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SELF-GENERATING PYTHAGOREAN QUADRUPLES AND TV-TUPLES 

Paul Oliverio 
Jefferson High School, Los Angeles, CA 90011 

(Submitted December 1993) 

1. INTRODUCTION 

In a rectangular solid, the length of an interior diagonal is determined by the formula 

a2+b2+c2=d2, (1) 
where a, b, c are the dimensions of the solid and d is the diagonal. 

When a, b, c, and d are integral, a Pythagorean quadruple is formed. 
Mordell [1] developed a solution to this Diophantine equation using integer parameters (m, n, 

and/?), where m+n+p=l (mod 2) and (m, n,p) = l. The formulas are: 

a = 2mp c = p2-(n2+m2\ 
b = 2np d- p2 + (n2 +m2). 

However, the Pythagorean quadruple (36,8,3,37) cannot be generated by Mordell's formulas 
since c must be the smaller of the odd numbers and 

3 = p2-(n2+m2) 
37 = p2+(n2+m2) 
40 = 2p2 

20 = p2; sop is not an integer. 

This quadruple, however, can be generated from Carmichael's formulas [2], using (m, n, py q) = 
(1,4,2,4), that is, 

a = 2mp + 2nq c- p2 +q2 -(n2 +m2), 
b = 2np-2mq d = p2 +q2 +(n2 +m2). 

By using an additional parameter, the Carmichael formulas generate a wider set of solutions 
where m + n + p + q = 1 (mod 2) and (m, n, p, q) = 1. 

In the formulas above, either three or four variables are needed to generate four other inte-
gers (a, b,c,d). In this paper, we present 2-parameter Pythagorean quadruple formulas where 
the two integral parameters are also part of the solution set. We shall call them self-generating 
formulas. These formulas will then be generalized to give Pythagorean TV-tuples when a set of 
(n - 2) integers is given. 

2. THE SELF-GENERATING QUADRUPLE FORMULAS 

We use a and b to designate the two integer parameters that will generate the Pythagorean 
quadruples. The following theorem deals with the three possible cases arising from parity condi-
tions imposed upon a and b. 
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Theorem 1: For positive integers a and b, where a or b or both are even, there exist integers c 
and d such that a2 -\-b2 +c2 =d2. When a and b are both odd, no such integers c and d exist. 

Case 1. If a and b are of opposite parity, then 

c = (a2+b2-l)/2 and d = (a2 + h2 + T)/2. 

Proof: 

(4) 

dl-cz = (d + c)(d-c) 

a2+b2 + \) (a2+b2-l 

2(a2+Z>2) 

ra2+b2+l a2+b2-l 

2 

a2 +b2. 

Therefore, d2 =a2+b2+c2. 
Since a and b differ in parity, c and d in (4) are integers. 

Corollary: From (4), we see that c and d are consecutive integers. Therefore, 
(a, b,c,d) = 1, even when (a, b) •*• 1. 

Case 2. If a and 5 are both even, then 
ra2 + b2 

c = 
V 

- 1 and d -
a + b 

+ 1. (5) 

Proof: 
I6(d2~ c2) = (a2 +h2+ A)2 - {a2 +b2- 4)2 

= 16(a2+&2). 

Therefore, d2 =a2+b2+c2. 
Since a and 6 are both even, c and d in (5) are integers. 

Corollary: If a-b = 0 (mod 4), (a2+Z>2)/4 is even and c and d are con-
secutive odd integers, so (a, b,c,d) = l. But, if a - Z> = 2 (mod 4), (a2 + b2) 14 
is odd, c and J are consecutive even integers, and (a, b,c,d)^l. 

Caise 3. If a and b are both odd, then a2 =b2 =1 (mod 4). 

Since c2 = 0 (mod 4) or c2 = 1 (mod 4), and similarly for rf2, we have: 

a2 + b2 + c2 = 2 (mod 4) # *i2 for any integer d; 

or 
a2 +b2 +c2 =3 (mod4) #rf2 for any integer d. 

Hence, no Pythagorean quadruple exists in this case. 
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3. SELF-GENERATING PYTHAGOREAN TV-TUPLES 

The ideas and methods of proof for the self-generating quadruples can be generalized to the 
iV-tuple case. We need to find formulas for generating integer TV-tuples (a1? a2,..., an) when given 
a set of integer values for the (n-2) members of the "parameter set" $ = (al,a2,...,ari_2). 
Analogous to the parity conditions imposed on the self-generating quadruple formulas, we intro-
duce the variable T. Proofs of the formulas are left to the reader; they are similar to those for 
Theorem 1. 

Theorem 2: Let S = (ax, c^, ...,an_2), where ax is an integer, and let T - "# of odd integers in S." 

If T # 2 (mod 4), then there exist integers an_x and an such that 

0 ? + ^ + - + ^ ! = ^ . (6) 

Case 1. Let T=\ (mod 2), which implies that 7 = 1 (mod 4) or T=3 (mod 4). Then, 
setting 

an_l = [a2
l+al + --+a2_2-l]/2, 

and (7) 
an = [a2 +a2 + ••• +a2_2 + l]/2, 

we have 
al ~ an-i = (fl„ + an_x)(an - an_x) 

= [2(a2 + a2
2 + ... + a2_2)/2][2/2] 

= a2 +a2 + '-+a%-2 
as required. 

Case 2. Let 7 = 0 (mod 4). Then, setting 

an_x = [a2 + a2
2 + ••• + a2_2]/4-1 

and (8) 
a„-[a1

2+a2
2 + -..+aw

2_2]/4 + l, 
we have 

al -4-1 = fa, + *„-l)fa, ~an-l) 
-[2(a2+a2 + ...+a2_2)/4][2] 

2 2 2 

-ax +a2 +'-+a„-2 
as required. 

Case 3. Suppose T = 2 (mod 4). Then a2 + a2 + ••• +a2_2 =2 (mod 4) And since either 
a2_j = 0 (mod 4) or a2_2 = 1 (mod 4), we have 

a2 +a2 + ••• +a2_2 +a2_l = 2 (mod4) # a2 for any integer a„, 
or 

a2 +a\ + '-+a2_2 +al-\ = 3 (mod4) # a2 for any integer an. 

Hence, no Pythagorean quadruple TV-tuple exists in this case. 
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FIBONACCI ENTRY POINTS AND PERIODS FOR PRIMES 
100,003 THROUGH 415,993 

A Monograph 
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In 1965, Brother Alfred Brousseau, under the auspices of The Fibonacci Association, compiled a two-
volume set of Fibonacci entry points and related data for the primes 2 through 99,907. This set is currendy 
available from The Fibonacci Association as advertised on the back cover of The Fibonacci Quarterly. Thirty 
years later, this new monograph complements, extends, and triples the volume of Brother Alfred's work 
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In addition to the tables, the monograph includes 14 pages of theory and facts on entry points and their 
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COUSINS OF SMITH NUMBERS: MONICA AND SUZANNE SETS 

Michael Smith 
5400 N. Wayne, Chicago IL 60640 
(Submitted February 1994) 

1. INTRODUCTION 

For any x eM, x may be expressed as the sum ao+a^lO1)*--- + ̂ (10^), where each 
a,E{0,l,2,...,9}. 

Suppose that x GN is a composite number. Then x = PiP2-Pm, where each pk is a prime 
number. We can then formally define two functions S(x) and Sp(x) as 

d m 

S(x) = ^aJ and S^^Sif,). 

That is, S{x) is the digital sum of x and Sp(x) is the digital sum of the prime factors of x. 
Wilansky [2] defines a Smith number as a composite integer where S(x) = Sp(x). This paper 
deals with two kinds of sets related to Smith numbers. These sets are called Monica sets and 
Suzanne sets. 

Definition 1.1: The rfi1 Monica set M.w consists of those composite numbers x for which 
n\S(x)-Sp(x) [we write S(x) =nSp(x)]. 

Definition 2.1: The rfr Suzanne set S„ consists of those composite numbers x for which n\S(x) 
and n\Sp(x). 

It should be noted that because I developed this concept from Smith numbers, I consider it to 
be akin to Smith's. Therefore, I have named these sets after my cousins, Monica and Suzanne 
Hammer. 

2. ON THE POPULATION OF MONICA AND SUZANNE SETS 

The following theorems give indications of what sort of integers belong to Monica and 
Suzanne sets. 

Theorem 2.1: If x is a Smith number, then x GM„, \/n eN. 

Theorem 2.2: x e S„ => x eMn. 

Note that the converse of Theorem 2.2 is not true; for example, 10 = 5x2, thus £(10) = 1 and 
£,(10) = 7. 10 eM6 since 6|l-7, but 10 £S6 since 6|1. 

Theorem 2.3: For any integer k > 1, if x is a k-Smith, then x G M H . 

Proof: McDaniel [1] defines a k-Smith as a composite number x such that kS'(x) = Sp(x). 
Thus, S(x) - Sp(x) is divisible by k - 1 . Therefore, x eMk_x. D 
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3. EPILATIONS BETWEEN SETS OF MONICAS AND SETS OF SUZANNES 

There are some rather simple properties of Monica and Suzanne sets that may be useful in 
later studies. 

Theorem 3: 
(a) If p, q GN and p\q, then x GMq implies x GMp; 
(b) If py q GH and p\q, then x eSq implies x eS^; 
(c) If p, q GN and p\q are relatively prime, then x GMp and x sMq implies x G M W ; 
(d) If p, q GN and p\q are relatively prime, then x sSp and x e$q implies x ^Spq. 

4. INFINITE ELEMENTS IN EACH MONICA AND SUZANNE SET 

The most interesting property of Monica and Suzanne sets is that every Monica set and every 
Suzanne set has an infinite number of elements. McDaniel [1] proves that there is an infinite 
number of Smiths; this implies, by Theorem 2.1, that every Monica set has an infinite number of 
elements.. The proof that there is an infinite number of elements in each Suzanne set is more 
complicated. 

Theorem 4: All Suzanne sets have infinitely many elements. 

Proof: Consider Sv For any composite number x, l\S(x) and l\Sp(x). 
For S„, where n > 1, we need to construct a candidate integer r such that S(r) = n. Let r be 

an w-digit Repunit, that is, a string of n ones (see [3]). Let z = ar, where a is determined by the 
following table: 

Sp{r)=70 
Sp(r)^l 
Sp(r)^72 
5p(r)S,3 
Sp(r)^4 
Sp(r)^75 
Sp{r)^6 

then 
then 
then 
then 
then 
then 
then 

a = l 
a = 9 
a~5 
a = 4 
a = 3 
a = 2 
a = 15 

since SpQr) = Sp(r) 
since Sp(9) = 6 
since Sp(S) - 5 
since S (4) = 4 
since S (3) = 3 
since Sp(2) = 2 
since Sp(\5) = 8 =71 

From the table it should be obvious that 7\Sp(r) + Sp(a), and thus 7\Sp(z). Note that 
S(z) = S(r)S(a) because of our choice of r, so n\S(z). 

Let m be an integer such that n\(Sp(z) + 7m) and let y - z * 10w. Clearly, Sp(y) - Sp(z) + 
Sp(\0m) and Sp(\0m) = 7m; thus, n\Sp(y) = Sp(z) + Sp(lOm). 

Note that S(y) = S(z), so n\S(y); thus, ar* 10w =y GS„ for all m such that n\Sp(ar) + 7m. 
Clearly, there are infinitely many choices for m. • 
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TRIANGULAR NUMBERS IN THE PELL SEQUENCE 

Wayne L* McDaniel 
Department of Mathematics and Computer Science, 

University of Missouri-St. Louis, St. Louis, MO 63121 
(Submitted June 1994) 

1. INTRODUCTION 

In 1989, Luo Ming [5] proved Vern Hoggatt's conjecture that the only triangular numbers in 
the Fibonacci sequence {Fn} are 1, 3, 21, and 55. It is our purpose, in this paper, to show that 1 
is the only triangular number in the Pell sequence {Pn}. 

Aside from the proof itself, Ming's unique contribution in his paper was his development and 
use of the value of the Jacobi symbol ($F2kg+m + \\L2k), where {Ln} is the sequence of Lucas 
numbers, g is odd, and k = ±2 (mod 6). In other papers involving similar arguments, the value of 
the Jacobi symbol (f(2kg + m)\Lt), for certain functions f(ri) of Fn and/or Ln, has often been 
obtained for t a divisor of £, but not for t equal to 2k (e.g., [1], [2], [3], and [7]). 

It is immediate, from the definition, that an integer A: is a triangular number iff 8& +1 is a 
perfect square >1. We shall employ an argument similar to that used by Ming to show that, for 
every integer n*±l, there exists an integer w(ri), such that 8PW + 1 is a quadratic nonresidue 
modulo w(n). 

We require the sequence of "associated" Pell numbers defined by Q> = \ Q\ = 1 a n c l for all 
integers n > 0, Qn+2 = 2Qn+1 + Qn. The first few Pell and associated Pell numbers are 

{PB} = {0,1,2,5,12,...} and {Qn} = {1,1,3,7,17,...}. 

2. SOME IDENTITIES AND PRELIMINARY LEMMAS 

The following formulas and identities are well known. For all integers n and m, 

P_m = (-\r1Pm and Q.m = (rlTQa, (1) 

Pm+n = 2PmQn-{-\fPm^ (3) 

P2.m = Pm(2Qm)(2Q2m)(2Q4m)-(2Q2,^J, (4) 

Q2
m = 2PZH-lT, (5) 

Q2m = 2Ql-{-\y. (6) 
If d = gcd(/w, n), then 

gcd(Pm, Q„) = Qd if mI d is even, 
gcd(Pm,Q„) = l otherwise (see [4]). (7) 

We note that (6) readily implies that, if t > 1, then Q^ = 1 (mod 8). 
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Lemma 1: Let k = 2\t > 1, g > 0 be odd and m be any integer. Then, 

(i) Pikg+m = " ^ (mod ft), and 
(ft? P2^±P2,(mode2*)-

Proof: (i) is known [and can be easily proved using (1) and (3)]. lfn = 2kg = 2k(g -\) + 2k, 
then, using (3), (ii) readily follows from 

*n ~ ^2k{g-V)Qlk ~ \ 1) ^2k(g-2) = ~^2Jfc(g-2) ( m ° d 0 2 * ) ' 

^ m m a 2; If * = 2\t > 1, then (8P2, +1|22„) = (-8PU + l|ft*). 

Proof: We first observe that each Jacobi symbol is defined. Indeed, if d = gcd(8i^ +1, Q2k) 
or gcd(-8i^ +1, Q2k), then, using (5), d divides 

(SP2k +1).(-8P2, +1) = l - 6 4 i £ = l -32(22\ -1) = 3 3 - 2 $ * . 

Hence, */|33. But 33|P12 which implies d = l, since, by (7), gcd(P12, Q2k) = 1. 
To establish the lemma, note that 

mk+iia*x-8P2t+iia*)=o - 644 ie2i>=(331&)=(&, 133). 
Now, by (6), Q, = 17, Q, = 2^ 2 - 1 = 2-172 - 1 = 16 (mod 33), and by induction, Q2lc s 16 (mod 
33) if t > 2. Hence, if t > 1, (02jt |33) = +1. 

Lemwia 5: If A: = 2',.f > 2, then (8Pt + Qk [33) = - 1 . 

Proof: Q2=3, Qt = 17 = -16 (mod 33), and as observed in the proof of Lemma 2, £> =16 
(mod 33), if j > 3. Hence, by (4), if / > 2, 

SPt = SP2(2Q2)(2Q4)-(2Q2,.I) = 8-2-6-(±l) S ±3 (mod 33), 

so, SPk+Qk = +13 or +19 (mod 33) and both (±13|33) and (±19|33) = - 1 . 

From a table of Pell numbers (e.g., [6], p. 59), we find that P24 = 0 (mod 9) and P25 = 1 (mod 
9). Using (2), 

Pn+2* = PA + ̂ -i^24 - Pn (mod 9), 
and we have, immediately, 

Lemma 4: If n = m (mod 24), then Pw = Pw (mod 9). 

3. THE MAIN THEOREM 

Theorem: The term Pn of the Pell sequence is a triangular number iff n - ±1. 

Proof: Ifn = ±1, i^ is the triangular number 1. By (1), if n is an even negative integer, then 
&Pn +1 is negative, and if« is odd, then P_n-Pn\ hence, it suffices to show that SPn +1 is not a 
square for # > 1. Let n - 2kg+m, k-2\t>\g>\ odd, and assume Pn is a triangular number. 
[Then (8P„ +11N) = +1 for all odd integers K] 
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Case 1. n odd. Since n = ±1 (mod 4), 8PW +1 = 8P2kg±i +1 = -7 (mod Qk),by Lemma l(i) 
and (1). But it is readily shown, using (6), that Qk = 3 (mod 7). Hence, 

( 8 P „ + i i a ) = ( - 7 i a ) = ( a i 7 ) = ( 3 | 7 ) = - i , 
a contradiction. 

Case 2 (mod 4): n = 2. It is easily seen that {Pn} has period 6 modulo 7, and that, for n 
even, (%Pn + 1|7) = +1 only if w = 0 (mod 6). Hence, w =• ±6 (mod 24). By Lemma 4, 

8P„ + 1 = ±8P6 + 1 = 3 or 8 (mod 9). 

But 3 and 8 are quadratic nonresidues of 9, so %Pn +1 is not a square. 

Case 3. n = 0 (mod 4). By Lemma 1(11) and Lemma 2, 

(8^+iia*)=(8^+iia*)-
If* = 2(f = l),(8P2t + l|QjJt) = (97|17) = - l . Assumef>2. Now, 

%P2k + 1 s 8PU + (2ft2 - 62k) - 2Qk(8Pk + a ) (mod Q2!c). 

Let 5fc = %Pk +Qt [note that s t = l (mod 8)]. Then, using properties (5) and (6), 

( 8 ^ + 1 I & ) = (Qk \QvM \Qu) = (Qik \QkWik W) 
= (2$-l\Qk)(2P? + QZ\Sk) = (+l)(2tf+(Sk-SPk)2\Sk) 
= (66Pk

2 \sk) = (33\sk) = (sk |33) = (SPk + ft |33) = - 1 , 

by Lemma 3, and the proof is complete. 
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INTRODUCTION 

Let S„ be the set of n! permutations II = a^x2...an of Z„ = (1,2,...,«}. For II eS„, we write 
II = axa2...an, where n(/) = at. 

Definition 1: P„: = {U e S„ \al+l * a{ +1 for all i,\<i<n), \P„\ = p„; 
P„:={UGP„\an=n}, \P„\ = p„; 
P; = {II e S„ \ai+1 *a,-\ for all i, 1 </<»}, | P„'| = p'n; 
P„'={nGP„'|a„=«}, |P„'| = ^ . 

Definition 2: T„:=<UGP„ 

% = *; 

T'=\n^pj 

2_,aj > — - for any i,l<i <n>, 
J-i 2 

^ i(i + l)~ . . „ . 
l^Oj > for any /, \<i <n>, 
j=i 2 

T{=c/>, \Tn\ = tn, \T;\ = fn. 

Definitions: ^:=P„nP„', G„:=T„nT^, |GJ = r„, \G„\ = g„. 

From Computer Science, Varol first studied Tn and obtained the recurrence for tn (see [1]). 
In [2], R. Luan discussed the enumeration of T£ and Gn. This paper deals with the above prob-
lems in a way that is different from [1] and [2]. A series of new formulas of enumeration for tn9 
t'„, and gn (Theorems 1-9) has been derived. 

1. ENUMERATION OF t AND t' 
n n 

Lemma 1: «zj , n - k 
P„ = (n-\)\Yd{-\fU

1^ = Dn + Dn_l, (1.1) 
k=0 Kl 

where Dn = «!Zy= 0-^- is the number of derangement of {1,2,..., n) (see [3]). 

Proof: Consider the set S' = {(1,2); (2, 3);...;(«-1, ri)}. We say that an element (J, j +1) of 
S' is in a permutation II if IT(/) = y, H(i +1) = y +1 for some z. 

Let Wk be the number of permutations in S„ containing at least k elements of S'. The number 
of ways of taking k elements from S' is ("JT1). Suppose the k elements have j digits in common. 
Then these k elements form (k-j) continuous sequences of natural numbers, each of which is 
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called a block. Thus, the number of remaining elements in Zn is (n-2k + j). The number of per-
mutations of (n-2k + j) elements and (k - j) blocks is [in -2k + j) + (k- j)] \ = (n-k)\. Hence, 
Wk=("?)(n-k)\. 

By the principle of inclusion and exclusion (see [3]): 

k=Q V / k=0 K • k=Q V / k=0 

k\ where Dn~n\ Z£=0 ̂ -jr is the number of derangement of {1,2,..., n) (see [3], p. 59). D 

Lemma 2: n-l 
K = l H r w P y , where p0 = l. (1.2) 

Proof: It is easy to see that pn = / V i ~ Pn-\ • Applying the above recurrence repeatedly, we 
get (1.2). D 

Let oo 
PW^Pn*?. (1.3) 

Theorem 1: 

'»=I(-ir'A-2fl^- (i-4) 
j=0 / = ! 

Proof: Consider the following subset P„° of P„. 

P„° ={(a1a2...aI....an) e P j for some/, \<i <n, 

i(i + l) u ~ . . a 1 +a 2 + - - + a / =— - , but fori <j<n, 

7 0 +1) 
1 2 ; • 2 }. 

If i < w - 1 , then the number of such permutations is pfi^; if i = n - 1 , the number is pn„i. Thus, 
n-2 

7 = 1 

Hence, 
n-2 

'„ = Pn ~ I # I = Pn ~ X ft fn -i~Pn~^-
/=1 

Substituting (1.2) into the above formula, we have (1.4). D 

To simplify (1.4), we establish a lemma as follows. 

Lemma 3: If 
n-2 

tn=an-Y,hitn-n "*2, z=l 
then 
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L = 

a0 
b, i 
b2 \ i 

h-2 K-2, 

0 «3 
aA 

bx 1 -

(1.5) 

Proof: This follows from the expansion of the determinant along the bottom row. D 
Hence, we car. write (1.4) as 

Theorem 2: 
1 

A A 1 

P2-p1 + l 
0 ft-ft+A"1 

ft-ft+ft-A + 1 
A 1 -

A-2 A-3 A A-A- i+A, -2 - • • •+ ( - ! ) " 

«>2, 

Example 1: 

h = 
1 0 0 ft-A + l 
A 1 0 A - A + A - 1 

A A 1 A - A + A - A + 1 

ft ft A ft-ft+ft-ft+A"1 

1 0 0 1 
1 1 0 2 
1 1 1 9 
3 1 1 44 

= 33. 

Let T(x) = £"=0 ?„*", 'o = 0. Then we have 

Theorem 3: 

T(x) = (l + x y 1 - ^ , where P(x) = f>„x" . 
n=0 

Proof: From (1.4), 
oo oo o o / o o A 

P(X)T(X) = YsPn^y = I I > A 
«=0 «=0 

O O / O O 

=£ S(-ir'/',k=S(-ir^,l/'<^,-i=(i+xrl^)-i. 
w=0 V=0 / w=0 «=0 Hence, 

Now we shall consider t'n 

Lemma 4: 

T^-^-m ° 

P'n=Pn-

(1.6) 

(1.7) 

(1.8) 

Proof: If (ala2...a1^ ePn, then {anan_x.. .a2a]) ePJ. The above correspondence is one-to-
one; thus, |P j = |i>;|. D 
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n-\ 

Arguing as in the proof of Theorem 1, we get 

Theorem 4: 

By recurrence (1.9) and Lemma 4, we have an explicit formula for t'n as follows. 

Theorem 5: 
| l 

0 

(1.9) 

'» = 
A 1 
ft A 1 

A 
ft 
ft 

1 A-i 
A Pn \Pn-\ Pn-2 ••• 

Let the generating function for t'„ be T'(x) = Z"=0 ̂ x", ?„ = 0 

(1.10) 

Theorem 6: r(x) = i - i 
P(x) 

(1,11) 

iVoo/- By (1.9), Z^o A C = ft'" ^ ! • Thus> P(x)T(x) = P(x) -1, and we have 
1 

r(x) = i-

Lemma 5: 

P(x) 
as required. • 

(1.12) 

i.e.. 

Proof: Since T(x) = 1 / (1 + x) - 1 / [P(x)], T'(x) = 1 - 1 /[P(x)]; hence, 

7(x)-r(x) = - ^ , 

Zft,-̂ )*" = I(-l)"r". 
W=0 «=0 

Comparing the coefficients of xn, we have tn~fn- (-1)", i.e., (1.12). D 
According to (1.12) and (1.10), we have a simple expression for tn as follows: 

Theorem 7: 

t = 

1 
A 
ft 

ft-i 

1 
A 1 

A 
0 ft 

ft 

1 ft-1 
ft A A 

+(-1)". (1.13) 

For Example 1, we can count t5 by the above formula: 
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1 
A 
A 
A 

0 
1 
A 
A 

0 
0 
1 
A 

0 
0 
0 
1 

A 
A 
A 
A 

ft ft ft ft ft 

+ (-l)5 = 

1 0 0 0 1 
1 1 0 0 1 
1 1 1 0 3 
3 1 1 1 11 

11 3 1 1 53 

- 1 = 33. 

Since the enumeration for pn is simple (we may look it up in a table of values of Dn) count-
ing tn by (1.1) and (1.13) is easier than the method of [2]. 

2. ENUMERATION OF gn 

Definition 4: i?V,:= {U = (ala2...an) eS„\H contains either (z,z + l) or (z + l,z), but for V/<z, 
II contains neither (y, j +1) nor (J +1,7)}. Let | i^ . | = r .. 

Lemma 6: rnJ = 2(n-1)!, zz > 2; r u = 1. 

Proof: By definition, i^j is all permutations of S„ containing either (1,2) or (2,1). If we 
regard (1,2) as an element, then (1,2) and the remaining (n-2) elements of Z„ form (n-l)\ 
permutations. Note that there are two permutations of {1,2}. Thus, rnl = 2{n -1)!. D 

Lemma 7: r„a = 2(n -1)!- 2{n - 2)!. 

Proof: Let us count the number of permutations containing either (2, 3) or (3,2) but neither 
(1,2) nor (2,1). 

Arguing as in Lemma 6, we know that the number of permutations containing either (2, 3) or 
(3,2) is 2(n -1)!. We have to eliminate those permutations containing (1,2, 3) or (3,2,1), the 
number of which is 2(^-2)! by an argument analogous to Lemma 6. Thus, we have proved 
Lemma 7. • 

Lemma 8: rnJ - r ^ - r ^ ^ - r ^ ^ , where 2 <i <n, rn0 = 0. (2.1) 

Proof: Each permutation of R„ 7 contains (/', / +1) or (/ +1, i). If (/', i +1) is followed by / - 1 
or if (/' +1, /) is preceded by / - 1 , then (z +1) is removed, and we subtract 1 from every digit that 
is greater than z + 1. Thus, we get an element of i^_2 t_x. Conversely, given a permutation of 
i^_i5/_i, we add 1 to each element greater than i and then interpose an / + 1 between (/,/'-l) or 
(z - 1 , z). This yields an element of R^ i. 

