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ON THE UNIQUENESS OF REDUCED PHI-PARTITIONS

Corey Powell
Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720
(Submitted July 1994)

1. PRELIMINARIES

For any positive integer £, let P, = k™ prime and define s, = H’;;ll P, A positive integer 7 is
simple if n = s, for some positive integer £.

A @-partition of n is a partition n=d, + - +d,, where i and d,, ..., d, are positive integers,
that satisfies the condition ¢(n) = ¢(d,)+ -+ ¢(d;), where ¢ is the Euler phi-function. In [1],
Jones shows that the simple integers s, have only the trivial ¢-partition s, =, and so define a
¢ -partition of a positive integer n to be reduced if all the summands are simple.

ertmg a partition as X_ b, *d, + - +b, * d,, means that d; occurs b, times in the partition
for j=1,.

Every posxtlve integer » has a unique partition X’ '=1C; * 5, satisfying the condition that
0<c; <P, for j=1. This partition is a special type of Cantor base representation of n, which is
a direct extension of the standard base 10 representation of ».

Throughout the paper, » will denote a positive integer. Let p, < p, <--- < p, be the primes
dividing » and let g, <g, <--- be the primes not dividing 7.

2. THE ALGORITHM

Jones gives the following recursive algorithm for finding a reduced ¢ -partition for n:
1. Ifmnis simple, then n=1%*n is a reduced ¢-partition.
2. If p*|n for some prime p, then p * (n/ p) is a ¢-partition of n. Apply the algorithm to
n/ p to give a reduced ¢-partition Z .1a; *s; for n/ p; the desired reduced ¢-partition
fornis X' a(ap)*s;.
3. If nis square-free and not simple, then let p be a prime divisor of » and let g be a prime
such that g < p and g [n. Such p and g exist since 7 is not simple; p could be chosen to
be the largest prime dividing », and ¢ could be chosen to be the smallest prime not divid-
ing n. Then (p—q)* (n/ p)+1*(gn/ p) is a ¢-partition for n. Apply the algorithm to
n/p and gn/ p to give reduced ¢-partitions Z"Flaj * s, and Z;-=1 aj * s;, respectively.
The desired reduced ¢ -partition for nis X, _[(p—q)a; +a;]*s;.
At each step of the algorithm, it will be generally true that more than one prime or pair of
primes can be chosen. The next section shows that the result of the algorithm is independent of
these choices.

3. THE ALGORITHM GIVES A UNIQUE REDUCED ¢-PARTITION

For any integer w, let ¢ (n) = anpln (I1-w/p), so that ¢y(n) =n and ¢,(n) = ¢(n). Define
a ¢, -partition and a reduced ¢, -partition analogously to a ¢-partition and a reduced ¢-partition,
respectively.
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ON THE UNIQUENESS OF REDUCED PHI-PARTITIONS

If p is prime and p?|n, then ¢,(n) = pé,,(n/ p), and so p* (n/ p) is a ¢, -partition of n. Ifp
and g are primes, p|n, p?|n, q|n and p> g, then

Pu(m) =(p-w)d,(n/p)
=(p-9)¢,n/ p)+(q-w)é,(n/p)
= (p - q)¢w(n/p) + ¢w(qn /p))

so that (p—q) *(n/ p)+1%(gn/ p) is a ¢ -partition of n. These facts together with an induction
argument show that any reduced ¢ -partition given by the algorithm is also a reduced ¢, -partition
for every integer w.

For the rest of the paper, let i be the unique positive integer such that s, <n<s,,; any

reduced ¢ -partition of n can be written in the form ¥,_; , *s,.

Theorem 1: The reduced ¢-partition for n given by the algorithm above is independent of the
primes chosen at each step of the algorithm.

Proof: Suppose that Z"Fl a; *s; is a reduced ¢-partition of n given by the algorithm. By
replacing w with F,, with P, ..., and finally with P, the following system of i equations and i
unknowns is obtained:

a5 (5) +0@p () + +adp(s) =5 (n),

app, () +@pp () + - +adp () = ép, (),

a5 (5)+ Ay (5)+ - +ady(s) = 6, ).

This system of equations can be rewritten in the form Na= b , where the matrix N has entries
k=1
Ny = ¢P£(Sk) = H(P] -F).
J=1

If ¢ <k, then N, =0, so that N is lower-triangular, and if {=Fk, then N, #0, so that N is
invertible. It follows that the solution to this linear system uniquely determines the coefficients a;
in the reduced ¢ -partition given by the algorithm. U

The algorithm gives a unique reduced ¢-partition for n, but frequently this is not the only
reduced ¢-partition that » has. The integer 8, for example, has 2 reduced ¢ -partitions: 4 *2 and
2#*1+6. Certain characteristics of the reduced ¢-partition given by the algorithm are critical,
however, in determining whether » has a unique reduced ¢-partition. The following two theorems

summarize these characteristics. Let M(n) = n/( Hp Pl p).

e

Theorem 2: Let k be the largest integer such that s, [ and let ¢ be the number of distinct prime
factors of n. The algorithm above gives a reduced ¢-partition for »n of the form Zf:}c a; s,

where a,,;, = M(n) and a, 2a,,, 22 a,,;.

Proof: 1t follows that a; =0 for 1< j <k from examining the first k¥ —1 equations of the
linear system above and noting that b, = ¢ p, (my=0for 1< j<k. Itis clear that a,,; = M(n) and
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ON THE UNIQUENESS OF REDUCED PHI-PARTITIONS

a; =0 for £+1<j from the three cases presented in the algorithm together with an induction
argument on 7.

The claim that a, >a;,,>-->a,,; will also be proven by induction on n. If n=1, then
1=1%*1 is the reduced ¢-partition. If n>1 and p?|n for some prime p, then establish the claim
by using the ¢-partition » = p * (n/ p) and applying the induction hypothesis to n/ p.

If n is square-free, then the proof is divided into two cases. In the first case, p, < g, so that
n=s,. If p,>q, and there is a prime 7 such that 7/» and ¢, <t < p,, then the claim follows from
using the @ -partition n=(p,—1)* (n/ p,)+1%(tn/ p,) and applying the induction hypothesis to
n/p,and tn/ p,. Il p,>q,, but there is no prime 7 as described above, then gn/ p, =s,,,, since
qn/ p, is simple and has the same number of prime factors as #. Prove the claim by using the ¢-
partition n = (p, — q,) * (n/ p,) +1*s,,, and applying the induction hypothesis to n/ p,. O

By Theorem 1, the reduced ¢-partition n= Z"Fla %5, given by the algorithm can be repre-
sented by a weighted binary tree as follows. As noted in part 3 of the algorithm, it is possible to
choose p as the largest prime dividing 7 and choose g as the smallest prime dividing #n. Assume
without loss of generality that n is square-free; the algorithm will find a reduced ¢-partition for
H e P and incorporate this reduced ¢ -partition into the @-partition n= M(n) * Hp pin p. If
n 1s not simple, then the left branch has weight p, —q, and the left child is n/ p,, whlle the right
branch has weight 1 and the right child is ¢jn/ p,. Apply this process recursively to »/ p, and
gn/ p,, terminating only when all the leaves of the tree are simple integers. The example below
gives the tree for 5-11-13.

5.11-13
/ \
5711 9.3.11
N N
205 275 2.3.5
/& V 12 1
] 5 '3 9 2.3

It is possible to determine a; from the tree representation by taking the sum over all paths
from n to s; of the product of the weights along each path. The coefficient a, for 5-11-13, for
example, is 11-9-1+11-1-2+1-8-2.

