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A JUXTAPOSITION PROPERTY FOR THE 4 x 4 MAGIC SQUARE 

T. V. Padmakiimar 
Mamkuzhi Veedu, Pangappara P.O., Trivandrum, India 

(Submitted December 1991) 

Consider the standard 4 x 4 magic square: 

M = 
16 
5 
9 
4 

2 
11 
7 
14 

3 
10 
6 
15 

13 
8 
12 
1 

Now (using decimal notation) let us "juxtapose" the entries of the first two columns to form a 
single column of numbers and then compute the sum. Similarly, juxtapose the last two columns 
and consider that sum: 

C1&C2 C3&C4 
162 
511 
97 
414 

313 
108 
612 
151 

1184 1184 
For the first operation here, we juxtapose Column 1 with Column 2, which we indicate by 

writing C1&C2. The other operation above is C3&C4. Curiously, these sums are equal. 
Similarly, we can combine the other pairs of columns, with the extra condition that the entry 

"9" is viewed as the 2digit number "09": 

C2&C1 C4&C3 C1&C3 C3&C1 C2&C4 C4&C2 
216 
115 
709 
144 

133 
810 
126 
115 

163 
510 
96 
415 

316 
105 
609 
154 

213 
118 
712 
141 

132 
811 
127 
114 

1184 1184 1184 1184 1184 1184 
Repeating this process with the other four possible choices, we obtain a different set of equal 

sums: 
C1&C4 C4&C1 C2&C3 C3&C2 
1613 
58 
912 
41 

1316 
85 

1209 
14 

23 
1110 
76 

1415 

32 
1011 
67 

1514 
2624 2624 2624 2624 

Performing similar operations with the rows of M, we find that the sums do not behave quite 
so nicely, but still there are a number of equalities. For example: 

R1&R2 
165 
211 
310 
138 
824 

R4&R3 
409 
147 
156 
112 
824 

R1&R4 
164 
214 
315 
131 
824 

R4&R1 
416 
142 
153 
113 
824 
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A JUXTAPOSITION PROPERTY FOR THE 4 x 4 MAGIC SQUARE 

The entry "9" was considered as a 2-digit number "09" throughout these operations. That 
was done to make the patterns of 1-digit numbers and 2-digit numbers in the square suitably sym-
metric. One possible way to avoid that device is to rewrite the square using "base nine" notation 
rather than the usual "base ten." The square can be written out in base nine as follows: 

Mo 

This is the same square as the original, except that the numbers are written in another notation. 
Here, for example, 1 7 ^ = 1*9*+ 7* 9° = 16ten. Then we note that the "juxtaposition property" 
works very well for M9, since the 2-digit numbers are symmetrically distributed in this square. 
For example: 

17 2 
5 12 
10 7 
4 15 

3 
11 
6 
16 

14 
8 
13 
1 

C1&C2 C3&C4 
172 
512 
107 
415 

1317 

(Base nine) (B 

314 
118 
613 
161 

1317 

ase nine) 

Here the numbers and additions are all done in base nine. For example "1317" equals 988 in base 
ten notation. The juxtaposition property can be shown to work just as well when base nine is 
used throughout the process. 

It can be shown that the juxtaposition property is a consequence of the well-known 2x2 
magic properties of M and the symmetries in the number of digits of the entries ofM According 
to the 2x2 magic property, M can be partitioned into four 2x2 squares, and the sum of the 
entries in each of these squares is again the magic constant 34. For example, the upper left corner 
is pf ,2], which has the sum 16 + 2 + 5 + 11 = 34. The same holds for all the comer squares, the 
inner central square, and the square formed by the four comer entries of M If the inner columns 
are interchanged, or the inner two rows are interchanged, or if both the operations are performed 
together, the sum of the entries of all these squares remains 34. We can use these 2x2 properties 
to "explain" the patterns found on juxtaposition. 

Consider the sum of the rows Rl and R3 to be Rl + R3 = (a, b, c, d). Since the sum of all 
four rows is (34, 34, 34, 34), we see that R2 + R4 = (a% A', c, d>), where a' = 34 - a, b< = 34 - b, 
c = 34-c, andd' = 34-d. Note that a + b is the sum of the entries of the upper left 2x2 
square after interchanging the middle two rows and therefore equals 34; similarly, c+d = a + c = 
b + d = 34. Therefore, we see that 

Rl + R3 = (a, a\ a\ a) and R2 + R4 = (a*, a, a.w), (1) 

where a + a' = 34. 
For M, a = 25 and w = 9. For M9, a = 27 and ar = 9. Now the juxtaposition sum Cn&Cm 

can be written as 
Cn&Cm = l&toMto + M^ + 10^M2w + M2m +lO^M3rl + M3m + \0d^MAn + M4m. 
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Here MkL are the entries of the magic square in matrix notation, and dkm is the number of (base 
ten) digits in the number Mkm. Since Mlw + M2m + M3m + M4m = 34, 

Cn&Cm = 10*» J14, + W2mM2n + \0d^M3n + \0d^M4n + 34. 

Now certain symmetries can be observed in M (with 09 instead of 9): 
d\m = d3m and d2m = d4m for all m. 

Therefore, 
Cn&Cm = 10(KX^-D(Rl + R3)„ + l(X^-i)(R2 + R4)„) + 34, 

where the subscript n denotes the rfo element of the row sum. 
Using the 2 x 2 magic properties (1), 

Cn&Cm = 10[l(X^-i)a + 1(X^-W] + 34 for n = 1 or 4, and 

Cn&Cm = 10[l(X*--i)a' + KX^-i)a] + 34 for n = 2 or 3. 

It can be seen from Mthat: 

(1) For n = 1 or 4 and w = 2 or 3, dlm - 1 and d2m=2. Therefore, 
C1&C2 = C1&C3 = C4&C2 = C4&C3 = 10(a + 10a') + 34. 

(2) Forn = 2 or 3 andm= I or4, dlm = 2 andd2m = 1. Therefore, 

C2&C1 = C2&C4 = C3&C1 = C3&C4 = 10(a + 10a') + 34 
= C1&C2 = C1&C3 = C4&C2 = C4&C3. 

Since a = 25 and a* = 9, all the above are equal to 1184. 
(3) For n = 1 and #i = 4, and for n = 4 and m= I, dlnJ = 2 and rf2w = 1. 

(4) For ?2 = 2 and m = 3, and for /? = 3 and m = 2, dlm-l and rf2w ~ 2. 

For all these cases, the juxtaposition sums turn out to be equal to 10(a' + 10a) + 34 = 2624. 
From the 2x2 magic properties similar behaviors to equation (1) can be found for columns 

also. However, the pattern of 1- and 2-digit numbers needed for the equalities of juxtaposition 
sums do not match up so nicely for the row juxtapositions as for the column juxtapositions. 
Therefore, the number of equalities are less for the former. 

All the above relations hold for bases other than ten, provided the symmetries in the number 
of digits in the entries are satisfied. 

In summary, we find that these "juxtaposition properties" of the 4x4 magic square can be 
seen as some of the well-known internal symmetries ofM. 
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SOME REMARKS ON a($(m)) 

U. Balakrishnan 
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India 

(Submitted December 1992) 

It was conjectured in 1964 by A. Makowski & A. Schinzel [4] that, for every natural number 

vim). i 
• > -

n " 2 " 
They remarked also that even the weaker result 

(i) 

i n f ^ W ) > 0 (2) 
n 

is still unproved. Carl Pomerance [5] gave a proof of (2). Also S. W. Graham et al. [2] stated in 
the abstract, their result, 

.57 6 < l i m j r f « < U m s u p ^ i ) ) < 1, 

where Pm is the product of the first m primes. 

Notations We usep and q to denote exclusively primes, m\n to denote m dividing n, and m\n to 
denote m not dividing n. We use pa\\n to mean pa\n and pa+l\n. Also n is &-M1 means 
p\n impliespk\n 

First., we observe that validity of (1) for all w > 1 implies 

g ( * w » a i , (3) 
n 

for odd n. This can be seen easily from the fact that when n is odd, <j>(2ri) = </>(n). On the other 
hand, (3) implies (1) can be seen with the help of (4) below. It also implies that (1) is a strict 
inequality if 4|w. 

As in [5], we factor g(yw)) and obtain 

g(#»)) = <m) m 
n (fm n 

= n (i+r^+-vlnfi-^j (4) 
P°\\m\ p P P J P\n\ P) 

=nB nB n B (5) 

and it follows that if n is £-full, A > 2, then 
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for any n. (Of course, for odd and &-full n or &-full n with particular prime factors, we get better 
bounds from here.) In Theorem 1 below, we improve this bound in the case of any £-full n, for 
k>3. 

We can see from (5) that the essential problem is to prove the inequality 

nMV n f1-1) (6) 
M PJ q\npln(p-»y VJ 

In fact, the conjecture for odd n (3), implies (6) for odd n. On the other hand, it is clear that, 
with the help of (5), (6) implies (1) with 1 / (2^(2)) on the right side in place of 1 / 2. Pomerance 
interprets (6) as follows: For odd n > 1, 0(n) > the geometric mean of n and </>(<f>(n)). 

We mention the following consequence of the conjecture. Call a set of primes S = {2 = qx, 
q2,...,qt) self-filled if, for any prime/?, /?|n'=1(#r -1) implies p eS. The sets {2}, {2,3, 7} are, 
for example, self-filled sets. Let S as above be a self-filled set. Let T={pl,p2,--} be the set of 
primes of the form pr - qx

lq2
2 • • • q*' +1 for ax > 1 and the other ar > 0. Observe that, for r > 2, 

qr GT. Then the conjecture implies 
' , - l U . (7) 

P 2 n 
p<=T;p£S Indeed, assume the conjecture (3) holds for odd n. Let n - UpeT; p<x p. With the help of (5), 

we see that (3) implies (6) which, in turn, implies (7) since qr e T for r > 2 and x is arbitrary. 
[Observe that, when x is large enough, the set of prime factors of UpeT;p<x(P~fy 1S precisely $.] 
When S = {2}, the corresponding set T= T2 is the set of Fermat primes for which (7) is valid. 
This is easily checked thus, 

r i\ t 02r !( i v1 i i r 9-4 i / 

p<ELr2;p£S 
f->00r=o22r+l '-»°°2^ 22 *t+l 2J 

which is (7). This, of course, verifies (6) also, when n is composed only of primes of the form 
2a +1 and, hence, implies (1) with 1 / (2^(2)) on the right side instead of 1 / 2 there for such n. 

Theorem 1: Let k > 2. For &-full n, we have 

o - ( ^ ) ) ^ . 
n 

Theorem 2: We have, for infinitely many primes P, 

^(f)) > ft + o(^y lQg log p asp_^oo. 

Also, for all large n, we have 

aW*'' < (1 + o(l))er loglogn as ̂  -> oo. 

That is, the maximum order of °"(^w)) is er log log w. 
Theorem 2 quantifies a result of Alaoglu & Erdos [1]. 
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Proof of Theorem 1: Let n = Iik
r=l pa/. We note that Ilf=i Prr for 0 < er < ar -1, 1 < r < k, 

are different integers for different ^-tuples (eue2, ...,ek). Hence, the ala2...ak integers 
nj=i Prr (Pr ~ 1) a r e a^ distinct. All these axa2 ... % integers are divisors of ^(w) as well There-
fore, we have <j(<f>(n)) at least as large as the sum of these divisors. That is, 

a(<f,(n))>Yl((l + pr + -+Pr1)(Pr-l)) 
r=\ 

1 ZnYl\l-^-\>n/aicX 
r = P 

since ar > k for all r, and the proof of Theorem 1 is complete. 

Proof of Theorem 2: Let 2 = px, 3 = p2,... be the sequence of primes. Let Qk = Pilp2
2 

.. .pa
k\ where a r = 2 W + l, so that l°g/V J 

tf+1*/*. (8) 
Let m be the least integer such that P = Pk = Qkm +1 is prime. We see that 

&^exP iXlogPr 
v r= l 

„3£ 
ZPk 

and hence, by the theorem on least primes in arithmetic progression (see, e.g., [3]), we obtain 
P < pl°k (we do not need the best exponent), and thus, 

loglogP<(l + o(l))log^ as£->oo. (9) 

Now, remembering that P is prime, we get, using (4), that 

*P-<\-un n f'4+-4 
paU(P) 

>(\+o(i)yiogpk, 

using (8), and Mertens1 theorem and the lower bound in Theorem 2 now follows from (9). 
It follows from (5) that, for any w, 

^ ^ ^ n f 1 - 1 ] <a+o(i)Kiogiog^), 
n

 P\m\ PJ 
and the proof of Theorem 2 is complete. 
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ON 'THE GREATEST INTEGER FUNCTION AND LUCAS SEQUENCES 

Wayne L. McDaniel 
University of Missouri-St. Louis, St. Louis, MO 63121 

(Submitted December 1992) 

In 1972, Anaya & Crump [1] proved, for the Fibonacci numbers Fn, that 

akF„ + = Fn+k, n>k>\ (1) 

where a = (l + V5)/2 and [x] denotes the greatest integer < x. Carlitz [2] later proved, for the 
sequence of Lucas numbers Ln, that 

akL+4- = Ln+k, n>k+2,k>2. (2) 

Let P and Q be relatively prime integers with P > 0 and D - P2 - 4Q > 0. Let a and /?, 
a > J3, be the roots of x2 - Px + Q = 0; the Lucas sequences are defined, for n > 0, by 

Un = Un{P,Q) = ^-^~ and V„=V„(P,Q) = a"+fi". 
a-p 

In 1975, Everett [3] showed that, if Q = - 1 , then 

a*tf,+ P + l = Un+korU„+k+l, n>k>2, 

with the latter value obtaining when n and k are odd and 1 / (P 4-1) < \/3f Ut. 
The results of (1) and (2) can be extended to all Lucas sequences {U„} and {Vn} with 

Q - ±1, and, interestingly, in view of Everett's result, with no restrictions on n or k for n > k > 2. 
It seems, also, not to have been recognized, even for the case where P = 1, Q - -1 (i.e., for the 
sequences of Fibonacci and Lucas numbers), that the existence of the relations for a given pair, P, 
Q, for the sequence {Vn} implies the existence of the corresponding relations for the sequence 
{Un}. We show this dependence and obtain the extension of (1) and (2) to all Lucas sequences 
with Q = ±1 and n > k > 1. 

The proofs are straightforward. We recall that [b] - a iff 0 < b - a < 1. 

Lemma: Let k and n be integers, where n>k>\, and let t be a real number, 0< t < Jo 12. If 
iakVn+t]=Vn+k, thmlakUn + l/2] =Un+k. 

Proof: Let A = akVn - Vn+k and assume [akVn +1] = Vn+k. Then 0 < akVn +1 - Vn+k < 1; that 
is, -t<A<l-t. Now, 

A = akVn-Vn+k=ak(an+j3n)-(an+k+^n+k) = /]\ak~j3k) 
and 

akUn-U„+k=ak(an - (in)l' 41)'-(an+k - ()n+k)l JD = (]n{pk-ak)l 415. 
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Thus, akU„-Un+k = -A143, and - 1 < A < 1 - 1 implies 

(t-\)l4D<-Al4D<tl4D. (3) 
Noting that Z> = P 2 ± 4 > 5 , it follows from (3) that, if 0<t<415l2, then -\I2<-AI4D< 
1/2; hence, 0 < akU„ +1 / 2 - Un+k < 1, establishing the Lemma. 

In the following theorem, values of t are given such that [akVk +t] = Vn+k for all n>k>\. 
With one exception, (P, Q,k,ri) = (1, -1,1,1), we have 0 < t < -JD12; we observe, in particular, 
in(f), 7/5<-&/2<y[D/2 for g = -1 and P >2, and in (g), 1.1 < S 1 2 = 41)12 for Q = -1 and 
/» = 1. 

Theorem 1: 

(a) [akV„ +1 / 2] = V„+k if g = ±1, n > k + 2, k > 1, and (/», k, ri) * (1,1,3); 

(b) [akV„ + l/2] = V„+kifQ = \,n = k + l,k>l, 

(c) [akV„+l] = V„+kif 
fOP, k, ») = (!, 1,3), or 
[2 = - 1 , « = k +1, « odd, k>\; 

(d) [akV„] = Vn+k ifQ = -l,n = k + \,n even, k > 1; 
fg> [a"F„ ] = F2„ if Q = 1, or 0 = -1 and n is even; 
(0 [a"F„ + 7/5] = r 2 „ i fg = - land»isodd; 
(g) [a"V„ +1.1] = V2n if g = - 1 , P = 1, and «is odd, n > 1. 

/Voo/; Let g = +l. Since J°>0,JD>5, and 1/a = 2I(P + 415), we have 0 < l / a < 
2/(l+V5)<.62 for all P, and Ma<2/(2 + S)< 1/2 ifP>2. We show that the relation 
[b] - a holds in each case by showing that \b-a-\l2\<\!2. For any /, 

akV-V^+t n r n+k P\aK-pk) + t n+k\ Qn(\lan-Ic-Qc /a"+lc) + t (4) 

Casel. «>A: + 2,yt>l,/ = l/2,(P,A:,n)^(l,l,3). By(4), 

1 
«%-K+k+t- \Qn(\la"-k-(? /a"+k)\ <| l /a"- f c | + | l / a n+k 

If P>2, this sum is <( l /2) 2 + (l/2)3 < l / 2 , and if P = land«>4, the sum is <(.62)2 + 
(.62)5< 1/2; this proves (a). 

Case2. n = k + \,k>\. If Q = 1 and t = 1/2, (4) equals \1/a-l/a2"~l\. Since D = P2-4 
>0, P>3, implying that 0 < l / a < l / 2 ; hence, \\la-\la2n~l\= l/a-l/a2"'1 < \la<M2, 
proving (b). If (P, k, n) = (1,1,3), then 0 < P2 -4Q = 1 - AQ implies Q = -\, and 

akV„+\ = alLi + l = 4-(l + 45)l2 + \K 7.472; 

thus, [aLy +1] = 7 = V4. If g = - 1 , f = 1, n = k +1, £ > 1, and n is odd, (4) equals 
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-l/a + (-l)k/a2"-l+- \la-{-\fla 2n-\ 1 

Since n2*3, 0 < l / a ± l / a 2 " - 1 <.62 + (.62)5 <l, so \\la-{-\)kIa2n~l-H2\<\/2, proving (c). 
If g = - l , f = 0, and n is even, (4) equals | l /«-(-!)*/a2""1-1/2| . Since 0 < l / « ± l / a 2 n _ 1 < 
.62 + (.62)3 <1, \l/a-(-l)k/a2"'1 -l/2\<l/2, proving(d). 

Case 3. n = k. In this case, (4) is | 0"(1 - (0I a2)") +1 - 1 / 21. If 0 = 1 and t = 0, this equals 
| l / 2 - ( l / a 2 ) " | < l / 2 , proving (e) for 0 = 1; if 0 = - l , t = 0, and n is even, (4) has exactly the 
same value as for 0 = 1, t = 0, completing the proof of (e). If 0 = - 1 , t = 7/5, and n is odd, (4) 
equals 

-4~+— <(.62)2+.10<-, 
a2" 10 v ' 2 ' 

proving (f). If 0 = - 1 , P = 1, t = 1.1, and n > 1 is odd, then (4) equals 

(, 1 x 
- 1 + ^ 5 -

V a2\ 
\ 9 
+— ) 10 

- 1 + -
a 

In 
11 1 

_l 
10 2 ~ = -40 — 

a 2w = -4- + -40<(.62)6+.40<-, 
a 

establishing the last relation of the theorem. 

As noted in the paragraph preceding Theorem 1, the hypothesis of the Lemma is satisfied for 
n > k > 1, with one exception, yielding the following theorem. 

Theorem 2: If Q = ±1 and n > k > 1, then [akUn +1 / 2] = C/W+Jt with the single exception Un = Fn 

with n-k-\. 

It should perhaps be mentioned that the exception was properly excluded in (1) at the 
beginning of our paper, but that the case n - k = 1 was mistakenly included in [1]. In the interest 
of completeness, we observe that [aFx] = [(1 + V5) / 2] = 1 = F2. 

Example 1: Let P = 3, Q = - 1 , n = 5, k = 4. The first ten terms of {Un(3, -1)} (0 < n < 9) are 
0, 1, 3, 10, 33, 109, 360, 1189, 3927, 12970. Therefore, U9 = 12970. Since a2-Pa + Q = 0, 
a2 = 3a +1, and a4 = 9a2 + 6a +1 = 33a + 10. (It is easy to show, incidentally, that ar = Ura -
QUr_x for r > 0.) Hence, 

a4U,+~ = 33 
V 

109 + -»12970.58397, 
2 

showing that [a4C/5 +1 / 2] = U9. 

Example 2: Let P = 6,Q = l,n = k = 4. Using a2 = 6 a - 1 , we find that a4V4 = 1331714.99"1", 
implying Fg = 1331714, by Theorem 1(e). This agrees with the result obtained using the well-
known formula V2n = V2 -2(2", recursively, for n = 1,2, and 4. 
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INTRODUCTION 

In 1977, K B. Stolarsky [9] introduced an array of positive integers whose first row consists 
of the Fibonacci numbers {Fn :«>2}:1 2 3 5 8 13.... The subsequent rows are "generalized 
Fibonacci sequences." In fact, much more is true. The rows of the array are, in a sense, the set of 
all "positive Fibonacci sequences" of integers. This fact was proved by D. Morrison [7], who 
also introduced the WythofF array and proved that it has many of the properties of the original 
Stolarsky array. In order to study from a general point of view the properties which the Stolarsky 
and WythofF arrays have in common, the notion of'interspersion was introduced in [4]. The name 
"interspersion" was chosen to match property 14 in the definition given below. 

Much of the reason for interest in interspersions, especially those known as Stolarsky inter-
spersions, lies with the first column of such an array: its high degree of regularity versus the 
possible unavailability of a nice formula for the n^ term. In the case of the original Stolarsky and 
WythofF arrays, however, such formulas are known (see Section 5). From Example 1.1 (i) of [7, 
p. 307] and these formulas, we find that the first columns of the Stolarsky and WythofF arrays are 
uniformly distributed mod m for every positive integer m. In contrast to this, we construct in 
Section 4 a new Stolarsky interspersion for which every element of the first column, after the 
initial element 1, is even; we call it the even first column array (EFC). 

1. WHAT IS AN INTERSPERSION? 

Throughout this paper, the notation A = A(i, j) denotes an array of distinct positive integers 
a(i9 j) with increasing first column. For such A, let A = A(i, j) and A - A(i9 j) be the arrays of 
positive integers defined by 

a(i, j) = a(i, j +1) for / > 1, j > 1, 

and 
a(i, j) = the number of terms of A which are < a(i, j +1), 

respectively. Note that A is obtained from A by simply removing the first column of A. If the 
terms of A are then ordered as an increasing sequence, then a(i, j) is simply the rank of a(i, j) in 
this sequence. (The reader is urged to write out several terms of A using the array in Table 1.) 
We call A the rank array of A and prove in Theorem 1.1 that an array A is its own rank array ifF.4 
is an interspersion, as defined in [4] by the following properties: 

11. the rows of A comprise a partition of the positive integers; 
12. every row of A is an increasing sequence; 
13. every column of A is an increasing (possibly finite) sequence; 
14. if {Uj} and {Vj} are distinct rows of A, and/? and q are indices for which up<vq< up+l, then 

up+i<vg+l<up+2. 
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Perhaps the simplest example of an interspersion is given by a(i, j) = i + v+J~w+J~ , 

Theorem LI: An array A is an interspersion iff ̂ 4 = A. 

Proof: First, suppose A is an interspersion. Then, by Lemma 2 in [4], 

a(i, j +1) = a(i9 j) + C(a(i, j +1)), 

where C(m) denotes, for m > 1, the number of terms in the first column of A that are < m. Thus, 
a{i, j) is the number of terms of A that are < a(i, j +1) and are not in column 1. That is, a(i, j) 
= a(i, j ) , as required. 

For the converse, suppose a(i, j) =a(i,j) for all / andj. Then property II must hold, since 
a(i, j) ranges through all the positive integers without repetition. 

Now, since a(i,j) is the number of terms of A that are <a(i, j + 1) for all /' andj, we have 
a(i,j)<a(i,j + l), and this strengthens to a(i,j)<a(i,j + l) since the terms of A are distinct; 
thus, property 12 holds. 

By hypothesis, column 1 of A is increasing. Suppose for arbitrary j > 1 that column j is 
increasing, and suppose / > 1. The number of terms of A that are < a(i +1, j +1) is a(i +1, j ) , 
and this by the induction hypothesis exceeds a(i, j), which is the number of terms of A that are 
< a(i, j + T). Therefore, a(i +1, j +1) > a(i, j + 1), and property 13 holds. 

Arrange the numbers in A in increasing order, forming a sequence sn such that 

a(i, j) = sa(it j _ ^ = $a(U j). 

If up<vq< up+h as in 14, then su < sv < su , since sn is an increasing sequence. That is, prop-
erty 14 holds. • 

To summarize, Theorem 1.1 shows that an interspersion is an array A whose characteristic 
property is that for any successive terms u and v in any row, v is the uth term not in column 1. 

