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p-ADIC CONGRUENCES FOR GENERALIZED
FIBONACCI SEQUENCES

Paul Thomas Young
Department of Mathematics, University of Charleston, Charleston, SC 29424
(Submitted November 1991)

1. STATEMENT OF RESULTS

Let A, 4 €Z and define a sequence of integers {y,},s, by the binary linear recurrence
70=0,7,=1 and y,, =y, +uy,, for n>0. (1.1)
It is well known [9] that the polynomial P(¢) = 1—Af — ut* has the property that

PO =Yy (1.2)
n=1

is the ordinary formal power series generating function for the sequence {y ,.,},so (cf. [12]. Fur-
thermore, it is easy to see [1] that when the discriminant A = A% + 44 of P(¢) is nonnegative and
A #0, the ratios 7 ,,, /7, converge (in the usual archimedean metric on R) to a reciprocal root «
of P(¢). In this article we show that ratios of these y, also exhibit rapid convergence properties
relating to P(¢) in the p-adic metrics on Q. Precisely, we prove that for all primes p and all posi-
tive integers m the ratios Y / Y -t CONVErge p-adically in Z; this is shown via congruences
that extend those predicted by the theory of formal group laws (cf. [2], [7], [10]) or the theory of
p-adic hypergeometric functions (cf. [13]). When p does not divide y,,A, these ratios converge
to the quadratic character of A modulo p; otherwise, the limit is p or zero. Moreover, when
p>3 and p divides A, one obtains a supercongruence (cf. [2], [5], and eqgs. (1.6), (3.8) below).
These results are then used to give formal-group-law interpretations of some generalized Lucas
sequences {1,}={y,,/7,}, and of the sequence {7} = {F;, /(5F,)} (where {F,} is the familiar
Fibonacci sequence associated to A = g =1) which has been studied in [3]. The results are as
follows.

Theorem 1: (i) If p is a prime not dividing y , A, then for all » € Z* we have

T (Alp) (mod p'2). (1.3)

s

(i) Ifp divides y, A, then for all » €Z* such that Vot 0 we have
Y

™~ I (mod p'Z), (1.4)
mpril
where L = 0 or L = p according to whether or not p divides x.

(iii) The congruence (1.4) holds modulo p"*'Z if p>2 and p divides y, but not A; or if
(A|p) =0 and either p>3 orp=3andr>1.
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p-ADIC CONGRUENCES FOR GENERALIZED FIBONACCI SEQUENCES

Corollary 1: (i) For all primes p and all m,r e Z* we have

Yy =(AID)Y 1 (mod p'2). (1.5)
(ii) If p divides y,, but not A, then for all » eZ" we have
Y g = LY . (mod p¥7), (1.6)

where L =0 or L = p according to whether or not p divides x.

Theorem 2: Suppose A=1and p#—1, and forn>0set A, =7,,/7,. Then the formal power
series

€(t)=i/1n£ (1.7)
n=1 n

is the logarithm of a one-dimensional formal group law over Z which is strictly isomorphic over
Z to the formal multiplicative group law G, (X, V)= X+ Y + X7.

Theorem 3: Let {F,} denote the usual Fibonacci sequence, i.e., the solution to (1.1) in the case
A=p=1,and forn>0set 7, = F;, /(5F,). Then the formal power series

(=31 (18)
n=1 n

is the logarithm of a one-dimensional formal group law over Z which is strictly isomorphic over
Z to the formal multiplicative group law G,,(X, V)= X +Y + XY.

2. PRELIMINARY RESULTS

The congruences (1.5) of Corollary 1(i) are typical of those obtained from the theory of
formal group laws; in fact (1.5) implies (via [10], Theorem A.8) that the formal differential
w = P(t)™" dt is the canonical invariant differential on a formal group law over the ring Z » of p-
adic integers when (A|p) # 0 (cf. egs. (3.6), (3.7) below). Hazewinkel's book [7] is an excellent
reference on formal group laws; the aspects of the theory most relevant to the present article are
also summarized nicely in ([2], pp. 143-45; [5], §2.3; [10], Appendix). Our proof of Theorem 1,
however, uses only the elementary theory of finite and p-adic fields; for an exposition of these
topics, the reader is referred to [8].

For p a prime number, Z,,Q,,, and [Fp,, denote the ring of p-adic integers, the field of p-adic
numbers, and the finite field of p? elements, respectively. We define K = Q p(JZ ) if p does not
divide A and K =Q p(«/K , \/;) if p divides A. We let O, denote the ring of algebraic integers
of K, N . its unique maximal ideal, and K = O, /M, the residue-class field of K; for x € O,
X denotes its image in K. Let the positive integer d be defined so that K = (de; then, if x €Oy,
the Teichmiiller representative X of x is the unique element of £, satisfying ¥ = x (mod I ;)

A d A . . A . . . . . ~ . d"
and X¥ =x. Itis easily seen that X is given by the p-adic limit ¥ = lim,_,_ x? -

1994] 3
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If p is an odd prime and D is an integer, then \/BEZP if (D|p)=1 and VD ¢Z, if
(D|p)=-1; here (:|p) denotes the Legendre symbol. For ease of notation, we extend the
definition of (A|p) to the case p =2 by

1, if A=1(mod8),
(AR)=

-1, if A=5(mod8), 2.1
., if A=0(mod4).

This is analogous to the Legendre symbol in that JA e, if (A2)=1and JA ¢ Z, if (AR)=-1
If A#0thenP(¢)=(1-az)(1- f), where a, B are distinct elements of O, . It is well
known, and easily computed from (1.2), that in this case we have the Binet form

an _ﬂn
== F 22
I g (22)
for y,. It follows that, for all primes p and all positive integers m, r such that Vot ® 0, we have
Voo mp" _ e’ - -
TP @, 23)
}/mpr’l a™ - ﬁmp

where @ ,(X,Y) = XP 4y XP2Y 4o 4 XYP72 + Y77 s the (two-variable) p™ cyclotomic poly-
nomial.

