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1. INTRODUCTION 

Dickson [1], in his History of the Theory of Numbers, attributes the divisibility theorems 

n 
k 

and 
(n,k) 

n-k + l 

(i . i) 

(ra + U ) 
(1.2) 

where (#, k) denotes the greatest common divisor of n and k to Hermite [9], [10] whose proofs 
use the Euclidean algorithm. In [5] and [6] the proofs were extended by one of us to generalized 
binomial coefficients defined by 

n 1 _ 4 I4 I - I 4 . •k+i 

4 4 - i • 4 
with 1. (1.3) 

where {A„} is a sequence of integers such that AQ = 0,An^0 for n > 1, and such that the ratio in 
(1.3) is always an integer. Of course, the ordinary binomial coefficients occur when An-n. 
When An= Fn, the nth Fibonacci number, we obtain the well-known "Fibonomial" coefficients. 
Another very well-known case is when An=qn -I, in which case the coefficients determined by 
(1.3) are the Gaussian or ^-binomial coefficients. The generalized forms of Hermite's theorems 
obtained in [6] are as follows: 

C4?3 4 ) 
and 

A- •k+1 

(An+l, Ak) 
provided (4,+1, 4)14,_. k+i-

In this paper we will replace (1.1) and (1.2) by the following theorems: 

(*,*) 
g.c.d. 

and 
n + l-k g.c.d. 

7 1 - 1 
k-\ 

n 
k-\ 

(1.4) 

(1.5) 

(1.6) 

(1.7) 
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so that the explicit quotients in the original Hermite statements are made evident as just g.c.d.'s of 
two binomial coefficients. 

What is more, the corresponding extensions to generalized binomials take the forms 

and 

Note especially now that in (1.9) the greatest common divisor automatically divides 4^+I-A: 
whereas in (1.5) this was not necessarily the case. 

Some variations of these theorems will be presented so that the problem raised by Gould in 
[3] (no solution having appeared in the interim in the Monthly) will have a better formulation due 
to the nature of our present attack. That problem asked for a way to unify Hermite's two theo-
rems into a general result of the form 

an + bk+c | /V | ( ] 1 0 ) 

(rn + s, uk + v)\ \k ) 
for suitable parameters 

The explicit forms (1.6) and (1.7) were obtained by Schlesinger in November 1986, and are 
now being published here for the first time. 

It should be remarked that Dickson [1] also traces (1.1) in a form valid for multinomial coef-
ficients back to Schonemann [15] who, in 1839, used symmetric functions and pih roots of unity. 

2. PROOF OF (1.6) AND (1.7) AND VARIATIONS 

We need only the simplest properties of the binomial coefficients and the greatest common 
divisor to see that 

»gc.d(0,(r_i
1))=g,.d(nQ,H n-\ 

k-\ 

= 8-c.dWjUj]] = II]g.c.d.(n,*) 
which proves (1.6). Similarly, 

( ,+ l - * ) g . c . d ^ 

= gX.dj(/I + l - * ) ( ^ 

which proves (1.7), since g.c.d.(w + l-A:, k) = g.c.d.(w + l, k). 
The improvement offered by this approach is that we avoid the use of the Euclidean algo-

rithm which only told us that g. c. d. (w, k) = nx + ky for some integers x and y. What we have now 
are explicit values and the only property of the g.c.d. used is linearity, i.e., that n g.c.d.(^, B) = 
g.c.d.QiA.nB). 
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In the same manner in which we proved (1.6) and (1.7), the reader may establish the follow-
ing variations: 

Note that in (1.6), (1.7), (2.1), (2.2), (2.3), and (2.4) we have in each case the g.c.d. of (j) 
and (l+l), where a and b assume only the values - 1 , 0, +1 and in some special manner. 

Here is a different-looking result, easily verified: 

(w + l-*)(* + l ) g x . d . ^ 1 ) ^ 1 j J = Qg.c.d.(^ + l)>(/i-*)(/i + l-*)), (2.5) 

so that if we try to shift a unit in both coefficients we get quadratic factors appearing. 
Relation (1.6) may be extended easily by shifting both k and n in the one binomial coefficient 

by the same amount. Thus, if we let 0 <i <k, we find 

(»-/)g.c.d|Q,»(»-i)-(»-/+i)^:;.:1
1 

= g.cAUn-i)\l\n(n-l)---(n-i + l)(n-i^lZ'iZi 

= gxA.{{n-i){^,k{k-\)---(k-i)^kZ)z\ 

= ( j jg . c .d . (« - / , t ( t - l ) - (* -0 ) , 

so that we have proved 
n-i 

((n-i),k(k-l)-(k-i)) 

for every / with 0 < / < k, and the quotient is 

(2.6) 

g.c.d.[(j)i<i,-i)...(ii-,-+i)(»:}:5) 

The corresponding proof by the original method of Hermite, using the Euclidean algorithm 
runs as follows. Let d = g. c. d. (n - /', k(k -1) • • • (k -1)). Then there exist integers x and y such 
that (n- i)x + k(k-l)--(k-i)y = d. Thus, 

388 [NOV. 



EXTENSIONS OF THE HERMITE G.C.D. THEOREMS FOR BINOMIAL COEFFICIENTS 

((» - / > + * ( * - ! ) . . . ( * - f)y^k] = (n- i)x[^j + k(k-l)--(k- i))\n 

= (n-i)x(nA + n(n-l)---(n-i)y(n
k-_i-_\ 

whence the result follows; however, it does not yield the explicit quotient value. 
Two formulas that are similar to (2.5) and which may be verified by the reader are: 

K* + l ) g x . d . ^ ^ (2.7) 

and 

Kn + l - * ) g . c . d . ^ _ 1
1 ) ^ + 1 J = Qg.c.d.((« + l-*)A)/i(/i + l)). (2.8) 

3. EXTENSION TO GENERALIZED BINOMIAL COEFFICIENTS 

The proof of (1.8) runs as follows: 

=g.cd.[4,{?}.^{i})={j}g-c.d.(4,,4«). 
while for (1.9), we have 

4*i-* g-cd({j}, {»_,}) = g.c.d(A+i-,{^ ^-\kn-1}) 

= g.c.di 4,+1_ krX 4,uj j = u|g-c-d-(4+i-^ A)-

A simple but important application of (1.9) is to show that the Fibonomial Catalan numbers 
are in fact integers. Let An=Fn=n*i Fibonacci number. Then by (1.9), with the substitutions 
n <r- In, k <- w, we have that {n

k}F is divisible by Fn+l I (Fn+l, Fn). But (Fn+l, Fn) = l, whence the 
nth Fibonomial Catalan number 

1 [2ri\ ( 3 1 ) 
pr n 
rn+l ^ 

is an integer. This makes a shorter proof than what was done in [4, p. 363]. 

4. THEOREMS ABOUT LEAST COMMON MULTIPLES 

Since (a, b)[a, b] = ab, where [a, b] denotes the least common multiple of a and b, for posi-
tive integers a and h, we may convert our theorems to statements about least common multiples. 
Relation (1.7) may be restated as 
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so that, in terms of least common multiples 

n) ( n )) n + l-k ( n 
(n + l,ky 

lc-m-l* U-i - s i r ^ U - i - < 4 - 2 ' 
These then give interesting and useful statements about the g.c.d. and l.c.m. of consecutive 
binomial coefficients on the 77th row of the Pascal triangle. In principle, we may find relations for 
the g.c.d. and l.c.m. of (n

k) and {J). 
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1. INTRODUCTION 

Let {tf7}"=1 be a sequence of positive integers in nondecreasing order. Following Guy [1], 
{a;} is a sum=product sequence of size n if Sf=1^ = E[JLî -. For example, it is easily shown that 
{2,2}, {1,2,3}, and {1,1,2,4} are the only sum=product sequences having sizes 2, 3, and 4, 
respectively. Let N(ri) denote the number of different sum=product sequences of size n. Basing 
his research on various numerical data obtained by computer, David Singmaster has made some 
conjectures about N(n). These conjectures were proposed during the closing session of the Fifth 
International Conference on Fibonacci Numbers and Their Applications (St. Andrews, Scotland, 
1992); namely, N(n)>\ for «>444, N{n)>2 for rc>6324, and N(n)>3 for «>11874. The 
most attractive conjecture is the statement that N(ri) —» oo as n -> oo. 

The object of this note is twofold. First, we give an explicit expression for N(n). Second, 
we investigate an extended conjecture for the number N(n,k) of different (sum/ ^product 
sequences of size n (n > k > 2). Then our extended conjecture is the assertion that N(n) - oo for 
n > k > 2. We prove this extended conjecture. 

2. AN EXPRESSION FOR N(n) 

As usual, denote by [x] the integer part of x> 0. Let rk(n) denote the number of different 
ordered solutions of the Diophantine equation, with 2 < x1 < x2 < • • • < xk, 

t[xi-fixl=n-k (n>k>2). (1) 
f = l 7 = 1 

Moreover, we introduce a unit function I{x) defined for rational numbers x by the following: 

fl if x is a nonnegative integer, 
H*} = \ • (2) 

[0 otherwise. 
Proposition 1: Let d{n) be the divisor function representing the number of divisors of n. For 
n > 3, we have 

N(n) = \(d{n-\) + \) 
• ! , * ( » ) > ( 3 ) 

k=3 

where m = [log2 n] + 2 and rk(n) may be expressed in the form 
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rk(P) = X /fy,"* + yi + '"+ y^ xk \ 
2<x1<---<x*_1 I \Xl°"Xk-l)~l J 

(4) 

the summation being taken over all integers xt with 2 < xx < • • • < x ^ . 

Proof: Notice that for any ordered solution (xl5..., xk) of (1) with k > 2 and xx > 2 we may 
write 

n-k k fn-k \ k 

si+iHnin*. 
/=1 ;=1 V?=l / '=1 

so that it yields a sum=product sequence of size n. Thus, N(ri) may be expressed in the form 
N(n) = r2(n) + r3(n) + --'. 

Here the first term r2(n) just represents the number of ordered solutions of the equation xxx2-
x1-x2=n-2, which may be rewritten as (xx - l)(x2 -1) = n - 1 . Since the number of divisors of 
(n -1) is given by d(n -1), it is clear that the number of distinct pairs (xx -1, x2 -1) with xx < x2 

should be equal to \\{d(n-1) +1)], which is precisely the first term of (3). 
To show that m = [log2 n] + 2, it suffices to determine the largest possible k such that equa-

tion (1) with n>k>3 may have integer solutions in xt >2. Now, by induction on k, it can be 
shown that the following inequality, 

k k i k 

7 = 1 Z = l 4f,f 
holds for all xt > 2 and k > 3. (Here the routine induction proof is omitted.) Consequently, we 
may infer the following from (1): 

— xlx2'"Xk<n-k<n. 

Clearly, the largest possible k, viz. m = max{&}, may be obtained by setting all xf=2. Thus, we 
have 2m~2 < n, and we obtain m - [log2 n] + 2. 

Finally, let us show that rk{n) has the expression (4). As may be observed, one may solve (1) 
for xk in terms of integers xt > 2 (i = 1,..., k -1), 

( k~l ^ l(k~l ^ 
xk=\n-k+Yxi\ n ^ - 1 • 

Therefore, every ordered solution of (1) with 2 < xx < ••• < xk just corresponds to the condition 
I{xk - kk_^ = 1 and vice versa. Consequently, the number rk{n) (with w > k > 3) can be expressed 
as the summation (4). D 

As may be verified, (4) can be used in a straightforward manner to give the value r2(n) -
[\{d{n-1) + 1)]. However, there seems to be no way to simplify the summation (4) for the gen-
eral case k > 3, although for given n and k the sum can be found using a computer. 

Corollary 1: N(n) > [j(d(p -1) +1)] for n > 3. 

Corollary 2: lim sup N(n) = oo. 
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Corollaries 1 and 2 were also observed by Singmaster and his coauthors (cf. their preprint 
[2]). The following simple examples are immediate consequences of the corollaries. 

Example 1: For m > 1, we have N(mn +1) —> oo (n -> oo). 

Example 2: If {pn} is the sequence of prime numbers, then we have N(pxp2 •••/?„ +1) —» oo as 
n—> oo. 

3. THE EXTENDED CONJECTURE 

Given n and k with n > k > 2. The so-called extended conjecture is the statement that the 
number of different solutions of the Diophantine equation 

7 = 1 J 7 = 1 

is infinite, namely, N(n, &) = oo. 
In what follows, we will prove the extended conjecture. 

Theorem 1: For n > k > 2, the Diophantine equation 
n \k n 

Hxi\ =!>/ 
V/=i J 

(5) 
7 = 1 

has infinitely many solutions, namely, N(n, k)-co. 

We shall accomplish the proof using three lemmas. 

Lemma 1: For given integers m > 0, X > 1, and r > 2, if the equation 

( r V r 

\m+Hxi =^rix/ (6) 
V 7 = 1 J 7 = 1 

has a solution, then it has infinitely many solutions. 
Proof: For the simplest case m - 0 and r - 2, let the equation 

( * l + * 2 ) 2 = ^ l X 2 ( 7 ) 

have a solution (xl9 x2) = (a1? a2). Without loss of generality, assume gcd(al3 a2) = 1. Then (7) 
implies ax\al,a2\a^, so that ax = a2 = 1 and consequently /I = 4. Now, evidently, (7) has infinitely 
many solutions (xx, x2) with xx - x2 and A-4. 

Consider the general case m > 0 or r > 2. Now suppose (6) has a solution A = (a1? a2,..., ar) 
with #! > a2 > • • • > ar. We shall construct a solution B = (/31? Z>2,..., br) with bx > b2 > • • • > br dif-
ferent from A as follows. Denote \\A\\ = max a, = ax. Consider the quadratic equation in /: 

\<i<r 

r -1 V 

/=i y v/=i J 

- i ^ 
/. (8) 

i.e.. 
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By supposition, (8) has a root tx = ar. Using the relations between the roots and coefficients 
(Vieta's theorem), we see that the second root is given by 

r - l f r - l ^ 
r2=^Xa/-2 m+Xa/ 

z=l V *=1 J 

From (9), we see that t2 is an integer and, moreover, 

-*i = 
( r~l Y 
V i=i J I 

h. (9) 

r-l Y 
ar >ax Iar >ax. 

Now let us take bl-t2,b2-ahb3 = a2,...,hr = ar_x. From (8), it is clear that B = (bub2,...,br) is 
a solution of (6) with ||i?||= max,^ =bl = t2>al = |MII> ie> II^IIHMII-

Generally, if (6) has a solution x(0) = (x|0), xf,..., *<°>) with xf°> > x f > ••• > x<0), then the 
recursive algorithm 

r - l 
x^^Zllx^-llrn + J^xl 

/=i J 

I >\ 
M) 

(10) 
M+r> - vO") vO'+1) - M) r(/+i) _ XU) [X2 — Xj , X3 — Xj , . . . , X r — ^ - r _ i , 

will yield infinitely many solutions xU) = (x{J\ x{
2

j\ ..., x{
r
j)), j = 0,1,2,..., such that ||x(0)||< 

ll*(1 )ll<ll*<2)ll<"-. D 

Lemma 2: Let m > 0 and r > 3. Then the equation 

r Y 
/=1 J i=\ 

01) 

has infinitely many solutions. 
Proof: Equation (11) is a form of (6) with A = 1. Now (11) has a solution xx - 5(m + r + 2), 

x2 = 4(m + r + 2), x3-=5, xi = 1, / = 4,5, ...,r. In fact, 

/ V 

/=i 
/fi + j ^ x J =(m + 5(m + r + 2) + 4(/7i + r + 2) + 5 + (r-3))2 = 100(w + r + 2)2 = ]~Ix/. D 

V i=i J 
Hence, Lemma 2 follows from Lemma 1. 

In particular, taking m - 0 in (11), we get 

Corollary 3: N(n, 2) = oo, where n > 3. 

Lemma 3: Let m > 1, r > 3. Then 

m\ixi | =11^ 
has infinitely many solutions. 
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Proof: For the case r = 3, the substitution x, -myi (i = 1,2,3) in (12) leads to 

3 y 3 

7=1 / 7=1 

For the case r > 3, taking xr = m, we find that (12) becomes 

f r-\ A2 r-1 

V 1=1 ) i=i 

Hence, Lemma 3 is implied by Lemma 2. D 
Proof of Theorem 1: It suffices to prove the theorem "N(n, k) - oo" for the case A: > 3. In 

(12), let us take 

We will now show that from every solution A - (ah a2,..., ar) with ax < a2 < • • • < ar of (12) there 
can be constructed a solution x = (x1? ...,xn) of (9) by the following: 

xf=al9 l = l,2,...,r; 

xr+J=2^ai,j = l,2,...,k-2. 
(13) 

;=1 

In fact we have, by computation: 

n Y 

/=i y 

" r k-2f r \ 

i=l ;=1 V i=l J 

h ' k-2 Y7 r \k ( r \k 

1 + Z2^ 2> =2*<M>5> 
v ;=i y v/=i 

and 

That is, 

r k-2 

/=i /=i y=i v i=i J V/=i y 
•2' (fc-2)(fc+3)/2 (

 r \ 

V/=l J 

k-2 

V/=i y 

/ r \k 

= 2 fc(Jfc-2) 

v/=i y 

XL*• = n ^ -
v i y i 

Clearly, x1 <x 2 < •••<xr+^_2 = x„ so that ||x||>||v4||. The recursive algorithm (10) implies 
that {|M||} is unbounded, so is {||x||}. Hence, (5) also has infinitely many solutions. D 

Theorem 2: For n>2k>4, the Diophantine equation 

f n \ m 

v»=i y /=i 

has at least p(k) distinct solutions (x;, ...,xn) which are contained in the simplex domain 

0<Xx7- <(k + lf+l + (k + l)n (x,>0), 
7 = 1 

where p(k) is the partition function of k. 
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Proof: Every partition of A: may be represented by the summation 
k = al + a2 + '" + av (l<v<k), 

where ai are positive integers such that 1 < ax < a2 < • • • < av. Denote n - m + k +1 with 
m > k -1. Then, corresponding to each partition {al 4- a2 + • • • + av) of k, one can construct a 
solution of the equation as follows: 

Ai=(it + l)ai+(ifc + l)a2+---+(ifc + l ) ^ + w - v + lfori = l , . . . , ^ 

x = 1 forj* = A + v + l, ...,£+#i + l. 

In fact, it may be verified at once that 
(n \k r v ^ 

v=i y I /=i 

= [(k + l)ai + -- + (k + l)a»+m-v + lf .(k + l)k 

= [(k+i)ai + -'+(k+i)a»+m-v+iffl(k+i)a<=flxr 
j = l i=l 

Evidently the solution constructed above satisfies the condition 

J = l 

< [(k +1)* + m](k +1) < (k + l)k+l + (k + l)n. 

Hence, all the p(k) distinct solutions are contained in the simplex domain as mentioned in the 
theorem. • 

Example 3: For n = 10, k = 5, the equation (Sj^ xf )5 = xxx2 • • • x10has as least p(5) = 7 different 
solutions contained in the interior of the region: 0 < xl + x2 + • • • + x10 < 66 + 60 (x; > 0). 
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1. INTRODUCTION AND GENERALITIES 

The aim of this note is to extend the ideas explored in [3] to Pell numbers Pn and Pell-Lucas 
numbers Qn. 

More precisely, we shall parallel the arguments of [3] (the contents of which the reader is 
assumed to be aware of) to obtain expressions for both Pell numbers Px and Pell-Lucas numbers 
Qx which are real when the subscript x > 0 is a real quantity. Of course, these numbers (or 
better, functions) and the usual Pell numbers and Pell-Lucas numbers coincide when x = n is an 
integer. It will be shown that Px and Qx enjoy some of the main properties of Pn and Qn. 

For the convenience of the reader, let us recall the Binet forms for Pell and Pell-Lucas 
numbers and some identities involving them. These are (e.g., see [1], [5]) 

pn = (a
n -pn)l V8 (Binet form), (1.1) 

Qn = a
n +/T (Binet form), (1.2) 

where 

a = -\ip = 2-p = \ + <j2, (1.3) 
Pn+2 = 2Pn+\ + pn ipo = °> Pi = 1] (recurrence relation), (1.4) 

G,+2 = 20*1+0, [So = 0 = 2] (recurrence relation), (1.5) 

a ^ - i + ^ + i , 0.6) 

PnQn=Pm> (1-7) 
p

n-ip
n+i = pn +(-!)" (Simson formula analogue), (1.8) 

and 8 # = Qj-4(-iy ' . (1.9) 

In section 2 the exponential representations for Px and Qx are defined for all x and coincide 
with i^ and Qn, respectively, when n is an integer. In section 3 the polynomial-exponential 
representation for Px is defined only for x > 0 and coincides with Pn when w is a nonnegative 
integer, whereas the polynomial-exponential representation for Qx is defined only for x > 0 and 
coincides with Qn when ^ is a positive integer. In both sections some properties of these numbers 
are established. Finally, the application of a useful idea [7] is discussed briefly in section 4. It 
must be noted that, despite the fact that the numbers defined in sections 2-4 coincide only when 
x = n is an integer, they are denoted by the same symbol. Nevertheless, no misunderstanding can 
arise since each definition applies only to the appropriate section. The notation 
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X(x), the greatest integer not exceeding x, 
^(x) = x - X(x), the fractional part of x, 

will be used, and the following properties of X(x) will be taken into account throughout the 
proofs: 

2[(x±l)/2] = A(x/2)+[l + ( - l ) ^ ] / 2 , (1.10) 

A[(x~2)/2] = A(x/2)-l, (1.11) 

22(x/2) = 2(x)-[ l - ( - l ) 1 (* ) ] /2 , (1.12) 

X(-x) = -X(x)-l [i.e., A(x) + 2(-x) = - l ] , if ^(x)>0. (1.13) 

The proofs of (1.10)-(1.13) are not difficult but they are very lengthy and tedious. They are left 
to the perseverance of the reader. Further, the conventions 

and 

will be assumed. 

(*A = 0, if k > 1 is an integer ([2], p. 48) 

£/(/) = 0,ifft<a 
i=a 

2. EXPONENTIAL REPRESENTATION OF Px AND Qx 

(1.14) 

(1.15) 

Keeping the Binet forms (1.1) and (1.2), and the definitions (2.13) and (2.14) of [3] in mind, 
leads us to define 

Px = [ax-(-l)X(x)a-x]/«M (2.1) 
and 

Qx = ax+(-l)Mx)a-x. (2.2) 

As an illustration, the behavior of Px vs x is shown in Figure 1 for 0 < x < 8. 

