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THE ZECKENDORF ARRAY EQUALS THE WYTHOFF ARRAY 

Clark Kimberllng 
University of Evansville, Evansville, IN 47722 

(Submitted February 1993) 

1. INTRODUCTION 

It is well known that every n in the set N of positive integers is uniquely a sum of non-
consecutive Fibonacci numbers. This sum n is known as the Zeckendorf representation ofn. We 
arrange these representations to form the Zeckendorf array Z = Z(i, j) as follows: column j of Z 
is the increasing sequence of all n in whose Zeckendorf representation the least term is Fj+l. The 
first row of Z therefore consists of Fibonacci numbers: 

z(l,l) = l = F2 z(l,2) = 2 = F3 z(l,3) = 3 = F4 ••• z(lj) = FJ+l..., 

and the second row begins with the numbers 4 = 3 + 1,7 = 5 + 2,11 = 8 + 3, and 18 = 13 + 5. The 
reader is urged to write down several terms of the next two rows before reading further. 

The Wythoff array, W = W(i,j), partly shown in Table 1, was introduced by David R. 
Morrison [9], in connection with Wythoff pairs, which are the winning pairs of numbers in 
Wythoffs game. (See, for example, [2], [12]). Morrison proved several interesting things about 
W\ every positive integer n occurs exactly once in W, as does every Wythoff pair; every row is a 
(generalized) Fibonacci sequence [i.e., w(i, j) = w(i, j - l ) + w(i, j-2) for every i> l and j>3] . 
In fact, Morrison proved that, in a sense, every positive Fibonacci sequence of integers is a row of 
W. 

TABLE 1. The Wythoff Array 

1 
4 
6 
9 
.2 

2 
7 
10 
15 
20 

3 
11 
16 
24 
32 

5 
18 
26 
39 
52 

8 
29 
42 
63 
84 

13 
47 
68 
102 
136 

21 
76 
110 
165 
220 

34 
123 
178 
267 
356 

55 
199 
288 
432 
576 

89 
322 
466 
699 
932 

144 
521 
754 
1131 
1508 

14 23 37 60 97 157 254 411 665 1076 1741 
17 28 45 73 118 191 309 500 809 1309 2118 
19 31 50 81 131 212 343 555 898 1453 2351 
22 36 58 94 152 246 398 644 1042 1686 2728 

Morrison also proved that the first column of W is given by w(i, l) = [/a] + / - l , where 
a = (1 + V5) / 2. The rest of W is then given inductively by 

,. . n f[oK'\/)] + l if/is odd, . 
HhJ + l) = l r ^ . . . . fori = 1 , 2 , 3 , . . . . (1) 

[[aw(i, j)] if j is even, 

2. SHIFTING SUBSCRIPTS: Fn+1->Fn+2 

We define a shift function f\N -> N in terms of Zeckendorf representations: 
00 OO 

i f n = X chFh+h *en f(n) = X V W • 
h=l h=l 
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THE ZECKENDORF ARRAY EQUALS THE WYTHOFF ARRAY 

Lemma 1: The shift function/is a strictly increasing function. 

We shall prove Lemma 1 in a more general form in Section 3. 

Theorem 1: The first column of the Zeckendorf array Z determines all of Z by the recurrences 
zQ,j + l) = f(zQ,j)) (2) 

for all / > 1 andy > 1. 

Proof: We have z(l, j) = Fj+l for all j > 1, so that row 1 of Z is determined by z(l, 1) = 1 and 
/ Assume k > 1 and that (2) holds for all y > 1, for all / < k. Write the Zeckendorf representa-
tion of z(k +1,1) as z(k +1,1) = Z^=1 chFh+l, noting that the following conditions hold: 

(i) q = l; 
(ii) ch G {0,1} for every h in N; 
(iii) for every h in N, if ch = 1 then c^+1 = 0; 
(iv) there exists n'mN such that cA = 0 for every h > n. 

Let m = /(z(£ +1,1)). Then the representation T%=iChFh+1, where c[ = 0 and c'h = ch_x for all 
A > 2, is the Zeckendorf representation of w. Also, m is in column 2 of Z, since c[ - 0 and cj = 1. 
By the induction hypothesis, z(z, 2) = /(z(z, 1)) for i'=l,2,...,k, and since column 2 is an increas-
ing sequence, m must lie in a row numbered >k + \ by Lemma 1. We shall show that this row 
number cannot be > k +1. 

Suppose m>z(k +1,2) and let the Zeckendorf representation for z(k +1,2) be £^=1 ^ i ^ + 1 . 
Then the number q - Y^=l dhFh+1, where dh = d'h+l for h > 1, is the Zeckendorf representation for a 
number having dx = \y so that this number lies in column 1 of Z. It is not one of the first k terms, 
and it is not z(k +1,1) since its sequel in row k +1 is not m. Therefore, q = z(K, 1) for some 
K > k + 2. We now have z(£ +1,1) < # and f(q) < f(z(k +1,1)), a contradiction to Lemma 1. 
Therefore, z{k +1,2) = / (*(* +1,1)). 

Let j > 2 and suppose that z(k +1, y) - f(z(k 4-1,7* -1)). The argument just used for j = 2 
applies here in the same way, giving z(k +1, j +1) = f(z(k +1,7)). The induction on j is finished, 
so that (2) holds for all j > 1 for /' = k +1. Consequently, the induction on k is finished, so that (2) 
holds throughout Z. • 

Lemma 2: 
\[ari\ + 1 if /2 is in an odd numbered column of Z, 
[an] ifn is in an even numbered column of Z. 

Proof: The fact that the continued fraction for a is [1, 1, 1, ...] leads as in [10, p. 10] to the 
well-known inequality 

1 1 1 1 
•<\aFh-Fh. - I — n - A + l v

 F 

for h = 1,2, 3,..., and this in turn implies 

-J- < {aFh} < - ? - for odd h (3) 
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and 

— — < {aFh} - 1 < — — for even h. (4) 

Write the Zeckendorf representation of n as indicated by the sum 
n = clF2 + c2F3+c3F4 + -- . (5) 

Then 

Also, 
f(n) = clF3 + c2F4 + c3F5 + --- . (6) 

where 

and 

na = claF1 + c2aF3 + c3aF4 + • • • 
= q(F3 + {aF2}-l) + ̂ (F4 + {fl^3}) + ̂ (F5 + {fl^4}-
= / ( / I ) + SP1(H) + SP2(»), 

^ 1 ( ^ = c1({aF2}-l) + c3({aF4}-l) + c5({aF6}-l)^ 

-1) + . 

) + ••• 

y2(n) = c2{aF3} + c4{aF5} + c6{aF7} + --' 

Case 1: w is an even numbered column of Z. In this case, the least nonzero coefficient cH in (5) 
has an even index H, so that 

ifiin) + &)
2(ji) = {MFH+I} + ̂ e r terms 

^ { ^ y + i } + { ^ + 3 } + - - - < ^ + ^ + - c ^ + - - - b y ( 3 ) 
^Tff+2 ^ # + 4 ^i/+6 

Also, 
3 » + SP2(«) > {aF„+1} + (-1 + {«^+4}) + (-1 + {aFH+6}) + ••• 

> _ L _ „ J — - 1 by(3)and(4) 
^i/+3 ^#+5 ^i/+7 

1 1 (, 1 1 1 V 1 2 
> 1 + —+ — + - + ••• > >0. 

FH+3 FH+5\ 2 4 8 J FH+3 FH+5 
The conclusion in Case 1 is that f(ri) = [na]. 
Case 2: n is an odd numbered column of Z. Then the least nonzero coefficient cH in (5) has an 
odd index H, and 

i¥i(ri) + SP2{n) = -1 + {ai^+1} + other terms 
< -1 + {aFH+l} + { a F ^ } + {aFH+6} + • • • 

< - - ^ + ̂ - + ̂ - + ...by(3)and(4) 
r / / + 3 r / /+5 rH+7 

<~-J—+^-<o. 
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THE ZECKENDORF ARRAY EQUALS THE WYTHOFF ARRAY 

Also 

1 1 1 
FH+2 FH+4 FH+6 

FH+2 

-•••by(4) 

The conclusion in Case 2 is that f(n) - [na] +1. D 

Theorem 2: The Zeckendorf array equals the Wythoff array. 

Proof: Let C be the set of numbers in the first column of Z. Let S be the complement of C in 
the set of positive integers. Let {sj be the sequence obtained by arranging the elements of S in 
increasing order. It is known [4] that this sequence of one-free Zeckendorf sums is given by 
sn = [(/i + l)a]~ 1, Ai = 1,2,3,... . We shall apply Beatty's theorem (see [1], [11]) on complemen-
tary sequences of positive integers to prove that z(i, 1) = [ia] + i-l\ first, ^+-^tr = l, so that, by 
Beatty's theorem, the sequences [na] and[/a] + / are complementary; this implies that the sets 
{[(w + l)a]} and {p<z] + /}u{l} partition TV, which in turn implies that the sequences sn andz(7,1) 
are complementary. Since w(i, 1) = [ia] + i - 1 , we have z(i, 1) = w(i, 1). Now the recurrence (1) 
together with Theorem 1 and Lemma 2 imply that Z-W. 

3. HIGHER-ORDER ZECKENDORF ARRAYS 

Let m be an integer > 2. Define a sequence {$} inductively, as follows: 

s{ - 1 for/ = 1,2,3,..., JW, 
Sj =si_l+si_m for i = m + l, m + 2,..., 

and define the Zeckendorf m-basis as the sequence {b^}, where b^ = sm+J_l for ally in N. It is 
proved in [5] and probably elsewhere that every n inNis uniquely a sum 

bW+bW + '-'+b™, where it-iu>m whenever t>u. (7) 

We call the sum in (7) the in-order Zeckendorf representation of n, and we define the m-order 
Zeckendorf array Z(w) = Z^m\i, j) as follows: column j of Z(w) is the increasing sequence of all n 
in whose /w-order Zeckendorf representation the least term is i jw ) . The first row of Z{m) is the 
Zeckendorf w-basis. Of course, the Zeckendorf 2-basis is the Fibonacci sequence {bf^ =FJ+l), 
and one may view the work in this section as an attempt to generalize the results in Section 2. 
Table 2 shows part of the 3-order Zeckendorf array. 

Next, we generalize the shift function f:N—>N as defined in Section 2. In terms of in-
order Zeckendorf representations, the generalized function / ( w ) is given as follows: 

00 CO 

if» = I r f ) , then/<">(») = 2 > ^ . 
h=l h=l 
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TABLE 2. The 3rd-Order Zeckendorf Array 

1 
5 
7 
10 
14 
18 
20 
24 
26 

2 
8 
11 
15 
21 
27 
30 
36 
39 

3 
12 
16 
22 
31 
40 
44 
53 
57 

4 
17 
23 
32 
45 
58 
64 
77 
83 

6 
25 
34 
47 
66 
85 
94 
113 
122 

9 
37 
50 
69 
97 
125 
138 
166 
179 

13 
54 
73 
101 
142 
183 
202 
243 
262 

19 
79 
107 
148 
208 
268 
296 
356 
384 

28 
116 
157 
217 
306 
393 
434 
522 
563 

41 
170 
230 
318 
448 
576 
636 
765 
825 

60 
249 
337 
466 
656 
844 
932 
1121 
1209 

Lemma 1: The shift function / ( w ) is a strictly increasing function. 

Proof: As a first inductive step, we have 2 = f(m)(l) < 3 = f{m)(2). Assume K > 2 and that 
for every kx <K it is true that / w ( ^ ) < f^m\K). Let k be any positive integer satisfying k<K. 
Let 

fa = max {/} and h = max{/}. 
V bj<K+lU) l bj<kKJ) 

Case 1; / ? 1 <V Let x = Z > ^ < ^ Since 
x + l = ̂ w ) , we have k <x<K + l and 

/(^)</ww=iw+^+f2ra+.-.+jw<c)i^rs/w^+i)-
Case 2: hx = h0. Here, k - b^ < K +1 - b^. By the induction hypothesis, 

fW(k-b%))<f""\K + l-bW). 
Then 

In both cases, f{m\k) <f{m){K + \) for all k<K + l, so that we conclude that f{m) is strictly 
increasing. • 

Theorem 3: The first column of the m-order Zeckendorf array determines all of the array by the 
recurrences (2) for all / > 1 andy" > 1. 

Proof: The proof is analogous to that of Theorem 1 and is omitted. 

Theorem 4: For every m > 2, the m-order Zeckendorf array is an interspersion. 
Proof: Of the four properties that define an interspersion (as introduced in [7]), it is clear 

that Z(w) satisfies the first three: every positive integer occurs exactly once in Z("°; every row of 
Z(m) is increasing; and every column of Z{m) is increasing. To prove the fourth property, suppose 
/, jy /', f are indices for which 

z(ij)<z(i',f)<z(ij + l). 

Then, by Lemma 1, 

/W(z(i, j)) < fm)(z(i>, / ) ) < fm\z{i, j +1)), 
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so that, by Theorem 3, 
z(iJ + l)<z(i>,f + l)<z(i,j + 2), 

as required. • 

Consider the recurrence (1) which defines the Wythoff array Win terms of the golden mean, 
a. Since a is the real root of the characteristic polynomial x2 -x-1 of the recurrence relation 
for the row sequences of W, one must wonder if the real root a^ of xm - xm~l -1 can, in some 
manner comparable to (1), be used to generate rows of the /w-order Zeckendorf array. The 
answer seems to be no, although certain "higher-order" Wythoff-like arrays have been investi-
gated (see [3], [6]). 

However, Beatty's theorem leads to conjectures about column 1 of Z(w). It appears that each 
row of Z(w) has "slope" a^m\ so that the complement of column 1, ordered as an increasing 
sequence, is comparable to the set of numbers [ia^]. Beatty's theorem then suggests that 
column 1 is "close to" the sequence {c7} given by q = I j^__ I. For example, taking m = 3, let st = 
|-%T-|-[tf(3)]. Let xt denote the z-th number in column 1 of Z(3). We conjecture that \zt -st \< 1 
for all / > 1 . 
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ON THE (3, F) GENERALIZATIONS OF THE FIBONACCI SEQUENCE 

W. R* Spickerman^ Re L* Creech5 and R* N, Joyner 
East Carolina University, Greenville, NC 27858 

(Submitted May 1993) 

Recently the (2, F) generalized Fibonacci sequences were derived (see [1], [4], [5], [6]). The 
purpose of this paper is to derive formulas for all (3, F) generalized Fibonacci sequences as 
functions of the terms of seven sixth-order recursive sequences. 

Let S = {a, h, c} and Sc be the group of permutations on S. Let i be the identity; and 
a-{ah),p-{ac), y = (b c) be the two cycles; and 8 - (a b c), s = (a c b) be the three cycles. 
Finally, let (j) and r be arbitrary permutations of Sc and Yx = {af, bt,c,}. Atanassov [2] considered 
the 36 possible systems of three second-order difference equations: 

tfn+2=K+i + rYn, n>0, (1) 

with initial conditions Y0 - {a0, b0, c0} and Yx = {au bu c j , where a0yb0yc0:)aubu and cx are real 
numbers. Since the permutation in the left member of (1) is always the identity (z), these systems 
can be represented by the ordered pair (^3 r), where #)and r are the permutations of the right 
member. Spickerman et al. [7] proved that the 36 systems are members of the eleven equivalence 
classes. The solutions of one of these classes is three generalized Fibonacci sequences. The solu-
tions to three other classes consist of one generalized Fibonacci sequence and one (2, F) general-
ized Fibonacci sequence. The solutions to the other seven systems are the (3, F) generalized 
Fibonacci sequences. Atanassov [3] denoted each of these seven sequences by a number, as 
shown in Table 1. A notation in terms of ordered pairs of permutations of Sc is also given. 

Considering each equivalence class, it follows that when the solution to one system in a class 
is known, the solutions to the other systems are permutations of the known solution. Atanassov 
et al. [3] proved 

iYn
s
+2 = <t>Y:+i + rY„'9 S e {1,2,3,4,5, 6,7}, (2) 

with initial conditions 

YJ={alX,cso}, Y1={a{,bl,c{}, 

can be replaced with seven sixth-order difference systems: 

i * X + 6 _ , = 0 , t ^Z»„V,=0 , i > / < + 6 - , = 0 , »>0, (3) 
z=0 z=0 j=0 

with initial conditions {a*f0, {b?}5
0, {c"f0, respectively. The values for k- for 1 < s < 1 are given 

in Table 2. 
Let ps(x) = 1^=0 kfx* and let {̂ /}7=o be the recursive numbers (of order six) determined by 

1/ ps(x). Then the seven recursion relations and first terms of the sequences are given in Table 3. 
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TABLE 1 

Permutation 
Notation 

K M ) ] 
[(«,«)] 
[(».«)] 
[(«,')] 
[1,5] 
[8,i] 
\5,5\ 
[S,e] 
ia,P\ 
[a, S\ 
[S,a] 

Equivalence 
Class 

{(«,')) 
{(a,a),(0,fi),(y,r)} 
{{i,a),(i.P),iur)} 
{(a,i),(P,i)Ar,i)} 

{{i,$),U,e)} 
{(8,i),{e,i)} 
{{S,S),(s,s)} 
{(5,S),(e,5)} 

{(«, p), {a, y), (ft, a), (ft, y), (y, a), (y, /J)} 
{(a, S), (a, e), (ft, 8), (ft, e), (y, 8), (y, s)} 
{(S, a), (e, a), (S, p), (e, p), (S, y\ (s, y)} 

Atanassov's 
Number 

none* 
none** 
none* * 
none** 

1 
2 
3 
4 
5 
6 
7 

* Solution is three generalized Fibonacci sequences. 
**Solution is one generalized Fibonacci sequence and one (2, F) generalized Fibonacci 
sequence. 

TABLE 2 

s 
1 
2 
3 
4 
5 
6 
7 

0 
1 
1 
1 
1 
1 
1 
1 

Values of kf 
i 

1 2 3 4 
-3 3 - 1 0 
0 - 3 - 1 3 
0 0 - 1 - 3 
0 0 - 4 0 

-1 -2 2 -1 
- 1 - 1 0 1 
0 -1 -2 -2 

5 6 
0 -1 
0 -1 

-3 -1 
0 - 1 
0 1 

-1 -1 
1 1 

TABLE 3 

s 

1 
2 
3 
4 
5 
6 
7 

Recursive Relation 

^ 6 = 3 / ^ 5 - 3 / ^ 4 + ^ 3 + ^ 
*n+6 = 3/J,+4 + Ki+3 ~ 3/^+ 2 + /« 
/,„+6 = ^ + 3 + 3/i+ 2+3P„+,+/3„ 

C * = ^ + 2P„+i -2P„+3 + P„+2 - P„ 
K+6 — K+5 + Ki+4 ~ K+2 + Ki+\ + /« 
/«+6 = *n+4 +2/^+3 +2 /^ + 2 — /J+1 — /^ 

First 7 Terms 

1,3,6,10,15,21,29 
1,0,3,1,6,6,11 
1,0,0,1,3, 3,2 
1,0,0,4,0,0,17 
1,1,3,3,8,9,21 
1,1,2,3,4,7,11 
1,0,1,2, 3, 3, 8 

Let fs(x), gs(x\ and hs(x) be the three solutions to the seven systems, and let 

f\x) = ^asjx\ gs(x) = ^bjxi, h'(x) = ZcJxJ' 
j=0 ;=0 ;=0 

First, it follows that 
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f 6 \ (6 V oo ^ oo 

v=o J v=o Jyj=o J j=o 
! > / « ; -
./=o 

cy |w = 7 for/<5, 
In = 6 otherwise, 

=1 
;=0 

rZ + S 
;=6 

!*, '«;-, 
_/=o 

In view of the difference systems (3), the last term is zero. Therefore, 

or 

Let 

then 

f 6 \ 5 

I *,'**/'(*) = £ 7=0 

J 

I 
m=0 

J 

Itf 
J / - v A - i s O / ' ( * ) 

r 5 ^^ i ^ 
p ' ( x ) V/=o y \P'(x); 

Consequently, 

v=o A-/'=0 

where P? are from the sequences in Table 2. Expanding and collecting terms gives 

/ ' ( * ) = ! 
;=o 

I^w 
./=0 

(Vw = j when j < 5, 
•J J 

m-5 otherwise, 

4 ( J \ 

;=0V/=0 ) ;=0 /=0 

for the generating function for {af}%. The terms of the sequence are given by 

j 

I 
/=o 

«;=i^=i 2l» ̂ mai-n 
m=0 

P/w fory<5, 

and 
5 

s 
1=0 

z=o Lw=o 
«/ = Etf^ = I I*W-» k-- forj > 5. 

The values of a*, 2 < i < 5, are computed in terms of a^a^b^b^ c^, C^ by use of equations (2). 
The sequences {b-}^ and {c*}% have the same form. 
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SOME INFINITE SERIES SUMMATIONS USING POWER SERIES 
EVALUATED AT A MATRIX 

R. S. Melham and A. G. Shannon 
University of Technology, Sydney 2007, Australia 

(Submitted May 1993) 

1. INTRODUCTION 

In the notation of Horadam [5], write 
W„=W„(a,b;p,q), (1.1) 

so that 
Wn = PW„_X -qWn_2, W0=a,W1=b,n>2. (1.2) 

The sequence {Wn}™=0 can be extended to negative subscripts by the use of (1.2) and, with this 
understanding, we simply write {Wn}. 

The fir* terms of the well-known Fibonacci and Lucas sequences are then 
\Fn = Wn(0,l; 1,-1), 
4 =W„(2,l; 1,-1). ^ • } 

More generally, we write 
[Un=Wn(09l9p9q)9 

\Vn=Wn(29p,p,q), K • } 

where {Un} and {Vn} are the fundamental and primordial sequences, respectively, generated by 
(1.2). They have been studied extensively, particularly by Lucas [7]. 

The Binet forms for U„ and V„ are 

(1.5) 

(1.6) 

where 

p+JF^i and v-W1^ 
2 2 

are the roots, assumed distinct, of 

x2-px + q = 0. (1.8) 

Write 
A = (a-f])2=p2-4q. (1.9) 

The Q-matrix 

e=(! J) (MO) 
has been studied widely in connection with the Fibonacci numbers and has the property 
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SOME INFINITE SERIES SUMMATIONS USING POWER SERIES EVALUATED AT A MATRTX 

Q" = | F"+l _f" j , n an integer (see [4]). 
"n "n-\ j 

Filipponi and Horadam [2] considered the matrix 

Qk,x-*Q ~[xFk xFkJ 

where x is an arbitrary real number and k is a nonnegative integer, and noted that 

QL = 
x rkn+l x rkn 

\-nT7 ynJ7 
x rkn x rkn-\ 

( l . i i ) 

(1.12) 

(1.13) 

Then they evaluated certain power series at the matrix Qk x to obtain summation identities involv-
ing the Fibonacci and Lucas numbers. The identities had the following forms: 

£*»*^Wi = 
w=0 

T,<*nXnFkn 
n=0 

f(xtf)-f(x<t>k
2) 

Vs" 

ZjUnX rkn-l ~ 7T • 
n=Q 

2la„x"Lh,=fXxtf)+f(x4k
2), 

n=0 

where 

and 
/w=I«/. 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 
n=0 

. 1 + V5 1-V5 

They also indicated how their procedures could be generalized to apply to Wn(0, l;p,~-l) and 
W„(2,p;p,-l). 

The object of this paper is to extend (1.14)-(1.17) to apply to the more general fundamental 
and primordial sequences of Lucas as defined in (1.4). Then, specializing to the Chebyshev poly-
nomials of the first and second kinds, we obtain infinite series summations involving the sine and 
cosine functions that we believe are new. 

2. THE MATRIX A k,x 

Define the matrix A by 

A = p -q^ 
1 0 

Then it can be shown by induction that 

14 

(2.1) 
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A" = fu, n+l -qun 
un -qu„^ 

Associated with A, we define the matrix Akx by 

, «>0. 

