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ON THE UNIQUENESS OF REDUCED PHI-PARTITIONS 

Corey Powell 
Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720 

(Submitted July 1994) 

1. PRELIMINARIES 

For any positive integer k, let Pk - k^ prime and define sk = UkjZi Pj A positive integer n is 
simple ifn = sk for some positive integer k. 

A (/>-partition of n is a partition n = dl + --+di, where / and du..., di are positive integers, 
that satisfies the condition (/>(n) = <f>(dl) + -- + ^ (4 ) , where (j> is the Euler phi-fimction. In [1], 
Jones shows that the simple integers sk have only the trivial ^-partition sk-sk, and so define a 
^-partition of a positive integer n to be reduced \f all the summands are simple. 

Writing a partition as Zy=1iy *d1 + ---+bi*di, means that d- occurs bj times in the partition 
for j = 1,...,/. 

Every positive integer n has a unique partition Zy=i c • * Sj satisfying the condition that 
0 < Cj < Pj for j > 1. This partition is a special type of Cantor base representation ofn, which is 
a direct extension of the standard base 10 representation of n. 

Throughout the paper, n will denote a positive integer. Let px < p2 < • • • < p£ be the primes 
dividing n and let qx < q2 < • • • be the primes not dividing n. 

2. THE ALGORITHM 

Jones gives the following recursive algorithm for finding a reduced ^-partition for n: 
1. If n is simple, then n=l*n is a reduced ^-partition. 
2. If p2 \n for some prime/?, then p*(nlp) is a ^-partition of n. Apply the algorithm to 

nip to give a reduced ^-partition Zy=1tfy * *$}• for n/p; the desired reduced ^-partition 
for wis 2!Jsii(ajp) * Sj. 

3. If ft is square-free and not simple, then let/? be a prime divisor of n and let ^ be a prime 
such that # </? and q\n. Such/? and q exist since n is not simple;/? could be chosen to 
be the largest prime dividing n, and q could be chosen to be the smallest prime not divid-
ing n. Then (/? - q) * (n I p) +1 * (gw / /?) is a <j> -partition for n. Apply the algorithm to 
nip and qnlp to give reduced ^-partitions Zy=i^y *sy and E y = i ^ * Sj, respectively 
The desired reduced (/> -partition for n is Zy=1[(/? - q)dj +a'-]* s.. 

At each step of the algorithm, it will be generally true that more than one prime or pair of 
primes can be chosen. The next section shows that the result of the algorithm is independent of 
these choices. 

3. THE ALGORITHM GIVES A UNIQUE REDUCED ^-PARTITION 

For any integer w, let (j)w{ri) = nfl P\n (1 - w Ip), so that <f>0(n) = n and 6,(ri) - 6(n). Define 
a (j>w-partition and a reduced (j)w-partition analogously to a ^-partition and a reduced ^-partition, 
respectively. 
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Ifp is prime and p2 |w, then </>w(n) = p$w(n/p), and so p * (nl p) is a (j)w-partition of w. Ifp 
and q are primes, p\n, p2\n, q\n and p > q, then 

^ ) = ( P : ^ ( » / p ) 
= O - 9)^0* tp)+(a- w)</>w(" I p) 

= {p- q)K(p I P)+^w(«w / p), 

so that (p-q)*(n/ p) + l*(qn/ p) is a ^w-partition of n. These facts together with an induction 
argument show that any reduced ^-partition given by the algorithm is also a reduced <f>w-partition 
for every integer w. 

For the rest of the paper, let i be the unique positive integer such that st<n<sM; any 
reduced ^--partition of n can be written in the form £'.=1b- * s-. 

Theorem 1: The reduced ^-partition for n given by the algorithm above is independent of the 
primes chosen at each step of the algorithm. 

Proof: Suppose that Zy=i«;- * Sj is a reduced ^-partition of n given by the algorithm. By 
replacing w with i | , with P2, ..., and finally with Pjy the following system of i equations and / 
unknowns is obtained: 

a^Pi (Sl) + a2(j)Px (s2) + • • • + af(f>Pi (Sj) = <j>Px (n), 

®i<f>p2 O i ) + a20p2 0 2 ) + •'' + ai0p2 (Si) = 0p2 (nX 

a4P{ (Sl) + a2(j)Pi (.%) + ••• + at<f>Pi (Sj) = <f>Pi (n). 

This system of equations can be rewritten in the form Na = b, where the matrix N has entries 

If ^ < A:, then # ^ = 0, so that N is lower-triangular, and if £ = k, then 7V^ ^ 0, so that N is 
invertible. It follows that the solution to this linear system uniquely determines the coefficients Qj 
in the reduced ^ -partition given by the algorithm. • 

The algorithm gives a unique reduced ^-partition for n, but frequently this is not the only 
reduced ^-partition that n has. The integer 8, for example, has 2 reduced ^-partitions: 4*2 and 
2*1 + 6. Certain characteristics of the reduced <j) -partition given by the algorithm are critical, 
however, in determining whether n has a unique reduced ^-partition. The following two theorems 
summarize these characteristics. Let M(n) - nl(Tl p\n p). 

x p prime ' 

Theorem 2: Let k be the largest integer such that sk \n and let I be the number of distinct prime 
factors of n. The algorithm above gives a reduced ^-partition for n of the form Sy=ifly * sj> 
where ai+l = M(n) and ak > ak+l >•->aM. 

Proof: It follows that Qj = 0 for 1 < j <k from examining the first k-\ equations of the 
linear system above and noting that b- = (j)P(ri) = 0 for 1 < j < k. It is clear that aM = M(n) and 
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ajr = 0 for I +1 < y from the three cases presented in the algorithm together with an induction 
argument on n. 

The claim that ak >ak+l > ••• > a M will also be proven by induction on n. If n = 1, then 
I = 1*1 is the reduced ^-partition. If w > 1 and /?2\n for some prime/?, then establish the claim 
by using the ^ -partition n- p* (nlp) and applying the induction hypothesis to n I p. 

If n is square-free, then the proof is divided into two cases. In the first case, p£<q^ so that 
n- sk. If p£>qx and there is a prime t such that t\n and qx<t <p£, then the claim follows from 
using the ^-partition n = (p£-t)* (nl p£) + l* (tnlp£) and applying the induction hypothesis to 
nlp£ and tnlp£. If p£ > q{, but there is no prime t as described above, then qxnlp£ = se+l, since 
qtfil p£ is simple and has the same number of prime factors as n. Prove the claim by using the $-
partition n = (p£-ql)^ (n/ p£) +1 * sM and applying the induction hypothesis to n I p£. D 

By Theorem 1, the reduced ^-partition n = Z;
;=i^; * Sj given by the algorithm can be repre-

sented by a weighted binary tree as follows. As noted in part 3 of the algorithm, it is possible to 
choose p as the largest prime dividing n and choose q as the smallest prime dividing n. Assume 
without loss of generality that n is square-free; the algorithm will find a reduced ^-partition for 
II P\» p and incorporate this reduced ^-partition into the ^-partition n = M(ri) * II P\P p. If 

p primex * r x r L P prime * 

n is not simple, then the left branch has weight p£-qx and the left child is nlph while the right 
branch has weight 1 and the right child is qxnlp£. Apply this process recursively to nlp£ and 
qpl p£, terminating only when all the leaves of the tree are simple integers. The example below 
gives the tree for 5 • 11 • 13. 

5-11-13 

2 - 5 - 1 1 

2 - 3 2 2 - 3 

It is possible to determine ay from the tree representation by taking the sum over all paths 
from n to Sj of the product of the weights along each path. The coefficient a2 for 5-11-13, for 
example, is 11-9-1 + 11-1-2 + 1-8-2. 

Let n = p1...p£, and suppose that m is a vertex at level u - u(m) of the tree described above, 
where level 0 denotes the top of the tree. Let L = L(m) and R - R(m) -u- L(m) be the number 
of left and right branches, respectively, in the path from n to m, and define t0 < tx < • • • < tL_x to be 
the levels where the path branches to the left. An induction argument on the level u proves the 
following lemma. 

Lemma 3: If m is a vertex at level u of the tree, then m- px .../VM#i •••#/? an<^ the product of 
the weights along the path from n to m is \^eZl{p£_t - ql+t _e). 
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Proof: The proof will be by induction onu. If u = 0, then m = n and the result is clear. 
Suppose that the lemma is true for m and its ancestors, and consider the children of m. Assume 
without loss of generality that m is not simple, since simple vertices have no children. To estab-
lish the lemma for the children of m, it suffices to show that the largest prime dividing m is p£_u 

and that the smallest prime not dividing m is qR+l. The largest prime dividing m is clearly 
max(p£_u:)qR), and the smallest prime not dividing m is clearly mm(p£_u+hqR+l). These two 
facts reduce the two assertions above to the condition pe_u > qR+l. Divide the proof of this 
condition into two cases. In the first case, assume that m is the right child of 
m' = px ...ft_M+i#i ...9^-1. It follows from the construction of AW that p£_u+i is the largest prime 
dividing m' and that qR is the smallest prime not dividing mf. It also follows that ft_M+1 > qR, 
since m' would be simple otherwise. Hence p£__u > qR+l, because m is not simple. The proof 
when m is a left child is similar. D 

Fix a path from n to $j. A left child has one less prime divisor than its parent, while a right 
child has the same number of prime divisors as its parent. This implies that the path from n to Sj 
must branch to the left £-j + l times, since Sj has j-1 prime factors. Let m be the vertex at 
level t£_ •. It follows from the proof of the previous lemma that p£_t . is the largest prime 
dividing m, that #1+, ._(*-/) is the smallest prime not dividing m, and that p£-t£_. > <li+t£_ -(e-j)-

Conversely, suppose that 0 < t0 < tx < • • • < t£_j < £ and that p£_t _. > q1+t _ ._(̂ _;-) • An induction 
argument on I - j shows that there is a path from n to Sj that branches to the left at levels tQ,..., 
te_j. If I - j = 0, then an induction on the level together with the previous lemma and the condi-
tion p£_t > ql+t guarantees that there is a path branching to the right at levels 0,..., tQ -1. This 
condition also guarantees that the vertex at level t0 is not simple, since pt_t and ql+t are, 
respectively, the largest prime dividing the vertex and the smallest prime not dividing the vertex. 
Branching to the left at level t0 will give a vertex with t-\ prime factors, and so branching to the 
right at level t0 +1 and all higher levels will give a path that terminates at s£. 

Assume that the claim above is true for l-j-l. This implies that there is a path from 
n to sj+l that branches to the left at levels tQ,..., te_j_l9 since ft_f >Pi-tt_. >(Ii+tt_-(t-j) -
qi+t -(i-j-i) • Take this path from n to level t£_j_h and then construct a path from the vertex at 
this level to $j by the same method as in the previous paragraph. This proves the claim above. 
Non-square-free n adds a factor of M(n) to the calculations, as noted previously, and so the 
claim above combined with the previous lemma proves the following theorem. 

Theorem 4: If & <j"<^, then 

a j = M ( n ) Z n ( P H - ? i W | J , 

where the sum is taken over all 0 < t0 < • • • < te_j < £ with p^t > q\+t£_ .-(*-/) • *n particular, 

ak = M(n)Y[ipe ~ %) and ak+l > M(n) YliPe" ft) • 
e=k e=k+l 

The following section gives a necessary and sufficient criterion for determining if n has a 
unique reduced ^-partition by using the previous two theorems together with the specific Cantor 
base representation of n described in Section 1. 
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4. WHEN DOES ft HAVE A UNIQUE REDUCED ^-PARTITION? 

Theorem 5: A positive integer n has a unique reduced ^-partition if and only if n - 9, n is prime, 
or the Cantor base representation for n is a reduced ^-partition. 

By enumerating all possible partitions of 9 consisting of simple integers, one can verify that 
3*1 + 3*2 is the unique reduced ^-partition of 9. The following two lemmas will complete the 
proof of the //"part of the theorem. 

Lemma 6: Primes have a unique reduced ^-partition. 

Proof: From Theorem 7 in [ 1 ], a $ -partition of a prime q must be of the form (q - r) * 1 + r, 
where r is prime and r < q. The only simple prime number is 2, and so (q-2) * 1 +1 * 2 is the 
unique reduced ^-partition of q. D 

Lemma 7: Let TIJ^CJ * Sj be the Cantor base representation of n described in Section 1. If 
Sy=i Cj * Sj is a reduced ^-partition, then it is the unique reduced ^-partition for n. 

Proof: It suffices to show that for any other partition J?J=l bj * Sj of n into simple integers, 
T!J=iCj(/>{Sj) <T!J=ibj(f){Sj). Suppose that T!J==ibj * s- is a counterexample with T!j=ibj minimal. 
There is an h such that bh>Ph since Zy=1^ * Sj is distinct from T!J=iCj * Sj. Form a new parti-
tion T!J=ibj * 5. by converting Ph of the ^ 's into an sh+l. This new partition is a counterexample 
that contradicts the minimality of T!J=l bjy and hence proves the lemma. • 

Suppose that n & 9, that n is composite, and that the Cantor base representation for n is not 
a reduced ^-partition. It then follows from Theorem 2 that ak>Pk, where Zy=1^ry *£y is the 
reduced ^-partition given by the algorithm and k the largest positive integer such that sk \n, as 
defined in Theorem 2. Theorem 4 gives the formula ak = M(n) U£

e=k(pe ~Pk), since qx-Pk- It is 
clear from this formula that ak^Pk, since i^ is prime, Pk does not divide n, and i^ does not 
divide (p-Pk) for any primes p dividing n. If & > 1, then apply the following lemma with h = k 
to show that n has a second reduced ^-partition. If k - 1, then « is odd, qx=2, and the inequality 
a2 >M(w)nf=2CPe~^) *s a result of Theorem 4. It is a straightforward consequence of this 
inequality that a2>3ifn^\5, and so it follows from the following lemma with h - 2 that n has a 
second reduced ^-partition. The observation that 3 + 1 + 3*2 + 6 and 1 + 7*2 are reduced (j)-
partitions for 15 completes the proof of the theorem. 

Lemma 8: Let T!J=1 bj * s. be a reduced ^-partition of n. If bh > Ph for some h > 1, then n has a 
second reduced ^-partition. 

Proof: To prove the lemma, it will be necessary to show that for each j>\ there is a parti-
tion TJf=iPf * Sf of Sj such that Z/l\/?/^C$y) = 2^(s/). This will be shown by induction ony. If 
7 = 2, then 2 = 2*1 is the desired partition. If j > 2, then, by the induction hypothesis, Sj_x has a 
partition TJf^p'f * .sy with the desired property. Hence, Sj = Z ^ J / ^ O F ^ -2)] * ay +2 * ^_x is 
a partition of $. with the desired property. 
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Now, suppose h is a positive integer such as in the hypothesis of the lemma and let 
^fliPf * sf be a partition of sh with the above property. Construct a new reduced ^-partition 
for n by combining Ph of the sh terms into one sh+l term. There is a net loss of <f>{sh) when the 
sum of the (j) values in the partition is taken, since <f>(sh+i) = (Ph - V)$(sh). Breaking up one of the 
remaining sh terms compensates for this loss. The second reduced ^-partition for n is 

h-l i 

X(fc/+/?/)*^+(^-p,-i)*^+(^+1+i)^,+1+ £*/**/• D 

f=l f=h+2 
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ON THE STRUCTURE OF QUADRATIC IRRATIONALS ASSOCIATED 
WITH GENERALIZED FIBONACCI AND LUCAS NUMBERS 

Edward B. Burger and Christopher S. Kollett 
Department of Mathematics, Williams College, Williamstown, MA 01267 

(Submitted July 1994) 

1. INTRODUCTION 

In 1970 C. T. Long and J. H. Jordan completed a series of two papers, [3] and [4], in which 
they analyzed the arithmetical structure of certain classes of quadratic irrationals and the effects 
on their structure after multiplication by rational numbers. In particular, for a positive integer a, 
let cFn = 2F„(a) and Xn - !£„(a) be the nih generalized Fibonacci and generalized Lucas num-
bers, respectively. That is, &Q = 0, 9^ = 1, <£0 = 2, Xx = a and, for n > 1, &n = a%_x + 9 ^ 2 , 
!£n = a%n_1 +Xn_2. We denote the generalized golden ratio by <pa. Thus, 

a + Va2+4 r , „ 
#>* = 2 = [*>*,••.] = [*] , 

where the last expression denotes the (simple) continued fraction expansion for <pa and the bar 
indicates the periodicity. It follows that 1imn__>ao&n+1/9'n = <pa. We note that in the case in which 
a - 1 we have SFW = Fn, Xn = Z„, and ̂  = #>. 

Among their other interesting results, Long and Jordan investigated and compared the con-
tinued fraction expansions of j<pa and j<pa when r and s are consecutive generalized Fibonacci 
numbers or consecutive generalized Lucas numbers. These results led them to consider the 
structure of numbers of the form j(pa and ~<pa where r = cF„ and s = £Bn. They wrote (in the 
present notation) [4]: 

"In view of the preceding results, one would expect an interesting theorem concerning the 
simple continued fraction of 

—— (D„ and —— ®„ 
cJbn <rn 

but we were unable to make a general assertion value for all a. To illustrate the difficulty, note 
that, when a = 2 and <p2 = 1 + <Jl, we have 

p 2 = [0,1,5,1,3,5,1,7], 
cA/4 

^ ? =[0,1,5,1,5, 3,1,4,1,7], 

^-<p2 = [0,1,5,1,4,1,3,5,1,4,1,7]." 

They do, however, discover the following two beautiful identities for the case in which a - 1. 
We state them here as 
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Theorem 1: For n > 4, 

K 

and 

-<p-. 

F 

0,1,2,1,1,. ..,1,1,3,1,1,..., 1,1,4 
n-4 times H-3 times 

( l . i) 

3,1,1,...,1,1,3,1,1,..., 1,1,2,4 
n-3 times «-4 times 

Our first objective here is to extend their result to the more general case for arbitrary a. We 
begin with the elementary observation that 

l i m f ^ = ̂  = [0,1,2,1], 

and, thus, the initial string of l's in (1.1) is not surprising. It is the beautiful near mirror symmetry 
of the interior portion of the periodic part of (1.1) that is unexpected. More generally, one has 

v 3<L a2 +4 + aVa2 +4 
2(a2+4) 

0 , L a 2 + U , a 2 

Thus, for large «, we would expect the continued fraction expansion for (3?M / Xn )<pa to begin 
with [0,1, a2 +1,1, a2,1, a2,1,...]. As Long and Jordan remark, however, in this case we appear 
to lose the symmetry. In fact, the near mirror symmetry in (1.1) is somewhat deceptive. Perhaps 
it is better to view (1.1) as a "recursive system" in the following sense. We define the strings or 
"words" Wn = Wn for n > 4 by W4 = (3,1) and, for n > 4, W„ = (Wn_h 1,1), where Wn_x is the word 
Wn__x read backwards. For example, W5 = (1,3,1,1) and W6 = (1,1,3,1,1,1). Thus, we may now 
reformulate (1.1) as 

K 
tp = 0,1,2,^ , 4 

We note that the continued fraction expansions given above for (3^ / &n)(pa obey a similar recur-
sive behavior. This leads to our first result. 

Theorem 2: Let 9n-9n{a) and 5£w = ££„(a) be the n^ generalized Fibonacci and Lucas 
numbers, respectively. Let W4 = W4(a) = (1, a2 -1, a2 +1,1) and, for n > 4, let °Wn = W„(a) = 
CW,

w_1,a2,l). Then, for n>4, 

X ^ « = 0,l,a2 + l,°ir„, a 2 +3 

and 

^ w 

g; -?v a2+2,¥"„, a2 + l V + 3 

(1.2) 

(1.3) 

We remark that for a -1, 
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rr4]=i+-
0 + 1 

:l+2+|=3+|=TO, 

H 
thus, Theorem 1 and Theorem 2 are equivalent when a = 1. 

One may define the words (Wn occurring in Theorem 2 explicitly rather than iteratively. In 
particular, a simple induction argument reveals that, for n > 4 even, 

and, for n > 4 odd, 

Wn = ({1, a2}(""4)/2,1, a2 - 1 , a2 +1,1, {a2, l}(w"4)/2), 

# w = ({1, a2}^"5>/2,1, a2 +1, a2 -1,1, {a 2 ,1}^ / 2 ) , 

(1.4) 

where by {1, a2}" we mean the word (1, a2) repeated n times. 
As Long and Jordan implicitly note with respect to Theorem 1, Theorem 2 immediately 

implies that ($Fn I Xn )cpa and (£n 19n )<pa are not equivalent numbers. Recall that two real num-
bers are said to be equivalent if, from some point on, their continued fraction expansions agree 
(see [5]). 

Next, we extend Theorem 1 in a different direction. We wish to analyze the structure of 
quadratic irrationals of the form ($Pmnl '££„)(pa. Ifm is even, then ?Fmnl £n is an integer (see [7]); 
thus, we consider only the case in which m is odd. We first state an extension of Theorem 1 in 
this context for the case m = 3. 

Theorem 3: For n > 4, if n is even, then 

'-&-? = 2n+l 1,3,1,1,...,1,1, Z^-2,2, 1,1,...,1,1,2,1,^-2 
n-2 times n-A times 

If n>4 is odd, then 

K 3« 9 = Fln^,\,2,\\,...,\,\,Lln,\,\,...,\,\\Lln 
n-4 times n-2 times 

The general formulation of Theorem 3 appears to be more complicated and requires us to 
define several useful sums. For odd integers m, we let 

(w-l)/2 (w-l)/2 

Vl(m)= X (-1)*3W F(m)= ^>2 / t + 1 , 

(w-l)/2 ( /H-1) /2 

it=l Jfc=l 

We remark that F^m) and L^w) are positive integers if and only if m = 1 mod 4. We believe that 
one may generalize the proof of Theorem 3 to prove the following conjecture. 