Considering P(7) R[], if A>0 then a, B €R, and if 1 #0 then a # —f3; therefore, y, # 0
forallnif A>0 and A #0. However, when A <0 one can have y, = 0 in certain cases. We now
show that this can only occur when P(f) is equal to 1—f+1%,1-2¢+2¢%, 1-3t+3t%, or one of

these polynomials with ¢ replaced by 47 for some integer k. We state Proposition 1 explicitly as
follows.

Proposition 1: Suppose P(t)=1-At—ut* = (1—oa)(1- ft) with A, g €Z, and let n €Z*. Then
the following are equivalent:

(A) " =p".
(B) One of the following holds:
() A=0

(ii) nisevenand A =0,
(ii)) nis divisible by 3, and 1 =k, u= —k* for some k €7,
(iv) nis divisible by 4, and A =2k, u=-2k* for some k €Z;
(v) nisdivisible by 6, and A = 3k, u=-3k* for some k €Z.
Proof: Suppose a”" =p". Ifn=1,then a =/, s0 A=(a—f)* =0, asin (i). Now suppose
a # f3; therefore, a, 3, and A are all nonzero, so " = " implies (/)" = 1.
Choose m to be the minimal positive integer such that (/)" =1;then m>1and a/f=¢,,

is a primitive m™ root of unity. It follows that o" = " if and only if n is a multiple of m. If
m=2, then a® = %, so a =-f3, whence 1=« + =0, as in (ii).

4 [FEB.
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We now suppose m > 2; then £, does not lie in Q. The minimal polynomial of £,, over Q is
the m™ cyclotomic polynomial ® »(X, 1), which is irreducible of degree ¢(m). [Here ¢(m)
denotes Euler's totient.] But {,, = a/ f3 lies in the quadratic field QWA ), so the minimal polyno-
mial of ,, has degree 2 over Q. Thus, ¢(m) = 2, which occurs precisely when m =3, 4, or 6.

For m = 3 we have @,(X,)=X*+X+land ¢, =a/f= (—1ir\/j3—)/2, so arg(a/f) =
+27/3. Since a and /3 are complex conjugates, arg(a/ ) = 2arg(a), whence arg(e) =+7/3 or
127 /3. Therefore, a =k-(1 i\/z) /2 for some real scalar k, whence P() =1—- kt +k*t*. Since
P(t) €Z[t], we must have k €Z, precisely as in (iii). In this case, A = —3k>.

Form =4, we have @,(X,1)=X*+1and ¢, :a/ﬂzi\/——l, so arg(er/ ) ==xx /2. Thus,
arg(@)=x7/4 or £37/4, so a= k-(liJ——l) for some real scalar k. Therefore, P(¢)=1-
2kt +2k*t?, and since P(f) €Z[t], we must have k €Z, precisely as in (iv). In this case,
A=-4k>.

For m = 6, we have ®,(X,1)=X*-X+land ¢, = a/ﬂz(li\/jg)/Z, so arg(a/p) =
+7/3. Thus, arg(a)=tx/60r +57/6, or a = k-(3i«/3)/2 for some real scalar . There-
fore, P(¢) =1-3kt +3k*t*, and since P(¢) €Z[t], we must have k €Z, precisely as in (v). In this
case, A = —3k?.

We have shown that (A) implies (B). Using the above calculations, we find that (B) implies
(A) by direct computation. This concludes the proof.

When y, #0, it is also well known that &,,(n) = 4,,,/ 4,, is an integer for all n €Z". In fact,
it is easily seen from the Binet form (2.2) that ¢, (n) satisfies the recursion (1.1) with A and u
replaced by A, =a”+f" and (=1)""' 4" =-a”B", respectively, and the parameters A, =
Ay +247 -, and (=1)""" i clearly lie in Z. Our method will be to use (2.3) to deduce integral
congruences for the integers Y / Y from the following p-adic congruences for powers of «
and f.

Proposition 2: Suppose P(t)=1-At—ut* = (1-at)(1- fr) with A, u e Z.
(i) If (A|p)=1, then @™ =™ (mod p'Z,);
(i) If (A|p) =1, then ™ = ™ (mod p’O,);
(iii)) If p>2 and (A|p) =0, then a™ =a™  =B™ =™ (mod p’ 2D ,);
(iv) T (AR)=0, then @ =™ " (mod2"O,) and & = o™ (mod2 'O ).

Proof: If x,y,p’ €O, andx =y (mod p*O ) write x = y+z with z € p°O ;; then
p-1
xP = yP +(;(i’)yf’"‘sz+zP (2.4)

and hence x? = y? (mod p**'O ) if sp > s+1. Thus, we need only prove these results in the case
r =1 and in addition that a*” = a*" (mod 29 ) when (AR2) = 0; we may also assume m =1 with
no loss of generality.

If (Alp)=1, thend=1,K=Q,, 0, =7,, M =pZ,, and K =F,. The statement a” = a
(mod pZ ) is Fermat's little theorem, which proves (i) in the case r = 1.

1994] 5
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If (A|p) = -1, thend =2 and a, # are conjugates in the unramified extension K of Q, (their
minimal polynomial over Q, is 12+ Au't—u"). We note that p does not divide u, since if p
divides u then A= A* (mod4pZ) and then (A|p)=1. Therefore, @, B are units in O, (since
afi=-u), and @, B are conjugates in K over [, (their minimal polynomial being R T -

7). Since K = [sz and x > x? is the nontrivial automorphism of [sz over [, we have a” = 8
and 7 =@; therefore, a” = fand ¥ = amodulo PN ,. Since K is unramified, we have I, =
POy, yielding the » = 1 case of (ii).

If (A|p) = 0, then ¢ divides A = (a — f)*, where g =p if p>2 and g = 4 if p = 2. Therefore,
a = f (mod g"*9 ), giving the middle congruence of (iii) and the first part of (iv) in the case
r=1 Asin (i) and (ii) above, we have a” = aor f(mod I ) according to whether d =1 or
d =2, which completes (iii) for = 1, since I, = p"*O,. Finally, if (A]2) =0, then 2 divides
A, and thus @, B are roots of > —x'; this shows that K = I, and so a, f=0 orl(mod
229 ,.). Writing a=y+z with 22", and y=0 or 1, we use (2.4) to check that
a’ ey+29, and a* ey +49D,, proving the r = 2 case of the second statement of (iv).