/l], V — X/x — H,x 
k _ (xUk+1 -x"qU, kn 

xUk -xqUk_Xj 

where x is an arbitrary real number and k is a nonnegative integer. 

To prove the following lemma, we need to note that 
Vk = Uk+i~qUk_u 

U\-Uk^k_^qk~\ 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Each can be proved using Binet forms, and (2.5) is in fact a generalization of Simson's identity for 
Fibonacci numbers. 

Lemma 1: The eigenvalues ofAktX are xak and xfik. 

Proof: Using (2.4) and (2.5), we see that the characteristic equation of AktX simplifies to 

t2-xVkt + x2qk =0. (2.6) 

Recalling that Vk = ak + pk and q = aft, we see, by substitution, that the eigenvalues are as 
stated. D 

Another important property of Ak>x is 

Alx = (xAKy=x"AK" = 
{x"Ul kn+l -xqUl kn 

x"Ukn -xnqUkn_x 
by (2.2). (2.7) 

(2.8) 

The following is easily proved by induction: 

an = aUn-qUn_x, n>0. 

Of course, (2.8) remains valid if we replace a by ft. 

3, THE MAM RESULT 

Assuming that /as defined in (1.18) has a domain of convergence which includes xa and 
xpk we have, using (2.7), 

/ ( A , x ) - Lmd
an^k,x -

n=0 

lLanXnUkn+l -tiL^Ukn 
=0 77=0 

00 OO 

J,anxnUkn -qyZanxnUh^l 

w=0 

V w=0 n=0 

(3.1) 

On the other hand, from the theory of matrices [3], it is known that f(Ak^x) = c0I +c}Aky 
where / is the identity 2x2 matrix and where c0 and cx can be obtained by solving 
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\c0+clxak=f(xak), 
\c0 + Clx/3k=f(xpk). 

That is, 

/(4> 
rxakf{xpk) - xpkf(xak)^ 

x(ak-pk) 1 + 
rf(xak)-f(xj3*y 

x(ak-pk) , k,x' (3.2) 

This is Sylvester's matrix interpolation formula [8]. Noting that ak -J3k =^/AUk and using 
(2.8), the right side of (3.2) can be simplified to yield 

/(4,J = 
* Y ^ qf(xa*)-Pf(xP«) q{f{xpK)-f{xak)) 

VA VA 
f(xak)-f(xj3k) qf(xpk)-pf(xak) 

VA VA 

(3.3) 

These observations lead to our main result. 

Theorem 1: Iff as defined in (1.18) has a domain of convergence which includes xak and x/3k, 
then 

'kn+l 
n=0 0 

00 

n=0 

qf(xak)-pf(xpk) 
VA 

f(xak)-f(xfik) 
VA 

IX*"t4„-i = Pf{xak)-qf(xpk) 

»=o ?VA 

fjanx"Vkn=f(xak)+f{xpk). 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
«=0 

We note that (3.4)-(3.6) are obtained by comparing (3.1) and (3.3). Identity (3.7) is obtained by 
using (2.4), (3.4), and (3.6). 

It is easily seen that (3.4)-(3.7) generalize (1.14)-(1.17) and also (5.6)-(5.17) of [2]. In the 
next section we apply (3.5) and (3.7) to the Chebyshev polynomials and obtain infinite sums 
involving the sine and cosine functions. 

4. APPLICATIONS 

Let {Tn(x)}™=0 and {$„(x)}^0 denote the Chebyshev polynomials of the first and second 
kinds, respectively. Then 

SJx) = 
sin# f, x = cos#, n>0. 

Tn(x) = cosnO 
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Indeed {Sn(x)}™=0 and {2I^(x)}^0 are the fundamental and primordial sequences, respectively, 
generated by (1.2), where p = 2cos0, q-l. Thus, 

a = e?0 and fi = e~w
9 (4.1) 

which are obtained by solving t2 - 2 cos ft +1 = 0. Further information about the Chebyshev poly-
nomials can be found, for example, in [1] and [6]. 

To begin, we consider the following well-known power series each of which has the complex 
plane as its domain of convergence: 

oo /_-i\n 2n+l 
sinz = y ^ - ^ , (4.2) 

h (2* + l)! 
C0M = S i 7 ^ - . (4-3) 

iTo (2")! 
OO -2/1+1 

sinh z = Y , (4.4) 

oo In 

coshz = T . (4.5) 

Now in (3.5), taking U„ =^f and replacing/by the functions in (4.2)-(4.5), we obtain, 
respectively, 

f (-l)"x2n+1 smk(2n + l)e = cos(xcosk0)sinhixsinke) ( 4 6 ) 

V -— = sin(x cos£<9) sinh(x sin k0), (4.7) 
^ o (2")! 

, ^ x 2 " + 1 s i n £ ( 2 « + l)6> . , . , » , , , ~ , . „. 
> - — = sm(xsmkff)cos\\(xcoskd), (4.8) 
~o (2w + l)! 

V = sin(x sin kO) sinh( JC cos&#). (4.9) 

In (3.7), taking Vn=2cosn& and r ep l ac ing /by the functions in (4.2)-(4.5), we obtain, 
respectively, 

| , ( - l )"x2"+ 1cosA:(2/7 + l)g = s i n ( x c o s A - ^ ) c o s h ( x s i n k0) ( 4 1 0 ) 
h (2» + l)! 

> -— = cos(xcos£#)cosh(xsinA:/9), (4.11) 
£S (2«)' 

7 X "+ COS*(2" + 1 ^ = cos(xsin£6Osinh(xcos*0), (4.12) 
„=o (2» + l)! 
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^ x2n cos2kn0 . 
\ c o s ( x sin kff) cosh(x coskff). (4.13) 

At this point, we note that (4.6), (4.7), (4.10), and (4.11) generalize (40), (42), (41), and 
(43), respectively, of Walton [9]. 

As an example of the method, we prove (4.11). 

Proof of (4.11): In (3.7), taking Vn =2cosw# and / ( x ) = cosx we have, using (4.1) and 
(4.3), 

y(-l)"x2"2cos2yfofl 
(2»)! n=0 

• = cos(x^) + cos(»"*^) 

= 2 cos x\ 
v l 2 

COS X 
f eike _e-ike\\ 

JJ 
= 2 cos(x coskff) cos(/x sin kff) 
= 2 cos(x coskd) cosh(x sin kff), 

which yields the result. D 

We now obtain further interesting sums by employing some power series which occur in [1]. 
We restate them here for easy reference: 

log. U + £ = 1 (-1) n-\ n 
Z 

tan l\ — 
m) 

m) n=l n m" 

(-I)" r = 1 o(2w + l) m 2n+l 

\z\<\ml 

\z\<\m\. 

(4.14) 

(4.15) 

sec 
f{-l)"E2n z2n 

m) „t5 (2n)\ m2n l*l<jM> (4.16) 

tan-UE (-l)"-l22n(22n-\)B2n z2"-1 

(2/i)! ^ M<§M, (4.17) 

cosec 
V#* 

m = » (-l)"-1(22w-2)52w z2n~l 

n=\ (2n)\ m 
2«- l 0<\z\<7r\m\. (4.18) 

c o t l ^ 1 W 

m 

oo / i \ » « 2 « ri _2n- l 

Y.{ } • 2"-1^, 0<\z\<Mm\. 
n=\ (2«)! 772 

2/7—1 (4.19) 

Here, 5„ and£w are the Bernoulli and Euler numbers, respectively. 
In (3.5), taking Un=^§- and replacing / by the functions in (4.14)-(4.19) we obtain, 

respectively, 
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^ ( - l ) w -Vs in fo ig _ 1 [ m + xe' /£0 ^ 

m + xe 
• / f e ^ x\<\m. 

(-1)" xz"+1 sin &(2w +1)0 _ 1 , _ / 2mx sin £ 0 
„=0 (2w + l )w 2«+l = -tanh" , 

2 V m2+x2 
|x|<|m|, 

(4.20) 

(4.21) 

(-l)"£2„x2w sin2Jb20 _ 2 s i n ( ^ ) s i n h ( ^ ) 

w=0 (2n)\m In 
x <— m. 

c o s ( 1 ^ M ) + cosh ( 1 ^ M ) ? 2 
(4.22) 

A (-1)""122"(22;7 - l ^ x 2 * " 1 sin Jfc(2w-1)0 
^ {2n)\m2n-1 
w=l 

s inh(2 x s^) 
x |<— TW| 

cos(2xc°s^) + c o s h ( ^ M ) ' 2 ' 

(4.23) 

^ (-l)""1^ ~ 2)^2„x^-i sin k(2n -1)0 
£ (2n)\jn2-1 

2 C o s ( ^ ^ ) s i n h ( ^ ) m Sin k8 
+ -c o s ( 1 ^ M ) - c o s h ( ^ M ) x 0<|xl<;rM. 

(4.24) 

^ ( - l ) ^ 2 " ^ 2 " " 1 sin k(2n -1)0 

n=l (2n)\m2n~l 

s i n h ( ^ M ) m$ink0 
cos(2xc™ke)-cosh(2xs™ke) x 0<|x|<;rM. 

(4.25) 

As stated at the beginning of Section 3, the domains of validity are determined by the 
requirement that the eigenvalues, in this case xelkd and xe~lkS\ must lie within the radius of conver-
gence of the relevant power series. The proofs follow essentially the same lines as the proof of 
(4.11) demonstrated earlier, employing well-known properties of the relevant functions. 

Finally in (3.7), taking Vn =2com0 and rep lac ing /by the functions in (4.14)-(4.19), we 
obtain, respectively, 

i|-j nmn 2 
( 2xcosk0 x2^ 

1 + + — m m 
\x\<\m\. (4.26) 

™(-\)"x2"+lcosk(2n + l)e_ 1 JlmxcoskO 
L (2n + \)m2"+1 " 2 ^ t ™2 -2 
«=0 m -x 

\x\<\m\. (4.27) 

1995] I4) 
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f{-\yE2y"cos2kne_ 2 c o s ( ^ ) c o s h ( ^ M ) £ 

~ 0 (2n)\m2n cos(2^M) + cosh(^™)' M 2 ' '' K' } 

^i-^-tv"^^ 
(2«)!m2"-1 

V m / i i - ^ 

(4.29) 

x\<—\m\. m$(2xc™ke) + cos\\{2xs™ke)' 2 

^ (-l)"-1(22"-2)B2nx2"-1 cosk{2n-\)6 

~ cosh(2*™^)-cos(2*c°s^) x 

^ (-l)"22"^2„x2""' cosA:(2»-1)0 

—m—; mcoshO 

(4.30) 

0<\x\<7u\m\. 

(4.31) 
sin 0<|x|<;r|mL 

cosh(2*s™^) - cos(2xc°s^) x 
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INTRODUCTION AND BACKGROUND 

Yarn's [6] algorithm solves the problem of finding an optimal code tree, optimal in the sense 
of minimum average cost, when the code symbols are of unequal cost and the source symbols are 
equiprobable. He addresses both exhaustive codes, for which the code tree is a full tree, as well 
as nonexhaustive codes, but only the exhaustive case will be of concern here. In particular, for 
code symbol costs c(l) < c(2) < • • • < c(r) and a uniform source of size TV, where (N-l)/(r-1) is 
an integer, the Yarn code tree is generated as follows. Start with an r-ary tree consisting of a root 
node from which descend r leaf nodes labeled from left to right by c(l), c(2),..., c(r), the costs 
associated with the corresponding code symbols. Select the lowest cost node, let c be its cost, 
and let descend from it r leaf nodes labeled from left to right by c + c(l),c + c(2),...,c + c(r). 
Continue, by selecting the lowest cost node from the new tree, until N leaf nodes have been 
created. 

Horibe [3] studied a sequence of binary trees and showed that each tree in the sequence is a 
Yarn code tree for c(l) = 1, c(2) = 2. In particular, the kih tree has the k - 1st tree as its left sub-
tree and the k - 2 n d tree as its right subtree; for k - 1 and k = 2, the tree is only the root; c(l) is 
associated with the left descendant of a node and c(2) with the right descendant. These trees are 
called Fibonacci trees, and the number of leaves in the kth tree is the kth Fibonacci number. Note 
that some integers N are not equal to the kih Fibonacci number for any k so that not every Yarn 
code tree for c(l) = 1, c(2) = 2 is a Fibonacci tree. 

Chang [1] studied a sequence of r-ary trees that reduces to Horibe's sequence of Fibonacci 
trees for r = 2. In particular, the kth tree has the k-ith tree as its /th leftmost subtree, / = 1,..., r; 
for k - 1,..., r, the tree is only the root; and c(i) = i,i = l,...,r is associated with the descendants 
of a node in left to right order. For these particular costs, c(i) = /, i = 1,..., r, Chang's trees are 
Yarn code trees, and the number of leaves in the k^ tree is determined according to an integer 
sequence that general-izes the Fibonacci sequence. 

It is the purpose of this note to examine sequences of trees that are recursively constructed 
and are Varn code trees for integer costs c(l),..., c(r) whose greatest common divisor is 1. Since 
common factors shared by all costs do not affect Yarn's algorithm, the costs considered here are 
essentially all rational costs or all sets of rational costs with a common irrational multiplier. Thus, 
previous work on recursive characterizations of Varn code trees for particular integer code 
symbol costs is extended to the case of arbitrary integer code symbol costs. 

RECURSIVE CONSTRUCTION OF TREES 

For fixed integer costs c(l) < c(2) <•< c(r) with greatest common divisor 1, we will have 
c(r) "types" • of leaf nodes denoted by aua2, ...,aC(r). The k + lsi tree T(k + l) is constructed 
from the previous tree T(k) according to the following set of rules. A leaf node of type ax in 
T(k) will be replaced by r descendant nodes of types ac^,ac^2), •••,ac(r) °m 'eft t 0 ^g^t order in 
T(k +1). A node of type a • in T(k) will be replaced by a node of type a}_x in T(k +1), j = 2, ..., 
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c(r). The sequence of trees begins with 7(1), which consists of a single root node of type ac(r). 
This construction generalizes Horibe [3] and Chang [1]. 

An example of trees constructed in this fashion is given in Table 1 for the costs c(l) - 2, 
c(2) = 3, c(3) = 3, c(4) = 5. The trees are described using the following compact notation. Sibling 
nodes in left to right order are separated by + signs, and parentheses are used to indicate depth in 
tree from the root so that, for example, ((a2 + a3 +a3 +a5)+al+a1 +a3) denotes a4-ary tree 
with 4 depth 2 leaves descending from the root through a common intermediate node and 3 depth 
1 leaves descending from the root in left to right order and labeled according to type in left to 
right order as a2, a3, a3, a5, al9 al9 a3, respectively. 

TABLE 1. T(k) for c(l) = 2, c(2) = 3, c(3) = 3, c(4) = 5 

k 

1 
2 

1 3 
4 

1 5 
6 
7 
8 

II 9 

II 10 
11 

T(k) 

a5 

a4 

« 3 

<h 
<h 
(a2 +a3 +a3+a5) 
(aj +a2 +a2 +a4) 
((a2 +a3 +a3 +a5)+ax +aY +a3) 
((aj+a2+a2 +a4) + (a2 +a3+a3+a5) + (a2+a3+a3 + a5) + a2) 
(((a2 +a3 +a3 +a5)+aj +a1 + a3) + (a1 + a2 +a2 + a4) + (a1+a2 +a2 

(((aj + a2 +a2+a4) + (a2 +a3+a3+a5) + {a2 +a3+a3+a5)+a2) 
+ ((a2 +a3+a3+a5)+al+a1+a3) + ((a2+a3 +a3 + a5) 
+ar +al + a3) + (a2 +a3+a3 +a5)) 

+ a 4 )+a j ) 

By induction, T(k\ k > c(r), has T(k - c(i)) as its 7th leftmost subtree, / = 1,..., r. Because 
of the recursive tree construction, it is easy to give recurrence relations for the number of leaf 
nodes of each type in T(k). Use fJ(k) to denote the number of leaves of type aj9j = 1,..., c(r), 
in T(k). Then 

/'(*)= Z/'(*-*(0), (1) 
\<i<r 

where our initialization is fJ (k) = 1 for k +j - c(r) + 1, 1 < k < c(r), and fJ (k) = 0 for k +j' * 
c(r) +1,1 < k < c(r). Clearly, the number of leaves in T(k), f(k), is given by 

/(*)= E/y(*)=E/(*-c(0)- (2) 
\<j<c(r) \<i<r 
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VAMN CODES FOR N = f(k) 

The reason the recursive tree construction of the previous section is interesting is because the 
trees constructed are the minimum average codeword cost code trees for equiprobable sources of 
size f(k)y the Varn code trees for these source sizes. This is apparent because the construction 
rale splits the lowest cost leaf node at each stage, the node of type al9 and the evolution of the 
node types from T(k) to T(k +1) keeps track of the relative node costs, that is, how many trees 
until that node type becomes the least cost node. Thus, the analysis of the average cost of T(k), 
C(T(k))9 is of interest. 

To find C(T(k)), the assumption is that the tree is being used to encode an equiprobable 
source of f(k) source symbols, and the costs of the codewords are the costs of the leaves of the 
tree. In T(k)9 a leaf node of type Qj costs k-(c(r) + l-j) by induction on k. Thus, C(T(k)) is 
given by 

C(T(k))= ^(k-{c(r) + l-j))f'&)'/&)• (3) 
l<j<c(r) 

We now need to analyze these recurrence relations. By the method of generating functions 
(see, e.g., [2]), we have from (1) and its initialization that / ; (k) satisfies 

X/'(*)x*=*c(r)+w(i- x/wo<7>c( , )Vf1- 2>c(; 

where I(c(i) <j) = \ if c(i) < j and 0 otherwise. The coefficients of xk obtained from the right-
hand side of this expression give/7 (k). 

For the example of Table 1 with FJ (x) = Yjx<k<xf (k)xk, we have 

F\x) = x51(l-x2 -2x3 -x5) = x5+x7 +2x% +x9+5x10 +5X11 + •••, 
F2(x) = x4 /(l-x2 -2x3 -x5) = x4 +x6 + 2X1 +x* +5x9 +5x10 +8xn + •••, 
F\x) = x\l-x2)/(l-x2 -2x3 -x5) = x3 +2x6 + 3xz +4x9 +3x10 + I2xn + ••-, 
F4(x) = x2(\-x2-2x3)/(l-x2-2x3-x5) = x2+x7+x9+2x10+xn + ---, 
F5(x) = x(l-x2 -2x3)l(l-x2 -2x3 -x5) = xl +x6 +x* + 2x9 +x10 +5x11 + ••-, 

from which it can be observed that 

f2(k) = f\k + l), 
f3(k) = f\k + 2)-f\k), 
f\k) = f1(k + 3)-fl(k + l)-2f\k), 
f\k) = fl(k + 4)-f\k + 2)-2fl(k + l). 

Although we do not have a convenient closed form expression for fl(k) in terms of &, it is inter-
esting to note that 

f(k) = -2fl(k)-2fl(k + \)+fl(k + 3)+f\k + 4). 
From (2), we have F(x) = Ei<y<c(r) FJ (x) which, for the example, becomes 

F(x) = (x + x2 - 2x4 - 2x5) I (1 - x2 - 2x3 - x5) 
= x + x2+x3+x4 + x5 +4x6 +4x7 +7x8 + 13x9 + 16x10 + 31x" + ... . 
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From (3), we have that the generating function for the unnormalized cost, 

^f(k)C(T(k))x\ 
l<k<oo 

becomes 
xdF{x)ldx- £ ( c ( r ) + l -y) i^(x) . 

\<j<c(r) 

For the example, this generating function becomes 

(I3x6 + I3x7 +6xs -2x9 -2xl0)/(l-x2 -2x3 -x5)2 

= 13x6 + 13JC7 + 32x8 +76x9 + 101x10 +241X11 + •••, 

so that the normalized costs C(T(k)) are as given in Table 2. 

TABLE 2. C(T{k)) for c(l) = 2, c(2) = 3, c(3) - 3, c(4) = 5 
and Its Entropy Lower Bound 

k 

1 6 

1 7 

1 8 

1 9 

1 10 

1 u 

C{T{k)) 

13/4 = 3.25 

13/4 = 3.25 

32/7 = 4.57 

76/13 = 5.85 

101/16 = 6.31 
241/31=7.77 

-iog,/(*ri 
3.00 1 
3.00 1 
4.21 | 

5.55 | 
6.00 | 
7.43 1 

Performance bounds on the minimum expected cost of code trees for unequal costs are given 
in Krause [4] in terms of the source entropy base t, where t is the unique positive root of 
l~^<i<i<rxC(l) = 0. For f{k) equiprobable source symbols, this entropy is -log, f(k), and the 
bounds are 

-log, / ( * ) < C(T{k)) < -log, / ( * ) + c(r). 

However, the code whose cost satisfies the upper bound is not necessarily exhaustive; thus, only 
the lower bound is relevant here, For the example used here, with c(l) = 2, c(2) = 3, c(3) = 3, 
c(4) = 5,t» 0.63, and the source entropy base t is also provided in Table 2 for comparison with 
C(T(k)). Also of interest in this connection are the new performance bounds due to Savari [5]. 

A few comments should be made about this approach to Varn codes. First, the indexing of 
trees in the order generated by the construction procedure is key; that is, the recurrence relations 
are elegant stated with this indexing but, possibly, disconcerting aspects of the indexing arise, 
such as 7(7) and 7(6) in the example being identical trees with respect to node costs (although 
different with respect to node types). Also, for some choices of costs, c(l),c(2), ...,c(r), it is 
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convenient to solve the recurrences explicitly, particularly when the roots of 1 - E ^ , . xc(0 are 
easy to find, as in the case in which r = 2. 
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1. THE PROBLEM 

For many years I have enjoyed lecturing to groups of high school students about the 
excitement of mathematics. One diversion that never failed to capture their attention was as 
follows: Everyone was asked to write down a three digit number (abc with a > c), reverse it (to 
form cba), find the difference (as a three-digit number) between the two numbers, and add the 
difference to its own reverse. The amazed looks on the students' faces at discovering they had all 
reached the same end number 1089 was a sight to behold. The elementary algebra 

abc 
-c b a 

a-
c-

-c- 1 9 
-a + 10 9 

10 8 

c-
a-
9 

-a + 10 
-c- 1 

quickly explained the surprise. Finally, I would tease that the number 1089 is interesting in itself, 
being the square of 33 and its reverse being the square of 99. 

The origins of the diversion are unknown to me, I learned of it from Rouse Ball ([1], p. 9). 
The question arises: Can the diversion be extended to numbers other than those having three 
digitsl For two-digit numbers, the answer is yes, the end number always being 99. For four- and 
five-digit numbers, a little effort shows that three end numbers are possible, although the three 
numbers are different in the two cases. More effort is required to show that six- and seven-digit 
numbers give rise to different sets of eight possible end numbers. Thus, the sequence of the 
numbers of possible end numbers, corresponding to initial numbers of 2, 3, 4, 5, 6, 7, ... digits 
begins 1, 1, 3, 3, 8, 8, ... . No prizes for guessing how it continues! Our main result is that the 
number of possible end numbers corresponding to initial numbers of n +1 digits is the Fibonacci 
number i ^ ^ . 

