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HOFSTADTER'S EXTRACTION CONJECTURE

Russell Jay Hendel*

P.O. Box 1533, GMF, Boston, MA 02205

Sandra A. Monteferrante
Department of Mathematics, Dowling College, Oakdale, NY 11769
(Submitted February 1991)

Let o, O<a <1, be irrational. For integer n> 0, define f(n)=[(n+1Da]-[na]. Define
gn)=c if f(n)=0 and g(n)=dif f(n)=1 and let x = x(cx) be the infinite string whose n"
element is g(n).

Both the string x, and the three functions f(n), g(n), and [na] have been studied extensively.
Classically, an astronomical problem of Bernoulli led Markov to prove results about the structure
of x. A concise summary is presented in [12]. The results use continued fraction methods and the
theory of semigroups.

Recent research connects x with monoid homomorphisms (e.g., Fraenkel et al. [4]), outputs
of automata (e.g., Shallit [9]), and general properties of strings (e.g., Mignosi [8}).

These functions and their related sequences have obvious recreational and experimental
flavor, are noted for their exotic functional patterns (e.g., Doster [1]), and lend themselves readily
to computer experiments (e.g., Engel [2], or Hofstadter [7]).

In this paper we study a problem first described by Hofstadter in an unpublished manuscript
[6]:

But now I would like to give an example par excellence of horizontal properties, a property which I

call "extraction." The idea is this. To begin with, write down x. Now choose some arbitrary term in it,

calied the "starting point." Beginning at the starting point, try to match x term by term. Every time you

find a match, circle that term. Soon you will come to a term which differs from x. When this happens,

Jjust skip over it without circling it, and look for the earliest match to the term of x you are seeking.

Continue this process indefinitely. In the end you have circled a great number of terms after the starting

point, and left some uncircled. We are interested in the uncircled terms, which are now "extracted"

from x. The interesting fact is that the extracted sequence is the subsequence of x which begins two
terms earlier than the starting point! To decrease confusion, I now show an example, where instead of

circling I underline the terms which match x. In this example, @ = (‘/'5— -H/2

I have chosen this "d" as the starting point:
|
l
ded dededdeddcededdededdcddededdeddededdededdceddededdced--
The underlined sequence matches the full sequence, x, term by term. Now what is the extracted
sequence? Itis:
cddcdcddceddcdeddcd---
And you will find that this matches with the sequence which begins two places earlier than the
starting point. Carrying it further is tedious, and does nothing but confirm our observation. Why does

this extraction-property hold? At this point, I must admit that I don't know. It is a curious property
which needs further investigation.

* Written while Hendel was at Dowling College, which partially supported this project.
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HOFSTADTER'S EXTRACTION CONJECTURE

To rigorously formulate this, we present the following definition.

Definition 1: Suppose U =u;...u,, V =v,...v,, and E = ¢,...e, with u;,v;, ¢, €{c,d}, n,m>0,

and n=m+ p. We say U aligns (with) V with extraction E (notationally indicated by U o V; E),
if there exist integers j(0), j(1), j(2), ..., j(p), such that

U= viptedvims.--Vioter - epVip---Vmt (With {v,...v,} empty if b <a),
where

@ 0=jO<jM)<j@)<---<j(p)<m,

(11) e; # vj(i)+1’ for1<i< P-

For example, if p=0, U DV; E with U =V and E the empty string. Throughout this paper we
use the nonstandard symbol ¢ to denote the empty string. It is easy to see that U DV ¢ if and
onlyif U =V.

IfU DV, E, then U, V, and E are call the original, aligned, and extracted strings, respec-
tively, and the relationship itself is called an alignment.

Remark: Define strings U =dcdcd and V =dd. To clarify some subtleties in Definition 1, we
explore the consequences of dropping requirements (i) or (ii).

If we drop the requirement of strict inequality, j(p) <m, in Definition 1(i), then we allow
UV, cedwithj() =1, j(2)=j3) =m=2.

If we keep requirement (i) but drop requirement (ii), then we allow U DV cdc, with j(1) =
J@)=jB)=1, m=2, e, =V, and, similarly, we allow U >V,dcc, with j(1)=j(2)=0,
J@ =L m=3e=v,,.

Thus, for given original and aligned strings, without requirements (i) and (ii), the extracted
string is not necessarily unique. However, with requirements (i) and (ii), we can prove the follow-
ing lemma.

Lemma 1: For given strings U and V, there is at most one string £ such that U DV E.

Proof: We suppose U DV, E, UDV; E', and E # E' and derive a contradiction.

By Definition 1, there are sequences j(1), ..., j(p), andj'(1), ..., j'(p) satisfying (i) and (ii) of
Definition 1 and

U:{v1~~-vj<[1)}el{vj(l)+l--'vj(2)}e2-~~ep{vj(p)+l"~vm}: (*)
U = {Vl...vjr(l)}ell{vj:(l)_H...Vj:(z)}eé...elp{vj:(p)_H...Vm}. (**)

Observe that, for 1<r < p, e, =the {j(r)+r}" element of U. Similarly, if 7 is given such that
either j(r)+r <t < j(r+1)+(r+1) for some r, 0<r<p-1, or j(r)+r <t <m with r = p, then
v,_, = the t™ element of U.

Let s be the largest integer such that j(r) = j'(r) for 0<r <s. Then s exists and is positive
because j(0) =0=j’(0). Since we assume E = E’, s<p.

If we further suppose that j(s) < j'(s), thenj'(s— D) +(s—1) < j(s)+ 5 < j'(s) +s.
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HOFSTADTER'S EXTRACTION CONJECTURE

Therefore, by considering (*) and (x*), respectively, the {j(s)+s}* element of U is, simul-
taneously, e, and v,,),;, contradicting Definition 1(ii). A similar argument holds if j'(s) < j(s).
These contradictions show that £ = E’ and complete the proof.

Recall that u is a prefix (that is, left factor) of v if there is a string y such that v = uy. Simi-
larly, u is a suffix (or right factor) of v, if v = yu for some string y. We say that the string y is the
limit of the sequence of strings y(n), n = 1, 2, 3, ..., notationally indicated by y =lim y(n), if, for
each positive integer m less than or equal to the length of y, the left factors of length m of y(rn) and
y are equal for all sufficiently large n.

Definition 2: Suppose U, V, and E are (possibly infinite) strings. Suppose U(n),V (n), and
E(n), n>1, are sequences of finite strings such that U(n) oV (n); E(n), with limU(n)=U,
limV(n)=V, and lim E(n)=E. Then we say U aligns V with extraction E and indicate this,
notationally, by U ©V; E (we do not require E to be infinite).

Remark: By a proof similar to that of Lemma 1, it can be proved in the infinite case also that £ is
(uniquely) functionally dependent on U and V.

Let x,, denote x with the left factor of length m deleted. We can now formulate the general
Hofstadter conjecture as follows:

Hofstadter's Conjecture: For any o and any m>2

Xy DX, X 0. (1)

Example 1: For the remainder of this paper we assume a = (\/g —1)/2. In this case, the
sequence

x =dcd dcd cd ded dce ded ded cd ded ded cd ded ded cd ded cd ded ded cd ded ---
has been described fairly thoroughly in the literature (see Tognetti et al. [11]). The sequence is
referred to as the Golden sequence or, sometimes, the Fibonacci sequence. With

x, = ¢d ded cddced dededdced cddeddedcddced -- -
X3 = dcd cddcd dededded cddeddedceddcd -- -,
Hofstadter's conjecture for m = 3 asserts x; D x; x;.
We define ¢, =c¢, ¢, =d,
L, N2, 2

Then ¢, = cd, ¢y =dcd, ¢, = cddcd, cs =dcd cdded , and ¢ = cddcd dcd cddcd.
The following result is well known [12].