3 4 5 
X 

FIGURE 1. Behavior of Px vs x for 0 < x < 8 

The same function is plotted, within the interval 0.5 < x < 2.5 in Figure 2, to reveal the (rapidly 
decreasing) discontinuities connected with the integral values of x which are due to the greatest 
integer function inherent in the definition (2.1). 
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1.5 
X 

FIGURE 2. Graph of Px vs x for 0.5 < x < 2.5 

2.1. Some Properties of Px and Qx 

The numbers Px and Qx enjoy several properties of the usual Pell and Pell-Lucas numbers. 
For example, the identities (1.4)-(1.9) remain valid when n is replaced by x with only one excep-
tion. The exception is (1.7) which must be restated as follows. 

Proposition 1: 

PXQX 

l2x> if#x)<±, 
\P2x-a-2x/j2=Q2x/j8, if^(x)>|. 

This will be proved later. Moreover, it must be noted that the quantity (-1)" has to be 
replaced by (-l)*(x) in (1.8) and (1.9). 

The evaluation of finite sums analogous to those considered in [3] gives the results 
n J 

2^ x+k ~ ~Z\*n+l+x "*" *n+x ~~ *x ~ *x-l)> 
k=0 L 

where T stands separately for P and Q, and 

Z ~ \l\ln 

(2.3) 

(2.4) 
k=0 

n-\ 

Z ~~ Sdlln 
(2.5) 

k=0 

The identities (2.3)-(2.5) can be proved by using (2.1), (2.2), and the geometric series formula. 
The extension of Px and Qx to negative values of the subscript x can be obtained by replacing 

x by —x in the definitions (2.1) and (2.2), and by taking (1.13) into account. To our great sur-
prise, some simple calculations led to the following unexpected results 

\P_X = {-\)X^QXI^ 

la,=(-i)m+1pxJ$ 
for (f>(x) > 0, 

(2.6) 

(2.7) 
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which hold whenever x is not an integer. In spite of the unexpectedness of expessions (2.6) and 
(2.7), the numbers P_x and Q_x preserve many properties of P_n = (-l)"+1Pn and Q_n = (-l)"Qn. 
For example, the identity 

P-xQ-x = -PXQX (see Proposition 1) (2.8) 

holds whatever the nature of x. 

2.2. Some Detailed Proofs 
For space reasons, only a few among the properties stated in section 2.1 will be proved in 

detail. It is worth mentioning that the following equalities involving the quantity a [see (1.3)] are 
to be used in the proofs of (1.4)-(1.6): 

2a + l = a2, (2.9) 

l - 2 a _ 1 = a"2, (2.10) 

l + a2 = aV8. (2.11) 

Proof of (1.5) (for n replaced by x): By (2.2), 

20+i + Qx = 2[«*+1 + (-l)a(x+1)a~*-1] + ax + ( - l ^ a - 1 

= ax(2a +1) + (- l)m a~x(l - 2a"1) [since X(x + k) = X(x) + k, k an integer) 
= ax+2 + (-l)Hx)a-ix+2) [by (2.9), (2.10)] 

= a » « + (_!)*<*)+V(x+2) 

= 0 , 2 [ ^ (2.2)]. Q.E.D. 

Proof of (1.8) (for n replaced by x): By (2.1), 

Px^Px+l - Pi = ([ax~l + ( - l f»a- I + 1 ] [a I + 1 + ( - l ^ e T ^ - t o * - (-l)1(x) a~xf) 18 
= {{a2x + cT2jc + ( - l / w ( a 2 +a-2)]-[a2x + a~2x -2(-l)*(JE)])/8 
= (-l)A(x)(a2 + cT 2 -2) /8 
= {-\)X(x\a-a-y)2l% 
= (-l)*(I) [since a - a " 1 = 2>/2, by (1.3)]. Q.E.D. 

Proof of Proposition 1: By (2.1) and (2.2), 

^*& - p2x = («2X - «~2X) / V8 - [«2* - ( - ^ ^ o T 2 x ] IV8 
= a-2l[(-l)A(2jc)-l]/V8 

0, if X(2x) is even [i.e., if <f>(x) <y], 
Q.E.D. 

- « - 2 x / V2, if A(2x) is odd [i. e., if <j>{x) > l] . 
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3. POLYNOMIAL-EXPONENTIAL REPRESENTATION OF Px AND Qx 

Keeping the definitions (1.6) and (1.7) of [4] and the definitions (3.4) and (3.5) of [3] in 
mind, leads us to define 

A[(x-l)/2]x 1 .x 

and 
A(x/2) f . \ 

j=o x + J V •/ / 

Observe that the binomial coefficient defined as 

(S) = *' (*) = ^ " 1 ) - ^ " " + 1) (* >~ ^ » -teger) (3.3) 

makes sense ([2], p. 48) also if x is any real quantity. Moreover, observe that 
(i) for x = 0, the expression (3.2) gives the indeterminate form 0/0 so that Q, = 2 cannot be 

defined by (3.2), 
(ii) by (1.13) and (1.15), we see that the expression (3.1) allows us to get P0 = 0, and the exten-

sion to negative values of x yields P_x = Q_x = 0. 

As an illustration, we show the first few values of Px and Qx. They are 

Px = 0 (0<x<l) , 
Px = 2x~l ( l<x<3) , 
P, = 2*-3(x + 2) (3<x<5), 
Px = 2x~6(x2 + x + 28) (5 < x < 7) 

^ = 2*- 8 f -x 3 -x 2 +—x + 72] (7<x<9) 

Px = 2x-u(-x4--x3 +—x2+ — x + 856) ( 9 < x < l l ) , U 3 6 3 J * 

and 

& = 2 X (0<x<2), 
a = 2*-2(* + 4) (2<x<4), 
Q. = 2*~5(x2 + 5x + 32) (4 < x < 6), 

1X-71 1 J , J ^ QX=2X~' - x J + x 2 + —x + 128 (6<x<8), 

a = 2 - 1 0 ^ x 4 - I x 3
+ - ^ x 2

+ ^ x + 1024J (8<x<10). 

The behavior of Px vs x is shown in Figure 3 for 0 < x < 5.5. 
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FIGURE 3. Behavior of Pv vs JC for 0 < JC < 5.5 

3.1. Some Properties of Px and Qx 

Proposition 2: 

2Px+i+Px = 

1 x+2? 

Pr x+2 
'x-X(x/2)-l 

2(x/2) + l 

if X(x) is even, 

2*(x\ ifl(x)isodd. 

Proposition 3: 

2a+i+a= 
O x + 1 (x-Mx!2)\m i f l W i s e v e n 

[Qx+2> 

Proposition 4: Px+l + Px_x = Qx. 

3.2. Proofs 

Proof of Proposition 2: 
Case 1: X(x) even. By (3.1) and (1.10), write 

X{xl2)-

if X{x) is odd. 

Px + 2Px+l = X 
;=0 

X(xl2) 

X - \ - J \ 2 x - \ - 2 j + y X - J 2 x + l - 2 y 

J 

= X 
;= i 

+ 
/ -\ X{xl2) , 
(x-J\nx+\-2j ^ V (X-J)0x+1-2J 

j=0 

Taking (1.14) and (1.10) into account and using the basic recurrence ([8], p. 1) for the binomial 
coefficients (which holds also when the upper argument is not an integer) yields 

X(x/2) 

^ + 2/^1= X 
y=0 

X[(x+l)/2] 

= I 

X-J\ + (X~J 
X{xl2)/ , - .x 

2x+l-2; _ y | X + 1 - J I2X+I-2/ 

7=0 ^ J 

X + l - j U x + 1 - 2 / 
= Pr x+2-
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Case 2: A(x) odd. By (3.1), (1.10), and (1.12), write 
X{xl2) / 1 . \ X(xI2) 

PX+2PX+1= £ \ x- l j-J)2r™'+ I ^-J)r^ fx-\-j 

A(X/2)+l / 

- 2 fc< 
A(x/2) 

lewr^si, 
X ~ 7 9x+l-2y 

A ( J C / 2 ) + 1 / A X(x/2)+ls .> 

where 

X = x-A,(x/2)-l 
A(x/2) + l 

)X+l-2/l(x/2)-2 * - A ( x / 2 ) - l ^ 
A(JC/2) + 1 

^x-A(x) 

(3.4) 

(3.5) 

By (1.10), (3.5), and the basic recurrence for the binomial coefficients, expression (3.4) can be 
rewritten as 

X[(x+l)/2]f - x 

The proposition follows, since </)(x) -x- A(x). Q.E.D. 

Note: (1) Since the upper argument of the binomial coefficient in (3.5) is less than the lower one, 
X = 0 whenever x > 1 is an (odd) integer, giving 2PX+1 + PX = Px+2 • 

(2) Proposition 3 may be proved in a way similar to Proposition 2. 

Proof of Proposition 4: First, by (3.1), (3.2), and the binomial identity available in ([8], p. 
64), write 

X(x/2) 

= PX+1+ I 
X{xt2)-\ 

X(x/2) 

7=0 V J 

X-\-j\2x-2j 

/ = - l 

X-2-j\x-2-2j (3.6) 

Then, use (1.14), (1.11), and (3.1) to rewrite (3.6) as 
*[(*-2)/2] 

a = ^ i + 1 { j J)2X-2-2J=P*H+PX-I- Q.E.D, 

4. CONCLUDING REMARKS 

In this note, definitions have been proposed for Pell numbers Px and Pell-Lucas numbers Qx 

which are real when the subscript x is real. We feel that this particular study might be concluded 
suitably by observing that the idea explored in [7] applies beautifully to the afore-said numbers 
(see also [6]). In fact, following [7], we can define 

Px = [ax - cos(7rx)a-x] lS (4.1) 
and 
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Qx = ax + cos(7rx)a x. (4.2) 

The numbers Px and Q, defined in this way and the usual Pell and Pell-Lucas numbers obviously 
coincide when x is an integer. Moreover, their behavior vs x does not present any discontinuity, 
as shown in Figure 4 in the case of Qx. 

Of 3 

FIGURE 4. Behavior of Qx vs x for 0 < x < 2 

Some properties of these numbers are reported in the sequel. Their proofs are left as an 
exercise for the interested reader. It should be noted that (4.1) and (4.2) occur in [6] as x coordi-
nates of points on Pell and Pell-Lucas curves. Both x- and ^-coordinates for these curves were 
obtained independently of [7] as special cases of coordinates for a system of more general curves 
[6]. 

The identities (1.4)-(1.6) remain valid for PxmdQx, whereas the identity (1.7) does not. 
More precisely, we have 

PxQx = P2x-[^2(7rx)a-2x]/^. 

Moreover, the analogue of (1.8) is 

The extensions of (4.1) and (4.2) to negative values of x lead to 

l[sm2(ax)ax /•Js-Px]/ cos(^x), if <j>(x) * £, 
P"*"W!/8, if #*) = *, 

(4.3) 

(4.4) 

(4.5) 

and 

a*= 
[Qx - sin (nx)ax ] / cos(;rx), if 0(x) * \ , 

Iff1, if (j){x) _ I 
(4.6) 

Since the reader might find some difficulty in deriving (4.5) and (4.6),we give a sketch of the 
proof of (4.5). 

Proof of (4.5) (a sketch): Replace x by -x in (4.1), thus getting 

p_x = [a~x - cos(^x)ax] / V8 [since cos(-j) = coŝ y ]. 
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If>(x) = j , then cos(^x) = 0 so that Px = ax/Js [see (4.1)], and Px
l = <J%cTx = Sa~x IV8 = 

SP_X [see (4.7)]. If ^(x) * \ [i.e., cos(^x) * 0], multiply both sides of (4.7) by cos(/rx), and use 
the identity coi y = 1-sin2 >> to obtain the right-hand side of (4.5). Q.E.D. 

The proof of (4.6) is similar. Observe that (4.5) and (4.6) do not satisfy the analogue of (2.8) 
for <f>(x) > 0. In particular, when (j)(x) = ~ (i. e., x = n + j), we have 

PxQx + P-xQ-x = P2n+i- (4-8) 
Furthermore, the identity (2.3) remains valid for Px and Qx, whereas an attempt to find the 

identities corresponding to (2.4) and (2.5) required a great amount of calculations involving the 
use of Euler formulas for circular functions and the geometric series formula, and produced a 
couple of very unpleasant expressions. As an illustration, we exhibit the second one. This is 

Yn j2[^PVn +a'21"-cosjx In)] 

h r * Q/„n-a-1/"-a-2/"+(«-1/"-2)cos(^/«)-r K*y} 

The closed-form expression of the analogous sum 

£&,,*""=4^+i (410) 

k=o a -1 

is much simpler even though perhaps less interesting. 
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1. INTRODUCTION 

The problem of obtaining a linear recursion for a decimated sequence in terms of the linear 
recursion for the original finite field sequence has been studied extensively in the literature either 
from a mathematical point of view or in connection with various applications mostly having to do 
with high-speed parallel generation of linear recurring sequences. A survey of such applications, 
mainly in spread spectrum communications and cryptography, can be found in [4]. The special 
case of sequences satisfying primitive or irreducible polynomials was treated in [10], [7], and [3], 
whereas the general case was settled in [2]. Alternative approaches to the general case were 
given in [5], [6], [8], and [4]. Recently, the results from [2] have been extended to arbitrary fields 
[1] by using the results on products of linear recurring sequences from [11]. Unlike the method 
from [2], which is based on the decimation of individual sequences, the method from [1] deals 
with vector spaces of sequences. 

In this paper we develop a novel approach that enables us to determine the minimum 
generating polynomial of decimated sequences over an arbitrary field in a simple and self-con-
tained way. This is achieved starting from a new characterization of this polynomial and by using 
some facts from the general field theory, without invoking any results on product sequences. 
Some new properties of decimated sequences are also pointed out. 

2. PRELIMINARIES 

Let F be an arbitrary field, let s - {s(t)}™=0 denote a sequence over F, and let f(x) - T"=0 cxxl 

be a polynomial over F such that / (0) ^ 0. Then s is called a linear recurring sequence satisfying 
/ i f 

Xc,s(r+/) = o, r>0. (l) 
7=0 

Let LF{f) or simply L(f) denote the set of all s over F that satisfy/. If the degree of/is n, then 
L(f) is an n-dimensional vector space over F which is closed under the translate operator Ts-
{s(t + 1)}J10. For every linear recurring sequence s over F, the unique monic polynomial g over F 
of lowest degree satisfied by s is called the minimum polynomial of s and s is called a regular 
sequence of g, see [2]. The minimum polynomial of a finite set of linear recurring sequences is 
defined analogously and is equal to the least common multiple of the minimum polynomials of 
individual! sequences, see [10]. 

Given a sequence s over F and a positive integer d, the decimation of s by d, s^, is defined 
by s(d)(t) = s(td), t > 0. Analogously, given a set S of sequences over F, the decimation of S by d, 
S(d\ is defined by S(d) = {s(d) :s^S}. Besides, given a nonnegative integer r , the translate of s 
by T , 5 .̂), is defined by s(r)(?) = s(t + r), t > 0, that is, s(r) = Vs. 
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The set L(d)(f) is a vector space over F generated by the set {s$}"Z0 of decimated 
sequences obtained from the successive translates of any regular sequence s off of degree n. 
Since L^(f) is closed under the translate operator, L^(f) = L(h), where h is the minimum 
polynomial of the set {s$}n

rZl
0. Moreover, since every sequence from {$$}n

TZl
0 is a translate of a 

sequence from {s^}dZl and since the minimum polynomial of a translate divides the minimum 
polynomial of the original sequence, h is also the minimum polynomial of the set {s^}dZl

0- This 
set is important for the high-speed parallel generation of s, because s can be obtained by inter-
leaving the corresponding decimated sequences generated at d times lower speed than s. 

For a finite field F, Duvall and Mortick [2] obtained the minimum polynomial h in terms of/ 
d, and the characteristic ofF, by considering the decimations of sequences from an appropriate 
basis of L(f). Recently, by using the results from [11] on product sequences, Buck and Zierler 
[1] have developed a new method which enabled them to extend the result [2] to arbitrary fields. 
Polynomials with multiple roots in both [2] and [1] are dealt with in relatively involved ways, 
which is also the case with inseparable polynomials in [1]. In the next section, we show how the 
minimum polynomial of decimated sequences can be derived in a new way that is both simple and 
compact. Instead of the results on product sequences, it is based on some facts from the general 
field theory and treats the inseparable and separable polynomials in a unified way. 

3. MINIMUM POLYNOMIAL OF DECIMATED SEQUENCES 

Our objective is to derive the minimum polynomial of the set {s^d)}dZ0 of d sequences 
obtained from the decimation by d of d successive translates of an arbitrary linear recurring 
sequence s over a field F. To this end, first note that the original sequence s can be obtained by 
interleaving the considered d decimated sequences. Second, for an arbitrary polynomial g over F 
such that g(0) & 0, L(g(xd)) is the set of all the sequences obtained by interleaving d members of 
L(g(x)), see [1]. Therefore, for an arbitrary polynomial g over F, g(0)^0, if s is a regular 
sequence of a polynomial / over F, f(0)^0, then f(x)\g(xd) holds if and only if the decimated 
sequences s$,0< r<d-l, all satisfy g. In view of the definition of minimum polynomials, we 
thus obtain the following simple characterization of the minimum polynomial of the considered 
decimated sequences. 

Theorem 1: Let/be a monic polynomial over F, / (0) ^ 0, let rfbe a positive integer, and let s be 
a regular sequence off. The minimum polynomial of the set of decimated sequences {^}dZl

0 is 
then equal to the unique monic polynomial g over F of minimum degree such that f(x) \g(xd). • 

Since the minimum polynomial established in Theorem 1 depends only off and d, we adopt 
the notation f^. It remains to find out an explicit characterization of f^. We proceed in three 
steps by proving the following lemmas. 

Lemma 1: Let / = l . c . m . ^ , ^ ) , where f and f2 are monic polynomials over F, yj(0)^0, 
/ 2 (0)*0 . Then/(rf )= l.c.m.(/1 M)J1M)). • 

Proof: Let h - I.e. m. (f (rf), /2,<y)) • We use the fact, already noted in the proof of Theorem 
1, that a(x)\b(xd) o a,d) \b, for arbitrary monic polynomials a and b over F, a(0) * 0, b(0) * 0. 
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Accordingly, for an arbitrary monic polynomial g over F, g(0) * 0, it follows that f(x)\g(xd) <=> 
fi(*)\gW), i = \2o fu{d)\g, i = 1 ,2oh\g. Hence, h = f{dy -

Lemma 2: Let /be a monic and irreducible polynomial over F, / (0) & 0, and let a be any root 
off in a splitting field E off Then f^ is the minimum polynomial of ad over F. • 

Proof: First, note that the minimum polynomial h of ad over i7 exists because E is an alge-
braic extension of F. We employ the well-known result, see [9], that the minimum polynomial of 
an element y algebraic over F must divide every polynomial g over F such that g(y) = 0. It 
suffices to prove that f(x)\g(xd)o g(ad) = 0 for an arbitrary monic polynomial g over F, 
g(0) & 0. Namely, by the definition of the minimum polynomial, it then follows that f^ = h. 
The implication "=>" is clear because a is then a root of g(xd). The implication "<=" is true 
because, if a is a root of g(xd), then the minimum polynomial of a , which is / , must divide 

Lemma 3: Let / = gr, where g is a monic and irreducible polynomial over F, g(0) ^ 0, and r is a 
positive integer. If F has characteristic p = 0, then f{d) -g{d)^ If i7 has characteristic p>0, 

r / max(c-e,0)i 

d = Apc, jpf &, and e > 0 is the exponent of inseparability of g, then f^ = g ^ ', fz| denot-
ing the smallest integer not smaller than a real number z. • 

Proof: We first prove that / ^ = g[d) for some positive integer t. Note that by Lemma 2 g ^ 
is irreducible. Assume that f{d) = ag(^}, where g(rf) | a . Then the minimality of f(d) implies that 
gr(x)\a(xd)g{d)(xd) mdgr(x)tg{d)(xd). Since g is irreducible, then g(x)\a(xd); hence, g(rf)|a, 
which contradicts the assumption. 

To determine t, we should analyze the multiplicities of the roots of g, g^, and g^(xd). We 
use some well-known facts from the general field theory (see [9], Ch. II, §1-6). If the character-
istic p of Fis zero, then both g and g^d) are separable and the roots of g, g^d), and g^(xd) are all 
simple. Then t-r. If F has characteristic p>0, d~kpc', p\k, and e>0 is the exponent of 
inseparability of g (g is separable if e = 0), then all the roots of g have multiplicity pe. Note that 
the exponent of inseparability of g is equal to the minimum nonnegative integer / such that ap is 
separable over i7, where a is is a root of g in a splitting field of g. Therefore, the exponent of 
inseparability of the minimum polynomial g^ of ad is max(e-c,0); hence, all the roots of g^ 
have multiplicity pm&x(e~c>°\ Finally, all the roots of g{d)(xd) have pc times larger multiplicity 
than the roots of g^, that is, pm&x(e>c\ Then t is the minimum positive integer j such that rpe < 

• max(e,e) # 

Consequently, in view of Theorem 1, Lemmas 1, 2, and 3 result in the following character-
ization of the minimum polynomial of decimated sequences. 

Theorem 2: Let/be a monic polynomial over F, / (0) ^ 0, that factors as / = WILifp, where / 
are distinct monic and irreducible polynomials, let d be a positive integer, and let s be a regular 
sequence of/ Then the minimum polynomial of the set of decimated sequences {s^}dZl

0 is given 
by 

f(d)^\.c.m.(f!;{dy\<i<m), (2) 
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where fu{d) is the minimum polynomial of af over F, ai being any root o f / in a splitting field of 
f tt = /;. if F has characteristic zero, and tt = [/; /£,maxOe/>°)] if p has characteristic /? > 0, d = kpc, 
p\k, and e, > 0 is the exponent of inseparability of/ , \<i <m. » 

Theorem 2 specifies /(^} as the minimum polynomial of a set of d decimated sequences rather 
than the set of all the decimated sequences, which is interesting for parallel generation of linear 
recurring sequences. As is shown in Section 2, li-d\f) = L(f^) also holds, so that expression 
(2) is equivalent to the one from [1]. However, our characterization is slightly different because 
of the unified treatment of inseparable and separable polynomials and because of the different 
treatment of the root multiplicities. 

Finally, we also prove the following properties yielding a necessary and sufficient condition 
for the minimum polynomial of a decimated sequence to depend only on the minimum polynomial 
of the original sequence, which is interesting for cryptographic applications. Note that the proof 
makes no use of Theorem 2. 

