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GCD AND LCM POWER MATRICES 

Sheii Ze Chun 
An-Gang Engineering College, Anshan, P.R. China, 114001 

(Submitted October 1994) 

1. INTRODUCTION 

Let 3 = {xl,x2,...,xn} be a set of distinct positive integers. By (xi9Xj) and [xf,Xj], we 
denote the greatest common divisor (GCD) and the least common multiple (LCM) of xi and Xj, 
respectively. 

The matrix (S) (resp. [S]) having (xi9 Xj) (resp. [xi9 Xj]) as its z, y-entry is called the GCD 
(resp. LCM) matrix defined on S. 

A set is called factor-closed if it contains every divisor of each of its members. A set S is 
gcd-closed if (xz, Xj) GS for any / andy (1 < /, j <ri). 

Smith [6] and Beslin and Ligh [3] discussed (S) and det(S), the determinant of (S). They 
proved that det(iS) = ^(xx) ... 0(xn), where <f> is Euler's totient, if 3 is factor-closed. Beslin and 
Ligh [4] gave a formula for det(«S) when S is gcd-closed. 

Smith [6] and Beslin [2] considered the LCM matrix [S] when S is factor-closed. In 1992, 
Boueque and Ligh [1] gave a formula for det[5] when S is gcd-closed. They also obtained for-
mulas for (S)~l and [S]~l, the inverses of (S) and [S]. 

Let r be a real number. The matrix {Sr)-{aij), where atj = (xi,xJ)r, is called the GCD 
power matrix defined on S; the matrix [Sr]= (by), where btj =[xiy XjJ, is called the LCM power 
matrix defined on S. 

In this paper the results mentioned above are generalized by giving formulas for (Sr), [Sr], 
det(iS'r), and detf/S""] on factor-closed sets and gcd-closed sets, respectively. Making use of the 
Mobius matrix, which is a generalization of the Mobius function ju, we shall give the inverse 
matrices of (6"") and[S""]. 

All known results about (S) and [$] are just the particular cases of the theory of (Sr) and [Sr] 
on condition that r = 1. 

One of the problems raised by Beslin [2] are solved. Some conjectures are put forward. 

2. JORDAN'S TOTIENT 

For any positive integer n and real r, we define 

P\n\ P J 

The function Jr is usually called Jordan's totient. 

Theorem 1: If n > 1 and r is real, then 

Z ^ = "r- (2-1) 
d\n 
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Proof: By the definition of Jr, when n = p"1 ...plk, 

Jr(n) = nr v^ ftj d\n a d\n \UJ \ PlJ 

Equation (2.2) and the Mobius inversion fonnula give (2.1). D 

3, MOBIUS MATRICES 

Let S = {x1?..., xn} be ordered by xl < x2 < • • • < xn. We define U = (u^), where 

uif = < (3.1) 
[0 otherwise. 

Our purpose is to find M = (fy) = U~l. As S is ordered, J7 is an upper triangular matrix. It 
is well known that the inverse of an upper triangular matrix is also an upper triangular matrix. 
Hence, 

My = K*i, xj) = °> 'lfi > J (Le-> *t > Xj). (3.2) 

Since M - U~l, we have Z£=1 %% = Stj. Using (3.1), 
n 

X/<*i,**) = <V (3.3) 

When / = j , by (3.2) and (3.3), we have 

/<*/,*/) = 1 (i = 1,2,...,/!). (3.4) 

When i < j , by (3.3), we have 

Mij = M*/, *,) = - Z Pi*, xkl (3-5) 

Theorem 2: Function ju(x, y) is multiplicative. 

Proof: /d(x,y) may be written as fi(p°l ...pa
s\ p^ ...pb

s
s), where at > 0, 57 > 0, but a,. + bt > 

0, / = 1,2,..., 5. First, for any a,. > 0 (i = 1,2,..., s), by (3.2) and (3.4), we have 

ju(p? . . .KM)^W,l). . . / ifeM). (3.6) 
Next, we make an inductive hypothesis: 

MiPail -P"/, Pi1 .••Pis) = M(P?\Pfil)-.-M(P:%Pi
s
s), (3-7) 

for (0,..., 0) < (il9..., j,) < (bx, ...,bs), which may be abbreviated (0) < (j) < (b). 
Note that (i1? ...Js) = (bl? ...,bs) means ik=bk, k = 1,2,...,$; (i1?. ..,is)<{bx, ...,bs) means 

ik < bk, and there exists at least a t such that it <bt (l<t<$). 
When (a) * (b), by (3.5) and (3.7), we have 
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M(pai\ph-(Pss,ph/) 

KPV -pas°, pf - P» = - Z Art -P"S> p\l ••• rt) 
(0)<(/)<(6) 

= - Z KPtXJ{)-{pas\P's) 
(0)<(/)<(A) 

=-[(i-ir-iKA°',A
6')-(ft°%^) 

=A(^i,Jp?)-(rf',Jrf'). 
In summing, we consider all combinatorial possibilities of 0 < ik < bk and ik = bk satisfying 

(0) <(/)<(*); also, 

0<ik<bk 

has been used. 
When (a) = (b), by (3.4), we have 

MP? ... Pa/, rf • • • Pb
s°) = i = MW , A*1 ) • • • tttf; pb/) • a 

Theorem 3: The generalized Mobius function 

M(x,y) 
i-iy i£z = Pl...p„s>o, 
1 ifx = y, 
0 otherwise. 

Proof: Let/? be a prime. By (3.2), (3.4), and (3.5), 

M(pm, p") = 0, if m>n; M(pm, pm) = 1; 

M(pm,pm+1) = -M(pm,pm) = -L 
When k > 2, we have 

*>"rt)=-Z*",r) 
0<z<£ 

= - I MiPm,pm+i)~M(Pm,Pm+k-1) 
0<i<k-l 

= MiPm, Pm+k~l) - MiPm, Pm+k~l) = 0. 
These results and Theorem 2 complete the proof. D 

4. GCD POWER MATRICES ON FACTOR-CLOSED SETS 

Let S = {x1? x2, ...,xn} be an ordered set of distinct positive integers, and S = {y1,y2,...,ym}, 
which is ordered by yx < y2 < • • • < ym9 be a minimal factor-closed set containing S. We call S the 
factor-closed closure ofS. 

Theorem 4: Let 5 = {xl9...9x„} be an ordered set of distinct positive integers, and S - {yi,...9ym} 
the factor-closed closure of g. Then the GCD power matrix on S, i.e., 
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(Sr) = E1GrE, (4.1) 
where 

Gr = (BagC/^),..., Jr(ym)\ (4.2) 

* = <*>• *»={<, ort^ise. <43> 

Proof: By (2.1), we have 

= £./r(d) = (*>,*/= ($%.. D 

Theorem 5: Let 5 be factor-closed, then we have 

det(^) = /r(x1).../r(x„). (4.4) 

Proof: When £ is factor-closed, S = S, and the matrix £" is equal to U, which is defined as 
(3.1), and is a triangular matrix with the diagonal (1,1,..., 1). We have 

det(Sr) = (dett/)2 detGr = detGr = Jr(x^ ••• Jr(x„). D 

When S is arbitrary, det(£r) can be calculated by the Cauchy-Binet formula [8]. We omit this 
here for succinctness. 

Remark 1: Letting r - 1 in (4.4), we obtain the well-known results of Smith [6] and of Beslin 
andLigh [3]: 

detOS) = Jfa)... Jx(xn) = ̂ ) ... (f>(xn). 

Remark 2: By (4.1), we have the reciprocal GCD power matrix 

(S~r) = ETG_rE. (4.5) 

Hence, ifS is factor-closed, we have 

det(S-r) = J_r(xl)...J_r(x„), (4.6) 

det(S-1) = J_i(x1)...J_l(x„). (4.7) 

In fact, (4.7) is exactly Corollary 1 of Beslin [2]. It is evident that the function g(n) intro-
duced by Beslin in [2] and by Bourque and Ligh in [1] is none other than Jordan's totient function 
J-M-

5. LCM POWER MATRICES ON FACTOR-CLOSED SETS 

In this section, we shall turn our attention to the LCM power matrix. 

Theorem 6: Let S and £ be defined as in Theorem 4. Then we have the LCM power matrix 

[Sr] = DrETG_rEDr, (5.1) 
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(5.3) 

where 
Dr= diag(x[,...,<), (5.2) 

G_r and E are defined by (4.2) and (4.3). 

Proof: By (4.5), we have 

(DrETG_rEDr)i} = {Dr{S-r)Dr)tj = ^(Dtf 
T T 

Theorem 7: If 5 is factor-closed, then the determinant 

det[Sr] = xlr...x2
n

rJ_r(x1)...J_r(x„) 

= M*) • • • Jr(X>r(Xl) • • • * r(*»)» 

where nr is multiplicative and for the prime power pm, nr{pm) = ~P''• 
Proof: By (5.1) and the fact that E = U,we have 

d e t p ' ^ n ^ - r f o ) a n d ^ / - A ) = -/r(*,K(*,)-
1=1 

This completes the proof. • 

Remark 3: Letting r = 1 in (5.3), we shall have Corollary 3 of Beslin [2] immediately. 

On the basis of (4.4) and (5.3), we have 

Theorem 8: IfS is factor-closed, then 

d ^ = n ^ (54) 

det[S] IK*), (5.5) 
det(S) |=f 

where x(n) is multiplicative, and 7u{pk) = -p, for the prime power pk. 

Remark 4: By (5.4) and (5.5), we know that [S] and [Sr] are not positive definite. 

Remark 5: Let co(x) denote the number of distinct prime factors of x, and £l = G)(x1) + ~- + 
co(xn). By Theorem 8, we know that det[5] and det[Sr] are positive, if O is even; they are nega-
tive if O is odd, for factor-closed S. This solves the second of the problems put forward by 
Beslin in [2]. 

6. INVERSES OF (Sr) AND [Sr] ON FACTOR-CLOSED SETS 

In Section 3, we obtained M = (ju(xl9 x.)) = U~l. Now we shall give OS"")"1 and [Sr]~l, the 
inverses of (Sr) and [5"*], respectively. 
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Theorem 9: Let S be factor-closed, then (Sr) l = (afJ) and [Sr] 1 = (Z^), where 

** = I 
[Xi,Xj]\xk\Xi J 

\r( Y 

VX/y 
KXj>xMxj,xk) 

Jr(xk)7Tr(xk) 

Proof: When 5 is factor-closed, we have E = U. By (4.1), 

(6.1) 

(6.2) 

% = (U-1G;\U-1)T\ = (MG;1M% 

= lE,Mik(Jr(Xk)YlMjk= Z 
[*V.«/]|** fc=l Jr(Xk) 

By (5.2), we have 

bv = (D;1U-1G:XU-1)TD;% = {D;1MG^MT^\ 

= 2 ^ AtC -̂rC**)) /*j**y = T T L T77^ 

= z 
[*,-,X/]l*jfc 

f Y 

V V 

Kxi,Xk)Kxj>Xk) 
Jr(xk)7Tr(xk) 

. D 

Remark 6: Theorem 9 is a generalization of Theorems 1 and 2 of Bourque and Ligh [1]. 

7. 0T) AND [Sr] ON GCD-CLOSED SETS 

Let ar(xiX / = 1,2,..., w, be defined by 

rf|xy 

x,<xf-

(7.1) 

Using the principle of cross-classification [7] and (2.1), we can prove 

Theorem 10: Let S - {xl9 x2, ...,xn} be ordered by xx < x2 < ••• < JC„ and let ar(X) be defined by 
(7.1). Then 

ar{xi) = xf;- ^(xj9xiy+ Yt^j^k^iY--• 
+ (rl)i~l(?ci,x2,...9xiy, i = !,...,«. 

Theorem 11: Let *S be gcd-closed, then 

(Sr) = UTArU9 (7.3) 
[51 = Dr[/^_r[/Dr, (7.4) 

where 4- - diag(ar(xx),..., ar(xn)), C/andDr are defined in (3.1) and (5.2), respectively. 
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Proof: The proof of (7.3) is simple. We shall prove only (7.4). 
n 

(DrUTA_rUDr)v =Y,XiUkia-r(xk)%xrj = xixj Yl
a-riXk) 

k=\ Xfe\xi 
Xk\Xj 

= XfXJ Z yLJ-r<ft) = t*J I J-rW 
xk\(xt,Xj) d\xk d\{xt,Xj) 

dHxt 
xt<xk 

= txr
J/(xl,xJy=[Xl,xJy=[sriJ. D 

On the basis of Theorem 11, it is easy to prove 

Theorem 12: Let S be gcd-closed, then 

tet{Sr) = f[ar(xi\ (7-5) 

det[^] = n ^ a _ r ( * i ) . (7.6) 

Remark 7: Letting r = 1, equation (7.5) becomes Corollary 1 of Beslin and Ligh [4] and equation 
(7.6) becomes Theorem 5 of Bourque and Ligh [1]. 

8. INVERSES OF (Sr) AND [Sr] ON GCB-CLOSED SETS 

When S is gcd-closed, the inverse matrices (Sr)~l and [S^'1 can be derived easily from Theo-
rem 11. For future reference, we present the formulas without proof. 

Theorem 13: Let S be gcd-closed, then 

(5T' = (%) and [ST1 = (4,), 
where 

M(xi, xk)Kxj, xk) 

[Xi,Xj]\xk 
« ^ ar(xk) 

d=— y ^Xk)^xPXk>) ( 8 2 ) 
XiXj [xi9Xj]\xk &-r\Xk) 

Remark 8: We make the following conjectures, which are similar to the conjecture of Bourque 
and Ligh [1]: 
1. If S is gcd-closed and r * 0, the LCM power matrix [Sr] is invertible. 
2. Let S = {xly x2,..., x„} be an ordered set of distinct positive integers and r ^ 0, then 

1 
•*77 !< /<» V * 7 J •*-«/ \<i<j<n \ X h Xj> Xn) \X1> X2-> • ••? Xn) 

- * 0 . 
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J* Let A = {ah a2,..., an) be a set of distinct positive integers and at > 1 (i = 1,..., n\ r * 0, then 

\<i<n \<i<j<n 
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In 1965, Brother Alfred Brousseau, under the auspices of The Fibonacci Association, compiled a two-
volume set of Fibonacci entry points and related data for the primes 2 through 99,907. This set is currently 
available from The Fibonacci Association as advertised on the back cover of The Fibonacci Quarterly. Thirty 
years later, this new monograph complements, extends, and triples the volume of Brother Alfred's work 
with 118 table pages of Fibonacci entry-points for the primes 100,003 through 415,993. 

In addition to the tables, the monograph includes 14 pages of theory and facts on entry points and their 
periods and a complete listing with explanations of the Mathematica programs use to generate the tables. As 
a bonus for people who must calculate Fibonacci and Lucas numbers of all sizes, instructions are available 
for "stand-alone" application of a fast and powerful Fibonacci number program which outclasses the stodc 
Fibonacci programs found in Mathematica. The Fibonacci portion of this program appears through the kind-
ness of its originator, Dr. Roman Maeder, of ETH, Zurich, Switzerland. 

The price of the book is $20.00; it can be purchased from the Subscription Manager of The Fibonacci 
Quarterly whose address appears on the inside front cover of the journal. 
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ON THE STABILITY OF CERTAIN LUCAS SEQUENCES MODULO 2* 

Walter Carlip and Eliot Jacobson 
Ohio University, Athens, OH 45701 

{Submitted February 1995) 

1. INTRODUCTION 

Let {i/. | J G N } be the two-term recurrence sequence defined by u0 = 0, ux-\, and 
ut = aut_x +hui_2 for all / > 2, where a and b are fixed integers. Let m be an integer and consider 
the corresponding sequence { .̂}, where u. GZ/mZ is obtained via the natural projection 
Z->Z//wZ. 

It is well known that {ut} is eventually periodic and, if b is relatively prime to m, such a 
sequence is purely periodic (see, e.g., [3] or [10]). We will designate by X{m)-Xah(m) the 
length of the (shortest) period of { .̂}, and for each r e Z , we define v(m, r) = va b(m, r) to be the 
number of occurrences of the residue r (mod m) in one such period. We also define £l(m) = 
nawb(m)={va9b(m,r)\reZ}. 

The sequence {#.} is said to be uniformly distributed modulo m if each residue modulo m 
appears an equal number of times in each period, that is, if |Q(/w)| = 1. The sequence {ut} is said 
to be stable modulo the prime/? if there is a positive integer N such that Q(pk) = £l(pN) for all 
k>N. If N\s the least such integer, we say that stability begins at N. 

Interest in the stability of two-term recurrence sequences developed from the investigation of 
the uniform distribution of the Fibonacci sequence. A flurry of papers in the early 1970s culmi-
nated in the complete characterization of those integers modulo which a two-term recurrence 
sequence is uniformly distributed. A thorough exposition can be found in [5]. 

The subject lay dormant until the ground-breaking work of Schinzel [7], who classified the 
sets Qa l(p) for odd primes/?. Pihko extended Schinzel's work to cover some additional two-
term recurrence sequences in [6], and Somer explored and extended Schinzel's work in [8] and 
[9]. In 1992, Jacobson [4] investigated the distribution of the Fibonacci sequence modulo powers 
of 2 and discovered that the Fibonacci sequence is stable modulo 2. He used this stability to com-
pute vu(2*, r), for all k G N and r eZ . 

In the present work we explicitly compute vab(2k,r) for all k > 5 and all integers r, when-
ever a is odd and b = l (mod 16). We will show that {uf} is stable in this case, and that 
Jacobson's result for the Fibonacci sequence is archetypal for this situation. 

Theorem 1.1: Assume that a is odd and b = 1 (mod 16). Then, for all k > 5, 

1 ifr = 3(mod4), 
2 ifr = 0(mod8), 

v{2k,r) = \3 ifr = l(mod4), 
8 if r = a2 + b (mod 32), and 
0 otherwise. 
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Corollary 1.2: Assume that a is odd and b = l (mod 16). Then {w.} is stable modulo 2, with sta-
bility beginning at N = 5, and Ofl>&(2*) = {0,1,2,3,8} for all k > 5. 

The reader may wonder if stability also occurs for other choices of the parameters a and b. 
In fact it does, though the proofs are considerably more delicate. Table 1 gives the value of N at 
which stability begins for a given pair (a,b). In [2] we proved that {ut} is stable when b = 5 
(mod 8), and in [1] we dealt with the case b = 3 (mod 4), in which stability apparently occurs less 
frequently. 

TABLE 1. Smallest * for which Qa,*(2*) = Q^(2*+') for all t > 0 

6 

1 

3 

5 

7 

9 

11 

13 
15 

17 

19 

21 

23 

25 

27 

29 

31 

1 

5 

5 

5 

4 
6 

5 

7 

5 

4' 

L7 

3 

5 

4 

4 

4 

5 

3 

5 

4 

5 

4 

6 

3 

5 

5 

4 

4 

5 

7 

3 

5 

4 

4 

4 

5 

3 

7 

5 

4 

7 

4 

4 

4 

6 

5 

4 

5 

4 

4 

4 

9 

5 

4 

6 

6 

4 

4 

5 

5 

4 

5 

5 

4 

4 

4 

11 

5 

4 

4 

7 

6 

3 

5 

4 

4 

4 

5 

3 

13 

5 

4 

4 

4 

5 

3 

5 

4 

6 

4 

9 

3 

15 

5 

5 

6 

4 

5 

5 

6 

4 

8 

17 

5 

5 

4 
8 

5 

6 

6 

4 

6 

19 

5 

4 

4 

4 

5 
3 

5 

4 

7 

4 

7 

3 

a 

21 

5 

4 

4 

6 

6 

3 

5 

4 

4 

4 

5 

3 

23 

5 

4 

6 

4 

4 

5 

5 

4 

5 

4 

4 

4 
4 

25 

5 

4 

8 

5 

4 

4 
7 

5 

4 

5 

6 

4 

4 

4 

27 

5 

4 

4 

5 

9 

3 

5 

4 

4 

4 

5 

3 

29 

5 

4 

4 

4 

5 

3 

5 

4 

5 

4 

6 

3 

31 

5 

5 

4 

4 

8 

5 

11 

4 

4 

2 

33 

5 

5 

5 

4 
7 

5 

8 

5 

4 

35 

5 

4 

4 

4 

5 

3 

5 

4 

5 

4 

6 

3 

37 

5 1 
4 

4 

5 

8 

3 

5 

4 

4 
4 

5 

3 J 

A missing entry in Table 1 corresponds to a case that we have not yet resolved (but conjec-
ture to be unstable). In particular, as of this writing, the stability of {14} when b = 9 (mod 16) is 
undetermined. 

2. PRELIMINARY LEMMAS 

In this section we present a few lemmas required for the proof of Theorem 1.1. Throughout 
this section, assume that a is odd and that b = l (mod 16). As usual, {ut} will denote a two-term 
recurrence sequence defined by uQ = 0, ux - 1, and u. = aut_x +bui_2 for all i > 2. 

The following lemma summarizes some well-known facts about two-term recurrences. The 
routine induction proofs of each part are left to the reader. 

Lemma 2.1: For all m > 1 and n > 0, 

(a) ^n = btW-iun+unMn+i, 

(c) u2n = 2unun+l-a(unf,md 
(d) un divides unm. 
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Although the next lemma is stated only for b = 1 (mod 16), analogs exist for all odd b. The 
interested reader is invited to discover these congruences. 

Lemma 2.2: For all k > 5, 

_ J2k~l (mod 2k+1) if a = 1 (mod 8) or a s= 3 (mod 8), 
Si*-* -13 B 2k-i ^mod 2*+1 ̂  if a s 5 ̂ mod 8) or a s 7 (mod 8^ 

and 
_ J l + 2*-2(mod2*) i f as l (mod8)ora = 7(mod.8X 

^3'2*~3+1" [i + 3. 2*"2 (mod 2*) if a s 3 (mod 8) or a = 5 (mod 8). 

Proof: We will prove the results for a = 1 (mod 8) and leave the analogous proofs when 
a = 3,5, or 7 (mod 8) to the reader. To this end, assume that a = 1 (mod 8). We prove (a) and 
(b) simultaneously by induction on k. The base step, when k = 5, can be checked by explicit com-
putation. Since there are only a finite number of two-term recurrence sequences modulo 25 and 
26, this computation is finite, and we leave it to the reader to verify the result. 

Now assume that (a) and (b) are true for some k > 5. Since k > 5, it follows that Ik - 4 > 
k + l and 2k - 2 > k +1. Therefore, by Lemma 2.1 and the induction hypothesis, 

S2*-2+l=\3.2^3Hl=*(W3.2*-3) +(W3.2*-3+l) 

s b{2k~lf + (1 + 2k~2)2 (mod 2k+l) 
EE b • 22k~2 +1 + 2k~l + 22k~4 (mod 2k+1) 
s l + 2*"1 (mod2*+1), 

as desired 
Now 

A: + 2 and, therefore, by Lemma 2.1 and the induction hypothesis, 
Now write ^3.2*-3+1 = 1 + 2 + 2 v for some integer v. Since £ >4, it follows that 2k-2 > 

Lemma 2.1 and the induction hypothesis, 
\2 

W3.2*-2 = ^2(3-2*-3) = 2(W3:2^3^2*-3
+l)"a^3-2i-3) 

s (2 • 2k~l) • (1 + 2k~2 +2kv)- a{2k~lf (mod 2*+2) 
E 2 * ( 1 + 2*"2) (mo'd2*+2) 
^2* (mod2*+2), 

as desired. This completes the induction and, hence, the proof of the lemma for a = 1 (mod 8). D 

Clearly the residue classes of un modulo 2, 4, and 8 depend only upon the residue classes of a 
and b. These classes will be required below. They may be computed directly, and we list them 
here for convenience. 

Reduction of {ut} modulo 2 yields 
0,1,1, 0,1,... for all odd a and b. (2.1) 

Since b = \ (mod 4), reduction of {wj modulo 4 yields 
0,1,1,2,3,1,0,1,... if a s i (mod 4), 

(2.2) 
0,1,3,2,1,1, 0,1,... if a = 3 (mod 4). v J 

300 [AUG. 



ON THE STABILITY OF CERTAIN LUCAS SEQUENCES MODULO 2* 

Finally, since b = l (mod 8), reduction of {«;.} modulo 8 yields 

0,1,1,2,3,5,0,5,5,2,7,1,0,1,... 
0313332313530353732353130313... 
03135323735?0353132333130313... 
0,1,7,2,5,5,0,5,3,2,1,1,0,1,... 

fa = l (mod 8), 
fa = 3 (mod8)3 (2 3) 
fa^5 (mod8), v ' ; 

f a s 7 (mod 8). 

In the next lemma we examine the periods of two-term recurrence sequences defined by our 
parameters a and b. 

Lemma 23: If b = 1 (mod 16) and a is odd, then X(2k) = 3 • 2k~l for all k > 5. 

Proof: Fix an integer k such that k>5. By Lemma 2.2, u k_x = 0 (mod2fc) and w_ ^ = 1 
(mod 2*). Hence, A(2*) divides 3-2*"1. But, by Lemma 2.2, u32^2+l^l + 2k~l (mod2k) (in all 
cases) so that X(2k) does not divide 3-2^~2. Since, by (2.2), u k^ #0(mod4), it follows that 
uk.x 4 0 (mod 2*) and, hence, X(2k) does not divide 2k~l. It now follows that X{2k) = 3-2*"1. D 

We now derive four lemmas that are key to the proof of Theorem 1.1. 

Lemma 2.4: Assume that k > 5. If n > 0 and n £ 0 (mod 3), then u 2k-i = ww +2^_1 (mod2k). 

