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A NOTE ON A GEOMETRICAL PROPERTY
OF FIBONACCI NUMBERS

Peter Hilton
SUNY Binghamton, Binghamton, NY 13902-6000

Jean Pedersen
Santa Clara University, Santa Clara, CA 95053
(Submitted March 1993)

INTRODUCTION

In [2] the authors, amid a more extensive analysis, prove an interesting geometrical property
of Fibonacci numbers. They adopt the unusual convention (see [1] for the usual convention) that
the Fibonacci sequence is given by

f0=f1:1’ fn+2: n+1+ n» 7120, (1)

Let F, be the point (f,_;, f,) in the coordinate plane; let X, =(f,_,,0), ¥, =(0, f,); and let p,
be the broken line from O toF, consisting of the straight line segments OF,, K F,, ..., F, |F,.
Then it is proved in [2] that p, separates the rectangle OX,F,Y, into two regions of equal area,
provided that » is odd. Our main object in this note is to give an elementary geometrical proof of
their quoted result, and then to give an elementary algebraic proof of a generalized version of this
result.

PROOF WITHOUT WORDS
Y;c+2 Fk+2 (fk+1>fk+2)
AZ
B
Ji
fk )/Irlwl(fk’ fk-’-l)
'Yk+l A
A 1
foo 4 e
Ji A, Sia
Y,
¢ Fu(fias /)
B Je
LA B (fo, /1) A
o 1 Xk Xk+1 Xk+2
FIGURE 1

Figure 1 shows a path that begins at the origin and then progresses through the points
F,.(fy-1, fi), where the f, are defined as in (1) above. We quote the first result of [2]:
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ANOTE ON A GEOMETRICAL PROPERTY OF FIBONACCI NUMBERS

- . for each n>1, the polygonal path IR F, --- F,,; splits the rectangle FyX,,,,Fniibanet
into two regions of equal area. (Note that, in [2], the origin is referred to as E)

Inspection of Figure 1 (where congruent regions are labeled with the same symbol) reveals
that the above result may be seen to be true by simply looking at the geometry of the suitably sub-
divided rectangle which evolves as a polygonal path passes from F, through Fy to F,,. For
Figure 1 clearly shows that, for all k >1,

area Y Iy By Fy oYy yy = area Xy Fo By, By Xy,

and hence it follows that, since the polygonal path from F, to F; obviously splits the rectangle
Fy X F1Y, into two regions of equal area, then the polygonal path from £, to £y, ,; splits the rec-
tangle 74X, 41555111214 into two regions of equal area. Notice that Figure 1 also tells us that the
first line segment could have gone straight from F; toF;, j=1, and then the polygonal path from
Fy to F,; would split the rectangle Fo Xy, Foy, ;Yors; into two regions of equal area. Further-
more, since the calculation of the lengths of the sides of the squares in Figure 1 depends effec-
tively only on the recurrence relation in (1), and not on the initial values, any sequence of positive
numbers (the Lucas sequence, for example) satisfying (1) will produce a similar result.

THE THEOREM

We consider any sequence {u,} of nonnegative numbers satisfying the recurrence relation
U,y = U,y +u,; notice that, in particular, we might consider the Fibonacci sequence or the Lucas
sequence starting at any place along the sequence. We proceed exactly as in the Introduction,
replacing f, by u,, so that U, = (u,_;,u,), X,(u,,,0), ¥ =(0,u,), and the broken line p, =
oUW, ..., U, separates the rectangle OX,U Y, into two regions.

Y;:-H Un+l
A a
Rﬂ
Ab
Yn U"
Rb
O X" X n+l
FIGURE 2

Theorem: The dotted line p, separates the rectangle OX,U,Y, into two regions of equal area,
provided that » is odd.

We need the following simple lemma.
. 2 (12
Lemma: Uy — Uyl = —(un—l - unun—-Z)'

. 2 — (2 _ _ _ — 2
PmofofLemma. Uy —Upyllp ) = (un unun—l) (un+lun—l unun—l) SU U,y Uy
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ANOTE ON A GEOMETRICAL PROPERTY OF FIBONACCI NUMBERS

Proof of Theorem: We argue by induction on n, the case n =1 being trivial. Consider the
piece added on in passing from the rectangle OX,U, Y, to the rectangle OX, U, ,,Y,.,;. This may
be subdivided, as in Figure 2, into a triangle A, and a rectangle R, above p,,;, and a triangle A,
and a rectangle R, below p,,;. Obviously,

area A\, =area /\;,
area Ra =Upy (un+1 - un) = ug—l’ (2)
areaRb =u, (un - un—l) =Uyly_.

Let A4, be the area of the region above p,, and B, the area of the region below p, in the n™-
stage rectangle. We have proved that

An+l - Bn+l = An - Bn +Dm where Dn = ur%—l — Uy o (3)
Now our Lemma asserts that
Dn+1 = _Dn. (4)
Thus, by (3) and (4),
An+2 _Bn+2 = An _Bn- (5)

The equality (5) provides the inductive step to complete the proof.

REMARKS

(i) Equality (5) shows that, if n is even, the discrepancy A, — B, is still independent of n; it will,
however, depend on our particular choice of sequence {u,} since it will equal D, =} —uu_ =

u —u,(u, —uy) = uZ +ugu, —u?. Thus, the conclusion of our Theorem also holds if 7 is even, if and

V541
2

(i) Since our proof is purely algebraic, it remains valid even if we allow negative values of u,,,
provided we interpret area correctly (i.e., allowing for sign). Thus, in particular, we could
consider the Fibonacci and Lucas sequences starting with some negative subscript.

(iii) The case considered by Page & Sastry in [2], that is, u, = f,, does have a special feature of
interest. For f + fofi— /2 =1, so that, in their case, with n even, the area of the region above
P, exceeds that of the region below p, by exactly one unit. Of course, this phenomenon
continues to hold if we take u, = f,,, for any even k. If we take £ odd, on the other hand, then,
for even values of n, it is the area of the region below p, which exceeds that of the region above
P, by one unit.

(iv) Readers will probably wish to refer to [2] for related results, including matrix-generated
area-splitting paths.

only if u,, u, are related by u, =

Ug.

REFERENCES
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THE FIBONACCI KILLER*

Peter J. Grabner
Department of Mathematics, Technical University of Graz, Austria

Helmut Prodinger
Department of Algebra and Discrete Mathematics, Technical University of Vienna, Austria
(Submitted March 1993)

1. INTRODUCTION

We consider the following stochastic process: Assume that a "player" is hit at any time x with
probability p. However, he dies only after two consecutive hits. We might code this process by 0
and 1, marking a hit, e.g., by a "1". Then the sequences associated with a player can be described
by

{0,10}*-11.

The notation {0,10}* denotes arbitrary sequences consisting of the blocks 0 and 10, the block 11
are the fatal hits. Notice that {0, 10}" are exactly the admissible blocks in the Fibonacci expansion
of integers (Zeckendorf expansion, cf. [13]). Accordingly, the generating function
P
1- gz — pgz?

has as the coefficient of z* the probability P{X = x} that the lifetime X of a player is exactly x.
The generating function (1.1) is known in the context of the Fibonacci distribution or geometric
distribution of order 2, cf. [1], [3], [4], [7], [8], [10], [12].

Here, we are interested in » (independent) players subject to this game and ask when (in the
sense of a mean value) the last player dies.

Without the "Fibonacci" restriction, i.e., the maximum of 7 (independent) geometric random
variables, this problem has been studied previously and has some applications. (Compare [5],

(111)

We have obviously

(1.1)

P{max{X,,..., X,} <x}=(P{X <x})". (1.2)
The generating function of P{X > x} is given by
1+ pz
1-qz—pgz*”

We now factor the denominator of this function to obtain
1-qz - pgz* = (1-az)(1-bz)

Qo INT +HAPg L g-NT +Apg

2 2

with

*This research was supported by the Austrian-Hungarian cooperation project 10U3.
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Performing the partial fraction decomposition and extracting coefficients yields

—@%M(a%aw)—bx(bw)).

Using (1.2) we obtain the expectation for the maximum lifetime of n players:

P{X > x) =

1
E,=Emax{X,,.., X,} =) l—[l——(a"(a+p) —bx(b+p))) . (1.3)
20 \Vg* +4pq
By the binomial theorem we obtain
E.=) (—1)""‘(:'”)2 (Aa™ - Bb™)™, (1.4)
m=1 x20

where we use the notation
2 2
arp @y bep P
N +4pg  q\q* +4pq N +apg  q\a* +4apq

A

5+3./5 B_5—3J5
10,>2~"10 -

We will find that E,, ~ log,,, # and refer for the (technical) proof and a more precise statement
to the next section.

For example, in the symmetric case p = q =, we have a = l‘%@, b= 1‘#, A=

2. ASYMPTOTIC ANALYSIS

In (1.4) we found the expression

=307 ), @1

m=1
containing the function
f(2)=Y (Aa* - Bb*y for Rz>0.

x20

For an expression of that type we can write a complex contour integral

1 (=D"n!

b 2m3€z(z‘—1)---(z—n)f(z)dz’ @2
where ( is a positively oriented Jordan curve encircling the points 1, 2, ..., » (and no other integer
points); this can easily be checked by residue calculus.

We will use Rice's method to obtain an asymptotic expansion for E,. For this we refer, e.g.,
to [2] and [6]. This method is based on a deformation of the contour of integration. For this
purpose we need an analytic continuation of the function f to a region containing a half-plane
Rz > —¢ for £ >0 (we actually give an analytic continuation to the whole complex plane).

Using the notation C =B/ A and d =b/a (observe that |C|<1 and |d|< 1) we obtain

390 [Nov.



THE FIBONACCI KILLER

f(Z) = Azzau(l“Cdx)z = Azzauz:(_l)lcédxe(Z)

x20 x20 £20

3 -DiCt z N 2\ (=D‘C* (3)
=A*) (-1 C( ) a‘d) = A ( ) .

£20 4 l;)( ) é) t)1-a%d*

where the reversion of the order of summation was justified because of the absolute convergence
of the sum for fRz>0. The sum in the last line gives a valid expression for f(z) for every
complex number z which is not a solution of any of the equations 1—a’d‘ =0. In the points

2z, =—4 llgg‘; + ﬁ,’;’z with £=0,1,... and x €Z, there are simple poles with residue

Azl,x (ZZ, x) (— l)l—lce
¢ loga

[

o\ 7 2 3 4 o n2 nln ) |®e
. c
Rz=x

Xy —

Y

The Contours of Integration

In order to be able to deform the contour of integration, we need an estimate for f(z) along
the vertical line Rz = —u. For this purpose, we write

4 _ Y La®((1-Cd*y* -1)

—=
I-a x20

f@)-

and observe the inequality |(1— Cd*)* —1|< min(2, |z|Cd™). This yields

z

f@)-

4 ~1<4™ Y 2a[™+Hz| D.a7™Cd* |<|z|* (2.4)
l-a 0<x<log|z| x>log|z|
for |d|<a" <1and a =-uloga.

We are now ready to start the deformation of the contour of integration: we take (' as the
new contour and write

1 -1"n!
2m’3€ o —

(2.5
J_ (—1)"n! , 3 (—1)"}1! _
2717.§i,, Z(Z-—])..-(Z__n)f( )dz ZI}:ez‘S Z(z—l)~~(z—n)f( ),
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Notice that there is a second-order pole at 0. Computation of residues yields (with H, =1+++

-D"n! 1 logd 1

R = H +—=—-—,

zg)sz(z_l)...(z—n)f(z) loga " loga 2 (2.6)
(—-1)"71! @)= A*x n!r(l_lx) forx #0,

Z=§xz(z—l)---(z—n) Y. logaT(n+1-yx,)

2xri
where y Toga = zO,x'

Shifting the upper, the lower, and the right part of ¢’ (cf. the figure) to infinity and observing
that the integrals over these parts of the contour vanish then yields

E = 1 I _logd 1 A% nT(A-yx,)
" logt " loga 2  Gug x:logaT(n+1-yx,)
—u+ioo (27)
1 -1)'n!
. dz.
2 ) ey’ P

We now use the well-known asymptotic expansions

H, =logn+7+0(l) and —”!__:nz, 1+0 X
g n I'(n+1-2,) n

(by Stirling's formula) to formulate our main result.

Theorem 1: The expected maximal lifetime E, of » independent players each of which has the
Fibonacci distribution (or geometric distribution of order 2) fulfills, for n — oo,

y+logd 1

IEn = 10gl/a n- +-- ¢(logl/a n) + O(n—u)’ (28)
loga 2

for 0 <u <min(l, l]‘; g;i’), and ¢ denotes a continuous periodic function of period 1 and mean 0

given by the Fourier expansion

Z A/’L’xr(_xx)erm't - 1 Z r(_Zx)erm'(t—lOglla A)’ (29)
loga xeZ\{0} loga x€Z\{0}

o(t) =

which is rapidly convergent due to the exponential decay of the I'-function along vertical lines.
The remainder term is obtained by a trivial estimate of the integral and the (uniform) O-terms in
Stirling's formula.

3. EXTENSIONS

Here, we briefly sketch the more general case where & consecutive hits are necessary to kill a
player. In this case, the probability P(X = x) was derived by Philippou and Muwafi [9] in terms
of multinomial coefficients. As described in the introduction, there is a bijection to the sequences

{0,10,110, ..., 170} - 1%,
which yield the probability generating function
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THE FIBONACCI KILLER

pkzk — pkzk(l—pz) (3 l)
1-qz— pgz——— pigs  1-z+qphs .

for the lifetime of a player (cf. [1, pp. 2991f], [3, p. 428], [7, p. 207], [8]). Likewise, the generat-
ing function of P{X > x} is given by

1- p*z*
1-z+qp**t G2

Again we factor the polynomial in the denominator
1-gz—-pgz* - p"'¢ = (1-2)(1- ay2) - (1- }2)
with |@|>|a,|>--->|a, | (@ >0). Then we have, by partial fraction decomposition and extracting

coefficients,
P{X>x}=Ada™+ 405+ + 4.}, 3.3)
with 4 = E(?%E—)T) and similar expressions for 4,,..., 4.
For the expectation of the maximal lifetime of n players, we obtain

— _ - m-1[( N
E,=Emax{X,, .., X,}= mz__l(—l) (m)g(m)
with
g(2)= Z(Aae +o+ Aag)* for Rz >0.
£20

For the purpose of analytic continuation of g, we consider g(z) - If;, and proceed as in (2.4) to
obtain the continuation and a polynomial estimate for g(z) along some vertical line Rz = —¢ for
sufficiently small £ > 0.

We are now ready to perform similar calculations as in Section 2. Thus, we obtain

Theorem 2: The expected maximal lifetime [E, , of » players each of which has the geometric
distribution of order £ satisfies

+logAd 1 _
E, 1 =logy,n =242+ y(logyem) + O0r™)
for 0 <& <min(l, I—ng) and a continuous periodic function y of period 1 and mean 0 whose
Fourier expansion is given by
w(t) = _1 Z AT (- xx)em"" = l_l__ z I'(- Zx)erm(t—logu,z 4)
loga .o 028 & ;710
where y, = é’;";

By bootstrapping we find that, for k — o,
a~1-gp*+-- and A~1+kgp* +--- .
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FIBONACCI, LUCAS AND CENTRAL FACTORIAL NUMBERS, AND =

Michael Hauss

Lehrstuhl A fiir Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen, Germany
(Submitted March 1993)

In [1], a solution of Problem B-705, the evaluation of the series X, a,, /(n*(%)) for the
Fibonacci numbers a, = F, and the Lucas numbers a, = L,, proposed by H.-J. Seiffert, is given.
The proof is essentially based on the power series expansion of (arcsinx)?. The same method
yields, in the case a, = 1, the Catalan-Apéry representation 72 =18 X5 k72 / (%) (see [3]).

