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EXTENSIONS OF THE HERMITE G.C.D. THEOREMS
FOR BINOMIAL COEFFICIENTS

H. W. Gould

Department of Mathematics, West Virginia University, PO Box 6310,
Morgantown, WV 26506-6310; Email: gould@math. wvu.edu

Paula Schlesinger
124 Lawson Drive, Spruce Pine, NC 28777
(Submitted November 1993)

1. INTRODUCTION
Dickson [1], in his History of the Theory of Numbers, attributes the divisibility theorems

i) (L1
and
) 0.

where (n, k) denotes the greatest common divisor of n and & to Hermite [9], [10] whose proofs
use the Euclidean algorithm. In [5] and [6] the proofs were extended by one of us to generalized
binomial coefficients defined by

v v

where {A,} is a sequence of integers such that 4, =0, 4, # 0 for n =1, and such that the ratio in
(1.3) is always an integer. Of course, the ordinary binomial coefficients occur when 4, =n.
When 4, = F,, the n™ Fibonacci number, we obtain the well-known "Fibonomial" coefficients.
Another very well-known case is when A, = 4" —1, in which case the coefficients determined by
(1.3) are the Gaussian or g-binomial coefficients. The generalized forms of Hermite's theorems
obtained in [6] are as follows:

A, n
it (9
and
[ provided (A 40| Ay s (15)

In this paper we will replace (1.1) and (1.2) by the following theorems:
n ny(n-1\\_(n
. k) g‘c‘d‘((k)’ (i 1)) (&) (16)
n+l-k n n (n
e ()2 0
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EXTENSIONS OF THE HERMITE G.C.D. THEOREMS FOR BINOMIAL COEFFICIENTS

so that the explicit quotients in the original Hermite statements are made evident as just g.c.d.'s of
two binomial coefficients.

What is more, the corresponding extensions to generalized binomials take the forms

ameee({i -6} 0
e ()=

Note especially now that in (1.9) the greatest common divisor automatically divides A4,,,,
whereas in (1.5) this was not necessarily the case.

Some variations of these theorems will be presented so that the problem raised by Gould in
[3] (no solution having appeared in the interim in the Monthly) will have a better formulation due
to the nature of our present attack. That problem asked for a way to unify Hermite's two theo-

rems into a general result of the form
(’,;) (1.10)
for suitable parameters
The explicit forms (1.6) and (1.7) were obtained by Schlesinger in November 1986, and are
now being published here for the first time.

It should be remarked that Dickson [1] also traces (1.1) in a form valid for multinomial coef-
ficients back to Schénemann [15] who, in 1839, used symmetric functions and p™ roots of unity.

and

an+bk +c
(rn+s, uk +v)

2. PROOF OF (1.6) AND (1.7) AND VARIATIONS

We need only the simplest properties of the binomial coefficients and the greatest common

divisor to see that
ng.c.d. ((2), (Z B D) =gc.d (n(’;), n('lz B 11)]

= g.c.d.(n(Z), k(’;)) = (Z)g.c.d.(n, k)
which proves (1.6). Similarly,

R (1 ) ST (I RRY )

- g.c.d.((n +1- k)(’;j, k(’/:j) = (’;) gcd(n+l-k k)

which proves (1.7), since g.c.d.(n+1-k,k)=g.cd.(n+1,k).

The improvement offered by this approach is that we avoid the use of the Euclidean algo-
rithm which only told us that g.c.d.(n, k) = nx + ky for some integers x and y. What we have now
are explicit values and the only property of the g.c.d. used is linearity, i.e., that ng.c.d.(4, B) =
g.c.d.(nd,nB).
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EXTENSIONS OF THE HERMITE G.C.D. THEOREMS FOR BINOMIAL COEFFICIENTS

In the same manner in which we proved (1.6) and (1.7), the reader may establish the follow-

ing variations:
wneed(E0e)=0) @n
e () () @2
(k+klt11 0 ( k+1) 23)

(k—ff—nl:ﬁg~°-d~((’i)’(’iiiD=(’i) @

Note that in (1.6), (1.7), (2.1), (2.2), (2.3), and (2.4) we have in each case the g.c.d. of (})
and (;;3), where a and b assume only the values —1, 0, +1 and in some special manner.
Here is a different-looking result, easily verified:

(n+1-k)(k + 1)g.c.d_((k’j 1), (k’il)) :(Z) gcd.(k(k+1),(n-k)n+1-k)), (2.5

so that if we try to shift a unit in both coefficients we get quadratic factors appearing.
Relation (1.6) may be extended easily by shifting both k£ and » in the one binomial coefficient
by the same amount. Thus, if we let 0<i <k, we find

(n- z)gcd(( )n(n—l) (n—l+1)(2111111))
= g,c_d((n—i)(’]:), n(n=1)- (n-i+1)(n- ’)( ~i —IID
= g.c_d_((n—i)(Z), k(k—1) - (k- 1)( —i- 1))

_ (Z)g.c.d.(n—i, Kk —1) - (k — i),

so that we have proved
n—i

n
2.6
((n—1i), k(k—1) - (k —i)) (k) 26)
for every i with 0<i <k, and the quotient is

gcd(( )n(n - (n—i+1)(z:é:ll)).

The corresponding proof by the original method of Hermite, using the Euclidean algorithm
runs as follows. Let d=g.c.d.(n—i k(k—1)---(k—1)). Then there exist integers x and y such
that (n—i)x+k(k—1)---(k—i)y=d. Thus,

388 [Nov.



EXTENSIONS OF THE HERMITE G.C.D. THEOREMS FOR BINOMIAL COEFFICIENTS

((n=D)x+k(k—1) - (k—i)y)(Z)=(n—i)x(2)+k(k_1)... (k‘i)y(Z)
=(n—i)x(2)+n(n—1) ---(n—i)y(’]z:é:ll),

whence the result follows; however, it does not yield the explicit quotient value.
Two formulas that are similar to (2.5) and which may be verified by the reader are:

n(k +1) g.c.d.((n; 1), (’,:jll)) - (Z)g,c.d. ((k +1)(n— k), n(n+1)) 2.7)

and

nn+1-k)g.c. d.((’,:jllj, ("; 1)) - (’;) gc.d((n+1- Kk, nn+1)). (2.8)

3. EXTENSION TO GENERALIZED BINOMIAL COEFFICIENTS
The proof of (1.8) runs as follows:

e {iff)-eea(afih A

= g.c.d.(A,,{Z , Ak{"}) - {Z} gc.d.(4, 4),
while for (1.9), we have

tenssed({i{feea (i o di )
~sod 4 i} afi})-fifeca (i a0

A simple but important application of (1.9) is to show that the Fibonomial Catalan numbers
are in fact integers. Let 4 = F, =n™ Fibonacci number. Then by (1.9), with the substitutions

n < 2n, k < n, we have that {;}, is divisible by F,,,/(F,,,, F,). But (,,,, F,) =1, whence the
n'" Fibonomial Catalan number
1 {Zn}
3.1)
Ez+l nJr (

is an integer. This makes a shorter proof than what was done in [4, p. 363].

=3

4. THEOREMS ABOUT LEAST COMMON MULTIPLES

Since (a, b)[a, b]=ab, where [a, b] denotes the least common multiple of a and b, for posi-
tive integers a and b, we may convert our theorems to statements about least common multiples.
Relation (1.7) may be restated as

g.c.d.((%), (k'i 1)) _ (’:' :11,_/;) (2) 4.1
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so that, in terms of least common multiples

()27

These then give interesting and useful statements about the g.c.d. and l.c.m. of consecutive
binomial coefficients on the 7" row of the Pascal triangle. In principle, we may find relations for
the g.c.d. and l.c.m. of (}) and (7).
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THE FIBONACCI QUARTERLY DEPARTMENT OF MATH. & COMP. SCI.
COMPUTER SCIENCE DEPARTMENT or BOX 7388 REYNOLDA STATION
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NOTES ON A CONJECTURE OF SINGMASTER
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Peter Jau-Shyong Shiue
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Yi Wang
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(Submitted January 1994)

1. INTRODUCTION

Let {a,}/_, be a sequence of positive integers in nondecreasing order. Following Guy [1],
{a,} is a sum=product sequence of size n if 2, a, =I1_,a,. For example, it is easily shown that
{2,2}, {1,2,3}, and {1,1,2,4} are the only sum=product sequences having sizes 2, 3, and 4,
respectively. Let N(n) denote the number of different sum=product sequences of size n. Basing
his research on various numerical data obtained by computer, David Singmaster has made some
conjectures about N(n). These conjectures were proposed during the closing session of the Fifth
International Conference on Fibonacci Numbers and Their Applications (St. Andrews, Scotland,
1992); namely, N(n) >1 for n>444, N(n)>2 for n>6324, and N(n)>3 for n>11874. The
most attractive conjecture is the statement that N(n) — o asn — .