Proof: Note that by (2.1) un is even if and only if 3|«; hence, the hypothesis that n ̂  0 (mod 
3) implies that un is odd. Therefore, -by Lemmas 2.1 and 2.2, 

U ^nk-2 ~bU„ tW„ „t_2 + UJi^ nk-2 , 
«+3-2* z n~l 3-2* z w 3-2* z + l 

= 6ww_2 • 0 + unuy2k-i+l (mod 2fc) 

snw(l + 2A:-1) (mod2k) 
^u„+2k~l (mod 2*), 

as desired. D 

Lemma 2.5: Assume that k > 5. If n > 0 and n = 0 (mod 6), then w^^-s = w„ +2^ * (mod 2 ). 

Proof: By Lemma 2.2 we can write u k-3 =l + £-2k~2 (mod 2k) for some odd integer I. 
Then 

s *!/„_!• 2*-1+i/„(l + ̂ -2*"2) (mod 2*). 

Since both 6 and w^ are odd, bun_l-2k~l = 2k~l (mod2fc). Moreover, by (2.2), u6 = 0 (mod 
4) and, by Lemma 2.2, u6 divides un, so un = 0 (mod 4). Consequently, un(l + £-2k~2) = un 

(mod 2/c). Thus, ^+3^_3 = u„ + 2k~l (mod 2*), as desired. D 

We also need a lemma similar to Lemmas 2.4 and 2.5 to cover the case in which n = 3 (mod 
6). This will require a little more work. 

Lemma 2.6: Assume that k > 6. If n > 0 and « = 3 (mod 6), then u k.A =un+ 2k~l (mod 2fe). 
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Proof: Note that, by (2.3), un = 2 (mod 8) whenever n = 3 (mod 6). By Lemma 2.2 and the 
hypothesis that k > 6, we can find integers £ and m such that 

a =l + e.2k-3+m-2k-\ 
3-2* 4 + l ' 

where £ is determined by the class of a modulo 8. Also, by Lemma 2.2, there is an odd integer v 
such that 

^ - 4 - v . 2 ^ 2 ( m o d 2 ^ ) , 

where v is also determined by the class of a modulo 8. Moreover, note that (2.2) implies that 
un_x = a (mod 4) and recall that b = 1 (mod 16). Combining these congruences, we obtain 

W»+3-2*-4 = Ul-2k-A+lU" +b%2kAU»-l 

^(l + £-2k-3+m'2k-l)un+b-v-2k-2un_l(mod2k) 

= u„+£-2k~2 + av2k'2 (mod2k) 
^un+(£+av)2k~2 (mod2k). 

We now compute: 

J a (mod 8) 
1 
3 
5 

|| 7 

£ 
1 
3 
3 
1 

V 

1 
1 
3 
3 

1 + av (mod 4) | 
2 = 2 (mod 4) 
6 = 2 (mod 4) 
18 = 2 (mod 4) 
22 = 2 (mod 4) | 

In each case £ + av = 2 (mod 4); therefore, ŵ+3.2*-4 =un+2k l (mod 2^), as desired. • 

Finally, we require an easy generalization of Lemma 2.6. 

Lemma 2.7: Assume that n > 0 and s > 0. If n = 3 (mod 6) and k > 6, then z/ *_4 = un +s-2k~l 

(mod 2 ). 

Proof: Proceed by induction on s. If s = 0, the result is trivial. Fix s > 0 and assume the 
lemma is true for this value of s. Then 

Un+3-2k-4(s+l) " W«+3-2*-4+3^2*-4 ' 

Observe that n + 3 • 2/r~4 = « == 3 (mod 6), so by Lemma 2.6 and the induction hypothesis, 

M„+3.2-(J+l) S *W"< + ^ 2 * _ 1 ( m 0 d 2 " ) 
= M„+2*-1 + 5-2t-1 (mod 2*) 
^ M „+2 M (^ + l)(mod2/:), 

as desired. D 
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3, PROOF OF THE MAIN THEOREM 

In this section we prove Theorem 1.1. 

Proof of Theorem 1.1 

First, note that, by Lemma 2.3, X{2k) = 3 • 2k~l. In particular, X(2k+l) = 2 • X(2k). 
Now, proceed by induction on k. For k = 5 mdk = 6, there are only a finite number of 

sequences to examine (corresponding to b e{1,17,33,49} and a e {1,3,5,7,..., 61,63}). Direct 
computation (perhaps with the assistance of a computer) establishes the theorem in these cases. 

Assume that k > 6 and that Theorem 1.1 is true for this k. 

Step 1. If r s 3 (mod 4), then v(2^+1, r) > 1. 

Proof: By the induction hypothesis, v(2k+l,r) = 1, so there exists an integer w with un=r 
(mod 2*). Since r is odd, (2.1) implies that w# 0 (mod 3). Now, either un =r (mod2*+1) or 

ŵ = r + 2k (mod 2A:+1). In the latter case, Lemma 2.4 implies that ^w+32*-i =un+2h =r (mod 
2k+l). Thus, v(2*+1, r) > 1, as desired. D 

Step 2. If r = 1 (mod 4), then v(2*+1, r) > 3. 

Proof: By the induction hypothesis, v(2k, r) = 3. Pick indices 0 < # 1 < « 2 < ^ < 3 - 2k~l such 
that ^ = uni =u^=r (mod 2*). 

By Lemma 2.4, u y2k-\ = \ + 2* (mod2*+1). Also, for each i, either u^ = r (mod2*+1) or 

un_ =r + 2k (mod 2k+1). Hence, for each i, 

un^r (mod2k+l) or i / ^ ^ . , = r (mod2*+1). 

For each /, let mi e {nf, /?,. + 3 • 2^-1} be the index that satisfies um = r (mod 2^+1). Then the indices 
m^m^, and î 3 are congruent modulo 3-2*"1 to % ^ , and Wj, respectively. Furthermore, by Lem-
ma 2.3, 2(2*+1) = 3• 2*. Thus, the indices mujty, and m^ are distinct and satisfy 0<mt<X(2k+l). 
It follows that v(2k+\ r) > 3, as desired. D 

Step 3„ If r s 0 (mod 8), then v(2k+\r)>2. 

Proof: By the induction hypothesis v(2k,r) = 2. Hence, we can find integers nx and n^ such 
that 0<w1 <?22 <3-2*-1 and u =uni = r (mod2^). Now i^ =0 (mod 4), so (2.2) implies that 
^ = T^ = 0 (mod 6). By Lemma 2.5, M +3.2*-2 = ŵ  (mod 2*). It follows that n2=nl-h3- 2k~2. 

Now, either i^ = r (mod2*+1) or i^ = r + 2* (mod2*+1). If i^ = r (mod 2k+l), then, by 
Lemma 2.5, uni = ̂ +3.2*-i =̂ * (mod 2k+l) and, hence, v(2*+1,r)>2. On the other hand, if 
uni =r + 2k (mod2*+1), then, by Lemma 2.5, uni = un +3>2*_2 = u^ +2k = r (mod 2k+l). Therefore, 
uni = un +3>2A_, = r (mod 2*+1). Thus, v(2k+\ r) > 2 in this case as well. D 

Step 4. If r = a2 + 6 (mod 32), then v(2*+1, r) > 8. 
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Proof: By the induction hypothesis, v(2k, r) = 8. Choose n such that un = r (mod 2 ). By 
hypothesis, h = 1 (mod 16), and a is odd. Therefore, a2 = 1 (mod 8) and r = a2 +5 = 2 (mod 8). 
It follows from (2.3) that « = 3 (mod 6). Hence, Lemma 2.7 yields 

{ un (mod 2*) if 5 is even, 

un + 2k (mod 2*) ifsisodd. 
By Lemma 2.3, A(2*) = 3 • 2k~l. It follows that 

_Jr(mod2*) if s e {0,2,4, 6}, 
W"+3"2""4 ~ [r + 2k~l (mod 2k) if s e {1, 3,5, 7}, 

with all indices ^ + 3s • 2k~4 occurring within one period. 
Since, by the induction hypothesis, v(2k,r) = 8, we can now conclude that there are indices 

nx and r^ such that 0<nx <n2 <3-2k~l with n2-n1<3-2^"4 and un =un =r (mod 2k). As 
usual, for i = {1,2}, either un =r (mod 2k+l) or ww =r + 2k (mod 2^+1), and in the second case, 
Lemma 2.6 implies that u +3>2*-3 = r (mod 2^+1). Hence, there are subscripts m1 and /^ such that 
umx = u^ = r (mod 2^+1) and mi = «,- (mod 3-2*~3). 

Consider the set T = {mr + 3s- 2k~2|0< s < 3 and 1 < / < 2}. By Lemma 2.7, um = r (mod 2k+l) 
for m GT. Since X(2k+l) = 3-2*, it suffices to show that the elements of T are incongruent mod-
ulo 3-2*. 

If w/+3s-2^"2 =w;. H-3 -̂2^"2 (mod 3-2*) (for some s and t such that 0<s, t<3), then 
3(5 - 0 • 2*~2 = 0 (mod 3 • 2k) and, therefore, s = r(mod 4). Thus s = t. 

Moreover, if mx + 3s-2k~2 =17^+31-2k~2 (mod 3-2*), then mi =7^ (mod 3-2^~2)and, hence, 
n1 = ml = ^ = ^ 2 (mod 3-2^~3), which contradicts the choice of/%and/22 to satisfy r^-^K 
3-2*"4 mdn^r^. 

It follows that the eight elements of T are distinct modulo X(2k+l) and, consequently, 
v(2*+1,r)>8. D 

Step 5* Conclusion 

Proof: We have established that v(2^+1, r) > v(2k,r) in each case of Lemma 1.1 for which 
v(2^,r)>0. Now observe: 

2(2*+1) = 3-2* 
2j t + 1 - l 

= E^+V) 
r=Q 

> £ v ( 2 * V ) + £v(2*+1,/-) + ^v(2k+\r)+ 5>(2*+1,r) 
r=3(mod4) r=l(mod4) r=0(mod8) r=a2+b (mod 32) 

> I.2*+1.l+I.2*+1.3+-.2*+1-2 + —-2fc+1-8 
4 4 8 32 

= 2*"1 + 3 • 2k~l + 2*"1 + 2*"1 = 3•2* = A(2*+1). 
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It follows that all of the inequalities obtained in Steps 1-4 above are equalities. This shows that 
v(2k+l, r) = v(2*, r) for all r e Z, and completes the induction and the proof of Theorem 1.1. • 

Remark 3.1: As mentioned above, the techniques described in this paper may be extended to 
show stability of two-term recurrence sequences determined by other values of the parameters a 
and h. Originally, this work contained delicate arguments to handle a number of other such cases. 
Because subsequently developed methods have shown that only the case that 5 = 1 (mod 16) 
needs to be singled out in this way, we leave the extension of this "direct approach" to the reader. 
We would like to thank the referee for suggesting this lighter approach to the presentation. 
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INTRODUCTION 

Let {un} be a strictly increasing sequence of natural numbers, so that un > n for all n. Let 

g(z) = Yl(l-z"»). (1) 
I f | z |< l , then 

n>\ n> n>\ 

so the product in (1) converges absolutely to an analytic function without zeros on compact sub-
sets of the unit disk. Let g(z) have a Maclaurin series representation given by 

*(z) = 5 V , (2) 
«>o 

Let 
f(z) = l/g(z). (3) 

Then f(z) is also an analytic function without zeros on compact subsets of the unit disk. We 
have 

A * ) = n o - * * ) - 1 = z v <with u°=0- (4) 
«>1 «>0 

Definition 1: Let r(#)? r^(n), r0(w) denote, respectively, the number of partitions of n into dis-
tinct parts, evenly many distinct parts, oddly many distinct parts from {un}. Let r (0) = rE(0) = l, 
r0(0) = 0. If an =rE(n)-rQ(n)9 then U„ is the number of partitions of n all of whose parts belong 
to {un}, that is, f(z) is the generating function for {un}. Since f(z)*g(z) = l, w e obtain the 
recurrence relation: 

1tan-kUk = 0 (forn>l). (5) 
k=0 

This provides a way to determine the U„, once the a„ are known. N o w Definition 1 implies that 

r0(n) = r(n)-rE(n); (6) 
hence, 

a„ = 2rE(n)-r(n). (7) 

Our original problem, namely, to determine Un, has been reduced to determining the r(n) and 
rE{n). 

Several researchers have investigated the case where {un} is the Fibonacci sequence. If w e 
let un = F„, as was done by Verner E. Hoggatt , Jr., & S. L. Basin [3], then an anomaly arises: 
since Fx = F2 = 1, it follows that 1 may occur twice as a summand in a partition of n into "distinct" 
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Fibonacci summands. We therefore prefer to let un = Fn+l, since the Fibonacci sequence is strictly 
increasing for n > 2. This is the approach taken by Klarner [4] and Carlitz [1]. Our algorithm for 
computing r(n) is simpler and apparently more efficient than that of Carlitz. 

Definition 2: The trivial partition of n consists of just n itself. 

We shall use the following well-known properties of Fibonacci numbers: 

An ~ Aw-1 + An-2 •> W 
m 

Y,Fk=Fm+2-\, (9) 

m 

lLF2k=F2m+l~\, (10) 

m 

£ ^ * - i = ^ - i . (ii) 
k=2 

Zeckendorf s Theorem (see [5]). (12) 

Every natural number n has a unique representation: 
r 

n=HckFk, 
k=2 

where cr = 1, each ck = 0 or 1, and ck_xck - 0 for all k such that 3 < k < r. Following Ferns [2], 
we call this the minimal Fibonacci representation ofn. 

More generally, if we drop the requirement that ck_fk - 0, we obtain what will be called a 
Fibonacci representation of n. The ck are called the digits of the representation. Now r(n) 
denotes the number of distinct Fibonacci representations of n. 

THE MAM THEOREMS 

Theorem 1: r(Fm) = [/2m] if m>2. 

Proof: (Induction on m) Since r(F2) = r(l) = 1 = [X (2)] and r(F3) = r(2) = 1 = [X (3)], 
Theorem 1 holds for m - 2,3. Now suppose m > 4. Every nontrivial partition of Fm into distinct 
Fibonacci parts must include Fm_l as a part, since (9) implies that Y^ZlFk=Fm-2<Fm. There-
fore, by (8), every nontrivial partition of Fm into distinct Fibonacci parts consists of Fm_u plus 
the summands in such a partition of Fm_2. Therefore, r(Fm) = l + r(Fm_2) ifm>4. (The 'T8 in 
this formula corresponds to the trivial partition of Fm.) By the induction hypothesis, r(Fm_2) = 
[ X ( M - 2 ) J . Thus, r(Fm) = l + V/2(m-2)] = [/2ml 

Remark: Essentially the same proof of Theorem 1 appears in [1] and [3]. 

Theorem2: rE(Fm) = [/4m] if m>2. 

Proof: (Induction on m) Since rE(F2) = rE(l) = 0 = [/4(2)] and rE(F3) = rE(2) = 0 = [X(3)], 
Theoremi 2 holds for m = 2,3. Now suppose m>4. As in the proof of Theorem 1, any partition 
of Fm into evenly many distinct Fibonacci parts must include Fm_l as a part, plus the summands in 
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a partition of Fm_2 into oddly many distinct Fibonacci parts. That is, rE{Fm) - r0(Fm_2). But (6), 
Theorem 1, and the induction hypothesis imply that r0(Fm_2) = r(Fm_2)-rE(Fm_2) = [}((m-2)]-

Theorem 3: Let a(n) = an. Then 
[0 ifm = 0,l (mod 4), 

a(Fm) - \ v m) \-\ i fm^2,3 (mod4). 

Proof: From (7) and from Theorems 1 and 2, we have a{Fm) - 2[l/Am\ = [)4m], from which 
the conclusion follows. 

Having settled the case where n is a Fibonacci number, let us now consider the case where n 
is not a Fibonacci number. In the minimal Fibonacci representation, let n-Fk +Fk + --Fk , 
where r > 2 , kr>2, and kt-ki+l>2 for all / with l < / < r - l . Let n0 = n, nf =ni_l-Fk for 
1 < /' < r. In particular, nl = n-Fk , nr_x -Fk , nr = 0. Given any Fibonacci representation of «, 
define the initial segment as the first kx - k2 digits, while the terminal segment consists of the 
remaining digits. In the minimal Fibonacci representation of n, the initial segment consists of a 1 
followed by kl-k2-I O's, while the terminal segment starts with 10. Fibonacci representations of 
n may be obtained as follows: 
Type I: Arbitrary combinations of Fibonacci representations of the integers corresponding to 
the initial and terminal segments in the minimal Fibonacci representation of n; 
Type II: Suppose that in a nonminimal Fibonacci representation of n the initial segment ends in 
10 while the terminal segment starts with 0. If this 100 block, which is partly in the initial seg-
ment and partly in the terminal segment, is replaced by 011, a new Fibonacci representation of n is 
obtained. 

Lemma 1: Every Fibonacci representation ofn that includes Fk as a part has an initial segment 
which agrees with that of the minimal Fibonacci representation. 

Proof: If n has a Fibonacci representation that includes Fk as a part but differs from the 
minimal Fibonacci representation, then n = Fk + Fj•,+ • • •, where j>k2. But n<Fk +Fk +Fk _2 + 
Fkl-4 + -• < ^ + i^2+1 - 1 by (10) and (11). Now Fkx +Fj<n<Fki + Fki+l, which implies Fj < 
Fk +1; hence, j <k2, an impossibility. 

Lemma 2: Let r(n) be the number of Fibonacci representations of n that do not include Fk as a 
part. Then f (n) = r(n) - r(nx). 

Proof: If n is a Fibonacci number, then the conclusion follows from Definitions 1 and 2. 
Otherwise, by hypothesis, r(n) - r(n) is the number of Fibonacci representations of n that do 
include Fk as a part. By Lemma 1, the initial segment of such a representation is unique, and 
consists of a 1 followed by kx - k2 -1 O's. Since the terminal segment is unrestricted, the number 
of such Type I representations is 1 *r(^) = r (^) . Type II representations are excluded here, since 
they can only arise when the initial segment has a nonminimal representation. Therefore, we have: 
r(n) - r(n) = r(n^), from which the conclusion follows. 
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Lemma 3: Let rE(n) denote the number of partitions of n into evenly many distinct Fibonacci 
numbers, not including Fk as a part. Then rE(n) = rE(n) - rQ(n^). 

Proof: The proof of Lemma 3 is similar to that of Lemma 2, and is therefore omitted. 

X (Jh ~h+ l)Kwi) if K - k2 is odd, 
(l + X {k\ ~ k2))r(nl) - r(n2) if kx - k2 is even. 

Proof: Let m = kh h = k2. Recall that the initial segment of the minimal Fibonacci repre-
sentation of n consists of a 1 followed by m-h-1 O's. Viewed by itself, this initial segment 
corresponds to the minimal Fibonacci representation of Fm_h+l. By Theorem 1, the number of 
Fibonacci representations of the initial segment is r(Fm_h+l) = [)4(ni-h + \)\. The number of 
Fibonacci representations of the terminal segment is by definition r(n^). Therefore, the number of 
Type I Fibonacci representations of n is [X (m - h 4- l)]r(n^). 

If m - h is odd, then the initial segment in the minimal Fibonacci representation of n consists 
of a 1 followed by evenly many O's. Therefore, each Fibonacci representation of Fm_h+l (the inte-
ger corresponding to the initial segment) ends in 00 or 11. Thus, Type II Fibonacci representa-
tions of n cannot arise, so that r(n) = [)((rn-h +1)]/*^) = X ( m ~ h + l)r(wi). 

If rn-h is even, then the initial segment in the minimal Fibonacci representation of n consists 
of a 1 followed by oddly many O's. Therefore, Fm_h+l Vas a unique Fibonacci representation 
ending in 10. By Lemma 2, the integer corresponding to the terminal segment, namely r\, has 
r (?%) = ripi) - r(w2) Fibonacci representations that start with digit 0. Thus, we have r(n^) - r(n2) 
Type II Fibonacci representations of n. Therefore, r(nl) = [^(m-h^l)]r(nl)^r(nl)-r(n2). 
Simlifying, we get r(n) = (l + X (jn - h))r(nl) - r(n2). 

Theorem 5: 
(a) If kx - k2 = 3 (mod 4), then rE(n) = X (*i ~ h + l)Kwi) • 
(b) If kx-k2 = 1 (mod4), then rE(n) ~x/A{kl-k2 + 3)r(w1)-rE{n^). 
(c) If kx - k2 = 2 (mod 4), then rE(n) = /4 (kt - k2 + 2)r(«1) + rE(n2) - r{n2). 
(d) If kx~k2^Q (mod4), then rE(n) = (l + X ( ^ - £ 2 ) > ( ^ - r E { n x ) - r ^ ) . 

Proof: Let m-k^ h-k2. Let b(n) and c(n) denote, respectively, the numbers of Type I 
and Type II representations of n as a sum of evenly many distinct Fibonacci numbers, so that 
rE(n) = b(n) + c(n). A Fibonacci representation of n has evenly many parts if and only if the num-
ber of l's in the initial segment has the same parity as the number of l's in the terminal segment. 
Thus, 

b(n) = ^ ( F w ^ + 1 ) ^ ( ^ ) + r0( i 7^+i>o("i) 

^Wim-h + lftM + M^ 

I f w - / i E E 0 o r 3 ( m o d 4 ) , t h e n [ X ( ^ - ^ ^ 
If wi-A = l o r 2 ( m o d 4 ) , then [/2(m-h + l)] = l + 2[X(w-/? + l)], so b(n) = (l-h[/4(m-

/i + l ) ] ) ^ ) - ^ ^ ) . 

Theorem 4: r(n) • 
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If m -h is odd, then, as in the proof of Theorem 4, no Type II Fibonacci representations of n 
can occur, that is, c{ri) = 0. Upon simplifying, we obtain: 

(a) If m-h = 3 (mod4), then rE(ri) =/4(m-h + l)r(^); 
(b) Ifm-h = l(mod4), then rE(n) = Y4{m-h + 3)r(«1)-rE(n^). 
Ifm-h ;is even, then, as in the proof of Theorem 4, the integer corresponding to the initial 

segment has a unique Fibonacci representation ending in 10, so that Type II Fibonacci representa-
tions of n do occur. A Type II Fibonacci representation will have evenly many l's if and only if 
the number of l's in the initial and terminal segments differ in parity. 

If m- h = 2 (mod 4), then the unique Fibonacci representation of the integer corresponding to 
the initial segment that ends in 10 has an odd number of l's. Therefore, 

c(n) = fE(n1) = rE(nl)-r0(n2). 
Thus, 

rE(n) = b(n) + c(n) 
= (l + [X(w-/r + l)]>(/%)--r^)+^(/i l)-r0(/i2) 

= X(m-h + 2y(nL) + rE(n2)-r(n2). 
This proves (c). 

Ifm-h = 0 (mod 4), then the unique Fibonacci representation of the integer corresponding to 
the initial segment that ends in 10 has an even number of l's. Therefore, 

c(n) = r0(nl) = r(nl)-FE(nl) 
= rfa) - r ( ^ ) - (rE(nx) - r 0 (^)) 
= r(ni)-rE(nL)-rE(n2). 

But b(n) = [/4(m-h + l)]r(nx) = /4(m-h)r{n{), so 

rE(n) = b(n) + c(n) = (l + /4(m- A)>fa) - rEbh) • 
This proves (d). 

Theorem 6: Ifn is not a Fibonacci number, then 

(-a(nx) - airij) if kx - k2 = 0 (mod 4), 
-a(nx) if kY - k2 = 1 (mod 4), 

a{n) = < 
a(ri2) if kx - k2 = 2 (mod 4), 

[0 if^-^2 = 3 (mod4). 
Proof: This follows from (7) and from Theorems 4 and 5. 

(0 if r(n) is even, 
Theorem 7: a(n) - < 

[±1 if r(ri) is odd. 
Proof: If n is a Fibonacci number, then the conclusion follows from Theorems 1 and 3. If n 

is not a Fibonacci number, then we will use induction. Note that (7) implies a(ri) = r(ri) (mod 2). 
Therefore, it suffices to show that \a{ri)\< 1. By Theorem 6 and the induction hypothesis, this 
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is true, except possibly when kl-k2 = 0 (mod 4). In this case, we have a(n) - -a{n{)-a{n^). 
Again by Theorem 6 we have: 

(mod 4), 
(mod 4), 
(mod 4), 
(mod 4). 

(mod 4), 
(mod 4), 
(mod 4), 
(mod 4). 

Thus, \a(n)\< 1 except, possibly, when k2-k3 = 2 (mod4). In the latter case, we evaluate air^) 
using Theorem 6. We then see that \a{n) | < 1 except, possibly, when k3-k4 = 2 (mod 4), in which 
case a(n) = -a(n3)-a(n4). If \a(n)|> 1, then we would have an infinite sequence: n>nl>n2> 
n3>->. This is impossible, so we must have \a(n) | < 1 for all n. 

Theorem 8: r(n) — 1 if and only if n = Fm - 1 for some m > 2; if so, then 

[ 1 i fm s i ,2 (mod4), 
am) = < 

[-1 if m = 0,3 (mod 4). 
Proof: First, suppose that n = Fm-l. By (10) and (11), we have 

VAm-l] 

This is the minimal Fibonacci representation of n (since the condition CJ_XCJ - 0 holds) and con-
sists of alternating l's and 0's. Since no two consecutive 0's appear, this Fibonacci representation 
is also maximal; hence, is unique, that is, r(n) = 1. Conversely, if r(n) = 1, then the unique Fibo-
nacci representation of n cannot contain consecutive 0's, and thus must consist of alternating l's 
and 0's. Therefore, for some /w, we have n = Fm_l +iy_3 +Fm_5 H—. Now (10) and (11) imply 
n-Fm-l. If m = 4 j +1 or Aj 4- 2 for some j , then the unique Fibonacci representation of n has 
2/ summands. Thus, a(n) = 1 if m = 1,2 (mod 4). On the other hand, if m = Aj or 4 j - 1 , then 
the unique Fibonacci representation of n has 2j -1 summands. Therefore, a(n) = -1 if m- 0,3 
(mod 4). 

