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HOFSTADTER'S EXTRACTION CONJECTURE 

Russell Jay Hendel* 
P.O. Box 1533, GMF, Boston, MA 02205 

Sandra A. Monteferrante 
Department of Mathematics, Dowling College, Oakdale, NY 11769 

(Submitted February 1991) 

Let a , 0 < a < l , be irrational. For integer n>0, define f(n) - [(n + l)a]-[na]. Define 
g{n)-c if f(n) = 0 and g{n)-d'\f f{n)-\ and let x-x{a) be the infinite string whose nth 

element is g(n). 
Both the string x, and the three functions f(n),g(n), and [na] have been studied extensively. 

Classically, an astronomical problem of Bernoulli led Markov to prove results about the structure 
of x. A concise summary is presented in [12]. The results use continued fraction methods and the 
theory of semigroups. 

Recent research connects x with monoid homomorphisms (e.g., Fraenkel et al. [4]), outputs 
of automata (e.g., Shallit [9]), and general properties of strings (e.g., Mignosi [8]). 

These functions and their related sequences have obvious recreational and experimental 
flavor, are noted for their exotic functional patterns (e.g., Doster [1]), and lend themselves readily 
to computer experiments (e.g., Engel [2], or Hofstadter [7]). 

In this paper we study a problem first described by Hofstadter in an unpublished manuscript 
[6]: 

But now I would like to give an example par excellence of horizontal properties, a property which I 
call "extraction." The idea is this. To begin with, write down x. Now choose some arbitrary term in it, 
called the "starting point." Beginning at the starting point, try to match x term by term. Every time you 
find a match, circle that term. Soon you will come to a term which differs from x. When this happens, 
just skip over it without circling it, and look for the earliest match to the term of x you are seeking. 
Continue this process indefinitely. In the end you have circled a great number of terms after the starting 
point, and left some uncircled. We are interested in the uncircled terms, which are now "extracted" 
from x. The interesting fact is that the extracted sequence is the subsequence of x which begins two 
terms earlier than the starting point! To decrease confusion, I now show an example, where instead of 
circling I underline the terms which match x. In this example, a = (V5 -1) / 2. 

I have chosen this "d" as the starting point: 
I 
I 

dcd dcdcddcddcdcddcdcddcddcdcddcddcdcddcdcdd 

The underlined sequence matches the full sequence, x, term by term. Now what is the extracted 
sequence? It is: 

cddcdcddcddcdcddcd---

And you will find that this matches with the sequence which begins two places earlier than the 
starting point. Carrying it further is tedious, and does nothing but confirm our observation. Why does 
this extraction-property hold? At this point, I must admit that I don't know. It is a curious property 
which needs further investigation. 

Written while Hendel was at Dowling College, which partially supported this project. 
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HOFSTADTER'S EXTRACTION CONJECTURE 

To rigorously formulate this, we present the following definition. 

Definition 1: Suppose U = ux...un, V = vh..vm, mdE = el...ep with uhVj,ek e{c,d}, n,m>0, 
and n-m + p. We say U aligns (with) V with extraction E (notationally indicated by U ID V; E), 
if there exist integers 7(0), j(l)9 7(2), ..., 7'(p), such that 

^ = {vi...vt/(1)}e1{v>/(1)+1...vi/(2)}e2...^{vi/(p)+i...vw} (with {va...vb} empty if b<a), 
where 

(i) 0 = XO) < 7(1) < 7(2) < • • • < j(p) < m, 

(ii) et*vKi)+l9 for !<?</? . 

For example, if p = 0, U' ZDV\E with U -V and £ the empty string. Throughout this paper we 
use the nonstandard symbol (f> to denote the empty string. It is easy to see that UZDV;$ if and 
onh/ifU = V. 

If U D F ; E, then U, V, and E are call the original, aligned, and extracted strings, respec-
tively, and the relationship itself is called an alignment. 

Remark: Define strings U = dcdcdmd V = dd. To clarify some subtleties in Definition 1, we 
explore the consequences of dropping requirements (i) or (ii). 

If we drop the requirement of strict inequality, j(p) <rn, in Definition l(i), then we allow 
Uz>V; ccd withy(l) = 1,7(2) = j@) = m = 2. 

If we keep requirement (i) but drop requirement (ii), then we allow U ZDV; cdc, with 7(1) = 
7(2) = 7(3) = 1, m = 2, e2 = y ^ + i and, similarly, we allow U => V; dec, with 7(1) = 7(2) = 0, 
7(3) = 1, m = 3,el = vj(l)+l. 

Thus, for given original and aligned strings, without requirements (i) and (ii), the extracted 
string is not necessarily unique. However, with requirements (i) and (ii), we can prove the follow-
ing lemma. 

Lemma 1: For given strings U and V, there is at most one string E such that U uV;E. 

Proof: We suppose U IDV;E, UZDV;E'9 a n d E ^ E ' and derive a contradiction. 

By Definition 1, there are sequences jQ),...9j(p)9 and7'(l),..., j'{p) satisfying (i) and (ii) of 
Definition 1 and 

U = {vi...v</(1)}g1{v</(1)+1...vy(2)}e2...^{v</(/,)+1...vm}, (*) 

U = {vi--yr{i)}e{{vm+h.yn2)}e^ (**) 

Observe that, for l<r<p, er = the {j(r) + r}^ element of U. Similarly, if t is given such that 
either j(r) + r <t < j(r +1) + (r +1) for some r, 0 < r <p-1, or j(r) + r <t <m with r = p, then 
vt_r = the tth element of U. 

Let s be the largest integer such that j(r) = j'(f) for 0 < r < s. Then s exists and is positive 
because 7(0) = 0 = 7'(0). Since we assume E^E', $< p. 

If we further suppose that j(s) < jf($), then j'(s -1) + (s -1) < j(s) + s< j'{s) + s. 
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HOFSTADTER'S EXTRACTION CONJECTURE 

Therefore, by considering (*) and (**), respectively, the {/(s) + s}st element of t / Is, simul-
taneously, es and v,(5)+1, contradicting Definition 1 (II). A similar argument holds if j'(s) <j(s). 
These contradictions show that E = E' and complete the proof 

Recall that u is & prefix (that is, left factor) of v if there is a stringy such that v = uy. Simi-
larly, u is a suffix (or right factor) of v, if v = j / / / for some string j . We say that the stringy is the 
limit of the sequence of strings yiri), n = 1, 2, 3, ..., notationally indicated by y - lim y(n), if, for 
each positive integer m less than or equal to the length ofy, the left factors of length m of y{ri) and 
y are equal for all sufficiently large n. 

Definition 2: Suppose U, V, and E are (possibly infinite) strings. Suppose U(n),V(ri), and 
E(n), n>\, are sequences of finite strings such that U(n)z)V(n);E(n), with limU(n) = U, 
lim V(ri) = F, and lim E(n) = £ . Then we say J7 aligns V with extraction E and indicate this, 
notationally, by U ZD V; E (we do not require E to be infinite). 

Remark: By a proof similar to that of Lemma 1, it can be proved in the infinite case also that E is 
(uniquely) functionally dependent on U and V. 

Let xm denote x with the left factor of length m deleted. We can now formulate the general 
Hofstadter conjecture as follows: 

Hofstadter's Conjecture: For any a and any m > 2 

xm ZDX; xm_2. (1) 

Example 1: For the remainder of this paper we assume a = (V5 - l ) / 2 . In this case, the 
sequence 

x = dcd dcd cd dcd dc dcd dcd cd dcd dcd cd dcd dcd cd dcd cd dcd dcd cd dcd • • • 

has been described fairly thoroughly in the literature (see Tognetti et al. [11]). The sequence is 
referred to as the Golden sequence or, sometimes, the Fibonacci sequence. With 

xx - cd dcd cddcd dcdcddcd cddcddcdcddcd • • • 
x3 = dcd cddcd dcdcddcd cddcddcdcddcd • • •, 

Hofstadter's conjecture for m = 3 asserts x3 z> x; Xj. 
We define c0 = c, cx = d, 

cn=cn_2cn_u n>2. (2) 

Then c2 = cd, c3 = dcd, c4 = cddcd, c5 = dcd cddcd, and c6 = cddcd dcd cddcd. 
The following result is well known [12]. 

Lemma 2: x - q c 2 . . . . 

A crucial component of the proof of Hofstadter's conjecture is a concatenation lemma assert-
ing that under approprite conditions the extractions of concatenated strings are the concatenations 
of their extractions. 
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Lemma 3: 
(i) Let U, V, E and U\V',Ef denote arbitrary strings of finite length. If UZDV\E and 

U' z> V'\E\ then UU' ID W'\ EE\ 
(ii) If UhVh andEh l<i <m, are arbitrary strings of finite lengths with m some integer, and if 

Uj ZDVj'yEj, 1 < /' < rn, then YlUjID YIVJ; IIEt (with products denoting concatenation). 
Proof: Part (ii) follows from part (i) by simple induction. To prove (i), we suppose, using 

Definition 1, that 
U = {V!... v/(1) }ex {v/(1)+1... v/(2) }e2... ep {vy (p)+l...vm}, 

^' = R. .v; , ( 1 ) K^ 

for some sequences of integers, 0<j(l)<--<j(p)<m, 0<j'(l)<--'<jf(pf)<m' with V = vv.. 
vm, V' = vl...v'm„ E = el...ep9mdE' = e[...e'pl. Then 

To prove £/£/' ZDW\ EE', we verify that requirements (i) and (ii) of Definition 1 are satisfied by 
the sequence of integers 0<j(l)<j(2)<~'<j(p)<m + j'(l)< rn + j'(2)<---< m + j'(p')< 
m + m'. 

The applicability of Lemma 3 will be enhanced by developing a notation for products of cn. 
Formally, for integers k,p>0, q>l, with q dividing (p-k), recursively define Pk,P;q-
Pk,P-q;qcp if P > &, ancl Pk,k;q~ck- If P < k, then Pjc,p;q = 0- If 9 = 1, then by abuse of 
notation we will drop q and let PktP - Pk,p-,\- Similarly, we let Pk - l i m ^ ^ Pt,p-\- Using this 
notation, Lemma 2 reads x = Px. 

Lemma 4: Pa+2t b =) Pa+h b_x\ PQt b_2, for a > 0, b > a + 2, 
Pa+2,b => Pa,b-l\ Pa+l,b-2, & * a > 0, b > G + 2 , 

ftfpii,^, for6>a>0. 
Proof: First, observe that c2 z) q; c0 and c3 ID c2; q. If, by an induction assumption, cn_2 3 

c„_3; c„_4 and cn_{ 3 c„_2; c„_3, for some n>4, then, by Lemma 3 and (2), cw z> c„_x; c„_2. Conse-
quently, applying concatenation (that is, Lemma 3) to the b + \-(a + 2) alignments, ca+2+J 3 
ca+i+i;ca+i, 0<i<b-(a + 2),yidd$Pa+xbiiPa+lb_l;Pa,b_2. 

To prove the second assertion in Lemma 4, note that ca+2 ID caca+l; <f>, by (2). We then apply 
concatenation to this alignment and the alignments ca+2+i ZDca+l+i; ca+i, \<i <b-(a + 2). Note 
that, if b = a + 2, then Pa+ib-2 = ̂  and both the statement and the proof are still valid. 

The last assertion in Lemma 4 is obvious. 

Corollary: Pa+2 3 Pa+l, Pa, Pa+2 z> Pa, Pa+l, Pa^PaJ. 
Proof: Let b go to infinity in Lemma 4. 

Examples: Using Lemmas 3 and 4 and the Corollary, we can explore Hofstadter's conjecture, 
(1), form = 2,3,4. 

m = 2: By applying concatenation to <i IDJ; <j> and P3ZDP2; PU we infer x2 ID X; X. 
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m = 3: The assertion P3 ID / } ; P2 is equivalent to x3 DX;XJ. 

m = 4; Note that x4 = aif^, x = d^, and x3 = i^. Therefore, applying concatenation to the 
alignments cdz)d;c and P4 ZDP2;P3 implies that x4 IDX;CX3. Consequently, by Lemma 1,(1) 
cannot hold for m = 4, since x2 begins with a rf. Similar reasoning shows that (1) is false for 
m = 9,12,... . 

To generalize the m = 4 case precisely, recall Zeckendorf s result that every integer m can be 
represented uniquely as a sum of nonconsecutive Fibonacci numbers, m — X/>2 ̂ (0-̂ J > with £(/) in 
{0,1}, £•(/) = 0 if £•(?' f 1) = 1, and s(n) = 1 with e(i) = 0 for i > n +1, for some integer « > 2. The 
ascending set of £•(?) is the Fibonacci representation ofm [9]. We define an injective map from 
nonnegative integers to finite binary strings, m* - s, such that s has length n - \ and the ith com-
ponent of s equals s{i +1) for 1 < / < n - 1 . 

We will use standard conventions about exponents and string concatenations. For example, 
54* - (01)4. In the sequel, in the proofs of Lemma 5 and Theorem 1, certain closed formulas will 
be given for (/w + 1)* and (m-2)*. The relationships between m* and (m±j)* can be "translated" 
easily into well-known identities. For example, the assertion that, if m - (10)^ 1 for some k>0, 
then (m +1)* = (00)* 01 is seen to correspond to the identity F2 + F4 + • • • + F2Jc+2 = F2k+3 - 1 . 

Therefore, in the proofs of Lemma 5 and Theorem 1, these closed formulas will simply be 
stated without further elaboration. 

Some of the relationships between m and the m^ character of x are explored in [3]. The 
examples for which (1) fails, m = 4, 9,12,17,22,25, 30, 33,..., have Fibonacci representations 
beginning with a one followed by an odd number of zeros. This suggests the following modified 
Hofstadter 's conjecture: 

For all m > 2, if m - 102A:+1 Is, for some integer k > 0 and some binary string s, then 

xmZDx; cxm_v (3) 

Otherwise, (1) holds. 

Remark: By the examples presented after Lemma 4 and its corollary, the modified Hofstadter 
conjecture is true for m = 2, 3, 4. 

We now state all identities needed in the proofs of Lemma 5 and Theorem 1: 

clP2,2k;2=c2k+l> fcr&>l, ( 4 ) 

C2^3,2k-l; 2 ~ C2k > ^0T & - ^ 

P3, 2*+l; 2 - P\, 2k , for A > 1 

(5) 

(6) 

(7) 

(8) 

Pl,2k;2 ~ c Pl,2k-U for £ > 1. 
c l A , 2k; 2 = P\, 2k-l > for & > 1 

Pa+l, b-*M = Ca+lPa+2, b = Pa+l b if a + 1 < b - 1. (9) 

For / > 2, and integers K(i), with K(i +1) > K(i) + 2, j<i<t-\, withy in {0, 1}, 
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PfCU>+LKU+l)-2 ' • ' PK{t-l)+\,K(t)-2CK{t)+\ = PKU)+1,K(J+1)VK(J+1)+2,K(J+2) • • • ^T(f-l)+2,£(/)}> (10) 

the expression in braces being empty if t < j + 2. 

To prove (4), note that, if k - 1, then c ^ = c3 while, if k > 1, then, by (2) and an induction 
assumption, c2^+1 =c2^_1c2/: = ̂ 1̂ 2,2yt-2; 2C2̂  -cilD2,2*;2- The proofs of (5)-(7) also follow from 
(2) and an induction assumption. Equation (8) follows from (7) by cancelling the leftmost c on 
both sides of the equation. 

To prove (9) note that, if a + 1 < A-2, then, by (2), Pa+lb„2cb+i = Pa+\,b = Ca+iFa+2,b while, if 
a + l = b-l, then Pa+\,b-2- $> s o ^at (9) becomes cb+l = cb_xPb^b = Pb_^by which follows from 
(2). Note, however, that, if a + l >b, (9) is false. Equation (10) follows from (9) by a straight-
forward induction. 

Definition 3: Given an integer m, a strictly increasing function/on the positive integers is said to 
be a representation of xm \£xm = c^^c^2)cf(3) 

To each integer m>\ with Fibonacci representation, s(i), i > 2, with s(n) = 1, s(i) - 0 for 
i>n + \ we associate a triple (n,j,z), where n-j is the total number of ones in the Fibo-
nacci representation s of m, and z is a strictly increasing sequence, z(l),z(2),...,z(j) with 
s(z(i) +1) = 0, \<i < j . As an example, if m = 54, then n = 9, j - 4, andz(i) - 2 / -1 for / = 1, 2, 
3,4. We now describe a canonical representation of xm. 

Lemma 5: Given an integer m>2 and its associated triple, (n,j,z), the function/, defined by 
/ ( / ) = z(i), \<i <7, f(j + l + t) = n + t, t - 0,1,2, 3..., is a representation of xm. 

Proof: To start an induction argument, we treat the case m-2. If m - 2, then m = 01, 
« = 3, J = 1, andz(l) = 1. Clearly, xm = qi^ as required. The induction step has three cases. 

Case 1—m* = 00s with s a binary string: Clearly (m + l)* = 10s. By induction, we may 
assume that a representation/of xm exists such that / ( / ) - 1 , / = 1,2. Thus, xm - cxc2y for some 
infinite string y and, consequently, xm+l = c2y as required. 

Case 2—m* = (01)*00s with k>\ and 5 a (possibly empty) binary string: Then (m + l)* 
= (00)* 10s. By induction, we may assume that there is a representation / of xm such that, 
whether s is empty or not, _/"(/) = 2/ — 1, l<i<k, and f(k+i) = 2k + i, i = 1,2. Thus, xw = 

î,2£+r,2>'fbr some infinite stringy and, therefore, by (6), xm+l = Pxik+v^y ~ ^1,2^ a s required. 

Case 3— ##f* = (10)*0s with A > 1 and s a binary string: Then (m + l)* = (00)*_i010s. By 
induction, we may assume there is a representation / of xm with / ( / ) = 2/, 1 < / < A:, /(& +1) = 
2£ + l. Thus, xw = i^^yt-^J f°r some infinite stringy and, consequently, by (8), xm+l = ^ A ^ ^ 
= Pi2k-\y a s squired. 

Clearly, for each m>2, one of these three cases must hold and, consequently, the proof is 
complete. 

Theorem 1: The modified Hofstadter's conjecture is true for all m > 2. 
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Proof: The theorem has already been verified for rn = 2, 3, 4. If m> 5, then there exist 
integers * > 1, £(1), &(2), ...&(/), k(i) > 1, such that either 

wf* = 10*(1)1...0*(r)l (11) 
or 

/w* = 0*(1)10*(2)1...0fc(r)l. (12) 

To prove the theorem, we need the Fibonacci representations for (m-l)* and (m - 2)*. 
There are now four cases—1A, IB, 1C, and ID—depending on whether m begins with a 1 or 
not and depending on whether k(X) is even or odd. 

Case 1A—(11) holds, with k(l) odd: Then, clearly, (m-l)* = 0*(1)+11{0*+2) 1... 0k(t) 1}, the 
expression in braces being empty if t = 1. 

Define integers 

K(0) = 09 K(i + l) = K(i) + l + k(i + l), / = 0, l , . . . , r - l . (13) 
Clearly, 

By Lemma 5, 

and 

K(i + l) > £(z') + 2, / = 0,1,..., t-1. (14) 

Xm ~ PK(0)+2,K(1) ••• ̂ K(t-l)+2,K(t)^K(t)+2 0-V 

Xm-l ~ P\,K(\)YK(l)+2,K(2) ••• ̂ K(t-l)+2,K(t)j ^K(t)+2- U ^ ) 

The expression in braces is empty if t = 1. 
Using Lemma 4 and its corollary, we apply concatenation to the alignments 

^2,K(\) D ° U ( l ) - l i M),r(l)-2> 

*K{i)+2,K{i+Y) ^ *K(i\K(i+\)-\> *K(i)+l,K(i+l)-2, * - l - * ~ *> 

*K(t)+2 ^ A : ( 0 ' ^ ( 0 + 1 ' 
and 

to obtain 

with 
*w=>*;.y (17) 

J ~ CPK(0)+1,K(\)-2 •••^(r-l)+U(f)-2^(f)+l- 0*0 

Since k(l) is odd, we must prove (3). By (17), to prove (3), it suffices to prove y-cxm_v 

Therefore, by (16) and (18), it suffices to prove 

^(0)+l,AT(l)-2 ••• ̂ K(t-l)+l,K(t)-2CK(t)+l = ^K(0)+l,K(l) yK(l)+2,K(2) ••• ^K(t-l)+29K(t)j> 

which follows from (14) and (10). 

Case IB—(11) holds with 
k(l) = 2k, k>l: (19) 

For notational reasons, it will be clearer in cases IB, 1C, and ID to first assume that t > 2. The 
t = 1 case can then be treated separately. If t > 2, then (m - 2)* = (10)* 10 0k(2) 1... 0*(0 1. Define 
K(i) as in (13). Then (14) and (15) still hold. By Lemma 5, we have 
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xm-2 ~ P2,2k;2c2k+2PK(l)+2,K(2) ••• ^(/-l)+2,K{t)PK{t)+2- (2°) 

Proceeding as in case 1A, we apply Lemmas 3 and 4. Equations (17) and (18) still hold. 
Since k(l) is even, we must prove (1) instead of (3). By (17), to prove (1) it suffices to 

prove y = xm_2. Therefore, by (18) and (20), it suffices to prove 

C^K(0)+l,K(l)-2 ••• ̂ K(t-l)+l,K(t)-2CK(t)+l = ^2,2/:;2<:2yt4-2^(l)+2,r(2) ••• ̂ K(t-l)-h2,K(t)- ( 2 1 ) 

By (19) and (13), K(0) +1 = 1 andK( l ) -2 = {k(l) + 1 } - 2 = 2k-1. Hence, by (7), proving (21) 
is equivalent to proving 

A,2fc;2^:(l)+l, i :(2)-2 ••• ̂ ( r - l ) + l , ^ ( / ) - 2 C ^ ( 0 + l = ^2,2k;2CK(l)+l^K(l)+2,K(2) ••• PlC(t-l)+2,lC(t)> 

which follows from (14) and (10). 

To complete the proof of case IB, we treat the t = 1 case: If t = 1, then m*, (m-2)*, xm, 
and xm_2 are 102*1, (10)^1, P2,2k+iP2k+3> an^^2,2^;2^+2> respectively. Using Lemma 4, we 
apply concatenation to the alignments P2i2k+i 3 ^1,2^ cP\,2k-i a n d ^2k+3 ^ Pik+i* ^2k+2 t o obtain 
(17) with y - cPh2k-\P2k+2 To prove (1), it suffices to prove xm_2. = y, which follows from (7). 

Case 1C—(12) holds with (19): For t > 2, we have (m-2)* = lO(Ol)^"100*(2) 1... 0*(f) 1. 
Define 

K(0) = 0, KQ) = /c(l), K(i +1) = X(i) +1 + *(i +1), 1 < i < t -1. (22) 

Note that, by (19), (14) still holds. By Lemma 5, 

Xm ~ P\,K(\)PK{\)+2,K(2) ••• ^K(t-l)+2,K(t)PK(t)+2 ( ^ 
and 

Xm-2 - c2P3,2k~l;2c2k+\PK(l)+2,K(2) ••• ̂ ( f - l ) + 2 , £ ( 0 ^ ( 0 + 2 - (^^) 

Using Lemma 4 and its corollary, we apply concatenation to the alignments 

M,AT(1) ^ M ^ C l ) ' r> 

^T(l)+2,/:(2) 3 ^r(l)+l,AT(2)-lJ ^ T ( 1 ) , A : ( 2 ) - 2 J 

^( / )+2, / : ( /+!) ^ PK(j),K(i+\)-\i ^AT(/)+l, AT(/+l)-2 > 2 < 7 < £ — 1, 
and 

to obtain (17) with 

^T(r)+2 ^ -*AT(0> ^ ( 0 + 1 ' 

J7 - PK(1),K{2)-2\PK{2)+1,K{3)-2 ••• PK(t-l)+l,K(t)-2jPK(t)+h (^-V 

the expression in braces being empty if t = 2. 
By (17), to prove (1) it suffices to prove y = xm_2. Therefore, by (25) and (24), it suffices to 

prove 

^( l ) ,^(2)-2{^(2)+l ,* : (3)-2 ••• PK(t-l)+l,K(t)-2j CK(t)+l ~ C2^3,2£-l;2C2M^T(l)+2, K(2) ••• ̂ AT(f-l)+2, K(t)• C^^J 

By (19) and (22), K(l) = 2k so that, by (5), proof of (26) is reduced to proof of 

PK(1)+1,K(2)-2 '•• ^K(t-l)+l,K(t)-2CK(t)+l ~ PK{\)+\,K{2) (^(2)+2,K{2) ••• ^K(t-l)+2,K(t)]> 

which follows from (10) and (14). 
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It remains to treat the case t-\. If k = 1 also, then case 1C reduces to (1) with m = 3, 
which has already been treated. If &>1, then m*,(m-2)*,xm, andxw_2 are 02k 1,10(01)^-1, 
p\,ikp2k^ a n d c2px2k-\;2pik^ respectively. By concatenating the alignments, Ph2k uPh2k;<f> 
and P2k+2 ^ P2k+\> P2k> w e derive (17) with y - P2k = c2kP2k+v To prove (1), we must prove that 
y ~ xm-2 > which follows from (5). 

