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A NOTE ON A GEOMETRICAL PROPERTY 
OF FIBONACCI NUMBERS 

Peter Hilton 
SUNY Binghamton, Binghamton, NY 13902-6000 

Jean Pedersen 
Santa Clara University, Santa Clara, CA 95053 

{Submitted March 1993) 

INTRODUCTION 

In [2] the authors, amid a more extensive analysis, prove an interesting geometrical property 
of Fibonacci numbers. They adopt the unusual convention (see [1] for the usual convention) that 
the Fibonacci sequence is given by 

/o=/ l = l, fn+2=fn+l+fn, n > °> 0 ) 

Let Fn be the point (/w_1? fn) in the coordinate plane; let Xn = (fn_l7 0), Yn = (0, /„); and let pn 
be the broken line from OtoFn consisting of the straight line segments OFl,FlF2,...PFn_lFrj. 
Then it is proved in [2] that pn separates the rectangle OXnFnYn into two regions of equal area, 
provided that n is odd. Our main object in this note is to give an elementary geometrical proof of 
their quoted result, and then to give an elementary algebraic proof of a generalized version of this 
result. 

PROOF WITHOUT WOMBS 

Fk+iifk+nfk+i) 

'^k+\\Jki Jk+\) 

" 1 Xk Xk+l ^ 

FIGURE 1 

Figure 1 shows a path that begins at the origin and then progresses through the points 
Fjcifk-iifk)* where the fk are defined as in (1) above. We quote the first result of [2]: 

386 [NOV. 



A NOTE ON A GEOMETRICAL PROPERTY OF FIBONACCI NUMBERS 

. . .for each n > 1, the polygonal path F0FXF2 • • F2n+1 splits the rectangle F0X2n+]F2n+lY2n+l 
into two regions of equal area. (Note that, in [2], the origin is referred to as Fa.) 

Inspection of Figure 1 (where congruent regions are labeled with the same symbol) reveals 
that the above result may be seen to be true by simply looking at the geometry of the suitably sub-
divided rectangle which evolves as a polygonal path passes from Fk through Fk+l to Fk+2. For 
Figure 1 clearly shows that, for all k>\, 

area YkFkFk+lFk+2Yk+2 = area XkFkFk+1Fk+2Xk+2, 

and hence it follows that, since the polygonal path from F0 toFx obviously splits the rectangle 
FQXXF^ into two regions of equal area, then the polygonal path from F0 toF2k+l splits the rec-
tangle F0X2k+lF2k+lY2k+l into two regions of equal area. Notice that Figure 1 also tells us that the 
first line segment could have gone straight from F0 toFj9 j > 1, and then the polygonal path from 
^o toF2k+J would split the rectangle F0X2k+jF2k+jY2k+j into two regions of equal area. Further-
more, since the calculation of the lengths of the sides of the squares in Figure 1 depends effec-
tively only on the recurrence relation in (1), and not on the initial values, any sequence of positive 
numbers (the Lucas sequence, for example) satisfying (1) will produce a similar result. 

THE THEOREM 

We consider any sequence {un} of nonnegative numbers satisfying the recurrence relation 
un+i - un+i +un> notice that, in particular, we might consider the Fibonacci sequence or the Lucas 
sequence starting at any place along the sequence. We proceed exactly as in the Introduction, 
replacing fnbyun, so that U„=(un_uu„\ Xw(w„_1?0), Y=(0,un), and the broken line pn = 
OUxU2 ..., Un separates the rectangle OXnUnY„ into two regions. 

K 

..••" 

•*' 

VL 

K / \ 

/ Ai 

u„ 

R" 

FIGURE 2 

Theorem: The dotted line pn separates the rectangle OXnUnYn into two regions of equal area, 
provided that n is odd. 

We need the following simple lemma. 

Lemma: u* - unJrXun_x = -{u2
n_x - unun_2). 

Proof of Lemma: u2
n - un+lun_t = {u2

n - unun_x) - O w V i - * W i ) = W 2 " '£-1 • 
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Proof of Theorem: We argue by induction on n, the case n = 1 being trivial. Consider the 
piece added on in passing from the rectangle OXnUnYn to the rectangle OXn+lUn+lYn+l. This may 
be subdivided, as in Figure 2, into a triangle Aa and a rectangle Ra above pn+l, and a triangle Ab 
and a rectangle i^ below pn+l. Obviously, 

[area Aa =area Ab, 
jareai?fl = ^ ( i ^ -«„) = u2

n_x, (2) 
[areai^ = un(un-un_x) = unun_2. 

Let v4„ be the aiea of the region above /?„, and Bn the area of the region below pn in the wa-
stage rectangle. We have proved that 

4,+i ~Bn+l = An-Bn +Dn, whereDn = ul_x-unun_2. (3) 

Now our Lemma asserts that 

Thus, by (3) and (4), 

The equality (5) provides the inductive step to complete the proof. 

REMARKS 

(i) Equality (5) shows that, if n is even, the discrepancy An -Bn is still independent of n; it will, 
however, depend on our particular choice of sequence {un} since it will equal Dx = UQ-UXU_X = 
UQ - ux(ux -U0) = UQ+ U0UX - ux. Thus, the conclusion of our Theorem also holds if n is even, if and 
only if uQ, ux are related by ux - :^-uQ. 
(ii) Since our proof is purely algebraic, it remains valid even if we allow negative values of z/„, 

provided we interpret area correctly (i.e., allowing for sign). Thus, in particular, we could 
consider the Fibonacci and Lucas sequences starting with some negative subscript. 
(Hi) The case considered by Page & Sastry in [2], that is, un=f„, does have a special feature of 
interest. For /0

2 +A/i ~ f\ = 1 , so that, in their case, with n even, the area of the region above 
pn exceeds that of the region below pn by exactly one unit. Of course, this phenomenon 
continues to hold if we take uk = fn+k for any even k. If we take k odd, on the other hand, then, 
for even values of n, it is the area of the region below pn which exceeds that of the region above 
pn by one unit. 
(iv) Readers will probably wish to refer to [2] for related results, including matrix-generated 
area-splitting paths. 

REFERENCES 

1. Walter Ledermann, ed. Handbook of Applicable Mathematics. Chichester and New York: 
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2. Warren Page & K. R. S. Sastry. ,fArea-Bisecting Polygonal Paths." The Fibonacci Quar-
terly 30.3 (1992):263-73. 

AMS Classification Numbers: 10A35, 10A40 
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THE FIBONACCI KILLER* 

Peter JL Grabner 
Department of Mathematics, Technical University of Graz, Austria 

Helmut Prodinger 
Department of Algebra and Discrete Mathematics, Technical University of Vienna, Austria 

(Submitted March 1993) 

1. INTRODUCTION 

We consider the following stochastic process: Assume that a "player" is hit at any time x with 
probability/?. However, he dies only after two consecutive hits. We might code this process by 0 
and 1, marking a hit, e.g., by a "1". Then the sequences associated with a player can be described 
by 

{0,10}*-11. 

The notation {0,10}* denotes arbitrary sequences consisting of the blocks 0 and 10, the block 11 
are the fatal hits. Notice that {0,10}* are exactly the admissible blocks in the Fibonacci expansion 
of integers (Zeckendorf expansion, cf. [13]). Accordingly, the generating function 

1
 p z , (1.D 

\-qz- pqz 
has as the coefficient of zx the probability P{X = x} that the lifetime X of a player is exactly x. 
The generating function (1.1) is known in the context of the Fibonacci distribution or geometric 
distribution of order 2, cf. [1], [3], [4], [7], [8], [10], [12]. 

Here, we are interested in n (independent) players subject to this game and ask when (in the 
sense of a mean value) the last player dies. 

Without the "Fibonacci" restriction, i.e., the maximum of n (independent) geometric random 
variables, this problem has been studied previously and has some applications. (Compare [5], 
[11]-) 

We have obviously 
P{max{X1,...,Xn}<x} = (P{X<x})". (1.2) 

The generating function of P{X > x} is given by 
l + pz 

\-qz- pqz2 

We now factor the denominator of this function to obtain 

l-qz- pqz2 = (1 - az)(\ - bz) 
with 

q + tf+Apq ^ b = q-tf+4pq 
2 2 

"This research was supported by the Austrian-Hungarian cooperation project 10U3. 
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Performing the partial fraction decomposition and extracting coefficients yields 

¥>{X>x} = l (ax(a+p)-b*(b+p)). 
ylq2+4pq 

Using (1.2) we obtain the expectation for the maximum lifetime of n players 

Ew = Emax{X1;...,X„} = X 

By the binomial theorem we obtain 

x>0 

( ( i Y ^ 
H 1- / 2 (ax(a + p)-bx(b + p)) (1.3) 

E„ = i(-ir{l]L(Aa'-Binm; (1.4) 
where we use the notation 

A= " + p = , Ql and B—^P-
^q2+4pq q,Jq2+4pq ^jq2+4pq qjq2+4pq 

For example, in the symmetric case p = q = y, we have a = ̂ jl,b = ^=^-, J4 = 5+
1
3Q ? 5 = 5~1

3Q . 
We will find that E„ ~ log1/fl n and refer for the (technical) proof and a more precise statement 

to the next section. 

2. ASYMPTOTIC ANALYSIS 

In (1.4) we found the expression 

EB = I(-1)B-1fcV<w>- (21) 

containing the function 
/ (z ) = X ( ^ * " ^ * T for Mz > 0. 

For an expression of that type we can write a complex contour integral 

2^i J e z (z - l ) - - - ( z -w) 

where C is a positively oriented Jordan curve encircling the points 1, 2, ..., w (and no other integer 
points); this can easily be checked by residue calculus. 

We will use Rice's method to obtain an asymptotic expansion for E„. For this we refer, e.g., 
to [2] and [6]. This method is based on a deformation of the contour of integration. For this 
purpose we need an analytic continuation of the function / to a region containing a half-plane 
dtz > -s for s > 0 (we actually give an analytic continuation to the whole complex plane). 

Using the notation C = B IA andd = b/a (observe that \C\< 1 and \d\< 1) we obtain 
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/(z) = A'ZcTQ-Cd'Y = ^ £ a » £ ( - l ) < r t q f 
x>0 x>0 £>0 

= <£(-l)«c(*V(aW«)* = A^(i)t^ 
(2.3) 

zjt 
£>0' 

where the reversion of the order of summation was justified because of the absolute convergence 
of the sum for dtz>0. The sum in the last line gives a valid expression for f(z) for every 
complex number z which is not a solution of any of the equations l-azd£ = 0. In the points 
ze, x~~^ T^p"+1^ w^h ^ = 0,1,... and x e Z, there are simple poles with residue 

U J loga • 
43z 

fe B-

The Contours of Integration 

In order to be able to deform the contour of integration, we need an estimate for f(z) along 
the vertical line dtz = -u. For this purpose, we write 

/ ( * ) - X^v^o-ofy-i) 
and observe the inequality |(1 - Cdxf -1|< min(2, \z\Cdx). This yields 

Az 

m- \-az 

( 
<A~U 

\ 

^0<x<log|z| x>log|z| y 
(2.4) 

for | J|<aM < 1 and a = -wloga. 
We are now ready to start the deformation of the contour of integration: we take C as the 

new contour and write 
c 

Q) 
1 

2m 
i 

1m 

(-!)"«! 
z(z -1) • • • (z - n) 
r 

CD 

/(*)<& 

, n , T/(*)<& - Z ReS , n ' zf(z)> 
, z(z- l) - (z-w) z=*< z(z- l)---(z-») 

(2.5) 
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Notice that there is a second-order pole at 0. Computation of residues yields (with Hn = l+y + 

• • • + * ) 

R e S tVLHl f(z) = -L-H + ! 2 § i i _ i 
z=«z(z-\)-(z-n)nZ) loga " + l o g a 2 ' 

Res H)"" ' f(z) = ^ " ! ^ - H for^O, 
z=xx z(z -1) • • • (z -ri) Xx

 Joga r(#i +1 - #, ) 

where ^ = i ^ = z05jc. 
Shifting the upper, the lower, and the right part of C (cf. the figure) to infinity and observing 

that the integrals over these parts of the contour vanish then yields 

E = * H
 log^ | 1 V ^ ' n\T(\-Xx) 

" log! " loga 2 A^logalX/i + l-*,) 
-M+/00 

L I ( - » • • • • / W A 

(2-7) 

2^7 J z (z - l ) -(z-w) 
- M - / 0 0 

We now use the well-known asymptotic expansions 

H„ = logn + y + 0\-\ and —-—— - = nXx\l + 0 
KnJJ 

(by Stirling's formula) to formulate our main result. 

Theorem 1: The expected maximal lifetime Ew of n independent players each of which has the 
Fibonacci distribution (or geometric distribution of order 2) fulfills, for n —> oo? 

E H = l o g 1 / a » - r | l o g ^ + l - ^ ( l o g 1 / a » ) + 6>(»-"X (2.8) 
loga 2 

for 0<w<min(l,-^J-), and <p denotes a continuous periodic function of period 1 and mean 0 
given by the Fourier expansion 

no=r- I A'-n-xy*"=-!- x rc-^y^'-^- ">, (2.9) 
xeZ\{0} 

which is rapidly convergent due to the exponential decay of the T -function along vertical lines. 
The remainder term is obtained by a trivial estimate of the integral and the (uniform) 0-terms in 
Stirling's formula. 

3. EXTENSIONS 

Here, we briefly sketch the more general case where k consecutive hits are necessary to kill a 
player. In this case, the probability P(X = x) was derived by Philippou and Muwafi [9] in terms 
of multinomial coefficients. As described in the introduction, there is a bijection to the sequences 

{0,10,110,..., l^OJ-l*, 

which yield the probability generating function 

392 [NOV. 



THE FIBONACCI KILLER 

pkzk _ pkz\\-pz) 
\-qz-pqz1 pk~lqzk l-z + qpkzk+1 K U 

for the lifetime of a player (cf. [1, pp. 299fFJ, [3, p. 428], [7, p. 207], [8]). Likewise, the generat-
ing function of P{X > x} is given by 

, l~PZ
kk+l- (3.2) 

Again we factor the polynomial in the denominator 

l-qz-pqz2 pk~lqzk = (1 - az){\ - a2z) • • • (1 - akz) 

with |a |>|a21 > • • • > \ak \ (a > 0). Then we have, by partial fraction decomposition and extracting 
coefficients, 

P{X >x} = Aax + A2ax
2 + • • • + Aka\ (3.3) 

with A = qmc+n£lk) a nd similar expressions for A^,..., Ak. 
For the expectation of the maximal lifetime of n players, we obtain 

E 

with 
Wit = Emax{^,..., X„) = Z H r ' f c W 

m=l V J 

g(z) = X(Acce + - + Akae
kY for 9iz > 0. 

£>0 

For the purpose of analytic continuation of g, we consider g(z)-j^ and proceed as in (2.4) to 
obtain the continuation and a polynomial estimate for g(z) along some vertical line 9lz = -s for 
sufficiently small s > 0. 

We are now ready to perform similar calculations as in Section 2. Thus, we obtain 

Theorem 2: The expected maximal lifetime E„tk ofn players each of which has the geometric 
distribution of order k satisfies 

log a 2 

for 0 < s < min(l, °^a£ ) and a continuous periodic function y/ of period 1 and mean 0 whose 
Fourier expansion is given by 

¥(t) = -±- zAz.T(rXy* = :J- <£T(rXy>«i>-**u.*> 
l°g «*<=»{()} togax«z\{o> 

By bootstrapping we find that, for k -> oo, 

a~l-<2p/c + — and ,4~l + % / + ---. 
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FIBONACCI, LUCAS AND CENTRAL FACTORIAL NUMBERS, AND K 

Michael Haiiss 
Lehrstuhl A fur Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen, Germany 

(Submitted March 1993) 

In [1], a solution of Problem B-705, the evaluation of the series T^=ia2n/(n2(2^)) for the 
Fibonacci numbers an - Fn and the Lucas numbers a„ = Ln, proposed by H.-J. Seiffert, is given. 
The proof is essentially based on the power series expansion of (arcsinx)2. The same method 
yields, in the case a„ = l9 the Catalan-Apery representation n1 - 18Z^=1 k~2 lQ£) (see [3]). 

Now it is possible to deduce a more general formula by using the Taylor series expansion 
([2]) 

(^arcsinfj ' = m \ p ^ A x \ |*|<2, m eN0. (1) 

Here t(k, m) denote the central factorial numbers of the first kind, which are defined by (x[0] := 1) 
(see [2], [4]) 

J f c - 1 
x[k] 

]=l\ L ) m=0 

Observing that arcsin(a/2) = 3?r/10 and arcsin(/?/2) = -7r/10, as well as Binet's formula F„ = 
{a"-pn)lS and Ln = a"+/3" [a = (l + V5)/2, /? = (1 - S) 12], and noting the representation 
(1), one can readily deduce 

Theorem 1: For meN, there hold 

m= 5mm\y/5 fFk\t(k,m)\ 
3 - + ( - i r i £ k\ ' 

(2) 
5mm\ ^Lk\t(k,m)\ 

The particular case m = 1 yields 

x'"= ' - • Y -
3 m

 + ( - l ) m £ k\ 

<T =
 5 g y ^ + i 1 (2k) = 5 f Z,t+1 1 (2k) 
4 ^2k + ll6k\k) 2to2k + W6k\k J 

For m = 2, one obtains the solution of Problem B-705, and the case m = 3 in (2) gives, by formula 
(xxii)of[2], 

3 _ 750 ,-$ F2k+l 1 (2k^ 1 
7 ^2,fc + 116 f c V* /£ (2 . / - l ) * I k )*->/n;_ i\2 

Observe that, for large k, (2
k
k)/(l6k(2k + \)) ~ 4-4yr3/2 (see [3]). 

Vice versa, the Fibonacci and Lucas numbers can be expressed in terms of the central 
factorial numbers and n as follows. 
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Theorem 2: For « G N , there hold 

S tn k\ 5kK V ' 

k=n * ! 5 

Here T(k, n) are now the central factorial numbers of the second kind, given by 

The central factorial numbers of the first and second kind are connected by the orthogonality 
formula lf=0 t(n9 k)T(k9 m) = 8nm, N:= max(«, m) (see [2]; [4], p. 213). 

To prove Theorem 2, one inserts the values x - 3 K 15 and x = -7r/5 into the expansion (see 
[2]) 

[2sin|J = (-l)"»l£i^I^Lx\ x GR, „ GN0, 

and again uses the formula of Binet and Ln = an + fin, respectively. 
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1. INTRODUCTION 

We define vp(x) as the highest power of prime/? which divides the integer x. The function 
vp(x) is often called the^-adic order of x. In this paper we characterize the divisibility by 2 of 
the series E^iC-l)*"1-^ and Hk=\^, i.e., we determine their 2-adic orders. The characterization 
generalizes previously known results on 2-adic orders and is based on elementary proofs. 

2, MESULTS 

For an integer x, the j?-adic order v (x) of x is the highest power of prime p that divides x. 
We can think of the relations p\x mdp\x as v (x) > 1 and v (x) = 0, respectively. 

We set vp (0) = oo and vp (x I y) = vp (x) - vp (y) if both x and y are integers. Therefore, for all 
nonzero rational numbers, the order is defined to be a finite integer. From now on, all rational 
numbers will be meant in lowest terms. 

For rational numbers ak (k > 0) and rational x, the/?~adic order, vp(T^=0akxk) of the series 
T^=0akxk can be introduced as \imn_+O0vp(£lss0akxk>) if the limit exists, in which case there 
exists an nQ such that v (E^a^x*) = v

p0^k=oakxk) f°r ^ % To illustrate this, we consider 
the series -^ = x + x2 + x3 + • • •. The reader can easily verify that v ( j ^ ) = v (JC) if v (JC) > 1 
and the limit does not exist if vp(x) < 0. Actually, vp(x + x2 + x3 + • • • + xw) = nvp(x) if vp(x) < 0. 
Notice that if v2(x) = 0 then v2(x + x2+x3 + — +x2"+1) = 0, while v2(x + x2 +x3 ...+x2")>n. 
Finding the/?-adic order of functions helps in analyzing the divisibility property of the underlying 
or related functions. We note that Clarke [1] has recently studied the /?-adic order of the 
logarithm by using /?-adic arguments in order to characterize the divisibility properties of the Stir-
ling and partial Stirling numbers. The interested reader should consult a book onp-adic metrics 
(e.g., [2]) for a general treatise ofp-adic power series. 

jfc In this paper we consider the series log(l + x) = Z^=1(-l) \- and - log(l - x) = Y%=1 ~- and 
determine their 2-adic orders by elementary arguments based on binomial expansion. 

