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ON A CLASS OF NON-CONGRUENT AND 
NON-PYTHAGOREAN NUMBERS 

Konstantine Dabmiaii Zelator* 
Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213 

(Submitted August 1993) 

In one of his famous results, Fermat showed that there exists no Pythagorean triangle with 
integer sides whose area is an integer square. His elegant method of proof is one of the first 
known examples in the history of the theory of numbers where the method of infinite descent is 
employed. Mohanty [3] has defined a Pythagorean number as the area of a Pythagorean triangle 
and studied properties of such numbers. Fermat has thus shown that no Pythagorean number can 
be an integer square. 
To extend Fermat's result, one may ask if there exists a Pythagorean triangle whose area is p times 
a perfect square, p a given prime. It turns out that, for certain primes p = 1, 5, 7 (mod 8), this is 
the case; for example, the primes p = 5,7,41 have this property. For p = 5, the triangle (34 - 1 , 

8,34 + l) has area A = 5(3-4)2. For p = 7, the triangle (44-34,2-42-32,44+34) has area 
^-7 . (3-4 .5) 2 . For p = 4l, the triangle (54-44,2-52-42,54+44) has area A = 4h(5-4-3)2. 
However, as shown below, no Pythagorean number can equal p times an integer square if p is a 
prime congruent to 3 (mod 8). 

A natural question to ask is whether there exists a number k = 3 (mod 8) and a Pythagorean 
number which equals k times a square. There is no reason to believe that such a number of k does 
not exist. Furthermore, one may attempt to find infinitely many such numbers k. 

In this paper the following result is proven. Let k be an odd squarefree positive integer with 
k = 3 (mod 8). Assume that k belongs to one of the following families: 

Family (a): k = px, where px is a prime with pl = 3 (mod 8). 
Family (b): k = pxp2, where px and/?2 are primes such that px = 5 (mod 8) and p2 = l (mod 8), 
with px being a quadratic nonresidue of p2 (so, by quadratic reciprocity, p2 is also a nonresidue 
of A). 
Family (c): k = pxp2.-.pn,n>2, where PiP2..pn are distinct primes such that px = 3 (mod 8), 
p2 = ••• = pn = 1 (mod 8); the primes p2,...,pn are all quadratic residues of each other, and they " 
are all quadratic nonresidues of px (so, by quadratic reciprocity, px is a quadratic nonresidue of 
p2,...,p„ as well). 
Family (d): k = PiP2p3-.p„, n>3, where pl9 p2, p3>'..-., p„ are distinct primes such that px = 5 
(mod 8), p2 = l (mod 8), and p3 = ••• = /?„ = 1 (mod 8), with px being a quadratic nonresidue of 
p2 (so, by quadratic reciprocity, p2 is a nonresidue of px as well) and p3,...,pn being quadratic 
residues of each other; and either with p3,...,pn being quadratic residues of px (so, by quadratic 
reciprocity, px is a quadratic residue of p3,..., pn) and with p3,...,p„ being quadratic nonresidues 
of p2 (so, by reciprocity, p2 is a quadratic nonresidue of p3,..., pn) or vice-versa. 

* Formerly known as Konstantine Spyropoulos. 
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Theorem: Let k be an odd squarefree positive integer, k = 3 (mod 8) and suppose that k belongs 
to one of the families (a)-(d) listed above. Then there is no Pythagorean triangle whose area 
equals k times an integer square. 

Proof: Let (A, B, C) be a Pythagorean triple whose area is k times a square, y AB = kD2. 
One easily sees that we may assume (A, B) = 1, for if it were otherwise, the problem would 
reduce to the case of a Pythagorean triple (Ah Bl, Q) with (Ah B{) = 1 and \ A^ - kD2. By 
assuming that (A, B, C) is a primitive Pythagorean triple, we may set A = M2 - N2, B = 2MN, 
C = M2 + N2, for positive integers M, N with (M, N) = 1 and M + N = 1 (mod 2). Thus, from 
\ AB = A£)2, one obtains 

(M - N)(M + # ) M # = kD2. (1) 

Since (M, JV) = 1 andM + N = 1 (mod 2), we have 
(M, # ) = (M,M + N) = (M, M - # ) = (# , M - JV) 

= (N,M + N) = (M- N,M + N) = 1. ^ 

Thus, all the factors M-N,M + N,M, and TV on the left-hand side of (1) are pairwise relatively 
prime. Therefore, since k is squarefree, there are precisely four cases or possibilities and their 
ramifications. 

The first possibility is that precisely one of the factors on the left-hand side of (1) is equal to k 
times a square, while the rest of them are perfect squares. 

The second possibility is that one of M + N,M-N,M, or N equals a times a square, 
another of the factors equals b times a square, and the other two factors are integer squares with 
ab-k and \<a,b <k. 

The third possibility is that one of the factors equals a times a square, another equals b times 
a square, a third equals c times a square, and the fourth is just an integer square with abc = k and 
1 < a, ft, c<k. 

The fourth possibility is that M = aM2, N = bN2, M + N = cU2, M-N = dV2, with 
abed = k and l<a,b,c,d<k. 

Case 1, Exactly one of M + N, M - N, M, or N equals k times an integer square, while the 
remaining three are integer squares. 

First, suppose M = kM2, N = N2, M - N = U2, M + N = V2. Consequently, we obtain 

kM2-N2 = U2, (3) 
kM2+N2=V2. (4) 

Thus, 2kM2 = U2 +V2 and (U, V) - 1 by (2). However, the last equation constitutes a contradic-
tion, since k = 3 (mod 4), and it is well known that no prime congruent to 3 (mod 4) divides the 
sum of two relatively prime integer squares. 

Next, suppose that N = kN2, M = M2, M- N = C/2, M + N = V2. Thus, 

M2-kN2 = U2, (5) 
M2+kN2=V2. (6) 
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Since M + N = 1 (mod 2), we also have •Ml + Nl = 1 (mod 2). But then equation (6) implies, by 
virtue of k = 3 (mod 4), that Ml = l (mod 2) and Nx = 0 (mod 2). Moreover, (M1? JVj) = 1, so 
(Nly U) = 1 as well. By adding (5) and (6), we obtain 

2M2=U2+V2. (7) 

Clearly, we may assume M1? U, and Fto be positive (recall M,N & 0), and since (2) implies that 
'(£/, V) = l, it follows (see [2], p. 427, lines 4 and 5) that 

Ml=m2 +n2, U = m2 +2mn-n2, V-r? + 2mn-m2 (8) 

for positive integers m, n with m + n = l (mod 2) and (m, n) - 1. Consequently, combining (6) and 
(8), we have 

JW1
2==F2-A/?=(F-M1)(F + A/1) 
= (2m?? - 2m2)(2n2 + 2/?w) = 4mn(n - m)(n + m); 

thus, 
fcN2 = (n-m)(n + m)'m'n, (9) 

where JVj = 2N2 • Therefore, (n2 - rn2,2nm, m2 +n2) is a primitive Pythagorean triple whose area 
equals kN2. But kN2 - V2-M2 <V2 = M + N. Hence, 0<n + m<M + N; thus, an infinite 
descent with respect to the initial equation (1) is established. 

Now suppose that M = M2,N = N2, M~N = kU2, and M + N = V2. Then 

M2-N2 = kU2, (10) 
M2+N2=V2. (11) 

Adding (10) and (11), we obtain 

2M2 = kU2+V2. (12) 

Now, since U = V = l (mod 2), (12) implies 2M2 = k + l (mod 8); hence, k = 2M2 - 1 = ±1 (mod 
.8). But k HE 3 (mod 8), so this is a contradiction. 

Finally, suppose that M = M2, N = # 2 , M - JV = £/2, and M 4- JV = ^ 2 . This leads to a 
contradiction, since M + N = M2 + N2 = kV2, k = 3 (mod 4) and (M1? Nx) = l. This concludes 
the proof of Case 1. 

Case 2. One of M + N, M - N, M, or N is a times a square, one is b times a square, and the 
other two are squares, with ah-k = 3 (mod 8) and 1 < a, b < k. Note that ab = 3 (mod 8) implies 
that either a = 3, b = 1 (mod 8) or vice versa, or a = 5, * = 7 (mod 8) or vice versa. First, suppose 
that a = 1, b = 3 (mod 8). Since ab-k with l<a,b<k,it follows that £ belongs to Family (c) or 
Family (d) of the Theorem. 

If k belongs to Family (c), then k-Pi'P2""'Pn
 w^h Pi = ^ (m°d 8) and p2 = p3 = • • • = 

p„ = l (mod 8). Also, a-ql-q2 qk and b = p{or h = A%+i%+2 • • • #«-i> where the two sets of 
g's are disjoint and their union is {p2,p3, ...,#,}• All the various subcases of Case 2 lead to a 
congruence of the form b-R2 = e-L2 (modqx), with (Ai?, ^ ) = 1 and where e = 1, -1,2, or - 2 ; 
thus, since qx = 1 (mod 8), .A is a quadratic residue of qx. On the other hand, according to the 
hypothesis, px is a quadratic nonresidue and qk+l, qk+2, •••?cln-i a r e a^ quadratic residues of ^ . 
Thus, b is a quadratic nonresidue of ql9 a contradiction. 
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If k belongs to Family (d), then k = pl-p2 °°*°°Pn with• px = 5, p2 = 1, and p3 = p4 = ••• = 
P „ 5 1 (mod 8). Thus, as above, a = g|'f2 % and b = ptp2 orb = pxp2qk+l... q„_2, where the 
two sets of ^5s are disjoint and their union is {p3,p4> ...,/?„}. Again, as above, & is a quadratic 
residue of qv Also5 according to the hypothesis, each of qk+l9 qk+2,..., fw_2 are quadratic residues 
of qi9 and either px is a quadratic residue of qt and p2 is a quadratic nonresidue of qx or /^ is a 
quadratic nonresidue of ^ and p2 is a quadratic residue of qv In any event, we see that b must 
be a quadratic nonresidue of qv This contradiction completes the proof of this subcase. 

Since the proofs for the remaining subcases and cases are similar to those above, we omit the 
details, except to note that Legendre's theorem (see [2], p. 422) is used in these proofs. 

Recall that a natural number k is a congruent number if there exist natural numbers a, b, and c 
with a2 -\-b2 = c2 and 2ab = k. We now have the following corollary. 

Corollary: If k is an integer satisfying the hypothesis of the Theorem, then kd2, for any positive 
integer d, is a non-congruent number. 

Proof: Since an integer kd2 is congruent if and only if there exist nonzero integers a, b, and 
c such that a2 +b2 = c2 and lab = kd2, if kd2 were a congruent number, then we would have 
(2a)2 + (2ft)2 = (2c)2 and ^-(2a)(2i) = k°d2

y which implies that (2a, 2J, 2c) is a Pythagorean tri-
angle whose area equals k times an integer square, contradicting the Theorem. 
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1. INTRODUCTION 

The standard Fibonacci numbers have several well-known and familiar properties, among 
which are the fact that the ratio of successive terms approaches a fixed limit (/>, and that the nth 

Fibonacci number is asymptotic to (/)". In this paper we extend these properties to a generalized 
class of Fibonacci sequences, giving necessary and sufficient conditions for such a sequence to be 
asymptotic to one of the form nv~lXl. In that case, we show how to compute the limiting ratio 
between the solution and nv~lAn, as well as proving that the ratio of successive terms of a solution 
must have X as a limit. 

The necessary and sufficient conditions mentioned above are stated in terms of the roots of a 
polynomial. Indeed, this polynomial is the characteristic polynomial associated with the difference 
equation defining a generalized Fibonacci sequence. We also discuss conditions that depend 
directly on the coefficients of the characteristic polynomial. As a special case, we derive results 
when the polynomial has negative real coefficients (except for the leading coefficient 1). More 
generally, we give a sufficient condition on the coefficients for the roots to satisfy the necessary 
and sufficient conditions discussed above. 

2. PRELIMINARIES 

Let ax,a2,...,ar be arbitrary r > 2 complex numbers with ar & 0, and let A = (a_r+l, a_r+2, 
..., <2_i, a0) be any given sequence of complex numbers. The weighted r-generalizedFibonacci 
sequence {y^(w)}^_r+1 is the sequence generated by the difference equation with initial values: 
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{yA(n) = an, w = - r + l , - r + 2,. . . ,- l ,0; 
r (1) 

M^WA^-i), w = 1,2,3,.... 
1=1 

As a special case, when ai = 1 for all i (the unweighted case), a0 - 1, and at = 0 for i = -r +1, ..., 
- 1 , (1) generates the r-generalizedFibonacci numbers introduced by Miles [8]. Explicit repre-
sentations for these numbers can be found in [3], [5], and [6]. 

The polynomial p(x) = xr-alxr~l ar_lx-ar is called the characteristic polynomial 
associated to (1), and any solution X of the characteristic equation p(x) = 0 is called a charac-
teristic root for (1). 

The first result, whose proof can be found in Kelley and Peterson [7], for example (or also in 
Jeske [4] or Ostrowski [9, §12]), relates the general solution of (1) to its characteristic roots. 

Theorem 1: Suppose (1) has characteristic roots Xu X2, ...,Xk with multiplicities /% m^ ..., mk9 

respectively (mi+m2 + -"+mk=r). Then (1) has r independent solutions nJXn
£ (j = 0, ...,m£_{, 

£ = l,...,k). Moreover, any solution of (1) is of the form 
k mt-\ 

£=l j=0 

where the J3£j are determined by the initial condition A = (a_r+1, a_r+2,..., a_ly aQ). D 

Remark 2: Any independent solution nJln
£ (j = 0, ...,m£_x; £ = \...,k) can be generated from 

the initial conditions ai - V)tt for / = -r +1,..., - 1 and a0 = l. D 

3. THE MAIN RESULTS 

The necessary and sufficient conditions we consider are given in terms of the roots of the 
characteristic polynomial associated to (1). To simplify, we introduce the following terminology. 

The polynomial p(x) is called asymptotically simple if, among its roots of maximal modulus, 
there is a unique root X of maximal multiplicity v. Then X is called the dominant root of p(x) 
and v is called the dominant multiplicity. Also, the system (1) is asymptotically simple with 
dominant root X and dominant multiplicity v if its characteristic polynomial is. 

Theorem 3: System (1) is asymptotically simple with dominant root X and dominant multiplicity 
v if and only if, for any initial condition A, the sequence 

converges to a limit LA, with LA not equal to 0 for at least one A. 

Proof: To prove the //"part, we observe from (2) and Remark 2 that the convergence for all 
A implies the convergence of the sequence 

(3) 
n=\ 
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for any £ = l9...9k and j - 0,..., mt - 1 . But, for each I, the convergence of the sequence (3) for 
j = 0, ...,/w^-l implies that | ^ | < | A | or |A^|=|1| and v > ^ for Xt*X or v>/w^ for X£ = X. 
Moreover, all the limits are zero except for j-mt-\ when X£ = X and v = mt. Also, the con-
vergence to a nonzero limit LA for some y4 implies that at least one sequence (3) has a nonzero 
limit. Hence, X must be the dominant root and v the dominant multiplicity. The only if part 
follows directly from Theorem 1. D 

The next step is to relate yA(n) for arbitrary A to y0(n), the solution of (1) obtained for the 
initial conditions af = 0, for / = - r + ! , . . . , -! , and aQ = l. The matrix approach allows us to 
obtain the desired relation. 

Let J be the (r, r) -matrix defined by 

T = 

a\ 
1 
0 

6 

a2 
0 
*. 
... 

... 

... 
•.' 
0* 

... 

... 

1 

ar 
0 

0 
0 

and YA{n) be the (r, 1)-matrix defined by 

YA(n) = 

yA(n) 
yA{n-\) 

yA(n-r + l)_ 

n = 0,1,2, 

Hence, YA(0) = A [if we consider A as an (r, 1)-matrix]. Therefore, we have YA(n + l) = TYA(n) 
and YA(ri)=rA. 

Let us also define the (r, 1) -matrices Yi (i = 0,1,...) by 

Y = •(/ +1)* entry, i = 0,1, ...,r-\, 

and Yt = 0 for / = r, r +1, . . . . Let Yt(jt) = TY^ for n = 0,1,2,.... Hence ^ (w) = IJ(n +1), and also 

j , ( « - l ) 

where {)>,•(«) K£-r+i is the solution of (1) with the initial condition A = Yt (cc_j = 1 if j = i and 
a_; = 0 if j * j for j = 0,l,...,r-1). 

Since ^ = EJTQ a - / ^ S t follows that 
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r - l 

W = IM(«). (4) 
1=0 

From these definitions and notation, we have the following direct result. 
Lemma 4: Let a, = 0 for /' = r +1, r + 2,..., then we have: 
(a) 7^ = a,.+170 + 4 i ; 

(b) fori>0, 
YM) = i^+Mn-j) + Yi+n, n = 0,1,2,...; 

(c) for any A, 
/ = i 

YA(n) = a0Y0(n) + \ 

(d) for n > 0, we have 

r-l n r-l-n 
E«-/Za/+;Jo(«-i)+ 5>-/J/+„, 0<«<r-l? 

r- l r-i 

Y,a^aiMn^Jl n>r-\ 
/=1 /=1 

r - l r-i 

(5) 

}̂ («) = ôJoW + X^/X^/^o^-i')- (6) 
?=i i=i 

Proof: (a) is a direct consequence of the definitions and notation, (b) is easily obtained by 
induction, (c) follows by substitution of(b) into (4). We obtain (d) by considering the first entry 
in (5). D 

The identity (6) leads to the next result. 
Theorem 5: Let A be any nonzero complex number and v be a positive integer. 

(a) The sequence 

converges for any A (with limit LA) if and only if the sequence 

v-1 *>n nv~lX «=i 

converges (with limit 1 )̂. Moreover, the limits are related by the formula 

/=1 /=/ A 
A.- (7) 

(b) Moreover, in (a), LA * 0 for some A if and only if LQ ^ 0. In that case, 

. d a , . , i .T1 

Proof: (a) From (6), we have 

^nr'S^I^ (8) 
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v-l 

and (7) follows. For (h), (1) must be asymptotically simple with dominant root X and dominant 
multiplicity v. Then, for a0 - 8vl, a_t = (-i)v~lV (j = 1,..., r -1 ) , we have yA{n) = nv~l)C and 
LA - 1 in (a), it follows that 

A> = 
— — wi+y 

and we get (8). • 
Immediate consequences of these results are the next two theorems. 

Theorem 6 (Ratio of weighted r-generalized Fibonacci sequences): Assume (1) asymptotically 
simple with dominant root X and dominant multiplicity v. If A = (a_r+l, a_r+2,..., a_l9 aQ) and 
B = (/?_r+1,P-r+2, .., fi-i, Po) are sequences of r complex numbers such that LB * 0, then 

A + S ^ I ^ 
lim Z A ^ . = ^ L = ™ Z f ^ _ _ . n 

Theorem 7 (Ratio of consecutive terms): Assume (1) asymptotically simple with dominant root 
X and dominant multiplicity v. If A = (a_r+1, cc_r+2,..., a_v a0) is such that LA •*• 0, then 

lim>^±i> = A. D n-̂ +oo yA(n) 

This last result has already been obtained for the unweighted r-generalized Fibonacci numbers 
(see, e.g., [2] and [3]). 

4. THE CASE OF NONNEGATIVE a/s 

In this section we assume the a/s are nonnegative real numbers and ar > 0. The following 
lemma is well known for the unweighted case (see, e.g., [9, §12] or [2, Lemma 2]) and is given 
without proof. 

Lemma 8: There exists a unique real strictly positive characteristic root X for (1). Moreover, X 
is a simple characteristic root and all other characteristic roots of (1) have moduli <X. • 

Theorem 9: Let ah..., ar be nonnegative real numbers with ar > 0, and let X be the unique posi-
tive real number of Lemma 8. Then the following are equivalent: 
(a) (1) is asymptotically simple with dominant root X and dominant multiplicity 1; 
(h) the greatest common divisor GCD{/ \at > 0} = 1. 

Proof: (a)=>(b). Suppose GCD{i \ai>0} = d>l, then p(x) is a polynomial in y - xd, which 
has a unique greatest root Xd > 0 from Lemma 8. Hence, the d^ roots of Xd are all roots of 
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p(x) with the same modulus as $'/, which contradicts (a). For (b)=>(a), see Ostrowski [9, Th. 
12.2]. D 

Example 10: For the unweighted case (at = 1 for all /), Lemma 8 implies (1) is asymptotically 
simple with dominant root X and multiplicity 1, and we get: 

r r-i , r1 

(a) I^ = \ 1 + X - i ^ 
ptX1+J 

r - l r - l r—i r—i I 

1=1 /= / >t 

Dence [1] obtained similar results in terms of all roots of p(x). Here we obtain the result in terms 
of only the largest root X. • 

5. THE GENERAL CASE 

For arbitrary complex number a/s, we do not have a result similar to Theorem 9. In Theorem 
9, the nonnegativity of the a/s is important. The next result and example illustrate this fact. 
Theorem 11: Assume (1) asymptotically simple with dominant root X and dominant multiplicity 
v,thenGCD{/|^-^0} = 1. 

Proof: Similar to (a)=>(b) of Theorem 9. D 
Unfortunately, the condition GCD{i\af ^ 0} = 1 is not a sufficient condition for the general 

case. 

Example 12: Let p(x) = (x-l)(x-i) = x2 -(l + i)x+i, where / = V-T. Then at = 1 + /, a2 =-/', 
and GCD{/|az. ^ 0} = 1. But the characteristic roots 1 and / have the same modulus and multipli-
city, hence (1) is not asymptotically simple. D 

The general problem is to find criteria which are equivalent to or imply that (1) is asymptoti-
cally simple. In the sequel, we consider one such criterion which could certainly be weakened. 

Let X be a priori any characteristic root of p(x), and set 
r - l a, * > = ! # ' = 0.1.2,.... 

Then b0 = 1 and bt = 0 for i > r. Consider a_- = X~l for / = 0,..., r -1. Then, from (6), 

and 
r- l 

«n Z^ J fi-j ' V / xn p J r 
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Let z{n) • We have z(0) = 1, and from (9), 
r - l 

(10) 

It follows that 

7=0 

1, for n = 0, 
[0, for n = 1,2,3,.... 

We can now prove the following convergence result for the sequence {z(ri)}^0. 

Lemma 13: If Zy~{ Ify I < 1, then {z(n)}^0 converges to 0. 

Proof: From (10), it follows that 

\max{\z(n-j)\:j = l,...,r-l}, for n>\. \z(ri)\: 
r - l 

Zl*yl 

From this inequality, the sequence {Mn = max{|z(/)|: j>n}}~^0 is a decreasing sequence, and 
Mn <\Y!J~}i\bj\\Mn_r^l for any n>r-\. Hence {Mn}^0 converges to 0 and the result follows 
since \z{n)\<Mn. D 

From the definition, we have 

x 
r - l 

£z (7) and £ i , = £Ay, for/!£/•-1. 
;'=o y=o y=o 

Let us consider the following product for n > r - 1 : 
r-l ( n V n \ y0(n) iFlH5X» I*, 7=0 

w J r - l 
= Z lM7 ' -* ) + Z ^ Z z(*) = l + §>, ][>(«-*). 

y=0 k=0 y=l A:=«-7+l 7=1 k=0 

( l l ) 

Taking the limit in (11), we get 

limM0 = r - l 

I*, 
7=0 and we have proved the following result. 

Theorem 14: Let X be a characteristic root of /?(x) and set 
r - l a, W 
=t^+y , for / = 0,1,. . . ,r-l . 

j=* 

If r - l 

Zl*yl<1> (12) 

then (1) is asymptotically simple with dominant root X and dominant multiplicity 1. D 
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The next result illustrates that the condition (12) is satisfied in many cases. 

Theorem 15: For any fixed sequence {a,}^ (r >2,ar^ 0) of complex numbers, there exists a 
positive real number R such that, for any ax with |a j>l?, the sequence of a/s satisfies the con-
dition of Theorem 14 for a root X of the characteristic polynomial p(x). 

Proof: Using Lemma 8, let Rx be the unique positive root of the equation 

xr = \a2 \xr~~2 + 2 |a3|xr"3 + • • • + (r -1) \ar |. 