Remarks: This proposition and its proof remain valid for 4, u lying in Z, (not just in Z) pro-
vided one replaces the Legendre symbol with the Hilbert symbol. Furthermore, this proposition
implies that, for each m € Z" and each prime p, the sequence {a”’pdr} is a p-adically Cauchy
sequence in £ ; the limit is the Teichmiiller representative a”.

3. DEMONSTRATION OF THEOREMS
Proof of Theorem 1: From Proposition 2(i), (ii), we have
™, if (Alp) =1,
" = (mod "), 3.1
r-1
B, it (Alp)=-1,

and similarly for ™. Since ®,eZ[X,Y]and @ ,(X,Y) =D, (¥, X), we have, in either case,
4

}/ mp — (Dp(aMPf— ’ﬂmpr* )E(Dp(ampr”Bmpr)E.“E q)p(&m’ﬁm) (modeQK) (32)

mpr—l

provided Yt 0. Evaluating lim, , o™ i using (3.1), we find that

e _[a", iT(AID)=1,
“ ‘{ﬂ’", if (Alp)=-1 @-3)

If p does not divide y ,,A = (a - f)(a” - B™), then ™ # ,@’”; therefore, Yt * 0 for all ». Thus,

we have

—‘—gm:(Arp). (3.4)

6 [FEB.
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Together with (3.2) this shows that Y / Y ! = (Alp) (mod p"O ;); since both sides of this
congruence are integers, the congruence must hold modulo p"Z, completing the proof of (i).

As in (3.2), one can see from Proposition 2 that, provided Y is always nonzero, one has
[ (a"’ ,B ) as the p-adic limit of Y mp L Y > and thus determlne the value L as stated in part
(i1) of the theorem. One may dlscover the stronger congruences of (iii) [which will be useful in
the proofs of Corollary 1(ii) and Theorem 3], however, by making a simple algebraic
manipulation.

Suppose that p divides y ,,A; then write x, = o Y, ,B'"p ,Z, -y,, and
}/"’Pr :er_er :(yr+zr)p—yr _pyr (p)yp -k _k-1 p 1 (35)
}/mpr_l X =Yy Z,

If p divides ¥ ,, = (a” — ™)/ (a - B) but not A = (& — f§)*, then a” = " (mod p . ) therefore,
a” :,B'”. Since {a”, 7} ={a, B} and @” = ", we have @" = " <F,; thus, &" ,B'” €z,
Note that a, ,B # 0 since p does not divide A ; hence, p does not divide x=-af3, and by F ermat's
little theorem, ,B'"(P"l)—l From Proposition 2(i), (ii), we have ™ =" :ﬁ'"zﬁ"’Pr_'
(mod p’QK) Therefore, the term py?~' in (3.5) is congruent to p modulo p"*'O . The final
term z”~! is zero modulo p"""V O, , which shows that Y mpr /ymp,_, = p (mod p" O ;); since both
sides are integers, the congruence holds modulo p"Z, as asserted in (ii). In fact, since
r(p—1)=r+1for p>2andr>0, we see that the congruence (1.3) holds modulo p"™'Z when
p>2 and p divides y,, but not A.

The case (A|p) =0, A= 0 is similar; using Proposition 2(iii) we find that for p >2 the term
py?~"in (3.5) is congruent to p/}”'(p‘l) modulo p"*"2O ., all terms within the summation in (3.5)
are zero modulo p ">, and the final term z7™' is zero modulo p" »*VO . Thus, for
p>2, we have Y oyt v, S = = L (mod p" ) and, therefore, modulo p"Z. In addition, since
r-1/2)(p-D=r +1/2 forp >3 or for p=3andr>1, in these cases the congruence (1.4)
holds modulo p"*'Z, since it holds modulo p"*"*$, while both sides lie in Z. If (A2) =0, we
find from Proposition 2(iv) that 20" =L (mod2" D) and z, =0(mod2" ), giving the
result in that case.

Finally, if A =0, then P(¢) = (1- az)* for some a €Z, and a quick computation from (1.2)
yields y, =na"'. If A#0, then a # 0; therefore, we have Yorl?V, - :pa""’r—](”_l) eZ. As
in Proposition 2(i), if p does not divide « this lies in p+ p’”Z whereas if @ e pZ, it is clearly
congruent to zero modulo p""'Z.

Proof of Corollary 1: We first treat the case where A >0 and A #0 so that y, # 0 for all n.
If p does not divide y,,A, part (i) follows directly from (1.4) upon multiplication by y ey From
Theorem 1(ii), we find by induction on 7 that Y mpr = =0 (mod p"*'Z) if p divides ¥, and Y mp =0
(mod p"Z) if p divides A. It then follows that both sides of (1.5) are zero modulo prZ if p
divides y , A

1994] 7
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For (ii), we recall from Theorem 1(iii) that the congruence (1.4) holds modulo p""'Z when
p>3 and p divides A. In this case or in the case where p divides y,,, we obtain (ii) upon multi-
plication of (1.4) by Y

To extend these results to arbitrary Aand A, we observe that if A'=A+p" and y! is
defined by 4 =0,71=1, and y,,, =AY, +uy, , then y, =y, (mod p"7) for all n. Tt is clear
that we may choose N large enough so that N >2r, A’ = (1) +4u>0, and A’ #0. Since A’=
A (mod pZ), the results for any A, A follow from the results for A’, 1.

Remarks: One can easily determine from [4] with the aid of §5.8 in [7] that @ = P(t)™" d! is the
canonical invariant differential on the formal group law F(X,Y) over Z given by the rational
function

F(X,Y)=(X+Y-AXY)/(1+ uXY) (3.6)
(equivalently, X, v, 7" /n is the logarithm of this formal group law). From this, it follows ([2];
[10], Theorem A.8) that there exist congruences of the type

Yy = H}/mp,_1 (modp'Z,) 3.7

for some H e€Z,, when p does not divide y , [which is equivalent, via Corollary 1(i), to the con-
dition (A|p) #0]. What is surprising about Corollary 1 is that the congruences obtained also
hold, and are in fact stronger, in the cases not predicted by the theory of formal group laws [i.e.,
when (A|p) =0]. Other congruences of the type

€y = Hcmp,;l (mod p“Z ) (3.8)

with a 22 (called "supercongruences") have also been observed involving binomial coefficients
[6] and the Apéry numbers [2], and have been conjectured in [11].

