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THE GOLDEN STAIRCASE AND THE GOLDEN LINE 

James Metz 
Mid-Pacific Institute, 2445 Kaala Street, Honolulu, Hawaii 96822-2299 

(SubmittedMay 1993-Final Revision February 1997) 

0. INTRODUCTION 

An arrangement of squares dissected from the golden rectangle and placed along the positive 
X-axis creates a golden staircase, upon which sits the golden line. In this paper we consider some 
algebraic and geometric relationships expressed in this figure. An extended figure depicts infinite 
series and relationships involving Fibonacci numbers. 

1. THE GOLDEN LINE 

In a golden rectangle, the ratio of the length to the width is the same as the ratio of the sum 
of the length and the width to the length. This golden ratio <j> has a value of (l + V5)/2. Con-
sider a golden rectangle with length (j) and width 1. When a square with side 1 is inscribed as in 
Figure 1, the remaining rectangle has a length to width ratio of 1/(^-1), which simplifies to ^, 
establishing a nice relationship between (j> and its reciprocal 

* - i = 
f (i) 

which is equivalent to (f>2 - (j) +1. When continued, this partitioning process generates the familiar 
infinite progression of spiraling squares, the first few of which are shown in Figure 2. 

When all the squares are placed along the positive X-axis creating the golden staircase shown 
in Figure 3, the upper right corners of the squares are collinear and define the golden line, which 
has equation y - (-1 / <fi)x + (/>. The equation of the line AB through the upper right corners of the 
first two squares is y -1 = (l/~^ (x -1), which simplifies to 

(2) 

FIGURE 1 
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THE GOLDEN STAIRCASE AND THE GOLDEN LINE 

FIGURE 2 

(0,0) I 

FIGURE 3 

The slope of the line through the upper right corners of the n* pair of adjacent squares is 

Ay = (l/f~l/f~1) 
Ax = l - 0 = -± #1 = 1,2,3,. 

(Vf) 
making these corners collinear with A and B, the corners of the first pair of adjacent squares. The 
points (<p2,0) and (0, $) satisfy (2) and lie on the golden line, so the sides of the squares on the X-
axis provide 

1 _ ^ (3) 

The right triangle under the golden line is a golden triangle and also half of a golden rectangle, 
since the ratio of its legs is $. 

One- and two-dimensional representations of $ and its reciprocal can be found in Figure 3. 
$ is the ̂ '-intercept of the golden line and, since (ft1 = $ +1, the distance between (1,0) and the x-
intercept of the golden line is $. Also <f> can be seen as the distance from the origin to the end of 
the second square. \l<j> is the length of the second square and also the altitude of the first triangle. 
All of the squares fit exactly into the golden rectangle of Figure 2, so the sum of the areas of all of 
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THE GOLDEN STAIRCASE AND THE GOLDEN LINE 

the squares is </>, the area of the golden rectangle. The areas of the squares also form a geometric 
sequence so that 

t\2k oo 00 / J 
=*=K*-1): 2k (4) 

k=0 

Since the area of the first square is 1, the sum of the areas of the squares beyond the first is <f>-1 
or \l(/>. Thus, we have in one picture both a linear and a planar representation of $ and \l<j>, 
neatly sheltered beneath the golden line, y - (-1 / <j))x + <j>. 

2. EXPANDING THE PICTURE 

Above each square, construct a rectangle whose diagonal lies on the golden line shown in 
Figure 4. Each of these small horizontal rectangles is also a golden rectangle. Joining any such 
rectangle to the square below it creates a new, larger vertical golden rectangle. Figure 4 also 
shows the line y = -x + (p2 drawn through the corners of the golden rectangles. 
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FIGURE 4 

Let us focus our attention on the series of vertical and horizontal golden rectangles in Fig-
ure 4. After the first, each vertical rectangle is congruent to a horizontal rectangle. The sum ZF„ 
of the areas of the vertical rectangles is the area of the largest vertical rectangle added to the 
sum E#„ of the areas of the horizontal rectangles. That is, E^, = ^ + Iffw, where also EF„ = 
(02)E#„ by similarity. Since <f>2= <f> + l, SF„ = <f>2, and Y,Hn = 1. Also, each vertical rectangle is a 
square added to a horizontal rectangle. If 1S„ is the sum of the areas of the squares, ZF„ = 
ZS„ + £#„, which gives I,S„ = <j> as in (4). £#„ = 1 leads to 
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Z i = i- (5) 
k=0 9 

and all of the small rectangles will fit exactly into the first square. 
In intercept form, the equation of the line through the upper corners of the horizontal golden 

rectangle is (x/<f>2) + (y / <f>2) = 1; for the upper corners of the squares, (x / (ft2) + (y / <fi) = 1; and 
for the lower corners of the horizontal rectangles, (x / (ft1) + (y 11) = 1. 

3. FINDING FIBONACCI 

Where we find the golden ratio, we can expect to find Fibonacci, but first we need to set the 
stage for his entrance. From Figure 4, the length of the side of a square is the same as the length 
of the adjacent golden rectangle to the right. The length of that vertical golden rectangle is the 
sum of the length of a square and the width of a horizontal golden rectangle above the square. 
For example, with the third square and its adjoining golden rectangle, we have (1/ (ft2) = (1/ (j?) + 
(1 / f ) , and for the (k + l)rt square, (1 / <ftf = (1 / (ft)k+l + (1 / (ft)k+2. This representation of a power 
of \l(j> as the sum of the next two consecutive powers of 11(f) allows Fibonacci to enter. For con-
secutive Fibonacci numbers Fj and FJ+h 

f i \k f i \k+J f i \k+J+l 

l_ 
\0j 

-FJ+I + FJ 
* 

(6) 
\Y J 

which can be proved by induction. 
Expanding powers of ^ - 1 and simplifying leads to another expression involving Fibonacci 

numbers and </>, which also can be proved by mathematical induction: 

,k TlY [FJ-Fk+i* for ^ odd, 
lFk+i-Fk<f>, for ^ even. 

To all the beautiful patterns in mathematics, we may now add the golden staircase, the golden 
line, and all that they inspire. 

ACKNOWLEDGMENT 

The author would like to thank Dr. Lewis Lum for his encouragement and advice. He would 
also like to express his appreciation to the anonymous referees who helped to improve the content 
and readability of this paper. 

REFERENCES 

1. Marjorie Bicknell & Verner E. Hoggatt, Jr. "Golden Triangles, Rectangles, and Cuboids." 
The Fibonacci Quarterly 7.1 (1969): 73-91. 

2. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton-Mifflin, 1969; 
rpt. Santa Clara, CA: The Fibonacci Association, 1979. 

AMS Classification Numbers: 11B39, 51M05, 40A05 

1997] 197 



STRONGLY MAGIC SQUARES 

T. V. Padmakumar 
Science, Technology and Environment Department 
General Hospital Road, Trivandrum-695037, India 
(Submitted April 1995-Final Revision June 1996) 

I. INTRODUCTION 

Consider the classical 4x4 magic square 

Mr Classical 

16 
5 
9 
4 

2 
11 
7 
14 

3 
10 
6 
15 

13 
8 
12 
1 

Among the 2x2 subsquares that can be formed within Mclassical, there are only five with the 
property that their entries add to the magic constant 34. These are the four corner squares and 
the central one: 

16 2 
5 11 > 

3 13 
10 8 > 

9 7 
4 14 3 

6 12 
15 1 » | 

11 10 
7 6 

If wrap-arounds are allowed, one more such subsquare arises, namely, 

built from the four corners. 
Compare this to the square 

M* = 

1 4 
13 16 

9 16 5 4 
7 2 11 14 

12 13 8 1 
6 3 10 15 

which has the stronger property that all sixteen 2x2 subsquares (allowing wrap-arounds) have 
entries adding to 34. What other magic squares have this stronger property? 

Suppose Mis a 4 x4 magic square. That is, the sixteen entries are a permutation of the set 
[1,2,3,..., 16] and all the row-sums and column-sums equal 34. Writing this as 

M = 
a, 12 

-*21 

*31 
Ml 

a 22 
o= 32 

a '41 

-*13 
223 

-*33 
^43 

-*14 
724 

-*34 
^44. 

we define M to be a strongly magic square if, in addition, cim,n+am,n+i^am+\,n+am+i,n+i = 34 
whenever 1 < m, n < 3. We will derive several further properties of strongly magic squares. For 
example, it follows that all the wrap-around 2x2 subsquares, like 

*14 

a. '24 a, '21J 
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also have entries adding to 34. Moreover, we will classify all the strongly magic squares, showing 
that there are exactly 384 of them. We also define a group of transformations by which each 
strongly magic square can be transformed into all the other 383 strongly magic squares. 

H. SPECIAL PROPERTIES OF STRONGLY MAGIC SQUARES 

1. In a strongly magic square 

M = 

and 

an au 
a2l a22 
a3l a32 
a41 a42 

-a24 = a3l 

«13 

«23 
a 3 3 
a43 

+ a32 

2 = a 3 3 + a 3 4 = 

a14 
«24 

«34 

«44. 

? 

= a43+a44 = A 

a4l + a42 = 3 4 -A. 

(1) 

(2) 

This property follows directly from the definition of strongly magic squares. 

2o The 3 x 3 Square Property. 
Consider any 3 x 3 square formed within a strongly magic square Ms. The sum of the four 

corners of this square is 34 and the sum of each diagonally opposite corner pair is 17. 
Let Q, C2, C3, and C4 be the corner elements of any 3 x 3 subsquare of Ms. Then 

C1 + C4 = Q + Q = 17. 

Proof: Each of the corners Q, C2, C3? and C4 of any 3 x 3 subsquare can be considered as a 
corner of a 2 x 2 subsquare, three of them being corner squares and one being the inner central 
square. For example, consider the 3 x 3 square 

Mi = 
a 2 2 

«32 

a42 

«23 

«33 

«43 

«24 

«34 

«44. 

Q = a22, a corner of 

C2 = a24, a corner of 

C3 = a42, a corner of 

Q = a44, a corner of 

a 2 2 

_«32 

r% L«23 

a 2 3 

«33j 

a14" 
«24. 

"«3I 
_«41 

"a33 

La43 

a 3 2 

«42j 

«34^ 
a44'_ 

(inner central square); 

(corner square); 

(corner square); 

(corner square). 

The corners of any 3 x 3 square of Ms can therefore be written as 

Q = 34-$i, 
C2 = 34-S2, 
C, = 3 4 - ^ , 
C 4 — 3 4 — AJ4, 
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where ShS2,S3, and S4 are the sums of the other three elements of the respective 2x2 magic 
squares. For the particular 3x3 square M3, 

^ = 023+0,2+033, 

S2 = o13 + o1 4+o2 3, 
^3 = a31 + a32 + a4h 

$4 = a33+a34+a43. 

The sum of the corners can be written as 
C1 + C2+C3 + C4 = 4x34- (S \ + S2+*S3 + ,S'4). 

Regrouping the terms that constitute ShS2,S3, mdS4 in the sum Sl + S2 +5,
3 + 5,

4, it can be 
shown that Sl + S2+S3 + S4 is the sum of a row, a column, and a diagonal of the 4x4 square, 
each of which is equal to 34. For example, for M3, 

^j + ̂ + ^ + ^ ^ C ^ ^ o ^ + o ^ + o ^ + ̂ + o ^ + o ^ + o ^ + C o ^ + o ^ + o ^ + o ^ ) 
= 34 + 34 + 34. 

Therefore, 
Q + C2+C3 + C4 = 4x34 -3x34 = 34. 

This is true for the classical magic square also. 
In the case of strongly magic squares, two of the 2x2 squares that contain Q, C2, C3, and C4 

can be chosen to be those formed by the inner two rows and columns (which have the magic 
property in Ms and not in Mclassical). For example, in the 3 x 3 square M3, the corners C2 and C3 
can be considered a part of the 2x2 squares 

respectively, in this case, 

«23 

Sha 
au 

«J4. 
and "«32 

.«42 

%>" 
fl43_ 

$1 _ a 2 3 + a 3 2 + a 3 3 ' 
52 = aZi + ayi + aiA, 
53 = a32+a33 + a43, 
54 = a33+a34 + a43; 

S2+S3' 
i.e., 

C î 1 (^4 — (^2 ' ^ 3 

Since Q + C2 +C3 + C4 = 34, we have Q + C4 C2 + C3 = 17. 

3. Triangular Property 
Form any triangle each side of which is made of three numbers of the 4x4 strongly magic 

square. Examples of such triangles are shown below: 
# 1 -11 « i 12 

722 

# 1 13 
-*23 
733 -*42 

-*33 
^43 

O 
-*24 
'34 

-*44 

In Ms the sum of the six numbers along the sides of the triangle is the same for all such triangles 
and equal to 51. This also can be shown to follow from the additional 2x2 magic property. 
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Proof: Of the six numbers that constitute the sum, three can be considered as a part of a row 
or column of the Ms, and the other three as part of a 2 x 2 magic square. Let Sx be the sum of 
the three numbers that are part of the row or column and S2 that of three numbers that are part of 
the 2 x 2 square. 

Since the sum of the numbers of the row or column as well as the sum of the numbers of the 
2x2 square are equal to 34, 

Sx = 34-Nl9 
S2 = 34-N2J 

where Nx is the remaining element of the row/column and N2 is the remaining element of the 
2x2 magic square. It is easy to see that Nx and #2 always form the opposite corners of a 3x3 
square whose sum is 17. Therefore, the sum of the sides of the triangle can be written as 

£ = £1 + £2 = 68-(JV1+JV2) = 68-17 = 51. 

HI. TRANSFORMATIONS THAT PRESERVE THE 
STRONGLY MAGIC PROPERTY 

There exist several transformations which, when applied to a strongly magic square yields 
another strongly magic square. 

Some of these transformations along with the notations we use to represent them later in the 
paper are given below. 
1) Cycling of rows (eye R) or columns (eye C). 

2) Interchange of columns 1 and 3 (Clo3) or rows 1 and 3 (i?lo3). 

3) Interchange of columns 2 and 4 (C2o4) or rows 2 and 4 ( ^ 4 ) . 

4) Diagonal reflections (DRA on the ascending diagonal and DRD on the descending diagonal). 

5) Replacement of every element x by 17 - x. 
6) "Twisting" of rows (TWR) or columns (TWC) which is defined below: 

The row twist of a square M is obtained by curling the first row of M into the upper left 
corner of TWR(M)> the second row of M into the lower left corner of TWR(M), etc. 
Consider a strongly magic square with rows Rh i^, R3, and i^: 

B E 

B E 1 

| B E 

B E 

B and E are the beginning and end of the rows. 
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The "twisting" transformation is defined to yield the following square: 

B 

Ri 

E ) 

1 _ 1 
R4 

E 1 

E 

*2 j 

B 1 ! 
E | 

* 3 

• 

B 

9 16 3 6 
4 5 10 15 

14 11 8 1 
7 2 13 12 

9 7 14 4 
6 12 1 15 
3 13 8 10 

16 2 11 5 

For example, the row-twisting transformation on M* yields 

TWR(M*) = | 

column-twisting M* yields 

TWC(M*) = I 

It can be noted that TWC(M) = TWR(MT), where MT is the transpose of the matrix M. 

