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SELF-GENERATING PYTHAGOREAN QUADRUPLES AND N-TUPLES

Paul Oliverio
Jefferson High School, Los Angeles, CA 90011
(Submitted December 1993)

1. INTEODUCTION
In a rectangular solid, the length of an interior diagonal is determined by the formula
a*+b* +c =d, €))
where a, b, c are the dimensions of the solid and d is the diagonal.
When a, b, ¢, and d are integral, a Pythagorean quadruple is formed.

Mordell [1] developed a solution to this Diophantine equation using integer parameters (m, n,
and p), where m+n+ p =1 (mod 2) and (m, n, p) =1. The formulas are:

a=2mp c=p*—(n* +md), @)
b=2np d=p*+@m* +m).

However, the Pythagorean quadruple (36,8,3,37) cannot be generated by Mordell's formulas
since ¢ must be the smaller of the odd numbers and

3=p?— (@ +m?)
37 = p* + (n* +m?)
40 =2p?
20=p?,  sopis not an integer.

This quadruple, however, can be generated from Carmichael's formulas [2], using (m, n, p, q) =
(1,4,2,4), that is,

a=2mp+2nq c=p*+q* - +md),

3
b=2np-2mq d=p*+q* +@* +m). ®)

By using an additional parameter, the Carmichael formulas generate a wider set of solutions
where m+n+p+q=1 (mod 2) and (m,n, p,q) = 1.

In the formulas above, either three or four variables are needed to generate four other inte-
gers (a,b,c,d). In this paper, we present 2-parameter Pythagorean quadruple formulas where
the two integral parameters are also part of the solution set. We shall call them self-generating
formulas. These formulas will then be generalized to give Pythagorean N-tuples when a set of
(n—2) integers is given.

2. THE SELF-GENERATING QUADRUPLE FORMULAS

We use a and b to designate the two integer parameters that will generate the Pythagorean
quadruples. The following theorem deals with the three possible cases arising from parity condi-
tions imposed upon a and b.
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SELF-GENERATING PYTHAGOREAN QUADRUPLES AND N-TUPLES

Theorem 1: For positive integers a and b, where a or b or both are even, there exist integers ¢

and d such that a* +b* +c* = d*>. When a and b are both odd, no such integers ¢ and d exist.

Case 1. If a and b are of opposite parity, then
c=(@+b*-1)/2 and d=(a*+b*+1)/2.

Proof:
d*-c*=(d+c)d-c)

)
e

=a® +b%

Therefore, d* = a* +b* +¢*.
Since a and b differ in parity, ¢ and d in (4) are integers.

Corollary: From (4), we see that ¢ and d are consecutive integers. Therefore,
(a,b,c,d)=1, even when (a,b) #1.

Case 2. If a and b are both even, then

2, 12 2,12
c:(a +b j~l and d:(a +b )+1.
4 4

16(d? - c*) = (a* + B> +4)’ — (a® +b* - 4)?
=16(a* +b%).

Proof:

Therefore, d* = a* +b* +¢*.
Since a and b are both even, ¢ and d in (5) are integers.

Corollary: If a—b=0 (mod 4), (a*+b*)/4 is even and ¢ and d are con-
secutive odd integers, so (a,b,c,d)=1. But, if a—b=2 (mod 4), (a* +b*)/4
is odd, ¢ and d are consecutive even integers, and (a, b, c,d) # 1.
Case 3. If a and b are both odd, then a® = 5% =1 (mod 4).
Since ¢? = 0 (mod 4) or ¢* =1 (mod 4), and similarly for d*, we have:
a* +b* +c* =2 (mod 4) # d* for any integer d

or
a* +b* +c* =3 (mod 4) #d? for any integer d.

Hence, no Pythagorean quadruple exists in this case.

1996]
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SELF-GENERATING PYTHAGOREAN QUADRUPLES AND N-TUPLES

3. SELF-GENERATING PYTHAGOREAN N-TUPLES

The ideas and methods of proof for the self-generating quadruples can be generalized to the
N-tuple case. We need to find formulas for generating integer N-tuples (a,, a,, ..., @,) when given
a set of integer values for the (n—2) members of the "parameter set" S=(a,,a,,...,q,,).
Analogous to the parity conditions imposed on the self-generating quadruple formulas, we intro-
duce the variable 7. Proofs of the formulas are left to the reader; they are similar to those for
Theorem 1.

Theorem 2: Let S =(a,a,,...,a,_,), where g, is an integer, and let 7 = "# of odd integers in S."

If T#2 (mod 4), then there exist integers a,_, and a, such that

a12+a§+~-+a§_1:a3. ©)

Case 1. Let 7'=1 (mod 2), which implies that 7=1 (mod 4) or 7’=3 (mod 4). Then,
setting
a,  =[af +a? +~~-+a§_2 -1]/2,
and (7
a, =[a?+at+--+a’ ,+1]/2,
we have
ay —dy = (@, +a,.,)(a,~a,.,)
=[2(a} +a} +---+a?,)/2][2/2]
=al+ai +-+al,
as required.

Case 2. Let 7=0 (mod 4). Then, setting
a, = [al2 +a+-- +a3_2]/4—1
and (®)
a,=[at+a+-+a’,]/4+1,
we have
ar? - 03_1 = (an +an—1)(an - an—l)
=[2(a} +a? + - +a’,)/ 4][2]
=al +a} +--+a’,
as required.

Case 3. Suppose 7'=2 (mod 4). Then a} +a? +--- +a}

a’_, =0 (mod 4) or a’_, =1 (mod 4), we have

, =2 (mod 4) And since either

al+ai+--+al,+al =2(mod4)#a’ for any integer a,,
or

al+a+--+al,+a’,=3(mod4)#a; forany integer a,.

Hence, no Pythagorean quadruple N-tuple exists in this case.
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FIBONACCI ENTRY POINTS AND PERIODS FOR PRIMES
100,003 THROUGH 415,993

A Monograph
by Daniel C. Fielder and Paul S. Bruckman
Members, The Fibonacci Association

In 1965, Brother Alfred Brousseau, under the auspices of The Fibonacci Association, compiled a two-
volume set of Fibonacci entry points and related data for the primes 2 through 99,907. This set is currently
available from The Fibonacci Association as advertised on the back cover of The Fibonacci Quarterly. Thirty
years later, this new monograph complements, extends, and triples the volume of Brother Alfred's work
with 118 table pages of Fibonacci entry-points for the primes 100,003 through 415,993.

In addition to the tables, the monograph includes 14 pages of theory and facts on entry points and their
periods and a complete listing with explanations of the Mathematica programs use to generate the tables. As
a bonus for people who must calculate Fibonacci and Lucas numbers of all sizes, instructions are available
for "stand-alone" application of a fast and powerful Fibonacci number program which outclasses the stock
Fibonacci programs found in Mathematica. The Fibonacci portion of this program appears through the kind-
ness of its originator, Dr. Roman Maeder, of ETH, Ziirich, Switzerland.

The price of the book is $20.00; it can be purchased from the Subscription Manager of The Fibonacci
Quarterly whose address appears on the inside front cover of the journal.

1996] 101




COUSINS OF SMITH NUMBERS: MONICA AND SUZANNE SETS

Michael Smith

5400 N. Wayne, Chicago IL 60640
(Submitted February 1994)

1. INTRODUCTION

For any x eN, x may be expressed as the sum a,+a,(10')+---+a,(10), where each
a <{0,1,2,...,9}.

Suppose that x eN is a composite number. Then x = p,p, ... p,,, Where each p, is a prime
number. We can then formally define two functions S(x) and §,(x) as

d m
S(x)=Zaj and Sp(x)=ZS(p,).
Jj=0 i=1

That is, S(x) is the digital sum of x and §,(x) is the digital sum of the prime factors of x.
Wilansky [2] defines a Smith number as a composite integer where S(x) = §,(x). This paper
deals with two kinds of sets related to Smith numbers. These sets are called Monica sets and
Suzanne sets.

Definition 1.1: The n™ Monica set M, consists of those composite numbers x for which
n|S(x)-S,(x) [we write S(x) =,S,(x)].

Definition 2.1: The n™ Suzanne set S, consists of those composite numbers x for which n|S(x)
and n|S,(x).

It should be noted that because I developed this concept from Smith numbers, I consider it to
be akin to Smith's. Therefore, I have named these sets after my cousins, Monica and Suzanne
Hammer.

2. ON THE POPULATION OF MONICA AND SUZANNE SETS

The following theorems give indications of what sort of integers belong to Monica and
Suzanne sets.

Theorem 2.1: If x is a Smith number, then x eM,, Vn eN.

