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MULTIVARIATE SYMMETRIC IDENTITIES

Abdelhamid Abderrezzak

L.IT.P., Universite Paris, 2 Place Jussieu, 75251 Paris cedex 05 France
(Submitted October 1994)

1. INTRODUCTION

As an application of Lagrange inversion, Riordan [9] gave the following expansions:

exp(bz) = é——————b (ak ;!b )™z expl-an); (1.1)
eﬁ(jj) = :) L ,:,b)k (zexp(-az))"; (1.2)
(1-2)° :éakbw(ak;b)(u fz)a)k; (13)
(llj ;)b _ ; (akk+ b)((l fz)a ]". (14)

Starting from these identities, Gould ([3], [4]) obtained various convolution identities.
The multivariate case of (1.2) and (1.4) was obtained by Carlitz [1] using MacMahon's "master
theorem."

Using other methods, Cohen and Hudson [2] gave bivariate generalizations of (1.1) and (1.2)
that are different from those of Carlitz.

Krattenthaler [5] showed that the preceding formulas are a consequence of his bivariate
version of Lagrange inversion; furthermore, he has generalized (1.3) and (1.4).

One must note that we do not need to use Lagrange inversion in two variables to prove these
types of identities, as Krattenthaler did, but need only use Lagrange interpolation, which is a much
simpler tool.

Lagrange interpolation must be considered as describing the properties of a linear operator
sending a function of one variable to a symmetric function. It can be written as a summation on a
set or as a product of divided differences; it is this latter version that we shall use here. In fact, in
Section 2 we give the four Lagrange interpolation formulas, (2.1)-(2-4), that contain many of
Krattenthaler's identities as special cases. In Section 3 we show how our Lagrange interpolation
formulas can even be used to derive g-analogs of these identities.

2. MULTIPLE INTERPOLATION

Let A={a,,a,,a;,...} and B={b,b,, b;, ...} be two alphabets and let x, ¢, and { be three
bivariate functions of x and y. For all positive integers m and n, put
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MULTIVARIATE SYMMETRIC IDENTITIES

Ky(m, n, x, y) = x(x, y)($(x, )" (€ (*, »))",
Ky(m, n, x, y) = k06, NP, Y)n(SCE D)o
Ky(m, n, x, y) =(x, y)(¢(x, )" (5(x, Y)n»
K(m, 1, x, y) = k(x, p)(60x, ), 9D,

where (@} ln =ala-D(a-2)---(a-n+1).
Lagrange interpolation generally stated that, for any function of one variable x, and "inter-
polation points" b, ¢, d, ...

J(x) _ S () + f(©)
(x=b)x-c)x-d)--- (x-b)b-c)b-d)--- (x—c)c—b)c—-d) -
f(d)

+ remainder.

(x—d)d-b)d—0)

We shall only need the Lagrange interpolation formula, but written in a symmetrical manner. It is
more satisfactory to consider the set 4 ={x, b, c, ..., d} and write

Z R f@ = remainder,
5= R(a, A\a)
where R(a, A\a) is the product [],_ (a—a').

In other words, Lagrange interpolation amounts to considering properties of the linear opera-
tor f — 2,4 f(@)/ R(a, A\a). This operator sends a polynomial of degree k to a symmetric
polynomial in 4 of degree & —n, with card(4) =n+1. In particular, it annihilates polynomials of
degree < n, and maps f(x)=x" to the constant 1.

These properties suffice to characterize the Lagrange operator.

If ¢(x,y,z,..) is a polynomial, the difference ¢(x,y,z,...)—¢(y,x,z,...) is divisible by
x—y. Following Newton, for any pair of variables (x, y), one defines a divided difference opera-
tor, J,,, acting on the ring of polynomials as

2. )-¢,x,z,..
4, 3..0) > Oaft )= HEL BN,
It is clear that the product (now we need to order 4,,,:={a),a,, ..., a,.1})
A(AMH):: aa,,,a,,“ 'é’an_l,an """ aal,az

also satisfies the same properties and, therefore, coincides with the Lagrange operator (see [7]).
Thus, we have

_3 #(911)
ACm)p(@) ;a R(@i1s At \ 1)

One can note that divided differences are also the main ingredient in the Newton interpolation
formula, and by relating their properties to the symmetric group one can extend Newton interpo-
lation to multivariable functions (see [6] and [8]).

For our purpose, we shall use Lagrange interpolation for two independent alphabets and
functions of two variables:
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MULTIVARIATE SYMMETRIC IDENTITIES

¢(ak+1a +1)
Al A(B, £
(A"“H) ( +1)¢(a1’ 1) 1;) pZ R(ak+1’ Am+1 \ak+l)R( p+l> n+1 p+1) '

We deduce, without difficulties, the following theorem.

Theorem: Let A={a,,a,,a,,...} and B={b,b,, b, ...} be two infinite alphabets. Then we have:
Z A(Am+1)A(Bn+l)Kl(ma n, ah bl) tmzn

m20,n20
(#1180 (§(@11, B,41))"
— b P P
kzézox(ak“’ p+1) R( k+1> Ak)R( p+D> p)
Z (¢(ak+1: p+1))m(§(ak+l7 p+1))n ztmzn;

X
20,20 R(@i15 Apean \ Aes) R o+l n+p+l p+l)

t*z” 2.1

ZA(A-”:H)A( D)Ko (m,n, ay, b)) 172"

mz0,n20

(@11, 5,000 (641, 5,11)) k

— b p p P p
s o) R ARy B

% z (¢(ak+1a p+1)) (g(akﬂ’ p+l)) 1M

z
w3020 R(@est> Ak \ o)) R( p+1> n+p+1\ +1)

2.2)

Z A(4,)DA(B,.)K3(m, n, ay, b)) 172"

m20,n20
k
— Z K(ak+1,bp+1) (¢(ak+1a p+l)) (4(ak+1abp+l))p lkZp
k20, p20 R(a1, AR p+1> )
% Z (¢(ak+1’ p+l))m(§(ak+1’ p+1))n tmzn;
m>0,n20 R(ak+l’ Am+k+1 \ Ak+1)R( p+1> n+p+1 p+l)

(2.3)

> A4, DA(B,. K (m,n,a,b)1""

mz0,n20
= Z K(a,c " bp+1) (¢(ak+1, p+1))k(§ (a1, p+1))1’ o

£20, p>0 R(a,,;, 4R o+ p)

(2.4)

y Z (#(@s1 p+1)) (S p+1)) M
020 R(@ts A \ AR o1 Brapin \ B,.)

We shall use the above theorem in the case of different specializations «, ¢, and ¢ for which
the divided difference is easily calculable. The simple fact that the operator A(4,,,,) decreases
the total degree in 4 by m implies the following identities.

388 [NOV.



MULTIVARIATE SYMMETRIC IDENTITIES

Lemma (2.5): If we specialize x(x, y) = 1, § — ¢,(x, y) = 754 :ZIJ; and ¢ — &y(x,y) = ’121:2?){ , We
obtain
A(4, )AB, 1)K (m, n, a,, b) = A(4,,,)A(B, ) Ky (m, n, a1, by)
= A4, )AB, ) Ks(m, n, a;, b)

(lzf;lzzbl )" ifn=0,

= (lnfxzqal Jifm=0,

0 otherwise.

Lemma (2.6): If we put x(x, y) > x,(x, ) = 75—, $ > h(x, ) = :‘:ﬁ;’;, and £ - {,(x, ») =
2t (g, + B,x), we obtain

Aytpx
A(4,)AB, K (m, n, ay, b) = A(4,,,,)A(B,) Ky (m, n, a4, by)
= A4, )AB,.)Ks(m, n, a;, by)
= A4, )A(B,)Ky(m, n, a;, by)

{ 1 (ﬂl+alal )m ifm=0,

= J Artma \ At e
0 otherwise.

12, A2 12y

Lemma (2.7): If we put x(x,y) = K3(%, ¥) = Grimn@ ) T Orra e Bm @ has o)’

B $,(x, ) = F242 (a, + f,)), and § — &, (x, ) = FH2L (o + frx), we obtain

A(4,)AB, K (m, n, a,, b) = A(4,,,,)A(B,. ) Ky (m, n, ay, by)
= M4, DAB, 1) Ks(m, 1, ay, by)
Ky(a,b) ifm=n=0,
- {O otherwise.

Lemma (2.8): If we put x(x,y) = &3(%, ) = Grmmtriy) Tty 2 (%) = l;:z; (a, +By),
and ¢ = &, (x, ¥) = 52 (@, + yx), we obtain

A(4,,)A(B,.)K (m, n, a;, by)

-1 -1
m n (A A .
_ #_:Z(al—%ll) (az—%lz) (H(;’,“"aﬁl )J (11( ~ 4D, )J if m=n,
0 otherwise.
The identities (2.1)-(2.10) and (3.16) of Krattenthaler [5] arise as different specializations of
the functions x, ¢, and ¢ considered in Lemmas (2.5)-(2.8) above, and to the case in which

A=B=/{0,1,2,...}. For each of the four cases given in our Theorem, we give the formulas when
A and B are general. We then specialize to the case where 4 and B are sequences of "g-integers."
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MULTIVARIATE SYMMETRIC IDENTITIES

3. APPLICATION OF IDENTITY (2.1)

Formula (2.1) and the previous lemmas provide the following identities:
I) Inthe case where 4 and B are general alphabets, we have

-1 -1
Hi Hi Hy
1- zi§l-——1 l-———7
( A+ @Ay + by )( Ay + by ) ( AL+ gy )

_ Z (#1341 p+1))k(§1(ak+1, p+1))p
k20, p=0 R(akH’Ak)R( p+l> p)

% Z (¢l(ak+1> p+1))m(gl(ak+l> p+1))’1 tmzn’
m=0, n>0 R(ak+1a Am+k+1 \ Ak+1)R( p+1> n+p+1 p+1)

t*zP G.D

1 Z 1 (¢1(ak+17 bp+1))k (§Z(ak+1a p+1))p thp
(A + ) — (0‘1+ﬂ1"1)#zz k20, p20 M+ M R(ay,1, AR, B,) 3.2)
% (¢1(ak+1> p+1))m(é’2(ak+l) p+1)) 1M .
50 R(@ 115 Ay \ ARG, b+l n+p+1\ +1) ’
_ ($2(@p1y, b +1))k(§2(ak+1, D) k
Kz(al,bl) = . pZOKz(akﬂ,bpﬂ) R(ak:;,Ak)R( p+1> p; t"z (3 3)
% (¢2(ak+1: p+1))m(;2(ak+1’ p+1)) (M |
m20,nz0 (ak+1: m+k+l\Ak+l)R( p+l> n+p+ p+1) ’
1 Iy %) q( A (! A g 3
e (G B2 811 R (1 )
_ 1 (¢2(ak+l’bp+1))k(§2(ak+lﬂbp+l))p _Ne(=z)P 34
2 0f2" (34

k20, p20 (A4 + a4, + ﬂszﬂ) R(a,,, Ak)R(bp+1> Bp)

x ¥ (82(@41, 5410) " ($2(A1s1, Bpir) ()" (~2)"
20,120 R s> st \ Aec) Ryt By pii \ Bpit)

) Let [n]—ﬂ—, [}l =[n][n—1]---[1], exp,(x)= Z;T:O[’;—']'!. Then in the case A ={0,[1],
[21,...}, B={0,[1],[2],...}, we obtain g-analogs for Krattenthaler's identities (2.1), (2.4), (2.8),
and (3.6) in [5]. For example, from (3.1), we obtain the following g-analog of (2.1) in [5].