Proof of Theorem 2: The statement that the formal power series (1.7) is the logarithm of a
formal group law over Z which is strictly isomorphic over Z to G, is equivalent to requiring that
A, €Z,4, =1, and for all primes p and all m,r € Z* the congruences

lmp, = ﬂmp,,] (mod p"7) 3.9

(cf. [2], pp. 143-45; [10], Theorem A.9). Assuming A =1and g # —1, Proposition 1 tells us that
¥ » 1s never zero, so A, €Z for n>0 and, from (2.3), we have A, ="+ ". Wehave A =4, =1
and A= A" +4u is odd, so it follows from Proposition 2(i), (ii), (iii), that the congruences (3.9)
hold modulo p""29, , but both sides are integers, so the theorem follows.

Proof of Theorem 3: From [3] we know that 7, €Z for all n, and it is clear that 7, =1.
Therefore, as in Theorem 2, we must show that for all primes p and all m, r € Z*, we have

Tmp, = Tmp’“' (mod p"7) (3.10)
From the definition of 7,, one has
1
7= 95" ), G.1)
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where a, 8 are the reciprocal roots of the polynomial P(f)=1-7~-1* associated to A= u=1.
Since A =5, for all primes p # 5 these congruences follow directly from Proposition 2(i), (i), as
in (3.2). To complete the proof, we take advantage of the fact that

r 5" r+l1
72— =5(mod5 ™ 2), (3.12)
FmSV“]
which is a consequence of Theorem 1(iii). Dividing by 5, we obtain
F ,
L1 = o= =1(modS'Z), (3.13)

ms"!

which proves the congruence (3.10) in the case p = 5, completing the proof.

Remark: The result (3.13) is not best possible; in fact, the congruence 7, =1 (mod 5% 7) has
been shown in ([3], Lemma 2).

4. CONCLUDING REMARKS

In [3] it is noted that for k € Z" the sequences {T(k,n)},., given by T(k,n)=F,,/(F,F,)
are always integral in the three special cases k=1 [I(1,n)=1 for all n], k=2 [T(2,n) = L,, the
n™ Lucas number], and k=5 [T(5,n) = 7.]. Our Theorem 2 and Theorem 3 explain that all three
of these sequences occur as the expansion coefficients for the logarithms of formal group laws
over Z which are strictly isomorphic over Z to the same formal group law G,,.

For p#2 one may also approach these p-adic properties of the sequence {y,} via its
combinatorial form

e AN
RS (i e @1
k=0
[9], which may be expressed in terms of hypergeometric functions as

-n/2, (1-n)/2
Fun =2 o =2, a2 (4.2)
-n
We sketch the method here: Taking n+1=mp" and letting r —> oo, the parameters —n/2,
(1-n)/2, and —n converge p-adically to 1/2, 1, and 1, respectively. Using a suitable modification
of the argument in ([13], Theorem 4.1) one can show that when p does not divide y ,, the p-adic
limit of Y / Y is given by
}/ r —l', 1 —
lim —F—= | 2" (-4ul 2)|, (43)
r—o }/pr~| 1
where (as in the notation of [13]) the symbol , %, (x) denotes the p-adic "analytic continuation" of
L Fi(x)/ ,Fi(x?). Since ,F;(1/2,1;1;x) = Fy(1/2;;x)= (1~ x)72, the same value for the p-adic
limit in (4.3) is also obtained from lim,_, (cp, /cp,_]), where
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But clearly lim, (¢ /¢ ) =lim, APTHD2 _ APD2 hich is seen to be precisely (A|p)

from Euler's criterion
(Alp) = AP (mod pZ) (4.5)

and the fact that (£I)=+1. The point is that the sequences {y,,,} and {A"*} should have the
same p-adic congruence behavior because they arise from hypergeometric functions that are p-
adically proximate (when n+1=mp") So, if one is willing to appeal to the p-adic analytic prop-
erties of the combinatorial form (4.1), one may obtain a fair explanation for the occurrence of
(A|p) in Theorem 1(i) when (A|p) #0. But again, Theorem 1(ii) shows that the p-adic limit in
(4.3) even exists when (A|p) =0 [which is equivalent to p dividing y ,, by Corollary 1(1)], a fact
that is not predicted by the theory of p-adic hypergeometric functions (cf. [13], Theorem 2.3).
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ON A CONJECTURE OF PIERO FILIPPONI

Richard André-Jeannin

IUT GEA, Route de Romain, 54400 Longwy, France
(Submitted February 1992)

1. INTRODUCTION
Let us define a generalized Lucas sequence {H,(m)} by
H,(m)=H, ,(m)+mH,_,(m), Hy(m)=2, H(m)=1, M

where m >1 is a natural number.
In a communication that appeared in a recent issue of this journal [1], P. Filipponi showed
that

H .(p)=1 (mod p*) )
where p is an odd prime, and he proposed also the following Conjecture:
H (p-1)=1 (mod p*) 3

where p > 5 is a prime number.
Following a method introduced by Lucas ([2], p. 209; [3]), we shall prove here generaliza-
tions of (2) and (3), namely,

Theorem 1: If p >1 is a natural number, and if m=0 (mod p), then

H . (m)=1 (mod ph, s>0.

Theorem 2: If p >5 is a prime number and if m = —1 (mod p), then

H (m)=1 (mod p'h, s>0.

2. PRELIMINARIES

Let us recall Waring's formula

[p/2]
XP+y? =(x+y)P+p Y. (-D*C, o) (x+ )77,
k=1

where p is a natural integer, and

Cox :_LI;(P,;"):%(P;’_‘I”), forl<k <[p/2]
P

In our proofs, we shall need the following three lemmas.

