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FORMULAS FOR a + a22p + a33p + ••• + annp 

G. F. C. de Bruyn 
Department of Mathematics, University of Stellenbosch, Stellenbosch, South Africa 

{Submitted June 1993) 

1. INTRODUCTION 

Let Sap(n) = a + a22p +a33p + ---+annp, with TIGN.PGN, and a GR (a *0,a^ 1), 
where TV and R are, respectively, the sets of positive integers and real numbers. 

In [2] N. Gauthier used a calculus-based method to evaluate Sap{n). He wrote Sa^p{n) as 
an times a polynomial of degree p in n plus a term which is ^-independent. The coefficients are 
then determined recursively. 

In this paper methods similar to those used in [1] are employed to derive various formulas for 
Sap{n). Recurrence formulas in terms of powers of n and of n + l are given. Explicit ex-
pressions for Sa (ri) in determinant form in terms of n and of n + l are then derived from these 
formulas. These determinants are finally used to write Sa p(ri) in terms of polynomials of degree 
p in n and in n +1. 

2. FORMULAS IN" TERMS OF POWERS O F « + l 

2.1 A Recurrence Formula 
Let TIGN . For k GNand a GR (a ^ 0, a ^ 1), let 

n 
k 

and take 

Then 

SaAn) = a + a22k +a3lk + '" +annk = Z a V 

5fl 0(/?) = l + a + a2 + ---+aw = 

r=0 

an+l-l 
a-\ 

a"+l(n + l)k = Sa,k(n + l)-Sa,k(n) 

^ a ^ i r + lf-S^in) 

r=ov /=(A J J 

= aHf )Sa,i(n)-SaAn)- (2.1.1) 

The equation 
a(S +1)* - S* = an+\n +1)*, (2.1.2) 

98 [MAY 



FORMULAS FOR a +a22p +a33p + ••• +annp 

in which the binomial power on the left-hand side is expanded and S1 (i = 0,1,2,..., k) are then 
replaced by Sa9i(n), provides a mnemonic for (2.1.1). 

For example, for k = 1, formula (2.1.2) gives 

a(S + l)-S = an+l(n + l), 
and so 

(a-l)S.M+4 
V a~l J 

= an+\n + \). 

Hence, 
a 

n+l 

« » ) = — T ( " + 1)- , n 2 a - l (a -1) 
a (a"+1-l). 

Also, by (2.1.2), with * = 2, 

a"+1(n +1)2 = a(S +1)2 - S2 = a{S2 + IS +1) - S2, 

which implies that 

(a-l)Sa,2(n) + 2aSaA(n) + a\ q"+1-l^ 
a - l a"+1(" + l r 

Thus, by (2.1.3), 
aM+1 , „, 2aM+2 a"+1-l. 

5 - ( " ) = ^ ( " + 1)-(^(" + 1) + ( ^ ( a + a ) 

(2.1.3) 

2.2 5fl(p(«) as a Determinant 
Let p&N and let k = l,2,...,p in (2.1.1). It follows, applying Cramer's rule to these/? 

equations together with the equation Sa0(ri) = a"a_~l, that 

sa,M = 
in+P 

(« - ! ) ' 

0 0 0 - 0 0 a - " ( ^ i ) 
£=L 0 0 ••• 0 0 « + l 
(?) ^ 0 - 0 0 (» + l)2 

(#) ¥ c^+ir1 

U ) (A) ("+1)p 

(2.2.1) 

-*W+P 

(a-l) ' 

0 
a - l JL 

1! a 
J_ J_ 
2! 1! 

0 
0 

a-l 
a 

1 
(p-1)! (p-2)\ (p-3)! 

_L i l 
p\ * (p-1)! (p-2)\ 

1 1 

0 
0 
0 

0 0 *-(*£=!) 
0 0 *±I 
0 0 ("+lr 

1! a 
(w+1)' ,p-l 

J_ 
2! 

fl (p-1)! 
1 ("+*)P 

1! p! 

(2.2.2) 
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2.3 Sap(n) in Terms of a Polynomial 

By expanding the determinant (2.2.2) with respect to the last column, 
P-I 

Sa.P(") = I *r(P + dP~r + apa-^(a"+1 -1), 
r=0 

w i t h ^o = i=T a n d , for r = 1,2,..., /?, 

ar r)a-l{a-l)r V J 

i 
1! 
1 

2! 

1 
(r-1)! 

1 
r! 

a-l 
a 
1 
1! 

1 
( r -2) ! 

1 
(r-1)! 

0 
a-l 

a 

0 • 
o . 

.. o 
•• 0 

1 
1! 
1 

2! 

0 
0 

a-l 
a 
I 
1! 

Now, let f0(a) = 1 and, for r = 1,2,3,..., 

(2.3.1) 

fr(P) = a 
(a-l) ' 

-H(-iy 

± *=* 0 0 
1! a 
_L J_ a=l o 
2! 1! a U 

( r _ l ) , ( r _ 2 ) ! 

1 1 
r! (r-1)! 

Then, by (2.3.1), 
n+l p-l f \ , 

0 0 
0 0 

1! a 

2! 1! 

V + 1 - i ^ 
V a ~ l J 

(2.3.2) 

(2.3.3) 

The real numbers / r (a), r = 1,2,3,..., can also be calculated recursively in the following way. 
Consider, for r eJV, 

" " / r ( « ) = (a-l)' 
-H(-l)r 

£=l 0 0 
1 a - l 0 

(r-1)! ( r -2) ! 
1 1 

(r-1)! 

0 0 
0 0 

J_ a=± 
1! a 
J_ J_ 
2! 1! 

a 
(a-iy 

-H 

1 0 0 0 
-i - ^ 0 0 
1! a 
± ± a=l Q 
2! 1! a U 

_L. _I_ 
(r-1)! ( r -2) ! 

J_ 1 
r! (r-1)! 

0 0 1 
0 0 0 
0 0 0 

_1 a=± 
1! a 
J_ J_ 
2! 1! 
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Observe that the last determinant differs from that of Sa^{n)^ as obtained by setting p~r in 
(2.2.2), only with respect to the last column. It follows [cf. (2.1.1)] that fQ(a)9 fx{a\ f2(a),... 
satisfy the recurrence formula 

f0(a) = l, a i [ ; ) / ( f l ) - / r ( a ) = 0 ( ^ l , 2 , 3 „ . . ) . (2.3.4) 

Here the equation 

a(f + iy-f = 0, (2.3.5) 

in which the binomial power is expanded and fr (r = 0,1,2,3,...) are then replaced by fr(a), 
provides a mnemonic for (2.3.4). 

Note that (2.3.4), with a = 1, is the well-known recurrence formula for the Bernoulli num-
bers. The real numbers fr(a), r = 0,1,2,3,..., could therefore be called the a-Bernoulli numbers. 
For example, by (2.3.2) or, recursively, by (2.3.5), 

f0(a) = 1, fx(a) = — , f2(a) = 2 , and f3(a) = 3—'-. (2.3.6) 

Hence, 1, - 2, 6, - 26 are the first four 2-Bernoulli numbers. 

3. FORMULAS IN TERMS OF POWERS OF n 

Let n GN. For k sNmda eR ( a * 0 , a * l ) , let 

Sa,k(n) = a + a22k+a33k + ->.+annk^arr\ 5^(0) = 0, 
r=l 

and take 

SaJ)(n) = a + az + --+an = —. 

Then, arguing as in Section 2.1, 

aV=^,(»)-^t(n-l) = ̂ ,(n)-^t^Vl)t-'^t(«). 

Hence, 

a"+V =aSa,k(n)-t (fk-l)*-'$,,,(»). (3.1) 
z=o V / 

The equation 

aSk-(S-l)k=an+lnk, 

in which the binomial power on the left-hand side is expanded and S1 (i = 0,1,2,..., k) are then 
replaced, by SaJ(n), provides a mnemonic for (3.1). 

Furthermore, methods similar to thbse employed in Sections 2.2 and 2.3 can be used to 
derive the following results from (3.1). 
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Sa,P(n) = a 
n+l 

(a-l)' 

1 
1 
1! 

1 
2! 

1 
3! 

0 

a - l 
I 
1! 

1 
2! 

0 

0 

a - l 
I 
1! 

o .. 
o .. 
o .. 

a - l .. 

• 0 

• 0 

• 0 

• 0 

0 

0 

0 

0 

a" -(n+l)(an+l-aS 

\ a-l 

n 
1! 

n2 

2! 

r? 
3! 

(-1)* ( - l ) p + 1 

(p-1)! 0 - 2 ) ! 
(-1)^+1 (-l)p+2 

P\ (p-iy. 
_J_ _L 

2! 1! 

( /? - ! ) ! 

nL 
p\ 

and 

-I 
-r=0 

with g"0(a) = 1 and, for r - 1,2, 3,..., 

^^-fnM'J*^^^ 2 ^ a n + 1 -a^ (3.2) 

& • ( « ) = 
/ • ! ( - ! / 

(a-l)' 
3! 

a-l 0 0 
£ a-l 0 

-1- -1 a-l 
2! 1! 

1=1)1 (-l)r+1 

(r-1)! ( r -2)! 
(~Dr+1 (-Qr+2 

r! (r-1)! 

0 

0 

0 

1 
1! 

1 
2! 

0 

0 

0 

a - l 
I 
1! 

The real numbers gr(a), r = 1,2, 3,..., can also be calculated recursively in a similar way as it is 
done in the case of fr(a), r = 1,2, 3,..., in Section 2.3. However, it is easier to observe that, by 
(2.3.3) and (3.2) (comparing w-free terms), fr(a) - asX°) f°r ea°h r G^. Hence, by (3.2), 

«+l n p-l s \ ( ~n i 

°'pK ' a-l a - l ~ W JpK \a-l 
, for p > 1. (3.3) 

For example, let p = 2 in (3.3). Then, by (2.3.6), 

In particular, 

s-.^'~i"'+~l^"+M'^T 
a"+1

 2 2an+1 (a + a2)(a"-l) 
a-l (a-iy (a-iy 

n ott+1 o«+l o«+l 

3,2V ' £f 2 2 2 
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GENERATING FIBONACCI WORDS 

Wai-fong Cfauaii* 
Department of Mathematics, Chung-Yuan Christian University, 

Chung-Li, Taiwan 320, Republic of China 
(Submitted June 1993) 

INTRODUCTION 

A word w is called an nth-order Fibonacci word derived from two distinct letters a and b if 
there exists a finite sequence wl,w2,...,wn of words with wx = a, w2=b, wn-w and each wk 

equals Wk-^k-2 ovwk-iwk-u 3 < & < w. The basic structure of Fibonacci words has been studied 
in [2]. In this paper we discuss various methods of generating Fibonacci words. 

Throughout this paper, let Qn denote the set of all nxh -order Fibonacci words derived from 
distinct letters a and b. Some of these methods generate all the Fibonacci words in Qn from any 
given u in Qn without repetitions and some of them generate Qn from Qn_x. 

1. BINARY TREES 

Let X - {a, b) be an alphabet of two letters and let X* be the free monoid generated by X. 
Elements of X* are called words. For any word w = axa2 -~an G I * , define f(w) [resp. g(w)] 
to be the word in X* obtained by replacing each a in w by b and each b in w by ba (resp., by ab). 
Also define T(w) = a2 • • • anax and R(w) = an • • a2aY. A word w is called a symmetric word or a 
palindrome if R(w) = w. 

Associated with each finite binary sequence rur2, ...,rn_2 there are four words in X*, 

defined as follows: 

y^r\r2"'rn-l yy(rlr2'"rn-l) yy\ftr2'''rn-l\ ^{r\r2' ^n-l) 

wx =a, w2= b, 

w nri-r„-2 

(nr2--rn-2) _ J w 

wlnr2- r„-2] . 

and 

* This research was supported in part by the National Science Council, R.O.C. Grant NSC 82-0208-M033-014. 
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w{^2-rn-2} . 

f{^n-i"rn^}\ i f either rn_2 = 0 and n is odd 
or rn_2 = 1 and n Is even, 

gtyn-iv"r"-3}) if either rn_2 - 1 and n is odd 
or rn_2 = 0 and n is even, 

n > 3. The superscript does not appear if the subscript is less than or equal to 2. For simplicity, 
we denote w°n°-° (resp. uf°-°>, w^°-°\ w^-^by w°n (resp. w<°>, w^\ w f ). 

The word w%r2'"rn~2 [or, more precisely, w%r2'"rn-2(a, fi)] is an n^-order Fibonacci word 
derived from the pair of initial letters (a, h). More generally, we can define nth -order Fibonacci 
words derived from a pair of initial words (x, y) (see [2]). 

Now we have four binary trees whose nodes are words. We shall prove in Theorem 1 that 
each level of these trees consists of the nth -order Fibonacci words with repetitions. More pre-
cisely, the words in each level of each tree is just a permutation of the words of the same level of 
any other tree, with the number of repetitions of each word unchanged. The relations between the 
Fibonacci words wrf2'"r"-2, w{^rr"rn-2\ w j ^ 2 " " ^ , and w^rr"r"-2) tell us how a particular Fibo-
nacci word can be generated in different ways. 

Theorem 1: Let « > 3 , ^r2,'",rn_2 be abinary sequence and let si - l-rz-, \<i<n-2. Then 

(a) i ? (wp- r - 2 ) = w ^ - 5 - 2 . 

Similar results hold for w^2'''r"-2}, w{^2'''r"~2], and w{^2"''r-2}. 

(h) MMr2---r"-2]=Wr^-^. 

(rir2..^2)_k---^-2 (noMl 
(c) < 

(d) WlW~rn-2}= W0-n-2-r2n) 

(n even). 

yrn-2sn-3rn-4"mS2r\ 
n 

l)sn~2rn-ys1rx 

{n odd), 
(n even), 

| ^ - ^ - J {n odd), 

Proof: First, note that part 1 of (a) has been proved in [2]. Part 3 (resp. part 2) of (a) 
follows from (b) [resp. (c)] and part 1 of (a). 

Assertions (b), (c), and (d) are proved by induction. 

We illustrate the theorem with the following examples. 

Example'1: {w®} and {wl
n} are well-known sequences of Fibonacci words (see [4]). Recently 

they are used by Hendel and Monteferrante [6] and by Chuan [5] to solve an extraction problem 
of the golden sequence posed by Hofstadter [7]. 
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By Theorem 1, 
[0] o K 1 0 ' 1 0 ) (»odd), 

Wr,=Wr,=i (n>3). 
in even), 

The first equality means that the sequence given by wx - a, w2 = b, and wn = wn_1wn_2 (n > 3) is 
precisely the sequence {wn} where wx -a, w2 =h, and wn is obtained from wn_l ;by replacing 
each a in wrJ_l by 6 and each b in w„_x by &a. The second equality means that, if q1=aP q2=h, 
and 

K-2^(^ - i ) (^even), 

then ww = qn ifn is odd and wn = R(qn) ifn is even. A similar result holds for wl
n. 

Example 2: By Theorem 1, * 

roioi...] wn (n odd), 

wr°=R(wr~m) ("even), 

= w(oo...o) = ^„- , - i ( wo ) = r ( w i ) 

See [2] for the last two equalities. Again, the sequence {w^} can be generated by three different 
methods. This is also observed by Anderson [1]. 

Example 3: Let vx = a, v2 = b, and vn - v„_2i?(vw_1) (n > 3). Then vw = i?(w„) where wn is as 
in Example 2. This is because 

v„=^iLi)=^ro))=^K). 
Example 4: Let Wj = a, w2 = A, and wn = w„_i^(^„_2) (w ^ 3). Then 

(aj w„ = wr/2'"rn-2 where 
_J l , if i = 0 (mod 3), 

[0, otherwise. 

(b) wn is symmetric <=>w^ 0 (mod3); hence, {wn} contains all the symmetric Fibonacci 
words (see [3]). 

fi?(w„_1)ww_2, if n = 0 (mod 3), 
(d) wn = • 

\w„-2^(wn-i )> otherwise. 

„ , , x f 0, if / = 1 (mod 3), 
(e) W|I=W<''*~'~*> where /,=<! ' .' 

II, otherwise. 
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2. LOCATING THE LETTERS 

For n > 2, let 
fiVi (n even), 

and 

10101... 

l/n-2 

[Fn-l 

TJ\qn) = 

(n odd); 

(n even), 
(w odd). 

cxc2>-cF where c, e{a, 6}. Then Theorem 2: Let « > 2, qn = wn 

ck =ao k = (r + j)t (modFn) for some 1 <r <Fn_2 (1) 
o fc = (r-j)s (modF„) for some Fn_x < r < Fn - 1 
<̂> k = 1 + (r - 7)5 (mod i^) for some 0 < r < Fn_2 -1 
ok = \ + (r + j)t (modF„) for s o m e J ^ + l ^ r <Fn. 

ck =bok = (r + j)t (modFn) for someFn.2 + 1 <r <Fn 

o i = (r- j)s (modF„) for some 0<r <Fn_x-1 
<=> k = l + (r-j)s (modi^) for some Fn_2 < r < Fn -1 
o A: = l + (r + j*)r (modF„) for some 1 < r < Fn_x. 

Proof: The case where j = 0 in (1) has been proved in [2] and the other results follow easily 
from (1). 

Given rl,r2,...,rn_2, to generate the Fibonacci word w = wr/r"r"-2
v we first compute k = 

YIiZ\ Fi+\ri + 1 ancU satisfying 
f«V! (modFJ (wodd), 
[*F„_! - 1 (mod F„) (/? even), 

and 1 < j < Fn. Then w = TJS(qn) (see [2]); thus, any one of the first four conditions in Theorem 
2 gives precisely the positions of the letter "a" in w. Hence, w can be constructed easily. 

Besides using congruences, other methods of locating the letters are discussed in [4]; for 
example, using Zeckendorf representations and the golden ratio. 

3, SHIFT OPERATION 

It has been shown in [2] that Qn consists of Fn distinct elements and, for any w sQn9 

w, T(w), ..., TF"~l(w) is a list of all these elements. In this way, every 12th-order Fibonacci word 
is a generator of Qn. 

4. ADJACENT TRANSPOSITION AND MINIMUM SUM 

Let qn, n = 3,4,...,s,t be as in section 2. For w = c1c2---cWJ where c- equals a or h, we 
designate by S(w) the sum of the indices j for which c. = a and, for 1 < k < m, we put 
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where dk = ck+l, dk+l = ck, with subscripts modulo m, and dj = c., otherwise. 

Theorem3: For \<j<Fn, letkj = jt (modF„) and 1 <kj <Fn. Then 

hkj(l<J-l)s{qn)) = rs{qn),\<j<Fn. 

Proof: By Theorem 2, the positions of the letter V in T^'^'fa), /^.(7/°-1)j (#„)), T^'fa.) 
are, respectively, 

jt,(j + l)t,...,U + Fn-2-ty> (2) 
7̂  + 1, 0 + lX...,0 + F„_2-lK (3) 

O + iK...,c/+iv2 - iK U+Fn_2)t, (4) 

modulo / ? . Since (j + F„_2)t = jt + l (modF„), it follows that hkj(l<J-1)s(qn)) = TJS(qn). 

Corollary 1: Let w(0) =#„, u{J) =hk,(uu~X)), \<j<Fn-\. Then the sequence u(0\um, ..., 
u(Fn-1) is precisely the sequence #„, Ts(qn),..., T^-^*{qn) and consists of all w^-order Fibo-
nacci words. 

More generally, given a word w e Qn, let 0 < j < Fn - 1 be such that 

j^S(w)-S(q„)^S(w)-F„_2(Fn_2+l)t/2 (modFJ. 

[The last congruence follows from (4).] Then w = TJS(qn), so the sequence 

i,(0) (5) : w , v(r) = hk (v{r-l)), \<r<F„-l 

(with subscript j+r modulo Fn) coincides with the sequence 

Ps(q„),TW(q„),...,7<J+F»-»s(qn) 

and consists of all the nth -order Fibonacci words. The importance of this method is that, in the 
sequence (5), any two successive Fibonacci words differ only by a pair of consecutive letters (the 
first and the last letter in a word are considered as consecutive letters). This gives a simple way of 
generating all the rft -order Fibonacci words from any given n^ -order Fibonacci word. 

For example, with n - 6 and w = bababbab, we have 7 = 3, and the sequence v(r) in (5) is 
given as follows: 

r 

0 
1 
2 
3 
4 
5 
6 
7 

j+r (modi^) 

3 
4 
5 
6 
7 
8 
1 
2 

Kj+r 

4 
7 
2 
5 
8 
3 
6 

v<r> 

bab&bbab 
babbab&b 
babbabba 
bbab&hba 
bbabbabst 
ah&bbabh 
ahbab&bb 
abbabbab \ 
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When the "ab" in bold face in each word in the last column is replaced by "ia," the next word is 
obtained. Note also that, in view of Corollary 1, the same list of Fibonacci words can be obtained 
by shifting the letters in the Fibonacci word five places to the left in each step. 

Corollary2: S(P\q„))-S(T<^'(qn)) = l,l<j<F„-l. 

Proof: If 1 < j < Fn - 1 , then k} # F„; thus, 

S(Ps(q„)) = S(hkj (TV-V'ten))) = Si^-^qj) +1 

according to (2) and (3). 

We have seen in [3] that 7(Fw~1)5(qn) = R(qn). Therefore, we obtain the following corollary. 

Corollary 3: S(qn) = min{S(w):w GQJ; S(R(qn)) = max{£(w):w €=£,}. 

Finally, it is easy to see that S(qn) and S(w%) satisfy, respectively, the following recursive 
relations: 

W" l % J + % . 2 ) + W » . 2 , if n is odd, 

S(qn-i) + S(qn_2) + Fn_3Fn_2 - 1 , if n is even, 
S(qn-i) + S(qn_2) + Fn_3Fn_2y ifnis odd, 

S(w°n) = S(wlx) + S(wl2) + Fn_4Fn_ly 

n>5,mdS(q3) = S(q4) = l, 8(w°3) = S(w°4) = 2. Also, we have S(qn) ^ Fn_2(Fn_2 + l)f/2 (mod 
F„) according to (4). 

5. FIBONACCI WORD PATTERNS 

The Fibonacci word patterns F°(a, b) and Fl(a, b) are defined by 
r 0 / n 0 0 0 

F {a,b)~wlw2w3w4...wn..., 

Fl (a, ft) = w^w^w] ... w*..., 
where wx =a,w2 = b. Fl(a,b) has been studied by Turner ([8], [9]), and Fl(b,ab) is a golden 
sequence. 