Proposition: Let/be a monic polynomial over i7, / (0) ^ 0, and let dbe a positive integer. Then 
the decimation by d defines a homomorphism of L(f) onto L(f^); hence, degf^ < degf. If 
and only if deg/(^ = deg / , then the decimation by d defines an isomorphism of L(f) onto 
L(f(d))' Furthermore, if d e g / ^ = deg / , then the minimum polynomial of s^ i s / ( ^ for every 
regular sequence s off. • 

Proof: The proof of the first assertion is straightforward. The second assertion directly fol-
lows from the well-known fact in the theory of vector spaces (see [9], Ch. I, §21), that a homo-
morphism of a finite-dimensional vector space onto another vector space is an isomorphism if and 
only if their dimensions are equal (otherwise, the dimension of the image vector space is strictly 
smaller than the dimension of the original one). As for the third assertion, assume that there exists 
a regular sequence s off such that s^ is a regular sequence of A, where h is a proper factor of 
f(dy From the definition of f(d), it then follows that the polynomial g(x) =g.c.d.(/(x),/?(x^)) is 
a proper factor of / such that g^=h. Then I$d\g) = L(h), which means that there exists 
another sequence s' e L(f) different from s such that s^ = s^d). Therefore, the decimation is 
not an isomorphism and the second assertion then implies that deg/(^ < deg / . • 
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1. INTRODUCTION 

Recall that the nth roots of unity are the roots of the polynomial xn - 1 . Also, they have a 
geometrical interpretation in terms of the vertices of a regular polygon with n sides inscribed in 
the unit circle. Now consider the polynomial of degree n with the property that each of its roots 
is the sum of an nth root of unity and its square. That is, let U„ denote the set of nth roots of unity 
and consider the polynomial 

What are the coefficients of Pn(x) ? A priori the coefficients are complex numbers. However, we 
will show they are actually integers. In fact, we will prove the unexpected result that the absolute 
value of the coefficient of xk has a combinatorial interpretation in terms of the number of ^-sub-
sets of n objects arranged in a circle with no two selected objects being consecutive. The sum of 
the coefficients is expressed in terms of Lucas numbers. 

2. COMBINATORIAL IDENTITIES 

Before proving the theorem, we will state some known combinatorial identities. We assume 
throughout the paper that n > 0. It is well known that the number of ^-subsets without consecu-
tive elements chosen from n objects arranged in a circle is (see Riordan [3], p. 198) 

n (n-k^ 
n~k{ k 

The generating function of this sequence has the following closed form: 

[f] 

k=0 n-k 

rn-k\ k _(\ + J\ + 4xX , fl-Vl + 4xY' 
2 ) \ 2 

When x = -1 we obtain the following identity [since % (1 + V-3) are sixth roots of unity]: 

f2(-l)" if/i s 0 (mod 3), 

(1) 

SI n (n-k 
k=0 n-k (-1) = 

(-1)' « - i if«#0(mod3). 
(2) 

The following identity will also be used: 

l$(»-*X n*_(-0W+H)["] 

k=0 
(-1> (3) 
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References for these combinatorial identities include Graham, Knuth, & Patashnik [2], pp. 
178-79 and 204, or Riordan [4], pp. 75-77, or Gould [1], Identities 1.64, 1.68, and 1.75. 

3. THE THEOREM 

Theorem: The roots of the polynomial 

[f] 
\n-k\ k 

pn(*)=*«+H)«-£-^":*y (4) 
k=Q' 

are precisely the n complex numbers (not necessarily distinct) of the form C + C2, where £ ranges 
over U„ the 72th roots of unity. That is, 

n(*-(^o)=*"+(-ir-î fVV-
£dJn k=0n K \ * J 

Proof: Let C, denote any nth root of unity. Then x = C + C2 ls a r o o t °f Pn{x) of and only if 

t^fwI*]^+^)*^+^),,+(-l),, = (l+0',+(-l)̂  0) 
*=ow-K k ) 

But (5) follows immediately from (1) since l + 4(^ + ̂ ) = (2^ + l)2 and ^n = 1. Hence, if the n 
complex numbers, C,+t?, are distinct as C, ranges over U„, then all roots of Pn(x) have been 
determined. 

To complete the proof, we will show all the roots are distinct except when n = 0 (mod 3). In 
that case, x = -1 will be a double root. To verify this, first observe that by (2) and (4) x - -1 is a 
root of Pn(x) if and only if n = 0 (mod 3). Now the derivative of P„(x) is 

P;(x) = nx"-l-nJd 
t\n-2-k\ k 

k ' ( ) 
k=0 V 

So x - -1 is a root of P'n{x) if and only if 

llwi~*V1)*=(-ir1- ^ 
k=o\ J 

But, if n = 0 (mod 3), then (7) follows immediately from (3) with n replaced by n-2 and noting 
that [since (-1)"/3 = (-1)"] 

(_ l )M = (-l)J,fa = ( - l ) - i . 

Thus, x = -1 is at least a double root of Pn(x) when n = 0 (mod 3). Finally, we will show x = -l 
is in fact a double root. First, however, a lemma to determine when the sum of two nth roots of 
unity is equal to - 1 . 
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Lemma: Let C,n denote the primitive rfi1 root of unity cos-̂ f + Zsin^f. Suppose 0<j<k<n. 
Then, for somey and k, £J

n + £k
n - -1 if and only if n = 3 j and k = 2j. 

Proof: Ifn = 3/ and Jfc = 2/ , then < ŷ + ^ is a sum of the primitive cube roots of unity and, 
hence, is equal to - 1 . Conversely, suppose the sum of the two nth roots of unity is equal to - 1 . 
Equating real and imaginary parts, we obtain cos~fy' + cos-~k = -1 and sin-^fy + sin^f £ = 0. 
Now solve for cos^fk and sin^-k: 

and 

2n j - 2;r . /ON 

cos—k = - l - c o s — / (8) 
n n 

. 2n , . 2n . / m 
sin — & = - s i n — /. (9) 

n n Next, square both sides of (8) and (9), then add to obtain c o s ^ y j = - y . Similarly, solving the 
original equations for cos^f y'and sin^fy, we obtain cos(^^) = - y . Since 0< j <k <n, we 
must have ^-j-^f- and ^f-k = 4p Hence, n = 3y and 3k~2n. Therefore, n = 3y and k - 2y, 
and the lemma is proved. 

Now we return to the proof of the theorem to determine when the roots of P„(x) will not be 
distinct. Suppose 0 < j < k < n and two roots are the same. Then 

a+ciJ=ck„+C (io) 
Hence, Ci ~ Ck„ = C - ClJ = (Ck„ - OiC + Ci) • So wemusthave 

#+tf = -l. (11) 
Therefore, by the lemma, £J

n and £k
n are the primitive cube roots of unity. Since the square of one 

primitive cube root of unity is the other primitive cube root, the root x = -l will occur exactly 
twice in (^ + C as C, ranges over the nth roots of unity for n = 0 (mod 3). 

\-Ln if n is odd, . 
Corollary: Pn(l) = < where Ln is the nm Lucas number. 

[-L„ + 2 if n is even, 

Proof: It is well known that Z ^ o ^ r * * ) = Ln, where Ln is the nth Lucas number. 
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1. EXPERIMENTAL SETTING 

Consider a die with m faces marked {0,1,2,..., m -1}. Assume that the turn-up side proba-
bilities are in geometric progression as follows: 

Face(i) 0 1 2 ... m - 1 

Probability (#) qm~l pqm~2 p2qm~3 ... pm~l (1) 

The necessary and sufficient restrictions onp and q are 

qm-l+pqm-2 +p2qm~3 + ••• + pm~l = 1, 0 < p < 1, 0 < q < 1. (2) 

Note that the first restriction is equivalent to qm - pm = q - p. 
The die just described becomes an ordinary coin when m-2. In this case p + q = 1. Select-

ing p = q = m~1/(w_1) will result in a fair die, i.e., each face will have probability m~l of turning-up 
when the die is rolled. Also, from (2), when 0 < p < m~l/{m~l) one must have m'l/{m~l) <q<l, and 
vice versa. 

For a givenp9 the function f(q) = qm -q-pm + p has derivative f'(q) = mqm~l -1. Thus, 
f(q) is strictly decreasing for 0 < q < m~l/{m~l) and strictly increasing for m~1/(m_1) < q < 1. This 
fact in conjunction with the remarks in the previous paragraph assure that, for a given p 
(0<p< 1), there is a unique q satisfying (2). The value of q, which is the root of a polynomial of 
degree m-l, cannot be given explicitly in general. However, q-\-p for m = 2, and q = 
(-p + 's]4-3p2)/2form = 3. 

Alternative parametrizations to (1) that may yield other useful interpretations are also 
possible. For instance, if p < q, then defining 0- piq one can easily see that (1) is equivalent to 
pt = (1 - 6)ff I (1 - 6m), 0 < / < m - 1 . In this case, rolling the die is equivalent to generating a value 
of a geometric random variable constrained to the range {0,1,2,..., m -1} with 1 - 6 and 0 being 
the success and failure probabilities, respectively. 
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2. THE EXTENDED BINOMIAL DISTRIBUTION 
AND PROPERTIES 

The focus of this article is the random variable 

X^ - total score in n rolls of the w-sided die with , , 
(3) face probabilities as described in (l)-(2). v J 

It is clear that X^m) has the familiar binomial distribution with index n and success probability p 
when m-2. For this reason, the distribution of X^ will be called the extended binomial distri-
bution of order m, index n and parameter/?, and will be denoted by EB(#?, n, p). 

Note that X^ is simply the convolution of n i.i.d. random variables corresponding to the 
scores of n rolls of the die. Therefore, the probability generating function (PGF) of X^ can be 
written as 

G(t) = E(t^) = qm-pmt" 
q-pt 

(4) 

Expanding G(t) in powers of t yields an expression for the probability mass function (PMF) of 
X(„m) as 

Pr(X(
n

m) =r;p) = Cm(n, r)p>^l>'r9 0<r<(m-1)», (5) 

where Cm(n,r) is the coefficient of f in [(\-tm)l (l-t)f. Note the similarity between (5) and 
the ordinary binomial distribution. 

The coefficients Cm(n,r), which can be traced back to the classic work of Abraham De 
Moivre [6], were studied in detail by Freund [10], who discussed their role in occupancy theory. 
In particular, Cm(n, r) can be interpreted as "the number of ways of putting n indistinguishable 
objects into r numbered boxes with each box containing at most m-1 objects." Thus, 

Q ( ^ ) = ( " ) 0<r<n. 

In the spirit of Bollinger [3] and [4], we will refer to the numbers Cm(n, r),0<r<(m~ l)n, as the 
extended binomial coefficients of order m. 

From a mathematical point of view, many theoretical properties of Cm(n, r) have been estab-
lished. For details, see [4] and [5] and the references therein. From a probabilistic point of view, 
in addition to the applications to occupancy problems discussed in [10] and those presented in this 
article, Cm(n, r) plays an important role in describing the distribution of discrete waiting time 
random variables based on run criteria. For instance, see [3] and [2]. 

A convenient way of computing Cm(n, r) is by means of the recursion 

Cm(n,r) = XCm(n-l,r-£). (6) 
m-l 

For the case m = 2, this recursion reduces to the well-known identity 
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In a manner similar to the calculation of the familiar Pascal triangle, (6) can be used to compute a 
table the nth row of which will contain all the extended binomial coefficients of order m. These 
arrangements have been called extended Pascal triangles, see [4]. 

Alternatively, Cm(n, r) can be calculated by means of the explicit formula 

where ax = min{n, integer part in rim). For a proof of (6)-(7), see [5] and [2]. 
The classical hypergeometric identity also extends to arbitrary m. Namely, 

CjTh + ri2,r) = X Cm(nl9 d)Cm{nly r - a). (8) 
a 

Relationship (8) will be called the extended hypergeometric identity of order m in this article. 
It is a minor exercise to show that the property of symmetry for ordinary binomial coeffi-

cients also holds for m-binomial coefficients. That is, 
Cm(n,r) = Cm(n,(m-l)n-r), 0<r<(m-l)n. (9) 

As a result, 
Pr(X^} =r;p) = Pr(^"° = (m - \)n -r9q)9 0<r<(m- l)/i, (10) 

where p and q satisfy (2). Note that the distribution of X^m) is symmetric when p = m~xl{m~X) 

since q = p in this case. 
The PMF of X^ given in (5) can also be computed recursively as follows. Write the PGF 

(4) as 
(q-PtyG(t) = (q'»-p»>0". (11) 

Then expand each factor in (11) using the binomial theorem and (5), and equate the coefficients of 
f from both sides to get 

X (-iy^yjq"-JPr(Xy)=r-j-p) = q"ar, (12) 

for r = 0,1,2,..., where 
[0 i f* r *0 , 

ar={(-daia
ny<lim~i)n-r ifA = 0, 

and r = arm + br with 0 < br < m - 1 . From (12), one immediately obtains the recursion 

mm{r,n) / \ / V 

Fr(X^=r;p) = ar- X H ) ' H f P r W ° =r-j; p\ \<r<(m-\)n. (13) 

As an illustration of the variety of shapes exhibited by the distribution of X^m\ (5) was 
calculated numerically for /w = 4,w = 10, and several values of (p,q) using the foregoing 
methods. The corresponding bar plots are depicted in Figure 1. Note that the distribution of 
X^m) is positively skewed for p<m~ll{m~l) - 0.63 and negatively skewed for p>nfll{m~l). This 
result holds generally for arbitrary m. 
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FIGURE 1. Shapes of the 4-BinomiaI Distribution with Index n = 10 
and Several Values of (p, q) 

Because X^ arises as a convolution, it must have the reproductive property. Specifically, if 
Yl9Y2,...9Yk are independent with Yt ~EB(/w,nt,p), then Sf=1 Yi ~EB(m,Zf=1 w;,p). 

Defining 9 = piq, one can write the PMF of X^ given in (5) as 

HXim)=r;p)=Cm(n;£6r, 0<r<(m-l)n, 
gip) 

where 0 < 9 < oo and 

g(0) = 
fl-ff*V 

\~e 

(14) 

(15) 

In the form (14)-(15), one can readily see that X^n) has a power series distribution. Thus, any 
results on this general family of distributions will apply to the distribution of X^m) as well. Note 
from (15) that g(9) = (1 + Of for m = 2 and g{9) - (1 - 9)~n for m = oo when 0 < 9 < 1, character-
izing the binomial and negative binomial distributions, respectively. Using a standard argument, 
one can get the Poisson distribution by keeping m fixed, and letting n->oo and 9 -> 0 in such a 
way that n9l (1 + 9) -» A. By means of the central limit theorem, a normal approximation is also 
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guaranteed. Specifically, (X^m) - //) / <r « N(0,1) for n large, where ft and a2 are as given in (16) 
below. 

From (4) or otherwise, the mean and variance of X^m) are readily shown to be 

^ = £ ( ^ ) = V1=3P^, a2=Var(X^)^nPq
l-f^f~\ (16) 

q-p (q-p) 
In comparing ju and a2, one can readily see that ju<a2 when and only when 

mpm-2(mqm-q+l)<\. (17) 

For any 3 < m< oo, the left-hand side of (17) approaches 0 as p -» 0 and m as p->\. Hence, 
both jLKcj2 and ju>a2 are always possible. When m = 2, (16) gives jd-np and o2 = wpg with 
p + q = 1. This case corresponds to the binomial model for which ju>a2 for all 0 < p < 1. When 
/?<# one can easily show that ju^nd/(1-6), a2 = n93/(l-fff when m = oo where 0 = piq. 
Therefore, /J,<<J2 for all 0 < 0 < 1 in this case, a well-known property for the negative binomial 
distribution. 

Applying the results in [7, pp. 109-11, Th. 4.2], one can readily show that the turn-up face 
probability distribution (1) is strongly unimodal. Because the family of discrete strongly unimodal 
distributions is closed under convolution, it follows that the distribution of X^ is strongly 
unimodal (i.e., log-concave). In particular, the distribution of X^m) is unimodal in the usual sense, 
i.e., there exists a point M such that 

p r ( ^ m ) = r; p) \ Pr(X^} - r -1; p) according as r % M. 

A consequence of the log-concavity of the distribution of X^m) is the inequality 

[ C > , r)f > Cm(n, r - \)Cm{n, r + l), 1 < r < (m - \)n - 1 , 

which simply shows the log-concavity of the extended binomial coefficients Cm(n, r), 0 < r < 
(m-\)n. This shows, in particular, that the distribution of X^ is log-concave. 

3. HISTORY AND PREVIOUS APPLICATIONS 

The earliest reference to the extended binomial coefficients can be found in the work of 
Abraham De Moivre [6]. A detailed "theoretical" discussion appeared in the third edition of [6], 
pp. 39-43, with many illustrative examples throughout the book. His main result appeared in the 
form of a lemma which stated: "To find how many chances there are upon any number of dice, 
each of them of the same number of faces, to throw any given number of points" [6, p. 39]. 
Without giving the reference, De Moivre stated in [6] that the lemma was published by him for the 
first time in 1711. 

A look at [6] indicates that: (a) De Moivre dealt with a fair die with an arbitrary number of 
faces; (b) he calculated Cw(w, f) numerically by explicit expansion of (7); (c) he was aware of the 
generating function for Cm(n, r), 

( 1 _ fm Y {m^n 

\-t, 
= X Cm(n,ry> 

r=0 

which is given immediately after (5); (d) he was aware of the property of symmetry (9). 
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The distribution of X^m) +n for the case of a fair die appears as an exercise in [8, pp. 284-
85]. Generating functions and limits for the cumulative probabilities of X^m) +n under this case 
are also presented as exercises by Feller [8, p. 285] who relates them to the work of Lagrange. 

An important practical application of the extended binomial distribution was presented by 
Kalbfleisch and Sprott [14] in relation to the estimation of the "hit number," a parameter asso-
ciated with an interesting dilution series model arising in virology. This model was originally 
proposed by Ailing in [1]. The basics of the experiment, data, and assumptions are as follows: (a) 
a liquid medium containing a suspension of virus particles is successively diluted to form a 
geometric series of k + \ dilutions a°,a,a2,...,ak; (b) these dilutions are poured over replicate 
cell sheets; (c) after a period of growth, the number Nt of plaques occurring at dilution level a1 is 
observed (0 < / < k); (d) the Nt 's are independent with Nt having a Poisson distribution with 
mean rjy1 (0 < / < £ ) . Here rj is the expected number of plaques in the undiluted suspension 
(/' = 0), and y - a~h, where a is the known dilution factor and h the "hit number," is the minimum 
number of virus particles that must attach themselves to a cell in order to form a plaque. The 
primary objective of the experiment was to estimate h. 

In their statistical analysis, Kalbfleisch and Sprott [14] first show that the statistics (S, T) = 
(Sf=0 Niy Zf=0 iJ^t) are jointly sufficient for (77, h). Then they derive the conditional distribution of 
T given S - s, which turns out to be the extended binomial distribution in the form (14) with 
m-k + \n- s, and 0 = y. They use this distribution to make inferences about h - - In y I In a 
that are unaffected by lack of knowledge on the remaining parameter 77. 

4. INFERENTIAL ISSUES 

4.1 Sufficiency, Completeness, and Consequences 

Since for given m and n the distribution of X^ is a member of the family of power-series 
distributions, then {Fr(X^m) = •;/?): 0 < p < 1} is complete. Further, if Yly Y2,..., Yk are indepen-
dent and identically distributed as X%"\ then S = *Zf=lYj is sufficient for p or any one-to-one 
parametric function such as 0- piq. Due to the already noted reproductive property, it follows 
that {Pr(£ = •; p): 0 < p < 1} is also complete. 

These facts, in conjunction with the Rao-Blackwell theorem (e.g., see [12, pp. 349-52]), 
imply that the only parametric functions for which minimum variance unbiased estimators exist 
are the linear combinations of {prq{m~l)n~\ 0 <r <(m- l)n). In particular, the sample mean Y -
Sf=1 Yj I k is the unique minimum variance unbiased estimator of the average value ju of X^m) 

given in (16). 

4.2 Extended Fisher's Conditional Test and 
the Extended Hypergeonietric Distribution 

Consider two w-faced dice, labeled Die 1 and Die 2, with respective unknown parameter 
values px mdp2. On the basis of the scores Yn, Y12,..., Yx in nx rolls of Die 1 and Y2l, Y229..., Y2n 
in r^ rolls of Die 2, we would like to test 

Ho'Pi=P2 v s H\P\*Pi-
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In view of the sufficiency results of section 4.1, in developing a sensible test for H0 vsHx, 
one should focus on the total scores Yx = E"ii Yy and Y2 = Z"^ Y2i. Note that Yx and Y2 are inde-
pendent and have extended binomial distributions with parameters (mynl9p^ and (wi,^,/^), 
respectively. Letting p = pxq2 I (q^), one can show that 

Prtf = a,Y2= b; A , p2) = Cm(nu d)Cm{rh, wfa] $ T ^ " ^ , 

from which it is readily seen that T = Yl-^-Y2 is sufficient for p2 when p is specified. Therefore, 
the conditional distribution of Yl9 given the observed value of T, depends on the parameters only 
through p. In fact, 

Prft = a ; p | r = /)= CM,a)Cm(n2,t-a)p" > Q ^ ^ 

Since H0 and Hx are equivalent to H0: p-\ and Hy.p^l, respectively, then a test for H0 vs Hx 

can be developed using Y{ as a test statistic and its conditional null distribution 

Pr(K =a\T= t) = C»("i> W^"* * ~ <*> ,0<a<t. (18) 

P-values for testing HQ vs Hx can be calculated as tail probabilities from (18). 
Note that the extended hypergeometric identity (8) has been used in deriving (18). Naturally, 

the test statistic reduces to Fisher's exact conditional test for homogeneity in 2 x 2 tables (see [9, 
pp. 89-92]) when rn-2 and (18) becomes the classical hypergeometric distribution. For these 
reasons, (18) will be called the extended hypergeometric distribution of order m. 

Analogous to the well-known asymptotic relation between the classical hypergeometric and 
binomial distributions, it can be shown here that, for every m, (18) converges to (^)^"a(l-^r)f"a 

as nx --> oo, ^ -> oo in such a way that nxl (nl+n2)-^> n. 