Case ID—(12) holds with 
ft(l) = 2ft + l , k>0: (27) 

For r > 2, we have (»#-2)* = 0(01)* 00*(2) 1... 0*(r) 1. Define K(i) by (22). Then (14) and (23) 
still hold. By Lemma 5, 

Xm-2 ~ ClP2,2k;2C2k+2PK(l)+2,K(2) ••• PK(t-l)+2,K(t)PK(t)+2- (28) 

Proceeding as in case 1C, we have (17) with (25). By (17), to prove (1) it suffices to show that 
y ~ xm-2 • Therefore, by (25) and (28), it suffices to show 

C\P2,2k; 2C2k+2PK(l)+2, K{2) • • • PK(t-l)+2> ^ ( 0 ~ CK(l)PK(l)+l, K{2)-2 • • • PK(t-1)+1, K(t)-2CK(t)+\- (29) 

By (27) and (22), K(l) = 2k +1; therefore, by (4), proof of (29) reduces to proof of 

CK(l)CK(l)+ lPK(l)+2, K(2) •'• PK(t-l)+2, K(t) ~ CK(l)PK(l)+l, K(2)-2 \PK(2)+l, K(3)-2 • • • PK(t-l)+l, K(t)-2 J CK(t)+l> 

which follows from (10) and (14). 
The t-\ case is treated in a manner similar to the t-\ case in IB and 1C. This completes 

the proof of Theorem 1. 

The proof and formulation of a modified Hofstadter's conjecture for other irrationals remains 
an open and difficult problem. To generalize (3), it seems reasonable to conjecture that, for every 
irrational, there exists a finite set of strings and a finite set of integers such that, for every m, 
xm ZD x; Qxm_n with Q and n belonging to these finite sets. The authors announced a proof of 
the deceptively simple case a - - 1 with m equal to sums of Pell numbers [5]. This proof 
required considerable alteration of Definition 1 and Lemma 3, as well as a more developed form 
of Lemma 4. 
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AN UNEXPECTED ENCOUNTER WITH THE 
FIBONACCI NUMBERS 

M. N. Deshpande 
Institute of Science, Aurangabad, 431004 India 

(Submitted April 1992) 

In this article, an incident is narrated whereby the author unexpectedly came across the 
Fibonacci numbers while solving a problem concerning arithmetic progressions. The incident 
occurred when the author observed that 3 + 4 + 5 + 6 = 18 = 3-6. That is, the sum of the elements 
in the arithmetic progression 3, 4, 5, 6 is equal to the product of the first and last terms of the 
progression. Its generalization can be stated as follows. 

Problem: Find three positive integers a, h, and n such that 

a + (a + /*) + ••• + (a + (n - \)h) = a(a + {n- l)h). 

Solution: First, note that since we have an arithmetic progression, we have a solution when 

n(n-\)h 2 / I M / i \ 
na + — J— = al+a(n-l)h (1) 

which on solving for a becomes 

_n-(n-l)h + ̂ n2 +(n-l)2h2 

a- 2 (2) 

Since a is an integer, for a solution, there must be an integer z such that z2 - n2 +(n-l)2h2 

or such a triple (n, (n - l)h, z) is a Pythagorean triple. Hence, by the well-known parametrization 
for Pythagorean triples, a solution must exist if and only if there exist integers x and y such that 

2xy = n, x2-y2 =(n-l)h, x2+y2=z, (3) 
or 

2xy = (n-l)h, x2-y2 =n, x2+y2 =z. (4) 

Solving for h in both (3) and (4) and then finding the value of a in (2), we have a solution to 
(1) whenever there exists a pair of integers x and j ; such that 

2 _ 2 

-—?- = h, a = y(x + y), n = 2xy (5) 
2xy-l 

or 
2 ^ =K a = x(x-y), n = x2-y2. (6) 

x -y - 1 
A program in BASIC was written and run to obtain such pairs of integers x and y. A careful 

analysis of the output revealed that many solutions were related to the Fibonacci numbers. That is 

Theorem: Let m be any positive integer, i^ b e t h e l Fibonacci number, n-F2m_lF2m+2, 
a = F2m +1, and h = 2. Then, we have a solution to (1). 
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Proof: First, we observe the well-known facts that 

n ~ I 2m-lr2m+2 ~ r2m+l r2m 
and 

a = F2m-V2m+l ~ F2m + *• 

Now, using these identities with (1) and the definition of the Fibonacci numbers, we have 

n{a + (7i - 1 ) ) = (F2
2
m+l - F2

2
m)(F2

2
m + F2

m+1 - F2
m) 

~ \^2m+l ~^2m)F2m+\ 

~ *l2m+l*'2m-l*'2m+2 

= F2m+lF2m-l\2F2m+l ~ F2m+\F2m-l) 

~ ^2m+l^2m-l\^2m+l ~ ^2m ~~ V 

= F2m+\F2m-\{F2m + 1 + 2F2m+l ~ 2F2m ~ 2 ) 

= a(a + 2(n-l)). 

Hence, there exist a countable infinite set of segments of arithmetic progressions with a 
common difference of 2 such that the sum of the elements in the segments is equal to the product 
of the first and last terms. Below, we give a few examples: 

2,4,6 (m = l), 
10,12,14,..., 40 (m = 2), 
65,67, 69,..., 273 (at = 3), 
442? 444,446,..., 1870 (m = 4). 

The other values generated by the BASIC program did not appear to be related to the 
Fibonacci numbers. 

The connection between the solution of the problem and elements of the Pell sequence is 
established by the author in an article which will appear in Math. Student 63 (1994). 
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ADDENDUM TO 
"Second Derivative Sequences of Fibonacci and Lucas Polynomials" 

by 
Piero Filipponi and Alwyn F. Horadam 

In the above paper [1], the proof of Proposition 9 was inadvertently omitted. It reads as 
follows: 

Proof of Proposition 9: From (1.8) we have 

f n 

5 Cn^F^F^ =\[tiL>Fn-i-tFiFn. 
7=0 

. " ( 5 H ) 

J /=0 ^ /=0 ^ /=0 

From (5.1) and (5.3), (5.11) can be rewritten as 

C„^-^[r}(n + l)Fn]-j-5(nL„+l+2F„)-~(nL„-Fn) 

= ±[5n(n + l)F„ - 2Fn - 2nLn+2] = ^ [ (5» 2 - 2)F„ + 5nFn - 2nLn+2 ] 

= ^ [ (5» 2 - 2)F„ - n{2Ln+2 - 5FJ] = ~[5n2 - 2)F„ - 3nLn] = F™ / 2. D 

Additional comment: With regard to Conjectures 1-7 in [1], some of which were known by us 
to be true, we wish to record that, in private correspondence with us, both Richard Andre-Jeannin 
and David Zeitlin have independently established the validity of these Conjectures. 
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THE FIBONACCI AND LUCAS TRIANGLES MODULO 2 

Diana L, Wells 
Department of Mathematics, University of North Dakota, Grand Forks, ND 58202 

(Submitted May 1992) 

1. INTRODUCTION 

The Fibonacci and Lucas coefficients are defined as 

FnFn-\'"Fl 

9 (FkFk-l ''' Fl)(F„-kFn-k-l ••'Fl) 
and LnLn_i "Li 

(At Afc-1 ''' AXAi - / r Ai-Jfc-1 A) 
These coefficients have been studied by several authors, [2], [8], [14], and [18]. Using these 
definitions, what we call the Fibonacci and Lucas triangles are formed in the same way as Pascal's 
Triangle is formed from ordinary binomial coefficients, that is, the /2th row is [»] for 0<k<n. 
Other authors, e.g., [3], [10], have also constructed such triangles in various ways. The ordinary 
binomial coefficients modulo 2 and Pascal's Triangle modulo 2 have been studied extensively in 
[4], [5], [6], [7], [11], [17], [20], [22], [23], and [25]. Among problems of interest have been the 
determination of the parity of binomial coefficients, the number of odd coefficients in the nth row 
of Pascal's Triangle, and the iterative structure of Pascal's Triangle modulo 2. We will extend 
these results to both the Fibonacci and Lucas coefficients modulo 2 in sections 2 and 3. In section 
4 we also determine the relationship between the Fibonacci and Lucas coefficients. 

Portions of these triangles, both the originals and their modulo 2 reductions, are shown 
below. Since the Lucas coefficients are not always integers, the symbol a will be used to denote 
those coefficients, M , that have a higher power of 2 in the denominator than in the numerator. 

1 
11 
1 2 1 

1 3 3 1 
1 4 6 4 1 

1 5 10 10 5 1 
16 15 2 0 1 5 6 1 

17 2135352171 
1 8 28 56 70 56 28 8 1 
Pascal's Triangle 

l 
11 
10 1 
l i n 
1000 1 
110011 
1010101 
11111111 
10000000 1 Pascal's Triangle Modulo 2 

1 
1 1 

1 1 1 
1 2 2 1 

1 3 6 3 1 
1 5 15 15 5 1 

1 8 40 60 40 8 1 
1 13 104 260 260 104 13 1 

1 21 273 1092 1820 1092 273 21 1 

1 
1 1 

1 1 1 
1 0 0 1 

1 1 0 1 1 
1 1 1 1 1 1 

1 0 0 0 0 0 1 
1 1 0 0 0 0 1 1 

1 1 1 0 0 0 1 1 1 
Fibonacci Triangle Fibonacci Triangle Modulo 2 
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i ' . 
1 3 1 1 1 1 

1 4 4 1 1 0 0 1 
1 7 - ^ 7 1 1 1 0 1 1 

1 11 77 77 n x 1 1 1 1 1 1 
1 is 66 3 *fl 3 66 18 1 1 0 0 a 0 0 1 

1 29 174 f f 174 29 1 1 1 0 a a 0 1 1 
1 4 7 1363 4089 44979 4089 1363 An \ l l l a a a l l l 

3 2 14 2 3 *' X 

Lucas Triangle Lucas Triangle Modulo 2 

We will need the following information about regularly divisible sequences, generalized 
bases, and a generalized form of Kummer's Theorem. 

Divisibility questions about sequences, such as which terms are divisible by a given prime, 
have been investigated by several authors, e.g., [9], [13], [15]. A sequence {un} is said to be 
strongly divisible provided 

gcd(wm, un) = %d(m, n) for all m, n > 1. 

The term regularly divisible by all primes is defined in [16] and is shown to be equivalent to that 
of strongly divisible. We use the following definition which defines the divisibility of the sequence 
for a set of primes rather than for all primes. 

Definition: Let {A^}^ be a sequence of positive integers. We say that {An}™=l is regularly divi-
sible with respect to a set of primes if= {Pi,p2, •••}, provided that, for each p G ? 3 P'iAj if and 
only if r(p')\j, for all / > 1 andj > 1, where r{pl) is the rank of apparition of p\ that is, A , is 
the first term in the sequence divisible by p1. 

A sequence is said to be regularly divisible if it is regularly divisible by all primes. Since the 
Fibonacci sequence satisfies the requirements for strong divisibility [9], it is a regularly divisible 
sequence. 

We will use r - r(2) = 3 for the rank of apparition of 2. That is, Fr is the first term in the 
sequence that is divisible by 2. For the rank of apparition of 2', we will use r (27 )-rr. 

We will use a generalized base for the positive integers. Since the Fibonacci sequence is 
regularly divisible by 2, we have that •—- is always an integer. Thus, a generalized base 2? = {1, r, 
r2, ..., rn ...} can be used [21] and the number n can be uniquely expressed as 

n = (ntnt_l-''n1n0)gj>=ntrt+nt_lrt_1 + '''+nlr+n0, where 0</i, <-Lt^-. 

The version of Kummer's Theorem we need is that in [27]: 

Rummer's Theorem for Generalized Binomial Coefficients: Let $i - {sij}J=1 be a sequence of 
positive integers. If si is regularly divisible hyp, then the highest power ofp that divides [mH is 
the number of carries that occur when the integers n and m are added in base 2P, where 
3P = {rj }J=0 with r0 = 1 and rt = rip1), for all / > 1. 
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2. THE FIBONACCI TRIANGLE MODULO 2 

One of the interesting results for Pascal's Triangle modulo 2 is that the number of coefficients 
in the nth row which are congruent to 1 modulo 2, denoted N[n, 2,1], is equal to 2f, where t is 
the number of ones in ris base two representation [24]. A similar result follows for the Fibonacci 
triangle 

Theorem 1: For the Fibonacci triangle modulo 2, the number of coefficients in the n^ row 
congruent to 1 modulo 2 is given by N[n, 2,1] = 2l3\ where t = number of l's and s = number of 
2's in /i's base 2P representation. 

Proof: The generalized base for the Fibonacci sequence is 2? = {1, 3, 6, 6,12,...}. Since 

for « = (... «2«i«o)^ a n^ £ = (••• kiKK)®* w e have that 0 < «y;, &7 < 2 for z > 1 and 0 < nQ, k0 < 3. 
From Webb & Wells [27], JV[«, 2,1] = n/2>o(wi + !)• F o r n o borrow to occur in the base 2? sub-
traction of & from n, there are two choices for kt for each nt - 1, and one choice for each nt - 0. 
If nQ = 2, there are three choices for kQ. Therefore, N[n, 2,1] = 2r35 where t = number of l's and 
s = number of 2's in «'s base 9̂  representation. 

The following theorem, which is similar to Lucas's theorem for binomial coefficients, 
provides a way to investigate the iterative behavior of the Fibonacci triangle modulo 2. 

Theorem 2: The Fibonacci coefficients satisfy 

(mod 2) 

where 

= 0 for fy > n0 and [V7 ] = 0 for ki > nt. 

Proof: If a borrow occurs in the base 2P subtraction of k from n, then ni < ki for some z. 
Thus, either T̂ l = 0 for ^0 > n0 or fgl = 0 for some z > 1 and the result holds trivially. 

If no borrow occurs, 0<kf< nt < 2 for z > 1, so that 

For z = 0, 0 < kQ < nQ < 3, and 

Thus, 

^ l ( m o d 2 ) . 

= 1 (mod 2). 

•m i>\ 

(mod 2). 
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Corollary 2.1: For n = 3h+n0 and m = 3k + kQ, 

Proof: Let 

and 

Since 

m« 
(mod 2). 

n = ntrt +nt_lrt_l H \-nlr+n0 = 3h + n0 

m-ntrt +mf_1rr_1 H hwtr+m0 = 3k + mQ. 

the coefficients in the ordinary base 2 expansion of h and & will be from the sets 

{w,,*!,-!,...,^} and {mnmt_l9...,ml}. 

When /; = /;+1 for some /, such as r2 - r3 = 6, the base 2P requires «y, mi = 0. The base 2 coeffi-
cients of A and A: will be nt andmy where rt ^rj+l. Although the exact power of 2 associated with 
each coefficient can be determined only by looking at the relationship between all the elements in 
the base, h and k will still have an appropriate base 2 expansion. The residue of (*) modulo 2 will 
be 

*)-n&>«>-
The above corollary can be used to investigate the iterative behavior of the Fibonacci triangle 

modulo 2. To begin, we will use the notation of Long [20]. 

Theorem 3: Let A„ k denote the following triangle, 

3n 
3k 

3« + l 
3* 

3n + l 
3Jfc + l 

3« + 2 
3* 

3« + 2 
3k +1 

J® 

3n + 2 
3k + 2 

a. 

b. 

The entries in A„ k will be either all congruent to 1 or all congruent to 0 modulo 2. The 
entries in the Fibonacci triangle not included in one of the triangles Anjc are congruent to 0. 

The triangles satisfy an element-wise addition modulo 2, A _̂1>A_j +A„_l>k = Ank (mod 2). 

The Fibonacci triangle of Ank's is in 1-1 correspondence with Pascal's Triangle modulo 2. 
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Proof: Since [<] = 1 (mod 2) for 0 < s < t < 3, we have 

3/i 
3* 

3/1 + 1 
3£ 

3/1 + 1 
3£ + l 

3/2 + 2 
3* 

3« + 2 
3A + 1 

3/1 + 2 
3k + 2 

n\ 

*J 

("1 
UJ "2" 

0 ^ 

r ̂  

U; 
"i" 
0 9 

M 
I k) 

"0" 
0 ^ 
(/A 
W "2" 

1 Sf 

T 
l & 
M 
{ *) 

'2' 
2 

(mod 2). 

Therefore, 

3/i 
3A: 

5 

3/1 + 1 
3* 

3z? + 2 
3* 

3/1 + 2 
3£ + l 

3/1 + 1 
3/V + l 

3/1 + 2 
3A + 2 

* = » / ( ! ) - • 

r 0 = o°o i f l ^ J ^ o 
ooo {kj 

(mod 2). 

The entries not included in one of these triangles are of the form [^+'1 with 0 < t < s < 2, and 
so are congruent to 0 modulo 2. . 

From Corollary 2.1, we have that 

3(n~l) + t' 
3(k-l) + s + 

9? L 

3(n-l) + t 
3k + s 

n-\ 
J t -1 + 

w - 1 

Thus, there is an element-wise addition of triangles that satisfies 

K-\,k-i+K-i,k = Kk ( m o d 2 ) -

If the identification 2̂  <-> 1 and 7̂  -̂> 0 is made, the Fibonacci triangle of A's is in 1-1 corre-
spondence with Pascal's Triangle modulo 2. 

i \ 
111 
10 0 1 
1 1 0 11 it 
1 1 1 1 1 1 

10 0 0 0 0 1 
1 1 0 0 0 0 11 
1 1 1 0 0 0 1 1 1 
1 0 0 1 0 0 1 0 0 1 
1 1 0 1 1 0 1 1 0 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 

<-» 
1 0 1 

1 1 1 

Fibonacci Triangle Modulo 2 Pascal's Triangle Modulo 2 
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With this theorem, once the identification with Pascal's Triangle is made, one can see that the 
pattern continues at all levels of r(2t). For example, at the level of r(22) = 6, with 

T T 
7^ rj-i \ y i and rp rp \ y u, 
l h h Jo 

we.have the identification shown below 
I 
i I 
i I I 
10 0 1 1 
1 1 0 11 
1 1 1 1 1 1 
10 0 0 0 0 1 
1 1 0 0 0 011 
1 1 1 0 0 0 1 1 1 
1 0 0 1 0 0 1 0 0 1 1 1 
1 1 0 1 1 0 1 1 0 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 1 
1 1 0 0 0 0 0 0 0 0 0 0 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 
1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 
1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 <~> 

1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 
1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 
1 0 0 10 0 10 0 10 0 10 0 1 0 0 10 0 1 1 1 1 1 
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Fibonacci Triangle Modulo 2 Pascal's Triangle Modulo 2 

3. THE LUCAS TRIANGLE MODULO 2 

Although the Lucas sequence is not regularly divisible, the structure of the triangle modulo 2 
is still determined by the highest power of 2 that divides [n]\ defined below. To determine the 
residues of the coefficients modulo 2, the following lemma will be needed. We will use the 
notation 2r \\m to mean 2* \m but that 2t+l\m. 

Lemma 1: If [n]\ = LnLn_x ...L^L^ then 

23*|||XI! for3(2Jfc)<w<3(2A + l)- and 23/:"1||[«]! for 3(2*-1) <n <3(2&). 

Proof: For the Lucas sequence 
Ln = 322 = 2 and Ll3 = 521 = 1 (mod 8). 

Thus, the length of the period modulo 8 is 12, because L0=2 and 1^ = 1. Also since 
Z„^0forl</?<12 (mod8), 

we have that 8 | Ln for any n. 
Also, as above, 

L6 = 18 = 2 and Lj = 29 s 1 (mod 4), 

so the length of the period modulo 4 is 6. For 1 < n < 6, Ln = 0 (mod 4) only for n - 3. Thus, 
Ln =0(mod4) forw = 3 + 6A = 3(2* + l),ifc>0. For \<n<6„ Ln =2(mod4) only forw = 6. So 
2\Ln and4|Z„ for n = 6k. 
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In [ri]\ there are Ul factors that are divisible by 2 and U factors that are exactly divisible by 
2. Thus., there are UI - UI that are exactly divisible by 22, and so 

23* ||[w]! for 3(2* -1) < w < 3(2* +1) and 23k~l \\[n]\ for 3(2* -1 ) < n < 3(2*). 

Theorem 4: The Lucas coefficients satisfy the following congruences. 
For 0 < m < n and 0 < s < t < 2, 

3n + t 
3m+ s { a for n even and m odd 

1 otherwise 
(mod 2). 

For 0 < m < n and 0 < t < s < 2, 

3n + t 
3m + s :0 (mod 2). 

Proof: Let £ be the highest power of 2 that exactly divides fc'J • Then e = el-(e2+e3), 
where 2*11[3/? + *]!, l^itfm + s]] md2eH[3(n-m) + (t-s)]\. 

By examining the different cases for n and m odd or even, and applying Lemma 1, we obtain 
the following values for e. 

For0<m<nmd0<$<t<2, 

e = < 

- I if n is even and m is odd; 
0 if n is even and m is even; 
0 if n is odd and m is odd; 
0 if n is odd and m is even. 

For 0 < m < n and 0 < t < s < 2, 

e = < 

1 if n is even and w is odd; 
1 if n is even and m is even; 
1 if n is odd and m is odd; 
2 if « is odd and m is even. 

th This theorem can be used to count the number of each of the residues modulo 2 in the n 
row of the Lucas triangle and to investigate the iterative patterns in the triangle. The Lucas 
sequence has the same recurrence relation as the Fibonacci sequence and, like the Fibonacci 
sequence, satisfies r(2) = 3, which is also equal to the period of 2. In determining the number of 
each of the residues in the 17th row of the Lucas triangle, we will use the generalized base corre-
sponding to 2 for the Fibonacci sequence, 2? = {1,3, 6, 6,12,...}. 

Theorem 5: Let N[n, 2, a] be the number of Lucas coefficients in the nih row congruent to a. 
For n = 3h + n0, 0 < n0 < 3, 

[(h + l)(nQ +1) if h is odd, f 0 if h is odd, 
N[n,2,l] = \,h x N[n,29a] = \,u. 

[(f + l)(«0 + l) if/iiseven, | ( f ) K + l) if his even, 

and N[n,2,0] = h(2-n0) 
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Proof: For n = 3h + nQ and m - 3k + mQ, if h is odd, then 

3h + n0 
3k + mn 

= 1 (mod 2), 

provided 0<m0 <n0. Therefore, there are h + 1 choices for k, and there are n0 + 1 choices for 
7?%. Thus, iVTrc, 2,1] = (h + l)(n0 +1). 

If/i is even, then 
3h + n0 
3k + m0 J% 

= J1 for k even, 
a for k odd. 

Thus, there are (-f+ l) choices for k to be even and (-|) choices for k to be odd. There are 
still (n0 +1) choices for m0, so that 

N[n, 2,!] = (•£ + l ) K +1) and N[n, 2, a] = (f)(n0 +1), for h even. 

If 0 < n0 < m0 < 2, then 
3h + n0 
3k+m() 

= 0 (mod 2). 

There are h choices for k and (2-n0) choices for m0, so that N[n, 2,0] = h(2-n0). 

Theorem 6: For 0 < m < n, the entries in the Lucas triangle denoted An m, 

3n 
3m 

371 + 1 
3m 

3n + 2 
3m 

J% 

3/7 + 2 
3m + 1 

'3/1 + 1' 
3w + l 

J ^ 

3^ + 2" 
3^ + 2 

are either all congruent to one or all congruent to a modulo 2. The entries not included in these 
triangles are congruent to zero modulo 2. 

Proof: From Theorem 4, it follows directly that the entries in the initial triangles are all con-
gruent to a modulo 2 if n is even and m is odd. Otherwise, all entries are congruent to 1. The 
entries not included in these triangles are I^+M , where 0 < t < s < 2, and so are congruent to zero 
modulo 2. 

Theorem 7: For /; = 2/_13, let A„, m denote the following entries in the Lucas triangle, 

nrt +1 
mr 

/?/; 
mr 

nrt +1 
2 \_mri+\ 

mr 
nrt +rf - 1 
mr + r - 1 
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and let VWjW denote the entries not included in one of these triangles. 

a. For i = 1, the initial triangles, A„ w, AW>OT+1., An+lm+h do not satisfy an element-wise addition 
modulo 2 as in the Fibonacci triangle. 

k For i > 1, the triangles satisfy 

V = V 

1 «+l ,w+l 1 0 , 0 

«,7W «,w+l — " n + L w + l -

Proof: For / = 1, from the Lucas triangle modulo 2, we can see that 

Alf0 + A u # A 2 f l (mod 2) 
A5? 2 + A5? 3 # A6? 3 (mod 2). 

Thus, the initial triangles do not satisfy an element-wise addition modulo 2. 
For i > 1 and 0<h,k< 27"1 - 1 , /? and k determine whether 2l~ln+h and 2l~lm + k are odd or 

even, so that 
nrt + 3h + t ' 
mr, +3k + $ 

3{2i~ln + h) + t 
3(27_1m + £) + s 

3/z + r 
3& + s| 

Thus, 
w; + 3h + r " 
TW; + 3& + s 

«/;• + 3A +1 
(m + X)rt + 3k + s 

,] (mod 2). 

