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ON THE DIVISIBILITY BY 2 OF THE STIRLING NUMBERS 
OF THE SECOND KIND 

T* Lengyel 
Occidental College, 1600 Campus Road., Los Angeles, CA 90041 

{Submitted August 1992) 

1. INTRODUCTION 

In this paper we characterize the divisibility by 2 of the Stirling numbers of the second kind, 
S(n, k), where n is a sufficiently high power of 2. Let v2(r) denote the highest power of 2 that 
divides r. We show that there exists a function L(k) such that, for all n > L(k), v2 (k! S(2n, k)) = 
k-l hold, independently from n. (The independence follows from the periodicity of the Stirling 
numbers modulo any prime power.) For k > 5, the function L(k) can be chosen so that L(k) < 
k-2. We determine v2{k\S{2n +u,k)) for k>u>\, in particular for u = 1, 2, 3, and 4. We 
show how to calculate it for negative values, in particular for u - - 1 . The characterization is gen-
eralized for v2(k!S(c-2n + u, k)), where c> 0 denotes an arbitrary odd integer. 

2. PRELIMINARIES 

The Stirling number of the second kind S(n, k) is the number of partitions of n distinct 
elements into k nonempty subsets. The classical divisibility properties of the Stirling numbers are 
usually proved by combinatorial and number theoretical arguments. Here, we combine these 
approaches. Inductive proofs [1] and the generating function method [10] and [7] can also be 
used to prove congruences among combinatorial numbers. We note that Clarke [2] used an 
application of /?-adic integers to obtain results on the divisibility of Stirling numbers. 

We define the integer-valued order function, va (r), for all positive integers r and a > 1 by 
va(r) = q, where aq\r and aq+l%r, i.e., va(r) denotes the highest power of a that divides r. In this 
paper we are interested in characterizing va (r), where r = k! S(n, k) and a = 2. In a future paper, 
we plan to give a lower bound on va (k! S(n, k)) for a > 3. 

Lundell [10] discussed the divisibility by powers of a prime of the greatest common divisor of 
the set {k\S(n,k), m<k <n} for \<m<n. Other divisibility properties have been found by 
Nijenhuis & Wilf [11], and recently these results have been improved by Howard [5]. Davis [3] 
gives a method to determine the highest power of 2 that divides S(n, 5), i.e., v2(S(n, 5)). A simi-
lar method can be applied for S(n, 6) according to Davis. 

We will use the well-known recurrence relation for S(n,k), which can be proved by the 
inclusion-exclusion principle 

*!5(/i,*)=t(-i)*-,fty. (i) 
/=0 ^ ^ 

For each prime number/? and 1 <i <p-l, ip =i (mod/?), by Fermat's theorem, and this implies 
[l]that, for 2 <k <p-\ S(p, k) = 0 (mod/?). We note that S(p, 1) = S(p, p) = 1. 

Let d{k) be the sum of the digits in the binary representation of k. Using a lemma by 
Legendre [9], we get v2 (k!) = k - d(k). 
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ON THE DIVISIBILITY BY 2 OF THE STIRLING NUMBERS OF THE SECOND KIND 

Note that, for 1 < k < 4, identity (1) implies that v2(S(2n, k)) = d(k)-1. By other identities 
for Stirling numbers (cf Comtet [1], p. 227), v2 (S(2n, k)) = d(k) -1 for k, 2n - 3 < k < 2n. 

Classical combinatorial quantities (factorials, Bell numbers, Fibonacci numbers, etc.) often 
form sequences that eventually become periodic modulo any integer, as pointed out by I. Gessel. 
The 'Vertical" sequence of the Stirling numbers of the second kind, {S(n, k) {mo&pN)}n>0 is 
periodic, i.e., there exist nQ > k and n > 1 such that S(n + 7r,k) = S(n, k) (modpN) for n>n0. 

For N = 1, the minimum period was given by Nijenhuis & Wilf [11], and this result was 
extended for N>\ by Kwong ([7], Theorems 3.5-3.6). From now on, n{k\ pN) denotes the 
minimum period of the sequence of Stirling numbers {S(n, k)}n>k modulo pN, and n0(k, pN) > k 
stands for the smallest number of nonrepeating terms. Clearly, nQ(k, pN) < n0(k, pN+l). Kwong 
proved 

Theorem A (Kwong [7]): For k > max{4,p}9 n{k\ pN) = (p-l)pN+b^~2, where pb(k)~l <k< 
pb^k\ i.e., b{k) = \\ogpk\ 

From now on, we assume that p = 2, n>\ and apply Theorem A for this case. Let g(k) -
d(k) + h(k)-2 and c denote an odd integer. Identity (1) implies v2(S(c-2n, k)) = d(k)-l for 
1 <ifc^min{4,c-2',}We also set f(k) = fc(k) = m^x{g(k)Jlog2(n0(k,2d^)/c)]}. Therefore, 
c-2f(k) > nQ(k, 2d(k)). We note that g(k) < 2[log2 k}-2. Lemma 3 in [8] yields f(2m) = m for 
m>\ and c-\. 

In this paper we prove 

Theorem 1: For all positive integers k and n such that n>f(k), we have v2(k\S(c-2n, k)) = 
k -1 or, equivalently, v2 (S(c • 2n, k)) = d(k) -1. 

Numerical evidence suggests that the range might be extended for all n provided 2n > k and 
c = l. For example, for k = 7, we get g(7) = d(7) + b(7)-2 = 4 and w0(7,23) = 7; therefore, by 
Theorem 1, if n > / (7 ) = 4, then v2(S(2n, 7)) = v2{S{c-2n, 7)) = 2 for arbitrary positive integer c. 
Notice, however, that v2(S(%, 7)) = 2 also. We make the following 

Conjecture: For all k and 1 < k < 2n, we have v2 ($(2n ,k)) = d(k) -1. 

By Theorem 1, the Conjecture is true for all k~2m with m<n. 

In section 3 we prove Theorem 2, which gives the exact order of S(n, k) in a particular range 
for k whose size depends on v2{n). Theorem 2 is the key tool in proving Theorem 1. Its proof 
makes use of the periodicity of the Stirling numbers. It would be interesting to determine the 
function L(k), which is defined as the smallest integer ri such that v2(S(c-2n, k)) -d{k)-\ for 
all n >nf. By Theorem 2, we find that L(k) <k-2 and Theorem 1 improves the upper bound on 
L{k)iff{k)<k-2. 

In section 4 we obtain some consequences of Theorem 2 by extending it for Stirling numbers 
of the form S(c • 2n + u, k), where u= 1,2, etc. We show how to calculate v2 (S(c • 2" - 1, k)). In 
neither case does the order of S(c-2n +u, k) depend on n (if n is sufficiently large), in agreement 
with Theorem A. 
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3. TOOLS AND PROOFS 
We choose an integer t such that £<n. We shall generalize identity (1) for any modulus of 

the form 2*. Observe that, for any / even, in = 0 (mod2^), and for all / odd, {-l)k~l will have the 
same sign as (-1)*"1. Therefore, by identity (1), 

*!£(»,*) ^ ( - l ) * - 1 ^ ) " (mod2'). (2) 
/ odd 

The expression on the right-hand side of congruence (2) is called the partial Stirling number [10]. 
We explore identity (2) with different choices of n in order to find v2(S(n, k)). 

We shall need the following 

Theorem 2: Let c be an odd integer and let n be a nonnegative integer. If \<k <n + 2, then 
v2(k\S(c-2n,k)) = k-l, i.e., v2(S(c-2\k)) = d(k)-l 

Roughly speaking, Theorem 2 gives the exact value of v2(k\S(m, &)), for k > 2, if rn is divi-
sible by 2k~2. The higher the power of 2 that divides m, the larger the value of k that can be used. 
We prove Theorem 1 and then return to the proof of Theorem 2. 

Proof of Theorem 1: Without loss of generality, we assume that k>4. Observe that 
v2 (S(c • 2n, k)) = d(k) - 1 is equivalent to 

S(c-2n
9k) = 0 (mod2^)"1) (3) 

and 
S(c-2\k)±0 (mod 2 ^ ) . (4) 

The proof of identities (3) and (4) is by contradiction. To prove the former identity, we set 
N - d(k) -1, hence Theorem A yields 

7r(k;2N) = 2d^+b^-3 (5) 

where d(k) + b{k) - 3 < g(k) <f(k). 
We assume, to the contrary of the claim, that S{c-2f(k\ k) = a^0 (mod 2N). By Theorem 

A and the period given by (5), we obtain that, for every positive integer m > c, S{m-2^k\ k) = a 
# 0(mod2^). This is a contradiction, for one can select m so that m-2^^ becomes c-2n, with a 
large exponent n, and by Theorem 2, S(c-2n, k) = 0 (mod 2^) should be for sufficiently large n. 
It follows that, in fact, S(c-2f(k\ k) = 0(mod2Ar), and Theorem A implies S(c>2n,k) = 0 (mod 
2d{k)~l) for all n> f{k). 

To derive identity (4), we set N = d(k). In order to obtain a contradiction, we assume that 
S(c-2/(*),£)EE0(mod2^). Now, by Theorem A, we get 7r(k;2N) = 2d(k)+b(k)-\ where d(k) + 
b(k)-2 = g(k) <f(k). We proceed in a manner similar to that used above by noting that the 
periodicity now yields S(m-2^^k\ k) = 0(mod2N) for every positive integer m>c. It would 
imply that, for a sufficiently large n, S(C'2n, k) = 0 (mod 2^^) . However, this congruence con-
tradicts Theorem 2. It follows that S(c-2n, k)£0 (mod 2 ^ ) for n > f{k), and the proof is now 
complete. • 
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Proof of Theorem 2: We set m = c-2n and select an £ such that \<£<n + l. By Euler's 
theorem, 0(2£) = 2£~l; therefore, im =l(mod2^) if i is odd. By simple summation, identity (2) 
yields 

k! S(m, k) EE (-l)*-i £ (f) = (-2)k~l (mod 20; 
/ odd 

(6) 

therefore, v2(k!S(m,k)) = k-l, provided 0 < k - 1 <£. 
We have two cases if k = n + 2. If /w is odd, then w = 0 and k = 2. The claim is true, since 

S(m, 2) = 2m~l -1; therefore, v2 (2! £(m, 2)) = 1. If m is even, then we set £ = n + 2 > 3. By 
induction on £ > 3, we can derive i2 = 1 (mod2f) and identity (6) is verified again. • 

Remark: By setting £ = n + l, identity (6) implies the lower bound v2(A:!£(c-2n,k))>n + l, for 
k>n + 2. 

4. RELATED RESULTS 

We will use other special cases of identity (2). Similarly to the previous proof, we get that, 
for all u>0,n>£>l, and k <c-2n +u, 

k\S{c-2n +u,k)^{-l)k~lY^ (mod2'+2). (7) 
/ odd / odd 

We set 

^,«)=(-i)*-ltp)/". 
/odd 

By identity xu = Z"=0 S(w, j) (fjjl, we obtain 

^,«) = (-l^g(f)g5(«,/)(j^! = H)k-1 S5(«,/)y!l(J)(j 
/ odd / odd 

We focus on the case in which k > u and derive 

KK u)=(-i)"£s(«, 7)7(5) t (*: j)=(-2)*-11^^*) • (») 
/odd 

We introduce the notation r(&, u) = v2 (h(k, u)). Identity (8) implies that r(k, u)>k-u-\. Note 
that \h(k9 0)|= 2k~l and, for u > 1, 

^ ( M ) ! ^ " " - 1 <j]ju2u-JkJ <u{2u)u(kl2)u = u{uk)u. (9) 
7=1 

By identity (7), for u > 0 and any sufficiently large ^ and n>£, we have v2 (k! ̂ (c • 2" + 7/, £)) = 
r(&, w). In fact, n>£-r(k,u)-\ will suffice; for instance, n>k-2 will be large enough if u = 0 
(Theorem 2). By identity (9), we derive that r(k,u)<k-u-\ + i4log2 k + (u +1)log2 ?/; there-
fore, k-u-2 + \ulog2 A:4-(u +1)log2u\ can be chosen for n if w> 0. We note that, similarly to 
the proof of Theorem 1, this value might be decreased. 
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The values of r(k, u) can be calculated by identity (8). For example, if k > u > 0, then 

r(k, u) = 

k-\ 
k-2 + v2{k), 
k-3 + v2(k) + v2(k + l), 
k-4 + 2v2(k) + v2(k + 3), 

ifw = 0, 
if u = 1, 
ifi/ = 2, 
if w = 3, 

(10) 

[k-5 + v2(k) + v2(k + l) + v2(k2+5k-2\ ifw = 4. 

We state two special cases that can be proved basically differently; although, in the second case, 
only a partial proof comes out by the applied recurrence relations. 

Theorem 3: For k>2 and any sufficiently large n, v2(k!S(c• 2n +1, k)) = k-2 + v2(&). 

Proof: The proof follows from Theorem 2 and using the recurrence relation k! £(#*, k) = 
^ { ( A r - O l ^ w - l ^ - O + ytl^Cw-l,^)} with w = c-2"+l. Notice that, by Theorem 1, n> 
max{ f(k), f{k -1)} will be sufficiently large. D 

Theorem 4: For k > 3 and sufficiently large «, v2(k!^(c• 2" + 2, *)) = A:- 3 + v2(A:) + v2(k + l). 

Proof: By identity (10), we obtain v2(k\S(c-2" +2, k)) = r(k,2) = k-3 + v2(k) + v2(k + l). 
Observe that n > max{f(k), f(k -1), f(k - 2)} suffices. • 

Notice that we could have used the expansion 

k\S(c-2n+2,k) = k{(k-l)\S(c-2" + l,k-l) + k\S(c.2n + l,k)}. 

By Theorem 3, the first term of the second factor is divisible by a power of 2 with exponent 
k - 3 + v2 (k -1), while the second term is divisible by 2 at exponent k - 2 + v2 (k). The first factor 
contributes an additional exponent of v2(k) to the power of 2. We combine the two terms and 
find that there is always a unique term with the lowest exponent of 2 if k # 3 (mod 4). For k = 3 
(mod 4), however, this argument falls short and we are able to obtain only the lower bound k-\ 
on v2(k\S(c-2" +2, k)). 

It turns out that calculating v2(k\S(c-2n +u, k)) for negative integers u is more difficult than 
for positive values. The periodicity guarantees that the order does not depend on n (for suffi-
ciently large n). 

We extend the function h(k, u) for negative integers u. We will choose an appropriate value 
l>\ and then set n so that it satisfies the inequality c-2n +u>2£. We use the convenient nota-
tion Hi for the unique integer solution x of the congruence / • x = 1 (mod 2i+2) if / is odd. Simi-
larly to identity (7), we obtain 

*!5(C.2"+aJ*)S(-l)*-Itp¥i) " (mod2m). (11) 
/ odd 

For u < 0, we set 

Kk,u) = (-lf-lt{k
i)(j 

i odd 
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and express h{k, u) as a fraction y^y in lowest terms. Notice that v2(pk(u)) > k-d(k) holds, 
since k\ divides both sides of (11) for any sufficiently large £ . The order of v2(S(c-2n + u, k)) 
can be determined by choosing £^v2(pk(u))-l, and the actual order is v2(pk{u))-k + d(k). 
We remark that, for c - 1, the value of n can be set to v2 (pk (u)). 

We focus on the case of u - - 1 . Let 

/=1 V 

We get 

°^-w=m H-iH-m-^ »** 
By summation, it follows that 

Similarly, 

ak = % \ ~ % \ 

7 = 1 ^ -

U 'k\(-\)M £ l 
, = 1 7 

(cf. Hietala & Winter [4], or Solution to Problem E3052 in Amer. Math. Monthly 94.2 (1987): 
185). Combining these two identities, we obtain 

z odd 

For example, for k = 5, we get /?(5, -1) = &S., v2(/;5(-l)) = 7, and w > 7. E.g., v2 (5(127,5)) = 
v2(5(255,5)) = • • • = 4. We remark that v2(5(63,5)) = 4 holds, too. Notice that the recurrence 
relation S(N9K) = K'S(N-1,K) + S(N-1,K-1) implies that v2(5(c-2" -1,2™ -1) = 0 for 
every sufficiently large n. By the theory of p-adic numbers [6] and (12), we can derive that, for 
all sufficiently large n, 

v2(S(c2" -\,k)) = vhfi*r)-k+d(k) = v2(\ £ l\-k+d(k), 
2tH V 2 , 

where v2 (a I b) is defined as v2 (a) - v2 (b) if a and 6 are integers. This fact helps us to make 
observations for some special cases. For instance, if n > m > 3, then v2(S(c• 2" -1,2m)) > 2 holds 
and, therefore, v2(S(c-2n -I,2m +1)) = 1. Numerical evidence suggests that, for n>m>4, 
v2 (S(c • 2" -1,2m)) = 2m - 2, although we were unable to prove this. 

We can determine v2(5(c-2" - 1 , k)) for most of the odd values of k by systematically evalu-
ating v2 (Zf=1 ^-), and obtain 

Theorem 5: For all sufficiently large w, v2(5(c• 2" - 1 , £)) = <i(&)-v2(k + l), if A: > 1 is odd and 
k # 5 (mod 8) and & # 59 (mod 64) and it # 121 (mod 128). 

We leave the details of the proof to the reader. 
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We note that there is an alternative way of determining pk(-l). We set 

One can prove that 

k 1^2' ' 
*- I _ 2*- 1 2 t 1 r 

For other properties of Ik, see Comtet ([1], p. 294, Exercise 15). The latter recurrence relation 
simplifies the calculation of v2 (S(c • 2n -1, &)) for large values of k. 

We can use (7) in a slightly different way and gain information on the structure of the 
sequence {S(c-2n +k, k\S(c-2" + £ + !,£),•••, S((c + l)-2n + k-l,k) (mod 2q)} for every q, 
\<q<d(k)-1 and sufficiently large n. We observe that the sequence always starts with a one 
and ends with at least d(k) - q zeros. Note that, for every £ and u such that k>u>£>k- d(k), 

0 = k\S(u, k) EE (-1)*-1 X ( * V (mod 2'). 
i odd 

We set q = £ - k + d(k). Clearly, 1 < q < d{k) - 1 . By (7), we get that k! S(c • 2" + */, A) = 0 (mod 
2f) for all n > £ - 2 > 1. This observation yields that the d(k) - q consecutive terms, 

S(c-2n+u,k) (mod2<0, u = k-d(k) + q9k-d(k) + q + l,...,k-l, (13) 

are all zeros. Similarly, we can derive k! S(c• 2" + k,k) = k! # 0 (mod 2r), i.e., 5(c • 2" + &, A) = 1 
(mod 2q). Identities (8) and (10) imply that there might be many more zeros in the sequence at 
and after the term S(c-2n,k) (mod 2q). 

For example, if k = 7 and £ = 5, then S(c-2" +u, 7) = 0 (mod 21) for u = 5 and 6 and for all 
?? > 3. Similarly to the proof of Theorem 1, it follows that identity (13) holds if n > f(k). For 
instance, if k = 23 and £ = 21, then S(c-2n +u,23) = 0 (mod22) for w = 21 and 22 provided 
n > /(23) = 7. 
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UNIQUE MINIMAL REPRESENTATION OF INTEGERS BY 
NEGATIVELY SUBSCRIPTED PELL NUMBERS 

A. F. Horadam 
The University of New England, Armidale, Australia 2351 

(Submitted September 1992) 

1. BACKGROUND 

In this paper, we prove the following uniqueness and minimality result for Pell numbers P_t 
(see [3]): 

Theorem: The representation of any integer N as 

N = fda,P.i (1.1) 
/=1 

where 
U'=V'2 n 0-2) 

is unique and minimal. 
Pell numbers Pn are defined in [3] as members of the two-way infinite Pell sequence {Pn} 

satisfying the recurrence 
^ 1 = 2 ^ + ^ , , ^ = 0, Px = \. (1.3) 

To compute terms of the sequence with positive subscripts, extend (0,1,...) to the right using 
(1.3); to compute terms of the sequence with negative subscripts, extend (..., 0,1) to the left using 

P^=-2P„+P^. (1.4) 

Induction may be used to establish that 

p_„=(-iripB. (i.5) 
Associated with Pn are the numbers 

qn=Pn+P*.l> (1-6) 
where 2qn = Qn, the 71th Pell-Lucas number. 

From (1.3) and (1.6), it easily follows that 

9n+i=2qn^9n-v 0-7) 
Some of the smallest Pn and qn are: 

TABLE 1. Values of Pn and qn 

n= ... -7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 ... 
Pn= ... 169 -70 2 9 - 1 2 5 - 2 1 0 1 2 5 12 29 70 169 ... 
q„= 1 1 3 7 17 41 99 239 ••• 
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While values of qn can be readily extended through negative values of n, for our purposes we 
need only positive values of n. For negative subscripts, q_n - {-l)nqn. 

It is a straightforward exercise to establish the sums [3, Theorem 2] 

±P_3I =
 1-Z^- (1.8) 

and 

1 ^ + . = ^ - 0 -9) 
7 = 1 Z 

Our procedure in demonstrating the truth of the Theorem is to adapt and extend the 
technique used in [2] for positively subscripted Pell numbers. 

Two important differences between the criteria (1.2) in our Theorem for P_n («>0) and 
those in [2] for Pn (n > 0) must be noted: 

(i) In [2], sf=2=> £,._! = 0, while in (1.2), ax = 2 => ai+l = 0. 

(ii) In [2], ex = 0; st = 0,1,2 (i > 1), while in (1.2), at = 0,1,2 (i > 1). 

The restriction on sx in (ii) arises from the fact that, for n positive, a distinction has to be 
made between P2 - 2 and 2PX = 2 (the latter being excluded). No such difficulty occurs for nega-
tively subscripted Pell numbers since P_2 - -2, P_x - 1. 