2. STOLARSKYINTERSPERSIONS 

Certain interspersions which have received much attention are the Stolarsky interspersions 
(e-g-> [4], [5], [6], [8], [9]). These are shown in [6] to be in one-to-one correspondence with the 
set of all zero-one sequences {8t} that begin with 1. The correspondence is given as follows: for 
each row number /, the number a(i, 2) in column 2 must be one of the two numbers 
[aa(i, 1) + St ], where a = (1 + V5) / 2; thus, the numbers in column 2 depend on those in column 1 
and, moreover, the numbers in columns numbered higher than 2 are determined by the recurrence 

a(iJ) = a(iJ-l) + a(iJ-2), y = 3,4, 5,.... (1) 

Accordingly, each row of a Stolarsky interspersion depends in a simple manner on whatever 
number occupies the first position in the row. This first number is always the least positive 
integer not appearing in any previous row. (See Tables 1-3.) We leave open the question of 
whether almost all Stolarsky interspersions have a uniformly distributed first column. 
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TABLE 1. The Original Stolarsky Array ([9], 1977) 

1 
4 
7 
9 
12 
14 
17 
20 
22 

2 
6 
11 
15 
19 
23 
28 
32 
36 

3 
10 
18 
24 
31 
37 
45 
52 
58 

5 
16 
29 
39 
50 
60 
73 
84 
94 

8 
26 
47 
63 
81 
97 
118 
136 
152 

13 
42 
76 
102 
131 
157 
191 
220 
246 

21 
68 
123 
165 
212 
254 
309 
356 
398 

34 
110 
199 
267 
343 
411 
500 
576 
644 

55 
178 
322 
432 
555 
665 
809 
932 
1042 

89 
288 
521 
699 
898 
1076 
1309 
1508 
1686 

144 
466 
843 
1131 

1453 
1741 

2118 

2440 
2728 

TABLE 2. The WytfaofT Array 

1 
4 
6 
9 
12 
14 
17 
19 
22 

2 
7 
10 
15 
20 
23 
28 
31 
36 

3 
11 
16 
24 
32 
37 
45 
50 
58 

5 
18 
26 
39 
52 
60 
73 
81 
94 

8 
29 
42 
63 
84 
97 
118 
131 
152 

13 
47 
68 
102 
136 
157 
191 
212 
246 

21 
76 
110 
165 
220 
254 
309 
343 
398 

34 
123 
178 
267 
356 
411 
500 
555 
644 

55 
199 
288 
432 
576 
665 
809 
898 
1042 

89 
322 
466 
699 
932 
1076 
1309 

1453 
1686 

144 
521 
754 
1131 

1508 
1741 
2118 

2351 

2728 

Construction 2.1: Every Stolarsky interspersion can be constructed inductively using the rules 
described above: row 1 must be l 2 3 5 8 13 21...; once k rows have been constructed, there 
are two and only two possibilities for row k + \. The first term u must be the least positive integer 
not already used in the first k rows. The second term can be either [ecu] or[aw + l], and the 
remaining terms are determined by the recurrence (1). 

For any given zero-one sequence 8 with initial term 1, the corresponding Stolarsky inter-
spersion A{5) would be easy to write out if only the first column were not, generally speaking, so 
mysterious. It turns out to be somewhat surprising how nearly determined these mysterious 
numbers are. This section is devoted to such determinations. We begin with a restatement of 
Lemma 1.5 of [6]. 

Lemma 2.2: Suppose {r,-} is a row of a Stolarsky interspersion. Then either 

hk = Wik-\\ and r2k+\ = Wik +1] for all k>\ or else 
i2k = Wik-i +1] and r2k+1 = [ar2k] for all * > 1. 

Lemma 23: Suppose u and v are adjacent terms in a row of a Stolarsky interspersion, and u < v. 
Then «<={[£], M -

Proof: By Lemma 2.2, v e{[aw],[aw + l]}, It is easy to confirm that if v = [aw], then 
u = [j*l ], and if v = [cos +1], then u = [%]. 

Theorem 2.4: Let A be a Stolarsky interspersion. Let {sn} be the ordered complement of the 
first column of A. Then sn G{[na], [na +1]} for n = 1,2,3,.... 
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Proof: By Lemma 3 of [4], we have sa(iJ) = a(i, j +1) for all ij. By Lemma 2.2, 

a(j, j +1) e{[aa(i, j)],[aa(i, j) + 1]}. 

Since a(i, j) ranges through all the positive integers n, we therefore have 
s
n e{[na],[na + l]} forw = l,2,3,... . D 

Lemma 2.5: Suppose {c,} and {st} are infinite complementary sequences of positive integers, 
m>0, and {crj is a zero-one sequence in which the maximal string length of ones is m. Let 
s* = st +ai and suppose s*+l *s* for all /. Let {c*} be the ordered complement of {s*}. Then 
0<c.-c* <m for all j . 

Proof: The sequence of positive integers can be represented in increasing order as a 
sequence of strings of two types: S strings consisting of consecutive s/s, and C strings consisting 
of consecutive c-'s. Each 5 string is followed by a C string, which is followed by an S string. 
Either sx = 1 or else cx = 1; we assume the former, noting that the proof in case ct = 1 can easily 
be obtained from what follows and is, therefore, omitted. Write the initial string as Sx = sly s2,..., 
s^ (= 1,2,..., /% where ̂  > 1), and the initial C string as Q = q, c2,..., c (= /ŵ  + l,...,ml +nl9 

where wx > 1). Following Q is iS2, and so on, so that our representation of the positive integers is 
as a sequence of strings: S1C1S2C2S3..., where St = ̂ _ i + 1 , . . . , ^ , q =^_i+1,...,cM/, w0 =w0 =0, 
\<ml<m2<- and 1 < nx < n2 < • • •. 

Let N denote the null string. Each string Si is a juxtaposition of two substrings, Lt and i^, 
which satisfy the following conditions: 

(i) If L;=J{, theni^*JV; 
(ii) If Lx * N, thenLt has the form sm{ +1, ...,5^+* for some &,->!, and s* = ̂  for 

#fJ_1+l<^</?i /_1+&/; 
(iii) If i^ *N9 theni?, has the form ^ +*+!,..., s^, and s* = st + 1 for mi_l-\-ki +\<l<mi. 

Consider an arbitrary triple L^Q. If Rj =N, then clearly s* = se for £ as in (ii) and c* = ĉ  for 
•̂_! + \<t<ni. Otherwise, we have s* = st for the terms of Lt and s* - st + 1 for those of B^, so 

t h a t <L+i = Vi+M-i> a n d c* = c^ f o r ^ = ̂ -1+2,...,/%. Thus, 0^^-c^mf-k^m for 
^ = H,--I +1, w,-_i + 2, ...,«,. Now, putting the triples Z^.Q together in order, we conclude that 
0<c£-c*<mforalll D 

Lemma 2.6: Supposed is a Stolarsky interspersion. Let {s*} be the ordered sequence of terms 
of ,4 that are not in the first column of^. Let sn = [na\ Let an = $* -sn. Then {a J is a zero-
one sequence, s*+l * 5* for all w, and the maximum string length of ones in {an} is 2. 

Proof: By Theorem 2.4, {(jM} is a zero-one sequence. Also, s*+1 ̂ ^* for all n, since the 
terms of A are distinct. Now suppose n is a positive integer and write 

na = [na] + el9 (n + 2)a = [n + 2a] + e2, where 0 < ^ <1 fori = 1,2. 

Then [{n + 2)a] - [no] = 2a-e2 + el9 which, as an integer within 1 of 2a (= 1 + V5), must be 3 or 
4. Therefore, the three integers [na] +1, [(n + l)a] +1, [(n + 2)a] +1 cannot be consecutive inte-
gers. Consequently, there is no string of ones of length > 3 in {a J. 
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Theorem 2.7: Let ut = a(i, 1), the Ith term of column 1 of a Stolarsky interspersion A. Then 
[ia]+i-2<ut< [ia] + i for every /. 

Proof: The ordered complement of {sf} = {[ia]} is {ci} = {[ia] + i}9 by the well-known 
Beatty theorem on complementary sequences (see Theorem XI in [1]). Lemmas 2.5 and 2.6 imply 
that 0 < Cj - ux < 2, from which the desired inequality immediately follows. D 

Corollary 2.8: Let ut = a(i, 1), the ith term of column 1 of a Stolarsky interspersion ,4. Let wt be 
the Ith term of the first column of the Wythoff array (see Table 2). Then -1 < wj - uf < 1 for every 

Proof: This follows immediately from Theorem 2.7 and the fact that wf - [ia] + / - 1 . D 

Lemma 2.9: If u is a positive integer, then exactly one of the following statements is true: 
(i) 3n3U = [na] and [{n +1)a] = u +1; 

(ii) 3 n 3 u = [na] and [(n +1)a] = u + 2; 
fiii) 3 « 3 w = [wa +1] and [(w +1)a] = u +1. 

Proof: If there exists w satisfying u = [na], then clearly [(?2 + l)a] must equal u + loru + 2, 
since 0 < a < 1. If w is not of the form [wa], then since 0 < a < 2, there must exist /? satisfying 
u - [na +1]. Since */=£[(« + l)a], we have \<na + a-u. Also, /ia +1 - u < 1, so that na + a -
f#<2. Thatis, u + l<na + a<u + 2, so that [(w + l)a] = i# +1. D 

Theorem 2.10: The first column of a Stolarsky interspersion does not contain two consecutive 
integers. 

Proof: If u is a positive integer in column 1 of a Stolarsky arrays, and u is as in (i) or (ii) in 
Lemma 2.9, then the immediate successor of n in a row of A is, by Lemma 2.2, u + l = [na + 1], so 
that u + 1 is not in column 1. 

By Lemma 2.9, the only remaining case is that u = [na +1] and w +1 = [(w + l)a]. Assume 
that both u and u + 1 lie in column 1 of A, and assume that u is the least such positive integer. By 
Lemma 2.2, the immediate successor of n in a row of A must then be u -1, and the immediate fol-
lower of n +1 must be u + 2. Since n< u, at least one of the numbers n and w +1 does not lie in 
column 1. If n is not in column 1, then by (1), n is immediately preceded by u - 1 - n; and if n +1 
is not in column 1, then « +1 is immediately preceded by u + 2 - (w +1) = u +1 - n. 

Now, w = ̂ a + l -6 ,
1 ,0<6 ,

1<l , so that ua-na2 +a-ael. Since 

a2 = a + l, (2) 

we have 
ua-na = n + a{\ - sx). (3) 

Also, u +1 = na + a - s2,0 < £2 < 1, so that i /a+a = na2 +a2 - as2, which yields 

ua-na = n + \-ae2. (4) 

Equations (3) and (4) show that a{\-ex) = \-as2 < 1, so that (3) implies n-[{u-n)a]. Now, 
by Lemma 2.2, in a row of A the integer u—n must immediately precede « o r n + 1, whichever of 
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these is not in column 1. However, it has already been proved that the immediate predecessor of 
n, if there is one, is u-n-1, and the immediate predecessor of w + 1, if there is one, is u-n + l. 
This contradiction shows that u and u + 1 cannot both lie in column 1 of A. • 

Lemma 2.11: \iu is a positive integer, then exactly one of the following statements is true: 
(i) 3n3u = [na + l] = [(n + l)a]; 

(ii) 3ri3u = [na +1] and [(n + l)a] = u +1; 
(iii) 3n3u = [na] and [{n - l)a +1] = u - 1 . 

The proof of Lemma 2.9 can serve as a guide for proving Lemma 2.11. We omit a proof but do 
pause to note that each of these two lemmas partitions the set of positive integers into three sub-
sets that can be expressed in terms of fractional parts. These are, in the order (i), (ii), (iii), as 
follows: 

\u: {ua} > 4 - 2a}, {u:2-a< {ua} < 4 - 2a}, and {u: {ua} < 2 - a} for Lemma 2.9, 

{u: 2 - a < {ua} < a -1}, {u: {ua} < 2 - a}, [u: {ua} > a -1} for Lemma 2.11. 

Theorem 2.12: Suppose successive terms of column 1 of a Stolarsky interspersion differ by 2: 
a(i +1,1) - a(i, 1) = 2. Then the integer a(i, 1) +1 lies in a column numbered greater than 2. 

Proof: Let u = a(i, 1) + 1. By Theorem 2.10, u does not lie in column 1; suppose u lies in 
column 2. Let n be the immediate predecessor of u in a row oiA. We shall see that n must be 
related to u as in one of the three cases in Lemma 2.11. The only possible exception would be if 
u = [pa] for some/? and also u - [qa +1] for some q. It is easy to check here that q = p-1. To 
see that n = p-ly suppose to the contrary that n = p. Then [ («- l )a +1] = w and [ («- l )a] = 
w - 1 ; now u -1 is in column 1, so that the immediate follower of n -1 in a row of ̂ 4 must be u, by 
Lemma 2.2. However, this contradicts the hypothesis that u follows n. 

In case (1), u = [na + l] = [(n + l)a]. In A, the integer n + \ must, by Lemma 2.2, be fol-
lowed by [{n + l)a] or [{n + l)a +1]. The former is i/, which follows w, not « + 1, and the latter is 
II + 1, which lies in column 1. For u as in (ii), a contradiction is similarly obtained. 

In case (iii), u<na, so that ua<na2 -na + n, and ua-na + \<n + \. Also, na-a + l 
<u, so that na2-a2 + a<ua, which yields n<ua-na +1. Therefore, [(u-n)a +1] = n. In a 
row ofyl, the term immediately following u-n is not [(u-n)a + l], for this number, coming just 
before u, must lie in column 1 and, thus, has no immediate predecessor. Therefore, by Lemma 
2.2, the follower must be [{u-ri)a\ which is n-1. By (1), the number u-l = u-n + [(u-ri)a] 
must lie in column 3, contrary to the hypothesis that it lies in column 1. Therefore, if as in (iii), u 
cannot lie in column 2. 

Since u does not lie in column 1 or column 2, it must, by property II, lie elsewhere. D 

3. TWO MORE THEOREMS ABOUT COLUMN 1 

Following Construction 2.1, we indicated that it is a difficult problem to formulate the first 
column of a Stolarsky interspersion in terms of an arbitrary given classification sequence, but that, 
surprisingly, in view of this difficulty, these terms can be "almost formulated" without great 
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difficulty. Theorem 2.7, especially, tells what we mean by "almost formulated," and in addition to 
it we present here two more theorems. 

Let S1 = {k: 3 Stolarsky interspersion A3k = a(i, 1) for some i}. Thus, £,- is the set of all 
possible values that can be taken by the Ith element of column 1 in a Stolarsky interspersion; e.g., 
$i = {!}, S2 = {4}, S3 = {6,7}, S4 = {9,10}, S5 = {11,12}, S6 = {14,15}, and S7 = {16,17,18}. 

Theorem 3.1: The sets {Sj}^=l are pairwise disjoint. 

Proof: Suppose two of the sets Sf and*?-, where j>i, have a common element. By 
Theorem 2.7, it is clear that j must be i + 1 and that the only number that St could possibly share 
with Si+l is 

[(/ + l)a + / - l ] = pa+ / ] . (5) 

Assuming this possibility, let B be a Stolarsky interspersion satisfying b(i +1,1) = [(? + V)a+/ -1] . 
Now, b(i,T) G{[ia + i-2],[ia + i-l],[ia+i]}, by Theorem 2.7. Since b(i,l)*[ia + i], by 
property II, and b(i,l)&[ia + i-l], by Theorem 2.10, we have b(i, l) = [ia+i-2]. 

Let 5: = {/a}, the fractional part, j ' a -p 'a ] , of ia. Then (5) can easily be proved equivalent 
to 

0 < £ < 2 - a . (6) 

Since b(i +1,1) = &(i, 1) + 2, the position of the number x - [ia +/ -1] in B is, by Theorem 2.12, 
in a column numbered > 3. Thus, the row of B containing x contains an immediate predecessor w 
of x and also an immediate predecessor v of w. Now x must be one of the numbers [wa] or 
[wa] +1, by Lemma 2.2. We consider these two cases separately. 

Case 1: x = [wa]. ByLemma2.3, w = [-̂  + l] = [x (a - l ) + l] = [xa ] -x + l. Thus, 

w = [a[ia +/ -1]] - [ia+t -1] +1 
= [{(a-l)[ia]+i) + 2-a] 
= [(a - l)(ia -e+i) + 2- a] 
= [ia2 -a£ + g-i + 2-a] 
= [ia-as + £ + 2-a] 
= [[ia} + (l + s)(2-a)] 
= [ia], 

since 0 < (1 + e)(2 - a) < 1. The equations w = [ia], x = [ia + / -1] , and x = w + v imply v = 1 - 1 . 
Then [va + 2] = [ia - a - 2] = [[ia] + {ia} + 2 - a], which by (6) equals w. Thus, neither [av] nor 
[av +1] equals w. This contradiction to Lemma 2.2 completes the proof for Case 1. 

Case 2: x = [wa + l]. By Lemma 2.3, w = [*-\ = [x(a-l)]9 so that 

w = [(ia - s)(a -1) + (a - l)(i -1)] 
= [ia + (l-a)(l + s)] 
= [ia-l], since - l < ( l - a ) ( l + ^)<0. 

The equations w = [ia-l], x = [ia+i -1], and x = w + v imply v = i. Then w - [va -1], contrary 
to Lemma 2.2. • 
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Theorem 3.2: Let S = I d St. Let F = {2,3,5,8,13,...}, the set of Fibonacci numbers F3 = 2, 
F4=3,...,Fn= Fn_x + Fn_2. Then S is the set of all positive integers not in F . 

Proof: Each number in F necessarily lies in row 1 and not in column 1. We shall show that, 
for any positive integer x other than these, there exists a Stolarsky interspersion containing x in its 
first column. 

Let Ek be the statement that, for all m< k such that m gF, there exists a Stolarsky inter-
spersion in which m occurs in the first column. Clearly Ek is true for k = 1, 2, 3, 4. Assume for 
arbitrary k > 4 that Ek is true. If k + l G F , then clearly Ek+l is true. Suppose k + \ gF . Let 
£ = [ ^ ] - p ^ ] . Since l < a < 2 , we have £ E { 0 , 1 } . If S = l, letm = [ ^ ] and obtain Jfc + 1 = 
[wa] , but if <5 = 0, let m = [-̂ -] and obtain i + l = [/wa + l]. 

Case 1; m gF. Here, by the induction hypothesis, there exists a Stolarsky interspersion i? 
containing m in its first column. Write rn = b(i0,l). We shall construct a new Stolarsky 
interspersion A as follows: Define a(i, j) = b(i, j) for all i < i0 -1, j > 1. Define a(70,1) = m. If 
& +1 = [ma] , then define a(/0 ,2) = [#ia +1], but if k +1 = [/wa +1], then define a(/0 ,2) = [ma]. 
Define the rest of row /0 recursively: a(iQ, j) = a(i0, j -1) + a(/0 ,j-2). Then finish defining 4̂ as 
in Construction 2.1. By Theorem 5 of [6], 4̂ contains k +1 in its first column. 

Case 2: m = Fp for some p . Here, 8 = 1, & + 2 = Fp + 1 = [ma +1], and k = [(m - l )a ] . Since 
m - 1 gF, there exists a Stolarsky interspersion B having m-1 in its first column. Necessarily, B 
contains k +2 in its first row, immediately following m. As in Case 1, we construct from B a 
Stolarsky interspersion A in which the immediate follower of m-1 is &. Now the only possible 
immediate predecessors of k +1 are m and m - 1 . Since neither of these is followed by k +1 in A, 
we conclude that k +1 lies in the first column of A D 

4. A NEW STOLARSKY INTERSPERSION: THE EVEN FIRST COLUMN ARRAY 

In addition to the two well-known Stolarsky interspersions of Tables 1 and 2 above, we 
introduce here a third, in which the only odd number in the first column is 1. Because of this 
property, we call this the even first column array, or EFC array. The array is defined by its 
classification sequence, namely, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, ... . In section 2, we encountered the 
sense in which a classification sequence defines a Stolarsky interspersion: if the sequence is {£,.}, 
then the number a(i, 2) in column 2 must be [aa(i, 1) + £,]. [Recall that a(i, 1) is always the least 
positive integer not in any previous row, and a(i,j) f o r j>3 is determined by (1).] The main 
objective in this section is to prove that the first column does indeed consist solely of even 
integers except for the first one. 

Throughout this section, let E = E(i,j), denote the EFC array with terms e{i,j), and let 
ut = e(i91). Table 3 shows that the first few ut are 1, 4, 6, 10, 12, 14, 16. We shall deal with the 
id, in pairs: 4, 6; 10, 12; 14, 16; etc. Each such pair u2k,u2k+l generates six terms um where 
m>2k. To describe these "higher w^'s," we define the u2k-tree, written as T{u2k)y as shown in 
Figure 1. 

The classification sequence has S2k = 1 and S2k+l - 0, so that (7) shows that the numbers v3 

and v4 must lie in column 2 of E, so that vx and v2 must, by Lemma 2.2, be higher um*s. We shall 
show below that vx and v2 are, respectively, of the forms u2p+l and u2 Assuming this for now, it 
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follows by Lemma 2.2 that w3, w4, w7, w8 must He in column 3 of 2?. Now wlyw2,w5? w6 must lie 
in E, but for each of these, its only possible immediate predecessor, as given by Lemma 2.3, is 
immediately followed by one of w3, w4, w7, w8. Therefore, w2, w2, w5, w6 are higher ww

!s. 

TABLE 3* The Even First Column Array 

1 
4 
6 

10 
12 
14 
16 
20 
22 
26 
28 
30 
32 
36 
38 
40 
42 

2 
7 
9 

17 
19 
23 
25 
33 
35 
43 
45 
49 
51 
59 
61 
65 
67 

3 
11 
15 
27 
31 
37 
41 
53 
57 
69 
73 
79 
83 
95 
99 

105 
109 

5 
18 
24 
44 
50 
60 
66 
86 
92 

112 
118 
128 
134 
154 
160 
170 
176 

8 
29 
39 
71 
81 
97 

107 
139 
149 
181 
191 
207 
217 
249 
259 
275 
285 

13 
47 
63 

115 
131 
157 
173 
225 
241 
293 
309 
335 
351 
403 
419 
445 
461 

21 
76 

102 
186 
212 
254 
280 
364 
390 
474 
500 
542 
568 
652 
678 
720 
746 

34 
123 
165 
301 
343 
411 
453 
589 
631 
767 
809 
877 
919 

1055 
1097 
1165 
1207 

55 
199 
267 
487 
555 
665 
733 
953 

1021 
1241 
1309 
1419 
1487 
1707 
1775 
1885 
1953 

89 
322 
432 
788 
898 

1076 
1186 
1542 
1652 
2008 
2118 
2296 
2406 
2762 
2872 
3050 
3160 

144 
521 
699 

1275 
1453 
1741 
1919 
2495 
2673 
3249 
3427 
3715 
3893 
4469 
4647 
4935 
5113 

u=uik y 
U = U2k+l X 

V, =[OK] < ^ " ^ 
yv2=[au + l] ^ " \ 

% v3 = [ecu +1] tg^** 
v4 = [au] ^ - ^ 

^ ^ W2=[OV2] 

w4=[av2+l\ 

w5=[av, + l] 
^ ^ w6=[av4] 

w8 = [av4 +1] 

FIGURE 1. The Tree T(u2k) 

Lemma 4.1: Suppose j and k are nonzero integers. Let a = (l + v5)/2. Then 

{lja]a} - {[ka}a} = (1 - a){{ja) - {ka}). (8) 

Proof: For any nonzero integer k9 we have 
1 = {-{a} {ka}} + {a} {ka} = {[ka]- {a} {ka}} + {a} {ka} 

= {ka + k- {ka}a} + {a}{ka} = [ka2 - {ka}a] + {ka} {a}, by (2) 
= {(ka - {ka})a} + {ka} {a} 
= {[ka]a} + {ka}{a}. 
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So, if j and k are nonzero integers, we have {[ja]a} + {ja}{a} - {[ka]a} + {ka}{a}, and (8) 
follows. D 

Lemma 4.2: Suppose j and k are nonzero integers. Let a = (1 + V5) / 2. Then 

{[ja2]a) - {[ka2]a} = (2 - a)({ja} - {ha}). (9) 

Proof: For any nonzero integer k, we have {[&a]a} + {ka}{a} = 1 from the proof of Lemma 
4.1, so that {[&a]a} + {ka} > 1, a fact used below: 

{[ka2]a} - {[ka + k]a} = {[ka]a + ka} - {[£a]a} + {ka} -1 
= {(ka - {ka})a} + {ka} -1 = [ka2 - {ka}a} + {ka} -1 

= {ka - {ka}a} + {ka} -1 = {{ka} - {ka}a} + {ka} -1 
= l-(a-l){ka} + {ka}-l 
= (2-a){ka}. 

So, if/ and k are nonzero integers, then (9) holds. 

Lemma 4.3: An integer u is of the form [ja] for some integer j iff {ua} > 2 - a. Equivalently, 
an integer w is of the form [ja] +j for some integer y' iff {ua} < 2 - a. (This inequality is stated 
without proof in [2].) 

