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A CONGRUENCE FOR FIBONOMIAL COEFFICIENTS MODULO pt* 

William A. Kimball and William A. Webb 
Department of Pure and Applied Mathematics, Washington State University, Pullman, WA 99164-3113 

(Submitted June 1993) 

An interesting property of binomial coefficients is that, for primes p > 3, 

(?)-(?) (mod,*) (1) 

for£=l,2, 3. 
The Fibonomial coefficients, defined as 

v > i - i - A 

or, more generally, 
( ^ ^ - i . ^ i X ^ - . ^ i ) ' 

FnjF(n-l)j-Fj 

lk\j ( V W • • • Fj)(Fin_k)j ...Fj)' 

where Ft is the 7th Fibonacci number. Such expressions have been shown to possess many 
properties similar to binomial coefficients. In a previous paper [5] the authors investigated 
properties of Fibonomial coefficients similar to the property (1) of binomial coefficients for k - 2. 
The main results of that paper are: 

ra 
rb 

,(a-b)br[ a 

and 

(?) (mod/.2) 

S(S) (modP2l 

(2) 

(3) 

where r is the period of the Fibonacci sequence modulo an odd prime p, r is the rank of 
apparition of/? (that is, Fr is the first nonzero Ft divisible by/?), and t-rlr is an integer. In [7] 
it is shown that t must assume the value 1, 2, or 4. The number s is defined by s = 1 if r = r, 
8 = -1 if T = 2r, and s2 = -1 (mod /?2) if r = 4r. 

Unlike the ordinary binomial coefficients, these results are not true in general for higher 
powers of p. However, in some cases they can be extended to congruences modulo p3. 

In order to prove these results, we will first examine some congruences involving certain 
products of consecutive Fibonacci numbers. Throughout the paper, Lt represents the /'* Lucas 
number, and p > 3 is prime. 

We first consider 11^1^+^ modulo p3. From the identity 2Fa+b = LaFb + LbFa, we obtain 
2Fmr+k = LmrFk +LkFmr so that, upon expanding the product and using the facts p\Fr and Fr \Fmr, 
we have p\Fmr and 

r- l fr-\ \ 
2 r lYIFmr+k = (Lmr + ^mrFmr^\ + Kj^mr^l YlFk 

k=l U = l 
(mod /?3), (4) 

where 
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A CONGRUENCE FOR FIBONOMIAL COEFFICIENTS MODULO p3 

Zi = l £ and 2 2 = g ^ ^ . 
k<n 

Then, upon dividing both sides of (4) by (2r~l)Wk'=lFk, 
r - l 

r - l 

r - 3 
Fmr^2 

(5) 

L(LHL 
41 2 

r - 3 

[ 4 r + LmrFmr^l + ^ l \ ( m ° d P*)' 

We will next work toward simplifying the right-hand side of (5), specifically we will eliminate 
Z2 by writing it in terms of Zx. 

Now, because Sx = Z£=iC^ I Fk), we see that 

3 = 1 
i r V r - i / ^ A2 r - l A: Ai __ y [ 1+ 

°^\Fk ) k=l\Fk) n,k=lFk Fn k=l\Fk 
+ 2E. 2> 

k<n 

thus 

2„=4 
fc=l v4 

Now SJL = 0 (mod/?) [5] so that, from (6), we obtain 

Fmr^2 
i r - l r-lfr \2 

t=iVJfcy 

4 (mod/>4). 

(6) 

(7) 

We look at T^ih I Fk) modulo p2. Clearly, 

2lffl =1 
k=l\rkj k=l 

( J \ 

\FkJ 
+ 

L, 'r-k 
\Fr-k 

r - l 

= 1 
J t = l 

(VU)2+(Zr_^)2 

and, from an identity already mentioned, 

(2Frf = (LkFr_k+Lr_kFkf = (Vv_ t ) 2 + (Lr_fcF,)2 + 2{LkFr_kLr_kFk), 

which implies 

{LkFr_kf + (Lr_kFrf = -2{LkFr_kLr_kFk) (mod p2). 

Then, substituting in the equality just above, 

r - l 2EI —I = S 
J ^ I V A J fc=i 

(LkFr_k)2
 + {Lr_kFk)2 

{FkFr_kf 
= y ~2(LkFr-kU-kFk) s _ 2 y A_ ̂ -fc 

fc=i (FkFr_k) k==lFk Fr_k 
(mod/?2) 

or 
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A CONGRUENCE FOR FIBONOMIAL COEFFICIENTS MODULO p3 

m) -* -£-—£-*- (mod/?2). 
k=lFk Fr-k 

We now use the identity 2La+b = LJ^ + 5FaFh to note that 2Lr = LkLr_k +5FkFr_k; hence, 

5 , 44-fc _ 2Zr 

Thus, 

FkFr_k FkFr_k 

_ £ % ^ = £|5—gA_Ufo-l)-^ 2Lr 

k=lFk Fr-k k=l\ FkFr-k) k=lFkFr-k 

or 
r-\( j A2 r-l 0j 

k=l\Pk) k^l^k^r-k 
(8) 

Then, from (7) and (8), we have 

/^Z 2 S ^(r- l ) + / ^ g - ^ _ (mod/;4) 
S 44 r-k 

or 

However, 

so that 

F^2^^Fl(r-l) + Lr§^rf-^- (mod/;4). 
2 A- k^l^k^r-k 

2v - y I 4 . Lr_k j _ y Lk
Fr-k + 4-^4 _ y 2 4 

k=l\^k Fr-k) k=l tktr-k k=l*k*r-i 

r-l p 

k=l FkFr-k 

Hence, from the last congruence, 

F^2^^-Fl(r-\) + Lr^^ (mod/?4), F2 

K 

(9) 

and so, substituting into (5), 

r - l 
IT F™r+k (J V"1 S (T Nr"3 

t=l I ^mr i -> »-.2 f A - ~ 4 r — (^-1) + . 
8 mr\ 2 J V M 2 

z V"2i^ L F2 

J7 I r x mr 
mr Zw F 

Sx (mod/?3). (10) 

It is known that, for p * 5, r divides either p-1 or /? +1, so we will look at the two special 
cases where r = p ± 1 and prove a proposition that is interesting in its own right. 
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A CONGRUENCE FOR FIBONOMIAL COEFFICIENTS MODULO p3 

Proposition 1: For r = p±l, 

2 ^ = 2 l S 0 (mod/?2) 
fc=i4 

for any odd prime/?. 

Proof: In order to show that Et = 0 (mod/?2), we need only show that Z£L\(1/FkFr„k) = 0 
(mod p) since, from (9), Ex = ZJZ^/v I FkFr_k) and p|Fr. In [5], it was proved that Lkr = 2ek 

(mod p2), where s was as previously defined. 

Thus, Lr = 2s^0 (mod p), and therefore, Y^iQ-/ FkFr_k) = 0 (mod p) if and only if 
Zr

fc:\(-24 / FkFr_k) = 0 (mod p). We have, from (8), that 
r - l o r r - l 

Jt=l rkrr-k k=l 

U^2 

\FkJ 
(mod /?) . 

We will show that, for r = p±l, the right-hand side of the above congruence is congruent to 0 
modulo p. We first prove a few simple lemmas. 

Lemma 1: The numbers Lk I Fk are all incongruent modulo p for k = 1,..., r - 1 . 
Proof: Assume that Lkl Fk = Lj I Fj (mod p) for some \<j <k<r-l. Then 4^*} = Z^-4 

(modp), and from the identity 2Fk_j = FkL_j + F_jLk together with the facts F_; = (-1);+1F; and 
L . = ( - ly iy , we obtain 24_;- = (-iy[i^Z; -FjLk] = 0 (mod /?). However, this is impossible 
because 1 < A: - j < (r - 2). 

Lemma 2: (Lk I Fk)2 # 5 (modp) for all k and all odd primes p. 

Proof: Assume that (Lk/Fkf = 5 (mod p\ then L2
k = 5Ffc

2 (mod p) so that 2Z2 = L2
k +5F? 

(mod p). But, from 2La+b = 4 4 +5FflF6, we have 24^ = L2
k+5F2 so that 4 = 4 * ( m o d P). 

However, from the identity Za+fc = 4 A - ( _ 1 ) 6 4T-&> w e obtain 4 ^ ~ ̂ 2 ± 2> an(* combining this 
with Z2 = 4 ^ (modp) we conclude that 0 = ±2 (modp) for the odd prime p. 

We are now in a position to complete the proof of Proposition 1. We have seen that we need 
to show that -5(r -1) + 2 ^ ( 4 / 4 ) 2 - 0 (mod p) for r = /?±l. We consider the two cases 
separately. 
Case 1. r = /? + ! 

r - l f r V P f r V P f r A2 

k=l 

Lb 5M)+a?-5^a?hiH~ ĉ dp) V"^ J k=\ 
u 

KFkJ it=i 
u 

yFk 

But from Lemma 1 we have that, for k = 1,..., /? = r - 1 , the numbers 4 / ^ a r e a^ incongruent 
modulo p\ thus, the set of p numbers {Lk IFk\k = 1,...,/?} forms a complete residue system 
modulo p. Then 

J L f r ^ JL 

k=\\^kj k=l 
Uir\ - X * 2 - 0 (modp). 
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Case 2. r = p - 1 

-5(r-l) + X 
r-ifr x2 

fc=l v ^ 
p-2 fr V 

vAy 
1 0 + z f e l (mod^)-^ i = - 5 ( ^ - 2 ) + ^ 

Now all of the LkIFk for £ = 1,...,/? - 2 are incongruent modulo/? by Lemma 1 and, from 
Lemma 2, (Lk IFk)2 ^ 5 (modp) for each k. However, 5 is a quadratic residue modulo/? [8], and 
we have 

\ 2 P-2(T V P 

Thus, Proposition 1 is proved. 

Since p\Lmr:) but /?|iv and i^ | i ^ r , an immediate consequence of Proposition 1 is the follow-
ing corollary concerning the last term in equation 10. 

Corollary 1: 
L T2\r 

F M r + ^ - ^ k S 0 (mod/?3). 

Before proving our main theorem, we need the following result about the specific Fibonomial 
coefficient 

r - l ' 

\m + \)r-\ 
r-l 

IK mr+fc 
k=l 

modulo p3. 

Lemma3: If/?>3 andr = /?±l, then [(w^)["1] = (+l)w (mod/?3), respectively. 

Proof: We again deal with the two cases separately. 

Case 1. r = p-l 
If r = p-1, then r is even and r = / ? - 1 . From (10) and Corollary 1, 

r - l 

1 J//wr+fc 
r - l 

k=l 

JI*,T* 5 
8'wrl 2 

p-4 
-1^1 -^FiJ^I ( p ^ ^ f V f W + 5/£J (mod/*). 4 l 2 

But Z^r + 5/& = 2 4 . , . Furthermore, L,mr = ZmrZmr -(-l)mrZmr_mr = 4 , - 2 , so Z*, + 5Fw
2
r = 

2{l}mr-2). Therefore, 

\{^f\ [L2
mr+5Fl} = 2 \ ^ \ - | ^ 

T Y~2 (J ^p~4 

However, from Z^ = 2 ^ (mod/?2), we obtainZwr 12 = 1 (mod/?2), so Zwr /2 = l + p2q for some 
#. Then 

294 [AUG. 
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^ 2 
and so 

P-k 

- (1 + p2q)p-« ^l + (p~k)p2g ^l-kp2q (modp3), LmiL I - H i r£n\P-k = 1 O. r .n _ ^ r£n = 1 _ ^ r . 2 ^ / m r k r J „ 3 

P -2 / r VP-4 

or 
r - l 

i£L_ = 1 = (1)"> (mod p3). 

k=\ 

Case 2. r = p +1 
If r = p +1, then r = 2r and r is even. From (10) and Corollary 1, 

r - l 

lk 

Now, 4 r ^ 2 / (mod/?2) yields Lmrl2^{-l)m (modp2) orLmr/2 = (-l)m+ p2q for some 

or 
r - l 

2 ^ 1 ^(~l)mp +(-l)m{p-l)(p)(p2q) (modp3) 

r - l 

1 î wr+fc 
^ S ( - 1 ) " (modp3). 

m it t = i 

Thus, Lemma 3 is proved. 

Proposition 2: For any n > 0 and m > 0, if r = p ± 1, then 
w + r - 1 w + r - 1 
I I ^ ^ ( T i r I ! F t (modp3), respectively. 

k=nr+l k=nr+l 

Proof: From Lemma 3, 
wr+r-l r - l r - l 

n Fr»r+k=n w + * - (+i)m+nn^ (m°d P3) 
k=nr+l k=l k=l 

and 
w + r - 1 r - l r - l 

fc=wr+i ^=1 k=\ 

so that 
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nr+r-l 

n 
k=nr+l 

r - l 

=°&I s ^ — - ( + l ) m (mod/?3). 
n pk (+i)-n^ 

k=nr+\ k=l 

FarF(a-l)r'"Fr 

Recalling that 
[a 
lbX (FbrF(b_1)r-Fr)(F(a_b)r-Fry 

we can now prove our main theorem. 

Theorem: For any prime p>3 and any a>b>0, if> = /? + 1 , then 

ra : ( f !)(«-*)* (mod/?3), respectively. 

Proof: Separating the factors divisible by/? from those relatively prime top, we obtain 

ar 
br 

^ar^ar-\ ''' ^{a-b)r+l _ \ ^ar^(a-l)r ^(a-b+l)r 

FbrFbr-\ '"Fl \FbrF(b-l)r K 

f(a-l)r+r-l (a-b)r+r-l \ 

n h- n ^ 
k=(a-l)r+l k=(a-b)r+l r-l (b-l)r+r-l 

IT Fk Y\Fk 
\ k=(b-l)r+l k=l J 

By Proposition 2, the right factor above is congruent to (+l)a~b • •• (Tl)a~b = (Tl)(a~b)b (mod/?3) 
and the left factor is [l]r. Hence, 

ar 
br 

Corollary: For a>b>0, 

ar 
br 

:(+!)* 

a 
b 

2a 
2b 

(a-b)b (mod/?3). 

if r - p-\ 

if r = /? + ! 
(mod/?3). 

Proof: These follow immediately from the Theorem and the facts: x- p-\\ir - p-\ and 
T = 2(/? +1) if r = /? + !. I f r = /r , then 

A T :(+!)(«- •£)to ta 
_ir L -Jr 

(mod/?3). 

As was shown in [5], if the modulus is only p2 instead of/?3, the expression [£]r can also be 
written in terms of ordinary binomial coefficients. Can this be done mod p3 as well? It might 
also be noted that in [5] this reduction was possible because 
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if ps \k. (Proposition 2 was the case s = 0, but the general case is essentially the same and some-
what more useful.) The same congruence is, in general, false mod p3. 
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VISUALIZING GOLDEN RATIO SUMS WITH TILING PATTERNS 

Marjorie Bicknell- Johnson 
665 Fairlane Avenue, Santa Clara, CA 95051 

Duane DeTemple 
Department of Pure and Applied Math., Washington State University, Pullman, WA 99164-3113 

{Submitted September 1993) 

Several sums involving the Golden Ratio <X> = (l + V5)/2 can be illustrated by tiling either 
squares or golden rectangles with squares, rectangles, gnomons, or other shapes formed from 
rectangles. This visually-pleasing approach complements an early paper, "Fibonacci Numbers and 
Geometry," by Brother Alfred Brousseau [1], 

The basic golden rectangle, with ratio length to width O, is the basis for all figures that 
follow. In Figure 1, the length is 1 and the width is 1 / O. 

FIGURE 1: The Golden Rectangle 

Divide the sides of a square and a golden rectangle in powers of 1 / <D to form the templates 
of Figure 2. 

In Figure 3 a square of side 1 tiled with golden rectangles shows that 

l / O + l / ^ + l / O ^ - ' . + l/O2"-1 + •••=! 

while a golden rectangle of length 1 tiled with squares (Figure 4) shows that 

i/o2+i/o4 + i/o6 + .-- + i/o2w + ..-=i/o. 
Divide a square of side <J> into powers of 1 / <D and tile the rectangles that lie on falling 

diagonals to form Figure 5. Then each successive diagonal has n rectangles each of area I/O""*"1, 
so that 

l / 0 2 + 2 / 0 3 + 3 / 0 4 + .--+w/0'!7+1 + ----(D2. 

Also, the length of each side is l / 0 + l / 0 2 + l / 0 3 + - + l/Ow + •••=<&. 
In Figure 6 we again divide a square of side O into powers of 1 / <J> and tile with Z-shaped 

tiles, each formed from two rectangles having area 1 / <D2"-1 There are F„ Z-shaped tiles, each of 
area 2/cD2""1, so that 

l/<D + l / 0 3 + 2 / 0 5 + - - - + ^ / 0 2 " - 1 + - - -=0 2 /2 , 
where Fn is the w* Fibonacci number. 
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Figure 7 uses gnomons as tiles, where the largest has area 1/ O and the n*1 gnomon has area 
1 / (J)2"-1, making a visualization of the formula 

170 + l / 0 3 + l / 0 5 + - + l/02,h-1 + ...= l. 

Figure 8 is similar to Figure 5, but the tiling distinguishes squares, rectangles of area I/®2", 
and rectangles of area l/d>2w+1. The (2??-l)st diagonal contains one square of area l/d>2" and 
(2n-2) rectangles each of area l / $ 2 " , while the (2w)fe diagonal contains In rectangles each of 
area 1 / 02w+1. Figure 8 provides a visualization of the sums: 

l/€>2 + l / # 4 + l/<D6 + --- + l / $ 2 " + --.= l/<D; 
1 / < D 4 + 2 / 3 > 6 + 3 / $ 8 + . . . + « / C D 2 " + 2 4 - . - - 1 / 3 > 2 ; 

1/ <D3 +2 /®5 +3 / $7H-"-+«/<I>2"+1 + ...= 1/0. 

FIGURE 2: Templates for Visualizing Fibonacci and Golden Ratio Summation 
Formulas with Tiling Patterns 
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FIGURE 3: l / 0 + l/<D3 + l / 0 5 + +l /<D 2 n l + =1 

FIGURE 4: l / 0 2 + l / 0 4 + l / 0 6 + + l / 0 2 w + =1/<D 
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•BBHBI. 

J L 

JJ 
I 

j 
FIGURE 5: l / O 2 + 2/O3 + 3/0>4+ +« /0" + 1 + = 0 2 

l / 0 + l / 0 2 + l / 0 3 + + 1 / 0 " + = 0 

I I 1-——] 

FIGURE 6: l/<D + l / 0 3 + 2 / 0 5 + + F /a ) 2 w l + = 0 2 / 2 
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FIGURE 7: l / 0 + l / 0 3 + l/<Ds+ + 1 / 0 2 M 1 + =1 

^ _ _ _ J 

rffn 

FIGURE 8: l / O 2 + l / O 4 + l / 0 > 6 + + l / 0 2 " + = 1 / 0 
l / 0 4 + 2 / 0 6 + 3 / 0 8 + - + / i / 0 2 " + 2 + - = l / 0 2 

l / 0 3 + 2/<D5 + 3 / 0 7 + +n/02"+ 1+ = 1 / 0 
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PROOF OF A RESULT BY JARDEN BY GENERALIZING 
A PROOF BY CARLITZ 

Curtis Cooper and Robert E. Kennedy 
Department of Mathematics, Central Missouri State University, Warrensburg, MO 64093 

(Submitted November 1993) 

1. INTRODUCTION 

Let u0 = 0, ux - 1, and un - aun_l+bun_2 for any positive integer n > 2. Also, for any non-
negative integer m, define 

m] J1* i f ; = 0 > 
um---um_J+l 

JJu R r ^ 1 , ify = L...,m. 
Uj--ux 

In [1] Jarden showed that, for any positive integer k, 
k+l 

In this paper we will prove Jarden's result by generalizing a proof by Carlitz [2]. In addition, we 
will present a new like-power recurrence relation identity. Detailed proofs of the lemmas and the 
theorem will be supplied at the end of the paper. 

2. SEQUENTIAL RESULTS 

Let 
n a±Ja2+4b 

'H 2 

Lemma 2.1: Let n be a nonnegative integer. Then 

an-j3n 

Lemma 2.2: Let n>-\ be an integer. Then 

Lemma 2.3: Let n > 2 be an integer. Then 

(a) un+bu„_2 = a"-l + P"-1. 

(b) bunun_2-bt?n_, = an-xpn-1-

Lemma 2.4: Let A be a positive integer and 0 < r < n be integers. Then 
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3. MATRIX RESULTS 
Let 

4 +1 " 
r )ar+c-nhn-c 

n-c ' 0 < r, c < n, 

be a matrix of order n +1. For example, for n = 3, 

4 = 
0 0 0 1 
0 0 6 a 
0 b2 lab a2 

b3 lab2 3a2b a3 

Lemma 3.1: tr(A„+l) = - ^ for any positive integer k. 

It is worth noting that the case k = 1 is exactly Lemma 2.2, so that Lemma 3.1 is in some 
sense a generalization of Lemma 2.2. 

Lemma 3.2: The eigenvalues of A„+l are a", a"'1^,..., a/?"-1,ft". 

Lemma 3.3: 
f l (x - aJP"-J) = f (_iye+i>«6<'-W«+A x^i-'. 

The next lemma is similar to a result of Hoggatt and Bicknell [3]. 

Lemma 3.4: (4\i)*,z = ( f ^ i C K ) * 

Theorem 4.1: 

4. JARDEN'S RESULT 

g(_iya+iV26c#-i>*/2r* + n ^ = o. 
i=0 V ' " 

5, MORE RESULTS AND OPEN QUESTIONS 

More identities, like the one just derived, need to be studied. For example, it can be shown, 
using the computer algebra system DERIVE that, if x0, xh and x2 are arbitrary and 

xn = axn_x+bxn_2+cxn_3, 
then 

x2
n = (a2 + b)x2

n_x + (a2b + b2 + ac)x2
n_2 + (a3c + Aabc - b3 + 2c2)x2_3 

+ (~ab2c + a2c2 - bc2)x2
n_4 + (ft V - ac3)x2

n_5 - c4x2_6. 

Is there a similar formula for third powers? Also, what about formulas for 
xn = axn_x + bxn_2 + cxn_3 + dxn_4 ? 
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6. PROOFS 
Proof of Lemma 2.1: Let 

G(z) = u0 + uxz + u2z2 + -

Then 
azG{z) = au0z+auxz2 + • • • and bz2G(z) = bu0z2 + • • •. 