In most cases the/7-adic order of log(l + x) can be derived by the well-known 

Theorem A (Yu [4]): We have 

vp(log(l + *)) = vp[±{-if-1 £ \ = vp(x) ifvp(x) > - i - , 
V*=i K J P l 

and v (log(l + x)) does not exist if vp(x) <0. In particular, for any integer x, vp(log(l + x)) = 
v (x) ifp > 3 and/?|x, or if p = 2 and 4|x, while for p\x thep-adic order vp(log(l + x)) does not 
exist. 
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In fact, Theorem A completely describes the p-adic order for p > 3. The purpose of this 
paper is to characterize the 2-adic orders of the two series in the case not covered by Theorem A, 
i.e., for every even integer x and p-2. We note that the proof of Theorem A is based on the 
observation that under the conditions of Theorem A given for p and x, the p-adic order of the 
terms ( - l ) ^ - 1 ^ , k>2, of the infinite series Yk=i(-l)k~l j ^ exceeds that of the first term, x (cf. 
[2], p. 81). 

If p = 2 andx = 2, then the following lemma (cf. [2], Ex. 7, p. 83) describes the 2-adic 
"behavior" of ££=1 \-, i.e., the sum of the first n terms of the expansion -log(l - x). 

Lemma B: The 2-adic order of the rational number 2£=1 \- approaches infinity as n increases. 

An elementary proof can be given based on the observation that 

I ^k™n,(*-v
2(*))> 

\k=n+l k>n+l 

which assures that v2(^=n+l j-) becomes arbitrarily large as n -> oo. One can prove that 

f n 0k\ 

I 
.,2" ( 

>v, 
\k=\ «• j 

k\ OO f% 

\k=n+l K J 

holds for infinitely many values n. In fact, a ^-adic argument shows that equality holds for all n. 
We leave the details to the reader. 

We set vp(J^n
k=0akxk^) = oo if? for every integer N>1, there exists an integer n0 such that 

pN divides lln
k^akxk for every n>n0. In this case, v (2%=0akxk) = vp(%™=n+lakxk) holds. 

By the Lemma, we set v2(Z^=1j-) = oo. We note that 0 and 2 play a special role in the 2-adic 
analysis of log(l-x) for these are the values for which v2(log(l-x)) = oo (cf. [2]). Our results 
are summarized in the following two theorems. 

Theorem 1: For any even positive integer x, 

Ar—1 X_ 

k 

k\ 

2, 
2, 
2, 
3, 
3, 
2, 
2, 
v2<> + 2), 
v2(x\ 

if JC = 2 , 
i f x s 2 
ifx = 4 
if x = 6 
ifx = 8 
ifx = 10 
ifx = 12 
if x m 14 
ifx = 0 

(mod 16), 
(mod 16), 
(mod 16), 
(mod 16), 
(mod 16), 
(mod 16), 
(mod 16), 
(mod 16). 
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Theorem 2: For any even positive integer x, 

oo, ifx = 2, 
v2(x-2), ifx = 2 
2, 
2, 
3, 
3, 
2, 
2, 

lv
2(*)> 

if x = 4 
if x = 6 
if* = 8 

(mod 16), 
(mod 16), 
(mod 16), 
(mod 16), 

i fxs lO (mod 16), 
if* = 12 (mod 16), 
if* = 14 (mod 16), 
ifjc = 0 (mod 16). 

Remark 1: The above theorems could be restated in a more compact form: 

v2(x), if x = 0,4,8,12 (mod 16), 
v2(x + 2), ifx = 2,6,10,14 (mod 16), 

and 
v2(x), if x s 0,4,8,12 (mod 16), 
v2(x-2), ifx = 2,6,10,14 (mod 16). 

Notice the sharp contrast between v2(E"=1(-4)*_1^r) and v2(Z*=i^-). We can combine the 
cases x ^ 2 of the two theorems by substituting -x in place of x and carrying out the modular 
calculations. 

For a rational x = a/b with v2(x) = 1 and b > 1, there exists a sufficiently large integer m 
such that v2(log(l + x)) < m. We set x' = a * A"1, where $_1 is the unique solution to the equation 
&*£_1 = 1 (mod2w) with 0<b~l <2m. We can proceed to determine v2(log(l + x')) by Theo-
rem 1 and observing that v2(log(l + x)) = v2(log(l+ *')). If x' # 14 (mod 16), then m = 4 is an 
appropriate choice. However, if it turns out that the remainder is 14, then one should check 
whether v2(x' + 2) <m and try a larger m if it fails. A similar method works for determining 
v2(log(l-x)), too. 

For example, if x = 6 / 5, then v2 (log(l - 6 / 5)) = 2 follows easily with m = 4. We use m = 5 
and have x' = 6*13 = 14 (mod 16) in order to obtain v2(iog(l + 6/5) = v2(6* 13 + 2) = 4. For 
x = 426/555, we start with m = 4. Since x' = 426 * 3 = 14 (mod 16) and v2(426 * 3 + 2) = 8, we 
note that we need a larger m. By using m = 10, we obtain xf = 426 * 131 = 14 (mod 16) and 
v2(log(l + 426/555)) = v2(426*131 + 2) = 9. 

Remark 2: Similarly to the proof of Theorem A, we observe that v2(2*) < v2((2')* Ik) \fk>2 
and s>2. Therefore, 

Z ( 2 ) 
\k- .1 * 

= Vn 

s\k CO f1S\' 

Z ( _ r i ( 2 i \ = v2(2') = s ifs>2. 
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3. PROOFS 

Proof of Theorem 1: The case of x = 2 is easily verified by checking the first couple of 
terms of E^xC-l)^"1^. Indeed, v2(Z4

k=l(-l)k-1 f) = 2 mdv2(2k/k)>2 for £ > 5 . 
If x = 6 or 10, then by inspecting the sum of the first few terms we obtain, similarly to the 

case of x = 2, that the orders are 3 and 2, respectively. 
We can extend these results for x = 2,6, and 10 (mod 16). From now on a denotes an arbi-

trary integer while b is an arbitrary odd integer. The basic idea is that if v2(Z™=l(-l)k~l -^-) = r < 
s then v2(S^=i(- l /"1 (*+<f *} ) = r, too, since xk =(x+a2s)k (mod2"). [Of course, the same 
applies if we omit the factors (-l)*-1.] By the previous observations, we can set s = 4. 

For x == 0,4,8, or 12 (mod 16), the statement follows from Theorem A which claims that the 
order must be v2 (x). 

Instead of simply proving the remaining case x = 14 (mod 16), we combine the cases x = 2 
and 14 (mod 16) to make this proof transparent to prove Theorem 2. Let s = 4. We calculate the 
2-adic order of Z^L^-l)^ - 1^ us*ng the binomial expansion of the terms xk = (h2s +2c)k where 
c is either 1 or - 1 . The expansion yields 

(b2s +2c)k = (2(b2s~l +c))k = J^2k(f\(b2s-iyck-\ 

Note that the identity m = jf*!}) implies that \^lk is an integer multiple of lit. Consider the 
sum 

Z(-i> 
k=l 

t_,(ft2' + 2c)* 
k 

in three terms, one term for £ = 0, another for I = 1, and the last one for all the remaining cases, 
£>2. We get 

£ ( 1)t.,(&2' + 2c)* 

Ar-2cY* A A k(k
t-$be2^+Kc*-i ( 1 ) 

=-i,L¥L+ifa^K-cri+il<rir-iil*IlL—, • 
k=l " k=l k=l £=2 *-

Obviously, the 2-adic order of the second term is s if b & 0. Notice that the third term is always 
divisible by 2s+l for $>3, since this condition implies that £(s-l) + k-v2(£)>£(s-l)+k-
log2 l>s + \. It turns out that the 2-adic order of the first term on the right side of identity (1) is 
2 if c = 1 as we have seen it at the beginning of the proof. By Lemma B, the 2-adic order of the 
first term is ooifc = - l . It follows that v2{Y^=l{-l)k~\b2s +2cf Ik) = s if c = -1 (and ft*0), 
while it is 2 if c = 1. D 

Proof of Theorem 2: Basically, the proof of Theorem 1 can be repeated here except for 
x = 2, which case is the content of Lemma B. Careful inspection reveals that the 2-adic orders 
are switched for x = 6 and 10 (mod 16). 
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Similarly to identity (1), we have 
£(s-l)+k k-l 

k=i K k=\ K k=i k=\e=2 l 

where the last term is always divisible by 2s+l for s > 3. 
By simply switching the cases c = 1 and c = -1 in the previous proof and using identity (2), 

we derive that v2(X^=l
{brfc)k) = s if c = 1 (and A * 0), while it is 2 if c = - 1 . D 

We note that Clarke [1] has recently proved similar results by using p-adic arguments. 
Lemma B points to the odd behavior of v2(2^=1 ̂ -) at x - 2. Analysis of this behavior gives 

rise to the question on the rate at which v2(X£=1x) increases as n gets larger. We were unable 
to answer this question; however, numerical evidence suggests some pattern for the increase of 
the 2-adic order. The following conjecture has been proposed in [3], in the context of the 
divisibility by 2 of the Stirling numbers of the second kind, S(a2n -1,2m), where n>m>4 and a 
is a positive integer. 

Conjecture3: For m> 4, v2(jX=x
2£-) = 2m+2m-2. 
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NUMBER OF MULTINOMIAL COEFFICIENTS 
NOT DIVISIBLE BY A PRIME 

Nikolai A. Volodin 
The Australian Council for Educational Research Limited, 

Camberwell 3124, Melbourne, Victoria, Australia 
(Submitted March 1993) 

We consider the nth row of multinomial coefficients of the order £: 

Ui> Ji> •"•> Ju — • , . , . i •> 
JvJi- -Ji-

where jt >0,i = 1,..., £, and n = jl +j2 + ••• +jt. 
The number of multinomial coefficients not divisible by pN, where/? is prime and Nis a fixed 

whole integer, for various £, p, and JVwas studied by L. Carlitz [1], [2], F. T. Howard [3], [4], 
[5], [12], R. J. Martin and G. L. Mullen [6], and the author [7]. Let g(n, £, pN) be a number of 
multinomial coefficients in the rfl* row of order £ not divisible by pN, and 

k=l 
G(n,£,p») = Yg(kJ,PN)-

In the general case, an exact formula for g(n, £, pN) was obtained by F. T. Howard [5] for N= 1, 
2, 3 and by the author [7] for N= 1, 2. It is not difficult to show that the behavior or g(n, £, pN) 
is very irregular and from that point of view it is better to study G(/i? £, pN) which changes more 
regularly. The function G(n, £, pN) was studied by K. B. Stolarsky [8], [9] and H. Harborth [10] 
for N = 1, £ = p = 2; by A. H. Stein [11] for N = 1, £ = 2, and arbitrary p; and by the author [7] 
for arbitrary £ and p. 

More precisely, the following exact formula was obtained in [7]: 
m n m 

Ar=0 l i=k 

where n - 1 = aQ + axp + • • • + ampm. It is not difficult to show that G(n, £, p) is of the order ne\ 
where 0 = logp(/, p-l). The following theorem gives a more exact result. 

Theorem 1: a = lim sup G(n, £,p)l n6 - 1. 
n—>oo 

Unfortunately, there are no similar results for J3 = lim inf G(n, £, p)lne even in particular cases. 

In the general case, only the following elementary estimate is known: (3>{£,p-1)"1. 

In the particular case/? = 2 (following H. Harborth [10]), we are able to prove the following 
result. 

* This research was undertaken while the author was in the Statistical Department of the University of Melbourne. 
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Theorem 2: If we consider the sequence qr = G(nn £, 2) / n°r with nr = 2nr_x ± 1, nQ = 1, where + 
or - is chosen so that qr becomes minimal, then {qr} is strictly decreasing. 

This theorem is a generalization of the lemma from [10] for the case of binomial coefficients 
to the case of multinomial coefficients. We should also note that the sequence {nr} is not the 
same for different i . In Table 1 the values of nr for various r and I are given. 

TABLE 1 

* 
2 
3 
4 
5 
10 

1 

3 
3 
3 
3 
3 

2 

5 
7 
7 
7 
7 

3 

11 
13 
13 
13 
13 

4 

21 
27 
27 
27 
27 

5 

43 
53 
55 
55 
55 

6 

87 
107 
109 
109 
111 

r 

7 

173 
215 
219 
219 
221 

8 

347 
429 
439 
439 
443 

9 

693 
859 
877 
877 
887 

10 

1387 
1719 
1755 
1755 
1775 

15 

44395 
54999 
56171 
56173 
56795 

30 

1454730075 
1802202477 
1840625371 
1840700855 
1861082589 

In Table 2 we give values of nr and qr = G(nr, 2,2) / nr. 

TABLE 2 

r 

r 2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

"r 

1 
3 
5 
11 
21 
43 
87 
173 
347 
693 

1387 
2775 
5549 
11099 
22197 
44395 
88789 
177579 
355159 
710317 
1420635 
2841269 
5682539 
11365079 
22730157 

Ir 
1.000000 
0.876497 
0.858126 
0.827243 
0.826359 
0.816719 
0.815382 

0.813788222 
0.813086063 
0.812934013 
0.812675296 
0.812657623 
0.812592041 
0.812575228 
0.812567096 
0.812560137 
0.812559941 
0.812557589 
0.812557229 
0.812556865 
0.812556846 
0.812556653 
0.812556588 
0.812556582 
0.812556563 

r 
~26~ 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

nr 

45460315 
90920629 
181841259 
363682519 
727365037 
1454730075 
2909460149 
5818920299 
11637840597 
23275681195 
46551362391 
93102724781 
186205449563 
372410899125 
744821798251 
1489643596503 
2979287193005 
5958574386011 
11917148772021 
23834297544043 
47668595088085 
95337190176171 
190674380352343 
381348760704685 
762697521409371 

9r 
0.812556563402 
0.812556561634 
0.812556559863 
0.812556559862 
0.812556559272 
0.812556559174 
0.812556559092 

0.8125565590457850017 
0.8125565590398820396 
0.8125565590234059925 
0.8125565590216437317 
0.8125565590182076960 
0.8125565590170475496 
0.8125565590166681715 
0.8125565590162182798 
0.8125565590162065045 
0.8125565590160702999 
0.8125565590160436690 
0.8125565590160253147 
0.8125565590160134328 
0.8125565590160123562 
0.8125565590160082524 
0.8125565590160076856 
0.8125565590160069672 
0.8125565590160066187 

On the other hand, if we consider the case £ - 2, p = 3,5, 7, then there exist increasing sequences 
{nr} such that G(nr, 2, p)/n® < G(nr_h 2, p)Ine

r_v Calculations give us the following sequences: 
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fy = 0, nr = 3«r_i +1, for/? = 3, 
/% = 0, nr = 5nr_x + 2, forp - 5, 
i\ = 0, nr - lnr_x + 3, for p = 7. 

If we denote pp = lim inf G(n, 2, p) I ne and /?. = lim inf G(nr, 2, p) I n0
r, then 

/?3 = 2io^2~1 = 0.774281326315 
/?5 = 2log53_1 = 0.802518299262 
/?7 = ^"g'4-1 = 0.819271977267 

(*) 

Very probably fip = fip, but at the present time we do not have complete proof of this fact. For 
that purpose it is necessary to show that the sequences {nr} which were defined earlier have the 
following property: G(nr, 2, p)lnd

r < min G(n, 2,p)/n0, r = 1,2,..., forp = 2,3,5, and 7. 
nr_i <n<nr 

Proof of Theorem 1: It follows from (1) that 

G(pm, I p) I pme = (£,p- l)m lpm6 = l 

for all my which gives us a > 1. 
Furthermore, we will show that 

biEzG(ipmJ,p)/(ipm)e<l, when 1 <i<p. 

For this purpose, we consider the fraction btJbi+l = c, which, due to (1), is 

7 + 1 " 
l + \f 

and we shall show that cx - 2e I (I +1) > 1 or, in other words, that 

Since 

a 
we consider, under t > 3, the function 

(t,p-l)>(£ + \)logip. 

(t,p-lW + T?°*"> = t + l(lt 1 V ̂ p 

/+/7-1V * 

log2 P 

as a function of/> and, taking the derivitave, we find that 

<P(P, 0 = <P(P,t) 
pln2 

yi41-^2 
t) t + p-l <-

<P(P,t)(, tp\n2 1 — //?ln2\^ / + / ? - ! 
<0 

because tp/(t + p-l) is increased either hyp or by t, and 

r/?ln2 
t+p-l t=3, p=2 

= - l n 2 > l . 
2 

(2) 

(3) 

(4) 
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Hence, <p(j>, I +1) < p(2,£ +1) = 1, and (£, p-!)/(£ + l)log2 p is decreased ml. So 

(£,p-l)/(£ + l)lo^p<(3,p-l)/p2<l, when/>3, 
which proves (4). 

As the derivative of the function 

, x , x + 1) x y/(x)--
l + x 

is equal to 

n M x J (x + l)(^ + x)2 

then i^(x) has only one extreme and, as cx > 1, this extreme is the minimum. As ^ = ftp = 1 for 
2 <i <p-1, we have ^ < 1. 

From (1) it is easy to prove, for 0 < x < pm, that the following recurrent formula is valid: 

G(ampm + x, £, p) = G(ampm, £, p) + (£-1, am)G(x, £, p), (5) 

where 1 < am < p -1. We show that 

G(ampm+x, £, p)l{ampm + xf < 1 for all x = 0,..., pm -1, m = 0,1,... (6) 

is valid. 
The inequality (6) is evident when m = 0. Let us suppose that (6) is valid in the case of all 

positive numbers less than m. Then we will have G(x, £9 p) < xe for 0 < x < pm. Then, from (3) 
and (5), we have 

G(ampm + x, /, p) I (ampm + xf = [G(ampm, £, p) + (£-1, aJG(x, *, /,)] / ( a ^ + xf 
^(^pyH^-haJyia^^xf^fixlOKxKpr 

In the interval [0, pm] the function / (x) has only one extreme, which is the minimum. So (5) is 
valid. From (3) and (6), we have a < 1 and, when (2) is added, a = 1. Theorem 1 is proved. 

Proof of Theorem 2: We suppose 

G(2nr +1, £, 1) / (2«r + if > qr and G(2^ - 1 , £, 1) / (2nr - if > qr. (8) 

If we denote a = 2nr and b = £tr I {(I + l)G(nr, £9 2)), then, from the definition of qr and assump-
tions (7) and (8), we have 

1 + 6 > | 1 + - | and 1 - & > | 1 - -
a J V a J 

^2 Addition of these two inequalities yields the contradiction 2 > 2 + 9(9 -I) I a + • • > 2. Thus, the 
inequalities (7) cannot both be true, which proves that the sequence {qr} is strictly decreasing. 
Theorem 2 is proved. 

Returning to formulas (*), it is necessary to note that calculations for/? = 3, 5, 7 are very 
simple, by using (1). We omit the proof. 
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A NOTE ON BROWN AND SHIUE?S PAPER ON A REMARK RELATED 
TO THE FROBENIUS PROBLEM 

Oystein J. Rodseth 
Department of Mathematics, University of Bergen, Allegt. 55, N-5007 Bergen, Norway 

(Submitted April 1993) 

Given relatively prime positive integers a, &, let NR denote the set of positive integers with 
no representation by the linear form ax + by in nonnegative integers x, y. It is well known that the 
set NR is finite. For a nonnegative integer m, we put 

Sm(a,b)= 5>"\ 
«e.NR 

Sylvester [3] showed that #Wl = SQ(a,h) = ^(a-l)(h-l) and, recently, Brown and Shiue 
[1] found a similar closed form for Sx(a,b). Brown and Shiue did this by determining a closed 
form for the generating function f(x) of the characteristic function of the set NR and then com-
puting / ' ( l ) = Sx(a, b). In this note we use a more direct approach, which gives us a closed form 
for Sm(a, b) valid for every nonnegative integer m. 

Let integers n, r, s be connected by the relations 

r = n(moda), 0<r<a; bs = r (moda), 0<$<a. 

We have that n eNR if and only if n = -at + bs for some integer t in the interval 1 < t < \bsla J, 
that is, if and only if n - ak + r for some integer k in the interval 0 < k < (bs - r) I a -1. Hence, 

_ i bs-r _ | 

5,m(«,*) = Z Z («*+/•)"• 
r=0 k=0 

For the exponential generating function of the sequence {$m}, this gives 

oo m a-\ ^ - 1 oo m 

S5.(a,*)iT = 2: X ^(ak+rT2-
m=0 m- r=0 £=0 m=0 W ! 

a-l ^ - 1 i f a - 1 fl-1 A 

r=0 fc=0 e "" lUo r=0 7 

As r runs through the set {0,1,..., a -1}, so does s. Hence, 
a - l a - l 

r=0 5=0 

and we find that 
oo m abz _ -a | 

Multiplying this relation by z gives 
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oo m oo i oo j oo sikjJz k oo m 

where B0 = l, Bx=-^, B2=^, B3 = 0, B4=--~,... are the Bernoulli numbers; cf. formula 
(6.81) and section 7.6 in [2]. Equating coefficients of zm now gives the 

Theorem: For m = 1, 2, ..., we have 

It is not difficult to see that, considered as a polynomial in a and J, Sm(a, b) has the algebraic 
factor (a-l)(b-l). In addition, ifm is even >2, then Sm(a,h) also has the factor ab(ab-a-b). 