(/i + l)r, + 3h + tl [3/i + r l , , 0 . 

cni+iii+3*+4sL3*+4( )-

Therefore, 
AW)/W = A„jW+1 - Aw+ljW2+1 - A 0 0 and V„>m = V «,/w+l — * / 1 + 1 , / H + I * 

From Theorem 7, the Lucas triangle of A s with / = 1 has initial triangles 

1 
2J = 11 

111 
and a 

Ta=aa 
aaa 

Using the identification T{ <-> 1 and Ta<-> a, the pattern in the Lucas triangle becomes more 
apparent. 

i 
11 
iii 
10 0 1 
110 11 
111111 
1 0 0 a 0 0 1 
l l O a a O l l 
1 1 1 a aa\ 1 1 
1 0 0 1 0 0 1 0 0 1 
110 110 110 11 

1 1 1 1 1 1 1 1 1 1 1 1 
l O O a O O 1 O O a O O l 

l l O B f l O l l O a c O l l 
l l l a a a l t l a a a l t l 

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Lucas Triangle Modulo 2 

<-> 

i 1 

1 a 1 

1 1 1 1 

1 a 1 a 1 

1 1 1 1 1 1 

Also from Theorem 7, we see that this pattern does not continue for / > 1. For example, with 
i = 2, if the following correspondence is made, 
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Ti 

l 
11 

= i l l 
1001 
11011 

111111 

«-» 1, 

then the Lucas triangle modulo 2 can be associated with a triangle of all ones. That is, the initial 
triangle will be the only triangle repeated. 

i 
1 I 

i i i 
1 0 0 1 

1 1 0 1 1 
1 1 1 1 1 1 

1 0 0 a 0 0 1 
l l O a a O l l 

l l l a f l f f l l l 
1 0 0 1 0 0 1 0 0 1 

1 1 0 1 1 0 1 1 0 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 
l O O a O O 1 O O a O O l 
l l O a a O l l O a a O l l 

l l l a a a l l l a a a l l l 
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Lucas Triangle Modulo 2 

<-> i i 

i i i 

4. THE RELATIONSHIP BETWEEN THE FIBONACCI AND 
LUCAS TRIANGLES MODULO 2 

We can use Theorem 2 and Theorem 4 to look at the relationship between the Fibonacci 
triangle and the Lucas triangle modulo 2. 

I 
I I 
I I I 
i oo i 
110 11 
1 1 1 1 1 1 
l O O a O O l 
1 l O a a O l 1 
1 1 laaal 1 1 
10 0 10 0 10 0 1 
110 110 110 11 
1 1 1 1 1 1 1 1 1 1 1 1 

1 0 0 « 0 0 1 0 OccO 0 1 
1 1 OflflO1 1 Oaa0 1 1 

1 1 laaal 1 laaal 1 1 
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 
110 110 110 110 110 11 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 
1 1 
1 1 1 
10 0 1 
110 11 
111 111 
10 0 0 001 
110 0 0 0 11 
1 1 1 0 0 0 111 
10 0 10 0 10 0 1 
110 110 110 11 
1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 1 
1 1 0 0 0 0 0 0 0 0 0 0 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 
1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 
1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 Lucas Triangle Modulo 2 Fibonacci Triangle Modulo 2 

Theorem 8: The Fibonacci and Lucas coefficients satisfy the following relationships modulo 2: 

s i . If 

If 

= 1, then 

then 

then 
!

0 if a borrow occurs in the n0 position, 

a if a borrow occurs in the nx position, 
1 all other borrows. 

= 0. 
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If 

If 

n 
m 
n 
m 

= a, then 

= 1, then 

n 
m\ 
n 
m 

0 if a b orrow occurs, 
1 If no borrow occurs. 

Proof: For n = 3h+'nQ = (...n2nln0)oP and m = 3k + m0 = (...7n2ml7n0)9, if M =1 (mod 2), 
then ml <nx<2 and mQ<n0<3. Thus, if /ij = 1, h is odd and H = 1 (mod 2). 

If nx - 0, then ^ = 0 and h and k are even, so that H == 1 (mod 2). 
If H = 0 (mod 2), then a borrow occurs. If the borrow occurs in the n0 position, H = 0 

(mod 2). If the borrow occurs in the nx position, then h is even and k is odd. Thus, H = a (mod 
2). For a!! other borrows, H = 1 (mod 2). 

If H = 0 (mod 2), then 0 < n0 < mQ < 3. Thus, a borrow occurs in the base 8P subtraction of 
zw from «. Therefore, H = 0 (mod 2). 

If H = a (mod 2) implies h is even and k is odd, which occurs only if nx - 0 and ^ = 1. This 
means a borrow will occur in the base 2? subtraction of m from n and H = 0 (mod 2). 

If H = 1 (mod 2), then no borrow occurs in the n0 or nx positions. However, a borrow may 
occur in other positions. Thus, 

0 if a b orrow occurs, 
1 if no borrow occurs. 

5. CONCLUSION 

The iterative patterns in the Fibonacci triangle and Pascal's Triangle modulo 2 are similar 
except for the initial triangles that are repeated in both. For the Fibonacci triangle, the initial 
triangle is 

1 
11 

T= 111 

and for Pascal's Triangle, the initial triangle is 

T= l 

ir 
These triangles arise because r(2)=3 for the Fibonacci case, which also equals the period modulo 
2 for the Fibonacci sequence and r(2) = 2 for the Pascal case, which also equals the period 
modulo 2 for the positive integers. If we look at all second-order sequences, un - aun_x +hun_2 

with initial conditions u0 - 0 and ux = 1, they can be categorized into four types. 
1. For a = 0, b = 1 (mod 2), un = un_2 (mod 2), for n > 2 and r(2) = 2 which equals the 

period of 2. 
2. For a9b'=l (mod 2), un = un_x (mod 2), for n>2 andr(2) = 3 which equals the period 

of 2. 
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3. For a = 1, b = 0 (mod 2), t/w = ww_j (mod 2), for « > 2. The prime 2 does not occur as a 
factor. 

4. For a,b = 0 (mod 2), z/„ = 0 (mod 2), for n > 2. All terms are divisible by 2. 

This means there are only four distinct triangles modulo 2 formed by the generalized coeffi-
cients, 

rn 
k 

(UkUk-l~'Ul)(Un-kUn-k-l~'Ul) 

1 
11 

101 
1. Pascal's Triangle comes from type 1 sequences: -1*1* . 

noon 
1010101 
11111111 

1 
11 

111 
1001 

2. The Fibonacci triangle comes from type 2 sequences: 11011 . 
n u n 
1000001 
11000011 
111000111 

1 
11 

111 
3. A triangle of l's comes from type 3 sequences: .y*1, . 

n u n 
l i m n 
i i i i i n i 

i n 
101 

4. A triangle of 0's comes from type 4 sequences: ^ J . . 
100001 
1000001 
10000001 

Thus, Pascal's Triangle and the Fibonacci triangle are the only two significant triangles 
modulo 2. They only differ by the repetition of the initial triangle. When the initial conditions are 
changed, the sequence is no longer regularly divisible. The triangles of coefficients from these 
sequences, such as the Lucas triangle, do not have the same iterative behavior as Pascal's 
Triangle. 
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1. INTRODUCTION 

A study of the number (l + V5)/2 = 1.618... and of its Fibonacci derivation has received 
considerable attention not only in the field of pure mathematics but also in mathematical modeling 
and analysis of such physical plants as cascades of two-ports, hot mill metallurgical processes, 
multicomponent rectifications in distillation column, reactions in stirred tank reactors and batch 
reactors [6]. As the mathematical basis for solutions of various problems in these systems serves 
usually the theory of recurrence equations ([2], [3]) of the Fibonacci sequence and their generali-
zations ([1], [4]). Many problems concerning a variety of generalizations of the Fibonacci 
sequence have appeared, primarily in The Fibonacci Quarterly, in recent years. 

We shall be concerned in this paper with the Fibonacci sequence introduced via a modified 
numerical triangle (MNT). We shall involve a generalized Pascal triangle (GGPT) and "shifted" 
form of the MNT (SMNT) and show how the MNT results from a suitable superposition of the 
generalized and shifted triangles. We shall also prove that a transfer ratio Tk (k - 0,1,2,..., ri) of 
the output to input-signal along an electrical ladder network is determined by polynomials with 
coefficients belonging to the MNT. 

2. THE MODIFIED NUMERICAL TRIANGLE 

The MNT is defined here in connection with studies of distributions of voltages and currents 
along an electrical ladder network with n identical interacting cells [5]. One elementary section of 
such structures is characterized by a parameter x determined by the product of impedance of a 
longitudinal branch and admittance of a transversal branch. 

The transfer ratio Tk (k = 0,1,2, ...,w) of the output- to input-signal (voltage or current) 
along the network (Fig. 1) is determined by polynomials in x of the corresponding degree. It can 
be determined from a solution of the following recurrence equation, 

ak+l-(2 + x)ak+ak_l=0 
with 

(la) 

(lb) al=(l + x)a0, 
where aQ denotes a known signal at the input port of the first cell and ak is the corresponding sig 
nal at the &-port of the network (e.g., ak = Vk as shown in Fig. 1). 

0 OZK-T k7l 

I r n 

X 

I v | 
Z | 

k 
1 i 
Y 
JL v

k Y 

i 

s 7 L 
^LJLJt \ 

Y 

I 

n 

- O 

Figure 1 
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The ratio Tk follows from the relation 

Tk=^-,k = 0,\,2,...,n. (2) 

It is easy to see that Tk is determined by a polynomial in x of the kth degree, so we can write 

Tk = fjPk,mxm, k = 0,1,2,...,n. (3) 

From direct inspection of the above expression, we have that 

r0(x) = i, 
T1(x) = l + x, 
T2(x) = \ + 3x + x2, 
T3(x) = l + 6x + 5x2+x3, (4) 
r4<X) = l + 10x + 15x2+7x3+x4, 
r5(x) = l + 15x + 35x2+28x3+9x4+x5, 

The polynomial coefficients 
= 1 dmTk(x) 

Pk'm m\ dmx 

belong to the MNT that takes the following form: 
* 
0 
1 
2 
3 
4 
5 

1 
1 
1 
1 
1 
1 

1 
3 
6 

10 
15 

MNT 

1 
5 1 

15 7 1 
35 28 9 1 

It must be noted that from the MNT it is easy to obtain the expression of the polynomial Tk(x) for 
small values of &. To determine Tk(x) for large values of k, we can use formulas (1) and (2). 

Observe that formally the MNT is apparently similar to the classic Pascal Triangle. Note that 
the MNT coefficients cannot be evaluated directly by applying the rule corresponding to the classic 
Pascal Triangle. On the other hand, it is possible, by some appropriate modification of the Pascal 
Triangle, to establish a suitable recurrence rule for constructing the MNT coefficients. We will 
present a solution to this problem in the next section. 

3, THE GENERALIZED AND SHIFTED TRIANGLES 
AND THEIR LINKS WITH THE MNT 

By a slight modification of the MNT we can establish the so-called shifted modified numerical 
triangle (SMNT). We draw SMNT from MNT by shifting its rows and columns by two places in the 
bottom and then annihilating all coefficients in the first column. If we denote by skm a coefficient 

(5) 
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for a node (k, m), k = 0,1,2,..., n and m - 0,1,..., k, then the corresponding formula takes the 
following form: 

10 for m = 0, 
sk,m=)Pk-2,m &rl<m<k-2, (6) 

0 for m > k - 2. 

The resulting SMNT is demonstrated by the following construction: 

* 
0 
1 
2 
3 
4 
5 
6 
7 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
1 
3 
6 
10 
15 

SMNT 

0 
0 0 
1 0 
5 1 
15 7 
35 28 

0 
0 
1 
9 

0 
0 0 
1 0 0 

Applying the above rule, for instance for s5i2, we obtain 

^5,2 = A,2= 5 -
The GGPT is constructed similarly to the usual Pascal Triangle (PT), with only two modifi-

cations. First, in evaluating a given node numerical element in the GGPT, its upper right-hand side 
node element is taken twice and the upper left-hand node coefficient is taken in the same way as 
in the classic PT. Second, before performing calculations for node coefficients in the (k + 1) row 
of the GGPT we must subtract the kth row of the SMNT from the kth row of the GPT. If we denote 
by gkm the GGPT coefficient corresponding to the (k, m)th node, then the following rule, 

Sk,m ~ Sk-lm-l Sk-l,m-l ^^(Sk-l,m Sk-l,m)? (7) 

holds for k = 0,1,2,...,n and in- 0,1,...,k with gk^-\ and gk^m = 0 for m> k-l and gk_lm_{ 
- 0 for m-1 < 0. The above rule is illustrated by the following representation of the GGPT: 

k 
0 
1 
2 
3 
4 
5 

1 
1 
1 
1 
1 
1 

1 
3 
7 
13 
21 

GGPT 

1 
5 1 
16 7 
40 29 

1 
9 1 

Now we can show a link between the MNT and the generalized and shifted triangles. Applying 
successively, row-by-row, the rules corresponding to the GGPT and SMNT for the MNT and 
comparing coefficients that correspond to a given node in all three triangles it is easy to demon-
strate that by formal notation we have 

MNT = (GGPT - SMNT). (8) 
We must emphasize that in this expression the subtraction must be performed successively "row-
by-row." This process can be represented by the following diagram: 
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ROW k Of MNT mll(6) > ROW k + 2 of SMNT 
^ U R0W£+ 1 ofGPT mle(8) > 

-> Row k + 1 of GGPT - Row k + 1 of SMNT = Row k + 1 of MNT. 

An illustration of this procedure is shown in the following construction: 
k 
0 
1 
2 
3 
4 

5 
6 

1 
1 
1 
1 

1 

1 

1 

1 
3 
7 

13 

21 

31 

GGPT 

1 
5 1 
16 7 

40 29 
85 91 

1 

9 1 
46 11 1 

k 
0 
1 
2 
3 
4 

5 
6 

0 
0 
0 
0 
0 

0 
0 

0 
0 

1 
3 

6 
10 

SMNT 

0 
0 0 
1 0 

5 1 
15 7 

0 

0 0 
1 0 0 

k 
0 
1 
2 
3 
4 

5 
6 

1 
1 
1 
1 

1 

1 
1 

1 
3 
6 
10 

15 
21 

MNT 

1 
5 1 
15 7 

35 28 
70 84 

1 

9 1 
45 11 1 

Studying the above construction, it is easy to prove that the following recurrence equation: 

Pk, m = Pk-l, m-\ + 2Pk-l, m ~ Pk-2, m ( 9 ) 

holds for the coefficients of the MNT with k = 0,1,2,..., n and m = 0,1,..., k, where pr^s = 0 if 
r < 0 and/or s > 0. For example, isf we fix k = 5 and m = 3, then we obtain 

P5,3=P4,2+2P4,3-P3,3=2%-

The above construction leads to important simplifications in determinating the transfer functions 
of a ladder network with a large number of interacting cells. Some other interesting results may 
be obtained by considering special diagonals of the usual Pascal Triangle or a particular direct 
formula for successive rows of the MNT. The work in this direction is under development, and 
further results will be published soon. 

4. NUMBER OF TERMS IN THE TRANSFER FUNCTION 
AND THE FIBONACCI SEQUENCE 

To each ladder network can be attributed a corresponding signal flow graph by virtue of 
which the transfer function from the source node to a sink node can be determined. In the signal 
flow graph of a ladder network, there are no loops and, consequently, the total transfer function 
simplifies to the form of expression (3). On the other hand, the signal flow graph of a ladder net-
work can be represented by an oriented graph attributed to the MNT (see Fig, 2). 

fc = 0 - - f c £ 0 b | 

1 1 / N -
k = \ fc^ST-< 5wi, 
k = 2 -,U3 <r-^V^-< - 0 ^ 

k = 3 — ---& * H ^ < ^ ^ T ^ — 5 ^ 
k = 4 - t t *-&>*-* E^ST* xQT^ i^a 
i By v./ N,X \ ^ / x,/ x̂  
£ = 50_—<—0 * 0 <—_0 «_—0-—e-—0 

Figure 2 
Each oriented branch of this graph is labeled by a transmittance equal to one. The resulting node 
coefficients correspond to the respective coefficients of the MNT and, simultaneously, to the 
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number of open paths in the signal flow graph counted from the source node (the top of the 
graph) to the sink node (the given node in the graph). The presented graph is very useful for 
determining all paths appearing in the total transfer function of a ladder network containing a 
large number of interacting cells as, for instance, a dozen or several dozen. Moreover, it gives a 
possibility to answer the following question, among others: How many different open paths and 
corresponding total transfer functions appear in the signal flow graph and in the ladder network, 
respectively? It must be noted that, in the case of a quite simple ladder network, the number of 
open paths in the total transmittance increases rapidly with the number of cells. It can be 
determined by suitable use of the Fibonacci sequence that 

Fk+i = Fk+Fk-v k = 0,1,2,...,n, 
with F0 = 0 and Fl = 1. 

From Binet's formula, we have 

Fk=Ts I 2 ) 
k 

(¥)'] , k-0,l,2,...,n. 

(10) 

(11) 

The form of this expression can be simplified by taking into consideration the Newton expansion 
of a power of a binomial in which the values a = 1 and b = +V5 or - V5 are substituted. Finally, 
we obtain 

h=-
I 

, y f c - l +5 m + 5 - . . •5 r k 
2r + l (12) 

Note that the right-hand side of this expression vanishes for 2r +1 > k. For instance, at k = 7, the 
first vanishing term corresponds to 2r +1 > 7, i.e., r > 4. In this case, the value of Fk amounts to 
F7 =21 and is composed of four terms. Moreover, a direct inspection of the oriented graph 
shown in Figure 2 points to a relationship between the number of open paths appearing in the 
total transmittance of a given ladder network. It is equal to the sum of all paths counted from the 
top node to all sink nodes attributed to a given level in the oriented graph representing the MNT. 
For a ladder network composed of n cells, the total number of terms which determine the transfer 
function Tr(x) at the input of the r* cell is equal to Fk given by (12). If the voltage to voltage 
ratio is computed, then we must take k = 2r +1 and when the current to current ratio is deter-
mined, then k = 2r. For example, if a network consists of eight cells, then the total number of 
terms in the voltage transfer function TvS(x) is equal to 

^ v 8 - ^ 1 7 - 16 vM'jVm*-** i? = 1597. 

This number determines, simultaneously, the sum of all coefficients in the MNT at the level k = 8. 
The result can be easily checked by direct inspection of the MNT up to the 8th level. 

5. CONCLUSIONS 

The Fibonacci sequence (10) has been effectively applied to the analysis of ladder networks 
consisting of identical interacting cells. It has been shown that the modified numerical triangle 
corresponds to the respective polynomials determining the transfer functions in the network. 
Mapping the MNT by an oriented graph gives a possibility to evaluate all coefficients in the 
transfer function and the total number of terms appearing in this function. This number is 
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expressed by the Fibonacci sequence F2k+l for the voltage transfer function and by the Fibonacci 
sequence F2k if the current transfer function is determined. 
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1. INTRODUCTION 

Previously in [1] and [2], in which integration and first derivative sequences for Fibonacci and 
Lucas polynomials were introduced, it was suggested that these investigations could be extended 
to Pell and Pell-Lucas polynomials. Here, we explore some of their basic features in outline to 
obtain the flavor of their substance. Further details may be found in [5], with some variation in 
notation. 

Pell polynomials Pn(x) are defined by the recurrence relation 

PM = 2xPn_l(x) + P^2(x), P0(x) = 0,P1(x) = l, 

while the associated Pell-Lucas polynomials Qn(x) are defined by 

Qn(x) = 2xQn_l(x) + Qn_2(x), Q0(x) = 2, &(*) = 2x. 

Standard procedures readily lead to the Binet forms 

,.(I)=«"w-/»"w 
and 

2A(x) 

Qn(x) = a"(x)+/]"(x), 
where 

A(x) = Jx2 +1, a(x) = x + A(x), fi(x) = x-A(x). 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

Properties of P„(x) and Qn(x) are given in [3] and [5]. 
Substitution of x = 1 in (1.1) and (1.2) leads to the corresponding Pell numbers Pn = Pn(l) 

and Pell-Lucas numbers Qn = Qn(T). For reference, we tabulate some values of Pn and Qn. 

(1.6) 
n 

K 
Qn 

0 1 2 3 4 5 
0 1 2 5 12 29 
2 2 6 14 34 82 

6 7 
70 169 

198 478 

8 ... 

408 ••• 
1154 -•• 

All the Qn are even numbers, as is manifest from (1.2). The Pn are alternately odd and even. 
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2. PROPERTIES OF DERIVATIVE SEQUENCES 

Using known [3] summation formulas for P„(x) mdQn(x), we derive the first derivative 
Pell sequence {PJ(x)} given by 

PXx) = 2J^(n-2m-li-
w=0 

n-rn-l 
m (2x> n-2m-2 (»>i) (2.1) 

and the first derivative Pell-Lucas sequence {Q'n{x)} for which 

w=0 m 
(2.2) 

where the dash denotes differentiation with respect to x and the symbol [ • ] represents the greatest 
integer function. 

From (1.1) and (1.2), we must have 

P0'(*) = 0 and Q5(x) = 0. 

Expressions (2.1) and (2.2) yield the first few polynomials P„(x) and Q'n{x) [5]: 

(2.3) 

P{{x) = 0 
P2'(x) = 2 
P3'(x) = 8x 
P4'(x) = 24x2+4 
P5'(x) = 64x3 + 24x 
P6'(x) = 160x4+96x2+6 
P7'(x) = 384x5 + 320x3 + 48x 

&'(x) = 2 
Q^x) = 8x 
Q^(x) = 24x2+6 
24(x) = 64x3+32x 
<25'(x) = 160x4 + 120x2+10 
Q'6{x) = 384x5 + 384x3 +72x 
g7(x) = 896x6 +1120x4 + 336x2 +14 

(2.4) 

P8'(x) = 896x6 +960x4 + 240x2 +8 QJ(x) = 2048x7 +3072x5 + 1280x3 +128x . 

Putting x = 1 in (2.4), we derive the corresponding first derivative Pell sequence numbers 
{P„'} = (P„'(l)} ar»d first derivative Pell-Lucas sequence numbers {Q'n} - {Q'„{\)}, tabulated thus 
[5]: 

(2.5) 
n 

K 
Q!n 

0 1 2 3 4 
0 0 2 8 28 
0 2 8 30 96 

5 6 
88 262 

290 840 

7 8 ... 
752 2104 ••• 

2366 6528 ••• 

All the numbers P'n and Q'n are even, by virtue of the factor 2 in (2.1) and (2.2). 
Elementary calculations using (1.5) produce 

a{x) 
a'{x) = 

P'{x) = -

A(x)' 

P{x) 
A(xy 

(2.6) 

(2.7) 
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{*"«}' = =£& (2.8) 
A(x) 

{fin{x)y = _U£S^.f (29) 
A(x) 

whence we derive, after a little calculation using (1.3) and (1.4), 

p;(x)="^:\2::»^ ( 2 . io) _nQ„(x)-2xP„(x) 
2A2(x) 

and 
Q'n(x) = 2nPn(x). (2.11) 

Taken in conjunction with (1.3) and (1.4), equations (2.10) and (2.11) allow us to express 
PJ (x) and Qn(x) in their Binet forms. 

Substituting x = 1 in (2.10) and (2.11), we have immediately 

P> = nQn-2Pn (2.12) 

and 
&,=2nP„. (2.13) 

For example, P6' = 262 = 6198;2'70 = &2Z. by (2.12) and (1.6). 
Other basic results are [5]: 

P; = 2P„'_I+P„'_2+2JP„_1 1 (2-14) 
recurrence relations, 

and 

C i + ^ - i = e ; , (2.i6) 

O U i + ^ - i = 2 « a + 4 ^ , (2.17) 

P^ipU - (pnf = 8" ^ — + 4 ( ~ ^ ~^" (Simson'sformula), (2.18) 
16 

OUiO;-i - (Q'nf = 4 { ( - l ) V -1) - tf} {Simson's formula). (2.19) 
To obtain these results, we use (2.12) and (2.13) as well as properties of Pn and Qn (1.6). 

Proof of Simson's formula (2.18) requires much careful calculation though (2.19) follows readily 
from (2.13) and Simson's formula for Pn. One may note en passant that (2.16) is analogous to 
the well-known relations between Pn and Qn, and F„ and Ln (Fibonacci and Lucas numbers). 

Numerical illustrations of (2.14), (2.17), and (2.18) are, by (1.6) and (2.5), respectively, 

n = 5: 2P4' + P3'+2P4=56 + 8 + 24 = 88 = P5', 
72 = 5: QZ+Qi = 840 + 96 = 936 = 10-82 + 4-29 = 10g5+4P5, 

|>6'P4' - (P5f = 262 • 28 - 882 = -408, 
|8-52(-l)5+1+4(-l)5-e5

2 _ 200-4-6724 _-6528 _ AnQ 
1 — — — —4Uo. 