IV. THE TOTAL NUMBER OF DISTINCT STRONGLY MAGIC SQUARES 

Only 384 distinct strongly magic squares can be formed from the set of numbers [1, 2, ..., 
16]. 

Proof: We saw in Section II that 

and 

al\ +Ct\2 = fl23 + f l 2 4 = a31 +CI32 = a43 +d44 = A 

aU + a i 4 = fl21 + «22 = »33 + a 34 = «41 + a42 = 3 4 _ ^4-

(1) 

(2) 
Going through all possible values of A, it can be seen that A can take only eight values, 

namely, 9, 13, 15, 16, 18, 19, 21, and 25. Any other value of A would lead to at least two of the 
elements of the magic square being equal. 

We now show that each value of A leads to 48 and only 48 strongly magic squares. 
Consider the elements ^12,̂ 24^31? anc* #43 of a strongly magic square Ms. The strongly 

magic property implies that 
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-*13 ll-a 
a2l — \1 — a, 
O'JA 1 / *̂1'7 

a 4 2 - 1 7 a24 

from the 3 x 3 square property, 

an = A-an 
a23 — A — a24 

a^0 = A- a. -*32 31 

a 44 _ ^ ^43 

au = 34 - A - ai3 = 34 - A - (17 - a3l) = a3l -(A-17) 
a22 = 34-A-a21 = 34-A-(l7-a43) = a43-(A-l7) 

-a34 - 34-^4-(17-a1 2) = a 1 2 - ( ^ -17 ) a33 = 34-
aA A4l = 34-A-a42 = 34-A-{ll-a24) = a24-{A-ll) 

Thus, for a given value of A, Ms can be written as 

MS(A) = 

(A-au) a, 12 «31 

from equations (1) and (2). 

04-a31)' 
<3 (^-«43V (^-«24) 424 

a\ 12 

(^-a24y a •24 a 43 04-a43)_ 
where the notation x' means 17 - x . Additionally, in order that all the elements are distinct and 
positive, further conditions have to be satisfied by the set (^,^4,^31,^43). These conditions 
depend on the value of A. For example, when A = 25, a12, a24, a31, and a43 can take on values 
between 9 and 16 only. Also, al2 +a43 = a24+a31 ^25 because, if the sum is equal to 25, the 
elements of Ms (25) cannot be distinct. 

By considering all possible number pair sets (̂ 12,̂ 43), (^24^31) satisfying the above two 
conditions, for 4̂ = 25, it is seen that they are: 

(16,11), (15,12); (16,10), (14,12); (15, 9), (13,11); 
(14, 9), (13,10); (16,13), (15,14); (9,12), (10,11); 

and all the permutations possible within each set. From each of the above six sets, eight 
permutations are possible, leading to 8 x 6 = 48 possibilities for the set [a12, a24, a3h a43\. 

Thus, we have proved that with 4̂ = 25, 48, and only 48, strongly magic squares can be 
obtained. Similarly, it is possible to obtain exactly 48 strongly magic squares from each of the 
other seven values of A. However, since this is a tedious procedure to prove directly, we follow a 
different approach. We show in the following that performing certain sequences of transforma-
tions on each of the 48 strongly magic squares for any value of A, we can get all strongly magic 
squares with the other seven values of A. 

These transformations can be shown to be sequences of 3 basic transformations, namely, 

T2 = DRA, 

Applying 7J, T2, and T3 on any strongly magic square, we can form seven other strongly magic 
squares each with a distinct value of A. Let 
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M l = \ 
-*21 
331 

Ml 

'32 
242 

a 

a, 13 
a '23 
a 33 
a '43 

-*14 
I 2 4 

-*34 
I44_ 

M 4 = 7J(M3), 
M5to8 =^3(Mto4)-

The values of ̂ 4 for the squares Mt to 8 are given below: 

A ~a\\ + df12> 

A3=a^3 + (Al-a12\ 
^ 4 ~ a 3 1 + a 4 3 ? 

4 = a ^ + (4-a3 1) ; , 
A6 = (Al-al2) + (Al-a3iy, 
A7 =a3l + (Ax - a24)\ 
Az = (Al-al2) + (Al-a24y, 

where xf = 17-x . 
Remembering that 4̂ can have only eight possibilities and that with the A = 25 we can have 

only 48 strongly magic squares; we can see that we get 48x8 = 384 strongly magic squares. 
Now, the above transformations applied to any strongly magic square with any other value of A 
will also yield strongly magic squares having the seven other possibilities for A which includes 
A = 25. If there are N possible magic squares with a certain value of A ^ 25, we can get 8N 
strongly magic squares by performing the transformations on each of the N squares. Thus, there 
will be N strongly magic squares for each value of A, including A = 25. We have already proved 
that there can be only 48 strongly magic squares with A = 25. 

Thus, N = 48 for any value of A, and we have proved that there are exactly 384 strongly 
magic squares formed. 

Equivalence of Strongly Magic Squares 
Two strongly magic squares are defined as equivalent if one can be transformed to the other 

by a transformation or a sequence of transformations. It is shown below that each strongly magic 
square can be transformed into all the other 383 squares. 

Take any strongly magic square, 

Mx = 
# i i i 

-*31 

^41 

a, 12 

«J2 

at '42 

01 13 

a21 a22 a23 

a 33 
^43 

a, u 

a 
-*24 
34 

a, '44. 

Then 24 distinct strongly magic squares with an as the first element can be formed from Mx be 
applying some of the transformations mentioned in Section III in sequence: 
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M2 = TWR(M1); 
M3 = TWR(M2); 
M4 t o 6 = DRA(Mlto3); 
M 7 t o 9 = C 2 o 4 ( M l t o 3 ) ; 

^ 1 0 to 12 ~ Q o 4 V ^ 4 to 6h 
MU to 24 = ^ o 4 ( M to 12)-

Note that a n can be any of the 16 numbers from 1 to 16 because any of these numbers can be 
brought to the (1,1) position by an appropriate sequence of row and column cycling. Each of 
these can then be transformed to 24 distinct strongly magic squares by the above mentioned trans-
formations. Thus, one can obtain all the 384 = 16 x 24 strongly magic squares from any strongly 
magic square, i.e., all strongly magic squares are equivalent to all other strongly magic squares. 

It is also clear from the above that there are 24 distinct strongly magic squares for any one 
position of a number in the square. It has already been shown that there are 24 strongly magic 
squares with any number occupying the (1,1) position. Performing appropriate sequences of row 
and column cycling on these 24 squares, this number can be brought to the desired position, i.e., 
24 strongly magic squares can be formed for a particular position of any number. 
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1. INTRODUCTION 

Let {G(J, £)}fc=1 denote the Fibonacci y-sequences such that G(2, k) = Fk, the k^ Fibonacci 
number and, for j > 2, 

Definition 1: {G(JMti = {GlA*U = U , ....G(/, *) = G ( y - U U = 1,2,...,./. G(j,k) = 
G(j,k-l) + GU,k-2) + .-.+G(j,k-Ak>j}-

Thus, new elements of the set {G(y, £)}*=1 for j = 2, 3, ... are created by adding the previous 
j elements of the sequence, using as initial values the first j values of {G(j - 1 , k)}™=l. Fibonacci 
y-sequences, satisfying the y*-order linear recurrence relation in Definition 1, are also called y-
bonacci, y-acci, ory-generalized Fibonacci numbers. They are a special case of a general linear 
recurrence relation studied by Levesque [10] and Tee [17]. The case j = 3 yields so-called Tri-
bonacci numbers (see Feinberg [6]). Table 1 gives the values {G(J, k)}1^ for j = 2,..., 7. 

TABLE 1. {G(j, *)}Jti forj = 2, . . . , 7 
\Vk 
1/0 

2 

3 

4 

5 

6 

7 

2 

1 

1 

1 

1 

1 

1 

3 

2 

2 

2 

2 

2 

2 

4 

3 

4 

4 

4 

4 

4 

5 

5 

7 

8 

8 

8 

8 

6 

8 

13 

15 

16 

16 

16 

7 

13 

24 

29 

31 

32 

32 

8 

21 

44 

56 

61 

63 

64 

9 

34 

81 

108 

120 

125 

127 

10 

55 

149 

208 

236 

248 

253 

11 

89 

274 

401 

464 

492 

504 

12 

144 

504 

773 

912 

976 

1004 

13 

233 

927 

1490 

1793 

1936 

2000 

14 

377 

1705 

2872 

3525 

3840 

3984 

15 

610 

3136 

5536 

6930 

7617 

7936 

16 

987 

5768 

10671 

13624 

15019 

15808 

There is associated with each sequence {G(J, k)}™=l the 7th-degree polynomial 

Fj{x) = xj-xj-l-xj-2 x - 1 , (1) 

denoted in the present paper as Fibonacci y'-polynomials. Let the real or complex number Sj 
denote the sum of the 7th powers of the roots of a polynomial of degree j . Then Newton's for-
mula is given by (see Tee [ 18]) 

Sj = afij^ +a2Sj_2 + -+aJ_lSl +jap Sx = 1, (2) 

where the ax are coefficients of the monic polynomial xJ - a^c}~1 - a2xJ~2 Qj_xx - a}t = 0. 
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As an observation, referring to (1), G(j, j + 2) = 2J -1 = Sj9 j>2 if a;. = 1, Vi, which can be 
shown inductively. Godsil and Razen [8] derived the generating function for a self-generating 
sequence having parameters k, m, and r, denoted SGS(&, m, r), given by 

Pk+r(x) F(x) = 
(l-xf -mx' ,k+r ' 

and showed no Fibonacciy'-sequence was a SGS for j > 4, where pk+r is a polynomial of degree 
at most k+r. The well-known generating function for Fibonacci y'-sequences (see Philippou 
[15]), 

Qj(x) = - j - ^ — j - r - j = iG(J,k)J, W<05, (4) 
J I -v* v* . . . -yJ yJ +mmi 

1 A- A- A A k=l 

which also appeared in the work of Godsil and Razen [8], is a special case of the generating 
formula of Levesque [10]. If x is replaced by if1 and a factor of 77-1 is introduced, then (4) 
becomes 

£1 T l + 0]-2)if 

The region of convergence of (5) is (see Tee [17]) {r/:\r/\> Xj}? where Xj is the largest real root 
of (1). The form of (5) is useful in the context of the present paper. A derivation of (5) is 
presented in the next section by an alternate method that also reveals several number theoretic 
properties of the sequences {G(j\k)}™=l. Properties of the zeros of the Fibonacci 7-polynomials 
Fj(x) are restated, and several are proved by a different method. 

Another result of the paper is a geometrical interpretation of {G(j, k)}™=l in terms of a 
sequence of sets such that the first set depends on the Fibonacci numbers and subsequent sets on 
the Fibonacci j-sequences. For j -2, a fractal is given and it is shown that a sequence of com-
pact sets exists such that the fractal dimension, counting, and tiling features depend on the Fibo-
nacci j-sequences. An exact expression for the fractal dimension is derived which depends on the 
largest real zeros of the Fibonacci7-polynomials, xJy V/ > 2. Fractals are of interest in the mathe-
matical sciences (see Mandelbrot [12]). 

2, CONVERGENCE PROPERTIES 

Miller [13] showed that the zeros of the polynomials Fj(x) are distinct, all but one lies in the 
unit disk and the latter is real and lies in the interval (1,2). Flores [7] showed that Xj -> 2 as 
j -^ +00. The monotonic properties of the sequence {xj}^ are indicated in 

Lemma 1: 
l<Xj<xJ+l<2, 7 = 2,3,..., (6) 

Xj -» 2 monotonically as j -> +00. (7) 

Proof: Referring to (1), for each7, Fj(l) = -(7 -1), Fj(2) = 1. Thus, there is a real zero, 
denoted Xj. Since Fj(x) -F.^x) = xJ~l(x - 2), it follows by continuity that 

F/(x)<Fy_1(x), 0 < x < 2 , 
Fj(x)>F-^x), 2<x< +oo, 
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which implies (6). Note that Xj is largest in magnitude among zeros, since Fj(x) > F2(x) > 1 if 
x > 2, j > 2. To show (7), write 

FAx) = F2(x) + x\x- 2)l~xJ . J l — x 
Suppose that sup{x; :Fj{xj) = Q} = s <2. If Sj ->0+ as j-> +oo then, for some positive 

sequence {Sj}^, it follows by continuity of Fj that the Sj may be chosen small enough that 
| Fj (s - 8j) | < 1 / j . Thus, noting that s > 1, it follows that 

lim FJ(e-SJ)= lim \F2(e-8J) + (e-8j)2(e-SJ-2)1~ie~W =-*>. 
; -»+oo ^ ^ y'-^+oo I J J J \— 8 + d • \ 

V •* J 

The previous statement is a contradiction which proves the lemma. 
A result of Flores [7] is the following theorem. 

Theorem 1: For sufficiently large k, 3 a constant c> 0 such that 

G(j, *) * ex) and lim G ^ ^ ^ = xJt j = 2,3,.... (8) 

The following numerical examples were calculated on a 77-85©: 

x3 = 1.839286755, x4 = 1927561975, x10 = 1.999018633, x20 = 1999999046. 

The exponential growth of the Fibonacciy-sequences is evident in 

Corollary 1: Let M > 0, n e Z+. Then V7 > 2, 1 < J < 7 - 1 , 3* such that 

\Gak0)-MG(j-i,k0)\>n, k0>Jc. (9) 

Proof: By Theorem 1 and the definition of limit, there is a constant C > 0 that depends on 
ij so that, for large enough k, G(J, k) I G(j - /, k) > C(xy / *•_,.)* -> +00 as A: -» +00. 

In [17] Tee showed convergence of the infinite series in the following theorem as a special 
case of a more general result if \rj\> xj9 j = 2,3,..., for which a proof is also given in the present 
paper. 

Theorem 2: 

such that (10) diverges at 77 = ±Xj and 

r ^ . , f(^-l)/((i7-2)i/), if i />2, 17^-2, 
hm Gy(i7) = < (11) 

;->-K» ^ [+00, if 77 = 2 . 

