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ON SOME PROPERTIES OF GENERALIZED 
HERMITE POLYNOMIALS 

Gospava Djordjevic 
University of Nis, Faculty of Technology, 16000 Leskovac, Yugoslavia 

{Submitted March 1994) 

1. INTRODUCTION 

The Hermite polynomials belong to the system of classical orthogonal polynomials (see [3], 
[6]). The following properties of these polynomials are well known: the orthogonal property, 
differential equation, Rodrigues representation, three-term recurrence relation. In 1990, P. R. 
Subramanian [5] studied a class of Hermite polynomials Hn(x) in the sense that one of the above-
mentioned four properties implies the other three. 

In [4], H. M. Srivastava defined a class of generalized Hermite polynomials {y™(x)}™=0 by 
the generating function 

emxt~tm = f>™(x) / w . 
77=0 

2. THE POLYNOMIALS hnm(x) 

In this paper, we consider the polynomials {hnm(x)}^=0 defined by hnm{x)-y^{2xlm). 
Their generating function is given by 

F(x,t) = e2*'-<m=fih„^(xy. (2.1) 

Note that hn2(x) - Hn(x)/n\ (Hermite polynomials). 
Expanding the left-hand side of (2.1), we obtain the following explicit formula: 

[n/m] /ry \n-mk 

VW=Z(-1)%f ,„• (2-2) 
£J k\{n-mk)\ 

By differentiating (2.1) with respect to t and comparing the corresponding coefficients, we 
obtain the following three-term relation: 

nh^m(x) = 2xhn_lm(x)-mhn_mm{x), n>m>\. (2.3) 

The starting polynomials are 

U 1 ) ^ . " = 0,l,...,m-l. (2.4) 

By differentiating (2.2) with respect to x, one by one, s times, we get 

D\m(x) = 2shn_sm(xX n>s>\, Ds^dsldx\ (2.5) 

For s =1,(2.5) is 
Dhn„(x) = 2hn_lm(x), n>\. (2.6) 

2 [FEB. 
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For s = m-1, (2.5) becomes 

Dm-\m(x) = 2m-\+l_mtm(x), n>m-l. 

Now, from (2.3) and (2.7), we obtain 

nKm(x) = 2x- -)WJ-1 D" Vi.*(*). " s l > 

(2.7) 

(2.8) 

where D is the differential operator d I dx. 
lfm = 2, the relation (2.8) becomes (see [1]) Hn(x) = (2x-D)Hn_l(x), n>l 

A very interesting relation now follows: 

Km&) = / • 

-1 

n\ ^#r^'+#r I*"-*).D-"^i^SZ" / . (2.9) 

where /(JC) is any differentiable function not identically zero, Ds = ds I dx\ and (X)n = 1(1 + 1) 
... (X + n-1) is the Pochhammer symbol (see [2], [3]). 

3. EQUIVALENCE OF (2.9) AND OTHER RELATIONS 

First, we shall prove the relation (2.9). Let f(x) be any differentiable function not identically 
zero. From (2.8), we find: 

fK»(*) = -
n 

Vi.»(*) 

2x^D^+^Y{m-k)kD^-\f)t^^^ 
m-2 

H 

2 m-\ 
k=0 

{/K-lmW}-
(3.1) 

Iteration of (3.1) yields 

A V H O ) = 
1 2x—^-Dm-1 +-^Y(m-k)kD"-1-k(f)fj °k'Jy~) DJ f, n>\, (3.2) 

since h0 m(x) = 1. However, (3.2) is also true for n = 0. The relation (2.9) follows immediately. 
From (2.9) and f(x) - 1, we get the following beautiful relation: 

K.m(x) = n\ 2x- m n ,„- i -D" 1, «>0 . (3.3) 

If m = 2, (3.3) becomes (see [1]) #„(*) = [2x- £>]" 1, #i > 0. If m•= 3, then (2.9) becomes 

\ 3 0 ) = n! 4 4 

If f(x) = e~x", relation (3.4) yields 

2x-^D2
+^rl{D2f}+^{Df}{Df-l} + y-l{Df}D\ f, ,/>0. (3.4) 

1996] .1 
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h3(x) = \--\ —[3D2 + l0x + 27x4 + lSx2D]"e-x3, n>0. 

Now, we shall show that (2.9) is a spring for developing the properties of hn m(x). First, we 
prove (2.8), starting from (2.9): 

Km^) = ^ 
m-2 

2*-^zr-1
+-^rl>-*),zr->-*(/)X 

z z fc=0 

* nk-Uf-1 

DK-J(f-1) 

2x-
OT

 n m - l -If 1 = 2x ^ - j r , ™ " 1 

P>jKk-j)\ 
D1 f 

Hence, we get (2.8). 
From (2.3) with n + \ substituted for n, and using (2.5), (2.6), and (2.8), we find 

{n + l)Dhn+l(x) = li 2x--^Z)""1 
•\rn-l K,nkX) 

= 2Km(x) + 2x-^Bm-x 

2m-\ 
Dh„Jx) = 2(n + l)hnJx). 

Thus, we obtain the following differential recurrence relation: 

Dh
n+lm(X) = 2h

n,m(Xl (3.5) 

Now, we shall prove the three-term recurrence relation (2.3). From (2.7) and (2.8), we get 

nhn,m{x) = 2xhn_lm(x) -J^Dm-%_hm(x) 

= 2xK-^m(x)-mhn_mm{x), n>m>\. 

The relation (2.3) follows from the last equality. 
By differentiating (2.8) with n + l substituted forn, and using (3.5), we obtain 

2x—^jlf 
2 m - l 

Kmi*) 

m 

(n + l)Dhn+lm(x) = a 

= 2\ m (x) 

Next, from (3.6), we get the following differential equation: 

2x rD' 
2m-\ 

m-\ 
(3.6) 

Dhn,m(X)-

m Dm-2xD + 2n KAX) = °- (3.7) 

For m-2 or 3, equation (3.7) becomes 

[D2 - 2xD + 2n]H„(x) = 0, n > 0, 
and 
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-D3-2xD + 2n 
4 

\ 3 ( x ) = 0, n > 0. 

Note that the first equation above is the Hermite differential equation. 
Now,, we show that (2.1) can be derived from the recurrence relation as follows (see [5]). 

Assume the existence of a generating function of the form 

F(x,t) = ^KJx)t". (3.8) 

Differentiate F(x, t) with respect to t and, using (2.3) and (2.4), develop the following first-order 
differential equation for F(x, t): 

F~\dFldt)^2x-mtm-\ (3.9) 

Now, we integrate both sides of (3.9) with respect to t, from 0 to t, to obtain 

F(x,t) = F(x,0)e2xt-tm. (3.10) 

Since F(x, 0) = \Jx) = 1, by (2.4), it follows that F(x91) = e2xt~tm. 
Finally, we shall prove in this section that the polynomial hn^m(x) is a solution of the differen-

tial equation (3.7). 
Assume that the polynomial y - Z£=0 %' %n~k *s a solution of equation (3.7). Then, 

Dy = ^(n-k)ak-x"-l-k, 
k=0 

and 
Dmy=J^(n + l-m-k)m.ak.x> 

k=0 

n-m—k 

If we substitute (3.11) and (3.12) into equation (3.7), we get 

~ ± ( n + \-k)m.ak_m.x"-k -2±(n-k)ak-x"-k
 +2n±ak-x"-k = 0. 

k=m 

From (3.13), we obtain 
n 

I 
k=m L 

k=0 k=0 

m ̂(n + l-k)m-ak_m+2kak 

m-\ 
xn-k+J^2kak-xn-k = 0. 

k=0 

Next, from (3.14), we find 

and 
kak = 0, k = 0,l,2,....,m-l, 

<*u 

m{n +1 - k)n 

2Tk 'lk-nv k >m. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Finally, from (3.15), (3.16), and a0 = 2"/n\, using induction, we can show that the polynomial 
y = ZjjL0 ak • x"~k has the following form: 

[nlm] (r) „\n~mk 

£0 k\(n-mk)\' 
(317) 

1996] 
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Comparing (3.17) with (2.2), we see that the polynomial^ is the generalized Hermite poly-
nomial hnm(x). 

4. RELATION hnm{x) = (TI «!){exp[-Dw / 2m]}xn 

In this section, we prove the following relation 

Note that the operator exp[-Z)m /2ffl] has the following expansion: 
oo / -i\s j-\ms 

exp[-Z)"72'"] = X 1 : ^ - ^ r . (4.2) 
s-0 Si 

Since 
D r n s x n ^ m l ^ - ^ ) \ ] x n - m \ Yl>mS (s < [« / m]\ 

[0, n < ms. 

The relation (4.1) follows from (2.2), using (4.2) and (4.3). 
For m = 2, (4.1) has the form (see [2]) 

#„(x) = 2"{exp[-£2/4]}x"; 

for m = 3, (4.1) becomes 

K^x) = -{cxV[-D3l%]}x". 

Remark: We can classify the starting points into two distinct groups (see [5]): (a) full self-
contained springs and (b) associated springs. The generating function (2.1) and the relations 
(2.2), (2.9), (3.3), and (4.1) belong to category (a). These springs completely specify the general-
ized Hermite polynomials hnm(x). The differential equation (3.7), the recurrence relation (2.3), 
the differential recurrence relation (3.5), and the relation (2.8) belong to category (b) because they 
require supplementary conditions to specify the generalized Hermite polynomials hnm(x) fully. 
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MINMAX POLYNOMIALS 

A, F* Horadam 
The University of New England, Armidale, Australia 2351 

(Submitted May 1994) 

1. INTRODUCTION 

Background 

MinMax numbers {M„}, and their subsidiary numbers {Nn}, for Pell numbers {Pn} were 
studied in some detail in [2]. They are those positive integers for which the minimal and maximal 
representations by Pell numbers coincide. 

Analogous results for the MinMax numbers {&„}, and their subsidiary numbers {2ft„}, for the 
modified Pell numbers {qn} have been obtained in [3]. (qn -\Qn, where Qn are the Pell-Lucas 
numbers [4].) 

Our motivation in this paper is to extend these MinMax number systems to their algebraic 
polynomial counterparts {M„(x)}, {Nn(x)}, {2,„(x)}, an(^ O^wOO}* anc* t 0 analyze their proper-
ties. When x = 1, the MinMax numbers {Mn(l)} = {Mn}, etc., are naturally specified. 

Pell polynomials {Pn(x)}, n > 0, are defined recursively [4] by 
Pn+2(x) = 2xP„+l(x) + Pn(x), P0(x) = 0, i>(x) = 1, (1.1) 

while the modified Pell polynomials {q„(x)}, n > 0, are similarly defined by 

?«+2W = 23f?H+lW + ?n(4 % (X) = 1, <l\ (X) = X- (! -2) 
A useful connective between (1.1) and (1.2) is gn(x) = xPn{x) + Pn„x{x). 

Detailed information on the properties of, and interrelations between, {Pn(x)} and {Q„(x) -
2qn{x)} appear in [4] and [5], including lists of some of these polynomials. To conserve space, 
we assume that these data are accessible to the reader. 

Just as there is the connection [2] between Mn and Pn, so there is the polynomial nexus 

Mn(x) = fjPi(x). (1.3) 
/ = 1 

The Sequence {q*(x)} 

Allied to {qn{x)} is the polynomial sequence {q*(x)} defined by the recurrence relation 

q*n+2(x) - 2xq*n+l + q*n(x\ q&x) = 1, qftx) = 1. (1.4) 

Whereas q{(x) = x, here q*(x) - 1. Consult Table 1. 
Putting x - 1 in q*(x), we find that q*=qn. Expressed otherwise, both {<?*(x)} and {qn(x)} 

are polynomial generalizations of the modified Pell numbers {qn}. 
By standard methods, we derive the generating function 

[ l - ( l - 2 x ) j ; ] [ l - ( 2 x y + / ) r 1 - X ^ y 0-5) 
7=0 

1996] 7 
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and the Binet form 

<iW=o-*>«--o-««»- (,6) 
a- p 

where [2] 
\a = x + A r - — 
i where A = Vx2 -+1 (1.7) 
[J3 = x-A 

leading to 
q;(x) = P„(x) + P„_1(x). (1.8) 

For convenience, in (1.7) we employ the abbreviated symbolism a = a(x)7 J3 = /?(x), A = A(x). 
Using (1.7) and (1.8) in conjunction with the Binet form and Simson formula for {Pn(x)}, we 

have eventually the Simson analogue for {q*(x)}: 

^+iC-(^w)2=(-ir^. o-9) 

TABLE 1 

9o(*) = 1 %(x) = 1 
ql(x) = 1 qx(x) = x 
ql(x) = 2x + l #2(x) = 2x24-l 
^(x) = 4x2 + 2x +1 <73(x) = 4x3 4-3x 
$;(x) = 8x3 + 4x2 + 4x +1 q4(x) = 8x4 4- 8x2 4-1 
ql(x) = 16x4 + 8x3 4-12x2 4- 4x 4-1 #5(x) = 16x5 + 20x3 + 5x 
^(x) = 32x5 + 16x4 + 32x3 + 12x2+6x + l 
q*(x) = 64x6 + 32x5 + 80x4 + 32x3 + 24x2 + 6x +1 
%*(x) = 128x7 + 64x6 + 192x5 +80x4 +80x3 + 24x2 + 8x + l 

2. MINMAX POLYNOMIALS {Mn(x)} 

Define the polynomials {Mn(x)}, n > 0, by the recurrence relation 
M„+2(x) = 2xM„+1(x) + M„(x) + l, M0(x) = 0, M1(x) = l. (2.1) 

Polynomials {Mw(x)} may be called theMinMaxpolynomials for the Pell numbers. 
Letting x = 1 gives us the MinMax numbers {Mn} for the Pell numbers [2]. 
Table 2 displays the first few polynomials of {Mn(x)}. 
That (1.3) and (2.1) are in conformity may be deduced by exploiting the defining recurrence 

relation (1.1) for {Pn{x)} and recalling (1.1) that Px{x) = 1. 
It is a straightforward procedure by a standard technique to obtain the generating function for 

{M„(x)}: 
co 

[1 - (2x 4- \)y + (2x - 1 ) / + / ]" ' = X Hi*)?-1 • (2-2) 
/=1 
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From (1.3) and [4, (2.15)], we may express Mn(x) explicitly by means of the double summa-
tion 

;=1 k=Q 
V 

1 \2xy-2k~l 

Illustration of (2.3): 
Mn(x) = 1024x10 + 512x9 +2560x8 + 1152x7 +2304x6 

+ 896x5 + 896x4 + 280x3 +140x2 + 3 Ox + 6 

(on calculation), which is readily verifiable from Table 2 and (2.1). 

TABLE 2. The MinMax Polynomials M„(x) (n = 0,1, 2,..., 10) 
M0(x 
Mx(x 
M2(x 
M3(x 
M4(x 
M5(x 
M6(x 
M7(x 
Ms(x 
M9(x 

Ml0(x 

(2.3) 

= 0 
= 1 
= 2x + l 
= 4x2+2x + 2 
= 8x3 + 4x2+6x + 2 
= 16x4+8x3 + 16x2 + 6x + 3 
= 32x5 + 16x4 + 40x3 + 16x2 + 12x + 3 
= 64x6 + 32x5 + 96x4 +40x3 + 40x2 + 12x + 4 
= 128x7 + 64x6 + 224x5 + 96x4 + 120x3 + 40x2 + 20x + 4 
= 256x8 + 128x7 +512x6 + 224x5 + 336x4 + 120x3 +80x2 +20x + 5 
= 512x9+256x8 + 1152x7 + 512x6 + 896x5 + 336x4 + 280x3+80x2+30x + 5 

Combining (1.3) and [4, (2.11)], we derive 

P„+1(x) + P „ ( x ) - l _ C i ( * ) - l M„(X): 

yielding the Binet form 

Mn(x): 

2x 2x 

2xA 
A characteristic feature of {Mn(x)} is the Simson formula 

Other derivations of interest in the MinMax theory include 
M„(x)-M„_l(x) = P„(x), 

M„(x) - M„_2(x) = q*„(x) by (2.7), (1.8), 

Mn(x) + M^) = PUX)Hl-x
X)P"iX)-1 by(2.4),(l.l) 

(=a(x) by (4.3)), 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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MINMAX POLYNOMIALS 

M„(x) + Mn_2(x) = ( 1 + X ) J P " ( X ) +
X

( 1 X)P"~l l by (2.7), (2.9) 

(=K-i X by (3.1)). 
(2.10) 

3. THE SUBSIDIARY MINMAX POLYNOMIALS {Nn(x)} 

Next, we introduce a sequence of polynomials {N„(x)} associated with {Mn(x)} which we 
define thus (»>1): 

N„(x) = M„+1(x) + Mn_l(x), N0(x) = l. (3.1) 

These polynomials {Nn(x)} may be called the subsidiary polynomials of {Mn(x)} for the Pell 
numbers. Table 3 lists the first few of them. See also (2.10). 

TABLE 3. The Subsidiary MinMax Polynomials Nn(x) (« = 0,1, 2, . . . , 9) 
N0(x) = l 
Nx(x) = 2x + l 
N2(x) = 4x2+2x + 3 
#3(x) = 8x3 + 4x2+8x + 3 
N4(x) = 16x4 4-8x3 4-20x2 4-8x4-5 
#5(x) - 32x5 + 16x4 4-48x3 4-20x2 + 18x4-5 
N6(x) = 64x6 +32x5 4-112x4 + 48x3 + 56x2 4- 18x4-7 
N7(x) = 128x7 4- 64x6 4- 256x5 4-112x4 4- 160x3 4- 56x2 4- 32x 4- 7 
Ns(x) = 256x8 + 128x7 +576x6 + 256x5 -f 432x4 + 160x3 + 120x2 4-32x4-9 
N9(x) = 512x9 + 256x8 + 1280x7 4- 576x6 4-1120x5 4- 432x4 4- 400x3 4- 120x2 4- 50x 4- 9 

When x = 1, the numerical specializations are the subsidiary numbers {Nn} investigated in 
[2]. 

For the criterion N0(x) - 1 to prevail in (3.1), we necessarily have M_x(x) = 0, obtainable by 
extension of (2.1) to the value of n - - 1 . 

Immediately from (3.1) with (2.1) flows the consequence 
N„+2(x) = 2xN„l(x) + N„(x) + 2 («>0), (3.2) 

which is the recurrence relation for {/V„(x)}. 
The generating function for {Nn(x)} is, from (2.2) and (3.1), 

(1 +/)[1 - (2x + \)y + (2x - \)y2 +/]"1 = I ^ W " 1 -

Explicitly, from (2.3) and (3.1), 
/=i 

n-\ 

#„(*) = 2£ 
7 = 1 

(\n=l\ 

. £ = 0 V 

i-2k~\ 

) i=n 
A + \ 

V 

(2x ) ' - 2 ^ - 1 

(3.3) 

(3 4) 
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in which A stands for the second summation in the double summation, as represented symboli-
cally. 

Perseverance in calculation with (3.5) leads us to, for instance, 

#10(x) = 1024x10 + 512x9+2816x8 + 1280x7 + 2816x6 + 1120x5 

+123 2x4 + 400x3 + 220x2 + 50x +11, 

which may be readily checked from Table 3 and (3.2), or directly from (3.1) in conjunction with 
Table 2. Recall the expression for Mu(x) in the illustration of (2.3). 

Equations (2.4) and (3.1) produce 

Nn(x) = (l + x)P„+1(x) + (l-x)Pn(x)-l 

= QB±M+QMzl 
2x 

(3.5) 

(where Q„{x) = P„+l(x) + P^ix) [4, (2.1)]), leading to the Binet form, see (1.7), 

Nn(x)=a»(l + a)+ni + P)-2 ( 3 6 ) 

Suitable algebraic manipulation, involving (3.5) and [4], reveals in due course the Simson 
formula for {Nn(x)}9 

^•W^-W-<W^" M -^ ' ( f 2 A V i r ' - (3-7) 
Furthermore, (3.5) with (1.2), in which Q„(x) = 2qn(x), reveals that 

#„(*)-#„_,(*) = G,(*)> (3.8) 
whence 

K(x) - N„_2(x) = Qn+l(x) + Qn(x). (3.9) 
Moreover, 

N„(x) + N^Qc) = g"+ l ( x ) + ( 1"X ) Q"( X )"2 by (3.5) (3.10) 

and 

Nn(x) + N„_2(x) = (1 + x)Qn(x) + (l-x)Q„_l(x)-2 b y ( 3 8 X ( 3 1 0 ) ( 3 1 1 ) 

Pemsing the polynomial properties in Sections 2 and 3, one is struck by the harmonious 
balance of those results for {Mn(x}} relating to {Pn(x)} and similar ones for {Nn(x)} relating to 
{Q„(x)} ("sweet harmony of contrasts"), e.g., compare (2.10) and (3.11). 

This mathematical symbiosis does not really transfer to the polynomials to be discussed in 
Sections 4 and 5, though. 

Notice, however, the same direct nexus between results for {Mn{x)} in relation to P„(x) and 
those for {2t„(x)} in relation to {q*}, e.g., contrast (2.10) and (4.10). 

Comparison, e.g., of (3.11) and (4.10) shows the balance between results for {Nn(x)} in rela-
tion to {Qn(x}} and those for {2,„(x)} in relation to {g*(x)}, thus completing the third "side" of a 
"triangle" of relationships, i.e., (2.10), (3.11), and (4.10). 

1996] ! | 



MINMAX POLYNOMIALS 

Second-order expressions (excepting the Simson analogues) are generally less manageable. 
Difference of squares such as M%(x)-M%_l(x) = (Mn(x) + Mn_l(x))(Mn(x)-Mn_1(x)), etc., are 
readily derivable from (2.7) and (2.9), but direct calculations and simplifications would otherwise 
be onerous. Coming to the sum of squares, we discover that 

M2
n{x) + Mll(x) = -^ ^aw+^w-aw-z^wK1 

and 

N2„(x)-NU*) = ^2 l^Qiln)(*) + W * ) - GtaOO - 2ifo(*) + 4 

where, in the latter equation, we have used the symbolism, e.g., 
Pin)(x) = P»+l(x) + 2Pn(x) + Pn_x(x). 

(2.11) 

-2P„(x) (3.12) 

(3.13) 

4. THE MINMAX POLYNOMIALS {&„(*)} 

Instead of the MinMax polynomials for the Pell numbers, we now consider the analogous 
polynomials for the modified Pell numbers. 

Define the MinMax polynomials {2,„(x)},«> 0, for the modified Pell numbers {qn}—see 
(1.2)—by the recurrence relation 

ln+2(x) = 2x2Ln+l(x) + £„(x) + 2, &„(*) = 0, a,(x) = l. (4.1) 

Table 4 records the simplest of these polynomials. 