16 16 16 

n = 5: 
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Analogues of Simson's formulas (2.18) and (2.19) can be obtained for P^(x) and Qn(x). 

and 

3. INTEGRATION SEQUENCES 

Consider, in a new notation, the integrals [5] 

'P„(x) = fX
oP„(S)dS 

'Qn(x)^jX
oQ„(s)ds, 

(3.1) 

(3.2) 

where the pre-symbol dash represents integration. 
Using the summation formulas for Pn(x) and Qn{x) [3], we readily obtain 

L 2 \0n-2 n-2m-l , -
in-X-m 

m=0 n-2m m 
n-2m (»>i) 

and 

nl n-2m 

'0(n-m)(n-2m + l)\ m ' 

From (1.1), (1.2), (3.1), and (3.2), we deduce that 

(3.3) 

(3.4) 

(3.5) 

Sequences {'P„(x)} and {'Qn(x)} may be called the Pell integration sequence and the Pell-
Lucas integration sequence, respectively. Their first few expressions, obtained from (3.3) and 
(3.4), are [5]: 

'Pi(x) = x 
T2(x) = x2 

T3(x) = ±x3 + x 
'P4(x) = 2x4 + 2x2 

'P5(x) = fx5+4x3 + x 
'P6(x) = fx6+8x4 + 3x2 

'Qx{x) = x2 

'Q2(x) = ±x3+2x 
'Q3(x) = 2x4 + 3x2 

'Q4(x) = fx5 + fx3+2x 
'Q5(x) = fx6 + \0x4 + 5x2 

'Q6{x) = &• x1 + fx5 + 12x3 +2x 

(3.6) 

'P7(x) = ^-x7 + \6x5+Sx3 + x 'Qj(x) = 16xs + if x6 + 28x4 + lx2 

'P8(x) = 16JC8 + 32X6 + 20X4 + 4X2 'QJ(X) = ?fx9 +^x7+ 64x5 +fx3+2x. 

Puttingx = 1 in (3.6), we obtain the Pell integration sequence numbers {'P„(l)} = {'P„}, and 
the Pell-Lucas integration sequence numbers {'Q„(V)} = {'Q„}, respectively, of which the first 
few members are [5]: 

(3.7) 
n 

% 
'Qn 

0 
0 
2 

1 
1 
1 

2 
1 
10 
3 

3 
7 
3 

5 

4 
4 

158 
~T5~ 

5 
41 
5 

61 
3 

6 
49 
3 

1482 

7 
239 

7 
265 

3 

8 
72 ••• 

11902 . . . 
~ 6 3 ~ 
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Two elementary properties of {'Pn } and {'Qn} are 

(n > 0, odd) 
'P = 

\Qn_ 
In 

[%T (n > °> e v e n ) 
and 

'On 

2"(2f"-1)-e" (n>\, odd) 

(n > 1, even). 
nl-\ 

(3.8) 

(3.9) 
nl-\ 

Proofs of these [5] are lengthy but of a relatively elementary nature and are omitted to con-
serve space. The procedure is to begin with (3.1), (3.2), then integrate with the aid of (1.3)-(1.5), 
and eventually set x = 1, taking into account the values of P„(0) and Q„(0) for n even and n odd. 

Complicated Binet forms of rPn(x), 'Q„(x), 'Pn, and 'Qn are obtainable on applying the cor-
responding Binet forms for the undashed symbols from (1.3) and (1.4). 

From (3.6) and (3.7), we may obtain 

*n+l + "n-1 ~ Qn 
and 

7> n+\ ' ' ^ - 1 = 
Qn-'Qn 

(3.10) 

(3.11) 

Once again, it is worth commenting on the fundamental nature of property (3.10) [cf. (2.16)]. 
Numerical illustrations of (3.10) and (3.11) are, respectively, 

„ _ 4 . , P + , p _ 4 1 . 7 _ 1 5 8 _ Y ) 

„_4. p 5 + p 3 _ T + - _ — _ a , 
M _ f r ,P - P _ 2 3 9 4 1 _ 9 0 8 _ 1 9 8 -
n-6. ; } - / > _ — - y — 3 5 - - g 

1482 
35 _ Qe-'Qe 

The Simson formula analogue for 'Pn takes two forms, depending on whether n is odd or 
even. From (3.8), and invoking the use of Simson's formula for Qn, we obtain 

*n+\ *n-\ \*n) ~ \ 

S(-l)n+ln2+4n2+Q2-l6n2Pn 

4n2(n2-l) 
(n odd) 

(3.12) 
S(-l)n+1n2+Q2+4(n2-l)(Qn-l) , x 

- L J ^-V (« even). 

As an example, when n = 5, both sides of (3.12) equal -¥r, whereas, if n = 4, both sides 
reduce to fj. 

From (3.9), a Simson formula analogue for 'Qn is clearly obtainable but its form is left to the 
curiosity of the reader. Corresponding analogues also exist for fPn(x) and rQn{x). 

To check the consistency of the results, one might establish that f(Pn
f(x))=(fPn(x))f = P„(x) 

and similarly for Qn(x). 
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4. CONCLUDING REMARKS 

Extensions: 

Two observations on the foregoing material are relevant: 
(i) clearly, the procedures for obtaining integration and first derivative sequences for 

Fibonacci and Lucas polynomials as in [1] and [2], and for Pell and Pell-Lucas polyno-
mials as herein, can be made more general to embody multiple integration sequences and 
nth-order derivative sequences, and 

(il) the ideas delineated here are applicable to the generalized recurrence-generated polyno-
mials for which the coefficient 2x in (1.1) and (1.2) is replaced by Ax, with appropriate 
initial conditions. 

Simson v Simpson: 
Occurrences of analogues to Simson's original formula in 1753 for Fibonacci numbers [4], 

and the frequent misspellings of Simson's name, prompt us to offer a brief, if only peripherally 
relevant, historical explanation to clarify the situation. The formula is due to the distinguished 
Scot, Robert Simson (1687-1768), who was also the author of a highly successful text-book on 
Euclidean geometry. He is not to be confused with his able contemporary English mathematician, 
Thomas Simpson (1710-1761), whose name is associated with the rule for approximate 
quadratures by means of parabolic arcs. Our man is Robert Simson. 

REFERENCES 

1. P. Filipponi & A. F. Horadam. "Derivative Sequences of Fibonacci and Lucas Polynomials." 
Applications of Fibonacci Numbers. Ed. G. E. Bergum, A. N. Philippou, & A. F. Horadam. 
4:99-108. Dordrecht: Kluwer, 1991. 

2. A. F. Horadam & P. Filipponi. "Integration Sequences of Fibonacci and Lucas Polynomials." 
Applications of Fibonacci Numbers. Ed. G. E. Bergum, A. N. Philippou, & A. F. Horadam. 
5:317-30. Dordrecht: Kluwer, 1993. 

3. A. F. Horadam & Br. J. M. Mahon.- "Pell and Pell-Lucas Polynomials." The Fibonacci 
Quarterly 23.1 (1985):7-20. 

4. R. Simson. "An Explanation of an Obscure Passage in Albrecht Girard's Commentary upon 
Simon Stevin's Works." Philosophical Transactions of the Royal Society 48.1 (1753):368-
77. 

5. B. Swita. Pell Numbers and Pell Polynomials. M.Sc.St. Thesis, The University of New 
England, Armidale, Australia, 1991. 

AMS Classification Numbers: 11B39, 11B83 
• • • • • • • • • 

1994] 135 



THE ORDER OF A PERFECT &-SHUFFLE 

Robert W, Packard 
Department of Mathematics, Northern Arizona University, Flagstaff, AZ 86011 

Erik S. Packard 
Department of Mathematics, Texas Tech University, Lubbock, TX 79407 

{Submitted June 1992) 

When you break open a new deck of 52 cards you might wonder how many times you would 
have to "perfectly" shuffle the cards to return the deck to its original configuration. Our curiosity 
about this led ultimately to the contents of this paper. By a perfect shuffle here we mean separate 
the cards into two piles of 26 cards each, then reorder the cards by alternately taking a card from 
the first pile then one from the other. We call this a perfect 2-shuffle, which is the same as the out 
Faro shuffle mentioned in [2], [4], [5], [6], and [9]. The answer to the question above is 8, i.e., 
the order of a perfect 2-shuffle on 52 cards is 8. 

As in [4] and [7], we will generalize the idea of a 2-shuffle to that of a ^-shuffle. We will 
then proceed to the main goal of this paper, which is to produce necessary and sufficient condi-
tions under which the order is large in comparison with the number of cards. We will also give a 
lower bound for the order. The results, embodied in Theorems 1, 4, and 6, imply certain proper-
ties of the graph obtained when one plots order versus deck size. This will, in turn, shed light on 
question 5 in [9], which asks for reasons for the appearance of such a graph. See also the figures 
accompanying this paper. In these graphs, it appears as if sets of points line up in straight lines all 
passing through a common point with more irregularly positioned points above or below these 
lines. Our concluding remarks indicate how this behavior and much more can be explained. 
Following these remarks will be found a short description of how we discovered the results 
communicated in this paper. 

Definition 1: Let k and s be integers greater than 1. Take n = ks cards numbered in order 
1 through n. Place the cards in k piles of s each, the first pile containing, in order, cards 1 through 
s, the second pile containing cards s + 1 through 2s, etc., with the last pile containing cards 
(&-l)s + l through ks. Now, in order, pick up the first card in each pile, then the second, etc., 
ending with the last card in each pile. The result we call a "perfect ^-shuffle." The order of this 
^-shuffle, dk(n), will be the minimum number of times the A>shuffle needs to be repeated to return 
the cards to their original configuration. The order of a card will be the minimum number of 
^-shuffles needed to return that card to its original position. 

In [4] Medvedoff and Morrison show that dk(ri) is the order of k (mod(«-1)), i.e., the mini-
mum positive integer r such that kr = 1 (mod(^i-1)). The key to the proof is in demonstrating 
that if the cards are numbered 0 through w-1, rather than 1 through w, then the card numbered 
x^O or n-\, i.e., an interior card, ends up after one perfect ^-shuffle in the position formerly 
occupied by the card numbered he (mod(^-l)). The first and last cards obviously remain 
unchanged. The fact that dk{ri)<n-2 is easily deduced from properties of the Euler ^-function. 
It is also not hard to see that the order of a card divides dk(n) and is the length of the cycle that it 
is in when the ^-shuffle is represented as a member of the permutation group on n objects. It is 
also true that dk(n) is the length of the longest cycle and card 2 will always be in such a cycle. 
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As an example, consider the case k = 3 and 5 = 5. The three piles 
1 12 9 
6 3 14 

become 11 8 5 
2 13 10 

5 10 15 7 4 15 

after one 3-shuffle. The permutation representation is 

(1)(2, 4, 10, 14, 12, 6)(8)(3, 7, 5, 13, 9, 11)(15) 
and d3(\5) = 6. 

We now produce the promised lower bound for dk (n). This lower bound is related to Theo-
rem 2 on page 9 in [4]. 

Theorem 1 If n = k\ then dk(n) = t. Furthermore, if kf < n< kt+l, then dk(n)>t + l. Hence, 
dk(ri) = logk(n) ifn = k{ and dk(n) > logk(n) +1 if k* < n < kt+l. 

Proof: If n = k*, then k* = 1 (mod(n -1)) and &r = 1 (mod(/i -1)) with r < t is not possible 
since Jfcr - 1 < n - 1 . So, dk(n) = t. lfn>k\ then u<t implies ku -l<k* -l<n-l and ku # 1 
(mod(w -1)). Thus, ^(w) > r. Assume dk(n) = t +1 for kf < n < kt+l. Then kt+l -1 = m(>? -1) 
for some m>\. Then kt+l = mks - (m -1), so that k\(m-l),k<m-l,k <m. We also have 

w = + 1< + l = *f + <Ar+l , 
w k k 

a contradiction. Thus, ^(w) > t +1 for kf < n < kt+l. 
The fact that d2(22) = 6 andd3(2l) = 4 shows that dk(n) = t + 2 is possible when kf <n< 

kM. 
Let us now define what we mean by dk(n) being large in comparison with n. 

Definition 2: If dk(n) = n-2, we say that the ^-shuffle is full. If dk(n) > (n-2)/2, we say that 
it is over half full. 

We are interested in circumstances under which the A>shuffle is over half full. The following 
two theorems follow from the fact that dk{n) is the order of A: (mod(w -1)), the proof of that fact, 
and elementary number theoretic ideas. 

Theorem 2: If the ^-shuffle is full, then p = n -1 is prime. 

Theorem 3: If p = n -1 is prime, then all interior cards have order dk(n) = (n - 2) / c, where c is 
the largest positive integer such that c\(n-2) and there is an x such that xc = k (mod/?), i.e., c is 
the largest divisor of n - 2 such that k is a c-residue modulo p. 

The fact that d5(H0) = 27 shows that the converse of Theorem 2 does not hold. On the 
other hand, Theorem 3 is illustrated by the fact that the 108 interior cards appear in four cycles of 
27 each, i.e., each interior card has order 27. Furthermore, 284 = 5 (mod 109) while 5 is not a c-
residue modulo 109 where 4 < c|108. Although 316 = 5 (mod 109), 16 does not divide 108. 
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The fact that d2 (2048) = 11 and 2047 = 23-89 shows that all interior cards can have the same 
order without n-\ being prime. On the other hand, the fact that d2(\0) = 6 and cards 4 and 7 
have order 2 shows that, in general, not all interior cards have the same order. 

Theorems 2 and 3 together yield the following necessary and sufficient conditions for a 
k-shuffle to be foil Recall that a is a primitive root of m if (a, m) = 1 and a is of order <j)(rri) mod-
ulo m, where $ is the Euler ^-function. 

Theorem 4: A perfect ^-shuffle is full, i.e., dk(n) = n-2 if and only if p = n -1 is a prime (odd) 
and & is a primitive root of/?. 

Since d2(20) = 18, for example, 2 must be a primitive root of 19. From Theorem 3, we see 
further that, if p = n - 1 is prime and k is not a primitive root of/?, then dk (n) <{n-2)l2 and the 
i-shuffle is not over half full. 

It is interesting that, for some fc, there can be no full shuffles. Using quadratic reciprocity, we 
can show that, if k = 0 or 1 (mod 4) and n - 1 is prime, then k is a quadratic residue modulo p. 
Thus, Theorems 2 and 3 show lack of fullness. See also Lemma 2 on page 5 of [4]. A computer 
check suggests the conjecture that, if £ = 2 or 3 (mod 4), then there is an n-ks such that 
dk(n) = « - 2 , i.e., k and s are primitive roots of a prime/? = n-1. This is similar to Artin's con-
jecture that, if k is a positive integer that is not a perfect square, then & is a primitive root of 
infinitely many primes (see [8], p. 81). Not surprisingly, we have made no headway in proving or 
disproving our conjecture. We can rule out certain cases. Again, using quadratic reciprocity, we 
can show that, if k = 4j + 2 and 

n -1 = ks-1 = p = ±1 (mod 8) and/ or s is even or 
n-1 = ks-1 = p = ±3 (mod8) and/ and s are odd, 

then k is a quadratic residue modulo/? and thel-shuffle is not full. Examples include 
sf10(80) = 13, rf14(168) = 83, rf14(182) = 45. 

Furthermore, if k = 4 / + 3, w-1 = fo-1 = /?, and s- 4w, the ^-shuffle cannot be full. An exam-
ple is <in(44) = 7. But note that d2(44) = 14, where 203 = 2 (mod 43) and 2 is not a c-residue 
modulo 43 for 3<c|42, is not covered by any of the above cases, all of which employ quadratic 
residues, while this example involves a cubic residue. 

We now turn to necessary and sufficient conditions for which a ^-shuffle is over half full but 
not full. From the preceding, it is clear that n-\ cannot be prime. We can, in fact, say much 
more about necessary conditions. 

Theorem 5: If ^ <dk{ri)<n-2, then n-1 = pa, where/7 is an odd prime and a > 2. 

Before we prove this theorem, we need the following easily verified lemma. 

Lemma 1: If A: is odd and a > 3, then k2 =1 (mod 2a). 

A proof of Theorem 5 is as follows: Suppose n-\-hg-ks-\ with (A, g) = 1. In the case 
in which h, g > 2, we have ^(A), (j){g) even and 

( *»> V ( g ) f '<«> V(h) 

[k2 =l(modg-), U 2 =1 (modA), 
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t(h)Kg) 
k 2 =1 (mod hg) = 1 (mod(n -1)) 

and 
d (jj)^m<!>(g) ^(h-l)(g-l) = hg-h-g + l ^hg-5 = n-6 ^n-2 

k 2 2 2 2 2 2 ' 
In the case h = 2, g > 2, we have £ odd, 

J f c ^ s l f a o d g ) , k*g) = l(modh) **g ) = l(mod%) 
and 

so that 
^(,,)<; 0(g) < — - - = - _ . 

Thus, n-l = pa, where/? is a prime and a>2. Since p-a-2 is impossible, consider /? = 2, 
a > 3. Then « = &s is odd, & is odd, and Lemma 1 shows that 

^ , x na-2 2 a -2"" 1 2 f l - l n-2 
dk(n)<2a 2 = < = . 

* w 2 2 2 
Thus, /? is odd. 

To produce sufficient conditions we utilize a lemma (see [8], pp. 98-99). 
Lemma 2: Let/? be a prime. Then k is a primitive root of p2 if and only if A: is a primitive root of 
pa for all a>\. 

We can now state and prove the theorem we have been aiming for. 

Theorem 6: A perfect ^-shuffle is over half full, but not full, i.e., - ^ <dk(ri)<n- 2, if and only 
if n~ 1 = pa, wherep is an odd prime, a > 2, and A: is a primitive root of p2. 

Proof: Assume n^<dk{n)<n-2. By Theorem 5, n-1 = pa
9 wherep is an odd prime and 

a > 2 is necessary. If k is not a primitive root of p2 then, by Lemma 2, k is not a primitive root of 
pa. Thus, 

., / x j , a ix ( p - 1 ) ^ " 1 P°-Pa~l P * + l - 4 ?2-4 71-2 

Thus, k must be a primitive root of p2. 
Conversely, assume that n-l = pa, where/? is an odd prime and a > 2 and k is a primitive 

root of p2. Then, by Lemma 2, & is a primitive root of pa. Thus, 

^(^) ^ ^(^-hl) = (/>-1)^"1 > (/7_ l)f^-i _ J-̂ 1 = ^^(.p- -1) = ̂ ^1(^-2). 
V PJ P P 

Since p > 3, ̂ — > -| > y, and we are done. 

We can draw the following interesting facts from the proof of Theorem 6. 
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Corollary 1: A ̂ -shuffle is over half full if and only if it is over two-thirds full, i.e., 
n-2 2 

dk (n) > if and only if dk (n) >—(n-2). 

Furthermore, if the conditions of Theorem 6 hold and dk{n) = m{n-2), then m increases to 1 as p 
increases and decreases to — as a increases. 

Before we illustrate Theorem 6, note the following, the proofs of which we leave as a chal-
lenge to the reader. 

Lemma 3: Let/? be prime. If the order of k (mod/?7) = Z>, then the order of k (mod/?y+1) = b or 
bp and in the latter case the order of A: (mod//) = bpr~J for all r > j . 

Lemma 4: Let/? be prime. If pf = 1 (modk) and k\(pJ +1), then k\ptr+J +1 for all r > 0. 

Lemma 4 is useful in generating sequences of ^-shuffles. 
Consider the following six examples, each with a slightly different flavor. Notice the 

relevance of Corollary 1 and Lemmas- 3 and 4. 

(1) The order of 2 (mod 32) = 2-3. Thus, d2(3a +1) = 2-3fl_1. Thus, a 2-shuffle on 3a +1 cards 
is over half foil, over 2/3 full in fact. It is full if a = 1, not Ml if a > 2. As a increases, the 
ratio decreases to 2/3. 

(2) The order of 2 (mod 7) = 3 and the order of 2 (mod 72) = 3-7 * 6-7. Thus, J2(7a +1) = 
3-7fl_1. Thus, a 2-shuffle on 7a +1 cards is half full if a = 1 and less than half full if a > 2. 

(J) The order of 3 (mod 52) = 4-5. Thus, d3(52r+l +1) = 4-52r. Thus, a 3-shuffle on 52r+1 + 1 
cards is over half full, over 4/5 fiill in fact. It is full if r = 0, not full if r > 1. As r increases, 
the ratio decreases to 4/5. 

(^ The order of 3 (mod 11) = 5, the order of 3 (mod 112) = 5 and the order of 3 (mod 113) = 
5-l l*10-l l 2 . Thus, rf3(l 1 +1) = 5 and^3(1 l2r+1 +1) = 5-1 l2r_1 for r > l . Thus, a 3-shuffle 
on 11 + 1 cards if half foil and a 3-shuffle on 1 l2r+1 +1 cards, r > 1, is less than half foil, much 
less. 

(5) The order of 5 (mod 72) = 6-7. Thus, d5(lAr+1 +l) = 6-74r+1 for r >0. Thus, a 5-shuffle on 
74r+2 +1 cards is over half foil, over 6/7 foil in fact, with the ratio decreasing to 6/7 as r 
increases. 

(6) The order of 10 (mod 487) = 486, and the order of 10 (mod 4872) = 486 * 486 • 487. Thus, a 
10-shuffle on 4874r+2 +1 cards where r > 0 is less than half foil, much less. 

Example (6) was found on page 102 in [8] and shows that k a primitive root of p2 in Theorem 6, 
cannot be replaced by k a primitive root of/?. 

Remarks: If one were to graph the function y-dk (n), k a constant, plotting y versus n, every 
time n = p +1, p a prime, by Theorems 3 and 4 the points would lie on one of the lines y -It^-
where c\n-2 and c = 1 when k is a primitive root of/?. See Figure 1 for k = 2 and recall 
examples (1) and (2) above. See Figure 2 for k = 3 and recall examples (3) and (4) above. More 
irregularly positioned points above or below and sometimes on the lines y = - ^ are supplied 
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examples (1) and (2) above. See Figure 2 for k = 3 and recall examples (3) and (4) above. More 
irregularly positioned points above or below and sometimes on the lines y = - ^ are supplied 
when n - 1 is composite. In order for points to lie between y = n - 2 and y = 2?=2-, n would have 
to be a / + 1 with/? an odd prime, a > 2, and k a primitive root of p2. This is rare and, in fact, 
sometimes cannot happen, for example, when k is a perfect square. See Figure 3 for k - 4. 
Clearly, no point can be above y-n-2. If A; = 0 or 1 (mod 4), no point will lie on y-n-2. 
See Figure 3 again for k - 4. See Figure 4 for k = 5 and recall example (5) above. In Figure 1 
those points above y = - ^ are all above y = ^(n-2) and those near y-n-2 are due to large p. 
In Figure 2 those points above y = - ^ are all above y = j(n-2). In Figure 3 those points just 
below y-1^- are all above y-12^-. In Figure 4 those points above y-12^ a r e a^ above 
y = l(ri-2) and those near y-n-2 are due to large/?. By Theorem 1 all points are on or 
above y-\ogk{n). 

We thus have at least a partial explanation for the appearance of the graph in Figure 1 ([9], p. 
145) which is for in-shuffles with k - 2 but is similar to a graph for out-shuffles talked about in 
this paper. Since the order of an in-shuffle on n cards is the order oik (mod(/i + 1)) as opposed 
to the order oik (mod(?i - 1)) for the order of an out-shuffle on n cards (see [4], p. 6), the lines in 
Figure 1 ([9], p. 145) arej = nlc. In fact that graph is just a translation of the graph in Figure 1 of 
this paper. 
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DISCOVERY 

After our initial curiosity was aroused, we wrote out a few shuffle permutations by hand for 
small n. It was not long before we had discovered and proved correct the formula for dk(n). It 
was a shock to later see this as Proposition 1 in [4]. A simple program in BASIC produced print-
outs of dk(n) using a PC. When we saw what ideas seemed to play significant rules, modifica-
tions in the program checked n-\ for being prime, dk(n) for being n-2, and dk(n) for dividing 
n-2. Essentially every result in this paper represents the successful justification of conjectures 
suggested by the printouts. Early success with techniques from elementary number theory 
prompted us to continue in that direction. 
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1. INTRODUCTION 

Although it has been studied extensively, Pascal's triangle remains fascinating to explore and 
there always seems to be some new aspects that are revealed by looking at it closely. In this 
paper we shall examine a few nice properties of the so-called Fibonacci diagonals, that is, those 
slant lines whose entries sum to consecutive terms of the Fibonacci sequence. We adopt through-
out our text the convention that the n^ Fibonacci diagonal is the one that contains the binomial 
coefficients 

With that notation, the first diagonal contains only f°], the second one contains only (]X the 
third one contains f JJ and (Jj, and so on. Addition of the terms of the «* Fibonacci diagonal gives 
the 72th term of the Fibonacci sequence 

1,1,2,3,5,8,13,21,34,55,. . . . 

For instance, the terms of the 10th Fibonacci diagonal sum to 

^M?MKM^i + 8 + 2 i + 2 0 + 5=5 5 ' 
We shall also be interested in the corresponding diagonals in Pascal's triangle mod 2, that is, 

the triangle in which the entry (fj is replaced by H, its residue mod 2. 
Throughout our discussion, it will be convenient to consider the rows or diagonals of Pascal's 

triangle as vectors with integer components. For instance, the n^ horizontal row, n > 0, will be 
seen as the vector Xn in Zn+l defined by 

Various well-known operations on these rows or diagonals can be seen as the scalar product 
of such vectors with Bn - (hn\bn~l,...,h, 1) GZ"+ 1 for some 5eN. Let us give some examples 
involving the above Xn. We shall use the notation nbXn to designate the scalar product 

(this notation is motivated by the fact that in some sense the vector Xn is being "projected" on the 
Powersoft). 
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(*) 
By the Binomial Theorem, 

In particular, for 6 = 1, one gets nxXn - 2", i.e., the terms of the nih row of Pascal's triangle sum 
to 2". And for b = 10, one gets 7rlQX„ = (11)". This last equality can be interpreted as follows 
(see Gardner [1]): when the entries of the rows of Pascal's triangle are considered as the values of 
a place-value, base-ten numeral, the numbers obtained are the successive powers of 11. We could 
of course have a similar interpretation by replacing base-ten numeral by base-6 numeral and then 
the powers of 11 by the powers of (6 + 1). 