-1 -1
¢\([k1. [P])" (C,([K].[PD)”
()= [1-52] - g BT SR

(3.5)
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4. APPLICATION OF IDENTITY (2.2)

I) Inthe case where A and B are general alphabets, we have

-1 -1
H Hy H H
1- z||l-———t¢ -
( A+ ey Ay + pby Z]( Ay + by ) ( A+ Z}

_ Z (#1(as1, p+1))k(§1(ak+1, p+l))p fk P

“.1)
k20, p20 R(ay1, 4)R(G p+l> p)
y Z (13015 p+l)) (& 1(@, p+l)) o
m20, n20 R(ak+l: A-m+k+1 \ Ak+1)R( p+l> n+p+1 +1)

1 _ 1 (¢1(ak+1= p+1))k(é’2(ak+l7 p+1))p tkzp
A+ @) —(a + Bia) oz 50 p20 41+ B R(ay,1, A4)R(b,1, By) 2)

y z ($1(a41, p+1))m(§2(ak+1: p+l)) ",

m20,n20 R(ak+1’ Am+k+1\Ak+l)R( p+l> n+p+l\ +1)

e S vy e i y
y (#2(a41 p+1))m(§2(ak+1: p+1))n M7 @3

m=0, n2 R(ak+1’ Am+k+l \ Ak+1)R( p+l> n+p+1 p+1)

I) For example, in the case 4 ={0,[1],[2],...}, B={0,[1],[2],...} we obtain from (4.2) the
following g-analog of (2.5) in [5].

1 L (4% [pD), (GURLLPD), 4,
A=z obmso b+ mlk] g EVEN gPe 2 p

x Z &\ (¢1([k] [P]) k), (&, ([%1,[P]) - P). "

m20, n20 [m] ! np[n] !

“4.4)

5. APPLICATION OF IDENTITY (2.3)

I) Inthe case where 4 and B are general alphabets, we have

-1 -1
[1_ bt zz)(l_Lt} [1__—”2 )
Ayt may Ay + by Ay + 1oby A+ ey
_ (#1(aps, p+1))k(§1(ak+1, p+1))p k.p
= 2 t*z (5.1)
k20, p20 R(ays1, AR, B,)

y ($1(@s, p+1))m(§ 1@ p+l))n £
m20, n20 R(ak+l’ A‘m+k+l \ Ak+1)R( p+l> rl+p+l p+l) ’
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1 Z 1 (¢ (ak+l’ p+l))k(é’2(ak+l’ p+l))p tk p
(A + ) - (al+ﬂlal)ru2z k20, p20 A1 T His R(ay,;, 4)R(b,,, B,) (5.2)
» (#1(ar 1, p+1))m(§ 241, p+1)) [ .
m20, n2 0 R(@ 41, Apiirr \ A R(D o+ n+p+1\ +1) ’
k
Kz(al, bl) — z Kz(ak.H, bp+1) (¢2(ak+l’ p+1)) ((Z(ak+17 p+1))p tk P
k20, p20 R(ay,,, A )R, B,) (5.3)

($2(@pss p+1))m(§2(ak+l’ p+l)) {Man
R(ak+1a m+k+1\Ak+1)R( p+l> n+p+l\ +1)

II) For example, in the case 4 ={0,[1],[2],...}, B={0,[1],[2],...} we obtain from (5.3) the
following g-analog of (2.10) in [5].

1= Y kL)Y

261 ()" (GURLLPD), )

k20, p20 g“ IR g ]!

(5.4
k ) k n "l
y equ(_ #:((k1. L)) ,)Z( y &l ],, [2)-p)
q n20 [ ]
6. APPLICATION OF IDENTITY (2.4)
I) Inthe case where 4 and B are general alphabets, we have
1 _ 1 (#1(@a, p+1))k(§2(ak+l; bp+1))p 1k P

(A + @) — (@ + Bz st pr0 At BB R(ay1, AR, B,) 6.1)

(#1(@n, p+l)) (&2(a, p+1))n m_n

1z".

m20, n>0 R(ak+l’ m+k+1 \ Ak+1)R( p+D> n+p+l \B +1)

II) For example, in the case A ={0,[1],[2],...}, B={0,[1],[2],...} we obtain from (6.1) the
following g-analog of (2.7) in [5].

R S 1 ((ALIPD) (GRLLPD)
M=z simso M+ mlk] g ¢k PP [p]!

(_ gz(["q];[l’])) 2)2( yr GTELIPD = p)y m

m20 q"[n]!

(6.2)

X exp,
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FIBONACCI ENTRY POINTS AND PERIODS FOR PRIMES
100,003 THROUGH 415,993

A Monograph
by Daniel C. Fielder and Paul S. Bruckman
Members, The Fibonacci Association

In 1965, Brother Alfred Brousseau, under the auspices of The Fibonacci Association, compiled a two-
volume set of Fibonacci entry points and related data for the primes 2 through 99,907. This set is currently
available from The Fibonacci Association as advertised on the back cover of The Fibonacci Quarterly. Thirty
years later, this new monograph complements, extends, and triples the volume of Brother Alfred's work
with 118 table pages of Fibonacci entry-points for the primes 100,003 through 415,993.

In addition to the tables, the monograph includes 14 pages of theory and facts on entry points and their
periods and a complete listing with explanations of the Mathematica programs use to generate the tables. As
a bonus for people who must calculate Fibonacci and Lucas numbers of all sizes, instructions are available
for "stand-alone"” application of a fast and powerful Fibonacci number program which outclasses the stock
Fibonacci programs found in Mathematica. The Fibonacci portion of this program appears through the kind-
ness of its originator, Dr. Roman Maeder, of ETH, Ziirich, Switzerland.

The price of the book is $20.00; it can be purchased from the Subscription Manager of The Fibonacci
Quarterly whose address appears on the inside front cover of the journal.
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ON THE K*-ORDER DERIVATIVE SEQUENCES OF
FIBONACCI AND LUCAS POLYNOMIALS
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1. INTRODUCTION

The Fibonacci polynomials #, = u,(x) and the Lucas polynomials v, =v,(x) are defined by
the second-order linear recurrence relations

U, =xu,_+u, , (Uy=0,u=1),
and n n—1 2 ( 0 1 ) (11)
vn = xvn—l +vn—2 (VO = 2’ W= JC),
where x is an indeterminate. Their k™-order derivative sequences are defined as
k k
ky _ . (k — d N kY _ (k _ d
ul = ul(x) = —F Un(x) and W =vi(x) = o
Denote f, =u, (1), £, =v,(1), £® = u®(1), ¢® =v®(1). P. Filipponi and A. F. Horadam
([1], [2]) considered £*? and £ for k = 1,2 and obtained a series of results. By the end of [2],
seven conjectures were presented for arbitrary £. In this paper we shall consider the more general
cases, #*) and v®), for arbitrary k. Our results will be generalizations of the results in [1] and [2].
As special cases of our results, the seven conjectures in [2] will be proved.
Following the symbols in [1] and [2], denote A =vx*+4, a=(x+A)/2, f=(x—-A)/2, so
that a+ f=x,af =-1,a—- F=A. Itis well known that

u, =@ -B") A, v,=a"+p" (1.2)

(x).

2. EXPRESSIONS FOR 4% AND v{¥) IN TERMS OF
FIBONACCI AND LUCAS POLYNOMIALS

Theorem 2.1:
k!
u'(’k) = m(an,kun +bn,kvn)’ (2 1)
where
k . k .
ae= 2 (Fe M8 )+ 3 (FR )8 ), @2)
21;(1,- 2'&2:'
and
k . k )
k—i+ i k—i+ -1
b= Y (Fe A )+ X (K e ), @)
2o e

where ¢, ; and d, ; (i=0,1,..., k) satisfy the systems of linear equations
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G, (k+1)ﬁck, e (k+l)ﬂ,ck0 - 1),(k+1) (2.4)

k+1 k+1) | k+1) .
dk,i+( ) )adk,x'—1+"‘+( ; )a’dk,o=( . ]A" (2.5)

Furthermore, for i =0, 1, ..., k, there exist polynomials p, ; and g, ; in x, with integer coefficients,
which satisfy

and

Cpi = Dri@+q,;, and d,,=p, .B+q,, (2.6)

Proof: Let the generating functions of {u,} and {u®} be U(®)=U(t, x) = T2, u,t
U, () =U,(t, x) = T2, ult", respectively. It is well known that U(#) = ¢/ (1- xt — %), hence,

" and

n=0 “n
U, (0 =§k—(’](t) = k1Y A= xt -2, 2.7)
By partial fractions we have
k k
Y A=xt =Y =30,/ A-at) T+ Y R (1= B, (2.8)
i=0 i=0

where O, ; and R, ; are independent of 7. Multiplying by a**'(1- B)**!, we obtain

(@) 1 (1=a)™ = @+ 'Y Oy /(=)™ + (), @2)

i=0
where the function @(f) is analytic at the point # = &' under the condition that ¢ is considered as

a complex variable (while x is a real constant). Since(ar)**'/(1—af)**! =[(1- at)™' - 1]**! and
(@+0)F =[A+ (- at)[F*, we can rewrite (2.9) as

kz-'—:l( 1) (k + 1)(1 at)—(k+1—1) Z(k + 1) Ak+1—xﬂx (1 at) Z Qk 1(1 sz‘)—(k+1—-1) + ¢(t)

i=0 i=0
Because of the uniqueness of the Laurent series [4] at the point 7 =¢a " for the function
(o)1 / (1- at)**!, we can compare the coefficients of (1-at)" ¥ (i=0,1,..., k) of the two
sides in the last equality to get

S (I + 1) prsi- k+1

> (FHarigig,, = (4 2.10)

Jj=0
Let 0., =N (=01, k) 2.11)
and substitute it into (2.10); then we get (2.4). For the same reason, it follows that

z("“)( aFar, = () @12)

Let AV (k+1+) :

Rk,f_( A) dk,i (1—0’ lauk) (213)

and substitute it into (2.12); then we get (2.5).
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Now we shall prove (2.6). From (2.4) and (2.5), ¢, o = d, o = 1; hence, the conclusion holds
for i =0. Suppose the conclusion holds for 0,1,...,i—1. Then, from (2.4) and (2.5), we have

k+1 k+1
( 1)( ) Zl( ] )ﬂj(pkl—ja+qk1 j) (214)
j=
and
k+1) k+1) ;
dp;= ( ;- )A Zl( ; )a](pk,i—jﬂ+qk,i—j')' (2.15)
=
From (1.2), it is easy to show that #’ = —u;a +u,,,; hence,

. . ,
i (pk,i—ja + qk,i—j) = —pk,i—jﬂj + qk,i—-jﬂj
= (pk,i—juj—l — 4, i—j j)a +(qk i-j _]+1 = Pr,i- J _])
For the same reason, we have
a’ (pk,i—jﬂ+ qk,i—j) = (pk,i—juj—l - qk,i—juj)ﬂ+ (qk,i—juj+1 - pk,i—juj)-

We can see that A’ is a polynomial in x with integer coefficients for 2|i, but A' = A™(x—2/) and