Theorem 2.2: xS, =>xecM,.

Note that the converse of Theorem 2.2 is not true; for example, 10 =5x2, thus §(10) =1 and
§,(10)=7. 10 € Mg since 6]1-7, but 10 S since 6/1.
Theorem 2.3: For any integer k > 1, if x is a k-Smith, then x eM, _,.

Proof: McDaniel [1] defines a k-Smith as a composite number x such that kS(x) =S ,(x).
Thus, S(x)—S,(x) is divisible by k—1. Therefore, x eM;_,. O
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3. RELATIONS BETWEEN SETS OF MONICAS AND SETS OF SUZANNES

There are some rather simple properties of Monica and Suzanne sets that may be useful in
later studies.

Theorem 3:
(@) If p,q eN and p|q, then x e M, implies x e M5
() If p,q €N and plq, then x €S, implies x €8S ,;
(¢) If p,q eN and p|q are relatively prime, then x €M, and x €M, implies x eM,,;;
(d) If p,q eN and p|q are relatively prime, then x €S, and x €S, implies x €8S,

4. INFINITE ELEMENTS IN EACH MONICA AND SUZANNE SET

The most interesting property of Monica and Suzanne sets is that every Monica set and every
Suzanne set has an infinite number of elements. McDaniel [1] proves that there is an infinite
number of Smiths; this implies, by Theorem 2.1, that every Monica set has an infinite number of
elements. The proof that there is an infinite number of elements in each Suzanne set is more
complicated.

Theorem 4: All Suzanne sets have infinitely many elements.

Proof: Consider S,. For any composite number x, 1/5(x) and 1|5 ,(x).

For S,, where n>1, we need to construct a candidate integer » such that S(r)=n. Let r be
an n-digit Repunit, that is, a string of 7 ones (see [3]). Let z= ar, where a is determined by the
following table:

S,(r)=,0 then
S,(r)=,1 then
§,(r)=,2 then
S,(r)=,3 then
S,(r)=,4 then
§,(r)=,5 then
§,(r)=,6 then

Il

since S,(Ir) = S,(r)
since §,(9) =6
since S,(5) =5
since §,(4) =4
since §,(3) =3
since §,(2) =2

5 since §,(15)=8=,1

R R R R R R R
Il
— N W A L O e

From the table it should be obvious that 7|S,(r)+S,(a), and thus 7|S,(z). Note that
S(z) = §(r)S() because of our choice of 7, so n|5(z).

Let m be an integer such that n|(S,(z) +7m) and let y =z+10". Clearly, S,(y)=S,(z) +
§,(10™) and S,(10™) = 7m; thus, n|S,(y) = S,(z) + 5 ,(107).

Note that S(y) = S(z), so n|S(y); thus, ar+10" =y €8, for all m such that n|S, (ar)+7m.
Clearly, there are infinitely many choices for m. O
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APPLICATIONS OF FIBONACCI NUMBERS

VOLUME 6
New Publication

Proceedings of The Sixth International Research Conference

on Fibonacci Numbers and Their Applications,
Washington State University, Pullman, Washington, USA, July 18-22, 1994

Edited by G.E. Bergum, A.N. Philippou, and A.F. Horadam

This volume contains a selection of papers presented at the Sixth International Research Confer-
ence on Fibonacci Numbers and Their Applications. The topics covered include number patterns,
linear recurrences, and the application of the Fibonacci Numbers to probability, statistics, differen-
tial equations, cryptography, computer science, and elementary number theory. Many of the papers
included contain suggestions for other avenues of research.

For those interested in applications of number theory, statistics and probability, and numerical
analysis in science and engineering:

1996, 560 pp. ISBN 0-7923-3956-8
Hardbound Dfl. 345.00 / £155.00 / US$240.00

AMS members are eligible for a 25% discount on this volume providing they order directly from
the publisher. However, the bill must be prepaid by credit card, registered money order, or check. A
letter must also be enclosed saying: “I am a member of the American Mathematical Society and am
ordering the book for personal use.”

KLUWER ACADEMIC PUBLISHERS
P.O. Box 322, 3300 AH Dordrecht P.O. Box 358, Accord Station
The Netherlands Hingham, MA 02018-0358, U.S.A.

Volumes 1-5 can also be purchased by writing to the same addresses.
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TRIANGULAR NUMBERS IN THE PELL SEQUENCE

Wayne L. McDaniel

Department of Mathematics and Computer Science,
University of Missouri-St. Louis, St. Louis, MO 63121
(Submitted June 1994)

1. INTRODUCTION

In 1989, Luo Ming [5] proved Vern Hoggatt's conjecture that the only triangular numbers in
the Fibonacci sequence {F,} are 1, 3, 21, and 55. It is our purpose, in this paper, to show that 1
is the only triangular number in the Pell sequence {P,}.

Aside from the proof itself, Ming's unique contribution in his paper was his development and
use of the value of the Jacobi symbol (8F,,, +1|L,;), where {L,} is the sequence of Lucas
numbers, g is odd, and £ =2 (mod 6). In other papers involving similar arguments, the value of
the Jacobi symbol (f(2kg+m)|L,), for certain functions f(n) of F, and/or L,, has often been
obtained for ¢ a divisor of &, but not for 7 equal to 2% (e.g., [1], [2], [3], and [7]).

It is immediate, from the definition, that an integer % is a triangular number iff 84 +1 is a
perfect square >1. We shall employ an argument similar to that used by Ming to show that, for
every integer n# 1, there exists an integer w(n), such that 8P, +1 is a quadratic nonresidue
modulo w(n).

We require the sequence of "associated" Pell numbers defined by Oy =1, O, =1 and, for all
integers >0, Q,,, =20,,,; +0,. The first few Pell and associated Pell numbers are

{P}=1{0,1,2,512,..} and {Q,}=1{1,13,7,17,...}.

2. SOME IDENTITIES AND PRELIMINARY LEMMAS

The following formulas and identities are well known. For all integers » and m,

P, =(-)"™P, and Q,=(-1"0,, 1)
Prin= PPy + B, P, @
Boin=20,0,-(D"F,_,, 3)

Py = 520,200 20) -+ 20y, )
0 =25, +(-1", (5)

O =205~ (1" (6)

If d = ged(m, n), then

{gcd(Pm, 0)=0, ifm/diseven, o

ged(B,,0,) =1 otherwise (see [4]).
We note that (6) readily implies that, if 7> 1, then O, =1 (mod 8).
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Lemma 1: Let k=2',t>1,g>0 be odd and m be any integer. Then,

(i) })Zkg+m = _Pm (mOd Qk)’ and
(ii) Poyg=1thy (mod Oy;).

Proof: (i) is known [and can be easily proved using (1) and (3)]. If n=2kg =2k(g—1)+2k,
then, using (3), (ii) readily follows from

F, = 2sz(g—1)Q2k - (“l)szzk(g—z) = _I)Zk(g—Z) (mod O,).

Lemma 2: I k=2',1>1, then (8B, +1/0y) = (-8B, +1|0y;).

Proof: We first observe that each Jacobi symbol is defined. Indeed, if d = gcd(8B, +1, 0,;)
or gcd(—8P,;, +1, 0,;), then, using (5), d divides

(8B +1)- (-8B +1) =1-64B% =1-32(0% — 1) =33-20%.
Hence, d{33. But 33|F, which implies d =1, since, by (7), gcd(F,,, O,,) =1.
To establish the lemma, note that
8Py +110y )-8y, +1]0y) = (1- 6455 |0) = (3310y) = (05 133).
Now, by (6), O, =17, O, =207 ~1=2-17*-1=16 (mod 33), and by induction, Q,, =16 (mod
33)if r>2. Hence, if t 21, (0, |33)=+1.
Lemma 3: If k=2"1>2, then 85, +(,|33)=-1.
Proof: 0, =3, O, =17=-16 (mod 33), and as observed in the proof of Lemma 2, ,, =16
(mod 33), if j > 3. Hence, by (4), if1>2,
85, =8P,(20,)20,) -+ (20,1) =8-2-6-(£1) = £3 (mod 33),

so, 8F, + (), = £13 or £19 (mod 33) and both (+13|33) and (+£19/33) =-1.

From a table of Pell numbers (e.g., [6], p. 59), we find that P,, =0 (mod 9) and B5 =1 (mod
9). Using (2),
Fiau=Ebs+ 1 By=F, (mod9),

n

and we have, immediately,

Lemma 4: If n=m (mod 24), then P, = P, (mod 9).

3. THE MAIN THEOREM

Theorem: The term P, of the Pell sequence is a triangular number iff = £1.