Our theorem gives us, of course, Sylvester's result for S0 and Brown and Shiue's formula [1], 

Sl(ayb) = — (a-l)(b-l)(2ab-a-b-l). 

Also, for S2, we obtain a rather simple formula: 

S2 (a, b) = — (a - l)(ft - l)a£(a£ - a - b). 
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AN ALTERNATIVE PROOF OF A UNIQUE 
REPRESENTATION THEOREM 

Ac F* Horadam 
The University of New England, Armidale, N.S.W., Australia 2351 

(Submitted April 1993) 

This note describes an alternative approach to the proof in [2] of a representation theorem 
involving negatively subscripted Pell numbers P_n (w > 0), namely, 

Theorem: The representation of any integer N as 

N = f,aiP_i (1) 
/=1 

where at = 0,1,2 and az = 2 => ai+l = 0, is unique and minimal. 

To conserve space and avoid unnecessary repetition, we assume that the notation and results 
in [2] will be familiar to the reader. Our alternative treatment, however, requires the fresh result: 

2§(-l) , + 1P_, = - l + (-l)"(P_„ +P_I_1). (2) 
7 = 1 

Repeated use of the recurrence relation for P_n leads to (2). Observe [2] that in (2) 

q_„ = P„ + P„_x (9-i = ~\ % = 1* ft = !)• (3) 

Proof of the Theorem: Suppose there are two different representations 

N = fd
aiP-u ah^0,af=2^ai+l = 0 fa = 0,1,2) (4) 

/=i 
and 

m 

N = Y,biP-„ * m * < U = 2=>^+1 = 0 (^ = 0,1,2). (5) 
7 = 1 

Case I. Assume h = m, so that the Pell numbers in (4) and (5) are the same, but the coefficients 
a,,, bt are generally different. Write 

c,=a,-ft, (c ,=0,±l ,±2; i = l,2,...,m). (6) 

Subtract (5) from (4) to derive 
m 

£c,i>_,=0 by (6), (7) 
7 = 1 

that is, 
w - l 

cmP-m+ ^ ^ = 0 , (8) 
7 = 1 

whence, by (2), for a maximum or minimum sum, i.e., q = ±2 (/ = 1,2,...,/??-1), 

^ - « + ( - i r ( ^ + ^ * - i ) = i - w 
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[The notation of (3) may be used in (9).] We concentrate on cmP_m since this term dominates the 
sums (7)-(9). 

m even (P_m < 0): Here (9) gives 

( ^ + 1 ) ^ + ^ = 1. (9a) 
Now, in (9a), 

(i) cm = Q^> q_m = \ by (3) 
(ii) cffl = l o ilm + 1 = l 

(iii) cm--2=> ?-m+i = l by (3) 

where in (ii) and (iii) the recurrence relation for Pell numbers [2] has been invoked. 
m odd (P_m > 0): Here (9) gives 

( c ^ - l ^ - P ^ l . (9b) 

Next, in (9b), 
(iv) cm = 0=> -q-m^ by (3) 
(v) cm = l=> ~P-m-i = l 

(vi) cm=2^ P^-P.^^l 

All the equations (i)-(vi) involve contradictions. Of these, perhaps (ii) is the least obvious. 
Let us therefore examine (ii), which is true for m = 2 (even) leading to c2 = 1, cx = 2 from (ii) and 
(8). Now c2 = 1 = a2 - h2 implies that a2 = 2 (b2 = 1) or a2 - 1 (b2 = 0), i.e., a2 ^ 0, which contra-
dicts cx = 2 = ax -bx since this means that ax - 2 {bx - 0) and, hence, ax = 2 => a2 = 0 by (1). 
Thus, (i)-(vi) and, ultimately, (7) are impossible. 

Similar reasoning applies when cm=-l, - 2 . Consequently, the assumption in Case 1 is 
invalid. 

Summary of Case I Results: If h = m, then at = bt (i = 1,..., m), i.e., the representations 
(4) and (5) are identical, so that the representation (4), or (1), is unique. 

Case II: Assume h>m. Then four subcases exist, depending on the parity of h and m. From 
[2], with n standing for h and m, in turn, 

-P_n <N<-P_n_x n odd (10) 
and 

-P-n-i<N<>-P_n nevm. (11) 

These restrictions impose a range of values upon N for each integer n > 0, for example [2], 
n = \\ 0<N<2 
n = 2: -4<N<2 
n = 3: -4<N<12 (12) 
n = 4: -2S<N<\2 
n = 5: -2S<N<70, 

the number of integers [= sums (1)] being 3, 7, 17, 41, 99, in turn, which equal q^q^q^q^q^ 
respectively. 

410 [NOV. 



AN ALTERNATIVE PROOF OF A UNIQUE REPRESENTATION THEOREM 

Results (10) and (11) reveal that each number N, as it occurs for the first time in the ranges 
(12), is represented uniquely and minimally. For instance, 

-3 = l-P_1+2-P_2+0-P_3+0-P_4+0-P_5 + ---

has unique and minimal representation 1 • P_x + 2 • P_2. We conclude that hi>m. Similarly, h £ m. 
Therefore, h = m, and Case 1 and the Summary are true. 

Combining all the preceding discussion, we argue that the validity of the Theorem has been 
justified. 

See [2] for further relevant information and [1] for an analogous treatment of representations 
involving negatively subscripted Fibonacci numbers. 
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SOME INFORMATION ABOUT THE BINOMIAL TRANSFORM 

Helmut Proctinger 
Department of Algebra and Discrete Mathematics, Technical University of Vienna, Austria 

(Submitted April 1993) 

A few days ago I saw the paper [4]. I think I can make some additional remarks that might 
not be totally useless for the Fibonacci Community! 

Let (an) be a given sequence and sn = S^=0(?J^. Denoting the respective (ordinary) gener-
ating functions by A(x) and S(x), the paper in question mainly deals with the consequences of the 
formula 

Knuth [7] has introduced the binomial transform by 

and it is clear that this is the situation from above. But Philippe Flajolet and the present writer 
agreed about ten years ago that there are just exponential generating functions hidden! They 
have a convolution formula 

and upon choosing the hk's to be equal to 1, we have the old situation. So, denoting the exponen-
tial generating functions by A(x) mdS(x), we have the even simpler formula S(x) = exA(x). 
This can readily be inverted as A(x) = e~xS(x), whence 

These facts about exponential generating functions are of course folklore; one particular reference 
is [3]. 

Flajolet & Richmond [2], Schmid [8], and Kirschenhofer & Prodinger [6] all made heavy use 
of (1). Schmid observed (among other writers) that an exponential generating function will be 
transformed into an ordinary generating function by the Bore I transform. 

Now the generalization 

translates into 
S(x) = ebxA(cx). 

Since 

A(x) = e-ixS[± 
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we find the inversion formula 
n s \ 

\n-k Tji-k 

k=0y 

The discussion in Theorem 2 becomes quite transparent, considering exponential generating 
functions. It is asked whenever we have 

p =y(Atn-kskF 
1 pn+r Z * 4 fc I rqk+r> 

where Fn denote Fibonacci numbers. The exponential generating function of the Fibonacci 
numbers Fn is 

with the usual a - (1 + V5)/2 and j5--\la~{V- v5)/2. More generally, the sequence F n+r 

leads to 

- U a r e ° ^ ~prefiPx) = e* -j=(areaC,sx -pre^sx\ 

from wMch we deduce the two equations, 

ap = t + aqs and J3p=t+fiqs. 

Subtracting them, we see that 

_ap-PP _FP 
aq~pq Fq 

Further, 
ryP _ RP a

q~P - Rq~P F 

aq-pq aq-pp Fq 

To justify this equating of coefficients, we note that the functions e** are linearly independent; 
and the other possibility of grouping terms from the left and the right side would lead to the 
impossible equation ar - - /T . 

In 14] there is also the modification: What are the coefficients of 

That means: What is the effect of deleting the first factor? We can answer this much more gen-
erally by considering (with an arbitrary complex parameter d), 

(l-hxf \l-bxj 
In this derivation, we will use the concept of residues, interesting per se. 

We are using the substitution w = -^ or x = ~^. Therefore, ^-bx = - ^ and dx = 

(c+bw)2 -^—jdw; thus, 
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1 C dx {c + bwf 

cdw (c+bw)"+1 (c + bw)d 

W , , j -A(w) 2mjx"+1 cd y ' 

2m ^(c + bwf wn+l cd A(W) 

Since 

= c1_ V"](c+bw)"^'1 A(w) 

_y(n + d-l]h„-k k 

A(w) = 
Kc+bw) \c+hw j 

we find in a similar way the inversion formula 

a*=c II n-k J(-l) *• h-

The formula (1) is also useful to deal with Knuth's sum [5, eq. (7.6)] 

k=Q 

Since 
.*A~w 

kj 

the generating function of the sequence un turns out to be 
1 1

 =
 l

 = y x2n(2n\A-„ 

From this, we see that un - 2 \nn) ifn is even, and un = 0 otherwise. 
I communicated this idea to Knuth, and he reported that Herbert Wilf came to this (or a 

similar) approach independently. 
Formula (1) also has a combinatorial interpretation. If, for example, A(x) enumerates certain 

words, so that an is the number of words of length n with a certain property, and we perform the 
operation "fill-in a new letter where and as often as you want," then the new "language" has the 
generating function S(x). For further details on such combinatorial constructions, we refer the 
reader to [1]. 
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LEAP YEARS 

Jeffrey Shallit 
Department of Computer Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada 
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(Submitted April 1993) 

I. INTRODUCTION 

The length of the physical year in days is not an integer. This simple fact has complicated 
efforts to make a calendar for thousands of years. Both the Julian and the Gregorian calendars 
use a scheme that involves the periodic insertion of extra days, or intercalation. A year with an 
intercalated day is called a leap year. 

In the Julian calendar, an extra day was inserted every fourth year. In the Gregorian calendar 
(commonly in use today) an extra day is inserted every fourth year, exclusive of century years, 
which are leap years only if divisible by 400. From this, we see that the average length of the year 
in the Julian calendar was 

365 + - = 365.25 
4 

days, while in the Gregorian calendar, the average length is 

365 + 1 — L + _L = 365+- — + — - — = 365.2425 
4 100 400 4 4-25 4-25-4 

days. Both these numbers are approximations to the true length of the year, which is currently 
about 365.242191 days [1, p. CI]. 

In this note, we will examine a scheme for leap year determination which generalizes both the 
Julian and Gregorian calendars and includes the modifications of the Gregorian calendar sug-
gested by McDonnell [2]. Although our results will be phrased in the language of the calendar, 
they are in fact purely number theoretical in nature. 

H. THREE INTERCALATION SCHEMES FOR LEAP YEARS 

An intercalation scheme describes when to insert extra days in a year to keep the calendar 
synchronized with the physical year. We assume that exactly 0 or 1 extra days are inserted each 
year. A year when one day is inserted is called a leap year. 

Let the length of the year be /.+/? days, where / i s an integer and 0 < J3 < 1. Let L(N) count 
the number of years y in the range 1 < y < N which are declared to be leap years. A good inter-
calation scheme will certainly have limJV_>co

:^- = )9. A much stronger condition is that 
\L(N) - J3N\ should not be too large. 

We now describe three intercalation schemes. 

A Method Generalizing the Julian and Gregorian Calendars 

Let a1?a2,... be a finite or infinite sequence of integers with ax > 1 and at > 2 for i > 2. We 
call such a sequence (af) an intercalation sequence. 
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We now say that Nis a leap year if Nis divisible by al9 unless N is also divisible by axa2, in 
which case it is not, unless N is also divisible by axa2a3y in which case it is, etc. More formally, 
define the year N to be a leap year if and only if 

ft(-l)Mdw(N,ala2...ak) = l9 

where the function div(x, y) is defined as follows: 

div(x,j) = j ^ ifj|x; 
otherwise. 

For the Julian calendar, the intercalation sequence is of length 1: ax-A. The Gregorian 
calendar increased the length to 3: ax - 4, a2 = 25, a3=4. Herschel ([5], p. 55) proposed extend-
ing the Gregorian intercalation sequence by a4 = 10, which results in the estimate /? =.24225. 
McDonnell [2] has proposed 

(al,a2,...,a5) = (4,25,4,S,27), 

corresponding to the estimate P =.242199. 
The method has the virtue that it is very easy to remember and is a simple generalization of 

existing rules. In section III of this paper we examine some of the consequences of this scheme. 

Ail Exact Scheme 

Suppose we say that yearj is a leap year if and only if 

L^+I /2 J -LAJ- I )+ I /2 J=I 

Then L(N) = [_>S?Vr + 1/2J; in other words, L(N) is the integer closest to flN. This is clearly the 
most accurate intercalation scheme possible. However, it suffers from two drawbacks: it is 
unwieldy for the average person to apply in practice, and (3 must be known explicitly. 

This method can easily be modified to handle the case in which (3 varies slightly over time. 
Further, it works well when the fundamental unit is not the year but is, for example, the second. 
It then describes when to insert a "leap second." This method is essentially that used currently to 
make yearly corrections to the calendar. 

A Method Based on Continued Fractions 

We could also find good rational approximations to /? using continued fractions. For exam-
ple, using the approximation .242191 to the fractional part of the solar year, we find 

.242191 = [0, 4, 7, 1, 3, 17, 5, 1, 1, 7, 1, 1, 2] 

and the first four convergents are 1/4, 7/29, 8/33, and 31/128. The last convergent, for example, 
tells us to intercalate 31 days every 128 years. McDonnell notes [personal communication] that 
had binary arithmetic been in popular use then, Clavius would almost certainly have suggested an 
intercalation scheme based on this approximation. 

The method suffers from the drawback that the method for actually designating the particular 
years to be leap years is not provided. For example, the third convergent tells us to intercalate 8 
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days in 33 years, but which of the 33 should be leap years? In 1079, Omar Khayyam suggested 
that years congruent to 0, 4, 8, 12, 16, 20, 24, and 28 (mod 33) should be leap years [5]. 

HI. SOME THEOREMS 

Given an intercalation sequence (a1?a2,...), it is easy to compute L(N) using the following 
theorem. 

Theorem 1: Let L(N) be the number of leap years occurring on or before year N, i.e., 
N 

^ W = ZI ( - l ) , + 1 d iv (^a 1 a 2 . . . a , ) . 

Then 
i + i 

Proof: It is easy to see that, for y > 1, we have 

div(x,.y) = 

N 
ala2...at 

x-l 

Thus, we have 

^ W = ZZ(-l) '+ 1div(*,a1a2. . .a,) 
k=l7>1 

= I(-l)'+ 1idiv(^,a1a2.. .a,.) 
i > i fc=i 

N f\ 

/>i it=i 

=I(-i> 7+1 

7>1 

VI 

N 

k-l 
ax...at 

a^.M, 

which completes the proof. D 

Theorem 1 explains several things. First of all, it gives the relationship between the intercala-
tion sequence at and the length of the physical year in days. Write 

1 1 
a- - + • 

Clearly we have 
ax axa2 

lim —-—- = a. 
JV->oo JV 

Then if the length of the physical year is I+J3 days, where 0< /?< l , we would like a to be as 
close as possible to fl; for, otherwise, the calendar will move more and more out of synchroniza-
tion with the physical year. 
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Therefore, to minimize error, we can assume that the at have been chosen so that a-p. It 
is somewhat surprising to note that even this choice will cause arbitrarily large differences 
between the calendar and the physical year; this in spite of the fact that the behavior on average 
will be correct. 

Suppose al9 a2,... have been chosen such that 

a = -
1 1 1 

— + 

The next theorem estimates how far out of sync the calendar can be. 

Theorem 2: Define NJ=-l+a1-ata2 + •••+(- l ) J + 1 axa2...ay. Then, for all r > 0, 

r+l 

^2r+1«-Z(iV2r+1)>E 
A 

1-
•hj-ij 

1 — 
> 

2 J J 

Proof: It is easily verified that, if i < j , then 

N, N, —LJ-, if J is even; 

\ax...at • if i is odd. 

Thus, wre find 

N2r+la-L(N2r+l) = ^ 2 , + l Z 
( - ! ) ' • 

•+i "\ 

V 

2r+2 

a*a~ ...a, /=! w l w 2 
-K-iy+1 

'»/ /=i 

N. 2r+l 

( 
\ /+ l N, 

1=1 

2r+2 f ft[ 

2r+l 

v a 1 . . . a / 

.N. 2r+l 

a,...a, 
+ K-i) 

;=2r+3 

/ + l _ ^ 2 r + l _ 

a,...a, 

* ZH)I+1 
/=i 

2r+l 

^ . . . a , -
M 2r+l 

. ^ . . . a , 
r+l AT r+l AT 
y iV2/-l y iV2y-l 
7=1 a l " a2j-l /=1 a l " a2j 

r+l 

=z 
# 2/-1 

, = i « i - - - « 2 y - i 
1 - -

*ij 

Now, if we observe that N2j-i >a1...a2j-i-al... a2j_2 > then we find that 

r+l 

N2r+la-L(N2r+l)>J] 
7=1 a 2/-1 J % J 

which is the desired result. • 

Thus, the difference N2r+la- L(N2r+l) can be made as large as desired as r -»oo. There-
fore, if a is an irrational number, there is no way to avoid large swings of the calendar. 
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As an example, consider the Gregorian calendar with intercalation sequence (al9a29a3) = 
(4,25,4). Then N3 = 303. For example, in the period from 1600 to 1903, we would expect to 
see 303-.2425 = 73.4775 leap years (assuming the length of the year is precisely 365.2425 days), 
whereas the Gregorian scheme produces only 72 leap years. 

We now assume that the fractional part of the year's length in days is an irrational number a. 
We also assume that the intercalation sequence ak is that given by the Pierce expansion (see [3], 
[4], [6]) of a, i.e., the unique way to write 

1 1 1 
a = +-ax axa2 a^i2a3 

such that the at are integers with 1 < ax < a2... . It is known that the expansion terminates if and 
only if a is rational. For example, 

^ , ™ 1 1 1 1 
.242191 = + -4 4-32 4-32-2232 4-32-2232-15625 

Then we will show that 

Theorem 3: For almost all a, we have 

Na-L(N) 4l 
l i m s u p h M =^~' 

Proof: The proof is in two parts. First, we show that, for all s > 0, there exists an integer N 
such that 

VlogN 2 

Second, we show that, for all s > 0, we have 

JfogN 2 
for all N sufficiently large. 

We need the following two simple lemmas. 

Lemma 4: For almost all a, 
l i mlog(a a„) = 1 

«-»oo n 12 

Proof: In [6] it is shown that, for almost all a , 

l i m l ^ ^ i . 

From this, the desired result follows easily. D 

Lemma 5: Z£=i -£- converges for almost all a. 

Proof: See Theorem 12 in [6]. • 
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Now we can return to the proof of the first part of Theorem 3. Let a be chosen, and write 

c=—+—+•••. 

Let sbe given, and choose rx sufficiently large so 

togC^...^) ^ 1 
r2/2 {l-sf 

for all r>rv This can be done by Lemma 4. Also choose r sufficiently large so 

c4i 
2r + l <s. 

This can be done by Lemma 5. 
Then we find 

N2r+la-L(N2r+l)>^ 
r+lf i 

1 
v.--0 

V °v-ij V auj 
>r + l-C. (1) 

Now, from the definition of Nj, we have Nlr+y < ax.. .a2r+1; therefore, 

2/" + l f 1 ^ 
•JfogN: 2r+l fi \\ •e) 

because we have chosen r sufficiently large. 
Now, dividing both sides of (1) by ̂ /log N2r+l and using the estimate just obtained, we see 

N, '2r+1a - L(N2r+l) ^ r +1 - C j ^ 

2r+l 2r + l 

' 4i c4i 
2 2r + l 

( ! - * )> 4i S. 
2 -e ( ! -*)> ^ - ( 1 - 3 * ) , 

which completes the proof of the first part of Theorem 3. 
Now let us complete the proof of Theorem 3 by showing that, for almost all a and all N suf-

ficiently large, 

We need the following simple lemma 

N Lemma 6: Na - ]T (-1)' +1 r + \ 
< + -

N 
2 ax...ar{ar+l) 

Proof: Remez [4] has noted that 

,+ l 1 

/=! ax.,.at ax...ar{ar + 0 
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Multiplying by N, we get 

Na-NJ^(-iy+l—— < N 

Also we have 

#£(-!)' 

7=1 

+1 

^ . . . a , al...ar(ar +1) 

/=i a,...a ! • • • " / y /=i 
-K-iy +i N 

ax...ai 

r + \ 

(2) 

(3) 

since, to maximize this difference, we let the odd-numbered terms equal 1. Adding (2) and (3), 
we get the desired result. • 

Now, given s, choose N sufficiently large so 

(a) \ogN> 
2s 2 ? 

(b) !(fll-flr) > 1 _ 
r2/2 (l+s)2 forallr>^/21og#. 