(=AY = A™'(x—2a) for 2/i. By substituting the above results into (2.14) and (2.15), and by the
inductive hypothesis, the conclusion is proved.
Now substituting (2.11), (2.13), and (2.6) into (2.8), then into (2.7), we get

U,(t)=— I:ZC,“A" - at)k+1"+2d (AT - ﬂt)k”']

A2 k

AZk[Z(ck,/(l at) " /(1= A

2|k—i
+ 2 (¢, /(- ot +d, /(1 — fr)F A
20k—i
Expanding the right side of the last expression into power series in # and using (2.6), we obtain
k! k—i+n) i k—i+n) -1~
) = _A?k‘l:z%’( k—i )Ak (Dr i1 +qk,iun)+2y;_i( k—i )Ak : (Dr, Vs +qk,ivn):|' (2.16)
It is easy to prove that u_,, = (xu, +v,)/2, v,,, = (A%, +xv,)/ 2; hence,

Pre ithnsr + G, ithn = (P % + 2G5 0, + Py iV,) 1 2

2.17
= ((ck,i +dk,i)un +(, — dk,i)A—lvn) /2, ( )

pk,ivn+1 +qk,ivn = (pk,iAzun + (pk,ix + 2qk,i)vn) /2

2.18
=((¢,; —d, )Au, +(c,, +d, Jv,) /2. @19

Substitute (2.17) and (2.18) into (2.16) and we are done. O

396 [NOvV.
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As an example, when k£ =3 and 4, Theorem 2.1 gives the following results:

Cyo=dyy =1, ¢ =—4A-4p, d;; =4A -4a,

¢, = 6A2 +168A +105°, dy, = 64 —16aA +10a?,

Cy3 = —4N = 24N —40B°A-208°,  dyy = 4N — 240 +400>A - 20a°,
Cyo+ 3 =2, ¢y +dyy = —4x,

Cyy +dyy = 6x7 +4, Cyy + gy = —4X° +4x,

C30—dy =0, 31— dy = —4A,

Cyy — dyy = 6XA, Cy3— gy = (—4x7 +4)A,

Ay = (25”)&(—%%(03”)(—43:3 +4x)+(3§n)A3-O+(1Jin)A-6xA

= -2(n* + 1)x* — 402n* - 3)x,
2+n O+mn\ -1 3 3+n) 2 1+n 2
b= 5 A(—4A) + 0 A (—4x” +HA + 3 A2+ 1 (6x" +4)
=%n(n2+ll)x2+%n(n2—4),

u® =[—(6(n* +1)x* +12(20% = 3)x)u, + (n(r* +11)x* + 4n(n* — ), 1/ A,

in particular,

1996]

FO =@ -1, -6f,)/25.

Cao =dgo =1, Cy = —SA-5p, dy,; =5A-5a,
iy = 1042 +258A +155%, dy, = 10A® —25aA +1507,
¢43 = —108° — 508K —T55°A - 3547, dz = 10N - 500/ +75*A —35a°,

Caq = SA* + 5088 + 15087 +1758°A +705%,
d,, = 5A* = 500N’ +15002 A 1750 A+ 70a,

Cao +dag =2, Cyy +dyy = —5X,

€y +dy =10x2 +10, €43 +dyy =—10x> —5x,
Cyq +dyy = Sx* — 152, Cyo—dsg =0,

Cy —dyy =54, Cyy —dy, = 10xA,
Cpy—dy3 = (-10x* +5)A, Caq — gy = (53> —15%)A,

n

Ay = (42;")& 2 +(2;n)A2(10x2 +10)+(Ogn)(5x4 ~15%%)
+ (3 ;n) A (-5A) +(1‘;n) A(-10x* +5)A

- 1_12.(;14 +357% +24)x* +§(2n4 +25n% = 72)x? +%(ﬂ4 —107* +9),

(2.19)

(2.20)
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b

n

Y= (4 j”)& -0+(2 ;")A(loxA) +(Og") A1(5%° ~ 150)A
+ (3 ;”) A (=5x) + (l ﬁ")(-10x3 —5x)
_ S 2 3 S o0
= 6n(n +5)x 3n(2n 11)x,

u® = [((n* +357% +24)x* +42n* +250* — 72)x* +16(n* — 100 +9))u,

2.21
— (10n(n* + 5)x* +20n(2n* -1 D)x)v, ]/ A, 221)

in particular,
£@ =[(5n* = 5n* = 24) f, - 2n(5n* = 17)£,]/125. (2.22)

We observe that (2.6) can be verified by using the above results.

From v =nu{*P (see 1" of Theorem 3.1 in the next section) and Theorem 2.1, we can
obtain the expression for v¢*) in terms of u, and v, .

3. SOME IDENTITIES INVOLVING () AND v

If we differentiate certain identities involving u, and v,, we can get the corresponding iden-
tities involving #*) and v(*).

Theorem 3.1:
1. v =D, (3.1
2°. u,(,k) = xuf,’f)l +uf,’ﬁ)2 + ku,(,':l), vf,k) = xvf,’ﬁ)l + vf,’f)z + kvf,’:l); (3.2)
o k k k
3 v =l +ul, (3.3)
Au® + 20kl + k(- DuD =v®) 4B (3.4
k
o k k k—i i —-i i
&, = 34 ) s i), 63
i=0
k SR, N () (=),
(i _
0= X (4 M0 002, 69
i=0
*) E (B =i @) (=), D)
Uy 'y = (_ l)nZ(l )(um ' un’+1 - um+ll unl )> (37)
i=0
G (1) iy ) (i) 0)
n bt § 1 bt | 1 .
vm—)n = (_l) Z(, )(vm+l U,” —Uy Vpin)s (38)
i=0
in particular,
) = (1" ' (.9)
v = ()M , (3.10)
® _ (kY w00
D),
n :Z(j)un vnl’ ' (311)
i=0
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Elrp g o
Vi =22( ; )vﬁ"")vf,’); (3.12)
i=0
k S0 -
ul, = Z( )u,(,ﬂ’)v,(j), (3.13)
i=0
k
wh = Z(];)vf,ﬁ]’)vf,’) (=1)"8),; (0 is the Kronecker function); (3.14)
i=0
' k(k oo
. il + i, = 2§ usk g, G.15)
i=0
k (K N
u® —(-1u®, :Z(i)vfnk")uf,’); (3.16)
i=0
NG) *) (K -0y 0.
m+n+( l) V zg 1 vm vn > (317)
S(k
Vit = V2, —Z(,-)uﬁn"">(v<’> V), (3.18)
i=0
6. v =(m—k+F D —20E) + D). (3.19)

Proof: 1°. This can be obtained by differentiating the identity v{” =nu_, which had been
proved in [1].

2°. By differentiating (1.1).

3° ~ 5°. By differentiating the following identities, which can be seen in [5] or can be derived
from (1.2):

Vo = Uy + un—l’ A U, =Vun +vn—1’
ll um+1u +y n 1> V vm+1u +v, n—l?
u - (—D ( n+l m+lun)’ ‘V _( l) (um+1v —Y vn+1)a
u, +( D'u,_,=u,v,, Uy, —(—D'u,
2
Vn +( l) rm _van’ Vi _( l) mn"‘Auun_u (n+1 vn—1)7
u_ "( D" u, V_n‘( D,
Uy, =uV,, vy, =V —2(=1)",
u2n+l S Uy )V — (_ l)na Vanil = VpetVn — (_ 1)nx~
6°. From the well-known identity v, = xu, +2u,_,, we get xnu, =nv, —2((n—Du,_,; +u,_,),

that is, xv® =nv, —2(v®, +u,_)), and the proof is finished by differentiating the last expres
sion. O

Let x=1in1°,2°, 3, and 6" of Theorem 3.1; then Conjectures 1-5 in [2] and [3] are proved.

4. SOME CONGRUENCE RELATIONS AND MODULAR PERIODICITIES
First, we introduce some concepts and lemmas. Set polynomials

glt)y= t* —altk'1 —e—a_l—a, “.1
and
g =1-at——a_t" " -ar* (4.2)
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Obviously, g(t)=1*g(1/¢) and g(z)=1*g(1/1). The set of homogeneous linear recurrence
sequences {g,} of order & [each of which has g(¢) as its characteristic polynomial] defined by

Enve = Nk T T X1 & T A8 (43)
is denoted by Q(g(?))=Q(qay,...,a,). The sequence {w,} €Q(g(?)) is called the principal
sequence in Q(g(?)) if it has the initial values wy =w, =---=w,_, =0, w,_, = 1.

Lemma 4.1: Let {w,} be the principal sequence in Q(g(¥)); then its generating function is
W) =115 4.4
(see [6], p. 137).

In the following discussions, we suppose that a, ..., a, are all integers. Let {g,} be an inte-
ger sequence in 2(g(?)) and m be an integer greater than one. Denote the period of {g,} modulo
m by P(m, g,). If there exists a positive integer A such that

t* =1 (modm, g(1)), (4.5)
then the least positive integer A such that (4.5) holds is called the period of g(#) modulo m and
is denoted by P(m, g(¢)).

We point out that

P(m, g(1)) = P(m, g(1)) for ged(m, a,) =1. (4.6)
To show (4.6), it is sufficient to show that g(?)|(t* —1) (mod m) iff (®)|(t* —1) (mod m).
Assume that g(¢)|(#* —1) (mod m). Then we have t* —1=h()g(t)+m-r(t), where h(f) and
r(¢) e Z(?) (the set of polynomials with integer coefficients). Replacing ¢ with 1/7, we obtain
1/ H* =1=h(1/ (/) +m-r(1/1). Multiplying by t*, we then have —(¢* — 1) = t* *h(1/ t)g(£)+
m-t*r(1/1). Since gcd(m, a,) = 1, the degree of g(¢) (mod m) is k. This leads to #*~*A(1/¢) and
t*r(1/1) € Z(t). Hence, g(t)|(t* —1) (mod m). The converse can be proved in the same way.

Let B(t)=1/g(t)= X ,bt". Let {w,} be the principal sequence in 2(g(r)). Then, from
(4.4), we have w, =b,_,.,; and therefore, P(m,w,)= P(m,b,). Corollary 2 in [7] means that
P(m,b,)= P(m,g(t)).” Therefore,

P(m, w,) = P(m, &(1)). (4.7)

From (4.6) and (4.7), we obtain

Lemma 4.2: Let {w,} be the principal sequence in Q(g(?))=Ua,, ..., a;), ged(m,a,) =1. Then
P(m, w,) = P(m, g(1)). (4.8)

Using the footnote and (4.6), Theorems 17, 21, and 15 in [7] can be rewritten as Lemmas
4.3, 4.4, and 4.5, respectively.