Theorem 9: There are arbitrarily long sequences of integers n such that a(n) - 0. 

Proof: If Fm + Fm_3 <n< Fm + Fm_2 - 1 , then the minimal Fibonacci representation of n is 
n = Fm+ Fm_3 H—. Therefore, Theorem 6 implies that a(n) = 0. The number of integers satisfy-
ing the above inequality is Fm_2 - Fm_3 = Fm_4. For any given h, we can find m > 6 such that 
Fm_4 > h. Thus, we are done. 
Remark: With a little additional effort, one can also show that a(Fm + Fm_3 -1) = 0. 

afa) -

Therefore, we have 

a(n) = -

i-oQh)-
-a («2) 

)a(>h) 

1° 
a(n3) 
0 

- « ( « 2 > -

-afa) 

- a ( « j ) 

a{*h) 

\ik2-
\fk2-
if k2 -
if k2-

ifk2-
i£k2 -
ifk2-
if k2-

-k3 = 0 
-k^l 
_ f(,3 = Za 

-k^Z 

-A3 = 0 
-^3 = 1 

-«3 =2 
-*3 = 3 
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Using (5) as well as Theorems 3, 4, and 6, one can compute r(ri), a(ri), and U(ri) for any n. 
Table 1 lists the results of these computations for 1 < n < 100. 

TABLE 1 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

r{n) 
1 
1 
2 
1 
2 
2 
1 
3 
2 
2 
3 
1 
3 
3 
2 
4 
2 
3 
3 
1 
4 
3 
3 
5 
2 
4 
4 
2 
5 
3 
3 
4 
1 
4 
4 
3 
6 
3 
5 
5 
2 
6 
4 
4 
6 
2 
5 
5 
3 
6 

a(n) 
-1 
-1 
0 
1 
0 
0 
1 

-1 
0 
0 
1 

-1 
-1 
1 
0 
0 
0 
1 

-1 
. -1 

0 
1 
1 

-1 
0 
0 
0 
0 
1 

-1 
-1 
0 
1 
0 
0 
1 
0 

-1 
-1 
1 
0 
0 
0 
0 
0 
0 
1 

-1 
-1 
0 

U(n) 
1 
2 
3 
4 
6 
8 
10 
14 
17 
22 
27 
33 
41 
49 
59 
71 
83 
99 
115 
•134 
157 
180 
208 
239 
272 
312 
353 
400 
453 
509 
573 
642 
717 
803 
892 
993 
1102 
1219 
1350 
1489 
1640 
1808 
1983 
2178 
2386 
2609 
2854 
3113 
3393 
3697 

n 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
61 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

r{n) 
3 
4 
4 
1 
5 
4 
4 
7 
3 
6 
6 
3 
8 
5 
5 
7 
2 
6 
6 
4 
8 
4 
6 
6 
2 
7 
5 
5 
8 
3 
6 
6 
3 
7 
4 
4 
5 
1 
5 
5 
4 
8 
4 
7 
7 
3 
9 
6 
6 
9 

a{n) 
1 
0 
0 
1 

-1 
0 
0 
1 

-1 
0 
0 

-1 
0 
1 
1 

-1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

-1 
-1 
0 
1 
0 
0 
1 

-1 
0 
0 
1 

-1 
-1 
1 
0 
0 
0 
1 

-1 
-1 
1 
0 
0 

-1 

U(n) 
4017 
4367 
4737 
5134 
5564 
6016 
6504 
7025 
7575 
8171 
8791 
9466 

10183 
10936 
11744 
12599 
13502 
14471 
15486 
16568 
17715 
18921 
20207 
21559 
22987 
24506 
26094 
27782 
29558 
31425 
33405 
35478 
37664 
39973 
42386 
44939 
47613 
50421 
53384 
56478 
59735 
63154 
66727 
70492 
74422 
78543 
82871 
87383 
92122 
97075 
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1. It is well known that a general linear sequence Sn(p, q) (n = 0,1,2,...) of order 2 is defined 
by the law of recurrence, 

Snip, q) = ps„-i(p, q) - qs„-2(p, 4), 
with S0, Si, p, and q arbitrary, provided that A = p2 - Aq > 0, see [1]. 

In particular, if S0 = 0 and Sx = 1 or if S0 = 2 and Sx - p, we have generalized Fibonacci and 
Lucas sequences, respectively, in symbols Un(p, q) and Vn(p, q). 

By the roots xx > x2 of the generating equation x2 - px + q = 0, it is proved that 

U„(p,q) = £ ^ and Vn(p,q) = x"l+x"2; (1) 
1 2 

moreover, the general term of the recurrence sequence Sn{p, q) is expressed as a sum of the gen-
eral terms of generalized Fibonacci and Lucas sequences by the formula 

S„(P, q) = [si-^pSoy„(p\ q) + \s0V„{p, q). (2) 

We assume 

Si = ^p(o + \x~a>jAK 

and, according to (1) and (2), we deduce 

S„(?r9 p,q) = (x-^a^ -Un(p,q) + ̂ CDVn(p,q) (3) 

and 
$n(x', P, <]) = xx" + (&- x)x% • (4) 

From this point on, we shall use the brief notation Un9Vn9 and Sn{x) to denote Un(p,q), Vn(p,q)9 
and Sn(x; p,q), respectively. 

From (3), we have 

, [ f ir -, 
wuyr2r{2x-cofr, (5) S:(x) + S:(a-x) = ^IT± rn 

,2r. 
r=0 L J 

314 [AUG. 



RECURRENCE SEQUENCES AND NORLUND-EULER POLYNOMIALS 

and from 

Then we 

S2
n

m(x) 

(4), we 

have 

+ S2
n

m(w 

have 

S?(.x) + 

-X) 

S?(a>--x)-
m 

r=Q 

m 

r=0 

m 
r 

rn 
r 

[x^x^m~r) +xn
l
{m~r)xn

2
r]xr{(o - x)m~r 

r=0 

•2 

2m = X \qnrUT{m~r) + x^m-r)]xr(a) - xfm~r + X \qm[xl<m-s) + x^m-s)]x2m-s(co - x)s 

s=0 

2m 
m 

2m 
m 

r=0 
m-l 

qmnxm{a)-x)m + ]T \ \qnr[xiKm~r) + xln{m~r)]lxr{G)-xfm~r + x2m-r{co-x)r] 
(6) 

r=0 

2w ? X (ty-X) + 2 , r k ^(m-r)!.* l ^ " * ) + X (*> ~X) J 

Similarly, we have the analogous formula 

S2
n
m+\x) + S2„m+\a)-x) = Z 

r=0 

2m-hl 
r 

<rVn{lm-^Axr(co - x)2"-"1 + x2m-r+\co - xYl (7) 

We now have the difference formulas 

1 [ ^ r-

S:(x)-S™{co-x) = ^Yd 
L r=0 

m 
2r + l 

2r+l ^ ^ y . - . r - ^ . - . r - l p ^ _ ^ r + l ? 

and 

r=0 

We shall end this section by giving the generating functions 

£ % r = -V(exp(<)-exp(*2")) 
r=0 r ! A 2 

and 

£ ^-F„r = exp(^r) + exp(^) . 
Tnr\ 

(8) 

(9) 

(10) 

(11) 
r=0 

3, First, we recall the Norlund-Euler polynomials Ef\x\o), ...,cok) defined by the generating 
expansion (see [2], [6]): 

r=0 f • \F 

2kext 

+ !)••• (e^' + l) 
(12) 
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In particular, the Norlund-Euler numbers of order k are given by 

£ fVi , . . . , ^ = 2"£«f. a>i + — +6>k 

I 2 (Ox,...,G)k \. 

Tfml = -- = ak = l, then Ef\\, 1,..., 1] = Ef> (the Euler numbers of order k, see [3]), and we 
note that 

E*Xa>l + -..+a>k-x\al,...,a>k) = (ryEStXx\a>l,...,a>k). 

From (12), replacing t by &U„t, we have 

f, (dUnt)r „(,), . , 2kexA*u»' 
Z " K \x\0)l,...,(Ok)= ; ; 
r=0 r l {eco^U„t +ly.^ecok£U„t + 1 j 

(13) 

AW' 

therefore, 
(e1"'*" + ea,ift? ) • • • (e"'**1" + e"**2") 

(e».*r +e».««5)...(«,»*<* + e»**j) £ ( A 2 t / " / ) r ^*) ( X | a > 1 > . . . , < P i t ) = 2VS» ,w 
r=0 r\ 

Using (11), we obtain 

r,=0 r l ! rt=0 rk- r=0 ' ! 

i.e., 

( ^K, <Qr£Vnrk z z 
r = 0 V rx + • • • +rk =r '!• 'km 

f YJ^M-EfMco,, ...,^) = 2V^>. 
r=0 r ? 

Expanding the product, figuring in the first member, into a power series of t, and comparing 
with the expansion of the second member, we find 

r=0 

n/lV n/kV 
$Ur

nE?Xx\col,...,cok)(m-r)\ £ _±J-L..._LJ!!L = 2 * 5 ! : ( x ) . ( 1 4 ) 
r}+ • • • +rk=m-r "\- rk • 

And if we replace x by ml H h a^ - x in (14), and using (13), we have 

r=0 
£Ur

n{-\)rE?Xx\<oh...,(ok){m-r)\ £ nrk 

^••%-m-r I 1 rkl- ( 1 5 ) 

= 2kS:(col + -cok-x). 

Taking (14) + (15), and using wl + • • • +a)k to replace co in (5), (6), and (7), we obtain 
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[f] 

r=Q 
2 1 2r \^UlrEikXx\(0l, ...,cok)(m-2r)\ £ *?r_ *K nrk 

rk
s-

i ? 

—— y 
L r = 0 

2r svyr^i+• • •+%r2r (2* -(01!+.. .+^)> \ 2 r 

(16) 

w \ o ^ - l :(l + (-l)W)2' m 
mil 

\m-\ 

^"""Wff l i + • • • + » * - x))m / 2 + 2*"1 X 

• ^(»,-2r)[^(«>l + • • • + ®k - Xfr + Xm'r(C0l + -+0)k- Xjl 

Taking (14) - (15), and using a>l + —voak to replace m in (8) and (9), we get 

m 
2r + l I 

r==0 

=
 l L y J 
2 m-k Z**4 

r=Q 

A ^ + 1 ^ i ( * k i — ^ ) ( ^ - 2 r - l ) ! 
r V 

/jH \-rjc=m~2r-l 

m 
2r + l 

KUrvr2"1^ + •••+ coky-2r-\2x -((0l + - + cok)) 

n\ 

\2r+l 

(17) 

(18) 

r=0 =2Hxn^„(ffl4x^i+-+%^)r-/K+-+%^r]. (19) 

4 If we take x - ft?1+'2'+fi)fe in (16), then 

r=oL J £ rx + ---rk=m-2r '\-

1 
**! 

•)/W-£ •K+.-.+^rc 
(20) 

N o w , setting ty1 = --- = fi}fc = l i n (20), we have 

[f] 
r=0 

7W 
2r 

^ n+-~+rk=m-2r fV rkl L 

Again, if w e take k = 1, then 

r=0 

2 r ^ 1 
« ^2 r n{m-2r) nm-l n ym 

r n • 

If we set k = 1 in (18), we obtain 

(21) 

(22) 
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2r + l 
r=Q L 

=—Y 
L r=0 

, m - 2 r - l 

krjj2r-¥ljrm-2r-l __iM-2r-l/o , , \ 2 r + l m 
2r + l 

(23) 

Now, taking co1 = 1 and x = 0 or JC = ̂ , and using the following relations (see [1]), 

£ „ ( 0 ) = 2 ( 1 - 2 " ) 5 L , 

where Bn is a Bernoulli number, we have 

I 
r=0 L' 

m 
1r + \ 

j M 

r=0 

A r f / « r + 1 ^Y( 2 2 r + 2 - ^ ^ ( ^ - l ) 

m 
2r + \ 

ATTj2r+\rrm-2r-\ 

and 

Mr 
z 
r=0 

m 
2r + l 

A ^ « </ I;M 32r+l J 2 r + 2 w(w-2r"1) 

— y m 
2r + l 

r r r 2 r + l T / w - 2 r - l Art/rvj « n o2r+l ' z r=0 L 

Assuming /? = 1 and q - - 1 , we have the so-called Fibonacci and Lucas sequences 

C/„=F„ and F„ = Z„, 

respectively. And from (22), (24), and (25), it follows that 

[f] 

r=0 

m 
2r SrFlr^-L 1 

« 2 2 r •^ ,(n , _ 2 r ) 2" 1 - 1 ' 

(24) 

(25) 

(26) 

[V] 

r=0 L 

m 
2r + l 

i M 
o m - l Z-* 
z r=0 

^ Af i ( ^ ^)-^2r+2^n(m-2r-l) 

rn 
2r + l 

t-r r?2r+l jm-2r-\ 
5 tn Ln 

(27) 

and 
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m m 
2r + l r=0 

1 L 2 , 

^2r+l J 2r _i_ 9 «0-2r-!) 

»tll 

5^+1(22r+2 -1)1 1 - ^ 1 A ^ Z , 

m 
2r + l 

cr fr2r+l j(rn-2r-l) _ 

where (26) is a generalization of P. F. Byrd's result (see [5]): 

[f] 
r=0 

m 
2r Blr^n ^n{m-2r) 

ffl 
n^nim-V)-

(28) 
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1. INTRODUCTION 

In this paper we discuss the asymptotic behavior of maximal real roots of generalized Fibo-
nacci polynomials defined recursively by 

Gn+i(x) = *Gw+1(x) + Gn(x), (1) 

for n > 0, with G0(x) = -a, Gx(x) = x-a, where a is a real number. 
Very recently, G. A. Moore [2] considered, among other things, the limiting behavior of the 

maximal real roots of Gn(x) defined by (1), and with G0(x) = - 1 , Gl(x) = x-l. Let gn denote the 
maximal real root of Gn(x) which may be called "the generalized golden numbers" following [1]. 
G. Moore confirmed an implication of computer analysis that the odd-indexed subsequence of 
{gn} is monotonically increasing and convergent to 3/2 from below, while the even-indexed 
subsequence of'{gn} is monotonically decreasing and convergent to 3/2 from above. Moreover, it 
was shown that {gn}, n > 2, is a sequence of irrational numbers. He also guessed that this result 
may be generalized in the sense that there exists a real number taking the place of 3/2 for other 
kinds of Fibonacci polynomial sequences defined by (1) with given G0(x) and Gx(x). 

Here we generalize Moore's result by showing that, for Fibonacci polynomial sequences de-
fined by (1) with G0(x) = -a, Gx(x) = x-a, where a is a positive real number, a(a + 2)/(a +1) is 
just the limit of the maximal real roots of G„(x). 

It is noteworthy that the demonstration here is different from Moore's in that it does not rely 
on the previous knowledge of {Gn(x)} on the limit point of gn. In other words, we shall proceed 
here in a "deductive" rather than a "confirmative" way. 

2e EXISTENCE OF {gj 

Let {Gn(x)} be defined by (1) with G0(x) = -a, Gx(x) = x-a, with a > 0. It can be checked 
easily by induction that each Gn(x) is monic with degree n and constant term - a . Therefore, for 
each n>l, G„(x) will tend to positive infinity for x large enough. 

Note that Gx(a) = 0, G2(a) = -a<07 G3(a) = -a2 = aG2(a) < 0, G4(a) = -a3-a< aG3(a) < 0, 
by induction; suppose that Gk(a) < aGk_x(a) < 0 for k > 2. Then, from (1), Gk+l(a) = aGk(a) + 
Gk^ia) < 0, and the induction is completed. Therefore, for each n>l, there exists at least one 
real root of Gn(x) on [a, +oo) and, by definition, gn>a. 

On the other hand, it can be checked readily using the recursive relation (1) and by an induc-
tion argument that we have G„(x) > 0 for x e [a +1, +QO) . 

Therefore, each G„(x) (w>2) has at least one root on the interval [a,a + l). In particular, 
g„e[a9a + l). 

Lemma 2.1:W If r is the maximal real root of a function/with positive leading coefficient, then 
f(x) > 0 for all x > r. Conversely, if f(x) > 0 for all x > t, then r<t. If f(s) < 0, then s < r. 
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Remark 2.2: If a > 1 is an Integer, then a standard algebraic argument may be applied to show 
that the maximal real root of Gn{x) is actually irrational. 

3. THE MONOTONICTTY OF {g2n_t} AND {g2J 

To illustrate the monotonicity of {g2n-i) and {&«}> w e n e ed a formula of [2] which may be 
verified by induction. 

Formula3.1: Gn+k(gn) = (~lf+lGn_k(gn) forn>k. 

Proposition 3.2: {g2ri-i} Is a monotonically Increasing sequence and {g2n} Is a monotonically 
decreasing sequence. Moreover, g2n_l < g2n. 

Proof: 
Odd-Indexed Sequence. It can be checked readily that G3(a) = -a2 < 0; thus, g3 > a = gv 

Assume that, by induction, gx <g3 <--<g2k-3 <g2k-i- Then, by Lemma 2.1, G2k_3(g2k_l) > 
G2k-3(g2k-3) - ° • Using Formula 3.1, we get 

G2k+l(g2k-l) = G(2k-l)+2(g2k-l) = (~lfG(2k-l)-2(S2k-l) <0' 

It follows from Lemma 2.1 that G2k+l has a real root greater than g2k_ly
 a n^ t^ms Sik-i < Sik+i-

Even-Indexed Sequence. Using recursive formula (1), one obtains 

S2k+l(S2k-l) ~ S2k-lG2k(S2k-l) + G2k-l(S2k-l) = S2k-lG2k(S2k-l) • 

Since g2k_l < g2k, it follows from Lemma 2.1 that G2k_x{g2k) > 0, thus G2k_2{g2k) < 0, and it fol-
lows from Lemma 2.1 again that g2k < g2k_2. • 

4. THE CONVERGENCE OF g2n_t AND g2n 

It is known now that {g2n-i} 'ls monotonically Increasing, bounded above by a + 1, and {g2n} 
is monotonically decreasing, bounded below by a. Thus, limits exist for both of the sequences. 
Denote by goM =: l i m ^ g2n_x, gQVQn =: l i m ^ g2n. Then Proposition 3.2 implies ^odd < ^even. 
Our aim, here is to show that godd = gGVmy which is included in the following theorem. 

Theorem 4.1: Both (g^-i) and {g2n} converge to £ = a(a + 2) / (a +1) when n tends to Infinity. 

Remark 4.2: If a is an integer, then, from Proposition 3.2, gn Is a sequence of irrationals that 
converges to a rational number a(a + 2)/(a + V). This reduces to Moore's result in [2] when 
a = l. 

Proof: Since Gn{x) may be expressed in terms of roots of Its characteristic equation as 

G„(x) = Cx(x)X,{xT + C2{x)X2{x)n, (2) 
where 

. ( . x + Vx^+4 . , . x -Vx 2 +4 ... 
^i(*) = o >l2(x) = , - (3) 

and 
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QO) = [l(x -a)+ax- Wx 2 +4] / 2V*2+4, 

C2(x) = [-2(x-a)-ax-ajx2+4]/2y/x2+4. 

It is seen readily that Xx(x) > Xx(a) > 1, |X2(x) \ - 1 / Xx{x) < 1 / Xx(a) for x e [a, a +1]. Therefore, 
lim^^^ Xx(x)n - +oo, lim^^^ X2(x)n = 0 uniformly for x e[a, a +1], 

Now, setting n - 2k -1 and x = g2k_l in (2), we obtain 

QC&t-iMiC&t-i)2*"1+Q(&t-iM2(&t-i)2t"1 = o-
Since Q(x) and C2(x) are continuous on the interval [a, a-hi], this implies that \Cx(x)\ and 
| C2(x) | are bounded below and above on [a, a + l]. Therefore, we have 

BmQ(&t-i) = Q(8Podd) = 0, 
£-»oo 

and it follows that godd = l im^^ g2k_x - a(a + 2) / (a +1) by the continuity of Cx(x). 
On the other hand, by taking n = 2k in (2), a similar argument can be applied to show that 

Note that limw_>00 #B = 1 if and only if a = (V5 -1) / 2, the original golden number. 

In conclusion, we remark that it may be shown easily that the maximal real root of G^(x), 
denoted by g'n, also exists on the interval (a,a + l) for n>4. It seems, from numerical analysis, 
that the sequence {g'n} is monotonically increasing and converges to £ = a(a + 2)/(a + l). This 
implication deserves further exposition. 
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THE GOLDEN RATIO 
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(Submitted November 1994) 

1. INTRODUCTION 

One version of a discrete Fourier transform pair based on N equally spaced sample points is 
_ ^ 2®mn 1 ^y__ 2̂ *n 
Xm=LXne N , Sm=^LXne " > 0) 

n=0 i V n=0 

where xm = f(mT):m = 0,1,2,..., N-1 for a given temporal function f(t) of appropriate form, 
where J is the sampling interval in the time domain. 

2. EXAMPLE 

James et al, in [1], consider the function 

F(t) = 
t: 0<t<\, 
l-t: \<t<\, 
0: t>\, 

with N = 10 and T -1/5 sec, for which the discrete Fourier transform, computed according to 
(1), reduces to 

\e~~r+2[e 
x 

e ~5~+2[e _T~ + e ~^~)+e ~^~) 
! = 5 ' 

3. MATRIX FORMULATION 

It is especially interesting, however, to give a ten point FFT analysis, where the complex 
exponentials are tenth roots of unity that involve the golden ratio r = (l + V5)/2, which itself is 
the positive root of the quadratic equation r2 - r-1 = 0. By expressing results initially in terms 
of r, rather than decimal numbers, we are able to appreciate deeper symmetries in the FFT. 

By writing co - e~ = y (r - j^\l51 z ), a tenth root of unity, the matrix representation of the 
first of (1) is as shown in (3) below, where the various powers of co are, with asterisks denoting 
complex conjugates: 

2 ' 2 2 
4 -(r + ja) * 5 i 6 -(r-ja) *4 
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7 ~(ll T- id) *3 g (1 / T + jd) *2 
2 ' 2 

where a = IT, see [2], 

9 ( r + j a ) * 
2 (2) 

1 
ft) 
co2 

co3 

co4 

CD5 

co6 

m1 

co* 
co9 

1 
co2 

co4 

co6 

CO* 

1 
co2 

co4 

co6 

CO* 

1 
co3 

co6 

co9 

co2 

co5 

CO* 

CO 

co4 

CO1 

1 
co4 

CO* 

co2 

co6 

1 
CD4 

CO* 

co2 

co6 

1 
co5 

1 
CD5 

1 
co' 
1 
ft)5 

1 
ft)5 

1 
ft)6 

co2 

CO* 

co4 

1 
ft)6 

co2 

CO* 

co4 

1 
ft)7 

co4 

CO 

CO* 

co' 
co2 

co9 

co6 

co3 

1 
CO* 

co6 

co4 

co2 

1 
CO* 

co6 

co4 

co2 

1 
CO 

CO 

CO 

1 
CO 

CO 

ft) 
CO 

CO 

^ 
8 

7 

*5 

4 

^ 
9 

xo 
1 he, 
I 

X2 
1 

*3 
\x4 
1 
*s: 

1 

K 1 
1 7 
1 X 8 

1 9 

(3) 

4. FACTORIZATION 

To factor the matrix in (3), we adopt the approach used in [1], noting first that 7V = 10 = 2 x 5 
is composite, with factors /j = 2 and r2 = 5. Putting 

n = 2nx + n0: y% = 0,1; ^ = 0,1, 2, 3,4, 
m = 5ml+ml: #% = 0,1,2,3,4; ^ = 0,1, 

we can write the simultaneous system (3) as 

«o=OV"l = 0 

2«imo ey 
( S W J + W Q ) ^ 

Setting 

£v* = £ ^1+Wo^2",Wo: /% = 0,1; i^ = 0,1,2,3,4, 
«j=0 

then leads to a set of simultaneous equations, summarized in matrix form by 

(4) 

(5) 

900 

#01 

#10 

#11 

920 

#21 

930 

' # 3 1 

940 

L#4lJ 

1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

1 
0 
co2 

0 
co4 

0 
co6 

0 
CO* 

0 

0 
1 
0 
co2 

0 
co4 

0 
co6 

0 
CO* 

1 
0 
co4 

0 
CO* 

0 
co2 

0 
CO6 

0 

0 
1 
0 
co4 

0 
CO* 

0 
co2 

0 
co6 

1 
0 
co6 

0 
co2 

0 
« 8 

0 
co4 

0 

0 
1 
0 
co6 

0 
a.2 

0 
CO* 

0 
ft)4 

1 
0 
CO* 

0 
a)6 

0 
ft/ 
0 
co2 

0 

0 
1 
0 
CO 

0 
ft) 
0 
ft) 
0 
ft) 

8 

6 

4 

2J 

xo 

u 
r3i 
r 4i 
r5 
r6 

r7 

I 9 

(6) 
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5. SOLUTIONS 

Inserting the appropriate powers of a?, summarized in (2), into the linear system (6), leads to 
the following results: 

l-±-jJW) _{T-j44Tr) 
Soo ~ 3 / 5 - g01, gl0 - — , gn - -

(-1-jJjsT., . (-r2-yVV577) ^ - . W / r J . (-r2
 + jVVf77) -

520""* -JQ ' S21 — 4- 5 S30 ~ , Q — S20> 

Returning to the system (4) we see that, with (5), we can write 

%„1+ffl0 = 14 o n y 5 m i + m o ) " ° : "% = 0,1,2,3,4; ^ = 0,1. 
«o=0 

6. NUMERICAL RESULTS 

Expansion leads to 

*o = 4o + &i = 6/5 = 1.2, 
*i = 6o + In® = -jJS?l 5 = -j0.9959593, 
*2 = £>o + &i®2 = - T 2 / 5 = -0.5236068, 
3t3 = £30 +|31©3 = jyfSi? = 70.0898055, 
x4 = | 4 0 + <T41ft>4 = -(1 / r2) 15 = -0.076392, 
*5 = £oo + £oi®5 = 0> 
*6 = lio + 61®6 = 3c; = -(1 / r2) / 5 = -0.076392, 
3c7 = £20 + #21©7 = x* = -jyfSJ7 = -7*0.0898055, 
*8 = I30 + Isi®8 = *2* = - T 5 / 5 = -0.5236068, 
3c9 = £40 + £41<y9 = x* = jJStl 5 = 70.9959593. 