What of the end numbers themselves? The unique end number generated by two-digit 
numbers is 99, which turns out to be a divisor of all end numbers. The unique end number gen-
erated by three-digit numbers is 1089, which is 99x11. The three end numbers generated by 
four-digit numbers are 9999, 10890, and 10989, which are, respectively, 99x101, 99x110, and 
99 x 111. These examples illustrate the general situation. With each n +1 -digit number X = xn ... 
x0 (xn >x0) we associate an «-digit number Xb consisting of a string of 0s and Is, which has the 
property that the end number generated by Xis 99 X .̂ We give a simple characterization of the 
numbers X\ and hence of the end numbers themselves. 
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2. THE CODE OF A NUMBER 

Throughout our discussion, nonnegative integers will be written in decimal form and T will 
denote the number 10. We write X = x„ ...x0, where xQ,...,xn are integers between 0 and 9 
inclusive, to denote the n +1-digit number E"=0 ^V. The n +1 -digit number obtained by revers-
ing the digits of X is called the reverse of X (in w + 1-digit arithmetic) and is denoted by J ' , 
whence X' = xQ ... xn. Suppose that X = xn ... x0 is such that xn > xQ. Write the number X - Xf 

as an w + 1-digit number—this may necessitate including some zeros at the front of the standard 
decimal representation of X - X'. Now reverse the digits of the difference X - X' to obtain the 
number (X-Xf)f. Finally, add the difference to its reverse to produce the number X* defined 
by the equation 

x* = x-xf+(x-xy. 
We wish to find the number, denoted here by an, of different (end numbers) X* that are possible 
as X ranges over all n +1-digit numbers xn ... x0 (xn > xQ). The diversion that motivated our dis-
cussion depends on the fact that a2 = 1, i.e., for three-digit numbers, only one (end number) X* 
can occur. 

The key to our analysis is the association with each n +1 -digit number X = xn ... x0 (xn > x0) 
an w + 1-digit number XH called the code ofX. This code XB comprises a string of 0s and Is, has 
leading digit 1, final digit 0, and encodes all the information needed to pass from X to the (end 
number) X* to which it gives rise. We first explain the construction of X11 informally, leaving a 
formal definition until later. 

Write down the number X = xn ...x0 (xn > x0) and beneath it, its reverse X' = x0 ...xn, as 
shown below: 

xn ... x0 

"~ X 0 • • • Xn 

Consider the role played by the ith column from the right (i = 0, ..., n) in the subtraction of X' 
from X. Define an integer zi as follows: if a ten has to be borrowed from the i + 1th column, zi is 
1; otherwise, it is 0. In this way we construct a string z0, ...,z„ of 0s and Is. The /? +1 -digit 
number zQ ... zn is called the code of X and is denoted by Xa. Since we are assuming that 
xn > x0, z0 = 1, and zn = 0. The w-digit number z0 ...zn_x obtained by deleting the final 0 (zn) 
from the code zQ ... zn of Xis called the truncated code of Xand is denoted by Xb. 

To illustrate the above ideas, consider the six-digit number X = 812311. Subtracting X' 
from X, we find that 

812311 
-113218 

699093 

The columns for which a ten has to be borrowed from the adjacent column to the left are (label-
ing from the right) the 0th, 1st, 3rd, and 4th, whence (using the above notation) z0-\,z] = 1, 
z2 = 0, z3 = 1, z4 = 1, and z5 = 0. Hence, XB = 110110 and Xb = 11011. For this particular X, 
X* =699093 + 390996 = 1090089 = 99x11011 = 99Xb . That this is no chance happening is 
shown in our first result. 
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Theorem 1: Let X = xn ...x0 (xn > x0) have truncated code Xb = z0 ... zn_x. Then X* = 99Xi>. 

Proof: Now 

X = Yjxif and X'= £*„_,. 7'. 
7=0 7=0 

Suppose that X* = zQ ...zn. Then the definitions ofz0,...,z„ show that 

7=0 

where we have written z_x - 0. Hence, 

x* = x-xr+(x-xy 
n 

i=0 
n 

;=0 

= f>,.r+1 - i>,r+1+^iX-,^1 - t^r-1 
7 = 0 / = 0 7=1 7 = 1 

= (T2-l)z0...zn_1 

= 99J^. D 

Theorem 1 shows that the number an we seek is the same as the number of different 
truncated codes Xh or, equivalently, codes X* there are as X ranges over all n + l -digit numbers 
X = x0 ...xn (xn > x0). The idea of a truncated code was introduced to allow Theorem 1 to be 
stated effectively, and from now on only the codes themselves will be considered. To help calcu-
late an. we need to reformulate and formalize the definition of X^ given earlier. Define the code 
X* of X = xn ... x0 (xn >x0) to be the number y„ ...y0, where the y „ , . . . , yQ are defined induc-
tively as follows. Let y„ = l. For i = 1,..., n, define yn_i to be 1 if either xn_i > xt or xn_t = xt 

and y„_j+l = 1, and to be 0 otherwise, i.e., if either xn_i <xt or xn_t =xt and yn_i+i =0. This 
definition clearly accords with that given previously. 

Theorem 2: The « + l-digit number yn ...y0 is the code of some n + \ -digit number xn ...x0 
(xn > x0) if and only if: (i) each of y0, ...,y„ is 0 or 1 and y0 =z0,yn = 1; (ii) if, for some / = 0, ..., 
n-1, yn_t = 0, andjV-/-i = 1, then yM = 0; (iii) if, for some i = 0, ..., n-1, yn_, = 1 andjV/.i = °> 
thenj/+1 = l. 

Proof: The only if part of the assertion follows directly from the definition of code just 
given. To establish the if part, suppose that y0,...,y„ satisfy conditions (i)-(iii). Let wn ... wQ be 
the code of yn ...y0. Then (ii) shows that wn =yn = 1. Either yn_x is 0 or 1. Suppose first that 
yn_x = 0. Then (ii) shows that yx = 1, whence wn_x = yn_x = 0. Suppose next that yn_x = 1. Since 
yx is 0 or 1 and wn - 1, the definition of wn_x shows that wn_1 -yn_x - 1. Therefore, in all cases, 
wn-\ = yn-v Continuing in this way, it can be shown that wn_2 = y„_2, •••,wo = yo> whence 
wn ... w0 = yn ...y0, i.e.,y„ ...y0is its own code. • 
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3, THE CALCULATION OF an 

We call any n + 1-digit number yn...yQ satisfying conditions (i)-(iii) of Theorem 2 an w + 1-
digit code. Theorems 1 and 2 together show that an is simply the number of n +1-digit codes that 
there are, and it is this observation we use to calculate an. Trivially, the only two-digit code is 10 
and the only three-digit code is 110. There are precisely three four-digit codes—1010, 1100, 
1110—and three five-digit codes—10010, 11100, 11110. Thus, ax=a2=l and a3 = a4 = 3. It 
should be noted that, in each of the five-digit codes, the second and third digits are equal, and if 
the middle (i.e., third) digit is removed, then a four-digit code is obtained. Conversely, if each of 
the four-digit codes is extended by repeating its second digit, a five-digit code is obtained. These 
remarks explain why a4=a3. We now extend these ideas. 

Suppose that y2n ...yn+1 ynyn_i... j 0 is a 2^ + 1-digit code (n> 1). Then conditions (ii) and 
(iii) of Theorem 2 show that yn+l =yn. It follows easily that yln ... JVt-i JVi ...y0 is a 2/2-digit 
code. Conversely, if z2n_x ...znzn_l ...z0 is a 2w-digit code, then z2n_l ...znznzn_l ...z0 is a 2w + l-
digit code. Hence, there is a bijection between the set of 2w +1-digit codes and the set of 2n-digit 
codes, whence a2n = a2n_v 

To help find a recurrence relation satisfied by the an, we consider, for each natural number n, 
the set &)

n comprising all w + 1 -digit numbers sn...sQ satisfying: (a) each of s09...,s„ is 0 or 1; 
(b) if, for some i - 0 , . . . ,n-1, sn_i - 0 and sn_i_l - 1, then sM = 0; (c) if, for some / = 0,..., n-1, 
sn_. - 1 and 5„_/_1 = 0, then si+l - 1. Thus, an is the number of those elements sn ... s0 in SPW for 
which sn = 1 and sQ = 0. If an element of &)

n is taken, and each 0 in it is changed to 1, and each 1 
to 0, then another element of &)

n is obtained. Hence, the number of elements sn...s0 in &)
n for 

which sn = 0 and sQ = l is also an. Similarly, the number of those elements sn ... sQ in ifn for 
which sn = sQ - 0 is the same number as those for which s„=s0 = l; we denote this common 
number by bn. 

The members sn ... s0 of ifn (n > 3) for which sn = s0 = 0, other than the one comprising all 
zeros, hatve one of the forms, 

0.. .0Z0.. .0, 

in which there are r initial zeros, r final zeros, and X is an n - 2r +1-digit code, for some natural 
number r satisfying 2r < n-l. Conversely, each w +1 -digit number of the above form lies in ifn 

and has both its initial and final digits zero. Thus, for n > 3, 

lan_2 + --+a4+a2 +1 (n even) 
n la»-2 + -~+c*3 +«i +1 (« odd). 

Trivially, b2=bx = 1. 
Since a2n - a2n_l9 we need only calculate a2n_l. To this end, we note that every 2w + 2-digit 

code has one of the forms, 
1X0, 170, 1Z0, 

where X, 7, Z e6P2w-1 are such that X = ^ ^ j ... J0 satisfies 52w_j = 1, J0 = 0, 7 = s2n_x ...s0 satis-
fies s2n_i = 0, sQ = 1, and Z = ^ . j . . . 50 satisfies ^2«-i~5o-l- Conversely, each such X,Y,Z 
gives rise, respectively, to a 2??+ 2-digit code 1X0,170,1Z0. In view of our earlier remarks, the 
number of possible Xs is a2n_x, the number of possible 7s is a2n_u and the number of possible Zs is 
b2n_v Hence, for n>2, 
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a2n+l ~ a2n-\ + a2n-\ +*2«-l 

= a2n-l +a2n-l + <*2n-3 + - a3 + al + 1 

= 2a2n_l+a2n_3 + --+a3+al + L 

This recurrence relation enables us to prove our main result. 

Theorem 3: For each natural number n, a2n - a2n_x = F2n, i. e., an = iVa±ii. 

Proof: Since a2n = a2n_ly it remains only to prove that aln_x = F2n. We do this by induction 
on n. The cases ax = 1 = F2 and a3 = 3 = F4 have been established earlier. Suppose that a2k_x -
F2k, for k = 1, ...,n, where n>2. Then 

02n+l = *hn-\ +a2«-3 + - +03 +«i + 1 

= 2F2„+F2n_2 + .-+F4+F2+l 
= F2n + (*2*+l " F2n-l) + (F2n-l " ^ - 3 ) + • • • + (F3 - F 3 ) + (F 3 - i ^ ) + 1 

~^2» + ^2«+l 

~ F2n+2• 

This completes the proof by induction. D 

An easy exercise shows that, for n > 2, 
b2n=b2n-l=F2n-2+'-+F4+F2+l = F2n-V 

Since b2=bl=Fl, the 5„s are the Fibonacci numbers with odd suffixes, in the same way that the 
ans are those with even suffixes. 

4. CONCLUDING REMARKS 

Our original problem extends in the obvious way to include as initial numbers every n + l-
digit number X whose reverse X' satisfies X' < X. In this wider context, we ask: How many end 
numbers are now possible and what are they? The extra initial numbers that have to be considered 
either generate the end number 0 or have the form YXY', where Y is an r-digit number, X is an 
n-2r-v\-digit number whose initial digit exceeds its final one, and the natural number r satisfies 
2r < n-1. This latter form gives rise to the an_2r+l end numbers 99(10r-1) code of X. Thus, the 
total number of end numbers now possible is: 

an +an-2 + '•• +a2 + 1 = Fn + Fn-2 + - + F2 + 1 = Fn+l (n ^Ven), 

« n + ^ 2 + ---+«l + l = ^Wl+^,-l + ---^2+l = ̂ +2 ("Odd). 

Denoting this latter number by an, we see that a2n - a2n_x = F2n+l, i.e., a„ = ^V*±ii+1 • 
Although our discussion has been concerned exclusively with base 10 arithmetic, it gener-

alizes, with only minor modifications, to an arbitrary base m. The main change required is that in 
Theorem 1 the number 99 has to be replaced by m2 -1. A propos the concluding remarks of 
the opening paragraph, the unique end number generated by a three-digit number abc {a > c) to 
base m is the four-digit number 10w-2 /w- l , which equals {m-l){m + l)2 and is a square 
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precisely when rn-l is; this is fortuitously so when m = 10. On the other hand, the reverse of 
I0m-2m-l is m-lm-2 01, which equals (m2 - I ) 2 and is always square. 
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1. INTRODUCTION 

Define the sequences {Un}™=0 and {Vn}^0 for all integers n by 

U„ = pU„_, + U„_2 ,UQ=0, Uy = \,n>2, 

Vn = pVn_l+Vn_2,V^2,Vl=p,n>2. 

(1.1) 

(1.2) 

Of course, these sequences can be extended to negative subscripts by the use of (1.1) and (1.2). 
The Binet forms for U„ and V„ are 

t/„ = a"-pn 

and 

where 

a-p 

V„ = a"+P", 

a 
= p + Jp2+4 /7--y//+4 

2 ' P 2 

(1.3) 

(1.4) 

(1.5) 

Certain specializations of the parameter/? produce sequences that are of interest here and Table 1 
summarizes these. 

TABLE 1 

p 
u„ 
K 

1 

F„ 
L„ 

2 

Pn 
Qn 

2x 

Pn{*) 
Q„{*) 

Here {Fn} and {Ln} are the Fibonacci and Lucas sequences, respectively. The sequences {Pn} 
and {Qn} are the Pell and Pell-Lucas numbers, respectively, and appear, for example, in [3], [5], 
[7], [11], and [17]. The sequences {P„(x)} and {Qn{x)} are the Pell and Pell-Lucas polynomials, 
respectively, and have been studied, for example, in [12], [14], [15], and [16]. 

Hoggatt and Ruggles [9] produced some summation identities for Fibonacci and Lucas 
numbers involving the arctan function. Their results are of the same type as the striking result of 
D. H. Lehmer, 

Stan"1 

7=1 V^I+1 

K (1.6) 
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to which reference is made in their above-mentioned article [9]. Mahon and Horadam [13] pro-
duced identities for Pell and Pell-Lucas polynomials leading to summation formulas for Pell and 
Pell-Lucas numbers similar to (1.6). For example, 

X t a n ~ x 
7=0 \^2i+lJ 

K 

~2' 
(1.7) 

Here, we produce similar results involving the arctan function and terms from the sequences 
{£/„} and {Vn}. Some of our results are equivalent to those obtained in [13] but most are new. 
We also obtain results involving the arctanh function, all of which we believe are new. 

2. PRELIMINARY RESULTS 

We make consistent use of the following results which appear in [1] and [6]: 

L if xy <1, tan *x + tan l y- tan l 

l-xy 

tan l x - tan l y = tan l 
fx-y} 

l + xy, 

tanh 1x + tanh ^ ^ t a n h l\ 

tanh-1 x - tanh-1 y = tanh"1 

i - i 1 , ( 1 tanh x = — log. -
2 \l 

if xy > - 1 , 

x + y 
l + xy 

1 + x 

l-xy 

| JC |<L 

coth l x = —log. I, |x|> 1, 
2 6 % x - 1 

tan l x = cot l 

tanh xx = coth * 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

We note from (2.7) and (2.8) that all results obtained involving arctan (arctanh) can be expressed 
equivalently using arccot (arccoth). 

If k and n are integers, and writing 

A = (a-/?r = / /+4 (2.9) 

we also have the following: 
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u2„-un+ku„_k = (-iy+ku2
k, (2.io) 

K+kv„-k-vn
2 = H-irku2

k, (2.ii) 

(ULV-, k even, 
un+k-u„_k= ; ; • ' (2.i2) 

lt/„rt, A: odd, 
(U„VL., A: even, 

Un+k + U^k= " * ' ' (2.13) 
lt4F„, £odd, 

fAf/tC/„, A: even, 
^ * - ^ t = * , ' (2-14) 

TtF„, A: odd, 

fVkV„, A: even, 
^ + r ^ = * " ' , ' (2.15) 

[A^f/„, /todd. 

^ 2 + ^ = ^ 1 , (2-16) 

UnU^H-W = Ulv (2.17) 

Identities (2.12)-(2.15) occur as (56)-(63) in [2], and the remainder can be proved using Binet 
forms. Indeed, (2.10) and (2.11) resemble the famous Catalan identity for Fibonacci numbers, 

Fn
2-F„,kFn_k=(-irkFk

2. (2.18) 

We assume throughout that the parameter/? is real and \p\ > 1. If p > 1, then {Un}™=2 and 
iK)n=i a r e increasing sequences. If p < - 1 , then {\Un\}™=2 and {|FJ}*=1 are increasing sequences 
and, if n>0, then 

Un < 0, n even, 
U„>0, n odd, 
F„ < 0, n odd, 
F„ > 0, # even. 

Furthermore, if \p\ > 1, then using Binet forms it is seen that 

(2.19) 

,. U„+m ,. V' Sm, mevenor/?>l, 
l i m _ J M , l i m ! m J ' ^ ' (220) 
„_>«, £/w «̂ co ^ l _ ^ ? OT odd and/? ^ - 1 , 

where 
o I/?I+A//? 2+4 ' 
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3, MAIN RESULTS 

Theorem 1: Tfn is an integer, then 

tan lUn+2~tm lU„=tm l 
( „ A 

\Pn+\) 
n even, 

f i A 
tan 

yUnJ 
+ tan 

f 1 A 

\&n+2j 

f TT \ 

- tan - l v. n+l 

\Un+lJ 
, n odd, « ^ - l . 

(3.1) 

(3.2) 

Proof: 

tan * [/„, 0 ~ tan * [/„ = tan 'n+2 
K1 + U»U»+2J 

= tan 
f „ \ 

\Un+lJ 

where we have used (2.2), (1.1), and (2.17). 
To prove (3.2), proceed similarly using (2.1), (2.16), and (2.17). • 

Now, in (3.1), replacing n by 0, 2, ..., In - 2, we obtain a sum which telescopes to yield 

I tan"1 

7 = 1 Uu-i 
= tan_1£/, 

Similarly, in (3.2), replacing n by 1, 3, ..., In - 1 yields 
(tr \ 

I ( - l ) ' - 1 tan 
/=! v^-y 

7T 

In-

\«-l + - 1 = - + (-lf_1tan-
4 V^2n+lJ 

(3.3) 

(3.4) 

The corresponding limiting sums are 

Ztan" -i P 
U 2i-i y 

/>*i, 

- p P S - 1 . 

Z ( -D" t an 
/=! 

n 
~4' 

(3.5) 

(3.6) 

We note here that (3.3) and (3.4) were essentially obtained by Mahon and Horadam [13], 
(3.3) in a slightly different form. When p = l, (3.5) reduces essentially to Lehmer's result (1.6) 
stated earlier. 

Theorem 2: For positive integers k and n, 

tan '_0 - tan - l Ut n-k _ 

KUn 

tan 

tan 

- l 

. VkU2
n j 

k even, 
(3.7) 

a 
|, A: odd. 

2« J 

Proof: Use (2.2), (2.10), and (2.13). D 
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Now, in (3.7), replacing n by k, 2k, ..., nk to form a telescoping sum yields 

I tan"1 

/=! 
= tan 

U, nk 

\u
{rl+l)kj 

S t a n l 
7 = 1 V U2ik j 

= tan 
Unk 

\U{n+\)k J 

A even 

;, k odd. 

Using (2.20), the limiting sums are, respectively, 

E t a n 
f TT2 

-I 
7=1 

Ui 
VJJl 

* - f o « - V > r * tan (S ), £even, 
\ y kuik 

Itan"1 

7 = 1 

^(-ly-1^"! = JtaiT'OT*), * odd, p>\, 
v ^2* y tan"1^ ), Arodd, p<-\. 

Theorem 3: For positive integers k and n, 

tan - l K ̂̂  -tan -if ^ 
V^ . T, 77+fc . 

tan 

tan 

A(-iTO2 

V ^2" J 

, k even, 

A: odd. 

Proof: Use (2.2), (2.11), and (2.15). • 

Again in (3.12), replacing n by k, 2k, ..., nk yields 

2>n 
;=1 W, 

" A ( | | = «ar'[|-l-«an- V. \ 
nk 

V^(77+i)/vy 
, £even, 

£tairlf(zirV 
7=1 K = tan 

2/jt y 
-tan 

* / 
K 77/C 

V^(77+l)/:y 
kodd. 

Since the left sides of (3.9) and (3.14) are the same, we can write 

tan 
U, nk 

\U(n+l)kJ 
+ tan K nk 

V(n+l)k) 
- tan l\ — J, A:odd, 

and taking limits using (2.20) gives 

t a n - 1 ( 0 = ̂ t a n - 1 f | | | j , kodd. 

The limiting sum arising from (3.13) is 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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Stan_1 = tan 
f o A 

\nj 
tan \S~K\ k even. (3.17) 

Theorem 4: If?2>2, then 

tanh - l 
f v \ 

tanh l 

+ tanh * 
#. n+2 

= tanh * K w+1 
2 ' 

V^«+l 
ft even, 

\UnJ 

- tanh 
\Un+2j 

= tanh * , n odd. 

Proof: To prove (3.18) use (2.3), (2.16), and (2.17); (3.19) is proved similarly. • 

These results lead, respectively, to 

XC-iy^tanh-1 

Z = l 

Vim 
\U2M J 

= tanh 1 ' l ^ 
\U<j 

+ (-l)"_1tanh-1 
f 1 ^ 

\L>2n+4 J 

(3.18) 

(3.19) 

(3.20) 

^ t a n h - l 

/=! 

A 

\^2i+2 J 
- tanh - l < \^ 

\U3; 
tanh l 

( 1 ^ 

\^2n+3 J 
(3.21) 

Note that in Theorem 4 our assumption that w > 2, together with our earlier assumption that 
\p\ > 1, is necessary to ensure that the arctanh function is defined. The corresponding limiting 
sums are 

^(-ly^tanh-1 

yU2i+3j 
= tanh * J_ 

V t a n h - f - ^ - V t a n h - 1 'O 
\U3J 

(3.22) 

(3.23) 

We refrain from giving proofs for the theorems that follow, since the proofs are similar to 
those already given. 

Theorem 5: Let n > k be positive integers where (k, n) *• (1,1) ifp - ±1. Then 

tanh 1 - t anh - l u-n-k 

\Un J 

tanh ' 

tanh"1 

V U2n 

v vku\ j 

k even, 

k odd. 

(3.24) 

This leads to 

Z t a n h rU^ 
/=i \U2ik j 

- tanh" Ut nk 

\U(n+l)Jc J 
, k even, (3.25) 
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Jtanh"1 

7 = 1 v vku% j 
- tanh U, nk 

\U(n+\)k J 
k odd. 

The corresponding limiting sums are 

f>nh-! fU^ 
7 = 1 

f 

\Plik J 

2] tanh - 1 

7=1 v vkufk j 

= tanh \d k), k even, 

f tanh_1(<r*), A: odd, p>\, 

)-tanh-10T*)> k odd, p<~\. 

Theorem 6: Let n > k be positive integers where (k, n) & (1,1) if 1 < \p\ < 2. Then 

tanh - 1 r n-k 

KK J 
-tanh -1 fV ^ 

\Yn+k J 

tanh -1 (-iro 

tanh l 

U2„ j 

A(-l)-^r 
VkV2

n j 

k even, 

A: odd. 

The resulting sums are 

£ tanh" 
7=1 \Unk j 

= tanh 1 

yVkj 
-tanh 

\V(n+\)k J 
k even, 

Jtanh"1 

7=1 vkvl j 
- tanh -1 

f n \ 

KVkj 
tanh -1 K nk 

\V{n+\)k J 
&odd. 

Since the left sides of (3.25) and (3.30) are the same, we can write 

tanh 1 

and taking limits yields 

U, nk 

\U{n+l)k j 
+ tanh - l 

f o "* 
= tanh - l 

\Vkj 
i, k even, 

1 
tanh-'(<T*) = -tanh 

2 

- l 
( *> \ 

yVkj 
k even. 