* In [7] the period of {b,} modulo m is referred to as the period of its generating function B(f) =1/ g(¢) modulo m.
Hence, the concept "the period of 1/ g(¢) modulo m" stated in [7] should be translated into " P(m, g(¢))" in this

paper.
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Lemma 4.3: Let ¢(t) be a monic polynomial with integer coefficients, p be a prime, p|@(0), and
o(t) be irreducible modulo p; then, for p™ <s<p” (r=1),

P(p", 0()°) = p™" ' P(p, p(1)). (4.9)

Lemma 4.4: Let ¢(f) be a monic polynomial with integer coefficients, p be an odd prime,
pl9(0), and @(f) be irreducible modulo p. Assume A,(¢) =1;_, ¥,(¢), where ¥,(¥) = p(¢)* (mod
p) (i=1,..., 7). For fixed s,7 > 1, if there exists an integer 7> 1 such that

(T-Ds<p'<Ts<(T+)s<p, (4.10)
then, for every 7 satisfying p™™' < =5 < p’, it follows that
P(p", k(1) = P(p", o) = p""" - P(p, 9(1)). (4.11)
Lemma 4.5: Let ¢(f) be a monic polynomial with integer coefficients, p be an odd prime,
ple(0). If P(p, p(t)) = P(p?, o(®)) == P(P', (1)) = P(p*, (f)), then m > i leads to
P(p", () = p"" - P(P', p(0)). (4.12)

Lemma 4.6: Let p be an odd prime, for j=1,2, ¢ ,(¢) be a monic polynomial with integer coeffi-
cients, pf¢,(0), and ¢;(?) be irreducible modulo p. Assume h,(¢) = [17; ¥(z), where ‘¥,(¢) =
0,0’ p,(2)° (mod p) (i=1,...,7), ged(@,(t), 9,(1)) =1 (mod p). For fixed s,7 > 1, if there exists
an integer 7> 1 such that (4.10) holds, then for every 7 satisfying p"™! <z < p” it follows that

P(p", h(0) = P(P", ()7 0,()7) = P lem{P(p, 9, (), P(p, 0,(1)}.  (4.13)

Proof: Denote P(p, (1)) =2, (j=1,2), lem{d;, A,} = 4. Since h(f) = ¢,(1)"p,(1)* (mod
p), ged(p1(t), p2(1)) =1 (mod p), we have P(p, k(1)) =lem{P(p, 0,(1)"), P(p, (D7)} By
Lemma 4.3, P(p, p,;(1)*) = p’A;; hence, P(p, h.(t)) = p'A.

Because 7 is the least 7 satisfying p"! <5< p” from (4.10), we get hy(f)|h,(¢); therefore,
P(p™ hp(1))| P(p™,h(1)). By Lemma 4.5, P(p", h.(1))|p"™" P(p, h(1)) = p™*"~'A. By the same
lemma, if we can show P(p?, k(1)) # P(p, hy(?)) = p'A, then P(p™, hy(¥)) = p™"'A and (4.13)
holds.

Now we can rewrite ¥,(¥) = ¢,(t)*p,()* — pb,(t), i =1, ..., T. Hence,

T
h(t) = 910 02" = P70 - 5 (€)' TD - {(#) (mod p?), where () = Z,O 0:(7).

Then i (1)[1(1)°@2(1)’ + PCO1= 918" po(1)™ (mod p?). Therefore,

el W Ly pa”* -1
@) o)) @) Ty (1)

From (4.10) and Lemma 4.3, we know that P(p, ¢ (t)""**) = p"- P(p, ¢ ()) = p'A;; thus,
@ (DT |(t7* —1) (mod p). From ged(, (1), ¢,(1)) =1 (mod p), it follows that

@1 o (T |(t7* - 1) (mod p),

(mod p?). (4.14)

and so
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PO o (7 | p(t7 = 1) (mod p?).
Assume that P(p? hy(t)) = p'A, then Ay(1)|(t7* —1) (mod p?). From equation (4.14), we get
@, T|(#t7* 1) (mod p?); this leads to P(p?, ¢,(t)")|p"A. But from Lemma 4.3 we have
P(P?, ¢,;(t)") = p"*'4,. This leads to the contradiction that p"'A[p"A. O

In the following discussions of this section when the divisibilities of #{*) and v{*) are con-
sidered, we assume x takes integer values only.

Theorem 4.1:
uP) =v® =0 (mod k!). (4.15)

Proof: Denote
F.(f) = (£ —xt - 1)**1, (4.16)

Let {w,} be the principal sequence in Q(F,(r)). From Lemma 4.1, the generating function of

{w,} is
W(t) = t**1 (1 - xt —})F+1, (4.17)

Comparing (2.7) to (4.17), we get
u® =klw, .. (4.18)
Because {w,} is an integer sequence, we have #%) =0 (mod k!), and from (3.3) we get v{¥) =0

(mod k!). O

Theorem 4.2:
v®) =0 (modn) (k>1). (4.19)
This follows from (3.1).
The results of the last two theorems are generalizations of the results of Conjectures 6-7 in

[2].

Theorem 4.3: Let p be an odd prime, p > k.
1°. If pfA?, then

P(p",u?) = P(p",v{P) = p"- P(p,u,) = p" - P(p,v,). (4.20)
2°. If p|A’andp™ ' <2k+2<p” (r=1o0r2), then
P(p", u) =4pmr-1, 4.21)
3. If p|Aandp™' <2k <p” (r=10r2), then
P(pm,v{P) = apmrt. (4.22)

Proof: Denote f(t)=1*—xt—1. From Lemma 4.2, (4.18), and (4.16), for p> k, we have
P(p,u,) = P(p, f(1)) and P(p", u{)) = P(p™, F(1)).

1°. Let p|A?. From v, =u,,, +u,_, and Nu, =v,,; +v,_,, it follows that P(p, u,) = P(p,v,)
=A.
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When f(¢) is irreducible modulo p, the conclusion P(p”,u{?)=p”4 can be proved by
letting @(¢) = f(¢),s=k+1,r=1 in Lemma 43. When f(¢)=(t—a)(t—-b),a#b (mod p), the
same conclusion can be proved by letting ¢,(f) =t—a, ¢,({)=t—b,s=r=1,7r=k+1 in Lemma
4.6.

We now prove P(p™, v®) = p”1. From (3.3), we can see that P(p”, v?)|P(p™, u®). On
the other hand, from u, = (v,,; +v,_;) / A%, by differentiating, we can obtain

k
u =% (’i‘)(vf,ﬁp +VED) M, (x) | A2, (4.23)

i=0

where M,(x) is a polynomial in x with integer coefficients that are independent of n. We see that
(3.2) implies P(p™,v¢™)|P(p",v?"). Hence, for i=0,1,....k, P(p",v¢ )| P(p",v¥). From
(4.23), it follows that P(p™, u)|P(p™,v). Thus, P(p”,v¥*¥) = P(p",u)) = p"A.

2°. Let p|A%, then f(¢)=(t—x/2)* (mod p). From x* =—4, we get (x/2)* =-1 (mod p).
Hence, P(p,t—x/2)=ord,(x/2)= 4.* In Lemma 4.4, if we take @(f)=1—x/2, h(t) = F, () =
@()**? (mod p), s=2,r =1or 2,7 =k +1, then we get the required result.

3°. Using the result of 2°, it follows that P(p” v{®) = P(p™,nulD)|lem{P(p™, n), P(p™,
ulk D)y =4p™r1 when pt <2k <p” (r=1o0r2). Since v,=a"+p"=2(x/2)" (mod p), then
4= P(p,v,)|P(p",v¥), and we have P(p™,v¥)=4pM. We want to show that M =m+r—1=
m+1forr=2, or =mforr=1. First, let »=2. If it would not be the case, that is, if M <m,
then if we replace #» by n+4p™ in (3.19) we have

o) =+ 4p” = k+ DD — 28 +ul 0, ] (mod p).

Subtracting this from xv® = -k +)vED —2[v®), +4*D] (mod p™), we get ufzi 42”, -
u*7D =2p™ ¥ =0 (mod p”). This means that P(p™,u*D)|4p™ for r=2. But, by 2°, we
should have P(p™, ulf=0) = 4p™! forr =2. A contradiction!

Next, let 7 =1. The least k satisfying 1< 2k < p is 1. Recalling that P(p”, vV)| P(p™, v{P),
we need only prove that M =m for k =1. On the contrary, suppose M <m—1. then

Vidgrt ~VSD = (4P Yy — s, = 0 (mod p).

Expanding u, in (1.2) into the polynomial in x, A, and noting p|A?, we obtain

i=0

nu, = n(nil)/zl (21,’: 1)(x/ 2y 2 (A/2)Y = nZ( )(x/ 2)" %Y A/2)% (mod p™) (4.24)

and

m—1 m—1 n+4pm—l
(n+A4p" Y, 4 = (+4p )Z( 2it1

When m > 1, since

)(x/z)"“ﬂ""—z"-l(A/z)?f (mod p™).  (4.25)

* Let m and a be integers greater than one, gcd(m, a) = 1. The least positive integer A satisfying a* =1 (mod m) is
called the order of @ modulo m and is denoted by ord, (a). Since t* -1=[(t—a)+a]*-1=a* -1 (mod (¢ —a)), we
have P(m,t—-a)=ord (a).
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m—1 "+4pm_l = n m-1 2i i
(n+4p )( 2i+1 )"n(2i+l) (mod p™™") and pl|A“ fori>1,

and furthermore, (x/2)* = 1 (mod p) implies (x/2)*”"" =1 (mod p™), (4.25) can be reduced to

m=1
(n+4p" Y,y = (1 +4P" )P (x 1 2)" +ny. (2;:_ 1) (x/2)" 51 (A/2)% (mod p™). (4.26)
i1

Subtract (4.24) from (4.26) to get

Ci+4p™ N, —nu, =8np™(x/2)"! # 0 (mod p™) forp|n.

+4pm-1

This is a contradiction!
When m =1, from (4.24) and (4.25), we obtain

(n+Bu,,q —nu, =8n+2)(x/2)"! 0 (mod p)

for n# -2 (mod p). This is also a contradiction! O

From Theorem 4.3, we can obtain many specific congruences. For this, we introduce another
concept. Let {g,} be an integer sequence. If there exists a positive integer s, a nonnegative inte-
ger n,, and an integer ¢, gcd(m, ¢) = 1, such that

8nes =C8, (modm) iff n>mny, (4.27)

then the least positive integer s satisfying (4.27) is called the constrained period of {g,} modulo
m and is denoted by s = P’(m, g,). The number c is called the multiplier.

Lemma 4.7: Let {w,} be the principal sequence in Q(F, (7)), where F,(¢) is denoted by (4.16).
Then P’'(m,w,)=s exists and the multiplier ¢ is equal to w,,,,,; (mod m). Furthermore, if
r=ord,(c), then P(m,w,) = sr, and the structure of {w, (modm)} in a period is as follows:

0, ..,0 1, Wy, Wok+3 s Welt,

0, ....,0,¢c, Wyiy, Wyis, v, CW, (4.28)
r-1 r-1 r—1 r-1

0, ...,0, ¢, ¢ Wy, € Wypia, ooy € Wy

Proof: Because {w,} is periodic, it must be constrained periodic [in the most special case,
the multiplier ¢ may be equal to 1 (mod m)]. We have w, =---=w,, =0 and w,,,, =1. Replac-
ing n by 2k +1 in the expression

w,,,=cw, (modm), (4.29)
we obtain ¢c=w,,,,,, (modm). By induction, from (4.29), we can get
Wy s ='W, (modm). (4.30)

If j=r=ord,(c), then (4.30) becomes w, ., =w, (modm). This means that P(m,w,)=sr. In
(4.30),letjbe O0,1,...,r—1andnbe O,1,..., s—1; then (4.28) follows. O

From Lemma 4.7, (4.18), and (3.1), we obtain
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Theorem 4.4: Let {w,} be the principal sequence in Q(F,(¢)), where F,(f) is denoted by (4.16),
and let p be an odd prime, p>k, P'(p",w,)=s. Ifw,=0 (mod p™) for n=i (mod s), then
u® =0 (mod p™) forn=i—k (mod s)
and
v =0 (mod p™) for n=i—k (mods) orn=0 (mod p™).