Proof: The theorem is proved first for 77 = 2, j > 2. A sketch of the proof, which is essen-
tially the same as that for 77 = 2, is indicated for values of 77 other than 2. Parallel results are 
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given for t] < -xj9 for which the same method is applicable. A sequence of lemmas establishes the 
theorem for values of j > 2. Define the infinite sequence 

HQ,j,k) = G(j,k + 3)- SGO' ,0 + l U ^ l - (12) 
V/=i J 

The significance of the 1 in the argument of H will become apparent. Then 

Lemma 2: 

i£^-ZW (13) 
5 ̂  G(j, *)(-!)* I f , H(X j , k)(-lf+1 

eh ik ~~i k 2^ • (14) 

Proof: Equation (14) corresponds to r/ = -2. To prove (13), expand 

tx 2k 2 4 + 2* 
1 1 1 G(j,3)-l G( / ,4 ) - l G(/,A:)-1 
2 4 2fc 8 16 2fc 

L J l . ± . . . . V ^ n , GC/,3)-l-GOM) , G(J,4)-l-G(J,l) | 
t?x1k V8 16 J 8 16 

G a * ) - i - G q i ) 

= 1 + l Q < A 0 + f J L + J - + . . . > | G C / > 2 ) + g a 4 ) - l - G C / , l ) - G C / > 2 ) + , 
2 2 V16 32 J ^ ' 16 
GO,AQ-I-GO,I)-GO,2) 

2* 
= 1 G{j,\) 1 GQ,2) 1 GQ,3) ff(U,l) #(l, ./ ,2) 

2 2 2 4 2 8 16 32 
GO', *) - 1 - GO', 1) - G(j, 2) - GQ, 3) | vk> 5 

2fc 

lGC/,1) lGC/,2) IGQ',3) l G Q ^ + 1) 
2 2 2 4 2 8 2 2*+1 

| f f ( l , 7 , l ) | ^(1,7,2) | ^ ( U , * ) 
16 32 2k+3 

GQ,k')-l-GU,l)-GU,2) GQ,k + l) 
+ _ + ..., 

for every k' > k + 3. Denote the last term in the above expression by I(k, j , k')l 2k', Vk' > k + 3, 
k>\. 
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By the definition of G(J, k) and H(l, j , k) 

G(J, k') 12k' > I(k, j , k') 12k' > H{\, j , k) 12k' > 0, j > 2. (15) 

Thus, by Theorem 1 and (15), the last term approaches 0 as k and &'->+oo and (13) follows. 
The proof of (14) is similar, and one obtains 

f GO, *)(-!)* = - l 1 (rl)kGU,k) 
k=i 

= - l lGC/,1) 1 0 0 , 2 ) 1GQ,3) (-l)*+1GQ,£ + l) 
3 6 2 6 4 6 8 6 2*+1 

^(1,7,1) g( l>7>2) [ | (-l)*+1ff(l,7,*) 
16 32 >i+3 

+ (-1) k.G(J,k>)-\-G(j,\)-G(j,2)- -G(j,k + i) 
+ • 

Noting that H(l,2,k) = 0, \/k>l, which follows from (12), and the identity F1 + F2 + 
+ F„ = Fn+2 -1, define the following infinite sequences depending on^ and k: 

H(i,jk) = H(i-l,j,k + l)-G(j,k + 2), i = 2,...J-2, j>4, 

H(J-\,j,k) = H(J-2,j,k + 3)-G{j,k + 4),k>\, j>3. 

Note that (16) begins at j = 4 and (17) begins at j = 3. Then, for j > 3, we have 

(16) 

(17) 

Lemma 3: 

H{J-\,j,k) = G{j,k + j + 3)-
fk+j+l 

-G{j,k + j + \)-G{j,k+j) G(J,4) = H{\,j,k). 

Proof: By (16) and (17) [one can also use the identity G(J, k + j + 3) = 2G(J, k + j + 2) 
G(j,k+ 2)], 

H(J -1, j , k) = H(j - 2, j , k + 3) - G(j, k+4) 
= H(J-3,j,k + 4)-G(J,k + S)-G(J,k + 4) 
= - = H{j-i,j,k+i + \)-G(J,j,k+i + 2) G(j,k + 4) 
= - = H{\,j,k + j)-G(J,k+j + \) GO",*+4), 0 = 7 - 1 ) , 

(18) 

rk+j+l 

= GU,k + j + 3)-\ X^O',0 + 1 
;'=! 

-G(J,k+j + l)- - GO, k + 4) 

= H(l,j,k) + G(j,k+j + 3)-2(GU,k+j + \) + G(j,k+j) + -
+ GO, k + 4))- GO, * + 3) - GO, k+2) 

= H(l,j,k) + G(j,k+j + 2)-(G(j,k+j + l) + G(j,k+j) + ~ 
+ G(J,k + 3) + G{j,k + 2)) 

=mj,k). 
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From (16)-(18) and (12), 

tf(U,*) = P + U '*- ' ) + G a t + 1 X " > U = I J~X (19) 
[G0',* + 1) = 1, if A: = 1, *• ' 

\H{\, j , k-3) + G(J, k + l), if A: > 4, 
[G(y, A +1) = 1,2,4, if k - 1,2,3, resp. 

The second result of (19) is shown as follows. By (12), H(l,j,l) = l. For 2<m<j-2, 

H(mJ,i) = H(m-lJ,2)-G(j,3) 

= H{m-2J,3)-G(j,4)-G{j,3) 

= -- = H(l,j,m)-G(J,m + l) G(j,3) 

= GC/,i» + 3 ) - £ G a , i ) + l \-G(j,m + \) GO',3) 

= GO, m + 3) - (1 + G(/', 1) + GO, 2) + 2G(y, 3) + • •• + 2G(j, m +1)) 

= 2'- ' - 1 - 2(1 + 2 + • • • + 2y-'_3) - 1 , 0 < i < j - 4, 

= 2>-'_1 _ (l + 2 + • • • + 2y-'~2) = 1. 

The second result of (20) follows by a similar method. From (19) and (20), one obtains 

Lemma 4: 

f H(i, j , k) f, G(j, k) f H(i +1, j , k) 
La 0k+2+i La ~k+l+i ^ La 0k+3+i ? / h->J J> K^1) 
k=l L k=2 L k=l L 

f, H{j - 2, j , k)_^ Gjj, k) ^ H(X j , k) 
La nk+j La 0k+j-l ^ La nk+3+j ' V ^ / 
k=l A k=2 z k=l L 

Proof: The equalities (21) and (22) follow by summing (19) and (20) and adjusting the sum-
mation subscripts after division, respectively, by 2k+2+1 and 2k+J. 

Returning now to the proof of Theorem 2 when r/ = 2, applying (21) and (22) in Lemma 4 
recursively, it follows that 

(23) 2>-\fH{\,j,k 
2J h 2"+3 

Taking this and Lemma 2, one obtains 

Lemma 5: 

)_fG(j,k) 
La s%k+2 
k=2 L 

H + . • + 2 , -3 

fG(j,h) hl ^G(j,k)(-l)k _2^3(-iy 
h 2k -l ' h 2k - i -4( - 2 y (24) 
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Proof: Substituting (13) into (23) yields 

>j-iifG(i,k) / L i f G q * ) 
• k=i 

- 1 1 -
1 + - + - + -2 4 •+- » ; - 3 

yfc=l 

00 

CO 

G(j,k) 
2K 

G(j,k) 

2] - 1 If 1_ 
2;+i 2 I 2J~2 2J 41 2^2 

2 ' - 1 + 4 - 2 ' 
2y+i 

2 y - l -2- / ~ 2 +l 
2y 

GC/,*) 3 
2J+1 2J 

2 ; " 2 3^£GO^) = 2,-i 
fc=i 

For 77 = -2 (and 77 < -Xj), the analogs of (21) and (22) are multiplied by (-1)* and (-l)k+1 on the 
left- and right-hand sides, respectively. Similarly, by Lemmas 2 and 4, 

2;-(iy 
2s 

H(\,j,k)(-\f _^G(j,k){-\) 
-,k+3 z-

Ar=2 

•>fc+2 2 2-/_3 

=>Z 
*=1 

Gq*X-i)* = 2^3(-iy 
2k l -4(-2)y 

A similar analysis yields the theorem for other values of r\ and these details are briefly out-
lined. Lemma 2 becomes 

Lemma 6: 
\G(J,k) 1 ^H(XJ,k) 

1 G(j,k)(-lf 
TKI+1))M V 

—-+T H(\j,k){-\y k+l 

n 
k+3 -, ri>Xj. 

(25) 

(26) 

Proof: This result follows by straightforward application of geometric series. The interval of 
convergence follows by an argument similar to that given for Lemma 2. 

Lemma 4 and (23) have 2 everywhere replaced by rj. By Theorem 1 and the ratio test for 
absolute convergence, (10) diverges at the endpoints r/ = ±Xj and, therefore, diverges for 
{rj:i] < \Xj\). To prove (11), observe that G/(2) = 2;~1 which, as 7'->+o°, implies the second 
part of (11). The first part follows directly by factoring r/J~l from Gj(rj) and letting y'-->+oo. 
The infinite series (10) is absolutely convergent for all values of j . Table 2 gives the values of 
{H(i, j , k)}l

k
6

=1, i - 1,2,3,4, and G(j, k) for 7 = 5. The sequences [H(i9 j , k)}™=1 appear as peri-
odic differences, as defined in (16) and (17). 

In the next section, a brief introduction to fractals and fractal dimension is given along with 
several examples of fractals. A fractal is presented with counting features depending on the 
Fibonacci numbers. 
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TABLE 2. {(7(5, k), H(i, j , k)}1^ for i = 1,2,3,4 

| Ujlk 

Jc = 

G(5,k) 

/ = 1 

2 . 

3 

4 

2 

1 

3 

3 

2 

3 

3 

2 

7 

6 

4 

7 

4 

4 

14 

12 

9 

14 

5 

8 

28 

25 

19 

28 

6 

16 

56 

50 

38 

56 

7 

31 

111 

99 

75 

111 

8 

61 

219 

195 

148 

219 

9 

120 

431 

384 

292 

431 

10 

236 

848 

756 

575 

848 

11 

464 

1668 

1487 

1131 

1668 

12 

912 

3280 

2924 

2224 

3280 

13 

1793 

6449 

5749 

4373 

6449 

14 

3525 

12679 

11303 

8598 

12679 

15 

6930 

24927 

22222 

16894 

24927 

16 

13624 

49006 

43678 

33223 

49006 

3. FIBONACCI NUMBERS AND FRACTALS 

By definition, a fractal is a self-similar (self-affine) structure such that the topological dimen-
sion is strictly less than the HausdorfF-Besicovitch dimension (see Mandelbrot [12]). The topo-
logical "covering" dimension DT or a set X has the property that any open covering of X has an 
open refinement with at most DT +1 open sets intersecting (see Hastings & Sugihara [9]). DT = 2 
in 9l2, since any open covering has a refinement with at most three open sets intersecting. 

Another important concept in fractals is the Box dimension 

logr r-»0 
(27) 

where, for each r > 0, N{r) is the smallest number of open balls having radius r which also cover 
X(see [9]). D is also denoted as the Hausdorff dimension when the dimensions are equal, includ-
ing the fractal in the present paper. The value of D is computed for simple geometrical objects 
using the concept of scale factor and scaling dimension. Suppose X is reconstructed into n scaled 
copies of itself, each diminished in size by a factor k. Then 

logy? 
D = -logl/Jt" 

(28) 

In certain fractals the scaling, Hausdorff, and Box dimension are all equal, including the fractals in 
the present work, since the Hausdorff dimension of a self-similar set with scaling ratio 1 / k satis-
fies (28) also (see Crownover [5]). 

Fractals are generated mathematically and have a geometric structure in Euclidean space. 
They are used as mathematical models for natural objects such as length of shorelines, leaf or fern 
patterns, Brownian motion, chaos, cause and effect such as minimization of energy to create 
fractal-like mud-flats, more exotically, minimization of scalar fields in the self-reproducing 
inflationary universe. The artist M. C. Escher was a precursor to many geometric ideas, having 
created drawings of self-similar structures (see Scientific American [16]). Fractals have also been 
studied by Pietgen, Jurgens, and Saupe (see [14]) who give an interesting introduction to the 
subject. 
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The concept of a self-similar (self-aflSne) structure is intrinsic to a fractal, although not all 
self-similar structures are fractals, i.e., continually subdividing a square into four sub-squares does 
not create a fractal because D-DT = log22n /log2" = 2. 

The Cantor set is defined by removing the middle third of a given set of intervals, starting 
with the unit interval. The Cantor set has the cardinality of the unit interval although it is a totally 
disconnected set. In the present work a self-arTine, two-dimensional structure is created by begin-
ning with a right triangle and then orthogonally projecting onto the sides in clockwise direction 
[Figs. 1(a), 1(b), 2(a), and 2(b)]. 

(a) Fractal Generation, Level 1, j = 2 (b) Fractal Generation, Level 2, j = 2 

FIGURE 1 

(a) Fractal Generation, Level 8,j = 2 

(b) Self-Similar Pieces 

FIGURE 2 
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In the present paper the geometrical meaning of "orthogonally project" (on the sides of an 
isosceles right triangle) is as follows: begin with the vertex of the right angle and draw a line that 
is orthogonal to and meets the opposite side at the midpoint. Proceeding clockwise, from the 
midpoint of this side draw another line orthogonally to the midpoint of the opposite side. The 
new boundaries form a right triangle that is similar to the original triangle but rotated 90 degrees 
counterclockwise. Likewise, two other similar triangles are formed, one on either side of the new 
triangle. It is left only to decide which triangles the process is applied to at every stage. 

To give an example: begin with a right triangle with vertices at (0,1), (-1,0), (1, 0). Let this 
be the 0th stage. At stage k = 1, orthogonally project onto the sides of the triangle in a clockwise 
direction. This forms a triangle (grey-shaded) and two new (unshaded) triangles. Continue this 
process by orthogonally projecting onto the largest of the unshaded triangles at level k, k = 1, 2, 

Lemma 7: This process forms a Fibonacci sequence such that the total number of unshaded tri-
angles at level k is Fk+2 of which Fk+1 are largest. The total number of shaded triangles at stage k 
is Fk+2 - 1 . The respective side lengths of the largest unshaded triangles is reduced in side length 
for consecutive stages by scale factor 1 / V2. 

Proof: By inspection of Figure 1(a), the induction hypothesis is true for k = 1, since F3 = 2. 
At level k, there are Fk+2 unshaded triangles of which Fk+l are largest and scaled in length size by 
a factor of 1/V2 with respect to stage k-l. Projecting on the Fk+l largest triangles results in 
2Fk+l + Fk =Fk+3 unshaded triangles of which Fk+Fk+1 = Fk+2 are largest, since the scale factor 
of the largest to the smallest at any stage is 1/ 4l. Thus, the small unshaded triangles at stage k 
become some of the large unshaded triangles at stage k +1. That the number of shaded triangles 
is Fk+2 -1 follows by induction also, since at level k +1 the number of old and new shaded tri-
angles is (Fk+2 -1) + Fk+l = Fk+3 - 1 . 

The large unshaded triangles in Figures 1 and 2 and described in Lemma 7 are generated by 
an affine transformation of the form 

where k is the level of the projection and the integer i depends on k. Determining the precise 
values for ak i and hkJ are not considered in the present paper. The small unshaded triangles in 
Figures 1 and 2 and described in Lemma 7 are generated by the following affine transformation: 

ckA 

for real numbers ckJ, dkJy k = 1,2, 3,.... For example, a1? x = blx = 1 / 2, clx = -1 / 2, dxl = 0. 
Construct a compact set E2 as follows: at each stage k, for a projection on a given triangle, 

delete the shaded triangle, leaving two open unshaded triangles and their boundaries. Let °M4 
denote the union of all of the unshaded triangles with their boundaries at level k. Then set E2 = 
Hj^i^k- Clearly, E2 is self-similar by construction, that is, E2 is scale invariant and has 

*<*»-a 
coŝ f- - sin ̂ f 

sm 3TT C O S ^ 

X 

\y + 
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topological dimension 1, i.e., no open subsets of 2ft2. Let Z +̂i denote the perimeters of the large 
/—k—1 

unshaded triangles in Lemma 7 corresponding to level k, which have hypotenuse length 1/V2 
and base=height length 1/V2 ~ . It follows that Lk+l -214l ~ + 1/' 4l " . Hence, observing 
that Wk £ °M4-i, V& > 2, the total length, denoted Z, of the set E2 is given by 
Lemma 8: L = lim (i^+1Zjt+1 +FkLk) = +oo. 

fc-M-OO 

Proof: The proof follows from Theorem 1 and the fact that <j2<xj9 Vy > 2. 