2„ THE SEQUENCES (at, a2,..., an ) 

Let us now concentrate on the sequence of length n > 1, 

(aua2,...,an), (2.1) 

with conditions (1.2) attached. Write Sn for the number of sequences (2.1) with (1.2). £0 is not 
defined. 

Omitting commas and brackets for convenience, we may enumerate several S„ thus: 

TABLE 2* Sequences Counted by Sn (n = 1, 2, 3, 4) 

Sx 0 1 2 

52 00 01 02 10 11 12 20 

53 000 001 002 010 011 012 020 
100 101 102 110 111 112 120 
200 201 202 

54 0000 0001 0002 0010 0011 0012 0020 
0100 0101 0102 0110 0111 0112 0120 
1000 1001 1002 1010 1011 1012 1020 
1100 1101 1102 1110 1111 1112 1120 
2000 2001 2002 2010 2011 2012 2020 
0200 0201 0202 1200 1201 1202 

Perusal of this tabulation reveals the methodical extension of the structure of the sequences 
of Sn to those ofSn+l. 
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Some lemmas are needed for the proof of the Theorem. 

Lemma 1: Sn= qn+x. 

Proof: This equality is easily checked in Table 2 for n = 1,2,3,4 for which q„+l = 3, 7,17,41, 
respectively. 

Proceed by induction on n. Assume the lemma is true for n = k > 4 ; that is, assume that 
Sk = qk+l (k > 4). Now, to generate Sk+l from Sk., 

(i) prefix 0 and 1 separately to each of the qk+l sequences, and 
(ii) prefix 2 followed by 0, by (1.2), to each of the qk sequences. 

Therefore, Sk+X - 2qk+l +qk = qk+2 by (1.7). Thus, the Lemma is also valid for n - k +1 and the 
Lemma is proved. 

Observe that qn+1 here plays the role for P_n (n > 0) which Pn+l plays for Pn (n > 0) in [2]. 
Consider now 

N = alP_l+a2P_2+-+a„P_„, (2.2) 

where at satisfy (1.2), i.e., the integer Nis determined by the sequence (2.1). 

Lemma 2: 

(i) l-P_n<N<-P_{n+l) {noAA) 

(ii) l-PHn+l)<N<-P_n (TI even). 

Proof: Clearly, the maximum integer Ngenerated by (au ..., an) is given by 

20202... 2 (nodd) 
20202... 20 (neven) 

which are the same, whereas the minimum integer TV generated by (au ..., an) is given by 

0202... 0 (nodd) 
0202... 02 (fieven) 

which are different. 
Appealing to (1.8) and (1.9), we derive (i) and (ii) immediately. 

Notice that Lemma 2 can be recast as 

Lemma 2a: 

(i) -P_n<N<-P_{n+l) (/i odd), 

(ii) -P.(n+l)<N-P_n (weven). 

Next, we link Lemmas 1 and 2. 

Lemma 3: The qn+l integers are 

r i-P„+ 1 , . . . ,0 , . . . ,P„ («even) 
\l-Pn,...,0,...,Pn+l (»odd). 
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Proof: 
qn+l=Pn+i+Pn by (1.6) 

= (number of integers < 0) + (number of integers > 0), 

the order in the addition being determined by the parity of n. 

Thus, for n = 7 (so qs - 577), the numbers are -168,..., 408. 
See Table 3 for numerical details for n = l,...,6. (Cf. the result in [2] corresponding to 

Lemma 3.) 
Calculation yields the following information about S„: 

>*!.) s„ 
S, = q2 = 3 
S2 = q3= 7 
S3 = q,= 17 
S4=q5= 41 
S5=q6= 99 
S6 = q7 = 239 

TABLE 3 

Integers Generated by (at,. 

0,1,2 
-4, . . . , -1,0,1,2 
-4,.. . ,-1,0,1,.. . ,12 

-28, ,-1,0,1,...,12 
-28, ,-1,0,1, ,70 

-168,.......,-1,0,1, ,70 

Lemma 4: n is uniquely determined by N(an ^ 0). 

Proof: This follows from Lemma 2a. 

Lemma 5: an (^ 0) is uniquely determined by N. 

Proof: Consider N'-anP_n, a specific integer in (2.2). The result follows. 

Examples: 

Lemma 2a: (i) -P_7 (= -169) < 100 < - P 8 (= 408). 
Therefore, N = 100 =̂> n = 7 (Lemma 4). 

(ii) - P 9 ( = - 9 8 5 ) < - 5 0 0 < - P 8 ( = 4 0 8 ) 
Therefore, N = -500 => n = 8 (Lemma 4). 

Lemma 5: Consider N = P_X+ P_2 + P_4 + 2P_5 = 45. 

Therefore, < xr ~„ . . • •> 5 » 
' \N-2P_5 =-13 i.e., a5 =2. 

Proof of the Theorem: Combining Lemmas 1, 2, 3, 4, and 5, we see that the representation 
(1.1) with (1.2) is unique and minimal. 

Minimality occurs since a number given by (al9..., an) is identical with the numbers given by 
(ax, a2,...,,an, 0, 0, 0,...) when we adjoin as many zeros as we wish. 
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The reader is referred to: 
(a) [3] for an algorithm that generates minimal representations of integers by Pell numbers 

with negative subscripts, and 
(b) [1] for similar work relating to Fibonacci numbers. 

Another approach to the proof of the Theorem is to adapt the methods used in [1] for Fibo-
nacci numbers. Basically, this alternative treatment assumes that there are two permissible repre-
sentations of N as a sum, and then demonstrates that this assumption leads to contradictions. To 
conserve space, we do not develop this complicated argument here, though it has some interesting 
ramifications. Inevitably, there will be some overlap of material in the two approaches. 

Note on Maximafiity 

As indicated in [1] for the Fibonacci case, we likewise assert that there can be no maximal 
representation of an integer by means of P_n. This conviction is easy to justify from the obvious 
fact that 

n n-\ 

z=l /=1 

where an = 1 or 2, and then from successive replacements of the last term. 
For instance, with n = 6, i. e., a6 = 1 or 2, we have (say) 

-59 = P_l+2P_3+P_6 (a6 = l) 

= P1+2P_3+2P7+i>_8 

= P_x + 2P_3 + 2P_7 + 2P_9 + P_10 and so on, 

while 
-129 = P_Y +2P_3 +2 P 6 (a6 - 2) 

= P_i+ 2P_3 + P_5 - 2P_S - P_9 and so on. 

Clearly, the summations extend as far as we wish, so there is no maximal representation. 
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1. INTRODUCTION 

Let s(ri) denote the sum of the base 10 digits of the nonnegative integer n, and let logx 
denote the base 10 logarithm of x. R. E. Kennedy and C. Cooper have shown [1] that for any 
positive integer k, 

• n<k v~2-
- X sin)k = f I ) lo§" x + 0(logk-i x), 

and they conjectured that for any positive integer k, 

1 5»* 
• «<& 

| J log'x + 0( log"x) . 

Recently [2] the same authors have shown, providing some evidence for the truth of this con-
jecture, that for each fixed positive integer k, 

i 10"-1 / Q \ * 

10j 
/=o 

In this note, we extend the result just mentioned. When k is a fixed positive integer, we show 
that for each m it is true that 

1 ' " ^ k 

-!*(n)k 
X n<k 

| J log^x + 0 ( l o g M x ) , 

provided that x is restricted to the set of those positive integers having at most m nonzero digits in 
their base 10 representations. (Thus, the Kennedy & Cooper result is exactly the case m - 1.) We 
use the Kennedy & Cooper result in the course of our proof. 

We state our result in the following form. 

Proposition: Let m > 1 and k > 1 be fixed integers. Then there is a constant A - A(k, m) such 
that if x is a positive integer with at most m nonzero digits in its base 10 representation, 

;|V-(f)(>og*)' < ^4(log x) k-\ 

2. REMARKS AND LEMMAS 

Remark 1: It is easy to check that if m, k are fixed positive integers and 
X-l fr^\k izv-d)^]- <c[logx] k-\ 
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then 
*-i fg^k 

1Z^-[^]( logx)A 
x /=o V ^ 

<d(\ogxy-\ 

where [ ] denotes the greatest integer function and d is a constant that depends only on c and k. 
To see this, suppose 10" < x < 10"+1, so that n = [logx]. Let logx = n + a , where 0 < a < 1. 

Then 

J C - l ;I*>*-(f)'<"«y 1 X_1 

X 7 = 0 v2j + fT^-(!W 
* - l 

1=0 

+ | - I \kank~ •+(*)aV *-2+...+f*|a* 

<cnk-l+c'nk-l=dnk-l<d(n + a)k-1. 

Remark 2: In view of Remark 1, to prove the Proposition above, it is sufficient (and convenient) 
to prove the following statement, which will be done by induction on m. 

For fixed positive integers m7 k, there is an A = A(k, m) such that if 10" < x < 10"+1 and x has 
at most m nonzero digits in its base 10 representation, then 

J C - l 

rS^-fl"* 1=0 
<Ari k-\ 

In the following three lemmas, k, n, p, y, and t all denote integers. 

Lemma 1: For each k>\, there is an A(k) such that 

w-10p+1 

10" + 10p+1 1-
fP < A(k) for all n, p with 1 < p < n. 

Proof: Let 5 = » - / ? - ! . Then -1 <s<n-2 and 

w-10^1 

1 0 " + 1 0 ^ 

n 
« 

10 '+ 1 
1 - 1 -

5 + 1 n 

10*+1^ 

k-(s + \) 
lO' + l 

+ o(\)<A(k). 

+1)* 

Note that f o r / > 2, 

n (s + Vf ^ 
10'+ 1 H* 

( j + i y 
max — 

v - i ^ < o o i 0 ' + l y 
,./-! 

-> 0 as n —» oo. 
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Lemma 2: Fix k > 1. Let A(k) be as in Lemma 1. Then for any y in the interval 10^ < y < 
10''+1<10"andany7>l, 

MO" (9\ k y 
t-10"+y\2) t-l0"+y\2 

9\k
 t (9^k 

T P 

Proof: 

MO" k y pk-nk 

t-lO"+y t-HT+y 
y 

< | - | A{k)nk~l. 

k\ 

<n M0"+10p + 1 

t-W"+y[ 

i-W'l^- -'^ii-W'W).,,'-. 
[nj I 10"+10p+1 UJ J 

where the last inequality is given by Lemma 1. 

Lemma 3: Let t > 1 and k > 1 be fixed. Then 
i M0"-1 / Q \ * 

MO" to \V 
In other words, there Is B(t, k) with 

MO' 
1 M^-I (9\k

 k 

/=o 

<B(t,k)nk~\ 

To prove the Proposition, we will only need this lemma for t = 1, 2, ..., 9. 

Proof: We use induction on f. For ? = 1, this is the result of Kennedy & Cooper mentioned 
above. Now fix t > 1 and assume the result for this t. Then, using the fact that $(t-10n +/) = 
s(0 + s(0, 0 < I < 1 0 " - 1 , 

+ 

(/+1)40"-1 / Q 

k\ 

(t+iyior s r + i 
l M0"-1 

MO' ; E^(0l-
^ N ^ 

z=0 

r + i 10" ^ p 0 U 
/ 

1 1 10"-1 

+ — • — y ( ¥ ( o H + v ( o " " 2 + - + ^ ) 

< — 5 ( f , Jfc)/!*"1 + — 5 ( 1 , k)nk~l + Oi*"1 < £(/ +1, Jfc)/**"1. 
f + 1 f + 1 

Note that we used the result of Kennedy & Cooper a second time. Here cl,...,ck, C are con-
stants that depend only on k and t. 

X PROOF OF THE PROPOSITION 

According to Remark 2, we need to show that, for each m > 1 and k > 1, there is a constant 
A(k, m) such that if 10" < x < 10"+1 and x has at most m nonzero digits in its base 10 representa-
tion, then 

1994] 209 



POWERS OF DIGITAL SUMS 

iil̂ -li)'"1 \<A(k,m)n jfc-i 

Ifm = l, this follows from Lemma 3 (for all &), since then x = MO", \<t < 9. 
Now assume the result for a given m > 1, and let x have /w +1 nonzero digits, say, 

10"<x<10"+1, x = t-lOn+y, l<t<9, 10/?<j<10/?+1<10", 

where y has m nonzero digits. Then, using s(t • 10" +/) = t + 5(1), 

^ - ( i • 1 = 0 

MO" 
M0"+j 

M0"-1 

M O J-SX')'-
(9 

;'=0 

A 

+ J 
/•10"+j l y W -f -VI + — - — - S M O * " 1 +c25(ofc-2+•••+C,) 

, - f c - l < 4(jfc, l)//""1 + A(k, m)pk~l + Z)/"1 < A(k, m + l)nk 

Here c1,...,ck, D are constants that depend on k and t, but since 1 < t < 9, they in fact depend 
only on k. For the second equality, we used Lemma 3 as well as the induction hypothesis. 
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1. INTRODUCTION 

The "Golden polynomials" {Gn{x)} (defined in [2]) are Fibonacci polynomials satisfying 

Gn+2(x) = x-Gn+l(x) + Gn(x) (1) 

for n > 0, where GQ(x) - - 1 and Gl(x) = x-l. The maximal real root, gn, of the function Gn(x), 
can be considered to an nth -dimensional golden ratio. 

Our concern here is the study of the sequence {gn} of "golden numbers." A computer 
analysis of this sequence of roots indicated that the odd-indexed subsequence of {gn} was 
monotonically increasing and convergent to % from below, while the even-indexed subsequence 
was monotoni-cally decreasing and convergent to % from above. 

In this paper, the implications of the computer analysis are proven correct. In the process, a 
number of lesser computational results are also developed. For example, the derivative of G'n(x) 
is bounded below by the Fibonacci number Fn+l on the interval [%, °°). 

2. EXISTENCE 

We begin with a simple yet use&l formula. 

. 3 ^ (l 
Formula 2,1: G„ , 2 ; \2, 

Proof: The formula is readily verified for n = 1 and n = 2 by direct computation: 

<*®~-Hr - ^)-!-i--{-r 
We proceed by induction assuming the proposition is true for all indices less than n\ 

GJ41=IG, n-l 2 
+ G, w-2 

(-1) 

2 

( n-\\ ( 
+ 

/ V 

n-l\ 

•sn-2 :(-!)" 
r3_22\ 

j 2" 2' 

Incidentally, it is apparent from this formula that 

l i m G „ - =lim 

2" 

-2 = 0 ' 

D 

1994] 211 



THE LIMIT OF THE GOLDEN NUMBERS IS 3/2 

While suggestive, this is not sufficient to show the desired result about the convergence of the 
roots. For example, these same properties hold for the sequence of functions 

/ „« = -! ' M N Y 

However, these roots remain at l/2 and 5/2 for all values of n and do not converge to %. 

Gn(x)for « = 2,...,17 fH(x)for #f = 2,...912 

Throughout this paper we will limit our discussion to polynomial functions with positive 
leading coefficient. These functions have the following easily proven properties. 

Lemma 2.2: 
A. If r is the maximal root of a function/, then f(x) > 0 for all x> r. Conversely, if f(x) > 0 

for all x > t, then r<t. lff(s) < 0, then s<r. 
B. Suppose R is an upper bound for the roots of the functions fi(x),f2(x),...,f„(x), and the 

functions u0(x), ux(x)9 u2(x), ...,un(x) have no positive real roots. Then R is also an upper 
bound for the roots of the function f(x) defined by 

/ ( * ) = /„ (* ) ' «n(x) + L-l(X) * Un-l(X) + ' * * + / l t o • Ul(X) + Uo(Xl 

To demonstrate the existence of the sequence {gn}, we will require two minor results from 
[1]. First, from Corollary 2.4, G„(l) = -Fn_x and G„(-l) = ( - 1 ) " ^ [where Fn_x is the (n- l)th 

Fibo-nacci number and Ln_x is the (n-\)th Lucas number]. Second, from Corollary 4.3, each 
Gn{x) is monic with constant term -1. 

Proposition 2.3: Existence of {gn } 
For each n > 1: A. Gn{x) has a maximum root gn in the interval (1, 2). 

A G„(x) has no rational roots. In particular, each gn is irrational. 
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Proof: 
Part A. Since each G„ is monic and G„(l) = -Fn_l < 0, then G„(x) must have a root larger 

than 1 (Lemma 2.2 A). Since gn is the largest root by definition, we have gn>\. 
By direct computation, Gx{x) and G2(x) are strictly positive on the interval [2, oo). Using 

the recursive relation (1) and an inductive argument, it is easy to see that each G„(x) is strictly 
positive on [2, oo). Therefore, gn < 2 (Lemma 2.2A). 

Part B. Suppose r is a rational root of G„(x), say r = b/c. Then G„ would be divisible by a 
linear factor of the form (cx-b). In this case, b would divide the constant term o f -1 , and c 
would divide the leading coefficient of+1. The only possibilities are ±(x -1) and ± (x +1), which 
indicate G„(x) has a root of +1 or - 1 , respectively. However, Gn(l) = -Fn_l and G„(-l) = 
(-l)nLn_v Hence, G„(x) has no rational roots. • 

3. EVEN/ODD DISTINCTIONS 

It is useful to note that when n is odd, G„(x) can be expressed entirely in terms of smaller 
odd-indexed functions and the seed function G0(x). Similarly, when n is even, we can write 
Gn(x) in terms of smaller even-indexed functions and the seed function Gx(x). Specifically, by 
repeated substitution, we obtain 

Formula 3.1: 
*• G2„+1(x) = (x2+l)G2?7_1(x) + x2G2w_3(x) + ---+x2G1(x) + xG0(x). 
b. G2/7(x) = (x2+l)G2w_2(x) + x2G2„_4(x) + ---+x2G2(x) + xG1(x). 

We can now show that % is an upper bound for all of the odd-indexed gn and a lower bound 
for the even-indexed gn. 

Observation 3.2: g2n-i <}i<S2n^or a^ n>®-
Proof: 
Case: Even Indices. {3/2 < g2n) 

By Formula 2.1, G2„(%) - -2~2n < 0. Since gn is defined to be the largest root of G„(x), 
the result is indicated by Lemma 2.2A. 

Case: Odd Indices. (g2n-\ < %) 

Note that gi = l<}2. Assume then that the proposition is true for g2k_x for k <n. Using 
Formula 3.1, we write 

G2n+l(x) = (x2+l)'G2n_l(x) + x2-G2n_3(x) + -' + x2'Gl(x) + x. 

We can apply Lemma 2.2B because the functions x, x2, and (x2 + 1) have no positive roots, and 
Y2 is an upper bound for the roots of the G„(x) on the right side. • 
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4. MONOTONICITY 

Formula 4.1: Gn+k(g„) = (-l)k+1 G„_k(g„). 

Proof: 
k= 1. Write (1) in the form G„+1(x) = x-G„(x) + Gn_1(x), and evaluate at x = gn, noting that 

G„(gn) = 0. 
k = 2. Write (1) in the forms Gn(x) = x • G^(x) + Gn_2 (x) and G„+2 (x) = x • Gw+1 (x) + G„ (x). 

Now plug in x = gn and note that Gw_1(g„) = GM+1(gw) (the case of * = 1) to get Gw_2(gn) = 

k <j. Now assume the proposition is true for k - 1,2,..., j -1 (holding /? fixed) and define A 
as the quotient 

^ =
G n + f c ( g W ) 

Gn-k(gnY 
We will show 4̂ = (-1);+1 to complete the proof. We can simplify A using (1) for the numerator 
and (1) solved for the last term, G„ = Gn+2 - x • G„+1, for the denominator: 

gnG„+j^ (gn) + Gn+J_2 (g„) gfi^j^ (gn) + G„+(j-2)\g„) 

G„-j+2(gn)-gnGn-j+l(gn) Gn-(J-l)(gn)-gnGn-<j-l)(En) 

Also define B and C and simplify using the validity of the formula for smaller values oik. 

B = G^j^igJ = Gn<J_l){g„) = ( - 1 ) J ' G H H ( ? , ) , 
C = G„+;_2(g„) = G„_0_2)(^„) = (-iy_1G„_0_2)(£„). 

Substituting 5 and C into the simplification of ,4, we get 

g„B + C _ gnB + C 
(-iy-lc-gn(-\yB (-iy+\c+g„B) 

This shows the formula to be valid for k-j. • 

Proposition 4.2: The subsequence of {g-„} with odd indices is a monotonically increasing 
sequence; and the subsequence with even indices is monotonically decreasing. 

Proof: 
Odd Indices. By direct computation, g3 > gl - 1. Assume the proposition holds up to g2k_x, 

that is, gx < g3 < - • • < g2fc-3 < #2*-i • Then G2k_3(g2k_l) > 0 (Lemma 2.2A). Using Formula 4.1, 

G 2 H l ( & - l ) = G(2£-l)+2(#2£-l) = -G(2k-l)-2(S2k-l) = ~G2k-3(S2k-l) < °-

G2jt+1 must have a root greater than g2k_l by Lemma 2.2A. It follows that g2fc+i > g2k-i • 

Even Indices. Note first that g2 = ( X >%• Since g2n_x <% (Observation 3.2), then 
G2n-\ O) > 0 on [%, oo). Rewriting (1), we have G2n - G2n_2 = x • G2n_x > 0 on \}/2, oo). Thus, 
G2n > G2n_2 for all x>3/2\ and G2„ has no root greater than g2n_2. But G2n()Q < 0 by Formula 
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2.1. By the intermediate value theorem, there must be a root between 3/2 andg"2w_2. This root 
mustbe(g2„. D 

5, THE OBB-INBEXED CONVERGENCE 

We now know that the odd-indexed {gn} form a monotonically increasing sequence bounded 
above by %, and the even-indexed {gn} form a monotonically decreasing sequence bounded 
below by Y2. Thus, limits do exist for both subsequences. We need two additional lemmas. 

Lemma 5.1: The derivatives G2n_Y{x) are bounded below by F2n on the interval Qfrw-i*00)? 
where F2n is the (Irif1 Fibonacci number. 