Cn = CpaC

Lemma2: x=cpqc,....

A crucial component of the proof of Hofstadter's conjecture is a concatenation lemma assert-
ing that under approprite conditions the extractions of concatenated strings are the concatenations
of their extractions.
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HOFSTADTER'S EXTRACTION CONJECTURE

Lemma 3:

(i) Let U, V, E and U’,V' E’ denote arbitrary strings of finite length. If U >V;E and
U'oVr E', then UU' DVV'; EE".

(i) If U,,V;, and E;, 1<i <m, are arbitrary strings of finite lengths with m some integer, and if
U, oV; E;, 1<i<m, then [1U, o I1V;; I1 E; (with products denoting concatenation).

Proof: Part (ii) follows from part (i) by simple induction. To prove (i), we suppose, using
Definition 1, that

U = {vl...vj-(l)}el{vj(l)+1...Vj(z)}ez...ep{vj-(p)+1...vm},
U= vig el viam-- Vi tes..ep Vi Vi

for some sequences of integers, 0< j(1)<---< j(p)<m, 0<j'(1)<---<j'(p)<m’ with V =v,...
Vo V' =V[..v,,, E=¢...¢,,and E'=¢]...e;,. Then

UU, = {Vl‘..vj(l)}el{vj(l)_ﬂ...Vj(z)}ez..,ep{vj(p)+1...vm}{V{_._V}y(l)}e{._.e;: {V}/(P/)*_IA..V,’,,! .

To prove UU' 2 VV'; EE’, we verify that requirements (i) and (ii) of Definition 1 are satisfied by
the sequence of integers 0< j(1) < j(2)<---<j(p)<m+j' ()< m+j'(2)<---< m+ j'(p) <
m+m'.

The applicability of Lemma 3 will be enhanced by developing a notation for products of c,.
Formally, for integers k,p>0, g>1, with g dividing (p—k), recursively define P ., =
Py p-goCp if p>k, and P, 4., =c,. If p<k, then P, ,,=¢. If g=1, then by abuse of
notation we will drop ¢q and let B , = F} .. Similarly, we let P, =lim ., F; ;. Using this
notation, Lemma 2 reads x = P,.

Lemma 4: P, p D Py p1; Papn, foraz0bza+2,
Pova o D Fopots Pasipa,  foraz0,bza+2,

P,y D F, 9, forb>a>0.

Proof: First, observe that ¢, D¢;; ¢, and ¢; D ¢,; ¢;. If, by an induction assumption, ¢,_, D
C,_3; Cy_g and ¢,_; Dc,_5; C,_3, for some n >4, then, by Lemma 3 and (2), ¢, >¢,_;; ¢,.,. Conse-
quently, applying concatenation (that is, Lemma 3) to the b+1-(a+2) alignments, ¢ .., D
Ca+1+i> Catis 0<i<b- (a +2) > yle]ds Pa+2,b > Pa+1, b-15 Pa, b-2-

To prove the second assertion in Lemma 4, note that ¢,,, Dc,c,,,; ¢, by (2). We then apply
concatenation to this alignment and the alignments ¢,,,.; D Cay14i) Cavi> 158 <b—(a+2). Note
that, if b =a +2, then P, ,_, = ¢ and both the statement and the proof are still valid.

The last assertion in Lemma 4 is obvious.

Corollary: P,.,D> P, P, P,,DP;P.,, P,DOP;¢.

a+lb “a> a> “a+b ‘a

Proof: Let b go to infinity in Lemma 4.

Examples: Using Lemmas 3 and 4 and the Corollary, we can explore Hofstadter's conjecture,
(1), form=2,3,4.

m =2: By applying concatenation to d od; ¢ and P, D P,; P, we infer x, D x; x.
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HOFSTADTER'S EXTRACTION CONJECTURE

m =3: The assertion P, D B;; P, is equivalent to x; D x; x;.

m = 4: Note that x, =cdP,, x =dP,, and x, = ;. Therefore, applying concatenation to the
alignments cd od;c and P, D PB,; P, implies that x, D x; cx;. Consequently, by Lemma 1, (1)
cannot hold for m = 4, since x, begins with a 4. Similar reasoning shows that (1) is false for
m=9,12, ... .

To generalize the m = 4 case precisely, recall Zeckendorf's result that every integer m can be
represented uniquely as a sum of nonconsecutive Fibonacci numbers, m = 25, €(i)F;, with £() in
{0,1}, e()=01if e(f +1) =1, and &(n) =1 with £(}) =0 fori >n+1, for some integer n>2. The
ascending set of &(i) is the Fibonacci representation of m [9]. We define an injective map from
nonnegative integers to finite binary strings, m* = s, such that s has length n — 1 and the i com-
ponent of s equals g(i+1) for 1<i<n-1

We will use standard conventions about exponents and string concatenations. For example,
54* = (01)*. In the sequel, in the proofs of Lemma 5 and Theorem 1, certain closed formulas will
be given for (m+1)* and (m—2)*. The relationships between m" and (m £ j)* can be "translated"
easily into well-known identities. For example, the assertion that, if m* = (10)*1 for some k >0,
then (m+1)* = (00)* 01 is seen to correspond to the identity F, + F, +---+ Fy,,, = Fy, .5 — 1.

Therefore, in the proofs of Lemma 5 and Theorem 1, these closed formulas will simply be
stated without further elaboration.

Some of the relationships between m* and the m™ character of x are explored in [3]. The
examples for which (1) fails, m=4,9,12,17,22,25,30,33,..., have Fibonacci representations
beginning with a one followed by an odd number of zeros. This suggests the following modified
Hofstadter's conjecture:

For all m>2, if m* =10%**!1s, for some integer £ >0 and some binary string s, then
X, DX, CX,_q. (3)
Otherwise, (1) holds.
Remark: By the examples presented after Lemma 4 and its corollary, the modified Hofstadter
conjecture is true form =2, 3, 4.

We now state all identities needed in the proofs of Lemma 5 and Theorem 1:

by k2 =Coenr,  fork 21, (4)
P gy =Cy, fork =1, Q)
P g2 = B2, fork >1, 6)
B2 =CH gy, forkzl, 7
&Py ak2 = B opr, fork =1, ®)
P b2Coi1 = Canbusa s = Py p If a+1<b-1 ©)

For ¢t > 2, and integers K (i), with K(i+1)> K(i)+2, j<i<t-1, withjin {0, 1},
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HOFSTADTER'S EXTRACTION CONJECTURE

PK(j)+l, K(@(+1)=2 -~ PK(1—1)+1, K(z)—ch(r)+l = PK(j)+1,K(j+l){PK(j+1)+2, K(j+2) - PK(r—1)+2, K(t)}, (10)
the expression in braces being empty if 7 < j +2.

To prove (4), note that, if k =1, then ¢,c, = ¢; while, if £ > 1, then, by (2) and an induction
assumption, Cy;,; = Cyp_1Cyp = 1Py 24-2.2C = 1Py 94,2 The proofs of (5)-(7) also follow from
(2) and an induction assumption. Equation (8) follows from (7) by cancelling the leftmost ¢ on
both sides of the equation.

To prove (9) note that, if a+1<b-2, then, by (2), F,1 p-2C41 = Fas1 b = Car1Loara,p While, if
a+1=b-1, then F,,, , , =@, so that (9) becomes ¢,,; =¢, |F, , = B,_; ;,, which follows from
(2). Note, however, that, if a+1>b, {9) is false. Equation (10) follows from (9) by a straight-
forward induction.

