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MULTIVARIATE SYMMETRIC IDENTITIES 

Abdelfaamid Abderrezzak 
L.I.T.P., Universite Paris, 2 Place Jussieu, 75251 Paris cedex 05 France 

(Submitted October 1994) 

1. INTRODUCTION 

As an application of Lagrange inversion, Riordan [9] gave the following expansions 

\k-i 
exp(bz) = fj

b(ak^)~(zexp(-aZ)f; (1.1) 
k=0 Kl 

^ ^ { a k ^ { z e M _ a z ) ) k . ( 1 2 ) 

L-az k=0 Kl 

^b4Mak"l^rl (L3) 

(l±z£_^(ak+b\_^_l ( 1 4 ) 
1 -S *=oV K A(l+z)a 

Starting from these identities, Gould ([3], [4]) obtained various convolution identities. 
The multivariate case of (1.2) and (1.4) was obtained by Carlitz [1] using MacMahon's "master 
theorem." 

Using other methods, Cohen and Hudson [2] gave bivariate generalizations of (1.1) and (1.2) 
that are different from those of Carlitz. 

Krattenthaler [5] showed that the preceding formulas are a consequence of his bivariate 
version of Lagrange inversion; furthermore, he has generalized (1.3) and (1.4). 

One must note that we do not need to use Lagrange inversion in two variables to prove these 
types of identities, as Krattenthaler did, but need only use Lagrange interpolation, which is a much 
simpler tool. 

Lagrange interpolation must be considered as describing the properties of a linear operator 
sending a function of one variable to a symmetric function. It can be written as a summation on a 
set or as a product of divided differences; it is this latter version that we shall use here. In fact, in 
Section 2 we give the four Lagrange interpolation formulas, (2.1)-(2-4), that contain many of 
Krattenthaler's identities as special cases. In Section 3 we show how our Lagrange interpolation 
formulas can even be used to derive ^-analogs of these identities. 

2. MULTIPLE INTERPOLATION 

Let A = {aua2, <%, „..} and B = {hx, b2, ^,.. .} be two alphabets and let tc, <j), and C, be three 
bivariate functions of x andj. For all positive integers m and n, put 

386 [NOV. 



MULTIVARIATE SYMMETRIC IDENTITIES 

Kx(m, n, x, y) = K(X, yXftx, y))m{£{x, y))", 
K2(m, n, x, y) = K(X, y)(<f>(x, j))m«"(x, y))„, 

K3(m, n, x, y) = K(X, y)(</>(x, y))m(C(x, y)\, 
K4(m, n, x, y) = K(X, y)(<f>(x, y))m(£(x, y))\ 

where (a) In = a(a - l)(a - 2) • • • (a - n +1). 
Lagrange interpolation generally stated that, for any function of one variable x, and "inter-

polation points" b,c,d, ... 
f(x) f(b) / ( c ) 

(x-b)(x-c)(x-d)---~ (x-b)(b-c)(b-d)--- + (x-c)(c-b)(c-d)---

-j z—K-—I \- remainder. 
(x - d)(d - b)(d - c) • - • 

We shall only need the Lagrange interpolation formula, but written in a symmetrical manner. It is 
more satisfactory to consider the set A = {x, hv c,..., d) and write 

V —J v /— - remainder, 

where R(a, A \a) is the product Ha,^a(a - af). 
In other words, Lagrange interpolation amounts to considering properties of the linear opera-

tor / ->*ZaeAf(a)/R(a, A\a). This operator sends a polynomial of degree & to a symmetric 
polynomial in A of degree k-n, with card(^l) = n + l. In particular, it annihilates polynomials of 
degree < n, and maps fix) - xn to the constant 1. 

These properties suffice to characterize the Lagrange operator. 
If ^ (x , j , z,...) is a polynomial, the difference ^(x, y, z, ...)-$(y, x, z,...) is divisible by 

x - y. Following Newton, for any pair of variables (x, y), one defines a divided difference opera-
tor, d acting on the ring of polynomials as 

^ ( x , j ; , . . . ) - > ^ ( x , j ; , . . . ) ^ r v ?^? '^™, 

It is clear that the product (now we need to order An+l: = {al9 a2,..., an+l}) 
M 4 w + l ) : = da„,an+l °dan_x,an

 dax,a2 

also satisfies the same properties and, therefore, coincides with the Lagrange operator (see [7]). 
Thus, we have 

One can note that divided differences are also the main ingredient in the Newton interpolation 
formula, and by relating their properties to the symmetric group one can extend Newton interpo-
lation to multivariable functions (see [6] and [8]). 

For our purpose, we shall use Lagrange interpolation for two independent alphabets and 
functions of two variables: 
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k=Q p=0KKak+l> Ai+l \ak+l)K\bp+n Bn+l \bp+l) 

We deduce, without difficulties, the following theorem. 

Theorem: Let A = {a1? a2, a^,...} and B = {bh b2,h3,...} be two infinite alphabets. Then we have: 

^A(4+1)A(5„+1)I1(m,»,a1,A1)/V 
m>0,n>0 

- y K(a b ^ ^ v ^ ^ w y ^ , 2 n 
k>0,p>0 K(ak+U Ak)K(bp+l> Bp) 

x y (M+i,Vi)r(^+i,Vi))" ^_„. 
m>0,«>0 ^\ak+l> An+k+l * A+l)^(^/?+l? ^n+p+l ^^p+l) 

m>0,n>0 

_ y , , v (#**+!, Vl))*(£K+l, Vl))p A: p r ? 9 . 
k>0,p>0 KKak+h Ak)K\dp+h Bp) 

v V (<Kg*+l> Vl ) ) W (^+l> bp+l))n n. 
m>0,n>0 R\ak+1> An+k+l * 4fc+l)^(*/?+l> ^n+p+l \Bp+l) 

m>0,n>0 

_ y r . , (^ + i , Vi))"(a^+i? V i ) ) P , , r . 
k>o,P>o Kiak+i> 4 w V h tip) 

y (<Kak+\> bp+l))m(C(ak+l> Vl))» tmzn. 
m>0,n>0 R\ak+l> Ai+it+l * A+l)^("/?+l> -"/H-/M-1 ^ p + l ) 

X A(4,+I)A(4+1)^4(/«,», a„ ^ / V 
m>0,n>0 

y (0(g*+i> Vi))iii(^fa+i> Vl ) )" ^ 
w>0,w>0 R\ak+1> An+k+l * A+l)^(^/?+l5 tin+p+1 \ Bp+l) 

We shall use the above theorem in the case of different specializations K9 (j>, and £ for which 
the divided difference is easily calculable. The simple fact that the operator A(Am+1) decreases 
the total degree in A by m implies the following identities. 
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^ !+/*!* A2+M2y Lemma (2.5): If we specialize K(X, y)-*lJ-> fa(x9 y) = ̂ ^ and Q -> ^(x, y) = ̂ ^ r , we 
obtain 

A(4,+i)A(^+1)^i(w, w, a1? ^) = A(Am+l)A(Bn+l)K2(rn, w, ^ , ^ ) 

(-5-^—)" if/» = 0, 
0 otherwise. 

Lemma (2.6): If we put K(X, y) -> XT^X, j ) = I ^ , ^ -> ^(x, j>) = j £ f £ , and £ -> £2(x, j>) = 

x ^ K + Z V O , we obtain 
.&2+W ' 

Ai+^,x 

A(4*.I)A(5,H.I)*I(»», », «i, M = A(4«+i)AC#«+i)^2(™>«, «i, *L) 
= HA,+i)HB„+i)K3(m, n, a,, ^ ) 

0 otherwise. 

/l9a, 
L e m m f l # 7>* I f w e P u t <x> y"> -* K2(x> ?> = ( i ,W)(«2 + i 2 , ) ' (VwO(ST+7.x7 («>A*X«t+/^) > 

^(4n+i)MBr,+i)Ki(m, "> «i, M = A(.A,+i)MB„+1)K2(m, n, au ^ ) 

^(a^fy) ifm = » = 0, 
0 otherwise. 

Lemmffl (2.5): If we put K(X, y) -> *c3(x, j ) = W I + | I I I XA 2 + / ^) -

and £ -> £j(x, y) = 4 ^ F ( « I +A*) > w e o b t a i n 

MA,+i)MBn+i)Ki(m, «> "l. bi) 

*->*2(.x,y) = 4&£;(<*2+fi2y), A2+M2y V 2 

0 

\ - l / 

17=o ; V /=o Vy=o V-/ 
if m - n, 

otherwise. 

The identities (2.1)-(2.10) and (3.16) of Krattenthaler [5] arise as different specializations of 
the functions K,$, and £ considered in Lemmas (2.5)-(2.8) above, and to the case in which 
A = B = {0,1,2,...}. For each of the four cases given in our Theorem, we give the formulas when 
A and B are general. We then specialize to the case where A and B are sequences of "^-integers." 
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3. APPLICATION OF IDENTITY (2.1) 

Formula (2.1) and the previous lemmas provide the following identities: 
I) In the case where A and B are general alphabets, we have 

Mi 
A.1+jula1A.2+ji2b1 

tz\\\ Mi 
A2 + //2^i 

1 — Mx 
Ax + //jflj 

(A(%n. M A ^ I - bP+i>y tkzp 

= z 
k>0, p>0 R(ak+1, Ak)R(bp+l, Bp) 

x y (</>M+i,bp+i)y(£M+i,bp+i))" 
m>0,n>0 R\ak+V An+k+1 ' "4fc+l)-^("p+l> "n+p+1 *•"/*-! ) 

- f V 

(3.1) 

1 = y 1 (&fa+l, Vl))*(C2(gfc+l. bp+l)Y tk. 
A:>0, /?>0 K + m+i ^(«*+i, A)R(b

P+i> B
P) 

< y (^ i (^ i .Vi ) )" (^ (^ i ,Vi ) ) ' ' 
m>0,n>0 ""(a£+l> An+k+l \ A+l)-^(*p+l» Bn+p+l ^Bp+V 

tmz", 

(3.2) 

£>0, />>0 -'H"fc+1> ^kt^Pp+l' np) 

w>o,»>o ̂ \ak+i> ^m+k+i \ Ak+l)R(bp+l, Bn+p+l \Bp+l) 

(3.3) 

-!-Z 
A / ^ ;=0 

/7 

vv Mi 
# 2 ^ 2 

-«2 ; 

\v v 
& n -

L+a, 
-o\Mi 

s+l 
(i-(k. 

n V-"2 >+l 

(M^k+u bp+i))k^2(ak+i, bp+i)Y 
k>0, p>0 0*1 + Mfik+lMl + ̂ 2Vl) ^ + 1 ' Ak)R(bp+l, Bp) 

w>0,«>0 R\ak+h An+k+l * 4fc+l)^(*p+l' ^n+p+l^^p+l) 

i-tfi-zY (3.4) 

(-0m(-z) 

i - i £ II) Let [»] = ̂ - , [»]! = [/!][»-1]-[1], exp,(x) = Z ^ 0 ^ r . Then in the case ^ = {0,[1], 
[2],...}, B = {0,[1],[2],...}, we obtain ^-analogs for Krattenthaler's identities (2.1), (2.4), (2.8), 
and (3.6) in [5]. For example, from (3.1), we obtain the following ^-analog of (2.1) in [5]. 

l_£L£lfc )l-JJLt 
A j A>2 "2 J kzo,Px> q L*J> q 

x«p,-M*3M ' expj - £([*],[/>]). 
(3.5) 
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4. APPLICATION OF IDENTITY (2.2) 

I) In the case where A and B are general alphabets, we have 

Jh_ Mi 

X^ + UPy %2+M2bl 
-tz 1— Mi 

&2+Mih 

\ - l 

t \ \ l - Mi 
X^JLl^ 

y (0Mk+h b
P+l))k(CMk+h b

P+l))P fkzp 

k>0, p>0 R(ak+1> A)R(bp+l> Bp) 

y (A(ak+h bp+l))m(Cl(ak+l> b
P+l))n 

m>0,n>0 R\ak+h Ai+k+l \ A+l)R\bp+h Bn+p+l ^Bp+l) 

(4.1) 

1 = y 1 (h(ak+l> Vl))fcfofofc+H V l ) ) p tk.p 

k>0, p>0 K+Mfik+i R(ak+h A)R(b
P+i, Bp) 

y (0Mk+h b
P+l))m(Cl(ak+h bp+l))n 

m>0,n>0 R\ak+h An+k+l ^ A+l)R(bp+l> Bn+p+l^Bp+V 
tmz\ 

(4.2) 

, , . V ( A \ (^(ak+V bp+l))k(£2(ak+l> bp+l))p .k p 
K{ak+i>A)R\Pp+hBp) k>0, p>0 

y (&(%H> Vl))ffl(C2(%b Vl))n 

w>0,«>0 R\ak+l? An+k+l ^ 4fc+l)^(*/?+l> Ai+/?+l ^Bp+l) 

(4.3) 

It) For example, in the case A = {0, [1], [2],...}, B = {0, [1], [2],...} we obtain from (4.2) the 

following ^-analog of (2.5) in [5]. 

1 = I 1 (M[kUp])\ ((C2([k],[p]))P tk_ 

x V ( p»»» (M*3> I>1) ~ *)» (&([*]» tefl - /On ^.» 

m>0, n>0 

(4.4) 

5e APPLICATION OF IDENTITY (23) 

I) In the case where A and B are general alphabets, we have 

Mi Mi 
Xx + /u^ X2 + fi2\ 

-tz 1- M\ 
X2 + jil2\ 

Mi 
Xl + ju^ 

- i 

y Qi(%+1> Vl ) ) f c ( ^ l (%b V l ) ) P ,fc,p 

k>0, p>0 R(ak+h A)R(bp+l> Bp) 

y (Afa+1, Vl)HCi(%+i, Vi))B 

m>0, »>0 R\ak+l? A+k+l ^ A+l)^("/H-l> Bn+p+l ^ ^ p + l ) 

( 5 . 1 ) 

1996] 391 



MULTIVARIATE SYMMETRIC IDENTITIES 

1 = y 1 (Mak+u bp+l))k{^2{ak+l, bp+J)p ^ 
k>0, p>0 h + Wk+i R(ak+u Ak)R(b

P+u Bp) 

y (&(%H, V l ) r « " 2 ( g * + 1 » bp+l))n {m_„ 
m>0,n>0 R(ak+1> An+k+l * A+l)R\bp+U B„+p+l \Bp+]) 

t>o, P>o R(ak+i > A )R(b
P+i>5p ) 

v v (&(a*+i>b
P+iT(C2(ak+u Vi))w „ „ 

(5.2) 

(5.3) 

m>0,»>0 R\ak+h ^-m+k+l * ^ + l ) ^ ( ^ / ? + b ^n+p+l \Bp+l) 

II) For example, in the case 4 = {0, [1], [2],...}, 5 = {0, [1]? [2],...} we obtain from (5.3) the 
following ^-analog of (2.10) in [5]. 

(MWAp])f (fo(M,[ri)) £.*M 

y (_«» — — *>T 
(5.4) 

6. APPLICATION OF IDENTITY (2.4) 

I) In the case where A and 5 are general alphabets, we have 

1 = y 1 (Mak+1, y i ))*(£t( a fc+l» V l ) ) P
 / t _ i , 

A:>0, p>0 K + MPk+i R(ak+u 4 )^ (Vi> B) 

y (Mak+l> bp+l))m(C2(ak+U bp+l)T tm_n 

m>0,n>0R\ak+l> A+k+l * A+UR(bp+U Bn+p+\\Bp+l) 

(6.1) 

II) For example, in the case A = {0, [1], [2], . . . } ,£ = {0, [1], [2],...} we obtain from (6.1) the 
following ^-analog of (2.7) in [5]. 

= v i (M[kup]))k ((^m,[pw fk_P 
£-> 3 ± „ m „*(*-i)/2rm „p(p-Wr„-\\ 

(6.2) 
xexn f £»([*], Id)).) y , i r (M* ] , [p ] ) - /0„ r 
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In 1965, Brother Alfred Brousseau, under the auspices of The Fibonacci Association, compiled a two-
volume set of Fibonacci entry points and related data for the primes 2 through 99,907. This set is currently 
available from The Fibonacci Association as advertised on the back cover of The Fibonacci Quarterly. Thirty 
years later, this new monograph complements, extends, and triples the volume of Brother Alfred's work 
with 118 table pages of Fibonacci entry-points for the primes 100,003 through 415,993. 

In addition to the tables, the monograph includes 14 pages of theory and facts on entry points and their 
periods and a complete listing with explanations of the Mathematica programs use to generate the tables. As 
a bonus for people who must calculate Fibonacci and Lucas numbers of all sizes, instructions are available 
for "stand-alone" application of a fast and powerful Fibonacci number program which outclasses the stock 
Fibonacci programs found in Mathematica. The Fibonacci portion of this program appears through the kind-
ness of its originator, Dr. Roman Maeder, of ETH, Zurich, Switzerland. 

The price of the book is $20.00; it can be purchased from the Subscription Manager of The Fibonacci 
Quarterly whose address appears on the inside front cover of the journal. 
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1. INTRODUCTION 

The Fibonacci polynomials un = un(x) and the Lucas polynomials vn - vn(x) are defined by 
the second-order linear recurrence relations 

un = xun_x^un_2 O0 = 0,^ = 1), 
and (1.1) 

V « = * V l + V 2 (V0=2,V1 = X), 

where x is an indeterminate. Their kth -order derivative sequences are defined as 

u^ = uik\x) = £Fun(x) and v f = vf>(x) = ^ ( x ) . 

Denote /„ - i^(l), ln = v„(l), /„<*> = i#>(l), #> - v<*>(l). P. Filipponi and A. F. Horadam 
(PL [2]) considered /w(fc) and 6k) for * = 1,2 and obtained a series of results. By the end of [2], 
seven conjectures were presented for arbitrary &. In this paper we shall consider the more general 
cases, u^ and v^k\ for arbitrary k. Our results will be generalizations of the results in [1] and [2]. 
As special cases of our results, the seven conjectures in [2] will be proved. 

Following the symbols in [ 1 ] and [2], denote A = V x2 + 4, a - (x + A) / 2, /? = (x - A) / 2, so 
that a+J3 = x, aj3 - - 1 , a - p = A. It is well known that 

un = (a" -fin)l A, vn = an+pn. (1.2) 

2. EXPRESSIONS FOR «<*> AND v<*> IN TERMS OF 
FIBONACCI AND LUCAS POLYNOMIALS 

Theorem 2.1: 
„W= * ! 

2A' 2 F K A + \ t v » ) > (2 1) 
where 

and 

/=o V ' ,=o V / 
21 it-/ 2 ^ - / 

*„,*= i f * ^ r K w ^ - ^ ) + i f^^"]At"i_'(%+^)' (2-3> 
i=0 V ' /=0 V ' 2|*-i 2 ^ - / 

where c ,̂. and dki (i = 0,l,...,k) satisfy the systems of linear equations 
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and 
ck,i+{kt%^-^{ktiyck,o=(-iy{ktiy (2.4) 

dk,i + 
(k + i\ . fk + A fk + l\ . 

A'. (2.5) , ,<*ikj-i+"-+\ . Wdkfi = , 
v 1 ) \ l ) V » y 

Furthermore, for z = 0,1,..., k, there exist polynomials pkj and ̂  in x, with integer coefficients, 
which satisfy 

Ck,i=Pk,i<x + qk.i a n d dk,i=Pk,iP + <lk,i- (2.6) 

Proof: Let the generating functions of {w„} and {w£fc)} be £/(f) = U(t, x) = X^=0 uj" and 
C/jtCO = t/k(f, x) = Z"=0 «i*^", respectively. It is well known that U(t) = t/(\-xt-t2), hence, 

Uk(t) = -^-U(t) = k\tk+1/(l-xt-t2)k+1. (2.7) 

By partial fractions we have 

tk+ll{\-xt-t2)k+l = t Q u I(1 -aO^1- ' ' + 1 R . J I(1 - p t f ^ , (2.8) 
7=0 Z=0 

where g^- andi^?/ are independent of if. Multiplying by ak+1(l-fit)k+l, we obtain 

(at)k+l I (1 - at)k+1 = (a + 0*+1£ ft,, / (1 - a0*+ W + 9{t), (2.9) 

where the function q>(t) is analytic at the point t = a - 1 under the condition that t is considered as 
a complex variable (while x Is a real constant). Since(at)k+l / (I- at)k+l = [(1 - «0_ 1 -1]^+1 and 
(a + f)*+1 = [A + fi(l - at)f+l, we can rewrite (2.9) as 

/=<A 1=0 

Because of the uniqueness of the Laurent series [4] at the point t = a~l for the function 
(atf+l I (1 - at)k+\ we can compare the coefficients of (1 - af)'(*+1~° (/ = 0,1,..., k) of the two 
sides in the last equality to get 

/=o 
Let 

i p ; 1 ) ^ 1 - ^ (2.io) 
Q,, = A ^ + 1 + \ , (1 = 0,1,...,*) (2.H) 

and substitute it into (2.10); then we get (2.4). For the same reason, it follows that 

i^-A^-vv.,.=(-iy(*;1} (2.i2) 
L e t Rk,i = (-A)-<fc+1+'>4 ,. (/ = 0,1, ...,*) (2.13) 

and substitute it into (2.12); then we get (2.5). 
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Now we shall prove (2.6). From (2.4) and (2.5), ck0 = dk0 - 1; hence, the conclusion holds 
for /' = 0. Suppose the conclusion holds for 0,1,...,?-1. Then, from (2.4) and (2.5), we have 

and 

(2.14) 

(2.15) 

From (1.2), it is easy to show that J3J = -Uja + uJ+1; hence, 

PJXPk,i-j<* + %J-J) = -Pkj-ifi1'1 +1kj-jPi 

= (Pk,i-juj-i -qk,i-juj)a + (qk,i-jUj+i- Pk,i-jUj)-

For the same reason, we have 

<XJ(Pk,,-jP + flt,/-y) = (PkJ-j«j-l ~ <lk,i-juj)P + (%,i-juj+l - Pk,i-juj•)• 

We can see that A' is a polynomial in x with integer coefficients for 2|;', but A' = A'_1(jt-2/?) and 
(-A/ = /£~\x-2a) for 2|/. By substituting the above results into (2.14) and (2.15), and by the 
inductive hypothesis, the conclusion is proved. 

Now substituting (2.11), (2.13), and (2.6) into (2.8), then into (2.7), we get 

^ « = 4 F A2' .1=0 /=o 

ft! 
A2* 

X (ckJ I (1 - a0 i + 1- ' - dkJ I (1 - /31f)k+1-')A*-1-'" 
2|fc-/ 

i+l- / \Ait - l - / + E(% /(i-«0*+1-' +dkJ/(\-/*?+")* 

Expanding the right side of the last expression into power series in t and using (2.6), we obtain 

«£*> = A 2 £ 
2|Jfc-A / 2^ - / V / 

(2.16) 

It is easy to prove that un+l = (xun + v„) / 2, vn+1 = (A2M„ + xvn) 12; hence, 

Pk,iUn+l + 1k,iUr, = ((Pk,iX + 21k,i)Un + PkJVn) ' 2 

= ((<*,, + dkJ)u„ + (ckJ - dki)A-\) 12, 

= ((<*./ ~dk,i)Aun + (Ck,i +dk,i)v„)/2. 

(2.17) 

(2.18) 

Substitute (2.17) and (2.18) into (2.16) and we are done. D 

396 [NOV. 