Multiplying each of these by T = 0.2 gives James et al.'s final results (see [1]). 
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ON A BINOMIAL SUM FOR THE FIBONACCI 
AND RELATED NUMBERS 
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1. INTRODUCTION 

Let u and v be nonzero integers, and let r be an integer. It is well known that 

Fun+r = t(k\"~k^F
Vk+r, » = 0 ,1 ,2 , . . . , (1) 

if and only if 

s = FJFv, t = (-l)"Fv_u/Fv. (2) 

This result originates with Carlitz [2], and was recently interpreted via exponential generating 
functions (or egf s) by Prodinger [7]. The purpose of this paper is to show that the egf method is 
also an efficient tool in deriving similar results for the Lucas numbers Ln, the Pell numbers Pn9 and 
the Pell-Lucas numbers i^. 

The egf of a sequence {an} is defined by 

The product of the egf s of {an} and {bn} generates the binomial convolution of {an} and {bn}: 

a{x)Hx)=t{t{nX^kb^- (3) 

The right side of (1) is thus the binomial convolution of the sequences {tn} and {^Fvn+r}. The egf 
of the geometric progression {tn} is e*. 

The proofs of this note are based on the following two lemmas. 

Lemma 1: Let Xx and X2 be given distinct complex numbers, and let <\ and c2 be given nonzero 
distinct complex numbers. Then 

cxellX + c2eXlX = cxe^x + c2eM2X 

ifandonlyif 

fix - Xx and JU2-X2. 

Lemma 2: Let Xx and X2 be given distinct complex numbers, and let c be a given nonzero com-
plex number. Then 

ceXxX + ceXlX = ceMlX + ceM2X 
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If and only if either 
//1 = A1 and / / 2 ~^2 

or 
//1 = A2 and fi2=ll. 

The lemmas follow from the linear independence of the functions e**. 
Lemma 1 is needed for the Fibonacci and the Pell numbers, and for the Lucas and the Pell-

Lucas numbers in the case r & 0, while Lemma 2 is needed for the Lucas and the Pell-Lucas 
numbers in the case r = 0. We do not consider Fibonacci numbers here, since the egf method is 
applied to them in [7]. 

For a general account on egf s we refer to [4], and for egf s of Fibonacci and Lucas sequences 
we refer to [3], [5], and [6]. 

2* ON THE LUCAS NUMBERS 

Let the negative index Fibonacci and Lucas numbers be defined by F_n - (-T)n+lFn and 
L_n = (~lfLn 0?>0). Let a = (l + V5)/2 and £ = ( l - V 5 ) / 2 . The well-known Binet form of 
the Lucas numbers is Ln = an +fin. Thus, it is easy to see that 

L(x) = eax + efix. 

We now state the promised binomial results for the Lucas numbers. We distinguish two cases: 
r ^ 0 andr = 0. 

Theorem 1: Let u and v be nonzero integers, and let r be a nonzero integer. Then 

4 ^ = lf?V^A*+r, " = 0,1,2,..., (4) 

if and only if 

s = FJFv, t = (-!)" FV_JFV. (5) 

Proof: In terms of the egf s, (4) can be written as 

area"x + prepUx = e\areaVsx + £ V " ) , (6) 

where the right side comes from the property (3). Since r ^ O , we have ar *fir. Thus, by 
Lemma 1, (6) holds if and only if 

au = t + avs, @u = t+pvs, (7) 
that is, 

au-P _FU « t-rfu-(Yva ~^ -(-1Y v~u 

S-av-pv~Fv> ^ t-<X a a"-/r"~( l) Fv ' 
where the last equality follows from the property afi = -l. This completes the proof of Theorem 
1. 

Remark: Note that (5) is equivalent to (2). 
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Theorem 2: Let u and v be nonzero integers (and r = 0). Then 

4» = Sf2]^VA*s #1 = 0,1,2,..., (8) 

if and only if either (5) holds or 
s = -FJFv, t = Fu+vIFv. (9) 

Proof: In terms of the egf s, (8) can be written as 

where the right side comes from property (3). By Lemma 2, (10) holds if and only if either (7) 
holds or 

au^t+(3vs, J3u = t + avs. (11) 

By the proof of Theorem 1, (7) is equivalent to (5). On the other hand, (11) holds if and only if 

Bu-a
u -F Bu-au F u+v 

av-pv Fv ' r
 a

v-fiv Fv 

This completes the proof of Theorem 2. 

Corollary 1: Ifu and v are nonzero integers and r is an integer, then 

FvLun = Z L ; )Fu+v (~ltFu Lvk' 

Corollary 2: If w is a nonzero integer and r is an integer, then 

^un+r ~ Z-d\ fc ) u-l ru ^k+r? 
k=Q\ J 

Corollary 3: If r is an integer, then 

F2n+r = Z*,[k}^k+r> 

^ = l(*V*(-l)%. 
Corollary 1 follows from Theorems 1 and 2. Corollary 2 is Corollary 1 with v = 1, and Cor-

ollary 3 is Corollary 2 with u = 2. Note that the first identities in Corollaries 1-3 also hold for 
r = 0, cf. equation (5) in Theorem 2. 
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3. ON THE PELL NUMBERS 

The Pell numbers P„ are defined by 

P0 = 0,P1 = 1,P„ = 2P„_1 + P„_2, n = 2,3,..., 

P_n = (-\rlP„, #, = 1,2,.... 

The well-known Binet form of the Pell numbers is 

= g -b 
n a-b ? 

where a = 1 + 4ly b-l- 42, that is, where a and 6 are the roots of the equation y2 = 2 j +1, see, 
e.g., [1]. Note that a + ft = 2, aft = - 1 , and a-b-l4l. Using the Binet form, it is easy to see 
that 

P{x) = ~^2{eaX~ebXy 

The Pell numbers have many properties similar to those of the Fibonacci numbers. We here point 
out that a property analogous to that given in (1) and (2) holds for the Pell numbers. As in the 
case of the Fibonacci numbers, we need not distinguish the cases r ^ 0 and r = 0 here. 

Theorem 3: Let u and v be nonzero integers, and let r be an integer. Then 

Pun+r = t{nk)t"~k^PVk+r, H = 0,l,2,..., (12) 

if and only if 

S=PJPV, t = (-iypv_jpv. (is) 
Proof: In terms of the egf s, (12) is 

Since ar ^ -br for all r, we may apply Lemma 1. Thus (14) holds if and only if 

au = t+avs, bu=t + bv$, (15) 

which can be shown to hold if and only if (13) holds; cf. the proof of (5). The last equality in (13) 
follows from the property ab = -l. This completes the proof of Theorem 3. 

Corollary 4: If u and v are nonzero integers and r is an integer, then 

pnp _ "V i n I (-l\u(n~k) Pn~k Pk P 
1 v A un+r ~~ Z^ 1 k n ' v~u u vk+r ' 

fe=ov y 
Corollary 5: If u is a nonzero integer and r is an integer, then 

p _ \^ ( n I p«-fc p£ p 
run+r ~ Z^\ Jc \ u-\ ru rk+r • 
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Corollary 6: If r is an integer, then 

k+r-

4. ON THE PELL-LUCAS NUMBERS 

The numbers i^ are defined by 
B0 = 2,Rl = 2,R„ = 2Rn_1+Rn_2, n = 2,3,-> 

i ? - ^ ( - l ) X /i = 1,2,.... 

These numbers are associated with the Pell numbers in a way similar to that in which the Lucas 
numbers are associated with the Fibonacci numbers, see, e.g., [1]. Therefore, we refer to the 
numbers i^ a s the Pell-Lucas numbers. The Pell-Lucas numbers have the Binet form i^ = an +bn, 
where a and b are as in Section 3. Thus, 

R(x) = eax + ebx. 

The Pell-Lucas numbers possess the properties of the Lucas numbers given in Theorems 1 and 2. 
We state these properties in Theorems 4 and 5. The proofs of Theorems 4 and 5 are similar to 
those of Theorems 1 and 2, and are omitted for brevity. 

Theorem 4: Let u and v be nonzero integers, and let r be nonzero integer. Then 

^ r = £ ( ? y **%+,, " = 0,1,2,..., (16) 

if and only if 

S=PJPV9- t = (-iypv_u/pv. (l?) 
Remark: Note that (17) is equivalent to (13). 

Theorem 5: Let u and v be nonzero integers (and r - 0). Then 

Kn = %f\tn-k^Kk, " = 0,1,2,..., (18) 

if and only if either (17) holds or 
s = -Pu/Pv, t = Pu+v/Pv. (19) 

5. REMARK 

It may be worth recalling that the egf method is, of course, also a very efficient tool in 
deriving other binomial identities. We mention here two such identities, namely, 

k=0 

and 

2 J h J^uk+r^u(n-k)+r ~ % FUn+2r> ( 2 0 ) 

330 [AUG. 



ON A BINOMIAL SUM FOR THE FIBONACCI AND RELATED NUMBERS 

2 J h J*uk+rRu(n-k)+r ~ 2 Pun+2r • (21) 
fc=(A / 

The left side of (20) can be written in terms of egf s as 

and the right side as 

-j=(area"x -prePUx)(areaUx +/7V9"*) 

^{a2re^2x-p2re^2x). 

It is clear that these two egf s are equal; hence, (20) holds. The proof of (21) is similar. 
For further examples, reference is made to [3], [5], and [6]. 
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1. INTRODUCTION 

In this paper, certain interesting sequences of positive integers are investigated. As will be 
demonstrated, these are subsequences of the Fibonacci and Lucas pseudoprimes, as they have 
been defined in the author's previous papers ([2], [3], [4], [9]). Indeed, it will be shown that the 
elements of two of these subsequences are strong Lucas pseudoprimes and Euler-Lucas pseudo-
primes. 

The secondary aim of this paper is to partially unify some of the more significant results pre-
viously obtained by other authors regarding such pseudoprimes. 

Throughout this paper, lower-case letters represent integers, usually positive (unless other-
wise indicated); the letters p, qy qly and r represent primes. 

In Section 2, the definitions and properties required to prove our main results are given. 
These are readily accessible in the standard literature and are presented with minimal commentary. 

A brief historical summary of some of the more relevant findings of previous researchers is 
presented in Section 3. 

Section 4 sets forth the main results, including proofs, and Section 5 consists of concluding 
remarks. 

28 DEFINITIONS AND PROPERTIES 

The Jacobi symbol is defined in any elementary number theory text, where it is customarily 
expressed as a product of Legendre symbols in its definition. As a consequence of such defini-
tion, the Jacobi symbol assumes certain values (either +1 or -1) dependent on the residue class of 
its arguments. We take a slightly different approach and simply define the Jacobi symbol in terms 
of this residue class. The arguments are restricted to the values that are relevant to the topic of 
this paper. 

Definition 2.1 The Jacobi symbol (f) is defined as follows for u = -l, - 3 , or 5, and for the 
indicated values of n: 

0 / n^ -D f1 ifnEEl (mod 4), (a) — - ( - I F 7 U ; [-1 if/i = - l (mod 4); 

f z ^ J 1 * " = 1 (mod 6), 
U (n J [-1 ifws-1 (mod6); 

(I)-ll tf H 5 5 * 1 (mod 10), 
U J " 1-1 if n = ±3 (mod 10). 
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For brevity, we also write en for (f). Note that if w = /?, an odd prime, the Jacobi symbol coin-
cides with the Legendre symbol. The symbol (f) is undefined for values of n not indicated above. 

Definition 2.2: Given any integer u, the Fibonacci entry-point of u, denoted by Z(u), is the 
smallest positive integer z such that u\Fz. If Z(p) -m,we say that p is a primitive prime divisor 
(p.p.d.)ofiv 

Note: A classical result of Carmichael states that Fu has a p.p.d. for all u =£ 1, 2, 6, or 12. 

Definition 23: 

(a) Given any integer u, the Fibonacci period (mod u), denoted by k(u), is the smallest 
positive integer k such that Fn+k = Fn (mod u) for all integers n. 

(b) The Lucas period (mod u), denoted by k(u), is the smallest positive integer k such that 
Ln+£ = Ln (mod u) for all integers n. 

Definition 2.4: The strong Lucas pseudoprimes (denoted SLPP's) are those composite u with 
gcd(M, 10) = 1, u-su-d-2\ s>lyd being odd, such that either: 

(a) u\Fd, or 

(b) u|Ld t for some t with 0<t <s. 

Let [/denote the set of SLPP's. 

Definition 2.5: The Euler-Lucas pseudoprimes (denoted ELPP's) are those composite u with 
gcd(w, 10) = 1 such that either 

(a) i / |F i ( l | _ 0 when(^)=l ,or 

(*>) ^ i M
w h e n ( ^ = " L 

Let F denote the set of ELPP's. 

Definition 2.6: The Fibonacci pseudoprimes (denoted FPP's) are those composite u with 
gcd(n, 10) = 1 such that u\Fu_£ . Let Xdenote the set of FPP!s. 

Definition 2.7: The Lucas pseudoprimes (denoted LPP's) are those composite u such that Lu = 1 
(mod w). Let Y denote the set of LPP's. 

Definition 2.8: The Fibonacci-Lucas pseudoprimes (denoted FLPP's) are those u that are both 
FPP's and LPP's. Let W = X o 7 denote the set of FLPP's. 

Comment: As we will later indicate, the sets F and W are identical. For the time being, 
however, we will maintain the distinction between these two sets. 

In addition to the pseudoprimes defined above, there are other related pseudoprimes that 
have been studied by previous authors. Since these are only of peripheral interest to the topic of 
this paper, we merely mention these in passing. For example, Rotkiewicz [16], [17] and Baillie & 
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Wagstaff [1] discuss sequences of psuedoprimes u that (for the Fibonacci and Lucas sequences in 
particular) satisfy either of the following relations, given that gcd(u, 10) = 1: 

Fu = eu (mod a); (2.1) 

Lu_£u^2su (mod a). (2.2) 

It may be shown that if u satisfies any two of the relations given in Definitions 2.6, 2.7, or in (2.1) 
and (2.2), the other two relations are implied. 

We next introduce the special sequences that are of interest to the topic of this paper. 

Definition 2.9: Define the following ratios for any arbitrary prime/? (except as indicated), and 
f o r e - 0,1,2,...: 

(tt) A(P) = FpTl /F
pe, P*^ 4 ( 5 ) = ̂ V+l /5F

5el 
(h) Be(p) = Lpe+l/Lpe,p*2; 

(c) Ce(p) = F2y+l /F2y, p*2,5; Ce(5) = F^+l ISF^. 

Note that Ce(p) = Ae(p)Be(p) for all odd p. Where no confusion is likely to arise, we omit 
the argument/? and/or the subscript e. Clearly, A, B, and C are positive integers in all cases. 

Next, we indicate some relevant properties. 

Properties 2.1: 
(a) Z(u)\v iff u\Fv; 
(b) Z(p)\(p-sp); 

(c) Z(u) = LCM{Z(pe)}; 
P II" 

(d) Z(pe) = pfZ(p) for some/with 0 < / < e; 
(e) for all odd/?, Z(p) is even iff p\Lu for some u. 

Properties 2.2: 

(a) k(u) = i _ 
[5k(u) if 5|»; 

(h) k(u) = LCM{k(p«)}; 
p II" 

(c) k(pe) = pfk(p) for some / with 0</<e (for odd primes p, f is the same as in 
Property 2.1(d); 

\Z(p) if Z{p) = 2 (mod 4), 
hZ(p) if 4\Z(pl 
Uz(p) if Z(p) is odd. 

(d) if/7^2,5, k(p): 

Note: Properties 2.2(b)-(d) for the Lucas period also apply to the Fibonacci period k(u); 
however, scant use of this fact will be made here. 
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Properties 2.3: We assume p ^ 2 , 5 and write pr = y ( p - l ) , m = pe, s = s In (e) and (f) 
below, we assume gcd(??, 10) — 1 and write t = j(n-sn). 

(a) A = (-iy'\l + t(-l)JL2m} 
V / - i ) 

(b) B = l+^L2mJ; 

(c) C = l + fx,.; 

W ^2mp+£ ~ ~s + •>*'mp+£*'mp = £ + ^mp+s^mp' 

(e) L2
t-5LtFt+En+5F?+£n=(-l)'+e„, 

(f) L]+En-5Lt+sFt+5F? = {-\)'. 

The derivations of Properties 2.3 involve elementary identities and are omitted. We will return to 
these definitions and properties in Section 4. First, however, we give a brief overview of some of 
the more significant results. 

3. HISTORICAL SUMMARY 

The use of the term "pseudoprime" in the preceding section stems from the fact that the 
defining relations are satisfied when u = p (with p^2,5 in all but Definition 2.7). The author's 
papers [2], [3], [4] may be referred to for comments regarding the merit of adopting the 
nomenclature employed in Definitions 2.6-2.8, since other nomenclature is used by other authors. 
Some of the prior findings of other authors have been mentioned in the author's papers (op.cit); 
for the sake of continuity, we reiterate these findings below. 

In a 1955 paper by Duparc [12], apparently the first proof that X, 7, and Ware infinite sets is 
given. In particular, Duparc showed that F2p e X for all p > 5. This result was independently re-
discovered by E. Lehmer in a 1964 paper [14]. Using a different method, Parberry [15] showed 
that X is infinite; specifically, Parberry showed that if gcd(/i, 30) = 1 and TIGX, then F„GX 
[from which it follows necessarily that gcd(i^, 30) = 1]. In a 1986 paper [13], Kiss, Phong, and 
Lieuwens showed that Wis infinite; of course, this implies that X and Y are infinite. In a recent 
paper [2], the author proved that the "LPP" counterpart of Parberry's result holds, namely that if 
n GY and gcd(?2,6) = 1, then Ln GY [from which it follows necessarily that gcd(Ln, 6) = 1]. This 
is an independent proof that 7 is infinite. 

It is also known that all LPP's are odd. Apparently the first proof of this result was given by 
White, Hunt, and Dresel in 1977 paper [18]. Other independent proofs of this result were subse-
quently given by Di Porto [10] and by the author [3]. 

Many other interesting properties (or apparent properties) may be given, but we will restrict 
our discussion to those properties that are more or less relevant to the topic of this paper and, in 
particular, to the ratios introduced in Definition 2.9. 
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Di Porto and Filipponi observed, and later proved in a 1988 paper [11], that if Lr is com-
posite, it is a LPP. In a recently submitted problem for this journal [6], the author proves a 
generalization of such a result; this is indicated below in (3.1). 

Other observations made recently by the author have been submitted to this journal as pro-
posed problems (viz. [7]. [8]) and are indicated below: 

If 4 ( 2 ) is composite, then Ae(2) GW; (3.1) 

If e > 1 and 4 ( 3 ) [Be(3)] is composite, then Ae(3) [(Be(3)] GW; (3.2) 
Q ( 3 ) E ( X - 7 ) ; (3.3) 

If 4 ( 5 ) [Be(5)] is composite, then 4 (5 ) [Be(5)] e W; (3.4) 
Q ( 5 ) e ( X - 7 ) . (3.5) 

In fact, even stronger results are true, although we will not prove these here; namely, 
A(P) eU, ifp = 2, 3,5, and Be(p) eU, ifp = 3,5. 

The results indicated in (3.1)-(3.5) were obtained initially, suggesting the generalizations that 
are indicated in Section 4 (for p > 5). 

Note that there is no definition of Be(2) in Definition 2.9(b), since L el[L e+i. Also, there is 
no definition of Q(2 ) , since this would be essentially the same as for Ae(2) (by virtue of the iden-
tity F2n =FnLn). 

The result of (3.2) excludes the case e = 0, since L^ = 4 is composite but is neither a FPP nor 
a LPP. Also, note the extra factor of 5 in the denominator of the definitions of Ae(5) and Q(5); 
this is a consequence of the special role played by the number 5 in the Fibonacci and Lucas 
sequences. 

Therefore, for one reason or another, the primes 2, 3, and 5 require special treatment. This is 
not the case for p > 5; in the remainder of this paper we will assume p>5. 

It is worthwhile to reiterate the notation introduced in the prologue to Properties 2.3, since 
we will use this frequently: 

s = sp, m = pe, e = 0,l, . . . . (3.6) 

We will also write mp for pe+l, for brevity. Note also that gcd(4 B) - 1, AB = C, and that 4 B, 
and C are all relatively prime to 30. 

4. MAIN RESULTS 

We will make frequent use of the definitions and properties introduced in Section 2, often 
without specific reference thereto. Our main results are Theorems 4.1 and 4.2 (with their corol-
laries). 

Theorem 4.1: 
(a) If A is composite, then A eU; 
(b) IfB is composite, then B GU. 

Corollary 4.1: 
(a) If A is composite, then A eW; 
(b) IfB is composite, then B eW. 
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Corollary 4.2: 
(a) If Fp is composite, then Fp e W; 

(b) If Lp is composite, then Lp eW. 

Our proof of the theorems requires several preliminary results, indicated in this section as 
lemmas. 

Lemma 4.1: Z(A) = mp; Z(B) = Z(C) - Imp. 

Proof: From Definition 2.9 and from Carmichael's result (see Note after Definition 2.2), it 
follows that Z(q) = mp for some q with q\Fmp. Also, q\Fm, since Z{q)\m. Then q\A. Indeed, 
Z(r) = mp for all prime r with r \F , r\Fm. Then Z(^) = mp. 

Using Property 2.1(e), we argue similarly that Z{B)-2mp. Then, since C- AB, Z{C)~ 
LCM(mp, 2mp) = 2mp. 

Lemma 4.2: A = sp, B = l, C = £ (mod mp). 

Proof: This follows directly from Theorem 1 of a recent paper by Young [19], along with 
the observation that C = AB. 

Lemma 43: A = eA, B = sB, C = sc (mod mp). 

Proof: Since Z(g) = mp for all q\A, we have mp\{q-sq) or q = sq (mod mp). If ^ = n # ^ , 

then 4 = Yl(sgY = II £ / = sA (mod mp). Likewise, B-sB (mod mp). Also, C = AB = sAsB = 

£ c (mod mp). 

Combining the results of Lemmas 4.2 and 4.3, we obtain 

Lemma 4.4: sA - ec - 8p\ sB-l. 

Henceforth, we use the symbol s interchangeably to denote sA, sc, or ep\ however, sB-\ 
in all cases. 

Lemma 4.5: k(A) = k(C) = 4mp; k(B) = 2mp. 

Proof: Let g be the same as in the proof of Lemma 4.1. Then, since Z(q) = mp is odd, it 
follows from Property 2.2(d) that k(q) = 4mp for all q\A; thus, k(A) = 4mp. But, A ^ ) =2mp 
= Z ( ^ ) for all qx\B, since 2mp = 2 (mod 4). Then k(B) = 2mp and fc(C) = LCM(4wp, 2m/?) = 
4mp„ 

Proof of Theorem 4.1: Since gcd(^, 10) = 1, Lemma 4.3 implies that A - s - 2s • d for some 
s>\ and odd rf, such that Z(A) = mp\d. Then A\Fd, which shows that'll e [ / if A is composite 
[using Definition 2.4(a)]. 

Similarly, B-1 = 2S] • dx for some sx > 1, odd <il3 such that Z(5) = 2mp\2dx. Since m p | ^ and 
dx is odd, we have Lmp\Ld . Also, B\Lmp, and so 5|Z# . By Definition 2.4(b), B ell, provided 
B is composite. The proof is complete. 
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To prove Corollary 4.1, we invoke Theorem 3 of a 1980 paper by Baillie and Wagstaff [1], 
which implies that all SLPP's are ELPP's, i.e., that U^V. Also, certain results due to 
Rotkiewicz (see [16], [17]) imply that all ELPP's are FLPP's, i.e., that V cff'. Then U^W, 
which together with Theorem 4.1 implies Corollary 4.1. Corollary 4.2 is a special case of this 
(with e = 0); this result was obtained by the author in a recent paper [4]. 

As mentioned after Definition 2.8, the author shows (in a problem [5] submitted to this 
journal) that the sets Vrnd Ware actually identical. In light of this, no further explicit mention of 
the set of ELPP's (V) will be made. 

The corresponding theorem dealing with the ratio C is somewhat more involved. As was the 
case for A and B, we require some preliminary results. We introduce the following notation: 

f 1 if e is even, 
0 = \ (4.1) 

[0 if e is odd. 
Lemma 4.6: m = pd (mod 12). 

Proof: Since p = ±1 (mod 6), then m = 1 if e is even, m = p if e is odd (mod 12). 

Note that £(20) = LCM(*(4), k(5j) = LCM(6,4) = 12 and £(20) = 5-12-60. To character-
ize B (mod 20), it suffices to consider all residues/? (mod 12), since B involves Lucas numbers. 
However, to characterize A and C (mod 20), we must consider all residues p (mod 60), since A 
and C involve Fibonacci numbers. From Lemma 4.6, it follows that L^ = Lijp0 (mod 20), for all 

j . Then Properties 2.3(a)-(c) imply the following 

Lemma 4.7: Ae = A$9 Be = B0, Ce = Ce (mod 20). 