Conjecture 4: Let 9n = 3*n (a) and Xn = !£n(a) be the nih generalized Fibonacci and Lucas num-
bers, respectively, and m an odd integer. Suppose m > 3 is an odd integer and n > 4. For n even, 
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let % =%(a) =(l,a2 +\l,{a\iyn-4)/\a2 -1,1) and fn =Yn(a) = ({a2,l}("-2)/2,a2 +2); for 
n odd, let °Wn = Wn(a) = ({a2, 1}(""5)/2). If n is odd, then 

"J m 
-9 a F(m), 1, a2 +1,1, °W„, a2 +1, a2L(w) + a2 - 1 , °tf„+2, 1, a2 + 2, L(w) 

If n is even and m = 1 mod 4, then 
g? 

ci / M 

Ji(i»)>'K,L1(w),rB,L1(w) 

If w is even and m = 3 mod 4, then 

<Fwi 

oLy, 
-<Pa = -FiCw) - 1 , Y„, -L^m) - 2, % , -L^iB) - 2 

One may also find analogous expansions for (Xmn/<3'n)(pa. For example, one may adopt the 
method of proof of Theorem 3 to deduce 

Theorem 5: For n > 4, if n is even, then 

-<p= 5F2„+1 + 3;3,l,l , . . . ,l ,l ,2,I2„,l,l , . . . ,l ,l ,2,5Z2„+4 
«-3 times n-3 times 

If n > 4 is odd, then 

Aw 
F„ 9 = 5F2„+1-4,2,1,!,...,!, 1,4,-2,2,1,1, . ..,1,1, 51^ - 6 

w-3 times w-3 times 

Long and Jordan [4] concluded their investigation by proving the surprising result that, for 
any positive integers m and n, (^ml9n)(pa and (&J&m)<pa are equivalent numbers. They re-
marked, however, that it is not always the case that (Xm I &n)(pa and (Xn/ Xm)(pa are equivalent 
numbers. To illustrate this, they noted that 

^ = [0,1,2,3,1,4] and ^-^-[3 ,1 ,3 ,2 ,4] . 

We obseive that, in their example, the indices 2 and 4 are not relatively prime. Here we prove 
that this is the only possible case in which two such numbers are not equivalent. In particular, we 
prove 

Theorem, 6: If i£w = ££„(a) is the n^ generalized Lucas number, then for relatively prime posi-
tive integers m and n, 

are equivalent numbers. 

More recently, Long [2] studied the arithmetical structure of classes of quadratic irrationals 
involving generalized Fibonacci and Lucas numbers of the form 
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aSn + Tm4^TA^ ( 1 5 ) 

where S„ is either 9n or X„ and Tm is either &>m or ££m. For example, he investigated 

^ , + ^ ^ ( 1 6 ) 

For numbers of the form (1.5), Long showed that their continued fraction expansions have the 
general shape 

where the a0 and#r were explicitly computed. He also proved that (al7a2, . . . ,aM) is a palin-
drome, but was unable to determine the precise value of an for 0<n<r. Long also observed 
that the period length r appeared always to be even and that the value of r appeared not to be 
bounded as a function of a, m, and n. Here we claim that the continued fraction for such numbers 
may be completely determined. As an illustration, in Section 6 we provide the precise formula for 
the continued fraction expansion for numbers of the form (1.6). As the expansion is somewhat 
complicated in general, we do not state it here in the introduction; instead, we state it explicitly in 
Section 6 as Theorems 7 and 8. As a consequence of our results, we are able to prove that Long's 
first observation is true while his second observation is false. 

2. BASIC IDENTITIES AND CONTINUED FRACTIONS 

We begin with a list of well-known identities involving Fibonacci and Lucas numbers that will 
be utilized in our arguments (for proofs, see, e.g., [7]). For n > 1, 

1 AnjFn+l Fn 
1 OJ ~{Fn Fn_J ( 2 J ) 

F„=Fn_l+Fn_2, Ln = Ln_x + Ln_2, Ln=Fn+1+Fn_l? (2.2) 
Fn+m ~ (~dmF„_m = FmLn, (2.3) 

Ln+m + (-1) Ln_m = LmLn, (2.4) 

L2„+4(-iy+l = 5F„\ (2.5) 

F2n=FnLn. (2.6) 

If 9n = 9n (a) and Xn - !£n(a) denote the nth generalized Fibonacci and Lucas numbers, 
respectively, then for n > 1, 

a2 + 1 a2 Y _ ( ^2n+l a<$2n \ n ? x 
1 l) -{a-%„ ®n_x) KZI) 

%n=a®n+'Wn_l, (2.8) 

22„=4®n+l®n_l+a2®l (2.9) 

9„9n+2-^n+^{-\r\ (2.10) 
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( a 2 + 4 ) ^ + 4(-l)" = ^ . 

(2.11) 

(2.12) 

For a real number a, we write a = [a0, ax,...] for the simple continued fraction expansion of 
a. That is, 

1 a = aQ-\ 
£»! + - 1 

1 
CU+-

where all the an are integers and an > 0 for all n > 0 (for further details, see [5]). Basic to our 
method is a fundamental connection between 2x2 matrices and formal continued fractions. This 
connection has been popularized recently by Stark [6] and by van der Poorten [8] and [9]. Let 
c0, c1; ..., cN be real numbers. Then the fundamental correspondence may be stated as follows: If 

then 

c0 l Y q 1 
1 O i l 0 

PN 

1~\-(PN PN-I 

<1N 

1 °J \1N fcv-i/ 

— LC0;C1> •••) CNi-

We remark that since c0, cb..., cN are real numbers, pN I qN may not necessarily be rational. 

3. THE PROOF OF THEOREM 2 

We first consider the case in which n is even. Let a be the quadratic irrational defined by 

a = \ a2 +1, {1, a2}("-4)/2,1, a2 -1, a2 +1,1, {a2, l} ("-^ / 2 , a2 + 3 

We will compute a via the fundamental correspondence between matrices and continued frac-
tions. Thus, if we express the following matrix product as 

a 2 + l \\\(\ \\{a2 \^n~m(\ \\{a2-\ l Y a 2 + l 1 
1 0 1 0 1 0 1 0 1 0 

x , M (n-4)/2 , . 
1 \\\[a2 l V l lU (a2+3 l](a 1 
1 0 1 OKI 0 1 0 1 0 

1 

r s 
t u 

then it follows that a~r 11. In view of (2.7), we may express the above as 

r s 
t u 

a2+2 a2 + \ 

a2+\ 1 V 
^ n - 3 a ^ « - 4 

V«S?„-4 9 «-5 J 

a1 1 
a 2 - l 1 

1 1 
9, n-3 
1QE 

a®„_d\(a2 + 3 l)(a 1 
trl&. n-4 9. 

' n - 4 

n-5 1 O i l 0 

The functional equation 9k = a&i
k_l + 9k_2 enables us to simplify the above product and carry 

out the multiplication to deduce 
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r s 
t u 

' &L+29? a 1 
2 , A\OE2 or.2 OE2 II 1 0 (ct+AypU-vt ' n-\ 

{®l+l+2®l)a+®l &L+T&i } 1 n+1 

Thus, we have 

((a2+4)^_1-^2_2 )a+^„_l (a1+4)91,-91, j 

(®l+l + 2®l)a + ®l r a- — -
t ((ai+4Wl1-®l2)a + ®l1 

or, equivalently, 

((a2 +4)9U-92
n_2)a2 + ( 3 ^ - 2 ^ 3 ^ )«-3? 2 = 0. 

For ease of exposition, we make the following change of variables: let 

A = (a2
+4Wl1- ®l2, B= 3 t i - 2 3 ? - S*«, C = -92

n. 

Since a > 0, equation (3.1) gives 

(3.1) 

a = 
-B+4B2-AAC 

2A 
Next, if we let x = [0,1, a] = a I (a +1), then 

2C-B + y/B2-4AC 
x = - 2(A-B + C) 

The expressions 2C-B, B2 -4AC, and A-B + C may be simplified slightly by successive appli-
cations of the functional equation for 8F„ . It is an algebraically complicated but straightforward 
task to verify that 

x = 
9. ( a{a% +23U ) + V(a2 + 4)(4^+ 1 <$„_, + a2ffl2)' 

4^ + I ^„_ 1 + a2^2 (3.2) 

Finally, by (2.8) and (2.9), we have 

%2„ = (a&„ + 29n_l)2 = 4$n+19n_, + a292
n, 

and therefore, (3.2) implies 

x = 
®n(a£„ + £nJa2+4) 9n[a + 4a2+4) 

2X1 2£„ 

which, by (1.4), is precisely equation (1.2) for even n. 
The proof of (1.2) for n odd is similar to the even case given above. In particular, for n odd, 

we let 

a- \a2 +1, {1, a2Yn-5),\ 1, a2 +1, a2 -1,1, {a2,1}(W"3)/2, a2 + 3 

Thus, in the language of matrices, we have 
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"Y1 m JK J 
(«-5)/2 

i n / V + i i ¥ a 2 - i l 
1 OJ 1 0 1 0 

1 1" 
1 0 

w x » («-3)/2 , „ 
a2 l Y l lM fa2+3 1 fa 1 
1 0 1 0 O i l 0 

r 5 
t u 

with a = r/t. Simplifying the matrix product, as in the case for n even, reveals 

9 ^ , +29? 8F: 2 \ 

t u) ^ + 4 ) ^ - ^ 9?-i. 
a 1 
1 0 

Equation (1.2) for n odd now follows from the previous argument. 
Equation (1.3) follows immediately from (1.2) and Theorem 11 of [4], which completes the 

proof. 
4, THE PROOF OF THEOREM 3 

We essentially adopt the argument used in the proof of Theorem 2. First, we consider the 
case in which n is even. Let a be the quadratic irrational defined by 

a 
n-4 3 , { i r ^ „ - 2 , 2 , { i r 4 , 2 , l , A „ - 2 

By the fundamental correspondence between matrices and continued fractions, we observe that if 
we express the following matrix product as 

3 l Y l 1 
1 0 1 0 

«-2 
Lm-2 1 

1 0 
2 l Y l 1 
1 0 1 0 

n - 4 

\ x JYV ii? * 
(4.1) 

r s 
t u 

then we have a-r It. Using (2.1), (2.2), (2.3), and (2.4) together with the fact that n is even, 
we multiply and simplify the products within the parentheses to produce 

r s\ ( 4„ -4_ 2 4 V 4„ -Fn_x 4 Y a l 

_(kl J^fa 1 
k3 k4){l 0 

(4.2) 

where 

^1 ~ 4 » Mn-l ^2n+l"+" *> 
^2 = 4«4> 
h = (4-i+24_2)(4„ - 4_x)+4-i(4-2 + 4+3+A,-3), 
&4 = 4 - l + 4 + l " " l -

(4.3) 

We note that identities (4.1) and (4.2) lead to a complicated, but useful, identity involving Fibo-
nacci and Lucas numbers. In particular, we observe that 
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and thus we have 

By identity (4.2), we have 
»*i'*4 K2K3 — 1. ( T . T 1 ) 

r s\_ fkxa + k2 kx 
t u) ~ \k3a + k4 k2 

and since a-rIt, this implies 

Therefore, k3a2 + (k4 - kx)a -k2=0, hence, 

k3a + £4 

If we now let x = [Fn+l -I, a], then 

a : 
2AT3 

x = F„^-l + 2_ [«+i 
^1 *4~^y\ 4 1' +4/^2/^3 

_ 1 1 ^4 V(^4 "1) + 4/r2/f3 

(4.5) 

_ j F " + 1 ' " ' - 2 ^ 
By (4.3), we note that kx + k4 = L6n. This, together with (4.4), reveals that 

(k4 - k^2 + 4k2k3 = (k4 + ^ ) 2 - 4kYk4 + 4£2£3 

- 4« ~~ 4(kxk4 - k2k3) - L6n - 4. 

In view of (2.5) and the fact that n is even, we may express the above as (k4 - k^2 +4k2k3 = 5F%n. 
This, along with (4.5), (2.2), (2.3), (2.4), and (2.6), yields 

\J7 _ 1 • v l - 77 1 • 6K ~ 2 4 » - - l ~ 2 4 K + 1 + 2 ~ V " 6 w 

L^2«+l x> " J - r2«+l X + ^77 TT 

= ~24ft+l4ft4 + 2 4 K 4 + Afo ~ 24ft-l ~ 2A»+1 + 2 + V^A^ 
- 2 ( A A ) 

= ~F6n ~ ^F6n = 4»4» + 4 A^* =
 F3„ + 4 * ^ = 4 K „ 

~24H4 24«4 2 4 4 
which completes the proof for « even. 

The proof for n odd is similar to the even case given above with the exception that the 
change of variables of (4.3) is replaced by 

K ~ Asw ~ 4«+l ~ F2n-\ ~ *> 
*2 ~ 4«4> 
A = A«+l (4« "" 4+1) + 4+1 (An-1 + 4+1 + 4-2)' 
*4 = 4n+l ~ 4«-l + 1-
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5* THE PROOF OF THEOREM 6 

It is a classical result from the theory of continued fractions that a and /3 are equivalent 
numbers if and only if there exist integers a, b, c9 and d so that a-{a/3+b)l(c/3+d) with 
ad-be = ±1 (see [5]). Since m and n are relatively prime positive integers, we may find positive 
integers x and y so that nx-my-\. Thus, if we let k = 2ym, then we also have k = 2xn - 2. We 
now define 

a-
(p cm cp cm 

\2y)m,®k+2l<Enm*&kIXn 

CD •> ~ * + 1 > *~ CO 

As we remarked in the introduction, since 3^+ 2 = S^w and ^ -
are both integers. Thus, a, b, c, and d are all integers. Also, by (2.10), we note that 

ad-bc = &k9k+2-&l+1 = (-Vf+1 = ±l. 

Next, in light of (2.11), we have 

C\^<Pa X. 
+d 

ff*+2P« + 9j 
^jfe+i^fl + ^ j t y <^« 

'fc+i i _ °^ffl p«. 

« / 
Hence, (Xm / Xn)(pa and (2JW / Xm)<pa are equivalent numbers. 

6. A RELATED CLASS OF QUADRATIC IRRATIONALS 

For integers n > 2 and m > 0, we define the quadratic irrational <3l(n, m) = 2&(a; n, m) by 

2ft(«, m) = - . 

It will also be useful to define the integer TV = N(n, m) to be TV = c&>n + (a2 +4)2£w . We now 
examine the continued fraction expansion for 2ft(w, m). We consider separately the case of TV even 
and the case of TV odd. As will be evident, the case of TV odd is substantially more complicated 
that the case of TV even. 

Theorem. 7: If TV is even, then 
(i) ifm is even, 

(ti) ifm is odd and 3*m > 2, 

&(«,/») = TV/2,9m9(ff +4)9^ „ 

&(*, w) = (TV - 2) / 2,1, 3 ^ - 2,1, (a2 + 4 )3^ - 2 

Theorem 8: If TV is odd, then 
fi) ifm is even, 3? = 0 mod 4 and 9L > 4, 

a(w, /if) - (TV -1) / 2,1,1, ( 3 ^ - 4) / 4,1,1, (a2 + 4 )3^ - 1 
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(ii) if m is even, 9^ = 1 mod 4 and (3f
m > 5, 

where °WX = (l, 1, (£„-5) / 4,1,3, ((a2+ 4 ) ^ - 1 ) / 4 ) ; 

(iii) if m is even, 2Fm = 3 mod 4 and 8Fm > 3, 

&(», i») = [(JV -1) / 2, < W ' 2 , 4 ^ , T f 2 , ( a 2 + 4 ) ^ - l 

where <W2 = (l, 1, ( S ^ - 3) / 4,3,1, ((a2 + 4 )3^- 3) / 4); 

fiv) if m is odd, 9m = 1 mod 4 and i^ > 5, 

<3l(n, m) = p - l ) / 2 , =¥3,9m-1, W3, (a2 + 4)3?,,-

where W3 = (2, (2Fm- 5) / 4,1,2,1, ((a2 + 4)9?m- 5) / 4,2); 

fv) if m is odd, 9"w = 2 mod 4 and Fm>6, 

<3t(n, m) = \(N -1) / 2, ̂ , 4(a2 + 4)9^- 2, # 4 , (a2 + 4)9^- 1 

where c F 4 =(2 , (^ w -6) /4 , l ) . 

Since the proof of Theorem 8 involves the same ideas as the proof of Theorem 7, we include 
only the (less complicated) proof of Theorem 7. Before proceeding with the proof of Theorem 7, 
we make three remarks. 

First, it may appear that Theorem 8 is not complete in the sense that three cases seem to be 
missing; in particular, the cases: m even, 9^ = 2 mod 4; m odd, 9^ = 0 mod 4; m odd, 9^ = 3 
mod 4. It is a straightforward calculation to verify that none of these cases can occur when N is 
odd. For example, one has that 9^ = 2 mod 4 only if either a = 1 mod 4 and m = 3 mod 6 or 
a = 3 mod 4 and m = 3 mod 6 or a = 2 mod 4 and w = 2 mod 4. In the first two cases, m is odd, 
and in the third case a is even; thus, N must be even. So if 9^ =2 mod 4, then we cannot have 
both m even and TV odd. Similarly, the other two remaining cases may be shown not to occur. 
Therefore, Theorem 8 gives the complete situation for odd N. Our second remark involves the 
numbers {{a2 + 4)9^-1) / 4, ((a2 + 4)9^- 3) / 4, and ((a2 + 4)9^- 5) / 4 occurring in cases (ii), 
(iii), and (iv), respectively. Of course, we must require that these be integers. It is easy to see 
that each is an integer in the appropriate case if and only if a is odd. However, again, if a were 
even, then N would be even and Theorem 7 would apply. Hence, if TV is odd, then a is also odd; 
there-fore, the three numbers above are indeed integers as required. Third, we note that the 
period length for 2ft(#, m) is either 2, 4, 6, 8, 14, or 16. This proves an observation made by Long 
[2] that the period is always even, but it also shows that the period length is, in fact, a bounded 
fiinc-tion of a, n, and m which Long believed not to be the case. 

Proof of Theorem 7: We consider first the case of m even and let 

a- NI2,9m,{a2+4)®n 

We now examine the corresponding matrix product: 
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<r s\_(N/2 l\(9m lY(a2+4)3^w lY(a2 + 4)%m+a-N/2 1^ 
t u) [ 1 0J{ 1 0 

It follows that a = r 11, in particular, 

a 
_(N&J2 + l)((a2+4)<$m+a-N/2) + N/2 

&m((a2 + 4)($m+a-N/2) + l 

Thus, we have 

9mc? +(®m((a2+4Wm-N/2)-N®J2)a 
+ (N/2f®m- (a2+4)®m-N(a2 + 4)9^/2 = 0 

which, together with our definition of N yields 

a®n + ^((a2+4W2
m+4)(a2+4) 

a = 

As m is even, identity (2.12) becomes (a2 + 4)3^ + 4 = X2
m; hence, a - Sft(w, m). 

If m is odd, we again let 

a = p - 2 ) / 2 , l , ^ - 2 , l , ( a 2 + 4 ) ^ - 2 

and proceed in a similar manner to deduce 

a 
_N-(a2+ 4)gw+ V((a2 + 4)9^2 -4)(a2+4) 

2 
In view of identity (2.12) with m odd, together with the definition of TV, we have a = 9fc(w, m), 
which completes the proof. 

As a consequence of the two previous theorems and a result of Long [2], we are able to 
deduce immediately the continued fraction expansion for numbers of the form 

a£n+2myla2+4 
2 

&)(n,m) = -

Long proved (Theorem 8, [2]) that the continued fraction expansions of 9ft(«, m) and $f(n9 m) are 
identical after the first partial quotient. In view of the two theorems of this section, it appears 
clear that one may explicitly express the continued fraction expansion for 

and, thus, by Theorem 9 of [2], the expansion for 

qgFw + gFlwVa2+4 
2 

It seems very reasonable to conjecture that these period lengths will again be even and bounded. 
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AN EXTENSION OF STIRLING NUMBERS 

David Branson 
Department of Mathematics, University of Essex, Wivenhoe Park, Colchester C04 3SQ, England 

(Submitted August 1994) 

1. INTRODUCTION 

Stirling numbers may be defined as the coefficients in an expansion of positive integral 
powers of a variable in terms of factorial powers, or vice-versa: 

(*)„ = ! > , * ) * * , n>0, (1.1) 

x" = I % * ) ( 4 , "*0, (1.2) 

where 
(x)n = x(x-l)--(x-n + ll n>\ 
(x)0 = l. 

The numbers s(n, k) and S(n, k) are, in the notation of Riordan [6], Stirling numbers of the first 
and second kind, respectively. 

Writing (1.3) as 
(x)n = T(x + l)/T(x-n + T) (1.4) 

we may generalize factorial powers to negative integral values of n: 

( x )-" = (x + l)(x + 2)...(x + ̂ ) ? n~1' 

The question then arises as to whether we can extend Stirling numbers to negative integral values 
of one or both of their arguments. Several authors have discussed the case where both n and k 
are negative integers (for a brief history, see Knuth [4]), and we briefly discuss this case in Section 
3. We shall refer to such numbers as Negative-Negative Stirling Numbers (NNSN) whereas we 
call the numbers defined by (1.1) and (1.2) Positive-Positive Stirling Numbers (PPSN). It is 
clearly impossible to have an expansion of the form (1.1) or (1.2), where n is a positive integer 
and k is summed over negative values: in the first case, the left-hand side is a polynomial whereas 
the right-hand side has a singularity at x = 0; in the second case, taking the limit as x goes to 
infinity, the left-hand side goes to infinity whereas the right-hand side goes to zero (for a proof of 
the uniform convergence required to take the limit term-by-term, see, for example, Milne-
Thomson [5]). However, it is possible to extend (1.1) and (1.2) to the case where n is a negative 
integer and k is summed over positive integers. We call the resulting coefficients Negative-
Positive Stirling Numbers (NPSN), and the purpose of this article is to discuss these numbers and 
some of their properties. 

In Section 2 we summarize some well-known properties of PPSN. In Section 3 we describe 
four urn models: the first two illustrate PPSN and the second two demonstrate the connection 
between NNSN and PPSN. We define NPSN in Section 4 and obtain explicit expressions for 
them by means of two further urn models. Finally, in Section 5 we give some alternative repre-
sentations of NPSN, tabulate some values and derive some properties. 
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2. PROPERTIES OF POSITIVE-POSITIVE STIRLING NUMBERS 

In this section we list, for future reference, some well-known properties of PPSN. For more 
details, see, for example, Jordan [3], Chapter IV. 