Proof: Lemma 4.1 implies that, for any integers^ and k, we have {ja} > {ka} iff {[ja]a} < 
{[ka]a}. The well-known fact that max{{ja}:l<j<F2n} = {aF2n} implies, therefore, that 
tmn{{[ja]a} :1< j < F2n} = {[aF2n]a}. Since liml^00{[aF2lf]a} = 2 - a , we have {[ja]a}> 
2-a for all positive integers/ 

For the converse, Lemma 4.2 implies that, for any integers j and k, we have {ja} > {ka} iff 
{[ja2]a} > {[ka2]a}. The fact that max{{ja}:l<j <F2n} = {aF2n} implies, therefore, that 
m&x{{[ja2]a}:l<j<F2n} = {[a2F2Ja}. Since limJ I^0 0{[a2F2Ja} = 2 - a , we have, for all 
positive integers j , {[ja2]a} <2-a. But, by Beatty's theorem, as j ranges through the positive 
integers, the numbers [ja2] range through all the positive integers not of the form [ja]. Since 
[j®2] - [j&]+j, the proof is finished. • 

Lemma 4.4: Suppose u has the form 2[na] + 2n and v = [ua]. Let q = \j^\. Then 

v = 2[qa] + 2q + 2 and u + v = [va + l]. 

Proof: We have ^ - 1 < # < ^ , so that f - a < qa < f. Thus, qa is strictly less than the 
integer f. so that [qa] = f - 1 . Also q = [%] = [f (a -1)] = [*f] - f. Accordingly, 

= 2[[na]a + na]. 

By Lemma 4.3, {[na]a+na} < l / 2 , and this implies 2[[na]a+na] = [2[na]a + 2na], which is 
v. Next, 

2[qa] + 2q + 2 = u-2 + 2\ ua 
2 

-u + 2 = 2\ ua 
2 
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[va +1] = [a[^a]] +1 = [a(ua - s)] +1, where s - {ua}, 
= [ua2 - as] +1 = [ua + u-as] + \-ua-as- {ua - as} + u +1 
= M - a f - { « a - {wa} - {a} {ua}} + u-l 
= ua-as-{-{a}{ua}} + u + l, since ua-{ua} is an integer 
-ua- a{ua} + {a} {ua} + u = ua - {ua} + u 
= v + u 

Lemma 4,5: Suppose u has the form 2[na] + 2n + 2 and v = [wa + l]. Let g = [-^ + l]. Then 
v = 2[qa] + 2q and u + v = [va]. 

Proof: The proof is similar to that of Lemma 4.4 and is omitted. D 

Lemma 4.6: Suppose u has the form 2[na] + 2n mdu=u+2 in the 2%-tree of Figure 1 (7). 
Then v2 = vx + 4. 

Proof: By Beatty's theorem, [n/a] is not of the form [wa], so that, by Lemma 4.3, 
{a[nla]}<2-a. Substituting a + \ for IIa and multiplying by 2 gives 2{a([na]+n)}<4-2a. 
Then {a{[na] + n} <II2 since 4 - 2 a < l , so that {z/a} = {2a([wa]+7i} < 4 - 2 a . Since {2a} = 
2a-3, we have {wa + 2a} = {wa} + {2a}, from which follows [ua + 2a]-[ua] = 3. Equiva-
lently, v2 - vx = [wa + 2a +1] - [wa] = 4. • 

Lemma 4.7: In the u2k -tree (7), suppose u has the form 2[na] + 2w and u-u + 2. Let v = vx. 
Then v2 =v + 4, v3 = v + 1, v4 = v + 3. Moreover, wx = u+v,w2 = u + v + 6,w3 =u + v + l, and 
w4 =i/ + v + 7; also, w5 = w + v + 2,w6 = u + v + 2,w7 = u + v + l, and w8 = w + v + 5. 

Proof: Clearly v3 =v + l. By Lemma 4.6, v2 = v + 4, so that v4 =v + 3. By Lemma 4.4, 
wx - u + v, so that w3 -u + v-I. Now w2 =[ov2], which by Lemma 4.5 equals u + v, which is 
u + v + 6, and then w4 =u + v + 7. By recurrence (1), w7 -u + v + l andw8 =u + v + 5, and from 
these follow w5=u + v + 2 and w6 = u + v + 4. • 

Under the assumption that u (= u2k) is of the form 2[na] + 2n and u-u + 2, we can sum-
marize Lemma 4.7 by rewirting the tree T{u2k) in (7) with new labels: 

v = [wa] (type 6) 
v + 4 (type 5) 

u + v (type 1) 
u + v + 6 (type 4) 

u + v.-I 
u + v + 7 

u + v+ 2 (type 2) 
u + v+ 4 (type 3) 

(10) 

FIGURE 2. The Tree T(u2k), Relabeled 
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Lemma 4.8: Suppose k is a positive integer, u = 2[ka] + 2kmdii = 2[ka] + 2k + 2. Then 
u-u = 4 or u-u- 6, according as {ka} <2-aor {ka}>2-a. 

Proof; The proof is easy and is omitted. D 

Lemma 4.9: Let E be the EFC array. The numbers uk in column 1 of E are given by u% = 1 and 

u2n=2[na] + 2n, (11) 

u2n+l = 2[na] + 2/I + 2 (12) 

fbr>i=l,2,3, ... . 
Proof: It is easy to check that (11) and (12) hold for 1 < n < 3 and that in the tree T(u2) we 

find u3 = 6 of type 6, u4 = 10 of type 5 (and also of type 1), u5 = 12 of type 2, w6 = 14 of type 3, 
u7 - 16 of type 4. Suppose now that m > 7, and as an induction hypothesis, assume that for every 
h satisfying 3<h<m the following conditions hold: 

(i) there exists k such that 2k <h-2 and uh is a vertex of tree T(u2k), and in that tree, % 
is of one of the six types identified in (10); 

(ii) in T(u2k), if uh is of type 1, 3, or 5, then h is even, and if h = 2p, then 
uh = 2[pa] + 2p; 

(iii) in T(u2k), if % is of type 2, 4, or 6, then h is odd, and if A = 2/? + l, then 
^ = 2[jpa] + 2p + 2. 

Case 1: ^ is of type 1 (or type 3) in a tree T(u2k). By (ii), um =2[pa] + 2p, where 
m = 2p. Theorem 2.10 and Lemma 4.7 then imply um+l = 2[pa] + 2p + 2, so that um+1 is of type 
2 (or type 4) and satisfies (12). 

Case 2: um is of type 2 in a tree T(u2k). By (iii), um = 2[pa] + 2p + 2, where m = 2p + l. 
Theorem 2.10 and Lemma 4.7 then imply um+l =2[jpa] + 2/? + 4 = 2[(p + l)a] + 2(p + l), so that 
um+l is of type 3 and satisfies (12). 

Case 3; um is of type 4 in a tree T(u2k). As in the proof of Lemma 4.6, we have {au2k} < 
4 - 2a, so that 

4 a - 7 . , 4 a - 6 A „ 
-<{m/2yk}< - = 4 - 2 a , 

a - 1 a - 1 
which implies 0 < 4 a - 6 + (l-a){aw2Jt} <1, so that 6 = [(l-a){aw2Jt} + 4a] and 6 = [au2k-
[au2k] - a{cm2A:} + 4a]. Adding u2k + [au2k] to both sides and applying Lemma 4.7 give 

um = i®u2k + uik ~ a{au2k} + 4a] 
= [a(au2k-{au2k}+ 4)1 by (2) 
= [a([ow2J + 4)], 

which is the number of type 6 in tree T([au2k] + 4). By Lemma 4.6, the number um +4 is of type 
5 in tree 7([aw2^] + 4). 

By Theorem 2.7, umU < [(m + l)a] + /w +1 and [(/w - 3)a] + m - 5 < ww_3, so that 

' ' u
m+i ~ ̂ m-3 * [(»> + l)a] - [(in - 3)a] + 6 ^ 11.472, 
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but, since um+l - um_3 is an integer, we have 

" m + l - ^ 3 ^ 1 2 . (13) 

Since um is of type 4, the number um_i must, by the induction hypothesis, be of type 4 - / , for 
i = 1,2, 3, so that um = um_x + 2, um_l = um_2 + 2, and tiw_2 = um_3 + 2; these imply 

ttm-*«-3=8- ( 1 4 ) 

By Theorem 2.7, z/w+1 e {WW +2, ww +3, ^m +4}, so that (13) and (14) force um+l to be um +4. 
By the induction hypothesis, um - 2[pa] + 2p + 2, where m = 2p + l, um_1 = 2[/?a] + 2jp, and 

^w-2 = 2[(/> ~ 1)^1 + 2(P ~ 1) + 2. The equation um+l - um_2 = 2 therefore easily yields 

[pa]-[(p-l)a] = l (15) 

Now, if [(p + T)a]-[pa] = 1, this and (15) imply [(p + l)a]-[(p-l)a] = 2, which is easily seen 
to be impossible, since \l2<a<\. Therefore, [(p + l)a]-[pa] = 2, so that unH.l=um+4 = 
2[pa] + 2p + 6 = 2[(p + l)a] + 2(j> + l), and (11) holds. 

Case 4: um is of type 5 in a tree T(u2k). Before breaking this into two subcases, we note 
that 

{au2k} = {a(2[ka] + 2k)} = {4ka-2a{ka}} = (4-2a){ka}. (16) 

Case 4.1: {ka)>2-a. In this case, (16) implies {a&2 i k}>(4-2a)(2-a) = 2(5-3a). 
The inequality {au2k} >5-3a implies 

„ ^ 2 a - 3 . . ^ „ 5-3a = < {au2k } < 1 < 2a - 2, 
a 

which implies [2 a - a{au2k }] = 2, so that 
[au2k+4] = [om2k~\ + 2 + [2a-a{au2k}~\ 

= [au2k -u2k +21 + [a2u2k-a{au2k}-om2k +2a] 
= [au2k - u2k + 2] + [a[au2k - u2k + 2]]. 

This shows that the number um of type 5 in a tree T(u2k), namely, [au2k +4], is the same as the 
number of type 1 in tree T(au2k -u2k +2). It follows from Case 1 that um+l is of type 2 in tree 
T{au2k ~u2k +2) and satisfies the required conditions. 

Case 4.2: {ha} >2-a. Again (16) applies, giving {au2k} < 2(5 - 3a) < 7 - 4a = 
1 - {4a}, so that {au2k} + {4a} < 1. Consequently, {au2k + 4a} - {au2k} = 4a - 6, so that 

[(u2k+4)a] = [au2k+4] + 2. (17) 

Since m>l, we have 2k <m-2, by hypothesis (i), so that Lemma 4.8 gives u2k+2 -u2k +4. 
Then (17) implies that um+l is the number of type 6 in tree T(u2k+2), and (12) holds. 

Case 5: um is of type 6 in a tree T(u2k). We already know by Lemma 4.6 that the number 
um +4 is of type 5 in tree T{u2k). If um+l -um+2, then we would have um+l-um_3 = 10 and a 
contradiction as in the proof for Case 3. Moreover, um+l ~um cannot be 1 or 3, by Theorem 2.10. 
Therefore, um+l =um+4, and as in the proof for Case 3, we find that (11) holds. 
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We have now shown that the conditions (i), (ii), and (iii) stated in the induction hypothesis all 
hold for h - m +1. Therefore, equations (11) and (12) hold for all positive integers n. • 

5. CONCLUSION 

It is clear from the induction method of the proof of Theorem 4.9 that the EFC array is the 
only Stolarsky interspersion having only even numbers in the first column, except for the initial 1. 

We recount the connections between certain classification sequences {<?,} and the first 
columns of the associated Stolarsky interspersions {ut}. 

Wythoff Array (Table 2): St = 1 for all /, and ut = [ia]+i -1 for all /. In fact, all the terms 
a(i, j) of the Wythoff array are conveniently expressible: a(i, j) - [ia]FJ+1 + (/ - X)Fj. Corollary 
2.8 shows that the Wythoff array is "central" among Stolarsky interspersions. 

Dual of the Wythoff Array: Sx = 1 and Si = 0 for all / > 2, and 
{[ice]+7 if 7 is of the form [ka] + k + l, 
Hia]+7-1 otherwise. 

Stolarsky Array (Table 1): ut =\{i-^a\ + i. No convenient formula for Si has been found; 
the sequence begins like this: 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1. 

EFC Array (Table 3): 8t = 1, S2k = 1, S2k+l = 0 for all k > 1, and 

[2[̂ f-] + /' if 7 is even, 

12[121 oc J 4- 7 +1 otherwise, 
by Theorem 4.9. 

ESC Array; Introduced here by its classification sequence, {£,.}. = {1,0,1, 0,1, 0,1, 0,1,...}. We 
conjecture that the second column of this array consists solely of even integers, beginning with 2, 
6, 12, 14, 18, 24, 28, 32, 36, 40. Can someone figure out a formula for up. 
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1. INTRODUCTION 

The Bernoulli polynomials of order k, for any integer k, may be defined by (see [10], p. 145): 

x V 2 ^ ^ w , * " = y # ( z ) - . (i.i) 

In particular, B^k\0) = B^k\ the Bernoulli number of order k, and BJp = Bn, the ordinary 
Bernoulli number. Note also that B^ = 0 for n > 0. 

The polynomials B^k\z) and the numbers B^ were first defined and studied by Niels 
Norlund in the 1920s; later they were the subject of many papers by L. Carlitz and others. For the 
past twenty-five years not much has been done with them, although recently the writer found an 
application for B^ involving congruences for Stirling numbers (see [8]). For the writer, the 
higher-order Bernoulli polynomials and numbers are still of interest, and they are worthy of 
further investigation. 

Apparently, not much is known about the divisibility properties of B^ for general k. Carlitz 
[2] proved that if/? is prime and 

k=alpkl +a2pk2 +-- + arpK {0<kx <k2 <••• kr\ 0<ay </?), 

then prB^ is integral (mod/?) for all n. He (see [4], [5]) also proved the following congruences 
for primes /?>3: 

Bf^-^p'ip-iy.imodp5), (1.2) 

B%1)^P3 (mod/), (1.3) 
o 

B%=~-yBP* (mod/), (1.4) 
/? + l 

where Bp+l is the ordinary Bernoulli number. F. R. Olson [11] was able to extend (1.2) and (1.3) 
slightly by proving congruences modulo p6 and/?5, respectively. Carlitz [4] proved that B[p) is 
integral (mod /?), p > 3, unless n = 0 (mod /? -1) and n = 0 or/? - 1 (mod /?), in which case pB{

n
p) 

is integral. He also proved congruences for special cases of B^. 
The writer [8] examined the numbers B^ and proved that, for/? prime, /?>3, r odd, and 

p+l>r>5, 
r-4 

&P
P)=-'t—s{p,j)p^ (mod//), (1.5) 

7=1 J + * 
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where s(p, j) is the Stirling number of the first kind. (The Stirling numbers are defined in section 
2.) This enables us to extend (1.2), theoretically, to any modulus pr. Many other properties of 
B^ are worked out in [8], and applications are given that involve new congruences for the 
Stirling numbers. 

The purpose of the present paper is to examine the divisibility properties of B^ for arbitrary 
n and k. We are able to extend congruences (1.3) and (1.4), and we also generalize many of the 
results in [8] and [10]. A summary of the main results follows. 

1. We prove that the Bernoulli polynomials have the following property: 

*&l*+\n)=(-ir*3&(-*+!») 
To the writer's knowledge, this is a new result. It is very helpful in proving congruences (1.6)-
(1.9) below. 

2. We extend (1.3) and (1.4) by proving, for p > 5: 

* & 1 ) s - ^ ( P + 2)!/>a ( m o d / ) , (1.6) 

&l&=^p2(p + 2)\(p + l2bp+1) ( m o d / ) , (1.7) 

Bp
!?4=^p\p + 4)K3p + 2)bp+3 ( m o d / ) , (1.8) 

where b„ is the Bernoulli number of the second kind, defined and studied by Jordan [9], pp. 265-
287 and by Carlitz [1]. The numbers bn are also defined in section 2 of this paper, and we show 
in section 2 that B%~1) = -{n-l)n\hn 

3e Motivated by (1.6), we prove that if?? is odd and composite, n > 9, then 

Bj£l)^0 (mod«4). (1.9) 

4. For k > 0, we define 

Ak(P;n) = t ^ B^\ 
n\ 

and we prove that Ak(p; ri) is integral (mod/?); in fact, if/? does not divide k, then -^Ak(p; ri) is 
integral (mod/?). This improves results of Carlitz [2], [3], 

So With Ak (p; ri) as defined above, we prove 

4 ( p ; r ( p - l ) ) - ( - l ) r ( r ^ ) (mod/*), (1.10) 

Ak(p;r(p-l) + i) = ±(-iy-\r + k-l)(r+
k
k^ (mQdp) (p>2) ( U 1 ) 

These congruences give us some insight into the highest power of/? (especially p = 2) dividing 
the denominator of B[n~k). This is discussed in sections 3 and 4. 
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6. We prove the following recurrence formulas, which generalize results of Norlund [10], 
p. 150, for k = 0. For£>0 , 

n\ JzJ n + l-r r\ 

(-\TkB%k_f(n\ B& 
(» + *)! i?y){r + k)\-

These recurrences turn out to be helpful in proving (1.10), (1.11), and the fact that Ak(p;n) is 
integral (mod/?). 

Section 2 is a preliminary section that includes the definitions and known results that we 
need. In section 3 we examine B^ for arbitrary n and k, and we find new congruences, generat-
ing functions and recurrences. In section 4 we look at B^n~l) in more detail, and we find some 
additional properties. 

Throughout the paper, the letter/? designates a prime number and the letter n denotes a non-
negative integer. 

2. PRELIMINARIES 

We first note some special cases (see [4]). If n<k, then B^k) = ̂ ~iy s{k,k-n), where 
s(k, k-n) is the Stirling number of the first kind, defined by 

n 

x(x-l)--(x-n + l) = Yds(n,k)x\ (2.1) 

or by the generating function 

{log(l + x ) }*=*!£s (H,* )4 -tic n\ 

If k>0, then B^~k) =("+
k

kY S(n + k, k), where S(n + k,k) is the Stirling number of the 
second kind, defined by 

x" = £ S(n, k)x(x -1) • • • (x - k +1), 
k=0 

or by the generating function 

>'l», *J X (ex-\)k=k\JjS(n,k)-

Since the Stirling numbers are well known and have been extensively studied (see, e.g., [6], 
ch. 5; [8]; and [9], ch. 4), in this paper we will concentrate on B^k) for 0 < k < n. 

It follows from (1.1) that (see [10], p. 150): 

B?\x+y) = ±{^x(x-\)...(x-j + \)BikS/\y) = ± ^ (2.2) 

±-B*\z) = nBM(z), (2.3) 
az 

B?\z 4-1) - £<*>(*) = nB&l\z). (2.4) 
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Norland [10], p. 145, proved 

so that 

B^iz) = ( l - | J B^(z) + (z-k)^_\(z), 

tfn-k) = * z £ J J C - ^ D + (t^LBtl
k). (2.5) 

k k 
Norland [10], p. 148, also proved 

Bik) =k<$£(-l)k-l-rs(k,k-r)^, (2.6) 
n-r 

which Is the basis for some of the results of Carlitz [3], such as (1.2)-(1.4) and the congruences 
for B^p). In (2.6), Bn_r is the ordinary Bernoulli number. 

Norlund [10], p. 147, proved the following integration formulas 

B{:\x) = \x
x (t-l)(t-2)-(t-n)dt, (2.7) 

B^ = -n\yt-l)-{t-n)dt, (2.8) 

which, when compared with (2.1), indicate the close relationship between the Stirling numbers 
and the higher-order Bernoulli numbers. Norlund [10], pp. 147 and 150, also gave the following 
generating functions: 

* = „ k y E»—x_ (29) 
{log(l + x)}* £> n-k n\ 

(l + x)log(l + x) £J n\ 

Jordan [9], pp. 265-87, defined and studied bn, the Bernoulli number of the second kind. The 
generating function is 

7 - 7 ^ — =!>„*"• (2-11) 
log(l + x) „=0 

Comparing (2.9), (2.10), and (2.11), we see that, for n * 1, 

-}-B^=n\bn=B^+nB<£\ (2.12) 
l-n 

The last equality also holds when n = 1. To the writer's knowledge, this relationship between hn 
and B^n~1^ has not been pointed out before. 

Jordan [9], p. 265, defined the polynomial ^ ( z ) , which has the generating function 

r^=t%w, (2.0) 
log(l + x) ^ 0 

and he proved 
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^ ^ - l + I n j = (- l)»«F^-z-l + i « j . (2.14) 

Carlitz [1] extended (2.13) in the logical way by defining /?^}(z): 

{log(l + *)}* to K)n\ 

Thus, fi^\z) is analogous to B^k)(z), and $p(z) = n\Wn(z). Carlitz also proved the very useful 
result, 

fl+1\z-l) = B<rk\z). (2.16) 

Note that by (2.9), (2.12), (2.15), and (2.16) we have 

5 ( ^ ) ( 1 ) = ^ + i ) ( 0 ) = ^ j J _ 5 ( ^ - i ) ; £(»>(!) = „l6n. (2.17) 
k + l-n 

3. J5<*> for 0 < * £ it 

We first prove a theorem that is the basis for many of our later results. 

Theorem 3.1: For all nonnegative integers k, 

^^+ |»)=(- i r*^ :^-z+i« j . (3.i) 

Proof: We use induction on k. The theorem is true for k = 0, since by (2.14) and (2.16) we 
have 

Assume (3.1) holds for a fixed & - 1 , i.e., 

B$k-{z + £») = ( - l r * - 1 ! ^ - * + \n) • 

Then, if » + & is even, ^"JUi^ + i " ) is an odd function ofz. By (2.3), this implies B$k{z + ±ri) 
is an even function ofz. That is, (3.1) holds for n + k even. If n + k is odd, then n +1 + k is even, 
and we apply the operator A to both sides of 

to get, by (2.4), 
^ l ^vH^HH" 

J&[*44»=-I&-*-44» 
Letting y - z + ̂ -, we obtain, for n + & odd: 
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B^y + \n} = -B<$k{-y+\r^. 
This completes the proof. 

We note that Theorem 3.1 implies, for k > 0 and n > 0, 

#&(») = (-!)"***&. (3-2) 

Now, since B^n\z + l) = «!*Fw(z), and since Jordan [9], p. 265, has shown 

d , ( z \ 1 ^ 
dz 

it follows that 

™'{»-l)'(^^>-l.rV, 

^ l J^1>(z) = (ii + l ) 2 ^ ^ r ) ( r - i r 1 + ^ 1 > ( l ) . (3.3) 

Equation (3.3) was also proved in [8], with different notation. Integrating (3.3) k times, using 
(2.3), we obtain 

I 
r+k+l 

+i(n+k
r
+l)Bi:tlUi)(z-iy. 

(3.4) 

We now plug z = n + \ into (3.4). By (2.17) and (2.5), the first two terms in the last summation 
are 

*ffi(i)=(»+*+i)3&+*a, 
(n + k + l)nB^1\l) = -k(rt + k + l)B^k, 

so by (3.2) we have, if n + k is odd: 

(*-ix»+*+i)^=(,,iJt1^:(r+?+irj(,,-r^ 
i 

(3.5) 

r=2 

and if « + k is even, we have 
- i 

r+£+l 

(3.6) 

It is important to remember that (3.5) is valid when n + k is odd, and (3.6) is valid when n + k is 
even. We are now in a position to prove congruences (1.6)-(1.9). 
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Theorem 3.2: If j? is prime, p > 5, then B{ffi = —^(p + 2)\p2 (modp6). 

Proof: In (3.6), let n = p and k = 1. Then we have 

rtff> B - l ( p + 2)(p + 1)Y 5(/?'r) //+2 (mod/). 

It is well known [5], pp. 218 and 229, that 

<P,J) = 0 (modp) (\<j<p), 

_ 2 , I - - • . 1 s(p,2j) = 0 (mod//) j l < 7 < - 0 ? - 3 ) | , 

so we have B%» =-±(p + 2)(p + l)s(p,l)p3 ^-±(p + 2)(p + l)(p-l)\p3 (modp6). This 
completes the proof. 

Theorem 3.2 extends Carlitz's congruence (1.3) and the work of Olson [11]. The motivation 
for (1.3) was evidently the congruence B<

p
p^) = 0 (mod/?2), which was proved by S. Wachs [12] 

in 1947. 
We will return to (3.5) later to prove congruences for B^2 and B^4. Next we prove two 

recurrence formulas that will be useful. Both formulas are given in [10], p. 150, for k = 0 only. 

Theorem 3.3: For k > 0, 

r = 0 „ - r x - r #•• 

Proof: In the first equation of (2.2), we replace n by n +1, we replace k by » +1 - k, and we 
let y = 0. We then subtract 5 ^ 1 - t ) from both sides and divide by x to obtain 

B^~k)(»)-/&*-*> = ^ 4 - 1 ^ _ 1 ) ( x _ 2 ) , . . ( x _ . + D ^ y - y ) , ( 3 . 7 ) 

We now take the limit as x -» 0 of both sides of (3.7). The limit of the left side is 

lim —B^1^ (x) = (n + 1 ) ^ + 1 ^ } . 

and Theorem 3.3 follows by dividing both sides by (w + 1)! and letting r = n + l-j. This com-
pletes the proof. 