Using any standard table of Fu and Lu for 1 < u < 60, along with quadratic reciprocity, we 
next form Table 1 below. 

TABLE 1 

p(mod60) ( | ) ( f ) p> (mod60) Fpi (mod20) L, (mod20) ^ ^ 2 0 ) ^ L%o%0) , ^ ( ^ 2 0 ) 

1 1 
7 - 1 

11 1 
13 - 1 
17 - 1 
19 1 
23 - 1 
2 9 1 

- 2 9 1 
- 2 3 - 1 
- 1 9 1 
- 1 7 - 1 
- 1 3 - 1 
- 1 1 1 

- 7 - 1 
- 1 1 

1 1 
1 - 1 1 

- 1 1 
1 - 1 1 

- 1 - 1 1 
1 1 

- 1 - 1 1 
- 1 1 

1 1 
1 - 1 1 

- 1 1 
1 - 1 1 

- 1 - 1 1 
1 1 

- 1 - 1 1 
- 1 1 

1 ] 
9 ] 
1 ] 
9 J 
9 J 
1 ] 
9 J 
1 ] 
1 ] 
9 J 
1 ] 
9 J 
9 J 
1 J 
9 J 
1 J 

L 1 
L - 7 
L 9 
I - 7 
[ - 3 
[ 1 
I - 3 
[ 9 
[ 9 
[ -3 
i 1 
i - 3 
L - 7 

9 
L - 7 

1 

1 
9 

- 1 
1 

- 9 
9 

- 1 
- 9 

9 
1 

- 9 
9 

- 1 
1 

- 9 
- 1 

1 
- 3 
- 9 
- 7 

7 
9 
3 

- 1 
1 

- 3 
- 9 
- 7 

7 
9 
3 

- 1 

As we may readily verify, using Table 1, AQ = Al = Fp, B0 = Bx = Lp, C0 = Q = F2p (mod 20). 
Then (Fp)2 = Fp2, (Lp)2 = Lp2, and (F2p)2 = F2p2 (mod 20), from which we obtain 
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Lemma 4.8: Ae = AQ, Be = B0, Ce = C0 (mod 20). 

From Lemma 4.8, and by inspection of the entries in Table 1, we obtain the following lemma. 

Lemma 4.9: C = {=A (mod 4). 

We are now ready to state the main theorem regarding C 

Theorem 4.2: C G(X~Y), unless p = 1 or 19 (mo^ 30), in which case C GW. 

Proof: We may suppose that A and B are composite. The following proof needs some 
modification if either A or B is prime. Since AGX and B G X, we-see that Z(^4) = mp\(A - s), 
Z(B) = 2mp\(B-l). Since C-s = AB-€ = (A-e)(B-l) + (A-e) + e(B-l), then /wp^C-*). 
Since mp is odd and C-s is even, we have Z(C) = 2zwp|(C-£). C= AZ? is necessarily com-
posite, S O C G I . 

From Lemmas 4.3, 4.4, and 4.9, we see that 

C = 
s (mod Amp) if £ = M) , 

£ + Imp (mod 4m/?) if s - -\rf\ • 

Then, from Lemma 4.5, we obtain 

\LS = E (modC), if* = ( f ) , 
A:- (**) 

A ^ + f (modC), i fs = - ( ^ ) . 

Now ^4|Fw/7 and5|Z^, clearly. Property 2.3(d) implies that L2mp+£ = -£ (mod A\ while 
•i2i»p+f = s (m°d ^) . Since C= AB, we see that Z ^ ^ # 1 (mod Q. Then (**) implies that 
2^ = 1 (mod C) iff £ = (-3/p) = l. By reference to Table 1, this occurs precisely when p = 1, 19, 
-29, or -11 (mod 60), i.e., when p = 1 or 19 (mod 30). Thus, C GY iff /? = 1 or 19 (mod 30), 
which completes the proof. 

For the special case in which e = 0, we obtain the following corollary. 

Corollary 4.3: F2p G(X-Y), unless p = 1 or 19 (mod 30), in which case F2p GW'. 

This result extends that of Duparc [12] (and of Lehmer [14]) mentioned in Section 3. 
Theorem 4.2 cannot be improved, in the sense that C &U when p = l or 19 (mod 30). To 

see this, first suppose p = 1 or 19 (mod 30), so that s = \. Since C G Xy by Theorem 4.2, we see 
that Z(C) = 2mp\(C-l). Letting C-1 = 2W, where s>\ and d is odd, then 2mp\2d. Thus, 
C\F2mp\F2d- In order for C e£7, it is necessary that either C\Fd or C\Ld. However, A\Fd and 
2?|A/. Since gcd(A,B) = l, it is impossible for either C\Fd or C|4/. Therefore, C&U, as 
claimed. 
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5. CONCLUSION 

No attempt has been made to generalize the results of this paper so as to apply to more gen-
eral second-order sequences. The author is content to confine his investigation to the Fibonacci 
and Lucas sequences and to leave such generalizations to others. It is apparent, however, that 
any such generalizations are easily suggested by the results of this paper. 

Many other areas of research are suggested for the various pseudoprimes discussed in 
Section 2, in some cases leading to fascinating, difficult, and as yet unanswered questions. In 
recent years, due to the application of LPP's to the area of primality testing and public key cryto-
graphy, there has been a tendency to shift the focus of investigation on LPP!s. As this brief 
overview has attempted to indicate, however, there are areas of theoretical interest encompassing 
all of the pseudoprimes defined here. 
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MORGAN-VOYCE P O L Y N O M I A L S 

A. F. Horadam 
The University of New England, Armidale, Australia 2351 

{Submitted December 1994) 

1. PROLOGUE 

Andre-Jeannin [1] recently defined a polynomial sequence {P£r\x)}, where r is a real num-
ber, by the recurrence 

i*r)(*) = (* + 2)/£>(*)-/£>(*) (n>2) (1.1) 

with 

P0
(r)(x) = 1, I*r\x) = jc+r + l. (1.2) 

Furthermore [1], a sequence of integers {afy} exists for which 

P}r\x) = £a%xk, (1.3) 

where 

a£>=l (»>0). (1.4) 

He also proved [1] the crucial formula (n>0,k >*0) 

and the recurrence 

< 1 t = 2 ^ u - ^ u + f l £ ? u - i ( » ^ 2 ^ > 1 ) . (1.6) 

Simple instances of i^(r)(x) are [1], with slightly varied notation, 

P£l(x) = bn(x) (»>1) (1.7) 

and 
i£{(*) = £„(*) (»>1), (1.8) 

where #„(#) and 5„(x) are the well-known Morgan-Voyce polynomials [4]. (Please see [1] for 
other references to bn(x) and Bn(x).) 

It is the purpose of this short paper to give a brief account of a closely related sequence of 
polynomials {Q^\x)} with particular emphasis on the case r - 0. Necessarily, a formula corre-
sponding to (1.5) will have to be discovered. 

For ready comparison and contrast with the contents of [1], it seems desirable to present this 
material in a partially similar way. Before proceeding, however, we need to add the following 
items of information. 
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Lemmal: « & - « & . * = < $ + a < ? u (n>2). 

Pro°f: ^2k) + {$k + \)^2k + \ ) by Pascal's Theorem, 

+ { 2k +1 ) = { 2k+ 1 J by Pascals Theorem, i e " I 2k ) + { 2k 

(n + k \ (n + k - i\ _ f n + k +1) _ (n + k -1 
l'e'\ [2k y{ 2k )-{2k + l J {2k + l 

Use (1.5) for r = 0, r = 1, and the Lemma follows by Pascal's Theorem. 

When r = 2 in (1.1), then PW
(3(JC) is found to be 

Pn(x) = cn(x)J^(x)-b^(x) (n>l), (1.9) 

where cn(x)—given in terms of Morgan-Voyce polynomials—has been introduced independently 
by me is a paper currently being written in which it is also demonstrated that 

c„+1(x)-c„(x) = C„(x), (1.10) 

in which Cn(x) is to be defined in (2.11). 

2, THE POLYNOMIALS {Qir)(x)} 

Define, as in (1.1), a polynomial sequence {Qjf\x)} recursively by 

&\x) = (x + 2)$2l(x)-Q£2(x) (»*2) (2.1) 

with 

$f\x) = 2, $rHx) = x+r + 2. (2.2) 

Then a sequence of integers {bfy} exists such that 

#>(*) = 2>#**, (2-3) 
A:=0 

where 

« = {' ?** 0.4, 
[2 (n = 0) 

Nowft$ = QW(0). By (2.1) and (2.2), 

^ = 2 ^ , 0 - ^ 2 , 0 ( « ^ 2 ) (2.5) 

with 

f/?(r) - 2 

k( r
0

)=2 + r by (2.2). 
(2.6) 
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°n,0 ~ 

°n,0 

A(l) -°n,0 ~ 

2 + nr 

= 2 

2 + n. 

Following [1], we deduce that (n > 0) 

whence 

and 

Comparison of coefficients of xk in (1.1) leads to the recurrence (n > 2, k > 1) 

un, k - AUn-\, k ^ un-\, k-l un-2, k • 

Table 1 displays a triangular arrangement of the coefficients bfy. This ought to be compared 
with the (preferably extended) table in [1] for the coefficients ajfy. 

TABLE 1. Coefficients 6 $ of (£\x) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

n ^ x 
0 
1 
2 
3 
4 
5 

0 
2 

2+r 
2 + 2r 
2 + 3r 
2 + 4r 
2 + 5r 

1 

1 
4+r 
9 + 4r 

16 + 10r 
25 + 20r 

2 

1 
6 + r 

20 + 6r 
50+21r" 

3 

1 
8 + r 

35 + 8r 

4 

1 
10+r 

5 ••• 

... 

1 ••• 

Next, we introduce the important symbolism 

Qf\x) = Cn(x). (2.11) 

Using Table 1, we may now write out the expressions for C0(x), Q(x), C2(x), C3(x),.... Some 
properties of C„(x), especially in relation to Lucas polynomials, appear in [2]. 

3. CONNECTION BETWEEN {PJr)(x)} AND {Q(
n

r)(x)} 

Inherent in the nature of the laws of formation of {P}r\x)} and {Q„r\x)}—namely, (1.1), 
(1.2), (2.1), and (2.2)—is the inevitably close connection between a£{ and bfy. 

Typically, for example, 

(6<;2> = 50 + 21r =(35 + 21r) + 15 =4r2}+«4? 
i£> = 112 + 36r =(84 + 36r) + 2 8 = ^ + a ' 

,(0) 

-(0) 
(3.1) 

These illustrations suggest the nature of the constant (for which r = 0) by which b%\ exceeds a%\. 
Itisaf_>u. 
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Theorem 1: b<& = a^k +af\k (n > 1) 

(n + k}, (n-\ + k\ , (n + k\ , ,, 0 = {2k) + { 2k J + r(̂ 2A: + lJ byCl-5). 

Proof: Follow the inductive proof in [1] for afy, using the binomial coefficients and (2.10). 
The occurrence of the middle (extra) binomial term causes no complication. 

[Alternatively: Subtract (1.6) from (2.10) and use induction.] 

Combine the first two binomial coefficients in Theorem 1 to derive 

Corollaryl: b% = | ( V * - * ) + r(^l) 

Multiply both sides of Theorem 1 by xk and sum. Immediately, from (1.3) and (2.3), we 
infer the fundamental polynomial property associating Q^\x) with P£r\x). 

Theorem 2: Q%\x) = Pf\x) + P^\(x) (n > 1). 

Fixing r - 0 in Theorem 2 and using (1.7) and (2.11), we deduce 

C„(x) = Z>„+1(x) + £„(x). (3.2) 

Evaluating in Theorem 2 when x = l produces a nice specialization. Already [1] we know 
that, for Fibonacci numbers, 

e ) 0 ) = ̂ + i + ̂ 2„- (3-3) 
Application of (3.3) enables us to get the following two useful subsidiary results for Fibonacci and 
Lucas numbers from Theorem 2 when x = 1. 

Corollary 2: ^\l) = L2„+rEhl. 

Proof: e^)(l) = JP„(r)(l) + JP„(°Kl) by Theorem 2 
= F2n+i+rF2n+F2n^ by (3.3) 

Corollary 3: Gf M+1)(1) = 2P„(H)(1). 

Proof: Qf M+1)(l) = F2n+1 + (2w + \)F2n + F2n_x as in Corollary 2 (r = 2« +1, odd) 
= 2(F2n+l + uF2n) 

= 2P}»\T) by (3.3). 

Thus, 
QV\l) = 2PV\\) = 2F2n+l = 2bn+l, (3.4) 

g f (1) = 2i*>(l) = 2F2n+2 = 2Bn+l, (3.5) 

e f ( l ) = 2pW(l) = 2Z7n+1 = 2c„+1. (3.6) 
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Conventional symbolism bn(V)-hn,... has been employed in (3.4)-(3.6). Even superscript 
values of r in Corollary 2 do not, in general, appear to produce neat or interesting simplifications. 
However, by Corollary 2, (2.11), and [2], we do know that 

a°\l) = Cn = L2n. (3.7) 
Worth recording in passing is 

ef)(i)=^„+3=*n+2- (3.8) 

4. CONNECTION BETWEEN (£0)(JC) AND BH(x) 

Lastly, the link between our polynomials and the Morgan-Voyce polynomial Bn(x) is 
described. 

Theorem 3: Qf\x) = Bn+l{x)-Bn_l(*)-

Proof: £ f (*) = £ * $ * * by (2.3) (r. = 0) (i) 

= S « l +<£U by Theorem 1 (r = 0) 

= Z « 1 l - ^ 2 . * ) by Lemma 1 
k=0 

= i*>(x)-/££(*) by (1.3) 

= 2?„+1(x)-JBn_1(x) by (1.8). 

Corollary 4: C„(x) = Bn+l(x) - B^x) by (2.11), Theorem 3 

= "tj{n2k-iky+2+x" by<*>> <2-4>' <2-8)' <2-n)- C o r o l I a ry i-
The property embodied in Corollary 4 means that Bn(x) and C„(x) form another pair of 

cognate polynomials which can be incorporated into the synthesis [3], to which all the theory 
therein applies, e.g., 

B„(x)C„(x) = B2„(x\ (4.1) 

^-C„(x) = nB„(x). (4.2) 

5. CHEBYSHEV POLYNOMIALS 

Polynomials P^(x) are shown [1] to be related to U„{x), the Chebyshev polynomials of the 
second kind. In particular, with an adjusted subscript notation, 
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where 
x + 2 = 2cosf. (5.2) 

Now, by Theorem 3, Corollary 4, and (5.2), 

Q?\x) =C„(x) = B„+1(x)-B„_l(x) 

_ sin(n +1)/ - sin(n - l)t 
sint 

= 2 cos nt (5.3) 

= 2T(^\ (5.4) 

where Tn(x) are the Chehyshev polynomials of the first kind. 
More generally, we construct the law relating Qj[\x) to the two types of Chebyshev polyno-

mials. Needed for this is a pair of known results involving Chebyshev polynomials (our notation): 

pM(x) = f / „ + 1 ^ j + ( r - l ) C / „ ^ j by[l]; (5.5) 

2T„(x) = Un¥l(x)-Un_1(x). (5.6) 

Theorem* &\x) = 2 7 „ ^ j + r t / „ ^ 

Proof: Q%Xx) = P};rXx) + pV\{x) by Theorem 2 (»>1) 

= Un{^)Hr-w{^) + u{!f)-V„_{?f\ by(5.5) 
TT (x + 2\ TT (x + 2\ Trfx + 2 

=u"{—)-u-{—)+rU{— 
= 2 r / ^ l + rt//^l by (5.6). 

Zeros 
Zeros xk (k = 1,2,...,«) of C„(x) = Qf\x) are, by (5.4), tied to the zeros o f ^ ( ^ ) . Thus, 

x i +2 = 2 c o s ( ~ ^ £ ) (Jt = l,2,...,/i) 

implying 

* * = ^ ™ t ^ r f ) (*=i>2> •••>")• (5-7> 
For instance, the 3 zeros of C3(x)[ = 22j(^)] = x3 + 6x2 + 9x + 2 = (x + 2)(x2 + 4x +1) are 
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** = - 4 s i n t f 0 - 4 s i n t?) = -2' - 4 s i n t f ) ^ = 1'2'3>-
Zeros of P„(r) (x) (r = 0,1,2,..., n) are given in [1]. 

EPILOGUE 

Together with the Morgan-Voyce polynomials hn(x) and B„(x), the polynomials cn(x) and 
Cn(x) constitute an appealing quartet of polynomial relationships which form the subject of my 
paper alluded to following (1.9). Here, they exhibit a nice simplicity amid complexity, a cohesion 
and unity amid diversity. 

REFERENCES 

1. R. Andre-Jeannin. "A Generalization of Morgan-Voyce Polynomials." The Fibonacci Quar-
terly 323 (1994):228-31. 

2. R. Andre-Jeannin. "A Note on a General Class of Polynomials, Part II." The Fibonacci 
Quarterly 33A (1995):341-51. 

3. A. F. Horadam. "A Synthesis of Certain Polynomial Sequences." In Applications of Fibo-
nacci Numbers 6 (in press). 

4. A. M. Morgan-Voyce. "Ladder Networks Analysis Using Fibonacci Numbers." I.RE. Trans-
actions Circuit Theory 6.3 (1959):321-22. 

AMS Classification Number: 11B39 

348 [AUG. 
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1. INTRODUCTION 

The problem of determining which integers k are equal to the sum of the digits of Fk was first 
brought to my attention at the Fibonacci Conference in Pullman, Washington, this summer (1994). 
Professor Dan Fielder presented this as an open problem, having obtained all solutions for 
k < 2000. There seemed to be fairly many solutions in base 10, and it was not clear whether there 
were infinitely many. Shortly after hearing the problem, it occurred to me why there were 
so many solutions. If one assumes that the digits Fk are independently uniformly randomly 
distributed, then one expects S(k), the sum of the digits of Fk, to be approximately -|Mog10a, 
where a = y(l + V5) « 1.61803 is the golden mean. Since flog10 a « 0.94044, we expect S(k) « 
0.94044A:. Since this is close to k, we expect many solutions to S(k) - k, at least for reasonably 
small k. However, as k gets large, we expect S{k)l k to deviate from 0.94044 by less and less. 
Thus, it appears that, for some integer JTQ, the ratio S{k)l k never gets as large as 1 for k > «Q, SO 
S(k) = k has no solutions for k > /%, and thus has finitely many solutions. In this paper, I present 
two closely related probabilistic models to predict the number of solutions. More generally, they 
predict N(b; n), the number of solutions to S(k; b)-k for k <n, where S(k; b) is the sum of the 
digits of Fk in base b [thus, S(k; 10) = S(k)}. Let N(b) denote the total number of solutions in 
base b [thus, N(b;n)->N(b) as w-»oo]. Both models predict finite values of N(b) for each 
base b. In the simpler model, #(10) is estimated to be 18.24 ±3.86, compared with the actual 
value #(10; 20000) = 20. 

2. THE NAIVE MODEL 

In this model I assume that the digits of Fk are independently uniformly randomly distributed 
among {0,1,..., b-l) for each positive integer k and each fixed base b > 4. [It is fairly easy to 
prove that the only solutions to S(k; b) = k are 0 and 1 when b = 2 or 3. The proof involves 
showing that, for all sufficiently large k, we have (b -1)(1 + log^T^) < k.] Now let a - ~ (14- V5) 
andjff = | ( l - V 5 ) . Then 

„ ak-Bk ak
 /1X r 7 

k= Vs =75+°^ {ork~^co' 
The number of digits of Fk in base b is approximately the base-Z? logarithm of this number, 

k \ogb a - log^ V5 &k log6 a-ky, where y - \o%h a and I neglect terms of order 1. In this 
model, the expected value of each digit of Fk is \{b-\) and the standard deviation (SD) is 
Jj2(b2 -1) (see [2], pp. 80-86). Therefore, the expected value of S(k; b) is approximately S = 
y (b - X)y and the SD is approximately a = ^(b2 - l)y . Let SP^A; £) denote the probability that 
S(k;b) = £, where S(k;b) is distributed as the sum Yk^+Yki2 + ->+Yk^kr], the YkJ being 
independent random variables, each uniformly distributed over {0,1,..., b-l}. According to the 
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central limit theorem ([2], pp. 165-77), if k is reasonably large, the probability distribution is 
approximately Gaussian, so 

i 
<j*Jln exp 

<s-i)2 

2a2 kny(b2-\) exp 
-6(M¥H) 

ky(b2-l) 

Let <S>
l(k) = '3i

l(k; k); this is the estimated percentage of Fibonacci numbers Fk, for k' near k 
whose base-ft digits sum to the index k'. We have ty^k) « Ae~Bk 14k, where 

6(r(¥)~i)2 

^r(ft2-i) 
and 5 = 

r(b2-\) 
Incidentally, it is clear that the only solutions k for which Fk < b are those for which Fk - k, 
namely 0, 1, and possibly 5 (if b > 5). We might as well put in these solutions by hand. Thus, 
in the model, we only calculate &i(k) for k for which Fk > b and add N0 to the final result 
upon summing the probabilities, where N0 = 3 if Z> > 5, otherwise N0=2. Thus, our estimate for 
N(b; n) in this model is 

Ae~Bk 

k<n 
Fk>b 

k<n 
Fk>b 

and the standard deviation of this estimate is [assuming that the S(k, b) are uncorrected for 
different values of k] 

\(b;n)= I^iWO-PiW) 
k<n 

F„>b 

Ae-B\4k-Ae~Bk) 
k 

This model gives good results for some bases, but not all. The next model is an improvement 
which seems to yield accurate results for all bases. 

3. THE IMPROVED MODEL 

In this model, I still assume that the digits of Fn are uniformly distributed over {0,1,..., b -1}, 
but with one restriction, namely, their sum modulo b-l. It is well known that the sum of the 
base-10 digits of a number a is congruent to a mod 9. In general, the same applies to the sum of 
the digits in base b modulo b-l. Thus, we have the restriction S(k;b) = Fk (modi-1). In par-
ticular, k cannot be a solution to S(k; b) = k unless k = Fk (modi -1) . This latter equation is not 
too difficult to solve. Upon solving it, we end up with a restriction of the form 

kmo&q^S. (1) 

Here, q - [b -1, p], where p = per(Z? -1) is the period of the Fibonacci sequence modulo b-l and 
S is a specified subset of {0,1,..., q-1}. If k does not satisfy the above condition, it need not be 
considered, since the sum of its digits cannot equal Fn. On the other hand, if k does satisfy the 
condition, we know that the sum of its digits is congruent to Fn modulo b-l. In the improved 
model, we take this restriction into account and otherwise assume a uniform random distribution 
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of digits in Fn. In analogy to S(k; b), let S(k; b) be distributed as the sum Yk x + • • • + Ykt[kr], the 
YkJ being random variables uniformly distributed over 0, 1, ..., b-l and independent except for 
the restriction that Ykl + • • • + Yk[kyl = Fk (modb-l). We now estimate the probability 2P2(£) that 
S(k; b) = k to be b -1 times our earlier estimate in the case where k satisfies (1) and zero other-
wise, i.e., 

2{ ) (0 kmodqtS. 
Thus, in this model, the expectation and SD of N(b; n) are approximately 

„ „ Ae~Bk 

N2(b;n) = N0+^2(k)«N0+(b-l) £ ^ -
k<n k<n V / t k<n k<n 

Fk>b Fk>b 
kmodqeS 

and 

A#;»)= 11 ya(*Xi-*»(*))« P-i) I ^ " a ( ^ Ae~Bk>> 
k<n % k<n 

lFk>b \\ Fk>b 
k mod q eS 

As an example of how to calculate S, consider b - 8. In this case, p = per(7) = 16 and q = 
[7,16] =112. To determine £, we first tabulate ^ mod 16 and Fk mod 7 for each congruence class 
of k mod 16. Next, below the line, we tabulate the unique solutions modulo 112 to the 
congruences x = k (mod 16) and x = Fk (mod 7). Since (16,7) = 1, by the Chinese Remainder 
Theorem, each of these solutions exists and is unique. 

Jtmodl6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
F^mod7 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1 
i m o d l l 2 0 1 50 51 52 5 22 55 56 41 90 75 60 93 62 15 

Thus, S = {0,1,5,15,22,41,50,51,52,55,56,60,62,75,90,93}. Note that, in this example, the pair 
of congruences k = j (modp) and k = Fj mod b-l has a solution mod q for every integer j mod 
p. This is because , in this example, b -1 = 7 and p = l6 are coprime. In general, this is not the 
case. For example, for b = 10, we get p = 24, which is not coprime to b-l = 9. Thus, if we 
constructed a similar table for 6 = 10, we would expect to get some simultaneous congruences 
without solutions. This is in fact the case, i.e., the pair of congruences k = 2 (mod 24) and 
k = F2 = l (mod 9) has no solutions. We expect only one-third (eight) of them to have a solution, 
since (9,24) = 3. In fact, we do get eight. For b = 10, we find S = {0,1,5,10,31,35,36,62} and 
q = 72.' 

One might wonder by about how much N^k; b) and N2(k; b) differ. To first order, they 
differ by a multiplicative factor depending on b, i.e., N2(b;n)^M(b)Nl(b^n). Recall that in 
going from the first model to the second, we selected s out of every q congruence classes modulo 
q, where s = #S. Also, we multiplied the corresponding probabilities by b-l. Thus, M(b) = 
(b - T)s/q. For some bases, M(b) = 1, so the predictions of both models are essentially the same. 
This is true in particular whenever b-l and p are coprime, and also in some other cases, like 
b = 10. However, there are other bases for which M(b) ^ 1; in fact, the difference can be quite 
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large! For instance, for £ = 11, we find p = q = 60 and s=14, hence Af(ll) = 10x14/60 = 7 /3 , 
which is greater than 2. Thus, for b -11, the second model predicts over twice as many solu-
tions to S(k; 11) = k as the first model. In this case, as we will see, the second model agrees well 
with the known data; the first does not. 