ON THE A * -ORDER DERIVATIVE SEQUENCES OF FIBONACCI AND LUCAS POLYNOMIALS 

As an example, when k = 3 and 4, Theorem 2.1 gives the following results: 
c30 = d30 = 1, c31 = - 4 A - 4/?, d31 = 4A - 4 a , 
Cj2 = 6A2 + 16/?A + 10/?2, d32 = 6A2 - 16aA + 10a2, 
c33 = -4A3 - 24/7A2 - 40/?2A - 20/?3, d33 = 4A3 - 24aA2 + 40a2A - 20a 3 , 
c30+a30 = 2, c31+a3l — —4x, 
Cj2 + d32 = 6x2 + 4, c33 + d33 = -4x3 + 4x, 
"-30 "30 ' c3i~dn = -4A, 
C32 - ^32 = 6xA> C33 - ^33 = ( ~ 4 * 2 + 4 ) A> 

a„3 = [ 2 + "]A2(-4x) + [ ° J " ] ( -4x 3
+ 4x ) + [ 3 + w]A3.0 + [1 + "]A-6xA 

= -2(«2 + l)r ' -4(2«2-3)x, 

= -n(n2 +1 l)x2 + -n(n2 - 4), 

M(3) = [-(6(»2 + l)x3 +12(2«2 - 3)x)u„ + (n(n2 +1 l)x2 + 4n(n2 - 4))v„] / A6; (2.19) 

in particular, 
/j3> = ( « 2 - l ) « - 6 / „ ) / 2 5 . (2-20) 

c4o = d40 = !> c4i = ~5A - 5 A rf4i = 5A - 5a, 
c42 = 10A2 + 25/7A +15/?2, d*42 = 10A2 - 25aA + 15a2, 
c43 = -10A3 - 50/7A2 - 75/?2A - 35/?3, rf43 = 10A3 - 50aA2 + 75a2A - 35a3 , 
c44 = 5A4 + 50/?A3 + 150/?2A2 + 175/^A + 70/?4, 
d"44 = 5A4 - 50aA3 +150a 2 A2 - 175a3A + 70a4 , 
c 4 0 +J 4 0 = 2, c41+d4l = -5x, 
c42 +d42 = 10x2 + 10, c43 +d43 = -10x 3 - 5 x , 
C44 + a44 = 5x — 15x , c40 — «4Q = 0, 
C41 - ^41 = ~ 5 A> C42 " ^42 = ! 0 x A > 

c43 ~ ^43 = ( -1 Ox2 + 5)A, c44 - d44 = (5x3 -15x) A, 

a«4 = l 4 
4 + « \ A4 A^2 + f2^lA2(10x2

 + 10) + f°j45x4-15x2) 

-ff3 + ̂ A3(-5A) + ^wJA(-10x2
+5)A 

= — (w4 + 35??2 + 24)x4 + - ( 2 « 4 + 25n2 - 7 2 ) x 2 + - ( w 4 - l O i 2 +9) , 
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ftB4 = [4J/,JA3.0 + ̂ 2+lljA(10xA) + [0J/,JA-1(5x3-15x)A 

= - -n(n2 + 5)x3 - -n{2n2 -1 l)x, 

"«4) = t(("4 + 3 5»2 + 24)x4 + 4(2»4 + 25n2 - 72)x2 +16(«4 - 1 On2 + 9))u„ 
- (I0n(n2 + S)x3 + 20n(2n2 - 1 l)x)v„] / A8; 

(2.21) 

in particular, 
/„(4) = [(5«4 - 5«2 - 24)/„ - 2«(5»2 -17)4,] /125. (2.22) 

We observe that (2.6) can be verified by using the above results. 
From v ^ = m£*~v> (see 1° of Theorem 3.1 in the next section) and Theorem 2.1, we can 

obtain the expression for v^ in terms of un and vn. 

3. SOME IDENTITIES INVOLVING «<*> AND v<*> 

If we differentiate certain identities involving un andv„, we can get the corresponding iden-
tities involving a£k) and v£*\ 

Theorem 3.1: 

V vW=nu<f-l\ (3.1) 
2°. u^ = *i£> +uik)2+kuikT1

1\ v f = *v^> +vW + ^ 7 ' ) ; (3.2) 

3 ^ > = ««+*£>, (3-3) 
A2wf > + 2Axwf ~!) + *(* - l)Mf "2) = v * + v£>; (3.4) 

4°- «& = t f / W / M 0 + « r^ .X (3-5) 

^ = tffl(^^0+e^2.), (3.6) 
e}„=(-irt fj }or°e -«£», (3.7) 

7=(A / 

e>„ = (-iriff 1(^3°^ -«ff^i); (3-8) 
/=o V / 

in particular, 
^ = ( -1)" -^) ; (3.9) 
^ = ( - 1 ) ^ ; (3.10) 

•fi^iffk^e (3.11) 
7=0 V / 
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AV = 2±(k;l)vrVj\ (3.12) 

•e = £(JklM); (3.i3) 
v2kn+i = Zf*V»+T/)v«)-(-1),,^ifc>i (^ is the Kronecker function); (3.14) 

/=(A ^ 

5". « & + ( - D - « & = i f ? ) « r M ° ; (3.i5) 

7=(A ' 

^ . + ( - i r ^ = tffk t-°v?) ; (3-17) 
z=(A / 

v^-(-irv«n=i(f)e'w,+v«); (3.i8) 
Z=(A / 

6°. xv^)=(w-ifc + l)vf-1)-2(v^)
1+ii^71)). (3.19) 

Proof: 1°. This can be obtained by differentiating the identity v® =nun, which had been 
proved in [1]. 

2°. By differentiating (1.1). 
3° ~ 5°. By differentiating the following identities, which can be seen in [5] or can be derived 

from (1.2): 
vn = u^+l + un_x, A\ = vn+l + v„_1? 
Um+n ~ Um+lUn + UmUn-h Vm+n ~ Vm+lUn + VmUn-h 
Um~n = (-lT(UmU

n+l ~ Um+lUnl Vm-n = H ^ O W l ^ " Wn+l)* 
Um+n + (-l)W««-n = UmVm Um+n " H ) " ^ - * = V A > 
Vm+, + {-lTVm-n = VmVm Vm+n ~ ("OX-* = A ^ A = Um(Vn+l +Vl ) , 

n.n=Hr1^ v.II=(-i)x, 
U2n+l = Un+lVn ~ H ) " , ^2n+l = Vn+lVn ~ H ) " * -

6°. From the well-known identity vn = x̂ w + 2ww_1, we get xra„ = nvn - 2((w - l)ww_! + ̂ „_i), 
that is, xvjp =nvn-2(y^}l + un_l), and the proof is finished by differentiating the last expres 
sion. D 

Let x = 1 in 1°, 2°, 3°, and 6° of Theorem 3.1; then Conjectures 1-5 in [2] and [3] are proved. 

4. SOME CONGRUENCE RELATIONS AND MODULAR PERIODICITIES 

First, we introduce some concepts and lemmas. Set polynomials 

g(t) = tk-altk-i akJ-ak (4.1) 
and 

£(0 = 1-0^ ak_/-l-aktk. (4.2) 
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Obviously, g(t) - tkg(l I i) and g(t) - tkg(l 11). The set of homogeneous linear recurrence 
sequences {gn} of order k [each of which has g(t) as its characteristic polynomial] defined by 

gfH-k = alSn+k-l + ' *' + <*k-lgn+l + akEn (4-3) 

is denoted by Q(g(t)) = Q(ah ...,ak). The sequence {wn} GQ(g(t)) is called the principal 
sequence in Q(g(t)) if it has the initial values w0=wl = ~- = wk_2 = 0, wk_l - 1. 

Lemma 4.1: Let {wn} be the principal sequence in Q(g(t)); then its generating function is 

W(t) = tk~1/g(t) (4.4) 

(see [6], p. 137). 
In the following discussions, we suppose that av...,ak are all integers. Let {gn} be an inte-

ger sequence in Q(g(t)) and m be an integer greater than one. Denote the period of {gn} modulo 
m by P(m, gn). If there exists a positive integer X such that 

tx^l(modm,g{t)), (4-5) 

then the least positive integer X such that (4.5) holds is called the period of g(t) modulo m and 
is denoted by P(m, g{t)). 

We point out that 
P(m, g(0) = P(m, g(f)) for gcd(w, ak) = 1. (4.6) 

To show (4.6), it is sufficient to show that g(t)\(t*-l) (mod m) iff g(t)\(tA-l) (mod m). 
Assume that g{t)\(tx -I) (mod m). Then we have tx -l = h(t)g(t) + m-r(t), where h{t) and 
r{f) GZ(t) (the set of polynomials with integer coefficients). Replacing t with lit, we obtain 
(1 / tf -1 = /?(! / t)g{\ lt) + m-r(Ylt). Multiplying by tx, we then have -{tx -1) = ^~*/i(l / t)g{t)+ 
m-txr(l 11). Since gcd(w, a^) = 1, the degree of g(t) (mod rri) is A. This leads to tx~kh{\ 11) and 
txr(llt) sZ(t). Hence, g(t)\(tx -1) (mod m). The converse can be proved in the same way. 

Let B{f) - l/g(t) = Ẑ Lo V • Let {w„} be the principal sequence in £l(g(t)). Then, from 
(4.4), we have wn =bn_k+l; and therefore, P{mywn) = P(m,b„). Corollary 2 in [7] means that 
P(m,bn) = P(m,g(t))* Therefore, 

P(m,wn) = P(m9g(t)y (4-7) 
From (4.6) and (4.7), we obtain 

Lemma 4.2: Let {ww} be the principal sequence in Q(g(t))=Q(al, ...,ak), gcd(w, ak) = 1. Then 
P(m,w„) = P(m,g(t)). (4.8) 

Using the footnote and (4.6), Theorems 17, 21, and 15 in [7] can be rewritten as Lemmas 
4.3, 4.4, and 4.5, respectively. 

* In [7] the period of {hj modulo m is referred to as the period of its generating function B(t) = l/g(t) modulo m. 
Hence, the concept "the period of 1/^(0 modulo m" stated in [7] should be translated into " P(m, g(t))" in this 
paper. 
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Lemma 43: Let <p(t) be a monic polynomial with integer coefficients, p be a prime, p\(p(0), and 
<p(f) be irreducible modulo/?; then, for pr~l <s<pr (r > 1), 

P<J?, cpity) = p^-1 -p(P, 9{t)). (4.9) 

Lemma 4.4: Let <p(t) be a monic polynomial with integer coefficients, p be an odd prime, 
pl<p(0), and <p(t) be irreducible modulo p. Assume hT(t) = JX=l

x¥i(t), where %{{) = (p{t)s (mod 
p) (i = 1,..., T). For fixed 5, r > 1, if there exists an integer T>\ such that 

{T~l)s<pr-l<Ts<{T+l)s<pr, (4.10) 

then, for every r satisfying pr~l < TS < p\ it follows that 

i V , hT (0) = P(/?w, p(f )ff) = Z ^ " 1 ' P(P, K0)- (4-11) 

Lemma 4.5: Let #>(Y) be a monic polynomial with integer coefficients, p be an odd prime, 
p\ <p(0). If P(p, (pit)) = P(p2, <p(t)) = ••• = P{p, <p{t)) * P(pi+1, (pit)), then m > i leads to 

P(pm,<p(t)) = Pm-i-P(pi,<P(t))- (4.12) 

Lemma 4.6: Let/? be an odd prime, for j = 1,2, ^y-(0 be a monic polynomial with integer coeffi-
cients, p\<Pj(0), and ^-(0 be irreducible modulo/?. Assume hr(t) = Tl*=l

x¥i(t), where ^-(0 = 
<Pi(t)s<p2(ty (mod/?) (i = 1,..., r), gcd(^!(0, ̂ ( 0 ) = 1 (mod/?). For fixed s,r>l, if there exists 
an integer T > 1 such that (4.10) holds, then for every r satisfying pr~l <z$<pr it follows that 

P(pm, hT(t)) = P(pm, 9l(tr<p2(tr) = pm^-\Cm{P{p, 9l{t)\ P{p, 9l(f))}. (4.13) 

Proof: Denote P(p, <pj(f)) = Xj (J = 1,2), lcm{Ab X2} = X. Since hjt) = <Piit)TS (p2it)TS (mod 
/>), gcd(^(0, ?2(0) = 1 (mod p), we have P(/>, ^ (0 ) = lcm{P<>, Pi(0ra), A A ?2(0ra)} • By 
Lemma 4.3, i>(>, <Pj(ty) = prXf, hence, />(p, \it)) = prX. 

Because Tis the least x satisfying pr~x <xs<pr from (4.10), we get hTit)\hrit); therefore, 
P(pm,hTit))\P(pm,hTit))- By Lemma 4.5, P{pm, hTit))\pm'1 • P(p, hrit)) = pm+r-iX. By the same 
lemma, if we can show P(p2Mt))* P(p,hTit)) = prX, then Pipm,hTit)) = p^^X and (4.13) 
holds. 

Now we can rewrite %it) = <Pi(ty<P2(t)s - P^tif), i = \...,T. Hence, 

Mt) - 9MT<Piit)sT- P<Piit)s(T-x) • 9iity(T-l) • CiO (mod p2), where £(f) = f 0,(0• 
z=0 

Then fcKOEPiO'^COJ + K(01 = (Pi{t)sT+s(p2{t)sT+s (mod p2). Therefore, 

r / ^ _ i _ / ^ - i /?(r^-iK(Q 2 

M O " ma<p2<$r <piWT+s92(tyT+s { p h { } 

From (4.10) and Lemma 4.3, we know that P(p,<Pj(t)sT+s) = pr 'P(p,<pj(t)) = prXj\ thus, 
(Pjity^Kt^ -1) (mod/?). From gcd(^(0, <p2(t)) = 1 (mod/?), it follows that 

^ ( 0 ' r + > 2 ( 0 5 r + 1 ( ^ -1) (mod/?), 
and so 
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(Pi{t)sT+s<Pi{t)sT+s \p{tfX ~ 1) (mod p2). 
Assume that P(p2,hT(t)) = prA, then hr{i)|(7^-1) (mod/?2). From equation (4.14), we get 
<Pj{t)sTWfX-^) (mod/?2); this leads to P(p2,<pj(t)sT)\prA. But from Lemma 4.3 we have 
P(P2> VjW7) = Pr+l^j • This leads to the contradiction that pr+lA \prX. D 

In the following discussions of this section when the divisibilities of u^ and v^ are con-
sidered, we assume x takes integer values only. 

Theorem 4.1: 
i^>sv<*>sO(modifc!). (4.15) 

Proof: Denote 
Fk(t) = (t2-xt-l)k+l. (4.16) 

Let {wn} be the principal sequence in Q(Fk(t)). From Lemma 4.1, the generating function of 
W is 

W(t) = t2k+l/(l-xt-t2)k+l. (4.17) 
Comparing (2.7) to (4.17), we get 

^ = k\w„+k. (4.18) 

Because {wn} is an integer sequence, we have u^ = 0 (mod&!), and from (3.3) we get v^ = 0 
(mod£!). • 

Theorem 4.2: 
v<*>sO (modrc) (k>\). (4.19) 

This follows from (3.1). 

The results of the last two theorems are generalizations of the results of Conjectures 6-7 in 
[2]. 

Theorem 4.3: Let/? be an odd prime, p> k. 
1°. If p\ A2, then 

P(pm, 4k)) = P(P
m, v«) = pm • P(p, u„) = pm • P(p, v„). (4.20) 

2°. Ifp\A2andpr-1<2k + 2<pr (r = 1 or2), then 

P(pm,uW) = 4pm+r-\ (4.21) 
3°. Ifp\A2andpr-1<2k<pr (r = 1 or2), then 

i V , v«) = 4/?m+'-1. (4.22) 

Proof: Denote / ( / ) = /2 - xt - 1 . From Lemma 4.2, (4.18), and (4.16), for p > k, we have 
P(p, un) = P(p, f{t)) and P(p», up) = P(jr, Ft(t)). 

1°. Let p\A2. From v„ = u„+l + u„^ and A2w„ = vn+1 + v„_u it follows that P(p, u„) = PQ>, v„) 
= A. 

402 [Nov. 



ON THE i ^ 1 -ORDER DERIVATIVE SEQUENCES OF FIBONACCI AND LUCAS POLYNOMIALS 

When f{i) is irreducible modulo p, the conclusion Pipm,u{k))- pmX can be proved by 
letting (pit) = fit),s = k + l,r = l in Lemma 4.3. When fit) = (r-a)if -b),a±b (mod p\ the 
same conclusion can be proved by letting <pxit) = t-a,<p2it) = t-b,s = r = l,T = k + l in Lemma 
4.6. 

We now prove Pipm, v<*>) = pmX. From (3.3), we can see that P(jf9 v(
n

k))\Pipm, u(
n
k)). On 

the other hand, from un - iyn+l + vn_{) I A2, by differentiating, we can obtain 

4k)=t {\ lo&°+er^M-w / A2;+2 , (4.23) 
where M^x) is a polynomial in x with integer coefficients that are independent of n. We see that 
(3.2) implies Pipm^-l))\Pipm,vf). Hence, fori = 0,1,..., k, Pipm,v{k~i))\Pipm,v{k)). From 
(4.23), it follows that P(jT, u{

n
k))\Pipm, v<*>). Thus, P(pm, v<*>) = P(j7w, w<*>) = /?"M. 

2°. Let p|A2, then /(f) = ( r -x /2 ) 2 (modp). From x2 = -4 , we get (x / 2)2 = -1 (modp). 
Hence, P(/?, t~x/2) = ordp(x / 2) = 4. * In Lemma 4.4, if we take (pit) = t-x/2, hTit) = Fkit) = 
(pit)2k+1 (mod/?), s = 2, r = lor2,r = k + l, then we get the required result. 

3°. Using the result of 2°, it follows that Pipm,v^) = PipmMn~l))\^™{PiPm,n)9 Pipm, 
^-D)} = 4pm+r~l when pr~l < 2k < pr (r = 1 or 2). Since vn = an + 0" = 2(x/2)" (mod p), then 
4 = P(j>, vn)\Pipm, v(„k)), and we have Pipm,v^) = 4/?M. We want to show that M = rn + r - 1 = 
iw + lforr = 2, or = iw forr = 1. First, let r = 2. If it would not be the case, that is, if M <m, 
then if we replace n by n + 4pm in (3.19) we have 

xvg> ^in + 4p™-k + l)v^ -2[vik_\ + u ^ J (modp"). 

Subtracting this from xv{k) = (w-* + l)v^-1)-2[v^?1+w^.71)] (mod/?'"), we get w ^ ^ -
^ i 1 ) 5 2//f lvf"1)s0 (mod/?w). This means that Pipm,u^)\4pm for r = 2. But, by 2°, we 
should have PCp™, u{k~l)) = 4 ^ + 1 for r = 2. A contradiction! 

Next, let r = 1. The least k satisfying 1 < 2k <p is 1. Recalling that Pipm, v^)\Pipm, v^}), 
we need only prove thatM = m for k = 1. On the contrary, suppose M < m -1. then 

V« V - > " V«1} = ^ + ^ X ^ ' - nUn s 0 (mod /7™) . 

Expanding i/„ in (1.2) into the polynomial in x, A, and noting p|A2, we obtain 

and 

in + 4pm-l)u• _, = (w + 4/7w-1)E o i (^/2)w+4/?m 2/"1(A/2)2/ (modpw). (4.25) 

When TW>1, since 

* Let m and a be integers greater than one, gcd(m, a) = 1. The least positive integer X satisfying ax = 1 (mod w) is 
called the order of a modulo m and is denoted by ordm(a). Since tx - 1 = [(r - a) + of -1 = ax -1 (mod (t - a)), we 
have P(m, t~a) = ordm(a). 
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(« + 4 ^ - ^ p ^ 4 ^ p w [ 2 / ^ i j (mod^"1) and /?|A2/for/>1, 

and furthermore, (x/2)4 = 1 (mod/?) implies (x/2)4^"1 = 1 (mod/?w), (4.25) can be reduced to 

m-lf n \ 

(ft + 4pm-l)un+4ifl-l = (ft + 4/?™-1)2(* / 2)"_1 + " £ 2/ +1 F 7 2T~2i~l(A ' 2)2 / ( m o d /?W) • (4-26) 

Subtract (4.24) from (4.26) to get 

(» + 4 /^> n + 4 / ^ . , ' - /»!#„ s &¥7W-1(JC / 2)n~l # 0 (mod /?w) for/?/ft. 

This is a contradiction! 
When m = 1, from (4.24) and (4.25), we obtain 

(w + 4)un+4 - ft^„ = 8(ft + 2)(x / 2)""1 ̂  0 (mod p) 

for ft 4 -2 (mod/?). This is also a contradiction! D 

From Theorem 4.3, we can obtain many specific congruences. For this, we introduce another 
concept. Let {gn} be an integer sequence. If there exists a positive integer s, a nonnegative inte-
ger MQ, and an integer c, gcd(m, c) = l, such that 

gn+* = cg* (modm) iff ft>ftb, (4.27) 
then the least positive integer s satisfying (4.27) is called the constrained period of {gn} modulo 
m and is denoted by s = P'{m, gn). The number c is called the multiplier. 

Lemma 4.7: Let {wn} be the principal sequence in Q(Fk(t)), where Fk(t) is denoted by (4.16). 
Then P'(m,wn) = s exists and the multiplier c is equal to ws+2k+l (mod m). Furthermore, if 
r = ordm(c), then P(m, wn) = sr, and the structure of {wn (modm)} in a period is as follows: 

fO, ..., 0, 1, w2k+2, w2k+3, ..., ws_h 

(4.28) 0, ..., 0, c, cw2k+2, cw2k+3, .-., cws_h 

0, ..., 0, cr \ cr lw2k+2, cr lw2Jc+3, ..., cr lws_v 

Proof: Because {wn} is periodic, it must be constrained periodic [in the most special case, 
the multiplier c may be equal to 1 (mod m)]. We have w0 = • • • = w2k = 0 and w2k+l = 1. Replac-
ing ft by 2k +1 in the expression 

wn+sscwn (modm), (4.29) 
we obtain c = ws+2k+i (modm). By induction, from (4.29), we can get 

Wn+J,sc/wn ( m o d m ) . ( 4 . 3 0 ) 

If j = r = ord^c), then (4.30) becomes wn+rs = wn (mod m). This means that P(m, wn) = sr. In 
(4.30), lety be 0,1,..., r -1 and n be 0,1,..., s-1; then (4.28) follows. D 

From Lemma 4.7, (4.18), and (3.1), we obtain 
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Theorem 4.4: Let {wn} be the principal sequence in Q.(Fk(t)), where Fk{t) is denoted by (4.16), 
and let/? be an odd prime, p > k, P'(pm, wn) = s. If wn = 0 (modpm) for n = i (mod s), then 

u^> = 0 (mod pm) for n s i - k (mod s) 
and 

vf+1) = 0 (modpm) forn = i-k (mods) or« = 0 (mod//"). 

Furthermore, if kpr = i - k (mod s), then vj+1} = 0 (mod p7""""). 

Example 1: Let x = 1, p = 3. Then A2 = 5, /?J A2. Hence, from (4.20), we obtain P(3m, /„(fc)) = 
P(3m, £W) = 3m • P(3, /„) = 8 • 3m for * = 1,2. 

Example 2: Let x = l,,p = 5. Thenp|A2 = 5. Hence, from (4.21), we get i>(5m,/„w) = 4-5m+1 

for £ = 2,3,4, or4-5mforJfc = l and, from (4.22), we get P(5m,^fe)) = 4-5m+1 for k = 3,4 or 
4-5™ for* = l,2. 

Example 3: We show that /„(2) = 0 (mod 10) iff n = 0, ± 1, ±2 (mod 25), and 43 ) = 0 (mod 30) 
iff « = ±1, ±2 (mod 25) or n = 0 (mod 5). 

Phw/ o/ Example 3: We have F2 (?) = (*2 - 1 -1)3 = t6 - 3t5 + 5t3 - 3t - 1 = t6 - 3t5 - 3t - 1 
(mod 5) for x = 1. Let {wn} be the principal sequence in Q(F2(t)). Then wn+6 = 3wn+5 + 3wn+l+wn 

(mod 5). 
Calculate {wn (mod 5)}^ according to the last congruence: 

0,0,0,0,0,1,-2,-1,2,1,1,-2,-1,2,1,2,1,-2,-1,2,-2,-1,2,1,-2,0,0,0,0,0,-2,...(mod5). 

This implies that s = P'(5, w„) = 25 and wn = 0 (mod 5) iff n = 0,1,2,3,4 (mod 25). Hence, the 
example is proved by Theorem 4.1 and Theorem 4.4. 

5. EVALUATION OF SOME SERIES INVOLVING «<*> AND v(k) 

Lemma 5.1: 

1°. X«i = ( i W i H - l ) / * ( ^ 0 ) - (5.1) 
7=0 

2°. £v ,=(v„ + 1 +v„-2) /x + l ( x * 0 ) . (5.2) 
7=0 

3° i(rl)x'hl+r = h2n+r,where{hn}is{un}oT{v„}. (5.3) 
/=oV / 

4°- Z H ) ' ( ? ) ' W = H ) " A , + r , where {/*„} is {*/„} or {v„}. (5.4) 

5°- t(")u*+r = (x2+4fX+r for 2\n, or (x2 + 4f"1)/2v„+r for 2/n. (5.5) 
7=0 V / 

6°- Z Q v 2 / + r = (*2 +4)"/2vw+r for 2K or (x2 + r)<'*1>/2iW for 2/*. (5.6) 
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Proof: We prove only 2° and 5°. The rest can be proved in the same way. 

2°- Zv,=X(a'+/?') = (l-«"+V(l-«) + (l->9"+1)/(l-^) 
1=0 7=0 

= {l-an+l-p-an + l-/3n+l-a-/in)l{-x) = (vn^+vn-2)lx + l 

5°. We have 

JfyV 2 ' = (1 + a2)" - (-ap + d1)" = Anan. 
;=0'V ) 7=0" 

For the same reason 

/=o 
Hence, 

l (")/?2 '=(-l)"A"^. 