The following embedding theorem has been proved in [4]. The notation u[p: q] means the 
subword apap+l...aq of the infinite word u = a1a2a3... where each an9 n > 1, is a letter. 

Theorem 4 (Embedding Theorem): 

(a) Let all the Fibonacci words be listed in the following order: 

w,,wiy,J{w°),...,wlT{w«n),...,TF»-\wl),.... 

Then the 7th Fibonacci word in the above list is T(wQ
n) where n is the largest positive integer 

such that Fn+l < j and i-j~Fn+V This Fibonacci word is precisely F°(a, b)[j;j + Fn-l]. 
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(b) Let all the Fibonacci words be listed in the following order: 

*i,*2> T{w\\ T\w\\..., T(wll T2(wl),..., J ^ ) , . . . . 
Then the 7th Fibonacci word in the above list is 7*(w*) where ?? is the largest positive integer 
such that Fn+l < j and i=j- Fn+l +1. This Fibonacci word is precisely Fl(a, b)[j-Fn + l:j]. 

In other words, all the Fibonacci words are embedded in the Fibonacci word patterns 
F°(a, b) and Fl(a, b) in the above sense. 

6. GENERATION WITHOUT REPETITIONS 

Besides those methods described in Sections 3-5, we shall develop two additional methods of 
generating all the 72th -order Fibonacci words without repetitions. 

Let R be the set of all words in X* \{1} that contain no consecutive letters "a." As before, 
the first and the last letter in a word are considered as consecutive letters. Clearly, each Qn is a 
subset of R. For w eR, let h(w) be the word obtained from w by wrapping w around then replac-
ing each ba in w by ab and then unwrapping it. For example, 

h(b&bhabh) = abbabhb, 
A(aAbaib) = bbabba. 

Only the letters in bold face have to be replaced. 

Lemma 1: h(w) = T(w) for all w GR . 

Proof: Let w eR. Write 

From the definition of/?, we have 

ci 

w 
h(w) 

= -
X 
a, 

h 

= ala2--a„ 
~ClC2'"Cn-

ifa,a/+1=££, 
if *,.*,.+! =Aa 
if afai+1 = ab 

\<i <n, with subscripts modulo n. Hence, c7 = ai+l, \<i<n, with subscripts modulo n. There-
fore, h(w) = T(w). 

Theorem 5: Let w e Qn. Then the sequence 

*«0 = w , *a> = A(i|C/-i)), 7 = 1,2,..., Fw - 1 , 

is precisely the sequence wy T(w),..., TF"~l(w) and consists of all the /2th -order Fibonacci words. 

Next we turn to a result that is related to the operations/and g defined in Section 1. 

Lemma 2: Let w e X* \ {1}. Then 

(a) bg(w) = f(w)b. 
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/** /YTY v* \ S ^ > ifw b e § i n s w i t h a n " a >" 
(ft; / ( i ( w ) ) = < 

[J(g-(w))3 if w begins with af! ft." 
<y T ( / ( W ) ) ^ ( W ) . 

/***>/; 
fa) We prove the result by induction on the length m of w. Clearly, the result holds for 

m = l. Now assume that the result is true for some m > 1. Let w e X* \ {1} have length 
wf. Then 

^(ow) = bbg(w) = bf(w)b = f(aw)b, 
bg(bw) = babgiw) = baf(w)b = f(bw)b, 

by the induction hypothesis. 

(&) B»y part (a), we have, for any M G I * , 

f(T(auj) = /(i/a) = /(i/)A = ig(w) = g(aw), 
/ ( r ( te» = /(*&) = /(n)te = ftg(M)a = r(a*g(«)) - r(g(ftn)). 

Therefore, (b) holds. 
(c) Clearly, this holds for w having length 1. Assume that w has length > 1. Then 

T(f(aw)) = T(bf(w)) = f(w)b = bg(w) = g(aw), 
T(f(bw)) = T(bqf(w)) = af(w)b = abg(w) = g(bw), 

by part (a). Therefore, (c) follows. 

With this lemma, we now have a method of generating Qn+l9 without repetition, from Qn by 
means of/ and g. 

Let n > 3. List the images of the sequence wn, T(w°n),..., TF»-\w°n) under/andgin the fol-
lowing order: 

/to0), sto°), -, f(r'to0)), sirto)),..., /(r^to)), ̂ r"--1 to)) 
Then take away g(Tl(w°n)) from the list if T{wQ

n) begins with an "a" because, in this case, 
g(T (w°)) = f(T1+l(w®)) according to Lemma 2(b). Since there are Fn_2 w^-order Fibonacci 
words beginning with an "a" (see [2]), it follows that there are Fn+1 words left in the list. Now, 
according to Lemma 2, we see that the resulting sequence coincides with the sequence 
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Let a and b be two distinct letters and let r = (V5 -1) / 2. Let x be the infinite string whose 
w* term is W if [(w + l)r] - [TIT] = 0 and is !,6,f if [(w + l)r] - [nr] = 1. Let sm be the left factor of 
x of length m and let xm be the corresponding right factor of x. Note that x = x0 is the golden 
sequence. It is known that 

X — LfiL"jLfoL^A... I JL i 

where cQ = a, q = A, and cn+l = ̂ . ^ (w > 1). In the notation of [l]-[3], x = F 1 ^ , aZ>), cn - w*+1 

and 5F = w% (n<l), where Fn denotes the n®1 Fibonacci number. 
Hofstadter [6] formulated the concept of aligning two strings. By way of illustration, we pre-

sent the procedure by which xm is aligned with x = x0. 
Starting from the (m + Yf term in x, an attempt is made to match each term in x with a term 

in xm. After a term in x is matched with a term in xw? one looks for the earliest match to the next 
term in x. Those terms in xm that are skipped over form the extracted string ym0. For example, 
when m = 4, 

x4: a b a h b a b b a b a h b a h a h b -" 

x: b a b b a b a b b a b b 
y4Q: a b a b a b ... 

It was Hendel and Monteferrante [4] who first reformulated Hofstadter's alignment concept 
in terms of a formal relation on strings. If xm aligns with xn with extraction ymn, then we nota-
tionally indicate this by 

Xm ^ Xm ym,n • vA) 

[4] also introduced the idea of representing xm as a product of ca with specific properties by using 
a canonical representation xm - ca(ifa(2y- where a(k) is an increasing function on the positive 
integers that can be derived from the Zeckendorf representation of m as a sum of Fibonacci 
numbers. Using this, they were able to completely determine ym0 for all positive integers m. 

The goal of this paper is to determine the remaining cases of ym^n. In Section 2, y0m is found 
to be precisely the reverse R(sm) of the left factor sm of x of length/w. 

Here the reverse operation R is defined by 
R(a1a2...ak) = ak...a7al9 

where al,a2,...,ak are letters. The importance of the reversal operation in studying x was first 
observed by Higgins [5]. In Section 4, it is shown that ym^n and Jw_i5„_i differ by at most the first 
letter. From this, ymn can easily be determined by j w _ w ? 0 (if m > n) o r y^n-m ( f n > m)-

* This research was supported in part by the National Science Council, R.O.C. Grant NSC 83-0208-M-033-013. 
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1. BASIC LEMMAS AND DEFINITIONS ON EXTRACTION 

The following definitions come from [4, Definitions 1 and 2]. Suppose that U = u1...un, 
V - vx ...vm, and E = el...ep with ui,vj9ek e{a,b},n,m>0,p>0, and n = rn + p. We say that U 
aligns (with) V with extraction E if there exist integers 7(0), y'(l), y'(2),..., j(p) such that 

U = (vx... vxl)M(v7.(1)+1... vj(2))e2 ... ep(vJ(p)+l... v J , 

with vy... vk empty if A < / and 

(i) 0 = y(0) < 7(D < 7(2) < • • • < j{p) < m, 
(ii) et*vm+l9 forl<i<p. 

This relationship is called an alignment and is denoted by U z> V; E. The strings U, V, and E 
are called the original, aligned, and extracted strings, respectively. If U - V, we write UZDV;1, 
where 1 denotes the empty string. 

Suppose that U, V, and E are (possibly infinite) strings. Suppose that U(ri), V(n), and E(n), 
n>\, are sequences of finite strings such that U(n)zDV(n); E(ri), limU(n) = U, limV(n) = V, 
and lim E(n) = E. Then we say that U aligns V with extraction E. This alignment is also denoted 
byUiDV;E. 

Lemma LI [4, Lemmas 1 and3J: 

(a) (Uniqueness of extracted string) For given strings [/and V, there is at most one string E 
such that U ID V;E. 

(b) (Concatenation) If U^VU and£"/? \<i<m, are strings of finite lengths and if Ui z> 
Vt\Ei9 \<i<m, then 

UlU2..Mm^Vr2^Vm;ElE2...Em. 

Lemma 1.2: 
(i) cn=5c„_i; c„_2, w>2. 

(ii) c„^c„; 1, « > 1 . 
(ill) c„=c„_2c„_„ « > 2 . 
W c„c„+i...cp^c„+1 ...c^c,,, 1 <«</>. 
(v) c„c„+23c„+2; c„, »>1 . 

(w) C„C„3C„+1; C„_2, « > 2 . 

(w9 c»c»+3 => c„+1c„+2; c„, n > 0 . 

Proof: Part (i) has been proved in [4] by induction. Parts (ii) and (iii) are trivial. According 
to (i) and (ii), we have 

CnCn+l 3 Cn+U Cn 

cn+i=>c„+i;l, 2<i<p-n. 

Part (iv) now follows by concatenation [Lemma 1.1(b)]. The proofs of (v)-(vii) are similar to 
(iv). 
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Lemma 1.3: Let t > 1. Let ^(0) = 0 and let y(l),...,y(t) be positive integers such that y(i) + 2< 
y(i + l), l<i<t-l. Let 

1^2 • • • 

cxc2 .. 

(P&L 

Wfrity+i 

•cy(i)-icy(i)+i> 

•~cy(iyi)(cr(i)+i- ••cr(2)-i)* \cy(t-i)+i • ••c
r(0-i)cr(0+i ' 

iff = 1, 

otherwise v = < 
£ = cr(1)cr(2)...cr(0? 

where the factor cxc2 ... C^D-I does not appear if ^(1) = 1. Then UZDV; .E. 

Proof: By Lemma 1.2, we have 
CXC2 ... Cr(1)_x ZD Of 2 ... ^r(i)_i ; 1, if r ( l ) > l , 
Cr(i)Cy(i)+l •'' Cy(i+l)-l ^ Cr(0+1 ' ' ' Cr0'+1)-1> C r ( 0 ' 1 ̂  * ^ * ~ 1> 
cr(Ocr(f)+iDCr(0+i; cr(0' 

The result now follows by concatenation. 

Lemma 1.4[4, Lemma 5]: Let m>\ haveZeckendorf representation 
m = Fk{l)+Fk(2) + '~+Fk(t) ( 3 ) 

with Jfc(l)>2, k(i) + 2<k(i + l\ z = l , . . . , f - l . Let ^(/) = Jfc(j) - 1 , l < / < r , and let F be as in 
Lemma 1.3. Then 

Xm ~ ^Cy(t)+2Cy(t)+3 ••• • ( 4 ) 

The ordered collection of indices 1,2,..., y{\) -1, y(l) +1,..., y(2) -1,..., y(t -1) +1, ..., p(0 - 1 , 
y(f) + l, y(f) + 2,... is called the canonical representation of xm. Actually [4, Definition 3] uses 
the term "canonical representation" to refer to the function of the positive integers enumerating 
this ordered collection. However, in the sequel, if there is no ambiguity, we will simply, by abuse 
of language, call (4) the canonical representation of xm. 

Corollary 1.5: Let xm = ca(1)ca(2)... be a canonical representation. Then 

(i) (a(l), a(2)) e {(1,2), (1,3), (2, 3), (2,4)}. 
(ii) a(Jfc + l)e{a(Jfc) + l,a(ifc) + 2}, for all ik > 1. 

(Hi) There exists a positive integer r such that a(k +1) = a(k) +1 for all k > r. 

2. THE ALIGNMENTS x 3 xm; j 0 > m AND xm => x; j m ? 0 

We now express the extraction y0m in terms of the ci. 

Lemma 2.1: For m > 1, let TW have Zeckendorf representation (3). Let y(i) = &(/) - 1 , 1 < /' < t. 
Then 

^0,™ ~Cy{\) '-'Cy(t)^ 

where ^ is defined by (2). 
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Proof: The result follows from (1), (4), Lemma 1.3, and Lemma 1.2(11) by concatenation. 

Next, we look at the left factors of the golden sequence. Let 

wl = a, x2=b,wn+1=wnwn_h n>2. 

In the notation of [l]-[3], wn = w°, n>\. 

Lemma 2.2: Let n > 4. Then wnwn is a left factor of x. 
Proof: First, observe that 

= (WnWn-l)(Wn-lWn-2) 

= w„wn_lw„_2wn_3wn„2 

= wnwnwn_3wn_2. 

By Lemma 1.4 of [3], wn+2 is a left factor of x, for all n > 4. The result immediately follows. 

Lemma 2.3: Let m > 1 have Zeckendorf representation (3). Then 
Sm=Wk(t)"-Xk(2)Wk(l)-

Proof: The result clearly holds for m = 1, 2, 3. Suppose m > 4 and that the result is true for 
all positive integers less than m. 

First, suppose t = 1 so that, by (3), m~Fn for some n. By Lemma 2.2, wn is a left factor of 
x. By definition, sm is also a left factor of x. Since both these left factors of x have the same 
length F„, they are both equal. 

Next, suppose that t > 1. Then, by (3), 
Fk{t) <m<Fk(t)+i ^ 2Fk(ty 

Note that sF = wk^ since they are both left factors of x of the same length, let 

where s has length m-Fk^. By Lemma 2.2, wk^wk^ is a left factor of x. Since sm = wk^s is 
also a left factor of x, it follows that $ is a left factor of wk^. Therefore, s = sm_F ; hence, 

Sm = Wk(t)Sm-Fk(t) • 

By the induction hypothesis, the Zeckendorf representation 
m ~ Fk{t) = Fk(t-\) + * * • + Fk(2) + Fk(l) 

gives the factorization 
Sm-Fk(t) = Wk{t-\) ''' Wk(2)Wk(l) • 

Consequently, sm has the desired factorization. 

Theorem 2.4: For m > 1, 

yO,m=R(Sm)-
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Proof: We have 

R(sm) = R(wk(l))R(wk(2)) • • • R(wk(t)\ by Lemma 2.3, 
= %(i)-A(2)-i ••• ck(t)-h by the result, R(w„) = c„_1? of Theorem 3 in [1], 
= cr (1 ) . . . cr(f), using the notations of Lemma 1.4, 
= y0ftn, by Lemma 2.1. 

Theorem 2 5 (Modified Hofstadterfs conjecture [4]): Let m > 2 have Zeckendorf representation 
(3). Then 

xm ZD x; arm_1? if £(1) = 2 and &(2) is even; 

xmz>x; xm_2> otherwise. 

In other words, ymS> - cccm_l in the first case (this is also true when m = 1) and ymQ) = xw_2 in the 
second case. 

3. SOME LEMMAS 

The goal of this section is to prove that, under appropriate conditions, if s ZD t; u, then cps ZD 
t; c u. The precise statement and conditions are set forth in Lemma 3.5. The major tool in prov-
ing Lemma 3.5 will be Lemma 3.1, which considers three cases. 

Throughout this section, we let p > 2 and we let 

S ~ Ca(l)Ca(2) ' •• 

t = Cfi{l)Cfi(2)'~ 
with 

a(l) = p + 2 or/7 + 3, 0(1) = p + l or p + 2. 

We suppose that r is a positive integer such that, for k < r, we have 
a(k +1) G {a(k) +1, a(k) + 2}, fi(k +1) e {fi(k) +1, £(Jfc) + 2}, 

while, for & > r, we have 

a(k +1) = a(Jfc) +1, jff(Jfc +1) = /?(£) +1. 

Lemma 3.1: There is some k such that either cases (i) and (ii) listed below hold, or else case (iii) 
below holds for all k. 

Case (i). There exists a string uk such that 
ca{\) • •• ca(k) ^ CA1) • • • CP{k)> Uk > CO 

cpcaQ) • • • Ca{k) ^ CJ3(1) • • • C/3(k) J C /?% • ( 6 ) 

Case (ii). There exists a string % such that 
Ca(l) • • • Ca(k-l)Ca(k)-2 ^ C£(l) • • • cfi(k)> uk> (J) 

CpCa{\) • • • ca(£-l)ca(£)-2 ^ c/3{\) • • • C/TO> C p ^ ' W 

Case (iii). 
/?(£) = a ( £ ) - l , (9) 
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and there exist strings uk and vk such that 
vkCa(k)-l=cpUk, (10) 

ca(l) • • • ca(k) ^ c(3(l) • • • Cp{ky uki 0 1) 

CpCa(l) •• • Ca(k-l)Ca(k)-2 ^ Cp(l) • • • C0(k)> Vk- 0-ty 

The factor ca(1)... ca^k_^ in (7), (8), and (12) does not appear if k = 1. 

Proof: Lemma 3.1 follows immediately from the statements of Lemmas 3.2 and 3.3 which 
are proved below. 

Lemma 3.2: If k = 1, then one of the three cases listed in Lemma 3.1 holds. 
Proof: There are four cases to consider, according to the values of a(l) and /?(1). 

Case (a). a(l) = p + 2 and (3(1) = /? +1 
We show that case (iii) holds with ux - cp and vx = cp_2- Clearly (9) holds. By Lemma 

1.2(iii), (10) is satisfied. Alignment (11) follows from Lemma 1.2(i), while alignment (12) 
follows from Lemma 1.2(vi). 
Case(b). a{\) = p + 2 and/?(l) = p + 2 

We show that (i) holds with u{ = ]. Then (5) follows from Lemma 1.2(ii) and (6) follows 
from Lemma 1.2(v). 
Case (c). a(l) = p + 3 and /?(!) = p +1 

We show that (ii) holds with ux = l. Then (7) follows from Lemma 1.2(ii) and (8) fol-
lows from Lemma 1.2(iv). 
Case (d). a(l) = p + 3 and /?(1) = p + 2 

We show that (iii) holds with ux =cp+l and v{ = . Clearly (9) holds. Lemma 1.2(iii) 
implies equation (10), alignment (11) follows from Lemma 1.2(i), and (12) follows from 
Lemma 1.2(iii). 

Lemma 3.3: Suppose, for some integer k > 1, case (iii) of Lemma 3.1 holds. Then, for k +1, one 
of the three cases of Lemma 3.1 holds. 

Proof: First, note that, by (9), [3(k +1) e {a(k), a{k) +1}. There are now four cases to con-
sider, according to the values of a(k +1) and f5(k -f 1). 

Case (a). a{k +1) = a(k) +1 and fi(k +1) = a(k) 
Let 

uk+\ = ukca(k)-i and vk+l = vkca(k)_3. (13) 

We show that (iii) holds with k +1 replacing k. Clearly (3{k +1) = a(& +1) - 1 . By Lemma 
1.2(iii) and (10), we have 

Vk+lCa(k+i)-l ~ VkCa(k)-3Ca(k) ~ VkCa(k)-3Ca(k)-2Ca(k)-l 

- VkCa(k)-lCa(k)-l = CpUkCa(k)-\ ~ CpUk+V 

This demonstrates that (10) holds with k replaced by k +1. 
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To prove that (11) holds with k + l replacing k, we concatenate the following two align-
ments: (11) as is, with k and ca(^k+V} z> c^k+l^ ca^_h the last alignment following from 
Lemma 1.2(i). 

To prove that (12) holds with k + l replacing k, we concatenate the following two align-
ments: (12) as is, with k and cf l ( j k Hca ( W ) .2Dc^+ 1 ) ; catk)-3> t h e l a s t alignment following 
from Lemma 1.2(vi) with n = a(k). Alignment (12) with k +1 replacing k then holds since, 
by Lemma 1.2(iii), caik)_2caikyi = ca{k). 

Case (b). a(k + l) = a(k) +1 and fi(k +1) = a(k) +1 
Let uk+l - uk. We prove that (i) holds with k + l replacing k. 
To prove that (5) holds with k + l replacing k, we concatenate the following two align-

ments: (11) and ca(k+V) z> c^k+l); 1, this last alignment holding by Lemma 1.2(11). 
To prove (6) with k + l replacing k, we concatenate the following two alignments: (12) 

and ca(jt)_1ca(jt+1) ZDC^k+l); ca^_ly the last alignment following from Lemma 1.2(v). Align-
ment (6) with k + l replacing k then follows from (10) and Lemma 1.2(iii) with n = a(k). 
Case (c). a(k +1) = a(k) + 2 and fi(k +1) = a(k) 

Let uk+l = uk. We show that (ii) holds with k + l replacing k. 
To prove (7) with k + l replacing &, we concatenate the following two alignments: (11) 

and ca(k+ly2 ^ cp(k+iy ^ ^ e ' a s t alignment following from Lemma 1.2(ii). 
To prove (8) with k + l replacing k, we concatenate the following two alignments: (12) 

and ca(£)_i£a:(£+i)_2 ^ cp{k+\)> ca(k)-h the last alignment following from Lemma 1.2(iii) and 
(i). Alignment (8) with k + l replacing k then follows from (10) and Lemma 1.2(iii) with 
n = a{k). 
Case (d). a(k +1) = a(k) + 2 and /3{k +1) = a{k) +1 

Let uk+l = ukca(k) and let vk+l - vk. We show that (iii) holds with k + l replacing k. 
Clearly (10) with k + l replacing k follows from (10) as is and Lemma 1.2(iii). 

To prove (11) with k + l replacing k, we concatenate the following two alignments: (11) 
as is and caik+V) ZD c^k+l); ca(^, the last alignment following from Lemma L2(i). 

To prove (12) with k + l replacing k, we concatenate the following two alignments: (12) 
as is and £a(£)-ica(£+i)-2 ^ cp(k+\)> 1> ^ e last alignment following from Lemma 1.2(iii) and (i). 
As already noted, Lemmas 3.2 and 3.3 provide an inductive proof to Lemma 3.1. 

Lemma 3.4: 
(i) If cases (i) and (iii) of Lemma 3.1 do not hold for any k, then eventually (for all k>r) 

we are in case (a) of Lemma 3.3. 
(ii) In such a case, vk (resp. uk) is a proper left factor of vk+l (resp. uk+1). 