4. COMPARISON OF MODELS WITH "EXPERIMENT" 

Every good scientist knows that the best way to test a model or theory is to see how well 
its predictions agree with experimental data. In this case, my "experiment" was a computer 
program I wrote and ran on my Macintosh LCII to determine S(k; b) given k < 20000 and 
b < 20. Incidentally, it is not necessary to calculate the Fibonacci numbers directly, only to store 
the digits in an array. Also, only two Fibonacci arrays need to be stored at one time. Neverthe-
less, trying to compute for k > 20000 presented memory problems, at least for the method I used. 
Still, this turned out to be sufficient for determining with high certainty all solutions to S(k; b) = k 
except for b - 11. 

Here I present all the solutions I found for 4 < b < 20 and k < n. 
b=4, 

h=5, 

b=6, 

6=7, 

b=8, 

b=9, 

6=10, 1 

b=ll, 1 

n=1000: 

n=1000: 

n=1000: 

n=1000; 

n=1000: 

n=5000: 

n=20000: 

n=20000: 

0 

0 

0 

0 

0 

0 

0 
175 
540 

0 
61 
269 
617 
889 
1405 
1769 
2389 
2610 
3055 
3721 
4075 
5489 
6373 
7349 
8017 
9120 
9935 
12029 
14381 
16177 
17941 
18990 

180 
946 

1 
90 
353 
629 
905 
1435 
1793 
2413 
2633 
3155 
3749 
4273 
5490 
6401 
7577 
8215 
9133 
9953 
12175 
14550 
16789 
17993 
19135 

5 

5 

5 

5 

5 
216 
1188 

5 
97 
355 
630 
960 
1501 
1913 
2460 
2730 
3209 
3757 
4301 
5700 
6581 
7595 
8341 
9181 
10297 
12353 
14935 
16837 
18193 
19140 

9 

7 

22 

29 

10 
251 
2222 

13 
169 
385 
653 
1013 
1620 
1981 
2465 
2749 
3360 
3761 
4650 
5917 
6593 
7693 
8495 
9269 
10609 
12461 
15055 
17065 
18257 
19375 

15 

11 

41 

77 

31 
252 

41 
185 
397 
713 
1025 
1650 
2125 
2509 
2845 
3475 
3840 
4937 
6169 
6701 
7740 
8737 
9277 
10789 
12565 
15115 
17237 
18421 
19453 

35 

12 

149 

35 
360 

53 
193 
437 
750 
1045 
1657 
2153 
2533 
2893 
3485 
3865 
5195 
6253 
6750 
7805 
8861 
9535 
10855 
12805 
15289 
17605 
18515 
19657 

53 

312 

62 
494 

55 
215 
481 
769 
1205 
1705 
2280 
2549 
2915 
3521 
3929 
5209 
6335 
6941 
7873 
8970 
9541 
11317 
12893 
15637 
17681 
18733 
19873 

72 
504 

60 
265 
493 
780 
1320 
1735 
2297 
2609 
3041 
3641 
3941 
5435 
6361 
7021 
8009 
8995 
9737 
11809 
13855 
15709 
17873 
18865 
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b=12, n=20000: 

b=13, n=5000: 

b=14, n=3000: 

b=15, n=2000: 

b=16, n=2000: 

6=17, n=1000: 

b = 18, n=1000: 

b=19, n=1000: 

b=20, n=1000: 

0 1 5 . 13 14 89 96 123 
221 387 419 550 648 749 866 892 
1105 2037 

0 1 5 12 24 25 36 48 
53 72 73 132 156 173 197 437 
444 485 696 769 773 

0 1 
192 194 

11 27 34 181 

10 60 101 

60 

31 36 

21 22 

Next, I tabulated Nl(b;n)±Al(b;n)J N2(b;n)±A2(b;n), N(b\ri), ( ^ ) log 6 a , and M(b) for the 
above pairs (b, ri). Note how N(b; n) Increases as (-^)log6 a approaches 1. 

b n JVi(6;n)±Ai(6;n) N2{b\ n) ± A2(6; n) N(b;n) ( ^ ± ) l o g 6 a M(b) 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1000 
1000 
1000 
1000 
1000 
5000 

20000 
20000 
20000 

5000 
3000 
2000 
2000 
1000 
1000 
1000 
1000 

2.25 ±0.49 
2.67 ±0.79 
4.17±1.05 
5.10±1.41 
6.61 ±1.85 
9.40 ±2.48 
18.24 ±3.86 
79.71 ±8.72 
17.03 ±3.71 
9.71 ±2.56 
7.15±2.01 
5.93 ±1.69 
5.21 ±1.47 
4.75 ±1.31 
4.42 ±1.18 
4.10 ±1.08 
4.01 ±1.00 

2.43 ±0.61 
2.76 ±0.72 
5.04 ±1.25 
6.18 ± 1.42 
5.84 ±1.47 
8.57 ±2.09 
17.77 ±3.46 ' 

180.95 ±12.82 
17.01 ±3.28 
15.73 ±3.08 
8.22 ± 1.62 
4.70 ±1.19 
7.16 ± 1.62 
3.94 ±0.90 
4.69 ± 1.06 
4.12 ±0.95 
4.54 ±0.97 

2 
2 
6 
7 
5 
7 

20 
183 

18 
21 
10 
3 
6 
3 
4 
5 
5 

0.52068 
0.59799 
0.67142 
0.74188 
0.80995 
0.87604 
0.94044 
1.00340 
1.06510 
1.12566 
1.18522 
1.24387 
1.30170 
1.35877 
1.41515 
1.47088 
1.52601 

1.00 
1.00 
2.00 
1.50 
1.00 
1.00 
1.00 
2.33 
1.00 
2.00 
1.00 
1.00 
2.00 
1.00 
1.00 
1.50 
1.00 

As one can see, the first model does not make accurate predictions for each base. In particu-
lar, its predictions for bases 11 and 13 are off by roughly 12 and 4.5 standard deviations, respec-
tively. On the other hand, the second model seems to agree well with the known data for each 
base. For 12 out of 17 bases, its predictions are correct within one SD, and all 17 predictions are 
correct within two SD's. (The largest deviation, found for b = 13, is -1.71 SD's.) Furthermore, 
there does not seem to be a directional bias of the model. Eight out of 17 of the predicted values 
are too high; the other 9 are too low. Thus, the second model looks good. 
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5. PREDICTING THE UNKNOWN 

With this in mind, we can use the second model to make predictions for which we are unable 
to calculate at present. In particular, we can estimate JV(1 1), the total number of solutions to 
S(k; 11) = k in base 11, as well as the value of the largest one. We can also estimate the proba-
bility that we missed some solutions in each of the other bases we looked at. For these bases, I 
was careful to calculate out to large enough n so that these probabilities should be very small. 

I calculated N2(l 1; n) ± A2(l 1; n) for 200000 < n < 4000000 in intervals of 200000. Here are 
the results: 

n 

200000 
400000 
600000 
800000 

1000000 
1200000 
1400000 
1600000 
1800000 
2000000 
2200000 
2400000 
2600000 
2800000 
3000000 
3200000 
3400000 
3600000 
3800000 
4000000 

7 V 2 ( l l ; n ) ± A 2 ( l l ; n ) 

490.38 ±21.70 
595.89 ±24.00 
641.02 ±24.93 
662.32 ±25.35 
672.83 ±25.56 
678.16 ±25.66 
680.91 ±25.71 
682.34 ±25'.74 
683.10 ±25.76 
683.50 ±25.77 
683.72 ±25.77 
683.83 ±25.77 
683.89 ±25.77 
683.93 ±25.77 
683.94 ±25.77 
683.95 ±25.77 
683.96 ±25.77 
683.96 ±25.77 
683.96 ±25.77 
683.97 ±25.77 

As can be seen, the results converge rapidly for large n. Let N'Qr, n) denote the estimated 
number of solutions to S(k; b) = k for k > n. Then we have 

M^ A V Ae~Bk *ss^Ae~M M(b)A C e~Xdx 

k mod q eS 

where I make the change of variables y = V* in the integral to get the error function term. In the 
last step, I use an asymptotic expansion of erfc [1]. 

I next tabulated N'{b;ri) for the pairs (ft, n) used, except for ft = 11, where I used n = 
4000000, the largest n for which I have estimated N(b; n). Since N' is much less than 1 in each 
case, the values of N' listed are the approximate probabilities that there is a solution to 
S(k; ft) = k for k > n. I also tabulated the corresponding values of A, B, and M(ft). Note that for 
every base less than 20, except 11, N'Qr, n) is less than 10"6; in fact, the sums of these entries is 
roughly 10"6. Thus, if this model is accurate, there is about one chance in a million that I have 
missed any solutions in these bases. Also, note that the table of estimates of N2(ll\n) can be 
used to estimate the largest solution to S{k; 11) = k. 
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b 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

n 

1000 
1000 
1000 
1000 
1000 
5000 

20000 
4000000 
20000 
5000 
3000 
2000 
2000 
1000 
1000 
1000 
1000 

A 

0.606 
0.516 
0.451 
0.401 
0.362 
0.330 
0.304 
0.282 
0.263 
0.246 
0.232 
0.219 
0.208 
0.198 
0.188 
0.180 
0.172 

B 

2.65 x lO"1 

1.35 x lO"1 

6.89 x 10"2 

3.37 x lO"2 

1.49 x 10"2 

5.26 x 10"3 

1.03 x 10~3 

2.89 x 10"6 

9.18 x 10"4 

3.01 x-10-3 

5.79 x 10"3 

8.97 x 10"3 

1.23 x 10"2 

1.58 x 1Q~2 

1.92 x 10~2 

2.26 x 10~2 

2.59 x 10~2 

M(b) 

1.000 
1.000 
2.000 
1.500 
1.000 
1.000 
1.000 
2.333 
1.000 
2.000 
1.000 
1.000 
2.000 
1.000 
1.000 
2.000 
1.000 

N'(b;n) 

7.6 x lO"117 

2.5 x 10"60 

4.7 x 10"31 

1.3 x 10"15 

2.7 x 10"7 

2.3 x 10~12 

2.4 x 10~9 

1.1 x 10~3 

2.1 x 10~9 

6.8 x 10~7 

1.6 x 10~8 

7.2 x 10-9 

1.7 x 10"11 

5.5 x 10~8 

1.4 x 10~9 

5.2 x 1 0 ~ n 

1.1 x 10~12 

Suppose one wishes to find n such that there is a 50% chance that there are no solutions 
larger than n. According to Poisson statistics, this happens when the JV2(11; n) = In 2 « 0.69. By 
interpolatmg in the previous table, we see that this occurs when n « 1.9 x 106; this is roughly the 
value we can expect for the largest solution. Calculating S(k; 11) for Jc up to 2.8 x 106 yields a 
96% probability of finding all the solutions, and going up to 4 x 106 yields a 99.9% probability of 
finding them all. Perhaps someone will do this calculation in the near future. 
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1. INTRODUCTION 

We intend to study some sequences of real numbers which are obtained as follows: take a 
natural number TV and a real number a and form the sequence s(N,a) = (a0,al,a2,...,ak,...), 
where the numbers af are defined by 

\2an_l if 2an_x <N+n, (1) 
an ~ i 

\2an_x ~(N+n) otherwise. 
The sequences arise from certain nonstandard expansions of real numbers that are discussed in 
Sections. 

It is very easy to study these sequences by computer. This is what we did, and which led us 
to the following 

Conjecture 1: When a is an integer e[0, N + 2), the sequence s(N, a) will end in a sequence of 
zeros. 

We verified the truth of this statement for all N < 2 000 000. 
In the next section we shall show that there is also some "probabilistic" evidence for this 

conjecture. In Section 3 we shall see that the conjecture has some "heuristic evidence." Finally, 
we shall conclude with a discussion of some other aspects of the problem. 

2, PROBABILISTIC EVIDENCE 

Consider a sequence s(N,a) = (a0,al,a2,...,ak,...), where TV is a natural number >2 and 
a ~ a0 e(0, N + 2] and where the ak are obtained by the relations (1). 

If a < 0 , then ak=2ka; if a = N + 2 + J3 (J3> 0), then ak = N + k + 2 + 2k for all it. Thus, 
the behavior of s(N, a) is "sufficiently known" for such a. 

I f0<a<7V>2, then it is easy to show that every ak is in [0, N + k + 2). 
Indeed, this is obvious when k - 0. Suppose it is true for some k > 0. Then 

• whena^+1 ~2ak, wehave ak+l <N+ k + l<N+ k + 3, 
• whm ak+l = 2ak - N - k -1, thm ak+l<2(N + k + 2)- N - k -1 = N + k + 3. 

Therefore, our assumption follows by induction. 

Now, let a be an integer in (0, 7^ + 2). Then it is easy to verify that ak will be in the interval 
[0, N + k) as soon as k > 2. Further, we obviously have 

ak = 2ak_{ mod(N + k) Vk > 1, 
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whence ak will be even as soon as N + k is (k>0). Thus, ak=0 (smallest k) implies N + k 
even. It is also not difficult to see that we can restrict our attention to sequences with even N = 
2M, so that in the w-tuple (a2,a4, ...?a2n) the a2i are even integers in the interval [0, N + 2i). If 
they would behave like "random," the probability that none of them equals 0 is easy to compute. 

Indeed, the total number of w-tuples (bh h2,..., bn) with hi e JVn[0, 2 M + 2J), bt even, is equal 
to the product (M +1) • (M + 2) • •• • • (M + n), while the total number of such w-tuples where no bi 

is zero equals M • (M +1) • • • • • (M + n -1). Thus, the chance for such an w-tuple not to contain 0 
is 

M{M + l)-{M + n~l) _ M 
(M + l)(M + 2)>-(M + n)~ M + n' 

Clearly, this number tends to 0 if w tends to infinity. 
We include a small table in which the reader may find some numerical results concerning the 

"randomness" of the ar 
N 
100 

200 

300 

500 

1000 

2000 

4000 

8000 

IN 
925.9 

5902.3 

9999.3 

9993.6 

10610.8 

7389.8 

11885.0 

5513L3 

IN 
693.9 

2016.5 

2307.2 

8802.7 

57013 

50789.5 

69030.1 

95802.9 

Here, lN is the arithmetic mean of the numbers la that are defined as the smallest number k for 
which ak is 0 (a = 1,2,..., # - 1 ) . 

The number l^ is the arithmetic mean of 1000 numbers l'N, which has the same meaning as 
the lt but where the ak are chosen at random in [0, N + k). Note that the Ij will vary from one 
time to another. The reader who wishes to verify these numbers will probably not find the same 
ones. 

3* SOME NONSTANDARD EXPANSION OF NUMBERS 

First, note that a necessary condition for the sequences s(N, a) to end in a string of zeros is 
that a is a rational number with denominator of the form 2r, for some t eN. Indeed, the equal-
ity ak = 0 (for some k GN 0 ) implies ak = 2ak_l-N-k^ which means that ak_l is a rational num-
ber with denominator 2. From this it follows immediately that ak_2. must be a rational number 
with denominator 4. Continuing this proves our assertion. 

In what follows, we shall discuss an "expansion of real numbers" that is (in some way) simi-
lar to what is known as "binary expansion." 

Theorem-1: Every real number a in the interval [0,2] can be written as an infinite sum 
^ k ot = 2^$k —, where the Sk are 0 or 1. (2) 
i 2 
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This is a special case of a more general theorem of Brown [1] that reads as follows: 
If {/;.} is a non-increasing sequence of real numbers with lim .̂ = 0 and {&,.} is an arbitrary se-

quence of positive integers then every real number x in the interval [0, Z ^ ktr;] can be expanded in the 
form x = E,t, Ptrn where the /?,. are integers satisfying 0 < fif < kn for all i, if and only if rp < T^=p+X ktr. 
forall/?>l. 

The reader may verify that the conditions of this theorem are fulfilled when rt -H2\ k}< = 1. 
However, to see the connection with the sequences mentioned in the introduction, it will be con-
venient to give a proof of this particular case. 

Before doing so, notice that when the sum in (2) is finite, a will be a rational number with 
denominator of the form 2f, t G N 0 . About the converse, we state 

Conjecture 2: Every rational number whose denominator is a power of 2 has a finite expansion 
(2). 

We shall see that Conjecture 1 implies Conjecture 2. This implies that our numerical investi-
gations provide a proof for the fact that every rational number in [0,2] whose denominator is 2*, 
t < 2 000 000, can he expanded as a finite sum (2). 

Proof of Theorem 1: Let us abbreviate the numbers k I2k as uk. First, note that the series 
T^ uk converges to 2. This follows from the equality 

- ^ = f y (*e[o,i)) 
1 x k=o 

which gives, after differentiation and multiplication by x, 
1 °° 

X' 7s~ — / KX 

(i-*)2 h 
Taking x = 1/2 gives the desired result 

It is also clear from this that any series of the form (2) converges. 
Now let a be an arbitrary element of (0,2) (the case a - 0 or 2 is trivial). We define the 

numbers Sk and the numbers Bk as follows: 
If a > ux (= 1/2), then 5X = 1, else S1 = 0; Bx -a-8^. 
If Bx > ̂  (= 2 / 2 2 ) , then S2 = 1, else S2 = 0; B2 = B^S^. 
If B2>u3 (= 3 /2 3 ) , then S3 = 1, else £3 = 0; B3 = B2 -S3u3. 

Our algorithm produces the digits Sk by a so-called greedy expansion. 
It suffices to show that the sequence (Bl7 B2,...) has limit 0. To do so, put 

a0 = a, 

ak=2kBk (£ = 1,2,...). 

Then it is clear that we have ak+l = 2ak - Sk+l (k +1), whence, by the definition of the 8k: 

\2ak i f < £ + l, 
[2ak - (k +1) otherwise. 
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Since, previously, we noted that every ak is in [0, £ + 2), we have Bk e[0, ^ ] , which 
completes the proof. 

Note also that if one of the numbers Bt is zero, then so are all Bj when j > i; note further 
that the expansion is not "unique." To see this, define numbers r/k and numbers B'k in the follow-
ing way: 

If a > ux (= 1 / 2), then /ft = 1, else % = 0; B{ = a- rftul9 

1£B[> u2 (= 2/22), then t]2 = 0; 5^ = B{-7]2u2, 
If JSJ > W3 (= 3/23), then y/3 = 0; £; = 5^ - ^ 3 , 

thus constructing a sequence 5j of real numbers none of which will ever be zero. 
The corresponding numbers ak (= 2kBk) then satisfy a slightly different recursion, namely, 

[24 i f < * + l, 
\2a'k - (A: +1) otherwise, 

so that in this case ak+l might be in the interval (0, k + 3] ... . 
The proof of the theorem leads to the construction of a sequence s(N, a) with a-a and 

N = 0 as defined in the introduction. 
Now, suppose a G[0, 2] is a rational number of the form k 12m with k, m eN0. Then at is a 

rational number with denominator 2m~l (i = 1,2,..., /w) and will be an integer for i>m. From the 
proof, it is also clear that at is in the interval [0,2 +/). It is also easy to see that at is in the inter-
val [0,1) when i>m + l. 

Thus, to see if every such a has a finite expression (2), it suffices to see if every series 
s(N, a) with N <m and a an integer in the range 1,2,..., N -1 will "end" in zeros. We took N = 
2 000 000 and found aK = 0 for some K < 4 588 298 126 (the computations took several hours on 
a fast PC)., 

Since the expansion (2) is not unique, it is possible that Conjecture 2 is true even if Conjec-
ture 1 should prove false. 

4. OTHER ANALOGS WITH BINARY EXPANSIONS 

There is another analog of the expansion (2) with "binary expansions." Consider a number a 
such that the 8k are periodic, i.e., there exists a nonzero natural number p such that 

Sk = Sp+Jc 0) 

for all k GN. In such a case, we have 

Theorem 2: a is a rational number. 

Proof: Define the polynomial v(x) as Z/Li ̂ .x' and the real function <p(x) as E£i £,•*'. By 
the periodicity of the Sn we have 

±s,*^ sykp+ 
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q>(x) = v(x) + xpv(x) + x2pv(x) + • • • = v(x) - . 

Differentiation and multiplying with x gives 

* P (*) = L 5tlx = — n Y /v • 
/ = ! I 1 " 1 i 

Putting x = 1 / 2 yields 
g = v - q / 2 ) 2 ^ + ^ v a / 2 ) a 

2 / ? - l ( 2 ' - l ) 2 W 

It is easy to see that the numerators of the two fractions are both integers, which proves the 
theorem. 

As to nonpure periodic expansions [this happens when the relations (3) are true for all k > 
some m], it is not difficult to show that these a differ from some purely periodic number by a 
rational number with 2m in the denominator. 

It should be noted also that the pure periodic expansion of a number is in general not the one 
obtained by the greedy procedure explained in the proof of Theorem 1. For instance, if we take 
a to be 8/9, the sequence (Sk) in Theorem 1 would be the nonpure periodic 

(1,0,1,0,0,0,0,0,0,1,0,1,0,1,0,1,0,...) 

while we have the equality 
8 = ^ 2k 

which is obviously pure periodic. 
The converse of Theorem 2, however, is not true. This is seen by examining the second 

fraction in (4). Its numerator equals 8{2p~l + S22P~2 + •••+£ which can be any of the values 0, 
1, 2, 3, ..., 2p~l. However, this is not sufficient to cancel enough factors of the denominator to 
yield any prescribed denominator. For instance, the number 1/3 is never equal to any periodic 
expression (2). 

This may be considered as a (weak) argument that Conjecture 1 could fail to be true. 
Remark: The number 2 plays a special role in all of the preceding in the following way. Con-
sider series of the form 

fX*c* (ce[0,l)) (5) 
where the Sk are 0 or 1. 

It is clear that such a series converges to a number of the interval [0, A] 

A = J]kck- C 

Using these notations, we can prove 
*.i ( i - c ) 2 ' 

Theorem 3: Every real number in the interval [0, A] can be expressed as a sum (5) if and only if 
CG[1/2,1). 
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The proof Is an Immediate consequence of Brown's theorem applied to this case. Indeed, 
Brown's theorem states that every real number In the interval [0, A] Is expressible as a sum (5) If 
and only If 

00 f 00 \ ( p \ 

pcp< £*e*=cH£(pc'+jc')' = c I + — ~ ~ i ' yPGN-
k=P+i V/=i J \l-c (l-c) ) 

This Is equivalent to p(2c - l)(c - 1 ) < c, \fp G N, and this holds if and only If c e [1 / 2,1). Q.E.D. 

Therefore, extensions of our results when c Is-of the form 1 / / I , « G N , « > 2 are not very likely 
to hold. 

It is worthwhile to note that the number 2 has a similar role when looking at expansions of 
real numbers In the form 

00 

]T Skck (c E [0,1)), where the 8k are 0 or 1 

(which includes binary expansions). In the same way as above, we obtain 
Theorem 4: Every real number In the Interval [0, A] can be expressed as a sum J^=l Skck if and 
onlylfce[l /2, l) . 

This theorem has a surprising geometric interpretation. Consider for every infinite string 
8 = (Sl952,S3,...); ^ = 0 o r l 

a real function <ps{x) defined by 
CO 

k=l 

Clearly, one has 0 < <ps(x) < ~^, Vx e[0 ,1) . Now, by Theorem 4, every point of the unbounded 
set {(a, b) 10.5 < a < 1; 0 < b < p ^ } belongs to at least one curve y - <p5{x), while some points of 
the bounded region {(a, b) |0 < a < 0.5; 0 < b < -~^ may fail to He on any such curve. An example 
of such a point is ( 1 / 3 , 2 ) , where X Is a positive real number less than 0.5, whole ternary 
expansion contains a two. 
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INTRODUCTION 

One of the more effective methods of counting residues modulo a prime in the rows of 
Pascal's triangle is a reduction of this problem to that of solving of certain systems of recurrence 
equations. This way was successfully employed by B. A. Bondarenko [1] in the investigation of 
this problem for various values of/? and (only) for certain rows of Pascal's triangle. However, 
some characteristic properties of the matrices of these recurrent systems were noticed which led 
to the idea of/?-latin matrices. This idea was formulated in more detail in [2], which also uses/?-
latin matrices in the investigation of other arithmetic triangles. 

In this paper we consider a new application of the properties of/7-latin matrices to the investi-
gation of Pascal's triangle modulo a prime. Using a representation of the p-latin matrices in a 
convenient basis, we obtain the distribution of Pascal's triangle elements modulo a prime for an 
arbitrary row. 

p -LATIN MATRICES 

We note the definition of a/7-latin matrix as given in [1] and [2]. A square matrix of order n 
is called a "latin square of order «" [3] if its elements take on n values in such a way that each 
value occurs only once in each column and row. A latin square of order n is called a "p-latin 
square of order »" if no diagonals except the main and secondary ones (the element indices are i 
and n-i + l for 1 < /' < n) have equal elements. A/?-latin square of order n is said to be a "nor-
malized p-\atm square of order n" if its first row has the form (1,2,..., n), and the main diagonal 
has the form (1,..., 1). 