It is noted that Figure 2(a) contains eight basic shapes, a right, isosceles triangle T0, Figure 4 
rotated counterclockwise through 135°. The shapes are generated with the affine transformations 
2T a n d ^ . 

Theorem 3: The compact set E2 is a self-similar set with Box=scaling=Hausdorff (dimension) 
D = 1.38848. 

Proof: Such sets are normally called fractals in the literature. The Hausdorff and Box 
dimensions both equal the scaling dimension, since E2 is self-similar with two scaling ratios, 
1/V2 and 1/2, as observed by the geometry of Figure 2(a). This is also evident in the trans-
formations 2T(x, y) and °U(x, y). By Lemma 7, there are Fk large triangles at level k -1, and the 
k^ Fibonacci number is almost linearly proportional to x2 for large k so that the scaling 
dimension 

^"^logVz *->+0° ^ log V 2 

= 21ogx2 =2qog(l + V 5 ) - l o g 2 ) = l 3 g g 1 g 

log 2 log 2 

For completeness, D is calculated by the Box Counting Theorem (see Barnsley [3]). 

Theorem 4 (The Box Counting Theorem): Cover 2ft2 by boxes of size O" , C > 0 . 0 < r < l , 
where C and r are fixed real numbers. Let Nn denote the number of boxes of side length Crn that 
intersect any compact set K c 2ft2. Then K has fractal dimension 

D= lim !28^L 
«->+oo log Cr 

By inspection of Figure 2(a) and generalizing to all values of k, one finds that 
I—£-1 

Lemma 9: For k = 1, 2, 3,..., i^+4 squares of side length 1 / 2V2 cover E2. 
Proof: To prove this lemma, we observe several facts: the triangles are all oriented with 

respect to the x-y plane so that either the sides or diagonals of any triangle (shaded or unshaded) 
are parallel to the .y-axis. Hence, any covering or tiling of E2 or a subset of E2. can be done in 
two ways, which is countable if the covering boxes are aligned with the boundaries of the 
triangles. A right isosceles triangle of hypotenuse length 1/V2 can be covered by two squares 
of side length I/2V2 ~ or three squares of side length 1/2^2 (see Fig. 3). By inspection of 
Figure 1(b), the two large unshaded triangles of hypotenuse length 1 can be covered by three 
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boxes of side length I/2V2. The small unshaded triangle of hypotenuse length 1/V2 can be 
covered by two boxes of the same side length (1/2^2). The total number of boxes is 8. For this 
value of k, the boxes can be oriented 45°, with diagonals parallel to thej-axis. Proceeding induc-
tively, assume that Fk+l large and Fk small unshaded triangles of hypotenuse lengths 1/V2 ~2 and 
1/V2 , respectively, are generated that can be covered by 3Fk+1+2Fk =Fk+4 squares of side 
length 1/2V2 . In applying the inductive hypothesis to k +1, we apply the identity 3Fk+2 + 
2Fk+l = Fk+5, the new unshaded triangles have hypotenuse length 1/V2 ~ , 1/V2 , and the fact 
that E2 e°M4, \/k > 1. There is no overlap of covering boxes on adjacent unshaded triangles, 
since opposite to the hypotenuse of any unshaded triangle is the boundary or a shaded triangle of 
equal or greater area. The fractal dimension is given by the Box Counting Theorem: 

D= lim logFfr+4 =138848. 
*-"~log2V2 

FIGURE 3. Covering the Right Isosceles Triangle by Squares 

In the next section, triangles Tj_2, J > 2, are defined in the x-y plane. A theorem is given 
related to tiling U7C0

2 %-> 7 ^ 2 , with the triangles of the tiling enumerated by a Fibonacci j -
sequence. Ej, j>2, is characterized precisely, in terms of the union of a set of points that is 
contained in the set T0 LJ TX KJ • • • u Tj_2 = U/r02 Tr For a particular tiling of U7C0

2 Tt, it is shown that 
Ej is compact. In this case, the geometric object E2 is translated, contracted in size, and rotated 
to create sets Ej9 j > 3. 

4 SETS Ej WITH FRACTAL DIMENSION 

Consider the line y-x + l and the ordinates {-1,1,3,7,..., 2n -1,...} (Fig. 4). Denote by Tl7 

T3,..., T2n_x the triangles with boundaries formed by the set of vertices given, respectively, by 

{{(1, 0), (1,2), (0,1)}, {(3, 0), (3,4), (1, 2)}, {(7, 0), (7, 8), (3,4)},..., 
{{2n -1, 0), (2" - 1 , 2"), (2""1 - 1 , 2""1)},...}. 
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Similarly, denote by TQ, T2,..., T2n the interlocking triangles with boundaries formed by the set of 
vertices given, respectively, by 

{{(-1, 0), (0,1), (1, 0)}, {(1, 0), (1,2), (3, 0)}, {(3, 0), (3,4), (7, 0)},..., 
{(2" -1,0), (2W -1,2"), (2W+1 -1,0)},...}. 

Note that T0 does not follow the pattern given by the general triple of vertices. 

FIGURE 4. Fractal Boundaries 
It follows that (if u denotes the union of geometric objects) T0 u Tx is a reflection of TQ about 

the line y = l-x, union with TQ; ^ U T J U J ^ is a reflection of T0KJTX about x = l, union with 
2JJ u 7J; recursively, 2[Ju2[u• • • u^„_x is a reflection of 7^uIJu• • • uZ^_2 about the line j = 
2" - 1 - x , union with 7J v̂ Tx u • • • u 7^_2; 2J u7J u • • • uT2n is a reflection of T0 u 7 [ u • • • uZ^_x 

about the line x = 2" - 1 , union with T0 u IJ u • • • u ^w_1. 

Theorem 5: A right isosceles triangle of area 2;~2 can be subdivided into (tiled by) similar 
triangles enumerated by the Fibonacci y-sequences G(J, k), V/ > 2. The total number of triangles 
of a given area forms a sequence 1,1,2,..., G(y, &),.... The numbers in the sequence correspond 
with the number of similar triangles of area, respectively, 1/4, 1/8,..., G(J9 k)/2k+l,.... 

Proof: Consider a right isosceles triangle of area 2;~2, j > 2, for example U;C0
2 Ti9 which can 

be subdivided into 2J congruent subtriangles each having area 1/4. Figure 5 is a tiling of T0 with 
16 subtriangles each having area 1/16. 

FIGURE 5. A Tiling of T0 

218 [AUG. 



FRACTAL CONSTRUCTION BY ORTHOGONAL PROJECTION USING THE FIBONACCI SEQUENCE 

Construct another tiling of U/r02 Tt as follows. The first element or triangle of the tiling con-
sists of any one, G(J, 1), of the 2J subtriangles. Then subdivide the remaining 2J - 1 triangles into 
2J+l - 2 similar subtriangles of area 1/8, by bisecting the right angle of each triangle. The second 
element or triangle of the tiling consists of any one, G(y,2), of the 2 / + 1 -2 subtriangles. Then 
subdivide the remaining 2J+l - 2 - 1 into 2J+2 - 4 - 2 subtriangles each of area 1/16. Continue this 
procedure so that there are 

Lemma 10: 
G(/', j + k) = 2 ^ " 2 - 2*-2GO, 1) 2G(j, k-2)- G(j, k-l) (29) 

subtriangles to be subdivided into triangles of area 1 / 2k+l, k>2. 

Proof: The proof follows by induction ony and k. For example, 

773 = G(4,12) = 210 - 26G(4,1) - 25G(4,2) - 24G(4,3) 
- 23G(4,4) - 22G(4,5) - 2XG(4,6) - G(4, 7). 

Hence, we see that the number of unchosen triangles is a Fibonacci j-sequence. From (29) and 
Lemma 5, we find that 

which simply states that all of the area of the triangle U/r02 Tt is tiled by this procedure. 
This concept can be illustrated more formally in set-theoretic language, it is shown below 

that in the limit this procedure gives a tiled area equal to the area of the triangle U/r02 %• 
However, it is not clear that U7C0

2 Tt is the union of all of these tiles. For example, when con-
structing the standard middle 1/3's Cantor set, the interval [0,1] is not equal to the union of the 
middle 1/3's that are removed. 

For given j , and k > 1, denote the set 3 ^ = {/(/, G(y, j))\i = 1,..., G(J, k)} having as ele-
ments the G(j, k) congruent subtriangles described by the k^ step of the procedure above. By 
construction, for given j , and each k > 1, the triangles / ( / , G(j, k)) are pair-wise disjoint except 
for boundaries. Moreover, for each j>2, 

a r e a l U ^ M } = ^ { { J ^ ^ f(i,G(j,k))} 
4oo G(j, k) +oo fir • i \ 

= £ I area{/(/,Ga^))} = 2 ^ = X ^ r 1 -
k=l Z=l k=l l 

This completes the proof of the theorem. It is observed that the theorem may be generalized by 
replacing G(y, k) by an increasing sequence of positive integers n(j, k) with the property that 

t'!%£- = 2j-2,0<n(j,k)<2^-\k>\. 

For convenience in what follows, take the triangles f(i, G(J, k)) as open triangles, without 
boundary, thus interior(/(j, G(y, k))) = f{i,G{j,k)). Even though U^S^u is not necessarily 
the same set as U/r02 Ti9 we have the following, where an overbar represents closure of a set. 
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Lemma 11: U & 9 u k = U& 9uk = T0 u 3 J u • • • uZ}_2 = U ^ ^ 

Proof: We denote U/r02 3̂  as right triangles previously defined together with the boundaries. 
Let x G U/r0

2 Ti9 then there is a sequence {xk} e U£Ti 9j.it such that xk & x, \ x - xk | -» 0 as k -» +00. 
Otherwise, there is £ > 0 such that 

| x - x j > £ , Vxa eU^Sjr,*, 

where a is the index of an uncountable set containing any possible sequence. Hence, 

2'"2 - area {U^ 9&,*} < 2J'2 - xs2S, 
where J is the proportion of the s -disk that intersects the triangle T0 u 7J u • • • u 7J_2, a contra-
diction, so x e Uj^Sj,* , i.e., x is an accumulation point of U^Sy,* (see Apostol [2]). Each x is 
arbitrary, which shows that U/r02 ? £ U ^ S ^ M . Equality holds, since the opposite set inclusion is 
true, that is, / ( / , G(j, k)) c U/="0

2 ?, Vi, *. By a similar argument, U ^ " ^ 7 = U/=0
2 ^- The set 

U,Co 3J'\Uĵ i9j-,ik consists of points and straight line segments, i.e., contains the union of the 
boundary lines of the triangles /(/ ', G(y, k)) and U/=0

2 Tt. We note that U/r0
2 2̂  is closed and 

UjtTiSj",* is open, so that U/r02 T^U^S'M is closed and bounded and, hence, compact. 

Lemma 12: There is a "tiling" {/(/, G(2, *))}; 1 = 1,..., G(2, *); * = 1,2,... of T0 so that E2 c 
3J \Ujt^i^2,it ? where the "tiling" has the same area as T0 but is not necessarily equal to T0. 

Proof: To prove this, we let the open shaded triangles in the generation of E2 be denoted by 
the triangles / ( / , G(2, k)) which, by Theorem 5, tile TQ and, hence, have the same area as TQ. To 
prove the first part of the lemma, it follows that if x GE2 then x £/( / , G(2, k)) for any /, k; thus, 
x «ld9i,ife, and so xs^Wj^^k since x GT0. 

We note that x GE2 is not necessarily on a straight line segment or even a vertex of a triangle 
in ^\U^>

1S?2,A:- Analogously, the endpoints of the deleted intervals in the construction of the 
Cantor set are not the entire Cantor set. 

Define V{T} to be the set of vertices of a triangle denoted T. Then we find that 

Theorem 6: E2 3 U £ Uf^'k) V{f(i, G(2, *))}. 

Proof: That E2 contains this set follows by the nature of the construction of E2 and noting 
that two new vertices are added at level k, for each large unshaded triangle, which are the 
midpoint of the hypotenuse and the midpoint of an adjacent side. It is clear that no vertices are 
deleted once accumulated in E2 by this process. 

E2 also has the property that 

Corollary 2: Each point x in E2 is the accumulation point of some countable sequence {x^} in 
E2, such that xk * x, | x - xk | —> 0, k -» +00. That is, there are no isolated points in E2. 
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Proof: Any vertex of / ( / , G(2, k)) for some /', k is always a vertex of successively smaller 
triangles / ( / , G(2, k0)), k0>k, having vertices belonging to E2 and limiting side lengths tending 
to 0 as k -> +00. 

Example of a set Ej with dimension 2 log Xj / log 2 

Define, for j > 2, the set Ej = \j£x U S M ) V{f(i, G(j,>))} for an arbitrary tiling of U/="0
2 Tt. 

In words, this is the set of all possible vertices of the tiled triangles / ( i , G(j, k)). This definition 
applies equally well to j = 2. For the sake of convenience, include j = 2 in the following analysis. 

Ej is not necessarily closed, but is bounded. Let {x} denote the set of accumulation points 
of Ej that lie in U7Co ^jAU^Sj,*-. Define Ej = Ej u {x} so that Ej contains all its accumulation 
points and is closed and bounded, so that E- c 2&2 as in Theorem 4. 

To calculate the Box dimension, we observe that (G(j, k)) triangles / ( / , G(j, &)), i = 1, ..., 
G(j, k) are tiled at each level k. By induction, it can be shown that the number of ways to 
position the G(j,k) unshaded triangles is 2G(J, k+j) = G(j, k) + G{j, k + j + X), &>1, as in 
Lemma 10 (except k > 2). We have 

Theorem 7: \/j > 2, Ej has Box dimension = 21ogx7- /log2. 

Proof: For each &, the number of unshaded triangles forms twice a Fibonacci j-sequence, 
I—k-\ 

2G(j,k+j), \/k>l having hypotenuse length 1/V2 , each of which by Lemma 9 can be 
covered by two or three squares of side length 1/2-̂ 2 or \I2<J2 , respectively. If we consider 
the latter, then at least one square is nonintersecting, except for boundaries, with other triangles. 
Hence, squares that overlap on different triangles cannot exceed 4G(J,k+j). Thus, it follows 
that the number of covering squares of size 1/2A/2 is at least 2G(j,k+j) and at most 
6G(J,k + j), that is, the number of squares of side length 1/2V2 that intersect Ej is bounded 
between the two scaled multiples of G(j, k + j). By taking the limit as in Lemma 9 and applying 
a sandwich technique and Theorem 1, one obtains 

2lQg*y = l i m lQS2G(j9k+j)^D^ l i m log6GO^ + j ) = 21ogx/ 

log 2 k-^+co i0g 2 ^ *-^° log2V2* l o S 2 

This completes the proof of the theorem. 