Lemma 1: (i) If p is a natural integer, then p,C,, , is integral;

(i) Ifpis a prime, then C, , is integral.
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Proof: (i) The result follows from the relation

p—k p—k-1
(T

()=o),

and since ged(k, p— k) =1, it is clear that & divides (P k= 1)

(i) From the relation

Lemma 2: 1f p = +1 (mod 6) is a natural number, then Y17/21(~1)* Cop =

—-in/3

Proof: Letusput x=e™andy =e in Waring's formula to get

e
2cospr/3=1+p Yy (-)°C,,,

k=1

and the conclusion follows from this, since 2 cos pzr/3 =1, when p = +1(mod 6).

Lemma 3: 1f p is an odd integer, then (/p— l)ps =-1 (mod p**"), £>0.

Proof: The statement clearly holds for s = 0. Supposing that ({p—1)” . Ap**! where
A is an integer, one can write

(Up—1)"" = (~1+ 4p*)”

:(—I)P +({))(_l)p lAps+1+( )(—1)])—21‘12}?2”2+--'+Appp(s+1) =1 (modp”z)
since p is odd and ({’) =p.

Let us return to the recurrence relation (1). We have H,(m)=a), + 3}, where «,, and 3,
are the real numbers such that «,, + 5, =1and «, 5, =-m. Following Lucas ([2], p. 212), we
replace x (resp. y) by ap (resp. A7) in Waring's formula to get

m

e (m) = HY,(m) + p § e, , m'® HE 2 (m), @
k=1
where p is a natural number.

3. PROOF OF THEOREM 1

The case p = 1 needs no comment, since H, =1, so we suppose in the sequel that p > 2, and
thus that [p/2]> 1.
Let us write H,, instead of H,(m) in (4), to get

H o =H +(- D pm? H?; 24 Z( D pC, m' H 2% )
k=2
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since C,, ; =1. Notice that the last sum is empty for p =2 and p = 3 and that pC .k 18 an integer,
by Lemma 1(i).

We proceed by induction upon s. The statement clearly holds for s = 0 since H, =1.
Now, let us suppose that

H, =1 (mod ™.
By using an argument similar to the one used in Lemma 3, one can easily deduce from this that
H’, =1 (mod . (6)

Next we have, for every s >0 and every p>2, p* >2° > s+1, and thus
s+2
).

(a) pm* =0 (mod p
On the other hand we have, for every k > 2, kp* >22° =2°*' > 542, and thus
() m®’ =0 (mod p**?).
Now, by using (6), (a), and (b) in (5), we have
Hp.m =1 (mod p**?).

This concludes the proof of Theorem 1.

4. PROOF OF THEOREM 2

We suppose now that p>5 is a prime number, and thus that p =+1(mod6). Let us put
m={p—1in (4) and write H, instead of H,({p—1) to obtain

[p/2] .
H..=H’ +p kz_l Cpx(lp=1)" HEE. (7
We proceed by induction on s. The statement clearly holds for s = 0, since H; =1. Suppos-
ing that H , =1 (mod p**'), we obtain
H;’,_” =1 (mod p**), for 1<k <[p/2], )
and
H?, =1 (mod ). )

On the other hand, we have, by Lemma 3,

(p=D" =(-1)* (modp™). (10)
By Lemma 1(ii), C,, , is an integer, and by (8), (10), and Lemma 2, we obtain

[p/2]

s [p/2] ]
2 Coiltp=D" HI? = 3.C, , (-)" =0 (mod p™). (11)
k=1 k=1

Now, by (7), (9), and (11), it is clear thath,+l =1 (mod p**?). This concludes the proof of

Theorem 2.
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A well-known theorem of elementary number theory states:
There exist infinitely many primes p such that p =1 (mod 4). 1))

(See [1], p. 224)

One can prove (I) constructively by generating an infinite sequence {p,} of distinct primes
such that p, =1 (mod 4) for all n>1. To obtain the sequence {p,}, let {u,} be a sequence of
natural numbers such that:

(@ wu,>1foralln>1

(i) Ifgisprime and gqlu,, then g =1 (mod 4).

(iii) (u,,,u,)=1forallm=n.
If we let p, be the least prime divisor of u,, for all n>1, then the sequence {p,} yields the desired
result.

Let u, =a’ +b* where a,, b, are natural numbers such that (a,,b,) =1and a, # b, (mod 2).

Then the sequence {u,} satisfies (i) and (ii). If (iii) also holds, then {u,} fulfills all our require-
ments.

Customarily, one lets u, = ¢, = 27 4 1, the n™ Fermat number. If n>1, then
§,= (" )1,

where 22" and 1 are relatively prime and of opposite parity. Since it is also true that (¢,,,4,)
=1 for all m # n, we are done.

An alternative procedure utilizes the Fibonacci sequence {F,} or, more precisely, an infinite
subsequence thereof. We need the following properties of Fibonacci numbers:

Fyp = 2+ Fly. ey
(£, ) = Fi y. @
2|F, iff 3|n. 3)

If n>3, then F, > 1 C))

(See [2].)
Suppose we number the primes starting with 5 as follows: ¢, =5,g, =7,9; =11, etc. Let
u,=F, forn=1. Now (1) implies

2 2
F, =F, o+ F}, . foraln>1
Since (4 (¢, ~ 1, (g, +D) =1, (2) implies

(F JACRS IR g %(q"ﬂ)) =h=1
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Since g, >3 and g, is prime by definition, (3) implies 2} F; , so
Fygumn # Fyg, ey (mod2).
Finally, if m #n, then q,, # q,,, so (q,,,q,) =1 Therefore, (2) implies (F , F, )=1.
In summary, an infinitude of primes p such that p =1 (mod 4) can be obtained by considering
the least prime divisors of the various Fibonacci numbers £, where g is prime and g > 5.
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CROSS-JUMP NUMBERS

Kanakku Puly
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(Submitted March 1992)

Consider any n-digit integer expressed in the base 5. Divide it into a right part of » digits and
a left part of n—r digits. To the left part add a number L <b and to the right part add some
R <b. The addition is done modulo b and the "carry-over" is ignored. Transfer the left part to
the right of the right part and we again get an n-digit number. Apply this same process (which we
call "cross-jumping") to the new number. Iterating this several times, we can ask if we get the
original number back, and, if so, what is the least number N of steps required? We prove that

N b
(b, L+R)-(n,r)

where (a, b) denotes the G.C.D. of two numbers a and . We first illustrate this by an example.