By using the definition (1.1) and the identity 
(x)n+1 = (x)n(x-nl (2.1) 

and by equating coefficients of powers of x, we may derive the recurrence relation 
s(n +1, k) = s(n, k-l)- ns(n, k). (2.2) 

Similarly, the definition (1.2) and the identity 

xn+1 = xn(x-k + k), (2.3) 

and the equating of factorial powers of x, leads to 
S(n +1, k) = S(n, k-l) + kS(n, k). (2.4) 

Numerical values for PPSN may readily be generated using (2.2) or (2.4) together with the 
boundary values [which follow immediately from (1.1) and (1.2)] 

s(n,n) = l, s(/i + l,0) = 0, n>0, (2.5) 

S(n,n) = l, S(n + 1,0) = 0, n>0. (2.6) 

We may define a generating function for S(n, k) (with respect to n) by 

n=k 

By using (2.4), we can obtain a first-order linear difference equation for Ak which, with the initial 
condition A^if) = 1, can be solved to give 

fk ^fSinM k>\. (2.7) 
(1-00-20-O-^) tu 

The left-hand side of (2.7) can be expressed in partial fractions 

\k-r(k\ 1 1 K 

*!~o y Vh-rt 
Expanding the last factor by the binomial theorem and comparing with (2.7) gives the following 
representation, known as Stirling's formula: 

^^-^ZC-1)^)^- (2.8) 

3. URN MODELS AND STIRLING NUMBERS 

In all the models of this section and the next, an urn contains white balls and black balls. 
Some, but not necessarily all, of the balls are of unit mass. Balls are drawn one at a time with 
replacement, and the probability that a particular ball is drawn is proportional to its mass. 
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Model A 
An urn originally contains only white balls of total mass x (>n-l) including at least n-\ 

balls of unit mass. We successively draw n balls with replacement. After a white ball is drawn 
(and replaced) and before the next ball is drawn, we substitute a unit mass white ball in the urn by 
a unit mass black ball. Then the probability that the number of white balls drawn is k is equal to 

J-w.j;£fir£zifi],£zi...rtiT"£zi±iri]*, „,*,„, p.,, 
X\X) X \XJ X \ X J X \Xj 

where the sum is over all nonnegative integers at satisfying ax-\ vak~n-k. It is clear that, 
for n > 1, Pjf(0) = 0, so (3.1) may be rewritten as 

Pn\k) = ^-b{n,k\ (3.2) 
X 

with 
b(n,k) = TJulu2--urj_k, \<k<n, (3.3) 

where the sum is over all integers ut (i = l,2,...,n-k) satisfying 

i(w,0) = 0, b(n,n) = l. 

In terms of the urn model, if n- 0, then certainly k - 0, so (3.2) continues to hold if we put 
£(0,0) = 1. 

From the condition Z£=0 P*(k) - 1 and equation (3.2), we deduce 

xn = t(x)kb(n,k). 
k=0 

Comparing this expression with (1.2), we conclude that a representation for S(n, k) is provided 
by 

S(n,k) = b(n,k). (3.4) 

Model B 
An urn originally contains only white balls of total massj. We successively draw n balls with 

replacement. After each ball is drawn (and replaced) and before the next ball is drawn, we add 
one black ball of unit mass to the urn. The probability that the number of white balls drawn is k is 
equal to 

Pn\k)= yk^iv2'"vn-k i<k<n, (3.5) 

where the sum is over all integers vi (i = l,2,...,n-k) satisfying 

\<vl<v2<-'<vn_k<n-\. (3.6) 

The factors in the denominator of (3.5) represent the total mass of the balls in the urn at succes-
sive drawings; the factor yk arises from drawing a white ball on k occasions, and the factor vt 

arises from the drawing of a black ball at a time when the urn contains v7 black balls. 
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Note that, for n > 1, Pn
B(0) = 0 and P„B(n) = yn I[y(y +1) • • • (y + n-1)], so that (3.5) may be 

written as 

^(y + l) —(y+w-l) 
with 

c(n, k) = Evxv2 ••• vn_k, l<k<n, (3.8) 

under the restriction (3.6); c(n, 0) = 0, c(n, n) = 1. 
Putting y = -x , (3.7) may be written as 

# ( * ) = 7T-H)"+*c(»>*)- (3-9) 

As in Model A, if n = 0 then £ = 0, so (3.9) holds if c(0, 0) = 1. The probabilities in (3.9) must 
add to one; hence, 

Comparing this with (1.1), we see that 

s(n,k) = (-l)n+kc(n,k) (3.10) 
where c(w, k) is given by (3.8). 

The PPSN representations derived above by means of Model A and Model B are, of course, 
well known and have been derived by other methods (see, for example, Jordan [3]). We now 
consider two urn models of relevance to Negative-Negative Stirling Numbers. By analogy with 
(1.1) and (1.2) theNNSN of the first and second kind, respectively, are defined by 

(*)-» = E*(-*,-*)*"*> n>°> ( 3 1 1 ) 
k=0 

x~" = Y.Si-n^-kXx)^, n>0. (3.12) 
ifc=0 

Model C 
The situation here is the same as in Model B except that now we continue to draw balls until 

we have drawn n +1 white balls. The probability that the total number of balls drawn is k +1 is 
equal to 

where 1 < vx < v2 < • • • < vk_n <k-l. If all the balls drawn are white, we have 

/£1(»+i)=y*1/b'C+i)-c+»)] 
whereas, if n = 0, then certainly k = 0. It follows from (3.8) that (3.13) may be written as 

P^(k + \) = y"{y)_kc(k,n\ 0<n<k. (3.14) 

Suppose that after the (/' +1)* ball is drawn all the remaining balls drawn are black. The 
probability of this event is given by the infinite product 
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_L±m_ / 1 — y — NO 
v 

(see, for example, Ferrar [2], p. 147). It follows that the probability distribution (3.14) is proper 
and sums to one. Hence, 

k-n 

The coefficients in an expansion such as this are unique (see Milne-Thomson [5], p. 288), so, by 
comparison with (3.12) and using (3.10), we see that 

Si-n, -k) = c(k, n) = (-l)n+ks(k, ri), 0<n<k ' (3.15) 

[and S(-n, -k) = 0for0<k<n]. 

Model B 
This is the same as Model A, except that the white balls originally in the urn have total mass x 

(> n) and include at least n balls of unit mass. We now continue to draw balls until we have 
drawn n +1 white balls. The probability that the total number of balls drawn is k +1 is equal to 

x\x) x \x) x \xj x 

where ax-\ \-an = k-n. 
Using the notation of (3.3), we can write 

P„D
+l(k^)=X(X~l)'"^+;n)Kk'n\ 0<n<k. (3.16) 

The probability that after the Ith white ball is drawn all the remaining balls drawn are black is 

limf-1 - 0 , 

so the probability distribution (3.16) is proper and sums to one. 
Putting x = ->>, (3.16) may be written as 

If we sum over k and rearrange this equation, we obtain 

o)-n=E^fe(-irfcKM). 
Comparing this with (3.11) (using the uniqueness of Laurent series coefficients) and using (3.4), 
we conclude 

s(-n, -k) = (~\y+kb(k, 71) = (-l)n+kS(k, n\ 0 < n < k, (3.17) 

[and s(~n, - k) = 0 for 0 < k < ri\. 
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Equations (3.15) and (3.17) show the interesting fact, noted by other authors (see Knuth [4]), 
that, apart from a sign, NNSN of the first (second) kind are obtained from PPSN of the second 
(first) kind by a reflection in the line n--k. 

4. NEGATIVE-POSITIVE STIRLING NUMBERS 

Negative-Positive Stirling Numbers of the first and second kind may be defined by the 
obvious modifications of (1.1) and (1.2), respectively: 

(*)_„ = ! > ( - » , * ) * \ n>\, (4.1) 
k=0 

x"" = f>(-«, *)(*)„ n>0. (4.2) 
£=1 

(The reason for the limits on n and k will become clear later.) 
Two further urn models allow us to give explicit representations for these NPSN. 

Model E 
Originally the urn contains white balls of mass x (< 1) and black balls of mass 1 - x. Balls are 

drawn one at a time with replacement. After a black ball is drawn (and replaced) and before the 
next ball is drawn, we add one black ball of unit mass to the urn. We continue until n + l white 
balls have been drawn. For n > 0, the probability that the number of black balls drawn is k - 1 is 
equal to 

p„E
+1(k-1)=si'^r ̂ f ^ r ~-{—r ^ ^ ( T Y 1 + 1 > * *2, I 1 [2 2 [k-l k-l {k 

where the sum is over all nonnegative integers at satisfying ax + ••• +ak = n, if all the balls drawn 
We may therefore write 

P„E
+l(k -1) = x"(x)k(-\fMn, k)lk\ (4.3) 

are white, then i^+^0) = x"+1. We may therefore write 

with 
a(n,k) = I, , n>\, (4.4) 

where the sum is over all integers ut (/ = 1,2,..., n) satisfying 

1 < ux < ̂  < • • • < un < k; 
a(0, k) = 1. 

The probability that after the ith black ball is drawn all the remaining balls drawn are black is 

ni±^=n(i-—l=o. 
ii i+m LA i+mj 

We conclude that the probabilities in (4.3) sum to one, and hence, 

x'^f^ixU-lfMn^lkl (4.5) 
*=1 
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An expansion of x~n of this form in terms of factorial powers (x)k has unique coefficients. The 
reason for this is that we have effectively put the coefficient of (x)0 equal to zero (see Milne-
Thomsom [5], pp. 305-06). 

Comparison of (4.5) and (4.2) gives 

S(-n, k) = {-lt~la{n, k)/k\, (4.6) 

with a(n, k) given by (4.4). 

Model F 
The rules for this model are the same as for Model E, except that now we continue until n 

black balls have been drawn. For n > 1, the probability that the number of white balls drawn is k 
is equal to 

where a} + - • • +an - k. 
Using (4.4), we may write 

Pn
F(k) = xk(l-x)--(n- x)a(k, n)ln\. (4.7) 

The probability that after the (i -1)* black ball is drawn all the remaining balls drawn are white is 

limf-1 =0 
W-»oo\̂  / J 

so, again, the probabilities must add to one. 
Putting x = -y,(4J) becomes 

k 

P„F{k) = -^-{-\fa{k,n)ln\. 

Summing over k gives 

(y)-„ = fy(-i)*«(M)/»!, 
k=0 

and a comparison with (4.1) gives 
s(-n, k) = (-lfa(k, n)lnl (4.8) 

5. PROPERTIES OF NEGATIVE-POSITIVE STIRLING NUMBERS 

At the end of Section 3 we noted that 

\S(-n,-k)\=\s(k,n)\ (5.1) 

whenever n and k have the same sign. Equations (4.6) and (4.8) show that NPSN are related by 
the same reflection in the line n = -k, that is, (5.1) continues to hold if n is positive and k is 
negative. The consequence is that NPSN of the first and second kinds are (apart from a sign) the 
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same set of numbers, but differently indexed, so that any property of NPSN of one kind can be 
immediately expressed as a property of the other kind. Explicitly, 

S(-n,k) = (rl)n+k-ls(rk9ri). (5.2) 

Different Representations 

If we regard (4.1) as a Taylor series, it follows, using (5.2), that 

S(-n,k) _ (-1> n+k-1 

n\ 
1 d" 

dxnUx + \)(x + 2)--{x + k) 
(5.3) 

Jx=0 

It is not difficult to show directly the equivalence of (4.6) and (5.3). 
If we expand (5.3) by partial fractions, perform the w-fold differentiation, and put x = 0, we 

obtain 

5(-«,*) = -^t(-l)*-r(j)r-". (5.4) 

Thus, we note that Stirling's formula (2.8) continues to hold if n is negative. 

Recurrence Formulas and Table of Values 

The recurrence relations for PPSN, (2.2) and (2.4), were derived from the identities (2.1) and 
(2.3). These identities hold whatever the sign of n, and it follows that (2.2) and (2.4) continue to 
hold for NPSN. These relations can therefore be used, together with appropriate boundary 
values, to generate numerical values. For NPSN of the first kind, we may rewrite (2.2) as 

s(-n +1, k) = s(-n, k-\) + ns(-n, k), n > 2, k > 1. 

On putting, respectively, n-\ and x = 0 in the definition (4.1), we obtain 

5(- l , k) = (-1)*, s(-n, 0) = l/n\. 

(5.5) 

(5-6) 

Combining (5.5) with (5.6), we can generate the values for s(-n, k) given in Table 1. Values for 
S(-n, k) are then given by (5.2). 

TABLE 1. Values of s(-n, k) 

n^ 
1 
2 
3 

4 

^ 0 

1 
I 
2 
1 
6 
1 
24 

1 

-1 
3 
4 
11 
36 
25 
288 

2 

1 
7 
8 
85 
216 
415 
3456 

3 

-1 
15 
16 
575 
1296 
5845 
41472 

Generating Functions 

We derive a number of generating functions for NPSN. They can easily be translated into 
generating functions for the other kind of NPSN by use of (5.2). 
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The definition (4.1) itself provides a generating function for s(-n, k). An exponential gener-
ating function can be obtained from (5.4): 

Two double generating functions can be obtained from (4.1) as follows: 

Y T s(-n, k)xky" = J ^T(-X + l\y" by (4.1) and (1.4) 

= M(\,\ + x,y)-\, 

whereMis a confluent hypergeometric function (see [1], p. 504). Similarly, 

fjfds(-n,k)xk£=0Fl(l + x,y)-\ 

= [T(x + l)Ix(2^)/yxll]-l, 

where QFX and Ix are, respectively, a generalized hypergeometric function and a modified Bessel 
function (see [1], pp. 556, 374, 377). 

Another pair of double generating functions can be obtained from (4.2): 

n=Q k=l X y 

fd'ZS(-n,k)(x)X=exp(y/x). 
11=0 *=1 m 

Asymptotic Behavior 
If n is taken to infinity in (5.4), only the r = 1 term survives. Hence, 

lim S(-n, k) = (-if-1/(k-l)\. 

The definition (4.4) implies that we can express a(n, k) as hn{\,\, ...,•£), where hn is a homo-
geneous product sum symmetric function (see Riordan [6], p. 47). Riordan shows that n\hn can 
be expressed as a (Bell) polynomial Yn in the variables st (i = 1,..., n), where 

si = 1 + — + .-.+ — . 
2' k1 

As k -> oo ? all Sj tend to a finite limit apart from sx which behaves like In k. It is clear that the 
term involving the highest power of sx in Yn is sf. Hence, as k -^ oo, Yn ~ (Ink)". From (4.6), we 
conclude that 

| S ( - / * , * ) | ~ % ^ as*->«>. 
k\n\ 

Orthogonality and Other Relations 
For n > m > 1, we have 

( 4 / ( 4 = (^#-w-i)-(x-»+i) = (x-4.B, 
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and 

i = i _ H r 1 _ Hr\-x)_m+l 
(x)m x(x-l)-'(x-m + l) x(-x + l)---(-x + /w-l) x 

Hence, 

(x-m)n-m = (-ir-\x)n(-x)_m+1/x. (5.7) 

If, for m > 2, we expand the factorial powers by (1.1) and (4.1) we obtain 
n-m n co 

X s{n - m, k)(x - mf = {-l)m~lx~lY, <"> P>PT <-"* + \ ?)(-*)* - (5.8) 
k=0 p=0 q=0 

Expanding the term (x-rrif on the left-hand side by the binomial theorem, and equating coeffi-
cients of like powers of x, gives, for 0<r <n-m, the following relation between PPSN and 
NPSN 

n-m / r \ r+1 
£ ( - ! ) * *)s{n-m,k)nf~r = j^(-ir+ps(n,p)S(-m + l,r + l-p), (5.9) 
k=r ^ ^ p=0 

and for r > n -m, the orthogonality relation 
min(r+l, ri) 

Y, (-l)ps(n,p)$(-m + l,r + l-p) = 0. (5.10) 
p=0 

When /w > w > 1, the left-hand side of (5.7) is replaced by 

1 
(x - ri)(x - n -1) • • • (x - m +1) 

(5.11) 

If we express this function in partial fractions and then expand each term as a power series in x, 
we can again equate the coefficients of powers of x with those on the right-hand side of (5.8), 
obtaining, for r >0 , 

I „ * \ ,„,„!= I (-ir^^K-^-fu-M-/.). (5.i2) 

It is possible to obtain equivalent results involving NNSN [and hence, by (3.17), PPSN] 
instead of NPSN by using (3.11) to expand the term (-x)_m+l in (5.7). For n>m>\ and 0 < r < 
n—m, the only difference from (5.9) is that the sum on the right-hand side now goes from p = 
m+r to p = n; if r < 0, the sum on the left-hand side of (5.10) now goes from p = max(m + r, 0) 
to p = n. Similarly, if m > n > 0, we expand the terms in the partial fraction version of (5.11) as 
power series in (1/x) and equate coefficients of like powers. For r < ~{m-n), the right-hand side 
of (5.12) acquires an extra factor of (-1) and the sum now goes from p = max(m + r, 0) to n. 
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In [2] the "Golden polynomials" 
G„+2(x) = xG„+1(x) + Gn(x\ GQ(x) = -l, Gl(x) = x-l, 

and their maxima! real root gn (the "golden numbers") were investigated. It was observed that, as 
ft-»oo? gn-^3/2; furthermore, it was suggested there might be a more precise formula, since 
numerical experiments seemed to indicate a dependency on the parity of n of the lower order 
terms. 

This open question will be solved in the present paper. 

Solving the recursion for the Golden polynomials by standard methods, we get the explicit 
formula 

Gn{x) = Aln+BjLi\ 
with 

A- l 

i^F-
dng is much nicer 

X--

= ( 3 x -
+ 4 

x + ̂ jx2 +4 
= 2 ' 

-2-V*2+4), 

when we substitute 

x = 

M = 

B = 

1 u—. u 

X-yjx2 +4 
2 
1 ( 

2yjx2+4 
(3x-2 + ylx2+4). 

G„(x) = 0 can be rephrased as -BIA = (A I ju)", or 
(2u + l)(u-l) _, ^„ 
(i/ + l)(w-2) 

Now it is plain to see that, for large n, this equation can only hold if u is either close to 2 or to 
u — —1/2. In both cases, this would mean x is close to 3/2. Let us assume that u is close to 2. It 
is clear that the cases when n is even or odd have to be distinguished. We start with n = 2rn and 
rewrite the equation as 

(« + l) 
We get the asymptotic behavior of the desired solution by a process known as "bootstrapping" 
which is explained in [1]. First, we set u = 2 + 8, insert u-2 into the right-hand side, and get an 
approximation for 8. Then we insert u = 2 + 8 into the right-hand side, expand, and get the next 
term. This procedure can be repeated to get as many terms as needed. In this way, we get 

<?~--16-w, 
3 
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and with 

u = 2 + --Wm + s, 

we find 
s~-—m-256-m. 

6 
From 

u~2 + --\6-m-—m-256-m 

3 9 
we find by substitution 

x~- + — .16-m-—m-256-' 
2 12 18 

Now let us consider the case n is odd, n = 2m +1. Then our equation is 

(fr + l X u - l ) ^ 
( u + i y 

and we find as above 
u~2~—-16-m-—m-256-m, 

12 72 
and also 

3 25 125 
2 48 288 

Confining ourselves to two terms, we write our findings in a single formula as 

^ - | + (-l)"f-4-, 
which matches perfectly with the empirical data from [2]. 
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1. INTRODUCTION 

Given any function / defined modulo m, we can consider the digraph that has the residues 
modulo m as vertices and a directed edge (a, b) if and only if f(a) = h (mod m). This digraph can 
be thought of as a geometric representation of all the sequences generated by iterating /modulo 
m. The digraph associated with squaring modulo p, a prime, has been studied in [1]. In that 
paper the cycle lengths and the number of cycles appearing were characterized. The structure of 
the trees attached to cycle elements was also completely described. Our paper will generalize 
those results to the digraph associated with the function xk modulo a prime/? with k any positive 
integer. Since zero is an isolated cycle for all p and k, we will consider the digraph generated by 
the nonzero residues. Hence, the vertex set of the digraph is equal to Z*. We will let Gk denote 
the digraph on the nonzero residues modulop with edges given by xk (mod/?). For example, G5

3
3 

is shown in Figure 1 and G^ is shown in Figure 2. Note that, when p = 2, Gk consists of the 
vertex 1 in a loop. Thus, we need only consider Gk when/? is an odd prime. We will use/? to 
denote an odd prime throughout this paper. 

Elementary results about these digraphs are described in Section 2. In particular, we see that 
each component contains a single cycle and we can determine when there are noncycle vertices. 
Section 3 characterizes the cycle lengths that appear. Section 4 explores the relationship of geo-
metric subsets of the digraph to subgroups of the group of units modulo/?. Section 5 considers 
some special cases where long cycles occur. Section 6 returns to the basic structure of the 
digraph and shows that all the forests appearing must be isomorphic and characterizes their 
heights. Section 7 explores the simplifications of the structures that appear when k is prime. 

We begin by enumerating six well-known elementary theorems which will be used. Proofs 
can be found in standard texts. 

Theorem 1: If a £ 0, there are 0 or gcd(£, /?-1) solutions to xk =a (mod/?). 

Proof: See [3], p. 47. D 

Theorem 2: If d is a positive integer such that d\p-l, then there are exactly (/>{d) incongruent 
residues of order d modulo/?. 

Proof: See [3], p. 48. D 
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O Q 
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FIGURE 1. The Digraph of G%, 
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1 9 ^ 2 3 ^ X * > 
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34 
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•C-17 

12 \ 33-^37^105-36 \ 

26 

29 ; / 

FIGURE 2. The Digraph of G^ 

Theorem 3: If«is a positive integer, then 

d\n,d>0 

Proof: See [5], p. 83. D 

Theorem 4: If a is an integer such that gcd(a, m) = 1 and / is a positive integer, then 
, / ordwa 

ordwa = w 

gcd(i, ordma) 
PWw/> See [5], p. 132. D 

Theorem 5: A primitive root modulo rn exists if and only if m is of the form 2, 4, / / , or 2/?", 
where/? is an odd prime. 

Proof: See [3], p. 49. D 

Theorem 6: If a and b are elements of Z* such that a = ordpa, (5 = ordpft, and gcd(a, /?) = 1, 
then ordpab = a(5. 

Proof: See [4], p. 46. D 
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2. BASIC PROPERTIES 

The following lemmas are easy to prove but fundamental to the understanding of the digraph 
structure of Gk. We will see that, for all Gp, each graph component contains a unique cycle 
which may have forest structures attached to it. 

Lemma 7: The outdegree of any vertex in Gk
p is one. 

Proof: The function xk (mod/?) maps the vertex a to ak and only ak. • 

Lemma 8: Given any element in Gp, repeated iteration of xk (mod/?) will eventually lead to a 
cycle. 

Proof: Because there are /?-1 vertices in Gk iterating xk (mod/?) must eventually produce 
a repeated value. • 

Lemma 9: Every component of Gk contains exactly one cycle. 