Note that (*) can be rewritten as 

7ThX„ = ft, b+lK 

where \ = (1,0, 0,..., 0) eZfl+1, with a projection appearing on both sides of the equality sign, but 
with different bases. Such a "change of base" phenomenon will be encountered again in section 2. 

A similar discussion can also be undertaken considering the rows of Pascal's triangle mod 2. 
The 17th row will now be interpreted as the vector 

n 
0 •> n 

1 j 

n 
2 ,..., 

n 
n 

in Z"+1 with components 0's and l's. It was shown by Glaisher [2] that the projection 

*?« = X 
k=0 

i.e., the number of odd binomial coefficients (f\ for a given n, is again a power of 2, namely 2#<<n\ 
where #(«) represents the number of l's in the base-two representation of n. For instance, the 5th 

row vector is Y5 - (1,1,0, 0,1,1) so that KXY5 -A- 2#(5), which corresponds to the fact that 5 is 
written as 101 in base two with the digit 1 appearing twice. When b = 2, the projection 

^ Y„ = X 
Jc=0 

•%n-Je 

gives Gould's numbers. These numbers were introduced in Gould [3], where a recursion formula 
was given for them and a relationship with Fermat's primes was obtained (see also Hodgson [4] 
for details). 

We shall be concerned in this paper with the study of analogous results obtained when Fibo-
nacci diagonals are considered instead of horizontal rows, both in Pascal's triangle and in Pascal's 
triangle mod 2. 

2. FIBONACCI DIAGONALS IN THE STANDARD PASCAL TRIANGLE 

Recall that Fibonacci diagonals are numbered starting with n - 1. For further reference, we 
list the first twelve vectors thus obtained: 
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Si.:-
5 2 : 

s3-. 
s4-
S5--

s6--

=0) 
= 0) 
= 0,1) 
= 0,2) 
= 0,3,1) 
= 0,4,3) 

S7 = (l,5,6,l) 
S8 = (l,6,10,4) 
S9 = (1,7,15,10,1) 
4=0 ,8 ,21 ,20 ,5 ) 
Sn= (1,9,28,35,15,1) 
£i2= (1,10, 36, 56, 35, 6) 

Clearly 7ilSn gives the nih term of the Fibonacci sequence. We now study the projections 
7tbSn for b G N . 

We first note that, for all n > 1, S2n_x and S2n are both vectors in Zn. The following notation 
will be convenient in the sequel. For Sn - (a{, a2, a3,...), we say that inSn = (al,0,-a2,0,a3,...) 
is the image of Sn in Z" and that /W+1A?„ = (0,ax, 0, - a 2 , 0, a3,...) is the image of Sn in Z"+1 (note 
that these image vectors are obtained by assigning in turn + and - signs to the components of Sn 

and then inserting 0's in between those entries). 
Before stating the general result, it is instructive to look at a few examples. Let us first con-

sider the vector £8 = ( l , 6 , 1 0 , 4 ) e Z 4 ; clearly 7ilQSs = MO3 +6-102 + 10-101 +4-10° = 1704. It 
can also be checked that 1704 can be given by a simple expression involving only the entries of 
$4 =(1,2), namely, 1704 = 1 -123 — 2-121; we can thus write 7rl0S^-nl2iASA, where i4S4 = (1, 0, 
- 2 , 0). 

For Sl0 = (1,8,21,20, 5), we find TT10S10 = 20305; since i5S5 = (1, 0, - 3, 0,1), we obtain simi-
larly 

;r12J5i?5 = l -12 4 -3-12 2 +1-12° =20736-432 + 1 = 20305 = TT10S10. 

On the other hand, for S9 = (1, 7,15,.10,1), we have 7il0S9 = 18601; introducing the two 
image vectors i5S5 = (1, 0, - 3, 0,1) and i5S4 = (0,1,0, - 2, 0), it is easily checked that 

^nh^s ~ ^nh^A ~ 18601 = 7TIQS9. 

The use of base b = 10 was by no means essential in the above examples, as we shall now 
show. 

Theorem: 

Proof: Using the basic recursion formula 

it is easily seen that 

xb$2n-i + 7r
bS2n_2 = 7rbS2n, that is, nbSln^l^nbS2n-7tbS2n_2. 

It is thus sufficient to prove a), since b) then follows at once. 
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Proof of a): Let us expand both sides of the required equality. One must thus establish that 

[-1 

where [x] denotes the integer part of x. This can of course be done using the techniques of 
generating functions. We prefer, however, to give a proof based on a common combinatorial 
interpretation of both sides. 

We first use the Binomial Theorem to replace the last factor in the right-hand side of the 
above, thus getting 

We now need to expand the right-hand side of this inequality as a polynomial in b and then 
compare the coefficients of the powers of b with those occurring on the left-hand side. For a fixed 
k, we are thus interested in values of t and u such that u = k-2t, since only these terms will 
contribute to the coefficient of bn~l~k. One is then lead to prove that 

or, equivalently, that 

for k < n -1. 
It is easily verified, for instance by induction on k, that (m+l

k ~k) can be interpreted as the 
number of ways of selecting k integers among 1, 2, 3, ..., m in such a way that no two of them are 
consecutive. The left-hand side of (**) can thus be seen as the number of ways of picking k 
integers among 1, 2, 3, ..., 2w-2, no two of them being consecutive. 

We want to show, of course, that the right-hand side of (**) counts exactly the same number. 
Let us first observe that the first term, 2k -(V), c a n he s e e n a s the number of ways of picking k 
integers among 1, 2, 3, ..., 2n-2 by the following two-step procedure: 

Step 1: Select k pairs of integers of the form {2s-1,2s} among 1, 2, 3, ..., 2n-2. This 
can be done in (n~l>\ ways. 

Step 2: Pick an integer in each of the k pairs selected. This can be done in 2k ways. 

While this procedure clearly generates any set of k integers chosen among 1, 2, 3, ..., 2 ^ - 2 
in such a way that no two of them are consecutive, it does, however, also allow picking both inte-
gers 2/ and 2/ +1. When this happens, we shall say that the event 4 has occurred. Note that, in 
such a case, the index i can take the values 1, 2, 3, . . . ,w-2. Also, when both events 4 and 4 
(*i * '2) o c c u r within a given selection of integers, the indices z\ and i2 are not consecutive. 
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It thus remains to show that the number of elements corresponding to the event . ^ u ^ u -
^An_2 is given exactly by the subtrahend on the right-hand side of (**). Such a proof follows 
directly from the usual "inclusion-exclusion technique" for counting the elements in a union of 
events: one first (J = 1) adds up the counts in each Ai9 one then (J = 2) subtracts the counts in 
each 4j ^ 4 2 (h <h)> then (J = 3) one adds the counts in each Ai ^ 4 ° 4 (h < h <h)> etc-

Let us consider, for instance, the case7 = 1. f"~,1-1) is the number of ways of selecting an 
index i (that is, two integers) so that the event Ai has occurred. In order to complete a choice of 
kintegers, one first selects k-2 pairs among the remaining integers [Step 1—this can be done in 
\"k-~22) ways], and then —Step 2—picks one integer from each of these pairs (which can be done 
in 2k~2 ways). 

A similar argument applies generally for any j > 1. One must first note that (n~\-A is the 
number of ways of selecting the indices ix < i2 < • • • < ij in such a way that no two of them are 
consecutive (2/ integers are thus chosen through this stage). Then, as above, {"l]r2

2A counts the 
number of ways of selecting k-2j pairs among the remaining integers—Step 1—and 2k~2j is the 
number of ways of performing Step 2. 

The theorem is thus proven. • 

Taking b = 1 in the above theorem, we have the following equalities: 
a) K1S2„ = njJSn9 n>l 

Hence, the (2/1)* Fibonacci number can be calculated by using a base-three interpretation of the 
IIth Fibonacci diagonal, whereas the (2n -1)* Fibonacci number can be calculated via a base-
three interpretation of both the /1th and the (n-l)th Fibonacci diagonals. For instance, the 6th 

Fibonacci number is 8 and it can be obtained from S3 = (1,1) as 1-32 —1-3°. The 11th Fibonacci 
number is 89, which can be obtained via the diagonals S6 = (1, 4, 3) and S5 = (1, 3,1): one has here 

^-3i61?6 = 1.35-4-33+3-31-144 
and 

^3i6i?5 = 1.34-3-32+l-3°=55. 

3 : FIBONACCI DIAGONALS IN PASCAL'S TRIANGLE MOD 2 

The Theorem of section 2 tells us how certain computations regarding Fibonacci diagonals 
can be "lifted" to computations done just half-way down Pascal's triangle. Such a theorem is in 
the same spirit as the results presented in Hodgson [4] with respect to Pascal's triangle mod 2. 
We now briefly recall these results. 

Let us denote by Tn9n>l, the vector representing the n^ Fibonacci diagonal mod 2. These 
diagonals have already been studied in Hodgson [4] where numbers Hn9 analogous to Gould's 
numbers, have been introduced. In our notation, we have Hn = 7t2fn. The following calculation 
rules for H„ were proven in Hodgson [4] (see Proposition 6.1 therein): 

H2h=22 "\ (i) 
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H2h+u = Hu• 22*"1 + H2h_u for 1 < a < 2*. (ii) 

(The reader should be aware that the slightly different form of those rules in [4] is due to the 
numbering of diagonals there starting with n = 0.) The proof of these recursion formulas is 
essentially based on an algebraic translation of the "geometry" of Pascal's triangle mod 2, that is, 
the very interesting way in which the O's and the l's are distributed (the reader should write down 
the first n rows of that triangle and observe the nice pattern obtained). 

We now end this paper by describing techniques that allow the computation of both K2Tn and 
n{Tn in a most direct fashion. In opposition to the above formulas that relate the value of a cer-
tain Hn to powers of 2 and previous Ht\ the procedures below give the value of both Hn -^2^n 

and n{Tn by working directly on the index n. Figures 2 and 3 illustrate the simplicity of these 
methods, whose validity is a consequence of the following discussion. 

For convenience, let us introduce the notation tn to represent the base-two representation of 
Hn. (Note that tn can be simply seen as the vector fn with the commas removed.) Formulas (i) 
and (ii) now become 

tlh = 1000.. .0 (2h~l - 1 zeros), (i1) 

r2,+M = rM000...0^_M forl<;i#<2\ (ii) 

where the number of intermediate zeros is such that the string 000...Of A is made of exactly 2h~l 

digits. As an example, let us compute t29. Since it is trivially verified that t3 = 11, we thus have 
t29 = tl3 000000/3 

= t5 00*3 oooooo i i 
= ^3 001100000011 
= 111001100000011 

[the number of intermediate zeros introduced at each computation step follows from (ii')]. 
The preceding calculations can also be conveniently displayed as in the tableau of Figure 1. 

In general, given n = 2h +u, we shall need a tableau made of h rows, each one containing 2h 

positions to be ultimately filled at the last step of the procedure. Rows are indexed by decreasing 
powers of two that serve to split each number appearing on the preceding row. At the row of 
index 2k, any number (from row 2k+l) of the form 2k + v becomes split into v and 2k - v , while 
any number w <2k splits into 0 and w. This procedure may be better grasped by displaying the 
entries as in the tree diagram given in Figure 2. (For odd n, this algorithm directly gives tn at its 
last step of computation. However, because of parity considerations, the last row will, for even n, 
always contain O's and 2's: we note that tn can then be obtained by merely replacing each digit 2 
byal . ) 

We finally present a technique for the computation of n{Tn (compare with Glaisher's rule for 
the calculation of n$n mentioned in the Introduction). Note that we are now interested solely in 
the total number of l's, and no longer in their exact position. All amounts to finding how one can 
build n using only powers of two—or, if one prefers, to what extent n is "far" from being itself a 
power of two. For this purpose, we introduce a notion of weight. The diagram of Figure 3 (for 
n = 29) helps to clarify the discussion. Let us read that diagram from the bottom up. Powers of 
two (here, 16 and 32) are considered to be of weight 1. Then 24, being halfway between powers 
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of two, is of weight 2 (= 1 + 1). Since 28 is halfway between 24 and a power of two, it is given 
weight 2 + 1 = 3. Continuing in this manner, 29 receives a weight of 3 + 4 = 7: this weight is also 
the value of TTJ^ , the total number of l's appearing in t29. (It is usually more convenient to 
consider Figure 3 as being built from the top down, with the weights being incorporated into the 
diagram at the end of the process.) The general validity of this procedure follows from recursive 
applications of formulas (i) and (ii') above. 

29 

13 

2 J . IJ_IJ_IJ . IAI^ IJ_IJ . I_OI^ . I^ . I_Q. I_O. I -O. IJLIJL 

Flgure 1 

Figure 2 

Figure 3 
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The following properties of certain positive integers n are set forth: 
Fn-{5in) = 0, where gcd(w, 10) = 1 

and {5In) is a Jacobi symbol; ^ ' 

Ln = 1 (modw). (2) 

It is well-known that properties (1) and (2) are satisfied if n is prime. If (1) is satisfied for 
some composite n, then n is called a Fibonacci pseudoprime (or FPP). If (2) is satisfied for some 
composite n, then n is called a Lucas pseudoprime (or LPP). Let U and V denote the sets of 
FPP's and LPP's, respectively. 

It must be remarked that, the above terminology is different from that used by many other 
authors; frequently, the term "Fibonacci pseudoprime" is used to describe numbers that satisfy (2), 
and/or "Lucas pseudoprime" sometimes is used to describe numbers that satisfy (1). There are, 
no doubt, some very good reasons for describing such numbers by one term versus another. In 
most papers that this author has seen, the subject matter is only one of the types of numbers here 
described, which tends to minimize confusion. When both types of numbers are being discussed, 
as is the case in this paper, it seems preferable to adopt the terminology defined above. Readers 
of this journal may tend to be more sympathetic to this usage, for obvious reasons. Apologies are 
made here and now to those readers who may take exception to the nomenclature adopted here. 

In a 1964 paper [2], E. Lehmer showed that f/is an infinite set, specifically by proving that 
n=F2p satisfies (1) for any prime p>5. In a 1970 paper [3], E. A..Parberry proved some inter-
esting results related to those of Lehmer, indirectly commenting on the infinitude of U, by a 
different approach. It is informative to paraphrase that portion of Parberry's results that touches 
on the subject of this paper; we state this as a theorem. 

Theorem 1: (*) If gcd(«, 30) = 1 and n is a FPP, then F2n has these same properties. 

Note that if gcd(n, 30) = 1, then it is also true that gcd(F2n, 30) = 1. Theorem 1 implies that, 
beginning with any FPP n with gcd(«, 30) = 1 (e.g., n = 323 = 17-19, which is the smallest 
element of U), we may form the infinite sequence: 

n, F2n, F2F , F2F , etc., each element of which is a FPP. (3) 

We have, therefore, another demonstration (distinct from Lehmer's) that [/is an infinite set. 
In a 1986 paper [1], P. Kiss, B. M. Phong, & E. Lieuwens showed, along with other impor-

tant results, that there exist infinitely many numbers n that are simultaneously FPP's and LPP's 
(i.e., the set U r\V is infinite). Actually, this is a corollary of their more general results. By the 
way, we remark that the smallest element ofUnV is 4181 = 37-113 = F19. 

In light of these results, it may seem redundant to prove once again that V is infinite, as the 
title of this paper implies. Nevertheless, the approach used below differs from that of Kiss, 
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Phong, & Lieuwens, and is worthy of mention. Moreover, it displays a kind of symmetry in 
relation to Theorem 1, providing as it does the "Lucas" counterpart of that theorem. This is 
stated as follows. 

Theorem 2: (**) If gcd(«, 6) = 1 and n is a LPP, then Ln has these same properties. 

Proof: Let u = Ln, v = ±(u -1). Note that u must be odd, since gcd(w, 3) = 1, hence v is an 
integer. We consider three possibilities: 
(a) n=l (mod 12): then u = 1 (mod 8), hence v = 0 (mod 4). Let v = 2rw, where r > 2 and w is 

odd. Since Ln = 1 (mod ri), thus n\2v. However, n is odd, so n\w. Then Z„|ZW. Now 
Fv -FwLwL2wL4w ...Zr_, , which shows that i/|Fv. Also, since v is even, the following 
identity is satisfied: Lu-\- 5FvFv+l. Therefore, Lu = 1 (mod u). 

(b) n = l (mod 12): then u = 5 (mod 8), hence v = 2 (mod 4). In this case, v = 2w, where w is 
odd. As in (a), u\Fv and Lu-\- 5FvFv+l9 so Lu = l (mod u). 

(c) n = 5 or 11 (mod 12): then w = 3 or 7 (mod 8), hence v is odd. As above, we have n\2v => 
n\v =>u\Lv. Now, however, Lu-l = LvLv+l. Thus, Lu = 1 (mod t/). 

In all cases, Z,w = 1 (mod */). It only remains to show that u - Ln is composite; however, this 
follows immediately from the fact that n is odd and composite, since Lp\u for any prime divisorp 
ofn. Thus, Ln is a LPP and gcd(Zw, 6) = 1, proving the theorem. 

The smallest LPP not divisible by 2 or 3 is m = 2465 = 5-17-29 (in fact, no LPP is even, as Di 
Porto and this author have independently shown). Beginning with m, for example (or any other 
LPP not divisible by 3), we may form the infinite sequence: 

m, Lm, LL , LL , etc., each element of which is a LPP. (4) 
Therefore, V is infinite. 

Clearly, the sequences indicated in (3) and (4) increase extremely rapidly, an observation that 
may have some applications in primality testing. This aspect is left for other researchers. Also, 
the focus of this paper has been on the so-called "Fibonacci pseudoprimes" and "Lucas pseudo-
primes," rather than on any of the many generalizations of these numbers studied by other writers. 
No doubt, such generalizations may be readily found; however, this was not explored here, and is 
left for future research. 
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It is well known that the congruence 

4 = 1 (modw) (1) 

is satisfied by all prime n. However, there are also many composite n satisfying (1), the smallest 
example being n- 705 = 3-5-47 (indeed, there are infinitely many such n). The term "Lucas 
pseudoprime" (or LPP) appears to be appropriate to describe such composite n. It must be 
mentioned, however, that there is little uniformity in the literature regarding this subject. An 
alternative term which is frequently used is "Fibonacci pseudoprime"; however, since this term has 
occasionally been used to describe those composite n which satisfy the following congruence: 

Fn-{5in) = 0 (modw), where gcd(?2,10) = 1 (2) 
and (5In) is a Jacobi symbol, ^ * 

it was felt advisable to avoid the latter term in this article. Accordingly, we adopt the term "Lucas 
pseudoprimes" (or LPP's) to describe those composite n satisfying (1). Incidentally, if U and V 
represent the sets of composite integers satisfying (2) and (1), respectively, it is known that U, V, 
and UnV are infinite sets. 

Di Porto & Filipponi [3] indicated the values of all LPP's < 106 (a total of 86 values). Also, 
in private correspondence [4], Filipponi provided the author with a table of 852 LPP's, which are 
all the LPP's < 108. On the basis of the values obtained, Di Porto & Filipponi proposed several 
conjectures. We are concerned here only with proving one of these conjectures, namely, that all 
LPP's are odd. 

As it turns out, Di Porto (one of the proposers of this conjecture) has recently proven her 
own conjecture independently (see [5]); moreover, it came to the author's attention that a much 
earlier proof of this result had been given by White, Hunt, & Dresel [7] no later than 1977. The 
author was made aware of these revelations only after this paper was originally submitted for 
publication. The author publicly acknowledges the priority of these earlier efforts, and also gives 
Di Porto credit for her independently derived proof, which predates this paper. Developments 
such as these give an indication of the rapid rate of growth of knowledge in this fascinating field. 

In spite of the earlier proofs, it does not seem amiss to present another proof of the statement 
that all LPP's are odd; this is particularly true since the proof given here differs from the earlier 
proofs in several particulars. 

Our proof depends, in part, on some results obtained in [3], namely, that the existence of any 
even LPP, which we denote by n, implies that n = ±2 (mod 12), and that n^lp, where/? is 
prime. We also require a result which we state as a lemma, without proof; the reader is referred 
to [1] for a proof. 

Lemma 1: 
L5r=L^ (mod5r), r = l,2,.... (3) 
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In addition, we will need some basic results concerning the Fibonacci rank of appearance, or 
entry-point. We recall that, for a given n > 1, the rank of appearance (or entry-point) ofn, which 
we denote as Z(n), is defined to be the smallest positive integer t such that n\Ft. Various other 
terms and/or notation have been used by other authors, again pointing to a dearth of uniformity in 
the literature. One frequently used term, namely, "rank of apparition," is particularly odious to 
this writer, and shall be avoided steadfastly. As has been pointed out by Ribenboim [6], the latter 
term stems from a bad translation of the French hi d'apparition, which means "law of 
appearance," not "law of apparition"; in all English dictionaries, "apparition" means "ghost." 

The following properties are well known and stated without further comment: 

(i) Z(n) exists for all n > 1; 

(ii) Z(m)\n iff m\Fn\ 

(iii) Z(m)\Z(n) iff m\n iff Fm\Fn\ 
(4) 

m r T 

(iv) If n = llpp, then Z(n) = lcm Z(rf ), Z(p?),..., Z Q # )]; 
/ = 1 

(v) Z(pe) = pfZ(pl where 0<f<e. 

Finally, we require another result, also stated without proof as a lemma; refer to [2] for a 
proof. 

Lemma 2: 
n = Z(n) iffn = 5* orrc = 12-5M, u>0. (5) 

With these tools, the proof of the oddness of LPP's is surprisingly elementary. Now for our 
proof! 

Suppose, to the contrary that 2n is a LPP. Thus, we assume that 

Z ^ S E I (mod2w), (6) 

where n is composite and gcd(w, 6) = 1, using Di Porto & Filipponi's results in [3]. The following 
simple identities are readily verifiable: L2n -1 = F3n I Fn and L2

n = 5FW
2 - 4 = L^ - 2. Along with 

(6), these imply the congruences: 
(i) L2

n^-l (mod In)-

(ii) 5F„2-3(mod2,0; (7) 

(iii) F3„ = 0 {modln). 

From (7)(i) and (ii), we see that L„ # 0, Fn 4 0 (mod2w). Thus, Fm 4 0 (mod In) for all m 
dividing n, since Fm\Fn. From (7)(iii), it follows that 

Z(2n) = 3w. (8) 

Now n, and thus Z(2n), are odd. Also, Z(2n) = lcm[Z(2), Z(^)], or 

Z(2rc) = 3n = lcm[3, Z(w)]. (9) 

156 [MAY 



LUCAS PSEUDOPRIMES ARE ODD 

Since gcd(35 ri) = 1, we see from (9) that 3e\\ Z(n) => e = 0 or 1. We consider these two pos-
sibilities as separate cases. 

Cascl gcd(3, Z(w)) = 1 

By (9), Z(2ri) = 3Z(n) = 3n, so n = Z(ri). Using Lemma 2 and the fact that gcd(6, ri) = 1 and 
n is composite, we see that n = 5u,u>2. Let n = 5m, where m - 5M_1. Now (7)(i) implies that 
L2

n=-l (mod ri), and Ln = Lm (mod w), by Lemma 1; hence, L2
m = -l (mod ri) => L2m = 1 (mod w) 

=> L2m = 1 (mod m). Also, since gcd(3,2wi) = 1, L2m is odd (another well-known fact). There-
fore, L2m = 1 (mod 2m). This is equivalent to the statement that 2m is a LPP, provided m is 
composite. By an easy inductive process, we see that In, 2n/5, 2n/52, ...,2-52 =2n/5u~2 are 
all LPP's. However, as we may readily verify from a table of Lucas numbers, L5Q = 23 # 1 (mod 
50), so 50 is /io^ a LPP. The contradiction eliminates this possibility. 

CaselL 3l\\Z(n) 

By (9), Z{2n) = Z(n) = 3/i. Also, Z(12w)= lcm[Z(12),Z(w)]= lcm[12,3n] = 12w. Again 
using Lemma 2 and the fact that gcd(6, ri) = 1, we reach a contradiction, as in Case I. 

We conclude that our original assumption is faulty and, therefore, that all LPP's are odd. 
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ON A CONJECTURE OF DI PORTO AND FILIPPONI 
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We begin by describing the following two properties of certain natural numbers n: 
Fn-(5in) = 0 (modw), where gcd(w, 10) = 1, (l) 

and (5In) is a Jacobi symbol; v } 

4 = 1 (modw). (2) 

As is well known, properties (1) and (2) are satisfied if n is prime. More interestingly, there 
are infinitely many composite numbers n which satisfy (1) and/or (2). We call these n "Fibonacci 
pseudoprimes" (or FPP's) if they satisfy (1), and "Lucas pseudoprimes" (or LPP's) if they satisfy 
(2). As has been remarked elsewhere [1], this nomenclature is not standard, but should be 
acceptable to most readers of this quarterly. 