Proof: Substituting for both G2n+l(x) and G2n_x{x) in Formula 3.1, we obtain 

G2n+1(x) - G2n_x(x) = [(x2 + l)G2n.l(x) + x2G2„_3(x) + • • • + x2Gx(x) + xG0(x)] 
- [(x2 + 1)G2„_3 (x) + x2G2w_5 (x) + • • • + x2Gx (x) + xG0 (x)] 

= (x2+l)G2n_l(x)-G2„_3(x). 

Solving for G2n+l{x) gives us G2n+l(x) = (x2 +2)G2„_1(x)-G2„_3(x). Differentiating gives 

G^n+l(x) = (x2 +2)G^_1(x) - G^_3(x) + 2xG2„_1(x). 

For x > g2n_h the last term is positive; thus, for all x > 1, 

G^+l(x)>(x2+2)G^_1(x)-G^_3(x)>3-Gln_1(x)-G^_3(x). (2) 

We compute 

G{(x) = (x-iy = l = F2, 
G3'(x) = (x3 - x2 -1)' = 3x2 - 2x > 3 = F4 (for x > g3 > 4l\ 
G5'(x) > 3G3'(x) > 3(3) - 1 = 8 = F6 (forx>g3). 

Using induction and the Fibonacci identity F2n = 3 • F2n_2 - F2n_4, (2) becomes 

G2n+i{x)>F2n+2. D 

Actually, the growth rates of these derivatives can easily be shown to be even greater, 
although they are adequate for our purposes here. We are ready to demonstrate that the odd-
indexed roots converge to 3/2J with the aid of the following simple lemma. 

Lemma 5.2: If polynomial functions f(x) and g(x) have the properties that f(b) = g{b) > 0 and 
ff(x) > $f(x) > 0 for all x in (a, b), then f(x) < g(x) on (a, h). Furthermore, if g has a root c in 
(a, b), then f(x) also has a root in (c, b). 

Proof: Let h(x) = f(x)-g(x). Then h'(x) =f'(x)-g'(x) > 0, which implies h(x) is 
increasing. Since h(x)<h(h) = 0 for all x in (a,/?), we have / ( x ) - # ( x ) < 0 and the first result 
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follows. If g(c) = 0, then f(c) < g(c) = 0. Since f(b) = g(b) > 0, / must have a root in the 
interval (c, b). • 

Proposition 5.3: The odd-indexed subsequence of {gn} converges to 3/2. That is, 

l i m £ 2 w - i = - -

Proof: Because the odd-indexed subsequence {g2n-i} is monotonically increasing and 
bounded above by %, we know that the limit exists and is less than or equal to Y2. We need only 
show it is no less than %. 

We apply Lemma 5.2, setting f(x) = G2n_l(x)mdg(x) = x-(3/2-22ri~l). We note that 
f(K) = g(3A) = 2"(2w_1) > 0 (Formula 2.1), and / ' (* ) = G!

2n_x{x) > F2n > 1 = g'(x) (Lemma 5.1). 
Since g(x) has a root at x = (%-22n~1), it follows that G2n_x{x) has a root in the interval 
(3A-22n~\3A)- Thus, Y2>g2n.l>y2-22n-1 for all n. D 

6. THE EVEN-INDEXED SUBSEQUENCE 

We now address the even-indexed subsequence in a somewhat analogous way. 

Lemma 6.1: The derivative G2n(x) is bounded below by the Fibonacci number F2n+1 on [%, oo). 

Proof: For x > %, G£ (x) = 2x - 1 > 2(%) - 1 = 2 = F3. Assume G'2n_2 (x) > F2„_1. Differen-
tiating (1) gives G2n(x)-x-G2n_l(x) + G2n_2(x)-\-G2ri_l(x).Keeping in mind that G2n_l{x)>F2n 

(Lemma 5.1) and Gln_l{y^) ̂  2~n > 0 (Formula 2.1 and Lemma 5.1), we write 

Combining Lemmas 5.1 and 6.1, we have the side result 

Corollary 6.2: G'n(x) > Fn+l on the interval [%, oo). 

Lemma 6.3: Suppose polynomial functions f{x) and^(x) have the properties f(a) = g(a) < 0 
and f'{x) > g'{x) > 0 for all x in (a, b). Then f(x) > g(x) on (a, b). Furthermore, if g(x) has a 
root c in (a, b), then f(x) also has a root in (a, c). 

Proof: Apply Lemma 5.2 to the functions -f(a + b-x) and - g(a + £ - * ) . D 

We can now show that the even-indexed roots converge to 3/2 from above. 

Proposition 6.4: The even-indexed subsequence of {gn} converges to Y2. That is, 

«-»°° 2 

Proof: Because the sequence {g2n} is monotonically decreasing and bounded below by %, 
we know that the limit exists and is no less than Y2. We need only show that the limit is no more 
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than Y2. Apply Lemma 6.3, letting f{x) = G2n(x) and g(x) = x - (% + 2~ln) • Then / ( % ) = 
g(Yi) =z-2~2n and f'(x) > F2n+l > 1 = g(x) (Lemma 6.1). Thus, f(x) = G2n(x) has a root inter-
val (X>% + 2"2 ' 7)- T h i s means that Y2<g2n <% + 22"_1 for all w / I 

7. CONCLUDING REMARKS 

While the golden numbers form an irrational sequence converging to l/2 with odd and even 
subsequences converging monotonically from below and above, respectively, there are other 
questions to consider. For example, computer analysis also yields the apparent approximation, 

which could be explored. Also, it is quite likely that these results can be extended to other Fibo-
nacci polynomial sequences. Many of the formulas and lemmas here relied only on the basic 
Fibonacci relationship (1) and not the specific definition of the particular functions {G„}. Possibly 
there is a number like Y2 for each Fibonacci polynomial sequence. 
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1. INTRODUCTION 

The Sterling numbers of the first and second kind were introduced by Stirling in 1749 (see 
[9]). Recently, sevcial generalizations and extensions of the Stirling numbers are given and many 
combinatorial, probabilistic, and statistical applications are discussed (see [1], [2], [3], [4], and 
my 

In a recent paper [6], Koutras defined $(n, k; a) and S(n, k; a) [we used these symbols 
instead of $a(n, k) and Sa{nyk) to avoid ambiguity with Comtet's numbers], the noncentral Stir-
ling numbers of the first and second kind, by 

(t)„ = fjS(n,k;a)(t~a)k, (1.1) 

(t-a)" = Y.S(n,k-a)(t)k. (1.2) 
k=Q 

In this paper we use the following notations: 

(t'<*)n=U(t-aj)> (t/a)o = l, and (a^^Hia.-ajl k<L 
j'*k 

Comtet [5] defined sa(n,k) mdSa(n,k), the generalized Stirling numbers of the first and 
second kind associated with aQ,au..., an_x, by 

('/*)„ = 2>a(»,*)r*, (1-3) 

t^JTS^Vit/a),. (1.4) 
k=0 

The main purpose of this paper is to modify the noncentral Stirling numbers of the first and 
second kind. 

In sections 2 and 3 we define s(n, k\ a) and S(n, k; a), the multiparameter noncentral Stir-
ling numbers of the first and second kind; recurrence relations, generating functions, and explicit 
forms are obtained. 

Some special cases are discussed and a relation between the multiparameter noncentral 
Stirling numbers and other Stirling numbers are found. Finally, in section 4, some applications are 
derived. 
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2. THE MULTIPARAMETER NONCENTRAL STIRLING NUMBERS 
OF THE FIRST KIND 

Definition: Let t be a real number, n a nonnegative Integer, and a = (a0, al5..., a„_x) where 
a0 < ax < • - • < an_x are real numbers. 

We define the multiparameter noncentral Stirling numbers of the first kind, s(n, k; a0,au ..., 
a„_x), briefly denoted by s(n9 k; a), with parameters ~a = (a0, a1?..., a ^ ) , by 

(0» = E *(*,*; s> (*/«)*, (21) 
£=0 

where ^(0, 0; ~a) - 1 and s(«, A:; a) = 0 for k > n. 

Theorem 2.1: The multiparameter noncentral Stirling numbers of the first kind s(n, k; a) satisfy 
the recurrence relation 

s(n +1, k; a) = s(n, k-l;a) + (ak - ri)s(n, k; a) for k > 1, (2.2) 

where *s*(0, 0; a) = 1 ands(n, k;'a) = 0fork>n and 

s(n,0; a) = (a0-n + l)(aQ-n + 2) ••• (a0 -l)a0 = (a0)„. 

Proof: Since (t)n+l = (t)„[(t -ah) + (ak- rij], we have 

Y, s(n +1, k; a) (t /a)k=(t-ak)y£ $(n, k; a) (t I a)k + (ak - « ) £ ${n, k; a) (t I a)k 
k=0 k=0 k=0 

n+1 n 

= XX^ k~l'>a) (f la)k +(ak ~n)J]s(^ K a) (fla)k. 
k=l k=0 

Equating the coefficients of (t I a)k on both sides, we get (2.2). For i = 0we get s(n +1, 0; ~a) = 
(a0-ri)s(n, 0; a); therefore, s(n, 0; a) = (a0)n follows by induction. 

Remarks: We discuss the following special cases: 

i) If ai -a, i = 0,1,..., n -1, then from (2.2) we have 

s(n +1, k\ a) = s(n, k-l;a) + (a-ri)s(n, k; a), 

where s(n, k; a) denotes the noncentral Stirling numbers of the first kind that is defined by 
Koutras [6]. 

ii) If at - 0, i = 0,1, . . . ,«-1, then we have 

s(n + \,k) = s(n, k-l)- ns(n, k), 

where s(n, k) denotes the usual Stirling numbers of the first kind [9]. 

Hi) If ai:-1, / = 0,1, . . . ,«-1, then s(n,k;a) reduces to the C-numbers, where r = \, i.e., 
C(n,k,l) (see [3]). 
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Theorem 2,2: The multiparameter noncentral Stirling numbers of the first kind have the exponen-
tial generating function 

<Pk{t.a) = Ys{n.k:a)- = Y. , . • (2-3) 
n-t » ' ;=0 (« . ; ) ; • 

Proof: Let <j>k(t, a) be the exponential generating flinction of s(n. k; a), then 

<t>k(t;a) = 'Y s(n. k:~a) —. where 

Mt-a) = T s{>h0;a)t—=ft(a0)n
t—={l + t)a°. 

Differentiating both sides of (2.4) with respect to r, we get 

and from (2.2) we get 
n-\ 

(2.4) 

(n-iy. \=^i (Ti-1)! 
_ t'n~2 

-f Y s(w-1. k: a) 

= (/>k_{(t:a) + a,Jk(r. a ) - r ^ : (f; a); 

hence, 
_ a- _ 1 _ 

^(r;a)~7TTT^(r;a)"lT"^-l(r;a)-
Solving this difference-differential equation, we obtain (2.3). 

Theorem 23: The numbers s(n, k; a) have the following explicit form: 

where, in the second sum, the summation extends over all ordered w-tuples of integers (il, i2. ..., 
ir) satisfying the conditions ix + i2 n— ̂ ir-n and /:; > 1, /' = 1, 2...., r. 

Proof: From (2.3), 
£ n>t\aj k a , log(l+r) 

yr0 ( a . ) t ;=0 (a.).t 

= j . 1 * (a;log(l + r))r * 1 f<*rj(f ( m - i ^ Y 

and using Cauchy's rule of multiplication of infinite series, we get (2.5). 
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In the following, we find a relationship between s(n, k) and s(n, k\ a)'. From (2.1), we have 

n 

k=0 

hence, 
n n k 

7=0 fc=0 /=0 
( n 

7=0 U = / 

Equating the coefficients of f on both sides, we get 

n 

k=i 

Similarly, we can express s(n, k\ a) in terms of s(n, k). Since 

{t)„^s{n,k)tk, 

we have, from (1.4) and (2.1), 

k=0 

therefore, 

and hence, 

(0„ = 2>(»>*)IX(*.0('/a),; 
k=Q /=0 

/=o /=o Vit=/ y 

J(W, /; a) = £ J(w, *)iSa (*, 0-

Also we can express Sa(n, k) in terms of s(n, k; a). Since 

*" = X^,/c)(0t = ££(«,*)£s(M; «)(>/«),, 
k=0 

we have 

hence, 

fc=0 /=0 

( n 

7=0 7=0 U = / / 

^(n,0 = ̂ (».*K*.';a). 
Jfc=z 

(2.6) 

(2.7) 

(2.8) 

Combining equations (2.6) and (2.7), we get an orthogonality relation of sa(n, k) and Sa(n, k). 
Since 
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k=i £=k £=i\k=i J 

hence, 

k=i 

where 8ti is Kronecker's delta. 

3. THE MULTIPARAMETER NONCENTRAL STIRLING NUMBERS 
OF THE SECOND KIND 

Definition: Let t be a real number, n a nonnegative integer, and ~a = (a0, a1?..., an-i), where 
a0 <al<"< an_x are real numbers. 

We define S(n,k;a0,al,...,arJ_l), briefly denoted by $(n,k;a), the multiparameter non-
central Stirling numbers of the second kind with parameters ~a = (a0, au..., ccn_^)y by 

(tla)n = f^S(n,k-a)(t)k, (3.1) 

where S(0,0; "a) = 1 andS(n,k;~a) = 0 fork >n. 

Theorem 3.1: The numbers S(n, k\ a) satisfy the recurrence relation 

lS,(w,*;o) = 5 ( / i - l , * - l ; a ) + (ifc-aw_1)iS(/i-l,*;a). (3.2) 

Proof: Since (t/a)n =(t/a)rl_l(t-an_l) = (t/a)n_l[(t-k) + (k-an_l)], we obtain, from 
(3.1), 

Z5( / f > * ;a ) (0*=( / -*)§5(«- l ,A;a) (0 i +(*-a^ 1 ) | ; I 5 ( / i - l J * ;a ) (0 t j 
k=0 k=0 k=Q 

which gives us (3.2). 
We discuss the following special cases: 

i) If ai = a, i = 0,1,..., w-1, then from (3.2) we have 

iS(w, k\ a) = S(n-l,k-1; a) + (k - a)S{n -1, k\ a\ 
where ^(/i, k\ a) denotes the noncentral Stirling numbers of the second kind as defined 
byKoutras [6]. 

H) If at =0, i = 0,1,..., n - 1 , then from (3.2) we have 
S(n, k) = S(n -1, k -1) + kS(n -1, £), 

where S(n, k) denotes the Stirling numbers of the second kind (see [9]). 

Hi) If at =i, i = 0,1,..., n-1, then S(n, k; ~a) reduces to the C-numbers, where r = l, i.e., 
C(/i,*;l)(see[2]). 

In the following, we find a relationship between sa(n, k) and S(n, k; ~a). 

222 [JUNE-JULY 



THE MULTIPARAMETER NONCENTRAL STIRLING NUMBERS 

From (3.1) we have 

(tla\ = £$(/!, k; a) {t)k = £s(/ i , k; a^kjy ; 

hence, 
k=0 k=0 /=0 

( n 

7 = 0 U = / 7=0 

and equating the coefficients of t1 on both sides, we get 

n 

k=i 

Similarly, we have 

therefore, 

£=Q A:=0 /=0 

f n 
£S(/i, /; 5) (0, = X 5>B(n, *)*(*, 0 I (0/, 

/=0 \k=i 7=0 

and hence, 

fc=z 

Also, we can express S(n, k) in terms of S(n, k; a). It follows from (1.4) that 

t" = 2X(»,k) (tla)k = £Sa(», k&SikJ; a) (0,. 
k=Q k=0 7=0 

Thus, 

Z *(*, o (0 /=I [ Z sa (/i, *>5(*, /, a) I (0/, 
implying that 

7=0 7=0 \k=i 

(3.3) 

(3.4) 

(3.5) S(n,i) = ^Sa(n,k)S(k,i;a). 
k=i 

Moreover, we can find a relationship between s(n, k; a), sa{n, k), and s(n, k; a), as follows, 
From (2.6) and (1.9) in [6], we get 

£=i 
S (?)(-«)*-/ *(A';«) = £ *(«> 4 «K (A 0; 

£=i 

hence, 

(3.6) £ f s(/i, £ a)sa (^ i) - f"J(-a)„_^s(/i, /; a) J = 0. 

Similarly, from (2.5) and equation (2.5a) in [6], we get 

£ ( s a (/*,*) W ^ (3.7) 
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4. APPLICATIONS 

i. From (2.6), and since 

s(n,i) = fj(-\)iL(n,k)s(k,i), 
k=i 

where L{n, k) denotes the Lah numbers (see [3]); hence, we obtain the combinatorial identity 

£ ( ( - l ) ' £ (n , k)s(k,i)-s{n, k; a)sa(k,ij) = 0. (4.1) 
k=i 

Similarly, from (2.6), and since 

s(n,i) = r-iYjC{n,k,r)s{k,i), 
k=i 

where C(w, k, r) denotes the C-numbers (see [3]), we have the combinatorial identity 

£ (s(n, k; a)sa (k, i) - r^Cin, k, r)s(k, /)) = 0. (4.2) 
k=i 

ii. W e find an orthogonality relation of s(n, k; a) and S(n, k; a). From (2.1) and (3.1), w e get 

k=0 k=0 V/=o 

hence, 

j^s(n,k;a)S(k,i;a) = Sni, (4.3) 

where £w/ is Kronecker's delta. 

iii. Let Mjk{x) denote the 5-spline of Curry Schoenberg with knots %j <%j+i<~-<£j+k 
(j e Z , k = 1,2,...) as defined in [7]. The moments ju£(k, E) of the 5-spline M^k(x) when the 
index y is equal to 0 is given by 

Mi(k,& = £oXiM0tk(x)dx, * = 0,1,. . . ;* = 1,2,...; 

From (3.3) and Proposition 3.1 in [7], we get 

A_,(*,0 = (i1 ^ ( M ^ M * , / ) . (4.4) 
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AN "ALL OR NONE" DIVISIBILITY PROPERTY FOR A CLASS OF 
FIBONACCI-LIKE SEQUENCES OF INTEGERS 

Juan Pla 
315 Rue de Belleville, 75019 Paris, France 

(Submitted September 1992) 

In this note, we prove the following theorem. 

Theorem: Let un be the general term of a given sequence of integers such that un+2 = un+1 +un, 
where uQ and ux are arbitrary integers. Let x be an arbitrary integer other than -2, -1,0, and 1. 
Let D be any divisor of x2 + x -1 other than 1. Then, the sequence wn = xun+l - un, where n > 0, 
is such that: 
(a) D divides every wn; 
(h) D divides no wn. 

Proof: It is a well-known fact [1] that 

^n+P+l=Fp+^n+l+FpU^ (1) 

where Fp is thep* Fibonacci number. Considering the following product of two polynomials in 
the variable x, 

tf+x + lJZF^x', (2) 

and taking advantage of the fundamental properties of the Fibonacci sequence, we can see that 
most of the terms in (2) vanish when we develop the product, to obtain 

(x2 + x +1) g Fp+lx? = -1 + x"+1((l + x)Fn+l + Fn). (3) 
p=0 

Since x is an integer, the two integers x2 + x - 1 and kn=(l + x)Fn+l + Fn, by (3), cannot share any 
common divisor. That is, 

( x 2 + x - U w ) = l, n>0. (4) 
Letting 

fo = (l + *)^1+F,, (5) 
[bp-i^F^ + xFp, 

we have a linear system whose determinant is x2 + x - l . Since we assume that x is an integer, 
and that this polynomial has no integer as a root, this means that the system (5) has one solution, 
which can be expressed as 

[(x2 + x - l)Fp+l = xkp -kp_l7 
(6) 

\ ( x 2 + x _ l ) F (i + x)k k 
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If we substitute the values of Fp+l and F from (6) into (1), we have 

(x2 + x - 1 ) ! ^ = (xkp - V i K + i + (0 + x) kp-i - kp)un 

= (xun+l - un)kp + ((1 + x)u„ - un+l)kp_v 

Recalling that wn = xun+l-un andthati/w+1 = f#w+Mw_1, we can substitute these values into the 
right-hand side of (7) and by simplifying obtain 

(x2 + x - l)un+p+l = wnkp + wn_xkp_x. (8) 

Now let D be any divisor of x2 + x - 1 (except 1) and assume D divides wn for some n. Since, by 
(4), D does not divide kp, we see that D divides wn_x. It is now obvious, by induction, that all the 
terms of {wn} are divisible by D. Similarly, if there exists one wn that is not divisible by D, then 
there is no wn that is divisible by D. 

Examples: 

a) The first interesting value is x = 2, for which x2 + x - 1 = 5, and 

Letting un-Fn, we have wn = Ln, where Ln is the nth Lucas number. Since 5 does not divide 
L0 = w0, we have established the well-known fact that no Ln is divisible by 5. On the contrary, if 
we let un = Zw, then wn = Ln+l + Ln_x. Here, all terms of wn are divisible by 5, since wY = 5. 

b) A consequence of this "all or none" property is that no Fibonacci-like sequence of integers un 

exists such that Fn - un+l+un_l for all n because some of the Fibonacci numbers are divisible by 5 
and some are not. 
c) When x2 + x - 1 is composite, it is easy to build sequences displaying the "none" property for 
some of the divisors and the "all" property for the other ones. For instance, when x = 7, 
x2 + x - 1 = 55 = 5*11 and wn = 7un+l -un. With u0 = 3 and ul=2,we get wQ - 11, which means 
that wn displays the property "none" for 5, and the property "all" for 11. 
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A GENERALIZATION OF MORGAN-VOYCE POLYNOMIALS 

Richard Andre-Jeanniir 
IUT GEA, Route de Romain, 54400 Longwy, France 

(Submitted September 1992) 

1. INTRODUCTION 

Recently Ferri, Faccio, & D'Amico ([1], [2]) introduced and studied two numerical triangles, 
named the DFF and the DFFz triangles. In this note, we shall see that the polynomials generated 
by the rows of these triangles (see [1] and [2]) are the Morgan-Voyce polynomials, which are well 
known in the study of electrical networks (see [3], [4], [5], and [6]). We begin this note by a 
generalization of these polynomials. 

