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COUNTING THE NUMBER OF EQUIVALENCE CLASSES OF 
(w, F) SEQUENCES AND THEIR GENERALIZATIONS 

Shiro Ando and Masahumi Hayashi 
College of Engineering, Hosei University, Koganei-shi, Tokyo 184, Japan 

{Submitted March 1995) 

1. INTRODUCTION 

K. T. Atanassov and others, in [3], [1], and [2], introduced (2, F) and (3, F) sequences which 
were pairs and triples of sequences defined by two or three simultaneous Fibonacci-like recur-
rences, respectively, for which the exact definition will be given at the end of this section. 

There are four (2, F) sequences, among which one is a pair of (1, F) sequences defined by the 
original Fibonacci recurrence and the other three are essential. As we are interested in the solu-
tions of the systems of recurrence equations with the general initial conditions rather than the 
resulting sequences for some particular initial conditions, we call such a system a "(2, F) system." 
The (2, F) system consisting of two (1, F) recurrences is called a "separable (2, F) system," and 
the other three are called "inseparable (2, F) systems." 

In the case of three sequences, some of the thirty-six (3, F) systems of simultaneous recur-
rence equations give the same triple of sequences apart from their order provided appropriate 
initial conditions. K. T. Atanassov [2] and W. R. Spickerman et al. [5] studied equivalence 
classes of (3, F) systems of recurrences which give essentially the same sequences and determined 
eleven classes. One of them consists of three (1, F) recurrence equations and three of them are 
separated into one (1, F) recurrence and an inseparable (2, F) system of recurrence equations. 
Therefore, we have seven classes of inseparable (3, F) systems of recurrence equations, for which 
the definition will be given in Section 4. 

The purposes of this paper are to establish the method of counting the number of equivalence 
classes of (m, F) systems consisting of m Fibonacci-like recurrences and the number of classes of 
inseparable (m, F) systems, and give their values for small m. Furthermore, we apply the same 
method to (m, F^) systems where the Fibonacci-like recurrences in (m, F) systems are replaced 
with /^-order recurrences of type (1). More precisely, an (m, F^) system is defined as follows. 

Definition 1: A set of m recurrence equations 

3ff(*)=#Vi(*»+#?(^(*))+• • •+#}+i(<v(*)) (forn* / )» (•!) 
where k = l,2,...,m and ah <72, ..., oy are permutations belonging to the symmetric group Sm of 
order m is called an (m, F^) system, and a set of m sequences {Fy\k)}, where k = 1,2,..., m 
and n = 1,2,..., oo3 or a sequence of w-dimensional vectors that can be determined as the solu-
tions of this system with given initial values {F^f\k)}, where k = 1,2,..., m and n = 1,2,...,/, is 
called an (m, F^f)) sequence. In particular, in the case / = 2, it is called an (m, F) sequence. 
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COUNTING THE NUMBER OF EQUIVALENCE CLASSES OF (m, F) SEQUENCES AND THEIR GENERALIZATIONS 

2. PREPARATION FROM GROUP THEORY 
First, we recall a counting theorem given by Burnside. 

Burnside's Theorem: Let G be a finite group of order \G\ operating on a finite set M. Then the 
number of distinct orbits associated with G is given by 

where Xx(g) is the number of fixed points inMby g. 
The proof can be found, for instance, in [4] and will be omitted here. 
Now, let pm denote the number of conjugate classes in Sm, and let bt =\Bt | be the number of 

elements of the conjugate class Bt for / = 1,2,..., pm. Each a eSm can be represented as the pro-
duct of disjoint cycles uniquely up to their order. If a is represented as the product of Xx cycles 
of length 1, X2 cycles of length 2, ..., Xm cycles of length m, we say that it has the cycle type 

l ^ 2 . . . m S (2) 

where Xx, X2, ..., Xm are nonnegative integers satisfying 

l'Xl+2'X2 + -~+m'Xm=m. (3) 

Two permutations in Sm are conjugate if and only if they have the same cycle type since an 
element // eSm satisfies r/arf1 = a if and only if it does not change each cycle of a or just make 
some permutations of the cycles of the same length. Since this gives also the condition that 
t] G Sm satisfies rja = err/, the centralizers of the elements of B. in Sm must have the same order, 
which will be denoted by q. Since all permutations in Bt have the same cycle type, we can repre-
sent it by (2). Then we have bt = m\l (Xx!X2!... Xm!\x'2Xl ...mXm) and 

ct =Al\A2\...Am\l**2X2 ...M1- (4) 

so that the relation 
bfi = \Sm\ = ml (fori = l,2,...,pm) (5) 

always holds. 
The conjugate classes of cycle types of Sm bijectively correspond to the integer partitions of 

m, and an algorithm for listing them can be found, for example, in D. Stanton and D. White [6]. 

3. THE EQUIVALENCE CLASSES OF (m, F^) SYSTEMS 

First, we consider (m, F^) systems. Following the manner that K. T. Atanassov did for 
m-2 and 3, for each m>0, an (m,F^) system is defined by m simultaneous recurrence 
equations Fn+l(k) = i^(cr1(A:))4-i^_1(cr2(A:)), for n>3, where k = 1,2,...,m and ax and a2 wee 
permutations in Sm. This is the special case of (m, F^) systems of recurrence equations defined 
by (1) for / = 2. If we give any initial values Fn(k), where k = 1,2,..., m and n = 1,2, then an 
(m,F) sequence {Fn(k)}, where k = l,2,...,m and w = l,2,...,oo, will be determined by these 
recurrences. Since this (m,F) system is determined depending only on ox and <J2, it will be 
denoted by Sicr^ a2). 
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COUNTING THE NUMBER OF EQUIVALENCE CLASSES OF (m, F) SEQUENCES AND THEIR GENERALIZATIONS 

Definition 2: Two (m, F) systems S(ah a2) and S(TX, T2) are said to be equivalent if there is an 
7] GSm such that rja^'1 = T{ and rja2Tfl = T2 are satisfied. 

It is shown in W. R. Spickerman et al. [5] that two (3, F) systems are equivalent if and only if 
they define the same triple of sequences up to their order by choosing appropriate initial values of 
one of them for the given initial values of the other. 

We define the operation of?]eSm on the system S(a{, <r2) by 

7](S(alv a2)) = SirjGtf-1, rja2ifl). (6) 

Assuming that the group acts on the set M = {S(crh (T2)\o'1, <J2 ^Sm} in this manner, we 
apply Burnside's theorem. 

Let 7] be an element of Sm. Then rj leaves S(ah <r2) fixed if and only if riaxrfl = ox and 
7]a2rfl = <J2, or rjal = atf and r/a2 = a2r/. If 7] GB{r, the number of such <JX and o2 are both 
c7, so that cf of S(al7 <r2) will be fixed by r\. Since we have bt permutations in Bu the number of 
systems fixed by permutations in a conjugate class Bt sums to tyc?. If we denote the number of 
distinct orbits in M associated with Sm, i.e., the number of equivalence classes inMby N(m,F), 
using Burnside's theorem and relation (5), we can represent it as 

N(m,F) = (Zbic?)/\SJ=i:ci, (7) 

where the summation is taken over all the conjugate classes of Sm, and we can evaluate this value 
by (4). 

We can easily generalize this result to the (m, F^) system S(ah cr2,..., ay) which is defined 
by the recurrences (1). 

Definition 3: Two (m, F^f)) systems S(ah a2,..., ay) and S(rh r2,..., ?y) are said to be equi-
valent if there is an r/ eSm such that r/a^'1 - ru r\a2rfl - r2,..., and rfofrj~l = rf are satisfied. 

Using the operation of rj eSm on (m, F^) systems defined by 

7j(S(ah o-2,..., oy)) = Sinew'1, tia2Tf\..., WfV~l) (8) 

instead of (6), we will have the formula for the number of equivalence classes of (m, F^f)) sys-
tems N(m, F^), in a manner similar to the case of (m, F) systems as 

N(m,F^) = (Uicf)/\Sm\=Zcf-\ 
Thus, we have the following theorem. 

Theorem 1: The number, N(m,F^), of equivalence classes of the set of (m,F^) sys-
tems S(<jh a2, ...?oy) defined by the recurrences (1) is given by N(myF^) = 1Lcf~l, where 
cz = X1\X2\ ...Xm\lXl2Xl ...mXm, and the summation is taken over pm congruent classes in Sm cor-
responding to the sets of nonnegative integers XhX2,...,Xm satisfying (3). In particular, for 
/ = 2, we have N(m, F) = Ec7. 

For / = 1, the value of N(m,Fil)) represents the number pm of congruent classes in Sm, 
which is also the number of integer partitions of m. This number can be calculated by any algo-
rithm for finding all the cycle types in Sm. 
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COUNTING THE NUMBER OF EQUIVALENCE CLASSES OF (m, F) SEQUENCES AND THEIR GENERALIZATIONS 

If pk(f) denotes the number of integer partitions of A: into exactly r parts, we can also calcu-
late the value of pm directly using the following properties: 

(i) For k > 0, pk(\) = pk(k) = 1, and pk(r) = 0 if r > k. 
(ii) Ifk>r>0,pk(r) = pk_r(l) + pk_r(2) + --+pk_r(r). 

(™) Pm = Pn,Q)+Pm(2) + ---+Pm(m)-
The values of N(m, F^) for small m and/are shown in Table 1. 

TABLE 1 

r>^z^w 
i 
2 

3 

1 4 

1 2 

1 2 

1 4 

1 8 

1 16 

3 

3 

11 

49 

251 

4 

5 

43 

681 

14491 

5 

7 

161 

14721 

1730861 

6 

11 

901 

524137 

373486525 

7 

15 

5579 

25471105 

128038522439 | 

4. THE NUMBER OF INSEPARABLE EQUIVALENCE CLASSES 

As we have stated for the case m = 2,3 and / = 2, some of the (m, F^) systems can be 
separated into smaller systems. 

Definition 4: An (m, F^) system S = S(ah <72,..., oy) ls separable if there exists a nonempty 
proper subset M' of M = {1,2,.., m) such that M' is stable (mapped into itself) by the permuta-
tions <jhcr2>->(Jf- Then the system (1) can be partitioned into an (m',F^) system and 
an (m",F^) system corresponding to M' and its relative complement M" = M-Mf, where 
\M'\ = m' and \Mn\-m'\ and Sis separated into an (mf,F^f)) system S'(a[, <J2, ...,cr'f) and an 
(mf\F^) system S"(a"9^29...9(T,f)9 where a's and o" are restrictions of <JS on M' and M", 
respectively, for s - 1,2,..., / . Otherwise, S is said to be inseparable. 

Definition 5: An (m,Fif)) system S is said to have type T- \x^2Xl ...mXm, if it can be divided 
into Xx(\, F{f)) systems, A2(2, F ( / ) ) systems, ..., and Am(m, F^n) systems that are inseparable, 
where Xl,A2,...,Zm are nonnegative integers satisfying (3). If / l r>0, S has a subsystem of 
type tx* consisting of Xt inseparable (t, F^) systems, which is referred to as the /-part of S. If 
Xt = 0, we say that the /-part of S is empty. 

Besides the symbol N(m, F^) defined above, we need the following notations. 

Notations 

S(m, F^)\ The number of equivalence classes of separable (m, F^) systems. 
I(m, F^): The number of equivalence classes of inseparable (m, F(jr)) systems. 
N[T, F{f)]\ The number of equivalence classes of (m, F^) systems of type T. 

When we discuss a fixed/, we sometimes abbreviate the above symbols as N(m), S(m), I(m), 
and N[T], omittingi7(/). 
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COUNTING THE NUMBER OF EQUIVALENCE CLASSES OF (m, F) SEQUENCES AND THEIR GENERALIZATIONS 

H(n7 r)\ The number of r-combinations with repetition of n distinct things, which is given by 

ur \ fn + r-l) (w + r -1) ! 

where we use the convention H(n, 0) = 1 for n > 0 as usual. 

Using the notations defined above, we can state the next theorem. 

Theorem 2: The numbers N[lXl2Xj ...rnXm], S(m), and I(m) are given by the following formulas: 

N[lx'2X2 ...mx»>] = UH(I(t)9Xt), (9) 

where the product is taken over t = 1,2,..., m; 

S(m) = m[lA>2^ ... (a!- l)A-» ] and I(m) = N[ml] = N(m) - S(m), 

where the summation is taken over all the integer partitions of m into more than one part or all of 
the (m-1)-tuples of nonnegative integers Xu X2,..., Xm_l satisfying 

l-Xl + 2-X2 + --+(m-l)Xm_l=rn. 

Proof: Let S = S(ah <J2,..., oy) be an (m, F(f)) system defined by (1). A system r/S(ah 

<r2, ..., <jf) equivalent to S, which is defined by (8), is given by replacing functions Fy\x) in all 
terms of (1) with Fy\r/(x)) for s = n +1, w, n -1,..., n - / +1, and rearranging the m equations so 
that r/(kys of the left-hand side become increasing in order. If the (my F ( / ) ) system S is separ-
able, then the nonempty subsets M'andM" in Definition 4, which are stable by o-1,c72, ...,oy, 
are mapped onto r/(M') and r/(M"), which are complements of each other and are stable by 
Wil1* WiH1? •••> Wf7!1- Therefore, it is clear that two equivalent systems have the same type 
and two systems of the same type are equivalent if and only if their r-parts are equivalent for 
f = l,2,...,m. 

The equivalence class of the £-part of S will be determined by the classes of I(t) to which 
Xt(t, F(jr)) subsystems of S belong, not depending on the location or the variables used in them. 
Therefore, the number of equivalence classes of the f-part with type tX{ of (m, F ( / ) ) systems is 
the number of Xt-combinations with repetition taken from I{t), which is denoted by H(I(t), Xt). 
Since different choices of an equivalence class for any £-part give different equivalence classes of 
(m, F^) systems of type T- \Xx2Xl ...mXm, their number will be represented by (9). 

Since N(m9 F^) is the sum of expression (9) for all the solutions of equation (3), and the 
only solution of (3) with Xm > 0 is given by Xx - X2 = • • • = Xm_x - 0 and Xm = 1, and the type of an 
inseparable (m, F^f)) system is ml, we have 

S(m) = N(m) - I(m) - N(m) - N[ml] = Y,N[\X'2X' ... (m - l)x^ ], 

and the proof is completed. 
Since we have only one equivalence class for (1, F^) system, the number of equivalence 

classes of (m,F^) systems of type r 1 ^ 2 ... (m - T)Xm~l for which Xt>0 must be equal to the 
number of equivalence classes of (m-\ F^) systems of type \Xx2Xl ...(m-l)Xm-\ so the total 
number of equivalence classes with nonempty 1-parts of (m, F^) systems is equal to N(m-l). 
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Since an (m, F^) system with an empty 1-part cannot have an (m-l)-part, we have another 
expression for S{m) and I(m) that is useful for inductive calculation. 

Corollary: S{m) = N(m -1) + Iff(7(2), Z2)H(I(3), A3) ... H(I(m- 2), Xm_2), where summation is 
taken over all the nonnegative integers A2, ̂ 3,•..., Aw_2 satisfying 2-A2 +3- A3 + -•+(m-2)'Xm_2 

= m and 7(m) = # | V ] = N(m) - S(m). 

The numbers of equivalence classes N[T] for 7 with small values of m and / = 2 and 3 are 
given in Table 2, where the number I{m) = JV[W] of equivalence classes of inseparable (m, F(jr)) 
systems can be found in the right-most column for each m. 

TABLE 2 
rn-2 m = 3 
7-< 

2 

3 

l2 \f 
1 1 3 

1 j 7 

> < 
2 

3 

I3 l^1 i 31 

1 3 j 7 

1 7 ; 41 

m=4 m = 5 
>< 

2 

3 

I5 132J 

1 3 

1 7 

123! 

7 

41 

1!22 

6 

28 

1!4! 

26 

604 

2*3* 

21 

287 

51 

97 

13753 

> < 
2 

3 

l4 

1 

1 

122] 

3 

7 

1!3! 

7 

41 

2 2 i 41 

6 i 26 

2 8 i 604 

m = 6 
>< 

2 

3 

l6 

1 

1 

142* 

3 

7 

133> 

7 

41 

1222 

6 

28 

124> 

26 

604 

l W 
21 

287 

W 23 2,41 

97 10 78 

13753 84 4228 

32 

28 

861 

61 

624 

504243 

m = 7 
> < J 

2 

3 

r 
i 

i 

I^1 

3 

7 

143' 

7 

41 

1322 

6 

28 

134' 

26 

604 

l W 

21 

287 

125' 

97 

13753 

1*23 

10 

84 

\l2W 

78 

4228 

l'3a 

28 

861 

1!6! 

624 

504243 

223] 

42 

1148 

2,51 

291 

96271 

3,41 

182 

24764 

71 

4163 

24824785 
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ON MULTIPLICITY SEQUENCES 

Piotr Zarzycki 
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(Submitted April 1995) 

The concept of divisibility sequence is quite popular in the mathematical literature. Starting 
from [1], where Marshall Hall called a sequence g of rational integers a divisibility sequence iff 

Vm,neN m\n => g(m)\g(n\ (DS) 

numerous papers appeared (see, e.g., [6], [7]). Another study of such sequences was initiated by 
Kimberling who in [2] called g a strong divisibility sequence iff 

Vm,neN G.C.BXg(mlg(n)) = g(G.C.B.(m,n)). (SDS) 

It is obvious that SDS => DS. If we take a sequence g defined by g(2k(2m +1)) = 2k(2m+l\ we get 
a DS sequence which is not a SDS sequence. 

The problem of characterizing polynomial DS sequences was taken up in [3] and [4]. It was 
proved in [4] that polynomial DS sequences are exactly those of the form g(ri) - ank. 

As the concept of LCM of rational integers is "parallel" with the GCD of rational integers, it 
is natural to introduce the following definition: g is a multiplicity sequence iff 

\fm>neN h.CMXg(mlg(n)) = g(L.CMXm,n)). (MS) 

The sequence of the Fibonacci numbers is a SDS sequence but not a MS sequence. Another 
example of SDS not MS sequence is g(ri) = 2n -1. 

Theorem: MS=>SDS. 

Proof: 
First step. We shall assume that g is multiplicative (G.C.D.(/w, n) = 1 => g(mn) = g(m)g(n)). 

In this case, we actually have MS <=> SDS. In fact, let us note that for the multiplicative sequence 
g we have 

g(m)g(n) = g(G.C.D.(m, «))g(L.C.M.(w, n)) (1) 

for any m,n eN. So, if g is MS, then by (1) we get 

dV v ' // g(L.C.M.(/!!,«)) L.C.M.(gyw), g(n)) VdV /,C>K n 

Analogously, we can show that SDS => MS. 
Second step. Suppose g is a MS sequence. Thus, 

g(m)\L.CMXg(mlg(n)) = g{L.CM.(m,n)l 
g(n)\L.CMig(mlg(n)) = g(L.CM.(m,n)l 

and g(m)g(n) = cg(L.CM.(m,n)). Therefore, if G.CD.(m,ri) = 1, then 
g(m)g(n) = cg(mn). (2) 
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Sequences (functions) that satisfy (2) are called quasi-multiplicative (see [5]). We note that 
c - g(l) and G(n) = jj^- is MS, which is also multiplicative. Hence, 

G.CD.feOii), g(n)) = GC.D.(g(l)G(m), g(l)G(n)) 
= g(l)G.C.D.(G(mlG(n)) 
= g(l)G(G.C.D.(m,n)) 
= g(G.C.D.(Tn,n)). 

Remark: It follows from the Theorem and from Monzingo's result [4] that if g(n) is a polyno-
mial MS sequence, then g(ri) = ank. 

REFERENCES 
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RETIREMENT OF SUBSCRIPTION MANAGER 
When Richard Vine retired as an administrator at Lockheed Corporation some 

years ago, The Fibonacci Association was the lucky winner because Richard brought 
all of his very able talents to his job as Subscription Manager of The Fibonacci 
Quarterly. Richard also belonged to a local tennis club where he was active on the 
court as well as with administrative duties. Furthermore, Richard had an extremely 
beautiful voice and sang as a professional actor in such plays as "Paint Your Wagon." 
Frequently, when conversing with Richard over the phone or while he was visiting 
with a local member of the Board of Directors concerning a Fibonacci chore, he 
would tell the story of the week from the tennis club. To wit: What do you get when 
you cross a pitbull with a collie?...A dog that bites you and then goes for help. 

After 17 years of taking subscription and book orders with an extra bit of special 
care and flair, Richard Vine has decided to retire as our Subscription Manager. 
Richard, the members of the Board of Directors of the Fibonacci Association and 
the Editor of The Fibonacci Quarterly, who never could have done his job so well 
without your help, want to offer you a big thank you for a job splendidly done. You 
shall definitely be missed. 
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M O D I F I E D DICKSON P O L Y N O M I A L S 

Piero Filipponi 
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(Submitted April 1995) 

1. INTRODUCTION AND PRELIMINARIES 

The aim of this paper is to extend the previous work [1] by considering the polynomials 

ZM^fi-V—^yy"11^ (»*l) (1.D 
j=o " - A J ) 

in the indeterminate^, where the symbol [ • J denotes the greatest integer function. It can be seen 
that 

z n = b W . l ) ("even), 
\y-ll2pn(ymA) (Koddand^O), 

where pn(y, 1) are the Dickson polynomials iny with the parameter c = 1 (e.g., see (1.1) of [1]). 
Because of the relation (1.2), the quantities Zn(y) will be referred to as modified Dickson poly-
nomials. Information on theoretical aspects and practical applications of (usual) Dickson poly-
nomials can be found through the exhaustive list of references reported in [1], where an extension 
of them has been studied. 

In this article we are concerned with modified Dickson polynomials taken at nonnegative 
integers. In fact, it is the purpose of this article to establish basic properties of the elements of the 
sequences of integers {Zn(k)}% (k = 0,1,2,...). More precisely, in Section 2 closed-form expres-
sions for Zn(k) are found which, for £ = 2,3, and 4, give rise to three supposedly new com-
binatorial identities. Several identities involving Zn(k) are exhibited in Section 3, while some 
congruence properties of these numbers are established in Section 4. 

To obtain the results presented in Sections 2 and 3, we make use of the main properties of 
the generalized Fibonacci numbers U„(x) and the generalized Lucas numbers Vn(x) (e.g., see [2], 
[8]) defined by 

Un{x) = xU^{x)+U^2{xl [U0(x) = 0, Ux(x) = 1], (1.3) 

Vn(x) = xVn_1(x) + Vn_2(x), [F0(x) = 2,K1(x) = x], (1.4) 
where x is an arbitrary (possibly complex) quantity. Recall that closed-form expressions (Binet 
forms) for U„(x) and Vn(x) are 

iUn(x) = (a"x-P"x)/Ax, 
[V„(x) = a"x+f]"x, 

where 

ax = (x + Ax)/2, (1.6) 
0x = (x-Ax)/2. 
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As an illustration, the numbers Zn(k) are displayed in Table 1 for the first few values of k and 
n. From (1.1), we can observe that Z0(k) yields the indeterminate form 0/0. For the sake of 
completeness, we assume that 

Z0(k)d=2\/k. (1.7) 

It can be checked readily that all the results established throughout the paper are consistent with 
the assumption (1.7). 

TABLE 1. The Numbers Zn(k) for 0 < n, k < 8 
\ f c 0 1 2 3 4 5 6 7 8 
n 

0 

1 

2 

3 

4 

5 

6 

7 

2 

1 

-2 

-3 

2 

5 

-2 

-7 

2 

2 

-1 

-2 

-1 

2 

-1 

2 

1 

0 

-1 

-2 

-1 

0 

1 

2 

2 

0 

-1 

-1 

-2 

- 1 

-1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

2 

1 

3 

2 

7 

5 

18 

13 

47 

2 

1 

4 

3 

14 

11 

52 

41 

194 

2 

1 

5 

4 

23 

19 

110 

91 

527 

2 

1 

6 

5 

34 

29 

198 

169 

1154 

2. CLOSED-FORM EXPRESSIONS FOR Zn{k) 

The following identity (see [3]) plays a crucial role in the proofs of the results established in 
this article. 

zn(K) = 
2, ]K(x) ("even), 

U„(x) (/i odd). 