The object of this note is twofold. First, we give an explicit expression for N(n). Second,
we investigate an extended conjecture for the number N(n, k) of different (sum)*=product
sequences of size n (n >k >2). Then our extended conjecture is the assertion that N(n) =« for
n>k>2. We prove this extended conjecture.

2. AN EXPRESSION FOR N(n)

As usual, denote by [x] the integer part of x>0. Let 7,(n) denote the number of different
ordered solutions of the Diophantine equation, with 2 <x, <x, <---<x,,

k k
[Tx-Xx=n-k n>k22). Q)
i=1 i=1
Moreover, we introduce a unit function /{x} defined for rational numbers x by the following:
1 if x is a nonnegative integer,
Itey =1, | @
otherwise.

Proposition 1: Let d(n) be the divisor function representing the number of divisors of n. For
n>3, we have

N = B dn-1)+ 1)] + :Zrk o), 3)

where m =[log, n]+2 and r,(n) may be expressed in the form
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n—k+x+-+x
nm= 3 I { : el —xk-l}a “
280 € <xp

(oo X))~ 1
the summation being taken over all integers x; with 2<x, <---<x,_,.

Proof: Notice that for any ordered solution (x,, ..., x;) of (1) with £ 22 and x, >2 we may
write

§1+’Zx —(ﬁl)nx _

i=1 i=1
so that it yields a sum=product sequence of size n. Thus, N(n) may be expressed in the form
N(m)=nm)+rn)+--

Here the first term r,(n) just represents the number of ordered solutions of the equation x;x, —
X, — X, =n—2, which may be rewritten as (x; —1)(x, —1)=n—1. Since the number of divisors of
(n—1) is given by d(n—1), it is clear that the number of distinct pairs (x, —1, x, —1) with x;, <x,
should be equal to [ (d(n—1)+1)], which is precisely the first term of (3).

To show that m =[log, n]+2, it suffices to determine the largest possible £ such that equa-

tion (1) with » >k >3 may have integer solutions in x;, >2. Now, by induction on £, it can be
shown that the following inequality,

k
[1x.

i=1

k k
Hxi—Zx, 2

i=1 i=1

Mw

holds for all x, >2 and k£ >3. (Here the routine induction proof is omitted.) Consequently, we
may infer the following from (1):

%xlx2 X, Sn—k<n.
Clearly, the largest possible %, viz. m = max{k}, may be obtained by setting all x, =2. Thus, we
have 2”2 < n, and we obtain m = [log, n]+2.

Finally, let us show that r, (n) has the expression (4). As may be observed, one may solve (1)
for x, in terms of integers x; 22 (f=1,...,k~1),

wreae )Tl )

Therefore, every ordered solution of (1) with 2 <x; <---<x, just corresponds to the condition
I{x, - k,_,} =1 and vice versa. Consequently, the number 7, () (with n> k > 3) can be expressed
as the summation (4). O

As may be verified, (4) can be used in a straightforward manner to give the value r,(n) =
[3(d(m—-1)+1)]. However, there seems to be no way to simplify the summation (4) for the gen-
- eral case k >3, although for given n and % the sum can be found using a computer.

Corollary 1: N(n)> [$(d(n-1)+1)| forn>3.
Corollary 2: lim sup N(n) = co.
n-—-»o0
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Corollaries 1 and 2 were also observed by Singmaster and his coauthors (cf. their preprint
[2]). The following simple examples are immediate consequences of the corollaries.

Example 1: For m> 1, we have N(m" +1) —» oo (n — ).

Example 2: If {p,} is the sequence of prime numbers, then we have N(p,p, - p,+1) > © as
n— .

3. THE EXTENDED CONJECTURE

Given » and k with n>k >2. The so-called extended conjecture is the statement that the
number of different solutions of the Diophantine equation

is infinite, namely, N(n, k) = oo.
In what follows, we will prove the extended conjecture.

Theorem 1: For n>k>2, the Diophantiﬁe equation

k
(; xij = I;Ixi (%)

has infinitely many solutions, namely, N(n, k) = c.

We shall accomplish the proof using three lemmas.

Lemma 1: For given integers m>0, 4 >1, and r > 2, if the equation

(m+ix,.) =/11L[x,- (6)

has a solution, then it has infinitely many solutions.
Proof: For the simplest case m =0 and r = 2, let the equation
(o +x,)" = A, (7)
have a solution (x,, x,) = (a;,@,). Without loss of generality, assume gcd(a,,a,) =1. Then (7)
implies a,|aZ, a,|a?, so that a, = a, = 1 and consequently A =4. Now, evidently, (7) has infinitely
many solutions (x;, x,) with x;, =x, and 1 =4.
Consider the general case m >0 or r >2. Now suppose (6) has a solution 4 = (a, a,, ..., a,)

with @ >a, >+-->a,. We shall construct a solution B=(4,b,,...,b,) with b;>b, >--->p dif-
ferent from A4 as follows. Denote ||-4||= maxa; =da. Consider the quadratic equation in #:
sSisr .

(m+§a,.+tj :l(ﬁa,)t. ®)
i=1

i=1
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r=1 r=1 r-1 z
2 +{2(m+2ai)—lnai}t +(m+zai) =0.
i=1 i=1 i=1

By supposition, (8) has a root #, =a,. Using the relations between the roots and coefficients
(Vieta's theorem), we see that the second root is given by

r=1 r=1 r=1 2
2‘2=/12a,—-2[m+2a,-)—ll:(m+2a,) /tl. ©)
i=1 i=1 i=1

From (9), we see that 7, is an integer and, moreover,

2
r=1
, =(m+Za,.) /a, >alla, >a.
i=1

Now let us take b,=1,,b,=a;,b;=aq,,...,b,=a,_,. From (8), it is clear that B=(b,b,,...,b,) is

<o Yr

a solution of (6) with || B||= max, b, = b =1, > a, =||4], i.e, |B]|> || 4]
Generally, if (6) has a solution x©® = (x(?, x{?, ..., x(?) with x(@ >x{? >...>x_ then the
recursive algorithm

) r—1 ) r—1 ) )
xf“l) - ’IH xl_(/) _ Z(m + Z xj(])) _ xf’),
i=1

i=1

(10)

R SN O RN BN O S L N )

> r—1»

will yield infinitely many solutions x%) = (x\? x{, . x9), j=0,1,2,..., such that [[x¥]<
[0 <@ <.

Lemma 2: Let m>0 and r >3. Then the equation

2
(m+2x,) :Hx,. an
i=1 i=1

has infinitely many solutions.

Proof: Equation (11) is a form of (6) with A=1. Now (11) has a solution x, = 5(m+r +2),
X, =4(m+r+2), x;=5,x=1,i=4,5, ., r. Infact,

2 ) r
(m+2x,) =(m+5(m+r+2)+4(m+r+2)+5+( ~3))> =100m+r+2)° =[] x. O
i=1

i=1
Hence, Lemma 2 follows from Lemma 1.

In particular, taking m =0 in (11), we get
Corollary 3: N(n,2)=oo, where n>3.
Lemma 3: Let m>1r>3. Then )
m(zr:xi) :]jx,. (12)
has infinitely many solutions.
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Proof: For the case r = 3, the substitution x, —my, (i =1,2,3) in (12) leads to

3 V% 3
(Z y,) =11n
i=1 i=1
For the case r >3, taking x, = m, we find that (12) becomes
r=1 2
(m+2x,) .
i=1 i=1
Hence, Lemma 3 is implied by Lemma 2. O

Proof of Theorem 1: 1t suffices to prove the theorem "N (n, k) = " for the case £ >3. In
(12), let us take
m=20DED2 k12,

We will now show that from every solution 4 =(a,,a,, ...,a,) with a; <a, <---<a, of (12) there
can be constructed a solution x = (x,, ..., x,) of (9) by the following:

x,=a, 1=12,...,r;

& 13
xr+j:2j—lzai7 ]:172>7k_2 ( )
i=1

In fact we have, by computation:

(o] B gl ge o8 (8

k-2 _ k
Inlx,. = Ir—[a,. -ﬁ(?'liaj m(zr:a,j 2(k=D(k+3)72 (ial) = 2"(1‘_2)(5:@) .
i=1 i=1 i=1 i=1 i=1

J=1 i=1

and

That is,
n k n
(Z x,) 1.
1 1

Clearly, x, <x, <:--<x,,,_, =x, so that ||x|>||4|. The recursive algorithm (10) implies
that {||4||} is unbounded, so is {||x|}. Hence, (5) also has infinitely many solutions. [