Proof: Suppose a component has more than one cycle; then, somewhere along the 
undirected path connecting any two cycles, there exists a vertex with outdegree at least 2, which 
is impossible. • 

Lemma 10: The set of noncycle vertices leading to a fixed cycle vertex forms a forest. 

Proof: Since each component contains exactly one cycle, the vertices leading to a cycle 
vertex cannot contain a cycle; thus, they are a forest. D 

Lemma 11: The indegree of any vertex in Gk is 0 or gcd(£, p -1). 

Proof: This result is an immediate application of Theorem 1. D 

Lemma 12: Every component of Gk is cyclical if and only if gcd(&, /?-!) = !. 

Proof: (=>) If all digraph components are cyclical both the indegree and outdegree are one, 
which implies from Lemma 11 that gcd(£, p -1) = 1. 

(<=) Conversely, if gcd(&, /? -1) = 1, the indegree of every vertex is 0 or 1. If some compo-
nent were not cyclical, there would exist a cycle vertex with indegree > 2, a contradiction. • 

For example, each component of G5
3
3 is cyclical because gcd(3,52) = 1; this is apparent in 

Figure 1. Likewise, G*x has vertices outside the cycles because gcd(4,40) = 4 (see Figure 2). We 
will refer to a child of a vertex a as a vertex v that satisfies the equation vk = a (mod /?). These 
are the predecessors of a in Gk. Note that our child vertices are children in the sense of the forest 
structure but not in the standard sense of direction. Predecessors that are not in a cycle will be 
called noncycle children. For example, in G^, 37 has the three noncycle children 8, 31, and 33. 

Lemma 13: Any cycle vertex, c, has gcd(£, p -1) - 1 noncycle children. 

Proof: From Lemma 11, the indegree of c is 0 or gcd(A:, p-1). Since c is a cycle vertex, the 
indegree is not zero but gcd(&, /? -1). The number of noncycle children is gcd(£, / ? - ! ) - ! . D 
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Above we saw some of the basic results about Gk. Notice that if we fix k and vary p the 
number of vertices changes and infinitely many different digraphs result. However, ifp is fixed, 
only finitely many distinct digraphs result as k varies. The next theorem identifies the powers that 
result in identical digraphs. 

Theorem 14: \ = k2 (mod p -1 ) if and only if Gk
p

l = Gk
p

2. 

Proof: (=>) Suppose kx = k2 (modp -1) and without loss of generality kx>k2. If a is any 
vertex in the reduced residue set, ordpa\(p-l)\(kl-k2), so akl~kl = 1 implies akl = akl (modp). 
Hence, G£ = G*2. 

(<=) Suppose Gp
l = Gk

p
2, and assume kx>k2. Then ak{ = akl (modp) implies or&pa\{kx-k2) 

for all vertices a. So (p -1) \(kx - k2)7 and the conclusion follows. D 
The 12 different digraphs for Gk

3 are shown in Figure 3. Notice that some have only cycles 
and some have forest structures. This theorem gives a condition for equality of digraphs, but does 
not settle the question of when two digraphs can be isomorphic for different values of k. For 
example, G^ ^ G*x but G-^« G\x. 

x1 mod 13 

x2 mod 13 

Q 
1 
12 

/ \ 
5 8 

j? mod 13 

Q 
9 3 

x4 mod 13 

Q 
5 8 12 

x5 mod 13 
2 * ~ ; 6 3 

/ m o d 13 

Qr~ 
3 4 9 

x1 mod 13 
5 <

 D 8 

0 Q Q 

4 10 

/ \ / \ 
2 11 7 6 

10 4 2 

Q Q 
2 10 11 4 6 7 

Q Q Q Q 
4—;<> 4 f z z ^ io 7 * ; u 

_ ^ - n 

u t ^ s 
, \ ^ 6 

2 • 7 

O Q O Q Q Q 
6 •*—p 2 i z z ; n 

JC8 mod 13 

Q 4 ^ ^ ^ ^ 1 

8 12 7 - ^ 11 

FIGURES. AD Possible Digraphs of (?£ 
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Jt9 mod 13 

O Q Q Q 
/ \ / \ / \ / \ 

3 9 2 6 4 10 7 11 

*1 0 mod 13 

Q Q Q 
1 ? ! 
12 4 10 

/ \ / \ / \ 
5 8 6 7 11 2 

x11 mod 13 Q Q 
8?ZI±5 2^Z±7 3}=±9 4^=I±10 6 ̂ ZZ± 11 

x12 mod 13 

FIGURE 3. All Possible Digraphs of 6 ^ (continued) 

3. CHARACTERIZING CYCLES 

When considering the cycle structure of Gp, it is convenient to factor p-1 as wt, where / is 
the largest factor of p -1 relatively prime to k. So gcd(£, t) = l and gcd(V, r) = 1. For example, 
if p = 41 and £ = 6, then /? - 1 = 235, so w = 8 and f = 5. Similarly, if /? = 47 and £ = 4, then 
w = 2 and t = 23; also, if /? = 19 and & = 6, then w = 18 and t = 1. In all the theorems below, we 
will be considering the digraph Gp with /? - 1 = wt as described. 

Theorem 15: The vertex c is a cycle vertex if and only if ordpc\t. 

Proof: (=>) Since c is in a cycle there exists some x > 1 such that ck =c and thus ck ~l = 1 
(mod /?). Hence, ord c | £ * - l , which implies that gcd(ordpc, A) = 1, so gcd(ordy;, w) = 1 also. 
We know that ordpc\p-l = wt, and so ord^c must divide t. 

(<=) Suppose c eGp and ord pc\t; therefore, gcd^rd^c, k) = l. On repeated iteration, c must 
eventually end up in a cycle. If y is the number of steps to reach the cycle and x is the cycle 
length, then c H ( r _ 1 ) = 1 (mod p). Therefore, ordpc\ky(kx-I), but since gcd(ordy:,k) = 1, 
ordpc\kx - 1 . Hence, ck =c (mod/?), which implies that c is a cycle vertex. • 

Corollary 16: There are / vertices in cycles. 

Proof: From Theorem 15, the total number of cycle vertices is lLd\tN(d), where N(d) is 
the number of elements of order d (mod/?). Theorems 2 and 3 imply that this is /. D 

Theorem 17: Vertices in the same cycle have the same order (mod/?). 

Proof: Assume a and b are in the same cycle. Hence, there exists an e such that ae = b 
(mod p). Let a = ordpa and p- ordpb. It follows that ba = aea = 1 (mod /?) and thus /?|cr. 
Similarly, a\j3; hence, the orders are equal. D 
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Theorem 17 shows that the order (mod/?) of vertices in the same cycle are equal. Hence, the 
notion of the order of a cycle is well defined. We now look at the relationship between the order 
of a cycle and its length. 

Theorem 18: Let x be the length of a cycle of order d (mod/?), then kx -1 is the smallest number 
of the form kn - 1 divisible by d. 

Proof: Let c be a vertex in the cycle. Since the cycle is of length x, ch ~l = 1 (mod/?). It fol-
lows that d-ovdpc divides kx - 1 . If ordpc|£*-l for some s<x, then ck* =c , a contradic-
tion. • 

Theorem 18 shows that the length of a cycle depends entirely on its order. If we let £(d) 
denote the length of cycles with order d, we get the following theorem. 

Theorem 19: Let a, b, and d be orders of cycles in Gk
p. Then: 

(i) £(d) = orddk. 
(ii) There are </){d) I £(d) cycles of order d. 

(Hi) £(lcm(a,b)) = \cm(£(a\ £(b)). 
(iv) The longest cycle length is £(t) = ordfk. 

Proof: 
(i) By Theorem 18, £(d) = min{« \d\kn-l}; hence, £(d) = orddk. 

(ii) By Theorem 2, there are (j)(d) elements of order d, and there are £(d) in each cycle 
by(i), hence the result. 

(Hi a) By (i), km = 1 (mod a) and ^ E 1 (mod h); thus, £»<»(*<«>.'<*>) s i (mod a) and 
l̂cmWaxW) s ! ( m o d by I t f o l l o w s t h a t jfcM^W s ! ( m o d i c m ( a 3 £)). Therefore, 

£(lcm(a, b)) \lcm(£(a), £(b)). 
(iiib) We know that ki(-lcm(a>b» s l(mod lcm(a,Z>)). Therefore, jfc'O"*'-*)) = 1 (mod a) and 

^(ian(a>ft))sl ^m o d ^ T h m ? ^(a)|^(icm(a> j)) and *(&)K(lcm(a, b)), which implies 
that lcm(^(a), £(h))\£(lcm(a, b)). 

Putting (iii.a) and (iii.b) together gives £(lcm(a, b)) = lcm(£(a), £(b)). 
(iv) All orders of cycles divide t and if d\t then £(t) = £(lcm(t, d)) = lcm(£(t), £(d))9 which 

implies £(d)\£(t). Thus, £(0 is the maximal cycle length. • 

We are now in a position to identify the number of cycles of every length appearing in the 
digraph of Gp. For example, consider G$3 (Fig. 1); in this case /?-1 = 52 so w = 1 and t = 52. 
The possible orders of the cycle elements are the divisors oft: 1, 2, 4, 13, 26, and 52. There are 
^(52) = 24 elements of order 52, and these 24 elements are in cycles of length ^(52) = ord523 = 6, 
contributing four cycles of length 6. Similarly, the elements of order 26 appear in 4 cycles of 
length 3; and those of order 13 are in 4 cycles of length 3. There are 2 elements of order 4 in one 
cycle and two cycles of length one with orders 1 and 2. Table 1 gives some details about cycles in 
Gk for selected p and k. 
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TABLE 1. Cycle Lengths in Gk 

_ 

1 p 

41 

43 

47 

53 

2 

d 

1 
5 

1 
3 
7 

21 

1 
23 

1 
13 

d (d) 

1 
4 

1 
2 
3 
6 

1 
11 

1 
12 

# 

iH 
i 

i j 
i | 
2 j 
2 

1 
2 

1 
1 

3 , 

d 

1 
2 
4 
5 
8 

10 
20 
40 

1 
2 
7 

14 

1 
2 

23 
46 

1 
2. 
4 

13 
26 
52 

« (d) 

1 
1 
2 
4 
2 
4 
4 
4 

1 
1 
6 
6 

1 
1 

11 
11 

1 
1 
2 
3 
3 
6 

# 

1 
1 1 
1 
1 j 
2 
1 j 
2 
4 

1 j 
1 
1 
1 

1 
1 
2 
2 

1 
1 
1 
4 
4 
4 

4 j 

d 

1 
5 

1 
3 
7 

21 

1 
23 

1 
13 

« (d) 

1 
2 

1 
1 
3 
3 

1 
11 

1 
6 

# j 

1 j 
2 

1 j 
2 i 
2 j 
4 

1 
2 

1 
2 

5 

d 

1 
2 
4 
8 

1 
2 
3 
6 
7 

14 
21 
42 

1 
2 

23 
46 

1 
2 
4 

13 
26 
52 

« (d) 

1 
1 
1 
2 

1 
1 
2 
2 
6 
6 
6 
6 

1 
1 

22 
22 

1" 
1 
1 
4 
4 
4 

# 

1 
1 
2 
2 

1 
1 
1 
1 
1 
1 
2 
2 

1 
1 
1 
1 

1 
1 
2 
3 
3 
6 

6 

d 

1 
5 

1 
7 

1 
23 

1 
13 

« (d) 

1 
1 

1 
2 

1 
11 

1 
12 

# 

1 1 
4 

1 1 
3 

1 
2 

1 
1 

4. SUBGROUPS OF Z* IN G* 

We now consider orders of elements throughout Gp. We will be able to associate elements 
of various orders with subgroups of Z*, which allows for the identification of certain subgroups 
of Z* with geometric subsets of the digraph. In later sections we will return to characterizing the 
cycle and forest structure of these digraphs. 

Lemma 20: If Hd is the set of residues with orders dividing d, d>l, then Hd is a cyclic sub-
group of Z*. 

Proof: Since Z* is a finite cyclic group, we need only show that Hd is nonempty and closed 
under multiplication. Clearly Hd is not empty because it has the identity. To show closure, 
suppose that a,b sHd and let a = ordpa and J3 = ordpb. Since (ab)lca^at^ = 1 (mod p), ordpab 
divides lcm(a, /?) which in turn divides d. Therefore, Hd is a subgroup of Z*. • 

For instance, if we consider the group Z^, the elements of order 1 and 2 form the subgroup 
H2, while H10 contains those elements of order 1, 2, 5, and 10. 

We will now introduce a notation for the forest originating from any given cycle vertex. Let 
F" represent the set of vertices in the nth level of the forest originating from the cycle vertex c. 
Of course, Fc

n depends on Gk. For example, in G*x (Fig. 2), F/6 = {2,23, 39} and F?6 = {7,19, 
22,34}. Similarly, Fn refers to the vertices in the rfi level of all forests and Fc refers to all forest 
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vertices associated with the cycle vertex c at all levels n > 1. Note that the cycle vertices are not a 
part of the forests but for convenience we will denote the set of cycle elements by F° and also 
Fc° = {c) but c$Fc. 

The next theorem and corollary explain the subgroup structures present in the digraphs. 
First, it will be shown that the order of an element is constrained by its height in the forest 
structure. 

Theorem 21: Let a GFC and otdpc = d\t. Then ovd pa\khd if and only ifasF*, where x<h. 

Proof: (=>) Suppose ord a\khd. Then (ak )d = 1 (mod/?). Now, using Theorem 4, 
p 

v _ o r d ^ l = ordpl=ordp(afe f = 
g c d « ordpak ) 

Since gcd(rf, ovdpak ) = ordpak , ordpak divides d which divides t. From Theorem 15, ak must 
be a cycle element, and hence a GF*, where x<h. 

(<=) If a EFC
X and x<h, then ak is a cycle element of order d. Furthermore, 

ord a 
d = ord jaK = —^ ; 

p gcd(F,ordpa) 
hence, d • gcd(£x, ord^a) = ordpa, and thus ordpa\d-kx\d-kh. • 

From Theorem 21, it can be ascertained that various geometric subsets of the digraph form 
subgroups of Z*, as stated in the next corollary. 

Corollary 22: For all d dividing t and all h, U F* is a subgroup of Z* namely / / ^ , . 
0<x<ft 

ord c\d 

Proof: The union over all c such that ord^cl^ and over all x<h contains all a eZ* such 
that ord a\khd by Theorem 21. This is the subgroup Hkhd of Z* by Lemma 20. D 

Corollary 22 indicates that the union of cycle vertices with orders dividing a fixed d and 
vertices in their associated forest structures up to a fixed height form a subgroup of Z*. In par-
ticular, if d = 1, all the vertices in Fx up to any fixed level (along with 1) form a subgroup. On the 
other extreme, if d = t, all the vertices in all the components up to a fixed height form subgroups. 
Examining the digraph of G41 (Fig. 2), one finds the following subgroups: 

d = xh = 0: F? = {l} = Hl; 
d = 1, h = 1: i f u F / = {1,9,32,40} = H4; 
d = l,h = 2: F?vF?vF? = {1,3,9,14,27,32,38,40} = H16; 
d = 5,h = 0: F° = {1,10,16,18,37} = H5; 
rf = 5,/i = l: F°^Fl = {1,2,4,5,8,9,10,16,18,20,21,23,25,31,32,33,36,37,39,40} = H20; 
£/ = 5,/i = 2: F ° L J F 1 U F 2 = {1, . . . ,40}-Z4*1 = H8 0. 
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These algebraic properties imply that the highest level of the digraph, which will be referred 
to as the canopy, must contain at least half of the vertices. For example, in G^ (Fig. 2) the 
canopy is F2: 

Corollary 23: If 1% is the maximal height attained by the forest elements in Gk, then 
\F^\>{p-l)/2. 

Proof: 
(i) If h0 = Q, then all vertices are in cycles, so \F°\= p-1 >(p-1) /2. 

(u) If h0 > 1, then from Corollary 22, H^-i, = U Fn is a proper subgroup of Z*. The 

number of elements in H ^ i must be a proper divisor of \Z* |= p-1. Since the largest proper 
divisor of /? - 1 is (p -1) / 2, there are at least (p -1) / 2 vertices remaining in the canopy. • 

We also see a relationship between forest elements, cycle elements, and their products in the 
following corollary. 

Corollary 24: The product of a forest element and a cycle element is a forest element. 

Proof: The cycle elements of Gk form a closed multiplicative subgroup of Z*; hence, the 
product of a forest element and a cycle element must be a forest element. D 

5. OCCURRENCE OF LONG CYCLES 

Control over the lengths of cycles is highly desirable. This is essential for applications to 
pseudo-random number generation and data encryption. The first theorem below provides an 
upper bound for the cycle lengths appearing in Gk. Special cases where long cycles can be 
guaranteed are then considered. 
Theorem 25: Let p > 5 be prime. Then the length of the longest cycle in Gk

p is less than or equal 
to ( /? -3) /2 . 

Proof: Consider two cases depending on gcd(&, p-l). 
(i) Suppose gcd(&, p -1) & 1. By Lemma 12, Gk is not entirely cyclical and by Corollary 23 

it has a forest structure with at least (p-l)/2 vertices in the canopy. Therefore, there are at 
most (p -1) 12 vertices in cycles. Since p > 5, we know we are not interested in longest cycles of 
length 1, and since 1 is in a loop, it is not part of any longest cycle of interest; hence, the maximal 
length cannot exceed [(p -1) / 2] - 1 = (p - 3) / 2. 

(ii) Suppose gcd(&, p -1) = 1; thus, Gk consists entirely of cycles. From Theorem 19, the 
longest cycle length is associated with the elements of order t - p-l, which can be factored as 
2sr, where s > 1 and r is odd. 

(a) If T * 1, then the number of elements of order p -1 is </>(p -1) = <j>(2sr) = 2s~l<j>(j) < 
2s~l r = (p-l)/2. Now, since </>{p -1) is an integer, <f>(p -1) < (p - 3) / 2. Hence, even if all ele-
ments of order p-l were together in one cycle, the length could not exceed (p - 3) / 2. 

(b) If r - 1, then p - 2s +1 is a Fermat prime larger than 5, so s > 2. By Theorem 19, 
the length of the longest cycle is t(t) = l(2s) - ord2,£. However, Z*, does not have a primitive 
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root for s > 2 (Theorem 5). Thus, ord2,£ < (j){2s) = (p -1) / 2; hence, £(0 < (/? - 3) / 2 in this case 
as well. D 

While Theorem 25 gives an upper bound for the cycle lengths in Gk it does not specify 
whether this bound is ever attained. The next theorem shows that, for Sophie Germain primes, 
these maximal cycle lengths can be attained. 

Theorem 26: Let p = 2q + l, where q is an odd Sophie Germain prime. If A: is a primitive root 
mod q, then Gk

p contains a cycle of length (p - 3) / 2. 

Proof: Because gcd(&, q) = 1 and q\t, the elements with order q are in cycles of length 
ord^ = 0 - l = ( p - 3 ) / 2 . • 

Corollary 27: Let p = 2q + l, where q is an odd Sophie Germain prime. If k is an odd primitive 
root mod q, then Gk

p contains two cycles of length (p - 3) / 2. 

Proof: Since k is odd, f = 2q and the graph is entirely cyclical. The elements of order q are 
in a cycle of length ordqk = q-l = (p-3)/2. The elements of order t - 2q are, by Theorem 19, 
in the longest cycles of the digraphs. So the elements of order 2q are also in a cycle of length 
<>-3)/2. • 

For example, consider G%3 (Fig. 4); p = 23•= 2(11) +1, and 2 is a primitive root mod 11. As 
expected, G%3 contains one cycle of length 10. Corollary 27 is illustrated by G5

A1, where p - 47 = 
2(23) +1, 5 is a primitive root mod 23, and the digraph has two cycles of length 22. 

Given a prime of the form 2g + l, where k is a primitive root mod q, it is simple to iterate 
through a cycle of length (p - 3) / 2. Any residue between 2 and p - 2 is either in a long cycle or 
is one step away. Beginning with any such residue, we can iterate xk (mod p) to produce 
( p - 3 ) / 2 incongruent values. For example, consider the prime 9887 = 2(4943)+ 1, where 4943 
is also prime. Since 7 is a primitive root of 4943, iteration of x7 (mod 9887) beginning with any x 
from 2 to 9885 will yield 4942 incongruent values. 

JC2 mod 23 X 1 2 3 

Q 
T 

22 

17 10 15 

1 1 i 
1 3 — » 8 _ * 1 8 — » 2 4 — 5 

t 1 
11 — » 6 4 4—21 

T 1 
1 4 — H 2 4— 9 4—3 *— 16 

t T T 
20 7 19 

d 4 7 

2 — » 3 2 — • « 

t 
28 

t 
7 

1 

0 
1 » 3 7 — • 

Q 
16—»6 • 21—•36—M8 

I 
27 

1 
42 

1 
34«—17 4—9 «— 8 4 — 3 ^ — 1 4 4—124—25 4—24 

5 _ _ * 2 3 — # 2 2 — » 3 5 - * 3 3 - H > 44—»39—»38—^30 

T 1 
20 13 

t 1 
29 40 

t i 
114—26 4—414—314—104—43 4—15 4—45 4—19 

FIGURE 4, The Digraphs G2
2
3 and G; ^47 
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6. CHARACTERIZING FORESTS 

Having completely characterized the cycles for the digraph generated by xk (mod/?), we turn 
our attention to characterizing the noncyclical elements of Gk. In each of our examples, we 
notice that the forests in any particular digraph are isomorphic. This turns out to be true in 
general, and will be proved by constructing a one-to-one correspondence between Fj and Fc. The 
next lemma gives the essence of how the correspondence will be constructed. 

Lemma 28: If a GF/7 and c is a cycle vertex, then ac GF'L. 

Proof: Using Corollary 24, it follows immediately that ac £F°. Furthermore, (acf = ck 

(mod/?) is a cycle element but (acf is a forest element, which implies that ac G F ^ . • 

Theorem 29: Let c be a cycle element, then Fx« Fc. 
Proof: 
(i) First, we show that there exists a one-to-one correspondence between the vertices of F/7 

and FJ7 for all heights h, and hence between Fx and Fc. Let h be fixed and let ch denote the unique 
cycle element such that cf = c (mod/?). Define fh : F/7 -> FJ7 by fh(a) = a-ch (mod/?). Next, we 
check that fh is one-to-one and onto. Let b GFJ7. Then (b-cff* = bk*\cf)~l = cc~x =1 GF2° 

and (b-c^)kh~l £F° because i**"1 £F° and c^ _ 1 GF°. It follows that 6-c^1 GF/7. Furthermore, 
fh(b'chl) = b'chl'ch=b (mod/?), so /^ is onto F* Suppose A(^ ) = A(a2) (mod/?) for 
al5a2 GF/7. Then ^ -c^ = a2 -ch implies ax = a2 (mod/?). Thus, fh is one-to-one. 