V„(1) = L„ (neven), 
As particular cases of (2.1), we have 

4(5) = , 

where /^ and Z„ are the /7th Fibonacci and Lucas numbers, respectively, and 

zm = lVn(2) = Qn ("*even)' 
" U R(2) = P„ (nodd), 

where ij, and <2„ are the n^ Pell and Pell-Lucas numbers, respectively (e.g., see [6]). 

(2.1) 

(2.2) 

(2.3) 

2.1 Results 
A closed-form expression for Zn{k) which is valid for all k can be obtained readily from (2.1), 

(1.5), and (1.6). Namely, we get 

\Vn(sfk^4) (#i even), 
4(*) = -C/„(VF-4) (»odd). 

(2.4) 
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It is worth mentioning that using (2.4) along with an interesting result established by Melham 
and Shannon [9, (5.1)-(5.3)] allows us to state that the terms of {Zn(k)} are generated by the 
powers of the 2-by-2 matrix M^ defined as 

Jc-2 V F 1 ^ 
I V F ^ 2 M* = (2.5) 

More precisely, it can be seen that the lower-right entry of Mn
k equals k^^Z^k). 

As we shall see in the following, for k = 1,2,3, and 4, the corresponding value of Zn(k) is 
periodic, and (2.4) produces some interesting combinatorial identities. The proofs of these results 
are given in subsection 2.2. 

The trivial case k = 0 is treated here only for the sake of completeness. This can be solved 
readily on the basis of the usual convention (e.g., see [10, p. 147]) 

[l, if/i = 0, 
k if/i>0. 

0* = (2.6) 

In fact, from (1.1) and (2.6), we have 

n (»-|»/2_p 
n-\nl2\y \nl2\ z«(9) = : (_1)L»/2j; 

2(-l) nil (n even), 
W_l)(»-i)/2 („odd). 

(2.7) 

The case k = 1 gives rise to a particularly interesting combinatorial identity. Its solution 
(credited to Hardy, 1924), which is reported in [10, p. 77], contains several misprints. In [4] we 
proved that 

z„G) = 
2(-l)", if« = 0(mod3), 

(-1) n+l otherwise. 
(2.8) 

In this article we give a simpler proof of (2.8) which is obtained by using the Binet forms for 
U„(x) and Vn(x), and certain trigonometric identities. For 2 < k < 4, we get the identities 

Z„(2) = 

Z„(3) = 

and 

Z„(4)= 

-2, 
- 1 , 
0, 
1, 
2, 

-2, 
- 1 , 
0, 
1, 
2, 

2 

if n = 4, 
if« = ±3, 
if« = ±2 (mod 8), 
if« = ±l, 
ifw = 0, 

if n = 6, 
if n = ±A or +5, 
if /7 = ±3 (mod 12) 
ifn = ±lor ±2, 
ifwsO, 

(« odd), 
(n even). 

(2.9) 

(2.10) 

(2.11) 
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2.2 Proofs 
The proofs of (2.8)-(2.11) are similar so that, for the sake of brevity, we prove only (2.8) and 

(2.9). 

Proof of (2.8): Denoting the imaginary unit by /*, from (2.4) write 

z |F„(/V3) (/i even), 
" [U„(ij3) (nodd), 

whence, on using the Binet forms (1.5), 

z„(i)=[(/V3+i)/2r+(-in(/V3-i)/2r 
nn . . nn , 1X„ = cos— + / sin — + (-1) 3 3 v ' 

Using (2.13) along with the trigonometric identities 

• nn , lV7+i . 2nn 
sin — = (-1) sin 

3 v J 3 

2nn . . Inn cos +/ sin 

and 

cos- nn k-i)", if 3 k 

(-l)"+1/2, otherwise, 

yields identity (2.8). Q.E.D. 

Proof of (2.9): From (2.4) write 

Z„(2) = 
[V„(ij2) (neven), 
W„(iV2) (nodd), 

whence, on using (1.5), 

ZK(2) = \ 
[(/V2 + yfl) I If + [(;4l - V2) / 2]" (« even), 

Ui {[(ijl + -Jl) 12]" -[(/V2 - V2) / 2f} (n odd), 

nn . . nn Inn . . Inn 
cos h / sin 1- cos 1- / sin 

4 4 4 4 1 
J2 

nn . . nn 3nn . . Inn 
cos 1- / sin cos / sin 

4 4 4 4 

(n even), 

(n odd). 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Using (2.17) along with the trigonometric identities 
m 
4 

and 

. nn , ,.„+! . 3nn sin — = (-1) sin (2.18) 
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cos— = (-1) cos = \ 

- 1 , if w = 4, 
-1/V2, ifrc = ±3, 
0, if ws ±2 (mod 8), 
1/V2, ifw = ±l, 
1, if/isO, 

(2.19) 

yields identity (2.9). Q.E.D. 

3. SOME IDENTITIES INVOLVING Zn(k) 

Some simple identities involving the numbers Zn(k) (or simply Zn if no misunderstanding can 
arise) are exhibited in this section. Most of the proofs are left as an exercise for the interested 
reader. First, we get the recurrences 

\-Zn_x (n even), 
[Zn+2 (n odd). 

Zn+i Zn - (3.1) 

Then, we observe that, for n even, identity (3.1) is a special case (namely, m = 1) of the more 
general identity 

ikZ„Zm, ifn and m are odd, 
Z + Z_ = 

[ZnZm, otherwise, 
which can be proved by using (2.4) and the identities (3)-(8) of [7, p. 94]. It is worth noting that 
letting n be a suitable function of m in (3.2) yields 

ZnZn_x = Zln_x + \ (* = m + l), (3.3) 

Zln^' 
Z„2-2 (weven) 

Uzw
2-2 (wodd) 

(n = m\ (3.4) 

Z3n = Zn(Z2n-l) (n = 2m) 

Z^-3Z„ («even) 

|&Z„3-3Z„ (w odd) 
[from (3.4)]. 

More generally, for h = 1,2,3,..., we get the multiplication formula 

^I<-^(V) •Z„*-2' (neven), 
.Zh-2jklm\-j ( w o ( J d ) 

(3.5) 

(3.6) 

Induction on h provides the required proof. Observe that, for n even, Zhn and the Dickson poly-
nomial ph(Zn, 1) coincide, whereas, for n odd and h even, Zhn{k) = Zh(kZ*(k)). 

The Simson formula analog for the sequence {Z„(&)} is 

1 (n even) 2 _(-!)"(*-1)Z,„ +2 
2-k (wodd). (3.7) 
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Properties of the matrix M^ [see (2.5)] are useful tools for discovering combinatorial iden-
tities involving Zn. For example, denoting by I the 2-by-2 identity matrix, we can expand the 
identity (see (5.8) of [9]) 

[* (M, - I ) r=M 2 / , (3.8) 

and equate the lower-right entries on both sides to obtain 

I(-l)'(j)*L'/2jZy_, = {-\)"Z2n_v (3.9) 

Remark: The assumption Z_x - 1 \/k is implied by the definition M° = I. The same result can be 
obtained by using (3.1) and (1.7). 

Analogously, after noting that M^1 = l-Mk/k, we can expand the identity MJMj^ = M"k~h 

to get the relation 

t(-l){^L(-y)/2jZM+,_! = k^-h^Zn_h_x (n > h) (3.10) 

which, for n - h, reduces to 

Let us conclude this section by stating the summation identity: 

$N(k)d=f^Z„ = ZN+2 + ZN;l~ZN~ZN-l-\ (**4) (3.12) 
«=i k-A 

(ZN+2 - 2ZN_X) / (* - 4) - 1 (N even) 
[from (3.1)1. (3.120 

(2ZA,+2-ZA,_1)/(A-4)-l (JVodd) 

Remarks: 
(i) Assumption (1.7) is needed to get the obvious result Sx(k) -Zx-\. 

[IN 12 (AT even) 
(ii) SN(4) = \ [from (2.11)] (3.13) 
< ' NK \ \ ( 3 # - l ) / 2 (Nodd) L V n' V } 

Proof of (3.12): First, consider N odd, and rewrite SN(k) as 
(N+l)/2 (N-l)/2 

SN(k)= IZ 2 / . l + £Z2 / 

(N+l)/2 ^ (N-l)/2 

= I M ^ + I ^ / ^ ) [from (2.4)]. 
(3.14) 

By using the Binet forms (1.3) and (1.4), and the geometric series formula, it can be readily seen 
that 

Z t / 2 / - iW = [ ^ 2 * + i W - ^ i W ] / * 2 ( 3 1 5 ) 

and 
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TV2J(x) = [V2h+2(x)-V2h(x)-x2]/x\ (3.16) 

whence, Invoking (2.4) again, (3.14) reduces to (3.12). The proof for N even is analogous to that 
for N odd, and is omitted. Q.E.D. 

4. CONGRUENCE PROPERTIES OF Zn(k) 

In this section we show some basic congruence properties of the numbers Zn(k). For reasons 
of space, only Proposition 2 is proved in detail. We have established the following: 

[n = 0 (mod 2) (k even) 
Z„(*)s0(mod2)if ; ; (4.1) 

[n = 0 (mod 3) (k odd). 
From (1.1), we clearly have that 

Z„(*)sZ„(0)(modA) (k>l), (4.2) 

where ZQ(k) is given by (2.7). From (4.2), (2.7), and (3.4), one can readily see that 

ZnW-U°) = ZMzl = zl2(k) [K = 2(mod4)]. (4.3) 

Observe that (4.2) and (2.7) imply the congruence 
Zk(k) = 0 (mod k) (kodd). (4.4) 

From (4.4) and (2.4), one immediately gets the following (supposedly known) result. 

Proposition 1: If m is an odd integer and h - m2 + 4, then Uh(m) is divisible by h. 

Finally, let us state the following proposition. 

Proposition 2: lip is an odd prime, then 

Zp(k) = (k/p) (mod/0, (4-5) 

where (k I p) denotes the Legendre symbol. 

It is worth noting that (2.4) and (4.5) constitute a simple proof of a well-known congruence 
property of the generalized Fibonacci numbers Un(s) (s an arbitrary integer) defined by (1.3). In 
fact, we get 

Up(s)^(s1
+4/p) (mod/*). (4.6) 

Proof of Proposition 2: That (n~J) = 0 (mod n - j) if j > 1 and gcd(w, j) = 1 is a well-known 
fact (e.g., see Lemma 1 of [5]). Consequently, from (1.1), we have 

Zp(k)^k^'2 (modp), (4.7) 

whence 

Zp(£)E=0(mod/?)ifA: = 0(mod/?). (4.8) 
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If k # 0 (mod/?), by Fermat's little theorem we have the congruence kp l = 1 (mod/?), whence we 
can write 

(k{P-m + i)(jt(p-D/2 _ x ) _ 0 ( m o d ^ ( 4 9 ) 

Let a (b) be the first (second) factor on the left-hand side of (4.9). Since p > 3 by definition, 
either a or b (not both) is divisible by/?. If £ is a quadratic residue (q.r.) (mod /?) [i.e., if there 
exists z such that k = z2 (mod/?)], then, by Fermat's little theorem, we have k{p~l)l2 = z

2(p~l)/2 = 1 
(mod/?), that is, b = 0 (mod/?). If & is not a q.r. (mod/?), then we necessarily have a == 0 (mod/?). 
Therefore, from (4.7), we can write 

Z,(*H ,,_.^ _.,.___,_ (41°) 
[l (mod /?) if A: is a q. r. (mod /?), 

-1 (mod /?) otherwise 

Congruences (4.8) and (4.10) prove the proposition. Q.E.D 
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1. INTRODUCTION 

The work of Filipponi and Horadam in [2] and [3] revealed that the first- and second-order 
derivative sequences of Lucas type polynomials defined by un+l(x) = un{x) + un_x{x) yield some 
nice recurrence properties. More precisely, in [2] and [3], some identities involving first- and 
second-order derivative sequences of the Fibonacci polynomials Un(x) and the Lucas polynomi-
als Vn(x) are established. These results may also be extended to the k^ derivative case, as con-
jectured in [3] and recently confirmed in [7]. See also [4]. Furthermore, Filipponi and Horadam 
[5] considered the partial derivative sequences of bivariate second-order recurrence polynomials. 

In this paper we shall extend some of the results established in [5] and derive some identities 
involving the partial derivative sequences of the bivariate Fibonacci polynomials U„(x, y) and the 
bivariate Lucas polynomials Vn{x9 y) defined respectively by (cf. [5]) 

Un(x, y) = xU^x(x9 y)+yU„_2(x, y\ n>29 U0(x, y) = 0, Ux(x9 y) = 1, (1) 

Vn(x, y) = xVn_x{x9 y)+yV„_2(x9 y), n>29 V0(x9 y) = 2, Vx(x9 y) = x. (2) 

Moreover, we shall establish some convolution-type identities as counterparts to those given in 
[7]. As may be seen, these results, together with those in [6], explain in some sense the "heredity" 
of linearity under differentiation. 

Throughout the paper we use Un and Vn9 respectively, to denote U„(x9 y) and V„(x9 y). The 
partial derivatives of U„ and Vn are defined by 

U,-J)-£FU" r"-"-iwv"k>-a'i>-0' (3) 

Using an argument similar to that given in [1] or by induction, one may easily obtain the combina-
torial expressions of Un and Vn in terms of x andj. They are: 

[(w-l)/2]/- . , \ 

un= I ("-;->"-2'-y,»>i, (4) 
=0 ^ 

[nil] 

i=Q n-i K-l^HnrKy,n>i, (5) 
where [a] denotes the greatest integer not exceeding a. 

The extension of the bivariate Fibonacci and Lucas polynomials through the negative sub-
scripts yields 

U_„ = -(-yy"Un and F„ = {-yTnVn9 n>0. (6) 
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2. SOME IDENTITIES INVOLVING 'VikJ) AND F„(*J) 

n n 
Theorem 1: Let n be any integer and let k, j > 0. Then the following identities hold: 

(i) V?>» = yU^ +jU£fx> +U<H\ 
(ii) !/<*•» = xU£» +yUU) + kUt\lJ) +Mk_fl\ 

(iii) V™ = xV£P +yV$P +kV^^ +jV£fl>, 
(iv) V}k+l-J) = nU(kJ\ ***,y+1) =nU£\fi. Hence, U{kJ) = U£)m, V„iKj) = nVJ^m l{n-J). 

Proof: 
(i) It is easy to show by induction that V„ -yUn_l+U„+l for any integer n. Hence, we 

have 

vp» = -£^j (yu^+U„+1) = | - (yuik_f) + u%» = yu£/> + ju*:f* + u%p. 

(ii) From (1), we see that 

= xU(k_'p +kU£lu/)+yU£}P+jU£:f1). 
(iii) This result can be proved by a method similar to that shown in (ii). 
(iv) We first prove the case (k, j) = (1,0). This can be done by induction on n. The iden-

tity trivially holds when n = 0,1. Suppose that V£l_\0) = (« -1)£/„_, and F„(i'20) = (n - 2)U„_2 for 
« > 2 . Then 

<3_ 
dx 
(#i - l)x[/„_, + (n - 2)yU„„2 + yU„_2 +U„ = nUn. 

V«m = i ( x F»- '+ y V"^ = XV™ +yV™ +V»-i 

From (6), it follows that 

v^ = ~((-yrnvn) = (-yrv™ = -nu_n. 

VrJ) = ^TT^ ( 1 - 0 ) = "-ttV* = nU"J) ( 7 ) 

Similarly, we can prove that FW
((U) = nU„_x for any integer n. Thus, 

JL T/(I,O)= n_c_ 
dxkdyj n dxkdy-

and 

It now follows from (7) and (8) that U(„kJ+l) = V„{k+lJ+l) In = E/<*?W). Hence, U{kJ) = u£+/-0) 

and Ff >J) = «C/f "1J) = wE/^"1'0* - « ^ ' 0 ) / (w - j) by (7). D 

As expected, (i)-(iv) reduce to Identities 1-4 in [7] when y - 1 andj = 0. 
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3. CONVOLUTION-TYPE IDENTITIES INVOLVING U(„kJ) AND V?J) 

Theorem 2: For any k, j > 0, we have: 

(a) Zu^U^^-^—Ut1*, 
,=o K + J +l 

(b) Yu{k'J)V =n + k + ln(k>J) U h ' ""' k + j + l" ' 

(c) J^V^U^ 
7=0 

S(0,k + j) + - n(k+j)+j TT(kJ) 
(k+j+i)(k+j) 

where S(sy r) = 1(0) if s = (^) r is the Kronecker symbol. 

Proof: 
(a) Let 4f} - £jL0 U^U^. Now it may be shown by an induction argument that Ui is a 

monk bivariate polynomial whose highest leading term is x*~l, so that U^k,0) = U^k,0) = • - = 
U(

k
K0)^0mdUlk

+\0)=k\ Therefore, 4*> = 4<*> = 0 and 4 ? 2 = -C/£f ^ - *! = ^ 0 ) / ( * + l). 
Assume 4£> = U{k_\m I (k +1) and ^ }

2 = C / ^ 0 ) / (Jfc +1) for n > 2. Then, from the assumption 
and Theorem l(ii), we have 

/=o 

n-\ 

I 
/=0 

4*) = I^-0)t/„.,. = I ^ V . w +yu*.„) 

0) (9) 

From (9) and Theorem l(iv), we have 

7=0 r=0 

= J&+J) = _ J _ _ r / ( ^ + / + l , 0 ) =
 1 TT(k+l,J) 

"»-J fc+j + 1 n~J £ + 7 + 1 n 

7=0 

(10) 

(b) Using (10) and the fact that Vn - yUn_x + Un+l for any integer n [see the proof of 
Theorem l(i)], we have 

/=o 7=0 

w+1 

7=0 7=0 

^ T ( y e r w + w s r w ) + ^ > ) 
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en) 

Using Theorem 1 and an argument similar to that of (a), it is easy to prove (c) and (d). 
Hence, the proofs are omitted here. D 

Finally, we give two generalizations of identity (a) in Theorem 2. It is worth mentioning that 
(b)-(d) possess similar generalized forms. 

Theorem 3: Let k, j , r, s > 0. Then 

jj(k+r+l,j+s) 

Proof: Let Ag'J'r) = I,"=0 U^U^. First, we show by induction on r that 

4 (k,j,r) _ (k+j+r + 1) (*+/+r)F' Uik+r+lJ). (12) 

The case r = 0 is just Theorem 2(a). Suppose the above identity is true for some r > 0. Since 

Uik+r+2J\ _¥_Ak,j,r) _ Ak+l,j,r) + M:,j,r+l) _ 

dx 
we get 

Ak,J,r+i) _ . 

(k+J + r + 2)[k + J^ + 1j 

[uik+r+2J) 

T-l 
jj(k+r+2,j) 

Therefore, we have 

±u}k>»uW 
1=0 

= X U^Ufjp = X U f ^ U ^ f [from Theorem l(iv)] 
/=0 i=s 

/=o /=o 

= [(* + ./ + r + s +1)(* + / + 5 + 5 ) J 1 C / ^ - + 1 ' ; ) [from (12)] 

(Ar + y+r + s + l) yik+r+lj+s) [ f r o m T h e o r e m 2 ( iv) ] . D 
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Theorem 4: Let k,j>0 and t > 2. Then 

z u^u^...u^=fi 
where a = k+j + l. 

The proof of Theorem 4 can be carried out by induction on t and is omitted here for the sake 
of brevity. 

4. CONCLUDING REMARKS 

The bivariate polynomials defined by (3) and (4) may be used to obtain identities for k^ 
derivative sequences of Pell and Pell-Lucas polynomials by taking x = 2, y = l, and j = 0 [6]. It 
is likely that this kind of bivariate treatment may also be extended to the bivariate integration 
sequences l\Undxdy to parallel some identities found in [4]. 
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0. INTRODUCTION 

A homogeneous linear recurrence of second order with constant coefficients is a sequence of 
equations 

for fixed complex numbers a,b*0. A solution {un}n>Q is completely determined by (0) and the 
two initial values u0,ux. C. Kimberling [1] raised the following problem: under what conditions 
on two nonnegative integers i,j does every complex pair z/z, Uj determine the whole recurrence 
sequence {un} with (0)? In this article, I give two answers to this question (Theorems 1 and 2; 
the second corrects Theorems 2 and 6 of [1]) and apply them to the properties of the initial pairs. 
In Theorem 3 I discuss how they are distributed, while in Theorem 4 I discuss which initial values 
generate a periodic sequence. 

1. A FIRST CRITERION FOR INITIAL PAIRS 

Given a recurrence (0), we call two nonnegative numbers / < j an "initial pair" if, for all com-
plex numbers ci9Cj, there exists one and only one solution {un} of (0) with ui -c,, Uj =Cj. An 
initial pair is always /,/ + l. Most pairs i,j will be initial, but there are exceptions: 0,2 is not an 
initial pair of un+2 = un. 

Theorem 1 ([1], Theorem 1): Given the recurrence (0) with b * 0, for every pair of nonnegative 
integers i,j with / +1 < j , the following two conditions are equivalent: 

ij is an initial pair for (0); (1) 

the (J-i-1)-rowed matrix 

(2) 

is regular. 

Proof: The pair /', / + 2 is initial iff a * 0, since aui+l = ui+2 - but. So let j>i + 2. If uf - c; 
and Uj - Cj are given, then the equations bun + aun+l - un+2 = 0, for n = /, i +1,..., j - 2, give us the 
system 

DM = 

(a 
b 
0 

L 

-1 
a 
b 

0 
-1 
a 

b 
0 

a 
b 

-1 
a 

24 [FEB. 



INITIAL VALUES FOR HOMOGENEOUS LINEAR RECURRENCES OF SECOND ORDER 

auM- ui+2 

bui+1+aui+2- M,+3 

bui+2+aui+3- -«,+4 

= -bc, 
= 0 
= 0 

bu_3+au_2- u_x=0 
bUj_2+aUj_l =Cj. 

Now, 7,7 is an initial pair iff this system of 7 - 7 - 1 linear equations has a unique solution 
w/+1, ui+2, ...,Uj-i (and hence all un,n>0, are determined) for all c7, c.. A necessary and sufficient 
condition for this is that the associated homogeneous linear system is only trivially soluble, hence 
the regularity of the coefficient matrix DjH, Q 

Remark: This criterion can be extended to sequences of higher order (see [1], Theorem 7). Con-
dition (1) is equivalent to the following: the monoms z\zJ are a basis of the complex vector-
space C[z] of polynomials modulo the subspace C[z](z2 -az -h). This was generalized by 
M. Peter [2] to recurrences of several variables of higher order. 

2. A SECOND CRITERION FOR INITIAL PAIRS 

Let n: = 7 - i. We compute dn: = det Dn by expanding the determinant of Dn+2 a la Laplace: 
dn+2=adn+l+bdn, do'=°, dV=^- ( 3 ) 

Let 
£ i : = l ( a + Va2+46) and £2: = j ( a - Va2 + 46) 

be the zeros of the companion polynomial z -az-b of (0), then the solution of the initial 
problem (3) has the Binet representation 

1 

d = 
r_r-(Ci-Cn

2) x&*C2, 
, (4) 

for all n GN. Hence we get dn = 0<=>£x *£2, C\-Ci- The last condition is equivalent to 

31</w<w-l: C,x = exp| 2m— \C,2. 