Let us note that we have 

|a2| + 2|a3|i?~1 + 3|a4]i?1"2 + -«+(r-l)|aJi?f+2=i?1
2„ 

Set R = rRv Suppose l a ^ i ? and let X be any root of maximum modulus of p(x). Since the 
sum of all the roots of p(x) (with multiplicity) is equal to al9 we see that X must have a modulus 
greater than or equal to \ax \lr. Thus, we have \X \ > R1. Then 

i=l j=2 

<w2£u-i)\*jwrj+2 
J=2 

= \X\~2R2<1 

Thus, the condition of Theorem 14 is satisfied. D 
Remark 16: The last result is intuitively clear. It Indicates that, If we Increase \ax\, eventually 
there will be only one root of maximum modulus. But Increasing \ax\ means that p(x) behaves 
like q(x) = xr -a/r~l = xr~1(x~a1). Moreover, Increasing \ax\ Implies the modulus of the largest 
characteristic root increases also, and since the expression Zy=i|Ay| does not contain ax, it will 
eventually be less than 1 because each term contains negative powers of | X j. • 

Example 17: As an explicit example, consider the case r = 3, ax = a, a2 = i, and a3 - -ai, where 
/ - ^ 4 and a Is a complex number with |a|> 1. In this case, \a\> 1 is one of the characteristic 
roots of the polynomial p(x) = (x-a)(x2-i), and we can check that Ey~i|£-|= l/|a|2, which 
implies that the condition in Theorem 14 is satisfied. Hence, hmn_>+00[y0(n)]/ an exists and Is 
equal to a2(a2 +/)/(a4 +1). Note that when \a\< 1 the condition in Theorem 14 Is not satisfied 
and the limit does not exist. D 

Remark 18: For the nonnegative a/s, condition (12) is useless because it Implies al>0. Indeed, 
we have, for X as given by Lemma 8, 

Yh '=v1 fo-+i = y1 fr'^Kn 11 ai 

and If ax = 0 then Zr~=\ *y > 1. • 

1997] 109 



ON WEIGHTED r-GENERALIZED FIBONACCI SEQUENCES 

ACKNOWLEDGMENTS 

We would like to thank the referee for suggestions that improved the presentation of this 
paper. The work of F. Dubeau has been supported in part by grants from NSERC (Canada) and 
FCAR (Quebec, Canada). W. Motta and O. Saeki have been supported in part by CNPq3 Brazil. 
O. Saeki has also been supported in part by a grant from the Ministry of Education (Japan). The 
work of M. Rachidi has been done in part while he was a visiting professor at UFMS, Brazil. 

REFERENCES 

T. P. Dence. "Ratios of Generalized Fibonacci Sequences." The Fibonacci Quarterly 25,2 
(1987): 137-43. 
F. Dubeau. "On /--Generalized Fibonacci Sequences." The Fibonacci Quarterly 27,3 (1989): 
221-29. 
I. Flores. "Direct Calculation of ^-Generalized Fibonacci Numbers." The Fibonacci Quar-
terly 5.4 (1967):259-66. 
J. A. Jeske. "Linear Recurrence Relations, Part I" The Fibonacci Quarterly 1,1 (1963):69-
74. 
D. Kalman. "Generalized Fibonacci Numbers by matrix Methods." The Fibonacci Quarterly 
20,1 (1982):73-76. 
D. Kalman. "The Generalized Vandermonde Matrix." Math. Mag. 57 (1984): 15-21. 
W. G. Kelly & A. C. Peterson. Difference Equations: An Introduction with Applications. 
San Diego: Academic Press, 1991. 
E. P. Miles. "Generalized Fibonacci Numbers and Associated Matrices." American. Math. 
Monthly 67 (1960):745-52. 
A. M. Ostrowski. Solution of Equations in Euclidean andBanach Spaces. New York: Aca-
demic Press, 1973. 

AMS Classification Numbers: 40A05, 40A25 

Author and Title Index 
The AUTHOR, TITLE, KEY-WORD, ELEMENTARY PROBLEMS, and ADVANCED PROBLEMS indices for the 
first 30 volumes of The Fibonacci Quarterly have been completed by Dr. Charles K. Cook. 
Publication of the completed indices is on a 3.5-inch, high density disk. The price for a copyrighted 
version of the disk will be $40.00 plus postage for non-subscribers, while subscribers to The Fibonacci 
Quarterly need only pay $20.00 plus postage. For additional information, or to order a disk copy of 
the indices, write to: 

PROFESSOR CHARLES K. COOK 
DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF SOUTH CAROLINA AT SUMTER 
1 LOUISE CIRCLE 
SUMTER, SC 29150 

The indices have been compiled using WORDPERFECT. Should you wish to order a copy of the indices 
for another wordprocessor or for a non-compatible IBM machine, please explain your situation to Dr. 
Cook when you place your order and he will try to accommodate you. DO NOT SEND PAYMENT 
WITH YOUR ORDER. You will be billed for the indices and postage by Dr. Cook when he sends 
you the disk. A star is used in the indices to indicate unsolved problems. Furthermore, Dr. Cook is 
working on a SUBJECT index and will also be classifying all articles by use of the AMS Classification 
Scheme. Those who purchase the indices will be given one free update of all indices when the SUBJECT 
index and the AMS Classification of all articles published in The Fibonacci Quarterly are completed. 

110 [MAY 



CM SOME BASIC LINEAR PROPERTIES OF THE SECOND^ORDER 
INHOMOGENEOUS LINE^SEQUENCE 

Jack Y* Lee 
280 86th St. #D2, Brooklyn, NY 11209 

(Submitted April 1995) 

1. INTRODUCTION 

A second-order line-sequence Is Inhomogeneous if its recurrence relation includes a nonzero 
constant k, such as the following: 

^ = ^2+Vl + 1» ( L 1 ) 

where A = 1 is the inhomogeneous term. 
A line-sequence generated by (1.1), according to the convention adopted in (2.1) of [3], is 

represented by 
^0 ,« I : . . .W_2, I /_1 , [%I/1] , I / 2 , I^ , . . . , (1.2) 

where un is the n^ element counting from u0 in both directions, and the pair w0, M1 is referred 
to as a generating pair. The algebraic properties of these sequences have been investigated by 
Bicknel! and Bergum [1], and the general solution of an arbitrary order inhomogeneous sequence 
has been obtained by Liu [6]. In this article we investigate some basic linear properties of these 
line-sequences. We shall first treat the simple case of line-sequences generated by (1.1) in some 
detail Later on we shall extend the treatment to more general cases. 

Some samples of the inhomogeneous line-sequences given by (1.1) are: 
A),- i : -4,-4, l , -2,[0,- l] ,0,0, l ,2, . . . ; (1.3) 

/ . ^ o : . . . - ^ 1,-2,0,[-l, 0],0,1,2,4,.... (1.4) 

For reasons to be explained later, we say that these constitute an inhomogeneous Fibonacci pair. 
Also, for convenience, the terms of the line-sequences will be represented by 

4 : . . . /_3, Z-2> £-i> h? h> h> h>--> C1-5) 
where I0 = -1 is the origin, I{ = 0, and so on. 

We shall call the change of a sequential relation from the homogeneous case to the corre-
sponding inhomogeneous case an inhomogeneous transformation, and those relations that remain 
unchanged in form (inhomogeneously) covariant. As it turns out, many well-known sequential 
relations are found to be inhomogeneous covariant. 

2. THE INHOMOGENEOUS WARMONIC CASE 

We define the following inhomogeneous operations in relation to (1.1) and (1.2). 

Definition 1: Addition is defined to be addition of corresponding numbers in the line-sequences, 
together with the inhomogeneous constant 1. Thus, 

/,,, = / , , , , ,+/ ,v . , (2.1) 
where i = z' + z" +1 and j = jf + j " +1. We refer to this operation as inhomogeneous addition. 
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Definition 2: Multiplication by a scalar h is defined in the sense of repeated addition. Thus, 
IUJ=hIVJ» (2.2) 

where A is a scalar, i - hif + h - 1 and j = hjf +h-l. We refer to this operation as inhomogeneous 
multiplication. 

Definition 3: The inner product of two line-sequences is defined as follows: 

(/,,, /,,,,) = (i + I F +1) + U + W +1). (2-3) 

Two line-sequences are said to be orthogonal if and only if their inner product is zero, normal 
if and only if one's self inner product is one. The length of a line-sequence is defined as the 
(positive) square root of its inner product with itself 

Definition 4: Two line-sequences are said to be congruent if and only if they constitute the same 
set of numbers; equal if and only if they are congruent and have the same set of generating 
numbers. We refer to this as the uniqueness of generating numbers. 

It is clear that the set / of line-sequences spans a vector space [2] referred to as an inhomoge-
neous-harmonic (IH-)space, where the first predicate signifies the type of operations and the 
second the recurrence relation. Furthermore, it can be verified easily that the line-sequences (1.3) 
and (1.4) form an orthonormal pair that serves as the basis set for this space. An arbitrary line-
sequence in this space can then be resolved into its inhomogeneous basis components as follows: 

/,,,=(|- + l)/0.-i+(/ + l)/-i.o- (2-4) 

Applying (1.5), this equation can also be expressed in terms of 7„'s: 
//>J, = (/ + 1 ) / / . I I / O +C/ + 1)/ / O ) / | . (2.5) 

Following are some examples illustrating the inhomogeneous operations. 

Example 1: Let Iatb be the identity element of addition. Then, for an arbitrary line-sequence /,- ., 
we must have Ia,b+IUJ = IUJ. By (2.1), we have Ia,b+IUj = Ia+i+iMj+i. Comparing the right-
hand sides of these equations, we obtain a = b - - 1 . Hence, the additive identity is a sequence of 
-l 's: 

/_!,_!:...-!,-!, [-1,-1],-1,-1, . . . . (2.6) 

Example 2: By (2.1), we have 

/iJ+/__2,_7_2 = /_,,_!; (2.7) 

hence, I^^-j-ils the inverse element of IUj. 

Example 3: Letting h = -1 in (2.2), we find that 

- / , , , = I+2.-J-2, (2-8) 

which is the negative element equation. Together with (2.7), we see that the inverse element is 
just the negative element. In particular, 

- / . w = / - w , (2.9) 
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which confirms once more that I_ls_i Is Indeed the Identity element of addition. Combining (2.7) 
and (2.8), we have 

/ , , , - / , , , = /_,,_„ (2.10) 

which is the equation of elimination. 
Applying (2.8) to (2.1), we obtain 

Iuj=Iv%r-Ix«,n (2.11) 

where i = V - i" -1 and j = f - j " - 1 . This Is the subtraction formula. 

Example 4: Letting h = 0 In (2.2), we obtain 

%j= I-i,-i- (2-12) 

This Is the equation of zero (scalar) multiplication. 

Applying (2.2) and (2.1) successively, we have ^o,-i + 7̂ -i,o ~ ^/-i,-i+ ^-IJ-I = ^f-ij-i- Thus, 
UQ _I + jI-\ o = ̂ -i,-i if a n^ only If i = j = 0. This confirms the linear Independence of the two 
basis vectors. 

Example 5: Applying (2.2), we have 

(a + b)Iu j = I(a+b)i+(a+b)~l, (a+b)j+(a+b)-l • 

Applying (2.2) and (2.1) successively, we have 
a^i,j^^i,j ~ %ai+a-l,aj+a-l + hi+b-l,bj+b-l 

~ *(a+b)i+(a+b)-l, (a+b)j+(a+b)-V 

Comparing these results, we have 
(a + b)IIJ=aIUJ+bIiJ. (2.13) 

This Is the right distributive property of scalar multiplication. 
Again applying (2.1) and (2.2) successively, on the one hand, we have 

— *h(i'+i"+l)+h-\, h(j'+j"+l)+h-l. 

On the other hand, we have 

M^j, +hli„J-H = Ihi'+h-lhj'+h-l+*hi"+h-l,hf"+h-l 

~ *h(i'+i"+l)+h-l,h(j'+j"+l)+h-V 

Comparing these results, we find that 

H!v.y+It»j») = Mv,r+Mi%r. (2.14) 

This is the left distributive property of scalar multiplication. 

Example 6: Let A and B denote the pair of Golden ratios, so ,4 + 5 = 1 and AB = - 1 . 
Parallel to the homogeneous case (see [4], (2.1) and (2.2)), applying (2.2), we obtain 

A),-i + ^-i,o = A>, - i + -̂1,4-1 = h,A-\ (2.15) 
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and 
V l + BI-\,0 = h,-l + 7-l, 5-1 = k,B-V (2«16) 

Subtracting (2.16) from (2.15), then applying (2.4) and (2.12), we find 

Ll0 = (/cu-i ~ IO,B-I) I U - B\ (2.17) 

which is the inhomogeneous version of Binet's formula. 
This result indicates that the right-hand sides of (2.15) and (2.16) constitute the inhomoge-

neous Golden pair. 
In terms of matrix representation, let 

lh-1 
['-1,0. 

, G' = h,B-\ 
/o,A-l_ 

, M = 
"1 B~ 
1 Aj 

then it can be shown that 
MF' = G' and M'lG' = F'. (2.18) 

Thus, these matrix relations are inhomogeneously covariant to their homogeneous counterparts 
(see [4], (4.8) and (4.9)). 

The sum of the inhomogeneous Golden pair then gives the inhomogeneous Lucas line-
sequence 

^o = U i + W (2-19) 
which generates the inhomogeneous Lucas line-sequence 

Z-. . .-5,2,-2,1,0,2,3,6, . . . , (2.20) 

where we adopt V to represent inhomogeneous Lucas numbers, and where L^ = 1, L[ = 0 is the 
pair of generating numbers. 

Note that (2.19) is another example of inhomogeneous covariance to its homogeneous 
counterpart (see [4], (3.1)). Note also that the line-sequence (2.20) is congruent to the one gen-
erated by the first Fibonacci basis vector Fx 0 with an inhomogeneous term k = l. The second 
Fibonacci basis vector F0l with an inhomogeneous term k = 1 generates the inhomogeneous line-
sequence congruent to the two inhomogeneous basis vectors (1.3) and (1.4). For this reason, we 
are justified to refer to (1.3) and (1.4) as the inhomogeneous Fibonacci pair, as we have done 
above. 

Furthermore, applying (2.4) to (2.19), we obtain the expression of the inhomogeneous Lucas 
line-sequence in terms of the inhomogeneous basis components, 

/ i i 0 = 2 / 0 f - 1 + / . I f o . (2-21) 

This is another example of inhomogeneous covariance relating to the homogeneous relation be-
tween Lucas and Fibonacci line-sequences: F2l = 2Fl0+F0l. 

3. THE TRANSLATIONAL PROPERTIES 

The translation operation on the inhomogeneous line-sequence is defined in the same way as 
that on the homogeneous line-sequence (see [3], (3.2)) with the following appropriate modifica-
tions. 
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Definition 5: The translation operator Tiy i= integer, acting on a line-sequence shifts all of its 
elements i places to the right if / > 0, forming a new but congruent line-sequence 

We say that translation Is a congruent operation, because it preserves congruency of the line-
sequence. In particular, for the additive identity, we have 

?/_!,_! = /_!._!. (3.2) 

Namely, the additive Identity Is translationally Invariant. 
Since translation preserves congruence, translation must be distributive over addition of line-

sequences: 
A V%,uY

 + 1-U'Q,u{) ~ A*u0,ux
 + V 4, u{ • (3.3) 

This Is the left distributive property of translation. Using (3.1) and (2.1), we have 

*i \*uQ, MJ ' •*• U'Q,u{) ~~ *• u{ +M/+1,ui+l +«/+ 1 +1 • W • ̂  j 

Since translation preserves congruency, translation after repeated addition is the same as 
repeated addition after translation. Hence, multiplication and translation commute: 

KTJ^^m^). (3.5) 

Definition 6: Obviously, Tt is uniquely defined; thus, two translations are said to be equal If and 
only if both effect the same shift of the elements in a line-sequence. 

Definition 7; Addition of two translations on a line-sequence Is defined to be the sum of the two 
translated line-sequences, 

(Z + T^^TII^+Tjl^. (3.6) 

Namely, addition of translations Is distributive over line-sequences. This is the right distributive 
property of translation. Obviously, addition of the translation operations is commutative, 

i; + TJ = TJ + i;. (3.7) 
Applying (3.1) and (2.1) to (3.6), we obtain 

(Tt + Tj)Iu^Ui = IUi+Uj+hUMUj+l+v (3.8) 

Therefore, the sum of two translations does not preserve the congruence of the line-sequence it 
operates on. 

Definition 8: By the product notation, %°TJy we mean successive applications of the respective 
translation on a line-sequence, the result of which is such that all the elements shift i+j places. 
Hence, this is equivalent to the application of a single operation on that line-sequence. That is, 

Obviously, the translations commute with respect to the order of application, 

T^TJ^TJOT^ (3.10) 

Applying (3.9) and (3.1), we have 
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(T°Tf)L u =IU u . (3.11) 
v i j / UQ,U{ ui+J,ui+J+l \ J 

Letting / = j and adopting the exponential convention for repeated translation, it follows 
from (3.9) that T? = T2i. In general, we have 

l? = Tni. (3.12) 

We illustrate the foregoing results with the following examples. 

Example 7: Putting i = j in (3.8), we obtain (3̂  + 3 ? ) ^ = I2Ui+i,2ui+l+i- Letting h = 2 in (3.5), 
we find that 2TtI = l2Ui+\,2ui+l+\- Comparing these results, we have 

^ + ^ = 2^. (3.13) 

Hence, we conclude that the scalar multiplication of a translation is equivalent to the repeated 
addition of that translation. 

Example 8: Putting y = i + l in (3.8) and applying (1.1), we get (? + ^+1)/^fl l l = Jui+2,ui+y
 T h i s 

induces the recurrence formula of translation: Tt + Tj+l = Ti+2. 
Let i = 0 and I = T0, the identity of translation, then we have 

I+T-T2 = O, (3.14) 
So the pleasant equation of translation (see [5], (2.16)) is inhomogeneously covariant. 

Example 9: From (2.5), we have Iu ^u = (u0 + l)Ij_ } + (wx +1)1 j j .Applying translation on both 
sides and using (3.1), (3.5), and (2.1), we obtain 

% o , « i ~ ^(«0+i)/i_1^tt,+i)//+«0+w1u^ ( 3 . 1 5 ) 

Thus, by Definition 4, the uniqueness of generating numbers, we arrive at the following formula 
relating uf to the corresponding pair of J/s: 

H=(ttb + l)//.1 + (iil + l)//+iic, + w1 + l. (3.16) 

Putting uQ = L^ = 1 and ut = Z/ = 0 in (3.16), we obtain the expression of the inhomogeneous 
Lucas numbers L\ in terms of the inhomogeneous Fibonacci numbers: 

Z, '=2/M+/,+2. (3.17) 
Applying (1.1), this becomes 

11 = 1^+1^ + 1, (3.18) 

which is the inhomogeneous version of the relation between the Lucas numbers and the Fibonacci 
numbers: 1^ = Ft_x +Fi+l. 

From (3.15), we find that 
?A,0 ~ ^2/M+/,+2f 2/,+//+I +2 • (3.19) 

Substitute (3.17) into (3.19) to obtain 

which is none other than the translation formula for the inhomogeneous Lucas line-sequence. 
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Example 10: Applying (1.1) and (1.2) and using (3.1), we obtain (T_x + T{)IUQ = I_2l +1 0 2 • 
Applying (2.1) and (2.4) to the right-hand side and using (2.12), we obtain (T^ + T^I^ = 

5I_1?(h which translates into {Tt_x + Ti+l)I^0 = 53J7_lf0. 
Applying (2.20) and (1.5) to both sides, respectively, we find that 

AU + Af
+i = 5//, (3.21) 

which is another relation covariant to its homogeneous counterpart Z ^ + Lj+l = 5Ff, 

Example 11: From (3.1), and putting u,=uf
Q and uj+l=u}9 we have Tt{TJu u) = 7iIu.u. = 

Iu,tU, \ wrhere, by (3.16), we have 

uj = (iî  + l)ii_! + {u{ +T)It + ttj + w{ +1 and aj = uj = (% + l ) / ^ + (ux +1)/,- + u0 + ux +1. 

On the other hand, applying (3.9) and (3.1), we obtain WjIu^Ui) = Ti+jIu^Ui = Iu^u_^ 
where, by (3.16), we have 

By Definition 4, uj - ui+j. Since u0 is an independent parameter, the coefficients of uQ must 
be equal in the two expressions. This leads to the following relation: Ij-.\Ij-\ +IJII+IJ_I+IJ + 
•̂_! + It + 2 = Ii+J_i + 1. Putting i = j , we obtain the relation 

{Ii_i + lf+(Ii+lf=j2i_i + K (322) 

which is the inhomogeneous version of the relation .F£x + F^ =F2j_1. Likewise, we obtain the 
relation 

(A'+l)(/, + 1) = I2i + 1, (3.23) 

which is the inhomogeneous version of the relation LiFi = i^-. 

Example 12: Starting from / ^ ^ = (A-B)IItJi+i l{A-B) and applying (2.13) and (2.2), we 
obtain the translational form of the inhomogeneous version of Binet's formula: 

hhIi+l ~ j ^ _ g VAIf+A-l, AIi+l+A-l ~ ^BIj+B-l,BIi+l+B-l) • (3.24) 

Similarly, applying (2.5) to (2.19), we obtain Ih0 = AIj j + ̂ /0,/1 +2Ij Io. Applying translation 
on both sides and using (3.20) and (2.2), we get 

/zV.A'+i =^AIi+A-l,.4Ii+l+A-l+^BIi+B-l,BIi+l+B-l+^li_l,Ii' (3.25) 

This is the translational form of Binet's formula for the inhomogeneous Lucas numbers. 

4. THE INHOMOGENEOUS ANHARMONIC CASE 

An anharmonic recurrence relation with an inhomogeneous constant term can be expressed in 
general as follows: 

where b and c, called the anharmonic parameters, are nonzero constants not both equal to one, 
and k is the inhomogeneous constant term. An anharmonic line-sequence is represented by 
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JuQ,ux ' .» W-2> U-h [ % " l l , W2> *h,~-' ( 4 - 2 ) 

The corresponding terms in the line-sequence are represented by 

Jn\... J-3, »/_2? J-i, Jo, J\, J2-> J39 • --> (4-3) 
where J0 is the origin. 

It is easy to see from (4.1) that anharmonic addition of anharmonic line-sequences is incom-
patible with the translational invariance of the additive identity. Therefore, we shall try harmonic 
operations as defined below. 

Definition 9: Addition is inhomogeneous, that is, addition of corresponding terms in the line-
sequences, together with the inhomogeneous constant k. Thus, 

Jj j = JVj, + Ji>'j», (4.4) 
where i = i' +i" + k and j = f + j " + k. 

Definition 10: Multiplication by a scalar h is defined in the sense of repeated addition. That is, 

J,,j=hJrj., (4.5) 

where h is a scalar, i -hV + (h- l)k, and j = hj' + (h- l)k. 

Definition 11: The inner product of two line-sequences is defined as follows: 

{JtJ, J,. tJ.) = (i + *)(/' + k) + (j + k)(j' + k). (4.6) 

Two line-sequences are said to be orthogonal if and only if their inner product is zero, normal 
if and only if one's self inner product is one. The length of a line-sequence is defined as the (posi-
tive) square root of its inner product with itself 

Furthermore, let Ju M denote the additive identity, then, for an arbitrary line-sequence JitJ, 
we have JUQ^ +JtJ = JtJ. However, by (4.4), we have J^ +JfJ = JUo+i+k,U]+J+k. Therefore, 
uQ = ux - -k. So we find the additive identity 

J^_k:...-k,-k,[-k,-k],-k,-k,.... (4.7) 

On the other hand, the line-sequence of the additive identity must be translationally invariant, 
namely, u0 = ul=u2. By (4.4), u2 = cu0+bul + k, so we must have u0 - -kI{c + b-X). 

Comparing these results, we arrive at the condition between the anharmonic parameters: 

c + b = 2. (4.8) 

Then it is obvious that the set J of anharmonic line-sequences together with the inhomogeneous 
operations defined above constitute a vector space referred to as an inhomogeneous-anharmonic 
(IA-)space. 

Let Ju u and Ju M denote the pair of basis vectors. The orthogonality requirement leads to 
the following combinations of basis pair choices, differing in parity: J\-k,-k o r J-i-k,-k a n^ J-k,i-k 
or J_k_x_k. 