Subtracting the last two equations from the first and using the definition of un, 

(l-az-bz2)G(z) = z 

so 

G(z) = 1 ( 1 1 

Thus, 
l-az-bz a-P\\-az \-jiz 

an-pn 

Proof of Lemma 2.2: By induction on n. First, the result is true for n = -1 and n = 0. Now 
assume that n > 0 and that the result is true for n and n -1. Then 

« - l - / - J + \n-2-r 
2r-n+2jM-l-r 

-S^t-r^^^^-r)^"^ 
Proof of Lemma 2.3: 

(a) By the definition of «„ and Lemma 2.1, 

u„+bun_2=u„ + u„-au„_l 

a" - B" a"'1 - B"~l 

= 2 
a-p r' a-p 

2a"-2p"-a" + aP"-1-Pa"-1+P" 
a-p 

an-pn + apn-x-pan^ = aja"-1+p"~l) - pja"'1+p"'1) 
a-p a-p 

= (a-PXa-'+P"-1) = „_, „_ 
a-p H 
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(b) By the definition of un and Lemma 2.1, 

bu„u„_2 - bu2„_x = u„(u„ - aun_x) - bu\_x = u2
n - aunun_x - bu2

n_x 

«"-yg"f an-l-p"-1 an+l-p"+1 

a-p J a-p ' a-p 
1 (a2"-2a"p"+p2"-a2n - p2" + a"+1p"'1 + a^p"*1) 

(cc-Pf 

-{a"+1pn-1 - 2a"p" + a""1/?"*1) /-^w+l/jw-l o^,«/3« i ^n-lnn+K 

(a-py 
n-lnn-l 

Proof of Lemma 2.4: By induction on k. The result is true for k = 1, since 

xr(ax + b)"-r = jin~r\n~r~sbsxn-s. 

Now assume the result is true for some positive integer k. In this result, substitute a + bx~l for x 
and multiply by xn. The left side of this equation is 

(aukx + buk_xx + buk)r(auk+lx + bukx + buk+l)n~r 

which is equal to 
(**+i* + K)r(%+2^ + K+i)""r • 

Expanding the right side of this equation and simplifying, we obtain 

Y (n~rYn~rA...(n~rk\(k+l)"-r-2n-----2rk^^ 

Therefore, the result is proved. 

Proof of Lemma 3.1: We first recall Lemma 2.4, that is, for any positive integer k, 

(Ukx + bu^Yiu^X + b u ^ = £ (" - rY" - ^ • •(" -^-iy^r-2n-...-2rt_i-rkbn+...+rkxr,-rk 

Multiplying both sides of this equation by xr and summing over r, we have 
n 

£ xr(ukx+buk_l)r(uk+lx+buky-r 

= Z f"_r¥M_riVY"_r*-iVfo'"r"2''i"'''"2''*"i"''**''i+'''+''*^"+r~r*-
'*» i,...,'it 

The coefficient of x" on the right side of this equation is tr(A*+l). The coefficient of xn on the 
left side of this equation is 
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I (sYv]<(H-irx+1(%rr-( 

Let vn be this last term. Thus, 

= I (rM4-_yk
sxr+s(i-uk+lxr-1 

=Ii^2'(i-«t+I*)-ix^W,*r' 
s=0 r>A ' 

= ZA,^*2'(l-«t+I*)-'-1(l-ft«fc_Ix)-'-1 

1 1 
0-«t+l*Xl-*«*-!*) 1-7, b4£~h r 

1 
0 - w*+i*)0 - % - i * ) - *Mt^2 

1 
1 - ( u M + bu^x + (buk+luk_i -bu2

k)x2' 

Next, by Lemma 2.3, the last expression is equal to 

1 I I a" 
\-(ak + pk)x + akpkx2 ak-pk\\-aKx 1- pKx 

Thus, v„ = kn+k . Therefore, 
uk 

t r (4+ i ) : 

"k 

Proof of Lemma 3.2: Let fn+x{x) = det(x/ - 4 , + 1 ) . If the eigenvalues of An+1 are A0, A^ 
A„, then by Lemmas 3.1 and 2.1, 

•/w+lW y=ox Ay fc=o y=o 
„«&+A: nnk+k 00 °° s»nK+k on 

)t=0 fc=0 U ~p 

k=o j=o y = o x - a p 
Thus, 
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fn+i(x) = fl(x-<*Jfin-J), 

so the eigenvalues of An+l are a", a""1^,..., a/?""1,pn. 

Proof of Lemma 3.3: To begin the proof of Lemma 3.3, we need the identity 
n-l 

ri(i-^)=SH)V/"i> 
7=0 

i//2 

/=0 

where 
(l-q")-(l-q""+l) 

Replacing q in (1) by /? / a and using Lemma 2.1, we find that m is 

a 
Thus, (1) becomes 

n-\ 
Y[(JL-a-J0Jx) = ̂ (-iya

/(/+1)/2-m/?(/-1)/ /2(n. ) x\ 
/=0 

Substituting an lx for x and using the fact that aj3 = -b, we have 
H - i 

H(i-a^-^x)=x(-iy'(^)(/"1)/72 J ** 
y=o /=o 

=S(-iy(l+1)/2*('"1)//2(7) ^ 
i = 0 

Replacing x by x * gives 
H - l 

(1) 

;=0 J = 0 ^ ^M 

which is what we wanted to prove. 

Proof of Lemma 3.4: Let k be a fixed nonnegative integer. We will prove the result by 
induction on n. The above equality is true for n - 0. Now assume the result is true for some 
n > 0. Then, since A£{ = An

k+l • 4 + 1 , 

;=o y=o ^ 
To continue the equalities, we use the identity 

00*. , - X(Aw
+iV;(A+i)y,/ - XH R i ^ ^ 

m)[k)-[k)(m-k 

to obtain 
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%«n+i)k-ii(!n\™„+1ni>«j-m 
m=Q ^ ' 

{bu^f-Xau^+buJ = p j ^ + 2 ( K + i ) " * \(hu .rf'Umi .+hu V = f * \i/ Jhu .A*'* 

Thus, the result is true by induction on n. 

Proof of Theorem 4.1 By Lemma 3.3, the characteristic polynomial of Ak+l is 

y (_iy('+i)/2j(/-i)i/2p +1̂ 1 x*+i-/ 
;=0 V / « 

But, by the Cayley-Hamilton theorem, every matrix satisfies its characteristic polynomial. Thus, 
for n-\>k + \, 

g1
(_iy0+i)/2i0-D//2p + n ^ w = 0 ? ( 2 ) 

/=0 V A 

where (9 denotes the (k + l)x(k + \) zero matrix. Now, taking the result of Lemma 3.4 (with 
/ = k and n = n-l-i) and substituting this result into (2), we obtain Jarden's result. 
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A NOTE REGARDING CONTINUED FRACTIONS 

Neville Robbins 
Mathematics Department, San Francisco State University, San Francisco, CA 94132 

(Submitted November 1993) 

In this note we develop some properties of purely periodic infinite continued fractions. The 
parameters k9 n9 ak9 an, pn9 and qn will denote positive integers, and q0 = 0. Let 

that is, yn is the finite continued fraction whose partial quotients are the ak. (The initial term of 
yn is denoted al9 not a0.) Let 

x„=[a 1 ,a 2 ,a 3 , . . . ,a j , 

that is, xn is the corresponding purely periodic infinite continued fraction. 

Theorem 1: Let n9 xn9 yn, pn9 and qn be as above. Then 

*n = {Pn~<ln-l+4(Pn + ^n-lf ~ 4 ( - l ) " ) / 2qn. 

Proof: This follows from elementary considerations (see Hardy & Wright [1], Ch. 10). • 

Remark: S. Rabinowitz [3] has asked for a formula for [1,2,3,..., ri\. 

Theorem 2: Let n, x„, yn, pn9 and qn be as above. Let 

\imy„ = A = [al9a29a39...l 
n->oo 

Then also 
lim x„ = A. 

Proof: It suffices to show that yn - xn tends to 0 as n tends to infinity. By Theorem 1, we 
have 

yn-x„ 
1 

2q«iP«+9»-i) 
1- 1 — 

4(-l)» 
v l / 2 ^ 

(Pn+ln-l) 

As n tends to infinity, the factor ^-(p„ +qn-\) 'ls bounded from above, since pn I qn tends to A 
and qn_x I qn < 1. On the other hand, pn and qn_x tend to infinity with n, so that 

4(-iy 
,1/2 

(Pn+Qn-l) 
tends to 0. 

Thus, yn - xn tends to 0 as n tends to infinity. D 
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Corollary: Let Ik(t) be the modified Bessel function of the first kind of order fc, that is, 

A(0 = I(K02'+*/rc/+i)rc/+*+i). 

Let w„= [1,2,3,...,«]. Then 
lim w„ = 70(2)//1(2) = 1.433127427. 
«->oo 

iV^q/;- This follows from hypothesis, Theorem 2, and ([2], Th. 1). D 

Theorem 3: Let x„, yn9 and ̂ 4 be as in the hypothesis of Theorem 2. Then, for all n, we have 
X2n. < A <^2n-V 

Proof: Applying Theorem 1, we have x2n <p2n Iq2n, that is, x2n <y2n. Similarly, x2n_x > 
Pln-l / #2«- l> t h a t i s> X2n-l > ^ 2 » - l • B u t ^ 2 « < ^ < ^ 2 n - l fol" a 1 1 W > S 0 X2n < A < X2n-l for a 1 1 W- D 
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the book are formulated as theorems and algorithms or as equations and formulas. For more details on the 
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DUCCI-SEQUENCES AND PASCAL'S TRIANGLE 

Herbert Glaser 
Mathematisches Institut (Didaktik), Universitat Wurzburg, Germany 

Gerd Schoffl 
Korngasse 1, 97070 Wurzburg, Germany 

(Submitted November 1993) 

INTRODUCTION 

The so-called Ducci-sequences (or n-number-game) have recently been studied by several 
authors in this review (see [1] , [5], [6], [12], [17], and others). A Ducci-sequence is a sequence 
of w-tuples Aj = (aha2, ...,a„); the first w-tuple 4) is any given n-tuple with nonnegative integer 
entries, 4+1 •= 2T4? where 2T is defined as follows: 

2T4 :=(\al-a2l\a2-a3l...,\a„-al\). 

The w-tuple Ai+l is called the (direct) successor of 4 , whereas 4 is the predecessor of Ai+l. As 
the maximum entry of the w-tuples cannot increase under the application of 2T and therefore the 
number of successors of any 4) *s bounded, the sequence always leads to a cycle of repeating 
w-tuples or to the n-tuple (0,..., 0). If an w-tuple 4) gives rise to the latter, it is usually called 
vanishing. 

First, it will be shown in this article that the Ducci-sequences are closely related to Pascal's 
triangle and many properties of their cyclic structures can be found and proved considering 
Pascal's triangle modulo 2. In the second part we will examine whether, for a given n GN there is 
such anMthat 2M = -1 mod n, which is crucial for some properties of the Ducci-sequences. 

We would like to thank the referee for a number of valuable suggestions. 

SOME BASIC PROPERTIES AND DEFINITIONS 

It is a well-known fact that every «-tuple with integer entries vanishes if and only if n is a 
power of 2 (e.g., [4]). On the other hand, the ^-tuples in the cycles of the Ducci-sequences are 
constant multiples of binary ^-tuples ([6], [3]). As 2T(/L4) = X^FA for every X GN 0 , we can limit 
any investigation of cycles to n-tuples over Z2. Since \a - b | = (a + b) mod 2 for all integers a and 
ft, we can use the linear operator 2) instead of 2T, where Q)A : = {ax + a2, a2 + a3,..., an + a{) mod 2 
and A is a binary 7?-tuple. The operator 2 can be written as the sum of two linear operators over 
Zj*. 2) = 3 + K, where $ is the identity and KA := (a2, ...,an, a{). Obviously, we get W = $ and 
2T1 = ye~\ where X"1 is the inverse operator of K. 

We denote the k^ successor 2^4) °f a giy e n binary w-tuple 4) a s A • ^ ^ ls necessary 
to describe the entries of a certain successor Ak, we will use two indices and write Ak = (akly ...9 

aki„). Then we get: 
4fc+U =ak,i +ak,i+l-

The subscripts denoting the place in the ^2-tuple are always reduced modulo n, using n instead of 
0. 

1995] 313 



DUCCI-SEQUENCES AND PASCAL'S TRIANGLE 

Ehrlich proved in [6] that the »-tuple AQ = (0,..., 0,1) (and every cyclic permutation of AQ) 
produces a cycle of maximum length. The length of all other cycles of n-tuples of a given n divide 
this maximum. The sequence {Ak} is called the basic-Ducci-sequence {of n-tuples) and the 
length of its periodic cycle is denoted as 2P(»). For every odd n, the first «-tuple in a cycle is 
2)4) = Ax = (0,..., 0,1,1). Further, Ehrlich stated the following theorems: 

\i1m = \ mod n, then <3>{n) divides 2m - 1 . 
If 2M & -1 mod n, then #>(«) divides n(2M -1). 
If n is not a power of 2, then n divides 2P(«). 
If» = 2rl, where £ is odd, then 2P(«) = 2r<3>(£). 

(1) 
(2) 
(3) 
(4) 

Before we take a closer look at the properties of Pascal's triangle, we will state a theorem that 
allows a new approach to our problem. 

A NEW APPROACH TO AN OLD PROBLEM 

In Pascal's triangle, we find the binomial coefficient (f) of the ?th place in the kth row. The 
0th row consists of a single one. When we place zeros left and right of the triangle, we can obtain 
any element by adding the two elements to the left and right above its place. This is easy to see, 
knowing the formula for adding the binomial coefficients: 

k 
z + 1 

£ + 1 
i + l 

We will limit our investigation to Z2, and thus every binomial coefficient shall be considered 
modulo 2. Pascal's triangle modulo 2 with n rows (i.e., row 0 to row n-\) will be denoted as 
PTn. The number of a chosen row shall be denoted as k. We fill up every k^ row of a PTn with 
n - k -1 zeros on the left side. By shifting to the right and considering the rows as w-tuples, we 
obtain a square of n different w-tuples. 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 /1 
0 0 /1 1 
0/1 0 1 

A l l ! 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0/4" 
0 0/1 1 
0/1 0 1 

A i i i 
0 0 0 /1 
0 0/1 1 
0/1 0 1 

/ f i l l 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 /1 
0 0 /1 1 
0 /1 0 1 

A i i i 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
o o oA 
0 0/1 1 
0/1 0 1 

A i i i 

0 0 0/41 
0 0/1 1 
0 /1 0 1 

A i i i 
0 0 0/L 
0 0/4 1 
0 /1 0 1 

A i i i 
0 0 0 /1 
0 0/1 1 
0 /1 0 1 

A i i i 
0 0 0 /1 
0 0/L 1 
0 /1 0 1 

A i i i 
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The 7th entry in the kth row will be denoted as ak>i. We obtain: 
JO \ \<i<n-k-\ 

fl*'' = lG4J -n-k<i<n. 
Adopting the above formula for the binomial coefficients, we get ak+lJ = akJ + akJ+l: 

• \<i<n-k-2:ak+li=0 = akJ+akJ+l. 

• w-& <i <rc:ak+lJ =(._£J+1) = ( , 4 J + (._^+1) = aM + aM+1. 

Considering that the ?i-tuple in the 0th row is (0,..., 0,1) = AQ, the first /2-tuple of the basic-
Ducci-sequence, we have shown 

Theorem 1: The n rows in the modified Pascal triangle (as shown above) are the n-tuples AQ, Au 
..., An__l of the basic-Ducci-sequence. 

We will now take a closer look at Pascal's triangle. This triangle shows an interesting geom-
etry which is closely related to that of the Sierpinski gasket (cf. [14]). Therefore, the PTr for 
r GN can be constructed recursively. For a given PTr, r GN, we get PTr+i by placing two 
Pier's at the corners of the base of the first PTr and filling up the empty triangle with zeros: 

2 r+ l 

This construction can be proved using a lemma of Hinz ([8], p. 541). 

Lemma 1: For 0 < k, i < 2\ and r GN0, it follows that 

( 2 7*M<) m o d 2 ' 
In [8] we can find some additional facts that have been stated by Lucas [10] and Glaisher 

(reference can be found in Stolarsky [16]) and can be proved with the help of the above lemma 
([8], p. 539): 

• For 0 < i < k, the binomial coefficients (*) are all odd if and only if k = 2r -1 for 
some r GN0. (5) 

• For 0 < i < k, the binomial coefficients (J) are all even if and only if A: is a power 
of 2 (the outer elements are 1). (6) 

• Let fi(k) be the number of ones in the 2~adie expansion of k GMQ. Then the 
number of odd binomial coefficients (J) for 0 < i < k is 2^(/c). (7) 
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The advantage of using PTn for examining the Ducci-sequences is the fact that many properties of 
the cycles can easily be seen. Regarding the fractal geometry of the triangle, the results can be 
observed for small n and generalized for higher ones. For example, if we take a look at the PT2r, 
we see that the row 2r - 1 contains only ones. This leads us to an easy proof of the well-known 
fact that every 2r-tuple with integer entries vanishes (see [4], [7], [3], et al.). 

In the same way, we can prove all the following new results. As some of the proofs are quite 
long when using exclusively Pascal's triangle, we will adopt other techniques as well. 

CYCLES OF SOME DUCCI-SEQUENCES 

Following Ehrlich [6], we say n is with a -1 if n GN is odd and there exists a n M e N with 
2M = -1 mod n; otherwise, we call n without a -1 . We will now give a lower bound for ^(n) 
for every n with a -1 [for an upper bound, see (2)]. First, we have to state the following lemma. 

Lemma 2: Let n be with a -1 and k eN, k > 1. Then 

2>*(2W~1)+1 = 9 r t > . 
Proof: We proceed by induction using Ehrlich's Lemma 1 ([6], p. 302): 

2m^tmodn=><3)2m =$ + W!. 

Let k = 1. Then we get 
3 ( 2 - - I H I = # " = £ + ^ 1 = ^ 1 3 , . 

Assume now that the statement is true for k GN. It follows by computation that 

This lemma leads to 

Theorem 2: For n with a - 1 , every cyclic permutation of Ax = (0,..., 0,1,1) can be found in the 
basic-Ducci-sequence. 

Proof: As n is odd, the w-tuple Ax is the first w-tuple in the cycle of the basic-Ducci-
sequence and Ax = 2)(0,..., 0,1). Using Lemma 2 above, we obtain 2J*(2A/"1)+14, = ^Ck2bA<j and 
therefore (dbK2M~l)Al = ^CkA1 for every k eN. D 

Obviously this result implies that, for every n with a - 1 , the cyclic permutations of (0,..., 0,1) 
give rise to the same cycle, and so there exists only one cycle of maximum length. 

Theorem 3: For n with a - 1 , we get ?P{n) > n(n - 2). 
Proof: We have to determine the minimum number of applications of 2) for obtaining the 

first cyclic permutation of Al in the basic-Ducci-cycle. We use Pascal's triangle. A permutation 
of Ax consists of two adjacent ones (where alx and aln are considered as being adjacent as well). 
Since the last and the first entry of Pascal's triangle are always ones, the number of ones in every 
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row Is at least 2. Thus, we can (possibly) find a cyclic permutation of Ai for the first time when 
the first and the last entry of Pascal's triangle can be considered as adjacent ones in an «-tuple, 
which is to say that akl = \. Regarding the construction of ^-tuples from Pascal's triangle, it 
follows that k = n-l9 that means after n-2 applications of 2) on Ai. We use the same argument 
for the successors of the first permutation of Ax, and the proof is complete. • 

This theorem gives rise to an important result. 

Theorem 4: For n with a - 1 , it follows that 
(3>(n) = n(n-2)on = 2r+l, r eN. 

Proof: 
"<=" Ifrc = 2r + l,then 2r = n-l = -l mod n and from Theorem 3 we get ^P{n)> n{n-2). 

On the other hand, &(n) divides n(2r -1) = n(n - 2) [see property (2)], and so n(2r -1) = n(n - 2). 
"=>" As n is with a - 1 , the proof of Theorem 3 shows that tyQi) = n(n-2) if and only if the 

w-tuple An_l is a permutation of Av According to properties (6) and (7), we obtain exactly two 
ones in a row of Pascal's triangle if and only if the number of the row is of the form 2r +1. Con-
sidering that the ones are adjacent if and only if the w-tuple that is formed from the row 2r +1 of 
Pascal's triangle is not filled up by zeros, i.e., n = 2r +1, we have shown our statement. D 

Furthermore, we can extend Theorem 4 for every even n with n = 2r + 2s. 

Theorem 5: If n = 2r +2S for r > s> 0, then 9(n) = *n~£*l). 

Proof: By using Theorem 4 and Ehrlich's formula (4), we obtain 

2P(2r+20 = 2^(2r"* + l) 
= 2*(2r-* + l)(2r-*-l) 
^ (2 r + 2')(2r-2') 

2s 

= n(n-2s+l) 
2s ' 

As mentioned above, Ehrlich [6] was able to describe the first w-tuple in the cycle of the 
basic-Ducci-sequence if n is odd. Nothing is yet known about the case in which n is even. We 
will be able to give a partial solution at this time. 

Theorem 6: For n - 2r + 2\ r > s > 0, the /i-tuple 
^ = ( 0 , . . . , 0,1,0,. ..,0,1) 

n-2s-l 25+l 

is the first «-tuple in the cycle of the basic-Ducci-sequence. 

Proof: 
1. The w-tuple is contained in the cycle. 
Pascal's triangle PTn shows us that 
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4 , = ( 0 ^ , 1 , ( ^ 0 , 1 ) 
2 2 - l 2 r + l 

is a successor of 
4 , = ( 0 ^ , 1 , 0 ^ , 1 ) . 

2 r - l 2s_x 

Obviously, Ar is a cyclic permutation of Ar: ^ = HC2 Ar. On the other hand, we have Ar = 
2)2 ~2 ̂ 2J. We can conclude that 

Q^Ar=K-nA2S = Ar 

and, therefore, Ar is contained in the cycle. Keeping in mind that the first and the last entry of 
PTn are always 1, and counting the consecutive zero-entries, we obtain that Ar is the only cyclic 
permutation of A2, among its successors A^ ,..., Ani which are contained in the (modified) PTn. 
Therefore, we have even shown that Ar is the first of the cyclic permutations of A^ that appears 
in the cycle. 

2. Ar is the first «-tuple in the cycle. 

The n-tuple Ari is the predecessor of A%s. We suppose that Ar_x is contained in the cycle. 
It follows from above that the predecessor A^, i.e., Ar_v is in the cycle. Therefore, A^ must 
be a cyclic permutation of ^ 2 M - A look at PTn shows that A2, contains 2s ones, and in A^ 
we can find 2r ones [see property (7)]. This is a contradiction to the assertion, as r > s. • 

Corollary 1: If n - 2r + 2\ r > s > 0, then there are 2s different cycles of maximum length that 
are produced by the cyclic permutations of the w-tuple AQ. 

Proof: The operators 2) and W commute, so 

®r-rAr=®r-rX-rA2S 

= K-r®r-rAr='X-2-2°Ar. 

By induction, every w-tuple Wn A s, £ GN, appears in the cycle of the successors of (0,..., 0,1). 
Using the same argument as in the proof of Theorem 6, we conclude that for every £ the n-

tuple $£"^+1)2 Ar is the first cyclic permutation of ^Cn A^ among the successors of the latter. 
As 25|2P(«), no other cyclic permutation than the ones described above can be found in the cycle 
produced by (0,..., 1). 