(ii) It remains to be shown that there exists a one-to-one correspondence between the edges 
of Fx and Fc. We want to define g: E(F1) -^ E(FC) by g(a, ak) = (fh(a), fh^{ak)), where h is the 
height of a in Fx. If (fh(a),fh_l(ak)) is in fact in E(FC), then # will inherit the one-to-one and 
onto properties from fh and/^.j. We have an edge (fh(a),fh-i(ak)) ^ anc* only if (fh(a)Y = 
fh-\(pk) (mod/?). Now //,(#) = a'ch (mod/?), where c£ = c and/A_j(a) = a-ch_x (mod/?), where 
ĉ _j = c (mod /?); thus, c\ = c => (c^)* = c (mod /?). By the uniqueness of ch, ch_x = c\ and 
fk-i(a) = <*'4 (mod/?). Now(/fc(fl))*E(a.cA)*Efl*.4E/w(fl*) (mod/?). Hence, (/A(a), 
fh-\(ak)) eE(Fc) and, by the argument above, the edges and vertices are in one-to-one corre-
spondence, so Fx « Fc. D 

There is another property of this mapping that can be addressed. Consider a eF2 and c GF°; 
the order of the element ac (mod/?) will be (ord/?a)(ord/7c). That is, the isomorphism "preserves" 
orders between Fx and Fc in that the orders of corresponding elements in ¥c are multiplied by the 
order of c. 

Theorem 30: If a GF2 and b GFC with ch the cycle element such that b = a-ch (mod /?), then 
ordp* = (ord/?a)(ord/7c). 

Proof: By Theorem 21, ordpa\kh and thus gcdfardyz, /) = 1. By Theorem 15, ordpc = 
ordpch \t, hence gcd(ordpa, ord^c) = 1, and applying Theorem 6 gives the desired result. D 
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Some examples of the isomorphism described in Theorem 29 and Theorem 30 can be seen in 
Table 2. 

TABLE 2, Some Orders and Products in Gt 

a 

1 

9 

1 3 

c 

10 

37 

10 

ac 

10 

5 

30 

oidpa 

1 

4 

8 

ordpC 

5 

5 

5 

ordp ac 

5 

20 1 

40 1 

Finally, we prove a result that determines the height of the forests. 

Theorem. 31: If h0 is the minimal h such that p-l\kht, then hQ is the height of the forests in Gp. 

Proof: 
(i) If gcd(&, p -1) = 1, then h0 = 0 and all the vertices are in cycles. 

(ii) If gcd(£, p -1) * 1, then h0>l. Let a be a vertex of order p-l. From Theorem 21, a 
must be at height h0 because ordpa |^rbut ovdpaj[kho~lt. There are no vertices at a greater 
height since, for any vertex h in Gk

p, ordpb \p -11k*01; thus, ft is at level h0 or lower in Gk
p. D 

For example, in G^ we see that t = 5 and 41-1 = 40|425, which implies that the height of the 
forest is 2. This value is apparent in Figure 2. 

7, PRIME POWERS 
In the special case where the powers are prime, many of our results simplify. In particular, 

while we were able to prove that the forest structures were isomorphic with a general exponent &, 
we can completely characterize that structure if the exponent is prime. We will consider the 
digraph associated with a prime exponent q, letting p-l = qst, where t is relatively prime to q. 

[0 or q \ip = 1 (mod q\ 
Corollary 32: The indegree of a vertex in Gl is i 

J p [l otherwise. 
Proof: This follows from Lemma 11 and Lemma 12 with k = q. D 
This result implies that all the digraph components are cyclical if and only if p # 1 (mod q). 

Corollary 33: If p = 1 (mod q\ then any cycle vertex has q -1 noncycle children. 

Proof: This follows from Lemma 13. D 

Theorem 34: If p = 1 (mod q), the q-\ noncycle children of each cycle element are roots of 
complete g-nary trees. 

Proof: Since the t forests in Gq
p are isomorphic and there are qst elements in the digraph, 

jFt\=q*-l. Furthermore, Theorem 31 implies that the height of Fx is s. If ¥x is not composed of 
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q-\ complete q-naxy trees, there exists a vertex that has indegree 0 but is not at height s. This 
would imply that \$i\<qs-1, a contradiction. Since all the forests are isomorphic to F1? and F2 
consists of complete #-nary trees, all the forests in Gq

p are complete #-nary trees as well. • 

As an example, consider Fj in the digraph GlQ9, as shown in Figure 5. Since 109-1 = 33(4) 
and 453 = 633 = 1 (mod 109), 45 and 63 are roots of complete ternary trees with height 3 -1 = 2. 

When the power is prime, we can say more about the orders of elements in the digraph Gq 

Theorem 35: A vertex a e F/* if and only if ordpa = qh. 

Proof: Consider Theorem 21 with k = q and c = 1, and hence d=l. Then ord a\qh if and 
only if a eF* for x < h. Having elements of order qh in a level x less than h would imply that 
qh \qx, where x < h, a contradiction. D 

Returning to G^09 (Fig. 5), one can check that the orders of 3, 9, and 27 correspond to F/, 
F*, andF3. 

35 7 

i 1 
25 - + 38 •— 49 5 — H 6 «—97 

9 I I 48 

1 I I i 
78—*-75 ^45 •(,)« 63 < 66<«—81 

r ! I r 
22 89 

15—»>105^—73 3—»27<— 80 

r T 
21 26 

FIGURE 5. The Forest Fl in Gj^ 

Corollary 36: If a e F<? then ord^a = qhordpc. 

Proof: Theorem 35 and the multiplying principle of Theorem 30 give the desired result. D 

CONCLUSIONS 

We have seen that many of the features of the digraph Gk
p can be determined in terms of 

properties of/? and k. In particular, we have seen that the digraphs consist of components with 
exactly one cycle per component and that the forest structures associated with each cycle vertex 
throughout the digraph are isomorphic. The cycle lengths depend on the orders of the elements. 
We can also determine the height of the forests. In special cases, long cycles can be found and 
complete #-nary trees can be guaranteed. 

While we have found a very rich structure for the digraphs associated with xk mod p, it is 
natural to ask what other digraphs arising from functions such as these have a rich structure. The 
function xk mod m, where rn is not prime, will have a much different digraph since 0 will not 
necessarily be in a trivial cycle and primitive roots may not exist. In [2], the authors start to 
investigate this problem. On the other hand, looking at xk in a finite field where 0 must be trivial 
and primitive roots always exist ought to lead to a theory like that seen in this paper. Digraphs 
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from functions such as xk +1 (mod p) will be difficult to handle because we cannot lean on the 
theory of orders of elements as in this paper. It would be interesting to know what kind of 
control on the digraphs can be obtained In such cases. 
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1. DEFINITIONS AND NOTATION 

A Niven number is a number divisible by its digital sum. In [1] it is shown there can exist at 
most twenty consecutive Niven numbers; moreover, an infinite family of such is constructed 
where the first example requires over 4 billion digits. Here we get a lower bound on the number 
of digits in each of twenty consecutive Niven numbers and construct an example with nearly this 
few digits. 

We start by recalling 

Definition: A positive integer is called a Niven number if it is divisible by its digital sum. 

Example: The number 12 is a Niven number since (1 + 2)|12. The number 11 is not a Niven 
number since (1 +1) \ 11. 

For n eZ , let s(ri) denote the digital sum of n. Examples of 20 consecutive Niven numbers 
have a large number of digits. To represent these numbers nicely, we concatenate digits or blocks 
of digits. If a and b are blocks of digits, let ab be the concatenation of these blocks. To denote 
multiplication, we use a * b. Finally, ak denotes the concatenation of k copies of a. 

2. PRELIMINARY LEMMA 

In [1], Cooper and Kennedy show that any sequence of twenty consecutive Niven numbers 
begins with a number congruent to 90 modulo 100. We push this idea further. 

Definition: Let n eZ+. A positive integer is a l(f-mark if it is congruent to 9„_10 modulo 10" 
but not congruent to 9„0 modulo 10"+1. 

What Cooper and Kennedy actually show is that a sequence of twenty consecutive Niven 
numbers must begin with a 102*"1 -mark for some nx eZ+. 

Lemma 1: A sequence of twenty consecutive Niven numbers begins with a 10280*"2-mark for 
some ^ eZ+. 

Proof: Since twenty consecutive Niven numbers begin with a 102*"1 -mark for some nx eZ+, 
the digital sums of the first ten Niven numbers in our sequence are consecutive, as are the digital 
sums of the second ten Niven numbers in our sequence. Therefore, there is at least one number, 
say m, in the first ten Niven numbers whose digital sum is divisible by 23. By the definition of a 
Niven number, this means m is divisible by 23. Similarly, there exists such a number, say m', 
among the second ten. We can take m and mf to differ by exactly 8. Then 

s(m) - s(mf) = 9*2* /^ -8 
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as 2 * nx nines are converted to zeros upon crossing from the first to the second ten numbers if we 
start at a 102*"1 -mark. Since 9 * 2 * r \ - 8 = s(m)-s(mf) = 0 mod 8, we see that 2*n x is a mul-
tiple of 8. 

Using the same method, we see 2 * nx must also be a multiple of 5 and of 7. Taken together, 
this means that the first of our twenty consecutive Niven numbers is a 10280*"2-mark with 

3. CONGRUENCE RESTRICTIONS OF THE DIGITAL SUM 

In this section we develop congruence restrictions on the digital sum of our first Niven 
number. To do this, we assume P is the first of twenty consecutive Niven numbers, that it is a 
10280*"2 -mark for fixed ^ e Z+, and that s{p) = a. Then 

(a + i)\(p + i) f o r /=0 ,1 , . . . , 9 , 

(a + j -252Q*« 2 ) | ( / ? + J/) fo r /= 10,11,...,19. 

Let 
y = 1cm (a, a +1 , . . . , a + 9) 

and 
^ ; = lcm(a + 10-2520*w 2 ,a + l l - 2 5 2 0 * « 2 , . . . , a + 19-2520*/ i 2 ) . 

This gives us 
P=a mody 

and 
/? = a -2520*«2 mod?''. 

By the Chinese remainder theorem, these are consistent if and only if 

g c d O ^ ' ) |2520 * / v (1) 

This condition reduces to congruence conditions on the prime divisors of ^ = { 2 5 2 0 * ^ - 1 9 , 
2520 * nj - 1 8 , . . . , 2520 * n2 - 1 } , the set of possible differences between {a, a +1 , . . . , a + 9} and 
{a +10 - 2520 * Wj,..., a +19 - 2520 * r^}. Let P be the set of prime divisors of the numbers in 
A. For p e P , let v(p) be such that pv{p) |2520 * ̂  but pv ( / ? ) + 1 |2520*«2. Then condition (1) 
implies pv{p)+l |gcd(>, ^')> so pv{p)+1 \y or / ( p ) + 1 f ̂ ' , which can be restated as 

a^l ,2, . . . , Jpv ( / 7 ) + 1-10mod/7v ( p ) + 1 or 
(2) 

a + 10-2520* ^ s 1,2,..., pv(p)+l -10 modpv(p)+1. 

Conversely, condition (2) assures pv{p)+l \gcd(y,yf) and p\gcd(y,y') implies peP, so we get 
gcd( / , y ') |2520* it}. Further, a satisfies some additional congruences modulo powers of 2 and 
5. Since fi is a 10280*"2 -mark, /? = 990 mod 1000. Then p = 6 mod 8, so 

a = 6mod8. (3) 

Similarly P 5= 0 mod 5 means 

a = 0mod5. (4) 
These lead to 
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Lemma 2: A sequence of twenty consecutive Niven numbers must begin at a 10560*W3-mark for 
some Aij eZ+. 

Proof: Suppose not, i.e., suppose we have twenty consecutive Niven numbers beginning at a 
10280*"2 -mark with ^ odd. Then by (2) we have 

a = 1,2, ...,6modl6 or 
a + 10-2520*/?2 = 1,2,..., 6 mod 16, 

so a = 0,1,...,6,15mod 16. By (3) this means a = 6modl6. Further, /?=9990 mod 10000, so 
/? = 6 mod 16. Then a + 18 -2520*/^ = 0 mod 16, so 16|(/? + 18), which is a contradiction. • 

As a result of Lemma 2, we see that 2520 * r^ = 0 mod 16, so the digital sums of /?, /? +1,.. . , 
/?+19 are consecutive modulo 16. Since /? = 6 mod 16, we get 

a = 6modl6. (5) 

4. OUTLINE OF METHOD 

Assume rij e2Z+ fixed and cr satisfies (2), (4), and (5). We outline how to construct the 
first of twenty consecutive Niven numbers /? so that s(j3) = a. By our choice of a, we can find a 
solution to 

x = a - 2 5 2 0 * ^ mod^' (6) 
and 

x = amody. (7) 

In fact, we can find infinitely many solutions differing from each other by multiples of 8 = 
1cm (f, y'). Let b be the least positive solution. We modify b by adding multiples of 8 so that 
the resulting number, b', still satisfies (6) and (7) and is a 10280*"2 -mark. Finally, we may be able 
to modify b' by adding multiples of 8 so that the resulting number, /?, still satisfies (6) and (7), is 
still a io280*"2 -mark, and has a digital sum a. Such a J3 is the first of twenty consecutive Niven 
numbers. 

5. AN EXAMPLE OF A SEQUENCE OF SMALL NIVEN NUMBERS 

We construct a 10280*4-mark. This means r^ =4. We can solve the congruences (2), (4), 
and (5) for a modulo p e P to get a - 15830. This leads to 

£ = lcm(a, a + l,...,a + 19-10080) 
=3048830655878437890226799866816603 

2162694822826657046395002360702080. 

Solving for x in (6) and (7), we get 
b = x =3634662087332653678027291977866148 

019043614233737117568189046296950. 

Adding a suitable multiple of 8 (to get a 101120-mark), we get 
b' =21222185596541538670917359810786534 

262151758227361053517782513105911190. 
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Continue to add multiples of 8 so as not to disturb the terminal 1121 digits of b!. In short, add 
multiples of 56 * 101114* S. Doing this, we get 

/?= 49814979458796395830735187579935382447 
764488580550605587252791407296015911190. 

It is easy to check that this is a number with 1788 digits and digital sum 15830 and that fi is the 
first of twenty Niven numbers. 

6, LOWER BOUNDS ON THE NUMBER OF DIGITS 

Theorem 1: The smallest sequence of twenty consecutive Niven numbers begins with a 101120» 
mark of digital sum 15830. 

Proof: Let fi be the first of twenty consecutive Niven numbers and let a = s(j3). Suppose fi 
has fewer than 1789 digits (i.e., no more than in our example in the previous section). Since fi is 
a 10280*"2 -mark with n^ even, r^ = 2,4, or 6. A computer search shows there is no a less than 
9 * 1789 satisfying (2), (4), and (5) with ^ = 2,4, or 6 other than a = 15830 for r^ = 4. D 

In the last section we saw an example .with 1788 digits. This need not be the smallest, but it 
is close to the smallest. 

Theorem 2: The smallest sequence of twenty consecutive Niven numbers begins with a number 
having at least 1760 digits. 

Proof: By Theorem 1, we know the digital sum of the first number is 15830. Given that the 
terminal digit is a zero, there are at least 1+15830/9 digits. D 
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) 
1. INTRODUCTION 

Let 
Skn(a,d) = ak + (a+df + (a + 2d? + ---+[a + (n-l)df, (1.1) 

where k and n are nonnegative integers with n > 0, and a and d are complex numbers with d & 0. 
We shall use the notation 

5 M = ^ B ( L l ) = l* + 2* + - + / i * . (1.2) 

Similarly, let T^n(a, d) be the alternating sum 

^ > , ^ ) = a ^ - ( a + ^ + ( a + 2 ^ - - - . + (-l)w-1[a + (w-l) jf ? (1.3) 

and let 
TKn = rM( l , 1) = \k -2k + 3k - . . . + (-!)-»„*. (1.4) 

It is, of course, well known that 
Sk,o = n; Sktl=n(n + l)/2; Ska = w(/i + l)(2w +1) / 6; 

and so on. Many different writers have worked on the problem of finding simple formulas for 
Skn, and many different methods have been used; see [3], [5], [6], [9], [10] for just a small sam-
pling of recent articles. The formulas for Tk n are certainly less well known. 

In the present paper we use generating functions to find new recurrences for Skf7(a, d) and 
Tk n(a,d). We also show how Skn(a,d) and Tk n(a,d) can be determined from Sk_ln(a,d) and 
Tk_lr2(a, d), respectively, and we show how Skn(a, d) and Tkn(ay d) can be expressed in terms of 
Bernoulli numbers. One of the main results is a new "lacunary" recurrence formula for Skn with 
gaps of 6 (Theorem 3.1); that is, we can use the formula to find Smn for m = 0,1,..., 5; then, using 
only Smn, we can find S6+mt„; then, using only Smn and S6+nhn, we can find Si2+m3„, and so on. 
There is a similar recurrence for Tk^n. 

There are several motivations for this paper: (1) A recent article by Wiener [10] dealt with 
equation (1.1) and generalized some well-known properties of Skt„. We show how the formulas 
of [10] can be derived very quickly and how they can be extended. (2) In a recent article by 
Howard [4], formulas were found which connected Bernoulli numbers to Tkt„. Evidently, the 
properties of Tk^n are not well known, so the results of [4] are a stimulus to study Tk and 
Tkt„(a, d) in some detail. (3) The new lacunary recurrences mentioned above are useful and easy 
to use, and (in the writer's opinion) they are of considerable interest. In Section 3 we illustrate 
the formulas by computing S6n, Sl2}„, and^g^; in Section 6 we compute TAn,Tl0n, mdT16n. 
(4) Perhaps the main purpose of the paper is to show how generating functions provide a simple, 
unified approach to the study of sums of powers of integers. The many, and often repetitious 
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articles on Skt„ that have appeared in the last twenty-five years seem to indicate a need for such a 
unified approach. 

2. RECURRENCES FOR SktH(a, d) 

We first note that by (1.1) the exponential generating function for Sk^n{a, d) is 
oo k (a+nd)x _ ax 

YiSKn(a,d)~ = eca
+e^d^ + -+e^"-^x^e

 A
 g . (2.1) 

k=0 K\ e - 1 
We can use (2.1) to prove the next two theorems in a very direct way. 

Theorem 2.1: Let k > 0 and n > 0. We have the following recurrences for Sktn(a, d): 

^ p + 1lrffe+1-^;. w(a3 rf) = (a + «rf)fe+l -afc+l, (2.2) 
j=Q\ J J 

i ( - i y [ * t 1 ^ k + W 5 y > B ( a > r f ) = (_ i )* [ ( a + w /_d)*+i_(a_d)*-"] . (2.3) 

Proof: From (2.1) we have 

k=0 

V 
/=1 J ! k=0 K- ;=0 J' 

If we exaimine both sides of (2.4) and equate coefficients of xk+l I {k + 1)!, we have (2.2). Now if 
we replace x by -x in (2.1), we have, after simplification, 

00 yk pid~a)x _ p{d-a-nd)x 

^tSk,n(a,d)X-=e- £- . (2.5) 
Multiplying both sides of (2.5) by e^-l and equating coefficients of xk+l /(& + !)!, we have 
(2.3). This completes the proof. 

Formulas (2.2) and (2.3) generalize known formulas for a = d = 1 [8, p. 159], We note that 
(2.2) was found by Wiener [10]; see also [2, p. 169]. Bachmann [1, p. 28] found a recurrence for 
Sk^n{a, d) involving only S;>_i for j = 1,..., k. 

We now add (2.2) and (2.3) to obtain the next theorem. 

Theorem 2.2: For k = 1,2,3,..., we have 

2%{lf\^k'2%,n(^d) = (a + ndfk-(a + nd-dfk+(a-dfk - a 2 \ 

and for k - 2,3,..., we have 
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k-1 
2/r-l „2fc-l 

Theorem 2.2 can be compared to results of Wiener [10] and Riordan [8, p. 160] 

3. RECURRENCES WITH INDICES 6K + M 

We now show how to find formulas of the type (2.2) where the index j varies only over 
integers of the form 6k+ m, with 0<m<5. To the writer's knowledge, these formulas are new. 
After stating Theorem 3.1 and its corollary, we give some applications; the proof of Theorem 3.1 
is given at the end of this section. 

Let 6 be the complex number - y + ~-i, so 

03 = l and <92+ 0+1 = 0, (3.1) 

and define the sequence {Wj} in the following way: 

Wj = l + (-iy(0* + 6P-J) for/ = 0,1,..., 5, 
•WJ^W^J for/ = 0,±l,±2,.. . . 

For example, w_x =w5=2. The values of M> . for/ = 0,1,..., 5 are given in the following table: 

(3.2) 

j 

WJ 

0 

3 

1 

2 

2 

0 

3 

-1 

4 

0 

5 

2 
(3.3) 

Theorem 3.1 Let Wj be defined by (3.2) and (3.3). Then, for m = 0,1,..., 5 and n > 0, k > 0, we 
have: 

Corollary: For m - 0,1,..., 5 and n > 0, k > 0, we have: 

y 3 J"W,p„- 2 ^ 6j+m J\j+m,n +
 6 L, \ j J .w nJ 

6 %K J ) ""} 

The corollary gives us an easy way to write Skn as a polynomial in n of degree k + \. In 
particular, we have for m = 0,1,..., 5: 

3 K» = *U j )^jnJ 
~6£l J 

Using the corollary, we easily compute S0n=n and 
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5K—£i(5M 
By (3.2) and (3.3), the numbers w_j are easy to find. We have w_j - 2 forj = 1,5,7; w_j = 0 for 
7 = 2 and 4; w_j = -1 for7 = 3; w_7- = 3 for7 = 6. Thus, we have 

1 - l j , 1 5 , 1 6 , 1 7 
M 42 6 2 2 7 

Continuing in the same way, we have 

Sn,n = -n-ll*)s6,n+lt{ljy-j«J, 15^ 
3 M ' 

SO 
691 _ 5 , 33 < , 22 , 11 9 , „ , 1 12 , 1 

n,n 2 ? 3 0 3 1 0 ? 6 2 - 1 3 -1̂2,« = -^3r^rW + - « -—rr +—n' —Trf + w + - « + — « . 