Let n=p, ... p,, and suppose that m is a vertex at level u = u(m) of the tree described above,
where level 0 denotes the top of the tree. Let L = L(m) and R = R(m) =u = L(m) be the number
of left and right branches, respectively, in the path from » to m, and define #, <1, <---<¢,_, to be
the levels where the path branches to the left. An induction argument on the level u proves the
following lemma.

Lemma 3: If m is a vertex at level u of the tree, then m=p, ... p,_.q, ...qx and the product of
the weights along the path from n to m is [T} omt, = Qrt,—)-
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ON THE UNIQUENESS OF REDUCED PHI-PARTITIONS

Proof: The proof will be by induction on #. If #=0, then m=#n and the result is clear.
Suppose that the lemma is true for m and its ancestors, and consider the children of m. Assume
without loss of generality that m is not simple, since simple vertices have no children. To estab-
lish the lemma for the children of m, it suffices to show that the largest prime dividing m is p,_,
and that the smallest prime not dividing m is gg,;. The largest prime dividing m is clearly
max(p,_,,qr), and the smallest prime not dividing m is clearly min(p,_,.,;, gg,;). These two
facts reduce the two assertions above to the condition p, , >qg,;. Divide the proof of this
condition into two cases. In the first case, assume that m is the right child of
m=p ... Pryndy - 9r-- 1t follows from the construction of m that p,_,., is the largest prime
dividing »’ and that g, is the smallest prime not dividing »’. It also follows that p, ,.; > gz,
since m’ would be simple otherwise. Hence p,_, > ¢x,;, because m is not simple. The proof
when m is a left child is similar. O

Fix a path from n to ;. A left child has one less prime divisor than its parent, while a right
child has the same number of prime divisors as its parent. This implies that the path from n to s,
must branch to the left £— j+1 times, since s; has j—1 prime factors. Let m be the vertex at
level ,_;. 1Tt follows from the proof of the previous lemma that P, is the largest prime
dividing m, that gy, (- is the smallest prime not dividing 7, and that p, ,, >4y, —o-p)-

Conversely, suppose that 0<7, <# <---<?,_; </ and that Prt,, > Qe ey An induction
argument on £ — j shows that there is a path from 7 to s; that branches to the left at levels 1, ...,
t,_;. If £— j=0, then an induction on the level together with the previous lemma and the condi-
tion p,_, >4, Suarantees that there is a path branching to the right at levels 0,...,7—1. This
condition also guarantees that the vertex at level ¢, is not simple, since p,, and g, are,
respectively, the largest prime dividing the vertex and the smallest prime not dividing the vertex.
Branching to the left at level #, will give a vertex with £—1 prime factors, and so branching to the
right at level 7, +1 and all higher levels will give a path that terminates at s,.

Assume that the claim above is true for £~ j—1. This implies that there is a path from
n to s;,, that branches to the left at levels 1, ..., #,_; ;, since Proty > Pty > Dty ey 2
Givt, , ~(t-j-1)- Take this path from 7 to level ¢,_;_,, and then construct a path from the vertex at
this level to s; by the same method as in the previous paragraph. This proves the claim above.
Non-square-free n adds a factor of M(n) to the calculations, as noted previously, and so the
claim above combined with the previous lemma proves the following theorem.

Theorem 4: If k < j</{, then
-y
a, = M(n) ZH(pé—re - ql+te—e)9

e=0
where the sum is taken over all 0<#, <---<#,_; <£ with Pt > Dty ey In particular,
¢ ¢
a=MmW[[@.~q) and a.,2Mm) []@.-9).
e=k e=k+1

The following section gives a necessary and sufficient criterion for determining if » has a
unique reduced ¢ -partition by using the previous two theorems together with the specific Cantor
base representation of # described in Section 1.
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4. WHEN DOES n HAVE A UNIQUE REDUCED ¢-PARTITION?
Theorem 5: A positive integer » has a unique reduced ¢ -partition if and only if #»= 9, n is prime,
or the Cantor base representation for 7 is a reduced ¢ -partition.

By enumerating all possible partitions of 9 consisting of simple integers, one can verify that
3% 1+3%*2 is the unique reduced ¢-partition of 9. The following two lemmas will complete the
proof of the if part of the theorem.

Lemma 6: Primes have a unique reduced ¢ -partition.

Proof: From Theorem 7 in [1], a @-partition of a prime g must be of the form (g—r) *1+r,
where r is prime and » <¢q. The only simple prime number is 2, and so (g—2)*1+1%*2 is the
unique reduced ¢ -partition of g. O

Lemma 7: Let Zj YR
hN }=1€; * s, is a reduced ¢ -partition, then it is the unique reduced ¢ -partition for n.

*s; be the Cantor base representation of » described in Section 1. If

Proof: 1t suffices to show that for any other partition Zi 1b; * 5, of n into simple integers,

=1 b; minimal.

L=1b; *s; is distinct from Z} 1¢; *s;. Form a new parti-

i *s; by converting I, of the s;'s into an s,,;. This new partition is a counterexample

5 16,8(s,) < pI '=10,8(s;). Suppose that > _, b, *s; is a counterexample with >
There is an 4 such that b, > P, since X
tion ¥’ =10]

that contradicts the minimality of Y and hence proves the lemma. O

J=1 J’
Suppose that n= 9, that n is composite, and that the Cantor base representation for » is not
a reduced ¢@-partition. It then follows from Theorem 2 that a, > P, where Zlﬁl a;xs; is the
reduced ¢-partition given by the algorithm and % the largest positive integer such that s, |, as
defined in Theorem 2. Theorem 4 gives the formula a, = M(m)T1%_,(p, - B,), since q, = F,. Itis
clear from this formula that a, # F,, since F, is prime, B, does not divide n, and B, does not
divide (p— B,) for any primes p dividing n. If £ > 1, then apply the following lemma with # =k
to show that » has a second reduced ¢-partition. If £ =1, then nis odd, g, =2, and the inequality
> Mm)T1,(p,—2) is a result of Theorem 4. Tt is a straightforward consequence of this
inequality that a, >3 if n # 15, and so it follows from the following lemma with /=2 that n has a
second reduced ¢-partition. The observation that 3+1+3%2+6 and 1+7 *2 are reduced ¢-
partitions for 15 completes the proof of the theorem.

Lemma 8: Let Zj -1,
second reduced ¢ -partition.

* s, be a reduced @-partition of n. If b, > B, for some /> 1, then n has a

Proof' To prove the lemma, it will be necessary to show that for each j > 1 there is a parti-
tion Z 2B ¢ * 8, of s; such that Z LB 18(s;) =24(s;). This will be shown by induction onj. If

j=2,then 2 =2*1 is the desired partition. If j> 2, then, by the induction hypothesis, s;_; has a

> Pj— -1
partition 2/ 2P '+ ¥ 5, with the desired property. Hence, 5, =% f_l[,B (P =2)* s +2%s, ) is

a partition of s; with the desired property.
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Now, suppose & is a positive integer such as in the hypothesis of the lemma and let
Z};‘l By * s, be a partition of s, with the above property. Construct a new reduced ¢ -partition
for n by combining B, of the s, terms into one s,,; term. There is a net loss of ¢(s,) when the
sum of the ¢ values in the partition is taken, since ¢(s,,;) = (5, —1)¢(s,). Breaking up one of the
remaining s, terms compensates for this loss. The second reduced ¢ -partition for 7 is

-1 i
Gr+B) %5+ =B, =D * 5, + By + D * 85,y + 2 b *s,. O
f=1 f=h+2
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FIBONACCI ENTRY POINTS AND PERIODS FOR PRIMES
100,003 THROUGH 415,993

A Monograph
by Daniel C. Fielder and Paul S. Bruckman
Members, The Fibonacci Association

In 1965, Brother Alfred Brousseau, under the auspices of The Fibonacci Association, compiled a two-
volume set of Fibonacci entry points and related data for the primes 2 through 99,907. This set is currently
available from The Fibonacci Association as advertised on the back cover of The Fibonacci Quarterly. Thirty
years later, this new monograph complements, extends, and triples the volume of Brother Alfred's work
with 118 table pages of Fibonacci entry-points for the primes 100,003 through 415,993.