Now it is possible to deduce a more general formula by using the Taylor series expansion

2D
(Zarcsm ) IZV(k . 1) x¥, <2, meN,. )]
Here #(k, m) denote the central factorial numbers of the first kind, which are defined by (x[:=1)
(see [2], [4])
K. k-1 ﬁ )
xl ,_x;(x—2+]) Zt(k m)x”, x eR.

m=0

Observing that arcsin(a/2)=3z/10 and arcsin(f/2) =-z/10, as well as Binet's formula F, =
(@"=p") /5 and L, =a”"+ " [a=(1+~/5)/2, B=(1-+/5)/2], and noting the representation
(1), one can readily deduce

Theorem 1: For m €N, there hold

m_ S"ml\5 & Etk, m)|
(D™ e kY

@

__5'm! Lklt(k m)|
(=) S Z '

The particular case m = 1 yields
5 -t F 1 L, 1 (2k
ﬂ:_‘/g 2k+1 ___( ) k+1 _( )
4 ,§,2k+116" sz+116"
For m = 2, one obtains the solution of Problem B-705, and the case m =3 in (2) gives, by formula

(xxii) of [2],
N 750 i1 (2K 1
‘Fzzkﬂ 16"(")2(2]—1)2'

Observe that, for large k, (3)/(16F(2k +1)) ~ 47¥ k732 (see [3]).
Vice versa, the Fibonacci and Lucas numbers can be expressed in terms of the central
factorial numbers and 7z as follows.
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Theorem 2: For n €N, there hold

_ D' & T(k,n)zk_ ko, 1ykH
F,= NG N G +(=D™),

= ktoosF
o pan Tk, m) 7
L,=(-1)"n!y i** —(k|—)57(3k+(_l)k)'
k=n :

Here T(k,n) are now the central factorial numbers of the second kind, given by
1 n\n k
T(k,n)=— —11(.)—--' k eN,.
wm= 3057 neen

The central factorial numbers of the first and second kind are connected by the orthogonality
formula ZQ’:O t(n, k)T (k,m)=46, ., N := max(n, m) (see [2]; [4], p. 213).
To prove Theorem 2, one inserts the values x =37 /5 and x = - /5 into the expansion (see

(2D

n,m»

(Zsing) =(—1)"n!Zik+"—T—(—]I§"—n)xk, x €R, n eN,,
k=n :

and again uses the formula of Binet and L, = a” + ", respectively.
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CHARACTERIZING THE 2-ADIC ORDER OF THE LOGARITHM

T. Lengyel
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1. INTRODUCTION

We define v,(x) as the highest power of prime p which divides the integer x. The function

v,(x) is often called the p-adic order of x. In this paper we characterize the divisibility by 2 of

the series X (~1)*' =- and Zk—l *~, i.e., we determine their 2-adic orders. The characterization
generalizes previously known results on 2- ad1c orders and is based on elementary proofs.

2. RESULTS

For an integer x, the p-adic order v,(x) of x is the highest power of prime p that divides x.
We can think of the relations p|x and pfx as v,(x) 21 and v,(x) = 0, respectively.

We set v,(0) =0 and v,,(x/ y) =v,(x)—v,(y) if both x and y are integers. Therefore, for all
nonzero rational numbers, the order is defined to be a finite integer. From now on, all rational
numbers will be meant in lowest terms.

For rational numbers a;, (k > 0) and rational x, the p-adic order, v,(X;_,a,x*) of the series
>roa.x* can be introduced as lim, . p(Z " oa,x") if the limit exists, in which case there
exists an 7, such that v,(X;_oa,x*) =v,(Ziax*) for n=n,. To illustrate this, we consider
the series ;%-=x+x?+x’+---. The reader can easily verify that v,(Z)=v,(x) if v,(x) 21
and the limit does not exist if v,(x) <0. Actually, v,(x+x*+x>+---+x") =nv (x) if v (x) <0.
Notice that if v,(x)=0 then v,(x+x*+x>+---+x**") =0, while v,(x+x*+x>... x2 )>n.
Finding the p-adic order of functions helps in analyzing the divisibility property of the underlying
or related functions. We note that Clarke [1] has recently studied the p-adic order of the
logarithm by using p-adic arguments in order to characterize the divisibility properties of the Stir-
ling and partial Stirling numbers. The interested reader should consult a book on p-adic metrics
(e.g., [2]) for a general treatise of p-adic power series.

In this paper we consider the series log(1+x) = Xp_,(-D)* " £ £ and —log(1-x) =32, = * and
determine their 2-adic orders by elementary arguments based on bmom1al expansion.

In most cases the p-adic order of log(1 + x) can be derived by the well-known

Theorem A (Yu [4]): We have
= k-1 xk . 1
vp(log(l +x)) = v, Z(~1) — |=v,(x) ifv,(x)>—,
k=1 k pP-
and v, (log(1+x)) does not exist if v,(x) <0. In particular, for any integer x, v,(log(1+x)) =
v,(x) if p >3 and p|x, or if p=2 and 4|x, while for pfx the p-adic order v, (log(1+x)) does not

exist.
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In fact, Theorem A completely describes the p-adic order for p>3. The purpose of this
paper is to characterize the 2-adic orders of the two series in the case not covered by Theorem A,
i.e., for every even integer x and p=2. We note that the proof of Theorem A is based on the
observation that under the conditions of Theorem A given for p and x, the p-adic order of the
terms (~1)k’ll‘ki, k =2, of the infinite series Z}f:l(—l)k"% exceeds that of the first term, x (cf.
[2], p. 81).

If p=2andx=2, then the following lemma (cf. [2], Ex. 7, p. 83) describes the 2-adic
"behavior" of X}_, % i.e., the sum of the first # terms of the expansion —log(1- x).

Lemma B: The 2-adic order of the rational number >;_, lkk— approaches infinity as 7 increases.

An elementary proof can be given based on the observation that

2 2k .
v, Z =— |= min (k - v, (k)),

kentl k kzn+1

which assures that v,(Z¢_,,, %) becomes arbitrarily large as » — . One can prove that

n‘2k © 2k)
V. — |2V —_—
(32):H 22

holds for infinitely many values n. In fact, a p-adic argument shows that equality holds for all ».
We leave the details to the reader.

We set v, (X}, @,x") = oo if, for every integer N >1, there exists an integer n, such that
p" divides X} ,a,x* for every n>n,. In this case, v,(Zj_o@x*) =v,(Zi., ax*) holds.
By the Lemma, we set vz(Zle%:—) =o. We note that 0 and 2 play a special role in the 2-adic
analysis of log(1—-x) for these are the values for which v,(log(1—x)) = (cf. [2]). Our results
are summarized in the following two theorems.

Theorem 1: For any even positive integer x,

( ifx=2,

ifx=2 (mod16),
ifx=4 (modl16),
ifx=6 (mod16),
ifx=8 (mod16),
ifx=10 (mod16),
ifx=12 (mod16),
v,(x+2), ifx=14 (modl6),
(v, (%), ifx=0 (mod16).

AR

-

NN WLWwDDN

Vz(i (-n*! %) =9

-

-
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CHARACTERIZING THE 2-ADIC ORDER OF THE LOGARITHM

Theorem 2: For any even positive integer x,

0, ifx=2,
v(x-2), ifx=2 (modl16),

2, ifx=4 (mod16),

© ok 2 ifx=6 (modl16),
Y, E—k— =43
k=1 3
2
2

ifx=8 (mod16),
ifx=10 (mod16),
ifx=12 (mod16),
, ifx=14 (mod16),
(v, (x), ifx=0 (modl16).

»

-

-

Remark 1: The above theorems could be restated in a more compact form:

& g Xt [ra(x), ifx=0,4,8,12 (mod16),
Va Z D" —|= o
P} k v,(x+2), ifx=26,10,14 (mod16),

and

i x* v, (x), ifx=0,4,8,12 (mod16),

R Y — =

N2 k) |v(x-2), ifx=2,6,10,14 (mod16).

Notice the sharp contrast between v,(Zp_,(~1)*"'2) and v,(Zj, 2-). We can combine the

cases x =2 of the two theorems by substituting —x in place of x and carrying out the modular
calculations.

For a rational x=a/b with v,(x)=1and b >1, there exists a sufficiently large integer m
such that v,(log(1+x)) <m. Weset x'=axb ™', where b~ is the unique solution to the equation
bxb' =1 (mod2™) with 0<»™' <2™. We can proceed to determine v,(log(1+x’)) by Theo-
rem 1 and observing that v,(log(1+x)) =v,(log(1+x")). If x'#14 (mod 16), then m = 4 is an
appropriate choice. However, if it turns out that the remainder is 14, then one should check
whether v,(x’+2)<m and try a larger m if it fails. A similar method works for determining
v, (log(1—x)), too.

For example, if x=6/5, then v, (log(1-6/5)) =2 follows easily with m = 4. Weusem =5
and have x'=6+13=14 (mod 16) in order to obtain v,(log(1+6/5)=v,(6+13+2)=4. For
x =426/555, we start with m = 4. Since x’ =426 *3 =14 (mod 16) and v,(426+3+2) =8, we
note that we need a larger m. By using m = 10, we obtain x' =426x131=14 (mod 16) and
v, (log(1+426/555)) = v, (426 % 131+2) = 9.

Remark 2: Similarly to the proof of Theorem A, we observe that v,(2) <v, @ 1k)ifk=2
and s> 2. Therefore,

Vz(i (2;)k j = "z(i(—l)k'1 %) =v,(2")=s ifs>2.
k=1

k=1
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3. PROOFS

Proof of Theorem 1: The case of x = 2 is easily verified by checking the first couple of
terms of T (—1)* ==, Indeed, v,(Zi_,(-1)¥"2) =2 and v,(2* / k) > 2 for k 25.

If x=6 or 10, then by inspecting the sum of the first few terms we obtain, similarly to the
case of x = 2, that the orders are 3 and 2, respectively.

We can extend these results for x=2, 6, and 10 (mod 16). From now on a denotes an arbi-
trary integer while b is an arbltrary odd integer. The basic idea is that if v,(Z7_, (- k! x =r<
s then v, (o, (-1)F* i’C—“L"—z—)——) r, too, since x* = (x+a2°*)* (mod2°). [Of course, the same
applies if we omit the factors (—1)*~'.] By the previous observations, we can set s = 4.

For x=0,4, 8, or 12 (mod 16), the statement follows from Theorem A which claims that the
order must be v,(x).

Instead of simply proving the remaining case x =14 (mod 16), we combine the cases x =2
and 14 (mod 16) to make this proof transparent to prove Theorem 2. Let s =4. We calculate the
2-adic order of Z;l(—l)"‘ll‘ki using the binomial expansion of the terms x* = (b2° +2¢)* where
cis either 1 or —1. The expansion yields

(B2° +2¢)F = (22" +0))* = iZ"(’Z)(bT—l)eck‘e.
£=0

Note that the identity (l;) = %(’;:;) implies that (’Z)/ k is an integer multiple of 1//. Consider the
sum

i (-1 (b2s 220)"

k=1

in three terms, one term for £ =0, another for £ =1, and the last one for all the remaining cases,
£>22. We get

i (~1)1 (b2° ZZC)"

k- 1) blzé(s— +k ok~ )

__i (—2c)* +Zb2k+s—1( ¢y 1_,_2(_ 1)t IZ (e 1

Obviously, the 2-adic order of the second term is s if 5 # 0. Notice that the third term is always
divisible by 2°*' for s>3, since this condition implies that £(s—1)+k—v,(¢)>(s—1)+k -
log, £ > s+1. It turns out that the 2-adic order of the first term on the right side of identity (1) is
2 if ¢ = 1 as we have seen it at the beginning of the proof. By Lemma B, the 2-adic order of the
first term is o if c=—1. It follows that v,(Zp_, (-1)* ' (2° +2¢)* / k) = s if c=~1 (and b #0),
whileitis2ifc=1. O

Proof of Theorem 2: Basically, the proof of Theorem 1 can be repeated here except for
x =2, which case is the content of Lemma B. Careful inspection reveals that the 2-adic orders
are switched for x =6 and 10 (mod 16).
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Similarly to identity (1), we have

k- l)b ¢ 2Z(s—l)+k Ck—z

© 32120 2Q) & s ea &k (]
= b2 Z 2
Z k Z k % °

2
k=1¢=2 1

@)

where the last term is always divisible by 2 for s> 3.
By simply switching the cases ¢=1and ¢ =—1 in the previous proof and using identity (2),
we derive that v,(X7_; &ukzi") =sifc=1(and b#0), whileitis2if c=—-1. O

We note that Clarke [1] has recently proved similar results by using p-adic arguments.

Lemma B points to the odd behavior of v,(X}_, %) atx =2. Analysis of this behavior gives
rise to the question on the rate at which v,(X}_, %:—) increases as n gets larger. We were unable
to answer this question; however, numerical evidence suggests some pattern for the increase of
the 2-adic order. The following conjecture has been proposed in [3], in the context of the
divisibility by 2 of the Stirling numbers of the second kind, S(a2" —1,2™), where n>m >4 and a
is a positive integer.

Conjecture 3: For m>4,v, =2 %) =2"+2m-2.
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NUMBER OF MULTINOMIAL COEFFICIENTS
NOT DIVISIBLE BY A PRIME

Nikolai A. Volodin
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Camberwell 3124, Melbourne, Victoria, Australia®
(Submitted March 1993)

We consider the 7™ row of multinomial coefficients of the order £ :

. N n!
(s J2s ""]é)—___jlljz!...jz!’
where j, 20,i=1,..,4, andn=j+j,+--+j,.

The number of multinomial coefficients not divisible by p", where p is prime and N is a fixed
whole integer, for various /, p, and N was studied by L. Carlitz [1], [2], F. T. Howard [3], [4],
[51, [12], R. J. Martin and G. L. Mullen [6], and the author [7]. Let g(n, £, pV) be a number of
multinomial coefficients in the n™ row of order £ not divisible by p¥, and

n-1
G(n, £, p¥) =2 g(k, £, pV).
k=1

In the general case, an exact formula for g(n, £, p¥) was obtained by F. T. Howard [5] for N =1,
2, 3 and by the author [7] for N=1, 2. It is not difficult to show that the behavior or g(n, £, pV)
is very irregular and from that point of view it is better to study G(n, £, p") which changes more
regularly. The function G(n, £, p¥) was studied by K. B. Stolarsky [8], [9] and H. Harborth [10]
for N=1,£=p=2; by A. H. Stein [11] for N =1, ¢ =2, and arbitrary p; and by the author [7]
for arbitrary £ and p.

More precisely, the following exact formula was obtained in [7]:

Gin, £, p) =3 (6, p-1F T (-1 ap, )
k=0 z i=k

where n—1=a,+ap+---+a,p™. It is not difficult to show that G(n, £, p) is of the order n’,
where 6 =log (¢, p—1). The following theorem gives a more exact result.

Theorem 1: « =limsupG(n, ¢, p)/n’ =1.

n—»oo
Unfortunately, there are no similar results for 8= liminf G(n, £, p)/n° even in particular cases.
n—>c0
In the general case, only the following elementary estimate is known: S> (¢, p—1)"1.

In the particular case p = 2 (following H. Harborth [10]), we are able to prove the following
result.

* This research was undertaken while the author was in the Statistical Department of the University of Melbourne.
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Theorem 2: If we consider the sequence g, = G(n,, £,2)/n’ with n, =2n

1L n, =1, where +
or —is chosen so that g, becomes minimal, then {q,} is strictly decreasing.

This theorem is a generalization of the lemma from [10] for the case of binomial coefficients
to the case of multinomial coefficients. We should also note that the sequence {n.} is not the
same for different £ . In Table 1 the values of n, for various r and / are given.

TABLE 1
¥
£ 1 2 3 4 5 6 7 8 9 10 15 30
2 3 5 11 | 21 | 43 87 + 173 | 347 | 693 | 1387 | 44395 | 1454730075
3 3 7 13 [ 27 | 53 | 107 | 215 | 429 | 859 | 1719 | 54999 | 1802202477
4 3 7 13 1 27 | 55 | 109 | 219 | 439 | 877 | 1755 | 56171 | 1840625371
5 3 7 13 | 27 | 55| 109 | 219 | 439 | 877 | 1755 | 56173 | 1840700855
10 3 7 13 | 27 | 55 111 | 221 | 443 | 887 | 1775 | 56795 | 1861082589
In Table 2 we give values of 7, and g, = G(n,, 2,2) /n’ .
TABLE 2
r nr q)’ ¥ nr qr
1 1 1.000000 | 26 45460315 0.812556563402
2 3 0.876497 | 27 90920629 0.812556561634
3 5 0.858126 | 28 181841259 0.812556559863
4 11 0.827243 | 29 363682519 0.812556559862
5 21 0.826359 | 30 727365037 0.812556559272
6 43 0.816719 | 31 1454730075 0.812556559174
7 87 0.815382 | 32 2909460149 0.812556559092
8 173 0.813788222 | 33 5818920299 0.8125565590457850017
9 347 0.813086063 | 34 11637840597 0.8125565590398820396
10 693 0.812934013 | 35 23275681195 0.8125565590234059925
11 1387 0.812675296 | 36 46551362391 0.8125565590216437317
12 2775 0.812657623 | 37 93102724781 0.8125565590182076960
13 5549 0.812592041 | 38 186205449563 0.8125565590170475496
14 11099 0.812575228 | 39 372410899125 0.8125565590166681715
15 22197 0.812567096 | 40 744821798251 0.8125565590162182798
16 44395 0.812560137 | 41 1489643596503 0.8125565590162065045
17 88789 0.812559941 | 42 2979287193005 0.8125565590160702999
18 177579 0.812557589 | 43 5958574386011 0.8125565590160436690
i9 355159 0.812557229 | 44 11917148772021 0.8125565590160253147
20 710317 0.812556865 | 45 23834297544043 0.8125565590160134328
21 1420635 0.812556846 | 46 47668595088085 0.8125565590160123562
22 2841269 0.812556653 | 47 95337190176171 0.8125565590160082524
23| 5682539 | 0.812556588 | 48 | 190674380352343 0.8125565590160076856
24 | 11365079 | 0.812556582 | 49 | 381348760704685 0.8125565590160069672
25 1 22730157 0.812556563 | 50 | 762697521409371 0.8125565590160066187

On the other hand, if we consider the case /=2, p=3,5, 7, then there exist increasing sequences
{n} such that G(n, 2, p)/n® <G(n,_,,2, p)/n’.,. Calculations give us the following sequences:

1994]
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ny=0, n,=3n_,+1, forp=3,
n,=0, n=5n_+2, forp=35
ny=0,n=7n_,+3, forp=7.