This should be compared with (3.16). The limiting sum arising from (3.31) is 

tanh"1 

Xtanh'1 

7 = 1 

' A ( - l ) ' - 1 ^ 
vkvl j 

<1^ 

tanh" 
KKJ 

t a n h " 1 ^ ) , kodd, p>\, 

+ tanh_1(<T*), kodd, p<-\. 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

At this point we remark that Mahon and Horadam [13] obtained results similar to our 
Theorems 2 and 3 and derived summation formulas from them. However, in our notation, they 
considered only the case k odd. 
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4 APPLICATIONS 

We now use some of our results to obtain identities for the Fibonacci and Lucas numbers. 
From (3.22) and (3.23), we have 

XC-iy^tanh"1 

7 = 1 

L '2/+3 
772 4l o g*2' 

Xtanh'1 

1=1 \*'2i+2 J 

1 log, 3. 

In terms of infinite products, these become, respectively, 

r r -̂ 2/+3 + (~ v Az/+3 _ o 
/=1 F2i+3+(-l)lL2i+3 

n°° ^2/+2 + 1 _ 3 
F - 1 

/=1 ^2/4-2 l 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

In (3.28), keeping in mind the constraints in the statement of Theorem 5 and taking k - 3, we 
obtain 

XC-iy-'tanh' , - 1 
f 1 A 

i= i \Fl) 
= - log , </>, 

or 

where <j> = —p- is the Golden Ratio. 
Finally, (3.34) yields, after simplifying the right side, 

(4.5) 

(4.6) 

^( - l ) ' - 1 tanh _ 1 

/=i 

' 5 ^ 

\L*iJ 
= -loge(3(^-l)) , 

or 

U4+(-i>'5 
Of course, many other examples can be given by varying the parameter k. 

(4.7) 

(4.8) 
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Mark Your Calendars Now! 

Mathematics Awareness Week 1995 

"Mathematics and Symmetry" 

April 23-29 1995 

Every year, Mathematics Awareness Week celebrates the richness and relevance of 
mathematics and provides an excellent opportunity to convey this message through local 
events. During a week-long celebration from Sunday, 23 April - Saturday, 29 April 1995, 
the festivities will highlight "MATHEMATICS AND SYMMETRY". Mark your 
calendars now and plan to observe Mathematics Awareness Week in your area, school, or 
organization. Look for further information from the Joint Policy Board for Mathematics, 
national sponsor of Mathematics Awareness Week, in future issues of The Fibonacci 
Quarterly. 
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SEQUENCES RELATED TO AN INFINITE PRODUCT EXPANSION FOR 
THE SQUARE ROOT AND CUBE ROOT FUNCTIONS 
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In the first section we shall consider three sequences associated with the square root function. 
In the second section we shall consider three sequences associated with the cube root function. In 
the third section, after considering three different sequences associated with the square root func-
tion, we make comparisons with the hope (unfulfilled) of a possible generalization. 

1. THE SQUARE ROOT FUNCTION 

In [1], Eric Wingler showed that repeated use of the identity 

R 2r + 2 I r2 

Vl + r = 1 + 
r + 2 V 4r + 4 

leads to an infinite product expansion of Vl + r in the following manner: For ax > -1 and n a 
positive integer, defining 

a\ 2an+2 an+l = -— and bn = —-
4an+4 a„+2 

implies ^\ + ax = II,* i fy • 
In the sequel, n will always denote a positive integer and, apropos the preceding product, for 

n> 1, define cn - bxb2b3 ...bn. 
In Definition 1 we shall define three sequences {x„}, {yn}, and {zn}, which will depend on ax 

and which are related to {a„}, {&„}, and {cn}. These definitions are motivated by our desire to 
have, when ax is a positive integer, xn,yn, and zn be integers such that cn-xnlyn, (xn,yn) = \, 
and zn is the numerator of an+l when it is written as a reduced fraction with positive numerator. 
As can be seen from Theorem 2 and Lemma 3, these definitions will give us even more than what 
we desire. 

Definition 1: Define the sequences {x„}, {>>„}, and {zn} as follows: 
For 2|a1? define 

*i=ai + l, Ji = 2 a i + 1' a n d Zl"(f~ 
otherwise, 

x{ = 2ax +2, yt-ax+ 2, and zx = a\. 

For 4\ax and n>l, define 
2 Z„ , [ Z„ 

xn+\ - x
nyn> yn+\ -yn ~ ' a Zn+i ~ i 9 
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otherwise, 
Xn+1 = 2xnyn> yn+l = 2yl ~Zm a n d Zn+l = Zn • 

As an example, for ^ = 6, we have that the first five terms of each of our six sequences are: 

a _ 6 a = 9 _ a __8J_ a = 6561 „ = 43046721 
wl u u 2 7 u 3 448 u 4 947968 "5 3619451788288 
/) -2 h =22- h - 1Q58 /> - 1909058 /, _ 7238989670018 
^1 4 ^ 2 23 U 3 977 ^4 1902497 ^5 7238946623297 
r = 1 r = i £ /" =2576 r 5033504 ^ 19152452518976 
Cl 4 C2 23 C3 977 C4 1902497 C5 7238946623297 

J C 1 = 7 x2=56 x3=2576 x4 = 5033504 x5 = 19152452518976 
yx = 4 ^2 = 23 j 3 = 977 >>4 = 1902497 y5 = 7238946623297 
Z l = 9 z2=81 z3 = 6561 z4 = 43046721 z5 = 1853020188851841. 

W P flkn h a v p t h a t /7 - 1853020188851841 
VVC dlbV HdVC Ulctl W6 - 52402348213090018234298368 ' 

By Definition 1, for ax not an integer, the sequences {xn}, {y„}, and {zn} are defined by: 

xx - 2ax +2, yl=a1+ 2, and z2 = a\ 
and, for w > 1, 

*„+l = 2xny*> yn+l = 2yl ~Zn> * n d Z„+{ = Z„2. 

The main results, namely, Lemmas 3-6 and Corollary 7, do not require ax to be an integer. In 
fact, the only results for the square root function that do not hold when ax is not an integer are, 
not surprisingly, the ones relating to xn, yn, and zn being relatively prime (Lemmas 8-10). 

In Theorem 2 we shall state our results concerning the square root function. These results 
relate the six sequences {an}, {£„}, {c„}, {xn}, {yn}, and {zn}. 

Theorem 2: Let ax and n be integers such that n > 1 and ax>-\. We have that 

«„+1 = I £ L - , K+l =5*^, and c=^. 
y„-z„ xny„+l y„ 

In addition, depending on whether A\ax or not, 
2 2 

h - y* or h - ^n 

yn+\ y?i+i 

For ax an integer, we also have that 

(zn?yl-zn) = l> (x„9y„) = l, and (2y2
n,yn+l) = l. 

With Definition 1 as made, the proof of Theorem 2 is fairly straightforward and follows from 
Lemmas 3-6 and 8-10. 

Lemma 3: For n>\, x\- (ax + l)y% = -{ax + l)zn. 

Proof: This result is easily shown to be true for n = 1. Thus, assume this result is true for 
n- k, where k > 1. We shall prove this result is true for n = k +1 in the case where 4 does not 
divide ax. The proof is similar for A\ax. 
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We have that 

**+i - («i + l)A2
+i = (2xkykf- (a, + \)(2y2

k - zk)2 

= 4xlyl - M<h+i)yt+4(«i+l)ylh - («i+1)4 
= *y\lA - (ai+1)^]+Msh+l)ylh - i<h+1)4 
= -4y2M+iK + 4(«i+l)ylzk - to+1)4 = -(«i+i)**+i- D 

Comment: Let ĉ  be an integer such that al+\ is a perfect square. Since, by Definition 1, zn is 
also a perfect square, we can let 

* M « i + l ) 7 - ^ = T ^ and / ^ V (<*! +1) ax +1 

Thus, by Lemma 3, y\ - pi + k2. 
For ax = 8 and w = 1, 2, 3, and 4, the identity j„ = pn + &„ gives us 

5 2 =4 2 +3 2 

172=82+152 

2572=322+2552 

655372-5122+655352. 
In this example, yn is the nih Fermat number. 

Lemma 4: For n > 1 and ^ > - 1 , we have that an+l - zn I{yl -zn). 

Proof: This result is easily shown to be true for n = 1. Assume ak+l ~zk!{y\~zk), where 
k > 1. We shall prove this result is true for « = & +1 in the case where 4 does not divide ax. The 
proof is similar for 4\ax. 

Since 
(yl-zk)2al+\=zl=zk+i 

and 
(y2

k -zkf (4ak+l + 4) = 4(y2
k - zk)<j/2 -zk)(ak+l +1) 

= 4(y2k-zk)[zk+(yl-zk)] 
= %yk-zk)yk 

= 4yt-4y2
kzk+4' 

= {2yl-zkf-z2
k 

= yk+l ~~ Zk+l 

iy2 ~ zk)2 aM _ 

2 

Zk+\ 

we see that 
2 

a =
 a ^ + i = — - — = — D 

"+2 4a ,+ 1 +4 (yl-Zk)\4ak+l+4) y2
k+l~zk+x 

Lemma 5: For n > 1 and at > - 1 , we have that bn+x = xn+lyn I xnyn+x. Also, for 4^?,, we have 
K+i = yl !y^ otherwise, bn+l = 2j;2 /j/„+1. 
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Proof: By Lemma 4 

ZL.I = 
««+1 + 2 2y2

n-zn 
Thus, for A\al, 

_2a„ + 1 +2_ 2j„2 

otherwise, 

b = fo* = ^ = ^ n =
 xn+\yn. 

2jw
2-z„ j w + 1 xnyn+l xnyn+1

9 

h _ 2yl _ 2yl _ 2xnyl _ xn+lyn 

^yn ~~zn yn+\ x«>Wi xnyn+\ 

Lemma 6: For n > 1 and al>-\9 we have that cn - xn Iyn. 

Proof: We easily see that 
2a, + 2 JCi 

cx = bx = — i = — . 
a 1 + 2 j / , 

Now assume, for k > 1, that ĉ  = x̂  / ^ . Thus, by Lemma 5, 

T Xk Xk+^k Xk+] 

yk
 x

kyk+i yk+i 

As a corollary to Lemmas 4, 3, and 6, we have 

ollary 7: For « > 1 anc 

Proof: We have that 

Corollary 7: For « > 1 and ax > - 1 , we have that aw+1 = ^~--1. 

^2 

2 

'̂ + 1)[t - 1 = ^ - 1 . D 

The next lemma follows directly from Definition 1. 

Lemma 8: For ax and n integers such that n> 1, exactly one of xnry„, mdzn is even. More 
explicitly, we have that 

when ax = 0 (mod 4), zn is even, 
when ax == 2 (mod 4), J>J is even and, for w > 2, xw is even, 
when ax = 1 (mod 2), x„ is even. 

Lemma 9: For a2 and n integers with n > 1, each of (yn, zw), (yn, J„+1), and (x„, j ^ ) is a power 
of2. 

Proof: By Definition 1, 0^ ,^) = 1 = 2°. We shall complete the proof by mathematical 
induction; thus, we shall also assume (yk,zk) is a power of 2, where k > 1. Also assume there is 
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an odd prime/? that divides (>Vhi>z£+i)- Since/? divides zk+l and zk+l\zl, we must have p\zk. 
Now either 

2 ^ + i = 2 ^ - ^ oryk+l=2yl-zk. 

Hence, since/? is an odd prime such that p\yk+l, and p\zk, we see that p\yk. Thus, p divides 
(yk,zk). This contradicts (yk, zk) being a power of 2. 

Using the fact that, for n > 1, (yny zn) is a power of 2, we shall now give indirect proofs that 
<X>>Wi) a n d (xn9yn) are also powers of 2. 

Thus, assume/? is an odd prime that divides (yn, yn+l). Now 
2y»+i - 2yl = -zn or y„+l - 2y2

n = -zn. 

In either case, p\zn. Thus, p is an odd prime dividing (j/w, zn); this is a contradiction. 
Finally, assume/? is an odd prime dividing (xn,yn). Thus, by Lemma 3, p divides 

/ ' \ 
\ Xn \ 2 

*,, —77 - ; v w = - V 

Thus, p is an odd prime dividing (yny zn); this is a contradiction. • 

Lemma 10: For ax and ft integers such that n > 1, we have that 

O ^ ^ - O ^ (2^,^„+i) = l,and(xw,^w) = l. 

Proof: First notice that, by the preceding two lemmas, 

(yn> zn) = \ (y», J>w+i) = 1, and (x„ ,yn) = l. 

Thus, 

and, since yn+l is an odd integer, 

2. THE CUBE ROOT FUNCTION 

In [1], Eric Wingler also showed that repeated use of the identity 

,r 2s + 3 r 2s3 + s4 

Vl+S= 3 1-f -
s + 3 \ (2s + 3)3 

leads to an infinite product expansion of^Jl + s in the following manner: For a} > 0 and // a posi-
tive integer, defining 

, 2dl+d* A 2dn+3 
d,=au d„+]=— ^r, and e„ =•—- , 

1 *' "+l (2*/„+3)3' " c / n + 3 ' 
implies ljl+dx - Y[*L\ ei • 

A propos the preceding product, for // > 1, let fn = exe2e?i... en. 
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In Definition 11, we shall define three sequences, {un}, {vn}, and {wn}, which will depend on 
ax and which are related to {dn}, {en}, and {/„}. These definitions are motivated by our desire to 
have, when ax is a positive integer, un, vn, and wn be integers such that fn -unlvn and wn can be 
a numerator of dn+l when it is written as a fraction; we do not require the fractions to be written 
in lowest terms. As can be seen in Theorem 12, which does not require ax to be an integer, the 
definitions in Definition 11 will give us even more than we desire. 

Definition 11: Define the sequences {ww}, {vw}, and {wn} as follows: 

ux = 2a{ + 3, vl=al+ 3, and wx - a\ + 2a 3 , 

and, for n > 1, define 

For ax an integer, the sequences {un}, {vw}, and {wn} are integer sequences. 

In Theorem 12, we shall state our results concerning the cube root function. These results 
relate the six sequences {dn}, {ej, {/„}, {un}, { v j , and {wn}. 

Theorem 12: F o r # > l , 

d -?*. e - u»+iv» a t l d f -On. 
an+l - 3 •> en+l ~ J d n u Jn ~ 

un unvn+l vn 
We also have that 

_3u3„+2w„ 
en+\ ~ - 3 

We shall now prove four lemmas and a corollary. These five results are analogous (also see 
the comment at the beginning of Section 3) to Lemmas 3-6 and Corollary 7. The four lemmas 
will provide a proof of Theorem 12. 

Lemma 13: For n > 1, #3 - (aj +1)v3 - -wn. 

Proof: This lemma is true for n = 1. Assuming this lemma is true for n = A, we see that 

"*+i ~ ("i + !K3
+1 = %3(3%3 +2u^)3 - {ax + l)v3(3z/3 + ^ ) 3 

= ulQul +2wk)3 - ( ^ +wk)(3u3
k +wk)3 

= u3
k(27ul+54u%wk +36u3

kwl +$w3
k) 

-<& +^)(27%9 +21utwh+9ulwl + w\) 
= ul(27u'wk +21u3

kw2
k +lw3

k)-wk(21u9
k + 27u6

kwk + 9u3
kw2

k +w3
k) 

Lemma 14: For « > 1 and ax > - 3 / 2 , t/n+1 = ww /w3. 

Proof: This result is easily seen to be true for n = 1. Thus, assume that, for k > 1, <4+1 = 
wklu3

k. Since 
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and 

we have that 

2d3 +dA -d3 (d iZ)-™* 2uk+wk-wk+i 
ZClk+l + ak+l ~ ak+l \ak+l + A) - 9 3 - 12 

Uk Uk Uk 

9/7 , o _ 3 ^ +2wk _ uk(3u3
k +2wk) __ uk+l 

Zak+l + J - 3 - 4 ~ 4~~: 

uk uk uk 

d =
 2 < ^ + l + < # + ! =

 wk+l uk2
 = Wfc+l 

*+2 (2rf,+1 + 3)3 ii£2 i£+1 n2+1" 

Lemma 15: For » > 1 and a1>-3/ 2, 

3u3„+2wn _ _ un+lv„ 
~> 3 w+1 
3 t t * + W n UnVn+l 

Proof: Let w > 1. By Lemma 14, 

• 

_ 2<i„+1 +3 _ 3ul+2wn u3
n _ 3ul+2wn 

dn+l+3 ii* 3ii^+wn 3^+w„ 

By Definition 11, this implies that 

_ unvn(3u3
n +2wn) _un+lvn 

Lemma 16: For rc > 1 and ax>-3/2, fn = un/vn. 

Proof: Since % = 2 ^ + 3 and vx = dx + 3, 

_2rf1+3 _2a x +3 _wL 
1 _ ^ + 3 ~ ax+3 " vt 

Now assume that, for k> I, fk=uk/vk. Thus, 

Jk+\- Jkek+l~ - • U 

Corollary 17: For ?2 > 1 and ax>-3l 2, we have that 

Proof: We have, by Lemmas 14, 13, and 16, 

\ 3 

! 3 ^ = (a 1 + iK-n, = ( a i + 1 JO _ 1 = 5L+1_!. 
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3. COMPARING THE SEQUENCES ASSOCIATED WITH THE 
SQUARE ROOT AND CUBE ROOT FUNCTIONS 

Comparing Definition 1 with ax not being an even integer and Definition 11, we have, for 
w>l, 

*„+i = 2x,y^ yn+i = 2yl - *„, and zn+l = z„2, 
but 

Un+l = ^nOUn+2wnl Vn+l=VnOul+™nl ^ d W„+l = W* ( 2 ^ 3 + W» ) . 

This does not lead to any obvious generalization. 
Recall that one of the reasons for our choice of the sequences {xw}, {yn}, and {zn} was to 

have (xn,yn) = l. When choosing the sequences {un},{vn}, and {wn}, to make our task less 
difficult, we did not require that {un,vn)-\. If, for the square root function, we relax the rela-
tively prime requirement, we can define three sequences that are associated with the square root 
function (compare Lemmas 3-6 with Lemmas 19-22) and which show more similarities with the 
three sequences we defined for the cube root function. We shall now define these three different 
sequences for the square root case. 

Definition 18: Define the sequences {gn}, {/*„}, and {jn} as follows: 

ft = 2 ^ + 2 , ^ = a j + 2 , a n d y ^ a j ^ + l ) , 

and define, for n> 1, 

gn+l=gn(2g2+2Jn) = 2gn(gn+Jnl hn+l = K(2gn + fn)> Jn+l = Jn (gn + Jn) • 

We shall now verify four lemmas similar to Lemmas 3-6. 

Lemma 19: For n > 1, g2
n - (ax + \)h2

n = -jn. 

Proof: This result is easily shown to be true for n = 1. Thus, assume this result is true for 
n- k, where k > 1. We shall prove this result is true for n - k +1. We have that 

g2
+1 - (a, + l)h2

+1 = 4g2
k(g2

k +jk)2 - (a, + \)h2
k(2g2

k -jkf 
= 4gt[g2k~(a1 + l)h2

k] + 4g4
kjk + 4g2

kjk[g2
k-{ax + \)h2

k] 
+ 4g2

kj2
k-(al+\)h2

kj2
k 

= -4gtJk +4g4kJk-4g2J2k +4g2Jk -Jk(ai + Wl 
= -Jk(g2k+Jk) = -Jk+i- • 

Lemma 20: For n > 1 and ax > - 1 , we have that an+l = jnl g2. 

Proof: This result is easily shown to be true for n = 1. Assume ak+1 - j k I g2, where k > 1. 
Now 

1 1 1 1 1 1 

a _ ak+l __ Jk gk _ Jk _ Jk(gk+Jk) _ Jk+l 
k+2 4a , + 1 + 4 gtKgl^Jk) 4gl(g2k+Jk) *g2M+Jk)2 gli' 

48 [FEB. 



SEQUENCES RELATED TO AN INFINITE PRODUCT EXPANSION 

Lemma 21: For n > 1 and ax > - 1 , we have that 

2gn+2Jn_h _ gn+A 
2 . • ~ un+l 2gn+Jn gnK +1 

Proof: By Lemma 20, 

_2an+x+2 _2(gl
n+jn) gl

n _ 2{gl
n +jn) _ 2gn{gl

n +jn)hn _ gn+xhn 
£» - . - - . 

Jl 

a„+l+2 gl Zgt+Jn 2gl+Jn grA(2gl + Jn) gnK, 
w+1 ~~ _. . o ~~ 2 ' ~ 2 . • — ~ 2 " ! ~ i 7Z 2~~ T T ~~ "i * LJ 

+1 

Lemma 22: For n > 1 and ax > - 1 , we have that cn= gnlhn. 

Proof: This result is easily shown to be true for n = 1. Assume ck-gklhk. Thus, by 
Lemma 21, 

_ n h - gk gfc+A _ g"fc+i m 

K gA+i hk+i 

Comparing Definitions 18 and 11 and Lemmas 19-22 with Lemmas 13-16, we see a very 
close connection between the square root function and the cube root function: 

• gx - 2ax +2 , hx - ax + 2, jx - a\ (ax +1), and 

ux=2ax+3, vl=al+3, wl=ax(al+2) 

and, for n > 1 and ax > - 1 , 

• gn+l =gn(2g2n +2Jn\ hn+l = K(2gl + Jnl Jn+l = Jnign + Jnl and 
Wa+1 = "* (3^3 + 2 Wn I Vn+l = V„ 0Ul + W , X W«+l = Wl (2lll + W , X 

• gl ~ Oi + 0 ^ 2 = -7„ and ul -(ax + \ )v3
n = - ww, 

/ w 
• a„+ 1 = -f- and </B+1 = -f-

gn Un 

2g„+A gA+i 

. cn=^ and / „ = ^ . 

> 

and 3»„3+2w„ 
3w„3+wn 

_ e n + l 
UnVn+l 

Sometimes the correct generalization, if any, and the obvious generalization, if any, are not 
quite exactly the same. 
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The generalized Fibonacci sequence {Hn} where Hn = Hn_x + Hn_2, Hl= A,H2~B, A and 
B integers, has been studied in the classic paper by Horadam [6] and by Hoggatt [4] and 
Brousseau [1], among others. Here we develop ten greatest integer identities for {Hn}. Rather 
than establishing these identities "for n sufficiently large," we show exact lower boundaries for 
subscript n dependent upon the subscript of Fk, the kth Fibonacci number. 

Let A, B be positive integers with A < B and define Hn (= Hn(A, B)) by 
HX = A, H2=B, Hn = Hn_^Hn_2 forn>3. 

It is not difficult to see that in the sequence B-, A,B- A,2A-B,2B-3A,5A-3B,... there is 
a leftmost term the double of which is less than or equal to the preceding term; otherwise, the 
rational number AIB would satisfy F2n I F2n+l < AIB < F2n+11 F2n+2 for all n. Consequently, 
every sequence Hn(A,B) agrees, except for some initial finite set of terms, with a sequence 
Hn(A\ Bf), where Af and B' are positive integers with A' = B' or 2Af < B'. Then, without loss 
of generality, we take A-B or2A<B to standardize the subscripts of {Hn} so that Hn>0 for 
all n>0 where we take H0=B- A. (The term 2A-B preceding H0 will be negative when 
A*B.) 

For these reasons, in the following we confine our attention to the two cases (a) A = B; and 
(b) 2A < B. We call these, respectively, the Fibonacci case and the Lucas case. Throughout, we 
put H0=B- A and define k by Fk_x <H0 < Fk for k > 3 in the Lucas case and by Fk < A <Fk+l 

for k > 2 in the Fibonacci case. 
In the following we prove ten identities for the general sequences {Hn}, 0<A<B. In 

Sections 2 and 3 we give ten greatest integer properties of {Hn} in the Fibonacci and Lucas cases 
and, finally, in Section 4 we give these ten properties in a form which includes both cases. 