Thus, we have 

Theorem 3.4: For k > 0, 
/ i\«+fc n(n) n / \ o(r) 

•=z (» + *)! %\rj(r + k) 
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Proof: In the first equation of (2.2), replace n by n + k, replace k by #1, let y — 0, and let 
x — n. Theorem 3.4 now follows from (3.2), and the proof is complete. 

Now for k > 0, p prime, and [x] the greatest integer function, define 

(3.8) 

It was proved in [8] that A^{p\ ri) is integral (mod/?); we now show that Ak(p; ri) has that same 
property. We note that Ak(p; 0) = 1, by (2.9). Theorem 3.3 gives us 

n-\ p{nl{p-m-[rl{p-m 

4 (p; ri) = 4 _ ! (p; w) - £ ZTV~Z At ( # r>-
r=0 n + l-r 

(3.9) 

It was proved in [8] that if p%n +1 - r ) then [nI(p-1)]-[r/(p-T)]>t. Therefore, we can use 
induction on k and on n in (3.9) to prove Ak(p;n) is integral (mod/?). In fact, it follows from 
(2.5) that 

- ^ Ak(p; ri) = - | A- i fe *) + } A - i t e * - l ^ M H ^ M 

so if/? does not divide £, we see that -^Ak(p;ri) is integral (mod/?). Before putting this infor-
mation together In a theorem, we make the following definitions. 

Let ap(n;k) denote the exponent of the highest power of p dividing the denominator of 
B^~k^ and let vp(ri) denote the exponent of the highest power of/? dividing n\ It Is well known 
that if 

n = nQ+nlP + n2p2 + --+nmpm (Q<nf<p\ (3.10) 

then up(ri) = -^(n-^ ~ni nm)-

We can now state the following theorem. 

Theorem 3.5: Let/? be prime and let k > 0. Let n have base/? expansion (3.10) and let ap(n; k) 
and vp{ri) be as defined above. Then 

v-\ 
ap(n;k)< 

If pJ\(n - k) and p does not divide k, then 

ap(n;k)< 

-vp(n) = 
p-l 

P-I 
-J-

Corollary: Suppose n has base/? expansion (3.10) and suppose WQ+WJH \-nm<p-l. If 
pJ\{n-k) and/? does not divide k, then B^~k) =0(mod/?;). For example if ®<k <p-2 and 
7 > l , t h e n ^ - 0 ( m o d / ? 0 . 
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Theorem 3.6: Let Ak(p; ri) be defined by (3.8). Then, for h > 0 andp prime, 

Ak{p;h{p-Vj) = {-\)h^+
k
k^ (mod/;), (3.11) 

Ak<j>-h(p-\) + \)^(-\)h-\h + k-l)(*+
k
k^ (mod/7) (p>2). (3.12) 

Proof: We will use equation (3.9). It was proved in [8] that we can have 

pw\(n + l-r) and - \ = w 

only when w = 0 orw = 1. Thus, we have, for 0 < t < p-1, 

A^p-Kp-Vt + ̂ ^A^ip-hip-V + V-A^p-ih-lXp-V + t) 
r-i j 

-^———Ak(p;h(p-l)+i) (mod/?). 

In particular, for t = 0, we have 

^ % - 1 ) ) - 4 I ( P ; A ( P - 1 ) ) - ^ ( P ; ( * - 1 ) ( P - 1 ) ) (mod/7). (3.13) 

In [8] it was proved that (3.11) is true for k = 0. Also, Ak(p; 0) = 1. Thus, we can use induction 
on k and on /i in (3.13) to prove that (3.11) is true for all k and h. 

To prove (3.12), we first note that Theorem 3.4 tells us that if n + k is odd, then 

2 4 t e » ^ ) = Z^Vi)r+A4(p;^*)/'I(w+i)/(p-1)H(^)/(;'-1)]. 
Thus, 

24taA(p-l) + l)s(A(p-l) + l-*)4foA(p-l)) 

and the proof is complete. 
For certain values of n, Theorem 3.6 gives us the exact value of ap(n; k). For example, 

suppose p = 2 and 
n = n0+nl2 + n222 + --+nm2m ( 0 < ^ < 1), 

n + k = t0 + tl2 + t222+--+tm2m (0<tf <l), 
k = k0+kl2 + k222+'-+kmtm (0<*,- < 1). 

By Theorem 3.6, we see that if kt < tt for all i, then 

a2(n; k) = n-u2(n) = n0 +nx + •*• +nm. (3.14) 

In particular, if n - 2J, then a2 (/?; £) = 1 for all & * w; that is, if n is a power of 2, then 2, but not 
4, divides the denominator of B^~k) for all k such that 0<k <n. More generally, if 2J\n and 
£ < 2 y , then (3.14) holds. 
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Theorem 3.7: If p > 5, we have 

B% =±p2(p + 2)\(p + 12bp+l) (mod/ ) , (3.15) 

Bfi\^±p2(p + 4)\(3p + 2)bp+3 (mod / ) , (3.16) 

where bn is the Bernoulli number of the second kind, defined by (2.11). In general, 

B$Jk = 0 (mod/?2) {* = l , 2 , . . . , I ( p -3 ) j . 

Proof: In (3.5), let n - p and let k - 2. Then we have 

8% =^(p + 2)(p + l)s(p, \)p" + ^{p + 2)Bp^\\)p2 

= ±(p + 2)\p3
+±(p + 2)(Jp + l)\bp+1p2 (mod / ) , 

and (3.15) is proved. Now in (3.5) we let n = p and k = 4 to get 

3(p + 5)Bpi\ = f f ^ V ^ O ) / / (mod/). 
r 

r=2 v 

By (2.17), Theorem 3.2, and (3.15), we see that 

p3Bp^(l) = 0 = p4Bp^(l) ( m o d / ) . 
Thus, we have 

6 SJ&^(P+4)B&lW ( m o d / ) . (3.17) 

By (2.5), (2.12), and Theorem 3.2, 

B&l)(l) = -\(P + 1)B$2) ^±(p + l)(p + 2)(p + 3)\bp+3 (mod / ) , (3.18) 

and we know (p + 3)\h3 is integral (mod/?) by (2.12). The proof of (3.16) now follows immedi-
ately from (3.17) and (3.18). The last statement of Theorem 3.7 is clear from (3.5) and the proof 
is complete. 

We next derive another formula like (3.4). By (2.7) we have 

—B^iz) = nY$(n,r)zr~\ so B™ = nf-s{n,r)zr +B%\ 
dz ~ ~ r 

Integrating A: times, using (2.3), we get 

^^c-) - ( ^ ijf (r^)_1-(« -^ -)^"+iO)^-}^^ • (3-i9) 
Equation (3.19) also follows directly from the second equality of (2.2). By (3.2) and (3.19) we 
have, for n + k odd, 
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-2^^= (2tl) | : ( i^) ^ ^ ^ +±("^>^-y«y- (3-20) 
Carlitz [4] proved that B^ is integral (mod p), p>3, unless m = 0(modp-l) m\dm = 0 or 
p - 1 (mod p), in which case pB^ is integral. We note that by (3.20), with n + k = m and n = p, 
we can say: If m is odd, if p\m, and if p-1 does not divide m-l, then B^ = 0(mod/?2). 

4. THE NUMBERS B ^ 

Because of their close relationship to the Bernoulli numbers of the second kind, that is, 
B^n~1^ = (l-ri)n\bn (proved in section 2), the numbers J5^_1) deserve special consideration. We 
first note that, by (2.15) and (2.16), we have the generating function 

r 2 

• = I # " (l + x){log(l + x)}2 ~0 " n\ 

If we integrate the right side of (2.8) we have, for n > 0, 

^""1)=0-»)i-Lr^,'-X (4.1) 

which provides a way of computing 2^"_1) if a table of Stirling numbers is available. For example, 

Equation (4.1) was also given in [9], p. 267, as a formula for bn. 
Another useful formula is the following: If n is odd, then 

V sr=Q r + l 

Equation (4.2) follows from [9], p. 267, 

(n + l)\*¥n+2(z) = %— s(n + l,ry+l
+(n + l ) \ h n + 2 , (4.3) 

Z^r + l 
where ^„(z) is defined by (2.13). If we plug z = n into (4.3) and use x¥n+2{n) = (-l)nbn+2, which 
follows from (2.14), then (4.2) follows for odd n. We can now prove the following theorem. 

Theorem 4.1: lin is odd and composite, n > 9, then B^n
+2

l) = 0 (mod n4). 

Proof: It was proved in [8] that if r >3 and n is odd and composite, n>9, then -^nr+ = 0 
(mod??4). Thus, by (4.2), we have 

C 2 1 ) - ( " 2 2 ) { ^ ( " + 1'1)"2+l5(" + 1'2)"3} (mod«4)- (4-4> 
Now for n composite and n > 9 (see [6], p. 217), 
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$(n + \l) = -n\ = Q (modw2), 

$(n + l,2) = «! ! + - + - + • • • + - 1 = 0 (modw). 

Also, we can easily see that if 3J \n9 then 

s(« + l,2) = 0 (mod3y+1) ( j>2) . 

Thus, Theorem 4.1 follows from (4.4), and the proof Is complete. 

For convenience, we again use the notation 

A1(p;n) = tAjL 5(»-D. 
n\ 

Because of (2.12), many properties of hn and^w-1) follow from properties of B^\ Using 
results in [8], we can write down the following: 

1 
\-n 

4(2; n) = 1 (mod8) (n * 1), (4.5) 

—^-A^lrJ^i-iy-^Sp+Sr + l) (mod9), (4.6) 
2 r - l 

— 4(3;2r + l) = (-l)r"1(4r3+3r2+l) (mod9) (r > 1). (4.7) 
2r 

Congruence (4.5) gives us a2(n; 1), the exact power of 2 dividing the denominator of B^~l). 
Using the notation of section 3, we have a2 («; 1) = n - v2 (n) - j = nQ + nx + • • • + nm - j , where 2J 

is the highest power of 2 dividing n-\ and w0,w1?..., nm are the digits in the base 2 expansion of 
n. Similarly, if n is not an odd integer congruent to 2 (mod 3), then (4.6) and (4.7) give 

a3(n91) = •u3(n)-j-- j . (4.8) 

where 3J is the highest power of 3 dividing n-\ and nQ,nl9 ...,nm are the digits in the base 3 
expansion of n. Ifn is an odd integer congruent to 2 (mod 3), we must replace the first "equals" 
symbol in (4.8) by "<" 

We know from section 3 that -^Ax{p\ n) is integral (modp) for any n ^ 1. 

Jordan [9], p. 267, proved {-l)n+\ >0 forn>0. Hence, we have (-l)nB^~l) >0(n> 1). 
In general, the sign of B^n~k^ is not known. It seems that the signs usually alternate when 
n-k>0, but there are exceptions. For example, B^ andBffl are both positive, B^ andB^ 
are both positive, B$ and B$ are both negative. 

Norlund [10], p. 461, gave a table of values for B(
n
n~l) for n = 2,3,..., 12, and Jordan [9], p. 

266, listed hn for n = 0,1,2,..., 10. We give here the first fifteen values of B^n~1^ with numerators 
and denominators factored. 
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n- k > 0, but there are exceptions. For example, B^ and Bffi are both positive, B^ and i?^4) 

are both positive, B$ and B$ are both negative. 
Norlund [10], p. 461, gave a table of values for B{

n"~l) forn = 2 ,3 , . . . , 12, and Jordan [9], p. 
266, listed bn for n = 0,1,2,..., 10. We give here the first fifteen values of J?^_1) with numerators 
and denominators factored. 

Table of the Numbers B ^ 

B^ = 0 5 ( 7 ) = 1494787 
1 8 2-32-5 

/ ? ( ! ) - J _ P(8) _ 2-73-167 
^ 2 ~ 2-3 ^ 9 ~ 5 
# ( 2 ) = _ 1 #(9) = 3-3250433 

3 2 10 22-ll 
D ( 3 ) _ i 9 . p(10) _ 37-52-173 

^ 4 - 2-5 ^ 1 1 ~ 22 
$ ( 4 ) - _ 9 ^C 1 1 ) - 11-541-4801-5273 

5 1 2 22-3-5-7-13 
o(5) _ 5-863 r>(12) _ ll3-2207-8329 

6 " 22-3-7 1 3 " 2-5-7 
£?(6) - 53-ll D(13) _ 13-132282840127 
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1. INTRODUCTION 

Several Interconnection networks have been proposed in literature for interconnecting com-
puting elements. The interconnection network usually forms a regular pattern, which is exploited 
by the algorithms running on the network. Some of the commercially available networks are the 
hypercube, mesh, etc., which are highly regular. The advantage of using such regular networks is 
that the algorithms written for one network can be extended with minimal effort to larger versions 
of the same network. However, networks like the hypercube, mesh, etc, have one significant dis-
advantage; they do not scale in increments of one. A hypercube scales in exponents of two, and a 
mesh scales in order of n or k, in an n x k mesh. 

A tree is the cheapest interconnection network but has unacceptably poor communication and 
fault-tolerant properties. On the other hand, the complete graph Kn is highly reliable but is 
extremely expensive. Some of the desirable properties of interconnection networks are high fault 
tolerance, small diameter, small degree, high connectivity, symmetry/regularity, etc. (most of 
which are conflicting properties). 

A class of networks called Iterative networks were proposed to address some of the draw-
backs of commercially available networks [3, 4, 7, 8, 12]. Iterative networks can be scaled in 
increments of one. In fact, they can scale by any k, where k > 1. Interconnection networks are 
often modeled as undirected graphs, where vertices correspond to processor-memory nodes, and 
edges represent full-duplex communication links between pairs of nodes. An iterative network of 
n nodes is a subgraph of the network with n + \ nodes. The algorithms running on iterative 
networks require minimal modifications when extended to scaled versions of the network. This is 
a significant advantage over networks like hypercube, mesh, etc. 

Some of the proposed iterative networks that have appeared in literature are mentioned 
below. Stirling networks [3] are defined using Stirling numbers of the first kind. Rencontres net-
works [4] are defined based on rencontres numbers. Pascal networks [7] are defined using the 
Pascal triangle. Several others, like Steinhaus networks [12], Circulants [2], Topelitz networks 
[8], etc., have also been proposed in literature. All of these have some of the desirable properties 
of interconnection networks, but also have certain drawbacks. So the search for new inter-
connection networks for various classes of problems continues. 

* Supported in part by the National Science Foundation under Grant Number CDA-8805910, 
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In this paper we introduce a new class of iterative networks using Fibonacci numbers, which 
we call Fibonacci networks. We investigate their graph-theoretic properties and study their suit-
ability for implementing multicomputer systems. The paper is organized as follows: In section 2 
we show how Fibonacci networks are constructed. In section 3 we explore some of the proper-
ties of these interconnection networks. We show that Fibonacci networks have most of the 
properties desirable in an interconnection network except that it has too many links making it 
expensive. We then show how the number of links can be reduced while still maintaining the 
basic structure of the network. We also explore the properties of the modified network and show 
that it still retains most of the desired properties of interconnection networks. In section 4 we 
show that routing can be accomplished very efficiently in Fibonacci networks. In section 5 we 
show how other networks can be embedded onto Fibonacci networks of comparable size. In 
section 6 we design some of the basic algorithms, like finding a minimum spanning tree, that can 
be implemented on Fibonacci networks. Finally, we present some concluding remarks. We have 
used standard graph-theoretic notation throughout this paper [6]. All logarithms are with respect 
to base 2 unless specifically mentioned otherwise. 

2. FIBONACCI NETWORKS 

Fibonacci networks are a class of iterative/recursive networks constructed as described 
below. Let fib(q) denote the q^ Fibonacci number Fq (0 and 1 being the 0th and 1st Fibonacci 
numbers, respectively). Let FT(r, k) = Jib(k + YJiZl i) for 0<k <r. Annxn symmetric matrix 
is called & Fibonacci Matrix FMp(n) of order n if its main diagonal entries are all 0 and its lower 
triangular entries (and, therefore, upper also) consist of the {0, 1} predicate values {FI(n-\ k) 
(mod/?) ^0 ) , wherep is usually a small prime. (Later we will show how this definition can be 
extended whenp is a set of primes.) Let 

Then, by definition, 

and hence, 

Mj = & i ) * element of FMp(n) e {0,1}, 

Aj = ft jyh e l e m e n t o f FT(n, k) GN. 

MP,j=(fU,j (modp)*0\ 

x=Q 

or, alternately, 

fflj = \fiiQ ^f 2)+,/|(mod/>)*0|, y = l,2,...,i-l. 

An undirected simple (without parallel edges or self loops) graph that has FMp{n) as its 
adjacency matrix is called a Fibonacci Graph FGp(n) or order n. The vertices are numbered in 
the same order as the rows of FMp(n). Figure 1 depicts Fibonacci Graphs FG2(l) to FG2(S); 
Matrix 1 shows the matrix FM2(S). 
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e o 

FG2(1) FG2(2) FG2(3) FG2(4) FG2(5) 

FGZ(6) FG2(7) FG2(8) 

FIGURE 1. Fibonacci Graphs: FG2(1)-FG2(&) 

fO 1 1 1 1 1 1 O 
1 0 0 1 1 0 1 1 
1 0 0 0 0 1 0 0 
1 1 0 0 1 1 1 1 
1 1 0 1 0 0 1 1 
1 0 1 1 0 0 0 0 
1 1 0 1 1 0 0 1 
1 1 0 1 1 0 1 0 ^ 

MATRIX 1: FM2(S) 

A Fibonacci network with n processors and prime p Is a mapping of the graph FGp(n). The 
vertices of the graph correspond to the processors and will be called nodes. The edges cor-
respond to the communication links between nodes. By definition, FGp(n) is a subgraph of 
FGp(n + \). Hence, Fibonacci networks can be constructed incrementally. Addition of a node 
causes new links to be added from the new node to some of the existing nodes. None of the 
existing links are deleted. 

Below, we list some of the symbols that are used throughout this paper. 

vi -» v • = Node vi is adjacent to node Vj. 
vf b-» v • = Node vi is not adjacent to node v.. 

fib(ri) = The «* Fibonacci number Fn. We redefine this notation for convenience. 
v;. = Vertex i in FGp(n) or node i in the corresponding network. 

(dkdk_x ...dldQ)= Decimal representation of a positive integer. d0 is the least significant 
digit and dk is the most significant digit. 

Diap(n) = The diameter of the graph FGp(n). 
Diap

f{n) = The fault diameter of the graph FGp{n). 
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degp(Vj)= The degree of vertex vt. 
pktm = Message packet m 

dest{pktm) = Destination node of packet m. 
ep(n) - The number of edges in the Fibonacci network FGp{ri). 

sp = The smallest integer greater than 0 such that/? divides fih{sp). 

Often we will omit the superscript/?, in which case/? is assumed to be 2. 
It should be noted that this construction is different from the construction of Fibonacci Cubes 

[11] which also use Fibonacci numbers in their construction. However, Fibonacci Cubes are more 
like the hypercube and scale in increments equal to the Fibonacci numbers. The construction in 
[11] involves representing each node by a Fibonacci bit representation and determining adjacen-
cies by differences in bit patterns. 

3, PROPERTIES OF FIBONACCI NETWORKS 

We first introduce some properties of Fibonacci numbers with respect to divisibility by primes 
and the degree of a vertex. The following lemma will be useful later. 

Lemma 1: Prime/? divides fib(J xsp) for all / > 0. 

Proof: We prove the lemma by induction on i. The base case is satisfied by definition of s 
By hypothesis, let us assume that p divides fih(j x sp) for some j . To prove that p divides 
Jib((j + l ) x j ) , w e invoke the following [9]: 

fib(n + *) = fib(k) x fibin +1) + flb{k -1) x fib{n). 

Substituting the above in fib({j +1) x s ), we get 

ftb(J xsp+sp) = fib{sp) x fib{j x sp +1) + fib{sp -1) x ftb(J xsp). 

Since/? divides fib{sp) by base case, and /? divides fib{jxsp) by hypothesis, p divides 
fib((j + l) xsp). A stronger property can be inferred immediately that p divides fib(m) if and 
only ifm = jxsp for some integer/, since s is the smallest integer for which/? divides fib(sp) • 

We define yet another property of sp. 

Theorem 1: Let p = (dkdJc_l ...d^) be a prime less than 40; if p has t decimal digit repre-
sentation, then df = 0 for all i > (t -1). 

(/? -1) ifd0 = l or (d0 - 9 and dx is odd), 
P i f^0=5, 
(/? +1) if (d0 = 2) or ((dQ = 3 or 7) and di is even), 
(/? +1) / 2 if ((d0 = 3 or 7) and (dx is odd)), 
(/? -1) / 2 if ((d0 = 9) and (dx is even)). 

Proof: We have verified the preceding relation for all primes less than 40 (using Mathe-
matical In this paper we will limit ourselves to primes/? < 10 and will, therefore, assume this 
theorem to be true. • 

* />=< 
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Fibonacci Networks with p = 2 

We now introduce some properties of Fibonacci networks when/? = 2. From the previous 
section it is clear that s2 = 3. We will assume the superscript to be 2 whenever omitted, for con-
venience in notation. 

Proposition 1: The degree of a node vk, deg2 {vk ) in FG2 (ri), is given by 

e{k)-e{k-\) + X 
i=k+\ 

n fff i-2 \ 

V J=° ) 
(mod 3) * 0 

Proof: e(k) - e(k -1) sums all the " 1" entries in row k from column 1 until the main diag-
onal of the adjacency matrix FM2. The rest of the expression sums all the "1" entries in column k 
starting from row k + \ until row n of FM2. Since s2 = 3, we know that 

e(k) = s(k)- s(k) where s(k) = (kx(k-V))/2. 

Substituting for e{k) and e(k -1) in the above equation and simplifying, we get 

deg2(vk) = (k-l)- k(k-l) 
+ 

( * - ! ) ( * -2 ) + £ (((/2-3i + 2yfc + 2) (mod6))*o). D 
J i=k+l 

For k < i, matrix entry f2
k is "1" if and only if 

(((/2-3i+2 + 2Jt) (mod6))^0). 

We can now construct the following modulo 6 table for k < i. 

TABLE 1. Connectivity of FM2 

i 

1 
2 
3 
4 
5 
6 

i 2 

1 
4 
3 
4 
5 
0 

-3/ 
-3 

0 
-3 

0 
-3 
0 

fk(i) = i2-3i + 2k + 2 
2k 
2k 

2k+ 2 
2k 
2k 

2k+ 2 

Proposition 2: Node v3/+1 is adjacent to node v. for all j > (3/ +1). 

Proof: We first prove that vt -> v • for all j > 1. Since s2=3, the result then follows for all 
v3/+i • ^y definition, vx —> vi if and only if (fih(l + Z^io m) (mod 2)) ^ 0. Therefore,it suffices to 
prove that the value val(i) = (l + Y!~lQ rn) is not divisible by s2 - 3 for any / > 1. We prove this 
by contradiction. Let us assume that (((i -1) x (/' - 2)) / 2 +1 +1) is divisible by 3 for some /'. 
Thus, i2 - 3/ + 4 must be divisible by 3 for some /. Clearly if, for some /, 3 divides (i2 +1), then 3 
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cannot divide i2 (hence, cannot divide /). Thus, we have i2 = 1 (mod 3) for some i by Fermat's 
theorem. Therefore, i2 +1 = 2 (mod 3); hence, 3 does not divide (i2 +1) for any integer /'. D 

Proposition 3: Node v3/+1 is adjacent to node v for ally, if/ (mod 3) ^ 0. 

Proof: For j > ( 3 / + l), the proof follows from Proposition 2. For J < ( 3 / + 1), the entry 
>32

/+1 j is " 1" if and only if ((j + (3/"f3/)) (mod 3) * 0); the proof follows. • 

Proposition 4: Node v3k+2 is adjacent to node vt if and only if (/ (mod 3) ̂  0). 

i¥oo/> For entry fm2
3k+2 to be "1," ((3£ + 2 + (/~2f~1)) (mod3)*o). On simplifying, we 

need to prove that ((/"2 - 3/) (mod 3) * 0). This is clearly true if and only if (/* (mod 3) * 0). D 

Proposition 5: Node v3A: is adjacent to node v7 (where / > 3k), if and only if/ = 3j for somej > A\ 

Proof: For node v3it to be adjacent to node vi9 u3k + (l~2f~l)) (mod 3) ̂  Oj, when i = 3y for 
some j > k. On simplifying, we need to prove that ((/' - 3/ + 2) (mod 6) ̂  0) for / = 3/. On sub-
stituting for / = 1, 2, ..., 6, we find that vf. —» v3k if and only if/ = 3/ for somej > &. D 

Proposition 6: Let £(//) be the number of edges added to FG(n -1) to get FG(n). Then 

[2x(f)-l if// (mod3) = 0, 

r(/i) = j 2 x [(f)] - 1 if n (mod 3) = 2, 

12x[(f)]-2 if// (mod3) = l. 