The construction of E2 suggests that compact structures are formed by reflecting triangles of 
suitable size into an adjacent triangle. The affine transformations 2T, °ll can be applied to form 
subsequent projections on the reflected triangles. Ej, j >3, can be constructed with countably 
many copies of T0, since the sequences {G(j, k)} are the sum of countably many "shifted" 
sequences Fk. For example, for j = 3, 

{G(3, *)} = {1,1,2,4, 7,13,24,..., G(3, *),...} 
= {1,1,2,3,5,8,13,...,^,...} + {0,0,0?1,1,2,3,...,F,,...} 

+ {0,0,0,0,1,1,2,..., Fk9...} + - - + {0,0,.. .,0,1,1,2, 3, 5,.. .,F,,...} + - . . 

Each of the sequences above corresponds to a scaled in size, tiled copy of 7̂  which contains the 
fractal E2 such that two copies of T0 have the same area if the same number of zeros appear in the 
sequence. In the above, the sequences on the right-hand side correspond with triangles of area 1, 
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1/8, 1/16, ..., respectively, illustrated in Figures 6(a)-6(f), which show one of the possible ways to 
construct E3, by reflecting unshaded triangles, projecting on these reflected triangles to create 
shaded triangles, and reflecting the new unshaded, smaller in area by 1/2, triangles so that their 
number forms a sequence {G(3, k)}. By Theorem 5, this process tiles T0^jTt and generates E3 

with each point in E3 on a translated, rotated, and contracted copy of E2, and hence an accumula-
tion point of E3. We also note that the fractal dimension of E2 is invariant under rotation, trans-
lation, or contraction. , 

(a) Fractal Generation, Level 3, j = 3 (b) Fractal Generation, Level 4, j = 3 

(c) Fractal Generation, Level 5, j = 3 (d) Fractal Generation, Level 6,j = 3 

(e) Fractal Generation, Level 7, j = 3 (f) Fractal Generation, Level 8, j = 3 
FIGURE 6 
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Figures 7(a) and 7(b) represent approximations of the fractal E2 described in Section 3, and 
were constructed using Logo from a program by Robert G. Clason (see also [4]). The following 
dimensions were calculated on a 77-85©, 

A = 1758292843, D4 = 1893554493, Ao = 1998583839, Ao = 1999998624. 

As an interesting note, the projections on right triangles may be viewed as projections onto hyper-
planes in <3l2. This idea was also investigated in a more general setting in the manuscript of 
Angelos et al. [1]. 

(a) Fractal Generation, Level 10,j = 2 

(b) Fractal Generation, Level l l ,y = 2 

FIGURE 7 
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(Submitted January 199 6-Final Revision March 1996) 

1. INTRODUCTION AND RESULTS 

As usual, a second-order linear recurrence sequence U = (Un), w = 0,1,2,..., is defined by 
integers a, b, U0, Ul and by the recursion 

Un+2=bU„+l + aUn (1) 

for n > 0. We suppose that ab ^ 0 and not both U0 and Ul are zero. If a and (3 denote the roots 
of the characteristic polynomial x2 -bx-a of the sequence U and al (3 is not a root of unity, 
then U is called a nondegenerate sequence. In this case, as is well known (see [2]), the terms of 
the sequence Ucan be expressed as Un - pan-qj3n for n = 0,1,2,..., where 

If f/0 = 0, a = * = C/j = 1, then the sequence U is called the Fibonacci sequence, and we shall 
denote it by F = (Fn). 

The various properties of second-order linear recurrence sequences were investigated by 
many authors. For example, Duncan [1] and Kuipers [3] proved that (logi^) is uniformly dis-
tributed mod 1. Robbing [4] studied the Fibonacci numbers of the forms px2 ± 1, px3 ±1, where 
p is a prime. The main purpose of this paper is to study how to calculate the summation of one 
class of second-order linear recurrence sequences, i.e., 

E UaUai...Uak (2) 
a\+a2^—+ak=n 

where the summation is over all w-tuples with positive integer coordinates (a1? a2,...,ak) such that 
al-\-a2 + --+ak =n. 

Regarding (2), it seems that it has not yet been studied; at least this author has not seen 
expressions like (2) before. The problem is interesting because it can help us to find some new 
convolution properties. In this paper we use the generating function of the sequence U and its 
derivative to study the evaluation of (2) and give an interesting identity for any fixed positive inte-
ger k. That is, we shall prove the following two propositions. 

Proposition 1: Let U = (Un) be defined by (1). If U0 - 0, then, for any positive integer k > 2, 
we have 

where gk_x{x) and hk_x{x) are two effectively computable polynomials of degree k-1, their coef-
ficients depending only on a, b, and k. 

Proposition 2: Under the condition of Proposition 1, we have the following identities: 
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(i) I UaUh=-^-[b(n-\)Un+2anU^t 
a+b=n D +4a 

(ii) X UaUbUc = U? {[(b3 + 4ab)n2 - (3b3 + 6ab)n + (2b3 - 4ab)] Un_x 
a+b+c=n ZV° + W) 

+ [(b2a + 4a2)n2 - 3b2an + (2b2a - 4a2)] U„_2}; 

(Hi) S UJJbUeUd = UJ {[(b5 + lb3a + I2ba2)n3 

a+b+c+d-n 6 ( * + 4 a ) 
- (6b5 + 30b3a + 24ba2)n2 + (1 lb5 +1 lb3a - 486a2)« 
- (6b5 -30b3a- 366a2)] Un_2 + [(b4a + 6b2a2 + 8 a > 3 

- (6b4a + 24a2b2)n2 + (1 \b4a + 6b2a2 - 32a3)n - (6b4a -36a2b2)] U„_3}. 
Taking U1=a = b = l, then Un=Fn is the Fibonacci sequence, i.e., F0 = 0, F1 = l, F2 = \, 

F3-2, F4 = 3, F5-5, F6 = S, ... . Thus, from Proposition 2, we obtain Corollaries 1 and 2. 

Corollary 1: Let (Fn) be the Fibonacci sequence. Then we have: 

(i) I FaFb^\[(n-l)Fn+2nFn_lln>\; 

(ii) X ^ ^ = ^ [ ( 5 » 2 - 9 « - 2 ) F „ _ 1 + (5» 2 -3»-2)^_ 2 ] ,»>2; 
a+6+c=n 50 

f"7) X W ^ V = T^K 4 " 3 -12»2 - 4» + 12)F„_2 + (3n3 - 6»2 - 3» + 6)/v,_3], « > 3. 

Corollary 2: We have the following congruences: 
fi) (n-l)Fn^2nFn_^0 (mod5),rc>l; 

fii> (5rc2 - 9« - 2)Fn_! + (5rc2 - 3n - 2)Fn_2 = 0 (mod 50), n > 2; 
(III) (4ra3 -12«2 - 4 n + 12)FW_2 + (3n3 -6n2 -3n + 6)Fn_3 = 0 (mod 150), n > 3. 

2. PROOF OF THE PROPOSITIONS 

In this section, we shall give the proof of the propositions. First, we recall some known 
results on the second-order linear recurrence sequences and prove two lemmas that will be used in 
the proof of the propositions. 

Let U - (Un) be a nondegenerate second-order linear recurrence sequence defined by (1). If 
U0 = 0, then the generating function of Uis 

G(x) = xF(x) = f'* 2 = £ U„x", (3) 
l-bx-ax £r0 

where Un = G{n){0)ln\ and G(k\x) denotes the £* derivative of G(x). 
For F(x) = G(x) lx- E^Li Unxn~l, we have the following lemma. 

Lemma 1: If F(x) is defined by (3), then F(x) satisfies: 

$ F2(x) = ̂ - [ F ' ( x ) ( 6 + 2ar) + 4aF(x)]; 
Zr+4a 
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(ii) F\x) = 

(Hi) F\x) = 

ul 
2(b2+4a)2 [F"(x)(b + 2ax)2 + UaF'(x)(b + lax) + 31a2F(x)]; 

[F'"(x)(b + laxy + 30aF"(x)(b + lax)2 

6(b2+4a)3' 
+ HSa2F'(x)(b + lax) + 3 &4a3F(x)]. 

Proof: Using the definition of F(x) and the derivative of the function F(x)(b + 2ax), we get 

[F(x)(b + lax)]' = F'(x)(b + lax) + laF(x) = 'U^b + lax)' 
\-bx- ax2 

Uy(b2 + la + labx + la2x2) _ Ur(b2 + 4a) 
(l-bx-ax2)2 (l-bx-ax2)2 l-bx-ax2 

b2+4a rf/ 

laUx 

Uy 
-F2(x) = laF(x), 

so that 
b2+4a r 2 

U, 
F2(x) = F'(x)(b + lax) + 4aF(x). 

This gives the conclusion (i) of Lemma 1. 
Differentiating in (4), we have 

b2+4a 
U, 

lF(x)F'(x) = F"(x)(b + lax) + 6aF'(x). 

So b2+4a 
Uy 

lF(x)F'(x)(b + lax) = F"(x)(b + lax)2 + 6aF'(x)(b + lax). 

Applying (4) again, we have 

b2+4a 2F(x) b2+4a r 2 

U, 
F2(x)-4aF(x) = F"(x)(b + lax)2 + 6aF'(x)(b + lax). 

Thus, 

l(b2+4a)2
 p3(x) = F,l(x)(b + 2ax)2 +6aF'{x){b + lax) + %a^Ad) F2(x) 

ul 
= F"(x)(b + lax)2 + \4aF'(x)(b + lax) + 31a2F(x). 

Conclusion (ii) of Lemma 1 now follows from (5). 
Similarly, differentiating in (5) and applying (5), we can also obtain 

3!(Z>2+4a)3
 F 4 ( x ) = F„,(xyp + 2axf + 30aF"(x)(b + lax)2 

+ ll%a2F'(x)(b + lax) + 384a3F(x). 

This completes the proof of Lemma 1. 

(4) 

(5) 

Lemma 2: Let k > 2 be an integer. Then there exist k -1 effectively computable positive integers 
c1? c2?..., ck_x such that 
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(*-l)!(^+4a)- pk(x) = F(k-i)(x)(b + ^ - i + C]aF(k-7){x){b + 2ax)k-2 

+ • • • + ck_2ak-2Ff(x)(h + lax) + ck_xak-lF{x\ 

where F^\x) denotes the Ith derivative of F{x). 

Proof: This formula can be obtained via Lemma 1 and induction. 
Now we complete the proof of the propositions. First, we prove Proposition 1. Equating the 

coefficients of xn~k on both sides of (6), we obtain 
(k-l)\(h2+4a)k-1 — 

k-l k-l-i 

jjk-\ La a\ a2 •'' ^ ak 

Substituting Un_m = bUn_m_l +aUn_m_2 (\<m<k-l) repeatedly in the above formula gives 

<*"1)|^t4fl)t"1 £ uauai ...uak = u » ^ + i + U » ) ^ , 
^ 1 ai+a2+ •••+ak=n 

where gk_i(x) and hk_x{x) are two effectively computable polynomials with their coefficients 
depending only on a, b and k. This completes the proof of Proposition 1. 

To prove Proposition 2, comparing the coefficients of xw~2, xn~3, and xn~4 on both sides of 
Lemma 1, we get the following convolution product formulas: 

[jfej1-[£unyW-r)Um+™^; (7) 

u2 1 f 
I uaubuc 2(b2+4af 

= b2(n2 -3n + 2)U„+ ab(4n2 - 6« - 4) U„^ + 4a\n2 -1) U„_2; 

(8) 

and 

(^FCx^H = b\n3 -6n2 + \]n-6)U„+ b2a(6n3 - 24n2 + 6n + 36) [/„_, (9) 
+ ba2(\2n3 - 24M2 - 48« + 36) U„_2 + a\8r? - 32») U„_3. 

Substituting U„ - bUn_x +aU„_2 in (8), we have 
7-2 

E UaUbUc = U* ,2 [((b3 + 4ai)»2 -(3b3 + 6ab)n + (2Z>3 -4a*))£/„_ 
«*£-» 2(6 +4a) 

+ ((*2a+4a2)«2 -3i2a« + (2ft2a-4a2))C/„_2]. 
(10) 

Finally, substituting U„_x = *£/„_2 +alf„_3 and C/„ = Z»C/„_i +aU„_2 = (b2_a)Un_2+abUn_3 in (9), 
we get the identity 
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X UaUhUcUd = Ul [((b5 + lb3a + I2ba2)n3 - (6b5 + 30b3a + 24k* V 

+ (1 lb5 + 1763a - 4$ha2)n - (6b5 - 30b3a - 36ba2)) Un_2 (\ l) 
+ ((b4a + 6b2a2 + Sa3)n3 - (6b4a + 24£2a V 
+ (1 lb4a + 6b2a2 - 32a3)n - (6b4a - 36a2b2)) Un_3]. 

Proposition 2 now follows from (7), (10), and (11). 
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LETTER TO THE EDITOR 

Dear Professor Bergum: 
The Fibonacci Quarterly readers will be interested in yet another natural occurrence of the Golden Ratio. 
This occurrence is described in the current issue of The College Mathematics Journal (Vol. 28, No. 3, May 
1997). On page 205, Peter Schumer (schumer@middlebury.edu) of Middlebury College in Middlebury VT 
provides an interesting variant on the classical problem of showing that the rectangle with fixed perimeter 
and maximum area is a square. 
Schumer notes that texts often present this problem as the dilemma of a farmer who has a fixed length of 
fencing and wants to build the most efficient animal pen for grazing. It is a simple calculus problem. The 
problem is complicated somewhat when the farmer has a fixed length of fencing and is using one side of a 
barn for all or part of one side of the animal pen. Schumer provides a neat analysis of the optimum pen 
shape when the length of fencing is some multiple of the length of the barn side used. 
When the length of fencing available is V5 times the length of the side of barn used, the optimum pen 
shape is a golden rectangle. This is a neat result, simply derived, of interest to FQ readers, and which I 
have not seen before. 
Best regards, 
Harvey J. Hindin 
Vice-President, Emerging Technologies Group, Inc. 
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In a recent article [3], Jennings established the following three theorems expressing i^+i)« a s 

a polynomial in Fn as well as expressing FmnlFn as a polynomial in Ln, where Fn and Ln are, 
respectively, the nth Fibonacci and Lucas numbers. 

Theoreml: ^ ^ ^ . i c - ^ ^ ^ S * ^ 1 ) / ? * , « , ^ 0 . 

ra^reml- F{2q+l)n = F±{-\t^M^k
k)^, n,q>0. 

k=0 

Theorems: ^ = F&{-Xt"*^[«£-Al<t\ n>0,q>\. 

In a later article [2], Filipponi derived Theorem 1 very simply by letting X- a", Y - - / T , 
and m = (2q +1) in Waring's formula, given by 

[m/2[ / y\ 
Xm + Ym= Z(- l)*~-r* k

 K){XYf{X + Y)m-2\ m>\. (1) 
k=o m-k\ J 

By letting m = 2q in the above formula, he also established the following theorem, which 
expresses L^ as a polynomial in Fn. 

Theorem* 4 , „ = £( - i )»(^> J ^ f * + * y ^ , « ) ? > 0 . 