1. PROPERTIES OF {Hn} WHERE Hn = Hn_t +Hn2 

The following identities needed for our development are true for all {Hn}, Hn = Hn_l +Hn_2, 
0 < A < B, and are given in [1], [4], or [6] or else are proved here. 

Hn=Fn_2A + Fn_xB. (1.1) 

Fn=(a"-p")lS, where a = (l + j5)/2,fi = (l-j5)/2 
are the roots ofx2 -x-l - 0 and ap = -\, a + /? = 1 (1.2) 

Hn - can +df3n for suitable c and d. (1.3) 
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From (1.1) and (1.2), 

V5 H„ = A(a"-2 - P"-2) + B(a"~l - p"'1) 
= a"-\B-pA)-p"-\B-aA) 
= an{pA-B)P+p\B-aA)a 
= a"(A-p(B-A)) + p"(a(B-A)-A\ 

so that one choice for c and d, where A = H1 and B- A = H0, is 

c = (A-P(B-A))lS and rf = ( a ( 5 - ^ ) - ^ ) / V 5 . (1.4) 

Identities (1.5) and (1.6) are easily established by mathematical induction: 

ak~2 <Fk<ak-\ k>3; (1.5) 

1/2" <\pf<l/2, n>2, \p\"<l/4, n>3. (1.6) 

Lemma 1.7: There exists an expression K(m) such that 

amFn = Fn+m+p"~»'K{m) 

where \K(m)\< 1, m > 1, and j^(m) < 0 if m is even while K(m) > 0 if m is odd. 

Proof: Multiply by am in (1.2) to write 

a w F „ = a w ( a w - ^ ) / V 5 = ( a " + w - ^ ^ 

amFn = (an+m - fin+m)IS+pn~m{(32m + (-l)w+1)/ V5, (1.7) 

which will verify Lemma 1.7. • 

Lemma 1.8: There exists an expression K*{m), 0 < K*(m) < 1, such that 

Fnlam = Fn_m+P"-mK\m),m>\. 

Proof: Multiplying by 1 / a™ in (1.2) yields 

FJam = {an-p")lamS = {a""" - pn~m) 141 + (y9"""" + (-1)'"+1 p"+m) IS 

Fnlam=Fn_m+P"-"\\ + {-\)m+xp2'")lS, (1.8) 

which will verify Lemma 1.8. • 

The characteristic number D for {//„} is defined as D = B2 - AB- A2 in [1] and [6], and 

Hl-H^H^i-VfD, (1.9) 

where D> 0 in the Lucas case where 2A<B, while D - -1 for the Fibonacci numbers, 

^2-^,+ 1=(-ir+ 1- o-io) 
Identities (1.9) and (1.10) show a subtle but important difference in parity between the Lucas 

and Fibonacci cases, since n even in (1.9) gives a positive value while n even in (1.10) gives a 
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negative value. The difference in parity causes us to consider the Fibonacci and Lucas cases 
separately. 

2. THE FIBONACCI CASE: THE SEQUENCES {HJ WHERE A = B 

Consider the Fibonacci case for {Hn} where A = B. Then Hn = AFn, A>1. We write ten 
greatest integer identities which are true for {Hn} when Hn = AFn, and hence for {Fn}, since the 
Fibonacci sequence is the special case A = B = 1. We write [x] to denote the greatest integer 
contained inx, and in every case, we determine kby Fk < A <Fk+l, k>2. 

Theorem 2.1: [aAFn ] = AF„+l, n odd, n>k,k>2,A>l; 
[aAFn]=AFn+l-l w-even, n>k,k>2, A>\. 

Proof: Let m= 1 in (1.7) to write 

Multiplying by A and computing (J32 +1) / V5 = -fi, 

aAFn = AFn+1+(-An- (2.1) 
If A<Fk+l, we have A<ak by (1.5), and 

\-Apn\<\akpn\ = \pn-k\<\ 
for n > ky k > 2, by (1.6). If n is odd, 0 < -Aft" < 1, while if n is even, 0 > -Afin > - 1 , giving 
Theorem 2.1, forn>k, k>2. • 

Theorem2.2: {aAFn +1/2] = AF„+l, n>k + 2. 

Proof: Since \-Afin\<\akfin-k\ = \fi"-k\<l/2 ifn>k + 2, adding 1/2 to each side of (2.1) 
will ultimately yield Theorem 2.2. • 

Theorem 2.3: [AFn/a] = AF„_l9 n odd, n>k, k >2, A > 1; 
[AF„/a] = AFn_x - 1 , « even, A2 > k, k > 2, A > 1. 

Proof: By taking m = 1 in (1.8) and multiplying by A, 

AFn/a = AFn_l + (-Afin). (2.3) 
The proof is finished by analyzing \-Aj3n\ as in the proof of Theorem 2.1. D 

As in Theorem 2.2, variations of Equation (2.3) will lead to Theorems 2.4 and 2.5; the proofs 
are omitted. 

Theorem2.4: [AFJa + l/2]= AFn_x, n>k + 2. 

Theorem2.5: [(AF„ + l ) / a ]= AFn_l7 n>k + 2. 

Theorem 2.6: [amAFn ] = AFn+m, n odd, n>m + k; 
[amAFn]=AFn+m-\, /?even, n>m + k. 
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Proof: Multiply by A in Lemma 1.7 to write 

amAFn = AFn+m + ArmK{m) (2.6) 

where \K(m)\ < 1, m > 1, and K(m) < 0 if m is even while K{m) > 0 if m is odd. Since also A < ak 

when n>m + k, 

|^w"wX(m)|<|aVn"', ,^(w)|<|)8',-' , ,"*|<l. 

If w is odd, and m even, K(rn)<0,f3"-m <0, and 0 < Af5n~mK{m) < 1, while w odd 
makes the same result from iC(m) > 0 and fin~m > 0. Thus, if n is odd, [a 'MFJ = AFn+m.. 

If w is even, m odd makes £(m) > 0, [in~m < 0, so that 0> Af5n~mK{m) > - 1 , while m even 
gives the same result from K(m) < 0 and f}n~m > 0. If n is even, [amAFn] = ^ i 7 ^ - 1 . D 

Adding 1/2 to each side of (2.6) will ultimately yield Theorem 2.7. 

Theorem2.7: [amAFn+\/2]=AFn+m, n>m + k + 2. 

Theorem2.8 [AFn / am] = AFn_m, n-mQven, n>m + k; 
[AFnlam] = AFn_m-\ w-modd, n>m+.k. 

Proof: Refer to Lemma 1.8 to write 

AFJam = AFn_m + Ap"-mK*(m) (2.8) 

where 0 < K*(m) < 1, m > 1, and 4̂ < a/c. 
If n-m is even and n-m> k, 

0 < AJ3"-mK*(m) < akp"-mK\m) < 1. 

If n-m is odd, /T~w < 0 while A > 1 and, if n > m, 

0 > Afin-mK\m) > (5n-mK\m) > -\pf-m > - 1 , 

finishing the proof. D 

Theoreim2.9: [AFn Iam +1/2]= AFn_m, n>m + k + 2. 

Proof: Add 1/2 to each side of (2.8), and analyze the resulting expressions for n-m even, 
and for n-m odd. D 

TheoremZIO: AFn =[Aa" IS + 1/2], n > k, k > 2, A > 1. 

Proof: 
AanlS + \l2 = A{anlS-pnl4l) + Apn lS + 112 

= AFn + A/3n/j5 + l/2 
where 

| ^ / V 5 + l /2 |<|a^"/V5 + l/2|-|)5"-/:7V5 + l/2|<l 

for ;?>£andA;>2. D 
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If A - 1, we have, of course, the Fibonacci numbers {Fn}. Theorems 2.1 and 2.6 for {Fn} 
appear in [5], and Theorems 2.2 and 2.10 in [4], for A = 1 and n>2. By taking A = 1 in the 
proof of Theorems 2.2, 2.4, and 2.5, we find that in the special case AHn -Fn all three are true 
for n > 2. 

If {Hn} contains Hn = kFn butHn_l ^ KFn_{, then we have the Lucas case A^B of the next 
section. 

3. THE LUCAS CASE: THE SEQUENCES {HJ WHERE 0 < 2A < B 

Let Hn -Hn_x +Hn_2 whereHx = A,H2= B, and 0<2A <B. We prove ten greatest inte-
ger identities as before, but we define k by 

Fk_x<B-A<Fk, k>3. 

Referring to (1.5), we can combine inequalities to write 

B-A<ak'\ k>3; andl</L (3.01) 

By applying (1.4) and (3.01) and making careful analysis of signs, we next establish 

\45dp"\<\p\n-k-\p\n,n>k, (3.02) 

where d = (a(B - A) - A) IS > 0. 
If n is even, B" > 0, and 

0<SdBn = (a(B -A)- A)B" < {aak"x -1)0" 

= (-l)kB"-k-B" 

= \B\-k-\B\". 
If n is odd, -B" > 0, and 

0 > Sdp" = (A- a(B - A))(-B") > (1 - aak'l)(-B") 

= -B" + (-\)kB"-k 

= \B\n-\P\-k 

which establishes (3.02) and will allow us to write several identities for {H„}, in the Lucas case. 

Theorem 3.1: [aHn] = Hn+l, n even, n > k; 
[aHn] = Hn+l-l, nodd, n>k. 

Proof: 
aHn=a(ca"+dj3") 

= can+l+d/3"+l-dj3n+l-dj3"-1 

= Hn+l-dr\P2 + l) 
aHn=Hn+1+j5d{3". (3.1) 

By (3.02), \45dpn\<\p\n-k-\p\n<\-\l2\n>k, which establishes Theorem 3.1 by considering 
the cases n even and n odd. • 
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Theorem 3.2: [aHn +1 /2] = Hn+l, n>k + 2. 

Proof: Add 1/2 to each side of (3.1) and use (3.02) to analyze the result. • 

Theorem3.3: [H„/a] = Hn_u n even, n>k\ 
\HJd\ = H^-\ wodd, n>k. 

Proof: 
HJ a = (can +dfin) / a = ca"~l + d/3"-1 -dp"'1 -dj3n+l 

HJa^H^+Sdp* (3.3) 

where we note the same fractional expression as in Theorem 3.1. D 

Theorem 3.3 corrects a proof of a theorem of Cohn [2; p. 31], in which he gives the next 
lower term to N as [NI a], which is true when n is even but not when n is odd. Dr. Cohn has 
acknowledged the error in a private correspondence with one of the authors. 

Theorem3.4: [Hn/a + \/2] = Hn_u n>k + 2. 

The proof is identical to that of Theorem 3.2, but using (3.3). • 

Theorem3.5: [(Hn +l)/a] = Hn_l, n>k + 3. 

Proof: From (3.3), 
(Hn+l)/a = Hn_l+j5d/3" + l/a. 

By (3.02), |V5rf/T|<l/4-l/2w for«>£ + 3. Adding 1/a to each term of the inequality for 
the case n even, and then for the case n odd, we find that in either case, we obtain 
§<4idpn + \la<\. D 

Theorem 3.6: [amH„] = Hn+m, n even, n>m + k,m>2; 
[amHn] = Hn+m-l, n odd, n>m + k,m>2. 

Proof: Since l / a w =(-1) W JS W , 

amHn = am{can+dpn) 
= can+m + d/3n+m - dpn+m + {-\)md/3n-m 

= H^a+j5d/3™((-l)m-fi2m)/^ 
amHn = Hn+m+SdrmM{m) (3.6) 

where \M{m)\<\ form>\. By (3.02), 

|V5d0 w - w M(/ f i ) | ^ 

for n-m>k. Consider the signs carefully. For n odd, m odd, J3n~m>0 and M{m) < 0, while for 
n odd, m even, fin~m < 0 and M{m) > 0, so whenever n is odd, 

0>^d/3n-mM(m)>l/2"-m-1>-19 
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so that [amH„] = Hn+m - 1 . For n even, m odd, ft" m <0 andM(/w) <0, while for n even, 7w 
even, pn~m > 0 and M(/w) > 0, so whenever n is even, 

0 < S dp"-mM{m) < 1 - 1 / 2"~m < 1, 

so that [a m / / J = //„+m. D 

TheoremS.7: [amH„+l/2] = Hn+m, n>m + k + 2. 

Proof: By (3.6), 

amH„ +1 / 2 = #„+ffl +4ldp"-mM{m) + 1/2 

where |V5^""mM(w) |<l /2- l /2""m for»-/w>A: + 2. Add 1/2 to each member of the 
inequalities for the even and odd cases as in the proof of Theorem 3.2. • 

Theorem3.8: [Hnl am] = H„_m, n-modd, n>m,n-m>k; 
[Hnlam] = Hn_m-\, n-meven, n>m,n-m>k. 

Proof: Since l / a m =( - l ) m /T , 

HJam = {can+dpn)lam 

= can-m+dp"-m-dp"-m + d{-\)mpn+m 

= #„_M + dp"~m{-\ + (-l)m+1p2m) 
- /f„_m + Sdpn-m{{-1 + (- l)m+1yS2m)V5) 

HJam=Hn_m+Sdp"-mJ(m) (3.8) 
where | J(/w)| < 1 for m > 1 but Jirri) < 0 for m > 1. From (3.02) we have the same results as in the 
proof of Theorem 3.6 except for the signs: 

\Sdp"-mJ(m)\ < \p\"-m-k-\p\n~m. 

For n odd and m odd, or for n even and m even, /?""m > 0 and J(m) < 0, and we have 

0 > 4sdp"-mJ(m) > \l2"-m -1 > -1 

for n - m > k, n -m even, making \Hn I am] = Hn_m -1. 
For n even and m odd, or for n odd and m even, P"~m < 0 and J(m) < 0; 

0 < Sdp"-mJ(m) < 1 - 1 / 2"-m < 1 

for «-/w odd, n-m>k, and [#„ / a m ] = #„_m, finishing the proof. D 

Theorem3.9: [H„ Iam + 1/2] = H„_m,n>m,n-m>k + 2. 

Theorem 3.9 is proved by using the methods of Theorems 3.2 and 3.7 to operate on (3.8). 

Theorem 3.10: Hn = \ca" + 1/2], n> k, where c = (Hl -pH0)lS. 
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Proof: By (1.3) and (1.4), 
can + 1/2 = can + d$n-dpn + 1/2 = Hn-dfin + 1/2. 

Divide each term of inequality (3.2) by V5 to write 

\dpn\<{\f5\n~k -\(3\n)l S <{\-H2n)l S <\I2, n>k. 

If n is even, then /?" > 0, and 0>dj5n > -1 / 2 . Add 1/2 to each term to determine that 1 > 1/2 — 
dJ3n > 0. If w is odd, then £" < 0, and 0 < -d(in < 1 / 2 gives 0 < 1 / 2 - dfin < 1 upon adding .1/2 
to each term. In either case, Hn = [can +1 / 2]. D 

Corollary 3.10: Ln = [a" +1 / 2] for the Lucas numbers (Ln),n>2. 

Corollary 3.10 appears in [4]. 

4. THE GENERAL CASE: (Hn) WHERE A = B O R 0 < 2 A < B 

In comparing the ten theorems of Sections 2 and 3, notice close agreement except for 
whether subscripts are odd or even, as expected from (1.9) and (1.10). The following results are 
true for both the Fibonacci and Lucas cases, and hence for all {Hn}, where we take k from Fk_Y < 
H0 = B-A<Fk+1ifA*B,mdftomFk<A<Fk+li£A = B. 

Theorem. 4.1: [ccHn] = Hn+l or Hn+l -\n>k. 

Theorem4.2: [aHn +l/2] = Hn+l9 n> k + 2. 

Theorem 4.3: [Hn I a] = Hn_x or Hn_x - 1 , n>k. 

Theorem 4.4: [Hn / a + l/2] = H„_l9 n>k+-2. 

Theorem 4.5: [(Hn+\)l a] = Hn_v n>k + 3. 

Theorem4.6: [amHn] = Hn+m or Hn+m-l, n>m + k + 2,m>2. 

Theorem4.7: [amHn +1/2] = H„+m, n> m + k + 2,m> 2. 

Theorem4.8 [HJam] = Hn_m or Hn_m-\ n>m + k,m>2. 

Theorem4.9: [Hn I am + l/2] = Hn_m, n>m + k + 2,rn>2. 

Theorem 4.10: [can + l /2] = H„, c = (Hx -/3HQ)lS, n>k. 

We can extend Theorems 4.1 through 4.10 for negative subscripts. Since (-1)"+1F_„ = F„, 
\F_n\= Fn, Theorems 2.1 through 2.10 apply for sequences having \F_n\ or \AF_n\ as the w* term. 
We can apply Theorems 3.1 through 3.10 for {H*„} whereH*n = \H-„\ as well if we extend the 
definition of {Hn} for negative subscripts so that (1.1) becomes 

H_n = AF_n_2+BF_n_x = A(-iy+3F„+2 + B(-l)"+2 Fn+l, 
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H_n = (-\)"(BF„+1 - AF„+2) = (-\)"H\ , (4.1) 

where {H*„} is the conjugate sequence [3] for {Hn}, H*n = H*n-i + H*n-i, H*o =B- A, H\ -
B-2A = A\ H*2 = 2B-3A = B*. Notice that \H_„\=(-A*)Fn_2 +B*Fn_l = H\, where {H*n} 
is one of the sequences {Hn} with positive subscripts. Thus, Theorems 3.1 through 3.10 and 4.1 
through 4.10 can be extended to {Hn} with negative subscripts by taking \Hn\= H*n in all the 
theorem statements. 
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1. INTROBUCTION 

The Lucas sequences {Un(P, 0 } , with parameters P and g, are defined by UQ(P, Q) = 0, 
^ ( P , 0 = 1, and 

Un(P, 0 = PU^iP, 0-QUn_2(P, 0 for n > 2, 

and the "associated" Lucas sequences {Vn(P, 0 } are defined similarly with initial terms equal to 
2 and P, for n = 0 and 1, respectively. The sequences of Fibonacci numbers and Lucas numbers 
are, of course, {Fn} = {U„(l, -1)} and {Ln} = {V„(\, -1)}. 

Several authors (e.g.,[3], [1], [6]) have discussed the conies whose equations are satisfied by 
pairs of successive terms of the Lucas sequences. In particular, it has been shown that (x, y) -
K , MVH) satisfies y2 -Pxy + Qx2 +eQn = 0, where w„ = U„(P, Q)\fe = -1 and w„ = F„(P, 0 
if e = P2 -4Q.lt has apparently not been recognized that the hyperbolas y2- Pxy + Q^ +eR = 0, 
where R = 1 if Q = 1 and i? = ±lif(2 = - l characterize the Lucas sequences when ^ = - 1 , and the 
associated Lucas sequences when e- P2 -AQ is square-free; that is, the set of lattice points on 
these conies is precisely the set of pairs of consecutive terms of {Un(P,±l)} if e - - 1 , and of 
{Vn(P, ± 1)} if e = P2 - 4Q is square-free. Accordingly, we shall prove the converse of the results 
of [3] and [1] by showing that no lattice points exist for the above hyperbolas if Q = ±1 other than 
(ww, wn+l) [provided that when wn = V„(P, 0 , the discriminant D is square-free]. 

Using the above results, we then construct, for each of the sequences {Un(P, -1)}, 
{Un{P, 1)}, and {Vn(P, 1)}, a polynomial in two variables of degree 5, and a polynomial of degree 
9 for {Vn(P, -1)} whose positive values, for positive integral values of the variables, are precisely 
the terms of the sequence. This extends the results of Jones [4] and [5], who obtained a fifth-
degree polynomial whose positive values are the Fibonacci numbers and a ninth-degree 
polynomial whose positive values are the Lucas numbers. 

2. CONICS CHARACTERIZING THE LUCAS SEQUENCES 

Assume P > 0. To simplify notation, we let Un = U„(P, -1), V„ = V„(P9 -1), un = Un(P, 1), 
and vn = Vn{P, 1). A proof of the sufficiency in our theorems occurs as a general result in [3]; 
however, we include an alternate inductive proof in Theorem 1 for completeness. 

Theorem 1: Let x and y be positive integers. The pair (x, y) is a solution of 

y2-Pxy-x2 = ±l (1) 

iff there exists a positive integer n such that x-Un and>> = Un+l. 

Proof: We show, first, that U2
+l - PUn+lUn - U2 = (-1)", by induction. 

If n = 1, Ul = l and U2 = P and the result clearly holds. Assume U2 -PUJJ^-U^ = 
(-I)"-1. Then 
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U2
n+l - PUn+lU„ - Ul = (PUn + U^f - P(PU„ + U„.0U„ - U2„ 

= U2
n(P2 -P2 -l) + PU„U„_1(2-l) + Ul1 

= -i(u2„-PU„un„l-ull) = (-ir. 
To see that there are no other solutions of (1) in positive integers, suppose there exist solu-

tions not of the form (U„, U„+l). Let x be the least positive integer such that, for some positive 
integer j , (x,y) is a solution of (1) and (x,y)*(U„,Un+l) for any positive integer n. Since 
(1, P) = (Ul9 U2) satisfies (1), x > 1. Let x0 = y-Px and y0 = x. We show that 0 < x0 < x and 
that (xQ,y0) satisfies (1). Since x>l, 0 = y2-Pxy-x2 +1 = y(y-Px)-x2 ±l = yx0 -x2 ±1 
implies xQ>0, and from >x0±l = x2, we have (Px + x0)x0 ±1 = x2, i.e., Pxx0 ±1 = x2 - x 2 , 
implying that JC0 <JC. Now, 

j>o-^o*o-*o=*2-^(y-^)^^ 
Thus, (x0, yQ) is a solution. By the induction hypothesis, there exists an n such that x0 = f/w and 
J;o=^«+i- T h e n x = yo = u

n+i a n d 

j , = Px + x0 = Py0 +x0= PUn+l +Un = Un+2, 

contradicting our assumption concerning (x, y). 
According to Dickson ([2], Vol. 1, p. 405), Lucas [7] proved that, if x m&y are consecutive 

Fibonacci numbers, then (x,y) is a lattice point on one of the hyperbolas y2 -xy-x2 = ±1, and 
J. Wasteels [12] proved the converse in 1902. 

Theorem 2: Let x and y be positive integers, x < y. The pair (x, y) is a solution of 

y2-Pyx + x2 = 1, P>2, (2) 

iff there exists a positive integer n such that x = un mdy = ww+1. 
Proof: We note that, because of the symmetry, the assumption that x < y is made without 

loss of generality. The proof parallels that of Theorem 1. (In proving the necessity, one lets 
x0 = Px-y and y0 = x, and easily obtains x0 < x, and x0y - x2 -1 < xy => x0 < x.) 

It is known that, if D = P2 +4, the general solution in positive integers of y2 -Dx2 = ±4 is 
<X y) = (Un,Vn), md if D = P2 -4, the general solution of y2 - Dx2 =4 is (un, v„). This may 
be shown using the known general solutions in terms of the fundamental solutions (for example, 
from (xn +ynjD)/2 = [(x0 +y0JD)llY for x2 -Dy2 = 4; see Mordell [9, p. 55], and Dickson 
[2, Ch. XII]). Using Theorems 1 and 2, we provide an alternate derivation of the general solution 
in terms of Lucas sequences of these Fermat-Pell equations. 

Corollary 1: The solutions of s2 - Dt2 = ±4 for D = P2 + 4 and of s2 - D/2 = 4 for D = P2 - 4 
are precisely the pairs (/, s) = (U„, Vn) and (u„, v„), respectively. 

Proof: It is well known that V2(P,Q)-D-U2(P,Q) = 4Qn [11, p. 44]. Suppose (s,t) is 
any solution of s2 - Dt2 = ±4 (D = P2 + 4), i.e., of s2 - P2t2 = ±4 + 4t2. It is clear that s and Pt 
have the same parity, so y = (s+Pt) 12 is an integer. Upon substituting for s, 
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(2y-Pt)2 -P2t2 =±4 + 4t2 =>4j/2 -4Pty = ±4 + 4t2. 