Theorem 2: For n>2k >4, the Diophantine equation

has at least p(k) distinct solutions (x;, ..., x,) which are contained in the simplex domain

0< Y x <(k+D)"+(k+Dn (x,>0),

i=1

where p(k) is the partition function of £.
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Proof: Every partition of £ may be represented by the summation
k=a,+a,++a, (1<v<k),
where «; are positive integers such that 1<, <a,<:--<a,. Denote n=m+k+1 with

m>k—1. Then, corresponding to each partition (o, +a, +---+a,) of k, one can construct a
solution of the equation as follows:

,=k+D)"+k+D"+--+k+D* +m-v+1fori=1 .k

X =k+D)" %, =]k +D*, ., x,,, =+ D%,

x;=1forj=k+v+1.. k+m+1

5

In fact, it may be verified at once that

n k v k
[Zx,) :{[k(k+1)"‘l +o+(+ D> +m—v+l]-k+2(k+1)""‘+m—v+1}
i=1

i=1
=[(k+D)* + -+ +D)* +m—v+1]F - (k+1)F
=[k+D* + - +k+ D™ +m—v+ 1 [ [k +D* =] ] x.
i=1 i=1

Evidently the solution constructed above satisfies the condition

x, =[k+D)" +- +(k+D)*" +m-v+1](k+1)

1

-

i=1

<[k +D)* +m](k +1) < (k+ 1)+ (k+Dn.

Hence, all the p(k) distinct solutions are contained in the simplex domain as mentioned in the
theorem. O

Example 3: For n=10, k =5, the equation (X% x, )’ = x,x, --- x,,has as least p(5) =7 different

solutions contained in the interior of the region: 0 < x, +x, + -+ +%;, < 6° +60 (x; > 0).
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1. INTRODUCTION AND GENERALITIES

The aim of this note is to extend the ideas explored in [3] to Pell numbers £, and Pell-Lucas
numbers Q,.

More precisely, we shall parallel the arguments of [3] (the contents of which the reader is
assumed to be aware of) to obtain expressions for both Pell numbers P, and Pell-Lucas numbers
O, which are real when the subscript x>0 is a real quantity. Of course, these numbers (or
better, functions) and the usual Pell numbers and Pell-Lucas numbers coincide when x =7 is an
integer. It will be shown that P, and O, enjoy some of the main properties of F, and 0, .

For the convenience of the reader, let us recall the Binet forms for Pell and Pell-Lucas
numbers and some identities involving them. These are (e.g., see [1], [S])

P =@"-p"/ V8  (Binet form), 1.1
0,=a"+p" (Binet form), (1.2)
where
a=-1/f=2-=1+-2, (1.3)
P.,=2P_ +P, [F =0 F=1] (recurrence relation), 1.4)
Q2 =20,4+0, [0,=0,=2] (recurrence relation), (1.5)
0,= Pyt Py, (1.6)
O, = by, (1.7)
P_,P,., =P*+(-1)" (Simson formula analogue), (1.8)
and 8P = Q0 —4(-1)". (1.9)

In section 2 the exponential representations for P, and O, are defined for all x and coincide
with P, and Q,, respectively, when » is an integer. In section 3 the polynomial-exponential
representation for P, is defined only for x>0 and coincides with £, when » is a nonnegative
integer, whereas the polynomial-exponential representation for Q, is defined only for x>0 and
coincides with O, when n is a positive integer. In both sections some properties of these numbers
are established. Finally, the application of a useful idea [7] is discussed briefly in section 4. It
must be noted that, despite the fact that the numbers defined in sections 2-4 coincide only when
X =n is an integer, they are denoted by the same symbol. Nevertheless, no misunderstanding can
arise since each definition applies only to the appropriate section. The notation
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A(x), the greatest integer not exceeding x,
#(x) = x — A(x), the fractional part of x,

will be used, and the following properties of A(x) will be taken into account throughout the
proofs:

A(x+1)/2]= Ax/2) +[1F(-1)*P]/ 2, (1.10)
M(x=-2)/2]=A(x/2)-1, (1.11)

22(x12) = A(x)-[1- (-1)**®]/2, (1.12)

M=x) = -A(x) -1 [i.e., Ax)+AU~x)=-1], if #(x)> 0. (1.13)

The proofs of (1.10)~(1.13) are not difficult but they are very lengthy and tedious. They are left
to the perseverance of the reader. Further, the conventions

(—xk) =0, if k£ =21 is an integer ([2], p. 48) (1.14)
and
b
> f)=0,ifb<a (1.15)

will be assumed.

2. EXPONENTIAL REPRESENTATION OF P, AND 0,

Keeping the Binet forms (1.1) and (1.2), and the definitions (2.13) and (2.14) of [3] in mind,
leads us to define
P, =[a* - (-1/®a"]/ 8 @.1)
and
0, =a"+(-1y'Pa™, (22)

As an illustration, the behavior of P, vs x is shown in Figure 1 for 0< x <8.

500

400

300
oy /

/
B

] 1 2 3 4 5 6 7 8
x

100

[

FIGURE 1. Behavior of P, vs xfor 0<x<8

The same function is plotted, within the interval 05<x <25 in Figure 2, to reveal the (rapidly
decreasing) discontinuities connected with the integral values of x which are due to the greatest
integer function inherent in the definition (2.1).
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FIGURE 2. Graph of P, vsx for 0.5<x<25

2.1. Some Properties of P, and O,

The numbers P, and Q, enjoy several properties of the usual Pell and Pell-Lucas numbers.
For example, the identities (1.4)-(1.9) remain valid when # is replaced by x with only one excep-
tion. The exception is (1.7) which must be restated as follows.

Proposition 1:
By if 4(x) <7,

P =
O {fzx—a‘“/ﬁ =0, /B, if g(x)21.

This will be proved later. Moreover, it must be noted that the quantity (—1)" has to be
replaced by (~=1)*® in (1.8) and (1.9).
The evaluation of finite sums analogous to those considered in [3] gives the results

n 1 -
2 ];c+k = —(7:1+1+x + ];l+x - ]; - ];—1), (23)
k=0 2

where 7 stands separately for P and Q, and

] P +P, —1/42
DB, =R V2 (n=2), (2.4)
k=0 2- Ql/n

S _ On-tyn = Gim — 2(J2-1)
IZ;)QIC/" 2- Ql/n

The identities (2.3)-(2.5) can be proved by using (2.1), (2.2), and the geometric series formula.

The extension of P, and Q, to negative values of the subscript x can be obtained by replacing
x by —x in the definitions (2.1) and (2.2), and by taking (1.13) into account. To our great sur-
prise, some simple calculations led to the following unexpected results

{P.x = (-)*¥Q, /48 (2.6)

(n=2). @2.5)

0., =(-)r*p g for §(x) >, 2.7
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which hold whenever x is not an integer. In spite of the unexpectedness of expessions (2.6) and
(2.7), the numbers P__and Q_, preserve many properties of P, =(—=1)""'P, and Q_, =(-1)"Q,.
For example, the identity

P.0 .=-PQ, (seeProposition 1) (2.8)

holds whatever the nature of x.

2.2. Some Detailed Proofs

For space reasons, only a few among the properties stated in section 2.1 will be proved in
detail. It is worth mentioning that the following equalities involving the quantity o [see (1.3)] are
to be used in the proofs of (1.4)-(1.6):

2a+1=a?, (2.9)
1-2a7'=a7?, (2.10)
1+a? = a4f8. (2.11)

Proof of (1.5) (for n replaced by x): By (2.2),
20, +0, = A& + ()M g =1 1 g% 4 (-1 P g
=a*Qa+1)+(-1)*Pa*(1-2a™) [since A(x+k) = A(x)+k, k an integer)
=a™? +(-)*Pa™ ™D [by (2.9), (2.10)]
— @ 4 (1 )
= @ 4 (1)) D)
=0.., [by(22)]. QE.D.

Proof of (1.8) (for n replaced by x): By (2.1),
P

x-1

Px+l _ sz - ([ax—l + (_l)l(x)a—xﬂ][axﬂ + (_ l)l(x)a—x-l] _ [ax _ (_1)/1(x) a—x]Z) / 8
= ([a@® + ¥ +(-1)*I(? +a )] -[a¥ +a > =2(-1)*]) /8
=) +a?-2)/8
=(-)*P(a-a™")*/8
=(-1)*® [since a—a™' =242, by (1.3)]. Q.E.D.