We use the same technique for the successors of %C1A0, <%C2 A$,..., K~r+1 AQ . D 

We will now consider 2r -1-tuples. Using Pascal's triangle, we can determine &(ri) for 
n = 2r-l. 

Theorem 7: If r GN and n = 2r -1, then 2P(«) = n. 

Proof: Using the proof of Theorem 3, we see that no cyclic permutation of Al can be found 
in fewer than (n - 2) steps. Pascal's triangle shows that 
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^ = ^ 2 4 = a 0 , 1 , 0 , ...,i,o,i). , 

Then 4 = (1,1,..., 1,0) and4,+1 = (0,0,..., 1,1) = 4 . • 

Corollary 2: For r > 2 and n = 2r - 1 , no cyclic permutation of Ai can be found in the basic-
Ducci-sequence, and there are n different cycles of maximum length. 

Again, we can extend the last theorem. 

Theorem 8: Ifn = 2r-2\r>s>0, then 8P(w) = n. 

Proof; We prove this theorem using Ehrlich's formulas: 

®(2r -2s) = V®(2r-s -l) = 2s(2r-s -l) = n. D 

It can be shown that only for such an n does the length of the cycle of the basic-Ducci-
sequence equal n. 

Theorem 9; If 2P(w) = n, then n = 2r -2\ where n > 2 and r > s > 0. 

Proof: Using properties (3) and (4), we can limit our investigation to odd numbers. Then 
the first w-tuple in the cycle is Ax = (p,...,0,1,1). There are only two different (possible) prede-
cessors of Ax\ the n-tuple (0,..., 0,1) or the n-tuple B := (1,..., 1,0) (see [11]). As the first n-
tuple is not in the cycle, the predecessor of Ax in the cycle must be B. As 2P(«) = n, it follows that 
B- An. Since every binary w-tuple has exactly two predecessors, the predecessor of B is either 
C: = (1,0,1,0,..., 1,0,1) o rD:= (0,1,0,1,..., 0,1,0). We consider PTn. The last row represents 
4,-1, i.e., C or D. It follows from Theorem 1 that the first entry of An_1 must be 1; thus, the 
predecessor of B in the cycle is C. If we consider PTn+v then its last row must consist entirely of 
ones because C is the second to last row of PTn+l. Property (5) shows that all the entries are ones 
if and only if n +1 is a power of 2 and n = 2r -1 for some r > 2. (For n = 21 - 1 , the Ducci-
problemi makes no sense). • 

As above, we can answer the question: Which w-tuple is the first one in the cycle? 

Theorem 10: The 2r - 2s -tuple 42, where n > 2 and r > s > 0, is the first one in the cycle of the 
hasic-Ducci-sequence. 

Proof: 
L The ??-tuple is contained in the cycle. 
From Pascal's triangle, we can conclude (using the recursive construction given above): 

4 . ^ ( 1 ^ , 0 ^ , . . . , ^ ^ . 
2s 2s 2s 

We obtain alternating blocks of 2s ones and 2s zeros, the first and the last block consisting of 
ones. For An7 we conclude: 

4 = (01:^,...,W 
2s 2s 2s 
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As the first nil2 -I blocks can be considered as the first elements of a basic-Ducci-sequence of 
2^-tuples, the next successors are easy to determine. After 25 - 1 applications of 2), we find 

n-2s 2s 

It follows that 
An+r = ( 0 ^ , 1,0,...,0,1) = A2,, 

n-2s-l 2*+l 

and the w-tuple An is contained in the cycle. 

2. Ar is the first w-tuple in the cycle. 
Using 2P(«) = «, we can conclude: If A2S_X is contained in the cycle, then A^ = 4. s . 

The first entry of A^, must be 0 (see construction of w-tuples from Pascal's triangle). On the 
other hand, we have shown above that an+2s_x l = I, which is a contradiction. D 

THE PROBLEM "WITH" OR "WITHOUT" A -1 

The question whether a given n is with or without a -1 is important for different theorems 
and properties of Ducci-sequences [see Theorem 4, properties (1) and (2)]. 

As every integer n can be considered as a product of prime numbers p, the problem can be 
divided into two separate questions: 

• Which prime numbers are with a -1 , which are without? and 
• If m,n EM and with (-out) a - 1 , is the product with (-out) a -1? 

Prime numbers will be treated first. In the following, p shall denote an odd prime number and 
Op(2) shall denote the order of 2 in a cyclic group of unities of the Galois-field Zp. We keep in 
mind that Op(2) is a divisor of <p(p)—Euler's ^-function—and <p(p) = p-1. 

The case p = -1 mod 4 is easier to examine. 

Lemma 3: Let p = -l mod 4, then Op(2) is odd if and only if —^ is even. 

Proof: We consider p = -1 mod 4 first and show the equivalence of three statements: 
1. Op(2) is odd if and only if 2 is a square number in Z 

is odd, we obtain "=>" Since, by assertion, O (2) is odd, we obtain 

and 2 is a square number in Z . 

"<=" 2 = a2 mod/? for some a eZp. By Fermat's theorem, ap~l = 1 mod/7 and, as 2\p-\ 
(p odd!), we conclude: 

ap-l = (<£f^ = l mod/? 
=2 

P-\ 

and, further, 2 2 = 1 mod p. 
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Using p = -1 mod 4, we get p - 1 = -2 mod 4, and ^ must be odd. 

2 2 is a square number in Zp if and only if (^) = 1 (Legendre-symbol), which is equivalent to 

^ PZ~I 

= ( - 1 ) ^ = 1. 
J?) 

3. j^p is even if and only if £-^- is even. We can write p as p = -1 + 4&, k GN. Then it 
follows that p2 = 16£2 - 8* +1 or ^~ = 2k2 - k. 

As 2&2 is always even, we conclude that £-^L is even if and only if A: is even. D 

Theorem 11: Let p = -1 mod 4. Then/? is with a -1 if and only if ^ is odd. 

Proof: 
"<=" We consider the equation x2 = 1 mod p. As Zp is a Galois-field, the equation has 

Op(2) 

exactly two solutions: x = 1 mod p and x = -1 mod p . 2 2 is an integer solution of this equation 
D+l Op(2) 

if and only if Op(2) is even, i.e., -^j- is odd for p = -1 mod 4 (Lemma 3). As, by definition, 2 2 
QP(2) 

cannot be congruent to 1 modp, we have 2 2 = -1 modp mdp is with a - 1 . 
"=>" If 2M = -1 modp, then it follows that 2M\Op{2), and so the order of 2 is even. From 

Lemma 3, it follows that -̂ p- is odd. D 
Let p be with a -1 and M be the least integer number with 2M = -1 mod p, M-2kt where 

A: > 0 and t is odd. For our further examination, we need to know that k = 0. We will use a well-
known theorem from number theory. 

Theorem 12: The congruence x2 = -1 modp has a solution in Zp if and only if p = 1 mod 4. 

This theorem leads us at once to the following corollary. 

Corollary 3: Mis odd for every p = -1 mod 4. 
M. 

Proof: We assume that M is even. Then a = 22 satisfies the equation x2 = -1 in contradic-
tion to the above theorem. D 

The case p = 1 mod 4 is harder to treat because the above argument cannot be used in this 
case. We will give only a partial solution. 

Theorem 13: Let p = 1 mod 4 and ^ be odd. • Thenp is with a - 1 . 

Pi*oof: We again use 

Since ™p is odd (p = 1 mod 4) as well as ^ p (by assumption), we conclude that 2 is not a square 
number in Zp. Using 2 p =2 modp, we see that Op(2) + l must be odd and Op(2) is even. 

q,(2) 
By definition, 2 2 cannot be congruent to 1, sop must be with a - 1 . D 
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If -£p is even, both cases are possible: 
• 17,41,97, 113 are with a - 1 ; 
• 73, 89, 233 are without a -1 . 

As the problem is linked to the still unsolved Artin's Problem (see [2], p. 113), the complete solu-
tion seems to be very difficult but interesting. 

We also cannot determine whether Mis even or odd. In most cases, Mis even; however, for 
281, we obtain M = 35. This question will be important in our further examination. 

We will now treat products of prime numbers. 

Lemma 4: Let/? be with a - 1 . Then pn is with a -1 for every nsN. 

Proof: By induction. Let p" be with a -1 for some n and 2M = -1 mod p". Then 2M = 
-1 + kpn for some k. We compute: 

2pM = QMy = (_l + ̂ y = - l + ̂  + ̂ - i y + ^ J i / + / / ^ . 

As (f) is divisible by p for 2 <i <p-1, we obtain 2 ^ = -1 mod pn+1. As the lemma holds for 
n - 1, the proof is complete. • 

(For a similar problem, see [13], pp. 364 ff.) 

Theorem 14: Let n = p1p2...pi, the product of odd prime numbers pi (not necessarily different 
from each other) and (at least) one of the pi without a - 1 , Then the product n is without a - 1 . 

Proof: Without loss of generality, let pi be without a - 1 . We assume that n is with a - 1 , 
which means that there exists an M GN with 2M = -1 mod «. This implies that 2M = -1 mod /?j 
in contradiction to the choice of pv D 

Theorem 15: Let ^ and m be odd integers with a - 1 , (/, /w) = 1,2L = -1 mod £ and 2M =s= -1 mod 
m (L and M minimal). Then n- £m is with a -1 if and only if, for some k GN0, 2k divides L and 
M, and 2k+l divides neither of them. 

Proof: 
"<=" Obviously LI2k mdM/2k are odd numbers. We compute: 

M. AL 

(2LY = (-1)2* mod £ s -1 mod *; 

(2^)2* = (-1)2* mod w s -1 mod m. 
LM 

It follows that 22* = -1 mod n &sn = £m. 
" =>" By contradiction: 

Assume, without loss of generality, that 2N = -1 mod «, 2*|Z, 2^+1|Z, and 2/:+1|M and N is 
minimal. This implies that 2N = -1 mod w, 2^ = -1 mod / , and that JV is the least common mul-
tiple of L and M. Therefore, Nis divisible by 2k+l and N = 2LR for some i? eN. It follows by 
computation that 
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2^ _ 22LR — (2L\2R 

= (-lfR mod t = 1 mod I, 

which is a contradiction to 2N = -1 mod I as t ^ 2. • 

Corollary 4: If ph...,p£ are prime numbers, #• = -1 mod 4, and ^ ^ is odd for every ! < / < / , 
then n = p\x...p\l is with a - 1 . 

Proof: Since ^ is odd, /? is with a -1 by Theorem 11. By Lemma 4, /?* is with a - 1 . By 
Corollary 3, Mis odd, where 2M = -1 mod p. By the proof of Lemma 4, 2/,*~,A/ = -1 mod pk; of 
course, the exponent pk~lM is odd. This is true for each prime p. The result now follows by 
Theorem 15. • 

(For a similar result, see [13], p. 364.) 

REMAINING QUESTIONS 

During our investigation, we have seen that the Ducci-problem is closely linked to the 
problem of finding the order of 2 in a given field Zp. It seems that this problem is not yet com-
pletely solved. 

Going back to the Ducci-sequences, it is interesting to ask how many different orbits the 
operator 2) (and therefore 2T) produces if all Ducci-sequences are considered. If n is not a power 
of 2, let k be the number of divisors m of n (where m < n). Then we can find at least k + 2 
different cycles: the cycle that contains only the n-tuph (0,..., 0), the cycle of the basic-Ducci-
sequence of w-tuples and the cycle of ̂ -tuples that are formed of the nlm-ibid repetition by the m-
tuples of the corresponding basic-Ducci-sequence. 

A whole range of new problems can be obtained using a variation of the process of forming 
the Ducci-sequence (first done by Wong [17]), for example: 

2/~(al3 ...,an):=((al+a2) modk9...,(an^ai) m^dk), k GN. 

Many interesting results on that topic can be found in [17], but the length of cycles of so-called 
Ducci-processes has not been treated yet (except the above variation in [15]). 
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1. INTRODUCTION 

By terminal digits of an integer N, we mean both the initial (leftmost) digit and the final 
(rightmost) digit of N. The following notation is used throughout the paper. 

Notation 
(i) RFN (Random Fibonacci Number: An I -digit (I > 2) Fibonacci number whose subscript has 

been randomly chosen within the interval [Kx, K2], where Kx > 7 and K2 is much greater than 
Kv 

(ii) B(d): the probability that the initial digit of a EFN is d. 
(iii) E(d): the probability that the final digit of a RFN is d. 
(iv) (a)b: the integer a reduced modulo the integer b. 
(v) b \a: the integer b divides the integer a {{a)h = 0). 
(vi) Igr: the logarithm to the base 10 of x. 
(vii) (a, b): the greatest common divisor of a and b. 

Moreover, Fk and Lk will denote the k^ Fibonacci and Lucas number, respectively, whereas 
a - (1 + V5) / 2 is the golden section, and we assume that K2 -> °°. 

The principal aim of this paper is to study some probabilistic aspects of the terminal digits of 
RFN's. In particular, we shall answer questions such as: 

"What is the probability that the initial digit of a RFN is greater than its final digit?" 
"What is the probability that a RFN is divisible by its initial digit?" 

The paper is set out as follows. After establishing some preliminary results in Section 2, in 
Section 3 some simple properties of RFN's which are related to their terminal digits are discussed. 
A glimpse of possible further investigations along this avenue is caught in Section 4. 

All the results established in this paper have been thoroughly checked from the numerical 
point of view by means of suitable computer experiments. Nothing but a negligible difference 
between theoretical and experimental results has been observed even for comparatively small 
values of K2-Kx. 

2. PRELIMINARY RESULTS 

For an infinite set of real numbers (expressed in base 10) Sf = {$}Jlo> ^et P(&) ^ e ^ e proba-
bility that the initial digit of a randomly chosen (in a large interval) st is d; If 

p(d) = \g{\-^ (2.1) 

then SP is said to obey Benford's law (e.g., see [1], [4], and [5]). 
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In [2], [8], and [10] it was conjectured that the Fibonacci sequence obeys Benford's law. 
This fact has been proved in [9]; thus, we can state the following 

Proposition 1: 

B(d) = \g\l + ±\. (2.2) 

Since our proof of Proposition 1 is very short, we report it because its argument will be used in 
the proof of Proposition 3. 

Proof of Proposition 1: It is known [6] that the sets 

{$k(x, y)} = {xyk}™=0 (x andy arbitrary real quantities) (2.3) 

obey Benford's law, provided y is not a rational power of 10. Furthermore, it can be readily 
proved that the initial digit of Fk and that of ^[(V5)_1, a] coincide for all k > 6, so that it remains 
to prove that a is not a rational power of 10. To do this, write the following equivalent relations, 

a = 10"/w (n>0,m>0 integers), 
am = 10", 
Lm+j5Fm=2.\0", 

the last of which is clearly impossible because an irrational cannot equal an integer. Hence, the 
first relation cannot be true. Q.E.D. 

Proposition 2: 
ifdis even, 
if rf is odd. ( 2 ' 4 ) 

Proof: Inspection of the periodic sequence {(Fk)10}5
k
9

=0, whose repetition period is 60, shows 
us that 

Fk=d(modl0)iffk = 60n+ht(d) (n = 0,1,2,...) (2.5) 

with ht(d) depending on d and 1 < t < 4 (8) if d is even (odd). 
More precisely, we have 

h(0) = 0,15,30, or 45 h(l) = 1,2,8,19,22,28,41, or 59 
h(2) = 3,36,54, or 57 A(3) = 4, 7,13,26,44,46,47, or 53 
h(4) = 9,12,18, or 51 A(5) = 5,10,20,25,35,40,50, or 55 (2.6) 
h(6) = 21,39,42, or 48 h(l) = 14,16,17,23,34, 37,43, or 56 
h(S) = 6,24,27, or 33 h(?) = 11,29,31,32,38,49,52, or 58. Q.E.D. 

Proposition 3 (main result): The terminal digits of a RFN are statistically independent. 

Proof: It is sufficient to prove that the value of the final digit has no statistical influence on 
that of the initial digit. In other words, it is sufficient to prove that the set of all Fibonacci 
numbers whose final digit is a given d obeys Benford's law. 

If we replace [see (2.5)] y by a60, x by a*2*^ IV5, and k by n in (2.3), and observe that: 
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(i) a60 is not a rational power of 103 

(ii) the initial digit of F60n+h ^ and that of s ja^*0 / V5, a60] coincide for all n > 1, then we see 
that, for given d and t, the sequence F60n+h ^ obeys Benford's law. The set 

T = 4 K } , ?i = L2,3, sji^Qn+htid)) 
t=l 

J L , « ? ^ , . 

v 2 y 
(2.7) 

given by the union of the disjoint sets F60n+h ^ for all admissible values of t, obeys Benford's 
hw as well. Q.E.D. 

Proposition 3 allows us to establish most of the results presented in the next section. 

3. SOME STATISTICAL PROPERTIES OF RFN?S 

From this point onward, the symbols i andj will denote the initial digit and the final digit of a 
RFN, respectively. 

flg(l + l/c)/15 ifrfiseven, 
Proposition 4: Prob(/ = c, j = d) = i , , , , 

F v , J J |21g(l + l/c)/15 ifrfisodd. 
Proof: By Proposition 3 we can write 

Prob(i = cj = d) = B(c)E(d), (3.1) 

so that Proposition 4 follows by Propositions 1 and 2. Q.E.D. 

Proposition 5: Prob(i = j) = M 1 + Ig ̂  j» 0.107. 

Proof: By Proposition 4 we can write 

Prob(/ = 7) = — Vlgfl + J - V — Tlgfl + ^ — V 15̂ =1 V 2d) \SJ^B\ 2rf-l 

—[l + l g — I . Q.E.D. 15l 63 ' v 

1 512 
Proposition 6: Prob(? > /) = — lg « 0.324. 

7Y<w/: Put 

^ = I ^ W (0<^<9) (3.2) 

and write 

h 

I 
J=0 

Prob(* > j) = f B{c)Sc_x = itB(2c-l)S2c.2+flB(2£)S2c.l. (3.3) 
c=l c=l c=l 

By (2.4), it can be readily proved (e.g., by induction on h) that 
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f(3A + 2)/30 if his even, 
S - < (3 4) 
* |ft + l)/10 if/? is odd. v * J 

Hence, by (3.3), (2.2), and (3.4), we get 

•^>>>4|^-^i+^H5c*(1+£ 
_ J _ . 21 532 551 572 _ 1 , 51 2

 n p n 

" 15 8 2163305373 15g2-35-7 ^ ' 

Proposition 4 allows us to obtain the probability D(a) = Prob(j'+j = a) (1 < a < 18). After a 
good deal of calculation, we obtained 15D(a) = \gr(a), where 

r(l) = 2, r(2) = r(3) = 6, r(4) = f , r(5) = ̂ -, r(6) = ±f, r(7) = f , 

,., 1152 ,_. 1575 .... 2560 ' 1575 _, 1280 ,, „ 
K8) = — , K9) = — , '(10) = — , KH) = 12g", '•02) = li5-, 0.5) 

,(13) = ̂ , r 0 4 ) = 6 4 , r(15)=35 r(16) = 800, r ( 1 7 ) = 90, K18) = M . 
V ' 128' V ' 2V y ' 16 V ; 441' V ' 64' V ' 81 

Proposition 7: The probability that a RFN is divisible by its initial digit is 

J _ . 210934456 

120 8 7 
Prob(/|RFN) = ̂ l g ^ w 0.448. (3.6) 

Proof: An integer <i (1 < d < 9) divides i^ iff A: = hnd (h - 0,1,2,...) with «d depending on 
rf. By inspection of the periodic sequences {{Fk)d}, we get 

«! = !, »2 = 3, «j=4, ^ = ̂  = 6, »5 = 5, « 6 = / ^ - 1 2 , «7 = 8. (3.7) 

Since it can be readily proved that the sequence {Fh„d} obeys Benford's law (i.e., the events 
"a?|RFN" and "z = d" are independent), by (3.7) we can write 

Prob(/|RFN) = Y ^(^Prob^lRFN) = T l g f ^ - l — 
M. £ i V d )nd 

1 . Xfrf + lY20"* 1 . 210934456
 n c _ 

= WgU[-d-) = 120 l g -^ - QED-
Proposition 8: The probability that a RFN is divisible by its final digit is 

Prob(/|RFN) = ̂ . (3.8) 

The complete proof of Proposition 8 is rather lengthy so, for the sake of brevity, only a par-
tial proof is given. 

Proof: Put 
Z(d) = Prob(y = d, rf|RFN), (3.9) 
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whence 

Prob(;|RFN) = XZ(d)- (31°) 
d=0 

Each Z(d) (0 < d < 9) must be calculated separately. In some cases this calculation is readily 
carried out. For instance, we immediately obtain 

Z(0) = 0, (3.11) 
and 

• Z(d) = E(d) ford = 1,2, and 5. (3.12) 

In some cases the calculation is slightly more complicated. Getting the equality 
Z(9) = 0 (3.13) 

is an example. In some other cases the calculation is rather tedious. Getting the equality 

Z<® = JQ (3-14) 
is an example. Let us prove (3.13) and (3.14) in full detail. 

Proof of (3.13): It is known that Fk = 0 (mod 9) iff k = 0 (mod 12), that is, iff k = Yin (n = 
0, 1, 2, ...). Since I2n is a multiple of 3, Fl2n is even; thus, its last digit cannot be 9. Conse-
quently, if 9|RFN, then j*9 and Z(9) = 0. • 

Proof of (3.14): It is known that 

Fk = 0 (mod8) iff * = 0 (mod 6). (3.15) 

Moreover, by (2.5) and (2.6) we have 

Fk = 8 (mod 10) iff k = 6,24,27, or 33 (mod 60). (3.16) 

For (3.15) and (3.16) to be fulfilled simultaneously, we must have k = 60« + 6 or 60/2 + 24 (n = 0, 
1,2,...). It follows that Z(8) = 2/60 = 1/30. D 

By means of similar arguments, we obtained 

Z(3) = Z(4) = ̂  and Z(6) = Z(7) = - ^ . (3.17) 

Proposition 8 is proved by (3.9)-(3.14) and (3.17). Q.E.D. 

Proposition 9: The probability G(a) that (i, j) = a (1 < a < 9) is: 

1 2243957 1 365273 1 2n5374 

Gf(l) = ̂ l g ± ^ « 0.756, G(2) = ̂ l g ^ - « 0.092, G(3) = ± l g ± | g i - « 0.077, 

± l g ^ ! „ o.023, G(5) = I l g | « 0,016, G(6) = ^ l g | 

G(7) = | l g | « 0.011, G(8) = ̂ l g | * 0.007, G(9) = | l g ^ « 0.009. 
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Proof: By virtue of Proposition 3 we can write 

G(a) = fjB(c) f^Eid). (3.18) 
(d, c)=a 

Then we use (3.18) along with (2.2) and (2.4) to obtain the above results. Q.E.D. 

Let us conclude this section by giving the expected values Vt and Vj of the initial and final 
digitofaRFN. 

Proposition 10: < _ 
r [*} = 14/3 = 4.6. 