Proof: The proof follows directly from the definition of FG2 (n) and Lemma 1. • 

Proposition 7: The number of edges e(ri) in the Fibonacci network FG2 (n) with n nodes is 
given by 

ff x(w-l) if w (mod 3) = 0, 
e(//) = < e(/? -1) + t(n) if // (mod 3) = 1, 

I e(n - 2) + ?(//) + /(// -1) if n (mod 3) = 2. 

Proof: From Proposition 6 and Proposition 1, we know that e(3k) = e(3k - 3) + 6(& -1) + 2. 
Solving this recurrence we get 3(3k) = kx(3k-l). The result follows from this equation and 
Proposition 6. D 

Proposition 8: The maximum degree of a vertex in FG{n) is n - 1 . 

Proof: The proof follows from Proposition 2. The degree of vertex vx is n -1. • 

Proposition 9: The diameter Dia(n) - 2. 

iVo^- The ^ ( V j ) = 71 - 1 . This means that the diameter of FG(n) is < 2. • 
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Proposition 10: Node v3 has minimum degree in FG(n) forn>3. 
Proof: From Proposition 3, we know that the degree of nodes v3/+1 increases by at least 2 

for every 3 nodes added to the network. From Proposition 4, the degree of nodes v3/+2 increases 
by 2 for every 3 nodes added in the network. From Proposition 5, the degree of nodes v3/ 

increases by only 1 for every 3 nodes added in the network, when the nodes have numbers greater 
than 3/ and increases by 2 otherwise. So the node with minimum degree is the smallest v3i node, 
which is v3 and its degree is [f J. D 

Proposition 11: The node connectivity of FG(n) = deg(v3). 

Proof: To prove that there are at least [f J node-disjoint paths between any 2 nodes (let us 
say, vi and v.) of FG(n)9 we show that both vt and Vj can reach all the nodes v3q+l, where 
q < (deg(v3) -1), either directly or through a nonintersecting set of node paths or vz -> v.. Let 
deg(y3)-l = k. 

Case 1. Integers / and 7 are both greater than 3A + 1. By Proposition 2, both vt and Vj are 
adjacent to v3q+l for q e{0,1,..., k}. Therefore, there are at least k + \ node-disjoint paths 
between v, and Vj. 

Case 2„ Integers /' andy are both less than 3k +1. We have three subcases to prove. 
a. If / = 3r +1 or i = 3r + 2, then, from Propositions 3 and 4, we know that vt —» v3q+l for 

q = {0,l,. . . , * } . 
be If / = 3randv- is not adjacent to v3q+l for some q<k, then, from Proposition 5, 

vi —» v3q+3 and v3^+3 —> v3q+l. Likewise, we can prove for Vj. 
€• If Vj and v,- are not adjacent to the same v3q+l for some q, then, by Proposition 5, 

v- —•> v • 

Case 3. One of/ or j is less than 3& + 1 and the other is greater. This is just a subcase of 
Cases 1 and 2. If the node number is less than v3k+1, then Case 1 holds, and if it is greater, Case 2 
holds. 

The proof follows from these three cases. • 

Proposition 12: The fault diameter Diaf (n) - Dia(n) +1. 

Proof: First, we show that the network remains connected in the event of deg(v3) -1 node 
failures. We then show that the diameter of the fault-free network increases by at most 1. In the 
worst case, nodes v3q+l all fail where q={0,l,..., deg(v3) - 2} since they are the nodes with maxi-
mum degree. We show that every node v, can reach v3x+1 where x - deg(y3) -1. We have two 
cases to consider: 

Case 1. / > (3x + 1). In this case we know, from Proposition 2, that vi -> v3x+1. 
Case 2. / < (3x +1). In this case, if / = 3r +1 or 3r + 2 for some r > 0, then, from Proposi-

tions 3 and 4, vi —> v3x+l. If / = 3r for some r > 0 andy = 3y + 2 for somej > 0 as shown in the 
connectivity proof. 

Thus, the fault diameter Dia^- (n) = Dia(ri) +1. D 
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Proposition 13: FG(ri) is nonplanar for all n > 1. 

Proof: The graph FG(7) has K5 as a subgraph (nodes: v1? v2, v4, v5, and v7). Therefore, by 
Kuratowski's theorem, the proof follows since FG(n + l) is a subgraph of FG(ri) for all integers 
n>7. D 

Fibonacci Networks with p = 2 and 3 

When/? = 2 as shown in Proposition 7, the number of links in the network is very high (order 
n2). A simple way to reduce the number of links while still retaining most of the properties of the 
network is to modify the definition of FMP (n), where p is a set of primes {Pi,p2,--,Pk}- So, in 
this case, we have 

/ 
X = fib 

i-2 \ 

m=0 J 
and 

finpf j = (X (mod/?j) * 0) x (modp2) * 0) x ••• x (X (modpk) * 0), for/ </. 

The rest of the definitions remain the same. The above construction deletes some of the links in 
the original network. FMp{ri) is a symmetric n x n matrix whose main diagonal entries are all 0, 
and its lower triangle (and, therefore, upper also) consists of entries finpfj The graph which has 
FMp{ri) as its adjacency matrix is represented by FGp(n). The graphs FG{2,3}(1) through 
FG{2'3}(iO) are shown in Figure 2 and the matrix FM{2,3}(10) is shown in Matrix 2. For all 
n > 0, FG{2'3} (n) is a subgraph of FG2 (n). 

FG{2'3>(1) FG{2'3>(2) 

FG{2'3>(7) 

FG{2>3}(3) 

FG{2>3)(8) 

FG{2,3)(4) FG{2'3>(5) 

FG{2,3)(9) 

FG{2>3}(6) 

F G R 3 } (10) 

FIGURE 2. Fibonacci23 Graphs: FG{2>3](t)-FG{2'3](W) 

336 [AUG. 



FIBONACCI NETWORKS 

' o i i o i i o i i i\ 
0 0 1 0 0 1 1 0 1 
0 0 0 0 1 0 0 1 0 
1 0 0 1 1 1 1 0 0 
0 0 1 0 0 0 1 0 1 
0 1 1 0 0 0 0 1 0 

0 1 0 1 0 0 0 0 1 1 
1 0 1 1 0 0 0 0 0 
0 1 0 0 1 1 0 0 0 
1 0 0 1 0 1 0 0 0y 

Matrix 2: FM2>3(W) 

For the remainder of this subsection, the superscript {2, 3} is assumed and is omitted for the 
sake of clarity. From Theorem 1, we know that s2 = 3 and $3 = 4. Before exploring the connec-
tivity of this modified network, we first prove a lemma that will be useful in later proofs. 

Lemma 2: fib{n) is divisible by 12 if and only if n is divisible by 12. 

Proof: We prove the lemma by induction. The base case is clearly true since fib(\2) = 144. 
By hypothesis, let fih(\2 x k) be divisible by 12. We must prove that 12 divides fib{\2 x(k +1)). 
But from [9] we have fib(U x(k +1)) = 144 x fih{\2 x k +1) + 89 x fib(\2 x k). Since 12 divides 
fih(\2 x k) by hypothesis, the lemma follows. D 

s{n) 
3 

- s(n) 
4 

+ s(ri) 
~\2 

Proposition 14 Let s{n) = SJLj /', then 

e(n) = s(n) -

Proof: The total number of edges is equal to the number of" 1" entries in the lower triangle 
of FM{2,3}(n). Since s2 = 3 and s3 = 4, the above expression follows from the principle of inclu-
sion and exclusion. D 

Proposition 15: The degree of a node vk, deg{2-3}(vk) in a network FG{2,3}(n), is given by 

e(k)-e(k-l)+^((X (mod3) * 0) & (X (mod4) * 0)), 
i=k+i 

whereX = (£ + i ; - 2
0 7) . 

Proof: This follows using the same outline as shown in the proof of Proposition 1. D 

For k </', the matrix entry ftnpf^ is "1" if and only if 

(((/2 - 3/ + 2 + 2k) (mod 6) * 0) & ((/2 - 3/ + 2 + 2k) (mod 8) * 0)). 

The expression inside the summation forms a field modulo 24 and the degree of nodes increases 
symmetrically with the addition of every 24 nodes (see Table A-l in the Appendix). 
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Proposition 16: If a node v. H-> v3/+1 for some j > (3? +1), then Vj h-> v3i+4 and vice versa. 

Proof: Let X = ((3/ +1) + Z{Ii k). We need to prove that X+ 3 is not divisible by 4 if Vj K> 
v3/+1. We know that if v. h-> v3/+1 for some j > (3/ +1), then, by Proposition 2, X must be divisi-
ble by 4. Since Xis divisible by 4, X+ 3 cannot be divisible by 4. Hence, Vj K> v3i+4 if v} K> v3/+1. 
The vice versa proof follows similarly. • 

Proposition 17: The maximum degree of a node in FG(n) = deg(vx) = deg(v4). 

Proof: This follows from Proposition 15. The degree of node vx for every 24 nodes is 
deg(vl) = deg(v4) = llk,wherQk = l%\. • 

Proposition 18: The diameter ofFG(n), Dia(n) - 3. 

Proof: The proof follows from Proposition 16. 

Proposition 19: The minimum degree of a node in FG(n) = deg(v3). 

Proof: This follows from Proposition 15, using the same argument as in the proof of Propo-
sition 10. The degree of node v3 for every 24 nodes is deg(v3) - deg(v9) = l + 6k, where [^J. D 

4. ROUTING 

Routing in Fibonacci networks can be preformed very efficiently because of their high con-
nectivity. We consider the case in which/? = 2. We exploit the fact that nodes v3/+1 h-»Vj for all 
7>(3i + l). 

Input: A one-to-one permutation showing source and destination nodes. 
Output: A path for each packet to be routed. 

Step 1. Each node Vj routes its packet to node v7, where ((/ = max(3& +1)) < j). 
Step 2. Each v, that receives a packet in Step 1 routes the packet pktm to v£ such that 

((I = max( 3r +1)) < dest{pktm)). 
Step 3. Each vi that receives a packet in Step 2 routes the packet pktm to dest(pktm). 

The algorithm clearly runs in constant time. The number of packets at any node at any given 
instance of time is at most 3, assuming that each processor node works in synchronous lock step. 

When/? = {2, 3}, the routing algorithm requires only a minor modification, as shown below. 
If Vj h-» v;, where ((/ = max(3& +1)) < j), then, by Proposition 12, Vj h-» v3lc+4. So, if Vj h-> v3k=l 

for some v. in the previous algorithm, it reroutes through v3k+4. This increases the routing 
complexity by 2 steps for certain packets and the maximum number of packets queued at any 
node at any given time is at most 6. The algorithm still runs in constant time, with constant queue 
lengths. We have shown that a network with/? = 2 can be simulated by a network with/? = {2, 3} 
with a loss of speed by a constant factor only. 
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5, REDUCING THE TOTAL NUMBER OF LINKS 

In Section 3 we showed how we could reduce the total number of links by using a higher 
prime number to prune some of the links. By using prime '3,' the number of links was reduced by 
17%. In this section we describe three methods of further reducing the total number of links 
while maintaining the basic structure of the network. 

1. Using higher primes: We follow the same technique as described in the construction of 
Fibonacci networks with primes 2 and 3. The following table shows the effect of using higher 
primes on the total number of links. 

TABLE 2e Effect of Using Larger Primes 

Primes Used 
3 

3,5 
3, 5, 13 

3 ,5 , 13,7 

Percentage of Links Pruned 
17 
27 
32 
35 

New Diameter 
3 
4 
6 
7 

The number of links reduces by 35% from FN by using four more primes. The number of 
links pruned is computed using the principle of inclusion and exclusion, as shown in the proof of 
Proposition 14. The diameter results follow, using the argument given in the proof of Proposition 
18. It should be noted that the primes/? were selected based on the smallest s values (sl3 <s7 
<sn). The diameter, which reflects the slow-down in the routing time, increases almost linearly 
with the number of primes used. Therefore, the routing time slows down by a factor of 7, while 
35% of the links in iWhave been pruned. We observe that using primes higher than 13 results in 
diminishing returns. 

2* Bounding maximum degree to log(#i): The second technique that can be used is to 
bound the maximum degree of each node to log(w) (or any predefined constant) for n > c (where 
c is a suitable constant). Therefore, for a network of size less than c, the network is identical to 
FN. For n> c"l" entries in the matrix are set to "0" if the degree of the corresponding node has 
already reached log(n). It can easily be shown that the diameter of this network is 0(log(«)) and 
the total number of links is e(ri)<nxlog(ri). This network is quite similar to the hypercube. 
However, this technique does not preserve the basic structure of the Fibonacci network. The 
routing algorithm will have to be appropriately modified. 

3„ Cube connected Fibonacci network: The third technique is to replace each node in FN 
by a cycle of length equal to the degree of the node (just as is done in Cube Connected Cycles). 
This will increase the diameter of the network while reducing the overall degree. However, a 
problem with this approach is that the network is no longer scalable by one node. 

6. EMBEDDING OF VARIOUS TOPOLOGIES 

Claim 1: A complete binary tree of k levels (containing 2* - 1 nodes) is a subgraph of FG(3 x 
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Proof: We show that a complete binary tree of k levels can be mapped on FG(3 x 
(2k~l -1)). From Proposition 2, we know that v3l-+1 -> Vj for all j > (3/ +1). As shown in Figure 
3, we assign the nodes of level 1 through level k-l processor nodes v3.+1 in order, where 
7 e {0,1,... > (2k~l - 2)} Each node v3J+l in level k - 1 is adjacent to nodes v3y+2 and v3j+3, which 
form the leaf nodes. The number of processors required up to k-l levels is 3 x (2k~l - 1 ) - 2 . 
Therefore, the last leaf node processor required is 3 x (2k~l -1) 

11 12 14 15 17 18 20 21 

FIGURE 3. Embedding a Complete Binary Tree on FN 

Claim 2: A complete ringed binary tree of k levels (containing 2k -\ nodes) is a subgraph of 
FG(3x(2k-l)-2). 

Proof: We follow the same outline as in the previous proof. We construct all k levels the 
same way as we construct k-l levels in the previous proof. From Proposition 2, we know that 
v3j+l —> Vj for all j > (3? + 1). As shown in Figure 4, we assign the nodes of level 1 through level 
k, processor nodes v3,+1 in order, where j = {0,1,..., (2k -2)}. 

340 

FIGURE 4. Embedding a Ringed Binary Tree of FN 

[AUG. 



FIBONACCI NETWORKS 

Claim 3: A rectangular mesh of size £ + k is a subgraph of FG(\^]). 

Proof: We show how the mesh can be embedded on FG(n). All nodes vi such that / 
(mod3) ^ 0 can be arranged in increasing order, row-wise. The horizontal adjacencies are guar-
anteed by Propositions 2 and 5 above, and the vertical adjacencies are guaranteed by Proposition 
2. Only every third node v3J is not used in the embedding. Therefore, the number of nodes used 
is p—^-l An example embedding of a 4 x 4 mesh is shown in Figure 5. 

i 
Q-

2 
- Q -

4 
-Q-

76 s-6 ^ — 6 1 1 

5 
-Q 

1 3 6 — % #*—617 

O-
19 20 

-o-
22 23 

FIGURE 5. Embedding a 4 x 4 Mesh on FN 

Claim 4: A complete bipartite graph K^ n is a subgraph of FGiri). 
Proof: We show how the complete bipartite graph can be embedded on FG(n). We group 

the nodes vf, where i * 3k into two halves such that the lower half of the processor nodes are in 
one group and the upper half of the processors are in the other group. Each processor node in 
one group is adjacent to each processor node in the second group by Propositions 2 and 5. 

Claim 5: An «-cube is a subgraph of FG(3 x 2n~l). 

Proof: This follows immediately from the previous embedding proof. An example embed-
ding of Q3 (3-cube) is shown in Figure 6. 

FIGURE 6, Embedding a Hypercube Q3 on FN 
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7. IMPLEMENTATION OF DISTRIBUTED ALGORITHMS 

In the previous section we showed how some of the common topologies can be mapped onto 
FG(n). The algorithms that run on various topologies can be implemented on FG(n) with minor 
modifications. Below, we show how a minimum weight spanning tree can be computed on FN 

Minimum Weight Spanning Tree 
The problem is to find a spanning tree with minimum sum of edge weights in a given 

undirected, connected, weighted graph G, with N nodes. We show how this problem can be 
implemented efficiently on FG(n). We implement Prim-Dijkstra's algorithm on FG(n). A set T 
contains the set of nodes currently in the spanning tree, and a set E contains the set of edges 
currently in the spanning tree. We adapt the procedure outlined in [3], as follows: 

Input: A graph G with N nodes and an adjacency matrix. 
Output: A set of edges marked as belonging to the minimum weight spanning tree. 

Step 1. T<r-$. E<-$. 
Step 2. Partition the nodes of G equally among the n processor nodes of FG(n) so 

that each processor node is responsible for \N ln\ nodes. 
Step 3. T<r-vertex one of G. 
Step 4 Each processor examines its subset of nodes not in J and selects closest 

neighbor to T {closest in terms of edge weight). 
Step 5. Processor Px finds the globally closest neighbor, say vk. 
Step 6. T^-T^jvk. E <- E^jedge(T,vk). 
Step 7. Processor Px broadcasts vk to all processors. 
Step 8. Each processor updates its closest neighbor information. 
Repeat Steps 4 through 8 until all nodes have been included in T. 

Steps 1, 2, and 3 require one time unit. Step 4 requires 0([N /n\) time units in parallel. 
Step 5 requires 0([N /rf\) time units by processor one. Steps 6, 7, and 8 require one time unit. 
Steps 4 through 8 are repeated N times. The overall complexity of the algorithm is 0(N2 In) 
The sequential algorithm takes 0(N2); hence, this algorithm is optimal. 

8. COMPARISON WITH OTHER ITERATIVE NETWORKS 

We computed various structural properties of known iterative networks from Path to Com-
plete networks of 35 nodes. Table 3 below shows these properties. Let 

tot-deg = The total number of links in the network. 
non-plan = smallest network size for which the network is nonplanar. 
min-node = The node with the minimum number of links 
min-deg = The degree of min-node. 

max-node = The node with the maximum number of links. 
max-deg = The degree of max-node. 
inc-deg = Increase in degree with the addition of a node. 

dia = The diameter of the network 
f-dia = The fault fiameter of the network 
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inf = Disconnected network 
SG(n) = Stirling network of n nodes. 
PG(n) = Pascal network of n nodes. 
RG(n) = Rencontres network of n nodes. 

TABLE 3. Comparison of Iterative Networks 

Network 

Path 
Stirling 
Rencontres 
Pascal 
Fihonacci23 
Fibonacci 
Complete 

tot-deg 
34 

169 
166 
291 
298 
397 
595 

non-plan 
inf 

8 
7 
7 

10 
7 
5 

min-node 
1 
1 

34 
26 

3 
3 
1 

min-deg 
1 
2 
2 
7 
9 

11 
34 

max-node 
2 

31 
2 
1 
1 
1 
1 

max-deg 
2 

17 
18 
34 
26 
34 
34 

dia 
34 

6 
3 
2 
3 
2 
1 

f-dia 
inf 

9 
3 
3 
4 
3 
2 

The Path network has very low connectivity and is not fault-tolerant. The number of links in 
the Rencontres network, the Stirling network, and the Pascal network does not scale uniformly. 
These networks are not symmetric either. Fibonacci networks have too many links, making them 
prohibitively expensive. 

In [5] it was shown that a full ringed binary tree with 2* - 1 nodes is a subgraph of 
SG(2k -1) for k > 2, a, foil ringed tree machine of 3(w / 4) - 2 nodes when n = 2k - 1 for k > 3 is 
contained in SG(n) for any £<k, a rectangular mesh of size 2l x2k~£ is embedded in a sub-
network induced by the nodes 2k through 2k+l of SG(ri), and a binary hypercube is a homeo-
morphic subgraph of SG(2t+1 -1) for t > 3. 

Embeddability of the Rencontres network and the Pascal network have not been studied 
extensively. However, in [4] it was shown that RG(n) contains a Hamiltonian circuit of n nodes 
and the Complete bipartite network K^n is a subgraph of RG(2n). In [7] it was shown that 
PG(n) contains a startree for all n > 1, that PG(n) contains a Hamiltonian circuit [1, 2, ..., n-1, 
w, 1], and. that PG(n) contains Wn - x (wheel of order n minus an edge). 

In section 6 we showed that various popular topologies can be embedded onto FN It is clear 
from the above that we need to be able to fine-tune a network design that "has characteristics 
almost midway between the Path networks and the Complete networks. 

9. CONCLUDING REMARKS 

Fibonacci networks have many properties desirable in interconnection networks. They have a 
small diameter, high fault tolerance, rich connectivity, small fault diameter, simple and fast rout-
ing, etc. A major disadvantage of the network is its high coast because of the large number of 
links (0(n2)). We have suggested several ways of reducing the number of links symmetrically so 
that the basic structure of the network is still maintained. This method of reduction has been 
shown to cause only constant factor loss of speedup (especially in routing). Broadcasting can be 
accomplished in constant time assuming that node vx has enough buffer space to queue messages. 
Yet another method of reduction which could be used is to prune links least used by the routing 
algorithm.. Several basic algorithms can be mapped onto Fibonacci networks. We are currently 
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working on embedding other interconnection networks on Fibonacci networks and improving the 
efficiency of some basic algorithms running on Fibonacci networks. 

10. APPENDIX: TABLES A-l AND A-2 

Let 
knum - the number of nonzero entries in fl and/2 in Table A-l. 

rknum{j) = the number of nonzero entries in the first j entries in Table A-l. 
rem - n (mod 24). 

The expression for degree of a node vk in FG2,3(ri) is given by 

deg{vk) = knum x 
24 

+ rkmm(rem). 

It should be noted that Table A-l can be used only for the construction of the lower triangle 
of the adjacency matrix. Therefore, Table A-l is true only when k < i. Since the adjacency matrix 
is symmetric, the upper tirangle is just a copy of the lower triangle. 

TABLE A-L Connectivity in FM{2'3} 

1 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

f£(i) = (i2 - 3/ + 2 + 2k) (mod 6) 

2k 
2k 

2 +2k 
2k 
2k 

2 +2k 
2k 
2k 

2 + 2A: 
2k 
2k 

2 +2k 
2k 
2k 

2 +2k 
2k 
2k 

2 + 2£ 
2k 
2k 

2 +2k 
2k 
2k 

2 +2k 

f?(i) = (j2 - 3/ + 2 + 2k) (mod 8) 

2k 
2k 

2 +2k 
2k-2 
2k-A 
4 +2k 
2k-2 
2 +2k 

2k 
2k 

2 +2k 
2k-2 
2k-A 
4 +2k 
2k -2 
2 + 2* 

2k 
2k 

2 +2k 
2k-2 
2k-4 
4 +2k 
2k-2 
2 +2k 
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The degree of a node vk increases as follows (see Table A-2) for every 24 nodes added to the 
network. 

TABLE A-2, Increase in Degree of Nodes for Every 24 Nodes 

rem 

inc. in deg. 
rem 

inc. in deg. 

1 

17 

13 

14 

2 

11 

14 

12 

3 

7 

15 

8 

4 

17 

16 

14 

5 

11 

17 

10 

6 

8 

18 

9 

7 

14 

19 

14 

8 

12 

20 

11 

9 

7 

21 

11 

10 

14 

22 

13 

11 

12 

23 

11 

12 

8 

24 

11 
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1. INTRODUCTION 

Let (JP, Q) = 1 and a and /? (a > /?) be the roots of x2 - Px + Q = 0. The Lucas sequence 
Un - Un(P, Q) and "associated" Lucas sequence Vn - Vn{P, Q) are defined, respectively, by 

v an-pn
 a n d vn^an^ji\n>^ (0) 

a- P 
In 1878 Lucas ([10], p. 225) obtained the following formula: 

±Qr"rIUinr=FIUr,r>\. 

Setting Q = ±l, it is seen immediately that, if P2 - 4 g > 0 , then vZ^=ll/U2nr is irrational, 
since Ur and Fr are integers, a - J3 is irrational, and [from (0)] /T = (Vr -Ur(a- /?)) / 2 is 
irrational. Special cases of this result were re-discovered in the mid-1970s for Fn = Un(l, -1) [6], 
[7], [9] (see [8] for a number of different methods for summing Y^=Qll Fr) 

It was now known until recently whether £*=1 \IUg{n) is irrational for any values of the par-
ameters P and Q if g{n)^2nr. Then, in 1987, Badea [3] answered a question posed by Erdos 
and Graham [5] when he proved that H™=01/ F2n+1 *s irrational. Andre-Jeannin [2] has shown 
that, if P > 0 and Q = ±1, Z^=11/ U„ is irrational, and in a recent work [4], Badea proved that 
Z^=11 / Ug{n) is irrational for P > 0 and Q < 0 if g(n +1) > 2g(w) - 1 for all sufficiently large n. 