Proof of Proposition 1: By (2.1) and (2.2),
PxQx _ sz - (a2x _ a—Zx) / J’S’_[aZx _ (_l)l(Zx)a—Zx]/ _\/'8—
— a—2x[(_ 1)/1(2x) _ 1]/\/§

0, if A(2x) is even [i.e., if (x) <1},
= Q.E.D.
~a¥ /2, if A2x)is odd [i.e., if ¢(x)>1]
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3. POLYNOMIAL-EXPONENTIAL REPRESENTATION OF P, AND O,

Keeping the definitions (1.6) and (1.7) of [4] and the definitions (3.4) and (3.5) of [3] in
mind, leads us to define

Al(x-1)/2] - _
=3 (x ; J)zx-l—zf (x = 0) (3.1)
Jj=0
and
A2 X—j )7
0.-3 x+j( ; )zx—f (x>0). (3.2)
Jj=0

Observe that the binomial coefficient defined as

()(;) -1, (If) _x(x-D kgx —k+1) (k =1, an integer) (3.3)

makes sense ([2], p. 48) also if x is any real quantity. Moreover, observe that

(1) for x = 0, the expression (3.2) gives the indeterminate form 0/0 so that (J, =2 cannot be
defined by (3.2),

(i) by (1.13) and (1.15), we see that the expression (3.1) allows us to get F =0, and the exten-
sion to negative values of x yields P =0 , =0.

As an illustration, we show the first few values of P, and Q,. They are
P=0 (0<x<]),
P.=2"" (1<x<3),
P.=2"7(x+2) (3<x<5),

P.=2"5(x+x+28) (5<x<7)
Px:Z"_S(%x3—x2+—8—3§x+72) (7<x<9)
s 53,203 5 155

szzx‘“(éx IX +Tx+856) (O<x<1l),

and
0,=2" (0<x<2),
0, =2"%(x+4) (2<x<4),
0O, =20 +5x+32) (4<x<6),

0, = 2"‘7(—;—)9 +x? +§§9x+128) (6<x<8),

535

3 +l§§x2 +—3—x+1024) 8<x<10).

10 1 1
:2x 10 ___x4____x
0. ( 100 L2

6

The behavior of P, vs x is shown in Figure 3 for 0< x <55.
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) /

FIGURE 3. Behavior of P, vsx for 0 <x<5.5

3.1. Some Properties of P, and O,

Proposition 2:

P, if A(x) is even,

2P, +P. = X=Ax/2)=1), 4y - .
x+2—( A(x/2)+1 27 i A(x) is odd.

Proposition 3:

_ x+1 x—/'{(x/2) ¢(JC) . .

20,40, = Oz PR T (l(x/2)+1)2 , if A(x) is even,
Osia2s if A(x) is odd.

Proposition 4: P, +P,_ =0,.

3.2. Proofs
Proof of Proposition 2:
Case 1: A(x) even. By (3.1) and (1.10), write

P 4+op . = A x-1-j E-1-2) A X = J \nx+l-2;
x+2 x+l T Z ] + Z ] 2
Jj=0 j=0
AE) A/ .x— . ,
_ Z ( : ])2x+1—2/+ Z ( .])2x+1—2].
~ \j-1 : J
J=1 j=0

Taking (1.14) and (1.10) into account and using the basic recurrence ([8], p. 1) for the binomial
coefficients (which holds also when the upper argument is not an integer) yields

Paop - A(x/2) Y ] — ] 2x+1—2j B A(x/2) x4+l ] 2x+1-2]'
x + x+l Z ] _ 1 + ] - Z ]
Jj=0 j=0

B Al(x+1)/2] x+1— ] 2x+l-2j _p
- ] — L x+2-
Jj=0
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Case 2: A(x) odd. By (3.1), (1.10), and (1.12), write

A(x/2) X =1 ) re12y A(x/2) X= 1\ eic2;
B.+2P. = ), ;) + ) i)

Jj=0 j=0
MZ/VE)H( J) 1-2; z(zx/:z) X =] )Hxt+l-2
{5 (5 e
j=1 =0 J
A(x/2)+1 A(x/2)+1
= 2 ('—JJZHHH Z ( _J)ZHHJ X, (3.4)
=0 \JT
where
—A(x/2)=1), - ~24(x/2)-2 _ x—Ax/2)-1 x=A(x)
X‘( A(x/2)+1 )2 Axi+1 )2 (3-5)

By (1.10), (3.5), and the basic recurrence for the binomial coefficients, expression (3.4) can be
rewritten as

P +2P

x4l =

Al(x+1)/2] (x +1- j) 2 _x=—p - X
; x+2 ’

J=0
The proposition follows, since ¢(x) = x - A(x). Q.E.D.

Note: (1) Since the upper argument of the binomial coefficient in (3.5) is less than the lower one,
X =0 whenever x 21 is an (odd) integer, giving 2P.,, +P. = P,,,.

(2) Proposition 3 may be proved in a way similar to Proposition 2.

Proof of Proposition 4: First, by (3.1), (3.2), and the binomial identity available in ([8], p.

64), write
o- sz/n[(xf j) (x 1- J)]Zx_z,_ +1+'1%2)(x 1- j) %2
Jj=0 J ‘] j=0 ‘] 1
A(x/2)1 _
P+ Y ( 2" 1)2” . (3.6)
Jj=-1

Then, use (1.14), (1.11), and (3.1) to rewrite (3.6) as

Q +l+

Al(x=2)/2] (x B

i*f)zx-“f P, +P_. QED.

Jj=0

4. CONCLUDING REMARKS

In this note, definitions have been proposed for Pell numbers P, and Pell-Lucas numbers O,
which are real when the subscript x is real. We feel that this particular study might be concluded
suitably by observing that the idea explored in [7] applies beautifully to the afore-said numbers
(see also [6]). In fact, following [7], we can define

P, =[a* - cos(mx)a™]/ /8 4.1)

and
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0, =a” +cos(mx)a™™. (4.2)

The numbers P, and O, defined in this way and the usual Pell .and Pell-Lucas numbers obviously
coincide when x is an integer. Moreover, their behavior vs x does not present any discontinuity,
as shown in Figure 4 in the case of O, .

6

.f /

0o 0.5 1 1.5 2
b

FIGURE 4. Behavior of 0, vsxfor 0 <x <2

Some properties of these numbers are reported in the sequel. Their proofs are left as an
exercise for the interested reader. It should be noted that (4.1) and (4.2) occur in [6] as x coordi-
nates of points on Pell and Pell-Lucas curves. Both x- and y-coordinates for these curves were
obtained independently of [7] as special cases of coordinates for a system of more general curves
[61.

The identities (1.4)-(1.6) remain valid for P, and Q,, whereas the identity (1.7) does not.
More precisely, we have

PO, = By, ~[sin*(mx)a ] /8. 43)
Moreover, the analogue of (1.8) is
PPy~ P = cos(mx). 4.4
The extensions of (4.1) and (4.2) to negative values of x lead to
_ {[sin2(7rx)a" /8~ P}/ cos(nx), if g(x)#1L, “s)
P, if g(x) =1, '
and
0.= {[le— sin?(zx)a”]/ cos(x), Tf P#(x) # % “6)
x > if g(x)=7.

Since the reader might find some difficulty in deriving (4.5) and (4.6),we give a sketch of the
proof of (4.5).

Proof of (4.5) (a sketch): Replace x by —x in (4.1), thus getting
P =[a™* —cos(zx)a*]//8 [since cos(-y)=cosy]. 4.7
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If ¢(x) =1, then cos(nx)=0 so that P, = a* /8 [see (4.1)], and P! =8a™* =8a™* /8=
8P, [see (4.7)]. If ¢(x) # 1 [i.e., cos(zx)# 0], multiply both sides of (4.7) by cos(zx), and use
the identity cos’ y = 1—sin® y to obtain the right-hand side of (4.5). Q.E.D.

The proof of (4.6) is similar. Observe that (4.5) and (4.6) do not satisfy the analogue of (2.8)
for ¢(x) > 0. In particular, when ¢(x) =1 (i.e, x=n+1), we have

}DxQx + RxQ—x = P2n+l' (48)

Furthermore, the identity (2.3) remains valid for P, and ,, whereas an attempt to find the
identities corresponding to (2.4) and (2.5) required a great amount of calculations involving the
use of Euler formulas for circular functions and the geometric series formula, and produced a
couple of very unpleasant expressions. As an illustration, we exhibit the second one. This is

"Z—lQ _ V2[\BB,, +a ™" —cos( I n)] 49)
k=0 K Oyt —a™" +(a™"" ~2)cos(x/m)~1 ’
The closed-form expression of the analogous sum
) . ai-1
> O™ = =41 (4.10)
k=0 a”" -1

is much simpler even though perhaps less interesting.
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1. INTRODUCTION

The problem of obtaining a linear recursion for a decimated sequence in terms of the linear
recursion for the original finite field sequence has been studied extensively in the literature either
from a mathematical point of view or in connection with various applications mostly having to do
with high-speed parallel generation of linear recurring sequences. A survey of such applications,
mainly in spread spectrum communications and cryptography, can be found in [4]. The special
case of sequences satisfying primitive or irreducible polynomials was treated in [10], [7], and [3],
whereas the general case was settled in [2]. Alternative approaches to the general case were
given in [5], [6], [8], and [4]. Recently, the results from [2] have been extended to arbitrary fields
[1] by using the results on products of linear recurring sequences from [11]. Unlike the method
from [2], which is based on the decimation of individual sequences, the method from [1] deals
with vector spaces of sequences.