In the same article, Filipponi derived another result by letting X - an and Y' = f3n in the iden-
tity given by (1). This result, which expresses Lmn in powers of Ln, is given by the following two 
theorems, wherein the notation of Jennings has been used: 

Theorems: ^ = ± { - 1 ) ^ ^ ^ ^ ) % , * * * 0 . 
k=o q-rK\ J 

Theorem 6: Z(2g+1)„ = h ± i - V T ^ ^ ^ ^ ) ^ ",«>-*• 

In this short article, we will first derive Theorems 2 and 3 of Jennings in a very simple manner 
by utilizing the following identity, which has been used by Carlitz in 1963 (see [1]) to obtain some 
results concerning certain Fibonacci arrays: 
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ym _ ym [(m-l)/2] / / i \ 
A _ i _ = £ (-l)k[m-K-iyXY)k(X+Y)"'-2k-\ m>\. (2) 

Using this identity, we will establish two other theorems that express L(2q+l)n I Ln and F2qn I Ln in 
powers of Fn. 

Now, letting X = an and 7 = fi" in identity (2), we obtain X + Y = an + f3n = Ln and XY = 
(afi)n = (-lf. Thus, we have 

[(w-l)/2] /- , -N 

fc=0 ^ / 
or 

[(«-l)/2] 

4„=4 i (-lr^r^-Mzr2^, »>o,m>i. ^ 
Setting zw = 2# + l, 

^+i)„ = ^i(-D(n+1)fc (%"*)#**, n,q>0. 
k=o v y 

Changing kto q-k, we may rewrite the above as 

F(2g+1)n = F±{-\r^M^k
k)Lf, n,q>0, 

k=o V J 

which proves Theorem 2. Similarly, by setting m = 2q in (3), we establish Theorem 3. 

We now state and prove the following two new theorems. 

Theorem?: F2qn = Fj£{-Xf«*+1>{£§*F?, n,q>0. 
lc=0 V ' 

jRroo/- Let X = a", Y = -p", and m = 2^ in (2). Then we have X + Y =a" - p" = 45Fn, 
XY = -(afi)" = (-l)n+\ and 

. ^ . ^ = (a»+)g»)^(_l)*r2^-*-1V_l)(^l)*5(29-2*-l)/2ir29-2*-l) „ , g > 0 . 
fc=0 ^ ' 

F2qn = 4 l ( - r P*~k ~lYk-lF?-2k-\ n,q>0. 
k=0 ^ ' 

Changing k to q -1 - k, we may rewrite the above as 

** = 44E(-i)"(9+t+1)(&+
+*iV/?*, «,«^o, 

Thus 

and hence the theorem. 

Theorem 
Jfc=0 ^ ' 
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This theorem may be established by letting X = an, Y --fin', and m = (2q + l) in (2), and 
following the same steps used to prove Theorem 7. 

Finally, it may be mentioned that similar results can be established for the Pell and Pell-Lucas 
numbers Pn and Qn using the identities given in (1) and (2). 
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A COMPOSITE OF MORGAN-VOYCE GENERALIZATIONS 

A* Fe Horadam 
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(Submitted January 1996-Final Revision September 1996) 

1. RATIONALE 

Two recent papers, [1] and [3], detailed properties of 
(i) a generalization {P}r\x}} of the familiar Morgan-Voyce polynomials Bn(x) and bn(x), and 

(ii) an associated set {Q^(x)} of generalized polynomials. 
Here, we amalgamate these two sets of polynomials into one more embracing class of poly-

nomials (i^r'w)(x)}. 
In fact, 

^ ( x ) = /*>(*) (1.1) 
and 

# ' 2 ) (x ) = #>(*). (1.2) 

Hopefully, the reader will have access to [1], [2], and [3]. However, the following summary 
may be helpful for reference purposes (in our notation): 

T O O = *„+!(*), (1-3) 
P?\x) = B„+1(x), (1.4) 

#2)(*) = <**(*)> 0-5) 
Qf\x) = C„(x), (1.6) 

where C„(x) and cn+l(x) are polynomials related to the Morgan-Voyce polynomials. It may be 
mentioned that the polynomial Cn(x) has already been defined by Swamy in [4], where it has been 
used in the analysis of Ladder networks. Knowledge of the definitions of the Fibonacci polyno-
mials {Fn(x}} and the Lucas polynomials {X„(x)} is assumed. When x - 1, the Fibonacci numbers 
Fn and the Lucas numbers Ln emerge. 

Only the skeletal structure of the simple deductions from the definitions (2.1) and (2.2) ger-
mane to [1] and [3] will be displayed. This procedure follows the patterns in [1] and [3]. 

For internal consistency in my papers, I shall interpret symbolism in [1] in the notation 
adopted in [2] and [3]. Throughout, n > 0 except for the explicitly stated value n = - 1 . 

Much of the material and approach offered in this paper appears to be new. 

Definition 
Define 

with 

2, OUTLINE OF BASIC PROPERTIES OF {rjf'u\x)} 

#•">(*) = (x + 2)E£?\x)-R£?{x) (n>2), (2.1) 

I$>u\x) = u, I$r-u\x) = x + r + u9 (2.2) 
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where r, u are integers. Then 

&»\x) = ±cirfx\ (2.2) 
k=Q 

with 
4r;„u) = l if/fc>l. (2.4) 

Recurrences 
Clearly, from (2.1), $f = I$'u)(0) satisfies the recurrence 

<?=*£&-<£2o i">2), (2.5) 
with 

whence 

co,o ~~ u 

c(fju)=r+u\ 
(2.6) 

uw,o 

Ln,0 

4f=nr + u, (2.7) 

(2.8) 

(2.9) 

= w 

cn,0 = n + u 
4rf=nr + l\ 

Comparison of coefficients of JC in (2.1) reveals the recurrence (n > 2, k > 1) 

Cn,k ~ LCn-\,k ~ Cn-2,k + Cn-l,k-V Vz- 1 U J 

The Coefficients c£*w) 

Table 1 sets out some of the simplest of the coefficients c ^ . For visual convenience in this 
table, we choose u to precede r. 

From Table 1, [1], and [3], one may spot empirically the binomial formula 

<? -("ii-i'Mi^M"^"1) (211) 

•("i'Ha^-fa"') (212) 
by Pascal's Theorem. 

Multiply (2.12) throughout by x* and sum. Accordingly, 

Theorem 1: I§>u\x) = /*">(*) + (*/ - l)Aw(x). 

* " * " « " * ^ ( x ) = W x ) by(1.3X M , (2.13) 
^ 1 >(x) = J5„+1(x) by (1.4), [2], (2.14) 
^2'1}(*) = W * ) by (1.5), [2], (2.15) 
^°,2)(*) = b„+l(*)+*„(*) = C„(x) by [2], (2.16) 

234 [AUG. 



A COMPOSITE OF MORGAN-VOYCE GENERALIZATIONS 

Furthermore, 
€'°\x) = bn+i(*) - *„W = *B„(x) by [2]. (2.17) 

TABLE 1. The Coefficients c)ft ( » • > « ) 

0 
1 
2 
3 
4 
5 
6 

0 

w 
u+r 
u + 2r 
u + 3r 
u + Ar 
u+5r 
w + 6> 

1 

1 
2 + u + r 
3 + 3w + 4r 
4 + 6w + 10r 
5 + 10w + 20+r 
6 + 15w + 35r 

2 

1 
4+u+r 
lQ + 5u + 6r 
20 + 15w + 21r 
35 + 35w + 56> 

3 

1 
6 + u+r 
21 + 7w + 8r 
56 + 2&/ + 36r 

4 

1 
8 + w+r 
36 + 9w + 10r 

5 6 

1 
10 + w + r 1 

(3.1) 

3. FIBONACCI AND LUCAS NUMBERS 

Substitute x = 1 in Theorem 1. Then, with Fn(\) = Fn and Ln(\) = Z,n, 

^ 'M ) ( l ) = ̂ Wi - ^ i +rF2n + i t f ^ 
= (l+r)F2„+«F2fI_1. 

For example, B$' M) (1) = 21 + 2 lr +1 3M = (1 +r)Fs + uF1, as may be verified quickly in Table 1. 

Special cases: tf<U)m=K . (3.2) 

(3.3) I^1)(l) = F2n+2, 

Also, 

^ 2 > 1 ) ( i ) = ^ + i , 

^ ° ' 0 ) ( i ) = ^ . 

(3.4) 
(3.5) 
(3.6) 

Relationships between the Fibonacci and Lucas numbers, and the Morgan-Voyce polynomials 
when x = 1, are specified in [2]. 

Write 

In [2], it is shown that 

4. CHEBYSHEV POLYNOMIALS 

^ ^ = cost (-4<t<0). 

Bn{x) = U„ x + 2 

Ux) = u„\^-)-uJx+2 

HfWf} 
C„(x) = 2T„ x + 2 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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where Un{x) and Tn(x) are Chebyshev polynomials. 
Empirically, (4.2)-(4.5), taken with (2.13)-(2.16), suggest a more general formula connecting 

R(r'u\x) with the Chebyshev polynomials. 

Theorem 2: #.»>(x) = Un+l[^j + (r + u- 2)Un ( ^ ) - (u - l)U„ [• 

Thus, in particular 

x + 2 

W'l)(x) = Un+iml)Hr -m{*¥) 
and 

]%>V(x) = 2Tn\±±l\+rU, (X + 1 

(4.6) 

(4.7) 

Zeros and orthogonality properties of Bn(x), bn(x), cn{x), and C„(x) may be found in [5], 
[4], and [2]. En passant, the zeros of i^°'0)(jc), say, are, by (2.17), the zeros of xB3(x), namely, 
0 , - 1 , - 2 . 

5. THREE IMPORTANT PROPERTIES 

Roots a(x) = a and B(x) = B of the characteristic equation for (2.1), namely, 

£-(x + 2)X + \ = Q, 

are 

a-

P 

x + 2 + 4x2 +4 

Jt + 2 - V * 2 +4 

(5.1) 

(5.2) 

whence 
aJ3=\ 

a + ]3 = x + 2, (5.3) 

a - /? = Vx2+4x. 

The Binet form for Bn(x) is, by [2], 

an-Bn 
Bn(x) = ?—JLm 

a-p 
Moreover, by [2], 

(x + l)Bn(x)-B„_l(x) = b„+1(x), 

(x + 2)B„(x)-B„„l(x) = Bn+l(x), 

(x + 3)B„(x)-B„_l(x) = c„+1(x), 

(x + 2)B„(x)-2B„_l(x) = C„(x). 

Standard methods involving (2.1) and (2.2) yield the Binet form for B^r,u\x). 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
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Theorems: l$r'u)(x) a-fi 
= {x+r + u)Bn{x)-uBn_l{x\ by (5.4). 

Use of Theorem 3 in conjunction with (5.5)-(5.8) returns us to (2.13)-(2.16). Next, we record 
that, from (2.1) and (2.2), 

I&{u) = (u-l)x + u-r, (5.9) 

whence, by (2.13)-(2.16), B0(x) = 0, b0(x) = 1, c0(x) = - 1 , and C_x(x) = x + 2. 
Successive applications of the Binet form (Theorem 3) eventually give, on simplification and 

use of (2.2), (5.4), and (5.9), the Simson formula 

Theorem* ^\x)^\x)-[E!n^u\x)f = (x+r + u)[(u-l)x + u-r]-u2] 
= I$r>u\x)R^u\x) - [i#"'M)(x)]2J 

Familiar techniques produce the generating function (Theorem 5) to complete our trilogy of 
salient features of B^r,u\x). 

Theorems: ±^u){x)y = u-{{u-l)x+u-r}y 
h l-(x + 2)y+? 

_^"\x)-R^\x)y 
\-(x + 2)y+y2 

Special cases of Theorems 4 and 5: 

by (2.2), (5.9). 

0 1 
1 1 
2 1 
0 2 

R^u)(x) 

c„+i(x) 

Cn(x) 

R.H.S. of Th. 4 

- 1 
- ( * + 4) 
x(x + 4) 

Numerator in Th. 5 
1-y 

1 
l+y 

2-(2 + x)y 

Observe that, in the third column, (i) row 1 x row 3 = row 2 x row 4, (ii) row 3 = - ~ 9 

(iii)row4 = (a - /? ) 2 . 

6. RISING DIAGONAL FUNCTIONS 

Imagine, in the mind's eye, a set of parallel upward-slanting diagonal lines in Table 1 that 
delineate the rising diagonal functions 2ft(wr'M)(x) [= $Hn(x) for brevity] defined by 

k=0 

with 
<3l0(x) = r + u, (3l1(x) = x + 2r + u:> 

where the values of the coefficients of xk in (6.1) are given in (2.5)-(2.12). 
Thus, for example, 

(6.1) 

(6.2) 
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^ 4 (x) = c £ 6 M ) + 4 ^ 

as may be checked in Table 1. 
Choosing 9Jl0(x) = r + u involves a slightly subtle point. If one allows negative subscripts of 

2ftw(jc), then the diagonal function SL^x) is not equal merely to u, but to a more complicated 
expression. 

Some intriguing results of a fundamental nature for {2ft̂ 'M)(x)} now emerge. First, we dis-
cover the recurrence relation. For this we need, by (2.11), 

c£r,M) =n+r + u (n even). (6.3) 
2 + 1 ' 2 

Theorem 6: <3ln(x) = 2(3ln_l(x) + (x-l)(3l„_2(x) (n>2). 

Proof: Use (6.1). Sum for each power of x for k - 0,1,2,..., [-^j and simplify according to 
(2.4), (2.7), (2.10), (2.11), and (6.3). Then 

2<3ln_l(x) + (x - m„„2(x) = 2]T cn_kXxk - X ^ V + X<^i-iu**+1 

k=0 k=0 k=0 

: Cn+l,0 + C « , 1 X + ' *' + Cn+l-m,mX + ' ' ' + ' 
w + r + w, n even, 
1 wodd, 

= &„(«). 
Corollary 1: &„(!) = 2n_1 (1 + 2r + «). 

Proof: <3ln(l) = 2<3in_l{\) 
= 229lw_2(l) 

by Th. 6, 
by Th. 6 again, 

= 2"-12ft1(l) by repeated use of Th. 6, 
= 2"-l(l + 2r + u) by (6.2). 

Special cases: Substituting in Corollary 1 the values of r and u appropriate to Bn(x), bn(x), 
c„(x), and C„(x), we obtain the corresponding values for the diagonal functions of these polyno-
mials when x = 1, as stated in the concluding segment of [2]. 

From Theorem 6, the characteristic equation for ?k^,u\x) is £ -2X-(x-t) = 0 with roots 
y{x) = y, S(x) = S expressed by 

so that 
r+s=2, 
yS=l-x, 
r-s=2y[x. 

(6.5) 

In the standard process for the derivation of the generating function of 9l„(x), a fine nuance pre-
sents itself, namely, the recognition that, by (6.2), 

^3{x)-2(3i2(x) = x + 2r + u-2(r + u) = x-u. (6.6) 
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Applying Theorem 6 and (6.4), our treatment creates the following generating function. 
oo 

Theorem 7: J]%(x)yj = {r + u + (x-u)y}[l-(2y + (x-l)y2)]-\ 
7=0 

Straightforward techniques yield the Binet form 

Theorems: &,(*)= { » i ( » ) - * » o ( * ) f r " - f tOO ~ ̂ o(*)}<?" 
y-8 

Finally, by Theorem 8, we derive the Simson formula 

Theorem 9: <3iw+1(x)9l^(x) - <3l2
n(x) = (~lf(x - iy~l{(r + xf - x(r + u)2}. 