S (? W = S f7 V2,+r - ̂ ) /A=A"\-a"+r - ( - o v o / A 
,=oV / i=0\ / 

= A"[a"+r - /T+r) / A = (x2 + 4)"nu„+r for 21», 
or =An-1(a"+r+^"+'') = (^2+4)("_1)/2v„+r for2J». D 

Theorem 5.1: 

±u?> = £(-!)'(*),.[«&<> + «f"° SkJV^1 (x * 0); (5.7) 
;=0 /=0 

(5.10) 

Ivf) = X(-l) 'Wi^0+vr)-2<5t,,]/^1 (**0); (5.8) 
7=0 ;=0 

/=oV / /=o v j \py) 
where {/#>} is {««} or {v«} (/ = 0, . . . , * ) ; 

1=0 V S ;=<A / 

where {/?«} is {w<0} or (vf} (i = 0,..., k); 

g ( 7 ) « ^ = i ( f ) e ° ^ + 4 r / a for2|», 

= t ( / ) ^ r ) | r ^ 2 + 4 ) ( " - 1 ) / 2 for2|«; 

2 ( 7 ) ^ = t ( f ) e ° | r ( * a + 4 r / a for2K 

(5.11) 

(5.12) 
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Proof: Every one of (5.7), (5.8), (5.10)-(5.12) can be proved straightforwardly by differ-
entiating the corresponding one of (5.1), (5.2), (5.4)-(5.6). The proof of (5.9) is as follows. 

Let JL 

Then 

EnXr = g«.k.M = X f f W ? - (5-13) 
i=o\ J 

So 
SnMU = Sn,k,r-n'Sn-l,k,r+V ( 5 - 1 4 ) 

When k = 0, from (5.3), we can see that (5.9) holds. Assume that (5.9) holds for k; then 
from (5.14), we have 

) 
•i+r ' 

The second summation in the right side of the last expression can be rewritten as 

7=0 V / 

= I(-0fl-*1l(»),C^+(-l)*+1(»)t+An-(k+l)+r-
k 

\rV\i 
7 = 1 

From this, it follows that 

7=0 ^ ' 

that is, (5.9) also holds for k + l, and we are done. D 

It is known that the generating function of {u^k)} is expressed by (2.7). It is well known that 
the generating function of {vn} is 

V(t) = (2-xt)/(l-xt-t2). (5.15) 

Differentiating (5.15), we can know that the generating function of {v{k)} is 

Vk(t) = k\tk(l + i2)/(l-xt-t2)k+1 (&>1). (5.16) 

Obviously, the following identities hold: 

Vk(t) • Vr(t) = ̂ l y i t + ry t + r + I (0 (*, r > 1); 

Ukitmt)= (k+l%Vk+"l(t) (r-1); 

uk(t)-v(t) = 1±ri(2rl-x)uk+l(t); 
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Vk(t)-V(t) = -j~(2rl ~ *)*t+i(0 (* > !)• 

Equalizing the coefficients of f of the two sides in each of the above identities, we have 

Theorem 5.2: 

£* "- (k+r + l)\ " ' P } 

S ^ t V ^ = , . * l r ' n , ( v g r 1 ) + v g r 1 > ) (k,r>l); (5.18) 

tf^--^^^+r+l) ir>l); (5.19) 

S " / V , =-rxT(2«f+i1)-^ri)); (5.20) 
;=0 K + L 

Iv«v„_,= T ^ T (2vf + ! 1 ) -xvr i >) (^>1). (5.21) 
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RECURRENCES WITH RECIPROCAL REPRESENTATION 
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The aim of this note is to show that for any given second-order linear recurrence on the 
complex field 

^ + 2 - ^ 1 + 1 + ^ = ° , ( R 1 ) 

where A = a2 -4b ^ 0 and b ̂  0, another one exists such that it is possible to represent the gen-
eralized Fibonacci numbers of any of them with sums of the generalized Fibonacci numbers of the 
other one, with a set of coefficients to be detailed later. 

To establish this property, we need the following lemmas. 

Lemma 1: Let Un(a, b) denote the /2th generalized Fibonacci number of the (Rl) recursion. That 
is

? Un+2 -aU„+l +bUn = 0, U0 = 0, Ul = 1, where A = a2 -4b * 0 and b * 0. Let S denote any 
of the roots of the equation z2 =b. Then 

U„+1(a,b)=±(2n+yPya-24brp(Jb)p- (Fl) 

Lemma 2: If S is the set of all the couples of complex numbers (u9 v), their order being indif-
ferent [that is, (w, v) = (v, w)], and if J is the transformation defined on all S by 

TY \ (u + v I— u + v I—^ T(u,v) = \ + vwv, v«v L 

then T2(w, v) = (w, v), where T2 is the second iterate of T. 

Proof of Lemma 1: Edouard Lucas [1] proved that if Un(t,s) is the rfi1 generalized 
Fibonacci number of the recursion defined on the complex field by rn+2 - trn+l+srn = 0, then 

[nil] f \ 

u„+1(t,s)=z(n-/ytr2p(-sy-
Throughout the rest of this paper, when we refer to the characteristic roots of a linear recur-

sion we mean the roots of its auxiliary algebraic equation. 
Now let a and ft be the characteristic roots (supposed distinct) of the recursion (Rl), let -fa 

be any root of the equation z2 = a, and let -*Jft be any root of the equation z2 = ft. 
If Yn is the rfi1 generalized Fibonacci number of the second-order linear recursion whose 

characteristic roots are 4® and -Jft then, using Lucas' formula, we obtain 
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Now, using the usual Binet form, we easily obtain 

whence 

But we have (4a- 4f3)2 = a + f3-l4ajf3' = a-l4a4P'. 
Since a/3 = b, it is obvious from the above definitions of 4a and J/3 that we can replace 

4a 4(3 by any of the roots of z2 - b. This completes the demonstration. 

Since 4b may be any of the roots of z2 - b, the following formula is also true: 

U^(a,b) = f ^ n + l
p-Pya + 2jb)"-r{-Jby. (F2) 

Proof of Lemma 2: The proof is immediate by directly computing 

rplU + V ( J U+V I 

Now, to the recursion (Rl), let us associate the recursion (R2), whose characteristic roots are 
a 12 + 4b and all- 4b, that is, the one defined by: 

^ + 2 - ^ V i + ( A / 4 K = 0 , (R2) 

where A is the discriminant of (Rl). 
It is immediate that the couple of roots of (R2) are obtained by applying the T transformation 

to the couple of roots of (Rl). Therefore, by applying the same transformation to the couple of 
roots of (R2), we obtain the couple of roots of (Rl), according to Lemma 2. Then the associate 
recursion for (R2) is (Rl). 

Now we may write (Fl) and (F2) as follows: 

U^(a, b) = U„+1 = £ (2" + l
p ~ P} T~\a 12 - STP(Jb)p, 

Un+M, b) = Un+l = ̂ ^ - P y - ^ a l l + S r ^ S y . 

Letting (<DW) be the generalized Fibonacci sequence of (R2), we may write the following formulas 
which are easily obtained by induction: 

( a / 2 - V £ r ' = 0„_p + 1-0„_p(a/2 + V6), 

(a 12 + STP = 3>„-„+, - *„-„(* / 2 - -Jb). 

By substitutions in the previous formulas, we obtain 

Un+l = £[2n+p~P)r-"(Jby^n_r+1-^n_p(a/2 + ^b)), 
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U„+l - X ( 2 " "^"PJ2w^(-^)^(cD„_/7+1 - €> _ p ( a / 2 - V*))5 
p=0 

and, summing both relations, we have 

n even V * / peven 
p<n 

fln + l-- z [ 1\-p\2"-p(br+m<s>n-P. 
p odd V r J 
p<n 

Since the associate recursion for (R2) is (Rl), we have, symmetrically, 

YP/2 
7 / .-nllT, _ 

(SI) 

/? even ^ ' V ̂  / 

(S2) 

/?odd 
p<n 

because the fact that 4A ^ 0, 4Z? being the discriminant of (R2), allows the same treatment for 
Lucas' formula for <£>„+1 as the one for Un+l. 

Remarks: 
L Do there exist recursions which are their own associates? (Rl) will be so if and only if 

h = A/4<t>h = (a2)/$. Therefore, a necessary and sufficient condition for a recursion to be its 
own associate is to assume the form 

where a is an arbitrary nonzero complex number. Its characteristic roots are W2(V2 +1)/4 and 
aV2 (72 -1) / 4. Within the first pair of parentheses is the greatest root of the Pell recurrence, 
rn+2-2rn+l-rn = 0, while within the second pair is the opposite of the remaining root of the Pell 
recurrence. This allows us to obtain sum formulas specific for Pell and Pell-Lucas numbers, 
thanks to (SI). 

2. To any second-order linear recursion, we may also associate the auxiliary polynomial of 
its associate recursion. That is, to the recursion defined by ^+2 _ ^+ i + ^r„ = 0, associate the 
polynomial x2 - ax + A / 4. With this meaning, it appears that the associate polynomial for the 
general second-order linear recursion has been mentioned in the literature at least once, because 
Richard Andre-Jeannin [2] proved the following orthogonality property (with our notations): 

p-a+2^b r-a+2^/b r~z 

,-V* + 2ax + AUJa + x,b)UJa + x,b)dx = 0 
J-a—2-Jb " 

for n* p, and it is obvious that the polynomial under the radical is equal to 4jp(-f), where p(x) 
is the associate polynomial for the recursion (Rl). 
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With a trivial change of variable, the orthogonality relation may be written as 

J -%IP(X) Un{a - 2x, b) Up(a -2x,b)dx = 0 

where h and k are the roots of p(x): a 12-4b and a/2 + Jh. 
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1. INTRODUCTION 

A binary decision diagram (BDD) is a directed graph representation of a switching function 
f(xly x2,...,xn). Subfunctions of/ correspond to nodes in the BDD; /itself is represented by a 
source node, i.e., a node with no incoming arcs. Attached to this node are two outgoing arcs, 
labeled 0 and 1, that go to descendent nodes representing /(x1,x2,. . . ,0) and f(xt,x2,..., 1), 
respectively. Attached to each of these nodes are descendent nodes, where xn_x is replaced by 0 
and 1, etc. This process is repeated until all variables are assigned values. The last assigned func-
tions are a constant 0 and 1, which correspond to sink nodes, i.e., nodes with no outgoing arcs. If 
two nodes represent the same function, they are merged into one node, and if the descendents of 
one node 77 are the same, 77 is removed. If / = 1 (0) for some assignment of values to x1? x2,..., 
and xn, then there is a path in the BDD for/from the source node to the sink node 1 (0) for that 
assignment. Figure 1(a) shows the BDD of the OR function on four variables. As is usual, the 
arrows are omitted; all arcs are assumed to be directed down. As can be seen, there is a path 
from the source node to the node labeled 1 if and only if at least one variable is 1. Figure 1(b) 
shows the BDD of the AND function of four variables, which is the mirror image of the OR 
function BDD. 

x3 

x
2 

xi 

FIGURE 1. BDD?s of the OR and AND Function on Four Variables 

There is significant work on this topic dating back to 1959 [5]. In spite of this, there are few 
enumerations of nodes in BDD's of useful classes of functions. Symmetric functions, which are 
unchanged by a permutation of variables, have received some attention. The worst case number 
of nodes is known [3], [6], [7], as well as the average number of nodes [1]. 

* Research supported by a grant from the Tateishi Science and Engineering Foundation. 
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We demonstrate another class of functions and characterize its BDD. A threshold function, 
f(xl,x2,...,xn), has the property that / = 1 if and only if wnxn + wn_lxn_l + ••• +wlxl > J , where 
wf and T are integers and the logic values, 0 and 1, of xt are viewed as integers. The value 
of ww*„+w„_i*>7--iH—+wixi> f°r some assignment of values to xl,x2,..., andxw, is called 
the weighted sum. A threshold function is completely specified by a weight-threshold vector 
(wn,wn_h...,wl; T). For example, the four-variable OR and AND functions have weight-threshold 
vectors (1,1,1,1; J) , where 7 = 1 and 4, respectively. A Fibonacci function is a threshold function 
with weight-threshold vector (Fn, Fn_x,..., F2, Fx; T), where Ft is the Ith Fibonacci number and 
0 < T < Fn+2. For example, the Fibonacci functions associated with weight-threshold vectors 
(3,2,1,1; 1) and (3,2,1,1; 7) correspond to the OR and AND function, respectively, on four vari-
ables. The BDD of a Fibonacci function is a BDD in which a path from the source node to a sink 
node is a sequence of arcs associated with variables of descending weights. Figure 2 shows the 
BDD's of all of the other four-variable Fibonacci functions, which have a weight-threshold vector 
(3,2,1,1; T), for 1 < T < 7; thus, Figures 1 and 2 represent the entire set of seven four-variable 
Fibonacci function BDD's. 

o l 
(3,2,1,1:4) 

FIGURE 2. BDDfs of Other Fibonacci Functions on Four Variables 

The representation of a Fibonacci function by a BDD is related to the representation of inte-
gers by the Fibonacci number system, for which there exist many papers (see, e.g., [2], [4]). That 
is, every positive integer N can be represented as N = anFrj + '- + a2F2 + alFl, where Ft is a 
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Fibonacci number and ai e {0,1}. In a BDD, there is a path from the source node to 1 for all 
assignments of values to at, for 0 < i < n, such that N>T. 

2. STRUCTURE OF THE BDD?S OF FIBONACCI FUNCTIONS 

In preparation for the calculations of the average number and variance of nodes in BDD's of 
Fibonacci functions, we consider the structure of such BDD's. Figure 3 shows how the structure 
near the source node depends on the threshold. Specifically, it shows that the destination of arcs 
emanating from the source node depends on the value of xn. Figure 3 a shows the Type a struc-
ture. As shown, if 0 < T < Fn, the arc corresponding to xn = 1 goes to 1. That is, for this range of 
T and this value of xn, the weighted sum exceeds or equals the threshold, and / = 1. If xn = 0, 
then the weighted sum exceeds or equals the threshold if and only if the Fibonacci function corre-
sponding to the weight-threshold vector (Fn_l9 Fn_2y..., Fx\ T) is 1. The latter is represented by a 
node that is the 0 descendent of the source node. 

Type a Type b Type c 

§ 1 0 1 § 1 
®<T<Fn Fn<T<Fn+1 Fm+1*T<Fm+2 

(a) (b) (c) 

FIGURE 3. Structure of the BDD of a Fibonacci Function 

A similar analysis of the case Fn+l < T < Fn+2, which corresponds to a Type c structure, shows 
that there is mirror image symmetry with a Type a structure, as can be seen by comparing Figure 
3(c) with 3(a). 

Consider the remaining values of T, which correspond to a Type b structure. Figure 3(b) 
shows that, for this structure, both xn = 0 and xn-\ yield nodes at the next lower level. If 
xnxn-i = 11? the weighted sum is at least Fn+Fn_x = Fn+l, and this equals or exceeds the threshold 
regardless of the values of the remaining variables. Thus, there is a path from the source node to 
1 for xnxn_x = 11. If xnxn_x = 00, the weighted sum can be no greater than Fn_2+Fn_3 + ••• + 
Fl=Fn-l. Thus, the threshold is neither equaled nor exceeded, and there is a path from the 
source node to 0. If xnxn_x = 0l, the weighted sum ranges from a minimum of Fn_x to a 
maximum of Fn_x + Fn_2 + -" + Fl= Fn+l -1, for which / = 0 and 1, respectively. It follows that 
there is a path from the source node to a non-sink node corresponding to xnxn_x = 01. A similar 
analysis shows that there is a non-sink node corresponding to xn%n_i = 10. Similarly, non-sink 
nodes exist for xnxn_lxrlr_2 = 011 and for xnxn_lxn_1 = 100. Indeed, since Fn_l+Fn_2 = Fn, the 
weights are the same for the last two cases, and they correspond to the same node. 

A fourth type of structure, the Type d structure, consists of a node that has as descendents 
the two sink nodes 0 and 1. This represents the Fibonacci function with weight-threshold vector 
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(1; 1). Indeed, all threshold functions contain this structure. As can be seen in Figures 1 and 2, it 
is part of all BDD's of Fibonacci functions on four variables. 

Composing BDD's of Fibonacci Functions 
Consider combining structures. If a BDD has a Type a structure, as shown in Figure 3(a), 

and the weight-threshold vector associated with the Fibonacci function of the source node is 
(Fn, Fn_v ..., jpj; T), where 0<T<Fn, then the node that is the 0 descendent of the source node 
corresponds to a Fibonacci function with weight-threshold vector (Fn_h Fn_2,..., Fx; T). Further, 
the 0 descendent can also have a Type a structure, in which case the node at xnxn_x = 00 is 
associated with the weight-threshold vector (Fn_2,Fn_3,...9Fl; T). Indeed, this process can be 
repeated until the last variable, which has a Type d structure. Represent this composition as ad, 
for i > 1, and the set of all such compositions as aa*d. Here, a* = {X, a, aa, acta,...}, where X is 
the null structure. Thus, aa*d represents the concatenation of one or more Type a structures 
followed by a Type d structure. By this convention, the right to left sequence in the string 
representation corresponds to the top to bottom sequence in the BDD. Such compositions occur 
only when T=l, which is the OR function. For example, the BDD in Figure 1(a) is described by 
a d and corresponds to the weight-threshold vector (3,2,1,1; 1). 

In a similar manner, repeated use of the Type c structure corresponds to a BDD described by 
cd, for i > 1, producing a mirror image of ad. Such compositions occur only when T' - Fn+2 - 1 , 
which is the AND function. For example, the BDD in Figure 1(b) is described by c d and corre-
sponds to the weight-threshold vector (3,2,1,1, 7). 

Consider combining Types a and c. For example, let the source node have a Type a structure 
and its 0 descendent have a Type c structure. Thus, the 0 descendent of the source node is asso-
ciated with weight-threshold vector (Fn_v Fn_2,...,Fl; 7J), where 0<Tl = T<Fn. But, because it 
is a Type c structure, we have Fn<Tt <Fn+l. Since there is only one value of Tx that satisfies 
both inequalities, it follows that T=T{= Fn. It follows that the weight-threshold vector of the 1 
descendent of the 0 descendent of the source node is (Fn_2,Fn_3,..., Fl;Fn_2)9 since Fn_2 = 
Fn-Fn_x. Thus, this node has a Type a structure whose 0 descendent has a Type c structure, etc., 
until all variables are exhausted. The resulting compositions are described by ac{ac)*{a + X)d, 
where + is set union. A similar result occurs if the source node has a Type c structure, in which 
case the resulting compositions are described by ca(ca)*(X + c)d. These observations have 
important implications in the composition of the BDD's of Fibonacci functions. 

• A BDD can consist of a sequence of one or more Type a structures followed 
by an alternating sequence of Type c and Type a structures, as described by 
a*(ca)*(A + c)d. Similarly, a BDD can consist of a sequence of one or more Type c 
structures followed by an alternating sequence of Type a and Type c structures, as 
described by c*(ac)*(a + X)d. As an example, see the BDD's in Figures 1 and 2 
corresponding to thresholds T=l,2,3,5,6, and 7. 

• A "crest" pattern of the form shown in Figure 3(b) can only occur after a sequence 
of Type a structures exclusively or Type c structures exclusively. On the contrary, if 
both types occur, we have a situation as described immediately above, in which case, 
no crest can occur anywhere in the BDD. 
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Consider the composition of the BDD's of Fibonacci functions involving the crest pattern; 
i.e., Type b structures. Figure 4 shows how the BDD structure depends on T in the range 
Fn < T <Fn+v Here, the top node of the crest pattern is the source node of the BDD. It is 
interesting how the structure changes at the boundary between ranges and that Fibonacci numbers 
define these boundaries. In the BDD for T = Fn + Fn_3 and Fn +Fn_2, the bottom node of the 
crest corresponds to a weight-threshold vector where the threshold is Fn_3 and Fn_2, respectively. 
From the discussion above, this part of the BDD consists of a sequence of structures chosen 
alternatively as Type a and Type c. Again, the mirror image symmetry of the BDD's of Fibonacci 
functions is evident. 

Type bj Type b2 Type b3 Type b4 Type b5 

0 O 1 x
n-2 U / ^ V f \ ^ Xn-2 

I xn-3 i J \ 1 X*-3 # y \ j *W J" O 0 1 / n~J MM f!'J 0 oJ> 
? N 1 / \ ' » 

T = Fn+Fn_3 T = Fn + Fn_2 

Fn<T<Fn + Fn_3 Fn + Fn_3<T<Fn+Fn_2 Fn + Fn_2 < T < Fn+l 

(a) (b) (c) (d) (e) 

FIGURE 4 Structure of the BDB of a Fibonacci Function in the Range Fn<T< Fn+1 

3. THE AVERAGE NUMBER OF NODES IN BBDf S OF FIBONACCI FUNCTIONS 

Let T(x, y) be the ordinary generating function for the number of BDD's of Fibonacci func-
tions, where x tracks the number of variables andj tracks the number of nodes. Let tnJ be the 
number of BDD's of w-variable Fibonacci functions that have / nodes. From the results in the 
previous section, it follows that if tnJ > 0, then i > n + 2, since there is at least one node for every 
variable and two sink nodes 0 and 1. Thus, a term in T(x, y) is 

T(x,y) = -+x"(tn,n+2y"+2
 + t„!„,4y"+*+ •••) + - . (1) 

Note that tnn+2i+\ = 0 for / = 1,2,..., since additional nodes beyond the minimum number n + 2 
occur because each crest pattern contributes two additional nodes to the node count. If we dif-
ferentiate (1) with respect to y and set y equal to 1, the resulting coefficient of xn is the total 
number of nodes in all BDD's of Fibonacci functions on n variables. Dividing by the number of 
BDD's of such functions yields the average number, of nodes. 

To derive T(x, y), we use the classification given in Figure 3. That is, 

T(x, y) = Ta{x, y) + Tb(x, y) + Tc(x, y) + xy\ (2) 

where Ta(x, y\ Tb{x, y), and Tc(x, y) are the generating functions for Type a, b, and c structures, 
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respectively, and xy3 is the generating function for the Type d structure. By symmetry, 

Tc(x,y) = Ta(x,y). (3) 

We can derive Ta(x,y) by observing that there are two types of BDD's counted in Ta(x,y)— 
those that contain at least one crest pattern (but not at the very top, which are Type b structures) 
and those that do not. BDD's of the first type are enumerated by x'y1Tb(x,y) for i > 1. Recall 
that the top crest pattern is preceded by a sequence of Type a structures. BDD's of the second 
type are enumerated by ix1+ly1+3 for i > 1. That is, this type of structure consists of a sequence of 
/ Type a structures ending with a Type d structure or followed by Type c structures alternating 
with Type a structures ending with a Type d structure. The string representation for this is 
al(ca)*(A + c)d. The factor x1+1 counts the variables involved, and the factor y1+3 counts the 
nodes involved, including the two sink nodes 0 and 1. Therefore, 

Ta(x, y) = xyTb(x, y) + x2y2Tb(x, y) + • • • + j/j/Tb(x, y) 
+ ... +x2y4 +2x3y5 + ••• +/x/+1y+3 + •••, 

which can be written as 

Ta(x9y) = ^Tb(x,y) + - ^ ^ : (4) 
l-xy (l-xy)1 

We can calculate Th(x,y) by observing that BDD's of Fibonacci functions containing a crest 
at the source node can be completed in three ways. Figure 4(c) shows that the bottom node of 
the crest is the top node of a Type b structure. The number of ways to choose a Type b structure 
is counted by the generating function Tb(x,y). The contribution of the crest itself to the variable 
and node count is expressed as x3y5. Thus, the total contribution to the variable and node count 
is expressed as x3y5Tb(x,y). Figures 4(b) and 4(d) show that the bottom node can also be the 
source node of a BDD with one node per variable expressed as (ac)*(a + X)d and (ca)*(A + c)d, 
respectively. The contribution of these nodes is expressed as 2x2y4 + 2x3y5 + 2x4y6 + • • •. The 
coefficient 2 occurs because of the two ways this part of the BDD can occur [Figures 4(b) and 
4(d)]. The superscript of x counts variables and the superscript ofy counts nodes, including the 
two sink nodes 0 and 1. The generating function for this power series is 2x2y4 / (1 - xy). A sub-
BDD consisting of just the lowest variable and the three nodes, including two sink nodes 0 and 1 
(i.e., a Type d structure) should also be included, and this is expressed as xy3. Figures 4(a) and 
4(e) show that more than one crest can also be cascaded so that each adjacent pair of crests share 
an arc and two nodes. In this case, the top BDD contributes two variables and four nodes. Since 
there are two ways for this to happen, the contribution is described by 2x2y4Tb(x, y). Considering 
all three ways to form a Type b BDD, we have 

Tb(x,y) = x3y5 

Solving for Tb(x, y) in (5) yields 

Tfayi + xy3*-"" 
l-xy 

,3 , 2xY + 2xYTb(x,y). (5) 

x4y*(l + xy) 
(l~xy)(l-xy-2xY) K*,y) = « ..:SKY?'2*- (6) 
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From (2), (3), (4), and (6), we can write 

T(x,y) = -
.3..7 x y -2x y +xy (7) 

( l - x y ) 2 ( l - x y - 2 x V ) ' 

Recall that a typical term in (7) is given in (1). We can find the total number of nodes by 
differentiating (7) with respect to y and setting y to 1. Doing this yields 

T(x) = - 3 + 2x 7 + 3x 
- + - 1 

(i-x-xy \-x-xl (i-xy i-x 
(8) 

The number of w-variable BDD's is calculated as follows. There are as many BDD's as there are 
integer threshold functions from 1 to the largest threshold. The largest threshold is the same as 
the largest weighted sum, 1 + 1 + 2 + 3 + ••• +Fn = Fn+2 - 1 . Note that we exclude BDD's corre-
sponding to T = 0 and Fn+2, which are trivial. Therefore, the average number of nodes is the 
coefficient t„ of the power series expansion of (8) divided by Fn+2 - 1 . Table 1 shows the average 
number of nodes as calculated in this way. 