If we denote B, =liminf G(n, 2, p)/ n’ and ,3 , =liminf G(n,, 2, p)/ n?, then
n—>eo r—o

By =221 = 0774281326315
B =281 = 0802518299262 (%)
B, = 2181471 = 0819271977267

Very probably g, = ,3 > but at the present time we do not have complete proof of this fact. For

that purpose it is necessary to show that the sequences {n,} which were defined earlier have the

following property: G(n.,2, p)/n’ < min G(n,2, p)/ n, r=12, .., forp=2735and7.
n,_1<n<n,

Proof of Theorem 1: 1t follows from (1) that
G@", 4, p)/ p" =, p-1)" /P =1 )
for all m, which givesus a > 1.
Furthermore, we will show that
b =G(@p™, L, p)/(p™)’ <1, when 1<i<p. 3

For this purpose, we consider the fraction b,/ b,,, = ¢; which, due to (1), is

. 0, .
i+1 i
C =|—— 1
! ( i )(ZH)

and we shall show that ¢, = 2% /(£+1) 21 or, in other words, that

(6, p-D>(L+1)Br. 4)
Since

(4, p= 1)L +2)°E? =z+1(l+ 1 )“’g“’
L+D°BPU+1, p-1) L+p\ £+1 ’

we consider, under 7 > 3, the function

log, p
t 1
o(p,H)= (1 +—)

t+p-1 t

as a function of p and, taking the derivitave, we find that

o(p, 1) ( l) pin2 | o(p, o) tpln2
n=220 (1 1) - 0
(.1 pln2 [n "7 t+p-1 < tpln2 t+p-1 <

because 7p/ (t + p—1) is increased either by p or by 7, and
tpin2

t+p-1

:ém2>L
t=3, p=2 2
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Hence, p(p, £+1) < (2, £+1)=1, and (£, p—1)/ (£ +1)"*®27 is decreased in /. So

U, p-D/ (L +1)2P <(3, p-1)/ p* <1, when />3,
which proves (4).
As the derivative of the function

y(x) = ("—“) x

x l+x
is equal to
(x+1Y L +1) - 62 +x)
"’(")_( X ) (x+ D)L +x)

then w(x) has only one extreme and, as ¢, >1, this extreme is the minimum. As 5 =5, =1 for
2<i<p-1,wehave b, <1.
From (1) it is easy to prove, for 0 < x < p”, that the following recurrent formula is valid:

Gla,p" +x,£, p)=G(a,p", £, p)+(£-1,a,)G(x, £, p), )
where 1<a,, < p—1. We show that
G(a,p"+x,4,p)/(a,p"+x)’ <1 forall x=0,..., p" -1, m=0,1,... ©)

is valid.
The inequality (6) is evident when m = 0. Let us suppose that (6) is valid in the case of all
positive numbers less than m. Then we will have G(x, £, p) <x° for 0< x < p”. Then, from (3)

and (5), we have
G(a,p" +x,4, p)/ (@,p" +x)° =[G(a,p", £, p) +(£ =1, 4,)G(x, £, P)]/ (@p" + %)’ ™
<[@"’ +(-1,a,)°1 (@p" +x)° = f(x), 0<x < p".

In the interval [0, p™] the function f(x) has only one extreme, which is the minimum. So (5) is
valid. From (3) and (6), we have a <1 and, when (2) is added, a =1. Theorem 1 is proved.

Proof ¢f Theorem 2: We suppose
G@2n +1,0,1)/(2n. + 1)?>q, and G(2n.—1,4,1)/(2n, - ) >gq. ®)

If we denote a = 2n, and b= {" / (({ +1)G(n,, /£, 2)), then, from the definition of ¢, and assump-

tions (7) and (8), we have
1Y 1Y’
1+b2(1+—) and l—bz(l——) :
a a

Addition of these two inequalities yields the contradiction 2 >2+6(@—1)/a* +--->2. Thus, the
inequalities (7) cannot both be true, which proves that the sequence {q,} is strictly decreasing.
Theorern 2 is proved.

Returning to formulas (), it is necessary to note that calculations for p = 3, 5, 7 are very
simple, by using (1). We omit the proof.
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A NOTE ON BROWN AND SHIUE'S PAPER ON A REMARK RELATED
TO THE FROBENIUS PROBLEM

Oystein J. Rodseth

Department of Mathematics, University of Bergen, Allégt. 55, N-5007 Bergen, Norway
(Submitted April 1993)

Given relatively prime positive integers a, b, let NR denote the set of positive integers with
no representation by the linear form ax + by in nonnegative integers x, y. It is well known that the
set NR is finite. For a nonnegative integer m, we put

S, (a,b)= Y n".
neNR

Sylvester [3] showed that #NR = Sy(a,b) =1(a-1)(b-1) and, recently, Brown and Shiue
[1] found a similar closed form for S (a,b). Brown and Shiue did this by determining a closed
form for the generating function f(x) of the characteristic function of the set NR and then com-
puting f'(1) = S,(a, b). In this note we use a more direct approach, which gives us a closed form
for S,,(a, b) valid for every nonnegative integer m.

Let integers n, r, s be connected by the relations

r=n(moda), 0<r<a, bs=r(moda), 0<s<a.
We have that n € NR if and only if 7= —ar + bs for some integer 7 in the interval 1< <|bs/a],
that is, if and only if n = ak +r for some integer k in the interval 0< k¥ < (bs—r)/a—1. Hence,

a-1 !"Sa-—"l

Sy(a,b)=Y > (ak+r)".

r=0 k=0
For the exponential generating function of the sequence {S,,}, this gives

bsrl ©

ZS (@, b)—.—z 5 Z(ak+r) =

r=0 k=0 m=0
b:r‘l(k) 1 a-1 5 a-1
ak+r)z __ sz rz
-5 5w L 12e S
r=0 k=0 € —1\,=0 r=0

As r runs through the set {0, 1,...,a—1}, so does s. Hence,

a-1 a-1
Zebsz — Zebsz,
r=0 5s=0
and we find that
abz _ i 1

38, (a,b) ==
m=0 m!

Multiplying this relation by z gives

(e“-DE"-1) -1
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I gkpk gk
mS,_(a,b Ba' Bb = B
Z - ) ! Z ,z;, N k+1 k! ,;,'”
where By=1, By=—1, B,=%, B;=0, B,=—,... are the Bernoulli numbers; cf. formula

(6.81) and section 7.6 in [2]. Equatmg coefficients of z” now gives the

Theorem: Form=1, 2, ..., we have
' & \(m+1- —jpm-i 1
S, (a,b)= (’"* )( )BiB.a'" " -—B, .

It is not difficult to see that, considered as a polynomial in a and b, S, (a, b) has the algebraic
factor (@—1)(b—1). In addition, if m is even > 2, then S,,(a, b) also has the factor ab(ab—a - b).
Our theorem gives us, of course, Sylvester's result for .S, and Brown and Shiue's formula [1],

S,(a,b) = %(a ~1)(b-1)(2ab-a-b-1).
Also, for §,, we obtain a rather simple formula:

S,(a,b) = 11—2 (a-1)(b-)ab(ab—a—b).
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AN ALTERNATIVE PROOF OF A UNIQUE
REPRESENTATION THEOREM

A. F. Horadam

The University of New England, Armidale, N.S.W., Australia 2351
(Submitted April 1993)

This note describes an alternative approach to the proof in [2] of a representation theorem
involving negatively subscripted Pell numbers P, (n> 0), namely,

Theorem: The representation of any integer N as
N = Za,. P, €))
i=1

where a, =0,1,2 and a;, =2 = a,,; =0, is unique and minimal.

To conserve space and avoid unnecessary repetition, we assume that the notation and results
in [2] will be familiar to the reader. Our alternative treatment, however, requires the fresh result:

2’12_1(—1)"+1 Py=-1+(-)"(P, +P,). @
i=1

Repeated use of the recurrence relation for P_, leads to (2). Observe [2] that in (2)
qdn= })——n +1)—n—1 (q—l = —1: 90 = la 9= 1) (3)

Proof of the Theorem: Suppose there are two different representations

h
N=>aP, a,#0,a,=2=>a,=0 (a=0,1,2) )
i=1
and
N=Yb4P,  b,#0,5,=2=b,,=0 (5=0,1,2). )
i=1

Case I. Assume A = m, so that the Pell numbers in (4) and (5) are the same, but the coefficients
a,, b, are generally different. Write

¢=a,-b (¢=0+1,%£2,i=12,..,m). ©6)
Subtract (5) from (4) to derive
ic,.P_,. =0 by (6), ’ (7
that is, -
c, P, + miciP_, =0, (8)
i=1

whence, by (2), for a maximum or minimum sum, i.e., ¢, =2 (i=12,...,m—1),

¢, P, +)"(P,,+P,)=1 %)

-m -
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[The notation of (3) may be used in (9).] We concentrate on ¢, P_,, since this term dominates the
sums (7)-(9).

m even (P, <0): Here (9) gives

(c,+DP,+P, =1 (%2)
Now, in (9a),
) Cn=0= q-m=1 by (3)
(i) c,=1= P,.=1
(iii) €, =2 =1 by 3)

where in (ii) and (iii) the recurrence relation for Pell numbers [2] has been invoked.
m odd (P.,, > 0): Here (9) gives

,-D)P,-P, =1 (9b)
Next, in (9b),
(IV) Cn = 0= —gm= 1 by (3)
(vi) c,=2= P,-P, =1

All the equations (i)-(vi) involve contradictions. Of these, perhaps (ii) is the least obvious.
Let us therefore examine (ii), which is true for m =2 (even) leading to ¢, =1, ¢, =2 from (ii) and
(8). Now ¢, =1=a, — b, implies that a, =2 (b, =1) or a, =1(b, =0), i.e., a, # 0, which contra-
dicts ¢; =2 =a, — b, since this means that a, =2 (b, =0) and, hence, a, =2 =a, =0 by (1).
Thus, (i)-(vi) and, ultimately, (7) are impossible.

Similar reasoning applies when ¢,, =—1,—2. Consequently, the assumption in Case 1 is
invalid.

Summary of Case I Results: If #=m, then g, =5, (i=1,...,m), i.e., the representations
(4) and (5) are identical, so that the representation (4), or (1), is unique.

Case II: Assume 2>m. Then four subcases exist, depending on the parity of # and m. From
[2], with n standing for A4 and m, in turn,

-P,<N<-P,, nodd (10)
and
-P,,<N<-P, neven (11)
These restrictions impose a range of values upon N for each integer n > 0, for example [2],

n=1I 0<N<L2
n=2: -4<N<2
n=3: —-4<N<12 (12)
n=4 -28<N<12
n=>= —-28< N <170,

the number of integers [= sums (1)] being 3, 7, 17, 41, 99, in turn, which equal gq,, g5, 4,, g, 4,
respectively.
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Results (10) and (11) reveal that each number &, as it occurs for the first time in the ranges
(12), is represented uniquely and minimally. For instance,

-3=1P,;+2-P,+0-P;+0-P,+0-Ps+---

has unique and minimal representation 1- P, +2- P,. We conclude that # % m. Similarly, s £ m.
Therefore, #=m, and Case 1 and the Summary are true.

Combining all the preceding discussion, we argue that the validity of the Theorem has been
justified.

See [2] for further relevant information and [1] for an analogous treatment of representations
involving negatively subscripted Fibonacci numbers.

REFERENCES

1. M. W. Bunder. "Zeckendorf Representations Using Negative Fibonacci Numbers." The
Fibonacci Quarterly 30.2 (1992):111-15.

2. A.F. Horadam. "Unique Minimal Representation of Integers by Negatively Subscripted Pell
Numbers." The Fibonacci Quarterly 32.3 (1994):202-06.

AMS Classification Numbers: 11B37, 11A67

NEW EDITORIAL POLICIES

The Board of Directors of The Fibonacci Association during their last
business meeting voted to incorporate the following two editorial policies ef-
fective January 1, 1995:

1. All articles submitted for publication in The Fibonacci
Quarterly will be blind refereed.

2. Inplace of Assistant Editors, The Fibonacci Quarterly
will change to utilization of an Editorial Board.

1994] 411



SOME INFORMATION ABOUT THE BINOMIAL TRANSFORM

Helmut Prodinger
Department of Algebra and Discrete Mathematics, Technical University of Vienna, Austria
(Submitted April 1993)

A few days ago I saw the paper [4]. T think I can make some additional remarks that might
not be totally useless for the Fibonacci Community!

Let (a,) be a given sequence and s, = ZLO(Z) a,. Denoting the respective (ordinary) gener-
ating functions by A(x) and S(x), the paper in question mainly deals with the consequences of the
formula

X

S(x) = T_l‘; A(l—_—;). )

Knuth [7] has introduced the binomial transform by
4, =3 (3 )0 a
k=0

and it is clear that this is the situation from above. But Philippe Flajolet and the present writer
agreed about ten years ago that there are just exponential generating functions hidden! They
have a convolution formula

cn = Z(’]:)akb.—ka
k=0
and upon choosing the b,'s to be equal to 1, we have the old situation. So, denoting the exponen-
tial generating functions by A(x) and S(x), we have the even simpler formula S(x)=e*A(x).
This can readily be inverted as A(x) = e”*S(x), whence

n

a,=)y (Z)(- )" s,

k=0

These facts about exponential generating functions are of course folklore; one particular reference
is [3].

Flajolet & Richmond [2], Schmid [8], and Kirschenhofer & Prodinger [6] all made heavy use
of (1). Schmid observed (among other writers) that an exponential generating function will be
transformed into an ordinary generating function by the Borel transform.

Now the generalization

sn:Z(Z)b”‘kckak or §(x)= 1 A( @ )
k=0

1-bx \1-bx

translates into
S(x) = ™ A(cx).
Since

A(x)=e 3] ({—),
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we find the inversion formula
—-n Y‘ ( )(”‘1)n_k bn—

The discussion in Theorem 2 becomes quite transparent, considering exponential generating
functions. It is asked whenever we have

FPn+r = Z(k)tn_kska+r’
k=0

where F, denote Fibonacci numbers. The exponential generating function of the Fibonacci
numbers F, is

e —e™,
with the usual a = (1+J§)/ 2 and B=-1/a=(1-+/5)/2. More generally, the sequence Foir
leads to

1raz")r r,B7x rasx rBsx
e —pe) = oo - per)

from which we deduce the two equations,
af =t+als and B°=t+p%.

Subtracting them, we see that

g0 =B b
__ﬂq FZI
Further,
q-p q-p
t=a’-at = E B )P---“ B (e ‘“’.
a ﬂ _ﬂ q

To justify this equating of coefficients, we note that the functions e™ are linearly independent;
and the other possibility of grouping terms from the left and the right side would lead to the
impossible equation a” =-f".

In [4] there is also the modification: What are the coefficients of

T(x) = A(l — )?