Definition 3: Given an integer m, a strictly increasing function f on the positive integers is said to
be a representation of x,, if x,, = Cr1)Cr2Crz) -

To each integer m>1 with Fibonacci representation, &£(i), i >2, with e(n) =1, (i) =0 for
i>n+1, we associate a triple (n, j,z), where n—j is the total number of ones in the Fibo-
nacci representation ¢ of m, and z is a strictly increasing sequence, z(1),z(2),...,z(j) with
e(z()+1) =0, 1<i<j. Asanexample, if m=54, thenn=9, j=4,and z(7)=2i—-1 fori=1, 2,
3, 4. We now describe a canonical representation of x,,.

Lemma 5: Given an integer m>2 and its associated triple, {n, j, z), the function £, defined by
f@)=z20), 1<i<j, f(j+1+t)=n+t, t=0,1,2,3..., is a representation of x,,.

Proof: To start an induction argument, we treat the case m=2. If m=2, then m" =01,
n=3, j=1,and z(1) = 1. Clearly, x,, = ¢, P, as required. The induction step has three cases.

Case 1—m" = 00s with s a binary string: Clearly (m+1)" =10s. By induction, we may
assume that a representation f of x,, exists such that f(i)=i, i=1,2. Thus, x,, = c,c,y for some
infinite string y and, consequently, x,,., = ¢,y as required.

Case 2—m" = (01)*00s with & >1 and s a (possibly empty) binary string: Then (m+1)*
= (00)¥10s. By induction, we may assume that there is a representation f of x,, such that,
whether s is empty or not, f(i)=2i—-1, 1<i<k, and f(k+i)=2k+i,i=12. Thus, x,=
B 241, 2y for some infinite string y and, therefore, by (6), X1 = P 241,20 = B 2) s required.

Case 3—m" = (10)*0s with k >1 and s a binary string: Then (m+1)* = (00)*"'010s. By
induction, we may assume there is a representation f of x,, with f(7)=2i, 1<i<k, f(k+1)=
2k+1. Thus, x,, = P, 5.,y for some infinite string y and, consequently, by (8), x,,,; = ¢, %} 24.2Y
= P, 5,1y as required.

Clearly, for each m>2, one of these three cases must hold and, consequently, the proof is
complete.

Theorem 1: The modified Hofstadter's conjecture is true for all m>2.
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HOFSTADTER'S EXTRACTION CONJECTURE

Proof: The theorem has already been verified for m = 2, 3, 4. If m >3, then there exist
integers 7> 1, k(1), k(2), ... k(¥), k(i) > 1, such that either

m" =101 0" (11)
or
m* =0 M 10F® 1 0k (12)

To prove the theorem, we need the Fibonacci representations for (m—1)* and (m—2)*.
There are now four cases—1A, 1B, 1C, and 1D—depending on whether m" begins with a 1 or
not and depending ou whether (1) is even or odd.

Case 1A—(11) holds, with k(1) odd: Then, clearly, (m—1)* = 0* O 0¥ 1 0¥ 1}, the
expression in braces being empty if = 1.
Define integers

K(0)=0, KG+D) =K@ +1+k(@@+1),i=0,1,...,t-1 (13)
Clearly,
KG+D)=2K@H+2,i=0,1,..,¢1-1 (14)
By Lemma 5,
Xm = Proysa, k) - Pra-ve2. k0 Pr o2 (15)
and
Xp1 = B, K(l){P X+2.K2) - L2 K(t—1)+2,K(t)}P K(t)y+2- (16)

The expression in braces is empty if = 1.
Using Lemma 4 and its corollary, we apply concatenation to the alignments

Bk D PI,K(I)—I; PO,K(l)—Za

Py iysa, ki 2 Peay, kaan-15 Proyen k-2, 1SESE-1,

and
PK(1)+2 > PK(r); PK([)-Ha
to obtain
X, DX,y 17)
with
y= CPK(0)+1,K(1)—2 - PK(t—1)+1,K(t)—2PK(t)+1- (18)

Since k(1) is odd, we must prove (3). By (17), to prove (3), it suffices to prove y =cx,,_,.
Therefore, by (16) and (18), it suffices to prove
Py, k-2 - Pre-nyn, k(1y2Ck i1 = Froyrn, xy {P K(+2, K@) - Pra-ne2, k00 },
which follows from (14) and (10).
Case 1B—(11) holds with
k(1)=2k, k=1 (19)

For notational reasons, it will be clearer in cases 1B, 1C, and 1D to first assume that r >2. The
t =1 case can then be treated separately. If 7>2, then (m—2)* = (10)* 100*® 1 .. 0¥V 1. Define
K(i) asin (13). Then (14) and (15) still hold. By Lemma 5, we have
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X2 = Py 2k, 2€0ks2 Pryan, k(2) -+ Pree-1y2, k(0 P2 (20)

Proceeding as in case 1A, we apply Lemmas 3 and 4. Equations (17) and (18) still hold.
Since 4(1) is even, we must prove (1) instead of (3). By (17), to prove (1) it suffices to
prove y =x,,_,. Therefore, by (18) and (20), it suffices to prove

CPK(O)H, K()-2 - PK(t—l)+l,K(1)—ZCK(1)+1 = P2,2k; 2c2/c+2PK(1)+2,K(2) PK(1—1)+2,K(I)' (21)

By (19) and (13), K(0)+1=1and K(1)-2={k(1)+1} -2 =2k —1. Hence, by (7), proving (21)
is equivalent to proving

Pz, 2k;2PK(1)+1, K(2)-2 - PK(1—1)+1, K(-2CKk(1)+1 = Pz, 2k; 2CK(1)+1PK(1)+2,K(2) PK(t—l)+2,K(t)’
which follows from (14) and (10).
To complete the proof of case 1B, we treat the 7 = 1 case: If 7 = 1, then m*, (m—2)", x,,,
and x,_, are 101, (10)*1, By apiBosss and Py 54 0By 1,, tespectively.  Using Lemma 4, we

apply concatenation to the alignments P, 5,1 D P, 5;;¢P, 4y and Py 3 D Py, Py, to obtain
(17) with y =cB, 5, _1Par4o To prove (1), it suffices to prove x,,_, = y, which follows from (7).

Case 1C—(12) holds with (19): For ¢>2, we have (m—2)* =10(01)*"100*® 1. 0*® 1.
Define

K(0)=0, K()=k(), KG+D) =K@ +1+k(i+1),1<i<t-1 (22)
Note that, by (19), (14) still holds. By Lemma 5,
X, =B, K(I)PK(I)+2,K(2) PK(1—1)+2,K(1)PK(1)+2 (23)
and
Xz = C2P3 2p 1. 2C0k 1 P K(1)+2,K(2) - P, K(t—1)+2,K(t)P K(t)+2- (24)

Using Lemma 4 and its corollary, we apply concatenation to the alignments
PI,K(I) > PI,K(I); é,
PK(1)+2,K(2) - PK(1)+1,K(2)—1; PK(I),K(Z)—2:
Peiysa, kivn 2 Pegy k-1 Pryn, kgan-2> 251511,
and PK(t)+2 -] PK(:); PK(:)+1,

to obtain (17) with

Y =P, K(2)—2{P X+, K@)-2 - X K(z—1)+1,1<(:)—2} Pry+1> (25)

the expression in braces being empty if 7 = 2.
By (17), to prove (1) it suffices to prove y = x,,_,. Therefore, by (25) and (24), it suffices to
prove

PK(I), K(2)-2 {PK(2)+I,K(3)—2 PK(t-1)+l, K(6)-2 }CK(1)+1 = CZP3,2k—l; 202k+1PK(1)+2, K@) -+ PK(:—1)+2, K(t): (26)
By (19) and (22), K(1) = 2k so that, by (5), proof of (26) is reduced to proof of
Pryr k@2 - Pr-ryn, k(-26kyn = Py, k@) {P X242, k() - Pk, K(r)},

which follows from (10) and (14).
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It remains to treat the case #=1. If £ =1 also, then case 1C reduces to (1) with m=3,
which has already been treated. If k>1, then m", (m-2)* x,,, andx,_, are 0**1,10(01)*™"
B ok Poyya, and B 54 1.2 Py; 4, Tespectively. By concatenating the alignments, P 5, D B ,;; ¢
and P, ., D Byyy; By, we derive (17) with y = B, =¢,, B, To prove (1), we must prove that
Yy =X,,_,, which follows from (5).