It is easy to keep going: 

which gives 
vK— -̂̂ ^^IGV. 

c 43867 3617 3 „ , . s 23494 7 1105 9 663 „ 
J18,n 798 10 35 3 5 

~ , 13 3 4 15 3 17 1 i« 1 19 

5 2 2 19 
Another application of Theorem 3.1, involving Bernoulli numbers, is given in Section 4. 
Proof ofTheorem 3.1: Let 

(a+nd)x _ ax oo k 

*<*) = pdx " = ^ 5 t - " ( a ' ^ T P (3-4) 

and define ^ (x) , ^(x), and^(x) as follows: 
1 °° r3 f c 

j fc=0 VJ / C ) • 

4 0 0 = ̂ [0*00 + ̂ ( & ) + m#x)] = X S3t+i>> d) -prr-zr:, (3.6) 

4 (x ) = i [^(x) + Mite) + &A{#x)\ = £ ^ + 2 > n ( a , ^ - ^ — - (3.7) 

The equalities on the extreme right of (3.5), (3.6), and (3.7) follow from (3.1) and (3.4). Using 
(3.4) and the equalities on the extreme left of (3.5), (3.6), and (3.7), we can write 

AJx)-~r 0» = 0,1,2), 
$LJm 
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with D0=D^D2= (e™ - 1 ) 0 * * - l)(eff ** - 1 ) . Using (3.1), it is easy to compute 
v6fc+3 

j6k+3 x 

A = A = A = 6£^ 
The formulas for N0, Nl9 and N2 are more complicated, but they are easy to work out from (3.4), 
(3.5), (3.6), and (3.7). We first note that, for m = 0,1,2, we have 

i oo 3k+m 
4»(*) = \[A(x) + 6P-mA(0c) + (TA(02x)] = £ £ (a, < / ) - £ _ _ 3 jw> (3£+w)! 

Thus, we have: 

Nm = (e
{a+nd)x - emXe~dx ~ ed6x - ed°2x +1) 

+ 0i-m(e{a+nd)6x -eadx){e-dex -e^ -ed02x + 1) (3.8) 

+ ff"(e
i-a+"d)e2x - ea02x)(e~d02x - ed0x - e * +1) 

We now multiply, regroup, and expand the terms in (3.8). For example, we have 

e(a+r,d-d)x + 03-n,e(a+„d-d)<)X + ^(a+ml-d^x = £ ( a + „ < / _ < / y (1 + tf-™+! + ffn+lj^ *?_ 

J=0 J-

» „ . v 3 / + m 
= 3 Y (a+nd - d)3j+m — . 

Regrouping and expanding the other terms in (3.8), we have, for m = 0,l, and 2 , 

-Nm = 'fj[(a + nd+d)3J+m + (a+nd)3J+m + (a + nd- d)3J+m -{a+dfj+m - a3J+m 

3 , - o 
3J+m oo 3 / oo v3y+w 

-(a-d)3j+m]-f. --3^d3j •^—•Z[(a+,idfJ+m -a3j+m]— 
(V+m)\ p0 (3y)! p0

LK J(3j + m)r 
Since 

^.SW^pi^i*" (3-9) 
we can equate coefficients of x3k+m /(3k +m)\ in (3.9) and state the following: For m = 0 ,1 ,2 , 

= (a + nd + d)3k+m + (a + nd)3k+m + (a+nd-d)3k+m-(a + d)3k+m (3.10) 

_ a^+rn _ ( a _ d)3k+m _ 3 ^ f3k + m\ [(fl + ^ ) 3 y + W _ JJ+mypk-3j ^ 

At this point we observe how the sums in (3.10) can be simplified. By using properties of 6 and 
the binomial theorem, we see that 
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= (d + a + ndfk+m + e2m{d+a6 + nd0fk+m + ff"(d+a02 + nd02fk+m 

= (d + a + ndfk+m + ̂ [-dO2 + {(a-d) + nd}0fk+m + 0m[-d$ + {(a-d) + nd}61fk+m 

= (d + a + ndfk+m + J^(3k +m\-l)k+m-Jd3k+m-J(ff"-J+e2m+J)(a-d + nd)J 

j=0 \ J J 

= (d + a + nd)3k+m +3J^(3k + m\-l)kd3k+m-J(-l + wm_j)(a-d + ndy. 
j=o y J

 J 
(3.11) 

We substitute (3.11) [and also (3.11) with n = 0] into (3.10), and we consider the two cases of A; 
even and k odd. Then using the binomial theorem and the fact that w • = 0 when j - 6k + m + 2, 
we can easily simplify (3.10) to get Theorem 3.1. This completes the proof. 

4. Shn{a, d) IN TERMS OF BERNOULLI NUMBERS 

The Bernoulli polynomial Bk(x) may be defined by means of the generating function 

7b=£*wir (41) 
k=Q 

When z = 0, we have the ordinary Bernoulli number Bk, i.e., Bk(Q) = Bk. It is well known [2, pp. 
48-49] that B0 = 1, Bl = - } , B2 = | , and B2m+l = 0 for m > 0. It follows from (4.1) that 

*,«=£(*>,-/. 
Comparing (4.1) and (1.2), we see 

k + l 

;=o 

5 * + i l ;7 + " | - 5 * + i V' (? 

(4.2) 

(4.3) 

Now, for fixed a and d, suppose we write Sk^n{a, d) as a polynomial in (a - d + wrf); i.e., 

Sk,n(P9 d) = ̂ ( a , </) + [* + ( « - l ¥ f 

By (4.2) and (4.3), we have the following result. 

(4.4) 

Theorem 4.1: If Sktn(a,d) is written as a polynomial in (a-d + nd) and vkj is defined by (4.4) 
for j = 1,2,...,Jfc + 1, then 

'-ITI(*;I>,"'*~' (i^s*-»-vfr ,- = 

Vk,k - 2 ' VA:,fc+l : 
1 

d(* + l) ' ifc + 1 
Bk+i~Bk+\ 

a 
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When a = d = 1, Theorem 4.1 gives the well-known result [2, pp. 154-55]: 

Sk,„ = SKn{\, 1) = nk +j^I,[kj l)Bk+l-jnj. 

Here, we can give another application of Theorem 3.1. Since vktl=Bk for k>\, and 
a = d = 1, we see from the corollary to Theorem 3.1 that, for m = 0,..., 5 and 6k + m > 1, 

(6k+m + 3)„ \^f6k + m-h3^J? , 1 ,„ , r ^ iA ~ 
[ 3 JB6k+m = -L( 6j + m J56/+« + g(6* + w + 3)w«-i- (4-5) 

Formula (4.5) is a lacunary recurrence for the Bernoulli numbers that is equivalent to a formula of 
Ramanujan [7, pp. 3-4]. See also [8, pp. 136-37]. 

5. FINDING SkfH(a, d) FROM Sk_hn(a, d) 

Several writers, like Khan [6], have pointed out that when a = d = 1, if we know just Sk_ln, 
we can evaluate SktTl. Using (2.1), it is easy to prove this and to generalize it. First of all, we can 
use mathematical induction on (2.2) to prove that Sk^n{a, d) is a polynomial in n of degree k +1, 
with constant term equal to 0. (That also follows from Section 4.) Thus, for fixed a and d, we 
can write 

Sk9„(a, d) = ckln + ckan2 + • • • + ckMlnk+l. (5.1) 

Theorem 5.1: For fixed a and d, let ckJ be defined by (5.1) for j = 1,..., k +1. Then, for k > 1, 
we have 

kd 
,,_! C/ = 2,.. . ,* + l), (5.2) ck,j ~ j ck-\, 

Ck,l~a ~Ck,2~Ck,3 Ck,k+l- ( ^ ) 

Proof: Define the polynomial Pk{z) by means of the generating function 
oo k Ja+zd)x _ ax 

I^)fr e* 7 ' (54) 
k=o Kl e -i 

so Pk(n) - Skn(a, d). This implies that 
Pk(z) = ckAz + ckaz2 + ...+cKk+lzk+l (5.5) 

for all positive integers z, and hence for all complex numbers z. Now we differentiate both sides 
of (5.4) with respect to z to obtain 

^ D„ , xk dxe{a+zd^x dx(e^a+zd)x - em) dxe™ 
1^{Z)^-^T^ e--l V ^ P (56) 

We recall the definition of the Bernoulli polynomials, formula (4.1), and we see that 

^-hd*ldm (57) 
e k=0 
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and we note that Bk(j) is independent of z. From (5.4), (5.6), and (5.7), we have 

£wrf„^%+iHffe- (58> 
Equating coefficients of xk I k\ in (5.8), we have 

P{{z) = dkPUz)+dkBk{^. (5.9) 

Thus, by using (5.5) and equating coefficients of zj~l in (5.9), we have 

ckj=— ^-w-i 0" = 2,.. . ,* + l). 
J 

Also, by (5.1) and the fact that Sktl(a, d) = ah, we have 

dkBk ( J H = cKl = ak- cka -ck§3 ckMl, 

and the proof is complete. 
Thus, if we know the coefficients of Sk_^n(a,d), we can determine the coefficients ckj of 

Sk,n(a> d) for y = 2,..., A + 1 from (5.2) and then compute ckfl from (5.3). For example, 

so, by (5.2) and (5.3), we have c u = ̂ c0l = y, and c u = a- |-; that is, 

^>, r f ) -cu« + c u « 2 -L - -J« + -«2. (5.10) 

Equivalently, by (5.9), we can integrate to find Pk(z): 

Pk{z)^dk\Pk^{z)dz + d%[^z9 (5.11) 

[The dz in (5.11) should not be confused with the complex variable d.] The constant of integra-
tion is 0, and ckl = dk Bk(j) can be found by means of (5.3). When a = d = 1 and k > 1, Bk{j) is 
the A:111 Bernoulli number. We illustrate (5.11) by finding S2t„(a9d). From (5.10) and (5.11) we 
have, after integrating Sln(a, d) with respect to n and multiplying by 3d, 

so by (5.3) we have 

( d2\ 2 d2 3 

S2>II(a,d) = W-ad + 2 , * ̂
 / 
«+ ad w2+—w3. 
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6. RECURRENCES FOR TkfH(a, d) 

Let Tktn(a, d) be defined by (1.3), with k > 0, n > 0, and d * 0. This type of sum is discussed 
briefly by Bachmann [1, pp. 27-29] and Turner [9]. We note that Tk n(a, d) can be expressed in 
terms of Skn(a, d) in the following ways: 

Tk,2n+M, d) = SKn+1(a, 2d)-SkJa+d, 2d), 
Tk,2„(a, d) = SkJa, 2d) - SK„(a+d, 2d). 

Also, \fa = d = l, then 
5 ,2»-^ ,2« _ 2 Skt„, (6.1) 

which makes some of the formulas for TktJl trivial in light of the results of Sections 1-5. 
In the remainder of the paper, we find formulas for Tk n(a, d) that correspond to the ones for 

Skn(a, d). The essential tool is the generating function 

^Ua,d)^ = eax~e^+^ + ---+(-irVa+"d-^ = { l) \ +e . (6.2) 
k=0 fc\ e + 1 

The following three theorems are analogs of Theorems 2.1, 2.2, and 3.1, and they are proved 
in exactly the same way as those earlier theorems. The proofs, which use (6.2) instead of (2.1), 
are omitted. 

Theorem 6.1: We have the following two recurrences for Tk n(a, d): For k > 1, n > 0, 

2Tk+lJa, d) + t(k] ^d^-'TjJa, d) = (-l)""1^+nd)M +ak+\ (6.3) 

2Tk+1Ja, d) + £ ( * + iy-d)M-JTJtn{a, d) = (-l)"+\a + nd-d)M + (a-d)k+1. (6.4) 

Formula (6.3) generalizes a formula of Turner [9]. 

Theorem 6.2: For k = 1,2,3,..., we have 

^k2jl)dlk-2i-%j^d) 

= {-\)"-\a+nd)2k-x + (-\)"{a + nd-d)2k-1 -{a-d)2k-1 +alk~\ 
and 

= (-l)n-\a+nd)2k + (-\)n(a+nd-d)2k -(a-d)2k +a2k. 

Theorem 6.3: Let Wj be defined by (3.2) and (3.3). Then, for m = 0,1,..., 5, and n > 0, k > 0, we 
have 
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8T6k+m,n(a, d) = -6Z{fjtZy*-6%+m,„(a, d) 

+ I \^k^myk"m~^m^{-\r\a-d + nd)U(a-dy] 

+ 4[(-l)"-\a-d+nd)6k+m + (a - d)6k+m]. 

Corollary: Let n > 0, k > 0. For m = 0,1,..., 5, and m and k not both 0, we have 

+4(-i)w-v^w+[i+(-ir i ]w; 

Note that, for m = 1,2,..., 5, we have 
m-\ 

SO 

m-\f \ 

srmj„=(-ir'ijJJ^,-/+4(-iri»m
+[i+(-ir']w, 

To illustrate Theorem 6.3, we first calculate \ n \ 

Then 

which gives us 

^o,„ = -6(4°) \n + (-I)""115°)^/ + (-D-1^10, 

Continuing in the same way, we have 

which gives us 

T16,„=(-i)-'i -" - ' ( - 9 2 9 5 6 9 „ + 764540»3 - 377286»5 + 8866O/17 

-12155«9 + 1092nn-70«13+4n15 + -H16 
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Tkyn(a, d) W TERMS OF GENOCCHI NUMBERS 

The Euler polynomial Ek(z) may be defined by the generating function [2, pp. 48-49] 
,XZ oo 

For z = 1, we have 

2e V r / \ -

4 ( I ) = 2 2 ^ - 1 ) ^ = _ _ I _ G M _ 

(7.1) 

(7.2) 

where i^+1 is a Bernoulli number and Gk+l is called a Genocchi number [2, p. 49]. The Genocchi 
numbers are integers such that G2m+l = 0 for m>0; the first few are G0 = 0, Gx - 1, G2 = - 1 , 
G4 = 1, G6 = - 3 . It follows from (7.1) that 

^ ) = £ Q ^ ' . 
Comparing (7.1) and (6.2), we see that 

Tk,M,d) 
dk 

(-ir^if+»+^f 

(7.3) 

(7.4) 

By (7.3) and (7.4), we have the following result. For fixed a and d, if we write Tkn{a,d) as a 
polynomial in (a-d+nd), i.e., 

7M(a, d) = Tk>n_x(a, d) + (a-d + nd)k 

= ukf0+ ukl(a -d+nd) + uk}2(a-d+ndf + "-+ukk(a-d + nd)k, 

then we have explicit formulas for the coefficients ukj in terms of Genocchi numbers. 

(7.5) 

Theorem 7.1: If Tkn{a,d) is written as a polynomial in {a-d+nd) and ukj is defined by (7.5) 
for 7 = 0,1,..., k, then 

"M " 2(* +1) k+l 2 k [dj "k'k ~ ~T 
n-l 

When a = d = l,we have 

When n is even, (7.6) follows from (6.1) and the formulas in Section 6 [1, p. 27]. 

For example, T3 = l3 - 23 + • • • + (- lyW 

2 4 2 2 3 8 4 8 V / J 
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An application of Theorem 6.3 that is analogous to (4.5) is the following. If n is odd and a = 
d = 1, by Theorem 7.1 we have uk^ - -Gh+l I (k +1). Thus, by Theorems 7.1 and 6.3 we have, 
for /if = 1,2, . . . ,5, 

which is equivalent to a formula of Ramanujan [7, p. 12]. 

8e FINDING TM(fl, if) FROM Ti^Cfl, if) 

We proceed as we did for Sktn(a,d). By using induction on (6.3), we can prove that 
Tktfl(a,d) is a polynomial in n of degree k, and the constant term is 0 if n is even. That also 
follows from the results of Section 7. Thus, for fixed a and d, we can write 

Tk,n(a7d) = \ (8.1) 
{hKQ + hK1n + >-+hKkn (n odd). 

Using the generating function (6.2), we prove the next theorem just as we proved Theorem 5.1. 

Theorem 8.1: For fixed a and d, let tkJ andhkJ be defined by (8.1) for j = 0,..., &. Then for 
k > 1 we have . 

' * , / = — **-w-i (7 = 2,...,*); \ y = — V i , y _ i (7 = 2,...,/:); 

Thus, if we know Tk_ln(a, d), we can use Theorem 8.1 to find Tkt„(a9 d). For example, 

|0 (n even), i-(d 12)n (w even), 
2S>,rf) = | 1 ( w o d d ) . ^ a > ^ = {(a_j/2) + (rf/2)« (/i odd). 

,2 

\ l = -
fcf Jk 

Then, for n even, we have T2^(a, d) = f2jlw 4- /2>2« , with 

Thus, 

r2)2 = tfu = -^ 2 /2; r2?1 - - [ a 2 - ( a + d)2] + d2 = -ad + d2 12. 

T2^(a, d) = (-d2 - ad)n - - d V (w even). 

For n odd, 2JfW(a, d) = \ 0 + \ i w + \2w2> w^*1 

2̂,2 = rf\i = d2 /2; h2A = f2jl + 2dfelf0 = ad-d2 /2; /i2)0 = a2 - / i 2 J - / i 2 > 2 = a2 -arf. 
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Thus, 
T2n(a, d) = (a2 -ad) + (ad--dAn + -d2n2 (n odd). 

Equivalently, by Theorem 8.1, we can integrate to find Skn{a, d): 

f kdk (a\ 
Sk,n(a^d) = kd\ Sk-iMd)^—YEk~\d)n+hk(ri^ 

where E^^j) can be found by means of Theorem 8.1, and 

h t„\ - 1° (n e v e n) ' 
hk{n)-\\,o = ak-Ki-K2-'''-Kk ("odd). 

9. FINAL COMMENTS 

In summary, we have used generating functions to prove and generalize some of the basic 
formulas for sums of powers of integers. In particular, we have used the generating function 
technique to find: recurrence relations for Skn{a,d) and Tk n(a,d); explicit formulas (involving 
Bernoulli numbers) for Sk n(a,d) and Tkn(a,d) if they are written as polynomials in n; methods 
for finding Skn(a, d) and Tk n(a, d) from Sk_ln(a, d) and Tk_ln(a, d). Some of the results are old 
(and scattered in the literature), and most of the proofs are straightforward. However, the writer 
believes that many of the generalizations are new, and he believes that Theorems 3.1 and 6.1 give 
us new recurrence formulas that are of interest. 
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1. INTROBUCTION 

The Fibonacci rabbit population model is often regarded as one of the first studies of popula-
tion growth using mathematics. Later, an analytic model of population dynamics was introduced 
by Voltera (Deakin & McElwain [2]). Systematic epidemic modeling in age-structured popula-
tions was first carried out in this century by Hoppensteadt [6]. 

Dubeaiu [3], in revisiting the Fibonacci rabbit growth model, has developed an approach that 
can be applied to population dynamics and epidemiology where censoring occurs either by in-
ability to procreate or by death. It is the purpose of this note to apply Dubeau's method to 
Fibonacci's model of infectious diseases which was developed by Makhmudov [9] and to combine 
it with the approach of Shannon et al. [12] who attempted to refine the work of Makhmudov. 

2, THE MODEL 

Following Makhmudov [9], three epidemiological stages in the process of spreading 
infectious diseases are postulated: 
(i) an initial (incubation) stage of r periods (periods 0, 1, 2, ..., r-l) during which those who 

are ill with the disease do not affect others, 
(ii) a mature (infectious) stage of t periods (periods r, r +1,..., r +1 -1) when each person infects 

s healthy people, and 
(iii) a removal stage of m periods (periods r + t,...,r + t + m-l) when those who have been 

infected are no longer infectious. 

An example might be the common cold which, on average, takes about two days to develop 
(r = 2), a person is then infectious for about three days (f = 3), and the symptoms persist for 
about seven days (r + t + m = J, hence m = 2). In general, s is variable, but we shall treat it as a 
constant in the absence of other information. For background material on the structure of general 
epidemic models, the reader is referred to Billiard & Zhen Zhao [1]. 

In terms of a modification to Fibonacci's rabbit problem, these correspond in turn to 
(i) the infancy stage, 
(ii) the reproductive stage, and 
(iii) the post reproductive stage, 
respectively, and instead of infectives we have male-female pairs of rabbits. For the original Fibo-
nacci model, we take r = 2, s - 1, and t = m = +co. 
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2.1 A Direct Approach 
Following Dubeau [3], let 

un be the total number of disease carriers at the 71th period, and 

vl
n be the number of/-period old disease carriers at the nth period. 

More precisely, Vn represents the disease carriers in the 
(i) initial stage for i = 0,..., r -1, 
(ii) mature stage for i = r,...,r + t-l, 
(iii) removal reproductive stage for / = r +1,..., r +1 + m -1, 
and for / = r + t + rn,..., vl

n represents the disease carriers who have been infected in the past but 
have already recovered. 

It will be convenient to define un and Vn for all n eZ ={..., - 3 , - 2 , - 1 , 0,1,2, 3,...} and 
1 G N = {0,1,2,3,...}. We consider the following initial conditions on Vn : 

v: =< 
0 f.f/i<0 and 1 = 0,1,2,..., 

lor\n = 0 and/ = 1,2,3,..., 
[l(orvo) for« = 0and/ = 0. 

As a consequence, for any « G Z , 

K = v ,'-1 for / > 0, 
and 

We obtain 

v - ' 1 for n = 0, 
.^K + ' - ' + C " 1 } for/i*0. 

K« V l T O W r vn-r-ti 

for « > 1. From the definition we have, for any « G Z , 

(i) 

It follows that 

or 

r+t+m-l 

;=0 

U„=< 

0 for n < 0, 
r+ r - l 

w0 +5 2]*/„_£ for« = 0, . . . ,r + f+ /W-1, 
fc=r 

r+f-1 

k=r 
forn>r + t + m, 

un = V i - 8^ r+t+mu0 + s{//w_r - un_r_t} 

for w > 1, where SUJ = 0 if 1' * 7, or 1 if/' = 7. 

(2) 

(3) 
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Example 1: Table 1 contains values of vl
n and un for r - 2, t = 3, m = 2, and s = 1. 