By Lemma 4, this can be done for almost all a. 
Now, from Lemma 6, we have 

M*-E(-I> i + i 

i = i 

N 

«!...«, 
r + \ 

< + -
N 

2 al...ar(ar +1) 

Put r = -yJlQogNXl + ef . Then, from part (b) of the hypothesis on N, we have 

log(a1...q>.) _ 1 

(4) 

(\ogN){\ + sf (l + s)2 

and so al...ar> N. Therefore 

K-iy i + i 

i = i 

JV 
= £(iV). 

Hence, we can substitute in equation (4) to get 

2 ar+l 2 ar+l 2 

since ar > 1. Dividing both sides of this equation by ^logN, we see that 

Na-L(N) V2, , x „ /r- V2 / t c N ;, „ < — ( l + g) + 2 V 2 g < — ( l + 5g), 
ylogN 2 2 

which completes the proof of Theorem 3. D 

In a similar fashion, we can show that 

SaUlfa-lW=_£_ 
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Roughly speaking, Theorem 3 states that we can expect fluctuations of approximately -w-2^— 
days at year N of the calendar. Though this type of fluctuation can grow arbitrarily large, it is 
small for years of reasonable size. For example, for most a, we would have to wait until about 
the year 3.6-1042 to see fluctuations on the order of a week in size. 
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1. INTRODUCTION 

Hoggatt and Bicknell [3] proved that for a prime/? 

hP = h (mod/?) (1.1) 

where {Ln} is the Lucas sequence. Robbins [8] proved more general results for a broader class of 
integer sequences {[/„} and {Vn} which we soon define. 

In the notation of Horadam [4] write 

W„ = Wn(aMQi) (1.2) 

so that 

W„=VK-i-QW»-2, W0 = a,Wl = h,n>2. (1.3) 

Then 

ft/„ = W ; P , Q ) 
\V„ = W„(2,J>;T>,Qy 

Indeed, {£/„} and {Vn} are the fundamental and primordial sequences generated by (1.3). They 
have been studied extensively, particularly by Lucas [7]. Further information can be found, for 
example, in [1], [4], and [6]. 

All sequences generated by (1.3) can be extended to negative subscripts using either the Binet 
form [4] or the recurrence relation (1.3). In all that follows, a, h, P, and Q are assumed to be 
integers. Robbins proved the following theorem. 

Theorem 1: Let/? be prime. If A = P2 - 4Q, then 

W 1 (mod )̂> all >̂ o-5) 

CV s f f ) V 1 (mod^")> f0TP odd and/>/A, (1.6) 

Uk2^(-l)QUk2^ (mod2"), (1.7) 

where (7) is the Legendre symbol. 
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Remark 1: Robbins proved Theorem 1 under two strong assumptions. Firstly he assumed that 
(P, 0 = 1 and secondly that A > 0. The first of these assumptions was used by Lucas [7] in his 
study of the sequences (1.4) and need not be adhered to in all contexts. Indeed, Robbins' argu-
ments do not make explicit use of it and so it may be dropped. The assumption that A > 0 was 
apparently made to ensure that VA, which appears in a key proof involving Binet forms (Lemma 
2.12), is real. However, this proof remains valid for A < 0. In work on second-order recurrences 
the assumption A *= 0 is usually made so that the Binet form does not degenerate. However, in 
this context, following convention and putting (•£) = 0, the proofs of certain key results (Lemmas 
2.3 and 2.13) are greatly simplified when A = 0. This is because the Binet forms become 

{Un=nAn~l 

[Vn=2A" 

where A is an integer. Likewise, putting (f) = 0 when p\A, the proof of Robbins' Lemma 2.14, 
another key result, becomes trivial. 

With these observations, and following Robbins' arguments, Theorem 1 remains valid for all 
integers P and Q. Indeed, for/? odd and p\A, (1.6) becomes 

Ukpn=0(modpn). (1.8) 

The object of this paper is to generalize (1.5)-(1.8) to the sequence W„ = W„(a9 b; P, Q). 

2. PRELIMINARY RESULTS 

We now state some identities which are used subsequently. 

V^U^-QU^, 
2Un+l = V„+J>U„, 

-2QC/„_1 = F„-PC/W, 

w„ = W»*+(K-vw0)u„, 
K^-QW^+Wn, 

w„ = wy„+(2wl--pwQyun, 
2Wm+n = WmV„ + (2Wm+1 - PWm)U„, 

wmun+x-wm+xun = (?wm_n, 
Q"U_„=-U„, 

<*V-n=K-

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

Identity (2.1) is easily proved using Binet forms and (2.2) and (2.3) can be obtained from 
(2.1) by simple substitution using (1.3). However, we state (2.2) and (2.3) for easy reference 
subsequently. Identity (2.4) is essentially (2.14) in [4] where the initial terms of {U„} are shifted. 
Identity (2.5) is obtained from (2.4) using (1.3) and (2.6) is obtained by adding (2.4) and (2.5). 
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Identity (2.7) is obtained from (2.6) by shifting the initial terms of {Wn} to Wm,Wm+l. Finally, 
(2.8)-(2.10) are easily obtained using Binet forms. 

3. A RESULT FOR ODD PRIMES 

We now state and prove a result which generalizes (1.5) and (1.6) for odd primes p to the 
sequence {Wn}. Throughout, A is as in Theorem 1. 

Theorem 2: Let/? be an odd prime and k and m be nonnegative integers. Then 

fcw- (mod//) if (A) = 1, 
(3-1) 

KX-^- (m«W if (f) = -l. m+kpn 

Proof: Suppose (f) = 1. Then in (2.7), if we replace n by kpn and use (1.5) and (1.6), we 
obtain 

2 r
m + v - ^ V ' + ( 2 ^ i - p ^ ) V ' (mod^)- (3-2) 

Using (2.7) to substitute for the right side gives 

and since 2 has a multiplicative inverse modulo pn, the first half of Theorem 2 follows. 
If {jj = - 1 , then in (2.7) we replace n by kpn and use (1.5) and (1.6) to obtain 

2^»=^V,- ( 2^^-p^)Vi (mod^n)' (3-4> 
and rearranging terms gives 

2 ^»-^(V + p V>)- 2 r - 'V' <mod -̂ <3-5> 
Now (2.2) reduces (3.5) to 

^W^^r^V(mod^' (36) 

and making use of (2.8) completes the proof. D 
Using a similar argument, we see that if p\A then (1.8) generalizes to 

W^kpn^{{p"^\)l2)WmVkpn.l (mod/>B). (3.7) 

Remark 2: If we take the case m = 0 and {^} = {£/„}, then (2.9) shows that Theorem 2 reduces 
to (1.6). If we take the case m - 0 and {^} = {Vn}, then (2.10) shows that Theorem 2 reduces to 
(1.5). Thus, for/? odd Theorem 2 both unifies and generalizes Robbins' results. 
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4. AMESULTFORTHEPMME|i = 2 

We now prove the following theorem. 

Theorem 3: If & and rn are nonnegative integers and Wm is even, then 

\Wm+k2n„{ (mod2")ifQiseven, 
W =< n-l 

Q W
m-^ (mod2")ifQisodd. m-kl 

(4.1) 

Proof: Putting Wm - 2Qm Qm an integer, we use (2.7) to write 

Wm,n = QJn^Wm,x-^Qm)Un. (4.2) 

Now with k2n in place of n, (1.5) and (1.7) imply 

w
m+krs a ^ 2 - + (-1)Q(f^+i - p a . ) ^ 2 - ( m o d 2") • (4-3> 

If Q is even, (4.3) becomes 

W
m+kr s Q - ^ 2 - + ( ^ i - P 2 J ^ 2 » - . (mod 2") (4.4) 

and the right side of (4.4) simplifies using (4.2) to prove the theorem for Q even. 
If Q is odd, (4.3) becomes 

^ 2 » = e ^ 2 n - . - ( ^ + i - P e j ^ r - . (mod2»), (4.5) 

and rearranging terms gives 

W
m+kr *QJVvr* +*Ukr*)-WmJJkr* (mod2"). (4.6) 

Now using (2.2) and recalling that Wm = 2Qm, (4.6) becomes 

We now use (2.8) to simplify the right side of (4.7) and this completes the proof. D 

Remark 3: If we take {Wn} = {Un} and m = 0, thenf/0 = 0 is even and we see with the aid of (2.9) 
that Theorem 3 reduces to (1.7). If we take {Wn} - {F„} and m - 0, then V0 - 2 is even and we 
see with the aid of (2.10) that Theorem 3 reduces to (1.5) for the case/? = 2. 

Remark 4: Bisht [2] proved that (1.5) carries over to higher-order analogues of {Vn}. However, 
we have seen no results similar to (1.6) and (1.7) for higher-order analogues of {£/„}. 
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1. BACKGROUND MATERIAL 

Motivation for this paper comes from a short article [4] in which some relations between a 
generalized Fibonacci sequence and the sequence of its partial sums were investigated. An oppor-
tunity was clearly provided for a deeper exploration of this theme. 

Accordingly, the purpose of this paper is 
(a) to extend the relations in [4] to generalized Pell numbers with (i) positive and (ii) nega-

tive subscripts, and 
(b) as an addendum, to expand the results in [4] to generalized Fibonacci numbers having 

negative subscripts. 

Consider the generalized Pell sequence {Pn} defined for all integers n by 

Pn+2=2Pn+l + P„ Pl = a,P2=b(P0=b-2a). (1.1) 

When a = 1, 6 = 2, the ordinary Pell sequence {p„} is generated, while when a = 1, b = 3, we 
derive the sequence {qn} defined by 

°n+2 = 2?»+l + In 1\ = 1, ft = 3 (*> =1) (1-2) 

so that q„=jQ„, the w* Pell-Lucas number [2]. Thus, we have the tabulation: 

0 1 2 3 4 5 6 7 8 ••• 
0 1 2 5 12 29 70 169 408 ••• (1.3) 
1 1 3 7 17 41 99 239 577 ••• 

n: 
Pn-
Qn'-

Observe that the numbers in {/?„} are alternately even and odd, while those in {qn} are all 
odd. 

The first few numbers in {P„} and the corresponding sums S„ = S"=i Pt are from (1.1) for 
n = 1,2,..., 10, therefore: 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 

a 

a 
2a 
5a 
12a 
29a 
70a 
169a 
408a 

Pn 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

b 
2b 
5b 

\2b 
29b 
10b 
1696 
4086 
9856 

a 
a 
2a 
4a 
9a 
21a 
50a 
120a 
289a 
697a 

s„ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

b 
36 
86 
206 
496 
1196 
2886 
6966 
16816 

(1.4) 
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By standard techniques, e.g., use of (1.1) and induction, it is easy to establish that 

Pn = aPn-2 +*/Vi (P > 1, p_x = 1 [see (3.1)]) (1.5) 
and 

S„ = Pn+P"fa~b, (1-6) 
whence we deduce the recurrence 

S„+2 = 2S„+1 +S„+b-a (S0 = 0*P0 [see(1.1)]). (1.7) 

For subsequent calculations, we will need the Binet forms 

Pn= -7T (1.8) 
a-p 

and 
< 7 „ = ~ ^ , 0.9) 

where 
a = l + j2'9 fi = l-j2, so a + P = 2, ap = -l, a~p = 2^j2. (1.10) 

Use of (1.8)-( 1.10) produces the Sirnson formulas 

Pn+1P„-i-(Pn)2 = (-!)" ( l .H) 
and 

? „ + i ^ - i - ( ^ ) 2 = ( - i r + I 2 , (i.i2) 
as well as 

Pn=Pn-i + 9n-i, (1-13) 

9*=Pn+Pn-l> 0 1 4 ) 

^ - ->V2as»-»oo , (1.15) 
Pn 

and the Binet forms for Pn and S,,. 
Repeated use of the recurrence relations (1.1) for {p„}, where a = \,b = 2, and (1.2) for 

{q„}, where a = l,b = 3, respectively, lead to 

J^Pj = Pn±Pn±izl = ^±lZl by (1.14) (1.16) 
;=1 2 2 

and 

I > =/>»+!-i- ( i - 1 7 ) 

After considerable laborious, but nonetheless satisfying, calculations involving the above 
equations as appropriate, we determine the Sirnson formulas for Pn and Sn from (1.5) and (1.6), 
namely, 

Pn+iPn-i-Pt = H ) V +2ab-b2) (1.18) 
and (n > 1) 
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S^S^-S2 =^{(-l)^a2+2ab-b2)+a\_2-b2qn_l+2abpn_2}. (1.19) 

Accordingly, when n = 5 for instance, S6S4-S2 = 3a2 +4ab-%h2 from (1.19) or directly 
from (1.4), while P6P4-P2 =-a2-2ab + b2 from (1.18) or (1.4). [Who would ever have 
surmised anything like (1.19)?] 

Important special cases of (1.19) arise when a = 1, b = 2 (forp„), and a = 1, b = 3 (for qn). 
Generally, S0 = 0&P0=b-2a, unless b = 2a. Expressed otherwise, PQ is not part of the 

summation process. 

2, PARTIAL SUMS: POSITIVE SUBSCRIPTS 

A basic set of theorems on partial sums can now be established, of which only the first will 
show the detail. 

orem 1: S4„ = q2n(aqln_x + bq2n)+a-b. 

Proof: 

_ «0>4»-2 + />4«-l) + b(P4n-l + PAn) + a ~h 

2 
a(a4"-1+p4"-l-2) + b(a4"+/34" + 2) , 

by (1.6) 

by (1.5) 

_ h w n a\ 

= « ? 2 ^ 2 « - i + % 2 » ) 2 + « - * by (1.9) 

= 9 2 n ( ^ 2 » - l + ^ 2 » ) + « - * -
Likewise, 

Theorem 2: S4„_2=q2n_l(aq2n_2+bq2n_1). 

Theorem 3: S4n+l = q2„ (aq2„ + bq2n+l) - b. 

Theorem 4: S4n_x = q2„(aq2n_2 +bq2„_l)-a. 

Special cases occur when a = 1, b = 2 (i.e., the Pell sequence {/?„}), namely, for sn = Z"=1 p, 
sAn=92n<J2„-i-h (21) 

S4n-2 = ? 2 K ? 2 H - 1 > ( 2 2 ) 

^4„+l = (92»+l)2> ( 2 - 3 ) 

^ - i = (?2„) 2 - l = 2(p2„)2. (2.4) 

All four formulas (2. l)-(2.4) may be incorporated into the one neat expression [see (1.16)], 

[where we have invoked (1.6), (Pn = pn here), and (1.14)]. 
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However, a virtue of the forms (2.1)-(2.4) is that they display various obvious divisibility 
properties. Thus, q^An-i* 92n-i\s4n-i9 P2n\s4n-i» i n particular, n = 3 in (2.2) gives 4059 = 41.99, 
and n = 3 in (2.4) gives 9800 = 2(70)2. As an example of (2.5), ss = 696 = ^ - from (1.3). 

Observe also the important recurrence from (1.7), 

^ 2 = 2 ^ 1 + ^ + 1 (*o = 0). (2-6) 

Next, write s'n = Zf=1 qt. Then a -1, b - 3 (i.e., the sequence {#„}) in (1.6) lead to 

s'„=p„+1-l (^=0) , (2.7) 

i.e. (1.17), since />„+1 = g"+
2
?°+1 by (1.8) and (1.9), and in (1.7) lead to the recurrence 

s'n+2 = 2K+i+<+2 fo!=0). (2.8) 
Let 

(2.9) 

(2.10) 

Then, from (2.5) and (2.7), it follows that the sequence {a„} is 
« = 1 2 3 4 5 6 7 8 ••• 

^ = 1 4 11 28 69 168 407 984 ••• 
.sn = l 3 8 20 49 119 288 696 ••• 

<7„ = 0 1 3 8 20 49 119 288 ••• 

from which, by (2.6), (2.8), and (2.9), we derive the recurrence [cf. (2.6)] 

0-n+2=2<7„+1+<r„+l (<r0 = 0). (2.11) 

Reverting to (1.4), we notice that 

Sn=a(cr„_1 + 1)+Z>a„. (2.12) 

From (1.3) and (2.10), 
tf«=a-„+i-0-„-i (2.13) 

and 

" 2 ' 
while, from (1.12), we have the Simson formula for {&„}, 

(2.14) 

< W V i - ^ = ! { H r 1 - * » - i } - (215) 

Other properties of the sequences which flow from the above data include 

s„ = cr„+l, (2.16) 
<=0-„+0-n+i=/>„+i-l> (2.17) 

s*s*-i=Pn, (2-18) 
« - < - » = * „ , (2-19) 
^ - V 2 = f c (2.20) 

* ; -< -2=2 f t . (2.21) 
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Some of the above features are interrelated, e.g., (2.14) and (2.16) together confirm (2.5). 
Observe, from (1.4), (2.10), and (2.12), that an is the coefficient of b in Sn. Another way of 

arriving at this conclusion is to recall that in (2.9) a = 1 for both {pn} and {qn} while b = 3 for 
{qn} but b = 2 for {p„}, i.e., a nbn difference of 3 -2 = 1. 

Similar remarks apply later in relation to (1.4a), (2.10a), and (2.12a). 

3, PARTIAL SUMS: NEGATIVE SUBSCRIPTS 

Corresponding to the results for positive subscripts in the previous section, we have, for 
negative subscripts, 

7i: 1 2 3 4 5 6 7 8 — 
p_„: 1 -2 5 -12 29 -70 169 -408 ••• (1.3a) 
q_n\ -1 3 -7 17 -41 99 -239 577 ••• 

since 
P-n=H)"+1Pn (3-1) 

and 
9-„ = (-l)w<7„, (3-2) 

as may be readily demonstrated. 
Tabulating the simplest expressions in the generalized Pell sequence {P_„}> and the corre-

sponding sequence of sums {S_n} which begins afresh with S_x = P__u gives: 

n 
1 
2 
3 
4 
5 
6 
7 
8 

5a 
-12a 
29a 

-70a 
169a 

-408a 
985a 

-2378a 

P-n 
-
+ 
-
+ 
-
+ 
— 
+ 

2b 
5b 

lib 
29b 
70b 
169ft 
4086 
9856 

5a 
-7a 
22a 

-48a 
121a 

-287a 
698a 

-1680a 

S-„ 
-
+ 
-
+ 
-
+ 
-
+ 

2b 
3b 
9b 

20b 
50b 

1196 
2896 
6966 

(1.4a) 

Clearly, 
JP_„=a/?_„_2+6/)_n_1 [P 0 =6-2aas in( l . l ) ] . (1.5a) 

Write s_n = Z"=1 p_t. Then, as for (1.16), we obtain 

s_n = -Pn-P-n-^ = --3^± (SQ=0) (1.16a) 

since, by (1.8) and (1.9), 
q.n=p.n+p.n.v (1.14a) 

With a little effort, we derive 

S-n= ~" ~n
2

l - = a(s_n_2+\) + b(s_n_l-\) (S0=0) (1.6a) 

and the recurrence 
S_n+2 = 2S_n+l+S_„-3a + b (S0 =0). (1.7a) 
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Paralleling the procedures in the previous section, we have the following four theorems. 

Theorem la: S_4„ = q2„(~aq2n+2 + bq2n+l) + 3a-b. 

Theorem 2a: §_4n+2 = q2„(-aq2n +bq2n_l) + 2a. 

Theorem 3a: S_4n+1 = q2„(aq2n+l - bq2n)+a. 

Theorem 4a: S_4n_x = q2n+l(aq2n+2 -bq2n+1) + 2a - b. 

Putting a = 1, b = 2, we have the Pell numbers results: 

*-4„=-(?2„)2+l , (2.1a) 
S-4„+2=-(q2n-l)\ (2.2a) 

*-4»+i: =?2^2»-i+l> (2.3a) 

.S-4„-i = ftnftiH-l- ( 2 4 a ) 

Fortunately, (2.1a)-(2.4a) may be amalgamated into one pleasing form [cf. (1.16a)], 

s-n = --^- (2.5a) 

Furthermore, from (1.7a), 
s_„+2 = 2s_„+l+s_„-l (2.6a) 

Coming now to the special case a = 1, b - 3 again, we see that, denoting s!_„ - S,"=1 ?_,, 

sL„ = -p.„ (s'0 = 0) (2.7a) 
and 

sL„+2=2sL„+l + s'_„. (2.8a) 

Writing 
a_n=s'_„-s_„, (2.9a) 

we may tabulate values of {<r_„} as in (2.10) with a recurrence corresponding to (2.11), thus, 
n= 1 2 3 4 5 6 7 8 ••• 

sL„= -1 2 -5 12 -29 70 -169 408 ••• 
s_n= 1 - 1 4 - 8 21 -49 120 -288 ••• (2.10a) 

o-_„= -2 3 -9 20 -50 119 -289 696 ••• 
whence 

<T_„+2=2a_„+1+a_„ + l (<x0 = 0). (2.11a) 
It follows from (1.4a) that 

S_„=a(a_n_l+2)+bcr_„. (2.12a) 
Furthermore, 

(2.13a) 

(2.14a) 

while 
<l-n 

V-n 

= CF 

- _ 

-n 

q-

-<J. 