2. THE GENERALIZED MORGAN-VOYCE POLYNOMIALS 

Let us define a sequence of polynomials {P„(r)} by the recurrence relation 

P^(x) = (x + 2)P}:l(x)-P%(x), n>2, (1) 

with P0
(r) (x) = 1 and p£r\x) = x+r + l 

Here and in the sequel, r is a fixed real number. It is clear that 

P„i0)=K (2) 
and that 

Pn
W=B„, (3) 

where hn andi?w are the classical Morgan-Voyce polynomials (see [3], [4], [5], and [6]). We see 
by induction that there exists a sequence {tf£l}„>0, &>o of numbers such that 

k>0 

with a(
n[l = 0 if k > n and a^n = 1 if n > 0. 

The sequence afy = P^r)(0) satisfies the recurrence relation 

ln, 0 ~ Zan-L 0 an-2, 0 > n - Z > 

with afy = 1 and afy = 1 + r. 
From this, we get that 

In particular, we have 

and 

a(
n

rl = l + nr, n>0. (4) 

a%l = l,n>0 (5) 

a^=l+n,n>0. (6) 
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Following [1] and [2], one can display the sequence {a^\} in a triangle: 

n 
0~ 
1 
2 
3 

k 0 

1 
\+r 
l + 2r 
1 + 3/" 

1 

1 
3+r 
6 + 4r 

2 

1 
5+r 

3 ••• 

1 ••• 

Comparing the coefficient of xk in the two members of (1), we see that, for n > 2 and k > 1, 

an, k ~ Zan-1, k an-2, k + " w - 1 , k-l • I ') 

By this, we can easily obtain another recurring relation 

(8) 
a=0 

In fact, (8) is clear for n < 2 by direct computation. Supposing that the relation is true for n > 2, 
we get, by (7), that 

n{r) _n{r) , ( (r) _ (r) \ + / 7 ( r ) 
an+l,k ~an,k^\an,k an-l,k)^an,h ,k-l 

n-l 

~an,k + Z*,aa,k-l+an,k-l-an,k+ 2Laa,k-l> 
a=0 a=0 

and the proof is complete by induction. 

We recognize in (8) the recursive definition of the DFF and DFFz triangles. Moreover, using 
(5) and (6), we see that the sequence {a£\} (resp. {afy}) is exactly the DFF (resp. the DFFz) 
triangle. Thus, by (2) and (3), the generating polynomial of the rows of the DFF (resp. the DFFz) 
triangle is the Morgan-Voyce polynomial bn (resp. Bn). 

38 DETERMINATION OF THE { « $ } 

In [1] and [2], the authors gave a very complicated formula for {af^.} and {a^\}- We shall 
prove here a simpler formula that generalizes a known result [5] on the coefficients of Morgan-
Voyce polynomials. 

Theorem: For any n > 0 and k > 0, we have 

an,k-y 2k yr\2k+\} 
where (°\ = 0 if h > a. 

(9) 

Proof: If k - 0, the theorem is true by (4). Assume the theorem is true for k-\. We shall 
proceed by induction on n. Equality (9) holds for n - 0 and n-l by definition of the sequence 
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{afy}. Assume that n >2, and that (9) holds for the indices n-2 and n-1. By (7), we then 
have c%\ = 2a^\k -c$2xk +a£?u_i = Xn^k +rY„,k, where 

v rj(n + k-i\ (n + k-2\l (n + k-2\ n„A v Jn + k-t\ (n + k-2\.(n + k-2\ X»,* = \ 2k )-{ 2k J + [2Jfc-2 J a n d Y^=\ 2k + l )-{ 2k + l ) + { 2k-I ) 

Recall that 

From this, we have 

_(w + A - 2 V J7i + * - 2 V f« + &-2^_ (n + k\ 
~y 2k ) + \ 2k-1 ) + { 2k-2 )-{ 2k ) 

In the same way, one can show that Yn^k = (^Vi]; this completes the proof. 

The following particular cases have been known for a long time (see [5]). If r - 0 (DFF tri-
angle and Morgan-Voyce polynomial hn), then 

(0) _(n + k\ 
a^~\2k ) 

and, if r = 1 (DFFz triangle and Morgan-Voyce polynomial Bn), then 

CD _(n + k\ (n + k\ (n + k + i) a»,k~y 2k y{2k + l)~{ 2£ + l j 

Remark: The sequence wn = P„(r)(l) satisfies the recurrence relation wn = 3wn_x -wn_2. On the 
other hand, the sequence {F2n}, where Fn denotes the usual Fibonacci number, satisfies the same 
relation. From this, it is easily verified that 

^ ( r ) 0 ) - F2n¥2 + (T - \)F2n = F2n+l + rF2n. 

For instance, we have two known results (see [1] and [2]), P„(0) (1) = F2n+l andP„(1)(l) - F2n+2. 
We also get a new result, 

*n w ~ ^2»+2 +F2n = L2n+l, 

where Ln is the usual Lucas number. 

4. MORGAN-VOYCE AND CHEBYSHEV POLYNOMIALS 

Let us recall that the Chebyshev polynomials of the second kind, {U„(w)}y are defined by the 
recurrence relation 

Un{(D) = 2(DUn_l{CD)-Uri.2{CD\ (10) 

with initial conditions U0(o)) = 0 mdU1(a)) = l. It is clear that the sequence {P^r){2co-2)} 
satisfies (10). Comparing the initial conditions, we obtain 
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P„W (2a> - 2) = t/„+1(a>) + (r - \)U„(a>). 

Ifa) = cos/, 0 < t < 7r9 it is well known that 

sinf 
Thus, we have 

P ( r ) (2© - 2) = s i n ( y i + 1 ) r + ( r " 1 ) s i n y g r 

sin£ 
From this, we get the following formulas, where co - cos/ = (x + 2)/2, 

KWV-*0*"*}?12. (ii) 
cost 12 

Bmix) = V\x) = * * ^ . (12) 
sin 7 

Formulas (11) and (12) were first given by Swamy [6]. We also have a similar formula for 
P„(2)(x), namely, 

sin f / 2 

From (11) and (12), we see that the zeros xk (resp. yk) of the polynomial b„ (resp. 2?w) are given 
by (see [6]) 

^ . = - 4 s i n ? f ^ ^ - l * = l,2,...,w, and yk = -4sin2( ^ ^ I & = 1,2, ...,yt. 

Similarly, the zeros z^ of the polynomial i^(2)(x) are given by 

z , = - 4 s i n 2 f - ^ U = l ,2 , . . . ,^ . 
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ANOTHER INSTANCE OF THE GOLDEN RIGHT TRIANGLE 

Ian Brace 
Department of Physics and Math. Physics, University of Adelaide, Adelaide, S. Australia, P.C. 5001 

(Submitted October 1992) 

The golden ratio r = (l + v5) /2 , the positive root of x2=x + l, makes an unexpected 
appearance in [1], where a certain right triangle turns out to be a "Golden Right Triangle" (GRT), 
one having sides proportional to (1, r1/2, r). The author wonders about the existence of other sets 
of circumstances where the GRT makes an unexpected appearance. In this note, such an occasion 
arises. 

Suppose you are given two line segments of length a and ft, then consider the problem in 
Euclidean geometry of constructing a right-angled triangle with hypotenuse of length equal to the 
arithmetic mean (A) of a and ft, that is, 

— a + ft 

and one other side equal to their geometric mean (G ), that is 

This problem is readily solved, as indicated in Figure 1. 

Figure 1 

If we now demand that the shortest side AC of AABC in Figure 1 is the harmonic mean (H) 
of a and ft, that is, 2/ H -l/a + l/ ft, then we obtain the triangle with sides of length indicated in 
Figure 2. The problem now is to determine a and b so the lengths are proportional to (A, G, H). 

We can set b = 1 without loss of generality, and apply Pythagoras' Theorem to obtain, 
after some algebra: a4 -18a2 +1 = 0, giving a2 =9±4J5 = T6 and IIr6 for positive and nega-
tive signs, respectively. 

For the positive sign, and the larger root, we have a = r3 =2r + l. In this case the required 
triangle has sides of length 
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This can be written as (r2, r3/2, r), which is proportional to (Y, r1/2,1), the GRT above. 

(a+b)ll 

lab 
a + b 

Figure 2 

For the negative sign, and smaller root, we have a = 1 / r3 and b = 1. This results in a triangle 
with sides of length 

' ( T + 1) 1 1 
^(2r + l ) ' (2r + l)1/2'(Y + l)y 

Again, this is proportional to GRT, the side lengths being reciprocal to those above. 
Here, then, is another situation in which the golden ratio makes an unexpected appearance. 
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INFINITE PRODUCTS AND FIBONACCI N U M B E R S 

Don Redmond 
Department of Mathematics, Southern Illinois University, Carbondale, IL 62901-4408 

{Submitted October 1992) 

In this paper we wish to describe how certain identities for infinite products lead to some 
striking infinite products involving terms of binary recurrences. 

1. INFINITE PRODUCTS 

We begin with the result on infinite products. 

Theorem 1: If |x|<l, S is a set of positive integers and h and g are functions such that \g(x)\, 
\h(x)\< Cxa for all x, where C > 0 and a > 0 are constants, then 

Yl(l + xk)g(k)/k(l-xk)h(k)/k =exp 
keS 

X too 

-Z E(A(d) + (-l)n/<W)) 
n=\ d\n n 

deS 

Proof: Let 
F(x) = ]J(l + xk)gW/k(l-xk)hW,k. 

keS 

Note that the infinite product converges absolutely for |x|<l. Then 

logF(*)= W ^ l o g ( l + xV^log(l-**) 

keS & n=l n keS * n=l n 

Since |x|<l and g(k) mdh(k) are bounded by powers of k, we see that the two double series 
converge absolutely, and so we may interchange the order of summation. We obtain 

\nld . 

n=l n d\n n=l n d\n 
deS deS 

= -It—It(Kd)H-ir"'g(d)). 
n=l n d\n 

deS 

If we exponentiate, the result follows. 
The following two corollaries are the results we will be using in what follows. In the first 

corollary, we take S to be the set of odd integers and g=-h = f, where/is any function that 
satisfies the order of magnitude bound on Theorem 1. In the second corollary, we take S to be 
the set of natural numbers and g=-h = f as before. 
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Corollary 1.1: Under the hypotheses of Theorem 1, we have 

*° (1 4- r2*+1 Y(2*+1)/(2*+1) [ *»( \v2k+l 
I r ^ T =exp 2£ S/(d) X 

^ O V 1 x J [ k=0\d\2k+l J 
Corollary 1.2: Under the hypotheses of Theorem!, we have 

2Jfc + l | 

+ 0 0 / 1 , ^k f{k)/k 

2, BINARY RECURSIONS 

Consider the binary recursion relation 

un+2=aun+1+hu„, n>0, (1) 

where u0 and ux are some given values. Let a and /? be the roots of x2 -ax-b = 0, where we 
take 

a + ̂ a2+4h , _ a-^a2+4b 
a _ a n ( | /y = : _ 

2 2 
If we assume a > 0 and a2 + 4Z> > 0, then we have that 

\p/a\<l. (2) 

Let {Pn} be the solution to the recursion (1) with initial conditions PQ = 0 and Px = 1. Then it 
is well known that we may write 

If we let {£?„} be the solution to (1) with QQ - 2 and 2i = a,tnen w e n a v e 

Qn=a"+Pn, (4) 

The most well known of these sequences are the Fibonacci and Lucas numbers that satisfy (1) 
with a~b-\. In this case, 

i+Vs A a i-Vs 
a - and / ? - > 

2 2 
3, SOME ARITHMETIC FUNCTIONS 

In our applications of Corollaries 1.1 and 1.2, we will take / to be some well-known 
arithmetic functions, namely, the Euler function, <p, and the Mobius function, ju. The reason for 
discussing these two function is that they have the following well-known properties: 

5>(<0 = " (5) 
d\n 

and 
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i /*o={i r>\. (6) 
d\n ^ 

These two results allow us to easily sum the infinite series that appear on the right-hand sides 
of Corollaries 1.1 and 1.2. Unfortunately, not many other arithmetic functions have such simple 
sums as in (5) and (6). 

A generalization of the Euler function, namely, the Jordan functions, Jk, satisfies 

but this leads us to sums of the form 

which have closed-form expressions { 

d\n 

+00 

I"*-1*", 
«=1 

of the form 

AW 
a-*r 

where Pk is a polynomial. For general k, the polynomial Pk is not that tractable, and so we have 
chosen to go with just the Euler function. 

A function that generalizes both the Euler function and the Mobius function is the Ramanujan 
sum, cw(m), which can be defined by 

d\(n,m) 

Then we have cn(l) = ju(n) and cn(0) = <p(n). The Ramanujan sum has the nice property that 

Z ( \ - \ n n \ m ? cdKm)-\Q otherwise. 
d\n ^ 

If we use this in the corollaries, we end up with sums of the form 

d\m 

which are easy to deal with for individual m, but not in general. 
Therefore, in what follows, we shall restrict ourselves to the use of only the Euler and 

Mobius functions. 

4. APPLICATION OF COROLLARY 1.1 

If we let / = <p or //, then, since <p(ri)<nmd \ju(ri)\<l, we see that we can use either of 
these choices in Corollary 1.1. If |x|< 1, then we have, by (5), 

+oo v 2 « + l [ +oo I / 9 \ 

A^OV1 x J [ n=0 ^n ^ l d\2n+\ J I »=0 
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Similarly, if we use (6), we obtain, for \x\< 1, 

.+00 

n 
Theorem 2: We have 

-*ofl + x2k+l\»(2k+W2k+V 

k=0 1 v2k+l - e 
„2x (8) 

Q: •2k+l 

and 
+O0 ( 

n 
k=0 

,<p(2k+l)/(2k+l) ( 
= exp 

-2b 

V a4a2 + 4b 

a1 +2h-a^az +4b 

( 9 ) 

= exp (10) 
y 

Proof: Let x = PI a. By (2), we see that |x|< 1, and so we can use (7) and (8). We have 

^l + (j3/a)2k+lY(2k+m2k+l) *° (a2k+l
 +j32^V(2k+m2k+1) 

' I I ~Z2k+l o2k+l 
k==0ya -p j 

f(2k+l)/(2k+l) 

+00 f 

0U-G0/a) 2&+1 
J 

n a 2fc+l 

Taking / = <p and // gives the left-hand sides of (9) and (10), respectively. 
If we put x = pi a into the right-hand side of (7), we obtain 

2(0/a) _ lap _ 2(-b) __-2bla_ -2b 
l-(pia)2'{a2~p2)~{a-p)P2~ a-fi ~ a ^ 4 £ ? 

which completes the proof of (9). 
To prove (10), we put x- p I a into the right-hand side of (8) and obtain 

p\_a2+2b-a4a2+4b 
\aj -b 

which proves (10) and completes the proof of Theorem 2. 

If we take a = b = 1 to obtain the Fibonacci and Lucas sequences, we get the following corol-
lary. 

Corollary 2.1: We have 

and 
n 
k=0 

n 
fc=0\ 

\<p(2k+l)/(2k+l) 
^2k+l 

^F2k+l) 

L 
v//(2k+l)/(2k+l) 

'2A:+-1 

-e~^ 

- 3 + V 5 

^5F2k+l J 
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5. AN IDENTITY FOR MULTIPLICATIVE FUNCTIONS 

Theorem 3: Let/be a multiplicative function. 

1) Ifn is odd, then 
X(-iy/d/(rf)=-i/(rf). 
d\n d\n 

2) Ifn is even, n = 2sm, s>l, and m is odd, then 

X(-l)"W/(«0 = I/(«0-2/(2*)I/(*). 
d\n d\n s\m 

Proof: Ifn is odd and d\n, then n/d is also odd. Thus, ifn is odd, we have 

X(-l)"W/(^) = I H)/(<0 = -£/(«*), 
d|w c/|« d|« 

which proves 1). 
Suppose n is even and write n = 2srn, where s > 1 and w is an odd integer. Then 

j:(-l)"ldf(d)= X f(d)- Zf(d) = Tf(d)-2 £/(</). 
d\n d\n d\n d\n d\n 

n/d even n/d odd «/dodd 

Now if <i|w and w/rf is odd, we can write d - 2sS, where 8\m. Thus, 

I(-l)"/rf/(rf) = I/(*0-2S/(2'«5). 

Since/is multiplicative, we can write f(2sS) = f(2s)f(S) and this gives 2) and completes the 
proof of the theorem. 

The following corollary is just a rewriting of Theorem 3 in a form applicable to Corollary 1.2. 

Corollary 3.1: Let/be a multiplicative function. Then, with the notation of Theorem 3, we have 

f2Z/(rf) if ̂  is odd, 
^f(d)(i-(-iy/d) = 
d\n 

d\n 

2f(2s)Yf(d) tfn = 2smisQVQn. 
d\m 

We now apply the corollary to our specific choices of function, namely, <p(ri) and ju(n). 
Since both of these are multiplicative, we can apply Corollary 3.1 to obtain the following result. 

Corollary 3.2: We have 
' is odd, 
is even, 2>«o(i-(-.r<>{r III 

d\n K d\n 

and 
[2 if7! = l, 

^M(d)(l-(-lfd)= -2 ifn = 2, 
*b [0 if ft > 2. 
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Proof: If n is odd, then we have 

25>(d ) = 2ii, 
d\n 

and If n-2sm is even, with s>\ and m odd, then 

2<p(2s)J^(p(S) = 2-2*-1 -wi = 2*w = /i. 

This proves (11). 
If n is odd, then we have 

2-1 = 2 ifw = l, 
if n > 1. 

If « = 2*/w is even, then 

2//(2')5>(,5) = _)2fi(2') if/if = l, 

and 

//(2s) = 

0 if m > 1, 

1 if j = l, 
[0 i fs>l . 

If we combine these last two results, we see that 

W ) Z ^ = { 0 otherwise. 
This proves (12) and completes the proof of the corollary. 

6e APPLICATION OF COROLLARY 1.2 

If we proceed as we did in section 4 and now apply Corollary 3.2, we obtain the following 
theorem and corollary. 

Theorem 4: We have 

Corollary 4.1: We have 

L, 

= exp . . and IT 
{a2-p2 ) l\ 

w Qk ] 
Kk)lk 

(cc-P)Pk 
= exp| 

f2ap-p^ 

W T Y
(k),k +»( r Yw/k 

Vkk) - ^ - Wk) 
AMS Classification Numbers: 11B37, 11B39, 11Y60 

= e(-13+5V5)/2 

• > • > • > 
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MAXIMAL REPRESENTATIONS OF POSITIVE INTEGERS 
BY PELL NUMBERS 

A. F, Horadam 
The University of New England, Armidale, Australia 2351 

(Submitted October 1992) 

1. INTRODUCTION 

In [4], the unique Zeckendorf representations of positive and negative integers by distinct 
Pell numbers was minimal, i.e., the number of terms in each representational sum was the least 
possible. 

Here we show how to represent positive integers maximally by means of Pell numbers. That 
is, each positive integer is to be given as a sum in a maximal representation by using the greatest 
number of terms involving distinct Pell numbers (see Table 1). 

Short tables for minimal and maximal representations of positive integers in terms of (i) Fibo-
nacci numbers and (ii) Lucas numbers, are given in [3]. 

Our theory for Pell numbers will be analogous to that used for Fibonacci numbers in [1], 
where a "Dual-Zeckendorf theorem" is established. Enough variations and complications exist, 
however, to make this investigation worthwhile per se. (Theorems for Lucas numbers corre-
sponding to those for Fibonacci numbers may be found in [2].) 

Positive Pell numbers are defined by the recurrence 

Pri+2=2Pn+1 + Pn,n>0, 
with 

P0 = 0, /> = 1. 

Thus, the first few Pell numbers are 

# 1 = 0 1 2 3 4 5 6 7 8 9 
PM = 0 1 2 5 12 29 70 169 408 985 

Repeated use of (1.1) leads to 

Pk+l = 2(Pk + Pk-2 + ^ - 4 + ' " ' + Pk-lt+l) + ^fc-2H-l> 

in which 
\t = 1,2,..., -| k even, 

[f = l , . 2 , . . . , ^ k odd. 

Consequently, 

and 

Pk+l - 1 = 2(Pk + Pk_2 +Pk_4 + ... + P4+P2) k even 

Pk+l -1 = 2(Pk +Pk_2+Pk_4 + - + P1)-l k odd. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 
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Also, by repeated use of (1.1), 

H4^ *« a8) 

2. MAXIMAL REPRESENTATION THEOREM 

Theorem: Every positive integer n has a unique representation in the form 

» = t,fiiP, (fl = 0,1, or 2), (2.1) 

where 
Pt = 0 => ̂  =2 (2 < / < jfc) (2.2) 

and 
Pk=\or2. (2.3) 

For a given « in (2.1), the unique integer k satisfies 

Pk+P^-l<n<Pk+1+Pk-l (2.4) 

Proof: 
(i) Maximality. Suppose n satisfies (2.4). Then, equivalently from (1.8), 

k—\ k 
2jjPi<n<2'YjPr (2.5) 

/ = 1 ; = 1 

But,, by the Zeckendorf theorem [1] for a positive integer, namely, the left-hand side of (2.5), 
we have 

2Z^-«=i>y? (*ox (2-6) 
/ = 1 7 = 1 

with 
ai = 0,1, or 2 and ai = 2 => at_x = 0 (/ > 1). (2.7) 

Now, from (2.5), 

2fjPi-n<2(fjP,-kfp) = 2Pk. (2.8) 
/=i V/=i /=i y 

This implies a/ = 0 in (2.6) for / > £, and ak = 0 or 1. Consequently, (2.6) can be rewritten 
as 

k k 
2fjPi-n = YiaiPi ( a t = 0 o r l ) (2.9) 

7 = 1 / = 1 

which, in turn, may be expressed as 
k k 

» = E(2-«,)/}=I/M? (A=lor2), (2.10) 
/ = 1 7 = 1 

where 
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Pt=2-at (/ = 1,2,...,*) (2.11) 
in accordance with the statements (2.1) and (2.3) of the Theorem. 