We choose the following combination consistent with previous works, with both the anhar-
monic parameters and the inhomogeneous constant specified: 
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4 - * f - * ( c , ^ (4.9) 

J . M _ , ( c 7 5 ; ^ ) : . . . , ^ - ^ i - ^ J - ^ l - ^ ] ? f t - ^ c + ft2-^. (4.10) 

If c = h = k = 1, this pair reduces to the harmonic basis pair (1.3) and (1.4) above. If k = 0, it 
reduces to the homogeneous basis pair (see [3], (4.2) and (4.3)). An arbitrary line-sequence in 
this space can be resolved into its basis components according to the formula: 

JUi = (i + k)Jx_K_k + (J + k)J_ktl_k. (4.11) 

Note that putting h = -l in (4.5) gives 

-Jtj = J-i-2k.-j-2k. (4.12) 

This is the negative element equation, which reduces to (2.8) if k = 1. 
Putting h = 0 in (4.5) gives 

0J,j = J-t,-k- (4-13) 

This is the zero multiplication equation, which reduces to (2.12) if k - 1. 
Note that 

-/_*,-* = ./-*,_*, (4.14) 

which confirms that J.k^k is indeed the additive identity. 

5, THE HOMOGENEOUS ANHAMMONIC CASE 

It is also possible to combine line-sequences generated by (4.1), but with different inhomoge-
neous constant terms. To avoid confusion, we represent the set of line-sequences under these 
types of operations by Htj(c,b; k). We define the following operations. 

Definition 12: Addition of two line-sequences is defined as addition of corresponding terms in 
the line-sequences: 

HUJ(c9b; k) = HVJ,{cM *0 + #/».,"M; *"), (5.1) 
where i = if + /", j = jf + j " , and k = k' + k,f. We refer to this as homogeneous addition. 

The additive identity is, of course, H0>0(c,b; 0), namely, a sequence of zeros, and the inverse 
element of HUj{c,b\ k) is H_u_j(c,b;-k). 

Definition 13: Multiplication by a scalar h is defined as 

HiJ(cMk) = hHi,J,(cMk>), (5.2) 

where h is scalar, / = hi\ j - hf9 and k = hkf. We refer to this as homogeneous multiplication. 

Definition 14: The inner product of two line-sequences is defined as follows: 

{HUJ, Hrjl) = (i + k)(i' + k>) + (J + k)(j> + k'). (5.3) 
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Two line-sequences are said to be orthogonal if and only if their inner product is zero, normal 
if and only if one's self inner product is one. The length of a line-sequence is defined as the 
(positive) square root of its inner product with itself. 

Thus, it is clear that the set H of line-sequences spans a vector space, referred to as a homo-
geneous-anharmonic {HA-)space. Obviously, the set of basis of this three-dimensional space is 
given by: 

Hl>0(c,b;0):...,^f-,--,[l,Olc,cb,...; (5.4) 
c c 

HQA(cAO):...,^^MllAc + b\...; (5.5) 
c c 

^ 0 ( c , 6 ; l ) : . . . , ^ , ^ , [ 0 , 0 ] , 1,6 + 1,.... (5.6) 
c c 

An arbitrary if line-sequence can then be decomposed into its basis components as follows: 
HUJ(c,b; k) = iHl0(c,b; 0) + jHOA(c,h; 0) + kH^(cfr 1). (5.7) 

Since the operations employed in [1] are basically compatible with the homogeneous opera-
tions, many results arrived therein can be derived directly in terms of H line-sequences, but not 
directly in terms of I line-sequences, which undergo inhomogeneous operations. Following are 
some examples. 

Example 13: From (5.1), we have 
#0>0(1,1; 1) = Hu{\, 1; 0) + # _ w a 1; 1), (5.8) 

which corresponds to (1.4) in [1]; 

# u ( l , l ; 1) = # u ( l , l ; 0) + ff0)0(l,l; 1), (5.9) 

which corresponds to (1.14) in [1]; 

Hxl{\\ 1) = H2A(l,l; 0) + ̂ 050(l,l; 1), (5.10) 

which corresponds to (1.22) in [1]; and so forth. 

Example 14: Substituting c-b = 1 into (5.7), we obtain 

HUj{\91; *) = Ml0(l,X 0) + /H^iO,X 0) + *ff0.oa 1; 1), (5-11) 

which corresponds to (2.2) in [1], or to (1.13) in [1] if k = 1. 
Substituting (5.8) into (5.11) and using (5.2) and the distributive property of multiplication, 

we obtain 
HtJ{\X k) = mh0(l,l; 0) + j ^ 1 ( l , l ; 0) + kHu(l,l; 0) + if_,?_,(!,!; *) , (5.12) 

which corresponds to (2.3) in [1], or to (1.6) in [1] if k = 1. 
Using (5.1) and (5.2), we have 

#0>0(1,1; *) = Hl2(l, 1; *)-Hl 0(l, 1; 0)-2#0>1(1,1; 0). 
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Substituting into (5.11), we obtain 

HUJ{\ 1; *) = (/ - k)Hl0(l, 1; 0) + (j-2k)Hu{\ 1; 0) + Mfu(l? 1; 1), (5.13) 

which corresponds to (2.6) in [1]. It reduces to (1.33) in [1] if k = 1. And so forth. 

Following is a table of some equivalence and correspondence (-^) relations. 

TABLE 1. Some Equivalence and Correspondence Relations 

No. 
1 
2 
3 
4 
5 
6 
7 
8 

Relations 

JiJ(c,b;0) = GiJ 

JiJ(l,l;l) = IiJ 

Hu(l,\;0)^Fn 

#u(l , l ; l )->c; 

Ha^l,l;l)-*cn{a,b) 

References 
[3],(1.3) 
[3],(4.1) 
(1.1) 
[1], p. 193 
[1], (12) 
[1], (1-3) 
[1], (1-4) 
[1], (1-5) 
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1. INTRODUCTION 

Fix a natural number, n > 2, as our base. For a a natural number, define s(a) to be the sum 
of the digits of a written in base n. Define v(a) to be the number of digits of a written in base n, 
i.e., nv^~l <a< nv(<ci). For a and b natural numbers, denote the product of a and b by a * b. For 
a and b natural numbers written in base n, let ab denote the concatenation of a and b, i.e., ab = 
axn^ +b. Denote concatenation of k copies of a by ak, i.e., 

a f e =q+a*y i v ( f l ) +q*y i 2 * v ( f l ) + -+a*y? ( f e " 1 ) * v ( f l ) = f l* 7 g *!\* " * • 

Definition: We say a is an n-Niven number if a is divisible by its base n digital sum, i.e., s(a)\a. 

Example: For w = l l , we have 15 = 1*11 + 4*1, so 5,(15) = l + 4 = 5. Since 5|15, 15 is an 11-
Niven number. 

It is known that there can exist at most 2*« consecutive ^-Niven numbers [3]. It is also 
known that, for n = 10, there exist sequences of twenty consecutive 10-Niven numbers (often just 
called Niven numbers) [2]. In [1], sequences of six consecutive 3-Niven numbers and four con-
secutive 2-Niven numbers were constructed. Mimicking a construction of twenty consecutive 
Niven numbers in [4], we can prove Grundman's conjecture. 

Conjecture: For each n > 2, there exists a sequence of 2 * n consecutive w-Niven numbers. 

Before giving a constructive proof of this conjecture, we give some notation and results that 
will give us necessary congruence conditions for a number, a, to be the base n digital sum of the 
first of 2*w consecutive w-Niven numbers, /?. 

For any primep, let a{p) be such that pa^ < n butpa^+l >n. For any prime/?, let b(p) be 
such that pKP)\(n -1) but pb^+l\{n -1). Let ju = UP pa^~b^. 

Theorem 1: A sequence of 2*n consecutive /?-Niven numbers must begin with a number con-
gruent to nM*m-n modulo nM*m (but not congruent to n^*m+l-n modulo nM*m+l) for some 
positive integer m. 

Proof: It is shown in [3] that the first of 2*« consecutive zi-Niven numbers, /?, must be 
congruent to 0 modulo n. Suppose j5 = nm' -n mod nm' but /? 4- nm'+l - n mod nm'+l. We will 
show that ju\m'. It is enough to show pa(p)-b(p)\mf for all p. Among the n consecutive numbers 
s(J3), s(/? + l), ...,s(/? + ra-l), there is a multiple of p"W. Similarly for $(fl + n), s(J5 + n + \),..., 
s(J$ + 2 * w -1). By the definition of an 7?-Niven number, this means pa^\$(J3+/), $(f3+i)\ (fi+/), 
paW\s(fi + n + j), and s(fi + n+j)\(J3 + n + j) for some ijin 0,l, . . . ,w-l. But s(/?+/) = S(JJ)+i 
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and s(fl + n + j) = s(J3) + n + j-mf*(n-l). So, pa^\(n + j - i) and pa^\{n + j-i-rn'*{n-1)), 
and therefore, /?*^>|/ff'*(7i-l). Since /?*̂ > is the highest power of p dividing n-1, we obtain 
pa(p)-Kp)\jff. • 

Corollary 1: A sequence of 2*w consecutive w-Niven numbers must consist of numbers having 
at least ju digits written in base n. 

Another result of this theorem is to get restrictions on the digital sum, a, of the first of 2* n 
consecutive w-Niven numbers. 
Corollary 2: If a = s(f?) for P the first of 2*« consecutive ??-Niven numbers, then for m as in 
Theorem 1 and for 

Y = lcm(a,a + l, ...,a + w-l) (1) 
and 

Y' = lcm(a + w-/ /*w*(«- l ) , a + w + l-//*/w*(w-l)3...,a + 2*w~l~//*/w*(«-l)), (2) 

we have gcd(/, Y')\M*m*(n~ 1). 
Proof: For /? the first of 2*« consecutive w-Niven numbers and for a the base n digital sum 

of fi, since /? = 0 mod n, we get 

(a + /)|09 + /)for/ = O,l,...,fi-l 
and, by Theorem 1, we get 

(a + n + j-ju*m*(n-l))\(JJ + n + j) fory = 0,1, . . . ,«-1. 

These imply /? = a mod^ and J3=a-ju*m*(n-l) mod^'. These two congruences are compat-
ible if and only if gcd(j%^')l^*w*(w--i)- • 

Finally, we will need the following three lemmas in our construction. 

Lemma 1: For 8 = lcm(/,x') there exist positive integer multiples of 8, say k*8 and A'* J so 
that gcd(s(k * <S), $(k'*8)) = n-l. Further, this is the smallest the greatest common divisor of the 
digital sums of any two integral multiples of 8 can be. 

Proof: Since (n-l)\8, we see that (n-l)\k*8 for any k eZ. Since « - l is one less than 
our base, (w- l)\$(k*8), so the smallest the greatest common divisor can be is n-1. 

Now let a%bO£ be the base n expansion of 8 with a and b nonzero digits and a a block of 
digits of length £'. We can suppose without loss of generality that a ends in a digit other than 
n -1, for if it does end in n - 1 we can consider (n + l)*8 in place of 8. Since 8 < nM'+2, there 
is a multiple of 8 between any two multiples of nM'+2, so there is some multiple of 8 between 
(n-l)*nM'+2 and ni+i'+3

9 i.e., some K so that the base n representation of K*8 is (w-l)a' with 
v(a') = £ +1 + 2. Then, for * = *: * nM+1 +1 and A;' = (w'+2**'+4 +1) * jfc? w e get (w - l)a'aa*0/ as 
the base w representation oik*8 and (w-l)a'a(a + l)(b-l)a'aaftO^ as the base representation of 
kf*8. Then we see s(k*8) -n-1 + j(a') + s(a) + 5(a) + s(b), while s((kf *8)) = n-l + 2*s(*') + 
2*s(a) + 2*s(a) + l + 2*s(Z?)-l; thus, .s(£'*<5) = 2*s(A:*<5)- (« - l ) . This means gcd(s(k*8), 
s(k'*S)) = n-l.D 

Remark 1: It follows from the proof that we can choose k, kf in the lemma with v{k*8)< 
5 + 2*t + 2*V and v(k!*8) < 9+3*£+4*f when 8 [or (n + l)*8 if a ends in w-1] has 
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£ + £' + 2 digits in base n. Since £ is the number of terminal zeros in 5 and £' is the number of 
digits strictly between the first and last nonzero digit of S, we have 

v(k*S)<5 + 2*(£ + £')<5 + 2*(v(S)-i). 

Since 8 < {a + n -1)2*", we have v(S) < 2*n* (log„(a + n -1) +1).. This inequality leads to 

v(k*S)<5 + 2*(2*n*(logn(a + n-l) + l)-l)<5 + 4*n*(logn(a + n-l) + l). 

Similarly, 
v(k*S)<2*(5 + 4*(n*(logn(a + n-T) + l))). 

This comes into play in constructing a "growth condition" in the next section. 

Lemma 2: For any positive integer z, if a = z mody, then (n-T)\(a- s(z)). 

Proof: This is equivalent to showing a = s{z) mod (n -1). We know z = s(z) mod (w -1) as 
n -1 is one less than our base. Since (n -1) \y, we get z = a mod (/? -1) which, taken with the 
previous congruence, gives the result. D 

Lemma 3: For positive integers x, y, z, if gcd(x,y)\z and z > x*y, then we can express z as a 
nonnegative linear combination of x andj. 

Proof: That we can write z as a linear combination of x and j follows from the extended 
Euclidean algorithm. To see that we can obtain a nonnegative linear combination, suppose z = 
r * x +1 * y. Since x, y, z > 0, at least one of r and t is positive. If they are both nonnegative, we 
are done, so suppose without loss of generality that r < 0. Then z=z + (y*x-x*y) = (r+y)*x+ 
(t-x)*y. We can repeat this until we have a nonnegative coefficient on x, so assume without 
loss of generality that r+y>0. If t-x>0, then we have a nonnegative linear combination and 
so are done. This means we are left to consider r < 0, t > 0, r + y > 0, and t - x < 0. However, if 
z=r*x + t*y with r <0, x>0, then ^*ty>z so that ( / -x)*>y>z-x*>'>0 by hypothesis. But 
j > 0 and (t - x) * y > 0 means f - x > 0, a contradiction. • 

2, CONSTRUCTION 

In this section we shall construct an a that can serve as the digital sum of the first of 2*w 
consecutive w-Niven numbers. We then use this a to actually construct the first of 2*n con-
secutive w-Niven numbers, /?, with a = s(J3). We present the construction using the results of the 
previous section. In that section, we derived congruence restrictions on the digital sum of the first 
of 2*n consecutive w-Niven numbers (if such a sequence exists). We now use these restrictions 
to construct such a sequence. 

Let a(p\ h(p), and ju be as in the previous section. For our construction, we specifically fix 
m - Wp\n p For/? a prime, define c(p) by 

pc(p)\(ju*m*(n-l)-i) for some/ = 1,2,..., 2*72-1 

and 
pc{p)+lt{ju*m*(n-l)-i) forany/ = l,2,. . . ,2*w-l. 

To produce an a satisfying gcd(/, yt)\ju^m^{n-1), we impose the following condition. 
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Congruence Condition I: For all p\n with c(p)> a(p), we require 

a = 1,2,..., pa(^+1~n mod pa(^)+1 

or 
a + w-/i^iw*(«-l) = lJ2,.. .3p^>-hl-wmodpa^+1. (3) 

This assures that the ,sprime to w,? part of gcd(f, ^') will divide //*(«-1). But, for p\n, we 
require stronger conditions in order to have an a for which gcdf/, yf)\fi*jn*(n-l). 

Congruence Condition II: For al! p\n, we require both of the following: 

a + n -ju*m* (w-l)sl,2,...,/?fl^>+2-w mod pa^+2; (4) 

a = pa(p)+l - n mod p^ ) + 1 . (5) 

Remark 2: There exist a simultaneously satisfying these conditions. It is clear we can find an a 
satisfying Condition I for every p. For Condition II, (5) is equivalent to 

a = pa{p)+i_w?2*j?^)+1 - » , , . , , / ? * | 7 * ( P ) + 1 - w mod/^>+2. (6) 

Then (4) restricts a to one of p<p)+2 -n consecutive residue classes modulo pfiM+2
9 but at least 

one of these must also be a solution to (6) since those solutions are spaced every pa(p)+l. and 
pa(p)+l > n i m p l i e s pd(p)+2 _ n > pa(p)+l > 

Finally, as there are infinitely many a satisfying Congruence Conditions I and II, we are free 
to choose one as large as we like. We choose a large enough to satisfy the following 

Growth Condition: 
a > (w-l)*(//*/w + 2*w*(logw(a+«-l) + l)) 

v') 
+ (n -1)2 * 2 * (5 + 4 * n * (log„(a + n -1) +1))2. 

Again, it is possible to find such an a because the left-hand side grows linearly while the 
right-hand side grows logarithmically in a. 

Theorem 2: Any a satisfying Congruence Conditions I and II and the Growth Condition is the 
digital sum of the first of 2* n consecutive w-Niven numbers. In particular, for each n > 2, there 
exists a sequence of 2*« consecutive w-Niven numbers. 

Proof: We start with an a satisfying Congruence Conditions I and II and the Growth Con-
dition. For y - lcm(a, a + l,..., a + n-l) and Y' - lcm(a + «-//*/w*(w-l),..., a + 2*n-l-
ju * m * (n -1)), we can solve 

h = a modY and b = a-ju*m*(n-l) mod}''. (8) 

To see this, note that, for p\n, we have v (ju*m*(n-l)) = a(p) and Congruence Condition I 
assures that vp(gcd(y,Y')) ^a(p)- For p\n, we have vp(ju*m*(n-l)) = a(p) + l and, by (5), 
vp(gcd(Y,Y'))^®(P)-

Let b be the least positive solution to (8). Any other solution to (8) differs from the minimal 
positive one by a multiple of S - lcm(^, Y') • We can modify b by adding multiples of 5 to create 
a number, bf, so that 
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but (9) 

This is possible by Congruence Condition II: For p\n, Condition II assures that a = pa^+l-n 
mod pa(P^+l. Since ju*rn*(n-i) = 0 mod paW+l, we have a + n-pi*m*(n-X) = 0 mod 
J?«(P)+I.NOW (8) assures b + n = 0 mod pa(^)+1. By Condition II, vp(8) < a(p) +1 = vp(ju*m), so 

b = n»*m-n m o d f l / A ^ . 

This means we can add multiples of 8 to b to get b' as above. 
Our next task is to modify b' by concatenating copies of multiples of 5 so that we obtain a 

number, /?, with s(fl)=a. Since (5 is less than the product of the 2*n numbers a, a + l,..., 
a + 2 * w - 1 - ju*m*(n-1), the largest of which has v(a+w-1) < log„(a+n-1) +1, we get 

v(£) < 2*H*(logw(a + «-1) +1). 
Since £ was the minimal solution to (8), we have v(b) < v(S). We created b' by adding mul-

tiples of 8 to b. Keeping track of the digits, we see that 
v{b')< ju*m + v{8) + \ 

as we modify b to get a terminal 0 with ju*rn-l penultimate (n- l)'s. To do this by adding mul-
tiples of 8, we will be left with not more than v(8) + l digits in front of the penultimate (w-l)'s, 
since we can first choose a multiple of 8 less than n*8 to change the second base n digit (from 
right) of b to n-\ and then choose a multiple of n*8 less than n2*8 to change the third base n 
digit (from right) to n-1, and so on. We continue until we add a multiple of rf*m~1^8 less than 
nM*m~l * 8 to change the /i * m base w digit to w - 1 . A final multiple of nM*m~l * J may need to be 
added to assure that the ju * m +1 digit is not n -1. 

Since each digit can contribute at most n - 1 to the digital sum, we get 
5(^)<2*«*(log„(a + n - l ) + l )*(^- l ) 

and 
s(Z>') <(/**/?? +2*w*(logw(a + ft-l) + 1))*(«-1). 

Since bf = b = a mod ̂ , Lemma 2 gives (?? -1) |(a - 5(6')). By Lemma 1, there exist k and k' so 
that gcd(s(k*8),s(k'*8)) = n-l; thus, 

gcd(5(**i5),j(*'*<5))|(a-j(ft')). 
Remark 1 says that our k and k' may be chosen so that 

j(**^)<(w-l)*(5 + 2*(2*/i*(log(/f)(a + w-l) + l))) 

and 
j(* '*^)^(w-l)*2*(5 + 2*(2*w*(log(lf)(a + w-l) + l))). 

These two inequalities and the Growth Condition assure a-s(h')>$(k*8)*$(k'*8), so we can 
use Lemma 3 with z = a-$(b'), x = s(k*8), and y = s(kf*8). We conclude that there are non-
negative integers r and t such that a - s(bf) = r*s(k*S) + t*s(k'*8). But then 
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a = r*s(k*8) + t*$(k'*8) + s(bf), so 

a = $((k*8)r(kf* 8)tbf). 

Using (it * 8)r(k< * S)tV = n^m - n mod n^m, we get 

a + i = s((k*S)r(k'*S)tb'+i) 
and vv JrK h } (10) 

a + w + /' - //*/w* (« -1) = ,?((£ * <S)r(£' * <5),ft' + w+J) 

for i = 0, 1, ..., n - 1 . Since (* * <5)r(*' * <5)f ft' = * mod 8, (8) assures 

a n d (a+0l ( (**^ r (* '*<5) , f t '+0 ( n ) 

(a+/i+/)|((ifc *<5)r(*'*<5)r*'+w+0 

for all i = 0,1, . . . , n -1. By (10), (11), and the definition of an «»Niven number, (k * S)r(k' * <^X*' 
is the first of 2 * « consecutive w-Niven numbers. D 

Remark 3: We note that we have proved something stronger than the theorem, namely, that 
there exist infinitely many sequences of 2*« consecutive w-Niven numbers, since there exist 
infinitely many a satisfying Condition I, Condition II, and the Growth Condition. 

3. EXAMPLES 

Example 1: For n = 2 we get ju = 2, m = 2, and the conditions (3)-(5), (7), 

a = 0,1 mod 3, 
a = 6 mod 8, 
a > 36033. 

Taking, for example, a = 36046, we get the base 2 representations: 

ft = l50014010130010010101703l0110105l4041010(2); 

5 = 1013011011010110101101IO4IOOI 10101010103l601001400(2). 

Then, letting b! - b + 7 * S, we get the right number of penultimate l's: 

ft'= 101100l300l3001010103ll010103l 101101503l5013010l30(2). 

We easily see that s(b') = 37. Now we want to follow Lemma 1 to get multiples of 8 with rela-
tively prime base 2 digital sums. First, we want 8f - (n +1) * 8 as a has a terminal n -1. Using 8! 

in place of S9 we get k = 2*26 2 +1 and kf = (2122 +1)* = 2185 + 2122 +2 6 3 +1 . Then we see that 

k*8> = 1031100100104104103l03l30019010140140110103103 
1100100104104103103l30019010140140110100(2) 

with s(k * 5') - 64 and 

k'*S' = 1031100100104104103103I3OO19010140140110103 

1031100100104104103103I3OO19010140 1304 

1100100104104103103130019010140140110103103 

1100100104104103l03l30019010140140110100(2) 
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with s(k' * 5') = 127. It is easy to see that 

a-5(ftf) = 36009 = 517*64 + 23*127 = 517*5(Jk*5') + 23*5(*'*5'), 
so 

s((k * 505i7(*' * S%b') = 36046 = a. 

Thus, (&* 8,y)5ll(k'* S'^yjb' is the base 2 representation of the first number in a sequence of 4 
consecutive 2-Niven numbers. 

We note that the Growth Condition, while assuring we can get a as a digital sum, results in 
large numbers. In practice, much smaller a satisfying Congruence Conditions I and II can be 
digital sums of 2*« consecutive n-Niven numbers. 

Example 2: For n = 2, we get // = 2, m = 2 and the congruence conditions a = 0,1 mod 3 and 
a = 6 mod 8. a = 6 is such an a (although it clearly does not satisfy the Growth Condition). 
This leads to 5 = 342 = 101010110(2) and £ = 420= 110100100(2). It is easy to see that P = b + 
14*£ = 6222 has base 2 expansion 100001001110(2), so s(P)=a. This means p is the first of 
a sequence of four consecutive 2-Niven numbers. 
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1. INTRODUCTION 

In [6], Juan P!a proved the following interesting theorem. 

Theorem LI: Let \ be the general term of a given sequence of integers such that 
\+2 = K+i +K? where \ and 1\ are arbitrary integers. Let c be an arbitrary integer other than 
- 2 , - 1 , 0, and 1. Let D be any divisor of c2 + c -1 other than 1. Then, the sequence {w„}, where 
wn = chn+l-hn, for n > 0, is such that either (a) D divides every wn or (b) D divides no wn. 

We would like to point out a more interesting fact that, essentially, the above theorem is the 
corollary of the following. 