TABLE 4. The MinMax Polynomials SLn(x) (#i = 0,1, 2,. . . , 7) 

a0(*) = o 
2Lx(x) = 1 
&2(x) = 2x + 2 
a3(x) = 4x2+4x + 3 
&4(x) = 8x3+8x2+8x + 4 
a5(x) = 16x4 + 16x3 +20x2 + 12x + 5 
a6(x) = 32x5 + 32x4+48x3+32x2+18x + 6 
a7(x) = 64x6 + 64x5 + 112x4 +80x3 + 56x2 +24x + 7 

Letting x = 1, we obtain the MinMax numbers {&„} for {qn} given in [3], namely, {&„(*)} = 
{1,4,11,28,69,168,407,...}. 

Without difficulty, we establish the generating function 

(1 + y)[l- (2x + \)y + (2x - 1 ) / + / ] " l = £ % (*)/'~l • 

Immediately, we have from (4.2) with (2.2) that [cf. (2.9)] 

(4.2) 
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2,„(x) = Mn(x) + Mn_1(x). 

With (2.5) substituted in (4.3), there results the Binet form for &„(x), see (1.7), 

an-\\ + a)2-pn-\\ + pf-2h 
\(X): 

2xA 
which gives, with (1.6), 

n W " 2x 
Compare this with the form for N„(x) in (3.5). 

Using (4.5) along with (1.4) and (1.8), we discover the Simson formula 

a^cx^oo -ate)=(-lr'-isJafiizM. 
It readily follows from (4.5) and (1.4) that 

2L„(x)-2Ln_l(x) = f„(x), 
whence 

Also, 
a„w-a„_2(x) = ^+1(x)+^(x). 

&„(*) + a„_!(x) = ^ { ^ + 1 (*) + (1 - x)q*(x) - 2} by (4.5), (1.4), 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

giving 

&„(*) + a„_2(x) = ̂ {(1 + x)q*„(x) + (1 - x)qU - 2} by (4.7) 

(=&„_,(*) by (5.1)). 

An important result is 

a„(x) = !#(*) . 

(4.10) 

(4.11) 
i= i 

Proof of (4.11) 

Etf(*) = \\{\-P)ta<-(\-a)±p\ by(1.6) 
/=i A I /=i 1=1 J 

1 J/, ax 1-a" /i ^ l->g" 

(1 + a) 0+/?) 1 - j g " 

= (1 + g)(l - /?)(! - a") - (1 - q)(l + /?)(! - n 
A(l-«)(!-/?) 
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_:(2 + A ) ( l - « " ) - ( 2 - A ) ( l - / r ) 
-2JCA yK ' J 

= 2 + A-2 + A-[an(2 + a + g-1)-/3"(2+J3+/r1)] 
-2xA 

= a"-\\ + af - p"-\\+pf - 2 A 
2JCA 

= a„(x) by (4.4). 
So, 

a„(*) = £#(*) *!?/(*)• 
i = l / = l 

5. THE SUBSIDIARY MINMAX POLYNOMIALS {<3ln(x)} 

We now introduce a sequence of polynomials {^fln(x)} which bears the same relationship to 
{&„(*)} for {qn(x)} as {Nn(x)} bears to {M„(x)} forP„(x). 

Define the subsidiary MinMaxpolynomials {2ft„(x)} of {2,„(x)} for {qn(x)} by 

aII(x) = aJtrt(x)+al_1(x), »„(*) = o, (5.i) 
whence, by (4.1), 

Sft„+2(x) = 2xSft„+1(x) + &„(*) + 4. (5.2) 

For the definition to apply for « > 0, we must have SL_x(x) = - 1 . Some of the most elemen-
tary of these polynomials are displayed in Table 5. 

TABLE 5. The Subsidiary MinMax Polynomials &„(*) (n = 0,1, 2,..., 5) 
<3l0(x) = 0 
2ft1(x) = 2x + 2 
<3l2(x) = 4x2+4x + 4 
<3l3(x) = Sx3 + &x2 + l0x + 6 
&4(x) = 16x4 + 16x3 + 24x2 +16* + 8 
a5(x) = 32x5 + 32x4 +56x3 + 40x2 + 26x +10 

Puttingx = 1 gives <3ln{\) = 4M„(1), i.e., <3l„ = 4M„ as in [3]. 
It is a relatively effortless exercise to determine the generating function 

2[(l + x) + ( l -x) j ] [ l - (2x + l ) j + ( 2 x - l ) / + / r 1 = £ a , . ( x ) y - 1 (5.3) 
7 = 1 

leading to 
» „(*) = 2[(1 + x)M„(x) + (1 - x)M„_1(x)]? (5.4) 

where we have invoked (2.2). 
After a little simplification involving (2.1) in (5.4), this is reducible to [cf. (3.10)] 

<3ln(x) = N„(x) + N„_l(x) (5.5) 
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which by (3.6) ensures the Binet form, see (1.7), 

" W " 2x 
Equations (5.1) and (4.1) together produce 

2x 
Q„+l(x) + 2Q„(x) + Qn_l(x)~4 

2x 

<3t„(x) = -

by (5.5) and (3.5). 

Next, 
^ W - a ^ ^ ^ W + W * ) by(5.1), (4.7) 

= a ( * ) + GU(*) by (1.8), [4,(2.1)] 
= 2(?„(x) + q„_i(x)) since 0„(x) = 2q„(x) 
= Nn(x)-N„.2(x) by (5.5), 

leading to expressions for l3i„(x)-<3l„_2(x). 
Moreover, 

a"-2(l + af + p"-\\ + flf -8 
2x 

whence 
&„(*) +&,-i(*) = - by(5.6) 

(5.6) 

(5.7) 

(5.8) 

&„(*) + &„ t(x) =, g"-^x) + 36"-'<*> + 3Q»W + 0,+i(*) ~ 8 

on using the Binet form [4, (3.31)] for {Q„(x)}. An expression for <3ln(x) + '3tn_2(x) 
joining (5.8) to (5.10), n -> n -1 in the latter equation. 

(5.9) 

(5.10) 

follows by 

6. MISCELLANEOUS REMARKS 

Determinantal Values 
Computation gives us the pleasing and somewhat unexpected result, 

\K(X) M,+i(*) K+i(x) 
Wn+l(x) Mn+2(x) Mfl+3(x)| = (-l)", 

M1+2OO H+3W K+A(X) 

(6.1) 

which is clearly independent of x. Establishing (6.1) requires (2.1) and the Simson formula for 
P„(x) [4, (3.30)], together with some routine determinantal manipulations. 

Similarly, the appropriate algebraic maneuvering leads to 

!#,,(*) ^rflW ^2(X) 
\Nn+l(x) Nn+2(x) Nn+3(x) 
\Nn+2(x) Nn+3(x) N„+4(x) 

which is not independent of x [cf. (6.1)]. 

» + l A 2 = 8(-l)"+1A (6.2) 
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An investigation into a corresponding determinantal value for {2,„(x)} led to some unlovely 
algebra which was abandoned. However, to compensate for this disappointment, our general 
endeavors are rewarded with a result such as (6.1). 

Diagonal Functions 

When analyzing the structure of a set of polynomials, it is sometimes instructive to consider 
the rising (and descending) diagonal functions which, in the inward eye, are inherent in the system 
along upward (downward) slanting "lines." See, for instance, [1]. 

While such new polynomial sets can create some interest (e.g., the existence of certain dif-
ferential equations—partial or ordinary), preliminary efforts with polynomials exposed in this 
paper do not seem particularly promising. But for "Time's winged chariot hurrying near," one 
could be encouraged to persevere with this challenge. 

Other MinMax Systems 

MinMax numbers for the Fibonacci numbers are exhibited in [2]. From these one may con-
struct corresponding Fibonacci polynomials. Likewise, for the Lucas numbers and their polyno-
mials. Experience suggests that an interconnected theory for these polynomials and for Lucas 
polynomials analogous to that established in the preceding treatment might be possible. 

One does not have to be psychic to expect that similar developments might be worthwhile 
involving polynomials abstracted from other number sequences, e.g., Jacobsthal numbers. 

The Tables 
Of passing aesthetic appreciation is the varying pattern of constants in the polynomials listed 

in Tables 1-5, e.g., in Table 3 the sequence {1,1, 3, 3, 5, 5, 7, 7, 9, 9,...} for {N„(x)}. 

7. CONCLUSION 

It should be noted that numerical, i.e., nonpolynomial, recurrences specialized from (2.1), 
(3.2), (4.1), and (5.2)—along with other recurrences with a fixed additive constant—have 
recently been investigated in [2]. 

One wonders, en passant, what opportunities for discovery might exist from the innovative 
invention of polynomial sequences of the kind defined by p„(x) = xqn(x) + qn_l(x), or perhaps 
p*(x) = xq*(x) + q*_l(x). 

There are further possible variations on our theme. Among these is the extension of our 
polynomials to negatively-subscripted symbols, e.g., {M_n(x)}, but our ambitions are tempered by 
the sobering reminder of Longfellow that "Art is long and Time is fleeting." 
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1. INTRODUCTION 

It is a well-known theorem of A. Hurwitz that for any real Irrational number £ there are 
infinitely many integers u and v > 0 satisfying 

1 
V5v 2 ' 

Usually this theorem is proved by using continued fractions; see Theorem 193 in [2]. 
S. Hartman [3] has restricted the approximating numbers f to those fractions, where u and v 

belong to fixed residue classes a and b with respect to some modulus s. He proved the following: 
For any irrational number £, any s > 1, and integers a and b, there are infinitely many integers 

u and v > 0 satisfying 
2s2 

(1) 

and 
w = a mods, v = b mods. 

The special case a = b = 0 shows that the exponent 2 of s2 is best-possible. In what follows, 
we are interested in the case where a and b are not both divisible by s; and we allow the denomi-
nators v to be negative. Using these conditions, S. Uchiyama [10] has published the following 
result: 

For any irrational number £, any s > 1, and integers a and ft, there are infinitely many integers 
u and v & 0 satisfying 

*--: <-4v2 (2) 

and 
u = a mods, v = b mods, 

provided that it is not simultaneously a = 0 mod s and b = 0 mod s. 

Years before, J. F. Koksma [4] had proved a slightly weaker theorem. From the case s = 2 
and Theorem 3.2 in L. C. Eggan's paper [1], it is clear that the constant j in (2) is best-possible. 
It is proved by Eggan that for any a > 0 and for any choice of the three types odd/odd, odd/even, 
or even/odd of the fractions f there is an irrational number £ so that no fraction of the chosen 
type satisfies 

V 
l-a 
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The case s = 2 has been studied by other authors, see, e.g., [5], [6], [8], and [9]. In this 
paper we prove a smaller bound for I^ - f l , assuming u = v mods for some prime s. Actually, 
the result is a bit stronger. 

Theorem 1: Let 0 < s < 1, and let/? be a prime with 

h denotes any integer that is not divisible by p. Then, for any real irrational number £, there are 
infinitely many integers u and v > 0 satisfying 

\<(l + £JPm (3) 
V 4sv 2 

and 
u = hv^0 mod p. 

To prove Theorem 1, we will apply the methods of S. Hartman [3] and S. Uchiyama [10]. It 
will be convenient to use the same notations as in Uchiyama's paper, but this is done for another 
reason: there is a small gap in the proof of Uchiyama's result stated above in (2). In what follows, 
we are concerned with the same difficulty at this point, and we will fill the gap. 

2. AUXILIARY RESULTS 

Apart from Hartman's method, we need two lemmas. 

Lemma 1: Let 0 < s < 1, and let/? be a prime, and let wx and w2 be integers with 

P>$. (4) 

0 < wx < p, 0 < w2 < p. (5) 

Then there are integers h, gh and g2 satisfying 

\b\<P, (6) 

0<|<?1|<(1 + ̂ 1 / 2 , 0<\g2\<(\ + s)pm, (7) 
and 

bwx = gx mod p, bw2 = g2 mod p. (8) 

Lemma 2: There are no integers x and y with xy > 0 satisfying simultaneously the following 
conditions: 

xy S\x2 y2j x{x+y) y[5{x2 (x+y) 

Proof of Lemma 1: We try to solve a linear system of equations 

wlx-yl+py1^0 
(9) 

w2x-y3 + py4=0} 
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with integers x, yh y2, y3, andy4, where 

\*\<P, 

0<\yi\,\y3\<(l + s)P
m, 

and 
0<\y2\,\y4\<2kp. 

Hence, b = x,gx= yl9 and g2 = y3 satisfy (6), (7), and (8) in our lemma. But first we do need an 
auxiliary inequality: 

From p > (j) , we conclude that 
1 1 s s 

- 7 = + — < — + —=£. 

4p P 2 2 
For 0 < t < y, we have - T = < 1 +1; hence, 

This is equivalent to 

It follows that 

/<(P-D^I±£^-I]+IJ. 

p2<(p-l)\2\ l + e JP~ + 1 (10) 

where [a] denotes the integral part of a for nonnegative real numbers a. The integers Xu X2, 
and X3 are given by 

X = p-\ 
> ^ 2 ~ 

1 + £ in , X3 = kp, (11) 

where k is a sufficiently large positive integer satisfying 

p(p-l) + 2 l + £ 1/2 p + 2kp2 + l 

{2kp + \y 
2 P 

p-l 

By (10) and (11), this implies 

or 

(2pX1+2X2+2pX3 + l)2
 2 

(^Tr? < p{2Xi+1} 

(2(pX1 + X2+pX3) + i)2<(2Xl+l)(2X2 + l)2(2X3 + l)2. 

There are (2Xj + 1)(2X2 + 1)2(2X, +1)2 different sets of integers x, yv y2, y3, and y4 with 

-X^xZXi, -X2<yx,y3<X2, - X3 <y2,y4 <X3. 

(12) 
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We denote the left-hand sides of the two forms in (9) by fx and/2; for each such set of integers, 
we have 

-(pXl + X2+PX3)<flJ2<pXl + X2+pX3. 

Here we have applied (5). There are at most (2(pXl + X2+pX3) + l)2 different sets f and/2. 
But now, by (12) and the box principle, there must be two distinct sets of five numbers x, yh y2, 
y3, and y4 that correspond to the same set fx and/2; their difference gives a nontrivial solution of 
(9) where, by (11): 

0<\x\<p, (13) 

0< |^ ,b / 3 |< ( l + 4p1 / 2, (14) 
and 

0<\y2l\y4\<2kp. 

To finish the proof, we must show that yx ^ 0 and j>3 ^ 0. We assume the contrary for yx, which 
gives wpc = 0 mod p from the first equation in (9). Since p is a prime and 0<wl<p by (5), this 
holds if and only if x = 0 mod p. This means, by (13), that x = 0. Thus, the first equation in (9) 
becomes- py2 = 0 ory2 = 0 and the second one becomes ~y3+py4 = 0 or y3 = 0 mod p. Now we 
apply the condition Jp > 2 from (4), which yields 

(14) 

\y,\<(\ + e)pm<2pm<p; 
hence, y3 = 0. 

We have obtained x = yx = y2 = y3 = y4 - 0, which contradicts our construction of a non-
trivial solution of (9). We proceed in the same way if we assume y3 = 0. Thus, the proof of 
Lemma 1 is complete. 

Proof of Lemma 2: (See "Hilfssatz 2.2H, Ch. 10, in [7].) Without loss of generality, we may 
assume x > 0 and y > 0; hence, from the two inequalities stated in Lemma 2, we have 

Q>x2+y2-xy45 and 0>(2-V5)(x2+xy) + / . 

The sum of these inequalities gives 

0 > 2 | ^ ^ x 2 + ( l - V 5 ) x F + / l = 2 f ^ ~ 1 
\ 2 

-x-y 
J 

It follows that 2y = (V5 - l)x, which is impossible for x •*• 0. 

3. PROOF OF THEOREM 1 

Any real irrational number £, is represented by its continued fraction expansion, that is, 
£ = [a0;aj,a2, . . . ] , where a0 eZ, a„ eZ>0 (n>l). pn andg„ from the n* convergent ^ with 

£-Es. 1 £ ? 05) 
satisfy the recurrences 
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P-l = \ P0=®0, Pn=a„Pn-l+Pn-2 (n^ll 

It is well known that 

Pn-l<ln-Pn<ln-l = (-l)n (1 6) 

holds for all integers n > 1. According to the usual notations, we have to distinguish carefully the 
notation pm (with index m) and/?, which denotes the prime modulus in Theorem 1. 

Now, following the idea of Hartman, we consider for n > 1 a small system of congruences 

pnx+pn.]y = a mods,] 
(17) 

<lnX + <ln-iy = b mod 5, J 

where s > 2 is some positive integer and a and h are fixed integers such that there is not simul-
taneously a == 0 mod s and h = 0 mod s. It is easily proved by (16) that a solution of (17) is given 
by x = £„_! andy = fw, where the integers tn_x and r„ are determined by 

tm = (-l)m(aqm-bpm)mods. (18) 

In what follows, we consider only the sequence of all even integers n> 0. In (17) and (18), 
we put s = p and a-hb and so, for even integers n, we compute tn and tn_x by 

*»s*(*&-/>») mod/?, I 
k-i = *( /Vi" % - i ) mod p) 

If the sequence a0, a1? a2,... from £ = [a0; aha2,... ] is unbounded, there is an unbounded subset N 
of all positive integers such that, for certain integers 0 < wx < p and 0 < w2 < /?, we have, for all 
n eN: 

an>24p + l 
and 

hqn-Pn^wi mod/?, 
U A I <2°> 

pn-i-hqn_l^w2 mod/?.J 
Without loss of generality, we may assume that all integers from N are even; in the case in which 
a0,aha2,... has an unbounded subsequence only with odd indices, the arguments are the same 
apart from a change of sign in most of the subsequent formulas. 

Moreover, if the sequence a0,a1?a2,... is bounded, it is obvious that there is an unbounded 
subset N of all even positive integers satisfying (20) for all n eN with certain integers wx and w2. 

If it is wx = 0 orw2 = 0, we have pn = hqn mod/? or pn_x = hqn_l mod/? for all n eN; thus, 
the theorem is already proved in this case by taking the convergents -^ or -^J- according to 
wl = 0orw2= 0. The inequality (3) holds by (15); it remains to check the condition 

Pn - hqn * ° mod/? or pn_x = hqn_x 4 0 mod/? (n eN) 

from the theorem. Assuming the contrary for —-, we get 

pn = 0 = hqn mod/?. 

22 [FEB. 



ON THE APPROXIMATION OF IRRATIONAL NUMBERS WITH RATIONALS RESTRICTED BY CONGRUENCE RELATIONS 

From h4 0 modp then follows (pn,qn)^p, a contradiction to a well-known fact. In the same 
way, one sees that pn_1 = hqn_x = 0 mod pforn<=N is impossible. 

It remains to treat the case in which 0 < wx < p and 0 < w2 <p. Now conditions (4) and (5) 
of Lemma 1 hold; hence, there are integers h, ft, and ft satisfying (6), (7), and (8). By (8), (19), 
and (20), we may put 

'„=&, *„-! = & (PGN). (21) 
We define, for n e N, 

(22) 

By (17), for all n e iV, these integers un and vn satisfy 
un = hh, vn=b mod p , (23) 

and b^O modp is a consequence of (8) and 0<|g ,
1 |< j p . In particular, we conclude that 

Furthermore, we put, for n e JV, 

(24) 
v„(a, £) = &<*+ $,_,# 

This means that wn(g2, ft) = un and v„ (g2, ft) = vn. 
In the next step of our proof, we will follow Uchiyama [10]. From (7) we know that ft ^ 0 

and g2 ^ 0 ; therefore, we have to distinguish several cases according to the signs of ft and ft. 
We always assume n e N; in particular, we know that n is even. 

Some additional- arguments are necessary when ftft < 0 to show that the sequence vn from 
(22) is unbounded for certain subsets of 7V. This also fills the gap in Uchiyama's paper. 

Casel. gtg2>^ 
From (16) it is clear that, for all even w, we have 

£ L < ^ < B r i . (25) 

From this inequality and (22), we get 
% <ln-\ 

J ^ ^ J V l (26) 
% vn qn_x 

The relationship between £ and ^- now gives occasion to consider two subcases according to 

Case 1.1. Y~<^<y-fm infinitely many n GNX <=N 
Let 9 denote the sign of ft (resp. g2). For integers j > 0, we define integers 

Un,J = Un(g2+0JP>gl) = K + @PPnJ, 
/ n • \ (22)'(24) n 

V«fy=v,i(&+07P>&) = Vn + 0P^nJ-

(27) 
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Now we keep n fixed and, by straightforward computation, show that the fractions ^ f mono-
tonically decrease asy increases, and that 

Hence, by the assumption of Case 1.1, there exists some unique integer k>\ such that 

»n,k <t< 
U, %k-l 

\k Vn,k-l 
We also have 

Un, k Un,k+Un,k-l Un,k-l 
L _ < ! ! < ! ; 

Vn,k Vn,k+Vn,k-l Vn,k-l 

(28) 

(29) 

since both inequalities in (29) are equivalent to 

"»,i-iv«,t-v«,i-i"«,A>0; 
this holds because 

un,k-lvn,k ~ Vn,k-l»n,k = Qp(<lnUn ~ PnVn) 

(22) 
= 0P<J>n-l<ln-Pn<ln-l)gl 

(16) 

= (-l)"fciP>0. 
Again two subcases arise from (28) and (29): 

If we have 
"n,k <<f< 

Un,k +Un,k-l Un,k-l 
Vn,k+Vn,k-1 Vn,k-1 

(30) 

we assume that the following three inequalities hold simultaneously: 

yn,k J*Z*' 
un,k + un,k-\ 
Vr,,k+Vn,k-1 

•t* 
W 

J5(v«,k+v*,k-i)2' 

(31) 

(32) 

Un,k-\ e > W 
(33) 

where w = 9gxp. We sum up (31) and (32) and also (31) and (33); after some calculations and 
application of (30), we get 

1 ,ifi+- 1 
V

n,k(Vn,k+Vn,k-l) V 5 h £ * {Vn,k+Vn,k-l) 

and 
1 > ! 

Vn,kVn,k-l ^ 5 

1 1 
2 + ' 2 

\Vn,k Vn,k-lJ 
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From (22) and (27), from the definition of 6, and since gxg2 > 0, we know that vnJcvn ^ > 0 and, 
finalfy, all together contradict Lemma 2. Hence, at least one of the three inequalities—(31), (32), 
(33)—does not hold, and because each of the left-hand sides of these inequalities is positive, we 
have, for some 

u 
v 

\Un,k Un,k+Un,k-l U, 

vn,k Vn,k+Vn,k-i 
%k-l 

Vn,k-l \ 

But if £ satisfies 

^Sv1 VSv2 Sv1 

,3/2 

*n,k 

vn,k 

Un,k+Un,k-l <<f< 
U% n,k-l 

Vn,k-1 

we assume instead of (31), (32), (33), 

n,k f n,K W 

vn,k V5v2 
n,k 

(34) 

(35) 

s- u„k+u, n,k-l W 
Vn,k+Vn,Jc-l V S ^ ^ + V ^ ^ ) 2 ' 

(36) 

K ln,k-l 

vn,k-l 
-%> 

W 

J*i.k-i 
(37) 

Now we sum up (35) and (37), (36) and (37), which leads in the same way to a contradiction of 
Lemma 2. Hence, (34) holds in this subcase, too. 

