U[r)H^ (for this special value of n). (6) 

Premultiplication of the j * column of H(p by the /'th row of U\r) replaces H{£r_U] by H%> n+r-i+1, jf 

which is clear, using (5), if / > 1; however, this is also true for / = 1, since H^r_x is then trans 
formed to Hr

kJ0akH^r_x_kj7 which is equal to H^r •, by the recurrence Gr(E)(H^j) = 0. Thus, 
we see that U\r)H{

n
r) = #£>; it follows from (6) that (U[r))nHx

{r) = H{
n% which is the statement 

of part (C) for n +1. The result then follows by induction. • 

The proof of part (B) will appear in the May 1994 issue of this Quarterly. 
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