In addition to the tables, the monograph includes 14 pages of theory and facts on entry points and their
periods and a complete listing with explanations of the Mathematica programs use to generate the tables. As
a bonus for people who must calculate Fibonacci and Lucas numbers of all sizes, instructions are available
for "stand-alone" application of a fast and powerful Fibonacci number program which outclasses the stock
Fibonacci programs found in Mathematica. The Fibonacci portion of this program appears through the kind-
ness of its originator, Dr. Roman Maeder, of ETH, Ziirich, Switzerland.

The price of the book is $20.00; it can be purchased from the Subscription Manager of The Fibonacci
Quarterly whose address appears on the inside front cover of the journal.
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ON THE STRUCTURE OF QUADRATIC IRRATIONALS ASSOCIATED
WITH GENERALIZED FIBONACCI AND LUCAS NUMBERS

Edward B. Burger and Christopher S. Kollett
Department of Mathematics, Williams College, Williamstown, MA 01267
(Submitted July 1994)

1. INTRODUCTION

In 1970 C. T. Long and J. H. Jordan completed a series of two papers, [3] and [4], in which
they analyzed the arithmetical structure of certain classes of quadratic irrationals and the effects
on their structure after multiplication by rational numbers. In particular, for a positive integer a,
let %, =%, (a) and &£, = £,(a) be the n" generalized Fibonacci and generalized Lucas num-
bers, respectively. That is, (=0, F, =1, £,=2, £, =a and, for n>1, F, =a%,_, +%,_,,
&,=a2,, +<£, ,. We denote the generalized golden ratio by ¢,. Thus,

:a+\/a2+4

?q 5 =la,a,..]1=[al],

where the last expression denotes the (simple) continued fraction expansion for ¢, and the bar
indicates the periodicity. It follows that lim, . %,,,/%, =¢@,. We note that in the case in which
a=1wehave &, =F, £, =1, and ¢, =¢

Among their other interesting results, Long and Jordan investigated and compared the con-
tinued fraction expansions of £¢, and £¢, when r and s are consecutive generalized Fibonacci
numbers or consecutive generalized Lucas numbers. These results led them to consider the
structure of numbers of the form £¢, and £¢, where r =%, and s=<,. They wrote (in the
present notation) [4]:

"In view of the preceding results, one would expect an interesting theorem concerning the
simple continued fraction of

oL

2 and £,
%, ?q F Pa

but we were unable to make a general assertion value for all a. To illustrate the difficulty, note
that, when a =2 and ¢, =1+ V2, we have

%_% =[0,1,51,3,517,
%ngz = [O, 1 W],
¥,

572% =[0,1,51,41,3,51,4,1,7) "

They do, however, discover the following two beautiful identities for the case in which a=1.
We state them here as
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Theorem 1: For n>4,

L =012 1L L3 1L L4 (1.1)
L, i
n—4 umes n—5 umes

and

n Ve .
n-3 times n—4 times

—L-”—¢:|i3, LL,..,LL311..,112 4].
ja d _ J

Our first objective here is to extend their result to the more general case for arbitrary a. We
begin with the elementary observation that

. FE 5445 -
AT =[0.1.2,1],

and, thus, the initial string of 1's in (1.1) is not surprising. It is the beautiful near mirror symmetry
of the interior portion of the periodic part of (1.1) that is unexpected. More generally, one has

F _d*+4+aVat +4

fil—r&z% B 2(a* +4)
Thus, for large n, we would expect the continued fraction expansion for (%,/ <, )@, to begin
with [0,1,a*+1,1,a* 1,a* 1,...]. As Long and Jordan remark, however, in this case we appear
to lose the symmetry. In fact, the near mirror symmetry in (1.1) is somewhat deceptive. Perhaps
it is better to view (1.1) as a "recursive system" in the following sense. We define the strings or
"words" W, =W, for n>4 by W, =(3,1) and, for n>4, W, = (W,_;,1,1), where W,_, is the word
W,_, read backwards. For example, W; =(1,3,1,1) and W;=(1,1,3,1,1,1). Thus, we may now
reformulate (1.1) as

[0, La+11, a2].

E1 =
L—¢:[o, 1,2,W,,,4].

n

We note that the continued fraction expansions given above for (#,/ £, )¢, obey a similar recur-
sive behavior. This leads to our first result.

Theorem 2: Let ¥, =%,(a) and £, =<, (a) be the n generalized Fibonacci and Lucas
numbers, respectively. Let °W4 =W,(a) =(1,a*-1,a*+1,1) and, for n>4, let W,, =W, (a) =
(‘Wn_l, a*,1). Then, forn>4,

gn ¢a=[0, La®+1,W,, a2+3], (12)
and

§Bn 2 " 2 2

5 Pa=|a +2,W,, a" +1,a" +3|. (1.3)

n

We remark that fora=1,
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[W4]=1+——1—1=1+2+%:3+%:[W4],
0+—

241
1

thus, Theorem 1 and Theorem 2 are equivalent when a =1.
One may define the words W, occurring in Theorem 2 explicitly rather than iteratively. In
particular, a simple induction argument reveals that, for » >4 even,

W, = ({1,292 1,a* ~1,a2 +1,1, {a?, 1972), (14)
and, for n> 4 odd,

W, =({1,a®}"V2, 1,a* +1,a* - 1,1, {a®, }?),

where by {1, a*}" we mean the word (1, a®) repeated 7 times.

As Long and Jordan implicitly note with respect to Theorem 1, Theorem 2 immediately
implies that (¥,/<£,)@, and (£,/%, )@, are not equivalent numbers. Recall that two real num-
bers are said to be equivalent if, from some point on, their continued fraction expansions agree
(see [5]).

Next, we extend Theorem 1 in a different direction. We wish to analyze the structure of
quadratic irrationals of the form (¥, /£,)¢,. If mis even, then &,/ &£, is an integer (see [7]);
thus, we consider only the case in which m is odd. We first state an extension of Theorem 1 in
this context for the case m=3.

Theorem 3: For n>4, if nis even, then

L

n

By, ¢:|:Fz"+1—1,3, L1 L1, L, -2,2 L1, 1121, LG—z}.
—_—— —

n—-2 times n—4 times

If n>4 is odd, then

L

n

B gy =[FM, 12,11 L1 L, 1,1, 113 lgn}.

n—4 times n—2 times

The general formulation of Theorem 3 appears to be more complicated and requires us to
define several useful sums. For odd integers m, we let
(m=1)/2 (m=1)/2

F(m) = kz: (- 1)k9;2k+la F(m) = kzl Faks1s
=1 =

(m=1)/2 (m=1)/2

L,(m) = Z (‘l)k Lo L(m) = kzl‘sgzlr

k=1

We remark that F,(m) and L,(m) are positive integers if and only if m=1mod 4. We believe that
one may generalize the proof of Theorem 3 to prove the following conjecture.