Proof: If n=+1, P, is the triangular number 1. By (1), if  is an even negative integer, then
8P, +1 is negative, and if n is odd, then P, = P,; hence, it suffices to show that 8P, +1 is not a

square for n>1. Let n=2kg+m, k=2 t>1 g>1 odd, and assume P, is a triangular number.
[Then (8F,+1|N) = +1 for all odd integers N.]
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Case 1. n odd. Since n==1 (mod 4), 8P, +1= 8P g1 +1=—-7(mod O;), by Lemma 1(i)
and (1). But it is readily shown, using (6), that O, =3 (mod 7). Hence,

@F+110) =710 = (G D =BT = -1,
a contradiction.
Case 2 (mod 4): n=2. It is easily seen that {F,} has period 6 modulo 7, and that, for n
even, (8F,+1|7)=+1 only if n= 0 (mod 6). Hence, n=16 (mod 24). By Lemma 4,
8P, +1=18F, +1=3 or 8 (mod 9).
But 3 and 8 are quadratic nonresidues of 9, so 8P, +1 is not a square.

Case 3. n=0 (mod 4). By Lemma 1(ii) and Lemma 2,

BF, +1{Oy) = BBy +1|0yy).
Ifk=2(=1),08P,+10,;,)=(97|17) =—-1. Assume 7 >2. Now,

8By +1=8By, +(20; ~ Oy) = 20, (8B, +Q,) (mod Oy).
Let s, =8P, + O, [note that 5, =1 (mod 8)]. Then, using properties (5) and (6),

BPy +11Op1) = (Or 1D0 ) (5 D) = (O | O ) (O I5t)
= (207 -11Q)QE? + 0F ) = (+DQ2B? + (5, —8K)*|s)
= (66P215) = (3315,) = (5,133) = BB, + 0, 33) = -1,

by Lemma 3, and the proof'is complete.
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INTRODUCTION
Let S, be the set of n! permutations IT= ..., ofZ,={1,2,...,n}. For Il €S,, we write
II=aa,...a,, where I1(i) = a,.
Definition 1. ={ITeS,|la,, #a +1foralli,1<i<n}, |E|=p,;

'={H b la,=n}, |B,|=D,;
P={I1eS,la,, #a,—-1foralli, 1<i<n}, |E/|=p};
F/={llekR|a,=n}, |F)=p;.

i

Definition 2: E:z{l‘[ €P|>a, >&§—Qf0r any i,1<i <n},

j=1
L=9¢;
I 1(1+)
I =<I1eh, Zaj> foranyi, 1<i<nyg,
j=1
I'=9¢, |L1=1, [L]=1,

Definition 3: R,:=P,NF,, G,:=1T nT!, |G,|=r,, |G,|=g,.

From Computer Science, Varol first studied 7, and obtained the recurrence for #, (see [1]).
In [2], R. Luan discussed the enumeration of 7' and G,. This paper deals with the above prob-
lems in a way that is different from [1] and [2]. A series of new formulas of enumeration for 7,
t,, and g, (Theorems 1-9) has been derived.

1. ENUMERATION OF ¢, AND ¢]

Lemma 1: n— k

Pn=(n—1)'Z( 1 =D,+D

n—1» (11)

where D, =n!37_ '.! is the number of derangement of {1, 2, ..., n} (see [3]).

Proof: Consider the set S’ = {(1, 2); (2,3);...; (n—1,n)}. We say that an element (j, j+1) of
S’ is in a permutation ITif I1(}) = j, TI(F +1) = j+1 for some i.

Let ¥, be the number of permutations in S, containing at least £ elements of S’. The number
of ways of taking k elements from S’ is (";'). Suppose the & elements have j digits in common.
Then these k elements form (k — j) continuous sequences of natural numbers, each of which is
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called a block. Thus, the number of remaining elements in Z, is (n—2k + j). The number of per-
mutations of (n—2k + j) elements and (k — j) blocks is [(n -2k + j) + (k — j)]'= (n—k)!. Hence,

W, =("" -k
By the principle of inclusion and exclusion (see [3]):

n=S (" o-m=a-nS e E=pan,,,
k=0 k=0 k!

where D, =n!Y}_, (‘k#,)k is the number of derangement of {1, 2, ..., n} (see [3], p. 59). U

Lemma 2:

n—-1
P.=2, (=)™ p;, where p, =1.
J=0

(1.2)

Proof: 1t is easy to see that p, = p,.;— P,_;. Applying the above recurrence repeatedly, we

get (1.2). O

Let 0
P(x)=Y px".
n=0

Theorem 1:
n-2

L=2CD)"p =D Pl
i=0

i=1
Proof: Consider the following subset P of P,.

P’ = {(alaz.‘.a,....an) €P| for somei, 1<i<n,

i(i+1 ..
a+a,++a =—(——2, but fori < j<n,
2

i

a1+a2+---+aj>@}.

(1.3)

(1.4)

If i <n—1, then the number of such permutations is p,_;; if i =n—1, the number is p,_;. Thus,

n=2
IPnO |= zpitn—i +Pp1-
i=1
Hence,
n-2
1y = Py =B} 1= P =D Dt = Dot -
i=1

Substituting (1.2) into the above formula, we have (1.4). O

To simplify (1.4), we establish a lemma as follows.

Lemma 3: If
n-2
,y=a,— Y bt, ,, n=2,
i=1

then
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1 a,
b 1 0 g
t =0 b 1 a | (1.5)
. b o1
b,y b3 o0 a4y,

Proof: This follows from the expansion of the determinant along the bottom row. [

Hence, we can write (1.4) as

Theorem 2:
1 p—pitl
nl 0 »-p+p-1
=P A Ps=PstPy= P+l . n>2, (1.6)
pl 1 e
Pna2 Pnsz 0 Dy pn_pn—1+pn—2—”'+(_l)n
Example 1:
1 0 0 p-p+l 100 1
=P 1 0 p-p,+p-1 :1 10 2:33
bl Pt -ptl 111 9 '
Dy P, b Ps—Patps—pptp—l) |31 1 44
Let 7(x) =2, ,t,x",1, = 0. Then we have
Theorem 3:
1 o0
T(x)=(1+x)"———, where P(x)= Y px". 1.7
P(x) Z:%

Proof: From (1.4),

P10 = S S <3 (S e

n=0 =0 \i=0

:i(i(—l)"‘ipi)x _i( l)mx’"Zp,,x -1=(1+x)"P(x)-1.

0 \i=0 m=0 n=0
Hence,
T)=(1+x) "' ———
P( )
Now we shall consider 7).
Lemma 4:
Pr= Py (1.8)

Proof: If (aa,...a,) €P, then (a,a,,..a,a) cP;. The above correspondence is one-to-
one; thus, |£,|=|F)|. O
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Arguing as in the proof of Theorem 1, we get

Theorem 4:

By recurrence (1.9) and Lemma 4, we have an explicit formula for ¢/ as follows.

Theorem 5:

Let the generating function for 7, be 7"(x) =2

Theorem 6:

Proof: By (1.9), X, pt,_; =p,,n=1. Thus, P(x)T"(x) = P(x)—1, and we have

Lemma 5:

Proof: Since T(x)=1/(1+x)-1/[P(x)], T"(x) =1-1/[P(x)]; hence,

ie.

Comparing the coefficients of x”, we have ¢, — ¢, = (-1)", i.e, (1.12). O
According to (1.12) and (1.10), we have a simple expression for 7, as follows:

Theorem 7:

t =Pz

1
Dy

pn—l

7(x) - T"(x) = —

n-1
=p,— > Dl
i=1

T'(x)=1-

1
D

pn—2

1
P(x)’

41
O D,
D3
1 pn—l
pl pn
w0 X" 1 =0.
1
P(x)’

t, =t +(-D"

1

X

+x’

as required. O

i(t" —-1)x" = i(—l)”x”.

1

4
Dy

Pr

1
J4

0

1

P2

1
b

D
P2
P

Pr1
DPn

For Example 1, we can count £ by the above formula:
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1 0 O

0 p 1000 1

nl 0 0 p 1100 1
t=|p, b 1 0 pl+(C-1’=|1 1 1 0 3|-1=33

Pl py 311 111

P Py Py P Ps 11 3 1 1 53

Since the enumeration for p, is simple (we may look it up in a table of values of D,) count-
ing #, by (1.1) and (1.13) is easier than the method of [2].

2. ENUMERATION OF g,

Definition 4: R, ,:={Il=(aa,...a,) €S,|II contains either (i,i+1) or (i+1,i), but for Vj <i,
IT contains neither (j, j+1) nor (j+1, j)}. Let R ;|=r,,.