Example: We take b=10,n=8,r=2, L =4 R=2. Starting with the number 56240317, the
iteration gives

56240317 26051556 07175426

19562407 58260519 28071758

09195628 11582609 50280711

20091950 01115820 13502801

52200913 22011152 03135022

15522003 54220115 24031354

05155224 17542205 56240317

which gives back the original number in the 20" step.

Let us prove our claimed formula for n. We denote the positions of the » digits from left to
right by 1, 2, .., n, respectively. The positions change as a > a+r — a+2r... for each a<n,
where + is addition modulo n. For repetition of the original number, we should have some £ >0
so that a+kr =a mod n. Clearly then, kK =n/(n,r) is the least such k. The choice of k£ only
ensures that the positions of the original digits are the same after every k steps. Now, for any m <
k =n/(n, k), there is a corresponding a, such that a, +mr =n. We have

a, —>a0+r---—>a0+(m—1)r:n—r£>a0+mr:n£>a0+(m+1)r~~-a0+kr:a0,

where we have written L, R over an arrow to indicate an increase in the value of that digit by Z,
R, etc. Thus, we have an increment of L + R in the value of each digit for every & steps. For
repetition of the original number, this increment should be a multiple of 5 and, therefore, N must
be a multiple of & as well as of kb/(L + R). This gives N=L.C.M. of k and kb/(L + R), i.e.,

N = ___L
(b, L+R)-(n,r)
In our example, N = 20.
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ON SUMS OF RECIPROCALS OF FIBONACCI AND LUCAS NUMBERS

Derek Jennings
University of Southampton, England
(Submitted March 1992)

In this paper we present some remarkable elementary identities for sums of powers of
reciprocals of Fibonacci and Lucas numbers. The Fibonacci numbers are defined for all »> 0 by
the recurrence relation F,,, =F, +F, |, where [ =0 and /; =1. The Lucas numbers L, are
defined for all n>0 by the same recurrence relation, where 7, =2 and L, =1. The general theo-
rems in this paper include as special cases the following results:

5&nn-1)

|

== g (D
nz=:1 Fpg 2 nz'—-l Fiypos
=1 lann-1)

== , @
; LG—l 2 nz=:1 L2n-—1

o0

2

2
IEnl

_J-Z( 1)n+1 4 (3)

o0

Z Z— (4)

2n1

Identity (3) appears on page 98 of [1]. Identity (4) is really just the complementary result of (3).
Identities (1) and (2) are believed to be new. The above four results are just the first cases of the
following theorems.

Theorem 1: Fork=1,2,3, .., we have

1 & m-kYn—k+1)--(n+k—-1)
Zﬁfnk.;l (2k)'nzzl Pzin—Z ‘

Theorem 2: Fork=1,2 3, .., wehave

@ L Qm-k)n—k+)--(ntk-1)
ZJ”‘” (Zk)'Z Ly

2n-1

Theorem 3: Fork=1,2,3, ..., we have

G )'(n-k+D(n-k+2)-- (n+k—1)
k/za%fl 2k~ 1>~Z I

n

Theorem 4: Fork=1,2,3, ..., we have

S| 1 n—k+Dn-k+2)- (n+k—1)
ZL (2k-1>'f§ B,
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Theorems 1 and 2 are corollaries of the followmg Theorem 5. We note that /=~ ﬂ , where
a= “‘F and f=1 ‘/—. So, if we let ¢:=¢” in Theorem 5, then put g = 3, we have Theorem 1.
Slmllarly, setting ¢ =  in Theorem 5 gives Theorem 2.

Theorem 5: For |g|<land k =1,2,3,..., we have

© q(2k+1)(2n—1) 1 Z(n k)(n k+1) (}’l-l-k 1)q2n 1
~ (1_q4n— )2k+1 (2k)1 &= 1- q4" -2

Theorems 3 and 4 are corollaries of the following theorem.

Theorem 6: For |g|<land k=1,2,3,..., we have

2, gt 1 Z(n~k+1)(n—k+2)---(n+k—1)q"
S @k-DIE 1-¢*" '

To derive Theorem 3 from Theorem 6, we let g:=—q. Then gq:=g*, and we set g=f3
where [ = (1——«/5)/ 2. Theorem 4 follows similarly by setting ¢ : = g* then g = /3.
Theorems 5 and 6 are proved in a similar way; therefore, we present only the proof of

Theorem 5.
Proof of Theorem 5: For |q|<land k =1,2,3,..., we have, by the binomial theorem,

(2k+1)(2n-1) w
g k- mm+ D) - (m+2k=1)  4n oy
g 2k+1 Z q Z

a1 (1 Z1 (2K)!
= e mm+1) - (m+2k 1) guiar-12n-
2k)!

o

n=1 m=1

withm:=m—-k

_ i i (m=k)m-k+1)---(m+k-1) g 2m-Dan-D

which, on interchanging the order of summation,

1 Z (m—kYm—k+1)---(m+k~ 1)q2'"‘
@b 1-g""*
This completes the proof of Theorem 5 and, hence, that of Theorems 1 and 2.

In a similar way to Theorems 1-4, we can demonstrate the following results:

3 7 2
ﬂ=1F‘2n 2 n=1 LZn—l

(-1)"™"'n _«\/g = n(n—1) 6
Z 2 E F‘Zzn—l ’ ()

3
n=1 F‘2n

i n _ﬂ °°n(n—l)’ )

and
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> n  S&nn -1)
z——:_zi, @)
n=1F‘24n 6n=1 ]:Zzn

The above results are special cases of the following theorems.

Theorem 7: Fork=0,1,2 3, .. we have

L =Rk s) vk =)
k+/ ZF2k+1 (zk)'z Lgn_l

n=1
where (n—k)Yn—k+1)---(n+k-1) istakento be 1 whenk=0.

Theorem 8: Fork=0,1, 2,3, ..., we have

1 Z( D™n_ 1 i(n—k)(n—k+l)---(n+k—1)
SRRl DN € 5 o B

where (n—k)(n—k +1)--- (n+k—1) is taken to be 1 when k= 0.