We compute 

^ = exp 2^7— K2 <=>a + Va2+4Z> =expi2m— \(a-ja2+4b) 

<=><%la2 +4h exp 2^7—1 + 1 \ = a exp\2m— -

<=>Va2 +4Z> cos ;r— =- m 
-7a sin I ;r— n 

This finally means 
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3\<m<n-l: a2 = -4b cos2 n— 

Combining this with Theorem 1, we have 

Theorem 2: Suppose we have a recurrence (0) with b & 0 and a pair of nonnegative integers 
/ < j . Then the following three properties are equivalent: 

ij is an initial pair of (0); (1) 

if ^ and <̂ 2 are the zeros of the polynomial z2 -az-h, then C,x - <̂ 2 or £{~~l * £J
2~'; (5) 

a2 2 ( m 1 n . . ,̂ x 
—-^-coshTr for every \<m<j-i. (6) 
4* V j-i) 

Examples (cf. [1], Theorems 2-5): For each of the following cases, a necessary and sufficient 
condition that / < j is an initial pair of (0) is 

i) a = 0: j-i^0 mod2; 
ii) a2 = -b: j-i=£0 mod3; 

Hi) a2 = -2b: j-i^0 mod4; 
iv) a2 = -36: 7 - i # 0 mod 6. 

If a2 = -&6 with A: e Z - {0,1,2,3}, then every pair i < j is initial. 

3. DISTRIBUTION OF INITIAL PAIRS IN RESIDUE CLASSES 

In the examples of initial pairs / < j given above, j-i lies outside of some residue class. The 
next theorem explains why. 

Theorem 3: 
a) Suppose that the recurrence (0) with b * 0 has a pair that is not initial, then there exists 

an integer m > 2 such that, for every pair / < j of nonnegative integers, we have that 
ij is initial for (0) <=> j -i # 0 mod/w. 

b) For every natural number m > 2, there is a recurrence (0) such that 
0,y' is initial for (0) o j ^ O mod m. 

Proof: 
a) By Theorem 1, there exists a natural number n>2 with dn = Q. Let m:=min{n>2: 

dn - 0} and 8.-dm+l. From (4), we deduce that dgm+r = 8qdr for all geN0, 0<r <m. 
Furthermore, since 8 * 0, we have dn = 0 0 n = 0 mod m. 

Using Theorem 1, we see that this is equivalent to our first assertion. 

b) Let C:=exp(2m/m), a:=£+l, * :=-£ , then rf, = ( ^ - l ) / ( £ - l ) , ; e N , so that 
dj - 0 <=> 7 = 0 mod m. 

Theorem 3 is proved. D 
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4. PERIODIC SEQUENCES 

If ij is an initial pair for (0), we now seek conditions under which two complex numbers 
q, Cj generate aperiodic recurrence sequence {un} with ut - q and Uj = Cj. 

Theorem 4: Given a recurrence (0) with h * 0, a pair ij in N0 with / <j, complex numbers 
cu Cj not both zero, and m GN, then the following two conditions are equivalent: 

ij is an initial pair for (0) and the solution {w„}„>0 of (0) with uf = ci9 Uj = c. has period m. (7) 

One of these four cases is valid: 

(a) 

(b) 

(c) 

(d) a = 1 ^ = < > l f 
J-* 

(8) 

Here again, £h £2 a r e ^ e z e r o s °f z2 -az-b. 

Proof: Because of Theorem 2, each of the four conditions implies that i,j is an initial pair 
for (0). Hence, it suffices to show under which condition the unique solution {un} of (0) with 
ut - c{ and Uj = Cj has period m. 

1) ^ & C,2. In this case, 

However, the property un+m =un, n> 0, is equivalent to 

[(cy-^rx<rr-i)=o. 

[(a) ^ = \,Cj = c^r, 
|(b) & = \,cj = <£{-*, 

kc) cr=^=i, 
[(d) cy=^-'=^r-

Since <£f"7 ̂  <^~7, case (d) is impossible. 

2) Ci = C2- H e r e ^ = ^ [ ( * - i > y + a ^ ^ 

o< 

<=>i 
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One can easily compute 

which is the case (d) of (8), and Theorem 4 is proved. • 
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Let x be an irrational number. In 1891, Hurwitz [3] proved that there are infinitely many 
rational numbers pi q such that p and q are coprime integers and \x- p/q\<\/ (<j5q2). Hurwitz' 
theorem has been extensively investigated (see [6]). 

In 1948, following Davenport's suggestion, Prasad [4] initiated the study of finite Diophan-
tine approximation. He proved that, for any given irrational number x, and any given positive 
integer m, there is a constant Cm such that the inequality \x-pi q\<ll(Cmq2) has at least m 
rational solutions pi q. In [4], the structure of Cm has been mentioned, and Q = (3 + v5)/2 has 
been calculated, but the values of Cm as a function of m is still unknown. 

In this note we will use the Fibonacci sequence to prove that 

c» = V5+ ^ L • CD 
7 + 3V^ - 1 

Theorem 1; Let x be an irrational number. If m is a given positive integer, then there are at least 
m rational numbers piq such thatp and q are coprime integers and \x-plq\<ll(Cmq2), where 
Cm is as shown in formula (1). The constants Cm cannot be replaced by a smaller number. 

Proof: Let x = [a0; ax, a2,..., a„,...] be the expansion of x in a simple continued fraction. Let 
p„/q„ =[c*o',cii, .-.,<*„] be the rfi1 convergent, then pnmdqn are coprime integers. It is well 
known that (see [5]) 

\x-p»/q„\=l'(M^)9 

where M„ = an+l + [0; an+2, an+3,...] + [0; an9 an_u ..., o j . 
By Legendre's theorem [5], \x-piq\<ll(2q2) implies that piq must be a convergent 

p„/q„ for some n. Thus, we need only discuss the rational solutions of \x-piq\<ll(Cmq2) 
among the convergents pnl qn. 

We discuss the following possible cases on the partial quotients an. It is easily seen that 
C w <C 1 <8 /3<3 . 

Suppose there are infinitely many an > 3, then Mn_{ >an>3>Cm for all positive integer m. 
Hence, we need only consider the case in which there are only finitely many an > 3. That is to 
say, there is a positive integer Nx such that n>Nx implies an<2. We consider two cases. 

Case 1. There are infinitely many an such that an - 2. Then, for these n, n > Nx + 2 implies 
Mn_l > 2 + [0; 2,1] + [0; 2,1] = 8 / 3 > Cm for all positive integers m. 

Case 2. There are finitely many an - 2. Thus, there is a positive integer N2 > Nx such that 
n>N2 implies an = 1. 
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Let N = max{w, a„* 1}. Then aN > 2, aN+l = aN+2 = • • • = 1. Therefore, if we use [0; (1)^] to 
denote [0; 1,..., 1] with k consecutive l's, the following inequalities are true because aN+l = aN+2 = 
• • * = tfjv+2m-i = 1 '•> there are 2m-1 consecutive l's. 

(2) 
^l+EOjTl+raci)^.,]. 

Similarly, we have 
MN+2nH-l=aN+2m*2 + [ $ UH^i 1, ..., l , ^ , ^ _ l 5 . . . , a j 

>l4-[0;T] + [0;(l)2m+1], 

MN+4m_3 = aN+4m_2 + [0; 1 ] 4- [0; 1,..., 1, a^, <%_l3..., a j 
>l + [0;T] + [0;(l)4w_3]. 

It is easily seen that MN+2m_1 < MN+2m+l < • • < MN+4m_3. Denoting Cm = MN+2m_l9 then the 
inequality |x-/?/#|<l/(Cmq2) has at least /w rational solutions pnlqn. 

Now we calculate Cm with the help of the Fibonacci sequence. 
Let Fl = l,F2 = l,Fn = Fn_x + Fn_2 be the Fibonacci sequence. We are going to find a formula 

for [0; (l)2w_i] by mathematical induction. 
It is easily seen that [0; (1)J = [0; 1] = 1 /1 = Fx IF2. Suppose [0; Q)2k-i] = F2k_x I F2k, then we 

have [0; ( l ) ^ ^ ^ ] = [0; 1,1, (1)^^] = 1 / (1 + (l + ,F2>t_1 / ̂ ) ) = ,F2>t+1 / ̂ ^ . Thus, [0; ( 1 ) ^ ] = 

By Binet's formula for the Fibonacci sequence [1], i.e., F„ = ((1 + S)" - (1 - V5)") / (2"V5), 
we can find F2m_11 F2m as follows: 

F2m-i = 2((1 + S)2n"1 - (1 - V5)2"1-1) = VS((1 + Sfm + (1 - Sfm) 1 
Ftm (1 + V5)2m-(1-V5)2m 2((1 + V5)2m-(1-V5)2m) 2 

V5(l + (V5-3)/2)2m l = S(li 2((V5-3)/2)2'" "| 1 

T ^ " ( ( 3 + V 5 ) / 2 ) 2 m - l J _ 2 ' 

Notice that because [O, 1] = (V5 -1) / 2 we have, by formula (2), that 

Cm = MN+2m_x = 1 + (V5 -1) / 2 + F2m_, / F2m, 

which gives formula (1). 
The constants Cm cannot be replaced by smaller numbers since, for x-[Qr, 1], we have 

exactly CM = A/2lH_1 = l + [0;T]+[(>,(l)2w_1]. D 

2(\-{S-y)l2)2m 2 2{ l-((V5-3)/2)2 mJ 

Corollary 1: Cx = (3 +\[S) 12 = 2.6180, 
C2 = (7+ 3 ^ ) / 6 = 2.2847, 
C3 = (9 + W5)/8 = 22430. 
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Corollary 2: lim Cm = V5 - 2.2361. 
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Author and Title Index 
The AUTHOR, TITLE, KEY-WORD, ELEMENTARY PROBLEMS, and ADVANCED PROBLEMS indices for the 
first 30 volumes of The Fibonacci Quarterly have been completed by Dr. Charles K. Cook. 
Publication of the completed indices is on a 3.5-inch, high density disk. The price for a copyrighted 
version of the disk will be $40.00 plus postage for non-subscribers, while subscribers to The Fibonacci 
Quarterly need only pay $20.00 plus postage. For additional information, or to order a disk copy of 
the indices, write to: 

PROFESSOR CHARLES K. COOK 
DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF SOUTH CAROLINA AT SUMTER 
1 LOUISE CIRCLE 
SUMTER, SC 29150 

The indices have been compiled using WORDPERFECT. Should you wish to order a copy of the indices 
for another wordprocessor or for a non-compatible IBM machine, please explain your situation to Dr. 
Cook when you place your order and he will try to accommodate you. DO NOT SEND PAYMENT 
WITH YOUR ORDER. You will be billed for the indices and postage by Dr. Cook when he sends 
you the disk. A star is used in the indices to indicate unsolved problems. Furthermore, Dr. Cook is 
working on a SUBJECT index and will also be classifying all articles by use of the AMS Classification 
Scheme. Those who purchase the indices will be given one free update of all indices when the SUBJECT 
index and the AMS Classification of all articles published in The Fibonacci Quarterly are completed. 
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1. INTRODUCTION 

Gupta [3] considers the array {c(n, k)}, which is defined by the recurrence relation 
c(n + l,k) = c(n,k) + c(n,k-l) (1) 

with initial values c{n, 0) = a(w), c(l, k) = b(k), n,k>l, where {a(n}} and {b(k)} are given 
sequences of numbers. In particular, if a(n) = 1 and b(l) = 1, b(k) = 0 for k > 2, then {c(n, k)} is 
the classical binomial array. The array {c{n, k)} also has applications, for example, in the theory 
of partitions of integers ([1], [2]). The main object of Gupta [3] is to handle {c(n, k)} with the 
aid of generating functions. Wilf [7, §§1.5 and 1.6] handles {c(n, k)} and an analog of {c(n, k)}, 
namely, the array of the Stirling numbers of the second kind, with the aid of generating functions. 

In this paper we consider a further analog of the array {c(n, &)}, namely, the array {L(n, k)} 
defined by the recurrence relation 

L(n, k) = Z(w - 1 , * -1) - L(n, k-l) (2) 

with initial values L(n, 0) = a{n\ 1,(0, k) = b(k), Z(0,0) = a(0) = b(0), n,k>l, where {a(ri)} and 
{b(k)} are given sequences of numbers. We derive an expression for the numbers L(n, k) in 
terms of the initial values using the method of generating functions. We motivate the study of the 
array {L(n, k)} by providing a concrete example of this kind of array from the theory of stack 
filters. 

2. AN EXPRESSION FOR THE NUMBERS L(n, k) 

Let Lk(x) denote the generating function of the sequence {L(n, k)}™=0, that is, 

Lk(x) = fiL(n,k)x». (3) 
w=0 

The promised expression for the numbers L(n, k) comes out as follows. We use the recur-
rence relation (2) to obtain a recurrence relation for the generating function Lk(x). This recur-
rence relation yields an expression for the generating function Lk(x), which gives an expression 
for the numbers L(n, k). 

Theorem 1: Let {L(n, k)} be the array given in (2). Then 

^»,*)=if*-l(-i)*_v»-y)+iY^(-iy""[*(*-/)-*(*-7-i)]. (4) 

Proof: If £ = 0, then (4) holds. LetJt>l. Then, by (3) and (4), 
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4(x) =1(0, *) +£[!(« -1 , * -1) - L{n, k - l)]x" 
«=1 

: Z(0, *) +[X^_,(X) - (4_t(X) - L(0, it - 1))] 

or 
4 (x ) = (x-l)Zk.1(x) + A(*).+ A(*-l). 

Let cf(Ar) = ft(£) + ft(& -1). Proceeding by induction on k, we obtain 
J f c - 1 

4(x) = (x - l )%(x ) + X ( x - i y ^ ( * - 7 ) . (5) 

Here 

(x-1)*4(*) = m ^ W - v !>(»)*" 

= 1 I ( / (-i)fc-M»-7) 
(6) 

and 

^{x-iydik-n^fiAx^-iy-Jdik-j) 
j=o y=o «=o^ ' 

A fc-i / it-i 

Now, combining (3), (5), (6), and (7), we obtain (4). 

=it\uJ
n)(-y-mw-s) 

(7) 

Remark: We considered above the generating function of the array {L(n, k)} with respect to the 
variable n. We could also consider generating functions with respect to the variable k and with 
respect to both the variables n and k. These considerations, however, would be more laborious 
and are not presented here (cf. [3], [7]). 

3. AN EXAMPLE FROM THE THEORY OF STACK FILTERS 

Consider a stack filter (for definition, see [4], [6]) with continuous i.i.d. inputs having dis-
tribution function €>(•) and with window size N. The y -order moment about the origin of the 
output can be written as 

where 
M(0,y, N,k) = JV-̂ -((\-<f>(x)Y®(x)N-k)dx, k = 0, l,...,N-l, (8) 

and where the coefficients Ak, k = 0,1,..., N-l, have a certain natural interpretation (see [4], 
[5]). By using the output moments about the origin, we easily obtain output central moments, 
denoted by jur = E{(Yout-E{Yout})r}, for example, the second-order central output moment equals 
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ju2 = 1 4 ^ , 2, N, k)-[24M(®, 1, #, *)1 • (9) 

The second-order central output moment is quite often used as a measure of the noise attenu-
ation capability of a filter. It quantifies the spread of the input samples with respect to their mean 
value. Equation (9) gives an expression for the second-order central output moment. In this 
expression, the numbers M(<D, y, N, k) play a crucial role. 

Kuosmanen [4] and Kuosmanen & Astola [5] studied the properties of the numbers M(0, y9 
N,k) under certain conditions on <&(•). They showed, among other things, that the numbers 
M(0, y,N,k) satisfy the recurrence relation 

M(Q>,y,N,k) = M(<I>,y,N-l,k-l)-M(<I),y,N,k-ll \<k<N, 

with initial values 

M(<J>, y, N, 0) = f xr 4r(®(x)N)dx, N>0. J-°° axv ' 
This means that the numbers M(0, y, N, k) satisfy recurrence relation (2). As M(<t>, y,N,k) = Q 
if N = 0, that is, as b(k) = 0 in (2), application of Theorem 1 gives 

M(0, y, N, k) = t Q ] ( - l ) ^ M ( 0 , y,N-j, 0). (10) 

Note that Kuosmanen [4] and Kuosmanen & Astola [5] derived (10) directly from (8) using the 
binomial theorem. 
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1. INTRODUCTION 

In this paper we consider the general sequences U„ and Vn satisfying the recurrences 

Un+2=mUn+l + Un, Vn+2=mV„+l+V„, (1.1) 

where m is a given positive integer, and UQ = 0, Ux = 1, V0 = 2, V1 = m. 
We shall occasionally refer to these sequences as U(m) and V(m) to emphasize their depen-

dence on the parameter m. They can be represented by the Binet forms 

Un = {an-ni{a-P\ Vn = an+f3\ (1.2) 

where a+j3 = mmd aj3=-l, and we define A = 82 = (a-fl)2 = (a + /3)2-4aj3 = m2 +4. When 
m = 1, these sequences reduce to F„ and Ln, with A = 5. 

Using (1.2), we can derive the identities (1.3) through (1.7), which correspond to well-
known formulas that are proved, for instance, in [11]: 

U2„=U„V„, (1.3) 

V2n = K2-2(-iy, (1.4) 
AU2„=V„2-4(-i)\ (1.5) 
2Un+s = U„Vs+V„Us, (1.6) 
2Vn+s = V„Vs + AU„Us. (1.7) 

When «is a prime/?, we have 

Vp = ap+Pp = (a+P)p = mp (mod/?), 

and using Fermat's "little theorem," this gives the well-known result 
Vp = m (mod p), when p is prime. (1.8) 

Any composite numbers n satisfying the corresponding equation 
Vn=m(moAri) (1.9) 

are called pseudoprimes. Di Porto and Filipponi [7] have called such numbers Fibonacci Pseudo-
primes of the m* kind (m-F.Psps), whereas Bruckman [2] has called them Lucas Pseudoprimes. 
As a compromise, we shall call them V(m)-pseudoprimes or V(m)-psp. In the case of m= 1, 
when V„ becomes Ln, it has been proved that all V(l)-psp's are odd: see {14], [5], and [3 J. In the 
more general case, since the interest in V(/w)-psp!s relates to tests for primality, only odd V(/w)-
psp's will be considered, as in [7], and we shall restrict the definition of pseudoprimes to odd 
composite n satisfying (1.9). 
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Suppose now that n satisfies (1.9). Then, for any prime factor p ofn, 
V„^m(modp), (1.10) 

or, if the factorization of n contains a prime power pe, with e>l, 

Vn = m(modpe). (1.11) 

Now it is well-known that the sequence V modulo a prime power pe is periodic. We shall 
denote the corresponding period of repetition by R(pe) or i?, defined as the smallest positive inte-
ger R for which wc have VR = 2 and VR+l = m (mod pe). Since V2R=VR = V0 = 2 (mod pe\ (1.4) 
shows that, if/7 is odd, the period R must be even. The sequence U modulo pe is also periodic, 
and is known to have the same period R as the corresponding F-sequence, except when A = 0 
(mod/?). 

We also note that the entry point Z of pe in the sequence U is defined as the smallest positive 
Z such that Uz s 0 (mod pe). It is well known that pe divides U„ if and only if Z divides n. Also 
Ur divides Un if and only if r divides n. Vinson [12] established the relationship between Z and 
the period R of the sequence U for the case m = 1, and we can easily prove that, for odd p, the 
same holds for any m, namely: 

ifZisodd,thentf = 4Z; (1.12) 
ifZ = 2 (mod 4), then R = Z; (1.13) 
if Z = 0 (mod 4), then R = 2Z. (1.14) 

In Sections 2 and 4, we shall derive relationships between n and R giving necessary and suffi-
cient conditions for a number n to be a pseudoprime. In Section 3, we shall find conditions for 
the occurrence of square factors in such pseudoprimes, and present some numerical examples. 
Finally, in Section 5, we shall prove certain theorems concerning special forms of V(/w)-pseudo-
primes, Theorems 7-10 being generalizations of results proved by Di Porto and Filipponi for the 
case m = \ in [7]. 

2. PSEUDOPRIMES AND THE PERIODICITY OF THE LUCAS SEQUENCE 

Using (1.2), we can define U and Fwith negative subscripts, giving 

U_„ = -(-iyUn and V.n = (-l)"V„. (2.1) 

Putting $=1 and then s = -l, equation (1.7) gives the identities 
2Vn+1 = AU„+mVn and 2V„_X = AU„-mV„, (2.2) 

and multiplying the two parts of (2.2) and using (1.5) gives the well-known identity 

Vn+lVn-x = VyK-\)n. (2.3) 
We shall now derive an important identity. Using (2.3) when n is odd, we have 

(^+i+2)(Fw.1-2) = F n X. 1 -2(F w + 1 - r w _0-4 
= Vn

2 + A-2mVn-4, 
and since A = m2 + 4 this reduces to 
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(F„+i + 2)(V„_l-2) = (Vn-m)2 (Wodd); (2.4) 

we shall call this the key identity, as it provides the basis for the proofs of several theorems in this 
paper. Our first theorem examines at what points of the periodic cycle we might find an odd 
n satisfying Vn = m (mod /?*), and is a generalization of the result proved for the case e = 1 by 
Di Porto in [6]. 

Theorem 1: Ifn is odd and Vn = m (mod p% where p > 2 is prime and e > 1, and if R = R(pe) 
is the period of the sequence V(m) modulo pe, then we have 

either n = 1 (modR) or n=\R-l (modi?); (2.5) 

since n is odd, the second alternative can occur only when yi? is even. 

Proof: Putting Vn = m (mod pe) in the key identity (2.4), we find that the right side of the 
identity is divisible by (pe)2, and it follows that at least one of the two factors on the left must be 
divisible by pe. Thus, we have 

either Vn_x = 2 (mod/?*) or Vn+l = -2 (mod/?*). (2.6) 

Taking the first alternative, we have Vn_x = 2 and Vn = m (mod/?6), showing that n-\ is a 
multiple of the period R in this case. Taking the second alternative, we have Vn = m, together 
with V„+l = -2 , so that the recurrence relation (1.1) gives Vn+2 = -rn (mod/?*). It follows from 
(1.1) that 

Vn+l+t^-Vt, fort = 0,1,2,..., 
showing that in this case n +1 is an odd multiple of half the period. Therefore, one or the other of 
the alternatives in (2.5) is true. Q.E.D. 

Theorem 2: Let n be an odd V(/w)-psp divisible by a prime power /?e, and let R be the period of 
the sequence V(m) modulo pe, e>l. Then, for each suchR, we have 

either n = 1 (modR) or n = ±R-l (modR). (2.7) 

Notes If/? is an odd prime and if R is the period of V(m) modulo/?, then using (1.8) and Theorem 
1 with n - p and e = 1 gives 

either p = l (modR) or p = }R-l(modR); (2.8) 

this is equivalent to the well-known result that R divides either /? - 1 or 2(/? +1) when (A, /?) = 1; 
our derivation shows that (2.8) remains true also when A = 0 (mod/?). 

3. ON THE OCCURRENCE OF SQUARE FACTORS IN A V(m)-PSEUDOPRIME 

Theorem 3: Ifn is an odd V(m)-psp divisible by a prime power pe, where e > 1, then the periods 
of the sequence V(m) modulo pe and modulo/? are the same. 

Proof: Let R(pe) be the period modulo pe, and R(p) the period modulo /?. Then R(pe) = 
pfR(p)y with 0<f<e, as was proved by E. Lucas [11], and for m-\ by Wall [13]. But 
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Theorem 2 shows that R(pe) and n have no common factor; therefore, p does not divide R(pe). 
Hence, / = 0 and R(pe) = R(p). 

Corollary: If a V(/w)-psp is divisible by /?e, where e > 1, and if/? does not divide A, then pe and 
/? have the same entry point Z in the sequence U(m). 

Proof: This follows from Theorem 3 by Vinson's rules, as stated in (1.12)-(1.14). Note that 
when pe divides A the period of V(m) modulo pe is 4, whereas that of U(m) is 4pe. 

Note: Bruckman ("1] has proved a result equivalent to Theorem 3 for the case m- 1. Further-
more, it has also been shown that, for m = 1, R(p2) = pR(p) for all p < 104 by Wall [13], for all 
p < 106 by Dresel [10], and for all p < 109 by H. C. Williams [15]. It then follows from Theorem 
3 that any V(l)-psp less than 1018 must be square-free. 