Lemma6: 1,,=2(n-1!, n>2; ;=1

Proof: By definition, R, is all permutations of §, containing either (1,2) or (2,1). If we
regard (1,2) as an element, then (1,2) and the remaining (n—2) elements of Z, form (n—1)!
permutations. Note that there are two permutations of {1,2}. Thus, r, , =2(rn-1)!. O

Lemma 7: 1, ,=2(n-1!-2(n-2)!.

Proof: Let us count the number of permutations containing either (2, 3) or (3, 2) but neither
(1,2) nor (2, 1).

Arguing as in Lemma 6, we know that the number of permutations containing either (2, 3) or
(3,2) is 2(n—1)!. We have to eliminate those permutations containing (1,2,3) or (3,2,1), the

number of which is 2(n—2)! by an argument analogous to Lemma 6. Thus, we have proved
Lemma 7. O

Lemma 8: Toi =Ty ict = Tutic1 —Tuoy iz, Where 2<i<n, 1, 4 =0. 2.1)

Proof: Each permutation of R, ; contains (7,7 +1) or (i +1,7). If (,i+1) is followed by i -1
or if (i +1,7) is preceded by i —1, then (i +1) is removed, and we subtract 1 from every digit that
is greater than 7+1. Thus, we get an element of R, ;. Conversely, given a permutation of

R, 1,1, we add 1 to each element greater than 7 and then interpose an 7 +1 between (i, —1) or
(#—1,7). This yields an element of R, .

If (i,i+1) is not followed by i —1 or preceded by (i +1,7), we regard (i,i+1) or (i +1,7) as
a single element and subtract 1 from every digit greater than i+1. This yields an element
Sy =Ry 1 VR, 20 UR, . Thus,

i-1
Toi=hepic1t 2[(n -D!- Z T, j].
j=1

Hence,

i-2
i = 2{(’1"1”“2’;:-1,;]"%—1,1‘—1: (2.2)
J=1

112 [MAY



VAROL'S PERMUTATION AND ITS GENERALIZATION

ie.,

i = (rn,i—l _rn-—l,i—Z)_r—l,i—l' U

Using Lemmas 6, 7, and 8 above, we can express 7, , in terms of 7, ;:
Ty =Ty T = 2m-D'-2(n-2)!,
rn,3 = I‘n’l —37'”_1’1 +rn_2’1 = 2(n'— 1)’ —6(11—2)! +2(n'_3)!,

T

In general, let
Tk = 20-D = 22+ +a, (D)2 -k)!.

Obviously a, ; is independent of n. It only depends on k. We can prove

Lemma 9:
Clk’l = l,
A =Wy F Gy 1+ HG o, 1< < k, 2.3)
ak,k = 1.

Proof: Sincer, , =35 a, 2(n—HI(-1)"*' by (2.1), we have:

Bk =V k-1 ~ hm, k-1 ~ Tat, k2
k-1 . = " k2 » .
=) (D" A, jz(" -N- Z; =D"ay, jz(”‘ —1-)!- Zl D"ay_,, ,‘2(" —-1-))!
Jel J= J=
k-1 } .
=a,_,,2(n-1!+ Z (- @y, + Wy ja T By 1 )2(n— !+ (—l)k+lak-1, -12(n—k)!.
=2

Comparing the two formulas above, we obtain relations for g, ;, as follows:

@ =gy, thus, ap 1 =ap_; =y, ==a,,=],
A ;=g F Ay T Wy s 1<j<k,
B =Wy pmpp tUS, @ =gy =-=a;,=1 O
Lemma 10: A ;= i1 - 2.4)

Proof: We prove the lemma by induction on k£. For £=1,2, or 3, this is straightforward.
Suppose that (2.3) holds for £ —1. By (2.2),
N S R R R el S e I S [ e N T
By (2.3) and (2.4), we easily obtain the expression for 7, ,:
Foq = 2(n-1n!,
o =2n-D!-3-2(n-2)! +2(n-3)!,
3=2n-D!-5-2(n-2)! +5-2(n-3)! -2(n-4)!,
Tha =2n=1)1=7-2(n-2)1+13-2(n-3)! = 7-2(n—4)! + 2(n - 5)!.

n.
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For g, ;, using
A2, j-1
ak—1,+j—1 +ay,
ak,“j’
we obtain the above formulas one by one. Now, using (2.1), we get the table for 7, , shown

below.

TABLE 1. r,, (k<n), 1, ,:=r1,

n k|0 1 2 3 4 5 6
0 |0

1 {0 1

2 |0 2 0

3 |0 4 2 0

4 |0 12 8 2 2

5 |0 48 36 16 6 14

6 |0 240 192 108 56 34 90
7 |0 1440 1200 768 468 304 214

Setting £,(x) = X7t . ,x*, and letting i = n—1 in (2.2), we have

Corollary:
Von-1= 2(” - 1)' +rn-1,r1-2 - 2f —1(1) . (25)

Lemma 11:
1y =3 Ot n =T pe) - (2.6)

Proof: Denote the set of permutations containing neither (n—1,n+1,n) nor (n,n+1,n-1)

in Rn+1,n by Rn+l,n < 1€n+l,n'

For any & €R,, inserting n+1 to the left or right of 7 in &, we get @’ €R;,, ,. Conversely,
if @’ €R;,, ,, then eliminating n+1 yields @ €R,. Hence, 2r, =|R,, ,|.

Now we count |R;,, | It is sufficient to subtract the number of permutations containing
(n-Ln+l,nor (n,n+,n-1)in R, , fromr,, ,. Regard (n+1,7n) as a single element. Then
27, 1 is the number of permutations containing no (n—1,n+1,n).

By a similar argument, the number of permutations containing no (n,n+1,n-1) is 37, , .

Thus,|R},, 1= 71w =37 nt — 3 Tn no1- Since 27, =|R;, |, we get (2.6). O

Lemma 12:
1y ===+ f, (D £,(D)+7, 1, @.7)
r=3 (n-iYn-1) - £,(1), @38)
i=1
where 0-0!1=1.

114 [MAY



VAROL'S PERMUTATION AND ITS GENERALIZATION

Proof: Substituting (2.5) into (2.6), we obtain
r,= %[2 nltr =26, -2(n-D!-r,_, , ,+2f,_ (D]

Using (2.6), we get (2.7). Applying (2.7) repeatedly, we have
n=2
r= 2, (=Dn-0) - f,()+1+ f,(1).
i=1

Since , =0 and f,(1) = 2, we obtain (2.8). [

By (2.6), it is easy to get 7, from 7, ,. In Table 1 we denote 7, , =7,. Thus, by (2.6), the
values of 7, on the principal diagonal can be obtained as half the difference between the two adja-
cent elements on the secondary diagonal. Unfortunately, we cannot count 7, until we complete
Table 1. But (2.7) and (2.8) can do that, namely, both 7, , and 7, are counted without 7,,, , .

IfWe set frq(¥) = Tfoo 7, 1, We have

Lemma 13:
x .
16 = {21 D= 21, = (L 0/, () 2.9)
Proof: By (2.1), we have
n-1 n-1 n-1 n—-1
Zrn,kxk = Ern,k—lxk - Z” —l,k—lxk - 2” -1,k—2xk,
k=2 k=2 k=2 k=2

Ja(¥) =1, X =xf,(x) -1, X = Xy (%) = x2fn—l(x) +5 S 4
By (2.6), we have
A-x)f,(x)=2(n-Dlx-2r,_x"-x(A+x)f,_(x). O
Example 2: Since f,(x)=12x+8x>+2x°, r, =2. We get
Filx) = -lf—x[z-m —2.2x* = (1+x)(12 +8x% + 2x%)]
= Ti‘—x[48 —12-20x%% — 10x® - 6x*]
=48x +36x? +16x> + 6x*,

ie,r,=48, 1 ,=36,7;=16, i, =6 From (2.9), we may obtain

Jalx) = (Ti)ﬁ[nf D =D 1+ x) T (- x)"
2| £
B (2.10)

i=1

e 'f(_ D7 (14 X) 7 (=) 2+ (D" (14 x)"_z].

The application of (2.10) is not as convenient as that of (2.9), but it provides the following
information: 7, , must be even. It coincides with the expression of 7, ;, i.e,,

1996} 115



VAROL'S PERMUTATION AND ITS GENERALIZATION

Lok = zak,j 2(n— j)!(*l)j+l .
j=1

Theorem 7:

n ) n-1
g =2 )=y g, + (D) 2.11)
j=1 j=1
Proof: By a method similar to Theorem 1, it is easy to show that
n-1
& =T = D118~ Trts (2.12)
j=1

where 7,_, is the number of permutations in R,_, whose right-most entry is n—1.