If (z, z +1) is not followed by z - 1 or preceded by (z +1, z), we regard (z, z -f 1) or (z +1, z) as 
a single element and subtract 1 from every digit greater than z + 1. This yields an element 
i r i u u ^ u u - u ^ 1 ) M . Thus, 

rn,i ~rn-\,i-\ + 2 | 

7-1 

(«-l)!-Evu 
J=1 

Hence, 

rnJ=2\ 
7-2 

(^-l)!-I^-i,y fn-l,i-l> (2.2) 
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i.e., 
rn, i - Vn,i-l ~ rn-\,i-l) ~ Vn-\, i-l • ^ 

Using Lemmas 6, 7, and 8 above, we can express rn^k in terms ofrnl: 
rn,i =rnA~rn_lA = 2(/!-l)!-2(n-2)!, 
^ = ^ M - 3 r » - u + ^ 2 . i = 2(H-l)!-6(ii-2)!+2(/i-3)!, 

In general, let 
r%k=akA2(n-l)\-ak22(n-2)\ + -+akk(-i)M2(n-k)\. 

Obviously akJ is independent of n. It only depends on k. We can prove 

Lemma 9: 

a t , ; = a*-i , > + ak-i, j-i + %-a. j-i, 1 < 7 < * , ( 2 - 3 ) 

iVoo/- Since r„>k = £y=iafcy2(«-./)!(-l>'+1 by (2.1), we have: 
rn,k=rn, k-\ ~~ rn-\,k-\ ~ Vn-\,k-2 

y=i M M 

= %_u2(/ i - l ) !+ | ;W>^^ 

Comparing the two formulas above, we obtain relations for ank as follows: 

%, l = afc-l,l> t h u s > ak,l = ak-l,l=ak-2,l=-~=al,l = l > 
afc,/ = %-l, y + %-l, /- l + %-2,,-l> 1 < J < *> 
%,it = %-i ,*- i , t h u s > * * , ^ = ak-i,ik-i = --- = «i.i a 

Lemma 10: akJ = ak^k+l_j. (2.4) 

Proof: We prove the lemma by induction on k. For & = 1,2, or 3, this is straightforward. 
Suppose that (2.3) holds for k-l. By (2.2), 

ak, j ~ ak-\ j + a£-l , j-l + a£-2, y-1 ~ ak-l, k-j + a£-l , £-./+l + ak-2, k-j ~ ak, k+l-j • 

By (2.3) and (2.4), we easily obtain the expression for rnk\ 

rnA = 2(n-l)\, 
rn2 = 2(n-l)\-3-2(n-2)\ + 2(n-3)\, 
rJIi3 = 2(/i-l)!-5-2(/f-2)!+5-2(«-3)!-2(f!-4)!, 
r„4 = 2(/i-l)!-7-2(#i-2)! + 13-2(/i-3)!-7-2(#i-4)!+2(#i-5)!. 

1996] 113 



VAROL'S PERMUTATION AND ITS GENERALIZATION 

For akj, using 
uk-2J-l 

+ 
ak-l,j-l+ak-l,J 

we obtain the above formulas one by one. Now, using (2.1), we get the table for rnk shown 
below. 

TABLE 1. r ^ ( * < # i ) , rn^n: = rn 

n * 
0 
1 
2 
3 
4 
5 
6 
7 

0 

~6~ 
0 
0 
0 
0 
0 
0 
0 

1 

1 
2 
4 
12 
48 
240 
1440 

2 

0 
2 
8 
36 
192 
1200 

3 

0 
2 
16 
108 
768 

4 

2 
6 
56 
468 

•5 

14 
34 
304 

6 

90 
214 

Setting fn(x) = Z£=o ̂ kxk, and letting / = n - 1 in (2.2), we have 

Corollary: 

Lemma 11: 

rn,n-i = 2(w-1)! + V u - 2 - 2 / U 0 ) • 

'n 2 ^ " + 1 , w ' w . w - l / ' 

(2.5) 

(2.6) 

Proof: Denote the set of permutations containing neither (n-l,n + l, n) nor («,« +1,« -1) 

For any a GR„, inserting n + l to the left or right of« in a , we get a' e i^+ 1 „. Conversely, 
if a ' ei^+ 1 then eliminating w + 1 yields a el^. Hence, 2rw =|̂ C-i,«l-

Now we count |i£+i,J- ^ *s sufficient to subtract the number of permutations containing 
(n -1, n +1, w) or («,« +1, n -1) in i^+1 n from rw+1 w. Regard (n +1,«) as a single element. Then 
^rn n_x is the number of permutations containing no (n-l,n +1, ri). 

By a similar argument, the number of permutations containing no (/?, w + 1, w-1) is y ^ ^ . 
Thus,|i^+i,J = ̂ + i , „ - i ^„ - i -Y^„ - i - Since 2rn=|^*+1>J, we get (2.6). • 

Lemma 12: 
r„ = (»-1)(«-1)! +/„_1(l)-/„(l) + r„_1) 

/•„=X("-0(»-0! -/„0), 
;=1 

(2.7) 

(2.8) 

where 0-0! = 1. 
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Proof: Substituting (2.5) into (2.6), we obtain 

rn=l[2.nur^_l-2fn(l)-2(n-l)\-rn_^^ 

Using (2.6), we get (2.7). Applying (2.7) repeatedly, we have 

rn = nf(n-i)(n-i)\-fn(l) + r2+f2(l). 

Since r2 = 0 and /n(l) = 2, we obtain (2.8). D 

By (2.6), it is easy to get rn from rn>k. In Table 1 we denote rn>n =rn. Thus, by (2.6), the 
values ofrn on the principal diagonal can be obtained as half the difference between the two adja-
cent elements on the secondary diagonal. Unfortunately, we cannot count rn until we complete 
Table 1. But (2.7) and (2.8) can do that, namely, both rn k and r„ are counted without rw+1 k. 

If we set /„+1(x) = T,"k=0r„+hkxk, we have 

Lemma 13: 

/„(*) = l - x 
[2(n-l)!-2r„_1^-1-(l + x)/,_1(x)]. (2.9) 

Proof: By (2.1), we have 
n-\ 

k=2 

n-\ 

I 
k=2 

n-\ 

• I ' 
k=2 

2^rn,kX - Z^rn,k-\X 2^rn~l,k-lX 2^rn-l,k-2X^ 

w-1 

I' 
k=2 

fn(X) ~ rn, lX = XfniX) ~ Tn, n-l^ ~ Xfn-l(X) ~ ^ fn-l(X) + V l , W - 2 * " • 

By (2.6), we have 

(1 - x)/„(x) = 2{n-1)!x -2rn_lX" - x(l + x)f^(x). D 

Example 2: Since /4(x) = 12x + 8x2+2x3, r4 = 2. We get 

/5(x) = - ^ [ 2 - 4 ! - 2 - 2 x 4 - ( l + x)(12 + 8x2 + 2x3)] 
l - x 

X [48-12-20x2-10x3-6x4] 
l - x 

= 48x + 36x2 + 16x3 + 6x4, 

i.e., rs> j = 48, r5 2 = 36, r53 = 16, r5>4 = 6. From (2.9), we may obtain 

2 
/„(*) = ( l - x ) n-2 

n-2 

I X (-ly-^w - o! xz'(i+xy-^i - xf -i-2 

n-2 

+x" X (-l)%-i(l+^r'c1 - *r/_2+(-i)"^_i(i+xf-
i=l 

(2.10) 

The application of (2.10) is not as convenient as that of (2.9), but it provides the following 
information: r„ k must be even. It coincides with the expression of rn^k, i.e., 
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7=1 

Theorem 7: «- i 

j=i j=\ 

Proof: By a method similar to Theorem 1, it is easy to show that 
n-l 

on ~ 'n 2-a j&n-j ~~ n-l ? 
7=1 

where T^~x is the number of permutations in i ^ whose right-most entry is n -1. 
Similar to Theorem 1, we have 

n-l 

(2.11) 

(2.12) 

7=1 

(2.13) 

Now, substituting (2.13) into (2.12), we obtain (2.11) as required. D 

According to (2.11), we can count g„ by recurrence. Using (2.11) and noticing that 
gx = g2 = g3 = 0, we get an explicit formula for gn. 

Theorem 8: 

8n 

1 1 
r2 1 1 

r5-r4 

1 r„_,-••• + (-1TV4 •n-l 
r„_4 r„_5 ••• r2 1 rn-rn_x + ••• + ( - 1)V4 

, «>4 . (2.14) 

Example 3: 

g6 = 
1 0 r4 
1 1 r5-r4 
r2 1 r6-/-5+r4 

1 0 2 
1 1 14-2 
0 1 90-14 + 2 

68. 

Let G(x) = ^g„x", R(x) = £ #•„*», r0 = 0. 
n=0 «=0 

- i mr„\ , i \ - i Theorem 9: G(x) = (1 + x)"1 - (i?(x) +1)"1. 

Proof: By (2.11), 
n-l 

I^u^l(-ir^(-i)" 
7=1 7=1 

Noticing that gx = 0, we have 

G(JC) • R(x) + G(x) = (1 + xylR(x) + (1 + x)~l -1; 

thus, G(x) = (l + x)-1-(i?(x) + l)-1. D 
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Corollary; 
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UNIVERSITY OF SOUTH CAROLINA AT SUMTER 1 
1 LOUISE CIRCLE 1 
SUMTER, SC 29150 1 

The indices have been compiled using WORDPERFECT. Should you wish to order a copy of the indices 1 
for another wordprocessor or for a non-compatible IBM machine, please explain your situation to Dr. 1 
Cook when you place your order and he will try to accommodate you. DO NOT SEND PAYMENT 1 
WITH YOUR ORDER. You will be billed for the indices and postage by Dr. Cook when he sends 1 
you the disk. A star is used in the indices to indicate unsolved problems. Furthermore, Dr. Cook is 1 
working on a SUBJECT index and will also be classifying all articles by use of the AMS Classification 1 
Scheme. Those who purchase the indices will be given one free update of all indices when the SUBJECT 1 
index and the AMS Classification of all articles published in The Fibonacci Quarterly are completed. 1 
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A Niven number [3] is a positive integer that is divisible by the sum of its digits. Various 
papers have appeared concerning digital sums and properties of the set of Niven numbers. In 
1993, Cooper and Kennedy [1] proved that there does not exist a sequence of more than 20 
consecutive Niven numbers; they also proved that this bound is the best possible by producing an 
infinite family of sequences of 20 consecutive Niven numbers. They used a computer to help 
solve systems of linear congruences, the smallest such sequence they found has 44363342786 
digits. In 1994 Grundman [2] generalized the problem to «-Niven numbers with the following 
definition: For any integer n > 2, an «-Niven number is a positive integer that is divisible by the 
sum of its digits in the base n expansion. He proved that no more than 2n consecutive «-Niven 
numbers is possible. He also conjectured that there exists a sequence of consecutive «-Niven 
numbers of length In for each n > 2. In this paper, by solving some congruent equations of 
higher degree, we obtain the following theorem without the use of a computer. 

Theorem: For n-2 or 3, there exists an infinite family of sequences of consecutive #-Niven 
numbers of length 2n. 

Let sn(x) denote the digital sum of the positive integer in base n. Consider 

x = 3V+3*2+--. + 3*8+33, kl>k2> — >ks>3, 

since *%(*) = 9, ^(x +1) = 10, s3(x + 2) = 11, s3(x -1) = 14, s3(x - 2) = 13, s3(x - 3) = 12, the set 
{x - 3, x - 2, x - 1 , x, x +1, x + 2} is 6 consecutive 3-Niven numbers if and only if the following 
congruences are satisfied: 

x0+3 = 0 (mod5) (1) 
x0 + 7 = 0 (modll) (2) 
x0+5 = 0 (mod7) (3) 
x0 + 12 = 0 (mod 13) (4) 
x0 = 0 (mod 4) (5) 

where xQ = 3kl + 3kl + ••• +3*8. Noting that the orders of 3 modulo 5, 11, 7, 13, 4 are 4, 5, 6, 3, 2, 
respectively, and [4, 5,6,3,2] = 60, if the set {x - 3, x - 2, x -1, x, x +1, x + 2} is 6 consecutive 3-
Niven numbers, then all of the sets {xf - 3, x' - 2, x' -1, x', x' +1, xf + 2} with 

x' = x'(ml? jfy,..., O = 3kl+60m> + 3*2+60w2 + • • • + 3^+60w8,/w1,/w2,...,^>0 

are 6 consecutive 3-Niven numbers. 
Note that 3k = 3 (mod 4) iff k = 1 (mod 2), 3* = 1 (mod 4) iff k = 0 (mod 2). Let xx and x2 

denote the number of odd kt and even ki9 respectively. Then from (5) one has 

x1+x2 = 8 
3xx + x2 =0 (mod 4) v ; 
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with particular solutions (xb x2) = (8,0), (6,2), (4,4), or (2,6). 
Similarly, 3k = 3 (mod 13) iffjfcsl (mod 3), 3* s 9 (mod 13) iff k = 2 (mod 3), 3* = 1 (mod 

3) iff k = 0 (mod 3). Let xl9 x2, and Xj denote the number of ht (1 < i < 8) in the form 3m +1, 
3m + 2, or 3m, respectively. Then from (4) one has 

x1 + x2 + x3 = 8 
3x1 + 9x2+x3 + 12 = 0 (mod 13)' l } 

with particular solutions (1,7,0), (3,0,5), (4,3,1), and (3,2,3). 
Also, 3* = 3,2,6,4,5,1 (mod 7) iff k = 1,2,3,4,5,0 (mod 6), respectively. Let Xj (0 < j < 5) 

denote the number of kt (1 < i < 8) satisfying k = j (mod 6). Then from (3) one has 
x1+x2+x3 + x4 + x5 + x0=8 
3x1 + 2x2+6x3 + 4x4+5x5 + x0+5 = 0 (mod7). ^ ^ 

There are many solutions to this system. We find some which also satisfy equations (4*) and (5% 
That is, 

(xx + x3 + x5, x2 + x4 + x0) = (8, 0), (6,2), (4,4), or (2, 6); 
(xx + x4, x2 + x5, x, + x0) = (1,7,0), (3,0,5), (4,3,1), or (3,2,3). 

For example, 
(x1? x2, X3, x4, x5, x0) = (0,3,0,4,0,1), (3,2,0,1,1,1),.... 

Noting that 3k = 3,4,2,1 (mod 5) iff k = 1,2,3,0 (mod 4), respectively, and 3k = 3,9,5,4,1 
(mod 11) iff k = 1,2,3,4,0 (mod 5), respectively. Let Xj (0 < j < 3) and x,. (0 < j < 4) denote 
the number of kt (1 < i < 8) satisfying k = j (mod 4) and k = j (mod 5), respectively. Then from 
equations (1) and (2) one has 

Xj + X2 + X3 + X0 = o . ^ 

3x1 + 4x2+2x3 + x4+3 = 0 (mod5) 
and 

X| + X2 + X$ + X4 + XQ — o f9 *\ 
3x1 + 9x2+5x3 + 4x4 + x0 + 7 = 0 (mod 11). 

Let us first consider the solution (3,2,0,1,1,1) of equations (3X5% we make an adjustment 
so that it also satisfies (1*) and (2% and obtain 

x =1000000001000000011000000000011000000110100, 
that is, 

33+35+36 +313+314+325+326 + 334+343 

or 
328273647965397560259. 

So the smallest 6 consecutive 3-Niven numbers we obtained has 21 digits. Similarly, from the 
solution (0,3,0,4,0,1) of (3 >(5% we obtain x = 33 + 34 + 348 + 362 + 364 + 3122 + 3124 + 3182 + 3184, 
which has 88 digits. 

For the case n = 2,we may consider 

x = 2fcl+2fe2+2^+24, kx>k2>k3>4. 
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Since ^ ( x ) = 4, ^ ( x +1) = 5, s2(x -1) = 7, s 2 (x -2) = 6, the set {x -2, x -1, x, x +1} is 4 consecu-
tive 2-Niven numbers if and only if 

x0 + l = 0 (mod 5) 
x 0 - l = 0 (mod7) 
x 0 - 2 = 0 (mod3) 

are satisfied, where x0 = 2kl + 2kl + 2k\ Noting that the orders of 2 modulo 5, 6, 3 are 4, 3, 2, 
respectively, [4, 3,2] = 12. Therefore, if the set { x - 2 , x - 1 , x, x + 1} is 4 consecutive 2-Niven 
numbers, all of the sets {x' - 2, x' - 1 , x', x' +1} are 4 consecutive 2-Niven numbers, where 

x' = x'(/tfl5 tf^ w*,) = 2*1+12w' +2k*+12mi +2k^nm*. 

We omit the rest of the process. The smallest such sequence we found is (6222,6223, 6224, 6225) 
with 6224 = 2 4 + 2 6 + 2 n + 212. Other sequences we found are (33102,33103,33104,33105) with 
33104 = 24 + 26 + 28 + 215 and (53262,53263,53264, 53265) with 53264 = 24 4- 212 + 214 + 215. 

Also we may consider 

x = 2*1+2Ar2+---+2A:7+24, kl>k2> — >k7>4. 

The smallest such sequence we found is (x - 2, x - 1 , x, x +1), where 

x = 1100578832 = 24 + 215 +21 6 + 219 +22 0 + 223 + 224 +23 0. 
In principle, this method could be used to find w-Niven numbers of length 2n for larger base 

n. For example, for n - 4, we may consider x = 4*1 + 4kl + —h 4^15 + 436 and, for /? = 5, we may 
consider 5*1 +5kl + ••• + 5*24 +59 0. But it will be more and more difficult to find a suitable {kx} 
while n is getting larger. 
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The generalized Fibonacci numbers {Gw}, Gn = Gn_x + Gn_c, n>c,G0=0,Gl = G2=--= GC_X 

= 1, are the sums of elements found on successive diagonals of Pascal's triangle written in left-
justified form, by beginning in the left-most column and moving up (c-1) and right 1 throughout 
the array [1]. Of course, Gn=Fn, the nth Fibonacci number, when c-2. Also, Gn = u(n-l; 
c-1,1), where u(n; p, q) are the generalized Fibonacci numbers of Harris and Styles [2]. In this 
paper, elementary matrix operations make simple derivations of entire classes of identities for such 
generalized Fibonacci numbers, and for the Fibonacci numbers themselves. 

1. INTRODUCTION 

Begin with the sequence {Gn}, such that 

G„ = Gn_l+G„_3, n>3, G0 = 0, Gx = G2 = 1. (1.1) 

For the reader's convenience, the first values are listed below: 

n 
G„ 

0 
0 

1 
1 

2 
1 

3 
1 

4 
2 

5 
3 

6 
4 

7 
6 

8 
9 

9 
13 

10 
19 

n 11 12 13 14 15 16 17 18 19 20 21 
Gn 28 41 60 88 129 189 277 406 595 872 1278 

These numbers can be generated by a simple scheme from an array which has 0, 1, 1 in the first 
column., and which is formed by taking each successive element as the sum of the element above 
and the element to the left in the array, except that in the case of an element in the first row we 
use the last term in the preceding column and the element to the left: 

0 1 4 13 [41]i 129 
1 2 6 [19]-* 60 189 
1 3 9 28 88 277 

(1.2) 

If we choose a 3 x 3 array from any three consecutive columns, the determinant is 1. If any 3x4 
array is chosen with 4 consecutive columns, and row reduced by elementary matrix methods, the 
solution is 
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(l 
0 
o 

0 
1 
0 

0 
0 
1 

1) 
-3 

4 , 
(1.3) 

We note that, in any row, any four consecutive elements d, e,f, and g are related by 
d~3e + 4f = g. (1.4) 

Each element in the third row is one more than the sum of the 3k elements in the k preceding 
columns; i.e., 9 = (3+ 2 + 1 + 1 + 1 + 0) + !. Each element in the second row satisfies a "column 
property" as the sum of the three elements in the preceding column; i.e., 60 = 28 + 19 + 13 or, 
alternately, a "row property" as each element in the second row is one more than the sum of the 
element above and all other elements in the first row; i.e., 60 = (41 +13 + 4 +1 + 0) +1. Each ele-
ment in the third row is the sum of the element above and all other elements to the left in the 
second row; i.e., 28 = 19 + 6 + 2 + 1. It can be proved by induction that 

G1+G2-fG3 + - + G „ = GB+3-l, 

which compare with 

G1+G4+G7 + -

G2 + G5+Gi + -

Fl+F2+F3 + -

F2 + ^ 4 + ^ 6 + ' 

+G3k = G 3 * + r • 1 , 

•+G 3k+l J3k+2> 

'+*Jr3k+2 ~(J3k+3> 

•+F=R «+2 

' +*i2k+l ~ *12k+2> 

'+F2k = F2k+l ~1> 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

for Fibonacci numbers. 
The reader should note that forming a two-rowed array analogous to (1.2) by taking 0, 1 in 

the first column yields Fibonacci numbers, while taking 0, 1, 1, ..., with an infinite number of 
rows, forms Pascal's triangle in rectangular form, bordered on the top by a row of zeros. We also 
note that all of these sequences could be generated by taking the first column as all l's or as 1, 2, 
3, ..., or as the appropriate number of consecutive terms in the sequence. They all satisfy "row 
properties" and "column properties." The determinant and matrix properties observed in (1.2) 
and (1.3) lead to entire classes of identities in the next section. 

2. IDENTITIES FOR THE FIBONACCI NUMBERS AND FOR THE CASE c = 3 

Write a 3 x 3 matrix A„ = {atj) by writing three consecutive terms of {Gn} in each column and 
taking an = Gn, where c = 3 as in (1.1): 

4,= a 
\Gn+2 

n+p 
Jn+p+\ 

G, n+q 
Jn+q+\ 

^n+p+2 ^n+q+lj 

(2.1) 

We can form matrix An+l by applying (1.1), replacing row 1 by (row 1 + row 3) in A„ followed by 
two row exchanges, so that 

122 [MAY 



CLASSES OF IDENTITIES FOR THE GENERALIZED FIBONACCI NUMBERS G -G , + G 
n n—\ n— 

det 4, = det^+1. 

Let n = l,p = \q = 2 in (2.1) and find det^ = - l . Thus, det 4 , : -1 for 

4,= 
(Gn 

w+l 
\Gn+2 

G„+\ &n+2 

G„,<, G Jn+3 

(2.2) 

(2.3) 
n+4J 

As another special case of (2.1), use 9 consecutive elements of {Gn} to write 

(G„ 
4 = a G„+l G„. 

n+3 3*^ 
G 

Jn+5 

w+7 (2.4) 

which has det ^ = 1. 
These simple observations allow us to write many identities for {G„} effortlessly. W e 

illustrate our procedure with an example. Suppose we want an identity of the form 

aGn + 0Gn+l + yGn+2 = G„+4. 

W e write an augmented matrix A£, where each column contains three consecutive elements of 
{GJ and where the first row contains G„, Gw+1, Gw+2, and G„+ 4: 

4T = 

Then take a convenient value for n, say n = l, and use elementary row operations on the aug-
mented matrix A*, 

(I 1 1 2>\ (\ 0 0 A 

(Gn 
Gn+i 

Kpn+2 

Gn+i 

Gn+2 
G„+3 

Gn+2 
G„+3 

Gn+4 

Gn+4] 
Gn+5 
Gn+6; 

A; = 1 1 2 4 
1 2 3 6 

-> 0 1 0 1 
0 0 1 1 

to obtain a generalization of the "column property" of the introduction, 
G„ + Gn+l + G„+2 = G„+4, 

which holds for any n. 
While w e are using matrix methods to solve the system 

aG„ + /?G„+1 + yGn+2 = Gn + 4, 
aGn+i + PGn+2 + yG„+3 = Gt 

(2.5) 

«+5> 
aG„+2+PGn+z+YGn+A = G, n+6> 

notice that each determinant that would be used in a solution by Cramer's rule is of the form 
det 4? = det An+l from (2.1) and (2.2), and, moreover, the determinant of coefficients equals - 1 so 
that there will be integral solutions. Alternately, by (1.1), notice that ( a , /?, y) will be a solution 
of aGn+3 + /?G„+4 + yGn+5 = Gn+1 whenever ( a , /?, y) is a solution of the system above for any 
n > 0 so that w e solve all such equations whenever w e have a solution for any three consecutive 
values of n. 
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We could make one identity at a time by augmenting 4, with a fourth column beginning with 
Gn+W for any pleasing value for w, except that w < 0 would force extension of {Gn} to negative 
subscripts. However, it is not difficult to solve 

(G„ 
K 

C C1 C ^ 
KJn+l ^ 7 + 2 KJn+w 

Jn+\ Jn+2 ^n+3 G„,* G n+w+l 

V^w+2 ^n+3 Sn+4 ^n+w+2; 

by taking n = 0 and elementary row reduction, since Gw+2 - Gw+i = Gw_x by (1.1), and 

4= 
(0 1 1 Gw 
1 1 1 G, 
1 1 2 G, 

w+1 
w+2y 

-» 
(0 1 l Gw 
l o • o G w-2 
0 0 1 G ^ 

-> 
(I 0 0 Gw„2^ 
0 1 0 G 
0 0 1 G 

w-3 

w-lj 

so that 

Gn+W — Gw_2Crn + Gw_3Gn+1 + G^^G,^ • 

For the Fibonacci numbers, we can use the matrix 4*> 

(2.6) 

A = 
F F 
•*• n M n+q 

AH-1 ^n+q+l 

for which detAn = (-l)dGtAn+1. Of course, when q-\ de t4 ,=( - l ) where, also, d e t ^ 
FnFn+2~Fn+i> § i v i ng t h e well-known 

(-ir+1=FnFn 

Solve the augmented matrix A% as before, 

-F2 

n+2 M n+l• 
(2.7) 

HI ^n+l ^n+w 

by taking n = -l, 

to obtain 

F F / ' 
n+l rn+2 rn+w+l J 

-1' o i F„ 

77 77 I 77 77 _ 77 
w-1 « w «+l « + w (2.8) 

of 
Identities of the type aGn +/3Gn+2 +yGn+A = G„+6 can be obtained as before by row reduction 

< = 
(G„ 

Gn+l 

Kpn+2 

Gn+2 
Gn+3 
Gn+4 

Gn+4 
Gn+5 
Gn+6 

Gn+6) 
Gn+1 
Gn+$J 

If we take n = 0, det A$ = 1, and we find a = 1, j5 = 2, y - 1, so that 

In a similar manner, we can derive 

Gn+6 = G n + 2Gn+2 + Gn+4 • 

G«+9 = GW ~ 3 G «+3 + 4 G W 6 , 

(2.9) 

(2.10) 
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ŵ+12 ~~ G„ 2Gn+4 + 5G„+8, 
where we compare (1.4) and (2.10). 