It is clear from Theorem 9, or from Corollary 1, that 

2ft„+1(l)^„_1(l) = ^2„(l). (6.7) 

The particular situations for Bn(x\ bn(x\ cn{x), and C„(x) in relation to Theorems 6-9 may 
be readily deduced. 

7, CONCLUDING THOUGHTS 

There does seem to be scope for further developments. One such advance, for instance, 
might be the extension of the theory through negative subscripts of $l^,u\x). Recall (5.9) for 
H = - 1 . 

Another innovation is the consideration of the replacement of x + 2 by x + k (k integer). And 
what of interest might eventuate if k =r? k = ul 

Possibly, some worthwhile differential equations could be hidden among the 57£(„r'M)(x). 
Experience teaches us that this is often the case when exploring diagonal functions. 
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ON CYCLIC STRINGS WITHOUT LONG CONSTANT BLOCKS 
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(Submitted January 1996-Final Revision July 1996) 

Given integers k, w, and n. How many n-letter cyclic strings with marked first letter are 
there, over an alphabet of k letters, which contain no constant substring of length > wl Let 
/£,(«) denote the number of such strings. We remark that by itself the phrase "cyclic string with 
marked first letter" is the same as "linear string." The difference between our problem and a simi-
lar one for linear strings lies in the phrase "no constant substring." In our problem this constant 
substring can lie on the circular, rather than only on the linear string. 

This problem was solved for k = 2 in [3]. Here we present the solution for arbitrary k, in the 
form of a surprisingly explicit formula. 

Theorem 1: There is an integer n$ = nQ(k, w) and an algebraic number /? = /?(&, w) such that for 
all n > n0 the number of such strings is given by the (exact, not asymptotic) formula 

[-(k -1), otherwise. 

where "<•)" is the "nearest integer" function, J3 is the positive real root of the equation xw = 
(k -1)(1 + x + x2 + • • • + xw~l), and n^ can be taken as 

. . v " i n n / IAI 

TIQ = 7%(w, k) = max w +1, 
kwlog2w 

This will follow from an analysis of the generating function, which is contained in the follow-
ing theorem. 

Theorem 2: Let F*(x) = 2^=0 LK
w(ri)xn be the generating function for {Lk

w(n)}. Then 

1 - J C " ( ( ^ , I 1 n.,7^ î» I 1 V \ 
F*(x) = ^-\kx + {k-\)y\ 

l-x 
w + l- wkx w + \ 

W+l 1 „W+1 l-kx + (k-l)xw+l l - x 

We use the following notation. Our alphabet $& = sik will be the set of residues {0,1,..., 
k -1} modulo k. If y = yx... yn is a string, then its sum is Z7 yj modulo k. The set of w-letter 
cyclic strings with marked first letter, over this A:-letter alphabet, will be denoted by CS(n, k\ and 
those which also have no constant substrings of length >w will be denoted by C$(n, k,w). The 
subset of CS(«, k) that consists of just those strings whose sum is 0 modulo k will be denoted by 
CS0(«, k), and the subset of those which also have no zero substring of length >w will be 
CS0(w, k, w). Finally, LS0(w, k, w) will be the set of linear w-strings over si that contain no zero 
substring of length >w. 

* Supported by the Office of Naval Research. 
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1. PROOF OF THEOREM 2 

We will reduce our problem to counting LS0(w, k, w), which is much easier, as we will see 
later. 

Step 1. First, we will show that our problem can be reduced to a simpler problem of count-
ing certain strings in CS(/i, k) without zero substrings of length > (w -1). 

We consider a map T:CS(n, k) -> CS(w, k) defined as follows: 

Tx = {xi+l-xi (mod*)}^ (where x„+1:= xt). 

This is a generalization of the map defined in [1] for k - 2. 
Clearly, T(CS(n, k)) c CS0(n, k). Note also that all maximal y-letter constant substrings of 

nonconstant strings are mapped onto zero substrings of length j ' - l , and constant strings in 
CS(nv k) are mapped onto 0 eCS(«, k)\fn-w. 

Given a string y = yl,..yn GCS0(n,k) and any letter a es&, we can uniquely determine a 
string x = xx...xn such that T(x) = y and xl=a since 

(V/ e{1,...,«}): xM = xt +yt (mod k) (again, xn+l := xx). 

Therefore, Tis a k:l map onto lmT= CS0(n, k). Furthermore, T(CS0(n,k,w)) = CSQ(n,k,w-l), 
together with 0 eCS(n, k)i£n = w. 

Let Lk
w(n) = \CS0(n, k, w) \ Then we have that 

[*(Zt_i(«) + l), for n = w, 

where 1 accounts for the string 0 e CS(n, k) in the case n = w. 
Step 2. Consider a CS0(«, A, w -1) string that ends on a nonzero letter. [We will denote the 

number of such strings by A^^w) and, of those, the strings whose first letter is nonzero will be 
denoted by A^,.^).] This string has < w -1 zeros at the beginning, so if we remove the zeros we 
will get a unique CS0(n-i,k,w-l) string, where 0<i<w-l, whose first and last letters are 
nonzero. Clearly, we can also perform the inverse operation, i.e., obtain a unique CS0(^, k,w-l) 
string whose last letter is nonzero, given i e {1,..., n) and a CS0(w - /', k,w-l) string whose first 
and last letters are nonzero, by adding i zeros at the beginning. Hence, we see that 

w-l 

At-i(») = lAt-i(»-0-
7=0 

Step 3. Let us now look at the linear strings of the type LS0(w, k,w-l). We define a map 
from LS0(n-l,k,w-l) to the set of those strings in U7=oCS0(n-i,k,w-T) strings (where 
0 < i < w ) whose last letter is nonzero, plus the empty string if n < w. 

Let such a string y = yx... yn_x eLS0(^ - 1 , k, w -1) be given, and put s = s(y) = - E / yj (mod 
k). Then our map will take y to the string 

yiyi-yn-i-n if^ = 0,j;w_w^0, andjV/ = "- = J„-i = °>°<*<w-l ; 
[0, if y is a zero string of length n-l<w-l. 
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Clearly, this map is a bijection onto its image. Let tk
w(n) - |LS0(w, k, w) |. Then we can con-

clude from the above that 

v ^ ^ IX if l<w<w, 
Jto [0, if 71 > W +1. 

Step 4. Now consider some string y GCS0(n,k,w-l). Either y is a zero string of length 
< w -1 or it has < w -1 zeros as the (possibly empty) union of its initial and terminal blocks of 
zeros. If we remove these zeros, we will get either an empty string (if n < w -1) or a CS0(n - i, k, 
w-l) string (where 0 < i < w -1) whose first and last letters are nonzero. 

Conversely, given a string y e CS0(w - / , k,w-l) (where 0 < i < w -1) with nonzero first and 
last letters, add / zeros between the last and first letter and, in the resulting string, mark one of the 
added zeros or the first nonzero letter of y as the first letter of the resulting CS0(w, k, w -1) 
string. There are / +1 choices for the new first letter. Let us show that this map is 1: (/ +1) from 
CS0(n - i, k, w -1) \ {0} onto its image. 

Suppose not. This means that, for some / e{0,1,..., w-1}, we can obtain two identical non-
zero CS0(n, k, w -1) strings by adding / zeros 

(a) to two different nonzero CSQ(n -/', k, w -1) strings with first and last nonzero letters, or 
(b) to the same string in the above set and then marking different letters as the new first 

letter. 
But (a) is clearly impossible, since it implies that by removing the / zeros (i.e., all the zeros) 

between the last and first nonzero letters, we can get two different CS0(w-/ , k,w-l) strings that 
begin and end on a nonzero letter. 

Hence, (b) must be true, i.e., there must exist a nonzero x e CS0(w, k, w -1) such that 
1) (3s*0)(Vr)(x r = x r + , ) ,and 
2) *i = - = x, = 0. 

But it is easy to see that 1) and 2) imply that x = 0. This is a contradiction, so our map must 
be 1: (i +1) from CS0(n-/', k9w-l)\{0} onto its image. 

Therefore, it follows that i£- i (°) = ° t s i n c e z t - i ( ° ) = °l a n d 

., ^ „, fl, if 1 <n<w, 
Ll_l(n) = J](i + l)Ai_l(n-i) + \' 

^ [0, if n>w. 
We can summarize the developments so far by giving the following set of equations that have 

been proved: 

rk K(n) = 
IkL^^n), forn^w, 

*(/*_!(/!)+ 1), for n = w. 

w-l w-l 

I.-
7=0 

lSJoAVi(«-0, forn^ + 1. 
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fee + O A t i ^ - O , forn>w. 

In [3] is it shown that 

e MA1"' forO<»<w-l, 
[ S r = i d ( » - 0 , forn>w. 

Generalizing the proof of this fact for a ̂ -letter alphabet, it is easy to show that 

2 (*", fo rO<«<w-l , 

It is also a special case of Example 6.4 on pages 1102-1103 of [4] (for it-letter, instead of binary, 
strings). [Of course, it is assumed that if « < 0 o r w < 0 in any of the above formulas, then 
Lk

w(n) = Lk
w{n) = A * » = A » = £k

w(n) = 0.] 
Define the generating functions 

Fk(x) = £ /*(„)*», ©£(*) = £ A*»x", 

<f>t(x) = £ Kk
w(n)x", ftix) = £ £(„)*". 

w=0 «=0 

Then we have 
F:(x)=kF:_1(X)+kx\ 

1 — V W 

Ot_i(*) = (l + x + - +xw-1)ftt-1(x) = i-^-Ot.Cx), 

X/W*_i(x) = X + X2 + • • • + XW + (1 + X + • • • + XW) ̂ ( X ) 
x(l-xw) l-xw + 1 _* , , 

F£1(x) = x + x2 + - + x ^ 1 + (l + ̂ ^ 
x-xw l-(w + l)xw+wxw+l,k , \ 

=—+—-—-—i—^i-\(xx 
l-x ( l -x) 2 w 1V h 

and, finally, from (1) above, 
k 1 + X + ---+X""1

 = l-XW 

Jw-l{X)~l-(k-l)x (k-l)xw l-kx + (k-l)xw+l' 

Hence, 

( l-xw 

l-kx + (k-l)x w+l 
J 

x(l-xw) l-xw+1 l-xw XL , , 
l-x l-x l-x 
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or, equivalently, 

«* , . (k-l)x2(l-xw) l-x 
l-kx + (k-l)xw+1 l-xw+1' 

SO 

pk , = x-xw l-(w + l)xw + wxw+1 jk-l)x2(l-xw) \-x 
w-lW l_x + (lx)2 l-kx + (k-l)X

W+l 1-XW+1 

= X-XW ^ l~XW
 ( k l)x2 1-(W + 1)XW+WXW+1 

l-x + l-x C )X (l-kx + (k-l)xw+1)(l-xw+1)' 

and thus, 

F:(x) = k\xw + X X 
A 

1-X j 

W . - , . ,VW+1 
7 l - * W / i IN 2 l~(w + l)xW+WX 

+ k (k - X)xl - - -^ n— l-x^ ! )" (l-kx + (k-l)xw+l)(l-xw+1) 

l-xw 

kx + (k-l)x\ 
f w + l- wkx w + l 

W+l 1 V W+1 l-kx + (k-l)xw+L l-x 

as asserted in the statement of the theorem. 

Let us now find the coefficients of F*{n). We have that, for n >1, 
w 

Lk
w{n) = {k-l)YdK{n-i), 

where 

where "[JC"](-)" means "the coefficient of x" in (•)". Let 

Bk
w{n) = [xH 1 

J-kx + (k-l)xw+1 '' 

then 

At(n) = (w + l)Bk
w(n)-wkBk

w(n-l)-S„, 

where 

(w + l, if(w + l)/n, 
[0, otherwise. 

Let us find an exact formula for B*(n) that involves binomial coefficients. Then in the next 
section we will find the formula that is claimed in Theorem 1 above. We have that 

1 1 1 
l-kx + (k-l)xw+l l-kx ^ (k-l)xw+l 

l-kx 
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SO 

and hence, 

since 

m m(w+l) 

^K (l-kx)m+1 t , (l--fcc)m+1 
m=0 

00 f 00 / . \ \ 

m=0 V=° 

IlrA-*)"^^ w=o /=o 

£ » = * Z I w J T^T = * E ' 
0<w<»/(w+l)V J\& J m 

w+l ' 

4(«) = *"Z (w+i)i m _w M ; w+l 

-1» V " (n-wm^fl-k , „ 
- k L TTT^I m T^rl -*»» m"lw n ~ w m 

m = l^n-Mm = 0^(w + lj["-™yw\"-1-wm\ = 0. 

2. PROOF OF THEOREM 1 

If we expand in partial fractions, 

(l-x"W-l)x(w + l-whc)_T Ca a 
• ^ ~ai-x/a+n+-(l-x)(l-Ax + ( * - l ) : 0 £ 1-x' 

where a runs over the zeros of the second factor in the denominator, then it is a simple exercise 
to verify that all Ca = 1 (a & 1), Q = w(k -1), and D = -kw. Hence, if we read off the coefficient 
of x" in the last form of the generating function given in Theorem 2, we find that 

-kw, if 71 = 0, 
k, if 1 < n < w, 
-(k - l)(w +1), if >v +1 does not divide n, 
0, otherwise. 

(2) 

Proposition 1: The roots of the equation l-kx + (k- l)xw+1 = 0 consist of a root x = 1, one posi-
tive real root <1, and w-l other roots all of which have absolute values >1. 

Proof: Indeed, the roots other than x = l are the reciprocals of the roots of 

Yw,k(x) = xw-(k-i)(x»-1 + - + i) = 0. 

Let p be the positive real zero of y/wj.. Then its remaining zeros are those of 

(3) 
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x-p = / " ' + (fi-(k- \))xw~2 + {fi2-{k- l)fi - (k - \))xw-1 + 
w-1 (4) 

We claim that the coefficients of this last polynomial increase steadily, i.e., that {^^(/OHy. 
Indeed, note first that, since yWf*(0) < 0 and y/Wfk(k) > 0, we have /? < k. But then the claim is 
true, because ysj+iik(fl) - Wj,k(P)= PJifi~ k) < 0. A theorem of Enestrom-Kakeya [2] holds that 
if the coefficients of a polynomial are positive real numbers and are increasing then all of the zeros 
of the polynomial lie inside the unit disk. This completes the proof of the proposition. • 

We now investigate the quantity n$ in the statement of Theorem 1, which requires sharper 
bounds on the roots of equation (3) above. First, we require a bound on /? itself. 

Proposition 2: We have k-k/kw <J3<k-(k-l)/kw. 

Proof: We note that y/wk{x) is negative in 0 < x < /? and positive in ()<x<k. Hence, it 
suffices to show that y/Wtk(k -(k-l)/kw)>0 and y/w,k(k ~klkw)<0. But 

r-(*-^>*~{('-£ 
f 

= (*-!) 1 - 1 

and, similarly, 

k i » w + i l i •• * ^ . * * - ^ = * w + 1 i -kw) K" kw+l 

w+l 

•w+l > + (k-V) 

( 
= k 1 - 1 - \<k 1- 1 w 

• 1 = - w -1<0, 

and the equality holds iff w = 1. D 
Next, we require a better bound for the roots of y/wjc other than the root j3. We know that 

these other roots have moduli <1, but the following proposition gives a sharper result. 