That means: What is the effect of deleting the first factor? We can answer this much more gen-
erally by considering (with an arbitrary complex parameter d),

T = (l—lbx)d A(lf;x)'

In this derivation, we will use the concept of residues, interesting per se.
Therefore, 1-bx=—5% and dx=

c+bw

We are using the substitution w=;%- or x=
dw ; thus,

c+b

(c+b %
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=) = - ,,H T(x)

dy (c+bw)
27114; n+1 A( )

n+l d
_ L caw i (c+bvrl) (c+l;w) A(w)
27 ] (c+bw)” w" c

= W (c +bw)™ ! A(w)

Since

¢ Y w
Aw) = (c+bw) T(c+bw)’

we find in a similar way the inversion formula

—-n < +d-1 n—k 3.n—
a,=c H("n_k )(—1) “prte,

The formula (1) is also useful to deal with Knuth's sum [5, eq. (7.6)]

w30 )

re0=3(3) (=25 )=

the generating function of the sequence u, turns out to be

1 1 _ 1 - 2n(27’l)4—n
I-x l+2(5) V1-4 ;;x n)

Since

From this, we see that u, = 2_"(,,72) if n is even, and u, = 0 otherwise.

I communicated this idea to Knuth, and he reported that Herbert Wilf came to this (or a
similar) approach independently.

Formula (1) also has a combinatorial interpretation. If, for example, A(x) enumerates certain
words, so that a,, is the number of words of length n with a certain property, and we perform the
operation "fill-in a new letter where and as often as you want," then the new "language" has the
generating function S(x). For further details on such combinatorial constructions, we refer the
reader to [1].
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PIERCE EXPANSIONS AND RULES FOR THE DETERMINATION OF
LEAP YEARS

Jeffrey Shallit
Department of Computer Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
shallit@graceland.uwaterloo.ca
(Submitted April 1993)

I. INTRODUCTION

The length of the physical year in days is not an integer. This simple fact has complicated
efforts to make a calendar for thousands of years. Both the Julian and the Gregorian calendars
use a scheme that involves the periodic insertion of extra days, or intercalation. A year with an
intercalated day is called a leap year.

In the Julian calendar, an extra day was inserted every fourth year. In the Gregorian calendar
(commonly in use today) an extra day is inserted every fourth year, exclusive of century years,
which are leap years only if divisible by 400. From this, we see that the average length of the year
in the Julian calendar was

365+% =36525

days, while in the Gregorian calendar, the average length is

3654 by 1 g5yl L, 1

=3652425
4 100 400 4 4.25 4.25-4

days. Both these numbers are approximations to the true length of the year, which is currently
about 365.242191 days [1, p. C1].

In this note, we will examine a scheme for leap year determination which generalizes both the
Julian and Gregorian calendars and includes the modifications of the Gregorian calendar sug-
gested by McDonnell [2]. Although our results will be phrased in the language of the calendar,
they are in fact purely number theoretical in nature.

II. THREE INTERCALATION SCHEMES FOR LEAP YEARS

An intercalation scheme describes when to insert extra days in a year to keep the calendar
synchronized with the physical year. We assume that exactly O or 1 extra days are inserted each
year. A year when one day is inserted is called a leap year.

Let the length of the year be 7+ § days, where [ is an integer and 0< f<1. Let L(N) count
the number of years y in the range 1< y < N which are declared to be leap years. A good inter-
calation scheme will certainly have lim,__~ (N )= 3. A much stronger condition is that
| L(N)— BN| should not be too large.

We now describe three intercalation schemes.

A Method Generalizing the Julian and Gregorian Calendars

Let a;,a,, ... be a finite or infinite sequence of integers with a, >1and g, >2 fori >2. We
call such a sequence (a;) an infercalation sequence.
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We now say that N is a leap year if N is divisible by a;, unless N is also divisible by a,a,, in
which case it is not, unless V is also divisible by a,a,a,, in which case it is, etc. More formally,
define the year N to be a leap year if and only if

Z (D) div(N, aa,..a,)=1,
=1

where the function div(x, y) is defined as follows:

. L ifyx;
div(x, y) = {O, otherwise.

For the Julian calendar, the intercalation sequence is of length 1: a; =4. The Gregorian
calendar increased the length to 3: a; =4, a, = 25, a; =4. Herschel ([5], p. 55) proposed extend-
ing the Gregorian intercalation sequence by a, =10, which results in the estimate S =24225.
McDonnell [2] has proposed

(a,a,,...,a;)=(4,25,4,8,27),

corresponding to the estimate £ =242199.
The method has the virtue that it is very easy to remember and is a simple generalization of
existing rules. In section III of this paper we examine some of the consequences of this scheme.

An Exact Scheme

Suppose we say that year y is a leap year if and only if

| By+1/2]-|B(y-D+1/2]=1.

Then L(N) =| BN +1/2; in other words, L(N) is the integer closest to SN . This is clearly the
most accurate intercalation scheme possible. However, it suffers from two drawbacks: it is
unwieldy for the average person to apply in practice, and £ must be known explicitly.

This method can easily be modified to handle the case in which f varies slightly over time.
Further, it works well when the fundamental unit is not the year but is, for example, the second.
It then describes when to insert a "leap second.” This method is essentially that used currently to
make yearly corrections to the calendar.

A Method Based on Continued Fractions

We could also find good rational approximations to S using continued fractions. For exam-
ple, using the approximation .242191 to the fractional part of the solar year, we find

242191=00,4,7,1,3,17,5,1,1,7, 1, 1, 2]

and the first four convergents are 1/4, 7/29, 8/33, and 31/128. The last convergent, for example,
tells us to intercalate 31 days every 128 years. McDonnell notes [personal communication] that
had binary arithmetic been in popular use then, Clavius would almost certainly have suggested an
intercalation scheme based on this approximation.

The method suffers from the drawback that the method for actually designating the particular
years to be leap years is not provided. For example, the third convergent tells us to intercalate 8
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days in 33 years, but which of the 33 should be leap years? In 1079, Omar Khayyam suggested
that years congruent to 0, 4, 8, 12, 16, 20, 24, and 28 (mod 33) should be leap years [5].

III. SOME THEOREMS

Given an intercalation sequence (a,,4a,,...), it is easy to compute L(N) using the following
theorem.,

Theorem 1: Let L(N) be the number of leap years occurring on or before year &, i.e.,

N
LN) =YY (-)*div(k, aga, ...a;).
k=1i21
Then

121 ala2 .. -al

LN)=Y (- 1)"“{——1\’—J.

Proof: 1t is easy to see that, for y >1, we have
div(x,y) = FC—‘I - {x—“l}
Y y

L(N)= iz (-D*'div(k,aa,...a,)

k=1i21

N
=Y (-D)™Y div(k, ag,...a,)
k=1

izl

- ;(—1)”‘2&(11 .I.C.a,. } B [aft J)

| _ N
=2 [al...a,-J’

izl

Thus, we have

which completes the proof. O

Theorem 1 explains several things. First of all, it gives the relationship between the intercala-
tion sequence a, and the length of the physical year in days. Write

1 1
...
a a4,
Clearly we have
lim L) =a.
Now N

Then if the length of the physical year is 7+ 8 days, where 0< <1, we would like « to be as
close as possible to f; for, otherwise, the calendar will move more and more out of synchroniza-
tion with the physical year.
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Therefore, to minimize error, we can assume that the o, have been chosen so that a = 8. It
is somewhat surprising to note that even this choice will cause arbitrarily large differences
between the calendar and the physical year; this in spite of the fact that the behavior on average
will be correct.

Suppose a,,a,, ... have been chosen such that

1 1 1

a a9 ao

The next theorem estimates how far out of sync the calendar can be.

Theorem 2: Define N; =—-1+a,—aja, +--- +(-)"*aa, ...a;. Then, forallr 20,

r+l 1 1 %
N2r+la_L(N2r+l)Zz 1- l—a_ ZZ'
2

A DBy J

Proof: 1t is easily verified that, if i < j, then

Vi if i is even,
Nj [ Nj J ay...a; 4
al al al

a. T, ifiisodd.
Thus, we find
© (__l)i+l © i1 N2 "
N — L(N. =| N, 7 N (—1)H 2l
2r11@ — LNy p1) [ 2r+1§ aa,..a, E( ) a..a
— 222(_1)141 N2r+l _{ N2r+l J + i (_1)i+1 N2r+1
purt a...a; |a..aq =243 a,...q
2 2i2(_1)l+1 N27‘+1 _ N2r+[
pary a...q |a...q

r+1 r+1
N2j—1 _ N2j—l

A—lal"'a2j—l j=1al...a2j

_ 'ZH Ny 1 1
j=1d1--- Ay
Now, if we observe that N,;_; 2a,...a,; 1 —4a;...a;_,, then we find that

r+l1 1 1 ’
N2’+1a—L(N2r+l)ZZ 1- 1-— ZZ’

j=1 X1 Dy

which is the desired result. O

Thus, the difference N,,,,a—L(N,,,;) can be made as large as desired as » — . There-
fore, if ¢ is an irrational number, there is no way to avoid large swings of the calendar.
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As an example, consider the Gregorian calendar with intercalation sequence (a,,a,,a;)=
(4,25,4). Then N, =303. For example, in the period from 1600 to 1903, we would expect to
see 303-2425="734775 leap years (assuming the length of the year is precisely 365.2425 days),
whereas the Gregorian scheme produces only 72 leap years.

We now assume that the fractional part of the year's length in days is an irrational number «.
We also assume that the intercalation sequence a, is that given by the Pierce expansion (see [3],
[4], [6]) of «, i.e., the unique way to write

such that the a; are integers with 1<a, <a, ... . It is known that the expansion terminates if and
only if « is rational. For example,
.242191:1— ! + ! - 1 .
4 4-32 4-32-2232 4-32-2232-15625

Then we will show that

Theorem 3: For almost all o, we have
. Na-L(N) 2
lim sup ———=-=—.
Noseo log N 2

Proof: The proof is in two parts. First, we show that, for all £> 0, there exists an integer N
such that

No—L(N) JZ_(]——38).

JlogN 2
Second, we show that, for all £ >0, we have

Na-L(N) —‘/z(l +5¢)

JlogN 2
for all N sufficiently large.

We need the following two simple lemmas.

Lemma 4: For almost all o,
lim log(a21 ...a,) ~1
n—> n“/2

Proof: In [6] it is shown that, for almost all

lim loga, _ 1L
nso  p

From this, the desired result follows easily. O

Lemma 5: %3, % converges for almost all «.

Proof: See Theorem 12 in [6]. O
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Now we can return to the proof of the first part of Theorem 3. Let a be chosen, and write
1 1

C=—+—+--- .
a @G

Let &£be given, and choose 7, sufficiently large so

log(q, ...a,) < 1
rt/2 (1-¢)?

for all » >7,. This can be done by Lemma 4. Also choose r sufficiently large so

C2

<E.
2r+1
This can be done by Lemma 5.
Then we find
r+l 1 1
Ny — LNy, )2 | 1- l-— [27+1-C. €))
j=1 a1 a;

Now, from the definition of N;, we have N,,,; <q,...a,,,,; therefore,

2r+1( 1
Vlog Ny, < 75—(—)

1-¢

because we have chosen r sufficiently large.
Now, dividing both sides of (1) by 4/log N,,,, and using the estimate just obtained, we see

Nyrno — LNy, 41) >”+1—C\/5(1_8)

JlogN,,,,  2r+l
V2 G2 V2 V2
> (7_ 2r+1)(1_8) 2(7—8)(1—8) = 7(1"‘38),

which completes the proof of the first part of Theorem 3.
Now let us complete the proof of Theorem 3 by showing that, for almost all  and all N suf-
ficiently large,
Na-L(N) 2

JlogN = 2

We need the following simple lemma.

(1+5¢).

Lemma 6: Na-Y (-)*' N _jrit, N .
pur a...q 2  a..af(a +1)

Proof: Remez [4] has noted that

4 ; 1 1
a-— Z (_1)1+1 <
i=1

a...a, a..a(a +1)
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Multiplying by N, we get

Na-NY < NV
P a,..a a..a/(a +1)

2)
Also we have

(NZ( ™ ) Z( 1)'“[ J e ©)
l aq; aq;

since, to maximize this difference, we let the odd-numbered terms equal 1. Adding (2) and (3),
we get the desired result. O

Now, given &, choose N sufficiently large so
@ logN >l

(b) log(azl/za) (1+) forallr > 2logN.

By Lemma 4, this can be done for almost all .
Now, from Lemma 6, we have

. ; N r+1 N
Na-Y (-)* <— 4 . 4
* E( ) Lll...aiJ 2  a..a/(a +1) @

Put r = |-1 [2(log N)(1+ &)’ -I Then, from part (b) of the hypothesis on N, we have

log(a,...a ) 1
(log N)(1+ s) (1 + 3)2 ’

and 5o a,...a, > N. Therefore

Z( 1)’“[ J L(N).

Hence, we can substitute in equation (4) to get

J2(log NY(1+¢)? +2
Na~L(N)sr;1+ L y2ogM+ey +2 1 s%,/logmna)w,

a +1 2 a, +1
since a, > 1. Dividing both sides of this equation by ,/log N , we see that
Na-L(N) _2 V2

r——logN (1+8)+2\/_6'<——(1+58)

which completes the proof of Theorem 3. O

In a similar fashion, we can show that

fiming Y=L __ V2

N> ‘/lo_gif 2 -
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Roughly speaking, Theorem 3 states that we can expect fluctuations of approximately l°g2N‘

days at year IV of the calendar. Though this type of fluctuation can grow arbitrarily large, it is
small for years of reasonable size. For example, for most «, we would have to wait until about
the year 3.6-10%? to see fluctuations on the order of a week in size.
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1. INTRODUCTION
Hoggatt and Bicknell [3] proved that for a prime p
L, =L, (mod p) (1.1)

where {L,} is the Lucas sequence. Robbins [8] proved more general results for a broader class of
integer sequences {U,} and {V/,} which we soon define.
In the notation of Horadam [4] write

W, =W,(a,b;P,Q) (1.2)
so that
W,=PW,_,-QW,_,, Wo=a, Wy=b,n>2. (1.3)
Then

{U,, =W,(0,1,P,Q) (1.4)

V,=W,(2,P,P,Q

Indeed, {U,} and {V,} are the fundamental and primordial sequences generated by (1.3). They
have been studied extensively, particularly by Lucas [7]. Further information can be found, for
example, in [1], [4], and [6].

All sequences generated by (1.3) can be extended to negative subscripts using either the Binet
form [4] or the recurrence relation (1.3). In all that follows, a, b, P, and Q are assumed to be
integers. Robbins proved the following theorem.

Theorem 1: Let p be prime. If A =P?—4Q, then

Vkp,,s s (mod p™), all p, (1.5
v =2u dp"). forp odd and pJA 1.6

kp"= P ! (mo p )a orpo an p* > ( . )
U =(DW, 0 (mod2"), (1.7)

where (—ﬁ;) is the Legendre symbol.
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Remark 1: Robbins proved Theorem 1 under two strong assumptions. Firstly he assumed that
(P, Q)= 1 and secondly that A>0. The first of these assumptions was used by Lucas [7] in his
study of the sequences (1.4) and need not be adhered to in all contexts. Indeed, Robbins' argu-
ments do not make explicit use of it and so it may be dropped. The assumption that A >0 was
apparently made to ensure that +/A , which appears in a key proof involving Binet forms (Lemma
2.12), is real. However, this proof remains valid for A <0. In work on second-order recurrences
the assumption A #0 is usually made so that the Binet form does not degenerate. However, in
this context, following convention and putting () = 0, the proofs of certain key results (Lemmas
2.3 and 2.13) are greatly simplified when A =0. This is because the Binet forms become

U,=n4""
V,=24"

n

where A is an integer. Likewise, putting (—ﬁ;) = 0 when p|A, the proof of Robbins' Lemma 2.14,

another key result, becomes trivial.
With these observations, and following Robbins' arguments, Theorem 1 remains valid for all
integers P and Q. Indeed, for p odd and p|A, (1.6) becomes

Ukp,, =0 (mod p”). (1.8)

The object of this paper is to generalize (1.5)-(1.8) to the sequence W, =W, (a, b, P, Q).

2. PRELIMINARY RESULTS

We now state some identities which are used subsequently.

Vy=Upy=QU, ., @1)
2u,,,=V,+PU,, 2.2)
-2QU,_,=V,-PU,, 2.3)

W, = Wi, + (%~ PHYU,, 2.4)
W, =-QW,U, ., +WU,, @5)
2, =W, + QW ~ P, 2.6)
Wi =W+ (W sy = PW,)U,,, @7
WU =WouidU, = QW,,_,, (2.3)
QU.,=-U,, 2.9)

QV.,, =V,. (2.10)

Identity (2.1) is easily proved using Binet forms and (2.2) and (2.3) can be obtained from
(2.1) by simple substitution using (1.3). However, we state (2.2) and (2.3) for easy reference
subsequently. Identity (2.4) is essentially (2.14) in [4] where the initial terms of {U,} are shifted.
Identity (2.5) is obtained from (2.4) using (1.3) and (2.6) is obtained by adding (2.4) and (2.5).
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Identity (2.7) is obtained from (2.6) by shifting the initial terms of {W¥,} to W,,,W,,,,. Finally,
(2.8)-(2.10) are easily obtained using Binet forms.