TABLE 1. r = 2,* = 3,m = 2,ands = l 

s: 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 ' 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

112 

165 

241 

354 

518 

760 

1 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

112 

165 

241 

354 

518 

2 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

112 

165 

241 

354 

un 

3 

0 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

112 

165 

241 

4 

0 

0 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

112 

165 

5 

0 

0 

0 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

112 

6 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

77 

un 

I 

1 

2 

3 

5 

7 

11 

15 

23 

33 

49 

71 

105 

153 

225 

329 

483 

707 

1037 

1519 

2227 

Remark—The Effect ofm: Let {un}^0 and {un}^0 be the sequences generated with m and m + l 
for the same values of r, t, and s. From (3) we have, for n > 1, 

Un ~ Un-\ ~ ®n, r+t+mU0 + S\Un-r ~ Un-r-0 

and 
Un ~ Un-l ~dn, r+/+m+1^0 + S\Un~r ~ Un-r-ti • 

Let Anu = un~un, then from (3) 
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KU = A « - 1 W + (<?«, r+t+m ~ Snr+t+m+l)u0 + s{An_rU ~ An_r_tu}-

It follows from (1) that Ar+t+m+nu = v°n for n > 0. 

2.2 A Generating Function Approach 

Following Weland [13], Hoggatt [4], Hoggatt & Lind [5], and Parberry [11], we can use the 
generating function method to obtain the recurrence relation (1), (2), or (3). 

Let us define the generating function for the sequence {i/w}^0: 

U(x) = ^unx". 
n=0 

The function U(x) can be expressed in terms of (i) the generating function of the infectious 
process (a polynomial) 

+00 

B(x) = ^b„x" (b0 = 0), 

where bn indicates the number of infected healthy people by an /?-period old disease carrier, and 
(ii) the "total recovering" polynomial D{x) - xr+t+m. 

Let 
+00 

be the generating function associated to the sequence {v°}£?0, where 

v°2=b/2+b/l+b2vl 
etc.. 

and, in general, 

for n > 1. It follows that 

v° = Yb.v° . 
n L-i J n~J 

j=0 

V(x) = - l 

\-B{x)' 
Let u* be the number of disease carriers at the rfi period, assuming no recovery, and 

Then 
n 

,0 

y=0 
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and we obtain 

U*(x) = —L-:v(x): 
0-*) ' 0-*)(l-^(x))' 

If we now allow for recoveries, since each disease carrier recovers r + t + m periods after its 
infection, the number hn of recovering people at the 71th period is given by hn - v°_(r+r+w). There-
fore, 

H(x) = f>„x" = D(x)V(x) = -2&-. 

Let rn be the total number of people who recovered up to the rfi period, then 

7=0 
and 

W to 1-x } ( l - x ) ( l - 5 ( x ) ) 

Now, un-un- rn (>? > 0), so that 

PW-TO-W-,,.^). 
From the model, we have 

r+t-l 
B(x) = s ^ \ D(x) = xr+t+m, 

n=r 

and 
1 _ yr+t+m 

U(x) = -1 - x - sxr + sxr+t 

It follows that u0 = 1 and, for n > 1, un = un_x - 8nr+l+ji0 + s{un_r - un_(r+t)}. Moreover, since 

1 
V(x) = - r+t-l 

l-s£x" 
n-r 

it follows that v£ = 1, and v° = s{v°_r + • • • + v°_(r+r_1}} for n > 1. 

2.3 A Matrix Approach 

Following Klarner [8], let us consider the sequence of (r +1 + m)-vectors {v„}£?0: 

v ^ C v ^ v i , . . . ^ ' ^ 1 ] (/i = 0,1,2,...). 

They are related by the equation 

v„+1 = vnF = - = v 0 F " + \ (4) 

where v0 = [1,0,..., 0] and F = (ftj) is a square matrix of order r + t + rn with entries fv(i = 0, ..., 
r + t + m-1; j = 0, ...,r + t + m-l) such that 
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r+t+m-l 
V: w+1 5X6 • 

;=0 

For our problem, 

and for j = 1,...,r+ * + #*-!, 

f _ J s fo r*=r , . . . , r+ r - l , 
*'7° (0 elsewhere, 

^ [0 elsewhere. 

The characteristic polynomial of F is det(x/ -F) = xr+t+m - s(xt+m + • • • + xl+m) = cF(x). From 
the Cayley-Hamilton theorem, the matrix F satisfies its characteristic equation, and we have 
cF(F) = 0. Hence, FncF(F) = 0 for any n > 0. It follows that Fn -s(Fn~r + • • • + Fn~(r+t~l)) = 0 
for n > r +1 + /w. Finally, from (4), we have 

and, since z/w = vwl, where 1 = [1,..., 1]T, 

for n>r + t+m. 

3. A RELATED ARRAY 

Let w^Qc) be the number of /-period old disease carriers of the k^ generation at the w* 
period, and wn(k) be the number of disease carriers of the k^ generation at the rfi1 period. We 
have 

r+t+m-l 

7=0 

and, for / >r + t + m, wl
n(k) indicates the number of people of the £* generation at the rfi period 

infected i periods ago and who have already recovered. 
We also have 

wf
n(k) = 0 fo r«<0or /<0 , 

Wn(k) = Sni for n > 0 and / > 0, 

and, for k > l,n > 0, and / > 0, 

W (k) = ls{w»(k -l) + " ' + < + r " 1 ^ -!)} for i = 0, 

We can deduce that w°n(k) * 0 for kr < n < k(r +1-1), k = 0,1,2,.... It follows that wn(k) * 0 
only for k>0mdn>0 such that kr = nL(k)<n^n^k) = (r + t + m-l) + k(r + t-l). Then, for 
a given w, let 
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kL(n) = imJkGN\k>0 and k>n (r + t+m 1) 
[ , r+t-1 

ku(n) = mdx\k GN\k< — >; 

hence, wn(k) = 0 for k < kL(n) and k > kjj(ri). To relate the wn(k) and w'n(k) to the un and vj,, we 
have 

+co ku(n) 

k=Q k=kL(n) 

+00 %(w) 

i£ = 2>i(*) = X^W-
&=0 &=0 

Also, for A: >1, 
r+H-m-1 r+t+m-1 

>"„(*) = E^(*) = !>"-,(*) 
;=0 ;=0 

r+f+m-1 r+f-1 r+f-1 r+f+m-1 

7=0 ^=r £=r 7=0 

r+f-1 r+f+w-1 r+r-1 :*I I^U*-!)=*!>„-<(*-1)-
^=r 7=0 ^=r 

As a consequence, using the generating function, we have 
+oo +oo fr+t-l \ 

<?*(*) = !>„(*)*» = *X X>„_*(*-1) 
w=0 W=0V ^=r / 

77=0 

Also, 

thus 

and 

= ST\ Yw£(k-l)\x"=$(xr + --+xr+t-l)Ydw»(k-lW 
n=0\£=n-(r+t-l) J 

= s(xr + -+xr+'-l)Gk_l(xl 

+oo 

G0(x) = X w»(°)*" = 1 + * + • • • + x1 r+f+m-1 

w=0 

G^(x) = / [x r ( l + x + ••• +xt~l)f G0(x) 

uv{k) 

Gk(l) = (st)k(r + t + m)= £*„(*)• 
n=nL(k) 

Example 2: Table 2 illustrates the values of wj
n(k) and wn(k) for r = 2, f = 3, wi = 2, and J = 1. 
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TABLE 2. r = 2,t = 3, m = 2, and s = 1, nL(k) = 2&, %(&) = 4* +6, 

ftL(/i)-min|ftG^|ft>Oandft>^^k M » ) = maxj& eN\k < ^ 

« 
1 ° 
1 I 
1 2 

1 3 

4 

1 5 

1 6 

1 7 

8 

9 

kL{n)* k *kv(n) 

Mo)- o -Mo) 
MO- 0 -MO 
M*) = 0 

I -M2) 
M*)- 0 

1 -M3) 
M*)"- 0 

1 
2 -M4) 

M*)- 0 
1 
2 -M$) 

M*)- 0 
1 
2 
3 =M6) 

^ ( 7 ) - 1 
2 
3 -M?) 

^ ( 8 ) - 1 
2 
3 
4 - ^ ( 8 ) 

^ ( 9 ) = 1 
2 
3 
4 -M9) 

<(*) 
i 

0 
1 
0 
0 
i 
0 
1 
0 
1 
1 
0 
0 
2 
0 
0 
3 
1 
0 
2 
3 
0 
i 
6 
1 
0 
0 
7 
4 

1 
0 
1 
0 
0 
0 
1 
0 
1 
0 
0 

I 
0 
0 
2 
0 
0 
3 
1 
0 
2 
3 
0 
0 
1 
6 
1 

2 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
i 
0 
0 
1 
1 
0 
0 
2 
0 
0 
3 
1 
0 
0 
2 
3 
0 

3 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
1 
i 
0 
0 
2 
0 
0 
0 
3 
1 
0 

4 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
1 
1 
0 
0 
0 
2 
0 
0 

5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
I 
0 
0 
0 
0 
0 
0 

1 
0 
0 
1 
0 
0 
0 
1 
1 
0 
0 

6 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

i 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 

".(*) 1 
1 
1 
I 
1 
1 
2 
i 
3 
1 
1 
3 
3 
1 
3 
6 j 
1 
3 
8 
4 
3-
9 
10 
1 

2 
9 
17 
5 

4. LIMIT OF RATIOS un+11 un 

We consider the linear difference equation (2) of order r +1 -1 : 
r+t-l 

un = sY,un-k (n>r + t+m). 

The sequence {un}^r+t+m is completely defined if we assume that the values um+l, um+2, ..., 
ur+t+m-i are known. 
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For our model (2) or (3), we observe that the finite sequence {MW}̂ O+WI l is a sequence of non-
decreasing integers with u0 = l (or any initial value u0 > 0). 

We consider two cases for the analysis of the ratios un+l/un: the case t = 1 and the case t > 1. 

4.1 The Case *=1 
We have un - sun_r (n>r+rn + l). It follows that 

(n>m + T) 

and the sequence of ratios un+l/un is a sequence of length r repeated infinitely many times. It is 
completely characterized by the finite sequence 

-J2± -̂ for n = m +1,..., m + r. 

Using (2), for the initial value uQ = 1, we have 
k 

I 
7=0 

Un=lL^ for n<r+m, and 
&r < ?z < (& + l)r 

and 

w « = X ^ for « = 0,..., r + m. 

Let 

Pu = 

/=o 

r+m and pL = l + /w 

then pu - pLor pL
Jr\. Hence, the sequence yfL\H m+i is such that 

v i _ 

r - 2 times, 

It can be shown that the set 

PL Pu 

*lWl> ltime> 
/=o / /=o 

PU I PL 

X^/ I^ ltime-
/=0 / z=0 

-il±I \n = m + l,...,m + r 

converges to the set {1, s} when m goes to +QO. 

Example 3: Table 3 contains the values of (6) for r = 4, t = 1, and s = 2. 
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TABLES. r = 4 ,*=l ,and£ = 2 

1 Um+i + l 
' um+i 

i 

1 

2 

3 

4 

1 

1 

3 

1 

2/3 

2 

3 

1 

1 

2/3 

3 

1 

1 

1 

2 

4 

1 

1 

7/3 

6/7 

m 

5 

1 

7/3 

1 

6/7 

6 

7/3 

1 

1 

6/7 

7 

1 

1 

1 

2 

8 

1 

1 

15/7 

14/15 

9 

1 

15/7 

1 

14/15 

4.2 The Case t > 1 
Let K = r + t-l. The linear difference equation (5) is equivalent to the following linear dif-

ference equation of order K, 
t-i 

if the sequence {un}^=o for (7) corresponds to the sequence K £ + 1 for (5). Hence, the limit of 
un+\ / un *s ^ e same for both equations. 

Let us recall some definitions and results about linear difference equations of the form 

Un+K ' blUn+K-l bK-lUn+l ' hKUn = ° i n * ° ) • ( 8 ) 

Definitions: 

(a) The polynomial (p{X) = AK- \XK~l bK is called the characteristic polynomial for (8). 

(b) The equation <p(A) - 0 is the characteristic equation for (8). 

(c) The solutions Ah...,Xe of the characteristic equation are the characteristic roots. 

The first result is a standard result about the general solution of (8). 

Theorem 1: Suppose (8) has characteristic roots Xh ..., Xk with multiplicities Ji,...,jk, respec-
tively. Then (8) has n independent solutions nJ'/t", j = 0,...,je-l; £ = l,...,k. Moreover, any 
solution of (8) is of the form 

e=\ j=o 

where the fiej are obtained from the values of un for n = 0,..., K -1. 

Proof: See, for example, Kelley & Peterson [7]. D 

The next two results depend on the form of (8). 
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Theorem 2: Assume the bt are nonnegative in (8). 
(a) If at least one bt is strictly positive, then (8) has a unique simple characteristic root u > 0 and 

all other characteristic roots of (8) have moduli not greater than a. 
(b) If the indices of the bt that are strictly positive have the common greatest divisor 1, then (8) 

has a unique simple characteristic root a > 0, and the moduli of all other characteristic roots 
of (8) is strictly less than a. 

Proof: See Ostrowski [10, pp. 91-92]. D 

Theorem 3: If in (8) the bt are nonnegative and {ww}£?0 is a sequence satisfying (8) such that u0, 
ul9 ..., %_x are strictly positive, then we have un > aan (« > 0), where a > 0 is given by 

a = mm {> = *...,*-!}. 
Proof: See Ostrowski [10, p. 93]. D 
Since 

f0 for/ = l , . . . , r - l , 
*s fori = r,...,r + t-l, 

and the common greatest divisor of r, . . . , r +1 -1 is 1 for t > 1, it follows from Theorem 2(b) that 
(7) as a unique simple characteristic root a > 0 and the moduli of all other characteristic roots are 
less than a. 

Let Al5.. . , Xk and a be the characteristic roots of (7), then, from Theorem 1, 

Moreover, since u0 > 1 and {wJ^To is a nondecreasing sequence, we obtain, from Theorem 3, 
u„ > aon for 

It follows that 

a 

a = min|-^|w = 0,...,JS:-l|. 

u k h~l (2 Y 

and taking the limit on both sides we have lim uj an = J3>a>0 as a consequence of the 
following lemma. 

Lemma: If |p|<l,.then lim napn - 0 for any a = 0,1,2,.... D 
»->+oo 

Finally, 

u„ ujan 
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and we obtain lim un+l /un=a, where <J is the unique positive root of 
w-»+oo 

<P(x) = xr+t-1-sYJxi (t>\y 
7=0 

5. A MORE REALISTIC MODEL 

In any real population, the epidemiological status of members is as follows: (i) susceptibles, 
(ii) infected, and (iii) resistants. Thus, there is not an unlimited supply of susceptibles. 

Let 
N be the total population, 
Sn be the number of susceptibles at the nth period, 
Un be the number of infected and carriers at the rfi period, and 
Rn be the number of resistants at the /7th period. 

Then N = S„+Un+Rn, and the initial conditions are S0 = N-l, UQ = l, and i^ = 0. Using the 
notation of Section 2, we have 

r+t+m-l 
un= I>< 

and 

j=r+t+m i=r+t+m 

fO \fn<r + t + m, 
n 

Y,vn-t if n>r + t + m, 
\J-r+t+m 

S„ = N-U„-R„. 

However, the number of susceptibles is limited, so 

and 

r+t-l 

For Rn we have 

v^ = min\Sn,l9s^\i 

r+t+m-l 
r+t+m Ki ~ *\-{r+t+m) + 2^ Vn-i 

7=0 

r+t+m-l 
= *\i-(r+t+m) + 2~i Vn-(r 

7=0 

~~ *\i-(r+t+m) + Un-{r+t+m) ~ ™ ~ ^n-(r+t+m). 
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It follows that 

$n ~ $n-(r+t+m) +Un = 0 

or 
11 - K - V 
^ n~ °n-(r+t+m) °n 

and, if Sn = 0, then U„ = Sn_{r+t+m). 

Example 4: Table 4 illustrates this model for r = 2, t = 3, m = 2, s = 1, and JV = 200. 

TABLE 4* r = 2, f•= 39 m = 29 s = 1, and N= 200 

w \i 

0 

1 

1 2 
3 

1 4 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

36 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

36 

0 

0 

0 

0 

0 

0 

2 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

36 

0 

0 

0 

0 

0 

Vn 

3 

0 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

36 

0 

0 

0 

0 

4 

0 

0 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

36 

0 

0 

0 

5 

0 

0 

0 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

36 

0 

0 

6 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

2 

2 

4 

5 

8 

11 

17 

24 

36 

52 

36 

0 

UH 

1 

1 

2 

3 

5 

7 

11 

15 

23 

33 

49 

71 

105 

153 

184 

176 

165 

148 

124 

88 

36 

0 

K 
0 

0 

0 

0 

0 

0 

0 

1 

1 

2 

3 

5 

7 

11 

16 

24 

35 

52 

76 

112 

164 

200 

Sn 

199 

199 

198 

197 

195 

193 

189 

184 

176 ! 

165 

148 

124 

88 

36 

0 1 

0 

0 

0 

0 

0 

0 

0 
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(Submitted October 1994) 

1. AIM OF THE PAPER 

The well-known identity (e.g., see [1], p. 127) 

^=fk o-i) 
/=i 

led us to investigate the Fibonacci numbers of the form Fk„ with k and n positive integers. The 
principal aim of this note is to present some new identities involving Fk„, some of which general-
ize (1.1). This is done in Sections 2 and 3. In Section 4, a first-order recurrence relation for Fk„ 
is established which involves certain combinatorial quantities whose properties will be investigated 
in a future paper. A glimpse of analogous results concerning the Lucas numbers L „ is caught in 
Section 5. 

The formulas established in this note encompass the trivial case n = 1 under the usual assump-
tions 

n / ( o = i i f f t < f l (i.2) 
i=a 

and 

X / ( 0 = 0 i fA<* (1.3) 
i=a 

2. MAIN RESULT 

Proposition 1: Ifk is even and n > 1, then 

/=i 

We can immediately observe that, if k = 2, identity (2.1) reduces to (1.1). 
Proof of Proposition 1: Write 

F- F, F n-if . , 

whence, following the notation used in [2] [namely, Rs(t) = Fst / Ft], we can rewrite (2.2) as 

^r=F*fU(*')- (2-3) 
7 = 1 

Using (2.3) along with (2.1) of [2] yields 

Jfc/2 

; = i 
U/-i)*' 

(2.1) 
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n-l (k/2 1 
Fk» = FkJl \YXF

k<(2j-l)-l +Fk\2j-l)j\ 

The right-hand side of (2.4) clearly equals that of (2.1). Q.E.D. 

Proposition 2: If & is odd and n > 1, then 

(2.4) 

n-l (Jfc-l)/2 

Observe that, if & = 3, identity (2.5) reduces beautifully to 
n-l 

^ = 2II(Jw-i) 
7=1 

In order to prove Proposition 2, we need the identity 

f r_1Y7 _ (-irr4r+(-i)rv+i)-4-2(-ir 

(2.5) 

(2.6) 

(2.7) 

which can readily be proved by using the Binet form for Lucas numbers and the geometric series 
formula. We also need the identity 

La+b-(-l)bLa_b=5FaFb, (2.8) 

which can be obtained from identities I21 - 1 2 4 of [3]. 

Proof of Proposition 2: The proof has to be split into two cases according to the residue of 
k modulo 4. 

Case 1. k = 1 (mod 4) [i.e., (k -1) 12 is even] 
By (2.2), we can write 

n-l fT , n-l 
i +

5 /> '5 ' - i 
* S 

/=i 

/=i 

2 , LkM-ki+LkM+k' 2 

V + 2 (by (2.8) and I17 of [3]) 

1+-A^..»,+i 2fc'(fc-l)/2 2fc'(fc+l)/2 2fc' 

V + 2 
4, . -2 

7=1 

(Ar-l)/2 

/2=1 

[by (2.7)]. 

Observe that, since ( £ - l ) / 2 is even by hypothesis, the above expression does not vary if we 
multiply it by (-l)(w-1)(^1)/2. 
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Case 2. k = 3 (mod 4) [I.e., (k -1) / 2 is odd] 
Analogously, we can write 

Fr = <rirlFk ft 
7 = 1 

=(-ir^n 
/=1 

=(-ir^n| 
7 = 1 1 

L « ? J 
1 , ~ ik'ik-iyi ~~ ik'ik+iyi ~ ikl 

I H : 

L \k<+2 

(k-l)/2 
1+ I (-1)*^ 

*=i 

- 2 " 

_ 

Observe that, since (k -1) 12 is odd by hypothesis, the factor (-1)" l in the above expression can 
be rewritten as (-l)*"-**-*)'*. Q.E.D. 

3. RELATED RESULTS 

Some results related to those established in Section 2 can be obtained readily. Observe that, 
if the exponent n in (2.1) is composite (say, n = st), then F n (k even) can be expressed as 

t-i 
F =F =F TT 

kn kst ks 1 1 7=1 

ksn 

2^ L{2j-\)ksl (k even), 

where s and t can obviously be interchanged. For example, by (1.1) and (3.1), we have 
2«- l w-1 

^ = F4» - I"K< = Fr I V i « - = 3E[(^ +Z!H')-~2' 2 " ^ (2;- l )2w 

(3.1) 

(3.2) 
7 = 1 

For k odd, the analog of (3.1) can be obtained immediately. 
An expression analogous to (2.1) can be established for F ̂  when mk is even. If mk is odd, 

the corresponding expression is somewhat unattractive and its presentation is omitted. 

Proposition 3: If n > 1, 

F
mk" = F

mkU n 
7 = 1 

and 

mkn *„& I I 
7 7 - 1 

n 
7 = 1 

kl2 

2^ jL(2/-l)mA:'' 
/=1 

(k-l)/2 

1 + I<L2jmk< 

Proof: Write 

(k even, m arbitrary) 

(A: odd, m even). 

7 1 - 1 

(3.3) 

(3.4) 

^^ft^^-IPM"*') 
= 1 ^ f r ' 7 = 1 ' = * rf 

and use (2.1) and (2.2) of [2]. Q.E.D. 
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If we let m = k in (3.3), we see that an equivalent form for (2.1) is 

(£even, n>2). (3.5) F
k-=FM 

7 = 1 

k/2 

J=l 
\2j-l)ki+l 

Moreover, if we let n = u + v {u, v > 1) and m = ku in (3.3), we get the relation 

*" fcM+v ;tM/tv ku+l 1 1 
v - l 

n 
7 = 1 

which generalizes (3.5). 

fc/2 
V T 
£* (2j-l)ku+i 

/=1 

(A even), (3.6) 

4. A RECURRENCE RELATION FOR Fk„ 

A problem [6] that appeared in this journal led us to discover the first-order nonlinear homo-
geneous recurrence relation 

F3n+l=5Ffn-3Fr (n>0). (4.1) 

The aim of this section is to obtain an analogous relation valid for all positive subscripts kn+1 

with k odd and n an arbitrary nonnegative integer. 