Theorem L2: Let {fn} be the Fibonacci sequence, that is, f0 = 0, fx = 1, and fn+2 = fn+i+fn for 
n>0. Let f(x) = x 2 - x - l . Then, for n eZ, we have 

x" ^f„x + fn^ (mod f(x)). (1.1) 

Proof: Equation (1.1) holds for n = 0 since x° = f0x + f_l. Assume that (1.1) holds for 
n = k, k>0, that is, xk^fkx + fk_l (mod/(*)). Then xk+l ^ fkx2+fk_lx^fk(x + l) + fJc_lx = 
fk+ix + fk (mod/(*)). This means that (1.1) holds for all n > 0. Now assume that (1.1) holds 
for n = -k, k>0, that is, x~k = f_kx+f_k_x (mod/(*)). Then x~k~l = f_k + f_k_xx~l (mod 
/ (*) ) . Since x(x -1) = 1 (mod f(x)), we have that x"1 = x - 1 (mod f(x)), and so x~k~l = f_k + 
f-k-\(x ~ 1) - f-k-ix + f-k-2 (m°d /(*)) • This means that (1.1) holds also for all n < 0. • 

Now we apply Theorem 1.2 to prove Theorem 1.1. We have hn = h1fn + hQfn_l and hn+l = 
hfn+i + hfn for w > 0 (see [2]), whence w„ = -h(-fn+lc + /„) - ho(-f„c + /„_{). In (1.1), taking 
x = - c , we get wn = -h^-cf1 - \{-cf = {-cf{c\ -hQ) = (-c)"w0 (mod(c2 + c -1)). Since D 
divides c 2 + c - l and D > 1 , we have gcd(c,Z>) = l. If D divides wn for some «>0 , then D 
divides wQ. This leads to the fact that D divides wn for all n > 0. D 

In this paper we generalize the result of Theorem 1.2 to the case of kih -order homogeneous 
recursion sequence with constant coefficients in Section 3. In Section 4 we generalize the inter-
esting result of Theorem 1.1, correspondingly, i.e., we give and prove the main result of this 
paper. Some necessary preliminaries are given in Section 2. 

2. PRELIMINARIES 

Let the sequence {hn} = {hj^ be defined by the recurrence relation 

K+k = aA+k-i + -" +ak-A+i +<*A> (2- 0 
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and the initial condition 
h=c^ ^ = <i,--.A-i = cJt-i> (2.2) 

where a1?...,% and c0, ...,ck_x are constants. Then we call {hj a &th-order Fibonacci-Lucas 
sequence or simply an F-L sequence, and we call hn the rfi1 F-L number. The polynomial 

/ (*) = xk - axxk-1 ak_tx - ak (2.3) 

is called the characteristic polynomial of {hn}. If f(0) = 0, then we call 9 a characteristic 
root of {hn}. The set of F-L sequences satisfying (2.1) is denoted by fl(ah ...,ak) and also by 

If ak & 0, then (2.1) can be rewritten as 

K = (K+k ~ aA+k-i «*- A+i) l<*k> (2-4) 
whence, from the given values of /^, hu ..., /^_l5 we can calculate the values of h_ly h_2,.... There-
fore, in the case ak & 0, we may consider {hn} as {hn}^. For convenience, we always assume that 
ak * 0 whenever we refer to Q (ah..., ak). 

Obviously, 0(a1?...,ak) is a linear space [3] under the operations {hn} + {wn} = {hn+wn} and 
MK) = i^n) • Let {w^},. 0 < / < k -1, be a sequence in H = O(ax,..., ak) with the initial condi-
tion u^ = Sni for 0 < n < k - 1 , where J is the Kronecker function. Then we call {u^} the /th 

basic sequence in H. Construct a map, Q->R* such that each sequence {/?„} G H , with initial 
condition (2.2), corresponds to (c0,c1? ...,cjt_1). Clearly, this map is an isomorphism, and the 
basic sequences {w£0)}, {w^},..., {^-1)} form a base in £2. Thus, we have the following lemmas. 

Lemma 2.1: Let Q = 0(al9 ...,ak). Let {w£7)}, 0< i < k-1, be the Ith basic sequence in O and let 
{/*„} be an arbitrary sequence in fi. Then {/?„} can be represented uniquely by {^0)}, {^1}}, ..., 
{Wf"')}, as 

^ = t > f forneZ. (2.5) 
/=0 

Lemma 2.2: Under the condition of Lemma 2.1, we have 
Jfc-2 

/Ui = (*A-i +«2^t-2 + - + ^ A ) ^ _ 1 ) + I X i ^ 0 f o r * G Z • (2-6) 

Proof: Let {wn} = {^+1}. Then w0=hl9...9wk_2 = hk_x and (2.1) implies wk_x = hk= axhk_x + 
a2^-2 + " * + #JA • Thus, the lemma is proved by Lemma 2.1. D 

In (2.6), replacing {hn} by {^0)},..., {w^_1)}, respectively, we obtain 

Lemma 2.3: Let {^}}, 0 </ < k-1, be the 7th basic sequence in Q(ax,...,ak). Then, for n eZ , 
we have 

" S ^ r f - 0 and H ^ a ^ - H i t f " 1 ) f o r l < / < * - l . (2.7) 

Lemma 2.4: Under the condition of Lemma 2.3, we have 

4 ° = £°k-i+/&Pj, i' = 0, . . . , * - 1 , » eZ. (2.8) 
;=0 
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Proof: From (2.7), (2.8) holds for / = 0. Assume (2.8) holds for z, 0 < i < k -1. Then (2.7) 
and the induction hypothesis imply that 

M« - ak-i-\Un-l ^ Un-l ~ ®k-i-lUn-l + 2^ ak-i+jUn-2-j 

i+l 

~2J %-(/+!)+jUn-l-j? 

and we are done. D 

From (2.7) and (2.8), we observe that the (k + Vf1 basic sequence in D(al3...,%) plays an 
important role, so that we call it the principal sequence in O and denote it by {u^~l)} = {un}. 

Now, substituting*^. 8) into (2.5), we get 
Lemma. 2 5 : Let {%} be the principal sequence in 0 = 0 ( % ...,ak). Let {hj be an arbitrary 
sequence in O. Then 

k-l 

^n = X h-l-iUn-i for « G Z. (2.9) 
i=0 

where 
k-l-i 

K-i = *!*-! and ^ . ^ ^af.+1+;4_2_y for l < i < i - l . (2.10) 
7=0 

3. A PROPERTY OF THE CHARACTERISTIC POLYNOMIAL 
OF A ft^-ORDER F-L SEQUENCE 

Theorem 3.1: Let {u^}, 0</ < Ar — 1, be the Ith basic sequence in Q (/(*)), where f(x) is 
denoted by (2.3). Then 

k-\ 
(a) xn EE ^ i# V (mod /(*)) for w e Z. (3.1) 

/=o 
(b) If, besides (3.1), we have xn s E?~o v<'V (mod/(*)), where each of the v£')8s (/ = 0,..., 
k-1) is independent of x, then u^ - v%\ i = 0,...,k-l. 

Proof: Part (b) is proved by the uniqueness of the remainder of x" over f(x). Now we 
must prove part (a). By the definition of {u^}, i = 0,..., k -1, (3.1) holds for n - 0. Assume that 
(3.1) holds for n = m, m>0. Then, from the induction hypothesis and (2.7), we have 

xm+l EE x|>(;V = i # - V + £w£V+1 

?=0 /=0 

= ^ ( a ^ " 1 + - +ak_lx+ak) + fj ^ V + 1 

/=0 

= wV +Z(«,- ,«r i ) + « f V = M * * (mod/(*)). 
/=1 /=0 

This implies that (3.1) holds for all n > 0. 
Now assume that (3.1) holds for n - -m, m>0. Then 
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x~m-l^x-1 

\i=0 J 
Jc-\ „ Jt-2 

^ l A ^ t ^ + ̂ y1 (mod/(x)). (3.2) 
1=1 

From x(x - axx ak_x) = ak (mod f(x)) and ak ^ 0, we obtain 

x - ' ^ - ' - o , * * - 2 ak.x)lak (mod/(*)). (3.3) 

Substituting (3.3) into (3.2) and noting that w^ Iak = u^~}\ we get, by (2.7) 

J = l 

= u^?lxk-l
 +

 k£u^lxi-1 = k£u«llx< (mod/(*)). 
1=1 /=0 

This implies that (3.1) holds also for n < 0. D 

Corollary: Under the condition of Theorem 3.1, if f{0) = 0, then 
k-\ 

On = Y.un)0i for^eZ. (3.4) 
/=o 

It can be observed that the results in [1], [4], and [5] may be obtained easily by using (3.4). 

4. A GENERALIZATION O F THE " A L L O R N O N E " 
DIVISIBILITY PROPERTY 

Theorem 4.1: Let {hn} be an arbitrary sequence in 0 (a 1 ? ...,ak) = H ( / ( x ) ) , where a1? ...,ak are 
integers and f(x) is denoted by (2.3). Let c e Z , f{c) ^ ±1. Let D be a divisor of f{c) other 
than 1, and gcd(c, D) = l. Suppose that 

k-i 
W" = Z gk-l-i(C)K+k-l-i, (4-1) 

;=0 
where 

&-i(x) = x*"1 and &-1-/(x) = ^ + 1 + ^ ^ f o r l ^ / ^ * - l . (4.2) 
y=o 

Then either D divides wn for all w > 0 or D divides no w„. 

To prove the theorem, we need the following lemmas. 

Lentftid 41* fe—i 
I & - w ( * K - * a * " ( m o d / ( x ) ) , (4.3) 
1=0 

where {#„} is the principal sequence in Q(f(x)). 

Proof: Let {u^}, 0<i<k-l, be the Ith basic sequence. From Theorem 3.1 and Lemma 
2.4, we have 
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k-l . k-2 t 

f=0 f=0 7=0 

k-2 k-2 k-2 k-2-i 

7=0 t=i 7=0 ;'=0 

fc-2 A r — 1 

= ZMi»-iw&-2-/W + &-i(^K = Z & - w ( ^ K - / (mod/(x)). Q 
7=0 7=0 

Lemma 4.2: £L} 
5 > ' = W o , (4.4) 
/=0 

where A,. (0 < / < £ -1) is denoted by (2.10). 

Proof:, 
k-l k-2 

7=0 7=0 
k-2 i k-2 k-2 

=Vi^"1 + Z^Z%-/+A-2-y = h-fk~l+T,hk-2-j^k-i+/ 
7=0 ; = 0 ; = 0 / = ; 

fc-2 fc-2-y fc-2 

= K-fh~l + Z^-2-y X a2+y+/^"2"'' = **-i&-i(<0 + XV2-y^-2-yW 
y=0 7=0 y=0 

j f c - 1 

= Z&-w(c)/%-W=1M/o, 
y=o 

by (4.2) and (4.1). D 

Proof of Theorem 4.1: From (4.1) and Lemma 2.5 b we have 
fc-l' fc-1 k-l 

Wn=T,Sk-l-jiC)K+k-l-J = T,Sk-l-j(C)^ 
y=0 y=0 7=0 

k-l k-l 

= Z ^-i-/ Z &-w(cK+jk-w-/ • 
7=0 y=0 

In Lemma 4.1, taking x = c, we get 
J f c - 1 

y=0 

whence, from Lemma 4.2, 
Ar—1 k-l 

I & - w ( c > W - w - , -<^*"1"' (mod/(c)), 

^ ^ W ^ ' ^ ^ S W ^ ' - ' ^ X (mod/(c)). 
7=0 7=0 

Because gcd(c, D) = 1, if D divides wn for some n > 0, then D must divide w0, so D divides w„ 
forallw^O. D 
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Example 1: Let f(x) = x3 - x2 - x-1, then k = 3, ax = a2 = a3 = 1. Let c = -2 , then f(c) = -11. 
Take Z> = 11, then gcd(c, D) = l. Assume that {/*„} efi( /(x)) and /I0 = 0,/I1 = /I2 = 1. From 
(4.2) and (4.1), we have £2(c) = (-2)2 =4, a ( c ) = lx(-2) + l = - l , «,(*) = lx( -2) = - 2 , and 
wn = 4hn+2 ~K+\ ~2>K> respectively. Since w0 = 4h2-hx-2h0 = 3 and 11 does not divide 3, thus 
11 divides no wn. 

Example 2: Let f(x) = x3-x2+2x-3, then k = 3,al = l,a2 = -2,a3 = 3. Let c = 3, then 
f(c) = 21. Take D = 7, then gcd(c,D) = 1. Assume that {/*„} efi( / (x)) and that h0 = h2 = 1, 
/?! = - ! . From (4.2) and (4.1), we have g2(c) = 32 = 9, &(c) = (-2) x 3 + 3 = - 3 , g0(c) = 3x3 = 9, 
and wn = 9hn+2 - 3hn+l + 9/^, respectively. Since wQ - 9h2 - 3hx + 9h0 = 21 and 7 divides 21, thus 7 
divides wn for all n > 0, 

Concluding Remark: Theorem 3.1 can be seen in [7], which was published in Chinese in 1993. 
Some other applications of Theorem 3.1 and its corollary to the identities involving F-L numbers, 
congruence relations, modular periodicities, divisibilities, etc., are also stated in [7]. 
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Department for Algebra and Discrete Mathematics 

TO Wien, Wiedner Hauptstrasse 8-10/118, A-1040 Wien, Austria 
email: Helmut.Prodinger@tuwien.ac.at 

(Submitted December 1995) 

In [2], Cooper and Kennedy note the following: If 

then 

x\ = Axil+Bxl2 + Cxl3 + Dxl4+Ex2„_5+Fxl6, (2) 

where the coefficients A, B, C,D, E,F may be expressed in terms of a.b^c. They ask: Is there & 
similar formula for third powers? The answer Is: YES. The reason is the following: Sequences 
which are solutions of linear recurrences with constant coefficients have ordinary generating func-
tions which are rational. Conversely, if a rational function has no pole in z - 0, its Taylor coeffi-
cients fulfill a linear recurrence with constant coefficients. If 

/ : = ! « / and g : = ^ / (3) 
n>0 n>0 

are two (formal) series, their HADAMARD product Is defined to be 

/0g:=X«„V". (4) 

And rational functions are closed under the Hadamard product! (See [1], p. 85.) 
The larger (any maybe even more Important) class of holonomic functions (solutions of linear 

differential equations with polynomial coefficients) is also closed under the Hadamard product. 
Their Taylor coefficients fulfill linear recursions with polynomial coefficients. There is a MAPLE 
package, GFUN, which computes (among many other things) the Hadamard product (see [4]). 

There is another very useful program, EKHAD, written by Doron Zeilberger [3], which should 
be mentioned. With it, we find, for example, recursions for the d^ powers of the Fibonacci num-
bers Fn in almost no time. In the following, F* will be a solution of the given recursion. 
d-\ xn+2 - xn+1 -xn = 0, 

a- I xn+3 - 2xn+2 ~ 2xw+1 + xn - 0, 

d = 3 xn+4 - 3xn+3 - 6xw+2 + 3xn+l + xn = 0, 

d = 4 x„+5 - 5xw+4 - 15xw+3 + 15xw+2 + 5xw+1 - xn = 0, 
d = 5 Xn+6 ~ 8**+5 " 40Xn+4 + 6°Xn+3 + 4°Xn+2 ' 8*»+l " *n = °> 

d = 6 xw+7 - 13xw+6 - 104x„+5 + 260x„+4 + 260x„+3 - 104xw+2 - 13x„+1 + x„ = 0. 
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A. F. Horadam 
The University of New England, Armidale 2351, Australia 

(Submitted October 1995) 

1. PRELIMINARIES 

Consider two sequences of polynomials {J„(x)}, the Jacohsthal polynomials, and {j„(x)}, 
the Jacob sthal-Lucas polynomials, defined recursively [3] by 

Jrj+2(x) = Jn+l(x) + 2xJn(xl J0(x) = 09 Ji(x) = l, (1.1) 
and 

Jn+l(X) = A+lW + 2 % ( 4 J0(X) = 2, MX) = 1, (1.2) 
respectively. 

Observe that Jn(l/2) = Fn and jn(l/2) = Ln, the n^ Fibonacci and Lucas numbers, respec-
tively. When x = l, we obtain the Jacobsthal and Jacobsthal-Lucas numbers [8], respectively. 
(Other number sequences derived from (1.1) and (1.2) which are of some interest are generated 
byx = l/4.) 

For {Jn(x}} and {j„(x)}? the characteristic equation is 

A2-A-2x = 0 (1.3) 
with roots 

so that 

, , 1 W8x + 1 
a(x) = — 

1 J 2 
m . 1-V8x + 1 

a(x) + ft(x)= 1, 
a(x)/3(x) = -2x, 
a(x) - /?(x) = V8x + 1 = A(x) ,J 

(1.4) 

(1.5) 

whence 

Moreover, 

A(l) = 3. (1.5a) 

a2 (x) + 2x = A(jc)a(x), 1 
y92(x) + 2x = -A(x)/?(jc).J 

(1.6) 

Comparison might be made between our definition (1.1) and that in [2] for Jacobsthal poly-
nomials. The correspondence is simple: x in [2] <r^ 2x in (1.1). While the nomenclature in [2] 
serves a very valuable purpose leading to elegant results and extensions, we prefer to retain the 
factor 2x for consistency with our notation for Pell polynomials [10]. 

To the best of my knowledge, properties of the Jacobsthal-Lucas polynomials defined fully in 
(1.2), and the corresponding numbers [8] generated when x = 1, are generally due to the present 
author, as an appropriate companion to those of the Jacobsthal polynomials (1.1). (Our (3.10), 
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(3.11)? and (3.12) do occur in [12], though in a heavily camouflaged form.) When it is convenient 
(e.g., for brevity), the polynomials given by (1.1) and (1.2) will simply be referred to collectively 
as Jacohsthal-type polynomials, or, as in the title of the paper, more simply still as Jacobsthal 
polynomials. 

Aspects of Jacobsthal polynomials (1.1), which are documented in other sources (e.g., [1], 
[2], [12]) will not in general be duplicated in this presentation, though the basic features must 
recur. 

Goals of This Paper 

Aims of this presentation are: 
(i) to exhibit some basic properties of the polynomials (Tables 1 and 2) which generalize the 

properties of the corresponding numbers in [8]; 
(ii) to reveal some of the salient features of the diagonal functions generated by (1.1) and (1.2); 
(iii) to examine the properties of the "augmented" polynomials developed from (1.1) and (1.2) by 

the addition of an appropriate constant. 

2. THE JACOBSTHAL-TYPE POLYNOMIALS 

Tables 1 and 2 list the first few polynomials of (1.1) and (1.2) of these Jacobsthal-type 
sequences. 

TABLE 1. Jacobsthal Polynomials {Jn(x)}:0< n<10 

J0(x) = 0 J6(x) = 1 + 8x + 12x2 

Jx(x) = 1 J7(x) = 1 +1 Ox + 24x2 + 8x3 

J2(x) = 1 Js(x) = l + 12x + 40x2 + 32x3 

J3(x) = l + 2x J9(x) = l + 14x + 60x2 + 80x3 + 16x4 

J4(x) = 1 + 4x J10(x) = 1 +16x + 84x2 +160x3 + 80x4 

y5(x) = l + 6x + 4x2 

TABLE 2. Jacobsthal-Lucas Polynomials {jn(x)}:0 < n < 10 

j0(x) = 2 y6(x) = l + 12x + 36x2 + 16x3 

7x(x) = 1 77(x) = 1 + 14x + 56x2 + 56x3 

j2(x) = 1 + 4x 78(x) = 1 + 16x + 80x2 + 128x3 + 32x4 

j3(x) = l + 6x j9(x) = l + 18x + 108x2 +240x3 + 144x4 

j4(x) = 1 + 8x + 8x2 jl0(x) = 1 + 20x 4- 140x2 + 400x3 + 400x4 + 64x5 

j5(x) = l + 10x + 20x2 

Equivalent expressions for {Jn(x)} in Table 1 are given in [2] with x <-» 2x, as mentioned in 
Section 1. 
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3e BASIC PROPERTIES OF THE JACOBSTHAL-TYPE POLYNOMIALS 

Generating Functions 

l J r , (x )y - , = (l-j>-2xy2)-1, (3.1) 
1=1 

Z^iWy-1 = (l + 4xy)(l-y-2xy2y1. (3.2) 
/=! 

Binet Forms 

J " ( X ) - A(xj ' ( J ' 3 ) 

j„(x) = a"(x)+/?"(x). (3.4) 

Simson Formulas 

^ i W n - i O O - ^ (*) = (-l)"(2x)"-1, (3.5) 

J„+i(*U-i (*) - jfa) = -A2(x)(-l)"(2x)"-1 I 
= -A2(x)(J„+1(x)J„.1(x)-^(x))j' 

Summation Formulas 

Explicit Closed Forms 

(3.6) 

£j;(x) = 4a&zi (3.7) 

£jl(x) = JH+iX)~1- (3-8) 

4(*)=i("~*~,'W, (3.9) 

Important Interrelationships 

Jn(.X)J„(x) = J2„(X) 
Jn(x) = J„+i(x) + 2xJ„_l(x) 

A2(x)J„(x) = jn+l(x) + 2x/„_,(x) 

Jn(x) + j„(x) = 2J„+l(x) 

A2(x)J„(x)+j„(x) = 2jn+1(x) 

A(x)J„(x)+jn(x) = 2a"(x) 
A(x)Jn(x)-jn(x) = -2/]"(x) 
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Jm(x)j„(x) + J„(x)Ux) = 2Jm,„(x) [by (3.3), (3.4)], (3.18) 

Ux)Ux) + ̂ \x)Jm(x)J„(x) = ym+^) [by (3.3), (3.4)], (3.19) 
whence (m = n) 

fn{x) + A2(x)J2
n(x) = 2j2n(x), (3.20) 

the left-hand side being a sum of squares. Putting m = n in (3.18) reduces the formula to (3.11). 
Readers are invited to discover formulas corresponding to (3.18) and (3.19) when the + sign on 
the left-hand side is replaced by a - sign (leading in the second instance to a difference of 
squares). 

A neat differentiation worth recording is 

^M = 2nJn_l(x), (3.21) 

which differs appreciably from analogous derivatives for other "Lucas-type" polynomials, namely, 
those for which the initial term (i.e., when n = 0) has the value 2 (see [7]). Less exciting is the 
companion result 

A 2 ( x ) ^ ^ = 2«/„_1(x)-4J)7(x). (3.22) 

Column Generators of{Jn(x)} and {jn(x)} 

Formulas (3.1) and (3.2) disclose the methods for producing the polynomials {Jn(x}} and 
{j„(x)}, i.e., the rows in Tables 1 and 2. Columns in Table 1 are readily seen to be generated by 
(2xy2)\\-yy\ (2xy2)(l-yT2, {2xy2)\\-y)-\ (2xy2)\l-yT\ (2xy2)\l-yT5, ..., i.e., the 
r^ column is born from 

(2xy2y-\\-yr (r>l). (3.23) 

The column generator for the r* column in Table 2 is conceived to be 

(2xyi) 2\r-l 1 1 
-+-(l-yf-1 (\-y)r 

2-y 
v-y)r 

(r>\) 

= (2xy2)r-1-^-. (3.24) 

Associated Sequences 

Suppose we define the k^ associated sequences {J^k\x)} and {j^k\x)} of {Jn(x)} and 
{jn(x)} to be, respectively (k > 1), 

4 " ) W = ^ T 1 ) W + 2 x / ^ ( x ) (3.25) 
and 

M\x)-j(^\x) + 2xj^\x), (3.26) 

where J^{x) = J„(x) and^0)(x) = j„(x). Accordingly, 

J<P(x) = Mx) D>y (3.12)] (3.27) 
and 

140 [MAY 



JACOBSTHAL REPRESENTATION POLYNOMIALS 

(3.29) 

j«\x) = A\x)J„(x) [by (3.13)] (3.28) 

are the generic members of the first associated sequences {Jf\x)} and {jjp(x)}. 
Repeated manipulation of the above formulas eventually reveals that 

U2m\x) = j^-l\x) = A""(x)Jn(x), 

U2m+l)(x) = £'»\x) = A2'»(x)UX). 
Thus, for m = 1, n = 5, 

J jQ\x) = jf\x) = (8x + l)J5(x) = 1 + 14x + 52x2 + 32x3, 
\jP(x) = J5

(2)(x) = (8x + l)j5(x) = 1 + 18x + 100x2 + 160x3„ 

Another approach [7] may be employed to discover the formulas (3.29). 

4 DIAGONAL FUNCTIONS 

Inherent in the structure of {J„(x)} and {j„(x)} are the rising and descending diagonals which 
are fashioned in a manner analogous to those for Chebyshev and Fermat polynomials [4], [5]. 