In this paper we show that, for all Lucas sequences with P > 0, (P, g) = 1, and P2 - 4Q > 0, 
E^=11 / Ug(„) is irrational if g(n +1) > 2g(^) for all sufficiently large w, and show that if g(n +1) > 
2g"(w)-l for all sufficiently large 7? and g(n) is even, the result holds for all such positive 
parameters P and Q. We obtain similar results for Z^Li 1 IVg(n) 

Let £*=il/«fc be a series such that ak+l >a\ > 1 for k > 1, and denote the partial sum 
E£=11 /ak by x„ /yn , where x„ andyn = a}...a„ are natural numbers. If, now, E^Li \lak = alb,a 
and * natural numbers, then alb = xnl yn+ E^=11 / aw+yt; that is, 

0<ay„-bx„=b.±^^. 
Jc=l un+k 

The sequence {•̂ ~-}°°_ is decreasing if k = 1 and strictly decreasing if k > 1 (implying E^=1 ^ - ^ 
is a strictly decreasing junction of n\ since the ratio of the nth and (w +1)81 term is 

dn+k+l ^ u»+& 
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which equals 1 if k = 1 and is > 1 if k > 1. But this implies {ayn -bxn}™=l is a strictly decreasing 
sequence of natural numbers, which is impossible; hence, S^=1 llak is irrational. We thus have 

Theorem A: Let n > 0. If {an} is a sequence of integers, except for at most a finite number of 
terms that are noninteger rationals, and an+l >a2

n>\ for all large w, then the series T^=zQllarl is 
an irrational number. 

This result will suffice to prove Theorems 1, 2, and 4, and all but part (ii) of Theorem 3; for 
the latter, we require the following stronger criterion due to Badea [2] (rephrased to apply to 
sequences containing some negative and/or noninteger terms): 

Theorem B: Let n>0. If {an} is a sequence of integers, except for at most a finite number 
of terms that are noninteger rationals, and an+l > a2 - an +1 > 0 for all large n, then the series 
H™=0l/an is an irrational number. 

The meanings of U„ and Vn are extended to negative subscripts by defining U_n - -Un I Qn 

and V_n =Vn I Qn. With these definitions, the following known relations hold for all integers m 
[proofs are readily obtained from (0)]. 

u2m = umvm, ( i ) 
U2m+l=U2

m+l-QUl (2) 
Vlm=Vl-2Q\ (3) 

Vm>Um. (4) 

2e THE THEOREMS 

We assume that Q*0, P>1, and the discriminant D = P2 -2Q>0. It is known—and 
easily shown from (0)—that this assumption assures that {Un} and {Vn} are increasing sequences 
of positive integers. 

The proof of the following theorem, for Q < 0, is given in [4], but is included here for com-
pleteness. 

Theorem 1: Let g be an integer-valued function such that g(n +1) > 2g(ri) - 1 > 1 for all large n. 
The series Z^=0 1 / Ug(n) is irrational except possibly when Q > 0 and g(n) is odd for infinitely 
many values of«. 

Proof: Let an = Ug(n) for all n > 0 and let N be such that g(n +1) > 2g(n) -1 > 1 for n > N. 
Assume now that n> N. 

Case 1. g{n +1) odd. Let m = m{n) be such that g(n +1) = 2m +1. Assume Q is negative. 
By (2), 

an+l ~ ^g{n+l) ~ &2m+l = ^m+l ~ Q^m > ^m+V 

Then 2m +1 = g(n +1) implies m +1 = [g(n +1) +1] / 2 > g(n), so U2
m+l > U2

g{n). Hence, 
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Case 2. g(n +1) even. Since g(n +1) > 2g(n) -1 and g(n +1) is an even integer, g(n +1) > 
2g(ri). Letg(n + l) = 2rn. By (1) and (4), 

a*+l = Ug(n+l) = U2m = UmVm > U2
m. 

Since rn-g(n + l)/2>g(n), we again have an+1 >a\. Hence, by Theorem A, Z * = 0 l / ^ ( n ) *s 

irrational in each case. 

Theorem, 2: The series E^=01 / ^goo *s irrational if g is an integer-valued function such that 
g(n +1) > 2g(ri) > 1 for all sufficiently large n. 

Proof: Assume that TV > 1 is such that g(n +1) > 2g(n) > 1 for all n> N, and let n > N. By 
Theorem 1, the theorem is true if g{n +1) is even. Let g(n +1) = 2m +1 and let an = Ug^. Since 
m = [g(n +1) -1 ] / 2 > g(n) - 1 / 2 is an integer, m > g(n). By (1) and (4), 

<*n+i = uim+i > U2m = UmVm >U2
m> U2

g(n) = a 2 , 

proving the theorem. 

We now prove similar theorems for the series T^=0l/Vg{ny In 1987 Badea [3] proved that 
Z^Lo IIL2n is irrational (using Theorem B), and, more generally (in [4]), that Z^=0 l/^g(«) *s irm~ 
tional if Q = - 1 and g{n +1) > 2g(n). Andre-Jeannin [1] gave a direct proof that, for all positive 
integers k, H™=0(±l)n /Vn„ is irrational, and (in [2]) proved that H^=0l/Vn is irrational. Our 
Theorem 3 includes Badea's results and, for P > | g + l|, Andre-Jennin's result that E*=01/J^2„ is 
irrational. 

Lemma 1: Let k be a positive integer. If P > | g + l|, then, for all sufficiently large integers m, 

*Qm<vm-i 

Proof: It is easily seen that | p |=|(P - JD) / 21 < 1 if and only if P >\Q +1|, and that a > 1 for 
all P and g . Hence, there exists an integer M such that, if m > M , then | /? |w < 1 / 2k and a™ > 4. 
It follows that 

kQm=kampm<kam\p\m<am/2<am+pm-l = Vm-l 

It is readily shown that lim^^^ V2n+l IV2 = a > 1, and this result is sufficient to prove part (i) 
of Theorem 3. However, it is of interest that V2n+l > V2 for all n, with one exception. 

Lemma 2: lfn>0, then V2n+l > V2, with equality holding only when (P, Q, ri) - (3,2,1). 

Proof: Let r = fila and let 

„ , a2x+l+p2x+l
 1 a ( l+r 2 * + 1 ) 1 

f(x) = ——--1 = —̂  T^-h xreal. 
; ( a x + ^ x ) (1 + r*)2 

We first observe that / ( I ) > 0. Now, since P 2 - 4 0 > 0, 

f(l) = V3/V2-l = (P2-3Q)/P-l>P/4-l, 
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s o / ( l ) > 0 i f P > 4 , o r l fg<0. Since P2 - 4Q > 0 implies Q < 0 for P = 1 or 2, / ( l ) < 0 only if 
P = 3 or 4 and Q > 0. The reader may. readily determine that, if P = 3 or 4, / ( I ) > 0 with equal-
ity holding only when P = 3 and 2 = 2 . ' 

Casel. /?>0. Then0<r< l . Now, 

or 
_ (l + rx): /w^r"-,"hr>». 

implying that / i s a strictly increasing function of x; since / (« ) = V2n=l IV2 - 1 and / ( l ) > 0, we 
conclude that F2B=1 >V2. 

Caste 2. y?<0. If n is odd, by (3), 

Vn
2=V2n+2Q"=V2n+2(apy<V2n; 

hence, V2n+l -V2 > V2n+l-V2n > 0. Assume now that n is even. We let t = -/31 a (so 0 < t < 1), 
define 

. a(l-t2x+1) 

find that g is a strictly increasing function of x, and conclude, since g(n) = f(ri) with t = -r, that 
F2„+1 > V2 in this case, as well. 

Theorem 3: Let g be an integer-valued function such that g{n +1) > 2g-(w) > 1 for all large n. 
Then Z^=0 1 / Vg^ is irrational 

(i) if g{n) is an odd integer for all large n, or 
(ii) i fP> |g + l|. 

Proof: Let aw = Vg(<n) for all w > 0 and let N > 1 be such that g(n +1) > 2g(w) > 1 for w > # . 
Assume now that n> N. 

(i) Assume that g(n +1) is odd and let g(n +1) = 2m +1; since iw = [#(« +1) -1] / 2 > g(n) -
1 / 2 is an integer, m > g(n). Then, by Lemma 2, 

a»+l = Vg(n+l) = V2m+l > Vl * Vg(n) = <*!> 
proving (i). 

(ii) Assume that P>\Q + l\. We make the additional assumption that, if r>g(n), then 
Vr-l> 2Qr (possible by Lemma 1). By part (i), we may assume that g(n +1) is even; let g(n +1) 
= 2m. Then, by (3), 

®n+i=Vg(n+l)=V2m=V*-2Qm. 

By Lemma 1, 2Qm <Vm-\ and, since m > g(n), Vm > Vg^n), from which it follows that 

^+i=K-2Qm>V'-Vm+l = Vm(Vm-l) + l>a2-an + l. 

This proves part (ii), by Theorem B. 
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Theorem 4: The series £^=01 / Vg(„) is irrational if g is an integral-valued function such that 
g(n +1) > 2g(n) +1 > 1 for all sufficiently large n. 

Proof: Assume that g(n +1) > 2g(n) +1 > 1 for all n > some integer N > 1, and let an - Vg(<n). 
If n > N and g(n + l) is odd, then aw+1 >a^ by Theorem 3. Assume g(n + l) is even and let 
g(n + \) = 2m; then, since m>g(n) + l/2 is an integer, 7w>g-(«) + l, i.e., m-l>g(ri). By 
Lemma 2, 

an+\ = *g(w+l) = ' 2 / w > ^2/w-l ~ *2(/w-l)+l > 'm-l ~ ^g(w) = a « » 

proving the result by Theorem A. 

Examples: Since Fw = U„ (1, -1) , it is apparent that 

±\IFr, ±VFrk, and £ l / F , + 1 
«=0 n=0 w=0 

are special cases of Theorem 1. Other examples of series whose sum is irrational are 

f^l/U^ (c>lmdb>2) and J l / C ^ , * £ - l . 

In fact, it is readily seen that, for {U„} any Lucas sequence, J^=0l/Ug(n) is irrational if g(n) = 
chn - / ( « ) , where c > 1, b > 2, and/is an integer-valued function such that / ( « +1) < 2f{ri) for 
all large n, provided g(n) > 1 for all large n if could be, for example, any polynomial in n with 
positive leading coefficient). Similar examples illustrating Theorems 3 and 4 are readily obtained. 

It is interesting that the sum of the series Z^=0 l/U2nr, r > 1, found by Lucas for Q = ±l is 
not known for any other value of Q. Also, the sum of Z^=0 HVrr is not known (however, see 
[1]), for any value of Q, nor is the sum of any of the other series whose irrationality we have 
shown in this paper. 
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1. INTRODUCTION 

Let pn denote the nth prime and d(n) = pn+l-pn. Cramer [4], using a probabilistic argu-
ment, conjectured that d(n) = Q((log(pn))2). There have been several papers showing that 
d(n) = 0(p%) (e.g., [7], [8], [9], [10], [12]), for which the value of 9 has been reduced to 
20 ~ 384 • These papers naturally used sophisticated techniques. 

By using the Riemann hypothesis and other properties, one can show d(n) = 0(pH2(log(n))c) 
for some c > 0; for example, using the Riemann hypothesis in connection with other assumptions, 
Heath-Brown & Goldston [6] show that p„+l-pn = o(pl„/2(log(pn))in). 

As usual, the phrase "almost all n" means that the number of n < X for which the statement is 
false is o{X). Now if one is willing to give up the principle of having d(n) = 0(f(pn)) and, 
instead, demand d{ri)<f{pn) for almost all n, then, as Montgomery showed in [11], for almost 
all n, the interval [n, n + nl/5+£] contains a prime. Harman [5] showed that, for almost all n, the 
interval [n, n + nl/l0+£] contains a prime. Once again, sophisticated techniques are used. Better 
results can be achieved for these types of problems if one can incorporate the moment method 
found in the papers written by Cheer & Goldston [2], [3]. 

In this paper we will show that, if s > 0, K>1, and x is sufficiently large, then the number of 
indices n < x for which d(n) > K(iog{ri))l+£ is less than x/((K-l)(log(x)Y). Professor Erdos 
informs me that, if one incorporates Brun's method along with the Prime Number Theorem, then 
one can establish that the number of indices n < x for which d(ri) > K(}og{n))l+£ is less than 
(1- s)x / ((K(log(x)£)). The theorems in this paper, though weaker, are elementary and do not 
depend on Brun's method. We need the following definitions and results. Let M(x) be the set of 
all positive integers 6 < n < x for which d(n) < K(log(n))l+£ does not hold and let \M(x) | be the 
cardinality of M(x). 

^d„<px+l-2 (1.1) 
n<x 

pn </i(k>g(w) + loglog(w)), n>6. (1.2) 

It is obvious that (1.1) is a telescoping series. Rosser & Schoenfeld [14] proved (1.2). 

2. THEOREMS, LEMMA, AND THEIR PROOFS 

Lemma 1: Let 8 > 0 and let M(x) be the set of all positive integers 3 < n < x for which 
d(n) < K(log(n))l+£ does not hold. Let \M(x) \ be the cardinality of M(x). Then 

\M(x)\ 

X(log(«))1+* > j(log(t))l+£dt>t(log(t))l+£ - ( l + £)r(log(0y 
neM(x) 3 

|M(x)| 
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Theorem, 1: Let s > 0 and 
-l 

K>(x + l)(log(x +1) + log log(x +1)) ( log log* x 
1 logx 

Yf 
log(x) 

V 

r
x log log" xA 

logx -1-s 

Let M(x) = the set of positive integers 6<n<x such that d(n) / (log(n))l+s <K does not hold. 
Then|M(x)|<x/(log(x))*„ 

Proof; Let /(w) = (log(w))1+f and let Mf(x) = {n>6:n£M}, that is, the complement of 
M(x). We have 

X (/(»)-£/(«)) = £ (/(„)-,/(„)) + £/(»)(l-</(»)//(#»)). (2.1) 
6<«<x weM'(jc) neM(x) 

If w e M(x), then t/(«) / / (« ) > AT, and using this we see that (2.1) becomes 

X {f{n)-d{n))< £ (/(»)-rf(/i)) + ( l - * ) £ / ( » ) . (2.2) 
6<n<x neM'(x) neM(x) 

After several manipulations, (2.2) becomes 

X </(») + * I /(»)< !>(»). (2.3) 
neM'(x) neM(x) 6<n<x 

Dropping the first term on the left-hand side of (2.3) and using (1.1) and (1.2), we now see that 
(2.3) becomes 

K X 7 W < ( x + l)(log(x + l)-floglog(x + l)). (2.4) 
neM(x) 

Applying Lemma 1 to the left-hand side of (2.4) gives 

\M(x)\ 

K J (log(/))1+* dt<(x + l)(log(x +1) + log log(x +1)). (2.5) 
6 

From (2.5), we get a contradiction if |M(x)|> x/(log(x))*. Thus, \M(x)\< x/(log(x)Y. 

Theorem 2: Let s > 0 and K > 1. Let M(x) = the set of positive integers 6<n<x such that 
d(n) I (log(«))1+£* < K does not hold. Then, for x sufficiently large, we have 

|M(x)|<x/((A:-l)(log(x)r). 

Proof: The proof is the same as Theorem 1 up to (2.5). Now 
\M(x)\ 

K J(log(t))l+£ dt<(x + l)(log(x +1) + loglog(x +1)). (2.6) 
6 

From (2.6), we get a contradiction if |M(x)|> x/((K- l)(log(x))*). 

1994] 353 



A NOTE ON CONSECUTIVE PRIME NUMBERS 

3. CONCLUSION 

We can now determine that Theorem 2 almost proves Cramer's Conjecture. Let K > 1, e = l, 
then for x sufficiently large, by Theorem 2, we have that the number of indices n < x for which 
d(n) I (logO?))2 < K is at least x - x I {{K -1) log(x)). 

It is also possible to get weaker results without using (1.2). From Eibenboim [13], p. 160, 
we have .92129*/log(x) < n(x) for x > 30. If we incorporate this into Theorem 4.7 of Apostol 
[1], making some minor modifications, we have 

pn <1.62815«(log(«)) + 0.13347«, for^w >100. 

Then the following revisions of Theorem 1 and Theorem 2, though not as strong, do not depend 
on the Prime Number Theorem. The weaker form of Theorem 1 is: suppose s > 0, x > 100, and 

iT> 1.62815(jt + l)(log(x + l) + 0.13347) x 1 -
logloggx 

log* . 
log(x) 1 

logloggx 
logx 

1-1 

- 1 -

Let M(x) = the set of positive integers 6<n<x such that d(n) / (log(n))l+€ <K does not hold. 
Then |M(x)|< x /(log(x))^. The weaker form of Theorem 2 is: suppose s > 0 and K > 1. Let 
M(x) = the set of positive integers 6 < n < x such that d(ri) I (log(w))1+f < K does not hold. 
Then, for x sufficiently large, we have 

|M(x)|< 1.6282* / ((K- l)(log(x))* ). 
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1. INTRODUCTION AND GENERALITIES 

For given nonnegative integers r and n, let us define the elements Tn(St, r) of the Auto-
correlation Sequences of any sequence of numbers {£,•}*. 

Definition: 

r „ ( S , , r ) d = X ^ . + T (0<r<«) , (1-1) 
;=0 

where the subscript / + r must be considered as reduced modulo n + \. 
Observe that Definition (1.1) differs from the definition of the Cyclic Autocorrelation Func-

tion for periodic sequences with period n +1, by the factor 1 / (n +1) (e.g., see [2], p. 25). 
It can readily be seen that Definition (1.1) can be written in the equivalent form 

T„(S„T) = "f S,SI+T +tsi+„_T+1Si, (1.1') 
z=0 /=0 

where the second sum vanishes for r - 0. Moreover, we point out that the numbers Tn(St, r) 
enjoy the following symmetry property 

r„(S„r) = r„(S„H-r + l) (0<r<») . (1.2) 

A numerical example will better clarify the above statements. 

Example: 

T5(Si9 4) = S0S4 + SXS5 + S2SQ + S3SX + S4S2 + S5S3 [from (1.1)] 
= (S0S4 + S A ) + OS0S2 + SXS3 +S2S4 + S3S5) [from (1.1')] 
= r3(5i, 2) = S0S2 + SXS3 + S2S4 + S3S5 + S4S0 + S5SX [from (1.2)]. 

For particular sequences Si9 a closed-form expression for Tn(Si9 r) can readily be found. For 
example, if Sf = i (the sequence of nonnegative integers), we have 

rn(i,T) = {2n3-3(T-l)(n2-T)+n[3r(T-2) + l]}/6. (1.3) 

Observe that, when r = 0, the identity (1.3) reduces to the well-known formula that gives the sum 
of the squares of the first n integers. 

The aim of this paper is to establish closed-form expressions for the elements of the Fibo-
nacci Autocorrelation Sequences {Tn(r)}^ defined as 

rn(T) = UF^l (i.4) 
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and to discover some properties of these integers (sections 2 and 3). In this paper, Ft and Lf will 
denote, as usual, the Ith Fibonacci number and Lucas number, respectively. The proofs of the 
obtained results are, in general, very lengthy and rather cumbersome and, in most cases, they must 
be split into four subcases according to the parity of r and n. Sometimes the residue of n modulo 
4 must also be taken into account. To save space, only one subcase for each proposition will be 
proved in full detail (section 4). The parity of Tn{r) is also discussed (section 5), and a glimpse 
of possible future work concludes the paper (section 6). 

The following Fibonacci identities will be used widely throughout the proofs: 

Fh+k+(rtfFh-k =FhLk 

lFh+k - ( ~ 1 ) Fh-k = LhFk 

[3 , I 2 1 - I 2 4 , p. 59], (1.5) 

Lfi+k + ( _ 1 ) Lh-k ~ ^h^k 

Lh+k - ( - 1 ) Lh-k = 5FhFk 

[4, (17a) and (17b)], (1.6) 

Z J7 — m(k+i)+n ^ ^ -^mk+n **m+n ~*~ \ V **n p / - I - I N - I 

Pmj+n ~ " ( nm " L1* I 1 1 ) ! , 
J=l ^m~\~l) ~l 

(1.7) 

mJ+n=: L - ( - i r - i — y=i 

2. CLOSED-FORM EXPRESSIONS FOR TH(T) 

In this section closed-form expressions for Tn(r) are established and some particular cases 
are discussed. First of all, we show in Table 1 the integers Tn(r) for the first few values of r and 
n. The results presented in this section and in the rest of the paper can be readily checked against 
this table. 

TABLE 1. The Numbers Tn(r) for 0 < r9 n< 10 

°~ 1 
2 
6 
15 
40 
104 
273 
714 
1870 
4895 

0 
1 
3 
9 
24 
64 
168 
441 
1155 
3025 

1 
4 
8 
20 
47 
117 
293 
748 
1924 

3 
8 
16 
37 
84 
202 
495 
1244 

9 
20 
37 
78 
165 
374 
877 

24 
47 
84 
165 
330 
707 

64 
117 
202 
374 
707 

168 
293 
495 
877 

441 
748 1155 
1244 1924 3025 
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By (!.!')> the numbers Tn(r) can be expressed as 
r - l 

rB(r) = X ^ + r + I ^ + ^ i ^ - (2-1) 
2=0 7=0 

With the aid of the Binet form for Fi9 (2.1) becomes 

T„(T) = - X(a 2 / + r +/?2/+T - a'jff'+T - j0'a'+T) 
5 7=o (2.2) 

where a = 1 - /? = (1 + V5) / 2. By (2.2), using the Binet form for L,, yields 

r„(0 = ̂ f̂ ,+r -^f(-i)'4 4 2 W-,+i -JZ(-i)'4-,+i, 
-> /=0 ^ 7=0 *> 7=0 D 7=0 

whence, by means of (1.8), we obtain 

r„(r) = | [4„_r + 1 - 4 - i + Ln+T - Ln_T - X(n, v)\ (2.3) 
where 

ii T («even) 
(reven), (2.4) 

0 (wodd) 
and 

fAi-r+l (» eVen) 
X(«,r) = ] (rodd). (2.4') 

[4+Z„_r+1 ("odd) 
Now, by virtue of (2.3)-(2.4'), (1.5), and (1.6), after some manipulations, we get 

\Fn+lF„_T+FnFT («even) (2.5) 
Tn(r) = \ (reven), 

[F„(Fn-T+l+Fr) (wodd) (2.5') 
and 

[FJ^+F^.y (»even) (2.5") 
r„(T)= (rodd). 

{Fn+1(Fn_T+Fr^) (»odd) (2.5'") 
The proofs of (2.5) -(2.5'") are similar; thus, for the sake of brevity, we give only the proof of 
(2.5). 

Proof of(2.5): By (2.3) and (2.4), we can write 
1 

- ~l^n+l+(n-t) ~ A?+l-(«-r) + A?+r ~ A ; - r L 

whence, by (1.6), we get (2.5). D 
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The complete factorization of Tn(r) in terms of Fibonacci and Lucas numbers can be 
obtained only for the cases (2.5') and (2.5'"). We have 

r » = 
f^(«+l)/2-rZ(«+D/2 (" = l ( m 0 d 4 » 

\F„F(n+mL{n+m_r (" - 3 ( m o d 4 » 
(r even) 

and 
\Fn+xF{n_mL(n+m_T (n s 1 (mod 4)) 

T„(r)= (rodd). 
[^i+l^n+D/2-rZ(»-l)/2 (" ~ 3 ( m ° d 4 ) ) 

Proof of (2.6): Let us rewrite (2.5') as 

T„(T) = F„[F(, + F„ 
Recalling that 

(«+l)/2+[(«+l)/2-r] T •* (n+l)/2-[(n+l)/2 

w +1 I even if « = 3 (mod 4) 
—z— is s 

2 I odd if ?7 = 1 (mod 4), 

2-T]J-

(2.6) 

(2.6') 

(2.7) 

(2.8) 

and taking into account that r is even, use (2.7) and (1.5) to obtain (2.6). • 

An analogous argument leads to the proof of (2.6'). 

2.1 Particular Cases 

By (2.5)-(2.5"'), simplified expressions of Tn(r) can be obtained for some particular values 
of T. In light of (1.2), we confine ourselves to considering values of r less than or equal to 
(« + ! ) / 2. The following results have been obtained. 

r„(0) = F„F„+1 (cf . [3,I3]) , 

IF^ (n even) 

Fl - 1 (n odd) (by using the Simson formula [3,113]), 

F„+lF„_2+Fn (neven) 

F^F^+l) (nodd), 

r„(3) = Ai Ai-2 + Ai+1 (n even) 
(« odd), 

and w + 1 
^n+2^nl2 

^A?+P (n-l)/2 

FnFn/2+l + K+lFn/2-l 

^^n^(n+l)/2 

(w = 0(mod4)) 
(w = 1 (mod 4)) 
(ws 2 (mod 4)) 
( / is 3 (mod 4)), 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
(2.13') 
(2.13") 
(2.13'") 

where |_-J denotes the greatest integer function. The algebraic manipulations necessary to obtain 
(2.9)-(2.13'") from (2.5)-(2.5'") are not difficult and are omitted for brevity. Observe that, by 
using the Binet form, the identity (2.13") can be restated in the equivalent form 
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T„(n/2) = (L3nl2+2-2Lnl2+1)/5 (/, S 2 (mod 4)), (2.14) 

and that identities (2.13') and (2.13'") can be obtained immediately by the upper identity in (2.6') 
and by the lower identity in (2.6), respectively, taking (2.8) into account. 

3. SOME IDENTITIES INVOLVING THE NUMBERS Tn(r) 

In this section we present some identities involving the numbers Tw(r). The proofs of these 
results will be partially given in the next section. 