For every fraction f satisfying (34), we know from (23) and (27) that either 

u = hv= hb modp 
or 

u = hv = 2hb mod p, 
where hb^Q modp implies 2hb 4 0 modp for all odd primes p. At last we note that \vn | tends 
to infinity for increasing neN^ this follows from (22) and from gxg2 > 0. By (27) this means 
that, independently from k defined in (28), each of the numbers K ^ I J v ^ ^ l , and \vn^k +vnJc_l\ 
tends to infinity for increasing neNv Thus, we have proved that there are infinitely many 
fractions f satisfying (34), u = hv modp and, without loss of generality, v>0 , provided the 
assumption of Case 1.1 holds for an unbounded subset Nx ofN. 

Case L20 y- < % < ̂ ^ for Infinitely many HGN2^N 

In this case we define, for integers j > 0, 

/ / > . x<22>'<24> r% 
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We proceed with similar arguments as in Case 1.1: 
For any fixed n, the fractions -^f monotonously increase withy"; and from 

]im
tSL=Pn=L 

we conclude that there is some unique integer k > 1 satisfying 
w, n,k-l fc

 un,k <<T< 
Vn,k-l Vn,k 

Again we consider the mediant ""* ""'k~l, which lies between ^—^ and —*-, and distinguish two 
yn,k'rvn,k-l V«,&-1 « ,* 

subcases according as £ is greater or smaller than the mediant. Instead of (30), we now have 
Vn,k-lUn,k ~Un,k-lVn,k = H ) ' % 2 ^ > °> 

and as in Case 1.1 we get infinitely many fractions f with 

< Vs7 " ~Js^~9 (38) v 

where u = hv£0 mod/?, provided the assumption of Case 1.2 holds for an unbounded subset N2 

of AT 

Case 2. & > 0, g2 < 0 

Let qn>p and assume vw = 0. From (qn,qn_^) = 1 and (22), we have qn\gi9 which is impos-
sible because 0<\gl\<p<qn. Hence, for sufficiently large n, we know that vn ^ 0 , and we 
distinguish two subcases according as vn > 0 or vn < 0. We may repeat all the arguments from 
Case 1 [with the exception of the infinity of the rationals f in (34) or (38)]; we leave the details to 
the reader. We only state the definitions of the fractions -^ corresponding to the subcases. 

Case 2.1. vn > 0 for infinitely many neN3c:N 

Unj=Un(gl+JP>gl\ 
Vn,J = Vn(gl + JP, gll f ° r . / ^ 0. 

Case 2.2. vn < 0 for infinitely many HGN4C:N 

Un,J = Un(g2>gl-JP)> 
VnJ = Vnigl, g\ ~ JP\ foU * 0. 

Case 3. gt < 0, g2 > 0 

Case 3.1. vn > 0 for infinitely many n GN5 C TV 

v»,/ = v»(&> a + J P X f o i 7 * o. 
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Case 3,2* vn < 0 for infinitely many n GN6 e N 

UnJ = Un(g2-JP,gl), 

vnj=vn(g2-JP,gi),' forj>0. 

It remains to show that in each of these four subcases there are infinitely many fractions f 
satisfying (34) or (38). We treat only subcase 2.1; there are no essential differences in the other 
cases. In this last part of the proof of Theorem 1, we also complete some details in Uchiyama's 
paper [10]. 

It suffices to show that the sequence of integers vn = qng2 + qn^gi is not bounded if n takes 
all values from N3. We assume the contrary, and from the assumptions of Case 2 we conclude 
that there is some positive real number C satisfying 

0«ln-i\gi\-<ln\g2\ZC (neN3) or 0< 

[note (7) and vn > 0]. Hence: 

ML 
g2 

9n c 

The sequence • 9n 
\^n-lJneN. 

Vn-1 l& ltfn-1 

tends to the positive rational number 

>0 forw GN3,n->co 

gi 
gi 

(39) 

Let us first assume that the sequence % a 1 ? a2,... is unbounded; we recall from the definition of N 
that 

neN3cN=>an>Zy[p + l. (40) 

From the recurrence relation for qn, we conclude 

and by qn_2 < qn_x it follows for all sufficiently large integers n eN3 that 

(41) 

a„ = 
<ln 

.011-1. 

a <39> 

9n-l 
a 
^2 

(7) 

+ 1 < | & | + 1 < 2 ^ + 1 

which contradicts (40). 
Now we treat the more interesting case where the sequence a0, al9 a2,... is bounded. In what 

follows, we assume that n e N3 is sufficiently large. We denote the continued fraction expansion 
of | ~ | for some integer r and cr > 1 by* 

2 I 

It is a well-known fact from the elementary theory of continued fractions that 

= l®n',an-h-->a2,all (42) 

* In the case r = 0, cQ = 1, gx = - g 2 , it is clear that |vw \=\gx\(anqn_x +qn_2 -qn_x) >\gx \qn_2 tends to infinity. 
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On the other hand we have, from (39) for all sufficiently large integers n GN3, 

S^ = [c0;cly...,cr+S(n)l 
qn-i 

where 
0*5{n) -> 0 for n eN3, n-»oo. 

For 0 < S(ri) < 1 we have, from (42), 

(43) 

an-r=Cr, 

"Vi-r-1 
1 

S(n)\ (44) 

-1 / 2 < S(ri) < 0 implies 

a. 

a„_r = cr-l, 

1 
n-r-l 

•*n-r~2 

l + S(n) 

1 

= 1, 

!+<?(/)) •1 L Sin) 
(45) 

By (43), (44), and (45), a certain unbounded subsequence of a0,ax,a2,... is given, a contradiction 
to our assumption. 

The proof of Theorem 1 is now complete. 

4. CONCLUDING REMARKS 

The application of Lemma 2 in the proof of Theorem 1 will lead to some nice results by the 
way, if we put s-2 instead of s = p in (17). The following result is, in some sense, a supplement 
of Scott's and Robinson's theorems (see [9] and [8]). 

Theorem 2: For any irrational number £, there are infinitely many pairs of integers ux and vl>0, 
respectively ^ a nd v2 > 0> satisfying 

0) 

(H) 

v, VSvf and Mj = vl mod 2; 

" 2 

V5v2
2 and v2 = 0 mod 2, respectively. 

To prove (i), put a = 1 and i = 1 in (17); for (ii), let a = 1 and 6 = 0. It is obvious that we do 
not need Lemma 1. 

Now let us consider such a real number £ where a„ = 0 mod 2 for all n > 0 in the continued 
fraction expansion of £. From the recurrence relations, it can easily be seen that this implies 

pn+qn^lmo&2 {n>\). 
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For instance £ = 1 + V2 = [2; 2] belongs to these numbers. We derive the following corollary from 
Theorem 2(i). 

Corollary 1: There is an uncountable set of real numbers such that, for every number £ from this 
set, there are infinitely many Dirichlet-approximants f satisfying 

I V 

such that no fraction f belongs to j — : n > l]. 

To appreciate this corollary, we refer to Theorem 184 in [2], which states that 

Ht:-4if 
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1. INTRODUCTION 

In this paper we define the Brahmagupta matrix [see (1), below] and show that it generates a 
class of homogeneous polynomials xn and yn in x and y satisfying a host of relations; the poly-
nomials contain as special cases the well-known Fibonacci, Lucas, and Pell sequences, and the 
sequences observed by Entringer and Slater [1], while they were investigating the problem of 
information dissemination through telegraphs; xn and yn also include the Fibonacci polynomials, 
the Pell and Pell-Lucas polynomials [5], [7], and the Morgan-Voyce polynomials in Ladder 
Networks and in Electric Line Theory [6], [9]. We also extend some series and convolution 
properties that hold for the Fibonacci and Lucas sequences and the Pell and Pell-Lucas polyno-
mials to xn andj„ [7], [5]. 

2. THE BRAHMAGUPTA MATRIX 

To solve the indeterminate equation x2 = ty2 ± m in integers, where t is square free, the Indian 
astronomer and mathematician Brahmagupta (ca. 598) gave an iterative method of deriving 
new solutions from the known ones by his samasa-bhavana, the principle of composition: If 
(x^y^m^ and (x2,y2,^h) a r e trial solutions of the indeterminate equation, then the triple 
(xlx2±ty]y2,xly2±ylx2,mlm2) ls a ' s o a solution of the indeterminate equation which can be 
expressed using the multiplication rule for a 2 by 2 matrix. Notice that if we set 

x 
±ty 

y 
±x 

B(x,y) = \ 

and m = det B, then the results 

B(xu yl)B{x2,y2) = B(xlX2 ± tyy2, xy2 ±y1x2), 

det[B(xu yl)B(x2, y2)] = detB(xu yjdet B(x2, y2) = m^, 

(1) 

(2) 

(3) 

give the Brahmagupta rule. Equation (3) is usually referred to as the Brahmagupta Identity and 
appears often in the history of number theory [10]. 

Let M denote the set of matrices of the form 

x 
ty 

(4) 

where t is a fixed real number and x and y are variables. Define B to be the Brahmagupta matrix. 
M satisfies the following properties: 

1. M is a field for x, y,t GR and t < 0; in particular, if t = - 1 , then we have the well-known 
one-to-one correspondence between the set of matrices and the complex numbers x + iy\ 

x y 
-y x 

<r^x+iy. 
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2. The following eigenrelations, in which J denotes the transpose, hold: 

B[l,±Ji]T = (x±y-Jt)[\,±JI)T, 
and these relations imply 

B"[l,±4t]T =(x±y4iyll,±^]T 

aind 
x y 
ty x 

42 V2 
yl ~V"2. 

x+y4t 0 
0 x - jV? 

V2 yit 
yl \2F. 

Define 

Bn = x y 
ty x tyn Xn. 

:Bn. 

3. Then the following recurrence relations are satisfied: 

*A+I = ^n+tyyn> yn+i = % + y*n> 
with xn - x and yn = y. 

4. Using the above eigenrelations, we derive the following Binet forms for xn and>>„: 

xn = h(x+yJly + (x-y^Yl 

y»=^ji(x+y^y~(x-y^yi 

(5) 

(6) 

(7) 

andxn±Jtyn = (x±Jiy)n. 
5. Let %n = xn+yn<Ji, r\n-yji, and Pn = x2

n-ty2
n, with ^ = 77, £, = £ and /?„ = /?; we then 

have 4 = <f, 77„ = if, and @n=@n. To show the last equality, consider /?" = (x2 -0/2)" = 
£ V = Zfln = (xl ~ Od = Pn- Notice that fi = det5. 

6. The recurrence relations (5) also imply that xn and yn satisfy the difference equations: 
xw+1 = 2xxn-fix^l9 yn+1 = 2x j„ -fiyn_v (8) 

Conversely, if x0 = 1, xi = x, and j 0 = 0, yx-y9 then the solutions of the difference equations 
(8) are indeed given by the Binet forms (6) and (7). 

7. Notice that if we set x = 1/2 = j a n d / = 5, then fi = -l and 2yn-Fn is the Fibonacci 
sequence, while 2xn = Ln is the Lucas sequence, where «>0 . For the number-theoretic 
properties of F„ andZ,„, the reader is referred to [2] and [3]. 

8. In particular, if x = y = 1 and t = 2, then both x„ andyn satisfy x2 - 2 j 2 = (-l)n and they gen-
erate the Pell sequences: 

xn = 1,1,3,7,17,41,99,239,577,..., yn = 0,1,2,5,12,29,70,169,408,.... 

It is interesting to note that if we set 
a = 2(xn+yn)yn b = xn(xn+2yn\ c = x2

n+2xrlyn+2yl 
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we then obtain integral solutions of the Pythagorean relation a2 +b2 =c2, where a and h are 
consecutive integers [8]. 

9. If t = 1, then xn +yn = (x+y)n
9 and if t = - 1 , then xn +iyn = (x + iy)n. Also, for every square 

free integer t, the set of matrices M is isomorphic to the set {x+yjt\x,y G Z } , where Z is 
the set of integers. 

10. 

4 
» £ j - oV + e'7 ^ ( e * - e ' ) , dete" = e^. 

To show these results, let us write 2xfc = ^ + 77*, 2^0^ = ^ - if • Since 
CO Z>fc 

* = 0 A! and ^1 = J_ ** yk 
tyk xk. 

we express xk andj^. in terms of £ and 7 and obtain the desired results. 
11. x„ andy„ can be extended to negative integers by defining x_n = xnB~n and >*_„ = -y„ft~". 

We will then have 

2T x y 
ty x 

*-„ y-n 

here we have used the property 

(r -1-1Y 
x y 
ty x J 

x -y 
-ty x 

TT 
P" 

B 

x» -y» 

All the recurrence relations extend to the negative integers, also. Notice that B° -1, the 
identity matrix. 

3. THE BRAHMAGUPTA POLYNOMIALS 

1. Using the Binet forms (6) and (7), we can deduce a number of results. Write xn and yn as 
polynomials in x and y using the binomial expansion: 

Xn=x»+tfyx»-y+t2(>i)x»-y+---, 
y„ = m"-ly + t(^jx"-y + t2^y-V + -

Notice that xn and yn are homogeneous in x andj. The first few polynomials are 

x0 = 1, xx = x, x2 - x2 +ty2, x3 - x3 + 3tyx2, x4 - x4 + 6tx2y2 +t2y4,..., 

Jo = °> y\ = y, yi = 2xy, ys = ix2y+*y3, y4 = 4x3
y+4txy3,.... 

2. If t > 0, then x„ and yn satisfy 

^» 
J« 

» - > « ^ i "-**.y«-i 
l i m ^ V f , lim-^-=lim : + VFy. 
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3. 

dx dy 
: « V i , 

ay 'dy " ^ 

From the above relations, we infer that xn and>>„ are the polynomial solutions of the wave 
equation 

d2 i d2 ̂  
u = o. ^dxl t dy1 

4. If/? = - 1 , then ty2 = x2 +1, then the difference equations (8) become 
Xn+l=2xXn+Xn-l> JVHI = 2 % + JVl • (9) 

5. If 2x = a and /? = 1, xx = 1, x2 = a, and yx = 1, j 2 = a - 1 , then x„ and j / w generate Morgan-
Voyce polynomials [6], [9]. 

4. RECURRENCE RELATIONS 

1. From the Binet forms (6) and (7), we can derive the following recurrence relations: 

0) xm¥n = xmxn + tymyn9 

(iii) ^ X - K ^ V K - O ^ , 

(iv) ^ " ^ - ^ x ^ - x ^ , 

( v ) *m+w ~*~ P Xm-n ~ ^XmXm 

(Vi) yn*n+Pnyi*-n=2xnym> 

(vii) xw+„ - /?%,_„ = 20vy*> (io) 
(viii) J^"^> m _ w =2x w j ;„ , 
(ix) 2(x2

m - xm+nxm_„) = pm~nU3n - x2J, 
(x) x2m - 2tym+nym_n = ^w~"x2w. 

2. Put m = n in (i) and (ii) above; then we see that 

and these relationships imply that 
(a) x2„ is divisible by xn ±i4iyn, if t > 0, 
(b) x2n is divisible by xn ±i<Jtyn9 if t < 0, 
(c) j>2rt is divisible by x„ and yn\ also, if r divides s, then xr„ and^r„ are divisors of ysn. 

3. Let Sjt=i = E. Then, using the Binet forms, we can also derive the following relations: 
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W 2*yk- p_2x+l , 

(Hi) ^x2 ^n-^^-f +Et^_ 
V ' k 2 ( ) 0 2 - 2 J C 2 + 1 ) 2(y?-l) ' 

K } ^ y k 2f(/?2-2*2+l) 2t(fi-l)> 

(v) 2l,xkxn+x_k=nxn+l+^, 

(vi) 2f I ^ ^ . * = m:„+1 - ^ , 

(vii) 22x^w_^+1 - 2Z ̂ V * + i = WJW 

4. Now we show an interesting result which generalizes a property that holds between Fn and 
Ln, namely, eL^ = F(x), where 

en) 

and 

F(x) = Fl +F2x + F3x2 + - + F„+lx" + - , 

L(x) = Lx + ̂ x2 +^-x2 + ••• +^-x" + • w l 2 3 n 
(see [4]). Let X and 7 be generating functions of xn and_y„, respectively; that is, 

1 n 1 

then Y(s) = sye2X^. To prove this result, consider Y(s) = yxs+y2s2 + y3s* + • • • + y^sP + • • •. 
Then sY(s) = y^+y2s?+y3s4 + ---+yn$"+l + --, md ^(s) = y/ + y2$4 + -• + y^*2 + •••. 
Substituting the power series for Y(s) into the expression Y(x)- 2xsY(s)+fls2Y(s), we 
obtain 

[ l -2x5+^]7(5) = j5 + £ [ j , + 1 - 2 % + ^ _ 1 ] / + 1 , 

where we have put yx=y. Now, using the property yk+l - 2xyk + ftyk_i = 0 in equation (8), 
we find that the above expression reduces to 

[l-2xs+j3s2]Y(s) = ys. (12) 

Now consider the series 

w i 2 3 
n 

and in it express xn in terms of %n and rjn to get 

X(s) = ±(£+ 77)5+| I ^ + ̂ V + i r i ^ + r/3) 53 + . - + ^ 
n 

^ n + rf) *" + .-

which can be rewritten in the form 
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X(s) = - 775 + - / 7 2 5 2 + - 7 7 V + --. 

Therefore, 
X(s) = - | l n ( l - ^ 

Since (1 -£s)(l-r/s) = l-2xs+/fc-2, we have 

2X(s) = - ln[ l-2xs + /fe2]. (13) 

Now compare (12) and (13) and obtain the desired result: Y(s) = sye2X^. 

5. SERIES SUMMATION INVOLVING RECIPROCALS OF xw AND yn 

Let us look at some infinite series summations involving xn andj„ and extend some of the 
infinite series results that are known for Fn and Ln [4] and for P„(x) and Qn(x) Ulto x

n
 a ndj„. 

First, we shall show that 

1. 
00 -J 

X— 
k=l Xk+l 

To show the above result, consider 

2x /? + ! ] _ 1 
V X A r - l 

1 1 *-k+l *k-l 
Xk-lXk XkXk+l Xk-lXkXk+l 

_ ^xxk ~ P*k-1 ~ Xk-l _ 2X 

'k-lXkXk+l Xk-lXk+l ^k^k+l 

fi+i 
Xk-lXkXk+l Xk-lXk+l XjrXi 

where we have used the property xk+l = 2xxk - Pxk_x. Therefore, 

1^ ( 2x fi + l\_^( 1 
jfc=l Xk+1 \Xk-l 

1 
jfc=lV * * - ! * * xkxk+lJ xiixl * 

1 1 

In particular, if ty2 = 1 + x2 and j = 1, then p = -1 , and the above result reduces to 

1 
Xu_\Xu k=i ^k-n+i 

1 
2x2' 

2. 

where xfc is given by equation (9). Similarly, we can show that 

2x fi + l ) 1 
k=r+l\Xk-lXk+l Xk+lXkJ XrXr+l 

For the special case ty2 = 1 + x2 and y = l, then /? = -1 and the above result becomes 

y i = 1 
k=r+l Xk-lXk+l 2 x X r X r + 1 

where xk is given by equation (9). Following a similar argument, we can show 
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3. 2x /? + l 1 

Again using 2xxk = xk+l +Pxk_x, we can derive 

y 2xxk _ y f i -+^-

If fy2 = 1 + x2 and _y = 1, then we have 

3 __L 
Xlr-lXlr-k=r+l xk-\xk+l 2x 

\Xk-l Xk+l 

1 1 
— + \Xr X' r+1 

where xk is given by equation (9). Similarly, from the recurrence relation 2xyk - yk+l +ffyk„i, 
we have 

2xyk i- + -A 
k=r+i yk-iyk+i j t = r + i v ^ - i yk+i j 

In particular, if ty2 = 1 + x2 mdy = 1, then /? = -1 and the above result becomes 

k=r+l 

where yk is now given by equation (9). 
6. Now we generalize the results of items 2 and 3 of this section; we shall show that 

IT1 
Ar=2 X(k+i)r 

2xr /r+i 
\X(k-l)r Kkr 

1 

To show this, we consider the left-hand side of the above result: 

1 I 2xrXkr ~ P X{k-\)r ~ X(k-l)r 

J k=2 X(k+l)r y X(k-l)rXkr 

The above result can be simplified by using property (v) of (10), with m = rfc, n = r, that is, 
xrk+r+ PTxrk-r = ^Xrkxr- Then the above expression becomes 

co i 

IT1 

which reduces to 

k=2 X(k+l)r 

(~ -r ^ 
(k+l)r x{k-\)r 

V X(k-l)rXkr J 

1 1 
k=2\X(k-l)rXkr XkrX(k+l)r J 

which, when summed over k, reduces to 1 / (xrx2r). Similarly, we show that 

1 oo i 

k=2 y(k+l)r y(k-l)r yjcr yry2r 
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7. Let us now generalize a property that holds for Fibonacci series [4]. For t > 0, consider the 
series: 

s=ffi*'l-2y2=y2 {/S2y2 ^y2 | 

h. y2* y4 y% yu 
Denote 

y* y% J i 6 y2n 

By induction we shall show that 
V - ^2"-2 
5""V 

(14) 

Note that j2„ = 0 implies that either x = 0 or y - 0 from the Binet form for j2„. Therefore, 
we shall assume that yT ^ 0. Observe also that equation (12) is true for n = 2, 3. Consider 

y* y7n y~t y»y, 2nJ2n 

Use the property y2m = 2xmym, with m = 2n+l = 2(2"), to get 

$n+l ~ 
_ 2x

ryryr_2 + yrfi y2 _ 2x
ryr_2 + P y2 

y^y, 2nj2n yon+ 

Now recall property (viii) of equation (10), ym+p-j3pym_p =2xmyp, and in it set m-2n, 
p = 2n-2. We then have 

_ 3;
2«+i_2 

J2n+1 

which completes the induction. Therefore, for t > 0, we have 

S= lim £„ = lim ^ - = ^-2 = 1 ^ . 
„_>«> „->«> v (X + JVO 

6. CONVOLUTIONS FOR xn AND yn 

Given two homogeneous polynomial sequences an(x,y) and bn(x,y) in two variables x and 
j>, where n is an integer > 1, their first convolution sequence is defined by 

n n 
(an*bjl) = Y,afin+i-j = X * A + w 

In the above definition, we have written an =an(x9y) and ftw = hn(x, y). Denote xn*xn - Xfp, 
yn^yn- Y^l\ 2xn*yn =y£\ and Xjp +tY^l) = x£1}. To determine these convolutions, we use the 
matrix properties of B, namely, 

.-iw+1 r 
" I = 5^1 = 5/5^1-/= I 

(y x 

X«+l .Vw+1 Xn+1-J y^+l-j 

tyn+l-j Xn+l-J 
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Let 

y=i 7=1 

77+1 

; = i (Vy Xj 

Note that B" = Bn. We prefer using the subscript notation. Since £"=12?n+1 = ̂ „ + 1 ? we have 

Xn+l-j yn+l-j 

Jyn+l-j Xn+l-j_ 

Let Z"=1 = S , then the above result can be written 

1[L Xj-y„+l_j + Z, yjXn+l_j J z, XjX„_ j+tZyjyn+l-j »s„+1 = 

or 

«4,+i = . 2tx„*y„ xn*x„+ty„*y„^ 
^ yd) 
ty® x® 

= B?\ 

Therefore, we have 
*J1} =**«+!> yn)=ny^v 

The above result can be extended to the k^ convolution by defining 

Now we shall show that 
7=1 

w-ri-1]^. 
We shall prove the result by induction on k. Since J5(1) = nBn+u the result is true for k = 1. Now 
consider 

=^»w(j +r>;«=**.^+**">(i;^ w+fc+1? 

which completes the induction. 
From the above results, we write the k^ convolution of xn and^: 

>.(*). n + k-l 
k \xn+k> yn -

Also, from properties (v) and (vi) of (10), we have 

ML 
y 

,(k)_[n+k-r 

2X(1) = nx„+1 + &*-, 2tt-l) = nx„+l -
y ' 

(15) 

(16) 

which can be written in the form 

Pyn Pyn 2XU = XW+^, 2 ^ = ^ -
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We can also extend the above result to the k^ convolution of xn and j„, namely, 

Using the results (10)(v), (15), and (16), and some computation, we obtain 

Xn+l-2j-k' 

Similarly, we have 

LXyn*yn ~\ k + l)X"+k+l M Jc \P Xn+l-2j-k> 

2xW*v ~(n + k)v +y(j + k~l]fr+kv 
LXn yn~[k + l) S"+k+l + 2 \ k )" yn+l-2j-k > 

2x*v^-(n + k)v -y(j + k~l)BJ+kv 

What we have seen here is but a sample of the properties displayed by the versatile matrix B. 
We are sure there are many more. 
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1. INTRODUCTION 

Two sequences of numbers concern us, namely, the Jacohsthal sequence {Jn} (see [4]) de-
fined by 

( i i ) Jn+2 = Jn+i + 2J„, J0 = 0, J, = 1, n > 0, 

and the Jacobsthal-Lucas sequence {jn} defined by 

Jn+2 = Jn+1 + Vn, Jo = 2 , ft = 1, Tl > 0. (1.2) 

Applications of these two sequences to curves are given in [4]. Sequence (1.1) appears in [11], 
but (1.2) does not. 