Rising Diagonals 

Imagine parallel upward-slanting lines in Tables 1 and 2 in which there exist the rising diag-
onal/unctions {^(x)} and {^(x)}, respectively. Some of these are, say, 

i?o(x) = 0, R^x) = R2(x) = R3(x) = 1, R4(x) = 1 + 2x,..., R10(x) = 1 + 14x + 40x2 + 8x3 (4.1) 

and 

rQ(x) = 2, rl(x) = r2(x) = \ r3(x) = l + 4x,...,r10(x) = l + 18x + 80x2 + 56x3„ (4.2) 

Generating functions unfold by the usual technique. We have 

Y,Ri(x)ti-l = (l-t-2xt3yl (4.3) 

and 

f / , ( * y = (2 - 0(1 - 1 - 2xt3y\ (4.4) 
/=o 

Alternatively, see (4.10), 

^(xy-1 = (l + 4xt2)(l-t-2xt3yl. (4.4)' 

Comparing (4.3) with (4.4), and taking into account the different initial values of / therein, we 
arrive at 

rn(x) = Wr,+l(x)-Rri(x), (4.5) 
i.e., 

r„(x) + Rn(x) = 2Rrt+l(x), (4.5)' 

which bears a formal correspondence with (3.14). 
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Inherent in (4.3) and (4.4) are the recurrence relations (n > 3) 

Rn(x) = R^1(x) + 2xRn_3(x) (4.6) 

(4.7) 
and 

Explicit closed forms are 

^(x) = rw_1(x)+2xr„_3(x). 

(4.8) 

and 

r.(x) = H-2^W-1_-1
2r)(2xy. (4.9) 

Recall from (1.5) that 2x = -a(x)/?(x), so that (4.8) and (4.9) allow us to express RJ^x) and 
rn(x) in terms of a(x) and /?(x). 

Combinatorial calculations (including Pascal's formula) may be employed to establish (4.8) 
and (4.9) from the recurrence formulas. Proofs by inductive methods may also be applied, but 
these are somewhat tortuous and are omitted as a leisure activity for the dedicated reader who can 
convert a tedious activity into a pleasurable challenge. 

From (4.5) and (4.6), it follows immediately (n -> w +1) that 
r„(x) = Rrl(x) + 4xRn_2(x) (»>2). (4.10) 

This result also follows directly from (4.4)'. Combining (4.5)' and (4.10), we deduce that 

r„2(x) - %(x) = 8x^+1(x)^_2(x). (4.11) 

Oddly, there is no result like (4.10) in which Rn(x) (possibly with a factor) and rn(x) are 
interchanged, as in (4.6) and (4.7), for descending diagonals. (Why is this so?) A similar situa-
tion exists for Pell-type polynomials (cf. [13]). 

Differential equations (partial) of the first order are readily determined from (4.3) and (4.4) 
on writing 

R^Rix^^R.ixy-1 (4.12) 

and 

' s K * , 0 = f > , ( * y . (4.13) 

These are 
,3<3R , , . ^ < 2 R 2*^-0 + 6*0^ = 0 (4.14) 

at ox 
and 

,31 dr , D ,, , , A . 0 r 
2 ^ - + * -(1 + 6 * ^ = 0. (4.15) 

Theoretically, there exists a pair of ordinary differential equations derivable from i^(x) and rn{x) 
(see [4], [5]), but so far their nature has not been vouchsafed to the writer. 
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Coming now to descending diagonal polynomials, we encounter a surprisingly felicitous ease 
with the mathematics (as also occurs, e.g., in [4], [5]). 

Descending Diagonals 

Formed in a similar way to the rising diagonal polynomials, except that we now imagine sys-
tems of parallel downward-slanting lines (cf. [4] for Chebyshev and Fermat polynomials), we 
behold the descending diagonal functions {Dt{x)} and {dt(x)}, respectively. 

Some of these are, say, 
DJx) = 0, DJx) = 1, DJx) = l + 2x,..., 

(4.16) 
D5(x) = l + 8x + 24x2+32x3 + 16x4 

and 

and 

rf0(x) = 2, dl(x) = l + 4x, rf2(x) = l + 6x + 8x2,..., 
(4.17) 

rf5(x) = l + 12x + 56x2 + 128x3 + 144x4 + 64x5. 

Patterns of behavior are readily discernible from the formation of the generating functions 
£ z ) „ ( x r - 1 = [ l - ( l + 2x)/r1, (4.18) 

£ dn{x)f'x = (1 + 4x)[l - (1 + 2x)tYl, (4.19) 
H=l 

whence («>1) 

and 

leading to 

Dn(x) = (l + 2x)"-1 (4.20) 

c/w(x) = (l + 4x)(l + 2x)"-!, (4.21) 

d„(x) = (\ + 4x)Dn(x), {A.22) 

Dn{x) = _ ^ L = 1 + 2 x («>2), (4.23) 
D„_x(x) £/„_i(x) 

i.e., rf„(x)£>„_i(*) = d^ix^ix), 

4&\ = l + 4x (n>\), (4.24) 
D„(x) 

d„(x) = Dn+l(x) + 2xD„(x), (4.25) 

(l + 4x)2Z)„(x) = ̂ +1(x) + 2x^(x), (4.26) 

J5(x)D^(x) = D„+l(x) + 2xD„_l(x), (4.27) 

and 
J5(x)d„_1(x) = dn+l{x) + 2xd„_1(x). (4.28) 
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See Table 1 for J5(x). En passant, notice that l + 2xand l + 4x, occurring In (4.18)-(4.24) 
and (4.26), may be expressed variously in terms of polynomials in Table 1, Table 2, (4.1), (4.2), 
(4.16), and (4.17). 

Observe that the summed forms in (4.27)-(4.28) preclude the possibility of any associated 
sequence properties of {Dn(x)} and {dn{x)} analogous to those for {Jn(x)} and {j„(x)}. (Put 
k = 1 in (3.25) and (3.26) for the comparison and contrast.) 

Quartet: Differential Equations 
Write 

D s; D(x, i) = £ Dn{x)tn~l = [!-(! + 2x)tyl (4.29) 

and 

d s d(x, t) = Y.dn{x)f-1 = (1 + 4x)[l - (1 + 2x)t]~l (4.30) 

using (4.5) and (4.6). 
Without difficulty one derives, from (4.20), (4.21), (4.29), and (4.30), 

2 / ^ - ( l + 2 * ) ^ = 0, (4.31) 
at ox 

2^-(1 + 2 X ) | £ - 4 D | = 0 , (4.32) 

(l + 2x)^-(x) = 2(n-l)D„(x) (4.33) 

MM = 2{2Dn(x) + (n-l)dn_l(x)}- (4.34) 

More generally, 

,k dkD = k dkD = k\{{\ + 2x)2t}k 

dxk ' dtk [ l - ( l + 2x)/f (i+2^^=(2ot^=ri ::r/+1 (435) 
and 

Roots 

V^r=(w-1)!2"-1 . (4.36) 

Clearly, from (4.20) and (4.21), the polynomial equations Dw(x) = 0 (of degree ? i - l ) and 
<iw(x) = 0 (of degree n) have multiple roots, namely, an (/? — 1) -fold root -1 /2 in the first case and 
an (n -1) -fold root -1 /2 together with a root x = -1 / 4 in the second case. 

Diagonal Numbers 

Substitute x = l in (4.1), (4.2), (4.16), and (4.17). Then the skeletal profiles of the bodies 
fleshed out by the polynomials reduce to 
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w = 0 1 2 3 4 5 6 7 8 9 10 11 
{JU = 0 1 1 1 3 5 7 13 23 37 63 109 
{rj = 2 1 1 5 7 9 19 33 51 89 155 267 (4.37) 

{DJ = 0 1 3 9 27 81 243 729 2187 - ••• ••• 
{</„} = 2 5 15 45 135 405 1215 3645 ... 

So, e.g., by (4.6), (4.7), (4.10), (4.22), and (4.23), 
Rn = Rn_l+2Rn_3:> j 

'. = 4,+4iU, ( 4 3 8 ) 

Jw = 5DW = ISD^j since Dw = 3D„_1.J 

Diagonal numbers for (say) Fibonacci, Pell, Fermat, and Chebyshev polynomials inter alia 
could be tabulated, along with the numbers for their cognate "Lucas" polynomials. See, e.g., [4], 
[5], [11], [13], and [14]. 

Reverting to (4.1), (4.2), (4.16), and (4.17), we may find mild interest in substituting x = 111 
and JC = 1/4. 

Bizarre Afterthought 

What of any interest might eventuate if we imagined rising rising diagonals, descending 
descending diagonals, rising descending diagonals, and other combinations of the two elementary 
dichotomous concepts of rising and (falling) descending? 

Conjectures 
i^+w(x) = i^+1(x)iUx) + 2xRm(x)R„_2(x) + 2xi^_1(x)i^_1(x) (4.39) 

and 

r^„(x) - i W * K ( * ) + 2 ^ ( * ^ (4-40) 

5. AUGMENTED JACOBSTHAL-TYPE REPRESENTATION POLYNOMIALS 

New symbolism and terminology are now required. 
Following the situation for the number sequences {2TW} and {j} described in (3.4) and (3.5) 

of [8], we introduce the augmented Jacobsthal representation polynomial sequence {Jn(x)} 
defined by 

^+ 2(x) = 2Tw+1(x)+2x^(x)-f3, f0(x) = 0, 9i(x) = l, (5.1) 

and the augmented Jacohsthal-Lucas representation polynomial sequence (j„(x)} defined by 

L2(x) = Li(x) + l*tix) + 5> io(*) = 0> 7i(*) = l- (5-2) 
Some of these are, for example, 

Sr0(x) - 0 , ^ (x ) = 1, 2T2(x) - 4 , 2T3(x) =7 + 2x,...? 3"8(x) = 22 + 102x + 160x2+56x3 (5.3) 

and 

j0(x) = 0, jj(x) = 1, j2(x) = 6, j3(x) = ll-h2x,..., j8(x) = 36+162x + 240x2 +72x3. (5.4) 
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The choice and the raison d'etre of the constants +3 and +5 in (5.1) and (5.2) are explained 
in [8]. Properties of these new polynomial sequences {9~w(*)} and {jn(x)} are worthy of con-
sideration per se. 

Replacing +3 and +5 more generally by +c has been done in a separate paper which thus 
covers the four special polynomial sequences {•/„(*)}, {j„(x)}9 {^f„(x)}9 and {jw(x)}. 

6. BASIC PROPERTIES OF {^(JC)} and {}n(x)} 

Generating Functions 
Standard techniques lead readily to 

y °rt(x))/-1 = \±2y? (6.!) 
ft A )y l-2j-(2x-l)/+2xy3? l ; 

y my-1 = 1±^—j. (6.2) 
"i U l -2j/-(2x-l)j /2+2xy3 V ; 

Binet Forms 
Examination of Table 1 and (5.3) leads to the somewhat surprising observation that 

2T„(x) =in±2^h2dn±Mzl^ (6i3) 

Proof of (6.3): Checking quickly validates the cases w = 0,1,2, 3,4 (say). Assume (6.3) is 
true for n - k (fixed integer), i.e., suppose 

Of /x\ _ Jje+2 (X) + ^fc+lW ~ 3 .., tjj\ 

Then 
^ + i W = %(x) + 2x9]w(x) + 3 by (5.1) 

= Jk+2(x) + 2Jk+l(x)-3 + 2x[Jk+l(x) + 2Jk(x)-3] { ^ 
2x 

= Jk+2(x) + 2xJk+l(x) + 2{Jk+l(x) + 2x7, (x)} ~ 3 
2x 

2x 

where the hypothesis (H) has been applied. 
Hence, (6.3) is true for n = k +1, and so, for all «. 
Consequently, (6.3) is true, by induction. 

Induction is used in a similar fashion to establish 

]n(x)=Jn+2(^4J„+l(X)-5 ( 6 4 ) 

For example, 
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n = 7=>RES = ( 1 + 1 4 x " f 6 Q x 2 + 8 Q x 3 + 1 6 x 4) + 4 ( 1 + 12^ + 4Qx24-32x3)-5 
2x 

= 31-f l lQx+l04x2+8x3 

- j7(x) from Table 1 and (5.4). 

Binet forms for 2T„(x) and jn(x) are obtainable by substituting for Jn(x) from (3.3) in (6.3) 
and (6.4). 

Simson Formulas 

\+l{x) 2rn_,(x) -2T„2(x) = (-2x)"-2(2x-6)-3(Jn_l(x) + 2Jn_2(x)), (6.5) 

LiWLiW - %(*) = (-2xr\2x - 20) - 5( J„_x{x) + 4Jn_2(x)). (6.6) 

Summation Formulas 

i^x)=^(Xl~3n-\ (6.7) 
(=i 

._Jn+2(X)-5r>-6 
Z i W ^ " + 2 T (6.8) 

Explicit Closed Forms 

STn(x) =Jn(x)^i{n
r
l
+l

r)(2xY, (6.9) 

j^W^ + sJM/W. (6.10) 

Spotting the second portion of the expressions in (6.9) was not easy. Induction provides us 
with a proof. 

Proof of (6.9): Verification of (6.9) for n = 1,2,3 is straightforward. Assume (6.9) is true 
for n - 1,2, 3,..., k - 1 , k. Then, by (1.1) and the hypothesis, 

^ ( x ) + 2 x ^ _ 1 ( 2 ) + 3 = J,+1(x) + 3 1 + X ^ ; ) i r ) ( 2 x r + l J ^ ; 2 - r j ( 2 x r 

& ' * - r 
r=0v / 

= 2Ti+1(x) by (6.9). 

Being valid for n = * +1, the theorem is true for all n. 
Pascal's formula for binomial coefficients has been applied in the proof of (6.9) when combin-

ing corresponding powers (2x)r, r = 1,2, 3,... . Also, we have absorbed 1 = (̂ Q1) into the constant 
(k\l) to produce (*), by Pascal's formula. 
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Arguments of a similar nature are applicable for (6.10). 
Observe the simple, but important, connection between (6.3) and (6.4): 

Ux)-Ux) = J"+^~~l- (6.H) 

This seems to be an appropriate place at which to conclude our theory, though more could be 
told. 

7. CONCLUDING REMARKS 

Possibilities for other avenues of development that present themselves include, for example: 
(i) the extension of the theory in this paper to negative subscripts [9]; 

(ii) convolutions for Jacobsthal-type polynomials (cf. [13]); 
(iii) further work on diagonal functions, e.g., as in [14]; 
(iv) research into Jacobsthal-type polynomials along the lines of that for Pell-type polynomials in 

[13] and in a series of papers by Mahon and Horadam, e.g., [10]. 

Initial exploration of some of these opportunities has commenced. 
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INTRODUCTION 

In the analysis of some physical structures, the possibility of modeling them with an electrical 
circuit is particularly important because it allows the determination of the characteristic behavior 
by means of a simple circuital analysis. Moreover, it is also interesting to have a different method 
of measurement evaluation, comparable with the "direct" one, which sometimes either is not 
simple or requires the use of computer programs which on some occasions do not go into conver-
gence. Finally, it can make a contribution to the mathematical interest in testing of network soft-
ware algorithms for solving linear equation systems. 

In this article, a symmetrical ladder network is used as a model for the simulation of electrical 
power lines. Fibonacci and Lucas numbers come out from the analysis of the power distribution 
among the users. The electrical characteristics of the ladder network have also been determined 
in a closed form using a theory previously developed by the author [1]. 

1. MODELING OF A POWER ELECTRIC LINE 

Let us consider a high voltage electric line, supplied by the two sides, which gives power to 
users distributed along the line, as in Figure 1. 

V. 0 
user 1 

0 
user n 

Vr 

FIGURE 1. The Electrical Power Line Supplied by Two Sides 

A ladder structure (Fig. 2) can be used as a discrete electrical model of the power line. For 
the sake of simplicity, we consider n users who have equal consumption, represented by n equal 
vertical impedances Z2, placed at equidistant points characterized by equal horizontal impedances 
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V. t 

0 

\ 

Z1 

I- 1 

1 i 

1 Z2 

h 

k 

Z1 

f 

h2[ 

X . . 

Z2 

n -1 
21 

n 
Z1 

Z2 

n + 

c 

FIGURE 2, Ladder Network as a Model of the Power Line 

2. ANALYSIS OF THE LADDER NETWORK 

In order to analyze the network of Figure 2, we can use the superimpositlon of the effects in 
the networks of Figures 3 and 4. The analysis of these networks can be done starting from the 
study of the network of Figure 5, by adding a "load11 impedance. 

V 
A^ 

u 

) 

Z1 
1 

72 

Z1 
X — * • 

Z2 

n-1 
Z1 

n = oul 

72 

n 

FIGURE 3, Ladder Network Supplied by VA 

Z1 Z1 

72 12 

Z1 
n l 1 n+1 

O 

FIGURE 4. Ladder Network Supplied by VB 

Z1 
0 I 1 1 

Z1 

VC) 

Z1 
n-1 I I n 

72 Z2 72 

FIGURE 5. Ladder Network with n Identical Cells 
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In [1] a new fast method for the ladder network characterization in Figure 5 was presented; 
by using this method, all the electrical parameters of a ladder network formed by n identical cells 
can be written directly by means of both a parameter that characterizes the single cell [the "cell 
factor11 K(s) = Zx(s) / Z2(s)} and the polynomials in K whose coefficients are the entries of two 
numerical triangles, named DFF [3] and DFFz [4], here reported: 

n 
0 
1 
2 
3 

K° 
1 
1 
1 
1 

K1 

1 
3 
6 

K2 

1 
5 

K3 

1 

n 
0 
1 
2 
3 

K° 
1 
2 
3 
4 

Kl 

1 
4 
10 

K2 

1 
6 

K3 

1 

DFF Triangle DFFz Triangle 

Entry = n + K 
n-K 

Entry = n + K + l 
n-K 

The mathematical properties of triangles and polynomials have been presented in [2]. Let us 
call b„ and B„ the polynomials whose coefficients are the entries of DFF and DFFz triangles, 
respectively. These polynomials coincide with the polynomials defined by Morgan-Voyce and 
then investigated by Swamy [7] and Lahr [5] and [6]. 

All the electrical characteristics of the network represented in Figure 5 can be expressed 
directly in a closed form by means of these polynomials if all the cells are equal. 

The networks drawn in Figures 3 and 4 are very similar to that of Figure 5. The only differ-
ence is in the fact that the last cell of the Figure 5 network has a "load" impedance of infinite 
value. It is possible to write the electrical expressions for the Figure 3 and Figure 4 networks as 
simply as for the Figure 5 ones and also in closed form. 

For the Figure 3 network, we have (see [5], p. 275) that the transfer function is given by 
V 1 
VA Bn(K)> 

while the voltage at the generical Xth node is given by 

•D«(A) 

(1) 

(2) 

with B_r(K) = 0. 
The voltage behavior for the network of Figure 4 is symmetrical. For that reason, we can 

write 

W ^ B T l i ( 0 < X < ^ + 1). (3) 

By the application of the superimposition of the effects, we can write, for the network repre-
sented in Figure 2, the following expression for the node voltages: 

VX(K) = V>(K) + V>'(K) = VA Bn(K) B Bn{K) 
(0<x<n + l). (4) 

1997] 151 



THE APPEARANCE OF FIBONACCI AND LUCAS NUMBERS IN THE SIMULATION OF ELECTRICAL POWER LINES 

Denoting by Ixl and Ix2 the currents flowing into the Xth cell horizontal and vertical imped-
ances, respectively, we can write similar expressions, using the following property of Morgan-
Voyce polynomials, bx = Bx-Bx_l (see [1], [5]-[7]): 

L a f f l x v K-iJK) 
Bn(K) +vR 

J-vO — _ — 
1 

Ax2 Z2 Z2 

B„_X(K) B^jK) 
B„(K) B B„(K) 

B„(K) 

(1 < x < n). 

( I < x < « + 1); (5) 

(6) 

Let us now consider the case of odd n, for which the middle point exists for the voltage and 
the vertical current and is defined for x = m = (n +1) / 2. In this point, from (4), we can write 

A, 

In the middle vertical impedance, we also have 
1 

I ml (vA + vB)-
B, '(n-l)/2 

B. 

(7) 

(8) 

In the case of even n, we can reason analogously by considering the middle horizontal 
current, whose value is given by 

im.=^(-vA + v B ) ^ (9) 
^ 1 ~n 

being x = m = (n + 2)/ 2, while expressions (4)-(6) are always valid. 
We are mainly interested in determining the power dissipated in the vertical impedances 

(because only these have a physical meaning), which is given by the voltage-current product: 

(l<x<n); (10) 1 
^x2 ~~^~ 

L2 

y Bn-xJK) , y Bx-l(K) 
. A Bn(K) B Bn(K) 

Pm2-v-(vA+vBy 
Bt 

12 
\n-V)l2 (n odd). ( i i ) 

The Fibonacci and Lucas numbers appear in the case of K = l, which corresponds to 
Zj = Z2 = R. In this case, Bx = F2x+2 and hx = F2x+1. Consequently, we have 

V =VA 
F2(n+l-x) v F2x 

- 2(w+l) 2(«+l) 

Vm = (VA + V B ) ^ = ( V A + V B ) - i -
^2«+2 Ai+1 

i.,=-xxl R 
_ytV»l+VpJ^zL 

[ 2(w+l) !2(*+l) 

( 0 < x < f i + l), 

(w odd), 

(l<x<w'+l), 

(12) 

(13) 

(14) 
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Ax2 R K 2(n+l) 2(«+l) 

I-!4«t,')r 'n+l 

I m 2 = ^ ( V A + V B ) I i 

from which: 

P x 2 ~ i ? 

'n+l 

V A ^ ± ^ + V B ^ -
i 2 

2(77+1) 'K 2(n+l) 

Pm2=^(V A +V B )-
Hrc+l 

( 1 < X < A ? ) , 

(w even), 

(w odd), 

( l < x < « ) ; 

(n odd). 

(15) 

(16) 

(17) 

(18) 

(19) 

The last two relations show that the power consumption of the users is also a function of the 
Fibonacci and Lucas numbers. 

3, EXAMPLE 

Let us consider the power dissipation in the vertical impedances in the case of n = 3, shown 
in Figure 6 below. -1 71 j 1 z 1 

V 

0 j 

z) 

1 

1 

2 

72 ! 
s 

3 

Z2 
— 1 

Z2 

4 

O 

FIGURE 6e Example 

In the generical case of different values between the horizontal and vertical impedances, we 
have, from (9): 

P x 2~z, 
v B^jK) | y B^Kl 

B3(K) B3(K) 
( l < x < 3 ) , (20) 

that is, 

^2 
A 5 3 (£) B !*,(*) 

p22 = ̂ [ v A + v B r 
B3(K) 

l 2 

= ^ [ V A + VB] 

V ^ ^ + ^ + Sj + Vj 
A : 3 + 6 £ 2 + I O £ + 4 

K + 2 
K3 + 6K2 + lOK + 4 

(21) 

P32 = Vn 
B2{K) B0(K) 
B3(K) A 5 , (*) 

VB(K2+4K + 3) + VA 

K3 + 6K2 + lOK + 4 
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In the particular case of Zl = Z2 = R, we have 

from which: 

P x 2 " i ? V, 
Fg_2x(K) F2x(K) 

F,(K) B Fg(K) 
( l < x < 3 ) , 

P12=[8VA + VB]2/441R, 
P2 2=[VA-fVB]2 /49R, 
P3 2=[VB + 8VA]2/441K. 

(22) 

(23) 

4. PARTICULAR SUPPLY VALUES 

In the analysis of the symmetrical ladder network, which models the power electrical line, we 
can consider some particular cases for the values of VB and VA. 

1) If VB = VA > 0, the network is completely symmetrical and the current flows as in the 
direction, for example, indicated in Figure 6, if n is odd. When n is even, in the middle horizontal 
impedance, the current is zero. 

2) If VA = -V B , and only from the mathematical point of view, only the case n odd is inter-
esting. In this case, in the middle point, all the electrical characteristics (voltage, vertical current 
and power) are zero. 

3) In the case VB = VA 4- AV, where AV can be positive or negative and AV « VA? VB, we 
have a slightly unbalanced situation and, as a consequence, there is a small difference in the elec-
trical parameter values. This is a real case and the computation can be of practical importance: if 
one of the supplies does not have enough power (owing to a lack of power), the other one can 
provide it. We can write: 

V = VA
 B»-*+B*-i +AV^E=L; AV = A V - ^ (l<x<n) 

A A A, 
and 

so that 

1x2=" 
VA

 Bn-x + Bx-l + AV^i 
B„ B„ 

AIV, = 4 - A V ^ (l<x<n), Lx2 

APx2 = AVxAIx 2=^-AV2 

z2 

which, in the case of Zx-Z2- R, is equal to 

A l 2 
x-1 

Bm 

Bm 

(l<x<n) 

AR„=4AV2 
rx2 R 

[2x 

and, in the middle point, for n odd, is equal to 

APm = ^ A V 2 

[2«+2 J 

l 2 

Hn+1. 