5. NEGATIVE BINOMIAL EXTENSIONS 

5,1 Total Score up to a Negative-BInomlally-Stopped Roll 

Consider consecutive rolls of the m-faced die with side probabilities (l)-(2). For a given 
positive integer k, define the random variable Z£m) as 

Z£w) = total score until face marked 0 appears k times. (19) 

Clearly, Z^m) has the standard negative binomial distribution when m = 2. 
In order to derive the PGF of Z£w), one can view the above experiment as a two-stage 

proccess as follows. First, generate a value n of Tk = (number of rolls until face marked 0 appears 
k times) - k. Then roll n times a "reduced" die with faces marked {1,2,..., m -1} and correspond-
ing side probabilities pqm~21 (1 - qm~l\ p2qm~31 (1 - qm~l\..., pm~l I (1 - qm~l). Then compute the 
total score among the n rolls to obtain Z^ with the convention that Z^w) = 0 whenever n = 0. 

Note that Tk has the standard negative binomial distribution 

Pr(r,=ii;p) = ^ + * 7 i y - 1 > * ( l - ^ 1 ) w , OS/KOO. 
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Thus, Z^m) can be seen as the total score from a negative binomial random number of rolls of the 
reduced die. From the basic theory on compounding of distributions, see [13, pp. 344-45], the 
PGF of Z{

k
m) can be written 

H(t) = E(t^) = GT(GRm 

where GT (t) is the PGF of Tk and GR{t) is the PGF of the score in one roll of the "reduced" die. 
Since 

, m - l 

GT (0 = 2 

then 

H(t) = q{m-l)k 

• ^W-!_^-i q _ p t 

\-pt- -
q-pt 

(20) 

Using the familiar negative binomial expansion in conjunction with the methods used to 
derive (4)-(5) yield 

P r ( Z f W ; p ) = ̂ f | j X [ * + ; - 1 ] c f l _ 1 ( / , r - i V ' - I > , 0<r<™. (21) 

An alternative use of (20) is for moment calculations about Z^w). For instance, the average 
valueofZjm)is 

E{Zn = H'(l)=^1-^ -k J-11 \LJ~~^T~~~ ~~~• ( 2 2 ) 
qm q-p 

When m-2, (22) gives E(ZJC
2)) = kp I q, which is the expected value of a standard negative 

binomial random variate. 

5.2 An Extended Negative Binomial Distribution 

Consider again the die with m faces and turn-up side probabilities given by (l)-(2). Perhaps a 
more natural negative binomial counterpart is the waiting time random variable 

Y^m) = number of rolls until a total score of Nor more (23) 
is observed for the first time. 

Clearly Yj^ is a standard negative binomial variate when m - 2. For this reason the distribution 
ofY}^ will be called the extended negative binomial distribution of order m and will be denoted 
as ENB(w, N, p). 

It is readily seen that the fundamental identity 

Pr(7« </*;/?) = Pr (X« > N; p) (24) 

holds for every n. For the particular case m = 2, relationship (24) is well known from elementary 
probability courses. Using (24) in conjunction with (5) one can show that 

Pr(7W = n;p)= ]TCm(n-1,r)prq^^~r- %Cm(n9r)prq^1^, (25) 
r=0 r=0 

for n > the smallest integer not less than NI (m -1). 
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Although (25) is adequate for numerical evaluations, further simplifications are possible in 
particular cases. For instance, when \<N<m, with the help of (7) one can show that 

Pr(lT = n,p) = ̂ « - » £ \lL J {(» + r
r'2y <T ̂  +; -1]}, (26) 

for 1 <n<oo. Note that Y^ is a geometric random variable equivalent to the number of coin 
tosses until "heads" appears for the first time where the probability of "heads" is 1 - qm~l. 

6. DISCUSSION 

Richard C. Bollinger [4] concludes his article with the comment: 

In conclusion, we hope that the discussion has shown that the Tm arrays really are "extensions" of the 
Pascal triangle, with many similar properties that seem to be the natural generalizations of those of T2, 
but perhaps with a few surprises also. T2 has certainly been a rich source of interesting and useful 
mathematics. We suggest that its extended relatives potentially may serve as equally fruitful objects of 
study. 

Here, Tm denotes the extended Pascal triangle formed by the extended binomial coefficients of 
order m, while T2 is the familiar Pascal triangle of the classical binomial coefficients. Our article 
justifies to some extent the hopes of Bollinger; we too share his suggestions that these objects 
may serve as a source of many more discrete distributions. 

A referee has pointed out the possibility of relating the extended binomial coefficients to the 
Fibonacci sequence of order m, {/„(w)}^=0, for which an extensive literature is available. See, for 
example, the work of Philippou [15] and [16], Philippou and Muwafi [18], and Gabai [11]. 
Indeed, such a connection exists. Perhaps the simplest relationship is 

/£?= t Cn{l,n-l), (27) 
e=SIGE(%) 

where SIGE(x) denotes the smallest integer that is greater than or equal to x, also called the "ceil-
ing" of x. The validity of (27) can be established by expanding the generating function of 
{/iw)}SU> given, e.g., in [15], in conjunction with the generating function for {Cm(n, r ) } ^ 1 ^ 
given in section 2, and then matching coefficients of identical powers in the generating variable. 
One immediate application of (27) is for numerical computation of f^} by means of any of the 
methods for calculating Cm(n, r) discussed in section 2. Thisg approach is likely to be simpler than 
the formula for fjg} in terms of multinomial coefficients given by Theorem 1 in [15]. On the 
other hand, the interesting work on the Fibonacci sequence of order m done by Philippou and 
others has some bearing on the extended binomial coefficients in view of relationship (27). This 
avenue has not been explored in this article and merits further consideration. 

An important application of the Fibonacci sequence of order m discussed by Philippou [16], 
Philippou, Georghiou, and Philippou [17], Philippou and Muwafi [18], and others, is in the calcu-
lation of the distribution of the discrete waiting time random variable 

Nm = number of independent Bernoulli trials performed 
until m consecutive successes are observed, 
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where each trial can result in "success" or "failure" with probabilities/? and q = I-p, respectively. 
Working with the probability generating function of Nm, which was derived by Feller [8, p. 323], 
in a manner similar to the derivation of (27) one can show that 

Pr(Nm = m + j) = £ Cm(£J-t)Pm+J-Y, (28) 
t=SIGE{i) 

for j > 0. Thus, (28) is an alternative to the formula for Pr(Nm -m+j) given by Theorem 3.1 in 
[18] in terms of multinomial coefficients. 

It may also be of interest to look into possible continuous counterparts for the general 
discrete distributions presented in this article, just as beta and binomial, and exponential and 
geometric are naturally related. One interesting aspect is the study of the appropriate family of 
conjugate priors for the extended binomial distribution of order m. Work is currently being done 
in this direction. 
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1. INTRODUCTION 

In many lotteries (e.g., Florida State, Canadian, German) people choose six distinct integers 
from 1 to 49 so that the set of all lottery tickets is given by 

T={t = (tl,t2,...,t6):l<tl<t2<---<t6<49}. 

Assuming a uniform distribution over all (4|) tickets, Kennedy and Cooper [1] obtained the 
expectation and the distribution of the "smallest space" random variable 

S(t) = mm{tj+l-tj:j = 1,2,3,4,5} 

and asked for the distribution of the "largest spacing" 
Lit) = max{/y+1 - tj :j = l, 2, 3,4,5}. 

By means of a certain "shrinking procedure," we provide a simple derivation of the results of 
Kennedy and Cooper. Moreover, we use this idea to obtain the distribution (and expectation) of 
L as well as the (joint) distribution of the individual "spacing" random variables given by 

Xj(t) = tJ+1-tj, 7 = 1,...,5. (1.1) 

A generalized lottery will be treated in the final section. As a bit of convenient but nonstandard 
notation, let 

W {("), otherwise, 

denote a slight modification of the binomial coefficient (™). 

2. DISTRIBUTION OF A SINGLE SPACING 

We first consider the distribution of the y* spacing random variable Xj defined in (1.1). The 
crucial observation is that a 6-tuple / = (th..., t6) from T satisfying tJ+l ~tj>k, where k G{1, 2, 
..., 44} may be "shrunk" into a 6-tuple u = (uv..., u6), where 

uv = tv, v=l,2, . . . ,7, 
a ^ ' v - C * - 1 ) , v = 7 + l,...,6. 

Obviously, this "shrinking procedure" is a one-to-one mapping from {t GT: tj+l -tj > k) onto the 
set M = {(ux,..., u6): 1 < ux < u2 < • • • < u6 < 49 - (k -1)} which has cardinality (5VO. We there-
fore obtain 
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and thus 
P(X} = k) = P(Xj >k)- P(Xj >k + l) 

- l 50-kX _(49-k\' 
6 6 

49-kX 1(49 , k>l 

Using the general fact that, for an integer-valued random variable N, expectation and variance 
may be computed from 

E(N) = J^P(N>k) 
k>\ 

and 
Var(#) = 2 ^ kP(N >k)- E(N) - (E(N)f 

(this is readily seen upon writing 

j>\ j>\\k=\ J 

£(^(# + l)) = X X ^ ^ 
;>1 j>l\k=l J 

and then interchanging the order of summation); it follows that 

and 

Var(X,.) = 2 . ( 4 | J* f > .(50" *) - E{Xj) - (£(*,))» = 2g* = 32.9081. 

Note that the distribution of Xj does not depend ony, which is intuitively obvious. 

(2.1) 

(2.2) 

3. JOINT DISTRIBUTION OF SPACINGS 

For the sake of lucidity, we first consider the joint distribution of two spacings Xt andZy, 
where l < z < y < 5 . Here the idea is to "shrink" a ticket (th...,t6) eT satisfying ti+l-tf >k, 
tJ+l -tj>£, where k,£>\ & + .£ < 45, into the 6-tuple (%,..., u6), where 

uv = tv-(k-l\ v = i + l,...,7, 
uv = tv-(k-l)-(£-ll v - j + 1,.,.,6. 

Since the "shrinking mapping" is now one-to-one from {t eT:tM-tt >k, tj+l~tj>£} onto 
{(!#!,..., u6) : 1 < ux < • • • < u6 < 49 - (k -1) - (£ -1)}, we obtain 

and thus, by the inclusion-exclusion principle 
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P(Xt = k, Xj = £) = P(X, > k, Xj >£)- P(X, >k,Xj>t +1) 
-P(Xi>k + \,Xj>£) + P(Xi>k+\,Xj>£ + \) (3.1) 

49 51-k - £Y __J50-k-A+ f49-k-t+ 49-k-iX 1(49 
6 

(k, £>\). From this and 

E(XiXJ) = X^k£P(Xi=k,XJ = £) = XXP(Xi>k,XJ>£) 
k>\ t>\ k>\ t>\ 

' k>\ i>\\ y z,o 

the correlation coefficient between Xi and Xj is given by 

__E(XiXJ)-E(Xi)E(XJ) _ l 
y (Var(A!))Var(Jfy.)) . 6 

The fact that /?(Jf/5 Xj) is negative is also intuitively obvious since large values of Xt tend to pro-
duce small values of Xj and vice versa. 

It should now be clear how to obtain the joint distribution of more than two spacings. For 
example, a ticket (tl9..., t6) satisfying 

r/+1-r7.>£7., / = !,.. . ,5, (3.3) 

where kx + • • • + k5 < 48, may be "shrunk" into the ticket (i/1?..., i/6), where 
y-i 

v=l 

This shrinking mapping is one-to-one from the set of tickets satisfying (3.3) onto the set of 
ordered 6-tuples from 1 to 54 - E;Li K- We therefore have 

i ^ y > * y f o r y = l ^ (3.4) 

(k{ > 1,..., k5 > 1), and probabilities of the type P(Xj = £Jy j = 1,2,..., 5) may be obtained from 
(3.4) and the method of inclusion and exclusion by analogy with (3.1). Note that the joint distri-
bution of (Xl5 X2, X3, X4, X5) is invariant with respect to permutations of the Xj. 

4. THE DISTRIBUTION OF THE SMALLEST SPACING 

The idea of "ticket shrinking" yields the following simple derivation of the results of Kennedy 
and Cooper [1] concerning the minimum spacing S = min(X1? X2, X3, X4, X5). 

Since S > k if and only if each of the Xj is not smaller than k, (3.4) entails 

and thus 
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P(S = k) = P(S >k)- P(S >k + 1) 

From (2.1) the expectation of S Is 

E(S): 49 - 1 9 

ifc=l 

'54-5JfcY_f49-5lfcY k>\. 

5 4 - 5 ^ 4381705 
2330636 

= 1.88004..., 

and, in addition to Kennedy and Cooper, the variance of S [computed from (2.2)] is given by 
6842931587015 

v ' 5431864164496 

5. THE DISTRIBUTION OF THE LARGEST SPACING 

We now answer the question posed by Kennedy and Cooper [1] concerning the distribution 
of the largest spacing L = m a x ^ , X2, X3, X4, X5). 

Noting that L > k if and only if at least one of the Xj is not smaller than k, the reasoning of 
section 3 and the inclusion-exclusion formula yield 

P(L >k) = P(XX > korX2 > kor ••• orX5 > *) 

= 5P(XX > k) - f|V{Xx >k,X2>k) + (f\P(Xx >k,X2> k, X3 > k) 

-fyp(Xj>k; y = l,...,4) + 5P(* ,>£; j = l,...,S) 

7=1 

[k > 1; note that P(L > k) = 0 if k > 45] and thus 
P(L = k) = P(L >k)-P(L>k + l) 

49 - j(k-l)X (49-jk (* = 1,2,...,44). 

Figure 5.1 shows a bar chart of the probability distribution of the maximum spacing L. 

P(L = k) 

FIGURE 5,1. Distribution of the Largest Spacing on a tf6/49n Lottery Ticket 
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Note that the distribution is skewed to the right. The mode is 14 and has a probability of 
0.0828..., whereas the mean "largest space" is given by 

E(L) = tp(L>k)=109376345 = 15.643. 
k=l 6991908 

6. THE GENERAL CASE 

It is clear that the reasoning given above carries over nearly literally to the case of a general-
ized lottery where r numbers from the sequence 1, 2, ..., n are chosen. For a ticket t = (tu...,tr) 
with \<tx <•" <tr <n let, as above, Xj(t) = tJ+l-tj,l<j<r- , denote a single spacing, and 
write S(t) = m i n ^ ^ ^ Xj(t), L(t) = max^ •<,._! Xj(t) for the smallest resp. the largest spacing. 

As a simple consequence of the idea of "ticket shrinking," we have 

P(Xh >kuXh >k2,...,XJm>kJ^-^^-^ 1 ^ (6.1) 

(l<m<r-l; \<jl<j2<~-<jm<r-\', kx > 1,..., km > 1) which entails that the individual spa-
cings are exchangeable, i.e., the joint distribution of any subset of Xh ..., Xr_x depends only on 
the cardinality of this subset. 

For a single spacing XJy it follows that 

P(Xj>k) = ̂  n + l-k 
r k>l 

n+l-kX (n-kX n-k\+ 

r-\ k>l 

n+l-r 
E(Xj)= X P{Xj>k) = 

n+l-r 

n + l 
7TT5 

Var(A}) = 2. X kP(Xj>k)-^ n + l fw + l ) _(n + l)r(n-r) 
r + l) (r + iy(r + 2) 

Note that P(X} = k) = 0 if k >n + l-r. 
For the smallest spacing S, we have 

P(S>k) 

P(S = k) = 

_(n-(r-W-l)X k>l 

k=\ 

(see also Kennedy and Cooper [1]) 

»-(/•- IX* -1) Y _(n-{r- \)k\ 

M 
k>V 

n-(r-l)(k-l) 

(6.2) 
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k>\ 

Finally, 

/xx=*)=(;Ji(-ir{r;1fr-,<*-1>)+-("-v*V 

NotethatP(Z = *) = 0ifJfc>w-r + landP(5' = it) = 0 i f * > ( w - l ) / ( r - l ) . 

Remark: In addition to Jf^f),..., ^-i(0> o n e could introduce the spacings X0(t) = tx and 
Xr(r) = n + l-tr. By an obvious modification of the "shrinking argument," it is readily seen that 
(6.1) remains valid for the larger range l<m<r + l, 0< jY < j2 <• • • < jm <r which entails the 
exchangeability of XQ, X1?..., Xr. 

Since UJ=0 X-=n + l,it follows that 

( r \ r 

which gives a second derivation of (6.2). Moreover, from the equality 

0 = Var t XJ ) = t V a i W + Z I CowiXj, X,) 
\^y=0 y ;=0 ;=0 fc=0 

y** 

and exchangeability, we obtain the covariance 
1 

Cov(X;,X,) = -^Var(Xy), 0<j*k<r, 

and thus the correlation coefficient 

p(Xj,Xk) = -^ 0<j*k<r, 

which is a generalization of (3.2). 
Finally, redefining S and L as to include the spacings X0 andXr, the expressions for the dis-

tribution and expectation of S resp. L continue to hold if each " r - 1 " is replaced by "r + 1" [of 
course, (") remains unchanged], 
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Let g be a positive integer greater than 1. An integer x is an ordered 4-digit base g number 
if 

x = ax- g3 + a2 • g2 + a3 • g + a4 -axa2 a3a4 baseg-
with 

g > ax > a2 > a3 > a4 > 0. 

The following procedure, when applied to x, yields another ordered 4-digit base g number. 
Switch the first two digits of x with the last two digits; then subtract the "switched" number from 
x: 

ax a2 a3 a4 - a3 a4 ax a2 - hx b2 b3 b4 base g. 

Finally, rearrange the digits so that the result, R(x), is an ordered number. Thus, 
R(x) = a{ a2 a3 a4 base g, 

where the o/'s are a permutation of the Z>/s and a\>a2 >a3>a4. This procedure is called the 
Switch, Subtract, Reorder (SSR) routine. 

As an example of the SSR routine, consider the base 15 number x = 13 12 10 8. We switch 
the digits of x and subtract: 

13 12 10 8-10 8 13 12 = 3 3 11 l l b a s e l 5 . 

When we reorder, we get R(x) = 11113 3. 
Returning to the general case, we can apply the SSR routine to the number R(x) to get 

R(R(x)) = R2(x). More generally, Ri+1(x) = R(R\x)) for /> 1. Since there are only finitely 
many ordered 4-digit base g numbers, repetition must occur. That is,RJ(x) = i?'(x) for some / 
and/ 

Continuing to use base 15 as an example, we will find the iterates ofx = 13 12 10 8. For 
reasons which will become clear shortly, for each ordered number axa2a3a4, we will also 
calculate the difference diff -a2-a4. The results are given in the following table: 

TABLE 1 

/ 

1 
' 2 
! 3 

4 
5 
6 

R\x) 
11 11 3 3 
8 7 7 6 

14 13 1 0 
13 12 2 1 
11 10 4 3 
8 7 7 6 

diff 
8 
1 

13 
11 , 
7 j 
1 
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Notice that R2(x) = R6(x). We write (R2(x\ R\x), R4(x\ R5(x)) and call this expression a cycle 
of length 4. We say that R2(x) generates the cycle. Of course, R3(x),R4(x), and R5(x) also 
generate the cycle. 

As the example above illustrates, for a given g the SSR routine always gives rise to at least 
one cycle. We will characterize the cycles by answering the following questions: How many are 
there? What number(s) is(are) in each cycle? What is the length of each cycle? What is the 
smallest i such that, for all x, R!(x) is in a cycle? 

The SSR routine is a variation of the Kaprekar routine. For the Kaprekar routine, we reverse 
the digits of x and subtract: 

ax a2 a3 a4 - a4 a3 a2 ax - bx h2 h3 b4 base g. 

Reordering the digits gives K(x). The Kaprekar routine has been studied extensively (see [1]-
[8]). Among the questions addressed are those that appear at the end of the previous paragraph. 

A REDUCTION OF THE PROBLEM 

For an ordered number x = ax a2 a3 a4, the digit differences of x are D = ax-a3 and d-a2-
a4. Clearly, 0<D, d<g. Now, if R(x) -a[a2 a3a4, then the digit differences of R(x) are 
D' = a[ - a3 and d' = a2 - a4. As a matter of terminology, if it should happen that D-d, then we 
will refer to this number as the digit difference of x. That is, we will use the singular form of the 
noun. 

The reader may wonder why we would want to look at digit differences. In part, we do so 
because similar digit differences play an important role in the Kaprekar routine analysis. More 
importantly, for a given x, R(x) is completely determined by D and d. Moreover, as we now 
show, D' -df. Thus, after one application of the SSR routine, the digit differences are equal. 
This observation will greatly simplify the problem of characterizing the SSR cycles. 

Theorem 1: Let x = ax a2 a3 a4 be an ordered 4-digit base g number with digit differences D and 
d. Denote the digit differences of R(x) by D' = d'. Then 

D' = d' = 0 XD = d = 0, 
D' = df = g-D \fO<D<(g + l)/2& d = 07 

D' = d' = D-l if (g + l)/2<D& d = 0, 
Df = df = \g-D~d\ ifO<D<(g-l)/2& 0<^<(^ + l)/2 

or(g-l)/2<D& (g + l)/2<d, 
Df = df = \D-d + l\ ifO<D<(g-l)/2& {g + \)ll<d 

or(g-l)/2<D& 0<d<(g + l)/2. 

Proof: We consider three cases. 
Case 1. Suppose D = 0 and d = 0. Then all the digits of x are equal. In that case, R(x) = 0 

and£>' = rf' = 0. 
Case 2, Suppose D * 0 and d = 0. Since d-Q,a2-a3-a4. We begin by switching and 

subtracting: 
ax a3 a3 a3 

- a3 a3 ax a3 (1) 
D-\ g-\ g-D 0 
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To find R(x), we reorder the digits in (1). There are two possibilities: 
g-l g-D D-l 0 
g-l D-l g-D 0 

The first occurs when 0 <D < (g +1)/2; in that case, D' -d' - g-D. The second occurs when 
(g+l)/2<D;thenD' = d' = D-l. 

Case 3. Suppose d # 0. We switch and subtract: 
ax a2 a3 a4 

-<h a4 a\ a7 (2) 
D d-l g-D-l g-d 

To find R(x), we reorder the digits in (2). Now D>d-l iff g-d>g-D-l; also, D>g-d 
iffd-l> g-D-l. Thus, R(x) equals one of the following eight ordered numbers: 

g-d 
g-D-l 
D 
d-l 
d-l 
g-D-l 
D 
g-d 

g-D-l 
g-d 
d-l 
D 
g-D-l 
d-l 
g-d 
D 

D 
d-l 
g-d 
g-D-l 
D 
g-d 
d-l 
g-D-l 

d-l 
D 
g-D-
g-d 
g-d 
D 
g-D-
d-l 

-I 

-I 

R(x) equals one of the first four numbers when 
0<D<(g-l)/2& 0<d<(g + l)/2 

or 
(g-l)/2<D& (g+l)l2<d. 