TABLE 1. The Average Number of Nodes In BDDfs of 
Fibonacci Functions of n Variables 

1 Number of 
Variables 

1 n 1 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 

12 
13 
14 
15 
oo 

Average 
Number 
of Nodes 

3.000 
4.000 
5.000 
6.286 
7.667 
9.200 

10.818 
12.519 
14.273 
16.070 
17.897 
19.745 
21.608 
23.481 
25.361 

1.8944n 

Standard Deviation 1 
on the Number 

of Nodes | 
0.000 
0.000 
0.000 
0.700 
0.943 
1.327 
1.585 
1.853 
2.049 
2.224 
2.354 
2.462 
2.543 
2.609 
2.659 | 

0.2540 <n 1 

Asymptotic Approximation 

Consider now the average number of nodes in BDD's of Fibonacci functions when the 
number of variables is large. We can factor the quadratic denominators in the partial fraction 
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expansion (8), forming a partial fraction expansion in which denominators involve linear factors 
only. That is, we can rewrite (8) as 

11 + SVS 61 + 3K/5 

m = ~ 1 ^ - T ~ , l°{5 ^ - , (9) 
1 - ^ - r X 1-

where •••represents terms whose contributions to tn, the coefficient of xn in the power series 
expansion of T(x), are negligible for large n compared to the contributions from the terms shown. 
Specifically, missing terms have denominators that are powers of (l + (2 / V5 + l)s) and (1 + s). 
Indeed, the second term in (9) is negligible for large n compared to the first term; we include it for 
a reason that will become clear in the next section. The contribution to t„ from these terms is 

11 + 5^5, 1X 61 + 31V5 
-(TI + 1 ) -

10 V ; 10VS J U / 5 - 1 , 

The number of BDD's of n-variable Fibonacci functions, Fn+2 - 1 , is approximated by 

V5 

(10) 

(11) 

when n is large. Dividing (10) by (11) yields the following asymptotic approximation to the 
average number of nodes in BDD's of Fibonacci functions on n variables, 

l ± 2 ^ I J - 2 + 6 ^ w l 8 9 4 ^ _ 3 0 8 3 2 ( 1 2 ) 
5 5 ' v } 

which is asymptotic to 1.8944w, for large n. As can be seen from Table 1, 3.0832 is significant 
for the values of n shown here. 

4. THE VARIANCE OF THE NUMBER OF NODES IN BDD'S 
OF FIBONACCI FUNCTIONS 

We can calculate the variance on the number of nodes in BDD's of Fibonacci functions using 
the generating function for the distribution of nodes given in (7). That is, if X is a random vari-
able, then the variance <J2{X) of Xis given as 

a\X) = E(X2)-E\X), 
where E{X2) is the expected value of X2 and E(X) is the expected value of X. E(X) was cal-
culated in the previous section. E(X2) can be calculated by differentiating (7) with respect to y, 
multiplying byy, differentiating with respect toy again, and settingy to 1. In the resulting expres-
sion, the coefficient of xn is EX2. Dividing this by the number of BDD's of Fibonacci functions 
yields E(X2). Differentiating (7) with respect to y, multiplying by y, differentiating with respect 
toy again, and settingy to 1 yields 

16 +10s 49 + 16x 49 +25s 6 L _ _ J ^ _ 2 
(1 -s -s 2 ) ' (1-s-s2)2 1-s-s2 (1-s)3 (1-s)2 1-s 1 + s 
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The coefficient of x" in the power series expansion of (13) is decreased by E2(X) and the result 
divided by the number of BDD's of Fibonacci functions on n variables, Fn+2 -1, to get the vari-
ance on the number of nodes for ^-variable BDD's of Fibonacci functions. This yields <J2{X). 
Table 1 shows the standard deviation, <J(X), of the number of nodes, as calculated in this way. 

Asymptotic Approximation 

Consider the standard deviation on the number of nodes in BDD's of Fibonacci functions 
when the number of variables is large. We can rewrite (13) as 

47 + 21V5 691 + 277V5 2131 + 881V5 

^ — 3 - SQ T+, 5 ° f , + - , (14) 
l - ^ x \ l - * x \ 1-

where the contribution to EX2 for large n from other terms is negligible compared to the contri-
bution from the terms shown. The contribution of these three terms is indeed 

47 + 21V5, 2 . . . 691 + 277V5 , 1X 2131 + 881V5 
r^—in +3/2 + 2) — ( « + l) + 7 = - ^ 

10V5 v ' 50 v ' 50V5 
V5-1 

(15) 

Dividing this result by (11), an approximation to the number of BDD's of Fibonacci functions, 
yields E{X2). Subtracting from this the square of the average number of BDD's of Fibonacci 
functions, as given in (12), yields the following asymptotic approximation to the variance on the 
number of nodes in BDD's of Fibonacci functions 

100-44V5 228-28V5 nngZAC , , 1 C , /1/C. 
— n + - — « 0.0645/2 + 6.6156. (16) 

25 25 v ' 
Note that there is no n2 term in (16); the n2 term in E{X2) has been canceled by an identical term 
in E2{X). Therefore, terms of order n are needed in the asymptotic expressions for E(X2) and 
E2(X). This is why we included in (10) and (12) an asymptotically insignificant term. 

Equation (16) is an expression for a2(X). The standard deviation <J(X) is then 
100-44V5 228-28^5 in^Ac ^ 1 ^ /i-rx 

—n + «v0.0645/i +6.6156, (17) 
25 25 ' v ' 

which is asymptotic to 0.2540V«, for large n. As can be seen from Table 1, 6.6156 is significant 
for the values of n shown. 

5, DISTRIBUTION OF THE NUMBER OF NODES IN BDDfS OF 
FIBONACCI FUNCTIONS 

Figure 5 shows the distribution of nodes in the BDD's of Fibonacci functions, as computed 
from (7). Here, the number of variables and the number of nodes in BDD's are plotted horizon-
tally, while the number of Fibonacci functions is plotted vertically. A vertical line represents the 
number of Fibonacci functions whose BDD's have the number of variables and the number of 
nodes as specified by the coordinates in the horizontal plane. The vertical axis shows the log of 
the number of functions. Note the linear increase in the log of number of functions with the 
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number of nodes in BDD's for a fixed number of variables, which corresponds to an exponential 
increase in the number of functions. 

FIGURE 5. Distribution of Fibonacci Functions by Nodes and Variables 
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1. INTRODUCTION 

We discuss the triangular map and also Baker's map [2], [4] with the parameter ju chosen 
with the value of the golden mean: (1 + V5)/2 « 1.618. For an arbitrary parameter value in the 
range 0 < ju < 2, the starting graph (x, /(*)) in the range 0 < x < 1 is a line segment for a triangu-
lar map, and two line segments for Baker's map (see Fig. 1 and Fig. 4). We are interested in the 
graph of / M , where n>\. Since the starting graph contains a set of line segments, the proceed-
ing graphs (x , /M(x)) are then obtained from iterates of the beginning line segments in the 
starting graph. It is therefore important to discuss iterating these two maps on line segments. 
Since these two maps are piecewise linear maps, it can then be shown that the graph of / w is a 
composition of line segments (see Fig. 3 and Fig. 6). These two maps are simple for p in the 
range 0 < ju < 1 because the number of line segments does not increase under the action of map-
ping; the graph of / w is therefore simple. Yet, they are often complicated in the range ju>l, as 
the action of mapping on starting line segments will generate more line segments of which the 
lengths In general are different. The graph of / w Is then a set of line segments with Irregular 
shape which becomes very complicated when n is large. It is then difficult to determine the graph 
of / M . However, we can show that when // is chosen with specific values, for instance, the 
golden mean, the graphs (x, f^n\x)) are again simple. There are only a few types of line seg-
ments in each graph and, Interestingly, the numbers of line segments of the graphs are those of the 
Fibonacci numbers. Nature shows that Fibonacci numbers occur quite frequently In various areas; 
therefore, it is interesting to know that Fibonacci numbers and, In fact, Fibonacci numbers of 
degree m, can be generated from a simple dynamical system [3]. In this work, we contain some 
reviews of [3], show the similarity of these two maps when a specific parameter value Is chosen, 
derive geometrically a well-known identity In Fibonacci numbers, and show that some invariant 
sequences can be obtained. 

2. THE TRIANGULAR MAP WITH /i = (1 + S) / 2 

First, we discuss the general triangular T̂  map, which is defined by 

TM(x) = l-ju\xl (1) 
or 

xn+l = l-M\xnl (2) 

where ju Is the parameter. We restrict the ranges to: -1 < x < 1 and 0 < // < 2, so that T^ maps 
from the interval [-1,1] to [-1,1]. Figure 1 shows three graphs of T̂  for, respectively, // = 0.6,1, 
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and (1 + V5)/2. We define xx = TM(x) as the first iterate of x for TM, and xn = T^x^) = TW(x) 
as the /2th iterate of x for T .̂ Since all the graphs (x, Tjf](x)) are symmetrical for x>0 and 
x < 0 , we henceforth consider these graphs in only the region of x>0 . The starting graph, 
^(x) = 1 - / # , in the range x > 0 is then a line segment from point (0,1) to point (1,1 - ju) with 
slope -ju . We call this the starting line segment. Iterating this map on this starting line segment 
then generates all the proceeding Tj^ graphs. 
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For a general discussion on an iterate of a line segment, we consider an arbitrary line segment 
described by y = g{x) = a + bx, where 0 < x < 1 and -1 < g(x) < 1. The upper piece of this line 
segment, for which g(x) > 0, after one iteration, goes to a line segment described by y=TM(g(x)) 
= l~aju~ bjux. Hence, the slope and the length of the upper piece have been rescaled, the sign of 
the slope alters as well; the slope rescaling factor is seen to be -ju. The lower piece, for which 
g(x)<0, goes to another line segment described by .y=T (g(x)) = l + a/u + bjux. Hence, the 
slope and the length of the lower piece have been rescaled, the sign of the slope is not altered; the 
slope rescaling factor is ju. Since the slope rescaling factors are different for these two pieces, a 
line segment after one iteration will be folded into two connected line segments if this line 
segment intersects the x-axis. A line segment that does not intersect the x-axis will only change 
its slope and length but not be folded. These are useful in graphical analysis of iterates. 

For ju in the range 0< // < 1, the T̂  map is simple, as there is one stable fixed point x* = 
1/(1 + //), and the basin of attraction of x* consists of all x G [ - 1 , 1], hence the graph of T[f], as 
w -» oo, will finally approach a flat line segment with height x*. Or, we may see this from iterates 
of the starting line segment. Since the starting line segment does not intersect the x-axis and the 
slope rescaling factor is -// for which | / / |<1, the starting line segment under iterations then 
remains a line segment and getting flatter but with one point fixed. The graph of T^, as n —> oo? 

then approaches a flat line segment with a height which can only be of the value of the fixed point, 
that is, x*. This map with // < 1 is therefore simple. 

For ju = 1, we have T^(x) = 1- x and T^\x) = x, hence {x, 1- x} is a 2-cycle for each x, and 
we have, therefore, only two shapes which are the graphs (x, TM(x)) and (x, T^2](x)). Or, since 
the starting line segment, with slope - 1 , does not pass through the x-axis and the slope rescaling 
factor is - 1 ; therefore, the starting line segment under iterations remains a line segment but with 
slope 1 and - 1 , alternatively. This map with // = 1 is also a simple map. 

For 1 < ju < 2, there exist no stable fixed points for TM, Tp], and in fact for T[f] with n any 
positive integer. This is because the |slope| at each fixed point of T[f] equals //" which is greater 
than one; hence, there are no stable fixed points for T[f]. In such a region without any stable 
cycles, the iterative behaviors in general are complicated. Indeed, as the starting line segment 
now intersects the x-axis, the action of mapping will keep on folding line segments and, therefore, 
producing more and more line segments of which the lengths in general are different; thus, the line 
segments in each graph are of many types. Each graph is then the connection of line segments of 
many types and, therefore, has an irregular zigzag shape. The complication of the graph T[f] 

increases with n, and it is hard to predict what the final result will be. Interestingly, there are 
cases that are easier to analyze. We may consider focusing on some particular values of ju such 
that the iterative behaviors are simple. 

To choose the proper values of ju in the range 1 < ju < 2, the consideration is upon the parti-
cular point of x = 0 at which the function T^(x) has a maximum height of 1. We require that this 
point be a periodic point of the map. The orbit of x = 0 is 0, T^O), T^2](0), T^(0), ... etc. We can 
easily see that TL2](0) = 1 - // and Tj^(0) = 1 - //(// -1) = 1 + ju - //2. The required parameter value 
for x = 0 becoming a period-2 point is determined from the equation TĴ (O) = 0. The solution is 
ju = 1. As discussed above, it is a simple map in this case. Requiring x = 0 to be a period-3 point, 
we should have T*3](0) = 0; that is, / / 2 - / / - l = 0. For / / > 1 , the solution is // = (l + V5)/2, 
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which is the well-known golden mean. With these basic arguments, we then have the following 
results when // = (! + V5) / 2. 

Proposition 2.1: The point x - 0 is a period-3 point of the triangular T̂  map. 

Proof: This is obvious, as we see that the 3-cycle is {0,1,1 - ju}; l-ju = -l/ ju. 

In what follows, we will discuss the graph y = Tjf](x) in the range 0 < x < 1. It is important 
to discuss an iterate of a line segment. We first define two types of line segments. We denote by 
L a long line segment connecting points (xh l-ju) and (x2,1), where 0< x1? x2 < 1 and by S a 
short line segment connecting points (x3,0) and (x4,1), where 0 < x3, x4 < 1. The four graphs of 
Figure 2 show some examples of line segments of these two types, where the subscripts + and -
label line segments with positive and negative slope, respectively. 
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In fact, as will be shown, we need only consider an Iterate of line segments of type L and type 
S; hence, we now discuss 7M(h(x)) and Tw(S(x)), where L(x) and S(x) are linear functions 
whose graphs are long and short segments. Using 1^(0) = 1, TM(l) = l-ju, and T / / ( l - / / ) = 0, 
Figure 2(a) then shows that a line segment L+ connecting points (x1? 1-//)- and (x2,1), after one 
Iteration, is folded into two line segments, of which one connects points (x1? 0) and (x0,1), i.e., an 
S+, and the other connects points (x0,1) and (x 2 ,1 - / / ) , i.e., an L_, where (x0,0) is the 
intersection point of the line segment L+ with the x-axis. Therefore, an L+ after one iteration 
goes to an S+ and an L_, we denote this by TM:L+ -> S+L_. The graphs of Figure 2(b), 2(c), and 
2(d) show an Iterate of a line segment of type L_, S+, and S_, respectively. From these, we 
conclude that the action of this map on line segments of these four types Is described as: 

T ^ L + ^ S + L -

S+->L_ 
S _ ^ L + 

TM then acts as a discrete map for L and S. If we are only to count the number of line segments in 
a graph—we need not distinguish L+ from L_, S+ from S_, and LS from SL—then (3) can be 
expressed more simply as: 

T , : L - ^ L S 

S - > L 

From (4), we have the following results. 

Proposition 2.2: The graph of y - T^\x) in the range 0 < x < 1 contains line segments of only 
two types, type L and type S, and the total number of these line segments is Fn+V 

Proof: Since the starting graph is a line segment connecting points (0,1) and (1,1 - ju) [see 
Fig. 1(c)], it is thus a line segment of type L. From (4), we see that, starting from an L, line 
segments generated from iterates of that are, therefore, only of two types: type L and type S. 
From (4), we also see that line segments of type L and S, respectively, are similar to those rabbits 
of type large and small in the original Fibonacci problem; hence, the numbers of line segments of 
all the graphs Tjf] would be those of the Fibonacci numbers. Therefore, we have shown an inter-
pretation of the Fibonacci sequence from the point of view of a simple iterated map. Although we 
start from a functional map T^ on a finite interval of x, however, if we take line segments as the 
entities, then TM acts as a discrete map for these entities, and the mechanism of generating line 
segments from the action of this discrete map is now the same as the breeding of the Fibonacci 
rabbits. We now let L(n) and S(«) represent, respectively, the numbers of L's and S's in the 
graph of T[f]. Then, from (4), we have 

h(n) = L(n-l) + S(n-ll 

S(w) = L( / i - l ) . U 

Equation (5) shows that L(w) = L(n -1) + L(w - 2) and S(w) = S(n -1 ) + S(/i - 2). Thus, both 
sequences {L(^)} and {$(n)} are the Fibonacci-type sequences. Since we start from an L with 
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slope - / / , we have L(l) = 1 and S(l) = 0. According to (5), we then have L(n) = Fn and $(ri) -
Fn_x, where Fn is the 72th Fibonacci number, and the |slope| of each line segment in the graph 
of T[f] is jun. Therefore, the total number of line segments in the graph of Tjf] is L(n) + S(n) = 
Fn +Fn__x - Fn+l. Figure 3 shows the graph of T*5], from which we can count the number of line 
segments as being F6 = 8. 

FIGURE 3 

In [1] there is an interesting theorem stating that limw_»oologC(>f, ju)/n = log ju, where 
C(n, ju) is the number of line segments of the graph y - f[n](x, ju) and ju is an arbitrary parameter 
value. In our case, C(n,ju) = Fn+l and // = (l + V5)/2, so using the well-known formula 
Fn = (//"-(1 -//)")/V5 we can easily calculate that X\mn^\ogC{n,ju)In is indeed the value 
log//. 

Proposition 2.3: A simple identity, juFn + Fn_x = jun. 

Proof: In the graph of T*?\ we have F„ long line segments and Fn_l short line segments, and 
the |slope| of each line segment is ff. We denote by d(L,n) andrf(S, n), respectively, the pro-
jection length of a line segment of type L and type S on the x-axis in the graph of T "̂]. We then 
have d(L, ri) = (ju)l~n and d(S, n) = (//)"". Since the total projection length of these Fn+l line seg-
ments in the x-axis should be 1, we have 

Frid(L,n) + Fn_1d(S,n) = l (6) 
or 

ftF„ + Fn_1 = ff. (7) 

This is a well-known identity in Fibonacci numbers; here we have derived it geometrically. 

Proposition 2.4: There are three infinite LS sequences that are invariant under three iterations of 
the map (3). 

Proof: We consider the shape of the graph of y = Tjf](x) in the range 0 < x < 1. Since all the 
shapes are from the connection of line segments of type L+, L_, S+, and S_; therefore, we can 
describe each shape in terms of an LS sequence. We let LS[T"] represent the LS sequence 
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describing the shape of the graph of y = Tjj"](x) in the range 0 < x < 1. The starting graph is 
simply L_. From (3), we have: 

LS[T!] = L_ 
LS[T2] = L+S_ 
LS[T3] = S+L_L+ 

LS[T4] = L_L+S_S+L_ , g ) 

LS[T5] = L+S_S+L_L+L_L+S_ 
LS[T6] = S+L_L+L_L+S_S+L_L+S_S+L_L+ 

LS[T"] = LS[r-3]LS[r-2]LS[T"-4]LS[T"-3] 

The last formula in (8) is for general n and can be proved easily by induction: starting from 
« = 5, we have LS[T5] = LS[T2]LS[T3]LS[T1]LS[T2], and then, after one iteration, we have 
LS[T6] = LS[T3]LS[T4]LS[T2]LS[T3], ... etc. The length of the LS[T"] sequence is Fn+l. Equa-
tion (8) shows that, after three iterations, an LS sequence will get longer but the original LS 
sequence remains. By taking n -> oo, we then have an infinite LS sequence which is invariant 
after three iterations of the map (3), since from (8) we have 

limLS[r]=limLS[T"-3]. 
»-»oo »->oo 

We denote by {T*} the first Invariant Infinite LS sequence obtained from iterates of an L_, that is, 

{T7°}=limT*3w](L_). 

We see that (I™} is invariant after three iterations of the map (S)rThere are two other invariant 
infinite sequences which we denote by {T£°} and {TJ0}, where {TJ0} is obtained from an iterate of 
{IT}, i-e., {T2

W} = T^Tr), and {%"} is from an iterate of {T~}, i.e., {%>} = T ^ } = T ^ T f } . 
Therefore, there are at least three infinite LS sequences that are invariant after three iterations of 
the map (3). Since 

{TH = T {TH = lim T^+l\h.) = lim T^(L+S_) = lim Xf^(L+), 

this means that {T2°°} can be obtained from iterates of an L+. Finally, since 

{T3-} = T {T2°°} = lim Tf+1^(L+) = lim Tf^(S+L_) = lim TJ^(S+), 

this means that {T3°°} can be obtained from iterates of an S+. Therefore, from the first few iterates 
of L+, L_, and S+, we have the following first few elements of these three infinite sequences: 

\\-\ j — 1^_ JL+o_ 0+L—JL+o—o+JL—JL+JL—JL+O_o-j-L'—l_y+JL—JU+O—o+JL'— . . . 

{T"} = L+S_S+L_L+L_L+S_S+L_L+L_L+S_S+L_L+S_S+L_L+ ... (9) 

{T3"} = S+L_L+L_L+S_S+L_L+S_S+L_L+L_L+S_S+L_L+S_S+ ... 

There is no invariant sequence with S_ as the first element since, after three iterations, S_ goes to 
L_LH.S_, the first element is now L_ instead of S_. If a sequence were an Invariant sequence, its 
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length must be infinite and its first element can only be an L+ or an L_ or an S+, and that would 
just correspond to the infinite sequences 07°}, {T2°°}, and {T3°°}; hence, there are only three infi-
nite LS sequences that are invariant after three iterations of the map (3). As a result, to arrange 
LS sequences that are invariant after three iterations of the map (3), the L+'s, L_'s, S+'s, and S_!s 
should be arranged according to the orders described in (9). This interesting phenomenon may 
have applications in genetics. The general rule for deciding the /1th entry in each of these three 
sequences is complicated; we will discuss this in the next section, where we treat a similar but 
simpler case. 

3. BAKER1 S MAP WITH /i = (1 + V5) / 2 

We now consider the easier Baker B map, which is defined by 

B„(*) = 
fJX fo r0<x< l /2 , 
/ / ( J C - 1 / 2 ) f o r l / 2 < x < l , 

(10) 

where pi is the parameter. We restrict the ranges to 0 < pi < 2 and 0 < x < 1, so that B^ maps 
from the interval [0,1] to [0,1]. Figure 4 shows the graph of B^ for // = (! + <J5) 12. 

FIGURE 4 

The interesting point of x now is x = 1/2. We require that x - 1/2 be a period-2 point of the 
map. The parameter value in this condition is easily determined to be pi - (1 + <JE) 12. Hence, pi 
is again the value of the golden mean. Using this parameter value, we have the following results. 

Proposition 3.1: The point x = 1/2 is a period-2 point of the B^ map. 

Proof: We easily see that the 2-cycle is {1 / 2, pi 12} when pi = (1 + V5) / 2. 