(24) 

(25) 

(26) 

(27) 

(28) 
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This means that the power variation is strongly dependent on the number of cells n (i.e., the 
number of the users) upon whom the line is modeled and is also a function of Fibonacci and Lucas 
numbers. 

For example, if n = 3, for a variation of 1%, we have that 

R-APm=2.041//W-Q (29) 
while, for a variation of 10%, we have that 

R-APm = 0.204mW-O, (30) 

where, in the case of 10 cells, we have, for AV = 1%, 

R-APm = 252nW-Q, (31) 

and,forAV = 10%, 
R-APm = 025/iW-Q. (32) 

CONCLUSION 

A symmetrical ladder network with a high number of cells can be considered as a good model 
for the investigation of the behavior of an electrical power line. In the particular case of equal 
impedances, the electrical characteristics can be written as a function of Fibonacci and Lucas 
numbers. 
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Let (an) be a given sequence. The bracket function transform (sn) is defined by 

( i ) 

Let S(x) denote the formal power series of the sequence (sn), that is, 

5 ( * ) = £ ^ B . 

H. W. Gould [2] pointed out that 

1 - x ̂  1 - x 

The aim of this paper is to study the effect of the terms y^-, -}T, and xn in (2). We replace these 
terms with the powers -^-—, •———, and xtn and find the coefficients of the modified series. r (i—x)r (i-xny 

First, we study the effect of the term -^. If the term -^ is deleted from (2), that is, if 

(2) 

00 -^.n 

n=1 A X W=l 

then T(x) = (1 - x)S(x) and, consequently, 

*n= Sn~ Sn-l ~ zL, 
fc=l 

(see [2], Eq. (8)). More generally, let 

T(x) = 7 r 1 ^ l a » 

n-\ 

(1-xY^ "l-x" 

d\n 

r e R 

(3) 

(4) 

(5) 

What are the coefficients of T(x) ? 
a\ _ a(a-l)---(a-n+\) LetC) 

(see[l],Eq.(l.l)). Thus, 

a eR. Then 

l f " V = (l + x)a 
71=0 

(1 ^M^'h 
(6) 

(7) 
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It is known (see [2], Eq. (5)) that 
1 

(1-*)(!-**) t = I | ^ V = Z([n/*] + l)^ 
«=0 

Combining (7) and (8) and applying the Cauchy convolution, we obtain 

1 = i S(-iy (l-xY(l-xk) %{fa 
For the sake of brevity, we write 

r + 1 
i 

n-i + k 

-v 

i=0 

n-i + k 

(8) 

(9) 

(10) 

Now we use (9) in finding the coefficients of T(x) in (5). In fact, 

1 jZ = t°Slc{»,k,r)ir T(x) = Yaakxk 

& (l-x)'(l-**) & 

= fjakxkfjC(n-k,k,r)x"-k=Yjx"YJC{n-k,k,r)ak, 

n=0 

oo n 

k=l n=k 

which shows that the coefficients of T(x) in (5) are 

w=l k=l 

tn=Y,C{n-k,k,r)ak, (11) 
k=l 

where C(n - k, k, r) is as defined in (10). Note that 

(i) if r = 1, then C(n-k,k,r) = [n/ k], and thus tn=sn, which is the bracket function 
transform (1), 

(ii) if r = 0, then C(n-ky k, r) = [n/k]-[(«-1)/k], and thus (11) reduces to (4). 

Second, we study the effect of the term —l—. If the term - ^ is deleted from (2), that is, if 

1 x n=\ 

then 

More generally, let 
i = l 

i oo n 

7Yx) = — Y e . „ , , seR 

(12) 

(13) 

(14) 

What are the coefficients of T(x)l 
By (6) we obtain 

1 
•k\s ( l-x)(l-x*) ' 

= (l + x + xz + --)\ 1 ry<i) ~Sh2k-> 
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= (l + x + - + x*"1)+ 1- T (X*+X*+1 + - + JT"-1) 

+ 11-1 !-j+( 2 
s \ \fJLk . „2*+l (x"+x2*+1 + - + x w - i ) + 

I/Jfc] ' 

Applying Equation (1.9) of [1], we obtain 

i = f | W * 
(l-x)(l-x*)' £0l [«/ 

We can use this formula in finding the coefficients of T(x). In fact, 

which shows that the coefficients of T(x) in (14) are 

(15) 

**> 

_Af[n / / t ] + j - l ^ 
at- (16) 

Note that 

(i) if 5 = 1, then $"[ffiy[1) = [n/k], and thus tn = sn, which is the bracket function 
transform (1), 

(ii) if s = 0, then f "^^ 1 ) = 1, and thus (16) reduces to (13). 

Third, we study the effect of the term x". Let 
1 °° Y1" 

V ' 1-x^J " 1 - x " ' 
(17) 

Then, by (8), 

7"(x) = X ^ 1 00 CO 

U (1-xXl-x*) & = X«***£([«/*]+i)*" 
00 CO oo [«/f] 

(18) 

= Z ^ « * I ( [ ( » - * ) / * ] + l ) x , f " * = I x " I ( [ i i / * ] - ' + l)fl*, 

which shows that the coefficients of T(x) in (17) are 

[nit] 

n=t k=l 

'„=Z (["/*]- ' + !)«* (19) 
fc = l 
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Note that if t = 1, then tn=sn, which Is the bracket function transform (1). 
What is the effect of deleting the term xn In (2), that Is, what are the coefficients of 

^'jhp'T1?1 (20) 

Proceeding In a way similar to that in (18), we obtain the coefficients of T(x) In (20) as 

' » = Z ( [ » / * ] + i k = • * « + « , ( 2 1 ) 
k=l 

provided that the series S^Li ^ is convergent and its sum Is equal to a. 
Finally, we note that the three cases (5), (14), and (17) could be treated simultaneously. In 

fact, let 
1 °° Ytn 

T(x) = —-—Ya— , ry$ERjGX+. (22) 
V } (l-x)r£t "(l-*")" ? l ; 

Then 

tn = f,C(n-tk9k,r9s)ak, (23) 

where 

c^,^-irf%v,r) 
This can be proved in a similar way to the above three cases. For the sake of brevity, we omit the 
details here. 
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1. INTRODUCTION 

The Fibonacci polynomials are defined by the recursion relation 
Fn+2{x) = xF„+l(x) + Fn(x), (1) 

with the initial values Fx(x) = 1 and F2(x) = x. When x = l, Fn(x) is equal to the /1th Fibonacci 
number, Fn. The Lucas polynomials, Ln(x) obey the same recursion relation, but have initial 
values Li(x) = x and L^x) = x2 +2. 

Explicit expressions for the zeros of the Fibonacci and Lucas polynomials have been known 
for some time ([1], [2]). The zeros of F2n(x) are at the points 

±2isin — , * = 0,l,...,w-l. (2) 

The zeros of the odd polynomials F2n+l(x) are at 

'2k + \\n 
K2n + \) 2 

Similarly, for the Lucas polynomials, the zeros of /^(x) are at 

±21 sin * = 0,l, . . . ,w-l. (3) 

±2/ sin 

and the zeros of L2n+i(x) are at 

2n 
I * = 0,!,...,«-!, (4) 

± 2 s i n - ^ ~ , A = 0,l , . . . ,w-1. (5) 
2n + \ ' ' ' w 

With a view toward finding clues to obtaining similar analytic expressions for the zeros of the 
Tribonacci polynomials [3] and other generalizations of the Fn(x), it is of interest to study the 
properties of the above expressions in more detail, looking for patterns that may generalize. In 
what follows, it will be shown that the zeros of each Fn(x) and Ln(x) satisfy a number of rela-
tions among themselves, many of which can be derived without any knowledge of the explicit 
formulas given above. The results presented here divide into two parts: in §2, expressions for the 
elementary symmetric polynomials of the zeros of each polynomial are derived. Then in §3, the 
zeros are described in terms of points on the trajectories of a dynamical system. In §4, some 
comments are made regarding the generalization of these results to the Tribonacci case. 
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2e SYMMETRIC POLYNOMIALS 
Consider the elementary symmetric polynomials (Jj(xh x2,..., xm) over the set x1? x2,..., xm, 

where 0<j<m. These polynomials are defined by the relation 
m m 

U(t + h) = lvj(h,-,xm)-tm-J- (6) 

Clearly, oj is a polynomial of order j in its m arguments. Note that by multiplying out the left-
hand side and comparing powers oft on each side, we can write the o} as 

m-\ m-\ m—\ j 

4=0*2=4 /,=/,_, 1=1 

The idea in the following theorems is to derive general formulas for the symmetric polynomials 
over the zeros, using the following algebraic representations of the Fibonacci and Lucas poly-
nomials [2]: 

(n-!2 

k=Q ^ J 

n-k-t\xn-2k-i^ ( g ) 

n (n-k 

and 

where \p] means the greatest integer less than or equal top. 
First, let us consider the Fn(x). Since the zeros of Fn(x) are pure imaginary and come in 

complex conjugate pairs, we will concentrate on their magnitudes. Thus, for the even polyno-
mials F2n(x), denote the zeros by 

x0 = 0, ±ixk9 * = 1,2,...,«-1, (10) 

with xk > 0 for k > 0. As for the odd polynomials, F2n+l(x), denote the zeros by 

±ixk, * = 0,1,. . . ,«-1, (11) 

where 

,2/1 + 1° 2 / 

Theorem 1: The j * symmetric polynomial over the squares of the zeros of F2n(x) is given by 

xfc = 2 s i n | ^ i 4 l * = 0,1 n-1 . (12) 

Proof: Clearly, since the zeros are of the form given in formula (10) above, the F2n(x) can 
be factored as follows: 

n-l 

F2r,(%) = %Yl(x-^k)(X + iXk)- (14) 
k=l 

We can then regroup this expression in the following manner: 
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n-l 
F2„(x) = xYl(x2+xl) 

n-l n-l 
= x\ x2"-2 + x2""4X A + x2"-6X x2x\ + x2n-% £ x2x2xf + • • • + n x 2 \ 

[ lc=l j*k j*k*l k=l J 

n-l I J } (15) 

J=l [ W , ^ <•••</; 1=1 J 

/=i 

But we also know that 
n-l 

r2n-2j-l 

(16) 

Setting the right-hand sides of equations (15) and (16) equal and equating the coefficient of 
each power of x, we arrive at the desired result. • 

Alternatively, this theorem and those that follow can be proved by applying standard trigono-
metric identities to the explicit formulas for the zeros that were given in equations (2) through (5). 

Corollary 1: The zeros of the even polynomials F2f1(x) satisfy the following relations for fixed m 

k=l 

(ii) |X2=2(»-1). 
fc=0 

Proof: These follow immediately by setting j = 1 andj = n-1, respectively, in the previous 
theorem. • 

Turning now to the odd Fibonacci polynomials, the following result can be quickly proved in 
the same manner. 

Theorem 2: The y* symmetric polynomial over the zeros of F2n+l(x) is given by the expression 

^(^..^„2-.)=(277')- a?) 
Corollary 2: For fixed n, the zeros of F2n+l(x) satisfy the following relations: 

fi) U4 = h 

(ii) | > 2 = 2 « - 1 . 

Proof: In the previous theorem, set j = 1 to obtain (i) and j = n to obtain (ii). • 
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Theorems 1 and 2 have been checked numerically for the polynomials Fx(x) through Fl3(x). 
The corollaries have been checked numerically for all values from n = 1 to n = 20, as well as for 
selected values up to n = 1000. The numerical results show perfect agreement with the results 
predicted here. 

X THE DYNAMICS OF THE ZEROS 

The goal here is to obtain the zeros of F„(x) as iterates of some function (independent of/?) 
which maps the zeros of Fn_x(x) to the zeros of Fn(x). This procedure is complicated by the fact 
that the number of zeros increases with increasing n, but that will be dealt with below by breaking 
up the zeros into one parameter families, with n as the parameter. A second parameter, m, will 
distinguish one family from the next. Although the recursion relations derived below contain no 
information that is not already implicitly contained in formulas (2) through (5), it provides a 
different perspective on this information. Also, this recursion relation method can provide an 
algorithm that may be more efficient than other methods for numerical calculations of zeros for 
other classes of polynomials when the zeros do not have such simple analytic formulas. 

As in earlier sections, rather than dealing directly with the zeros, ±/Jt •, we will deal only with 
their magnitudes, Xj. However, for our purposes here, it is convenient to alter our notation 
slightly. For a fixed value ofn, label the magnitudes of the zeros in decreasing order as follows: 
xi^ > x2^ >"> x^. The superscript labels the polynomial of which it is a zero, and the sub-
script labels the relative size of the zero. Using this ordering, x%l always vanishes for even n. 
For a generic zero x^ of Fn(x), we will call m the row number of the zero, for reasons that will 
become apparent later. The idea is to find a function /w:9i->0^, independent of w, such that 
fm(x^) -~xj£+l\ As we will see below, the zeros x£?) for all n will then be obtainable by applying 
the appropriate fm to the initial value x = 0, and then iterating a certain number of times. The 
main result is Theorem 3 below. 

Theorem 3: For all n > 2, the zero in the mth row of Fn+l(x) is related to the zero in the /w* row 
of Fn(x) by the following mapping: 

m J^WY 
where 

am(x) = tan2 
mm 

tan-1 ^ f + 2KKX 

i x2 tan l J^h + 27iK%+mK 
•2nK2 (19) 

where Kx and K2 are a pair of integer constants. 

Proof: Assume for the sake of definiteness that n is even. [If n is odd, the proof proceeds in 
an identical manner, except that the roles of equations (2) and (3) are reversed.] Referring to 
equations (2) and (3), the integer k is related to the row number m by k = n-m, so that these 
equations tell us that the zeros of F„(x) and F„+l(x) are at 
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xiT+1) = 2sin 2n + l-2rn\n 
2n + l )~2 

- 2 cos 

where we have used the fact that sin (f- - ft) = cos ft 
Now, note that 

M {imn I mn . . mn XL . . , 
exp —— = cos + / s i n — - - ~ m ~ + iJ 1-

FV 2n J In In 2 \| 
Taking the natural logarithm of the last equation gives 

mn 

fx^ 
. 2 , V L J 

imn 
In 

In 
x(«) (XW\2 

2 i {2 ; + 2inKh 

(21) 

(22) 

(23) 

where Kx is an integer that specifies which branch of the Riemann surface is used to evaluate the 
logarithm. Now, solve for 2w: 

2w = - IMTT 

mif + / i-
(24) 

+ 2azK, 

Repeating the procedure of the previous paragraph, but this time applying it to exp (^_ ) , we 
find 

2n + l = - imn 

in 
>+D 

•+i, 1 -
,(»+i)\ 

(25) 

-f 2mKi 

where, again, Z"2 is an integer constant. 
Substituting equation (24) into equation (25) yields 

imn imn 

In 
«,(*+!) 

-H - i J l -
V 2 J 

2mK2 In 
,(") 

• + / J 1 -

• + 1. (26) 

2 ^ 

This result can be simplified. Note that, for any variable y such that - 2 < j < 2 , we can 
define a pair of polar coordinates (r, ft) via 

H 1 -^ = r e x p ; * -
Clearly, 

r = l, 0 = tan~ 

Taking the natural logarithm of equation (27), 

4-y2 

y 

(27) 

(28) 
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In = ln(/*expz0) 

= lnr + i$ (29) 

= / tan' 

Finally, applying equation (29) to both sides of formula (26), and then solving for x^"+1) gives 
the desired result. D 

Note that two integer constants, Kx mdK2, appear in this result. From examining equation 
(19), it is clear that Kx is completely arbitrary; changing its value will simply change the argument 
of the tangent by a multiple of In. Because of the periodicity of the tangent, the value of Kx has 
no effect on the results and will henceforth be set to zero. 

The second constant, K2, enters into the proof in the same way but, curiously, its value does 
affect the positions of the zeros. Theorem 3 has been checked numerically by using it to predict 
the first 40 zeros for all cases from m = ltom = \0. In each case, the theorem gives the correct 
results, provided that K2 is set equal to zero. Allowing K2 to have nonzero values seems to lead 
to interesting effects; these are currently under investigation. But in the remainder of this paper, 
we will set K2 = 0 (or, in other words, we will restrict ourselves to the principal branches of all 
logarithms), since this is the case that gives the correct zeros for the Fibonacci polynomials. 

Theorem 3 tells us that families of x^ with fixed m form trajectories of a dynamical system, 
with n playing the role of a discrete time variable. Points are moved along each trajectory by 
repeated iteration of the function fm(x) = 2/ ^l + am(x). This situation is illustrated in Figure 1. 

J I L U 
10 12 14 16 IS 

FIGURE 1: The Zeros of the Fibonacci Polynomials 
(Only zeros with moimegative imaginary part are shown) 
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It can be seen that the integer m labels how many rows the trajectory is from the outside of the 
diagram. It is also clear that each trajectory begins at a root of the form x^ - x^m) = 0. Since 
each iteration of fm increases n by one, and since each trajectory starts at an initial value of n§ -
2m, it takes n-2m iterations to reach a fixed final value of n. As a consequence, we have the 
following corollary. 

Corollary 3: The zero of Fn{x) with row number m can be written as 

4n)=/i""2m)(0), (30) 

where f^j) means the 7th iterate of fm. 

Some observations can be made about this result. First, it is clear from the form of fm(x) 
that each trajectory approaches an attracting fixed point situated at x(oo) =2. This implies that as 
n -> oo? x^ -> 2, for all m. 

Second, a similar result is easily proved for the zeros of the Lucas polynomials by using the 
same method. In the Lucas case, we still have fm(x) = 21 ^Jl + am(x), but now the form of am 

changes: 

ajx) = tan (2m-l)n-
(2m - 1)TV + 2 tan"1 J±=jt 

(31) 

Here, we have again set Kx = K2 = 0. There is one complication arising here that did not occur in 
the Fibonacci case: iteration of the above function does not simply carry us along the m^ row. 
Instead, the trajectory jumps back and forth between two adjacent rows. More specifically, 
repeated use of am will give us the zeros in the mih row for ^(x) and those in row m + l for 
L2„+i(x). This occurs because m enters the expressions for the even and odd zeros in the same 
manner for the Fibonacci case [compare the numerators of the last expressions in equations (20) 
and (21)], while in the corresponding expres-sions for the Lucas zeros, it enters through a factor 
of (2m +1) in one case and (2m -1) in the other. Although the trajectory now alternates rows, we 
still recover all of the zeros as we run over differing values ofm, as has been verified numerically. 

Some observations can also be made about the properties of the am(x). For the Fibonacci 
case, define 

*? = EW - <4> = ".«>) = -an'1 ' " ' * 
Then we have the following propositions. 

Proposition 1: For all m and «, 

-mn 

ff$ = W*- (32) 
Proof: We know that 

«(-) _ M-frff)2 _ 4-/.'Off"0) 
K ~i (tfy ~v /m

2(ei}) ' C33) 
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Substituting fm(x) = 2/ ^Ja-ham(x) into this expression and simplifying the fraction quickly leads 
to equation (32). • 

Proposition 2: The argument of the tangent in a^ is always a rational multiple of n. In other 
words, the quantity 

tan-1/?^ 
t a n " 1 / ? ^ ( 3 4 ) 

is rational for all n and m. 

Proof: We know [by equations (20) and (21) or, alternately, by equations (2) and (3)] that 
all of the zeros can be written in the form x^ = 2cosU-7t) for some pair of integers p and q 
(depending on m and n). Substituting this expression into the definition of 0^\ we find that 
Bjp = tm.j7r, or taif 1/%) = j n. Substituting this into the quantity in formula (34), we find that 
it equals -~fy which is clearly rational. D 

Note that 0^ describes the tangent of an angle inscribed in a right triangle of hypotenuse 
equal to 2, and adjacent side of length x%\ The hypotenuse remains constant, while the adjacent 
side increases in length with increasing n or decreasing m. A deeper understanding of the geomet-
ric meanings of aff and 0^ may help provide some insight into the properties of the zeros of the 
Tribonacci polynomials and other generalizations of the Fn{x). 

4. TRIBONACCI POLYNOMIALS 

The Fibonacci and Lucas polynomials have been generalized in various ways. The simplest 
generalization is that of the Tribonacci polynomials, Tn(x) (see [3]), which obey the relation 

Tn+3(x) = x2Tn+2{x) + xTn+l(x) + Tn{x), (35) 

with T0(x) = 0, Tx(x) = 1, T2(x) = x2. The Tn(x) are often written in terms of the trinomial coef-
ficients (y) , which are defined implicitly by the following equation [3]: 

£(*)= S r-j-1)*2"-3'-2. (36) 
j=o V J h 

While numerical work has been done concerning the zeros of the Tribonacci polynomials, 
explicit expressions for them are not known, so deriving formulas of the sort presented in §2 of 
this paper would be of interest, as they could provide valuable clues to the possible forms the 
zeros could have. Below is a theorem giving expressions for the symmetric polynomials of the 
Tribonacci zeros. Again, these results are easily verified numerically. The proofs are omitted, as 
they are identical to those of §2, except that equation (36) replaces equation (8). 

The zeros of the Tribonacci polynomials form a set that is invariant under rotations in the 
complex plane by multiples of 2^/3, so the zeros can be divided into three subsets: {xy}, foe2*73}, 
and {xfe~27r/3}, for an appropriate set of xi. 

Theorem 4: 
(i) The zeros of T3rj+l(x) have elementary symmetric polynomials of the form 
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*J(xl...,xl) = (-iy^njJ^. (37) 

(ii) The zeros of T3n+2(x) satisfy the following relation: 

^(xl...,xln) = (-iy{3n-j + l\. 08) 
(Hi) The zeros of T3n(x) satisfy the following relation: 

^(^3,...,x2V1) = (- l){3"7_ 1)3 . (39) 
By setting j = 1 in the above theorem, we have the following corollary. 

Corollary 4: 

(i) The zeros of TZn±x(x) satisfy Z?=i x\ - ~-(3n -1). 

(ii) The zeros of T3n+2(x) satisfy X ^ x ^ = -3w. 

fill) The zeros of ZJ^x) satisfy Xj^1 x3
k = -(3/i - 2). 

As for the results presented in §3 of this paper, their derivation depended on prior knowledge 
of the explicit formulas for the zeros of the Fn(x). However, the logic could be reversed: //for-
mulas analogous to the fm could be found for the Tn(x) by fitting functions to a few of the 
numerically known zeros, then explicit formulas for the positions of all the zeros could immedi-
ately be generated. Finding the fm functions and finding the zeros are thus equivalent problems, 
but it could turn out that one form of the problem is easier than the other. Finding the fm func-
tions could be aided by further analysis of the geometrical content of the results of §3. and of how 
the geometry changes in the Tribonacci case. 
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The generalized Fibonacci sequences {Cn(a,b?r)} defined by C„(a,b,r) = Cn_x(a9b9r) + 
Cn_2{a,b9r)-¥r with Cx(a,b,r) = a, C2(a,b:)r) = b9 where r is a constant, have been studied in 
[2] and. [3]. Again we take the initial value C0(a9b9r) = b-a-r. The Fibonacci sequence arises 
as a special case, Fn = Cn{\ 1,0), while the Lucas sequence is Ln - Cw(l, 3,0). 

The purpose of this note is to establish some properties of Cn(a, b, r) by using the method of 
L. C. Hsu [1]. 

For the convenience of the reader, we introduce the following symbols: 
/ will be the identity operator; 
E represents the shift operator; 
Ei is the "ith coordinate11 shift operator (i = 1,2); 
V = I + E2-EV 

We also let ( n ) = . 
\!>JJ i\j\(n-i-j)\ 

In [1], Hsu and Maosen gave the following proposition. 

Proposition 1: Let f(n9 k) and g(n9 k) be any two sequences. Then the following reciprocal 
formulas hold: 

g(n,k) = V"f(0,k)= X ("^ny/Q.k+A (1) 

f(n,k) = Vng(0yk)= X ("^(riy&k+J). (2) 

From this point on, we briefly write Cn for Cn(a, b, r). 