Conjecture 4: Let F, =%, (a) and &, = £, (a) be the n'™ generalized Fibonacci and Lucas num-
bers, respectively, and m an odd integer. Suppose m >3 is an odd integer and n>4. For n even,
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let AL, =, (a) =(1,a> +1, 1, {a®, 3" D2 a* ~1,1) and ¥, =¥, (a) = ({a*, 3?2, a* +2); for
nodd, let W, =W, (a) = ({a®, 3"9%) . If nis odd, then

%”lgoa =|F(m),,a* +1,1,W,, a* +1,a*L(m)+a* -1, W,,,, 1,a* +2, L(m)|.
n

Ifnis even and m =1 mod 4, then

g = =
E;n_n¢a = I:Fl(m)> Ou“m Ll(m)a OVm Ll(m)]

If nis even and m =3 mod 4, then

% = =
—énﬂ_wa = [_Fl(m) - 15 LV.n B _Ll(m) —2, Ou'n: —Ll(m) _2]

One may also find analogous expansions for (£,,,/%,)@,. For example, one may adopt the
method of proof of Theorem 3 to deduce

Theorem 5: For n>4, if nis even, then

F

n

Lo {SFZM+3, 3LL.,L02 0, 11,512, 5L2n+4}.
— —

n~3 times n—3 times

If n>4 is odd, then

E

n

Lon gy - [51«"2,,“—4, 2,11, 11,0, -2,21,1,...,1,1, 5[2,1—6}.
— —_————
n-3 times n—3 times
Long and Jordan [4] concluded their investigation by proving the surprising result that, for
any positive integers m and n, (¥,,/%,)¢, and (¥ ,/%, )¢, are equivalent numbers. They re-
marked, however, that it is not always the case that (<£,, / £,)¢, and (£,/<£,) @, are equivalent
numbers. To illustrate this, they noted that

—LLZ:qoz[O, 1,2,3,1,4] and %¢:[3,l, 3,2,4].

We observe that, in their example, the indices 2 and 4 are not relatively prime. Here we prove
that this is the only possible case in which two such numbers are not equivalent. In particular, we
prove

Theorem 6: If £, =2, (a) is the n™ generalized Lucas number, then for relatively prime posi-
tive integers m and n,

3(8—"’ and <+,
8’1 @a ££m ¢a

are equivalent numbers.

More recently, Long [2] studied the arithmetical structure of classes of quadratic irrationals
involving generalized Fibonacci and Lucas numbers of the form
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aS,+ T Na*+4
T m¥E T (1.5)
2
where S, is either &, or &, and 7, is either %, or &, . For example, he investigated
a%,+$,Ja* +4
= . (1.6)

For numbers of the form (1.5), Long showed that their continued fraction expansions have the
general shape

[aOa al’ al’ cees ar]’

where the g, and a, were explicitly computed. He also proved that (¢;,a,,...,a,_,) is a palin-
drome, but was unable to determine the precise value of a, for 0<n<r. Long also observed
that the period length » appeared always to be even and that the value of » appeared not to be
bounded as a function of a, m, and n. Here we claim that the continued fraction for such numbers
may be completely determined. As an illustration, in Section 6 we provide the precise formula for
the continued fraction expansion for numbers of the form (1.6). As the expansion is somewhat
complicated in general, we do not state it here in the introduction; instead, we state it explicitly in
Section 6 as Theorems 7 and 8. As a consequence of our results, we are able to prove that Long's
first observation is true while his second observation is false.

2. BASIC IDENTITIES AND CONTINUED FRACTIONS

We begin with a list of well-known identities involving Fibonacci and Lucas numbers that will
be utilized in our arguments (for proofs, see, e.g., [7]). Forn>1,

oo (% &) @
Fo=F_+F_,, Li=L_+L, L=F,+F, (2.2)
Fom—(D"F,_, = F,L, (23)

L., +(-Y)"L,_, =LL, (2.4)

2 +4(-1)y"" =5F?, (2.5)

By, =F,L,. (2.6)

If %, =%,(a) and &, =£,(a) denote the n™ generalized Fibonacci and Lucas numbers,
respectively, then forn>1,

, e
() - ) e
&, =a%, 2%, , (2.8)

L =4F | F, | +a*F2, (2.9)

Fy Ty = Fpa= (D™, (2.10)
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OJ;n+2 ¢a +gn+1 = wa(gn-i»l ¢a + 9(;n )’ (2 1 1)
(@ +HF+4-1)" = L. (2.12)

For a real number o, we write o =[a,, g, ...] for the simple continued fraction expansion of
o. Thatis,

a +

1

>

a2+.—

where all the a, are integers and a, >0 for all n>0 (for further details, see [5]). Basic to our
method is a fundamental connection between 2 x 2 matrices and formal continued fractions. This
connection has been popularized recently by Stark [6] and by van der Poorten [8] and [9]. Let
Cp> €y ---, Cy be real numbers. Then the fundamental correspondence may be stated as follows: If

¢ Lo 1) (cn 1:PN Pn-1
1 0O){1 O 1 0 qy  qy-1)’

!lz[co,cl, eyl
qy

then

We remark that since ¢,, ¢, ..., ¢y are real numbers, p,, / g,, may not necessarily be rational.

3. THE PROOF OF THEOREM 2

We first consider the case in which 7 is even. Let o be the quadratic irrational defined by

a= [az TL{LE 2L 1 a1 1, a?, 02 g 3].

We will compute o via the fundamental correspondence between matrices and continued frac-
tions. Thus, if we express the following matrix product as

n-4)/2
a2+1111a21()11a2—11a2+11_
1 0JI\1 OJt1 O 10 1 0 1 0
1 02 1)1 W a3 1)@ 1D\_(r s
1 0 1 o)\1 O 1 ol 0) "\t u)
then it follows that o =7 /¢. In view of (2.7), we may express the above as
ros\_(a®+1 1\ %F,, a'%F, ) & 1).
t u 1 o)\a%,, F,s J\a*-11

+2 a+1) Fs dF 4 )(?+3 1) a 1
1 1 Na'%,., F,s 1 o)\l o)

The functional equation %, =a%,_,+%,_, enables us to simplify the above product and carry
out the multiplication to deduce
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(r s) _ Frn V25, 7, (a 1)
u) \(@+4F2, -2, 2, )\1 0

([ (F 2T )T Fra 127,
(@ +8F, -Foy )atF, (@ +8F-F,

~

Thus, we have

_r (Fry+ 2% )a + %,

(@ T -Fe)a+ T

or, equivalently,
(@ +F - F ) +(F - 2F-Fo )a—-F2=0. (3.1)
For ease of exposition, we make the following change of variables: let

A=@+HF - F,, B=F - 2% -F2, C=-%F.

n=2>
Since a > 0, equation (3.1) gives
o= -B++B*-4A4C
24
Next, if we let x =[0, 1, a]= a/(a+1), then

x_2C—B+JB2—4AC

2(A-B+0)

The expressions 2C — B, B —4AC, and A— B +C may be simplified slightly by successive appli-
cations of the functional equation for &, . It is an algebraically complicated but straightforward
task to verify that

x= “‘i("(a@:, +2%, ) +/@ + D%, F, , + O F )]- 32)

2 4%, . F, _ + aF

n+l

Finally, by (2.8) and (2.9), we have
L =(aF,+2%, ) =4%, ,F,  + a*F>,
and therefore, (3.2) implies

7, (aé[f,, +&, \ad* +4) F, (a+\/a2 +4) F

¥= X7 Y A
which, by (1.4), is precisely equation (1.2) for even n.
The proof of (1.2) for » odd is similar to the even case given above. In particular, for » odd,
we let

a= [a2 +1, {1,232 1a® +1,a* -1, 1, {a®, B2 a? + 3].
Thus, in the language of matrices, we have
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n—5)/2
21 N1 a2 N7 (241 1)@ -1 1),
1 o))\l Ojl1 0O 10 I 0 1 0
1 N\(a? 11 (=372 a+3 1\(a V©N\_(r s
1 01 o)l © 1 ofl 0)7 (¢ u
with @ =7/¢. Simplifying the matrix product, as in the case for n even, reveals
(r S): F2, +2F> F? (a 1)
rou @+, - F, F )1 0O
Equation (1.2) for n odd now follows from the previous argument.