The situation for m > 1 is rather different. Thus, for m = 2,we obtain the Pell sequence with 
U7 = P7 = 169 = 132, while P30 is divisible by 312. Correspondingly, we find that among the first 
seven V(2)-psp's there are three containing square factors, namely, 132,312, and 132 x 29. 

Let us call a prime/? divalent in U(m) if the entry points ofp and p2 in the U(m) -sequence 
are the same. For most of the values of /w<25, we can find examples of divalent primes with 
p < 300, the exceptional cases being m = 1,8,10,11,16, and 17. In the case of m - 24, we have 
five such primes, namely, 7, 11, 17, 37, and 41, and among the first 21 V(24)-psp's there are ten 
containing square factors, namely, 72,112,172,73,72 x 17,3 x 172,72 x 23,113, 372, and 412. 

4. SUFFICIENT CONDITIONS FOR A V(m)-PSEUDOPRJME 

We shall use the key identity (2.4) to prove the following lemma. 

Lemma 1: If R is the period of the sequence F modulo pe, where p > 2 is prime and e>\, and if 
pc is the highest power of/? that divides A, where 0 < c < e, then 

(i) VR = 2 (mod/?2*-'), and 
(ii) conversely, \£V2t=2 (mod p2e~c), then R divides 2t. 

(Hi) If, further, jR is even, then we also have VlR = -2 {modp2e~c) and VlR_x = m (mod/?*). 

Proof: By the definition of R, we have VR = 2 and VR+l =m (mod/?0). Since R is even, 
putting n - R +1 in the key identity (2.4), we obtain 

(FR - 2)(VR+2 + 2 ) - 0 (mod />*) (4.1) 
while 

(FR+2 + 2) - (FR ~ 2) = mVR+l+4^m2+4 = A (mod /?«). (4.2) 

(i) Since pe divides (f^-2) and pc divides A, (4.2) shows that pc is the highest power of/? 
dividing (FR+2 + 2 ) ; hence, (4.1) gives VR = 2 (mod/?2*'c). 
(ii) Given V2t =2 (modp2e~c) and putting n = 2t in (1.5), we obtain A(C/2,)2 = 0 (mod/?2e_c) 

and, therefore, (AC/2f)2 = 0 (mod/?2*), giving A£/2, =0 (mod/?e). Finally, substituting in (2.2), 
we obtain 2^2r+1 = 2m = 2V{ (mod pe\ so that 2t is a multiple of the period 7? modulo pe. 
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(in) If ~i? is even, then (1.4) together with (i) above gives 

hence, V±R = -2 (modp2e~c), since ViR = 2 would contradict (ii). Then (1.5) gives A(UiR)2 = 0 

{moAp2e~c) and, therefore, (AUiRf = 0 (modp2e), giving AUiR = 0 (mod pe); finally, (2.2) 
gives ViR_x = /w (mod pe). 

Note: If c = e, so that /?e divides A, we have V2 - m1 +2 = -2 (mod /?g) and F3 = -m, giving 
i? = 4, and we have both VR = 2 and VR+2 = -2 (mod pe). 

We shall now prove the converse of Theorem 2, namely, 

Theorem 4: Let w be odd and composite, and let R be the period of the sequence V(m) modulo a 
prime power pe, e > 1. If, for each pe dividing n, we have 

e/Y/ier ws 1 (modi?) or n=\R-\ (modi?), (4.3) 

then n is a V(m)-psp. 

Proof: If the first alternative in (4.3) is true, then by definition of R we have Vn =VkR+l = 
Vl = m (modpe); if the second alternative in (4.3) applies, then by Lemma l(iii) we again have 
Vn=ViR_l = m (mod pe). Thus, (1.11) is satisfied for each prime power pe which divides n. 
Hence, (1.9) is true, showing that n is a V(m)-psp. 

Note: Theorems 2 and 4 together give necessary and sufficient conditions for n to be a V(m)-psp 
and provide the basis for the proofs given in the next section. A different approach by Di Porto, 
Filipponi, and Montolivo [9] gives a sufficient (but not a necessary) condition expressed in terms 
of the prime factors of n. 

We shall now prove a converse of Theorem 3, namely, 

Theorem 5: If there is an odd prime p for which the sequence V(ni) has the same period R 
modulo/? and pe, e > 1, then pe is a V(m)-psp. 

Proof: By (2.8), we have either p = l (mod R) or p = | R -1 (mod R). If the first alterna-
tive applies, we have pe = 1 (mod R\ and Theorem 4 shows that pe is a V(m)-psp. If the second 
alternative applies, we have yi? even (as p is odd) and pe = (~R~l)e (mod i?), so that pe = 1 
(mod R) if e is even, and pe = (y R -1) (mod R) if e is odd. Since R = i?(p*), Theorem 4 com-
pletes the proof. 

Examples: For m = 2, we have 132 and 312 as V(2)-psp's. 

Corollary: If e > 1 and pe divides A, then pe is a V(w)-psp. 

Proof: If /?* divides A, F(w) has the period 4 both modulo p and modulo /?e, so that the 
conditions of Theorem 5 are satisfied. 
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Examples: For wi = l l , we have A = m2+4 = 125 = 53, and both 25 and 125 are V(ll)-psp's. 
Similarly, for m = 14, A = 200, so that 25 is a V(14)-psp. 

Note: Theorem 5 may be regarded as a special case of Theorem 6 below. 

5. SOME SPECIAL FORMS OF V(m)-PSEUDOPRIMES 

Theorem 6: If n is odd, composite, and such that all its prime or prime power factors have the 
same period R in the sequence V(m), then n is a V(/w)-psp. 

Proof: If yiv is odd, then by (2.8) n is the product of primes pj satisfying pj = Rkj +1. It is 
easily seen that the product of two or more such primes satisfies n = kR + l, and the result then 
follows from Theorem 4. In the same way, if jR is even, n is the product of primes of the form 
Pj = Rkj +1 or of the form q. =±Rhi-1, where ty is odd. The product of such primes is again of 
one or other of these forms, depending on whether the number of primes of the form qt is even or 
odd. The result then follows from Theorem 4 as before. 

Example: The sequence V(2) has the same period 40 modulo the primes 19 and 59; therefore, 
their product 1121 is a V(2)-psp. 

Corollary: Ifn is an odd composite number dividing A, then n is a V(#?)-psp. 

Proof: The period of'V(m) modulo any prime or pe that divides A is 4. Q.E.D. 

We shall use Theorems 4 and 6 to show that certain expressions are V(w)-psp, thus general-
izing some results proved for the special case m = \ by Di Porto and Filipponi in [7], and by 
Bruckman in [2], [4]. First, we shall state some basic facts. 

Lemma 2: (i) Un and Vn have no odd common factors. 
(ii) Ifp is an odd prime dividing A, then (p,Vn) = l for all n. 

These well-known results are easily proved by reductio adabsurdum from (2.2). 

Lemma 3: For all m, we have 

U2s = sm (mod/w3) and U2s+l = 1 (mod/w2), (5.1) 

V2s = 2 (mod/w2) and V2s+ls(2s + l)m (mod™3). (5.2) 

This is easily proved by induction on s. 

Lemma 4: (i) When m is odd, then U„ and Vn are odd if and only if 3 does not divide n. 
(ii) When m is even, then U„ and Vnlm are odd if/? is odd. 

Theorem 7: If q > 3 (or, when m is even, q > 3) is prime and (A, q) - 1, and if Uq is composite, 
then Uq is a V(/w)-psp. 

Proof: Since q is prime, all the factors of Uq have q as their entry point in the sequence 
U{m) and, by (1.12), their period is 4q. Since (A, q) = l, they have the same period in the r e -
sequence. Also, by Lemma 4, Uq is odd. Hence, Theorem 6 applies. 
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Examples; For m = 1, see [8]; for m = 2, the following Pell numbers are V(2)-psp's: TJ1 = 169 = 
132, UX1 = 137x8297, Ul9 = 37x179057, and U23 = 229x982789. 

Theorem 8: (i) IfT = 2k,k> 1, and m is odd, then VT, if composite, is a V(m)-psp. 
(ii) If m is even, and T = 2k, k > 1, then Fr / 2, if composite, is a V(m)-psp. 

Proof: Ifm is odd, then Fr is odd since T = 2k is not divisible by 3. But if m is even, (5.2) 
gives VT s 2 (modm2), so that Fr /2 is odd. Next, consider any odd prime p that divides VT; 
then, by Lemma 2, neither UT nor A are divisible by p. Also, £/2r = UTVT; therefore, any odd p 
or p e that divides VT has the entry point 27 in the [/-sequence and, therefore, the period 4T by 
(1.14). Since (p, A) .= 1, the period is the same for the F-sequence, and the results then follow 
from Theorem 6. 

Examples: For m = 11,F2 = 123 = 3 x41 and V4 = 15127 = 7 x2161 are V(ll)-psp. For m = 24, 
V2 12 = 289 = 172 and V412 = 167041 = 73 x 487 are V(24)-psp. 

Theorem 9: If q > 3 (or, when w is even, q > 3) is prime and (#2, g) = 1, and \iVqlm is com-
posite, then Vq Im is a V(m)-psp. 

Proof: We have C/29 = f̂ ?̂ and F̂  and C/̂  have no odd common factor. Hence, any odd 
prime/? which divides Vq has entry point 2 or 2q in the [/-sequence. But U2-m, and (5.2) gives 
Vq Im^q (modm2), so that Vq Im is odd and prime to m. Therefore, anyp or pe dividing Vq Im 
has entry point 2q. By (1.13), the corresponding period is R = 2q, and this is also the period in 
the V(m) -sequence, since (p, A) = 1 by Lemma 2(ii). Hence, Theorem 6 applies. 

Notes By (2.8), any factor ofVq/m would be of the form 2qk -hi. 

Example: When m = 2, Vn 12 = 8119 = 23 x 353 is a V(2)-psp. 

Theorem 10: If n is a V(w)-psp which is odd (and not divisible by 3 when m is odd), and if 
(n, m) = 1, then the same is true for N = Vn I m. 

Proof: We have U2n = UnVn; therefore, any odd prime p or pe which divides V„ also divides 
U2n but not Un9 and by (1.13) the corresponding period R divides In. Since n is V(w)-psp, 
Vn = m (modn), and since (w, m) = 1, we have Vn Im = 1 (mod n). But Vn Im is odd by Lemma 4, 
hence Vnlm=l (mod 2w). Since R divides 2w, we have Vnlm=\ (mod i?); fiirthermore, since w 
is the product of odd numbers, say n - pq, Vn is divisible by Vp so that Fn / m is divisible hyVp/m 
and, therefore, F„ / wi is composite. Hence, Theorem 4 shows that N = J^ / wi is a V(/w)-psp. It 
remains to show that JV satisfies (N, m) = l and that (N, 3) = 1 if (w, 3) = 1. 

Since « is odd, (5.2) shows that Vnlm = n (modw2), and since (n,m) = l, it follows that 
Vn Im also is prime to m. Furthermore, the entry point of 3 in U(m) is 2 if 3 divides m and 4 
otherwise. In the first case, since Vnlm = n (modw2), 3 does not divide Vnlm if it does not 
divide n. In the second case, since 2w is not divisible by 4, it follows that UnVn is not divisible by 
3; therefore, (N, 3) = 1. Q.E.D. 
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Corollary: Given one V(w)-psp satisfying the conditions of this theorem, we can find infinitely 
may such V(m)-psp. 

Example: Since 169 is a V(2)-psp, there are infinitely many V(2)-psp's. 
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1. INTRODUCTION 

Let u(r, s) and v(r, s) be Lucas sequences satisfying the same second-order recursion rela-
tion 

w„+2=w„+1 + w„ (1) 

and having initial terms u0 = 0, ux = 1, v0 = 2, vx = r, respectively, where r and s are integers. We 
note that {Fn} = w(l, 1) and {Ln} - v(l, 1). Associated with the sequences u(r, s) and v(r, s) is the 
characteristic polynomial 

f(x) = x2-rx-s (2) 

with characteristic roots a and J3. Let D = (a - P)2 = r2 + 4s be the discriminant of both u(r, s) 
and v(r, s). By the Binet formulas 

un = {an-P")l{a-P) (3) 

and 

vn = an+J3n. (4) 

We say that the recurrences t/(r, s) and v(r, s) are degenerate if aJ3 = -s - 0 or a IP is a root of 
unity. Since a and J3 are the zeros of a quadratic polynomial with integer coefficients, it follows 
that a I (5 can be an rfr root of unity only if n - 1,2,3,4, or 6. Thus, w(r, s) and v(r, #) can be 
degenerate only if r = 0, s = 0, or D < 0. 

We say that the integer m is a divisor of the recurrence w(r, s) satisfying the relation (1) if 
m\wn for some n > 1. Carmichael [2, pp. 344-45], showed that, if (m, s) = l, then m is a divisor of 
u(r, s). Carmichael [1, pp. 47, 61, and 62], also showed that if (r, 5) = 1, then there are infinitely 
many primes which are not divisors of v(r, s). In particular, Lagarias [4] proved that the set of 
primes which are divisors of {Ln} has density 2 / 3. Given the Lucas sequence v(r, s), we say that 
the integer m is Lucasian if m is a divisor of v(r, s). In Theorems 1 and 2, we will show that, if 
u{r, s) and v(r, s) are nondegenerate, then un is not Lucasian for all but finitely many positive 
integers n. We will obtain stronger results in the case for which (r, s) = 1 and D > 0. 

A related question is to determine all a and b such that va divides ub. Using the identity 
uava = u2a, one sees that va always divides u2a. Since f̂  J% i£2a\b, we have that va |wft if 2a |6. 
We will show later that if rs * 0, (r, 5) = 1, |va | > 3, and va \ub, then 2a|#. 
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Theorem 1: Consider the Lucas sequences u(r, s) and v(r, s). Suppose that rs ̂  0, (r, s) = 1, 
and D > 0. Let a and b be positive integers. Then ua \vb if and only if one of the following condi-
tions holds: 

(i) a = l; 
(ii) | r | = l o r 2 a n d a = 2; 

(Hi) \r | > 3, a = 2, and b is odd; 
(iv) \r\= 1,5 = l,a = 3, and 3\b; 
(v) \r\= l,a = 4, and 2|ft oddly, where m|w oddly if H//W is an odd integer. 

In particular, ww, ^ > 5, is not Lucasian. 

Theorem 2: Consider the nondegenerate Lucas sequences u(r, s) and v(r, s). If (r, 5) = 1 and 
D < 0, then ww is not Lucasian for n > e45226S. If (r, 5) > 1, then there exists a constant N(r, s) 
dependent on r and s such that un is not Lucasian for n > N(r, s). 

2. NECESSARY LEMMAS AND THEOREMS 

The following lemmas and theorems will be needed for the proofs of Theorems 1 and 2. 

Lemma 1: u2n-ur^n. 

Proof: This follows from the Binet formulas (3) and (4) and is proved in [6, p. 185] and [3, 
Section 5]. D 

Lemma 2: 
u„(-r,s) = (-ir\(r,s). (5) 
vn(-r,s) = (-l)\(r,s). (6) 

Proof: Equations (5) and (6) follow from the Binet formulas (3) and (4) and can be proved 
by induction. D 

Lemma 3: Let u(r, s) and v(r, s) be Lucas sequences such that rs * 0 and D = r2 +4$>0. Then 
\un\ is strictly increasing for n>2. Moreover, if | r |>2, then \un\ is strictly increasing for n>\. 
Furthermore, | vn \ is strictly increasing for n > 1. 

Proof: By Lemma 2, we can assume that r > 1. The results for \un \ and \vn \ clearly hold if 
s> 1. We now assume that r>\ and s<-1. Since D>0, we must have that -r2 /4 <s< - 1 , 
which implies that r >3. We will show by induction that, if w(r, s) is any recurrence satisfy-
ing the recursion relation (1) for which wQ>0, w{>\, and wx>(r /2)wQ, then wn > 1 and 
wn >(r/2)ww_! for all n>\. Our results for u(r,s) and v(r,5) will then follow. Assume that 
n > 1, and that wn>\9 wn_x > 0, wn > (r 12)wn_l. Then wn_x < (2 /r)wn. By the recursion relation 
defining w(r, s), we now have 

so that wn+l > 1 and the lemma follows. • 

Lemma 4: Consider the Lucas sequences u(r, s) and v(r, s). Then un \uin for all /' > 1 and 
Vn\V(2J+l)n^TMj>0. 
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Proof: These results follow from the Binet formulas (3) and (4). D 

Lemma 5: Consider the Lucas sequences u(r, s) and v(r , s) for which (r , s) = 1 and r and s are 
both odd. Then un even <=> vn even <=> 3 \n. 

Proof: Bo th sequences are congruent modulo 2 to the Fibonacci sequence, for which the 
result is trivial. D 

For the Lucas sequence u(r, s ) , the rank of apparition* of the positive integer m, denoted by 
co{rri), is the least positive integer n, if it exists, such that m\un. The rank of apparition of m in 
v(r , s ) , denoted by G>(m), is defined similarly. 

Lemma 6: Consider the Lucas sequences u(r, s) and v(r , s ) . Let p be an odd prime such that 
/ ? | ( r , s ) . If a)(p) is odd, then #>(/?) does not exist and/? is not Lucasian. 

Proof: This was proved by Carmichael [1 , p . 47] for the case in which (r, s) = 1. The proof 
extends to the case in which /? J(r , s ) . D 

Lemma 7: Consider the Lucas sequences u(r, s) and v(r , s ) . Suppose that p is an odd prime 
such that p\{r, s) and co(p) = 2n. Then W{p) = n. 

Proof: This is proved in Proposition 2(iv) of [10]. D 
W e let [n]2 denote the 2-valuation of the integer n, that is, the largest integer k such that 

2k\n. 

Lemma 8: Consider the Lucas sequence v(r , s). Suppose that m is Lucasian and that p and q are 
distinct odd prime divisors of in such that pq\(r, s). Then [a>(p)]2 = P ^ X k -

Proof: This is proved in Proposition 2(ix) of [10]. D 

Theorem 3: Let w(r, 5) and v(r, s) be Lucas sequences such that rs * 0 and (r, s) = 1. Let a and 
b be positive integers and let d = (a, i ) . 

fVrf if[«]2=[*L 
ffl> ( ^ ) = [ l o r 2 othenvise; 

w (^n)=(lor2 otherwise 

Proof: This is proved in [7] and [3, Section 5]. • 

Remark: It immediately follows from the formula for (ya,ub) that if rs*0, ( r , s ) = l , and 
| v j > 3 , then va|w6 if and only if 2a\b. Noting that v2 = r 2 + 2 5 , w e see by Lemma 3 that if rs^O 
and D = r 2 + 4 ^ > 0, then | v a | > 3 for a> 2 . 

W e say that the prime/? is a primitive prime divisor of un if p \ u n but / ? | ^ for 1 < / < n. 

* Plainly, "apparition" is an intended English translation of the French "apparition." Thus, "appearance" would 
have been a better term, since no ghostly connotation was intended! 
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Theorem 4 (Schinzel and Stewart): Let the Lucas sequence u(r, s) be nondegenerate. Then 
there exists a constant N{(r,$) dependent on r and s such that un has a primitive odd prime divisor 
for all n>Nx{r,s). Moreover, if (r, s) = l, then un has a primitive odd prime divisor for all 
n>e452267. 

Proof: The fact that the constant Nx(r,s) exists for all nondegenerate Lucas sequences 
u(r, s) was proved by Lekkerkerker [5] for the case in which D > 0 and by Schinzel [8] for the 
case in which D<0. The fact that if u(r,s) is a nondegenerate Lucas sequence for which 
(r, s) = 1, then an absolute constant N, independent of r and s, exists such that un has a primitive 
odd prime divisor if n > N was proved by Schinzel [9]. Stewart [11] showed that N can be taken 
tobee452267. D 

3. PROOFS OF THE MAIN THEOREMS 

We are now ready for the proofs of Theorems 1 and 2. 

Proof of Theorem 1 
By Lemma 4 and inspection, it is evident that any of conditions (i)-(iv) implies that %\vh. 

Now suppose that \r \ > 3, a - 2, and ua \vb. Then |ua | = |vx | = \r \> 3. By Theorem 3(ii), we see 
that b is odd. By Lemma 5, if r - ±1, s - 1, ua \vb, and a = 3, then 3 \b. Suppose next that \r |= 1, 
a = 4, m<\ua\vb. Since D = r2 +4s>0, we must have that s>l. Then, by Lemma 1, \ua\ = 
|v21 = 2s +1 > 3. By Theorem 3(ii), it follows that 2\b oddly. 

We now note that if D > 0 and rs * 0, then |ua \ < 2 if and only if a = 1, or \r \ < 2 and a - 2, 
or \r | = 1, s - 1, and a = 3. Thus it remains to prove that 

// ua \vb and \ua \ > 3, then either 
| r |>3anda = 2, or (7) 
\r\= 1 and a = 4. 

We prove (7) by first proving a lemma which is, in fact, a weaker statement, namely, 

Lemma 9: If Z>>0, rs*0, (r,j) = l, |f/J = |v6|, and |i/fl|>3, then either | r |>3anda = 2, or 
| r | = l a n d a = 4. 

Proof of Lemma 9: Since \ua \ = |v61 > 3, (ua, vb) = |v̂  | > 3. Thus, by Theorem 3(iii), we con-
clude that [a]2 > [b]2; hence, (ua, vb) = \vd\, where d - (a, b). Thus, \vb \ = \vd |; but by Lemma 3, 
|vw| is an increasing function of n for n positive. Therefore, b-d and b\a. Since [a]2 >[6]2, we 
have that 2b\a and so, by Lemmas 1 and 4, vb\u2b\ua. But |wj = |v j . Hence, by Lemma 1, 
1% I= I v b I = \vbub \> anc^ so |w61= 1. Since \u„ | is an increasing function of n for n > 2 by Lemma 3, 
we see that b = 1 or 2. We can only have that b = 2 if \r \ = 1. However, |vb | > 3, so either b = 1 
and \ua\ = \vb\ = \r\>3, implying that a = 2, or 6 = 2, | r |= l , s>\, and |wa| = |v^| = 2j + 1^3, 
which implies that a = 4. 

Proof of (7): Since */a |v6 and |wfl | > 3, we have that (ua, vb) = \ua | > 3. Using Theorem 3(iii), 
we infer as in the proof of Lemma 9 that |wj = lv</1, where d = (a, b). Hence, by Lemma 9, either 
| r |>3 aiida = 2 , 'or | r |= l anda = 4. D 
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Proof of Theorem 2 
First, suppose that (r, $) = l. Now suppose that n > 3452268 and n is odd. By Theorem 4, un 

has a primitive odd prime divisor p. By Lemma 6, p is not Lucasian and hence un is not Lucasian. 
Now suppose that n > 3452268 and n is even. Then, by Theorem 4, unl2 has a primitive odd prime 
divisor px, and un has a primitive odd prime divisor p2. By Lemma 8, pxp2 is not Lucasian. 
Since un/2 \un by Lemma 4, we see that un is not Lucasian. 

Now suppose that (r, s) > 1. By Theorem 4, there exists a constant N^r, s)>2, dependent 
on r and s, such that if n > Nx(r, s), then un has a primitive odd prime divisor. We note that if/? is 
a prime and p\(r, s), then <*>(/?) = 2. Taking Af(r, 5) = 2Nx(r, s), we complete our proof by using 
a completely similar argument to the one above. D 
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1. INTRODUCTION 

Pascal's triangle with entries reduced modulo 2 has been the object of a variety of investiga-
tions, including number theoretical questions on the parity of binomial coefficients [4] and geo-
metrical explorations of the self-similarity of the Sierpinski triangle [7]. Graph theoiy has also 
entered the scene as a consequence of various binary (that is, {0, 1}) matrix constructions that 
exploit properties of Pascal's triangle. For example, in [2] reference is made to Pascal graphs of 
order n whose (symmetric) adjacency matrix has zero diagonal and the first n-1 rows of Pascal's 
triangle, modulo 2, in the off diagonal elements. Constructions such as these are of special inter-
est when the corresponding graphs unexpectedly reveal or reflect properties intrinsic to Pascal's 
triangle. 