The proof of Proposition 10 is left as an exercise for the interested reader. 

4. FURTHER WORK 

The theory developed in this paper also applies mutatis mutandis to recurring sequences 
other than the Fibonacci sequence. For example, considering the Lucas sequence would add 
much to the completeness of our results. Just to taste the flavor, we offer the following to the 
curiosity of the reader. 

The probability A that a RFN and a RLN (Random Lucas Number) have the same final digit 
is 

-4 = 1/9, (4.1) 

whereas the probability B that, once n is randomly chosen within a sufficiently large interval, Fn 
and Ln have the same final digit is 

£ = 1/5. (4.2) 

Question 1: "What is the probability R that a RFN and a RLN have the same initial digit?" 
The answer is: 

9 
R = ]TB2(c)*0165. (4.3) 

Observe that the answer to the following related question is completely different. 

Question 2: "Choose a positive integer n at random within a sufficiently large interval. What 
is the probability S that Fn and Ln have the same initial digit?" 

The answer is: 
S = 0. (4.4) 

In fact, the following curious property can be stated [3]. 

Proposition 11: Fn and Ln cannot have the same initial digit for n > 2. 

Denoting the initial digit of the number x by / (x ) , we can also prove the inequality: 
3<f(F„)+f(Ln)<13 (n>2). (4.5) 
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It. is obvious that the statement of Proposition 11 does not exclude the possibility that the 
initial digits of Fn mdLn have the same parity [i.e., f(Fn) + f(Ln) is even]. The problem of 
determining the probability of this occurrence remains an open problem. A computer experiment 
showed that the event f(Fn) + f{Ln) = 0 (mod 2) occurs 4232 times for 1 < n < 10,000. 

Finally, it can be proved that the probability T that the sum i + / ( R L N ) is even is 

T=U2+(1-U)2* 0.524, (4.6) 
where 

tf = £l*(2c) = l g ^ | . (4.7) 

Because of the numerical value of T ( « 1 / 2 ) , it seems worthwhile to investigate (e.g., by means 
of the autocorrelation-, run-, poker-test, etc.) the statistical properties of the binary sequences 
{(*: + /CRLN))2} for cryptographic purposes (stream ciphering [7]). 

The proofs of (4.1)-(4.3) and (4.5)-(4.7) are left to the perseverance of the reader. 
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1. INTRODUCTION 

The discriminator, D(J, n), is defined to be the smallest positive integer k for which the first n 
7th powers are distinct modulo k. It was introduced by Arnold, Benkoski, and McCabe [1] in 
order to determine the complexity of an algorithm they had developed. Results on the discrimina-
tor can be found in [1, 3, 4, 12, 13, 16, 17]. We show that, under certain conditions, the discri-
minator takes on values that are also assumed by the function E(n) := mm{k \n\q>{k)}. Here q> 
denotes Euler's totient. We call E the Euler minimum function. The sequence {^}^=1, with ak -
lcm(<p(l\ ...,<p(k)) is used to link the discriminator and the Euler minimum function. As an appli-
cation we show that, for several values of n and primes p, there exist unbounded sequences 
{JkYk=\ anc* {ek)lt=i9 s u ch ^at D(jk, n) = p*k for every natural number k. The prime powers p*k 

are exceptional values of the discriminator, since it is known that D(J, n) is squarefree for every 
fixed j>\ and every n large enough [4]. For example, if j> 1 andj is odd, one has, for every n 
sufficiently large, D(J,n) - mm{k >«|gcd(y, (p(k)) = 1 and k is squarefree}. In the literature so 
far only the case where y is fixed has been considered. In this paper we focus on the case where n 
is fixed. The behavior of D(j, n) turns out to be very different in these cases. (For a table of 
values of the discriminator, see [17].) 

Since we think that the Euler minimum function and the sequence {ak}™=l are of interest in 
themselves, we also prove some results on them which are possibly not related to discriminators. 

2. RESULTS ON THE EULER MINIMUM FUNCTION 

There seems to be no literature on E(n). The related set {k :n\<p(k)}, however, does occur 
in the literature. It is denoted by C„ [we will use the notation C(ri)] and occurs in a series of 
papers on the equidistribution of the integers coprime with n ("the totatives") in intervals of length 
nlk written in the 1950s [6, 7, 10, 11]. In particular, it is shown there that A(ri) = C(ri) if and 
only if n is prime, where A(n) is the set {k GN :n2 \k or there exists a/? with p = 1 (mod n) and 
p\k). A result on C(n) of a different kind (and time) is that of Dressier [5], who proved that the 
set N \ C(n) has natural density zero for every n. 

Recall that if Upj*' is the canonical prime factorization of n, then cp{n) = Tlp^^iPj -1). So, 
in particular, n\<p(n2) and, therefore, E(n)<n2, and so E(n) exists. In the proofs, we repeatedly 
use the following simple principle to show that a certain number does not equal the E(n): we 
exhibit a smaller number in the collection C(ri). We study only the case where n equals a prime 
power. 

The symbol/? is used exclusively for primes. 

332 [AUG. 



ON AN ARITHMETICAL FUNCTION RELATED TO EULER'S TOTIENT AND THE DISCRIMINATOR 

Theorem 1: Let q be a prime. Let m be the smallest squarefree number of the form Ilf=1(l + atq6i) 
with 1 + atqei prime for / = 1?..., k and Zf=1 et=n. Then 

E(q") = tmn{rn,qn+l}. 

In case E{qn) = m, we have 
k k 

Y\cii<q and J\at = <p(m) I qn . 

Remark: By Dirichlet's theorem on arithmetical progressions, m exists. 

Proof; Assume that p ^ q and p\E{qn). If p2 \E(qn), then the integer E{qn)lp is also in 
C{qn). Since this contradicts the definition of E(qn), it follows that p2 \E{qn). Since the integer 
E{qn)l p is not in C(qn), we have p = 1 (mod g). Therefore, /? = l + age for some positive inte-
gers a and e. Also, if g|£,(^w), then the integer E(qn)qe I'p, which is less than E(qn), is in 
C(qn). Put g = ordg(p(£(qrn))). Obviously, g > n. If g > n, then the integer E(qn)qe Ip, which 
is less than E(qn), is in C(qn). This contradiction shows that g = n. Up to this point we have 
shown that E(qn) is a squarefree number of the form nf=1(l + ̂ e ' ' ) with l+atqei prime for i - 1, 
..., £ and Zf=i^ = w. Clearly, E(qn)h&$ to be the smallest number of this form, that is, E(qn) = m. 
In the remaining case where E{qn) does not have a prime divisor/? with p^q,we have E(qn) = 
qn+\ It follows that E(qn) = min{w, g"+1}. In the case m<q"+\ we have <p(m) = U^a^ = 
g" nf=i af <m< qn+1 and the remaining part of the assertion follows. D 

In order to compute E(qn), the following variant of Theorem 1 is more convenient to work 
with. We denote by S(q) the set of squarefree numbers composed of only primes p satisfying 
p = l (mod q). For convenience, we define the minimum of the empty set to be oo. 

Theorem 1f: E(qn) = min{/w, qn+l}, where m = mm{s e S(q): qn divides <p(s) I qn <q}. 

For given positive integers a and d with gcd(a, d) = l, we denote by p(d, a) the smallest 
prime/? satisfying p = a (mod d) and more in general by pf(d,a), i > 2 , the Ith smallest such 
prime. We denote by a)(n) the number of distinct prime factors of n. 

Corollary 1: 
(i) The largest prime divisor of <p(E(qn)) is q. 

(ii) The smallest prime divisor of E(qn) is not less than q. 
(Hi) If q is odd, then co(E{qn)) < mm{n +1, log q I log 2}. 
(iv) E(q) = min{q2,p(q,l)}. 
(v) E(q2) = min{g3, p(q2,1), p(g, l)ftfo, 1)}. 

Theorem 1 and in particular parts (iv) and (v) of Corollary 1 show that the behavior of the 
Euler minimum function is intimately tied up with the distribution of prime numbers. Theorem 1 
gives rise to questions on the behavior of p(q, 1) and, if we delve deeper, on pt(q, 1) for / > 2. 
Corollary l(v), for example, gives rise to the following question: Is it true that infinitely often 
p(q, l)/^ (<7> 1) <P(q2> 1)? Unfortunately, problems involving p(d9d) are generally very difficult 
(see, e.g., [14, p. 217] for an overview). However, there is a guiding principle in these difficult 
matters: probabilistic reasoning. The basic assumptions made in probabilistic reasoning are that 
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the probability that n is a prime is about 1 / log n and that the events n is a prime and m is a prime 
are independent. Using probabilistic reasoning, we arrive, for example, at the conjecture that 
p(q, 1) < q2 for every sufficiently large prime q. Indeed, this conjecture was made by several 
mathematicians (see, e.g., [9] [15]). Very recently, Bach and Sorenson [2] proved that p(q, 1) < 
2(<7 log q)2, assuming the Extended Riemann Hypothesis holds true. By Corollary l(iv), the con-
jecture is equivalent to E(q) = p(q, 1) for every prime q large enough. Unconditionally, we can 
only prove the following result. 

Lemma 1: \{q < x: E{q) = p(q, 1)}| >r6 6 8 7 /log*. 

Proof: Put Aa(x,S) = \{p:a + 2<p<x, P(p-a)>xs}\, where P(n) denotes the greatest 
prime divisor function. Put 8 = .6687. Then by Theoreme 1 of Fouvry [8]. Aa(x,S)>x/\ogx, 
where the implied constant depends only on a. Let/? be a prime contributing to Aa{x,S). Put 
P{p-a)-q. Then p(q,a)<p<x<qys. Since there are at most xl~5 primes/? such that 
P(p -a) = q and q>xs (a fixed), it follows that 

\{q<x:p(q,a)<qvs}\>^fi>x5/logx. 
xl~s 

In particular, we have | {q < x: p{q, 1) < q2} | > xMS7 / log x. D 

Remark: Let a be an arbitrary fixed positive integer. The result implicit in the proof of Lemma 1 
that 

|{^<x: jp(^a)<?
1 4 9 6}|^x-6 6 8 7/logx, 

supersedes the record result of Motohashi mentioned in The Book of Prime Number Records [14, 
p. 218], who proved in 1970 that \{q < x: p(q, a) < ql637S}\ tends to infinity with x. 

The following lemma is a straightforward consequence of Theorem 1. 

Lemma 2: 
(i) E(p*)*E(qb)ifp*q. 

(ii) E(pa)*E(pb)ifa*b. 

Proof: 
(i) If E(pa) = E(qb), then P((p(E(pa))) = P(<p(E(qb))). If p*q, this is impossible by 

Corollary l( i) . 
(ii) Since, by Theorem 1, p a \<p(E(pa)) and/?* \(p(E(pb)), clearly E(pa) * E{pb) if a * b. • 

If q = 2, Theorem 1 can be improved. For j > 0 put 9^ = l + 22 - / . The primes of this form 
are called Fermat primes. Let I be the set of/ such that (3e

i is prime. Notice that 0, 1, 2, 3 , and 4 
are in /. These numbers correspond with the primes 3, 5, 17, 257 and 65537. These primes are 
the only known Fermat primes. 

Lemma 3: Let Z ; €j 2J be the representation to the base 2 of n. Then 

(I I , <= / 2?, if J is a subset of/; 

2n+1 otherwise. 
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Proof: Notice that the number m (in the notation of Theorem 1) equals mm{s e£(2): 
<p(s) = 2n]. The prime factors of m must all be Fermat primes (for a number of the form 1 + 2b to 
be prime, it is necessary that b is a power of two). On using the uniqueness of the representation 
to the base 2, it follows that m -HjGj&j if J is a subset of/ and oo otherwise. Multiplying out 
Tijej(22J +1) gives a sum of powers of 2 with unequal exponents and largest exponent n. So 
riyejS^ < 2"+1 (using the uniqueness of the representation to the base 2 again). The lemma then 
follows from Theorem 1'. • 

Example: £(231) = 4294967295. 

Corollary: If there are only finitely many Fermat primes, then E(2a) = 2a+l for every sufficiently 
large a. 

Remark: The prime 2 seems to be the only one for which such an explicit result can be derived. 
This is in agreement with the saying of H. Zassenhaus that two is the oddest of primes. 

The next lemma demonstrates that, for some odd primes, Theorem 1' can also be sharpened, 
although to a lesser extent. 

Lemma 4: E(qn) = min{g"+1, p(q\ 1)} for q = 3,7,13, and 31. E{qn) = tmn{q"+\ p{q\ 1)} if n 
is odd for q = 5 and 19. 

Proof: We only work out the case where q = 19, the other cases being similar. Notice that 
3|l + 2.19a, so l + 2.19a is not a prime. Then {s eS(19):l9n\<p(s),<p(s) <19"+1 and a)(s)>2} = 
{(l + 419a)(l + 419b):a + b = n and both 1 + 4.19* and 1 + 4.196 are prime}. Now, since n is odd, 
we can assume without loss of generality that a is even. But then 5|l + 4.19a, so this collection is 
empty. Therefore, by Theorem 1', we find that £(19") = min{19w+1, p{\9n, 1)}. D 

In the next section it is shown that primes p such that E{pn) = pn+l for infinitely many n are 
related to special values of this discriminator. Let E denote the collection of primes having this 
property. 

Lemma 5: 2 e E. 
Proof: Since F5 = 641-6700417 is composite (Euler), it follows from Lemma 3 that E(2n) = 

2n+l for every n that has 25 in its representation to the base 2. Since there are obviously infinitely 
many such n, the lemma follows. • 

Lemma 6: Let q be an odd prime. Suppose there are integers a, d, and i% such that E(gn) = 
min{#n+1, p(qn, 1)} for every n > n0 and n = a (mod d). Then q is in E. 

Proof: Let k be an arbitrary integer such that k > nQ and k = a (mod d). For every j in 
{1,..., (q-1)/2}, choose some prime divisor pj of 1 + 2jqk. Notice that gcdQ^,q) = l. Then, 
by Fermat's little theorem, py 11 + 2jqk+m{Pj~l) for every j in {1,..., (q -1) / 2}, so 1 + 2jqk+m{Pj~l) is 
composite for every m in N and j in {1,..., (q -1) / 2}. Put t = I c m ^ - 1 , . . . , p^iy2 ~ 1) • Then 
1 + 2jqk+m£d is composite for every m in N and j in {1,..., (q -1) / 2}. Since k + mid = a (mod d) 
m&k+m£d > nQ, it follows from the hypothesis of the lemma that E(qk+m£d) = qk+l+m£d for every 
m in N; therefore, q is in E. D 
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Finally, using Lemmas 4, 5, and 6, we find 

Lemma 7: {2, 3,5, 7,13,19,31} c £ . 

We conjecture that in fact every prime is in E and challenge the reader to prove this or, at 
least, to exhibit other primes in E. 

3. THE LOWEST COMMON MULTIPLE OF THE SUCCESSIVE TOTBENTS 

In this section we study the sequence {ak}^=u with ak = lcm(#>(l),..., <p(k)); in plain English, 
ak is the lowest common multiple of the first k totients. In the next paragraph it will transpire that 
this strange sequence provides a link between discriminators and the Euler minimum function. 
The purpose of this section is to give the reader some feeling for the behavior of this sequence. 

Put ck=akl ak_x for & > 2. We say k (> 2) is & jumping point if ck exceeds one. 

Lemma 8: The number k is a jumping point if and only if k = E(pr) for some prime/? and expo-
nent r>\. 

Proof: If k is a jumping point, then there is a prime/? such that p\ck. Put r = ordp((p(k)). 
Then pr \<p(f) for every t < k (otherwise p * ck), so k - E(pr). On the other hand, if k = E(pr) 
for some prime/? and exponent r, then ck > /?, so k is a jumping point. D 

Lemma 9: For k > 2, ck is a prime or equals 1. 

Proof: If ck > 1, then k = E(pr) by the previous lemma. Now/? is the only prime dividing 
ck because if another prime, say q, would divide ck, then it would follow that E(pr) = E(qa), 
where qa J <p(k). By Lemma 2(i), this is impossible. If p21 ck, then /?r_1 j #?(/) for every I < k, and 
it follows that E(pr~l) = E(pr). By Lemma 2(ii), this is impossible. D 

The following lemma gives an idea of the growth of the sequence {ak}™=i as k tends to 
infinity. A trivial lower bound for ak is given by exp(cjk) for some c> 0. To see this, note that 
II < /£ /? divides afc (since /?|#>(/?2)). On using the result Hp<x log/? ~ x of prime number theory, 
the bound is easily established. 

Lemma 10: Let 8 be an arbitrary fixed positive real number. Then 

exp(k 6687) <ak< exp((l + s)k). 

Proof: Recall that A(ri), the Von Mangoldt function, is defined by log/? if n is of the form 
/?*, and 0 otherwise. Notice that 

log(flt) < Iog(lcm(l, ...,*)) = £ A(#i) < (1 + *)* 

for every A: sufficiently large. The latter estimate follows from the well-known result 

n<x 

of prime number theory. This gives the upper bound. 
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The primes contributing to Ax{k,8) (cf. the proof of Lemma 1) yield >k5 llogk distinct 
primes not less than k5 that occur as prime factors of numbers of the form p-\ with p not 
exceeding k. The product of these primes is a divisor of ak exceeding exp(dfc^) for some c> 0 
and all k >1. • 

Remark: In case Aa(x,S)>x/logx holds for a number larger than .6687, this automatically 
gives rise to a corresponding improvement in Lemmas land 10. 

4, THE EULER MINIMUM FUNCTION AND THE DISCRIMINATOR 

For n - 1,2, and 3, the behavior of the discriminator is not very interesting; it is easy to show 
that D(j, 1) = 1, D(j, 2) = 2, D(2j -1,3) = 3, and D(2j, 3) = 6 for every j in N. From now on we 
assume that n is an arbitrary fixed integer > 4. We establish a connection between the Euler 
minimum function and discriminators. 

First, we prove a lemma ("the push-up lemma") that can be used, given an arbitrary k, to find 
a j such that D(J,ri) >k. In the proof, the following result on e(k), the maximum of the expo-
nents in the canonical prime factorization of A:, is needed. 

Lemma 11: e(k) < <p(k). 

Proof: For k = 1 there is nothing to prove. If k > 1, there is a prime p and an exponent 
e(Jfc)£l such that p*<*>|*. Then e(k) <2e(k)~l <pe{k)-\p-l) <<p{k). U 

For convenience, we call a pair of integers r, s with \<r <s<n an n-pair. When both r and 
s are coprime with k, the n-pmr (r, s) is said to be coprime with k. 

Lemma 12 ("push-up lemma"): For n>4 and arbitrary k, we have D(<p(k),ri)&k. 

Proof: It suffices to exhibit an n-pm (r, s) such that r9^ = s^fc) (mod k). We show that 
(2, 4) meets this requirement. Let / = ord2£, then 29{k) = 1 (mod k 12f). By Lemma 11 and the 
definition of e(k), it follows that / < e(k) < <p(k), so 2 ^ } = 4^(fc) (mod *). • 

We will now use the push-up lemma to prove that there is a connection between the Euler 
minimum function and discriminators. 

Theorem 2: If w>4 and p>nl2 and pa is a power of p for which E(pa)>n, and if 
pa lord a)(r I s) for every fi-pair (r, s) coprime with E(pa), then D(a a ri) = E(pa). 

Proof: Put A: = E(pa). By the push-up lemma D(ak_h ri)>k. We claim that D(ak_h n) = k. 
Put j = tfjfc_i. Notice that it suffices to show that there does not exist an n-pm (r, s) such that 
r ; = sJ (mod &). To this end, assume that such integers do exist. Since the smallest prime divisor 
of kis not less thanp by Corollary l(ii), it follows from p>nl2 that at least one of gcd(r, k) and 
gcd^, k) equals one, but then both gcd(r, k) and gcd(s, k) equal one [so the î-pair (r, s) is co-
prime with k]; thus, (r / s)J = 1 (mod A) and, therefore, j is a multiple of ordE(P

a)(r I s). Since this 
order is divisible by pa by assumption, it follows by the definition of ak_x that there is an £ < k 
[= E(pa)], so the theorem is proved. • 
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Corollary: Suppose that n, /?, and a satisfy the hypothesis of Theorem 2. Then E{pa) is in 
D(N,m)fovm'm {4,...,w}. 

Remark: In Table 1, some triples {k,E{k\nmdiX) are recorded with k of the form pa, with pa 

and wmax satisfying the hypothesis of Theorem 2. Furthermore, wmax is the smallest integer > 4 
such that pa and wmax +1 do not satisfy the hypothesis of Theorem 2. 

TABLE 1. Numerical Material Related to Theorem 2 

! k 
! 7 
1 25 
! 43 
1 61 

79 
107 
151 

E{k) 
29 
101 
173 
367 
317 
643 
907 

max 

4 
4 
12 
12 
13 
17 
25 

k 

! 13 
! 27 
1 47 
1 67 
97 
127 
163 

E(k) 
53 
81 
283 
269 
389 
509 
653 

n 
max 

6 
4 
12 
12 
16 
21 
21 

* 

17 
31 
49 
71 
101 
137 
169 

E(k) 
103 
311 
197 
569 
607 
823 
677 

n 
max 

8 
5 
5 
14 
22 
18 
9 

1 k 
1 19~~ 
1 37 
59 

1 73 
103 
139 
193 

E(k) 
191 
149 
709 
293 
619 
557 
773 

n 
max 

4 
9 
18 
16 
21 
18 
21 

If (E(k% nm&x) is a pair in the table, then E{k) <=D(N, m) for every m E {4,..., nmax}. 

The next theorem can be regarded as a special case of Theorem 2. It shows that the hypothe-
sis of Theorem 2 can be weakened at the cost of generality. 

Theorem 3: Let n > 4 and p>nhe such that 2p +1 is prime. Then D(a2 n) = 2p + l. 

Proof: Notice that {p: 2p +1 is prime, /? > 3}. = {/?: E(p) = 2p +1}. Let (r, s) be an w-pair. 
Since 2/? +1 \r - s and 2p +1 f r + s, r2 4 s2 (mod 2p +1). Therefore, /? |ord^(/?)(r / 5) for every n-
pair (r, 5) and so the result follows from Theorem 2. D 

Remark: The primes in the set {p:2p + l is prime, p>3} are called Sophie Germain primes. 
They were first considered in the study of Fermat's last theorem. 

From the results in [4], it follows that D(j, n) is squarefree for every fixed j > 2 and every n 
sufficiently large. We proceed to show that there are values of n and primes/? such that pe is in 
D(N, n) for infinitely many n. For convenience, we call these primes n-discriminator primes. 
Notice that pe with e large is far from being squarefree. So, if pe is in D(N, ri) for some large e, 
the number pe can be regarded as an exceptional value of the discriminator. 

Lemma 13: Suppose/? is odd. If a8 = l + kp (mod/?2), then apM ~lg = l + kpm (modpl+m). 