For the Fibonacci numbers, solve 

K- K, A?+2 -^n+4 

Ai+1 -Tfi+3 ^w+5 

by taking n = l, 

so that 

Similarly, 

A; = 1 2 5 
1 3 -» 

1 0 -1 
0 1 

Ai+4 _ rn + 3rn+2. 

Ai+8 = — Ai + 'Ai+4-

In the Fibonacci case, we can solve directly for î +2p from 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

_/" = ! " "+/' F» n+2p 

by taking w = - 1 , 

(\ F F ^ 
J 1 -Tp-l ^2/7-1 

v° ^ i7, -> 
2 P ; 

-*w+l ^n+p+l -^n+2p+lj 

f1 0 ( F ^ - F ^ F , , ) / ^ 
•2p' - p j 

-> 
1 0 ( - 1 ) ^ 
0 1 /> J 

since FpF2 _1-F/?_1i^/7 = (-l)p lFpmdF2p = FpLp are known identities for the Fibonacci and 
Lucas numbers. Thus, 

K+2P = (-Vp-1F„ + LpF„+p. (2.15) 

Returning to (2.9), we can derive identities of the form «G„+/?G„+2 + yGn+4 = G„+2w from 
(2.1) with p = 2, # = 4, taking the augmented matrix A£ with first row containing Gn, G„+2, G„+4, 

It is computationally advantageous to take n = -l; notice that we can define G_x - 0. We Jn+2w' 

make use of G2w - G2w_x - G2w_3 from (1.1) to solve 

< = 0 1 2 a 
1 1 3 G 

2w -> 
2w+iy 

2w-l 0 1 1 G 
0 0 1 Glvt-Glvi_x 
\ 0 1 G2w+1 - G2wJ 

W 0 1 1 G2w_^ 
-> 0 0 1 G 

1 0 1 G 
2w-3 
2w-27 

-> 
f 0 1 0 G 
0 0 1 G 

2w-l ^ 2 ^ - 3 

2w-3 
1 0 0 G2w_2-G2w_3j 

-> 
2w-5 1 0 0 G 

0 1 0 G 2 M M - G 2 W _ 3 
0 0 1 G2w_3 

\ 

obtaining 

Gn+2w ~ G2w_5Gn + (G2w_1 G2w_3)Cjn+2 + G2w_3G; n+4- (2.16) 
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In the Fibonacci case, taking « = - 1 , 

< = 
77 E" 

rn+2 rn+2w ) 
-*w+l Ai+3 ^n+2w+lj 

->4!,= 1 1 F2 
0 1 K 

2w-l 

2w 
-> n 0 -/s 

0 1 K 
2w-2 

2w 

we have 
A H - 2 w -*2w-2^n ~^~ ^2 w^n+2 • 

Returning to (2.6) and (2.16), the same procedure leads to 
Gn+3w ~ G3w-6Gn + \G3w ~~ 4 & 3 w _ 3 ) & w + 3 + G3w-3Gn+6 • 

(2.17) 

(2.18) 

The Fibonacci case, derived by taking n = - 1 , 
(F 

K = ^n+3 ^n+3w 

V «+l ^n+A ^n+3w+lj 

gives us 
A?+3w ~ A?^3w-3 '2+ A?+3̂ 3w ' A (2.19) 

where F3m/2 happens to be an integer for any m. Note that d e t ^ =(-1) 2, and hence, 
det An ^ ±1- We cannot make a pleasing identity of the form aGn + j3Gn+4 + yGn+s = Gw+4w for 
arbitrary w because det 4? * ±1, leading to nonintegral solutions. However, we can find an iden-
tity for {Gn} analogous to (2.15). We solve 

aG_x +/3Gp_x + yG2p_x = G3p_ly 

aG0+/3Gp+yG2p = G3p, 
aGx + pGp+l + yG2p+l = G3p+l 

for (a,j3,y) by Cramer's rule. Note that the determinant of coefficients D is given by D = 
G2pGp_l - GpG2p_x. Then a-AID, where A is the determinant 

G3p_x Gp_ a 2/?-l 

G3p+1 Gp+\ G2p+l 

After making two column exchanges in A, we see from (2.1) and (2.2) that A - D, so a = 1. Then 
J3 = BID, where B is the determinant 

B-
0 G3p-\ G2p-

0 G *p J2P 

1 G3p+\ G2p+1 

G2pG3p-\ ~ G3pG2p-

Similarly, y -CID, where C = Gfip^.\ - G
P

G3P~\ • Thus, 

G w + 3 p = Gn + Gn+p(G3p-lG2p ~ G3P
G2p-l) I D + Gn+2p(G3pGp-l ~ G3p-\Gp) < A 

where D= (G2P
G

p-\-GpG2p-\). The coefficients ofGn+p and Gn+2p are integers for p - 1,2,...,9, 
and it is conjectured that they are always integers. 
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^Gn+4 

^n+p 
Gn+p+2 

^n+p+4 

r \ 
^n+q Gn+q+2 

^n+q+4) 
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As an observation before going to the general case, notice that identities such as (2.9), (2.10), 
and (2.11) generate more matrices with constant valued determinants. For example, (2.9) leads to 
matrix Bn, 

B» = 

where deti?„ = det£„+2. 

3. THE GENERAL CASE: Gn = Gn_t + Gn_e 

The general case for {Gn} is defined by 

G„ = Gl_1 + G^c,/i>c,whereG0 = OsG1 = G2 = - = Gc.1 = l. (3.1) 

To write the elements of {Gn} simply, use an array of c rows with the first column containing 0 
followed by (c-1) l's, noting that 1, 2, 3, ..., c will appear in the second column, analogous to the 
array of (1.2). Take each term to be the sum of the term above and the term to the left, where we 
drop below for elements in the first row as before. Any cxc array formed from any c consecu-
tive columns will have a determinant value of ±1. Each element in the cth row is one more than 
the sum of the ck elements in the k preceding columns, i.e., 

G1 + G2 + G3 + - + G c t = Gc( t+1)-l, (3.2) 

which can be proved by induction. It is also true that 
Q + Ga+Ga + . - . + G ^ G ^ - l . (3.3) 

Each array satisfies the "column property" of (2.5) in that each element in the (c- l)st row is 
the sum of the c elements in the preceding column and, more generally, for any n, 

Gn+C_2 = Gn_c + Gn_{c_X) + • • • + Gn_2 + Gn_x (c terms). (3.4) 

Each array has "row properties" such that each element in the zth row, 3 </' <c, is the sum of 
the element above and all other elements to the left in the (/* -1)** row, while each element in the 
second row is one more than the sum of the elements above and to the left in the first row, or 

G0 + Gc + G2c + G3c + - . + Gd k=Gd t + 1- l , (3.5) 
Gm + Gc+m +G2c+m + " ' + Gck+m = Gck+m+l> m = l> 2 , . . . , C - 1, ( 3 . 6 ) 

for a total of c related identities reminiscent of (1.6), (1.7), and (1.8). 
The matrix properties of Section 2 also extend to the general case. Form the cxc matrix 

Anc- (atj), where each column contains c consecutive elements of {Gn} and an = Gn. Then, as 
in the case c = 3, 

d e t ^ ^ ^ i r M e t ^ , , (3.7) 

since each column satisfies Gn+C - Gn+C_{ + Gn. We can form 47+1, c fr°m Ai, c °Y replacing row 1 
by (row 1 + row c) followed by (c-1) row exchanges. 

When we take the special case in which the first row of An^ c contains c consecutive elements 
of {G„}, then ^ c = ±1. The easiest way to justify this result is to observe that (3.1) cam be used 
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to extend {G„} to negative subscripts. In fact, in the sequence {Gn} extended by recursion (3.1), 
Gl = l and Gx is followed by (c-1) l's and preceded by (c-1) O's. If we write the first row of 
AntC as Gw, Gn_h G„_2,..., G„_^^, then, for n = 1, the first row is 1, 0, 0, ..., 0. If each column 
contains c consecutive increasing terms of {G„}, then Gn appears on the main diagonal in every 
row. Thus, Alc has l's everywhere on the main diagonal with O's everywhere above, so that 
det Alc = 1. That AoXAnc = ±1 is significant, however, because it indicates that we can write 
identities following the same procedures as for c - 3, expecting integral results when solving 
systems as before. Note that d e t ^ c = ±l if the first row contains c consecutive elements of 
{G„}, but order does not matter. Also, we have the interesting special case that AttAnc - -* 
whenever An c contains c2 consecutive terms of {G„}, taken in either increasing or decreasing 
order, c > 2. Det An c = 0 only if two elements in row 1 are equal, since any c consecutive germs 
of Gn are relatively prime [2]. 

Again, solving an augmented matrix A^ c will make identities of the form 
Gn+w = a0Gn + afin+l + a2Gn+2 + "'+ <Xc-lGn+c-l 

for different fixed values of c, or other classes of identities of your choosing. As examples, we 
have: 

^n+w ~ GnGw-2 + Gn+\Gw-3 + Gn+2Gw-l> c=3 
c = 4 
c~^ Gn+w ~GnGw-4+Gn+fiw-s+ Gn+2Gw-6 + Gn+3GW_7 + G„+4GW_3, 
c = 4 Gn+W = GnGw_2 + GW+1GW_4 + Gn+2GW_5 + G„+3GW_2, 

C — C Gn+w - GnGw-c+l + Gn+lGw-c + Gn+2Gw-c-l ^ •" Gn+c-lGw-c+2> 

c — 2 A?+3 ~ Ai + rn+l + rn+i, 
c = 3 G „ + 4 = G„ + G„+1 + Gw+2, 
c = 4 Gw+5 = G„ + Gw+1 + Gw+3, 
c = 5 Gn+6 = G„ + Gn+1 + G„+4, 

C = C Gn+c+l = Gn+Gn+l+Gn+c-V 

So many identities, so little time! 
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1. INTRODUCTION 

One of the most satisfactory methods for modeling the physical reality consists in arriving at a 
suitable differential system which describes, in appropriate terms, the features of the phenomenon 
investigated. The problem is relatively uncomplicated in the finite dimensional setting but becomes 
very challenging when various partial differential equations, such as the wave, heat, electro-
magnetic, and other equations, become involved in the more specific description of the system. 

When it is difficult or even impossible to obtain an exact solution of the partial differential 
equations governing a continuous plant, the mathematical model is almost always reduced to a 
discrete form. Then the plant is represented by an appropriate connection of lumped-parameter 
elements and it may vibrate only in combinations of a certain set of assumed modes. 

In modeling continuous-time systems that are continuous or discrete in space, such classic 
trigonometric functions as sine, cosine, tangent, and cotangent, as well as corresponding hyper-
bolic functions, are widely used. As is well known, these functions are based on two irrational 
numbers: ;r = 3.14156926... and e = 2.7182818.... 

In this paper we shall be concerned with a new class of hyperbolic functions that are defined 
on the basis of the irrational number </> = ^^- ~ 1618033..., also known as the golden ratio. 

We shall introduce new functions called "Fibonacci hyperbolic functions" and show how they 
result from suitable application of modified numerical triangles. We shall also establish a set of 
suitable properties of Fibonacci hyperbolic functions such as symmetry, shifting, and links with the 
classic trigonometric and hyperbolic functions, respectively. Some examples illustrating pos-sible 
applications of the involved functions in mathematical modeling of physical plants are also 
presented. 

2. THE FIBONACCI TRIGONOMETRY 

Recently, studies and applications of discrete functions based on the irrational number 
^~~2^"~ 1-618033... have received considerable attention, especially in the theory of recurrence 
equations, of the Fibonacci sequence, their generalizations and applications (e.g., see [1], [2], [4], 
[5], [6], [9], and [10]). 

In this section we shall present fundamentals of a new class of functions called Fibonacci 
hyperbolic functions. 

Definition 1: Let 

y/ = l + (f>=3 + ^5 -2.618033... (1) 

be given, where <f> denotes the golden ratio. 
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For x e(-oo? oo), we define by analogy to the classic hyperbolic functions: chx, shx, thx, cthx, 
continuous functions 

sFh(x) = 

tFh{x) = 

yr-y/ 

sFh(x) 
cFh(x)' 

cFh{x) 
-(x+I 

V5 

sFh{x) 

(2) 

as the Fibonacci hyperbolic sine, cosine, tangent, and cotangent, respectively. 
Diagrams representing the above-defined Fibonacci sine and cosine are presented in Figure 1. 

Respective diagrams can easily be established for the Fibonacci tangent and cotangent. They are 
omitted here for the sake of presentation simplicity. 

• cFh i sFh 

FIGURE 1. Diagrams of cFh(x) and sFh(x) 

It is worth noting that function sFh{x) is odd-symmetric with respect to the coordinate origin 
but function cFh(x), while asymmetric with respect to the vertical coordinate x = 0, is even-
symmetric with respect to - y . 

On the basis of the above definition relations, we are able to establish a set of important 
properties of Fibonacci hyperbolic functions. In the sequel we shall focus attention on sFh(x) 
and cFh{x) only. 

First, they can be expressed in terms of the golden division ratio (/) as follows. Using the 
well-known identity 

f = ! + </> (3) 
and substituting it into expressions (2), we obtain 
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sFh(x) _<t>2x~f cFh(x) _ ^ 2 * + 1 > + < J r ( 2 * + 1 > 
(4 ) V5 ' " " w _ S 

Second, it is easy to demonstrate that when, instead of the continuous independent variable x, we 
use a discrete variable k e / (a set of all integer numbers k = . . . , - 2, -1,0,1,2,...) we can express 
functions sFh(x) and cFh(x) in terms of the corresponding elements of the Fibonacci sequence 

/ ( * + l) = / (* ) + / ( * - l ) , £ = . . . , -3 ,-2,-1,0,1,2,3, . . . (5) 

with / (0) = 0 and/(l) = 1 as follows: 
sFh(k) = f(2k), cFh(k) = f(2k + l). (6) 

Next, applying the well-known Binet formula (see [1], [2]) to the right-hand sides of expressions 
(6) yields 

r2k\ 
5J" sFh(k) = • 1 

, 2 / f c - l 
2k + 5 '?) + 5 + • • + 5r[2r2il'+-

1 
• > 2 * - l 

(7) 

and 

<*W = -̂ F 

,24: 

r=0 v 

VVvV1 + 5 2k + l 
+ • ••<2:n-

i^g:! p=0 

(8) 

Note that the right-hand sides of expressions (6) and (8) do not represent an infinite series 
but are finite sums, since their general term vanishes for 2k <2r + 1 and 2k <2p, respectively. 
For instance, at k = 8, the first vanishing term corresponds to 2r > 15 for the sFh(k) and to p > 8 
for the cFh(k). Thus, the calculations of sFh(k) and cFh(k) (k el) are reduced to easily com-
puted sums involving simple binomial coefficients, (£). 

Finally, it is possible to establish links of the Fibonacci hyperbolic functions sFh(k) and 
cFh(k) (k el) with the classic hyperbolic functions sinh(x) and cosh(x), but they are based on 
transition from an expression through its natural logarithm. For this purpose, we calculate the 
logarithm of the irrational number (j>y namely, 

a :ln0 = ln -^^ -0 .4812118 . (9) 

Next, we calculate exponential functions 

.« 1 + V5 
<t>, S-\ -f\ (10) 

and the corresponding hyperbolic functions 

cosh a - V5 sinh a - (11) 
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Substituting values (11) raised to the 2k^ power into (7) and (8), we get 

sFh(k) = -isinh(2Jta), cFh(k) = -^cosh[(2£ + l)a]. (12) 

Thus, we have one operation only for calculating sFh(k) or cFh(k), i.e., the multiplication of the 
known hyperbolic function of the argument 2ka or (2£ + l)a, respectively, by the coefficient 
2 / V5 = 0.8944271... . For example, 

and 

sFh(S) = -j=sh(\6a) = 0.8944271-1103.6922 = 987 

cFh($) = -j=ch(lla) = 0.8944271-1785.5002 = 1597. 

In a similar manner we can establish links of Fibonacci hyperbolic functions with such trigo-
nometric functions as sine and cosine with respective arguments. 

3. PROPERTIES OF FIBONACCI HYPERBOLIC FUNCTIONS 

Taking into account the expressions presented in the preceding section, we can derive a set of 
important properties and relations which come into existence in Fibonacci hyperbolic trigonom-
etry. 

First, it is possible to demonstrate on the basis of (6) that the following equalities hold: 
sFh{-k) = -sFh(k), cFh(-k) = cFh(k -1). (13) 

Thus, sFh(k) is odd-symmetric with respect to the coordinate origin but cFh(k) is even-sym-
metric with respect to the vertical line £ = - - . Note that cFh(-j) = ^ = 0.8944271..., which 
means that the minimum of cFh(k) appears at k = - y and differs from that for the classic hyper-
bolic ch(x) which equals min(cosh(x)) at x = 0. On the other hand, for k = 0, function cFh(k) 
takes the value cFh(0) = 1. 

It is easy to prove the remaining important properties of functions sFh(k) and cFh(k). Some 
of these are given below: 

1. sFh(k) + cFh(k) = sFh(k + l), 

2. sFh2(k) + cFh2(k) = cFh(2k\ 

3. cFh2(k)-sFh2(k) = l + sFh(k)cFh(k), 

'k-l-\ 4. sFh(k) + sFh(£) = S$Fh(^^\Fh\ 

5. sFh(k)-sFh(£) = ^sFh(^^)cFhC 

6. cFh(k) + cFh(t) = ScFh(!^)cFh( 

2 

k-l^^Jk + l-l 

k + l\ n(k + £-l 
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7. cFh(k) - cFh{t) = SsFh[^-^\sFh\ 

8. sFh(2k) = SsFh(k)cFh\k - - \ 

k+e-i 

9. cFh(2k) = ScFh{k)cFh(k - -1 +1, 

10. cFh(k)cFh(k -1) - sFh2(k) = 1. 

For the sake of presentation compactness, the corresponding proofs are omitted here. It is 
worth noting that the above properties also remain valid for continuous arguments x G(-QO, oo) 
and y e (-oo, oo) ? respectively. 

4 RELATIONSHIPS BETWEEN FIBONACCI HYPERBOLIC FUNCTIONS 
AND MODIFIED NUMERICAL TRIANGLES 

Some advantages in calculating Fibonacci hyperbolic functions follow from the structure and 
properties of modified numerical triangles (see [5], [9], [10]). To facilitate their demonstration, 
we shall briefly discuss these triangles and their main characteristics. 

The first modified numerical triangle (MNT1) contains elements corresponding to coeffi-
cients of polynomials in q defined by the recurrence expression 

Tk+l(q) = (2 + q)Tk{q)- Tk_M, Uq) = 1, Tx(q) = \ + q, (14) 

with q as, in a general case, a complex parameter and k = 0, +1, + 2, ± 3,... . 
Coefficients of the above polynomials for successive values of & belong to MNT1, which 

takes the form 

MNT1 

k X 
0 
1 
2 
3 
4 
5 
6 

0 

~r i 
i 
i 
i 
i 
i 

i 

i 
3 
6 
10 
15 
21 

2 

1 
5 
15 
35 
70 

3 

1 
7 
28 
84 

4 

1 
9 
45 

5 6 ••• 

1 
11 1 

The second modified numerical triangle (MNT2) corresponds to polynomials in q defined by 
the expression 

Pk+i(a) = Q+m(a)-Pk-i(a), PM = o, PM = 1, (is) 
with A = 0,±l,+2,+3,. . . . 
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Coefficients of these polynomials belong to MNT2, which takes the form 

MNT2 

V 0 
1 
2 
3 
4 
5 
6 

m 0 

"IT 
l 
2 
3 
4 
5 
6 

1 

1 
4 

10 
20 
35 

2 

1 
6 

21 
56 

3 

1 
8 

36 

4 

1 
10 

5 6 ••• 

1 

The above polynomials fulfill a set of important relations, and some examples are as follows: 

Tk{q) - Tk_x{cj) = qPk(g), Pk - Pk_x = Tk_x{q). (16) 

It was demonstrated in [9] that, for q = 1, the following relations hold: 

Tk(l) = f(2k + l), Pk=f(2k), A = 0 , ± l , ± 2 , ± 3 , . . . . (17) 

Thus, taking into account expressions (6), we have 

cFh(k) = Tk(l), sFh(k) = Pk(\). (18) 

It is worth noting that the modified numerical triangles can be used effectively to determine values 
of corresponding Fibonacci hyperbolic functions. 

5. ILLUSTRATION EXAMPLES 

Let us now proceed to illustrate possible applications of Fibonacci hyperbolic trigonometry 
for solving problems arising from biology, physics, or technics. We shall demonstrate these appli-
cations through suitable examples. 

Example 1: A microwave system usually contains such an essential part as a junction. It con-
sists of two or more microwave components or transmission lines connected together (see [3], 
[8]). The propagation of electromagnetic signals along each component is described by the trans-
mission line equation, 

d2V 
dx2 = ZYV, (19) 

where V is the Laplace transform of the voltage at point x e (0, £) of the space variable in the 
direction of propagation and Z and Y denote the per unit length impedance and admittance of the 
line, respectively. 

In a general case, the solution for the voltage as a function of time is difficult; for this and 
other reasons, recourse to an approximate approach is needed. Following this line of reasoning 
and applying the well-known second-order difference approximation yields 

V(k +1) - (2 + q)V(k) + V(k -1) = 0, V(0) = V0, V(l) = (1 + q)V(0) (20) 
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with 
q = z<&,. (2i) 

where Z0 = Zh and YQ = Y-h denote the impedance and admittance per distance h = Ax of the 
space coordinate discretization. 

Solving equation (20) with respect to V{k) gives 

V(k) = Tk(q)V0 + Z0Pk(q)I0, (22) 

where V0 and IQ denote the Laplace transforms of the voltage and current at x = 0, i.e., for k = 0. 
On the other hand, following the general method of solution of difference equation (20) 

yields 
V(k) = q-k[cFh(k)V0 + Z0sFhq(k)I0], (23) 

where sFhq(k) and cFhq(k) denote generalized Fibonacci hyperbolic sinus and cosinus, respec-
tively. They are defined as follows. 

Definition 2: If q denotes, in the general case, a complex parameter, then the following 
expressions, 

SFhJk): 1 

V?2+4? 
n \2k ( n 

g + 2 + yjg2+4q | | -q-2 + ^q2+4q 
J V 

-2k 

cFh(k) = 
Jq^4q 

q + 2 + ^q2+4q 
2 

+ 
J V 

-q-2 + ^q2+4q 
2 

\-(2k+l) 
(24) 

define the so-called generalized Fibonacci hyperbolic sinus and cosinus, respectively. Using the 
above expressions, we can easily establish the generalized Fibonacci hyperbolic tangent and co-
tangent. For the sake of presentation compactness, corresponding expressions are omitted here. 

Thus, comparing solutions (22) and (23) and referring to (24) gives 

cFh(k) = q%(q), sFh(k) = qkPk(q). (25) 

Moreover, it is easily seen that fixing q = 1 we obtain the usual Fibonacci hyperbolic func-
tions cFh(k) and sFh(k), so that we have 

cFhq{k)\q=l = cFh(k\ sFhq(k)\q=l = sFh(k). (26) 

Now it is evident that the above presented Fibonacci hyperbolic functions and modified 
numerical triangles can be very useful for practical problems studies. 

Example 2: The filter design problem at microwave frequencies, where distributed parameter 
elements must be used, is extremely complicated, and no complete theory or synthesis procedure 
exists for solving the problem. The complex behavior of microwave circuit elements makes it 
impossible to develop a general and complete synthesis procedure [7]. However, a procedure 
based on the Fibonacci hyperbolic trigonometry appears as useful technique for studies of micro-
wave filters. The effect of lossy elements or quarter-wave transformers can easily be considered. 
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The latter case is represented by the network shown in Figure 2. It contains a number of quarter-
wave transformers loaded by the lumped parameter elements characterized by impedance Zv The 
voltage and current distributions along the system are described by the matrix equation 

'U(k + \j 
I(k + 1) 

a b 
c d 

U(k) , * = 0,1,2,. 

where a, b, c, and d denote, in a general case, complex parameters fulfilling the relation 
ad-be = I. 

(27) 

(28) 

{3 

d) a b 
c d 

n-l I Lf_2_ 
a b 
c d 

a b 
c d 

_o 

FIGURE 2. Ladder of Two Ports 

In the sequel we shall limit our attention to a system having the following parameters: 

a = l, b = -JZc, c = ̂ y d = 0, (29) 

where Zc is the characteristic impedance of each one of two port elements in the system and 

Introducing characteristic parameter 

P = z: 
(30) 

and solving equation (27) with respect to U(k\ k = 0,1,2,..., we get the second-order difference 
equation with complex coefficients, that is, 

U(k + l) + jpU(k) + U(k-l) = 0, U(0) = U09 U(l) = -jpU(0). 

Now, comparing respective coefficients in equations (22) and (31) yields 

U(2k) = (-j)2k Tk(p2), U(2k +1) = (-j)2k+1Pk(p2), 

(31) 

(32) 

where Tk(x) andi^(x) are the polynomials in x = p2 with coefficients from MNT1 and MNT2, 
respectively. 

Taking into account the relationship between Fibonacci hyperbolic functions and polynomials 
Tk(x) and Pk(x), we can transform relations (32) into the following forms: 

JP ) 

1 
\2k 

cFhAk), U(2k + l) = \ ~ 
P \JP 

2/t+l 

sFh , (k), with k = 0,1,2,... . (33) 
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Thus, a set of suitable expressions has been established which gives much more facility and 
improvement with respect to up-to-date available ones in the design of microwave filters. It must 
be stressed that no assumption has been made on the lumped parameter elements; therefore, the 
presented approach is quite general. 

Example 3: One of the fundamental problems in botany lies in suitable descriptions of leaf 
growings [12]. The geometry of leaf growing is characterized by a spiral-symmetry structure. 
Bio-organisms draw images on the surface of the leaves forming left- and right-turning spiral lines 
with crossings at respective points. The symmetry order of the leaf-grilles are determined by a 
number of spiral lines in respective patterns. During leaf growing, these spiral lines can be trans-
formed into moving hyperboles with cross-points determined by the coordinates expressed in 
terms of Fibonacci hyperbolic functions as follows: 

uk-a- sFh(k), uk_x - a• cFh{k -1), (34) 

where k = 0,1,2,... is the index of the cross-point in the leaf-grille and a denotes the scale coef-
ficient of the moving hyperbole with respect to parameters of a unit hyperbole. 