In this paper we develop a novel approach that enables us to determine the minimum
generating polynomial of decimated sequences over an arbitrary field in a simple and self-con-
tained way. This is achieved starting from a new characterization of this polynomial and by using
some facts from the general field theory, without invoking any results on product sequences.
Some new properties of decimated sequences are also pointed out.

2. PRELIMINARIES

Let F be an arbitrary field, let s = {s(¢)};2, denote a sequence over F, and let f(x)=2>",cx'
be a polynomial over F such that f(0) #0. Then s is called a linear recurring sequence satistying
fif

D es(t+i)=0, 120. (1)
i=0

Let L (f) or simply L(f) denote the set of all s over F that satisfy /. If the degree of fis n, then
L(f) is an n-dimensional vector space over /" which is closed under the translate operator 7=
{s(t+1)}72,. For every linear recurring sequence s over F, the unique monic polynomial g over F
of lowest degree satisfied by s is called the minimum polynomial of s and s is called a regular
sequence of g, see [2]. The minimum polynomial of a finite set of linear recurring sequences is
defined analogously and is equal to the least common multiple of the minimum polynomials of
individual sequences, see [10].

Given a sequence s over F and a positive integer d, the decimation of s by d, s is defined
by s““(t) = s(td), 1 > 0. Analogously, given a set S of sequences over F, the decimation of S by 4,
5@ is defined by @ = {s*: 5 €S}. Besides, given a nonnegative integer 7, the translate of s
by 7, ), is defined by 5,)(¢) = s(1 +7),1 20, that is, 5, = T’s.
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The set LO(f) is a vector space over F generated by the set {s((f))}';;}) of decimated
sequences obtained from the successive translates of any regular sequence s of f of degree n.
Since I(f) is closed under the translate operator, L)(f) = L(k), where 4 is the minimum

polynomial of the set {s{)}"_;. Moreover, since every sequence from {s{)}"_; is a translate of a

d-1

°_o and since the minimum polynomial of a translate divides the minimum

sequence from {s((f))}
polynomial of the original sequence, / is also the minimum polynomial of the set {s((f))}f;(l). This
set is important for the high-speed parallel generation of s, because s can be obtained by inter-
leaving the corresponding decimated sequences generated at d times lower speed than s.

For a finite field F, Duvall and Mortick [2] obtained the minimum polynomial /4 in terms of £,
d, and the characteristic of F, by considering the decimations of sequences from an appropriate
basis of L(f). Recently, by using the results from [11] on product sequences, Buck and Zierler
[1] have developed a new method which enabled them to extend the result [2] to arbitrary fields.
Polynomials with multiple roots in both [2] and [1] are dealt with in relatively involved ways,
which is also the case with inseparable polynomials in [1]. In the next section, we show how the
minimum polynomial of decimated sequences can be derived in a new way that is both simple and
compact. Instead of the results on product sequences, it is based on some facts from the general
field theory and treats the inseparable and separable polynomials in a unified way.

3. MINIMUM POLYNOMIAL OF DECIMATED SEQUENCES

Our objective is to derive the minimum polynomial of the set {sg)}}‘;é of d sequences
obtained from the decimation by d of d successive translates of an arbitrary linear recurring
sequence s over a field 7. To this end, first note that the original sequence s can be obtained by
interleaving the considered d decimated sequences. Second, for an arbitrary polynomial g over <
such that g(0) =0, L(g(x")) is the set of all the sequences obtained by interleaving & members of
L(g(x)), see [1]. Therefore, for an arbitrary polynomial g over F, g(0)=0, if s is a regular
sequence of a polynomial f over F, f(0) =0, then f(x)|g(x?) holds if and only if the decimated
sequences (s, 0 < 7<d—1, all satisfy g. In view of the definition of minimum polynomials, we
thus obtain the following simple characterization of the minimum: polynomial of the considered
decimated sequences.

Theorem 1: Let fbe a monic polynomial over F, f(0) =0, let d be a positive integer, and let s be
a regular sequence of /. The minimum polynomial of the set of decimated sequences {s((f))}‘:;(l) is
then equal to the unique monic polynomial g over ' of minimum degree such that f(x)|g(x9). e

Since the minimum polynomial established in Theorem 1 depends only of f and d, we adopt
the notation f;. It remains to find out an explicit characterization of f,,. We proceed in three
steps by proving the following lemmas.

Lemma 1: Let f= lcm.(f,f,), where f, and f, are monic polynomials over F, f(0)=0,
f>(0)#0. Then f(d) = lLc.m. (fi,(d),fz,(d)). °

Proof: Let h=l.c.m.(f} 4, /2, ))- We use the fact, already noted in the proof of Theorem
1, that a(x)|b(x?) < 4y |b, for arbitrary monic polynomials a and b over F, a(0) =0, 5(0) # 0.
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Accordingly, for an arbitrary monic polynomial g over F, g(0) #0, it follows that f(x)|g(x?) <
fi(®)|g(x"), i=1,2 f 4,8, i=1,2 h|g. Hence, h= f,). o

Lemma 2: Let f'be a monic and irreducible polynomial over F, f(0)#0, and let & be any root
of fin a splitting field £ of /. Then f;, is the minimum polynomial of a? overF. e

Proof: First, note that the minimum polynomial /2 of a over F exists because E is an alge-
braic extension of 7. We employ the well-known result, see [9], that the minimum polynomial of
an element y algebraic over I must divide every polynomial g over F such that g(y)=0. It
suffices to prove that f(x)|g(x?) < g(a?)=0 for an arbitrary monic polynomial g over F,
g(0)#0. Namely, by the definition of the minimum polynomial, it then follows that fi,, =h.
The implication "=>" is clear because ¢ is then a root of g(x?). The implication "<" is true
because, if a is a root of g(x?), then the minimum polynomial of a, which is f, must divide

g(x?). e

Lemma 3: Let f =g’ , where g is a monic and irreducible polynomial over F, g(0) =0, and 7 is a

positive integer. If /' has characteristic p=0, then f, =g(,. If F has characteristic p>0,
max(c—e,0]

d=hkp°, plk,and e>0 is the exponent of inseparability of g, then f ) = g([j)/p ( )], [z] denot-

ing the smallest integer not smaller than a real number z. o

Proof: We first prove that f, = &(a) for some positive integer 7. Note that by Lemma 2 g,
is irreducible. Assume that f; = ag('d), where g, [a. Then the minimality of f, implies that
2 (0)]a(x?) gfd)(xd) and g"(x)} g(’d)(xd). Since g is irreducible, then g(x)|a(x?); hence, gy la,
which contradicts the assumption. '

To determine #, we should analyze the multiplicities of the roots of g, g, and g, (x?). We
use some well-known facts from the general field theory (see [9], Ch. II, §1-6). If the character-
istic p of I is zero, then both g and g, are separable and the roots of g, g, and g d)(xd) are all
simple. Then ¢t =r. If F has characteristic p>0, d =kp°, pfk, and e>0 is the exponent of
inseparability of g (g is separable if e = 0), then all the roots of g have multiplicity p®. Note that
the exponent of inseparability of g is equal to the minimum nonnegative integer i such that a? is
separable over F, where « is is a root of g in a splitting field of g. Therefore, the exponent of
inseparability of the minimum polynomial g, of a? is max(e —c,0); hence, all the roots of &
Finally, all the roots of g(d)(xd) have p° times larger multiplicity
max(e:¢)  Then ¢ is the minimum positive integer j such that rp® <

max(e—c,0)

have multiplicity p
than the roots of g, that is, p

- max(e,c) °

JP

Consequently, in view of Theorem 1, Lemmas 1, 2, and 3 result in the following character-
ization of the minimum polynomial of decimated sequences.