Proof: The proof is left as an exercise for the interested reader. D 

When gcd(r, p) = 1, we have rp~l = l + qr(p)p, with qr(p) an integer. This integer is called 
the Fermat quotient of/?, with base r. 

Theorem 4: If n>4,p eE,p>n/2,q2(p)£ 0(mod/?) and qr(p) £qs(p) (mod/?) for every n-
pair (r, s) coprime with/?, then/? is an ^-discriminator prime. 

Proof: By the hypothesis on/? and Lemma 13, it follows that rp"l(p~l) # spe~l(p~l) (mod/?e+1) 
for every positive integer e and for every w-pair (r, s) coprime with/?. Since p>n/2, it even 
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holds true for every w-pair (r, $). Notice that this incongruence implies pe |ord ,+1(r / s) for every 
e>\. Sincep is inE, there are infinitely many exponents/such that E(pf) = /?/+1. Then, for all 
sufficiently large of these/, there exists a j f such that D(Jf, ri) = pf+l

9 by Theorem 2. So p is an 
/i-discriminator prime. D 

Corollary: If/? is an w-discriminator prime satisfying the hypothesis of Theorem 4, p is an m-
discriiminator prime for m in {4,..., ri). 
Remark: Fix some/?. Suppose there is an n such that n and/? satisfy the hypothesis of Theorem 
4. Then define nmax to be the largest n such that nmSLX and/? satisfy the hypothesis of Theorem 4. 
Notice that /2max exists (??max < 2p). The entries in Table 2 result, after some easy computations, 
on using Theorem 4 and Lemma 4. 

TABLE 2* Numerical Material Related to Theorem 4 

1 n 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

n-Discriminator Primes 

3,7,13,19,31 
13,19,31 
13,19,31 
13,19,31 
19,31 
19,31 
19,31 1 
31 
31 
31 
31 

If/? is in the row headed «, then there are infinitely many e such that pe e D(N, ri). 

Our final theorem shows that the condition p>nll in Theorem 4 is necessary forp to be an 
^-discriminator prime. 

Theorem 5: If p<nl'2, then/? is not an ̂ -discriminator prime. 

To prove this, we need some preparatory lemmas. They give upper bounds for D(J, n) that, 
with harder work, are not too difficult to improve upon. For our purposes, the given bounds will 
do, however. 

Let /?l3 p2, /?3,... denote the sequence of rational primes and [x] the greatest integer < x. 

Lemma 14: D(J, n) < p [y>r logn/log4]+l for all positive integers/ and n. 

Proof: For n - 1 the assertion is obviously correct. So assume n > 1. Let Diffl[/, ri) denote 
the set {sJ -rJ |1 < r < s < n). If/? is a prime such that/? divides none of the members of Diff(/, n), 
then l7,...,n] are pairwise incongruent modulop and so D(j,n)<p. Since a number m has at 
most [logml log2] different prime factors, the numbers in the set Dififj, ri) contain at most 
[jn2 log nl log 4] different prime factors. Therefore, there is a prime q<p. n2lo n/lo 4]+l such that 
F,...? nj are pairwise incongruent modulo q. Thus, D(j,ri)<q<P[jn2logn/log4]+v • 
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Lemma IS: D(j, n) <n jlog(y +1). 
Proof: The proof is immediate from Lemma 14 and the estimate pn = 0(nlogri), which 

follows from the Prime Number Theorem. D 

Proof of Theorem 5: Suppose p<n/2. Now in case D(J, n) = pe for some integers j and 
e, it follows that e>j,fori£e<j, then pJ = (2p)J (mod pe). So if/? is an ̂ -discriminator prime, 
there exist infinitely many j such that D(j, n) > pJ+1. However, this contradicts Lemma 15. D 
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1. INTRODUCTION 

In an earlier article [1] the author has discussed the properties of a set of polynomials 
{U„(p,<r, x)} defined by 

Un{p,q\x) = {x + p)Un_l{p,q\x)-qUn_2(p,q\x\ n>2, (1.1) 

with U0(p,q;x) = 0 and Ux(p,q;x) = l. 
Here and in the sequel the parameters p and q are arbitrary real numbers, and we denote by 

a, P the numbers such that a + fi = p and aj3-q. 
The aim of the present paper is to investigate the companion sequence of polynomials 

{PniP&x)} defined by 
K<J>,?; *) = (* + p)Vn-X{p,q\ x) - qV„_2(p,q\ x\ n > 2, (1.2) 

with V0(j>,q;x) = 2 and Vl(p9q;x) = x + p. 
The first few terms of the sequence {Vn(p,q; x)} are 

V2(p, q; x) = (p2- 2q) + 2px + x2, 
V3(J>, q\ x) = (p3- 3pq) + (3p2 - 3q)x + 3px2 + x\ 
V4(p, q; *) = (p4 - 4p2q + 2q2) + (4p3 - %pq)x + (6p2 - 4q)x2 + 4px3 + x\ 

We see by induction that there exists a sequence {d„ik(p,q)}„>i of numbers such that 
fc>0 

V„(p,q; x) = ^d^ip^x", n^l, (1.3) 
k>0 

with d k(p,q) = 0 if A: > n +1 and d^k(p,q) = lifk = n. For the sake of convenience, we define 
the sequence {dQk(p,q)} by 

4>,o(A?) = l and ^ ( p ^ O i f ^ l . (1.4) 

Notice that F0(j?, g; x) = 2 = 2<i0) 0(p, g). 
Special cases of {y„(p,q; x)} which interest us are the Lucas polynomials Ln(x) [2], the Pell-

Lucas polynomials Q„(x) [7], the second Fermat polynomial sequence 0„(x) [8], and the Cheby-
schev polynomials of the first kind Tn(x) given by 

Kn(0,-l;x) = 4(x), 
FB(0,-l;2x) = &(*), ( 1 5 ) 

Fw.(Q,2;x)^(x), 
Fw(0,l;2x) = 27;(x). 
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Another interesting case is the Morgan-Voyce recurrence ([1], [5], [9], [10]. and [11]) given 
by p = 2 and q = 1 (or a = J3 = 1). In the sequel, we shall denote by Cn(x) = Vn(2,1; x) this new 
kind of Morgan-Voyce polynomials, defined by 

C0(x) = 2, Q(x) = x + 2, and C„(x) = (x + 2)Cw_1(x) - Q_2(x), n > 2. (1.6) 

Remark 1.1: One can notice that Cn(x2) = ^(x). Actually, it is well known and readily proven 
that the sequence {Z^C*)} satisfies the recurrence relation Lln(x) = {x2 +2)L2rl_2(x)-L2n_4(x), 
where LQ{X) = 2 and /^(x) = *2 +2. The result follows by this and (1.6). 

It is clear that the sequence {Vn(p,q; 0)} is the generalized Lucas sequence defined by 

K(P,q\ 0) - pV^faq; 0)-qVn_2(p,q; 0), n > 2, 

with V0(p,q; 0) = 2 and ^ 0 , g ; 0) = p. Therefore, V„(p,q; 0) = an +(3n. By (1.3), notice that 

dn,o(P^) = K(P^O) = an+j3\ forn>h (1.8) 

More generally, our aim is to express the coefficient dn k(p,q) as a polynomial in (a, (3) and as a 
polynomial in (p,q). 

2. PRELIMINARIES 

In this section we shall gather the results about polynomials {Un(p,p; x)} (1.1) which will be 
needed in the sequel. The reader may wish to consult [1]. 

Define the sequence {c„ k (p, q)}„>0 by 

U„+1(P, ?;*) = £ cn,k(p, q)*\ (2. i) 
k>0 

where cn k (p, q) = 0, for k>n. It was shown in [ 1 ] that 
For every n > 2 and k > 1, 

^ ( A # ) = / ^ _ u ( / ? , g ) - # ^ (2.2) 

For every n > 0 and k > 0, 

i+j=n-kv y v ' 

If p2 =4q, then a- P-pl2 and (2.3) becomes 

l u t e ? ) = ( ^ + + i 1 ) ( P / 2 r * . (2.4) 

If /? = 0, then a=-0 = p,a2 = -q, and (2.3) becomes 

K^(0^) = (-l)*(7*)?*, "~2£>0, 
k«-2*-i(0,9) = 0, w-2*- lS>0. 

(2.5) 
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For every n > 0 and k > 0, 
{{n-k)l2\ 

**<P.*> = £ (-VlV^yP"-2^- (2-6) 
The generating function of the sequence {U„(p,q; x)} is given by 

f(p,q; x,t) = YsUn+xip,?, x)f = • 1 
„>o \-{x + p)t + qV 

The generating function Fk(p,q; i) of the &* column of coefficients c„ k(p,q) is given by 

1 

(2.7) 

Fk(j>,q;t) = Y,cr,+kjn = 
«>0 (l-pt + qf) 2\fc+l 

For every w > 0, we have 
[n/2] s x 

c/n + 1(p^;o)=S(- i ) rr;rW>-2 r . 

(2.8) 

(2.9) 

3. THE TRIANGLE OF COEFFICIENTS 

One can display the sequence {dnj.(j>,q)}„>0 (1.3) in a triangle, thus, 
k>0 

TABLE 3.1 

n 
0 
1 
2 
3 
4 

k 0 1 

1 0 
P 1 
/?2-2<7 2p 
p 3 - 3 W 3p2-
p4-4p2q + 2q2 4/r3-

-3? 
- 8 M 

2 3 

0 0 
0 0 
1 0 
3p 1 
dp2 - 4q Ap 

4 

0 
0 
0 
0 
1 

For instance, the triangle of coefficients of the sequence {C„(x)} (1.6) is 

TABLE 3.2 

\ k 
n ^ v 
0 
1 
2 
3 
4 
5 
6 

0 

1 
2 
2 
2 

.2 
2 
2 

1 

0 
1 
4 
9 

16 
25 
36 

2 

0 
0 
1 
6 

20 
50 

105 

3 

0 
0 
0 
1 
8 

35 
112 

4 

0 
0 
0 
0 
1 

10 
54 

5 

0 
0 
0 
0 
0 
1 

12 

6 

0 
0 
0 
0 
0 
0 
1 
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Theorem 3.1: For every n > 0 and i > 0 w e have 

1 #/„.* 
4u+i(P,£)-= k + l <%> 

Proof: One can suppose that n > 1 and it is clear by (1.2) that Vn(p,q; x) = V„(0,q;x+p). 
From this, we see that V^(p,q;x) = V}k\0,q;x + p), where the superscript in parentheses 
denotes the k^ derivative with respect to x. Thus, by Taylor's formula and (1.3), 

Notice that these equalities are valid for every value of p. Now let us differentiate the first and the 
last member of (3.1) with respect top (q being fixed) to get 

The result can be checked against Table 3.1. 

Remark 3.1: One can get the same result for the coefficient cntk(p,q) (2.1), namely, 

-^- = (k + l)cnk+l(p,q). 

Comparing the coefficients of xk in the two members of (1.3), we see by (1.2) that, for n > 2 
and k > 1, 

4 u ( A 4) = dn-l, *-lGP> 9) + Pdn-\, kiP^)~ <ldn-2, kiPrf)* (3 2) 

which is a relation similar to (2.2). From this, one can obtain another recurrence relation. 

Theorem 3.2: For every n > 1 and k > 1, we have 

Z <3-3> 
= o ^ u ( p ^ ) + | ; / ? , , - i X i t - i ( p ^ > 

Proof: In fact, (3.3) is clear by direct computation for /?<2 [recall that d0 0(p,q) = 1 and 
that a+fi = p]. Using (3.2), we see that the end of the proof is analogous to the proof of 
Theorem 1 in [1]. 

For instance, in the case of the Morgan-Voyce polynomial Cn(x) (1.6) we have a = j3= 1, 
and (3.2) becomes (see Table 3.2) 

<t(2,1) = 4_u(2,1) +iX*+1(2,1), 
7=0 

which is the recursive definition of the DFF and DFFz triangles (see [3], [4], [5]) known to be the 
triangle of coefficients of the usual Morgan-Voyce polynomials. 
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4. DETERMINATION OF dnjk(p,q) AS A POLYNOMIAL IN (a, fi) 
The determination of dn^k(p,q) will proceed easily from the following lemmas. The first of 

these is a well-known result on second-order recurring sequences that can be proven by induction 
using (1.1) and (1.2). 

Lemma 4.1: For every n > 1, we have 

K(P>V> x) = Un+l(p,q; x)-qU„_l(p,q; x). (4.1) 

Lemma 4.2: For every n > 0, we have 

V;{p,q-x) = nUn(p,q-x), (4.2) 

where the prime represents the first derivative w.r.t. x. 
Proof: By (1.1) and (1.2), the result is clear if n = 0 or n = 1. Assuming the result is true for 

n > 1, we obtain by (1.2), 
^'+i(A q\ x) = (x + p)V£p, q\ x) - qVUiP, q\ x) + V„(j>, q\ x) 

= n[(x +.p)Un(p,q\ x) - qUn_x{p, q; x)] + Vn(p,q\ x) + qUn_x{p, q\ x) 

= nUn+i(P> <1\x) + Un+i(P> q;x) by (1.1) and (4.1), 

= (n + l)Un+l(j>,q;x). 

This concludes the proof of Lemma 4.2. 

Lemma 4.3: For every n > 1 and k > 1, we have 

dn,k(P^=JCn-lk-l(P^)' ( 4 3 ) 

Proof: Comparing the coefficients of xk~l in the two members of (4.2) we see by (1.3) and 
(2.1) that 

K u ( A ? ) = ncn-ik-i(P,ql n>l,k>\. 

Lemma 4.3 and (2.3) yield 

Theorem 4.1: For every n > 1 and k > 1, we have 

<»<™)=fjJ*n1X^71>v''- (44) 

Remark 4.1: Recall from (1.8) that dn0(p,q) = an+j3n (for n > 0), an expression which can be 
compared with (4.4). 

Let us examine two particular cases. 
(i) Firstly, supposing that p2 =4q (or a = /3 = p/2), then by (2.4) we see that equation 

(4.3) becomes 
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V J (4.5) 
2* (n + kXp/2y-k 

n + k\ 2k 

Notice that this last expression is again valid if k = 0, since dn Q(p, q) = a" + /3n = 2{pl2)n. We 
also see that dn x{p,q) = n2(p/2)n~l (see Table 3.2, wherep = 2). For instance, the decomposi-
tion of the polynomial Cn(x) (1.6) is given by 

QW = 2 + lf("2
+/_iy,for^l, 

hn + Alk ) 
(ii) Secondly, supposing that p = 0, we have a = -ft, q- -a2, and by (2.5) we see that 

equation (4.3) becomes, for n > 1, 

= ^(-\)f-k
k)qk,torn-2k>l. 

(4.6) 

Notice that the last member is again defined for n-2k = 0 (k > 1) with value 2(-l)kqk. Now, by 
Remark 4.1, we get that 

<W°> q) = a2k +ft2k = 2(-l)V, for * > 1. 
We deduce from these remarks that (4.6) is again true if n = 2k (k>l). On the other hand, we 
see by (2.5) that equation (4.3) becomes 

<*-2*-i(0,?) = 0, forw-2*-l2>l. (4.7) 

Now by Remark 4.1 we have 

4*+1,o(°, q) = ccu+l +ft2M = 0, for k > 0. 

We deduce from these remarks that (4.7) is again true if n- Ik -1 = 0 (k >0). Now, by (1.3), 

W * x) = 1^,(0, q)xk = I<„_,(0, ̂ x-* 
fc=0 k=0 

[n't] 

Thus, by (4.6) and (4.7) we get 
[nil] , , x 

^(0,^;x)= X ( - l ) * ^ d " l ^ W * x - 2 * , for»>l . (4.8) 

If p = 0 and 9 = - 1 , we obtain the known decomposition of Lucas polynomials Ln(x) and of Pell-
Lucas polynomials Q„(x) = Ln(2x) (see [7]), namely, 
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ln/2] ™ / 7 
L—J n (n-k «x)-z^v>^.«»«-fc=0' 

The reader can also obtain similar formulas for the Chebyschev polynomials of the first kind 
(p = 0, q = 1), and for the second Fermat polynomial sequence (p = 0, q = 2). 

5. DETERMINATION OF rf^(j?9 f) AS A POLYNOMIAL IN (jp, g) 

Theorem 5.1: For every w > 1 and A: > 0, we have 

^.^^^""l^-^^/X"^)^"-2^- (5-1) 
Proof: By (3.1) we know that 

and by (4.8) one can express the right member as 

^ n-r\ r ) k\ 

This completes the proof of Theorem 5.1. 

Remark 5.1: lfk = 0, we get by (1.8) the known Waring formula, namely, 

a" + fi" = E H ) r — V \ a p n a + PT2\ forit*l. 
r=o n r\ J 

6. GENERATING FUNCTIONS 

Define the generating function of the sequence {V„(p,q; x)} by 

g(p,q;x,t) = V0{p,q;x)/2+YJVn(p,q;x)t". (6.1) 

For brevity, we put g(p,q; x,t) = g(x, t) and V„(p,q; x) = Vn(x). By (6.1) and (1.2) we get, since 
V0(x) = 2 and Vx(x) = x + p, 

g(x, t) = 1 + ( X + P ) / + (x + p)tJJVn-l(^n'1 -qt2JVn_2{x)tn-2 

n>2 n>2 

= l + (x + p)t + (x + p)t[g(x, 0 ~ 1] - qt2[g(x91) +1], 

and from this we deduce easily that 

v(x. t\ -
l-(x + p)t + qt 

^o=, / , qi. .2- (6-2> 
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Let us define now the generating function of the k^ column of the triangle dn k(p, q) in Table 3.1 
by 

Gk{p,q; t) = 2X+*;jfc(A q)f, k > 0. (6.3) 

From (6.2), one can obtain a closed expression for the function Gk, namely, 

Theorem 6.1: For every k > 0, we have 

<«»«%-J,;vy- (M) 

Proof: For brevity, we omit parameters/? and q in expressions for g(p,q; x,t), Vn(p,q;x), 
dnk(p, q), and Gk(p,q; t). If k = 0, we have by (6.3), (1.3), and (1.4) 

= g(0,t) = -^-I,by(6.2). 
l-pt + qr 

Assuming now that k > 1, (6.1) and (6.2) yield 

since J ,̂(x) is a polynomial of degree w 
Pi 

obtain 

y(k) (Q) 

Put x = 0 in the last formula and recall that dn+Kk = n+^ by (1.3) and Taylor's formula, to 

(i-pt?qty«=%0
d"+k-kf=Gk(t)-

Hence, the theorem. 

Formulas (6.2) and (6.4) can be compared with (2.7) and (2.8). 

7. RISING DIAGONAL FUNCTIONS 

Define the rising diagonal functions Un(p,q; x) of the sequence {dnk(p, q)} by 
n [n/2] 

n„(A?;*) = Y<dn-k,k(P,4)xk = Td«-k,k(P,?)**, n>\. (7.1) 
k=0 k=0 

From Table 3.1, notice that 
n i (*) = A n2(x) = (p2 - 2q) + x, and n3(x) = (p3 - 3pq) + 2/?x, (7.2) 

where, for brevity, we put ITw(x) for Un(p,q;x). 

Theorem 7.1: For every n > 3, we have 

nw(x) = pll^ix) + (x - <7)nw_2(x). (7.3) 
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Proof: By (7.2), the statement holds for n = 3. Supposing the result is true for n > 3, we get 
by (7.1), 

l(«+l)/2] 

n w + 1 ( x ) = a w + l j 0 H - 2^ ^n+l-k,kX • 
k=l 

Recall from (1.2) and (1.8) that dn+l 0 = F„+1(0) = pdn0-qdn_l0 and notice that « + l - A: >n + l-
[(n +1) / 2] > 2, since w > 3. By these remarks and (3.2), one can see that 

l(n+l)/2) 
^n+i(x) = pdn,Q-qdn_li0+ X (dn-k,k-i+pdn-k,k-qdn_l_k^k)xk 

k=l 
[(n+l)/2] K»+l)/2] K»+l)/2]-l 

fc=0 fc=0 fc=0 

= pIIn(x) + (x-q)Un_l(xl 

since [(w +1) / 2] - 1 = [(n -1) / 2]. Hence, the theorem. 

Corollary 7.1: For every n > 1, we have 

n„(A9;x) = ^ i C A ? - x> °) " ? ^a-ifo0 - *> 0)• (7.4) 

Proof: By (1.1) the sequence {Un(p,q-x; 0)} satisfies the recurrence (7.3) with 

U0(p,q-x; 0) = 0, Ux(p,q-x; 0) = 1, U2(p,q-x; 0) = p, U3(p,q-x; 0) = (p2 - 9 ) + x. 

From this and (7.2), it is readily verified that (7.4) holds for n = 1 and n = 2, and the conclusion 
follows since the two members of (7.4) satisfy recurrence (7.3). 

Corollary 7.2: For every n > 1, we have 

Proof: From (2.9), we get that 

[w/2]/ \ 
r=(A ' 

and the result follows by this and Corollary 7.1. 
Let us examine two particular cases. 
(!) Ifx = g,thenby(7.1) 

[n/2] 
n„(p,*;*)= tidn_k9k(p,qrf=Pr2{pl-q), for/i2>2. 

fc=0 
For instance, if/? = 2 and # = 1 [Morgan-Voyce polynomial C„(x) (1.6)], we get 

[n/2] 

I 
k=0 

YJd„-k>k(2,l) = 3-2-2,n>2. 
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(ii) If/? = 0, then 

m 

k=0 

For instance, if/? = 0 and q - 1 (Chebyschev polynomials of the first kind), or if/? = 0 and q = 2 
(second Fermat polynomials), this identity, with slightly different notations, was noticed by 
Horadam [8]. 

8. ORTHOGONALITY OF THE SEQUENCE {Vn(p,q; x)} 

In this section we shall suppose that q > 0. Consider the sequence {Wn(p, q; x)} defined by 

where Tn(x) is the »* Chebyschev polynomial of the first kind. Notice that 

(W0(p,q;x) = 2, 
[W1(p,q;x) = x+p. 

The recurrence relation of Chebyschev polynomials yields, for n > 2, 
~( . \ ( 

(8.1) 

(8.2) 

Wn{p,q\x) = 2q nil x+p x + p T x+p 

= (x+p) 2q^TnJ x+p 2q™T„_, x+p ' 
2jq 

(8.3) 

= (x + PWn-i(P,<H x)-qW„_2{p,q; x). 

From (8.2) and (8.3), we get that 

W„(P,q; x) = V„(p,q; x), for n > 0. (8.4) 

Recalling that the sequence {Tn(x)} is orthogonal over [-1, + !] with respect to the weight 
(l-x2)~1/2, we deduce from this that the sequence {Vn(p,q;x)} is orthogonal over \-p~2^q, 
-p + 2^fq] with respect to the weight w(x) = (~x2 - 2px - A)"1/2, where A = p2 -4q. The proof 
is similar to that in [1], Section 7. 

• If 0) - cos t (0 < / < n), it is well known that Tn(co) = cos nt. Thus, by (8 J ) and (8.4) we have 

Vn(p,q,~p + 2co^) = 2qn,2Tn(o)) = 2qn'2 cos nt. 