Furthermore, if Ap” =i -k (mod s), then v("“) =0 (mod p™).
Example 1: Let x=1,p=3. Then A’ =5, p|A’. Hence, from (4.20), we obtain P(3", f¥))=
P@3" 48)=3".P3, f,)=8-3"fork=1,2.

Example 2: Let x=1,p=5. Then p|A>=5. Hence, from (4.21), we get P(5", f¥)=4.5""
for k=2,3,4, or4-5" fork =1 and, from (4.22), we get P(5",/®)=4.5"" for k=3,4 or
4.5" fork=172.

Example 3: We show that £® =0 (mod 10) iff n=0,+1, +2 (mod 25), and £ =0 (mod 30)
iff n=+1, £2 (mod 25) or n= 0 (mod 5).

Proof of Example 3: We have Fy(t)=(*—t-1P>=1*-3+57-3t-1=1°-3-3¢-1
(mod 5) for x=1. Let {w,} be the principal sequence in Q(F,(?)). Then w, c=3w,, s+3w, +W,
(mod 5).

Calculate {w, (mod5)}; according to the last congruence:

0,0,0,0,0,1,-2,-1,2,1,1,-2,-1,2,1,2,1,-2,- 1,2, 2,- 1,2,1,-2,0,0,0,0,0,— 2, .. (mod 5) .

This implies that s = P'(5,w,) =25 and w, =0(mod 5) iff n=0,1,2,3,4 (mod 25). Hence, the
example is proved by Theorem 4.1 and Theorem 4.4.

5. EVALUATION OF SOME SERIES INVOLVING #> AND v{¥)

Lemma 5.1

T. iu,.z(u,,+l+un—l)/x (x#0). (EN))
i=0

2. 30 = Wy ¥y~ 2) /x+1 (x £0). (5.2)
i=0

3 37 = Py, where ) is {1} or ). 53)
i=0

£ 3V} e = V" where (1) i (1) or () (5.4)
=0

5% i (7) Uy, = (X2 +4)"u,,, for 2|n, or (x* +4)" "%y . for 2|n. (5.5)
i=0

6. En:(n)vz,ﬂ =(x* +4)"%y,,, for 2|n, or (x* +r)™D?y . for 2|n. (5.6)
=0
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Proof: We prove only 2° and 5°. The rest can be proved in the same way.
2. iv, = i(a’ +B)=>1-a")/(1-a)+(1-8"/(1-B)
R =(1-a™-p-a"+1-™—a—-B")/(~x) = (V. +v,~2) / x +1.
5°. We have
Z(’,’) o =(1+a%) = (-af+a’) = Na".

i=0
For the same reason

$ (1) - oy

i=0

Hence, ‘
Z(?)u2i+r — Z( .)(aZHr _ﬂ2i+r)/ A= An[an+r _ (_l)nﬂn+r)/A
i=0 i=0
=A[a™" - ™)/ A= (x*+4)"u,,, for2|n,
or =N a™ + ™) = (x*+4)" D2y for2)n. O
Theorem 5.1:
n k
YU =Y IR, [+t -5, 1/ (x0); (5.7)
n k
v =3 R D =26, 1/ % (x £ 0); (5.8)
i=0 =
3 Ihl(kr) 1 ( ) (ltz:::)r’
go( ) * Z( y * (5.9)
where {5} is {u®} or P} (i =0,..., k);
n —1y n) (:f)r_ -1 ( ) n xn——th’gk;l),
> (72 >Z () ¥ 610
where {#’} is {4} or {vf,'>} (i=0,.., k)
S w _w(k =iy d ni2
Z( )u21+r :Z(l) Upyr (x +4) for 2|n,
=0 " (5.11)
or = ;)(I:)v,ff;’) —(x? +4)" D2 for 2/m;
n k
K\ - d' n
g(’i’)vg;), =§(1)v,§’;,> —(x? +4)"? for 2|n,
" ’; (5.12)
k), (k=i n
or = ;(i)uﬁﬁr ) r (x +r)™D2 for 2fn.
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Proof: Every one of (5.7), (5.8), (5.10)-(5.12) can be proved straightforwardly by differ-
entiating the corresponding one of (5.1), (5.2), (5.4)-(5.6). The proof of (5.9) is as follows.

Let k
ny_i
gn,k,r :gn,k,r(x):Z(i)x (4,—Cr) (513)
i=0
Then
k
&nkr = Z( ) (k“) Z( ) (k) = &nksrr T nL ke, r1
i=0
So

gn,k+l,r = gr'z,k,r —-n: gn—l,k,r+l' (5 14)

When k£ =0, from (5.3), we can see that (5.9) holds. Assume that (5.9) holds for £; then
from (5.14), we have

k
i k —i —i
ke = V(o2 -n2 () D
i=0
The second summation in the right side of the last expression can be rewritten as

—nZ( 1)( )(n DD, —n(=1 (1= Dby s

k
N C N Al OV et g OGS,

From this, it follows that
™ k + 1 (k-+1-i)
gn,k+1,r = Z(—l) (n) th i+r >
i=0

that is, (5.9) also holds for k£ +1, and we are done. O

It is known that the generating function of {u{*)} is expressed by (2.7). It is well known that
the generating function of {v,} is
V(t)=Q2-xt)/(1-xt—-12). (5.15)

Differentiating (5.15), we can know that the generating function of vy is
V(@) =kl A+ A -xt -2 (k>1). (5.16)
Obviously, the following identities hold:
k'r!

Uk(t) U( )_—(_I:-———) k+r+1(t)
ACRAOSS B i W@ (r 2D
klr!

Uk(t)'Vr(t) ——"T k+r+1(t) (r>l)

(k+
U, () V()= E(Zfl = X)Upn(®);
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O V) =@ =W (k21)

Equalizing the coefficients of 7" of the two sides in each of the above identities, we have

Theorem 5.2:
Ry () — Kl Geren. 5.17
Z” D kAl ©-17)
klrl
_(k) (r) — (k+r+1) (k+r4 1) k 7 >1 5.18
k\r!
Fyr) — T Ckerd)) >1): 5.19
Zu n—l (k+r+1)'vn (r )’ ( )
2 1
§”’(k)""-"=m(2u£ﬁ" ) 520
Zvi(")vn_i = (2 D _ By (k> 1) (5.21)
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ON THE EXISTENCE OF COUPLES OF SECOND-ORDER LINEAR
RECURRENCES WITH RECIPROCAL REPRESENTATION
PROPERTIES FOR THEIR FIBONACCI SEQUENCES

Juan Pla

315 rue de Belleville 75019 Paris, France
(Submitted December 1994)

The aim of this note is to show that for any given second-order linear recurrence on the
complex field

rn+2_arn+l+brn :Oa (Rl)

where A =a®—4b =0 and b =0, another one exists such that it is possible to represent the gen-
eralized Fibonacci numbers of any of them with sums of the generalized Fibonacci numbers of the
other one, with a set of coefficients to be detailed later.

To establish this property, we need the following lemmas.

Lemma 1: Let U, (a, b) denote the n' generalized Fibonacci number of the (R1) recursion. That
is, U,,, —aU,, +bU, =0, U, =0, U; =1, where A =a*-4b+0 and b=0. Let /b denote any
of the roots of the equation z> =b. Then

Up(a )= 3(¥"* )P @= 2By 2 (Y. F1)
p=0

Lemma 2: If S is the set of all the couples of complex numbers (u, v), their order being indif-
ferent [that is, (u,v) = (v,u)], and if T is the transformation defined on all § by

T(u,v)=(u§"+m, ”;v_m),

then 7%(u,v) = (u,v), where T is the second iterate of T.

Proof of Lemma 1: Edouard Lucas [1] proved that if U,(z,s) is the n™ generalized
Fibonacci number of the recursion defined on the complex field by 7, ,, —#,,; +s7, = 0, then

[n/2]
Ut )= "7 Pty 2 (~s)".
=% ( . ) s

Throughout the rest of this paper, when we refer to the characteristic roots of a linear recur-
sion we mean the roots of its auxiliary algebraic equation.
Now let @ and B be the characteristic roots (supposed distinct) of the recursion (R1), let Vo

be any root of the equation z* = ¢, and let —.Jﬁ be any root of the equation z* = .
If ¥, is the n generalized Fibonacci number of the second-order linear recursion whose
characteristic roots are v/ and —\/ﬁ then, using Lucas' formula, we obtain

[n/2]

Bu= 3 ("5 | W@ B W By

p=0
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Now, using the usual Binet form, we easily obtain
YZ(n+l) = (\/E - '\/E)Urﬁl(a’ b),

whence

U, (a,b)= E": (2n +pl - p) Wa - JBPrPa By,
p=0

But we have (\/E-\/E)z = a+ﬂ—2\/3\/ﬁ= a—ZJEJ,E.
Since aff = b, it is obvious from the above definitions of va and \/ﬁ that we can replace
Ja \/ﬁ by any of the roots of z*> = b. This completes the demonstration.

Since +/b may be any of the roots of z2 = b, the following formula is also true:

Upa(a8)= 3 (") 7P Jia+ 2457y (F2)
p=0

Proof of Lemma 2: The proof is immediate by directly computing

T(";Hm, ”T*"_r)

Now, to the recursion (R1), let us associate the recursion (R2), whose characteristic roots are
a/2++/b and a/2—-/b, that is, the one defined by:

Vg —ar, + (A, =0, (R2)

where A is the discriminant of (R1).
It is immediate that the couple of roots of (R2) are obtained by applying the 7 transformation
to the couple of roots of (R1). Therefore, by applying the same transformation to the couple of

roots of (R2), we obtain the couple of roots of (R1), according to Lemma 2. Then the associate
recursion for (R2) is (R1).

Now we may write (F1) and (F2) as follows:

Upr(@,8)= Uy = 32 (2" )~ P )27 (@) 2= VY P (B,

p=0

U@ B =Upa = 3% P 2 @r2 4 JBy # By
p=0

Letting (®,) be the generalized Fibonacci sequence of (R2), we may write the following formulas
which are easily obtained by induction:

(a /2~ ‘/l;)n—p = (pn—p+l - (Dn—p(a 12+ \/l;),
@/2+\By P =0, .-, (a/2-+b).

By substitutions in the previous formulas, we obtain

Upa=3(2* 1P 2 (B (@, s~ @, a1 249B)),

p=0
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U= (2" NP2 2 (ADP(@, - @, (0] 2-VB)),

p=0

and, summing both relations, we have

Upi= 3 (2" +I} - P) 2RO, —al 2, )

peven

pe - (S1)
+1- .
_ z ( n » P)z p(b)(p+1)/2q)n_p_
podd
p<n
Since the associate recursion for (R2) is (R1), we have, symmetrically,
pl2
D= D, (2” +p1‘p)2"—1)(%) U, pe1—al2U,_,)
peven !
psn
(p+1)/2 (SZ)
_ Z (2n+1~p)2n—p(é) U
podd p 4 i
psn

because the fact that 4b =0, 4b being the discriminant of (R2), allows the same treatment for
Lucas' formula for @, as the one for U, ;.