Lastly, by (2.11), the characteristic Zeckendorf condition (2.7) for Pell numbers becomes 
(3lr = 0 => /?,_! = 2, which confirms the requirement (2.2) in the enunciation of our Theorem. 

(ii) Uniqueness. Assume that the positive integer n has two different representations 
m m' 

n = ̂ M=Tm, (2-12) 

where [}m,pr
m,=l or 2 and ^ = 0 => )9 M = 2 for i = 2 ,3 , . . . , m-l and fi-= 0 => fiU = 2 f o r 

z = 2 ,3 , . . . , /w ' - l . 
Suppose rn>m'. Now 

r-1~ 1 — 
/=! ^ ^ ^ l 2 ( P m + Pw_2 + - + JP1)- l '"odd (2 . i3) 

^ ^ i - l . 
by (1.6) and (1.7), whereas 

w' m' m-l 

Hm^llPi^YJPi=Pm+,-Pm-l by (1.8) 
/ = ! 7=1 i=l (2.14) 

< ^ + i - l -

Conclusions (2.13) and (2.14) involve a contradiction. Similarly for m < m\ 
Hence, m' = rn. 
Ifai =2-fii9 af

i=2-/3'i (1 = 1,2,..., m\ then (2.12) leads to 
m m 

X ( 2 - a , ) i ? = £ ( 2 - a / ' ) / ! , (2.15) 
/ = ! ?=1 

where ai = 2 =>a^x = 0, a\ = 2 => a ^ = 0, whence 

X > , P = 2 > t f . (2.16) 
/=! /=! 

Both sides of (2.16) are Zeckendorf representations of positive integers by Pell numbers, the 
uniqueness of which [4] yields a \ = at... 

Thus, # = / ? , . 
Consequently, the uniqueness of (2.1) with (2.2) and (2.3) is demonstrated. 

Remarks: 

(a) Implications (2.2) and (2.7), which characterize the representations, are one-way only. 
(b) As a numerical illustration of (2.4), take/? = 25. Then 

^4 +^3 " I (= 16) <25 < P5 + PA -1 (= 40) 

so that k = 4 here. Likewise, when n = 999, then k=%. 
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(c) Integers having identical maxima! and minimal representations are worthy of a separate inves-
tigation. Please see the Concluding Remarks. 

3. CONCLUDING REMARKS 

In Table 1, which may be extended indefinitely, the pattern of digits 0 (blank space), 1, and 2 
reveals the visible mechanism of the representation. Two successive zeros do not occur in this 
table. Observe that in the maximal representations (Table 1) we write 2(=P2) = 2PX (= 2PX + P0), 
whereas in the minimal representations (Table 2) we retain 2 = P2. 

For the Pell-Lucas numbers Qn7 defined by the recurrence relation 

with 
0*2 = 20*1+0, (**o) 

0o=2, ft = 2, 

(3.1) 

(3.2) 

we observe that they are all even. It follows that there can be no representation of integers, maxi-
mal or minimal, involving Pell-Lucas numbers, since odd integers would necessarily be excluded. 

TABLE 1. Maximal Representations of Positive Integers 
by Sums of Pell Numbers 

+ 

n 
~T~ 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

n 
i 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
2 
1 

_̂ _ 

1 
1 
2 
2 

1 
1 
2 
2 

1 
1 
2 
2 
2 
2 

1 
1 
2 
2 

1 

^3 ^4 ^5 

2 
2 
2 
2 
2 

1 1 
1 1 
1 1 
1 1 
1 1 
2 1 
2 1 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Pi 

~Y~ 
i 
2 
1 
2 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 

P2 
1 
2 
2 
2 
2 

1 
1 
2 
2 

1 
1 
2 
2 

1 
1 
2 
2 
2 
2 

1 
1 

P. 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
1 

P4 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

A 

i 
i 
i 
i 
i 
i 
i 
i 
i 
i 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

Pi 
1 
2 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 

2̂ 
2 
2 

1 
1 
2 
2 
2 
2 

1 
1 
2 
2 

1 
1 
2 
2 

1 
1 
2 
2 
2 

^3 

1 
1 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

J±_ 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 

A. 

2 
2 
2 
2 
2 
2 
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TABLE 2. Minimal Representations of Positive Integers 
by Sums of Pell Numbers 

n+ 

~T~ 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1 25 

Pi 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

A. 
i 
i 
2 

1 
1 
2 

1 
1 
2 

1 
1 
2 

JL 

2 
2 

2 
2 

P P P 
r4 r5 r6 

2 
2 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

3_ 
i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

JL 

2 

2 

2 

1 
1 
2 

1 
1 
2 

JL 

2 
2 

1 
1 
1 
1 
1 

P4 P5 Pe 
2 
2 
2 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

JL 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

J±_ 

1 
1 
2 

1 
1 
2 

1 
1 
2 

1 
1 
2 

Ps 
2 
2 

2 
2 

1 

P* 
1 
1 
2 
2 
2 
2 
2 

Ps P6\ 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

Further references to Zeckendorf representations may be found in [4]„ 
Finally, a natural question to ask is this: Are there any numbers for which the maximal and 

minimal representations are the same? Examination of Tables 1 and 2 leads us to the reasonable 
conviction that this situation arises only when all the coefficients of the Pell numbers in the 
summations are unity. That is, the required numbers are Sfj/i^ for k > 2 [see (1.8)], namely, 
1, 3, 8, 20, 49, 119, ... . Compare this with the corresponding situation for Fibonacci numbers in 
[3] and [5]. 

Properties of the sequence of numbers, 1, 3, 8, 20, 49, 119, ..., are the subject of a further 
research article. 
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1. AIM OF THE PAPER 

Some years ago we were rather surprised at the integrity of the infinite sum 

£ Ft 121' = 2 (Ft the j t h Fibonacci number) (1.1) 
7=0 

which was obtained in [2] as a by-product result. Our mathematical curiosity led us to investigate 
(see [1] and [3]) the rational values (in particular, the integral values) of r for which the sum 

f/^/r' (1.2) 
gives a positive integer. 

The aim of this paper is to extend the results established in [1] and [3] by finding the sef of all 
rational values of r for which the sum 

S(r,n) = ftF„t/ri (r*0) (1.3) 
/=0 

[n is an arbitrary natural number, r is an arbitrary (nonzero) real quantity) gives & positive integer 
k. Since both r and k turn out to be Fibonacci number ratios, the results established in this paper 
can be viewed as a particular kind of Fibonacci identities that are believed to be new [see (4.7) 
and (4.8)]. 

Throughout the paper we shall make use of the following properties of the Fibonacci 
numbers and of the Lucas numbers Ln which are either available in [5] and [11] or can be readily 
derived by using the Binet forms for Fn and Ln: 

F2n=FnLn, (1.4) 

5i?=/*-4(-l)\ (1.5) 

L2„-2(-l)" = 5Fn
2, (1.6) 

F„ divides Fk iff n divides k (for n>3), (1.7) 

L„ = Lk (mod 5) iff n = * (mod 4), (1.8) 

L„+k-(-l)kLn_k=5F„Fk, (1.9) 

A»*+(-i)*4-* = 4 4 - 0-io) 
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2. THE VALUES OF r FOR WHICH S(r, n) IS A POSITIVE INTEGER 

The closed-form expression 

S(r,ri) = -z ^ (2.1) 
r2-rLn+(-iy 

which is valid if and only if the inequality 

\r\>an=[(l + S)/2f (2.2) 

is satisfied, can be obtained as a particular case of formula (5.2) in [6]. On the other hand, (2.1) 
and (2.2) can be obtained with the aid of the Binet form and the geometric series formula. If (2.2) 
is not satisfied, then S(r, n) diverges. Now let us ask ourselves the following question: 

"For which values rk of r does S{r,n) equal a positive integer kV 

To answer this question, let us equate the right-hand side of (2.1) to k, thus obtaining the second-
degree equation 

kr2-(Fn+kLn)r + k(-iy = 0 (2.3) 

in the unknown r, the roots of which are 

F„+kL„+yfD =Fn+kLn-4D 
1 2k ' 2 2k K ' ' 

where 
D = (Fn+kL„)2-4k2(-l)". (2.5) 

Observe that, by (1.4) and (1.5), D can be equivalently expressed as 

D = (5k2 + \)F2 + 2kF2n. (2.6) 

After some tedious manipulations involving the use of the Binet forms, it is seen that, for k, n > 1, 

[r.xz", 
(2.7) 

U = (-l)"/r2. 
From (2.7), we get the inequality |r2|< a", so that only the "plus" sign must be considered in (2.4) 
[see (2.2)]. It follows that S(r, n) equals a positive integer k iff 

rmr«mmF.+H£jD _ (28) 

3. THE RATIONAL VALUES OF r FOR WHICH S(r, n) 
IS A POSITIVE INTEGER 

Since the numbers r{ri) defined by (2.8) are, in general, irrational, let us ask ourselves 
whether or not there exist rational values .of them. This is equivalent to asking whether there exist 
positive integers k for which D is the square of an integer: the answer is in the affirmative, as we 
shall see in the sequel. 
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In [1] it has been proved that the set of rational numbers r for which S(r, 1) is a positive 
integer is 

{F2h+i/F2h\h = l,2,...}; (3.1) 
moreover, 

S{F2h+lIF2h,\) = F2hF2h+l. (3.2) 

For the general case (i.e., n > 1), we state the following 

Theorem 1 (Main Result): Let S(r, n) = E*0
 F

ni ^r' • 

(i) If n is even, then the set of all rational numbers r for which S(r, n) is a positive integer is 

{F(h+1)JFhn\h = l,2,...}; (3.3) 
moreover, 

$(F(h+l)nlFhn> n) = F{h+l)nFhn I K 0 A) 

(ii) Ifn is odd, then the set of all rational numbers r for which S(r, n) is a positive integer is 

{F(2h+l)n/F2hn\h=\,2,...}; (3.5) 

moreover, 
S(F(2h+l)n I F2hmn) = F{2h+\)nF2hn j Fn • ( 3 - 6 ) 

By means of formula (11) in [4], it can be proved that 

^ f ^ = 2 X , ("even) (3.7) 

and 
F^f2k" =t±F^-jyr («odd). (3.7) 

Pn i = l j=l 

Since (3.7) and (3.7") are nothing but marginal results, their detailed proofs are omitted. 

To prove Theorem 1 we have to prove the following two theorems. 

Theorem 2: 

(i) Ifn is even, the discriminant D - (5k2 + l)F2 +2kF2n [see (2.6)] is the square of an integer iff 
k=F(h+l)nF?m/Fn- ( 3 - 8 ) 

(ii) Ifn is odd, the discriminant D is the square of an integer iff 

k=F(2h+l)nF2hJF
n- 0-9) 

Theorem 3: 

(i) Ifn is even and (3.8) holds, then [cf. (2.8)] r(n) - F^h+l)n IFhn. 

(ii) Ifn is odd and (3.9) holds, then r(n) = F(2h+i)n/F2hn. 
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Proof of Theorem 2: We shall prove that, if D is the square of a generic integer, then k must 
necessarily be either of the form (3.8) (if n is even) or of the form (3.9) (if n is odd). Let us 
suppose that D = X2 (X GN). From (2.6) we can write 

5k2 F2 +2kF2n +F2-X2 = 0, (3.10) 
whence we have 

k = [-F2„ ±A/F2
2„ -5F2(F2 -X2)]/(5F2). (3.11) 

After some simple manipulations involving the use of (1.4), and taking into account that k must be 
positive (by hypothesis), (3.11) can be rewritten as 

k = [-L„+ylL2„-5Fn
2+5X2y(5Fn). (3.12) 

Now let us distinguish two cases according to the parity of n. 

Case 1: w is even. 
From (1.5), (3.12) becomes 

k = [-L„+j5X2
+4]/(5F„). (3.13) 

For k to be an integer, at least we must have that 

5X2+4 = Q2 (QeN). (3.14) 

The solution in integers of the above Pell equation is (e.g., see Lemma 1 in [7] or formulas (3.7)-
(3.8) in [1]) 

Q=Li„ X = F2s (5 = 0,1,2,...), (3.15) 

so that, from (3.13)-(3.15), we have 

k = (L2s-L„)/(5F„). (3.16) 

Now, for k to be a positive integer, both the inequality 

2s >n, (3.17) 
and the congruences 

L2s-Ln=0 (mod5), (3.18) 

L2s-L„^0 (modFJ (3.19) 

must simultaneously hold. Let us find conditions on s for (3.18) and (3.19) to be satisfied. From 
(3.18) and (1.8), we see that the congruence 

2s = n (mod4) (3.20) 

must hold. Now let us rewrite the numerator of (3.16) as 

^2s ~~ Ln - ^(2s+n)/2+(2s-n)/2 ~ ^{2s+n)l2-(2s-n)l2 (3.21) 

and observe that, in virtue of (3.20), the integer {2s-n)l2 must be even. Under this condition, 
we can use (1.9) to obtain 

^2s ~^n~ ^{2s-n)l2^{2s+n)l2 • ( 3 . 2 2 ) 
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First, let us consider the case w = 2. From (3.16) and (3.22), we obtain the equality 
k = Fs_tFs+1, where, from (3.17) and (3.20), s ranges over all odd integers greater than 1. It fol-
lows that the above equality can be rewritten as k = F2hF2{h+l) (h = 1,2,...) [cf. (3.8) for n - 2 
and take into account that F2 =1}. 

For n > 4 , the equality (3.22) shows clearly that (3.19) is satisfied iff [see (1.7)] 

2s-n ( 2s+n\ 
o r =o (mod??). 2 V 2 

Taking (3.17) into account, the above congruence can be written as 

^ L = hn(h = \,2,...). (3.23) 

From (3.23) we have 

^ y ^ = 0 + l ) / i 0 = 1,2,...). (3.24) 

Finally, from (3.16) and (3.22)-(3.24), we obtain the desired result 

5F„ ~ K 
0 = 1,2,...). 

Case 2: n is odd. 
The proof is analogous to that of Case 1, so it is simply sketched. From (1.5), the equality 

(3.12) and the Pell equation (3.14) become 

k = [-L„+Sx2 -4]/(5F„) (3.13-) 
and 

5X2-4 = Q2 (QeN), (3.14) 

respectively. The solution in integers of (3.14) is (see Lemma 2 in [7]) 

Q = L2s+l, X = F2s+1 ( j = 0 , l , 2 , . . . ) . (3.15) 

Therefore, by means of the same argument as that of Case 1, we get the following relations: 

k = (L2s+l-Ln)/(5F„X (3.16) 

25 + 1 > w, (3 AT) 

2s + l = n (mod4), (3.20) 

^2s+l ~~ Ln = 5F(2s+i-ny2F(2s+l+n)/2• (3.22) 

Taking (3.17) into account, and recalling that n is odd and (2s + l-n)l2 must be even [in virtue 
of (3.20)], we can write [see (1.7)] 

2s + l~n = 2hn ( / r=l ,2 , . . . ) . (3.23) 
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From (3.23 ^ we have 
2S + * + "=(2h + l)n (h = l,2,...). (3.240 

Finally, from (3.16') and (3.22>(3.24'), we obtain 

k = F2h"FW+1» (h = 1,2,...) Q.E.D. 

Proof of Theorem 3: Let us distinguish two cases according to the parity of n. 

Case 1: n is even. 
First, let us replace k by the right-hand side of (3.8) in (2.6), thus obtaining 

D = SF2
+l)nF2„ + F2 + 2F(h+l)nFhnLn "= D(n), (3.25) 

where (1.4) has been invoked. With the aid of (1.9) and (1.5), the relation (3.25) can be rewritten 
as 

D{n) = 5[L(2h+1)„ - Ln 15]2 + F2
n + 2L„{L{2h+V)„ -L„)/5 

= (L2
2h+l)n-Ll)/5 + Fn

2 = (Ll2M)n-L2„)/5 + (L2
n-4)/5 (3.26) 

= \^(2h+l)n ~ 4 ) / 5 = -T(2h+l)n' 

Then, let us replace k by the right-hand side of (3.8) and D by D(m) in (2.8), thus obtaining 

( x _ Fn + LnF(h+l)nFhn + FnF(2h+l)n def Nj_ 
r W ~ 117 J7 ~ M ' ^ } 

jLr(h+l)nrhn Iy 2 

Now, it is plain that, in order to prove the theorem, it is sufficient [cf. (3.3)] to prove that 
Nx = 2F^h+V)n. In fact, using (1.9), we get, from (3.27), the equality 

Nx = Fn + Ln(L(2h+l)n -Ln)/5 + (L2(h+l)n - L2hn) 15, 

whence, using (1.5) and (1.10), we have 

5Nl = -4 + LrtL(2/j+1)w + £2(/i+i)« ~ L2hn 
(3.2o) 

= -4 + L2^h+V)n + L2hn + L2Ql+i)n - L2hn = 2{L2(h+V)n - 2). 

Finally, using (1.6), equality (3.28) becomes 5Nl - 10F(^+1)w, whence, as desired, we obtain 
Nx = 2r^h+Y)n. 

Case 2: n odd. 
The proof is obtained by replacing k by the right-hand side of (3.9) and by using the same 

properties of Fibonacci numbers as those used in Case 1. Thus, the proof is omitted for the sake 
of brevity. We confine ourselves to putting into evidence that, in this case, we have 

W) = F«k+»n (3.260 
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and 
tfi = Fn+LnF{2h+l)nF2hn +FnF(4h+l)n = 2F2

2h+l)n. Q.E.D. 

4, CONCLUDING REMARKS 

The Fibonacci-type sum S(r, n) has been investigated and the rational values of r for which 
this sum is a positive integer have been determined. We can observe that, as required [see (2.2)], 

W > ? 5H*tDl>a». (4.!) 

More particularly, with the aid of the Binet form, we can see that the two quantities on the left-
hand side of (4.1) tend to an as h tends to infinity. 

Remark 1: Let us answer the question of whether or not there exist integral values of r for 
which S(r,ri) is a positive integer. From (1.7), (3.3), and (3.5), and taking into account that 
F2 = l divides Fk for all k, it follows that the only integral values of r for which S(r, n) is a 
positive integer are 

r = F2JFn = Ln (» = 2,4,...) (4.2) 
and 

r = F3/F2=2 [cf. (1.1)]. (4.3) 

Recalling that L0 = 2, it is apparent that the set of such values of r is constituted by all the even-
subscripted Lucas numbers. 

Remark 2: The generalized Fibonacci numbers U^m) have been considered in [1], [3], [6], [9], 
and [10]. These numbers are defined by 

U0(m) = 0, C/jCm) = 1, Ui(m) = mUi_l(m) + Ui_2(m) i f /> l , (4.4) 

where m is an arbitrary natural number. They give the Fibonacci numbers and the Pell numbers 
when m-\ and 2, respectively. OnceFhas been replaced by Uin (1.3), the solution in integers 
of the Pell equations (e.g., see [8], pp. 305-09) 

(m2+4)X2±4 = Q2 (4.5) 

allows to prove that the results established in Theorem 1 apply to the numbers Ui{jn) as well, 
provided the inequality \r\> [(m + ym2 +4)/2]w is satisfied. 

Finally, we point out that the results established in this paper give rise to the following Fibo-
nacci identities which we hope will be of some interest to the reader: 

£ A ^ k . = (frH)* hn {n>2 e v e n ? h > 1)? ( 4 6 ) 

^Fn£hrL=F(2M)nF2hn ( w > l o d d ^ > 1 } ( 4 7 ) 

/=0 ^(2h+l)n A* 
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Observe that the right-hand sides of (4.6) and (4.7) can be replaced by those of (3.7) and (3.7') 
according to the parity of n. As particular instances, letting h = 1 in (4.6) yields 

T^F = F2n ( n>2even) , (4.6*) 

whereas letting n = h = 1 in (4.7) yields (1.1). 
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1. INTRODUCTION 

The purpose of this paper is to outline an application of number theory in medicine. More 
specifically, a linear second-order recurrence relation is utilized in a technique for the diagnosis of 
breast cancer. This continues a tradition in this journal of applications of second-order recur-
rences. Indeed, the very first issue contained an article by Basin [1] on the Fibonacci sequence in 
art and nature, and the tradition has been maintained over the years by such authors as Botten [2] 
who applied the more general sequence of Horadam to a problem in optics. Number theorists, 
while rightly valuing their work for its beauty and intrinsic worth, are not always aware of the 
extensive application of the elegant techniques they develop. 

In this paper we develop an inhomogeneous linear second-order recurrence relation of the 
form 

St - #!#,_! - B2St_2 =B3 (1.1) 

for St, the relative thermal energy lost by the skin during ultrasonography. (Ultrasonography is a 
process of visualization of deep structures of the body by recording the echoes of pulses of ultra-
sonic waves directed into the tissues.) The solutions of (1.1) are then used to distinguish benign 
and malignant lesions. 

The single recurrence relation of the form (1.1) was derived from three interrelated difference 
equations in a diagnostic model of a breast screening aid (Thornton, Hung, & Hirst [9]). It 
described the temporal energy changes S(t) (St = 8(t)/ S(t0)) in infrared response of the breast 
surface when ultrasound is applied to a suspect lesion for an extended time and the results used to 
evaluate successively the dependent biophysical variables of metabolic energy generated M(t) 
and the blood perfusion P(t) at each time period. (Perfusion refers to the passage of blood 
through vessels of a specific organ.) In the present paper an alternative use is made of the three 
basic difference equations to establish a matrix method which allows S, M, and P to be evaluated 
at any subsequent time period in one set of matrix operations from the curve fitting to a set of 
experimental data. This avoids the need for the previous successive dependent calculations at 
each stage. The biophysical model [9] and clinical background to the project are summarized 
below in order to appreciate the manner in which the equations arise. 