Similar to Theorem 1, we have

-1
Fn——_l — (_l)n—l—jrj +(__1)n+1. (2 13)

=1

3

[
]

Now, substituting (2.13) into (2.12), we obtain (2.11) as required. O

According to (2.11), we can count g, by recurrence. Using (2.11) and noticing that
g =8, = & =0, we get an explicit formula for g,.

Theorem 8:
1 r,
11 =1
b 1 1 T,—F+r,
&=\ S , n=24, (2.14)
. l rn_ .. +(_l)n—1r4
Faeg Ty-s 03 1 rn_r,,_1+"’+(—1)nr4
Example 3:
107 1 0 2
g&=|1 1 r-r, |=[1 1 14-2 |=68
r 1 r—r+r| |0 1 90-14+2

Let G(x) = Z g.x", R(x)= Zr,,x”, 7,=0.
n=0 n=0

Theorem 9: G(x)=(1+x)"" = (R(x)+1)™".
Proof: By (2.11),
nZ—lr,-gn_,» 8= ()" r + ()
= =
Noticing that g, =0, we have
G(x)-R(x)+G(x) = (1+x)'"R(x)+(1+x)" -1;
thus, G(x) = (1+x)"' = (R(x)+1)™. O
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Corollary:
_1a 1 o
&= = R@ + 07|
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A Niven number [3] is a positive integer that is divisible by the sum of its digits. Various
papers have appeared concerning digital sums and properties of the set of Niven numbers. In
1993, Cooper and Kennedy [1] proved that there does not exist a sequence of more than 20
consecutive Niven numbers; they also proved that this bound is the best possible by producing an
infinite family of sequences of 20 consecutive Niven numbers. They used a computer to help
solve systems of linear congruences, the smallest such sequence they found has 44363342786
digits. In 1994 Grundman [2] generalized the problem to n-Niven numbers with the following
definition: For any integer n>2, an n-Niven number is a positive integer that is divisible by the
sum of its digits in the base n expansion. He proved that no more than 2n consecutive n-Niven
numbers is possible. He also conjectured that there exists a sequence of consecutive n-Niven
numbers of length 27n for each n>2. In this paper, by solving some congruent equations of
higher degree, we obtain the following theorem without the use of a computer.

Theorem: For n=2 or 3, there exists an infinite family of sequences of consecutive n-Niven
numbers of length 2n.
Let s5,(x) denote the digital sum of the positive integer in base n. Consider
x=3432 4. 43543 sk s>k >3,

since §(x)=09, s5(x+1) =10, s5(x+2) =11, s5(x-1)=14, s3(x—-2) =13, 55(x—3)=12, the set
{x-3,x-2,x-1,x,x+1,x+2} is 6 consecutive 3-Niven numbers if and only if the following
congruences are satisfied:

Xy +3=0 (mod5) (0))
Xo+7=0 (mod11) 2
Xo+5=0 (mod7) 3)
Xo+12=0 (mod13) @)
Xy =0 (mod4) (%)

where x, = 3k 43k 4. 3k Noting that the orders of 3 modulo 5, 11,7, 13,4 are 4, 5, 6, 3, 2,
respectively, and [4;5, 6, 3,2] = 60, if the set {x—3,x-2,x—1,x,x+1, x+2} is 6 consecutive 3-
Niven numbers, then all of the sets {x’—3,x'—2,x'—1, x’, x’+1, x' + 2} with

X = x'(my,my, ..., mg)=30760m 1 3av0m o 3t 4y >0

are 6 consecutive 3-Niven numbers.

Note that 3* =3 (mod 4) iff £ =1 (mod 2), 3* =1 (mod 4) iff # =0 (mod 2). Let x; and x,

denote the number of odd %; and even £, respectively. Then from (5) one has
X +x,=8

3x;+x, =0 (mod 4) )
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with particular solutions (x;, x,) = (8, 0), (6, 2), (4, 4), or (2, 6).
Similarly, 3* =3 (mod 13) iff £ =1 (mod 3), 3* =9 (mod 13) iff k =2 (mod 3), 3* =1 (mod
3) iff k=0 (mod 3). Let x, x,, and x; denote the number of k, (1<i<8) in the form 3m+1,
3m+2, or 3m, respectively. Then from (4) one has
X, +x,+x;=8 4
3x,+ 9%, +x;+12=0 (mod 13) )
with particular solutions (1, 7,0), (3,0, 5), (4,3,1), and (3,2, 3).
Also, 3¥=3,2,6,4,5,1 (mod 7) iff k =1,2,3,4,5,0 (mod 6), respectively. Let x, (0< j<5)
denote the number of &, (1<i <8) satisfying £ = j (mod 6). Then from (3) one has
X +Xy+X3+x,+X5+x, =8
3x; +2x, + 6x; +4x, +5x5 +x, +5=0 (mod 7).

€Y

There are many solutions to this system. We find some which also satisfy equations (4') and (5").
That is,
() %3 + x5, X, + %4 + %) = (8, 0), (6,2), (4,4), or (2, 6);
(e +x4, %, + %5, %3 +%) =(1,7,0),(3,0,5),(4,3,1), or (3,2, 3).
For example,
(xy, x5, %3, X4, X5, %) =(0,3,0,4,0,1),(3,2,0,1, 1, 1), ...

Noting that 3° =3,4,2,1 (mod 5) iff £ =1,2,3,0 (mod 4), respectively, and 3* =3,9,5,4,1
(mod 11) iff k=1,2,3,4,0 (mod 5), respectively. Let x; (0<j<3)andx; (0<j<4) denote
the number of %, (1<i <8) satisfying k= j (mod 4) and k = j (mod 5), respectively. Then from
equations (1) and (2) one has

X +X, +x;+x,=8 (1)
3%, +4x, +2x; +x, +3=0 (mod5)
and

X+ X, X+ X, +x, =8

3x, + 9%, +5%; +4x, + x,+ 7= 0 (mod 11).

@)

Let us first consider the solution (3,2, 0, 1,1, 1) of equations (3")-(5"), we make an adjustment
so that it also satisfies (1") and (2"), and obtain

x =1000000001000000011000000000011000000110100,
that is,

3 4+3° 430 4313 4314 4325 4326 4 334 4 393

or
328273647965397560259.

So the smallest 6 consecutive 3-Niven numbers we obtained has 21 digits. Similarly, from the
solution (0,3, 0,4, 0,1) of (3)-(5"), we obtain x = 3% +3% +3% 4 367 4 36 4. 3122 ;. 3124 4 3182 4 3184
which has 88 digits.

For the case n =2, we may consider

x=2h+2R 4 2% 420 K>k, >k >4,
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Since 5,(x) =4, 5,(x+1)=55(x-1)=7,5(x—2)=06, the set {x—-2,x—1,x,x+1} is 4 consecu-
tive 2-Niven numbers if and only if

X,+1=0 (mod5)

Xo—1=0 (mod7)

X, —2=0 (mod3)
are satisfied, where x, = 2k p ok 4 ks Noting that the orders of 2 modulo 5, 6, 3 are 4, 3, 2,

respectively, [4,3,2]=12. Therefore, if the set {x—2,x—1,x,x+1} is 4 consecutive 2-Niven
numbers, all of the sets {x’' -2, x’—1, x’, x' + 1} are 4 consecutive 2-Niven numbers, where

X' = xr(ml m, 7713) - 2k1+12m1 +2k1+12m2 +2k3+12m3
> 3 .

We omit the rest of the process. The smallest such sequence we found is (6222, 6223, 6224, 6225)

with 6224 =2* +2° + 2! +2'2_ Other sequences we found are (33102, 33103, 33104, 33105) with

33104 = 2% +25+ 2% + 2% and (53262, 53263, 53264, 53265) with 53264 = 2% +21% 4214 121,
Also we may consider

x=28 428 2P 2 sk >k, >4
The smallest such sequence we found is (x—2, x—1, x, x + 1), where

x=1100578832 = 2% + 215 4 216 4 219 4 220 1 2B | 924 4 930
In principle, this method could be used te find #-Niven numbers of length 2n for larger base
n. For example, for n=4, we may consider x = 4 4k 4R 438 and, for n=5, we may
consider 5% +5% +...+5% +5%°  But it will be more and more difficult to find a suitable {k,}
while n is getting larger.
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The generalized Fibonacci numbers {G,},G, =G, ,+G,_,,n2¢,G,=0,G, =G, =---=G,_,
=1, are the sums of elements found on successive diagonals of Pascal's triangle written in left-
justified form, by beginning in the lefi-most column and moving up (c—1) and right 1 throughout
the array [1]. Of course, G, = F,, the n™ Fibonacci number, when ¢=2. Also, G, =u(n—1;
c—1,1), where u(n; p, q) are the generalized Fibonacci numbers of Harris and Styles [2]. In this
paper, elementary matrix operations make simple derivations of entire classes of identities for such

generalized Fibonacci numbers, and for the Fibonacci numbers themselves.