From (1.1) and (1.2) we thus have the following tabulation for the Jacohsthal numbers Jn 

and the Jacohsthal-Lucas numbers j n : 

n 
Jn 
Jn 

0 1 2 3 4 5 6 7 8 9 10 — 
0 1 1 3 5 11 21 43 85 171 341 ••• 
2 1 5 7 17 31 65 127 257 511 1025 ••• 

(1.3) 

When required, we can extend these sequences through negative values of n by means of the 
recurrences (1.1) and (1.2). Observe that all the Jn andy„ (except j0) are odd, by virtue of the 
definitions. 

Recurrences (1.1) and (1.2) involve the characteristic equation 

with roots 

so that 

x 2 - x - 2 = 0 

a = 2, £ = -1 

a + fi = l, ap=-2, a-j3 = 3 

Wherever it is sensible to do so, we will replace a, P by 2, - 1 , respectively. 
Explicit closed form expressions for Jn andy„ are (n > 1) 

r=0 ^ J 

(see [3]) and 

Jn = "L n n-r 2r. 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 
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Induction on n provides the required proofs. 
In the theory of minimal and maximal representations of nonnegative integers by elements of 

a sequence {an} (e.g., Fibonacci or Pell numbers; see [2], [7], [8]), we discover the importance of 
a new sequence whose members are those integers that can be represented both minimally and 
maximally by a sum of elements of {an} for which the coefficients are all unity. 

It is the object of this article to investigate the corresponding new sequences associated with 
{Jn} a n d { j j . 

But first we establish a few basic properties of the sequences (1.1) and (1.2), some of which 
will find subsequent application as our theme develops. 

2, BASIC PROPERTIES OF THE JACOBSTHAL NUMBERS 

Initially, these properties enter our mathematical Noah's Ark in pairs, as did (1.7) and (1.8). 
Standard techniques may be used to generate them and their numerous progeny, the most hand-
some of which is (2.9). 
Generating functions 

i=l 

^J^^il-x-lx2)-1 (cf. [3]), (2.1) 
1 

00 

Xi*'-1 = (l+4x)(l-x-2x2y\ (2.2) 
1=1 

Binet forms 

Simson formulas 

an - Bn 1 
Jn = ̂ -f- = ^(2"-{-m, (2-3) 

jn = a"+pn = 2" + {-\y. (2.4) 

Jn+lJ^-J2
n=(~iy2"-\ (2.5) 

UJn-x-il = 9{-\)"-l2"-' = -9(J„+1J„_1 - ^ ) . (2.6) 

Summation formulas 
n 

/=2 

n 

;=1 

_ Jn+2 ^ 
2 

_ Jn+2 ~ * 
2 ' 

(2.7) 

(2.8) 

The significance of the lower bound for / in the useful formulas (2.7) and (2.8) will become 
apparent later in Sections 4 and 5. 

Interrelationships 
]Jn = Jim (2-9) 

./„ = 4 * i + 2 ^ i , (2.10) 
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9 ^ = 7„+i+2y„_1, (2.11) 

J?„+i + 7n = 3(J„+1 + J„) = 3.2", (2.12) 

Ui-Jn = 3(Jn+1 - J„) + 4(-l)"+1 = 2" +2(-l)"+1, (2.13) 

jn+i ~ Vn = 3(2 y„ - J„+l) = 3(-l)"+1. (2.14) 

yn+i + Jn-i = 3(2^„+1 + J„_,) + 6(-l)"+1, (2.15) 

A! r +7„-r - 3(7„+r + ./n_r)+4(-l)"-'- = 2"-'(22' +1) + 2(- l )" - ; (2.16) 

7„+r - Jn-r = 3(^„+r - Jn-r) = ^ V ~ 1), (2.17) 

j„ = 3Jn+2(-l)" [cf. (2.12)], (2.18) 

3J„+j„=2"+\ (2.19) 

J*+J» = Un+i, (2-20) 

h m | ^ | = l i m | ^ ± 
\ 

n+l = 2, (2.21) 

urn I ^ = 3, (2.22) 

/H-2^.2 - il = -%Jn+2J«-2 - Jl) = 9(-l)"2""2, (2.23) 

JJn + JJm = lJm*« [™ = » ~* (2.9)], (2.24) 

JJn + 9JmJn = Vm+n, (2-25) 

j2„+9J2„=2j2n [m = win (2.25)], (2.26) 

•/m7„--/M7m = (-l)"2"+1Jm_„, (2.27) 

JJn-*JJn = <rV"Z*lUn, (2-28) 

7» - 9 J « = (-0"2"+2 [w = » in (2.28)]. (2.29) 
Economies of space (and cost!) preclude the addition of farther properties which may be of 

lesser interest and value. Observe, however, that (2.9) is an important feature of {Jn} and {j„}, 
being analogous to FnLn = F2n and P„Q„ = P2„ for Fibonacci and Lucas numbers, and Pell and 
Pell-Lucas numbers, respectively. One might remark, in passing that the infinite limit of our 
\Q„I P„ [cf. (2.22)] is mentioned in [12] in dealing with irrationality. 

Associated Sequences 
Invoking [6], we define the £* associated sequences {Jjk)} and {jj,k)} of {Jn} and {jn} to 

be, respectively, given by (k > 1) 

4 t ) = ̂ 7 1 ) + 24-71) (2-30) 
and 

Ak)=j&»+2j&\ (2.31) 
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where J<0) = Jn, jn
0) = j n . Accordingly, 

J?=jn by (2.10) 
and 

j® = 9Jn by (2.11) 

are the generic members of'the first associated sequences {Jjp} and {jjp}. 
Deducing the following neat results is an easy matter on appeal to (2.10) and (2.11): 

j{2m) _ <j2m r 

r(2m+l) __ q2m • 
Jn ~ J Jn-> 

j{2m) _ ^2m • 
Jn J Jn-> 

<2m-l) _ o2m r 
Jn ~ J Jn • 

j(2m) = j(2m-l)} 

j(2m) _ j(2m+T) | " 

Expressed succinctly, 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

Analogous results to (2.34)-(2.37) for Fibonacci and Lucas numbers are stated In [6]. Pairs 
of results like these can be incorporated Into a more general system for polynomials that extends 
to negative values of m and n. Material on this research has been submitted for publication. 

3. JACOBSTHAL REPRESENTATION SEQUENCES 

Later, in Section 4, the significance of the summations (2.7) and (2.8) In representation 
theory will be manifested. 

Irrespective of this representation application, however, each of the two sequences (2.7) and 
(2.8)—now (3.1) and (3.2)—merits some discussion per se. Neither sequence appears in [11]. 

Write, for convenience, 

3 » = Z ^ Jo=0, 3i = l 
i=2 

and 

Jn = Hj„ Jo = 0-

(3.1) 

(3.2) 
1=1 

Consequently, we have the following tabulation for {2TJ and {]j (in both of which the ele-
ments are alternatively odd and even): 

(3.3) 
n 

l s r „ 
h 

0 1 2 3 4 5 6 7 8 9 10 -
0 1 4 9 20 41 84 169 340 681 1364 ••• 
0 1 6 13 30 61 126 253 510 1021 2046 ••• 
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Simple detective work readily enables us to spot the recurrences (3.4) and (3.5) in (3.3), which 
we expect to be modeled on (1.1) and (1.2). As with Jn andy„ in Section 2, we arrange the basic 
features of 2T„ and j n in pairs. 

Recurrence relations 

^+2 = ^+1 + 2 ^ + 3, (3.4) 

7*+2=iw+i+2Jw + 5. (3.5) 

Generating functions 

Binetforms 

Simson formulas 

Summations 

Interrelationships 

00 

£ S .̂JC'-1 = (1 + 2JC)(1 - 2x - x2 + 2x3)~\ (3.6) 
7 = 1 

00 

^ i * ' " 1 = (l + 4x)(l-2x-x2 + 2x3y\ (3.7) 
;=1 

or _- /„+3-3_2"+ 3 + ( - l )"-9 
" " 2 " 6 

(3.8) 

l=J^l=r^trr^ (39) 

9^i \-i - 9"« = 2"{(-ir1 -1} + (-1)" ( 3 lQ) 

= -1 when n is odd, 

i n + j„-i- i„2=2- i{9(-ir i -5}+5(-ir ( 3 n ) 

= 2"+1-5when»isodd. 

^ ^ = g " B + 2 - l - 3 ( » + l); ( 3 1 2 ) 

gj.^-i-sfr+O. (313) 

^+i+22T„_1 = j„ + 1 -2 , (3.14) 

J„+1 + 2j„_1 = 3(3?Tn_1 + 2), (3.15) 

2T2„=4J2n=4J„7„ by (2.9), (3.16) 

^2„+i=4^„+ 1-3, (3.17) 

J2n = V2n-4 = 6J2„ by(2.18), (3.18) 

72n+i=272„+1-l, (3.19) 
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Jn+1 + ^n ~ 
\Jn+l n even, 
Jn+x-1 nodd. 

jn+l + jn = 32n+l-5, 

J n ~ Jn-1 ~ ^n+h 

Jn Jn-l ~ Jn' 

or _ or _ o« un u n- 2 ~ ^ > 

1-1 - 1. 2"~l 
Jn Jn-2 ~ J ** •> 

Jn+r ~ Jn-r = X W«+r ~~ ^ n-r) ~ " \Yn+r ~ ° n-r) ~ ^ \Jn+r ~~Jn-r)> 

i+2i-2-i2-2"-2.9{(-ir-5}? 

Detenminantal evaluations 

and 

l i m l ^ M - l i m Jn+l 

V Jn 
•2, 

lim. ^ JL I -2 
' 2 ' 

[0 n even, 
3 9 - - 2 * = {l -dd, 
32T2„ = 2J2n by (3.31) 

y„ - l nodd, 
T - / = 

Jn-2 n even, 

i » n ~ ^ VAH-1 '> 

^ 7 7 J w ~~ 

f J„ - 1 w odd, 

Jn~ ^ n ~ ^n+1' 

^n ^n+l J n+2 
^n+l Jn+2 ^n+3 
J n+2 ^n+3 ^ n+4 

n even, 

• 1 . 

n+l^n+2 = 3(-l)n+12 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 
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j 

Jn Jn+1 Jn+2 
/V /J /V. 

Jn+1 Jn+2 Jn+3 
*i *i -̂  

Jn+2 Jn+3 Jn+4 

\«+lo«+l . 15 = 45(-l)"+12"+1 = —A^ by (3.37), (3.38) 

for which are required inter alia 

v„v„+3-?r„+l°r„+2 =2"+ 1{(- iy-3} (3.39) 
and 

JJn+3-LJn+2 =2".3{3(-l)»-5}. (3.40) 
With similar notation, it follows obviously from (1.1) and (1.2) that A7 = Â , = 0. 
Our selection of properties of {2T„} and {)n} in (3.4)-(3.40) does not exhaust the many 

pleasant features of these research-friendly sequences. However, they do give a "flavor" to {2T„} 
and {jn}. It might be noted that, on calculation, 

[Because {jn} is not a Lucas-type sequence as {jn} is, i.e., ]0 * 2, the "classical" relation of the 
type (2.9) cannot hold. Indeed, the left-hand side of (3.41) is rather unlovely.] Divisibility prop-
erties of (3.16) and (3.18) might also be observed. 

Associated Sequences 
With notation for associated sequences of {2T„} and {]n} similar to that for {</„} and {jn} in 

(2.30)-(2.33), we derive 
^ = ^ 1 - 2 by (3.14) (3.42) 

and 
^ = 3 ( 3 ^ + 2) by (3.15). (3.43) 

Invoking (3.14) and (3.15), we have, eventually, 

?Tn
2m) = 32w2Tw , (3.44) 

^ ^ ) = 32-C/JI+1-2), (3.45) 

fn
lm)^lmh (3-46) 

j{2m-i) = 3 2 « - i p af^ + 2) m (3 47) 

More briefly, 

J " ~7w+1 . (3.48) 

Both 2T^} and ffi are also expressible in terms of Jn and j n 9 but this alternative produces 
slightly less attractive formulas. 

Each of the sequences {9^} and {jfp} in (3.42) and (3.43) may be regarded as a separate 
individual entity with a mathematical life of its own, as for {2TW} and {jj, leading inter alia to 
Binet forms, generating functions, Simson formulas, recurrence relations, summation formulas, 
and miscellaneous interrelationships of varying importance. 
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Graphs 
Suppose we label a pair of rectangular Cartesian axes j (= y) and 2T (= x). Then (3.30), as n 

takes on its permissible values, the coordinates {2TW, jn) cluster about the line y = ^x, appearing 
alternately on opposite sides of this line. Likewise (2.22), in a changed notation, the points 
(Jn, jn) as n varies approximate to the line y - 3x. 

4 JACOBSTHAL REPRESENTATION OF POSITIVE INTEGERS: {JJ 

Primarily, our concern now is to answer the question: "Can a positive integer N be repre-
sented as a sum of Jacobsthal numbers?" 

Considerations of minimality and maximality of a representation do not enter into the argu-
ment at this stage. Nor does the possibility of uniqueness. Of course, for any minimal represen-
tation of N'm terms of {*/„}, we should need 

J ^ E E M (n, = o,i,2) (4.1) 
7=2 

subject to the criterion 
n/ = 2=>ni+1 = o (4.2) 

by virtue of (1.1). (Cf. the corresponding Pell condition for minimality [7].) 
Why the lower bound i = 2 in (4.1)? 
Recall from (1.3) that Jx = J2 = l. To avoid problems with this two-fold designation of 1, we 

will omit Jx from our deliberations and therefore deal only with {Jn}n>2 • 
Accordingly, write 

J'n = Jn*l (4-3) 
(i.e., J[ - J2 = 1,..., with JQ - 1) and 

n; = n,+1. (4.4) 
One has from (2.14), adjusted by (4.3), that 

2J'n = J'n+x-l<J'„+l, nodd, (2.14a) 

2J'„ = J'„+l + \> J'n+l, neven. (2.14b) 

For the set {Sk} of digits 0, 1, 2 of length k, 

(n;,n^,...,n;), (4.5) 
let us use the following symbolism: 

N™x = the largest integer in Sk 

Nfn = the smallest integer in 5^ 
i^ = the range of integers in Sk 

Ik - the number of integers in Ŝ J 

Now (Table 2), in each block of £ coefficient digits, the smallest number is necessarily given 
by 

(0,0,0,..., 0,1) (4.7) 

(4.6) 
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i.e., 
rmin N?" = J'k by (4.7), (4.8) 

and the largest number by either 

(0,0,0,...,0,2), kodd, (4.9) 
or 

Clearly, then, 

or 

(1,1,1,...,1,1), A:even. (4.10) 

# r x = 24 = J'M - 1 by (4.9), (2.14a), k odd, (4.11) 

Xr = tJ!=Vk by (4.10), (3.1), *even, 

= &^1 by (2.7) (4.12) 

= JJ+ 1-1 by (1.1), (2.14b), 

i.e.. 
N?™ = 4+1-1 for all*. (4.13) 

From (4.8) and (4.13), we derive 

4 = W + i - l ) - W - l ) obviously 
= JU-K (4-14) 
= 2^-i by( l l ) -

Thus, by (4.8) and (4.14), 

Lemma 1: 

J'k<N<JU~l. (4.15) 

For example, J/0 (= 683) < N = 1,000 < J{x - 1 (= 1,367 - 1 = 1,366). 

Lemma 2: k is uniquely determined by N. 

For instance, N = 1,000 => k = 10. 

Therefore, it has been shown that 

Theorem 1: Every positive integer N has a representation of the form 

N=iu;j; (4.i6) 
7 = 1 

where n ; = 0,1,2, and T% = 2 => I^+1 = 0. 

Details of the discussion encapsulated in Theorem 1 are assembled, in the symbolism of (4.6), 
in Table 1. 
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TABLE 1. Date for Representations Involving {Jn}} 

\V 
1 
2 
3 
4 
5 
6 

k 

sk 
5, 
s2 
53 

^ 4 

s5 
s6 

s* 

K 
1,2 
3,4 

5,..., 10 
11,...,20 
21,..., 42 
43,...,84 

•Jk>--->uk+l 

N™ 

J[ 
A 
A 
J\ 
J's 
J'6 

J'k 

N™ 
J ^ - l 
J 3 ' - l 
J'A-\ 
J 5 ' - l 

Jl-1 
J'n-\ 

• ^ i - l 

h 
2 (=2/^) 
2 (=2//) 
6(=2J^) 
10(=2J3') 
22(=2J^) 
42(=2J5') 

2^_, 

Specific information for the representation summarized in Table 1 is provided in Table 2. 
Recall the notation (4.3). 

'While based on the minimality criterion (4.2), our representation is by no means unique. As 
a simple illustration, N = 6 and N = 7 are also given by the sequences of coefficients (0,2) 
and (1,2), respectively. But our choice of representation of an integer N consistently includes 
the greatest J>n:J'n<N, e.g., 6 = J[ + J$ (= 1 + 5) rather than 6 = 2J£ (= 2 x 3) and 7 = 2 J{ + ,/J 
(=2 + 5) rather than 7=^J{ + 2J^ (= 1 + 6). Infinitely many similar situations exist, along with 
variations of them. 

Our chosen representation in Table 2 has the virtues of simplicity and methodical structure. 
Because of the usual patterns apparent in Table 2, we may refer to this representation as a 
patterned representation. 

For a detailed, but different approach to the representation of integers by means of Jacobsthal 
numbers, one might consult [1], which investigates a "special" sequence. This sequence is indeed 
our Jacobsthal sequence, though this cognomen is never alluded to. 

5. JACOBSTHAL REPRESENTATION OF POSITIVE INTEGERS: {jn} 

Turning now to {/„}, we may generally parallel the arguments used in Section 4, though here 
we need to commence the sequence with j0 (= 2), for otherwise there is no representation pos-
sible for the numbers 3 and 4. 

Key results corresponding to (2.14a) and (2.14b) are, from (2.14), 

Vn=Jn+l-3<Jn+i, " °dd, ( 2 ' 1 4 c ) 
and 

2jw = iw+1 + 3>in+1, weven. (2.14d) 

Symbolism used in Section 4 for {JJ will now, for {jn}, be replaced by non-capital letters. 
However, the set {sk} of digits 0, 1, 2 analogous to (4.5) must now become 

which is of length k +1. 
Adapting the notation in (4.6), we may proceed to establish and arrange the data in Table 3, 

using methods similar to those in the previous section. 
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TABLE 2. A Representation of Integers 1 < N < 100 
by Jacobsthal Numbers Jn 

1 
2 
3 
4 
5 
6 
7 
8 
9 

! 10 
! ii 
12 
13 
14 
15 
16 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

ZEL 1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

_A_ 
1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

_j±_ 

2 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
2 

1 
1 
1 

_A_ JQ J7 Jg 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
61 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

h 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

1 
2 

1 

_A_ J\ J5 J6 «/7 ^8 1 
1 
1 
2 

1 J 
1 ] 
1 J 
1 ] 
1 J 

1 
1 
1 
1 
1 
2 

1 J 
1 ] 
1 ] 
1 J 
1 1 

1 
1 
1 
1 
1 
2 

J 
3 
1 
J 
1 

L ] 
L 1 
L ] 
L J 
L ] 
L J 

' 

L 1 
L 
L 
L 
L 
I 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L j 
L j 
L 
L 
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TABLE 3. Data for Representations Involving {jn} n>0 

k 
1 
2 
3 
4 
5 
6 

k 

** 
*i 

*2 

s3 

*4 

*5 

*6 

*k 

1 
1.....4 

5,6 
7,...,16 

17, ...,30 
31,...,64 
65,...,126 

A'•••'J*:+l ~ 1 

r̂1 
7i 

k 
h 
h 
h 
h 

Jk 

jymK 

A"1 

7 3 - l 
7 4 - l 
75-1 
7 6 - l 
7 7 - l 

A + i - i 

'* 
4(=27o) 
2(=27 l) 
10(=2/2) 
14(=2;3) 
34(=2;4) 
62(=2;5) 

1h-\ 

i.e.. 