Remarks:

1. Do there exist recursions which are their own associates? (R1) will be so if and only if
b=A/4<b=(a")/8. Therefore, a necessary and sufficient condition for a recursion to be its
own associate is to assume the form

2
g —ar,q +(a@”)/8r,=0,

where a is an arbitrary nonzero complex number. Its characteristic roots are a+/2(+/2 +1)/4 and
av2(J2-1)/4. Within the first pair of parentheses is the greatest root of the Pell recurrence,
Frpa — 27,1 — T, = 0, while within the second pair is the opposite of the remaining root of the Pell

recurrence. This allows us to obtain sum formulas specific for Peil and Pell-Lucas numbers,
thanks to (S1).

2. To any second-order linear recursion, we may also associate the auxiliary polynomial of
its associate recursion. That is, to the recursion defined by 7,,, —ar,,, +br, =0, associate the
polynomial x* —ax+A/4. With this meaning, it appears that the associate polynomial for the
general second-order linear recursion has been mentioned in the literature at least once, because
Richard André-Jeannin [2] proved the following orthogonality property (with our notations):

f::jﬁmm(a +x,0) U, (a+x,b)dx =0

for n# p, and it is obvious that the polynomial under the radical is equal to 4p(—§), where p(x)
is the associate polynomial for the recursion (R1).
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With a trivial change of variable, the orthogonality relation may be written as

J:vp(x) U,(a=2x,b)U (a-2x,b)dx =0

where A and k are the roots of p(x): a/2—+b anda/2++/b.
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AVERAGE NUMBER OF NODES IN BINARY DECISION DIAGRAMS
OF FIBONACCI FUNCTIONS*
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1. INTRODUCTION

A binary decision diagram (BDD) is a directed graph representation of a switching function
f(x;,x,,...,x,). Subfunctions of f correspond to nodes in the BDD; f itself is represented by a
source node, i.e., a node with no incoming arcs. Attached to this node are two outgoing arcs,
labeled 0 and 1, that go to descendent nodes representing f (x,,x,,...,0) and f(x,x,,...,1),
respectively. Attached to each of these nodes are descendent nodes, where x,_, is replaced by 0
and 1, etc. This process is repeated until all variables are assigned values. The last assigned func-
tions are a constant 0 and 1, which correspond to sink nodes, i.e., nodes with no outgoing arcs. If
two nodes represent the same function, they are merged into one node, and if the descendents of
one node 77 are the same, 7 is removed. If f =1 (0) for some assignment of values to x;, x,, ...,
and x,, then there is a path in the BDD for f from the source node to the sink node 1 (0) for that
assignment. Figure 1(a) shows the BDD of the OR function on four variables. As is usual, the
arrows are omitted; all arcs are assumed to be directed down. As can be seen, there is a path
from the source node to the node labeled 1 if and only if at least one variable is 1. Figure 1(b)
shows the BDD of the AND function of four variables, which is the mirror image of the OR
function BDD.

R

(a) OR (b) AND
FIGURE 1. BDD's of the OR and AND Function on Four Variables

There is significant work on this topic dating back to 1959 [5]. In spite of this, there are few
enumerations of nodes in BDD's of useful classes of functions. Symmetric functions, which are
unchanged by a permutation of variables, have received some attention. The worst case number
of nodes is known [3], [6], [7], as well as the average number of nodes [1].

* Research supported by a grant from the Tateishi Science and Engineering Foundation.
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We demonstrate another class of functions and characterize its BDD. A threshold function,
f(x, x,,..., x,), has the property that f =1 if and only if w,x, +w,_x,_, +---+wx; =T, where
w, and T are integers and the logic values, O and 1, of x; are viewed as integers. The value
of w,x,+w,_x,_,+:-+wpx, for some assignment of values to x,x,,..., andx,, is called
the weighted sum. A threshold function is completely specified by a weight-threshold vector
Wy, Wye1s...,wy; T). For example, the four-variable OR and AND functions have weight-threshold
vectors (1,1,1,1; 7), where 7' =1 and 4, respectively. A Fibonacci function is a threshold function
with weight-threshold vector (F,, F,_,, ..., F;, F;; T), where F, is the i Fibonacci number and
0<T<F,, For example, the Fibonacci functions associated with weight-threshold vectors
(3,2,1,1;1) and (3,2,1, 1, 7) correspond to the OR and AND function, respectively. on four vari-
ables. The BDD of a Fibonacci function is a BDD in which a path from the source node to a sink
node is a sequence of arcs associated with variables of descending weights. Figure 2 shows the
BDD's of all of the other four-variable Fibonacci functions, which have a weight-threshold vector
(3,2,, 1,7, for 1<T <7, thus, Figures 1 and 2 represent the entire set of seven four-variable
Fibonacci function BDD's.

WOl

5

R

]

0 1
(3:2,1,1;4)

FIGURE 2. BDD's of Other Fibonacci Functions on Four Variables

The representation of a Fibonacci function by a BDD is related to the representation of inte-
gers by the Fibonacci number system, for which there exist many papers (see, e.g., [2], [4]). That
is, every positive integer N can be represented as N =a, F, +:--+a,F, +a,F, where F, is a

H
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Fibonacci number and «; €{0,1}. In a BDD, there is a path from the source node to 1 for all
assignments of values to «;, for 0<i <n, suchthat N > 7.

2. STRUCTURE OF THE BDD'S OF FIBONACCI FUNCTIONS

In preparation for the calculations of the average number and variance of nodes in BDD's of
Fibonacci functions, we consider the structure of such BDD's. Figure 3 shows how the structure
near the source node depends on the threshold. Specifically, it shows that the destination of arcs
emanating from the source node depends on the value of x,. Figure 3a shows the Type a struc-
ture. As shown, if 0 < "< F,, the arc corresponding to x,, =1 goes to 1. That is, for this range of
T and this value of x,, the weighted sum exceeds or equals the threshold, and f =1. If x, =0,
then the weighted sum exceeds or equals the threshold if and only if the Fibonacci function corre-
sponding to the weight-threshold vector (F,_,, F,_,, ..., F{; T) is 1. The latter is represented by a
node that is the 0 descendent of the source node.

Typea Type b Typec
Xn
Xp.1
Xp-2
F, n <T< E1+1
(@) ®)

FIGURE 3. Structure of the BDD of a Fibonacci Function

A similar analysis of the case F,,, < T < F,,,, which corresponds to a Type c structure, shows
that there is mirror image symmetry with a Type a structure, as can be seen by comparing Figure
3(c) with 3(a).

Consider the remaining values of 7, which correspond to a Type b structure. Figure 3(b)
shows that, for this structure, both x, =0 and x, =1 yield nodes at the next lower level. If
x,X, , =11, the weighted sum is at least F, + F,_, = F, ,, and this equals or exceeds the threshold
regardless of the values of the remaining variables. Thus, there is a path from the source node to
1 for x,x, ,=11. If x,x,_, =00, the weighted sum can be no greater than F,_, +F, ;+---+
F =F,—1. Thus, the threshold is neither equaled nor exceeded, and there is a path from the
source node to 0. If x x _, =01, the weighted sum ranges from a minimum of F, | to a
maximum of F,_ +F,_,+--++F =F,, ~1, for which /=0 and 1, respectively. It follows that
there is a path from the source node to a non-sink node corresponding to x,x, , =01. A similar
analysis shows that there is a non-sink node corresponding to x,x,_, =10. Similarly, non-sink
nodes exist for x,x,_,x,_, =011 and for x,x,_,x,_,=100. Indeed, since F,_,+F, ,=F, the
weights are the same for the last two cases, and they correspond to the same node.

A fourth type of structure, the Type d structure, consists of a node that has as descendents

the two sink nodes 0 and 1. This represents the Fibonacci function with weight-threshold vector
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(1;1). Indeed, all threshold functions contain this structure. As can be seen in Figures 1 and 2, it
is part of all BDD's of Fibonacci functions on four variables.

Composing BDD's of Fibonacci Functions

Consider combining structures. If a BDD has a Type a structure, as shown in Figure 3(a),
and the weight-threshold vector associated with the Fibonacci function of the source node is
&, FE,_,,....,F; 1), where 0< T < F,, then the node that is the O descendent of the source node
corresponds to a Fibonacci function with weight-threshold vector (F,_;, F,_,, ..., F;; T). Further,
the O descendent can also have a Type a structure, in which case the node at x,x, , =00 is
associated with the weight-threshold vector (F,_,, F, ,,...,F;; 7). Indeed, this process can be
repeated until the last variable, which has a Type d structure. Represent this composition as a'd,
for i > 1, and the set of all such compositions as aa*d. Here, a* ={A,a, aa, aaa, ...}, where 4 is
the null structure. Thus, aa*d represents the concatenation of one or more Type a structures
followed by a Type d structure. By this convention, the right to left sequence in the string
representation corresponds to the top to bottom sequence in the BDD. Such compositions occur
only when 7 =1, which is the OR function. For example, the BDD in Figure 1(a) is described by
a’d and corresponds to the weight-threshold vector (3,2,1,1; 1).

In a similar manner, repeated use of the Type c structure corresponds to a BDD described by
c'd, for i > 1, producing a mirror image of a’d. Such compositions occur only when 7' = F.,-1
which is the AND function. For example, the BDD in Figure 1(b) is described by ¢’d and corre-
sponds to the weight-threshold vector (3,2,1,1,7).

Consider combining Types a and ¢. For example, let the source node have a Type a structure
and its O descendent have a Type c structure. Thus, the 0 descendent of the source node is asso-
ciated with weight-threshold vector (F,_;, F, _,,..., F;; 1), where 0< T, = T'< F,. But, because it
is a Type c structure, we have F, <7 <F . Since there is only one value of 7] that satisfies
both inequalities, it follows that 7= 7 = F,. It follows that the weight-threshold vector of the 1
descendent of the 0 descendent of the source node is (F,_,, F, ..., F;F,_,), since F,_, =
F,—F,_,. Thus, this node has a Type a structure whose 0 descendent has a Type c structure, etc.,
until all variables are exhausted. The resulting compositions are described by ac(ac)*(a+A)d,
where + is set union. A similar result occurs if the source node has a Type ¢ structure, in which
case the resulting compositions are described by ca(ca)*(1+c)d. These observations have
important implications in the composition of the BDD's of Fibonacci functions.

e A BDD can consist of a sequence of one or more Type a structures followed
by an alternating sequence of Type ¢ and Type a structures, as described by
a*(cay*(A+c)d. Similarly, a BDD can consist of a sequence of one or more Type ¢
structures followed by an alternating sequence of Type a and Type ¢ structures, as
described by c*(ac)*(a+A)d. As an example, see the BDD's in Figures 1 and 2
corresponding to thresholds 7=1,2,3,5,6, and 7.

e A "crest" pattern of the form shown in Figure 3(b) can only occur after a sequence
of Type a structures exclusively or Type ¢ structures exclusively. On the contrary, if
both types occur, we have a situation as described immediately above, in which case,
no crest can occur anywhere in the BDD.
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Consider the composition of the BDD's of Fibonacci functions involving the crest pattern;
i.e., Type b structures. Figure 4 shows how the BDD structure depends on 7 in the range
F,<T<F,,. Here, the top node of the crest pattern is the source node of the BDD. It is
interesting how the structure changes at the boundary between ranges and that Fibonacci numbers
define these boundaries. In the BDD for I'=F, +F, ; and F, +F,_,, the bottom node of the
crest corresponds to a weight-threshold vector where the threshold is F,_, and F,_,, respectively.
From the discussion above, this part of the BDD consists of a sequence of structures chosen
alternatively as Type a and Type c. Again, the mirror image symmetry of the BDD's of Fibonacci
functions is evident.