If the grille is square, then the coordinates of the cross-points take integer values that fulfill 
the relation 

uk+iuk ~ uk+i + ul= c o n s t • (3 5) 

The structure-symmetry order of the logarithmic grille is determined by the parameter 

qt = qD, (36) 
where q denotes the similarity coefficient and D is the angle divergence. 

For tree foliage, leaf growing is determined in terms of the Fibonacci sequence and fulfills the 
equation 

| /2(*) + / ( * ) / ( * + l ) - / 2 ( * + l)|=l, (37) 

and at the limit k —> oo, the angle divergence is equal to 

lim £> = : ! £ z l = 0-1 ~ 0.618033... . (38) 
&-»°° 2 

Other cases of leaf growing are governed by similar expressions. Following a more general 
line of reasoning, it is possible to prove that there are general principles in pattern formation on 
the plants. 

69 CONCLUSIONS 

In this paper we have presented the new ideas and concepts concerning hyperbolic trigonom-
etry. It has been shown that many problems appearing in mathematical modeling of physical 
plants can be solved successfully by applying such new functions as Fibonacci hyperbolic sine 
and/or cosine. The concepts presented in this paper have the following features: a) they produce 
analytic expressions for both continuous and discrete arguments; b) in the discrete case, there 
exist respective links with the classic Fibonacci sequence; c) important simplifications in calculus 
can be achieved by using modified numerical triangles. 

The application of Fibonacci hyperbolic functions has been illustrated by suitable examples. 
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1. INTRODUCTION 

Let Fq denote the finite field of order q = pe, where q is an odd prime. If f(x) is a polyno-
mial of degree d>\ over F then it is clear that 

d 
+ l<V(f) = \{f(x):xeF}\<q, 

where [w] denotes the greatest integer less than or equal to w. We say that fix) permutation 
polynomial ifV(f) = q, and f(x) is a minimal value set polynomial if 

V(f) = q-l 
d + 1. 

A polynomial fix, y) with coefficients in Fq is a local permutation (minimal value set) poly-
nomial over F if f(a, x) and f(x, b) are permutation (minimal value set) polynomials in x for all 
a and b in Fq. Local permutation polynomials have been studied by Mullen in [5] and [6]. 

In this note we will consider local minimal polynomials of small degree (< <Jq) on both x and 
y. We will show that there are only five classes of local minimal polynomials. Namely, 

(a) f(x,y) = aXmYn + bXm + cYn +d,m,n\(g-1), 
(b) f(x,y) = (aX + bY + c)m+d,m\(q-l), 

(c) f(x,y) = aX2Y"+bX2+cX + dY"+e,n\(q-l), 

(d) f(x,y) = aXmY2+bY2+cY + dXm+e,m\(q-l)9md 

(e) f{x,y) = aX2Y2+bX2 +cY2 +dX + eY + gXY + h. 

where X = (x- xQ) and Y = (y - y0) with x0, y0 in Fq. 

2. THEOREM ANB PROOF 

Miinimal value set polynomials have been studied by several authors. L. Carlitz, D. J. Lewis, 
W. H. Mills, and E. Strauss [2] showed that, when q is a prime and d- deg(/) <q, all minimal 
value set polynomials with V(f) > 3 have the form f{x) - a(x + b)d +c with d dividing q-l. 
Later, W. H. Mills [4] gave a complete characterization of minimal value set polynomials over 
arbitrary finite fields with d <Jq . A weakened form of Mills's results can be stated as follows: 
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Lemma 1 (Mills): If F is a finite field with q elements and f(x) is a monic polynomial over F 
of degree d prime to q, then 

d<^ and V(f) = q-\ + 1 
imply 

d\(q-\) and f(x) = (x + b)d+c. 

For other related results, see [1] and [3]. We are now ready for our result. 

Theorem 2: Let Fq denote a finite field of order q- pe!, where/? is an odd prime. Let 
n m 

/=0 y'=0 

denote a polynomial with coefficients in Fq. Assume that m, n, n-l, and m-\ are relatively 
prime to q and \<m,n<^q . Assume an(x)bm(y) & 0 for all x, y in F . Then f(x,y) is a local 
minimal polynomial if and only if f(x, y) has one of the following forms: 

(a) f(x,y) = aXmYn+bXm+cY"+d,rn,n\(q-l\ 
(h) f(x,y) = (aX + bY + cr+d,m\(q-l), 
(c) f(x, y) = aX2Yn +bX2 +cX + dYn +e,n\(q -I), 
(d) f(x,y) = aXmY2 + bY2 +cY + dXm +e,m\(q-1), and 
(e) f(x,y) = aX2Y2+bX2+cY2+dX + eY + gXY+h. 

where X = (x-x0) and Y- (y-yQ) with x0,y0 inFq. 

Proof: If f(x, y) is one of the forms (a)-(e), then it is easy to see that f(x, y) is a local 
minimal value set polynomial. Now, let 

n m 

denote a local minimal value set polynomial over Fq satisfying: 

(i) \<m,n<Jq, 
(ii) {mnim - \)(n -1), q) = 1, 

(HI) ^ ( x ^ O O ^ O f o r a l l x ^ i n ^ . 

Also, and without loss of generality, assume that m<n and n>3 [n = 2 gives form (e)]. 
Then, by Lemma 1, 

f(x9y) = an(xi 

••Km 

. «a„(x)) n"a"n \x) 

x+M4T'+*bO--£^ 
"»*«(y) «r*r10')' 

(i) 

(2) 
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for all x, y in F and m, n \ (q ~ 1). Hence, 

™ an{x)y + ̂ =M^ + f l b ( x K - i ( x ) _ f t iM 

=«rw w+^I+wr'w 
w J 

C i ( y ) 
W 

(3) 

for all x, 3; in Fq. Further, since \<m<n<^Jq, equation (3) also establishes the equality of the 
polynomials. Therefore, 

K~2(y)\ 

= a"n-\x)\ 

a:-\x)y"+a:-\x)an_x{x)yn-1 + - + ̂ ^ - y + a0{x)aT\x) 

Hence, 

m 

n\a73(yfe(y)^-3 , x O 0 a^ (x) divides ~ y • + - >,«-2 

and, consequently, ^~2(x) divides a"lj(x). Now, if g(x) is an irreducible factor of an(x) so 
that gc(x)|a„(x) but g"c+1(x)|aw(x), then ge(x) divides an_x{x) for some integer e such that 
1 < c(n - 2) < (w - l)e. Therefore, since deg(g(x)) > 2, e < c -1 implies c(?? - 2) < (w - l)(c -1) or 
7 ? - l < c < y < y , a contradiction. Thus, aM(x) divides <Vi(x). 

Case 1. aw_1(x) = 0. Then, by (1), 

f(x,y) = an(x)yn+a0(x) = 

= (anmyn+a0m)\ 

Hence, f(x, y) has the form (c) or m > 3 and 

V/=o y /=o /=o 

x ! anm-\y + a 0 m - l + a W + % ) " m\anmf+a,my-X° 

\m-i 

•amy + % 

or 
anm-\y + a 0 m - l \ =(«nffl/+«ojm-'_1Ky+%) (4) 

for all 3; in F and / = 1,2,..., m. So, if a„w = 0, then anm_x - 0 and we obtain 

f(x,y) = a{ •0m 
x 1 MQm-i +<w +%>- ^ O w - l 

vw%» 
-*0w» 
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where aQman0 & 0. On the other hand, if anm ^ 0, then, again by (4), 
a0m __ a0m-l 

Therefore, either f(x, y) has the form (c) or 

I n \m / n \ 

x + a iy+a0 ) +anQyn+aoQ_{a y +a0^y 
m{anmy +aom)) mm(anmyn +a0m)m 

m 

= (anmyn+aQm)\x + 
manmJ 

+ <**f + %) H -Jm=± (anmy" +<*om) 

and f(x, y) has the form (a). 
Case 2. a^x^a^ix) * 0. Then, by (1), 

dog(an(x))Hri-l)dJ^^)<m. 

Hence, either d e g ( ^ ^ } ) = 0 or d e g ( ^ ^ ) = 1 and deg(a„(x)) = 0. First, we assume that 
deg(^g^) = 1 and deg(a„(x)) = 0. Thus" n -1 < m < n and ; 

f(x, y\= Ax(y + axx.+ cx)n + g(x), 

where Axax ^ 0 and g(x) denotes a polynomial of degree less than or equal to n. Now, m-n-\ 
gives bm(y) = bn_l(y) = na"~l(y + cl) + c2, a contradiction to (iii). Thus, bm(y)=bn(y) is a con-
stant polynomial, deg( ^"ff) = 1 and 

where A2a2 ^ 0 and h(y) denotes a polynomial of degree less than or equal to n = w. Therefore, 
there exist constants A3, a3, and c3 such that 

« n 

/=0 7=0 

where #(x) = Z7
W

=0 ̂  anc* ^00 - 2f=o ̂ y • Now we compare the coefficients of x"~7y in (5) to 
obtain 

A3 "p = A2\j)4 
for i = 1,..., n - 1 . Since in -1,9) = 1, it follows that A^- A3 and a2=a3. Thus, comparing the 
coefficients of x"-2}>, c2 = c3. Therefore, g(x) = A(y) = t/ for some constant d, and 

f(x,y) = A(x + ay + c)n+d 

which has the form (b). 
Now we assume that deg(^ *\/) = 0. Then 
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for some a <=Fq. Therefore, f(x, y-a) =an(x)y" + g(x), which is a polynomial already con-
sidered in Case 1. This completes Case 2 and the proof for m < n. lfn<m, then a similar argu-
ment will provide form (d). 

The next example illustrates the necessity of the condition (n -1, q) - 1. 

Example: For a in Fn, let f(x, y) denote the polynomial 

f(x, y) = 2x4 + x3y + xy3 + j 4 + lax3 +ay3 + 2a3x + a3y. 
Then 

f(x, y) = (x + y + a)4 + x4 +ax:3 +a3x + 2a4 

= 2(x + 2j/ + a ) 4 + 2 / + a 4 . 

Therefore, since 4|80, f(x, y) is a local minimal polynomial that is not in the list (a)-(e). 
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1. INTRODUCTION 

In 1963, D. R. Kaprekar [1] introduced the concept of self-numbers. Let k>\ be an arbi-
trary integer. A natural number m is said to be a £-self-number iff the equation 

m-nJrdk(ri) 

has no solution in an integer n > 0, where dk(n) denotes the sum of digits of n while represented 
in the base k. Otherwise, we say that m is a ^-generated number. And m is said to be a universal 
generated number if it is generated in every base. For example, 2, 10, 14, 22, 38, etc. are univer-
sal generated numbers. The number 12 is 4-generated by 9, but it is a 6-self-number. 

In 1973, V. S. Joshi [2] proved that "if k is odd, then m is a &-self-number iff m is odd," i.e., 
every even number in an odd base is a generated number. 

In 1991, R. B. Patel ([3], M.R. 93b: 11011) tested for self-numbers in an even base k. What 
he proved is: 2ki, 4£ + 2, k2 +2k + \ are ^-self-numbers in every even base k > 4. 

In the present paper, we first prove some new results on self-numbers in an even base k. 

Theorem 1: Suppose 

m = b0+blk, 0<bQ<k, 0<b{<k, 2\k, k>4. 

Then m is a &-self-number iff bQ - bx = -2. 
In particular, 2k, 3& + 1, 4£ + 2, 5£ + 3, etc. are ^-self-numbers. 

Theorem 2: Suppose 

m = b0+blk+b2k2, 0<b0<k, 0<b{<k, 0<b2<k, 2\k, k>4. 

Then m is a &-self-number iff b0, bh and b2 satisfy one of the following conditions: b{ = 0, bQ-bx-
b2 = -4 or k-3; bx = l, \ - \ - b 2 =-2 or - 4 ; b-x-2 or3, i 0 - 6 1 - i 2 = - 2 ; bx>4, bQ~bl-b2 = 
-2 or - k - 3. 

In particular, k2 +k, k2 +2k + l, k2 + 3k + 2, 2k2 +A + 1, 2k2 +2k + 2, 3k2 +k + 2, 5k2 + l 
(k > 6), 4k2 + * +1 (£ > 6), 5^2 -k (k> 6), £3 - A:2 + 4k, etc. are £ self-numbers. 

Secondly, we study the number G(x) of universal generated numbers rn<x. It is not known 
if G(x)^co but, as an ingenious application of Theorem 1, we prove that G{x)<2^fx. As a 
matter of fact, we obtain 

Theorem 3: Every universal generated number can be represented in only one way, in the form 
2sn + 2s~l - 2, with s > 3, n < 2s'2. Moreover, for all x > 1, one has G(x) < 2jx. 

* Project supported by NNSFC and NSF of Zhejiang Province. 
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2, PROOF OF THEOREM 1 

If possible, let m be ^-generated by some w, where 
t 

n = ̂ atk\ Q^c*i<k, 0<i<t. 

Then 
t t 

4 W r I ^ and m = w + rfJk(w) = ^a r . (* / + l). 
/=o /=o 

Since m = b0+bxk <k + (k- l)k = i 2 , w e have a, = 0 for / > 2, i.e., 

b0+blk = 2aQ+ax(k + l), 0<a 0 , ax<k. (1) 

Here at > ftx or ^ <£x - 2 is impossible, so that ax=bx-i, 0 < i < 2. 
(A) If i = 0, then (1) holds iff b0 -bx > 0 is even; 
(B) If i = 1, then (1) holds iff bQ - bx < k - 3 is odd; 
(C) If i = 2, then (1) holds iff ^ - ^ < - 4 is even. 

Hence, m is a A>self-number iff b0-bx = - 2 o r k - 1 . The latter is impossible because b0< k-\. 
This completes the proof of Theorem 1. 

3, PROOF OF THEOREM 2 

If possible, let m be ^-generated by some n. As in the proof of Theorem 1, we have 

b0+bxk + b2k2 = 2aQ+ax(k + l) + a2(k2 +1), (2) 

with b2-\<a2 <b2. 

Case I. a2-b2. From (2), we see that ax<bx. Taking ax=bx- j , j > 0, we have 

b0-bx-b2 +j(k +1) = 2a0. (3) 

Noting that 0 < a0 < k, one has: 
(A) If y = 0, then (3) holds iff bQ - b x - b 2 > 0 is even; 
(B) If jf = 1, then (3) holds iff b0 - bx - b2 > -k - 1 is odd and bx > 1; 
(C) If jf = 2, then (3) holds iff b0-bx-b2< - 4 is even and bx>2\ 
(D) If 7 - 3, then (3) holds \ffbQ-bx-b2 <k-5\s odd and bx > 3; 
.(E) If j > 4, then (3) never holds. 

Case II. a2 = b2 - 1 . Taking ax = k-j, j > 1, it follows from (2) that 

( 6 1 +y - l )£ = 2 a 0 - y - l + 62-Z>0 

or 
b0-h2 + (bl+j-l)k + j-l = 2*0. (4) 

Since 2a0 -j-l+b2 -b0 <3(&- l ) , one has ^ 4 - j - l < 2. Noting that 0 < a 0 < £ - l , one has: 
(A)f If ^ = 0, j = 1, then (4) holds iff 60 - 62 > - 2 is even; 
(B)f ifbl = 0J = 2, then (4) holds iff b0 -b2 < k - 5 is odd; 
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(C)' If bx = 0, j = 3, then (4) holds iff bQ - b2 < -6 is even; 
(D)' lfb1 = l,j = l, then (4) holds iff b0 - b2 < k - 4 is even; 
(E)' If Aj = 1, y = 2, then (4) holds iff Z>0 - 62 < -5 is odd; 
(F) If^ = 2, 7 = 1, then (4) holds iff b0-b2 < -4 is even; 
(G) If ^ > 3, then (4) never holds. 

Thus, (A)', (B)', and (C)' together imply that if \ = 0, (4) does not hold iff b0-b2 = -4 or 
k-3, i.e., b0 -bx -b2 = -4 o r k - 3 . According to Case I, (2) has no solution iff b0-b1-b2= -4 
or k - 3. 

If b{ = 1, (D)' and (E)' together imply that (4) does not hold iff b0-b2>k-4 ork-4> 
bQ-b2>-5 is odd, i.e., bQ -bx -b2 > k o rk-5>b 0 - \ -b2 > -6 is even. According to Case I, (2) 
has no solution iff bQ - bx - b2 = -2 or - 4. 

If bx = 2, then from (F) (4) does not hold iff b0-b2> -4 or is odd, i.e., b0-bl-b2> -6 or is 
odd. According to Case I, (2) has no solution iff b0-b1-b2 = '-2. 

If Z>!>3, (4) never holds. According to Case I, (2) has no solution iff bQ-bx-b2 ~-2 or 
-k-3. For the latter, bx > 4. This completes the proof of Theorem 2. 

4. PROOF OF THEOREM 3 

Let fs(n) denote 2 ^ + 2*- 1-2, where s> 1 <mdn> 1. Then fl(n) = 2n-l, f2(n) = 4n, 
f3(n) = $n + 2, f4(n) = 16n + 6, ... . Noting that fP(n) = f (n^ iffn-n^ s = sly one has from the 
fundamental theorem of arithmetic: every positive integer can be represented in only one way, in 
the form 2sn + 2s~l - 2. If s = 1, n > 2, it is clear that f^ri) = 2n-l is not generated by 2n. If 
s>2, taking b0 = 2s~l - 2 , bx - 2s~l, k = 2n, and applying Theorem 1 we see that fs(n) is a Ar-self-
number, i.e., it is not a universal generated number if n > 2s'2. Moreover, 

G(x)< £ 1 <£min{2*-2,x/2*}< £ 2s'2 + £ x/T <2<sfc. 
l<2J«+2i"_1-2<x s^l j<(l/2)log2JC+l ^>(l/2)log2x+l 

^>l,«<2-y"2 

This completes the proof of Theorem 3. 
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1. INTRODUCTION 

A well-known digital expansion is the so-called Zeckendorf number system [7], where every 
positive integer n can be written as 

L 

k=Q 

where Fk denotes the sequence of Fibonacci numbers given by Fk+2 = Fk+l + Fk, F0 = \, and 
Fx-2 (cf. [5]). The digits sk are 0 or 1, and sksk+l - 0. Using the same recurrence relation but 
the initial values L^ - 3 and Ly = 4, the sequence Lk of Lucas numbers is defined. In a recent 
volume of The Fibonacci Quarterly, P. Filipponi proposed the following conjectures (Advanced 
Problem H-457, cf. [2]). 

Conjecture 1: Let f(N) denote the number of l's in the Zeckendorf decomposition of N. For 
given positive integers k and n, there exists a minimal positive integer R(k) (depending on k) such 
that f(kFn) has a constant value for n > R(k). 

Conjecture 2: For k > 6, let us define 

(i) ju, the subscript of the smallest odd-subscripted Lucas number such that k < LM, 
(ii) vv the subscript of the largest Fibonacci number such that k > Fv + Fv_6. 

Then R(k) = max(//, v) + 2. 
We note that we have chosen different initial values compared to [5] and [2] (the so-called 

"canonical" initial values, cf [4]) which seem to be more suitable for defining digital expansions 
and yield an index translation by 2. In [3] we have proved that the first conjecture is true in a 
much more general situation, i.e., for digital expansions with respect to linear recurrences with 
nonincreasing coefficients. As in [3], let U(k) be the smallest index u such that 

L(k) L(k) 
kFu=lLStFt a n d kFn=Y.£ZFl+n-u^n^U- (1 -2 ) 

We prove an explicit formula for U(k) in terms of Lucas numbers that is an improved version of 
Conjecture 1. Note that Filipponi's Conjecture 1 has been proved by Bruckman in [1] and for the 
more general case of digital expansions with respect to linear recurrences in [3]. We have also 
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obtained a weak formulation of Conjecture 2 which only yields an upper bound for U(k). 
However, Bruckman's proof of a modification of Filipponi's Conjecture 2 is false because his 
proof does not guarantee the minimality of R(k); this was pointed out in a personal communica-
tion by Piero Filipponi. We apologize here for referring in [3] to this erroneous proof instead of 
presenting our own proof of the original Conjecture 2. It is the aim of this note to provide a 
complete proof of Conjecture 2. 

2. PROOF OF CONJECTURE 2 

In the following, let V(k) = L(k) - U(k) be the largest power of the golden ratio (5 - ^ p in 
Parry's ^-expansion of k, see [6]. Obviously, V(k) = I log^ k\. For proving Conjecture 2, let us 
intro-duce some special notation. By Zeckendorf s theorem, every nonnegative integer n can be 
written uniquely as 

n = Fkr+:. + Fki+Fki, kr>->k2>kx,r>0, (2.2) 

where k' > k" means that k' > k" + 2 [compare to (1.1)]. 
It will be convenient to have the sequences of Fibonacci and Lucas numbers extended for 

negative indices. Let F_2 = 0, F_x = 1, F_„_2 = (-l)n+lFn_2 and L_2 = 2, L_x = 1, L_n_2 = (-l)"Ln_2 

for positive integers n. In this way, the definitions of ju and v hold for all integers. We need the 
following well-known lemmas which can be shown by induction. 

Lemma 1: For integers m and n, we have LmFn = (-l)mFn_m + Fn+m. 

Lemma 2: Let m and n be integers, n > m and m = n mod 2. Then 
n-m 

2 

7 = 1 

Theorem 1: For all positive integers k there exist uniquely determined integers cx,...,ct such that, 
for all integers n, 

kFn = tFn+Ci (2.3) 

with 
-U(k) = cl<c2<-<ct_l<ct= V(k), (2.4) 

where U(k) > 2 are even numbers defined by Lu^k-)_3 < k < Zf/(yt)_1. 

Proof: We consider the following partition of the set of natural numbers N = U°L_i L,-, where 
L_i = {1} and Lj = {n eNIZ^.j < n < I^j+i) for j > 0. The proof will proceed by induction onj. 

If j = - 1 , i.e., k = 1, then the assertion is satisfied with t - 1 and cx - 0. Suppose that (2.3) 
and (2.4) hold for j > 0 for each /' with -1 < i < j -1 and all k elr Then we have to show (2.3) 
and (2.4) hold for all k eLj. Three cases will be distinguished. 

Case 1: L2j_1 <k <L^ 

From Lemma 2 with rn = 2j + l and by - Fn_2j+l = Fn_2j - Fn_2j+2, we have 
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kFn = Fn_2j - Fn_2j+2 + (* - I^j^Fn + Fn+2j_x. (2.5) 

Since 1 < k - I^j^ < I^j^, by the induction hypothesis we obtain from (2.5), 
t 

kF„ = F„_2J - Fn_2j+2 + X Fn+- + Fn+2j_x (2.6) 
7 = 1 

with cx > -2(y -1), ^ < 2(7 -1) - 1 , and q <̂  • • • <̂  ̂ . Write (2.6) in the form 

kFn = Fn_2j +F -F^2J+2 + ± F + F„+2J_X. (2.7) 
/=i 

If q = -27 + 2, then by c~x<c^ we have -2j + 4 <~c1. Letting t = t+\ cx --2j, and c2 =~c~2, ..., 
ct_x~'cl, then cx<c2-4. Thus, cx<c2 and, by the induction hypothesis, c2<--<ct_x. If 
~cx > -2(7 -1) , then Lemma 2 applies for F + _ - Fn_2j+2 since, by the induction hypothesis, q is a 

value of the even-valued function U. Hence, we get 
t i 

kFn = Fn~2j+HF
n -2j+2£+l 

+ I W W a y - i (2-8) 
£=l i=l 

with i = (c~t - 2(7 -1)) / 2. Representation (2.8) is already in the form (2.3). Letting / = / + ? + 2 
and ^ = - 2 / , c2 = -2y + 3, ...,cf+1 = q- l , c f + 2 = ^,. . . , cf+r-+1 = ^ , and using c2 = cx + 3, ci+x> 
ct+2 (i = 2,..., ?), we get cx < c2 < • • • <̂  c*+1. Applying the induction hypothesis yields c-+2 <̂  • • • 
<̂  ct_x. Taking ct - 2j - 1 , (2.4) is established. 
Case 2: L^j <k <L2j+1 

From Lemma 1 with m = 2j we derive 
kF„ = F„_2j +(k- Ly)F„ + F„+2,. (2.9) 

Since 1 < k - Lq < A^-b t r i e induction hypothesis yields a representation of the form (2.3), 

kF,n = ̂ v+itFn+c.+F»+V> (2-10) 
J = l 

with q > -2(7 -1), cj > 2(7 -1), and ~cx <̂  • • • < ~ct. Letting / = t + 2, q = -27, ct = 27, and c/+1 = 
q (/ = 1,..., f), we obtain (2.4). 

Case 3i k = L^j 
By Lemma 2 we have LljFn - Fn_2j + Fw+2/. Thus, we can proceed without using the induc-

tion hypothesis, obtaining (2.3) and (2.4) with t = 2,cx = -2j, and c2 = 2j. 
Uniqueness of cx,..., ct is implied by the uniqueness of the Zeckendorf representation. • 

Corollary 1: As an immediate consequence of Theorem 1, we get R(k) < U(k). 

To prove Conjecture 2, we need an additional lemma. 

Lemma 3: Let cx and c2 be as in Theorem 1. Then c2 - cx + 2 if and only if 

k>2L_c,. (2.11) 
<-r 
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Proof: By Theorem 1, we have 4Fn = Fn_2 + Fn + Fn+2; thus, c2 = cx + 2. Also by Theorem 1, 
for k > 5, we obtain c2 > cx + 2 and q = -2y for some integer 7 > 1. From the proof of that 
theorem, it is clear that L ^ < k > Ly+i. If Z27_1 <k <L2j, then c2>cl-\-2. If £ = Z^, then 
^ = 2 and c2 - q = 4/ > 2. If L^j <k< I^j^, then 0 < & - Z^ < Z^^. Observing that (2.11) is 
equivalent to k-L2J>L2J_3, Theorem 1 yields U(k-L2J)>-2(j-I) if 0< k-Llj < Z2(7-_i)_1 

and £/(£- Z^.) = -2(y.-1) if Z2(y-_1)«1 <k-L2J < Z^.^+i• Thus, we conclude that c2 = -2y' + 2 if 
and only if (2.11) holds. • 

Theorem 2: R(X) = 0, i?(2) = Z?(3) = 1, and for k > 4 we have 

[27-1 i fZ 2 , 3 <*<2Z 2 / . 3 , 
[2y if2L2j_3<k<L2j_v 

Proof: R(l) - 0 is immediate from the definitions. By the identities 27^ = Fn_2 +Fn+l, 3Fn = 
Fn_2 + F„+2 for integral«, and 2FX =F0 + F2, 3FY = F0+F3 we obtain R(2) > 1 and R(3) > 1. Since 
2F0 = Fj and 3F0 = F2, we get i?(2) = i?(3) = 1. Let * > 4. By Corollary 1, we have R(k) < U(k) 
mdf(kFr}) = tfovn>U(k). 