These numbers, and their generalizations, have been extensively studied by other writers. It 
is not our aim here to outline all the various results currently available, or in progress; suffice it to 
say that interest in these numbers is relatively recent, and known results are correspondingly 
scarce. Much of the interest in these numbers, in recent years, centers around their application in 
primality testing and public-key cryptography; however, it is beyond the scope of this paper to 
delve into this fascinating topic. 

We also mention the work of Kiss, Phong, & Lieuwens [4] which showed, among other 
things, that there exist infinitely many numbers n that are simultaneously FPP's and LPP's. For the 
sake of our discussion, we shall term such numbers "Fibonacci-Lucas pseudoprimes" (or FLPP's). 

In a 1989 paper [3], Di Porto & Filipponi asked the following question (which we para-
phrase here, to conform with our nomenclature): "Are all the composite Fibonacci and Lucas 
numbers with prime subscript LPP's?" 

As we shall show, the answer to this question is affirmative, if we exclude the subscript 3 (a 
minor oversight which Di Porto & Filipponi undoubtedly intended to account for). However, 
more is true: we shall, in fact, prove the following symmetric results. 

Theorem 1: Given n - Fp9 where/? is a prime > 5, then n is a FLPP if and only if n is composite. 

Theorem 2: Given n = L where/? is a prime > 5, then n is a FLPP if and only if n is composite. 

Proof of Theorem 1: Note that gcd(ft, 30) = 1. Let m = \{n -1). We consider two possi-
bilities: 

(a) p = ±1 or ± 11 (mod 30): then n = 1 or 9 (mod 20), {51 p) = {5In) = 1, and m is even. Also, 
Fp = (5/p) = 1 (mod/?), so p\2m. Since/? is odd, thus p\m, which implies n\Fm. As we may 
readily verify, Fn -1 = FmLm+l; hence, Fn s 1 (mod n). Also, Fn_x = F2m = FmLm s 0 (mod 
n); therefore, n satisfies property (1), and must either be prime or a FPP. Also, L„ = Fn_x + 
Fn+l = 2Fn_{ + F B s l (mod n), which shows that n satisfies (2) as well. Thus, n is either 
prime or a LPP. The conclusion of the theorem follows. 

(h) /? = ± 7 o r ±13 (mod 30): then n=l3 or 17 (mod 20), {51 p) = {5In) = - 1 , and m is even. 
Also, Fp = {51 p) = -1 (mod/?), so p\(2m + 2). Since/? is odd, thus p\(m + l), which implies 
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n\Fm+l. As we may readily verify, F„+l = Fm+lLm; hence, F „ = - l (mod n). Also, Fn+l = 
^2m+2 ~ Fm+\Lm+l = 0 (mod /?); therefore, n satisfies property (1), and must either be prime or 
a FPP. Also, Ln = Fn+l +Fn_x = 2Fn+l-Fn = 1 (mod n), which shows that n satisfies (2) as 
well. Thus, n is either prime or a LPP. The conclusion of the theorem follows. 
We may remark that p-\9 is the smallest prime for which Fp is composite; thus, 

Fl9 - 4181 = 37 • 113 is the smallest FLPP provided by the theorem. 

P^oof of Theorem 2: Note that n = ±l (mod 10), so (5/w) = l. Let m = ^(n-l). Also, 
note that Lp = l (modp); hence, p\2m. Since/? is odd, thus p\m. We consider two possibilities: 
(a) n=l (mod 4): then m is even. Suppose m - 2rd, where r > 1 and d is odd. Since/? is odd 

and p\m, thus p\d, which implies that n\Ld. Now F2m -FdLdL2dL4d ...Lrd; hence, n\F2m, 
i.e., n\F„_x. Thus, n satisfies (1). Also Ln - l + 5FmFm+l, as readily verified. Since n\Ld, it 
follows (as above) that n\Fm. Thus, n satisfies (2) as well. 

(b) w = 3 (mod 4): then m is odd. Thus, Lp\Lm, i.e., w|Zw. Then n\F2m=FmLm, or wIF^. 
Hence, n satisfies (1). Also, Ln = l + LmLm+l, as is readily verified. Thus, n\Lm implies (2). 

In either case, n satisfies both (1) and (2). The conclusion of the theorem now follows. 
We may remark that p = 23 is the smallest prime for which Lp is composite; therefore, 

L23 = 64079 = 139 • 461 is the smallest FLPP provided by the theorem. 
It was brought to the author's attention by the referee that the question proposed by Di Porto 

& Filipponi [3] (mentioned earlier) was answered affirmatively by the proposers in a paper [2] 
which, as fortune would have it, was presented at Eurocrypt '88 and was published before [3]. In 
[2], Di Porto & Filipponi also generalized their results to more general types of sequences, but 
only dealt with LPP's (or their generalizations) and not with FPP's. One of their more interesting 
corollaries ([2], Corollary 3) is that L „ is a LPP, if composite (paraphrasing to employ the 
nomenclature introduced here); the smallest such composite Lm is L^2 = 4870847 = 1087-4481. 

We close by remarking that the results derived in this paper may be generalized in various 
ways to yield comparable results for more general second-order sequences (as Di Porto and 
Filipponi, among others, have done); the Fibonacci and Lucas sequences are special cases of these 
more general types of sequences. No attempt at such generalization was made here, although it is 
likely that this would not present major difficulties. 
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1. INTRODUCTION 

The GCD Star of David Theorem asserts that 

It was first conjectured by H. W. Gould [2] in 1972. 
It has been proven and/or generalized by Hillman & Hoggatt [3? 4], Strauss [11], Hitotumatu 

& Sato [5], Ando [1], Singmaster [10], and Long & Ando [7, 8]. 
In this paper we will show some figures other than the hexagon described by the binomial 

coefficients in (1.1) that also have a gcd property. We also give a method whereby a new 
polygon with a gcd property can be constructed from known polygons with that property. 

2. TERMINOLOGY 

By a polygonal figure P in Pascal's triangle, we mean a simple closed polygonal curve whose 
vertices are entries of Pascal's triangle. We also use the same symbol to represent the set of 
entries on the curve. The six binomial coefficients in (1.1) form a hexagon with [f\ at its center. 
This hexagon will be called a fundamental hexagon. 

Following Long [6], we say P is tiled by fundamental hexagons if P is "covered" by a set § 
of fundamental hexagons F in such a way that 

(1) The vertices of each F in gf are coefficients in P or interior of P. 
(2) Each boundary coefficient of P is a vertex of precisely one F in gf. 
(3) Each interior coefficient of P is interior to some F in §f or is a vertex shared by precisely 

two elements in gf. 

If, in addition, the tiling has the property 

(4) For all Fx and F2 in g, Fx and F2 have at most one vertex in common. 

we say P has a restricted tiling. The three polygons in Figure 1 illustrate the three possibilities. 
The upper left figure has no tiling. The bottom figure has a restricted tiling. 

Let P be some configuration of binomial coefficients in Pascal's triangle. Suppose 
P = X KJ Y. If gcd X - gcd Y independent of the placement of P in Pascal's triangle, then P is 
said to have the gcd property with respect to X and Y. The fundamental hexagon has this 
property with respect to the two sets of three coefficients on the alternate vertices of the hexagon. 

An mxnxk hexagon is a hexagon oriented along the rows and main diagonals of Pascal's 
triangle with m,n,k,m,n, and k entries per side starting with m entries on top and going 
clockwise around the hexagon. 
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FIGURE 1. Some Polygons with Their Tilings 

3, THE GENERAL METHOD 

If we know that polygons Px and P2 have the gcd property with respect to certain sets, we 
can construct a larger polygon with a gcd property by using the following theorem. 

Theorem 1: Let Px and P2 be two configurations. Suppose Px has the gcd property with respect 
to X and 7 u ^ , and suppose P2 has the gcd property with respect to U and V^JS. Then 
P = X^JVKJY^JU has the gcd property with respect t o I u F a n d UuY. 

Proof: g c d X u F = gcd(7u1S,)uF = g c d 7 u ( ^ u F ) = gcd7uf/. 

Some figures satisfy the hypotheses of Theorem 1 in a very obvious way. We have the 
following corollary to Theorem 1. 

Corollary 1: Let P be a 2 x 2 x 2n, 2 x In x 2, or In x 2 x 2 hexagon in Pascal's triangle. Label 
the elements along the boundary ax, a2, a3,..., a4fl+2 in sequence. Let X = {a{, a3,..., a4n+l} and 
Y={a2,aA,...yaAn+2). Then gcdX = gcd7. 

Each of the hexagons described above admits a restricted tiling by n fundamental hexagons. 
The corollary is easily proved by induction on n with Theorem 1 providing the inductive step. 

4, OTHER POLYGONS WITH THE GCD PROPERTY 

In what follows, we will label polygons in the following manner unless otherwise noted. The 
left-most vertex on the top row will be labeled ax. Then as we travel clockwise along the 
boundary of the hexagon we label the coefficients a2, a3, a4,... . 

We will show that any polygon with a restricted tiling of fewer than five fundamental 
hexagons has the gcd property with respect to the sets {a,- \i odd} and {at \i even}. 

First, a polygon P that has such a tiling by one fundamental hexagon must be a fundamental 
hexagon. The GCD Star of David Theorem gives the desired result here. 

Suppose P has a restricted tiling by two fundamental hexagons. Then P is either the disjoint 
union of two fundamental hexagons or is a 2x2x4, 2x4x2 , o r a 4 x 2 x 2 hexagon. In the 
former case, each fundamental hexagon has the required gcd property and thus their disjoint union 
will also. The hexagons described in the latter case were shown in Corollary 1 to have the desired 
gcd property. 

At this point, we drop from consideration the polygons that are comprised of two or more 
components, since their gcd properties are inherited from the separate components. 
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Now, let P have a restricted tiling by three fundamental hexagons. There are two cases. 
Either some fundamental hexagon intersects only one of the other fundamental hexagons or each 
fundamental hexagon intersects both of the remaining two fundamental hexagons. 

The polygons in the first case have the desired gcd property as a result of Theorem 1; the 
polygons described in the second case are either 2 x 4 x 2 x 4 x 2 x 4 or 4 x 2 x 4 x 2 x 4 x 2 
hexagons. 

The former is shown with its restricted tiling in Figure 2. We will show that each of the 
hexagons has the gcd property with respect to the sets {ax, a3,..., ax x} and {a2, a4,..., a12 }. 

ai — a i 

/ \ 
an x2 a3 

#JJ -̂ 2 X^ d ̂  

/ \ 
al0 xx y x5 a5 

\ / \ / 
a9 a8 — a7 a6 

FIGURE 2. A Diamond Formed by Three Fundamental Hexagons 

We start with the hexagon in Figure 2. First, we prove the following lemma. 

Lemma 1: With the notation of Figure 2, 

gcd[y,a1?a3?...,a11} = gcd{j,a2,a4,...,a12}. (4.1) 

Proof: Applying Theorem 1 for 

X = {a2,a4,a6,al2,y}, Y = {aua3,a5,a7}, 
U={y9a9,an}, V = {a^al0}, S = {x2}y 

(4.1) holds as claimed. 

We show that the element y is superfluous in this lemma. 

Theorem 2: With the notation of Figure 2, 

gcd{a1,a3,...?a11} = gcd{a2,a4?...,a12}. (4.2) 

Proof: We will make use of the notation vp(n) = e. By this we mean that pe \\n. We will 
drop the subscript p when no confusion arises about which base p is to be used. Also, the nota-
tion vp(X) - e will imply that pe ||gcd X. 

Now suppose that h = gcd{aua3, ...,au} andg" = gcd{a2,a4,...,a12} and that h> g. Then 
there exists a prime/? for which vp(h) = e> vp(g). 

If v(a6)>e, then v(x5) = v(a6-a5) >e, which implies v(y) = v(a7 - x5) > e. Then, from 
Lemma 1, v({y,a2,a4,...,an})>e. Thus, v(g)>e, and this is a contradiction. Similarly, if 
v(al0) > e or v(a2) > e, then using Lemma 1 withy replaced by x2 or x4, respectively, we have the 
same conclusion. Therefore, v(a2)<e, v(a6)<e, and v(al0)<e. 
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Now, ata5a9 = a2a6al0. (See [9].) We know that v{ala5a9) > 3e; thus, v(a2a6alQ) > 3e, and 
this is a contradiction. Hence, h<g. Similarly, g<h. Therefore, g = h and the theorem is 
proved. 

To show that the 4 x 2 x 4 x 2 x 4 x 2 hexagon has the gcd property with respect to the same 
two sets, we first prove a lemma. To help with this lemma, we label a polygon P a little differ-
ently. Assume one of the boundaries of P falls along a row or main diagonal of Pascal's triangle 
and that the boundary consists of four or more consecutive binomial coefficients. We wish to 
adjoin a fundamental hexagon H to P to the right of the diagonal n-k = c, to the left of the 
diagonal k = c, or below the row n = c. This is illustrated in Figure 3. We label P so that ax,a2, 
a3, and a4 are labeled as in Figure 3 and then continue around P in the direction indicated 
labeling the coefficients d5,a6,...,a2n. 

H 
Xry X j tfj 

/ \ / 
/ \ / 

x3 x5 a2 

\ / 
x4 a3 P 

\ / 
aA 

H 
i*\ ~™ ~* Xi — — X~ 

\ / 
a2 x5 x3 

\ 
P a3 - - x4 

\ / 
a4 

P 
a,~ * a7 a, a 

, 2 3 ~i 

x\ xs xA 1 J , 4 \ / 
\ / 

x2 x3 

H 

FIGURE 3. Adding a Fundamental Hexagon to a Polygon 

Using this convention, we are now prepared to prove the following lemma. 

Lemma 2: Let P be a polygon in Pascal's triangle as labeled above. Suppose P has the gcd prop-
erty with respect to S - {a2i_x \i = 1,2,..., n) and T= {a2i \i = 1,2,..., n}; that is, gcd{ay \i odd} = 
gcd{af \i even}. Let H be the fundamental hexagon {a2, a3, xh x2, x3, x4} as in Figure 3. Then 
the polygon formed by {al,a4,a5,a6,...,a2n,x1,...,x4} has the gcd property with respect to 
X={a1?a5,a7,a9?...,a2w_1,x2,X4}-and7={a4,a6,...,a2M?x1,x3}. 

Proof: Suppose^ is a prime for which e = vp{X) > vp(Y). Then we have s - v(a3) < e. 
lft = v{a2) > e, then v({xux3, a3}) - v({a2, x2, x4}) > e. This is a contradiction. Hence, we 

have v(a2) <e. 
From this and v(X) = e, we have 

v(xj) = v(a2) = Kx5) - Kx3) -t <e. 

Thus, v(a2x2x4) >2e + ̂ and v(x1a3x3) = 2it + 5. We have 2t + s>2e + t, since a2x2x4 = Xja3x3. 
This reduces to t + ̂  > 2e, which is a contradiction. 

Hence, v{X) < v{Y) for any prime/?. The argument to show that v(Y) < v(X) is similar, and 
is omitted here. From this, it follows that gcd X - gcd 7. 

Theorem 3: Using the notation given in Figure 4 below, 

gcd{a1,a3,...,a11} = gcd{a2,a4,...,a12}. (4.3) 
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ax- a2 a3 — a4 

/ \ - ' \ 
an x, x2 x3 a5 

\ __ A> ._ / 
au x4 x5 a6 

\ / \ / 
al0 x6 a7 

\ / 

FIGURE 4. The 4 x 2 x 4 x 2 x 4 x 2 Hexagon 

Proof: The 4 x 2 x 2 hexagon at the top has the gcd property with respect to the sets 
{a1? a3, a5, x5, an} and {a2, a4, a6, x4, al2). Lemma 2 applies with P as the 4 x 2 x 2 hexagon and 
H as the fundamental hexagon centered at x6. This gives the desired result in (4.3). 

Now let P be any polygon that has a restricted tiling of four fundamental hexagons. If there 
is a fundamental hexagon in the tiling that intersects only one of the other fundamental hexagons 
in the tiling, the polygon P will have the desired gcd property. Theorem 1 would give the result 
using the fundamental hexagon as one polygon and the other component as the second polygon. 

Suppose then that each fundamental hexagon intersects at least two of the other fundamental 
hexagons. The only possibilities are shown with their tilings in Figure 5. They are the 2 x 4 x 4 , 
4 x 2 x 4 , and 4 x 4 x 2 hexagons. 

Each of these hexagons has the desired gcd property. Each of these three cases follows from 
Theorem 2 and Lemma 2. The fundamental hexagon has been placed on the upper right, bottom, 
and upper left, respectively, to obtain the three hexagons. 

/ V \ / V \ 
A i 

rxr \ A 

•\ i i \ 
"V ' A ' A ' / / V \ 

\ ;\ l 
\: \l 
\ 1 

\ !\ A 
\ A / 

FIGURE 5. Hexagons Tiled by Four Fundamental Hexagons 

Therefore, we have the following theorem. 

Theorem 4: Lete P be any polygon in Pascal's triangle that admits a restricted tiling of four or 
fewer fundamental hexagons. Then P has the gcd property with respect to the sets {a- \i odd} and 
{at\i even}. 

This can also be extended to the 4 x 2 x 6 x 2 x 4 x 4 , the 4 x 4 x 4 x 2 x 6 x 2 , and the 
6 x 2 x 4 x 4 x 4 x 2 hexagons using Theorem 4 and Lemma 2. 

Consider the polygon in Figure 6 below. The 4 x 4 x 4 hexagon P defined by {al9 x1? x2, a6, 
a7,as, ...,a2Q} has been shown by Long & Ando [8] to have the gcd property with respect to 
{ax, x2, a7, a9,..., al9} and {xx, a6, a8,..., a20}.. There is a fundamental hexagon H centered at x3. 
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Apply Lemma 2 with this P and H. We see that the polygon of Figure 6 has the gcd property 
with respect to {al9a3,...9a19} and {a2,a4, ...,a20}. This polygon has no tiling, restricted or 
otherwise, of fundamental hexagons. 

a _ _ x _ x _ _ f l 1 -*2 a6 
/ 

al9 x a3——a4 x as 

\ 
x x x x x a9 

/ 
al7 x x x x a10 

\ / 
a,, x x x au 

FIGURE 6e A Polygon that Has No Tiling 

Consider the polygon of Figure 7, which can be tiled by fundamental hexagons as illustrated. 
It does not have a restricted tiling. If X = {au a3,a5,a7} and 7={a2 )a4 ,a6 ,a8} ,we do not have 
gcd X = gcd 7. If we place the octagon so that ax = f ĵ ? w e have gcd X = 1292 and gcd Y = 646. 

/ \ 
a8 x a3 

\ / ' 
x-—x 

/ \ 
/ \ 

an
 x <*A 

\ / 
a6 — a5 

FIGURE 7e An Octagon 

We close with the following observation. A polygon possessing a restricted tiling seems to 
have the desired gcd property. It is by no means a necessary condition, as the polygon in Figure 6 
shows. However, possessing a tiling that is not a restricted tiling is not sufficient to guarantee the 
desired gcd property, as the octagon of Figure 7 shows. 
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FIBONACCI NUMBERS AND A CHAOTIC PIECEWISE 
LINEAR FUNCTION 

J. S. Frame 
Michigan State University, East Lansing, MI 48824 

(Submitted August 1992) 

INTRODUCTION 

The continuous piecewise linear function defined by 

fx + 1/2 forx in H = [0,1/2] 
[2(1-JC) forx in 7 = [1/2,1] 

was displayed by Xun Cheng Huang in [1, p. 97] as an example of a function having periodic 
points of every finite order n under iteration by g where gn(x) = g(g"~l(x)), with g°(x) = x. We 
shall examine the iterates ofg, and show that there are Fn+2 subintervals of U = [0,1] on which 
gn is linear, of which Fn lie in H and Fn+l lie in I. Of the Fn intervals in H, Fn_2 are mapped by 
gn onto I and Fn_x onto U; of the Fn+l in I, Fn_x are mapped onto / and Fn onto JJ\ by gn. Fur-
thermore, the number of points in [/whose period is a factor of n under iteration by g is the Lucas 
number Ln - Fn_l+Fn+l. Finally, we examine the cycles in which rational numbers in U with any 
given odd denominator appear under iteration by g. 

BUNS AND BINS, BUNKS AND BINKS 

We shall call an interval mapped bijectively on [/by gn a "bun" and an interval mapped bijec-
tively on / = [1/2,1]—but not in a bun—a "bin." "Bunks and "binks" are buns and bins of a fixed 
width 2~k. Each of the Fn+l buns in U and Fn_x bins in / contain a periodic point x such that 
gn(x) = x, so there are Ln points x in [/whose period under g is a factor ofn. 

We denote by Hm^k or Im^k a bin or a bun of width 2~k having one endpoint x-ml2k such 
that gn{x) = 1. If JW is odd, the bink Hmtk is adjacent to the bunk Im^k, preceding it for odd k, or 
following it for even k. There are Fn such pairs. There are no bins with even m. Of the Fn_x 
buns with even m one is IQk if In - 3k +1, or one is Im^k, m = 2k, if In - 3k. The remaining 
buns are adjacent pairs, one twice as wide as the other, such as 712j4 and/6)3 for n = 5 that have 
the common endpoint x = 12/16 = 6/8. 

When #i = l, the F3=2 intervals are H = Hhl = [0,l/2]; and 7 = / l f l =[1/2,1]. The 
Fn+2 = 3, 5, and 8 intervals for n = 2, 3, and 4 are 

^oiJ ^32 ^ 3 2 n = 2,F4=3 

hi Hn\ ^53 h?» hi n = 3,F5=5 
HU A3 ^22i ^43, Al,4 #11,4> #73 ^73 « = 4, F 6 = 8 

We separate by a semicolon the buns and bins in H from those in /. To proceed from one n to the 
next, we first list the intervals in / for n -1 as the intervals in H for n with the same k, but with m 
replaced by m-2k~l (or x by x-1/2). Then, after a semicolon, we list all the intervals for n-1 
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in reverse order as intervals in / for n, but with k replaced by k + l and m by 2k+l-m, thus 
replacing x~m!2k by y = l-x/2, sincegreplaces y>\/2 by g(y) = 2(1 ~y) = x. 

We assume as induction hypothesis that, for n = N - 1 there are Fn_2 bins and Fn_l buns in //, 
and Fn__x bins and Fw buns in/, for a total of F„ bins and Fn+1 buns in U9 of which Fn intervals are 
in H and Fn+l in /. We verify this for n = 2 and 3. Then, since F ^ + Fw = F„+1, the construction 
given above shows that the same is true for n = N9 proving the hypothesis for all n > 2. 

For n = 5 we list the F7 = 13 buns and bins as follows: 

^0,3> h,4 ^3 ,4> ^ 3 , 3 ^3?3> ^9,4 ^9 ,4> ^21 ,5 ^21,5 > ^12,4 ^6,3> ^15,4 # 1 5 , 4 

Next we classify the binks and bunks for fixed n and k, and count them using binomial coef-
ficients bn>k defined by 

assuming 0 < « - k < k. The sum over k of b„tk is F„. 
For 2<n>2k the distributions are found to be as follows: 

Binks (m odd) 
Bunks (m odd) 
Bunks (m even) 
Bunks (all m) 

InH 

\-2,k~l 

K-2,k~l 
K-3,k-l 
bn-l,k 

I n / 

K-\,k-l 
K-l,k-l 
K-2,k-l 

Kk 

InU 

Kk 
Kk 
K-\,k 
K+l, k+l 

n>\ 
n> 1 
n>2 

Summing over k, we replace hn__uk_j byFn_iy since 
fk-\ 

For n > 2 we prove this count by induction, first checking its validity for n = 3 and 4. Bink 
and bunk counts for gn in H are those for gn~l in /, with n replaced by n -1. Bink and bunk 
counts for g" in / are those for gn~l in U, with n and k replaced by n-1 and A: - 1 , since g doubles 
widths of intervals in / mapped on U. Thus, the counts are valid for n > 2. 

PERIODIC POINTS 

A periodic point x such that gn(x) = x is contained in each of the Fn+l intervals Im^k for g" 
that map onto U, but only in the Fn_x intervals Hm^k in /, since gn maps Hm k intervals in H onto 
/without overlap. Thus, the number of periodic points in U whose periods divide n is 

4 = 4-i + 4+i = *" + (-*)"", where r = (51/2 +1) / 2. 
The coordinate x of the periodic point in an Imk interval is 

x = (m + (-l)k(x-l))/2k=(m-(-l)k)/(2k-(-l)k). 
The coordinate x of the periodic point in an H k interval is 

x = l-y/2 = (m + (-l)ky)/2k =(m + 2(-l)k)/(2k +2(~l)k). 
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For n = 5 the 11 intervals and periodic points for g are 

A),3> ^3,4 ^3,3 ' ^9,4 ^ 9 , 4 ? ^21 ,5 ^21,5 > A2,4 ^6,3? A5,4 -^15,4 

Note that Hm k intervals yield even denominators. The point 22 733 = 2/3 with k = n is a fixed 
point of g. The others form two period 5 cycles with k = 3 and 4, respectively: 

(1/9,11/18,7/9,4/9,17/18), (2/15,19/30,11/15,8/15,14/15). 
Each of the </>(b) rational numbers x = a/b in U with b odd and (a, A) = 1 is periodic under 

iterations of g. For x in / we have bg(x) = 2b(l-alb) = -2a (mod b), whereas for x in H we 
have g(x) = a/h + ll2,hg2(x) = 2b(ll2-alb) = -2a (mod *). If t is the exponent of -2 (mod 
h), there are f fractions jib in the cycle with alb, such that 0<j<b. These7 form a coset of 
the subgroup generated by b-2 in the group </>{b) residues relatively prime to J. I f - 2 is a 
quadratic residue of b, then t divides </>{b)l2. If A is the number of the jib in the cycle with alb 
that lie in H, then the cycle contains h fractions with denominator 2b, and has length n = t + h. 
The cycle containing l-a/b has t-h denominators 2b and length 2t-h. There are a total of 
<t>(b)lt cycles containing the <j>(b) fractions jib and <f>(b)/2 fractions (2j + b)/2b < 1. 