Equation (1.3) follows immediately from (1.2) and Theorem 11 of [4], which completes the
proof.

[y

4. THE PROOF OF THEOREM 3

We essentially adopt the argument used in the proof of Theorem 2. First, we consider the
case in which » is even. Let « be the quadratic irrational defined by

a= [3, WL, 2221, L, - 2].

By the fundamental correspondence between matrices and continued fractions, we observe that if
we express the following matrix product as

(e 56 = ) e
G0 ) -6

then we have a=r/t. Using (2.1), (2.2), (2.3), and (2.4) together with the fact that » is even,
we multiply and simplify the products within the parentheses to produce

ros)_ LBn -1 -2 Ln L3n - El—l Ln a 1
t ou) \Fy, +2F, B Iyt F+Lly L, A1 0

[k R)fa 1
“\ky k)1 O)

ky= Lo, = Fypy = Topr +1,

k2 = LSnLn’ (43)

ky=(Fyy +28, )Ly, — F )+ B (Lyyy + Fra + L, 3),
ky=Fgpy+Fppp - 1.

“4.2)

where

We note that identities (4.1) and (4.2) lead to a complicated, but useful, identity involving Fibo-
nacci and Lucas numbers. In particular, we observe that
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SRR

and thus we have

kiky —kyky =1 4.4)
By identity (4.2), we have
r s\ _(ka+k, k
t u) \ka+k, k)
and since @ =r /¢, this implies
_ka+k,
kya+k,

Therefore, k,a® + (k, — k) —k, = 0, hence,

pohiht ey — ) + 4k,

2k,
If we now let x =[F,,, -1, ], then
x=F,, -1+ 2k
by = kg + \/(k4 ~ k) +4k;k
(4.5)
ky — kg =~y — ky)? + 4oy
= F;1+l -1+ :
2k,

By (4.3), we note that k, +k, = L,,. This, together with (4.4), reveals that
(ky — k))* +4kyley = (ky + ky)? — Ak, + dheyky
= I3, — A(kk, — k) = L, — 4.
In view of (2.5) and the fact that 7 is even, we may express the above as (k, — k,)* +4k,k; = SFZ.
This, along with (4.5), (2.2), (2.3), (2.4), and (2.6), yields

=1 ] = By 14 L= 2Funes = 2y +2 = VSF

—2(L3,L,)
_ 2FnlagLy+ 2L, L, + Lg, = 2Fy — 2F,,,, +2+5K,
- —2(L3,L,)
_ —Fe—3F _ LB+ L BN5 _ B, +BN5 _F,
T2, oL, 2L, L

which completes the proof for n even.
The proof for n odd is similar to the even case given above with the exception that the
change of variables of (4.3) is replaced by

ky=Le, - Fin— B
k2 = l’Jan

k3 = E;n“(lg,, - F;H-l) + F;1+1(Ljn—l + Ln+l + El—z),
ky = Fippy = Fppy +1

1

n-1""%
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5. THE PROOF OF THEOREM 6

It is a classical result from the theory of continued fractions that « and £ are equivalent
numbers if and only if there exist integers a, b, ¢, and d so that a =(af+b)/(cf+d) with
ad —bc =1 (see [5]). Since m and n are relatively prime positive integers, we may find positive
integers x and y so that mx —my =1. Thus, if we let k¥ =2ym, then we also have k =2xn—-2. We
now define

F
a= CE£mgtlc+2 , b:c:gk_u’ d= indk )
As we remarked in the introduction, since ¥, ,, = ¥y, and F, =F )., F;,, /L, and F,/ &£,
are both integers. Thus, a, b, ¢, and 4 are all integers. Also, by (2.10), we note that
ad-bc=F, F, ., — F2,, = (D) = +1.

Next, in light of (2.11), we have

a(—éﬂigo j+b
Ly :ﬁ(%%%ﬂ):ﬁw |
c(in ¢a)+d °C£n %k+l¢a+9;k SNPn ‘

Hence, (£,,/ <), and (£, / £,) @, are equivalent numbers.

6. A RELATED CLASS OF QUADRATIC IRRATIONALS

For integers »>2 and m > 0, we define the quadratic irrational R(n, m) = R(a; n, m) by

2
R, mi) = a@ﬁéﬁg va* +4 .

It will also be useful to define the integer N = N(n,m) to be N =a%, +(a*+4)%F, . We now
examine the continued fraction expansion for R(n, m). We consider separately the case of N even

and the case of N odd. As will be evident, the case of N odd is substantially more complicated
that the case of N even.

Theorem 7: If N is even, then
(i) ifmis even,
R(n,m) = [N/2, F  (d +4)95m];
(ii) ifmisoddand &, >2,

R(n, m) = [(N ~2)/2,1,F,-2,1, (@ + HF, - 2].

Theorem 8: If N is odd, then
(i) fmiseven, ¥, =0mod4and ¥, >4,

R, m) = [(N “D/2LL(F,-4)/4 11 (@ HF, 1];
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@ii) ifmiseven, &, =1 mod4and &, >5,

R, m)=[(N—1)/2, W, 4F, W, (@ +4H)F, - 1],
where W, = (1, 1,(F,~5)/4,1,3, (@ +4)F,— 1)/ 4);
(iii) if mis even, ¥, =3 mod 4 and &, >3,

R(n, m) = [(N “1)/2,W,,4F, W, (@ + BF, - 1],

where W, = (1,1,{F,-3)/4,3,1, (@ +4)F,~3)/ 4);
(iv) ifmisodd, ¥, =1mod 4 and F,>5,

V=112, %,~ LW, @ +8F,- 1],

R(n, m) =

where W5 = (2,(%,-5)/4,1,2,1, (@ +9%,-5)/4,2),
(v) ifmisodd, ¥, =2 mod 4 and F,, > 6,

R(n, m) = [(N N2, W, 4@+ F,—2, W, (@ +4F, 1],
where W, = (2, (%#,-6)/4,1).

Since the proof of Theorem 8 involves the same ideas as the proof of Theorem 7, we include
only the (less complicated) proof of Theorem 7. Before proceeding with the proof of Theorem 7,
we make three remarks.