This is the case with binomial graphs, the subject of this paper. The adjacency matrices of 
these graphs are also related to Pascal's triangle, modulo 2. The graphs are found to exhibit a 
number of interesting properties including a graph property that relates to the Fibonacci sequence. 
Recall that the 17th Fibonacci number F„ appears in Pascal's triangle as the sum: 

Other properties of binomial graphs relate to the golden mean, to the Lucas numbers, and to 
several other features associated with Pascal's triangle. 

2. BINOMIAL GRAPHS 

For each nonnegative integer n, we define the binomial graph Bn to have vertex set Vn = 
{Vj J = 0,1,..., 2" -1} and edge set En = {{v„ vy}: (7 ) = 1 (mod2)}. We define (g) = 1; thus, each 
binomial graph has a loop at v0, but is otherwise a simple graph (that is, has no other loop and no 
multiedge). The binomial graph B3 and its adjacency matrix A (B3) are depicted in Figure 1. 

Obviously, \Vn\=2". Also, for each k = 0,1,..., n -1, Bn has ("k) vertices of degree 2k and a 
single vertex, v0, of degree 2" +1. Thus, the sum of the degrees of vertices in B„ is 

X(^+(2^i) = i + X02^r + i . 

Consequently, \E„ |= ±(3" +1). 
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The adjacency matrix A(Bn) exhibits a self-similarity. In this form, it can be described in 
terms of a Kronecker product of matrices. Recall that if A = [av] is an mxn matrix and B is a 
p x q matrix, then the Kronecker product A ® B is the mp x nq matrix, A ® B = [avB]. 
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FIGURE 1. The Binomial Graph B3 and Its Adjacency Matrix 

Thus, if we take A(BQ) = [1], then, for each n > 1, the adjacency matrix of the binomial graph 
B „is 

A(B„) = AiB^) AiB^j 
A{Bn_x) 0 

1 1 
1 0 ®A(B„_l) = A(Bl)®A(B„_l). 

3. SPECTRA OF BINOMIAL GRAPHS 

The eigenvalues of a graph G are the eigenvalues of^4(G), the adjacency matrix of G. The 
spectrum of a graph is the sequence (or multiset) of its eigenvalues. We denote the spectrum of 
graph G by A(G). 

To obtain the spectrum of the binomial graph Bn, we exploit the following result concerning 
Kronecker products. 

Lemma 1 (see [1]): Let A be an nxn matrix with (not necessarily distinct) eigenvalues Xh X2, 
...,AW and eigenvalues xl9x2, ...,*„. Let B be an mxm matrix with eigenvalues M^Mi^-^Mm 
and eigenvectors yl9 y2,..., ym. Then the Kronecker product A ® B has nm eigenvalues Aj/jj and 
eigenvectors xt ® y} for each i = 1,2,..., n and each j = 1,2,..., m. • 

We use this lemma to establish that the eigenvalues of binomial graphs are powers of the 
golden mean, as are the entries in the corresponding eigenvectors. 

Theorem 1: Let <p = -̂ (1 - V5). For each n > 0, the binomial graph Bn has n +1 distinct eigen-
values, specifically, {-V)j(pn~2j, for each 7 = 0,!,...,«. Each of these eigenvalues occurs with 
multiplicity ("), so that the spectrum of Bn is 

A(5) = [((-l)>w-20("):7 = 0,l, . . . ,4 
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where A(m) means that the eigenvalue X has multiplicity m. Furthermore, for n>\, IP linearly 
independent eigenvectors of Bn are scalar multiples of the columns in the Kronecker product 
X(Bn) = X(Bl)®X(Bn_l), where X(Bn) = [xhx2,...,x2„] is the matrix of eigenvectors of Bn 

with 

\/<P ~<P 

Finally, the characteristic polynomial of Bn is 

g>(B„,X) = Ylix-(-iy<p"-2Jf. 
J=0 

Proof: Since A(BQ) = [1], obviously A(B0) = [1] and 2P(50; x) = x - 1 . Since 

ABdA 1 1 
1 0 

then 

&(Bi, x) = det x-l -1 
-1 x = x2-x-l, 

so that A(Bj) = [p, -•£•], as required by the theorem. Furthermore, the two eigenvectors are 
*iT = [1, p~l] and xj = [1, - <p\ (or scalar multiples thereof), so that 

X(B1) = 1 1 
\ l q> -<p 

Since, for each n > 1 
A(B„) = A(Bl) ®/l(5„_1) = ,4(51) ®A{B,) ®-®A{Bx), 

n factors 

then, by Lemma 1, the spectrum A(Bn) consists of the «-fold (Cartesian) product of eigenvalues 
from the spectrum A(BX) = [<p, - £ ] . That is, the 7th distinct eigenvalue A. of Bn is the coefficient 
of (")tJ in the expansion of 

<p-<P u-iyry-2jtj\ 
and the multiplicity of Xj is ("). Furthermore, also by Lemma 1, X(Bn) =X(BX) QXiB^). • . 

4. CHARACTERISTIC POLYNOMIALS OF BINOMIAL GRAPHS 

A polynomial of degree n, P(x) = Hk=0ckxk, c0 * 0, is called palindromic if, for each k = 0, 
...,«,\ck\ = \cn_kI (see [3] and [6]). Some interest attaches to graphs whose characteristic 
polynomials are palindromic. A palindromic polynomial is said to be exactly palindromic if, for 
each k9 ck = cn_k and skew palindromic ifck = -cn_k. A palindromic polynomial of even degree is 
called even pseudo palindromic if, for each k, ck = (-l)kcn_k and odd pseudo palindromic ifck = 
"(-l)V*-
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By expressing the characteristic polynomials of binomial graphs as products of simple (unit) 
quadratic factors involving the Lucas numbers, we show that the binomial graphs are palindromic 
with respect to their characteristic polynomials. 

From Theorem 1, ^{BQ; x) = x - 1 is obviously skew palindromic. For even n > 0, 

(̂5M;x) = n[x-( - l )>^f 
;=0 

(«-2)/2 
= (x-(-i)n/2)("k' n [x2~{-\)\(pn-2j+^-2j)x+{-iyfJ\ 

7=0 

where q> - --^ (= ^-y^-). Since, for even n > 0, the central binomial coefficient (n
n
/2) is even, then 

®(B„x) = (x2-(-iy/2L0x + iy("") n [xi-(-iyLn_2jx + lf\ 
j=0 

where Lk is the k^ Lucas number for k > 1 and 1^ = 2. Consequently, for even n > 0, 2?(i?„; x) is 
a product of exact palindromic (quadratic) polynomials; hence, see Lemma 2.2 in [3], ?P(Bn; x) is 
exact palindromic. 

For n odd, Bn has no eigenvalue of unit magnitude, but similarly, 
(n^f2 , .J»\ 

2?(5„;x)= f [ [^-(- lyA.-ayX-l^1 , 
;=0 

so that ^(Bn, x) is a product of 2"~l odd pseudo palindromic polynomials. Obviously ^P{Bn\ x) is 
odd pseudo palindromic but (see [3], Lemma 2.2), for each odd n > 1, &(Bn, x) is even pseudo 
palindromic. 

Note that for each binomial graph Bn with n > 1, the characteristic polynomial 2P(5W; x) can 
be expressed as a product of unit quadratic factors whose central coefficients are Lucas numbers 
Lk with k = n (mod 2). 

5. CLOSED WALKS IN BINOMIAL GRAPHS 

As was observed by P. W. Kasteleyn [5], the characteristic polynomial 2P(G; x) of a graph G 
can be applied to determine the number of closed walks of fixed length in G. We state this result 
as 

Lemma 2: The total number of closed walks of length k in a graph G is the coefficient of tk in 
the generating function 

^ ( G ; } ) : ^ ( G ; 0 = ̂ i y , where n G ; x ) - ^ S ? ( G ; x ) . D 

By applying this lemma to the graphs Bn, we obtain a connection between binomial graphs 
and the Lucas numbers. 

Theorem 2: The (ordinary) generating function for the total number of closed {walks of length k 
in the binomial graph Bn is 
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W(Bn,t) = -£L"ktk
y 

where Lk is the k**1 Lucas number for k > 1 and 1^ = 2. 

Proof: By Lemma 2, 

t®{B„AY 
where, from Theorem 1, 

;=0 

Setting q> - -•£• (= ̂ y^), we can write 

Taking the logarithm of both sides and differentiating with respect to x yields 

9*(ff,;*) = Y (7) 

It follows that 

y=0 l - ^ > 't M\JJk^ 

1 (t (n^jV"-j)k\k=i>*+vkytk=±L-ktk. n 

Consider now the number of closed walks of length k in Bn with initial (and final) vertex v0. 
Let W0(Bn; t) denote the generating function for this sequence. To determine the coefficients of 
this generating function, we first need the following lemma. 

Lemma 3: Let Vj eV(Bn) with the vertices labeled in natural order {0,1,..., 2" -1} and let wn(j) 
denote the representation of the natural number j as a binary word of length n. Then {v,, Vj} e 
E(Bn) if and only if wn(i) and wn(J) have no 1-bit in common. 

Proof: The lemma is an immediate consequence of the fact that 

^ ) = (''y).l(mod2) 

if and only if wn(i) and wn(j) have no 1-bit in common. D 

Theorem 3: The number of closed walks of length k with initial vertex v0 in Bn is the coefficient 
of tk in the generating function 

W0{B„,t) = fjFk"+lt* 
k=0 

where Fk is the kih Fibonacci number. 
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Proof: The statement is easily verified for k = 0 or 1: the number of closed walks starting at 
v0 in Bn is equal to 1 in each case. For k >2, a walk of length k in Bn can be described as an 
ordered list of k +1 vertices. Let each vertex v. (j = 0,1,..., 2n -1) be labeled with the corre-
sponding binary word, wn(j), of length n. Then a walk of length k in Bn can be described as an 
ordered list of k +1 binary words each of length n and such that no two consecutive words have a 
1-bit in common. Obviously, for a closed walk commencing at vertex v0, the first and last binary 
word is the zero word wn(0). 

Consider the (k -1) x n matrix M, whose rows in sequence are the binary words describing a 
closed walk in Bn starting at v0, with the first and last word wn(0) deleted. Now the columns of 
Mean be viewed as n independent and ordered {0,1}-sequences of length k-l, with the property 
that no two 1 -bits are adjacent. Since there are exactly Fk+l such sequences, where Fk is the k^ 
Fibonacci number, it follows that there are Fk+l binary words of length n in which no two con-
secutive words have a 1-bit in common. That is, the number of closed walks of length k from v0 

mB„isFk"+v D 
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In [2] and [3] we used the T transformation of sequences of integers (w„), defined by T(un) = 
xun+k -w„, to prove in a simple way properties of periodicity modulo a given prime p for (un) 
satisfying several types of second-order linear recurrences. 

The aim of this note is to extend these early results to more general forms of the transforma-
tion and of the sequence (un). 

Theorem 1: Let un, n > 0, be the general term of a given sequence of integers and define the 
transformation T^yk)(un) as T^xyJc){un) = xun+lc +yun for every n > 0, A: being a positive integer. 

Then, if x mdy are nonzero integers and there exists a positive prime number/? which divides 
T(x,y,k)(un) f°r every n>0 and is relatively prime to x, the distribution of the residues of (un) 
modulo p is either constant or periodic with period k(p -1). 

Proof: If(T(un)Ym) denotes the m* iterate of the transformation T^yk) on (un) for given x, 
y, and k, it is quite easy to prove by induction that, for any n and m, 

(%))w=if;]wr(yr^. 
r=(A s 

Put m = p in this formula. Since p is prime, the binomial coefficients are all divisible by /?, except 
the two extreme ones (see [1], p. 417). Therefore, 

(T(u„)fp^x"u„+pk+y"un (mod/0-

Since by construction (T(un)YP^ is a sum of terms all supposedly divisible by p, this entails that 
^Pun+pk+yPun^°(modp). 

Since/? is prime, by Fermat's little theorem, xp = x (mod/?) and yp = y (mod/?), and the pre-
vious congruence becomes xun+pk +yun = 0 (mod/?). 

By hypothesis, for any n, xun+k +yun = 0 (mod/?), and from the difference with the previous 
congruences we obtain x(un+pk - un+k) = 0 (mod /?). Since, by hypothesis, /? and x are relatively 
prime, this implies un+pk -un+k = 0 (mod/?) for any n. This proves Theorem 1. 

Examples: 

(1) Theorem 1 contains known properties for particular second-order linear sequences. For 
instance, let us consider the following one, with a and b being arbitrary nonzero integers: 

An equivalent form of this recursion is un+2 +bun = aun+l. 
If we take arbitrary integral values for uQ and ux, all un are integers; therefore, if/? divides a, 

Theorem 1 may be applied with x = 1, y = b, and k = 2, which proves that the distribution of the 
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residues of (un) modulo/? is either constant or periodic with period 2(/?-l). This was shown in 
[4] by Lawrence Somer, for a particular case of (un). The reader is also referred to [5] and [6] 
for other results about the periods of residues modulo a prime on examples of second-order (un) 
more restricted than ours but with more detailed results. 

(2) The scope of Theorem 1 is not limited to second-order linear recursions (not even to 
linear ones). For instance, let us consider the third-order recursion 

Un+3+aUn+2+bun+l+CUn=° 

with nonzero integers as coefficients and initial values. If the prime/? divides both a and b, then, 
by Theorem 1, the distribution of the residues of (un) modulo/? is either constant or periodic with 
period 3(/?-1). For/? dividing both a and c, the corresponding period will be 2(/?-1); it will be 
/? - 1 for p dividing both b and c. 

(3) The T transformation allows a fresh look at the fundamental recursion (Rl) and helps to 
provide an easy demonstration on a periodicity modulo a prime p property of sequences of the 
type(2un+l-aun). 

If A = a2 -4b, we may replace A in (Rl) by (a2 -A) /4 and, after simple computation, we 
obtain Aun = 4un+2-4aun+l+a2un, where we recognize the right-hand side to be T^-al)(un), 
which is the result of the first iteration of the transformation 2(2,-a, i>- Therefore, by applying 
Theorem 1 to the sequence (2un+l-aun) = ( ^ . - ^ D O O ) * w ^ n k = l, x = 2, and y = -a, we see 
that if/? is any odd positive prime divisor of A, the discriminant of (Rl), supposed nonzero, the 
distribution of the residues of (2un+l-aun) modulo/? is either constant or periodic with period 
/ ? - l for any (un) satisfying (Rl) and made up of integers. (In that case, the condition that/? be 
odd is necessary to insure that/? and x = 2 are relatively prime.) The interesting fact here is that 
any member of the set of the sequences (2uh+l-aun) exhibits the same periodicity property with 
regard to any number in the set of odd prime divisors of A. 

As a more concrete example of application, let (U„) and (Vn) be, respectively, the 
generalized Fibonacci and Lucas sequences of (Rl). If un = Un, then, by a well-known formula, 
we get 2un+l - aun -Vn. This proves that the distribution of the residues of V„ modulo any odd 
prime divisor/? of A is either constant or periodic with period / ? -1 . 

(4) We may generalize this set to set relationship by studying the composition of two T 
transformations with different integral parameters. For any sequence (un), we have 

3(v, W.D(2(X^.I)K)) = ^+2+(xv+w*K+i+wyu„, 
which proves that the composition of these transformations is commutative. 

If (un) satisfies (Rl), this expression is equal to (vy + wx+avx)un+l+(wy-bvx)un, and by 
applying Theorem 1 we prove that if/? is any positive prime divisor of the gcd of vy + wx+avx 
and wy - bvx (if one exists), and is relatively prime with both x and v, then the sequences of the 
residues modulo/? of (pcun+l+yu„) and (vun+l +wun) are either constant or periodic with period 
p-1. 

Here we have two different sets of sequences that display the same behavior, in terms of 
periodicity, regarding a given set of prime numbers (the prime divisors of the gcd of vy + wx +avx 
and wy-bvx). 
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(5) The period provided by Theorem 1 is not necessarily the shortest one, as shown in [3]. 
The following example shows how this situation may occur. Let us suppose that we have a 
sequence (un) of integers satisfying the recursion (Rl), and two nonzero integers x and y such 
that xun+2 + yun is divisible by a prime number p for every n, p being prime with both x and a. 
The application of Theorem 1 to this situation yields 2(p-l) as the corresponding period. But 
xun+2 +yun = axun+l + (y-bx)un, which means that the right-hand side is also divisible by p for 
every n; this time, applying Theorem 1 to this situation yields p - 1 as the corresponding period. 
This proves, with the result of Example 1, that the primes/? for which there exist integers x mdy, 
x prime with/?, such that/? divides every xun+2 +yun, and the distribution of the residues of (un) 
mod/? has a corresponding shortest period of 2(/? -1), are necessarily divisors of a. 

Therefore, when a = ±l, for any prime/? such that there exist integers x and y such that 
xun+2 +yun = 0 (mod/?) for every n, x prime with/?, the corresponding shortest period is /?-1 or 
less. For instance, if (Ln) and (Fn) are, respectively, the classifal Lucas and Fibonacci sequences, 
the shortest period mod 5 for (Ln) is precisely p-l = 4, in accordance with the fact that 
Ln+2 + Ln is divisible by 5 for every n and a = 1. 

For (Fn), the shortest period mod 5 is 20, which means that, when 0 < k < 5, integers x andj, 
x prime with 5 and such that xFn+k +yFn is divisible by 5 for every n, do not exist because, in that 
case, k(p -1) = 4k < 20. 

For k = 5, we easily find that Fn+5+2Fn is divisible by 5 for every n, and the corresponding 
period is k(p -1) = 20. 
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1. PRELIMINARIES 

For a, b, p, and q arbitrary integers, in the notation of Horadam [2] write 

Wn = W„(a,b;p,q) (1.1) 
so that 

W0=a,Wl=b,W„ = pW^l-qfK_2 fo r«>2. (1.2) 

In particular, we write 
Un = Wn(0,l,p,q), 
V„ = Wn(2,p;p,q). 

(1.3) 

The Binet forms for U„ and Vn are 

Un = {an-ni&, (1-4) 

Vn = an+ft\ (1.5) 
where 

A±p2-4q, (1.6) 
and 

a = (p + JK)/2 and fi = (p-JX)/2 (1.7 

are the roots, assumed distinct, of the equation x2-px + q = 0. Observe that (1.7) yields the two 
identities 

a + fi = p and aft-q. (1.8) 
As done in [3], throughout this note it is assumed that 

A>0, (1.9) 

so that a, ft, and VA are real and a * /?. We also assume that 

q*0 (1.10) 

to warrant that (1.2) is a second-order recurrence relation. Finally, observe that the particular 
case p = 0 yields 

l(-<7)(" ) 2 ("odd), " |0 (/iodd). 

Throughout our discussion, the special sequences (1.11) will not be considered, that is, we 
shall assume that 

p*0. (1.12) 
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2. MOTIVATION OF THIS NOTE 

Some months ago, I had the opportunity of reviewing (for the American Mathematical 
Society) an article [3] in which the author establishes several summation formulas for U„ and Vn 

by using the Binet forms (1.4) and (1.5) and the geometric series formula (g.s.f). 
As usual, I began my review by checking the results numerically. Without intention, I chose 

the values /? = 4and<7 = 3 which satisfy (1.9), (1.10), and (1.12) and, to my great surprise, 
noticed that the formulas in [3] do not work for these values of/? and q because certain denomina-
tors vanish. On the other hand, I ascertained that they work perfectly for many other values of 
these parameters. 

The aim of this note is to bring to the attention of the reader a fact that seems to have passed 
unnoticed in spite of its simplicity: if q = p-l, then either a or/? [see (1.7)] equals 1, whereas if 
q- -(JP + 1), then either a or/? equals - 1 . Consequently, for obtaining summation formulas for 
Un and Vn, the g.s.f. must be \\SQ&properly to avoid getting meaningless expressions. 

The example given in Section 4 will clarify our statement. 

3. BINET FORMS FOR Vn AND Vn IN THE SPECIAL CASES 
q = p-lANDq = -(p + l) 

The Binet forms for U„ and Vn in the cases q-p~\ and q = -(p +1) obviously play a crucial 
role throughout our discussion. 

3.1 The case q = p-l 
If 

q = p-i (3.0 
then the expression (1.6) becomes 

A = p2-4p + 4 (3.2) 

whence, to fulfill (1.9), we must impose the condition 

p*2. (3.3) 

Remark 1: Conditions (3.1), (1.12), and (3.3) imply that 

q±±l. (3.4) 

Since we assumed that VA is positive [see (1.9)], (3.2) also implies that 

VAH (3 5) 
[ 2 - A if/?<2, V ; 

whence [see (1.7)] 
Jp-l = q(*ndfi = l)9 ifp>2, 

[l (and/? = ?), if/7 < 2. ( ' } 

From (1.4), (1.5), (3.6), (3.5), and (3.1), it can be seen readily that the Binet forms for Un 

and Vn are 
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U„ = £-± [cf. (3.4)1 (3.7) 
q-l 

and 
V„ = tf + 1." (3.8) 

Remark 2: By virtue of condition (1.10), the Binet forms (3.7) and (3.8) also have meaning for 
negative values of n. 

3.2 The Case q = -(p + l) 
If 

? = -(P + l), (3-9) 
then expression (1.6) becomes 

A = /?2+4j7 + 4 (3.10) 

whence, to fulfill (1.9), we must impose the condition 
p*-2 (3.11) 

which, due to (3.9) and (1.12), implies (3.4) as well. 
Since we assumed that VA is positive, (3.10) also implies that 

whence [see (1.7)] 

r- [p + 2, \fp>-2, 
JK = \F F (3.12) 

1-(/7 + 2), if /><-2, ; 

= J/>.+1 = -q (and fl = -1), if p > -2, 
' -1 (and/? = -?), i fp<-2. " 

From (1.4), (1.5), (3.13), (3.12), and (3.9), it can be seen readily that the Binet forms for U„ 
and Vn are 

U„ = (-\y^± [cf. (3.4)], (3.14) 

and 
K» = ( - W + l). (3-15) 

Observe that Remark 2 also applies to the Binet forms (3.14) and (3.15). 

4. SUMMATION FORMULAS THAT DO NOT HAVE GENERAL VALIDITY 

Here we clarify the malfunctioning of the summation formulas in [3] by means of the follow-
ing example. By using (1.5) and the g.s.f. {without realizing that, ifq = p-l, then a (or ft) = 1, 
and if q = -(p + l), then a(or fi) = -l [see (3.6) and (3.13), respectively]}, after some simple 
manipulation involving the use of (1.8), one gets 

n a
m(V -V W V - V 

YVkm+r =q V-" "r [' V">^ (m*0). (4.1) 
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Remark 3: The right-hand side of (4.1) may involve the use of the extension 

V-m = VJ<f, (4.2) 

which can be obtained immediately from (1.8). 
Warning: Formula (4.1) works for all values of/? and q except for those values for which either 
(3.1) (m arbitrary) or (3.9) (m even) holds. In fact, in these cases, from (3.8) [or (3.15)] we have 
qm-Vm + 1 = 0. More precisely, it can be proved that the right-hand side of (4.1) assumes the 
indeterminate form 0/0. Analogous summation formulas yield the same indeterminate form. 

If (3.1) holds, the correct closed-form expression for the left-hand side of (4.1) is 

S X ^ = !(**""*+ 1) [from (3.8)] 
fc=o k=o (4 3s 

_m(«+l)_i V - 1 
= n + \ + qr2 - = n + l + q r ^ ^ (j»*0). 