To illustrate the theory, we give some examples: 
(a) If b = 23, -2 is a quadratic nonresidue (mod b), to t = 22 and /i = 11. Since 23x89= 211 - 1 , 

23divdides2'-(-l)r . 
(b) If b = 19, -2 = 62 (mod A, so f divides 9. Powers of-2 (mod 19) are congruent to -2, 4, -8, 

- 3 , 6, 7, 5, 9, 1, so h = 6 of these nine are between 0 and 19/2. Thus, 1/19 and 18/19 are in 
cycles of n = 9 + 6 and 9 + 3. Since 513 = 27 x 19, b divides 29 +1. 

(c) If b --= 33, the powers of-2 (mod 33) are -2, 4, -8, 16, 1, so (r,/i) = (5, 3) and (5, 2) for 
cycles with alb = 1/33 and 32/33. Since </){b) = 20, there are two other cycles like these. 

REFERENCE 

1. Xun Cheng Huang. "From Intermediate Value to Chaos." Math. Magazine 65.2 (1992):97. 
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OF DIOPHANTINE EQUATIONS 
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Let p-p(xu x2,...,xn) be a polynomial with positive integer coefficients. In this paper we 
shall discuss some methods for generating solutions for the equation 

P+y2=z2. (l) 

The approach we use is to start with a method for generating solutions for the equaiton 

x2+y2=z2, (2) 

and show how the method is extended to equation (1) or to special cases of (1). 

1. THE RULE OF PYTHAGORAS AND THE RULE OF PLATO 

According to Dickson [1], it was Pythagoras who showed that, if we start with the odd 
integer a, let ft = y (a2 -1) and c = ft +1, then (a, ft, c) is a solution of (2). 

Again, according to Dickson [1], it was Plato who showed that, if we start with the even 
integer a, let b = ^a2 -1 and c = b + 2, then (a, ft, c) is also a solution of (2). 

The methods of Pythagoras and Plato are extended to (1) by the following proposition. 

Proposition 1: Let ax,a2,...,an be positive integers and let a = p(a{,a2,...,an). 

f. Ifaisodd, let b = ±(a-l) and c- b + l, then {aua2, ...,a„,b, c) is a solution of (1). 
ii. If a = 0(mod4), let b = ±a-l and c = ft+ 2, then (aua2,...,an,byc) is a solution of (1). 

III. If a = 2 (mod 4), then it is impossible to find integers b and c such that (ax, a2,..., an, ft, c) is 
a solution of (1). 

Proof: For i and ii, write c2 -ft2 as (c-ft)(e + ft), substitute and simplify. If a = 2 (mod 4), 
then, for integers ft and c, a + b2 = 2 or 3 (mod 4) depending on whether ft is even or odd, respec-
tively, but c2 = 0 or 1 (mod 4) depending on whether c is even or odd, respectively. 

2. THE METHOD OF RECURSION 

Let (a, ft, c) be a solution of (2). Let d-c-b, ax= a + d, bl=a + b + ̂ , and cx = bx +d In 
[2] I showed that (a^ft^q) is also a solution of (2). Let us call this method the "method of 
recursion." The following proposition extends the method of recursion to the equation 

kxx2 +k2xl +'~ + knxl+m+y2 =z2. (3) 

Proposition 2: Let (a1?a2, ..,,a„,ft,c) be a solution of equation (3) and let d = c-b. For/'= 1 
to n define 
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dLk 
a\ = ai+d, b' = T,kiaj+b + L, and cf = bf+d. 

Then (a{, a'2,...,a'n,b\ cr) is also a solution of (3). 

Proof: Substitute af + J for a\ and simplify to obtain 

E£7.(a/)2 = ^ . ( a , + ̂ ) 2 = Sfc-a* + 2dLktat + d2Zkr 

Substitute c2 -b2 -m for E^a 2 , write c2 -b2 as d(c + b), and factor out <ito obtain 

<i(c + b + 2£&/a/ +rfZ£,.) - m. 

Substitute 2b' - 2b for 2£&/a/ +<iZA,. to obtain 

d(c + b + 2yLkiai+dZki)-?n = d(c-b + 2b')-rn. 

And since c-b-c'-b' = d, we obtain 

d(c-b + 2b')-m = {c')2 -{bff -m. 

Note that when dLki is odd we do not obtain integer solutions (see Example 1 below). In this 
case, apply the recursion twice to obtain the following corollary. 

Corollary Let (ax, a2,...,an, b, c) be a solution of equation (3) and let d-c-b. For / = 1 to n 
define 

a; = aj+2d, b' = 21ki(aj +d) + h, and c' = b'+d. 

Then (a{, a^,..., a^, 6', c') is also a solution of (3). 

The following example illustrates the use of Proposition 1, Proposition 2, and its Corollary. 

Example 1: Suppose we begin with the equation 

2x2 +x2+2x2+4 + y2 =z2. (4) 

If we let xl=x3 = l and x2 = 2, then, by Proposition 1, (1, 2, 1, 2, 4) is a solution of (4). Here, 
d = 4-2 = 2. Applying Proposition 2, we have 

a[ = \ af
2=4, a^ = \ 

bf = 2-14-1-2 + 2-1 + 2 + 2 ( 2 + 1 + 2 ) = 1 3 
2 

c' = 15. 
Hence, (3, 4, 3, 13, 15) is also a solution of (4). 

If we let xx = x2 = x3 = 1, then, by Proposition 1, (1, 1, 1, 4, 5) is a solution of (4). Here, 
d = 5 - 4 = 1. Applying Proposition 2, we have 

a/ = 2, a £ = 2 , a ^ = 2 , 
t , 0 , , , „ , A (2 + 1 + 2) 23 
b' = 2-1 + 1-1 + 2-1 + 4 + - —- = — , 

2 2 
2 

Hence, (2 ,2 ,2 , -f-, ^ ) is also a solution of (4). 
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In this case, the solution is not an integer solution. However, if we apply the Corollary to 
Proposition 2, we obtain 

a[ = 3, af
2= 3, a^ = 3, 

A' = 2(2-2 + l-2 + 2-2) + 4 = 24, 
c' = 25. 

Hence, (3, 3, 3, 24, 25) is also a solution of (4). 

3. THE METHOD OF MATRICES 

In [3], Hall showed that, if we mutliply a solution (a,b,c) of (2) by any of the following 
three matrices, the product is also a solution of (2). 

~-l 2 2 
-2 1 2 
-2 2 3 

Let us call this method the "method of matrices." The following proposition extends the method 
of matrices to the equation 

(5) 

1 
2 
2 

-2 2" 
-1 2 
-2 3 

"l 2 2 
2 1 2 
2 2 3 

nx2 + y2 +m~z2. 

Proposition 3: Let (a, b, c) be a solution of equation (5). 
i. Ifn = 2k, the product of (a, b, c) and any of the following three matrices is also a solution of 

(5). 
1 -1 1 

2k l-k k 
2k -k k + l 

1 1 1 
2k k-1 k 
2k k k + l 

-1 1 1 
-2k k-1 k 
-2k k k + l 

ii. If n = 2k +1, the product of {a, b, c) and any of the following three matrices is also a solution 
of(5) 

1 -2 2 
In l-2n In 
In -In In +1 

1 2 2 
In 2n-l 2n 
2n 2n 2n + l 

- 1 2 2 
-2n 2n-\ 2n 
-2n 2n 2n + \ 

(Note that when n= 1 WQ obtain Hall's matrices stated above.) 

Proof: Equation (5) is a special case of equation (3). By Proposition 2, with kx - n, 

nd 
af = a+d, b' = na + b + — , and c' = b'+d, 

2 
is also solution of (5). Let n = 2k, substitute c- b for d, and simplify to obtain 

a' = a-b + c, 
b' = 2ka + (l-k)h + kc, 
c' = 2ka -kb + (k + l)c. 

In matrix form, this becomes 
~ 1 -1 1 ~}\a 
2k l-k k \\b 

\2k -k k + \\\c 
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To obtain the second matrix, note that, if (a, h, c) is a solution, then so is (a, -ft, c). Hence 

is also a solution. But 

1 - 1 1 
2k l-k k 
2k -k k + l 

1 
Ik 
\k 

-1 
l-k 
-k 

1 1 
k 

k + l\ 
r ° \-b 
L c 

a 
-b 
c 

1 
2k 
2k 

-1 
l-k 
-k 

1 1 
k 

k + lj 

[l 
0 

L° 
0 0] 

-1 0 
0 lj 

[a 
lb 
\c 

The third matrix is obtained similarly. 
When n = 2k +1, we use the Corollary to Proposition 2. 

The following example illustrates the use of Proposition 1 and Proposition 3. 

Example 2: Suppose we begin with the equation 

2x2+y2=z\ (6) 

By Proposition 1, (2, 1, 3) is a solution of equation (6). Since n is even, by Proposition 3 the 
matrices 

1 
2 
2 

-1 1 
0 1 

-1 2 

1 1 1 
2 0 1 
2 1 2 

-1 1 1 
- 2 0 1 
- 2 1 2j 

and the triple (2, 1, 3) will generate the solutions (4, 7, 9), (6, 7, 11), and (2, -1, 3), respectively. 
If we begin with the equation 

3x2+y2 =z2, (7) 

then, by Proposition 1, (1, 1, 2) is a solution of equation (7). Since n is odd, by Proposition (3) 
the matrices 

1 
6 
6 

- 2 2 
- 5 6 
- 6 7 

1 2 2 
6 5 6 
6 6 7 

- 1 2 2 
- 6 5 6 
- 6 6 7 

and the triple (1, 1, 2) will generate the solutions (3, 13, 14), (7, 23, 26), and (5, 11, 14), respec-
tively. 
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A Niven number [2] is a positive integer that is divisible by the sum of its digits. In 1982, 
Kennedy [3] showed that there do not exist sequences of more than 21 consecutive Niven 
numbers. In 1992, Cooper & Kennedy [1] improved this result by proving that there does not 
exist a sequence of more than 20 consecutive Niven numbers. They also proved that this bound is 
the best possible by producing an infinite family of sequences of 20 consecutive Niven numbers. 

For any positive integer n > 2, define an ft-Niven number to be a positive integer that is 
divisible by the sum of the digits in its base n expansion. This paper examines the maximal pos-
sible lengths of sequences of consecutive ft-Niven numbers. The main result is given in the follow-
ing theorem. 

Main Theorem: For any n > 2, there does not exist a sequence of more than In consecutive 
«-Niven numbers. 

Note that this result is entirely general and gives Cooper & Kennedy's result as a special case. 
Fix any n > 2. The following notation will be used throughout this paper. A number written 

in base n will be subscripted with (n). For example, 12 = 22(5) • When a string of (nonboldface) 
variables is subscripted, it is assumed that each variable represents a single digit in the given base. 
For example, y(w) represents a number that can be expressed in two base n digits, 0<ij <n< 
(Note that / = 0 is allowed.) A boldface variable in such a string represents a (possibly empty) 
string of digits in the given base. For example, a22(5) represents a number congruent to 12 
modulo 25. Let s(a) be the sum of the digits in the string a. 

Lemma 1: Suppose that 

is a sequence of n consecutive «-Niven numbers. Then n divides s(a). 

Proof: Let s = 5(a). The base n digit sums of the numbers a0( w ) , . . . , a(/? - l)(w) are $, s + 1, 
..., s + n-l. Exactly one of the digit sums is divisible by n. The corresponding w-Niven number 
must also be divisible by n and thus must be a0(w). Hence, n divides the digit sum of a0(w), i.e., n 
divides s. 

Lemma 2: The n + l consecutive numbers a00(w),..., a!0(w) are not all ̂ -Niven numbers. 

Proof: Suppose to the contrary. Since w-Niven numbers are by definition positive,- s = 
5(a) > 0. Further, by Lemma 1, n divides s. Thus, n < s. The base n digit sum of both a01(w) and 

* This material is based on work supported by the National Science Foundation under Grant No. DMS-
9115349. The Government has certain rights in this material. 
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alO(w) is s +1. Since s +1 divides each, it must divide their difference, w-1 . So s + l<n-l<s. 
Contradiction. 

Lemma 3: Ifi^n-1 and s(a) + / > 0, then m(n- l)(w) and a(z 4- l)(w-2)(w) are not both ^-Niven 
numbers. 

Proof: Let 5 = 5(a). The base ^ digit sum of both &i(n-\){n) and a(z + l)(«-2)(w) is 
5+i + n -1. If both are ft-Niven numbers, then s + i + n-l must also divide their difference, n-\. 
But s+i>0 implies that $ + i + n-l>n-l. Contradiction. 

Theorem 4: If ay(/?) is the first term in a sequence of length at least 2n of consecutive ft-Niven 
numbers, then i~n-\ and7 = 0. 

Proof: Let a//(w) be the first term in such a sequence. Let s = s(a). Suppose i^n-\. Then 
a(i + 1)0(B), a(i + l)l(n) , . . , a ( / + l)(w - l)(;i) 

is a subsequence of consecutive n-Niven numbers. By Lemma 1, n divides s + z + l, and so 
s +1 > 0. Further, both a/(« - l)(w) and a(/ +1)(« - 2)(77) are «-Niven numbers. But this is impos-
sible by Lemma 3. 

Similarly, if i-n-1 and7 ^ 0, then the sequence contains the subsequence 
(a + l)00(B),...,(a + l)10 

which cannot all be ??-Niven numbers by Lemma 2. 

We now prove the Main Theorem as an easy corollary to Theorem 4. 

Proof of the Main Theorem: Suppose xl5 x2,... is a sequence of more than 2n consecutive 
w-Niven numbers. By Theorem 4, both xx and x2 end in zero when written in base n. This is 
clearly impossible. 

It is not known whether this bound is the best possible. The earlier results show that it is the 
best possible for n = 10 and computer calculations have verified that it is optimal for a number of 
other small values of n. A general proof, however, that applies to all values of n has yet to be 
found. 

Conjecture 5: For each n > 2, there exists a sequence of consecutive ^-Niven numbers of length 
In. 
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The object of this paper is to present a bracket function transform together with its inverse 
and some applications. The transform is the analogue of the binomial coefficient transform dis-
cussed in [2]. The inverse form will be used to give a short proof of an explicit formula in [1] for 
Rk (n), the number of compositions ofn into exactly k relatively prime summands. 

Theorem 1—Bracket Function Transform: Define 

s(»)=i 
k=l y=i d\j 

and 

Then 

d(x) = y£x"A„, 

«=i 

•^) = ̂ Z 4 X 
l - x £ " l - x " 

Proof: We need the fact that 

S 
n-k 

\x"~k = 
(l-x)(l-x*) ' 

k>l \x\<l 

which is easily proved and is the bracket function analogue of the binomial series 

y(jV*= l-—r, k>\, \x\<\. 
tkykJ (i-*)(i-*r 

(i) 

(2) 

(3) 

(4) 

(5) 

(6) 

Relations (5) and (6) were exhibited and applied in [1] for the purpose of establishing some 
number theoretic congruences. 

By means of (5) we may obtain the proof of (4) as follows: 

4 = I4S 
k=l n=k 

k=l n=k 

n-k ! S ^ l 
k=i (l-x)(l-xk) 

which completes the proof. 
Note that (4) does not turn out as nicely as the corresponding result in [2] because we now 

have 1 - xk instead of (1 - x)k, which is the striking difference between (5) and (6). As a result, 
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we are not able to express &(x) as some function multiplied times sl(x) as we did in [2]. Never-
theless, the result does express if in terms of A instead of S. 

Transform (1) may next be inverted by use of the Mobius inversion theorem, but this requires 
some care. Here is how we do it: 

or just 

However, 

so that we find the relation 

S(n)-S{n- -1) 
n 1 n 

J. 

S(n)-S(n~l) = £\\ 
k=l U 

n 
A - "n- l" 

4 

n 

{1 

-

-

n-l 

I 
n-

"n - l " 
k 

ifjfc| 
if*J 

n, 

-1] 

V (7) 

5(n)-5(ii-l) = £ 4 , , 
d\n 

which may be inverted at once by the standard Mobius theorem to get 

A(n) = %J?-Xs(d)-S(d-l)}. 
d\n \dJ 

(8) 

(9) 

It is easy to see that the steps may be reversed and we may, therefore, enunciate the bracket 
function inversion pair as 

Theorem 2—Bracket Function Inverse Pair, 

if and only if 
k=\ 

4=114 
7=1 d\j 

A(n) = YJfy{S(d)-S(d-l)}. 

This inversion pair is the dual of the familiar binomial coefficient pair 

k=0y 

if and only if 

4. = i(-ir*fjW). 
k=o v J 

Sometimes it will be convenient to restate the pair (10)-(11) as 

Theorem 3: 

(10) 

( i i ) 

(12) 

(13) 

/(«,*) = £ 
j=\ d\j 

if and only if 
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g(n,k) = ^J^]{f(d,k)-f(d-l,k)}. 
din \aJ 

(15) 

We will apply this form of our inversion theorem to give a short proof of a formula in [1]. In 
that paper the expansion 

n *-i 
J=i 

0̂') = I I W (16) 
y=l d\J 

d>k 

was first proved, where Rk (n) = the number of compositions of n into exactly k relatively prime 
positive summands, i.e., the number of solutions of the Diophantine equation n = ax +a2 +a3 + 
-~+ak where \<a} <n and (alya2,a3, ...,ak) = 1. 

Applying (14)-(15) to this, we obtain 

d-\ R^i<mianmwz>> 
n\ d-\ 

which proves the desired formula for Rk (n). 
The series (11) may be restated in the form 

4, = I/W), 
k=\ 

(17) 

but it is awkward to give a succinct expression for the Hk coefficients. To obtain these numbers, 
however, we may proceed as follows. From (11), we have 

= S 
k=\ LL^J 

n~\ M\j\$(k)-Z 
k=l IL 

n 
_k + l_ 

- ~n-\ 
.* + !_ k + l 

S(k)-M(n)S(0) 

so that we have the following explicit formula for the H coefficients: 

m n-\ n 
k + l 

w-1 
ITT M k + l 

forl<k<n. (18) 

Ordinarily, £(0) from (1) has the value 0; however, it is often convenient to modify (1) and 
define 

s(»)=i+2 
k=\ 

(19) 

so that S(0) = 1. With this train of thought in mind, we present a table of Hk for 0 < k < n, n = 
0(1)18, so that the table may be used for either situation. Thus, the Q-column in the array will be 
given by -ju(n), but with H$ = 1. 

A way to check the rows in the table of values of Hk is by the formula 

J]Hn
k=ju(n) forallw>l, 

k=\ 

178 

(20) 

[MAY 



A BRACKET FUNCTION TRANSFORM AND ITS INVERSE 

which, in a sense, gives a new representation of the Mobius function. The proof is very easy. In 
expression (11) of Theorem 2, just choose S(ri) = 1 for all n > 1. This makes A(n) = ju{n) for all 
n > 0. But then, by relation (17), we have result (20) immediately. 

n 
~~6~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

k = 

1 
-1 

1 
1 
0 
1 

-1 
1 
0 
0 

-1 
1 
0 
1 

-1 
-1 
0 
1 
0 
0 

A Table of the Numbers H£ 

1 
-2 
-1 

1 
-1 
2 

-1 
0 
0 
2 

-1 
- 1 
-1 
2 
1 
0 

-1 
0 
1 

1 
-1 
- 1 

0 
0 
0 
0 
1 

-1 
0 
1 
0 

-1 
1 
0 
0 

-1 
2 

1 
-1 
0 

-1 
0 
1 

-1 
0 
0 
1 
0 
0 

-1 
0 
0 
1 
3 

1 
-1 
0 
0 

-1 
0 
1 
0 

-1 
0 
0 
1 
0 
0 
0 
4 

1 
-1 
0 
0 
0 

-1 
0 
1 
0 
0 

-1 
0 
0 
1 
5 

1 
-1 
0 
0 
0 
0 

-1 
0 
1 
0 
0 
0 

-1 
6 

1 
-1 
0 
0 
0 
0 
0 

-1 
0 
1 
0 
0 
7 

1 
-1 
0 
0 
0 
0 
0 
0 

-1 
0 
1 
8 

for 0 < k < n, 

1 
-1 
0 
0 
0 
0 
0 
0 
0 

-1 
9 

1 
-1 
0 
0 
0 
0 
0 
0 
0 

10 

1 
-1 
0 
0 
0 
0 
0 
0 

11 

1 
-1 
0 
0 
0 
0 
0 

12 

n = 

1 
-1 
0 
0 
0 
0 

13 

0(1)18 

1 
-1 1 
0 -1 
0 0 
0 0 

14 15 

1 
-1 
0 

16 

1 
-1 1 
17 18 

If we adopt the convention that H% = -//(w), but with H$ = 1, then (20) may be reformu-
lated to say that 

j^H^O, for all n>\. (21) 
k=0 

The author wishes to acknowledge helpful comments by the referee, especially some correc-
tions to the table of values of the H coefficients. 

REFERENCES 

1. H. W. Gould. "Binomial Coefficients, the Bracket Function, and Compositions with Rela-
tively Prime Summands." The Fibonacci Quarterly 2.4 (1964):241-60. 

2. H. W. Gould. "Series Transformations for Finding Recurrences for Sequences." The Fibo-
nacci Quarterly 28.2 (1990): 166-71. 

AMS Classification Numbers: 11A25, 11B83, 05A19 

1994] 179 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also he sent to the problem editor by electronic mail to 72717.3515@compuserve.com on 
Internet. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

AH-2 = Ai+i+ A?? A) = 2, LX = i. 

Also, a = (l + V5)/2, fi = (l-Js)/29 Fn = (an-/?")/V^and Ln = an+(3n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-760 Proposed by Russell Euler, Northwest Missouri State University, Maryville, MO 

Prove that F2
+l > F2n for all n > 0. 

B-761 Proposed by Richard Andre-Jeannin, Longwy, France 

Evaluate the determinants 

L\ 
L\ 
L\ 
L\ 
L\ 

L\ 
L\ 
L\ 
L\ 
Ll 

B-762 Proposed by Larry Taylor, Rego Park, NY 
Let n be an integer. 
(a) Generalize the numbers (2, 2, 2) to form three three-term arithmetic progressions of 

integral multiples of Fibonacci and/or Lucas numbers with common differences 3Fn, 5Fn, and 3Fn. 
(b) Generalize the numbers (4, 4, 4) to form two such arithmetic progressions with common 

differences Fn and Fn. 
(c) Generalize the numbers (6, 6, 6) to form four such arithmetic progressions with common 

differences Fm 5Fn, 7Fn, and Fn. 

LQ LX L2 L3 L4 

LJ L0 LX L2 L3 

L2 Lx L0 L J L2 

L3 L2 L{ L0 LX 

L4 L3 L2 Lx LQ 

and 

I2 T2 I2 

^ 0 ^ 1 ^ 2 
I^Q 1 ^ 

0 
l /2 

N k I2 I2 

LJ2 i ^ 
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B-763 Proposed by Juan Pla, Paris, France 

fei7r/3 J2 ^ Let A = r- _i7p/3 . Express A" in terms of Fibonacci and/or Lucas numbers. 

B-764 Proposed by Mark Bowron, Tucson, AZ 

Consider row n of Pascal's triangle, where n is a fixed positive integer. Let Sk denote the 
sum of every fifth entry, beginning with the kth entry, ( £ ) . If 0 < 7 < j < 5, show that \St - Sj | is 
always a Fibonacci number. 

For example, row 10 of Pascal's triangle is 1 ,10 ,45 ,120 ,210 ,252 ,210 ,120 ,45 ,10 ,1 . Thus, 
S0 = 1 + 252 + 1 = 254, 5i = 10 + 210 = 220, and 2 5 4 - 2 2 0 = 34 = F9. 

B-765 Proposed by Mohammad K. Azarian, University of Evansville, Evansville, IN 

Let m and n be positive integers greater than 1, and let x = Fmn I (FmFn). What famous con-
stant is represented by 

r o o f / ! V 
EZ-Tf /•=o \j=o J •) 

J+l 

SOLUTIONS 
The Determination 

B-73I Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 31, no. 1, February 1993) 

Evaluate the determinant: 
A) M ^2 ^3 ^4 
F, ^0 Fx F2 F3 

Fl M A) A A 
F3 F2 Fl F0 Fl 
F4 F3 F2 F, F0 

Generalize. 