Case 1D—(12) holds with
k()=2k+1, k>0: 27

For ¢ >2, we have (iz—2)* = 0(01)F 00*@ 1.0V 1. Define K(i) by (22). Then (14) and (23)
still hold. By Lemma 5,

X2 =15 2k 2Ck 2 Py, k2) -+ Pr-nyr2, k(0 Pryez- (28)

Proceeding as in case 1C, we have (17) with (25). By (17), to prove (1) it suffices to show that
y=x,,_,. Therefore, by (25) and (28), it suffices to show

&by o 202 Fcya, k2) -+ Pr-tye2s KO = CeyPreyer, k-2 -+ Pr=n1, k(-2Ck (1) +1- (29)

By (27) and (22), K(1) = 2k +1; therefore, by (4), proof of (29) reduces to proof of

CK(I)CK(1)+1P KM)+2,K(2) - Iy K(t-D+2, K() = cK(l)P K()+1, K(2)-2 {P K@)+LK@3)-2 -+ Iy K(t-1)+1, K(t)‘Z}cK(t)-yl’

which follows from (10) and (14).

The 7 =1 case is treated in a manner similar to the 7 =1 case in 1B and 1C. This completes
the proof of Theorem 1.

The proof and formulation of a modified Hofstadter's conjecture for other irrationals remains
an open and difficult problem. To generalize (3), it seems reasonable to conjecture that, for every
irrational, there exists a finite set of strings and a finite set of integers such that, for every m,
x,, Dx; Ox,_ . with O and »n belonging to these finite sets. The authors announced a proof of
the deceptively simple case a = V2 -1 with m equal to sums of Pell numbers [5]. This proof
required considerable alteration of Definition 1 and Lemma 3, as well as a more developed form
of Lemma 4.
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AN UNEXPECTED ENCOUNTER WITH THE
FIBONACCI NUMBERS

M. N. Deshpande

Institute of Science, Aurangabad, 431004 India
(Submitted April 1992)

In this article, an incident is narrated whereby the author unexpectedly came across the
Fibonacci numbers while solving a problem concerning arithmetic progressions. The incident
occurred when the author observed that 3+4+5+6=18=23-6. That is, the sum of the elements
in the arithmetic progression 3, 4, 5, 6 is equal to the product of the first and last terms of the
progression. Its generalization can be stated as follows.

Problem: Find three positive integers a, A, and » such that
a+(a+h)+---+(a+(n-)h)=a(a+(n-1h).
Solution: First, note that since we have an arithmetic progression, we have a solution when

na+M’-=a2+a(n—1)h (1)

which on solving for a becomes

. n—(n-1h+n* +(n-1)>*n

2

@

Since a is an integer, for a solution, there must be an integer z such that z* = n* + (n—1)*h*
or such a triple (n, (n—1)h, z) is a Pythagorean triple. Hence, by the well-known parametrization
for Pythagorean triples, a solution must exist if and only if there exist integers x and y such that

2xy=n, x* -y’ =(n-Dh, x* +y* =z, 3)
or
2xy =(n—-1h, xz—yzzn, x2+y2=z. 4)

Solving for % in both (3) and (4) and then finding the value of @ in (2), we have a solution to
(1) whenever there exists a pair of integers x and y such that

2 2
———h, a=y(x+y), n=2xy )
2xy—1
or
2
—_— xj; =h, a=x(x-y), n=x>-y*. (6)
x“ -y -1

A program in BASIC was written and run to obtain such pairs of integers x and y. A careful
analysis of the output revealed that many solutions were related to the Fibonacci numbers. That is

Theorem: Let m be any positive integer, F, be the k™ Fibonacci number, n= i By s
a=F},+1, and h=2. Then, we have a solution to (1).
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Proof: First, we observe the well-known facts that

n=Fyp i Fypig = P = Foy

and
a= F‘lm—IF‘2m+l = F‘sz +1
Now, using these identities with (1) and the definition of the Fibonacci numbers, we have
n(@+(n=1) = Fy = o) Fp + Fopr = Fo)

= (F22m+1 - F22m )F22m+1

= F'22m+1}72m—1}?2m+2

= F‘22;n+1F‘2m-—1(2‘F22m+1 — FypirFom-1)

= }72m+1F§m—1(2F§2;n+1 - Fzzm -

= FyirFamy (Fp + 14 2F5 0 = 2F5, = 2)
=a(a+2(n-1)).

Hence, there exist a countable infinite set of segments of arithmetic progressions with a
common difference of 2 such that the sum of the elements in the segments is equal to the product
of the first and last terms. Below, we give a few examples:

2,4,6 (m=1),
10,12, 14, ..., 40 (m=2),
65,67,69,...,273 (m=3),

442,444 446, ...,1870 (m=4).

The other values generated by the BASIC program did not appear to be related to the
Fibonacci numbers.

The connection between the solution of the problem and elements of the Pell sequence is
established by the author in an article which will appear in Math. Student 63 (1994).

ACKNOWLEDGMENT

The author is thankful to the editor for suggesting valuable improvements to an earlier draft of
this paper.

AMS Classification Numbers: 11B39, 11B25, 11D09

o %
EXE X

>

3

<

1994] 109



ADDENDUM TO
""Second Derivative Sequences of Fibonacci and Lucas Polynomials"

by
Piero Filipponi and Alwyn F. Horadam

In the above paper [1], the proof of Proposition 9 was inadvertently omitted. It reads as
follows:

Proof of Proposition 9: From (1.8) we have

Cn = iOE(l)Fn_i = %[En: iLjE]—i - %EF —i)

i i=0

(5.11)
= lZIF;t +lzi(‘1)iFn—2i _'I'ZF,F,,_,-.
5i=0 5,‘:0 5i=0

From (5.1) and (5.3), (5.11) can be rewritten as

1 1 1
C =—[nn+DHF ]-—®L_,+2F)-—(nL - F
g 10[ ( ) ”] 25(7’[ n+l n) 25(7’1 n n)
:gl(—)[sn(n+1)F”_2Et_2nLn+2]:%[(5”2—z)Fn +5nF,-2nL,,,]
) %[(5"2 =2)F, =n(2L,, = 5F,)]= Sio[Sn2 ~2)F,~3nL,]1=F® /2. O

Additional comment: With regard to Conjectures 1-7 in [1], some of which were known by us
to be true, we wish to record that, in private correspondence with us, both Richard André-Jeannin
and David Zeitlin have independently established the validity of these Conjectures.
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THE FIBONACCI AND LUCAS TRIANGLES MODULO 2

Diana L. Wells

Department of Mathematics, University of North Dakota, Grand Forks, ND 58202
(Submitted May 1992)

1. INTRODUCTION
The Fibonacci and Lucas coefficients are defined as

EIF;I—I Fi LnLn—l Ll

] - 1], |
F (Fka—l “‘E)(E:—kE)—k—l Fl) £ (LkLk—l Ll)(Ln—kLn—-k—l Ll)

These coefficients have been studied by several authors, [2], [8], [14], and [18]. Using these
definitions, what we call the Fibonacci and Lucas triangles are formed in the same way as Pascal's
Triangle is formed from ordinary binomial coefficients, that is, the n™ row is [;] for 0<k <n
Other authors, e.g., [3], [10], have also constructed such triangles in various ways. The ordinary
binomial coefficients modulo 2 and Pascal's Triangle modulo 2 have been studied extensively in
[41, [5], [6], [71, [11], [17], [20], [22], [23], and [25]. Among problems of interest have been the
determination of the parity of binomial coefficients, the number of odd coefficients in the n™ row
of Pascal's Triangle, and the iterative structure of Pascal's Triangle modulo 2. We will extend
these results to both the Fibonacci and Lucas coefficients modulo 2 in sections 2 and 3. In section
4 we also determine the relationship between the Fibonacci and Lucas coefficients.