•n-\ ' 

-n+2 

- l 
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Additional results include 

One may also ascertain that 

s_„=a_„+l+l, (2.16a) 
iL„=-cr_„+1+a_„+2, (2.17a) 
s_„_l-s_„ = p_ri_l, (2.18a) 
sLn_l-!t_n=q-n-1, (2.19a) 
s_„_2-s_n=q_n_l, (2.20a) 

sin_2-s'_n=2p_n_v (2.21a) 

o\,+cr_„+1 = - l weven, 
„-o-_„+1= 0 wodd. 

Properties of {an} are the subject of another paper, so we do not pursue the occurence of it 
in this exposition. 

Other facets of the patterns in P±n and S±„ may be recorded: 

P„+(-iy-1P_„+2=2aqn_1, (3.4) 
P„+(-\yP_n+2=2(-a+b)p„_l, (3.5) 

Pn+(-\)nP_n+A = 2bqn_2, (3.6) 
Pn+(-\)"-lP_n+4 = 2(a+b)p„_2, (3.7) 

S2n+S.2n+i=2ap2n+2a-b, (3.8) 

Sir, ~ S-2.H-1. = ("<»+%2« - «, ( 3 -9) 
S2n+, + ̂ -2» = ("«+*)^2«+i + 2a - 3, (3.10) 

2̂»+i - £.2„ = 2ap2n+1 - a. (3.11) 

Simson formulas for P_n and £_„ may be obtained in the manner used for (1.18) and (1.19). 
In the first instance, 

P_„_1P„+1-P2„=(-l)"(a2+2aA-52), (1.18a) 

i.e., (1.18) is valid for all n. Discovery of the negative-subscript Simson analogue of (1.19) (with 
specializations for s_„ and s!_„) is left to the spirit of enquiry and adventure of the reader (to be 
attempted because it is there!). 

4. THE FIBONACCI CASE 

A more expansive treatment of [4] will now be outlined. Ordinary Fibonacci and Lucas 
numbers will be represented by fn and £n, respectively, while the upper-case notation Fn for the 
generalized Fibonacci number will be retained. To avoid confusion, we will use Tn = Z?=1 Ft 

Basic properties of {fn} and {ln} will be assumed. 
Mutatis mutandis, we have [4] 

Tn=Fn+2-b = afn+b(f„+l-l) (T0 = 0*F0=-a + b) (4.1) 

with, in. particular, 
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4 , = ^ W 2 - 2 £ [=F4n+2-b from (4.1)] (4.2) 
and 

V 2 = W W i [=F4„-6from(4.1)]. (4.3) 

Moreover [4], there is the recurrence 

T„+2 = TM + T„+b. (4.4) 

If a = 1, b = 1, and if we write fw = £f=1 / , then 

' „ = / „ + 2 - l , (45) 

>4„=W2n +2-2 [= / 4 n + 2 - l from (4.5)], (4.6) 
and 

' 4 - 2 = ^ 1 / 2 ^ 1 [ = / 4 n - l from (4.5)], (4.7) 

so that /2„_1|/4„_2, /2n+1k4„-2> e.g., for n = 4, (*7 = 29)|986 and (/9 = 34)^86. Furthermore, (4.4) 
yields the recurrence 

tn+t = tn+i+tn + \ Co=0)- (4-8) 

Instead of focusing on /„ , suppose we put a - 1, 6 = 3 and write t'n = £"=1 tt. Then 

^ = ^ 2 - 3 , (4-9) 

' 4»=*2A*2-6 [=^fl+2-3from(4.9)], (4.10) 
and 

with the recurrence 

C 2 = V I ^ H [ = 4 , - 3 from (4.9)], (4.11) 

C 2 = C i + ' „ + 3 Co = 0). (4.12) 

Again, observe the factorization and divisibility in (4.11). 
Table 1 lists values of Tn, tn, t'n [and rn (4.15)]. 

TABLE 1. Partial Sums for Fn (n = 1,2,..., 10) 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

a 

a 
a 

2a 
3a 
5a 
8a 
13a 
21a 

F„ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

b 
b 

lb 
3b 
5b 
86 
136 
216 
346 

a 
a 
2a 
3a 
5a 
8a 
13a 
21a 
34a 
55a 

T 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

b 
2b 
Ab 
lb 
126 
206 
336 
546 
886 

*n 
1 
2 
4 
7 
12 
20 
33 
54 
88 
143 

t'n 
1 
4 
8 
15 
26 
44 
73 
120 
196 
319 

*» 
0 
2 
4 
8 
14 
24 
40 
66 
108 
176 

Negative subscripts are utilized to obtain results paralleling those above. First, however, we 
remark that [cf. (3.1), (3.2)] 
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/ - „=( - i ry . (4.i3) 
and 

i_n = (-iyin. (4.i4) 

Readers are urged to construct appropriate tables of values for f_n and^_„ from (4.13) and 
(4.14). See Table 2 for T_n = Z ^ F , . and hence for t_n and tL„ [and z_n (4.15a)]. 

TABLE 2„ Partial Sums for F_n (n = t,2,aoo,W) 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 

2a 
-3a 

5a 
-8a 
13a 

-21a 
34a 

-55a 
89a 

-144a 

-̂„ 
-
+ 
— 
+ 
-
+ 
-
+ 
-
+ 

b 
2ft 
3b 
5b 
8b 

13ft 
21ft 
34ft 
55ft 
89ft 

2a 
- a 
4a 

-4a 
9a 

-12a 
22a 

-33a 
56a 

-88a 

T 
-
+ 
-
+ 
-
+ 
-
+ 
-
+ 

ft 
ft 

2ft 
3ft 
5ft 
8ft 

13ft 
21ft 
34ft 
55ft 

*-n 
1 
0 
2 

-1 
4 

-4 
9 

-12 
22 

-33 

':„ 
-1 
2 

-2 
5 

-6 
12 

-17 
30 

-46 
77 

*"-» 
-2 

2 
-4 

6 
-10 

16 
-26 

42 
-68 
110 

Repeated application of the recurrence relation for {Fn}, with the initial conditions, yields 

T_„ = -F_n+1+a (T0 = 0). (4.1a) 
In particular, 

ZL10 = -F_3+« = -88a + 55ft = ll(-8a + 5&) = *sF_4 ( i e > ^sl^-io.^Ul^-io)-
Accordingly, 

*_„=-/_„+1 + l (*0 = 0), (4.5a) 
and 

tL„ = -Ln+l + l W = 0). (4.9a) 

Setting 
r« = *'*-*, (*o=0), (4-15) 

we discover [cf. (2.11)-(2.15)] the following: 

r„=2(fn+l-l) = 2t„_1, (4.16) 
r„-rn-2=2fn, (4.17) 

r„+2 = ^ + 1 + r„+2, (4.18) 

^ + i ^ - i - ^ = 4 { ( - l ) " + 1 - / M _ 2 } . (4.19) 

Moreover, 

7 " = a ( I 2 i + 1) + ^ - ( 4 2 0 ) 

Replacing n by -w in (4.15) so that 

r_„ = f„-t_n (r0 = 0), (4.15a) 
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T 

T. 

-n-\ 

T 

-n+2 ~ 

T-n+l ' 

T 

T-n+l ' 

-T2 --

-n-2 , 

^-„, 
=4(-ir 

b^-. 

one may obtain a table of values of the numbers in the sequence {T_„}, whence 

T_„ = 2(-f_„) = 2(t_n-l), (4.16a) 

r_„-T_„+2=2f_„+l (»>2), (4.17a) 

(4.18a) 

(4.19a) 

(4.20a) 
z z 

Note that y T„ and | T . „ in (4.20) and (4.20a) are the coefficients of b in T„ and 21„, respec-
tively. Also refer to Tables 1 and 2. The reason for this is that a = 1 for both {/„} and {l„}, but 
b = 3 for {.£„} and b = 1 for {/„}, i.e., there is a "b" difference of 3 - 1 = 2. 

Going back now to {F„} and {T„}, we discover [cf (3.4)-(3.11)]: 

i 7 + ( _ i r + i F _ n + 2 = < i ( „ > 2 ) , (4.21) 

^ + ( - l ) " J P n + 2 = ( - i r ( - a + 2&)/„_1 (*>2), (4.22) 

Fn+(-irlF_n+4 = (2a + b)fn_2 («>4), (4.23) 

/ • , + ( - l ) " F . ^ = W ^ 2 . (4-24) 
T2„ + T.2n+l = (2a + b)f2„+a-b, (4.25) 

T2n-Z2„+l=b£2n -(a + b), (4.26) 

T2„+l + T_2n=M2n+x + a-b, (4.27) 

^2„+i - 712„ = (2a+J)/2n+1 - ( a + ft). (4.28) 

No doubt further identities of this genre are discoverable. 
Frequent comparison of corresponding outcomes for the Pell and Fibonacci cases is both 

desirable and instructive. In this context, discovery of the Simson formulas for Fn,Tn,tn, and t'n 

(for n > 0, n < 0)—some of them not a pretty sight!—might be undertaken. 

The Additions sn + s'n and tn + t'n 

Instead of considering the differences cr„ = s'n-sn and T„ =t'n-tn, suppose the additions 
K„ = s'„ +s„ and /L = t'+t„ are examined. 

Consider then Table 3, 

TABLE 3. Addition of Partial Sums 
w = 1 2 3 4 5 6 7 8 

K„ = s'„+s„ = 2 7 19 48 118 287 695 1680 
K_„ = sL„ + s_„ = 0 1 - 1 4 -8 21 -49 120 
K = **+*„ = 2 6 12 22 38 64 106 174 

A_„ = t'+L„ = 0 2 0 4 - 2 8 - 8 18 
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whence 

Moreover, 

On the other hand, 

while 

in which 
K0 = 0, (4.29) 
20 = 0, (4.30) 

JC»=CT»f2-l = *n+i-l» (4.31) 
^n+2=2Kn+1+K„+3, (4.32) 

* » + 2 - K „ = ? „ + 3 > (4-33) 
K^l-Kn=Pn*V (4-34) 

K-_„ = <T_„+2+1, (4.31a) 
K_„+2=2K_„+1+K_„-1. (4.32a) 

A„ = T„+2-2, (4.35) 
^ 2 = ^ 1 + ̂ + 4 , (4.36) 
K+2~K=2fn+4, (4-37) 
K+1-^n = 2f„+2, (4.38) 

l_„ = r_„+2+2, (4.35a) 
X_n+2=X_n+l+X_„-2. (4.36a) 

Aware of the opportunities offered by this amplification of our theory, we may develop 
properties corresponding to those for differences until satiated. 

5. CONCLUDING REMARKS 

Finally, there are a few thoughts worthy of further consideration. 

(a) Other pairs of sequences related like {/„} and {£n}, and {pn} and {qn} exist. Our results 
above suggest analogous—if, perhaps, less interesting—properties for such pairs. 

(b) Sequences {an} and {^rn} («>0) occur naturally inter alia in the minimal and maximal 
representations of positive integers by Pell and Fibonacci numbers, respectively. The former 
sequence is part of the stimulus for a separate research program. 

(c) Recurrences of the form 

i^+2 = kB^^ + i^ + c (k,c constants) (5.1) 

appear in many guises in this paper, for example, when Rn= Sn,sn,se
n,an,Kn,Tn,tn,t^Tn, 

and An, with extensions to negative subscripts. Such recurrences (5.1) arise in other circum 
stances, e.g., in a graph-theoretic context, and are the subject of a separate investigation. 

(d) Numbers qn of the sequence {q„=^Q„}9 where Qn are the Pell-Lucas numbers, feature 
prominently in a variety of papers. They (and pn) have been called the Eudoxus numbers [1], 
though their first "official" appearance, according to [5], seems to have been in [3] in 1916, 
while some of the properties oiqn in relation to pn have been recorded in [6] in 1949. 
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Can anyone tell me if there is any justification for the name "Eudoxus numbers" to describe 
the members of these interesting sequences? After all, the life-span of the ancient Greek mathe-
matical genius, Eudoxus (ca. 408-355 B.C.), is a very far off human event. 

Many, indeed, have been the fascinating and pleasurable ramifications of our modest attempt 
to expand the brief material in [4]. Evidently, there is much scope for further exploration and dis-
covery in this field. Mindful of our stated objectives, however, we rest our case at this point. 
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SEVENTH INTERNATIONAL 

RESEARCH CONFERENCE 
The Seventh International Research Conference on Fibonacci Numbers and 
Their Applications will take place in July of 1996 at the 

Institut Fiir Mathematik 
Technische Universitat Graz 

Steyrergasse 10 
A-8010 Graz, Austria 

Plan to attend. More information on the Local and International Committee 
members as well as the date of submission of papers and the exact dates of 
the meeting will appear in the future issues of The Fibonacci Quarterly. 
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(Submitted April 1993) 

D. INTRODUCTION 

A Fibonacci algebra is a group equipped with a unary operation (j> satisfying the laws 

{xy)(j> = x<f)y<f>, a n d xx(j)... x(j>m~l - x<j>m 

for a fixed integer rn>2. If, in addition, the law 

x<j>n - x 

holds for a fixed integer n > 2, the algebra is called periodic. The corresponding variety 33(w, ri) 
has been studied by several authors (see [4] and the references cited there) and, in particular, it is 
known that the monogenic free object A(m, ri) is just the Fibonacci group 

F(m,n) = (xl...xn\xtxM ...xi+m_x = xi+m, \<i<n,imodn) 
made abelian. 

It is also known [3] that A(m, ri) is always a finite group whose order amn is the resultant of 
the polynomials 

/ ( x ) = x w - l , g(x) = l + x+--+xm-l-xm, (1) 
namely, 

am,n=(m-l)f[\g(a>k)\9 (2) 

where the product is taken over all nontrivial /1th roots of unity, cok - e2nklln, k = 1,2,..., n -1. It 
follows that, for any prime p dividing am^, the highest common factor (f(x),g(x))p over the 
prime field GF(p) has positive degree. It is shown in [5] that A(m, ri) is cyclic if and only if 

deg(/(*U(*))P = l V^|am>„. (3) 

We shall apply this criterion to certain (classes of) values of m and n to determine when 
A(m,ri) is cyclic. It follows that, in these cases, the exponent of the free objects in S3(/w,/i) is 
just amn. This reconfirms some of the results in [2], where a constructive approach is adopted to 
calculating exponents in 93(TW, ri). On the other hand, the case when A(m, ri) is noncyclic is also 
of interest, at least when m = 2. For then it follows from results in [1] that F(2, ri) maps homo-
morphically onto the free object of rank two in the variety of groups of exponent/? and class/c^r 
for some prime/?. 

In each of the ensuing sections, we consider the A(m, ri) with m,n>2 and related as in the 
section heading. We fix the notation in (1) and (2) above along with 

/ i : = / / ( x - l ) = l + x + . . . +xT\ 
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and emphasize the fact that, throughout what follows, we consider only primes p dividing 

1. m = -l (mod n) 

Setting m = qn-\, we see that g=(l + x" ="'+xiq~l)n)fl-2xm, so that amn = {m-l)2n~l. 
Also, for/? odd, (g, fx)p = (~2xm,fl)p = 1, so that ( / , g)^ = x - 1 and (3) holds in this case. 

When p = 2, however, (g9fl)2=fu whence (g/(x + l) , / i )2 = / i or/i /(x +1), which has 
degree >1 unless /L = x + 1, that is, n = 2. In the case/? = n = 2, / = l + x2, g-=l + x + -•• 
+ x2^_1=(l + x)(l + x2+ - + x2^"2), and (f,g)2 = l + x if and only if 9 is odd, that is, m = l 

(mod 4). 

Proposition 1: When m = l(modw), A(m,n) has order (m-l)2"_1 and is cyclic if and only if 
n-2 and m = 1 (mod4). 

2. w = 0(mod#i) 

Here, the calculation is similar to (but much easier than) the above, and we obtain the 
following. We leave the proof as an exercise. 

Proposition 2; When m = 0 (modw), A(m, n) has order (m-1) and is cyclic. 

3. #M = l(mod#f) 

Setting m = qn + l,we see that 

g = ( l + jcn + -..+x(«-1)',)/1+Jcw+1-xw, 

so that am n - (m-l)n and we consider primes p\(m-l)n. It is clear that, over any field, 

h1: = (g,fl) = (xm-l-xm,fl) = (l-x,f1). 
Now /j(l) = w, so that for /?|«, this hcf is 1 and ( / , g)^ = x - 1 satisfies (3). 

But if p\n, then \ = x-1 and ( / , g)p = (x -1)2 or (x -1) according as x - 1 divides 

gl: = g/(l-x) = l + 2x + — +(m-l)xm-2+xmrml 

or not. But 

gi(l) = -m(m-l) + l = -(qn + l)qn + l, 

and for p\n this is zero modulo/? if and only if 
p = 2, q is odd, and n = 2 (mod4). 

Proposition 3: When m = l(modn\ A(m,ri) has order (m-l)n and is cyclic except when 
n = 2 = rn-l(mod4). 

4. m = -2(modw) 

We tetm = qn-2 so that 

g = (l + xw + ...+x(^1)w)/1-x/w(2 + x), 
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and 

=(«-i) n^+ft,i=('M-i)i/i(-2)i. 

Moreover, (g,fi) = (2 + x,fl), and ( g , / ) is a divisor of (x - l)(x + 2). However, |./i(-2)|= 
(2" - (-1)") / 3, and we distinguish four cases. 

(i) p\(2n-{-!)")I\ when (g,f) = x-l and (3) holds 

(ii) p\ (m -1), when (g, / ) = x + 2 and (3) holds. 

(iii) /?|(m-l, (2"-(-1)")/3) and/?*3, when ( g , / ) = (jc-l)(x + 2) and (3) fails. 

(iv) p = 3 | (w-l , (2"-(- l )w) /3) , when - 2 s 1 (mod 3) and 

( ^ / ) 3 = ( x - l ) ( l + x + . - + x"-1,l + 2x + -- + (w-l)xw-2+xw-1)3. 

But the second term in the hcf, evaluated at x = l, is jrn(m-T) + l = l(mod3), showing that 
(8> f)i ~ x ~ 1 anc^ (3) holds. 

It follows that A(m, ri) is cyclic in this case except when case (iii) arises, that is, when there is 
a prime p * 3 such that qn = 3, (-2)" = 1 (mod p). 

Proposition 4: When TH =-2(modw), A(m,n) has order (w-l)(2" - ( - ! ) " ) / 3 and is cyclic 
unless there is a prime p*3 such that 

m == 1 (mod /?) and n = ka, 

where a is the order of-2 mod/?. 
Thus, for example, we see that A(6,4) is noncyclic by taking p = 5. 

In this case 
5* #1 = 2m 

=(i»-i)nn+ 
= (m-l)(l + 3m)/2 

1-a)" 
l-o> =(«-i) n 

<«m=-i 

3-a> 
\-<D 

As usual, let p\am „ and assume first that/? is odd. Then / = x2m - 1 is the product of co-
prime polynomials xm -1 and xm +1 and we compute (/ , g)p in two stages. Firstly, 

( ( X " - 1 ) / ( X - 1 ) , ^ ) = ((X'"-1)/(JC-1),X") = 1> 

so that ((xm - 1 , g)p = x - 1 or 1 according as /? |(/w -1) or not. Secondly, 

(l + x / w , ( l -x )^ ) - (H-x m , l -2x w + xw+1) = (l + x / w,3-x), 
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which is x-3 or 1 according as /? 1(1 + 3™) or not, and since/? is odd this is also the hcf of l + xw 

andg\ Thus, for/? odd, (f,g)p is linear unless/? divides both m-\ and 3m +1. 
Now let p - 2 so that m must be odd, 2k+ \ say, and a simple calculation shows that 

( / , g)2 = x +1 or x2 +1 according as k is even or odd. 

Proposition 5: When n = 2m, ,4(m, n) has the order (m- l)(l + 3w)/2 and is cyclic unless either 
m = 3 (mod /?) or there is an odd prime/? such that m = 1 (mod /?) and 3™ = -1 (mod /?). 

D. A. Burgess has pointed out that these equations certainly have a solution in the case in 
which p = 6 +1 (mod 12). 
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1. INTRODUCTION 

We consider polynomials {Un(p9q; x)} such that 

Un(j>,q\ x) = (x + p)Un_l(p9q; x)-qUn_2(p9q; x), n>2 (1) 

with U0(p,q; x) = 0 and Ux(p9q; x) = l. 
The parameters p and q are arbitrary real numbers (with q ^ 0), and we denote by a, J3 the 

numbers such that a + j3 = p and aj3 = q. 
We see by induction that there exists a sequence {c„ k(p, )̂}„>o of numbers such that 

k>0 

:n,kKP,HP'k 

k>0 
Un+l (p, q\ x) = X cn% k (p, q)xk, (2) 

with 
c^k(p9q) = 0ifk>n a n d cn9„(p9q) = l9n^0. 