First, it may appear that Theorem 8 is not complete in the sense that three cases seem to be
missing; in particular, the cases: m even, %, =2 mod 4; m odd, &#,, =0 mod 4; m odd, &, =3
mod 4. Tt is a straightforward calculation to verify that none of these cases can occur when N is
odd. For example, one has that %, =2 mod 4 only if either a=1 mod 4 and m=3 mod 6 or
a=3 mod4 and m=3 mod 6 or a=2 mod 4 and m=2 mod 4. In the first two cases, m is odd,
and in the third case a is even; thus, N must be even. So if &, =2 mod 4, then we cannot have
both m even and N odd. Similarly, the other two remaining cases may be shown not to occur.
Therefore, Theorem 8 gives the complete situation for odd N. Our second remark involves the
numbers ((a® +4)%F,—1)/4, ((@*+4)%F,-3)/4, and ((@* +4)%F,—5)/4 occurring in cases (ii),
(i), and (iv), respectively. Of course, we must require that these be integers. It is easy to see
that each is an integer in the appropriate case if and only if a is odd. However, again, if a were
even, then N would be even and Theorem 7 would apply. Hence, if N is odd, then a is also odd;
there-fore, the three numbers above are indeed integers as required. Third, we note that the
period length for R(n, m) is either 2, 4, 6, 8, 14, or 16. This proves an observation made by Long
[2] that the period is always even, but it also shows that the period length is, in fact, a bounded
func-tion of a, n, and m which Long believed not to be the case.

Proof of Theorem 7: We consider first the case of m even and let

a= [N/Z, F (@ +DF, ]
We now examine the corresponding matrix product:
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VPRSI Gl St S

It follows that @ =/, in particular,

_ (NF, 12+ 1)((@* +9)F,+a-N/2)+N/2
% (@ +F, +a—-N/2)+1

Thus, we have
%, o +(%F, (@ +HF,-N/12)-NF,/2)a
+(N/2P*F,~ (@ +DF,~N@* +HF2/2=0

which, together with our definition of N yields

o= a%,+ \[((az +HF: + 4 +4)
= > .
As m is even, identity (2.12) becomes (a* +4)F2 + 4 = F2 ; hence, a = R(n, m).
If m is odd, we again let

a:[(N—z)/z, L% —2,1@+8F, 2|,

and proceed in a similar manner to deduce

L N-@+9F,+ V(@ +HF2 - 4)(a® +4)
> :

In view of identity (2.12) with m odd, together with the definition of N, we have a = R(n, m),
which completes the proof.

As a consequence of the two previous theorems and a result of Long [2], we are able to
deduce immediately the continued fraction expansion for numbers of the form

_a¥,+%,Va’+4
7 .

F(n,m)

Long proved (Theorem 8, [2]) that the continued fraction expansions of R(r, m) and F(n, m) are
identical after the first partial quotient. In view of the two theorems of this section, it appears
clear that one may explicitly express the continued fraction expansion for

aF,+ &, Ja* +4
2

and, thus, by Theorem 9 of [2], the expansion for

a%,+%F, \Na* +4
2 :

It seems very reasonable to conjecture that these period lengths will again be even and bounded.
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1. INTRODUCTION

Stirling numbers may be defined as the coefficients in an expansion of positive integral
powers of a variable in terms of factorial powers, or vice-versa:

n

x),= Zs(n, x*, n>0, 1D
=3 S k)X 120, (1.2)
k=0

where
™), =x(x-1) - (x-—n+1), nzl,

(x)o=1.
The numbers s(n, k) and S(n, k) are, in the notation of Riordan [6], Stirling numbers of the first

and second kind, respectively.
Writing (1.3) as

(1.3)

), =T(x+1)/T(x-n+1) (1.4)

we may generalize factorial powers to negative integral values of #:

()0 = ! ,
(x+Dx+2)-- (x+n)

The question then arises as to whether we can extend Stirling numbers to negative integral values
of one or both of their arguments. Several authors have discussed the case where both n and &
are negative integers (for a brief history, see Knuth [4]), and we briefly discuss this case in Section
3. We shall refer to such numbers as Negative-Negative Stirling Numbers (NNSN) whereas we
call the numbers defined by (1.1) and (1.2) Positive-Positive Stirling Numbers (PPSN). It is
clearly impossible to have an expansion of the form (1.1) or (1.2), where n is a positive integer
and k is summed over negative values: in the first case, the left-hand side is a polynomial whereas
the right-hand side has a singularity at x =0; in the second case, taking the limit as x goes to
infinity, the left-hand side goes to infinity whereas the right-hand side goes to zero (for a proof of
the uniform convergence required to take the limit term-by-term, see, for example, Milne-
Thomson [5]). However, it is possible to extend (1.1) and (1.2) to the case where 7 is a negative
integer and k is summed over positive integers. We call the resulting coefficients Negative-
Positive Stirling Numbers (NPSN), and the purpose of this article is to discuss these numbers and
some of their properties.

In Section 2 we summarize some well-known properties of PPSN. In Section 3 we describe
four urn models: the first two illustrate PPSN and the second two demonstrate the connection
between NNSN and PPSN. We define NPSN in Section 4 and obtain explicit expressions for
them by means of two further urn models. Finally, in Section 5 we give some alternative repre-
sentations of NPSN, tabulate some values and derive some properties.
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2. PROPERTIES OF POSITIVE-POSITIVE STIRLING NUMBERS

In this section we list, for future reference, some well-known properties of PPSN. For more
details, see, for example, Jordan [3], Chapter I'V.
By using the definition (1.1) and the identity

()1 = (X),(x = 1), @1
and by equating coefficients of powers of x, we may derive the recurrence relation
s(m+Lk)=s(nk-1)—ns(n k). 2.2)
Similarly, the definition (1.2) and the identity
X = x"(x -k +k), (2.3)

and the equating of factorial powers of x, leads to
Sm+LE)=Sm k-D)+kS(n, k). 2.49)

Nunierical values for PPSN may readily be generated using (2.2) or (2.4) together with the
boundary values [which follow immediately from (1.1) and (1.2)]

stn,m=1 sn+1,0)=0, n=0, 2.5)
Sh,my=1, Sr+1,00=0, n=0. (2.6)

We may define a generating function for S(», k) (with respect to n) by
4, =D.1"S(n, k).
n=k

By using (2.4), we can obtain a first-order linear difference equation for 4, which, with the initial
condition 4,(f) =1, can be solved to give

& “
o0k = 2 Se k. k=1 @.7)

The left-hand side of (2.7) can be expressed in partial fractions:
1, (k) 1
k—!mzo(—l) (”)l—rt'

Expanding the last factor by the binomial theorem and comparing with (2.7) gives the following
representation, known as Stirling's formula:

S, k) = —kl—i (-1)k-'(’r‘ )r". 2.8)
r=l

3. URN MODELS AND STIRLING NUMBERS

In all the models of this section and the next, an urn contains white balls and black balls.
Some, but not necessarily all, of the balls are of unit mass. Balls are drawn one at a time with
replacement, and the probability that a particular ball is drawn is proportional to its mass.
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Model A

An urn originally contains only white balls of total mass x (>n—1) including at least n—1
balls of unit mass. We successively draw » balls with replacement. After a white ball is drawn
(and replaced) and before the next ball is drawn, we substitute a unit mass white ball in the urn by
a unit mass black ball. Then the probability that the number of white balls drawn is % is equal to

R}A(k)zz_z(%) ' x-1(g) Px-2 m(k-l) - x—k+1(£) a<ken, a1

X X X X X X

where the sum is over all nonnegative integers a; satisfying @, +---+a, =n—k. It is clear that,
for n>1, P(0)=0, so (3.1) may be rewritten as

PG = b ), 62

with
b(m k)=2Zuu, ---u, ,, 1<k<n, (3.3)
where the sum is over all integers u, (i=1,2,...,n— k) satisfying

1<y <u,<---<u, , <k,
b(m,0)=0, b(n,n)=1.