1. INFRODUCTION
Begin with the sequence {G, }, such that

G, =G, +G, 4, n23 Gy=0,G,=G,=1. (1.1)

For the reader's convenience, the first values are listed below:

n 0 1 2 3 4 5 6 7 8 9 10
G, 0 1 1 1 2 3 4 6 9 13 19

n

n 11 12 13 14 15 16 17 18 19 20 21
G, 28 41 60 88 129 189 277 406 595 872 1278

n

These numbers can be generated by a simple scheme from an array which has 0, 1, 1 in the first
column, and which is formed by taking each successive element as the sum of the element above
and the element to the left in the array, except that in the case of an element in the first row we
use the last term in the preceding column and the element to the lefi:

0 1 4 13  [41]4 129 -
1 2 6 [19> 60 189 - (1.2)
1 3 9 28 88 277

If we choose a 3 x 3 array from any three consecutive columns, the determinant is 1. If any 3x 4
array is chosen with 4 consecutive columns, and row reduced by elementary matrix methods, the
solution is
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1 00 1
0 1 0 =3[ (1.3)
00 1 4

We note that, in any row, any four consecutive elements d, e, f, and g are related by
d-3e+4f=g. (1.4)

Each element in the third row is one more than the sum of the 3% elements in the & preceding
columns; i.e, 9=(3+2+1+1+14+0)+1. Each element in the second row satisfies a "column
property" as the sum of the three elements in the preceding column; i.e., 60=28+19+13 or,
alternately, a "row property" as each element in the second row is one more than the sum of the
element above and all other elements in the first row; i.e., 60=(41+13+4+1+0)+1. Each ele-
ment in the third row is the sum of the element above and all other elements to the left in the
second row; i.e., 28=19+6+2+1. Tt can be proved by induction that

G+G,+Gy++G, =G, 51, (1.5)
Gy + G+ Gy+ - +Gy =Gy — 1, (1.6)
G+ Gy + Gyt 4Gy = Gy, (1.7
Gy +Gs+Gy+ -+ Gy = Gy (1.8)
which compare with
E+F,+F++F =F, _, -1, 1.9
BB+ Bt By = Fypgs (1.10)
F+F+F+ o+ F, =F, -1 (1.11)

for Fibonacci numbers.

The reader should note that forming a two-rowed array analogous to (1.2) by taking 0, 1 in
the first column yields Fibonacci numbers, while taking 0, 1, 1, ..., with an infinite number of
rows, forms Pascal's triangle in rectangular form, bordered on the top by a row of zeros. We also
note that all of these sequences could be generated by taking the first column as all 1's or as 1, 2,
3, ..., or as the appropriate number of consecutive terms in the sequence. They all satisfy "row
properties" and "column properties." The determinant and matrix properties observed in (1.2)
and (1.3) lead to entire classes of identities in the next section.

2. IDENTITIES FOR THE FIBONACCI NUMBERS AND FOR THE CASE c=3

Write a 3 x 3 matrix 4, = (a;) by writing three consecutive terms of {G, } in each column and
taking a,, = G,, where ¢ =3 asin (1.1):

G G G

n n+p nt+q
An = Gn+1 Gn+p+1 Gn+q+l . (2 1)
Gn+2 Gn+ pi2 Gn+q+2

We can form matrix 4,,, by applying (1.1), replacing row 1 by (row 1 + row 3) in 4, followed by
two row exchanges, so that
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det4, =det4,,;. (2.2)
Letn=1p=1g=2in(2.1) and find det 4 = —1. Thus, det 4, = —1 for
C;n Gn+1 Gn+2
4,51Gu1 Guy Gps | 23)
Gn+2 Gn+3 Gn+4

As another special case of (2.1), use 9 consecutive elements of {G,} to write

Gn Gn+3 Gn+6
An = Gn+l Gn+4 Gn+7 > (24)
Gn+2 Gn+5 Gn+8

which has det 4, =1.
These simple observations allow us to write many identities for {G,} effortlessly. We
illustrate our procedure with an example. Suppose we want an identity of the form

aGn +ﬂGn+1 + 7Gn+2 = Gn+4'

We write an augmented matrix A4,, where each column contains three consecutive elements of

{G,} and where the first row contains G,, G,,;, G, ,,, and G, ,:

. Gn Gn+1 Gn+2 Gn+4
A‘n = Gn+1 Gn+2 Gn+3 Gn+5 :

Gn+2 Gn+3 n+4 n+6

Then take a convenient value for n, say n=1, and use elementary row operations on the aug-
mented matrix 4,
1113 1 0 01
A'={1 1 2 4{>|0 1 0 1|,
12 3 6 0 0 11

to obtain a generalization of the "column property" of the introduction,
Gn + Gn+1 + Gn+2 = Gn+4> 2.5)

which holds for any #.
While we are using matrix methods to solve the system

aGn +t8Gn+1 +7Gn+2 = Gn+47
aGn+1 + n+2 +}/ Gn+3 = Gn+57
aGrH-Z + Gn+3 + e Gn+4 = Gn+6’

notice that each determinant that would be used in a solution by Cramer's rule is of the form
det 4, = det 4,,, from (2.1) and (2.2), and, moreover, the determinant of coefficients equals —1 so
that there will be integral solutions. Alternately, by (1.1), notice that («, £, ) will be a solution
of aG,,5+fG,.4 +7G,,s =G,,; whenever (a, f,7) is a solution of the system above for any
n >0 so that we solve all such equations whenever we have a solution for any three consecutive
values of n.
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We could make one identity at a time by augmenting A4, with a fourth column beginning with
G,,, for any pleasing value for w, except that w <0 would force extension of {G,} to negative
subscripts. However, it is not difficult to solve

* Gn Gn+l Gn+2 Gn+w
An = Gn+1 Gn+2 Gn+3 Gn+w+1
n+2 Gn+3 & n+4 Gn+w+2

by taking » = 0 and elementary row reduction, since G,,, —G,,,; = G,_, by (1.1), and

011 G, 011 G, 100 G,,
A=1111 G,|>l1 00G,,|>|01 0 G,
112G, 0o0o16,,) \oo1 G,

w

so that
Gn+w = Gw—ZGn + GW—SGnH + Gw—lGn+2 : (26)
For the Fibonacci numbers, we can use the matrix 4,,

E o E,

n+l n+q+1

for which det 4, = (-1)det 4,,;. Of course, when g =1, det 4, = (—1)""! where, also, det 4, =

EF,.,— F?2,, giving the well-known

= F B~ Fnz+1 : 2.7
Solve the augmented matrix A, as before,

s (B B )

An (F;H-l n+2 n+w+l ’
by taking n= -1,
« _(1 0 F,_,;
A= (o 1 F, )

to obtain

FW—'IP;I + FWF;’H'I = EI+W' (28)

Identities of the type oG, + SG,., +7G,,4 = G,,¢ can be obtained as before by row reduction
of

. Gn Gn+2 Gn+4 Gn+6
A, =G Gz Gus Guy |-
Gn+2 Gn+4 Gn+6 Gn+8
Ifwetake n=0, det 4,=1, and we find ¢ =1, /=2,y =1, so that
G =G, +2G, 5 +G,p4. (2.9)
In a similar manner, we can derive
G

n

v =0, 3G, 5 +4G, ., (2.10)
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Gn+l2 = Gn - 2Gr:<1—4 +5G,455 (2.11)

where we compare (1.4) and (2.10).
For the Fibonacci numbers, solve

*_F F+2 F+4
4=, o

n+l1 n+5

«_(1 25 (10 -1
Al_(l 3 8)“’(0 1 3)’

by taking n=1,

so that
Frg=—F,+3F,,. (2.12)
Similarly,
Fp= F, +4F,,3, 2.13)
By = —F, +71F,,. (2.14)

In the Fibonacci case, we can solve directly for £, , from

A_;Z E1 E1+p E1+2p
E1+1 F;H-p-f-l Et+2p+l

by taking n= -1,

. :(1 F,, 1?2,,_1)_)(1 0 (szgp_l—Fp_lzgp)/f;)_)F 0 (_1);:-1]’