There is a need to minimize biopsies for benign impalpable lesions—those unable to be felt by 
touch—detected in breast cancer screening programs for healthy women (Hirst & Kearsley [4]). 
It is the purpose of this project to help reduce unnecessary and potentially harmful interventions 
into the lives of healthy women yet not miss any malignant cases. 

Mammography is currently the only reliable means of detecting breast cancer before a mass 
can be felt by the act of physical breast examination. More sensitive diagnostic techniques used at 
early stages of breast cancer, as well as improved management of the disease itself, are now 
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saving more than half of the women in whom breast cancer is detected at its early stage 
(Henderson [3]). However, because of the nonspecificity of the mammographic appearance of 
many malignant lesions, false positives can occur: that is, they are positive on screening but cancer 
is not subsequently diagnosed. Ultrasonography is used as a complement to mammography 
because the ultrasound characteristics of malignant lesions are often highlighted in dense 
parenchyma (the functional elements of an organ) and cystic lesions usually can be differentiated 
from solid masses. 

2. THE BIOPHYSICAL BASIS AND MATHEMATICAL MODEL 

Human skin emits infrared radiation, and the total radiated power per unit area, WT (watts 
per meter squared per second), is given by 

WT = eoT\ (2.1) 

where s is the skin's emissivity and T (°K) is the temperature of the skin area concerned. (The 
emissivity is a measure of how well a body can radiate energy; it has a value between 0 and 1.) a 
is Stefan's constant, which comes into many biomathematical applications (Reuben & Shannon 
[8]). The emissivity is approximately unity throughout the spectral region used in infrared 
thermographic studies. For a local change in skin temperature from T(t0) at time tQ to T(t) at 
time t, 

Wnt) I Wnh) = 5(0 / S(t0) = (7X0 / 7X'o))4• (2.2) 

Therefore, within a specific spectral range such as the small changes in the breast skin 
response during sonification of a suspect lesion we can plot the observed values of T(t)/T(tQ) as 
a convenient basic parameter of thermal energy transfer which permits direct comparisons with St 
calculated from the difference equations of the model described below. 

Breast tissue is glandular, fibrous, and fatty, the last of which is the main bulk of the breast. 
Let U9 M, P9 and S be, respectively, the ultrasound energy transmitted, the metabolic energy gen-
erated, the thermal energy carried away by perfusion and the thermal energy lost by emission from 
the skin. Figure 1 shows the energy distribution for these variables, which are all functions of 
time, when diagnostic ultrasound is directed on to the skin in the direction of the suspected lesion. 

U 

' ' 

M - $ - (1 - b)P 

I X ' 

(1 (i-b)P 

bP 

FIGURE 1. The Energy Transfer Diagram 
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Diagnostic ultrasonography utilizes a frequency range between 1 and 10 million hertz (1 x 106 

cycles per second). Such sound waves can only be transmitted in solids and liquids. By way of 
comparison, a frequency range of 20 to 20,000 cycles per second provides the stimulus for the 
subjective sensation of hearing [10]. When an ultrasound beam passes through tissue, energy is 
partly absorbed and converted to heat. This causes a rise in tissue temperature which depends 
upon several factors such as the heat conduction and transport by blood flow from the exposed 
tissue into surrounding regions. Figure 2 is a flow diagram to link these energy components. 

ft ill 
FIGURE 2. The Flow Diagram 

If bP represents that part of the ultrasound energy which is absorbed and carried away by 
perfusion (0< b < 1), then U-bP is the ultrasound energy which reaches the lesion. The perfu-
sion factor b is typically about 0.85 in this sort of work. Since it is generally recognized that there 
is increased metabolic activity within breast tumors, we can assume that the ultrasound energy 
received on the lesion will increase the local metabolic activity as formulated in 

M(t) - M(t -1) = ju[U{t -1) - bP(t -1)]. (2.3) 

The metabolic energy that remains after deducting part of it due to the energy lost from the skin 
and perfusion is M-S-{l-b)P. Since increased blood flow is associated with increased 
metabolic activity (Love, [7]), the increase in perfusion rate is associated with the increase in this 
remaining metabolic energy as expressed in 

P(t)-P(t-l) = X[M(t-l)-S{t-l)-(l-b)P(t-l)l (2.4) 

Furthermore, skin temperature results primarily from blood perfusion to the tissues and the blood 
flow in the superficial veins (Love, [7]), as represented by 

S{t) = aP(t). (2.5) 

There are two negative feedback loops shown in Figure 2, in which a line with an arrowhead 
represents a proportional effect and a line with a spearhead represents an integral effect. The 
proportional effect occurs when a high level of one variable leads to a high level (positive effect 
indicated by solid line) or low level (negative effect indicated by dotted line) of another variable. 
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An integral effect is one in which the rate of increase of one variable depends upon the level of 
another variable. For example, in the loop formed by the lines marked 1, 2, and 3, if P is very 
high, then S will be very high, but high S will lead to a low value of M-S-(l-b)P, which in 
turn will cause a decrease in P. The second negative feedback loop is formed by lines with heads 
marked 4, 6, 7, and 3. If P is very high, then U -bP will be low, which will cause a low M and, 
hence, a low M-S-(l-b)P, which in turn will cause a decrease in P. 

3. THE DIFFERENCE EQUATION 

The three equations (2.3), (2.4), and (2.5) can be combined as follows [9]: 

akfiUit -2) = aXM(t -1) - aXM(t - 2) + aXjubP(t - 2) [from (2.3)] 
= aP(t) - aP(t -1) + aXS(t -1) + aX{\ - b)P(t -1) 

- aP(t -1) + aP(t - 2) - aXS(t - 2) - aX{\ - b)P(t - 2) 
+ aXjubP{t - 2) [from (2.4)] 

= S(t) - S(t -1) + aXS{t -1) + X(l - b)S(t -1) 
- S(t -1) + S(t - 2) - aXS(t - 2) - X(l - b)S(t - 2) 
+ XjubS(t-2) [from (2.5)] 

= S(t) -(2-aX- X(l - b))S(t -1) + (1 - aX - X(l - b) + Xjub)S(t - 2). 

Since the ultrasound energy applied at the surface is constant, we set k - U(t - 2). For 
scaling convenience we express S(t)/S(t0) as 5,, so that we can rewrite the second-order 
inhomogeneous linear difference equation as 

S, - [2 -^- ; i ( l -Z0K_ 1 - [^- l + ̂  (3 J) 

The characteristic equation of this is 

r2-[2~Xa-X(l-b)]r-[Xa-l + X(l~b)-Xjub] = 0, (3.2) 

from which we get 
r = (2-Xa-X(l-b)±JD)/2, (3.3) 

where D = X2 (a - b +1)2 - 4Xjub. The solutions of the homogeneous part of (3.1) are of the form 

Qr/+C2r2 ifD>0, 
Sf^lC/ +C2trl ifZ> = 0, 

Qi?' cos(0O + C2i?' sin( 0t) if Z> < 0. 
(3.4) 

In the context of the present paper, we note that equations (2.3), (2.4), and (2.5) can also be 
expressed in matrix form: 

(3.5) 
1 -a 0] 
0 1 0 
0 0 IJ 

[5(0 
\P{t) 
[M(t) 

= 
0 

-X 
0 

o ol 
l-A(l-A) A 

-&// l j 

\S(t-iy 
P(t-l) 

|_Af (/ -1)_ 
+ 

0 
0 

MU(t-V) 

256 [JUNE-JULY 



THE USE OF A SECOND-ORDER RECURRENCE RELATION IN THE DIAGNOSIS OF BREAST CANCER 

Now 
"1 
0 
0 

- a 0" 
1 0 
0 1 

- l 

= 
"1 a 0" 
0 1 0 
0 0 1 

so if we let V(t) = [S(t), P(t), M(t)f 

r l a 0] 
0 1 0 

_0 0 l j 

0 0 o" 
\-X \-X(\-b) X 
L 0 -bju 1_ 

C = 
"l a 0] 
0 1 0 
0 0 l j 

= 

f 0 1 
o | 

lMU(t- OJ 

["-Xa a(l-/ 
-X 1-X 

L ° 

— 
0 
0 

/iU(t-\) 

b) X 
hju 1 

and L = 

and 

then 
V(t) = LV(t-l) + C 

= LtV(0) + (Lt-l + Lt-2 + -~- + L + I)C 
= LtV(0) + (Lt -I)(L-iylC. 

Although this latter expression is algebraically tedious, it can be numerically useful as fol-
lows: The first step of fitting St to a set of experimental data yields the parameters a, X and ju (as 
in the example of Table 1). These parameters can then be used in the above matrix equation to 
evaluate S, M, and P at any subsequent time period in one set of matrix operations rather than 
carry out a series of successively interdependent calculations. 

4 SOLUTIONS 

Horadam and Shannon [5] expound a method for solving equations of the form (3.1). For 
notational convenience, we let 

^ = 2 - ^ 1 - ^ ( 1 - * ) , 
B2 =Aa-l + A(l-h)-Ajub, 
B3 -aXjuk IS(t0), 

so that the recurrence relation (3.1) can be rewritten as 
3 

in which St_3 is treated as though it were unity and t = 0,l,...,n, wheren + \ is the number of 
data points. Suppose St is the experimental data. The method of least squares is employed to 
estimate 2? • (the estimate of Bj is denoted as Bj). The sum of squares of errors, SSE, has the 
form of 

n( 3 V 

t=l{ J=l J 
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By differentiating equation (4.2) with respect to Bt (i = 1,2, 3) and equating each of them to 
zero, three normal equations will be obtained, that is, 

SnBl + SnB2 + Sl3B3 = Ex 

S2lBx + S22B2 + S23B3 = E2 

S3lBl + S32B2 + S33B3 = E3 

or 
SB = E, (4.3) 

where 

, and E-
\EA 
E7 

[Esi 
in which 

S^t^-^-j and £ , = I ^ _ , (',7 = 1,2,3). 
t=2 t=2 

Therefore, 
B = S~lE. (4.4) 

The matrix £ is symmetric, so the Choleski-Turing method can find the inverse in an efficient 
manner (Irving & Mullineux [6]). There are five different situations that can occur depending on 
the values of D and r in an equation (3.3) and details are given in [9]. As described there, the 
parameters a, X, and ju were computed from the equations in Section 4 by fitting the model to the 
thermal data. The values presented in Table 1 are for several cases for a value ofb = 0.85 which 
corresponds to perfusion conditions for a lesion of approximately 5cm below the skin surface. 

TABLE 1. Results of Fitting the Model to the Experimental Data Using b = 0.85 

Patient 

A 

B 

C 

D 

Remarks 

Benign 

Benign 

Malignant 

Malignant 

D 

1.9828 

2.3857 

-1.4888 

-1.2115 

a 

0.8050 

0.8144 

0.8491 

0.8409 

X 

1.6222 

2.2098 

2.7175 

1.8230 

M 
0.0757 

0.2869 

0.9589 

0.7220 

5. CONCLUSION 

Results from the project suggest that an infrared temporal response measured over an interval 
of several minutes with simultaneously applied ultrasound stimulation of the suspect region can 
provide additional information which may help to distinguish between benign and malignant 
lesions. Where a malignant process is present, a differential cooling pattern occurs in the local 
skin surface zone prior to recovery to the initial temperature at the skin [9]. Different responses 
(no recovery) were observed in benign lesions. From the experimental observations so far, it 

S = \ 
Sn Sl2 

^21 ^22 

_^31 ^32 ^ ' 

J13 
^23 

33 

B = \ 
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seems that, if the response curve shows an initial cooling and the fitting of data gives D < 0 and 
ju > 0.7, then it indicates a malignant lesion. The second-order difference equation of the original 
model [9] reasonably accounts for the thermal changes observed on the skin of the breast, and the 
matrix method presented here permits improved computational convenience in determining the 
response, metabolic energy, and perfusion in the successive time periods. 
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INTRODUCTION 

In [8], A. Schinzel studied the distribution of the residues of certain two-term recurrence 
sequences modulo a prime p, and classified the sets of distribution frequencies that occur 
according to the length of a full period. In the present work, we demonstrate a kind of stability 
that arises in one case of Schinzel's work, which allows an extension of his classification to prime 
powers. We conclude by giving some examples that show his results do not extend as naturally in 
the other cases. Related results concerning distribution questions for recurrence sequences can be 
found in [l]-[7] and [10]-[13]. 

DEFINITIONS AND NOTATION 

Define the two-term recurrence relation 
u0 = 0, ux = 1, un - Aun_x + un_2 for n > 1, 

where A ^ 0 is a fixed rational integer. Let p > 7 be prime, p\A{A2 +4). Let % be a real root of 
f(x) = x2 - Ax -1 in its splitting field K over Q, and let 2ft denote the ring of integers in K. Let 
2P be a prime ideal of 2ft lying over (p) in Z. By assumption on/?, we do not incur any ramifica-
tion. It will be clear during our discourse that any splitting that may occur is not a problem. Let 
0 < e eZ, and let S(pe) denote the order of £ + 9* in 2ft/2P. Note that since £ divides 1 in 2ft, 
8{pe) exists for all e. For notational ease, for x e 2ft we denote x + 2?e by x. Define k(pe) to be 
the length of a shortest period of un and S{pe) to be the set of residue frequencies within any full 
period of un. Note that since un is a rational integer for all n, studying un (mod 2?e) is equivalent 
to studying un (mod pe). 

We prove the following theorem. 

MAIN THEOREM 

Let p > 7 be prime and e > 1. If k(p) = 4 (mod 8), then S(pe) = {0, 2,4}. 

We need some results from [8] and [16], which are stated here for the reader's convenience. 

Ward [16, pp. 619-20]. Let t be the largest integer with k{p) = kip'). Then k{pe) = pk(pe~l) 
for e > t. 
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In fact, Wall [15] conjectured that k(p)^k(p2) for every p in the special case of the 
Fibonacci sequence, but this remains a difficult and open problem. 

Scfaiiizel [8, Theorem 1], For p> 7 prime, and p\A{A2 + 4), 

(1) if k(p) s 4 (mod 8), then S(p) = {0, 2, 4}; 

(2) if k(p) = 0 (mod 8), then S(p) = {0,1, 2} or {0, 2, 3} or (0,1, 2, 4} or {0, 2, 3, 4}; 

(3) if k(p) 4 0 (mod 4), then S(p) = {0,1, 2} or {0,1, 2, 3}. 

The proof of the Main Theorem will proceed by induction on e, after some preliminary 
lemmas. 

Lemma 1., The Binet formula 

Ur, =• 

holds in K, and in di 13>e, for e > 1. 

Proof: Observe that c and - g~l are the distinct roots of/far), hence 

- ^ ( c - r 1 ) + 4 
= ^ 2 ^ 4 , 

which is nonzero in K, and hence ^4-^T1 is a unit in AT. The condition that p\A(A2 -M) ensures 
that u-+- c_1 is a unit mod ?Pe. Lemma 1 now follows easily by induction on n. Z 

For the rest of the paper, we assume additionally that k(p) = 4 (mod 8). Hence. Ward's 
result gives immediately that k(pe) = 4 (mod 8) for every e>\. 

Lemma 2. For every e>\, k(pe) = S(pe). 

Proof: Set k - k(pe) and 8 - 8{pe). Since k is even, and uk - 0. uk+x - 1, it follows from 
Lemma 1 that | * - £"* = 0 and l ^ 1 +1"*"1 = | + ~^1. Thus, 

Hence 8\k. 
Since 8(p)\8(pe), it will follow that (JY/?12) is even if we can show that 8(p) is even. But 

this follows directly from [8, Lemma 1] and the fact that k(p) = 4 (mod 8), so that us - 0 and 
u5+l - 1, and thus k < 8. Z 

Definition: Let n e denote the smallest positive integer n such that pe \un, called the rank of 
apparition of pe. 

Lemma 3: For every e>\, un = 0 if and only if n = 0 Imod-^j^-), that is, n e - k(pe) 14. 
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Proof: First note that %(J;-A) = 1, so | is a unit. Thus, 

o^"=(-r!)" 
o ^ 2 n - ( - i ) " . 

If«is odd, then since S(pe) s 4 (mod 8), f = - l o f = I o £(/>') = k(pe)\4n. 

If /i is even, then since k(pe)/4 is odd, £2" = To<J(p')|2/i o Ar(>e)/4|«. D 

Lemma 4: For all«, h > 0, 

«»+* - «„=(#* -1)«„+c-r1)""*-
Proof: By Lemma 1, 

=|^zr(r" -1"+c-r1)" - (-r1)-^) 
-un+h~un- Q 

Lemma 5: Let ^(rf; /?e) denote the number of times the residue rf appears within a full period of 
{un} (mod pe). If k(pe) = 4 (mod 8), then A(d; pe) is even. 

Proof: Denote k - k(pe). First, if n is even, then by Lemmas 1 and 2, 
ck/2-n _ (__z-l\k/2-n 

ukl2-n~ £+rl 

zkll r-n _ /_ £-l\k/2 / _ e-l\-w 

= !#„. 

Similarly, ifn is odd, then %_„ = un. Since A: = 4 (mod 8), the result follows. D 

For the rest of the paper, assume e > t, where t is the largest integer with k{p) - k(p*), and let 
k = k(pe~l). Define the pxk integer matrix T by setting 7^=^(/_1^+7_1 (mod pe), where 
0 < Ttj <pe. Then each row of Tis congruent to a full period modulo pe~l, and the rows laid end 
to end correspond to a fiill period modulo pe. We will show that the entries in any column of T 
are distinct. 

Lemma 6: The first column of T has distinct entries. 
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Proof: Assume that uik - utk for some 0<i <t <p-l. By Lemma 4, 

« * - % = o = ( | ( ' - ' )*- i)^+(- | ->)*ir ( f_o t . 

Since ^ =1 (mod/?6-1) by Lemma 2, we have 

f^-ler1. (1) 
Clearly uik e^e~\ therefore, ( ^ - ^ - 1 ) % G ^ C ^ and, hence, i/(,_/)it e0>c also. Thus, 
n e \(t-i)k. But n e = pn ,_, and A: = 4w e_l3 so /?|4(f-j), a contradiction. D 

Lemma 7: Every column of T has distinct entries. 

Proof: Assume that uik+j = %+y. for some 0 < y < & - 1 , 0 < i<t<p-\. By Lemma 4, 

and 
%+y -%=(^; -i)% +(-r1) ,V 

Subtracting these equations, and using the assumption, 

«*-«*=(?y-i)(«*-%)+«y((-r1)*-(-r1)*) 
so that 

?y(«*-%)=-«;((-r1)*-(-r1)*)-
By Lemma 6, % - % e 2?e_1 \ &e and hence 

By Lemma 1, setting n = tk + j and m = ik + j , and noting that w + w is even, 

Since p does not divide t-i, it follows that ^n~m-1 = ^(t-i)k -I G^e~l\^\ Therefore, 
l + (-l)n(-1Tly+m e& and thus f("+m) - 1 eSP. Then *(p)|2(/i+/?i) = 2(f+ 0* + 4y. Since 
£(p)|£, we get k(p)\4j and so /?|w-. Finally, this gives Uj eg? and hence {{-^~l)<<t~l)k -1) £ 
S^-1 by (2), which contradicts (1). D 

PROOF OF MAIN THEOREM 

Assume p > 7 is a prime with p\A{A2 +4) and k{p) = 4 (mod 8). The case e = 1 is just 
Schinzel's result. 

As before, let t be the largest integer such that k{p) - k(pf). It is easy to see that {\un\} is a 
strictly increasing sequence for n > 2. Since ux-\ and w2 = A, it follows that f exists. We now 
consider the case in which t > 1. Let 1<£<^. Let A(d;pe) be as in Lemma 5. Clearly, 
>4(rf; / / ) < A(d; p). Since {0} cz S(p), it follows that 0eS(pe). By Lemma 3, k(pe) = 4n e. 
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Thus, A(0\ pe) = 4 and 4 eS(pe). By Lemma 5, A(d\ pe) is even for every residue d. Since 
2 ^S(p), there is a residue d such that ^4(^; p) = 2. Let ww be such that un = d (mod p), and 
suppose w„ =rf' (mod/?6). Since A(d';pe) is even, A{d'\pe)>\, and A{d'\ pe)< A(d; p) = 2, 
we must have 4(</'; / / ) = 2. Thus, S(pe) = {0, 2, 4} 

We now proceed by induction on e. Assume the theorem is true for e- 1, e > t + l. By 
Ward's theorem, k(pe) = 4 (mod 8). 

Let x be any residue modulo pe appearing in T. Let j be the least positive integer such that 
Uj = x(modpe), and let 0<y <pe~l satisfy Uj = y (mod/?6-1). By hypothesis, y occurs either 
two or four times in any full period modulo pe~l. 

Notice any two entries in the same column of T are congruent modulo pe'\ since their sub-
scripts differ by a multiple of k(pe~l). Hence, y will occur in either two columns or four columns 
of T. Since x = ape~l +y for some 0 < a < p, x must occur once in each of the same columns, 
and nowhere else, so x will occur in T either two or four times. Thus, S(pe) cz {0, 2, 4}. Since 
there is at least one residue modulo p that does not occur in T, there will also be at least one 
residue modulo pe not occurring in 7, so S(pe) = {0,2, 4}. ~ 

Remark: It follows by the proof of the Main Theorem that ife>t, then A(d\ pe)- A(d\ p). 

Examples: We have shown that in the case k(p) = 4 (mod 8), Schinzel's result holds for any 
power of/?; that is, S(pe) = {0,2, 4} for all e > 1. We give examples here to show that an analo-
gous generalization does not hold in the other cases of Schinzel's result. 

First, we consider the case k =£ 0 (mod 4). There are two subcases to consider: 
(1) £(/?) = {0,1, 2, 3}. If^ = land/? = ll,then5(/?2) = {0,l,2,3,ll}. 
(2) £(/?) = {0,1, 2}. If ^ = 4and/? = 19,then4S'(/?2) = {0,l,2,19}. 