3. ARESULT FOR ODD PRIMES

We now state and prove a result which generalizes (1.5) and (1.6) for odd primes p to the
sequence {W,}. Throughout, A is as in Theorem 1.

Theorem 2: Let p be an odd prime and & and m be nonnegative integers. Then

- (mod p") if () =1,
W .= 3.1
m+kp’ Qkpn-lW (mod n) i (A) -1 ( )
m__kpn—l p p - .

Proof: Suppose (%) = 1. Then in (2.7), if we replace n by Ap” and use (1.5) and (1.6), we

obtain
ZVI{HW = Wmnp,,_, +2W,,. —PW U ! (mod p"). (.2)

Using (2.7) to substitute for the right side gives

m+.

2W = 21/[{"+kp,,_, (mod p"), (3.3)

and since 2 has a multiplicative inverse modulo p", the first half of Theorem 2 follows.
If (%) =—1, then in (2.7) we replace n by kp" and use (1.5) and (1.6) to obtain

Wi =WV =W =PW U,y (mod p7), (34

m+kp" kp'
and rearranging terms gives

2W kp" = m(VIqJ,,_l + PU -1 ) - 2m+lU -1 (mOd pn) . (3 5)

m+.

Now (2.2) reduces (3.5) to

2w

. 2wW,U, -

=2W, U, (mod p7), (3.6)

141

and making use of (2.8) completes the proof. O

Using a similar argument, we see that if p|A then (1.8) generalizes to

Wi ="+ D)/ 2)W,V, 1 (mod pT). (3.7)

Remark 2: If we take the case m=0 and {#,} = {U,}, then (2.9) shows that Theorem 2 reduces
to (1.6). If we take the case m=0 and {W,} = {V,}, then (2.10) shows that Theorem 2 reduces to
(1.5). Thus, for p odd Theorem 2 both unifies and generalizes Robbins' results.
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4. ARESULT FOR THE PRIME p=2

We now prove the following theorem.

Theorem 3: If k and m are nonnegative integers and W, is even, then

_ e (mod 2") if Q is even, @
" QW . (mod27) i Q is odd. '
Proof: Putting W, =20, , 0, an integer, we use (2.7) to write
Woin = O o+ Wiy =PO)U,,. (4.2)
Now with £2" in place of n, (1.5) and (1.7) imply
Wiz = OF s + ()W ~PO,U, s (mod27). (43)
If Q is even, (4.3) becomes
Wi = O iyt + iy =POU, s (mod 27) (4.4)
and the right side of (4.4) simplifies using (4.2) to prove the theorem for Q even.
If Q is odd, (4.3) becomes
I/Vm+k2" = Qkaz"" - (VVMH - PQm)l]kQ_"-I (mOd 2n), (45)
and rearranging terms gives
W oo = OV +PU ) =W, 0U oy (mod 27). (4.6)
Now using (2.2) and recalling that W, = 20, , (4.6) becomes
— I/I{ﬂU/‘:z"“H h WmﬂUkz"“ (mod27). 4.7)

We now use (2.8) to simplify the right side of (4.7) and this completes the proof. O

Remark 3: If we take (W, } = {U,} and m =0, thenU, = 0 is even and we see with the aid of (2.9)
that Theorem 3 reduces to (1.7). If we take {#,} = {/,} and m=0, then V[, =2 is even and we
see with the aid of (2.10) that Theorem 3 reduces to (1.5) for the case p = 2. :

Remark 4: Bisht [2] proved that (1.5) carries over to-higher-order analogues of {V,}. However,
we have seen no results similar to (1.6) and (1.7) for higher-order analogues of {U,}.
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1. BACKGROUND MATERIAL

Motivation for this paper comes from a short article [4] in which some relations between a
generalized Fibonacci sequence and the sequence of its partial sums were investigated. An oppor-
tunity was clearly provided for a deeper exploration of this theme.

Accordingly, the purpose of this paper is

(a) to extend the relations in [4] to generalized Pell numbers with (i) positive and (ii) nega-

tive subscripts, and

(b) as an addendum, to expand the results in [4] to generalized Fibonacci numbers having

negative subscripts.

Consider the generalized Pell sequence {F,} defined for all integers n by
Py, =2P,,+P,  PR=a, B=b (B=b-2a). (8

n

When a =1, b =2, the ordinary Pell sequence {p,} is generated, while when a=1, b=3, we
derive the sequence {g,} defined by

T2 =29m1+9n 0= =3 (=D (1.2)
so that g, = %Qn, the n™ Pell-Lucas number [2]. Thus, we have the tabulation:

n. 0123 4 5 6 7 8
p,, 01 2 5 12 29 70 169 408 --- (1.3)
q,: 11 3 7 17 41 99 239 577

Observe that the numbers in {p,} are alternately even and odd, while those in {g,} are all
odd.

The first few numbers in {P,} and the corresponding sums S, =, P, are from (1.1) for
n=1,2,..., 10, therefore:

n F, S
1 a a
2 b a + b
3 a + 2b 2a + 3b
4 2a + 5b 4a + 8b
5 50 + 12b 9a + 20b
6 12 + 29 2la  + 4% (1.4)
7 29a + 70b 500 + 119
8 70a + 169b 120a  + 288b
9 169a + 408b 28%a + 696b
10 408a + 985 697a + 1681b
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By standard techniques, e.g., use of (1.1) and induction, it is easy to establish that

b, =ap, ,+bp,, (nz1, p_,,=1[see (31)]) (1.5)
and
Snz———R’+R’+21+a"b, (1.6)
whence we deduce the recurrence
Spi2 =28, +S,+b—a (S, =0=F, [see (1.1)]). an
For subsequeri calculations, we will need the Binet forms
an __ﬁn
= 1.8
L (1.8)
and
an + n
9, = £ (1.9)
2
where
a=1+42, f=1-2,s0 a+B=2, af=-1, a— B =242. (1.10)
Use of (1.8)-(1.10) produces the Simson _formulas
PutPra—(2,)" = (-1 (1.11)
and
Gni19n-1— (qn)2 = (_1)n+12, (112)
as well as
pn :pn-1+qn—l’ (113)
9 :pn+pn—l’ (114)
9n _, 2 asn—> o, (1.15)
P

and the Binet forms for P, and S,.
Repeated use of the recurrence relations (1.1) for {p,}, where a=1,b=2, and (1.2) for
{q,}, where a =1,b =3, respectively, lead to

Zpizp”_*_l;”l_l:qm;_l by (1.14) (1.16)

and

M

g = Pn— 1. (1.17)

i=1

After considerable laborious, but nonetheless satisfying, calculations involving the above

equations as appropriate, we determine the Simson formulas for P, and S, from (1.5) and (1.6),
namely,

PP —P}=(-1)"(a® +2ab-b*) (1.18)
and (n>1)
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1
SprSpr =i = 5 ((-1)"(a’ +2ab~b") +a’q, , ~b*q, , +2abp, ,}. (1.19)

Accordingly, when n=5 for instance, S5, —S? = 3a* +4ab—8b* from (1.19) or directly
from (1.4), while PP, — P’ =-a*-2ab+b* from (1.18) or (1.4). [Who would ever have
surmised anything like (1.19)?]

Important special cases of (1.19) arise when a=1,b=2 (forp,), and a=1,b=3 (for g,).

Generally, Sy =0# Py =b—2a, unless b=2a. Expressed otherwise, F, is not part of the
summation process.

2. PARTIAL SUMS: POSITIVE SUBSCRIPTS

A basic set of theorems on partial sums can now be established, of which only the first will
show the detail.

Theorem 1: S,, =q,,(aq,,_, +bq,,)+a—b.

Proof:

S4,1=P4”+P4”2“+a_b by (1.6)

— a(p4n—2 +p4n—1) +b2(p4n—1 +p4n) +a-b by (15)
4n-1 4n-1 _ 4n 4n
_aa +p 23”’(0‘ BHD Lash by (18), (1.10)
=Aa92n92n1 +b(q2n)2 +a-b by (19)
=q,(aq5,-1 +b4,,) +a—b.
Likewise,

Theorem 2: S,, , = q,,_,(aq5,_ +bq,, ).
Theorem 3: S,,.; = 45,(aq,, +bq3,1) —b.
Theorem 4: S,,_, = q,,(aq,,_, +bq,, ) —a.

Special cases occur when a =1,5 =2 (i.e., the Pell sequence {p, }), namely, for s, =", p,,

San = Dand2n1— L 21
S4n-2 = 92n92n-1> (2.2)
Sansr = (G2n1)’ (23)
San1 = (420)" =1=2(py,)*. (24)
All four formulas (2.1)-(2.4) may be incorporated into the one neat expression [see (1.16)],
S, = -q’”;—‘l (5, =0), (2.5)

[where we have invoked (1.6), (P, = p, here), and (1.14)].
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However, a virtue of the forms (2.1)-(2.4) is that they display various obvious divisibility
properties. Thus, ¢,,|S4,_2> 92n-1lS4n-2> PanlSan; in particular, n=3 in (2.2) gives 4059 =41.99,

and 7 =3 in (2.4) gives 9800 = 2(70)>. As an example of (2.5), sz = 696 = ‘%—l from (1.3).
Observe also the important recurrence from (1.7),
Sp40 =288, +1 (55 =0). (2.6)
Next, write s, =X, q;,. Thena=1,b=3 (i.e, the sequence {g,}) in (1.6) lead to
5, =Pun—1 (55=0), (2.7)
i.e. (1.17), since p,,, = q"—J'Z"""ﬂ by (1.8) and (1.9), and in (1.7) lead to the recurrence

Sty =28, +8,+2 (s5=0). (2.8)
Let
o, =5,-S5,. 2.9

Then, from (2.5) and (2.7), it follows that the sequence {o,} is

n=12 3 4 5 6 71 8
s'=1 4 11 28 69 168 407 984 ... )10
s =1 3 8 20 49 119 288 696 --- (2.10)

n

o,=0 1 3 8 20 49 119 288
from which, by (2.6), (2.8), and (2.9), we derive the recurrence [cf. (2.6)]
Oy =20,,+0,+1 (0,=0). (2.11)

Reverting to (1.4), we notice that

S,=a(c,+1)+bo,. (2.12)
From (1.3) and (2.10),
9y =0p41 =0y (2 13)
and
9 — 1
c,= = (2.14)
while, from (1.12), we have the Simson formula for {o,},
1
s (G it Y 2.15)
Other properties of the sequences which flow from the above data include
85, =0 1, (2.16)
srlt =0,%t0, =P~ 1, (217)
S, = 8,1 = Pn> (2.18)
st,1 _Srll—-l =9, (219)
Sp = Sp-2 = 4n> (220)
S, =Sy_,=2p,. 2.21)

432 [Nov.



PARTIAL SUMS FOR SECOND-ORDER RECURRENCE SEQUENCES

Some of the above features are interrelated, e.g., (2.14) and (2.16) together confirm (2.5).
Observe, from (1.4), (2.10), and (2.12), that o, is the coefficient of 4 in S,. Another way of
arriving at this conclusion is to recall that in (2.9) a =1 for both {p,} and {g,} while 5=3 for
{q,} but b=2 for {p,}, i.e., a"b" difference of 3—2 =1.
Similar remarks apply later in relation to (1.4a), (2.10a), and (2.12a).

3. PARTIAL SUMS: NEGATIVE SUBSCRIPTS

Corresponding to the results for positive subscripts in the previous section, we have, for

negative subscripts,
n. 1 2 3 4 5 6 7 8

b, 1 2 5 =12 29 -70 169 —-408 --- (1.32)
q.,. -1 3 -7 17 -41 99 -239 577 .-
since
P, =(D"p, (.1)
and
9., =(1D"q,, (3.2)

as may be readily demonstrated.
Tabulating the simplest expressions in the generalized Pell sequence {P_,}, and the corre-
sponding sequence of sums {S_,} which begins afresh with S_; = P_,, gives:

n P__n S—n
1 5 - 2b 5a - 2b
2 -12a + 5b ~Ta + 3b
3 29a - 125 22a - 9b
4 -70a + 29 —48a + 20b (1.42)
5 169a - 70b 121a - 508 .
6 —-408a + 1695 —287a + 1195
7 985a — 408b 698a - 289b
8 -2378a  + 985b -1680a + 696b
Clearly,
P,=ap_, ,+bp_, , [Fy=b-2aasin (1.1)]. (1.5a)
Write s_, =27, p_;. Then, as for (1.16), we obtain
s,= PP tl_Zgatl o) (1.16a)
2 2
since, by (1.8) and (1.9),
9-n=DP-ntP-pa- (1.14a)
With a little effort, we derive
S, = £,k 21 *3azb_ a(s_,_, +)+b(s_,_—1) (S,=0) (1.6a)
and the recurrence
S_ 2 =280 +S8,-3a+b (§,=0). (1.7a)
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Paralleling the procedures in the previous section, we have the following four theorems.

Theorem la: S_,, = q,,(-aq,,,, +bq,,,,)+3a—b.

Theorem 2a: §_,,,, = q,,(-aq,,+bq,,_;)+2a.

Theorem 3a: S_,,,; = 4,,(q5,41 —bg5,) +a.

Theorem 4a: S_,,_; = G311 (043017 = bqpsy) +2a—b.
Putting a =1, 5 =2, we have the Pell numbers results:

2
S_a4n = _(q2n) + la
2

S_gnsp = _(q2n-1) ’

S_gne1 = Ganan1 T 1

Setn-1 = 92n92n41-

Fortunately, (2.1a)-(2.4a) may be amalgamated into one pleasing form [cf. (1.16a)],

-q,+1
s, =t
n 5
Furthermore, from (1.7a),
S_pp = 2S—n+1 +5_, - L

(2.12)
(2.2a)
(2.39)
(2.4a)

(2.52)

(2.6a)

Coming now to the special case a = 1, b = 3 again, we see that, denoting S, =200,

4

Sy =Py (S(’) = O)
and

’ —_— ’ ’
S_p2 = 2S—n+1 + S_p-
Writing

o_ =8 -5

-n —-n -n?

(2.7a)

(2.82)

(2.92)

we may tabulate values of {o_,} asin (2.10) with a recurrence corresponding to (2.11), thus,

n= 1 2 3 4 5 6 7 8
s,= -1 2 -5 12 =29 70 -169 408
i 1 -1 4 -8 21 -49 120 -288
= -2 3 -9 20 -50 119 -280 696

I

S_
o_
whence

O_pp=20_,,+t0_,+1 (c,=0).
It follows from (1.4a) that

S_,=alo_,+2)+bo_,.

Furthermore,
9n=0_y =0 _py2
while
o, = A l
2
434

(2.10a)

(2.11a)

(2.12a)

(2.13a)

(2.14a)
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Additional results include

S p=0_putl (2.162)
s, ==0_,+0_,., (2.17a)
S_p175-n = P-n-15 (2.182)
Sl = 8L, =G, (2.192)
Son-2 =8 pn =YG_p-1> (2.202)
S8, =2p . (2.21a)

One may also ascertain that

(3.3)

{an +o0_,,=-1 neven,

0, 0_,u= 0 mnodd

Properties of {o,} are the subject of another paper, so we do not pursue the occurence of it
in this exposition.
Other facets of the patterns in P,, and S,, may be recorded:

P,+(-)""'P,,,, =2aq,,, (3.4)

B, +(=D)"F,, =2(-a+b)p,,, (3.5)
B+ (-1)"F,4 =204, ,, (3.6)

P+ ()" Py = 22a+B) P,y (3.7
Sy, +8 5,1 =2ap,, +2a-b, (3.3)

Son =S = (-a+b)g,, —a, (3.9)
Sona1 +82, = (—a+b)q,,,, +2a-b, (3.10)
Soni1 ~ 820 = 20Dy —a. (3.11)

Simson formulas for P_, and S_, may be obtained in the manner used for (1.18) and (1.19).
In the first instance,
P, \P,.— P2 =(-1)"(a*+2ab-b%), (1.18a)

—-n-1* —n+1
i.e., (1.18) is valid for all n. Discovery of the negative-subscript Simson analogue of (1.19) (with

specializations for s_, and s’,,) is left to the spirit of enquiry and adventure of the reader (to be
attempted because it is there!).

4. THE FIBONACCI CASE

A more expansive treatment of [4] will now be outlined. Ordinary Fibonacci and Lucas
numbers will be represented by f, and £, respectively, while the upper-case notation F, for the
generalized Fibonacci number will be retained. To avoid confusion, we will use 7, =27 F;
Basic properties of {f,} and {£,} will be assumed.