Proof: By the hypothesis of this lemma, Lemma 3.2, and Lemma 3.3, case (iii) of Lemma 
3.1 must hold for all k. By the hypothesis at the beginning of the section, a(k + T) = a(k) +1 for 
all k >r. Hence, of the four cases of Lemma 3.3, case (d) cannot hold and, clearly, cases (b) and 
(c) also do not hold. This proves assertion (i). 

Assertion (ii) follows from equation (13). 
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We are now in a position to state the main lemma. 

Lemma 3.5: Assume that the notations and assumptions stated at the beginning of this section 
hold. If s 31; u, then cps z> t; cpu. 

Proof: The proof of Lemma 3.5 follows directly from the proof of Lemmas 3.6 and 3.7 
below. 

Lemma 3.6: If, for some k, case (i) or (ii) of Lemma 3.1 holds, then Lemma 3.5 is true. 

Proof: Let 
S' = Ca(k+l)Ca(k+2) ~-> 

* ~ C/3(k+l)C/3(k+2) •••• 

Then 
S~Ca(l) ~-Ca(k)S'> 

t~Cfi{\) ••-Cfi(k)t'-

If (i) holds, then define u' so that s' ZD V\ U' . Note that u' exists because s' and V each have an 
infinite number of "a"s and "i"s. By concatenating this alignment with (5) and (6), respectively, 
we obtain 

siDt; uku' 
CpSZDt\ CpUkU'. 

Hence, ukuf = u by uniqueness of extracted strings, cpuku' = cpu and we are done. 
If (ii) holds, let ca^kyXsf 3 V\ u'. Then 

SZDt\ UkU' 

cpszDt;cpukuf 

with uku' = u, cpuku' = cpu and again we are done. 

Lemma 3.7: If cases (i) and (ii) of Lemma 3.1 do not hold for any k, then Lemma 3.5 is true, 

Proof: By Lemma 3.4(ii), both v = limv^ andz/0 = lim% are infinite strings. Taking the 
limits of (11) and (12) as A: goes to infinity, it is clear that 

sz)t; u0 

cpszDt;v. 

By uniqueness of extracted strings, we have u = u0. By Lemma 3.4 and (13), we have 
vk+2 ~ vk+lca(k+l)-3 ~ vkca(k)-3ca(k)-2 ~ vkca(k)-l ~ CpUk ( ^ - r)-

Consequently, v = lim vk+2 - lim cpuk = cp lim uk = cpu. 

Remark: Lemma 3.5 also holds when/? = 1. The proof for this case is straightforward and is left 
for the reader. 

120 [MAY 



EXTRACTION PROPERTY OF THE GOLDEN SEQUENCE 

4 THE ALIGNMENTS xm ^xn; y^n 

Theorem 4.1: Either the two extracted strings ym^n and j w + l j W + 1 are equal or else they differ by 
the first letter only. Here, ymn Is defined by (2). 

Proof: Let xm - ca^ca^ ... and xn = c^c^2) ...be the canonical representations of xm and 
xn9 respectively. By Corollary 1.5(1), we have three cases to consider, according to the values of 
a(l) and /?(1). 

Case (i). a(l) = fi(l) 
Clearly y^ = ym+ln+l in this case. 

Case(li). a(l) = 2 and /?(1) = 1 
B>y Corollary 1.5(i), there are three subcases to consider: 
(a) If xm = c2s, xn - cf4 and s z> c2t; u, then ymn = au and y^i^+i = hu. 
(lb) If xm = c&s, xn = qc,fand5D/;M, thenymn = an and y ^ ^ = to. 
(c) If xw = c2c4s, xn = c&t and szDt\u, then j ^ -ac2n and ym+ln+l = c3u = hc2u by 

Lemma 3.5. 

Case(iii), a(l) = 1 and fi(l) = 2 
(a) If xw = qc25, JC„ = c2r and sz)t;u, theny^ = Zw and ym+^n+i = an. 
(b) If xw = qcjj, jcn = c2t and siDt;u9 thenymj„ = AJi/ andyw+lw+1 = c2n = abu by 

Lemma 3.5. 

This theorem, together with Theorems 2.4 and 2.5 (the modified Hofstadter's conjecture) 
imply the followiing result. 

Corollary 4.2: Let m and n be two nonnegative Integers. 

(a) lfm>n, then ymn is an infinite string; for m > n + 2 (resp. wi = w +1) the strings j w ? w and 
xm_„_2 (resp. ax) differ by at most the first letter. 

(b) Ifn> m, then ym^n Is a finite string with length n-m; the strings ymn and R(sn_m) differ 
by at most the first letter. 

The above corollary motivates determining the first letters of the strings ym^n (m&ri), xm_n_2 

(m > n + 2), and R(sn_m) (n>m), where m and n are nonnegative Integers. 

Lemma 43: 

(a) Let m > n + 2. Let m-n-2- EJ=if/^/+i be the Zeckendorf representation of m-n-2. 
Then the first letter of xm_n_2 Is an "a" or "6" depending on whether sx equals 1 or 0, respectively. 

(b) Let n > m. Let w - m -1 = ZJ=1 ̂ jFj+i ^e the Zeckendorf representation of n-m-I. 
Thee the first letter of R(sn_m) is an "a" or M#" depending on whether sx equals 1 or 0, respec-
tively, 

(c) Let m&n. Let w = EJ=1 £/̂ }+i and w = ZJ=1 £/^-+i ^e the Zeckendorf representations of 
m and riy respectively. Let k be the smallest positive Integer such that sk ^ 8k. Then the first 
letter of yWhn is an "a" Iff either ^ = 0 with k even or ^ = 1 with k odd. 
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Proof: (a) and (b) follow from [8, p. 85]. A similar proof holds for (c) after noting that, by 
Lemma 1.4, the following statements are true: 

If sk = 0 (resp. 1) and Sk = l (resp. 0), then xm = ucks (resp. uck+ls) and xn = uck+1t 
(resp. uckt) for some strings u, s, and t. 
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A composite number n is called a pseudoprime if n\2n -2. Until 1950 only odd pseudo-
primes were known. So far, little is known about even pseudoprimes. D. H. Lehmer (see Erdos 
[5]) found the first even pseudoprime: 161038 = 2-73-1103. In 1951 Beeger [2] showed the 
existence of infinitely many even pseudoprimes and found the following three even pseudoprimes: 
2-23-31-151, 2-23-31-1801, and 2-23-31-100801. Later Maci^g (see Sierpiiiski [9], p. 131) 
found the following two other even pseudoprimes: 

2-73-1103-2089 and 2 ( 2 ~l)i2 ~l) =2-2334103-2089-178481. 
47 

The first-named author in his book [8] put forward the following problems: Does there exist 
a pseudoprime of the form 2"-2? (problem #22) and: Do there exist infinitely many even 
pseudoprime numbers which are the products of three primes? (problem #51). 

In 1989 McDaniel [4] gave an example of a pseudoprime which is itself of the form T -2-
2(2**-1) by showing that 2 ^ - 2 is a pseudoprime if M = 465794 = 2 • 74 • 97, p = 37, and 
0 = 12589. 

In connection with the second problem, McDaniel [4] found the following even pseudo-
primes: 2-178481-154565233 and 2-1087-164511353. 

In 1965 (see [7], [6]) the first-named author proved the following two theorems: 

1. The number pq, where/? and q are different primes is a pseudoprime if and only if the number 
(2P -1)(2* -1) is a pseudoprime. 

2, For every prime number p (7 < p ^ 13), there exists a prime q such that (2P - V)(2q -1) is a 
pseudoprime. For p = 2, 3, 5, 7, and 13, there is no prime q for which (2p - V)(2q -1) is a 
pseudoprime. 

If the number 2(2^ -1), where p is a prime, is a pseudoprime, then 2P - l\22P+l~3 - 1 ; hence, 
2p+l = 3 (mod p), which is impossible. McDaniel [4] showed that, if n satisfies the congruence 
2n+l = 3 (modw), then 2(2" -1) is an even pseudoprime for n - pxp2 if 2Pl+1 = 3 (mod p2) and 
2P2+l = 3 (mod Pi). Here we shall prove the following theorem. 

Theorem: Let p and q be primes and d be a divisor of (2P - T)(2q -1). If d is coprime to p and q 
and not divisible by either 2P -1 or 2q -1, then 2(2 ~]f2 -1) is an even pseudoprime if and only if 
2(2^-1) • i * 

-^~2—- is an even pseudoprime. 
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Proof: Let M = (2P - l)(2gr -1) , N = 2pq -1, where/? and q are distinct primes. Suppose dis 
a divisor of M that is coprime to pq and which is divisible by neither 2P -\ nor 2q - 1 . First note 
that M = N {modpq). Indeed, M = 2q-l = N (mod/?) and, similarly, M = -N (mod g), so that 
the assertion follows. Next let l{rn) denote the exponent to which 2 belongs modulo the odd 
natural number m, so that 2m is an even pseudoprime if and only if l(m) \2m-l. Now it is easy to 
see that, if d has the stated properties, then £(^f) = l(^j) = pq. Thus, ?jf- is an even pseudoprime 
if and only if pq \2jf- - 1 if and only if pq \~- - [since M = N (mod pq) and (pq, d) = 1] if and 
only if 2j- is an even pseudoprime. Q.E.D. 

0 2 3 ^ 0 2 9 

47 
rem, we get the pseudoprime 
Example: Since 47 is coprime to 23-29, from Maci^g's pseudoprime ——|P——, by the Theo-

47 • 

For d= 1, we get the following corollary from the Theorem. 

Corollary: The number 2(2^ - l)(2g -1) is a pseudoprime if and only if the number 2(2 M -1 ) is a 
pseudoprime. 

Example: By the Corollary, from McDaniel's [4] pseudoprime 2(237'12589 - 1 ) , we get the pseudo-
prime 2(237 -1)(212589 - 1 ) . 

Using the method presented in the paper of McDaniel [4] and the tables in [3], we found the 
following 24 even pseudoprimes with 3, 4, 5, 6, 7, and 8 prime factors: 

2-311-79903, 2-1319-288313, 2-4721-459463, 2-7-359-601, 2-23-271-631, 
2-31-233-631, 2-127-199-3191, 2-127-599-1289, 2-73-631-3191, 2-7-191-153649, 
2-47-311-68449, 2-7-79-7555991, 2-151-383-201961, 2-73-271-2940521, 
2-89-337-11492353, 2*23-31-151-991, 2-73-631-991-3191, 
2-233-1103-2089-12007-178481, 2-233-1103-2089-178481-458897, 
2-233-1103-2089-178481-88039999, 2-233-1103-2089-12007-178481-458897, 
2-233-1103-2089-12007-178481-88039999, 2-233-1103-2089-178481-458897-88039999, 
2-233-1103-2089-12007-178481-458897-88039999. 

Beeger's [2] proof of the existence of an infinite number of even pseudoprimes has been 
based on the fact that, for every even pseudoprime ax = 2n, there exists a prime p such that 
a2 - pax is also a pseudoprime. We shall repeat it shortly. By a theorem of Bang [1], it follows 
that there exists a prime/? (called a primitive prime factor of 22n~l - 1 ) for which holds 22""1 = 1 
(mod/?), 2X # 1 (mod/?), 1 < x < 2n-1, and/? = 1 (mod 2(2n-1)), which leads to the fact that pax 

is a pseudoprime. We can take instead of a primitive prime factor of 22n~l - 1 any other factor of 
the same number that is =1 (mod 2(2« -1)) and coprime with % if it exists. So the infinite 
sequence a^a^ . . . , has the property 2 <al\(ai,aJ) for i^j. Thus, the following problem arises: 

1. Does there exist an infinite sequence % a 2 , . . . of even pseudoprimes such that (a^cij) = 
2 for every / * jl 
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It is easy to see that if the problem #51 mentioned at the beginning of the present paper has 
an affirmative answer then there is a positive answer to problem 1, but problem 1 seems to be 
easier. 

We also do not know the answer to the following question: 

2. Does there exist an integer n such that n and n + 1 are pseudoprimes? 
It would be of interest to investigate the case of n even or odd separately. 
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1. INTRODUCTION 

Over many years in this journal there have appeared results concerning congruence and divi-
sibility in relation to the Fibonacci and Lucas numbers. Here we take four such results and 
translate them to sequences which generalize the Fibonacci and Lucas sequences. 

We hope that the nature of our results will demonstrate to the beginning Fibonacci enthusiast 
that there is scope to obtain further generalizations of a similar nature. 

2. THE SEQUENCES 

In the notation of Horadam [7] write 
W„ = W„(a,b;p,q), (2.1) 

meaning that 
W^pW^-qW^, W^a,Wx=b, n>2. (2.2) 

We assume throughout that a, b, p, q are integers. 
The auxiliary equation associated with (2.2) is 

x2-px + q = 0, (2.3) 
whose roots 

a = Z ± V 2 ^ p=P-^Z^ (2.4) 

are assumed distinct. We write 
A = (a-0)2=p2-4q. (2.5) 

We shall be concerned with specializations of the following two sequences: 

\U„ = W„(p,l;p,q), 
\Vn=W„(2,p;p,q). 

(2.6) 

The sequences {Un} and {Vn} are the fundamental and primordial sequences, respectively, gen-
erated by (2.2). They are natural generalizations of the Fibonacci and Lucas sequences and have 
been studied extensively, particularly by Lucas [11]. Further information can be found, for exam-
pie, in [1], [7], and [10]. 

The Binet forms for U„ and V„ are 
a"-B" 

U» = ̂ z-ir> (2-7) 
a-p 

Vn = an+J3n. (2.8) 
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These sequences can be extended to negative subscripts by the use of the recurrence (2.2) or the 
Binet forms. 

We will make use of the following well-known results which we state for easy reference: 

<fU_„ = -U„, (2.9) 

<fV-n=Vn, (2.10) 

U2„ = U„V„, (2.11) 
ifmlnthenl/'Jt/,,. (2.12) 

The following identities, which occur in Bergum and Hoggatt [1], will also be needed: 

Un+k+qkU„_k=U„Vk, (2.13) 

U„+k-qkU„„k = UkVn, (2.14) 

Vn+k+qkVn_k=V„Vk, (2.15) 

Vn+k-q%-k = W„Uk. (2.16) 

The sequences 
Ujn = Wn(0,\;p,-l\ 
\y„ = Wn{2,p;p,-\), 

are an important subclass of the sequences (2.6) and can be looked upon as an intermediate level 
of generalization of the Fibonacci and Lucas numbers in which p = 1. The specializations p = 2 
and p = 2x also yield cases of interest. For p = 2 see [4], [8], [15] and for p = 2x see [9], [12], 
[13]. 

We use the Un-Vn notation throughout to refer to the sequences (2.6) and to the sequences 
(2.17). There will be no ambiguity since we shall always indicate the set to which we are referring. 

3e CONGRUENCE RESULT I 

Singh [17] gives the following: 
Lr^l (mod40) for w>2. (3.1) 

Generalization: Let {U„} and {VJ be the sequences defined in (2.17). Then 

Vr ^VA (modAU6Ul0l /i = 2,4,.6,-.., (3.2) 

Vr^V, (modAU6U20V2(V4-l)l w = 3,5,7,..., (3.3) 
and so 

Vr s V4 (mod AU2U6) for n > 2. (3.4) 

Proof: We shall use the following, all of which can be proved using Binet forms: 

V2M=V£-2, (3.5) 

p(VA + l) = U6, (3.6) 
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V4-2 = Ap2, (3.7) 

p(V2+V4-l) = Ul0, (3.8) 

p(Vs + l) = U6(V4-l), (3.9) 

Ap2V2
2=Vs-2, (3.10) 

PV2(V2+VS-1) = U2Q. (3.11) 
Using (3.5) twice, we also obtain 

V2k+2=V2\-4V2
k+2. (3.12) 

Now (3.2) is true for n = 2 and if it is true for n = k (even) then by (3.12) and the induction 
hypothesis 

V2k+2 = V*„ - 4V2
k +2 = V4

4- 4V2 + 2 (mod AU6U10). 

Butby(3.6)-(3.8), 

(V4*-4V4
2

+2)-V4 = (V4 + W4-2)(V2+V4-l) = AU6U10. 

This proves (3.2). Congruence (3.3) can be proved similarly by making use of (3.9)-(3.12). 
From (2.16) we see that Vs-V4 = AU2U6, and (2.12) shows that AU2U6 divides both moduli 

in (3.2) and (3.3). This proves (3.4). • 
Putting V„ = Ln so that Un=Fn,we see that (3.4) reduces to (3.1). 

4. CONGRUENCE RESULT H 

Berzsenyi [2] states that 

rfn+i - 1 (mod 24), n an integer. (4.1) 

Generalization: Let {Un} and {VJ be the sequences defined in (2.17). Then 
uL+i = l (mod£/4C/6), n an integer. (4.2) 

Proof: 

= V^3n+l+3n ~ ^3n+l-3n)v^3n+l+3n + ^3«+l~3«) (4 .3 ) . 

~ ^3n^3n^3n+Y3n+ly 

where we have usea v2.13) and (2.14) with q--\. 

Taking m to be an integer, we consider two cases: 
Case 1. n = 2/tf + l. Using (2.11), the right side of (4.3) becomes Ul2m+6U12m+s. Then by 

(2.12), U4 \Ul2m+s and U6 \Ul2m+6 and (4.2) follows. 
Case 2. n = 2m. Using (2.11), the right side of (4.3) becomes Ul2mU12m+2. Since £/4|£/12w, 

C/6\Ul2m, and (£/4, C/6) - U2 \Ul2m+2, then £/4C/6\Ul2mUl2m¥2 and (4.2) follows. 

This completes the proof of (4.2). D 
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5, CONGRUENCE MESULT ffl 

Freitag [5] gives the following: 
^ = 3 (mod 10) (5.1) 

for all primes p > 5 and natural numbers k. We caution against confusing the prime p with the 
parameter/?. 

Generalization: Let {Un} and {Vn} be the sequences defined in (2.17). Then 

^ ^ (mod 40). (5.2) 
Proof: Using (2.16), we see that 

K+n ~K = (P2+4)U6U„+6 = p(p2 + l)(p2 + 3)(p2+4)Un+6. (5.3) 

The right side of (5.3) is divisible by 40 since 5 divides either p, p2 +1, or p2 + 4 and %\p(p2 +4) 
ifp is even while 8|(p2 + l)(p2 + 3) ifp is odd. 

To see that (5.2) generalizes (5.1) we note that, as observed in Bruckman [3], 

2p*=2 or - 2 (mod 12) (5.4) 

for all primes p > 5. Now, since 1^ = L_2 = 3, (5.1) follows from (5.2) and (5.4). • 

6* A DIVISIBILITY MESULT 

Grassi [6] gives the following: 
\2\{F4n_2+F4n + (6.1) 

168|(F8„_4+F8„ + (6.2) 

Generalization: Let {£/„} and {Vn} be the sequences defined in (2.6). Then for n > 0, k > 1, 

^2Jfc-1^4fc-2^6Jfc-3l(# ^{4k-2){2n-l) ~ 9 ^(8Jfc-4)w + ^(4fc-2)(2«+l))> ( 6 - 3 ) 

^ n ^ l ( ? 4 ^ 4 f c ( 2 n - l ) + ? U ^ + ^ ( 2 „ + l ) ) - (6-4) 

Proof: We prove (6.3) by using reasoning similar to Mana [14]. Fixing k and denoting the 
dividend by G^k) we have, by (2.9), 

G0 = q U-(4k-2)+ U4k_2 

= -U4k_2 + U4k_2 = 0. 

Also 
G<*> = q4k-2U4k_2 - q2k-lUu_4 + Um_6 

= 14k-2U2k-y2k-i + U2k_lVm_5 [by (2.11) and (2.14)] 
= U2k_y6k_3V4k_2 [by (2.15)]. 

Now {G^} can be regarded as the sum of three sequences each satisfying the same homogeneous 
linear second-order recurrence relation with integer coefficients (see Shannon and Horadam [16]). 

1995] 129 



GENERALIZATIONS OF SOME SIMPLE CONGRUENCES 

Hence, {G^} also satisfies this second-order recurrence. Therefore, since U2k-iV4k_2V6k_3 

and U2k_^k_2V6kJG[k\ then U2k_^Ak_2V6k_3\G^ forallw>0. Since k was arbitrary, the proof 
of (6.3) is complete. The proof of (6.4) is similar. • 

Taking {U„} = {Fn}, {Vn} = {Ln} and putting k = 1, we see that (6.3) and (6.4) reduce to (6.1) 
and (6.2), respectively. 

7. CONCLUDING COMMENTS 

We have chosen an assortment of results requiring essentially different methods of proof 
For the most part, the moduli or divisors in question are products of terms from the relevant 
sequences. We feel that with this observation there is scope for the beginner to discover gen-
eralizations of a similar nature. 
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1. INTRODUCTION 

The Hermite polynomials belong to the system of classical orthogonal polynomials [7, 10] 
and they are defined by means of the following relation [1, 7]: 

oxp(2st-t2) = J^HL($)tL/L\. (1) 
L=0 

All the zeros of the Hermite polynomials are real, distinct, and are located in the open interval 
(-oo, oo) [7, 10]. The Hermite polynomials of even degree have no zero at the origin, while each 
Hermite polynomial of odd degree has a simple zero at the origin [7]. The purpose of this article 
is to present an elementary proof that all the nonzero zeros of the Hermite polynomials are 
necessarily irrational. 

2, BASIS OF THE PROOF 

Our proof of the irrationality of the nonzero zeros of the Hermite polynomial Hn(s) is based 
on the following facts: 

(a) All the coefficients of the Hermite polynomials [1] are integers. 
(b) A factor 2m$r can be pulled out of H„(s), n > 1, such that the remaining factor R$(s) is 

an even polynomial in s of degree 2k, still containing only integers as coefficients. The non-
negative integers rn, r, and k are given by 

ai = [(w + l)/2], r = n-2[n/2l k = [n/2], (2) 

where [t] is the greatest integer < t. Note that nt = r + k, and that r is zero (unity) when n is even 
(odd). 