The starting graph in the range 0 < x < l is y = B//(x) (see Fig. 4). It consists of two parallel 
line segments: one connecting points (0,0) and (1/2, pi 12); the other connecting points (1/2,0) 
and (1,pi/2). We denote by L a long line segment connecting points (xx,0) and (x2,pi/2), 
where x2>xv and by S a short line segment connecting points (x3,0) and (x4,1/2), where 
x4 > x3. Figure 5 shows some examples of line segments of these two types. 
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3̂ *4 (b) 

FIGURE 5 

The graph of y - B^(x) then contains two parallel line segments of type L with slope ju. 
Using B^(0) = 0, BA(1 / 2) = ju 12, and B(> / 2) = 1 / 2, Figure 5(a) shows that a long line segment 
connecting points (x1? 0) and (x2,ju/2), after one iteration, splits into two line segments, of which 
one is a long segment connecting points (xl30) and (x2,ju/2) and the other is a short segment 
connecting points (x0, 0) and (x2,1/2), where x1<x0<x2 and B//(x0) = 1/2. Figure 5(b) shows 
that a short line segment connecting points (x3,0) and (x4,1/2), after one iteration, goes to a 
long segment connecting points (x3,0) and (x4,ju/2). From these, we conclude that the action of 
this map on line segments of these two types is described as: 

B ^ L - ^ L S 

B^ is then also a discrete map for L and S. From (11), Proposition 3.2 follows immediately. 

( i i ) 

Proposition 3.2: The graph of y = B^](x) in the range 0 < x < 1 contains line segments of only 
two types, type L and type S, and the number of these line segments is2i^+1. 

Figure 6 shows the graph of BĴ ]. We can count the number of line segments in this graph to 
be 2F5 = 10. 

Proposition 3.3: A simple identity, juFn + Fr!_l = jun. 

Proof: The proof is similar to the triangular T̂  map with // = (! + V5) / 2 in Proposition 2.3. 
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Mr Bl4J(!) /. = (HVTl/2 

FIGURE 6 

Proposition 3.4: There is an infinite LS sequence which is invariant under the action of map (11). 

Proof: We denote by LS[B"] the LS sequence describing the shape of the graph y =B^](x) 
in the range 0 < x < 1 / 2. From (11), we have the following results: 

L S P ^ L 
LS[B2] = LS 
LS[B3] = LSL =LS[B2]LS[B1] 
LS[B4] = LSLLS 
LS[B5] = LSLLSLSL 

= LS[B3]LS[B2] 
= LS[B4]LS[B3] 

(12) 

LS[B"] = LSp^lLStB"- 2] 

The length of the LS[B"] sequence is Fn+l. Equation (12) shows that, after one iteration, an LS 
sequence gets longer, but the original LS sequence remains. By taking n-> oo, we then have an 
infinite LS sequence which is invariant under the action of map (11) since, from (12), we have 

limLS[B"]=limLS[B"-1]. 
W-»00 W-»00 

We denote by {B°°} the infinite LS sequence obtained from iterates of an L, that is, 

{B°°}=limB[;](L). 

We see that {B00} is invariant under the action of map (11). It is impossible to have an invariant 
sequence with S as the first element. Therefore, we have only one infinite LS sequence that is 
invariant under the action of map (11). Therefore, from the first few iterates of L, we have the 
following first few elements of this infinite sequence: 

{B00} = LSLLSLSLLSLLSLSLLSLSL ... (13) 

Thus, to have an invariant LS sequence, the L's and S's should be arranged according to the order 
described in (13). We shall discuss this special symbol sequence in more detail. Denoting by 
B(k) the k^ element of this sequence, then, from (13), we have B(k) = L for k = 1, 3, 4, 6, 8, 9, 
11, 12, 14, ..., and B(k)= S for k = 2, 5, 7, 10, 13, 15, ... . It would be interesting to find a way 
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of determining that B(k) is an L or an S for a given k. So far, we have not obtained a simple 
formula for this, except for the following descriptions that are based on the following theorem. 

Theorem: For k >3, B(k) = B(d), where k = d + Fn(k) mdFn(k) is the largest Fibonacci number 
that is less than k. 

Proof: Suppose Fn^ is the largest Fibonacci number that is less than k, and let d - k - Fn^. 
Then Fn^ <k<Fn^k)+l. Using the property that the length of the LS[B"] sequence is Fn+l, this 
k^ element is then in the LS[B"(A::)] sequence. Since Fn^ < k, and using also the property that 

LS[B"] = LStB^JLSITB"-2] = (LS[BW-2]LS[B"-3])LS[B"-2], 

we find that the k^ element in the LS[Bw(^] sequence is equivalent to the (k-F^^f1 element in 
the LS[B"W-2] sequence. We then have the result that B(k) = B(k - Fn{k)) = B(d). 

The determination of B(k) is then reduced to the determination of B(d); we call this the 
reduction rule. According to this reduction rule, we may reduce* the original number k down to a 
final number dk with dk = 1 or 2, that is, 

n{k) 
k - ^cnFn = dk, where cn - 0 or 1, and dk - 1 or 2. (14) 

Equation (14) means that, for a given number k > 3, we subtract successively appropriate differ-
ent Fibonacci numbers from k, until the final reduced number, dk, is one of the two values {1,2}. 
B(k) is then the same as B(dk). We call dk the residue of the number k. We conclude that 

B(k) = B(dk). (15) 

Since B(l) = L and B(2) = S, we have 

fB(*) = L, ifdk = l, 
[B(k) = S, ifdk=2. K } 

For example, if we are to determine B(27), then as 27 = Fs + 6 and 6 = F5 +1, we have B(27) = 
B(6) = B(l) = L. The method of reducing a number k down to dk mentioned above is unique. 
We note that if B(k) = S, then B(*-1) = B(k +1) = L, since if dk=2, then the coefficient % in 
(14) must be zero; otherwise, we would have d = 4, and then dk = l from the reduction rule. 
This contradicts dk=2; hence, k = Z^c n F n + 2. Therefore, 

n(k) n{k) n(k) 
k-\=^cnFn + \ and * + l = Xc„F„+3= Y,c„Fn + \; 

n=4 «=4 n=3 

hence, B(k -1) = B(l) = L and B(k +1) = B(l) = L. As a result, the two neighbors of an S in the 
sequence must be L's, or there are no two successive elements that are both S's. On the other 
hand, if B(Ar) = L, it is possible that B(k +1) = L. This occurs when k can be reduced to 3, that is 
k = Tn

rj
(*5

)cnFn+3, we see that B(Jfc) = B(3) = L and B(* + 1) = B(4) = L. Now, since 
k + 2 = J$QcnFn+2, we have B(A + 2) = B(2) = S; therefore, it is impossible to have three 
successive elements that are all L's. We present the following table: 
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dk B(k) k 
(dk = \) L| 1 3 4 6 8 9 11 12 14 16 17 19 21 22 ... 
(dk = 2) Sj 2 5 7 10 13 15 18 20 23 ... 

Since the two neighbors of an S are L's, it is better that we use the first three elements as the 
set of residues. That is, we start from B(l) = L, B(2) = S, B(3) = L, and then we have 

fB(*) = L, if^ = lor3 , 
\B(*) = S, if<4=2. *• ; 

For the case B(&) = S, we would expect that B(k -1) = L, with dk_l = 1, and B(k +1) = L, with 
dk+l = 3; however, this is not so. For example, when k = 5, B(5) = S, and according to the 
reduction rule, we have 4 = F4 + 1, so B(4) = L and d4 = 1; but 6 = F5 +1, so B(6) = L and d6 = 1 
not 3. Instead, if we now write 6 = F4 + 3 and assign d6 = 3, then we would obtain the same 
result: B(6) = B(3) = L. This shows that we may assign d6 as either 1 or 3. Numbers whose 
residue can be assigned as either 1 or 3 are 

k = YJc„Fn + 6, c„ = 0orl . (18) 
n=6 

This enables us to present the following table: 
dk B(k) k 

(dk = l) L| 1 4 6 9 12 14 17 19 22 25 27 30 ... 
(dk = 2) S| 2 5 7 10 13 15 18 20 23 26 28 31 ... 
(dk=3) L| 3 6 8 11 14 16 19 21 24 27 29 32 ... 

The first, second, and third lines are, respectively, for those k with dk = 1,2, and 3. We note that 
numbers, such as 6, 14, 19, 27, ... etc., appear both in the first and third lines. From (17), we see 
that there are two cases, dk = 1 ordk -3, for B(k) being an L, and only one case, dk=2, for 
B(k) being an S. Therefore, naively, we would think that the ratio of the total number of k with 
B(k) = L to that with B(k) = S is 2; however, this is due to the fact that we have made the double 
counting on those numbers of the form (18). Without the double counting, the ratio should be 
less than 2; indeed, the actual ratio is the golden mean «1.618 < 2. It can be seen from (12) that 
the length of the LS[n] sequence is Fn+l, and that among the elements in this sequence there are 
Fn L's and Fn_x S's. Therefore, the asymptotic ratio is 

lim(F„//v1) = (l + V5)/2. 
n-><x> 

We also have the following results: 
(1) If B(k) = S, then B(k -1) - B(yfc +1) = L. 

(2) If B(/t) = L and k is of the form (18), then B(/t +1) = B(yfc -1) = S. 

(3) IfB(k) = Landk is not of the form (18), then<̂  k v ' v ' ' 
v ' |for<4 = 3, B(/t + l) = LandB(jfc-l) = S. 
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4. A FINAL REMARK 

In a triangular map, requiring that x = 0 be a period-3 point determines ju = (14- V5) / 2 = E3, 
and we find the Fibonacci numbers in this map. This is not an accident, since E3 is not an 
arbitrary number but, in fact, equals hmn^ao(Fn/Fn_l)9 the limit ratio of the Fibonacci sequence. 
We can generalize the above results by requiring that x = 0 be a period-m point [3]. This then 
determines a unique parameter value ju = I,m in the range Zm_l <ju<2. Correspondingly, the 
numbers of line segments in a triangular map with ju = I,m are those of the Fibonacci numbers of 
degree m. These are not accidents either, since Sw in fact equals X\mn_^wF^m') IF^, the limit 
ratio of the corresponding generalized Fibonacci sequence, where F^ is the w* Fibonacci 
number of degree m. The same applies also to Baker's map with ju = Ew. Therefore, following 
the same methods used in this paper, one would also obtain a simple identity and some invariant 
sequences from these two maps with ju = I,m. 
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1. INTRODUCTION 

For a given index n, this paper presents an alternative way of computing Fn. Instead of using 
addition only, F„. can be computed using addition, multiplication, and formula (2) below. The 
formula has a parameter k, and this paper finds such k that minimizes the number of arithmetic 
operations required to calculate Fn. In this paper, it is assumed that n is large enough that Fn is 
not stored in a single computer word but, rather, is represented as an array of BITS. 

2. BASIC PROPERTIES 

In this section we present some relevant features of Fibonacci numbers. 

Lemma 1: 
F(i, j , k) = Lk* F(i, j - 1 , *) + (-l)<k+1> * F(i, j - 2, k), (1) 

where F(i, j , k) denotes the value of the Fibonacci number that occupies the (/, j) position of a 
matrix when the Fibonacci numbers are arranged, k elements in a column, or 

Fn+k=Fn*Lk+{-\)M*Fn_k, (2) 

where k denotes the number of elements in one such column, Lk represents the Lucas numbers, 
and n is arbitrary. 

Proof: From [1], we have 

F„ = (a"-P")lS, (3) 

where a = (1 + S) 12 and /? = (1 - S) 12. It is obvious that ji = -1 / a; thus, 

Fn = (a"-(-iy*a'")/S. (4) 
Also, it is known that 

Therefore, 

Lk ={ak+pk) = ak+ (-1)* * {ayk. (5) 

Fn+k = (<*n+k - H)"+k * a"-k) 141, (6) 

F„ * Lk+(-\)k+l * F„_k = (a"+k - (-1)" * ak-" + (-l)ka"-k - {-\)n+ka-"-k 

- (-lfa"-k + (-\)"-k+k
a-(n-k)) 145 (7) 

= (a"+k-(-iy+k*a-"-k)/45=Fn+k. 
Q.E.D. 
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The importance of Lemma 1 is that Fn can now be calculated by using multiplication along 
with addition. In order to minimize the effort of calculation, we have to calculate the addition 
effort and the multiplication effort. This is done in Lemmas 2 and 3. 

Lemma 2: 0(X+Y) = 8 *MIN(LOG2(X),LOG2(Y)), where X and Y are arrays of binary 
digits, 8 is at most 7, and 0(X+Y) denotes the number of arithmetic operations that are per-
formed when adding X to Y. 

Proof: The addition algorithm is: 
CARRY = 0. 

For i = 1 to MIN(LOG2(X), LOG2(Y)), 

TEMP = (X(i) XOR Y(i)) XOR CARRY (2 operations) (8) 

CARRY = (X(i) AND Y(i)) OR (X(i) AND CARRY) (9) 
OR (Y(i) AND CARRY) (5 operations) 

Y(i) = TEMP 
END 

At the end of the process, the result is found in Y. The number of operations in the loop (8), (9) 
is 7. This will be referred to later as 8. The loop is executed MIN(LOG2(X), LOG2(Y)) times. 
This immediately proves Lemma 2. Q.E.D. 

Lemma 3: 0(X * Y) = 8 * LOG2(X) * (One (Y) -1), where X and Y are arrays of binary digits, 
One(X) denotes the number of l's in the binary representation of X, and 0(X * Y) is the number 
of operations that are performed when multiplying X by Y. 

Proof: The following algorithm performs the multiplication: 
Set Z to ZERO (Z is the result array) 
Set SHIFT to ZERO 
For i = 1 to LOG2(Y) 

WHILE Y(i) = 0 
i = i+ 1 

SHIFT = SHIFT + 1 
END 
IF SHIFT > 0 

ADD(X, Z, SHIFT) [see (12)] (10) 
SHIFT = SHIFT +1 (11) 

END 
END 

1996] 437 



OPTIMAL COMPUTATION, BY COMPUTER, OF FIBONACCI NUMBERS 

ADD(X, Z, SHIFT) is an addition algorithm that adds X to Z, (12) 

such that X(l) is added to Z(SHIFT), X(2) is added to Z(SHIFT + 1), etc. The result is stored in 
Z. 

Since the main arithmetic effort of the multiplication (10) is executed (One (Y) -1) times, 
and each execution "costs," according to Lemma 2, 8*LOG2(X) operations. The number of 
operations is 0(X * Y) = 5 * LOG2(X) * (One (Y) -1). Q.E.D. 

Lemma 4 computes log2(Fn) while Conjecture 1 computes Om(Lk). 

Lemma 4: Log2(i^) = (log2 a) * n, where a - (1 + J5) / 2. 

Later, we shall refer to log a as 2A (approximately 0.69). 

Proof: Fn = ~~ a ** nlS ([1], p. 82; Eq. (15) below); log2(F„) = ~~ log2 a*n = 2A*n. 
Q.E.D. 

Conjecture 1: One(Z„) = ~~ Xn. For example: 

n 
One(2„r 

1192 
402 

1193 
429 

1194 
408 

1195 
412 

1196 
437 

1197 
448 

1198 
435 

1199 
417 

1200 
406 

This paper claims that the conjecture is true, without proof; it was found by calculating Fn for 
large numbers using a computer. We can see that One(Z„) has "Ups" and "Downs" but, in gen-
eral, it fits the above formula. 

2. MINIMIZING 0(Fn) 

Assume, for simplicity, that n = k*l, \ = nlk * According to (2), the following algorithm 
computes Fn: 

Compute F0 up to Fk+l. In this way, Lk is already computed. 
[The required number of operations for this computation is 

k 
Y,2ZSj=AS(k2+k) 

(see Lemma 2 and Lemma 4).] 

For/ = l t o ^ - l , 

Temp = î k* 4 -
[The required number of operations for this computation is 

t-\ i-\ 
lkl%5Ya f ~ 2kXSH f = ^ 5 < n ~k)~ XSn(n ~ k ) l k 

(see Lemma 3 and Conjecture J)]. 

* Although the setting n = k * 1 seems arbitrary, it was found by running a computer program that the optimal k is 
(1/6)/?, which is very close to our result Xnl2-~~ 0.1 In. 
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FQ+l)k = Temp + (-1)*+1 * F(i_l)k [see (2)]. 

[The required number of operations for this calculation is 
l-l £-1 £-1 

J Z lo§2 Temp = 5^ !og2 Fik + Sj^ log2 Lk 
1 = 1 7 = 1 7 = 1 

= SAn(n-k)/k + SM(n-k)/k 
= SAn(n~k)/k + SAn-SM.] 

END. 

The total number of operations Is given by 

0(Fn) = yLJ(A2 + *) + A2Sn(n -k) + 8An-ASk. (13) 

In order to find the optimal k, we derive, by (13), 
AS(2k + l)-A2Sn-AS = Q; 

k = An\2. (14) 

3. COMPARISON 

Substituting the optimal k: An \2 in (13) yields 

0(FW) = A5(AV / 4) + A2Sn(n -An/2) + SAn- ASn212 
= SA3n2/4 + SA2n/2 + 8A2m2-SA3n/2 + SAn-SA2n/2 (15) 
= ~~ SA2m2, 

where the bold terms represent the significant terms. 
On the other hand, the computation of Fn in the regular way needs 

0(Fn) = 2<W(l + 2 + 3 + ».+w-l) 
= 2<5a(l + w-l)(w-l)/2 (16) 
= ~~ SAn2 

(see Lemma 2). 
The ratio between the expression in (15) and that in (16) is A. This means that the proposed 

method is 1 / A (approximately 2.88) times more efficient than the regular method. 

REFERENCE 
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For more than thirty years, several 2-by-2 matrices have been used to discover properties of 
classical or generalized Fibonacci and Lucas sequences. The references [l]-[6] and their bibli-
ographies provide a few landmarks for this area of study. 

However, no one seems to have addressed the following problem: Given a linear second-
order sequence (un) defined by an arbitrary recursion on the complex field, 

W / r i . 2 - / ^+ l + Wi=°» ( R 1 ) 
and arbitrary initial values u0 and ul9 is it possible to program the general 2-by-2 matrix on the 
complex field, that is, to set the entries of 

A = 

in such a way that at least one of the entries of 

A" = 

a b 
c d 

c„ dK 

be un for any n > 0? 
This could be useful to study the general sequence (un) as it was for the classical or general-

ized Fibonacci and Lucas sequences recently in [5] or [6]. 
This note proves that the answer to this question with such a general scope is "no," and also 

shows that by introducing some slight restrictions, it is possible to program A in such a way that 
both the entries an and d„ bear a close relationship to u„. 

Lemma 1: If we set p = a + d and q- ad -he in (Rl), then 

AnJlh+W-d)Fn bF„ ) 
-{ cFn ±Ln-±(a-d)Fn)> W 

(Ln) and (Fn) being, respectively, the Lucas and the Fibonacci sequences for (Rl) . 
Formula (Fl) is easily proved by first showing by induction that 

An(Fn+l-dFn hFn 
V cFn Fn+l-aFn 

and then using Ln = 2Fn+l - pFn = 2Fn+l - (a + d)Fn to obtain the form (Fl). 
Obviously, when considered as functions of w, all the entries are sequences satisfying (Rl) . 

From this formula, it is clear that: 
1. whatever the coefficients p and q, we can always find a, b, c, and d as to obtain p = a+d 

and q-ad-bc. In fact, there are infinitely many solutions for a, b, c, and d\ 
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2. we cannot obtain at will an arbitrary sequence for the entries (b„) or (c„), since they must be 
proportional to the Fibonacci sequence for (Rl); 
In the remainder of this paper, we shall assume that/? and q are arbitrarily chosen. As for the 
other entries, we have 

Lemma 2: If (un) is a sequence satisfying (Rl) and such that u0 * 0, and if a, b, c, and d satisfy 
the following equalities, 

a = ul/u0i d = p-a, hc = ad-q, (E) 

then for any « > 0 w e have the formula: 

An = 
<± bFn

 A 

uQ n 
cF„ L„ 

(F2) 
" 0 / 

Proof: The proof is necessary only for an since, for the other entries, the result will be the 
consequence of (Fl). Since both (an) and (un)/u0 satisfy (Rl), it is sufficient to show that they 
coincide for two consecutive values of n. For n = 1, they coincide by construction. For T? = 2, we 
have a2 = a2 + be = a2 + a(p-a)-q = pa-q; but since a = ul/uQy we find by applying (Rl) that 
a2 - u2l u0. Q.E.D. 

For a given recurrence (Rl) and a given sequence (un) satisfying the conditions for the 
theorem, there are infinitely many corresponding matrices A since b and c are required only to 
satisfy bc-ad-q. 

We could also have programmed dn similarly by exchanging a and d in the above set of 
equalities (E). 

These results may be summarized into the following theorem, which is the main aim of this 
paper. 

Theorem 1: 
(a) Let (Rl) be the general second-order linear recurrence on the complex field, un+2 - pun+l + 
qun - 0, and (un) any sequence satisfying (Rl) and such that u0 * 0. Then a necessary and suffi-
cient condition for all the entries of A" considered as functions of n > 0 to satisfy (Rl) and for the 
entry (an) to be (un) I u0 for any n > 0 is that 

a-uxlu^ d = p-a, bc-ad-q. 

(b) The other entries of An are then determined, once b and c have been individually chosen in 
accordance with the above equalities, by 

bn = bF„, cn=cFn, dn = Ln-unluQ, 

where Ln and Fn are, respectively, the generalized Lucas and Fibonacci sequences of (Rl). 

APPLICATIONS 

As applications of (F2), we shall derive two formulas concerning the general sequence (un) 
satisfying (Rl). 
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1. Separation of variables for um+n. 
By writing that for any positive integers m and w, Am+n = AmAn, and by equating the upper 

left entries on both sides, we obtain u0um+n = umun + (u0)2bcFmFn. 
By taking /w = « = 1, we get (uQ)2bc = uQu2 - (u^2 and the formula 

Wm+n = V « + K*f2 ~ (^l)2)^^- (F3) 
This formula has the following applications to the study of the sequence of the residues of (un) 
modulo a prime when un is an integer for any n > 0. 

Let us assume that D is a positive prime that divides uQu2-(ul)2. Then D also divides 
uoum+n ~ umun f°r anY m and n - ®> and therefore divides w0

w«+i - uxun for any « > 0. Now define 
the T transformation as: T(un) = u0un+l-ulun for any n. Then, by iterating this transformation 
D-l times, we shall prove the following theorem by exactly the same method as in [7]. 

Theorem 2: If D is a positive prime that divides u0u2 - (u^2 and is relatively prime to u0, then the 
sequence of the residues of (un) modulo D is either constant or periodic with period D-l. 

Thanks to the formula, un+m+1 = t£n+lFm+l - qunFm (which can be proved by an easy recursion), 
and using the method of the iterated T transformation given above, we can prove 

Theorem 3: If D is a positive prime that divides Fm, then the sequence of the residues of (un) 
modulo D is either constant or periodic with period m(D-l). 

This latter property is shared by any sequence of integers satisfying (Rl), since we made no 
assumption on the values of any un, which was not the case for the former property. So there 
exist at least two kinds of periods for the sequences of the residues of (un) modulo a given prime: 
the universal periods depending only on the value of the prime and which exist for any (un), and 
particular periods depending also on the initial values of the sequence considered. For instance, 
if (Ln) and (FJ are the classical Lucas and Fibonacci sequences, the shortest period modulo 5 for 
(Ln) is 4, in accordance with the fact that 1^1^ - (I^)2 = 5, while the shortest period modulo 5 for 
(Fn) is 20, this number also being a period [not necessarily the shortest one, as shown by (Ln)] 
for any sequence (un), in accordance with the fact that for m = 5 we have D = 5 as divisor of Fm 

and that m(D -1) = 20 in that case. 

2* Since the w* power of the determinant of a square matrix is the determinant of its nth power, 
and the determinant of A is q, we obtain, from (F2): 

{uQu2 - (utfKFJ2 + {unf + q"(u0f = u0unLn. (F4) 

This proves, for instance, that if, for any n > 0, all the sequences involved in this formula are made 
up of integers, and if, for a given «, the integer D divides both u0 andi^, then it also divides un. 
Since, for any integer m>l, Fn divides Fmn, D also divides Fmn and therefore umn. 

Theorem 4: Any divisor D of uQ generates a sequence of zero residues of (un) mod D with a 
period equal to the entry point ofD in (Fn). 

[This does not mean that all the zero residues of (un) mod D are located in this sequence.] 
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Formula (F4) also shows that any common divisor of uQu2-{u^f and un9 if also relatively 
prime to w0, is a divisor of q. Therefore, if q - ±1 for any n > 0, uQu2 - (iij)2 and un are either 
prime to each other or share a common divisor with u0. Then if (Ln) is the generalized Lucas 
sequence of (Rl), since we have I^Lj-^)2 = A =the discriminant of (Rl), and 1^ = 2 always, 
we can state the next theorem. 