Hence, we see that the roots of Vn(p,q; x) are given by 

xk = -p + 2^co^(2k^jn>l;k 

For instance, the roots of the Morgan-Voyce polynomial Cn{x) (1.6) are 

» , = - 2 + 2co{ettO£] = - 4 s i n ^ P ^ i ) £ ] , i = o,...,(„-l). 
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By Remark 1.1 we know that Cn(x2) = Z ^ x ) . Thus, the roots of /^ (x) are given by (see [6]) 

4 = ̂ s m ( f i * ^ ) * = 0,...,(„-l), 

where i = V^T. On the other hand, the roots of the second Fermat polynomial 0n(x) = K„(0,2; x) 
are 

x ^ 2 V 2 c o ( ^ ^ ] , ^ 0 , . . . , ( , - l ) . 

9. CONCLUDING REMARK 

In a future paper we shall investigate the differential properties of the sequences {U„(p,q; x)} 
md{Vn(p,q;x)}. 
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INTRODUCTION 

Let us call a sequence {Tn} (n > 0) an "wP1 -order sequence" if {Tn} (n > 0) satisfies an nfi-
order linear recurrence relation with constant integer coefficients. (We allow constant terms to 
appear in our recurrence relations.) From now on we shall generally write simply {Tn} rather than 
{Tn} (n>0). It is well known ([2], [3]) that if {Tn} is a second-order sequence then the sequence 
of squares {T^} is a third-order sequence. (It is also easy to show this directly.) It would be of 
interest to be able to describe all second-order sequences {Tn} such that {T2} is a second-order 
sequence. 

In this note we do this for certain homogeneous sequences {TJ. That is, we assume that 
{Tn} satisfies a recurrence of the form T0 = a, Tx = b, Tn+l - cTn-dT„_l9 n>\, where a,b,c^ 0, 
d ^ 0 are integers, ab^O, and x2 - ex + d - 0 has distinct roots. It then turns out that {T2} satis-
fies a second-order linear recurrence (which we describe in Theorem 6) if and only ifd=l. 

As an illustration of this, consider the sequence 1, 2, 7, 26, 97, 362, ... which satisfies the 
second-order recurrence B0 = l,Bx= 2, Bn+l = 4Bri-Bn_1, n>l. The sequence of squares I2,22, 
72,262, 972, 3622, ... satisfies the second-order recurrence S0 = l,Sx = 4, Sn+2 = 14^+1 -Sn-6. 

We also consider second-order sequences {TJ such that a slight perturbation of the sequence 
of squares {T2} is a second-order sequence. For example, the sequence 1, 1, 3, 7, 17, 41, 99, ... 
satisfies the second-order recurrence B0 = BX = 1, Bn+2 = 2Bn+l+Bn, and the "perturbed" sequence 
of squares I2,12 + 1,32, 72 + 1,172,412-f 1,992, ... satisfies the second-order recurrence SQ-\ 
Sx = 2, Sn+2 = 6Sn+l~Sn-2. 

We begin with some special cases using elementary techniques. Then, in the last section, we 
handle the general case using an old result of E. S. Selmer [3] which states: if Tn+l = ATn+BTn_l9 

n>\, and x2-Ax-B = (x-a)(x-0),a*fi, then T2
+l = CT2+DT2_l+ET2_2,n>2, where 

x3 -Cx2 - Dx- E = (x- a2)(x- /?2)(x- afi). 

MAIN RESULTS 

We begin with some special cases for which we will use the following Lemma. 

Lemma: Let p>4 be any integer, let S = ^ + V f - 1 ' a n d l e t Sn = (s"+~0'» n^°- i11^11 

these numbers iŜ  satisfy the following identities. 
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(a) ¥orz\lO<m<n,(Sn-2)(Sm-2) = Sn+m + S„_m-4. 
[In particular, (Sn - 2 ) 2 = S2n, so that S2n is always a perfect square.] 

(b) For all 0 < m < n, m = n (mod 2), SnSm = (S(n+m)/2 + S(n_m)l2 - 4)2. 

[In particular, Sn+lcS„_k = (S„ + Sk-4)2 and pS2n+l = S^S2n¥l = (S„ + Sn+l~4)2, so that S2n+l is 
always a perfect square provided/? is a perfect square.] 

(c) For all 0 < m < n, m = n (mod 2), (S„ - 4)(Sm - 4) = {S(n+m)/2 - S(„_m)/2f. 

[In particular, (p - 4)(S2n+2 - 4) = (Sl - 4)(S2n+l - 4) - (Sn+l - S„f, so that S2n+l - 4 is always 
a perfect square provided p-4 is a perfect square.] 

09 ^ + 2 = 0 7 - 2 ) ^ + 1 - ^ - 2 ( ^ - 4 ) ^ > 0 . 

Proof: We prove part (d) in detail. The proofs of parts (a), (b), and (c) are very similar, and 
are omitted. 

Note that j = ̂ Ji~ ^ / f - 1 , so that (S + j)2=p. Then 

PSn+l = \ S + -^\ Sn+l = S + ±)(s»+i+
 l 

•n+1 <?"+2+-i)+lV+4 s?«+2 S" 

- $n+2 +S„+2\ 

~ $n+2 +S„+2\ 

s^+ _L_+s
2 +X s?2w+2 

sn+1+ l 
sn+l)-2 + [S + - \ - 2 

= Sn+2 + S„±2Sn+l + 2(p-4), 

that is, Sn+2 = (p-2)S„+l-S„-2(p-4),n>Q. 

Theorem 1: Let d > 3 be an integer. Define the sequence {B„} (n > 0) by B0 = 2,BX= d, Bn+2 = 
dBn+l-Bn, « > 0 . Then the sequence of squares {B2}(n>0) satisfies the second-order recur-
rence 

B2
+2 = (d2-2)B2

+l-B2-2(d2-4),n>0. 

Proof: Solving the recurrence BQ = 2, Bx = d,Bn+2 = dBn+l - Bn in the usual way gives 

Let us now simplify the notation by setting Sn = B2,n>0. Then S„ = (£" +^r) , « ^ 0 , and by 
part (d) of the Lemma (with p = d2), Sn+2 = (d2 - 2)S„+1 -S„- 2(d2 - 4), n > 0. 
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Now we give a second-order sequence whose squares, when slightly perturbed, form a 
second-order sequence. 

Theorem 2: Let d > 1 be an integer. Define the sequence {C„} (n > 0) by C0 = 2, Q = d, Cn+2 -
dCn+l + Cn,n>0. Let S2n = C2„,S2n+1 = C2

n+1 + 4, n>0. Then 

Sn+2 = (d2+2)Sn+l-Sn-2d2, n>0. 

Proof: Solving the recurrence C0 = 2, Cx - d, Cn+2 = dCn+l + Cn (n> 0) in the usual way gives 

n m MY u x d2 i d2 l d2 i \d2 
Q ^ ^ - J , w h e r e ^ ^ T - M ^ T , - = ̂  + 1 - ^ . 

Then S2n = C\n = (S2n + ̂ ) 2 , S2rl+l = C2
2n+l+4 = (S2"+l-f-^-)2, n>0. 

Since (8 + ^ ) 2 = d2 +4 , we obtain 
\n2 

(^+4)S„+1 = 1 V cn+l . 1 «+4 r + ^ A <y 77+1 

and the calculations used in the proof of part (d) of the Lemma now give 

Sn+2=(d2+2)$n+l-8n-2d2,n>0. 

Corollary 1: Let S2n = I^n,S2n+l = Z^w+1+4, ^ > 0 , where {!>„} is the Lucas sequence. Then 
*S/i+2 = 3$n+i ~Sn-2. 

Proof: This is the case d = 1 of Theorem 2. 

Corollary 2: Let ZJ„ = i^2 + y , T2n+l = F2n+l, n > 0, where {i^} is the Fibonacci sequence. Then 
T„+2 = 3T„+1-T„-2,n>0. 

Proof: This follows from Corollary 1 and the identity 5F* = t}„ - 4 ( - l ) " (see [1], p. 56). 

If we now write 8 = -Js--Js-l, S„ = \(Sn +-^r) , n > 0, we obtain, just as in the Lemma, 

S0 = l,Sx = s, S„+2 = 4(s-2)S„+l -S„-2(s-l),n>0. 

The following two results can now be proved in essentially the same way as Theorems 1 and 
2. 
Theorem 3: Let d > 2 be an integer. Define the sequence {Bn} (n > 0) by B0 = l,Bx = d, Bn+2 -
2dBn+1-Bn, n>G. Then the sequence of squares {B2} (n > 0) satisfies the second-order recur-
rence B2

+2 = (4d2-2)B2
+l-B2-2(d2-ll n>0. 

Theorem 4: Let d > 1 be an integer. Define the sequence {Cn} (n > 0) by C0 = 1, Q = d, Cn+2 -
2dCn+l + Cn, n>0. Assume S2n = C2

2n,S2n+l = C2
2n+l, n>0, then S„+2 = (4D2+2)Sn+1-S„-2d2, 

n>0. 

We now turn to the more general homogeneous case. 
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Theorem 5: Let a, b, c * 0, d * 0 be integers, with ab * 0 and c2*4d. Let B0 = a,Bx = 6, 
Bn+l = cBn-dB„_u n>\. Then B2

n+l = (c2-2d)B2-d2B2_x + 2{b2 + a2d-abc)d\ n>\, 

Proof: Let a, /? be the roots of x2 - ex+J = 0. Then a, /? = £(c ± ̂ c2-4d\ a*±]3, 
®2, /?2 = i (^2 - 2rf ± c^c2-4d\ afi = d. Also a2*]32*d, since c * 0, rf * 0, c2 * 4rf. 

According to the result of Selmer stated in the Introduction, there are constants A, B, C such 
that B2 = Aa2n+Bfi2n + Cdn, n>0. 

Solvingthe system 

L2=B2 = A + B + C 
lb2 = B2 = Aa2+Bf + Cd 
\(hc-ad)2 = B2 = Aa4 + B/34 + Cd2 

for C gives 
r_ 2(b2+a2d-abc) 

^ 4d-c2 

Using (c2 -2d)a2n -d2a2n~2 = a2n+2 and (c2 - 2d)j52n - d2p2n~2 = fi2n+2 gives 

(c2 - 2^)52 - rf252_j + edn = A a2"+2 + £/?2w+2 + C[(c2 -2d)dn - dn+l] + edn. 

Now choosing e so that C[(c2 -2d)d" -dn+l] + ed" = Cdn+l [namely, e = C(4d-c2) = 2(b2 + 
a2J ~ afic) ] finally gives 

(c2 - 2d)B2 - d2B2
n_x + edn = A a2n+2 + Bfn+2 + Cdn+l = B2

+l, 

which completes the proof. 

Remark: The result of Theorem 5 appears in [4]. 

Applying Theorem 5 to the question raised in the Introduction, we immediately get the fol-
lowing result. 

Theorem 6: Let a, h, c * 0, d * 0 be integers, with ab & 0 and c2 * 4d. Let B0 = a,Bt = h, Bn+l = 
cBn~dBn_l, n>\. Then the sequence of squares {B2}(n>0) satisfies a. second-order linear 
recurrence (with constant coefficients) if and only if d = 1, in which case 

Bl, = (c2 -2)Bl - Bl1 + 2(b2
 +a2-ahc\ n > 1. 

Our final result is the general version of Theorem 2, in which we consider a perturbation of 
the sequence of squares. 

Theorem 7: Let a, b, c * o? d * Q be integers, with ab * Q and c2 * 4d, such that e = 4{a +^c~b) 

is an integer. Define the sequence {BJ (n> 0) by BQ -a,Bx = b,Bn+l = cBn +Bn_l, n>\. Let 
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Sin - Bin* $in+\ - ^L+i + e> ^ ^ 0- Then {Sn} (n > 0) satisfies the second-order recurrence 

Sn+l=(c2 +2)Sn-Sn„1+2e + 2(h2-a2-abc\ n>\. 

Proof: This is a direct application of Theorem 5 with d = - 1 , according to which 

B2
+l= (c2^2)B2-B2_l+2(b2-a-abc)(-iy. 
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A concise presentation of the dynamics of the sequences xn+l = f(xn) generated by the func-
tion f(x) = (x +1)~ is given. This sequence has a limit for almost all real initial x0. 

To prove this, notice that the interval (-00,0] is eventually mapped onto the positive real axis 
with the exception of a negative fixed point in [-2, -1) , as well as a countable set of points in this 
interval which are mapped to -1 after n iterations. To obtain this discrete set of initial x0, one 
solves the simple equation f(x0) = ~l then inductively, using the fundamental recursion for the 
Fibonacci sequence, this set of x0 is given by S = {vn}, where 

v =-^t±L, n>\. 
F 

Since (Fn I Fn_^) —» r, where r = (1 + V5) / 2 as«->oo (see [1]), it is interesting to note that the 
sequence vn —» -r as n -> 00, where - r is the negative fixed point of/. 

The behavior of the sequence vn on each side of —r is somewhat more complicated, but 
interesting. If -00 < x0 < -2 , then 0~ > (x0 +1)" > - 1 , and if 0 > x > - 1 , then 1 < (x +1)" < 00 so 
that (-oo, - 2) -» (-1,0) -»[1, 00). 

The most complicated dynamics is on the set (-2, -1) which contains S as a subset. In gen-
eral, for n > 2 such that vn > vn+2 > - r , then under the action of/ 

( A7+4 Ai+2 ^ ( F F ^ 

^n+3 ^n+l J 
-» 

V ^n ^n+2 J 

and for n > 2 such that -r > vn+2 > vn, the order of the endpoints is reversed. Therefore, each 
interval of this form is mapped onto a corresponding interval which is on the opposite side of the 
fixed point -r. and for any x0 e(-2, -1) such that x 0 ^ - r o r x n ^ 5 , there is an N such that x^ 
leaves (-2, -1) and is contained in an interval which has been considered. Convergence can be 
forced on x0 eS if we set /(±o°) = 0, then there remains only the unstable fixed point -r which 
remains invariant. 

To finish the study of the convergence of/under iteration, this shows that it suffices to con-
sider xN - x0 e(0,00), and since [1, 00) is mapped onto (0,1], suppose x0 e(0,1]. An expression 
which generates the xn and which converges to the positive stable fixed point of the mapping can 
be written as 

F x + F 
X»=F ~ 1 0 ; ^ o £ ( ( u i -

By induction on n, one obtains 
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Xn+\ J \Xn) „ 

and then letting n->oo one obtains 

_ i _ Vs-i 
X°° " r ~ 2 ' 
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Zhang Zhizheng and Guo Lizhou 
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1. It is well known that a general, linear sequence Sn(p, q) (n = 0,1,2,...) of order 2 is defined 
by the recurrence relation 

Snti>> 9) = pSn-i(P> 4) - <lSn-i(P> 4) 
with SQ, Sh p, q arbitrary and A = p2 - Aq > 0 [5]. 

In particular, if S0 = 0, Si = 1 orS0 = 2, Sx - p, we have the generalized Fibonacci (Lucas) 
sequences Sn(p9 q) = Un{p, q) or S„(p, q) = V„(p, q). 

If xly x2 (xx > x2) designate the roots of x2 - px +1 = 0, it is easy to prove that 

U„(p,q) = ^ ^ - , Vn(p,q) = x?+x"2 (1) 

and, moreover, the general term of the sequence Sn(p, q) may be expressed as a linear combina-
tion of the general terms of the Fibonacci and Lucas sequences by the formula 

S„(P, q) = (5, -\PSQ)Un{p, q)+\Wn<j>, q). (2) 

We assume S0 = k,Sx = ±pk + (x-jk)A2, and according to equations (1) and (2), we deduce 

Sn(x; p,q) = {x-±k)£u„{p, q)+\kV„(p, q), (3) 

Sn(x;p,q) = xx"1+(k-x)x"2. (4) 

For the sake of brevity, from here on we write U„,V„, and S„(x) for U„(p,q),V„(p,q), and 
S„(x;p,q). 

2. From equation (3) we have 

S„(x) + Sn(k-x) = - ! _ X * )KUlrVr2rkm-2r(2x-k?r, (5) 

and from (4) we get 

S?(x) + S"(k - x) = £ ( Z V r « ( m " 2 r ) + x?m-2r))xr(k - x)m~r. 

Then we have 
2m / 0 \ w 2w 

r=(A ' r=0 r=wH-l 

= Z(2™Vr(*i2"(m~'') + ^ " " ' V (ft - x)2m-r + Y,(2™)qm(xl"im-S) + xl"im-s))x2m-s(k - x)s 
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= li2™} qmnxm{k - x)m + X (2f\ q"r(xln{m-r) + x2n(n-r))(xr(k - xfm~r + x2n"r(k - x)r) 

l - i " (6) 

= 2^qm"x">(k -xy + m± ffltH^^ik - x)2m-r + x2m'\k - xY). 

We can similarly find the analogous formula 

r=(A / 

We also give the difference formulas 

A [(/w-l)/2]/- \ 

s:(X)~s:(k-x)=-^ x [2
m )Kuir+ivr2r-ik">-2r-\2x-kr+\ ^ 

[(m-l)/2] f N 

We end this section with the generating functions 

t,-.U„r = ^ - ( e x p C O - e x p K ) ) , (10) 
r=0 ^ A1 

and 

f ^ r = expOf) + exp(^) . (11) 

3. We recall that Bernoulli polynomials of higher order Bj1
k\x) are defined by the generating 

expansion (see [2]) 

f ^ i f >(*) = [ - J _ ] <>*, \t\<2x, (12). 

the usual Bernoulli polynomials by i?w(x) = #(1)(x), and the Bernoulli numbers by Bn - Bn(0). We 
also recall that 

2?2„+1 = 0 ( « > 0 ) and Bj,k\k - x) = (-1Y Bk„ (x), (13) 

are usually called the complementary argument theorem (see [3]). 
From (12), replacing t with &Unt, we have 

= , } * U " t ) k ,k™V«xx?+{k-xK)) = , f f i ^ . ^ exp(tf„(x)). 
(exp(tof) - exp(x2")) (exp(^ ) - exp(x2"))* 
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Therefore, 

(exp(fcf) - e x p ( * 2 " ) ) * f ; ^ ^ 5 « ( x ) = 0Untf exp(tf„(x)) 

and using (10) it follows that 

rlL.uJ±^^B?\x) = Uk
ntk exp(tf„(x)), 

and we have 
\r=Qr- J r=0 

UJHL...^L ^l&tiLjpKx) = ̂  e x p ( ^ W ) . 
r=0 r ' 

(14) 

Z V »n ,,, "r* 
, ^ H r ! 

r=0\vr1+r2+---+rjfc=r 1 • 'k' 

Expanding the product in the left-hand side and comparing powers of?, we find 

S M t f C / ^ C x X m - r ) ! I % • • • % = ( m ) ^ r * ( x ) , (»»**)• 

Now replace x with A: - x in equation (14) and make use of (13) to obtain 

I C - i y f a W ^ C x X m - r ) ! E % - - % - = ( " « ) t ^ r * ( * - x ) , 0»**)- 05) 
r=0 ^ ' r1+r2 + ---+^=w-r 1 • rk • 

Adding equations (14) and (15) and using (5), (6), and (7) we find 

[(m-l)l2]s \ 77 77 

r=0 ^ ' rx+r2+---+rk=m-2r rl' k • 

-. [(m-fc)/2] / [(m-fc)/2] x 7 x 

~ [\WUlrkm-2r~kU^2r-\2x-k) > (16) 
r=0 ^ 

-j [(m-k-\)/2] / j \ 
(17) 

z r=0 v / 
Subtracting equations (14) and (15) and using (8) and (9) gives 

[(m-2)/2] / \ 

r=0 ^ ' 
-2r-l)! X Z^ r i r i 

rl+r2 + -"+rk=m-2r-l #1 • 'k' 

-, Um-k-l)/2]/ 7 \ 

kwkuk
n i [m;yru<m^kix^-k(k~xy-xr(k-xrr-ki 

(18) 

r=0 

1995] 361 



RECURRENCE SEQUENCES AND BERNOULLI POLYNOMIALS OF HIGHER ORDER 

4. If we take x = y in equation (16), we get 
[ (m- l ) / 2 ] / x / r \ IT • II 1 

Z ( S p W IV«-2r)l I ^ . . . ^ = -iT(w)^*«^--*. (19) 
r=0 ^ ' V z / rx+r2+-rk=m-2r rV rk • Z 

Taking k - 1 in equation (19) and recalling that B2n(£j = l-^T-l)B2„ (see [5]), we have 

[<>- l ) /2 ] / x / 1 \ 

I ^rf^t^-^C^^^C-1 (20) 
If we make x = 0 in equation (17), we get 

[ (w- l ) /2J / x TJ J J 1 

S ("k^^m-^)! X -rr-^f- = U^Uk
nV(m_ky (21) 

r=0 ^ ' rl+r2 + — +rk=m-2r ' l ! Yk • Z 

From expression (21), recalling that 4"+1) = (l ~ f )Bkn) ~ kBk-i ( s e e t4J) a n d taking k = 1,2, 3, we 
get, successively, 

[(/w-l)/2]/- x 1 

X [^jAr£/„2r52r£^w.2r)=|»i£/ll^m_1), (22) 

[(m-l)/2]s x m - 2 r / _ « \ i 
X J Arf/n

2r(52r - 2r£2r - 2r52r_2) £ [m ,- \UmUn(m.lr.x) =^m(m- l)C/„Vfl(m_2)) (23) 

[(m-l)/2]x x x x 
I 2

WjA^((2r-lKr-l)£2r+/-(4r-5)fi2/._1+2r(2/--l)fi2r_2) £ ? 7 * F » W * 
r=0 V / i+j+k=m-2r V ' -^' / 

(24) 
= -m(m~l)(m-2)t/X(w-3)? 

where (^J2^) is the multinomial coefficient (see [1]). 
With p = l, q = - 1 , we get the Fibonacci and Lucas sequences f/0 = 0, Ux = 1,:.., Un(l, -1) = 

i^,... and f̂  = 2 , ^ = 1,...,^,(1,-1) = Z^,..., and from equation (19) we get Kelisky's formula 
(see [2]) 

2-t ^ [2r J 2r n n{m-2r) =^K^n(m-l)- ( 2 5 ) 
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L INTRODUCTION 

Burke and Bergum [1] called a family of sequences defined by a linear recurrence "a disjoint 
covering" if every natural number was contained in exactly one of the given sequences. They 
gave arithmetic progressions and geometric progressions as simple examples of finite and infinite 
disjoint coverings. Although they also constructed /^-order recurrences that were disjoint cover-
ings, the resulting sequences were not essentially nih ordered since they were the same as the ones 
listed above and could be defined by first-order recurrences. Zollner [4] proved that there is an 
infinite disjoint covering generated by the Fibonacci recurrence 

answering the question proposed in [1] affirmatively. This is the first paper establishing the exis-
tence of a disjoint covering consisting of sequences essentially defined by a second-order recur-
rence. 