In the following, we distinguish two cases. 

Case 1: IL^j^ <k<Z^.j 
Let n - U(k) -1. We show that in this case f(kFn) <t\ hence, R(k) = U(k). Theorem 1 and 

Lemma 3 yield 

kFH = K1+Fl+iTF„+Ci = F2 + ±F„+Ci. (2.12) 
7=3 7=3 

If « +C3 > 3, then the right-hand side of (2.12) is a Zeckendorf representation and f(kFn) = t-l. 
If n + c3 = 3, then let z'0 be the largest /' > 2 such that ct = ct_2 +2; let i0 - 1 if such / does not exist. 
Then the right-hand side of (2.12) can be written in the form of a Zeckendorf representation as 

t 

• f w ^ i + E ^ w (2-13) 
Thus,/(*/*,) = f-/0 + l. 

Case 2: Z2j_3<A<2L2y_3 

We show f(kFn) = t provided that n = U(k)-l; however, f(kF„) = t-l for n = U(k)-2. 
Hence, we have R(k) = U(k) - 1 . Let n = U(k) - 1 . As a consequence of Theorem 1, we get 

Wn = F^ + ̂ F^ = F0 +YFn+Ci • 
7 = 2 7=2 

Applying Lemma 3, we derive n + c2>2. Thus, the right-hand side is the Zeckendorf repre-
sentation of kFn and we obtain f(kFn) -1. Let n = U(k) - 2. Theorem 1 yields 

kFn = /L 2 + £ Fn+C( = £ / ^ . (2.14) 
7=2 7=2 
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The right-hand side of (2.14) is the Zeckendorf representation of kFn\ hence, f{kFn) = t - 1 and 
the proof is complete. D 

Remark: To see that R(k) is the same as in Filipponi's Conjecture 2, note that ju = 2j-l if 
Lzj-x < k < Lzj+i and if Fv + Fv_6 (in the definition of v) can be replaced by 2LV_3. 
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We find the numbers of subsequences of {1,2,..., n) in which every odd member is 
accompanied by at least one even neighbor. For example, 123568 is acceptable, but 123578 is 
not, since 5 has no even neighbor. The empty sequence is always acceptable. Preliminary calcu-
lations for 0 < n < 8 yield the following values of zn c, the number of such subsequences of length 
c. It is convenient to define znc = 0 if c is not in the interval 0 < c < n and zn = Z"=0 z„,c ls t ' i e 

total number of such subsequences. x„ and x^c are the corresponding numbers of subsequences 
from which n is excluded, whereas n does occur in the subsequences counted by yn mdync. Of 
course, xn + yn - zn with similar formulas for specific lengths. 

The following tables suggest several simple relations, which are easily verified by considering 
the last two or three members of the relevant subsequences: 

Xn+l ~ zn> Xn+\,c = Zn,c \ n ~ 0), 

y2k+i=yi*> y2k+i,c+i=^,, (k * °X 

yik ~ Z2k-l + Z2/t-3? yik,c+l ~ Z2k-\,c + Z2k-3,c-l ( ^ - 0 ) , 

where we adopt the conventions z_x = z_10 = 1 and x_2 = z_3 = z_3 _x = - 1 . 

TABLE 1. zn^ c = 0,1,2,..., n 

n Zn 
0 1 i 
1 1 0 1 
2 1 1 1 3 
3 1 1 2 1 5 
4 1 2 4 3 1 11 
5 1 2 5 5 3 1 17 
6 1 3 8 11 10 5 1 39 
7 1 3 9 14 16 12 5 1 61 
8 1 4 13 25 35 33 20 7 1 139 

The corresponding arrays for the values of x and.y are given in Tables 2 and 3, respectively. 
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TABLE 2e xn^ c = 09l929.e.9#i 

n 
0 
1 
2 
3 
4 
5 
6 
7 1 3 
8 1 3 

1 1 
1 0 1 

1 0 0 1 
1 1 1 0 3 

1 1 2 1 0 5 
1 2 4 3 1 0 11 

1 2 5 5 3 1 0 17 
8 11 10 5 1 0 39 

14 16 12 5 1 0 61 

TABLES. yn^ c = 091, 29 

n 
0 0 
1 0 0 
2 O i l 
3 0 0 1 1 
4 0 1 2 2 1 
5 0 0 1 2 2 1 
6 0 1 3 6 7 4 1 
7 0 0 1 3 6 7 4 
8 0 1 4 11 19 21 15 6 

o 
o 
2 
2 
6 
6 

22 
1 22 

1 78 

We illustrate the last for the case k - 4, c - 5. Each subsequence counted by y%6 is of just 
one of the shapes *****8 , * * * * 68, ***678, or * * * * 78, where * represents a member other 
than 6, 7, or 8. The first three of these are formed by appending 8 to a subsequence of length 5, 
counted by z7 5, and the last by appending 78 to a subsequence of length 4, counted by x64 (none 
of which end in 6; note the correspondence between the subsequences counted by x64 and those 
counted by z5 4) : 

Z2k ~ ^Z2k-\ +Z2k-3> Z' 2Ar-hl - *Z2k-\ + ^Z2k-3-

This last recurrence, which again holds for k > 0 with the aforementioned conventions, can be 
solved in the classical manner to show that 

L2k+l 
^17 + 7 7 ^ ( ^ 3 + 7 1 7 ^ 

34 

/"l7-7Vl7Y3-Vr7^ 
34 

the previous formula then gives 

Z2k ~ 
17 + 3V17 

34 
'3 + VnY fl7-3VT7 

34 
3-V17 

Since the second term in these formulas tends rapidly to zero, we find that 

zn is the nearest integer to cC?, 
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where 
<̂  = - ( 3 + Vl7) = 3.561552812808830274910704927 

and 

\c = — (17 + 3^17) = 0.8638034375544994602783596931 if « is even, 

c = —(17 +7Vl7) = 1.348874687627165407316172617 if wis odd. 
I 34 

We searched in our preview copy of [3] without any success, and were surprised that there 
seemed to be no earlier occurrences of members of our arrays. A similar problem with a similar 
but not very closely related answer is discussed in [1]. We then tried the main sequence {zn} on 
Superseeker [2], which produced the generating function 

§ ZjtJ = (1 +1 + 2/3)(l - (3t2 + 2t4))~l 

which should, perhaps, be thought of as the sum of two generating functions, one for odd-ranking 
terms, the other for even. 

As the sequence does not seem to have been calculated earlier, we give a fair number of 
terms in the table below. 

TABLE 4 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

*» 

1 
3 
5 
11 
17 
39 
61 
139 
217 
495 
773 
1763 
2753 
6279 
9805 
22363 

n 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

z» 
34921 
79647 
124373 
283667 
442961 
1010295 
1577629 
3598219 
5618809 
12815247 
20011685 
45642179 
71272673 
162557031 
253841389 
578955451 

n 
33 
34 

1 35 
36 

! 37 
38 
39 

1 40 
41 
42 

1 43 
44 
45 

! 46 
47 

*» 

904069513 
2061980415 
3219891317 
7343852147 
11467812977 
26155517271 
40843221565 
93154256107 
145465290649 
331773802863 
518082315077 
1181629920803 
1845177526529 
4208437368135 
6571697209741 

As may be expected from sequences defined from recurrence relations, there are congruence 
and divisibility properties. The terms of odd rank are alternately congruent to 1 and 5 modulo 8, 
and those of even rank after the second are congruent to 3 and 7 modulo 8 alternately. Every 
fourth term, starting with z2 is divisible by 3, every third of those (e.g., z10) is divisible by 9, every 
third of those (e.g., z34) is divisible by 27, and so on. The terms that are divisible by 5 are every 
twelfth, starting with z3 among the odd ranks and with z10 among those with even rank. Every 
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sixteenth term is divisible by 7, starting with z9 and z14. Every sixth term is divisible by 11, start-
ing with z4; but no odd-ranking terms are. Seventeen is special to this sequence and divides every 
thirty-fourth term starting with z5 = 17 itself and with z32 among the even-ranking terms. 

Note that if you use the recurrences to calculate earlier terms in the sequence, z_x = 1 and 
z_3 = - 1 , as we have already assumed, z_2 = 0 (and so is divisible in particular by 17, 11, 7, 5, and 
any power of 3), z_4 = 2 > Z-6 = • Z - 7 = - , z_8 - y , z_9 =^p, ..., and there arep-adic 
interpretations of the divisibility properties. For example, z_9 is divisible by 25, and we leave it to 
the reader to confirm that 25|z51 and that 54 |z171. 

Why shouldn't the even numbers get equal time? If we denote by wn the number of sub-
sequences whose even members all have at least one odd neighbor, then for even n-2k there is 
the obvious symmetry w2k = z2k. The values of wn for odd rank are the averages of the even-
ranking neighbors: 2w2k+l -^2k+wik+i^ whereas for the {zn} sequence, the roles are reversed: 
2z2k - z2k_x + z2k+l. Both sequences satisfy the recurrence un - 3un_2 + 2un_4, while the generating 
function for {wn} has numerator 14- 2t +t3 in place of 1 +1 + 2t3. 

TABLE 5. Some Odd-Ranking Members of the {wn} Sequence 

n 
-7 
-5 
-3 
-1 
1 
3 
5 

% • 

5/16 
-1/8 
1/4 
1/2 
2 
7 
25 

n 
1 
9 
11 
13 
15 
17 
19 

Wn 

89 
317 
1129 
4021 
14321 
51005 
181657 

n 
21 
23 
25 
27 
29 
31 
33 

% 

646981 
2304257 
8206733 
29228713 
104099605 
370756241 
1320467933 

The special role of 17 is illustrated by the form of wl7 (i.e., 51005 — 5-1012) and in the 
formula 

ri7+4VTT 
w. 2k+\ 

v 3+VnY r i7-4VnY3-Vi7 v 

V 17 V V 17 

More investigative readers will discover the many corresponding congruence and divisibility 
properties. 
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I. INTRODUCTION 

A Fibonacci expansion of a nonnegative integer n is an expression of n as a sum of Fibonacci 
numbers Fk with k > 2. It may be thought of as a partition of n into Fibonacci parts. The most 
commonly studied such expansion is the unique one in which the parts are all distinct and no two 
consecutive Fibonacci numbers appear. C. G. Lekkerkerker first showed this expansion was 
unique in 1952 [5]. There is also a unique dual form of this expansion in w7hich no two con-
secutive Fibonacci numbers not exceeding n do not occur in the expansion [2]. Lekkerkerker's 
expansion is the only one I refer to in the remainder of this paper; from now on, I will call it the 
Fibonacci expansion of n, or fib(w) (I will give a precise definition in Part II). The Fibonacci 
expansion of nonnegative integers is similar in many ways to a fixed-base expansion (in fact, in 
some sense, it may be thought of as a base-r expansion, where r = y(l + V5)« 1.61803 is the 
golden mean). First, in each case there are both "top-down" and "bottom-up" algorithms for 
obtaining the expansion of a nonnegative integer (see [3], pages 281-282). Second, there are 
mechanical rules for adding the expansions of two or more nonnegative integers [1]. Third, each 
case may be generalized by defining infinite expansions (p-adic or "F-adic" integers), both of 
which have interesting algebraic properties. One should be warned, however, that this analogy 
has its limitations. For instance, the /?-adic integers form a ring, but the F-adic integers do not. 
My main result in this paper is that there is a 1-1 correspondence between the F-adic integers and 
the points on a circle, and that both of these sets share some important geometric properties. 

H. FIBONACCI EXPANSIONS OF NONNEGATIVE INTEGERS 

Definition: Let n eco = {0,1,2,...}. Suppose there exists a sequence (ck)% e{0, l}® such that 
ckck+1 = 0(\/k) and ^ = ^=0ckFk+2. Then (ck) is called the Fibonacci expansion of n and is 
denoted fib(n). It is well known that every nonnegative integer has a unique Fibonacci expansion 
[5], so fib: co -> {0,1}" is well defined. 

In this paper, I use the convention of increasing coefficient indices in Fibonacci expansions 
going from left to right. Thus, for instance, 

fib(5) =0001 
fib(10) =01001 
fib(100) = 0010100001 

where the rightmost 1 in each expansion is assumed to be followed by an infinite sequence of 
zeros. 

The top-down algorithm for computing fib(rc) is as follows (see [4], page 573). First, find the 
largest nonnegative integer k such that Fk+2 does not exceed n, and let ck - 1. Next, subtract 
Fk+2 from n and repeat the above procedure for the difference. After a finite number of iterations, 
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the difference will be zero; then we have obtained fib(n). This procedure is well known, and it is 
easy to check that the resulting expansion has the right form (see [3], [5]). 

As an example, suppose n -10. Since F6 = 8 is the largest Fibonacci number not exceeding 
10, we set c4 = 1 and subtract 8 from 10, obtaining 2. Since 2 = F3, we set cx - 1; now our differ-
ence is 2 - 2 = 0, so we stop. Thus, fib(10) = 01001. 

m . BOTTOM-UP ALGORITHM 

Both top-down and bottom-up algorithms for expanding a nonnegative integer in a fixed base 
are well known. For instance, to find the binary expansion of a nonnegative integer n, we could 
proceed by first finding the largest power k of 2 less than n, setting ck = l, subtracting 2k from n, 
and repeating this procedure until n - 0. This is the top-down algorithm. Alternatively, we could 
first determine n mod 2, set this equal to ct for i = 0, subtract ct from n, divide n by 2, increase / 
by 1, and repeat until n = 0. This is the bottom-up algorithm. The top-down algorithm given for 
finding fib(w) is clearly analogous to the top-down procedure for finding the binary expansion of 
n. By analogy with the binary case, we look for a bottom-up algorithm for calculating fib(«). 
Such an algorithm does exist; moreover, this algorithm makes it clear how to extend the Fibonacci 
expansion to negative integers and, more generally, "F-adic" integers. The algorithm goes as 
follows: 

Step 1: Let J = 0 . 
Step 2: Let x be the unique real number congruent to n mod r2 and lying in the interval [-1, r ) . 
Determine whether x lies in the closed interval from -{-z)~l~l to - ( - r ) - / . (Note that the intervals 
zero in on the origin as / increases.) If x lies in the subinterval, let ct - 0 and increase / b y 1; 
otherwise, let ct; = 1, cM = 0, decrease n by Fi+2, and increase / by 2. 
Step 3: If n = 0, stop. Otherwise, go to Step 2. 

Again, I illustrate for n - 10. It is straightforward to check that the unique real number in the 
interval [-1, r) congruent to 10 mod r2 is x = 10 ~4T2 « -0.47213. Since x e [ - l , r"1] , we have 
c0 = 0. Thus, we leave n alone and increase /'to 1. Now we check whether x lies in [-r~2, r"1] ; it 
does not, since the lower limit is too high. Thus, we set cx -1, decrease n by F3 - 2 to 8, and 
increase /" by 2 to 3. Now 8 - 3 r 2 « 0.14590, which lies in the interval [-r~4, r~3]. (As we will 
see shortly, by Lemma 1, we have 8 = F6 = r"4 « 0.14590.) Thus, we set x = r"4, c2 = c3 = 0, and 
increase /by 1, leaving n = 8 alone. Next, we check whether x lies in the interval [-r~4, r~5]. It 
does not, so we set c4 = 1 and decrease n by F6 = %. But now n - 0, so we stop. Thus, we have 
again obtained fib(10) = 01001. 

To show that the above algorithm works, we need a few lemmas. 

Lemme^ 1: Fk = {-rf~k mod r2 (V* e at). 

Proof: Since F0 = 0 = r 2 m o d r 2 and Fl-l = -rmodr2, the lemma holds for k -0 and 1. 
Also, note that (-r)2~k + (-r)l~k = (-r)_A:(Y2 - r) = (-r) _ / : . The lemma then follows by induction 
onk. • 

Lemma 2: Let w = Z^=0^(~r)~^» where the c^'s are the coefficients of the Fibonacci expansion 
of n. Then n is the unique real number in the interval [-1, r) congruent to n mod r2. 
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Proof: Let n = Z^ = 0
C JA+2 = T^^ck{-ryk= n (modr2). Thus, it is enough to show that 

-1 < n < x (uniqueness then follows, since the interval [-1, r) has length r2). The supremum of 
n is attained by setting ck = 1 for all even k and 0 for odd k\ its value is l + r~2 + r~4H—= r. 
Similarly, the infimum of n is (-r-1) + (-r~3) + (-r~5) +. • • = - 1 . • 

U-T~\ Tl~l) £ even, 
Lemma 3: ch - 0 (\/k <£)<^>n G< 

k IC-r1-',*-') ^odd. 
Proof: First, I will prove the forward implication. Consider the case where £ is even (the 

case where £ is odd is similar). Clearly, n < r~l + r~e~2 + r~e~4 + •••= r w . (The upper limit is 
approached by an arbitrarily long string of alternating l's and O's in fih(ri) with the leading 1 in the 
£** position.) Similarly, n > -r~£~l - r~e~3 = -r'1. 

The proof of the reverse implication goes as follows. Let k be the smallest integer such that 
ck-\ and assume k < £. Let n' -n-Fk+2. Clearly, the first k +1 coefficients of fib(w') are zero, 
so by the first part of the proof (replacing £ by k + 2\ we get 

_ h-T-(k+2\ T~{k+l)) £even, 

First, suppose k is even. Then n=n' + r~k lies in (r~(k+l\ r~^_1)). But then n is too big to fall in 
any interval of the form (-T~£, T~£) for £>k, so the inverse implication holds. A similar 
argument can be used in the case where k is odd. D 

First, note that n = n mod r2 by Lemma 1; thus, if there exists an integer m such that n-rnr2 

lies in the closed interval from (-r)~/_1 to (-r)~7, then; ck = 0 for k < i by Lemma 2. This justi-
fies the first if-then statement of Step 2 of the algorithm. If the condition in Step 2 is not met, ct 

must be 1; in this case, we subtract Fj+2 from n, obtaining a new n with ck - 0 for k < /+2 ; this 
justifies the second if-then statement of Step 2. Thus, the algorithm works. 

The basis of the bottom-up algorithm is the fact that, if rn mod T2 and n mod r2 are close 
(here, m and n are nonnegative integers), then the first few coefficients of fib(m) and fib(w) are the 
same. Figure 1 illustrates this. On the left side of the figure, n and fib(w) are plotted and tabu-
lated against n (height along the figure) for0<w<21 = i^. Although the figure is illustrated as a 
vertical line, it should be thought of as a circle with circumference r2. See Part V for an explana-
tion of the right side of the figure. 

IV. ADDITION OF FIBONACCI EXPANSIONS OF NONNEGATIVE INTEGERS 

Here, I present an algorithm for adding two Fibonacci expansions of nonnegative integers 
(see [4], [5]); i.e., given fib(m) = (ak) and fib(w) = (bk), it finds f\h(m + n) = (ck). The algorithm 
goes as follows. First, add the expansions coefficientwise, i.e., let ck -ak +bk for all k. The 
result will be a string of O's, l's, and 2's. To get rid of the 2's and consecutive l's, apply the 
transformations 

x + 1,^ + 1,0 H> x,y,l 
x, 0,^ + 2,0 h^ x + 1,0,^,1 
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n 
ft 

12 -
4 -
17 -
9 -
1 -
14 -

6 
19 -
11 -

3 
16 -
8 
0 
13 -
5 
18 -
10 -

2 
15 -
7 
20 J: 

n = 

n 
= T 
[— -1 
- -9 
- -17 
- -4 
- -12 
- -20 
- -7 
- -15 
- -2 
- -10 
- -18 
- -5 
- -13 
^ -21 
- -8 
- -16 
- -3 
- -11 
- -19 
- -6 
- -14 
— -1 
-1 

fibi(n) 

OlOlOlOlO 
10100010T 
101000010 
100010101 
100000101 
100000010 
100001010 
1001000I0 
001010101 
00100010T 
001000010 
000010101 
00000010T 
ooooooolo 
000001010 
OOOlOOOlO 
000101010 
01000010T 
oiooooolo 
010001010 
oioiooolo 
010101010 

fib2(n) 

101010101 
1010100T0 
101001001 
101001010 
IOOOIOOIO 
10000100T 
100100101 
100101001 
100101010 
0010100T0 
00100100T 
001001010 
ooooioolo 
00000100T 
000100101 
00010100T 
010010101 
OlOOlOOlO 
010001001 
010100101 
010101001 
101010101 

FIGURE 1 

to the rightmost applicable string. Continue until (ck) has no 2's or consecutive l's. These trans-
formations are justified by the identities Fk+2 = Fk+l + Fk and 2Fk - Fk+l + Fk_2. The algorithm 
must terminate after a finite number of steps, since each step increases the value of (ck) viewed as 
a ternary number with the order of the digits reversed, and this cannot increase indefinitely 
because the last digit must correspond to a Fibonacci number that does not exceed m + n. How-
ever, it should be noted that, as presented, this algorithm is not complete, since it may yield an 
expansion (ck) with a nonzero coefficient for k--York--2. For instance, adding 1 and 1 
gives the expansion 10.01 for 2 (coefficients with negative indices appear to the left of the decimal 
point). The case k = -2 is easy to deal with; simply eliminate this coefficient. This can be done 
because F0 = 0. In the case where c_x - 1, first set c_x - 0 and c0 = 1. (In this case, cQ must have 
been 0 previously, since we have no two consecutive l's at this stage.) Next, apply the first trans-
formation repeatedly, this time starting on the left, until (ck) is in the standard form. Again, only 
a finite number of applications is necessary, since each one decreases the number of l's by 1. 

V. NEGATIVE AND ffF»AMC?f INTEGERS 

One advantage of the bottom-up algorithm is that it allows a straightforward extension of fib 
to negative integers. We run the algorithm as stated, but must now allow for infinite expansions. 
For instance, applying the algorithm to - 1 , we get fib(-l) = 01010101... . Note that, if we had 
used open instead of closed intervals in Step 2, we would have obtained fib(-l) = 10101010... . 

fib(n) 

101010 

101000 
101001 

100010 

100000 
100001 

100100 
100101 

001010 

001000 
001001 

000010 

000000 
000001 

000100 
000101 

010010 

010000 
010001 

010100 
010101 
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In fact, both expansions are valid, and these are the only ones. This dichotomy occurs for all 
negative integers. We use the notation fibj for the first case (open intervals) and fib2 for the 
other case (closed intervals). Note that using closed intervals gives priority to the first 0 in the 
Fibonacci expansion where there is a choice between a 0 or a 1. Thus, the first coefficient that 
differs in fib x (ft) and fib 2 (ft) is a 0 in the former and a 1 in the latter. This can be seen in Figure 1 
above. 

Although the bottom-up algorithm as stated can be used to find fib t (ft) for all integers ft, it is 
not practical to use it directly for negative integers. A better method is as follows. First, find the 
smallest Fibonacci number Fk+2 > -ft. Set the first k +1 coefficients of fib^ft) equal to those of 
fib(i^+2 +ft). Finally, for i>k, set q = 0 if/' and k have the same parity; otherwise, set q = 1. 
For example, say n = -24. Then the smallest Fibonacci number exceeding —n is F9 = 34, so we 
set the first eight coefficients of fib(-24) equal to those of fib(34-24) = fib(10), i.e., 01001000. 
For /' > 8, we set q = 0 if/ is odd; 1 otherwise. Thus, fib! (-24) = 01001000010, where, as in the 
case for repeating decimal expansions, a line above a string of coefficients means that string is 
repeated endlessly. 

What about fib 2 (ft)? It can be found by a simple modification of the above procedure. First, 
instead of finding the smallest Fibonacci number exceeding -n, find the next smallest; in the 
above example, this would be Fl0 - 55. Again, calculate fib(i^+2 +'«), and set the first k +1 coef-
ficients of fib(ft) equal to these. (Now, however, k is one greater than last time.) Thus, returning 
to the example, fib(55-24) = fib(31) = 010010100. The last step is exactly the same as before, 
but with k replaced by k +1; thus, fib2(-24) = 0100101001 is the other expansion. Note that one 
expansion has ck = 0 for even k in the repeating portion of fib(ft), and the other has ck = 0 for odd 
k. This is always the case. Also, note that the nonrepeating portions of the two expansions only 
differ in one place. In fact, for all negative integers except - 1 , the nonrepeating portions differ in 
one place. (The two expansions of -1 are both purely periodic.) 

Let us refer again to the right side of Figure 1. Note that the negative integers lie on the 
borderline of regions where q is constant for i < k for some k. Also note that the positions of the 
positive and negative integers are staggered and that, for negative ft, the first six coefficients of 
fib^ft) and fib2(ft) agree with the expansions of the two positive neighbors of ft. 

The bottom-up algorithm involves first calculating the residue of an integer mod r2. What if, 
instead, we start with an arbitrary real number x, calculate its residue class mod r2 and apply the 
bottom-up algorithm? Then we will, in general, obtain an infinite sequence of 0's and l's with no 
two consecutive l's. Let f/be the set of all such sequences, and define the equivalence relation E 
by letting two distinct sequences in £/be equivalent iff one is fib^ft) and the other is fib 2 (ft) for 
some negative integer ft. Define the F-adic integers to be the elements of the set UIE (they are 
analogous to/?-adic integers). 

VI. GEOMETRIC STRUCTURE OF "F-ADIC" INTEGERS 

In Figure 1 I illustrated how the Fibonacci expansions of the integers have a nice interpre-
tation as points on a circle of circumference r2. In this section I would like to make that analogy 
more precise and to extend it to all the F-adic integers, which I denote ZF. (In fact, one can 
show that ZF is a topological group isomorphic to the circle group, but the proof is rather 
unenlightening.) 
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As indicated in Part V, the bottom-up algorithm may be applied to any arbitrary real number 
x to give an F-adic integer, which is unique up to the congruence class of x mod r2. Thus, there 
is a 1-1 correspondence between the F-adic integers and points on a circle of circumference r2. 
Furthermore, as can be seen in Figure 1, nearby points on the circle seem to correspond to 
"nearby" F-adic integers, where "nearby" roughly means having Fibonacci expansions agreeing to 
the first several places. I first need to make the notion of "nearby" F-adic integers more precise. 

Definition: Let a and /? be F-adic integers. Then a and fi are similar in k places if there exists 
an F-adic integer y and sequences (a2.), (ft;), (c?), and (c/) in U such that a ~ (a,.), (3 ~ (Z>;), (cf) ~ 
(c/), and for all / < i , w e have aj = ci and bi = c\. Here, ~ denotes the equivalence defined in Part 
V. If a and /? are similar in m places but not in m +1 places, we say they are similar in exactly m 
places. 