Theorem 2: Let f be a monic polynomial over F, f(0) # 0, that factors as f =117, /", where f,
are distinct monic and irreducible polynomials, let d be a positive integer, and let s be a regular

sequence of /. Then the minimum polynomial of the set of decimated sequences {s((rd)) 471 is given

by
Sy = l.c.m.(fif'@):lsiSm), 2
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where f, ;) is the minimum polynomial of a’ over F, a; being any root of f, in a splitting field of
£, t, =, if F has characteristic zero, and #, =[7,/ p™“ ™% 9] if F has characteristic p>0, d = kp°,
plk, and e, > 0 is the exponent of inseparability of f;, 1<i<m. e

Theorem 2 specifies f;, as the minimum polynomial of a set of d decimated sequences rather
than the set of all the decimated sequences, which is interesting for parallel generation of linear
recurring sequences. As is shown in Section 2, I(f) = L(f.4) also holds, so that expression
(2) is equivalent to the one from [1]. However, our characterization is slightly different because
of the unified treatment of inseparable and separable polynomials and because of the different
treatment of the root multiplicities.

Finally, we also prove the following properties yielding a necessary and sufficient condition
for the minimum polynomial of a decimated sequence to depend only on the minimum polynomial
of the original sequence, which is interesting for cryptographic applications. Note that the proof
makes no use of Theorem 2.

Proposition: Let fbe a monic polynomial over F, f(0)#0, and let d be a positive integer. Then
the decimation by d defines a homomorphism of L(f) onto L(f); hence, deg f,, <deg f. If
and only if deg f, =degf, then the decimation by d defines an isomorphism of L(f) onto
L(f(4))- Furthermore, if deg f; = deg f, then the minimum polynomial of 59 is Jiay for every
regular sequence s of /. e

Proof: The proof of the first assertion is straightforward. The second assertion directly fol-
lows from the well-known fact in the theory of vector spaces (see [9], Ch. I, §21), that a homo-
morphism of a finite-dimensional vector space onto another vector space is an isomorphism if and
only if their dimensions are equal (otherwise, the dimension of the image vector space is strictly
smaller than the dimension of the original one). As for the third assertion, assume that there exists
a regular sequence s of f such that s is a regular sequence of A, where 4 is a proper factor of
J(a- From the definition of £, it then follows that the polynomial g(x)=g.c.d.(f(x), h(x?)) is
a proper factor of f such that g, =h. Then I[(g) = L(h), which means that there exists
another sequence s’ € L(f) different from s such that s“ = s/ Therefore, the decimation is
not an isomorphism and the second assertion then implies that deg f,, <deg /.

S
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1. INTRODUCTION

Recall that the nth roots of unity are the roots of the polynomial x” —1. Also, they have a
geometrical interpretation in terms of the vertices of a regular polygon with » sides inscribed in
the unit circle. Now consider the polynomial of degree n with the property that each of its roots
is the sum of an »™ root of unity and its square. That is, let U, denote the set of nt roots of unity
and consider the polynomial

Bx)=[J(x= (£ +¢Y).
¢el,

What are the coeflicients of F,(x)? A priori the coefficients are complex numbers. However, we
will show they are actually integers. In fact, we will prove the unexpected result that the absolute
value of the coefficient of x* has a combinatorial interpretation in terms of the number of A-sub-
sets of n objects arranged in a circle with no two selected objects being consecutive. The sum of
the coeficients is expressed in terms of Lucas numbers.

2. COMBINATORIAL IDENTITIES

Before proving the theorem, we wil state some known combinatorial identities. We assume
throughout the paper that » > 0. It is well known that the number of £-subsets without consecu-
tive elements chosen from » objects arranged in a circle is (see Riordan [3], p. 198)

n (n-k
n-k\ k )

The generating function of this sequence has the following closed form:

[%] _ n _ o n
s (nkk)xk:(1+«/;+4x) +(1 J;+4 ) W

imon—k

When x = —1 we obtain the following identity [since 4 (1£+/-3) are sixth roots of unity]:

[3] 2(-1)" if n=0(mod3
n n-— k) & ( ) ( o )7
1) = 2
kz=o”‘k[ k D {(—l)”‘1 if n# 0 (mod 3). @
The following identity will also be used:
8l NG
e A g
=0
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References for these combinatorial identities include Graham, Knuth, & Patashnik [2], pp.
178-79 and 204, or Riordan [4], pp. 75-77, or Gould [1], Identities 1.64, 1.68, and 1.75.

3. THE THEOREM

Theorem: The roots of the polynomial
) S ek
B(x)=x"+(-1) —%n—_—;( f )x (@)
are precisely the » complex numbers (not necessarily distinct) of the form £ +¢?, where { ranges
over U, the nth roots of unity. That is,

(3]
-k
x—((+ =x"+(=1)" - —ﬂ—(n )xk.
TJe-@ren=xrer-3 2"
Proof: Let ¢ denote any nth root of unity. Then x = ¢ +¢? is a root of P,(x) of and only if

3] e
> (kk)<4+42)“=(¢+:2)"+(—1)”=<1+o"+(—1>"~ ©)

imon—k

But (5) follows immediately from (1) since 1+4({+¢?) = (2 +1)? and {" =1. Hence, if the n
complex numbers, ¢ +¢?, are distinct as ¢ ranges over U,, then all roots of F,(x) have been
determined.

To complete the proof, we will show all the roots are distinct except when n=0 (mod 3). In
that case, x = —1 will be a double root. To verify this, first observe that by (2) and (4) x=-1isa
root of B,(x) if and only if n=0 (mod 3). Now the derivative of F,(x) is

n-2
in-2-k
Px)=n""-ny " x* 6)
o\ Kk
So x =—1is aroot of P/(x) if and only if

(2] n-2-k k n-1

S F)ent = ™

k=0

But, if n=0 (mod 3), then (7) follows immediately from (3) with » replaced by #—2 and noting
that [since (1) = (=1)"]

= (7 =

Thus, x = —1 is at least a double root of F,(x) when n=0 (mod 3). Finally, we will show x = -1
is in fact a double root. First, however, a lemma to determine when the sum of two »t roots of
unity is equal to —1.
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Lemma: Let ¢, denote the primitive nt root of unity cos2=+isin2Z. Suppose 0< j <k <n.
Then, for some j and k, ¢/ +¢* = —1if and only if n =3 andk 2j.

Proof: Ifn=3jand k =2j, then {} ;e §f is a sum of the primitive cube roots of unity and,

hence, is equal to —1. Conversely, suppose the sum of the two st roots of unity is equal to —1.
Equating real and imaginary parts, we obtain cos2Z j+cos2Zk =—1and sin2% j+sin2Zk =0.

Now solve for cos2Zk and sin2Z

2 2
= L 8
cosnk 1- COSnj ®)
and
. 27 . 27,
—_—— = — — 7. 9
smnk sin—= j ©)]

Next, square both sides of (8) and (9), then add to obtain cos(z—” j) =—1. Similarly, solving the

original equations for cos2Z j and sinZZ j, we obtain cos( k)=~%‘ Since 0< j <k <n, we

must have 2% j =2Z and ZT”k:“T”. Hence, n=3j and 3k =2n. Therefore, n=3jand k =2,

and the lemma is proved.

Now we return to the proof of the theorem to determine when the roots of £,(x) will not be
distinct. Suppose 0< j <k <n and two roots are the same. Then

G+ =C+ 8 (10)
Hence, ¢} ¢}, = 3° = ¢/ = (65 - ¢, +¢7). So we must have
G+ =-1 (11)

Therefore, by the lemma, ¢ and ¢* are the primitive cube roots of unity. Since the square of one
primitive cube root of unity is the other primitive cube root, the root x =—1 will occur exactly
twice in £ +¢? as ¢ ranges over the n roots of unity for n=0 (mod 3).

L

n

if nis odd,

. where L, is the n™ Lucas number.
L,+2 ifniseven,

Corollary: P,(1)= {

Proof: 1t is well known that 3, ﬁ(”;k ) = I, where L is the n"™ Lucas number.
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1. EXPERIMENTAL SETTING

Consider a die with m faces marked {0,1,2,...,m—1}. Assume that the turn-up side proba-
bilities are in geometric progression as follows:

Face (i) 0 1 2 m—1
1
Probability ()  ¢"  pg"? P . p (1)

The necessary and sufficient restrictions on p and g are
g+ pg" PP e+ P =1, 0<p<], 0<g<1. )

Note that the first restriction is equivalent to ¢” — p” =g — p.

The die just described becomes an ordinary coin when m=2. In this case p+g=1. Select-
ing p=q=m"""" will result in a fair die, i.e., each face will have probability m
when the die is rolled. Also, from (2), when 0< p <m /™ one must have m """ <g <1, and

of turning-up

vice versa.