In this paper we will show the existence of disjoint coverings essentially generated by linear 
recurrences of any order. 

2. A TYPE OF PISOT NUMBER 

A Pisot number is a real algebraic integer greater than 1 such that the absolute value of every 
conjugate is less than 1 (see [2]). We consider a special type of Pisot number that satisfies a 
monic irreducible equation with integral coefficients 

f(x) = xm- axxm~x am_xx - am = 0, (2) 

where m > 2, ax > 0, a, > 0 (for / = 2,..., m -1), and am > 0. 
Since / ( l ) < 0, equation (2) has a real number solution a > 1. Let /?, (/ = 1,2,..., m-1) be 

the other roots of (2). 

Example: We will show that if 
a 1 >l + o2 + ---+a/II, (3) 

then \fii | < 1 for i = 1,2,..., m -1, and a is a Pisot number. 
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Let g(x) = xm-alxm l-a2xm 2 = xm 2{x2 -axx-a2) and let h(x) = a3xm 3 + ••• +am_lx + am. 
Then we have 

\g(x)\ >ax -l-a2>a3+a4 + ---+am >\h(x)\ 

for any complex value of x on the unit circle |JC|= 1 by (3). Therefore, by Rouche's theorem (see 
[3]), the number of roots of equation (2), or g(x) = h(x), in the unit circle is equal to one of 
g(x) = 0, which is m-1, since the equation x2 -axx-a2 = 0 has two real roots xx and x2, where 
xx>l, -\<x2 <0. 

Now we will show that f(x) in (2) is irreducible when (3) is satisfied. If it is reducible, then 
it must be decomposed into monic polynomials with integral coefficients, and each factor must 
have at least one root of modulus greater than or equal to 1, since the product of its roots is an 
integer. This contradicts the fact we have just proved above. Thus, we have shown that there are 
equations of type (2) that have a Pisot number root for each m > 2. 

Remark: It should be noticed that, if (2) has a Pisot number root, all roots of (2) are simple, 
since any irreducible polynomial with rational coefficients has no multiple root. 

3. SEQUENCES DEFINED BY A LINEAR RECURRENCE 

We consider the recurrence 
Un = aiUn-l + a2Un-2 + ' *" + amUn-m ( 4 ) 

that has f(x) in (2) as its characteristic polynomial. Let S be the set of all the positive integer 
sequences {un} defined by recurrence (4). In the following we will establish that the existence of 
a disjoint covering of the set of natural numbers consists of the sequences in S. 

According to the Remark in the previous section, the general term of {un} is expressed as 

un=c0a" + c1fi1 + -+cm_l^l, (5) 

where c0 > 0 because an —> oo and ft" -> 0 for / = 1,2,..., m-1 as n tends to oo. 
Let us define m integer sequences {t^} (for i = 1,2, ...,m) satisfying (4) with the initial con-

ditions t^p = Sjj (/*, j = 1,2,..., m), where the right-hand side is Kroneker's delta. 
These sequences have zero or positive integer terms, and their general terms are expressed as 

^ ^ , o f f " H , i ^ + - + U i ^ i . (6) 

where bi0 > 0 as c0 in (5). The nth term un of the sequence defined by recurrence (2) is expressed 
as a linear combination of leading m terms as 

% = ^ \ ^ \ ^ - ^ u m , (7) 

where the coefficients consist of nth terms of these sequences. 

4. THE CONSTRUCTION OF A DISJOINT COVERING 

Now we show that there exists a disjoint covering of the set of all natural numbers consisting 
of sequences in S following the method used in [4]. 

364 [AUG. 



A DISJOINT COVERING OF THE SET OF NATURAL NUMBERS 

Notice that the set cannot be covered with a finite number of such sequences. In fact, as 
c0 > 0 in (5), un ~ c0an so that un+l - un -> oo as n tends to oo. 

First, we define the sequence {%$} in S with initial conditions u® -n (for n- 1,2, ...,/w). 
Then assuming that, for / = 1,2,...,k-l, we have determined mutually disjoint increasing se-
quences {iff} in S that satisfy the conditions 

i ^ m i n f ^ - , (8) 

where Vt denotes the complement of the set Vi - {u{
n
J) \ j = 1,2,..., i; n = 1,2,3,...} in the set of all 

natural numbers, and 

u^<u^ for i<j, (9) 

we will show that we can choose the next sequence {u^} in S so that these k sequences are 
mutually disjoint and satisfy conditions (8) and (9). 

We can see that Vt is always nonempty by using the statement made at the beginning of this 
section. Thus, we can put u£k)= min Vk_x and u^k) = min Vk_l - {u[k), */f\ • • • > ur-\} for r = 2,3,..., 
m-\. 

Let Mk - max{w^_1), u%}x} and let Lk be an integer larger than Mk. If we take any integer 
in the interval (Mk9 Lk] as the value of u%\ the resulting sequence {u^k)} in S will satisfy the in-
equality u^k~l) < u^k) for all n, but it will possibly have a common term with one of the sequences 
{u^} (i = 1,2,..., k-1) already built. We will evaluate the number N of such integers to show 
that we can find an integer value of ifk) in the interval (Mk, Lk] so that the resulting sequence 
{t^k)} does not overlap with any of the k-\ sequences already built if we take a large enough 
value for Lk. 

Suppose that u^ = u^ for some / <k . Then m< p<q. Using the expression shown in (7) 
for u{p and u^\ we have 

t^u[k) + • • • + t^u{k) = tfdp + • • • + f <w)i#. (10) 

If u^lr = t#^r for r = 1,2,..., m -1, then, using recurrence (4) to the opposite direction, we have 
u[k) = u^lp+1, which contradicts the choice of u[k\ Thus, there is an r such that 

0 < r < m - l , u% = u% and ^ + 1 * ^ r + 1 . (11) 

As we are going to find the largest/? such that u{k) is equal to an element of Vk_l9 replacing p + r 
with/? if necessary, we can assume that r - 0. Then, using expression (6), we have 

where summation runs from j = 1 to j - m. For u^\x -au^\ we have a similar expression. Since 
we can see that 

\{u%-auf)-{u^-auf)\ = \uf+y-u%\>\, 

from (11), we have 
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Here, let us put p= max{\j3l\,...,\jSm_1\}, A ^maxfla-/?,t\\i = 1,2, ...,m-l}, and B = 
max{\bi.\\i = l,2,...,m; j = 0,1, ...,/w-l}. These values are independent ofu^\ and 0< /?< l . 
Then we have (m- l)ABj3p{(2m- l)Mk + Lk} > 1, from which we can evaluate/? as 

p < -[log{(2/« - 1)M, + 4 } + log{(m - l)AB}] I log/? 
<C1log(4+C2) + C3

 ( } 

for some constants Q, C2, and C3 independent of Z^ and u^. 
On the other hand, from expression (6), we have 

> (bh0uW + -+bm,0uV)ai-m(m-l)Mk. 

We can find here a constant T depending only on the coefficients of (2) such that ty < Tan 

for \<i<m. We can also find an integer v for which t^m) >(bmQ /2)a"ifn>v. Putting U = 
min{bm 0 / 2, a~v}, we have t(„m) > Uan for n > m. 

Using these inequalities and t(
p

m) > 1, we have the following evaluation, from (10), 

> (b^uP + -+bm^)aq-plT-(m-\)(mB + U-lT)Mk. 

Taking the logarithms, we have 

q-p < [\og{Lk +(m- \)(mB + U-lT)Mk} + \ogT-\ogZbjt Ouf]/\oga 

= C4log(Lk+C5) + C6, 

which gives an evaluation of q together with inequality (12) as 

q > Q log(Z, + C2) + Q log(Z, + Q) + C7. (13) 

The constants C4, C5, Q , and C7 are independent of the choice of u^ as well as the value of Lk. 
Since we have already determined the m-\ initial terms of the &* sequence, two different 

values of uff give different /7th terms that cannot coincide with the same u^\ Hence, the number 
Nof the values of u^ for which the resulting sequence {u(

n
k)} has a common term with some of 

the first k-l sequences will not exceed the number of triples (p,q,i) satisfying u(
p

k) = u^°. 
Evaluating the latter number using (12) and (13), we can obtain the inequality 

N<(fe- 1){Q log(4 + C2) + C3} {Q log(Lk + C2) + Q log(Z, + Q) + C7} ^ Lk -Mk 

for large Z^. 
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Therefore, there must be a desired sequence {u[k)} in S disjoint with the k-\ sequences 
already built, and the proof can be completed by induction, since every natural number is 
contained in a sequence by the choice of u[k) determined in (8). 
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ANTISOCIAL DINNER PARTIES 

Richard Lewis 
Mathematics Subject Group, University of Sussex, Brighton, BN1 9QH, U.K. 

{Submitted March 1994) 

1. INTRODUCTION 

Take a circular dining table with n chairs arranged at equal intervals around it. In how many 
ways can (nil or fewer) people be seated on these chairs in such a way that no two people are 
seated on adjacent chairs, where two such seating patterns are to be regarded as the same if one 
can be got from the other by rotation? Let T„ denote the number of such seating patterns (includ-
ing the case when nobody has come to dinner). The first five values of \ are \ = 1, T2 =2, 
T3=2,T4 = 3,T5 = 3. 

I show here that, for n > 2, 

nd\n \dJ 

(where the sum is over all positive divisors of/?). In this expression, Ld is the d** Lucas number, 
defined by the recurrence 

L0 = 2, Lj = 1 and Lw = Ln_x + Ln_2 thereafter, 

and <j> is Euler's totient, i.e., 
</){n) = #{m:0<m<n,m and n coprime}. 

I was asked this question (i.e., the value of T„) by my colleague Peter Bushell who, in con-
nection with his work on Shapiro's inequality, was interested in the number of cyclically distinct 
components of the "regular boundary" of K = {x e R": xl> 0,1 < / < n). (The regular boundary of 
K is the set of points x in K having at least one component xt equal to zero, but no two adjacent 
components both zero and not having xx andxw both zero. See [1] for details and motivation.) 
So the number he was looking for is Tn -1. 

2. THE NUMBER OF CYCLICALLY DISTINCT PATTERNS 

Suppose that n > 2 and let Vn denote the set of all strings axa2 ...an on {0,1} of length n such 
that 

VI: ax and ai+l are not both 1 (for 1 < i < n), 
V2: a{ and an are not both 1. 

Such strings correspond to antisocial seating arrangements as described in the introduction (with 
at -1 meaning that chair i is occupied). The cyclic group Zn acts on Vw by rotations and the 
number Tn is the number of orbits of this action. Now Burnside's lemma ([2], 10.1.4) tells us that, 
if G is a finite group acting on a finite set S and if Fix(g) denotes the set of members of S fixed by 
g eC, then 
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n'd\n 

nid 

#{oibhsofG} = ^ 5 > F i x t e ) . 

So we need to find #Fix(g) for each element g of Z„. Suppose that Zn is generated by a and that 
a acts on V„ by ala2...ana = anal...an_l. It is not difficult to see that, for any integer m, 
Fix(aw) =Fix(ad), where gcd(m,n) = d. Now, if d divides n, there are <j>(nld) integers m with 
0<m<n and gcd(m,n) = d, and it follows that 

T„ = #{orbits of Zn} = i ^ # F i x ( o - J ) ^ / 0 • 

It is plain that 

Fix(cr*) = {vv...v:v eV^} 

and so #Fix(ad) =#Vd and it remains for us to show that 

#Vd = Ld. (2) 

To deal with (2), consider the sets U„ of strings of O's and l's that satisfy VI above but not 
necessarily V2. Then it is well known (and easily proved) that 

#U„-F„+2 (3) 

(where F„ denotes the 72th Fibonacci number) and that 

L ^ F ^ + F ^ . (4) 

Let un denote a general element of U„. Now (2) is true when d = 1 (Vj contains only the 
string 0) and when d = 2, so suppose d > 3 and consider a string v in Wd. Either v ends in 1, in 
which case it looks like 0ud_30l, or v ends with 0 and looks like ud_x0. By (3), there are Vd_x 

strings of the first kind and F^+1 strings of the second kind. Equation (4) now completes the proof 
of (2) and therefore of (1). 

3, A GENERALIZATION 

I now consider the obvious extension of the question answered in section 2, that is, what is 
S„, the number of seating arrangements that are distinct not only under rotations but also under 
reflections? Now the group acting on Vw is the dihedral group, D„, which is generated by a and 
the reflection r , which acts on a string in Vw by writing it backwards (so that on = r2 = 1 and 
a~lr - za). 

Let W^ denote the set of palindromic strings wk in XJk and, for rj- 0 or 1, let W^ n denote 
the subset of W^ of strings that begin (or end) with r/. Now D„ = {amT£:0<m<n, e = 0,1}, 
Fix(o-w) is as in section 1, and (as is easy to see) Fix^^Y) is made up of strings wn_mwm, where 
w„_m and wm do not both have l's at each end. So 

n-m 

#Fix(<7mr) = #W„.ffl;0#Wmi0 + #W„.m;1#Wmj0 + #W„_m>0#Wmjl. (5) 
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Using (3), we have, for even &, 

# W M = # U * / 2 - 2 = F*/2> 

and, if A: is odd, 

#Wk0= #U(jt_3)/2+ #U(jfc_5)/2 = F(Jk+3)/2-
(6) 

With the help of the well-known identity, ¥r_^Fs + FrFJ+1 = Fr+i, it follows from (5) and (6) that 

#Fix(o-"V) = 

and Burnside's lemma gives 

F„/2 if n and m are even, 
F„/2+3 if n is even and m is odd, 
F(«+3)/2 if" is odd, 

-X- Z W ( " / 'O+X F«/2+2 i f » i s even, 
S = 

2« rf|« 

+ "̂  F(«+3)/2 ^ W *S °dd. In 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowltz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also he sent to the problem editor by electronic mail to Fibonacci@MathPro.com on Inter-
net. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Proposers should inform 
us of the history of the problem, if it is not original. A problem should not be submitted 
elsewhere while it is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

A?+2 ~ ^n+l + Ln, LQ = 2, Lx = 1. 

Also, a = (l + V5)/2 , /? = ( l - V 5 ) / 2 , Fn = (a" - / T ) / ^ 5 , and L„ = an+fin. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-790 Proposed by H.-J. Seiffert, Berlin, Germany 
Find the largest constant c such that F*+l > cF2n for all even positive integers n. 

B-791 Proposed by Andrew Cusumano, Great Neck, NY 
Prove that, for all n, Fn+n + F„+7+SF„+5 + F„+3 + 2Fn is divisible by 18. 

B-792 Proposed by Paul S. Bruckman, Edmonds, WA 
Let the sequence (an) be defined by the recurrence an+l =a2

n-an+\, n > 0, where the initial 
term, al9 is an arbitrary real number larger than 1. Express -L + -^ + -L + • • • in terms of ax. 

B-793 Proposed by Wray Brady, Jalisco, Mexico 
Show that 2"Ln = 2 (mod 5) for all positive integers n. 

B-794 Proposed by Zdravko F. Stare, Vrsac, Yugoslavia 
For x a real number and n a positive integer, prove that 

fwY rFY (v Y 
v^i 
^ . + 

KF2J 
+ . . .+i:£t±L 

FnJ 

>n + xlr\Fn+l. 

B-795 Proposed by Wray Brady, Jalisco, Mexico 

Evaluate V r nn n r 
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SOLUTIONS 

A Cauchv Convolution 

B-759 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 32, no. 1, February 1994) 

Show that for all positive integers k and all nonnegative integers n, 

Z /7 P — k k(n+2) k ' 
Pk(j+\)rk{n-j+\) ~ 20 - L 

Solution by Paul S. Bruckman, Edmonds, WA 

Let S„tk denote the given sum. Treating k as fixed, make the following substitutions, for 
brevity: s = ak,t = fik,u = pk, and v = qk. Then, 

S„tk V40 = £ <y+1 ~ tJ'+l)(un'J'+l - v"-J+l) 

= £ [su"+\s I u)J - ttin+\t I u)J - svn+\s I v)J + tun+\t I v)J] 
j=0 

s-n t-u s-v t-v 

= 7 J77—r[(*"+2 - * 0 ( < - «) - V2 - >""+1X* - «)] 

- 7—VZT—-A(J+2 - sv"+l)(t - v) - (t"+2 - tv"+1)(s-v)] 
(s-v)(t-v) 

= [(-1) V * +Pk~ LkT\sn+2t -stun+x - s"+2u + sun+2 -sf+2 + stu"+1 + tn+2u- tun+2} 
- [ H ) V * +qk~ LkT V+2( - stvn+l - ^+2v + sv"+2 - stn+2 + stvn+l + tn+2v - tvn+2] 

= (2Qk -Lky\^+2(t-«) + tn+2(u-s) + u"+2(s-i)-s"+2(/- v)-tn+2{v-s)-v"+2(s-1)] 

= (2Qk - Lkr\(u"+2 - v"+2)(s-t) - (y+2 - t"+2)(u - v)]. 

The result follows. 

Also solved by Glenn Bookhout, C. Georghiou, Pentti Haukkanen, and the proposer. 

A Simple Inequality 

B-760 Proposed by Russell Euler, Northwest Missouri State University, Maryville, MO 
(Vol 32, no. 2, May 1994) 

Prove that F„2
+1 > F2n for all n > 0. 

Solution by many readers 
This inequality follows from Hoggatt's Identity (I10) from [1]: 

^2n = AH-1 ~ rn_v 
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The inequality is true for all n, not just n > 0. Equality holds if and only if F„_Y = 0, i.e., if and 
only ifn = 1. 

Reference 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969; rpt. 

Santa Clara, Calif: The Fibonacci Association, 1979. 
Lord pointed out the stronger inequality, F^+p >F2rjF2p, which follows from Hoggatt fs Identity 
(I25)- Prielipp mentions that the result Fm+n > FmFn, if m,n> 0, which comes from The Ameri-
can Mathematical Monthly, I960, p. 876, implies that we can extend the given inequality to 
Fw

2
+1 > F2n > Fw

2 if n>0. Seiffert generalized in another direction, and we present his result as 
problem B-790 in this issue. 

Generalization by Richard Andre-Jeannin, Longwy, France 
Consider the sequences (Un) and (Vn) satisfying the recurrence Wn - PWn_x-OWn_2, n>2, 

with initial conditions UQ = 0, Ul = 1 and VQ - 2, Vx - P. It is known and readily verified that 
V„ = Un+l-QUn_x and U2n = UJn. Thus, U2

n+x-Q2Ulx=(U„+x + QUn_x)(U„+x -QU^)= PUnVn 

= PU2n. Hence, t/*+1 = Q2U^_{ + PU2n. This gives us the desired generalization: U^+l > PU2n. 

Also solved by Charles Ashbacher, Michel A. Ballieu, Brian D. Beasley, Glenn Bookhout, 
Paul S. Bruckman, Charles K Cook., Bill Correll, Jr., M N. Deshpande, Steve Edwards, 
Piero Filipponi, Russell Jay Hendel, Norbert Jensen, Joseph J. Kostal, Harris Kwong, Carl 
Libis, Graham Lord, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, M. N. S. 
Swamy, David C. Terr, and the proposer. 

L Determinants 

B-761 Proposed by Richard Andre-Jeannin, Longwy, France 
(Vol 32, no. 2, May 1994) 

Evaluate the determinants 
L\ 
L\ 
L\ 
L\ 
Ll 

L\ 
/2 

L\ 
L\ 
L\ 

L\ 
L\ 
L\ 
L\ 
L\ 

L\ 
L\ 
L\ 
Ll 
L\ 

L\ 
L\ 
L\ 
L\ 
Ll 

L0 

A 
L2 
L3 
L4 

Lx 
L0 
h 
L2 
L3 

L2 
L, 
L0 
Lx 
L2 

L3 
L2 
L, 
L0 

u 

L4 
L3 
L2 

A 
L0 

Solution by Harris Kwong, SUNY College at Fredonia, Fredonia, NY 
Let An = (ay) and Bn = (b^) be n x n matrices such that atj = L^_^ and bxj - £];_7| The values 

of det(^„) and det(5„) can be derived as follows. 
For small n, we have de t (^ ) = 2 and det(i42) = 3. For n > 3, subtract the sum of the second 

and third rows of An from the first row, then subtract the difference of the first and third columns 
from the second column. In the modified matrix, the first row is (-2,0, . . . ) , and the second 
column is (0,2,0, . . . )T . Hence, for « > 3 , det(i4J = -4det(4,_2) . Consequently, det(^2/7_1) = 
2(-4)w-]l and det(^2 J = 3(-4)""1. 

It is straightforward to check that d e t ^ ) = 4, det(B2) = 15, and det(53) = -250. For n > 4, 
add the fourth row of Bn to the first row, then add the third row to the second row. Since 
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A ? + A1+3 ~ (A1+2 ~~ Ai+i) + (A1+2+Ai+i) ~ 2 ( ^ + 2 + A J + I ) > 

the first and second rows of the modified matrix are proportional, namely, in the ratio of 2:1. 
Thus, det(Bn) = 0 for n > 4. 

In particular, the given determinants are det(^) = 32 and det(i?5) = 0, respectively. 
Also solved by Charles Ashbacher, Paul S. Bruckman, Charles K. Cook, Bill Correll, Jr., 
Russell Jay Hendel, Norbert Jensen, CarlLibis, H.-J. Seiffert, and the proposer. 

Taylor's Series 

B-762 Proposed by Larry Taylor, Rego Park, NY 
(Vol 32, no. 2, May 1994) 

Let n be an integer. 
(a) Generalize the numbers (2, 2, 2) to form three three-term arithmetic progressions of 

integral multiples of Fibonacci and/or Lucas numbers with common differences 3Fn, 5Fn, and 3Fn. 
(b) Generalize the numbers (4, 4, 4) to form two such arithmetic progressions with common 

differences Fn and F„. 
(c) Generalize the numbers (6, 6, 6) to form four such arithmetic progressions with common 

differences F„r 5Fn, 7Fn, and F„. 

Solution by H.-J. Seiffert, Berlin, Germany 
The proofs of the statements presented in the following table are all easy and thus will be 

omitted. 

Arithmetic Progression 
(—2rn_2, Lm 2rn+2) 
(-2A,-i,4,,2Z,n+1) 
(2F„_1,JF„+3,24+1) 
(2AH-3> AH-3> 4rn+2J 

(-4F„_2,-L„_3,2Fn_3) 
(2Ln+2, 3Fn+3> 2F

n+d 
(2Ln_2, 3Ln, 2Ln+2) 

(-2F„_4, 3Z„, 2Fn+4) 
(~2Fn_4, 3Fn_3, 2Ln_2) 

Common Difference 
3F„ 
5F„ 
1F„ 
Fn 
Fn 
F„ 
5Fn 
7F„ 
F„ 

Generalizes (« = 0) 
(2,2,2) 
(2/2,2) 
(2,2,2) 
(4,4,4) 
(4,4,4) 
(6,6,6) 
(6,6,6) 
(6,6,6) 
(6,6,6) 

Editorial Comment: Larry Taylor asked about three-term arithmetic progressions such that 
(1) each term is an integral multiple of either Fn+a orLn+a for some integer a; 
(2) the common difference is a positive integral multiple of Fn; 
(3) the values assumed by the terms when n - 0 are positive, equal, and do not exceed 6. 