For example, suppose a = 4 and /? = 20. Then (a,.) = fib(4) = 1010 and (bt) = fib(20) = 
0101010. Lety = -1 and let (c/) = fib2(-l) = 10 and (c/) = fib1(-l) = 01. Thena,. =c,. andft, =q' 
for / < 4 so a and /? are similar in four places. 

Now I will state and prove the main theorem of my paper. 

Theorem: There exists a bijection <p:ZF —» R / r2Z for which, given any pair of F-adic integers 
a and /? which are similar in k places, there exists a real number x = (f>(a) - (f>(j3) (mod r2) such 
that \x\ < 2r2'k. Conversely, if a, /? e Z F are such that there exists a real number x = ^(a) - ^(/?) 
(mod r2) such that \x\ < r~k, then a and J3 are similar in k places. 

Proof: Consider the map 

f . [ / - ^ R / r 2 Z 

;=0 

Note that the inverse of ^ is just the bottom-up algorithm, and that this inverse is unique 
except when (c7) corresponds to a negative integer. Thus, we may define (j>(x) to be ^(x), where 
x is the equivalence class of x in ZF. 

Now let a and /? be F-adic integers that are similar in k places. Then there exist sequences 
a ~ (at) and /? ~ (fi,.) and an F-adic integer ^ ~ a^...ak_xckck+l...~ bj\..A-iciWfc+i.... Now let 
a' = a0...ajt_10 and /?'= V - A - i ^ - By Lemma 3, both (f>(a) = (f>(af) and <fi(y)-(f>(af) lie in a 
fixed interval of the form ±[-r-A:, r1"^], so their difference, <j)(a) - <j>(y), has absolute value not 
exceeding the length of the interval, r2~k. Similarly, \<j)(J3) - <j>(y) \ < r2~k. Thus, by the triangle 
inequality, | <f>(a) - <f>(fi) \ < 2r2~k. 

To prove the converse, suppose a and /? are as in the statement of the second half of the 
theorem. Say a-{a}) and /?-(&,). Suppose (a,) and {b}) agree to exactly I places, so that 
a. = bj = q for / < £, and al^bi. Without loss of generality, we may assume at - 0 and b£ = 1. 
Note thait ĉ _! = 0 since, otherwise, (fy) would contain two consecutive l's. Let n be the unique 
negative integer such that fib^w) agrees with (a;) to t + \ places and fih2(n) agrees with (Z>7) also 
to £ +1 places. Now we have 
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fib j(w) = cQcf2... ce_x0 01 
and fib2(ft) = c0c1c2...%_11001. 

Now suppose a and/? are similar through n in exactly m places, where m>£, i.e., y may be 
replaced by n in the definition of similarity. Then there are two possibilities for what (a7) and (bt) 
look like, depending on whether (a;) or (Z>) has the first discrepancy from fib^w) or fib2(#), 
respectively. In the first case, we have 

(ai) = c0clc2...c£_l00l...0l00am+1am+2..., 
(bi) = c0clc2...c£_ll00l...0l0bm+lbm+2..., 

where the second string of dots in each expansion stands for a finite repeating string of the form 
01...01. Note that in this case, (bt) necessarily agrees with fib2(w) to at least m + l places and 
that m = I (mod 2). From the definition of </>, we have 

( - l ) m ( ^ ) - ^ ( a ) ) s r - m
 + am+1r-m-1 

^-am+2)T'm-2+am+,T-m^ + -
>T~m 

and 
( - i ) - W ) - m) - (i - ^ i )^ -""1+*m +2^m _ 2 

+ ( l -^ + 3 ) r - m - 3 +^ + 4 r - m - 4 + -
>0, 

where the congruence is modulo T2 . 
In the second case, we have 

(ai) = c0clc2...ce_l001...0\0l0am+lam+2..., 
(A,) = c0clc2...ce_l100l...0100bm+lbm+2.... 

This time, we see that (a,) necessarily agrees with fibj(«) to at least m + l places and that l^m 
(mod 2). Now we find 

{-\nm - <Ka)) - (1 -a^r--1 +am+2T-m-2 

>0 
and 

> T~m. 

Again, the congruence is modulo r2. In each case, since <p(y) ls between (j)(a) and <j)(p), we 
conclude 

|^a)-^08)| = | ^ ) - ^ ) | + \<f>{y)-<t>{a)\>r-m, 
where the above absolute values refer to the minimal such absolute values of real numbers belong-
ing to the congruence class of the expression inside modulo r2. But since we are assuming |x|< 
r~k for some real number x = (<f>(a) - 0(J3)) (mod r) , we conclude that m > k. Thus, a and /? 
are similar in k places. • 
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As I indicated earlier, the F-adic integers have more structure than I have presented. For 
instance, the map ^ may be used to define addition on Z F . This addition makes Z F into an addi-
tive group isomorphic to the circle group [i.e., by requiring that <j){a + (3) - <f>(a) + (f){f3).] The 
map <f> also turns out to be a topological group isomorphism. 

VII. GENERALIZATIONS 

There are many ways to generalize the above procedure to other types of sequences. Perhaps 
the simplest (see [4]) is to consider sequences of the form Sk+l = aSk + hSk_{, Sx = S2 = 1, where a 
and b are positive integers with a>b. The corresponding expansion is E(n) = (ek)^=Qy where 
n = Z£Lo ekSjc+2> where now 0<ek <a and ek=a implies ek+l < b. Let X - ^ (a + ̂ a2 +4b) and 
X = \{a- si a1 + 4b); then it is easy to check that Sk+2 = ~)t mod X. Since | X \ < 1, Sk -» 0 mod X; 
thus, we should again have a bottom-up algorithm for determining E(n). It looks like the same 
analysis should carry through for these more general sequences. In particular, if we again define 
the analogous infinite sequences of coefficients (ek), they should again form an additive group 
isomorphic to R / Z . One can also carry out this procedure for a much more general class of 
sequences. The reader is invited to try his hand with the sequence 1, 10, 100, 1000, .... 

Another way to generalize is to define "F-adic numbers," the analog of p-adic numbers. At 
first, this does not seem feasible, for the Fn are integers for negative as well as positive n, so we 
gain nothing by considering sums of the form T^=ickFk+2j where I < 0 . The solution is to just 
consider formal sequences of the form (ck)™, where ck = 0 or 1, ckck+l = 0 for all &, and I e Z . 
We treat these sequences as before, but simplify the addition algorithm so as not to worry about 
fixing coefficients with negative indices. The resulting group seems to be isomorphic to R. It 
should be noted (see [5]) that an ordinary integer n will, in general, have a different expansion of 
this type than f\b(n). 
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1. INTRODUCTION 

Let n be an integer. A set of positive integers {al9 -..,am} is said to have the property of 
Diophantus of order n, symbolically D(n) if, for all i,j-\...ym, i^j, the following holds: 
apj +n = b?, where btj is an integer. The set {a1,...,am} is called aDiophantine m-tuple. 

In this paper we construct several Diophantine quadruples whose elements are represented 
using generalized Fibonacci numbers. It is a generalization of the following statements (see [8], 
[12], [6]): The sets 

{F2n, F2n^ F2n+4,4F2n+lF2n+2F2n+3} and {n, n + 2,4n + 4,4(/i + l)(2/i + l)(2n + 3)} 

have the property D(l); the set 

{2-^-i ? 2Fn+1, 2Fn Fn+lFn+2, 2Frl+lPn+2rrl+3 (2rn+l - / ' „ )} 

has the property D(F2) for all positive integers n. 
These results are applied to the Pell numbers and are used to obtain explicit formulas for 

quadruples with the property D{£2), where £ is an integer. 

2. PRELIMINARIES 

2.1 The Problem of Diophantus 

The Greek mathematician Diophantus of Alexandria noted that the numbers x, x + 2, 4x + 4, 
and 9x + 6, where x = l/l6, have the following property: the product of any two of them 
increased by 1 is a square of a rational number (see [3]). The French mathematician Pierre de 
Fermat first found a set with the property D(l), and it was {1, 3,8,120}. Later, Davenport and 
Baker [2] showed that if there is a set {1, 3,8, d) with the property D(l), then d has to be 120. 

In [5], the problem of the existence of Diophantine quadruples with the property D(ri) was 
considered for an arbitrary integer n. The following result was proved: if an integer n is not of the 
form 4& + 2 and n <£ {3,5, 8,12,20, - 1 , - 3, - 4}, then there exists a quadruple with the property 
D(n). 

Nonexistence of Diophantine quadruples with the property D(4k + 2) was proved in [1] and 
[5]-

The sets with the property D(f) were particularly discussed in [5]. It was proved that for 
any integer t and any set {a, b) with the property D(£2), where ab is not a perfect square, there 
exists an infinite number of sets of the form {a, b, c^d) with the property D(£2). We would like to 
describe the construction of those sets. 
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Let ab + £2 = k2 and let s and t be positive integers satisfying the Pellian equation 
S2 -abT1 = 1 (s and t exist since ah is not a perfect square). Two double sequences y„tM and 
zn,m, n>m G%, c a n u e defined as follows (see [5]): 

yo,o = A 0̂,0 = A Ji,o = * + <*, *i,o = k + *, 
J-i,o = £ - ^ , z_l0 = k-b, 

>Wl,0 = ~y?i,0 ~ yn-l,0> Zn+10 ~ ~ zn,0 ~ Zn-1,0, M €Z, 

y?i,m+i - 2^yw>w — ^w>OT_i, £„,/w+i = 2szn^m -z^m_h n,rn eZ. 

Let us write 

**,m = 0£«,-^)/". (1) 
According to Theorem 2 of [5], if xnjn and x„+1 m are positive integers, then the set {a, b, xn m, 
xn+\,m) has the property D(£2). It is also proved that the sets {a, b, xQmy xlm}, m e Z \ { - 2 , - 1 , 0}, 
and {a, 5, x_lm, xQm), m e Z \ { - l , 0,1}, have the property D{£2). So, it is sufficient to find one 
positive integer solution of the Pellian equation S2 -abT2 = 1 to extend a set {a, b} with the 
property D(^2) to a set {a, &, c, d) with the same property. 

2.2 Generalized Fibonacci Numbers 

In [9], the generalized Fibonacci sequence of numbers (wn) was defined by Horadam as 
follows: wn - wn(a,b; p,q), w0 =a, wx= b, wn - pwn_x - qwn_2 (n>2), where a, b, p, and q are 
integers. The properties of that sequence were discussed in detail in [10], [11], and [13]. The 
following identities have been proved: 

^n^n+2r-eqnUr^w2
+r, (2) 

4wnw2
+lwn+2 + {eqnf = (w„wn+2 + w2

+l)2
7 (3) 

WnWn+lWn+JWn+4 = WLl + ^ i f + <j)WLl + e2q2n+lp2, ( 4 ) 

4w»w„+lw„+2wn+4wn+5wn+6 + e2q2n(wnU4U5 - wn+lU2U6 - wnUxU%)2 . 
= (wn+lwn+2wn+6 +wnw„+4wn+5)2. 

Here e = pab-qa2 -b2 and Un = wn(0,l; p,q). Identity (5) is due to Morgado [13]. 
Our purpose is to apply the above identities to constructing Diophantine quadruples. Con-

sidering the construction described in §2.1, we will restrict our attention to two special cases. For 
simplicity of notation, these are 

w« = "w(p) = ww(0,l;/?,-l), p>\ 
gn = gn<J>) = »>Mp,l), P*2-

The Fibonacci sequence F„ = u„(T), the Pell sequence Pn - un(2), the Fibonacci numbers of even 
subscript F2n = gn(3), and gn(2) = n are important special cases of the above sequences. 

Apart from the sequences (un) and (g„), we also wish to investigate joined sequences 
(vw) and (hn), which are defined by vn =un_l + un+u 1% - gn+\~ gn-\- It ^s easY to check that 
v„ = w„(2, p; p, -1) and hn = w„(2, p\ p, 1). 

1996] 165 



GENERALIZED FIBONACCI NUMBERS AND THE PROBLEM OF DIOPHANTUS 

3. QUADRUPLES WITH PROPERTIES D(p2ul) AND D(tfi) 

For every positive integer n, 

4unun+2 + (pun+l)2=v2
+l. (6) 

Indeed, v2
+l - (pun+i)2 = (un + un+2)2 - (un+2 - un)2 = 4unun+2. From the above, it follows that the 

sets {2un, 2un+2}, {un,4un+2}, and {4un,un+2} have the property D(/?X+1). In order to extend 
these sets to the quadruples with the property D(p2u2

+l) by applying the construction described in 
§2.1, it is necessary to find a solution to the Pellian equation S2 -4unun+2T2 = 1. One solution of 
this equation can be obtained from the identity 

which is the direct consequence of (2). Therefore, we will set s - u2
+l + unun+2, t = un+l. Now, 

applying the construction from §2.1, we obtain an infinite number of sets with the property 
D(p2u2

+l). In particular, we have 

Theorem 1: Let n and/? be positive integers. Then the six sets 

{2un, 2un+2,2p2u3„+l(un+l - un)(un+2 - un\ 2p2ul+l(un + un+l)(un+l + un+2)}, 

{2un, 2un+2,2p2u3
n+1(u„+un+1)(un+1 +un+2)9 

2(Un + "iH-lX^+l + Un+2)(Un + 2Un+l + "n+lXWn+l + 2UnUn+2 + Un+lUn+l)}^ 

iUn> 4un+2> (Un+l ~ * O 0 * + 2 ~ U„+l)(2u„+2 -U„- Un+l)(2u„+1U„+2 - U„U„+l ~ UJi^), 

P2ul+l(Un + 2un+l)(Un+l + 2 ^ + 2 ) } , 

K > 4un+2> P2U3
n+i(u„ + 2Un+l)(un+l + 2Un+2), 

0 « + O K + 1 + Un+2)(Un + 3un+l + 2un+l)(UnUn+l + 3 * V „ + 2 + 2 ^ + l ^ + 2 ) } , 

and 

{4^„, un+2, (un+l - u„)(u„+l + un+2 - 2u„)(unu„+2 + un+lun+2 - 2unun+l\ 
P2*Ll(2un + * W ) O K + 1 + Unrt)}> 

{4un, un+2, p2u3
n+l(2u„+u„+l)(2u„+l+un+2l 

(Un + ^ H - l X ^ + l + ^ X 2 ^ + X + l + M « + 2 ) ( 2 ¥ « + l + 3un Un+2 + * W n + 2 ) } 

have the property D(p2u2
+l). 

Proof: The main idea of the proof is to show that the six sets in Theorem 1 are of the 
form {a, b, x0l, xl{} or {a, b, x_lh x0l}. Combining (6) with (7), we obtain £ = pun+l, k = vw+1, 
s = ut+i + unun+2> t = un+i- T o simplify notation, we write un+2 = ^ , ww+1 =B. Hence, according 
to (2), A2-pAB-B2 = (-iy+\ and that gives 

(A2-pAB-B2)2 = l. (8) 

We arrange the proof in three parts, each part relating to two of the six sets. 
Part 1. a - 2un3 b = 2un+2 

Using the notation of §2.1, we have 
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JO.O = Z0,0 = PK+l, J l ,0 = 3 " » +M„+2> Z1,0 = Un +3un+2> 

y-1,0 = PUn+U Z-l,0 = -Pun+V 

From this, we obtain 

y^ = PB[A2 + {2-p)AB- (2p - l)B2], 

yil = 4A3 + (8-7p)A2B + (3p2-l0p + 4)AB2+p(2p-3)B3, 
y_xl = pB[A2 -(p + 2)AB + (2p + V)B2]. 

Relation (8) will be used to represent expressions of xiX, i = -1,0,1, obtained by putting ytl in 
(1), as homogeneous polynomials in two variables A and B. When those polynomials are factored, 
we have 

x01 = 2p2B3{A - (p - \)B}(A + B) = 2p2u3
n+l(u„ + w„+i)(«„+i + un+2), 

xu = 2[A-(p-1)5] A + B)[2A-(p-2)B][2A2 -Tip-\)AB-pB2] 
= 2(Un + M»+l)(M«+l + M„+2)("» + 2"»+l + U

n+l)(U
n

U
n+l + 2 M „ M „ + 2 + M«+lM«+2)v 

x_u = 2p2B\(p +1)5 - A](A -B) = 2p2u3
n+l(u„+1 - u„)(un+2 - w„+1). 

Part 2. a = un, b = 4un+2 

We now have 

^0,0 = 20,0 = PU
n+l> yi,Q = 1Un +"»+2> Zl,0 = Un + 5 "H+2> 

.V-LO = Mn+2> 2-l ,0 = M« - 3Mn+2-

Hence 

y0A = PB[A2 -(p- \)AB -(p- \)B2], 
yu = 3A3 -(5p-6)A2B + (2p2 -7p + 3)AB2 +p(p-2)B\ 

y_u = A3-(p + 2)A2B + {p + \)AB2 + pB3, 

and, from (1) and (8), 
x0J = p2B3(A + 2B)[2A -(p-1)5] = p2u3

n+l(u„ + 2un+l)(un+i + 2un+2), 

xu =[A-(p- \)B](A + B)[3A -(p- 3)B][3A2 - 3{p - \)AB - pB2} 

x_u =[A-(p- \)B][A -<j> + l)B](A - B)[A2 -(j> + \)AB - pB2] 
= ( 2 « „ + 2 - U„ - Un+1)(ti„+l - U„)(Un+2 - «„+ i ) (2«„+l"„+2 - "«" n + l - UnUn+l)-

Part 3. a = 4un, b = un+2 

In this case, 

^0,0 = Z0,0 = PUn+\> yi,0 = 5U» + M«+2' Z1,0 = "« + 2 M « + 2 > 

Accordingly, 
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y0l = pB[A2-(p-4)AB-(4p-l)B2l 
y1A = 6 A3-(Up-\2)A2B + {5p2 -I6p + 6)AB2 +p(4p-5)B3, 

y_u = -2 A3 + (5p + 4)A2B - (3p2 + Sp + 2)AB2 + p(4p + 3)B3, 

and, finally, 

*o,i = P2B\A + 2B)[2A - (2p - l)B] = p2u3
+l(2un+l + u„+2)(2un + u„+1), 

Xll=[A-(p- \)B]{A + B)[3A - (2p - 3)B][3A2 - 3(p - X)AB - 2pB2] 
= ("« + M„+l)(M„+l + M « + 2 ) 0 « + 3M»+1 + Mn+2)(2"«"«+l + 3M«M»+2 + W»+lM»+2). 

*-u = [A-(p + l)B][A - (2p + \)B](A - B)[A2 -(p + \)AB + 2pB2] 
= ("«+l - «Ofa,+2 - MH+l)(M»+l + M«+2 - 2«„)(«„«„+2 + W„+l«„+2 " 2 M « « » + I ) - • 

Using the identities 4g„gn+2 +h2
+1 = p2gl+l and 4gng2

n+lgn+2 +1 = (g2
n+l + g„gn+2)2, we find the 

following theorem may be proved in much the same way as Theorem 1. 

Theorem 2: Let n > 1 and p > 2 be integers. Then the six sets 

i2gn, 2gn+2> 2gn+lhLl(Sr,+l-gn)(gn+2 - &+l)» 2&H-A2
+l(S» + &H-l)(&H-l +«H.2)}» 

{2&, 2g-„+2,2#„+1/?„2
+i(&, + &,+1)te„+1 + £„+2), 

2(p + 2)gn+1(g„ + g„+1)fe+1 + gn+2)(g„gn+i + 2g„gn+2 + £„+1&,+2)}, 

\£n> ^Sn+U \&n+l ~~ Sn)\£n+2 ~~ 8n+l)\^Sn+2 ~ Sn~ Sn+l)\^Sn+\8n+2 ~ Sn&n+l ~ Sn§n+2)? 
gn+lhlMn +2^n+l)(g-„+l +2g-„+2)}, 

{g«> 4S»+2> gn+lrf+l(gn+2gn+l)(gr,+l+gn+2), 
(gn +gn+l)(gn+l +gn+2)(gn + 3gn+l+2gn+2)(g„gn+l+3gng»+2 + 2&,+l&,+2)} 

{4gn, gn+2, (RH-1 - gn)(gn+2 ~ gn+l)(gn+l + &+2 ~ 2£„)(£„&,+2 + gn+lgn+2 ~ 2gngr,+l\ 
g„+irf+1(2g„ + g„+1+g„+2)}, 

and 
(4«.» S»+2, ^+A2+i(2g-„ +^+i)(2^„+i +g-„+2), 

(ft, +&,+i)(S»+i + « f f 2 ) ( 2 « , + 3&+1 +^+2)(2g-„g-„+i + 3g-„g-„+2 + £„+ig„+ 2)} 

have the property D(h2
+1). 

4. THE MORGADO IDENTITY 

We are now going to use the Morgado identity (5). It is easy to check that 

wnU4U5 - wn+1U2U6 - wnUxU% = U2U3(w„+4 - qwn+2), 
Wr,+lW

n+2W
n+6 + Wr,Wn+4W

n+5 = W„+iWUp3 + 2w„+2Wn+4) . 

If we restrict the discussion to the sequences (un) and (gn), the Morgado identity can be used as a 
base for constructing quadruples with the properties -D((«2«3Vn+3)2) and D((g2g3hn+J)2). 
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We are again going to use the construction described in §2.1. This time it is not necessary to 
use the solutions of the Pellian equation. We will try to choose the numbers a and h in the 
manner that the solution of the problem can be obtained using only the sequence (xn 0 ) . Accord-
ing to §2.1, if x 2 0 eNorx_X0 GN, then, respectively, {a,f t ,xl 0 ,x2 0} and {a,b, x_L0, x_20} are 
Diophantine quadruples. 

Since j2,o = ^f (* + a) ~ A X-2,0 = 2j-(k-a)-l,we have 

yl0-l2 4k(k + a)(k+b) _ 4/c 
X 2 , 0 - ' 

a e 
- 2 (kxlQ £ ) , 

_y-2,o-t2 _-4k(k-a)(k-b)_4k 2 
-2,0 - - - ^ ~ ^ \KX-\,o - * • * ; • 

Theorem 3: Let n and /? be positive integers and & = ww+3[2w„+2ww+4 - (-l)np2(p2 + !)]• Then the 
three sets 

2ku, 22+3 2unun+1u„+2,2w„+4w„+5w„+6,2(p2 + l)2w„+3«2
+3,4*1 ^ 

12w„w„+iW„+4, 2w„+2w„+5wn+6> 2p2
W„+3v2

+3,4k\ ?n+\ +1 

1 

w+iy 
and 

) 2UnUn+2Un+5> ^Un+lUn+4Un+6^ ^Un+3Vn+3^ ^ \ 
2ku, n+3 

w+iy 
have the property D(p2(p2 + l)2v2

+3). 

Proof: The proof is by applying the construction from §2.1 to identity (5) for wn = un. 
Three cases need to be considered. 

Case 1. a = 2unu„+lun+2, b = 2H„+ 4H„+ 5H„+ 6 

Hence, a + b = 2{p2 + 2)un+3[(p2 + 1)(M2
+2 + u2

n+4) + (p2- l)u„+2un+4]. This gives 

x10 = a +b + 2k = 2(p2 + l)2w„+30„+2 +«„+4)2 = 2(p2 + l)2"„+3v2
+3, 

X2'°-4*l />V+l)\2
+3 

= 4k 2ku 
V P 

ln+3 i 
,2 

Case 2. a = 2unun+1un+4, b = 2un+2un+5un+6 

Now we have a + b = 2^w+3[(p2 + l)<Cp2 + 4)w„+2iiw+4 - i/J+2 ~ ^+4] a n d 

/" 1- ^-~2„. „2 A 
X _ 2 Q T"/C 

k-2pun+3v„+3 

/>v+l)2v„2
+3 . 

= 4 * ' 2fan+3 . ^ 
v ^ 2 + D2 j 

Case 3. a = 2unun+2un+s, b = 2un+Mn+iut n+\Kn+4Tn+6 

We have a + b = 2(p2+ 2)un+3[u2
+2 + w2

+4 - ( / + \)un+2un+4] and 
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xi ,o ~ 2un+3vn+3, 

v - AjA 2kU"+3 1 

It remains to prove that all elements of the sets from this theorem are integers. It is sufficient 
to prove that the number %k2unAr31 p2(p2 +1)2 is an integer for all positive integers n. That is the 
direct consequence of the relation 

M\+3 = Su3„+3[p4(p2 +1)2 - (-1) V ( p 2 + l)un+2un+4 + 4u2
+2u2

+4] 
p2(p2 + lf u\ul 

and the fact that u2 \u2m and ^ \u3m for all m e N, which is easy to prove by induction. D 

The following theorem can be proved in much the same way as Theorem 3. 

Theorem 4: Let n > 1 and/? > 2 be integers and k = gn+3[^gn+2gn+4 ~p2(p2 ™ 1)]. Then the three 
sets 

"K̂ H}-
Ugngn+lgn+4, 2gn+2g„+5gr,+6, 2P2gn+^+3, 4 * ,T"*,l2 ~ * IS 

and 

2&ftH-2«H-s. 2 g n + 1 g n + 4 & 1 + 6 , 2 g n + 3 h n + 3 , 4 k \ 2 %"+3 + 1 2%,+3 

/>V~1)2 

have the property D(p2(p2 -1)2/^+3). 