Theorem 5: If q - ±1 for any n > 0, then Ln is relatively prime to the discriminant of its recur-
sion (Rl), provided that this discriminant is odd. 

This generalizes the well-known property of the classical Lucas sequence regarding 5. 
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1. INTRODUCTION 

Filipponi and Freitag [1] obtained the Zeckendorf representation FknIFn for k, n>\ and 
showed that its form depends on the parity of n and the congruence class of k modulo 4. These 
representations were not deduced directly, but were conjectured from numerical evidence. The 
purpose of this note is to present a constructive proof of these results. An important intermediate 
step in our proof, which is of interest in its own right, is to obtain the Zeckendorf form for the 
difference of two Fibonacci numbers. 

2. A SUBTRACTION ALGORITHM 

Theorem: For n, k > 1, 

[*/2] [0, &even, 

r=i l/Vi, ^odd, 

where [x] denotes the greatest integer not greater than x and, when k = 1, the empty sum denotes 
zero. 

Proof: We will show by induction on k that (1) holds for k > 1 and all n > 1. First we note 
that (1) holds for k = 1 and for k = 2 and all n > 1. We now write 

Fn+k+2 ~Fn = Fn+k+l + {Fn+k - F„). 
Thus, from (1), 

[ ^ [0, &even, 
[Fn_h k odd, 

and hence 
[k£PL [0, k even, 

1/U £odd. 

Fn+k+i ~~Fn- Fn+k+l + 2^Fn+k+l_2r + < 

[A:/2]+l (Q 

-Tn+lc+2 ~ ^n~ 2^ ^n+k+3-2r + | , 
r=\ I1 

We have shown that if (1) holds for some k > 1 it also holds for k + 2 and, since (1) holds for 
k = 1 and k = 2 , it holds for all £ > 1. • 
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3. THE MAIN RESULT 

Let us replace Fkn and Fn by their Binet forms to give 
F sykn Rkn k 

f-^r = Z^)n^1)n- (2) 
rn a -p s=l 

We may combine the terms of the latter sum in pairs and use the relation a/3 = -l, writing 
a(k-r)nn(r-l)n +a(r-l)nn(k-r)n __ / ^\(r-l)n/a(k-2r+l)n + n(k-2r+l)n\ __ /_ | \ ( r - l ) /7£ 

for \<r<[kl 2], to express the right side of (2) in terms of Lucas numbers. The result clearly 
depends on the parity of £, and we obtain 

^=iHri)nw.)»+l ' I (3) 
bn r=i L0' A: even, 

for k > 2. This combines two formulas quoted in Vajda [2, p. 182]. We now derive the Zecken-
dorf form of Fknl Fn from (3) as follows. First, for n even we have, on replacing each Lm in (3) 

Fk _ l ^ ] \F2, A odd, 
-fn = LCVw+. + V ^ - . H j ^ êven> (4) 

which is in Zeckendorf form. (See Filipponi & Freitag [1, formulas (2.1) and (2.2)].) 
For n odd, more effort is required. First we obtain from (3) that 

F [k/2] l(-\){k~l)/2 k odd 

^ - K - D ^ V ^ D ^ I } ' ! (5) 

Fn ;rj y } [0, &even. 
Because of the alternating signs in (5), we need to group the terms in pairs, as far as possible. 
With k>4, the first pair in (5) is 

^{k-\)n ~ ^{k-3)n ~ F(k-\)r*\ + ^{k-\)n-\ ~ ^(k-3)n+l ~ ^(k-3)n-V W 

On using the above "subtraction algorithm" to combine the second and third terms on the right of 
(6), we derive 

L(k-l)n ~ ^{k-3)n = ^Jfc-l)/i+l +1 Z^^\k-l)n-2s \~ F(k-3)n-l> 

from which we obtain the Zeckendorf form 
(n-2 \ 

^{k-l)n ~ ^{k-3)n ~ F{k-\)n+\ + L^^{k-\)n-2s + F(k-3)n+l + F(k-3)n-2 • 
\s=l J 

For a general pair of terms on the right of (5), we have the Zeckendorf form 
fn-2 \ 

^(k-4r~l)n ~~ ^Xk-4r-3)n ~ *\k-4r-l)n+l ~H 2^ *\k-4r-l)n-2s + ^(k-4r-3)n+l + ^{k~4r~3)n-2 • 
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Thus, for n odd, it is clear that the transformation of (5) into Zeckendorf form depends on 
whether [k 12] is odd or even; that is, the final form depends on the residue class of k modulo 4. 
First, for k - Am and n odd, we obtain 

kn = Z(V 
r=l 

and thus 

say, where 

4r+3)n L(k-4r+l)> 

1 kn _ c 

>) 

[Jfc/4]-l f 

r=0 

fn-2 
1 (k-4r-l)n+l + 2^ ^(k-4r-l)n-2 

\s=l 
' ^(k-4r-3)n+l + ^{k-4r-3)n-2 

(?) 

(8) 

We similarly work through the other cases, where n is odd and k = 1,2, and 3 (mod 4). In each 
case, the "most significant" part of the Zeckendorf form is Skt„, defined by (8). The precise 
Zeckendorf form is 

kn 
- Sk,n+ek,n> (9) 

where the least significant part of the Zeckendorf sum is 

ek,n = < 

k = 0 (mod 4), 
* s l (mod4), 
k = 2 (mod 4), 

J2> 

n-l 
F2n+l + Z F2n-2r, * s 3 ( m o d 4 ) . 

(10) 

r=l 

Thus the Zeckendorf representation of Fkn I Fn is given by (4) for n even and by (9) and (10) for n 
odd. 

Note added in proof : The relation (1) above appeared earlier in Filipponi [3]. 
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1. INTRODUCTION 

In [12] we showed how to algorithmically prove all polynomial Identities involving a certain 
class of elements from second-order linear recurrences with constant coefficients. In this paper, 
we attempt to extend these results to third-order linear recurrences. 

Let (Sn) be a sequence defined by the third-order linear recurrence 

S„ = pSn_1+qS„_2+rS„_3, (1) 
where r * 0. We will consider three special such sequences, (Xn\ (Yn), and (Z„), given by the 
following initial conditions: 

X0 = 0, * 1 = 0, X2 = l; 
YQ = 0, Yx = \ Y2=0; (2) 
Z0 = \ Z1 = 0, Z2=0. 

These initial conditions were chosen so that the three sequences form a basis for the set of all 
third-order linear recurrences with constant coefficients, and because they will allow us (in a 
future paper) to generalize our results to higher-order recurrences. These three sequences also 
have nice Binet forms. 

Given any sequence (Sn) that satisfies recurrence (1), we can write its elements as a linear 
combinaition of Xn, Yn, and Zw, namely, 

S^S^+S^ + SoZ,,. (3) 

Thus, it suffices to show that we can algorithmically prove any identity involving Xn, Yn, and Zn. 
The sequence (Sn) can be defined for negative values of n by using recurrence (1) to extend 

the sequence backwards or, equivalently, by using the recurrence 

S_„ = (-qS.^ - pS^2 + S_„+3) IT. (4) 

A short table of values for Xn, Yn, and Zn for small values of n is given below: 

n 
xn 
Yn 

zn 

-2 
-qlr2 

{pq + r)lr2 

(q2 - pr) 1 r2 

-1 
\lr 

-pi r 
-qlr 

0 
0 
0 
1 

1 
0 
1 
0 

2 
1 
0 
0 

3 
P 
(I 
r 

4 
p2+q 
pq+r 

pr 

5. 
p3 + 2pq + r 
p2q + pr + q2 

r(p2+q) 

The characteristic equation for recurrence (1) is 

x3-px2-qx-r = 0. (5) 

Let the roots of this equation be rhr2, and r3? which we shall assume are distinct. The condition 
that these roots are distinct is that A, the discriminant, is nonzero. That is, 

1996] 447 



ALGORITHMIC MANIPULATION OF THIRD-ORDER LINEAR RECURRENCES 

A2 = Oi -r2)2(r2 -r3)2(r3 -rj2 = p2q2-21r2 + 4q3-4p3r-ISpqr > 0. (6) 

The Binet forms for our sequences are given by: 

X„ = Atf + Brf + Crf, 
Y^Atf+Btf + Crf, (7) 

where 

i~~ i \t \> i — i \i \ ' i— 

(ri - ri)(r\ ~ h)' (r2 ~ rs)(r2 ~ ri)' (r3 -1)03 - h)' 
A = -(%+%) B = -fe+rj) c = -fo+fr) . ( 8 ) 

(l-'iX'i-'s)' 2 (r2-'3)(jr2-'i)' 2 ( r 3 - r l ) ( r 3 - r 2 ) ' 

^ _ r2r3 £ _ r3rl £ _ V2 
3 (n-r2)(ri-r3y 3 (r2-r3)(r2-rx)' 3 (r3 - r^ - r2)' 

Another sequence of interest is 
^, = *„+2 +Yn+l + Z„ = pXn+1 +2qXn + ?>rXn_x = (p2 + 2q)X„ + pYn + 3Z„ 

because W„ has the Binet form 
Wn=r"+r2"+r3". (9) 

We can solve the equations in (7) for the r". We get 

r2» = r2
2Xn+r2Yn + Zn, (10) 

This idea was suggested by Murray Klamkin. It also follows from Lemma 1 of [11]. These 
equations let us convert an expression involving powers of ri, where a variable n occurs in the 
exponents, to expressions involving Xn, Yn, and Zn. 

From the relationship between the roots and coefficients of a cubic, we have 
rl+r2+r3 = p, 

rfi+rft+rf^-q, (11) 
W 3 = r. 

Thus, any symmetric polynomial involving rl9r2, and r3 can be expressed in terms ofp, q, and r. 
An algorithmic method (Waring's Algorithm) for performing this transformation can be found on 
page 14 in [5]. 

An explicit formula for Xn in terms of/?, q, and r was given in [13], namely, 

fa + b + c\„a„b„c 
a+2b+3c=n 

*n+2= I \aZVcWfr- (^ 

Similar formulas for Yn and Zn can be obtained from the fact that Yn = Xn+l - pXn and Zn - rXn_l. 
Matrix formulations were given in [17] and [20]: 
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(s^A ( Jn+2 

V S" J 

-\ P <7 
1 0 0 
0 1 0 

"fs2 
(13) 

w Y 
\z») 

-
(p i ô  
q 0 1 

[r 0 Oj 

n-2 (\\ 
0 

W 
and 

X, 
«+2 

n+1 
x„ 

ln+2 7 ^ 
^n+2 Zn+l 
ZJ 

= 
(P 

l 
1° 

q r^ 
0 0 
1 Oj 

n 

(14) 

(15) 

2. THE BASIC ALGORITHMS 

Algorithm "TribEvaluate" 
Given an Integer constant n, to evaluate Xn, Yn, orZn numerically, apply the following algo-

rithm: 
Step 1. [Make subscript positive.] If n < 0, apply Algorithm "TribNegate!! given below. 
Step 2. [Recurse.] If n > 2, apply the recursion: Sn = pSn_t+qSn_2 +rSn_3. This reduces 

the subscript by 1, so the recursion must eventually terminate. If w is 0, 1, or 2, use the values in 
display (2). 

Note: While this may not be the fastest way to evaluate Xm Yn, and Zn, it is nevertheless an 
effective algorithm. 

The key idea to algorithmically proving identities involving polynomials in Xan+b, Yan+b, and 
Zarj+b is to first reduce them to polynomials in Xn, Yn, and Zn. To do that, we need reduction 
formulas for Xm Ym+n, and Zm+n. Such formulas can be obtained from equations (7), (8), (10), 
and (11). 

From (10), we can compute r"+m by multiplying together r" and /;.w. Then (7) gives us Xm+ri. 
Therefore, Xn+m = 4 ( ^ , + ^ + ̂ ^ ^ ^ 
ci(r3Xn + rJn + Zn)(r3Xm + hYm + Zm)• Substituting in the values of the Al9 Bh and Q from (8) 
gives us an expression that is symmetric in rl3r2, and r3. Applying Waring's Algorithm allows us 
to express this in terms of/?, q, and r using (11). We can do the same for Yn+m and Zn+m. The 
results obtained are given by the following algorithm. 

Algorithm "TribReduce" To Remove Sums in Subscripts 
Use the identities 

*n»n = (P2 + 4)XmXn + p(XJm + XJJ + X„ZW + XWZ, + I X 
i^„ = ipq+r) JrM J r n + ? ( « + « )+ r n z w +Y m z n , (16) 
^ n - prXmXn+r{XnYm + XmYn)+ZmZn. 

These are also known as the addition formulas. 
From the table of initial values, we find that the reduction formulas can also be written in the 

form 
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Xm+„ = XAXmXn + X3(XnYm + XmYn) + XnZm + XmZn + YmYn, 
Ym+rl = Y4XmXn + Y3(XnYm + XmYn) + YnZm + 1̂ Z„, (17) 

The matrix formulation is 

y — /x, 
» 7 , 

fx4 x3 x2Yxt 
x3 x2 xx 

\%2 X X oy V
z«y 

(18) 

with similar expressions for Ym+n and Zm+n. 
If we allow subscripts on the right other than "«" and "/w", simpler forms of the reduction 

formula can be found. For example, [18] gives the following: 

\+m ~~ ^STAH-2 + ^m^n+l + A A • 
Similar expressions can be found in [7] and [17]. In matrix form, they can be expressed as 

un+m 

V 
= 

-^ro+1 

xm 
\Xm-l 

*m+l 
Ym 
Ym-1 

7 } 
7 

m Zm-iJ 

(s„+A 
k V>n-l) 

(19) 

(20) 

These formulations come from [18] and [20]. 
Algorithm "TribReduce" allows us to replace any term of the form San+b, where a and b are 

positive integers by terms of the form S„. To allow a and b to be negative integers as well, we 
can also use equation (16); however, then we will obtain expressions of the form S_„. Since we 
would like to express these in the form S„, we must find formulas for S_„. The same procedure 
we used before works again. For example, from (10), we can compute r~" as \lr". Equation (7) 
then gives X_„ = Al/(^X„+r1Y„ + Zn) + B1/(riX„+r2Yn + Zn) + C1/(r3

2Xn+r3Yn + Zn). Again we 
apply Waring's Algorithm and we get the following result. 

Algorithm "TribNegate" To Remove Negative Subscripts 
Use the identities 

X_ = PXnYn-qX2„+Y2-XnZn 

r" 
= (pq + r)X2„ -p2X„Y„ ~pY2 -Y„Z„ 

r" 
^ (q2-pr)X2-(pq + r)XnYn~qY2 +(p2 + 2q)XnZn + pYnZn +Z2 

r" 

(21) 

If we allow subscripts on the right other than W, simpler forms can be found. For example, 

X_„ = (X„+lYn - X„Yn+l) I r , 

Y-n = {XnYM-Xn+2Yn)lr\ (22) 
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3. THE FUNDAMENTAL IDENTITY CONNECTING X, Y3 AND Z 
The Fibonacci and Lucas numbers are connected by the fundamental Identity 

L2
n = SF^4(-\y. (23) 

Furthermore, it can be shown that, if f(Fn, Ln) is any nonconstant polynomial [with coefficients 
that are constants or of the form (-ff ] that is 0 for all integral values of n, then this polynomial 
must be divisible by L2

n - 5F„2 - 4(-lf. That Is, (23) is the unique Identity connecting Fn and Ln. 
A similar result holds for arbitrary second-order linear recurrences. For third-order linear re-

currences, we believe there is also exactly one fundamental identity connecting Xn, Yn, and Zn. In 
this section, we will find such an identity, but we do not prove that this Identity is unique. 

To obtain an identity connecting X„, Yn, and Z„, we can multiply together the equations in 
display (10). The result Is a symmetric polynomial in rx,r2, andr3 and can thus be expressed In 
terms of/?, q, and r. The result Is the following. 

The Fundamental Identity: 

r" = r2X3„ + rYl + Z3
n + (q2 - 2pr)X2Zn ~qrX2Jn + prXJ2 

+ (p2 +2q)XnZ2-qY2Zn +pYnZ2
n-(pq + 3r)X„Y„Zn. 

If we allow subscripts on the right other than W, simpler forms of the fundamental identity 
can be found. For example, [15] gives the following equivalent formulation: 

= rn. (25) 
Xn+2 

Ki+2 
^n+2 

Xn+\ 

Kt+l 
A i + i 

x, 
Y„ 
Zn 

4. THE SIMPLIFICATION ALGORITHM 

Let us be given a polynomial function of elements of the form Xw, Yw, and Zw, where the 
subscripts ofX, 7, and Z are of the form a^\ + a2«2 + ---+aknk +b, where b and the at are integer 
constants and the nt are variables. To put this expression in "canonical form,11 we apply the fol-
lowing algorithm. 

Algorithm f?TribSimplifyff To Transform an Expression to Canonical Form 
Step 1. [Remove sums in subscripts.] Apply Algorithm "TrlbReduce" to remove any sums 

(or differences) In subscripts. 
Step 2, [Make multipliers positive.] All subscripts are now of the form en, where c Is an 

integer. For any term in which the multiplier c is negative, apply Algorithm "TribNegate". 
Step 3* [Remove multipliers.] All subscripts are now of the form en, where c is a positive 

Integer. For any term In which the multiplier c is not 1, apply Algorithm 'TrlbReduce11 succes-
sively until all subscripts are variables. 

Step 4. [Remove powers of Z.] If any term Involves an expression of the form Z%, where 
k >2, reduce the exponent by 1 by replacing Z^ by Its equivalent value as given by the funda-
mental identity (24), namely, 
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Zl=r" -r2Xl-rY"n -{q2 -2pr)X2
nZn+qrX2

nYn-prXnYZ 
- (p2

+2q)XnZ2 +qY2Zn-pY„Z2+(pq + 3r)XriYrlZn. 

Continue doing this until no Zn term has an exponent larger than 2. 

Proving Identities 
To prove that an expression is identically 0, it suffices to apply Algorithm "Trib Simplify". If 

the resulting canonical form is 0, then the expression is identically 0. We believe that the converse 
is true as well; that is, an expression is identically 0 if and only if Algorithm 'TribSimplify" trans-
forms it to 0. A formal proof can probably be given along the lines of [18]; however, we do not 
do so. Suffice it to say that Algorithm "TribSimplify" was checked on about 100 identities culled 
from the literature and it worked every time. x A selection of these identities is given in the appen-
dix. See also [6] for a related algorithm for trigonometric polynomials. 

5. OTHER ALGORITHMS 

These algorithms can be verified by applying Algorithm "TribSimplify." 

Algorithm ffConvertToXff To Change Fs and Z*s to Xs 
Use the identities 

Yn = -pXn + X„+l9 

Algorithm f?ConvertToYf? To Changers a n d ^ s to Fs 
Use the identities 

Algorithm "ConvertToZ" To Changers and Fs toZ*s 
Use the identities 

X„ = Z„+i I r, 
Y„ = Z„-x+qZJr. 

(27) 

(28) 

(29) 

Algorithm ffRemovepqrff To Remove j?fs9 f\ and r?s 
Use the identities 

P = (X„+l-Yn)/X„, 
q = {Yn+l-Zn)IXn, (30) 
r -Zn+\l Xn. 

Algorithm "TribShiftDownl" To Decrease a Subscript by 1 
Use the identities 

Yn+l=qXn + Zn, (31) 
Zfl+l - T^n 

These can be found in [10]. 
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Algorithm ?TribStiiftUplff To Increase a Subscript by 1 
Use the identities 

Y»-i = Xn~pZJr, 
-qZJr. 

(32) 
7 - Y 

Subtraction Formulas 
Use the identities 

Xm_n = (rX„(XJm - XJ„) - {qXn + Zn)(XnZm - XmZ„) 
+ (pXn+Yn)(YnZm-YmZ„))lr\ 

Ym-n = (r(PX„ + Yn)(XJ„ - XnYm) + (pq + r)X„(XnZm - XmZ„) 
-(p(p + l)X„ - Z„)(YnZm - YmZ„)) Ir", (33) 

Zm-„ = (r2XmX2 -qrXX + prX„YJ„ + rYJ2 + q2X2Zm - prX2Zm 

~ PqXJnZm ~ rXnY
nZm ~ qY2Zm - prXmX„Z„ - rX„YmZ„ 

- rXJ„Z„ + p2XnZmZn + 2qXnZmZ„ + pYnZmZ„ + ZmZ2
n)l r". 

If we allow subscripts on the right other than simple variables, simpler subtraction formulas 
can be found. For example, [2] gives the following equivalent formulation: 

lr\ X — 
m-n 

Y = 

7 

zm 
z„ 

Zn+i 

zm 
z„ 

Ai+2 

7 
Art-1 
^n+2 

Ym 

Y„ 
K+l 

Ym 
Yn 

V f 2 

Ym 

K+i 
*n+2 

%m 

%n 

^ n + l | 

Xm 

xn 
Xn+2 

Xm 

X„+\ 
Xn+2 

Ir", 

Ir". 

(34) 

Double Argument Formulas 
Letting m = n in equation (16) gives us the following: 

X2n = (P1 + q)X2 + 2pXX +1? + 2X„Z„, 
Y2n = (pq+r)X2+2qXnY„+2Y„Z„, 
Z2„ = prX2+2rXnY„+Z2. 

(35) 

To Remove Scalar Multiples of Arguments In Subscripts 
An expression of the form Skn, where k is a positive integer, can be thought of as being of the 

form Sn+n+...+n, where there are k terms in the subscript. This can be expanded out in terms of Sn 

by k -1 repeated applications of the reduction formula (16). For example, for k = 3, we get the 
following identities: 
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X3„ = (p4 + 3p2q + q2 +2pr)X3„+3(p3 +2pq + r)X2Yn + 3(p2 +q)XJ? 
+ PY3+3(p2

 +q)X2
nZn + 6pXnY„Zn+3YX+3X„Zl 

Y3n = (P3q + 2pq2 + p2r + 2qr)X3„ +3(p2q + q2+ pr)X2
nYn +3(pq+r)XJ2 

+ qY3 + 3 (pq+r)X2Zn + 6qX„Y„Z„ + 3Y„Z2, 
Z3„ = (jtr + 2pqr + r2)X\ + 3r(p2 + q)X2Y„ + 3prXJ2 + rY3 

+ 3prX2Zn+6rXnY„Zn + Zl 

In general, we have 

Skn ~ 2~, 
a+b+c=k 

a h c 2a+byLnIn ^n? (36) 

where (a % c) denotes the trinomial coefficient -
k. 

Formula (36) can be proven by induction on 

CHANGE OF BASIS (Shift Formulas) 

Algorithm "TribShift" To Transform an Expression Involving 
xm Ym zn I s l t 0 0 s l e Evolving Xn+a, Yn+b, Zn+C 

Use identities such as 

" D 

where 

qXb+Zb 

D = 

y _ pXa+Ya Xa 
rX„ Z. U + PXa+Ya Xa 

qxb+zb Yb 

{p2+q)Xa+PYa+Za pXa+Ya Xa 
(pq + r)Xb+qYb 

prXc+rYc 

qxb+zb 
rX„ 

Yb (37) 

which can be obtained by solving the linear equations 

Xn+a = (P2 + q)XaXn +p(X„Ya + XaYn) + XnZa + XaZn + YJ„, 
Yn+b = (pq + r)XbX„ +q(XnYb+XbYn) + Y„Zb +YbZ„, 
Zn+C = prXcX„ +r{XnYc + XX) + ZCZ„, 

for Xn, Y„, andZ„. 
One can change from the basis (Xn,Yn9Zn)to the basis (Xn+a, Xn+b, Xn+C) in a similar man-

ner. Other combinations can be found in the same way. To change from one arbitrary basis to 
another, apply Algorithm "TribReduce" to transform the given expression to the basis (Xn,Yn9 
Zn). Then use one of the above formulas. 

6. TURNING SQUARES INTO SUMS 

For Lucas numbers, there is the well-known formula, 

L2
n = L,n-2{-\)\ (38) 
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which allows us to replace the square of a term with a sum of terms. To find an analog for third-
order recurrences, we can proceed as follows. 

Combining equations (21) and (35) gives us six equations in the six variables XJn, YnZn, 
XnZn, X2, Y2, and Z2. We can then solve these equations for X2, Y2, and Z2 in terms of X2n, 
Y2n, Z2m X__m Y_m and Z_n. We get the following (computer-generated) result. 