Next, we consider k = 0 (mod 8). There are four subcases to consider: 

(1) S(/0 = {0,1,2,4}. If^ = land/? = 23,then^(/?2) = {0,2,4,23}. 
(2) 50?) = {0,1,2}. If ,4 = 3 and/? = 11, then 5(/?2) = {0,2,11}. 
(3) S(p) = {0,2,3}. If ,4 = 2 and/? = 17, then5(/?2) = {0,2,19}. 
(4) S(/?) = {0,2,3,4}. If ,4 = 2 and/? = 11, then S(/?2) = {0, 2, 4,13}. 
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1. A perfect cuboid (if such exists) has rational integral sides x,y, andz, with xyz^O, such 
that the four equations 

x2+y2=u2, x2+z2=v\ y2+z2=w\ and x2+y2+z2=£2 (1.1) 

are satisfied for rational integers u, v, w, and £. No such perfect cuboids are known, but their 
nonexistence has not been demonstrated. It is known that any six of the quantities x, y, z, u, v, w, 
and £ can be integral and that, in this case, an infinity of solutions exist (see [1] and [2]). We 
shall use the word "cuboid" in this case even when any square quantity is negative, and refer to 
the cuboid as nonreal, following Leech [2]. For example: 

x = 63, y = 60, z2 = -3344, u = 87, v = 25, w = 16, and £ = 65. 

In this paper, a parametric solution will be determined that has two integral sides x and y 
(say), integral face diagonals u, v, and w, and integral internal diagonal £ . The third side z will, in 
general, be irrational or complex. However, by a suitable choice of the parameters, a perfect 
cuboid in Gaussian integers results that satisfies the requirement that xyz & 0. 

2.. From the equations above, we have that 

2(x2 +y2 +z2) = u2 +v2 +w2 = 2£2. (2.1) 

The equation u2 +v2 + w2 = 2£2 has the four-parameter solution 
u - 2{mt + mn + st- sn)y 

v = 2rns + 2nt + n2 + s2 -m2 -12, 
w = 2ms-2nt+n2 -s2 +m2 -t2, 
£ = m

2
 +n

2
 +s

2
 +t2, 

Substituting these values into equations (1.1) gives 

x2 =(m2 +n2 +s2 +t2)2 -{2ms -2nt+n2 -s2 +m2 -t2)2, 
y2 = (m2 +w

2 +s
2 +r2)2 -(2ms + 2nt + n2 +s2 -m2 -t2)2, 

z2 =(m2 +n2 +s2 + / 2 ) 2 - (2{mt +mn + st - sn))2. 

The first two equations give 

x2 - 4(m2 +n2 +ms- nt){s2 +t2 -ms + nt), 
y2 = 4(n

2 + s2 + ms + nt)(m2 +t2 ~ms- nt). 

Let us put m = ab,n = ac,s = -cd, and t = bd, then ms + nt = 0 and 

y2=4(a2c2 +c2d2)(a2b2 +b2d2) = 4c2h2(a2 +d2)2. 

266 [JUNE-JULY 



A PERFECT CUBOID IN GAUSSIAN INTEGERS 

Hence, y = 2bc(a2 +d2) and 

xz = 4 ( a ^ ~ 2 a f t c ^ + a V ) ( c V 2 + 2abcd+b2d2) 

•• 4a2d2 fl2 2bcd 7Y,o 2abc 
O hC 

V 
b + + cz 

d 

Write 
, 2 2*C</ , 2 2 V + cz =ez (2.2) 

and 
2 , 2a*c 2 2 i2+ + c*=f\ (2.3) 

Putting S2 = Ibcdl a or ab = led in (2.2) and substituting in (2.3) gives b2 +5c2 = f2. In which 
case, x = ladcf and z2 = (a2b2 +c2d2 +a2c2 +b2d2)2 -4(ab(ae + bd) + cd(ac-bd))2. There-
fore, we have the following parametric solution in which x, y, u, v, w, and d are all integral: 

x = ladcf, 
y = lbc(a2+d2X 

z2 = ((a2 +d2)(b2 + c2))2-4{ab{ac+bd) + cd{ac-hd))2, 

where b2 + 5c2 = f2 and ab = led with a^d; otherwise, z2 = 0. 
We can tidy up this solution as follows: The equation b2 + 5c2 = f2 has the solution 

& = 5 a 2 - / ? 2 , c = 2afi, and f = 5a2+j32. 

The equation ab - led or a(5a2 - /?2) = 4a(M can be satisfied if a = 4a/? and d = 5a2 - /?2 . The 
solution can now be written as 

x = 16a2/?2 ( 2 5 a 4 - / ? 4 ) , 
y = 4a/?(5a2 - /?2)(25a4 +6a2/?2 + /?4), 

z2 = (25a4 + 6a2/?2 + /?4)2 (25a4 - 6 a 2 / ? 2 + /?4)2 

- 16a2/?2(5a2 - /? 2 ) 2 (25a 4 + 14a2y92 + /?4)2 

(2.4) 

If a = 1 and /? -1, we have 

x = 576, y = 520, z2 = 618849, 

which is the smallest real cuboid with one irrational edge (see [2]). 
If a = 1 and /? = 3, we have 

x = 63, j = 60, z 2 = - 3 3 4 4 , 

which is the smallest cuboid (nonreal) in this category, according to Leech [2]. 

3. Looking at the form for z2 in (2.4), we see that we cannot choose positive integral a and /? 
to make 

16a2/?2(5a2 - /? 2 ) 2 (25a 4 + 14a2/?2 + /?4)2 (3.1) 
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zero. But we can put 25a - 6a~ft + /? =0 (say) to give 

a2 3±4i 
(52 25 

Putting a2 =3±4? and01 = 25, we get a = 2±/ and/? = 5. This gives, after cancelling com-
mon real factors 

X = 9 6 ± 2 8 I = 4 ( 2 4 ± 7 J ) , 
j / = 72±21i = 3(24±70, 
z = 35 + 120/ -5(7 + 24/), 

and we have 
x = 4, y = 3, z = +5i, 
x 2 + / = (5)2, 
x2+z2=(3i)2 , 
j / 2+z2=(4/) 2

? and 
x2+j / 2+z2=(0)2 . 

This is clearly so for the following Pythagorean values 

x-2pq, y = p2-q2, and z = i(p2 +q2). 

Hence, according to the original definition, since xyz^O, we have a perfect cuboid in Gaussian 
integers. 

It would be interesting to know it if is possible to have a solution in Gaussian integers such 
that xyzuvwt.^0. 

REFERENCES 

1. W. J. A. Colman. "On Certain Semi-Perfect Cuboids." The Fibonacci Quarterly 26,2 
(1988):54-57. 

2. J. Leech. "The Rational Cuboid Revisited." Amer. Math Monthly 84 (1977):518-33. 

AMS Classification Numbers: 11D09 

268 [JUNE-JULY 



A NOTE ON THE NEGATIVE PASCAL TRIANGLE 

Jack Y* Lee 
Brooklyn, NY 11209 

{Submitted November 1992) 

We arrange the rising diagonals of Pascal's triangle in vertical columns so that the column 
sums form, a Fibonacci sequence (see [1]). Let us arrange the coefficients of the expansion of 
(1 - x)n symmetrically to the Pascal triangle, then in the resulting triangle, the negative Pascal 
triangle, the sums of the columns form the negative branch of the Fibonacci sequence. This is 
displayed in Table 1, where the i/w's stand for Fibonacci numbers. 

TABLE 1. PascaFs Array and Corresponding Fibonacci Numbers 
- 1 1 

1 1 
-8 -1 1 8 

7 1 1 7 
-21 - 6 - 1 1 6 21 

15 5 1 1 5 15 
-20 -10 - 4 - 1 1 4 10 20 

10 6 3 1 1 3 6 10 
- 5 - 4 - 3 - 2 - 1 1 2 3 4 5 

1 l__ 1 1 _1 1 1 1 1 1___ 
-55 34 -21 13 -8 5 - 3 2 - 1 1 0 1 1 2 3 5 8 13 21 34 55 

u_n u_6 u_5 u_A u_3 u_2 u_x uQ ux u1 u3 u4 u5 u6 u7 

The feet that the sum of numbers in a column (diagonal) in the positive Pascal triangle is a 
Fibonacci number is well known. It is clear that the same holds for the negative Pascal triangle by 
its construction and by the relation u_n = {-l)n~lun. 

To see that this extension of Pascal's triangle is made in a natural way, read the sequences 
parallel to the main diagonal from bottom right to upper left in Table 1. The sequences in the 
negative triangle constitute the coefficients of the expansion of (1 + x)~w, since the negative Pascal 
triangle in Table 2(a) is also expressed as (b) by means of the relation 

;")=<-'>'(T> 
This enables us to redefine the negative Pascal triangle as the binomial coefficients of negative 
exponents. Similarly, the sequences parallel to the sequence 1, 2, 3, ... consist of the coefficients 
of the expansion of (1 - x)~n in the extended Pascal triangle. 

The array corresponding to the general second-order recurrence u„ = cun_2 +bun_l, where h 
and c are nonzero integers, is given in Table 3. In this case, the sequences parallel to the main 
diagonal are generated by the function (c + bx)n for any integer «, and the sequences parallel to 
the sequence 1, h, b2, ... are generated by the function cn~l(l-hx)~~n for any integer n. 
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TABLE 2. Two Expressions of the Negative Pascal Triangle 

-1 

1) (?) $ 
i3] a 

(a) 

0 1 10 

(b) 

TABLE 3* The General Second-Order Array 

3b21e4 

lie 

-b3lc4 

-2b I c3 -b/c2 

b4 

b3 

b2 3cb2 

b 2cb 
lie2 lie 1 

tt_, UQ Ux U2 U3 U4 U, 
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1. INTRODUCTION 

Let S (ri) = 1 + 2P + 3P + ---+np, withw and/? positive integers. In [3] R. A. Khan, using the 
binomial theorem and a definite integral, gave a proof of the general recurrence formula for 
S^ri), S2(n), S3(ri),... in terms of powers of n. A matrix formula for S (ri), obtained by solving a 
difference equation by matrix methods, is given in [2]. 

In this note the recurrence formulas in terms of powers of n and of n +1 are given in 
symbolic form, only using the binomial theorem. These formulas are both easily remembered and 
applied. 

These recurrence formulas are then used to establish, employing Cramer's rule, explicit 
expressions for Sp(ri) in determinant form. 

Finally, the usual formulas for S (ri) as polynomials of degree p + \ mn and n + l, with coef-
ficients in terms of the Bernoulli numbers, are derived from these determinants. It is noted that it 
is possible to do this without prior knowledge of the Bernoulli numbers. 

2. FORMULAS IN TERMS OF POWERS OF n 

2,1 A Recurrence Formula 

Let n GN , with TV the set of positive integers. For k GN, let 

r=l 

Sk(0) = 0, and take S0(n) = n. Then 

nk=Sk(n)-Sk(n-l) 

n f k 

r=iV/=(A ' 

= Sk(n)Mk\-\)k-iSi(n) (2.1-1) 
/=(A ' 
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The equation 
Sk-(S-l)k=nk, 

in which the binomial power is expanded and S1 (i - 0,1,2,, 
provides a mnemonic for (2.1.1). 

For example, for k = 2, formula (2.1.3) yields 

S2-(S2-2S + l) = n\ 

(2.1.3) 

k) are then replaced by S^ri), 

and thus 

giving the well-known result 
2S1(n)-n = n2, 

£,(/!) = - ( / ! + !). (2.1.4) 

Next, for & = 3, it similarly follows that 

3S2(n)-3Sl(n) + n = n\ 

so that substitution of (2.1.4) leads to the formula 

£,(/!) = - ( » + l)(2/, + l). 
6 

2.2 Sp(n) as a Determinant 

Let / >€# and let k = l,2,...,p,p + l in (2.1.2). Then, solving for Sp(n) in the resulting 
(p +1) x (p +1) lower triangular linear system by means of Cramer's rule, the determinant 
representation 

SM = (p+iy. 

••p\ 

1! 
_J_ 

2! 
J_ 
3! 

1 

-1 

1 

c-ir1 

(- i)p 

0 
_1_ 
1! 

_J_ 
2! 

0 

(?) 
0 

0 

(5) 

0 

0 

0 

(-l)'(f) (-l)^(f) 
( -1 )^1) (-\y+\r?) 

0 

0 

0 

:/-,) 

(S) 

H 

»2 

»3 

np 

n"+1 

(2.2.1) 

0 
0 
0 

0 
0 
0 

(-1) p-\ (-1> / > + 1 

( - 1 ) ' 
(p+iy. 

( - i ) p 

(/>-!)! (p-2) ! 

(p-1)! 

("1> 

1! 
ni 
2! 
«i 
3! 

2! (/?+!)! 

(2.2.2) 
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is obtained. The step from (2.2.1) to (2.2.2) follows by first multiplying the /th row of the 
determinant by 1/z! for i = l,2,...,p + l, and then multiplying the j i h column of the resulting 
determinant by (j -1)! for j = 2,3,..., /?. 

2.3 ^ ( / i ) as a Polynomial 

By expanding the determinant (2.2.2) with respect to the last column, 
p 

I 
r=0 

(̂») = I f l^'"r . 
with ap+l = -Jx and, for r = \,2,...,p, 

(2.3.1) 

4p+l-r 
i-iyP\ 

(p + l-r)\ 

_J_ 
2! 

JL 
3! 

(-Dr 

(~l)r" 
(r+l)! 

p\ 
{p + \-r)\ 

-is 

i 
3! 
: 

( - i ) r + 2 

r! 
(-ir3 

(r+l)! 

1! 
_J_ 

2! 

(-Dr (~l)r 

(r-1)! ( r -2) ! 
( " l ) r 

_J_ 
1! 

_L 
2! 

(-Dr+1 

(r-1)! 

c-ir2 

c-Dr 

(r-1)! 

( - l ) r 

( r -2) ! 

c-ir1 

(r-1)! 

X 
1! 

2! 

(2.3.2) 

Now multiply the 2n , 4 ? ... columns of the determinant in (2.3.2) by -1 and then multiply the 
2nd, 4th, ... rows of the resulting determinant by - 1 . Then 

a p+i-
p\ 

(p + l-r)\ 

Hs 

i 
3! 

1 
r! 
1 

(r+D! 

1! 
1 

2! 

1 
(r-1)! 

1 
r! 

0 
1 
1! 

1 
( r -2 ) ! 

1 
(r-1)! 

•• 0 
•• 0 

1 
1! 
1 

2! 

(2.3.3) 

Next, recall (see, e.g., [4], p. 323) that the Bernoulli numbers Bj, j-1,2,..., can be represented 
by the determinants 

0 ••• 0| 
A - o 

Bj = (-l)Jji 

J_ 
2! 
J_ 
3! 

1! 
JL 
2! 

i j _ i 

(2.3.4) 
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Hence, by (2.3.3) and (2.3.4), 

p + l 

Thus, by (2.3.1), 

ap+l_r = -(-\y[P; ]Br, r = l,2,...,p. 

^(") = -^r i ( - 1 ) r K + 1 W + 1 - r - (2-3.5) 
p +1 r=Q V / 

Since B2r+l=0 (reN), 

sM - J_„f«+I„-.+I^Bl„«.-+I(^4„^ +.... 
with the last term either containing nor n2. This is the form in which Sp(n) was given by Jacques 
Bernoulli in [1]. 

3, FORMULAS IN TERMS OF POWERS OF n +1 

3.1 A Recurrence Formula 

Let neN. For ICGN, let S;(w) = 1 + 2*+3* + -»+w* =EJL0
/'* and take S6(n) = n + 1. 

Then, arguing as in the steps leading to (2.1.1) and (2.1.2), 

(n + l)k=Sk(n + l)-Sk(n) 

= t(f)SM)Sk(») (3.1.1) 
/=0 

k-\ 

wy<* (3.1.2) 
/=ov J 

The equation 
(5 + 1)*-^* =(w + l)fc, (3.1.3) 

in which the binomial power is expanded and S1 (i = 0,1,2,..., k) are then replaced by Sj(n), 
provides a mnemonic for (3.1.1). Note in particular that (3.1.3) can be obtained from (2.1.3) by 
merely increasing the values of S, S-1, and n by one. 

For example, let k = 2 in (3.1.3). Then 1 + IS = (n +1)2 and thus n +1 + 2£1(H) = (w +1)2, 
again yielding (2.1.4). 

3.2 Sp(n) as a Determinant 

Let pGN and let # = l,2,...,/?,/? + l in (3.1.2). It follows as in section 2.2, with (-l) r 

replaced by 1, that 
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or, alternatively, 

Sp{n)--

Sp(n) = 

1 

G> + 1)! 

--p\ 

1 

1 

1 

1 

1 

1 
1! 
1 

2! 
1 
3! 

1 
P}-
1 

(p+iy. 

0 

© 
® 

(o 
e?) 
0 
1 
1! 
1 

2! 

1 
(p-iy. 

I 
pi 

0 

0 

® 
(?) 

c") 
0 

0 
1 
1! 

1 
(/>-2)! 

1 
(p-1)! 

0 

0 

0 • 

o .. 
0 » 

0 •• 

0 71 + 1 

0 {n + lf 

0 {n + lf 

(A) (n+lY 
(£i) (H+ir1 

• o ^ 
U 2! 
o («+1)3 
U 3! 

1 (n+l)P 

1! />! 
1 (»+l)P + 1 

2! (p+1)! 

(3.2.1) 

(3.2.2) 

Note in particular that the determinants in (3.2.1) and (3.2.2) can be obtained from their counter-
parts in (2.2.1) and (2.2.2) by merely replacing n by « + l in the last column, and replacing all 
negative entries by their absolute values. 

3.3 Sp{n) as a Polynomial 

Proceeding as in section 2.3, (3.2.2) can now be employed to establish the formula 

Sp(n) = fjcp+l_r(" + VP+1-r, (3.3.1) 

P, with cp+1 = -^ and, for r = 1,2 

(-!//>! 
'"p+l-r 

Hence, by (2.3.4) and (3.3.2), 

(p + l - r ) ! 

J_ 
2! 
JL 
3! 

J_ 
r! 
1 

1! 
J_ 
2! 

1 1 

(r+1)! 

__i_(W 

(r-1)! ( r -2) ! 
J. 1 
r! (r-1)! 

5 „ r = l,2, 

(3.3.2) 

Thus, by (3.3.1), 

Sp(n) = -}~£{Pr1)Br(n + iy+l~r. (3.3.3) 

This standard form of S (ri) is usually established with the aid of the generating function 
xe* I (ex -1) of the Bernoulli polynomials. 
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The question arises if this method could have led to formulas (2.3.5) and (3.3.3) with B0 = 1, 
Bx = - y , B2 = \, B3 = 0, B4 = --^-,... without prior knowledge of the Bernoulli numbers. This 
indeed is the case. First note that, by (2.3.1) and (2.3.3), and (3.3.1) and (3.3.2), 

SM = ^tiMPrl)brnP+l-r> 
P~T~ l r=0 v y 

and 

w^ifrV^-
with b0 = 1 and, for r = 1,2,..., /?, 

Ar=(-l) rr 

JL 
2! 
J_ 
3! 

JL 
1! 

_1_ 
2! 

1 1 

(r+1)! 

(r-1)! ( r -2 ) ! 
_L 1 
r! (r-1)! 

= r! 

i_ 
1! 
J_ 
2! 

r! 
1 

J_ 
1! 

JL 
2! 

0 
0 
J_ 
1! 

(r-1)! ( r -2 ) ! 
1 1 

0 1 
0 01 
0 0 

* ol 
(r+1)! (r-1)! 0 

Now observe that the last determinant differs from that of Sr(n), as obtained by setting/? = r in 
(3.2.2), only with respect to the last column—the entries of br, from top to bottom, are 1, 0, ..., 0 
while those of Sr(n) are ^ , ^ ^ , . . . , ^ g ~ . It follows [cf (3.1.2)] that Z>0,A1?*2,... satisfy the 
recurrence formula 

*o = l, XffU=0(r = 2,3,4,...), 

which generates the numbers 1, - y , ^, 0, - ^ , . . . , i.e., the Bernoulli numbers. 
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1. INTRODUCTION 

For a monic polynomial with integer coefficients xd -a^'1 ad, the sum Sk of the kth 

powers of the zeros is an integer, for positive integer k. For prime/?, S = ax (mod/?); and hence, 
if ax - 0 then p\Sp. If ad = ±1, then similar congruences hold for sums of negative powers of the 
zeros. Illustrations are given for various types of Chebyshev polynomials with integer argument. 

2e SYMMETRIC FUNCTIONS OF ROOTS 

Consider the monic polynomial equation with complex (or real) coefficients 

xd -atdd~l -a2xd~2 ad = 0. (1) 

The roots of equation (1) will be denoted by a,j3,y,...,y/,a), and those symmetric functions of 
the roots that are called sigma functions will be denoted thus: 

^ def n 
Z.CC = a + p + '-+G), 

def 
T,af3 - a(3+ay + --+aco+ Py + •• •+/?<« +—vy/co, 

Za3fd=a3/32+a3r2 + - + a V + ^ V + -- -+/?V + •••+ ^ / V (2) 
+ p3a2+y3a2-+-'+co3a2+y3p2 + '- + (D3p2 + --+a)3y/2, 

et cetera. 

The sigma functions l a , Z<z/?, IL^Py, •••> 1 ^ - ® a r e called the elementary symmetric 
functions of a, P,/,...., co, and Vieta's Rule expresses them in terms of the coefficients of the 
polynomial (1): 

S a = fl1, £a/? = -a2, HaPy = a3, 
..., HaPy...o) = aPy...o)^{-l)d~lad. 

Each symmetric polynomial with integer coefficients can be expressed as a polynomial in the 
elementary symmetric functions, with integer coefficients ([1], p. 67). 