We now want to show that the sequence (#„) possesses another interesting property based 
on the identity 

gngn+ign+3gn+4+[(P±i)g„+2? = (d+2±P)2- (9) 
Now, the construction described in §2.1 can be applied on the relation (9). We have a = g„g„+1, 
b = gn+3gn+4, k = g2+2±P> which gives 

xTU0=a+b + 2k = (p3-3p + 2)g2„+2 = (p±l)2(p + 2)g2
+2, 

= 4(^+2 ±P)(gn+l + &X&-4 + gn+3)-

Thus, we have proved 

Theorem 5: Let n > 1 and/? > 2 be integers. Then the set 

ta+l> &H-3&M. O + 02(P - 2)^+ 2 , 4(^„2
+2 + /?)(&,+1 - g„)(gn+4 ~ g„+3)} 

has the property D((p + l)2g^+2), and the set 

{gngn+i> «H.3«H4. (^ - 0 2 O + 2)^+ 2 ,4(^+ 2 - />)(&,+1 + g„)(gn+3 + g„+4)} 

has the property D((p -1)2^+2). 
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5. GENERALIZATION OF A RESULT OF BERGUM 

Hoggatt and Bergum [8] have proved that the set 

has the property D(l) for every positive integer n. It has been proved in [4] that the set 

V^w> ^ » + 4 ? ^ 2 w + 2 ? ^^2n+V2n+2^2n+3S 0 V 

also has the property D(l). In [5], quadruples with the properties £>(4), i?(9), and D(64) have 
been found using Fibonacci numbers. We now want to extend these results to the sequences (u„) 
and (gn) starting from identity (2). Applying (2) to the sequence (un), we get 

U2n'U2n+2r+u2r = Uln+r • 0 2 ) 

Therefore, the sets {u2n, u2n+2] and {u2n, u2n+4} have, respectively, the properties D(l) and D(p2) 
for every positive integer n. It was shown in §4 that, if a, b, k, and I are the positive integers 
such that ab + £2 -k2 and if the number ±4k(k ± a){k ± b) I £2 is a positive integer, then the set 
{a, b, a + b ± 2k, ± 4k(k ± a)(k ± b) 112} has the property D(£2). According to this, we have 

Theorem 6: Let n and/? be positive integers. Then the sets 

{U2n> U2n+2> lu2n + (P ' 2>2n+l> 4u2n+li(P ~ 2>ln+l + 2 ^ 2 A + l + *1} 

and 
{u2n, U2n+2, lU2n - { p - 2 ) ^ 2 w + l ? ^U2n+V2u2n+]U2n+2 ~ 

(p-2)u2
2n+1-l]} 

have the property D(l) and the set 
{u2n, u2n+4, p u2n+2,4u2n+lu2n+2u2n+3} 

has the property D(p2). 
For the sequence (gn), we can prove an even stronger result, namely, from (2) we have 

gn'gn+2r+g2r=gl+r ( 1 3 ) 

for every (not just even) positive integer n. Starting from the sets {gn, gn+2) and {gn9 gn+4} with 
the properties D(l) andD(/?2), respectively, we find that the following result may be proved in 
much the same way as Theorem 6. 

Theorem 7: Let n > 1 andp > 2 be integers. Then the sets 

{gn, gn+2> (P ~ 2)gn+l> *gn+l\(P ~ 2)gn+l + 1] } 

and 
{&,> gn+2> (P + 2)gn+1,4gn+l[(p + 2)g2

+l -1]} 

have the property D(l), and the set 

{gn, gn+4> P2gn+2> 4g„+lg„+2g„+3} 

has the property D(9). 
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6. APPLICATION TO THE PELL NUMBERS AND POLYNOMIALS 

In this section we apply the results discussed in the previous sections to some special cases of 
the sequences (un) and (gn). The case of the Fibonacci sequence Fn = un(l) and the case of the 
joined Lucas sequence Ln = vn(l) are studied in detail in [6]. 

Let us first examine the Pell sequence Pn -un(2) and the Pell-Lucas sequence Qn -vn{2). 
All elements of the sequence (Q )̂ are even numbers, so we can write Qn = 2Qn. The numbers Pn 

and Qn are the solutions of the Pellian equation x2 - 2y2 = ±1. Namely, it is true that 

GJ-2# = (-iy. 
The sequences (Pn) and (Qn) are related by relation Pn +Pn+l - Qn+1. Applying this relation to 
Theorem 1, we get 

Corollary 1: For every positive integer n, the sets 

and 
\*n> K+2> 4Ki+lQn+lQn+2> ^^n+lQn+lQn+ll^n+l^n+l ~ \ V J J 

have the property D(P2
+l). 

In [6], quadruples with the property D(I?n+2) are constructed using the following identities: 

4 ^ ^ 4 + 4 . 2 = 9 ^ 2 , (14) 

4 ^ 2 ^ , 4 +1 = (F„+2 +FnFn+d2- (15) 
For the sequences (un), the following analogs of the above identities are valid: 

4KA+4 + ( n + 2 ) 2 = l(P2 + 2)^+2]2, (16) 
4^+A2

+2^+4 +P4 = 0*+2 +^A+4)2- (17) 
Unfortunately, existence of the term p4 in (17) makes it impossible to apply the construction for 
finding quadruples with the property D(p2v2

+2) from §2.1. But in the case p = 2, the solution of 
the equation S2 -abT2 = 4 can be obtained from relation (17). Thus, we can apply the modified 
construction described in Remark 1 of [5]. 

Theorem 8: For every positive integer n, the sets 

and 
\Pm Pn+4> 4Pn+2Qn+iQn+2Qn+3> 1 6 i ^ + 2 g w + 1 < 2 w + 3 ( 2 i ^ + 2 - P„+iP„+3)} 

have the property D(4Q2
+2). 

Proof: The sets from Theorem 8 are easily seen to be of the forms {a,*, x'_x h XQJ and 
{tf,A,*6,i>*u}> respectively, where the sequence (x^m) is constructed as described in Remark 1 
of [5], that is, by setting a = Pn,b = i>„+4, s> = P2

+2 + PnPn+4, v = P„+2. D 
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In distinction from the identities (16) and (17), the construction from §2.1 can be applied 
directly to the following identities: 

o,a+2+a2
+1=4P„2

+1, (is) 
a&iS»2+i=4/£i. (19) 

We have thus proved 

Theorem 9: For every positive integer n, the sets 

and 
\Qn> Qn+2? 4P„+iPn+2Q„+i, ^Pn+\K+2Qn+2\^n+Vn+3 ~~ *n°n+2j} 

have the property D((£+l). 

Obviously, Theorems 3 and 6 can also be applied to the sequence (Pn). However, applying 
Theorem 6, as it is done for Fibonacci numbers in Theorem 3 of [5], gives us more. 

Corollary 2: For every positive integer n, the sets 

V*2w> ^2«+2> 2^2„> ^Pln+lQlnQln+V 

and 
l^2»> ^2«+2> 2^«+2? ^Pln+lQln+lQln+l) 

have the property D(l), the sets 

V2«> p2n+4> ^p2n+2> ^^2»+1^2«+2^2«+3/ 

and 

have the property D(4)y and the set 

V*2«> ^2«+8 ' -^"^2/7+4? *2n+2*2n+4*2n+6) 

has the property 15(144). 

In this paper only the quadruples with the property D(n), where n is a perfect square, have 
been examined. However, let us mention that the set 

{1, ̂ + i ( 3 i W i " 2), 3i£+1 - 1 , P2n+l(3P2n+l + 2)} 

has the property D(-Qln+l) for every positive integer n. 

Since g„(2) = n, the results from this paper can be used to obtain the sets with the property 
of Diophantus whose elements are polynomials. For example, from Theorem 7, we get the Jones 
result that the set {w,w + 2,4(« + l),4(« + l)(2« + l)(2« + 3)} has the property D(l) for every 
positive integer n (see [12]). 

The following interesting property of the binomial coefficients can be obtained as a conse-
quence of the results from §4 above. 

For every positive integer n > 4, the sets 
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[(n-i) (n + A 6n 2n(n2-7)(n2-3n + l)(n2+3n-l)} 

and 
j(n-l) (n + 3\ 2n(n2+2) 2n(n2-7)(n3-3n2 + 2n-3)(n3 + 3n2 + In + 3) | 
[I 3 ) \ 3 y 3 ' 27 J 

have the property D(l). Note that ^(2) = 2. 
Finally, let us mention that, using these results, the explicit formulas for quadruples with the 

property D(£2), for a given integer £, can be obtained. Of course, only the sets with at least one 
element that is not divisible by £ are of any interest to us here. 

Corollary 3: Let £ be an integer. The sets 

{(£ -1)(£ - 2), {£ +1)(£ + 2), 4£2,2(2/ - 3)(2* + 3)(72 - 2)}, for £ > 3, (20) 
and 

ft £4 - 3£2, £2(£2 -1), 4£2(£2 -1){£2 - 2)}, for £ > 2, (21) 

have the property D(£2). 

Proof: We can get set (20) by putting p = 2 and n + 2 = £ in the second set of Theorem 5. 
Since ft(p) = l, &(/>) =/>2-l , ftO7) -P4~^P2 •+!> s e t (21) c a n be obtained by putting w = l 
and /? = ̂  in the third set of Theorem 7. D 

Remark 1: One question still unanswered is whether any of the Diophantine quadruples from this 
paper can be extended to the Diophantine quintuple with the same property. In this connection, 
let us mention that it is proved in [7] that, for every integer £ and every set {a, Z>, c, d) with the 
property D(£2), where abcd*£4, there exists a rational number r, r ^ O , such that the set 
{a, b, c, d, r) has the property that the product of any two of its elements increased by £2 is a 
square of a rational number. 

For example, if the method from [7] is applied to the second set in Corollary 3, we get 

= 81(1 - l)(l +1)(£2 - 2)(2l2 - 3)(2l4 - 4£2 + l)(2l4 - 6£2 + 3) 
[4(£ -1)2(£ +1)2(£2 - 2)(£2 -£-1)(£2 + £ -1) - if 

From this, for £ = 2, we have the set {89760,128881,644405,1546572,12372576} with the 
property D(4-3594). 
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December 10, 1995, at the age of 94. He was born in Budapest on August 20, 
1901. He was Professor of Operational Research at the University of Birmingham, 
England, from 1965 to 1968 and subsequently a sensor research fellow at the Uni-
versity of Sussex, England. Steven Vajda was best known for his work in commu-
nicating the early developments in the field of linear programming, as in his book 
Readings in Linear Programming, Pitman, 1958. 
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Let u^-^-l and define the generalized Fibonacci sequence (un) = u(3,l) to satisfy the 
recurrence relation un - 3un_x + un_2 for n > 2. For an integer m > 1, let (un) denote the sequence 
(un) considered modulo m. It is known that (un) is purely periodic [7], that is, there exists a 
positive integer r such that un+r - un for all n = 0,1,.... Define him) to be the length of a shortest 
period of (un), and S(m) to be the set of residue frequencies within any fLill period of (un), as 
well as Aim, d) to denote the number of times the residue d appears in a full period of (un) ([5], 
[6]). Hence, for a fixed m, the range of Aim, d) is the set S(m), that means 

{A(m, d):0<d<m} = S(m). 

We say (un) is uniformly distributed modulo m if all residues modulo m occur with the same 
frequency in any full period. In this case, the length of any period will be a multiple of m\ more-
over, 1^(^)1= 1 and Aim, d) is a constant function [4], 

For a fixed m>2, form a number block Bm eNm to consist of the frequency values of the 
residue d when d runs through the complete residue system modulo m. This number block, 
Bm, will be called the frequency block modulo m, which has properties like {qBm)r = q(Bm)r and 
((BJY = (BJS with 

r times 

and q,r,s &N. Here are some examples for Bm together with the period length h(m). 

B2=(l,2) K2) = 3 
£,=(0,1,0) A(3) = l 
B4= (1,3,1,1) h(4) = 6 
B5 =(0,3,3,3,3) h(5) = l2 
Bs = (0,3,0,1,2,3,2,1) h(8) = l2 
B9 = 2(B3f h{9) = 6 
B16 = (0,3,0,1,2,3,0,1,0,3,0,1,2,3,4,1) h(l 6) = 24 
5,8 = (0,2,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,0) h(l 8) = 6 
B26=4{B2f h(26) = \56 
B27=2(B3)9 h(27) = U 

B32=(Ae)2 h(32) = 4S 
B52=2(B4)13 h(52) = \56 
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B54=(B^)3 A(54) = 18 
B65=(B5)13 h(65) = \56 

Bsl=2(B3)21 h(U) = 54 

All but the first few examples show a certain kind of repetition in the frequency blocks, that 
means such frequency blocks can be produced by repetition of their first few elements a whole 
number of times. For a given m, this repetition is possible only in the case for which there exists 
an integer 1 < c <m such that c\m and h(c)\h(m). Moreover, the first few repeating elements of 
Bm are the elements of Bc or some multiple of them. Letting 0 < x < c, 0<y <m, and y = x 
(mod c), this fact can be expressed by A(m,y) = q- A(c, x) for some positive integer q. A similar 
result in connection with the uniform distribution was found in [3] for the Fibonacci numbers. 
The considered sequence (un) is uniformly distributed modulo 13 for k > 1 (see [1]). Thus, the 
above examples show that the repetition in the frequency blocks does not occur exclusively in 
connection with the uniform distribution. 

To search for repetition possibilities in the frequency blocks of the sequence (ww), we made a 
computer run for moduli m< 1000. However, we did not consider moduli m with I3\m because 
we wanted to investigate the repetition possibilities that had no direct connections with the 
uniform distribution. 

Making use of the above-mentioned notation A(m, y) = q- A(c, x) with 0 < x < c, 0<y<m, 
y = x (mod c), and 1 < q e N, we discovered the following: 

D l : A(3k+\y) = 2-A(3,x) f o r * > l . 
D2: A(3kc, y) = A(c9 x) for * > 1 and c G {18,21,33,36,45, 

D3 
D4 
D5 
D6 
D7 

51,57,69,72,87,90,93,111,123,126,144,147,159,180, 
198,201,219,231,237,252,291,303,306,315,321,327}. 
A{pk+\y) = A(p, x) fork > 1 and/? e{l 1,17,29}. 
A(Uc9y) = A(c9x) force{22,33,44,55,66,77,88}. 
A(l7c,y) = A(c,x) fore G { 3 4 , 5 1 } . 

A(2c,y) = A(c, x) for c e{16,48,144,368}. 
A(6c, y) = A(c, x) for c = 144. 

Now it is natural to ask how the above discoveries could be proved. We will give proofs for 
some of them. 

We note that in this paper (a, b) and [a, b] will denote the greatest common divisor and the 
least common multiple of the integers a and b, respectively. 

Lemma 1: The sequence (un) is purely periodic mod 3r with the exact period length h(3r) = 1 
for r - 1 and h(3r) = 2-3r _ 1 for r > 1. Let w be a fixed integer with 0 < w <h(3r). If uw leaves 
the remainder x mod 3r ( 0 < x <3r), then the numbers u .h^ (0<j<2) leave the remainders 
x + i-3r (0 < i < 2) mod 3r + 1 in a certain ordering. 

Proof: The fact that (un) is purely periodic mod 3r with period length h(3r) - \ if r = 1 and 
h(3r) = 2»3r~l if r > 1 follows by arguments similar to those given by Wall in Theorems 1, 4, 5, 
10, and 12 of [7]. The remainder of Lemma 1 follows from results in the preprint "Bounds for 
Frequencies of Residues in Second-Order Recurrences Modulo p r " by Lawrence Somer. 
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Lemma2: For2<ceN, (c,3) = 1, and \<k eN, let q = h(3k+l c) / 3h(3k c). Then ? = 1/3, 2/3, 
or 1 if k = 1, and q = 1/3 or 1 if k > 1. 

Proof: Since (c, 3) = 1, we have 

9 = 
[h(3«+l),h(c)] 
3[h{3k),h{c)\ 

The case A = 1 yields 

[h(9\h(c)] _ [6,h(c)] 
<1 = 3[h(3),h(c)] 3[l, h(c)] (6,h(c)) 

[2 if (6, h(c)) = I, 
1 if (6,h(c)) = 2, 
2/3 if (6, h(c)) = 3, 
1/3 if (6, h(c)) = 6. 

Now, using the known facts that A(2) = 3,h{3)-1,h(6)-3, andh(c) is even for c>3 and 
c^ 6, we obtain (6, A(c)) = 1 iff c = 1 or c = 3, which are excluded in Lemma 2. Moreover, if 
(c, 3) = 1, then (6, h(c)) = 3 iff c = 2. 

In the case A: > 1, we have by Lemma 1 that 

„_ [2-3kh(3),h(c)] _ [2?,h(c)] 
J 3[2-3Ar_I/?(3),/?(c)] 3[2-3*-\ h(c)] 

^(2-3k-\h{c)) J\I3 if3k\h{c\ 
~ (2• 3k,h{c)) ~ [l if 3'-l\h(c) and 3'\h{c), where \<t<k. 

For some 1 < b eN, let v3(ft) denote the exact power of 3 such that 3V3(6)|Z> but 3Vi(- \b. 

Corollary 1: For 2<ceN, (c,3) = l, and \<keN, q = h(3k+1 c)13h(3kc) is an integer iff 
v3[h(c)] <k-\. In this case, the only possible value for q is q = 1. 

Corollary 2: For 2<c = 3rs eN, r eN, l<s eN, (s, 3) = 1, we have: 

r = 0 => h{3c) = /?(c), 

r = l=>A(3c) = 

6/?(e) if 5=1, 
3/?(c) ifs>2and3|/*0), 
2A(c) if 5 =2, 

[h(c) if 5>2 and 3\h(s). 

r>\=>h(3c) = \Kc) i f 3 > ( 5 ) ' \3h{c) otherwise. 

Hence, the value of q - h(3c)13h(c) with c-3rs, r eN, 1<S GN, and (s, 3) = 1 cannot be 
an integer if r = 0, or if r = 1 and s > 2 and 31/?(s), or if r > 1 and s > 2 and 3r\h(s). These cases 
can be omitted from here on. 

Corollary 3: For 2 < c = 3rs e # , 1 < r, 5 e N, and (5,3) = 1, 9 = /*(3c) / 3h(c) is an integer iff 
r > 1 and v3[/?(V)] < r -1. Now suppose that # is an integer. If r = 1 and s = 1, then q - 2; if 
r = 1, s> 1, and (5*, 3) = 1, then q-\\\ir>\ s>l, and (s, 3) = i, then again <7 = 1. 
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Theorem 1: For 2<c = 3rseN, l< r , seN, ( J , 3 ) = 1, v3[/*(s)]<r-l, and q = h(3c) / 3h(c), 
we have 53c = q(Bc)3. 

Proof; Case 1. r = 1 
Now c = 3s, (s, 3) = 1, and v3[/?(s)] < 0 => 3|/?(.s). 
If 5 = 1, then q = /*(9) / 3/2(3) = 2. Thus, Bi = 2(J53)3 can be checked by computation. 
If 5 > 1, then q = /i(3c) / 3/i(c) = 1. Thus, we need to prove that B3is = (B3s)3. 
Since h(3c) = 3h(c) and h(3s) = A(.s), we need to show that, for any w GN and j e {0,1,2}, 

the three values of uw+jh^ are pairwise different modulo 9, and hence also modulo 9s. Let 
j \ > h E (^ 1' 2) with 1 < | jx - j 2 | < 2. For a fixed w e JV, let zx and z2 be the residues of the num-
bers w + jjtfjs) and w + j2h(s) mod h(9), respectively. This means 0 < |z1 - z2\ < h{9) = 6. The 
consequence of s > 1 and 3|/*(s) is that 5 > 7; therefore, /2(s) is even. This yields 

2 <h(s) <h(s)\jx - j2\ = \zl-z2\^0 (mod6), 

so that zx and z2 are different mod 6 and, in addition, are not consecutive numbers; whence, uZ{ 

(mod 9) and uz (mod 9) also have two different values that can be checked using the following 
table: 

n 
un (mod 9) 

0 
1 

1 
1 

2 
4 

3 
4 

4 
7 

5 
7 

6 
1 

Case 2. r > l 
Now c = 3r$, (s,3) = 1, and v3[h(s)] < r -1 => q - h(3c) 13h(c) = 1. Thus, we must prove that 

B3c = (Bcf. 
We need to show that, for any fixed w GNmdj e{0,l,2}, the numbers uw+Jh^ are pairwise 

different modulo 3c. Since (s, 3) = 1 and v3[h(s)] < r -1, we have h(c) = h(3rs) = [h(3r\ h(s)] = 
h(3r)z with some 1 <z <EW and 3|z. Hence, for a fixed w eNandj e{0,l,2}, the numbers 
w + jh(c) and w + j7*(3r) are always in the same residue class modulo h(3r). Therefore, the 
numbers uw+J-h^ and uw+Jh,y\ are also in the same residue class modulo 3r. But the numbers 
uw+jh(3r) a r e pairwise different mod 3r+1 because of Lemma 1. Thus, the numbers uw+jh{c) are 
again pairwise different mod 3r+I, and thereby also mod 3c. 

Theorem 2: For 1 < k e N and q = h(3k+l) 13h(3k), we have #3*+, = q(B3k)3. 

Proof: We proceed by induction on k. For k = l, we go back to Case 1 of Theorem 1, 
whence q = 2 and B3i = 2(53)3. 

Assume the statement is true for k > 1. As a consequence of Case 2 of Theorem 1, we can 
take 9 = 1. Thus, J53(ik+1)+1 = £3(3*+i} = l-(53*+i)3 - ( g ( ^ ) 3 ) 3 = ?((53,)3)3 = <l(B3k+l)3. 

Corollary 4: For 1 < Jk e N and g = A(3*+1) / 3A(3*), we have 53*+i = 2(53)3*. 

Proof: k = l=>q = 2 and B32=2(B3)3. k>l=>q = l and B3k+l = (B3k)3 = (B^^)3 = 
((VO3)3 - (%032 = - = ( V - (2(53)3r - 2(B3f. 
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Corollary 5: For any \<k eN, we have |£(3*)| = |iS(3)| = 2. 

Thus, we have a complete proof for Dl. The statement in D2 is a direct consequence of 
Theorem 1. The proof of D7 can be done using D2 and D6 as follows: 

B6c=B3(2c)=(B2c)3 = ((Bc)2f = (Bc)6. 

The proofs of the other discoveries can, for the most part, be carried out in a similar manner, 
so they are left to the interested reader. 

The only reason for considering the above specific problem was Corollary 2 in [1], where it 
was proved that the sequences u(3,1) with u0 = 1 and ux e{l,3,5} are uniformly distributed mod 
13* for all k > 1. The reader should consider the related more general sequences u(p, 1) satisfy-
ing the recursion relation un - pun_x + un_2 for n > 2 with u0 = ux - 1 and p a fixed odd prime. It 
can be proved by similar methods that B k+l - 2(Bp)pk is also valid for these recurrences; here, Bp 

refers to the frequency block defined above. The reader might consider proving this result, and 
possibly other results similar to those found in this paper. In the meantime, it is advisable to 
remember the fundamental fact that the recurrences u(p, 1) with u0 = ux - 1 are irregular modulo 
p, that is, the vectors (z/0, ux) and (ux, u2) are linearly dependent modulo/?. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowltz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWLTZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also he sent to the problem editor by electronic mail to Fibonacci@MathPro.com on Inter-
net. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Proposers should inform 
us of the history of the problem, if it is not original. A problem should not be submitted 
elsewhere while it is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

A?+2 - Ai+i+ A* > A> - 2, LX -1. 

Also, a = (l + V s ) / 2 , /? = ( l - V 5 ) / 2 , Fn = (an-/?")/^and L„ = a"+/3". 

PROBLEMS PROPOSED IN THIS ISSUE 

B-808 Proposed by Paul $. Bruckman, Jalmiya, Kuwait 

Years after Mr. Feta's demise at Bellevue Sanitarium, a chance inspection of his personal 
effects led to the discovery of the following note, scribbled in the margin of a well-worn copy of 
Professor E. P. Umbugio's "22/7 Calculated to One Million Decimal Places": 

To divide "/7-choose-one" into two other non-trivial "choose one's", "ft-choose-two", or in 
general, "ft-choose-m" into two non-trivial "choose-w's", for any natural m is always possible, 
and I have assuredly found for this a truly wonderful proof, but the margin is too narrow to 
contain it. 

Because of the importance of this result, it has come to be known as Mr. Feta's Lost Theorem. 
We may restate it in the following form: 

Solve the Diophantine equation xm+ym=zm for m < x < y < z, m = 1,2, 3,.. . , where Xm = 
X(X - V)(X - 2) • • • (X - m +1). Was Mr. Feta crazy? 

B-809 Proposed by Pentti Haukkanett, University of Tampere, Finland 
Let k be a positive integer. Find a recurrence consisting of positive integers such that each 

positive integer occurs exactly k times. 

B-810 Proposed by Herta Freitag, Roanoke, VA 

Let (Hn) be a generalized Fibonacci sequence defined by Hn+2 -^n+\+^n f ° r n>® w ^ h 
initial conditions Hl=a and H2=b, where a and b are integers. Let k be a positive integer. 
Show that 
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H. H, 
H. n+k+l II 

w+1 

n+k+2 

is always divisible by a Fibonacci number. 

B-811 Proposed by Russell Euler, Maryville, MO 
Let n be a positive integer. Show that: 
(a) if/is0(mod4),thenFw f l = 4 - 4 „ 2 + 4 _ 4 - - - L 2 + l; 
(b) if n = 1 (mod 4), then F„+1 = Ln - Ln_2 + Ln_4 4 +1; 
(c) ifn = 2 (mod 4), then Fn+l = Ln -Ln_2 +Ln_4 - ••• + 4 - 1 ; 
(d) ifws3(mod4),then/vf l = 4 - 4 _ 2 + 4 _ 4 - - + 4 - l " . 

B-812 Proposed by John C. Turner, University of Waikato, Hamilton, New Zealand 

Let P, Q, and R be three points in space with coordinates (Fn_h 0,0), (0, Fn, 0), and 
(0, 0, Fn+1), respectively. Prove that twice the area of APQR is an integer. 

B-813 Proposed by Peter Jeuck, Mahwah, NJ 
Let (Xn), (Yn), and (Zn) be three sequences that each satisfy the recurrence Wn = pWn_x + 

qWn_2 for n > 1, where/? and q are fixed integers. (The initial conditions need not be the same for 
the three sequences.) Let a, Z>, and c be any three positive integers. Prove that 

Zn 

xb xc 
Yb Yc 

zh zn 

= 0. 

SOLUTIONS 
A Floored Sum 

B-781 Proposed by H.- J. Seiffert, Berlin, Germany 
(Vol 33, no. 1, February 1995) 

Let F(J) = Fj. Find a closed form for ]JT F (k - \_4k\ ). 
k=0 

Solution by Graham Lord, Princeton, NJ 

If we write k = m2 + £, where £ = 0,1,2,..., 2m, then k - (\4k J )2 = £. This follows from the 
fact that m2 <k <(m + l)2 or rn<Jk <m + l, so that m = [V^J. 

Hence, if n = N2 + P, where 0<P<2N, then 

fc=0 
+(F0 + F1 + - + F2W_2)+(F0 + F1 + - + F / , ) 

= ( F 2 - l ) + ( F 4 - l ) + (F 6 - l ) + --- + (F 2 W - l ) + (FP+2- 1) 
= (F0 + F1) + (F2 + F3) + (F4+F5) + -.+(F^_2+F2JV_1) + F, P+2 - # 
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= F2N+l + FP+2-N-2 

= fQJn] + \)+F{n- \J7if + 2) -|_V Ĵ - 2. 
Above, we have made repeated use of the identity F{ + F2 H— +Ft = Fi+2 -1, which is Identity 
(Ii)from[l]. 