We will construct such a matrix for any prime p. 
Let us introduce the matrix P = (Jli). ,=——y of order p-\ whose elements are to be under-

stood as elements from the field 2.p. (Here and later we use the notation /', j = l,p-l to mean 
\<i<p-\,\<j<p-\) 

Example 1: For p = 7, the matrix P has the form: 

P = 

fill 
111 
1/3 
1/4 
1/5 

vl/6 

2/1 
2/2 
2/3 
2/4 
2/5 
2/6 

3/1 
3/2 
3/3 
3/4 
3/5 
3/6 

4/1 
4/2 
4/3 
4/4 
4/5 
4/6 

5/1 
5/2 
5/3 
5/4 
5/5 
5/6 

6/0 
6/2 
6/3 
6/4 
6/5 
6/6 

'1 
4 
5 
2 
3 

2 
1 
3 
4 
6 
5 

6̂  
3 
2 
5 
4 
1 

Theorem 1: Ifp is a prime number, then the matrix P is a normalized/?-latin square. 
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Proof: It is obvious that elements of P occurring in the same row or column are distinct and 
belong to the multiplicative group of the field ~Lp. Thus the matrix P is a latin square. 

Let j/i be one element of some diagonal that is parallel to the main diagonal Then any 
other element of this diagonal has the form (J + s)l (i + s). Assume that these elements are equal; 
then is = js and therefore i = j , so in this case the element j/i has to occur on the main diagonal. 
There is an analogous situation with diagonals parallel to the secondary one. Hence P is ap-latin 
square. Since the first row of P has the form 1,2,..., p -1 and on the main diagonal there are only 
l's, P is a normalizedp4atin square. 

Let us define the set of square matrices of order p-l (called in [2] "normalized pAatin 
matrices"): 

N„ 

where C denotes the complex numbers. 

Example 2: If p = 7, then, according to Example 1, the matrix 

VC6 c3 ^\J 
belongs to M7. 

Though the idea of this set of matrices was contained in [1] and [2], their existence for any p 
was not made explicit. 

Corollary 1: If C, B eNp, then CB eNp and CB = BC. 

Proof: In fact, if C - (cfJ) and B = (buj), then the equality 

(p-l 

v*=i Ji,j=i,p-i Si,J=l,p-l 

where all indices are in Zp, holds. Therefore, if we denote by ak the sum Sfj/ cshk/s, then we will 
have CB = (a7/). =r~^~v hence CB sNp. Moreover, in the same way, we can establish 

Bc=yLhfj*it 
, 5 = 1 

= (aA/-: 1,/7-P 

with the aid of the equality 
p-l 

s=l 

Hence CB = BC, which was to be proved. 
We develop the properties of these matrices from Mp in what follows. 

1996] 363 



P-LATIN MATRICES AND PASCAL'S TRIANGLE MODULO A PRIME 

Let us denote by A(1) the Pascal triangle modulo a prime p and let C(n, m) be an arbitrary 
element. Let us also denote by A(P the triangle containing only the first s rows of A(1). Now con-
sider the triangle Aw == M(1)

? whose elements Ck(n, m) are defined by the expression Q(w, m) = 
kC(n, m) (mod p) and denote by A(f} the triangle containing only the first s rows of A(/:). It is 
clear that A(,*> = JfcA .̂ 

Definition: The triangle with sm rows arising from A^ by replacing its elements C(n, t) by the 
triangles A^(/l*^ and filling in free places by 0 is denoted by A(^} * Am. 

Example 3: For p = 53 the triangles A*p and A^ have the form 

A<J> = \ \ , Af= 1 1 , 4 2 ) = 2 2 , A(
3
3>= 3 3 , 

1 3 3 1 1 2 1 2 4 2 3 1 3 

and therefore we obtain: 
1 

1 1 
1 2 1 

A (
3

1 } 1 0 0 1 
m m 1 1 0 11 

Ad) A 4 A " 1 2 1 1 2 1 
A 4 * A 3 ~ A(i) A(2) A(i) - 1 0 0 2 0 0 1 

A3 % % 1 1 0 2 2 0 11 
A<i> A(3) A(3) A« 12 12 4 2 1 2 1 

3 3 3 1 0 0 3 0 0 3 0 0 1 
1 1 0 3 3 0 3 3 0 11 

1 2 1 3 1 3 3 1 3 1 2 1 

This leads to the principal fractal property of Pascal's triangle. 

Theorem 2: For any n,m eN and each k = l,p-l,the equality A^ * A „ = A(i)„ holds. 
The proof of this theorem is lengthy but not difficult and is given in [4]. 

This result allows us to reduce an investigation of A(1) to the investigation of M^ for 
k = 1, p -1. The details will be given in Theorem 3. 

Let Bk, 1 < k < p-1, be the matrix of order p-\, any element bt, • of which is the number of 
elements equal to j in the &* row of the triangle A(^. Denote by gf^(n, p) the number of 
elements equal to s modulo/? in the «* row of the triangle A(t). 

Theorem 3: If n = (ar,..., a0)p is the/?-ary representation of n, then 

gf\n,p) = {Bar...BaX, W 
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Proof: Using Theorem.2, we can write the equality 

p P p ? 

which means that the nth row of A(1)
r+1 is found in the a * row of A(J?, which consists of the tri-

angles A1 ;, 1 < k < p - 1 (see Example 3). If we set n(k) = (ar_k, ...3a0), then the following vector 
equality will hold: 

Continuing this process, we can obtain 

(&\n,/Okl^zi = Bar ... 3 ^ > ( « ( r ) , ^ = — . 

Since w(r) = aQ and gf\a0, p) = (Bao)s^k, we get (1). This completes the proof 

Using Theorem 3, we can reduce counting the gf\n, p), where s = l,p-l, to finding a 
product of the matrices Bk. 

Theorem 4: Bk eNp. 

Proof: Let b[k\ ..., b^\ be the elements of the first row of Bk. We will prove the equality 

**=(*£Wr (2) 

We can define the addition of the triangles A(^} as the same operation between corresponding 
elements of A^ in 7Lp. For example, the following equality 

ZA<» = A« (3) 
k=\ 

holds. If we denote the elements of matrix Bk by b$, then, using (3) and the definition ofbff, 
we can write b{k] = b$s for each s = l,p-l. Thus, b$ = b[^n, and hence (2) holds. The proof is 
complete. 

Let nt be the number of elements equal to / in the j?-ary representation of n In the form 
n - (ar,..., a0)p. By (1), using Corollary 1, we can find 

^k)(P9p)JflsA . (4) 
V ' = l Jk,s 

Here the matrix BQ is absent because B0 = diag(l, ...,1) = E. Now, to calculate the value of 
gf\n, p)9 we have to Investigate the further properties of the matrices in Np. 

PROPEETIES OF THE MATRICES FROM Mp 

It is true that Mp is just a subspace of the linear space of square matrices of order p-l. 
Moreover, we have 
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Corollary 2: DimN^ = p -1 and 

5eN,=>a = f;V*, (5) 

where Ik GMp and 4 = (SkiJ\J=:I^rv 

Here St . is Kronecker's symbol and all indices are to be understood as elements from Hp. 
Proof of this property can be obtained directly from the definition of Np. 
Let us verify that the matrices Ik possess the property IkIm =1^. In fact 

Vm ~ 
fp-i \ 

and consequently the element of the matrix IkIm with the indices i andj does not vanish if there 
exists an s so that ki = s and ms- j . Hence j = mki, and therefore IkIm - {Smkij)t . |——x = 1^. 

Let v be the root of the equation xp~l - 1 in the field ~LP, such that for each k = 1, p-2 the 
inequality vk ^ 1 holds. For what follows, it will be convenient to introduce the matrices Jk = 
(Iv)k. If we set ck = byk, then (5) can be written in the form 

B = YckJk. (6) 
k=\ 

Corollary 3: If ju is an eigenvalue of B, then there is a root of the equation zp~l = 1 in C, which 
we denote as A, such that 

^ = l V - (7) 
k=l 

Proof: Let a be some vector from C^-1 and 

Then, employing the equality JJb = Xsb and carrying this out for each s = 1, p -1, we can write 

Bb = PfckJkb = PfckAkb = Mb, 

i.e., ju is an eigenvalue of B. Now it remains to prove that formula (7) gives us all eigenvalues of 
B. We will complete this after Corollary 6. 

As a consequence of Corollary 3, we note that the matrices Ik, and hence the matrices Jk> 

are nonsingular matrices, and V&, detlk =detJk = l. Indeed, since all eigenvalues of Jk are the 
roots of the equation xp~l = 1 (we denote them by Xt\ then we have 

detJ,=n4 = / , 

where ju = Zx... Xp_x. Using the equality EfZi k - 0 (mod/?), we get // = 1, and hence det Jk = 1. 
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As another interesting property of the matrices Ik we note that they are orthogonal matrices, 
namely, IkIl = E, where (aitJ)* = (#/,/) and the bar denotes complex conjugation. This imme-
diately follows from the equality 

have 
Obviously, the matrices Jk possess the same property, but by the equality JkJs = Jk+S we 

/ * _ r - l _ j 
Jk~ Jk - Jp-k-l 

for each k - 1, p - 2. Since Jp_x = E9 we have J*_x = 7 x. 

Corollary 4: Let 5 be in Np and be written in the form (6), then 

(8) 

P~2_ 

B^Ucp-k-A+Cp-i^ 
k=l 

'p-lJp-l • 

Proof: In fact, using (8), we immediately obtain 
p - 2 _ _ P-2_ 

B ~ 2^Ck^k +Cp-\Jp-l ~ 2^Ck^p-k-l+Cp-l^1 'p-Wp-l> 

hence Corollary 4 is true. 
Let us introduce the matrices Sf for / = 1, p -1 in the form 

i P~l 

1 (P-i)h 
(9) 

Here, as before, Xi is one of the roots of the equation xp l = 1 in C. It is clear that, for each 
i = 1, p -1, the matrices Sf belong to Np. 

Let X be a primitive root of the equation xp~l = 1, i.e., for each k = l,p-2, we have Xk * 1. 
Therefore, in formula (9), we can assume that Xt = X1. 

Theorem 5: The following equalities, 
SjSj - SiJSi (10) 

are true for all i,j = l,p-l. 

Proof: Consider the left-hand side of (10). After some calculation, we get 

1 
' ; (P-VI2 

P-l I 2(p-2) p-2 

^=0 k=0 £=p-l k=£-p+2 

whence 

SiSj=~(^¥ ^=0 k=0 £=0 k=£+l 

hence 
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| p-2 p-2 

\P~l) £=0 k=0 

Let us examine this equality. Employing the identity Xi_j - Xi I Aj9 where Xi * Xj (for i ̂  y), 
we obtain 

£2^=.(^-l)/(^y-l) = 0. 
k=0 

Hence (10) holds for i^j. Further, at i = j , we have 

p-2 

lc=Q 

consequently, iSf = Sf, and the proof is complete. 

( i i ) 

The matrices Si &TQ Hermitian, i.e., they possess the property St• = S*. In fact, for i = l,p-l, 
we have 

Let us denote the transposed matrix A = (a .) -.—? by A' = (a,A . -.—T. Then we have 
S{= $p-i-i for / = 1,p-2. This can be proved in the same way as the previous result, but we 
need to keep in mind that J*k - Jk and Xt = Xp_{_x. 

Theorem 6: The equalities 

Jk = *t#lSi,k = Xp=\, (12) 
which are converse to (9), are true. 

Proof: Employing (9)-(l 1) and making some transformations, we get 

i E=} P-I P-\ 
:I4 l-k 

p-\ 

k=\ >-i)S 
Therefore, (12) is true for k = 1. For the completion of the proof, it suffices to note that Jk - J\ 
and to make use of (10). 

Now we must note that the matrix Sp_{ consists only of l's in each place; hence Sp_x = S' x. 
This is clear from the following equalities, 

P-\ p-\ fp-\ \ 
Vi = X Jk = Z 4 H H5ki,jJk 

k=i k=i Kk=i Si,J=l,p-l 

if we bear in mind that, for i,j=l,p-l, 2f=1
! Ski . = 1. 

Corollary 5: Let B eNp, then 

P-\ 
B ~ X MA > where juf are the eigenvalues of B. 

/=! 
368 
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The proof of this Corollary can be obtained without difficulty from (6) by using Theorem 6 
and equality (7). 

Using the basis Sl9..., Sp_u we can easily find the product of matrices from Np. To illustrate 
this statement we prove 

Theorem 7: Let Mi\ ..., M(p-\ be the eigenvalues of the matrices Bt from Theorem 3. If we set 

^=floppy > 04) 
then the equality 

fp-i 
g?\n,p) = 

V= 1 Jk 
(15) 

is true. 
Proof: It is readily seen that, making use of (13) and Theorem 5, we can obtain 

Therefore., equality (4) transforms to (15), and the proof is complete. 

Note that we can also write <r. in the form cr. = f/fr)... f/fo). 

Corollary 6: Any eigenvector bt of the matrix B corresponding to the eigenvalue //,. can be 
written in the form 

4=2>/v> ' (16) 
0) 

where c. e Cp~l and the summation is taken over j satisfying the condition jUj - juf. 

Proof: Let bt be the eigenvector of the matrix B corresponding to the eigenvalue jur Oper-
ating on the equality Bbt = jufy by the matrix Ss, using (13) and Theorem 5, we obtain jusSJ)f -
fjj$sbj. If Mi ^ Ms here, then Ssbf = 0. Now, if we make use of the identity E = St + - • • + Sp_h 

which easily follows from Corollary 5 for B - E, then we get bf = (E(y) S )bf. 
In addition, if c eCp - 1 , then, using the equality BSf = MAC> w e c a n saY ̂ a t the vectors of 

the form Sf are the eigenvectors corresponding to the eigenvalue Mi- Thus (16) is true, and the 
proof is complete. 

Conclusion of the Proof of Corollary 3: Let us take c GCP~1 SO that \/k, Skc ̂  0. This is 
possible, for example, with c = (1, 0,..., 0). We saw above that the vector ck - Skc is the eigen-
vector of the matrix B corresponding to the eigenvalue Mk determined from (7) at X - Xk. We 
claim that the vectors ck (k = l,p-l) are linearly independent. In fact, if there are 5X,..., 
£ ! eC not all zero and such that S& + • • - 4- S^f^ = 0, then operating on this equality by Sk, 
we obtain. Skck = 0 or 8k - 0 for k ~ 1, p -1, which is a contradiction. Thus, the vectors ck for 
k = \,p-\ are the basis in C^-1, and so there are no other eigenvalues of B. Thus, the proof is 
complete. 
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Corollary 7: If //7 ^ 0 for each / = ! , / ? - ! , then the matrix B has an inverse defined by the 
equality 

7 = 1 

To prove this statement, it is sufficient to use the identity E = Sx + • • • + Sp_x again, and to 
employ Theorem 5. 

Now we apply the properties obtained of the matrices from Np to counting gf^in.p) for 
p-1. It should be pointed out that in [5] this problem was considered for p = 3 mdp = 5. 

COUNTING ^ ( # 1 , 7 ) 

To count the value of g^k\n, p) we need, according to Theorem 7, to examine the triangles 
A(7} for k = T~6. The triangle A(

7
1} has the form: 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 5 3 3 5 1 

1 6 1 6 1 6 1 

If we multiply each element of A^ by k in Zp, we will obtain the triangle ^ . For example, 
A(7* has the form: 

3 
3 3 

3 6 3 
3 2 2 3 

3 5 4 5 3 
3 1 2 2 1 3 

3 4 3 4 3 4 3 

Now we need to find the matrices Bk for k = 1,6. Let us take, for instance, the 4th rows of 
triangles A ^ , which give us the matrix B4. The 4th row of triangle A(^ has the form (1,4,6,4,1). 
Since the numbers 1 and 4 occur twice and the number 6 occurs once there, the first row of B4 

has the form (2,0,0,2,0,1). If we want to count the third row of B4 now, we must take the 4th 

row of triangle A^ , which gives us what we desire, i.e., (0,0,2,1,2,0). Thus, we can count all the 
matrices Bk for k = 1,6. To write our calculation, we make use of the matrices Jk (k = 1,6). So 
let us find the matrix Jv In our case, we have v = 3 because, for each k = 1,5, the inequality 
3k ^ 1 (mod 7) is correct. Therefore, 

j 1 = / 3 = 

0 
0 
0 
0 
1 
0 

0 
0 
1 
0 
0 
0 

1 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
1 

0 
0 
0 
1 
0 
0 

0 
1 
0 
0 
0 
0 
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Now we can write 
B0 = J6, Bl = 2J6, B2 = J2+2J6, B3 = 2Jx+2J6y 

B4 = J3 + 2J4 + 2J6, B5 = 2J^2J5^2J6, B6 = 3J3+4J6. 

Let us assume that the number k is contained in the record of (n)7 a total of nk times. Using the 
notation of Theorem 7 and formulas (6) and (7), and keeping in mind that Xk - exp(i£;r/3) (here, 
i2 - -1), we obtain, for each k - 1,6, 

^=2, /42) = 4+2 , ju?) = 2Ak+2, //i4> = 4 + 2 4 + 2 , 
^ = 2 ( ^ + 4 + 1 ) , 46) = 34+4. 

Whence, by (14), 

o"! = 2"'-"H3 +/V3)"2+"3(-/V3)"M"5, 
a2 = 2"' ~"2 (3 -1V3)"2 (1+i V3 )"3 (2+/V3)"4 (2^2 + 2X4 + 2)"5 7"*, 
o-3 = (-l)"'2"'+"53^+^(223 +2)"^, CT6 - 2"'3"M"35"<6"57'\ 

0"4 = ^ 2 > °"5 = ^1> 

where the bar denotes the complex conjugate. To make use of (15), we need the matrices Sk 

(k = 1,6). According to (9), the matrices Sl and S2 have the form 

, 1 
l~6 

' 1 
2 

A2 

\ 
l - i 

A2 

1 

X2 

-1 
K 

K 

1 
-1 
X2 

X2 

A2 

-1 
1 

K 
K 

K 
-1 

xx 
1 

x2 

-1 

^ £,=-

J A2 
22 1 

2 2 

1 A, 

x2 \ 
_1 22 

If we denote the &* row of £3 by (S3)k, then we have 

($s\ = (^3)2 = -(^3)3 = (^3)4 = -(^3)5 = ~ ( ^ ) 6 
-1/6(1,1,-1,1,-1,-1). 

Also, from the general properties of Sj, we find S4 = S2, S5 = S{, S6 = (l)j _j-g. 
Now, from (15), keeping in mind (17), we can obtain what we required, i.e.. 

g^in, 7) = l/6[2Re(ai + a2) + a3 + a6], 
g<P(n, 7) = 1 / 6[2 Re(24o-i + X2a2) + a3 + a6], 
gW(n, 7) - 1 / 6[2 Re(X5at + X4a2) -a3 + a6], 
gW(n, 7) = 1 / 6[2 Re(22o-1 + X4a2) + a3 + a6], 
g«\n, 7) = 1 / 6[2 R e ^ + X2a2) -a3 + a6], 
g2\n, 7) = l / e p R e t - a , + a2)-a3 + a6]. 

(18) 
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Since 2X2 + 2X4 +2 = 0 and 2A3 +2 = 0, we know the equalities obtained are true only if 
n$ = n5 - 0. When n$ ^ 0 and n5 = 0, we must assume that <J3 = 0 in (18), but when n5 ̂  0 and 
n$ - 0, we must assume that a2 = 0. Finally, if Wj =* 0 and w5 ^ 0, then cr2 = a3 = 0. In all other 
cases except those indicated above, we must make use of (17). 

CONCLUSION 

We note here two simple properties of gf\n,p). Consider two rows of Pascal's triangle 
with numbers (n)p and (m)p. First, if (n)p and (m)p contain the same figures excepting zero, then 
gf\nyp)-g^\m,p) for each k and s. Second, if {n)p contains 1 I more than (m)p, then 
g^\n, p) - 2egf\m, p) for each k and s. The latter follows from (4) because Bl = 2E for each 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rablnowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTLONS to Dr. STANLEY 
RABINOWLTZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also he sent to the problem editor by electronic mail to Fibonacci@MathPro.com on Inter-
net. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ask that proposers inform us of the 
history of the problem, if it is not original A problem should not be submitted elsewhere while it 
is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn+l+Fn, ^ = 0,^ = 1; 

A?+2 ~ AH-I + Ai > LQ = 2, Lx = 1. 

Also?a = (l + V5)/2, /? = ( l -V5)/2 , Fn = (a* -(3n)l^and Ln = an+pn. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-814 Proposed by M N. Deshpande, Institute of Science, Nagpur, India 
Show that for each positive integer n9 there exists a constant Cn such that F2rj+2jF2i - Cn and 

^«+2i+i^/+i ~ Q a r e '30t*1 Pei*fect squares for all positive integers i. 
B-815 Proposed by Paul S» Bruckman, Highwood, IL 

Let K(a, b, c) = a3 +b3 +c3 -3abc. Show that if xl9 x2, x3? yl9 y2, and y3 are integers, then 
there exist integers zh z2? and z3 such that 

K(xh x2, x3) - K(yl9 y2, y3) = K(zl9 z2, z3). 

B-816 Proposed by Mohammad K. Azarian, University of Bvamsville, Evansville, IN 
Let ij, and k be any three positive integers. Show that 

F-Fu FF ' FF-_Jyj + Mi + '±1 < 2 . 
F^F^F, Fj+Fffi Fk+F,FjFk 

B-817 Proposed by Kung-Wei Yang9 Western Michigan University, Kalamazoo, MI 
Show that 

J S [ i J Fni-lFn(k~i)+l ~ X [ j j FnjFn{k-j -J) 
j=l V / 

is an integer for all positive integers k and n. 
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B-818 Proposed by L. C Hsu, Dalian University of Technology, Dalian, China 
Let Hn ^ l + ̂  + i+'-'+TT- Find a closed form for 

B-819 Proposed by David Zeitlin, Minneapolis, MN 
Find integers a, b, c, and rf (with \<a<b<c<d) that make the following an identity: 

where i^ is the Pell sequence, defined by Pn+2 - 2Pn+l + Pn,forn>0, with P0 = 0, Px = 1. 

NOTE: The Elementary Problems Column is in need of more easy, yet elegant and nonroutine 
problems. 

SOLUTIONS 

Generalizing a Pell Congruence 

B-787 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 33, no. 2, May 1995) 

For n > 0 and k > 0, it is known that Fkn/Fk and Pknl Pk are integers. Show that these two 
integers are congruent modulo Rk-Lk. 

[Note: Pn and R„ = 2Qn are the Pell and Pell-Lucas numbers, respectively, defined by 
Pn+2 = 2Pr,+1 + Pn, Po = 0, Pl = lmdQ„+2=2Q„+1+Q„,Q0 = l, Q = 1.] 

Solution by Lawrence Somer, Catholic University of America, Washington, DC 
We will prove the following more general result. Let (4X=o anc* (Q)»=o denote two second-

order linear recurrences satisfying the respective recursion relations 

4,+2 = «4+i -K> A = o, 4 = i, 
Qi+2 ~ c Q + i _ ^Q> Q) - Q Q ~ i> 

where a, 5, and c are nonzero integers. We assume that (An) and (Cn) are both nondegenerate 
second-order linear recurrences with An * 0 and Cn * 0 for any w > 1. 

Let (2?w) be a sequence satisfying the same recursion relation as (A^ but having initial terms 
B0 - 2 and Bx-a. Let <DW> be a sequence satisfying the same recursion relation as (C„) but hav-
ing initial terms CQ = 2 and Q = c. Then, for n>0 andk >0, we have that Aknl Ak and CknICk 

are integers and 
A « / A - Q « / Q (mod^-Z),). (1) 

Proof: We first note that it is well known that Akn I Ak and Ckn I Ck are integers, since 
AkCk * 0. It was proven ([1], p. 437) that, for a fixed k > 1, both (A^ I AkX=0 and (C^ I Q>^=0 

are second-order linear recurrences satisfying the recursion relations 
rn+i = Bkrn+l-bkrn (2) 

and 

sn+2=Dksn+l-bksn, (3) 
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respectively. To establish our result, it suffices to show that (1) holds for k fixed and n varying 
over the nonnegative integers. We proceed by induction: 

Ak.Q/Ak = 0^Ck.0/Ck=0 (modBk-Dk); 
AM/Ak = l^CM/Ck=l (modBk-Dk). 

Assume the result holds up to n. By (2) and (3), 

A(«+i) ' A - BkAkn I Ak-b 4to-i)' A ( v 
and 

Q(w+i>' Q = A:QT7 ' Q ~ * Q(w-i)' Q • (5) 
Clearly 2?̂  = Z^ (mod Bk-Dk). Moreover, by our induction hypothesis, Akn I Ak = Ckn I Ck and 
Ak(n-i)/Ak^Ck(n_l)/Ck (mod Bk-Dk). It now follows from (4) and (5) that Ak(n+l)/Ak^ 
Q(w+i) ^ Q (m°d Bk - Dk). The result now follows by induction. 

If a = 2, & = - 1 , and c = 1, we get the original problem. 
Reference 
1. D. H. Lehmer. "An Extended Theory of Lucas' Functions." Annals of Mathematics (2) 31 

(1930):419-48. 
Also solved by Paul S. Bruckman, Andrej Dujella, Pentti Haukkanen, Norhert Jensen, Dorka 
O. Popova, Tony Shannon, and the proposer. 

Asymptotic Analysis 

B-788 Proposed by Russell Jay Hendel9 University of Louisville, Louisville, KY 
(Vol 33, no. 2, May 1995) 

(a) LetGII = F 2 . Prove that Gn+l ~ ^+1GW. 
(b) Find the error term. More specifically, find a constant C such that Gn+l ~ Lin+-£*n + CGn_x. 

Solution byH.-J. Seiffert, Berlin, Germany 

We shall prove that, for all positive integers w, Gn+l = Lln+lGn+ f32Gn_l-p{n~l) . Since 
lim^^^ ffn~l) - 0, this is much more than is asked for in the proposal. In particular, the constant 
of part (b) is C = y?2 = (3 - V5) / 2. 