For these numbers, D' = d' = \g-D-d\. On the other hand, R(x) equals one of the last four 
numbers when 

0<D<(g-l)/2& (g + l)/2<d 
or 

(g-l)/2<D& 0<d<(g + l)/2. 
For these numbers, D'= d'= \D-d + l\. D 

As stated above, we refer to df as the digit difference of R(x). We now derive several corol-
laries. Since the first two follow immediately from the proof of Theorem 1, their proofs are 
omitted. 

Corollary 1: Let x and y be ordered 4-digit base g numbers with digit differences Dx, dx and 
Dy, dy, respectively. If Dx - Dy and dx = dy, then R(x) - R(y). 

Corollary 2: Let x be an ordered 4-digit base g number with equal digit differences; that is, 
D = d. Then 

R(x) = 0 0 0 0 ifrf = 0, 
R(x) = g-d g-d-l d d-l if0<d<g/2, 
R(x) = g/2 g/2 g/2-l g/2-l ifd = g/2, 
R(x) = d d-l g-d g-d-l ifg/2<d. 
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Corollary 3: Let x be an ordered 4-digit base g number with equal digit differences; that is, 
D = d. Denote the digit difference of R(x) by dr. Then d' = 0 if and only if d = 0. Moreover, if 
<i^0,then 

d' = \g-2d\ i£d*g/29 
d' = l ifd = g/2. 

Proof: We use Corollary 2 to find R(x). The result follows immediately by computing the 
digit difference of R(x) in each case. D 

Corollary 4: Let x be an ordered 4-digit base g number. If R\x) = 0 for some / > 1, then 
R\x) = 0. 

Proof: Let df be the digit difference of R(x). Since R!(x) = 0, its digit difference is 0. 
Applying Corollary 3, repeatedly if necessary, gives d' - 0. By Corollary 2, R2(x) = 0. D 

Since i?(0) = 0, there is always one SSR cycle which contains the single number 0. We will 
call this the zero cycle and denote it by (0). By Corollary 4, we know that if x leads to the zero 
cycle, it will do so in two or fewer steps. Corollary 3 tells us that there are other numbers which 
do not lead to the zero cycle. Consequently, the SSR routine always has at least one nonzero 
cycle. 

A RELATED FUNCTION 

Suppose x generates a nonzero SSR cycle of length m. Since Rm(x) = x, the digit differences 
of x are equal and nonzero. Moreover, by Corollary 3, if the digit difference of x is d * g / 2 , then 
the digit difference of R(x) is \g~ 2d\. This observation leads us to consider \g-2d\. 

The function F(d) = \g-2d\, 0<d<g, was studied by this author in another context [9]. 
Since 0 < F(d) < g, iteration of F gives rise to one or more cycles. As we will see, the cycles of 
F are in a one-to-one correspondence with the nonzero SSR cycles so long as the former do not 
contain 0, g/2, or g. 

Before continuing, we.consider an example. Earlier we applied the SSR routine to the base 
15 number x = 13 12 10 8. We found R(x) = 11113 3, which has a digit difference of 8. Now, 

F(8) = |15-16|=l, 
F2(8) = F(1) = |15-2| = 13, 
F3(8) = F(13) = |15-26| = 11, 
F4(8) = F(ll) = |15-22 | -7 , 
F5(8) = F(7) = |15-14|=1. 

By Corollary 3, since the digit difference of R(x) is 8, the digit difference of R2(x) is F(8). 
More generally, for i > 1, the digit difference of Ri+\x) is F(8) . This is confirmed by examining 
the diff column in Table 1 and comparing it with the calculations above. Thus, we see that the F-
cycle <1,13,11,7) corresponds to the SSR cycle (i?2(x), i?3(x), i?4(x), i?5(x)> • 

The relevant properties of F are listed below. Proofs may be found in [9]. We will write 
F (d) in place of F(d) whenever the context requires this elaboration. 
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Theorem 2: Let k be the nonnegative integer such that 2*||g\ Then, for 0 < d < g, we have: 
(a) F(g12) = 0, F(0) = g, and F{g) = #. 
(J) rf is in an F-cycle if and only if 2k\\d. 
(c) For / > 1, /•*/ is in an Fig -cycle if and only if rf is in an F -cycle. More generally, (i-dh 

i-d2,...J-dn) is an Fig -cycle if and only if (dx, d2,. ..,dn) is an i^-cycle. 
(d) Let i be the nonnegative integer such that 2'\\d. If/ < k - 1 , 2/+1||F(^); if/ = * - 1 , 2*+1|F(<f); 

i f / > * - l , 2*||F(£/). 
f̂ J For / > 1, F'(af) is congruent to either lid or - 2ld modulo g. 

(f) 2k\\Fi(d)w\imi>k. 

Several conclusions are immediate from Theorem 2. By (a), 0 and g/2 are not contained in 
an F-cycle. Moreover, (g) is an F-cycle of length 1. This cycle is called the trivial cycle; all 
other cycles are proper cycles. Part (b) tells us that proper cycles exist if and only if g is not a 
power of 2. By (c), it suffices to determine cycles for odd g. Additionally, we need only consider 
those d which are relatively prime to g. We will call cycles containing such d prime. All other 
cycles are composite since they may be found using (c). Parts (b) and (f) together imply that 
Fl(d) is in a cycle whenever /' > k. 

Before continuing, we illustrate the previous theorem and definitions. We begin with g = 5. 
By Theorem 2(b), d is in an F5-cycle if and only if d is odd. Since F(l) = | 5 - 2| = 3 and F(3) = 
| 5 -6 |= 1, the only proper F5-cycle is (1,3). The trivial cycle is (5). 

As a second example, we let g = 20. By Theorem 2(b), d is in an F20 -cycle if and only if 
4\\d. Since g is even, each proper cycle is composite and may be derived from an F5-cycle by 
multiplying by 4. As we have just shown, the only proper F5-cycle is (1,3). Consequently, 
(4,12) is the only proper F2Q -cycle. 

Before considering a third example, we state another result which was proved in [9]. It tells 
us how to find the lengths of prime cycles. 

Theorem 3: Let g be an odd positive integer and let m be the smallest integer such that 2m is 
congruent to either 1 or -1 modulo g. Then each prime .F-cycle has length m. Moreover, there 
are 0(g)/2m such cycles, where 0(g) is the Euler Phi function. 

We now consider g- 15. By Theorem 2(b), d\s in an Fl5-cyde if and only if d\s odd. Since 
^(15) = 8 and 24 = 1 (mod 15), there is one prime cycle of length 4. As we have already seen, this 
cycle is (1,13,11, 7). The composite i^-cycles, found from the proper F3- and /^-cycles using 
Theorem 2(c), are <5> and (3, 9). 

THE SSR-CYCLES 

We now use the previous results to characterize the SSR cycles. 

Lemma 1: Suppose d generates a proper i^-cycle of length m. Then there exists a nonzero SSR 
cycle of length m. Moreover, this cycle is generated by an ordered number whose digit difference 
isaf. 
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Proof: Since g 12 is not in an F-cycle, F(d)*g/2for0<i. Let x = d d 0 0. Clearly, x 
has equal digit differences of d. Hence, the digit differences of Rf(x) are F'(d), / > 1. By hypothe-
sis, Fi(d)*Fm(d),0<i<m, and Fm(d) = d. This means that # ( x ) * / T ( x ) ; further, 7T(x) 
and x have the same digit differences. Hence, by Corollary 1, Rm+1(x) -R(x). Thus, <i?(x),..., 
Rm(x)) is an SSR cycle of length m; it is generated by Rm(x), whose digit difference is d. U 

Lemma 2: Suppose x generates a nonzero SSR cycle of length m. Let dbe the digit difference of 
x. If Fl(d) ^ g/2, 0<i <m, then d generates a proper F-cycle of length m. 

Proof: The digit difference of R(x) is F{d)±gl2,i>\. By hypothesis, Rm(x) = x; hence, 
Fm(d) = rf and d generates a proper F-cycle. If F(d) = d for some /', 0 < i < m, then by Corol-
lary 1, R1+l(x) - R(x). But then the SSR cycle would have length / <m. Thus, the F-cycle gen-
erated by d has length m. D 

Theorem 4: Suppose g = 2k • t, where 0 < k and t is an odd positive integer greater than 1. Let x 
be an ordered 4-digit base g number with equal digit differences of d. Then x generates an SSR 
cycle of length m if and only \id generates an F-cycle of length m. • 

Proof: By Lemmas 1 and 2, we need only consider the case when x is an ordered number 
with equal digit differences of g/2. Suppose that x generates a nonzero SSR cycle of length m. 
Then, by Corollary 3, the digit difference of R(x) is 1. Thus, for 1 </' < m, the digit differences of 
R(x) is F-\l). Since Rm(x) = x, F^\\) = g 12 = 2k~l • f. By Theorem 2(e), F ^ l ) is congru-
ent to either 2m~l or -2m~l modulo g. As a shorthand notation, we will write Fm_1(l) = ±2m'x 

(mod g). Hence, 2k~l -t = ±2m~l (mod 2k -t). Since t is an odd positive integer greater than 1, we 
have reached a contradiction. D 

Theorem 5: Suppose g-2k', where 0<&. Then there is exactly one nonzero SSR cycle. This 
cycle has length k and contains: 

w = l 1 0 0 ifg = 2, 
w = 2k-2k~2 2k-2k~2-\ 2k~2 2k~2-\ i fg>2. 

Proof: Since g is a power of 2, there are no proper F-cycles. Hence, by Lemma 2, there is 
at most one nonzero SSR cycle. Moreover, it must be generated by an ordered number whose 
digit difference is g 12. 

If g - 2, then (w) is a nonzero SSR cycle, since R(w) = w. If g > 2, the digit difference of w 
is 2k~l = g /2 . By Corollary 2, 

i?(w) = 2A:"1 2*-1 2 ^ - 1 2 ^ - 1 
and 

/?+20v) = 2*-2 ' 2^-27 '- l 27' 2 / - l , 0 < / < * - 2 . 

Thus, ^ ( w ) = w. D 

Theorems 4 and 5 completely characterize the nonzero SSR cycles. If g is not a power of 2, 
then the nonzero SSR cycles are in a one-to-one correspondence with the proper F-cycles. The 
cycle lengths can be. determined using Theorems 2(c) and 3. The numbers that generate the SSR 
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cycles can be found from the F-cycles using Corollary 2. If g is the k^ power of 2, then there is 
exactly one nonzero SSR cycle; it has length k. 

Returning to our base 15 example, previously we found that the F-cycles are (1,13,11, 7), 
(5), and (3, 9). The SSR cycle which corresponds to the first F-cycle is given in Table 1. The 
SSR cycle which corresponds to the F-cycle (5) is (*/), where the digit difference of u is 5; by 
Corollary 2, u = 10 9 5 4. The SSR cycle which corresponds to the F-cycle (3, 9) is <v, i?(v)>, 
where the digit difference of v is 3; by Corollary 2, v = 9 8 6 5. 

WHEN IS R\x) m A CYCLE? 

We now consider the following question. If x is an ordered 4-digit base g number, what is 
the smallest / such that R'(x) is in a cycle? 

Lemma 3: Let k be the nonnegative integer such that 2k\\g. For all d satisfying 0<d<g, 
Fk+l(d) is in an^-cycle. Moreover, Fk(l) is not in anF-cycle. 

Proof: The first statement follows immediately using parts (b) and (f) of Theorem 2. For the 
second, we use Theorem 2(d) to show that 2J\\FJ(l)forj<k-l and 2k+1\Fk(l). Hence, by 
Theorem 2(b), Fk(l) is not in an F-cycle. D 

Theorem 6: Suppose g = 2k • t, where 0 < k and t is an odd positive integer greater than 1. Let x 
be an ordered 4-digit base g number. Then R2k+2(x) is in an SSR cycle. Moreover, there exists 
an ordered 4-digit base g number^ such that R2k+l(y) is not in an SSR cycle. 

Proof: Let d be the digit difference of R(x). If d- 0, then R2(x) - 0. Hence, we can 
assume d ^ 0 . 

First, we consider the case when g is odd. The digit difference of R2(x) is F(d) = \g-2d\. 
Since F(d) is odd, it is in a proper F-cycle. Hence, by Theorem 4, R2(x) is in a nonzero SSR 
cycle. Now consider y = 1 0 0 0. Calculating R(y), we find: 

R(y) = g-i g-i o o. 
The digit difference of R(y) equals g-1, which is even. Since g-1 is not in an F-cycle, R(y) is 
not in an SSR cycle, by Theorem 4. 

Now suppose that g is even; i.e., k > 0. If F\d) ^ g/2 for 0 </, then Fl(d) is the digit dif-
ference of Rl+l(x). By Lemma 3, Fk+l(d) is in a proper F-cycle. Hence, Rk+2(x) is in an SSR 
cycle. On the other hand, suppose that F(d) = g/2 for some /, 0< i < k-1. Then the digit dif-
ference of R1+2(x) is 1. Consequently, ^ (1 ) is the digit difference of R1+J+2(x) for j < k, Since 
Fk(l) is not in a proper F-cycle, Rl+k+2(x) is not in an SSR cycle, by Theorem 4. However, 
again by Theorem 4, because F^+1(l) is in a proper F-cycle, Ri+k+3(x) is in an SSR cycle. Con-
sequently, for all x, R2k+2(x) is in an SSR cycle. 

We now consider y = t 0 0 0. The digit differences of y are t and 0. By Theorem 1, the 
digit difference of R(y) is d = 2k • t -1. By induction, it is easily established that 

Fi(d) = 2k-t-2i-t, 0<i<k-l. 

Hence, Fk~l(d) = g/2. By the results established above, R2k+l(y) is not in an SSR cycle. • 
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Lemma 4: Suppose g = 2k, where 1 < k. For all d satisfying 0 < d < g, there exists an integer / 
such that F(d) = gl 2 for 0 < i < k - 2. 

Proof: Let j be the integer such that 2s ||rf; of course, 0 < j < k - 1 . Then 2k~l~j • d = 2fc_1 

(mod 2*). Since Fk-l~J(d) = ±2*~w • rf (modg), Fk~l-j{d) = g/2. 
Ifk = 2,thmF°(g-l) = g-l*2. If k>2Jor 0<i <k-2, 

Fi(g-l) = F(2k-l) = 2k-2i*2k-\ D 

Theorem 7: Suppose g-2k, where 1 < £. Let x be an ordered 4-digit base g number. Then 
Rk(x) is in an SSR cycle. Moreover, there exists an ordered 4-digit base g number y such that 
Rk~l(y) is not in an SSR cycle. 

Proof: Let d be the digit difference of R(x). If d = 0, then R2(x) = 0. Hence, we can 
assume d & 0. By Lemma 4, i7'(d) - gl2 for some /, 0 < / < k-1. By Theorem 5, this implies 
that R1+l(x) is in the nonzero SSR cycle. Hence, for all x, Rk(x) is in an SSR cycle. 

We now consider y = 1 0 0 0. Calculating R(y), we find 

R(y) = g-i g-i o o. 
The digit difference of R(y) is g-l. By Lemma 4, F(g-l)^g/2 for i<k-2. Hence, 
Rk~l(y) is not in the SSR cycle. • 

WHEN DOES THE SSR ROUTINE YIELD A CONSTANT? 

Finally, are there bases g for which the SSR routine yields a single, nonzero constant? 

Lemma 5: Suppose \<d <g. Then (d) is the only proper F-cycle if and only ifd = g/3, where 
g = 2k-3 for some 0<&. 

Proof: First, suppose that (d) is the only proper F-cycle. Since F(d) = d,\g-2d\ = d and 
d - g 13. To prove that g has the stated form, we write g - 2k • 3 • t, where t is odd. If 1 < t, 
then, by Theorem 2(b), 2^-3 is in a proper F-cycle. But this implies there is a second proper 
F-cycle. Consequently, t-\ and g - 2k • 3. The converse is easily established using Theorem 
2(b). D 

Theorem 8: Suppose g = 2k • 3, where 0 < k. Let 

z = 2k+l 2fc+1-l 2k 2*- l . . 

If x is an ordered 4-digit base g number such that R2(x) it 0, then R2k+2(x) = z. 

Proof: By Lemma 5, there is only one proper F-cycle, (2k). Consequently, by Theorem 4, 
there is only one nonzero SSR cycle and it has length 1. This cycle is <z>, since R(z) -z. By 
Theorem 6, R2k+2{x) is in a cycle; hence, R2k+2(x) = z. D 
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INTRODUCTION 

This paper arose from our interest in generalizing a problem in the February 1993 issue of 
The Fibonacci Quarterly proposed by Piero Filipponi: 

Write down the Pell sequence, defined byP0 = 0, Pl = 1, &ndPn+2 = 2Pn+l + Pn for n > 0. Form a dif-
ference triangle by writing down the successive differences in rows below it. . . . Identify the pattern that 
emerges down the left side and prove that this pattern continues. [1] 

We investigate properties of difference triangles in which the sequence of numbers in the top 
row satisfies a linear homogeneous recurrence with constant coefficients. These coefficients and 
the entries in the sequences are integers in the examples in this paper. In the proofs, we assume 
that we are working over any field containing the integers. 

1. DEFINITIONS AND NOTATIONS 

We represent difference triangles (e.g., Fig. la) in matrix form (Fig. lb) and refer to their 
rows and columns (rather than to their diagonals). Let d° denote the top (0th) row of a differ-
ence triangle and let df,i>0, denote the i'th row. Similarly, let dQ denote the left-most (0th) 
column of a difference triangle and let dj9 j > 0, denote the j - t h column. The same symbols also 
denote the corresponding sequences of numbers in the rows and columns. 

Let dj denote the element in the Ith row and the 7th column of the difference triangle (e.g., 
d\ - -2 in Fig. lb). The difference triangle itself may be considered as a double sequence 
{dfi, i > 0, j > 0, which obeys 

d) = dy+l-dy1 for 1 > 1, j > 0. (A) 

If the top row of a difference triangle is given, then (A) will yield all the other rows recursively. 
This paper deals with difference triangles whose top row satisfies a linear recurrence that is 

homogeneous and has constant coefficients (LRHCC). Such a recurrence can be characterized by 
a nonnegative integer k called the order of the recurrence, together with an ordered set of k con-
stants Co,cl,...9ck_l. A sequence {at} is said to satisfy this recurrence if the following equation 
holds for each n>0\ 
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an+k - Ck-lan+k-l H + Clan+1 + C(fln \p) 

If k - 0, this becomes an = 0 for n > 0. 

1 2 7 5 9 1 2 7 5 9 

1 5 - 2 4 1 5 - 2 4 

4 - 7 6 4 - 7 6 

-11 13 -11 13 

24 24 

(la) (lb) 

FIGURE 1. Triangular form (la) and matrix form (lb) of difference 
triangle arising from the sequence 1, 2, 7, 55 9. 

2. RECURRENCE RELATIONS 

Theorem la: Let {d'j} be a difference triangle, k a nonnegative integer, and c0,ch...,ck con-
stants such that, for all nonnegative integers n, 

CkdUk + C/c-idLk-i + ' * • + <i<Ci + <V# = 0 (C) 

holds for / = /w, where m is some nonnegative integer. Then (C) also holds for all / > m. 

Proof: We suppose that (C) holds for /' = p and show that it holds for i = p +1. Subtracting 
(C) with i-p withn unchanged from (C) with / = p and with n replaced by n +1, we obtain 

ck(dn
p

+l+k - dp
n+k) + ck_x(d^k -dp

n+k_x) + • • • + cx(dn
p

+2 -<+i) + c0(dp
+l -dg) = 0 

forrc>0. 
Applying (A) to the parenthetical expressions, we get 

for n>0, which is equation (C) with i = p + l. Since (C) holds for i = m, it now follows by 
induction that it also holds for all i>m. 

Corollary: If the top row of a difference triangle satisfies a given LRHCC, then every row of the 
triangle satisfies the same recurrence. 

Theorem Ih Let {d)} be a difference triangle, k a nonnegative integer, and b0, bl9..., hk constants 
such that, for all m > 0, 

bkd™+k + bk_xdfk-x + - • • + 1\dfl + b^df = 0 

holds for j = n where n is some nonnegative integer. Then it also holds for all j > n. 
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Proof: Rewriting (A) as 

d ^ d ^ + d j fori>lj>0, 

we obtain an analogous proof for the columns as for the rows in Theorem la. 

(A") 

Corollary: If the 0th (left-most) column of a difference triangle satisfies a given LRHCC, then 
every column of it satisfies the same recurrence. 

Lemma la: d) = J^{-l)s{ f\dj~+t-a fori>£>0J>0. 
s=0 V ' 

Proof: Iterate (A) to obtain 

d^d^-j-1=(d%i-di-+
2

l)~(d%-di-2) 

= d*;| - Id'^ + d'f2 for i >2J> 0. 

Continuing, we express an element of the difference triangle as a (linear) function of the elements 
in the row that is £ rows above it: 

^ = ( Q ^ - ( l ) ^ i + " - + ( - ^ £ i ) ^ ; i + ( - i y ( | ) ^ fori>£>0J>0. 

Lemma lb: dJ = ][)(fW£5 for / > 0 , ; > .£ > 0. 

Proof: Iteration of (A') gives 

Lemmas la and lb are extensions of results found in the literature (cf. Hartree [2], p. 38, and 
Lakshmikantham & Trigiante [3], p. 3). 

Theorem 2: If the top row of a difference triangle satisfies a k^ order LRHCC, then the left-
most column also satisfies some k^ order LRHCC. 

Proof: The LRHCC of the top row may be written as ckd®+k + ck_^^k_x + • • • + cxd®+l + 
c0d® = 0 for n > 0, where, in this case, ck--l. By Theorem la, we may replace the superscript 0 
with any nonnegative integer i. Then setting n equal to 0, we obtain 

[cQ, CX, -^,ck_hck] 
do 
d', 

di 

0 for/>0. (D) 

Now setting £ - j in Lemma lb for 0 < j < k, and using matrix notation, we can write the above 
column vector as 
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.4. 

GO o 

o 

0 

0 
"o 

di+k 
.0 

for i > 0. (D) 

Substitution of (D) into (D) yields 

[c0, q, ...,ck_x, ck] 

0 

0 

0 

0 4 
4+1 

di+k 
. o 

= 0 for/>0. 