Now (Table 4), in each block of k +1 coefficient digits, the smallest number must be given by 
(0,0,0,...,0,0,1), (5.2) 

(5.3) 

and the largest by either 

or 

Then 

while 

NT=Jt by (5.2), 

(1,0,0,..., 0,0,2), kodd, 

(0,1,1,1,...,1,1,1), yfceven. 

Nrx = Vk + 2, A: odd, 
= A + i"3 + 2 by (2.14c) 

~ Jk+l ~ ^ 

^ r x = Z 7 , = i by (3.2), rceven, 

= Jk±2zl 
2 

by (2.8) 

_ 2 A + I + 3 ~ 5 
2 

= A+i - 1 ' 

by (1.2), (2.14d) 

i.e., for all k, 
A7ax = A + i - l -

Thus, 

Lemma3: jk<N<jk+l-1. 

Lemma 4: k is uniquely determined by N. 

Examples: j9 (= 511) < N = 1,000 < j10 - 1 (= 1,025 - 1 = 1,024); N = 1,000 =>k = 9. 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
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TABLE 4. A Representation of Integers 1 < N < 100 
by Jacobsthal-Lucas Numbers j n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

17 
18 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

! 46 
1 47 
! 48 
49 
50 

k J 

1 
1 
1 \ 

1 
1 
1 ' 

1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 

1 

I h 

1 
L 1 

1 
L 1 

1 
1 1 

1 
1 1 

1 
1 1 

1 
1 1 

h k k k 

1 
1 
1 
1 
1 
1 
1 
2 
2 
2 

2 1 
2 1 
2 1 

1 1 
1 1 
1 1 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

1 85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

Jo 
1 
1 

1 
1 
1 

1 

1 
1 
1 

1 
1 
1 

1 

1 
1 

! 1 

1 
1 
1 

1 
1 
1 

h 
1 
2 

1 

1 

1 
2 

1 

1 

1 

1 
2 

1 

1 

1 
2 

1 

1 

1 

1 
2 

1 

1 

1 
2 

1 

1 

1 
2 

k 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

k k 

1 
1 
1 
1 
1 
1 
1 
2 
2 
2 

k k 1 

2 
2 
2 
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Theorem 2: Every positive integer N has a representation of the form 
oo 

. # = !>*.//» (5.9) 
1=1 

where ni = 0,1,2, and xi=2=> ni+l = 0. 

Actual details of the ^-representations are supplied in Table 4 above. As in the case of {Jn}, 
these representations contain the criterion for minimality [i.e., condition (4.2) adjusted to n{\ but 
our chosen representation is nonunique, being selected for convenience to demonstrate that a 
representation does exist. For instance, we may also have the following representations (cf. Table 
5), in which dots denote zeros: 

TABLE 5 

# = 3 4 • • • • 2 45 - 1 2 - 2 
35 • 1 • • 2 46 1 - 2 - 2 
36 1 • • • 2 48 1 1 2 - 2 

• 48 • . . • • 1 1 

The tabulation in Table 4 again expresses & patterned representation. 

6* FINALE 

A mild investigation into the possibility of maximum representations was essayed, but no 
conclusions are offered here. Nevertheless, we reiterate that both {Jn} and {jn} correspond to 
the MinMax sequences for Pell numbers that were introduced and examined in [7]. 

Our presentation of some of the basic features of Jacobsthal representations is meant to whet 
the appetite for further analyses of their properties. Among the opportunities available for explo-
ration are, at least, the following three: 

(a) polynomials {2T„(x)} and {j„(x)} which generalize {2T„} and {)„}, 
(b) generalizations of (3.4) and (3.5) when the additive constant is k, and 
(c) negatively-subscripted Jacobsthal numbers {2T_„} and {j_n}. 

Preliminary studies of these topics have been completed by the author, and papers prepared. 
For a selection of references relevant to our treatment of representations, one may consult 

[5]. (Reference [10], though not strictly germane to this paper, is included to remedy an omission 
in the choice in [5].) 

Historical Note 
The origins of Jacobsthal numbers (1), 1,3,5,11,21,..., where the first term in (1.3) does not 

occur, predate Jacobsthal's article [9]. Indeed [11], they and their loi de recurrence (and Binet 
form) are traceable, in a trigonometrical setting, to Nouvelle Correspondance Mathematique3 
Vol. 6 (1880), page 146, being there associated with the name of Brocard. 

Another, but much later, reference [11] is to page 12 of Vol. 26 (1963) of Eureka, the jour-
nal of the Archimedeans (Cambridge University Mathematical Society). Here, the first term 1 in 
(1.3) is given; however, the occurrence of the Jacobsthal numbers is in a purely recreational con-
text, namely: given the first six nonzero terms of (1.3), determine the next two numbers in the 
sequence. 
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Jacobsthal polynomials [3], [9] are natural algebraic extensions of their numerical counter-
parts. Knowing the long history of many mathematical ideas, we should be mildly surprised if the 
first use of the Jacobsthal numbers did not antedate the year 1880. 
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FIBONACCI ENTRY POINTS AND PERIODS FOR PRIMES 
100,003 THROUGH 415,993 

A Monograph 
by Daniel C. Fielder and Paul S. Bruckman 

Members, The Fibonacci Association 

In 1965, Brother Alfred Brousseau, under the auspices of The Fibonacci Association, compiled a two-
volume set of Fibonacci entry points and related data for the primes 2 through 99,907. This set is currently 
available from The Fibonacci Association as advertised on the back cover of The Fibonacci Quarterly. Thirty 
years later, this new monograph complements, extends, and triples the volume of Brother Alfred's work with 
118 table pages of Fibonacci entry-points for the primes 100,003 through 415,993. 

In addition to the tables, the monograph includes 14 pages of theory and facts on entry points and their 
periods and a complete listing with explanations of the Mathematica programs use to generate the tables. As a 
bonus for people who must calculate Fibonacci and Lucas numbers of all sizes, instructions are available for 
"stand-alone" application of a fast and powerful Fibonacci number program which outclasses the stock 
Fibonacci programs found in Mathematica. The Fibonacci portion of this program appears through the kind-
ness of its originator, Dr. Roman Maeder, of ETH, Zurich, Switzerland. 

The price of the book is $20.00; it can be purchased from the Subscription Manager of The Fibonacci 
Quarterly whose address appears on the inside front cover of the journal. 
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1. INTRODUCTION 

The results of this paper assume a familiarity with linear algebra. A good reference for the 
results assumed here is [1]. 

As is well known, the Fibonacci numbers may be generated in the following manner. Let 
A^H Then 

If we diaigonalize A as 

A = BDB r-l Y -\IY 
1 1 

_ 1+V5 where y = -̂ y2- is the golden ratio, then from 

Fu h+\ = Ah 

1 h+l 

Y 0 
o -\iy 

= BlfB'1 

Y -II Y 
1 1 

one obtains the formula 

F_rh-(-i/r)h 
(i.i) 

More generally, if f(x) = xm - Six"1-1 sm is a polynomial with distinct roots a,, and C is 
the companion matrix of f(x), 

C = 

5, ^ 
1 0 

6 6 

Sm-l Sm 
0 0 

1 0 

then v̂  = Chv0 generates the recurrence sequence with initial values given by v0 and recurrence 
polynomial f(x). Again, we can diagonalize C = BDB~l and obtain the formula 

a* = Z4«?> 0-2) 
for some Ai eC. 

In fact, there is nothing special about companion matrices here. If M is any square matrix 
over Z (say) and vh - Mhv0, then, as we shall prove in the next section, each component of vh is a 
recurrence sequence with recurrence polynomial equal to the characteristic polynomial of M. 
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Now let us examine some generalizations of the relation above for the Fibonacci numbers. 
One way to generalize the matrix A above is to the binomial matrix. For example, consider 

A = 
"1 2 1 
1 1 0 
1 0 0 

; vo = 
I 
0 
0 

By following the above method, we find that the characteristic polynomial of A3 is x3-2x2-
2x +1; the eigenvalues of A3 are 1/y2, - 1 , y2\ and 

4\> = 
F2 

rh+l 

FhFh+l 

(1.3) 

We prove in this article a generalization of this observation. We find that the eigenvalues of the 
n-hy-n binomial matrix are powers of the golden ratio. As a consequence, we shall derive the 
generalization of (1.3) above. Moreover, we show how explicitly to diagonalize this binomial 
matrix, and we give recurrence relations for the characteristic polynomials. 

More precisely, let y = ̂ - be the golden ratio. Let A„ = [ a u ] be the "inverted" (or upside-
down) binomial matrix (Pascal's triangle): 

ifi+j>n + l9 
*ij = < 

("4/ otherwise. 

Let Wn = {yn~ ( - l / r ) 7 W a n d I e t Qn(x) = Uw4vn(x-w). Let Dn be the diagonal matrix whose 
diagonal entries are the elements of Wn listed in decreasing order according to size of the absolute 
value. Let En be the eigenvector matrix of An with column vectors listed in decreasing order of 
absolute value of the corresponding eigenvalues, and with its columns scaled so that the bottom 
row is all l's. So, for example, for n - 5 we have 

A = 
1 4 6 4 1" 
1 3 3 1 0 
1 2 1 0 0 
1 1 0 0 0 
1 0 0 0 0 

r 4 .2 

E5 = 

y -r 
y3 -y~ll<\ 
y2 yll 
y y3/4 
1 ] ( 

A = 
r4 

0 
0 
0 
0 

l 
-1/2 
-1/6 
1/2 

1 

0 0 
-y2 0 

0 1 
0 0 
0 0 

-2 
-y 
y/4 

-y~ll2 
-y~3/4 

1 

0 
0 
0 

-y'2 

0 

-4 
y 
-y'3 

y~2 

~y~x 

i 

0 
0 
0 
0 

y~4 

The main result follows. 
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Theorem 1.4: The eigenvalues of 4 are exactly the set of values in Wn9 so that the characteristic 
polynomial of 4 is Qn(x). Moreover, an explicit recursive method can be given for generating 
En and E~l so that we can diagonalize 4 explicitly as 

E^AriEn = D„. 

In addition, the coefficients of the characteristic polynomial of 4 c a n be generated recursively. 

In Section 2 we present some background on recurrence sequences and derive a simple self-
contained proof of the first statement (Theorem 2.8). In Section 3 we give recurrence relations 
for the characteristic polynomial array (Definition 3.4, Proposition 3.5, and Corollary 3.11) and in 
Section 4 we give an explicit diagonalization of 4 (Theorem 4.3). As a consequence, we obtain 
a second proof that the characteristic polynomial of 4 ls Qn(x) • ^n Section 5 we give a generali-
zation (Theorem 5.10). This approach demonstrates the explicit recursive method (Corollaries 
5.8 and 5.9) for generating the eigenvector matrices. As a consequence of this approach, we 
obtain a third proof that the characteristic polynomial of 4 'ls Qn(x)- However, slightly more 
algebra is required for this approach. 

The first proof is based on elementary facts from vector recurrences, for which we provide a 
quick review. We give an overview of the second proof. We define recursively an array of num-
bers bn^m (Definition 3.4). From the 77th row of this array of numbers bn^m, we form a polynomial 
Pn(x). We show inductively that the roots of P„(x) form the set Wn, whence Pn(x) = Qn(x). 
Finally, we demonstrate that the companion matrix of Pn(x) is similar to 4 ' giving ou r result, 
since similar matrices have the same eigenvalues. The similarity computation requires the auxil-
iary matrices that we define in Section 4. 

29 REVIEW OF RECURRENCE SEQUENCES 

We present a review of recurrence sequences and, as a consequence, obtain a quick proof of 
the first statement of Theorem 1.4. Moreover, we find an interesting characterization of recur-
rence sequences generated by Qn(X) (Theorem 2.8) using some of the results developed in later 
sections. See [3] for generalities regarding recurrence sequences. 

Definition 2.1: A sequence (ah) satisfying a linear recursion 
n 

ah = YjSkah-k 
k=l 

is called a (linear) recurrence sequence. We call the polynomial xn - Z£=1 skxn~k the recurrence 
polynomial for (ah), and we say it generates (ah). We call (ah) degenerate if it is also generated 
by a polynomial of smaller degree. 

If f(x) has m roots ak, then, as in (1.2), it is easy to show that 
m 

ah = ^Ak(h)ah
k, (2.2) 

k=l 

where the Ak(h) is a polynomial whose degree is the multiplicity of ak in f(x). Moreover, any 
such generalized power sum is a recurrence sequence with recurrence polynomial f(x). Hence, it 
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follows that the set of all recurrence sequences with recurrence polynomial f(x) is a vector space 
of dimensions. 

We shall make use of the following proposition in Section 4 below. 

Proposition 2.3: Let xh be a recurrence sequence of degree s with recurrence polynomial p(x) = 
njUi(x- ak) wfrh the ai distinct and let yh be a recurrence sequence of degree t with recurrence 
polynomial q(x) = Ylt

i=l(x-]3£) with the pt distinct. Let Whe the distinct set of numbers of the 
form akpe with w =\JV\. Then the sequence xhyh is a recurrence sequence of degree w with 
recurrence polynomial Tlx&r(x - X). 

Proof: The vector space of sequences with recurrence polynomial p(x) is spanned by the 
sequences a\ for k - 1,..., s. Thus, we can write xh = E£=1

 w*a? f°r s o m e % • Similarly, we can 
write yh = S^=i v̂ /?J for some v̂ . Multiplying yields 

xhyh = T.ukvAakPi)h-

Thus, x ^ is in the span of the sequences ?t for X eW and, hence, has recurrence polynomial as 
above. D 

It is easy to characterize the space of sequences generated by a polynomial. 

Proposition 2.4: The sequence (ah) is a nondegenerate recurrence sequence generated by f{x) 
of degree n, if and only if the matrix 

A = 
An-\ 

a, 

A2n-l 

a 2n-2 

a, at n-\ 

is invertible. In this case, the n sequences {cth+k)n
k^ generate the space of recurrence sequences 

generated by f(x). 

Proof: If A had a nontrivial element in its kernel, then so would 

ChA = 
*h+n-l Ah+n a, 
Ah+n-2 "h+n-1 au 

ah 
Ah+l 

h+2n-l 
2h+2n-2 

Ah+n-l 

where C is the companion matrix for f(x). This is true if and only if (ah) is a degenerate recur-
rence sequence. D 

Next, we consider recurrence sequences that arise from matrices. This generalization is quite 
simple. 

Definition 2.5: Let M be an n-by-n matrix and let v0 be an ^-dimensional column vector. The 
sequence of vectors (vh) defined by vh - Mhv0 is called a vector recurrence sequence. 

58 [FEB. 



DIAGONALIZATION OF THE BINOMIAL MATRIX 

If Mis the companion matrix for f(x), 

M = C = 

Sl h '" Sm-\ Sm 
1 0 ••• 0 0 

0 0 ••• 1 0 

then our situation is closely related to recurrence sequences. Let 
an-\ 

and let (ah) be the corresponding recurrence sequences generated by f(x). Then 

v» = C \ 

Even in a more general case, this picture is only altered with a change of basis. 

Proposition 2.6: Let Mbe an n-by-n matrix with characteristic polynomial f(x). Suppose fur-
ther that f(x) is actually the minimal polynomial of M, so that we have the similarity relation 
M-BCB~l, where C is the companion matrix of f(x). Let (yh) be the vector recurrence 
sequence generated by M with initial value v0. Then the Ith component of (yh) forms a recurrence 
sequence (Vh) with recurrence polynomial f(x). Moreover, the recurrence sequence generated 
by f(x) with initial values given by B~\ is nondegenerate if and only if the ^-by- î matrix 
[v0 ••• vw_J is invertible. Hence, in this case, the (Vw) form a basis of the space of recurrence 
sequences generated by f(x). 

Remark: The condition that f(x) is the minimal polynomial of M is not necessary; however, 
the statement becomes more complicated and the conclusion weaker. 

Proof: Using the similarity relation, we find that 

C-[(B-\) ... (Br\^)] = [(BT\) - (B-\j\. 

Thus, (B~\) is a vector recurrence sequence for the matrix C. In other words, 

B-\v0 - vn-l]=A-
a 2«- l 

a '2n-2 

a„. 

where (ah) is a recurrence sequence generated by f(x). Thus, 

M\=BCn(B-%) = B 
at n+h-l 

This implies that the Ith component (Vh) is a linear combination of recurrence sequences generated 
by f(x); hence, (vj,) itself is generated by f(x). 
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The last statement then follows by applying Proposition 2.4 to A-B l[v0 ••• vw_J, and 
noting that B is invertible. • 

We apply the above development to our binomial matrices. We shall consider the sequences 
(Fh+iH~l) for 1 < / < « as column vectors for fixed h. 

Proposition 2.7: For all h > 0, An[Fh
n;{F^'1] = [FJ^Ffcl]. In other words, (F^lf1) is a recur-

rence sequence generated by the characteristic polynomial of An for all /', \<i<n. 

Proof: This follows trivially by induction. One must only check the top entry, which follows 
from the relation 

£(«:!>. •jFr={Fh+l+Fh)"-l = F£. U 

Now we use (1.1): 
(..h+l l i / . A f t + l Y " ' / ' . . * / ^/..\h\'~l 

T?n-i 771-I _ 
Ph+lFh ~ rn+-(-i/r) 

V5 = I, Ay. 
weWn 

Thus, by (2.2), the polynomial Qn{x) - n w ^ (x-w) generates each of the sequences (F/^F^1). 
Clearly, if we can show that (F^F^1) is nondegenerate of degree n, then we must have 

char poly(4) = &(*). 

Theorem 2.8: The eigenvalues of An are Wn\ hence, the characteristic polynomial of An is Qn{x). 
Moreover, the sequences (F^F^1)"^ ^orm a basis for the space of recurrence sequences gen-
erated by Qn(x). 

Proof: In light of the above, it only remains to show that the matrix [F?~{JFJ~l] is invertible. 
If we scale the 7th column by dividing by FJ^1, then we obtain the Vanderaionde matrix 
[(Fj I F-+iy~l], and as is well known, this determinant is nonzero. D 

3. THE CHARACTERISTIC POLYNOMIAL 

We set out some well-known (and easily proved) facts about the Fibonacci and Lucas num-
bers to refer to later. 

r^h±M_ (3J) 

y-h = {-lf^f^. (3.2) 
FhLk+FkLh = 2Fh+k. (3.3) 

We shall see that the following array of numbers gives the coefficients of the characteristic 
polynomial of An. 

Definition 3.4: Define the array of numbers bn m for n, m > 0 as follows. Let bn0 = l for all 
n > 0 and let bn m = 0 for m > n. For 0<m<n,we define bn m recursively by 

60 [FEB. 



DIAGONALIZATION OF THE BINOMIAL MATRIX 

t>„ m = K, — ,, —?L(—X\m 
yn,m ^77-1,771-1 77 V V Fm 

Proposition 3.5: For m<n,we have 

\bn,m\ = 
77 77 Z7 

— » 77-I ' * * *n-m+l 

Fm-Fx 

Moreover, \bnm\= \hnn_m|, and we have the relation 

F 
Dn,m -°n,m-l 77 V V • 

The proof is obvious. The first several rows of the hnm array are given in Table 3.6, where n 
indexes the rows and m indexes the columns. 

TABLE 3A Coefficients of the Characteristic Polynomial 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
0 
-1 
-1 
-2 
-3 
-5 
-8 
-13 
-21 

2 
0 
0 
-1 
-2 
-6 
-15 
-40 
-104 
-273 

3 
0 
0 
0 
1 
3 
15 
60 
260 
1092 

4 
0 
0 
0 
0 
1 
5 
40 
260 
1820 

5 
0 
0 
0 
0 
0 
-1 
-8 

-104 
-1092 

6 
0 
0 
0 
0 
0 
0 
-1 
-13 
-273 

7 
0 
0 
0 
0 
0 
0 
0 
1 

21 

8 
0 
0 
0 
0 
0 
0 
0 
0 
1 

Definition 3.7: Let P„{x) = lL''j=0bn„_jXJ. The first few Pn(x) (which can be read from Table 
3.6) and W„ (defined in Section 1) are: 

Pl(x) = x-l 0i = {1} 
P2(x) = x2-x-l W2 = {y,-y-1} 
P3(x) = x3-2x2-2x + l W3 = {y2,-l,y-2} 
P4(x) = x4-3x3-6x2+3x + l W4 = {y3,-y,y-l,-y-3} 

We note that the (n-1) column of the b„ m array is just the coefficients of tfie formal power 
series (-1)" / P„((-l)"_1x). This is equivalent to 

k=Q 

for all j > n-1. Although we do not use this fact here, we record it as Corollary 3.11 to Theo-
rem 3.8. 

Theorem 3.8: The set of roots of the polynomial Pn(x) is exactly Wn\ Pn(x) - Qn{x). 

Proof: We use induction. Since W„ = (-l/y)Wn_l u {yn~1}, we have the relation 

(-y) 
(3.9) 
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w-1 

We rewrite this as 

&(*>=(x+c-irc-rroi^-M-wC-rr^1^ 
= x»+(-1)" W i + Z [Vi ,»- ; ( - r ) ; - "+(- i ) w ^- i , w - w ( - ry]^-

Thus, we need to show the relation 

Kn-j =b„-i, n-J(-ry-"H-n-i,n-l-J(-yy. 

By equations (3.1) and (3.2), this can be written as 

2 

(3.10) 

"«, w-y "w-1, n-y" 

By Proposition 3.5, this becomes 

Kn-j = (-lT+Jb
n-l,n-j-l\ 

By equation (3.3) above, this simplifies to 

+ ( - i r W / J ^ ^ 

«-y 

Vj-^lV^ +-

2F„_j 

which follows from Definition 3.4. D 

Corollary 3.11: The (w-1) column of the array bnm forms the coefficients of the formal power 
series (-1)" / Pn((-l)n~lx). More precisely, we have 

(-i)" 

Proof: Repeated application of (3.10) gives the following: 

n-m+l 

k=\ 

By changing the order of summation and relabeling the indices, this is equivalent to 

But this just expresses the power series identity 
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!>**-,.„_,**=(-irfXw^o*)'J i f ^ p V 
Jt=0 V*=o 

(3.12) 

Now, applying induction, the inverse of the right-hand side of (3.12) is just 

nrf'fp*) 
Substituting y = (-1)" x, we have 

{-YT1 i-rJ 
-^-^((-irvxc-ir^-r"-1). 