Portions of these triangles, both the originals and their modulo 2 reductions, are shown
below. Since the Lucas coefficients are not always integers, the symbol « will be used to denote
those coefficients, [,’;L, that have a higher power of 2 in the denominator than in the numerator.

1 1
11 11
121 101
1331 1111
14641 10001
15101051 110011
1615201561 1010101
172135352171 11111111
18285670562881 100000001
Pascal's Triangle Pascal's Triangle Modulo 2
1 1
11 11
1 11 111
1 2 2 1 1001
1 3 6 3 1 11011
1 5 15 15 5 1 111111
1 8 40 60 40 8 1 1000O0O01
1 13 104 260 260 104 13 1 11000011
1 21 273 1092 1820 1092 273 21 1 111000111
Fibonacci Triangle Fibonacci Triangle Modulo 2
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1

1
1 1 11
1 3 1 111
1 4 4 1 1001
17 2 7 1 11011
1 n I 1 111111
1 18 66 Bl 66 18 1 100 a 001
129 174 5T 3T g4 29 1 111110 a « 01111l
1363 4089 © 44979 © 4089 1363 a a «a
147 23 2 14 2 3 47 1
Lucas Triangle Lucas Triangle Modulo 2

We will need the following information about regularly divisible sequences, generalized
bases, and a generalized form of Kummer's Theorem.

Divisibility questions about sequences, such as which terms are divisible by a given prime,
have been investigated by several authors, e.g., [9], [13], [15]. A sequence {u,} is said to be
strongly divisible provided

gcd(wm, Uy,) = Ugcdimny forallmn>1

The term regularly divisible by all primes is defined in [16] and is shown to be equivalent to that
of strongly divisible. We use the following definitior: which defines the divisibility of the sequence
for a set of primes rather than for all primes.

Definition: Let {4,}7, be a sequence of positive integers. We say that {4, }7.; is regularly divi-
sible with respect to a set of primes ¥ = {p,, p,, ...}, provided that, for each p €&, p'|4 |, if and
only if r(p')|j, foralli>1andj>1, wherg r(p') is the rank of apparition of p', that is, 4 ) is
the first term in the sequence divisible by p’.

A sequence is said to be regularly divisible if it is regularly divisible by all primes. Since the
Fibonacci sequence satisfies the requirements for strong divisibility [9], it is a regularly divisible
sequence.

We will use » =r(2) =3 for the rank of apparition of 2. That is, F, is the first term in the
sequence that is divisible by 2. For the rank of apparition of 2, we will use r(2') =7,..

We will use a generalized base for the positive integers. Since the Fibonacci sequence is
regularly divisible by 2, we have that “* is always an integer. Thus, a generalized base P = {1, ,
y, ..., I;, ...} can be used [21] and the number 7 can be uniquely expressed as

7.
n=nn,_, - mny)g = NF, +0,_T,_ +---+mr +ny, where 0<n, <t

The version of Kummer's Theorem we need is that in [27]:

Kummer's Theorem for Generalized Binomial Coefficients: Let 4= {4 }7_, be a sequence of
positive integers. If o is regularly divisible by p, then the highest power of p that divides ["‘ b "]A is

the number of carries that occur when the integers n and m are added in base %, where
P ={r;}7, withr, =1 and , =r(p"), forall i > 1.
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2. THE FIBONACCI TRIANGLE MODULO 2

One of the interesting results for Pascal's Triangle modulo 2 is that the number of coefficients
in the n™ row which are congruent to 1 modulo 2, denoted N[n, 2,1], is equal to 2*, where f is
the number of ones in #'s base two representation [24]. A similar result follows for the Fibonacci
triangle.

Theorem 1: For the Fibonacci triangle modulo 2, the number of coefficients in the n™ row
congruent to 1 modulo 2 is given by N[n, 2,1]= 2’3", where 7 = number of 1's and s = number of
2's in n's base % representation.

Proof: The generalized base for the Fibonacci sequence is = {1,3,6,6,12,...}. Since

hi
Tigp =301
2z,

for n=(..mmny)e and k = (... k,kky)gp, we have that 0<n, k;, <2 fori>1 and 0<n,, k, <3.

1271

From Webb & Wells [27], N[n,2,1]=11,5o(n, +1). For no borrow to occur in the base P sub-
traction of & from n, there are two choices for k; for each n, =1, and one choice for each n, =0.
If n, = 2, there are three choices for k,. Therefore, N[n,2,1]=2'3" where = number of 1's and
s = number of 2's in #'s base P representation.

The following theorem, which is similar to Lucas's theorem for binomial coefficients,

provides a way to investigate the iterative behavior of the Fibonacci triangle modulo 2.

Theorem 2: The Fibonacci coefficients satisfy

i) =TI )R], emos)

i1

where

[Z°j| =0 for k; > ny and (Z")=Ofork, >n,.
0ld% i

1

Proof: If a borrow occurs in the base % subtraction of k& from n, then n; <k, for some i.
Thus, either [}:] =0 for k, > n, or () = 0 for some i > 1 and the result holds trivially.

If no borrow occurs, 0< k; <n, <2 fori>1, so that

(Z”) =1 (mod2).

Fori=0,0<k,<n, <3, and

[Zﬁ]@ =1 (mod?2).

1], =N, o>
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Corollary 2.1: For n=3h+n, and m=3k +k,,

), =L, e

n=ng,+n,_yr,_ +-+mr+n,=3h+n,

Proof: Let

and
m=mng, +m_p,_, +--+mr+my =3k +m,.

I
Ty =901
2r,

the coefficients in the ordinary base 2 expansion of / and £ will be from the sets

Since

{n,n_,..,m} and {m, m_,, .. m}.

When 7, =r,,, for some i, such as 7, =r, = 6, the base P requires n,,m, =0. The base 2 coeffi-
cients of # and k will be n, and m, where r, #7,,,. Although the exact power of 2 associated with
each coefficient can be determined only by looking at the relationship between all the elements in
the base, /# and & will still have an appropriate base 2 expansion. The residue of (,’j] modulo 2 will

be
(Z) = H(Z;) (mod 2).

izl !

The above corollary can be used to investigate the iterative behavior of the Fibonacci triangle
modulo 2. To begin, we will use the notation of Long [20].

Theorem 3: Let A, , denote the following triangle,

H
3k |,

|:3n+1] [3n+1i|

3k . 3k+lg
[3n+2] I:3n+2} [3n+2}
3k . 3k+1g 3k+29

a. The entries in A, ; will be either all congruent to 1 or all congruent to 0 modulo 2. The
entries in the Fibonacci triangle not included in one of the triangles A, , are congruent to 0.

b.  The triangles satisfy an element-wise addition modulo 2, A, , | +A, |, =A, , (mod2).