(c) The constant term of B$(s) is (-if (2k + 2r -1)!!, where 

(2/i-l)!! = l-3-5"-(2w-l), n>\. (3) 

We follow the convention that (-1)!! = 1. All the factors of the constant term of B$(s) are odd. 
(d) The leading coefficient (i.e., the coefficient of the highest power of s) in E$(s) is 2k, 

whose factors are of the form 2\ 0<c<k,c being a nonnegative integer. 
(e) The constant term of ^(s) is odd, while all the other coefficients are even and nonzero. 
(f) The zeros of ^(s) are just the zeros of Hn(s), n > 1, when n is even. If n is odd, the 

nontrivial zeros of Hn(s) are simply the zeros of ^(s), the trivial zero being the one located at 
the origin. The last result follows from the fact that HL(s) has a definite parity [10], 
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(5) 

(6) 

HL(-s) = (-\)LHL{s), L>0, (4) 

so that H2M+l(s), M > 0, is an odd polynomial in s and, hence, is zero at the origin. 
(g) For all p,qGZ, 2p±(2q + l) = 2(p±q)±l*0. 
Thus (see [6], p. 81), for example, 

H6(s) = 64s6 - 480/ + 720s2 -120 
= 8(8/-60s4+90$*-15), 

and 
H9(s) = 5l2s9 -9216/ + 48384/ -80640/ + 302405 

= 325(16/ - 28856 +151254 - 2520/ + 945). 

Using the power series expansion of the Hermite polynomials [1], 

= y ( 1) Ll{2s) ( ? ) 

g=o Q\(L-20)\ J 

and the relation 

(2M)\ = 2MM\(2M-l)\\, -M= 0,1,2, 3,..., (8) 

we can prove the results (a)-(e) given above. In Section 5, we prove these results for the case in 
which n is even. Using similar arguments, one can easily establish the results for odd values ofn 
also. 

3. ZEROS CANNOT BE NONZERO INTEGERS 

An immediate and interesting consequence of the result (e) of Section 2 is the fact that no 
nonzero integer (positive or negative) can be a zero of Hn(s), since 

fi$ (integer) = even # ± odd # = odd # * 0 

(see result (g) of Section 2). Thus, Hn(s), n>\, is nonzero whenever s is an integer ^ 0. Hence, 
the zeros of Hn(s) are neither positive nor negative integers. 

4. NO RATIONAL ZEROS 

If BID, where B and D are integers, is a rational zero of a polynomial whose coefficients are 
all integers, and if BID is in its lowest terms, then B must be a factor of the constant term and D 
must be a factor of the leading coefficient (see [5], Theorem 9-14, p. 303). Thus, a nontrivial 
rational zero of the Hermite polynomial, being a rational zero of R$(s), whose coefficients are all 
integers, would be of the form BID, where B = odd # and D = 2C, where c = 0, 1, 2, ..., k. 
(Remember results (c) and (d) of Section 2.) The case c = 0 corresponds to an integer as a pos-
sible zero and, hence, can be ruled out (see Section 3). Using (7), it can be shown that 

2w(c-1)#ll(odd #I2C) = odd #* 0, n > 1, c > 1. (9) 

For a proof, see Section 6. Since 2"(c_1) * 0, s = odd #12° cannot be a zero of Hn(s). We con-
clude that the Hermite polynomial Hn{s), n > 1, has no nonzero rational zeros. 
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5. PROOF OF CERTAIN RESULTS FROM SECTION 2 

We now prove some of the statements given in Section 2 for the case in which n = even #. If 
the coefficient of s2N~2Q in H2N(s), N > 1, is A2N_2Q, then, from (7) with L = IN, 

A2N-2Q = H)Q(2N)\22N-2e/{QK2N-2Q)\}. (10) 

Now, when K is a positive integer, (2K)! = (2K)(2K - l)(2K - 2)(2K - 3) • • • 4 • 3 • 2 • 1, and since 
(-1)!! = 1 (see result (c) of Section 2), we have 

(2M)\ = 2UM\(2M-\)\\, M = 0,1,2,3,.... (8) 

It follows from (8) and (10) that 

A2N_2Q = 2N{-\f[^2N-Q{{2N~\)\\l{2N-2Q-l)\\}. (11) 

In (11), the binomial coefficient (*£\ is necessarily a positive integer; the expression within the 
braces {• • •} is essentially an odd positive integer, since Q<N, and both Q andNare nonnegative 
integers. The phase factor (-l)Q is an odd integer (= ±1). The factor 2N~Q is even as long as 
Q * jV; for the constant term of H2N($), this quantity is just unity and, hence, odd (as Q = N). 
The leading coefficient of H2N(s) is A2N = 22N (since 2 = 0). It is now clear from (11) that all 
the coefficients of H2N(s), N>1, are integers. Moreover, a factor 2N can be pulled out from all 
the coefficients of H2N(s), but still the coefficients of B^is) are all integers. The constant term 
of B$(s) is odd, the leading coefficient is 2N (= even #) and all the other coefficients are even 
numbers. Incidentally, 

H2N(0) = A, = (-l)N2N(2N-l)\\*0, (12) 

and, hence, H2N(s) can never be zero at the origin. It follows from (12) that the constant term of 
B$(s) is just (-l)N(2N-1)!! = odd #* 0. 

6, PROOF OF RELATION (9) 

Let us now present the proof of (9) when n = even #. The proof is similar for the case when 
n = odd #. 

Using (7) and (11), we have, with c > 1, N>1, 

2mc-DH2N(odd #/2c) = Y,(-l)Q(n)2Q(2c~l)(oM #)2N~2Q 

2=o \¥J (13) 
x {(2N-l)\\/(2N-2Q-l)\\}. 

In the right-hand side of (13), the first term in the summation (i.e., 2 = 0 term) is odd. For all the 
other terms, Q>\ Q(2c- l )> l , and, hence, 2Q{2c~l) - even#>2. Therefore, except for the 
first term, all the remaining terms are definitely even. Hence, H2N(odd #/2c) ^ 0 and s = odd #/2c 

cannot be a zero of H2N(s). 

1995] 133 



NONZERO ZEROS OF THE HERMITE POLYNOMIALS ARE IRRATIONAL 

7. CONCLUSION 

Zeros of the Hermite polynomials, if nonzero, are irrational. Using a computer program, we 
verified statements (b)-(e) of Section 2 and the results presented in Sections 3 and 4 for n < 12. 
Readers familiar with Gaussian quadrature are practically aware that the nonzero zeros of Hn(s), 
2<n<20 (say), are irrational [3,4]. 

Recently, in connection with our work [9], we have been informed by the Editor of The 
Journal of Number Theory that the collected works of Professor I Schur [8] contain a proof that 
the zeros of the Hermite and Laguerre polynomials are irrational. However, we are unable to 
access this material, independent of which our work was done, for verification. In fact, we 
learned about Schur's work [8] and Gow's work [2] only after [9] had already been accepted for 
publication and was subsequently rejected. The proof due to Professor Schur [8] should he 
delightful and, hopefully, distinct from ours! 
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1. INTRODUCTION 

In this paper we consider some aspects of sequences generated by the mih order homoge-
neous linear recurrence relation 

m 

3 , = 2 > ^ i form>2, (1.1) 

where am & 0 and the underlying field is the complex numbers. To generate a sequence {i^}^=0, 
we specify initial values RQ9 i^, -••,^w-i- Indeed, this sequence can be extended to negative sub-
scripts by using (1.1), and with this convention we simply write {i^}. 

For the case m = 2, we adopt the notation of Hordam [3] and write 

Wn=Wn{a9lr9p9q)9 (1.2) 

meaning that 
Wn=pWn_x-qWn_l9 W0=a9W1=b. (1.3) 

If fa,..., i^_2, i^_0 = (0,..., 0,1), we write {R„} = {Un}. The sequence {Un} is called the funda-
mental sequence generated by (1.1). It is "fundamental" in the sense that, if {IQ is any sequence 
generated by (1.1), then there exist complex numbers b09...9hm_l depending upon al9...9am and 
i^ , . . . , iVi such that 

m - l 

Rn = y£dbiUrH.i for all integers n. (1.4) 
/=o 

In this regard, see Jarden [4], p. 114 or Dickson [1], p. 409, where this result is attributed to 
D'Ocagne. In §2 we generalize this idea. 

For the Fibonacci and Lucas numbers, it can be proved that 

Ll+L2
n+1 = 5iF„2 + Fn

2
+l). (1.5) 

More generally, for the second-order fundamental and primordial sequences of Lucas [5] defined 
by 

[U„ = W„(p,\;p,q), 
\Vn = Wn(2,p;p,q\ 

where A = p2 - 4q ^ 0, we have 

-qV„2+V„2
+l = A(-qU2+U2

+l). (1.7) 

In §3 we demonstrate the existence, of a result analogous to (1.7) for any two sequences 
generated by (1.1). 
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2. A GENERALIZATION OF D'OCAGNE'S RESULT 

Let {i^} and {Sn} be any two sequences generated by (1.1). Define the (m + l)x(m + l) 
determinant Dn, for all integers n, by 

K 
Ki-i 
K>-2 

s„ 
Sm-\ 
Sm-2 

$n+l ' 

$m 

Sm-1 ' 

°n+m-

'' ^2m-2 

'' $2m-3 

^o ^o ^i '" Sm-\ 

Theorem 1: Dn = 0 for all integers n. 

Proof: D0 = Dl = '" = Dm_x - 0 since, in each case, we have an (m +1) x (m +1) determinant 
with two identical rows. Now expanding Dn along the top row, we see that Dn is a linear combi-
nation of i^, Sn9 ...,Sn+m_v Therefore, since each of the sequences {i^}? {£„},..., {-5'„+w_1} is gen-
erated by (1.1) then so is {D„}. But {Dn} has m successive terms that are zero and so all its terms 
are zero. This completes the proof • 

We now come to the main result of this section. 

Corollary 1: There exist constants c and cOJ, 0<j<m-l, such that 
m-l 

CR* = 1L cojSn+j for all integers n. (2.1) 
J=o 

Proof: Expand Dn along the top row. D 

Equation (2.1) generalizes D'Ocagne's result (1.4), where the bt are normally specified with-
out the use of determinants. If {Sn} = {£/„}, then c, which is the minor of R^ is unity and we 
obtain an equivalent form of D'Ocagne's result. 

3. A RESULT CONCERNING SUMS OF SQUARES 

From (2.1) we have, for any integer /, 
m-l 

+̂7 = I v W (3-1) 

Using (1.1), the right side of (3.1) can be written in terms of Sn, Sn+1, ...,Sn+m_1. That is, for any 
integer i there exist constants ciJy 0 < j < m -1, such that 

m-l 

j=o 

Write £ = (̂ ). Then, for parameters d0, dh...,de we have, from (3.2), 

£ m-l £ £ 

c^^2
+, = iSn

2
+;I>4 + 2 X W«+*Z^C*. (3.3) 

/=0 y=0 /=0 0<j<k<m-l 7=0 
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Consider the system of equations 

Y^dftfifc = 0, 0< j <k <m-1, 
;=0 

(3.4) 

in the unknowns d0, dh...,de. Since (3.4) is a system of I homogeneous linear equations in I +1 
unknowns., there are an infinite number of solutions (dQ, dh ...,dt). Choose any nontrivial solution 
and put 

ef = c2dh 0<i<£, 
t 

fj = Hdich 0<j<m-l 

Making these substitutions in (3.3), we have succeeded in proving the following theorem. 

Theorem 2: Let {R„} and {S„} be any two sequences generated by the recurrence (1.1). Then 
there exist constants eh 0 < i < £ - g), and /•, 0 < / < m-1, not all zero such that, for all integers 

m-\ 
5>J&, = £./ssk (3.5) 
;=0 i=Q 

Theorem 2 shows the existence of a result analogous to (1.7) for any two sequences gen-
erated by (1.1). 

Example 1: Let {Wn} and {Sn} be any two sequences generated by the recurrence (1.3). Then, 
after some tedious algebra, we obtain the following determinantal identity: 

si 
W2 Si 
Wx So 

o2 

S2 Wx 

5, W, 
s2 wx 
& w, 

w2 sx 
Wx So 

Sx S2 
-% 

wx w2 
w2 w3 

= 0. (3.6) 

Example 2: For a fixed integer k, consider the sequences {F^} and {Lkn}. They both satisfy the 
recurrence (1.3) with p = Lk and q = (-1)*. Substitution into (3.6) yields 

5(F?„ + (-i)*-'if(„+1)) = Ll + (-lf-lLl(n+X). (3.7) 

Example 3: In (1.1), taking m = 3 and ax = a2 = a3 = 1, we have 

Feinberg [2] referred to sequences generated by (3.8) as Tribonacci sequences. 
For (Ro, Rx, R,) = (0,0,1) write {R„} = {U„). 
For (Ro, Rx, Bj = (3,1,3) write {^} = {F„}. 

(3.8) 
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Then {Vn} bears the same relation to {£/„} as does the Lucas sequence to the Fibonacci sequence 
(see [6], p. 300). 

Now assuming a relationship between {U„} and {Vn} of the form (3.5) and solving for the 
coefficients ei and/ yields 

34V2-30V2
+l+V2

+2 + 9V2
+3 = -l54U2 + n6U2

+1 + 726U2
+2. (3.9) 

Alternatively, we have 

4 6 ^ 2 - 5 0 ^ V l l 4 ^ V 5 ^ (3.10) 

4. OPEN QUESTION 

Is there a result analogous to (3.5) for higher powers? 
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In a recent paper [1] Barry and Lo Bello dealt with the moment generating function of the 
geometric distribution of order k. I want to draw the attention of the Fibonacci Community to 
several related papers that were apparently missed by the authors and also to provide a straight-
forward derivation of their result. 

Since the moment generating function M(t) is related to the probability generating function 
f(z) by M{i) = f(ef), it is sufficient to consider f(z). 

We code a success trial by 1 and a failure by 0, thereby obtaining a word consisting of the 
letters 0 and 1. A sequence of n trials is thus represented by a word of length n over the alpha-
bet {0, 1}. In a natural way we attach a weight w to each word x by replacing 1 by p and 0 by q 
and then multiplying as usual. For instance, the word 0110 has the weight p2q2. We consider 
languages (sets of words) L and their generating function £(z). The latter is defined to be 

^r)=2>(x)z'*>, (1) 
xeL 

where |x| is the length (number of letters) of the word x. This generating function can be 
obtained simply by formally replacing the letter 1 by pz and 0 by qz in the language L and replac-
ing the so-called concatenation of words by the usual product and the (disjoint) union by the 
usual addition so that, for instance, L = {0, 010, 0110} has the generating function £(z) = qz + 
pq2z3 +p2q2z4. 

Instead of considering P{X = n}y it is easier to consider P{X > n}; that means the probability 
that n trials did not produce k consecutive successes, or the probability that a random word of n 
letters does not contain the (contiguous) subword lk. We consider the language of these words. 
A compact notion of it is 

(1^0)*!^, (2) 

where l<k = {8,1,11,..., lk~1}, with s being the empty word. This expresses the fact that words 
without the (contiguous) subword tk can be written as several blocks of less than k ones, sepa-
rated by zeros. Let us recall that the asterisk L* describes sequences of L. More formally, I* = 
{J„>0Ln, and IT means the concatenation ofn copies of Z, which can be defined recursively by 
LL = {xy \x sL,yeL} and ZT = IT"1!/ and I? = {s}. Quite nicely, the generating function of L* is 
obtained by p ^ . Now, to the language 1<^ 0 the generating function 

i k k 
(l + pz + (pz)2 + .:+(pz)k-l).qz = ^-?-qz (3) 

1 — pz 
is associated, and thus we have, furthermore, 

*This note was written while the author visited the University Paris 6; he is thankful for the warm hospitality he 
encountered there. 
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gtz) = XP{X>n}?=m ' -l-^= t \~?* . (4) ? V = l-pkzk 

„>0 i _ g z i = £ ^ 1-pz 1-z + q p V 

From this we also obtain the probability generating function 

f(z):=^P{X = n}z" = ^(P{X>n-l}-P>{X>n})z" 
n>0 «>0 

= \ + zYy{X>n-\}z"-l-Yy{X>n}zn 

n>0 

_ 1 - z + flpV+1 - 1 + p k z k +z- p k z k + l ( 5 ) 
l — z + qp z 

n>\ n>0 

= l-(l-z)g(z) 

= pkzk(\-pz) 
l-z + qpkzk+l' 

This derivation completely avoided unpleasant recursions. For such very useful combinatorial 
constructions and their automatic translation into generating functions, we refer to the survey [2] 
and a few earlier survey papers of Flajolet cited therein. 

The probability generating function (5) appeared first in [10]. 
Guibas and Odlyzko in a series of papers ([3], [4], [5]) dealt with general forbidden sub-

words, not just lk. These papers were surveyed in [8] and [9]. Rewriting things accordingly, 
formula (6.44) in [9] gives 

/ ( z ) = — ( p * t — t (6) 
{pz)k+{\-z)C{zY 

where the polynomial C(z) (the "correlation polynomial") depends on the forbidden pattern and is 
C(z) = l + (pz) + .-- + (pz)*-1 = i ^ 5 ) i (7) 

l-pz 
in this special instance. 

Knuth used similar arguments in [7]. He considered strings of 0, 1, 2, where 0 and 2 appear 
with probability 1/4 and 1 appears with probability 1/2 and the string 1*2 is forbidden. Also, he 
considered the zeros of the "auxiliary equation" 

l-z + qpkzk+l = 0. (8) 

For example, there is a "dominant" solution p- pk which can be approximated by "bootstrap-
ping": Starting from z = l + qpkzk+1, a first approximation is p « 1. Inserting this on the right-
hand side and expanding, we find p « l + qpk, and after one more step, 

P « i + ^ + ( i + i ) ? y 3 (9) 

etc. Kirschenhofer and Prodinger also used this type of argument in [6]. 
With this dominant singularity it is also easy to find the asymptotics of P{X = n} for fixed k, 

as «—»oo. We have 

/(^^^r-A ->A do) l - z + ^ Y + I l-z/p 
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This can be explained informally by saying that locally only one term of the partial fraction 
decomposition of the rational function f(z) is needed to describe its behavior in a vicinity of the 
dominant singularity p. 

Here, Ak is a constant that can be found by the traditional techniques to compute the partial 
fraction decomposition of a rational function. 

Thus, the coefficient of zn in / (z) (i.e., P{X = n}) behaves as Ak -p~n (the coefficient of zn 

in jz^). The constant Ak behaves as Ak « qpk for k -^ oo. 
Such asymptotic considerations are to be found in many textbooks and survey articles, 

notably in [9]. 
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The general m^ -order linear recurrence relation can be written as 
m 

^=Z"A-i> forw>2, (1) 
7 = 1 

where the a/s are any complex numbers, with am ̂  0. If suitable initial values i?_(w_2), i?_(^_3), 
..., i?o, Rx are specified, the sequence {Rn} is uniquely determined for all integral n. 

The auxiliary equation of (1) is 
m 

^^Z^"7 ' - (2) 
7 = 1 

Let au a2,..., ocm be the m roots, assumed distinct, of (2) and define a . by 
m 

^j=U(aj-ai)' 
;=1 

Then the fundamental {Un} and primordial {Vn} sequences that satisfy (1) are given by the 
following Binet formulas [1]. For any integer n, we have 

m a
n+m~2 m 

U„=Y^=— ^d Vn=Xa% (3) 
y=i aj y=i 

so that C/_(W_2) ~ ̂ -(/w-3) = • • • = f/_i = U0 = 0 and Ux = 1. Also Vx - ax and 

Vt =alVj_l + --+ai_lV1+iaj, for \<i<m. (4) 

In this paper we answer a question of Jarden, who in his book [2] (p. 88), see also [1], asked 
for the value of U2n-UnVrl for the m^ -order linear recurrence relation. For example, when 
m = 2, where ax = a2 - 1, {U„} and {Vn} are the Fibonacci and Lucas sequences, respectively. In 
this case, we have 

u2„-unv„ = o. 
For the general third- and fourth-order linear recurrence relations we have, respectively, 

U2„-Ujr„=a»3U_„ and U2n-U„V„ =(-!)" a"4{U_nV_n-U_2n}. 
For the general m^ -order linear recurrence relation, we have the following, very appealing 
theorem. 
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Theorem: For any integer n, and m > 2, we have 
m-2 (—1\k 

TT -JJV = /_n(^i)(«+i)fl« V y \_±1 yk^Vkl ...Vk'TT 
°2« UnVn~\ l) a m Z ^ 2 ^ h , h s , MJfel0Jfe2 .Jfc, V ~nV-In V-inV ~{m-2-i)n > 

i=0 7F(i)KVK2""Ki11 L -l 

where am is the constant term in the auxiliary equation and the inner summation is taken over all 
partitions of i = lkx + 2k2 + • • • + ikf so that k} is the number of parts of size j . Here, k = kx + k2 + 
"- + ki is the total number of parts in the partition. The coefficient of f/_(7W_2_/)„, inside the 
second summation sign, is taken to be 1 when / = 0. 

In order to prove the above theorem, we use the following lemma. 

Lemma: Using the above notation, we have 

y v *) yk\yki yki ~ am-i 

1 

Proof of Lemma: First, we note that 

e x p | - f ^ x + ̂ - x 2 + ^ x 3 + ...ji 

= YVY t ^ vk\v 

for 0 < / <{m-

for i = #i. 

^2 l A ' 
-2 • • • ' - / • 

- i) , 

(5) 
( *) ykiVk2 Vkt 

J = 0 ;r(0 " 1 : ^2 : • • • K i •l L • l 

Therefore, we need to evaluate the function, 

/(x) = I ^ * ' . 
i=l l 

Using the fact that {Vn} satisfies the recurrence relation (1), with the help of (4) it is not hard to 
see that the generating function g(x) = E^=0 V_nxn, for V_n, is given by 

gfx\ = mClm + ( j n ~ ^n-1* + ( m ~ ^ n - 2 * 2 + ' " + 2a2Xm~2 + QlXm~l
 ( 6 ) 

am+am_lx + --+a1xm-1-xm 

Letting 
h(x) = l + ̂ ^x+^^x2 + '-+^xm-1- — xm, (7) 

from (6) and (7) we have 
, x h'(x) 

g(x) = m--±+x. (8) 
h(x) Now, since V0=m, from (8) we have 

f, 'l_m-g(x)_h'(x) 
Za ~nX ~~ ~ i / \ ' 
n=l X Kx) 
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Integrating, and using h(0) = 1 to eliminate the constant of integration, we have 

Therefore, 

So, from (5) and (9) we have 

exp|-£^*"UA(*). (9) 

\k 

Using the expression for h(x) given by (7), we can equate the coefficients of x in (10) to complete 
the proof of the lemma. D 

Proof of Theorem: From the Binet formulas (3) for U„ and Vn, we have 
( 2n+m-2 2n+m-2 2n+m-2 \ 

h a2 am ) 

n+m-2 ^n+m-2 w+m-2 \ 

^ - + - ^ - + " - + ^ - K + « 2 " + - " + < ) (ii) 
a» 

a"+m~2cc" 

where the summation is taken over all \<i,j<m, such that i&j. Therefore, to prove the theo-
rem, we need to show that the right-hand side of the theorem is given by the right-hand side of 
(11). First, we require some new notation. The at in (2) are given by 

a, =( - l ) , + 1 Za 1 a 2 ...ai9 

where ai are the roots of (2) and the summation is taken over all possible distinct products of i 
distinct a .'s. Now define at{n) and ct(n) by 

ai(n) = (-l)MIla'lal..:a? and c,(«) = 2 > ^ 2 ... a,", 
so that a^ri) = (-l)/+1c/(w). Now, by the lemma, for any integer n, we have 

\k 
T ( *\ k ^ ^ 4 . . . ^ = - ^ ^ for0<i<(m-l), 

1 
^ l ^ ! . . . * , ! ^ .../*< - - - am(n) 

for i = m. 