Solution 1 by Leonard A . G Dresel, Reading, England 

Let Mn denote the nxn matrix (nty) where m^ =F^_^ so that the given determinant is 
det(M5). For n > 3, det(Mw) remains unchanged if we subtract the sum of the second and third 
rows from the first row. This modified first row becomes (-2, 0, 0,...) because F0-F1-F2=-2, 
Fl-F0-F1 = Q, and the remaining elements in the first row vanish because of the recurrence for 
Fr 

Hence, for n>3, we have det(M„) = (-2)det(M7l_1). But, for w = 2, we have det(M2) = 
FQ -F± - -1. Hence, we have by induction that, for n>2, det(Mw) = -(-2)"~2. In particular, 
det(M5) = 8. 
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Solution 2 by Pentti Haukkanen, University of Tampere, Tampere, Finland 

Replace the Fibonacci sequence {Fn) by a sequence (wn) that satisfies ww =/w„_1+w/1_2 

(n > 2) with initial condition w0 = 0, where p and wx are arbitrary constants. Then, as in solu-
tion 1, subtract/? times the second row plus the third row from row 1. We find that the first 
row becomes (-pwl-w2,09G,...). By induction, the value of the nxn determinant is 
(~Pwi ~ wi)n~2{~w\) • Since w2 = pwx, this can be written as (-l)n~l(2p)n~2w". 
The proposer submitted the general case for an nxn matrix. This generalization was found by 
all solvers. In addition, Suck found the same generalization as Huakkanen. Bruchnan obtained • 
the result for a generalized Fibonacci sequence with two arbitrary initial conditions, but the 
result is a bit messy. See problem B-761 in this issue for a related problem. 
Also solved by Richard Andre-Jeannin, Seung-Jin Bang, Glenn Bookhout, Scott H. Brown, 
Paul S. Bruckman, the Con Amore Problem Group, Russell Jay Mendel, Ed Korntved, Harris 
Kwong, Carl Libis, Graham Lord, Bob Prielipp, Sahib Singh, J. Suck, Ralph Thomas, A. N. ft 
Woord, and the proposer. 

The Mod Squad 

B-732 Proposed by Richard Andre- Jeannin, Longwy, France 
(Vol 31, no. 1, February 1993) 

Let (wn) be any sequence of integers that satisfies the recurrence wn - pwri_l-qwn_2 where/? 
and q are odd integers. Prove that, for all n, wn+6 = wn (mod 4). 

Solution by Ed Korntved, Morehead, KY 
Since/? and q are odd integers, both are congruent to ±1 modulo 4. The sequence is com-

pletely determined by the first two elements of the sequence. There are four cases. 
Case 1: p = \q = l (mod 4). The recurrence becomes wn = wn_x-wn_2 (mod 4). Starting with 
wx-a and w2 = b, the sequence, modulo 4, would be a,b,b-a,-a,-b,-b + a,a,b,..., which is 
easily seen to have a period of 6 modulo 4. 
Case 2: p = 1, q = -1 (mod 4). The recurrence becomes wn = wn_x + wn_2 (mod 4). The sequence 
would now be a, h, a + ft, a + 2b, 2a + 3b, 3a + h,a,b,..., which also has a period of 6 modulo 4. 
Case 3: /? = -!, q = -1 (mod 4) yields the sequence a,b,-h + a,2b-a,-3b + 2a:)h-3a,a,b,..., 
which has period 6. 
Case 4: p = -\q = \ (mod 4) yields the sequence a,b,-a-b,a,b,-a-b,a,b,..., which also 
repeats every 6 terms. 

Seiffert showed that wn+l2 = wn (mod 8). Is this the beginning of a trend? 

Also solved by Seung-Jin Bang, Paul S. Bruckman, Joseph E. Chance, the Con Amore Prob-
lem Group, Charles K. Cook, Leonard A, G« Dresel, Herta T Freitag, Jane E. Friedman, 
Russell Jay Hendel, Harris Kwong, Carl Libis, Don Redmond, H.-J. Seiffert, Sahib Singh, 
Lawrence Somer? J. Suck, Ralph Thomas, A. N. fi Woord, and the proposer. One incorrect 
solution was received 

B-733 Proposed by Hero Filipponi, Rome, Italy 
(Vol 31, no. 1, February 1993) 

Write down the Pell sequence, defined by PQ = 0, P} = 1, and Pn+2 = 2Pn+l + Pn for n > 0. Form 
a difference triangle by writing down the successive differences in rows below it. For example, 
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0 1 2 5 12 29 70 169 ••• 
1 1 3 7 17 41 99 

0 2 4 10 24 58 
2 2 6 14 34 

0 4 8 20 
4 4 12 

0 8 
8 

Identify the pattern that emerges down the left side and prove that this pattern continues. 

Solution by Russell Jay Hendel, Morris College, Sumter, SC 

It is straightforward to show that, if any row satisfies a linear recurrence with constant coef-
ficients, then the difference row below it also satisfies the same recurrence. Thus, each row of 
Pell's difference triangle satisfies the Pell recurrence. 

Now if a and b are any two successive terms in some row, then we have the following sub-
triangle: 

a b 2b-ha 
b-a b+a 

2a 

Thus, any element is twice the one two rows back (along the diagonal). Since the leftmost 
diagonal begins with a 0 and then a 1, it follows that every second element along the diagonal is a 
0 and that the intervening elements are successive powers of 2. 

Luchins and Hendel have found the pattern down the leftmost diagonal for the difference 
triangle of an arbitrary linear recurrence with constant coefficients. Their result is announced in 
[1J. See the previous issue of this Quarterly for more fun with Pell numbers. 

Reference 
1. Edith H. Luchins & Russell J. Hendel. Abstract 883-11-193: "Operators that Take Sequences 

to Diagonals of Their Difference Triangles." Abstracts of the American Mathematical Society 
14(1993):461. 

Also solved by Richard Andre-Jeannin, Seung-Jin Bang, Paul S. Bruckman, Joseph E. 
Chance, the Con Amove Problem Group, Leonard A. G. Dresel, Russell Euler, Herta T. 
Freitag, Harris Kwong, H.-J. Seiffert, Tony Shannon, Sahib Singh, J. Suck, Ralph Thomas, 
David Tuller, A. K ft Woord, and the proposer. 

Powers of 5 

B-734 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 31, no. 1, February 1993) 

If r is a positive integer, prove that Lr = L5r_, (mod 5r). 

Solution 1 by Leonard A. G Dresel, Reading, England 

From identity #83 of [3], we have 

F5„ = JF„[25F„4 + 25(- i rF„2+5] . (1) 

Similarly, it is straightforward to show that 

L5n = Ln[25FnUl5(-lTFn
2
 + l}. (2) 
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From equations (1) and (2), we see that 
F 5 ^ 0 ( m o d 5 F J (3) 

and 
I^^L.imodSF^). (4) 

Equation (3) can be written as 5F„ \F5n. Since Fl = 1, it follows by induction that 

?\Ff. (5) 

From equation (4) with n = 5r~\ we have 5F*\(L5n- Ln), so 5{5r'l)2\{L5ri-Ln) or L^ = L^ 
(mod 52r_1), which generalizes the proposer's problem. 

Singh, Somer, Stick, and Woord also found this generalization. Singh notes that since Zy is al-
ways odd [this follows from the identity L5n - I?n-5(-l)nl}n + 5Ln], we have the even stronger 
congruence: Lr == Lr.x (mod 2 • 52r_1). Prielipp points out that property (5) is given in [1]. 
Singh found it in [2]. Somer found it in [4]. 

References 
1. V. E. Hoggatt, Jr. Problem B-248. The Fibonacci Quarterly 11 (1973):553. 
2. Verner E. Hoggatt, Jr., & Gerald E. Bergum. "Divisibility and Congruence Relations." The 

Fibonacci Quarterly 12 (1974): 189-95. 
3. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester: Ellis Horwood Ltd., 1989. 
4. D. D. Wall. "Fibonacci Series Modulo m." Amer. Math. Monthly 61 (1960):525-32. 

Solution 2 hy Don Redmond, Southern Illinois University\ Carbondale, IL 

Let (Vn) be a sequence defined by Vn+2 = aVn+1+Vn with initial conditions VQ = 2 and Vx - a, 
where a is a positive integer. Ifp is an odd prime and r is a positive integer, we will show that 

Vf^Vr, (mod / ) . (1) 

In particular, if a = 1, then Vn becomes Ln and we have 

Lf^Lr, (mod/)- (2) 

This generalizes the current proposal, for which p = 5. 
To prove (1), we will use the fact that, if n is odd, then 

(p-W 

Vpn = v;+ X Pbkvr2\ (3) 
k=l 

where bk = j • (p~k
kSil). This was proven by Lucas in 1878 (see [2], p. 38). Since ck = pbk can 

also be written as {p~l~l) +2(p~k
k_~l

l), it is clear that ck is an integer. Furthermore, since/? is prime 
and k < p, we see that ck is divisible by/?, so bk is an integer for all k. 

We will proceed to prove equation (1) by induction. If equation (1) is true for some r, then 
we would have Vpr = Vf-X +prT for some integer T Then by identity (3) with n = pr we find 
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V 
(p-l)l2 

= (Fr_1+//7y+ Y ph(vp^+prT)p-2k 

k=\ 
(p-l)/2 

= J/P^ + X PbkVPr~-ik + a multiple of/?r + 1 
p k=\ p 

= V r + a multiple of/? r+l 

which shows that equation (1) is true for r +1. 
But equation (1) is true for r - 1, since Vp = Vx

p = a p (mod/?) follows from identity (3) when 
w = 1; and a p = a (mod /?) is true by Fermat's Little Theorem, since/? is a prime. 

Thus, the induction is complete. 

Andre-Jeannin also proved equation (2) and Seiffert found equation (2) in [1], p. 111. 

References 
1. D. Jarden. Recurring Sequences, 3rd ed. Jerusalem: Riveon Lematematika, 1973. 
2. Edouard Lucas. The Theory of Simply Periodic Numerical Functions. Santa Clara, Calif: 

The Fibonacci Association, 1969. 

Also solved by Richard Andre-Jeannin, Seung-Jin Bang, the Con Amore Problem Group, Bob 
Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, J. Suck, Ralph Thomas, A. N.'t 
Woord, and the proposer. 

Square Root of a Recurrence 

B-735 Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri State Asylum 
for Crazed Mathematicians, Warrensburg, MO 
(Vol 31, no. 1, February 1993) 

Let the sequence (yn) be defined by the recurrence 

J W = 8y„ + 22yn_x - I90yn_2 + 28yl_3 + 987j„_4 - 700y„_5 - 1652y„_6 + I652y„_7 

+ 7 0 0 J V 8 - 9S7y„_9 - 28y„_l0 + I90yn_u -22yn_n -Syn_u + J V 1 4 

for n > 15 with initial conditions given by the table: 

n 

T~ 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

yn 

I 
1 
25 
121 
1296 
9025 
78961 
609961 
5040025 
40144896 
326199721 
2621952025 
21199651201 
170859049201 
1379450250000 

Prove that yn is a perfect square for all positive integers n. 
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Editorial Note: For many years, hack almost to the dawn of time, Paul S. Bruckman has been 
solving every single problem proposed in this column. When this "insane" problem came in, I 
jumped with the thought: "Aha! Now I can stump Bruckman." The proposers' solution involves 
pulling the recurrence xn+l = xn + Sxn_x + xn_2 - xn_3 out of a hat. It is then not too hard to show 
that the squares of the elements of this recurrence satisfy the original recurrence. My feeling was 
that there was no way anyone could find this "rabbit," and yet the proposers' solution was so 
simple that I could claim this problem was suitable for the Elementary Problem Column. Any-
way, less than a week after the journal hit the newsstands, much to my chagrin, I received a let-
ter from Bruckman containing a solution! 

Several other readers also pulled the same rabbit out of the hat. They must be commended. 
Solution 1 by the proposers 

Let xn+l = xn + 5xw_1 + xw_2-xw_3, for n>4 with initial conditions xx = x2 = 1, x3 = 5, and 
x4 = l l . 

We will show, by induction on n, that yn = x2 for n > 1. 
The result is numerically true for n = l,2,...,l5. Suppose the result is true for all k <n 

where n > 16. Then, by the induction hypothesis, 

yn+l - x2
n+l = 8x2 + 22x2_t - 190x2_2 + 28x2_3 + 987x2_4 - 700x2_5 - 1652x2_6 

+1652x2_7 + 700x2_8 - 987x2_9 - 28x2_10 + 1902_n - 22x2_12 

~°Xw-13 + Xn-U ~ \Xn + ^Xn-\ + Xn-2 ~ Xn-3J • 

In the right-hand side, make the substitutions xk - xk_l+5xk_2+xk_3-xk_4, for k = n,n-l, 
. . . ,«-10. A mere few hours of algebraic simplification then reveals that the right-hand side is 
identically 0. Thus, yn+l - x2

+1 and the induction is complete. 

All other solvers found that yn satisfies the simpler recurrence, 

One of their solutions will be printed in a future issue, if space permits. 

Also solved by Paul $. Bruckman, the Con Amove Problem Group, Leonard A. G. Dresel, 
H.-J. Seiffert, and A, N. ft Woord 

186 [MAY 



ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
Raymond E* Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-486 Proposed by Piero Filipponi, Rome, Italy 

Let the terms of the sequence {Qk} be defined by the second-order recurrence relation Qk = 
^Qk-\ + Qk~2 W^h initial conditions Q> = 2i = 1. Find restrictions on the positive integers n and m 
for 

T{n,m)-1^-
k=\ m 

to converge, and, under these restrictions, evaluate this sum. Moreover, find the set of all couples 
(«,-, mt) for which T{nt, mt) is an integer. 

H-487 Proposed by Stanley Rabinowitz, MathPro Press, Westford, MA 

Suppose Hn satisfies a second-order linear recurrence with constant coefficients. Let {a,} 
and {/?}, i = 1,2,..., r, be integer constants and let f(x0, xlt x2,..., xr) be a polynomial with integer 
coefficients. If the expression 

/ (v V » ^Qln+bx J ^a2n+b2 > • • • > ^arn+br ) 

vanishes for all integers n> N', prove that the expression vanishes for all integral n. 
[As a special case, if an identity involving Fibonacci and Lucas numbers is true for all positive 

subscripts, then it must also be true for all negative subscripts as well.] 

SOLUTIONS 

Characteristically Common 

H-470 Proposed by Paul S. Bruckman, Everett, WA 
(Vol 30, no. 3, August 1992) 

Please see the issue of The Fibonacci Quarterly shown above for a complete presentation of 
this lengthy problem proposal. 
Solution by the proposer (continued from Vol 32, no. 1) 

Proofs of parts (A) and (C) were given in the above issue of this Quarterly. 
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Proof of Part (B): We see that U[r) is a special case of H[r). Making the substitution 
H[r) = U[r) into part (C), the result follows at once. 

Note: Although not required in the problem, we may obtain some interesting identities by 
taking determinants in the foregoing results. Moreover, special cases of Gr(z) yield identities for 
the Fibonacci, Pell, Tribonacci, and Quadranacci numbers, some of which have already been 
studied extensively. For example, if G2(z) - z1 - z -1, we obtain 

0f»-({ J) and W-{%: £ ) . 

In the general case, pr(0) = |-C/Jr)|= (-l) rVi( r ) 1= (-1)1 ̂ i(r) 1= Gr(°) = ~ar-u whence the result: 

|£7}r)|=(-irVi- (**) 
Taking determinants in parts (B) and (C), we obtain 

l ^ h H ^ V r - i ) " ; (***) 
\H^ |= (-l)(n-1Xr-1)(ar_ir1|^r) |. (****) 

Of course, (****) is a generalization of (***). Again, special cases of (****) yield some well-
known results, e.g., Fn+lFn_x - F„2 = (-1)". 

It is informative to apply the foregoing results for a special case which, however, has not 
been studied extensively. We will take r - 3 and G3(z) = z3 - 2z2 - z -1. We will choose H^- 's 
so that, for j = 1,2,3, n = 0,1,2, we have U%)+H%]. = 1. We form the following brief table of 
values: 

n 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

unA 

0 
0 
1 
2 
5 
13 
33 
84 
214 
545 
1388 

Un,2 

0 
1 
0 
1 
3 
7 
18 
46 
117 
298 
759 

u„,3 

1 
0 
0 
1 
2 
5 
13 
33 
84 
214 
545 

Hn,\ 

1 
1 
0 
2 
5 
12 
31 
79 
201 
512 
1304 

Hn,2 

r~ 0 
1 
3 
7 
18 
46 
117 
298 
759 
1933 

H",3 

o~1 1 
1 
3 
8 
20 
51 
130 
331 
843 

2147 

We omit the superscript "(3)" for brevity. Then \U{ |= 1 and 1/Tj |= 2, as we may verify; hence, 
\Hn\=2 for all n. This may be left in determinant form or expanded into a sum of terms 

where i, j , k = 1,2, 3 in some order, and s is the minimum number of binary interchanges of digits 
required to obtain the triplet (/, j , k) from the initial triplet (1,2, 3). This sum then must equal 2. 
Clearly, many such identities may be devised. 
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Xl t 
H-471 Proposed by Andrew Cusuniano & Marty; Samberg, Great Neck, NY 

(Vol 30, no. 4, November 1992) 
Starting with a sequence of four ones, build a sequence of finite differences where the number 

of finite differences taken at each step is the term of the sequence. That is, 
Sx S2 S3 

1 1 1 1 1 1 1 1 1 1 1 1 
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1 2 4 7 11 16 1 2 4 7 11 16 
1 2 4 8 15 26 42 

Now, reverse the procedure but start with the powers of the last row of differences and continue 
until differences are constant. For example, if the power is two, we have 

1 4 9 16 25 1 4 16 49 121 256 etc. 
3 5 7 9 3 12 33 72 135 

2 2 2 9 21 39 63 
12 18 24 

6 6 
The sequence of constants obtained when the power is two is 2, 6, 20, 70, ..., while the sequence 
of constants when the power is three is 6, 90, 1680, 34650, .... 

Let TV be the number of the term in the original difference sequence and M be the power used 
in forming the reversed sequence. Show that the constant term is 

(N-M)\ X{N,M)=yi\TZ>\ # = 1,23,..., M = 2,3,4,. 

For example, X(2, 3) = f = 90. 

Solution by Paul S. Bruckman, Edmonds, WA 

Let 0kfN denote the k^ term of row SN (k = 1,2, 3,...). For example, S2 = (1, 2,4, 7,11, 
16,...) and 04 2 = 7. By definition, we are to have: 

@k+\,N~@k,N =@k,N-l> 0 ) 

0*fo = l for all it, and (2) 

6lN = l, # = 1,2,3,.... (3) 

Successive "finite integration" of (1), beginning with (2) and using (3), yields 

We note that 6k N is a polynomial in k of degree N, whose leading term is equal to kN I N\. 
Then {0k^N)M is a polynomial in k of degree MN9 with leading term kMN /(N\)M. We then 
observe that X(N, M) = A ^ ( ^ N ) M = /^"(k™ I (N\)M), which yields 

K ' J (N\)M 
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Note: Four "I's" in the original sequence will no longer suffice to display the constant term 
X(N,M); the minimum number of "I's" required is MN-N + 1. As expected, we find that 
X{N,\) = \£OV2L\\N. 

Also solved by M. Deshpande. 
An Entry Level Job 

H-472 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 30, no. 4, November 1992) 

Let Z(n) denote the Fibonacci entry point of the natural number n, that is, the smallest posi-
tive index t such that n\Ft. Prove that n = Z(ri) iff n = 5" or n = 12 • 5", for some u > 0. 

Solution by the proposer 

Proof: We make use of the following special values: 

Z(2r) = l i f r = 0, 3.2r~1ifr = lor2 , 3-2 r _ 2 i f r>3; (1) 
Z(3') = l i f s = 0, 4 3 ^ if^>l; (2) 
Z(5t) = 5t,t>0. (3) 

We will also make use of the following known facts regarding Fibonacci entry points: 

Z{pe) = pfZ(p), for all primes/?, where 0<f<e; (4) 
If n = fi& "-pf, then Z(n) = LCMtZ(rf«),Z(flp),..., Z(p?)]. (5) 

Since Z(12) = 12 and Z(5U) = 5", we see from (5) that Z(n) = n if n = 5U orn = 12-5". 
Conversely, first suppose that n = P, where P = 2r3s,r,s>0. If r > 3 a n d s > l , then 

Z(P) = 2max(r-2'2)3max(*-U); we see by inspecting the exponent of 2 that z(P) = P is impossible. 
We may enumerate the remaining possibilities for r and s in the following table: 

P Z(P) 

2°3° = 1 
2°3S, s > 1 
213° = 2 
2131 = 6 
2l3s,s>2 
223° = 4 
223' = 12 
223*,s>2 
2r3°,r>3 

1 
22y-l 

3 
12 

223s_1 

6 
12 

223s"' 
2 r - 2 3 l 

We see that n-P- Z(P) only if w = 1 or 12. Moreover, if we assume that n = i3 • 5", we see that 
n = Z(ri) onlyif« = 5Morl2-5", */>0. 

Next, we suppose that n = P5uQ, where gcd(g, 30) = 1 and Q > 1. Suppose g has the 
prime factorization: Q = fl^i <jf; let # = max(^, #2,..., qa) and ̂  || <g. Now Z{qe) = qfZ(q), 
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where 0<f<emdZ(q) is divisible only by primes smaller than q [since Z(q)<q + 1 and 
gcd(^, Z(q)) = 1; also, q + 1 is even]. A fortiori, the same is true for the other Z(g;.)'s. We there-
fore see that qe \\n and qf\\Z(ri), which shows that n * Z(n). 

This exhausts the possibilities, and the problem is solved. 

Another Equivalence 

H-473 Proposed by A. G Schaake & J. C Turner, Hamilton, New Zealand 
(Vol 30, no. 4, November 1992) 

Show that the following (see [1], p. 98) is equivalent to Fermat's Last Theorem: "For n > 2 
there does not exist a positive integer triple (a, b, c) such that the two rational numbers - , - , with 

s Q 

r = c-a. p = b-\ 

; = 1 z = l 

are penultimate and final convergents, respectively, of the simple continued fraction (having an 
odd number of terms) for —." 
Reference 
1. A. G. Schaake & J. C. Turner. New Methods for Solving Quadratic Diophantine Equations 

(Part I and Part II). Research Report No. 192. Department of Mathematics and Statistics, 
University of Waikato, New Zealand, 1989. 

Solution by Paul S. Bruckman, Edmonds, WA 

Suppose there exists a positive integer triple (a, b, c) such that if/?, q, r, and s are as defined 
in the statement of the problem then 

j = [0„02,...,#„,_,] and | = [ ^ , ^ , . . . , ^ - 1 , ^ ] , (1) 

for some sequence 0ly 02, .-.,0m of positive integers, where m > 3 is odd. The notation [$1? 02, ..., 
0k] represents the value of the simple continued fraction (s.c.f) = 0l + l/02 + l/03-\ v\l 0k, 
k = l,2,...,m, also known as the k^ convergent of the s.c.f. for p/q. 

Since r/s and p/q are supposed to be finite rationals, we require that s> 0, q > 0; moreover, 
we are interested only in positive rationals, so we require that r > 0 and/? > 0. Hence, we suppose 

b> 1, c>a. (2) 

Since r/s and p/q are successive convergents of a s.c.f, and since m is odd, we must have 
rq-ps = l. (3) 

We now note that 
b —I c -a /r. ^ ~x /yix 

s- ? q- (for some ?? > 2). (4) 
b-l c-a 

Then rq - ps - en - an - (bn -1) = 1, which implies 
cn=an+bn. (5) 
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Thus, our assumption implies that (a, b, c) satisfies Fermat's Last Theorem. 
Conversely, suppose that there exists a positive integer triplet (a, h, c) which satisfies (5) for 

some n>2, i.e., suppose Fermat's Last Theorem is false. If b - a, then c/a = 2l/n, which is 
patently impossible; thus, without loss of generality, we may suppose b < a. Let p, q, r, and s be 
as defined in the statement of the problem. We seek to prove that/?, q, r, and s satisfy (1) for 
some m>3 odd, and some sequence 0l,92,...i6m of natural numbers. We note that rq-ps-
cn~an- (bn -1) = (cn -a"-b") + l, which is the statement of (3). Hence, 

r I s-pl q-\l qs. (6) 

According to a well-known theorem of continued fraction theory (e.g., Theorem 184 in [1]), if 
r/s-p/q<l/2s2, then (1) holds. Therefore, in order to establish (1), it suffices to show that 
l/qsKl/ls1, or 

q>2s. (7) 
Now we note that 

9 = l y - 1 ^ > X^"1^-7 = nan~ n-l 
A u — nu 

7 = 1 / = 1 

Also 

Thus, 

n n an -1 an 

' ~ S^"~7 < X a " _ / ~ < (using the assumption that b<a). 
,-=i t=i a ~ l a ~ l 

. n{a-\) , 
qls>-± L. (8) 

Since a>ft>l , thusa>3. Also, n>3. Thus, q/s>3-2/3 or 

qls>2. (9) 
This establishes (1). 

Thus, the negative of Fermat's Last Theorem is equivalent to the negative of the statement of 
the problem. It follows that Fermat's Last Theorem is equivalent to the statement of the problem. 
Reference 
1. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. 4th ed. Oxford: 

The Clarendon Press, 1960. 
Also solved by the proposers. 
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