¢. The Fibonacci triangle of A, ,'s is in 1-1 correspondence with Pascal's Triangle modulo 2.
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Proof: Since [t =1 (mod2) for 0<s<7<3, we have
i
3k |g
[3n + 1} [3n + lil
3k |, [3k+1],

), B el GRL GRL G

il
N
EIN]
N
[

[ Rl
L—
©

/
=3

I
-
=3
=

Therefore,
[Bn} .
3k,
3n+1 3n+1 111
] (mod2).
F F
[3n+2] {3n+2} {3n+2] Iy = 00 if (Z)zo
3k g [3k+1), |3k+2], 000
The entries not included in one of these triangles are of the form [3+¢] with 0<¢<s<2, and

3k+s
so are congruent to 0 modulo 2.
From Corollary 2.1, we have that

1575 P, (L 5 L (O

Thus, there is an element-wise addition of triangles that satisfies

i

[3n+t}
3k +s 5

An—-ls k-1 + An_l, k = An,k (mOd 2)

If the identification 7; <> 1 and I <> 0 is made, the Fibonacci triangle of A's is in 1-1 corre-
spondence with Pascal's Triangle modulo 2.

1
11 1

111
1001
11011
111111 o 1 1
1000001
11000011
111000111 10 1
1001001001
11011011011
111111111111 1 1 1 1
Fibonacci Triangle Modulo 2 Pascal's Triangle Modulo 2
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With this theorem, once the identification with Pascal's Triangle is made, one can see that the
pattern continues at all levels of 7(2"). For example, at the level of 7(2?) = 6, with

L T
T ]Iel and T TOHO,

we.have the identification shown below

0
11000000000011

111000000000111

1001000000001001 101

11011000000011011 <~

1 0 1

1001001001001001001001 1111
11011011011011011011011
111131111111111111111711

Fibonacci Triangle Modulo 2 Pascal's Triangle Modulo 2

3. THE LUCAS TRIANGLE MODULO 2

Although the Lucas sequence is not regularly divisible, the structure of the triangle modulo 2
is still determined by the highest power of 2 that divides [#]! defined below. To determine the
residues of the coefficients modulo 2, the following lemma will be needed. We will use the
notation 2' ||m to mean 2‘|m but that 2" fm.

Lemmal: If[n]'=L,L

'n—1

...L,L,, then
2% |[[n]! for 3(2k) <n<3(2k+1) and 2*7'||[n]! for 3(2k —1) <n <3(2k).
Proof: For the Lucas sequence
L,=322=2 and L;=521=1 (mod8).
Thus, the length of the period modulo 8 is 12, because 7, =2 and L, =1. Also since
L,#0for1<n<12 (mod3),

we have that 8| L, for any n.

Also, as above,
Lg=18=2 and L, =29=1 (mod4),

so the length of the period modulo 4 is 6. For 1<n<6, L, =0(mod4) only forn=3. Thus,
L,=0(mod4) forn=3+6k =3(2k+1),k>0. For1<n<6,, L,=2(mod4) only forn=6. So
2|L, and 4/ L, for n=6k.
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In [n]! there are m factors that are divisible by 2 and [%J factors that are exactly divisible by
2. Thus, there are [%J - [%J that are exactly divisible by 22, and so

23k ||[n]! for 32k —1) <n<3(2k+1) and 2%*7'|[n] for 32k —1) <n <3(2k).

Theorem 4: The Lucas coeflicients satisfy the following congruences.
For0<m<nand 0<s<t<2,

3Im+ s (mod 2).

[3n+t } a forn even and m odd
2 |1 otherwise

ForO<m<mand 0<r<s<2,

3n+t _
|:3m+S:LB =0 (mod 2)

Proof: Let e be the highest power of 2 that exactly divides B;'nj‘SL. Then e=¢, — (e, +¢;),
where 2% 1[3n+1]!, 2% i[3m+s]! and 2% i[3(n—m)+ (¢ —s)]!.

By examining the different cases for n» and m odd or even, and applying Lemma 1, we obtain
the following values for e.

ForO<m<mand 0<s<¢<2,

-1 ifnis even and m is odd,
0 ifnisevenand mis even;
0 ifnis odd and m is odd;
0 ifnis odd and m is even.

if nis even and m is odd,
if n is even and m is even;
if nis odd and m is odd,;
if nis odd and m is even.

This theorem can be used to count the number of each of the residues modulo 2 in the n™
row of the Lucas triangle and to investigate the iterative patterns in the triangle. The Lucas
sequence has the same recurrence relation as the Fibonacci sequence and, like the Fibonacci
sequence, satisfies 7(2) = 3, which is also equal to the period of 2. In determining the number of
each of the residues in the n™ row of the Lucas triangle, we will use the generalized base corre-
sponding to 2 for the Fibonacci sequence, P ={1,3,6,6,12,...}.

Theorem 5: Let N[n,2,a] be the number of Lucas coefficients in the »™ row congruent to a.
For n=3h+n,,0<n, <3,

(h+)(m, +1) ifhis odd,

(%"‘ 1)(n0 +1) ifhiseven,

0 if & is odd,

(£)my+1) if his even,

Nin,2, 1]={ Nin,2, a]={
and N[n,2,01=h(2-ny)
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Proof: For n=3h+n, and m =3k +my,, if h is odd, then

[3h +ny,

3k+m01£ =1 (mod2),

provided 0<m, <n,. Therefore, there are 2 + 1 choices for k, and there are n, +1 choices for
my. Thus, N[n,2,1]= (h+1)(n, +1).
If h is even, then

3h+n, | _J1 forkeven,
3k+my|, \|a forkodd.

Thus, there are (§+ 1) choices for k to be even and (%) choices for £ to be odd. There are
still (n, +1) choices for m,, so that

N[n,2,1]=(2+1)(ny +1) and N[n,2, a]=(L)(n, +1), for h even.

If 0<n, <m, <2, then

[3h +n,

3k+m0:L£ =0 (mod2).

There are A choices for k and (2-n,) choices for m,, so that N[n, 2,0]=h(2-n,).

Theorem 6: For 0 <m <n, the entries in the Lucas triangle denoted A, ,,,

i
3m$

[3n+1jl [3n+1]

3m o 3m+1‘sz
[3n+2} [3n+2} [3n+2]
3m @ 3m+1$ 3m+2§£

are either all congruent to one or all congruent to @ modulo 2. The entries not included in these
triangles are congruent to zero modulo 2.

Proof: From Theorem 4, it follows directly that the entries in the initial triangles are all con-
gruent to & modulo 2 if » is even and m is odd. Otherwise, all entries are congruent to 1. The
entries not included in these triangles are |3,""| , where 0<7 <s<2, and so are congruent to zero
modulo 2.

I3

Theorem 7: For r, =2/-13, let A, ,» denote the following entries in the Lucas triangle,

nr;
mr, |,
nr, +1 nr, +1
mr, |, |mr+1],
nr, +r, -1 nr, +r, -1
mr, P mr +1, —1],’
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and let V, , denote the entries not included in one of these triangles.

a. Fori=1, the initial triangles, A, ,,, A, .1, A, ne, do not satisfy an element-wise addition
modulo 2 as in the Fibonacci triangle.

b. Fori> 1, the triangles satisfy
A

I

nm An, mil = An+l,m+l = A0,0
Vom=V =V

n,m+1 n+l, m+1-

Proof: Fori=1, from the Lucas triangle modulo 2, we can see that
Apogt+A#A,, (mod2)
As,+As3#As 5 (mod2).

Thus, the initial triangles do not satisfy an element-wise addition modulo 2.
Fori>1land 0<h, k<2"'—1 hand k determine whether 2" 'n+h and 2" 'm+k are odd or

even, so that
I:nr,' +3h+t :| :[:3(2i—ln+h)+t] E[3h+t] (mod2)
£ ¢

mr; +3k +s 32 m+ k) +s 3k+s],,
Thus,
[nr,.+3h+t:| E[ nr, +3h+t ] E[(n+1)r,.+3h+t} E[3h+t] (mod2)
mr; +3k+s|, ~ [(m+Dr, +3k+s], ~ | (m+Dr, +3k+s], ~ [3k+s5],
Therefore,

An,m = An, ml = An+l,m+1 = A0,0 and Vn,m = Vn,m+l = Vn+l, m+l-

From Theorem 7, the Lucas triangle of As with i = 1 has initial triangles

1 a
5,=11 and 7,=cqaa
111 aaa

Using the identification 7] <> 1 and T, <> , the pattern in the Lucas triangle becomes more
apparent.