Using (12), we can rewrite the theorem as 

U2„ -UnVn = {-\r+^a»m § ^ g > C/_(ffl-2-0„- (13) 
/=0 am\n) 

144 [MAY 



Since 

and 

ON THE GENERAL LINEAR RECURRENCE RELATION 

<=(-l)C"+1>"cm(»), 

am(n) = (-l)m+1cm(n), 

m-2 

i=0 

we have, from (13) and (14), 

U2„-U„V„ = (-l)m+1S(-l)'cm_,(«)C/_(M_2_0n. 

By the Binet formula, 

^-{m-2-i)n ~ Z ^ = ~ 

which, when inserted into (15), gives 

in-mn+2n+m-2 
, a 

;=i aJ 

u2n -uyn - (-ir^c-iy^wz-^ 
!-2 

>:< 
/=0 

a 
in-mn+2n+m-2 

y=i ° 7 

m a 2«+m-2 m _ 2 

y=l « / /=o 

Now we note that 
f P 
x + — 

x + -
a: 2 7 

f 
x + s(»lx, 

Cm-i\n) x*n-i 

,=0 C m( W ) 

So if we let x = -l/ a" in (17), for anyy = 1, 2, ..., w, we have 
m 

K-l)'Cm_,.(»)af^ = 0. 
/=0 

From (18), we easily obtain 
m-2 

( - l r 1 1 ( - l ) ' c M , ( n ) a f m ) " = -C l( / i)«7 +c0(«). 
/=0 

Now we note that cQ(n) = 1 and c^ri) = SJli a". Therefore, using (19) in (16), we 

a 
2n+m-2 

j=i a j . i i=i 

m m a
n+m~2an m a2n+m~2 

^-w=Z V -Z«?«r+ih-l Z-V1^ V = - l y-i /-i « / y-i a ; "V 

Which agrees with the right-hand side of (11). Hence, the theorem is proved. • 
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Let 77l5..., 77w,... be a sequence of Independent integer-valued random variables. Let Sn-
T]l + -~ + 7jn,Ari = ESn, B* = varS„,P„(m) = P(Sn = m), and f(t,rfj) denote the characteristic 
function of the random variable 77 •. 

The local limit theorem (LLT) is formulated as Pn(m) = (27rB2ym -exp{-(m- ^f /2B2} + 
o(B~l) when n-^00 uniformly for m. 

The first results on the normal approximation of binomial distributions belong to de M oivre, 
Laplace, and Poisson. Very general theorems on the LLT were obtained by von Mises in [1], 
Assuming additionally that the summands are i.i.d. and have a finite variance, B. Gnedenko [2] 
derived necessary and sufficient conditions for the LLT. The next step, for not i.i.d. but uniformly 
bounded variables, was made by Yu. V. Prohorov in [3]. Besides those mentioned above, the 
LLT problem was investigated by W. Feller [4] and C. Stone [5]. More complete bibliographical 
information can be found in [6]. 

It is well known that for uniformly distributed random variables the LLT is equivalent to the 
central limit theorem [9], [10]. Hence, it is reasonable to ask whether this holds in general. The 
answer is negative. Using the Fibonacci sequence, we will construct below another sequence of 
independent asymptotically uniformly distributed random variables which satisfies the central limit 
theorem, has the uniform asymptotic negligibility (UAN) property but for which the local limit 
theorem fails to be valid. 

Let [1; 1,..., 1,...] be a continued fraction representation of the number <p - (1 + j5)/2. De-
note by Pj I Qj the convergents of the continued fraction of <p, which can^be represented by the 
table below. 

j 

Pj 

Qj 

0 

1 

1 

0 

1 

1 

2 

1 

1 

3 

2 

2 

5 

3 

3 

8 

5 

It follows from the table that Pj (J = 0,1,2,...) is the Fibonacci sequence and Pj_x = Qj for j > 1. 
Let us now consider a sequence of independent integer-valued random variables represented 

by 
1. £,...,£,, 

• £/7j +1 ? • • • ? S«j +n2 ' 

/ "i e (1) 
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Each value of the line j is assumed to take the values 0, Qj,Pj with respective probability 
values of(Pj-2)/Pj, \lPJt \lPy Thus, if £. is in rowy, then 

P 2 + e'^+e^ 
f{t,Zr) = -± pJ 

\f(t,4rf = iPj % +2 +jIcost(PJ-QJ) + 2^j^(costQJ + costPJ), 

Apj+Qj)-pj« 

and 

EZr- p - p , 
J J 

v a r | r = ^ — - L - J-^L-

Notice that 

We will take rtj as 
nj=[Pj'2] + l, (2) 

where [a] represents the integer part of a. 
Let Nk=nl + -"+nk and 

Blk = v a r ^ = t ([ if 2] + l ) v a r ^ = 0 ( i f 2). 

First, we will verify that the sequence has the UAN property. For an arbitrary n, we can 
choose a number k such that Nk_x <n<Nk. Hence, 

E^-^M andBk*rlt(p?+Q>j/pJ-
Therefore, 

max14 -EZjI/*, £ c/ /£? - • 0 as » -» » . (3) 
\<j<n • J J '/ 

Here and in what follows c denotes a positive constant. However, the same symbol c may also 
stand for different constants. The preceding limit result is the UAN property. One may also 
check that Liapunov's condition, 

(» . a+s\ll{2+6) / 

\J=l J I 
for some 8 > 0, holds. 

Next, we will investigate the property of the sequence being asymptotically uniformly dis-
tributed. We use the Dvoretzky-Wolfowitz test [8], which states that this is so if, for an arbitrary 
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fixed h>0 and z- 1,2,...,/?-l, the characteristic function of the sums of the independent ran-
dom variables tends to zero at the rational point 2na, where a-zlh. 

It will be assumed, without loss of generality, that z and h are mutually prime numbers. 
Clearly, 

| / ( 2 ^ / / i , ^ p | ^ l / P y + | ( P y - 2 ) / P y + exp(2OTe^/A)/Py|. 

Assume Qj is not a multiple of A. We can then write zQj =mh + k,l<k<h-l. Hence, 

Upf-2)/Pf+&qp(2mzQJh)/Pf\< max |(P. -2)1 Pi + Qxp(2mk/h)/ p\ 
\ J J J J \ \<k<h-v J J j \ 

= max Up -3)/Pi + (l + exp(2mk/h))/Pi\ 
\<k<h~V J J J \ 

= ( P , - 3 ) / P + max \l + exp(2mk/h)\/P,. 

<{Pj-\-p)IPj, 
where p - p(h) = 2(1 - cos(;r / h)). That is, 

\f{2nzlh^Nj)\<l-plPj. 

Choosing «., by (2), we obtain 
•2/f, 2P, f{2mlh^N)\ <(l-p/Pj)^ <exp(-2p). 

The latter inequality holds only when 0. is not a multiple of A. Let us count the number of such 
Qj. Since PJ-IQJ ~ PjQj-i = ±1, it follows that Qj_x and Qj are not simultaneously multiples of A. 
Therefore, there are at least [k 12} members of the sequence Qly ...,Qn that are not multiples of h. 
Thus, 

k | an j 
Y[\f{2nzlh, gN.)\ <exp{-kp}->0 as£->oo. 

Therefore, the Dvoretsky-Wolfowitz test is satisfied. 
It should be noted that in [7] we find the following necessary condition for the LLT: 

r 
B„ n|/c>£y)|<*->o 

k=\ 
£<t<2n 

for any positive sn which tends to zero as «-> oo. We will show that this condition does not 
hold. 

Using Taylor's expansion when \t - 2/r / <p\< 1 / BN , we write 

f{t^N)tAf{^IP^N)\+\t-^l(p 

+ \t-2nlq>\ 

/(',60 

KUSN) 

t=2nl<p 

'2, 
t=e 

where t <6 <2nl'<p. 

(4) 
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Next, each term from (4) is estimated separately in the following manner: 

f(2xltp,$N)\ =\f(tj,ZN)\ +\tj-27tl<p 
J \ I J J I I J 

+ \tj-2nl<p\ 

f(.*,U) 

f(t,U) 

where tj =2nQJ_1/Qj. 
Using P,-iQj - PjQj-i = -^ an<i the elementary inequality cosx > 1 - x212, we may write 

f(t P ^ l 2 . ( ^ - 2 ) 2 + 2 + 2(P/-2) 2 + 2(i>-2) 
/(tj^Nj)] ^— pi l + pi (\-ll2(27tlQj) ) 

j j 

= l-%9-(2x/QJY>l-(2x/QJf/PJ, (7>2). 
(5) 

We then have 

f(t,ZNl) 
2{PJ-QJ)^_QM sm2n^{Pj-Q})-

2QJ(PJ-2) 

2PXR-2) . (2,-i 
x sin 2nQ,. , ^ - sin 2n =*-*• P, 

J~X Pj Qj J 

W-QJ). 2PMi-2) 
i pt 
An, 

sin 
J J 

(-1) 
QJ. 

2(PrQ}) ^P^-2) 

v P J J 

2n 

~<\-\IP]-Q]IPJ)<.AnlQJ (6) 

and 

f<t,$Ni 
(P - DO2 (P -CM2 

(P;-2)cosP/+v ' ^ cosg/+V ' ~J} cos(Pj-Qj)t f"(0,£N) 

= 2 

= 2 

J J J 

O2 -20 O2^ 

j rj J 

Using j tj• - In I <p \< 2n I Qj and taking into consideration the estimations (5) and (6), we 
have 

K2nl<p,$N)\ >\-{2nlQJ)2/Pj-U2l$-{2nl$)\P} + Q2)//>. 

Furthermore, 
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f(*,4Nl) 
t=2nl<p 

/(',»£*,) \+\tr2nl<p\\\f(tj,$Nj) 

•.AnlQj+AniP}+$)!$?; 

and 

f(t,ZNl) <2(P?+Q])/Pj. 

Taking the above estimations into account for expansion (4), we have 

\f(t,$N^>\-{2nlQjyPj-%7r2IQ)-U\Pf+Q2
j)IQ*Pj 

-(4nlQJ+4n(Pt + $)l%Pn)IBNk-2(I* + $)IBlkPJ. 

By a simple transformation, we obtain 

\f{t^Nj)\>\-clP]-clBNPj-cPjIBlk. 

Using the elementary inequality exp(-cx) < l - x f o r Q < x < l / 2 , and c> In 4, we have 

n | / C , {N^ * expj- |>,(/f HBNkPjTl + PjB^. 

Hence, we conclude that, if A: is sufficiently large, then 

7 ^ > 5 ^ 
\t-2x/<p\<B 

fl\f(t, Zj) | "'J* > BNk j txp(-c)dt = 2e'c. 
j=l \t-2nl(p\<B-N\ 

'"* 

So we have shown that the sequence (1) of independent integer valued random variables con-
structed by using the Fibonacci sequence is asymptotically uniformly distributed, satisfies the 
central limit theorem, and has the UAN property, but the local limit theorem fails to be valid for 
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INTRODUCTION 

The connection between the Euclidean algorithm for determining the greatest common 
divisor of two positive integers a and b and the continued fraction expansion of the rational 
number alb is well known. As Lame [9] observed, two successive Fibonacci numbers Fn_x and Fn 

provide a pair of integers for which the Euclidean algorithm takes as long as possible to terminate, 
in the sense that (Fn_h Fn) takes as long or longer than any pair (a, b) with b > a > 1 and b<Fn. 
Analogous results hold if arithmetic is done in Q[x] or ¥[x], for F' [x] the finite field with q- pa 

elements [4], [6], [7], [10]. 
One can view the continued fraction expansion more generally as an association with a real 

number of a sequence of positive integers, the sequence being finite if and only if the real number 
is rational. Other methods exist to accomplish the same task. Two in particular of interest are the 
so-called Engel expansion and the Pierce expansion. Each arises from an iterated division algo-
rithm, but the roles of successive dividends and divisors are played by different elements than in 
the Euclidean algorithm. 

In particular, for 1 < a < b integers, the Pierce expansion of alb is the unique representation 

£.±-_L+_>—...+.trL, (1) 

where the xi are integers with 1 < xx < x2 < • • • < xn. Successive xt may be obtained via the divi-
sion algorithm. Write b = qa+r with q and r nonnegative integers and r < a. Then a = ^ ~ and 
so f = -i---i-(^). Thus, xx=q, and the procedure may be applied again to the fraction rib. The 
iteration stops when r = 0, which must happen after at most a steps (see [11]). A convenient 
notation for this expansion is 

— (x1? x2, x3,..., xn). 

The Engel expansion is a similar expansion with all positive terms. Thus, for 1 < a < b inte-
gers, it is the unique representation of the form 

a 1 1 1 1 /ox 
- = —+ + + ...+ , (2) 
b Ji AF2 MM M2-yn 

where the yi are integers with 1 < yx < y2 < • • • < yn. Here one would iterate the version of the 
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division algorithm with negative remainders. Thus, h = qa + r = (q + l)a - (a - r) and, hence, a = 
b+(a

+~r) gives f- = "tf+ -^Y(^-)- The procedure is applicable again until r = 0. This expansion is 
frequently denoted 

Maximal lengths and other properties of Pierce and Engel expansions have been studied in [2], 
[11], [13], and [14]. 

In the case of polynomial rings, the appropriate measure of the size of the remainder is given 
by its degree, so that signs are no longer relevant and there is no distinguishing the Pierce and 
Engel expansions. For the Fibonacci polynomials [1] defined by 

Fx(x) = 1, F2(x) = x, Fn+l(x) = xFn(x) + F„^(x) for n > 2, 

and the Lucas polynomials given by 

4(x) = 2, LL(x) = x, Ln+l(x) = xLn(x) + Lh_l(x) forn>l , 

there are some especially attractive continued fraction expansions. In particular, 

1 
X + - 1 

+— 
X 

where there are n -1 occurrences of x in (3), and 

A,-i(*) _ 
4 « x+- l ' (4) 

x + - ^ 
1 

x/2 
where the continued fraction in (4) has n x's in its expansion. 

Motivated by these expansions, we consider the Pierce-Engel expansions of these rational 
functions. In contrast to the longest possible expansions in their continued fraction expansions, 
the Pierce-Engel expansions are predictably short. For some special values of n they are espe-
cially short and elegant. 

There are also regularities to note in the Pierce expansions of the rational numbers Fn_x I Fn 
and Ln_xl Ln. One such follows from a general result of Shallit [13], and we establish others in 
the last section. 

EXPANSIONS OF FIBONACCI AND LUCAS POLYNOMIAL QUOTIENTS 

We are most interested in the quotients Fn_x(x) I Fn{x) andZ„_1(x)/Z„(x), although the 
theorems we use apply more generally. Since in the limit we have 

1 . m F w . 1 ( l / x ) ^ - l + Vl + 4x2 

"-»« Fn{llx) 2x 
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as n increases there are ever more terms incorporated in the infinite Pierce/Engel expansion of this 
function, shown in [3] to be 

1 1 1 1 
I4l) 4(2)4(2) L^L^L^z) Z,(Z)^(*)Z4(Z)Z«(Z) ? 

where z = x~\ This particular expansion is also a concrete example of the Engel-type expansions 
for power series developed in [8], This limiting case sets the pattern for the finite expansions of 
rational functions in the variable x. Using the notation (a, b, c, d, ...) introduced earlier for the 
expansion 

1 1 1 1 
— + — + + -a ab abc abed 

the finite expansion beginning 

1 1 1 1 
Lx(x) Ll(x)L2(2) L1(x)L2(x)L4(x) Ll(x)L2(x)L4(x)Lg(x) 

can be written more compactly as (Lh - L2, L4, Z8,...). Later we also allow more complicated 
expressions involving Lucas polynomials as entries. 

It is possible to write an alternate representation in terms of the Chebyshev polynomials 
Cw(x) = 22;(x/2),where 

35(x) = l, Tl(x) = x, rw+1(x) = 2xJ„(x)-rw_1(x) for 71*1, 

since CJx) = (-i)nLn(ix). 

The form of the expansions follows from two general results in [1], which we state as 
lemmas. 

Lemma 1: Whenever a Fibonacci polynomial Fm(x) is divided by a Fibonacci polynomial 
Fm_k(x), m^fc, of lesser or equal degree, the remainder is always a Fibonacci polynomial or the 
negative of a Fibonacci polynomial, and the quotient is a sum of Lucas polynomials whenever the 
division is not exact. Explicitly, for p > 1: 

(t) the remainder is ±F(2p_l)m_2kp(x) when 

2p\m\ (2p-2)\m\m 

2/7 + 1 ' ' 2p-l ' 

(ii) the quotient is ±Lk(x) when \k\< 2\m\/3; 

(Hi) the quotient is given by 

ePw=ii(-i)'(,,"k)A2/+i)it-2/mW 
7=0 

for m, k, mdp as in (i), and by Qp(x) + (-l)**-*) if k = 2pmI' (2p +1); 

(iv) the division is exact when k = 2pm I (2p +1) or k = (2p - X)m 12p. 
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Lemma 2: Whenever a Lucas polynomial Lm{x) is divided by a Lucas polynomial Lm_k(x), 
rn^k, of lesser degree, a nonzero remainder is always a Lucas polynomial or the negative of a 
Lucas polynomial. Explicitly: 

(i) nonzero remainders have the form ±L^2p-i)m-2pk(x) when 

2p\m\ (2p-2)\in\, 
2p + l ' ' 2/7-1 ? 

(ii) if \k\< 2\m\/3, the quotient is ±Lk(x); 

(iii) the division is exact when k = 2pm I (2p +1), p ^ 0. 

These lemmas apply to give 

Theorem 3: Any quotient of Fibonacci polynomials or Lucas polynomials has a (finite) Pierce-
Engel expansion in which every entry is expressible as a linear combination of Lucas polynomials 
with coefficients 0 or ±1. In the case Fn_Xx) I Fn{x) or Zw_1(x)/Z/1(x), there are at least m = 
[log2 nj entries, and the first [log2 n\ entries are (Lh - L2, L4,..., L2m-i). 

Proof: The Pierce-Engel expansion for quotients of Fibonacci polynomials comes from the 
sequence of identities 

F„(x) = Lk(x)Fn_k(x) + {-l)k+lFn_2k{x) 

Fn(*) = Ltk(.x)Fn-2k(x) ~ Fn-4k(X) 
^(*) = L4k(x)Fn_4k(x)-F„_u(x) 

which may be continued as long as the last subscript remains nonnegative. These identities may 
be read as special cases of Lemma 1. Lemma 2 provides similar identities for Lucas polynomials. 
A negative subscript is replaced by a positive subscript via the identity Fm(x) = (-l)m+lF_m(x). 
Then 

Fn(x) Lk(x){ ' Fn(x) 

1 
Lk(x) 1+-B> 

L*(x) 

k \ F„_4k(x)^ 
V Fn(X) J) 

= (Lk(xl(-l)kL2k(xlL4k(x),..). 

Table 1 on the following page gives Pierce-Engel expansions of some rational functions for 
small values of n. 

The next theorem was obtained in [3] and [16]. The technique of proof can be modified to 
provide several other similar relations, which are collected in the theorem thereafter. 

Kn Xx) 
Theorem 4: For n > 1, * l = (Z^ - i^, Z4,..., Lr_x) 

^2" \X) 
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TABLE 1. Expansions of Quotients of Fibonacci Polynomials 

n 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Pierce-Engel Expansion of F^x) 1 Fn{x) 

~LX 

Lb-(L2-l) 
Lb - L2 

^ h ~ ^ 2 ? ^ 4 ~~ ^2 ~^~ •*• 

M J ~~ ^ 2 ? ^ 4 ~̂~ * 

^ b — ^ 2 ? ^ 4 ? ^ 6 ~~ ^ 4 ~*~ ^ 2 ~~ * 

^ 1 ' ~" ^ 2 ? ^ 4 

^ b ~~ ^ 2 ? ^ 4 ? ^ 8 — ^ 6 ~̂ " ^ 4 — ^ 2 "*" -*-

J L J , ^ 2 ' 4? 8 4 

A> ~~ ^2? ^4? ^8 ~ ^2? ~~ (At) ~" ^8 + ^6 ~~ ^4 + ^2 ~ V 
A? ~~ ^2 ' ^4? ^8^~ * 
A? ~~ ^2? ^4? ^8? A o ~~ ^4? ~~ ( A 2 ~~ A o + ^8 ~ ^6 + ^4 
A> ~ ^2> ^4J ^8> ~~ ( A 2 + £g + £4 + 1) 
A? ~~ ^2? ^4? ^8? ^14 — A2 + Ao — ^8 + ^6 ~~ ^4 + ^2 — 

A ' ~~ ^2? ^4' ^8 
A? ~~ ^2? ^4? ^8? ^16 ~ A 4 + ^12 ~~ At) + ^8 ~~ ^6 + ^4 ~ 
A ' ~ ^2? A ? ^8> ^16 + A2 + ^8 + ^4 + * 

-Z2 + l) 

1 

-Z2 + l 

F (x) 
Theorem 5: For n > 1, *2"'' x = (A, - L,, Z4,..., Z, Z,„+1 +1). 

F 3 . 2 " ( X ) 

F o r „ > 2 , ^ « 

For T?>3, 

/- 2 n- l ^ 

z1,-z2,z„...>v-.S(-i)'4/-i 

A.-Za.A.-.V"- ZH) , Z* + 1 
2"- ' - l 

/=0 

There are, in addition, dual results for Lucas polynomials. A brief table of Lucas polynomial 
expansions follows (see Table 2), and a general theorem (Theorem 6) makes explicit some of the 
patterns apparent in the table. Other patterns may be noted in the tables as well. 