Theorem 9: Fork=1,2,3, ..., we have

o =k +1)(n—k+2) - (n+k~1)
Sk—lnz;lj;';nk—(zk_l)'z ]722,1 .

Theorems 7-9 are corollaries of Theorems 10 and 11 below.

Theorem 10: For |g|l<land k=0,1,2,3,..., we have

c ng" D 1 (n-kYn-k+1)---(n+k-1)g*"
Z._; 2k+1 (2k)| z (1 2n 1) 4

where (n—k)(n~k+1)---(n+k—1) is taken to be 1 when £ = 0.

Theorem 11: For |g|<land k=1,2, 3, ..., we have

© 2nk

ng (n—k+D(n—k+2)---(n+k-1)g*"
2 (- k- 1)'Z (1-¢*)"

As with Theorems 5 and 6, the proofs of Theorems 10 and 11 are very similar; thus, we
present only the proof of Theorem 11.

Proof of Theorem 11: For |g|<1and k =1,2,3,..., we have, by the binomial theorem,
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withm:=m-k+1
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& &kt Dm—k+2) - (mtk=1) .
22 @k-1)! ™

which, on interchanging the order of summation and summing ¥, ng*™,

_ 1 i (m—k+1)(m—k+2)---(m+k-1)g*"
2k-Dl5 1-¢*"y* '
This completes the proof of Theorem 11.

Theorem 7 follows by letting q:=q*, then ¢ = 8 in Theorem 10. Theorem 8 follows by
letting g : = —¢, then g = 8 in Theorem 10, and Theorem 9 follows by letting g : = g2, then g =
in Theorem 11.
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Author and Title Index

The AUTHOR, TITLE, KEY-WORD, ELEMENTARY PROBLEMS, and ADVANCED PROBLEMS indices for
the first 30 volumes of The Fibonacci Quarterly have been completed by Dr. Charles K. Cook.
Publication of the completed indices is on a 3.5-inch high density disk. The price for a copyrighted
version of the disk will be $40.00 plus postage for non-subscribers while subscribers to The Fibonacci
Quarterly need only pay $20.00 plus postage. For additional information, or to order a disk copy of the
indices, write to:

PROFESSOR CHARLES K. COOK

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF SOUTH CAROLINA AT SUMTER

1 LOUISE CIRCLE

SUMTER, SC 29150

The indices have been compiled using WORDPERFECT. Should you wish to order a copy of the indices for
another wordprocessor or for a non-compatible IBM machine, please explain your situation to Dr. Cook
when you place your order and he will try to accommodate you. DO NOT SEND YOUR PAYMENT WITH
YOUR ORDER. You will be billed for the indices and postage by Dr. Cook when he sends you the disk. A
star is used in the indices to indicate unsolved problems. Furthermore, Dr. Cook is working on a
SUBJECT index and will also be classifying all articles by use of the AMS Classification Scheme. Those
who purchase the indices will be given one free update of all indices when the SUBJECT index and the AMS
Classification of all articles published in The Fibonacci Quarterly are completed.
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1. GAME THEORY BACKGROUND

While the principal results of this paper seem to us to be of interest in their own right, and
can be understood with no reference to game theory, the problems addressed arose in a game
theory setting, and their solution has important consequences for the analysis of Silverman games.
It seems appropriate therefore to sketch briefly the game theory background. Silverman games
are two-person, zero-sum games in which, roughly speaking, the higher bid wins, unless it is too
much higher than the other, in which case it loses. More precisely, let S, and S}; be sets of posi-
tive real numbers, and 7" and v be parameters with 7>1 and v>0. The sets S; and S;; are the
pure strategy sets for Players I and II, respectively. Each player chooses a number from his
strategy set, and the higher number wins 1, unless it is at least 7 times as large as the other, in
which case it loses v. The parameters 7" and v are referred to as the threshold and the penalty,
respectively. If S; = S}, the game is symmetric, and in this case, if optimal strategies exist they
are the same for both players, and the game value is 0.

The prototype games are attributed to David Silverman, although the earliest published
mention of such a game of which we are aware is by Herstein and Kaplansky ([3], p. 212). The
symmetric game on an open interval was analyzed by R. J. Evans [1] for arbitrary 7" and v, and the
symmetric game on discrete sets by Evans and Heuer [2]. An analogous symmetric game on
[1, ) is examined in [5]. Discrete games with S; NS, = & are examined in [4] and [8]. In [6] it
is shown that when v > 1 Silverman games reduce by dominance to games on bounded sets, and in
[7] this and other types of dominance are used to reduce discrete games with v>1 to finite
games, and their payoff matrices have a simple characteristic form.

Many semi-reduced games can be further reduced in the sense that there still are proper sub-
sets W} and W}, of the strategy sets, with the property that optimal mixed strategies for the game
on W; x Wy are optimal for the full game. This further reduction leads to games some of which
are 2 x 2 and the rest of which fall into eight families, four of even-order games and four of odd-
order games (see [7]). It was our conjecture that when v > 1, no further reduction of any of these
games is possible. This would mean that optimal mixed strategies for such a reduced game are
minimal optimal strategies for the original game. We shall show here that, for the odd-order
games, this is indeed the case, and using similar techniques we obtain explicitly the unique optimal
mixed strategies and game values for these reduced games. The even-order cases will be treated
in a forthcoming paper.
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2. THE ASSOCIATED MATRICES

Let B denote the payoff matrix of our reduced game and ¥ the game value. Then B is always
square, and as discussed in Section 13 of [7], the game is not further reducible if and only if there
is a unique probability vector P, with all components positive, such that

PB=WV.V,.. V). (2.1a)
In this case there is also a unique probability vector Q such that
BO ' =(,V,..,V), (2.1)

and P and Q are the unique optimal mixed strategy vectors for the row player and column player,
respectively. (We are writing vectors as row vectors.)
Let B denote the j™ column of B. If Bis 2n+1by 2n+1, then (2.1a) is equivalent to

PB;=V forj=12,.,2n+1 2.2)

With the understanding that P is to be a probability vector, this, in turn, is equivalent to
2n+1
P(B;-B,,)=0 forj=12,..,2n, and Zp,. =1, with each p; > 0. 2.3)
i=1
Now let 4 be the 2n+1 by 2n+1 matrix, the /™ row of which is (B,—B,,) fori=1,2, ..,
2n, and the (2n+1)™ row of which is (1, 1, ..., 1). Then (2.3) is equivalent to

AP' =(0,0,...,0, 1), (2.4)

which has a unique solution if and only if 4 is nonsingular. Thus, it suffices to show that 4 is
nonsingular and that a probability vector P with all components positive exists, satisfying (2.4).