He conjectured that all such arithmetic progressions are given by the solutions of problems B-762 
and H-422 (The Fibonacci Quarterly 28,3 [1990]:285-87). 

Bruckman investigated this problem and came up with the following table of arithmetic pro-
gressions of the form (aiHn+bi,a2J„+b2,a3Kn+bi) with common difference cFn and where H, J, and 
K are each either "F% or "Z's„ When n - 0, these progressions reduce to (e, e, e). 

374 [AUG. 



ELEMENTARY PROBLEMS AND SOLUTIONS 

r«i # *i 
-1 L -1 
-1 F -2 
+1 F -1 
+1 F +1 
-1 L -1 
-1 F -2 

-2 F -2 
+1 F -3 
+2 F -1 
+1 L 0 
+2 F +1 
+1 F -3 
-2 Z. -1 
-2 F -2 
+2 F -1 
-2 Z, -1 

-3 F -2 
-1 F -4 
+3 F +1 
+1 Z, +2 
-3 L -1 
+1 Z. -2 

-4 F -2 
+2 F +3 
-4 Z, -1 
-1 L -3 
+2 Z 0 
-2 F -4 
+2 Z, +2 
+2 Z- -2 
-2 F -4 

a2 J Z>2 
-1 F -2 
+1 F -1 
+1 F +1 
+1 F +2 
+1 F -1 
+1 F +1 

+1 F -3 
+2 F -1 
+1 Z, 0 
+2 F +1 
+1 F +3 
+1 Z 0 
+1 F -3 
+1 Z, 0 
+1 F +3 
+1 Z 0 

-1 F -4 
+1 Z -2 
+1 Z +2 
+1 F +4 
+1 Z, -2 
+1 Z +2 
-1 L -3 
+1 Z +3 
-1 Z -3 
+2 Z 0 
+1 Z +3 
+3 F -3 
+3 F +3 
+3 Z 0 
+3 L 0 

£l3 ^ 63 

1 F -1 
1 F +1 
1 F +2 
1 L +1 
1 F +2 
1 L +1 
2 F -1 
1 L 0 
2 F +1 
1 F +3 
2 F +2 
1 F +3 
2 F +1 
2 F +2 
2 Z +1 
2 Z +1 
1 L -2 
3 F -1 
1 F +4 
3 F +2 
1 Z +2 
3 Z +1 

2 F -3 
4 F +2 
2 Z 0 
1 Z +3 
4 Z +1 

2 Z -2 
2 F +4 
2 L +2 
2 F +4 

c 
1 
1 
1 
1 
2 
2 

1 
1 
1 
1 
1 
2 
3 
3 
3 
5 

1 
1 
1 
1 
5 
5 

1 
1 
5 
5 
5 

1 
1 
5 
7 

e 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 

4 
4 
4 
4 
4 

6 
6 
6 
6 

He believes the list is exhaustive [for e < 6 and gcd(a1? a2, a3) = 1] but does not have a proof. The 
editor did a computer search and did not find any additional examples even if condition (2) is 
dropped. 
Also solved by Paul S. Bruckman and the proposer. 

Matrix Power 

B-763 Proposed by Juan Pla9 Paris, France 
(Vol 32, no. 2, May 1994) 

Let 

Express An in terms of Fibonacci and/or Lucas numbers. 
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Solution byH.-J. Seiffert, Berlin, Germany 
The answer is 

A" = FnA + F^, (1) 

where / denotes the identity matrix. 
We prove this result for any matrix A of the form 

Hi '-« 
with determinant -1 (which is true of our present proposal). 

By direct calculation, we have A2 - A + 1 since det A = - 1 , so equation (1) is true for n - 2. 
It is also clearly true for n -1. We proceed by induction. Assume that equation (1) holds for 
some n. Then An+l = AnA = (FnA + Fn_J)A = FnA2 + Fn_xA = Fn(A + I) + Fn_xA = (Fn + F^A + 
FnI - Fn+lA + FnI and equation (1) holds for n +1. Thus it is true for all positive integral n. 

Seiffert also showed that equation (1) is true for all negative n as well. We omit the proof 
Also solved by Brian D. Beasley, Paul S. Bruckman, Charles K Cook, Steve Edwards, Piero 
Filipponi, Russell Jay Hendel, Norbert Jensen, Hans Kappus, Murray S. Klamkin, Joseph J. 
Kostal, Bob Prielipp, M N. S. Swamy, and the proposer. 

Secret Treasures Hidden in Pascal's Triangle 

B-764 Proposed by Mark Bowron, Tucson, AZ 
(Vol 32, no. 2, May 1994) 

Consider row n of Pascal's triangle, where n is a fixed positive integer. Let Sk denote the 
sum of every fifth entry, beginning with the k^ entry, (£). If 0 < / < j < 5, show that |̂ - - Sj \ is 
always a Fibonacci number. 

Solution by the proposer, Channelview, TX 

For n > 1, let sk(n) be the sum of every fifth entry in row n (including entries outside Pascal's 
triangle, which by convention are all zero) that includes (L»/2J-2-*) as a summand (0 < k < 5). The 
following hold by symmetry of Pascal's triangle: 

n even n odd 
So(n) = s4(n) sx(n) = s4(n) 
s{(n) = s3(n) s2(n) = s3(n) 

Define D0(n) = s^ri) - s0(ri), Dx{n) = s2(ri) - s^n), and D2(n) = s2(n) - s0(n). By the above, it 
suffices to show that D0(n), Dx(n), and D2(ri) are Fibonacci numbers for each n > 1. Claim: 

n even n odd 
D0(n) = Fn DQ(n) = F„_l 

A(») = ̂ - i Dl(n) = Fn 
D2(n) = F„+l D2(n) = Fn+l 

The proof is by induction on n. The claim is easily seen to hold for n = 1. Let n > 1 and 
assume that the claim holds for all positive integers less than n. 
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Suppose n is even. By the recursion that defines Pascal's triangle, we have 
sQ(n) = sQ(n -1)+ sx(n-1), 
sl(n) = sl(n-l) + s2(n-ll 
s2(n) = s2(n -1) + s3(n -l) = 2s2(n -1). 

Thus, by the induction hypothesis and previous results, 
D0(n) = Sl(n) - s0(n) = sx(n -1) + s2(n -1) - s0(n -1) - Sl(n -1) 

= DQ(n-l) + Dl(n-l) = F„-2+Fn-i = F„, 
A(w) - ^C^) ~ s\(n) - ^(p -1) ~ 5i(w -i)-s2(n-\) 

A W = 52 («) - 5o00 = 2^(w -1) - $>(w -1) - ^(w -1) 
= D2(n-l) + Dl(n-l) = Fn+F„_l = Fn+l. 

The equations for odd n are similar. This completes the proof. 
Also solved by Paul S. Bruckman, Norbert Jensen, andH.-J. Seiffert 

An Expansion of e 

B-765 Proposed by Mohammad K. Azarian, University of Evansville, Evansville, IN 
(Vol 32, no. 2, May 1994) 

Let m and n be positive integers greater than 1, and let x = Fmn I (FmFn). What famous con-
stant is represented by 

00 / / 1 

S I-7T 
/=0 \H>J]J 

1 1_ 
xJ xi+l 

Solution by Norbert Jensen, Kiel, Germany 
For m, n > 1, we have Fmn > Fm+n = FmFn+l + Fm_xFn > FmFn. Thus x > 1 and all the terms of 

the series are positive. We may thus rearrange the order of summation. 
We find that for any x > 1, 

,=0 \^;=0 J ' J 

l_ 1_ 
J ^'+1 

X 
CO 

I 7A -vf.-i 
/=o yj=oJ-jx v x 

=(¥! V x J 

oo -a oo -i 

Ly=oJ!/=yx J 
/ -, \xr ~\x 

x-l) = \ V x J 

X Jlx 
e Lx-i j 

x - l 

x - l 

co I i i 

^ o 7 ' ! . * - l 

= £. 

Thus the magic constant is e. 
Also solved by O. Brugia and P. Filipponi (jointly), Paul S. Bruckman, Bill Correll, Jr., Steve 
Edwards, Russell Jay Hendel, Hans Kappus, CarlLibis, H.-J. Seiffert, and the proposer. 
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PROBLEMS PROPOSED IN THIS ISSUE 

H-499 Proposed by Paul S. Bruckman, Edmonds, WA 

Given n a natural number, n is a Lucas pseudoprime (LPP) if it is composite and satisfies the 
following congruence: 

4 - 1 (mod*). (1) 
If gcd(/?, 10) = 1, the Jacobi symbol (5/n) = sn is given by the following: 

fl ifw = ±l (mod 10), 
£" ' -1 ifw = ±3 (mod 10). 

Given gcd(«, 10) = 1, n is a Fibonacci pseudoprime (FPP) if it is composite and satisfies the 
following congruence: 

F„_£n=0 (mod/i). (2) 

Define the following sequences for e = 1,2,...: 
u = ue = F3e+l/Fr; (3) 

v = ve = L3e+l/L3e; (4) 

w = we = F2r+l IF2y = uv. (5) 

Prove the following for all e > 1: 
(i) u is a FPP and a LPP, provided it is composite; 
(ii) same statement for v; 
(iii) w is a FPP but not a LPP. 

H-500 Proposed by H.-J. Seiffert, Berlin, Germany 

Define the Fibonacci polynomials by F0(x) = 0, Fl(x) = l, 'F„(x) = xF^x) + Fn_2(x), for 
n > 2. Show that for all complex numbers x and all nonnegative integers n, 
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[»/2]/-_ ~x 

Mn-2k F " + i W = x"FU4/x), (1) 
k=()\ J Jc=Q 

where [ ] denotes the greatest integer function. 
As special cases of (1), obtain the following identities: 

^ 2 1 1 + 2 ^ _ 1 ' 
A I n - 2k J 2k+l ~ ^ ^311+3 > K1) 

Y\n-2k)F^^-22n+lFn^ (3) 

k=0 

— izn + z)^ _02«+i 

[f(2n + 2 
k=0 
| ] (»-^)z^4( 5"+ 1- ( - i r l ) - (4) 

H-501 Proposed by Paul S. Bruckman, Edmonds, WA 

Define the following sequences for e - 1,2, ...: 
(i) u = ue=F5e+l/5F5e; 
(ii) v = ve = Lse+l/Lse; 
(iii) w = we = F25e+l 15F25e = uv. 

Prove the following: 
(a) If u is composite, it is both a Fibonacci pseudoprime (FPP) and a Lucas pseudoprime 

(LPP); see Problems H-496 and H-498 for definitions of FPP's and LPP's. 
(b) Same problem for v. 
(c) Show that w is a FPP but not a LPP. 

H-502 Proposed by Zdzislaw W. Trzaska, Warsaw, Poland 

Given two sequences of polynomials in complex variable z GC defined recursively as 

Tk(z) = fjakmzm,k = 0,l,2,..., (1) 

with T0(z) = 1 and Tx{z) = (\ + z)T0, and 

Pk{z)=Yubkmzm,k = 0,\,2,..., (2) 

m=0 

k 

I 
/w=0 with P0(z) = 0 and Px(z) = 1. 

Prove that for all z eC and k = 0,1,2,..., the equality 

Pk(z)Tk_l(z)-Tk(z)Pk_i(z)=l (3) 

holds. 
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SOLUTIONS 
Eventually 

H-485 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 32, no. 1, February 1994) 

If x is an unspecified large positive real number, obtain an asymptotic evaluation for the sum 
S(x\ where 

5(x) = X(-!)Z(p); (i) 
p<x 

here, the/?'s are prime and Zip) is the Fibonacci entry-point ofp (the smallest positive n such that 
P\F„l 
Solution by the proposer 

Let X = {Ln}n>0 denote the Lucas sequence. It is well known that Z(p) is even iff p Gp(X), 
where p(X) denotes the set of primes/? such that/? divides an element of X. Let TTX{X) denote 
the number of primes p ep(<S£) with p<x; also, n(x) denotes the number of p < x. The density 
of p(X) is defined as lim n${x) I n{x) = 0%, assuming such a limit exists. 

x-»oo 

In 1985, Lagarias showed [1], among other things, that 0% = 2 /3 . We see that this result is 
equivalent to the following: 

\imA(x)/7r(x) = 0se = 2/3, (2) 

where 

A(x) - X 1; also> B(x) - S i . (3) 
p<x p<x 

Z(p) even Z(p) odd 

Also note that A(x) - B(x) - S(x) and A(x) + B(x) = n(x). Moreover, we recall the famous 
Prime Number Theorem, namely, 

x 
n{x) ~ (as x -> oo). (4) 

logx 
Consequently, we see that 

A(x)~-2Z-9 * ( * ) - - * — , and S(x)~B(x), 
31ogx 31ogx 

or: 

S(x)~-^-. (5) 
31ogx 

Reference 
1. J. C. Lagarias. "The Set of Primes Dividing the Lucas Numbers Has Density 2/3." Pacific J. 

Math. 118(1985):19-23. 
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Long Range PI 

H-486 Proposed by Piero Filipponi, Rome, Italy 
(Vol 32, no. 2, May 1994) 

Let the terms of the sequence {Qk} be defined by the second-order recurrence relation Qk = 
2Qk-\ + Qk-2 w ^ initial conditions QQ = Qx -1. Find restrictions on the positive integers n and m 
for 

Jc=l m 
to converge, and, under these restrictions, evaluate this sum. Moreover, find the set of all couples 
(nh nij) for which T(nh m^ is an integer. 

Solution by Charles K Cook, University of South Carolina at Sumter, Sumter, SC 

The raitio test shows that the series will converge if 

— <V2-1».4142. Thus, — (1±V2) <1. 
m I m I 

Since Qk = j[(l + 4l)k + (1 - 42)k\ it follows from the summation formula 

Y£V=^±4,|x|<i, 

that 

simplifies to 

£1 \m) 21S L̂  J H N 
k\ 

T(n, m) = /?/M(/??2 + re2)(m2 + 6rnn - ??2) 
(m2 -2mn-n2) 

The only values of (n, m) for which 7 will be integral are those satisfying m2 - 2mn -n2 = l or 
(n - m)2 = 1 + 2n . The equation 

x2-2w2 = l 

is a Pell equation with the fundamental solution xY - 3 and nx-2. Thus, the solution set 
{(xk, nk)} is generated from 

xk+ykj2 = (3 + 2j2f. 

Since m = x + « all pairs (n, m) leading to the integral values of T(n, m) are determined. The first 
four are (2,5), (12,29), (70,169), and (408,985). The first three integral values of T are 23490, 
954642300, and 37463036986830. 

Also solved by P. Bruckman, H.-J. Seiffert, and the proposer (partial solution). 
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Nice Couples 
H-487 Proposed by Stanley Rabinowitz, MathPro Press, Westford, MA 

(Vol 32, no. 2, May 1994) 

Suppose Hn satisfies a second-order linear recurrence with constant coefficients. Let {a7} 
and {£>•}, /' = 1,2,..., r, be integer constants and let f(x0, Xj x2,..., xr) be a polynomial with integer 
coefficients. If the expression 

J ( ( " V > Hain+bY > Hajn+fy > • • • > ^arn+br ) 

vanishes for all integers n> N, prove that the expression vanishes for all integral n. 
[As a special case, if an identity involving Fibonacci and Lucas numbers is true for all positive 

subscripts, then it must also be true for all negative subscripts as well] 

Solution by Paul S. Bruckman, Edmonds, WA 

Let S, = {(-1^^,^,^^^,-..,^^^} a n d fn^fm- Also, let n„ denote any 
product of the form (-l)ne°H*l

n+b -' He
a

r
n+b , el >0 and integers. Since Hn has a nullifying (i.e., 

characteristic) polynomial satisfying the recurrence relation P(E)(Hn) = 0 (here E is the unit 
"right-shift" operator, with n the operand, and P is a polynomial with constant coefficients, of 
second degree), it follows that Han+b_ also has a nullifying polynomial; then so does HeJn+b., where 
the integers ei are nonnegative. The same is true for (-l)ne°, for which the nullifying polynomial 
is E-(-l)e°. Then any product Un has a nullifying polynomial; since fn is a sum of products of 
the form IIW, it follows that fn itself has a nullifying polynomial, say G(x). Thus, G(E)(fn) = 0 
for all n. We may suppose that G(x) = Hf=mc-xJ, where M>m>0, cm*0, cM ^ 0. We con-
sider two possibilities: 

(a) m = M—then G(E)(f„) = cmfm+n = 0 for all w, which implies fn - 0 for all n; 

(b) M> m > 0. Then G{E){fN_m) = Z%mCjfN_m+J = cmfN = 0, since fN+l = fN+2 = • • • = 0, 
by hypothesis. Thus, fN - 0. 

We may repeat the process (i.e., setting n = N-l-m, N-2-m, etc.), and conclude that /„ = 0 
for all n. Q.E.D. 

Pseudo Nim 

H-488 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol. 32, no. 4, August 1994) 

The Fibonacci pseudoprimes (FPP's) are those composite integers n with gcd(«, 10) = 1 and 
satisfying the following congruence: 

Fn-en=° (mod/i), (i) 
where 

fl ifw = ±1 (mod 10), 
* " [ - ! if/is ±3 (mod 10). 
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[Thus, sn - (f), a Jacobi symbol] 

Given a prime p > 5, prove that u = ±L2 is a FPP if u is composite. 

The Lucas pseudoprimes (LPP's) are those composite positive integers n satisfying the 
following congruence: 

Ln = 1 (mod?*). (ii) 

Given a prime p > 5, prove that u = \L2 is a LPP if u is composite. 

Solution by Norbert Jensen, Kiel, Germany 

Step 0: 3 divides L2p; hence, u is always an integer. 

Proof: Consider the Lucas numbers modulo 3: L0 = 2, Ll = l9 L2 = 0, L3 == 1, L4 = 1, L5 = 2, 
Z6 = 0, 1/7 = 2, L% = 2 = LQ, 1^ = 1 = Ly (mod 3). Hence, (£w)„G ĵ has period length 8 modulo 3 
and Ln = 0 (mod 3) if and only if n = 2 or n = 6 (mod 8). But as p = 1 or =3 (mod 4), it is clear 
that 2pEE2or2p = 6 (mod 8). Q.E.D. (Step 0) 

Suppose that u is composite. We have to show that u is a FPP and a LPP. 

Step 1: We show that u = 1 (mod 10). Hence, gcd(w, 10) = 1. 
Proof: Consider the residues of (Ln)nEN mod 10: LQ = 2, L^ = 1, Ẑ  = 3, L3 = 4, L4 = - 3 , 

Z5 = 1, L6 = -2 , L7 = - 1 , L8 = - 3 , L9 = - 4 , Z10 = 3, Ln = - 1 , Ll2 = 2 = L0, Ll3 = l= Lv Hence, 
the sequence (Ln)rjeN has period length 12 mod 10. Asp is either = 1 or = -1 mod 6, it follows 
that 2p is either = 2 or = -2 mod 12. Hence, L2p = L^ - 3 or Z^ = ̂ 0 = 3 mod 10. Cancelling 
3 in the above congruences shows that u=\ (mod 10). Q.E.D. (Step 1) 

In particular, we have su = 1. So to prove that u is a FPP and a LPP, we have to demonstrate 
that Fu_x = 0, Lu = 1 (mod u). 

Step 2: We show that L%p = 2, L%pJrl = 1, F8p = 0, F8/3+1 = 1 (mod 2/). Hence, 8/? is a common 
period of the Lucas and the Fibonacci sequence modulo u. 

(Actually, it can be shown that—in terms of algebraic number theory—the order of a 
modulo the ideal ul\a\ in l\a\ is 8/?.) 

Proof: From the definition off/, it follows thata2p +/?2/? = Z^ = 3*/ or a2p = ~plp + 3w. By 
multiplication with {\lp)2p = (-a)2 p = a2/?, we obtain a4/? = - l + 3wa2p. Squaring both sides, 
we arrive at 

a*p = l-6ua2p + 9u2a4p. (2.1) 

Exchanging a and /? in these operations leads to 

]38p = l-6uf]2p + 9u2{J4p. (2.2) 

Multiplying (2.1) and (2.2) by a and /?, respectively, we obtain 

a*p+l = a- 6ua2p+l + 9*/V^1. (2.3) 

/ ^ + 1 = p - 6up2p+l + 9u2p4p+l. (2.4) 
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Summing up (2.1), (2.2) and (2.3), (2.4) gives L%p = 2 (mod u\ L%p+l = l (mod u). Now, sub-
tracting (2.2) from (2.1) and (2.4) from (2.3) and multiplying with a-p-4^ gives 5F%p = 0 
(mod u), 5F%p+l = 5 (mod u). By Step 1, 5 does not divide u\ hence, we cancel 5 in the above 
congruences. Thus, F%p = 0, F%p+l = 1 (mod u). Q.E.D. (Step 2) 

It remains to show that u = 1 (mod 8/?). 
Splitting up into congruences modulo prime powers, we obtain the following results (i.e., 

Steps 3 and 4). 
Step 3: We show that Z ^ = 3 (mod 8). 

Proof: First, we determine the period length of (Ln)neN mod 8. We have L0 = 2, Lx = l, 
L2 = J, ^3 — 4, L4 = —1, L5 = J, L6 = 2, L 7 = —3, Lg = —1, L9 = 4 , i^10 = 3, i ^ = —1, Ll2 = 2 = LQ, 

Ll3 = l = Lx (mod 8). Hence, 12 is the period length of (Ln)nEN . Since p > 5, we just have to 
consider the following two cases: 

Case 1: p = 1 (mod 6). Then 2p = 2 (mod 12) and L2p = L2 = 3 (mod 8). 
Case 2: /? = -1 (mod 6). Then 2p = 10 (mod 12) and L2p = Ll0 = 3 (mod 8). 

Q.E.D. (Step 3) 

Step 4: We show that L^ - 3 (mod/?). 
Proof: We need the following two facts: 

Ja, = 2"' I f2f>//2; (4.1) 
;=0 V ^ 7 

;=0 (mod 2) 

P = 0 (mod/?) if either o<j<p or/? <j<2p. (4.2) 

From these facts, it follows (using Fermat's theorem) that 

4 . ^ - 2 2 % ^ 2 - ( l + 50-2.6(mod/?). 

Since p and 4 are coprime, we can cancel 4 on both sides of the congruence; whence the asser-
tion follows. Q.E.D. (Step 4) 

Step 5: Using Steps 3 and 4, we obtain Z^ = 3 (mod 8/?). Now, by Step 0, and since 3 and 8/? 
a're coprime, it follows that u = 1 (mod 8/?). 

Step 6: Applying Steps 2 and 5, we see that Lu = 1^ = 1 (mod u) and Fu_1 = 0 (mod w). Q.E.D. 

4̂fao solved by H. -/. Seiffert and the proposer. 
•I* • > •!• 
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