First, let us state the recurrence relations 

r„+1(0 = r„(r)+r„_1(r)+^(2Z7„_r+zr+(_l)n+r), (3.1) 

and 

rn(T+i) = rn(T-i)-rn(T)-Fr+±(2Ln+T+(-VLn„r+1), (3.2) 

"T lri_1(T) + r i _ 1 ( r - l ) + Fr_I[l + (-l)"]/2 (rodd). 

Remark 1: Observe that, since Tn(z) has not been defined for v>n, the recurrence relations 
(3.1)-(3.3) make sense only for 0<r<n-l, due to the presence of the quantities r„_1(r) and 
r„(r + l). 

Then, let us consider the sums along the rows, the columns, and the rising diagonals of the 
triangular array shown in Table 1. Define 

K, = £rn(r), (3.4) 

Q ( r ) t f £ r „ ( r ) , (*>r), (3.5) 

and 

A=lr„ , ( r ) , (3.6) 
r=0 

and state the following propositions. 

Proposition 1: Rn=(Fn+2-l)2. 

By Proposition 1 and [3, I3 and IJ, it can readily be seen that the sum of all elements of 
Table 1 from the 0th row to the kth row (inclusive) is 

k k 

±Rn = ±Ck(r) = Fk+2Fk+3-2FM +k + 4. (3.7) 
«=0 T=0 
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Proposition 2: If T is even, 

kKT) lr t+1(T + l ) -F T [ iv + I +(*-T + l)/2] (A odd), 

whereas, if r is odd, 

C (T) = [T^M + Fr-x(Fk+i~FT+2)-FkFk_r+l~FT{k-T + \)l2 (*even) 
kKT) \Tk{T) + FT.l{Fk+2-F^2) + FkFk.T-Fr(k-T)l2 (*odd). 

Remark 2: For the same reason as that mentioned in Remark 1, the expression of Ck (r) stated in 
Proposition 2 does not apply when k = r is even, due to the presence of the addend Tk (T +1). Of 
course, in this case, we have Ck{k) = Tk(k). 

Proposition 3: 

D„ = 

- K—^ 3(F„-1) 

" ̂ 2n+3 +(n~l)Ln- 5F{n+3)/2 - r + l 
-3F„ 

(n even) 

+1 (n odd), 

where r denotes the residue of n modulo 4. 

Finally, the following sums are considered: 

4,"Z(-i)Tr„(r), 
T=0 

def A / V 4 = lf:)r„(r). 
r=0V J 

(3.8) 

(3.9) 

... , t \FnFn+i (»even) 
Proposition 4: A„ = \ 

\(Fn_1+l)2 (/i odd). 

Proposition 5: Bn -
^3n+2 

^3n+2 ~ 

^2n+2 + A?+l | 

2 J 
AI+I(5-<VI-I - v 

2 

4. PR 

(« even) 

(n odd). 

OOFS 

As mentioned in the Introduction, to save space, the identities stated in section 3 will be 
proved only for one case of the parity of r and n. The interested reader can complete the proofs 
as an exercise. 
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Proof of (3.1): (r and n even). By (2.3)-(2.4'), we can write 

r„(r) + Yn_x{r) = - (4„_r+1 + L^x_x - 2LT_X + Ln+T+l - L„_T+l -LT-0) 

~ T\^2n-t+3 ~ ^^2n-r ~ ̂ 4 - 1 + 4+r+l ~ 4-r+l ~ 4 ) 

= r„+1(r)-|(2Z2„.r+Zr_1 + Zr) 

= r„+1(r)-|(2Z,„_r + Zr+1), 

whence the recurrence (3.1). • 

Proof of (3.2): (T even and n odd). By (2.3)-(2.4') and (1.6), we can write 

iw(r) + r„(r +1) = -(4«-r+2 _ 4+i+ 4+r+2 ~ 4-r+i ~ 0 - 4+i - 4 - r ) 

~ 7l4«-r+2 ~ 4-r+l + (4+r+2 ~ ^4+1 — 4-r) + (4+r-l "" 4-r+2 ~ 4 ) 

~~ (4+r-l ~~ 4-r+2 ~ 4X1 

- r„(r - 1 ) + - (4 + r + 2 - 2Zr+1 - 4 _ r - 4 ^ + 4 _ T + 2 + 4 ) 

= Tn(T ~ l) + 3 [4+r+2 - 4-r - 4+r-l + 4-r+2 " (4+1 + 4-l)l 

= r„(r -1) - 4 + - (4+T+2 - 4 + r - 1 +4_ r + 1 ) 

= 4( r - l ) -4+ | (24 + T - l -Z w _ r + 1 X 

whence the recurrence (3.2). D 

Proof of (3.3): (r and ft even). By (2.5') and (2.5'"), the right-hand side of (3.3) can be 
rewritten as 

4-l(4-r + 4) + 4(4-r + 4-2) + 4-r = 4+l4-r + 4-l4 +44-2 + 4-r 

= 4+l4-r + ( 4 - 4 - 2 ) 4 + 4 4 - 2 + 4 - r 
= ( 4 + i 4 - r + 4 4 ) - 4 - 2 4 + 4 4 - 2 + 4 - r 

= 4 ( r ) - 4 _ 2 4 + 4 4 _ 2 + 4 _ T [by (2.5)]. 

Now, it is sufficient to prove that 4 - r + 4 4 - 2 ~~ 4 - 2 4 = °> * a t *s 

FnFr-2-Fn_2FT=-Fn_r. (4.1) 

To do this, consider the Fibonacci identity 

4 4 - 4 - * 4 + « = (-i)h+lFk_h_aFa, (4.2) 

which can readily be proved by using the Binet form, and put k = n, h - r - 2 (even, by hypothe-
sis), and a = 2 in (4.2) to obtain (4.1). D 
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Proof of Proposition 1: By (2.3) and [3, I2], 

5^, = L2ri+4 + 3 - 2I„+3 - X X(n, r). (4.3) 

If n is even, then by (2.4), (2.4'), and (1.8), 

fjX(n,r) = 2Ln+1 
r=0 

and Proposition 1 holds by [3, I16]. If n is odd, then by (2.4), (2.4'), and (1.8), 

XX( W ,r ) = 2 (4 + 1 -2 ) 

and Proposition 1 holds by [3, I17]. D 

Proof of Proposition 2: (r even and k odd). Put n - j + r - 1 in (3.5), thus getting 
k-t+l {k-r+l)l2 

C*W= Zr;+,-iW- Z t ^ ^ C ^ + r^^Cr)]. (4.4) 
y=i y=i 

By (4.4), (2.3), and (2.4), we obtain 
(k-r+l)/2 

^k(T)=~ 2«t (^4y+r-3 + ^4 /+ r - l "~ 2 4 - 1 + ^2J+2T-2 + ^2j+2r-l ~ ^2j-2 ~ A2/-I ~ 4 ) > 

whence, by (1.6), 

5 M 

| (k~T+l)/2 
Ck O) = ~ Z (5F4;+r-2 " $FT + L2J+2T ~ L2J) 

3 J = l 

(k-r+l)/2 k-T + 1 i(*-r+l)/2 
= Z ^4/+r-2 1 ^ + ~ Z (Llj+lr-LljY 

j=l Z ^ ;=1 

(4.5) 

By (4.5), using (1.7) and (1.8) yields 

Ck(T) = ^(F2k_T+4-F2k_T-FT+2+FT_2)-F^ 

whence, by (1.5), 

Q W = | ( ^ + 2 - 4 ) - f r ( i - ^ l ) / 2 + j ( U - ^ r i t - t t 2 + l ) 

and, by (1.6) (recalling that, since r is even by hypothesis, L_T = Lr\ 

Ck(T) = Fk+1Fk+1_T-FT(k-T + l)/2 + Fk+2Fr-FTFT+1 

= FMFk+1_T + Fk+2FT -Fr[Fr+1 + ( A - T + 1 ) / 2 ] . 
(4.6) 
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By (4.6) and (2.5"), we obtain the desired result, 

Q ( r ) = rJk+1(r + l ) - F r [ / w 1 + ( * - r + l ) / 2 ] . • 

Proof of Proposition 3: [n = l (mod 4)]. By (3.6), let us write 
(«-l) /4 (w-l)/4 

A = I r„_2r(2r)+ X r„_2r+1(2r-i). 
r=0 r=l 

By (2.3)-(2.4f), and considering that L_x = - 1 , the above expression becomes 
1 (w-l)/4 J 

A,=T S (4«-6r + l -4r- l+4-4-4r) + T ( ^ + l ) 

(w-l)/4 
+ 7 ^(4w-6r+4 4 r - 2 + 4 4-4r+2 4-4r+3) 

r=l 
I (»-l)/4 1 

7 2^ (4«-6r+l + 4«-6r+4 ~ 4 r + 2Z„ - 4-4r+4 ~ 4-4r ) + T (4» + V? 

whence, by (1.6), 
j (w-l)/4 | 

A , = T Z ( 2 4 « - 6 r + 3 - 3 4 - 4 r + 2 - 4 r + 2 i w ) + - ( 4 w + l). 
5 T = l D 

By using (1.8), the identity (4.7) can be rewritten as 

4„-3+A»+3 ~ - i - 4 - 4 _ 2 + 4 + 2 n - M 2 ("~3)/2 (n+9)/2 4n-3 + 4w+3 ~ 
" ~ 5 [ 16 

w-1 
~(4"+3)/2 ~~ 4"~l)/2 ~~ 0 + ~"T~~ 4 + 4»+l + 1 

(4.7) 

(4.8) 

Now, after some formal manipulations in the subscripts of the Lucas numbers in (4.8) (e.g., 
rewrite Z(„+9)/2 - Z(„_3)/2 asZt(„_3)/2+3]+3 -Zt(„_3)/2+3]_3), use (1.6) once again to obtain 

_l 
~ 5 

_ 1 
~ 5 

_ 1 
~ 5 

4n An « - l 
2 ~ 3 ( 4 - 1) - ^(„+l)/2 + -_— Ln+L2n+l+2 

Lln+(n- \)Ln - 5F(„+3)/2 -3 (F„- l ) -Z ( „ + 1 ) / 2 + 2 

'24„+i + 4„ + (» - 0 4 - 5-F(„+3)/2 -3F + 1 

Z7 n + 3+(«-l)Z„-5F( 
»+3)/2 

2 

-3F„ + 1. • 

Proof of Proposition 4: If w is even, by (3.8), (1.2), and (2.9), we have 4 = T„(0) = FnFn+1. 
If wis odd, by (3.8), (2.9), (2.5'), and (2.5'"), we can write 
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(w-l)/2 («+l)/2 

4,=r„(o)+ 2 r„(2r)- X r„(2r-i) 
r=l r=l 

(w-l)/2 («+l)/2 
= FnFn+l+Fn J](Fn_2T+l+F2T)-Fn+l £ (iv2T+1+F2T_2), 

r=l r=l 

whence, by (1.7), 

4 = ̂ VWi + 2Fn(Fn+1 -F„_! -1)-2Fn+1(Fn+l -Fn_x -1) 
= F„F„+1-2F„_l(Fn-l) 
= F„(Fn+1-2F„_1) + 2F„_l 

By virtue of the identity [3, I19], (4.9) becomes 

^ = J F „ i 1 + ( - i r 1 F I + 2 F „ _ 1 = F„i1 + l + 2JF„_1=(F„_1 + l)2. D 

The proof of Proposition 5 concludes this section. Here, we need the following four Lucas 
identities whose proofs can be obtained with the aid of the Binet form and the binomial formula: 

(4.9) 

2 J / l^k+i ~ ^Im+hi 
7 = 0 V ' 

2 J | j^k-i - ^m+k? 
7=0V J 

mil / \ 
J][™)L2i = (L2m+LJ/2 (meven), 
7=0 ^ ' 

L(m-1)/2J 

7=0 
Za ( 2/ + 1 jAi-2/ ~[Am+l ~K~0 Lm_x"\l 2. 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Proof of Proposition 5: (n even). By (3.9), (2.3), (4.10), and (4.11), we readily obtain 

I ^3n+2 ~ ^2n+l ~~ £ 
=0' 

B = • ^ + 2 - 4 « + l - Z l r ) X ( ^ r ) 
T=0V / 

and, by (2.4) and (2.4'), 

"n - { A*«+2 ^2n+l ' 

nl2 f \ nll-\f \ 

XI 2r)1^4" S (2r + l)jL«-^ 
r=0 v y r=0 v y 

(4.14) 

Using (4.12) and (4.13), the equality (4.14) can be rewritten as 

Bn = -[L3n+2 ~ Aw+1 ~ (AT? + A + A«+l + A-l) I 2] 

~7lA/7+2 _ (2A«+1 + A/7+2 + A + l ) ' 2] = — [Aw+2 ~ (A«+l + A/7+3 + A + l ) ' 2 ] . 

(4.15) 

1994] 365 



FIBONACCI AUTOCORRELATION SEQUENCES 

Rewrite (4.15) as 

®n ~ ~[^3«+2 "̂  (^(2«+2)+l + L(2n+2)-l + Ai+l) ' ^J , 

and use (1.6) to obtain the desired result, 

5. ON THE PARITY OF Yn(r) 

The problem of establishing necessary and sufficient conditions for Tn(r) to be divisible by a 
given integer k is believed to deserve a thorough investigation. Nevertheless, the general solution 
(if any) of this problem is beyond the scope of this paper. In this section we confine ourselves to 
solving the case k - 2. The proofs of the results shown in the sequel are based on the well-
known fact that 

Fm is even if and only if m = 0 (mod 3). (5.1) 

5.1 Results 

The integer Tn(r) is even if and only if 

(i) n and r even 

(0 [0 
n = \ 1 (mod 3) and r = \ 2 (mod 3), 

(ii) n even and T odd 

f° f1 
n = < 1 (mod 3) and r = < 0 (mod 3), 

[2 [0 
(iii) n odd and T even 

[0 [0,l,or2 
n = <l (mod 3) and x = \ 1 (mod 3), 

[2 [0,1, or 2 

(iv) n and r odd 

f° \2 

n = \l (mod3) and r = <0,\or2 (mod3). 
[2 [0,1, or 2 

The above conditions on the parity of Tn{r) are presented, in a more compact form, in Table 2, 
where h and k denote all nonnegative integers such that 0 < r < n. 
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TABLE 2, Forms of n and T for Tn(r) To Be Even 
n 

6h 
6/2 + I 
6/2 + 2 
6/2 + 3 
6/2 + 4 
6/2 + 5 

6/fc 
2Jfc + l 
6£ 
2* 
6k+2 
A 

r 
or 
or 
or 
or 
or 

6/fc + l 
6jt + 4 
6k+ 3 
6k + 5 
6k+ 3 

5.2 Proofs 
The proofs of (iii) and (iv) are quite easy. The proofs of (i) and (ii) are similar, so we give 

only the latter in detail. 

Proof of (ii): (n even and r odd). By (2.5") we see that Tn(r) is even if and only if 

{ A = FnFn_r+l is even (A is odd 

(Case 1), or < (Case 2). 
B = F^F^ is even [5 is odd. 

Case 1. A is even if and only if [see (5.1)] 
either n = 0 (mod 3) or n = r -1 (mod 3), 

whereas B is even if and only if 

either n = 2 (mod 3) or r = 1 (mod 3). 

It follows that Case 1 occurs if and only if 
n = <2 (mod 3) and r = 1 Q (mod3). (5.2) 

Case 2e A is odd if and only if 
n # 0 (mod 3) and « # r - 1 (mod 3), 

whereas 5 is odd if and only if 

n 4 2 (mod 3) and r # 1 (mod 3). 

It follows that Case 2 occurs if and only if 
n =1 (mod3) and r = 0(raod3). (5.3) 

Combining (5.2) and (5.3) gives (ii). • 

6. FURTHER WORK 

Flowing from our development, there seem to be other possibilities for investigation. The 
main one among them consists of applying the operator T defined by (1.1) to other second-order 
recurring sequences, such as the Lucas sequence, the Pell sequence, and so on. As for the former, 
we obtained the identity 

rn(Zf, T) = 5rn(T) + 2X(ny r). [cf. (2.4) and (2.4')]. (6.1) 
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On the other hand, we believe that our investigation of the numbers Tn(r) deserves some 
further deepening. For example, on the bases of (2.5)-(2.5'") and the identity F_„ - (-l)n+lFn, 
we can generalize these numbers to any integer value of the parameters r and n (i.e., T > n and n 
and/or r < 0). As a minor instance, it can be shown that 

Y„(-n) = F„(Fn+lLn-F„) (»even). (6.2) 

Moreover, the results presented in section 5 could be extended to the divisibility of Tn(r) by 
k>2. In particular, a study on the primality of these numbers should be undertaken. Early 
responses to this effort allow us to state the following necessary conditions for Tn{r) to be a 
prime: 

n must be even (f,x\ 
[with the unique exception F3(l) = F3(3) = F4(F2 + F0) = 3], ' * 

and 
gcd(n -r,n)<2 (T even) (6.4) 

gcd(n,r - l )<2 
(T odd). (6.5) 

gcd(n-r + l,n + l)<2 v J 

In passing, we observed that FW(Q) is composite [except for F2(0) = F2F3 = 2] and that Tn(l) is 
composite as well, except for F2(l) = 1. 
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1. INTRODUCTION 

The usual convolution of the sequences {rn} and {sn} is defined to be the sequence {tn} given 
by tn — E/Lo ris

n-i (n>0). The usual convolution comes out naturally from the product of the 
generating functions of the sequences {rn} and {sj: 

f oo \f oo \ oo 

\n=0 J\n=0 J n=0 

This "usual" convolution is also called the Cauchy product. We define the k^ power {r^k)} of 
the sequence {rn} under the usual convolution as follows: 

r^=r„; r « = £ r , i & - ' > ( * * 2 ) . 

In other words, /f} = I,il+...+ik=nriri2 •••^. 
Using the terminology of [6], the kih power under the usual convolution is the (k - l)th iterated 
convolution. 

The binomial convolution ([2], §7.6) of the sequences {rn} and {sn} is defined to be the se-
quence {un} given by 

This convolution arises from the product of the exponential generating functions. Namely, 

0 0 vn \ 

„=o » ! J 
1 °° x" 

U o w!, 

\ °° v" =X»A ' «=i » ! 

We define the k^ power {r^1} under the binomial convolution of {rn} naturally as follows: 

7 = 0 V S 

Thus, 

Z. U II t I I h Kr
h

 rik La U\U"-iJhl1 k° 
i\+--+'k=n ix+ — +ik=n f l - f 2 - lk' 

In this paper we shall study solutions of the equations {r^} = {sn} and {rj,k]} = {$„} in {rw}, 
where {sn} is a fixed sequence (see Sections 2 and 3). The solutions can be referred to as the k^ 
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roots of {sn} under the usual and the binomial convolution, respectively. In Section 4, roots of 
sequences under a general weighted convolution are briefly considered. 

If sn = 0 for all n, then rn = 0 for all n is the only solution for the equations. Therefore, we 
may confine ourselves to sequences {sn} such that sn & 0 for some n. The least n with sn ^ 0 will 
be denoted by x(s

n) • 
Since an arithmetic function f{ri) is uniquely determined by the corresponding sequence 

{/(I), /(2),/(3), . . .}, it follows that the study of the roots of sequences considered here is 
similar to the study of rdots of arithmetic functions already made in papers [1] and [7] under 
Dirichlet convolution and in paper [3] under "exponential Narkiewicz" convolution. In [4], roots 
of arithmetic functions under a generalized Dirichlet convolution are studied. 

2. ROOTS OF SEQUENCES UNDER THE USUAL CONVOLUTION 

Theorem 1: Let {sn} be a given sequence such that sn ^ 0 for some n. Then the equation 
{r^} = {$„} has a solution in {rn} if and only if x(s

n) ls ^ e ** multiple of a nonnegative 
integer. In this case the equation has exactly k solutions, which can be written as 

ft} = WU, * = 1, .»,*, 0) 
where {pn} is one solution and wly...,wk axe the k^ roots of unity. 

Proof: If {r^k)} = {sn} has a solution, then kx(rn) = x(s
n)> hence x(sn) 'ls ^ ^th multiple 

of a nonnegative integer. Conversely, suppose that x(sn) = ^ ^OT s o m e nonnegative integer m. 
Then the solutions of ft(A:)} = {sn} can be found as follows. Since r^k) = 0 for n < km, we have 
rn - 0 forn<m. Further, rj^ = (rm)k; hence rm = {skm)llk. Finally, the values rm+n (n> 1) can be 
found inductively by using the equations rj^+n - skm+n (n>\), whereby it can also be verified that 
(1) holds. This completes the proof. 

For certain sequences {$„}, the use of generating functions is a very helpful method of 
solving the equation ft(A:)} = {sn}. Namely, if r(x) and s(x) denote the generating functions of 
{rn} and {$n}, respectively, then r(x)k = s(x), and hence r(x) - s{x)xlk. 

We shall illustrate this method in the following examples. For background information on 
generating functions we refer to [2], [5], and [8]. 

Example 1: Consider the equation ft(^} = {a"}, where a is a constant. Then r(x) = (l-ax)~l/k 

and therefore one solution for the equation is 

Pn=(-v[~^ky-
All solutions can be found by (1). Note that for each integer m, p^ = (-i)n{~m„/k)an. This can be 
referred to as an {ml k)^ power of the sequence {a"} under the usual convolution. 

Example 2: Consider the equation ft(*}} = ft}, where {sn} is the usual convolution of the 
sequences {an} and {bn} with a and h constants. Then r(x) = (l-axyl/k(l-hxy1/k and there-
fore one solution for the equation is 

p,=Hri(TX«-?}v~ 
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All solutions can be found by (1). With a - (1 + 45)/2? b = ( 1 - i/5)/2? this gives the solutions 
for the equation {r^k)} = {Fn+l}. Also note that 

^=(-D"z(-w/*)(-^)»'ft , M 

gives an {ml k)^ power of {sn} under the usual convolution. 

Example 3: Let a, b, and c be constants, and {fin} the sequence defined by fi0 = 1, jux - - 1 , 
fin=0 (n>2). Then {fin} is the inverse of the sequence =1, and the sequence {juncn} is the 
inverse of the sequence {cn}. Consider the equation {r^} = {sn}9 where {sn} is the usual 
convolution of the three sequences {a"}, {bn}, and {fincn}. Then 

r{x) = (1 - axyllk (1 - bxyyk (1 - cxfk. 

Therefore, one solution is the usual convolution of the three sequences 
f\lk 

That is, one solution is given by 

\c" 

/1+Z9+/•»=« 

All solutions can be found by (1). With a = (1 + V5) /2, b = (1 - Vs) /2, c = 1 /2 , we obtain the 
solutions of the equation { r^} = {Zw 12). Further, multiplying these solutions by 2Vk we obtain 
the solutions for the equation {r^} - {Ln}. 

Example 4: Since x(Fn) = 1, we see by Theorem 1 that the equation {r^} - {Fn} does not have 
a solution, except for the trivial case k=\. 

3. ROOTS OF SEQUENCES UNDER THE BINOMIAL CONVOLUTION 

Theorem 2: Let {sn} be a given sequence such that sn ^ 0 for some n. Then the equation 
{r^} = {,sw} has a solution in {rw} if and only if x(s

n) *s the k^ multiple of a nonnegative inte-
ger. In this case the equation has exactly k solutions, which can be written as 

W = K A J , *' = I, ...,*,• (2) 
where {pn} is one solution and wu...,wk are the k^ roots of unity. 

Theorem 2 is similar to Theorem 1 in character. Also, Theorem 2 can be proved in a similar 
way to Theorem 1 and therefore we omit the proof. 

The use of exponential generating functions is a helpful method of solving certain equations 
irnk]} = is

n}- The following examples will illustrate this method. Here rE(x) denotes the expo-
nential generating function of {rn}. 

Example 5: Consider the equation {r^} = {a"}. Then rE(x) - e^^ and therefore one solution 
is given by pn = {al k)n. All solutions can be found by (2). 
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Example 6: Consider the equation {rj; ]} = {(n + l)an). Then rE(x) = (l + axy/lceax/lc and there-
fore one solution is the binomial convolution of the sequences 

All solutions can be found by (2). 

4. A GENERALIZATION 

The general weighted convolution of the sequences {r„} and {s„} is defined by 

7=0 

where the weight function / ( « , i) is defined for w > 0 and 0 < / < n. If the weight function satis-
fies the condition 

/ ( « , 0f(h j) = / ( « , 7 ) / ( » - 7 , ' - J) (3) 

for all n, i, j with 0 < / < n, 0 < j < /, then the weighted convolution is associative and we could 
define powers of sequences under this convolution. We could also consider roots of sequences, 
and assuming f(n, i) & 0 for all n and 0 < / <n we could verify that the result of Theorems 1 and 
2 also holds with respect to the weighted convolution. We omit the details. 

It is easy to see that both the usual and the binomial convolution are special cases of the 
weighted convolution satisfying (3). 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rablnowltz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also he sent to the problem editor by electronic mail to 72717.3515@compuserve.com on 
Internet All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+l +Fn, FQ = 0, Fx -1; 

A1+2 - A7+1 + 4 ' A) - 2, A = I 

Also, a = (l + j5)/2, /? = ( l -V5)/2 , Fn = (an - ft") / ̂ 5, md Ln = an+/3n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-766 Proposed by R Andre-Jeannin, Longwy, France 

Let n be an even positive integer such that Ln = 2 (mod p), where p is an odd prime. Prove 
that 

Ln+l = l(modp). 