Mutatis mutandis, we have [4]

L,=Foy-b=af, +b(f,,,-1) (I,=0%F=-a+b) 4.1

with, in particular,
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Typ = LynFopnsa —2b [= Fyyp — b from (4.1)] 4.2)
and
Tz = LoprFopn [= Fy, — b from (4.1)]. (4.3)

Moreover [4], there is the recurrence
Lz = T + 1, +b. (“44)

Ifa=1,b=1, and if we write ¢, =X_, f;, then

tn =fn+2—1’ (45)
L = LynSonsa =2 [= fansy —1from (4.5)], (4.6)

and
tin-z = Lonrfonn [= fan—1from (4.5)], 4.7)

so that £,, 1|2, 2, fansilfan-a> €8, for n=4,(L; =29)/986 and (f, =34)/986. Furthermore, (4.4)
yields the recurrence
tip =t g+, +1 (t, =0). (4.8)

Instead of focusing on f,, suppose we put a =1,5=3 and write 7, = 2", £,. Then

th=4,,-3, 4.9
tin =Lolopia —6 [=L4nsy —3 from (4.9)], (4.10)
and
ling = Lynilonn [=4,,—3 from (4.9)], (4.11)
with the recurrence
Ly, =t,+t,+3 (£ =0). 4.12)

Again, observe the factorization and divisibility in (4.11).
Table 1 lists values of 7., ¢,,¢, [and 7, (4.15)].

n’> n>"n

TABLE 1. Partial Sums for F,, (n=1,2,...,10)

n F, T, o6 1,
1 a a 1 1 0
2 b a + b 2 4 2
3 a + b 2a + 2b 4 8 4
4 a + 2b 3a + 4b 7 15 8
5 2a  + 3b 5 + 7b 12 26 14
6 3a + 5b 8a + 12b 20 44 24
7 5 + 8b 13a¢ + 20b 33 73 40
8 8a + 13b 2la + 33b 54 120 66
9 13¢  + 21b 34a + 54b 88 196 108
10 2la  + 34b 55¢ + 88b 143 319 176

Negative subscripts are utilized to obtain results paralleling those above. First, however, we
remark that [cf. (3.1), (3.2)]
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=",
and
L, =(=D"¢,.

(4.13)

(4.14)

Readers are urged to construct appropriate tables of values for f_,and /_, from (4.13) and

(4.14). See Table2 for 7, =%_, F.; and hence for 7_, and #’,, [and 7_, (4.152)].

TABLE 2. Partial Sums for F_, (n=1,2,...,10)

n E -n T—n

1 2a - b 2a - b
2 -3a + 2b -a + b
3 Sa - 3b 4da - 2b
4 —8a + 5b —4a + 3b
5 13a - 8 9a - 5b
6 —2la + 13b -12a + 8b
7 34a - 21 22a - 13b
8 —55a + 34b -33a + 21b
9 89a - 55 56a - 34b
10 —144a + 89b -88a + 55b

-12
22
-33

-6
12
-17
30
—46
77

T—n
-2
2
—4
6
-10
16
-26
42
—68
110

Repeated application of the recurrence relation for {F,}, with the initial conditions, yields

I,=-F, ,+a (1,=0).

-n

In particular,

T,=-Fg+a=-88a+550=11(-8a+5b) =L F, (i.e., {|T 1, F 4T ).

Accordingly,

t-—n = _f—n+1 +1 (to = 0),
and

z:n = _—[-n+l +1 (t(,) = 0)

Setting
Ty = tr’t -1, (TO = 0)’

we discover [cf. (2.11)-(2.15)] the following:
T = 2(fn+1 - 1) = 2tn—l’

Tn = Tya ™ 2fn’

Tn+2 = z-n+1 + T,-r + 2’

Tu1Tn-1— Ti = 4{(__1)n+1 —fn—Z}-

Moreover,
I = a(£+1)+bi.
2 2
Replacing n by —n in (4.15) so that _
T, =1, -1, (7,=0),

1994]
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(4.5a)

(4.92)

(4.15)

(4.16)
(4.17)
(4.18)
(4.19)

(4.20)

(4.152)
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one may obtain a table of values of the numbers in the sequence {zr_,}, whence

T, =2(-f,) =201, - ), (4.16a)
T Top2 ™ 2f—n+l (n 2 2): (4 17&)
Tom2 = Topnn T 7o, (4.182)
Ton-1Topt1— Tzn = 4('—1)": (4 193)
T,=at2ipi=n (4.202)

2 2

Note that 17, and J7_, in (4.20) and (4.20a) are the coefficients of 5 in 7, and 7_,, respec-
tively. Also refer to Tables 1 and 2. The reason for this is that a =1 for both {f,} and {/,}, but
b=3for{{,} and b=1for {f,}, i.e, thereis a "b" difference of 3—1=2.

Going back now to {F,} and {7}, we discover [cf. (3.4)-(3.11)]:

FE+(-)"F ,=al,, (n22), 4.21)
F+(-1)"F ., =(-1)"(-a+2b)f,, (n22), (4.22)
E+()""F, . ,=Qa+b)f,, (n=4), (4.23)
Fo+(-D"F 4 =bL, ,, (4.24)
L,+T,,4=QRa+b)f,, +a-b, (4.25)

Ty =T 5pa1 = bl,, —(a+b), (4.26)

By + Ly, =bly, +a-b, (4.27)

Dni1 = Iap = (2a +D) fr0y — (@ +D). (4.28)

No doubt further identities of this genre are discoverable.

Frequent comparison of corresponding outcomes for the Pell and Fibonacci cases is both
desirable and instructive. In this context, discovery of the Simson formulas for F,,7,,¢,, and t,
(for n> 0, n < 0)—some of them not a pretty sight!'—might be undertaken.

The Additions s, +s,, and ¢, +1,,

Instead of considering the differences o, =s, —s, and 7, =¢, —1,, suppose the additions
K,=s,+s,and 1, =1, +1, are examined.

Consider then Table 3,
TABLE 3. Addition of Partial Sums
n=12 3 4 5 6 7 8
K, = s,+s, =2 7 19 48 118 287 695 1680
K,=8,+s, =0 1 -1 4 -8 21 -49 120
A, = t+t, =2 6 12 22 38 64 106 174
A, =t,+t, =02 0 4 -2 8 -8 I8
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in which
Ko=0, (4.29)
Ay =0, (4.30)
whence
K, :O-n+2_1=Sn+l~l’ (431)
Kpp = 2K, +K,+3, (4.32)
Kn+2 ~Kn = qn+3’ (433)
Kpy1 =Ky = Puar- (434)
Moreover,
K_y=0_pp+l, (4.31a)
K_py2 = 2K'--n+l K, - 1 (4323')
On the other hand,
An=Tpia =2, (4.35)
Aniz = Ay + 4, +4, (4.36)
ﬂ‘n+2_ﬂ'n :2fn+4a (437)
;{‘n+l—/1n =2fn+2’ (438)
while
A‘—n = T—n+2 +27 (435a)
ﬂ'—n+2 = /l—n+l +ﬂ'—n -2 (436&)

Aware of the opportunities offered by this amplification of our theory, we may develop

properties corresponding to those for differences until satiated.

(@

(b)

©

@

5. CONCLUDING REMARKS
Finally, there are a few thoughts worthy of further consideration.

Other pairs of sequences related like {f,} and {/,}, and {p,} and {q,} exist. Our results
above suggest analogous—if, perhaps, less interesting—properties for such pairs.

Sequences {c,} and {17,} (n>0) occur naturally inter alia in the minimal and maximal
representations of positive integers by Pell and Fibonacci numbers, respectively. The former
sequence is part of the stimulus for a separate research program.

Recurrences of the form

R, =kR,.,+R,+c (k,c constants) (5.1)

’

appear in many guises in this paper, for example, when R, =S, ,s,,s,,0,,x,,1,,t,,1,,7,,
and A,, with extensions to negative subscripts. Such recurrences (5.1) arise in other circum
stances, e.g., in a graph-theoretic context, and are the subject of a separate investigation.

Numbers ¢, of the sequence {g,=+0,}, where O, are the Pell-Lucas numbers, feature
prominently in a variety of papers. They (and p,) have been called the Eudoxus numbers [1],
though their first "official" appearance, according to [5], seems to have been in [3] in 1916,
while some of the properties of ¢, in relation to p, have been recorded in [6] in 1949.
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Can anyone tell me if there is any justification for the name "Eudoxus numbers" to describe
the members of these interesting sequences? After all, the life-span of the ancient Greek mathe-
matical genius, Eudoxus (ca. 408-355 B.C.), is a very far off human event.

Many, indeed, have been the fascinating and pleasurable ramifications of our modest attempt
to expand the brief material in [4]. Evidently, there is much scope for further exploration and dis-
covery in this field. Mindful of our stated objectives, however, we rest our case at this point.
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0. INTRODUCTION
A Fibonacci algebra is a group equipped with a unary operation ¢ satisfying the laws
()¢ = xdyg, and xxg...x¢" "' = xg¢”
for a fixed integer m>2. If| in addition, the law
xg" =x

holds for a fixed integer n > 2, the algebra is called periodic. The corresponding variety B(m, n)
has been studied by several authors (see [4] and the references cited there) and, in particular, it is
known that the monogenic free object A(m, n) is just the Fibonacci group

F@m,n)={x, .. %, |%,X;,; ... Xipyey = Xiym»> 1 <1 <n,imod n)
made abelian.
It is also known [3] that A(m, n) is always a finite group whose order a,, ,, is the resultant of
the polynomials

f(x)=x"-1, g(x):1+x+---+x'”'1—x"’, €))
namely,
n-1
am,n = (m_l)ng(wk)!, (2)
k=1

where the product is taken over all nontrivial 2 roots of unity, w, =e*™’" k=1,2,.., n-1. It
follows that, for any prime p dividing a,, ,, the highest common factor (f(x), g(x)), over the
prime field GF'(p) has positive degree. It is shown in [5] that A(m, n) is cyclic if and only if

deg(f(x),g(x)), =1 Vpla,,,. ®3)

We shall apply this criterion to certain (classes of) values of m and n to determine when
A(m, n) is cyclic. It follows that, in these cases, the exponent of the free objects in B(m, n) is
just a,, . This reconfirms some of the results in [2], where a constructive approach is adopted to
calculating exponents in B(m, n). On the other hand, the case when A(m, n) is noncyclic is also
of interest, at least when m=2. For then it follows from results in [1] that /(2,n) maps homo-
morphically onto the free object of rank two in the variety of groups of exponent p and class four
for some prime p.

In each of the ensuing sections, we consider the A(m,n) with m,n>2 and related as in the

section heading. We fix the notation in (1) and (2) above along with

fii=fl(x=D=1+x+ - +x"
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and emphasize the fact that, throughout what follows, we consider only primes p dividing
a

m,n*

1. m=-1(modn)

Setting m = gn—1, we see that g=(1+x" =---+x@™D") £, —2x™ so that a, ,=(m- 12",
Also, for p odd, (g, f}), =(-2x", f}), =1, so that (f, &), = x—1 and (3) holds in this case.

When p=2, however, (g, f,), = f;, whence (g/(x+1), f,), = f, orf, /(x+1), which has
degree >1 unless f, =x+1, that is, n=2. Inthe case p =n =2, f=1+x* g=1+x+-
+x27 = 1+ x)A+x2 +---+x%2) and (f,g), =1+x if and only if g is odd, that is, m=1
(mod 4).

Proposition 1: When m=1(modn), A(m,n) has order (m—1)2"" and is cyclic if and only if
n=2 and m=1(mod4).
2. m=0(modn)

Here, the calculation is similar to (but much easier than) the above, and we obtain the
following. We leave the proof as an exercise.

Proposition 2: When m =0 (modn), A(m,n) has order (m—1) and is cyclic.

3. m=1(modn)
Setting m = gn +1, we see that
g=(+X" 4 +xDM) fi 4™ 5",
so that a,, , = (m—1)n and we consider primes p|(m—1)n. It is clear that, over any field,
hi=(g /) =(""=x", f)=(1-x, f,).

Now f,(1) =n, so that for p|n, this hefis 1 and (f, g), = x —1 satisfies (3).

But if p|n, then iy =x—1and (f,g),=(x- 1)? or (x-1) according as x —1 divides

g :=g/(1-x)=14+2x+---+(m—-1)x" 4+ x™!

or not. But

g()= %m(m -D+1= %(qn +1)gn+1,
and for p|n this is zero modulo p if and only if

p=2, qisodd, and n=2 (mod4).

Proposition 3: When m=1(modn), A(m,n) has order (m—1)n and is cyclic except when
n=2=m-1(mod4).

4. m=-2(modn)
We let m=qgn-2 so that

g=(1+x"+---+x("_l)")f1—x'”(2+x),
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and

Apn = (m_ 1) ng(w)l

o"=120

=@m-1) [[r+al=m-DA(-2).

o"=1*w

Moreover, (g, f;)=2+x, f;), and (g, f) is a divisor of (x—1)(x+2). However, |f,(-2)|=
(2" - (-1)")/3, and we distinguish four cases.

() pl(2"—(=1)")/3, when (g, f)=x~1 and (3) holds
(i) pl(m-1), when (g, f) =x+2 and (3) holds.
(i) p|(m—-1,(2" —(=1)")/3) and p #3, when (g, /) = (x —1)(x +2) and (3) fails.
@(iv) p=3|(m-1,(2" - (-1)")/3), when —2 =1 (mod 3) and
(8 f)s=(x=D(A+x+-+x"" 142x+-+(m=-Dx" % +x™1),.
But the second term in the hcf, evaluated at x=1, is 2m(m—1)+1=1(mod3), showing that
(g, f); =x—1and (3) holds.

It follows that A(m, n) is cyclic in this case except when case (iii) arises, that is, when there is
a prime p # 3 such that gn=3, (-2)" =1(mod p).

Proposition 4: When m= -2 (modn), A(m,n) has order (m—1)(2" —(-1)")/3 and is cyclic
unless there is a prime p # 3 such that

m=1(mod p) and n=ka,
where a is the order of -2 mod p.

Thus, for example, we see that A(6, 4) is noncyclic by taking p =5.

5. n=2m
In this case
a, .= m-1) H|(1+(o+---+a)""l)—a)'"|

o"=120
(4]

=(m=1 n 11_—a)

= (m-1(1+3")/2.

m

1+ 3-o
1.__

(]

=(m-1) l_[

As usual, let pla,, , and assume first that p is odd. Then f = x*™ —1 is the product of co-
prime polynomials x™ —1 and x™ +1 and we compute (f, g), in two stages. Firstly,

(" =1/ (x-1),8)=(("-D/(x-1),x") =1,
so that ((x” —1,g), =x—1or 1 according as p|(m—1) or not. Secondly,
(1+x",(1-x)g) =(1+x", 1-2x" +x") = (1+x",3-x),
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which is x—3 or 1 according as p|(1+3™) or not, and since p is odd this is also the hcf of 1+ x™
and g. Thus, for p odd, (f, £),, is linear unless p divides both m—1 and 3" +1.

Now let p=2 so that m must be odd, 2k +1 say, and a simple calculation shows that
(f, g), = x+1orx*+1 according as k is even or odd.

Proposition 5: When n=2m, A(m,n) has the order (m—1)(1+3™)/2 and is cyclic unless either
m =3 (mod p) or there is an odd prime p such that m =1(mod p) and 3" = —1(mod p).

D. A. Burgess has pointed out that these equations certainly have a solution in the case in
which p=6+1(mod 12).
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1. INTRODUCTION
We consider polynomials {U,(p, ¢; x)} such that

U,(p,q, x)=(x+p)U,(p,q; x)—qU,,(p,q; x), n22 )]
with Uy (p, ¢; x)=0and U,(p, q; x)=1.

The parameters p and g are arbitrary real numbers (with g # 0), and we denote by «, f the
numbers such that ¢+ f=p and ¢ff=¢q.

We see by induction that there exists a sequence {c, ; (P, ¢)}>o of numbers such that
k20 :

Un+1(p: q, JC): ch,k(p’q)xk: (2)

k=0
with
¢, (p,q)=0ifk>n and ¢, ,(p,q9)=1, n20.