Using the Binet formulas, we obtain 

= a(w+1)2 - /?(w+1)2 - (a2"+l + p2n+l){anl - /T2) 

- a2n+lpn2 -p2"+la"2 - / ? W M ~ 1 ) 2 + /?2/?(""1)2 

= -pn2-2n-l + fZ-ln-l _ ̂ n-lf-2 + ^ ( n - l f 

= P{n-l)2{p2-lip2) = -Sp{n-l)\ 
where we have used that a/? = - 1 . This proves the desired equation. 

1996] 375 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Also solved by Paul S. Bruckman, Andre] Dujella, Russell Jay Hendel, Norbert Jensen, Can, 
A. Minh, Tony Shannon, and the proposer. 

Differential Equation Involving Lucas Polynomials 

B-789 Proposed by Richard Andre-Jeannin, Longwy, France 
(Vol 33, no. 2, May 1995) 

The Lucas polynomials, Ln(x), are defined byl^ = 2, L1 = x, and Ln = xLn_x + Z„_2, for n > 2. 
Find a differential equation satisfied by I%\ the kth derivative of Z,„(x), where k is a non-

negative integer. 
Solution by Andrej Dujella, University of Zagreb, Croatia 

The Binet form for Ln(x) is 
f n—7Y ( n—7Y 

x + Vx2 + 4 x-Vx +4 * 4(*) = + 

Take the derivative of both sides to get L'n(x) = nFn(x). 
Combining this with the relation Z2(x) - (x2 + 4)i^2(x) = 4(-l)w, we get the differential equa-

tion for Ln(x)\ 
(x2+4)L'(x) + xL>-n2L„(x) = 0. 

Taking the derivative k times gives (x2 + 4)/!*+2)(x) + (2k + l)xZ(*+1) - (n2 - k2)L^y = 0. Hence, 
the function L^ satisfies the differential equation 

(x2 +4)y" + (2k + l)xy!-{n2-k2)y = 0. 

Also solved by Paul S. Bruckman, Charles K. Cook, Russell Jay Hendel, Can. A. Minh, Igor 
O. Popov, H.-J. Seiffert, Tony Shannon, M. N. S. Swamy, and the proposer. 

Even Inequality 

B-790 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol. 33, no. 4, August 1995) 

Find the largest constant c such that F2
+l > cF2n for all even positive integers n. 

Solution by L. A. G. Dresel, Reading, England 
When n is even, the Binet forms give 

K\i = (an+l-j3"+l)2
 = a2 (l + /?2*+2)2 

F2n S(a2n-p2n) S (I-/?4") ' 
and since 0 < 01 < 1, we see that, for all positive even n, F2

+l I F2n>a2 I\[5. As n -» oo? we have 
Fn+i I F2n-*a21^5. It follows that c = a21S = (5 + 3V5) /10 is the largest constant such that 
F2

+l > cF2n for all positive even integers n. 

Remark: In a similar manner, we can prove the corresponding result for all odd integers n\ 
F2

+l < (a2 145)F2n, and that a21V5 is the smallest constant for which this is true. 
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Also solved by Charles Ashbacher, Michel A. Ballieu, Paul S. Bruckman, Charles K Cook, 
Andre] Dujella, Russell Euler, C. Georghiou, Russell Jay Mendel, Hans Kappus, Carl Libis, 
Dorka O. Popova, Bob Prielipp, Lawrence Somer, and the proposer. 

Divisibility by 18 

B-791 Proposed by Andrew Cusumano, Great Neck, NY 
(Vol 33, no. 4, August 1995) 

Prove that, for all n, Fn+n+Fn+7 -h%Fn+5 + Fn+3 + 2Fn is divisible by 18. 

Solution by H.-J. Seiffert, Berlin, Germany 

Let CQ, C1? ..., cm be arbitrary integers. We shall prove that all sums Sn = Hk=QckFn+k, where n 
is an integer, are divisible by gcd(*S'0, Sx), provided that S0 and Sx are not both zero. 

It is clear that Sn+2 = Sn+l + Sn for all integers n. It follows that Sn = SQFn_x + SxFn for all inte-
gers n. The claim follows. 

The expression considered in this proposal is such an S„. Here, S0 = 144 and Sx = 234. The 
conclusion follows from the fact that gcd(144,234) = 18. 
Haukkanen found the same generalization as Seiffert. Many solvers also came up with the expli-
cit formula Fn+n+Fn+7 +%Fn+5+Fn+3+2Fn = 18i^+6 which makes the result obvious. 

Also solved by Charles Ashbacher, Michel A. Ballieu, Glenn Bookhout, Paul S. Bruckman, 
David M Burton, Charles K Cook, Leonard A. G Dresel, Andrej Dujella, Russell Euler, 
C Georghiou, Pentti Haukkanen, Russell Jay Hendel, Joseph J. Kostdl, Carl Libis, Can. A. 
Minh, Bob Prielipp, Don Redmond, R P. Sealy, Sahib Singh, and the proposer. 

Reciprocal Sum 

B-792 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 33, no. 4, August 1995) 

Let the sequence (an) be defined by the recurrence an+l -c?n~an
Jr\ « > 0, where the initial 

term, a1? is an arbitrary real number larger than 1. Express -^ + ̂ - + -^ H— in terms of av 

Solution by Hans Kappus, Rodersdorf, Switzerland 
The sum in question is S = 1 / {ax -1). 

Proof: For n > 0, let Sn = Z^ i ^ • The recurrence ak+1 = a\ - ak +1 is equivalent to 
1 = 1 1 

ak ak-l ak+l-l 

Thus, Sn is unmasked as a telescoping sum. Hence, 

5 = _ i L_ 
Since it is clear that l im^^ an - oo ? the result follows. 

Also solved by Andrej Dujella, C Georghiou, Russell Jay Hendel, Joseph J. Kostdl, H.-J. 
Seiffert, and the proposer. 

1996] 377 



ELEMENTARY PROBLEMS AND SOLUTIONS 

A Congruence for 2nLn 

B-793 Proposed by Wray Brady, Jalisco, Mexico 
(Vol 33, no. 4, August 1995) 

Show that 2nLn = 2 (mod 5) for all positive integers n. 

Solution 1 by Can, A. Minh, University of California at Berkeley, Berkeley, CA 
The proof is by complete induction on n. The result is clearly true for n - 1 and n - 2. Sup-

pose the assertion holds for 1 < m <n\ we show it holds for n. We have 2nLn -2n{Ln_l + Ln_2) = 
2(2n-lLn_l) + 22(2"-2L„_2) = 2.2(mod5) + 22 -2(mod5)^ 12(mod5)= 2(mod5), and we are done. 

Solution 2 by H.-J. Seiffert, Berlin, Germany 

From the well-known identities [see Problem B-660, this Quarterly 29.1 (1991):86], 
\nl2\, v i(n+l)/2\r x 

2"4 = 2 1 ( J ) ' and 2"Fn=2 g [ ^ 
it obviously follows that, for all nonnegative integers n, 

2nLn = 2 (mod 10) and 2nFn = 2n (mod 10). 

Also solved by Charles Ashbacher, Glenn Bookhout, Paul S. Bruckman, David M. Burton, 
Charles K. Cook, Leonard A. G Dresel, Andrej Dujella, Russell Euler, C Georghiou, Russell 
Jay Hendel, Hans Kappus, Joseph J. Kostdl, CarlLibis, Dorka O. Popova, Bob Prielipp, R P. 
Sealy, Sahib Singh, Lawrence Somer, and the proposer. 

Exponential Inequality 

B-794 Proposed by Zdravko F. Stare, Vrsac, Yugoslavia 
(Vol 33, no. 4, August 1995) 

For x a real number and n a positive integer, prove that 

w - i 

S = F2 + • £ 
F2J 

+ ••• + 
-* w-l 5±M >n + xlnF„ n+l-

Solution by C Georghiou, University ofPatras, Greece 
From the Arithmetic-Geometric Mean Inequality, we get Sn >^(^rL)*/" =wexp(-^lni^+1)> 

n + x In Fn+l, where we have used the inequality ey > 1 + y, valid for y > 0. 

Also solved by Paul S. Bruckman, Leonard A. G. Dresel, Andrej Dujella, Russell Euler, Hans 
Kappus, Joseph J. Kostdl, Bob Prielipp, H.-J Seiffert, and the proposer. 

Addenda: The following were inadvertantly omitted as solvers of problems presented in pre-
vious issues of this Quarterly: Mohammad K. Azarian solved B-780; Andrej Dujella solved 
B-782-B-783; Russell J. Hendel solved B-785-B-786; Harris Kwong solved B-780-B-781 and 
B-784-B-785; Igor O. Popov solved B-784 and B-786; R. P. Sealy solved B-778-780 and 
B-784-B-785. 
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Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-513 Proposed by Paul S. Bruckman? Salntiya, Kuwait 

Define the following quantities: 
(2w + 2)! ^ = Y_L_ B = y l

 c,y(Ml D = y < 
i + l)\f(n + 2)\ 

Prove that A2D = B2C. 

H-514 Proposed by Juan Pla9 Paris? France 

1. Let (Ln) be the generalized Lucas sequence of the recursion Un+2-2aUr}+l-\-Un = 0 with 
a real such that a > 1. Prove that 

lim W y - " i * = l l _ 
N-»+*O L r + l 4 a<4a2 _ i 

2. Show that the above expression has a limit when (Ln) is the classical Lucas sequence. 

H-515 Proposed by Paul S. Bruckman9 Salntiya, Kuwait 
For all. primes p * 2,5, let Z(p) denote the entry-point ofp in the Fibonacci sequence. It is 

known that Z(p)\{p -(£)) . Let a(p) = (p-(jr))/Z(p)9 ? = £(/>-(£))• Prove that if p = 1 or 9 
(mod 20) then 

Fq+l^(-lfq+a{p))(modp). (•) 

H-516 Proposed by Paul S* Bruckman, Edmonds, WA 
Givenp an odd prime, let k(p) denote the Lucas period (mod/?), that is, k(p) is the small-

est positive integer m - m(p) such that Lm+n = Ln (modp) for all integers n. 
Prove the following: 
(a) Let u = u(p) denote the smallest positive integer such that au = /?" = 1 (mod p). Then 

u = m = k{p). 
(b) k(p) is even for all (odd) p. 
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(c) p = l (modk(p)) iff/? = 5 orp s ±1 (mod 10). 
(d) p = -l + \k(p) (modk(p)) iffp = 5orp^±3 (mod 10). 

H-508 Proposed by H.-J. Seiffert, Berlin, Germany (Corrected) 

Define the Fibonacci polynomials by F0(x) = 0, Fl(x) = l, Fn(x) = xi^7_1(x) + i^_2(x), for 
n > 2. Show that, for all complex numbers x and y and all positive integers n, 

FMFM = n±^(^{x+yfFM\ xy-4 

As special cases of (1), obtain the following identities: 

Fn(x)F„(x + l) = nZ k + \ i=0 

\2k 

n-\ /i\n-Je+l 

x * 0 : 

2/fc + l 
„2fc+2 n + k\x*™-(-4) 

x2+4 

F^ix) = ( 2 » - l ) 2 g 2 ^ f 2 " 2 ^ J- l)xkFk+l{4lx). 
k=0 k + lV 2A + ] 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

SOLUTIONS 
Recurring Theme 

H-497 Proposed by Mohammad K. Azarian, University of Evansville, Evansville, IN 
(Vol 33, no. 2, May 1995) 

Solve the recurrence relation 

-*- C-*-x, ^ 
I lUf1 MIK-, = 0, 

where r is any nonzero real number, n > k > 1, and xm ^ 0 for all #2. 

Solution by the proposer 
First, we note that 

k ( k x ^ f k Y f * f 1 "V 
/=0 \j=0 xn-i J \t=0 J i/=0 \xn-i J 

r(*+l) ^ 
+ 1 
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Now, using the fact that (x„xw_1 • • • xn_k)r * 0 and making the substitution 

7 = 0,1,2, . . . ,*, 
f i Y(*+i) 

^ , J L , * - , . 

we obtain the following nonhomogeneous recurrence relation of order k: 

un + un_1 + un_2 + -+un_k = -l. (!) 

Next, the general solution to (1) has the form un = w^ + w^\ where u^ is a particular solution to 
(1) and u^ is the general solution to the homogeneous recurrence relation 

H„ + V I + V 2 + - + I W = 0- (2) 
We know that u^n

p) must be a constant .4. Thus, substituting A in (1), we obtain M ^ = -—j-. To 
find u^\ we note that the characteristic equation associated with (2) is 

^+A*-1 + ̂ " 2 + - + A + l = 0. (3) 

Hence, using the fact that lk+l-l = (A-l)(Xk +Xk'l + Xk'2 + ---+/1 + 1), the roots of (3) are k 
distinct complex roots of unity: 

^ = C 0 S X7i + l s m ^7Y ? 7W = !'2'•••'*• 
But, since Xm is the complex conjugate of Ak+l_m when A: is odd, Xk±\ = - 1 . Thus, if £ is odd and 

Jfc > 3 [if ifc = 1, then t$> = C(-l)w], then 

2 

MW = C ( - l )" + X ( 4 , cos(/i^) + 5m sin(«0J), 

where C, 4w, a n^ ^w a r e constants and 0m = tan_1(tan^f-). If £ is even, then 
i 

«f = I (4- cos(«0J + 5m sin(/i0J), 
/ W = l 

where Am, Bm, and $m are as above. Therefore, the general solution to the given recurrence rela-
tion is 

xn = (unyxfcv = {u^ + u{
n

p) Y7^. 

Also solved by A. Dujella and P. Bruckman. 

Pseudo Primes 

H-498 Proposed by Paul S. Bruckman^ Edmonds^ WA 
(Vol 33, no. 2, May 1995) 

Let u = ue = L e, e = 2,3,.... Show that if u is composite it is both a Fibonacci pseudoprime 
(FPP) and a Lucas pseudoprime (LPP). Specifically, show that u = 7 (mod 10), Fu+l = 0 (mod u\ 
and Lu = 1 (mod u). 
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Solution by L. A. G. Dresel, Reading, England 

For convenience of writing subscripts, let E = 2e so that ue = LE and 

ue+l = L2E = (LE)2-2 = (uef-2. (1) 

Now make the inductive hypothesis that, for some e > 2, 
*/e = 7 (mod 10). (2) 

Then (1) gives ue+l = (ue)2 - 2 = 49 -2 = 7 (mod 10) and, since ^ = Z4 = 7, the congruence (2) is 
proved for all e > 2. 

Next, make the inductive hypothesis that, for some e > 2, 
ue - h2e+l -1, where h is an odd integer. (3) 

Then 
ue+l = (ue)2-2 = (hT+l-l)2-2 

= (h22e-h)2e+2~l, 

where (h22e -h) is again an odd integer, since h is odd. But u^ = 2 3 - l , and therefore (3) is 
proved for all e > 2. It follows that ue is always odd. 

Now, since u-ue- LE, we have LE=0 (mod u) and, similarly, F2E - FELE = 0 (mod u). 
Furthermore, (3) shows that u +1 = 2hE is a multiple of 2E, and it follows that Fu+l = 0 (mod u). 

Next, ^(zz + ̂ ^AE" is an odd multiple of E, so that Lm is divisible by LE and LhE = 0 
(mod w). Thus, ZM+1 = Z ^ = (Z^-)2 - 2 = -2 (mod w). From the identities ZM+2 + Lu = 5i^+1 and 
ZM+2 ~LU- ZM+1, we have 2iM = 5i^+1 - ZM+1 = 2 (mod w), giving Lu = 1 (mod w), since z/ is odd. 

Remark: Another proof of Lu = 1 (mod z/), also based on formula (3) above, was given by A. Di 
Porto and P. Filipponi in their article "A Probabilistic Primality Test Based on the Properties of 
Certain Generalized Lucas Numbers" in Lecture Notes in Computer Science 330 (1988):211-223. 

Also solved by A. Dujella, H.-J. Seiffert, and the proposer. 

FPPs and LPFs 

H-499 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 33, no. 3, August 1995) 

Given n a natural number, n is a Lucas pseudoprime (LPP) if it is composite and satisfies the 
following congruence: 

Ln = 1 (mod n). (1) 

If gcd(w, 10) = 1, the Jacobi symbol (5/ri) = sn is given by the following: 

fl if w s ±1 (mod 10), 
e"~\-l if u s ±3 (mod 10). 

Given gcd(??, 10) = 1, n is a Fibonacci pseudoprime (FPP) if it is composite and satisfies the 
following congruence: 
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Fn_s^0(modn). (2) 

Define the following sequences for e = 1,2,...: 

u = ue = F3§+l/Fr; (3) 

v = ve = L3e+l/L3e; (4) 

w = we = F23e+l IF23e = uv. (5) 

Prove the following for all e > 1: (i) u is a FPP and a LPP, provided it is composite; (ii) same 
statement for v; (iii) w is a FPP but not a LPP. 
Solution byH.-J. Seijfert, Berlin, Germany 

We need the additional easily verifiable equations: 

F3k=5Fk
3 + 3(-l)kFk, (6) 

Z3t = 4 - 3 ( - l ) % , (7) 
Llk = L\-2{-\f = SFk

2
+2{-\f, (8) 

where k is any integer, and the following propositions. 

Proposition 1: If n is a composite positive integer such that gcd(w, 10) = 1, then n is a FPP and a 
LPP if and only if Fyi(/1_£n) = 0 (mod n) if n = 1 (mod 4), and Lyi{jl_£n) = 0 (mod ri) if n = 3 (mod 
4). 

Proof: This is just the result of H-496. 

Proposition 2: If e is a positive integer, then X4 3 « is an odd positive integer divisible by 3e+l. 

Proof: This is true for ,e = 1, since ^ 4 = 9. Suppose that the statement holds for e, e GN . 
Then we have Yi\^ - 3e+lm, where m is an odd positive integer. Equation (7) with k = 2-3e 

gives 
% . 3 " ' = K(4-3- -3i2-3«) = 3e+^(4-32e+1m2 - 1), 

showing that the statement holds for e +1. This completes the induction proof. Q.E.D. 

Proposition 3: If k and n are nonnegative integers, then we have gcd(4, 4AT«) e {1,2}. 

/ *w/ - From 4 ^ = 44( 2«-i) ~ H ^ ^ - i ) ' k follows t h a t 

g c d ( 4 , 4 ^ ) e{gcd(4,4^), gcd (4 ,4 )} . 

Since 4 ^ = l£ -2(- l )* and 4 = 2, the desired result follows. Q.E.D. 
Now we are able to prove the statements of the present proposal. From (6)-(8), we obtain 

i#e + l = 5 / ^ - 2 = ^ 3 . = 4 + 2 = vtf-l, etN. (9) 

Since F^, e GN, is even, it follows that u-ue = -3 (mod 10), w = 1 (mod 4), v = ve = -1 
(mod 10), and v = 3 (mod 4), so that eu = -l and ev = 1. Using Proposition 2, equations (9), and 
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the well-known divisibility properties of the Fibonacci and Lucas numbers, we conclude that 
F

3^ I Fy2(U+i) a n d V 1 1 Ly2(v-iy w h i c h "My Fy2(u+i) = ° ( m o d u) a n d Ly2(v-i) = ° ( m o d v) • A P P ^ 
ing Proposition 1, we see that u is a FPP and a LPP If it Is composite, and that v Is a FPP and a 
LPP if it is composite. This solves (I) and (II). 

From what has been proved above, we have w = uv = 3 (mod 4), w = 3 (mod 10), ew = -\, 
w + l = u(u + 2) + l = (u + lf, and 

Fw+1 = 0 (modi/) and Fu+l = Fv_x = 0 (modv). (10) 

We note that (10) remains valid If u or v is a prime. Since gcd(w, v) = gcd(w, u + 2) = gcd(u7 2) = 1 
and since Fu+l \ F^u+l)i = Fw+1, from (10) we obtain Fw+l = 0 (mod w). Thus, w is a FPP, since it is 
composite. However, w Is not a LPP. This can be seen as follows. Assume, by way of contradic-
tion, that w is a LPP. Then, since w is a FPP as shown above, we would have Ly^w+V) = 0 (mod 
w), by Proposition 1. It then would follows that 

v|gcd(%v_1)? Ly2(w+l)) = gcd(%w+1), Ll/i{u+lf). 

However, J (̂w + 1)2 is an even multiple of %(u + T); thus, by Proposition 3, we have v e{l, 2}. 
Clearly, this is a contradiction, since v Is obviously greater than 2. Hence, w cannot be a LPP. 
This solves (Hi). 

Also solved by L. A. G. Dresel and the proposer. 

Belated Acknowledgment: C. Georghiou solved H-486. 

384 [AUG. 



SUSTAINING MEMBERS 
*H.L. Alder L.A.G. Dresel R.E. Kennedy A.G. Shannon 

G.L. Alexanderson U. Dudley C.H. Kimberling L.W. Shapiro 
P. G. Anderson M. Faccio Y.H.H. Kwong J.R. Siler 
S. Ando D.R. Farmer J. Lahr L. Somer 
R. Andre-Jeannin D.C. Fielder B. Landman P. Spears 

* J. Arkin P. Filipponi L.H. Lange W.R. Spickerman 
C. Ashbacher C.R Flynn * C.T. Long Paul K. Stockmeyer 
M.K. Azarian Fondazione Ugo Bordoni G. Lord J. Suck 
N. Balasubramania Anthony Gioia * J. Maxwell M.N.S. Swamy 
J.G. Bergart M.F. Goode F.U. Mendizabal *D. Thoro 
G.Bergum *K.Vv. Gould J.L.Miller J.C.Turner 
G. Berzsenyi P. Hagis, Jr. M.G. Monzingo T.P. Vaughan 

*M. Bicknell-Johnson H. Harborth J.F. Morrison J.N. Vitale 
RS. Bruckman P. Haukkanen S.A. Obaid M. Waddill 
M.F. Bryn * A.R Hillman S. Palsson J.E. Walton 
G.D. Chakerian * A.F. Horadam J. Pla W.A.Webb 
C. Chouteau Y. Horibe A. Prince G.E. Weekly 
C.K. Cook F.T. Howard S. Rabinowitz D.L. Wells 
M.J. DeBruin R.J. Howell S. Sato R.E. Whitney 
M.J. DeLeon J.R Jones J.A. Schumaker B.E. Williams 
J. De Kerf * Charter Members 

INSTITUTIONAL MEMBERS 
CALIFORNIA STATE UNIVERSITY 
SACRAMENTO 
Sacramento, California 

ETH-BIBLIOTHEK 
Zurich, Switzerland 

CHALMERS UNIVERSITY OF TECHNOLOGY 
AND UNIVERSITY OF GOTEBORG 
Goteborg, Sweden 

GONZAGA UNIVERSITY 
Spokane, Washington 

HOWELL ENGINEERING COMPANY 
Bryn Mawr, California 

INDIANA UNIVERSITY 
Bloomington, Indiana 

KLEPCO, INC. 
Sparks, Nevada 

KOBENHAVNS UNIVERSITY 
Matematisk Institut 
Copenhagen, Denmark 

LAURENTIAN UNIVERSITY 
Sudbury, Ontario, Canada 

MATHEMATISCHES FORSCHUNGS INSTITUT 
Lorenzenhof Germany 

MISSOURI SOUTHERN STATE COLLEGE 
Joplin, Missouri 

NATIONAL LIBRARY OF EDUCATION 
Copenhagen, Denmark 

SAN JOSE STATE UNIVERSITY 
San Jose, California 

SANTA CLARA UNIVERSITY 
Santa Clara, California 

UNIVERSITY OF NEW ENGLAND 
Armidale, N.S.W. Australia 

UNIVERSITY OF TECHNOLOGY 
Sydney, N.S.W. Australia 

WAKE FOREST UNIVERSITY 
Winston-Salem, North Carolina 

WASHINGTON STATE UNIVERSITY 
Pullman, Washington 

YESHIVA UNIVERSITY 
New York, New York 

JOVE STATISTICAL TYPING SERVICE 
2088 Orestes Way 

Campbell, California 95008 



BOOKS AVAILABLE 
THROUGH THE FIBONACCI ASSOCIATION 

Introduction to Fibonacci Discovery by Brother Alfred Brousseau, Fibonacci Association 
(FA), 1965. 

Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. FA, 1972. 

A Primer for the Fibonacci Numbers. Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. 
FA, 1972. 

Fibonacci's Problem Book, Edited by Marjorie Bicknell and Verner E. Hoggatt, Jr. FA, 1974. 

The Theory of Simply Periodic Numerical Functions by Edouard Lucas. Translated from the 
French by Sidney Kravitz. Edited by Douglas Lind. FA, 1969. 

Linear Recursion and Fibonacci Sequences by Brother Alfred Brousseau. FA, 1971. 

Fibonacci and Related Number Theoretic Tables. Edited by Brother Alfred Brousseau. FA, 1972 

Number Theory Tables. Edited by Brother Alfred Brousseau. FA, 1973. 

Tables of Fibonacci Entry Points, Part One. Edited and annotated by Brother Alfred Brousseau. 
FA, 1965 

Tables of Fibonacci Entry Points, Part Two. Edited and annotated by Brother Alfred Brousseau. 
FA, 1965 

A Collection of Manuscripts Related to the Fibonacci Sequence—18th Anniversary Volume. 
Edited by Verner E. Hoggatt, Jr. and Marjorie Bicknell-Johnson. FA, 1980. 

Applications of Fibonacci Numbers, Volumes 1-6. Edited by G.E. Bergum, A.F Horadam and 
A.N. Philippou 

Generalized Pascal Triangles and Pyramids Their Fractals, Graphs and Applications by Boris 
A. Bondarenko. Translated from the Russian and edited by Richard C. Bollinger. FA, 1993. 

Fibonacci Entry Points and Periods for Primes 100,003 through 415,993 by Daniel C. Fielder 
and Paul S. Bruckman. 

Please write to the Fibonacci Association, Santa CSara University, Santa Clara, CA 95053, 
U.S.A., for more information and current prices. 