L (x) 
Theorem 6: For n > 2, f~l\J = (i1, - L>, Z4,..., Lr_u Lr 12). 

For ft>2, 2 

Z2"+1W 
M? -^2J ^4? •••5 ^ / 2" _ 1 ? 2^^-i 
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Ln (x) f 2"~1-2 ^ 
For n > 3, 2""2 = \LV9 -4, L4,..., L^u - ^ 4 / +1 

L
2"-lW l /=0 

L n (X) 
For « > 1, 3'2 l = (A, - 4 , Z4,..., Z2„, Z2M+1 -1). 

It is interesting to note the Lr 12 entry, in light of the last convergent of (4). 

TABLE 2. Expansions of Quotients of Lucas Polynomials 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Pierce-Engel Expansion of L^^x) 1 Ln(x) 

V 2 
Ly,-Lzl2 
h 
Li 

Li 

Li 
Li 

Li 

Li 

Li 

h 
L\ 
L\ 
Li 

A 
L\ 
Li 

Li 

- ( L 2 + l) 
-L2,LJ2 
- L2, L4 + L2 + l 
-L2,LA-\ 
-L2,L4,-(L6 + L4 + L2 + l) 
— L*2, L4, L%I2 
-L2,L4,L% + L6 + L4 + L2 + \ 
~ L2, L4, Lg — L4 +1 

» 2» 4 > 8 2? 10 8 6 4 2 

» ~ ^ 2 ' ^ 4 ' ^ 8 ~ ^ 

» ~ 2̂> A ' 8̂> ~ (Ao + 4 ) ' ~~ VM2 + At) + ^8 + ^6 + ^4 + ^2 
, - Z>2, ^4» ^8> M 2 ~ ^8 + ^4 ~ 1 
,- L2, L4, Ls,-(Ll4 + L12 + Ll0 + Ls + L6 + L4+ L2 + l) 
, — L2, L4,L%, L16/2 
>- ^2, £4, £g, A6 + A4 + Ll2 + L10 + L8 + L6 + L4 + L2 +1 
» ~" ^2' ^4' 4 ' A6 ~~ A2 + A _ ^4 + 1 

+ 1) 

PIERCE EXPANSIONS OF QUOTIENTS OF FIBONACCI NUMBERS 

The limiting value of Fn_l/Fn oiL^JLn is the same: (V5 - l ) / 2 . Hence, Engel expansions 
eventual/y begin with the pattern of numbers in the Engel expansion of(V5- l ) /2 : 

i.e., 
2,5,6,13,16,16,38,48,58,104,177,263,..., 

V5-1 1 1 1 = ~ + + +• 
2 2 2-5 2-5-6 

There is no pattern apparent in this sequence. In contrast, Pierce expansions begin 

1,2,4,17,19,5777,5779,192900153617,..., 
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corresponding to 
V5-l = 1_J_ + _ 1 1 

2 2 2-4 2-4-17 
The Pierce expansion has been analyzed before [13]. it is convenient to express it as 

{ 1 , ^ - 1 , ^ + 1 , ^ -1 , ^ + 1,...}, 

where c0, cl9 c2, ...= 3,18, 5778,... is the sequence given by the recurrence 

For Fn_ll Fn orZ^/Zfc, any particular choice of n gives a rational number and, hence, a finite 
Pierce expansion, and it often happens that the form of the finite expansion can be given con-
veniently in terms of the elements of {cj. It turns out to be powers of three that govern the pat-
terns arising, and there are similar results for the Fibonacci and Lucas sequences. 

Shallit [13] observed that, for k > 0, 

Cu = 

?* . . . i * 

3 + ViH T3-V5 
2 

This relates {ck} to the well-known formulas 

J 

where ^ = (l + V5)/2 and ̂  = ( l -V5) /2 . 

Theorem 7: For k>\ i y ^ / 'iy = (1, c0 - 1 , c0 +1, q - 1 , cx +1,..., c ^ -1). 

We prove this with the aid of several lemmas. The lemmas may be of independent interest for 
the factorizations they provide for certain Fibonacci and Lucas numbers. 

Lemma 8: ck = L k, k > 0. 

Proof: 
\3' 

^2\3* , /12\3; _ 
^2-3' 

k , _ ^k 

+ 3 + V5T f3-V5^ 
V 2 , 

= (^)3+(^)3 = ^ 
2 

^ 4 A similar sequence, introduced by Shallit in [12], provides a formula for the 3 th Lucas 
number. 

Lemma 9: F3* = (c0 - l)(q -1) • • • {ck_l -1), k>\. 

Proof: For k = l9 F3 = 2 = cQ-l. Now, using induction on k, 

(c0-l)(cl-l)-.(ck-l) = F3k(ck-l) 

= (f" - ft* )(̂ 2"3* + 02'3' -l)/S (by Lemma 8) 

= (̂ 3*+1 - $k+l) / S (since # = -1) 
= F3k+i. 
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Lemma 10: L^ = (c0 + l)(q 4-1) • • • (ck_x + 1), k > 1. 

Proof: Again Induct on k. 

Lemma 11: F2^k = (c0 -l)(c0 +1) • • • (q_j - l ) ^ + 1), k>\. 

Proof: F k - FkL^, and the result follows from Lemmas 9 and 10. 

Lemma 12: ck-]}k+2, k>0. 

Proof: L\k + 2 = ( / +^f = ?* +^ 3 * +2(4/ +2 = ?* +^ = ck. 

By Lemma 8? this says L k = llk + 2, so Lemma 12 also follows from the identity L4n_2 -
4 _ i + 2 , n>\. 

Lemma 13: ^ + i _ 1 = ̂ t^C^* + *) + L3k> k~1' 

Proof: The left-hand side may be written as {(/? _1 - <j? ~l)l 45. Write the right-hand side 
as ($3 _ 1 - ^ 3 _1)(^2"3 + ̂ 2'3 -1)/V5+^3 +^3 by applying Lemma 12. This may be expanded 
as 

=F3t+,_1+((#)3*(^3V-1-/r1)-/r1+^r1+V5/+V5^)/V5 
= ̂  _, + $3* (-*"' + r' + V5) + / tf-1 - f * + V5)) / V5. 

But this is just Fk+l_{, since ^_1 - </Tl + V5 = 0. 

Proof of Theorem 7: The proof is by induction on k. For & = 1, F21F3 = 1 / 2 = (1, c0 -1). 
Now assume the theorem holds for k, and consider 

F 3 * - l ^ 1 ( 1 1 
(l,c0 l,c0 + l,...,ct 1) ^ +-(Co_1)(Co + 1 ) . . . ( C f c i _ 1 ) ^ _ i + 1 ( C j k _ 1 + l)(C j t - l) , 

= 5*_L 1 ck-2 
" i> + (C0 - 1)(C0 + 1) • • • ( C ^ - 1) {Ck_y + \){0k - 1) 

J_ 

_F3t_1Z^t(ct-l) + cfc-2 

_F 3 M ( C f c - l ) + ( c i t - 2 ) / ^ 

by Lemmas 9 and 10 

by Lemma 9 
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= _ ^ _ _ i — ^ J _ Dy Lemma 12 

= - 4 ; — - by Lemma 13. 
i > i 

W e note that the Pierce expansion considered by Shallit [13] is similar to but not the same as 
that of Theorem 7 or Theorem 14 below. 

Theorem 14: For k>\ 

- ^ = {\cQ~\cQ + \cl-\cl + \...,ck_2-\ck_2 + \ck_l + l). 
L3k 

Proof: By Theorem 7, 

{\cQ-\cQ + \cl-\cl + \...,ck_2-\ck_2 + \ck_l + l) 
F 3 * - . , 1 
F3k ' (<\,-l)(cb + l ) - ( c t _ 2 + l) 

F3k ^3kL3k ^3k^3k L 

( 1 1 

3* 

The last step follows because 

F3MZ,3* +2 = (/-1-^3'-1)(/ +^3*)/V5 + 2 
=ĉ 2-3*-1 - ^•3*-1+r1 - r1+2V5) / s 

= ( /" ' + ̂ - 1 ) ( / - ̂  ) / V5 = Z , ^ . 
There are many related identities that can be noted. W e close with the omnibus theorem 

below, indicating several patterns that we have observed. The proofs are omitted, since the iden-
tities may be derived in the same way as the paradigms in Theorems 7 and 14. 

Theorem 15: For n = 2 • 3k, k > 1, 

F« 

For n = 4-3*, k > 1, 

F*=± = (l,c0-\,c0 + l,...,ck_1-\,ck_l + l). 

For « = 8-3% k>\, 

F 
-^± = (l,c0-l,c0 + l,...,ck_l-l,ck_l + l,ck). 

F 
- ^ = (1,^-1,^ + 1,...,ck-\ck+l,ck+ck+l). K 
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For« = 5-3\ k>l, 

For » = 7-3*, k>\, 

Z7 

- ^ = (\cQ-\c0 + l,...,ck-l,ck + l,(ck-l)ck-i). 

17 
-*± = (1, c0 - 1 , c0 +1,..., ck -1, ck +1, ({ck - \)ck - \)ck - (ck -1)). 

Forw = 2 - 3 \ k>\, 

For « = 4-3*, k>\, 

For« = 8-3\ k>\, 

^ = (l,c0-l,c0 + l,...,ck_l-l,ck_1 + l,c!c/2). 

±f± = (l,c0-l,c0 + l,...,ck-l,ck+2,c2
k/2-l). 

-f± = (l,c0-l,c0 + l,...,ck-l,ck + l,ck+l-ck,ckck+l/2-(c2
k/2-l)). 

For« = 5-3fc, k>\, 
T 

= (l,c0-l,cQ + l,...,ck-1, ck, ck+2, ck+ck-l). 

Forw = 7 -3 \ k>\, 

^ = (l,c0-\,c0 + \,...,ck-l,ck + l,(c2
k+ck-2)ck-i). 

We note finally that nonlinear recurrence relations also arise in the expansions of certain 
rational numbers by means of other related algorithms (see [5], [15]). 
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EXPONENTIAL GROWTH OF RANDOM FIBONACCI SEQUENCES 

Peter Hope 
Aberdeen University, Aberdeen, Scotland 

(Submitted August 1993) 

1. INTRODUCTION 

There are various ways in which the standard Fibonacci sequence can be generalized. Exam-
ples are: 
1. Choose arbitrary starting values. 
2. Introduce extra terms, for example, the "Tribonacci" sequence, Tn = Tn_x + Tn_2 + Tn_3. 
3. Introduce multipliers, for example, xn = axn_x + bxn_2y where a and b are positive integers or, 

more generally, positive (real) numbers. 
A natural question to ask is: What is the rate of growth of the sequence? This could be 

tackled by investigating whether xn ~ K<j)n for some constants K and </>, or the weaker condition, 
the convergence of ^-In^) asw-»oo. If ^\n{xn) converges to y/, then y/ is the rate of expo-
nential growth in the sense that, for every 8 > 0, 

»0 and , " >oo. 
e(y/+S)n ' e(v-8)n 

In this paper a further generalization of the Fibonacci sequence is considered. Instead of 
using fixed multipliers, choose pairs (an,bn) at random, according to some specified probability 
distribution, and let 

x0=0, xl = l,xn=a„xn_l+b„x„_2, n>2. 

{xn} is now a sequence of random variables. 
A simple example is to choose an to be either 1 or 2 with probability y (and independently of 

the previous a's) and to take all bn 's equal to 1. 
We will show that, subject to certain conditions on the probability distribution of the multi-

pliers, -^ln(xw) converges to a constant y/ for every sequence except for those in a set which 
together have zero probability of occurring. 

2. MAIN RESULT 

Let {an ,£„}„>! be a sequence of pairs of random variables that satisfy the following condi-
tions: 
1. an and bn are strictly positive. 
2. (an,bn) are independent pairs, that is, for every n and k > 1, and for all 0 < cn+j <dn+j < oo 

and0<e„+7 </w+y <QO, 
P(c„ <an<dn, en <b„<fn7...,cn+k <an+k<dn+k, en+k <bn+k<fn+k) 
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This means that the probability distribution of (an7bn) is not affected by knowing the values 
of the previous a!s and 5's. 
3. P(c <an<d,e<bn< / ) = P(c <al<d,e<bl< f) for all n and for all 0 < c < d < QO and 

0 < e < f < oo. 
4. -co < EQnfa)) <oo and ~oo <JE(ln(61)) <QO. 

felnC^)) = [\n(x)F(dx), where F(x) = P (^ < x). Similarly for £(ln(^))-

Let 
wn =a1+bl 

a2 + h2 
a3+b3 

an-\+K± 
an ' 

wn is a finite continued fraction (see Hardy and Wright [4] for basic properties). 

Definition 1: To say that a condition holds on a sequence of random variables {zn} almost surely 
(a.s.) means that the sequences for which it does not hold form a set which has probability 
(measure) 0. 

We will show that the sequence {wn} converges almost surely. Let w denote the limiting 
random variable. 

Theorem 1: Mn(xn) —2^—» y/, where y/ - E(ln(w)). 

Note: Since ax < w < ax + -j- , condition 4 implies that E(\n(w)) is finite. 

We note that the same method is used by Billingsley ([1], Ch. 1, §4) to prove a result of a 
similar nature involving the rate of growth of the "convergents" to a number by Diophantine 
approximation. 

Forw>2, 

Let 

*n=anXn-\+hnXn-2 0 F ~ ~ = Qn + K " 

y„=^-9 n>2, 

= an+K 
an-l+K-l 

h 
a2+b2 

1995] 165 



EXPONENTIAL GROWTH OF RANDOM FIBONACCI SEQUENCES 

Let yx - xx, then 

n nk=i 

Proposition 1: {wn} converges almost surely. 

Proof: 

Let 

*v 
w3-

w4-

-wx 

~W2 

" ^ 3 

a2 

-bp2 

a2(a2a3+b2) 
bfi2b3 

(a2a3 + 62)(«2«3«4 + atb2 + a2b,) 

C2 = 1, d2 — a2, 

Cn+l = "n> 

dn+l=an+ldn+b
n

Cn-

(-ifbA-A-i 
w —w ,=-—-—— XL-L 

" "-1 cd 

Then 

A well-known property of continued fractions is that {w2n} is monotone decreasing and 
{w2n+i} is monotone increasing. 

Ignoring all terms with two or more a's, 

dn > b2b4b6 - - • bn_x if n is odd, n > 3, while 
d„ > anbn_2bn_A • • • b2 + On^K-A-A "b2 

+ an_4bn_lb„_3b„_6--b2 + -'-
+ a2bn_ A-3 °"b3 If/? is even, n > 4. 

Hence, for n even, \wn - wn_x | and \wn+1 - wn | are bounded by 

1 
a2 , ^4 b2 , ^6 &A , , **„ hK'A-2 
bl b3 bl b5 bA K-\ bA'"bn-3 

If every bn = 1, this becomes a +a +a
1

+...+fl , which tends to 0 almost surely. 

Otherwise, Inf^ *'''̂ ~2 j is a symmetric random walk and, with probability one, will take 

values > k, for every k, for some value n. Thus, since the sequence <•£*- ^4"'^~2| is unbounded 
almost surely, the denominator diverges almost surely 

0 r
? \Wn-Wn-l\ " ' > Q -

166 [MAY 



EXPONENTIAL GROWTH OF RANDOM FIBONACCI SEQUENCES 

Together with the fact that {w2r}} and {w2n+l} are monotone, this implies that {wn} converges 
almost surely. 

The ergodic theorem appears in many forms. In a probabilistic context it usually involves 
"stationary0 sequences of random variables (see Billingsley [1], orBreiman [2], Ch. 6). 

Definition 2: A sequence {zn}n>l of random variables is called stationary if (z1?z2,..., zk) and 
(zn+1, zn+2, •-., zn+k) have the same probability distribution for every k>\ and n>\. 

The sequence {zn} determines a probability measure P on (Rz ,2?), where 9 is the a -field 
of events generated by {zn} (Breiman [2], Ch. 2). 

Definition 3: A tail event A is one that does not depend on the values of z1? z2,..., z„ for any n. 
[For example, A = ({zn} : zn converges) is a tail event.] 

If every tail event has probability 0 or 1, then {zn} is ergodic (Breiman [2], Prop. 6.3.2 and 
Def. 6.30). 

Consider now the doubly infinite sequence {aw, bn}neI. For n > 1, let 

•lnfan+hn 

an-i+K-\ 

V -J 
Proposition 2: {zn} is ergodic. 

Proof: Stationarity is an immediate consequence of conditions 2 and 3. 

A tail event for {zn} corresponds to an event that does not involve ... (a0, b0),..., (a„, b„) for 
every n>\. 

Since {an,bn) are independent pairs, it can be deduced from Kolmogorov's 0-1 law (Breiman 
[2], Th. 3.12) that all tail events for {zn} have probability 0 or 1. 

Theorem 2 (Ergodic Theorem): 

" / = ! 

Proof of Theorem 1: 

i=\ 

1 n 

since — V z, —^-> E(z}) 
n J 

and ItaO/J-zJ-H^O. 

39 EXAMPLE 

Let an = 1, with probability 1/2 ; an = 2, with probability 1/2 (a„'s are chosen independently); 
6n = 1. Examples of possible sequences are: 
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(i) 0 ,1 ,1 , 3,4,7,18,25,68,..., 
(ii) 0,1,3,7,10,17,44,105,149,.. . . 

w represents a "randomly" chosen number whose continued fraction expansion contains only 
l's and 2's (every possible sequence in the first n places is equally likely, for every n). 

£(ln(w)) is easily approximated by 

A a=l or 2 

ax+\ 
a2 + l 

a3 + l 

a„_x + l 
*nj 

and is, to three decimal places, .673. 
Hence, almost surely, such sequences grow at the rate e"673 = 1.960. 
This compares with a result of Davison [3] which was recently brought to the author's 

attention. 
Let x be an irrational number in (0, 2). 
Define bn = 1 + ([nx] mod 2) ([x] = integer part of x) 
({hn} is a sequence of l's and 2's). 
l*txn=bnxn_l+xn_2. 
Then lim^^^ xlJ" always lies between 1.93 and 1.976. 

4, CONCLUDING REMARKS 

The conditions on (an,bn) are not meant to be optimal. Any improvement, however, would 
result in greater complexity both of the results and proofs. 

An interesting feature of the above results is that while individual sequences grow at a rate 
e¥, the average value of xn. [E(xn), the expectation value], in general, grows at a different rate, 
since the sequence {is(x„)} satisfies E(xn) = E(an)E(xn_l) + E(bn)E(xn_2); hence, Mn(E(xn)) 
—»ln^, where ^ is the positive root of x2 - E(al)x - E^) = 0 [assuming E(a1) and E fa) are 
finite]. 

(For the example in Section 3, ^ = 2.) 
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A BIFFERENCE^OPERATIONAL APPROACH TO THE 
MOBIUS INVERSION FORMULAS 

JL Co Hsu* 
Institute of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China 

(Submitted August 1993) 

1. INTRODUCTION 

Worth noticing is that the well-known Mobius inversion formulas in the elementary theory of 
numbers (cf. e.g., [2] and [3]), 

f(n) = ^g(d) (1) 
d\n 

and 
gi») = I/(OM"/<0 = ?,/(»/d)M(d), (2) 

d\n d\n 

may be viewed precisely as a discrete analog of the following Newton-Leibniz fundamental for-
mulas 

F{xl9...9xs) = \^\G{tl9...9ts)dts...dtl (3) 

and 

G(xu...,xs) = -r---rF(xu...,xsX (4) 
oxx oxs 

wherein the summations of (1) and (2) are taken over all the divisors d ofn9 and G(tl9..., ts) is an 
integrable function so that F(xl9 ...,xs) = 0 when there is some xi =c7 (l<i <$). This will be 
made clear in what follows. 

Let us use the prime factorization forms for n and d9 say n - p\x • • • px
s
s and d - p[l • • • p[s, pf 

being distinct primes, xt and ti being nonnegative integers with 0 < tt < xt (z = 1,..., s), and replace 
f(n) andg(d) of (1) by f((x)) = f(xlr..9xs) and g((t)) = g(tl9...,ts), respectively. Then one 
may rewrite (1) and (2) as multiple sums of the following: 

/(*„... ,*,)= £ £<*„...,/,) (5) 
0<f,<x,. 

and 
g(xl9...9 xs) = X /(*,• ~ fu •••> xs ~ 0/*i('i> •••> ',)> (6) 

0<r,.<x,. 

where each summation is taken over all the integers tt (i = l,...,s) such that 0 < ti < xt, and 
Mi((0) = Mxfa,...,/,) is defined by 

M O ) ^ - " " * ' " ^ " ' £ 1 ' , <7> 
0, if there is a \t > 2. 

* Supported by the International Scientific Exchange Award (NSERC) Canada, in 1993. 
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Evidently /^((O) = M(d) 'ls Just the classical Mobius function defined for positive integers d with 
/i(l) = l.(cf.[4]). 

Now we introduce the backward difference operator A and its inverse A l by the following: 

A/(*) = / ( * ) - / ( * - l ) , A-1g(x)= -£g(t) (8) 

so that A A l g(x) = g(x)9 A l Af(x) = f(x)9 and we may denote A A x = A l A = / with I/*(x) = 
/ (x ) , where we assume that f(x) = g(x) = 0 for x < 0. Thus, (5) and (6) can be expressed as 

f((x)) = A-l-A-1g((x)) (9) 

and 
g((x)) = A-Af((x)), (10) 

xl xs 

where it is always assumed that f((x)) = g((x)) = 0 whenever there is some xt < 0 (1 < i < s), s 
being any positive integer. 

Apparently, the reciprocal pair (9) o (10) is just a discrete analog of the inverse relations 
(3) <=> (4). This is what we claimed in the beginning of this section. 

2. A GENERALIZATION OF (9) o (10) 

Difference operators of higher orders may be defined inductively as follows: 

Ar = A Ar~\ A~r = A"1 A"(r-1}, (r > 2), A0 = / . 
X XX X X X 

Lemma 1: For any positive integer r, we have ArA r = A rA = / J A~r 

Proof: (By induction.) The case r = 1 has been noted previously. If it holds for the case 
r = k > 1, then, for any given f(x), 

Ak+l A~k-X f(x) = Ak A A"1 A~k f{x) = Ak I A~k f(x) = Ak A~k f{x) = / ( x ) , 
X X X X X X X X XX 

and, consequently, Ak+l A~(k+1) = I. Hence, Ar A~r = I holds for all r > 1. Similarly, A"r Ar=I 
X X XX X X 

may also be verified by induction. • 
In what follows, we always assume that every function /((x)) org((x)) will vanish when-

ever there is some xi < 0 (1 < / < s). 