The first few terms of the sequence {U,(p, q; x)} are
Uy(p,q; x)=p+x
Us(p, q; x)=(p* —q)+2px +x*
U,(p,q; x)= (P’ -2pq)+(Bp* - 2q)x +3px* +x°.
Particular cases of U,(p, q; x) are the Fibonacci polynomials F,(x), the Pell polynomials

P,(x) [4], the first Fermat polynomials ®,(x) [5], the Morgan—Voyce polynomials of the second
kind B,(x) ([3], [6], [8], [9]), and the Chebyschev polynomials of the second kind S, (x) given by

U,(0,-1 x) = F,(x),
U,(0,-1; 2x) = F,(x),
U,(0,2; x)=®,(x),
U,n(2,1, x) = B, (%),
U,0,1 2x) =S, (x).
We have used S, in place of the customary U, since U, has been used in a different way in

the present paper. For particular values of the variable x, one can obtain some interesting
sequences of numbers.

(i) The sequence {U,(p,q; — p)} satisfies the recurrence

U,(p,q, -p)=—9U,,(p,q;, —p), n=2,
thus,

Uy(p,q; —p)=0 and U,,,(p,q; -p)=(-9)".
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By (2), these can also be written

2n-1
Z(_l)kkaZn—l,k(p: q) =0 (3)
k=0
and
2n
> (D Py (P, 9)=(-1)"q". @)
k=0

(ii) It follows at once that the sequence {U,(p, q; 0)} is the generalized Fibonacci sequence
defined by
U,(p,q; 0)=pU, (P, 4; 0)-qU,,(p, ¢; 0),

with U, (p, q; 0)=0and U,(p, q; 0)=1. Therefore,

n+l _ n+l1
P taep,
Uni(p,q; 0)= 2, @'/ =3 a=p
S (n+)a" if a=p.

By (2), notice that
602D =Upa(p, 4 0)= 20 5)

i+j=n
More generally, our aim is to express the coefficient ¢, ,(p, g) as a polynomials in (a, B) and as
a polynomial in (p, q).
2. THE TRIANGLE OF COEFFICIENTS

One can display the sequence {c, ,(p,q)} in a triangle, thus:

k| O 1 2 3
n
0 1 0 0 0
1 p 1 0 0
2 P’ —q 2p 0
3 p3—2pq 3p2—2q 3p 1

Comparing the coefficients of x* in the two members of (1), we see by (2) that, for »>2 and
k=1,
Ca k(D D) = Cp k1 (P, D + PC 1 (P, D) — 9C12,1 (P, 9)

= Cpy gt Py k T A(Cpor k. — PCron k) (6)
=C -1 T, +,3(Cn—1, kT acn—l,k),

where, for brevity, we put ¢, , for ¢, ,(p,q). From this, one can easily obtain another recur-
rence relation.
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Theorem 1: For every n=1and k > 1, we have

n—1
—1-i
Co ke = Plrr i +Za" 'C; k1
=0
@)

n-1
—1—i
=QC, 1k +Z,Bn 'C; r1-
i=0

Proof: 1In fact, (7) is clear by direct computation for n <2 (recall that « + 8= p). Suppos-
ing that the relation is true for n > 2, then we have by (6) that

Corr e =P +(C 1 = BCuy 1) +Cy i

n-1

_ n—1-i

=fc, i +aZa Cik-1TCn k-1
i=0

n
=pc,  + Z a™'c; g
i=0

This concludes the proof, and the other formula can be proved in the same way.
Let us examine some particular cases.

(i) Fibonacci polynomials. In this case we have p=0,g=-1,and a =—f =1. From this,
(7) becomes

n-1

Cok = Cpii t Zci,k—l
i=0

n-1
—1—i
=Cpr T Z(‘l)n "¢ pt-
i=0

(i) Morgan—Voyce polynomials of the second kind. In this case, we have p=2,9=1, and
a = f=1. Thus, (7) becomes

n—1
cn, k= Cn—l, k + Z ci, k-1>
i=0
which is the recursive definition of the DFFz triangle [2], known to be the triangle of coefficients
of Morgan—Voyce polynomials ([1], [3]).

3. DETERMINATION OF ¢, ,(p,q) AS APOLYNOMIAL IN (a, )
In our proof we shall need the following lemma.

Lemma: For every k >0, we have

1
- = d tn’ 8
(1- pt +qt*)*! Zo ek ®)

b 5 (o

i+j=n

with
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Proof: Recall that
1 k+n\ nn
0.00=——z=3 (1",

(1 —rt ) n20
where 7 is a real or complex parameter and |r¢|<1. Thus, we have
1 1

(l_pt+qt2)k+1 = (l_at)k+l(1_ﬂt)k+l

-y (e 2 (k5

n20 n20

= Zdn,k’",

n20

e S ().

i+j=n

where

by application of Cauchy's rule for multiplying power series. Q.E.D.

Theorem 2: For every n>0 and k£ >0, we have
k+i\(k+j)\ ips
aue.= T ()(F1 ), ©)
i+j=n-k

where we have used the convention X, ;_;a; ; =0, if s<0.

Proof: For brevity, we put U, (p, q; x) =U,(x) and c, ,(p,q) =c, ;. Let us define the gen-
erating function of the sequence {U,(x)} by

F60= YU,

By (1), we get
FO,0)=1=Y U, ()" =t(x+p)Y U, ()" —qt* Y U, (x)e".

n21 n21 n21

The last sum can be written as ¥, U,_, (x)t""2, since U, (x) = 0. Tt follows from this that

fGe,0)=1=t(x+p)f(x, )~ qt* £ (x,1).

Thus,
1
)= . 10
AL 1—-(x+p)t+qt2 (10)
We deduce from (10) that
kit o
= x, )= > UL (x)"
(1~(x+p)t+qt2)k+1 é’xk f( ) ,,zz:‘) n+1( )
= Y U = Y UL (™,
n2k n20

since U, ,,(x) is a polynomial of degree n.
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Put x =0 in the last formula and recall that

U890
n+k, k k’ H
by Taylor's formula, to obtain
1 n
o = 2 Gkl (11)

(A-pt+g) 5
Comparing this formula with (8), we see that
k+i\(k+J) ipj
Cprteste = n i = 2 ( k l)( k])a B’
i+j=n
This concludes the proof.

Remarks: (i) If k=0, then (9) reduces to the classical formula (5).

(ii) Notice that (11) is the generating function of the k™ column of the triangle of
coefficients ¢, ,. If k= 0, we obtain in particular the well-known generating function of the gen-
eralized Fibonacci sequence, namely,

1
=Y U,.(p,q; O 12
s ZO (P, 0) (12)

(iij) Using (6), one can obtain, by induction and with a little manipulation, another
proof of Theorem 2.

Corollary 1: For every n>0 and k£ >0, we have
k(P @) =(-D""¢, (P, 9).
Proof: The result follows immediately from (9) and the fact that (—a)+(-f)=-p and
Ca-p=q.
4., SOME PARTICULAR CASES

The general formula (9) can be simplified in two cases:

(i) Supposing that p? = 4q, we have a = 8 and (8) becomes

1 _ 1 _ n+2k+1\ _n.n
(l_pt+qt2)k+l - (l_at)2k+2 _E( 2k +1 )a .

Hence, by (11), ¢, , = ¢, ,(p, q) takes the simpler form

_(n+k+1) ok _(n+k+1 n—k
c",k‘( 2k+1 )a _( 2k+1 )(p/2) :
If p=2 and g =1 (Morgan—Voyce polynomials of the second kind), we obtain the known
relation [8]
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n+k+1\_»
5= (")
(i) Supposing that p =0, we have a = —f and (8) becomes
1 1 n[n+kY n,an
(l_pt+qt2)k+l = (l+qt2)k+1 = Z(_l) ( k )q .

n20

Thus, by (11),
Comkk = (—l)"(n;k)q” and Cp,4414 =0 forn>0and £k >0.

This can be written
Cok4n,n = (‘Dk(k Zn) g" and Copansrn = 0.
Hence,
Cpnak = (—l)k(n;k)q", forn-2k>0 and c,, 5, =0, for n-2k-120.

Now, by (2), -

n+l(0 q, x) ch k(O q)x - Z ,n—k (0 q)x ch n-2k (O q)x"—2k
k=0

Thus, we get the simplified formula

[n/2]
Ur(©.5 9= 3¢ 1)( Faaae 13)

If p =0 and g = -1, we obtain the known decomposition of Fibonacci polynomials

Fa(x)= ["2/31( ) n_Zk

and if p =0 and g =1, we have the similar expression of Chebyschev polynomials of the second
kind

[n/2]
n+l(x) Un+1(01 Z)C) Z( 1) ( k)(zx)n—Zk.

5. DETERMINATION OF ¢, ,(p, q) AS A POLYNOMIAL IN (p, q)

Theorem 3: For every n>0 and k >0, we have

¢ o(P,q) = [("_Zk)/z] (_l)r(n - r)(n ';Czr)qrpn—Zr—k. (14)

r=0

Proof: 1tis clearthat U,,,(p,q; x)=U,,,(0,q; x+ p). Thus,

Ui(p,4; 0) _ U (0,4, p)
k! kL

Cn,k(p’ q)
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By (13), one can express the last member as

[gl(—l)’(n - r) n-2r)---(n-2r-k+1) gk
r=0

r k!
[(n=k)/2]
r e _2 r_ n—4ir—
NG g (e
r=0

This completes the proof of Theorem 3.
If k& = 0, we get the formula known by Lucas ([7], p. 207), namely,

[7/2] 3 Y
Ura®. 3 0= L0 (" )ap ™ (15)

=0

6. RISING DIAGONAL FUNCTIONS

Let us define the rising diagonal functions {¥,(p, q; x)} of the sequence {c, ,(p, g)}—see
the table—by ¥, (p, q; x) =0 and

n [n/2]
Y0, @ )= Cpe (P, DX = Y 0,y 1 (0, )X, forn>0. (16)
k=0 k=0
Notice that, from the table,
Y(p,q; x)=1, Y,(p,q; x)=p, and ¥(p,q; x)=p* —q+x. an
Theorem 4: For every n>2, we have
¥, (p.q; ©)=p¥, (D, q; )+ (x-¥,,(P,q; x). (18)

Proof: For brevity, we put ¥, (p,q; x)="¥,(x) and c, ,(p,q)=¢,,. By (17), the state-
ment holds for n=2 and n=3. Supposing that (18) is true for 7 > 3, then we get, by (16),

[n/2] '
W ()= €0+ D Cpp X -
k=1
Recall from (5) that ¢, o = U,,1(0) = pc,_; ¢ —gC,-2,9, and notice that n—k >n—[n/2] 22, since
n>3. By these remarks and (6), one can write

[n/2]

k
Woa(x¥)=pc,1 0= 94Cna,0+ Z (Cootote, k=1 T PCpotop ke — GCpri, k)X
k=1

[n/2] [n/2] {n/2}-1

_ k k k
= PZC -k, k%X 4 ZC -k k¥ TX Z Cp2-k, k%
k=0 k=0 k=0

=p¥,(x)+(x-q)¥,_,(x), since [n/2]-1=[(n-2)/2].

This concludes the proof.
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Corollary 2: For every n20, we have
[n/2]

Pt (0, G %)= ), (";r)p"“”(x -q). (19)

r=0
Proof: By Theorem 4, and since ¥, (x) =0, ¥,(x) =1, it is clear that
¥,(p,q; ¥)=U,(p,q-x; 0),
and the result follows by (15).
Let us examine some particular cases.
(i) Putx=gqin (19)to get, by (16),

[n/2]

Sdc i p)=p".
k=0

If p=1and g=1, we get a known identity on the coefficients of the Morgan—Voyce polynomial
of the second kind B,, first noticed by Ferri, Faccio and D'Amico ([2], [3]), namely,

[n12]
Y r(2,1)=2".
k=0

(i) Putx=1in (19) to get, by (16),
[n/2] [n/2]

Z Cote (P, 9) = z (n ; r)Pn—zr 1-9q),
k=0 r=0

which is more general than the above result.

(iii) If p =0, then Corollary 2 implies by (16) that
Zc2n—k, 1 0,9)x" =(x-q)".
k=0

If g = 1 (Chebyschev polynomials of the second kind), or g = 2 (first Fermat polynomials), this
identity was first noticed by Horadam [5] with slightly different notations.

7. THE ORTHOGONALITY OF THE SEQUENCE {U,(p, ¢; x)}

In this paragraph we shall suppose that ¢ > 0. Consider the sequence {R, (p, q; x)} defined
by

X+p

g — (n—-l)/ZSn L 20
R,(p,q; ¥)=¢q [2J21') (20

where S, (x) is the n™ Chebyschev polynomial of the second kind. Let us determine the recur-
rence satisfied by the sequence {R,(p, g, x)}. One can write

oy = mD2| [ X P S x+tp|_ X+p
R 0= (2o 5725522
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— (x4 P2 S, x+p n-32g | X +p
(x P) n—1 2-\/— q n-2 2\/’q‘

=(x+pR,_(p.q; X)-qR,_,(p,q; x).

Observe that the sequence {R,(p, q; x)} satisfies the recurrence (1) with R,(p, q; x) =0 and
Ri(p,q; x) =1, so that

R, (p,q; x)=U,(p.q; x). 2D

Recalling that the sequence {S,(x)} is orthogonal over [—1, 1] with respect to the weight

Ji-x* , we deduce that the sequence {U,(p, q; x)} is orthogonal over [- P29, -p+2Jq]
with respect to the weight w(x) =+/—x* —2px— A, where A = p> —4q.

In fact, for n #m, we have

p+2a eyt [PHE (x4 p
B e BT

+1
= 40+ f_lSn(w)Sm(w)\/l —0* do =0,

where @ = _2)22‘ In the case of the Morgan—Voyce polynomial of the second kind, B,(x), this

q
orthogonality result was first given by Swamy [8].
If @ = cost (0<? <), itis well known that S, (w) =22 Thus, by (20) and (21), we have

sint °

in nt
Un(p, q; _p+2w\/5) — q(n—l)/ZSn(a)) — q(rl—l)/z Slfl”; -

Sin
From this, we see that the roots of U, (p, q; x) are given by

X :—p+2ﬁcos(kﬂ/n), k=1..(n-1).

For instance, the roots of the Morgan—Voyce polynomial of the second kind, B,(x)=
Upi(2,1; x), are (see [9])

xk=—2+2cos—]£n4- = —45in? krz , k=1..,(@m-1).
n+l1 2n+2

Under the hypothesis ¢ >0, we deduce from the general expression for x, that the general-
ized Fibonacci sequences U, (p, g; 0) vanish if and only if there exists an integer k (1<k <n-1)

such that cos(kz/n)=p/ 2\/5 )

8. CONCLUDING REMARK

In a future paper, we shall investigate the sequence {V,(p, g; x)} of polynomials, defined by

Va(p, q; )= (x+p)V, (D, 4, X)=qV,, (P, q; %), n22,
with Vy(p, q; x)=2 and V(p, q; x) =x+p.
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1. PRELIMINARIES

The polyomials p,(x, ¢) defined by

Ln/2_l .
0= 3 (" eoxm @0, (L1)
i=0 =1

where |- | denotes the greatest integer function and x is an indeterminate, are commonly referred
to as Dickson polynomials (e.g., see [6]). These polynomials have been studied in the past years,
both from the point of view of their theoretical properties [2], [6], and [14], and from that of their
practical applications [7], [9], [10]. and [13]. In particular, their relevance to public-key crypto-
systems has been pointed out in [8], [11], [12], and [16]. As is shown, e.g., in [14], the coeffi-
cients of p,(x, ¢) are integers for any positive integer n and ¢ € Z. It is also evident that

pn(x>_l):Vn(x)’ (12)

where V,(x) = xV,_(x)+V,_, (x) [Vo(x) =2,V(x) = x] are the Lucas polynomials considered in
[3] and [5]. In particular, we have
p,(,-D)=L, (1.3)
where L, is the n™ Lucas number.
In this paper, we consider the extended Dickson polynomials p,(x,c,U) defined in the next
section.