For a given p, the function f(q)=¢" —q— p™ + p has derivative f’(q)=mq"™ " ~1. Thus,
7(q) is strictly decreasing for 0< g <m "™ and strictly increasing for m V""" <g <1. This
fact in conjunction with the remarks in the previous paragraph assure that, for a given p
(0< p <1), there is a unique q satisfying (2). The value of g, which is the root of a polynomial of
degree m—1, cannot be given explicitly in general. However, g=1-p for m=2, and q=
(~p++4-3p*)/2 for m=3.

Alternative parametrizations to (1) that may yield other useful interpretations are also
possible. For instance, if p < g, then defining 8 = p/q one can easily see that (1) is equivalent to
p.=(1-60)¢ /(1-6"),0<i<m-1. Inthis case, rolling the die is equivalent to generating a value
of a geometric random variable constrained to the range {0,1,2,...,m—1} with 1—-8and @ being
the success and failure probabilities, respectively.
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2. THE EXTENDED BINOMIAL DISTRIBUTION
AND PROPERTIES

The focus of this article is the random variable

X{™ = total score in 7 rolls of the m-sided die with 3
face probabilities as described in (1)-(2). ®)

It is clear that X{™ has the familiar binomial distribution with index # and success probability p
when m = 2. For this reason, the distribution of X will be called the extended binomial distri-
bution of order m, index n and parameter p, and will be denoted by EB(m, n, p).

Note that X is simply the convolution of 7 i.i.d. random variables corresponding to the
scores of n rolls of the die. Therefore, the probability generating function (PGF) of X can be
written as

G(r>:E(rX5"‘)):[———q — } . @
q-pt

Expanding G(#) in powers of 7 yields an expression for the probability mass function (PMF) of
X as

Pr(X{" =r; p)=C,(n,r)p'q" ™", 0<r<(m-1n, Q)

where C, (n,r) is the coefficient of " in [(1-¢")/(1-£)]'". Note the similarity between (5) and
the ordinary binomial distribution.

The coefficients C,(n,r), which can be traced back to the classic work of Abraham De
Moivre [6], were studied in detail by Freund [10], who discussed their role in occupancy theory.
In particular, C,(n,r) can be interpreted as "the number of ways of putting » indistinguishable
objects into » numbered boxes with each box containing at most m—1 objects." Thus,

Cn,r)= (’Z), 0<r<n.

In the spirit of Bollinger [3] and [4], we will refer to the numbers C,(n,7),0 <r <(m—1)n, as the
extended binomial coefficients of order m.

From a mathematical point of view, many theoretical properties of C,,(n, r) have been estab-
lished. For details, see [4] and [5] and the references therein. From a probabilistic point of view,
in addition to the applications to occupancy problems discussed in [10] and those presented in this
article, C,,(n,7) plays an important role in describing the distribution of discrete waiting time
random variables based on run criteria. For instance, see [3] and [2].

A convenient way of computing C,,(n, ) is by means of the recursion

m—=1
C,nr)= ZCm(n—l,r—L’). 6)
=0
For the case m = 2, this recursion reduces to the well-known identity
()0 0=)
4 r r—1
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In a manner similar to the calculation of the familiar Pascal triangle, (6) can be used to compute a
table the #n™ row of which will contain all the extended binomial coefficients of order m. These
arrangements have been called extended Pascal triangles, see [4].

Alternatively, C, (n, r) can be calculated by means of the explicit formula

Coln,7) =§<—1>“(Z)(”"J_“f" ), ™)

where a, = min{n, integer part in 7 /m}. For a proof of (6)-(7), see [5] and [2].
The classical hypergeometric identity also extends to arbitrary m. Namely,

C(m +my, 1) = 3 C,,(m, @)C,(my, 7 - a). ®)

Relationship (8) will be called the extended hypergeometric identity of order m in this article.
It is a minor exercise to show that the property of symmetry for ordinary binomial coeffi-
cients also holds for m-binomial coefficients. That is,
C,(nr)y=C,(n,(m-Dn-r), 0<r<(m-Dn. ©
As a result,
Pr(X"™ =r; p) =Pr(X = (m—-Dn-r,q), 0<r<(m-1n, (10)

where p and g satisfy (2). Note that the distribution of X is symmetric when p=m (")

since ¢ = p in this case.
The PMF of X{™ given in (5) can also be computed recursively as follows. Write the PGF
(4) as
(g-p)"GW)=(q" - p"1")" an

Then expand each factor in (11) using the binomial theorem and (5), and equate the coefficients of
t" from both sides to get

min{n, r}

> (~1)j@pj g P (XM =r—j; p)=q"a,, (12)
=0

forr=0,1,2,..., where
{0 if b, #0,

(—l)a’ (:r )prq(m—l)n—r lf.br =0,
and r =am+b, with 0<b, <m—1. From (12), one immediately obtains the recursion

min{r, n}

j

Pr( X" =rp)=a,- Y, (—1)’(’})(5) Pr( X" =r—j p), 1<r<(m-Dn. (13)
J=1

As an illustration of the variety of shapes exhibited by the distribution of X, (5) was

calculated numerically for m=4,n=10, and several values of (p,q) using the foregoing

methods. The corresponding bar plots are depicted in Figure 1. Note that the distribution of

X is positively skewed for p <m V"D = 0.63 and negatively skewed for p>m V" This
result holds generally for arbitrary m.
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FIGURE 1. Shapes of the 4-Binomial Distribution with Index n =10
and Several Values of (p, q)

Because X arises as a convolution, it must have the reproductive property. Specifically, if
%, Y%, ..., Y, are independent with ¥ ~ EB(m, n, p), then T, ¥ ~EB(m, ¥ n, p).
Defining 6 = p/ q, one can write the PMF of X given in (5) as

C,(nnre
Pr(X{" =r, p)=—22>2— 0<r<(m-1)n, (14)
( P (
where 0< @ < o and
1-omY
_ | 15
e®=| 5 (9

In the form (14)-(15), one can readily see that X has a power series distribution. Thus, any
results on this general family of distributions will apply to the distribution of X\ as well. Note
from (15) that g(8) = (1+6)" for m=2 and g(6) = (1-6)™" for m = when 0< @ <1, character-
izing the binomial and negative binomial distributions, respectively. Using a standard argument,
one can get the Poisson distribution by keeping m fixed, and letting » — o0 and & — 0 in such a
way that n@/(1+6)— A. By means of the central limit theorem, a normal approximation is also
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guaranteed. Specifically, (X — u)/ o ~ N(0,1) for n large, where pand o are as given in (16)
below.
From (4) or otherwise, the mean and variance of X{™ are readily shown to be

. 1-mp™* 1-m*(pg)™"
u=EX"™=mp—F— & =Var(X™) =npg——E1 (16)
q-p (q-py’

In comparing z and o, one can readily see that < o when and only when
mp™ 2 (mq™ —q+1) < 1. an

For any 3 <m <o, the left-hand side of (17) approaches 0 as p— 0 and m as p—> 1. Hence,
both u <o? and 2> o* are always possible. When m =2, (16) gives g =np and o = npg with
p+q=1. This case corresponds to the binomial model for which x> o forall 0< p<1. When
p < q one can easily show that u=n8/(1-6), o> =n6/(1-6)*> when m=oo where 0= p/q.
Therefore, < o? for all 0<@<1 in this case, a well-known property for the negative binomial
distribution.

Applying the results in [7, pp. 109-11, Th. 4.2], one can readily show that the turn-up face
probability distribution (1) is strongly unimodal. Because the family of discrete strongly unimodal
distributions is closed under convolution, it follows that the distribution of X is strongly
unimodal (i.e., log-concave). In particular, the distribution of X" is unimodal in the usual sense,
i.e., there exists a point M such that

Pr(X' =r; p) 2 Pr(X" =r -1, p) according as » $ M .
A consequence of the log-concavity of the distribution of X" is the inequality
[C(n, ) 2C (nr-D)C,(n,r+1), 1<r<(m-Dn-1,

which simply shows the log-concavity of the extended binomial coefficients C, (n,7r), 0<r <
(m~1)n. This shows, in particular, that the distribution of X is log-concave.

3. HISTORY AND PREVIOUS APPLICATIONS

The earliest reference to the extended binomial coefficients can be found in the work of
Abraham De Moivre [6]. A detailed "theoretical" discussion appeared in the third edition of [6],
pp. 39-43, with many illustrative examples throughout the book. His main result appeared in the
form of a lemma which stated: "To find how many chances there are upon any number of dice,
each of them of the same number of faces, to throw any given number of points" [6, p. 39].
Without giving the reference, De Moivre stated in [6] that the lemma was published by him for the
first time in 1711.