That is, y2 - Pyt -12 = ±1. By Theorem I, y = Un+1 and t = [/„ for some n. Now it is known 
that V„(P, Q) = 2t/M+1(P, 0 - Pt/„(P, 0 [11, p. 44], implying that s = Vn. 

The proof of the necessity for s2 -Dr2 = 4, Z) = P2 - 4 is similar. 

3. CONICS CHARACTERIZING THE ASSOCIATED LUCAS SEQUENCES 

It is interesting that the solutions of the hyperbolas y2 -Pxy-x2 = ±D, for P> = P 2 +4 , 
include (Vn,Vn+l) for n>0, and the solutions of y2 -Pxy +x2 ~-D7 for D-P2 - 4 , include 
(vn> vw+i) for ^ > 0 [3], but that there may be, in general, additional pairs of integral solutions. A 
case in point: y2 - 4xy - x2 = 20 has (x, y) = (1,7) as a solution (but Vn*l for any n > 0). It 
may be shown, however, that there are no additional solutions if D is square-free. 

Theorem 3: Let P 2 +4 = D = a2d, d square-free. The set of lattice points with positive coordi-
nates on the hyperbolas 

y2 -Pyx-x2 =±D (3) 

is precisely the set {(Vn,Vn+l)} (n>0) iff the sets of x-coordinates of the solution sets of 
x2 - Dy2 = ±4 and x2 - dz2 = ±4 are equal. 

Proof: As remarked above, (Vn,Vn+l) satisfies (3) for all n>0. Assume that x,y>0 and 
(x, y) is a solution of (3). Now, since P and D have the same parity, (3) implies that 

Px + ̂ JD(x2 ±4)1/2 = [Px + ajd(x2 ± 4) y = 

is an integer iff d(x2 ±4) is a square; that is, iff, for some integer z, x2±4 = dz2, i.e., 
x2 -dz2 = ±4. Thus, the set of lattice points on (3) is precisely the set {Vn, Vn+l} iff x = Vn for 
some n > 0. By Corollary 1, on the other hand, the pair (x, y) is a solution of x2 - Dy2 = ±4 iff 
x~Vn for some n > 0. This proves the theorem. 

If D is square-free, then d = D, and we immediately have 

Corollary 2: Let x and y be positive integers, and D - P2 +4 be square-free. The pair (x, y) is 
a solution of j 2 -Pxy-x2 =±D iff there exists a nonnegative integer n such that x-Vn and 
y = vn+v 

We note that the equations x2 -Dy2 = ±4 andx2 -dz2 = ±4 of Theorem 3 may have solu-
tion sets having identical x-coordinates when D^d. For example, if D = 4d and d = 2 or 3 
(mod 4), since in these cases z must he even. 

We may establish, in exactly the same way as for Theorem 3, the corresponding theorem for 
y2 - Pyx + x2 = -D, with D = P2 - 4. We state only the analogous corollary. 

Corollary 3: Let D = P2 -4 be square-free and x and j ; be positive integers. The pair (x, y) is a 
solution of 

y2-Pyx + x2=-D (4) 

if there exists a nonnegative integer n such that x = vn mdy = vn+l. 
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4. DIOPHANTINE REPRESENTATION OF THE SEQUENCES 

The set of terms of any Lucas sequence is a recursively enumerable set, and such sets have 
been shown to be Diophantine [8]. That is, for each recursively enumerable set S, there exists a 
polynomial 2P with integral coefficients, in variables xx,...,xn, such that x GS iff there exist 
positive integers yx, ...3>'„_1 such that &(x,yl9 ...,>'„_1) =0. As a consequence, it is possible to 
construct a polynomial whose positive values are precisely the elements of S. The construction is 
due to Putnam [10], who observed that x(l-2?2) has the desired property. Using equations (1), 
(2), (3), (4), and Corollary 1, we now obtain such polynomials for the set of terms of the 
sequences {Un(P, -1)}, {Un(P, 1)}, {Vn{P, -1)}, and {Vn(P, 1)}. 

Theorem 5: Let GU(P9Q) denote the set of terms of the sequence {Un(P9Q)}9 and Y(P,Q) 
denote the set of terms of the sequence {Vn(P, Q)}. Then, if x and y assume all positive integral 
values, the set S is identical to the set of positive values of the polynomial 

(i) x[2-(y2-Pxy-x2)2] if S = ̂ ( P , -1), 
(ii) x[2 - (y2 -Pxy + x2)2] ifS = %(P, 1), P > 2, 

(Hi) y[l - ((y2 - Dx2)2 -16)2] if S = Y(P, -1), D = P2 + 4, 
(iv) y[l - ((y2 - Dx2) - 4)2] if S =Y(P, 1), D = P2 - 4. 

Proof: In view of Theorems 1 and 2 and Corollary 1, the proof is obvious, provided we 
show that y2 - Pxy - x2 and y2 - Pxy + x2 (P> 2) are never 0 for x and y integers. However, if 
either equals 0, then 

Px±x^P2-4 PX±XTJP2+4 y = or y = - (P>2); 
2 ' 2 

clearly, since D = P2 ± 4 is not a square, y is irrational for all integral x values. 
By Corollary 1, the polynomials in (i) and (ii) may be given, alternatively, as 

\2" 

and 

l-((y2-Dx2)2-l6y 

\-({y2-Dx2)-4)2 

forD = Pz+4, 

, forD = P2-4, 

respectively. And, by Corollaries 2 and 3, the polynomials in (iii) and (iv) may be given, alterna-
tively, if D is square-free, as 

i-((y2 - Pyx-x2)2 -(P2 +4)2)2 

and 
x[l - (y2 - Pxy + x2 + P2 - 4)2], 

respectively; however, in case (i) of the theorem, the degree of the alternative is higher. 

For a summary of results on polynomials representing various additional sets, we refer the 
reader to [11, Ch. 3,111]. 
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NEW EDITORIAL POLICIES 

The Board of Directors of The Fibonacci Association during their last business meeting 
voted to incorporate the following two editorial policies effective January 1, 1995. 

1. All articles submitted for publication in The Fibonacci Quarterly will be 
blind refereed. 

2. In place of Assistant Editors, The Fibonacci Quarterly will change to 
utilization of an Editorial Board. 
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1. INTRODUCTION 

In a belated acknowledgment, Hoggatt [3] states: 
The first use of the g-matrix to generate the Fibonacci numbers appears in an abstract of a paper 

by Professor J. L. Brenner by the title "Lucas* Matrix." This abstract appeared in the March 1951 
American Mathematical Monthly on pages 221 and 222. The basic exploitation of the g-matrix 
appeared in 1960 in the San Jose State College Master's thesis of Charles H. King with the title "Some 
Further Properties of the Fibonacci Numbers." Further utilization of the g-matrix appears in the 
Fibonacci Primer sequence parts I-V. 

For a comprehensive history of the g-matrix, see Gould [2]. Numerous analogs of the 
^-matrix relating to third-order recurrences have been used. See, for instance, Waddill and Sacks 
[13], Shannon and Horadam [10], and Waddill [11]. Mahon [8] has made extensive use of 
matrices to study his third-order diagonal functions of the Pell polynomials. Recently, Waddill 
[12] considered a general Q-mainx. He defined and used the k x k matrix 

A* 

R = 
1 0 
0 1 

'k-\ 
0 
0 

v 0 0 •••! 0 j 

in relation to a Ar-order linear recursive sequence {Vn}, where 
jt-i 

^ = I>^-i-/, n>k. 
/=o 

The matrix R generalized the matrix Qr of Ivie [5]. 
In the notation of Horadam [4], write 

Wn = Wn(a,b;p,q) 
so that 

K=PK-i-<lW„-2,Wo=a,W1=b, n>2. 

With this notation, define 
U„=W„(0,l;p,q), 
Vn = W„(2,p;p,q). 

(1.1) 

(1.2) 

(1.3) 

Indeed, {Un} and {V„} are the fundamental and primordial sequences generated by (1.2). They 
have been studied extensively, particularly by Lucas [7], Further information can be found in [1], 
[4], and [6], 
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The most commonly used matrix in relation to the recurrence relation (1.2) is 

M={? -0") (i.4) 

which, for p = -q = l, reduces to the ordinary g-matrix. In this paper we define a more general 
matrix M t m parametrized by k and m and reducing to Mfor k = m = 1. We use Mk> m to develop 
various summation identities involving terms from the sequences {Un} and {V„}. 

Our work is a generalization of the work of Mahon and Horadam [9] who used several pairs 
of 2x2 matrices to generate summation identities involving terms from the Pell polynomial 
sequences 

'P„ = W„(0,l,2x,-l), 
Q„ = W„(2,2x;2x,-l). 

We generalize their work in two ways. First, we consider sequences generated by a more general 
recurrence relation. Second, our parametrization of the matrix Mkm includes all the matrices 
considered by Mahon and Horadam as special cases. 

2. THE MATRIX MKm 

Before proceeding, we state some results which are used subsequently. None of these is new 
and each can be proved using Binet forms. If 

A = p2~4q, (2.1) 
then 

Un+x-qUn_x=V„, (2.2) 

^ + i - ^ - i = At/„, (2.3) 

V2k-2qk=AU2
k, (2.4) 

Uk+m-qmUk_m = UmVk, (2.5) 

Vk+m-1mVk_m = AUkUm (2.6) 

Uk+mUk-m-Ul = -qk-mUl, (2.7) 

Vk+Jk-m-Vk
2=Aqk-mUl (2.8) 

Un+mU„i+m - qmU„Uni = UmUn+ni+m. (2.9) 

By induction it can be proved that, for the matrix M in (1.4), 

M,JuM -<,u„ 
V U„ -qU„_ly 

where n is an integer. 

(2.10) 

1995] 65 



SOME SUMMATION IDENTITIES USING GENERALIZED g-MATRICES 

We now give a generalization of the matrix M. Associated with the recurrence (1.2) and with 
{U„} as in (1.3), define 

Ujc+m "Q Uk I (2 11) Mum = 
Uk -qmUk_n 

where k and m are integers. By induction and making use of (2.9), it can be shown that, for all 
integral n, 

1V1k,m ~ Um 

fjj rtmJJ ^ 
Unk+m H unk (2.12) 

V Unk q Unk_mj 

When k = m = 1, we see that Mk^m reduces toMand M^m reduces to Mn. 

3. SUMMATION IDENTITIES 

We now use the matrix Mktm to produce summation identities involving terms from {Un} 
and {Vn}. Using (2.5) and (2.7), we find that the characteristic equation of Mk m is 

A2-UmVkA + qkU2
m=0 (3.1) 

and, by the Cayley-Hamilton theorem, 

Mlm -UmVkMKm +qkU2J = 0, (3.2) 

where / i s the 2x2 unit matrix. From (3.2), we have 

<UmVkMKm -qkU2
mIfMim = M\n;j, (3.3) 

and expanding yields 

±(f\{-\y-iqk{"-°Ul"-%Mi
k
+i = M2

k:+J. (3.4) 

Using (2.12) to equate upper left entries gives 

2 J / K V # Vk U(i+j)k+m ~ U(2n+j)k+m • P • 5) 
/=ov J 

Again from (3.2), 

(Km+qkU2Jf = U"mVk"Mlm, (3.6) 

and expanding we have 

ti^^Ul^M2^ =U"mVk"Mlm. (3.7) 

Using (2.12) to equate upper left entries gives 

i(f\qk0^Uvlt+m = Vk'Uric+m. (3.8) 
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Once again, from (3.2), 

{M2Km-qkUjf = Um(V2k -2qk)M2Km = AUmU2
kM2Km, (3.9) 

and expanding, after taking 71th powers, we have 

£ f 2 f \-\yq
k^U2rM\Km = A"U"mUl"M^m. (3.10) 

Equating upper left entries yields 

i ( Y ) ( - l ) ' \ K 1 " ^ ^ m = *?U2
k"U2nk+m. (3.11) 

/=0 ^ ' 

From (3.9), 

(M2,,w - /C/ w / ) 2 w + 1 = *UlUl\MS)m ~qkUmMlK J . (3.12) 

Equating upper left entries yields, after simplifying, 

i t ^ V ^ Y ^ ^ t W = A"^2"(t/2(„+1)i+m -qkUM+m), (3.13) 

and using (2.5) to simplify the right side gives 

ZT2n/+1]<-1),+,^(a"W)£/»*- = A"^ V * ) " - (3-14) 
1=0 ^ ' 

This should be compared to (3.11). 
Manipulating the characteristic equation (3.1), we have (2X-UmVk)2 = AU^Y2, so that 

(2MKm-UmVjf"=A«Ul«U2
k"I. (3.15) 

Expanding gives 

l ( ? ) ( - l ) ' ^ ^ < . = A"l /> t
2 " / . (3.16) 

;=0 ^ ' 

Equating upper left entries and also lower left entries yields, respectively, 

X( 2 f ) ( - ! ) ' • I 'VT'U^ = A"U2
k"Um, (3.17) 

2r 

I 

i(^(-l)'2'K^^=0. (3.18) 
/=0 V 

We note that (3.17) reduces to (3.18) when m = 0. 
Multiplying both sides of (3.15) by {2Mk^m-UmVkI) and expanding gives 

H^V1^^ = ^lnUln{2MKm-UmVkI). (3.19) 
;=0 ^ ' 
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Equating upper left entries yields 

I ' ( ^ t l\-V+ilVZ"+l-%k+m = A"U2
k"+1Vm, (3-20) 

1=0 ^ ' 

which should be compared to (3.17). 
Now, using (3.5), we have 

2 J / jv V 9 Vk\U(i+J)k+m+l ~ <lU(i+j)k+m-l) ~ ^(2n+J)k+m+l ~~ (l^'(2n+j)k+m-l> 

and (2.2) shows that this simplifies to 

i ( " \ - i r qki"'0ViV,+J)k+m = V{2n+J)k+m. (3.21) 

Making use of (2.2) and (2.3) and working in the same manner with identities (3.8), (3.11), 
(3.14), (3.17), and (3.20) yields, respectively, 

±(^)qk(n-%ik+m=VkXk+my (3.22) 

l(2?\(-Vqk{2n-%ik+m = ^"Ul"V2nk+m, (3.23) 

2 f f 2" + ^ ( - l y ' V (2n+1"V2,i+m = A"+1U2
k"+lU(2n+l)k+m, (3.24) 

7=0 ^ ' 

t(2")(-m%2"-%+m = A"C/,2Tm, (3.25) 
7=0 ^ ' 

I p Y ^ - r ^ T r 1 - ' ^ , = A^UJTUm. 0.26) 
7=0 ^ ' 

2/7 

Z 
7=0 

2 » + l 

2 /7+1/ 

In what follows, we make use of the following result: 

1VIk,m1V1kl,m ~Um 

fjT -amTJ ^ 
w/7& +n1kl+m */ ^ w ^ + W j ^ 

y Unk+nfa ~(i ^nk+nfa-mJ 
(321) 

This is proved by multiplying the matrices on the left and using (2.9). 
Consider now the special case of (3.2), where k = m. Then, using (2.5), 

Kk=U2kMk^qkUll. (3.28) 

Using (3.28) and (2.9), we can show by induction that, for n > 2, 

M"k,k = U"k-2(UnkMkk-gkUkU^l)kI). (3.29) 
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The binomial theorem applied to (3.29) gives 

^^iifli-^^^rU^UUA^i = Mn
k%> (3.30) 

Equating lower left entries of the relevant matrices then yields 

E f ^(-ly-'q^-'K-wU^nic = Us
kU(m+J)k. (3.31) 

z=(A ' 

Multiplying both sides of (3.30) by Mk ^ and using (3.27) to equate lower left entries gives 

£-\i K-"^ % U(n_l-)kUnkU(i+J-)k+ki =UkU(jls+fik+kl, (3.32) 
z=0 

which generalizes (3.31). 
Again from (3.29), after transposing terms and raising to a power s, we obtain 

iifl^tfT^UfcykKk = Ui"-2)sUs„kM^k, (3.33) 
/=<A ' 

which yields 

t(f\9H'~0U'kUg.1)kUnlk = Us
nkUsk. (3.34) 

/=(A ' 
Multiplying both sides of (3.33) by Mk^k and using (3.27) to equate lower left entries gives 

i f flq^UlU^tU^ = KkUsk+kx, (3.35) 
/=(A ' 

which generalizes (3.34). 
Continuing in this manner after yet again transposing terms in (3.29) and raising to a power s, 

we obtain 

if-leiy^r2^"0^'^1''"^^^"-0^-.)^- (3-36> 
/=(A ' 

Equating upper left entries and lower left entries yields, respectively, 
Hfli-tiUlUZU^^yt = qksUs

{n_X)kUk, (3.37) 

tfjl(-l),^^«-iy«)*=0. (3.38) 
/=(A ' 

Multiplying (3.36) by Mk tk and equating lower left entries yields 

£ ( f ) ( - l ) ' W ^ - i ) , - ^ * , = fU'^U^ . (3.39) 
7=(A ' 
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We note that, when kx=k, (3.39) reduces to (3.37) and when kx = 0, (3.39) reduces to 
(3.38). 

Now, manipulating (3.32), (3.35), and (3.39) in the same way that (3.5) was manipulated to 
yield (3.21), we obtain, respectively, 

i(i](-iy'iqHs'iK-mU^+j)^t = Us
kV{m+j)k+ki, (3.40) 

tlfiq^UlU^V^ = Us
nkVsk+ki, (3.41) 

E ( f ) H ) ' ^ M ViW*+* = qksUl„_l)kVh . (3.42) 
7 = 0 V / 

4. THE MATRIX ^ 

We have found a matrix having the property of generating terms from {Un} and {Vn} simul-
taneously. It is a generalization of the matrix ^introduced by Mahon and Horadam [9]. Define 

, k an integer. (4.1) xk = yWk VkJ 

Then by induction we have, for integral n, 

X? = 2"-{V"k U"k\ (4-2) 

Noting that X™+" = X™ • X" produces the well-known identities 

iym+n=VmVn+MJmUn, (4.3) 

2Um+n = VmUn+UmVn. (4.4) 

The characteristic equation for Xk is 

X2-2VkX+4qk =0 (4.5) 

and so, by the Cayley-Hamilton theorem 

X2
k-2VkXk+4qkI = 0. (4.6) 

Using (4.3) and (4.4), we see that 

X"kXk=2" i ^nk+kx U nh+kx 

y^UnJc+ki Vnk+ki 
(4.7) 

Considering the case k = 1, we can show by induction, with the aid of (4.6), that 

X"l=2"-\UnXl-2qUn^I), #i>2, (4.8) 

which is analogous to (3.29). 
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It is interesting to note that the methods applied to Mkt7n when applied to Xk produce most 
of the summation identities that we have obtained so far. The exceptions are the identities that 
arose by using (3.29). The analogous procedure for Xk is to use (4.8), but the identities that arise 
are less general For example, (4.8) produces 

(4.9) 

which is a special case of (3.32). 

5. THE MATRIX N. k,m 

We have found yet another matrix defined in a similar manner to Mk^m whose powers also 
generate terms of the sequences {£/„} and {Vn}. Define 

Then for all integral n, 

Nk,m = 
V, -amV k+m H vk 

yVk 

T2n T2n-\ \n 
^k,m-Um a 

Ulnk+m Q "ink 

V U2nk ~<i Vlnk-mJ 

(5.1) 

(5.2) 

N, 2n-l _ jj2n-2 kn-1 
k,m ~Um a 

V(2n-l)k+m 9 ^{2n-l)k 

~H V{2n-\)k-mJ V V{2n-\)k 

The characteristic equation of Nkt m is 

A2-AUkUmA-AqkU2
m = 0, 

and so 
kT12 • N^m-AUkUmNk^-AqKWj = 0 

(5.3) 

(5.4) 

(5.5) 

Using the previous techniques and due to the manner in which powers of Nkt m are defined, 
we have found some interesting summation identities. We note, however, that some of the 
methods applied to Mk%m do not apply to Nktm. For example, we could find no succinct counter-
part to (3.29). We state only the essential details and omit summation identities that we have 
obtained previously. 

Manipulating (5.5), we can write 

AUm(UkNKm+qkUmI) = Nlm (5.6) 

and 
(2Nk,m-AUkUJ)2 = AU2

mVk
2I. (5.7) 

From (5.6) and (5.7), we have 

A"U"m(UkNKm+qkUjy=N2
k:m, (5.8) 
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{2Nk>m-AUkUmI)2n = A"U2
m"Vk

lnI, (5.9) 

{2NKm - AUkUJ)2"+l = A"U2
m"Vk

2\2Nk,m-AUkUmI). (5.10) 

Now expanding each of (5.8)-(5.10) and equating upper left entries of the relevant matrices leads, 
respectively, to 

± fty^Mu**.+i(?y ("-°A%^+m=u2nk+m, (5.11) 
/' even / odd 

£ (yyA^UJrU^-%J^)2'A^U^V^=V^Um, (5.12) 
/' even / odd 

2 « + l / 0 , - , \ 7„4.i_/ 2n 

f (ln + l)2>A-^U?^Vik+m- t {2n;l)2'A^Ur^Uik+m=V2^Vm. (5.13) 
7 = 1 V J 7=0 

i odd /even 

Finally, making use of (2.2) and (2.3) and applying to (5.11)-(5.13) the same technique used to 
obtain (3.21), we have 

± ^y^/tuUr*** + I (f)<f™ ^U'kUik+m = V2nk+m, (5.14) 
even /' odd 

2w A-»„\ ,„_, 2/7-1, X ( f J2'A^2"-%+ m - l ( ^ 2 ' A ^ [ / r ^ + m = ̂ 2TfflI (5.15) 
/odd 

fl2*;1)*A^u2r-vik+m- s p y ^ A ^ U ? * - > v i k + m = A F - ^ . a ^ 
7=1 ^ ' z=0 ^ ' 

/ odd 7 even 
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INTRODUCTION 

Multiplication of two integers is a fundamental computational problem. Various authors have 
found nearly linear-time algorithms for integer multiplication; the best such result is that of Schon-
hage and Strassen (in [1]), who showed that the product of two n-bit numbers may be computed 
in 0(n log/i log log n) steps. Their algorithm involves a recursive application of the Fast Fourier 
Transform (FFT) and is quite intricate. However, even the simpler multiplication algorithms based 
on the FFT are not used in practice, unless enormous numbers are involved. 

Another multiplication method, published by Karatsuba and Ofman (in [1]) uses 0(«1585) 
operations and outperforms classical multiplication when n exceeds 1200 (i.e., about 360 decimal 
digits). 

In 1972 Zeckendorf [8] introduced a representation of the integers as a sum of generalized 
Fibonacci numbers defined by the relation 

F^ = 0, F « = 1, FP = 2>-\ j = 2,3,...,r-l, 

F<r>=F%+F% + -+F<2, i>r. 

The Fibonacci, Tribonacci [5], [7], and Quadranacci [6] numbers arise as a special case of (1) 
by letting r = 2, r = 3, and r = 4, respectively. Capocelli [3] gives an efficient algorithm for 
deriving the Zeckendorf representation of integers. 

This paper compares the classical multiplication, Karatsuba-Ofman, and Schonhage-Strassen 
algorithms and multiplication with the Zeckendorf representation, and shows that medium sized 
numbers can be multiplied (on average) more quickly using the Zeckendorf Quadranacci represen-
tation. 