Lemma 2: For every given (r) = (r1?..., r2) with rt > 1, we have the following pair of reciprocal 
relations: 

/(w)=nf 
V/=i '' J 

and 
( s \ 

g((x)) (11) 

g((*))- Y[A« /((*)). (12) 
\i=i ' J 
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Proof: This is easily verified by repeated application of Lemma 1. In fact, the implication 
(11) => (12) follows from the identity 

V/=iX/ A/=i ' J 

Similarly, we have (12) => (11). D 

Evidently, the reciprocal pair (11)<=> (12) implies ( l ) o ( 2 ) with /;. = 1 (/= 1, ...,s), since 
(1) and (2) are equivalent to (9) and (10), respectively. 

3. AN EXPLICIT FORM 

It is not difficult to find some explicit expressions for the right-hand sides of (11) and (12). 
For the case s=l, write /((*)) " / (*) • ^y mathematical induction, we easily obtain, for r > 2, 

f/(*)= I (-l)'(jl/(*-0, (14) 
0<t<r ^ ' 

A~rg(x)= J^git) (15) 
o<t<t]<---<tr_l<x 

A-VW= i fx-;!r V) = £ pr-i V-'>' (16) 

o<t<x^ y o<r<A / 
where the summation contained in (15) is taken over all the r-tuples of integers (t,tl,...,tr_l) 
such that 0 < t < tx < • • • < tr_l <x. It is readily seen that, for each fixed t > 0, the number of all 
such r~tuples is given by (x~t

rl\~l), so that (16) follows from (15). 
As may be verified, the explicit forms given by (14) and (16) can be used to produce another 

proof of Lemma 1 and of Lemma 2, with the aid of the combinatorial identity 

% < 

1 when n = 0, 
r - l J ~ ] 0 when n>\. 

n-j + r-l)_ 

Actually, this identity follows at once from comparing the coefficients of z" on both sides of the 
product of the following expansions: 

(i-z^ic-iyf'-.U ( i -zr^ip^y. 
In what follows, we denote (x)-(t) = (xl-tu...,xs-ts) with (x) = (xl9...,xs) and (f) = 

(h> ~->ts) a s before. Also, we use (0) < (t) < (x) to denote the conditions 0 < tt < xt (i = \,...,s), 
etc. As the right-hand sides of (11) and (12) consist of only repeated sums, we see that Lemma 2 
together with (14) and (16) for r - rt, x = xi (/ = 1,..., s) imply the following 

Theorem: For any given (r) = (rl3..., rs) with all rt>l, there hold the reciprocal relations 

/((*))= I /^((0M*)-(0) (17) 
(0)<(0<(x) 
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and 
*((*))= I M(0)/((*)-(0), (18> 

(0)<(f)<(r) 

where /i(r)((0) a n^ w("r)((0) a r e defined by the following: 

*r,«o)=nfjl(-i)*, ^ , ( (o )=n( r '^r 1 ) - <19> 
Note that for the case (r) = (1,..., 1) the function //(r)((0) becomes the ordinary Mobius 

function, so that (17) and (18) constitute a generalized pair of Mobius inversions. Accordingly, 
//^((O) maY be called the inverse Mobius function with given (r) = (rl?...,rs) as a parametric 
vector. Moreover, it may be observed that the condition (0) < (t) < (r) under the summation of 
(18) may also be replaced by (0) < (t) < (x) inasmuch as g((x) - (t)) - 0 whenever there is some 
xi -tj < 0. Consequently, (17) and (18) may be expressed as "convolutions": 

/((*)) = /£) * g((x)l gi(x)) = M(r} * f((x)). (20) 

Remark: Reversing the ordering relations in the summation process, one may find that there are 
dual forms corresponding to (17) and (18). Suppose that (m) = (mu ...,ms) is a fixed s-tuple of 
positive integers and that we are considering such functions /*((x)) and^*((x)) with the 
property that /*((*)) = g*((x)) = 0 whenever there is some xt > mi (1 < z <s). Then the dual 
forms of (17)—(18) are given by 

/•((*))= Z ^)((o-wk*((0) (21) 
(x)<(t)<(m) 

and 
g*((*))= I M(r)m-(x))r((t)i (22) 

(x)<(t)<(m) 

where the summations are taken over all (t) such that xt < ti <mi (i = 1,...,s). This reciprocal 
pair (21)<=>(22) has certain applications to the Probability Theory of Arbitrary Events. For 
instance, the case (r) = (!,...,!) may be used to yield a generalization of Poincare's formula for 
the calculus of probabilities (cf. [1]). 

4. A CONSEQUENCE OF THE THEOREM 

Returning now to the theory of numbers, let us denote by d(p\d) the highest power of the 
prime number p that divides d. Thus, for d- p[l • • p\s, we have d{pi \d) - ti. Also, we define 
<?(l|rf)=0. 

Notice that the functions f(n) = f(pfl -*p*s) andg(d) = g(p{1 "-pi") may be mapped to 
the corresponding functions f((x)) and g((t)), respectively. Thus, making use of the theorem 
with /;. = r (i = 1,..., s), we easily get a pair of reciprocal relations, as follows, 

/(«) = I>(f)^) (23) 
and 
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V„A 
d\n 

where vr(d) and Mr(d) a r e defined by the following 

S(") = Y/\-;\MM), (24) 

^ -n^ r - 1 ) ^rjUo)-* \<?(/>l<0 

P\d v ^ ^ 

Obviously, the classical pair (l)-(2) is a particular case of (23)-(24) with r = 1. Moreover, 
for the case r = 2, we have 

v2(d)=n(^irf)+i)"^(d), 

where #(c?) stands for the divisor function that represents the number of divisors of d. Conse-
quently, (23)-(24) imply the following reciprocal pair as the second interesting case: 

/(")=I^V^); (25) 
X \d) 

*K») = I / f ^ W < 0 - (26) 
d\n V ^ y 

Surely (25)-(26) may be used to obtain various relations between special number sequences by 
taking g(n) orf(n) to be special number-theoretic functions. 
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ON THE ^DERIVATIVE SEQUENCES OF FIBONACCI 
AND LUCAS POLYNOMIALS* 

Jun Wang 
Institute of Mathematical Sciences, Dalian University of Technology, Dalian 116024, P.R. China 

(Submitted August 1993) 

1. INTRODUCTION 

As in [1] and [2], the Fibonacci polynomials Un(x) and the Lucas polynomials Vn{x) (or 
simply Un and Vn, when no misunderstanding can arise) are defined by the second-order linear 
recurrence relations 

U„ = xU„_l+U„_2 (U0 = 0, C/1 = l), (1) 
and 

Vn = xVn_l + Vn_2 (V0 = 2,V^x), (2) 

where x is an indeterminate. Then the k^ derivatives of U„(x) and Vn(x) are 

rr(k) _^_rj anH y(k) = JL_Y 

respectively. For convenience, we write U^ - Un and F„(0) = Vn. 
Since U_n = (-l)n+lUn and V_n - (-l)nVn, it can easily be deduced that the recurrence rela-

tions (1) and (2) hold for any integer n, and 

U^ = (-\TlUf\ (3) 

VV> = (rWKk)- (4) 

The sequences {/**>} and {lSk)} are defined as F„ik) = [Uj,k)(x)]x=l and tik) = [Vn
(k)(x)]x=1. 

For k = 1 and 2, the sequences {Uf>}, {V^}, {F^k)}, and {L(k)} were considered in [1] and 
[2], respectively. For any k > 0, the following conjectures were made in [2]: 

Conjecture 1: tik) = n/**-1*. 

Conjecture2: L{k) = {n-k + \)6k~l)-2{fik\ + Fn^l)). 

Conjecture 3: i=f > = F$ + F^k\ + kF^l). 

Conjecture 4: /<*> = 6k\ +z£>2 + kL^. 

Conjecture 5: F^ + F£\ = L<-k). 

Conjecture 6: F^k) & li-k) = 0 (mod 2) for k > 2. 

Conjecture 7: L{k) = 0 (mod ri) for k > 1. 

* Research supported by the National Natural Science Foundation of China. 
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The goal of this paper is to establish some identities and congruences involving the poly-
nomials uik) and V%k). For the sake of brevity, we shall not list the corresponding identities 
involving F}k) and tik). The reader can easily obtain them by letting x = 1 in the general identities. 
The validity of the above conjectures emerges from the results established in Section 2. Observe 
that all results have been obtained by making no use of the explicit expressions for U„(x) and 
Vn(x) which one can get by taking the k^ derivatives with respect to x of the sums (1.6) and (1.7) 
of [1], respectively. 

2. SOME IDENTITIES AND CONGRUENCES INVOLVING UH(x) AND Vn(x) 

The following four identities are most basic. 

Identity 1: u£\ + £/<*> = Vn
(k) for k > 0. 

Identity 2: U{k) = *[/£> + U%)2 + kU(
n

k_~l) for k > 0. 

Identity 3: V„(k) = xV^k\ + Vn
(k)

2 + kV„(k~l) for k > 0. 

Identity 4: V}k)=nU^k~l) for k>\. 

Proof of Identity 1: That C/W_x H- C/w+1 = F„ is a well-known fact. Take the kih derivative (with 
respect to x) of both sides of this identity. D 

Proof of Identity 2 (by induction on k); The identity clearly holds for k - 0. Suppose it 
holds for a certain k -1 > 1, that is, suppose that U(

n
k_1) = xU^ + U{kS2

l) + (* - l)C/^2). Take 
the first derivative of both sides of this identity. • 

Identity 3 can be proved in a similar way. 

Proof of Identity 4: Clearly, it suffices to prove that it holds for k = 1. This has been done 
in [1, formula (2.4)]. • 

The following variety of identities can be regarded as generalizations of Identity 1. 

Identity 5: U$m + {-\)mU™m = ^ W J = t ^ X ^ for * * ° • 

/ & « % 7: F„« +(-l)TW, = ^ ( F „ F J = ip)F«Fifc- '>for^>0. 

J&iifty * F„« - {-\)mV«i = ^(U„WJ = ^(KUJ for * > 0. 

Here and in the sequel to this paper, we let Wn = Vn_x +Vn+l = (x2 +4)Un. 
Evidently, the above four identities follow immediately from the case k = 0 for which we 

have the following well-known results. 
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Identity 5': U„+m + (-l)mU„_m = UnVm. 

Identity 6': Un+m-(-lTU„_m = V„Um. 

Identity 7': V„+m + (-l)mK-m = V/m-

Identity 8': V„+m - {-\)mVn_m = UnWm = W„Um. 

To prove Conjectures 1-7, we shall establish another identity and two congruences. 

Identity 9: xVn
(k) = (n-k + l)Vn

ik~l) -2(V£\ + Zj£p). 

Proof: Using Identities 4, 1, and 3, we have 

{n-k + l)Vtl),-2^+J72r1>) 
= (n + l)Vn

(k-l) - kVn
(k-x) - 2nU{k_\l) 

= (n + l)V? ~l) + xVn
(k) + V„(kl - V„(ki - 2nU{k_1l) 

= xVn
ik) +(n + \)V<;k~l) + (n - l)U{k_\l) + (n +\)U%? - 2nU{k_\l) 

= *F**> +(/i + lX)Pf-1) -1&-U%?) 
= xV?\ 

Congruence 1: U(
n

k) s Fn<* > = 0 (modJfcl). 

Proof: If we take the &* derivative with respect to x of the combinatorial sums which give 
Un and ^ (e.g., see [1, (1.6) and (.1.7)]), we see that each of their summands contains the product 
of A: consecutive integers. It follows that all of them are divisible by k\. • 

Congruence 2: V£k) = 0 (mod n) for k > 1. 
Proof: It is an immediate consequence of Identity 4. 
Letting x - 1 in the above stated identities and congruences yields the following corollary. 

Corollary: Conjectures 1-7 are all true. 

3. SOME CONVOLUTION IDENTITIES INVOLVING Un(x) AND Vn(x) 

In this section we discuss some finite series involving U^ and V^ that have simple closed-
form expressions for their sums. 

Proposition 1: J^U^U^ =-^—U(
n

k+l\ 

Proposition 2: ^ U^k)Vn_t = -^—V„(k+l) + U{k). 

Propositions: £ >f >£/„-,= 7^7 ^ + I ) + <*(0,*)£/B. 
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« 1 
Proposition 4: £ V^V^ = —5— ]^+ 1> + (1 + S(0, k))V„m . 

i=o * + ! 
Here, <J(0, A;) is Kronecker's symbol which equals 1 if k = 0, and equals 0 otherwise. 

Proofs of Propositions 1-4: Let ^ = Z,10 U^U^,,. Since £/,. (/>1) is a monic poly-
nomial of degree j - 1 (cf. [2, (1.6)]), we have that E/J*> = U[k) = ••• = £/f >=0 and £/£+! = £!, 
so that 4*> = 4 * \ = 0 and 4 % = £/&& = *! = ̂ t / f ^ . Suppose that A™ = ^U™ and 
4% = mU^ for »> 2. Then 

W-l 

4*) = j ; ^)c/n_,. = x ^*>(xt̂ H+u„_2_t) = x4k_\+4?2+^., 
7=0 7=0 

= j—ixu^+t/^+(*+1)0*?,) = ^ Y ^ + 1 ) -

t ulkK^ = t ulk\un+t + t/„+1,) = 43+4i\+&?>£/-, 
/=0 »=0 

7=0 7=0 7=0 

= 4-1 + 4S+tf.(X = ̂ y (^-.1}+£C!))+*(o, *)£/„ 

I ^ „ , = Jv^u^+c/„+1_() = X^t/^,.+^-.+Itf f c ) tf , 
7=0 «=0 

n-1 

I' 
7=0 

77+1 

J 77+1-7 

= - ^ ( ^ r 1 ) + ^ i + 1 ) ) + ^ ( o , A ) ( ^ i + ^ i ) + ^ ( * ) 

, Furthermore, for any £, y > 0, we have 

Propositions: Y,0k)U(
ni) = 

7=0 

Proposition 6: J]V^k)U(
n{_) = 

7=0 

Proposition 7: J^V^L] 
7=0 

(* + 7 + l)| 

(A + y + 1) 

(*+7 + l)l 

* + / 

A + y 

A+y 

i-i 

C/<*+'+1 ) . 

1-1 

V(k+J+»+S(0,k)U(
n
J). 

-1-1 

»J^+1>+(5(o,*)+iy(o,7))f;<*+». 
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For the sake of brevity, we shall prove only Proposition 5. 
Proof of Proposition 5 (by induction on I): By virtue of Proposition 1, the statement holds 

for j = 0. Suppose it holds for some j > 1. Since 

d_ 
dx V/=o / /=o /=o v+j+i'ft 

- l . 

UJik+J+2\ 

we can write 

/=o 

=[{k+j+2f+jiii) 

Uik+J+2) - (k+i+j+i)(k+yj) 

Uik+j+2) 

1-1 
jj(k+l+j+l) 

l\k+j + 2 k + \ 
L J+l J+l 

1 

uik+J+2\ 
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Krystyna Biatek 
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(Submitted August 1993) 

1. INTRODUCTION 

In [4] Fell, Graz, and Paasche proved that If the equation 

x n + / = z", (1) 

where n>2 Is an integer, has a solution in positive Integers x < y < z, then 

x2>2y + l. (2) 

In 1969 M. Perisastri (see [7], p. 226) proved that 

x2>z. (3) 

In [1] It was proved that 
x2>2z + l. (4) 

A. Choudhry (in [3]) improved the Inequality (4) to the form 

xn,{n-l)>z. (5) 

In fact, from the proof given by Choudhry [3], it follows that 

z<C{n)xnl{n-l\ (6) 
where 

C(n) = 2l/n/nl/(n-l\ n>\. (7) 

In [2] we improved the constant (7) to the form 

Cl(n) = 2l/2n/nl/(n-l)<C(n). (8) 

In this note, we shall prove the following 

Theorem: Let C(J, k; n) = j l l n I kll{n~l) and let equation (1) have a solution in positive integers 
x< y<z, then 

iC(2,n;n)xnKn-l\ i£z-y = l, 
z<\c{42,2n\n)xnl{n-l\ ifz-y = 2, 

[C(<y/2,2n'9n)xnKn-l\ if z-y >2. 

Proof of the Theorem: Suppose equation (1) has a solution In positive integers x< y<z. 
Then we have 

x" =z" -y" = {z-y){z"-x +2'-*y + ...+y"-1). (9) 
We note that 

z"'1 + z"~2y + •••+ y"'1 > n(zyf"-m. (10) 
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On the other hand, if x < y < z, we have, by (1), 

y>{H2)l,nz. (11) 

From (10) and (11), we obtain 

zn~l +zn-2y + ->+yn~l > {nll{n-l),2n)zn-\ (12) 

It is well-known (see [7], Ch. 11) that if n, x,y, z are positive integers with x<y<z and 
(x,y,z) = 1 such that (1) holds, then there exist S E{0, 1} and positive integers a, d with d\n 
such that 

z-y = 2sd~la". (13) 

From (13), it follows that if z - y > 2 then 

z-y>2nln (c/.[5]). (14) 

From (12) and (9), we obtain 

From (15) and (14), we have 

where 

x">{z-y){nl2(n-l)n")zn-\ (15) 

xn>C2(n)/2("-l)n"z"-\ (16) 

C2(n) = 

Now, by (16), the Theorem follows. • 

n, ifz-y = l, 
2n, if z-y = 2, 
2, i fz - j />2 . 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also he sent to the problem editor by electronic mail to Fibonacci@MathPro.com on Inter-
net. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Proposers should inform 
us of the history of the problem, if it is not original. A problem should not be submitted 
elsewhere while it is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+l +Fn, FQ = °> ^1 = ^ 

A7+2 - AH-I + Ai > A> - A LX — i. 

Also, a = (l + V5)/2, /? = ( l -V5)/2 , Fn = (an-/3n)/^md Ln = an + j3n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-784 Proposed by Herta Freitag, Roanoke, VA 

Show that for all n, an~l*j5 - Ln_x I a is a Lucas 'number. 

B-785 Proposed by Jane E. Friedman, University of San Diego, San Biego, CA 

Let aQ -al-l and let an = 5an_1 - an_2 for n > 2. Prove that a^+1 +a^+3 is a multiple of 
anan+l f°F all W > 1. 

B-786 Proposed by Jayantibhai M Patel, Bhavanfs R. A. College of Science, Gujarat State, 
India 

If F^+2k = aF*+2 + hF^ +c(-l)n, where a, b, and c depend only on k but not on n, find a, b, 
andc. 

B-787 Proposed by H.-J. Seiffert, Berlin, Germany 
For n > 0 and k > 0, it is known that Fknl Fk and Pkn I Pk are integers. Show that these two 

integers are congruent modulo Rk- Lk. 
[Note: Pn and R^ = 2Qn are the Pell and Pell-Lucas numbers, respectively, defined by 
Pn+2--2Pn+1 + Pn, P0 = 0, /} = 1 md.Qn+2 = 2Qn+l + Qn, Q0 = 1, fl= 1.] 
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B-788 Proposed by Russell Jay Hendel, University of Louisville, Louisville, KY 

(a) Let* G„ = F 2. Prove that Gn+l ~ L^^. 
[Note: / («) ~ g(n) means that/is asymptotic to g, that is, lim f(n) I g(ri) = 1.] 

n-»oo 

(b) Find the error term. More specifically, find a constant C such that Gn+l ~ i>2»+î » + *^V-i • 

B-789 Proposed by Richard Andre-Jeannin, Longwy, France 

The Lucas polynomials, Ln(x), are defined byZ^ = 2, Ll = x, and i„ = xZ„_x +Z„_2, for ^ > 2. 
Find a differential equation satisfied by I$\ the kth derivative of Ln{x), where A: is a non-

negative integer. 
SOLUTIONS 

Inequality for All 

B-752 Proposed by Richard Andre-Jeannin, Longwy, France 
(Vol 31, no. 4, November 1993) 

Consider the sequences (Un) and (Vn) defined by the recurrences Un- PUn_l-QUn_2, 
n>2, with f/0 = 0, C/! = 13 *ndV„=PVn_l-QVn_2, n>2, with VQ = 2,Vl = P, where P and Q 
are real numbers with P > 0 and A = P2 - 4Q > 0. Show that, for n > 0, Un+l > (P12)Un and 
Vn+l>(P/2)Vn. 

Solution by A. N. ft Woord, Eindhoven Univ. of Tech., Eindhoven, The Netherlands 

Let (Wn) be any sequence that satisfies Wn = PWn_x - QWn_2 for n > 2 and Wx > (P12)W0 > 0. 
Using induction on n, we shall show that Wn+l > (P12)Wn > 0. We already know this for n - 0, so 
suppose the inequality holds for n -1. Then 

K+i = PK-QK-i > PWn-{2QiP)wn 

= {P I2)W» + (P I2-2QI P)Wn 

= (P/2)Wn + (A/2P)Wn>(P/2)Wn>0. 

This gives the required result for both the sequences (Un) and (Vn). 
Note that the same style proof shows that strict inequality holds for n > 0. 

Also solved by Paul S. Bruckman, Charles K. Cook, Leonard A. G. Dresel, C Georghiou, 
Norbert Jensen, Hans Kappus, H.-J. Seiffert, Lawrence Somer, J. Suck, and the proposer. 

An Old Determinant 

B-753 Proposed by Jayantibhai M. Patel, Bhavan fs R A. Col. ofScl, Gujarat State, India 
(Vol 31, no 4, November 1993) 

Prove that, for all positive integers n, 

= 36. 

F 3 
rn-\ 
F3 

Fn+l 

Fn+2 

F3 

Fn+\ 

Fn+2 

Fn+3 

F3 
rn+\ 
F3 
rn+2 
F3 
rn+3 
Fn+4 

F3 
rn+2 
K+3 
Fn+4 

Fn+5 
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Comment by J. Suck, Essen, Germany 
"Surely you must be joking! . . . The world's leading previously published problems surveyor 

. . . was taken in?!l This problem is the same as problem H-25 which was proposed by Erbacher 
and Fuchs in The Fibonacci Quarterly in 1964. 
The editor apologizes for repeating this problem. Many readers pointed out this duplication. 
See the simple solution by C. R. Wall that was originally printed in this Quarterly 23 (Oct 
1964):207. 