Multiplying the first two matrices, we obtain [b0, bu b2,..., bk_1, bk], where 

bj = £(j)c* for/= 0,1,...,*, (D") 

so that the equality 
hdUhditl + --+hd'+k = o u0u.Q V^Q 'k^O 

holds for each / > 0. Since the b's do not depend on /, and since bk = - 1 , the left-most column 
satisfies a £th-order LRHCC. Note that, generally, this LRHCC is not the same as for the rows. 
However, it does have integer coefficients if the recurrence of the top row has integer coeffi-
cients. 

Example: Suppose the top row of the difference triangle is the Pell sequence (see Fig. 2, below). 

0 
1 
0 
2 
0 
4 
0 
8 
0 
6 

1 
1 
2 
2 
4 
4 
8 
8 
16 

2 
3 
4 
6 
8 
12 
16 
24 

5 
7 
10 
14 
20 
28 
40 

12 
17 
24 
34 
48 
68 

29 
41 
58 
82 
116 

70 
99 
140 
198 

169 
239 
338 

408 985 
577 ••• 

FIGURE 2. Difference triangle for the Pell sequence satisfying Pn+2 = 2Pn+1 +Pw9 

PQ = 0, P1 = 1. Minimal polynomial is x2 - 2x -1. Triangle has dis-
placement (2̂ 5 0) with multiplier 2* for each integer L 
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The corresponding recurrence is Pn+2 - 2Pn+l + Pn for n > 0, so that q = - 1 , q = 2, c0 = 1. Thus, 
equation (D") yields Z?2 = - 1 , \ - 0,bQ - 2, and the subsequent equality becomes d^2- 2dj = 0. 
Hence., the recurrence for the left-most column may be written as d1^2 = 2dl

Q. The same recur-
rence holds for all columns by Theorem lb or its corollary. 

3a POLYNOMIAL OF A SEQUENCE 

Definition: We say that f(x) is a polynomial of a row (or column) and of the corresponding 
sequence {a;} if f(x) = c0 + qx H ^ckxk for some nonnegative integer k and some constants 
c0, ch .„., ck, and the equality cQan +qa„+1 + -- + ckan+k = 0 holds for all n > 0. Notice that this 
definition allows f(x) to be the zero polynomial (which is a polynomial of every sequence). Note 
also that if we express f(x) differently, by adding extra terms with coefficients of zero (thus 
increasing k), f(x) is still a polynomial of the sequence {a;-}. If ck - 1, then we say that f(x) is a 
characteristic polynomial of the sequence. 

Theorem 3: If {dj} is a difference triangle, and f(x) is a polynomial of the top row d°, then 
f(x +1) is a polynomial of the left-most column dQ. 

Proof: Let / (x ) = qx^ + • • • + qx + c0. Then, by definition, 

cd° • + Ck-l^n+k-l ' 

As in the proof of Theorem 2, we obtain 

\dtk +K-A 'm+k-l 

•+cQd°n for«>0. 

+ b0d™ = 0 {orm>09 

,k-l 

(E) 

where the &'s are defined by (D"). Then g(x) - bkx + bk_xx +---+b1x + b0 is a polynomial of dc 

We may write this in vector notation as 

g(x) = [b0,b1,...,bk] 

Substituting for the b's, using (D "), we obtain 

g(x) = [cQ,c1,...,ck_1,ck] 

0 

r 
0 

0 

0 

0 

- [ C 0 > C 1 > •••>C£-l>CjfcJ 

1 
l + X 

(l + xf 

f(x + l), 
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so that f(x +1) is a polynomial of d0. Clearly, if f(x) has integer coefficients, then so does 
/ ( * + !)• 

Example: Substitution of x +1 for x in x2 - 2x -1, a characteristic polynomial of the Pell se-
quence, gives x2 - 2 as a characteristic polynomial of the left-most column d0 of its difference 
triangle. The corresponding recurrence may be written as d1^2 = 2dl

0, which agrees with the result 
in the example following Theorem 2. 

Lemma 2: Let f(x) and g(x) be polynomials of a sequence {at}, let c be a constant, and let m be 
a nonnegative integer. Then each of the following is also a polynomial of the sequence {at}: 

(a) f(x) + g(x); 
(b) cf(x); 

(c) x™f(x). 

Proof: These statements follow readily from the definition of a polynomial of a sequence. 

Theorem 4: If f(x) is a polynomial of a sequence {af} and g(x) is any polynomial, then 
f(x)g(x) is a polynomial of {a,}. 

Proof: The proof follows from Lemma 2. 

Example: The Fibonacci sequence defined by Fn+2 = Fn+l + Fn for n>0, F0 = 0,Fl = l, has x2 -
x-l as a characteristic polynomial. It has (x2 -x-l)(x +1) = x 3 - 2 x - 1 as another characteristic 
polynomial corresponding to the recurrence Fn+3 = 2Fn+l + Fn, which this sequence also satisfied. 

Corollary: Let S be a finite set of sequences, each satisfying some LRHCC (not necessarily the 
same). Then there exists a recurrence that is satisfied by all the sequences. 

Proof: Let fi(x),f2(x),...,fn(x) be polynomials of the n sequences in S, respectively. 
By repeated use of Theorem 4, their product fi(x)f2(x) •- fn{x) is a polynomial of each of the 
sequences in S. A recurrence corresponding to this polynomial is satisfied by every sequence in S. 

Example: Let S consist of the Fibonacci and Pell sequences. Characteristic polynomials for the 
sequences are x2 -x-l and x 2 - 2 x - l , respectively. Multiplication of these polynomials yields 
x4 - 3x3 + 3x +1. The corresponding recurrence is an+4 = 3aw+3 - 3an+l - an, which is satisfied by 
both the Fibonacci and the Pell sequences. 

Definition: A characteristic polynomial of a sequence is called a minimal polynomial of the 
sequence if it is of lowest degree. That a minimal polynomial is unique is a consequence of the 
next theorem. 

Theorem 5: A minimal polynomial of a sequence divides every polynomial of the sequence. 

Proof: Let f(x) be a minimal polynomial of the sequence {ay} and let g(x) be a polynomial 
of {aj. Then by the division algorithm, g(x) = f(x)q(x) + r(x), where q(x) and r(x) are poly-
nomials, with r(x) having lower degree than / (x ) , or else r(x) = 0. By Theorem 4, f(x)q(x) is 
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a polynomial of {a,} and, by Lemma 2, so is r(x) = g(x)- f(x)q(x). If r(x) 4 0, then we can 
multiply r(x) by a constant to get a monic polynomial. By Lemma 2, this is a polynomial of {a;}, 
thereby yielding a characteristic polynomial of degree less than that of f(x), which is a contradic-
tion. Therefore, r(x) = 0, and hence f(x) divides g(x). Note that, if f(x) and g(x) have integer 
coefficients, then so does q(x), since f(x) is monic; thus, divisibility of g(x) by f(x) would also 
holdinZ[x]. 

4. DISPLACEMENTS 

Definition: A difference triangle {dJj} is said to have a displacement (s, t) with multiplier M if 
there exist integers s, t and a number M such that the equality 

d£t' = A4*Z (F) 

holds whenever m,n,m + s, and w 4-1 are nonnegative integers. We also say that a sequence has a 
displacement (s, t) with multiplier M if the difference triangle of which it is the top row has that 
displacement. If s = t = 0, the displacement is called trivial, otherwise nontrivial. 

Example: If the Fibonacci sequence is used for the top row, it generates a difference triangle that 
has displacement (t, t) with multiplier 1 for each integer t (see Fig. 3). The displacements (f, t) 
may be considered as t multiples of the displacement (1,1). For an example of a difference tri-
angle whose displacements cannot be expressed as multiples of a single displacement, see Figure 7 
at the end of this section. 

0 1 1 2 
1 0 1 1 

- 1 1 0 1 
2 - 1 1 0 

- 3 2 - 1 1 
5 - 3 2 - 1 

- 8 5 - 3 2 
13 - 8 5 ••• 

- 2 1 13 ••• 
3 4 • • • 

FIGURE 3, Difference triangle for the Fibonacci sequence satisfying Fn+2 =Fn+1 +JFW? 

^ = 0,2^ = 1. Minimal polynomial is x 2 - x - l . Triangle has displace-
ment (t, t) with multiplier 1 for each integer t. 

Theorem 6: If a difference triangle has a nontrivial displacement, then its top row satisfies some 
LRHCC. 

Proof: Let the difference triangle be {d'j}. First, assume that it has a displacement (s, t) * 
(0, 0) with s > 0 and with multiplier M. Then we can use the definition of displacement and 
Lemma la to obtain 

^ ^ 4 = l H ) | j ] C ^ forn>max(0,-0- (G) 

3 5 8 13 21 34 55 
2 3 5 8 13 21 ••• 
1 2 3 5 8 ••• 
1 1 2 3 ••• 

0 1 1 ••• 
1 0 ••• 
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Subtracting Md% from the left and right sides of the equation, and then replacing n with n + 
max(0,-/), we get an equation of the form (E) in Theorem 3 for some constants ck, ...,cx, c0, 
where k = max(t + s,s,-t). Moreover, the c's are not all 0 except when s = t = 0 (and M = 1), 
which is the trivial displacement. Hence, we can write the last equation in the form of some 
LRHCC which d° satisfies. 

As a second case, let s < 0 and M^O. Then we can write (F) in the definition of displace-
ment as 

d%Zt
s = —d% form',n',m'-s,n'-tZO 

by substituting mf -s for m and n'-t for n. Thus, {dj} also has a displacement (-$, -t) with 
multiplier 1/M, and since -s> 0, we can use the first case of this proof. 

As a final case, suppose that s < 0 and M = 0. In (F) let m-s and replace n with n - t, to 
get the equality d® - Md~s_t = 0, which is valid for all n > max(0, /), so that d% = 0 for each n > 
max(0, t). Hence, d° satisfies any LRHCC of order max(0, t) or greater with all coefficients 
zero. 

Example: The Pell sequence (Fig. 2) has a displacement (2, 0) with multiplier 2. Hence, (G) 
becomes 

2d°n = t ( "Of \k+2-, = d°„+2 - 2d°„+l + d°„ for n > 0 

or 
d°+2=2d°+l+d° for«>0. 

Example: The Tribonacci sequence (Fig. 4) has a displacement (3,2) with multiplier 2. Thus, 
(G) becomes 

2 ^ = t ( - 0 f ] k 0
+ 5 - ^ ^ 0

+ 5 - 3 < ° + 4 + 3 ^ + 3 - ^ + 2 for»>0 
£=0 ^ ^ 

or 
<0

+5=3^0
+ 4-H0

+3+^+ 2+2^° for»>0. 

In this case, (G) does not give the lowest-order recurrence that the top row satisfies. The 
corresponding polynomial of d°, namely, x5-3x4 + 3x3 -x2 - 2 , is not the minimal polynomial, 
but has as a factor x3 - x2 - x -1, which is the minimal polynomial. The other factor, x2 - 2x + 2, 
corresponds to the recurrence d°+2 = 2d°+l - 2d°. Any difference triangle whose top row satisfies 
the latter will also have a displacement (3,2) with multiplier 2. 

Theorem 7: Let {dj} be a difference triangle with displacement (s, /). Let f(x) be the minimal 
polynomial of d°. Then, for any two roots a and J3 of f(x) - 0, 

( a - l ) V = ( /? - l )y (H) 

where 0° is defined to be 1. 
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0 
0 
1 

-2 
4 
-6 
8 
-8 
4 
8 

-32 
72 

0 
1 

-1 
2 
-2 
2 
0 
-4 
12 

-24 
40 

1 
0 
1 
0 
0 
2 
-4 
8 

-12 
16 

FIGURE 4. Difference triangle for a sequence satisfying Tn+3 = Tn+2+Tn+1+Tn, 
2^ = 7^=0,7^ = 1. Minimal polynomial is x3 -x2 -x-1. Triangle has 
displacement (3^92^) with multiplier 2* for each integer U Char-
acteristic polynomial is x2(x -1)3 - 2 = x5 - 3x4 + 3x3 - x2 - 2 which is 
divisible by the minimal polynomial x3 - x2 — x — 1. 

Proof: Let M be the multiplier of the displacement. First, consider s,t>§. Then (G) can be 
used to obtain a polynomial g{x) of d°: 

g(x) = X (-l)'Q*'+^ - M = x'(x - l)s - M. 

By Theorem 4, the minimal polynomial f(x) divides g(x), so that any a,j3 that are zeros of the 
minimal polynomial f(x) are also zeros of g(x) and, therefore, (H) holds with both sides equal to 
M. For other cases of s and t, we obtain: 

g(x) = (x- l)s - Mx~f when s > 0, t < 0; 

g(x) = (x - iysx~{ when s, t < 0, M * 0; 
M 

e(x) = (x-1)"5 xf when 5 < 0, t > 0, M * 0. 
M 

It can be verified that all these cases give rise to (H). Note that (H) is always defined because 
g{x) = 0 cannot have a root of 0 when t < 0 or a root of 1 when s < 0. 

If M = 0 and s < 0, then, as in the last part of the proof of Theorem 6, d° contains only a 
finite number of nonzero terms, and we can derive that g(x) = xmax(0'f). It follows that the mini-
mal polynomial f(x) for d° is a power of x and that the roots of f(x) = 0 are all 0, so that (H) 
holds. Theorem 7 is thus true in every case. 

Theorem 7 shows that if a sequence with minimal polynomial f(x) has a displacement (s, t), 
then (H) holds. If f(x) has multiple roots, then the converse need not hold. For example, if 
/ (x ) = (x-2)3 , then (H) is trivially satisfied for any ($, t), but it can be shown that the corre-
sponding sequence has only the trivial displacement. Theorems 8 and 9 give partial converses of 
Theorem 7. 
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Theorem 8: Let {dj}he a difference triangle with d° satisfying some LRHCC, and let f(x) be 
the minimal polynomial of d°. If f(x) divides g(x) of Theorem 7 for some s, t, andM, then {d1.} 
has a displacement (s, t) with multiplier M. 

Proof: From Theorem 4, g(x) is a polynomial of {d0}. Consider the case where s, t > 0. 
By the definition of polynomial of a sequence, the left and right sides of (G) are equal. Hence, (F) 
follows, so that {dj} has the displacement claimed. Similar reasoning holds for other cases of s 
and t. 

Theorem 9: Let {dj} be a difference triangle with d° satisfying some LRHCC, and let f(x) be 
the minimal polynomial of d°. Suppose that f(x) = 0 has no multiple roots. Then {d1.} has a dis-
placement (s, f) if (H) holds for every pair of roots a and J3 of f(x) = 0. 

Proof: By (H), (a - iyaf has the same value for any a that is a root of f(x) = 0. Call this 
value M and substitute it in g(x) as defined in Theorem 7. Every root of f(x) = 0 is a root of 
g(x) = 0. Since f(x) = 0 has no multiple roots, f(x) must divide g(x), so that the result follows 
by an application of Theorem 8. 

Theorems 7-9 can be useful in determining what displacements a sequence has. Some exam-
ples follow. 

Example A: A sequence satisfies an+2 = an+l+can:) c > 0, a0 - 0, ax ̂  0. The minimal polynomial, 
x2 - x - c, has two zeros: 

a-
l W 4 c + l and J3 = 1-V4c + 1 

Substitution of these values into (H) leads to 

' l + V4c + lYr-l + V4c + lA 

V 

fl-V4c + lW-l-V4c+l 
y 

to be solved for integers 5 and t. Multiplying both sides by 2s+t(-l)\ we obtain 

(i+V4c+i)r(i-V4c+iy = (i-V4c+iy(i+V4c+iy. 
The only solutions to this equation occur when s = t. Thus, the only nontrivial displacements for a 
sequence satisfying the given recurrence conditions are (t, t); e.g., (1,1) is a displacement for the 
Fibonacci sequence when c - 1 and ax - 1. 

Example B: A sequence satisfies an+2 = can+l+an, where c>2, a ^ O ^ ^ O . The minimal 
polynomial x2 - ex -1 has zeros f i ^ ^ - , so that (H) becomes 

( c + ̂ c2 +4 V • - 2 + Vi c2+4 - ^ c2+4 Yr * - 2 - ^ c z+4 

Multiplying both sides by 2s+t, and rearranging terms, we get 
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C + V C2 + 4 Y ( 

v c - v c 2 + 4 y 
c - 2 - V c 2 + 4 
; - 2 + Vc2+4 

Since c> 2, c - 2 > 0, and c2 4-4 > 0, we find that 

c + Vc2+4 
c-Vc 2 +4 

>1 and -Vc2+4 
c-2 + ylc2+4 

<1. 

Given these inequalities, the only way that the above equality can hold if sy t > 0 (or s, t < 0) is 
that s = t = 0. Hence, a sequence satisfying such a recurrence has only the nontrivial displacement 
when s and t are both nonnegative or both nonpositive. 

Example C: The "Mersenne sequence" (Robbins [4], p. 194), given by the formula Mn = 2" - 1 , 
satisfies the recurrence Mn+2 = 3A4n+l-2Mri, MQ = 0,Ml = l. The minimal polynomial, x2 -
3x + 2, has a - 1 and /? = 2 as zeros. Using these values in (H), we obtain 

(0)'(1)' = (1)'(2)', 
which cannot hold if s & 0, since that would yield 0 = 2f. If 5 = 0, then 1 = 2f, which indicates 
that t = 0 as well. This shows that the "Mersenne sequence" has only the trivial displacement. 

Further examples of difference triangles and their displacements are considered in Figures 5, 
6, and 7. Figure 5 shows a difference triangle for a sequence satisfying a. = -na^ with a0 = 1. 
The minimal polynomial is x + n = 0. The difference triangle has displacement (s, t) with multi-
plier (-l)*+'(w + l)W for all integers s and t. Figure 6 shows a difference triangle generated by a 
sequence {a,} satisfying an+2 - 4an+l -2an with a0 = 0 and ^ = 1. The minimal polynomial is 
x2 - 4x + 2. The difference triangle has displacement (2t, - It) with multiplier 2r for each integer 
t. Figure 7 shows a difference triangle generated by a sequence {a,} satisfying a„+2 = 2an+x-2an 

with a0 = 0 and aY = l. The minimal polynomial is x 2 -2x + 2. Two displacements are (0,4) 
with multiplier -4 and (1,2) with multiplier - 2 . They are independent in the sense that a differ-
ence triangle has independent displacements (s, t) and (sr, V) if stf * tsf. The authors are investi-
gating conditions under which a difference triangle has independent displacements. 

1 -n 
-{n 4-1) n{n +1) 
(/7 + 1)2 -n(n + l)2 

-(/7 + 1)3 n(n + lf 
(/7 + 1)4 -n{n + \f 

-n2(n + l) 
/72(/7 + l)2 

-n\n + \f 

-n\n + \f 

n -n 
-n\n + l) ••• 

FIGURE 5. Difference triangle for a sequence satisfying at = -nai_1 with fl0 = 1. 
Minimal polynomial is x + n8 Triangle has displacement (s, f) with 
multiplier ( - l y ^ i f + 1)W for all integers s and t. 
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0 
1 
2 
5 
12 
29 

1 
3 
7 
17 
41 
99 

4 
10 
24 
58 
140 

14 
34 
82 
198 

48 
116 
280 

164 560 
396 ••• 

70 

FIGURE 6. Difference triangle generated by the sequence {a,} satisfying 
an+2 = 4an+1 - 2an with a0 = 0 and at = 1. Minimal polynomial 
is x2 - 4x + 2. Triangle has displacement (2t, -2t) with mul-
tiplier 2* for each integer t. 

2 2 
0 -2 

-2 -2 

0 -4 
-4 -4 
0 
4 
0 

-4 

-8 -8 0 16 
0 8 16 -
8 8 ••• 
0 • • • 

FIGURE 7. Difference triangle generated by the sequence {a,} satisfying 
an+2 ~ 2aw+1 - 2aw with a0 = 0 and at = 1. Minimal polynomial 
is x2 - 2x + 2. Two independent displacements are (0, 4) with 
multiplier -4 and (1, 2) with multiplier -2 . 
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1. INTRODUCTION 

Let us consider the generalized Fibonacci polynomials Un(p,q; x) and the generalized Lucas 
polynomials Vn(p,q\ x) (or simply U„ and Vn if there is no danger of confusion) defined by 

U^Qc + pW^-qU^ (C70 = 0 , ^ = 1), (1.1) 
and 

V„ = (x + p)V^-qVn_2 (K0 = 2,K1 = x + p). (1.2) 

The parameters/? and q as well as the variable x are arbitrary real numbers and we denote by 
a = a(x) and /? = J3(x) the numbers such that a + fl = x + p and afi-q. The polynomials Un 

and Vn can be expressed by means of the Binet forms 

an -Bn 
Un=^Jir-> forA*0, (1.3) 

and 

where 

Recall that 

Vn = an+fi\ (1.4) 

A = A(x) = (x + pf-4q. (1.5) 

a = ((x + p) + A1/2)/2, f] = ((x + p)-Al/2)/2. (1.6) 

Notice that A > 0 for every xif q <0 for all x sufficiently large if q > 0. 
Particular cases of Un(p,q;x) and Vn(p,q;x) are the Fibonacci and Lucas polynomials 

(F„(x) and Ln(x)), the Pell and Pell-Lucas polynomials [6] (Pn(x) and <2„(x)), the first and the 
second Fermat polynomials [7] (On(x) and @„(x)), the Morgan-Voyce polynomials [1, 2, 5, 8, 9, 
10] (5„(x) and C„(x)), and the Chebyschev polynomials (S„(x) and 7^(x)) given by 

Un(09 -1; x) = F„(x), F„(0, - 1 ; x) = I„(x) 
C/„(0-1; 2x) = Pn(x), Fw(0,-1; 2x) - &(x) 
£/„(0,2; x) = <D„(x), Fw(0,2; x) = 0„(x) (1.7) 
Un+l(2,l;x) = Bn(xl Kn(2,l;x) = Cll(x) 
C/„(0,1; 2x) - Sw(x), Fw(0,1; 2x) = 27„(x). 

In earlier papers [1, 2] the author has discussed the combinatorial properties of the coeffi-
cients of Un and Vn. Here, we shall investigate the differential properties satisfied by these poly-
nomials, such as differential equations and Rodrigues' formulas. 
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Let us define the sequence {c„tk}n>k>0 by 

:(2») 
c«,o = 2 -£ r r , »>0 , (1.8) 

and 

c , = 2 
{2n)\n + k (n-k)\ 

^ = ^ - ^ £ ± £ 1 , n*k*l. (1.9) 
Notice that 

Cn,k+i=(P2-k2Kk, n>k + l>\. (1.10) 

Our main results are the following theorems. 