^^-iC-^Cy-r"- 1) = (-i)"PM, 

by (3.9) and Theorem 3.8. Thus, as required, the left-hand side of (3.12) is 

4. EXPLICIT DIAGONALIZATION 

We define the following integral matrices that will be used to diagonalize 4? m Theorem 4.3 
explicitly. 

Definition 4.1: Let n > 1. Let Cn be the companion matrix for Pn(x\ Cn = [ctJ], where 

<V+1 = 1 

w,y "~ un,n+l-j 

K=° 
for i = l,...,w-l, 
for/ = l,...,«, 
otherwise. 

Let Ĵ , = fy], where i;y - ^ F £ F £ . Let Mw = [i^], where ^ ^ I ^ i T ' -
Observe that the Ith row of R„ gives the terms in (Fi_2 + Fi_^"~l a nd that the Ith row of Mn 

gives the terms in {Ft_x + i^)"_1. These matrices will be used in Theorem 4.3 to prove that A„ is 
similar to C„. The matrix J^ arose originally by observing the relation RnEn = Vn (see Definition 
4.2). From here, it is natural to bring in the companion matrix C„, since Vn is*the eigenvector 
matrix for Cn. 

We illustrate Definition 4.1 for n = 5: 

c,= 
r° 0 
0 
0 
1 

1 
0 
0 
0 

-5 

0 0 Ol 
1 0 0 
0 1 0 
0 0 1 

-15 15 5_ 

M5 = 

1 
1 

16 
81 

625 

? 

0 
4 

32 
216 

1500 

^ = 

r o o 0 
1 0 0 
1 4 6 

16 32 24 
81 216 216 

0 0 0" 
6 4 1 

24 8 1 
216 96 16 

1350 540 81 

0 
0 
4 
8 

96 

f 
0 
1 
1 

16 
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Definition 4.2: For each n > 1, let Vn be the Vandermonde matrix which is the eigenvector matrix 
for Cn with eigenvectors listed in decreasing order of the absolute values of the corresponding 
eigenvalues. 

Thus, for example, we have 

" 1 
. 4 
Y . 8 
Y 
. 12 
Y 
. 16 
Y 

1 ] 
. 2 1 

-Y 5 
. 4 1 
Y I 

- 6 1 

-r ] 
. 8 1 
Y 

I 1 
. , - 2 

I -y 
. - 4 

[ y 
. - 6 

I -y 
„ - 8 

[ y 

1 
. , - 4 
Y „ - 8 

r . -12 
Y 
. -16 
P . 

Theorem 4.3: For all n, we have the relation Mn - Q i ^ = i ^ 4 - Moreover, Pn(x) is the char-
acteristic polynomial of A„, i^ is invertible, and the eigenvector matrix of A^ is given by 

Proof: Multiplying the first n -1 rows of Cn by Rn clearly gives the first n -1 rows of Mw. 
For the last row, for each/, 1 < j < n, we must show the relation 

E-w^^^r- (4.4) 
Now P2(x) is the recurrence polynomial for the sequence Fk (and, hence, for Fk_{). Thus, using 
the fact that WUWV = WU+V_ly we can apply Proposition 2.3 repeatedly to find that Pm(x) is the 
recurrence polynomial for the sequence whose /1th entry is a product of m - 1 factors, each chosen 
from the set {Fh,Fh_1}. In other words, Pm(x) is the recurrence polynomial for the sequence 
Fh~\P'hl~J for any j , \<j<m. Explicitly, this means that 

m 

Z -h FJ~l Fm~J - FJ~lFm~J 
um, m+l-k-Lr+k-m-l1 r+k-m-l ~~ J r - 1 •*• r 

Equation (4.4) now follows, since it is just this same recurrence relation for m = n at the r = n 
term. This proves Mn - CJ^. 

To prove Mn - RnAn it is equivalent to show that, for all i, j with 1 < 1, j < n, we have 

Combining the binomials and dividing by F/__1l, this is equivalent to showing 

fc=(A s 

But, by the binomial theorem, this is just (Ft_2 +Fi_l)n~J = F"~J', which is just the Fibonacci recur-
sion. This proves that CnR„ = RnAn. 

The fact that R„ is invertible was actually proved previously in the proof of Theorem 2.8; 
again, we can scale Rn to obtain a Vandermonde matrix which has a nonzero determinant. Hence, 
Cn and 4 , satisfy the similarity relation An=P^lCnRn. Thus, they have the same characteristic 
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polynomial P„(x). Since Vn is the eigenvector matrix for C„9 the similarity relation shows that 
R^Vn is the eigenvector matrix for An. Q 

5, A GENERALIZATION 

In this section we give an alternative development of Theorem 1.4. As a result, we obtain a 
recursive method of generating the eigenvector matrix. Moreover, we find a nice explanation for 
the eigenvalue behavior. Our methods yield the following generalization: if any matrix is gener-
ated in the same way as the A^, then it must be essentially binomial. 

l:bA Define an n-by-n matrix S„(B) as follows: Definition 5.1: Let B be a 2-by-2 matrix, B = [a
c 

the 7th entry of the 7th row of Sn(B) is given by 

S„(B)(iJ) = the coefficient of xn-jyj~l in (ax + byy-'icx + dyj-1. 

Then, for A = A^ - [} J], by the binomial theorem we have An = Sn(A). For general B as in 
Definition 5.1, we let Bn = Sn(B). Thus, we have 

B2 = B = a 
( 2 
1 a B3 = 

lab b2} 
ac ad + be bd 
-2 led d2 

V 

V 
B4 = 

3 \ 3a2b 3ab2 b 
a2c 2abc + a2d 2abd + b2c b2d 

2 2acd + bc2 2bcd + ad2 bd2 
ac 

V 3c2d 3cd2 
J 

Lemma 5.2: Let B = B2 be a 2-by-2 matrix, B = {a
c
b
d) and let B„ = S„(B). Then B„ may be 

generated recursively from Bn_x by 

B„(i, j) = bBn_x(i, j-\) + aB„_x{h j), 

with the convention that Bn(i, j) = 0 forj < 1 orj > n. 

Proof: Induction on n. D 

In order to prove the next lemmas, we need to define some notation. 

Definition 53: Let R = C[x, y] be the ring over C in two indeterminates. Define Vn to be the 
C-vector space of homogeneous polynomials in R of degree n-\. A basis for Vn is {x""1, xn~2y, 
...,y"~1}, so Vn is of dimension n. Any 2-by-2 matrix 5 = [^] induces a ring homomorphism, 
$B:R->R9by sending x to ax + by and sending y to ex + dy. Since <j)B is degree-preserving and 
linear in x andj, it induces a linear transformation on Vn. We denote this linear transformation by 
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Lemma 5.4: If we write an element Vn as a row vector with respect to the basis {xn~l, xn~2y, 
•••> y"~1}, then the action of </>Bri on Vn is given by multiplication by Sn(B) on the right. 

Proof: The Ith basis vector of Vn, namely, the vector x""'/"1, goes to (ax + by)n~1(cx+dy)1~~l 

under the linear transformation </>Bt n, which just forms the 7th row of Sn(B). D 

Lemma 5.5: Let B and C be 2-by-2 matrices. TheniSlf(J?C) = iSII(J?)iS„(C). 
Proof: The matrix equation J?C = BC gives rise to the ring homomorphism equation (/>BC = 

0c ° 0B (n°te that the matrices act on the right; hence, </>B is applied first). Since the ring homo-
morphisms act the same on Vn9 we obtain the equality of linear transformations <j>Bc,n ~ 0c,n0B,n-
Now, by Lemma 5.4, we obtain Sn(BC) = $n(B)S„(C) D 

Theorem 5.6: Let G„ = S„(E2), where E2 =f[ ~\r] is the eigenvector matrix for A2. Then 

AnGn = GnD„. 

Hence, G„ is the eigenvector matrix for 4* (scaled so that the bottom row of Gn is the top row of 
4f) and Dn is the diagonalization of 4*? giving the eigenvalues of 4? to be (-i)»-*y2-/1+1 a s / 
ranges from 0 to /? - 1 . 

Proof: As we have observed after Definition 5.1, we have 

4(40 = 4,. (5.7) 
If we start with the matrix equation A2E2 = E2J\ and apply the operator S„9 then, from Lemma 
5.5 and equation (5.7), we obtain 

A„S„(E2) = S„(E2)S„(D2). 

The action o f A o n ^ sends x to yx andj to -y~ly. Therefore, Sn(Dz) sends x'<yw~1~/ to 
(-l)w"1~i^2z~n+1xz>'w"1~/, which is exactly the action of Dn. Thus, Dn - Sn(D2) and, consequently, 
Sn(E2) must be the eigenvector matrix. This gives the result. D 

Remark: These results can be interpreted in terms of the symmetric algebra of C2
? denoted 

Sym C2 (see [2], p. 141). If eY and e2 are a basis for C2, the ring R above is isomorphic to the 
symmetric algebra of C2 by sending x to ex and y to e2. The set of homogeneous polynomials of 
degree n of R is just the (n- l)-fold symmetric tensor product of C2

? denoted Sym^C2. As we 
have observed above, the linear transform A2 acting on C2 induces an action on Sym C2. 

Lemma 5.2 gives an explicit means for computing the eigenvector matrix. Since Gn = Sn(E2), 
we have the following recursive method for computing the eigenvector matrix. 

Corollary S. 8: G,(i, j) = -1 /*?_,((, j-t) +rG,-,(', A 

Similarly, we can compute the inverse of the eigenvalue matrix so that the explicit diagonali-
zation of An can be given. We have 
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Hn —Gn = V5[ 
\ly~ 
r 

Thus, since H„ = Gn
1 = S„(G2

 l), we obtain the following result from Lemma 5.2. 

Corollary 5.9: H„(i, j) = -j-[l /jŜ ff, j-\)+Bn_x{h j)l 

We note that the proof of Theorem 5.6 actually shows the following generalization. 

Theorem SAO: Let B be a 2-by-2 matrix with distinct nonzero eigenvalues a and a". Then 
eigenvalues of Sn(B) are a^n"^a^l~l\ where i ranges from 1 to n. Moreover, if £ is the eigen-
vector matrix for B, then the eigenvector matrix for Sn(E) is Sn(E). 

However, we also note that if the set of matrices Sn(B) comes from a single array of num-
bers as the inverted binomial matrices (the AJ do, then the array of numbers must be essentially 
binomial. 

Theorem 5.11: Let B be a 2-by-2 matrix. Suppose that the entries of the* matrix Sn(B) come 
from a single array of numbers for each n > 1. Then B must be of the form [* J]. In this case, the 
entries of the Ith row of Sn(B) are just the coefficients of (ax + by)"'1. 

Proof: Assume B = [a
c
 b
d\. Then 

h2~ 

S3(B) = 
a1 lab b 
ac ad + be bd 
c2 led d2 

so that we must have c2 = c, led = d,ac = a,ad + bc = b. These imply that c = 1 and </ = 0. Then 
the entries of the Ith row of 5„(JB) are the coefficients of (ax + by)n~l and, hence, just the binomial 
matrix scaled by powers of a and ft. D 
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1. MOTIVATION 
Featured in [2] was a pair of generalized functions 

and 

where 

^ _ AK(x){a"(x)-(-i)kp"(x)} 
W" W ~ A(x) 

°W<k)(x) = Ak(x){a"(x) + {-\fp\x)}, 

a(x) = 

P{x). 

p(x) + yjp2(x) + 4q(x) 
2 

p(x)-ylp2(x) + 4g(x) 

giving 

and 

\a(x)+P(x) = p(x), 
\a(x)P{x) = -q(x), 
[a(x) - p(x) = Jp2(x)+4q(x) = A(x). 

Observe that (1.1) and (1.2) lead to 

Hence 

and 

and 

°WiP(x) = Ak(x){l + (-1)*}. 

w<0Kx) = o (&*°>(o) = o) 

°WiS\x) = 2 (°WiS\0) = 2). 

When k = l9 clearly (1.1) and (1.2) in conjunction compress to 

W?\x) = ^{x) = W„(x), 

Generally, 
°W<?(x) = A2(x)W<0\x) = A\x)W„(x). 

Kk\x) = ^-\X). 

(1.1) 

(1.2) 

(1.3) 

68 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

[FEB. 



EXTENSION OF A SYNTHESIS FOR A CLASS OF POLYNOMIAL SEQUENCES 

Properties of (1.1) and (1.2) were developed in [2] and then related to several special cases 
of pairs of polynomial sequences, and to numerical particularizations of them arising when x = 1 
or x = ~ as appropriate. 

For a partial description, from a different viewpoint, of some of the material in [2], the reader 
is referred to [1]. 

Special cases of (1.1) and (1.2) to which we will refer are [2] by polynomial symbolism and 
name [with corresponding p(x)-value and q(x)-value]: 

(1.12) 

Fn(x): 
Pn(*Y 
J„(x): 
SF„(x): 
U„(x): 
% , ( * ) • • 

Fibonacci 
Pell 
Jacobsthal 
Fermat 
<- Chebyshev -> 
^- Hyperbolic -> 

/^(x): Lucas 
Q£x): Pell-Lucas 
j„(x): Jacobsthal - Lucas 
fn{x)\ Fermat-Lucas 
•Ux) 
•X(x) 

p(x) 
X 
2x 

1 
3x 
2x 
2x 

q{x) 
I 
I 

2x 
-2 
-1 
-1 

For the Chebyshev polynomials, we have x - cos0, whereas in the case of the hyperbolic 
functions we know that x = cosh t. 

Toward the end of [2] it was suggested that one of the many extensions of that research was 
an investigation of the numerical values of (1.1) and (1.2) when k and/or n are negative. 

Here, we propose to examine the general theory of polynomials (1.1) and (1.2) for negative k 
and n. A smooth transition from positive to negative is usually effected. Our endeavors bring 
into being a collection of Theorems A',B',...,F' paralleling those in [2]. Of these, the last 
incorporates the desired synthesis. 

2. NEGATIVE SUBSCRIPTS AND SUPERSCRIPTS 

Negative Subscripts 

After a little calculation using (1.1) and (1.2), we deduce that 

W^\x)^-{-l)\-qrW^k\x) (2.1) 

and 

T^OO = (-l)k(-irW„k\x), (2.2) 
showing the connection between positive and negative subscripts. 

More particularly, when k = 0, 

W_n(x) = -{-qT"W„(x) . (2.3) 

and 

°W_n(x) = (-qr°Wn(x). (2.4) 

Special Cases 
Combining (1.12), (2.1), and (2.2), we derive 
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F«\x) = -(-l)k-F<k\x), 
F±k\x) = -(-lf-"P?\x), 
^ ( x ) = - ( - l )*(-2xr4 k ) (x) , 

g?W (X) = -(-\)k2-"®y (x), 
UM(x) = -(-lfU?\x), 

^(x) = (-lf-"$\x), 
Qik

n\x) = (-l)k-"Q^(x), 

f<?(x) = {-lf2-»f?\x), 
Z<*)(x) = ( - l ) t ^ ( x ) , 

[¥_*>(*) = -(-i)*¥,f>(x), 
Putting A: = 0 in (2.5), we have the standard simplifications [refer to (2.3), (2.4)]. 

Examples 
r , v 4x2+6x + l 1 Tf v 

^ ( * ) = 32X* ^ ( W ^ ' 
F_(

3
2) (x) = x4 + 5x2 + 4 = (x2 + 4)(x2 +1) =' Fj2) (x), 

I$\x) = -64x(x2 - l)2(2x2 -1) = -#3)(x) (x = cosO). 

Differentiation 

As in [2], when k = 0, 
d_w M\-np'{x)W_„{x) forp>(x)*0,q'(x) = 0, 
dx ~"W \-nq'(x)W_„_1(x) forp'(x) = 0, q'(x) * 0, 

where the superscript dash (') denotes differentiation with respect to x. 
Thus, 

d , , . _ d (21x-
fcU{-x)~~dx~{ 8 

= -3.3 i_2x+2) = _33gF_3 ^ 

(2.5) 

(2.6) 

rf . , , d (8x2 + 8x +1)_ -4.2(4x2 + 6x +1) _ ' 
A ^ W - *{ 16x4 J _ 32? " - 4 2 ^W-

Negative Superscripts 

What meaning can be attached to a symbol with a negative superscript? From (1.1), (1.2), 

and 

°W<;k)(x) = A-k(x){a"(x) + (-l)k p\x)} 

(2.7) 

(2.8) 
with obvious extensions when n is replaced by —n (i.e., both subscript and superscript are nega-
tive). Refer back to (2.1), (2.2). 

For instance, 
Pf5Xx) = (4*2 + 2)(4*2 + 4)~3, 
/3

("4)(x) = 9x(3x2 - 2)(9x2 - 8)"2. 
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Some Generalized Products 
Without difficulty, one may establish the following multiplicative identities, which were 

omitted from [2]: 

WJPWWfXx) = A * ( x ) {am+"(x) + (-l)h+k/3m+"(x) 
A2(x) (2.9) 

Wi\x)^\x) = ^^-{am+\x)-{-\rkp^\x) 

+ (-q(x))"[(-l)kam-"(x) - (-l)*/T-"(x)]}, 

°W<^(x)°Wik)(x) = Ah+k(x){am+"(x) + (-l)h+k pm+\x) 
+ {-q{x))\{-\)kam-n{x)H-\fam-n{x)-\}. 

(2.11) 

Various combinations of the above involving ±h,±k,±m,±n might be investigated. For 
example, (2.10) with (1.10) leads to 

wlk\x)W;k\x) = w^-k\x)W^k\x) = w2„(xy (2.12) 
Another pleasing deduction flows from (2.11), namely, 

WZ\x)°W<:P (x) - W*l(x)W;k)(x) = 0 (2.13) 

with a similar conclusion for W%k\x). 
Again, applying (2.9) and (2.11) in tandem, we obtain 

^ W ^ W - A2(x)W<k\x)W£-k)(x) = 4(-l)k(-q(x)Y. (2.14) 

3e BASIC UNIFYING THEOREMS 

Theorems A-F in [2] can now be paralleled. Except that we now use (2.1) and (2.2), of 
course, the proofs follow those in [2]. 

Our homologous theorems will be labeled Theorem A', ..., Theorem F \ Enunciations of 
these theorems are given below. 

Theorem A9: W^k\x)W{kl(x) = W^k\x). 

Theorem B'(a): W^{x^k\{x) + ^ ( x ) ^ ( x ) = 20^>ll )(x). 

If m = n, then Theorem B'(a) reduces to Theorem A'. 
Replacing m by -m, we derive 

Corollary Bf(a): W^k) (x)^(x) + W±k) (x)°W*k\x) = 20**>(x), 

J=2^2fe)(x) ifw = n, 
\ = 0 by (1.5). 
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Theorem B'(b): W^(x)^(x) + A2{x)W^(x)W^(x) = 2°W^,+n){x). 

If m = n, then Theorem B '(b) contracts to a sum of squares on the left-hand side. 
Making the transformation m -> -m gives 

Corollary B'(b): ^ ( x ^ x ) + A2(x)W^\x)W^k„)(x) = 2°W™(x) 

{=2QW{ik\x) if m = n, 
[=4A2*(x) by (1.6). 

Theorem C(a): W%{x)<W™(x)~^(*« (*) = 2 ( - l ) t ( - ? ( x ) r ^ > , 7 ) ( x ) . 

Putting m=n yields the trivial identity 0 = 0, by (1.5). 
Other considerations are: (i) m=-n, (ii) interchange m, n, 

Theorem C(b): W<4> (x)<W«(x) - A2(x)fl**>(x)^>(x) = 2(-l)*(-?(*))""Wlf^ (x). 

Variations: (i) m = n, (ii) m -> -m, (iii) m, n interchanged. 

Theorem D': Jf6k)
+l(x)+$Cx)H*£,(x) = ^ ( x ) . 

Theorem E': ,W(_*„)
+1(x)+?(x)cW(_*„)_1(x) = A2{x)W^>(x). 

Illustrations 

(A* 9% (x)/g>(x) = ~3 j c ( 9 y 2"8 ) ( 9 x 2~4 ) = 3 ^ (x). 
16 

(B'(a)): F(2)(x)Z^(x)+F^>(x)lP:}(x) = 2(x2 + l)(x2 + 4)2 = 2^3
4)(x). 

(B '(b)): fi<?(x)g<?(x) + 4(x2 + l)P^{x)P^{x) = -16x(x2 + l)(4x2 + 3) = 2g^2)(x). 

(C'(a)): UV(x)T$(x) - U^(x)T^(x) = -8(x2 -1) = -2U[2\x). 

(C'(b)): T(i)
1(x)T«(x)-4(x2 - l )¥ j | ( x )¥^ (x ) = -16x(x2 -1) = -2T(2)(x). 

(py. S?(_3
1

)(x)-2^(x) = -—(9x-8 ) 2 =/i2
3)(x). 

(E* /4
2>(x) + 2x/44>(x) = <2x + 1Xf + 1>3 =(8x-fl)jff(x). 

oX 

In(C'(a))? x = cos#(*l). 
In(C'(b)Xx = coshr(^l). 

4. SYNTHESIS 

Elementary algebraic calculations in (1.1), (1.2) when m and n are positive or negative allows 
us to assert the following synopsis of the relationships connecting Wf®(x) and °W^\x). 
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Theorem Ff: For all integers m and n, 

[W^2m\x) = T V ^ C x ) = A2m(x)W„(xl 

\°W<^\x) = W^2m+l\x) = A2w(x)°lfw(x). 

Examples 
Ff(x) = I%(x) = (x2+4)\x2 + l), 

jt*\x) = 4~3\x) = (8^2 + 8* + l)(8x +1)"2, 

f¥\x) =g^> (x) = _ (9* 2 -2 ) (9* 2 -8 ) - \ 

£4~3)(x) = t£2 )(x) = -x(2x2 - X)(x2 -1)"1. 

This synthesis extends and complements that presented in [2]. 

Numerical Specializations 

Throughout this paper it is useful to make appropriate numerical substitutions in theory. So, 

Ff(l) = I?l(l) = 250, 

/r>(i)=^o)=!p 

^ = 

5. A CONCLUDING MISCELLANY 

Simson Formulas 
Analogs of Simson's formula are readily established by means of (1.1), (1.2) for k >0, with 

immediaite extension when k—>-k: 

W<tl(x)^(x)-{W<k\x)}2=(-l)k+\-q(x)y-lA2k(x), (5.1) 

and 
W&ixyUft&ix) - {W<*>(*)>2 = (-Ifi-qix))"-1 A2k+\x). (5.2) 

Similar results apply when n^>-n. 
Variations of these orthodox Simson formulas (Simsonic variations!) include the "inverted" 

Simson formulas 

W^k+l\x)W^k-l\x) - {W}k\x)}2 = 4(-lf(-q(x)yA2k-2(xl (5.3) 

and 
^+l\x)^-l\x) - {WPix)}2 = 4(-l)k+l(-q(x))"A2k(x) (5.4) 

in which the roles of subscript and superscript in (5.1) and (5.2) have been reversed. 
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Hybrid Results 
Use of (1.1), (1.2) produces the "hybrid Simson formulas" 

^wiei-A^w^wfH-^'whwr'^'w, (5.5) 
and 

A-^x^^W^iW" {W^k\x)f = {-lfp\x){-q{x)y-l£k-\x). (5.6) 
Clearly, 

(5.5) + (5.6) = 0 (0. 