Algorithm "TribExpandSquares" To Turn Squares Into Sums 

dX2
n = rn{2(pA + 5p2q + 4q2 + 6pr)X_n + 2{p3 + 4pq + 9r)Y_n + 2(p2 + 3q)Z_ J 

+ 2(3pr - q2)X2n +(pq + 9r)Y2n - 2{p2 + 3q)Z2n, 

dY2 = rn[2(p6 4- 6 / g + 8 p V 4- 8pV 4-16pqr + 9r2)X_n 

+ 2(>5 + 5p3^ 4- 4 ^ 2 + lp2r + 3gr)y_w + 2{p4 + 4p2^ + g2 4- 6/?r)Z_ J 
4- (9r2 - p2q2 - 2q3 + 2p3r + 4pqr)X2n + (p3q + 3 M

2 + p2r + 3gr)72„ 
- 2 ( / + 4 | 7 2

9 + 9
2+6pr)Z2w? 

(39) 

(40) 

dZ2
n = rn[2r(p5 + 6p3g 4- 8/?g2 4- lp2r + \2qr)X_n + 2 r ( / 4- 5p2g + 4g2 + 6pr)Y_n 

+ 2r(p3 + 4pq + 9r)Z_n]-2r2(p2 + 3q)X2„ + r(p2q + 4q2 -3pr)Y2n (41) 
4-(9r2 - p2q2 - 4 ^ 3 + 2/?3r 4- \Qpqr)Z2m 

where J = 27r2 - p2q2 -4q3 + 4p3r + \%pqr. 
These formulas are a bit outrageous. Are there any simpler formulas? Can these be put in 

simpler form? To be more specific, we ask the following. 
Query: Is there a simpler formula than formula (41) that allows us to express Z2 as a linear 

combination'of terms, each of the form Xan+b, Yan+b, orZan+bl The coefficients may include the 
constants p, q, and r as well as the nonlinear expression rn. 

7, TURNING PRODUCTS INTO SIMPLER PRODUCTS 

For Lucas numbers, there is the well-known formula, 

LmLn = Lm+n+{-\)"Lm_n, (42) 

which allows us to turn products into sums. For third-order recurrences, there probably is no 
corresponding formula. However, there is a formula that allows us to turn products of three or 
more terms into sums of products consisting of just two terms. 

To find a formula for XmXnXS9 we can proceed as follows. From equation (7), we have 

XmXnXs = (Atf 4- A?? + Af^iM" + Atf 4- AtfXM' + **i + 4* ' ) • 

After expanding this out, replace any term of the form r/V2V3
c (with a, b, c> 0) by rsr"~sr2~sr3~s, 

which is equivalent because rxr2r3 = r. Since one of a, b, or c is equal to s, this substitution turns 
this termi into one involving the product of only two powers of the rt. Use equation (10) to 
convert powers of rhr2, and r3 back to expressions involving Xy 7, and Z. Then use Waring's 
Algorithm and equations (8) and (11) to replace Al9 A2, A3, rl9 r2, and r3 by p, q, and r. We get the 
following (computer-generated) result. 
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where 

XmXnXs - \~c%Xm+nXs — csXnXm+s - c%XmXn+s + c6Xm+n+s - CjXn+sim 

~ Cl^m+s*n ~ C3^s*m+n ~~ C7^m+rTs ~ C6*m+n*s ~ C3^n*m+s 

~~ C6*n*m+s ~ C3^m*n+s ~ C6*m*n+s ~ C5*m+n+s ~~ C6^n+s^m 
+ C5^n+s^m ~ C6^m+s^n + C5hn+s^n ~ C2^-s^m+n + C5^s^m+n 

+ 3clZnZm+s - c2XmZn+s + c5YmZn+s + 3clZmZn+s 

~-3clZm+n+s-r (-2c$Xm_sXn_s+c9Xn_sYm_s 

+ c9Xm_sYn_s - 2c6Ym_sYn_s 4- 2c4Xn_sZm_s + 2c5Yn_sZm_s 

+ 2c4Xw_,Zw_5 + 2c57w_,Zw_, + 6c1Zw_,Z„_,)]/J2
? 

q = /72^2 + 4g3 - 4p3r -18/?gr - 27r2, 
c2 = - 2 p V ~ 1 3 ^ V ~ 20g4 + Sp5r + 5 6 p V + 9 0 ^ 2 r + 54p2r2 + 135^r2, 
c3 = p3q3 + 4/?g4 - 4p4qr ~ 12/>V r + 24g3r - 24p3r2 -13 5pqr2 -162r3, 
c4 = p4q2 + 6/? V + %p4 - 4p5r - 21p3qr - 36pq2r - 21p2r2 - 54qr2, 
c5 = pch 

c6 = qcx, 
c7 - -3cxr, 
% = -p2q4 - 4q5 + 6p3q2r + 26pq3r - Sp4r2 - 36p2qr2 + 21q2r2 - 54pr3, 
c9 = -p3q3 - 4pq4 + 4p4qr +15p2q2r - I2q3r + I2p3r2 + 8 Ipqr2 + 8 lr3, 

and 
rf = 21r2 - /? V - 4<y3 + 4pV +1 %pqr. 

These formulas can be simplified. Using the first formula in display (16), we can remove any 
terms of the form YmYn. Using the second formula in display (16), we can remove any terms of the 
form YnZm + YmZn. Using the third formula in display (16), we can remove any terms of the form 
ZmZn. Upon doing this, we get the following: 

dXmXnXs - 2(q - 3pr)[XsXm+n + XnXs+m + XmX„+s - 2r Xm_sXn_s] 
- 2q[Xm+n+s -r Xm+n_2sl + 2p[Ym+n+s -r Ym+n_2s\ 4- b[Zm+r}+s — r Zm+n_2s\ 
- (pq + 9r)[XsYm+„ + X„Ys+m + XJn+s - r\Xm_sYn_s + Xn_sYm_s)] 

+ XnZs+m + XmZn+s r {_Xm_sZn_s + Xn_sZm_s)\. 

This can also be expressed in the following form: 

Algorithm f?TribShortemProdiictsff To Turn Products of 
Many Terms Into Products of Two Terms 

XmXnXs = [XsCm+n + XnCs+m + XmCn+s - rs{Xm_sCn_s + Xn_sCm_s) 
~ 2qXn»n+, + 2P^m+n+s + 6Zm+n+s - rs(-2qXm+rt_2s + 2pYm+n_2s + 6Zm+r!_2s)} I d, 

where d = 21r2 - p2q2 - 4q3 + 4p3r +1 Spqr and 

Cn = 2(q2-3pr)Xn-(pq + 9r)Yn+2(p2 + 3q)Zn. 

(43) 

(44) 
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For products of three terms not all Involving X's, first apply Algorithm "ConvertToX", formula 
(27), to change any Y or Z terms to X terms. For products of more than three terms, this pro-
cedure can be repeated, three terms at a time, until only products of two terms remain. 

Formula (44) is still pretty messy. Can it be simplified? Gan it be made to look symmetric 
under permutations of (m, n, $)? 

8* SIMSONfS FORMULA 

For Fibonacci numbers, there is the well-known Simson formula, Fn+lFn_ 
can be written in the form 

• w + l K = -(-!> W - l 

Fn Fn-l 

The generalization of this to third-order recurrences is 

x„ 
Xn-i 

Xn_x Xn_2 

= -r 
n-2 

which can be further generalized to 

J«+4 Jn+3 

^n+3 * V H 2 ^n+l 

\+2 \ + l 

^n+2 

= r 
S4 O3 b2 

O3 4J2 iJ j 

O^ AJI On 

These formulas come from [15]. 

.p2 = (-!)". This 

(45) 

(46) 

(47) 

9, SUMMATIONS 

We can perform indefinite summations of expressions involving Xn,Yn, and Zn any time we 
can perform such summations with an instead since, by (7), these terms are actually exponentials 
with bases r1? r2, and r3. 

First, the expression is converted to exponential form using equation (7). Then it is summed. 
The result is converted back to Xs, Fs, and Zs by using equation (10). Then rbr2, and r3 are 
converted to p, q, and r using equation (11). The following summations were found using this 
method. 

Yxkx = ~x + x"+ ^Xn+X+xYn+l+x Z"+l^ 
£i' k -1 + px + qx2 +rx3 

t Xak+t = [(Ya+b - V I H ) ^ + Wa + Ya)(Za ' 0 } 

+ (%au ~ X{n+l)a,b){{Za - I)2 - rZJa 

+ qXa(Za -1)} + (Za+b -Z(n+l)a+b){(pXa + Ya)Ya -qX2 

-Xa(Za~l)}]/lr2X3
a+ri:+(Za--lf-qYZ(Za-l) 

+ X2
a((q2 -2pr)(Za -1)-qrYa) + pYQ(Za -1)2 

+ Xa((p2 + 2q)(Za -1)2 + prY2 -Ya(pq + 3r)(Za -1))], 

(48) 

(49) 
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^kXk=[2-p+r-{n + \){2r + q + \)Xn^+n{2r + q + \)Xn+2 

+ (n + \){p-r-2)Yri+l-n(P-r-2)Y„+2 (50) 
+ (» + \){2p + q- 3)Zn+l - n{2p + q~ 3)Z„+2]/ (p + q + r-l)\ 

fjk2Xk=[(l + 3q-pq + 7r-3pr+r2){-(n + l)2Xn+l+(2n2
 + 2n-l)Xn+2-n2Xn+3} 

+ ( 3 „ 3 p + p2+ q + 6r _ 3 p r _^){- (« + lfYn+l + {2n2 + 2» -\)Yn+2 -n%+3} (51) 
+ (6 - 8/7 + 3p2 -3q + 3pq + q2+3r- pr){-(n + 1)2Z„+1 

+ (2n2 + 2n-\)Zn+2-n2Zn+3}]l(p + q+r-lf, 

k=i 

Z xkX„-k = [-(» + l)prXn + (9r ~ "PI ~ 3nr)Xn+1 + q(n - \)Xn+2 - 3r(n + l)Y„ 

+ (np2-p2-3q + r,q)Yn+1-p(n-l)Yn+2+(n + l)(j>2+4q)Zn (52) 
+ 2npZn+l -3(#i- l)Zn+2]/(p2q2 + 4q3 -21r2 -4p3r - ISpqr). 

Most of the above formulas are special cases of formula (5.2) in [22]. 

10. THE TRIBONACCI SEQUENCE 

The Tribonacci sequence, (Tn), may be defined by 
Tn = Tn_l + T„_2 + Tn_3, (53) 

with initial conditions T0 = 0, TY = 1, and T2 = 1. A basis can be formed from (T„, Tn+1, Tn+2). 
For this sequence, we have Tn = Xn+l with p-q = r = 1. To convert Ts, J \ and Zs to 2 \ 

use the identities 
y _ T _ r _ T7 

^ « ~~ An+2 An+l An^ 

Y„ = 2T„ + T„+1-Tn+2, (54) 
y -IT -T 

The reduction formulas are 

Vl-/w ~ An\^^m+\ ~ AH+2/ + 4+1 (^ Aw + 4 H - 1 ~ *m+2) 

~ 4+2 V4J ~T~ 4 H - 1 ~~ 4 H - 2 / 

and 

4 - w ~~ 4 v 4 i + l ~ 4 I 4 H - 2 / ~*~ 4+ l l4 j+2 ~ 4 I 4 I + 1 ~ *m+2*m ~ *m+2*m+l) 

+ 4+2 (4J + 4*4i+l + 4*+l ~~ 4i+l4i+2)' 

A form of the addition formula was first found by Agronomof in 1914 [1]. 
The double argument formula is 

hn ~ 4+2 + 4+1 + ^44+1 "~ ̂ 4^+2 ~ ̂ 4+i4+2 . (57) 
A form of this can also be found in [1]. 

The negation formula is 

T-„ = T2
+2 + T2

+1+ T2- T„+2(2Tn+1 + T„). (58) 
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The fundamental Identity connecting T„, Tn+h and Tn+2 is 

T* + 2Tlx +1;3
+2 + 2TJn+l(Tn + rw+1) + TJn+2(Tn - Tn+2 - 2Tn+l) - 2T„+lT?+2 = 1. (59) 

The formula to expand squares is 

^=(5T2n+2-3T2n+l-4T2n+4Tn + lOT„_l-2Tn_2)/22. (60) 

The analog of Simson's formula is 

T T T 
4+i 4 4-i 
4 4-i 4-2 

(61) 

which was found by Mies [9] along with generalizations to higher-order recurrences. 
Miles [9] also generalized the relationship between Fibonacci numbers and binomial coeffi-

cients from Pascal's triangle, 

*«= i ("*> 
a+2b=nV / 

to the following formula which relates Tribonacci numbers and trinomial coefficients from Pas-
cal's pyramid: 

^- z {aA+c\ («> 
a+2b+3c=nv ' 

The following summation was found using the methods of Section 9: 

X^=[i+4r„r„+I-(rn+1-r„_1)2]/4. (63) 
k=l 

APPENDIX 1: SELECTED IDENTITIES 

We now present some selected identities culled from the literature. All these identities were 
successfully checked by Algorithm "TribSimplify". Recall that Wn is defined by equation (9). 

The following six identities come from Jarden [7]: 

X2n=(2rXn_l+qX„)Xn + X2„+l, 

X2„ = X„Wn + r"X_„, 
W2n = Wt-2r"W_n, 

The following three identities come from Yalavigi [21]: 

2W3n = Wn(3W2n-W') + 6r", 

W4n = WnW,n-W2n{Wn-W2n)ll + r"Wn, 

+ W2r}(W* -2W2n)l2 + r»(Wn,m-Wn). 
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The following three identities come from Yalavigi [20]: 

Sm+n ~ Xm+2S„ + Ym+2Sn_l + Zm+2Sn_2, 
$2n ~ Xn+2Sn +Yn+2$n-l + Zn+2S„_2, 

^m+n ~ Xm+h+2^n-h + ^m+h+2^n-h-l + ^m+h+2^n-h-2 • 

The following two identities come from Shannon and Horadam [14]: 

(SnSn+4) + (2 (^7+1+ ^+2)^1+3) ~ ( A + 2($„+i + ^ + 2 ) ^ 1 + 3 ) > 

The following identity comes from Shannon and Horadam [15]: 

^ = ^ - 1 + ^ - 2 -

The following ten identities come from Carlitz [4] (both pn and an satisfy third-order linear 
recurrences with r = 1 and the same p and q with initial conditions p0 = 1, px - p2 = 0, cr0 = 3, 
(jj = p, G2 - p2 + 2q. In particular, with r = 1, we have <jn = Wn and /?„ = Zw): 

2 Af iAi ~ An+lAi-1 ~ Pm-lPn+l = °' m-3°'n-3 ~ ^m+n-S ~ ^m-jPm-3 ~ an-3Pm-3 + 2Pm+n-6, 

°m+3n - (Jm+2nCrn + °m±rP-n "CTm=°9 

&2n = (Jl-2<J-n, 
°r3«=0"«-3°"«C7-«+3

? 

Pl-pr,+lPn-l:=P3-n> 
Pi ~ Pn+lPn-l = A/7-6 - Ai-3^/1-3 + ^3-n> 

/ V 7 * = AH+W + Pm-rP-n - pm_2„, 
®mGn = Vm+n + °m-na-n " °"m-2«? 

The following nine identities come from Waddill [17] (in their notation, Un - Xn+l)\ 

^n+m ~ Un-kSm+k+i +Yn_k+lSm+k +run_k_1bm+k_l, 

bn+m ~ ^m-kbn+k+l +Ym_k+lbn+k +rUm_k_lbn+k_h 

S2„ + qSl, + IrS^S^ = S2S2n_2 + (qS1 + rS0)S2n_3 + rS{S2n_,, 

U^^Ul+qUU+lrU^U^, 

U2n-i = Un+lU„^ +rUn_xUn_2 +U2
n-pU„Un_l, 

qU^^Ult-pU^ + ir-pqW^+qUl-priU^+UU) 

-qrU^U^-rW^U^+Ul,), 

U^ = U^QJly + Y^U,, +rUn_1U„) + Y„(UnU„+l + Yn+1Un +rC/„2_1) 
+ rUn_2{U„_p„+l + Y„Un +rU„_2Un_1), 
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°n+m+h 
V 

V un+m 

^5n \ n ^3n 

^n+j+h 
V 

un+j+k 
Sn+j 

°n+h 

$n+k 

s„ 
= r" Uk.x Uk 

^m+2 ^w+1 °m 

$j+2 Sj+1 $j 
O7 Oi On 

J4w $3n ^2n 

$3n $2n ^n 

u2, 
u, n-\ 

u2, ^2n+2 ^2n+l ^2n 

&2 ^ i \ 

^3\o2 

The following five identities were found by Zeitlin [23]: 

S2
n+6 = (P2+ q)S2

n+5 + (q2 +qp2+ rp)S2
+4 + (2r2 + rf + Apqr - q')^ 

+ (r2p2 -rpq2-r2q)S2
n+2 +(r2q2 -r3p)S2

+l-r4S2, 

S2n+e ~ (P2 + 2q)S2n+4 + (q2 - 2rp)S2n+2 - r2&,, J2n 

r"S_„ = S0(W2 ~W2n)l2-WnSn + S2n, 

n+2 n+1 n 

(n - l)Xn+l = p^ XjXn*-j + 2?X XjXn^j + 3rX XjX^j9 
j=Q j=0 J=0 

A _ (?r + pq)(n - l)Xn+l - (6q 4- 2p2)nYn+l + (4q2 - 3pr + p2q){n + \)Xn 

k=0 

kn+l 
27r2 - p2q2 - 4q3 + 4p3r +1 %pqr 

See [19] for other identities. 

APPENDIX 2. SELECTED TMBONACCI IDENTITIES 

We present below selected identities from the literature in which p = q = r = 1. All these 
identities were successfully checked by Algorithm "TribSimplify". 

The following three identities come from Agronomof [1]: 

Tin ~ T„-\ + Tn{Tn+i -I- Tn_x + iw_2), 
T2n^ = T2 + Tn_x{Tn_x + 2Tn_2). 

The following three identities come from Lin [8] (in their notation, we have U„ = Y„+2, with 
p = q = r = \): 

V4n+l^4n+3 + ^4n+2^'4n+4 = Mn+4 "" •'4(7+2' 

U2
+l + U2_l = 2(T: + T^), 
T2 -T2 - 11 11 

The following five identities were found by Zeitlin [23]: 
T* j 1 _ O T 7 T7 

1«+6+a1«+6+fc ~ *1n+5+a1n+5+b 
+ 3In+4+aIn+4+b + 61n+3+aln+3+b 

, T T - T T 
1n+2+a1n+2+h 1n+a±n+b-> 
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_(1 _ 2x - 3x2 - 6x3 + x4
 + x 6 ) X T?xk = T?+lx"+1 + ( # 2 - 2T*+l)x> ,n+2 

k=0 

+ (T^4-2T2
+3-3T'+2-6T'+1)X' 

-Tlxxn+$ - T2x"+e -x + x2+x3+x4, 

n+4 

%jL,*k -Tn+5 Tn+4 4Tn+3 lOTn+2 9Tn+l- •zr+2, 
k=0 

*-n ~ Wnln + l2rn 

n-2 
2 2 I TJT^-J = * " " 1)2^ - 2(» - 1) A-i - *nTn_ 

j=0 

The following eleven identities come from Waddill and Sacks [16] (in their notation, we have 
Kn = Xn+l> A = Yn+l> m d K> = ^ - 1 + ^ _ 2 , with/? = ? = T = 1): 

•2? A - Kn_x+Kn_ 
$n+h = Kh+iSn + Lh+lSn_l -f KhSn_2, 
Sin ~ Kn+iSn + Ln+lSn_x + KnSn_2, 

S2n-l = KnSn+(Kn-l + Kn-l)Sn-\ + Kn-lSn-2> 

^n+h = ^h+m+l^n-m + A+w+l\-m-l + &h+m^n-m-2> 

$n +Sn_l+2Sn_lSn_2 = S2S2n_2 + ̂ 2S2n_3 + SxS2n_4, 

Jn+h Jn+h+k 
un+h+t un+h+k+t 
Jn+h+n Jn+h+k+m 

Ki, Ki 

uh+l 

h+k 

A+fc+1 
s, s, t+l 

^m+l 

u r+2 

-W2 

A: 

A; 

n+h 

n+h+t 

n+h+m 

K„. 
n+h+k 

^n+h+k+t 

•^n+h+k+m 

Kt 

^h+k ^h+k-l •m-\ 

K, 
•n+l 

K. 
n+h+l 

K. 
K, 
K, 

n+h 

n+2h 

^n+h 

^n+2h 
K 77+3/7 

- Kh-\' 
Kh Kh_x 
v2h K, -2/7-1 

vn+h 
K„ 

K. 
K 

K 

n+h 
77+2/7 

n+h+m 
n+h+m 

n+2m 

Kh Km 

n+h+k+t 

Ki+h+t 
^n+t 

^n+h+k 

K+h 
Sn 

V 
un+h+k+m 
*Si+h+m 

V 
un+m 

zn ^h+k-l 

Ai-i 
^h+k 

h 
• 

s, 
$m 

So 

Sf+l 

$m+l 

Si 

$t+2 

^m+2 

s2 

Errata: Computer verification of the various identities encountered in the references consulted 
during this research revealed a number of typographical errors in the literature. We list the cor-
rections below to set the record straight. 
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In [4], equation (1.15) should be the same as equation (4.1). Also, equation (1.16) should be 
the same as equation (3.14). 

In [10], equation (2.1) should read " Jn+l = PJn + Kn". 
In [13], in equation (1.4), nt2 = P2 + Q" should be "t, = P2 + 2Q". Equation (2.2) should read 

In [16], the last term of equation (21) should be "Kh+kPn_2", not nKn+kPn_x
n. Also, the final 

subscript in equation (41) should be "h-V\ not "n-V\ In equation (42), "Pn+h+m" should be 
" i ^ + w " and "X„+," should be «Kh+k\ 
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A SIMPLER GRAMMAR FOR FIBONACCI NUMBERS 

Markus Hoker 
Wilhelm-Schickard-Institut ftlr Mbrmatik, Universitat Tubingen, 

Sand 13, D-72976 Tubingen, Germany, and 
Fakultat fur Mbrmatik, Technische Universitat Miinchen, 

Arcisstr. 21, D-80290 Miinchen, Germany 

Peter Rossmanith 
Fakultat ftlr Informatik, Technische Universitat Miinchen, 

Arcisstr. 21, D-80290 Miinchen, Germany 
(Submitted March 1995) 

Fibonacci numbers can be regarded as a formal language in a very natural way: The language 
9b consists of words encoding each Fibonacci number in 6-ary notation over alphabet {0, 1, ..., 
h-l}. This works for any base b>\. The language 3^ of unary Fibonacci numbers is defined as 
{(f" | n > 1} = {0,00,000, 00000,...}. 

The Chomsky hierarchy of formal languages consists of four levels: Regular, context-free, 
context-sensitive, and recursively enumerable languages (see Hopcroft and Ullman [1] for details). 

It was shown by Moll and Venkatesan [2] that 3^ is not context-free for any base b > 1. It is 
clear also that 3^ is not context-free. If 3^ were context-free, the Fibonacci numbers would be a 
semi-linear set according to Parikh's Theorem [4], i.e., a finite union of linear sets {nk + £\n > 0}. 

Mootha [3] presented a context-sensitive grammar for 3^, demonstrating that unary Fibo-
nacci numbers are context-sensitive, thus placing them optimally in the Chomsky hierarchy. How-
ever, the grammar is complicated and includes 53 symbols and 80 rules. The following simpler 
grammar G = (NyT,P9S) with nonterminals N = {S, A,B,Br,C}, terminals T={0}, axiom S, 
and productions 

S->CS\Br 
CA-^BC 
CB-^ABC 

CBr -> ABr 
A-^0 
5->0 

Br-^0 

also generates exactly the unary Fibonacci numbers. 
It works as follows: First, a sentential form CC...CBr is generated using only the rules 

S ->CS and S ->Br. Let us call a sentential form C... CaBr basic, if a contains only A's and 
2?'s. #4 (fl) denotes the number of A's and #B (JJ) the number of 5's and B/§ in the word p. 

If p and y are basic sentential forms, P=>y, and p contains one more C than y, then 

#A(T) = #B{P) ^ d #B(r) = #A(fi) + #B(fi). 
From a basic sentential form C ...CBr of length w-1, a basic sentential form of length Fn will 
finally be derived, which itself leads to the word O^. Note that the length of the derivation is 
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exactly Fn+2+n-3 and that the number of productions and the cardinality of N and T are 
Fibonacci numbers, too. 

Observe that ft-ary Fibonacci numbers are also context-sensitive. The context-sensitive 
languages are a superset of all languages that are recognizable with linear space by a deterministic 
Turing machine. Since addition of numbers in i-ary notation can be done in linear space, all 
Fibonacci numbers can be generated by use of the recurrence that defines Fibonacci numbers. 