11laaalll
1001001001 L d
11011011011 111 1
111111111111
10000100001
110220110aa011 1 al1lea il
111lacalllaaalll
1001001001001001
11011011 011011011 11111 1
111111 111111111111

Lucas Triangle Modulo 2

Also from Theorem 7, we see that this pattern does not continue for i > 1. For example, with
i =2, if the following correspondence is made,
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1
11
_ o1
=150 © L
11011
111111

then the Lucas triangle modulo 2 can be associated with a triangle of all ones. That is, the initial
triangle will be the only triangle repeated.

100000100001

1102011 0aa011
111lgaalllaoaaalll
1001001001001001 111
11011011 011011011
1111

1 1111111111111

Lucas Triangle Modulo 2
4. THE RELATIONSHIP BETWEEN THE FIBONACCI AND
LUCAS TRIANGLES MODULO 2

We can use Theorem 2 and Theorem 4 to look at the relationship between the Fibonacci
triangle and the Lucas triangle modulo 2.

1 1
11 11
111 111
1001 1001
11011 11011
111111 111111
1002001 1000001
110aa0l1l 11000011
1llaaalll 111000111
1001001001 1001001001
11011011011 11011011011
111111111111 111111111111
100200100001 1000000000001
110¢a0110aa011 11000000000011
lllaaalllaaalll 111000000000111
1001001001001001 1001000000001001
11011011011011011 11011000000011011
1111111111 11111111 111111000000111111
Lucas Triangle Modulo 2 Fibonacci Triangle Modulo 2

Theorem 8: The Fibonacci and Lucas coefficients satisfy the following relationships modulo 2:

"] = 1, then [n] 1.
<

Il

L™ g m

" Y 0 ifaborrow occurs in the n, position,
If =0, then I:m} =qa if a borrow occurs in the »; position,
L g 1 all other borrows.

0.

<
F

If n ] =0, then[n]
m m
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m 1 if no borrow occurs.

If [n:i 1 then [n] _ {0 if a borrow occurs,
z %

Proof: For n=3h+ny=(...mmny)g and m=3k+m,=(...mmmy,)g, if r;LE 1 (mod 2),
then my <ny <2 and my <ny <3. Thus, if m =1, kis odd and [;] =1 (mod 2).

If n, =0, then k, = 0 and A and & are even, so that [:,L =1 (mod 2).

If [;;LE 0 (mod 2), then a borrow occurs. If the borrow occurs in the n, position, [:’"LE 0
{mod 2). If the borrow occurs in the n, position, then / is even and k is odd. Thus, m! =a (mod
2). For all other borrows, [”mL =1 (mod 2).

If sz 0 (mod 2), then 0 <my <m, <3. Thus, a borrow occurs in the base % subtraction of
m from n. Therefore, [;’"L =0 (mod 2).

If [;LL = a (mod 2) implies 4 is even and k is odd, which occurs only if = 0 and m; =1. This
means a borrow will occur in the base P subtraction of m from n and [;1"]9 =0 (mod 2).

If [j;LE 1 (mod 2), then no borrow occurs in the n, or iy positions. However, a borrow may
occur in other positions. Thus,

m =

[:n i| _ {0 if a borrow occurs,
¥

1 if no borrow occurs.

5. CONCLUSION

The iterative patterns in the Fibonacci triangle and Pascal's Triangle modulo 2 are similar
except for the initial triangles that are repeated in both. For the Fibonacci triangle, the initial
triangle is

1
11
=111
and for Pascal's Triangle, the initial triangle is
_ 1
T= 1

These triangles arise because r(2)=3 for the Fibonacci case, which also equals the period modulo
2 for the Fibonacci sequence and #(2) = 2 for the Pascal case, which also equals the period
modulo 2 for the positive integers. If we look at all second-order sequences, u, = au,_, +bu,_,
with initial conditions #, = 0 and #, = 1, they can be categorized into four types.

1. For a=0,b=1 (mod 2), u,=u, , (mod 2), for n>2 and r(2) =2 which equals the

period of 2.
2. Fora,b=1 (mod2), u,=u, , (mod 2), for n>2 and r(2) =3 which equals the period
of 2.
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3. Fora=1,b=0 (mod2), u,=u, , (mod 2), for n>2. The prime 2 does not occur as a
factor.

4. Fora,b=0 (mod2), u,=0 (mod 2), for n>2. All terms are divisible by 2.

This means there are only four distinct triangles modulo 2 formed by the generalized coeffi-
cients,

|:ni|: unun—l “‘ul
k gy ) ), gy gy - 1))
1

11
101

1. Pascal's Triangle comes from type 1 sequences: L1l

10001 °
110011
1010101
11111111
1
11
111
) o 1001
2. The Fibonacci triangle comes from type 2 sequences: 11011
111111
1000001
11000011
111000111
1
11
111
3. A triangle of 1's comes from type 3 sequences: 111111111 .
111111
1111111
11111111
1
1
101
4. A triangle of 0's comes from type 4 sequences: 11(?00011 .
100001
1000001
10000001

Thus, Pascal's Triangle and the Fibonacci triangle are the only two significant triangles
modulo 2. They only differ by the repetition of the initial triangle. When the initial conditions are
changed, the sequence is no longer regularly divisible. The triangles of coefficients from these
sequences, such as the Lucas triangle, do not have the same iterative behavior as Pascal's
Triangle.
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1. INTRODUCTION

A study of the number (1++/5)/2=1618... and of its Fibonacci derivation has received
considerable attention not only in the field of pure mathematics but also in mathematical modeling
and analysis of such physical plants as cascades of two-ports, hot mill metallurgical processes,
multicomponent rectifications in distillation column, reactions in stirred tank reactors and batch
reactors [6]. As the mathematical basis for solutions of various problems in these systems serves
usually the theory of recurrence equations ([2], [3]) of the Fibonacci sequence and their generali-
zations ([1], [4]). Many problems concerning a variety of generalizations of the Fibonacci
sequence have appeared, primarily in The Fibonacci Quarterly, in recent years.

We shall be concerned in this paper with the Fibonacci sequence introduced via a modified
numerical triangle (MNT). We shall involve a generalized Pascal triangle (GGPT) and "shifted"
form of the MNT (SMNT) and show how the MNT results from a suitable superposition of the
generalized and shifted triangles. We shall also prove that a transfer ratio 7, (k=0,1,2,...,n) of
the output to input-signal along an electrical ladder network is determined by polynomials with
coeflicients belonging to the MNT.

2. THE MODIFIED NUMERICAL TRIANGLE

The MNT is defined here in connection with studies of distributions of voltages and currents
along an electrical ladder network with 7 identical interacting cells [5]. One elementary section of
such structures is characterized by a parameter x determined by the product of impedance of a
longitudinal branch and admittance of a transversal branch. '

The transfer ratio 7, (k=0,1,2,...,n) of the output- to input-signal (voltage or current)
along the network (Fig. 1) is determined by polynomials in x of the corresponding degree. It can
be determined from a solution of the following recurrence equation,

a,,,—(2+x)a, +a,_ =0 (ia)
with
a, = (1+x)a,, (1b)
where a, denotes a known signal at the input port of the first cell and a, is the corresponding sig-
nal at the k-port of the network (e.g., g, =V, as shown in Fig. 1).