A
1l F, F 01 F,,/F, 01 L

P P

since F ,F, \—F, \F, = (—l)p‘le and F,, = F,L, are known identities for the Fibonacci and
Lucas numbers. Thus,
‘F;1+2p = (_I)P—IF;; +LpF;1+p' (2 15)

Returning to (2.9), we can derive identities of the form aG, + fG,., +7G,.4 = G,,,,, from
(2.1) with p =2, g =4, taking the augmented matrix 4, with first row containing G,, G,,,, G,.4,
G,.5,- It is computationally advantageous to take n = —1; notice that we can define G_; =0. We

make use of G,,, — G,,,_; = G,,,_; from (1.1) to solve

11 G, 011 G,y 011 Gy,
12 G, (=001 G,-G, ;|0 0 1 G,
1 3 G2w+1 1 01 G2w+1 - G2w 1 01 G2w——2

010 (%w—l—_caw—S 100 C%w-S
=0 0 1 G,,4 =10 1 0 G, —Gyy3 |,
1 00 G2w—2 - G2w—-3 0 01 2w-3
obtaining
Gn+2w = GZw—SGn + (G2w—l - G2 w—3)Gn+2 + le—3Gn+4' (2 16)
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In the Fibonacci case, taking n=—1,

e (B Py Fun ) o (11
A"‘(F Fo, »4={0

Fiw—l)_)(l 0 —}?2w—2)
n+l E1+2w+1 F‘2w 01 }72 "

w

we have

F;1+2w = —F‘ZW—ZF;’I +EWE1+2' (2 17)

Returning to (2.6) and (2.16), the same procedure leads to
Gn+3w = G3w—6Gn + (G3w - 4G3w—3)Gn+3 + G3w—3Gn+6' (2 18)
The Fibonacci case, derived by taking n=—1,

A""(F Frs Foow)

n+l n+3w+1

gives us
E

n+3w

= E1F;§w—3 /12 +E]+3F;w / 2: (219)

where F}, /2 happens to be an integer for any m. Note that det A, = (—~1)""'2, and hence,
det 4, # *1. We cannot make a pleasing identity of the form aG, + fG,., +7G,.s = G,,4, for
arbitrary w because det 4, # £1, leading to nonintegral solutions. However, we can find an iden-
tity for {G,} analogous to (2.15). We solve
aG_, +,8Gp_l + 7G2p-1 =
aGO +ﬂGp +7G2p = G3p’

Gy + G, + ¥ Gy iy = Gy,

Gs

p-1>

for (a, B,7) by Cramer's rule. Note that the determinant of coefficients D is given by D =

G,,G,1-G,G,,y. Then a = A/ D, where 4 is the determinant

G3p—l Gp—l
G G

3p p 2p

G
G3p+1 Gp+l GZ p+l

G2p—l
A=

After making two column exchanges in 4, we see from (2.1) and (2.2) that A =D, so « =1. Then
f =B/ D, where B is the determinant

0 G3p—1 G2p—1 .
B=10 Gy, G, |=G,,G5,,-G5,G;py
1 G3p+l G2p+1

Similarly, y =C/D, where C=G5G,_; -G ,G;,,. Thus,
Gn+3p = Gn + Gn+p(G3p—1G2p - G3pG2p—1) I D+ Gn+2p(G3pGp—l - G3p—le) / D,

where D= (G,,G 1~ G,Gyp-1). The coefficients of G, , and G,,,,,, are integers for p=1,2,...,9,
and it is conjectured that they are always integers.
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As an observation before going to the general case, notice that identities such as (2.9), (2.10),
and (2.11) generate more matrices with constant valued determinants. For example, (2.9) leads to
matrix B,

Gn Gn+p Gn+q
B,=|G,, Gn+p+2 Gn+q+2 >

Gn+4 Gn+p+4 Gn+q+4
where det B, =detB,,,.

3. THE GENERAL CASE: G, =G, _,+G,_,

The general case for {G,} is defined by
G,=G,+G,_, n>c,where G,=0, G;=G,=--=G,_; =1. (3.1)

To write the elements of {G,} simply, use an array of ¢ rows with the first column containing 0
followed by (c—1) 1's, noting that 1, 2, 3, ..., ¢ will appear in the second column, analogous to the
array of (1.2). Take each term to be the sum of the term above and the term to the left, where we
drop below for elements in the first row as before. Any c¢x ¢ array formed from any ¢ consecu-
tive columns will have a determinant value of +1. Each element in the ¢ row is one more than
the sum of the ck elements in the & preceding columns, i.e.,

G1+G2+G3+'“+Gck:Gc(k+1)_1’ (32)
which can be proved by induction. It is also true that
G+G,+G++G, =G, .~ 1. 3.3)

Each array satisfies the "column property" of (2.5) in that each element in the (¢ —1)* row is
the sum of the ¢ elements in the preceding column and, more generally, for any »,

Gue2 =Gy +Gyoy +++G, 2 +G,  (cterms). (3.4)

n

Each array has "row properties" such that each element in the i™ row, 3<i <c, is the sum of

the element above and all other elements to the left in the (i —1)* row, while each element in the
second row is one more than the sum of the elements above and to the left in the first row, or

Gy+G,+G, +Gy + - +G,y =Gy — 1, (3.5)

Cl

G,+G

ctm

+G2c+m o +Gck+m = Uck+m+l> m= 1’ 2’ ...,C—l, (36)

for a total of ¢ related identities reminiscent of (1.6), (1.7), and (1.8).

The matrix properties of Section 2 also extend to the general case. Form the ¢ xc¢ matrix
4, .= (a;), where each column contains ¢ consecutive elements of {G,} and a,; =G,. Then, as
in the case ¢ =3,

det 4, .= (- det 4, ,, 3.7)

since each column satisfies G,,, =G,,.; +G,. We can form 4,,, . from 4, . by replacing row 1
by (row 1 + row c¢) followed by (¢ —1) row exchanges.
When we take the special case in which the first row of 4, . contains ¢ consecutive elements

of {G,}, then 4, . =+1. The easiest way to justify this result is to observe that (3.1) cam be used
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to extend {G,} to negative subscripts. In fact, in the sequence {G,} extended by recursion (3.1),
G, =1and G; is followed by (c—1) 1's and preceded by (c—1) 0's. If we write the first row of
4,. 2 G,,G,,,G,,,...,G, (., then, for n=1, the first row is 1, 0, 0, ..., 0. If each column
contains ¢ consecutive increasing terms of {G,}, then G, appears on the main diagonal in every
row. Thus, 4, has 1's everywhere on the main diagonal with 0's everywhere above, so that
det 4, .=1. That det4, =1 is significant, however, because it indicates that we can write
identities following the same procedures as for ¢ =3, expecting integral results when solving
systems as before. Note that det 4, . = +1 if the first row contains ¢ consecutive elements of
{G,}, but order dues not matter. Also, we have the interesting special case that det 4, , = *1
whenever 4, . contains ¢* consecutive terms of {G,}, taken in either increasing or decreasing
order, c>2. Det 4, . =0 only if two elements in row 1 are equal, since any ¢ consecutive germs
of G, are relatively prime [2].
Again, solving an augmented matrix 4, ., will make identities of the form

Gn+w = aOGn + alGn+1 + aZGn+2 teeet (Z Gn+c—

for different fixed values of ¢, or other classes of identities of your choosing. As examples, we
have:

c=2 F;1+w E1Fw-— + E1+1F

c=3 Gn+w - GnGw +G +1G +G +2G —~1>

c=4 Gn+w = GnGw Gn+1Gw 4 + Gn+2Gw—5 + Gn+3Gw—2’

c=5 Gn+w = GnGw—4 + Gn+1Gw—5 + Gn+2Gw——6 + Gn+3Gw—7 + Gn+4Gw—3
c=c Gn+w G G —er1 T Gn+lG +G +2Gw-—c—1 teet Gn+c~ Gw—c+2;
c=2 Fn+3_F+E1+1+E:+1’

c=3 Gn+4_Gn+G +G+2’

c=4 Ghs=G,+G,,,+G,.3,

c=5 Gn+6:Gn+ +G+4:

c=c Gn+c+l = Gn + G + Gn+c—
So many identities, so little time!
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1. INTRODUCTION

One of the most satisfactory methods for modeling the physical reality consists in arriving at a
suitable differential system which describes, in appropriate terms, the features of the phenomenon
investigated. The problem is relatively uncomplicated in the finite dimensional setting but becomes
very challenging when various partial differential equations, such as the wave, heat, electro-
magnetic, and other equations, become involved in the more specific description of the system.

When it is difficult or even impossible to obtain an exact solution of the partial differential
equations governing a continuous plant, the mathematical model is almost always reduced to a
discrete form. Then the plant is represented by an appropriate connection of lumped-parameter
elements and it may vibrate only in combinations of a certain set of assumed modes.