The first few terms of the sequence {Un(p9 q; x)} are 

\U2(p,q; x) = p + x 

\u3(j>,q; x) = (p2-q) + 2px + x2 

[U4 (p9 q; x) = (p3 - 2pq) + (3p2 - 2q)x + 3px2 + x3. 

Particular cases of Un(p9q; x) are the Fibonacci polynomials Fn(x), the Pell polynomials 
Pn(x) [4], the first Fermat polynomials ®„(x) [5], the Morgan-Voyce polynomials of the second 
kind B„(x) ([3], [6], [8], [9]), and the Chebyschev polynomials of the second kind S„(x) given by 

U„(0,-l;x) = F„(x), 
U„(0,-l;2x) = P„(x), 
£/„(0,2;x) = O„(x), 
11^(2,1; x) = B„(x\ 
Un(0,l;2x) = S„(x). 

We have used S„ in place of the customary U„ since U„ has been used in a different way in 
the present paper. For particular values of the variable x, one can obtain some interesting 
sequences of numbers. 

(i) The sequence {U„(p,q; -p)} satisfies the recurrence 

U„ (p, <f,-p) = -qU„_2 (p, q;-p),n>2; 
thus, 

U2n{p, q,-p) = 0 and U2n+l(p, q; - p) = {-qf. 
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By (2), these can also be written 
2«- l 

I(-irA2„-u(/>,<7)=o 
k=o 

and 
In 

I(-0V<4u(p,*) = (-i)V-

(3) 

(4) 
k=0 

(ii) It follows at once that the sequence {U„(p, q; 0)} is the generalized Fibonacci sequence 
defined by 

Un(p,q; 0) = pU„_l(p,q;0)-qUn_2(p,q; 0), 

with U0(p, q; 0) = 0 and Ux(p, q;0) = l. Therefore, 

U„+l(p,q;0)= S a ^ = j 
i+J=n 

n+l nn+l an+l-p 
a if « " A 

a-p 
(n + \)a" i£a = fi. 

By (2), notice that 

cn,»{p,q) = Un+l(j>,q;0)= X « ' ^ -
i+J-n 

(5) 

More generally, our aim is to express the coefficient c„tk(p9 q) as a polynomials in (a, /?) and as 
a polynomial in (p, q). 

2. THE TRIANGLE OF COEFFICIENTS 

One can display the sequence {c„ k(p, q)} in a triangle, thus: 

n 
0 
1 
2 
3 

* 0 

1 

P 
P2~q 
p3-2pq 

1 

0 
1 
2p 
3P2--2q 

2 

0 
0 
1 
3p 

3 

0 
0 
0 
1 

Comparing the coefficients of xk in the two members of (1), we see by (2) that, for n > 2 and 
k>\, 

cn, k (p, q) = c„-i, k-\ 0>> q)+pcn-i, k (p, q) - qcn-i, k (P, q) 
~ Cn-\, k-\ + PCn-\, k + a(cn-l, k ~ PCn-2, k ) 

= Cn-l, k-l + aCn-\, k + Pipn-l, k ~ aCn-\, k X 

(6) 

where, for brevity, we put cnk for cn k(p,q). From this, one can easily obtain another recur-
rence relation. 
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Theorem 1: For every n > 1 and k > 1, we have 

Cn,k ~ fcn-l,k+jLa Ci,k-l 
j=0 

=^..»+iV""i-'c,,»_1 
: : « 

/=o 
Proof: In fact, (7) is clear by direct computation for n < 2 (recall that a + fl = p). Suppos-

ing that the relation is true for n > 2, then we have by (6) that 
C«+l,it = PCn,k + a ( C « ,k ~PCn-\,k) + Cn,k-l 

n-l 

i'=0 

=^,t+I«^,, A r — 1 -

This concludes the proof, and the other formula can be proved in the same way. 

Let us examine some particular cases. 

(i) Fibonacci polynomials. In this case we have p = 0, q = - 1 , and a = -J3 = l. From this, 
(7) becomes 

n-l 
C » , Jk = ~""Cw-l, k + 2 ^ Ci, it—1 

z=0 

=c„_u+i(-ir1-'c,fc_1. 

fii) Morgan-Voyce polynomials of the second kind. In this case, we have p = 2,q = l, and 
a = P = 1. Thus, (7) becomes 

H - l 

c«, it - c «- i , i t + 2J C', k-i •> 
7=0 

which is the recursive definition of the DFFz triangle [2], known to be the triangle of coefficients 
of Morgan-Voyce polynomials ([1], [3]). 

3. DETERMINATION OF cHtk(p, q) AS A POLYNOMIAL IN (a , fi) 

In our proof we shall need the following lemma. 

Lemma: For every k > 0, we have 
1 =IX/\ (8) (i-pt+gt2)k+i „r0 

with 
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Proof: Recall that 

where r is a real or complex parameter and \rt \ < 1. Thus, we have 
1 1 

(l-pt + qt2)k+l ~ (l-at)k+1(l-fit)k+1 

Z fk+ri\ n.n v ( k + *i\ a**" I k )<** -II k wt 

«>0 
where 

by application of Cauchy's nile for multiplying power series. Q.E.D. 

Theorem 2: For every n > 0 and A > 0, we have 

c„,k(p,C)= Z f \ + 0 (** J V^> (9) 
i+j=n-k ^ ' ^ ' 

where we have used the convention ]£,•+,-=, ̂ z,7 =0, if 5 < 0. 

Proof: For brevity, we put £/„(/?, q; x) = Un(x) and cn k(p, q) = cnJc. Let us define the gen-
erating function of the sequence {Un(x)} by 

f(x,t)^U„+l(x)t". 
n>0 

By (1), we get 

f(x, 0-1 = SC/„+1(xK = Kx + p^UW-1 -qt^U^W2 . 
ri>l «>1 n>l 

The last sum can be written as £„>2 U„_2(x)t"~2, since C/0(X) = 0. It follows from this that 

f(x, t)-l = t(x + p)f(x, t) - qt2f(x, t). 
Thus, 

_1 
l - ( j c + /?)f + gtf 

We deduce from (10) that 
k\tk & 

/(*,*)=. , . . . .2- ( 1 0 ) 

( i - ( x + / ? ) / + # ; <ac „>0 

>?>£: «>0 

since Un+l(x) is a polynomial of degree n. 
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Put x = 0 in the last formula and recall that 

by Taylor's formula, to obtain 

n+k, k j , 

1 = Z<w". (ii) (l-pt + qt2)k+1 £o 

Comparing this formula with (8), we see that 

i+j=nv y v y 

This concludes the proof 

Remarks: (i) If k = 0, then (9) reduces to the classical formula (5). 
(ii) Notice that (11) is the generating function of the km column of the triangle of 

coefficients c„tk. Ifk= 0, we obtain in particular the well-known generating function of the gen-
eralized Fibonacci sequence, namely, 

^—2=TUn+l(p,q;0y. (12) 
l-pt + qt „>0 

(Hi) Using (6), one can obtain, by induction and with a little manipulation, another 
proof of Theorem 2. 

Corollary 1: For every n > 0 and k > 0, we have 

Proof: The result follows immediately from (9) and the fact that (-a) + (-/?) = -p and 
(-a)(-j3) = q. 

4, SOME PARTICULAR CASES 

The general formula (9) can be simplified in two cases: 

(I) Supposing that p2 = 4q, we have a = J5 and (8) becomes 

1 1 Y (n + 2k +1 ] nr n,n 

{\-pt + qty+l (I-at) „>0 

Hence, by (11), cnJc - cn k(p, q) takes the simpler form 

(n + k + f\„-k (n + k + l\,,T.n-k 
c»-k={2k + l ) a =(2k + l)(P,2:> • 

If p = 2 and q = l (Morgan-Voyce polynomials of the second kind), we obtain the known 
relation [8] 
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o / \ <sr(n + k + l\ n 

yt=0V y 

(ii) Supposing that p = 0,we have a = -J3 and (8) becomes 

1
 =

 1
 = V (-\\»(n + * 1 / | V " 

(l-pt + qt ) (l + qt ) „>0 V * J 

Thus, by (11), 
C2«+fc 

This can be written 

.* = ( - l ) " ( W J * y a n d c 2 n + , + u = 0 fo r»>0and^>0 . 

Hence, 
Cr,,n-2k = (-Vk(^~k

ky, forn-2k>0 and ^ ^ ^ = 0, for H - 2 £ - 1 > 0. 

Now, by (2), 
n n [nil] 

U„+1(0,q; x) = Zc„,k(0,q)xk = Zc„!n_k(0,q)x"-k = Zc„,„_2k(0,q)x"-2k. 
k=0 k=Q k=0 

Thus, we get the simplified formula 
[nil] 

UnAQ,q-,x)=Y(-mnlk)qkx"-2k- 03) 
k=0 

If p = 0 and q = - 1 , we obtain the known decomposition of Fibonacci polynomials 
[«/2]/ 

fc=QV ' 

and if j? = 0 and q = l, we have the similar expression of Chebyschev polynomials of the second 
kind 

[nil] [n/2\ f _Jr\ 
Sn+l(x) = U„+l(0,l; 2x)= Z ( - l ) T ^ (2*) 

5. DETERMINATION OF cntk(p9 q) AS A POLYNOMIAL IN (/>, f) 

Theorem 3: For every w > 0 and k > 0, we have 

jRroo/; It is clear that Un+1(p, q; x) = Un+l(0,q; x + p). Thus, 

c„.k(P,q)- ^ - ^ • 
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By (13), one can express the last member as 
[n/2] 

--TnY{"rtryp-
This completes the proof of Theorem 3. 

If k = 0, we get the formula known by Lucas ([7], p. 207), namely, 
[nil] f N 

Un+1(p,q; 0)= X ( - l ) f / V ^ r . (15) 

6, RISING DIAGONAL FUNCTIONS 

Let us define the rising diagonal functions {¥„(/?,#; x)} of the sequence {c„tk(p,q)}—see 
the table—by *P0(p, g; x) - 0 and 

n [nil] 

X+l(P>^ X) = lLCn-k,k(P^)xk = HCn-k,k(P^)xk, for«>0. ( 1 6 ) 
k=0 fc=0 

Notice that, from the table, 

^ i (A0; x) = l> ^ ( A ? ; *) = />, and %{p,q\ x) = p2-q + x. (17) 

Theorem 4: For every « > 2, we have 

¥„(/>,?; *) = ̂ - i ( ^ ; * )+ (* -<7 )^2 fo* ; *)• (18> 

/ * w / ; For brevity, we put %(p, q; x) = ¥„(*) and c^Q?, ?) = c ^ . By (17), the state-
ment holds for n = 2 and w = 3. Supposing that (18) is true for n > 3, then we get, by (16), 

[n/2] 
k 

^n+l\X) ~Cn,Q + LaCn-k,kX 

k=l 

Recall from (5) that cn^ 0 = Un+l (0) = pcn_h 0 - gc„_2? 0, and notice that n-k>n-[nl2]>2, since 
n > 3. By these remarks and (6), one can write 

[»/2] 

^W+l (*) = F«-l, 0 - 9̂ -2,0 + Z (C*-l-k, k-l + /*„-!-*, £ ~ Wn-2-k, k )X 

k=l 

[n/2] [n/2] [n/2]-l 
: PlLCn-l-k,kxk'-^jLCn-2-k,kxk'+X E Cn-2-k,kxh ~k 

Ln-2-k,kJ 

k=0 k=0 k=0 

= p%¥n(x) + (x~q)Wn_l(xl since[/i/2]-l = [(w-2)/2]. 

This concludes the proof. 
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Corollary 2: For every n > 0, we have 

%+1(p,i; *)= un;r)pn-2r(x-qy. (19) 

Proof: By Theorem 4, and since ^(x) = 0, ^ ( x ) — 1, it is clear that 

%(p,q,x) = Un(p,q-x;0), 
and the result follows by (15). 

Let us examine some particular cases. 

(i) Putx = q'm (19) to get, by (16), 
[H/2] 

X ? Cn-k,k(P,q) = P"-

If p = l and ̂  = 1, we get a known identity on the coefficients of the Morgan-Voyce polynomial 
of the second kind Bn, first noticed by Ferri, Faccio and D'Amico ([2], [3]), namely, 

[nil] 

£ W ( 2 , 1 ) = 2". 
fc=0 

(ii) Put x = 1 in (19) to get, by (16), 
[w/2] nil] \nl2\ N 

fc=0 r=(A ' 

which is more general than the above result. 

(in) Ifp = 0, then Corollary 2 implies by (16) that 

fc=G 

If g = 1 (Chebyschev polynomials of the second kind), or q = 2 (first Fermat polynomials), this 
identity was first noticed by Horadam [5] with slightly different notations. 

by 

7. THE ORTHOGONALITY OF THE SEQUENCE {U„(p, q; x)} 

In this paragraph we shall suppose that q > 0. Consider the sequence {R„{p, q; x)} defined 

Rn(p,q;x) = q^l)l2Sn 
'x + p* (20) 

where Sn(x) is the nth Chebyschev polynomial of the second kind. Let us determine the recur-
rence satisfied by the sequence {R„(p, q; x)}. One can write 

RTI(p,q;x) = q^'2 
rx + p^ 

^ 1 - 1 
x + p 

Iq) n\^q -s. n-2 

rx + p^ 
ijq 
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:(X+P)1WSJ 
1 x + p x 

-«™Mi5f \2^j 

= (x + p)R71_l(p,q; x)-qRr7_2(p,q; x). 

Observe that the sequence {R„(p, q\ x)} satisfies the recurrence (1) with J%(p, q; x) = 0 and 
Rx(p,q; x) = l, so that 

Xn(p,r,x) = un(p,r,xy (21) 
Recalling that the sequence {$„(x)} is orthogonal over [-1,1] with respect to the weight 

V I - x 2 , we deduce that the sequence {Un(p,q; x)} is orthogonal over [-p-2yfq,-p + 2y[q] 
with respect to the weight w(x) = ij-x2 - 2px- A, where A = p2 - Aq. 

In fact, for n & m, we have 

rp+2^ ! fP+^49 

j_7; m w # = q ^ - ^ Sn 
f \ 

x + p J-p-2jj p-^sfq 

x + p 
v2Vfyrm(v2^r 

w(x)dx 

4q(n+m)/2flSn(a))Sm(co)^l-a)2 dco = 0, 

where co = -^£. In the case of the Morgan-Voyce polynomial of the second kind, B„(x), this 
2yjq 

orthogonality result was first given by Swamy [8]. 
lfa) = cost (0<t< 7u), it is well known that Sn(co) = ̂ f-, Thus, by (20) and (21), we have 

sin/ 

From this, we see that the roots of U„(p, q; x) are given by 

xk = -p + 2^q cos{k7TI'«), k = 1, . . . ,(w-l). 

For instance, the roots of the Morgan-Voyce polynomial of the second kind, Bn(x) = 
1/^(2,1; x), are (see [9]) 

x , = - 2 + 2cos f -^ r l = - 4 s i n 2 f T ^ - \ * = l, . . . ,(/i-l). 
n + l 2n + 2 

Under the hypothesis q> 0, we deduce from the general expression for xk that the general-
ized Fibonacci sequences Un(p, q; 0) vanish if and only if there exists an integer k (1 < k < n-1) 
such that cos(£;r lri)-pl 2^fq. 

8. CONCLUDING REMARK 

In a future paper, we shall investigate the sequence {Vn(p, q; x)} of polynomials, defined by 

Vn{p,q\ x) = {x + p)Vn_l(p,q- x)-qVn_2(p,q; x), n>2, 

with V0(p, q; x) = 2 and Vx(p, q; x) = x + p. 
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1. PMEL1MINAMES 

The polyomials p„(x, c) defined by 
[«/2j , .x 

/=0 n-A l J 
where [_-J denotes the greatest integer function and x is an indeterminate, are commonly referred 
to as Dickson polynomials (e.g., see [6]). These polynomials have been studied in the past years, 
both from the point of view of their theoretical properties [2], [6], and [14], and from that of their 
practical applications [7], [9], [10]. and [13]. In particular, their relevance to public-key crypto-
systems has been pointed out in [8], [11], [12], and [16]. As is shown, e.g., in [14], the coeffi-
cients of pn(x, c) are integers for any positive integer n and c GZ. It is also evident that 

pn(x,-\) = Vn(x\ (1.2) 

where Vn(x) = xVn_l{x) + Vn_2(x) [V0(x) = 2, Vx(x) = x] are the Lucas polynomials considered in 
[3] and [5]. In particular, we have 

P„Q,-i) = L„, (1.3) 

where Ln is the /2th Lucas number. 
In this paper, we consider the extended Dickson polynomials p„(x, c, U) defined in the next 

section. 
2. INTRODUCTION AND DEFINITIONS 

Let us define the extended Dickson polynomials p„(x9 c, U) as the polynomials obtainable by 
replacing the upper range indicator in the sum (1.1) by a positive integer U>\nl2J. This paper 
is essentially dedicated to the study of the case x = -c = l. 

By (1.1) we have 

A(i,-i,^^rw(co = i A f n 7 , 1 (*>o).. (2J) 
f^0n-A l J 

If [n12J < U < n-1, the sum (2.1) gives Ln as the binomial coefficient vanishes when [n12J4-1 < 
/ <w-1 . For example, if n = 5 (so U -2, 3, or 4), then T5(U) = L5 = 11. If U >n, the upper 
argument of the binomial coefficient becomes negative for i > n +1, and the (nonzero) value of the 
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binomial coefficient can be obtained by (2.6). For i = n, the argument of the sum (2.1) assumes 
the indeterminate form 0- n 10 which will be settled in the sequel. 

By (2.1) we can write 
T„(U) = L„+Hn(k) (k = U-n>0), (2.2) 

where 

Hn(k) = "f^4nJi) = Hn(0)+f^-(nTi) („>0). (2.3) 

The quantity H„(0) in (2.3) is clearly given by the expression 

#„(0) = £ - ^ ( y ) (»>0), (2.4) 

which has the above said indeterminate form. In order to remove this obstacle, we use the com-
binatorial identities 

h (h-m\ (h-m\Jh-m-\\ ( 2 5 ) 

h-m\ m ) V m J v m~^ 

(available in [12], pp. 64 and 1, respectively), and rewrite (2.4) as 

n-i\(n-l-i 
n) \n-\ 

(2.7) 

=o+(-iri^:J)=(-ir1 (»>o). 
For the sake of consistency, let us assume that the above result is valid also for n = 0, so 

H0(0)^(-\yl = -l. (2.8) 

On the basis of (2.3), (2.7), and (2.8), for given nonnegative integers n and k, let us define 

#„(*)=(-ir1 + 1 — ( V I (»• * * °). <2-9) 
where the usual convention that 

b 
2 / ( 0 = 0 for 6 < a (2.10) 
i=a 

has to be invoked for obtaining H0(0) = - 1 . 
The numbers #„(&) defined by (2.9) are the companions of the numbers 

GB(*)=zf"-/
1-0=(-i)-t(-i)'fn +

/
2- /1 (211> 

/=>A ' /=0 \ J J 
which have been thoroughly investigated in [4]. The numbers Gn{k) arise from the incorrect use 
of a combinatorial formula for generating the Fibonacci numbers Fn9 whereas the numbers Hn(k) 
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result from an analogous use of the combinatorial formula (2.1) which (under appropriate con-
straints on U) generates the Lucas numbers (compare (2.2) with [4, (1.7)]) and are the fruit of 
our mathematical curiosity. The principal aim of this paper is to give alternative expressions of 
the numbers Hn{k) (Section 3), to find connections between these numbers and their companions 
Gn(k), and to give a brief account of their properties (Sections 4 and 5). A glimpse of the appli-
cation of the above argument to the Dickson polynomials (1.2) is caught in Section 6, where the 
polynomials Hn(k, x) are considered. 

3, THE NUMBERS Hn(k) 

Letting i = n + jm (2.9) yields 

whence, by using the identity (2.6), we obtain the definition 

/f„(^)=(-iri-(-irt(-iy-(""/_+i2-/) <3-2) 

which can be rewritten as 

,„„ 7 + lV J ) j=0 

By using (2.3), (2.5), and (2.6), the following equivalent definitions can be obtained, the proof of 
which are left as an exercise to the interested reader: 

k 'fn-l + 2j\_(n-l + 2j Hn{k)=(-irz(-iy[("-1_+
1

2;)-(' J ;=0 

k-l /• , , , „ . \ k 

(3.4) 

=(-i)n+ii;(-iv('7+1/2-/')+(-i)"-iso(-i)/(""72'7') • (35) 

Definitions (3.4) and (3.5) show clearly that the numbers Hn(k) are integers. Observe that 
H0(Q) =-l results from (3.5) by invoking (2.10), and from (3.4) by assuming that 

{-m) = ° 0»£ 1, /r arbitrary) [12, p. 2]. (3.6) 

Some particular cases, beyond Hn(0) given by (2.7) and (2.8), are 

Hn(l) = (-iy(n-T), (3.7) 

Hn(2) = (-l)"-l(n2 +n + 2)/2, (3.8) 
and 

H0(k) = -l\/k, (3.9) 

which are readily obtainable by (3.2)-(3.5). The numbers H„(k) are shown in Table 1 for the 
first few values of n and k. 
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TABLE 1. The Numbers Hn(k) for 0 < n, k < 5 

k 
0 
1 
2 
3 
4 
5 

— • 

—; 
— 
—; 
—; 
- ] 

1 1 
I 0 
I 2 
I -3 
L 11 
I -31 

-1 
1 

-4 
10 

-32 
100 

1 
-2 

7 
-21 

69 
-228 

-1 
3 

-11 
37 

-128 
444 

1 
-4 
16 

-59 
216 

-785 

4. SOME IDENTITIES INVOLVING THE NUMBERS Hn(k) AND Gn(k) 

First of all, we give a relation between the numbers H„(k) and their companions Gn(k) [see 
(2.11)]. 