Therefore, if all coefficients ax,...,ad of the monic polynomial (1) are integers (positive, 
negative, or zero), each symmetric polynomial [in the roots of (1)] with integer coefficients has 
integer value. In particular, each sigma function then has integer value. 

For integer k, denote the sum of the kth powers of the roots as 

Sk™Xak=ak+fik + -+a)k, (4) 
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which is a sigma function if k> 0. The initial values Sl,S2,...,Sd may be computed successively 
by Newton's Rule: 

Sk = alSk-l + <*2Sk-2 + • • ' + ak-2$2 + ^ - 1 ^ 1 + * ' «Jk ( * = 1, 2 , . . . , £/), ( 5 ) 

and for A: > <i, Newton's Rule becomes the recurrence relation 
Sk^aA-i+a2Sk_2 + '-+adSk_d (k = d + l,d + 2,d + 3,...), (6) 

by which Sd+l, Sd+2,Sd+3,... may be computed successively. 
If the coefficients au ...,ad are integers, then Sk has integer value for all positive integers k, 

by the general result cited above for symmetric polynomials with integer coefficients. But for the 
Sk, it is simpler to note [from (5)] that Sl=a1, and the result then follows from (5) and (6) by 
induction on k. 

From Newton's Rule, the sums of powers of roots can be expressed in terms of the coeffi-
cients of the monic polynomial (1). For example, 

Sx - aly S2 = al + 2a2, S3 = ax + 3(ala2 + a3), 
54 = a\ + Aa\a2 + 4a{a3 + 2a2 + 4a4, 
55 = a\ + 5(axa2 + a\a3 + ax{a\ + a4) + a2a3 + a5), 
56 = a\ + 6axa2 + 6ax

3a3 + ax(9a2 + 6a4) + al(l2a2a3 + 6a5) (7) 
+ 2a2 + 18a2a4 + 3a3 + 6a6, 

/Sy = ax + 7(a}a2 + ax a3 + ̂  (2a2 + a4) + ax (3a2a3 + a5) 
+ a2(a2 + 2a2a4 + a3 + a6) + a2a3 + a2a5 + a3a4 + a7), 

where a7 is taken as 0 if/ > <i. 
Waring's formula (of 1762) expresses Sk explicitly ([1], p. 72) in terms of the coefficients of 

the monic polynomial (1): 

rx\r2\...rdl 

where the sum extends over all sets of nonnegative integers rl5 r2,..., rd for which 
rx + 2r2 +3r3 + --+drd =k. (9) 

The expressions (7) for SU...,S7 suggest that Sk has some interesting divisibility properties 
for prime k. 

3. DIVISIBILITY OF SUMS OF PRIME POWERS OF ROOTS 

Hereinafter, the polynomial coefficients ax,...,ad are taken to be integers, except where 
otherwise stated. 

Theorem 1: For all primes/?, Sp = ax (mod/?). 

Proof: If all roots are integers, then by Fermat's Little Theorem, 

Sp = ap+fip + --- +cop = a + fi + ~- + a) = ax (mod/?). (10) 
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In the general case, when the roots are algebraic numbers, expand Sk by the Multinomial 
Theorem: 

Sk =(a + j3 + y + -.'+a))k 

= ak+/]k+rk + '"+a)k+ Y - Haqprys ...CD\ {U) 

q+.^v=k q\r\s\...v\ 
where at least two of the indices q,r,...,v are positive integers, and the others equal zero. This 
may be rewritten as: 

"1*=**+ S t *' Xa«(3Y...co\ (12) 
q+...+v=k q\r\s\...v\ 

Each multinomial coefficient is an integer; hence, the denominator q\r\s\ ... v! divides the numera-
tor k! = k(k -1)!. Every factor in the denominator is strictly less than k\ and hence, if k is prime 
the denominator and k are coprime, so the denominator must then divide the other factor (k -1)! 
in the numerator. Therefore, if k is prime then each such multinomial coefficient is an integer 
multiple of k. 

But we have seen that, if all coefficients al,...,ad are integers, then each of the sigma 
functions in (12) has integer value. Thus, if k is any prime/?, then it follows from (12) that 

a[ = Sp+PFp, (13) 

where F is an integer* which depends on/? (and also onaua2,...,ad). Therefore, 

Sp=a?=ax (mod/0, (14) 
by Fermat's Little Theorem. • 

Corollary 1.1: Ifp is prime, then p\Sp <=> p\ax. 

Corollary 1.2: If ax - ±1, then Sp is not a multiple ofp for any prime p. 

Corollary 1.3: If ax - ±qe, where q is prime and e>\, then q is the only prime/? for which p\Sp. 

It was shown above that, if k is prime, then each such multinomial coefficient is an integer 
multiple of k. However, the converse does not hold. For example, k\/(l\)k =k(k-\)\ for all 
k >2; k\/(2\(l\)k-1) = k x((k-l)(k-2) ...3) for all k >3; 8!/(2!)4 = 8x(7x5x32) , and so on. 

Theorem 2: Sp is an integer multiple of/7 for all primes/?, if and only if ax - 0. 

Proof: If ax - 0, then equation (13) reduces to Sp - -pFp, and hence p\Sp.** 
If p\S then (by Theorem 1, Corollary 1), p\ax and, if this holds for infinitely many primes/?, 

then ax - 0. • 

The converse does not hold, since examples exist with k\Sk where k is composite. For 
example (see [2]), take d -3 with roots 1, 1,-2 (with £ a = ax = 0), for which the characteristic 

* The proof given in Theorem 1 of [2] for this result is valid only for the case in which all roots a,j3y... are 
integers. 
** This is Theorem 2 in [2]. 
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polynomial is ( x - l ) 2 (x + 2) = x3 - 3 x + 2 and Sk =2 + (-2)k. In this case, S6 = 66 so that 6\S6, 
and 6 is composite. 

Lemma: lfad - +1 , then Sk has integer values for all integers k—positive, zero, and negative. 

Proof: For general complex coefficients au...,ad/\£ad*0, then aj5y ... co = (-l)d~lad ^ 0 , 
so that no root equals 0; hence, S0 exists: 

S0 = a0 + fi° + -+a)0 - 1 + 1 + -.. + l = rf. (15) 

The monic polynomial equation inverse to (1), 

zd+Ed=Lzd-i + a£±zd-2+...+£Lz-± = o9 (16) 
«rf *</ ad ad 

has roots a - 1 , J3~l,..., 6?_1, including multiplicity. Accordingly, for k < - 1 , ^ can be constructed 
by Newton's Rule from the coefficients in (16), similarly to (5) and (6). 

If all coefficients au...,ad in (1) are integers and ad = ± 1 , then all coefficients of the monic 
polynomial (16) are integers. It follows as in (5) and (6) that Sk has integer value for all integers 
k < - 1 . Combining these results with the previous result for k>\, we get that Sk has integer 
value for all integers k. • 

Theorem 3: If/? is prime, S_p = -ad_x (mod/?) if ad = 1 , and S = arf_x (mod/?) if ad = - 1 . 

Proof: Apply Theorem 1 to the inverse polynomial equation (13), which is now 

zd +aH ,zd~l +a, ~zd~2 + '-+aiZ-1 = 0 i f a ^ = + l , 
«/-l rf-2 1 «/ , Q ^ 

zd -ad_xzd l-ad_2zd 2 axz + 1 = 0 if arf = - 1 . 

Note that this result holds for a more general polynomial with integer coefficients, with lead-
ing term -a0xd rather than xd as in (1). 

Corollary 3.1: Ifad = ±1 and/? is prime, then p\S_p ^>P\ad-\-

Corollary 3.2: Ifad = ±1 and ad_x = ± 1 , then £ is not a multiple of/? for any prime/?. 

Corollary 3.3: lfad=±l and ax=±l and a ^ = +1, then, for all primes/?, p\Sp m&p\S_p. 

Corollary 3.4 If ad = +1 and ad_x - ±qf, where g is prime and / > 1, then q is the only prime/? 
for which p\S_p. 

Corollary 3.5: If ad = ±1 and ax = ± g e and ad_x = ±q^ , where g is prime and e > 1 and / > 1, 
then </ is the only prime/? for which p\Sp, and also q is the only prime/? for which p\S_p. 

Corollary 3.6: If ad = + 1 , then there is no prime /? that divides both 5^ and S_p if and only if ax 

and a^_j are coprime. 

Corollary 3.7: If ad = ±1 and if ax and a^_j have the same set of prime divisors and if/? is prime, 
then p\Spop\axop\ad_xop\S_p. 
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Note that ax and ad_l may have different signs, and they may have different exponents for 
their prime factors. 

Theorem 4: Tfad=±l, then S_p is an integer multiple ofp for all primes p if and only if ad_x~ 0. 

Proof: Apply Theorem 2 to the inverse polynomial (17). D 

Theorem 5: For all polynomial equations of the form 

xd -a2xd~2 -a3xd~3 ad_3x3 -ad_2x2±l = 0, (18) 

with integer coefficients, both Sp and S_p are integer multiples ofp for all primes p. 
Proof: By Theorem 2, p\S since ax = 0, and by Theorem 4, p\S_p since ad =±1 and 

arf-i = 0. • 

4. APPLICATION TO CHEBYSHEV POLYNOMIALS 

The Chebyshev polynomials of the first kind are defined by the initial values: 

r0Cy)d=i, W d = j ; (19) 
with the recurrence relation 

Uy) = 2yTn_i(y)-Tn-2(y), (« = 2,3,...). (20) 
In terms of the modified Chebyshev polynomial of the first kind, 

the initial values are 

C„(z)d=f2r„U|, (21) 

C0(z)d=2, Cx{z)Aiz, (22) 
and the recurrence relation is 

C„(z) = zC„_l(z)-C„_2(z), (#1 = 2,3,...). (23) 

The characteristic polynomial for Tn(y) is 

P(x) = x2-2xy + l (24) 

In terms of the roots of the characteristic equation, 

a = y + Jy^~h P^y-J?^, (25) 
(22) becomes 

C0(2y) = 2 = a°+p°=S07 Cl(2y) = 2y = a + fi = Sl, (26) 

and it follows from (23) by induction on n that 

Ck{2y) = 2Tk(y) = ak+pk=Sk (k = 0,1, 2,...). (27) 

Theorem 6: For integer j , Tp(J) = j (modp) for all odd primes/?, and 2Tp(j + ±) = (2j +1) (mod 
p) for all primes/?. 
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Proof: \im-2y is any integer, then it follows from (22) and (23) by induction on n that 
Sk =Ck(m) = 2Tk(f>j is an integer for all integers &>0, and Theorem 1 shows that, for every 
prime/?, 

2Tp(^ySp^m(modp). (28) 

Therefore, ifĵ  =j is any integer and/? is prime, 
2Tp(j) = 2j (modp); (29) 

and hence, for every integer y and every odd prime/?, 
Tp(j) = j (modp). (30) 

Forp = 2, 
T2(j) = 2j2-l, (31) 

so that (30) holds only for odd/ 
If 2y = m = 2y +1 is odd, then, for every prime/?, (28) becomes 

for all integers/ • 

2Tp\J + -j = (2j + l) (modp) (32) 

Theorem 7: For odd prime/?, Tp(J) = j (modjp) for all integersj except multiples of/?, and if/ 
is odd (and not a multiple of/?) then T (J) = j (mod 2jp). 

Proof: For integery and odd prime/?, 

TpU) = J + ep, (33) 

where e is an integer, in view of Theorem 6. 
From the initial values (19), it follows from (20) by induction on n that Tn(y) = 2n~lyn - • • • is 

a polynomial in j of degree /? with integer coefficients, and that Tn{y) is an even polynomial in>> if 
n is even and Tn(y) is an odd polynomial iny if n is odd. Hence, if/ is an integer and ̂  is odd, 
then j 17̂  (J). Thus, for all odd primes /?, 

J + ep=Tp(j) = jb (34) 
for some integer 6. 

If/ is an even integer theny'A is even; and hence ep is even, so that e = 2f for some integer/ 
If/ is an odd integer then T0(J) and TX(J) are odd [from (19)], and it follows from (20) by 

induction on n that Tn(J) is odd for all n > 0. Thus, bothy and T (J) in (33) are odd; hence, ep is 
even, so that e = 2f. 

Therefore, for all integers j and odd prime/?, 
j + 2fp = Tp(j) = jb, (35) 

so that, if/' is not a multiple of/?, then j\(2f) and if/' is also odd then j\f. • 

Theorem 8: For prime /? > 5 and odd integer m, 2Tp(y) = /w (mod 2/?), and if w is not a multiple 
of/? then 2Tp{fj = m (mod 2m/?). 
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Proof; From (22) we get C0(m) = 2, which is even, and Cx{m) = m, which is odd; and from 
(23) we get C2(m) = m2 - 2 , which is odd. It follows from (23), by induction on n, that Cn(m) is 
even if and only if 3 \n. From (31), 

Cp(m) = 2Tp(^) = m + ep, (36) 

where e is an integer; hence, for all primes p * 3, we must have ep even. Thus, for all odd inte-
gers m and for all primes p > 5, e must be even e = 2f; therefore, 

2Tp(^) = m + 2fp^m (mod2p) (p>5). (37) 

From the initial values (19), it follows from (23) by induction on n that Cn(z) = zn is a 
monk polynomial in z of degree n with integer coefficients, and that Cn (z) is an even polynomial 
in z if n is even and Cn{z) is an odd polynomial in z if n is odd. Hence, if/ is an integer and n is 
odd, then j\Cn(j), so that for all odd primes/?, 

Cp(j) = jb, (38) 

where b is an integer, and if/ = m is an odd integer and p>5, then 

m + 2fp = Cp(m) = mh. (39) 

Therefore, if m is not a multiple of/?, then m\(2f), and since m is odd then m\f, so that 

Cp(m) = 2Tp — \ = m (mod2mp). • (40). 
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(Submitted January 1993) 

Consider the homogeneous linear recurrence relation 
Gn+2=aGn+l+Gn (n = 0,±l,±2,...) (1) 

where a is a nonzero real or complex constant. The equation is especially familiar in relation to 
the theory of simple continued fractions, and in relation to the theory of numbers when a is a 
natural integer. (For the case where a is a Gaussian integer, see Good [4] and [5].) A solution 
(Gn) can be regarded as a vector of a countably infinite number of components or elements, and 
which is completely determined "in both directions" by any two consecutive components. The 
general solution is a linear combination of any pair of linearly independent solutions. Two solu-
tions are linearly independent under the nonvanishing of the 2-by-2 determinant consisting of two 
consecutive elements of one solution and the corresponding two elements of the other solution. 
Perhaps the simplest pair of independent solutions is given by 

F„=F„(® = ^_z]f_y Ln = LM = Z" + *ln (» = 0,±1,±2,...) (2) 

where 
a W a 2 + 4 a - V a 2 + 4 

£ = " , 1 = ~ (a±2i). (3) 

Note that |£|>|?7| when a is real and positive; also that £,- r}~i if a- 2/, and then Fn = Fn(i) 
must be defined as nin~l while Ln{i) -2in. The numbers £and rj are the roots of the quadratic 
equation 

x2 -ax-1 = 0, (4) 

and, of course, 
%+?] = a, £77 = - 1 . (5) 

In particular, when a = 1, in which case £ is the golden ratio, Fn andZ„ reduce to the Fibonacci 
and Lucas numbers. We write the general solution of (1) as 

G„ = G„($ = AF„(Z) + vLn& (6) 

where X and ju are not necessarily real. 
We shall prove the following symmetry property: 

Theorem: We have 

r y (-0" = r y (-1)" m 

n n+m 

where k and m are nonnegative integers, and where we assume further that all the numbers 
Gj, G2,..., Gm+k are nonzero. 
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Comment (i): It follows from equations (2) and (3) that the nonzero condition is certainly true 
when a is real and (Gn) is either (Fn) or (Zw), that is, when X = 1 and /i = 0 o r when 2 = 0 and 
ju = l. 

Comment (ii): The theorem is presumably new even when (Gw) reduces to the ordinary Fibo-
nacci or Lucas sequence, that is, when a-I and A = l,// = 0o rA = 0, // = 1. 

Comment (Hi): If empty sums are regarded as vanishing, the theorem is true but uninformative 
when k or m is zero. It is also uninformative when k = rn. 

Comment (iv): Even in the simple case Fn = nin~l, Ln =2in, the identity (7) is not entirely 
obvious when Gn is defined by (6). 

Corollary: When | £ | > | r/ | we have 

^ S T T T ; — = / 9 X ~pr- (8) 

Comment (v): In the very special case a = l,k = l,ju = 0, (8) reduces to formula (102) of Vajda 
[8]; and when a = 1, k = 2, ju = 0, the evaluation of the left side of (8) was proposed as a problem 
by Clark [2]. The right side of (8) solves a much more general problem. 

Proof of the Theorem: Without loss of generality, we assume m>k. The proof depends on 
a double induction, beginning with an induction with respect to m. We first note that the result is 
obvious when m = k, so we can proceed at once to the body of the induction. For this we need to 
show that 

k 

Z (-i)" ( F , F ^ 
% G„ 

m+l 

c c 
V w+»+l ^m+n J 

m+l : i-\riFk k 

^m+Y^m+k+l 
(9) 

Now, by means of some straightforward algebra it can be shown from (2), and generalizing 
the case h = 1 of formulas (19b) and (20a) of Vajda [8], that 

rm+V m+n ~^m^m+n+l ~ ( V ^n \^J 
and that 

^m+l^m+n ~^m^m+n+l = (~~V A i V**/ 
and hence that 

Fm+lGm+n ~ FmGm+n+l = (~lT Gn- 0 2 ) 

Therefore, (9) is equivalent to the identity 

y (~ir = — £ — . (is) 
n=\ ^m+n^m+n+l ^m+l^m+k+l 

To prove this identity, we perform an induction, this time with respect to k, noting first that it is 
trivially true when k = 1. So we now want to prove that 

(-1) + _ ~Fk+i , _Fk / 1 4 N 

Gm+k+lGm+k+2 Gm+lGm+k+2 Gm+lGm+k+l 

1994] 285 



A SYMMETRY PROPERTY OF ALTERNATING SUMS OF PRODUCTS OF RECIPROCALS 

that is, we want 
Fk+iGm+k+i~Fk(^m+k+2 = ( _ 1 ) Gm+l. (15) 

But this identity is equivalent to 12) with a change of notation in the subscripts. Hence, in turn, 
we have proved (14), (13), (9), and (7), the statement of the theorem. 

We could reverse the steps of the argument to prove each statement in turn, but the order 
used here shows the motivation at each step and also shows the way that the proof was dis-
covered. It is more difficult to describe, or even to recall, how the theorem itself was discovered 
except that naturally it depended in part on guesswork and on numerical experimentation. (Many 
nonmathematicians don't know that pure mathematics is an experimental science.) For an 
alternative proof, see the Appendix. 

Corresponding Trigonometrical Identities 

Corresponding to many identities involving ordinary Fibonacci and Lucas numbers, there are 
"parental" (more general) identities obtained by replacing the golden ratio, and minus its recipro-
cal, by £ and by TJ = - 1 / g, respectively. (See Lucas [7] and [3].) Our theorem and corollary 
have exemplified this procedure. We can then come down to "siblingal" formulas by giving £ 
special values. As mentioned earlier, the results are number theoretic when £+77 is a natural or 
Gaussian integer. But if we let £ = ielx, r\ = ie~lx, where x is real, we obtain trigonometrical iden-
tities (Lucas [7]), for in this case we have 

Fn{ieix) = in-1 sinwx/sinx (16) 

when x is not a multiple of n, and 

L„(ieix) = 2inco$nx. (17) 

The trigonometrical "siblings," so to speak, of the "Fibonacci" and "Lucas" cases of (7) are 
m k 

sin Ax^cosecwx cosec(/i + k)x - sinmx^cosec/ix cosQc(n + m)x (18) 

and 
m k 

sinAx^secwxsec(w + A:)x = sin/wx^sec«xsec(« + /w)x (19) 
w=l n=l 

where k and m are positive integers and k, m, and x are such that no infinities occur. No infinite 
terms will occur if x is not a rational multiple of n but the series on the left and the sequence on 
the right won't converge when w -> 00 because arbitrarily large terms will occur. (The summa-
tions, for finite k and m, can be numerically highly ill-conditioned.) 

"Parents" and trigonometrical "siblings" can be written down corresponding to the vast 
majority of the identities on pages 176-183 of Vajda [8] where Vs is to be generalized to £-77. 
Some of these trigonometrical identities are familiar. Conversely, parents and Fibonaccian sib-
lings can be obtained for many of the trigonometrical identities in, say, Hobson [6]. To carry out 
this program in detail would be straightforward but would occupy a lot of space. 

Again, trigonometrical identities can be derived from identities given by Bruckman and Good 
[1], in addition to the Fibonaccian identities given there. 
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APPENDIX 

L. A. G. Dresel, on trying out the reverse argument, found the following more direct way of 
proving the identity (7). 

On putting m = t - 1 in (12) and dividing by G/7G„+r_1G/7+r 3 we have 

"' F - - ( - ' ) M -. (A!) 
^rfon+t ^n^n+t-l &n+fin+t-l 

Summing for t = 1 to k, we find that almost all of the terms on the left cancel in pairs, and since 
F0 = 0 we have 

Fk =i^~^- (A.2) 

[This is the same as (13), with a change of notation in the subscripts, but is now proved.] 
Multiplying by (-1)" and summing for n = 1 to m gives 

m ('—XV1 m k (—X\n+t~^ 

n=\ ^n^n+k n=\ t=\ Un+tUn+t-\ 

Similarly, interchanging the roles of £ and m, we have 
k / -i\w k m / - i \ « + r - l 

^.S7^- = ZI^r— (A4) 

But the double summations on the right of (A.3) and (A.4) are equal, as the summand is symme-
trica! in n and t and the order of summation is immaterial. Hence the left sides are equal, which 
proves the theorem. 
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