Finally, we note that if we change the production for nonterminal S to S -> CeBr \Br and add 
the productions 

CtA-*CtBC\BC 
QB-»C£ABC\ABC 

CeBr->QABr\ABr 

then the word 0F" can be derived in exactly Fn+2 - 1 steps. 

REFERENCES 

1. J. E. Hopcroft & J. D. Ullman. Introduction to Automata Theory, Languages and Computa-
tion. New York: Addison-Wesley, 1979. 

2. R. J. Moll & S. M. Venkatesan. "Fibonacci Numbers Are Not Context-Free." The Fibonacci 
Quarterly 29.1 (1991):59-61. 

3. V. K. Mootha. "Unary Fibonacci Numbers Are Context-Sensitive." The Fibonacci Quarterly 
31.1 (1993):41-43. 

4. R. J. Parikh. "On Context-Free Languages." Journal of the ACM 13.4 (1966):570-81. 
AMS Classification Numbers: 68Q50, 68Q45 
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This Issue of The Fibonacci Quarterly Is dedicated to 

Herta Taussig Freltag 
as she enters her 89th year, in recognition of her years of outstanding service and achievement in 
the mathematics community through excellence in teaching, problem solving, lecturing, and 
research. 

During Dr. Freitag's years at Hollins College, she earned many honors, among them the 
prestigious Algeron Sidney Sullivan Award. She was the first faculty member to receive the 
Hollins Medal, and the first recipient of the Virginia College Mathematics Teacher of the Year 
Award. She was the first woman to become President of the Virginia, Maryland, and District of 
Columbia Section of the Mathematical Association of America, after having served as Vice-
President and Secretary. 

Although she officially retired in 1971, Dr. Freitag continues her professional activities— 
research, publishing, and lecturing—throughout the region and abroad. Of her many accomplish-
ments, she is perhaps most proud of her perfect attendance at the seven International Conferences 
of the Fibonacci Association. Herta has presented at least one paper at each conference and 
considers participants as not merely mathematical colleagues, but virtual family members. The 
problem section is the first page Herta turns to in The Fibonacci Quarterly, and here is a story she 
often tells: When two non-mathematicians meet on the street and one says, "I've got problems," the 
other answers, "I'm so sorry for you." When two mathematicians meet and one says, "I've got 
problems," the other says, "Oh, goody!" 

We would like to take the opportunity here to thank Herta in this small way for her 
innumerable contributions to the mathematics community. 

Photo courtesy of Colin Paul Spears 

1996] 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORDf AM 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to Fibonacci@MathPro.com on 
Internet. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ash that proposers inform us of the 
history of the problem, if it is not original. A problem should not be submitted elsewhere while it 
is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+\ + Fn> F0 = °> A = t 
A+2 ~ A+l + AI> A) = 2, A ~ 1-

Also, a = (l + V5)/2, j0 = ( l -V5)/2, Fn = (an-0")/ JT, and Ln = an+(3n. 

PROBLEM PROPOSED IN THIS ISSUE 

B-820 Proposed by the editor; dedicated to Herta T. Freitag 
Find a recurrence (other than the usual one) that generates the Fibonacci sequence. 

[The usual recurrence is a second-order linear recurrence with constant coefficients. Can you find 
a first-order recurrence that generates the Fibonacci sequence? Can you find a third-order linear 
recurrence? a nonlinear recurrence? one with nonconstant coefficients? etc.] 

SOLUTIONS 
A Disguise for Zero 

B-795 Proposed by Wray Brady, Jalisco, Mexico 
(Vol 33, no. 49 August 1995) 

Evaluate <» in 

Solution by L. A. G. Dresel, Reading, England 
Since Ln = a" +/?", the given expression is 
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Comparing this with the well-known power series for cos(x), we have E = cos(^a) + cos(/r/?). 
Since a + p = 1, we have cos/ra = cos(;r - nff) - - COS(K/J), giving E - 0. 
Seiffert showed that Y%=o(-l)n jpfil^kn ~ ° if and only ifk is not divisible by 3. 

Also solved by Glenn Bookhout, Paul S. Bruckman, Charles K. Cook, Andrej Dujella, Russell 
Euler, C. Georghiou, Russell Jay Hendel, Hans Kappus, Joseph J, Kostdl, Can. A. Minh, Bob 
Prielipp, R P. Sealy, H.-J. Seiffert, Sahib Singh, and the proposer. 

A Disguise for Five 

B-796 Proposed by M. N. S. Swamy, St Lambert, Quebec, Canada 
(Vol 33, no. 5, November 1995) 

Show that T2 , T2 ,T2 , ,j2 

is always an integer if a is odd. 

Solution by Sahib Singh, Clarion University of Pennsylvania, PA 
We prove that the value of the given expression is 5. The result follows from identity (I12) of 

[1]: L2„ = 5F2+4(-iy. Using this identity yields 

L2
n + l2

n+l=5(F2
+F2

+ll 

Addition yields L2
n + L2

n+l + • • • + /£+fl = 5 (F2 + F2
+l + • • • + F2

+a), from which the result follows. 

Reference 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, Calif: The Fibonacci 

Association, 1979. 
Also solved by Charles Ashbacher, Wray Brady, Paul S. Bruckman, Andrej Dujella, Russell 
Euler, Herta T. Freitag, Russell Jay Hendel, Joseph J. Kostdl, Carl Libis, Can. A. Minh, Bob 
Prielipp, H.-J. Seiffert, and the proposer. 

Decimal Congruence 

B-797 .Proposed by Andrew Cusumano, Great Neck, NY 
(Vol 33, no. 5, November 199S) 

Let (H„) be any sequence that satisfies the recurrence H„+2 = Hn+l + Hn. Prove that lHn = 
Hn+l5 (mod 10) 

Solution by Russell Euler, Northwest Missouri State University, Maryville, MO 
From formula (8) of [1], we have Hn+l5 = FuHn + Fl5Hn+l. So Hn+l5 = 377'H„ + 6\0HnU = 

lHn (mod 10). 
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Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester: Ellis Horwood Ltd., 1989. 
Haukkanen showed how to generate many sets of integers c, k, and m, such that cHn = Hn+Jc 
(mod m) for all n. 
Also solved by Charles Ashbacher, Brian D. Beasley, David M. Bloom, Wray Brady, Paul & 
Bruckman, Andre] Dujella, Herta T. Freitag, Pentti Haukkanen, Russell Jay Hendel, Gerald 
A. Heuer, Joseph J. Kostal, CarlLibis, Can. A. Minh, Bob Prielipp, R P. Sealy, H.-J. Seiffert, 
Sahib Singh, and the proposer. 

Powers of 5 

B-798 Proposed by Seung-Jin Bang, Ajou University, Suwon, Korea 
(Vol 33, no. 5, November 1995) 

Prove that, for n a positive integer, F„ is divisible by 5" but not by 5"+1. 

Comment by the editor: Several readers pointed out that this is a duplicate of problem B-248. 
Sorry about that. How could I have missed this? See this Quarterly (1973)553 for the solution. 
Bloom mentioned the stronger result that, ifp is odd and k>\, then Fnp is divisible by pk+l but 
not pk+2. This was proven by Lucas in J876; see page 396 in [JJ. 

Reference 
1. L. E. Dickson. History of the Theory of Numbers. Vol. 1. New York: Chelsea, 1971. 
Also proposed by V. E. Hoggatt, Jr. Also solved by Brian D. Beasley, David M. Bloom, Wray 
Brady, Paul S. Bruckman, Warren Cheeves, Andrej Dujella, Russell Euler, Herta T. Freitag, 
Pentti Haukkanen, Can. A. Minh, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Gregory 
Wulczyn, and the proposers. 

A Recurrence 

B-799 Proposed by David Zeitlin, Minneapolis, MN 
(Vol 33, no. 5, November 1995) 

Solve the recurrence An+2 = 4An+l + AriJ for n > 0, with initial conditions 4) - 1 and Ax - 4; 
expressing your answer in terms of Fibonacci and/or Lucas numbers. 

Solution by David M. Bloom, Brooklyn College, NY 

From formula (15a) of [1], we have that, for all a and b, Fa+b + {-l)bFa_b = FJL^. Setting 
b = 3 gives Fa+3-Fa_3 = 4Fa. Hence, if we let 4, = $(F3n+l

 + i W » > w e h*v e An+l-An.l = 
y(^+4 + ^ + 5 - ^ - 2 - ^ - 0 ^ Clearly, 4, = 1 and 4 = 4, so these 
A's coincide with the A's of the problem. Hence, An = \(F3n+l + F3fl+2) =jF3n+3. 

Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester: Ellis Horwood Ltd., 1989. 
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Seiffert found the generalization that, ifk is a positive integer, and the sequence An{k) satisfies 
the recurrence An+2{k) = LkAn+l(k) - (-1)*An(k), for n>0, with initial conditions A$(k) = 1 and 
Ax(k) = Lk, then we have An(k) = Fnk+k I Fk. This is an immediate consequence of the result of 
problem B-748, see this Quarterly 33.1(1995):88. 

Also solved by Brian D. Beasley, Paul S. Bruckman, Andrej Dujella, Russell Euler, Hertm T. 
Freitag, Pentti Haukkanen, Mussell Jay Hendel, Joseph J, Kostdl, Dalna A, Krigens, Carl 
Libis, Graham Lord, Cam A. Minh, Bob Prielipp, V. Ravoson & R Caboz (jointly), Jf/.-J. 
Seiffert, Sahib Singh, M. N. S. Swamy, and the proposer. 

Pell/Fibonacci Inequality 

B-800 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 33, no. 5, November 1995) 

Define the Pell numbers by the recurrence Pn - 2Pn_x + Pn_2, for n > 2, with Initial conditions 
P0 = QdndPl = l. 

Show that, for all integers n > 4, Pn < Fk{n), where k{n) = \Jlln + 2) / 6_|. 

Solution by Paul S. Bruckman, Highwood, IL 
Given u = 1 + V2, we may easily verify that u6 = 7(k + 29 and un = 13860^ + 5741; hence, 

uu - 198i/6 - 1 . From this we may deduce that Pn+n = l9SPn+6 - Pn for all integers n. Likewise, 
it is straightforward to show that Fn+22 = \99Fn+ll + Fn. 

Our next observation is the following: 
*(w + 6) = *(/i) + l l . 

We will use these identities to establish the desired result by induction. 
Let S denote the set of integers n > 4 for which Pn < Fk{n). Our first step is to construct a 

table of the first few values of Pn and Fk(n). These are given below. 

n_ Hp)_ P^ Fk(n) 

4 7 12 13 
5 9 29 34 
6 11 70 89 
7 13 169 233 
8 15 408 610 
9 16 985 987 
10 18 2378 2584 
11 20 5741 6765 
12 22 13860 17711 
13 24' 33461 46368 
14 26 80782 121393 
15 27 195025 196418 

Note that P3 = 5 = F5 = Fk(3)y justifying the restriction n > 4. We see from the table that n e S 
for 4 <7i < 15. Assume that n GS and (n + 6)sS. Then Pn < Fk{rj) and Pn+6 < Fk{rJ+6) =Fk(n)+n. 
Then Pn+l2 = 198ZU - Pn < 198F*(n)+11 < l99Fk{n)+n+Fk(n) = Fk(n)+22, or Pn+l2 < Fk(n+l2y Thus, 
n e S and (n + 6) e S implies that (n +12) e S, and the proof by induction is complete. 
Also solved by Andrej Dujella, Russell Jay Hendel, and the proposer. One incorrect solution 
was received 
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Congruences mod 40 

B-801 Proposed by Larry Taylor, Rego Park, NY 
(Vol 33, no. 5, November 1995) 

Let k > 2 be an integer and let n be an odd integer. Prove that 
(a) F2k^ 27- lk (mod 40); 
(b) F2^7^F1 6 w(mod40). 

Solution byH.-J. Seiffert, Berlin, Germany 
(a) From [2], we know that 

L2J= 7 (mod 40), for j > 2. (1) 

Repeated application of the equation (I7) of [1], Flm = FmLm, gives 

so that, by F4 = 3 and (1), we have F2, ^ 3 • lk~2 ^27' • 7* (mod 40), for k > 2. 

(b) Let&>2. We shall prove that 

Fn2k = lkFl6n (mod 40), for all integers n. (2) 

It suffices to prove (2) for n > 0, since F_2m = -F2m. Since F16 = 987 = 27 (mod 40), (2) is true 
for n - 1, by part (a). Clearly, it is also true for n - 0. Suppose that (2) holds for all j e {0,1,2, 
..., n}, n > 1. Then, by equation (I21) of [1] and (1), 

F(n+l)2k =L2kFn2k ~ F(n-l)2k = 7 ' 7 F16« ~ 7 F16(n-l) 

= 7 ( 7^16W-^16(«-1)) = 7 0^6^16* _^16(«-1)) 

= 7 % * + i ) (mod 40). 

This completes the induction proof of (2). 
References 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, Calif: The Fibonacci 

Association, 1979. 
2. S.Singh. Problem B-694. The Fibonacci Quarterly 303 (1992):276. 
Also solved by Paul $. Bruckman, Andrej Dujella, Russell Jay Hendel, Joseph J. Kostal, and 
Bob Prielipp. 

NOTE; The Elementary Problems Column is in need of more easy, yet elegant and non-
rontine problems. 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
Raymond E* Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-517 Proposed by Paul S. Bruckman, Seattle, WA 
Given a positive integer n, define the sums P(n) and Q(n) as follows: 

m-Ufy. <*»=I<5K d\n V w / d\n 

where ju and €> and the Mobius and Euler functions, respectively. Show that n\P(n) and n\Q(n). 

H-518 Proposed by H.-J. Seiffert, Berlin, Germany 
Define the Fibonacci polynomials by F0(x) = 0, Fl(x) = l, Fn(x) = xFn_x(x) + F„_2(x), for 

n > 2. Show that, for all complex numbers x and y and all positive integers n, 

As special cases of (1), obtain the following identities 

yx-y ) 0) 

I(-i)[(2"-i+1)/5(4V2V5""%«-.; (2) 
51(2n-k-\ 

i(-i)l(2^+2)/5(t)=5"^; (3) 
5fln-k 

Yin-k\F^Pk = 2*^(6), where Pk = Fk{2) is the ** Pell number; (4) 
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i(n
2"kyk(x)2 = (x2+4rl; (7) 

t(„-U- i W i t o = x"-lFn(4lx). (9) 

The latter equation is the one given in H-500. Hint: Deduce (1) from the main identity of H-492. 

H-519 Proposed by Paul S. Bruckman, Seattle, WA 
Let/? denote a prime = 1 (mod 4). 
(a) Prove that, for all p # 1 (mod 24), there exist positive integers k, u, and v such that 

(i) k\u2; 
(ii) p + 4k = (4u-l)(4v-l). 

(b) Prove or disprove the conjecture that the restriction p # 1 (mod 24) in part (a) may be 
removed, i.e., part (a) is true for all p = 1 (mod 4). 

H-520 Proposed by Andre] Dujella, University of Zagreb, Croatia 
Let n be an integer. Prove that there exist an infinite s e t D c N with the property that for all 

c,d eD the integer cd + n is not square free. 

SOLUTIONS 
Complex Situation 

H-502 Proposed by Zdzislaw W. Trzaska, Warsaw, Poland 
(Vol 33, no. 4, August 1995) 

Given two sequences of polynomials in the complex variable z eC defined recursively as 

TO=I^»A * = 0,1,2,..., (i) 

with T0(z) = 1 and 2J(z) = (l + z)T0, and 

Pk(z)=Yjbkmzm, k = 0,1,2,..., (ii) 

with P0(z) = 0 and Px(z) = 1. 
Prove that, for all z GC and k = 0,1,2,..., the equality 

Pk(z)Tk_1(z)~Tk(z)Pk_l(z) = l (iii) 
holds. 

Solution by the proposer 
From (i), we have 
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akp = 
_d%(z) 

, /> = 0,1,2,..., (1) 
!z=0 dzp 

so that we can write 

T2(z) = a20+a2lz + a22z2 (2) 
with 

a20 = l, 02! = 3, a ^ l . (3) 
Thus, the polynomial Tk(z) fulfills the relation 

Tk+l(z) = (2 + z)Tk(z)-Tk_l(z), k = \,2,.... (4) 

Similarly, we can write 

Pk+l(z) = (2 + z)Pk(z)-Pk_x(z), * = 0,1,2,..., (5) 
withP0(z) = 0 mdPl(z) = l. 

Note that coefficients of both polynomials belong to modified numerical triangles MNT1 and 
MNT2, respectively (see [1]). 

Substituting the above results into LHS of (iii) gives 
LHS(iii) = Pk(z)Tk+l(z) - [(2 + z)Tk_,{z) - T^zW^z) 

= [Pk(z) - (2+z)Pk_l(z)]Tk_x(z) + PUz)Tk.2(z). (6) 

Next, using (2) yields 
LHS(iii) = -Pk_2{z)Tk_,{z) + Pt_,(z)rt_2(z). (7) 

Thus, repeating the above procedure (k -1) times, we finally get 

LHS(iii) = P,(z)r0(z) - 7J(z)P0(z). (8) 

But, from (i) and (ii), we obtain 
LHS(iii)=l, (9) 

which means that LHS(iii) = RHS(iii), thus completing the proof. 
Note that another proof can be presented by using the mathematical induction approach. 

Reference 
1. Z. Trzaska. H0n Numerical Triangles Showing Links with Chebyshev Polynomials.11 C 

Lanczoslnt Cent. Conf, December 12-17, 1993, NCSU, Raleigh, NC. 

A Complex Product 

H-503 Proposed by Paul S» Bruckman, Edmonds, WA 
(Vol 33, no. 5, November 1995) 

Let &* be the set of functions F:C3 -»C (C is the complex plane) satisfying the following 
formal properties: 

xyzF(x, x3y, x3y2z) = F(x, j , z); (1) 

F(x-\y,z-l) = F(x,y,z). (2) 
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Formally define the functions [/and Fas follows: 
3 2 

U(x, y, z) = Ex" yn zn (summed over all integers n); (3) 

V(x, y, z) = f[ (1 - y2nA{x))(l + x3"2"3" V ^ X * + x^^-y^z'1), (4) 

where 
Zx3mot 

Zx3we, 
-4(x) = 3m

 m (summed over all integers m), (5) 

0 „=l ( l - ( - l ) ' - ) > , m , l ( i + ( _ i r ) . ( 6 ) 

Show that, at least formally, 
Ue<T, V&V; (7) 

,4(1) = 1; (8) 

U(l,y,z) = V(l,y,z). (9) 
Prove or disprove that U(x, y, z) = V{x, y, z) identically. Can U(x, y, z) be factored into an 

infinite product? 

Solution by the proposer 

Proof that U satisfies (1): xyzU(x,x3y,x3y2z)^Ilx"H3"2+3"+1y"2+2"+1zn+l = I,x("+1)3yi"+1)2z"+1 = 
Zx"*y"2z" = U(x,y,z). 

Proof that U satisfies (2): U(x~\ y, z'1) = Ix '" 3 /V" = Zx^y^z" = U(x, y, z). Therefore, 
Ue9>. 
Proof that V satisfies (1): Let 

P„ = P„(x, y) = l-y2"A(x), Q, = Qn(x, y,z) = l + x3"2-3"+ly2"~lz, Q„ = Qn{x~\ y, z~l). 

Note that x6"A(x) = [lx3(m+2%J + [^3meJ = [Zx3mo^2nMZx3mem] = A(xy, therefore, we have 
P„(x, x3y) = 1 -y2"x6"A(x) = 1 -y2"A(x), or 

Pn(x,y) = P„(x,x3y). (10) 
Next, 

f[Q,(x, X3y, X3y2z) = f[[\ + x3«2-3«+l+6„-3+3j2n-l+2z] 
« = 1 W=l 

= f\[\ + x3"2+3n+ly2n+lz]= f [ [ l + x3"2-3n+1y2"-lz], 
n=l n=2 

or 

f[Q„(x, x3y, x3y2z) = (1 + xyz)-lf[Q„(x, y , z). (11) 

Also 

J l a ( x ? x3y, x3y2z) = f [ [ l + ^ W i ^ - s ^ - i ^ - i - j 
«=i «=i 
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or 

na(*> *v, *3A)=wli+^na^ y, z). (12) 
Combining (10), (11), and (12), we see that (at least formally), 

V(x, x3y, x3y2z) = ]JP„(x, x3y)Qn(x, x3y, x3y2z)Qn(x, x3j/, x3y2z) 

= (xyz)-lf[P„(x, y)Q„(x, y, z)Q„(x, y, z), 

or 
xyzV(x,x3y,Xyz) = V(x,y,z). (13) 

Proof that V satisfies (2): Clearly A{x~l) = A(x), so P„{x~\ y) = P„(x, y); also, Q„(x~\ y, z~l) = 
Q„(x, y, z). It follows that V(x~\ y, z'1) - V(x, y, z). Therefore, V eif. 

Proof of (8): Let Ari(x) = T_„ x3mom 11?„ x3mem. We readily find that Z!„ om = n + o„ and 
£"„ em = n + en. Thus, 4,(1) = (« + o„)/(n + en). Taking limits, we have .4(1) = lim„_>00 4,(1) = 1. 

Proof of (9): Setting x = l in (3) and (4) [using (8)], we find that U(\, y, z) = E / V and 

F(i,^Z)=n:=1(i-/"xi+/"-1z)(i+/n- iz-1). 
From this, we recognize that (9) is merely a statement of the famous triple-product identity of 

Jacobi. This is intimately connected with the theory of elliptic functions and, in particular, the 
Theta-functions studied by Jacobi. 

Although the above results seem quite interesting and seem to imply some relationship 
between U and V, this relationship appears to be illusory, except for certain values of x. For one 
thing, the above results have only been demonstrated formally; a more rigorous treatment leads 
one to the conclusion that the series defining U and the product defining V are divergent unless 
|x |= l . Setting x = exp i0, where 0 is real, we may show that 

[sin3(w-l)0J 

Otherwise, 4i(x) has two distinct cluster points, namely, x6 and x~6 (assuming x * 0), and there-
fore has no limit point, as n--> GO. Even if |JC| = 1, however, the expression in (14) has no limit 
points, except for a finite set of values of x. In fact, it is not difficult to deduce the following 
result from (14): 

/ A(x) = (- i)f t*+ 3 )H^ if x = exp(*i>/6), * integral; 
otherwise, A(x) is undefined. 

Thus, A(x) = 1 if x3 = 1, in which case Pn = 1- y2n. Also, since n3 = n (mod 6), we see that, if 
x6 = 1, U(x, y, z) = [/(I, y, xz) and V(x, y, z) - V(l, y, xz). Jacobi's identity states that these last 
two quantities must be equal. 
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Experience suggests that if two expressions such as U and V are equal for certain special 
values of x (e.g., for which |x|= 1), one should be able to employ analytic continuation to extend 
the equality for \x\ ^ 1 . However, as we have found, this extension is impossible; thus, U£V 
identically. Another way to show this is as follows: Since (l+y/xz) is a factor of V, it follows 
that Fhas a zero (qua function of z) at z = -y/x. However, if we set z--ylx in the series 
defining U, this yields an expression that does not vanish identically, namely, U(x,y,-y/x) = 
T,(-lfx"3-y"2+n = -y2(l-x-6)+y6(x6-x-24)-yl2(x24-x-60) + '--; however, this does vanish 
at the special values for which x6 = 1. 

The factorization of U, if any such exists (and this seems doubtful), must be exotic indeed, 
and remains an open question. Toward this end, it would seem desirable, if possible, to replace 
An(x) by some other function that is better behaved, while still satisfying the appropriate criteria. 
Also, the functions Qn and Qn might, conceivably, by replaced by other, more esoteric expressions 
that still satisfy the desired conditions of the factorization problem. The general problem may be 
stated in the following way. Given U(x, y, z) as defined by (3), find a factorization as follows: 

oo 

U{x, y, z) = \\Sn(x, y, z) (valid for appropriate convergence criteria), (16) 
«=i 

where the Sn's satisfy the conditions: 

S„(x-\y,z-l) = S„(x,y,z); (17) 

xyzf\Sn(x, x3y, x3y2z) = f[Sn(x, y, z); (18) 
n=\ n=\ 

S„(l, y, z) = (1 - y2"){\ +y2"-1z)(l+y2"-1z-1). (19) 

The proposer of this research problem is indebted to his former mentor, A. O. L. Atkin at the Uni-
versity of Illinois in Chicago, for providing helpful hints and suggestions. Moreover, Dr. Atkin 
suggested another area of possible extension, namely, to work with the sum Ew" xn yn zn; this 
latter sum has fewer convergence problems than the sum proposed in this problem but it has the 
undesirable quality of being more complicated. This is as far as this proposer took this problem. 
All comments are invited from the readers. 
Also solved by A. Dujella. 

• • > • 
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