ZECKENDORF REPRESENTATION OF THE INTEGERS 

Recently, the Zeckendorf representation of the integers has been shown to be a useful alter-
native to the binary representation. Each nonnegative integer N has the following unique Zecken-
dorf representation in terms of Fibonacci numbers of degree r (see [7], [8]): 

N = a2F2
(r) + a3F3

(r) + • • • + ayFy
(r), (2) 

where at e{0,1} and aiai_lai_2ai_?) ...at_r+l = 0 (no r consecutive a's are 1). 
Like the binary representation of integers, the Zeckendorf representation can be written as a 

string of 0's and l's, i.e., ajaj_laJ_2 ...a3a2. 
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As was proved by Borel [2], almost all numbers have an equal number of zeros and ones in 
their standard binary representation. More generally we have that, if g is an integer greater than 
one, then 

w, (t) w9 (t) 

g g 
where every digit wt(t) is in {0,1,..., g-1}. Borel's theorem states: For almost all t (0 < t < 1), 

«->«> n g 

where F^k) denotes the number of those w from the first n, which are equal to k, 0<k<g~l. 
Such a property is true for the binary representation of integers, that is, the proportions of 0's 

in strings of length n and the proportion of l's in strings of length n are both equal to 1/2. In the 
Zeckendorf representation, this rule does not hold. From [4], we have the following result on the 
asymptotic proportion of ones. 

Theorem 1: The proportion of l's in the Zeckendorf representation of integers is 

1 r A^ m^-l 
6)(r) (coir)y+l [(r + l)o){r)~2r] 

which tends to 1/2 as r increases, a)^ is a real root of the equation 

+ 0(l/w), (3) 

xr-xr~l 1 = 0. 

This root lies between 1 and 2. 
In Table 1 some values for A^ are presented (see [4]). 

TABLE 1. Asymptotic Values of Ag> 

r 

LiL 
2 

0.2764 

3 

0.3816 

4 

0.4337 

5 

0.4621 

6 

0.4782 

7 

0.4875 

8 1 
0.4929 

The roots #/ r ) form a strictly increasing sequence. That is, 

1.618...<tf/2)<£y(3)<---<2. 

Zeckendorf representation of integers requires more space than the binary representation, see 
Table 2. 

TABLE 2. Zeckendorf Space/Binary Space 

r 

j'og^)2 
2 

1.44 

3 

1.13 

4 

1.05 

5 

1.02 

6 

1.01 

7 | 

1.005 
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Let us fix the dynamic range of the input data to be w-bits in the binary number system (BNS). 
The number of one's for n-bit BNS numbers in the Zeckendorf representation will have an average 
at 

The initial values of the Sanction Z(r) = N^es ln are printed in Table 3. 

TABLE 3, Average Proportion of One's for n-bit BNS Numbers 
in the Proposed Number System 

[ r 
1 Z(r) 

2 

0.398 

3 

0.434 

4 

0.458 

5 

0.474 

6 

0.484 

7 

0.494 

8 

0.497 

9 1 
0.499 | 

It is clear that the representation using classical Fibonacci numbers requires 20% fewer l's in 
comparison with BNS, which can be employed in many practical situations. 

MULTIPLICATION OF THE NUMBERS IN ZECKENDORF REPRESENTATION 

Let us consider the multiplication of two integers having a Zeckendorf representation. The 
multiplier may have only A^ of its digits equal to 1, but it has log (r) 2 more digits. Hence, 
multiplication using Zeckendorf representation involves A^ • log (r) 2 more additions than in the 
BNS case. Therefore, there are A^ • (log (r) 2)2 times as many digit operations. Because the final 
result may have more than r consecutive ones, it must be transformed into normal form. That is, 
every string ...01.10... must be replaced by 10...0. This transformation can be accomplished in 
2-log (r)2'n steps. Hence, using the Zeckendorf representation will require, on average, 

# > = log2
(r) 2 - 4 r ) n2 4-2-log^ 2.n*H(r)-n2 

bit operations to perform multiplication, if the classical algorithm is used. In Table 4 the initial 
values for the function H(r) = log2

 (r) 2 • A^ are tabulated. 

TABLE 4. Initial Values of the Function H(r) 

r 

\H{r) 

2 

0.574 

3 

0.494 

4 

0.484 

5 

0.486 

6 

0.490 

7 

0.493 

8 

0.497 

~~9 | 

0.499 1 

H{r) attains its minimum when r = 4. Thus, the Quadranacci number system seems to be faster 
than other generalized Fibonacci number systems and faster than the BNS from a multiplicative 
complexity point of view. 

If the time for transformation to normal form was included, it was computed that Quadra-
nacci multiplication outperformed binary multiplication when the number of bits exceeded 130 
(about 43 decimal digits). The last conclusion follows from the solution of the inequality 
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S^ < 0-5n2. In Table 5 we printed the values for the dynamic range and the corresponding 
fastest algorithm for multiplication. 

TABLE 5. Comparison among Different Algorithms for Multiplication 

Range (bits) 

Algorithm 

0-130 

Standard 

131-1200 

Zeckendorf 

1201-4096 

Karatsuba-Ofman 

4 0 9 7 - O O j 

Schonhage-Strassen 

CONCLUSIONS 

A comparison between well-known algorithms for standard binary multiplication and multi-
plication using the Zeckendorf representation has been considered. It was shown that some of the 
proposed number systems (Fibonacci, Tribonacci, Quadranacci) possess advantages for perform-
ing multiplication. The hybrid between the classical multiplication algorithm and the above non-
standard number systems can be used for fast multiplication of medium large integers. 
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1. INTRODUCTION 

Given A, ju eZ, the associated Lucas sequence {yn}n>0 is defined by the binary linear recur-
rence 

ro = ®, Yi = \ and yn+l = Ayn+juyn_l for n>0. (1.1) 
In this article we will show how these sequences may be used to give new proofs of the quadratic 
reciprocity theorem. It is well known that these sequences have the ordinary formal power series 
generating functions 

«=1 

where P(t) = 1-At-jut2. The reciprocity law follows from certain integrality relations in the 
formal power series ring Q[/] between these generating functions and a generating function for 
the quadratic character modulo the discriminant of P(f). The only other tools needed are the 
elementary properties of quadratic Gauss sums. 

2. LUCAS SEQUENCES AND THE LEGENDRE SYMBOL 

The following formal power series identity expresses an interesting relation between the 
sequences {yn} and the Legendre symbol (n\q), where \q\is the discriminant of P(t). 

Theorem: Let q be an odd prime and set D = (-l\q)q. Choose any integers A, ju such that 
A2 +4ju - D, and define the sequence {yn} by the recursion (1.1). Then there is a unique formal 
power series <j) with integer coefficients and constant term zero such that 

00 <f>(t)n °° r-^ 
„=i n n=l\q 

n 
J 

t 
- (2-1) 
n 

holds as an equality of formal power series. 

Proof: Let £ be any fixed primitive q^ root of unity. We define the quadratic Gauss sums 
r{n) modulo q by 

k™. (2.2) 

It is an elementary property of these sums ([1], Theorem 9.13) that r(l)2 = D and, therefore, r(l) 
is a square root of D. Hereafter, we dispense with the ambiguity in sign and simply define *J15 to 
be r(l). Now, since Z^lJ C = °> w e have 

4-1 A 

is 1 + VZ) 
J-l\f=Ll^, (2.3) 
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which shows that (1 + 4D)I2 lies in the ring Z[£] and, therefore, ©^ = Z[(l + VZ))/2]c / [£] . 
We also recall the separability property r(n) = (n\q)4J5 for every integer n ([1], p. 192, eq. (17)). 

Define the rational function/by 

/«=no-£"')' -(o|?) (2.4) 
0=1 

It is readily seen that as a formal power series in t, the coefficients off lie in Z[£]. Set P(t) = 
I-At-fit2 =(l-at)(l-fit), where the reciprocal roots a,J3 are chosen so that a- (3 = 415. 
Then define the rational fiinction </> by 

m=-qf(t)-P 
We claim this function </>, as a formal power series in t, satisfies the conditions of the theorem. 

We first show that <j> satisfies the equality (2.1). We compute that as formal power series, 

(2.5) 

iog/(o=logf fta-^rr^ I=-I 
\a=l J a=\ W 

log(l-C0 

' - V 
(2.6) 

On the other hand, solving (2.5) for/yields 

/(0 = i-MO 
l - a # f ) 

Since / ( 0 ) = 1, we have ^(0) = 0; therefore, we may also compute that as formal power series, 

(2.7) 

log/(0 = logj i-MO = iog(i-AK0)-iog(i-«$K0) 

n=\ n 

(2.8) 

= E(a"-/?M)^L=V^Ir„-
n=l 

using the well-known Binet formula 

Yn 
a -i 

a-P 
(2.9) 

(Note that expressions such as YaY J>n In make sense as formal power series in t, since the con-
stant term of (j) is zero.) Now, comparing the two expressions (2.6) and (2.8) shows that (f> 
satisfies (2.1). 

Turning now to the coefficients of <f>, we write (j){t) = Z^Li antn. Equating coefficients of r in 
(2.1) yields ax = 1; equating coefficients of fw yields a recursion for an in terms of al9 ...9an_u 

demonstrating the uniqueness of (j). We first show that the coefficients of <j> are rational: Suppose 
not, and let k be minimal such that ak &Q. For 1 < j < k, let hj denote the coefficient of tk in 
(f>(t)J; then bl=ak <£ Q, while ft. e Q for 1 < j < k. Equating coefficients of tk in (2.1) yields 
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% J \q)k 

which is impossible, since bx ^Q while all other terms in (2.10) lie in Q. 
Now we show that the coefficients of (f> are integers: Suppose not, and let k be minimal such 

that ak &Z. Again let bj denote the coefficient of tk in <j)(t)J for l < y < k; then bj <EZ for 
\<j<k, while bx = ak = rIs for some coprime integers r, s with \s\> 1. Expanding (2.7) for-
mally yields 

/(o=(i-MO)fl:«wr)=i+v^£a"-v«n, (2.11) 
\n=0 J n=\ 

and therefore the coefficient of tk in/is 

4D(bx +ab2+'- + ak'%). (2.12) 

We know from (2.4) that this coefficient lies in Z[£], and we observe that Jl5(ab2 + • • • + ak~lbk) 
lies in the subring 0^, since a = (/l + J~D)/2. So we must have ^VJD eZ[£L a n^ therefore 
{bx4Df =r2DIs2 eZ[£J. This is a contradiction, since r2DIs2 e<Q\Z, whereas Z[41^>Q = Z. 
This proves the theorem, and in passing also shows via (2.12) that/has coefficients in €D. 

3. THE LAW OF QUADRATIC RECIPROCITY 

Theorem (Gauss): Let/? and q be distinct odd primes, and set D = (-%)#. Then 

Proof: Choose any integers X,// that satisfy /l2+4// = Z), and let P(t) = l-Xt~jut2 = 
(1 - otf )(1 - ySf) and ^ be as in the above theorem. For 1 < k < p, let i t denote the coefficient of 
tp in ^(f)*. Equating the coefficients of tp in (2.1) yields 

^ & h (f) 
P t-i * P 

so that 

\Z)-rP=Pl,rltf. (3.3) 

Therefore, the sum HkZ\ykbk ^ ^e s *n Ql P)%-\ but the least common denominator of the terms 
is relatively prime to/?, since each yk and bk lies in Z. So this sum must be an integer; thus 

y p s ( £ ) (mod^Z). (3.4) 

(3.1) 

On the other hand, we may easily compute (cf. [5], Corollary l(i) with m = r = 1) 

r'-ST]S-'^f -(&r>.*"*.fi) (mod,Z); (3.) 
a-p a-fi yp) 
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the first congruence holds modulo p€D , but both members are integers, so It holds modulo pTL. 
Thus, (p\q) = (D\p) (modp), but both are ±1, so they must be equal 

4o CONCLUDING REMARKS 

The quadratic Gauss sums have played a role in many quadratic reciprocity proofs, reaching 
back to Gauss's sixth proof published in 1818 (cf. [3]). Although our approach has features in 
common with other proofs of the reciprocity law, it does exhibit an unusual flexibility by giving, 
for fixed/? and q, an infinite family of proofs corresponding to the variety of choices for X and ju. 

In [5], we employed elementary /?-adic methods to prove congruences relating the ratios 
Y r IY r-i to the Legendre symbol (D\p). In the language of formal group laws, these congru-
ences imply that the formal differential a> = P(t)~l dt is the canonical invariant differential on a 
formal group law defined over Z, which is isomorphic over Z to the formal group law attached to 
the Dirichlet ^-series L{s, %) for the Dirichlet character % of conductor \D\ associated to the 
quadratic field K = Q(\lD). Formally differentiating both sides of (2.1) and using (1.2) gives 

\ n *"f, (4.D 
which implies that the power series ^ defined in §2 actually is the isomorphism between these 
two formal group laws; however, we have used no formal group techniques in the construction of 
$. The above theorem says that the differential equation (4.1) has a rather surprising property, 
namely, that of possessing a solution (j)(t) at t = 0, which is a rational function whose Maclaurin 
series has integer coefficients. It may be interesting to know the coefficients of ^ more explicitly. 

The use of formal group techniques to prove reciprocity laws originated with T. Honda [2], 
who gave a proof of quadratic reciprocity using formal group laws and Gauss sums. However, 
Honda used a formal group law defined over 6D rather than over Z, and used the Galois theory 
of the extension Q c: 

Q(VZ>)eQ(£) to prove QD -integrality, whereas the present argument 
requires no such techniques. 

It does not appear that our method readily proves the auxiliary result (2\q) = (-lYq ~1)/8, 
which amounts to a congruence for q modulo 8. But it is easy to determine from (2.1) that 
a2 = ((2\q) -X)/2, and one may also note that 

- 1 = 1 <=> q = ±1 (mod 8) o D = 1 (mod 8) o ju = 0 (mod 2). (4.2) 
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A GENERALIZATION OF THE CATALAN IDENTITY 
AND SOME CONSEQUENCES 

Re S. Melhain and A, G. Shannon 
University of Technology, Sydney 2007, Australia 

(Submitted June 1993) 

1. INTRODUCTION 

The Catalan identity 
F„_rF„+r-F„2 = (-irr+1Fr

2 (1.1) 

has several generalizations. Here we obtain a new generalization and use it to generalize the 
Gelin-Cesaro identity 

A? ~AI-2AI-IAI+IAI+2 = 1> (1-2) 

which was stated by Gelin and proved by Cesaro (see [1], p. 401). Furthermore, we establish that 
a certain expression arising from three-term recurrence relations is a perfect square, and this 
generalizes previous work. 

Using the notation of Horadam [2], let 

Wn=Wn(a,b;p,q) (1.3) 
so that 

W„=pW„_l~qW„_2,W0=a,JVl=b,n>2. (1.4) 

If a, /?, assumed distinct, are the roots of 

A2-pA + q = 0, (1.5) 

we have the Binet form [2] 

in which 

Write 

W..^SL. (1-6, 
a-p 

\A = b-aj3 
\B-b-aa. (1.7) 

e = pab-qa2-b2=-AB. (1.8) 

As usual, U„ = Wn(0,1; p, q) is the fundamental sequence of Lucas [4]. 

2. THE MAIN RESULT 

We now generalize the Catalan identity and obtain some consequences. 

Theorem: For W„ = W„(a, b; p, q) and Y„ = Wn(au b{, p, q), 

W„rn+r+s-Wn+rrn+s = ^(s)q"Ur, (2.1) 
where 

W(s) = (paxb - qaax - b\ )US + (a\ - axb)Us+l. 
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Proof: Using the Binet forms for Wn and Yn we obtain, after some algebra, 

WY -W Y AMlfi'-A1Ba')q>Ur 
a- P 

where, in the Binet form for Yn9 

[Bl=bl-a1a. K ' 

Now, using (1.7) and (2.2) we see, after simplifying, that AB^~^Ba reduces to *F(,s). D 

In (2.1), replacing n by n—r and s by r gives 

Wn„rYn+r-WnYn = V(r)q"-rUr. (2.3) 

Replacing r by r +1 in (2.3), we have 

W„_rJn^-W„Yn^{r + \)q"-r-lUr+l. (2.4) 

Adding (2.3) and (2.4) gives 

W^^+W^Y^ = WJn + V{r)rrUr + nr + l)rr-%+v (2-5) 

Subtracting (2.4) from (2.3) gives 

W„_rY„+r-W„_r_lYn+r+i^(r)q"-'-Ur-^(r + l)q"-'-1Ur+l. (2.6) 

Squaring (2.5) and subtracting the square of (2.6), we obtain 

Wn_r^n-rYn+rYn^ = KYl + WnYnq"-r-XqV{r)Ur + V(r + l)Ur+1) 
+ x¥(r)x¥{r + \)q1"-2r-lUrUr+l. 

Putting r - 1 in (2.7) yields 

W^W^Y^Y^ = WX +WnYnq"-\qV(\) + pV(2)) + PV(im2)q2"-3. (2.8) 

In (2.1), substituting r = -\,s = m-n + l and noting that £/_j = ~q'x, we obtain 

WnYm-Wn_xYm+l = -V(m-r, + \)q"-\ (2.9) 

Furthermore, if n = m-l, then (2.9)yields 

Wm^Ym-Wm_2Ym+1 = -V{2)qm-\ (2.10) 

Finally, from (2.1), it follows that 

(KY„+r+s -Wn+rYn+sf = V2(s)q2»Ul 
so that 

W„K+rY„+sYn+r+s + V\S)qlnU2
r = (W„Yn+r+s + Wn+rYn+s)2, 

thus establishing that 
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4W„W„+rY„+sY„+r+s + V2(s)q2"U2
r (2.11) 

is a perfect square for nonnegative integers n, r, s and integers a, b, al9 bl9 p, q. 

3. RELATION TO OTHER GENERALIZATIONS 

The results of the previous section generalize results of Horadam and Shannon [3] who, in 
turn, generalized work of Morgado [5] on the Fibonacci numbers. It suffices then to indicate how 
our work generalizes that of Horadam and Shannon. 

In (2.1), when (al5 ̂ ) = (a, b), we have {Wn} = {Y„} and ¥ ( » = eUs9 so that (2.1) becomes 

ww -WW =eanUU 
vvnrvn+r+s vvn+rvvn+s Vll urus> 

which Horadam and Shannon gave as a generalization of the Catalan identity. Under the same 
circumstances, noting that ¥(1) = e and *F(2) = ep, (2.8) reduces to 

W^W^W^W^ = W„4+WZeq"-2(p2
 +q)+e

2q2"-3p2, 

which Horadam and Shannon gave as a generalization of the Gelin-Cesaro identity. 
Similarly, (2.9) and (2.10) reduce, respectively, to 

and 

which are generalizations of results for Fibonacci numbers due to D'Ocagne (see [1], p. 402). 
Finally, the expression (2.11) reduces to 

4WW W W +e2a2nU2U2 

which was proved by Horadam and Shannon to be a perfect square. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowltz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to Fibonacci@MathPro.com on Inter-
net. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ask that proposers inform us of the 
history of the problem, if it is not original. A problem should not be submitted elsewhere while it 
is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

^ + 2 = ^ + 1 + ^ ^0 = 0, F1 = l; 

A7+2 ~ AH-I + Ln, L0 = 2, Lx- 1. 

Also, a = (l + V5)/2 , /? = ( l - V 5 ) / 2 , Fn = (an-fi")/ Js~, md Ln = a"+J3". 

PROBLEMS PROPOSED IN THIS ISSUE 

B-778 Proposed by Eliot Jacobson, Ohio University, Athens, OH 

While paging through an old text in our library, I found a tattered and yellowed page, clearly 
out of place, as if it had been torn from a book, long forgotten. After months of tedious work, I 
have completed the translation of the scribbled markings on that page. In the margin was noted: 

/ have found a truly wondrous demonstration of the following theorem; unfortunately the margin of 
this page is too small to contain it. 

And then followed: 
Fibonacci's Last Theorem: The equation x" +y" = z" has no nontrivial solutions consisting entirely of 
Fibonacci numbers, for n > 2. 

Can you supply the missing proof? 

B-779 FVoposed by Andrew Cusumano, Great Neck, NY 

Find integers a, b, c, and d (with \<a<b<c<d) that make the following an identity: 

Fn = Fn-a + &Fn-b + K-c + ^n-d • 

B-780 Proposed by Zdravko F. Stare, Vrsac, Yugoslavia 

Prove that: 
(a) FX>F2-F3 F„<exp(Fn+2-n-l); 
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(b) FvFrF5 F2„_l<exp(F2n-n); 
(c) F2F4F6 i^<exp(F2 w + 1-/2-l). 

B-781 Proposed by H.-J. Seiffert, Berlin, Germany 

Let F(j) - Fj. Find a closed form for 

(The notation \x\ denotes the greatest integer less than or equal to x.) 

B-782 Proposed by Ldszld Cseh, Stuttgart, Germany, & Imre Mereny, Budapest, Hungary 

Express (F*+h +F„2 +F*)(F*+h+k +F*+k +1%) as the sum of three squares. 

B-783 Proposed by David Zeitlin, Minneapolis, MN 

Find a rational function P(x, y) such that 

I05n5-I365n3 + I764n 
"' 2n 25n6 + \75n4-5600n2+5904 

for n = 0,1, 2, 3,4, 5, 6. ? x ? ^*J *^3 ' ? *^? 

SOLUTIONS 

Fun with Unit Fractions 
B-745 Proposed by Richard Andre-Jeannin, Longwy, France 

(Vol 31, no. 3, August 1993) 
oo -i oo 

Show that Y = l + y -
»=1 ^In «=1 ^2n-l^2n^2n+l 

Solution by Paul S. Bruckman, Everett, WA 

Let S = T"=ll/F2n, Dn = F2n_lF2nF2n+l9 and T = ^=1l/Dn. Wewantto show that S = 1 + T. 
Clearly, the sums defining S and Tare absolutely convergent, which justifies the following mani-
pulations: 

00 77 77 °° 77^ _i_ 1 °° 77 
£ _ y r2n-lr2n+l _ V £2>T_ZL£ - J | X"1 r2n 

„=1 ^ n=\ ^n n=l r2n-lr2n+l 

' ^S„-U — ^ J + I 2;+1 F
2"~1 = r + £ ' 1 1 ^ 

n=\ ^2n-V2n+l » = 1 V 2 » - 1 ^2n+l J 

00 1 00 1 1 

= r+Y—i—y_L_=7 + _L = 7'+i. 
™̂-rf 77 Z-w 77 77 

«=1 ^2w- l «=2 ^271-1 M 
Also solved by Leonard A. G Dresel, Piero Filipponi, Russell Jay Hendel, Norbert Jensen, 
Murray S. Klamkin, Joseph J. Kostal, Bob Prielipp, Almas Rumov, H.-J Seiffert, J Suck, 
A. N. ft Woord, David Zeitlin, and the proposer. 

86 [FEB. 



ELEMENTARY PROBLEMS AND SOLUTIONS 

L „ Recurs 

B-746 Proposed by Seung-Jin Bang, Albany, CA 
(Vol 31, no. 3, August 1993) 

Solve the recurrence equation an+l = 4a^ + 3an, n>0, with initial condition aQ = 1 / 2. 

Solution by Chris Long, Bridgewater, New Jersey 

I claim that an ~^L^n. Indeed, using the Binet form and the fact that a/3 - - 1 , it follows that 
Ll = Lin~34• Thus> hn = £n+ 34> w h i c h implies that I^n/2 = 4• Ln123 + 3• Ln12. The result 
follows, since a0 = 1/2 = 1^/2. 

The proposer stated that this problem was inspired by Problem 1809 in Crux Mathematicorum 
19 (1993): 16, proposed by David Doster. 
Also solved by Paul S. Bruckman, Leonard A. G. Dresel, Piero Filipponi, F. J. Flanigan, 
Norbert Jensen, Hans Kappus, Murray S. Klamkin, Juan Pla, Bob Prielipp, Almas Rumov, 
H.-J. Seiffert, J. Suck, David Zeitlin, and the proposer. 