H qm-\ Vm-2 
If (3.9) holds and m is even, from (3.15), the correct closed-form expression for the left-hand 

side of (4.1) is readily found to be 

fykm+r = (-\)r{n +1) + ( - # ^ ~ 2 (m*0,even). (4.4) 
k=0 Vm Z 

Observe that, if (3.9) holds and m is odd, the expression 

hkm+r \(-q)r(Vm(n+1)-2)/Vm («odd), 

obtainable from (3.15), is nothing but a compact form for expression (4.1) which, in this case, 
works as well. 

5. SUMMATION FORMULAS FOR Un AND Vn WHEN q = p-l 

We conclude this note by giving a brief account of the various kinds of summation formulas 
for Un and Vn that are valid when (3.1) and (3.4) hold. Since their proofs are straightforward, 
they are omitted for brevity. We confine ourselves to mentioning that the proofs of (5.4)-(5.5) 
and (5.6)-(5.7) involve the use of the identities—see (3.1) and (3.4) of [1]— 

A . , hyh+2-(h + l)yh+l+y A^(h\ , , , n/,-i 
;=0 (y~~l) ;=oV s 

respectively. 

iffyvkm+r=<lrV:+r, (5.3) 
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h Kq-iyuJ 2(^-1) 

to km+r [(1-Wj 2 

i4")^^(rr-2n (5.6) 

z^y^= w^m + T'»""i + 2'"1)- (5?) 
A:=0 V J 

It is obvious that summations (5.1)-(5.7) can be expressed simply in terms of powers of q. 
Doing so, we sometimes obtain more compact expressions. For example, we get 

i w w - i - ^ y . - S r " * ' ^ <-»). (5.5, 
k=0 W ~l) Z 

Finally, we give the following example pertaining to alternate sign summations: 

fc=o v v 
l ) % » r = 

0, 

"(-ov t̂o-of/.r1, 

if » = 0, 
i f»=l , 
if«> 1. 

(5.8) 

The interested reader is urged to work out analogous summation formulas for the case in 
which q = ~{p +1) and m is even. 

ACKNOWLEDGMENT 

This work has been carried out in the framework of an agreement between the Italian PT 
Administration (Istituto Superiore PT) and the Fondazione Ugo Bordoni. 

REFERENCES 

1. P. Filipponi & A. F. Horadam. "Derivative Sequences of Fibonacci and Lucas Polynomials." 
In Applications of Fibonacci Numbers 4:99-108. Ed. G. E. Bergum et al. Dordrecht: 
Kluwer, 1991. 

2. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The 
Fibonacci Quarterly 3.2 (1965): 161-76. 

3. Z. Zhang. "Some Summation Formulas of Generalized Fibonacci, Lucas Sequences." Pure 
andAppl Math 10 (Supplement) (1994):209-12. 

AMS Classification Numbers: 11B37, 11B39 
• > • » « £ • 

1997] 61 
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1. INTRODUCTION 

Let (t\h)p denote the generalized falling factorial of t of degree/? and increment h, namely, 
(t\h)0 = lmd 

(t\h)p = fl(t-jh), p = l,2,3,.... 

In particular, (t\l)p is denoted by (t) . The main purpose of this note is to establish an explicit 
summation formula for a kind of generalized arithmetic-geometric progression of the form 

Sa,h,P(r,) = £ak(k\h)p, 

whered and h are real or complex numbers, and/? a positive integer. It is always assumed that 
a * Q and a * 1. 

It is known that the sum Sa^p(n) = J?k=llakkp has been investigated with different methods 
by de Bruyn [1] and Gauthier [6]. De Bruyn developed some explicit formulas by using certain 
determinant expressions derived from Cramer's rule, and Gauthier made repeated use of the differ-
ential operator D = x(d I dx) to express Sa^p(n) as an times a polynomial of degree/? in ny plus 
an w-independent term in which the coefficients are determined recursively. In this note we shall 
express the general sum Sahp(ri) explicitly in terms of the degenerate Stirling numbers due to 
Carlitz [2]. In particular, an explicit formula for Sa0p(n) will be given via Stirling numbers of the 
second kind. Finally, as other applications of our Lemma 1, some combinatorial sums involving 
generalized factorials will be presented. 

2. AN EXPLICIT SUMMATION FORMULA 

We will make use of the degenerate Stirling numbers S(n,k\ X) first defined by Carlitz [2] 
using the generating function 

i-((i-f^)l/A-i)^|;^^|2)4- c1) 

The ordinary Stirling numbers of the second kind are given by 

S(n,k)\=S{n,k\0)=X\mS{n,k\X). 
A->0 

Also, Carlitz proved among other things (cf. [2]) 

* Supported by the National Natural Science Foundation of China. 
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(t\h)p = Y,S(PJ\h)(t)j (2) 

S(pj\h) = -ti(-iy-k({](k\h)p. (3) 
Jl k=0 V / 

Note that the so-called C-numbers extensively studied by Charalambides and others (see [3] 
and [4]) are actually related to the degenerated Stirling numbers in such a way that 

S(pJ\h) = hPC(pJ,l/h)9 0*0). 
The following lemma may be regarded as a supplement to the simple summation rule pro-

posed in [7]. 

Lemma 1: Let F(n, k) be a bivariate function defined for integers n,k>0. If there can be found 
a formula such as 

£F(« ,* ) (^W(» , . / ) , (7*0), (4) 

then for every integer p > 0 we have a summation formula 

±F(n,k){k\h)p = fjy,{n,j)j\S(p,j\h) (5) 
k=0 j=0 

with its limiting case for h —> 0, 

£ F(», *)*' = £ ¥{n, j)j\S(p, j). (6) 
it=0 ;=0 

Proof: Plainly, (5) may be verified at once by substituting expression (2) with t = k into the 
left-hand side of (5) and by changing the order of summation and using (4), namely, 

t^F^k&SipJwA^YSipJWysinJ). 
k=0 y=0 v 7 ' y=0 

The fact that (5) implies (6) with h -» 0 is also evident. D 

Lemma 2: For a * 0 and a * 1, let $>?, 7) = ̂ («,y; a) be defined by 

faj>ij(k\(J*0). (7) 
k=0 v 7 ' 

Then ^(w, j ) satisfies the recurrence relations 

aKn, j-\) + C- W>», J) = «"+1(")l) («) 

with <l>(n, 0) = (a"+1 -1) / (a -1) and j = 1,2,.... 
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Proof: Evidently, we have 

a"^iy<l>{n + \,j)-<j>{n,j){j>\) 

k=0 \ J J 

K->)]-i>t* k=Q 

= (a-l)<f>(nj) + a<t>(nj-l), 

where the initial condition is given by <j>{n, 0) = Z£=0 ak = (a"+l -1) / (a -1). D 
In what follows we will occasionally make use of the forward difference operator A, defined 

by A/(x) = f(x +1) - fix) and At = AA'"1, (j > 2). 

Proposition: The following summation formulas hold: 

^ » = i^y ;«)7 ' i5 ' (p ,7 |A) ; 
;=i 

p 

These formulas may also be written as 
P 

i 
and 

where ^(n,y; a) (\<h< p) and the higher differences involved have explicit expressions, viz., 

<KnJ;a)-
1 

\-a £!-*«£&%&. 
J 

I 
r=0 

[*mpl_0 = Y,(-V-yr )(r\h)p, 

[AJtp] =AW = ±(-iy-'(jy. 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

Proof: Comparing (7) with (4), in which F(n, k) corresponds to ak (not depending on n\ 
we see that (9) and (10) are merely consequences of Lemma 1. Thus, it suffices to verify (11) and 
(13). Actually (14) and (15) are well-known expressions from the calculus of finite differences. 
Consequently, the equivalence between (9) and (11) and that between (10) and (12) both follow 
from the relations (3) and (14). 

Moreover, Lemma 2 implies the following: 
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a-\f^\j-r)y\-a) \-a\\-a) 

This is precisely equivalent to (13). D 

Remark: According to the terminology adopted in Comtet's book [5], we may say that both (11) 
and (12) provide summation formulas of rank 3 as they both consist of triple sums after having 
substituted (13), (14), and (15) into the right-hand sides of (11) and (12), respectively. The num-
ber of terms involved in each formula is, obviously, 

i ;C/ ' + 2)C; + i) = ̂ ( p + 3)(p + 2)0> + i ) - 2 . 
7=1 i 

Surely these formulas are of practical value for computation when n >p. 
Let us rewrite (10) in the form 

iSk> = ±J]S<r>fi 
k=l y=i \-a \-a •«"+T 

r=0 

n + lV a 
J-r' \\-a 

(101) 

where j\S(p, j) = N0P are given by (15). Notice that for \a\ < 1 the limit of an+l(n+
r
l) (0 < r < j) 

is zero when n —» oo. Thus, using (10') and passing to limit, we easily obtain the following con-
vergent series: 

fjakk" = ±j\S{pJ)-^—^, (|a|<l). 
/=! U a) k=\ 

3. EXAMPLES 

Example 1: Let the Fibonacci numbers Fk and the Lucas numbers Lk be given by the Binet 
forms 

Fk = {ak-/3k)lS and Lk = ak+0k 

with a = (a + <J5) 12 and (5 = (1 - V5) 12. Then it is easily seen that the following sums, i.e., 

^n)^{k\h)pFk and A(w) = £ ( * | A ) , 4 , 
k=\ k=\ 

can be computed by means of (9) or (11). Indeed, we have 

1 -B-

and 

^W-^iC^i^)-^^^))^1^^^)' 

where $n,f, a) and </>(n,j; /?) are given by (13) with a = a and a- p. 
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Example 2: Given real numbers h and 0 with 0<6<2K. It is easily found that the sums 

C(n) = ^(k\h)pcosk0 and S(n) = ^(k\h)psmk0 

can also be computed via (9) or (11). To see this, let us take a = e10 with / = V-I . Evidently, the 
sums C(n) and S(n) are given by the real and imaginary parts of the sum formula for Sah p(n), 
namely, 

C(n) = Refj<f>(nj;ei0)j\$(p,j\h) and S(n) = Im^(nJ;ew)j\S(pJ\h). 

Example 3: Let <fi(n, j) = &(n,j; a) be given by (13). Then, using the values of S(p, j) for j < 
p < 5, we can immediately write down several special formulas for the sum Sa p(ri) = YPk=lakkp\ 
as follows: 

Saf2(n) = <f>(n,l) + 2<f>(n,2l 
Sa>3(n) = <f>(n,l) + 6<f>(n,2) + 6<f>(n,3), 
SaA(n) = tfnX) +14#*, 2) + 36#/i, 3) + 2Atfn, 4), 
Sa5(n) = #w, 1) + 30</>(n, 2) +150^(w, 3) + 240^(w, 4) +120^(«, 5). 

As may be verified, the first two equalities given above do agree with the two explicit expres-
sions displayed in de Bruyn [1]. 

4. OTHER APPLICATIONS OF LEMMA 1 

It is clear that the key step necessary for applying the summation rule given by Lemma 1 is to 
find an available form of i//(n, j) with respect to a given F(n, k). Now let us take F(n, k) to be 
the following forms, respectively, 

*' I*)' W ' W ' ' (2A1J' [ s } H*> 
where Hk = l + l/2 + ~- + l/k are harmonic numbers. Then the corresponding i//(n, y)'s may be 
found easily by using some known combinatorial identities, and, consequently, we obtain the fol-
lowing sums (with p > 1) via (5): 

£(mP=i("tl^-s(p,j\h), (i6) 
k=\ j=l^J ' 

£(fj(k\h)p = £$2^j\S(p, j\h), (17) 

2 

£{i] (mp = £{2n~j\n)jS{p,j\h), (18) 

'%u)^-±r^y)^.mp,m, (.9) 
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L/7/2JX x P f ' \ 

iU"+ij<*i*),=^x~jJ)jlS(p'm (20) 

±{k\h)pHk =± ̂ +
l^Hn+l--^j\S(p,j\h). (22) 

These sums with h - 0 will reduce to the cases displayed in [7]. Actually, (19) and (20) fol-
low from an application of the pair of Moriarty identities, (21) from that of Knuth's identity, and 
(22) is obviously implied by (4)-(5) and the well-known relation 

k\ TJ fn + l £l"J*-u+. 
/ 
^+1-7711 (s^ §2 of [7]). 

Evidently, (21) implies the classical formula for X£=1 kp when 5 = 0 and h = 0. 
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1. INTRODUCTION 

We consider the sequence {Wn} = {W„(a,b; P,Q)} of integers defined by 

W0=a,Wx = b,Wn = PWn_x-QWn_2 (n>2), (1.1) 

where a, b, P, and Q are integers, with PQ * 0. Particular cases of {Wn} are the sequences {£/„} 
of Fibonacci and {Vn} of Lucas defined by Un = ^(0,1; P,Q) and Vn = Wn(2,P; P,Q). In the 
sequel we shall suppose that A = P2 - 4Q > 0. It is readily proven [6] that 

W.-^jf, (..2) 
a- p 

where a = (P + jA)/2, /?= (P-VA)/2 , A = b-fia9 and B = b-aa. Following Horadam [6], 
we define the number ew by ew - AB = b2 - Pab + Qa2. It is clear that eu = l and ev = - A = 
-(a-p)2, where eu and ev are associated with the Fibonacci and Lucas sequences. By means of 
the Binet form (1.2), one can easily prove the Catalan relation 

W?-K-W»i = ejrl- (1-3) 
Notice that 

a>\ and a>|/?|, if'P>0, (1.4) 

and that 
/ ? < - ! and \P\>\a\, i fP<0. (1.5) 

By (1.4) and (1.5), it is clear that U„ * 0 for n > 1 and that V„ * 0 for n > 0. More generally, 
there exists an integer p such that Wp - 0 if and only if Wn - Wp+lUn_p for every integer n. By 
(1.4) and (1.5), we obtain 

Wn^-^-z<x\ i fP>0 and Wn^^-J3\ ifP<0. (1.6) 

The purpose of this paper is to investigate the infinite sums 

2" « i r - V _ L _ ^ = Z d ! r - and Tk = % 

where k is a positive integer. We shall suppose that W„ * 0 for n > 1 (see the remark above) and 
that ew = AB*0 (which means that {Wn} is not a purely geometric sequence). By (1.4) and (1.5), 
use of the ratio test shows that the series Sk and Tk are absolutely convergent. Notice that 
Sk = Tk, when Q = l. 
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More generally, let 7u{ri) = m + sn be an arithmetical progression, with m > 0 and s > 1. We 
shall examine the sums 

+00 r)n(n) +00 -I 

\*- ~ iL e* 
»=1 "*(w)"/r(/i+fc) 

and 3iU"=X 
«=1 ^7z{riy^n{n+k) 

By the way, we shall also obtain a symmetry property (Theorem 1) that generalizes a recent 
result of Good [5]. 

Remark 1: Notice that Sk^ = Tk^ when Q = 1 and that Sk^ = {-l)mTk^ when Q = -1 and s is 
even. 

Theorem 1: We have 

where k and m are nonnegative integers. 

Theorem!; I f P > 0 , then 

2. MAIN RESULTS 

m ryi k ryi 
UklL ww

 =UmY, WW 

st = 1 
eJJk 

J^ W 

If P < 0, replace a by p in the right member. 

Theorem 2': If P > 0 or if P < 0 and 5 is even, then 

1 
Uh ir ~ Jk,7t eJJJU* 

k W 
r=\ ¥V7t(r) ^w^ s^ sk | 

If P < 0 and s is odd, replace a5 by fi* in the right member. 

Theorems: I fP>0, then 

If P < 0, replace 4 by 5 in the left member and a by (5 in the right member. 

Corollary 1: IfQ = - l , then 

> 2 , = — i — L -
^2fc r=l ^ 2 r ^ 2 r - I and 

^2A:+l ~ " # 2k+l 
3I-Z 

l 
^1 "2r"2r+l, 

Corollary 2: If (? = -1 and 5 is odd, then 

nk,n 
^2ks r=l ^ r ( 2 r ) ^ ( 2 r - l ) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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and 

hk+ln 
Uv 

ut (2k+l)s 
^"1 

r=l ^ r ( 2 r ) ^ / r ( 2 r + l ) 
(2.7) 

Remark 2: If g = - 1 , & = 1, and Wn=Un or Vn9 then Theorem 3 is Lemma 2 in [1]. 

Remark 3: Theorem 1 shows that Sk is a rational number if and only if a is rational or, equiva-
lently, if and only if A is a perfect square. Corollary 1 shows that, in the case Q = -l, T2k is 
rational, while T2k+l is rational if and only if 7J is rational. Notice that, even in the usual case 
Wn - ^ (0 ,1 ; 1,-1) = Fn, the value and the arithmetical nature of Tx is unknown. One can obtain 
similar results for the numbers SktK and Tkn. 

Theorem 1 is given by Good [5] in the case Q = -1 . Theorem 2' was first obtained by Lucas 
[8, p. 198] in the case k = l, Wn = UnorVn. The same results were rediscovered by Popov [11]. 
Brousseau [3] proved Theorem 2 for Wn -Fn and he gave numerical examples of Corollary 1. 
Good [5] proved Theorem 2 in the case 2 = - l . In [2], [7], and [9], one can find variants of 
Theorem 2' applied to Fibonacci, Lucas, Pell, and Chebyshev polynomials. 

3. PRELIMINARIES 

In the sequel, we shall need the following lemmas. 

Lemma 1: For integers n > 0 and k > 0 

\Wn+k-PkW„ = Aa"Uk, 
{Wn+k-akWn = BB"Uk. 

(3.1) 
(3.2) 

Proof: Using Binet form (1.2), the result is immediate. 

Lemma 2: For integers k > 1, 

ip- l 
r=l Wr B 

hwr A 
J^ W 
^ w 

-ka 

-hfi 

(3.3) 

(3.4) 

Proof: We prove only (3.3); the proof of (3.4) is similar. By (3.2), where n-r and k = l, 
we have 

y^=ly 
hwr B2^ 

Wr+l-aWr_ 1 
r=l Wr B 

y ^ ± i 
h wr 

-ka 

Lemma 3: If Q = - 1 , we have, for k > 1, 

1 
r=l arWr 

= ̂ Z 
r=l ^ 2 r ^ 2 r - l 

(3.5) 
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2fe+l ifc+i -i fc •% 

r=2 a fy r=1 W2rW2r+l 

One can obtain two similar formulas by replacing a by ji and 4 by B. 

Proof; We prove only (3.5). Since Q = - 1 , we have a r / f = (-l)r for k > 1; thus, 

§ _L = 1 § (-QT* = I f ( . y ^ - ^ by(32) 

(3.6) 

1 2k W 1 k 

- _L V /_ i y vvr+\ _ J_ v1 
w/ 1 k f-w^+w^ 

B ^ Wr B^\W2r_x W2r ) 

_ 1 f ^r+1^-,-^ = 1 f -^( - l ) 2 r " ' . n 3 V 
* £ *Wr-. #£ Wr-> ' ' 

* 1 

= ̂ E ww~'since *w = ^ 
r=l VV2rV¥2r-l 

Lemma 4: Let {a„} be a sequence of numbers and {b„tk} be the sequence defined by 

Kk=an-ar*k> k^°- (3-7) 
For every m > 0 and A: > 0, we then have 

/w k 

!*».* = I\„- (3-8) 

Proof: Without loss of generality, we assume m>k. By (3.7) we get 

m 

n=l 

= (a1 + -+ak) + (ak+l + -+aJ-(ak+l + ~-+am)-(am+1 + -+am+k) 
k 

= (at + ••• +at)-(a„1+i + - +<W) = X*».m-

4. PROOF OF THEOREMS 1, 2, AND 2' 

We get by (3.1) that 
Qtl+k B" B"+lc^AQ"Uk 

W„ W„+k WnWn+k 
(4.1) 

Putting a„ = B" I Wn and bnk = ^ " C / , / F ^ + / t , we see by (4.1) that bnJl = a„ -a„+k. Theorem 1 
follows immediately by this and Lemma 4. 

Assuming now that P > 0 and letting n-\,2,...,N, where N>k,we obtain 
A/ / i n A o r N+k or 

AUY y = y ^ y £-

Now, by (1.6) we have 
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Wr A U 
and since a > \B\, the last sum in the right member vanishes as N —> +00. Thus, by (3.3), 

AU^ Q" V tlr±L-ka 
r=l vvr 

and the conclusion follows from this, since ew = AB. If P < 0, replace j5 by a in the left member 
of (4.1) and A by B in the right member. Using (3.2) and (3.4) and recalling that \p\> \a\ in this 
case, the end of the proof is similar. 

Let us examine some particular cases. \iWn-Un (respectively Vn) and since eu = 1 (respec-
tively ev - -A), we get that 

Q" 

and 
w=i UnUn+k Uk 

hvnVn+k AUk 

k TT 

L~> TT 
r=l u r 

k i/ 

r=l vr 

(4.2) 

(4.3) 

when P > 0 . 
If P < 0, replace a by /? in the above formulas. 

We turn now to the proof of Theorem 2'. Let us consider a second-order recurring sequence 
{W;} (see [4] and [10]) satisfying 

Wi = P'WU-QWl» n>2, (4.4) 

where P' = as+J3s = Vs and Q = a'/?' = 0*. Notice that P ' > 0 if and only if P > 0 or ifP < 0 
and s is even. The Fibonacci sequence associated with the recurrence (4.4) is defined by 

,_asn-psn _USJ U' = 

On the other hand, we have 

W -W 
rrn{n) rrm+sn 

as-ps Us 

_A'as"-B'Bs" 

(4.5) 

a-B 

where A' = Aam and B' = BBm. If {W$ is the solution of (4.4) defined by WJ = A'a™-B'f", w e 
have 

It follows by Theorem 2 applied to {WJ} that, if P' > 0, 

a Qm i _ 
2-> ww ~Z rn n=l "n^n-¥k ew^i 

W' ^^f-kas 

(4.6) 

(4.7) 

Using (4.5) and (4.6) and noticing that ew, = A'B' = ABamBm = ewQm, we easily deduce (2.2) 
from (4.7). If P' < 0, replace as by 8s in the right member of (4.7). 
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5. PROOF OF THEOREM 3 AND COROLLARIES 1 AND 2 

Supposing first that P > 0, we get by (3.1) that 

AT>k 1 Qk _ AUk (5.1) a"W„ a"+kWn+k W„W„+k-

Letting n = 1,2,..., N, where N>fc, and summing, we obtain 
N -i k i N i Af+fc i 

n-1 W + 4 £ l a ^ r i k i l a X r=W+l OfWr 

£J arWr f^ arWr r=V+1 a W r 

The first sum in the right member converges as N —» +oo since a r ^ —~^Ra2\ where a > 1. 
We also see that the last sum vanishes when N —» +oo. This concludes the proof of Theorem 3 
when P > 0. If P < 0, the proof is similar. 

Notice that the first term in the right member of (2.3) vanishes if and only if Q - 1 (in which 
case Sk = Tk) or Q = -1 and k is even. The series Z ^ —^r seems difficult to evaluate. If Q = -1 
and if J^ = £/„ or Wn = Fw, this series can be expressed with the help of the Lambert series [1, 
Lemma 3]. If Q - 1, it does not appear in (2.3). This fact explains why Melham and Shannon [9, 
p. 199] obtain formulas that do not involve Lambert series. 

If Q = -1 and k is even, then (2.3) becomes 
2k 1 k \ 

AU2kT2k = Y —— = AY 
2k 2k L^ r w JU JIT iir 

by (3.5), when P > 0. This concludes the proof of (2.4). If P < 0, the proof is similar. 
On the other hand, put Q = -l and replace k by 2k +1 in (2.2) to obtain 

1 ^ 1 
^ ^2k+l^2k+l ~^Z^ rUr L^ 

r=larWr % arWr" 

and, using (3.6), we deduce from this 
2Jfc+l i A: t 

r=\ & Wr r=l ¥V2r¥¥2r+\ 

This concludes the proof of (2.5) when P > 0. The case in which P < 0 is similar. 
Using (4.5) and (4.6) and applying Corollary 1 to the sequence {#£}, one can easily obtain 

the proof of Corollary 2 when noticing that Qs = - 1 , since 5 is odd. 
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FIBONACCI NUMBERS AND ALGEBRAIC STRUCTURE COUNT OF 
SOME NON-BENZENOID CONJUGATED POLYMERS 
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1. INTRODUCTION 

The algebraic structure count (ASC) of a graph G is 

ASC{G}d=^p*I], 

where A is the adjacency matrix of G. This quantity has noteworthy applications in chemistry (see 
below), provided that the graph G represents the carbon-atom skeleton of a molecule of a class of 
hydrocarbons, the so-called conjugated hydrocarbons [9]. Therefore, we call this graph by the 
same name as the respective hydrocarbon. 