Reference 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 
The proposer generalized to Lucas numbers. He showed that, if L(j) = Lj, then 

ZU L (k - \4k\ 2) = Z(2[_^J +1) +L{ n - |_V̂ J \ 2) -[_^J - 2. 
4̂feo solved by Paul S. Bruckman, Leonard A. G. Dresel, C. Georghiou, Russell Jay Hendel, 

Norhert Jensen, Carl Libis, Igor O. Popov, David Zeitlin, and the proposer. 

Sum of Three Squares 

B-782 Proposed by Ldszlo Cseh, Stuttgart, Germany, & Imre Mereny, Budapest, Hungary 
(Vol 33, no. 1, February 1995) 

Express (F*+h + i f +F%)(F*+h+k + F^+k + i f ) as the sum of three squares. 

Solution by H.-J. Seiffert, Berlin, Germany 
An easy calculation shows that, for all numbers al,a2,a3,bl7b2^ and b3, 

(ax + a\ + a3)(b{
2 + b2+b3) = {axbx + a2b2 + a3b3f + {axb2 - a2bx)2 

+ (a2b3-a3b2f+(a3bx-axb3)\ 

(This is known as Lagrange's Identity. -Ed.) Now take ax = Fn+h, a2 = Fn, a3 = Fh, bx = Fn+k, 
b2 = -Fn+h+k, and b3 = (-l)w+1iv Since (see [1], formula 3.32, or [2], formula 20a) 

Fn+hFn+k ~~ FnFn+h+k = ( V Vife' 

we have axbx +a2b2 +a3b3 = 0. Thus, by Lagrange's Identity, we find that 

(Fn+h + Fn + Fh )(Fn+h+k + Fn+k + Fk ) 

= {FnFn+k + F„+hFn+h+kf +{FhFn+h+k -(-iyFnFkf + (FhFn+k+(-iyFn+hFk)\ 

References 
1. A. F. Horadam & Bro. J. M. Mahon. "Pell and Pell-Lucas Polynomials." The Fibonacci 

Quarterly 23.1 (1985):7-20. 
2. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester, England: Ellis Horwood Ltd., 1989. 
Zeitlin found the general identity 

(Fn+h + Hl+ Hl){Fn+h+k + Hn+k + Fk ) 
= {HnHn+k +Fn+hF„+h+kf+(HhFn+h+k-(-iyH»Frf 
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where (H„) is any sequence satisfying Hn+2 = Hn+l+Hn. No solver gave a general procedure 
for writing a Fibonacci expression as a sum of squares. 

Also solved by Paul S. Bruckman, C. Georghiou, Russell Jay Hendel, Norbert Jensen, David 
Zeitlin, and the proposers. 

Crazed Rational Functions 

B-783 Proposed by David Zeitlin, Minneapolis, MN 
(Vol 33, no. 1, February 1995) 

Find a rational function P(x, y) such that 

( "' 2w)~25ft6 + 175w4-5600/22+5904 

for/i = 0,1,2, 3,4, 5, 6. 

Solution by C. Georghiou, University ofPatras, Greece 

The values taken by the given expression when n - 0,1,2,..., 6 are, respectively, 0, 1, 1/3, 
1/2, 3/7, 5/11, and 4/9; or equivalently: 0, 1/1, 1/3, 2/4, 3/7, 5/11, and 8/18; i.e., FJLn. Since 
F2n = FnLn, it follows that P(x, y) = x21y. 

Several solvers pointed out that, in this solution, we have to handwave the case when n = 0 
because x2 I y is not defined at (0, 0). The editor was hoping that some solver would find a 
function such as 

J / 2 + 6 0 5 4 J ; + 5850X 

30079j-35364x2+4026x + 13164' 

but no solver came up with such a crazed function. 

Also solved by Paul S. Bruckman, Charles K Cook, Leonard A. G. Dresel, Russell Jay 
Hendel, Norbert Jensen, Joseph J. Kostdl, Bob Prielipp, H.-J. Seiffert, and the proposer. 

Lucas in Disguise 

B-784 Proposed by Herta Freitag, Roanoke, VA 
(Vol. 33, no. 2, May 1995) 

Show that, for all n, an~l45 - Ln_x I a is a Lucas number. 

Solution by Thomas Leong, Staten Island, NY 

Since fi--\la and <J5-\I'a = 4$+ J3 = a, we have 

a"-lj5-L„_l/a = a"-lj5-(a"-l+/3n-l)/a 

Haukkanenfoundtheformulasan-l-Fn_l/a = Fn, /T"1 -Fn_xIJ3 = F„, - / ? " ~ V 5 - Ln_Jj3 = Ln. 
Redmond generalized to an arbitrary second-order linear recurrence. 

184 [MAY 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Also solved by Michel Ballieu, Brian D. Beasley, Paul S. Bruckman, Charles K. Cook, Andre] 
Dujella, Russell Euler, Peter Gilbert, Pentti Haukkanen, Norbert Jensen, Joseph J, Kostdl, 
Cam A. Minh, Bob Prielipp, Don Redmond, H.-J. Seiffert, Tony Shannon, Sahib Singh, 
Lawrence Somer, M N. S. Swamy, and the proposer. 

Itfs a Multiple of anan+1 

B-785 Proposed by Jane E. Friedman, University of San Diego, CA 
(Vol 33, no. 2, May 1995) 

Let a0 = ax = 1 and let an - 5an_l - an_2 for n > 2. Prove that a^+l + a2 + 3 is a multiple of 
anann for all n > 1. 

Solution by Andrej Dujella, University of Zagreb, Croatia 

We will prove by induction that 
an+\ +al+3 = 5anan+l for all n > 1. 

For n- 1, we have: 16+ 1 + 3 = 5-1-4. Let us suppose that the assumption holds for some posi-
tive integer n. Then, 

al+2 + an+l + 3 = <X+1 ~ anf + at+l + 3 

- 25a2
n+l -1 Oanan+l + a2

n + a2
n+l + 3 

= 25a2
n+l-l0anan+1+5a„an+l 

= 5an+l(5an+l-an) 
= 5aw+1aw+2. 

Gilbert found that if an = fei^ - a„_2, f/iew a^+1 + a2 + [Aa^ - aj - a2} = kanan+l. Redmond 
found that if an = kan_x-ran_2, then a2

n+l+m2
n +[katpl-ral-a^]rn = kanan+l. 

Also solved by Brian D. Beasley, Paul S. Bruckman, Charles K. Cook, Russell Euler, Herta T. 
Freitag, Peter Gilbert, Norbert Jensen, Thomas Leong, Bob Prielipp, Don Redmond, H.-J. 
Seiffert, Tony Shannon, Sahib Singh, Lawrence Somer, M. N. S. Swamy, and the proposer. 

Finding Coefficients of an Identity 

B-786 Proposed by Jayantibhai M. Patel, Bhavan's R A. Col ofScl, Gujarat State, India 
(Vol 33, no. 2, May 1995) 

If F2
+2k = aF2

+2 +bF2 +c( - l )" , where a, b, and c depend only on k but not on n, find a, b, 
and c. 

Solution 1 by Paul S. Bruckman, Jalmiya, Kuwait 

Given that the indicated relation must be valid for all n, set n = - 2 , - 1 , and 0, respectively. 
This yields the following three equations: 

b + c = F2
k_h 

a + b-c = F2
k_h 

a + c = F2
k. 
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Solving for the three unknowns a, b, and c and simplifying yields 
a = F4k/3, b = -F4k_413, and c = 2F2kF2k_213. 

It is a trite but straightforward exercise to verify that these values do indeed make the given 
equation an identity, as claimed. 
Solution 2 by Stanley Rabinowitz, Mathpro Press, Westford, MA 

All problems of this nature can be solved by the following method. We want to find when the 
expression E = F^+2k -aF^+2 - bF* - c(-l)n is identically 0 in the variable n. First, apply the 
reduction formula Fn+x-{FnLx-\-LnFx)l2 to isolate n in subscripts. Then apply the formula 
F% - (I?n - 4(-1)") / 5 to remove any powers of Fn. The result is 

20£ = [36a + l » - 2 Q c - 4 Z ^ ^ ^ 

This is known as the canonical form of the expression (considering n a variable and k a constant). 
There is a theorem that says that a polynomial expression in Fn and Ln is identically 0 if and only if 
its canonical form is 0. (For more details, see my paper "Algorithmic Manipulation of Fibonacci 
Identities" in Proceedings of the Sixth International Conference on Fibonacci Numbers and 
Their Applications.) Thus, E will be identically 0 if and only if each of the above coefficients in 
square brackets is 0. That is, if and only if 

36a + l6b-20c-4I%k = 0, 
-30a + 10F2kL2k = 0, 

-14a-4A + 5 / & + 1 ^ = 0. 

Solving these equations simultaneously for the unknowns a, b, and c in terms of the constant k 
shows that E is 0 (identically in n) if and only if 

a = ^2kL2L b = ^2L_7F2k^2k+Ak_ a n d C = F2 _^2k^L 
3 4 6 4 2* 3 

Also solved by Brian D. Beasley, Andrej Dujella, Peter Gilbert, Norbert Jensen, Can. A. Minh, 
Don Redmond, H.-J. Seiffert, Tony Shannon, Sahib Singh, and the proposer. 

Addenda: Igor O. Popov was inadvertently omitted as a solver of Problems B-779 and B-780. 
C. Georghiou was inadvertently omitted as a solver of Problems B-760, B-761, B-763, and B-
765. 

Dr. Dresel has informed us of the passing away of Steven Vajda, whose book, Fibonacci & 
Lucas Numbers, and the Golden Section, is often quoted in this column. Dr. Vajda was born in 
Budapest on August 20, 1901, and died in Sussex on December 10, 1995. An obituary can be 
found in The Times (London, January 3, 1996). 

• ! • • > • ! • 
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Edited by 
Raymond Ee Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-509 Proposed by Paul S. Bruckman, Salmiya, Kuwait 

The continued fractions (base k) are defined as follows: 
k k k [ul9u2,...9un]k=ul+ ——-—> " = 1,2,..., (1) 

where k is an integer ^ 0 and (w,-)*! is an arbitrary sequence of real numbers. 
Given a primep with {=£-) - 1 (Legendre symbol) and k ^ 0 (mod/?), let h be the solution of 

the congruence 
h2 = -k (modp), with 0<h<±p. (2) 

Suppose a symmetric continued fraction (base k) exists, such that 

j = [al,a2,...,ari+l,an+l,...,al\k, (3) 

where the ai 's are integers, ^ is even, and k \at,, i = 2,4,..., n. Show that the integers x and y exist, 
with gx,d.(x, y) = l, given by 

y = K+1,...,a1]A: (4) 

which satisfy 

x2+ky2=p. (5) 

H-510 .Proposed by H.-J. Seijfert, Berlin, Germany 
Define the Pell numbers by P0 = 0, /> = 1, Pn = 2P^x + Pn_2 for w>2. Show that, for 

/i = l,2,..., 
P = V ( - n[(3*-2»-l)/4 2[3/:/2] f « + k ^ 

keAn ^ y 

where [ ] denotes the greatest integer function and 
An = {k e {0,1,..., n- l}\3k # 2w (mod4)} 
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H-511 Proposed by M N. Deshpande, Aurangabad, India 
Find all possible pairs of positive integers m and n such that m(m +1) = n(m + n). [Two such 

pairs are: m-\n-\ and m - 9, n - 6.] 

H-512 Proposed by Paul S. Bruckman, Salmiya, Kuwait 

The Fibonacci pseudoprimes (or FPP's) are those composite n with g.c.d.(/?, 10) = 1 such that 
n\Fn_£ where sn is the Jacobi symbol (-|). Suppose n-p(p + 2), where/? and p + 2 are "twin 
primes." Prove that n is a FPP if and only if p = 7 (mod 10). 

H-508 (Corrected) Proposed by H.-J. Seiffert, Berlin, Germany 

Define the Fibonacci polynomials by F0(x) = 0, Fx(x) = 1, F„(x) = xF„_1(x) + F„_2(x), for 
?? > 2. Show that, for all complex numbers x and y and all positive integers «, 

As special cases of (1), obtain the following identities: 

k=0 
F„(x)F„(x + l) = nZ ^^[2k + \)F^x2 + x + 4* (2) 

F „ W F , ( 4 / ^ „ | _ L _ ( ^ V+4^* 
V x J 

x±0; (3) 

"-i (-l)"-*+Y/i + * 

«-l i / , r \ v2fc+2 / >i\fc+l 
Z 7 / \ 2 V l f f t + ^ 1 ^ ~ ( - 4 ) 

F«(x) ^ S I T T U + I J ,2 + 4
 ; (5) 

F2w_1(x) = (2ft-1)2£2 ^ ( ^ ^ 1 ) x ^ + 1 ( 4 / x ) . (6) 

SOLUTIONS 

Probably 

H-493 Proposed by Stefano Mascella and Piero Filipponi, Rome, Italy 
(Vol 33, no. 1, February 1995) 

Let Pk(d) denote the probability that the kih digit (from left) of an £ digit (£>k) Fibonacci 
number Fn (expressed in base 10) whose subscript is randomly chosen within a large interval 

That the sequence {Fn} obeys Benford's law is a well-known fact (e.g., see [1] and [2]). In 
other words, it is well known that Px(d) = log10(l + \ld). 

Find an expression for P2(d). 
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References 
1. P. Filipponi. "Some Probabilistic Aspects of the Terminal Digits of Fibonacci Numbers." 

The Fibonacci Quarterly (to appear). 
2. L. C. Washington. "Benford's Law for Fibonacci and Lucas Numbers." The Fibonacci 

Quarterly 19.2 (1981): 175-77. 

Solution by Norbert Jensen, Kiel, Germany 

Let d G{0, 1,..., 9}. For each / GN, let 4 ^ be the set of those n GN for which Fn > 107"1 

and the ith digit (from the left) of Fn equals d. For all nx, n^ GN with nx < r^, let I(nx, r^) denote 
the set of all integers n with nx < n < r^. Let p: = log10((l +1 / (1 + <M0_1))(1 +1 / (2 4- d • 10"1)) ... 
(l + l/(9 + rf.l0~1))). 

Let nx GN. We show that 

—^ L l —> p as ru tends to infinity. 
1/(̂ ,̂ )1 

This proves that P2(d) is approximately equal top for a given interval I(nl7 r^), provided that 
2̂ is large enough. 

[Note that, in general, it is not true that P2(d) = p for all d G{0, 1,..., 9} for a finite interval 
I(nv Wj) with a certain minimum of members. If we had one, we could add /^ +1 to it. Suppose, 
without loss of generality, that the second digit of Fn +1 is ^ d. Then 

I 4>.tf n (̂wl> 2̂ + 1) I < PV(nV n2 + 1) I-
A similar argument applies to Px{d) and log10(l+ lid).] 

Proof: Step (0). log10(a) is irrational. 

Proof: Suppose it is rational. Then we find a GZ,b GN such that log10(a) -alb. Hence, 
log10(a6) = &-log10(a) -a and Fba + Fb_x = ab = 10a, whence V5 G Q , a contradiction. Q.E.D. 
Step (0). 

Step (1). log10(F„) = n•log10(a) + log10(l-(-l)"/?2") -log10(V5) for all/ieN. 

Fn = (an - ^ 1 S = a\\-WI a)n)l S=a\\-(rP)n)l S^ 
Q.E.D. Step (1). 

For any x GR, let (x) denote the purely fractional part of x, i.e., (x) = x- [x] . 

Step (2). The sequence ((log^^))) is uniformly distributed modulo 1. 
Proof: By (0) and according to Example 2.1 on page 8 of [1], the sequence «wlog10(a)» is 

uniformly distributed modulo 1. Since log10(l-(-l)"/?2") converges (to zero), the sequence 
«^log10(a) + log1 0( l-(- l)^2")- log1 0 V5» is uniformly distributed (see [1], Theorem 1.2, p. 3). 
Thus, (<log10(F„)>) is uniformly distributed modulo 1 by Step (1). Q.E.D. Step (2). 

Step (3). Let ^ G{1, 2,..., 9}, Z2 G{0, 1,..., 9}. Le t^G^ . Let t = [log10(Fn)]. We have the 
following equivalences: 
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<=> There is an ReN0 with R<10'~1 such that F„ ^Z^ltf+Z2-\0f-1+R. 
<=> There is an R &NQ with R < 10r_1 such that 

<log10(JF„)> = log10(iv,)-[log10(F„)] = log10(ZI+Z2.10-1
 + JR.10-'). 

o <log10(F„)) e[logI0(Z; + Z2 • lO"1), l o g ^ + (Z2 +1)• KT1)]. 

So, by the definition of "uniform distribution" ([1], p. 1), we have that 

m,"2)\ 
converges to the length of the interval [\og10(Zl+Z2 -lO-1), log10(Z1 + (Z2 + 1)-10"1)], namely, to 
log10(l +1 / (Zj + Z2 • 1CT1)), when r^ tends to infinity. Since the intervals are disjoint for different 
pairs of digits (Z1? Z2), it is clear that we can fix Z2=d and take the sum over Zx = 1, 2,..., 9. 
Q.E.D. 

Remarks: 
1. The above proof can be abridged by using Washington's theorem [2] for the base b = 102. 
2. We even have the following more general result: For each s > 0, there is an« 0 eN such that, 
for all n1 eN and all r^ GM with n^ > nY +n0, we have 

I 1/(̂ )1 H ' 
In other words: We have uniform convergence. The quality of the approximation depends only 
on the cardinality of | I(nh n^ ) |, not on the choice of J\ . 

Proof of Remark 2: By Weyl's criterion, the sequence ((«log10(a)» is well distributed mod-
ulo 1 (see [1], p. 40, p. 42, Example 5.2). This implies that ((log10(i^)» is well distributed (see 
[1], Theorem 5.4, p. 43). Modifying the arguments of (3) with respect to nl9 we obtain the 
assertion. Q.E.D. 

References 
1. L. Kuipers & H. Niederreiter. Uniform Distribution of Sequences. New York, 1974. 
2. L. C. Washington. "Benford's Law for Fibonacci and Lucas Numbers." The Fibonacci 

Quarterly 19.2 (1981). 
Also solved by P. Bruckman. 

Apparently 

H-494 Proposed by David M. Bloom, Brooklyn College, New York, NY 
(Vol 33, no. 1, February 1995) 

It is well known that if P(p) is the Fibonacci entry point ("rank of apparition") of the odd 
prime p*5, then P(p) divides p + e where e-±\. In [1] it is stated without proof [Theorem 
5(b)] that the integer (p + e)/ P(p) has the same parity as (p-1)/2. Give a proof. 

Reference 
1. D. Bloom. "On Periodicity in Generalized Fibonacci Sequences." Amer. Math. Monthly 72 

(1965):856-61. 
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Solution by H.-J. Seiffert, Berlin, Germany 
It is well known that 8 = -(51 p), where (51 p) denotes Legendre's symbol. In 1930, D. H. 

Lehmer (see [1], p. 325, Lemma 5) proved that 

P\F(P+e)/2 i f a n d onlY if P = l (mod 4). (1) 

Let k = (p + e)/P(p). If * is even, then p\F{m)P{p) = F{p+s)/2, since P(p)\(k12)P(p) and 
p\FP(p). Thus, we have p = l (mod 4), by (1), so that k = 0 = (p-T)/2 (mod 2). Now, suppose 
that k is odd. Assuming that p = l (mod 4), we would have p\F^p+£)/2 = F^ y2, again by (1). 
This would imply that P(p) is even, that &>3, and that p\LP{p)l2, since p divides FP(p) = 
Fp(p)/2Lp(p)/2> but does not divide FP^py2. Now, from 

F]cP(p)/2 - ^P{p)l2F{k-\)P{p)l2 ~ ( V F(k_z)P(py2> 

it then would follow that p\F^k_2^py2. Repeating this argument, we would arrive at the contra-
diction that p\FP(py2. Thus, we must have p = 3 (mod 4), so that k = l = (p-l)/2 (mod 2). 
This completes the solution. 
Reference 
1. Lawrence Somer. "The Divisibility Properties of Primary Lucas Recurrences with Respect to 

Primes."' The Fibonacci Quarterly 18.4 (1980):316-34. 
Also solved by P. Bruckman, A. Dujella, N. Jensen, and the proposer. 

Achieve Parity 

H-495 Proposed by Paul S. Bruckman, Salmiya, Kuwait 
(Vol 33, no. 1, February 1995) 

Let/? be a prime ^ 2,5 and let Z(p) denote the Fibonacci entry-point ofp (i.e., the smallest 
positive integer m such that p\Fm). Prove the following "Parity Theorem" for the Fibonacci 
entry-point: 

A. If p s 11 or 19 (mod 20), then Z(p) = 2 (mod 4); 
B. If p == 13 or 17 (mod 20), then Z(jp) is odd; 
C. Ifp = 3 or 7 (mod 20), then 4\Z(p). 

Solution by the proposer 
We employ two well-known results, stated as lemmas without proof 

Lemma 1: If p * 2,5 and p' = \[p - (Jr)), then (i) p\Fp,ifp = l (mod 4), or (ii) p\Lp, if p = -1 
(mod 4). 

An equivalent formulation of Lemma 1 is restated as 
Lemma V: lip *2,5 and q = ±(p-l), then (i) p\Fq if p = 1 or 9 (mod 20); (ii) p\Lq i fp = 11 
or 19 (mod 20); (hi) p\Fq+l if p s 13 or 17 (mod 20); (w)p\Lq+l if p = 3 or 7 (mod 20). 

Lemma 2: Z(p) is even for all primes p > 2 if and only if p\Ln for some ??. 
Lemma 2 implies that if p > 2 and /? \Ln, then Z(/?) -2nlr for some odd integer r dividing n. 
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Proof of A: By Lemma l'(ii), p\L . Then Z{p)\2q and Z(p) must be even, by Lemma 2. Since 
2q - p - 1 = 2 (mod 4) in this case, it follows that Z(p) = 2 (mod 4). 
Proof ofB: By Lemma 1 '(iii), p\Fq+l. Then Z(p)\(q +1). In this case, q + l = j(p + l) = 7 or 9 
(mod 10), an odd integer. Therefore, Z(p) must be odd. 
Proof of C: By Lemma 1 '(iv), p \ Lq+l. Then Z(p) = 2(q + l)/r = (p + l)/r, where r is odd, and 
r | (/? +1). Since /? +1 = 0 (mod 4) in this case, we see that 4 \Z(p). 
Note: No inference may be made about the parity of Z(p) if p = 1 or 9 (mod 20). 

v4&o solved by D. Bloom, A. Dujella, N. Jensen, andH.-J. Seiffert. 

FLUPPS and ELUPPS 

H-496 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 33, no. 2, May 1995) 

Let n be a positive integer > 1 with g.c.d.(n, 10) = 1, and S = (5/ri), a Jacobi symbol. Con-
sider the following congruences: 
0 ) Fn_s^0 (mod /i), Zw ss 1 (mod n); 
(2) F1(n_S) = 0 (mod w) if/? == 1 (mod 4), Zi(/7_^ = 0 (mod n)ifn = 3 (mod 4). 

Composite n which satisfy (1) are called Fibonacci-Lucaspseudoprimes, abbreviated "FLUPPS." 
Composite n which satisfy (2) are called Euler-Lucas pseudoprimes with parameters (1,-1), 
abbreviated "ELUPPS." Prove that FLUPPS and ELUPPS are equivalent. 

Solution by Andrej Dujella, University of Zagreb, Croatia 
(1) => (2): It is easy to check that, for 8 e{-l, 1}, it holds: 2Ln-5Fn_s = 8Ln_s. Considering 
that, from (1), it follows that Ln_s = 28 (modn). From the identity L2n+2-(-l)n = L2

n [see S. 
Vajda, Fibonacci & Lucas Numbers, and the Golden Section (Chichester: Halsted, 1989), (17c)], 
we have L\{n_S) = Ln_5-^2-{-lf{n~5) =-2^ + 2 - ( - l )^"^ (mod/i). 

If n s 3 (mod 4), then 28 + 2 • (-l)<*-*>/2 = 2£ + 2• (-l)(1+*)/2 = 0; therefore, L1{n_S) = 0 (mod w). 

If / i s 1 (mod 4), then 28 + 2-{-lfn-5)n =28 + 2-{-lf+S)'2 =48, and using g . c . d . ^ Z J <2 
and Z ^ = F(n_S)/2L(n_m = 0 (mod #i), we have ZI(w_^ s 0 (mod ri). 

(2) => (1): From Fn_8 = F(n-s)iil\n-8)i2 a n d (2)> ll follows that Fn_s = 0 (mod n). Now, from 
2Z„ - SFn_d = 8Ln_5 it may be concluded that 28Ln = Ln_§ (mod ri). 

If 7i = 3 (mod 4), we have 2£Z„ = Z i ( ^ } - 2 • (-1)"(1+^ = 2 . (-1)"(1+^ = 28 (mod TI); therefore, 
Ln = 1 (mod n). 

If /i EE 1 (mod 4), we have 2JZW EE 5Z?(W_^ + 2 • (-i)*(1-*> = 2 • (-l)^1"^ = 28 (mod w), and again 
Ln = 1 (mod ri). 

Also solved by A. G. Dresel, H.-J. Seiffert, and the proposer. 

Editorial Note: The editor will appreciate it if all proposals and solutions are submitted in 
typedformat. 

• > • > • > 
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FA, 1972. 

Fibonacci's Problem Book, Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. FA, 1974. 

The Theory of Simply Periodic Numerical Functions by Edouard Lucas. Translated from the 
French by Sidney Kravitz. Edited by Douglas Lind. FA, 1969. 

Linear Recursion and Fibonacci Sequences by Brother Alfred Brousseau. FA, 1971. 

Fibonacci and Related Number Theoretic Tables. Edited by Brother Alfred Brousseau. FA, 1972 

Number Theory Tables. Edited by Brother Alfred Brousseau. FA, 1973. 

Tables of Fibonacci Entry Points, Part One. Edited and annotated by Brother Alfred Brousseau. 
FA, 1965 

Tables of Fibonacci Entry Points, Part Two. Edited and annotated by Brother Alfred Brousseau. 
FA, 1965 

A Collection of Manuscripts Related to the Fibonacci Sequence—18th Anniversary Volume. 
Edited by Verner E. Hoggatt, Jr. and Marjorie Bicknell-Johnson. FA, 1980. 

Applications of Fibonacci Numbers, Volumes 1-6. Edited by G.E. Bergum, A.F. Horadam and 
A.N. Philippou 

Generalized Pascal Triangles and Pyramids Their Fractals, Graphs and Applications by Boris 
A. Bondarenko. Translated from the Russian and edited by Richard C. Bollinger. FA, 1993. 

Fibonacci Entry Points and Periods for Primes 100,003 through 415,993 by Daniel C. Fielder 
and Paul S. Bruckman. 

Please write to the Fibonacci Association, Santa Clara University, Santa Clara, CA 95053, 
U.S.A., for more information and current prices. 