Theorem 1: For every real number x, the polynomial 

7 7 < * - l ) - . * 77 £ > 1 
" ~dxk~l "' ' 

and the polynomial 
y(k)=ay k>0 

n dxk "' ' 

satisfy the differential equation Eny. 

Az" + (2k + l)(x + p)z' + (k2-n2)z = 0. (1.11) 

Theorem 2: For every x such that A > 0, we have 

U„=nc0A-m4^A"-m, n>\, (1.12) 
and 

A!/2 " AW-1/2 r ^ ^ o A - ^ A " — , « > 0 , (1.13) 

where cw 0 is defined by (1.8). 

More generally, we also have Rodrigues' formulas for U^k) and V^k\ namely, 

Theorem 3: For every x such that A > 0 and every k > 0, we have 
/ 2 ; 2 \ rn-k-1 

« "•* dx"-k-1 

and 

(1.14) 

F « = c w , , A - ^ / 2 ^ A " - 1 / 2 , n>k, (1.15) 

where cw ̂  is defined by (1.9). 
Notice that Theorem 3 reduces to Theorem 2 for k = 0 and that (1.14) can be written, by 

(1.10), 

^ = ^ A - * - 1 / 2 ^ ^ A " - 1 / 2 , n>k. (1.16) 
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2. PROOF OF THEOREM 1 

It is readily proven [3, 4] by (1.5) and (1.6) that, for every x such that A > 0, 

\a' = aA-in, 

V—^'\ (21) 
and thus that 

\(an)' = na"A-1'2, 
\ (2.2) 
[(£")'= -n{]"A-in. 

By this, (1.3), and (1.4), we see [3, 4] that 
K = nU„ (2.3) 

and therefore that 
V^k)^nU{k~l\ k>\. (2.4) 

Notice that these identities are valid for every value of x, and not only when A > 0, since the two 
members are polynomials. By (2.2), we also deduce that an and /5n, whence Vn = a" +/3" satis-
fies the differential equation 

— (Amy) = n2A-my, forA>0, (2.5) 
dx 

which is equivalent, for A > 0, to the equation £„ 0 [see (1.11)], namely, 

Ay" + (x + p)y' -n2y = 0. (2.6) 

Notice that Vn satisfies En0 for every value of x, since, in that case, the first member of (2.6) is a 
polynomial. 

Differentiating (2.6) k times and using Leibniz' rule, we see that z - y^ satisfies the differ-
ential equation En%k (1.11). Hence, En%k is satisfied by V<k\k>0, and U{k~l) = ̂ k \ k>\. 
This concludes the proof. 

For instance, the Morgan-Voyce polynomial Bn{x)-Un+l{2Xx) satisfies the differential 
equation £n+1 x 

x(x + 4)z" + 3(x + 2)zf-n(n + 2)z = 0. 

This result was first noticed by Swamy [10]. 

Remark: When A > 0, it is easy to verify that E„tk can be written as 

—lAk+mz>] = (n2 - k2)Ak~V2z, (2.7) 
dx 

which is a generalization of (2.5). 

We now give another (nonpolynomial) solution of En^k. 

Proposition 1: Let n and k be two integers such that n + k-l>0. Then, for A > 0, the function 
^ £ r A""1/2 is a solution of E„tk. 
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Proof: It is easy to verify that, for A > 0, A" 1/2 is a solution of the differential equation 
Ay" - {2n - 3)(x + p)y - {2n -\)y = 0. (2.8) 

Differentiating (2.8) {n + k-1) times and putting z = y^n+k~~1\ we obtain 

Az" + 2(" + i~l\x + p)z' + 2(n + *~l\z-{2n-3)\ \{x + p)z'+\^ l J 

After some rearrangement, one can see that this equation is identical to En k. 

Remark: Using the formulation (2.7) of En k and putting z 

-{2n-l)z = 0. 

= ,n+k_, A , one can write 
dx" K l 

d_ 
dx 

jn+k 

tffr ,n+Jc 

jn+k-l 
J2 ir2\kk-\l2 « = (rf-k2)A* A/l-l/2 

^&j .w+fc-1 ' (2.9) 

Changing A to (-£ -1) in (2.9), where n-k>2,we obtain a formula that we shall need later: 

d_ 
dx 

K-k-M2 
jn-k-\ 

A/f-1/2 

£ # ,n-k-l ' = {n2-{k + l)2)A 2\A-k-3/2 
jn-k-2 

AH-1/2 

dx1 n-k-2 

In particular, changing n to (« +1), and putting £ = - 1 , we get 

_d_ 
dx 

i l /2 
7«+l 

AW+1/2 

A w+1 
rf" = {n + \YA-i,z^~An+i,\ n>0. 
dx 

(2.10) 

(2.11) 

3. PROOF OF THEOREM 2 

In the proof of Theorem 2, we shall need the following well-known and readily proven result: 

(3.1) V^=\[(x+p)Vn + MJn\ 

By (1.8), formula (1.12) (resp. (1.13)) is clear if n = 1 (resp. n = 0 or » = 1). Supposing that 
(1.12) and (1.13) are true for n> 1, we get by (3.1) that 

K+i = 
n\ _Al/2 

(2/i!) 
(* + ̂ A « - - + „ ^ > - -

aSe" dx" 

On the other hand, one can notice by (1.5) that 

U Kn-\I1 • a 

dx" dx 

= (2#i + l)| {x+p)^-An-i,l+n-^^A V F) dx" dxn~l 
n-l/2 

From (3.2) and (3.3), we see that 

"n+l ~ 
n\ Ai/2 1 d •w+l 

AW+1/2 

(2w!) 2n+\dx' ,«+l = 2 \ l /2 (/i + l)! 
(2«- f2) ! " ^ 

//7+1 
A»+l/2 

,«+l 

which is the needed formula for K w+l-

(3.2) 

(3.3) 

(3.4) 
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Now we see, by (2.3) and (3.4), that 

Un+l - , , , Vn+l ~ Z 

#i + l ^ (2n + 2)\ dx 
\l/2 a AW+1/2 

*# .w+1 

= 2 ( ^ ( W + 1)2A_1/2SA"+1/2' by(2-U)' (3'5) 
V ; (2« + 2)! A" 

This completes the proof of Theorem 2. 

4. PROOF OF THEOREM 3 

We proceed by induction on k. By Theorem 2, statement (1.14) clearly holds for k - 0 and 
every n>\. Supposing that (1.14) holds for k >0 and every n>k + l we get, by (1.16), 

Uf+1) =£_!&)=: 
jn-k-1 

/y-k-l/2 _^ A«-1/2 
n-k-l A dx n dx\ dx' 

and, by (2.10), we have at once that 

which is the needed formula for £/^+1). 
On the other hand, statement (1.15) holds for k - 0, by Theorem 2. When & > 1 we get, by 

(2.4) and (1.14) that 

V& = nUtl) = c^A~*+1/2 ̂  A""1/2, n>k. 

This completes the proof of Theorem 3. 
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POLYNOMIAL DIVISIBILITY IN FINITE FIELDS, 
AND RECURRING SEQUENCES 

Odoardo Brugia and Piero Fillpponi 
Fondazione Ugo Bordoni, Via B. Castiglione 59,1-00142 Rome, Italy 

(Submitted May 1994) 

1. INTRODUCTION AND PRELIMINARIES 

The theory of polynomials the coefficients of which belong to finite fields (e.g., see [4]) is 
a valid mathematical tool to face various problems arising in telecommunication engineering. For 
example, it plays a crucial role in the design of scramblers and descramblers, multilevel co-
decoders, linear shift-registers, etc., and in the analysis of their performances (e.g., see [1], [5]). 
It is sometimes necessary to fix our attention on special classes of these polynomials, such as 
irreducible and primitive polynomials [4], [5]. For example, for the sequence generated by a 
linear feedback shift register to be of maximal length, the characteristic polynomial of the register 
must be primitive [1], [2]. 

To seek irreducible polynomials or to factor reducible ones, it is useful to have at disposal 
criteria for the divisibility over the finite field GF(q) (q a prime or a power of a prime) of a 
polynomial f(x) by a polynomial g(x) of degree less than that of f(x). Some criteria for the 
divisibility over GF(2) are well known. As a minor instance, we have that: (i) if the coefficient of 
the zero-degree term of f(x) vanishes, then this polynomial is divisible by its term of lower 
degree; (ii) if the number of the nonzero coefficients is even, then f(x) is divisible by x + 1. 

Following the notation of Lidl [4], let f(x) GGF(^)[X] andg(x) e GF(q)[x] be two poly-
nomials of arbitrary degree n and m (m<ri), respectively, 

f(x) = 5 > k x \ ak G G F ( ? ) , an # 0 (mod?), (1.1) 
fc=0 

g(x) = x'" -^bkx\m<n, bk GF{q). (1.2) 

The polynomial f(x) is divisible in GF(q) by g(x) if the remainder of f(x):g(x) is congru-
ent to zero modulo q. In Section 2, criteria for this divisibility are established which involve the 
use of certain mih -order recurring sequences. The ubiquitous Fibonacci numbers make their 
appearance in the case rn-q-2. In Section 3, three special cases are analyzed, the last of which 
turns out to be a useful tool for ascertaining the irreducibility or the primitivity of certain classes 
of polynomials. 

Throughout this paper, all relations and algebraic manipulations are meant to be performed 
modulo q. This fact will be indicated explicitly only in the final results. 

2* THE MAIN RESULT 

The (provisional) remainder ft(x) obtained at the 7th step (0</ <n-m + l) of the long divi-
sion f(x): g(x) has the form 
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f](x) = YdrPx"-i-\rPeGF(<i). (2.1) 

Obviously, the actual remainder of this division is fn_m+l(x). Moreover, we assume that f0(x) = 
f(x), which implies 

>f =«„_,(/ = 0,1,...,«). (2.2) 
Since the term of (n-i-rrif*-degree of the quotient is given by r^xn~l~m, using the long 

division algorithm gives the (/* + l)th provisional remainder 

^ ( ^ / ( x M V - ^ (2.3) 

whereas, by definition (2.1), we can write 

^iW-^Z^V-'-^1. (2.4) 

By identifying the terms of the same degree in (2.3) and (2.4), the following system of n-i 
difference equations can be written 

1% (m<j<n-i-\\ o ( , + 1 ) H ( ; ,..;..... , , . <2-5> 
the initial conditions of which are given by (2.2). 

By (2.2), the second equation of (2.5) produces 

r ( 2 ) _ r(l) _ r (0) _ 

r(3) _ (2) _ (1) _ (0) _ ( 2 6 x 
J ~, 7+1 ~~ 7+2 ~ 7 + 3 ~ "n-j-3 

rp=rji^ = - = a„_J_i (m<j<n-i-l), 

whence, as a special case, 
C = «„-„,-/• (2.60 

The first equation of (2.5) produces the equations 

V ~ V + i ^ V y - i ' o > 
/ / - ! ) _ (/-2) , (;-2) 
7 + 1 - 7 + 2 ^ um-j-2r0 

(i-m+J+1) _ r{i-m+j) i r(j-m+j) 
rm-\ ~rm + #(/o 

Summing both sides of these equations and using (2.6 ̂  yields 
m-j m-j 

rp = rtm+J) + S bm_Mrt^ = a„_,_, + X A- , .*™ (0 < 7 < m -1). (2.7) 
£=l £=l 
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For j = 0, (2.7) reduces to 
m 

r ^ - n 4 - V / > f-('-*) 

where r0
(/"° = 0 if i < £9 and (2.2) applies. 

Proposition 1: 

r0 = 2^an~h^i-h+h 

(2.8) 

/i=0 

where the integers Zh obey the recurrence 

Zh ~ bm-\Zh-l + ®m-lZh-2 ~* ^ ^0^h-n 

which is of m* -order if bQ # 0 (mod g), and has initial conditions 

Ẑ  = 0 (for - w + 2 < h < 0) and Zx = 1 

or, equivalently, 

(2.9) 

(2.10) 

(2.11) 

Z, = l, 
^2 ~ "w-lA, 
Z3 = hm-\Z2 H 

Zm = bm-\Zm-\ + bm-2Zm-2 + '~+blZl. 

Z 3 = V l Z 2 + t 2 Z l (2.1 n 

Proof: We shall prove that replacing the right-hand side of (2.9) in (2.8) yields an identity. 
In fact, this replacement gives the equation 

i j - i 

Z^an-hZi-h+l - an-i + bm-\2^an~hZi-h 

,-2h=° ,-„ (212) 
+ bm-2£u

an-hZi-h-\ + '" +bQZ^an-hZi-h-m+\-
h=0 h=0 

By reducing all summations in (2.12) to the same upper range indicator (namely, i-m\ we can 
write 

-h+\ 

h=0 

an-iZ\ + a « - / + 1 ^ 2 + ' *' + an-i+m-lZm + 2w an-hZi-h 

i-m 

= <V/ + ̂ _i(<V/+izi + a„_/+2Z2 + • • • + a„_/+w_1Zw_1) + bm_^an^{_h 
h--

i-m 

+ bm_2(an_MZx + — +a„_;+w_1Zw_2) + ̂ X ^ - ^ - f c - i + ' 
/i=o 

z-m »-m 

+ bl(an_l+m_lZl) + bJ^a„_hZi_h_m+2+b^ 

The above equation can be rewritten as 

-m+\' 
h=0 
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an-i (Zl ~ 1) + <V/+ l ( Z 2 " bm-lZl) + ' *' + an-i+nt-l(Zm ~ bm-lZm-l * l Z l ) 
i-m 

+ ^L an-h(Zi-h+\ ~ bm-\Zi-h ~ b
m-2Zi-k-\ b0Zj_m_h+1) = 0, 

h=0 

which, by (2.10) and (2.11') is identically satisfied. Q.E.D. 

Recalling that the quantities rj"~m+l) (j - 0,1, . . . , m-1) are the coefficients of the remainder 
of f(x):g(x), it becomes patent that f(x) is divisible by g(x) iff rjn~m+l) = 0(mod#) for all 
admissible values ofy. By (2.9), after some simple manipulations, one can see that the condition 
r(n-m+l) s Q ^m ( ) d ^ j s s a t i s f i e d tf 

Z ^ _ w + 2 ^ 0 ( m o d ? ) . (2.13) 
h=m-l 

By using the first equation of (2.5), we can get analogous conditions pertaining to rjn~m+1) for 
1 < j < m -1. For example, letting j = 0 in (2.5) yields 

r ^ ^ l ) = r ^ - ^ 2 ) _ ^ i r ^ w + l ) s / b ( « - w + 2 ) ( m o d ^ ) [by (2.13)], 

whence, by (2.9), the condition r^n-m+l) = r0
(""w+2) = 0 (mod?) is satisfied if 

f,ahZh_m+3^0(modq). (2.14) 
h-m-l 

Iterating this procedure for all values of/ allows us to state our main result. 

Proposition 2 (main result): The polynomial f(x) is divisible by the polynomial g{x) iff 

t , ahZh_m+J+2 ^ 0 (mod q) for/ = 0,1, . . . , m -1. (2.15) 
h=m-J-l 

3. SPECIAL CASES 

For small values of m, or for special polynomials f(x), the divisibility conditions (2.15) sim-
plify remarkably. In this section, three special cases are discussed in detail. 

C a s e l : m = l 

If m = 1, Proposition 2 tells us that f(x) is divisible by x-b0 [b0 4 0 (mod?)] iff 

Z ^ ^ + i - Z ^ o - 0 ( m o d ? ) , (3.1) 
h=0 h=0 

since Zh -bQZh_l with Zx = 1 [see (2.10)-(2.11)] implies Zh -b^'1. The condition (3.1) agrees 
with the well-known fact (e.g., see [4], Theorem 1.64) that, if f(b0) = 0 (mod?), then f(x) is 
divisible by x-b0 [cf point (ii) in Section 1]. 

Case 2: m = 2 

Ifm = 2, Proposition 2 tells us that f(x) is divisible by x2 -b x x - b0 [b0 4 0 (mod ?)] iff 
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£ <*hZh+J - ° (™>d q) (j = 0,1), (3.2) 
h=\-j 

where the numbers Zh are the generalized Fibonacci numbers Wh [more precisely, the numbers 
Wh{bXi -b0; 0,1)] which have been studied extensively over the past years (e.g., see [3] for back-
ground material). In particular, if q - 2, f(x) is divisible by x2 - x -1 iff 

j]ahFh+J^0(mod2) 0 = 0,1), (3.3) 
h=i-j 

where Fh denotes the hth Fibonacci number. Taking into account that Fh is even iff h = 0 (mod 3), 
conditions (3.2) can be rewritten as 

5>* s S^-°(m o d 2)- (3-4) 
h=\ h=l 

h4Q (mod 3) h£2 (mod 3) 

Case 3: f(x) = xn-l 

If f(x) = xn -1, then Proposition 2 tells us that / (x) is divisible by g(x) iff 
fZn_m+j+2 = 0 (mod qr) (y = 0,1, • • •, m - 2), 

l ^ + i ^ 2 ! ^ 1 (modqr). 

When n = qm -I and m is a prime not less than q, the fulfillment of (3.5) implies that g(x) [b0 # 0 
(modg)] is irreducible (see [4], Theorem 3.20). Moreover, if q = 2 and /? is a Mersenne prime, 
then g(x), beyond being irreducible, is primitive (see [4], Corollary 3.4). 

The fulfillment of (3.5) can be checked out rapidly by means of the software implementation 
of an m-cell linear feedback shift register [2] having g(x) as its characteristic polynomial, and 
initial state [1, 0, 0, ..., 0]. Once this is made, one simply has to ascertain that the m terms 
ZM_w+2, Zn_m+3,..., Zn+l of the sequence {Zh} generated by this device satisfy (3.5). 
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SOME CONDITIONS FOR "ALL OR NONE" DIVISIBILITY 
OF A CLASS OF FIBONACCI-LIKE SEQUENCES 

Juan Pla 
315 rue de Belleville 75019 Paris, France 

(Submitted May 1994) 

In reference [1], the following theorem has been proved: 
Theorem: Let un be the general term of a given sequence of integers such that un+l = un+l +un, where 
u0 and Wj are arbitrary integers. Let x be an arbitrary integer other than -2, -1 ,0 and 1. Let D be any 
divisor of x2 + x - 1 other than 1. Then the sequence wn = xun+l - un, where n > 0 is such that: 

(a) D divides every wn\ 
(h) D divides no wn. 

The aim of this paper is to provide some precise conditions for the "all" situation. 

Theorem 1: A necessary, but not sufficient, condition for the sequence with general term 
w„ = xu„+1 - un to display the "all" property relative to a given prime divisor/? of x2 + x -1 is that 
the distribution of the residues of (un) modulo/? be either constant or periodic with period p~ 1. 

1) Proof that the condition is necessary: 

Let us define the transformation Tx(un), for any n, by Tx(un) = xun+l - un. If (Tx{un)fm) 

denotes the mth iterate of this transformation on (un), it is quite easy to prove by induction that, 
for any n and m. 

Put m - p in this formula. Since/? is prime, the binomial coefficients are all divisible by/?, except 
the two extreme ones ([2], p. 417). Therefore, 

(Tx(un))^ ^ xPun+p + (-\)Pun (mod/?). 

Since no even number can divide x2 + x -1, p is always an odd prime, and therefore, 

(Tx(Un)){p) = *pUn+p-un (mod/?) 

for any n. But, since by construction (7^(w„))(p) is a linear combination (with integral coeffi-
cients) of w„ terms all supposedly divisible by/?, this entails 

xPun+p-un = 0 (mod/?). 

Since/? is prime, xp = x (mod/?), and the previous congruence becomes 

xun+p-un = 0 (mod/?). 

By hypothesis, for any n, xun+l-un = 0 (mod/?). From the difference of the previous congru-
ences, we obtain 

x(un+p-un+l) = 0 (mod/?). 
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Since p and x are relatively prime, this implies that, for any w, un+p - un+l = 0 (mod p), which 
proves the necessity of the condition stated above. 

Example: In reference [1], we have seen that w„ = xLn+x - Ln displays the property "all" for x = 2 
and p = 5. Therefore, we must have, for any n, L„+5 - Ln+l = 0 (mod 5), which property can easily 
be confirmed. 

2) Proof that the condition is not sufficient: 

To prove this, we shall find an appropriate counter-example deduced from the following 
lemma. 

Lemma: For any x and any primep dividing x2 + x -1, the sequence (wn) = (xFn+x - Fn) displays 
the "none" property. 

Its demonstration is immediate, since w0 = x, and/? cannot divide x. 
Now, for x = 7, we have x2 + x - l = 55 = 5*ll. 
But we have Fn+n - Fn+l = 0 (mod 11) for n = 0 and n-\. By using the fundamental recur-

rence property of the Fibonacci numbers, it is then easy to prove this property for any n. How-
ever, the above Lemma proves that it is not sufficient to imply the "all" property relative to 

P=u. 
Theorem 2: If, for a sequence wn - xun+l-unj the "all" situation occurs for a nontrivial divisor D 
of x2 + x - 1 , then D divides the quantity (u^2 - u0u2. 

Proof: By definition of D: x2 + x -1 = 0 (mod D). By multiplying both sides of this congru-
ence by (^i)2, we obtain (xi/j)2 +(xul)ul - (u^2 = 0 (mod D). But since xux = u0 (mod D), this is 
equivalent to (u0)2 +UQUX - (^)2 = 0 (mod D). And since (^)2 -U$AX - (u0)2 = {ux)2 -u0u2, the 
proof is complete. 

This property helps to sharply reduce the number of divisors possible for an "all" situation to 
occur. For instance, for un = Lm {u{}2 -u0u2 = -5 . Therefore, 5 is the only possible (positive) 
divisor of wn = xLn+l - Ln among those of x2 + x -1. 

But this property of D is not sufficient to warrant the "all" situation, as shown by taking 
u0 = - 1 , ux =4, and x = 4. In this case, x 2 + x - l = 19, so the only possible!) is 19 and, on the 
other hand, {ux)2 - u0u2 = 19. But since w0 = Aux - u0 = 17, we are in the "none" situation. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTLONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to Fibonacci@MathPro.com on Inter-
net. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Proposers should inform 
us of the history of the problem, if it is not original. A problem should not be submitted 
elsewhere while it is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Ai+2 = Ai+1 + ^n ' A) = 0> A ~ 1J 
A?+2 ~ AH-I + A?> A) - 2, A = i-

Also, a = (l + V5)/2, /? = ( l -V5)/2 , Fn = (an - fin) / & and L„ = a"+J3n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-796 Proposed by M N. S. Swamy, St Lambert, Quebec, Canada 
]} +]} +]} +... + ]} 

Show that —\ ^Y ^ u
2

±g~ is always an integer if a is odd. 
Fn + Fn+l+Fn+2+'"+Fn+a 

B797 Proposed by Andrew Cusumano, Great Neck, NY 
Let (Hn) be any sequence that satisfies the recurrence Hn+2 = Hn+l + H„. Prove that 

7H„ = H„+u(modlO). 