Type b, Type b, Type b, Type b, Type b

F,<T<F,+F,_; F,+F, ;<T<F,+F,_, F,+F, ,<T<F,,
(@) (b) (©) (d) (e)
FIGURE 4. Structure of the BDD of a Fibonacci Function in the Range F, <T <F,,,

3. THE AVERAGE NUMBER OF NODES IN BDD'S OF FIBONACCI FUNCTIONS

Let 7(x, y) be the ordinary generating function for the number of BDD's of Fibonacci func-
tions, where x tracks the number of variables and y tracks the number of nodes. Let 7, ; be the
number of BDD's of n-variable Fibonacci functions that have i nodes. From the results in the
previous section, it follows that if 7, ;> 0, then 7 >n+2, since there is at least one node for every
variable and two sink nodes 0 and 1. Thus, a term in 7(x, y) is

T(x,y):...+xn(tn,n+2yn+2+tn’n+4yn+4+...)+..._ %))

Note that 7, .5, =0 for i=1,2,..., since additional nodes beyond the minimum number »+2
occur because each crest pattern contributes two additional nodes to the node count. If we dif-
ferentiate (1) with respect to y and set y equal to 1, the resulting coefficient of x” is the total
number of nodes in all BDD's of Fibonacci functions on » variables. Dividing by the number of
BDD's of such functions yields the average number of nodes.

To derive T(x, y), we use the classification given in Figure 3. That is,

T(x, y) = T,(x, ) + T (x, ») + L(x, ) + 007, )]
where T (x,y), T,(x, ), and T (x, y) are the generating functions for Type a, b, and c structures,
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respectively, and x)”° is the generating function for the Type d structure. By symmetry,
L) =1,(x ). ©)

We can derive 7 (x, y) by observing that there are two types of BDD's counted in 7,(x, y)—
those that contain at least one crest pattern (but not at the very top, which are Type b structures)
and those that do not. BDD's of the first type are enumerated by x'y'7;(x, y) for i >1. Recall
that the top crest pattern is preceded by a sequence of Type a structures. BDD's of the second
type are enumerated by ix"*'y** for i > 1. That is, this type of structure consists of a sequence of
i Type a structures ¢nding with a Type d structure or followed by Type c structures alternating
with Type a structures ending with a Type d structure. The string representation for this is
a'(cay*(A+c)d. The factor x'*' counts the variables involved, and the factor '** counts the
nodes involved, including the two sink nodes 0 and 1. Therefore,

L,0x, ) = 0L, )+ XY T (x, y) + o+ X Y T (x, y)
ok x2pt 12y ity
which can be written as
2.4
B y)= T2 R )+, (4)
-Xxy (1-xy)

We can calculate 7;(x, y) by observing that BDD's of Fibonacci functions containing a crest
at the source node can be completed in three ways. Figure 4(c) shows that the bottom node of
the crest is the top node of a Type b structure. The number of ways to choose a Type b structure
is counted by the generating function 7,(x, y). The contribution of the crest itself to the variable
and node count is expressed as x*y°. Thus, the total contribution to the variable and node count
is expressed as x’y°T,(x, y). Figures 4(b) and 4(d) show that the bottom node can also be the
source node of a BDD with one node per variable expressed as (ac)*(a +A)d and (ca)*(A+c)d,
respectively. The contribution of these nodes is expressed as 2x*y* +2x’y° +2x*y®+.... The
coefficient 2 occurs because of the two ways this part of the BDD can occur [Figures 4(b) and
4(d)]. The superscript of x counts variables and the superscript of y counts nodes, including the
two sink nodes 0 and 1. The generating function for this power series is 2x2y* /(1-xy). A sub-
BDD consisting of just the lowest variable and the three nodes, including two sink nodes 0 and 1
(i.e., a Type d structure) should also be included, and this is expressed as xy°. Figures 4(a) and
4(e) show that more than one crest can also be cascaded so that each adjacent pair of crests share
an arc and two nodes. In this case, the top BDD contributes two variables and four nodes. Since
there are two ways for this to happen, the contribution is described by 2x?y*7,(x, y). Considering
all three ways to form a Type b BDD, we have

2x%y* 2.4
B, ) = XY | [(x, 0 +39° + 7= o |2V B, ©)
Solving for 7,(x, y) in (5) yields

_ x'y (1+x)
B = - -2 ©

418 [NOv.



AVERAGE NUMBER OF NODES IN BINARY DECISION DIAGRAMS OF FIBONACCI FUNCTIONS

From (2), (3), (4), and (6), we can write

x3y5 _ 2x3y7 + xys
(1-)*(1-x%y’ -2x"y*)’
Recall that a typical term in (7) is given in (1). We can find the total number of nodes by
differentiating (7) with respect to y and setting y to 1. Doing this yields

3+2x 7+3x 1 3
e T et et
(1-x-x*) l-x—-x* (I-x)° 1-x

T(x, y) = (M

T(x) = (8)
The number of n-variable BDD's is calculated as follows. There are as many BDD's as there are
integer threshold functions from 1 to the largest threshold. The largest threshold is the same as
the largest weighted sum, 1+1+2+3+:--+F,=F,,, —1. Note that we exclude BDD's corre-
sponding to 7'=0 and F,,,, which are trivial. Therefore, the average number of nodes is the
coeflicient 7, of the power series expansion of (8) divided by F,,, —1. Table 1 shows the average
number of nodes as calculated in this way.

TABLE 1. The Average Number of Nodes in BDD's of
Fibonacci Functions of n Variables

Number of || Average Standard Deviation
Variables Number on the Number
n of Nodes of Nodes
1 3.000 0.000
2 4.000 0.000
3 5.000 0.000
4 6.286 0.700
5 7.667 0.943
6 9.200 1.327
7 10.818 1.585
8 12.519 1.853
9 14.273 2.049

10 16.070 2.224
11 17.897 2.354
12 19.745 2.462
13 21.608 2.543
14 23.481 2.609
15 25.361 2.659
o 1.8944 5 0.2540Vn

Asymptotic Approximation

Consider now the average number of nodes in BDD's of Fibonacci functions when the
number of variables is large. We can factor the quadratic denominators in the partial fraction
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expansion (8), forming a partial fraction expansion in which denominators involve linear factors
only. That is, we can rewrite (8) as

11455 61+314/5
T(x) = 10 1065

]
( V- x) V-1

where ---represents terms whose contributions to 7,, the coefficient of x, in the power series
expansion of 7(x), are negligible for large » compared to the contributions from the terms shown.
Specifically, missing terms have denominators that are powers of (1+(2/+/5+1)x) and (1+x).

Indeed, the second term in (9) is negligible for large » compared to the first term; we include it for
a reason that will become clear in the next section. The contribution to #, from these terms is

) ©)

114545 61+31W5) 2 Y
+1)- , 10
( TR ETV )(JE—J (10)
The number of BDD's of n-variable Fibonacci functions, £, —1, is approximated by
-1— 1+\/—5‘ n+2 (11)
s\ 2 ’

when 7 is large. Dividing (10) by (11) yields the following asymptotic approximation to the
average number of nodes in BDD's of Fibonacci functions on n variables,

5+2V5 2+6V5
5 5

which is asymptotic to 1.8944n, for large n. As can be seen from Table 1, 3.0832 is significant
for the values of » shown here.

~1.8944n-3.0832, (12)

4. THE VARIANCE OF THE NUMBER OF NODES IN BDD'S
OF FIBONACCI FUNCTIONS

We can calculate the variance on the number of nodes in BDD's of Fibonacci functions using
the generating function for the distribution of nodes given in (7). That is, if X is a random vari-
able, then the variance o2(X) of X is given as

o*(X) = E(X*) - E*(X),

where E(X?) is the expected value of X? and E(X) is the expected value of X. E(X) was cal-
culated in the previous section. E(X?) can be calculated by differentiating (7) with respect to y,
multiplying by y, differentiating with respect to y again, and setting y to 1. In the resulting expres-
sion, the coefficient of x” is ZX?. Dividing this by the number of BDD's of Fibonacci functions
yields E(X?). Differentiating (7) with respect to y, multiplying by y, differentiating with respect
to y again, and setting y to 1 yields
16+10x  49+16x . 49 4+ 25x + 6 1 23 N 2
(I-x-x* (-x-x*)* 1-x-x* (1-x)* (1-x)? 1-x 1+x’

(13)
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The coefficient of x” in the power series expansion of (13) is decreased by E?(X) and the result
divided by the number of BDD's of Fibonacci functions on » variables, F,,, —1, to get the vari-
ance on the number of nodes for n-variable BDD's of Fibonacci functions. This yields o*(X).
Table 1 shows the standard deviation, o(X), of the number of nodes, as calculated in this way.

Asymptotic Approximation

Consider the standard deviation on the number of nodes in BDD's of Fibonacci functions
when the number of variables is large. We can rewrite (13) as

47+2145 691+2774/5 2131+8814/5
545 50 5045 . (14)

— + ,
(l—ix)3 (I—Lx 2 (I—Lx)
N N J5-1
where the contribution to Z.X? for large n from other terms is negligible compared to the contri-
bution from the terms shown. The contribution of these three terms is indeed

47 +2145 _691+277J§(n+1)+2131+881\/§[ 2 }
105 50 5075 J5-14°

Dividing this result by (11), an approximation to the number of BDD's of Fibonacci functions,
yields £(X?). Subtracting from this the square of the average number of BDD's of Fibonacci
functions, as given in (12), yields the following asymptotic approximation to the variance on the
number of nodes in BDD's of Fibonacci functions

100—44«/5’“r 228285
25 25

Note that there is no 7° term in (16); the #* term in E(X?) has been canceled by an identical term
in E?(X). Therefore, terms of order n are needed in the asymptotic expressions for £(X?) and
E*(X). This is why we included in (10) and (12) an asymptotically insignificant term.

Equation (16) is an expression for o2(X). The standard deviation o(X) is then

\/100—44£n+ 2282845
25 25

(" +3n+2)

(15)

~ 0.06451+ 6.6156. (16)

~ /006451 + 66156, (17)

which is asymptotic to 02540v/n , for large n. As can be seen from Table 1, 6.6156 is significant
for the values of # shown.

5. DISTRIBUTION OF THE NUMBER OF NODES IN BDD'S OF
FIBONACCI FUNCTIONS

Figure 5 shows the distribution of nodes in the BDD's of Fibonacci functions, as computed
from (7). Here, the number of variables and the number of nodes in BDD's are plotted horizon-
tally, while the number of Fibonacci functions is plotted vertically. A vertical line represents the
number of Fibonacci functions whose BDD's have the number of variables and the number of
nodes as specified by the coordinates in the horizontal plane. The vertical axis shows the log of
the number of functions. Note the linear increase in the log of number of functions with the
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number of nodes in BDD's for a fixed number of variables, which corresponds to an exponential
increase in the number of functions.