Proposition!: H„(k) = G^k) + G„+l(k-1) (n,k>0). 

Proof: For n, k > 1, the above identity readily follows from the definitions (2.11) and (3.5). 
For n and/or k = 0, let us use the expressions of G_„ (k) and G„ (-k) established in [4, §4]. 

Case 1: «>land& = 0. 
By [4, (4.1)], (2.11), and (2.7), we get 

G„-i(0) + G„+1(-1) = G„_,(0) + 0 = (-I)""1 = H„(0). 

Case 2: H = 0 a n d £ > l . 
By [4, (4.9)] and (3.9), we get 

G_i(k) + G1(k-l) = -[Fi + Gl(k-l)]+G1(k-l) = -l = H0(k). 

Case 3: n = k = 0. 
By [4, (4.1) and (4.8)] and (2.8), we get 

G ^ O H G . H ) = G_l(0) + 0 = -F1 = -1 - HQ(0). D 

Proposition 1 together with some properties of the numbers G„(k) found in [4] will play a crucial 
role in establishing several properties of the numbers Hn(k). A further connection between 
Hn(k) and G„(k) is stated in the following proposition. 

Proposition 2: H„ (k) = G„+2(k -2) - G„_2(k) (n, k>0). 

Proof: By using the recurrence [4, (3.1)], namely, 
G„+2(*-l) = G„+1(*) + G„(£), (4.1) 

we can write 

G„+2(k - 2) - Gn_2(k) = G„+l(k -1) + Gn{k -1) - G„_2(k) 
^G^ik-V + G^k-V-iG^k-V-G^ik)] 
= G„+1(k - \) + G„_l{k) = Hn(k) (by Proposition 1). • 
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Then, we establish a recurrence relation for the numbers H„(k). 

Propositions: H„+2(k-l) = H„+l(k)+H„(k) (k>\). 

Proof: Hn+1(k) + Hn(k) 

= G„(k) + G„+2(k -1) + G^ik) + G„+l(k -1) (by Proposition 1) 
= G„(k) + Gn+3(k - 2) - Gn+1(k -1) + Gn_x{k) + G„+l(k -1) [by (4.1)] 
= Gn+3(k - 2) + [G„(k) + G^k) - G„+1(* -1)] + G„+1(k -1). 

Observing that the expression within square brackets vanishes in virtue of (4.1), we can write 

Hn+l(k) + H„(k) = Gn+3(k - 2) + G n + # -1) = Hn+2(k -1) (by Proposition 1). D 

As a direct consequence of Proposition 3, we can state the following proposition, the proof of 
which is omitted because of its triviality. 

s+2h-l h 
Proposition 4: YdH„(k) = J]H2n+s(k-l) (k>l). 

n=s «=1 

Also, the curious identity 

H„(n)-H„(n-l) = -^n
2-1^ (»>1) [so^1(l)-JffI(0) = - l ] (4.2) 

can be readily proved. 

Proof of (4.2): By (3.3), we Immediately obtain the recurrence relation 

^ ( ^ + i ) = ^ w + ( - i r ^ ^ + 1 / 2 * ] . (4.3) 

Replace k by n -1 in (4.3) and use [12, (iii), p. 3] to obtain (4.2). D 

Let us conclude this section by proving a noteworthy property of the numbers Hn(h). 

Hn+2h(k-h) ifk>h, 
0 if k<h. 

Propositions: R„(h,k)^Hf\H^(k): 

Proof: Use Proposition 1 to write 

K(.h, k)=i{^jG„.M(k)+fi^yn,M(k -1), 
whence 

Rn(h,k) = Gn_l+2h(k-h) + Gn+l+2h(k-l-h) (by [4, Proposition 3]) 

f Hn+2h (k-h) i£k>h (by Proposition 1) 
= [0 if k <h (since Gn{-k) = 0 V n, [4, (4.1)]). D 

Remark: The proof of Proposition 5 in the case k < h can also be obtained by using double 
induction (on k and rri) to prove that 
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kf(k+
i
m)Hn+i(k) = 0 if /»>l. (4.4) 

This alternative and more direct proof is not difficult but it is rather lengthy and tedious, so it is 
omitted to save space. 

5. SOME SIMPLE CONGRUENCE PROPERTIES OF Hn(k) 

In this section we are concerned with some aspects of the parity of Hn(k), and with a 
congruence property of these numbers that is valid for all prime values of the subscript n. 

Proposition 6: Hn(k) = G„(k) (mod2). 

Proof: By Proposition 1 and (4.1), we can write 

H„(k) = G„_l(k) + Gn+l(k-l) = G„.l(k) + Gn(k) + Gn_l(k) 
= G^ + lG^k) = G„(k) (mod2). D 

The general solution of the problem of establishing the parity of Gn{k) [and hence that of 
Hn(k)] seems to be rather difficult. On the basis of some partial results obtained in [4, §3.1], we 
show the solution for the particular cases n = 3 and 2h. Namely, we have 

/f3(A:)iseveniffi = 2/ 2-3 (h>2) (5.1) 
and 

Hr (k) is odd iff 22h+n~2 -2n <k<22h+n~l -2" -1 (n>0; h> 1). (5.2) 

Proposition 7: If/? is a prime and m is a nonnegative integer, then 
m 

(i) Hp{mp)^{-\yCj (mod/?), 

where C; = 7̂ 1 f2/) is the 7th Catalan number, and 

(ii) Hp(k) = Hp(mp) (mod/?) if mp + l<k <(m + l)p-l. 

Proof of Part (i): For n = /?, consider the absolute value of the generic addend of the sum in 
(3.2), namely, 

^{P-I^j) = Ap{j) 0 = 1,2,...,*). (5.3) 

By virtue of the integrality of Hn{k) [see Definition (3.4) or (3.5)] and the replacement of & by 
k -1 in the recurrence (4.3), it is readily seen that A (J) is an integer. If j ' ^ 0 (mod /?), this 
quantity is clearly divisible hyp. If p > 2, by (3.2) we can write 

Hp{mp) = 1+ 2(-l)<Ap(i) •= l + f)(-l)* ±[P-£_\JP) = 
;=1 ;=1 JP\ Jr J 

i=0 (mod p) 
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whence, by using Lucas' Theorem (e.g., see [1, Theorem 1.1]), we obtain 

Hp(mp) . l + S ( - i y )[f!^ = 1 + Z ( - i y J ^ j ) = tyyCj (modp). 

When p = 2, we have 

fl2(2w)s-l + £ c / (mod2). (5.5) 

Since -1 = 1 (mod 2), the congruence (5.5) is clearly equivalent to (i). 

Proof of Part (ii): For mp + l<k<(m + l)p-l [i.e., for k # 0 (mod /?)], rewrite (3.2) as 

^(Ar) = ( - i r 1 - ( - l ) ^ ( - l ) ^ ? 0 ) - ( - l ) " S C - ^ ^ C / ) - (5-6) 
/ = ! j=mp+l 

By (5.6), Proposition 7(i), and since Ap(j) = 0 (mod p) whenever j^O (mod p), we get the 
congruence 

m 

y=o 

Particular instances of Proposition 7 are: 

Hp(k) = l(modp) if 0 < A: < /?-1 , (5.7) 

# p ( p ) S 0 (mod/0, (5-8) 
Hp(2p) = 2(modp), (5.9) 

^ ( 3 / » ) S - 3 ( m o d p ) , (5.10) 
Hp(4p)^U(modp), (5.11) 

and 
^ ( 5 / 7 ) ^ - 3 1 (mod p). (5.12) 

Proof of (5.7): Put w = 0 in Proposition 7(ii), thus getting the congruence Hp{k) = Hp(0) 
(modp), ifl<k<p-l. Since Hp(0)= 1 (modp)\f p (p = 2 inclusive), the above congruence 
clearly can be rewritten as (5.7). D 

6. THE POLYNOMIALS Hn(k, x) 

Let us consider the special Dickson polynomials p„(x,-l) = Vn(x) [see (1.2)]. Paralleling 
the argument of Section 2 leads us to define the polynomials [cf (3.2)] 

H„(k,x) = L*> 
n-\ ^rm-j. (x*0), (6.1) 
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where x is a nonzero indeterminate. These polynomials are the companions of the polynomials 

Gn(k,x) = £££( - iy ( n + j 2 j )± (x*0), (6.2) 

considered in [4, §5]. By using the identity (2.5), it can be readily proved that 
H„(k, x) = G^k, x) + Gn+l(k - l,x). (6.3) 

Observe that identity (6.3) generalizes Proposition 1. 
We believe that the polynomials Hn(k, x) are worthy of a deep investigation. Nevertheless, 

in this paper we confine ourselves to making nothing but a couple of observations on them. 

Observation 1 [on the integrality of Hn(k,x)] 

Hn(k, x) is evidently an integer whenever x equals the reciprocal of an integer (say, x = l/h). 
This fact does not exclude the existence of irrational (or complex) values of x for which Hn(k, x) 
is an integer. For example, if x equals any of the roots of the third-degree equation hx3 - x2 + 
1 = 0, then /^( l , x) = h. Apart from the trivial case 

H0(k,x) = -l\/kmdx, (6.4) 

the problem of the existence of rational values of x ̂  \lh such that, for particular values of n and 
k, Hn(k, x) in an integer in an open problem. 

Observation 2 [on a limit concerning Hn(k, x)] 

Consider the limit 

limHn(k,x)d=Hn(oo,x) 

X' 

7 7 - 1 ' + i<-» 'r / - + . 2^ 
(6.5) 

(x*0) [by (6.1)]. 

The results presented in the sequel can be readily deduced from the analogous results on 
G„(k, x) established in [4, §5]. First, observe that by (6.1) we can write 

H„(™,-\x\) = (-l)"H„(«>,\x\), (6.6) 

so, for the sake of brevity, we shall consider only positive values of x. Then, let us state the fol-
lowing two propositions concerning a closed-form expression and a recurrence relation for 
Hn(°o, x), respectively. 

Proposition 8: If x > 2, then Hn(oo9 x) = - , where A = Vx2+4. 

Proof: By (6.3) we have 

# „ K x) - G ^ K x) + Gw+1(oo, x), (6.7) 

so that, by [4, (5.11)], namely, 
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G " K * ) = ^ F (x>2) (68) 

(although the above quantity unfortunately has been denoted In [4] by the symbol Hn(x), it is 
only marginally related to the quantities denoted by Hn(k) andHn(k,x) in this paper), we can 
write 

H„(QO, x) = - f-— + - f-—, 

whence, after some simple manipulations, we obtain the desired result, 

#n(a>,x) = - ( ^ — J = -AG„(oo,*). 

We draw attention to the fact that, for x<2 , the series (6.5) diverges (see (6.7) and [4, (5.7)]), 
whereas nothing can be said when x = 2, although computer experiments suggest the conjecture 
if„(oo? 2) = - (1 - J2)n. Observe that 1 - 4 l is one of the roots of the characteristic equation for 
the Pell recurrence relation. • 

We point out that, since 

- 1 < - <0 (0<x<oo), (6.9) 

there do not exist real values of x for which Hn(oo, x) is an integer. 

Proposition 9: The numbers Hn(c®, x) obey the second-order recurrence relation 

Hn(«>,x) = xHn_l(«>,x) + Hlh.2(cD,x) (»>2) (6.10) 

with initial conditions 

H0(?o9x) = -l and ^(QO,JC) = ( A - X ) / 2 . (6.10) 

Proof: The proof can be obtained readily by (6.7), [4, Proposition 10], and Proposition 8. • 

Let us conclude Observation 2 and the paper by showing the set of all rational values r of x 
for which Hn{oo,r) is a rational number. On the basis of the results established In [4, §5.1], we 
see that this set can be generated by the formula 

U2 -V2 

r = - — , (6.11) 
UV 

where [/and V range over the set of all positive integers and are subject to the condition 
C/>(1 + V2)F. (6.12) 

The fulfillment of inequality (6.12) is necessary to satisfy the inequality r>2 which, In turn, Is 
required for the convergence of the series (6.5). It can be proved readily that the condition 
g.c.d.(C/, V) = l must be Imposed to obtain all distinct values.of r. 
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THE FIBONACCI CONFERENCE IN PULLMAN 

Herta T, Freltag 

Sponsored and supported by the Office of the President, of the Provost, of the Vice Provost 
for Research and Dean of the Graduate School, the Office of the Dean of the College of Science, 
and the Department of Pure and Applied Mathematics, the Sixth International Research Confer-
ence on Fibonacci Numbers and Their Applications convened at Washington State University 
from July 18-22, 1994. 

We had our UPS and DOWNS. But they were due solely to the contours of the beautiful 
campus of Washington State University as we walked between the buildings. 

How richly international we were! We had the pleasure of hearing 55 papers, 24 of them 
presented by mathematicians from America; Australia, Italy, and Japan tied by each having five 
representatives, closely followed by Germany's four. As usual, two New Zealanders enriched our 
sessions. There was one speaker from each of the other countries, one of them even coming from 
Brunei, almost all of them traveling long distances to serve the magnet of Fibonacci-related 
mathematics. Seven speakers were female. 

The papers themselves were as remarkably diverse as the nationalities of the group, attesting 
to the richness of our discipline and the creative imagination of mathematicians. Those who had 
the misfortune of being unable to attend the Conference will concur in this estimate by studying 
The Proceedings. We did work hard. On our full-day sessions we heard 13 papers, and—on one 
of them—even 14. On the last day there were nine. Even with a shortened program on the day of 
the excursion we were yet enchanted by six papers. 

The planned trip was wedged into our schedule in the middle of our sessions to provide an 
"intermission" in our work. Not only did it deepen the "up-and-down-skills" of the Conference 
participants, it also gave them beautiful vistas of the three waterfalls at the Elk River. The 
resulting ferocious appetites were befittingly satisfied by a romantic dinner. It was such by virtue 
of being in the midst of tall, densely-needled trees with the sun saying farewell for the day. 

In our sessions, the atmosphere was scholarly and excitedly tense. The common magnetism 
of our Fibonacci specialty forged—as always—an international union. Mindstretching, indeed, 
was the Conference, but it was even more than that. "Heart-warming" would be my description, 
as friendships were deepened, and new ones developed. Indeed, many of the papers resulted from 
mathematicians infecting each other with ideas and collaborating as a result. To create such an 
atmosphere cannot be attributed to random constellations. It was indeed promoted by those 
outstanding and delightful Committee members, under the remarkable leadership of Calvin T: 
Long and William A. Webb, co-chairmen of the Local Committee, and A. F. Horadam (Australia) 
and A. M. Philippou (Cyprus), co-chairmen of the International Committee. We cannot help but 
think, too, of Verner E. Hoggatt, Jr., the founder of The Fibonacci Association and of The 
Fibonacci Quarterly, and to realize that it was Andreas N. Philippou, at the time Rector at Patras 
University, Greece, who gave birth to the idea of an international Fibonacci-related research 
conference. And we all deeply appreciate our highly esteemed and affectionately treasured editor, 
the mind and soul of our Conferences, Gerald E. Bergum. 
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However, the arts were represented, too, and to paraphrase E. T. Bell's words: It all goes to 
show that mathematicians are also human beings, sometimes DELIGHTFULLY more so! We 
were charmed by the artistic renderings of finite parts of hyperbolic tesselations (Heike Harborth), 
heard Fibonacci music (Peter G. Anderson), and, yes, we co-felt deeply with George M. Philipps 
when he gave lis his own version of words to music by Leonard Bernstein: 

North West Story 

Everything's nice here in Pullman, 
We can keep cool in the pool, man. 
Even more cool is the math here— 
Old Fibonacci makes us cheer! 

Thanks to Bill Webb and dear Cal Long 
To whom we dedicate this song 
And to our friend Jerry Bergum 
All of whom make us so welcome! 

It was hard to say good-bye at our final get-together, the beautiful banquet at the Compton 
Union Building, but now it is 

"AufWiedersehen" 

in Graz, Austria (!) in 1996. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowltz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABDfOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to stanley@MathPro.com on Internet. 
All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ask that proposers inform us of the 
history of the problem, if it is not original, and require that they do not submit the problem else-
where while it is under consideration for publication herein. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+l+Fn, F0 = 0, Ft = 1; 
Ai+2 ~ AJ+1 + An LQ-2, Lx = 1. 

Also, a = (l + V5)/2, /? = ( l -V5)/2 , Fn = (an - 0") / & md Ln = an+(3n. 

PROBLEMS PROPOSED IN THIS ISSUE 

Nary a month goes by without my receiving a problem proposal from the inveterate problemist, 
Herta Taussig Freitag. So, as a tribute to Herta, and to reduce my backlog, all of the problems 
in this issue come from her. As usual, generalizations are always welcome. 

B-772 Proposed by Herta T. Freitag, Roanoke, Virginia 
Prove that 

rl ,T2 

rf.rf 
rn ~rrn+a 

is always an integer if a is odd. How should this problem be modified if a is even? 

B-773 Proposed by Herta T. Freitag, Roanoke, Virginia 
n 

Find the number of terms in the Zeckendorf representation of ^F2 . 

[The Zeckendorf representation of an integer expresses that integer as a sum of distinct non-
consecutive Fibonacci numbers.] 

B-774 Proposed by Herta T. Freitag, Roanoke, Virginia 
Let (Hn) be any sequence of integers such that Hn+2 - Hn+l + Hn for all n. Let p and m be 

positive integers such that Hn+ = Hn (mod m) for all integers n. Prove that the sum of any p 
consecutive terms of the sequence is divisible by m. 
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B-775 Proposed by Herta T. Freitag, Roanoke, Virginia 
Let g = a + 2. Express g11 in the form pa + q where p and q are integers. 

B-776 Proposed by Herta T. Freitag, Roanoke, Virginia 
n 

Find all values of n for which ]T kFk is even. 
j f c = l 

B-777 Proposed by Herta T. Freitag, Roanoke, Virginia 
Find all integers a such that n = a (mod 4) if and only if Ln = a (mod 5). 

SOLUTIONS 

Fibonacci Fractions 
B-739 Proposed by Ralph Thomas, University of Chicago, Dundee, Illinois 

(Vol 31, no. 2, May 1993) 

Let S = \yr\i > 0, j > 0>. IsS dense in the set of nonnegative real numbers? 

Solution by Margherita Barile, Universitat Essen, Germany 
The answer is no, since one has the following two facts: 

(a) fora l l i>2andj>i + 2 3 | : < - ^ < | ; 

(b) fo ra l l />5and0< j< / + l ? | : > - ^ - > f . 

Hence, if / > 5, the fraction Ft I Fj cannot lie in the closed interval [1/2, 3 / 5]. This interval there-
fore only contains a finite number of elements of S and so S cannot be dense in that interval. 

Both the claims (a) and (b) can be proved by induction in /. For claim (a), first note that 
is 1 1 , F3 2 1 
-2- = - < — and — = — < —. 
F4 3 2 F5 5 2 

Then take / > 3 and suppose the claim is true for / - 1 and / - 2. Then by induction, 

Ft =ff-i + J?-2 A F i ^ \ F i ^ 
Fi+i Fi+i + Ft Fi+l+Ft 2' 

The proof of claim (b) proceeds similarly. 

Several solvers stated that the set of limit points ofSis {ap|/?eZ}u{0}. 
Also solved by Paul S. Bruckman, Russell Jay Hendel, H.-J. Seiffert, J. Suck, and the pro-
poser. 

Smarandache in Reverse 

B-740 Proposed by Thomas Martin, Phoenix, Arizona 
(Vol 31, no. 2, May 1993) 

Find all positive integers x such that 10 is the smallest integer, n, such that n\ is divisible 
byx. 
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Solution by Jane Friedman, University of San Diego, California 

We are looking for all integers x such that x\ 10! but x\n\ for any n < 10. Let Tbe the set of 
all such integers. Since 10! = 28 • 34 • 52 • 71, such integers must be of the form 2a • 3b • 5C • ld with a, 
b, c, and d nonnegative integers such that a < 8, b < 4, c < 2, and d < 1. But 9! = 27 • 34 • 51 • 71, so 
we have the additional constraint that a = 8 or c = 2 or both. Thus, 

T={x\x = 2s-3b-5C'7d, 0<b<4y0<c<2, 0<d<\} 
u{x|x = 2a-3ib-52-7c/, 0 < a < 8 , 0<5<4 , 0<d<\}. 