B-798 Proposed by Seung-Jin Bang, Ajou University, Suwon, Korea 

Prove that, for n a positive integer, F„ is divisible by 5" but not by 5n+l. 

B-799 Proposed by David Zeitlin, Minneapolis, MN 
Solve the recurrence An+2 = 4An+l + An, for n > 0, with initial conditions A$ = 1 and A{ = 4; 

expressing your answer in terms of Fibonacci and/or Lucas numbers. 

B-800 Proposed by H.-J. Seiffert, Berlin, Germany 
Define the Pell numbers by the recurrence Pn = 2Pn_{ + Pn_2, for n > 2, with initial conditions 

P0 = 0<mdPl = l. 
Show that, for all integers n > 4, Pn < Fk(^n) where k(ri) = [_(1 lw + 2) / 6j. 
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B-801 l^roposed by Larry Taylor, Rego Park, NY 
Let k > 2 be an integer and let n be an odd integer. Prove that 

(a) F2k^ 27-lk (mod40); 
(b) F2^7feF16„(mod40). 

SOLUTIONS 
A Lucas Congruence 

B-766 Proposed by R Andre-Jeannin, Longwy, France 
(Vol 32, no. 4, August 1994) 

Let n be an even positive integer such that Ln = 2 (mod/?), where/? is an odd prime. Prove 
that Ln+l = 1 (mod/?). 

Solution by Leonard A. G. Dresel, Reading, England 
We start with the identity 

5i? = #-4(-iy, 
which is identity (24) from [1]. If n is even and Ln = 2 (mod p), we have 5Fn

2 == 0 (mod p) and 
therefore SFn = 0 (mod p) since p is a prime. Applying the identity Ln+l + Ln_x = 5Fn, which is 
identity (5) from [1], and the definition Ln+l - Ln_l = Ln, we find 2Z,„+1 = 5Fn + Ln = 2 (mod /?). 
Since/? is odd, this gives Ln+l = 1 (mod/?). 

Reference: 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester, England: Ellis Horwood Ltd., 1989. 
Also solved by Paul 5. Bruckman, Herta T Freitag, Norbert Jensen, Bob Prielipp, H.-J. 
Seiffert, Lawrence Somer, David C Terr, and the proposer. 

Mutual Admiration Fibonacci Society 

B-767 Proposed by James L. Hein, Portland State University, Portland, OR 
(Vol 32, no, 4, August 1994) 

Consider the following two mutual recurrences: 
Gx = 1; G„ = Fn+lGn_x + FnHn_2, n>2; 

and 
tf0 = 0; Hn = Fn+lGn + FnHn_hn>\. 

Prove that Hn_x and Gn are consecutive Fibonacci numbers for all n > 1. 

Solution by M N. S. Swamy, Montreal, Canada 
We see that Gn and Hn_x are consecutive Fibonacci numbers for n -1 and n = 2 since 

Gx = F1? Z/Q = F0, and G2 = i^, ff\ - F2. Assuming that Gn = Fa and / / ^ = Fa _1? where an = 
n(n +1) / 2, we have 

where we have used identity (I26) from [1]: Fj+lFk+l + FjFk = Fj+k+l. In the same way, 

1995] 467 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Hence, by induction, we have Gn~Fa and Hn_x ~Fa_x for all n. Thus, Gn and Hn_x are con-
secutive Fibonacci numbers for all n > 1. 
Reference: 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 
Also solved by Paul S. Bruckman, Charles K. Cook, Leonard A. G Dresel, Steve Edwards, 
Heria T. Freitag, C. Georghiou, Norbert Jensen, Carl Libis, Bob Prielipp, Don Redmond, 
H.-J. Seiffert, Lawrence Somer, David Zeitlin, and the proposer. 

A Radical Approach to Fibonacci Numbers 

B-768 Proposed by Juan Pla, Paris, France 
(Vol 32, no. 4, August 1994) 

Let um vn, and wn be sequences defined by ul = l/2,vl = V2, and wx = (1/2)V3; un+1 = u2 + 
vl~wl> vn+\ ~2unvn, wn+i=2unwn. Express un, vn, mdwn in terms of Fibonacci and/or Lucas 
numbers. 
Solution by C Georghiou, University ofPatras, Greece 

The answer is un =^Lm, vn = ^/2Fm, andw„ =±<j3Fm, where m-2n~l. We prove this by 
induction. Evidently, it is true for n - 1. Assuming it is true for n, we have 

u = 1/2 +2F2-^-F2 -±(I2 + 5F2) = 1 l - - 1 / 

where we have used the identity L2
m +5F2 - 2Llm, which is identity (22) from [1]. We also have 

v„+l = j2LmFm = j2F2m = j2Fr 
and 

wn+l = \4^LmFm = }j3F2m = \V3F2„, 

where we have used the identity LmFm = F2m, which is identity (13) from [1]. The induction step 
is now complete. 
Reference: 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester, England: Ellis Horwood Ltd., 1989. 
Also solved by Brian D. Beasley, Paul S. Bruckman, Charles K. Cook, Leonard A. G. Dresel, 
Steve Edwards, Herta T. Freitag, Norbert Jensen, Hans Kappus, Bob Prielipp, H.-J. Seiffert, 
David C. Terr, David Zeitlin, and the proposer. 

The Recurrence for F „ 

B-769 Proposed by Hero Filipponi, Fond U. Bordoni, Rome, Ltaly 
(Vol. 32, no. 4, August 1994) 

Solve the recurrence an+l = Sa]-3an, n>0, with initial condition a0 = l. 
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Solution by David C Terr, University of California, Berkeley 
We claim that the solution is an = Fr. Clearly this holds for n = 0. Assume it holds for some 

nonnegative integer n. Then 

r i 
= 5 -j?(P?-f? 1 -T|« i H 

= - ^ ( a 3 - /? 3 -3(a3 -/?3)[(a/?)3 +1]) 

= - ^ ( « 3 " + ' - r ' ) = F3„+„ 
where we have used the identity aj3 = -l. Thus, by induction, our answer is correct for all non-
negative integers n. 

Comment by Murray S. Klamkin, University of Alberta, Canada 
The same problem appeared as Problem 1809 in CruxMathematicoram 20 (1994): 19-20. In 

the same issue, there was a proposal to solve the recurrence 

P„+1=25P„5-25P„3+5P„, P0 = l. 

The solution, which appeared in 20 (1994):295-96, is Pn - F5„. Also, one can show that the solu-
tions to the following recurrences 

An+\ - An 2, 

5„+1 = £n
4-4£„2 + 2, 

^n+l = ^n ~~ 6C„ + 9C„ " 

?> and C„ = L6„. 

-2, 

A, 

Bx 

Q 

= 3, 

= 7, 

= 18, 

are given by An = L2„, Bn = L^ 

In the Crux Mathematicorum solution, it was shown that the solution to the recurrence p0 = \, 
Pn+i = -jjfmi^Pn)' m odd> m^3> where f(x) is defined by f0(x) = 2, f(x) = x, and fn(x) = 
xf„-i(x) - fn-2(x)> for n-2 is pn-F „. This reduces to our problem when m = 3. 

Also solved by Michel A, Ballieu, Seung-Jin Bang, Brian D. Beasley, Paul S. Bruckman, 
Leonard A. G. Dresel, Steve Edwards, Herta T. Freitag, C Georghiou, Norbert Jensen, Hans 
Kappas, Murray S. Klamkin, Bob Prielipp, H.-J. Seiffert, Lawrence Somer, Adam Stinch-
combe, David Zeitlin, and the proposer. 

Unit Digit Madness 

B-770 Proposed by Andrew Cusumano, Great Neck, NY 
(Vol 32, no. 4, August 1994) 

Let U(x) denote the unit's digit of x when written in base 10. Let H„ be any generalized 
Fibonacci sequence that satisfies the recurrence Hn - Hrl_l +Hn_2. Prove that, for all n, 
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U{Hn+Hn+A) = U{Hn+,7), 
U(Hn+Hn+5) = U(Hn+10), 
U(Hn+H„+7) = U(H„+53), 
U(Hn+Hn+s) = U(Hn+l9\ 
U(Hn+H„+n) = U(Hn+49), 
U(Hn+Hn+13) = U(Hn+26), 
U(Hn+Hn+l6) = U(Hn+23), 

U(H„+Hn+l7 

U(H„+Hn+19 

U(Hn+Hn+20 

U(Hn+H„+23 

U(H„+Hn+25 

U(Hn+Hn+2S 

U(Hn+Hn+2g 

= U(H„+34), 
- U(H„+41), 
= U(Hn+55), 
= U(Hn+37), 
= U(Hn+50), 
= U(Hn+59), 
= U(Hn+5S). 

Solution by Paul S. Bruckman, Edmonds, WA 
Essentially, the problem asks us to verify that Hn+HnJta =Hn+b (mod 10), for all n, where 

(a, b) is a specified pair of positive integers. Using the identity 

Hn=FnHl+Fn-lH0> 

which is identity (8) of [1], we see that it suffices to prove that 
Fn + Fn+a

 s F
n+b (m«d 10), for all n. (*) 

Since Fm +Fm+l = Fm+2, we need only prove (*) for n = 0 and n - 1, for then, by induction, (*) 
would be true for all n. Thus, we need only show that U{Fa) = U{Fb) and U(l + Fa+l) = U(Fb+l) 
for the given a and b. 

In each case, these are readily checked from the following table of U(Fn\ n - 1,2,..., 60: 
1, 1, 2, 3, 5, 8, 3,1,4, 5, 9,4, 3, 7, 0, 7, 7, 4,1, 5,6, 1, 7, 8,5, 3, 8,1, 9, 0, 
9,9,8, 7, 5, 2, 7,9,6, 5,1, 6, 7,3, 0, 3, 3, 6, 9, 5,4, 9, 3,2, 5, 7, 2, 9,1, 0. 

Reference: 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester, England: Ellis Horwood Ltd., 1989. 
Also solved by Leonard A. G. Dreself Herta T. Freitag, Norbert Jensen, Bob Prielipp, H.-J. 
Seiffert, David Zeitlin, and voluminous generalizations and correspondence by the proposer. 

More Sums 

B-771 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 32, no. 4, August 1994) 

Show that 

| : ^ ± M = ln4. 
tx 2"n(n + \) 

Solution by Don Redmond, Southern Jllinois University, Carbondale, JL 

We generalize this result somewhat. 
Let r, t, and u be complex numbers such that \tIr\< 1 and \ulr\<\. Define the sequence 

(Pn) by Pn = cf +dun, where c and dare arbitrary complex numbers. For |x| < 1, we know that 
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This is series 1.513 on page 44 of [1]. Since 

2w'+l 1 1 
- + -

we find that 

Thus, 

n(n + 1) n n + V 

^fs"'=-i-(i4]h<1-* 
£i/»(« + !) V x) 

y 2n + l _ y 2n + l 

^ 2« + l ft 

c\t\+dl» 

2n + l (u 

^[1 +M,„ >-!-,-<, i . :W . - ? W 
\£t = a,u = P,c = \lj5, d = - l /V5 ,and r = 2, we get 

(2?i + l) 

If^ = a, M = /?, c = 1, rf = 1, and r = 2, we get 

F =ln4. 

(2ft+ 1) 

S 2 > + 1) " 
Z, =-2-V51n 7-3V5' 

V 2 , 

Reference: . 
1. I S . Gradshteyn & I. M. Ryzhik. JaWe of Integrals, Series, and Products. San Diego, CA: 

Academic Press, 1980. 
Also solved by Seung-Jin Bang, Glenn A. Bookhout, Wray Brady, Paul S. Bmckman, 
Leonard A. G Dresel, Steve Edwards, C Georghiou, Norbert Jensen, Hans Kappus, Murray 
S. Klamkin, Bob Prielipp, Adam Stinchcombe, David Zeitlin, and the proposer, 

ERRATA 
B-746 (Feb. 1995, p. 87): It should be noted that the formula I^n = ll + 3Ln is only valid for n 
odd. 
B-754 (May 1995): Gauthier's formula on the bottom of page 184 should read 

V *r _ (-y*"+ 1Cw, -x"Gx(n+l)+t +Gs+t + ( - i r ' x G , 
k sk+'~ l-2x(Gs + G^)H-lYx2 

B-759 (Aug. 1995, p. 372): In the fourth line of the solution, tu"+l(t/v)> should be tv"+\t I v)J 

* > • > * > 
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PROBLEMS PROPOSED IN THIS ISSUE 

H-503 Proposed by Paul S. Bruckman, Edmonds, WA 

Let if be the set of functions F: C3 —>C (C is the complex plane) satisfying the following 
formal properties: 

xyz F(x, x3y, x3y2z) = F(x, y,z); (1) 

F(x-\y,z-1) = F(x,y,z). (2) 

Formally define the functions C/and Fas follows: 
3 2 

U(x, y,z) = Y, xn yn zn (summed over all integers n); (3) 

V(x, y, z) = f [ ( l ~y2"A(*))0 + x3"2-3n+ly2"-lz)(l + x-*»2+*i-yn-iz-i^ ( 4 ) 
«=i 

where 

^(x) ~ 3^"^" (summed over all integers m), (5) 
m 

^mom 

^mem 

om=y2(i-Hn em=%(i+n)my (6) 
Show that, at least formally, 

.Ue&>, FeSP; (7) 
,4(1) = 1; (8) 

•U(l,y,z) = V(l,y,z). (9) 

Prove or disprove that U(x, y, z) = V(x, y, z) identically. Can U(x, y, z) be factored into an 
infinite product? 
H-504 Proposed by Z. W, Trzaska, Warsaw, Poland 

Given a sequence of polynomials in complex variable z eC defined recursively by 
(i) Rk+x(z) = 0 + z)Rk(z)-Rk_l(z\ k = 0,1,2,..., 

with R0(z) = 1 and RY(z) = (1 + z)R0. 
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Prove that 

where Fi9 £ = 0,1,2,..., denotes the ^* term of the Fibonacci sequence. 

H-505 Proposed by Juan Pla, Paris, France 

Edouard Lucas once noted: "On ne connait pas de formule simple pour la somme des cubes 
du binome" [No simple formula is known for the sum of the cubes of the binomial coefficients] 
(see Edouard Lucas, Theorie des Nomhres, Paris, 1891, p. 133, as reprinted by Jacques Gabay, 
Paris, 1991). 

The following problem is designed to find closed, if not quite "simple," formulas for the sum 
of the cubes of all the coefficients of the binomial (1 + x)n. 

1) Prove that 

XI " ] =—i\ n\ *{l + cosp + cos0 + cos(p + 0)}'W0dtp. 

2) Prove that 

p=§\r J 71 

SOLUTIONS 

Sum Problem 

H-489 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 32, no. 4, August 1994) 

Define the sequences of Pell numbers and Pell-Lucas numbers by 
P0 = 0, /> = 1, Pk+2 = 2PM + Pk, 
& = 2, Q = 2, Qk+2=2QM + Qk. 

Show that 

w f FA = ± 
W ^KL^f-^F^f 12' 

(b) I L2„Pr _ 8 - 3 ^ 

^ %{L2„pry-^F^Y 48 

Solution by Norbert Jensen, Kiel, Germany 
Step (1): Solving the characteristic equation and determining the explicit formulas for {Pk)ki 

and (a)teNn=we obtain 
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Qk = (1 + 4lf + (1 - 4l)k for all k GN0 . 

(1.1) 

(1.2) 

Let ^:= 1 + V2, 8\-\-4l. As ^ and £ are the zeros of the characteristic polynomial, it follows 
that 

yd- -1 and y +8 = 2. (1.3) 

Since the sequences (y")„eN and (Sn)neNo satisfy the same recursion as (Pk)ke^ , it follows by 
induction that 

r" = Pnr + Pn-l = PnJ2HPn + Pn-l) 0-4) 

[and <T = Pn8 + Pn_x = -Pn4l +(Pn + Pn.x)} for all n eN. 

Calculation shows that 

\a/y\=a/y<l. [Ofcourse \fily\<l.} (1.5) 

Step (2): We need the following general identity: For all z e(R such that \z\< 1, we have 

-2 ' ~ l -z 2 ' " 1 - ^ 

Proof: The series Z ^ z 2 ^ is absolutely convergent with limit -f̂ -, provided |z|< 1. Hence, 
we can sum up the terms z2h in arbitrary order without changing the limit or convergence. Now 

oo oo co oo oo 

yz2k = y y z2n(2m+\) = y yz2n+lm+2n 

k=l n=l w=0 «=1 m=0 

since, on the right side, each term z2k appears exactly once for each positive integer k eN. NOW, 
for each fixed n GN, we have 

2> 
m=0 

Therefore, Z^=1
 z „+1 is convergent and 
1—z2 

. 2 " 

, 2 " 

\-zl 

«=1 l - Z «= l w = 0 jfc=l x ' 

Q.E.D. Step (2). 

Step (3): it is convenient to prove the following two identities: 

V8-L2„/>2n-V5-F2„e2„=2-^J l - ^ J (3.1) 
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Js-L2.Pr+j5-F2.Qr=2-
P J J 

Proof: We have 

(i.i) 

and 

^•F2»2r =Sa2" -Pr)i72" +82") = (ayf +{a5f" -(fiyf -(fidf. 
1 z (1.2) 

Hence, using a(5 = yS = - 1 , we have 

V8 • L2„Pr - V5 • F ^ = 2• ((/?rf - (a8f) = 2 

This proves (3.1). Similarly, (3.2) is seen to be 

V8-L2„P2„ +V5-F2„g2„ =2.((ayf -{fi6f) = 2 

Q.E.D. Step (3). 

2" 

/>V" 

1 -
\ 2 " 

P. w 
l -

a 

(3.2) 

Step (4): Replacing z in Step (2) by a I ym\d f51' y, respectively, we obtain the following iden-
tities, where all limits exist: 

*=I 
00 1 

f V ^ 2 

rj a 

a Step (2) ] . 

7 

,2 _ 2 ^^ .^^ -VS-F^OTD^I^ / v r ^ 2 , M 2 2 ^ - « l 

*=I ,f„I r) 
P 

l l r i P2 

l -
vr 

Step (2) ] . 
, 2 o2 • ^V8.JL2„P2„+V5-F2„Q2„(3^)^2 (gy"£>2 (p\2 ~ 2 y2 - 0 

rj 

Step (5): Now, using the fact that linear combinations of converging sequences are convergent 
against the linear combinations of their limits, we obtain: 

(a) I FrQr 1 1 a2 p2 

tx\LrPrf -SiF^)2 2V5V 'w)4S[y2-a2 y2 - p2 \ 

1 («2-yg2)(2V2+3)= F2 = 1 . 
_ 4V5' 6V2" + 9 _ 4 - 3 ~ 1 2 ' 
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W l o , v Y l v n * ^ ^ * ) ^ , l £ KLrPrf - ZFyQr)2 2V8 'step (4) 4V8 
a1 _+_ I 

f-a2 yz-pz 

1 (a2+(32)y2-2(a2p2) _ 1 3y2 -2 
8V2 r

4 - (a2 +P2)y2 + a2p2 8V2 r
4 -3y2 + l 

= _1 3(P2V2+(P2+P1))-2 = 1 6V2+7 
(i~4)8V2 P4j2+P4 + P3-3(P2& + P2+P1) + l'~ &J2 6V2+9 

6V2+7 = (6^2+7)(-8-9V2+8-2-6) 
~8-9V2 +8-2-6 " (8-2-6)2-2(8-9)2 

_ (6V2 +7)(-3-V2 +4) _ -8 + 3V2 _ 8-3V2 
8-3(42-2-32) " -48 " 48 

Q.E.D. 

Also solved by P. Bruckrnan, B. Popov, and the proposer. 

Just So Many 

H-490 Proposed by A. Stuparu, Valcea, Romania 
(Vol. 32, no. 5, November 1994) 

Prove that the equation S(x) = /?, where/? is a given prime number, has just 2P~2 solutions, 
all of them in between/? and/?!. [S(n) is the Smarandache Function: the smallest integer such 
that S(n)\ is divisible by n.] 

Solution by Paul S. Bruckrnan, Edmonds, WA 

The stated conclusion is incorrect. The correct number of solutions of the equation S(x) - p 
is r((/?-1)!), not 2P~2\ here, r(n) is the counting function of the divisors of n. 

If S(x) = p, then x\p\, but x\m\ for all m<p. If q is any prime factor of x, then q<p; for, 
if q> p, then q\p\, an obvious contradiction. On the other hand, if all prime factors of x are 
less than/?, then x\(p-l)\, another contradiction. Therefore, p\x. Since pl\\p\, it follows that 
x-pr, where r |(/?-l)!. 

Conversely, if x = pr, where r|(/?-l)!, then S(x)>p, since x\m\ for all m<p. Also, 
S(x) < /?, since x\p\. Consequently, S(x) = p. 

We have proven the following proposition: 

S(x) = p iff x-pr where r\(p-l)\. (*) 

It follows that the number of solutions of the equation $(x) = p is precisely T((p-l)\). A 
brief table of the first few values of ?"((/?-1)!) is on the following page along with values of 
2P~2, for comparison. 
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p 

2 
3 
5 
7 
11 
13 
17 
19 

(P-D 
1 
21 

23-3' 
24-32-5> 

28-34-52-7I 

210-35-52-71-ll1 

215-36-53-72-ll1131 

216.38-53-72-ll1-131-171 

<(P-1)0 

1 
2 
8 
30 
270 
792 
5376 
14688 

2p-2 

1 
2 
8 
32 
512 

2048 
32768 
131072 

The proposer may have been misled by the coincidence that r((p -1)!) = 2P~2 for p - 2,3,5. 
However, since (p-1)! ~ (In I p)ll2{p I e)p (using Stirling's formula), and since the average order 
of r{ri) is log n (a well-known result of number theory), it follows that the average order of 
r((p-l)\) is asymptotic top logp (as p—><x>), which is much smaller than 2P~2. It should be 
mentioned that such average is taken over all n< p, not merely primes. However, n log n is cer-
tainly o(2n) as n -> oo. 

Also solved by M. Ballieu, A, Dujella, N. Jensen, H.-J. Seiffert, and the proposer. 

Late Acknowledgment: Paul S. Bruckman solved H-459. 
• > • > • 
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