Lemma 1: Ck+Ck+x + Ck+6 = 3Ck+4. (3) 

Q + Ck+l + Ck+6 = Ck + Ck+l + Ck+5 + Ck+4 + r 
- Q+2 ~"r + Q + 4 + Q + 3 + r + Q+4 + r 

= Q+4 ~ r + Q+4 + f + Q+4 ~ 3Q+4. 

Theorem 1: C4r}+6k = X I/'1/ P WQ+6(y+*)> 

0+6* = X IW| K" ̂  3' C4/+6(y+* 

flw/* Wetake/(/ ,7) = (-l)''C;+6/. Using Lemma 1, 

(4) 

(5) 

1997] 169 



SOME PROPERTIES OF THE GENERALIZED FIBONACCI SEQUENCES Cn = Cn_x + Cn_2 + r 

V/(/, j) = (I + E2- £,)/(/, 7) = / ( / , j)+/(/, y +1) - / ( / +1,7) 

~ H ) (Q+6J + Q+6/+1 + Q+6;-Hs) ~ ( V 3Q+6/+4-

Hence, V s 3^ 4 . Thus, we obtain g(/j, jfc) = Vn/(0,*) - 3nE*nf(0, k) = 3"C4n+6k. By (1), we 
have 

TC 4n+6k 2 G",> +6{j+h)> 

and, by (2), we get 

completing the proof of Theorem 1. 

We take k = 0 in Theorem 1 to Write Corollary 1.1, and i = 0 in Corollary 1.1 to derive 
Corollary 1.2. 

CaraOwyl.1: C4n= £ " 3-C/+6 / , 
»+y+5=»v' ' / > / 

i+j+s=n 

Corollary 1.2: C „ - ( - l ) " £ ( j ) c 6 ^ 0 (mod 3). 

(6) 

(7) 

(8) 

We can obtain Theorem 2, in a manner similar to that used to prove Theorem 1, by taking 
f(i,j)~(-l)'C6i+J and expanding V/(z,y). Again, set k = 0 in Theorem 2 to write Corollary 
2.1, and let / = 0 in (12) below to obtain Corollary 2.2. 

(9) 

(10) 

Theorem 2: C4n+k = £ " )r"C6i+J+k, 
i+j+s=n V ' J J 

i+j+S=n^'Jy J 

i + y + 5 = « v , - / > / 

Q» = I (A-Vi^W I 
i+J+s=n\ "> J J J 

Coro/Za/y 22 : C6n - ( - ! ) " £ ( " I c , = 0 (mod 3) 

Proposition 2: If a sequence {X„} satisfies 

I = 2E~l-E~3 

then 

(11) 

(12) 

(13) 

(14) 
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I = t[f\(-ir'2!E-*»»; (15) 
/=(A J 

^=z(r)(-ir2'^2„ (i6) 
/=0 

and 

^3^=zfrl(-ir'2^2l+t. (I?) 
Proof: Use binomial expansions. 

Lemma 2: C^IC^-C^. (18) 

C„ = Q_j + C„_2 + r 
= Cw_1 + Cw_1-Cw.3-r+r 
- 2 6 ^ ! Cw_3. 

Theorems: Q„ = £(f](-ir'2<C2,, 

Q«+*=l(f)(-ir'2'c 

(19) 

(20) 

Proof: Since Cw satisfies (14), Theorem 3 is proved by Proposition 2. 

Our final corollary follows by setting / = 0 in (20). 

Corollary 3.1: C3n+k - (-1)"Q = 0 (mod 2). (21) 
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1. INTRODUCTION 

In the standard binary numeration system, an #-bit integer N is uniquely represented as the 
sum of powers of 2. Specifically, 

N = a^T1-1 +a„„22w"2 + - +a222 +at2l +aQ2\ 

where at is either 0 or L As is common, JVcan be represented as an w-tuple of 0ss and l's, where 
the position of the bit determines the power of 2 involved. For example, in a 4-bit standard binary 
numeration system, N = 0101 = 5, since 5 is equivalent to 22 +2°. Newman ([13], p. 2422) sug-
gests that the Chinese used the binary numeration system around 3000 B.C. 

Instead of powers of 2fs, if Fibonacci numbers are used, then an alternate numeration system 
(viz. Zeckendorf [14]) occurs in which an integer N may have more than one representative. That 
is, let 

N = an_tFn+l +an_2Fn + <°-+a2F4 +alF3+aQF2, (1) 

where Ff is the Ith Fibonacci number. For example, 1000 = 0110 = 5 in the Fibonacci numeration 
system, where 5 is equivalent to both F5 and F4 + F3. It is known (e.g., Brown [1]) that an w-
tuple of 0's and l's is a unique representative of N if every pair of lfs is separated by at least one 0. 
Under this restriction, we view 1000 as the representative of 5 and 0110 as the redundant repre-
sentative. Brown [2] showed that, if one represents an integer by the w-tuple with the most lfs, 
then this representative is unique. In this case, we view 0110 as the representative of 5 and 1000 
as the redundant representative. 

Representations of this type have important advantages. For example, in a CD-ROM, three 
or more consecutive l's cannot be read reliably (Davies [4]). Motivated by this, Klein [11] inves-
tigated Fibonacci-like representations of the form (1), where Fi=Fi_l+Fi_m for />zw + l, and 
Ft=i-l for 1 <i <m +1. The case m = 2 corresponds to the Zeckendorf representation using 
Fibonacci numbers. 

Kautz [9] uses such representations in a data transmission system where the receiver clock is 
synchronized to the transmitter clock using only the data. Toward this end, he uses code words in 
which there are neither strings of l's of length greater than m nor strings of 0fs of length greater 
thanw. 

Dimitrov and Donevsky [5] show that the number of steps required to multiply two «-bit 
numbers represented in the Zeckendorf numeration system using Quadranacci numbers is less than 
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that required by two numbers represented as standard binary numbers. That is, even though the 
Zeckendorf representation requires more bits, its efficiency in the multiplication process more than 
compensates for extra operations because of larger word size. Indeed, the Zeckendorf represen-
tation outperforms both standard binary multiplication and multiplication using the more efficient 
multiplication algorithm for n -> QO when the number of bits in the standard binary representation 
is 131 through 1200. 

The question posed and answered in this paper is: To what extent does redundancy occur in 
certain redundant numeration systems? The question has important consequences for both the 
efficiency of number representations and the transmission of data. We analyze redundancy in two 
ways: 1) the number of distinct representative w-tuples for some given n and 2) the proportion of 
digits used in nonredundant representatives. Table 1 shows the numeration systems considered in 
this paper and the corresponding recurrences, basis elements, and references. 

TABLE 1, Selected Numeration Systems*, Recurrences, and Basis Elements 
|lllillilpiKlll|l 
1 Standard binary 
1 Zeckendorf 
1 - - Fibonacci 
1 Gen. Fibonacci 

- - Tribonacci 
- - Quadranacci 
Generalization 
of Fibonacci 
Numbers 

\m - ary 
Numbers 

^ ^ ^ ^ ^ j i ^ ^ ^ ^ ^ ^ ^ ^ ^ K 
Fi = 2 F M 

FI = Fi.i + Fi.2 

Fi = Fi.i + F/.2 + ...+Fi.m 

fi = Fi-l + Fi-2 + Fi-3 
Ft = Fi.i + Fi-2 + F.-.3 + F M 

Ft = Fi.i + Fi.m 

Fi = Fi.i + F/.3 
Ft = FiA + F M 

Ft = mFi.i - Fi.2 

Fi = 3F M - F^ 
Fi = 4 F M - Fi.2 

SBB^^fflHIHi 
... 2? T^lFlFl1 21 2° 
. . .21 13 8 5 3 2 1 

... 44 24 13 7 4 2 1 

... 56 29 15 8 4 2 1 

... 13 9 6 4 3 2 1 

... 10 7 5 4 3 2 1 

... 144 55 21 8 3 1 

... 780 209 56 15 4 1 

ipiiipiiil 
[7,8,12,13] 
[1,2,3,14] 

[3,9] 

[11] 

[11] 

2. BINARY NUMERATION SYSTEMS 

Consider a numeration system in which the basis elements are (...,F4,F3,F2), where Ft = 
iVi+iV2 + e"+^/-w f°r i>m + l, and Ff =2j~2 for 1 <i </w + l, where m>2. Consider a repre-
sentative n-tuple T=(an_ml9an_2,...9al,a0), where at e{0,l}. From [3] and [6], if no more than 
m-\ consecutive a/s are 1, then J is a unique representative of N = ZJTo ai^l+2• ^ e c a e w " t e 

the regular expression (see [10], pp. 617-23) for the allowed representatives as 

R = (A + l + l 2 + l 3 + ••• + l,,,"1X0(A + l + l2 + l3 + •••+l',,-1))*. (2) 

Here, a* = {A,a,aa,aaa,...}, where X is the empty string, and 1' denotes / consecutive l's. 
Thus, this expression represents the set of strings consisting of substrings beginning with i Ts, for 
0 < i < m - 1 , followed by a sequence of substrings each of the form 0,01, 011,..., or 0 lm_1. From 
(2), we can derive a generating function N(x, y, z) for the number of representatives and the 
number of 0's and l's in these representatives. Let x track the number of bits, y track the number 
of 0!s, and z track the number of l's. Then, a typical term in the power series expansion of 
N(x, y, z) is %nij xnyjzJ for n = i + j , where ^nij is the number of representative w-tuples with i 0fs 
and7 l's. We can write 
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^m-\„m-\\ N(x, y, z) = (1 + xz + x V + • • • + xm-lzm~l) 1 - xy{\ + xz + x2z2 + • • + xm'lzm-1 (3) 

-\rn-l where the first term represents the leftmost substring, which can be nothing, 1, 1 , ..., or 1" 
while the second term represents the ways to choose 0, 01, 012, ..., and 0V"'1. We can rewrite 
(3) as follows: 

N(x,y,z) = \-xmzn 

l-xz 
1 

^ 

1 •vi1^-) 
From this we can generate, for example, the distribution of 16-tuples with / Vs for 0< / < 15, as 
shown in Figure 1. It is interesting that the number of representative ^-tuples increases markedly 
from m = 2 to m = 3; for m = 7, the distribution is almost binomial. The fact that it is not exactly 
binomial can be seen by its asymmetry. Capocelli, Cerbone, Cull, and Hollaway [3] derive an 
expression for the average proportion, PVs, of bits that are 1, when the number n of bits is large. 
Table 2 shows this. In the Zeckendorf numeration system using Fibonacci numbers (m = 2)9 the 
average proportion of l's is near 25%. However, as m increases from 2, this value approaches 
50%. Standard binary 

numeration system 
(infinite m) 

•15000 £ 

FIGURE 1. Distributions of lfs in 16-Tuple Zeckendorf Numeration Systems 

TABLE 2 ([3], [11]). Average Proportion of lfs in Numeration Systems with Basis 
Elements Ft = Fi_1 +i^_2 + • • • + ^ - m When the Number of Bits Is Large 

| m 

K7~ 
2 

0.2764 
3 

0.3816 
4 

0.4337 
5 

0.4621 
6 

0.4782 
7 

0.4875 
8 

0.4929 
oo 

0.5000 

Klein [11] considers numeration systems based on the recurrence Ft =Fj_l+Fi_m for 
i>/w + l, and Fj=i-l for 1 < / < / W + 1, where m>2. Consider a representative ^i-tuple T = 
(aw_1?aw_2, ...,a1?a0), where ay e{0,l}. From Theorem 1 in [6] it follows that, if every pair of l's 
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is separated by at least m - 1 0' s, then T is a unique representation of N = ZJTo aiFi+i • F o r m = 2> 
this is the Fibonacci numeration system in which no two l's are adjacent. A regular expression for 
the allowed representatives is 

R = 0*+(0 + 10'f,"1)*10*. (4) 
The 1 in 10* represents the rightmost 1 in a string containing at least one 1. In this case, any 
number of 0's, as described by 0* occurs to its right. (0 + 10w-1)* represents a string consisting 
of a sequence of substrings of the form 0 and 10w-1. It follows from this construction that each 
pair of l's is separated by at least m-1 0's. 

Consider a generating function N(x, y, z) to count the representative w-tuples and the 0's and 
l's in these representatives. From (4), we can write 

N(x, y, z) = (1 + xy + x 2y2 + 0 
+ [(1 + (xy + xmym~lz) + (xy + xmym~lzf + • • •) xz(l + xy + x 2 / + ••')] 

(5) 

Here, (l + xy + x2y2 + •••) counts the ways to choose no 0's, one 0, two 0's, and so forth, while 
(xy + xmym~1z) counts the ways to choose either a single 0 or 10m_1, and xz counts the choice of a 
single I. Equivalent to (5) is the following: 

N(x,y,z) = 1 
xy 

1 + xz 
l-xy-xmym'1z (6) 

From this, we obtain the distribution of 16-tuples according to the number of l's, as shown in 
Figure 2. It is interesting that, even for small m, the number of representative w-tuples is small 
compared to the standard binary numeration system, shown here truncated to 1000 in order to 
display detai l . Standard binary 

numeration system 
truncated to 1000 

Fibonacci 
numeration systei 

FIGURE 2e Distributions of l?s in 16-Tuple Numeration Systems Whose Basis 
Elements Are Generated by the Recurrence Fi - Fi_l •i-Fi_m 

If we substitute 1 for y and z in (6), we achieve a generating function for the number of 
representative w-tuples, as follows: 
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N(x, 1,1) = 
1 - j c 

1 + -
l-x-x" 

l-xm 

(l-x)(l-x-xm) 
(7) 

Specifically, gnnD, the coefficient of xn in the power series representation of (7), is the number of 
representative w-tuples. We can write (7) as 

tf(*,u)=y^:+"-, (8) 

where ... represents terms whose contribution to £,nuu is negligible, for large «, compared to the 
term shown, and 

1 
gm~ (l~am)ia+mam

m-lY 

Here, am is the dominant root, i.e., the singularity on the circle of convergence of N(x, 1,1). We 
are interested in the value of %nuu when n is large; thus, we write 

(l-am)(a + maZ~l) 
1 

m ~)\am 
(9) 

fn where fn ~ gn means lim„ 

Consider now the proportion of bits that are 0- and 1 in the representatives counted by %nuu. 
Substituting 1 for z in (6) yields N(x,y,l), a generating function in which a typical term is 
(^ 0 n + £„iD J 1 + ^n2u y2 + ' " "^H/ ID/ 1 )*"* where %niu is the number of representative w-tuples with 
/ 0fs. Differentiating N(x, y, 1) with respect to y and setting y = 1 yields a generating function in 
x in which a typical term is (gn]D + 2£;n2D + n£;m[)xn = Enxn. Dividing E^ by %nnu yields the aver-
age number of 0fs in representative w-tuples. Dividing this by n gives the average proportion PQ,S 

of bits that are 0. That is, 

^ s W ^ S / ^ ^ j , ! ) 
«>o 

(l-xm)(x + (jn-l)xm) 
,m\2 ,=1 (i-x)(i-x-xmy + • (10) 

where - • • represents terms whose contribution to En is negligible for large «, compared to the 
term shown. But N0<s(x) can be expressed as 

4W _ g ^ ( l - q J ( l + ( ^ - l ) < - 1 ) + • 

a» 

where ... represents negligible terms. Therefore, from (11), we have 

H ^ ^ O - a ^ l + ̂ - lK- 1 ) ! l 

a„ 
n. 

Thus, the proportion of digits that are 0 when the number n of digits is large is 

l + Cm-lK-1 

^0's — " l+ma' m-\ 

(11) 
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Table 3 summarizes these results. It includes PVs, the proportion of bits that are 1, which can be 
obtained from PVs = l-P0,s. It also shows values for the proportion of 0ss and l*s for large n. As 
m grows, the proportion of bits that are i approaches 0, as shown in the last row of the table. All 
entries in this row are approximations that apply when m is large. For example, the dominant root 
am of l~x~xm can be calculated as follows. Let am = e"A. For small A, this can be approxi-
mated be the truncated series 1 - A. Thus, l~am-a2 = ®~ A - e~mA. For t = mA, we find that 
t = me~\ from which we obtain lnm~lnt + t ^i. Thus, l-am-a™^l-am-A^l~am-tIim 
« 1 - am - In m I m or am = 1 - (In m) I m. By a similar calculation, the approximation for the num-
ber of representative w-tuples shown in the last row, second column of Table 3 can be derived. 

TABLE 3. Asymptotic Approximations to the Number of Representative if-Tuples and the 
Proportion of dfs and lfs in Numeration Systems with Basis Elements Fi = Fi_l + Fi_m 

[lllllllltllllil 

General m 
2 

1 3 
| 4 
1 5 
1 6 | 

7 | 
8 | 

- » oo 

l|i;;l!llliiiilpi^ilill!ll;il!:i 
i ( i T 

(\-amX\+maZ-l){am) 
1.1708x1.6180° 
1.3134x1.4656° 
1.4397X1.3803D 

1.5550xL3247n 

1.6621xl.2852n 

1.7630xl,2554n 

1.8587X1.232O0 

m/ln2 m 

i|||l||iw|||ilp||:l 

(l + (/n-l)oO 
_ _ _ _ _ _ 

0.7236 
0.8057 
0.8492 
0.8762 
0.8948 
0.9084 
0.9188 
1- I/m 

i|;Iilil|| |M|i|| 

(l-aj 
am(l + maZl) 

0.2764 
0.1943 
0.1508 
0.1238 
0.1052 
0.0916 
0.0812 
1/m 

a Dominant root 1 
of 1-JC-JT 

0.6180 J 
0.6823 | 
0.7245 | 
0.7549 | 
0.7781 J 
0.7965 j 
0.8117 | 

t-(lnm)/m j 

3, MULTIPLE-VALUED NUMERATION SYSTEMS 

There has been less work on numeration systems with nonbinary digits. Klein [11] considers 
numeration systems based on the recurrence Ft = fnFt_x -Fjm2 for i > 3, F3 = m, and F2 = l, where 
m>3. Consider a representative /i-tuple T= (an_han__2,...,al9a0), where at e{0, 1,...,m-1}. 
From [11], if every pair of m-Vs is separated by at least one /, such that z e{G, 1, ...,/w-3}, then 
J is a unique representative of JV = EfrJ atFi+2. For this numeration system, we seek the pro-
portion of digits that are 0,1,..., m - 2 and m - 1 . We use a generating function N(x, y9 z, w) in 
which x tracks the number of digits, y tracks the number oHm-\\z tracks the number of m - 2' s, 
and w tracks the number of 0fs. By symmetry, the proportion of digits that are /, where z is 
restricted by 1 < z < m- 3, is the same as the proportion of 0's. Indeed, w can be viewed as track-
ing any i in the range 0 < i < m - 3. 

We enumerate a representative according to whether it has 1) no m- Is s or 2) at least one 
# i - l . For 1), there is no restriction on the digits, and the representatives are described by the 
regular expression, P = (0 + l + 2+--- + m-2)* . The power series expression for the number of 
representatives, in this case, is 

1 + (WX + (/W-3)X + ZT) + (WX + ( M - 3 ) X + ZX)2+(WX + (/II-3)X + 2X)3 + ^ ^ (12) 

That is, the term wx represents a choice of a 0 that contributes 1 to the count of 0's, as tracked by 
w, and 1 to the count of digits, as tracked by x. Similarly, the term zx tracks the number of 
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m - T s. The term (m - 3)x tracks the number of digits in {1,2,..., m - 3}. Expression (12) can be 
written as 

i r ~ ^ — • ( 1 3 ) 

l-wx-(m- 3)x - zx 
For 2), the regular expression that describes the allowed representatives is 

[P + (ifi-l)(m-2)*(0 + l + 2+ —+(m-3))]*(m«l)P. 

Here, the rightmost m -1 is the rightmost m -1 in the string. To its right is any substring consist-
ing of the digits 0, 1, ..., and m-2, as described by P and enumerated by (13). The digits to the 
left of the rightmost m-l can be chosen from Q, 1, 2, ..., m-2 (i.e., from P) and from strings 
beginning in m-1, ending in a digit whose value is m-3 or less with no, one, two, etc. wf-2's in 
between. The choices for the digits to the left of the rightmost m-\ are enumerated by 

i2 

1 + wx + (m — 3)x + zx + yx[wx -b(m- 3)x] 
l-zx 

wx + (m- 3)x + zx + yx[wx + (m- 3)x] 
l~zx 

Here, the choices of a substring beginning in m-\ are enumerated by yx[wz + (m-3)x]I (l-zx), 
where yz represents the choice of the first digit m-l, [wz + (m-3)x] represents choice of the last 
digit, 0, 1, ..., m-2, and II (l-zx) represents the choice of the #w-2fs in between. Thus, the 
generating function for the choices of representatives is 

N(x, y9 z, w) - 1 r 
l-wx-(m- 3)x - zx 

1 + - yx 
l-wx-(m- 3)x -zx- yx[wx + (m- 3)x] 

l-zx 

(14) 

Substituting 1 fory, z, and w into (14) yields N(x, 1,1,1), where 

N(x,l,l,l)-- l 
1-MX + X 

is the generating function for the number of representative w-tuples in this numeration system. 
Specifically, £nnDQ, the coefficient of xn in the power series representation of (15), is the number 
of representative w-tuples. We prefer to write (15) as 

N(x) = Sm 

i-
(16) 

where 

am = -m- •4^f- p m -
m + 4nF-4 

a 

Pm 

p Sm 
mj I-at 

-, and/^ = 
l-fi 

That is, from (16), we can write gnDDD= gmQ-/(xm)n +hm(l/'f)m)n'. We are interested in the value 
of %nuuu when n is large, so we use only the left term of the right side of (16). Thus, 

1 
1-ai 

1 
\am 

(17) 

Table 4 shows the values of gm and 1 / am for various m. 
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TABLE 4„ Asymptotic Approximations to the Number of Representative n-Tuples and 
Proportion of Digits in Numeration Systems with Basis Elements Fi = mFi_1~Fl 1 i-2 

[ M 

General m 

1 3 
4 
5 
6 
7 

1 8 
— ^ oo 

Number of 
representative 

i r i Y 
i-<UJ 
1.1708x2.6180s 

1.0774x3.732 l a 

1.0455x4.7913° 
1.0303x5.8284s 

1.0217x6.854 l a 

1.O164X7.873O0 

l.OOOOx/a" 

Proportion of 
digits that are 
i'for0£&ii*3 

am 

i-«i 
0.4472 
0.2887 
0.2182 
0.1768 
0.1491 
0.1291 

1/m 

Proportloa of 
digits that are 

m~2 

m 

0.3820 
0.2679 
0.2087 
0.1716 
0.1459 
0.1270 

Mm 

• Proportion of 
; digits f ia t are 

(1 + aJ 
0.1708 
0.1547 
0.1366 
0.1213 
0.1087 
0.0984 

1/m 

: Um 1 

m—Vm2—4 

0.3820 | 
0.2679 
0.2087 
0.1716 1 
0.1459 
0.1270 

1/m | 

Substituting 1 for y and z in (14) yields N(x, 1,1, w). A typical term in the power series rep-
resentation of this generating function is (^••o + 4mi w l + ^ D n 2 w 2 + "" + ^ D D X K ) where 
«̂na& *S ^ i e number of representative w-tuples with k 0's. Differentiating this with respect to w 

and setting w = 1 yields a generating function in x in which a typical term is (̂ WDDl + 2£IIDn2 + • • • 
+ /i^nDnw)^w = Swx". Dividing Ew by ^WDDD yields the average number of 0fs in representative /?-
tuples. Dividing this by w gives the average proportion of digits that are 0. 

But NQS(X) can be expressed as 

2x2 
w=i (l-mx + x ) 

(18) 

a„ 

N0.s(x)=(1 a2j2-+-V 
(19) 

a my 

where ••• represents terms whose contribution to En is negligible, for large w, compared to the 
contributions from the term shown. Therefore, from (19), we have 

®n 

(I-al
mY {a 

1 
n. 

Thus, the proportion of digits that are 0 when the number of digits is large is PQ,S = am/(l-a2
m). 

By an earlier observation, we can write Pm_Js = • • • = PVs = P0.s. Similarly, for the m - T s, we have 

(l-x2)x 
^.W = I V = 7^U,1 

n>0 dz r-\ (x -mx + l) 
I-a 

X 
- + • 

1-
(20) 
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where . •. represents terms that can be neglected, when n Is large. Therefore, from (20), we have 

<?*L 
l~al 

r 1 
— \n and Pw_2.s - an 

Table 4 above shows the various proportions. It includes an expression for Pm_Vs, which is 
obtained from Pm_Vs = 1 - (m- 2)PQ,S - Pm_2v Note that, as m grows, the proportion of digits that 
are i for 0 < i < m - 1 becomes nearly equal. 
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E L E M E N T A R Y P R O B L E M S AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also be sent to the problem editor by electronic mail to Fibonacci@MathPro.com on Internet. 
All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Although this Elementary 
Problem section does not insist on original problems, we do ask that proposers inform us of the 
history of the problem, if it is not original. A problem should not be submitted elsewhere while it 
is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2=K+l+Fn, F0=°> ^ 1 = 1 ; 

A1+2 = A1+1 + Ai» L0 = 2, Lx — 1. 