In terms of the urn model, if »=0, then certainly £ =0, so (3.2) continues to hold if we put
5(0,0)=1.
From the condition ¥;_, P*(k) = 1 and equation (3.2), we deduce

x" = kz:(x)kb(n, k).

Comparing this expression with (1.2), we conclude that a representation for S(n, k) is provided
by

S, k)=>b(n,k). 3.4
Model B

An urn originally contains only white balls of total mass y. We successively draw » balls with
replacement. After each ball is drawn (and replaced) and before the next ball is drawn, we add
one black ball of unit mass to the urn. The probability that the number of white balls drawn is & is
equal to

VEEW, Ve
Yo+ (+n=-1’

where the sum is over all integers v; (i =1,2,...,n—k) satisfying

P2(k)= 1<k<n, (3.5)

1<y <y, <<y, <n-1. (3.6)

The factors in the denominator of (3.5) represent the total mass of the balls in the urn at succes-
sive drawings; the factor y* arises from drawing a white ball on k occasions, and the factor v,
arises from the drawing of a black ball at a time when the urn contains v; black balls.
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Note that, for n>1, P5(0)=0 and P2(n)=y" /[y(y +1)--- (y +n—1)], so that (3.5) may be
written as

k k)
PP (k) = — 2L 0<k< 3.7
n (k) SOt (D)’ n, (3.7
with
c(nk)y=2vyv, v, ,, 1<k<n, (3.8)

under the restriction (3.6); ¢(n, 0) =0, c(n,n) =1
Putting y = —x, (3.7) may be written as

_ X

k

PR (k) = 2 (-1 e(n, k). (3.9)
(*¥)n

As in Model A, if n=0 then k£ =0, so (3.9) holds if ¢(0,0)=1. The probabilities in (3.9) must

add to one; hence,

x), = ixk (~D)"*c(n, k).
k=0

Comparing this with (1.1), we see that

s(n, k) = ()™ c(n, k) (3.10)
where c(n, k) is given by (3.8).

The PPSN representations derived above by means of Model A and Model B are, of course,
well known and have been derived by other methods (see, for example, Jordan [3]). We now
consider two urn models of relevance to Negative-Negative Stirling Numbers. By analogy with
(1.1) and (1.2) the NNSN of the first and second kind, respectively, are defined by

0

(), =Y. s(-n,—k)x*, n=0, (3.11)
k=0
x" = iS(—n,—k)(x)_k, nx0. (3.12)
k=0

Model C

The situation here is the same as in Model B except that now we continue to draw balls until
we have drawn n+1 white balls. The probability that the total number of balls drawn is £ +1 is
equal to

n+1
PC k+1 :y ZVIVZ.“vk—n
n+1( ) y(y+1)‘”(y+k)’

where 1<v, <v, <+--<v,_, <k -1. If all the balls drawn are white, we have
Po+1) =y [y(y+1) - (y+m)]
whereas, if n= 0, then certainly £ = 0. It follows from (3.8) that (3.13) may be written as
PGk +1) = y"(y)_sclk,n), 0<n<k. (3.14)

1<n<k, (3.13)

Suppose that after the (i +1)" ball is drawn all the remaining balls drawn are black. The
probability of this event is given by the infinite product
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0

| g —ﬁ(l— 4 ):o

,,,=1y+i+m_m=1 y+i+m

(see, for example, Ferrar [2], p. 147). It follows that the probability distribution (3.14) is proper
and sums to one. Hence,

¥ =Y 0)selh, ).

The coefficients in an expansion such as this are unique (see Milne-Thomson [5], p. 288), so, by
comparison with (3.12) and using (3.10), we see that

S(-n, —k) = c(k,n) = (<1)"*s(k,n), 0<n<k (3.15)
[and S(—n, —k)=0for 0< k <n].

Model D

This is the same as Model A, except that the white balls originally in the urn have total mass x
(> n) and include at least » balls of unit mass. We now continue to draw balls until we have
drawn n+1 white balls. The probability that the total number of balls drawn is £ +1 is equal to

Pﬁl(kﬂ)=2%(l) ——x—l(z) x—z---(ﬁ)nx—", 0<n<k,

X X X X X X

where a, ++--+a,=k—n.
Using the notation of (3.3), we can write

PO,k +1) = XX =D eomben) o g (3.16)
X

The probability that after the i white ball is drawn all the remaining balls drawn are black is

i m
lim(——) =0,
m—>eo\ X

so the probability distribution (3.16) is proper and sums to one.
Putting x = -y, (3.16) may be written as

P21y = 0™ by 0<m<k
n+l (y) yk s Tt)s SASK.

—-n

If we sum over k and rearrange this equation, we obtain
0)n = 2y (D" blk, ).
k=n

Comparing this with (3.11) (using the uniqueness of Laurent series coefficients) and using (3.4),
we conclude

s(-n,— k)= (=1)""*b(k,n) = (-1)"*S(k,n), 0<n<k, (3.17)
[and s(—n,—k)=0for 0 <k <n].
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Equations (3.15) and (3.17) show the interesting fact, noted by other authors (see Knuth [4]),
that, apart from a sign, NNSN of the first (second) kind are obtained from PPSN of the second
(first) kind by a reflection in the line n= -k .

4. NEGATIVE-POSITIVE STIRLING NUMBERS

Negative-Positive Stirling Numbers of the first and second kind may be defined by the
obvious modifications of (1.1) and (1.2), respectively:

0

(X)_p =D s(-n,k)x*, n=1, 4.1)
k=0
X7 =Y S(-n, K)(x), 120, (4.2)
k=1

(The reason for the limits on # and & will become clear later.)
Two further urn models allow us to give explicit representations for these NPSN.

Model E

Originally the urn contains white balls of mass x (< 1) and black balls of mass 1—x. Balls are
drawn one at a time with replacement. After a black ball is drawn (and replaced) and before the
next ball is drawn, we add one black ball of unit mass to the urn. We continue until »+1 white
balls have been drawn. For n> 0, the probability that the number of black balls drawn is £ —1 is

equal to
“l-x(x\?2-x x Ve k—1-x(x\*"
PEGh-1=32 X x k=2
(=D Z(l) 1(2) 2 (k—l) k-1 (k) ’ ’

where the sum is over all nonnegative integers a, satisfying a, +--- +a, = n; if all the balls drawn

are white, then P%,(0) = x™"'. We may therefore write
Pk =1) = x"(x),(-)""a(n, k) / k! (43)
with

amk)=Y—1 p>1, (4.4)
u1u2 .'.u

where the sum is over all integers », (i =1, 2, ..., n) satisfying
I1<wu<u, <---<u, <k,
a(0,k)=1

The probability that after the i/ black ball is drawn all the remaining balls drawn are black is

ﬁi+m—x :ﬁ(l— x ):0,

wel PTM o i+m

We conclude that the probabilities in (4.3) sum to one, and hence,
x7" = Z(x)k(—l)k’la(n, k) k! 4.5)
k=1
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An expansion of x™" of this form in terms of factorial powers (x), has unique coefficients. The
reason for this is that we have effectively put the coefficient of (x), equal to zero (see Milne-
Thomsom [5], pp. 305-06).
Comparison of (4.5) and (4.2) gives
S(-n, k)= (-D*"a(n, k)/ k|, (4.6)
with a(n, k) given by (4.4).