There are 110 such integers, so I will not list them all explicitly. 
The proposer remarks that this problem is concerned with the inverse of the Smarandache 
Function S(ri), which is defined to be the smallest integer such that S(n)! is divisible by n. For 
another problem about the Smarandache Function, see problem H-490 in this issue. For more 
information about the Smarandache Function, consult the 'Smarandache Function Journal" 
Information about this journal can be obtained from its editor, Dr. R. Mutter, at P.O. Box 
10163, Glendale, AZ 85318-0163, U.S.A. For another solution to this problem, see "Elemente 
derMathematik"49 (1994): 127. 
Also solved by Charles Ashbacher, Margherita Barile, Paul S. Bruckman, Pentti Haukkanen, 
Russell Jay Hendel, Joseph J. Kostal, H.-J. Seiffert, Sahib Singh, Lawrence Somer, J. Suck, 
Ralph Thomas, and the proposer, 

Factor 54 Where Are You? 
B-741 Proposed by Jayantibhai M Patel, Bhavan fs R A. College of Science, Gujarat, India 

(Vol 31, no. 2, May 1993) 

Prove that S„ = F*+s+33lFn\4+F„4 is always divisible by 54. 

Solution by Piero Filipponi, Fond U. Bordoni, Rome, Italy 
Using the known identities 

p* = I*,-«rWLm + 6 md ^ + ^ = ^ keyen 

(identities 81 and 17a in [1]), we get 

Sn = (A6 + 331) /^ 1 6 -4<-y ( i 1 t + 331)Ztert + 199g = g ^ ^ _ ^ y , ^ + 3 7 ] . 

Since 54 and 25 have no common factor, it follows that Sn is divisible by 54. 
Dresel expressed Sn as 54[47F*+4 + 32(-l)Mi^2

+4 + 3], also elegantly showing that 54 is an explicit 
factor. 

Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. Chichester: Halsted, 1989. 
Also solved by Paul S> Bruckman, Leonard A. G. Dresel, Russell Jay Hendel, Bob Prielipp, 
H.-J Seiffert, Sahib Singh, J Suck, Ralph Thomas, David Zeitlin, and the proposer. 
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Pell's Triggy Product 
B-742 Proposed by Curtis Cooper & Robert E. Kennedy, Central Missouri State University, 

Warrensburg, Missouri 
(Vol 31, no. 3, August 1993) 

Pell numbers are defined by P0 = 0, Pl = 1, and P„+1 = 2Pn + P„_1? for n > 1. Show that 

P a = 2 » n ( 3 + c o s ^ ) . 

Solution by Lou Shapiro, Silver Spring, Maryland 

The Binet form [3] for the Pell numbers is Pn = ^(pn - q") where /? = 1 + V 2 a n d # = l - V 2 . 
A form of the cyclotomic identity is 

n-\ 
zn-yn = ]J(z-wJy) 

where w = e2m/" is a primitive nxh root of unity. If n is odd, we have [1] 
n-\ n-\ 

Z"-y» = (Z-y)fl(Z-WJy)(Z-W-Jy) = (Z-y)fl(Z
2-

j=\ y=iv n J 

Now let z-p- 1 + V2 and y = q = 1-V2, and note that p-q = 2^2, p2 +q2 = 6, and pq = -\. 
Thus, we have 

/ - ^ = 2 ^ n f 6 + 2 c o s ^ 
7=1 V W 

and, therefore, 

Pw = 2(«-i)/2j^r3 + c o s 2^r \ 

Letting w = 23 finishes the problem. 
A similar result can be obtained when n is even. Combining these two results gives the gen-

eral formula 

Pn = 2L»/2JL^3 + C 0 S ^ W 

which is true for all positive integers n. 
Note that this same method gives an elementary proof of problems H-93 [2] and H-466 [4] 

which state that 

F „ = n f 3 + 2 c o s ^ 
;'=i V " 

Suck refers to problem H-64 [5] where it is shown that Fn = n"ll(l - 2/ cos^ ) . Zeitlin mentions 
that in his solution to H-64 [5], he showed that if Zn satisfies the recurrence Zn+2 = dZn+l - cZn, 
with Z0 = 0 and Zx = 1, then 

z-=^n{i-2™f] 
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Hendel and Cook find recurrences for expressions similar to (*) where "3" is replaced by a fixed 
constant m. Seiffert shows that for all complex z, 

/ 2 W - i ( ^ ) - i l ^ 2 + 2 - f 2 c o s ^ j and f2„(z) = zf\[z2 +2 + 2 c o s ^ j 

where {/„(*)} are f/re Fibonacci polynomials defined by fn+l(x) = xfn(x) + /„_1(x) w/Y/i /0(x) = 0 
and f(x) -1. 

References 
1. I S . Gradshteyn & I. M. Ryzhik. TaWe of Integrals, Series, and Products (corrected and en-

larged edition), p. 34, formula 1.396.2. San Diego, Calif.: Academic Press, 1980. 
2. Douglas Lind. "Problem H-93." The Fibonacci Quarterly 6.2 (1968): 145-48. 
3. Neville Robbins. Beginning Number Theory, p. 193. Dubuque, Iowa: Wm. C. Brown, 1993. 
4. J. A. Sjogren. "Problem H-466: A Triggy Problem." The Fibonacci Quarterly 30.2 (1992): 

188. 
5. David Zeitlin. "Solution to Problem H-64.M The Fibonacci Quarterly 5.1 (1967):74-75. 
Also solved by Paul S. Bruckman, Leonard A. G. Dresel, Russell Jay Hendel, Norbert Jensen, 
Hans Kappus, Joseph J. Kostal, Almas Rumov, H.-J. Seiffert, J. Suck, David Zeitlin, and the 
proposers, 

Golden Argument of Tenth Roots of Unity 

B-743 Proposed by Richard Andre-Jeannin, Longwy, France 
(Vol 31, no. 3, August 1993) 

Find the modulus and the argument of the complex numbers 

B + i<Ja + 2 . a + iJpTl 
u = - and v — . 

2 2 
Solution by H.-J. Seiffert, Berlin, Germany 

From Problem B-674 (proposed by Richard Andre-Jeannin in The Fibonacci Quarterly 293 
[1991]:280), we know that cos(;r/5) = a / 2 and cos(3^/5) =/?/2. Since sin(;r/5)>0 and 
sin( 3TT 15) > 0, we find 

sm — = J l - c o s — = 
5 V 5 2 2 2 

where we have used a2 = a +1 and a = 1 - /?. Similarly, we find sin(3zr / 5) = V« + 2 / 2. There-
fore, we have 

3TT 3TT TV 7t 
w - c o s — + / s i n — and v = cos—+ isin —. 

This shows that u and v both have modulus 1, and the argument of u and v is 3TT/5 and ;r/5, 
respectively. 

Flanigan notes that u and v are primitive tenth roots of unity. 

Also solved by M A. Ballieu, Paul S. Bruckman, Leonard A. G Dresel, Russell Euler, Piero 
Filipponi, F. J. Flanigan, Pentti Haukkanen, Russell Jay Hendel, Norbert Jensen, Hans 
Kappus, CarlLibis, Bob Prielipp, J. Suck, and the proposer. 
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A Sum Divisible 

B-744 Proposed by Herta T. Freitag, Roanoke, Virginia 
(Vol 31, no. 3, August 1993) 

Let n and kbe even positive integers. Prove that L2n + L4n + L6n + --- + Z ^ is divisible by Ln. 

Solution 1 by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let Sk(ri) = £*=1 Linj with even k. We shall prove that Sk(n) = 0 (mod Ln) if n is even and 
Sk(n) s 0 (mod 5Fn) if n is odd. 

Rewrite Sk(n) as 
k/2 

and use the identities 
_\LnLp> ^ e V e i 1 ' 

(formulas 17a and 17b from [2]) to obtain 
k/2 

k/2 

Solution 2 by Norbert Jensen, Kiel, Germany 

We prove the stronger result that L2n + L4n + Len + -~ + I^kn iS divisible by L2
n when k and n 

are even. 
Pairing the terms up two at a time, we find that in each pair, withy odd, 

Since, wheny is odd, Ln divides Lnj and Ln divides FnU+l) ([1], Theorems 4 and 5, p. 40), we see 
that each pair is divisible by I?n and so is the entire sum. 
Bruchnan notes that Sk(ri) = Ln^k+V)Fnk IFnfor all k andn. 

References 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969; 

rpt. Santa Clara, Calif: The Fibonacci Association, 1979. 
2. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. Chichester: Halsted, 1989. 
Also solved by Paul S. Bruckman, Leonard A. G Dresel, F. J. Flanigan, Russell Jay Hendel, 
Chris Long, Richard McGuffin, Bob Prielipp, Almas Rumov, H.-J. Seiffert, Lawrence Somer, 
J. Suck, and the proposer. 

Erratum: Paul S. Bruckman was inadvertently omitted as a solver of Problem B-726. 
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Edited by 
Raymond E* Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-490 Proposed by A. Stuparu9 Valcea, Romania 

Prove that the equation S(x) = p, where/? is a given prime number, has just 2P~2 solutions, 
all of them in between/? and/?!. [S(n) is the Smarandache Function: the smallest integer such 
that S(n)! is divisible by «.] 

H-491 Proposed by Paul S. Bruckman, Highwood, Illinois 

Prove the following identities: 

H-492 Proposed by H.-J. Seiffert, Berlin, Germany 

Define the Fibonacci polynomials by F0(x) = 0, Fl(x) = l, Fn{x) = xFn_x{x) + Fn_2{x), for 
n > 2. Show that, for all complex numbers x and y and all nonnegative integers n, 

[«/2] / x 

Z ?P^W^-2*(y) = ̂ ^ ( ^ / ^ (i) 
k=0 ^ ' 

where z = (x2 +y2 + 4)1/2. [ ] denotes the greatest integer function. 
As special cases of (1), obtain the following identities: 

j:(l)F2_2k=(T-(-2y)/5, (2) 
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i{n
2"ky2kF4k=5"-\4"-l) (4) 

S fc^W+.W = 5"(22n+1 +1), (5) 

[n/2] / \ 

Y.^)k\n
k)F2n.,kP„-2k=FM, (6) 

k=Q V / 

where i* = i^(2) is the j * Pell number, 
[n/2] / \ 
Z (-1)M^]("] = F„. (7) 

(5,«-2A:)=l 

The latter equation is the one given in H-444. 

SOLUTIONS 

Sum Problem 

H-477 Proposed by Paul S. Bruckntan, Edmonds, Washington 
(Vol 31, no. 2, May 1993) 

Let 

Fr(x) = zr-r£akzr-l-k, (1) 
k=0 

where r > 1, and the ak
%$ are integers. 

Suppose Fr has distinct zeros 0k, k = 1,2,..., r, and let 

r» = 2>*> /! = 0,1,2,.... (2) 
it=l 

Prove that, for all primes/?, 
J^sa^modp). (3) 

Solution byH.-J. Seiffert, Berlin, Germany 

From (1), it follows that 

(-l)*at= (-1)^(0,, ...,0r)= I VA+1> (4) 
l< / ,< - - -< / A + l<r 

for k = 0,..., r - 1 , is the (£ + l)th elementary symmetric polynomial. Let Sr denote the set of all 
permutations of {1,.,., r} . For the Muple (j\,..., j r ) , where 0 < jx < • • • < yr < /? and Ji + ~- + Jr = 
/>, we define an equivalence relation on Sr by n~ a if and only if (A(1)?...?A(r)) = (ja(i),---,icr(r))-
Let Al9..., 4w denote the equivalence classes with respect to this equivalence relation. For each 
n G {1,..., m), we choose a permutation ^ G ^ I - Then the polynomial 

474 [NOV. 



ADVANCED PROBLEMS AND SOLUTIONS 

is symmetric. By the fundamental theorem on symmetric polynomials (see A. I. Kostrikin, Intro-
duction toAlgrbra [Springer-Verlag, 1982], pp. 281-84), there exists a polynomial Qjx,„.jr having 
integer coefficients such that [see (4)] 

ph,_Jr(Pi,..., er) = e,„ ...,,„(% •••> «,-i)- (5) 

The multinomial theorem gives 
f r Y 

\k=l 
Jl+-+Jr = P 

or, in view of (2) and after a little sorting, 

°S=Vp+ I {]* j)Ph J&>"'0r). (6) 
J\+---+jr=p 

Equations (5) and (6) show that Vp is indeed an integer. It is well known that 

G,',7>o(mt'<",) (7) 

for all primesp and r-tuples (Jl9..., jr) with 0<jh...,jr<p and jx + • *• + jr - p. (5), (6), and 
(7) imply Vp = a£ (mod/?). Using Fermat's little theorem, we obtain Vp = a0 (mod/?), the desired 
result. Finally, we note that the result remains true, if the zeros 0h...,0r of Fr are not distinct. 
In such cases, each zero of Fr must occur in the defini-tion of Vn respecting its multiplicity. 

Comment on H-477: Using the result of H-477 (including my final remark), it is very easy to 
solve the following problem (O. Such, Problem 10268, Amer. Math Monthly 99.10 [1992]:958). 

Define a sequence (Vn) by 

VQ = 3, Vx = 0, V2 = 2 , V„+3 = Vn+l +FM, for all n > 0. 

Ifp is a prime, show that p\V. 

According to the result of H-477, we only have to show that 

V„ = &l + F2+y3,neNQ, (8) 
where 

(z-0l)(z-O2)(z-e3) = 2?-z-l. (9) 

To do so., it suffices to show that (8) holds for n = 0,1,2. For n = 0, (8) is true, since V0 = 3. For 
n = 1, it follows from (9) and Vx = 0. From (9), we get 0X02 + 0203 + 030x = - 1 . Hence, 

0 = V2 = (0! + $2 + 03f = 0j + 05j + ^3 + 2(0!02 + $2$3 + ^ i ) = 0? +0£ +0? - 2 

implies F2 = 2 = 0l + 02
2 + 02

3. 

Also solved by A. G Dresel, F. J. Flamigan, L. Somer9 L. VanHamme, and the proposer, 
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String Along 
H-478 Proposed by Gino Taddei, Rome, Italy 

(Vol 31, no. 3, August 1993) 

Consider a string constituted by h labeled cells cx, c2,..., ch. Fill these cells with the natural 
numbers 1, 2, ..., h according to the following rule: 1 in cl9 2 in c2, 3 in c4, 4 in c7, 5 in c u , and 
so on. Obviously, whenever the subscript j of Cj exceeds h, it must be considered as reduced 
modulo h. In other words, the integer n (1 < n < h) enters the cell c^nh), where 

Y IA ln2-n + 2\ 

and the symbol (a)b denotes a if a < b, and the remainder of a divided by b if a > b. 
Determine the set of all values of h for which, at the end of the procedure, each cell has been 

entered by exactly one number. 

Solution by PaulS. Bruckntan, Highwood, Elinois 

Let U(h) = Uh„=l{j(n, h)} and V(h) = {1,2,..., h). We seek to characterize the set 

S = {heZ+:U(h) = V(h)}. 
Clearly, leS,2eS. 

First, we show that, if h eS, h>\, then h must be even. Suppose h> 1 is odd. Clearly, 
y(l, h) = 1 for all h. Also, j(h, h) = (h • y (h -1) + l)h -1, since j(h-l) is an integer. Since h > 1, 
• Cj and ĉ  are distinct cells; however, they are both occupied by the number 1, which shows that 
h &S if/*isoddand h>\. 

Suppose h = 2r (mod 22r+1), r = 0,1,2,... Then 

Also, 7(1, A) = 1. The only way for cells q and c r to be identical is for h = 2r; otherwise, h <£ S. 
In other words, all elements of S must be powers of 2. 

Define the ordered A-tuple W(h) = (y(l, h\ y(2, /i),..., 7'(A, /?)) = (1,2,4,...), which orders the 
elements of UQi) according to the cell numbers. We first show that, for all h, 

W(2h) ES (W(h)9 W*(h)) (mod h) where W*(h) denotes 
the transpose oiWQi) [W(h) in reversed order]. (1) 

Proof of (1): We first observe that, if 1 < n < h, 

j(n,2h) = j(n,h)(modh). (2) 

Also, j(2h + l-nah) = Q(2h + l-n)(2h-n) + l)2h = (2h2-2nh + h + ^ 
(±(n2 -n) + l + h)2h ^{±{n2-n) + \\ (mod/*), or 

j(2h +1 -n,2h) = 7(w?h) (modA), l<n<h. (3) 

We see that (1) is a consequence of (2) and (3). 
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Suppose now that h = 2r
yr>2. Then j(n + h, 2h) = (±(n + h)(n + h -1) + l)2h = <y (n2 -ri) + 

^/i(2/i--l) + | / i V l ) 2 ^ = (|(w2-w) + l+j( / i 2 - / i ) + /i/i>2^ If 7i Is even, then \{h2-h) + nh = 
±{h2-h) =2r-1(2 r- l )(mod2r + 1)^-2r-1^-i / i (mod2/i) ; if n is odd, then ±(h2 -h) + nh^ 
\(h2 + h) = 2r"1(2r +1) (mod 2r+1) = 2r~l = \h (mod 2h). In either case, we see that, if h = 2r, 
r > 2, then jf(w, 2/i) = j{n + h, 2h)+\h{-lf, so 

j(n,2h)*j(n + h,2h\ \<n<h. (4) 

We may now complete the proof of the desired result, namely, 

S = {1,2,22,23,...} = the set of all nonnegative powers of 2. (5) 

Our proof is by induction (on r). We suppose A = 2r, r > 0, and h GS. (Indeed, we already know 
that 1 GS,2 GS). Then the elements of W(h) are distinct (mod h) and, a fortiori, (mod 2h). 
Also, (1) holds. Therefore, the first (and also the last) h elements of W(2h) are distinct. More-
over, it follows from (4) that the elements of the first half of W(2h) are distinct from the elements 
of the second half of W(2h). We conclude that 2h GS as a consequence of h GS. Since W(4) = 
{1,2,4,3}, thus 4 G S. Then, by induction, (5) is established. 

Also solved by P. G Anderson, M Barile, P. Filipponi, J. Hendel, N. Jensen, and A. K 
ft Woord 

Close Ranks 
H-479 Proposed by Richard Andre- Jeannin, Longwy, France 

(Vol 31, no. 3, August 1993) 
Let {FJ be the sequence defined by V0 = 2,VX = P, and Vn = PVn_x = QVn_2 for n > 2, where 

P and Q are real or complex parameters. Find a closed form for the sum 

t(2nn-{l)pkQ"-%-

Solution by Paul S. Bruckman, Everett, Washington 

Let 

Sn = t(2nn-{l)pkQn~%> t = 1,2,.... (1) 

Replacing kby n-k yields 

^ = lf";l+*Vf cevn_f c . (2) 
We seek to prove the following: 

S„ = P2", /i = 1,2,.... (3) 
Toward this end, let 

i J ^ ^ - P 2 ^ , 11 = 1,2,.:.. (4) 

We may proceed to evaluate Dn in a straightforward manner, though not without some useful 
"tricks." Thus: 

1994] 477 



ADVANCED PROBLEMS AND SOLUTIONS 

\^(n + k\ Dn+\-, n-l 

D„=l„ )pn+l-kQ%+i-k - 1 „ i i \p™-K<ivn_k 
n-l + k\pn+2-knkj. 

n+lf„ , y„ i \ n-l 

k=l 

fl + k ~ I) j^n+2-k^k-lr Z IYI -h K ~ 1 vn+2-knk-lT/ \^tn±K-l\ r>n+2-knkj/ 

n V Q V»+2-k-L[ n-l ) P VV»-* k=0 

Tl + k - 1 | nn+2-knikj 

= ( ? ) ^ e ^ i + ( 2 V ^ ' G " - ^ -pn+v„ 
+ V pw+2~fc0^-1 W + & - 1 

n 
n + k-l 

'n+2-k { n „ \ QVn-k 

+YdPn+2~kQ 2-kr\k-\ n + k~l\pVn+1_k-QV„_k)-(n+
n

k_-l\QVn_k 

In -1\ D4^»-i n-2 
i-i^i_pin.2^+xr7 PW+2-^V„_, n + k 

n-l 

-I 
£=0 

'n + k-l\ (n + k-l 
n r TI -1 

jn+2-k/^k, QX-k 

= (2 V*) p4en_1 - ^" + X+1 ("; *) P-^QX-K - 1 (" J *) pn+2-kQkvn 

= ni(n+
n

k)p"+2-kQkK-k - "i{n+
n

k)p"+2-kQkK-k = o. 

We have tacitly assumed that n > 2 in the above development; it is a trivial exercise to verify that 
Sl = P2, S2 = P4. Therefore, by an easy induction, since Dn = 0 for all n > 1, (3) is established. 

Also solved by P. Filipponi, N. Jensen, H.-J. Seiffert, A. Shannon, and the proposer. 
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