Of particular importance for chemical applications are graphs that are connected, bipartite, 
and planar and which, when considered as plane graphs, have the property that every face-
boundary (cell) is a circuit of length of the form 4s+ 2 (s = 1,2,...) [2]. We refer to these graphs 
as benzenoid, noting, however, that the actual definition of benzenoid systems is slightly more 
complicated [8]. Molecular graphs that are connected, bipartite, and planar, but in which some 
face-boundaries are circuits of length of the form As (5 = 1,2,...) will be referred to as non-
benzenoid. The graphs studied in the present work belong to this latter class. 

In the case of benzenoid graphs, the ASC-value coincides with the number of perfect 
matchings (1 -factors), which is a result of crucial importance for chemical applications. Chemists 
call the 1 -factors Kekule structures [3], and these objects play significant roles in various chemical 
theories [8]. The enumeration of 1-factors in benzenoid graphs is not too difficult a task [3] and 
can be accomplished by various recursive methods. Consequently, the calculation of ASC of ben-
zenoid graphs is easy. 

In the case of non-benzenoid graphs, the relation between ASC and the number of perfect 
matchings is less simple and is given below (Theorem 2). Contrary to the former case, in this case 
the determination of the ASC-value is a nontrivial task because no efficient recursive graphical 
technique is known for computing ASC [5]. A systematic study of the ASC-values of non-
benzenoid conjugated systems was recently initiated by one of the present authors (see [6], [7]). 
Among others, in [7], the linear JXIphenylene [Fig. 1(a)] and the angular [«]phenylene [Fig. 1(b)] 
are considered. 

* This work was done at the Institute of Physical Chemistry, Attila Jozsef University, in Szeged, Hungary, while on 
leave from The Faculty of Science, University of Kragujevac, Kragujevac, Yugoslavia. 
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FIGURE 1 
The Linear [nJPhenylene (a) and the Angular [AiJPhenylene (b); Algebraic Structure 

Counts of Angular Phenylenes are Fibonacci Numbers 

It is established that the ASC-value of the angular [«]phenylene is equal to the (w + 2)* Fibo-
nacci number (FQ = 0, Fx = 1, F2 = 1,...). It has been known for a long time [3] that the number 
of 1-factors (X-value) of the zig-zag chain A(ri) of n hexagons (circuits of length 6) (Fig. 2) is 
equal to the same number, i.e., 

K{A(n)} = F„+2. (1) 

FIGURE 2 
The Zig-Zag Hexagonal Chain A(n); Number of 1-Factors 

of A(n) Is a Fibonacci Number 

In this paper we show that the ASC-value of a class of non-benzenoid hydrocarbons can 
be expressed by means of Fibonacci numbers. This structure Bn = Bn(A(m^y Mm?),..., A{mn)) 
(which will be described in detail later) consists of n zig-zag chains concatenated by (n-\) 
squares (circuits of length 4). The manner of concatenation of two zig-zag chains by a square 
depends on the types (I-IV) of these zig-zag chains (which will also be defined later). The main 
result is the following statement. 

Theorem 1: If the graph Bn consists of n zig-zag chains of the same length m (m> 2) concate-
nated in the same manner, i.e., all zig-zag chains are of the same type, then 

1 ASC{iU = 2W+1 £1 + £*^J( F^ 
where 

£> = 

V ( ^ + 2 - ^ - 2 ) 2 + 4 - ( - i r + 1 , i f ^ i s o f t y p e l , 

V(^ + 2-^ , - i ) 2 +4-( - l ) m , M m ) is of type n o r m , 

V^2
+i+ 4-(-1)m + 1, if A(m) is of type IV, 

and 
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F = { 

Fm_2, if A(m) is of type I, 
Fm_h if A(m) is of type II or III, 
Fm, if A{m) is of type IV. 

Before proving the validity of Theorem 1, we wish to mention a few more chemical aspects 
of the ASC-concept [4]. 

First of all, ASC is a well-defined quantity only for molecular graphs that are bipartite. There 
are two basic applications of ASC. First, if ASC = 0, then the respective conjugated hydrocarbon 
is predicted to have unpaired electrons. In practice, this means that this hydrocarbon is extremely 
reactive and usually does not exist. Second, thermodynamic stability of conjugated hydrocarbons 
is related to, and is a monotone increasing function of the ASC-value of the underlying molecular 
graph. In practice, this means that among two isomeric conjugated hydrocarbons, the one having 
greater ASC will be more stable. (Recall that the molecular graphs of isomeric hydrocarbons 
have an equal number of vertices and an equal number of edges.) 

In the case of benzenoid hydrocarbons, the above remains true if ASC is interchanged by 
K, the number of 1-factors [8]. In particular, not a single benzenoid hydrocarbon with K = 0 is 
known, whereas many hundreds of such hydrocarbons with K > 0 exist. 

In the case of benzenoid hydrocarbons, the following example (kindly suggested by the 
anonymous referee) illustrates another aspect of the role of 1-factors. Consider two isomers, A 
and B, consisting of n fused benzene rings (i.e., hexagons). Compound A consists of a linear 
arrangement of hexagons, and possesses w + 1 Kekule structures (1-factors). Compound B 
consists of a zig-zag arrangement of n hexagons (see Fig. 2); it possesses Fn+2 Kekule structures. 
The electron distribution in compounds A and B can be (as a reasonable approximation) obtained 
by averaging of the Kekule structures [8]. By means of this approach, one finds that compound A 
has very nearly double bonds at its ends (i.e., bonds the order of which is about 2), which implies 
a relatively high reactivity in this region of the molecule. In the case of compound B, the same 
averaging results in bond orders 1.618 (the golden ratio) at the terminal bonds, implying a signifi-
cantly greater chemical stability of B relative to A. 

Readers interested in further details of the chemical applications of 1-factors (including the 
theory of ASC) should consult the references quoted. 

2. COUNTING THE ASC-VALUE OF A BIPARTITE GRAPH 

Consider a bipartite graph G with n + n vertices, i.e., a graph all of whose circuits are of even 
length. Define a binary relation p in the set of all 1-factors of G in the following way. 

Definition 1: The 1-factors kx and k2 are in relation p if and only if the union of the sets of 
edges of kx and k2 contains an even number of circuits whose lengths are all multiples of 4. 

It can be proved that this binary relation is an equivalence relation and subdivides the set of 
1-factors into two equivalence classes [2]. In [2] this relation is called "being of the same parity" 
and the numbers of these classes are denoted by K+ and AL. The following theorem by Dewar 
and Longuet-Higgins [2] connects the ASC-value of G and the numbers K+ and K~. 

Theorem 2: det A = (-!)"(*+ - K.f. 
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This theorem implies ASC{G} = J\detA\ = \K+-K.\. 

In the case of benzenoid hydrocarbons all 1-factors are in the same class, i.e., one of the 
numbers K+ or K- is equal to zero. This follows directly from Definition 1. Hence, ASC{G} = 
K{G}. It does not hold in the case of non-benzenoid hydrocarbons. In this case, the following 
theorem can be useful for evaluating the ASC-value. 

Theorem 3: Two 1-factors kx and k2 are in distinct classes (of opposite parity) if one is obtained 
from the other by cyclically rearranging an even number of edges. In other words, two 1-factors 
k{ and k2 are in distinct classes if the union of the sets of edges of kx and k2 contains just a single 
circuit, and the length of this circuit is a multiple of 4. 

Proof: Theorem 3 follows directly from Definition 1. 

3. THE STRUCTURE OF THE CONSIDERED GRAPH 

The graph Bn = Bn(Xh X2,..., Xn) considered in this paper is obtained from the linear 
[«]phenylene [Fig. 1(b)] by replacing its /* hexagon with a zig-zag chain, labeled by Xi 

(Xj = A(mi)) for i = l,...,w [Fig. 3(a)]. The places of concatenation are the edges f^PM 
(i = 2,...,n) and gi = rtst (/ = 1,2,..., n -1) which belong to the terminal hexagons of the zig-zag 
chain. In the graph Bn, the valencies of the vertices pi9 qt, rt_l9 and ^_x (i = 2, 3,..., n) are equal 
to 3. Recall that the notation Bn(A(m^), A^),..., A{mn)) does not uniquely determine a graph, 
because for a unique characterization the places of concatenations also need to be specified (as 
discussed in detail below). 

Figure 3(b) shows one of the possible structures of the graph B4(A(3), A(4), A(4), A(2)). 

FIGURE 3 
The Graph Bn = BH(XVX29...9Xn) (a) and Its Special Case B4(A(3), A(4)9 A(4)9 A{2)) (b); 

Note that the Symbol B4(A(3)9 A(4)9 A(4)9 A(2j) Does Not Specify a Unique Graph 

The present authors considered in [1] the generalization of the structure of the type Bn [Fig. 
3(a)], where Xt are arbitrary bipartite graphs all of whose 1-factors are of equal parity, i.e., 
Asc{jr/} = ^{jr/} 

Consider now a zig-zag segment A{mi) of B„. Let THJr = 1. Then (see Fig. 4) there are two 
possible choices of the edges ft andg depending on whether these edges are parallel or not (note 
that we can always represent squares and hexagons as regular k-gons). 
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FIGURE 4 
Two Ways of Choosing the Edges /.' and gt in a Hexagon 

If in > 2, then there are four types of the zig-zag chains A{mi), depending on the choices of 
the edges fi andg, according to whether or not these edges are parallel to the edge in common 
of the hexagon containing the considered edge and its adjacent hexagon (see Fig. 5). 

Ill 

IV /;' 

FIGURE 5 
Four Ways of Choosing the Edges ft and gt in a Zig-Zag Chain A^) 

Note that in the type II and type III we have two possibilities for the edge pair fi9 gt and in 
the type IV we have four such possibilities. 

4. A METHOD FOR CALCULATING THE ASC-VALUE OF THE GRAPH Bn 

Observe that edges belonging to a 1-factor of Bn (marked by double lines in Fig. 6) can be 
arranged in and around a four-membered circuit in exactly five different ways. This is the conse-
quence of the fact that the fragments of Bn lying on the left- and right-hand side of the four-
membered circuit (not shown in Fig. 6) both possess an even number of vertices. If the number of 
vertices in these fragments would be odd (which, according to the way in which B„ is con-
structed, is impossible), then every 1-factor of Bn would contain one horizontal edge of the four-
membered circuit, and would not contain the other. 
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V / y/ V 

y \ // ^ / \ / \ / \ 
1 2 3 4 5 

FIGURE 6 
Arrangements of Edges in 1-Factors of Bn 

The modes 4 and 5 are interconverted by rearranging two (an even number) edges of the 1-
factor. According to Theorem 4, modes 4 and 5 are of opposite parity. Consequently, they need 
not be taken into account when the algebraic structure count is evaluated. The 1-factors of Bn 

that do not contain arrangements of mode 4 or 5 are called good, and their number is denoted by 
K{Bn). Note that the horizontal edges of squares are never in a good 1-factor. Hence, the edges 
of good 1-factors can be rearranged only within each fragment Xr This implies that all good 1-
factors of Bn are of equal parity, i.e., 

ASC{B„} = K{B„}. (2) 

We now enumerate the good 1-factors of Bn using the so-called transfer matrix method [2]. For 
that purpose, we define auxiliary subgraphs XUj in the following way: 

*,.i = */-C/5)-(&),l 
Xi,2 = Xi-(fi)-gi, 
xi.* = xi-fi-gi-

(3) 

(The subgraph G-e is obtained from G by deleting the edge e and the subgraph G-(e) is 
obtained from G by deleting both the edge e and its terminal vertices.) To simplify the notation, 
denote K{Xf j} by Kt j . Observe that Kf X-Kj 4 are equal to the number of 1-factors of Xt in 
which one of the following four conditions is fulfilled. In particular: 

• KXi counts the 1-factors containing both edges f and gi 
(we say that this class of the 1-factors of Xt is assigned to the graph Xu 2); 

• Kj 2 counts the 1-factors containing the edge f and not containing the edge gt 
(this class is assigned to the graph Xu 2); 

• ^ 3 counts the 1-factors that do not contain ft and do contain gi 
(this class is assigned to the graph Xu 3); 

• Kf 4 counts the 1-factors containing neither ft nor gt 
{assigned to the graph Xu4). 

Evidently, the above four cases cover all possibilities. 
Now, we associate with each 1-factor of Bn a word jj2 ...jn of the alphabet {1,2,3,4} in the 

following way: If the considered 1-factor induces in Xt a 1-factor that is assigned to the graph 
XiJy then jt =j. Note that by choosing the edges of the 1-factor in Xt and Xi+l (i.e., by 
choosing subwords jji+l) we must not generate one of modes 4 or 5 of arrangements of the 
1-factor in the square between Xj and Xi+l, i.e., the subwords jji+l must not belong to the set 
{11,12,31,32}. 
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Let 2r„ be the set of all words in '{1,2,3,4}", in which the subwords 11, 12, 31, and 32 are 
forbidden. Then, according to (2), we have 

ASC{5„}= £ K^K^,...,^. 
j\j2...jne% 

(4) 

It can be shown that the set 2T„ has 4-3 elements. Hence, there are 4-3" * summands on the 
right-hand side of (4). 

Let 

Mt = 

0 0 X,3 KiA 
Ki,l Ki,2 Ki,3 Ki,A 

0 0 X,3 K,4 
Ki,l Ki,2 Ki,3 Ki,4 

Keeping (4) in mind, we see that the ASOvalue of Bn is equal to the sum of all elements of the 
last row in the product of transfer matrices IIJLi Miy i.e., 

ASC{B„} = fd(M1-M2 M„\k- (5) 
k=l 

In our case, the subgraphs Xi are zig-zag chains and the value ASC{Bn} is equal to the sum of 
the products of some Fibonacci numbers, i.e., the following statement holds. 

Lemma 1: For every type of zig-zag chain A(mj), the quantities KjrKu4 are equal to some 
Fibonacci numbers. 

Proof: Note that all 1-factors of A(m) can be divided into four classes (a)-(d) according to 
which edges in the terminal hexagons belong to the 1-factor (see Fig. 7). Observe that the num-
bers of elements in classes (a)-(d) are Fibonacci numbers Fm_2, Fm_ly Fm_l9 and Fm, respectively. 
Evidently, their sum is equal to ^{^[(w;)}, i.e., Fm+2. 

K{A(m-A)} = Fm_2 

K{A(m-2)} = Fm_l 

K{A(m-3)} = Fm_l 

\ 7 / K{A(m-2)) = FTT 

FIGURE 7 
Classes of 1-Factors of A(m) 
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Now, if the zig-zag chain is of type I (Fig. 5), then the four numbers A)fl-X)f4 represent a 
cardinal number of classes (a)-(d) in Figure 7, respectively. Therefore, we can write 

[KiA, Ku2, K,3, KiA] = [ i v 2 , Fmi_h Fmi_h i y - f o r type I. (6) 

Similarly, we obtain: 
[*,!, * j , 2 , X,3, Kh4] = [F^, Fmi_2, Fmt, F ^ . J - f o r type II; (7) 

[K,A, K,t2, Kh3, Kt,4] = [F^, Fmi, F^_2, F^-for type III; (8) 

[K,^ A)>2, K,3, ^ , 4 ] = [^., Fmi_h F^_„ Fm._2]-fortypeIV. (9) 

5. PROOF OF THEOREM 1 

Let all zig-zag chains Airn^ be of the same length m (m = ml = m2=--= mn) and of fixed 
type. Then we can write Kj instead of K^ . (J = 1,..., 4) and M instead of Mt. Then expression 
(5) reduces to ASC{fi„} = I?k=l{M"\ k, where 

M = 
0 
K, 
0 
Kl 

0 
K2 
0 

K2 

K3 
K3 
K3 
K3 

K4 
K4 
K4 
K4 

The characteristic equation of Mis 

tf-[K2+K3 + K4]£+[K2K3-KxK4]£ = 0, 

and its eigenvalues are Xx - X2 = 0, X3 = [L-D]12, and X4 = [L + D]/2, where 

L = K2+K3+K4 & D = JlF+4(KlK4-K2K3). 

(10) 

(11) 

Note that D = y](K2 - K3f + K4(4KX + 2K2 + 2K3 + Z4) and is equal to 0 if and only if K2 = K3 

and K4 = 0. Further, recall the Cayley-Hamilton theorem which says that each square matrix sat-
isfies its own characteristic equation. If we label with n^ j(n) the (7,7}-entry in the matrix Mw, 
then using the mentioned theorem we obtain that the sequence rntj(n) [and, consequently, the 
sequence ASCj^} = Zy=1/w4j(n)] satisfies a difference equation. The coefficients of this differ-
ence equation are obtained from the characteristic polynomial of M", i.e., from equation (10). 
Thus, the desired recurrence relation for the algebraic structure count of the graph Bn is 

ASC{5n} = (K2 + K3 +K4)ASC{B„.l} + (K,K4 - K2K3)ASC{Bn_2} (12) 
with initial conditions 

A$C{Bl} = Kl+K2+K3 + K4 & ASC{B2} 
= (Kl+K3)(K3 + k4) + (K2+K4)(Kl+K2^K3 + K4y 

Solving the recurrence relation (12), we obtain the following general solution: 

ASC{Bn} = 
{nKx+{n + \)K2)K[ n~\ if K2=K3 & K4 = 0, 

12 
1 + ̂ )(L + D)" + (1 -^)(L - D)n] otherwise, 

(13) 
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where L and D are given by (11). We arrive at the generating function for the sequence ASC{£„} 
by standard methods of the theory of difference equation 

ASC(x) = ^ ^ 
<X^3 - KxK4)x2 -(K2+K3 + K4)x + l' 

Since ASC(x)d= ^=Q ASC{Bn}x\ this implies 

ASC{5lf} = ^fASC<l,>(0). 

In our case, the fragments Xi are zig-zag chains A(m) with a fixed number of hexagons (m) of 
fixed type. 
* The case m = 1 was considered in [7]. For the sake of completeness, we recall that 

ASC{5„} = n +1, if A{\) is of type I [Fig. 4(a)] (the linear phenylene), 
ASC{B„) = Fn+2, if 4(1) is of type II [Fig. 4(b)] (the angular phenylene). 

• In the case m = 2, we have to use both terms in (13). So, using relations (6)-(9) in (13), we 
obtain 

ASC{5II} = 

i K ^ r - l ^ n if^(2)isoftypeI, 

{[(1 + V2)"+1 + ( 1 - V5)"+1], if 4(2) is of type II orlll, 

2w + l, if4(2)isoftypeIV. 

# For the case m>2, all K^ (i: = 1,...,4) numbers are positive, so we apply only the second 
term in (13). Bearing in mind relations (6)-(9) again and the well-known relations for the 
Fibonacci numbers, F^_l-FmFtn_2 = (-l)m and Fm_2 + 2Fm_x 4-Fm = Fm+2, the required state-
ment of Theorem 1 follows. 
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THE FIBONACCI CONFERENCE IN GRAZ 

Herta T. Freitag 

The Seventh International Research Conference on Fibonacci Numbers and Their Applica-
tions was held at the Technische Universitat in Graz, Austria, July 15-19, 1996. It was sponsored 
by the Austrian Federal Ministry of Science, the Governor of Styria, the Mayor of Graz, the 
Technische Universitat in Graz, the Austrian Academy of Sciences, the European Mathematical 
Society, and the Fibonacci Association. We all wish to express our deep gratitude to these 
sponsors. 

How befitting that Graz was chosen as the site. This old university town {die alte Universitat 
was founded in 1845) radiates the charm of old-worldliness combined with the spirit of progres-
sive modernism and technology. What an atmosphere for thought and reflection—mathematical 
or otherwise! Enriched by new and happy experiences, all crammed into but a few days, we once 
again felt what a unifying force our mathematics is. Being the international language par excel-
lence, it bridges nationalities, customs, ideas. Colorfully different accents but enhance the fact 
that our discipline is understood by all its devotees. And loved by them. 

A record number of 95 papers was presented: the U.S.A. provided 27 of them; Austria 11; 
Italy and Japan tied with nine each; France and Germany with eight. Three speakers came from 
Canada, and also from Russia; one or two speakers hailed from each of the remaining countries. 
Significantly justifying the fact that our Conference is truly an International one, a count of the 
nationalities on the roster revealed the stunning number of 32—among them Australia, the 
Republic of Belarus, Cyprus, New Zealand, and South Africa. 

These large numbers bespeak the growing magnetism of our "Fibonacci-type mathematics," 
and—maybe—Austria's popularity. (May I, a former Viennese, be accused of bias?) Hence, it 
was with considerable reluctance that it became necessary to resort to double sessions. We, 
indeed, wanted to hear it all. 

We did work hard. The sessions started at 9:00 A.M. and extended to the early evening, 
followed by enjoyable social events, planned by the Local Committee. Even just listening to the 
titles of the presentations, no one could doubt that there is more imagination in the mind of a 
mathematician than, possibly, in that of a poet. 

The ties of old friendships were strengthened; new ones were kindled. Many of these became 
fertile soil for joint authorship research. Predictably, the "Goddess Mathesis," as Howard Eves 
calls her, smiles benevolently upon this phenomenon. I was saddened by the absence of one of my 
co-authors, George M. Phillips, who, through illness, was unable to attend. 

Our deep thanks go to Gerald E. Bergum, the very soul of the Fibonacci Association; to our 
Robert Tichy, who ever-so-amiably coped with all the work; and, indeed, also to the other 
Committee members, both local and international. Nor will we ever forget Verner E. Hoggatt, 
Jr., who created The Fibonacci Association; or Andreas N. Philippou, who launched the idea of a 
Fibonacci Conference. Our appreciation, however, also goes out to all the participants of the 
Conference. The presentations mirrored their intense mathematical involvement and enthusiasm. 

Finally, our Wiedersehen in Graz had to come to an end. Now, however, in another two 
years—Rochester, here we come! And may our Conferences always be so very fruitful and 
enjoyable. 

• > • > • > 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to Fibonacci@MathPro.com on Internet. 
All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference,, Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ask that proposers inform us of the 
history of the problem, if it is not original A problem should not be submitted elsewhere while it 
is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = F„+1+Fn> F0 = °> Fl= ^ 
A?+2 ~ Ai+1 + An L0=2, Lx- 1. 

Also, a = (l + V5)/2, £ = ( l -V5)/2, Fn = {an-(3n)lV^and Ln = a"+J3n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-814 (Corrected) Proposed by M. N. Deshpande, Institute of Science, Nagpur, India 
Show that, for each positive integer n, there exists a constant Cn such that F2n+2iF2i + Cn and 

2̂w+2/+î 2/+i ~ Q a r e k0*'1 Pei*fect squares for all positive integers /'. 

B-821 Proposed by L. A. G. Dresel, Reading, England 
Consider the rectangle with sides of lengths Fn_x and Fn+l. Let An be its area, and let dn be 

the length of its diagonal. Prove that d% = SA^ ± 1. 

B-822 Proposed by Anthony Sofo, Victoria University of Technology, Australia 
For n > 0, simplify nlaFn+Fn_x + (-l)n+1 ^Fn+l-aFn. 

B-823 Proposed by Pentti Haukkanen, University of Tampere, Finland 
It is easy to see that the solution of the recurrence relation An+2 - -An+l + An, AQ - 0, A{ = \, 

can be written as An = (-iy+lFn. 
Find a solution to the recurrence Ari+2 = -An+l + An, A0 = l, Ax = 1, in terms of Fn and Ln. 