2. INTRODUCTION AND DEFINITIONS

Let us define the extended Dickson polynomials p,(x, ¢, U) as the polynomials obtainable by
replacing the upper range indicator in the sum (1.1) by a positive integer U >|n/2]. This paper

is essentially dedicated to the study of the case x = —c =1.
By (1.1) we have

def & n o (n—i
Pn(l,—l,U)=7;(U)=Zﬁ ;| >0). @1
=07
If [n/2|<U <n-1, the sum (2.1) gives L, as the binomial coefficient vanishes when [n/2 [+1<

i<n-1. For example, if n=5 (so U =2,3, or4), then 1,(U)=1L;=11. If U 2n, the upper
argument of the binomial coefficient becomes negative for i > n+1, and the (nonzero) value of the
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binomial coefficient can be obtained by (2.6). For i = n, the argument of the sum (2.1) assumes
the indeterminate form 0-7/0 which will be settied in the sequel.
By (2.1) we can write

T(U)=L,+H,(k) (k=U-n>0), (2.2)
where
ntk i n+k .
H,(k)= Z ( ):Hn(0)+ 3 711_;(";’) (n>0). (2.3)

i=n+1

The quantity H,(0) in (2.3) is clearly given by the expression
n .
H,(0)= z%(" l.“’) (n>0), (2.4)

which has the above said indeterminate form. In order to remove this obstacle, we use the com-

binatorial identities
h (h—m)z(h—m)+(h—m—1)’ 2.5)
h-m\ m m m-—1

( ) -1y (m+h 1) -1y (m+h 1) 2.6)

(available in [12], pp. 64 and 1, respectively), and rewrite (2.4) as

mo-$] O

(2.7)
=0+ (—1)”'1(n B 1) =(-D"" (n>0).
n-1
For the sake of consistency, let us assume that the above result is valid also for n=0, so
Hy(©) =)™ = 23)
On the basis of (2.3), (2.7), and (2.8), for given nonnegative integers n and £, let us define
dof, o1 R n (p—i
H@EEy ™+ Y, "7 k20, 29)
i=nt1 11 !
where the usual convention that
b
> f(@=0 for b<a (2.10)

has to be invoked for obtaining H,(0) =-1.
The numbers H, (k) defined by (2.9) are the companions of the numbers

G(k)dif Z(n 1—1) (- 1);12( 1),(n+2]) @211

which have been thoroughly investigated in [4]. The numbers G, (k) arise from the incorrect use
of a combinatorial formula for generating the Fibonacci numbers F,, whereas the numbers H,, (k)
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result from an analogous use of the combinatorial formula (2.1) which (under appropriate con-
straints on U/ ) generates the Lucas numbers (compare (2.2) with [4, (1.7)]) and are the fruit of
our mathematical curiosity. The principal aim of this paper is to give alternative expressions of
the numbers H,(k) (Section 3), to find connections between these numbers and their companions
G, (k), and to give a brief account of their properties (Sections 4 and 5). A glimpse of the appli-
cation of the above argument to the Dickson polynomials (1.2) is caught in Section 6, where the
polynomials H, (k, x) are considered.

3. THE NUMBERS H (k)
Letting i =n+ j in (2.9) yields

k
H,(k)=(-1D""+ Z (,HJ) 3.1)
whence, by using the identity (2.6), we obtain the definition
H, (k) = (<1 = (1)’ Z( 1y (” ) (3.2)
which can be rewritten as
k-1 .
Hy () = ()4 () -y () (3:3)
=0 j+1 J

By using (2.3), (2.5), and (2.6), the following equivalent definitions can be obtained, the proof of
which are left as an exercise to the interested reader:

H, (k)= (-1)" Z( 1)![(" “21) (”‘1].*2/')} (.4)
= 1)"“}20( p (" ) 1)""2( y(" ) (3

Definitions (3.4) and (3.5) show clearly that the numbers H, (k) are integers. Observe that
H,(0) =-1 results from (3.5) by invoking (2.10), and from (3.4) by assuming that

(—I:n) =0 (m=1, h arbitrary) [12, p. 2]. 3.9)
Some particular cases, beyond H,(0) given by (2.7) and (2.8), are
H,O=C)"(-D), G.7)
H,2)=(-1)""(n*+n+2)/2, (3.8)
and
Hy(k)=-1Vk, (3.9)

which are readily obtainable by (3.2)—(3.5). The numbers H, (k) are shown in Table 1 for the
first few values of n and £.
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TABLE 1. The Numbers H,, (k) for 0<n, k<5

n 0 1 2 3 4 5

-1 1 -1 1 -1 1
-1 0 1 -2 3 —4
-1 2 4 7 -11 16
-1 -3 10 -21 37 =59
-1 11 32 69 -128 216
-1 31 100 -228 444 -785

NHWN—=O X

4. SOME IDENTITIES INVOLVING THE NUMBERS H, (k) AND G, (k)

First of all, we give a relation between the numbers H, (k) and their companions G, (k) [see
2.11)].
Proposition 1: H,(k)=G,_(k)+G,,,(k-1) (n,k=0).

Proof: For n, k 21, the above identity readily follows from the definitions (2.11) and (3.5).
For n and/or k = 0, let us use the expressions of G_, (k) and G,(—k) established in [4, §4].

Casel: n>landk=0.
By [4, (4.1)], (2.11), and (2.7), we get

G, 1(0)+ G, (-1 = G,,(0) +0=(=1)"" = H,(0).

Case2: n=0andk>1.
By [4, (4.9)] and (3.9), we get

Gy (k) +Gy(k = 1) =—{F, + Gy(k ~ D]+ G, (k ~1) = 1= H, (k).
Case3: n=k=0.
By [4, (4.1) and (4.8)] and (2.8), we get
G (0)+G(-1)=G_1(0)+0=—-F =-1=H,(0). O
Proposition 1 together with some properties of the numbers G, (k) found in [4] will play a crucial

role in establishing several properties of the numbers H,(k). A further connection between
H, (k) and G, (k) is stated in the following proposition.

Proposition 2: H,(k)=G,,,(k-2)—G,_,(k) (n,k=0).

Proof: By using the recurrence [4, (3.1)], namely,
Gz (k=1) = G,,, (k) + G, (k), 4.1
we can write
Gz (k=2) =G, 2 (k) = G,y (k =D+ G, (k- 1) -G, (k)
=Gk =D +G, (k-1 ~[G,(k-1) -G, (k)] _
=G, (k-1)+G,_;(k)=H, (k) (byProposition1). O
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Then, we establish a recurrence relation for the numbers H, (k).
Proposition 3: H, ,(k-1)=H,,(k)+H,(k) (k=1).
PI‘OU’f:' Hn+1(k) + Hn (k)

=G, (k) +G,,,(k-1)+G,_,(k)+G,.,(k=1) (by Proposition 1)
=G,(k)+ G5k —2) -G, (k- D)+ G, (k) + G, (k—-1) [by (4.1)]
=G5k =2)+[G, (k) + G,_ (k) - G, (k = D]+ G, (k - 1).

Observing that the expression within square brackets vanishes in virtue of (4.1), we can write

H,_ (k)+H,(k)=G,;(k-2)+G,(k-1)=H, ,(k-1) (byProposition1). O

As a direct consequence of Proposition 3, we can state the following proposition, the proof of
which is omitted because of its triviality.

s+2h-1

Proposition 4: ZH k)= ZHZ,, k=D (B=).

Also, the curious identity

H, (n)-H, (n~1)= (3” 1) (n=1) [soH, (1)~ H,(0)=- 4.2)
can be readily proved.

Proof of (4.2): By (3.3), we immediately obtain the recurrence relation

mk N (n+1+2k
H,(k+1)=H,(k)+(-1) Tt 1( k ) “4.3)

Replace k by n—1 in (4.3) and use [12, (iii), p. 3] to obtain (4.2). O

Let us conclude this section by proving a noteworthy property of the numbers H, (k).

{ Hyon(k=h) ifk2h,

def L
Proposition 5: R, (h, k)= ( ) nai (K i
oposition 5: R, (h, k) ; +i (k) = ifk <h.

Proof: Use Proposition 1 to write

R,(h, k) = Z() ,,-1+,(k)+2() Grunailh =1,

whence
R,(h, k) =G, 1yg4(k —h)+ G140, (k—1-h)  (by [4, Proposition 3])

_ |Huan(k—h) ifk=h (by Proposition 1)
o if k<h (since G,(~k)=0Vn, [4,(4D]). O

Remark: The proof of Proposition 5 in the case k£ </ can also be obtained by using double
induction (on & and m) to prove that
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Hzm(k JT’")H,,H (k)=0 ifm>1. (4.4)

1
i=0

This alternative and more direct proof is not difficult but it is rather lengthy and tedious, so it is
omitted to save space.

5. SOME SIMPLE CONGRUENCE PROPERTIES OF H, (k)

In this section we are concerned with some aspects of the parity of H,(k), and with a
congruence property of these numbers that is valid for all prime values of the subscript n.

Proposition 6: H,(k)=G,(k) (mod2).
Proof: By Proposition 1 and (4.1), we can write
H,(k) =G, (k) + G,y (k =1) = G, (k) + G, (k) + G, (k)
=G,(k)+2G, (k)=G,(k) (mod2). O
The general solution of the problem of establishing the parity of G, (k) [and hence that of

H, (k)] seems to be rather difficult. On the basis of some partial results obtained in [4, §3.1], we
show the solution for the particular cases 7 =3 and 2”. Namely, we have

H,(k)iseveniff k =2" -3 (h>2) G.1)
and

H (k) is odd iff 22"*"% —2" <k <2¥*"1-2" -1 (n20; h21). (5.2)
Proposition 7: If p is a prime and m is a nonnegative integer, then

® H,(mp)=> (-1y'C, (modp),

J=0

L

where C, = -4 (21.") is the j® Catalan number, and

(i) H,(k)=H,(mp) (modp) ifmp+1<k<(m+D)p-1.

Proof of Part (i): For n= p, consider the absolute value of the generic addend of the sum in
(3.2), namely,
— 1427\ def . .
-5?-(” ) a0 Gerzeb. 53)
By virtue of the integrality of H,(k) [see Definition (3.4) or (3.5)] and the replacement of k by
k -1 in the recurrence (4.3), it is readily seen that 4,(j) is an integer. If j#0 (mod p), this
quantity is clearly divisible by p. If p > 2, by (3.2) we can write

B mp . L m P —1427)
H,(mp)=1+ ;(—l) 4,3) = 1+§(_l)fp};(p jpt ljp) _

i=0 (mod p)
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a 1 2] -1
S () meen

whence, by using Lucas' Theorem (e.g., see [1, Theorem 1.1]), we obtain
m . 1 2] m X l 2 . m .
H,(mp)=1+3 (-1’ —.(j_ 1) =1+ (-1 "—T( ]J) =2 (-1)’C; (mod p).
j=1 J j=1 Jt =0

When p =2, we have
H,(2m)=-1+ C, (mod2). (5.5)

J=1

Since —1=1 (mod 2), the congruence (5.5) is clearly equivalent to (i).

Proof of Part (ii): For mp+1<k <(m+1)p—1[ie, for k #0 (mod p)], rewrite (3.2) as
mp ) k )
H,(k)=(-D"" = (-D" 2 (D' 4,()- (D" 2D 4,(). (5.6)
Jj=1 J=mp+1
By (5.6), Proposition 7(i), and since 4,(j)=0 (mod p) whenever j#0 (mod p), we get the
congruence
H,(k)=),(-1)’C; -0=H,(mp) (mod p). O

J=0

Particular instances of Proposition 7 are:

H,(k)=1(modp) if0<k<p-1], 5.7

H,(p)=0 (mod p), (5.8)

H,(2p)=2 (mod p) (5.9)

H,(3p)=-3 (mod p), (5.10)

H,(4p)=11 (mod p), (5.11)
and

H,(5p)=-31 (mod p). (5.12)

Proof of (5.7): Put m=0 in Proposition 7(ii), thus getting the congruence H,(k)=H,(0)
(mod p), if 1<k <p-1. Since H,(0)=1 (modp)V p (p=2 inclusive), the above congruence
clearly can be rewritten as (5.7). O

6. THE POLYNOMIALS H, (k, x)

Let us consider the special Dickson polynomials p,(x,~1)=V,(x) [see (1.2)]. Paralleling
the argument of Section 2 leads us to define the polynomials [cf. (3.2)]

(__l)n—l k n —142i 1
H, (b, %) =" [1+§(—1)17(” j_+1 J)ij} (x #0), (6.1)
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where x is a nonzero indeterminate. These polynomials are the companions of the polynomials
G, (%, )( Z(wf””) (x % 0), (6.2)

considered in [4, §5]. By using the identity (2.5), it can be readily proved that
H,(k,x) =G, (k, x)+ G, (k=1,x). (63)

Observe that identity (6.3) generalizes Proposition 1.
We believe that the polynomials H,(k, x) are worthy of a deep investigation. Nevertheless,
in this paper we confine ourselves to making nothing but a couple of observations on them.

Observation 1 [on the integrality of H,(k, x)]

H,(k, x) is evidently an integer whenever x equals the reciprocal of an integer (say, x =1/h).
This fact does not exclude the existence of irrational (or complex) values of x for which H, (k, x)
is an integer. For example, if x equals any of the roots of the third-degree equation /x> —x* +
1=0, then H,(1, x) = h. Apart from the trivial case

Hy(k,x)=-1V kand x, . (6.4)
the problem of the existence of rational values of x # 1/ h such that, for particular values of n and
k, H,(k,x) in an integer in an open problem.

Observation 2 [on a limit concerning H ,(k, x)]

Consider the limit

MHM)MH@ﬂ

(1),11{14_2-0:( )jn(n 1+21)x } (x#0) [by(6.1)]

The results presented in the sequel can be readily deduced from the analogous results on
G, (k, x) established in [4, §5]. First, observe that by (6.1) we can write
H, (o0, —|x|)=(-1)"H, (o0, |x]), (6.6)

so, for the sake of brevity, we shall consider only positive values of x. Then, let us state the fol-
lowing two propositions concerning a closed-form expression and a recurrence relation for
H (=, x), respectively.

(6.5)

Proposition 8: If x> 2, then H, (oo, x) = —(

x—A) , where A=+/x?+4.
Proof: By (6.3) we have

Hn(oo’ X) = Gn—l(OO’ x) +Gn+1(oo’ JC), (67)
so that, by [4, (5.11)], namely,
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G, (o0, x) = g% (x>2) (6.8)

(although the above quantity unfortunately has been denoted in [4] by the symbol H,(x), it is
only marginally related to the quantities denoted by H,(k) and H,(k, x) in this paper), we can
write

x_A)n—l (x_A)n+1
+
2n—1A 2n+1A

whence, after some simple manipulations, we obtain the desired result,

H (@, %)=

>

H,(®,x)= —(";A)n = —AG, (o, x).

We draw attention to the fact that, for x <2, the series (6.5) diverges (see (6.7) and [4, (5.7)]),
whereas nothing can be said when x =2, although computer experiments suggest the conjecture
H,(o,2)= - (1-+/2)". Observe that 1-~/2 is one of the roots of the characteristic equation for
the Pell recurrence relation. O

We point out that, since

1<X8 00 (0<x<w), (6.9)

there do not exist real values of x for which H, (e, x) is an integer.

Proposition 9: The numbers H, (o, x) obey the second-order recurrence relation
H, (0, x) =xH, (0, x)+H, ,(©,x) (n>2) (6.10)
with initial conditions
Hy(oo,x)=-1 and H,(o0,x)=(A-x)/2. (6.10")
Proof: The proof can be obtained readily by (6.7), [4, Proposition 10], and Proposition 8. [

Let us conclude Observation 2 and the paper by showing the set of all rational values 7 of x
for which H, (oo, r) is a rational number. On the basis of the results established in [4, §5.1], we
see that this set can be generated by the formula

UZ _ V2
r= , 6.11
v (6.11)
where U and V range over the set of all positive integers and are subject to the condition
Us>@1+2). (6.12)

The fulfillment of inequality (6.12) is necessary to satisfy the inequality » >2 which, in turn, is
required for the convergence of the series (6.5). It can be proved readily that the condition
g.c.d.(U,V) =1 must be imposed to obtain all distinct values.of r.
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THE FIBONACCI CONFERENCE IN PULLMAN

Herta T. Freitag

Sponsored and supported by the Office of the President, of the Provost, of the Vice Provost
for Research and Dean of the Graduate School, the Office of the Dean of the College of Science,
and the Department of Pure and Applied Mathematics, the Sixth International Research Confer-
ence on Fibonacci Numbers and Their Applications convened at Washington State University
from July 18-22, 1994,

We had our UPS and DOWNS. But they were due solely to the contours of the beautiful
campus of Washington State University as we walked between the buildings.

How richly international we were! We had the pleasure of hearing 55 papers, 24 of them
presented by mathematicians from America; Australia, Italy, and Japan tied by each having five
representatives, closely followed by Germany's four. As usual, two New Zealanders enriched our
sessions. There was one speaker from each of the other countries, one of them even coming from
Brunei, almost all of them traveling long distances to serve the magnet of Fibonacci-related
mathematics. Seven speakers were female.

The papers themselves were as remarkably diverse as the nationalities of the group, attesting
to the richness of our discipline and the creative imagination of mathematicians. Those who had
the misfortune of being unable to attend the Conference will concur in this estimate by studying
The Proceedings. We did work hard. On our full-day sessions we heard 13 papers, and—on one
of them—even 14. On the last day there <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>