The four families of odd-order payoff matrices B and the associated matrices A are illustrated
below. The variable x is 1 + v, and with v > 1 we have x > 2. Types (i), (i), (iii), and (iv) here
correspond to (8.0.54), (8.0.5B), (8.0.5C), and (8.0.5D), respectively, in [7]. The main diagonal
and first superdiagonal of 4 consist entirely of 1s, with two exceptions. In column a + 1, the pair
(3) occurs in place of (}), and in column n +a + 2, (§) occurs. In general, the matrix 4 of type (i)
has a columns preceding the first irregular one, then d regular columns, a central column, a regu-
lar columns, the second irregular one, and d regular ones, for a total of 2n+1=2a+2d +3
columns.

o -1 -1 -1 -1 -1 v v v v v
1 0 -1 -1 -1 -1 -1 v v v v
1 1 -1 -1 -1 -1 -1 -1 v v v
1 1 1 0 -1 -1 -1 -1 -1 v v
1 1 1 1 0 -1 -1 -1 -1 -1 v
B=| 1 1 1 1 1 0 -1 -1 -1 -1 -1}
Y 1 1 1 1 1 0 -1 -1 -1 -1
-y -V 1 1 1 11 0 -1 -1 -1
-V —-v -V 1 1 1 1 1 1 -1 -1
-V -V -V -V 1 1 1 1 1 0 -1
-V -V -V -V -V 1 1 1 1 1 0O
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Type (i), parameters a >0,d >0;n=a+d +1. Illustrated witha=2,d =2.

In the matrix 4 of type (ii), there are three irregular columns. The parameters here are ¢ and
d, and the pattern is ¢ + 1 regular columns, the column with the (3), d regular columns, the central
column, ¢ regular columns, two columns with (3) in place of (}), and d regular columns. We illus-
trate it here with c=1,d =2;n=c+d+2 =35, so again B and 4 are 11x11.

o -1 -1 -1 -1 -1 v v v v v
1 0 -1 -1 -1 -1 -1 v v v v
1 1 -1 -1 -1 -1 -1 -1 v v v
1 1.1 0 -1 -1 -1 -1 -1 v v
1 1 1 1 0 -1 -1 -1 -1 -1 v
B={1 1 1 1 1 0 -1 -1 -1 -1 -1}
- 1 1 1 1 1 0 -1 -1 -1 -1
- -v 1 1 1 1 1 1 -1 -1 -1
- -v -v 1 1 1 1 1 1 -1 -1
- -v -v -v 1 1 1 1 1 0 -1
-v v -v -v -v 1 1 1 1 1 0
1 1.0 0 00 -x O O O O
o 1 2 0 00 O -x 0 0 O
0o o o0 1 00 O 0 -x 0 o0
0 0 o0 1 10 0 O 0 -x ©
0o o o o 11 O O O 0 —x
A=|l-x 0 0 0 0 1 1 0 0 O O}
0O -x 0 O OO0 1 0 0 0 o0
0o 0 -x 0 OO O 2 O 0 O
0O 0 0 -x 00 O o0 2 1 0
0O 0 0 0 -x0 0 o0 o0 1 1
1 1 1 1 1 1 1 1 1 1 1

Type (ii), parameters ¢>0,d >0, n=c+d +2. Illustrated with c=1,d =2.
We illustrate type (iii) below.
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-1 -1 -1 -1 -1 v v v v v

0
1 o -1 -1 -1 -1 -1 v v v v
1 1 -1 -1 -1 -1 -1 -1 v v v
1 1 I -1 -1 -1 -1 -1 -1 v v
1 1 1 1 0 -1 -1 -1 -1 -1 v
B=| 1 1 1 1 1 0 -1 -1 -1 -1 -1}
-y 1 1 1 1 1 0 -1 -1 -1 -1
-V -V 1 1 1 1 1 0 -1 -1 -1
-V -V -V 1 1 1 1 1 1 -1 -1
-V -V -y -V 1 1 1 1 1 0 -1
-V -V -V -y -y 1 1 1 1 1 O
1 1 0 0 0 0 —x 0 0 0 0
0 1 2 0 00 0 -x 0 0 0
0 0 0o 2 0 0 0 0 —x 0 0
0 0 0 0 1 0 0 0 0 —-x 0
0 0 0 0 1 1 0 0 0 0 —x
A=|—x 0 0 0 0 1 1 0 0 0 01
0 —x 0 0 0 0 1 1 0 0 0
0 0 —x 0 0 0 0 1 0 0 0
0 0 0 —x 0 0 0 0o 2 1 0
0 0 0 0 —x O 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1

Type (iii), parameters a > 0,6 >0;n=a+b+2. Illustrated witha=2,b=1.

In the matrix A of type (iii), shown above, there are again three irregular columns. The
parameters are a and b, and the pattern of columns is: a regular columns, two columns with () in
place of (1), b regular columns, the central column, a regular, one with (3] and b + 1 regular.

Finally, in matrix A of type (iv), there are two irregular columns. The parameters are denoted
c and b, and the pattern of columns is ¢ + 1 regular, one with (3], b regular, the central column, ¢
regular columns, one with (), and b + 1 regular. We illustrate type (iv) below, with c¢=2,b=1;
n=c+b+2=5

o -1 -1 -1 -1 -1 v v v v v
1 o -1 -1 -1 -1 -1 v v v v
1 1 o -1 -1 -1 -1 -1 v v v
1 1 i1 -1 -1 -1 -1 -1 -1 v v
1 1 1 1 0 -1 -1 -1 -<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>