B-824 Pi-oposed by Brian D. Beasley, Presbyterian College, Clinton, SC 
Fix a nonnegative integer m. Solve the recurrence An+2- Llm+xAn+l + An, for n>0, with 

initial conditions A§ - 1 and Ax = L2m+l, expressing your answer in terms of the Fibonacci and/or 
Lucas numbers. 
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B-825 Proposed by Lawrence Somer, The Catholic Univ. of America, Washington, B.C. 
Let (Vn) be a sequence defined by the recurrence V„ = PVn+l - QVn, where P and Q are inte-

gers and VQ = 2, Vx-P. The integer d is said to be a divisor of <F„> if d\Vn for some n>\. 
(a) If P and Q are both even, show that 2m is a divisor of <FW> for any m > 1. 
(b) If P or g is odd, show that there exists a fixed nonnegative integer k such that 2^ is a 

divisor of (Ĵ > but 2k+l is not a divisor of (Vn). If exactly one of P or Q is even, show that 2k\Vx; 
if P and g are both odd, show that 2k\V3. 

NOTE: The Elementary Problems Column is in need of more easy, yet elegant and nonroutine 
problems. 

SOLUTIONS 

Double, Double, Triangular Numbers and Trouble 

B-802 Proposed by Al Dorp, Edgemere, NY 
(Vol 34, no. 1, February 1996) 

Let Tn = n(n +1) / 2 denote the n^ triangular number. Find a formula for T2n in terms of Tn. 

Editorial Note: I loved this problem because of all the varied solutions. It is amazing how 
resourceful our readers can be, and I enjoyed seeing some ingenious solutions. 
Solutions by various solvers 

Many solvers: 

Marjorie Bicknell-Johnson: 

Many solvers: 

Joseph J. Kostal: 

Paul S. Bruckman: 

Herta T. Freitag: 

Many solvers: 

David Zeitlin: 

T2n = 4T„-n. 

T2„ = n2+2T„. 

8r„+i-V8r„+i 
hn - 2 

T2n = n^Tn + \. 

Tu-{^} 
T2n = ±n2(ti + l)(2n + l) 

hn ~ **„ + Tn_x. 

hn = 6Tn- 3Tn+l + Tn+2. 

One reader came up with the wondrous formula T2n = (T^ +1012^ -12) / 30. Unfortunately, this 
formula was too good to be true. 

Generalization by David Terr, University of California, Berkeley, CA, and Daina A. Krigens, 
Encinatas, CA (independently) 

Tj^-k Tn nTk_x. 

Generalization by Marjorie Bicknell-Johnson, Santa Clara, CA 

^ P = [(2p+i)*-43;]rB+(/i+i)2rp+ii23;./H.1. 
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Also solved by Mohammad K Azarian, Brian D. Beasley, Charles K. Cook, M. N. Deshpande, 
Leonard A. G. Dresel, Steve Edwards, Russell Euler, Thomas M Green, Russell Jay Hendel, 
GeraldHeuer, Harris Kwong, CarlLihis, Bob Prielipp, John A. Schumaker, R P. Sealy, H.-J. 
Seiffert, Lawrence Somer, and the proposer. 

Half a Lucas Sum 

B-803 Proposed by Herta Freitag, Roanoke, VA 
(Vol 34, no. 1, February 1996) 

For n even and positive, evaluate 
nil / \ 

17 W 
;=0 V ' 

Solution by L. A. G. Dresel, Reading, England 
Let A = Zr=0(/)4-2/ a n d B = I/=2(?)4-2/. Since („?,) = (?) and L_2t = L2t and n is even, we 

have A + (j2)A) = 2B> a n d 

A = i f ? ] ( a " " 2 ; +fin~7i) = a~n(a2+1)w+/?~'7(/?2+iy = (a+a-ly+(/?+/r1y\ 

But a + a~l = <S mdJ3 + /rl = -s/5. Therefore, A = 2(5n/2) and B = 5"/2 + {„%). 

Haukkanen found a corresponding formula for Fibonacci numbers: 
(«-l)/2/ \ 

z m/v.„=5<^»odd. 
;=0 ^ ' 

Seiffert gave the generalization, 
f(-if^yk(n_2i) = 5«/2F;+(-D(t+1)"/2(„72), 

which comes from [1] and can also be traced back to Lucas [3]. Haukkanen found a generali-
zation for the sequences defined by Un = mUn_l +f/„_2> U0 = 0, £/j = 1, and Vn = mVn_x +Vn_2, 
V0 = 2, Vx=m, which comes from [2]: 

2 ( 7 ) ^ - 2 / ) = ("2 + 4 ) " / 2 ^ + ( w 7 2 ) -todd, neven. 

References 
1. The Citadel Problem Solving Group. "Problem 519: A Linear Combination of Lucas Num-

bers." The College Mathematics Journal 26A (1995):70. 
2. P. Filipponi. "Waring's Formula, the Binomial Formula, and Generalized Fibonacci Matrices." 

The Fibonacci Quarterly 30.3 (1992):225-31. 
3. Edouard Lucas. The Theory of Simply Periodic Numerical Functions. Santa Clara, CA: The 

Fibonacci Association, 1969. 
Also solved by Paul Bruckman, M. N. Deshpande, Russell Euler, Pentti Haukkanen, Russell 
Jay Hendel, R P. Sealy, H-J. Seiffert, David Zeitlin, and the proposer. 
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Finding an Identity without a Crystal Ball 

B-804 Proposed by the editor 
(Vol 34, no. 1, February 1996) 

Find integers a, b, c, and d (with \<a<b<c<d) that make the following an identity: 
F =F + 9342F L+F +F * 
1 n 1 n-a^yj^^1 n-b ^ A n-c^ A n-d • 

Solution by L. A. G. Dresel, Reading, England 
We note that 9342 = 9349 - 7 = I^9 - L4. Using the identities I23 and I21 of [1], we have 

Aw+19 ~ Aw-19 ~ ^ 9 a n C * Aw+4 + Aw-4 ~ A w ^ 4 " 

Subtracting, we obtain Fm+l9 - Fm_l9 - Fm+4 - Fm_4 = AWCAP - L4). Putting n = m +19 and re-
arranging, gives the identity Fn = Fn_l5 + 9342Fn_l9+Fn_23+Fn_3S. We conclude that a = 15, 
b = \9,c = 23, and d = 38 provides a solution to this problem. 

Bruckman, Dresel, Johnson, and Seiffert all found the general identity 

with u odd and v even. Zeitlin found the identity Fn = Fn_2 + 9349Fn_20 + Fn_40 + Fn_4l. 

Reference 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 
Also solved by Paul S. Bruckman, Russell Jay Hendel, Marjorie Bicknell- Johnson, Daina A. 
Krigens, H.-J. Seiffert, David Zeitlin, and the proposer. 

A Slightly Perturbed Fibonacci Sequence 

B-805 Proposed by David Zeitlin, Minneapolis, MN 
(Vol 34, no. 1, February 1996) 

Solve the recurrence Pn+6 = Pn+5 + Pn+4 - Pn+2 + Pn+l + Pn, for n > 0, with initial conditions 
p0 = l,Px = 1,P2 = 2,P3 = 3,P4 = 4, andP5 = 7. 

Editorial composite of the solutions received: 

f 0, if A? = 1,5 (mod 8), 
Let An = \ 1, if n = 0,2, 3 (mod 8), 

[-1, if/is 4,6, 7 (mod 8). 
Then note that An satisfies the given recurrence. Also note that Fn satisfies the given recurrence. 
Thus, any linear combination of Fn and An satisfies the given recurrence. Now, one only needs to 
find the linear combination that meets the initial conditions. The solution is Pn = (An + Fn+3) 13. 

This can also be written in the form P„ = 1 1 + ^ w + 3 j . 

Also solved by Brian D. Beasley, Paul Bruckman, Leonard A. G Dresel, Pentti Haukkanen, 
Russell Jay Hendel, Gerald A. Heuer, Harris Kwong, H.-J. Seiffert, and the proposer. A par-
tial solution was obtained by Jackie Roehl 
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Power Series with Fibonacci Features 

B-806 Proposed by Mohammad K. Azarian, University of Evansville, Evansville, IN 
(Vol 34, no. 1, February 1996) 

(a) Show that the coefficient of every term in the expansion of 2* 3 is the difference of 
two Fibonacci numbers. 

(b) Show that the coefficient of every term in the expansion of _2xi+x3 *s t ' i e Pr°duct of 
two consecutive Fibonacci numbers. 

Solution by Harris Kwong, SUNY College at Fredonia, Fredonia, NY 
(a) It is well known that T^=0Fnxn = JZ^T • Hence, 

x x i I °° \ (°° 

1 X yn=0 J\n=0 . 1 — 2x + X 1 — X — X i -v \ „= n J V «=n J 

generates cn = I£= 0 Fk = Fn+2 - F2. 

(b) Routine calculation reveals that 

x x 
l -3x + x2 ( l -a2x)( l - /Tx) 

Thus, 

Mikity**" l - 2 x - 2 x 2 + x 3 l -3x + x2 

generates dn = F2n-F2n_2 + ••• +(-l)nFQ, which satisfies the recurrence relation d„+l + dn =F2rj+2. 
UsingF2;7+2 = 

Ai+A+i ~~ Cw+2 + Fn)Fn+\ ~ ^n+i^n+i+ ̂ n^n+i an(^ induction, w e find that rf„ - FnFn+l. 
y4fao solved by Paul S. Bruckman, Charles K. Cook, M. N Deshpande, Steve Edwards, Russell 
Euler, Pentti Haukkanen, Russell Jay Hendel, Carl Libis, H.-J. Seiffert, David Zeitlin, and 
the proposer. 

Generalized Mod Squad 
B-807 Proposed by R Andre-Jeannin, Longwy, France 

(Vol 34, no. 1, February 1996) 
The sequence (Wn) is defined by the recurrence Wn~ PWn_x-QWn_2, for n>2, with initial 

conditions W0 = a and Wx=b, where a and b are integers and P and Q are odd integers. Prove 
that, for k > 0, Wn^2k = Wn (mod 2k+l). 

Solution by Lawrence Somer, The Catholic Univ. of America, Washington, D. C. 
Let (U„) and <yn) be sequences satisfying the same recursion as (Wn) with initial terms 

U0 = 0,Ul = l9andV0 = 29Vl = P, respectively. It can be proved by the Binet formulas and induc-
tion that 

^ = - 2 ^ 1 ^ . + 0 ^ 1 . 0 ) 
u2n = uyn, (2) 

and 
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U2n+l = -QU2
n+Ulv (3) 

SinceP and Q are odd, the sequence (U„), modulo 2, is 0,1,1,0,1,1,... . By inspection, one sees 
that both (U„) and (Vn) are purely periodic modulo 2 with periods equal to 3. Moreover, one sees 
by inspection that Un = 0 (mod 2) if and only if 3|w, and V„ = 0 (mod 2) if and only if 3|w. 

We now show by induction that U3ak = 0 (mod 2k+l) for k > 0. If A: — 0, one sees by what 
was stated above that U3 = 0 (mod 2). Suppose the result is true up to k. Then 

U.+x=UVk (4) 
3-2*+1 3-2* 3-2* 

f + i n n hxrtAr\-f t i a c i o o n n 1, by formula (2). Since C/3.2* = 0 (mod 2*+1) by our induction hypothesis, and J 2̂* = 0 (mod 2), 
we see from (4) that C/3.2*+i = 0 (mod 2k+2), and our induction is complete. 

We next show by induction that t/3.2*+1 = 1 (mod 2k+l) for k > 0. If k - 0, then, by what was 
stated earlier, U4 = 1 (mod 2). Assume the result is true up to k. Then 

^ 2 - + 1 = - e ^ + f / 3 2
2 * + i (5) 

by formula (3). Since £/3.2* = 0 (mod 2k+l) by our above result, £/322* = 0 (mod 2k+2). Since 
Uy2k+l = l + r2k+l for some integer r by our induction hypothesis, we see that U2.2k+l = 1 (mod 
2k+2). Then, by (5), we have t/3.2*+i+1 = 1 (mod 2k+2) and our induction is complete. 

We now see that 

^+3-2* = -Qwn-Py* + ̂ . 2 * + 1 - (-f i^. .)-0 + W„-l = W„ (mod2t+1). 

The proposer mentions that this problem came about by his efforts to generalize problem B-732. 
Also solved by Paul S. Bruckman, Leonard A. G. Dresel, Harris Kwong, H-J. Seiffert, and 
the proposer. 
Addenda: The editor wishes to apologize for misplacing some solutions that were sent in on 
time. We therefore acknowledge solutions from the following solvers: 

Brian D. Beasley—B-790, 791; Russell J. Hendel—B-784; 
L. A. G. Dresel—B-796, 797, 798, 799, 801; Gerald A. Heuer—B-792, 793; 
C. Georghiou—B-796, 797, 798, 799, 800, 801; Igor O. Popov—B-796, 797; 
Pentti Haukkanen—B-793; Dorka O. Popova—B-799. 

Errata: In the solution to B-773 (Feb. 1996), identity (In) should read F2 +F2_X = F2n_v In the 
solution to B-798 (Nov. 1996), the comment by Bloom should read: If/? is odd, k > 1, and F„ is 
divisible by pk but not by pk+l, then Fn is divisible by pk+l but not by pk+2. 

David Zeitlin 
I have been informed by David Zeitlin's niece that Dr. Zeitlin passed away on Nov. 5, 1996. 

She wrote that her uncle's entire life was devoted to mathematics. Readers of this column are no 
doubt familiar with his writings, since he has been an active contributor to this column and to this 
journal since it began back in 1963. His papers have been way ahead of their time. Readers who 
go back to some of the early issues of this Quarterly will find some amazing results buried deep 
within his papers. I will miss his scrawled handwriting and the incredible formulas that arrive in 
the mail in response to some of the problems in this column. 

—Editor 
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ADVANCED PROBLEMS AND SOLUTIONS 

Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-521 Proposed by Paul S. Bruckman, Edmonds, WA 
Let p denote any zero of the Riemann Zeta Function g(z) lying in the strip S = {z eC: 

0 < Re(z) < 1}. Prove the following: 

0) Z(p-ir = o; 
peS 

(2) ^p~l = 1 + yX -ylog4;r, where y is Euler's Constant. 
peS 

H-522 Proposed by N. Gauthier, Royal Military College, Kingston, Ontario, Canada 
Let A and B be the following 2x2 matrices: 

^ = (! o) and 5 = (o i 
Show that, for m>\, 

m-\ 

Yj2"Ar{Ar
+Br)-l = c2mC2l„-{A + B), 

where 
c^mHF^+F^-2) and Cm = ^~X £ _ ^ , 

Fm is the m^ Fibonacci number. 

H-523 Proposed by Paul & Bruckman, Edmonds, WA 
Let Z(n) denote the "Fibonacci entry-point" of n, i.e., Z(n) is the smallest positive integer m 

such that n\Fm. Given any odd prime/?, let q = j(p-l); for any integer s, define gp(s) as 
follows: 

$>(*)=Z-. 
Prove the following assertion: 
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Z(p2) = Z(p) iff gp{\) ^ gp(5) (mod/7). (*) 

H-524 Proposed by H.-J. Seiffert, Berlin, Germany 
Let p be a prime with p = 1 or 9 (mod 20). It is known that a:= (/?-1)/Z(p) is an even 

integer, where Z(p) denotes the entry-point in the Fibonacci sequence [1]. Let q:=(p-l)/2. 
Show that 

(1) (-l)a/2 s (~5)q/2 (mod /?) if/7 EE 1 (mod 20), 
(2) (-l)a/2 = -(-5)q/2(modp) if/? ̂  9 (mod 20). 

Reference 
1. P. S. Bruckman. "Problem H-515." 77K? Fibonacci Quarterly 34.4 (1996):379. 

H-525 Proposed by Paul S. Bruckman, Edmonds, WA 
Let/? be any prime * 2,5. Let 

q = \(p-D, e = (f), r = I(p-e). 

Let Z(/?) denote the entry-point of/? in the Fibonacci sequence. Given that 2p~l = 1 (mod/?) and 
5q =e (mod/?), let 

^C-'-i) . * - > - * c = | j rT 
Prove that Z(/?2) = Z(/?) if and only if eA - B = C (mod /?). 

SOLUTIONS 
Another Complex Problem 

H-504 Proposed by Z. W Trzaska, Warsaw, Poland 
(Vol 33, no. 5, November 1995) 

Given a sequence of polynomials in complex variable z eC defined recursively by 
(0 Rk+1(z) = (3 + z)Rlc(z)-Rk_l(z), k = 0,1,2,..., 

with RQ(Z) = 1 and R^z) = (1+*)/$,. 
Prove that 
0 0 ^(0) = F2k+l, 

where i^, ̂  = 0,1,2,..., denotes the £^ term of the Fibonacci sequence. 

Solution by PaulS. Bruckman, Edmonds, WA 
The correct expression for Rk(0) is F2k_l, not F2k+l. 

Proof: Let Rk(0) = Sk, k = 0,1,.... The given recurrence reduces to the following one with 
constant coefficients, by setting z = 0: 

^ 2 - 3 ^ , + ̂  =0, * = <U...; (1) 
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also 
SQ=Sl = L (2) 

The characteristic equation of this recurrence is 

z2-3z + l = 0, (3) 

which has the roots a2 and /?2. Therefore, Sk = AF2k + 5 1 ^ , for appropriate constants A and B. 
Setting k = 0 and k = 1 yields S0 = 1 = 2B and Sx = 1 = A + 35, whence ^ = - | and B = ±.. Then 

or 
^ (0 ) = ̂ = F 2 M . Q.E.D. (4) 

Also solved by L. A. G. Dresel, A. Dujella, J. Kostil, and the proposer. 

Sum Formulae! 

H-505 Proposed by Juan Pla, Paris, France 
(Vol 33, no. 5, November 1995) 

Edouard Lucas once noted: "On ne connait pas de formule simple pour la somme des cubes 
du binome" [No simple formula is known for the sum of the cubes of the binomial coefficients] 
(see Edouard Lucas, Theorie des Nombres, Paris, 1891, p. 133, as reprinted by Jacques Gabay, 
Paris, 1991). 

The following problem is designed to find closed, if not quite "simple," formulas for the sum 
of the cubes of all the coefficients of the binomial (1 + x)n. 

1) Prove that 

%tf = ^ 1 * \l* {l + costp + cose+cosicp + eWdedy. 
p=0 v 

2) Prove that 

i f nT = T " r f {™*<P ™S0COS(<p + 0)}nd9d(p. 

Solution by Paul S. Bruckman, Edmonds, WA 
Given n - 0,1,2,..., define 

4 = tit J- <» 
fc=0v 

An=—j"J J [l + cosx + cosy + co$(x+y)fdxdy, (2) 

8" f * r * r 

n 
Note that 

5 ^ - — J J [cosw-cosv-cos(f/ + v)]'ld&/dv. (3) 

1 + cosx + cosj + cos(x +y) = (l + cosx)(l 4- cosy) - sin x • sin y 
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- 4 cos — • cos — - 4 sin — cos— sin — cos— 
2 2 2 2 2 2 

A x y x y • x • y 
• 4 cos— cos— cos—cos—- sin— sin— 

2 2l 2 2 2 2 
A x y x+y 

= 4 cos— cos— cos1 — 
2 2 Therefore, 

*-£-«-rr x y [x+y 
cos—cos—-cos — 

2 2 I 2 

dxdy 

8" 
An1 •4j J [coswcosvcos(w + v)f(iwrfv; 

thus, 
A = B„. (4) 

Now, it suffices to prove that Sn- Bn. Toward this end, we employ the following identity and 
integral (the latter valid for all integers m)\ 

1 cos z - — (elz + e lz) for all complex z\ 

1 r*2i7m ̂  c J1 l f 1 ifm = 0, 
m*0. 

(5) 

(6) 

Note that 

Then 

8" c* 2?„ = —J (cosv)"C„(v)dv, where C„(v) = J [cosw• cos(w + v)]"du. 

C„(v) = T 4-"[(e'" + <f ,H)<y("+v) + e-i(-u+v))fdu 
Jo 

= 4 ~ w r x i ] f w l [ w l e/w(""2f l )+ ; ("+v) (w"2/ , )^ 
0

 a=0 fc=(A A / 

Thus, using (6), 

«-)-T-zz; w< o=0 6=0 

" F U ^ ) , ;r£, n-a-b:0 

or 

Then 

5„ = — F2-"(eiv+e-'yt\ " eiv(-"-2b)dv 
* ° £<kb) 

(7) 
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=-Lrss, •• n\ in ^/v(«-2fc)+/v(«-2c)^y 

-um Vn-b-c:Q """ 2 J t = 

ft=0V/V 

Also solved by the proposer. 

Sum Figur ing 

= 5„. Q .E .D 

H-506 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 34, no. 1, February 1996) 

Let 

«=0 
and 5 = Z ( - D " | ^ ^ ' 1 

«=0 5̂« + l 5^ + 4 ; ± i v5ra + 2 5^ + 3 
Evaluate A and 5, showing that A-aB. 

Solution by C. Georghiou, University ofPatras, Patras, Greece 
Since, for |x|<l, 

_ 1 = l - x 5 + x10-jc15 + - = y ( - l ) i 

1 + x5 ^ o 
"x5". 

we let, for - 1 < X < 1 , 

and 

CX 1 4- f/3 °° + 

Jo 1 + ̂  JS 

f ~5«+2 v5 w + 3 

+ 5rc + 2 5f? + 3 

By Abel's Limit Theorem, we have A = -4(1) and 5 = 5(1) . But 

x - x +1 1 1 + x-5 _ 
1 + x5 ~ x 4 - x 3 + x 2 - x + l a-/?^x2+2cos(2;r/5)x + l xl -2cos(;r/5)x + ly 

2cos(;r/5) 2cos(2;r/5) 

and 
x + x 1 1 1 
1 + x5 x - x 3 + x 2 - x + l a- /?Vx-2cos(;r /5)x + l x2 +2CO$(2TT/5)x + lJ 

Now it is easy to verify that, for 0 < y < n, 

Cx du 1 A _i xsi 
-~ = - — t a n 

J 0 u ±2zicos^ + l smx l±x« 

sm^ 
cos^ 
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and, therefore, 

1 <& 1 _i sin(2;r/5) _ 1 n_ 
10 x2+2x cos(27T 15) +1 sin(2;r / 5) 1 + cos(2;r / 5) sin(2;r / 5) 5 

and 

Jo 

dx 1 x _i sin(;r/5) 1 2/r 
— f a n 1 c — -tan l0 X2-2JCCOS(/T/5) + 1 sin(;r/5)~ " l-cos(;r/5) sin(;r/5) 5 

Finally, we find 

A 7r/5 2n , n 7r/5 2TU 
A-—-.— - — and B~-sm(n15) ~ 5V3-a ~ sin(2;r/5) ~ 5aj3-a ' 

where we used the fact that a - 2 cos(;r / 5) and p--2 cos(2;r / 5). 

Also solved by K. Davenport, H. Kappus, H.-J. Seiffert, D. Terr, and the proposer. 

Triple Threat 

H-507 (Corrected) Proposed by Mohammad K Azarian, Univ. of Evansville, Evansville, IN 
(Vol 34, no. 1, February 1996) 

Prove that 

/=o y=o k=i v J f (n ~jy J 

Solution byH.-J. Seiffert, Berlin, Germany 
Let xx, ...,xm e(-1,1). Then 

j\(n-j)\ lk 
/=o y=o k=i V 
co n m 

-z z z r«?K'=sz 7 >sz;w 
=zz(7ko+**)"=zo+*j,z(7k 

m 

=Zo+**)"o+**r, 

or S = m. Since 0 < i^ < a* < 2* < 2*+1, A > 1, we may take xk = 2~k~lFk, k = l,...,m. From the 
above, it follows that the sum in question has the value m; we note the mistake in the proposal. 
Also solved by P. Bruckman. 
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