Proposition 4: If k is a positive odd integer and n is a nonnegative integer, then 
(fc-3)/2 

Fk„+l=5«-»nFk
k„- X 5'q,fcif;+1, (4.2) 

7=0 

where the coefficients Cuk are given by 

Cjk = (_lf+1y2^(k + 1)72 -wj ^ + k ^ {0<i<{k_3)l2l (4.3) 

As an example, for k = 3,5,7, and 9, (4.2) gives (4.1), 

F5„+1 - 25/£ - 2 5 ^ + 5F5„, (4.4) 

F7„+1 = 125^1 - 175F7
5„ + 70F?

3 - 7F?„, (4.5) 

and 

Fgn+l = 625F9
9

n -1125i£ + 675/£ -150F9
3 + 9^w, (4.6) 

respectively. 
Proof of Proposition 4: First, let us write 

^ ^ z G ^ c - i y ^ v ^ " , (4.7) 
where a = l - / ? = ( l + V5)/2. After several simple but tedious manipulations involving the use of 
the Binet forms for Fibonacci and Lucas numbers, and the relation afi = -l9 (4.7) yields the 
following identities which may be of some interest/?er se\ 
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Fk -• l 

kn ^(k~l)/2 V1 
(k-l)/2 

+ - g l " F 
{k-2j)kn 

{k odd, n > 0), (4.8) 

Fk=-±- ^r{k
k
ny E H>'0>, \k-2j)k" (A: even, «> 1). 

By (4.8), we immediately obtain 

Then, using (4.10) along with Theorem 1 of [4] leads to the expression 

_ ( W <*-WW 2+i_. k-2j • |T|f{k +1)/2 + i- A „2/+i 
~ ft & ( " } (* + l)/2+i-75l/A 2i + l J k" 

which, after reversing the summation order, can be rewritten as 
(Jfc-l)/2 

•^-l)l2Fk
kn- I *4,*/£+ 1 , i ^ n . 1 

/=o 
where 

(fc-l)/2-/ * - 2 / fA:V(A: + l) /2 + i - 7 

Since A^-iyi^ - 0 by (1.3), expression (4.12) becomes 

(fc-3)/2 

i=0 

'2/+1 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Now it remains to show that the numbers 4,t [defined by (4.13)] and the numbers Cik 

[defined by (4.3)] coincide. To do this, consider the combinatorial identity 

£<-^(JXW 
h ^ ) [l£»*(*-»/2], 

(4.15) 

which can be obtained by [5, p. 58], and replace m by (k -1 ) / 2- / ' in (4.15) to obtain the desired 
result Cik = Ak. Q.E.D. 
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5. CONCLUDING REMARKS 

Some properties of the numbers Fk„ have been investigated in this note. In particular, 
expressions for these numbers in terms of products involving Lucas numbers have been estab-
lished. Analogous expressions for Z „ appeared to be rather unpleasant, so we confine ourselves 
to show some partial results whose proofs are left to the perseverance of the reader. In particular, 
we show the identity 

j*.=2+(^-2)n 

which, for k - 2, reduces to 

Z,2„=2-f5f}4 (»>2). (5.2) 

We also have 

Lf=4U(^+V> ("^)- (53) 
7 = 1 

Observe that the identity 

F2.r=*li(I?2.y-X) = sfi(L4.y+r) ("sl> (5-4) 
i=\ 7=1 

can be obtained either by (2.6) and (5.3), or by (3.4). 
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Positive integers of the form \m{m-l) are called triangular numbers. The Diophantine 
equation 

X(X-\W = y(y-\) ( i ) 

corresponds to the question: For which triangular numbers are their squares still triangular [1]? In 
1946, Ljunggren [2] solved this problem when he proved the following. 

Theorem: The Diophantine equation (1) has only the following solutions in positive integers: 
( x , J ^ ( U ) , (2 ,2 ) , and(4 ,9 ) . 

That is, only the two triangular numbers 1 and 36 can be represented as squares of numbers 
of the same form. However, Ljunggren used his knowledge of the biquadratic field Q(2 ) and 
the/7-adic method, so his proof is somewhat complex. In 1965, Cassels [3] gave a much simpler 
proof, but he also used his knowledge of the biquadratic field Q((-2) ) . In 1989, Cao [4] con-
jectured that (1) could be solved by the method of recurrent sequences. We verify his conjecture 
in this paper by giving the theorem and an elementary as well as simple proof by the method of 
recurrent sequences without using anything deeper than reciprocity. 

Proof of the Theorem: Let X = 2x -1 and Y = -2y-l, then equation (1) may be reduced to 
Y2 -1{ JC~zl f = 1. Since u + v42 =un+vn42=(l + 42)n gives the general solution of the Pellian 
equation u2 -v2 =(-1)", where 1 + V2 is its fundamental solution and n is an arbitrary integer 

(see, e.g., [1]), we get 
X2 = 4vn + l, 2\n. (2) 

The following relations may be derived easily from the general solution of Pell's equation: 

un+2 = 2un+l +un, u0 = \ ux = 1; (3) 
Vn+2=2vn+l+V*> V0 = °> ^ = 1; (4) 

u2n = u2+2vl v2 n=2^vw; (5) 

v_n = (-iy+\; (6) 

V u - H ) ^ (modtfc). (7) 

If n < 0, then 4vn +1 < 0, and (2) is impossible. Hence, it is necessary that n > 0. We shall 
prove that (2) cannot hold for any n > 4 by showing that 4vn 4-1 is a quadratic nonresidue modulo 
some positive integer. 
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First, we consider the following three cases: 

Case 1. If n = 0 (mod 6) and n> 0, then we write n = 3r(6k+ 2), 4 > 1. Let m = 3r, then, by 
(6) and (7), we get v„ = v±2m = ±v2m (mod u3m). Since u3m = um(u2

m + 6v2
m), we obtain 4v„ +1 = 

±4v2m + l(modu2
m + 6v2

m). 
Note that 2\m implies u2

n + 6v2
n = 7 (mod 8) and vm = 1 (mod 4) so, by (5), we obtain 

u2 + 6vl 

(q,+vJ/2' 

8vm(»m+vJ 

(where 2J||wm + vm) 

-1 

-1 

' «£ + <£ 
( I J ^ + V J / 2 * 

7 
v(M™+vJ/2s _|ffe±2k 

Similarly, 

-4v2OT + l 
V*4 + 6 vm, 

Equations (3) and (4) modulo 7 yield two residue sequences with the same period of 6. Since 
m = 3 (mod 6), we have ±um + vm = 5 (mod 7), so that 

4v„ + l 
V*4 + 6vm. 

-1, 

and (2) cannot hold. 

Case 2. If n = 2 (mod 4) and n>2, then we write « = 2 + 2-3r-w, where r>0, /w = ±2 
(mod 6). By (7), we have 4vn +1 = -4v2 +1 = - 7 (mod um), 

^--mm^-so that (2) cannot hold. 

Case 3. If n = 4 (mod 60) and n>4, then we write ft = 4 + 2-3-5-A:-2r, where r>\, 2\k. 
Let m = 2r or 3 • 2r or 15- 2r (to be determined). By (7), we have 4vn +1 = -4v4 +1 = -47 (mod 

4v +1 -47 

*« y 
The residue sequence of (3) modulo 47 has period 46. The period, with respect to r, of the 

residue sequence of {2r} modulo 46 is 11. We determine our choice of m as follows: 
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hr, if r s 3,5,6,7,8,9 (mod 11), 
m = l3-2r, ifrsO.1,10 (mod 11), 

[l5-2r i f r s 2 , 4 (mod 11), 

from which we obtain the following table. 

r (mod 11) 
2r (mod 46) 

3-2r (mod 46) 
15-2r (mod 46) 

um (mod 47) 

0 

26 

35 

1 2 

6 
14 

5 33 

3 4 
8 

10 
13 26 

5 6 
32 18 

33 15 

7 
36 

26 

8 
26 

35 

9 10 
6 

36 

5 26 

It is easy to verify that each of the um in this table is a quadratic nonresidue modulo 47, from 
which it follows that (2) is impossible. 

The three cases above tell us that, for (2) to hold, n must satisfy one of the following condi-
tions: 

w = 0,2,4; 
or 

n = 8,16,20,28,32,40,44,52,56 (mod 60). (8) 

We now exclude all residues in (8) by considering some moduli of the sequence {Avn +1}. 
First, consider modulo 5. The residue sequence of {4v„ + l} has period 12. If w = 8 (mod 

12), then 4vn + 1 = 3 (mod 5), which implies that (2) is impossible. Thus, we exclude w= 8, 20, 
32, 44, 56 (mod 60) in (8). 

Second, consider modulo 31. We get the residue sequence of {4vn + 1} having a period 30. 
If n = 10,16,22,28 (mod 30), then 4vn +1 = 27,17,12,24 (mod 31), respectively. However, all 
of these are quadratic nonresidue modulo 31; thus, (2) cannot hold. Hence, we can exclude in (8) 
the other four residue classes of n = 16,28,40,52 (mod 60). 

Finally, we look at the three values of n = 0,2,4, which give X = 1,3,7, respectively, in (2). 
Therefore, we see that all positive integer solutions of (1) are (x, y) = (1,1), (2,2), and (4,9) and 
the proof is complete. 
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1. INTRODUCTION 

Traditionally, the word "abracadabra" was encrypted onto amulets and other magical para-
phernalia to help ward off evil. George Polya ([8], [9]) provided the cryptic form of this word 
shown in Figure 1 and asked how many ways abracadabra can be spelled out using this diagram. 
If we replace the diagram in Figure 1 with the grid shown in Figure 2 where letters in the original 
diagram are placed at points of intersection of the grid, then the question is equivalent to asking 
how many paths there are from the top of the grid to the spade at the bottom of the grid where 
each step is either down and left or down and right. One such path that spells out abracadabra is 
shown. By considering this grid as a city street map, we can think of such paths as walking city 
blocks—or blockwalking. 

A 
B 

R R 
A A 

C C C 
A A A 

D D D 
A A 

B B 
R 

A 

FIGURE 1. How many ways can you spell ABRACADABRA in the above diagram? 

We can represent a blockwalking path by a series of Rs (right turns) and Z's (left turns). For 
example, the abracadabra path illustrated in Figure 2 can be represented by LRLRLRLRLR. It 
is easy to see that any path which spells abracadabra will have 5 Rs and 5 Z's. More generally, 
we can see that any corner of the map can be determined uniquely by how many Z's and Rs it 
takes to get there. If there are n total steps in the path to get to a corner and there are &Z's, then 
there are n-k Rs. The number of paths to that corner is thus the number of combinations of 
kLs and n-k Rs. As is well known, this is the binomial coefficient (£) = kl(^!_k)l. In particular, 
the number of ways abracadabra can be spelled out in the diagram is (5°) = 252. Thus, we use the 
binomial coefficients to label the corners, and it should be apparent that we are constructing 
Pascal's triangle. When looking at the binomial coefficient for a particular corner, remember that 
the ris indicate the row of the triangle whereas the ks count the number of lefts taken. For an 
excellent history of Pascal's triangle, see [3], which includes an English translation of Pascal's 
original treatise [7]. 
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( ! ) 

FIGURE 2„ The Hockey Stick Identity gets its name from the shape of 
a blockwalking argument In Pascal's triangle. 

Pascal's triangle is often created by first placing a 1 at each corner along the outside edges of 
the triangle. Second, an entry not on the edge is calculated by adding the two entries immediately 
above it. The top four rows generated using this method are shown in Figure 2, where the fourth 
row is 1 3 3 1. In terms of binomial coefficients, the second part of this construction is equivalent 
to the recurrence relation 

(*Hr-iMv) o 
Surprisingly, it appears that Polya never published a description of how blockwalking can be 

used to prove combinatorial identities—although it has been described elsewhere (e.g., [5], [13]). 
We introduce this technique by providing a blockwalking proof of (1). Partition the paths to (?) 
depending on whether the last step is an L or an R. The number of paths with last step L is (ll\) 
and the number of paths with last step R is ("fc1). Summing these gives (1). Conceptually, this is 
equivalent to setting up a sieve in the streets so that we must pass through the sieve to our 
destination and so that once we have passed through the sieve there is only one path to our final 
destination. Specifically, a sieve is defined to be a set of corners which partitions the paths to a 
particular corner into equivalence classes. For example, as shown in Figure 2, in order to get to 
the club at (2), we must pass through one of the spades at (f) or (f). Also, there is only one way 
to get to (2) from either of these spades. Thus, the corners indicated by these two spades form a 
sieve for the corner indicated by the club. (Note that identities involving products of binomial 
coefficients can be shown using sieves for which there is more than one path to the destination 
upon exiting a sieve.) 
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A different sieve leads us to the Hockey Stick Identity: 

Consider that for any path there must be a last L after which all other choices are i?'s. Thus, we 
may partition paths to (j£i) into classes depending on how many consecutive i?'s are at the end of 
the path. The sum of thejsizes of these classes thus equals the number of paths to (IX\)- This 
proves (2). Again, the equivalence classes can be associated with a sieve of corners. For example, 
the four spades from (4) to (I) form a sieve for (*). This example also illustrates the use of the 
name Hockey Stick Identity. (This is also called the Stocking Identity. Does anyone know who 
first used these names?) 

The following sections provide two distinct generalizations of the blockwalking technique. 
They are illustrated by proving distinct generalizations of the Hockey Stick Identity. We will be 
using the standard Hockey Stick Identity several times to prove these generalized forms. When 
we wish to do so by referencing its pictorial representation, we will refer to "summing the spades 
into the club." 

2. MULTITIERED BLOCKWALKING 

A somewhat obvious variation of the Hockey Stick Identity is to multiply the binomial coeffi-
cient inside the summation by /. Surprisingly, the author has not been able to find a reference for 
this variation (including [4] and [12]). We will give a generalized blockwalking argument to pro-
vide a closed form for this variation which we will call the Extended Hockey Stick Identity: 

KiMztiMr:;} 
As illustrated in Figure 3, stack copies of Pascal's triangle on top of each other in tiers. The 

multitiered blockwalking technique follows these rules: 
1. On each tier, you may walk blocks in the normal 2-dimensional fashion. 
2. Your starting point may be at the apex on any tier. 
3. At the end of a walk on your starting tier, you may step into an elevator and be raised a 

given number of tiers. 
4. After having been elevated, you are at your final destination. 

Any such path may be considered a series of Z's and i?'s followed by some number of Us (ups). 
(The alternative interpretation, which allows moving up at any point along a path, will be dis-
cussed under multinomial blockwalking in the next section.) 

As with the standard single-tiered case, we label a corner with the number of paths to that 
corner. Using the specified rules, the (g) corner on Tier t counts t(l) paths; (?) paths for each oft 
tiers. Figure 3 shows the path LRLLRRLUUU which starts on Tier 3 and ends at 6(1). (For pic-
torial convenience, Figures 3 and 4 have the ks count i?'s instead of Z's. This is symmetric to the 
standard representation of Pascal's triangle in Figure 2.) 
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FIGURE 3. Multitiered Blockwalking 

We can partition the paths to w(£+i) into equivalence classes based on how many C/'s are at 
the end and how many consecutive L's precede the C/'s. We illustrate this with n = 6 and k = 2 in 
Figure 3. The sieve for 6(3) Is shown using spades and filled circles. This illustrates: 

By splitting the corners in the sieve appropriately, we illustrate: 

1996] 283 



GENERALIZED HOCKEY STICK IDENTITIES AND JV-DIMENSIONAL BLOCKWALKING 

2>UMz: -5>-o i • < 6 ' 

UH'by&o (5> 
The filled circles in Figure 3 represent the first summation on the right-hand side of (5) and the 
spades represent the second summation. By rearranging (5) and applying (4), we get 

In order to complete the proof of (3), we need to find a closed form for the subtrahend in (6). 
A copy of Pascal's triangle can be formed by slicing a plane through the tiers as shown in 

Figure 4. That is, consider the plane that slices in front of the circles and through the last spade 
on each tier. This newly formed Pascal triangle consists of one street from each tier starting on 
Tier t = k + l. In the example, the corner labeled 3(j}) is the apex of the new slicing Pascal trian-
gle. Other nodes on this new Pascal triangle are labeled the same as they originally were except 
that the binomial coefficient is not multiplied by the tier number. 

Using the standard Hockey Stick Identity on the spades on each tier (i.e., sum the spades into 
the clubs in Figure 4), we see that 

i=k V / i=k j=k\ / ;=/A 

Applying the standard Hockey Stick Identity on the slicing plane (i.e., summing the clubs into the 
circle at Q) in Figure 4) gives 

Combining (6) with (7) gives (3). 
In personal correspondences to the author William Webb proved (3) using the "Snake Oil 

Method" of [14] and Bruce Berndt proved (3) using Vandermonde's theorem involving hyper-
geometric series (see [1]). However, a telescoping series gives the Generalized Extended Hockey 
Stick Identity: 

Note that ip -(i-l)p is a polynomial of degree p-l. Thus, the /7th case can be determined 
recursively. 

Let us consider this generalized form in terms of multitiered blockwalking. When p = l, the 
structure used to slice through the multitiered sieve is a line (between the spades and circles). 
Similar (though much more complicated) arguments could be provided for the /7th case by slicing 
the sieve with a curve of the form ip. 
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FIGURE 4. Slicing through the tiers and between the spades and circles* 

3. MULTINOMIAL BLOCKWALKING 

Perhaps a more natural generalization of the blockwalking technique to 3 dimensions is to 
allow moving up at any point along the path rather than just at the end. Also, it seems more natu-
ral to start at only one place—the origin. (Such a 3-dimensional version of the abracadabra con-
cept is presented in [6].) This is easily generalized to j dimensions. That is, when blockwalking in 
j dimensions, not only can we walk along the standard 2 dimensions, but we can invoke our magic 
abracadabra amulet to take steps in all other j - 2 dimensions. The grid we are walking on thus 
becomes the nonnegative j-dimensional lattice with corners labeled by multinomials 

L m n = T T r, wherenl+w2 + - . + n / = w.-
yh9n2>---9njj n]\n1\...nj\ J 
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This is also called a Pascal hyperpyramid or a Pascal poly tope. Generalizations of Pascal's ori-
ginal results to hyperpyramids can be found in [10] and [11]. An excellent survey and an exten-
sive bibliography of Pascal hyperpyramids can be found in [2]. 

Figure 5 illustrates blockwalking in 5 dimensions: 

0,0,0,2,0 
' n 4 = 0 x ' TI4 = 1 v ' TT-4 = 2 

FIGURE 5. Blockwalking in 5 dimensions 

Here, each tier represents a 2-dimensional blockwalk; tiers stacked on top of each other 
represent the 3rd dimension; the 4th dimension is represented by a row of 3-dimensional tiers 
going from left to right; the 5th dimension is represented by copies of the 4-dimensional rows 
stacked one above another. In 5 dimensions, we consider combinations of Z's, i?'s, Us, H*s 
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(hyperspaces), and Ws (warpdrives). The path RLURRHLRWLHR is illustrated by circles in 
Figure 5. This path starts at the origin and ends at 

12 
v3,5,l,2,lJ 

The recurrence relation (1) for Pascal's triangle generalizes for hyperpyramids: 

n \ J i n-l 

ih>ih9>->,nj) j^\*h>"->nk-l>--->nj 

The blockwalking argument also generalizes. That is, partition the paths depending on what the 
last step is. For example, in Figure 5, the club at 

14 
5,5,2,1,1 

has a sieve of five spades—each of which is one step away in one of five dimensions. 
This brings us to the Multinomial Hockey Stick Identity: 

ni,ih>->nj 

J « l+"2 

-I I 
k=2 i=n2 

i + «3+« 4 + « - - + « / - l 

i-n2,n2,n39...9nk-l,...,nJj 

The sieve for this identity has j-l copies of the sieve for the standard Hockey Stick Identity. 
This is illustrated in Figure 5 (with j = 5)by the four rows of spades that form a sieve for the club 
at 

5.5.2.2.2, ? ^ J *"') *~? ' 

4. COMMENTS 

The beauty of Polya's blockwalking is that it provides a geometric interpretation of algebraic 
equations and, in so doing, gives a way of visualizing the concepts involved. The attempt here 
has been to utilize this idea to provide geometric and visual aids for more complex equations and 
higher dimensions. In developing the presentation of this visualization, the author conceived of 
the 2-dimensional representation of 5 dimensions shown in Figure 5. Although the 4-dimensional 
tesseract is often drawn in 2 dimensions, the author has never seen an attempt to represent 5 
dimensions on a flat surface. The final comments consider how the representation in Figure 5 can 
be generalized to more dimensions. 

The basic concept is to represent the n^ dimension by making copies of the (n -1)5* dimen-
sion. Thus, to visualize the 6th dimension, we make copies of Figure 5, say, by stacking pages on 
top of each other. Notice that this gives us a 3-dimensional array of 3-dimensional arrays. We 
can visualize further dimensions by considering larger and larger 3-dimensional arrays. For exam-
ple, we cam consider our 6-dimensional stack of pages as a ream of paper. Obtain the next 3 
dimensions by considering a 3-dimensional array of reams. Continuing in this fashion, call the 
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array of reams a box; consider a 3-dimensional array of boxes, call this a pallet; consider a 3-
dimensional array of pallets; etc. The structure just described, up through a 3-dimensional array 
of pallets, represents a 15-dimensional nonnegative lattice. The limiting factor in this method is 
our ability to establish a mnemonically reasonable ordering of containers to describe each level of 
3-dimensional arrays. This approach can be compared to a Mandelbrot set in that we are main-
taining the same visual picture only at larger and larger scales. 

The visualization just described is aided by the discrete nature of the lattice (i.e., the blocks of 
the blockwalking) and by restricting the picture to the nonnegative "hyperquadrant" of the lattice. 
In order to eliminate the discrete nature of our picture, instead of making discrete copies of the 
(w-1) -dimensional representation, move the (n-l) -dimensional representation in a continuous 
motion. To remove the restriction of only visualizing the nonnegative hyperquadrant of w-space, 
consider 2" copies of the hyperquadrant to represent the 2" hyperquadrants that exist in w-space. 
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