This is also confirmed by looking at 

(5.1) + A"2(5.2) = 0 (//), 

since the left-hand sides of (i), (ii) are merely re-arrangements of each other. 
Further formulas arise when k^-k and/or n->-n. 
Searching for new results involving the data in this paper is an extremely pleasurable activity. 

Readers may wish to reflect on some of the possibilities. 
Surveying the material in this paper and in [2], one is left wondering whether there may be 

other sets of polynomial-pairs whose major properties may be assembled by means of a synthesis 
of some kind. 
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1. INTRODUCTION 

Let us consider the generalized Lucas sequence {Vn} defined by the recurrence relation 

where P is a positive integer and Q = ±l. A Fibonacci pseudoprime with parameters P and Q 
[(P, 0-FPSP] is a composite number n such that 

Vn = P (mod n). 

Recently (see [1], [2], and [5]), the following theorem was proved. 

Theorem 1: There do not exist even Fibonacci pseudoprimes with parameters P = 1 and Q = -l. 

In this paper, our aim is to investigate the existence of the even (P, 0-FPSP. We shall 
prove the following result. 

Theorem 2: If (P, Q) * (1, -1) and (P, Q) * (1,1), then there exists at least one even Fibonacci 
pseudoprime with parameters P and Q. 

Theorem 2 is a consequence of Theorem 1 and of the following propositions. 

Proposition 1: There do not exist even Fibonacci pseudoprimes with parameters P = Q = l. 

Proposition 2: n = 2k, k > 2. is a (P, 0-FPSP, Q = ±1, if and only if P = 2 (mod2*) o r P s - l 
(mod 2*). 

Proposition 3: If P = 0 (mod 4) or P = 1 (mod 4) (with P * 1) and if (P, Q) * (5,1), then there 
exists an odd prime number/? such that n~2p is an even (P, 0-FPSP. 

Proposition 4: There exist odd prime numbers/? and q, with p * q, such that n - 2pq is an even 
(5,1)-FPSP. 

2. PRELIMINARIES 

In this section, we shall gather some lemmas which will be needed in the sequel. 

Lemma 1: If P = 0 (mod 4) and Q = ±1, then the number A- P2 -P-2Q admits an odd prime 
divisor. 

Proof: We have A = 2 (mod 4) since P = 0 (mod 4), whence A admits an odd prime divisor, 
unless A = ±2, which is clearly impossible. 
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Lemma 2: If P = 1 (mod 4) and Q = ±1, then the number A - P2 - P - 2Q admits an odd prime 
divisor p*3, unless (P, Q) = (1, -1), (P, 0 = (1,1), or (P, 0 = (5,1). 

Proof: We have A = 2 (mod 4) since P = 1 (mod 4), whence A admits an odd prime divisor, 
unless A = ±2. We consider two possibilities: 

(a) Assuming first that Q = - 1 , we see that A- P2 -P + 2 = ±2 if and only if P = 1. More-
over, A = ±1 (mod 3). Thus, A admits an odd prime divisor p =* 3 when P ^ 1. 

(h) Supposing now that 0 = 1, we see that A = P2-P-2 = ±2 if and only if P = l. 
Moreover, 4̂ = 0 (mod 3) only if P = 2 (mod 3). Thus, 4̂ admits an odd prime divisor p^3, 
except possibly when P = 1 (mod 4) and P = 2 (mod 3); in other words, when P = 5 (mod 12). 
If P = 5, then A = lS = 2-32. If P > 5 , we put P = l2k + 5(k>l) and we get that A = 
18(2& +1)(4& +1) and at least one of the factors (2k +1) or (4k +1) contains an odd prime divisor 
p * 3, since g.c.d. (2k +1,4k 4-1) = 1. This completes the proof 

Lemma 3: Let {ak} be a sequence of integers defined by the recurrence relation 

%+i = % 2 -2, k>\. (2.1) 

If ax is even, then ak = 2 (mod2*), & > 1, and if ax is odd, then ak = -l (mod2*), £ > 1. 

Proof: The statements clearly hold for k = 1. Let us suppose that ak = a (mod 2*), where 
£ > 1 and a = -1 or a = 2 (notice that a2 -2 = a) . Thus, we have 

â  = a + /12*, where X is an integer 
and 

ak+l = a2 - 2 = a2 - 2 + 2*+1(a^ + ^22^!) 

^ a 2 - 2 = a (mod2*+1). 

This completes the proof. 

3. PROOFS 

Proof of Proposition 1: Let us consider the sequence 

It is clear that the sequence {Vn} is periodic, with period 6 and that 

V6k=2, k>0, and V6k±2 = - 1 , k > 0, 

which implies that there does not exist an even (1,1)-FPSP. 

Proof of Proposition 2t It is well known and readily proven [4] that, for every n > 0, V2n -
V2-2Q\ and thus that 

V2k+l = V2
k - 2(±lf = V2 - 2, for k > 1. 

Hence, the sequence ak - Vlk satisfies the recurrence relation (2.1). Noticing that ax = V2 =P2 -
2Q s P2 = P (mod 2), we see by Lemma 3 that V2k = 2 (mod 2k) if k > 1 and P is even, and that 
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V2k = -1 (mod 2k) if k > 1 and P is odd. Hence 2k (k > 1) is a (P, 0-FPSP if and only if P = 2 
( m o d 2 * ) o r P s - l (mod 2k). 

Remark: The proof for P odd positive and Q = -1 can be found on page 175 in [2]. 

Corollary: n = 4 is a (P, 0-FPSP if and only if P = 2 (mod 4) or P = -1 (mod 4). 

Proof of Proposition 3: We first recall some well-known properties: 
(i) If P is even, then V„ = 0 (mod 2) for every n > 0. 

(ii) If P is odd, then F„ = 0 (mod 2) if and only if n = 0 (mod 3). 
(iii) If p is a prime number, then Vnp = F„ (mod/?) for every w > 0. 

For a proof of (iii), the reader may wish to consult [3] or [4]. Let us now suppose that P = 0 
(mod 4) or P = 1 (mod 4) and that/? is an odd prime number. The congruence V2p = P (mod 2p) 
is equivalent to the system 

V2p^P(mod2) (3.1) 
and 

V2p^P (mod/?). (3-2) 

By (i) and (ii), the congruence (3.1) holds for every odd prime number/? if P = 0 (mod 4) and for 
every prime number p > 3 if P = 1 (mod 4). By (iii), we see that (3.2) is equivalent to V2 = P 
(mod/?) which can also be written 

P 2 - P - 2 g ^ 0 (mod/?). (3.3) 

If P = 0 (mod 4), we see by Lemma 1 that there exists an odd prime number /? such that (3.3) 
and, thus, (3.2) hold. If P = 1 (mod/?) and P > 5, we see by Lemma 2 that the same result holds 
(with p > 3), so the proof is complete. 

Remark: If (P, Q) = (5,1), we see by Lemma 2 that there does not exist an odd prime number/? 
such that n = 2p is a (5,1)-FPSP. Actually, we see by (3.3) that p = 3 and by (ii) we have V2p = 
F6 = 0 # 5 (mod2). 

Proof of Proposition 4: Let us suppose that (P, Q) - (5,1). We shall prove that n = 6554 = 
2-29-113 is an even (5,1)-FPSP. Let N(p) be the period of the sequence {Vn} modulo/?. By 
direct computation, one can see that N(2) = 3, N(29) = 5, and #(113) = 57. We also see that 
6554 = -1 [mod N(p)\ where /? = 2, /? = 29, or /? = 113. Hence, 

^6554 = VkN{P)-l S VN(P)-1 = WN{P) ~ * W l = 5 ( m ° d P) > 

and therefore, 
F6554^5(mod6554). 

This completes the proof. 
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Remark: One can also verify that the numbers 11026 = 2-37-149, 26506 = 2-29-457, and 
119074 = 2-29-2053 are even (5,1)-FPSP. This can be easily checked, noticing that N(37) = 9, 
#(149) = 75, and #(457) = #(2053) = 57. 
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MANAGER, THE FIBONACCI ASSOCIATION, SANTA CLARA UNIVERSITY, SANTA CLARA, 
CA 95053. 
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APPLICATIONS OF FIBONACCI NUMBERS 
VOLUME 5 

New Publication 

Proceedings of The Fifth International Conference on Fibonacci Numbers and Their 
Applications, University of St. Andrews, Scotland, July 20-24,1992 

Edited by G. E. Bergum, A. N. Philippou, and A. F. Horadam 

This volume contains a selection of papers presented at the Fifth International Conference on Fibonacci 
Numbers and Their Applications. The topics covered include number patterns, linear recurrences, and 
the application of the Fibonacci Numbers to probability, statistics, differential equations, cryptography, 
computer science, and elementary number theory. Many of the papers included contain suggestions for 
other avenues of research. 
For those interested in applications of number theory, statistics and probability, and numerical analysis 
in science and engineering: 

1993, 625 pp. ISBN 0-7923-2491-9 
Hardbound Dfl. 320.00 / £123.00 / US$180.00 

AMS members are eligible for a 25% discount on this volume providing they order directly from the 
publisher. However, the bill must be prepaid by credit card, registered money order, or check. A letter 
must also be enclosed saying: "I am a member of the American Mathematical Society and am ordering 
the book for personal use." 

KLUWER ACADEMIC PUBLISHERS 
P.O. Box 322, 3300 AH Dordrecht P.O. Box 358, Accord Station 
The Netherlands Hingham, MA 02018-0358, U.S.A. 

Volumes 1-4 can also be purchased by writing to the same addresses. 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to Fibonacci@MathPro.com on 
Internet. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ask that proposers inform us of the 
history of the problem, if it is not original. A problem should not be submitted elsewhere while it 
is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

A?+2 = A-7+i+ A^ A) = 2, LX- i. 

Also, a = (l + V5)/2 , /? = ( l - V 5 ) / 2 , Fn = {an -pn)l ^ and Ln = an+pn. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-802 Proposed by Al Dorp, Edgemere, NY 
For n>0, let Tn =n(n + l)/2 denote the /?th triangular number. Find a formula for T2n in 

terms of Tn. 

B-803 Proposed by Herta T. Freitag, Roanoke, VA 
For n even and positive, evaluate 

nil / \ 

17 w 
/=0 V ^ 

B-804 Proposed by the editor 
Find integers a, A, c, and d (with \<a <b <c <d) that make the following an identity: 

Fn = Fn_a+9342Fn_b + F^c + Fn_d. 

B-805 Proposed by David Zeitlin, Minneapolis, MN 
Solve the recurrence Pn+6 = Pn+5 + Pn+4 - Pn+2 + Pn+\ + Pm for n - ° 5

 w i t n i n i t i a l conditions 
PQ = l, Pj = 1, P2 = 2, P3 = 3, P4 = 4, mdP5 = 7. 

B-806 Proposed by Mohammad K. Azarian, University of Evansville, Evansville, IN 
(a) Show that the coefficient of every term in the expansion of _ x

 3 is the difference of 
two Fibonacci numbers. 

(b) Show that the coefficient of every term in the expansion of —2—j is the product of 
two consecutive Fibonacci numbers. 
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B-807 Proposed by R Andre-Jeannin, Longwy, France 
The sequence (Wn) is defined by the recurrence Wn - PWn_l-QWn_2, for n>2, with initial 

conditions WQ = a and Wx = h, where a and A are integers and P and Q are odd integers. Prove 
that, for * > 0, 

^ 3 . 2 * s ^ ( m o d 2 * + 1 ) -

SOLUTIONS 

An Integral Ratio 
B-772 Proposed by Herta Freitag, Roanoke, VA 

(Vol 32, no. 5, November 1994) 
Prove that 0 ~ 

F 4- F 

is always an integer if a is odd. How should this problem be modified if a is even? 
Solution by C. Georghiou, University ofPatras, Patras, Greece 

Identity (I12) of [1] reads 5F„2 = L2
n -4(- l )" . It follows that, for a odd, 

Ai + A?+a = ^(A? + ^n+ah 
whereas, for a even, 

/ 2 _ / 2 = 5 / 7 7 2 _ i 7 2 x. 

and the integer, in both cases, is 5. In other words, for a ̂  0, we have 

L2„-(-l)aLl 
= 5. 

When a is even, Zeitlin and Filipponi (independently) found the formula 
il+i?n+a-8(-iy 

F2 4- F2 ~ 
rn "^ rn+a 

Reference 
1. Vemer E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 
Also solved by Michel A. Ballieu, Paul S. Bruckman, Charles K Cook, Leonard A. G. Dresel, 
Russell Euler, Piero Filipponi, Russell Jay Hendel, Norbert Jensen, Carl Libis, Bob Prielipp, 
H.-J. Seiffert, Sahib Singh, Lawrence Somer, M. N. S. Swamy, David C. Terr, David Zeitlin, 
and the proposer. 

Zecky Would Be Proud 
B-773 Proposed by Herta Freitag, Roanoke, VA 

(Vol 32, no. 5, November 1994) 

Find the number of terms in the Zeckendorf representation of Sn = Z;
w

=1 F?. 
[The Zeckendorf representation of an integer expresses that integer as a sum of distinct noncon-
secutive Fibonacci numbers.] 
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Solution, by David C Terr, University of California, Berkeley, CA 
We claim that 

_LVJ 
k=Q 

is the Zeckendorf representation of Sn. It consists of [_(n +1) / 2j terms. 
Pfroof: Clearly this equation holds for n-l and w = 2. Thus, it is enough to show that 

^ - ^ 2 = ^ . 1 for / i>l . But Sn-Sn_2=F?+Fll and Fn
2 n-F^ = 5F7^l by identity (In) of 

[1]. Thus, the result follows. 
Reference 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 

The proposer also found that the number of terms in the Zeckendorf representation of Zf=11^ is 
n. A very nice result. No other reader came up with any generalization of this problem. 
Also solved by Michel A. Ballieu, Paul S. Bruckman, Leonard A, G. Dresel, Russell Euler, 
Hero Filipponi, C. Georghiou, Russell Jay Mendel, Norbert Jensen, Joseph J. Kostdl, Carl 
Libis, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, David Zeitlin, and the 
proposer. 

A Congruence for the Period 
B-774 Proposed by Herta Freitag, Roanoke, VA 

(Vol 32, no. 5, November 1994) 
Let (Hn) be any sequence of integers such that Hn+2 = Hn+l + Hn for all n. Let p and m be 

positive integers such that Hn+p = Hn (mod m) for all integers n. Prove that the sum of any p 
consecutive terms of the sequence is divisible by m. 
Solution by Leonard A. G. Dresel, Reading, England 

Let S(a) be the sum ofp consecutive terms of the sequence starting with Ha. Using the 
recurrence relation Hn = Hn+2-Hn+l, we have 

S(a) = Ha + Ha+l + -- + Ha+p_l 

= (Ha+2 ~ Ha+l) + (Ha+3 ~ Ha+l) + ' ' ' + (Ha+p+l ~ Ha+p) 

- Ha+p+l - Ha+l (since all ether terms cancel) 
= 0 (modm), 

for any value of a. Therefore, the sum of any/? consecutive terms is divisible by m. 
Also solved by Michel Ballieu, Paul S. Bruckman, C. Georghiou, Russell Jay Mendel, Norbert 
Jensen, Joseph J. Kostdl, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, M N S. 
Swamy, David Zeitlin, and the proposer. 

Golden Powers 
B-77S Proposed by Herta Freitag, Roanoke, VA 

(Vol 32, no. 5, November 1994) 

Let g - a + 2. Express g11 in the form pa + q, wherep and q are integers. 
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Solution by Norhert Jensen, Kiel, Germany 
We show that 

g2^V{F2na + F2n_x) 

for all integers n. It then follows that g11 = 58L^a + 58Z^ = 1394921875a + 862109375. 
Proof of the general assertion. We use the following identities: 

(i) g=a + 2 = a2 + l = a(a-j3) = aj5. 

(ii) an = F„a + F„_v 

( i i J ) Fn+Fn+2^Ln+l 

Both (ii) and (iii) are easily proved by induction on n (or they can be found in [1] on pages 52 and 
24, respectively). 

Applying (i) and (ii), we obtain 

gi»=5»a2" = 5"(F2„a + F2n_l). 

Therefore, by (iii), g2"+l = 5"(F2„a + F 2 ^) (« + 2) = 5"[(3F2n+^_1)a + F2w+2F2;7_1] = 5"[(F2w + 

Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester, England: Ellis Horwood Ltd., 1989. 
Generalization 1 by David Zeitlin, Minneapolis, MN 

Let a and b be distinct roots of x2 - Px - Q. Let (Un) and (Vn) be sequences defined by the 
recurrences U„+2 = PUn+l-QU„,U0 = 0,UX = 1, and Vn+2 = PVn+l -QV„, V0 = 29VX = P. We will 
show that 

(Pa - 202"+ 1 = (P2 - 4Q)"(aV2„+l - QV2n) 

for all nonnegative integers n. (In our problem, P = 1, Q = - 1 , a = a, Vn = L„, and n = 8.) 
To prove this identity, we note that, since Q = a £ , P a - 2 Q - ( P a - Q ) - Q = a2 -ab = 

a(a-b) = a(P2-4Q)112. Thus, (Pa -20 2 " + 1 = a2"+I(JP2 -40" + 1 / 2 . Since ak = aUk -QUk_x, 

(P2 - 4 0 " V * 1 = (P2 - 401/2(a£/2„+1 - g£/2„) 
= a(a2"+1-*2"+1)-e(a2"-*2") 
= a2"+2 - g62n - 0a2" + Qb2n = a2n+2 - Qa2n 

= (aU2n+2 - QU2n+l) - Q(aU2„ - QU2n_x) 
= <U2n+2-QU2n)-Q(U2n+l-QU2„_l) 
= aV2n+l - QV2n, since V„ = U„+l - QU„_V 

This proves the result. In the same manner, we can also prove 

(Pa - 2 0 2 " = (P2 - 4Q)"(aU2n - QU2n_x\ 
(Pb - 202"+ 1 = (P2 - 40"(Z>F2„+1 - QV2„), 

(Pb-2Q)2" = (P2-4Q)"(bU2„-QU2n_l). 
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Generalization 2 by Murray S. Klarnkin, University of Alberta, Canada 
We will show that, if m and r are given integers (with r > 0) and if we let g = a + my then gr 

can be written as pa + q for some integersp and q. Let gr = pra + qr. Then 

= pra2 + (mpr + qr)a + m?r = /?r (a +1) + (w/?r + qr)a + m#r. 

Hence, /?r+1 = (zw + l)/?r + qr and ^r+1 = /?r + /w#r. It then follows that 

pr+2=(2m+l)pr+l-(m2+m-l)pr and qr+2 = (2m + l)qr+l -(m2 + m- \)qr 

with pQ = 0,qQ = 1, px ~ \ and q1=m. Thus, pr and qr are integers for all positive integers r. 
Klarnkin went on to give explicit formulas for pr and qr. Anderson found the same generaliza-
tion as Klarnkin. 

Also solved by Mark Anderson, Michel Ballieu, Glenn A, Bookout, Scott H. Brown, Paul S. 
Bruckman, Charles K. Cook, Leonard A, G. Dresel, Russell Euler, Hero Filipponi, F. J. 
Flanigan, C. Georghiou, Russell Jay Hendel, Norbert Jensen, Carl Libis, Bob Prielipp, H.-J. 
Seiffert, Sahib Singh, Lawrence Somer, M N. S. Swamy, David C. Terr, and the proposer, 

An Even Sum 

3B-776 Proposed by Herta Freitag, Roanoke, VA 
(Vol 32, no, 5, November 1994) 

n 
Find all values of n for which Sn-^kFk is even. 

Solution by Paul S. Bruckman, Edmonds, WA 
The periodic sequences (n (mod 2)) and (Fn (mod 2)) for n> 0 have periods 2 and 3, respec-

tively. Therefore, the sequence (nFn (mod 2)) has period 6, as does the sequence (Sn (mod 2)). 
We may then form the following table: 

n Fn nFn (mod 2) Sn (mod 2) 
i T i I 
2 1 0 1 
3 2 0 1 
4 3 0 1 
5 5 1 0 
6 8 0 0 

By the foregoing comments, and by inspection of the table above, we conclude that S„ is even if 
and only if n is congruent to 0 or 5 modulo 6. 
Also solved by Charles Ashbacher, Michel Ballieu, Charles K. Cook, Leonard A, G. Dresel, 
Piero Filipponi, C. Georghiou, Russell Jay Hendel, Norbert Jensen, Joseph J, Kostal, Carl 
Libis, H.-J. Seiffert, Sahib Singh, Lawrence Somer, M. N. S. Swamy, David Zeitlin, and the 
proposer. 

A Tricky Congruence Criterion 

B-777 Proposed by Herta Freitag, Roanoke, VA 
(Vol. 32, no. 5, November 1994) 

Find all integers a such that n = a (mod 4) if and only if L„ = a (mod 5). 
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Solution by Paul S. Bruckman, Edmonds, WA 
As is easily verified, the periodic sequence (Ln (mod5))„>0 = (2,1,3,4,2,1,3,4,...) has period 

equal to 4. The solutions of our problem are therefore those values of a modulo 20 such that any 
of the following conditions holds: 

(i) a = 0 (mod 4) and a = LQ = 2 (mod 5); 
(ii) a = 1 (mod 4) and a = Zj = 1 (mod 5); 

(iii) a = 2 (mod 4) and a = L^ - 3 (mod 5); 
(iv) a = 3 (mod 4) and a = L$ = 4 (mod 5). 

The solutions of (i)-(iv), respectively, are as follows: a = 12,1,18, or 19 (mod 20). There-
fore, n = a (mod 4) if and only if Ln = a (mod 5), whenever a = 1,12,18, or 19 (mod 20), and for 
no other values of a. 

A related fact: n = a (mod 4) if and only if Ln = La (mod 5), appeared in this Quarterly 32.3 
(1994):245. 