B-767 Proposed by James L. Hein, Portland State University, Portland, OR 

Consider the following two mutual recurrences: 
G, = l; Gn = F^Gn^FnHn_2, n>2 

and 
# 0 = 0; Hn = Fn^Gn^FnHn_„n>\. 

Prove that Hn_x and Gn are consecutive Fibonacci numbers for all n > 1. 

B-768 Proposed by Juan Pla, Paris, France 

Let un, vw, and wn be sequences defined by ux - 1/2, vx- V2r and wx - (1/2)A/3 ; un+l = 
ul+ vn " wn > vn+\ ~ ^Unv^ anc^ Wn+i ~ ^Unwn • Express u„,vn9 and wn in terms of Fibonacci and/or 
Lucas numbers. 
B-769 Proposed by Piero Filipponi, Fond U. Bordoni, Rome, Italy 

Solve the recurrence 

with initial condition aQ = 1. 
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B-770 Proposed by Andrew Cusumano, Great Neck, NY 
Let U(x) denote the unit's digit of x when written in base 10. Let Hn be any generalized 

Fibonacci sequence that satisfies the recurrence Hn = Hn_x + Hn_2. Prove that, for all n, 

U(Hn+Hn+4) = U{Hn+„), U(H„ +H„+17) = U(Hn+M), 
U(Hn+Hn+5) = U(Hn+1Q), U{Hn+Hn+l9) = U(H„+4l\ 
U(Hn+Hn+7) = U(Hn+53), U(H„+H„+20) = U(Hn+55), 
U(H„+Hn+S) = U(H„+19), U(Hn +H„+23) = U(H„+37), 
U(Hn +Hn+U) = U(H„+49), U(H„ +H„+25) = U(Hn+50), 
U(H„+Hn+l3) = U(Hn+26), U(Hn +Hn+2S) = U(Hn+59), 
U(Hn+Hn+l6) = U(Hn+2i), U(Hn+Hn+29) = U(Hn+5S). 

B-771 Proposed by H.-J. Seiffert, Berlin, Germany 

Show that Y ( 2 ^ + 1 ) F "=ln4. 

SOLUTIONS 
Square Root of a Recurrence 

B-735 Proposed by Curtis Cooper & Robert E. Kennedy, Central Missouri State University, 
Warrensburg, MO 
(Vol 31, no. 1, February 1993) 

Let the sequence (yn) be defined by the recurrence 

yn+i = %yn + 22yn_x - 190>v2 + 28JV-3 + 987j/w_4 - 700j„_5 - 1652jw_6 + 1652jM_7 
+ 700j;w_8 - 9%lyn_9 - 28y„_10 + 190^„u - 22yn.n - ty_13 + yn_l4 

for n>\5 with initial conditions given by the table on page 185 of the May 1994 issue of this 
Quarterly. Prove that yn is a perfect square for all positive integers n. 

Solution 2 by Leonard A. G Dresel, Reading, England, and the Con Amore Problem Group, 
Royal Danish School of Educational Studies, Copenhagen, Denmark (independently) 

"Though this be madness, yet there is method in it." 
—Shakespeare, Hamlet, Act 2, Scene 2 

Let xn - ^y~n . We find, for n = 1,2,..., 15, that yn is a perfect square, and xn = 1,1, 5,11,36, 
95,281,781,2245,6336,18061,51205,145601,.... We.will show that xn satisfies the recurrence 

Xn+\ ~ Xn + ^Xn-\ + Xn-2 ~ Xn-3 • ( 1 ) 

To do this, we consider the sequence (xn) defined by recurrence (1) with initial conditions xx = x2 
= 1, x3 = 5, and x4 = 11. Then x\ - yn for 1 < n < 15, and we need to show that x2

n = yn for all n. 
The characteristic polynomial for recurrence (1) is 

x 4 - x 3 - 5 x 2 - x + l. (2) 
Writing this as (x2 -px + l)(x2 - qx +1), we find that 

x4 -(p + q)x3 + (pq + 2)x2 ~(p + q)x + l = x4 -x3 -5x2 -x + l. 
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This is an identity in x if p + q = 1 mdpq = -7 , i.e., if/? and q are the roots of the equation 
w

2 - w - 7 = 0. We thus find /? = (1 + V29) / 2 and g = (1 - V29) / 2. The zeros of polynomial (2) 
are therefore a, b, a-1, and b~l, where 

, -i 1 + V29 , t ,_! 1-^29 2 -2 H + V29 , . 2 ,_2 11-^29 
a + a = — , & + & = , a1 +a l = , and b2+b 2 = — . 

2 2 2 2 
The Binet form for recurrence (1) is 

an+a-»_bn_b-n 
X„ V29 

The recurrence whose elements are x2 will have the form 
/^.w i „-n JJI L-n\2 

y„ = (a+a -J-b } 0) 
and we need to show that y„ satisfies the recurrence given in the problem statement, i.e., that it 
satisfies the characteristic polynomial 

y15 - 8y14 - 2 2 / 3 + 190/2 - 28yu - 987/° + 7 0 0 / + 1652/ 
- 1 6 5 2 / - 7 0 0 / + 987 / + 2 8 / - 1 9 0 / + 2 2 / + &y - 1 . (4) 

Expanding equation (3) shows that the characteristic polynomial for yn is 

iy - l)(y -a2)(y- a'2){y -b2)(y- b~2)(y - ab)(y - a~lb)(y - ab'l)(y - a^b'1). (5) 

Breaking this up into parts, we find 
11+V29.. , ,Y ,2 H-V29 ^ 

&-az)(y-a-2)(y-b%y-b-2) = \/-^^y + l y z—j+i 
V z J 

= / - l l y 3 + 25y2- l ly + l. 

Another factor is (y - ab)(y - a~lb)(y - ab~l)(y - a~lb~l). This polynomial must be symmetrical 
since its roots are reciprocal in pairs. Since 

ab + a-lb-l+a-lb + ab-l = (a + a-lXb + b-1^ 

and 
ab • a~lb~l +ab-a~lh + ab- ab~l + a~lb~l • a~lb + a~lb~l • ab~l + a~lb • ab~l 

, t2 2 -2 i-2 , ~ 11 + V29 11-V29 _ 
= l + ̂ r + a 2 + a 2 +6 2 + l = 2 + - — + = 13, 

2 2 

this polynomial must be y4 + 7 / + 1 3 / + ly 4-1. Thus, the characteristic polynomial (5) is 

( j - l ) ( j 4 - l i y + 2 5 / - l l j ; + l)0;44-7j;3-hl3/+7j + l) 
= / - 5 / - 3 5 / + 6 7 / +145/ - 1 4 5 / - 6 7 / + 3 5 / + 5y-1. 

Since this polynomial divides the polynomial (4), we see that the squares of the xn satisfy the 
original recurrence and hence every element of that recurrence is a perfect square. 

Note: We also see that the original sequence satisfies the simpler recurrence 

JVu = fyn +35^ . ! -67y„_2 -U5yn_3 + 145JV4 + 67y„_5 -35yn_6 -5yn_7 +y„_s. 
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B-736 Proposed by Herta T. Freitag, Roanoke, VA 
(Vol 31, no. 2, May 1993) 

Prove that (2Ln + Ln_3) / 5 is a Fibonacci number for all n. 

Solution by Graham Lord, Mathtech, Inc., Princeton, NJ 

If An = (2£„ + Ln_3) 15, then Ax = l and A2 = 1. Furthermore, An_l + An = A„+l from the recur-
sive property of Lucas numbers. Therefore, An=Fn. 

Haukkanen found the corresponding result for Fibonacci numbers which is that 2Fn+Fn_3 is a 
Lucas number for all n. 

Also solved by Miguel Amengual Covas, Charles Ashbacher, M A. Ballieu, Seung-Jin Bang, 
Margherita Barile, Glenn Bookhout, Scott H. Brown, Paul S. Bruckman, Charles K Cook, 
Leonard A. G. Dresel, Russell Euler, Piero Filipponi, Jane Friedman, Pentti Haukkanen, 
Russell Jay Mendel, Joe Howard, John Ivie, Joseph J. Kostal, Carl Libis, Bob Prielipp, H.-J. 
Seiffert, A. G. Shannon, Sahib Singh, Lawrence Somer, J. Suck, Ralph Thomas, and the 
proposer. 

Golden Radii 

B-737 Proposed by Herta T. Freitag, Roanoke, VA 
(Vol 31, no. 2, May 1993) 

A right triangle, one of whose legs is twice as long as the other leg, has a hypotenuse that is 
one unit longer than the longer leg. Let r be the inradius of this triangle (radius of inscribed 
circle) and let ra,rb,rc be the exradii (radii of circles outside the triangle that are tangent to all 
three sides). Express r, ra, rb, and rc in terms of the golden ratio, a. 

Solution by Sahib Singh, Clarion University, Clarion, PA 

Let the three sides of the right triangle be x, 2x, and 2x + l. Thus, x is the positive root of 
(2x +1)2 = x2 + 4x2 by the Pythagorean Theorem. This yields x = 2 + y/5 =2.a + l. Consequently, 
the sides of the triangle are 2a + 1,4a + 2, and 4a + 3. If A is the area of the triangle, we have 
A = (2a +1)2 = 4a2 + 4a +1 = 8a + 5. The semiperimeter, s9 of the triangle is (a + b + c) / 2 = 
5a + 3. 

Using well-known formulas for the inradius and exradii [1], we find: 
A 8 a + 5 

r = — = — — - = a; 
s 5a + 3 
A 8a + 5 8a + 5 2 

r = = - — - = = a + l = a: s-a (5a + 3 ) - ( 2 a + l) 3a + 2 
A _ 8a + 5 _ 8 a + 5 

$-h~ (5a + 3)-(4a + 2)~ a + 1 
A _ 8a + 5 _ 8 a 4 

s-c~ (5a + 3 ) - ( 4 a + 3 ) ~ a 

= 3a + 2 = a4: 

A 8a + 5 8a + 5 r 0 5 

Reference 
1. E. W. Hobson. A Treatise on Plane and Advanced Trigonometry. New York: Dover, 1957, 

p. 193. 
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Also solved by Miguel Amengual Covas, Seung-Jin Bang, Margherita Barile, Paul S. Bruck-
man, Charles K Cook, Leonard A. G. Dresel, Russell Euler, Bob Prielipp, H.-J. Seiffert, 
J. Suck, and the proposer. 

A Dozen Identities 
B-738 Proposed by Daniel C Fielder & Cecil 0. Alford, Georgia Institute of Technology, 

Atlanta, GA 
(Vol 31, no. 2, May 1993) 

Find a polynomial f(w, x, y, z) such that 

j{Ln, Ln+l, Ln+2, Ln+3 ) = 25j (Fn, Fn+l, Fn+2, Fn+3) 
is an identity. 

Solutions 1-12 by many readers 

Joseph J. Kostal: (xy - wz)2 

A. N. t Woord: (w2 + x2 + y2 + z2)2 

H.-J. SeifFert: (w2 + x2)2 + (y2 +z2)2 

Leonard A. G. Dresel: (w2 + x2)(y2 + z2) 
J. Suck: (y2-w2){z2-x2) 
Margherita Barile: [(x + zf + (y + w)2]2 

Paul S. Baickman: (x2 + xy-y2)2 

Herta T. Freitag: (wz)2 + 4(xy)2 

Shannon/Hendel/et al.: (x2 - wy)(y2 - xz) 
Ralph Thomas: wxyz + f wz(xz - j 2 ) 
Paul S. Bruckman: w4 + ( j + z)4-4x4-I9y4-4z4 

David Zeitlin: j 4 - wxz(y + z) 

Solution 13 by H.-J. Seiffert, Berlin, Germany 

More generally, we show that if/? is a natural number, then fp(w,x,y,z) ~{w2 +x2)p + 
(y2+z2)/? is a polynomial such that fp(L„,Ln+l,Ln+2,Ln+3) = 5pfp(Fn,Fn+v is an 
identity. Using equation (I12) of [1], L2

k = 5i^2 +4(-l)*, we obtain 

Jp(Lm A,+i, A,+2> A1+3) = (Ai + Ai+l) + (A?+2 + Ai+3/ 

= (5F„2 +4(-l)" + 5F„2
+1 +4(-l)"+y 

+(5F„2
+2 + 4 ( - i r 2 + 5 / ^ 3 + 4 ( - i r 3 r 

= 5"(i? +iv,2+,r+ 5̂ (F„2
+2 +F„2

+3r 

-^ Jp (A? ? Ai+1 > A»+2 > Ai+3 ) • 

Reference 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969; 

rpt. Santa Clara, CA: The Fibonacci Association, 1979. 
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Solution 14 by David Zeitlin, Minneapolis, MN 

Let f(w,x,y,z) = y4- wxz(y + z). If (Hn) is any sequence that satisfies the recurrence 

f(Hn>H
n+l>Hn+2>Hn+3) = (H2 ~ HQH\H3H4)f (Fn>Fn+\>Fn+2?Fn+?) -

This follows from [1], where it is shown that, for all nonnegative integers n, 

Hn+2 ~ HnHn+lH
n+3Hn+4 = H2 ~ H^H^ . 

Note that for the Fibonacci sequence, the value of H^-H^H^H^ is 1, and for the Lucas 
sequence, the value is 25. 

See also [2] for related identities. 

References 
1. David Zeitlin. "Generating Functions for Products of Recursive Sequences." Transactions 

of the American Mathematical Society 116(1965):30Q-15. 
2. David Zeitlin. "Power Identities for Sequences Defined by Wn+2 = dWn+l - cWn" The Fibo-

nacci Quarterly 3.3 (1965):241-56. 
Thankfully, no solver submitted the "trivial" solution: f(w, x,y,z) = x + y-z. Zeitlin points out 
that the solutions given are not independent If f and f2 are correct solutions, then so are 
f\+fi and f\-/2- Thus, for example, Seiffert's solution plus 2 times DreseTs solution yields 
Woord's solution. The identities w + x = y and x + y = z can also be used to transform one solu-
tion into another valid solution. 
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editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-488 Proposed by Paul S* Bruckman, Highwood9 IL 

The Fibonacci pseudoprimes (or FPP's) are those composite Integers n with gcd(^, 10) = 1 
and satisfying the following congruence: 

F^sn=° (modw), (i) 
where 

fl ifws=±l (modlO), 
8" "' -1 ifw = +3 (mod 10). 

[Thus, en = (4), a Jacobi symbol] 

Given a prime p>5, prove that u = \Lip is a FPP if u is composite. 

The Lucas pseudoprimes (or LPP's) are those composite positive integers n satisfying the 
following congruence: 

Ln = 1 (modw). (ii) 

Given a prime p>5, prove that u = \l*ip is a LPP if u is composite. 

H-489 Proposed by H.-J. Seiffert, Berlin, Germany 

Define the sequences of Pell numbers and Pell-Lucas numbers by 

P 0 =0 , /} = 1, Pk+2=2Pk+l + Pk, 
Q0 = 2,Ql = 2, Qk+2=2Qk+1 + Qk. 

Show that 

/a\ y FinQin
 = J_ 

^18(ZrP2„)2-5(F2„e2„)2 12' 

L2nP2n 8-3V2 
(b) Z 

ZiKLrPrY-WrQrY 48 

1994] 379 



ADVANCED PROBLEMS AND SOLUTIONS 

SOLUTIONS 

A Soft Matrix 

H-474 Proposed by R Andre-Jeannin, Longwy, France 
(Vol 31, no. 1, February 1993) 

Let us define the sequence {Un} by 
U0 = 0,UX = 1, and Un = PUn_x-QUn_2, n eZ, 

where P and Q are nonzero integers. Assuming that Uk & 0, the matrix Mk is defined by 

M _ _ L K + 1 Vk'2 ) k > l 

where i = ^(-1). 
Express in a closed form the matrix M%, for n>0. 

Reference: A. F. Horadam & P. Filipponi, "Choleski Algorithm Matrices of Fibonacci Type and 
Properties of Generalized Sequences," The Fibonacci Quarterly 29.2 (1991): 164-73. 

Solution byH.-J. Seiffert, Berlin, Germany 

First, we prove that for all integers m, /?, and j , 

Um+hUm+J - UmUm+h+j = QmUhUj. (1) 

We consider the Fibonacci polynomials defined by 
F0(x) = 0, Fl(x) = l, Fn(x) = xF„_l(x)+Fn_2(x), n e Z . 

It is easily seen that 

U„ = (-Q)W2F„(x),neZ, (2) 

where JC = PI-J-Q. Multiplying the well-known equation [see A. F. Horadam & Bro. J. M. 
Mahon, "Pell and Pell-Lucas Polynomials," The Fibonacci Quarterly 23.1 (1985): 12, formula 
(3.32), where the polynomials Pk(x) - Fk(2x) are considered] 

Fm+h(x)Fm+j(x) - Fm(x)Fm+h+J(x) = (- i r^(*)Fy(x) 

by (-Q)m-1+(h+jy2 and regarding (2), we obtain (1). From (2), it also follows that 

U_„ = -Q-"U„,neZ. (3) 

For m = k, h = l, andy = n, (1) yields 

UMUk+n-^Un = UkUk+n+1. (4) 
Similarly, with m = k, h = n-k, andy = 1, 

UnUk+l-QkUn_k=UkUn+1, (5) 
with m = ky h = n, andy = l-k, 

Uk+„-QkU„Ul_k=UkUn+1, (6) 

380 [AUG. 



ADVANCED PROBLEMS AND SOLUTIONS 

and finally., with m = n, h = l-k, andj = k-n,(l) gives 

or, by (3), 
Un-QkU^kUn_k=UkUn+1_k. (7) 

With the help of (4)-(7), it is easily proved by induction on n that 

f TT inkiij 
Mn

k=^~ 
fQk,2un -Qkun_k) - ' 

Using (3), it is easily seen that this equation also holds for n = 0. 
Also solved by P. Bruckman, A. G. Shannon, and the proposer. 

Get It off Your Chess 

H-475 Proposed by Larry Taylor, Rego Park, NY 
(Vol 31, no. 2, May 1993) 

Professional chess players today use the algebraic chess notation. This is based upon the 
algebraic numbering of the chessboard. The eight letters a through h and the eight digits 1 
through 8 are used to form sixty-four combinations of a letter and a digit which are called "symbol 
pairs." Those sixty-four symbol pairs are used to represent the sixty-four squares of the chess-
board. 

Develop a viable arithmetic numbering of the chessboard, as follows: 
(a) Use twenty-five letters of the alphabet (all except U) and nine decimal digits (all except 

zero) to form 225 symbol pairs; choose sixty-four of those symbol pairs to represent the sixty-
four squares of the chessboard. 

(b) There are thirty-six squares from which a King can move to eight other squares. Let the 
nine symbol pairs representing the location of the King and the squares to which it can move 
contain all nine decimal digits. 

(c) There are sixteen squares from which a Knight can move to eight other squares. A 
Queen located on one of those sixteen squares, moving one or two squares,- can go to sixteen 
other squares. Let the twenty-five symbol pairs representing the location of the Knight or the 
Queen and the squares to which the Knight or the Queen can move contain all twenty-five letters 
of the alphabet. 

(d) Let the algebraic Square a8 (the original location of Black's Queen Rook) correspond to 
the arithmetic Square A\\ let the algebraic Square hi (the original location of White's King Rook) 
correspond to the arithmetic Square Z9. 

Solution by Leonard A. G. Dresel, Reading, England 

Consider the basic 3x3 and 5x5 patterns given by: 

1 
4 
7 

2 
5* 
8 

3 
6 
9* 

and 

A 
F 
K 
P 
V 

B 
G 
L 
Q 
w 

c 
H 
M* 
R 
X 

D 
I 
N 
S 
Y 

E 
J 
0 
T 
Z* 
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Repeating these patterns across the 8 x 8 board, left to right and then top to bottom, and super-
posing them, we can satisfy conditions (b) and (c). To satisfy (d) and obtain 29 in the bottom 
right corner, we exchange 5 with 9 and M with Z in the basic patterns. Thus, we arrive at a viable 
numbering given by: 

Al B2 C3 Dl E2 A3 Bl C2 
F4 G9 H6 14 J9 F6 G4 H9 
K7 L8 Z5 N7 08 K5 L7 Z8 
PI Q2 R3 SI T2 P3 Ql R2 
V4 W9 X6 Y4 M9 V6 W4 X9 
A7 B8 C5 D7 E8 A5 B7 C8 
Fl G2 H3 II J2 F3 Gl H2 
K4 L9 Z6 N4 09 K6 L4 Z9 

Since 3 and 5 are co-prime, the repeating patterns ensure that no alpha-numeric combination 
occurs more than once. 

The solution is not unique, as we can choose the modified basic patterns in (7!) x (23!) ways 
to satisfy condition (d). 

Also solved hy P. Bruckman, J. Hendel, and the proposer. 

Pell-Mell 
H-476 Proposed by H.-J. Seiffert, Berlin, Germany 

(Vol 31, no. 2, May 1993) 
Define the Pell numbers by P0 = 0, Px = 1, Pn = 2Pn_x + P„_2, for n > 2. Show that, for all 

positive integers n, 
p _ V " s_i\[(3k+3-2n)/4]2[3k/2]( n + k^\ 

lc=0 ^ ^ 
4j(2n+k 

where [ ] denotes the greatest integer function. 

Solution hy Paul S. Bruckman, Highwood, IL 
Let S„ denote the sum given in the statement of the problem. It is easily shown that 

7 ^ = 1 ^ , |x|<V2-l, (1) 
where 

f(x) = l-2x-x2. (2) 

To prove that S„ = P„, n = 1,2,..., it will suffice to show that g(x) = j^j, where 

gW^SnX"; (3) 

presumably, this is to be valid for all x with | x \ < V2 - 1 . 
As usual with generating function techniques, we will ignore questions of convergence 

(which should he considered, a posteriori). Then 

g(x) = X ^ ^ ( . i ) ^ 1 " 2 " ^ ^ ] (m + 2k +1 
k,m>0 

4^2m+3k+2 
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Letting m = 2u or tn = 2u + 1 , we obtain 

g ^ = y x2u+k+l/_j\[(A:+l)/4]+«2[3*/2] 
k,u>0 ^ ^U 

'2u + 2k + l 
— • * l j[ l L V ' */" mJ " " / I * " " —J I 

4|3A:+2 

+ y x2M+^+2/_|\p-i)/4]+«2[3^/2] [ 2w + 1 + 2k + 1 
k,u>o v 2w + l 
4|3^ 

- xx/(-i)^-2%[to-)]^(-iy*»+{to% 

Now 

where ev = £(1 + (-l)v), which equals £(0"2' + 0"2>) = Re(<T2;), with 0=l+ix. Likewise, 

where ov = J-(l~(-l)v), which equals ±(ff-V ~er2J) = lm(0~2;). Therefore, 

g(x)=Re(C/(x)+/r(x)), (4) 
where 

£/(*)= X^X-1)^7^^0"1^2^ (5) 
4J/+1 

F(x) = X^C-l)^0"2^^0"1^2^ (6) 

Making the substitutions j = 4i + r, where i > 0 and r = 1,2, or 4 in (5), r = 2, 3,4 in (6), we 
find that 

U(x) = (x/02 + 2x2/04-l 6x416*) • h{x\ (7) 

V(x) = (2x2 /04 + $x3/06 + l 6x410s) • h(x), (8) 

where 

Thus, 

/2(x)-£(-iy26/x4/^-8/'. (9) 
7=0 

£ 8 

h(x) = (l + 64x4/0syl= * 08 + 64x4 ' 

from which we obtain 

£/(*) = _ _ i — - . ( 0 6 + 2x# 4 -16x 3 ) , (10) 
v 7 08 + 64x4 v " v J 
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?v2 

V(x)= 9. d-(04+4x02 + 8x2). (11) 
v ' <98 + 64x 4 

As we may verify, 6>8 + 64x4 = (04+ 4x02+%x2){04-4x02+%x2) and 06 + 2x04-16x* = 
(04 + 4x02 + Sx2)(02-2x). Thus, 

"<*-*&&• K W =*-<£+*»• (12) 

Next, we observe that <92 = 1 + 2ix - x2 = 1 - 2x - x2 + 2x(l + i) = f(x) + 2x(\+/'). Also, we 
have 04 = (f(x))2+4xf(x)-(l+i) + 4x2-2i=f(x)[f(x) + 4ix] + 4xf(x) + %ix2, from which it fol-
lows that 04 - 4x02 + Sx2 = f(x)[f(x) + 4ix]. Then 

U(x\ + iV(x) = x($2-2x + 2ix) = x[f(x) + 4ix] = ^ _ 
K> K) f(x)[f(x) + 4ix] f(x)[f(x) + 4ix] / ( * ) • 

Hence, we see that U(x) + iV{x) is real, so that 

Re(C/(x) + iV(x)) = U(x)+iV(x) = g(x) = - £ - . Q.E.D. 

* > • > * > 
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