A look at [6] indicates that: (a) De Moivre dealt with a fair die with an arbitrary number of
faces; (b) he calculated C,(n, r) numerically by explicit expansion of (7); (c) he was aware of the

generating function for C,_(n,r),
_m n (m-hn
(1 ! J = Z C,(n,r"

1-1 ~

which is given immediately after (5); (d) he was aware of the property of symmetry (9).
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The distribution of X +n for the case of a fair die appears as an exercise in [8, pp. 284-
85]. Generating functions and limits for the cumulative probabilities of X +n under this case
are also presented as exercises by Feller [8, p. 285] who relates them to the work of Lagrange.

An important practical application of the extended binomial distribution was presented by
Kalbfleisch and Sprott [14] in relation to the estimation of the "hit number," a parameter asso-
ciated with an interesting dilution series model arising in virology. This model was originally
proposed by Alling in [1]. The basics of the experiment, data, and assumptions are as follows: (a)
a liquid medium containing a suspension of virus particles is successively diluted to form a
geometric series of & +1 dilutions a°, a,a?, ..., a*; (b) these dilutions are poured over replicate
cell sheets; (c) after a period of growth, the number N, of plaques occurring at dilution level @' is
observed (0<i<k); (d) the N,'s are independent with N, having a Poisson distribution with
mean 7y’ (0<i<k). Here n is the expected number of plaques in the undiluted suspension
(i=0), and y =a™, where a is the known dilution factor and / the "hit number," is the minimum
number of virus particles that must attach themselves to a cell in order to form a plaque. The
primary objective of the experiment was to estimate 4.

In their statistical analysis, Kalbfleisch and Sprott [14] first show that the statistics (S, 7) =
(T, N, ZFiN,) are jointly sufficient for (7, #). Then they derive the conditional distribution of
T given § = s, which turns out to be the extended binomial distribution in the form (14) with
m=k+1 n=s,and &=y. They use this distribution to make inferences about 2=~-Iny /Ina
that are unaffected by lack of knowledge on the remaining parameter 77.

4. INFERENTIAL ISSUES

4.1 Sufficiency, Completeness, and Consequences

Since for given m and 7 the distribution of X" is a member of the family of power-series
distributions, then {Pr(X\™ =-; p): 0< p <1} is complete. Further, if 1. Y,.., %, are indepen-
dent and identically distributed as X, then S=3%* ¥ is sufficient for p or any one-to-one
parametric function such as = p/g. Due to the already noted reproductive property, it follows
that {Pr(S =-; p): 0< p <1} is also complete.

These facts, in conjunction with the Rao-Blackwell theorem (e.g., see [12, pp. 349-52)),
imply that the only parametric functions for which minimum variance unbiased estimators exist
are the linear combinations of {p’q"" """, 0<r < (m—1)n}. In particular, the sample mean ¥ =

¥ Y /k is the unique minimum variance unbiased estimator of the average value g of X
given in (16).

4.2 Extended Fisher's Conditional Test and
the Extended Hypergeometric Distribution

Consider two m-faced dice, labeled Die 1 and Die 2, with respective unknown parameter
values p, and p,. On the basis of the scores },, 1y, ..., 1}, in » rolls of Die 1 and 1, ,, ..., B,
in n, rolls of Die 2, we would like to test

Hyp=p, vs H:p, # p,.
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In view of the sufficiency results of section 4.1, in developing a sensible test for H, vs H,,
one should focus on the total scores 1; = X", ¥, and ¥; = 32| ;.. Note that ¥ and ¥, are inde-
pendent and have extended binomial distributions with parameters (m,n, p,) and (m, n,, p,),
respectively. Letting p = pg, /(g,p,), one can show that

a+b
PI'(YI =4a, Yl = b’ p17 pZ) = Cm(nla a)Cm(n29 b)pa(iq);—) qgm—l)n,q§m4)nz >

from which it is readily seen that 7 =Y +7, is sufficient for p, when p is specified. Therefore,
the conditional distribution of ¥}, given the observed value of 7, depends on the parameters only
through p. In fact,

Cm (nb G)Cm(l’iZ, - a)pa
2:’ycvm(nl’.}))Cvrn(r‘&’ t- y)py ’

Since H, and H, are equivalent to H,: p=1and H,: p #1, respectively, then a test for H, vs H,
can be developed using ¥ as a test statistic and its conditional null distribution

Pr(f=a; p|T=1)=

<acs<lt.

Pr(t; = a|T=1) = ol DCnl,120) 1\ (18)
Con(m + 1y, 1)

P-values for testing H, vs H, can be calculated as tail probabilities from (18).

Note that the extended hypergeometric identity (8) has been used in deriving (18). Naturally,
the test statistic reduces to Fisher's exact conditional test for homogeneity in 2 x 2 tables (see [9,
pp. 89-92]) when m =2 and (18) becomes the classical hypergeometric distribution. For these
reasons, (18) will be called the extended hypergeometric distribution of order m.

Analogous to the well-known asymptotic relation between the classical hypergeometric and
binomial distributions, it can be shown here that, for every m, (18) converges to ({)z°(1—x)"°
as m —» oo, n, —> o in such a way that 7, / (1, +n,) > 7.

5. NEGATIVE BINOMIAL EXTENSIONS

5.1 Total Score up to a Negative-Binomially-Stopped Roll

Consider consecutive rolls of the m-faced die with side probabilities (1)-(2). For a given
positive integer k, define the random variable Z{™ as

Z{™ = total score until face marked 0 appears & times. (19)

Clearly, Z{™ has the standard negative binomial distribution when m = 2.

In order to derive the PGF of Z(™, one can view the above experiment as a two-stage
proccess as follows. First, generate a value n of 7, = (number of rolls until face marked O appears
k times) — k. Then roll n times a "reduced” die with faces marked {1,2,...,m—1} and correspond-
ing side probabilities pg™ 2/ (1—-qg"™ ™), p*q" 2 /(1-q"™),..., p" ' /(1-q™"). Then compute the
total score among the 7 rolls to obtain Z{" with the convention that Z{"™ = 0 whenever n=0.

Note that 7, has the standard negative binomial distribution

Pr(T, =n; p) = (n P ])q""“”‘(l —¢"", 0<n<o.
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Thus, Z{™ can be seen as the total score from a negative binomial random number of rolls of the
reduced die. From the basic theory on compounding of distributions, see [13, pp. 344-45], the
PGF of Z{™ can be written

H(t)= E(r%") = G (Gp(0)),

where Gy (7) is the PGF of 7, and Gg(?) is the PGF of the score in one roll of the "reduced" die.
Since

m-1 k m—1 m—1,m-1
q pt g -p i
G.()=| ———1{, Gx(®)= )
Tk() (1_(l_qm-—l)tJ R( ) l_qm—l q__pt
then
qm-—l _ pm—ltm—l -k
H(t)= q('"‘l)k|:1 ~ pt————q e } : (20)

Using the familiar negative binomial expansion in conjunction with the methods used to
derive (4)-(5) yield

Pr(Z{" =r; p) = q""‘”"(-g) Z(" Yo l) Cpoay 7 =1)g" ™", 0<r <o0. @1)
i=0

An alternative use of (20) is for moment calculations about Z{™. For instance, the average
value of Z{™ is

E(Z™) = (1) = imp_—l -l-"—q-’—’i%i. (22)

When m=2, (22) gives E(Z®)=kp/q, which is the expected value of a standard negative
binomial random variate.
5.2 An Extended Negative Binomial Distribution

Consider again the die with m faces and turn-up side probabilities given by (1)-(2). Perhaps a
more natural negative binomial counterpart is the waiting time random variable

Y{™ =number of rolls until a total score of N or more (23)
is observed for the first time.

Clearly Y™ is a standard negative binomial variate when m=2. For this reason the distribution
of Y™ will be called the extended negative binomial distribution of order m and will be denoted
as ENB(m, N, p).

It is readily seen that the fundamental identity

Pr(Y{™ <n; p) =Pr(X™ > N; p) 24)

holds for every n. For the particular case m = 2, relationship (24) is well known from elementary
probability courses. Using (24) in conjunction with (5) one can show that

N-1 N-1
PY S =n p)=3 C,(n-1r)p'q" D" = 3 C,(nr)p'qg" ", (25)

r=0 r=0

for n > the smallest integer not less than N / (m—1).
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Although (25) is adequate for numerical evaluations, further simplifications are possible in
particular cases. For instance, when 1< N <m, with the help of (7) one can show that

Pr(¥™ = n; p) = q(m—1)(n—1)]vz—l(£) {(n +: - 2) _ qm—l(n +;‘ - 1)}’ (26)

r=0 9

for 1<n <. Note that ¥ is a geometric random variable equivalent to the number of coin
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