Model F

The rules for this model are the same as for Model E, except that now we continue until »
black balls have been drawn. For n>1, the probability that the number of white balls drawn is &

is equal to
“1-x(x\?2-x xY"n-x
PFay=x%| =X[X | = k>0
n (6) Z(l) 1 (2) 2 (n) n’ ?

where g, ++--+a,=k.
Using (4.4), we may write

PF(k)y=x*(1-x)---(n—x)a(k,n)/n!. 4.7

The probability that after the (i —1)™ black ball is drawn all the remaining balls drawn are white is

lim (E) =0
m—>e\ [

so0, again, the probabilities must add to one.
Putting x = —y, (4.7) becomes

PF(k) = lk—(—l)ka(k, n)/n!.
5 )-n

Summing over & gives
0)-n = 2V (=Da(k,n)/n),
k=0

and a comparison with (4.1) gives

s(=n, k) = (~)*a(k, n) /n'. (4.8)

5. PROPERTIES OF NEGATIVE-POSITIVE STIRLING NUMBERS
At the end of Section 3 we noted that
|S(=n, - k)| = |s(k,n)| .1

whenever n and & have the same sign. Equations (4.6) and (4.8) show that NPSN are related by
the same reflection in the line n=—k, that is, (5.1) continues to hold if » is positive and & is
negative. The consequence is that NPSN of the first and second kinds are (apart from a sign) the
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same set of numbers, but differently indexed, so that any property of NPSN of one kind can be
immediately expressed as a property of the other kind. Explicitly,

S(—n, k) = (-1)"*s(-k, n). (5.2)

Different Representations

If we regard (4.1) as a Taylor series, it follows, using (5.2), that

. 3 (_l)n+k—l d" 1
S, k) = n! {dx" ((x+l)(x+2)...(x+k))lc=o' (5.3)

It is not difficult to show directly the equivalence of (4.6) and (5.3).
If we expand (5.3) by partial fractions, perform the n-fold differentiation, and put x =0, we
obtain

S(n, 1)y =L 3 () (5.4)
’ ke F ' '
Thus, we note that Stirling's formula (2.8) continues to hold if z is negative.

Recurrence Formulas and Tablie of Values

The recurrence relations for PPSN, (2.2) and (2.4), were derived from the identities (2.1) and
(2.3). These identities hold whatever the sign of », and it follows that (2.2) and (2.4) continue to
hold for NPSN. These relations can therefore be used, together with appropriate boundary
values, to generate numerical values. For NPSN of the first kind, we may rewrite (2.2) as

s(-n+LEk)y=s(-m k-D)+ns(-n k), nz2, k=1. (5.5)

On putting, respectively, » =1 and x = 0 in the definition (4.1), we obtain
s(-Lk)=(-1, s(-n,0=1/n! (5.6)
Combining (5.5) with (5.6), we can generate the values for s(—n, £) given in Table 1. Values for

S(—n, k) are then given by (5.2).

TABLE 1. Values of s(—n, k)

PNAN 1 2 3

1 1 -1 1 -1
1 -3 A _15

2 2 1 3 16

3 1 _11 8  _ 575
6 36 216 1296

4 1 _ 25 415 _ 5845
24 288 3456 41472

Generating Functions

We derive a number of generating functions for NPSN. They can easily be translated into
generating functions for the other kind of NPSN by use of (5.2).
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The definition (4.1) itself provides a generating function for s(—», k). An exponential gener-
ating function can be obtained from (5.4):

3 S(-n, k)y' k'Z( 1)"“'( )exp(y)

n=0 ' r=1

Two double generating functions can be obtained from (4.1) as follows:

> 3 s, bty = Y D
"Z=1 kz::s( n, k)x"y ZI“(x+n+1)y by (4.1) and (1.4)
=M1, 1+x,y)-1,

where M is a confluent hypergeometric function (see [1], p. 504). Similarly,
> D s(=n, k)x* Y= FQ+x,y)-1
n=1 k=0 n!

=[T(x+DL2{y)/ y?1-1,

where F] and I, are, respectively, a generalized hypergeometric function and a modified Bessel
function (see [1], pp. 556, 374, 377).
Another pair of double generating functions can be obtained from (4.2):

S 3 S, k)(x) " ===

n=0 k=1 xX=y ’
Y. X SCn, b)) 2= exp(y /)
n=0 :

M87

=
I

1

Asymptotic Behavior
If n is taken to infinity in (5.4), only the » =1 term survives. Hence,

lim $(-n, k)= (-1 / (k= 1D)1.

The definition (4.4) implies that we can express a(n, k) as h,(1,1 2o %), where A, is a homo-
geneous product sum symmetric function (see Riordan [6], p. 47). Riordan shows that n!h, can
be expressed as a (Bell) polynomial ¥, in the variables s, (i =1,...,n), where

1 1
eee 4

As k —> 0, all s, tend to a finite limit apart from s; which behaves like Ink. It is clear that the
term involving the highest power of s; in ¥ is s{. Hence, as ¥k > o, ¥ ~(Ink)". From (4.6), we
conclude that

1S(-n, k)1~ﬂri)_ as k —> oo,
k'n!
Orthogonality and Other Relations

For n>m>1, we have
)/ ) =(x—m)(x—m=1) - (x=n+1) =(x-m),_,,
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and
1 1 ) )™ D)
*),, x(x=1D-(x-m+1) x(-x+1)--(-x+m-1) x '
Hence,
(x - m)n—m = (—- l)m-l(x)n(_x)—mﬂ /x. (57)

If, for m> 2, we expand the factorial powers by (1.1) and (4.1) we obtain

i s(n—m, k)(x —m)* = (1" 'x! D s(n, p)xPY. s(-m+1, q)(-x)?. (5.8)

k=0 p=0 q=0

Expanding the term (x—m)* on the left-hand side by the binomial theorem, and equating coeffi-
cients of like powers of x, gives, for 0<r <n—m, the following relation between PPSN and
NPSN

n—m r+l
> (-1* (I;) s(n—m, k)m"" = > (=)™Ps(n, p)s(-m+1,r+1-p), (5.9)
k=r p=0
and for 7 > n—m, the orthogonality relation
min(r+1, n)
Z (-D?s(n, p)s(-m+1,r+1-p)=0. (5.10)
p=0

When m>n 21, the left-hand side of (5.7) is replaced by

1
(x—-m)(x-n-1)-(x—m+1)

(5.11)

If we express this function in partial fractions and then expand each term as a power series in X,
we can again equate the coefficients of powers of x with those on the right-hand side of (5.8),
obtaining, for r >0,

m-1 (_ l)k min(r+1, n)

2 G R ;;) D7 s, psom+Lr+1-p). (5.12)

It is possible to obtain equivalent results involving NNSN [and hence, by (3.17), PPSN]
instead of NPSN by using (3.11) to expand the term (—x)_,,,, in (5.7). Forn>m>1 and 0<r <
#i—m, the only difference from (5.9) is that the sum on the right-hand side now goes from p =
m+r to p=n;if r <0, the sum on the left-hand side of (5.10) now goes from p = max(m+r, 0)
to p=n. Similarly, if m>n>0, we expand the terms in the partial fraction version of (5.11) as
power series in (1/x) and equate coefficients of like powers. For r < —(m—n), the right-hand side
of (5.12) acquires an extra factor of (-1) and the sum now goes from p = max(m+r, 0) to n.
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