Also,a = (l + V5)/2, £ = ( l -V5)/2 , F„ = (an - fi")/ JT, and Ln = a"+f3". 

PROBLEMS PROPOSED IN THIS ISSUE 

B-826 Proposed by the editor 
Find a recurrence consisting of positive integers such that each positive integer n occurs 

exactly n times. 
B-827 Proposed by Pentti Haukkanen, University of Tampere, Tampere, Finland 

Find a solution to the recurrence 4+3 = An-2An+2, Ad = 0, 4 = 1, 4 = -2, in terms of Fn 

and Ln. 
B-828 Proposed by Piero Filipponi, Rome, Italy 

For n a positive integer, prove that ]T 2 r Ms within 1 ofF„/2. 
r=0 V ' 

B-829 Proposed by Jack G> Segers, Liege, Belgium 
For n a positive integer, let Pn = Fn+lFn, 4 = Pn+l - P„, Brj = An- An_l, Cn = Bn+l - Bn, 

Dn^Cn-Cn_x> and En = Dn+l-Dn. Show that \Pn-Bn\, 14,-CJ, \Bn-Dn\, and \Cn-En\ are 
successive powers of 2. 
B-830 Proposed by Al Dorp, Edgemere, NY 
(a) Prove that if n = 84 then (n + 3) \F„. 
(b) Find a positive integer n such that (n + l9)\Fn. 
(c) Is there an integer a such that n + a never divides Fnl 
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SOLUTIONS 
Mr, Fetefs Lost Theorem 

B-808 Proposed by Paul S. Bruckman, Jalmiya, Kuwait 
(Vol 34, no. 2, May 1996) 

Years after Mr. Feta's demise at Bellevue Sanitarium, a chance inspection of his personal 
effects led to the discovery of the following note, scribbled in the margin of a well-worn copy of 
Professor E. P. Umbugiofs !f22/7 Calculated to One Million Decimal Places'1: 

To divide "w-choose-one" into two other non-trivial ''choose one's", "n-choose-two", or in 
general, "«-choose-/?i!l into two non-trivial "chooser's", for any natural m is always possible, 
and I have assuredly found for this a truly wonderful proof, but the margin is too narrow to 
contain it. 

Because of the importance of this result, it has come to be known as Mr. Fetafs Lost Theorem. 
We may restate it in the following form: 

Solve the Diophantine equation xm+ym = zm, for m < x < y < z, m = 1,2, 3, . . . , where Xm = 
X(X- l)(X - 2) • • • (X - m +1). Was Mr. Feta crazy? 

Solution by Gerald A. Heuer, Concordia College, Moorhead, MN & Karl W. Heuer, The Free 
Software Foundation, Cambridge, MA 

Well, owning a copy of Umbugio's !S22/7 Calculated . . . " perhaps casts a slight shadow over 
Mr. Feta, but his statement is correct. Presumably the book had extremely small margins, for the 
solution, x = y = 2m-l,z = 2m for every natural number m, does not require a substantial margin. 

For each of the cases m = 1 and m = 2 there are infinitely many solutions, and we may give 
the general solution. With m = l, things are rather simple: x < y arbitrary, and z = x + y. 

With #i = 2, we have the following family of solutions: Choose x > 3 arbitrary, and choose 
integers s91, u, v even, uv > st, and su<(uv-st + l)/2. Then one routinely verifies that 

uv-st + l uv + st + l^) ,-v 
SU>—2—>—2—) ( 1 ) 

is a solution. Note that for every x the choice of s = t = 1 satisfies the remaining conditions, so at 
least one solution exists. Moreover, every solution is of this form, for if x(x-l)+y(y-l) = 
z(z -1) and 

z = y + r, (2) 

then one finds at once that 
x(x-l) = r(r + 2y-l)9 (3) 

so every prime factor of r divides either x o r x - 1 . Thus, we may write r = st, where s\x and 
11 (x -1 ) . Then u and v may be defined satisfying x - su and x-l = tv, and solving (3) for y and 
using (2), we obtain the solution (1). That just one of s, t, u, v is even follows from the facts that 
x and x-l have opposite parity and that y is an integer, so that uv - st is odd. The inequalities 
assumed must hold in order that 2 < x < y. 

With m = 3, in addition to the above solution, we find (10,16,17), (22,56,57), (36,120,121) 
and there seem to be no more with z- y + l, but we do not have a proof. A computer search 
with m = 3 yields many solutions and suggests probably an infinite family exists. With m = 4 there 
is at least one more solution, (132,190,200), and with m- 6 at least two more: (14,15,16) and 
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(19,19,21). Each of these two seems to begin an infinite family: Whenever m is a solution of the 
Fermat-Pell equation Sm2 +l = n2 (i.e., m = 6, 35,204,...), we have a solution 

(Am + n-3 4m+n-3 4m + n + V 
V 2 ? 2 ? 2 

and whenever m is a solution of 5m2 -2m + l = n2 (m = 6,40,273,1870,...), 
'3m + n~3 3m + n-l 3m + n + V 

2 ? 2 5 2 
is a solution. 
Also solved by Leonard A. G Dresel, Hero Filipponi, David E« Manes, H«~J. Seiffert, and the 
proposer. 

It Keeps on Going 

B-809 Proposed by Pentti Haukkanen, University of Tampere, Tampere, Finland 
(Vol 34, no. 2, May 1996) 

Let k be a fixed positive integer. Find a recurrence consisting of positive integers such that 
each positive integer occurs exactly k times. 

Solution 1 by David E. Manes, SUN J College at Oneonta, NY; H.-J. Seiffert, Berlin, Ger-
many; Lawrence Somer, The Catholic University of America, Washington, DC; and David 
Zeitlin, Minneapolis, MN (independently) 

with initial conditions w0=wl = w2 = ~- = wk_l - 1; wk = wk+l = wk+2 = • • • = w2k_l = 2. 

Solution 2 by the proposer 

with initial conditions w0 = wx - w2 = • • • = wk_x = 1; wk - 2. 

Solution 3 by Gerald A. Heuer, Concordia College, Moorhead, MN, and Russell Jay Hendel, 
Drexel University, Philadelphia, PA (independently) 

with initial conditions wQ=wl = w2 = -* = wk_x = 1. 

Solution 4 by Murray S. Klamkin, University of Alberta, Canada 

wn+l = l + w„+n « > 0 , 
_ Jfc + 1 

with initial condition wl = l. 

Several solvers gave the reference G. Meyerson & A. J. van der Poorten, "Some Problems 
Concerning Recurrence Sequences," Amer. Math Monthly 102 (J 995): 698-705, which contains 
related problems. See Problem B-826 in this issue for a related problem. 

Also solved by Graham Lord 
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Divisible Determinant 
B-810 Proposed by Herta T. Freitag, Roanoke, VA 

(Vol 34, no. 2, May 1996) 
Let (Hn) be a generalized Fibonacci sequence defined by Hn+2 = Hn+l + Hn for « > 0 with 

initial conditions Hl=a and H2-b, where a and b are integers. Let & be a positive integer. 
Show that 

4, •^n+k+1 "n+k+2 

is always divisible by a Fibonacci number. 
Proof by Steve Edwards, Southern College of Technology, Marietta, GA 

We use equation (8) in [1]: Hn+m = Fm_lHn +FmHn+l. Then 
An = HnHn+k+2 - Hn+lHn+k+l 

= HniFk+lHn + Fk+2Hn+l\ ~ Hn+lFkHn + ^ f c + A + l l 

= Fk+llHl ~ Hn+ll + HnHn+llFk+2 ™ ^ 1 

= Fk+\Wl ~H%+i\ + HnHn+lFk+l = Fk+l[Hn -Hn+1 + HnHn+l], 

Thus, 4? *s always divisible by i^+1. 

Disproof by Mussell Jay Mendel, Drexel University, Philadelphia, PA 
Since Fl = l, every integer is divisible by a Fibonacci number. Thus, the proposer probably 

intended to ask us to show that An is always divisible by a Fibonacci number larger than 1. But, 
in that case, the proposition is false. If a = 2, b = 5, and k = I, then Al = -Il, which is not 
divisible by any Fibonacci number larger than 1. 
A more correct statement of the problem would have been: "Show that A^ is always divisible by 
Fk+\ • " 

Generalization by Pentti Haukkanen, University of Tampere, Tampere, Finland 
Let {Gn) and (Hn) be any two generalized Fibonacci sequences satisfying Gn+2 = Gn+l +Gn 

and Hn+2 = Hn+l + Hnforn>0. Vajda [1, p. 27] proves that 

Thus, i r IT 

I ̂ n+k+l -"n+h+k+i 

is always divisible by Fk+l. 
Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester: Ellis Horwood Ltd., 1989. 
Most solvers noted that A^ = {-l)n~l(a2 -b2 +ab)Fk+l. Redmond and Somer showed (indepen-
dently) that if (Wn) is a sequence of integers that satisfies the recurrence Wn+2 = PWn+l + QWn 

with initial conditions Wl=a and W2=h, then 

J,= Wn Wn+l 

w w 
vvn+k+l vrn+k+2 
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is equal to Uk+lJ0 and, hence, is divisible by Uk+l, where (Un) denotes the sequence satisfying 
the same recurrence as (W„) with initial conditions U0 = 0, Ux = 1. 

Also solved by Paul S. Bmckman, Leonard A. G. Dresel, Russell Jay Hendel, Murray S. 
Klamkin, Harris Kwong, Carl Libis, David Manes, Bon Redmond, H,-J» Seiffert, Lawrence 
Somer, David Zeitlin, and the proposer. 

Alternating Lucas 

B-811 Proposed by Russell Euler, Maryville, MO 
(Vol 34, no. 2, May 1996) 

Let n be a positive integer. Show that: 
(a) if n = 0 (mod 4), then Fn+l = Ln- Ln_2 + Ln_4 L^ +1; 
(b) if n = 1 (mod 4), then Fn+l = Ln - Ln_2 + Ln_4 Zg +1 ; 
(c) if ns 2 (mod 4), then Fn+l = Ln -Ln_2 +Ln_4 - ••• + 4 - 1 ; 
(d) if if s 3 (mod 4), then Fn+l = Ln - Ln_2 +Ln_4 - ••• + 4 - 1 . 

Solution by L. A. G. Dresel, Reading, England 
We use the well-known formula Fn_l + Fn+l = Ln, which is formula (6) in [1]. When n is 

even, consider the sum 

Sn = Ln-Ln_2 + Ln_4--+{-\r^nL1 

= (F„+1 + Fn„1)-(Fn_1 + F„_3) + -+(-iy"-2->n(F3+Fl) 
= Fn+l + (-lf"'2)nFl. 

Since Fx = 1, this proves (a) and (c). 
When n is odd, n>3, consider the sum 

^ = 4 - 4 - 2 + 4,-4--+(-i)("-3) /24 
= (Fr,+l + Fn_l)-(Fn_i+Fn_3) + - + (-ir^n(F4+F2) 
= Fn+l + (-l)^nF2. 

Since F2 = l, this proves (b) and (d). 

Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester: Ellis Horwood Ltd., 1989. 

Also solved by Paul S» Bmckman, Herta T. Freitag, Pentti Hmukkmnen, Russell Jay Hendel, 
Harris Kwong, Carl Libis, David E. Manes, Bob Prielipp, Don Redmond, H.-J. Seiffert, 
Lawrence Somer, and the proposer. 

A Triangle in Space 

B-812 Proposed by John C Turner, University of Waikato^ Hamilton^ New Zealand 
(Vol 34, no. 2, May 1996) 

Let P, Q, R be three points in space with coordinates (F„_l90,0), (0,Fn,0), (0,0,Fn+l)9 

respectively. Prove that twice the area of APQR is an integer. 
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Editorial composite of solutions received from Steve Edwards, Southern College of Technol-
ogy, Marietta, GA, and Murray S. Klamkin, University of Alberta, Alberta, Canada 

We will show that if P = (x, 0,0), Q = (0, y, 0), and R = (0,0, z), where x, y, and z are posi-
tive integers such that x + y - z, then twice the area of APQR is an integer. 

Heron's Formula [1, p. 12] gives the area of a triangle with sides of lengths a, h, and c as 
A - \ y/s(s-a)($-b)($-c), where s = ( a+£ + c ) / 2 . Using the Pythagorean Theorem to get the 
sides of APQR, and a straightforward algebraic reduction, gives 

2 A = ^Jx2y2+y2z1+z2x1 = <s]x2y2 + y2 (x+j/)2 + (x + j / ) 2 x2 

= ^/x4 + 2x3j; + 3x2j;2 + 2xy3 + >>4 = x2 + xy+y2. 
Thus, Z4 is an integer. 

Reference 
1. H. S. M. Coxeter. Introduction to Geometry. 2nd ed. New York: Wiley & Sons, 1989. 

Also solved by Paul S. Bruckman, Leonard A. G. Dresel, Herta T. Freitag, Harris Kwong, 
David E. Manes, John Oman & Bob Prielipp, H.-J. Seiffert, Lawrence Somer, David Zeitlin, 
and the proposer. 

A Very General Determinant 

6-&13 Proposed by Peter Jeuck, Mahwah, NJ 
(Vol 34, no. 2, May 1996) 

Let (Xn), (Yn), and <Z„> be three sequences that each satisfy the recurrence Wn = pWn_x + 
qWn_2 for n > 1, where/? and q are fixed integers. (The initial conditions need not be the same for 
the three sequences.) Let a, ft, and c be any three positive integers. Prove that 

xb 
Yb Yc 

z, 
= 0. 

Solution by Paul S. Bruckman, Highwood, IL 
Let (U„) be the sequence that satisfies the same recurrence, but with initial values U0 = 0 and 

Ux = \. The sequence (qX1U„_2 + X2U„_l) also satisfies this same recurrence and has the same 
values as (Xn) when n = 1 and n = 2. Hence, these sequences are identical. In a similar manner, 
we see that Y„ = qYJJn_2 + Y2Un_x and Z„ = qZfJ„_2 

(xa 
Ya 

Xh 
Yc 

(qX, X, 

qZx 

-z2u„_v 

0 
0 

fu, 
u, 0-2 

a-1 
0 

Thus, 

0 

uc^ 
u, c-\ 

0 

Clearly, the determinant of each matrix on the right is 0. Hence, the determinant of the matrix on 
the left is 0. 

Also solved by Leonard A. G. Dresel, Russell Jay Hendel, Murray S. Klamkin, Harris Kwong, 
David E. Manes, H.-J. Seiffert, Lawrence Somer, and the proposer. 

Note: The Elementary Problems Column is in need of more easy, yet elegant and nonroutine problems. 
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Edited by 
Raymond E. Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND K WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HA VEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-526 Proposed by Paul S. Bruckman, Highwood, IL 
Following H-465, let r1? r2, and r3 be natural integers such that 

3 

^krk=n, where n is a given natural integer. (1) 

Let 
B r r r = 1 < W f . (2) 

Also, let 
C„ = ZBr f r t r, summed over all possible rx,r29r3. (3) 

Define the generating function 

F(x) = icnx\ (4) 
(a) Find a closed form for F(x); 
(b) Obtain an explicit expression for C„; 
(c) Show that C„ is a positive integer for all n > 7, n prime. 

H-527 Proposed by K Gauthier, Royal Military College of Canada 
Let q, ay and b be positive integers, with (a, b) = l. Prove or disprove the following: 

I ^ y (_\\q(br+as) j __ fqia+b-abyqqb | , ^n(\-ab) q(2ab-l) . 

r=0 s=0 ^qa^qb q 
(br+as<ab) 

M 5 V Y f -m^^f - ( l)Q(l~ab) ^2ab~l) **qabLq{a+b-ab) 

r=Q s=Q q ^qa^qb 
(br+as<ab) 

H-528 Proposed by Paul S. Bruckman, Highwood, IL 
Let Q(w) = T,p<i„e, given the prime decomposition of a natural number n = Upe. Prove the 

following: 
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(A) I(-i)Q{d)^(„/,)-a(,) = 0; 
d\n 

(B) JH-lf{d)L^nldyQ{d) - 2Un, where Un = f l ^ i * 

SOLUTIONS 
Poly Forms 

B-508 (Corrected) Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 34, no. 1, February 1995) 

Define the Fibonacci polynomials by F0(x) = 09 Fl(x) = l, Fn(x) = xF^x) + Fn_2(x), for 
n>2. Show that, for all complex numbers x and y and all positive integers n, 

n~l 1 fn + k\^l_.kj7 (xy-4 
WM-ZTTi i V . < » » * M ^ - W &=0 

As special cases of (1), obtain the following identities 
w-I / i\n-k+l 

Fn{x)Fn{x +1) = n g L | ^ - l ^ +
+ * jFi+1(x2 + x + 4); (2) 

• V + 4 ^ 
&=o ^/v _r± ^ '" ' ' V x J 

n-l / i\n-k+l f . j 

(-1) n + k 

x^G; (3) 

F2„_1(x) = (2«-!)2X^(22^[1jx^+ 1(4/x). (6) 

Solution by the proposer 
We also consider the Lucas polynomials defined by L0(x) = 2, Z^x) = x, Ln{x) = x L ^ x ) + 

Z^_2(x)? for « > 2 . It is known that 

/ r ( x ) = « W ^ W : a n d ^X) = a{xf+P(x)\ (7) 

where a(x) = | ( x + Vx24-4) and p(x) = j(x- Vx2+4)? and that 

Integrating the latter equation and noting that Lf
2n(x) = 2nF2n(x) and L2n(0) = 2 gives 
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Since both sides of the stated equation (1) are analytic functions of x and y, it suffices to 
prove it for real x and y such that x > y > 0. Let 

ti = iU(x2+4)(y2 + 4)+xy-4) 
and 

v = ^(x2+4)(y2+4)-xy + 4). 

Then we have u > 0 and v > 4. From (8) it follows that 

where / = V(~0 anc* 
^^-.g^,)^, 

y M + V 

Since u-v = xy-4 and wv = (x+_y)2, it is easily seen that 

Aj = {xy- 4)Aj_! + (x + yf Aj_2, j>2, 

so that, by AQ = 0 and A1 = 1, we must have 

4 = (*+W*vzi jyeNo. (10) 
) 

Simple calculations show that 
a( 4uf = \ (2w + 4 + 2 v ^ O + 4)) = a(x)a(j), 

/?(V^)2=|(2i/ + 4 - 2 V ^ ^ ^ 
and, since x>>>, 

a(/ V^)2 = - | ( 2v - 4 + 2^v(v-4)) = a(x)p(y\ 

(3Q Sf = - 1 (2v - 4 - 2Vv(v-4)) = /?(x)«(y). 

From these four equations and (7), it follows that 

Fn(x)Fn(y) = ~2nS—-———• (! 1) 
1/4-V 

Now, the desired identity (1) follows from (9), (10), and (11). 

Using the properties Fy(-x) = (-iy~lFj(x)y F2j(0) = 0, and F2J+l(0) = 1, we show that (2)-
(6) are all special cases of (1). Since we wish to exhibit some particular cases, we also note that 
F„(4) = F3„/2, Fn(3i) =!-%„, F2n{S) = 4~5FJ3, F2n_,(S) = L4„_2/3, and 5^nF„(41S) = 
(5" - (-1)") / 6. Also, let Pn = F„(2) denote the rP Pell number. 

(2): In (1), replace x by —x and then take y = x + \. We note the interesting particular case 
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v.-g^tstfO'w* n-l ( i\«-£+l 

fc=0 

(3): Take y = 4/x,x^O. For x = 1 and x = 2, we obtain, respectively, 

^F3n=2n[^-^-(n
dtlkA25\ and P„2 = „ I ^ f c f k . 

With x = -v/5, eq. (3), after replacing n by 2« and « by 2 » - 1 , produces the curious identities: 

_ 36n (ft 1 ("2» + 2A:>l0-,tc»-i-t. 
4"-25"-ltoM + lV4k + l) ' 

_18(2w-l){ft 1 f2w + 2 ^ - n o i t ^ i - f c 
^-2- 52„-I + 1 2 . 2 ^ + 1^ 4* + l J 8 1 5 • 

(4): Take y = -x. For x = l,x = 3/", and x = 2, we obtain, respectively, 

m h *+1 l2*+1J ' 
1 (n + k^sfc 

and n-\ ( i\n-k+l 

I-
4=0 

(5): Take j ^ = x and use the Binet form of the Fibonacci polynomials. For x = 3/, this gives 

B-2 _ « V (-~~1-) " + * W + I 4*+^ 
5 & ifc + 1 12*+ 1 

(6): In (1), replace n by In-1 and then set j = 0. For x = 1, x = 4, x = V5, and JC = 2, we 
obtain, respectively, 

2n-l2^2 (-\f(2n + k-f _ 2 » - l 2 y (-l)V: 
_ , 2/t + l J ^ + 3 ' 

^ ^ V m h t V W , ,=0 * + i l 2>t+i ; • " * « » 

_ 2#l - 1 ^ (-1)* ( 2W + k - 1 Vci+l , nt+K 

^„-,-(2» 1)2. ^ + 1 ( 2* + l J 2 ^ 

k=0 

and 2«-2 
rfc+i 

Jt=0 

f̂&£? solved by P. Bruckman and A. Dujella* 
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Pell MeU 

H-510 Proposed by H.-J. Seijfert, Berlin, Germany 
(Vol 34, no. 29 May 1996) 

Define the Pell numbers by PQ = 0, i> = 1, Pn = 2Pn_x + Pn_2 for n > 2. Show that 

Pn = Z ( - l ^ - ^ V ^ / 2 ] ^ + * ^ for n = 1 , 2 

where [ ] denotes the greatest integer function and A„ = {k G{0,l,...,n-l}\3k ^2n (mod 4)}. 

Solution by the proposer 

First, we prove two theorems concerning the Fibonacci polynomials defined by 

(l-xz-z^iXiMA (1) 
which are also of interest in themselves. 

Theorem 1: For all real x one has 

FU*)=if^AVV"^-2^where /2=-1-
Jt=oV ' 

Proof: Consider the special Jacobi polynomials defined by 

(l-2xz + z2r=tci(x)z", 7 = 1,2,.... (2) 

It is well known [1, p. 374] that C{ has the derivatives 

^Cg(x) = 2*^*-|) 'cff(s). (3) 

If we substitute z by iz in (2) and compare the newly obtained equation with (1), we see that 
FnJtX{x) = inCl

n{x 12i). Thus, we have (3), and simple calculation gives 

^Fn+l(x) = k\rkC%(x 120. (4) 

Since Fn+l is a polynomial of degree n, and since [1, p. 374] 

nk+\n\_(n + k + i\ 
^n-kW-y 2k+\ y 

the stated equation follows from (4) and Taylor's theorem. Q.E.D. 

Theorem 2: For positive reals x one has 

where A = (x2 + 4)1/2 and ak-{n-k)n 12-karccos(x/A). 

Proof: Since i - ei7vl2 and x - 2/ = A exp(-i arccos(x / A)), Theorem 1 gives 
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fc=(A / 

which implies the stated equation by separating the real part. Q.E.D. 
Now we are able to prove the proposer's equation. Using Pn+1 =Fn+l(2) and cos(;r/4) = 

1 / V2, Theorem 2 gives 

where A:= 2J/2 COSQTT/ 4) for all integers j . Using the addition theorem of the cosine, we easily 
find that, for all integers r, 

A4r = (-\J22\ A4r+l = (-iy22r, A4r+2 = 0, A4r+3 = (-iy+l22r+l, 

or, in a more compact form, 

f(-l)[0"+1)/412^'/2], i f / #2 (mod4), 
J [0, otherwise. 

Observing that [(3k - 2ri) 12] = [3k 12] - n, we see that (5) and (6) prove the stated equation with 
w + 1 instead of/?. 
Reference 
1. Ryshik & Gradstein. Tafeln Zfll Tables. Berlin: VEB Deutscher Verlag der Wissenschaf-

ten, 1963. 
Also solved by P. Bruckmam 

Editorial Note: The editor wishes to acknowledge that H.-J. SeifFert also solved H-504 and 
H-505. 

• > • > • > 
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