Great Sums from Partial Sums 

B-747 Proposed by Piero Filipponi, Fond U. Bordoni, Rome, Italy 
(Vol 31, no. 3, August 1993) 

Let 
OO 1 00 -J 

£ = Y - and & = V — . 
OO 1 00 -J 

Si = ^ and S2 - ^ 

Prove that Sxl S2 = A/5 . 

Solution by Hans Kappus, Rodersdorf, Switzerland 

Consider the partial sums 
n+\ i w+1 1 

i ( " ) = Z , n t r - 7 a n d *i(w)=Z' 

We shall prove that 

Sl(n) = FJLn+l and s2(n) = F„ I (5Fn+1). (1) 

From (1), it follows easily that 

S} = lim &(w) = - T = - = — — and S2 = lim s2(n) = —-= ^ . 

Hence, Sx IS2 = A/5. 

Proof of (1): In the known relations (see [1], p. 177) 

4+/w+ (~tymLk_m = LmLk and Lfc+W - (-1) Lk_m = FmFk, 

we put m = k-l. We then have 
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•yi(«):=Zf-T-=ZT7— and ^^XTT^IVF--
£=2 ̂ k-l^k k=l ̂ k^k+l k=2 rk-lrk k=\ rkrk+l 

The latter expressions are special cases of sums considered in Problem B-697 (see [2]), and it is 
readily seen that their closed forms are just those given by (1). 

References 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester: Ellis Horwood ltd., 1989. 
2. Richard Andre-Jeannin. Problem B-697. The Fibonacci Quarterly 30.3 (1992):280. 

Also solved by Paul S. Bruckman, Charles K. Cook, Leonard A, G. Dresel, Russell Jay 
Hendel, Norbert Jensen, Bob Prielipp, H.-J. Seiffert, J. Suck, and the proposer, 

A Recurrence forFkn 

B-748 Proposed by Herta T. Freitag, Roanoke, VA 
(Vol 31, no. 4, November 1993) 

Let uk= Fknl Fn for some fixed positive integer n. Find a recurrence satisfied by the se-
q u e n c e ^ ) . 

Solution by Tony Shannon, University of Technology, Sydney, Australia 

We have 

aknan-pknpn
 n nn anpkn~pnakn

 T ( lVf 
" * + l = 1, on = aUk +fi\ + n on = LnUk ~ H ) " * - ! • 

a -p a -p 
Haukkanen noted that for any function f(n), the sequence (uk), given by uk = Fknf(ri), satisfies 
the recurrence uk+2 = Lnuk+l - (-l)nuk. Libis expressed the recurrence neatly as uk+2 = w2%+i ~ 
{-Xfuk. Kostalfound the recurrence uk = L^k^n +(-!)"uk_2. Ballieu found the recurrence uk = 
tfw%~i + (J3n)k~l. Somer reported that Lehmer found that the recurrence uk+2 = Lnuk+l - (-l)"uk 

is satisfied by the more general sequence defined by uk = WknIWn, where n is a fixed positive 
integer, W0 = 0, Wx = 1, and Wi+2 = -jRWi+l -QWit where R and Q are relatively prime integers. 
See page 437 in D. H. Lehmer, "An Extended Theory of Lucas' Functions," Annals of Mathe-
matics, Series 2, 31 (1930):419-448. The proposer stated that this problem was inspired by 
David Englund. 

Also solved by Michel Ballieu, Paul S. Bruckman, Leonard A. G. Dresel, Steve Edwards, 
C. Georghiou, Pentti Haukkanen (two solutions), Russell Jay Hendel, Norbert Jensen, Joseph 
J. Kostal, Harris Kwong, Carl Libis, Bob Prielipp, H.-J. Seiffert, Lawrence Somer, J. Suck, 
David C. Terr, A. N. 't Woord, David Zeitlin, and the proposer. 

No Remainder 

B-749 Proposed by Richard Andre-Jeannin, Longwy, France 
(Vol 31, no. 4, November 1993) 

For n a positive integer, define the polynomial Pn(x) by Pn(x) = xn+2 - x"+l - Fnx - Fn_v Find 
the quotient and remainder when Pn(x) is divided by x2 - x - 1 . 
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Solution by H. K Krishnapriyan, Drake University, Des Moines, IA, and by Joseph J. Kostal, 
Chicago, IL (independently) 

Direct multiplication confirms that 

Thus, the quotient is E£=0 iv^^x* and the remainder is 0. 

Beasley found the analog for Lucas numbers: xn+2 + xn+l - 2xn - Lnx - Ln_x is divisible by x2 - x 
- 1. Redmond found that if r and s are distinct roots of x2 - ax - b = 0 and un - rn~Jn then 
xn+2 -axn+l +bunx-b2un_l is divisible by x2-ax+b. Suck showed that if fn satisfies the 
recurrence a0fn + axfn+lH— + arfn+r = 0 then, for n>r-l, 

r—\ / r r 

Z !>.//»>+«-;+/ + S Hajfm-i+jX"+' 
/=0 ;=0 i=KJ=i 

is divisible by a0 +axx H varxr. The given problem is the special case fn-Fm r = 2, a0 = 
ax~-\ a2 = 1, and m--\. These solvers found the quotient in each case as well Zeitlin found 
that xn+l - xn~l - Fnx - Fn_x is also divisible by x2 - x -1. 
Also solved by Charles Ashbaeher, Brian D. Beasley, Paul S. Bruckman, Leonard A. G. 
Dresel, Steve Edwards, F. J. Flanigan, Herta Freitag, C. Georghiou, Russell Jay Hendel, 
Norbert Jensen, Hans Kappus, Harris Kwong, Carl Libis, Bob Prielipp, Don Redmond, H.-J. 
Seiffert, Tony Shannon, J. Suck, A. N. ft Woord, David Zeitlin, and the proposer. 

A Linear Transformation that Shifts 

B-750 Proposed by Seung-Jin Bang, Albany, CA 
(Vol 31, no. 4, November 1993) 

Find a linear transformation T: U2 -> U2 such that T(Fn, Ln) = (Fn+l, Ln+l). 

Solution by Leonard A. G. Dresel, Reading, England 

Adding the identities Fn = Fn+l - Fn_x and Ln = Fn+l + Fn_l, we obtain Fn + Ln = 2Fn+l. Simi-
larly, adding the identities Ln - Ln+l - Ln_l and 5Fn = Ln+l + Ln_x, we obtain 5Fn + Ln = 2Ln+l. 

Hence, the required transformation is 

This can also be written as 
( F „ + 1 W l / 2 l/2YF„) 
{Ln+l)-{5/2 1/2AA,/ 

Redmond generalized to the sequences defined by un = (r"-s")l (r- s) and v„ = r" + s", where r 
and s are the distinct roots ofx2-ax+b = 0. In this case, he found that if 

T(x, y) = f-xvk +-yuk, -x(r-s)\ +~yvkj 
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then T(um vn) =• (un+k, vn+k). The given problem is the special case where a = l,h = -l, and k = 1. 
Several solvers found a transformation such as T(x,y) = (y-xFn_l/Fn, Sx-yLn_xl Ln) which, 
for a given fixed n, is a linear transformation. However, these solutions are not as elegant as the 
featured solution in which the linear transformation found is independent ofn. 

Also solved by Charles Ashbacher, Michel Ballieu, Paul S. Bruckrnan, Charles K. Cook, Steve 
Edwards, F. J. Flanigan, C Georghiou, Russell Jay Hendel, Norbert Jensen, Hans Kappus, 
Joseph J. Kostal, H K Krishnapriyan, Harris Kwong, Stanley Wu-Wei Liu, Bob Prielipp, 
Don Redmond, H.-J. Seiffert, Lawrence Somer, J. Suck, David C Terr, A. N ft Woord, and 
the proposer. 

Divisibility by 25 

B-751 Proposed by Jayantibhai M. Patel, Bhavan fs R A. Col Scl, Gujarat State, India 
(Vol 31, no. 4, November 1993) 

Prove that 6Z/7+3Z3/7+4 + 7 and 6LnL3n+5 - 7 are divisible by 25. 

Solution by Russell Jay Hendel, University of Louisville, Louisville, KY 

This and similar problems can always be solved swiftly using periodicity properties. 
Looking at Ln (mod 25), namely, 2, 1, 3, 4, 7, 11, 18, 4, 22, 1, -2, -1, ... shows that the func-

tion Ln modulo 25 has period 20. It immediately follows that the functions Zw+3, L$n+4, Ln, and 
Z3„+5 all have period 20 modulo 25. To prove the given assertions, it therefore suffices to check 
that the given two functions when calculated modulo 25 on n = 0,1,2,..., 19 all equal 0. 

As an example, if n = 2 then, modulo 25, we find Ln+3 = 11 and L^^ = I^Q = 23, so 
64+3Z3„+4 + 7-6(ll)(-2) + 7 = 0. 

The editor found the explicit representations 

ei^yL^ + 7 = 25[7 + 69(-l)"F„2 + $7F„4 + l5(-l)"F2n + 3 9 ^ ] 
and 

6Z„Z3„+5 - 7 = 25[5 + 33(-l)"F„2 + 33F„4 + 3{-\)"F2n + 3 ^ ] , 

directly showing that these expressions are divisible by 25. He wonders if explicit representa-
tions can be found for all similar divisibility problems. (See, for example, the solution to Prob-
lem B-741 in the previous issue.) 

Also solved by Charles Ashbacher, Paul S. Bruckrnan, Leonard A. G. Dresel, C. Georghiou, 
Norbert Jensen, H.-J. Seiffert, J. Suck, David Zeitlin, and the proposer. 
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Edited by 
Raymond Ee Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-493 Proposed by Stefano Mascella & Piero Filipponi, Rome, Italy 

Let Pk(d) denote the probability that the kih digit (from left) of an £ digit (£>k) Fibonacci 
number Fn (expressed in base 10) whose subscript is randomly chosen within a large interval 
{nvfh\ (n2>nl) is d. 

That the sequence {Fn} obeys Benford's law is a well-known fact (e.g., see [1] and [2]). In 
other words, it is well known that Px(d) = log10(l + l/d). 

Find an expression for P2(d). 

References 
1. P. Filipponi. "Some Probabilistic Aspects of the Terminal Digits of Fibonacci Numbers." 

The Fibonacci Quarterly (to appear). 
2. L. C. Washington. "Benford's Law for Fibonacci and Lucas Numbers." The Fibonacci 

Quarterly 19.2 (1981):175-77. 

H-494 Proposed by David M Bloom, Brooklyn College, New York, NY 

It is well known that if P(p) is the Fibonacci entry point ("rank of apparition") of the odd 
prime p^5, then P(p) divides p + e where e = ±l. In [1] it is stated without proof [Theorem 
5(b)] that the integer (p + e)/ P(p) has the same parity as (p -1) / 2. Give a proof. 

Reference 
1. D. Bloom. "On Periodicity in Generalized Fibonacci Sequences." Amer. Math. Monthly 72 

(1965):856-61. 

H-495 Proposed by Paul S* Bruckman, Edmonds, WA 

Let/? be a prime ^ 2,5, and let Z(p) denote the Fibonacci entry-point ofp (i.e., the smallest 
positive integer m such that p\Fm). Prove the following "Parity Theorem" for the Fibonacci 
entry-point: 

A. If p s 11 or 19 (mod 20), then Z(p) = 2 (mod 4); 
B. if _p = 13 or 17 (mod 20), then Z(p) is odd; 
C. if p = 3 or 7 (mod 20), then 4\Z(p). 

1995] 91 



ADVANCED PROBLEMS AND SOLUTIONS 

SOLUTIONS 

Irrational Behavior 

H-481 Proposed by Richard Andre- Jeannin, Longwy, France 
(Vol. 31, no. 4, November 1993) 

Let <fi(x) be the function defined by 

**) = Sf-
«>0 r

r" 
where r > 2 is a natural integer. Show that <f>(x) is an irrational number if x is a nonzero rational 
number. 
Solution by Norbert Jensen, Kiel, Germany 

Let x G Q \ {0}. We have to show the irrationality of </>{x). 
The proof is similar to the well-known proof of the irrationality of e. Note that the series 

Y£=m xn I Fn and T^=m x" I ar" converge for all m G N0. This can be proved by the ratio test. For 
the second series, the proof is obvious. Applying the test to the first series, one can use the 
following step (0). 

Step (0): Fr„ IF^m < 8ar"(1-rm) for all n,meN0. 

Proof: FrJFr„+m=(ar -pr)l(ar -pr )<{ar +\)/(ar -1) < 2ar I (1 / 4)ar = 
gQ,r"(l-r") Q E D J ^ J 

Let pm = 5£.m x" /F„ for all meN. 

.Ste/; (1): For an appropriate positive constant c eR, we have |/?m|<c|jc|"7F„ for all /w eN. C 
depends only on |x|. 

Proof: From (0), we derive 

Q.E.D. [(1)] 

Ste/; 0 : Let z GN. Then |rw-1i^,_Ipllf | < 1 for all sufficiently large m GN. 

Proof: \zm-lFrm^pm\<czm-lFrm„x \x\mIFrm=c\x\(z\x\y-lFr^ IFm <d(z\x\)m~lIa^ by (1), 

(0), where d\% an appropriate positive constant depending only on |x|. Since T%=0(z\x\y Iar" 
converges, the last term tends to 0 as m tends to infinity. Q.E.D. [(2)] 
Step (3): There is an m^ GN such that, for all m eN, m>m0:pm^0. 

Proof: Case 1—x > 0. The assertion follows because pm > xm I Fm > 0. 
Case 2—x<0. Let n% GN such that arm°(r~l) >S\x\. Let m,nGN, n^m^rn^. 

Then a^-V > cT^ > 8|x|. Therefore, by (0): Fn+l IFn > \x\ and \IFn > \x\/Fn+l, whence 
\x\nIFrn>\xrlIFr„+l. 
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If m is even, it follows that 

Pa = I (\x\2kIFrU-\x\1MIFrM)>\x\mIFrm-\xrXIFr^>Q. 
k=m/2 

Ifm is odd, an analogous argument shows that pm < 0. Q.E.D. [(3)] 

Step (4): <j){x) is irrational. 

Proof: Let p9q eZ, g > 0, such that x = pi'q. Suppose on the contrary that (f){x) is rational. 
Then there are a, b e Z, b > 0, such that ^(x) -alb. Thus, fe^(x) e Z. 

According to (2) and (3), there is an m e N, m > 2, such that |ibq)m~lFrm^pm | < 1 and pm * 0. 
L e t ^ ^ Z ^ V / F . . Now 

(bqT-lFm^(x) = (bqrlF^(am + pm) = (bq)m-lFm^m+(bqrlFm^pm eZ 

and (bq)^lF^amsZ9 

since F , divides F ^ , for 7 - 0,1,..., m - 1 . But \{bq)m-lFrm_xpm \ < 1; hence, (bq)m-lFrm_lPm = 0, 
pw = 0, a contradiction. Q.E.D. 

y4&0 solved by P. Bruckman, H.-J. Seiffert, and the proposer. 

Generalize 

H-482 Proposed by Larry Taylor, Rego Park, NY 
(Vol 31, no. 4, November 1993) 

Let7, k, m, and n be integers. Let An(m) = 5„(m-1) + 4^M(w-1) and 5„(w) = 4Bn(m-1) + 
54,(/w-1) with initial values 4(0) = Fn, Bn(0) = Ln. 

(A) Generalize the numbers (2,2,2,2,2,2,2,2,2,2,2) to form an eleven-term arithmetic pro-
gression of integral multiples of An+k(m + j) and I or Bn+k(m + j) with common difference An(m). 

(B) Generalize the numbers (3,3,3,3,3,3,3,3,3,3) to form a ten-term arithmetic progression 
of integral multiples of An+k(m + j) and I or Bn+k(m + j) with common difference AJjri). 

(C) Generalize the numbers (1,1,1,1,1,1,1,1) to form an eight-term arithmetic progression of 
integral multiples of An+k(m + j) and I or Bn+k(m +j) with common difference An{m). 

Hint: An(l) = -ll(-iyA_„(-l). 
Reference: L.Taylor. Problem H-422. The Fibonacci Quarterly 28.3 (1990):285-87. 

Solution by Paul S. Bruekman, Edmonds, WA 

The recurrence defining the An(mys and B„(mys may be put into matrix form 
Cxn(m-l) = xn(my (1) 

where 

C = (« >). (2) 

xn{j) = {An{j) B„(j))T. (3) 

We may invert the recurrence in the matrix form 
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xn(m-l) = C-lxn(m), where C - ^ ^ ^ fj. 

This yields the relations: 

An(m-l) = j-i(4An(m)-B„(m)), Bn{m-\) = ^{-5An{m) + 4Bn{m))- (4) 

By repeated application of (1) (in either direction), we obtain 

Cn,x„(0) = x„(m), withx„(0) = (F„ L„)r. (5) 

We may show that there exist two sequences of rationals (pm) and (am) (integers for rn> 0), 
such that 

•="-(& 2} <6> 
We have no need to investigate further into these sequences, except to note that they are func-
tions solely of m, and not of n. The relevant observation from (5)-(6) is the following: 

4 , 0 » ) = PmFn+^mL^ Br,(™) = 5°T mFn + P m K ' ( 7 ) 

Now using the identities Ln- Fn-h2Fn_l,5Fn- Ln + 2Ln_x, and making the substitutions 
Pm + (7m- rm* °̂"/w = 5m> 0) ls transformed to the following: 

4 » 0 » ) = rmFn + SmFn-l> fyi™) = rmLn + SmLn-V ( 8 ) 

In this form, we see that An{m) mdBn(m) are generalized Fibonacci and Lucas numbers, respec-
tively, as these were defined in part (B) of the published solution to H-422 (see reference [1]). 
Here, the An{m),Bn{m),rm, andsm replace the Un,Vn,r, ands, respectively, as such were intro-
duced in [1]. Note that the An(m) and/?„(#*), for fixed m, satisfy the same linear recurrences 
as are satisfied by Fn andZw; in the sequel, we shall tacitly use these without comment [e.g., 
Ai+i(n*) = Ai+i(m) ̂  Ai(mX Bn(m) = 4i+i(m) + d„-i(tri), etc.]. Also, in the sequel, we will write 
(for brevity) An = AJjri), An = An{m + \)^An = An(m-l), with similar notation for the J?w(/w)fs; 
however, in the final solution of each part, we will revert to the unabridged notation. 

Solution of Part (A) 

Using parts (B) and (Al) of [1], the following 7-term arithmetic progression (A.P.) is found, 
whose common difference (c.d.) is equal to An, and whose terms consist of integral multiples of 
An+k and/or Bn+k: 

Our goal, if possible, is to affix four additional terms to the A.P. above (at one or both ends), such 
that these terms are of the form required in the statement of the problem, such that the c.d. for all 
11 terms remains Any and such that, for some fixed m and n, all 11 terms equal 2. We require a 
few additional identities: 

2An+2 + An = An. (10) 

Proof: Replacing m by m+1 in the original recurrence, we have: 

An = 4An + Bn=4An + An+l + An_l=4An + An+l+An+l-An=3An + 2(An+2^ 
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A„ + A„ = 2Bn+l. (11) 

Proof: Using (10), Z , + 4, = 2 4 + 2 + 2 4 = 25„+1. 

24-2 + 4 = 1 1 ^ . (12) 
Proof: From (4), 

ii4ll = 44 l -5 l l = 44I-(4 l + 1 + 4r.1) = 44,-(4,+24^i) 
= 34 - 2(4 - 4 . , ) = 2 4 ^ + 4,. 

114,+ 4 , =2^-i - (13) 

flrw/- Again using (4), 1L1 + 4 = 5 4 , - ^ = - ^ + ̂ + ^ = 2 5 ^ . 

Now, by inspection of (9)-(13), we see that the following is an 11-term A.P. of the required 
form, with c.d. = An = 4 ( w ) : 

{-IB^tml ~ 114.0* - 1 ) ? " 24^0») , 4-3(^)5 24,-iCw), Bn{m\ 2An+l{m\ 
4+3(m), 2A^2(m)9 AJjn +1), 25„+1(m)). 

It only remains to show that, for some fixed m and «, this A.P. reduces to an 11-tuple of 2's. We 
find that setting m = n = 0 accomplishes this; for, in that case, the c.d. is AQ(0) = FQ = 0, and one 
term, e.g., 2?0(0), is equal to LQ = 2. Therefore, (14) is a valid solution of part (A). 

Solution of Part (B) 
Using parts (B), (A4)(iii), and (A4)(i) of [1], the following pair of 4-term A.P.'s are found, 

with c.d. = 4* an(i with terms of the required form: 

( - 3 4 ^ 2 , - 4 ^ , ^ 2 , 3 4 - 1 ) ; (15> 
(34^+1, Bn+2> 4+4?3An+2). (16) 

Our goal, if possible, is to affix two additional terms of the required form between the two 4-term 
AJP.'s above, thereby forming a 10-term A.P. which satisfies the condition that, for some fixed m 
and n, all 10 terms equal 3. We require a few additional identities: 

34_1 + 4 = 1L4„+1. (17) 

Proof: Replacing n by n +1 in (12), we have: 

i UH.I = 24,-1+4+i = 2 4 - i + 4 + 4-1 = 4,+34,-i-

34*1-4 , = 4 - i - (18) 
Proof: Replacing n by n - 1 in (10), we have: 

An-\ = 24+1 + 4 - i = 2 4 + 1 + A+i ~ Ai - ^Ai+i ~ Ai • 

A f - i - 4 f = 114l+1. (19) 
Proof: By (18), 

An-l ~ An = 34+1 - 2 4 = 34+1 ~ 2(4+1 ~ Ai-l) ~ 4+1 + 2 4 - 1 - 1 ^An+l 

1995] 95 



ADVANCED PROBLEMS AND SOLUTIONS 

[using (12), with n + l replacing ri\. By inspection of (15)-(19), we see that we have "bridged the 
gap" between the two 4-term A.P.'s, as required, producing an A.P. of 10 terms of the required 
form, with c.d. = An; this is given as follows: 

(-3An_2(m), - A„_4(m\ Bn_2{m\ 3An_l(m\ 1 \An+1(m -1), 
4Ml(/w +1), 3 4 + 1 0 ) , Bn+2{m\ An+A{m\ 3An+2(m)). 

Again setting m = n - 0, the c.d. is 0 in this case, and one term, e.g., 3-4(0) = 3Fl = 3; thus, in this 
case, we have a 10-tuple of 3's, as required. This shows that the 10-tuple in (20) provides a 
solution to part (B). 

Solution of Part (C) 

Using parts (B) and (A2) of [1], we find the following 6-term A.P. of the required form, with 
c.d. = 4 : 

\Bn-l> ~ 4-2> 4-l> 4+l> 4+2> Bn+l)' (21) 
Our goal, if possible, is to affix two terms to this A.P. (at either end or at each end), which are of 
the required form and satisfy the desired conditions. We require two additional identities: 

Bn+l + An = UAn+2. (22) 

Proof: Replacing n by n + 2 in (12), we have: 

1 lAn+2 ~ 2 Ai + 4+2 - 4 + (4 + 4+2) ~ 4 + Bn+l • 

Bn_l + An = ~An-2. (23) 
Proof: Replacing n by n-2 in (10), we have: 

A-2=24 + 4_2 = 4 + ( 4 + 4_2) = 4+5„_1. 
By inspection of (21)-(23), we see that the following 8-term A.P. has c.d. = An\ 

(-An_2(m +1), -B^ imX - An_2(m), An_l{m\ An+l(m), An+2(m\ B„+l(m), 1 lA„+2(m-1)). (24) 

Again setting m = n = 0,we see that the c.d. = 0 and each term, e.g., 4 (° ) = F\ = 1 for this case; 
thus, for this case, we obtain an 8-tuple of l's. This shows that (24) yields a solution to part (C) 
and we are done. 

Also solved by the proposer. 
• > • • 
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