Also solved by Charles Ashbacher, Norbert Jensen, H.-J. Seiffert, Lawrence Sorner, David C. 
Terr, and the proposer. Six incorrect solutions were received 

Fibonaccifs Last Theorem 

B-778 Proposed by Eliot Jacobson, Ohio University, Athens, OH 
(Vol 33, no. 1, February 1995) 

Show that the equation xn +yn -zn has no nontrivial solutions consisting entirely of Fibo-
nacci numbers, for n > 2. 

Solution by the proposer 
Let z = Fc, with c > 3. Using the fact that FCFC_2 - F}_x + (~l)c~l, which is Identity (I13) from 

[1], observe that 
F? = FC(FC_X + FC_2) 

-FcFc_l + FCFC_2 

ZQ + F^F^+Ff^ 
= Fc_^Flx+Fll + (-\rl 

>Fcll+Fc
2_1. 

Since Fc > Fc_u it follows that F" > F^_x + Fc
n_h so the equality can never hold. 

Reference 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 

Several solvers noted that it suffices to consider positive Fibonacci numbers in light of the iden-
tity F_k = (-l)k+lFk. Seiffert also proved Lucas's Last Theorem: If n > 2 is an integer, then the 
equation xn +yn - zn has no solution in Lucas numbers, x, y, and z. Prielipp noted that this 
problem is equivalent to Theorem 6 in L. Carlitz, "A Note on Fibonacci Numbers," this 
Quarterly 2.1 (1964): 15-28. 

Also solved by Paul S. Bruckman, Leonard A. G. Dresel, C Georghiou, Norbert Jensen, Bob 
Prielipp, and H.-J. Seiffert. Andrew Wiles could not be reached for comment. 
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Find the Identity 
B-779 Proposed by Andrew Cusumano, Great Neck, NY 

(Vol 33, no. 1, February 1995) 
Find integers a, b, c, and d(with \<a <b <c <d) that make the following an identity: 

Fn = Fn-a + 6Fn-b + K-c + Fn-d • 

Editorial Comment: Most solvers pulled the answer out of a hat: 

F» = Fn-2 + 6 i V 5 + ^V-6 + ^ - 8 -

The proof by induction is then straightforward. Only Bruckman and Georghiou submitted a proof 
that showed how to find a, b, c, and d\ but their methods do not seem to generalize. So to test 
your prestidigitation abilities, the editor has concocted a related problem (see Problem B-804 in 
this issue). Let's see who can pull a rabbit out of that hat. 
Solved by Paul S. Bruckman, Leonard A. G. Dresel, C. Georghiou, Russell Jay Hendel, 
Norbert Jensen, Bob Prielipp, H.-J. Seiffert, David Zeitlin, and the proposer. 

Production Inequality 
B-780 Proposed by Zdravko F. Stare, Vrsac, Yugoslavia 

(Vol 33, no. 1, February 1995) 
Prove that: 
(a) Fl-FrF3 F„<exp(F„+2-/2-l); 
(b) FX'FrFy--F2n_l<exp(F2„-ri)-9-
(c) F2-F4-F6 F2„<exp(F2n+x-n-l). 

Solution by David Zeitlin, Minneapolis, MN 
AH proofs are by mathematical induction. Since l + x< exp(x) forx > 0, we get (letting 

y - x +1): y < exp(y -1) for y > 1. We will use this inequality repeatedly, below. The results are 
easily seen to be true for n = 1 and n - 2, so we need only give the induction step. 
Proof of (a): (FXF2F3... Fn) F„+l < Fn+l • exp(F„+2 - w -1) 

< exp(F„+1 -1) • exp(Fw+2 - n -1) 
- exp(F„+1 - 1 + Fn+2 - n -1) = exp(F„+3 - (/? +1) -1). 

Proof of (b): (FXF3F5... F2n_x) F2n+l < F2n+l • exp(F2„ - n) 
^exp(F2w+1-l)-exp(F2w-«) 
= exp(F2n+1 -\ + F2n- ri) = exp(F2(„+1) - {n +1)). 

Proof of (c): (F2F4F6... F2n) F2n+2 < F2n+2 • exp(F2/1+1 - n -1) 
< exp(F2„+2 -1) • exp(F2n+1 - n -1) 
= exp(F2„+2 - 1 + F2n+l - w -1) = exp(F2(„+1)+1 - (n +1) -1). 

Generalization 1 by H.-J. Seiffert, Berlin, Germany 
We shall prove that for all positive integers n9 

(a1) Fx-F2-F, Fn<2F^-\ 
(b1) Fx.FyF, F2n_x<2^~"; 
(C) F2-F4-F6 F2„<3^-"-»n. 
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Since F2n+l >F2n >n, Fn+2 >n + \ n>\\ and V3 <2 <e, it is obvious that these inequalities imply 
the proposed ones. In (a') and (b% the base 2 cannot be replaced by a smaller base, as is readily 
seen by setting n = 3 and n = 2, respectively. Similarly, in (c'), the base yJ3 is best possible, as 
one can see by taking n = 2. 

From identities (IJ, (I5), and (I6) of [1], we obtain 

I ( ^ - i ) = /w2-/»-i, (i) 

I ( ^ - i - l ) = ^ - » , (2) 
k=l 

and w 

Z ( ^ - l ) = ^ i - » - l (3) 
k=l 

It is easily seen that m < 2m~l for all positive integers m. Thus, (a") follows by considering the 
product of the inequalities Fk <2Fk~l, k = 1,2,3,...,«, and applying (1). Similarly, (b') follows 
from the inequalities F2k_l <2Fu-l~l, k = 1,2,3,...,#, and (2). For the proof of (c% we note that 
m < 3(w~1)/2 for all positive integers m such that m^2. Since no Fibonacci number with even sub-
script equals 2, (c^ follows from F2k < 3 ( ^ _ 1 ) / 2 , k = 1,2,3,...,??, and (3). 
Generalization 2 by H.-J. Seiffert, Berlin, Germany 

We will show that 
fip jF^i, ^ odd n, 
U 2k 1(4+1/V5)", for even n. 

[Also: lower bounds are {2/e)n times the upper bounds.] This follows by taking q- jB2/a2 in 
the inequality 

(2 / e)\\ - q("+iy2f < J|(1 - qk) < (l - q{n+m)\ 

which holds for all q e (0,1) and all positive integers n. This inequality comes from [2]. 

References 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 
2. H.-J. Seiffert. "Problem 4406." School Science andMathematics 94.1 (199»4):54. 

Also solved by Sefket Arslahagid, Paul $. Bruckman, Charles K Cook, L. A, G. Dresel, C 
Georghiou, Pentti Haukkanen, Russell J. Hendel, Norbert Jensen, Joseph J. Kostdl, Can. A. 
Minh, Bob Prielipp, H.-J. Seiffert, and the proposer. 

Addendum: Adam Stinchcombe was inadvertently omitted as a solver of Problems B-769 and 
B-771. 

• > • > • > 
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PROBLEMS PROPOSED IN THIS ISSUE 

H-506 Proposed by Paul S. Bruckman, Highwood, IL 

Let 

A = Y(-iy(——+ -^— ) and B = f(-l)n(-l— + —!— £T 0
V J {Sn + l 5n + 4j ~ v J {Sn + 2 5/7 + 3 

Evaluate A and B, showing that A- aB. 

H-507 Proposed by Mohammad K. Azarian, University ofEvansville, Evansville, IN 

Prove that 

f f y ( Q/o-^w+v) ("Q + W+2) - (#+w -1) "I (J? y+J =} 
LuLaLu 1 j\(n-j)\ J k 
/=0 y=0 k=\ V 

H-508 Proposed by H.-J. Seiffert, Berlin, Germany 

Define the Fibonacci polynomials by F0(x) = 0, F[(x) = \, Fn(x) = xFn_}(x) + Fn_2(x\ for 
n > 2 .Show that, for all complex numbers x and̂ y and all positive integers n.t 

xy-4 
^w^)=»II^(2V+i)^+->')*F* \x + y 

0) 

As special cases of (1), obtain the following identities 
n-\ / -i\n-k+l 

F„(x)F„(x + l) = na± L 2 ^ f » +Y)Ft+1(x2 +x + 4); (2) 
A;=0 « + I V / 

Ml / -
r M r , , n

 l v 1 fn + 2kM xz+4 
^W^(4/x) = / iXTrrT Ujfc + i 

k=0 

2 k 

, **0; (3) 
t=o 

2k + l\.M + \) y X j 

".(^-%tt^L{^y**f- <4> 
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K(*)2 = 

V i W ; 

n- l 

k=0 

2n-2 

= z 
£=0 

1 fn + k\x' 
k + A^ + l) 

(-l)k(2n + k-
k + \{ 2^ + 1 

SOLUTIONS 

GetHyper 

lk+2 _ 

X2 

' > ' 

-(-4) t + 1 

! + 4 ' 

^ + i ( 4 / * > 

(5) 

(6) 

H-491 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol 32, no. 5, November 1994) 

Prove the following identities: 

M"T'IM(:-i>'' - ^ w 
Solution by the proposer 

Proof of Part (a): Let <9„ denote the sum given in the right member of the statement of part 
(a). It is more convenient to evaluate 0n+l. Thus: 

M2^T£^%"-1>*' "-*'••••• (1) 
Now - l 2(2«+12) = 2 ( " + ^ ' (2n+2X2"+1(?) = ("+*)' (2n+^H)^ J J = "}li 
also, 

Therefore, after some simplification, 9n+l is transformed to the following expression: 

^. = (^0-4-lfW^lfj)f-/TW. (2) 
Ar=0 

We recognize the last expression as a special case of the Hypergeometric Function. The Hyper-
geometric Function 2F\[ad >z]ls defined if c - a - b >0 and |z |<l, as follows: 

F[ab ] = y ( o X ^ ^ . (3) 

It may happen that the series in (3) terminates after a finite number of terms, i.e., is a polynomial 
in z, in which case the restriction \z\ < 1 may be removed. 

Since 
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«HY?Y-fYW=(-«-H(-«),(f); * k 
it 

kV 
we see that 

0„+1 = (n + l) -A-".2FX 3 , 5 (4) 

(Note that this expression is well-defined, since 0n+l is a finite sum). 
The following formula is given as Formula 15.1.10 in [1]: 

2*1 3 > z : (2zf '(1 - 2ay\{\ + £f-la - (1 - z) ' - 2 a ] . 

Setting a = -n-^,z = 4l in (5), and comparing with (4) yields: 

0B+1 = (« + !)• 4""(2^)-1(2» + 2)-1[(l + V5)2"+2 - (1 - V5)2n+2] 

(5) 

= 2 2«+2 / i -n-1 r - T / „ 2 n + 2 o2n+2 5 ^ ( a ^ + 2 - ^ + 0 = 2̂ 2n+2-
T h e n ^ = F2w. 

Proof of Part (b): Let Ow denote the sum given in the right member of the statement of part 
(b). Then, performing manipulations similar to those used in the proof of part (a), we obtain: 

®, = (2« + l ) -4 -X( W 7%¥-/ | W - (6) 
k=0 

Then, as in the proof of part (a), Ow may be expressed in terms of the Hypergeometric Function 
as follows: 

3 > J (7) 

This time, we set a - -n, z - V5 in (5), which yields: 

<£„ = (2/? + 1) • 4-"(2V5)-1(2/? +1)-][(1 + Sfn+l - (1 - V5)2w+1 ] 

= 4""(2V5)-122"+1(a2"+1 -/?2"+1) = F2n+l. Q.E.D. 

Reference 
1. Handbook of Mathematical Functions^ ed. M. Abramowitz & I. A. Stegun, National Bureau 

of Standards, Ninth Printing, November, 1970. 

Also solved by N. Jensen andH.-J. Seiffert. 

More Sums 

H-492 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 32, no. 5, November 1994) 

Define the Fibonacci polynomials by F0(x) = 0, Fl(x) = l, Fn(x) = xFn_x(x) + Fn_2(x), for 
n>2. Show that, for all complex numbersx andy and for all nonnegative integers n, 

Z J )Fn_2k{x)Fn_2k{y)^zn-lFri{xylz\ 
£=0 X 

(1) 
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where z - (x2 + y2 + 4)1/2. [ ] denotes the greatest integer function. 
As special cases of (1), obtain the following identities: 

E l * #2*=(3M-2)")/5, (2) 
k=o ^ / 

E L ^ W ^ ^ ^ ' - I ) (4) 

i f c V H + i * ^ = 5"(22"+1 +1), (5) 
[n/2] , x 

S(-l)M^ F2„_4,P„_2t=F„(6), (6) 

where J^ = Fj(2) is the y'th Pell number, 

[n/2] / \ 

I (-1)K"«5' (J W . (7) 
(5,w-2fc)=l 

The latter equation is the one given in H-444. 

Solution by Norhert Jensen, Kiel, Germany 

0. Note that the term on the right side of equation (1) is not defined for z = 0, which can occur 
if x, y eC . However, the singularity is removable. For instance, it is easy to prove by induction 
that, for each n eN0, there is a polynomial function g-w:CxCxC—>C such that zn~lFn(xyI'z) -
g„(x, y,z2). [The start of the induction is trivial. Then 

1. Let XGU. Define 
D(x) = x2 +4, d(x) = ylD(x), 

a(x) = —(x + d(x)\ J3(x) = —(x-d(x)). 

The explicit formula for the polynomials Fn(x) is 

= a(x)n-ft{x)n- for an neN 
d\x) 

2. Identity (1) will be derived from the following: Let a, b, c, d G R be such that ab = cd. We 
prove, for all n G N 0 , 

k=0 
2.1 £ n \(ab)k[an-2k+b"-2k -cn~2k-dn-2k] = {a+b)n-(c + d)". 
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Proof: (i) Let A G R . For all n eN0, we have 

ttSW ^ ' 1(1 +A)"-

Proof of (i): Let 5 = [(« -1) / 2]. 

Case 1. n is odd. Then 5 = ( « - l ) / 2 . We have 

Hence, the binomial theorem implies 

nil 
W 2 

if n is odd, 

if n is even. 

z I F - £ , - * * = 2 * ^ • £=0 

Case 2* ft is even. Then s-(nl2)-\. The proof is similar. The expression on the left side 
contains just the first s and the last s of the s + \ terms of the binomial sum. 

Hence, we have to subtract the term („/2U"/2 on the right side. Q.E.D. 

(H) Let b^O. Substituting X by a I h and homogenizing the expression, we obtain 

\(a+b)\ if wis odd, 

k=0 
^rk\(ab)k(an-2k+bn~2k) = 

(a + b)n- n/2 {ah) nil if n is even. 

It is easy to check that the above equation is true for b - 0 as well. 
(Hi) Substituting c for a and d for b in the above equation and subtracting the equation 

obtained in this way from the one above we get, for all n eN0: 

k^O 

a" -+bn-™-cn-'jLK-dn-2k =0 for k=n/2y so we can replace [(«-!) /2] by [ft/2] in both 
If n is odd, then [(ft -1) / 2] = [ft / 2]; if ft is even, then [(ft -1) / 2] = ft / 2 - 1. However, the term 

n~2k yn-2k „n-2k ,jn-2k 

cases. Q.E.D. 
3. We prove equation (1) for all X J G R and all n GN0. 

3.1 Let x,y eU, and let 
a = (x + d(x))(y + d(y))9 

b = (x-d(x))(y-d(y)l 
c = (x + d(x))(y-d(y)), 
d = (x-d(x))(y + d(y)). 

Note that ab = (x2 - D{x))(y2 - D(y)) = erf = 16. 

3.2 We have d(x)d(y) = zrf(xy / z). 
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Proof: D(x)D(y) = (xy)2+4x2+4y2 + 16 = (xy)2+4z2 = z2[(xy/zf '+4]= z2D(xy/z) and 
d(x)d(y) = zd(xy / z). Q.E.D. 

3.3 For each k e{0,1, ...,[n/2]}, we have 

fl„-2* +br2k_(r2k_dn-2k = 4"-2kd(x)d{y)F„_2k(x)Fn_2k{y). 

Proof: 
ar,-7k+bn-Zk_cn-2k_dr,-2k 

= (x+d(x))"-2k(y + d(y))"-2k + (x-d(x))"-2k(y-d(y))"-2k 

- (x+d(x)y-2k(y-d(y)r2k-(x-d(x)y-u(y+d(y)rU) 
= [(x + d(x))"-2k -(x- d(x))"-2k](y+d(y))n~2k 

-[(x+d(x)y-2k-(x-d(x))"-2k](y-d(y))n-2k 

= [(x + d(x)r2k ~(x-d(x)y-2k][(y+d(y))"-2k -(y-d{y)y~2k] 
= 4"-2kd(x)d(y)Fn_2k(x)F„_2k(y). Q.E.D. 

3.4 We have a + b- 4za(xy I z), c + d = 4zj3(xy I z). 

Proof: 
a + b = (x + d(x))(y + d(y)) + (x- d(x))(x - d{y)) 

= 2(xy + d(x)d{y)) = 2z(xy I z + d(xy I z)) = 4za(xy I z) 
and 

c + d = 2(xy - d(x)d(y)) = 2z(xy I z - d(xy I z)) = 4zfi(xy I z). Q.E.D. 

3.5 As by 3.1, we have ab = (x2 -D(x))(y2 -D(y)) = cd=\6 and we can apply equation 2.1 
for a, b, c, and d chosen as above. Using 3.3 and 3.4, we obtain 

[f] 
S f j l i e M ^ ^ C x v / z ^ ^ W F ^ C y ) = 4V(a(*y I zf - f5{xy / zf). 

Dividing by zd(xy I z) gives 

[-1 
V (n\ F /v* F f,,\ - „n-ia(xylz)n-P(xylz)n _ n-i-, / , 

As the term on the left side is, by the recursion formula, a polynomial expression in the variables 
x, y and the right side is a polynomial in x, y, z2 by 0, the equation is true for all x,y GC. Here z 
can be any of the at most two possible roots of x2 +y2 +4. 
4. Proof of identities (2)-(7). 

4.1 Proof of identity (2): Take x = y = l. From the recursion formula, we obtain 

4.1.1 ^.(1) = Fj for each j GN0. NOW calculation shows: z = V6, d(xy I z) =d(l/j6) = 
5/V6, a(xylz) = a{\lS) = Sl2,m&P(xylz) = p{\lS) = -2/S. Hence, we obtain 

4.1.2 z"~lFn(xy/z) = (S)n~lFn(\IS) = ( ^ " 5 / ^ = 5 -
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2 W + l ] n 

Now substitute 4.4.1, and 4.1.2 in (1). Q.E.D. 

4.2 Proof of identity (3): Take x - 1, y = 0. Let n = 2m +1 (and, finally, substitute m by /*). 
We have JF}(0) = (l; - ( - l ) " ) /2 = 1 or 0, according to whether j is odd or even for each j e[^0. 
Thus, 

4.2.1 S^y„_u(x)F„_2tCy) = i(2";+1)F2(B.t)+l(l)Vt,+1(0) = t( 

Calculation shows: z = V5, rf(xy / z) = d(0) = 2, a(xy / z) = a(0) = 1, and j3(xy I z) = /?(0) = -1 . 

Hence, we obtain 

4.2.2 ^ ( l y / z ^ ^ 

Now substitute 4.2.1 and 4.2.2 in (1). Q.E.D. 
4.3 Proof of identity (4): Let x = 1, y = V5. Let w = 2/w. Since d ( » = rf(V5) - ^(5 + 4) = 3, 

a C ) = (V5+3)/2 = a2, and fi(y) = -fi2,. we have F 2 ^ ) = (a 4 y - ( - /? 2 ) 2 0 /3 = (^ /3)F 4 y for 
eachy* eN0. Hence, 

4.3.1 £ {1)^-2^)^-2^) = i f ^V^^W^-^O) 

= E(J->2,w^x^)=lL2!;>2^4,(^/3). 
Now calculation shows: z = VlO, rf(xy /z) = rf(l / V2) = 3/^2, a(xy /z) = a(l / 4 l ) = V2, and 
/? (xy/z) - /? ( l /V2)- - l /V2. Thus, 

Now substitute 4.3.1 and 4.3.2 in (1). Multiplying the equation by3/V5 completes the proof of 
identity (4). Q.E.D. 

4.4 Proof of identity (5): Take x = \y = S and let n = 2m +1. Then F2j+](y) = (a4j+2 + 
fi*J+2) 13 = L4j+2 13 for each j GN0. Hence 

4-4-* X I Jfc 1 ̂ -2* (*VV,-2* O) = X 2 V ! J F2(m-k)+l 4(«i-Jt)+2 7 3 

Also 

- X I m-k )F2k+\L4L+2 / 3 • 
k=Q^ J 

4.4.2 z"-%{xylz) = ,2mF2m+1(xy/z) = 10'" V 2 " ( ~ ^ V 2 ) = 5 ' " ± - ^ ± 

Now substitute 4.4.1 and 4.4.2 in (1). Multiplying all equations by 3 completes the proof of iden-
tity (5). Q.E.D. 
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4.5 Proof of identity (6): Take x = 3/', where /' = V^T, y = 2. Then <i(x) = i-JE, a(x) = 
(3i+i^f5)/2 = ia\j3(x) = i/3\ Fj(x) = ((ia2yf-(i/32y)/iS = iJ'lF2j9 and Fj(y) = PJy for each 
7 'GN0. Then 

Calculation shows: z = i, d(xy/z) = d(6) = 2y/l0, a(xyIz) = «(6) = 3 + Vl0, and f3(xylz) = 
/?(6) = 3-VU). Hence 

4.5.2 z"-1F„(xy/z) = /"-1F„(6). 

Now substitute 4.5.1 and 4.5.2 in (1). Dividing all equations by in~l completes the proof of iden-
tity (6). Q.E.D. 

4.6 Proof of identity (7): Let x - ia, y - ij3, where again / = v - 1 . We apply the recursion 
formula for the sequences (F.(ia)) and (Fj(i/3)). In this way, we calculate F0(ia)y F^ia), ..., 
F2Q(ia) and F0(ij3), /^(//?),..., F20(ip) and realize that both sequences (Fj(ia)) and (Fj(i/3)) have 
period 20. Thus 

fO, ify - 0 (mod 5), 
|l, ify = l,2,8,9.(modl0), for e a c h / e I V 

-1, if/= 3, 4, 6, 7 (mod 10). 
FJ(ia)FJ(//?) = • 

In particular, Ff(ia)Ff(i/J) - (-l)^+2)/5J if/ and 5 are coprime. Hence, 

4-6.1 i(fl)Fn-n(ia)F„-nm= i H ^ W j ) . 
£ = 0 V y k=0 

(5, «-2fc)=l 

Also, z = ^(-a2 - j32 +4) = l,xy/z = xy = 1, so 

4.6.2 ^ 1 F n (xv/ r ) = JFn(l) = Fw. 
Now substitute 4.6.1 and 4.6.2 in (1). Q.E.D. 
Also solved by P. Bruckman and the proposer. 
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