In modeling continuous-time systems that are continuous or discrete in space, such classic
trigonometric functions as sine, cosine, tangent, and cotangent, as well as corresponding hyper-
bolic functions, are widely used. As is well known, these functions are based on two irrational
numbers: 7 =3.14156926... and e =2.7182818....

In this paper we shall be concerned with a new class of hyperbolic functions that are defined
on the basis of the irrational number ¢ = %IS— ~1618033..., also known as the golden ratio.

We shall introduce new functions called "Fibonacci hyperbolic functions" and show how they
result from suitable application of modified numerical triangles. We shall also establish a set of
suitable properties of Fibonacci hyperbolic functions such as symmetry, shifting, and links with the
classic trigonometric and hyperbolic functions, respectively. Some examples illustrating pos-sible
applications of the involved functions in mathematical modeling of physical plants are also
presented.

2. THE FIBONACCI TRIGONOMETRY

Recently, studies and applications of discrete functions based on the irrational number
= l"—;’—S— ~1.618033... have received considerable attention, especially in the theory of recurrence
equations, of the Fibonacci sequence, their generalizations and applications (e.g., see [1], [2], [4],
(51, [6], [9], and [10]).

In this section we shall present fundamentals of a new class of functions called Fibonacci
hyperbolic functions.

Definition 1: Let
3+4/5
2

y=1+¢= ~2.618033... M

be given, where ¢ denotes the golden ratio.
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For x e(—, ), we define by analogy to the classic hyperbolic functions: chx, shx, thx, cthx,
continuous functions

x -x (x+%) —(x+%)
vy -y Yy Tty
sFh(x) = N cFh(x) = 5 , "
_ sFh(x) _ cFh(x)
tFh(x) = CFh(x)’ ctbh(x) = STh(x)’

as the Fibonacci hyperbolic sine, cosine, tangent, and cotangent, respectively.

Diagrams representing the above-defined Fibonacci sine and cosine are presented in Figure 1.
Respective diagrams can easily be established for the Fibonacci tangent and cotangent. They are
omitted here for the sake of presentation simplicity.

lﬁ-t- ------- —+-------- S REELE e gt 1—---}---0- ------- +remmeman +emeen- 4‘-
! : !
L . } . 4
i . |
z ' e
L e }
She J:r
| ! i
T — pomenees temmmenes P tomemes Hrmmmee tomeee- Hoeeee- +
-20 -15 -16 -5 ] 5 18 15 28
o cFh a sFh x

FIGURE 1. Diagrams of cFh(x) and sFh(x)

Tt is worth noting that function sFA(x) is odd-symmetric with respect to the coordinate origin
but function cFh(x), while asymmetric with respect to the vertical coordinate x =0, is even-
symmetric with respect to —% .

On the basis of the above definition relations, we are able to establish a set of important
properties of Fibonacci hyperbolic functions. In the sequel we shall focus attention on sFh(x)
and cFh(x) only.

First, they can be expressed in terms of the golden division ratio ¢ as follows. Using the
well-known identity

=1+ ()

and substituting it into expressions (2), we obtain
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2x _ p—2x (2x+1) —(2x+1)
sFh(x =¢—¢, cFh(x :ﬂ————ﬂé——. 4
=1 () =—"t @
Second, it is easy to demonstrate that when, instead of the continuous independent variable x, we
use a discrete variable k£ €/ (a set of all integer numbers k =...,—2,-1,0,1,2,...) we can express
functions sFh(x) and cFh(x) in terms of the corresponding elements of the Fibonacci sequence
fk+)=fR)+f(k-1), k=..,-3,-2,-1,0,1,2,3,... %)
with £(0)=0and (1) =1 as follows:
sFh(k) = f(2k), cFh(k)= f(Q2k+1). ©)
Next, applying the well-known Binet formula (see [1], [2]) to the right-hand sides of expressions
(6) yields
1 {(2k 2k 2k o 2k
skh(k) = F‘—‘[( 1 )+5( 3 )+5( 5 )+ +5 (2r+1)+ ]
1 k ™
_ o 2
= [;}5 (2r+ 1)}
and
1 ((2k+1 2k +1 2k+1 r( 2k +1
cFh(k) :7"—[( 1 )+5( 3 )+5( 5 )+ « 45 (2r+1)+ ]
®

:L{ 2 5,,(2k+1)}
22k = 2 P +1/1

Note that the right-hand sides of expressions (6) and (8) do not represent an infinite series
but are finite sums, since their general term vanishes for 2k <2r+1 and 2k <2p, respectively.
For instance, at k =8, the first vanishing term corresponds to 2r > 15 for the sFh(k) and to p>8
for the cFh(k). Thus, the calculations of sFh(k) and cFh(k) (k €I') are reduced to easily com-
puted sums involving simple binomial coefficients, (}}).

Finally, it is possible to establish links of the Fibonacci hyperbolic functions sFh(k) and
cFh(k) (k el) with the classic hyperbolic functions sinh(x) and cosh(x), but they are based on
transition from an expression through its natural logarithm. For this purpose, we calculate the
logarithm of the irrational number ¢, namely,

a=1n¢:1n1+2‘6~o.4812118.... ©9)
Next, we calculate exponential functions
Iy e Bl (10)
2 2
and the corresponding hyperbolic functions
cosha:TS, sinha:%. (1
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Substituting values (11) raised to the 2k™ power into (7) and (8), we get

SFh(k) = %sinh(2ka), cFh(k) = % cosh[(2k + )], (12)

Thus, we have one operation only for calculating sFh(k) or cFh(k), i.e., the multiplication of the
known hyperbolic function of the argument 2ka or (2% +1)a, respectively, by the coefficient
2/+/5=08944271... . For example,

2

SFh(®) = 7=

sh(16a) = 08944271-1103.6922 = 987

and

cFh(8) = _\%—S—Ch(l 7o) = 08944271-17855002 = 1597.

In a similar manner we can establish links of Fibonacci hyperbolic functions with such trigo-
nometric functions as sine and cosine with respective arguments.

3. PROPERTIES OF FIBONACCI HYPERBOLIC FUNCTIONS

Taking into account the expressions presented in the preceding section, we can derive a set of
important properties and relations which come into existence in Fibonacci hyperbolic trigonom-
etry.

First, it is possible to demonstrate on the basis of (6) that the following equalities hold:

sFh(-k) = —sFh(k), cFh(-k)=cFh(k-1). (13)

Thus, sFh(k) is odd-symmetric with respect to the coordinate origin but cFh(k) is even-sym-
metric with respect to the vertical line £ =—1. Note that cFh(-%) = % =08944271..., which
means that the minimum of cFh(k) appears at k = -Zl and differs from that for the classic hyper-
bolic ch(x) which equals min(cosh(x)) at x =0. On the other hand, for £ =0, function cFh(k)
takes the value cFh(0) =1.

It is easy to prove the remaining important properties of functions sFh(k) and cl’h(k). Some

of these are given below:
1. sFh(k)+cFh(k) = sFh(k +1),
2. sFR*(k)+cEW (k) = cFh(2k),
3. cFI(k)— sFh*(k) = 1+ sFh(k)cFh(k),

4. sFh(k)+ sFh(l) = 55Fh(k ; Z)CF h(k —2£ - 1)’

5. sFh(k) - sFh(L) = ﬁth(k = d )th(" - 23 - 1),

6. cFh(k)+cFh(f) = ﬁth(k : 4 )th(k - j - 1),
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7. cFh(k) - cFh(f) = ﬁth(k = d )th(" * j - 1],

8. sFh(2k) = \/gth(k)th(k - %)

9. cFh(2k)= ﬁth(k)th(k - %) 1,

10. cFh(k)cFh(k — 1)~ sFR*(k) = L

For the sake of presentation compactness, the corresponding proofs are omitted here. It is
worth noting that the above properties also remain valid for continuous arguments x €(—o0, )
and y €(—o0, ), respectively.

4. RELATIONSHIPS BETWEEN FIBONACCI HYPERBOLIC FUNCTIONS
AND MODIFIED NUMERICAL TRIANGLES

Some advantages in calculating Fibonacci hyperbolic functions follow from the structure and
properties of modified numerical triangles (see [5], [9], [10]). To facilitate their demonstration,
we shall briefly discuss these triangles and their main characteristics.

The first modified numerical triangle (MNT1) contains elements corresponding to coeffi-
cients of polynomials in g defined by the recurrence expression

L@ =2+ - 151(q9), Tn(9) =1, L(g)=1+q, (14)
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