FIGURE 5. Distribution of Fibonacci Functions by Nodes and Variables
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ON TRIANGULAR AND BAKER'S MAPS WITH GOLDEN MEAN
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1. INTRODUCTION

We discuss the triangular map and also Baker's map [2], [4] with the parameter u chosen
with the value of the golden mean: (1++/5)/2~1618. For an arbitrary parameter value in the
range 0 < p <2, the starting graph (x, /(x)) in the range 0 < x <1 is a line segment for a triangu-
lar map, and two line segments for Baker's map (see Fig. 1 and Fig. 4). We are interested in the
graph of f1"l where n>1. Since the starting graph contains a set of line segments, the proceed-
ing graphs (x, f7)(x)) are then obtained from iterates of the beginning line segments in the
starting graph. It is therefore important to discuss iterating these two maps on line segments.
Since these two maps are piecewise linear maps, it can then be shown that the graph of f1"! is a
composition of line segments (see Fig. 3 and Fig. 6). These two maps are simple for u in the
range 0 < u <1 because the number of line segments does not increase under the action of map-
ping; the graph of f1” is therefore simple. Yet, they are often complicated in the range x> 1, as
the action of mapping on starting line segments will generate more line segments of which the
lengths in general are different. The graph of fI"! is then a set of line segments with irregular
shape which becomes very complicated when 7 is large. It is then difficult to determine the graph
of fI"1. However, we can show that when 4 is chosen with specific values, for instance, the
golden mean, the graphs (x, f1"(x)) are again simple. There are only a few types of line seg-
ments in each graph and, interestingly, the numbers of line segments of the graphs are those of the
Fibonacci numbers. Nature shows that Fibonacci numbers occur quite frequently in various areas;
therefore, it is interesting to know that Fibonacci numbers and, in fact, Fibonacci numbers of
degree m, can be generated from a simple dynamical system [3]. In this work, we contain some
reviews of [3], show the similarity of these two maps when a specific parameter value is chosen,
derive geometrically a well-known identity in Fibonacci numbers, and show that some invariant
sequences can be obtained.

2. THE TRIANGULAR MAP WITH = (1++/5)/2

First, we discuss the general triangular T, map, which is defined by

T,(x) =1- plx|, 1)
or
X1 =1 plx, |, (2

where u is the parameter. We restrict the ranges to: ~1<x <1 and 0< u <2, so that T, maps
from the interval [-1,1] to[-1,1]. Figure 1 shows three graphs of T, for, respectively, 1= 06,1,
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and (1++/5)/2. We define x, = T,(x) as the first iterate of x for T, and x, =T, (x, ) = ’I}I"](x)
as the n' iterate of x for T,. Since all the graphs (x, T},"](x)) are symmetrical for x>0 and
x <0, we henceforth consider these graphs in only the region of x>0. The starting graph,
T,(x) =1— pex, in the range x >0 is then a line segment from point (0, 1) to point (1,1- ) with
slope —u. We call this the starting line segment. Iterating this map on this starting line segment
then generates all the proceeding T graphs.
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FIGURE 1
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For a general discussion on an iterate of a line segment, we consider an arbitrary line segment
described by y = g(x) =a+bx, where 0<x <1 and -1<g(x)<1. The upper piece of this line
segment, for which g(x) >0, after one iteration, goes to a line segment described by y =T, (g(x))
=1-au—bux. Hence, the slope and the length of the upper piece have been rescaled, the sign of
the slope alters as well; the slope rescaling factor is seen to be —u. The lower piece, for which
8(x) <0, goes to another line segment described by y=T,(g(x)) =1+au+bpx. Hence, the
slope and the length of the lower piece have been rescaled, the sign of the slope is not altered; the
slope rescaling factor is #. Since the slope rescaling factors are different for these two pieces, a
line segment after one iteration will be folded into two connected line segments if this line
segment intersects the x-axis. A line segment that does not intersect the x-axis will only change
its slope and length but not be folded. These are useful in graphical analysis of iterates.

For u in the range 0< u <1, the T, map is simple, as there is one stable fixed point x* =
1/(1+ p), and the basin of attraction of x* consists of all x €[-1, 1], hence the graph of TI"), as
n— oo, will finally approach a flat line segment with height x*. Or, we may see this from iterates
of the starting line segment. Since the starting line segment does not intersect the x-axis and the
slope rescaling factor is —u for which |u|<1, the starting line segment under iterations then
remains a line segment and getting flatter but with one point fixed. The graph of T/[I"], as n— o,
then approaches a flat line segment with a height which can only be of the value of the fixed point,
that is, x*. This map with gz <1 is therefore simple.

For p=1, we have T,(x) =1-x and TLzl(x) = x, hence {x,1-x} is a 2-cycle for each x, and
we have, therefore, only two shapes which are the graphs (x, T,(x)) and (x, TI?(x)). Or, since
the starting line segment, with slope —1, does not pass through the x-axis and the slope rescaling
factor is —1; therefore, the starting line segment under iterations remains a line segment but with
slope 1 and —1, alternatively. This map with 4 =1 is also a simple map.

For 1< u<2, there exist no stable fixed points for T,, TLZ], and in fact for T with n any
positive integer. This is because the [slope| at each fixed point of T equals z” which is greater
than one; hence, there are no stable fixed points for "If,"]. In such a region without any stable
cycles, the iterative behaviors in general are complicated. Indeed, as the starting line segment
now intersects the x-axis, the action of mapping will keep on folding line segments and, therefore,
producing more and more line segments of which the lengths in general are different; thus, the line
segments in each graph are of many types. Each graph is then the connection of line segments of
many types and, therefore, has an irregular zigzag shape. The complication of the graph T{
increases with », and it is hard to predict what the final result will be. Interestingly, there are
cases that are easier to analyze. We may consider focusing on some particular values of u such
that the iterative behaviors are simple.

To choose the proper values of u in the range 1< u <2, the consideration is upon the parti-
cular point of x =0 at which the function T,(x) has a maximum height of 1. We require that this
point be a periodic point of the map. The orbit of x =0 is 0, T,(0), T#(0), TF)(0), ... etc. We can
easily see that TI?(0) =1- x and TW(0) =1- u(u—1) =1+ p— p*. The required parameter value
for x =0 becoming a period-2 point is determined from the equation TL”(O) =0. The solution is
p=1. Asdiscussed above, it is a simple map in this case. Requiring x =0 to be a period-3 point,
we should have T51(0) =0; that is, u*—pu—1=0. For p>1, the solution is g =(1 +~/5)/2,
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which is the well-known golden mean. With these basic arguments, we then have the following

results when u = (1++/5)/2.

Proposition 2.1: The point x =0 is a period-3 point of the triangular T, map.

Proof: This is obvious, as we see that the 3-cycleis {0,1,1— u}; 1—u=-1/pu.

In what follows, we will discuss the graph y = T/[,”](x) in the range 0<x <1. It is important

to discuss an iterate of a line segment. We first define two types of line segments. We denote by
L a long line segment connecting points (x;, 1— x) and (x,,1), where 0<x;, x, <1 and by S a
short line segment connecting points (x;, 0) and (x,, 1), where 0< x;, x, <1. The four graphs of
Figure 2 show some examples of line segments of these two types, where the subscripts + and —
label line segments with positive and negative slope, respectively.
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In fact, as will be shown, we need only consider an iterate of line segments of type L and type
S; hence, we now discuss T,(L(x)) and T,(S(x)), where L(x) and S(x) are linear functions
whose graphs are long and short segments. Using T,(0)=1, T,(1)=1- 4, and T,(01- ) =0,
Figure 2(a) then shows that a line segment L, connecting points (x;,1— ) and (x,, 1), after one
iteration, is folded into two line segments, of which one connects points (x;, 0) and (x,, 1), i.e., an
S:, and the other connects points (x,,1) and (x,,1- ), ie, an L_, where (x,,0) is the
intersection point of the line segment L, with the x-axis. Therefore, an L, after one iteration
goes to an S, and an L_, we denote this by T,:L, — S,L_. The graphs of Figure 2(b), 2(c), and
2(d) show an iterate of a line segment of type L_, S,, and S_, respectively. From these, we
conclude that the action of this map on line segments of these four types is described as:

T,:L, —>S,L_
L.—>L,S.
S, —>L_
S_.—>L,

(€))

T, then acts as a discrete map for L and S. If we are only to count the number of line segments in
a graph—we need not distinguish L, from L_, S, from S_, and LS from SL—then (3) can be
expressed more simply as:

T,;.L LS

)
S—>L

From (4), we have the following results.

Proposition 2.2: The graph of y = T\(x) in the range 0<x <1 contains line segments of only
two types, type L and type S, and the total number of these line segments is F,,,.

Proof: Since the starting graph is a line segment connecting points (0,1) and (1,1— ) [see
Fig.1(c)], it is thus a line segment of type L. From (4), we see that, starting from an L, line
segments generated from iterates of that are, therefore, only of two types: type L and type S.
From (4), we also see that line segments of type L and S, respectively, are similar to those rabbits
of type large and small in the original Fibonacci problem; hence, the numbers of line segments of
all the graphs T would be those of the Fibonacci numbers. Therefore, we have shown an inter-
pretation of the Fibonacci sequence from the point of view of a simple iterated map. Although we
start from a functional map T, on a finite interval of x, however, if we take line segments as the
entities, then T, acts as a discrete map for these entities, and the mechanism of generating line
segments from the action of this discrete map is now the same as the breeding of the Fibonacci
rabbits. We now let L(n) and S(n) represent, respectively, the numbers of L's and S's in the
graph of TI). Then, from (4), we have

L(n)=L(n-1)+Sn-1),
S(n) =L(n-1). ©)

Equation (5) shows that L(n) = L(n— 1)+ L(n—2) and S(n) =S(n—1)+S(n—2). Thus, both
sequences {L(n)} and {S(n)} are the Fibonacci-type sequences. Since we start from an L with
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slope —u, we have L(1)=1and S(1) =0. According to (5), we then have L(n) = F, and S(n) =
F,_,, where F, is the n™ Fibonacci number, and the [slope| of each line segment in the graph
of T is u”. Therefore, the total number of line segments in the graph of T is L(n)+S(n) =
F,+F,_ =F,,. Figure 3 shows the graph of T}, from which we can count the number of line

n

segments as being F = 8.

Tu[5](z) p=(1+/5)/2
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In [1] there is an interesting theorem stating that lim,_,logC(n, 4)/n=1ogu, where
C(n, p) is the number of line segments of the graph y = f1"I(x, ) and u is an arbitrary parameter
value. In our case, C(n,u)=F,,, and u=(1 ++/5)/2, so using the well-known formula
E =(u"-0-p)") /5 we can easily calculate that lim,_,.logC(n, 1)/n is indeed the value
log 1. :

Proposition 2.3: A simple identity, uF, + F,_, = u".

Proof: In the graph of T\), we have F;, long line segments and F,_; short line segments, and
the |slope| of each line segment is x”. We denote by d(L,n) and d(8S, n), respectively, the pro-
jection length of a line segment of type L and type S on the x-axis in the graph of T\). We then
have d(L,n) = (u)"™" and d(S,n) = (1)™". Since the total projection length of these F,,, line seg-
ments in the x-axis should be 1, we have

Fd(L,n)+F, d(S,n)=1 )
or
Uk, +FE_ =u" ' (M

This is a well-known identity in Fibonacci numbers; here we have derived it geometrically.

Proposition 2.4: There are three infinite LS sequences that are invariant under three iterations of
the map (3).

Proof: We consider the shape of the graph of y = T/}(x) in the range 0<x <1. Since all the
shapes are from the connection of line segments o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>