Generalization byH.-J. Seiffert, Berlin, Germany 
For the positive integer/?, let 

FP-\ p.p-i 
rn-l rn 

j / x Fp~l Fp~l 

4,00= w. V 
\pp-i pp-\ 

Fp~l 
1 n+p-2 
J7P~l 

rn+p-l 

J7P-1 1 n+2p-3 
pxp 

where n is an arbitrary integer. According to a result of D. Jarden (see [1], p. 85, exercise 30), 
we have 

p 

i t=0L 
H)uP-mFP-l=0 (i) 

for all integers N, where [£] is the Fibonomial coefficient defined by 

=
 FpFp-\ ''' Fp-k+l 

FkFk-l '"Fl 

with [o] = [J] = 1. Here [x~\ denotes the least integer greater than or equal to x. Letting N = n-
2 + j in equation (1) gives 

p~lr»i 

for all 7 = 0,1,2,...,/?-!. Thus, we have 4 ( p ) = (-l)p+r/?/2l4_1(p) for all integers n, which 
implies that 

for all integers m and n. Letting m = 2 - p allows us to calculate 4 ( f0 • The results are given in 
the following table. 

p 
A(P) 

l 
l 

2 
(-1)" 

3 
2(- l )" 

4 
36 

5 
13824 

6 
324000000(-l)" 

Reference 
1. Donald E. Knuth. The Art of Computer Programming. Vol. 1. Reading, Mass.: Addison-

Wesley, 1973. 
Dresel found that if the Fibonacci numbers are replaced by Lucas numbers in the original 
proposal, then the value of the determinant obtained is 562,500. He also showed that if the 
original determinant is enlarged to be r x r for r > 4, then the value of the determinant is 0. 
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This follows from the identity F*+2 - 3FW
3
+1 - 6F„3 + 3F„3_X + F„3_2 = 0, which shows that the rows are 

linearly dependent. 
Also solved by Marjorie Bicknell-Johnson, PaulS. Bruckman, Leonard A. G Dresel, C Geor-
ghiou, Russell Jay Hendel,'Norbert Jensen, Samih A. Obaid, H.-J. Seiffert, J. Suck, A. K ft 
Woord, David Zeitlin, and the proposer, 

A Summing of Pells 

B-754 Proposed by Joseph J. Kostal, University ofElinois at Chicago, IL 
(Vol 32, no. 1, February 1994) 

Find closed form expressions for 

£ i i and £&. 

The Pell numbers Pn and their associated numbers Qn are defined by 

P„+2 = 2Pn+l + Pn, P0 = 0,Pl = l; 

Solution by Glenn A. Bookhout, Durham, NC and by H.-J. Seiffert, Berlin, Germany (inde-
pendently) 

Let (Gn) be any sequence that satisfies the recurrence Gn+2 = 2Gn+1 + Gn. Then 

Thus, 

Hence, 

X Gjc+2 = 2 S Glc+1 + T,Gk-

Y,Gk+Gn+1 + G„+2-Gl-G2=2YJGk+2Gn+l-2Gl + Y,Gk. 

" 1 1 
Y*Gk= ^(Gn+2 ~ Gn+l - G2 + Gx) = -(Gn+l +G„-G2+ Gx). 
Jc=l L A 

Several solvers pointed out that this and similar problems can be solved using the Binet forms 
and the formula for the sum of a finite geometric progression: ££=1 xk - (x - xn+l) I (1 - x). 
Some of the other equivalent answers obtained were: HPk= (Pn+i +Pn-l)/2= (Q,+1 -1) / 2 and 
?Qk = (Qn+i + 2« ) /2~" l - Pn+i~ 1- Haukkanenpoints out that Horadam showed in this Quar-
terly 3.2 (1965):161-77 that, if the sequence wn is defined by wn+2 = cwn+l-dwn for n>0 with 
w0=a andwx = b andc&d + l, then 

h k ~ ^ ^ i ' 
Gauthier found that for any integers s and t, 

f x „ G ^ Hy*"+ 1Gw, - x"Gs(n+1)+t+Gs+t H-ds+lxGt 

h Sk+' l-2x(G, + G,_1) + (-iyx2 

184 [MAY 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Also solved by Seung-Jin Bang, Brian D. Beasley, Paul S. Bruckman, Charles K Cook, Bill 
Correll, Jr., Steve Edwards, Russell Euler, Herta T. Freitag, N. Gauthier, C Georghiou, 
Pentti Haukkanen, Russell Jay Hendel, Hans Kappas, H. K. Krhhnapriyan, Carl Libis, Bob 
Prielipp, Sahib Singh, David C Terr, and the proposer. 

An Interleaving of Pells 

B-755 Proposed by Russell Jay Hendel, Morris College, Sumter, SC 
(Vol 32, no. 1, February 1994) 

Find all nonnegative Integers m and n such that Pn = Qm. 

Solution by Brian D. Beasley, Presbyterian College, Clinton, SC 

The only solutions are (m, n) = (0,1) or (1,1). First, n cannot be 0, since Qm Is never 0. Next, 
for « = 1, we obtain the two solutions listed above. Finally, for n>l, It is straightforward to 
show that Qn = Pn_x + Pn = Pn+l - Pn. Since (Pn) Is a strictly increasing sequence of positive inte-
gers for n > 1, this yields Pn<Qn< Pn+h so Qm cannot equal Pn for any n > 1. 
Also solved by Paul S. Bruckman, Charles K Cook, Bill Correll, Jr., Steve Edwards, C Geor-
ghiou, Hans Kappus, Murray S. Klamkin, Wayne L. McDaniel, H.-J. Seiffert, Sahib Singh, 
David C Terr, and the proposer. 

A Fibonacci Formula for Pn 

B-756 Proposed by the editor 
(Vol 32, no. 1, February 1994) 

Find a formula expressing the Pell number Pn in terms of Fibonacci and/or Lucas numbers. 
Editorial Note: Although some very ingenious solutions were submitted, none had the elegance 
that might be expected of our distinguished panel of solvers. This problem will thus be kept open 
for another six months. 

Fibonacci-Pell Congruences 

B-757 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 32, no. 1, February 1994) 

Show that for n > 0, 

(a) ^ - 1 ^ + 2 (mod 13), 

(b) ^ + I - ( - 1 ) L ( " + 1 ) / 2 J ^ - I (mod?). 

Solution by Bill Correll, Jr., Student, Denison University, Granville, OH 

(b) Modulo 7, the Pell numbers Pn repeat in the sequence 0, 1, 2, 5, 5, 1, ... . Thus, P3n+l repeats 
in the sequence 1, 5, 1, 5, ... for n- 0,1,2,... . Similarly, the Fibonacci numbers (mod 7) repeat 
every 16 terms and FAn_x repeats in the sequence 1, 2, 6, 5, ... for n- 0,1,2,... . Thus, we have 
the following table: 
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n (mod 4) 
/>3„+1(mod7) 

( - ^ ^ ( m o d V ) 

0 

1 

1 

1 

5 

-2 

2 

1 

-6 

3 

5 

5 

Since the given congruence holds in each case, it is true in general. 

(a) A similar analysis proves part (a). Considering the sequences Pn and Fn modulo 13 suggests 
considering n modulo 28. A table of values for P3n_x (mod 13) and Fn+2 (mod 13) show that they 
repeat every 28 terms and the corresponding values are congruent. 

Seiffert also found that P6n.4 = (-li(n'l)/2iF5n+2 (mod 11). He notes that many such congru-
ences seem to exist 

Also solved by Paul S. Bruckman, C. Georghiou, Russell Jay Hendel, David C. Terr, David 
Zeitlin, and the proposer, 

Another Pell Sum 

B-758 Proposed by Russell Euler, Northwest Missouri State University, Maryville, MO 
(Vol 32, no. 1, February 1994) 

Evaluate X ^ T ^ . 
k=Q 5 

Solution by Hans Kappus, Rodersdorf, Switzerland 

Consider more generally 

/(*) = £*&**> for|*|<V2-l. 
k=Q 

We will use the formula ([ 1 ], p. 21, formula 1.113) 

V kxk = r-, for Ixl < 1. 

The Binet form for Qk is Qk = (pk + qk) 12, where p = 1 + 4l and q = 1 - V2. Substituting in the 
Binet form gives 

f( \ - * ( Px ffx J _ x(l + 2x-x2) 
nX)~2[(l-Px)2+~(^xfj~ (l-2x-x2)2' 

In particular, since 2 / 5 < V2 - 1 , the sum in question equals / ( 2 / 5) = 410. 
Reference 
1. I S . Gradshteyn & I. M. Ryzhik. Table of Integrals, Series, and Products. San Diego, Calif: 

Academic Press, 1980. 
Also solved by Seung-Jin Bang, Glenn Bookhout, Paul S. Bruckman, Charles K Cook, Bill 
Correll, Jr., Steve Edwards, Piero Filipponi, N. Gauthier, C. Georghiou, Pentti Haukkanen, 
Russell Jay Hendel, Joseph J. Kostal, H. K. Krishnapriyan, Bob Prielipp, H.-J. Seiffert, Sahib 
Singh, David Zeitlin, and the proposer. 
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Edited by 
Raymond E* Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-490 Proposed by A. Stuparu, Valcea, Romania (corrected) 

Prove that the equation S(x) = p, where/? is a given prime number, has just D((p -1)!) solu-
tions, all of them in between/? and/?! [S(n) is the Smarandache Function: the smallest integer 
such that S(n)\ is divisible by n, and D(n) is the number of positive divisors of/?.] 

H-496 Proposed by Paul S. Bruckman, Edmonds, WA 

Let n be a positive integer > 1 with gcd(«, 10) = 1, and 8 = (5In), a Jacobi symbol. Consider 
the following congruences: 
(1) Fn_5^Q{moAn\ 4 = l(modw); 
(2) FL{n_S) = 0 (mod n) if n = 1 (mod 4), Ll{n_d) = 0 (mod n) if n = 3 (mod 4). 

Composite n which satisfy (1) are called Fibonacci-Lucas pseudoprimes, which is abbreviated as 
"FLUPPS." Composite n which satisfy (2) are called Euler-Lucas pseudoprimes with parameters 
(1, - i ) , abbreviated as "ELUPPS." Prove that FLUPPS and ELUPPS are equivalent. 

H-497 Proposed by Mohammad K. Azarian, University of Evansville9 Evansville9 IN 

Solve the recurrence relation 

* f * x Y 

i n^H + iK., /=0 \^y=0 Xn-i J 

k Y 
= 0, 

where r is any nonzero real number, n > k > 1, and xm ^ 0 for all m. 

H-498 Proposed by Paul S. Bruckman, Edmonds, WA 

Let u = ue = L e, e = 2, 3,... . Show that if u is composite it is both a Fibonacci pseudoprime 
(or "FPP") and a Lucas pseudoprime (or "LPP"). Specifically, show that u = 7 (mod 10), Fu+l = 0 
(mod w), and Lu = \ (mod u). 
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SOLUTIONS 
Quite Prime 

H-483 Proposed by James Nicholas Boots (deceased) & Lawrence Somer, The Catholic Uni-
versity of America, Washington, D. C 
(Vol 32, no. 1, February 1994) 

Let m > 2 be an integer such that 

4 , ^ 1 (modm). (1) 

It is well known (see [1], p. 44) that if m is a prime, then (1) holds. It has been proved by H. J. A. 
Duparc [3] that there exist infinitely many composite integers, called Fibonacci pseudoprimes, 
such that (1) holds. It has also been proved in [2] and [4] that every Fibonacci pseudoprime is 
odd. 

(i) Prove that l}m_x + Lm_x - 6 = 0 (mod m). 

In particular, conclude that if m is prime, then Lm_x = 2 or - 3 (mod m). 

(ii) Prove that Fm_2 - L^F^ = 1 (modm). 

References 
1. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms an + /?"." Ann. Math. 

Second Series 15 (1913):30-70. 
2. A. Di Porto. "Nonexistence of Even Fibonacci Pseudoprimes of the 1st Kind." The Fibonacci 

Quarterly 31.2 (1993): 173-77. 
3. H. J. A. Duparc. On Almost Primes of the Second Order, pp. 1-13. Amsterdam: Rapport 

ZW, 1955-013, Math. Center, 1955. 
4. D. J. White, J. N. Hunt, & L. A. G. Dresel. "Uniform Huffman Sequences Do Not Exist." 

Bull. LondonMath. Soc. 9 (1977): 193-98. 

Solution by the Proposer 

(i) I fm-2, then 

Ll_l + Lm_l-6 = % + Ll--6 = l2 + l-6 = -4^0(mod2) 
and 

Lm_l = 4 = 1 = -3 (mod 2). 

Now assume that m > 2. Then m is odd. It is well-known that 

L2n = l}n-2{-\y. (2) 
Thus, 

Z^, = 4 - 2(-l)m = l2 - 2(-l) - 3 (mod m). (3) 

Further, it follows by identity (I31) on page 59 of Fibonacci and Lucas Numbers by Verner E. 
Hoggatt, Jr., that 

h^ = LmLm_, - (-I)"-' = (l)Zm_, - 1 S V i - 1 - (4) 

By (2), 
^ , - 2 = 4 - i - 2 ( - i r 1 - C -2(1) - /£_! - 2 (modm). (5) 
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Since L2w = L2m_1 + L2m_29 it follows by (3), (4), and (5) that 

3^Zw_1-l + X^_1-2(modM)? (6) 
which implies that 

4_i + V i - 6 - 0 ( m o d W ) . (7) 
Since 

/£_! + 4,-i - 6 = (4 - i - 2 X 4 - i + 3), (8) 
it follows from (7) and (8) that Lm_1 = 2 or - 3 (modm) if m is prime. 

(ii) If m = 2, then 
i V , _ 2 - V A - i = ^o-A^i = 0-(l)(l) = - l - l ( m o d 2 ) . 

Now assume that m>2. Then /w is odd. We will first prove by induction that 

V ^ H ^ - r W ) (modw) (9) 
for£>0. If A: = 0, then 

V t = 4 - 1 - (-lyOF-i - W ) - 0)0 - 4 • 0) - 1 (modm). 
If A: = 1, then 

4-* = 4-i - ( - 1 M - W ) - (-1X0- 4-i(l)) - 4 - ! (modm). 
Now assume that (9) holds up to k - r. Then 

Aw-(r+l) = Aw-(r-l) — Aw-r 

s ( - f f - ( ' - " ( ^ - 4 - . 4 - i ) - (-1)""r(^V-i - Lm_xFr) 

-(- i r^((Fr . 2 - f4_1)-4- i(4- .+4)) 
-(-ir(r+1)(4-4-i4+i)(mod/W). 

Thus, (9) holds for k > 0. Now let k = /w - 1 . Since /w is odd, it follows by (9) that 

4^(«-l) = A = 1 s (-1)W~1(AW-2 " V l U s A*-2 - Lm-lFm-l (modlll) . 

yifeo solved by P. Bruckman, L. Dresel, andH. Seiffert 

Strictly Monotone 

H-484 Proposed by J. Rodriguez, Sonora, Mexico 
(Vol 32, no. 1, February 1994) 

Find a strictly increasing infinite series of integer numbers such that, for any consecutive three 
of them, the Smarandache Function is neither increasing nor decreasing. 

*Find the largest strictly increasing series of integer numbers for which the Smarandache 
Function is strictly decreasing. 

Solution by Paul $. Bruckman, Edmonds, WA 

Solution to Part 1: For a given natural n, the Smarandache Function of n, denoted by S(ri), 
is defined to be the smallest natural m such that n\m\. 
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The following results ensue from the definition: 

S(n) = max{S(pe)}; (1) 
pe\\n 

S(pe) = ep, ifp>e; (2) 

S(n\) = n. (3) 

Given m natural, we define U(m) to be the set of natural n such that S(n) - m for all 
n s U(m). Then n e U(m) iff n | m! and w| (m -1)! We may easily show from this that 

U(m)= | J { / ^ K / I / T ^ . J I I ! } (4) 
p\m,pe\\(m-l)\ 

In particular, if m is equal to/?, a prime, 

U(p) = {pd:d\(p-1)\}. (5) 

For example, U(2) = {2}, (7(3) = {3,6}, U(5) = {5,10,15,20, 30,40, 60,120}, etc. 

Thus, the smallest element of U(p) is/?, while the largest is/?!. The number of elements of 
U(p) is r((p-1)!), which increases rapidly with increasing/?. 

Using these facts, we may construct an infinite sequence X = {xn}n>l with the properties 
required in part 1 of the problem. Incidentally, the wording of the problem, in both parts, should 
be changed to substitute the word "sequence" for "series." 

We let {/?„}„>! = {2,3,5,7,...} denote the sequence of primes. Our first step is to define an 
infinite sequence E - {en}n^l of positive integers as follows: 

e4u=2u + 2, i/ = l,2,...; e4u+l = 2u + l, e4u+2 = 2u + 3, e4u+3 = 2u + 2, w = 0,l,..; . (6) 

Thus, E = {1, 3,2,4,3,5,4, 6,5, 7, 6,8,7,9,8,10,...}. 
Next, we define the sequence of primes Q as follows: 

Q = {Pen}„>_v (7) 

Thus, Q = {2, 5, 3, 7,5,11, 7,13,11,17,13,19,17,23,19,29,...}. 
Each distinct value of terms in E and Q occurs exactly twice, except the first and third values, 

which occur only once. Observe that no three consecutive terms of E are increasing or decreasing, 
since the values alternate in magnitude; the same is true of Q, since the primes form an increasing 
sequence. 

We now set each term pe of Q equal to S(xn) and seek to find xn such that X = {xn}n>l is 
an increasing sequence of positive integers. For definiteness, we define xn to be the smallest 
positive integer such that xn > xw_1? beginning with x{ = 2. Using the result in (5), we may thus 
uniquely determine xn GS~1(Q) such that xn > x„_1? with xx = 2. We may illustrate by displaying 
the first 20 terms of Xin the table below. Note that xn is a multiple of pe in all cases; indeed xn 

is the smallest multiple of pe satisfying the requirement that X is an increasing sequence. The 
process may be continued ad infinitum, yielding X, a solution to part 1 of the problem. 
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n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

en 

1 
3 
2 
4 
3 
5 
4 
6 
5 
7 

i\=S(x„) 

2 
5 
3 
7 
5 
11 
7 
13 
11 
17 

Xn 

2 
5 
6 
7 
10 
11 
14 
26 
33 
34 

n 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

en 

6 
8 
7 
9 
8 
10 
9 
11 
10 
12 

Pe„ = S(Xn) 

13 
19 
17 
23 
19 
29 
23 
31 
29 
37 

Xn | 

39 
57 
68 
69 
76 
87 
92 
93 
116 ! 
148 

Solution to Part 2: Using the fact that p\{p
n) for all n e {1,2,..., p -1}, where p is prime, we 

see that S((%)) = p for these values. Moreover, 

(?)<(?)<•••<(*(,'-»)'**• 
These facts enable us to construct a strictly increasing sequence of natural numbers, beginning 
with an arbitrary prime, for which the Smarandache Function is strictly decreasing. 

Let {pn}n>i = {2, 3,5,...} denote the sequence of primes. Given n > 1, we may construct a 
sequence of binomial coefficients 

™={(5)te')-.(V)}-
where the w/s are chosen to be the minimum natural numbers subject to \ = ml<m2<-< mr< 
K/Vr+i - 1 ) , such that 

We may choose mi = i for / < s, say, but require mi > i for all i>s. The number of terms in the 
sequence, namely the integer r, depends solely on n. The sequence V(p„) is finite because, for 
some r, 

(Pn-r+2]<(Pn-.r+l) 

y m ) \ mr ) 
for all m. Note that 

<&))-*. {{%'))=»'- <Mh— 
thus, S(V(pn)) is a strictly decreasing sequence, as required. 

We illustrate with two examples. If n = 26, we take pn = 101. We may then take 

^-{C?iM^)(?K^(?K^^)®(^SX»)(S)} 
r i14 

say. We easily check that xx < x2 < x3 < • • • < x14, however, 101 > 97 > • • • > 41, i.e., iSfo) > 
S(x 2 )>->£(x 1 4 ) . 
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For our second example, we take n = 51 (hence, pn = 233). In this case, we take 

^-{(T)(2f)(i7)(TK2")(1?)(,?,)(ir)(T) 181 
10 

179^ (173^ (167^ fl63^ fl57^| (l5i\ (149) (139\ fl37^\ f\3l 
11 ){ 12 ){ 13 ){ 14 ){ 15 ){ 16 ){ 17 X 1 8 A 1 9 A 2 0 / 

127̂ 1 Al3^\ f lO^ f!07^ (103^ AOA f97^ f89 
21 A 23 A 24 A 25 A 26 A27 J'̂ 29A34 

As we may verify, the sequence given above is an increasing sequence. The sequence terminates 
at the 28th term, since (®) < (f4). 

Clearly, we may construct a sequence V(p) in this fashion for all primes p of arbitrary size. 
The number of terms of V(p) clearly grows with p in some fashion; apparently, \V(p)\ = 
0(p/logp) as/? —> oo? but this has not been established. 

Also solved by H. Seiffert and the proposer. 

Ghost from the Past 

H-459 Proposed by Stanley Rabinowitz, Westford, MA 
(Vol 29, no. 4, November 1991) 

Prove that, for all n > 3, 

is very close to the square of an integer. 
Solution byH.-J. Seiffert, Berlin, Germany 

We shall prove that 

(5/U -F„_3f -^Mzll^ + 4 .4(-l)"j = -2.6V5/?2"+1. (1) 

Since (J52n) is a strictly decreasing sequence of positive reals, a simple calculation gives 0< A^ < 
2.6(85-3875) forw>3, where 4, denotes the left side of (1). Noting that 2.6(85-38V5) ~ 
0.076492, we see that the statement of the proposal is reasonable. 

To prove (1), we use the following easily verifiable equations: 

5 # i = hn-2 +2(-l)n; 5F^3 = L,„_4 +3(-l)"; 
^ - 3 ~ Lln-6 + 2 ( - l ) = 3L2„_4 ~ Lin-2 + 2 (~1) ; Lin+\ = ^^In-l ~ ^^2n-4-

Now, a straightforward calculation yields 10^w = 13((11-5V5)Z2W_2 +2(2- V5)Z2w_4) or, by 
2 - v5 = /?3 and 11 - 5V5 = 2/?5 and the Binet form of the Lucas numbers, 

1 0 ^ = 26(/?4 - l)j32n~l = 26(/?2 - a2)p2n+l = -2&S/32n+l. 

This proves (1). 
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