Figure 1
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The ratio 7, follows from the relation
T,="% k=0,1,2,..,n )
It is easy to see that 7, is determined by a polynomial in x of the k™ degree, so we can write

k
];czz“pk,mxm’ k=0,1,2,..,n (3)

m=0

From direct inspection of the above expression, we have that

L(x)=1,

T(x)=1+x,

T2(x)=1+3x+x2,

T,(x) = 1+ 6x+5x% +x°, 4)

T,(x) =1+10x +15x> +7x° +x*,
T(x) = 1+15x +35x% +28x> +9x* +x°,
The polynomial coefficients
1 0" (x
Pem =" 75L& (5)

m! 9"x
x=0

belong to the MNT that takes the following form:

k MNT

01

1{1 1

211 3 1

311 6 5 1
411 10 15 7 1
5(1 15 35 28 9 1

It must be noted that from the MNT it is easy to obtain the expression of the polynomial 7, (x) for
small values of . To determine 7, (x) for large values of k, we can use formulas (1) and (2).

Observe that formally the MNT is apparently similar to the classic Pascal Triangle. Note that
the MNT coefficients cannot be evaluated directly by applying the rule corresponding to the classic
Pascal Triangle. On the other hand, it is possible, by some appropriate modification of the Pascal
Triangle, to establish a suitable recurrence rule for constructing the MNT coefficients. We will
present a solution to this problem in the next section.

3. THE GENERALIZED AND SHIFTED TRIANGLES
AND THEIR LINKS WITH THE MNT

By a slight modification of the MNT we can establish the so-called shifted modified numerical
triangle (SMNT). We draw SMNT from MNT by shifting its rows and columns by two places in the
bottom and then annihilating all coefficients in the first column. If we denote by s, ,, a coefficient
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for a node (k,m),k=0,1,2,...,n and m=0,1,..., k, then the corresponding formula takes the
following form:

0 form=0,
Spom =\Dk-2.m forl<m<k-2, 6)
0 form>k-2.

The resulting SMNT is demonstrated by the following construction:

k SMNT

NN AW =
[N eNeNolNoNoNo Nl

Applying the above rule, for instance for s ,, we obtain

S50 = P32 =5

The GGPT is constructed similarly to the usual Pascal Triangle (PT), with only two modifi-
cations. First, in evaluating a given node numerical element in the GGPT, its upper right-hand side
node element is taken twice and the upper left-hand node coefficient is taken in the same way as
in the classic PT. Second, before performing calculations for node coefficients in the (k + 1) row
of the GGPT we must subtract the k™ row of the SMNT from the A™ row of the GPT. If we denote
by g, ,, the GGPT coefficient corresponding to the (%, m)™ node, then the following rule,

&eom = &kt mo1 ~ k=1, m-1 + 2(&k=1,m — k=1, m)> @)

holds for £ =0,1,2,...,nand m=0,1,...,k with g, y=1and g, ; , =0 form>k-1and g, |,
=0 for m—1<0. The above rule is illustrated by the following representation of the GGPT:

k GGPT

01

1)1 1

211 3 1

311 7 5 1
411 13 16 7 1
5/1 21 40 29 9 1

Now we can show a link between the MNT and the generalized and shifted triangles. Applying
successively, row-by-row, the rules corresponding to the GGPT and SMNT for the MNT and

comparing coefficients that correspond to a given node in all three triangles it is easy to demon-
strate that by formal notation we have

MNT = (GGPT — SMNT). 8)

We must emphasize that in this expression the subtraction must be performed successively "row-
by-row." This process can be represented by the following diagram:
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RowkofMNT—mle%) Row k + 2 of SMNT
ne® 5 Row k+ 1 of GPT —Me®

—> Row k + 1 of GGPT — Row k + 1 of SMNT = Row k + 1 of MNT.

An illustration of this procedure is shown in the following construction:

k GGPT k SMNT k MNT

0|1 0 01

111 1 1{0 0 111 1

211 3 1 210 0 0 211 3 1

3|11 7 5 1 ~—3/0 1 00 = 3|1 6 5 1

411 13 16 7 1 410 3 100 41110 15 7 1
5|1 21 40 29 9 1 50 6 5100 5/!1 15 35 28 9 1
611 31 8 91 46 11 1 6/0 10 15 7 1 0 0 61 21 70 84 45 11 1

Studying the above construction, it is easy to prove that the following recurrence equation:
Pk,m = Pi-t,mt Y 2Pk t,m = Pi-2,m ©)

holds for the coefficients of the MNT with £k =0,1,2,...,nand m=0,1,...,k, where p, ;=0 if
r <0 and/or s> 0. For example, isf we fix k=5 and m = 3, then we obtain

Ds3=Pa2+2ps 53— P33=28

The above construction leads to important simplifications in determinating the transfer functions
of a ladder network with a large number of interacting cells. Some other interesting results may
be obtained by considering special diagonals of the usual Pascal Triangle or a particular direct
formula for successive rows of the MNT. The work in this direction is under development, and
further results will be published soon.

4. NUMBER OF TERMS IN THE TRANSFER FUNCTION
AND THE FIBONACCI SEQUENCE

To each ladder network can be attributed a corresponding signal flow graph by virtue of
which the transfer function from the source node to a sink node can be determined. In the signal
flow graph of a ladder network, there are no loops and, consequently, the total transfer function
simplifies to the form of expression (3). On the other hand, the signal flow graph of a ladder net-
work can be represented by an oriented graph attributed to the MNT (see Fig, 2).

k=0 ------cn-----20,
r1 N\
Shommmmmm e T Y
7 N_ /S N

k=2 il VAT o9

/OON/ NS N
k=3 ----g05—03 T Y
. /NS NS NS N\
_4°-u 2O TR YT Y

N

b5l Nl Nof e NoZ NoZ N

Each oriented branch of this graph is labeled by a transmittance equal to one. The resulting node
coefficients correspond to the respective coefficients of the MNT and, simultaneously, to the
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number of open paths in the signal flow graph counted from the source node (the top of the
graph) to the sink node (the given node in the graph). The presented graph is very useful for
determining all paths appearing in the total transfer function of a ladder network containing a
large number of interacting cells as, for instance, a dozen or several dozen. Moreover, it gives a
possibility to answer the following question, among others: How many different open paths and
corresponding total transfer functions appear in the signal flow graph and in the ladder network,
respectively? It must be noted that, in the case of a quite simple ladder network, the number of
open paths in the total transmittance increases rapidly with the number of cells. It can be
determined by suitable use of the Fibonacci sequence that

F}c+1:‘F}c+F}(—1> k:O,l,Z,...,n, (10)
with Fy =0 and F; = 1.
From Binet's formula, we have

_ 1 [Hﬁ)k_(l—\/g

F, =
I 2 2

The form of this expression can be simplified by taking into consideration the Newton expansion
of a power of a binomial in which the values a=1and b= +4/5 or —+/5 are substituted. Finally,

we obtain
1 1(k K k [k
Fk :F[(l)+5(3)+52(5)+”5 (2r+l)+"'+} (12)

Note that the right-hand side of this expression vanishes for 27 +1> k. For instance, at £ = 7, the
first vanishing term corresponds to 2r+1>7, i.e., ¥ > 4. In this case, the value of F, amounts to
F, =21 and is composed of four terms. Moreover, a direct inspection of the oriented graph
shown in Figure 2 points to a relationship between the number of open paths appearing in the
total transmittance of a given ladder network. It is equal to the sum of all paths counted from the
top node to all sink nodes attributed to a given level in the oriented graph representing the MNT.
For a ladder network composed of n cells, the total number of terms which determine the transfer
function 7. (x) at the input of the »™ cell is equal to F, given by (12). If the voltage to volta<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>