Propositions: The zeros of y/wJc(x), otherthan/?, all lie in the disk \x\<l-(k-l)/ kw. 

Proof: Observe that the zeros, other than 1 and j3, are the set of all zeros of the polynomial 
displayed in the last member of (4) above. If we denote that polynomial by g(x), then we claim 
that not only do the coefficients of g increase steadily, as shown above, but that if we choose 
R = P - k +1, then 0 < R < 1 and the coefficients of g(Rx) still increase steadily. If we can show 
this, then we will know that all zeros of g lie in the disk \x\<R<l. 

But isi? is chosen so that the coefficient sequence of g(Rx), viz. the sequence 

K-y-uW};: w-l 
0 ' 
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increases withy', then the result will follow. Nowi? is surely large enough to achieve this if 

m m — r-7->l, 

i.e., if 

R>R= max 
i<y<w-i y/j_u(j3) 

But, since yuk{fi) = PWj-uil3) - (*-1), we have 

m*xi<j<w-i Wj-i,k(P) Vo,k(P) 

Thus, all zeros of g lie in the disk | x | < /? - k +1, and the result follows by Proposition 2 above. D 

Now consider the exact formula (2) for the number Lk
w(n) of strings. The first term will be 

the nearest integer to fin as soon as the contribution of all of the other roots a * lip is <l/2. In 
view of Proposition 3, this contribution will be less than 1/2 if n>kw\og(2w)l {k-Y), and the 
proof of Theorem 1 is complete. D 

Notice, however, that, in order to obtain the estimate for ;%, we bounded the absolute value 
of the sum of powers of the small roots by the sum of their absolute values. Since this does not 
take into account many cancellations in Y,a*\,p &'", our estimate (which grows like kw~l) is much 
greater than the actual ^ ' s . In fact, based on empirical data for small k and w, we conjecture that 
^(k, w) grows polynomially in both k and w (specifically, slower than k2w3, but faster than kw2). 
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1. INTRODUCTION 

In the notation of Horadam [3], write 

Wn = Wn(a,b;p,q), (1.1) 
meaning that 

Wn=pW^-qW^ W0=a, Wx=b, n>2. (1.2) 

The sequence {Wn}™=0 can be extended to negative subscripts using (1.2); we write simply {Wn}. 
We shall be concerned with the sequences 

(Un = W„(0,XP,-l), 
[V„ = Wn(2,P;P,-l), 

where P * 0 is an integer, and 
\un = Wn{0,\;p,\), 
\v„ = W„(2,p;p,l), 

where \p\ > 2 is also an integer. 
For the sequences (1.3) and (1.4), we define A = P2 +4 and D = p2 - 4 , respectively. Tak-

ing a and (5 to be the roots of x2 - Px -1 = 0, we have the well-known expressions (the Binet 
forms) 

Un=^-^- and Vn = an+Pn. (1.5) 
a- p 

Similarly, if y and 8 are the roots of x2 - px +1 = 0, then 

u" = r-zT- and v» = rn+s"- (L6> 
y -o 

According to Dickson ([2], p. 405), Lucas proved that if x mdy are consecutive Fibonacci 
numbers, then (x, y) is a lattice point on one of the hyperbolas 

y2-xy-x2 = ±l, (1.7) 

and Wasteels proved the converse in 1902. Interest in conies whose equations are satisfied by 
pairs of successive terms of linear recursive sequences has been rekindled. See, for example, [1], 
[4], and [5]. Recently McDaniel [6] has provided converses to several of the results of these 
writers. For example, he proved the following. 

Theorem: Let x and y be positive integers. The pair (x, y) is a solution of y2 - Pxy - x2 = ±1 if 
and only if there exists a positive integer n such that x = Un and y - Un+l. 

The object of this paper is to generalize McDaniel's results and to obtain new ones. 
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2. SOME PRELIMINARY RESULTS 

Throughout this paper, m and n denote integers. Also, A and D are as defined in Section 1. 
For the sequences (1.3), we record the following results, each of which can be proved using the 
Binet forms: 

V*-4 = AUl meven, (2.1) 

V*+4 = AU2
m, modd, (2.2) 

UnVm+V„Um = 2Un+m, (2.3) 

uym-vnum=\2U:;;m- (2.4) 

V„Vm + AU„Um = 2V„+m, (2.5) 

[2V 
T_T_ . __ __ \^r n-m, m even ? 
^ m - A t / „ C / m = (2.6) 

y **Vn-m, modd' 
We shall also need the following results: 

Lemma 1: The integer solutions of Ax2 +4 = z2 are precisely the pairs (x, z) = (±U2„, ^V2n). 

Lemma 2: The integer solutions of Ax2 -A-z2 are precisely the pairs (x9 z) = (±U2n+h ± f^„+1). 

These two lemmas constitute the first half of McDaniel's Corollary 1, a well-known result for 
which he provides an alternative proof. 

Lemma 3: If A is square free, the integer solutions of A(x2 -4) = z2 are precisely the pairs 
(x,z) = (±V2n,±AU2n). 

Proof: Since A is square free and A\z2, then A\z. Writing z = AzQ we obtain Az% + 4 = x2, 
and the use of Lemma 1 completes the proof. D 

In a similar manner, using Lemma 2, we can prove 

Lemma 4: If A is square free, the integer solutions of A(x2+4) = z2 are precisely the pairs 
(x,r)-(±F2 w + 1,±AC/2 w + 1). 

Results for the sequences (1.4) which parallel (2. l)-(2.6) are as follows: 

v2
m-4 = Dul (2.7) 

«„vm+v„Mffl = 2ttfl+m, (2.8) 

"„vm-v„Kffl = 2w„_m, (2.9) 

VnVm+DumUn=lvn+m, (210) 

v„vm-Du„um = 2v„_m. (2.11) 

For completion, we state the following lemma, which is the second part of McDaniel's 
Corollary 1. 
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Lemma 5: The integer solutions of Dx2 +4 = z2 are precisely the pairs (x, z) = (±um ± v„). 

Now, using Lemma 5, and following the method of proof of Lemma 3, it is easy to prove 

Lemma 6: If D is square free, the integer solutions of D(x2 -4) = z2 are precisely the pairs 
(x,z) = (±vn,±Dun). 

3. CONICS CHARACTERIZING THE SEQUENCES (1.3) 

We now give a sequence of theorems concerning pairs of conies whose integer points are 
derived from the sequences (1.3). In the proofs we must recall that 

{-a, a < 0. 

Theorem 1: If m is a fixed even integer, then the points with integer coordinates on the conies 
y2 - VmXy + *2±Ul = 0 are precisely the pairs (x, y) = ±(U„, Un+m). 

Proof: Consider first the conic y2 - Vmxy + x2 + U2
m - 0. Regarding this as a quadratic equa-

tion in>>, and making use of (2.1), we obtain 

V x + U VAx2-4 
y 2 

From Lemma 2, integer points can arise only when x = ±U2n+1. Now, using (2.3) and (2.4), 
we see that the integer points are (x, y) = ±(U2n+i, U2n+i+m) together with the points (x, y) = 
±(C/2rt+1, U2n+i-m)9 where n ranges over all integers. Since these sets coincide, we consider only 
the first. 

Proceeding in the same manner, and making use of (2.1), Lemma 1, (2.3), and (2.4), we see 
that the integer points on the conic y2 - Vmxy + x2 - U2

m - 0 are (x, y) = ±(U2n, U2n+m). This com-
pletes the proof. • 

We now state three additional theorems, each of which can be proved using the results of 
Section 2. Since the proofs are similar to the proof of Theorem 1, we refrain from giving them 
here. 

Theorem 2: If m is a fixed odd integer, then the points with integer coordinates on the conies 
/ " Vm^y - x2 ± U2

m = 0 are precisely the pairs (x, y) = ±(Un9 Un+m). 

Theorem 3: If m is a fixed even integer and A is square free, then the points with integer coordi-
nates on the conies y2 - Vmxy + x2± AU^ = 0 are precisely the pairs (x, y) = ±(Vn, Vn+m). 

Theorem 4: If m is a fixed odd integer and A is square free, then the points with integer coordi-
nates on the conies y2 - Vmxy -x2± AU„ = 0 are precisely the pairs (x, y) - ±(Vn, Vn+m). 

We remark that Theorem 2 generalizes McDaniel's Theorem 1, and Theorem 4 generalizes 
McDaniel's Corollary 2. 
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4, CONICS CHARACTERIZING THE SEQUENCES (1.4) 

Next, we state two theorems concerning conies whose integer points are derived from the 
sequences (1.4). Each can be proved by following the method of proof of Theorem 1, while 
making use of the appropriate results from Section 2. 

Theorem 5: If m is any fixed integer, then the points with integer coordinates on the conic 
y1 ~ vmxy + x2-ul = 0 are precisely the pairs (x, y) = ±(um un+m). 

Theorem 6: If m is any fixed integer and D is square free, then the points with integer coordi-
nates on the conic y2 - vmxy + x2 + Du2

m - 0 are precisely the pairs (x, y) = +(vw, vn+m). 

We note that Theorem 5 generalizes McDaniel's Theorem 2, and Theorem 6 generalizes 
McDaniel's Corollary 3. 

5e AN INTERESTING EXAMPLE 

If A is not square free, it is easy to show by substitution, using Binet forms, that the stated 
solutions in Theorems 3 and 4 remain as solutions. The same is true of Theorem 6. However, as 
McDaniel observes, other solutions may occur. He cites the example 

y2-4xy-x2±20 = 0. (5.1) 

The conies (5.1) provide an example of the conies in Theorem 4 where P = 4, m = l, and 
A = 20 = 22.5 is not square free. Now (x, y) = (1,7) is a solution of (5.1), but Vn * 1 for any n. 
Observe, however, that the conies (5.1) may be written as 

y2-L3)cy-x2±5F2 = 0. (5.2) 

This is an instance of Theorem 4 in which P = 1, m - 3, and A = 5 is square free. Hence, the 
solutions are precisely (x, y) - ±(Ln, J^+3). 

REFERENCES 

1. G. E. Bergum. "Addenda to Geometry of a Generalized Simsonfs Formula.11 The Fibonacci 
Quarterly 22,1 (1984):22-28. 

2. L. E. Dickson. History of the Theory of Numbers. Vol. 1. New York: Chelsea, 1966. 
3. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers.1' The 

Fibonacci Quarterly 3.2 (1965): 161-76. 
4. A. F. Horadam. "Geometry of a Generalized Simson's Formula." The Fibonacci Quarterly 

20.2(1982): 164-68. 
5. C. Kimberling. "Fibonacci Hyperbolas." The Fibonacci Quarterly 28.1 (1990):22-27. 
6. W. L. McDaniel. "Diophantine Representation of Lucas Sequences." The Fibonacci Quar-

terly 33.1 (1995):59-63. 
AMS Classification Numbers: 11B37, 11B39 

1997] 251 



SUMMATION FORMULAS FOR SPECIAL LEHMER NUMBERS 

Piero Filipponl 
Fondazione Ugo Bordoni, Via B. Castiglione 59,1-00142 Rome, Italy 

e-mail: filippo@fiib.it 
(Submitted January 1996-Final Revision August 1996) 

1. INTRODUCTION AND PRELIMINARIES 

The observation made in [2] brings to the attention of the reader the fact that an improper use 
of the geometric series formula (g.s.f.) for obtaining summation formulas for the well-known 
generalized sequences {Wn(0,l;p,q)} and {^(2,/?;/?,#)} (e.g., see [5]) leads to meaningless 
expressions when/? and q assume certain special values. The same problem may arise if we seek 
summation formulas for Lehmer numbers (e.g., see [4] and [7] for recent studies on the properties 
of these numbers). 

The closed-form expression (Binet form) for the rfi1 Lehmer number Un(p,q) (or simply Un 

is no misunderstanding can arise) is 

v \{an-pn)l{a2-p2) (neven), 
" \(a"-pn)l{a-P) (n odd), 

a and/? being the roots of the equation x2 -Jpx + q = 0, where/? and q are integers. These 
roots are given by 

V = (VP-A)/2, 
so that 

a+P = Jp, (1.3) 
a-fi = A, (1.4) 
ap = q, (1.5) 
a2+/}2 = (p + A2)/2 = p-2q. (1.6) 

The numbers U„ obey (e.g., see [7]) the second-order recurrence relations 

u = [U„-i ~ qU„_2 (n>2 even), 
" W - i - ^ - 2 («^3odd), *• • ; 

with initial conditions 
U0 = 0 and ^ = 1, (1.7) 

whence it can be observed that Un(l9 -1) is the rfi1 Fibonacci number. As done in [7], without 
loss of generality, we can assume that 

p>0, (1.8) 
p-4q>0, (1.9) 
q*0. (1.10) 
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The simplest summation formula for normal Lehmer numbers [that is, Lehmer numbers with 
arbitrary parameters p and q satisfying (1.8)-(1.10)] is 

k " ~ q2+2q-p + l • ( L H ) 

This formula can be obtained after some manipulation involving the use of (1.1) [cf. (2.6) and 
(2.7)], (1.5), (1.6), and the g.s.f. The relation U2 = Ux = 1 [see (1.7) and (l.T)] must also be used. 

One can immediately observe that (1.11) does not have general validity. In fact, if p = k2 (k 
a positive integer) and 

q = -l±k, (1.12) 

then the denominator on the right-hand side of (1.11) vanishes. The same problem arises also in 
general summation formulas (that is, summations where the subscripts of the summands are in 
arithmetical progression with arbitrary difference) for normal Lehmer numbers. 

The principal aim of this note is to establish general summation formulas for a subset of 
normal Lehmer numbers: the special Lehmer numbers Un(k2, -1± k). As a concluding remark, 
some simple properties of these numbers are pointed out in Section 5. To save space, the number 
of proofs has been kept to a minimum. 

2. SUMMATION FORMULAS FOR NORMAL LEHMER NUMBERS: 
BASIC RELATIONS 

For notational convenience, let us define 

SN(t>,r) = ft{a'0»r-fi'm+r), (2.1) 

8 = \l{a-P), (2.2) 

y = \l(a2-p2). (2.3) 

The following relations are fundamental tools for establishing general summation formulas for 
normal Lehmer numbers. They can be proved readily by simply using (1.1) and will be used to 
obtain summation formulas for special Lehmer numbers. 

N 
Z Uhn+r = rSN Qi, r) (h and r even, N arbitrary), (2.4) 
n=0 

= SSffQt, r) (h even, r odd, Narbitrary), (2.5) 

= ySNn{2h, r) + SSff^lh, h+r) (h odd, r and N even), (2.6) 

= rV-iy2(2A,r) + SS(N-m^h, h+r) (h and N odd, r even), (2.7) 

= ySN/2_1(2h,h+r) + SSN/2(2h,r) (h and r odd, Neven), (2.8) 

= yS(N-m{2h,h+r) + 8S{N_m(2h,r) (A, r, and^odd). (2.9) 
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3. SUMMATION FORMULAS FOR Un(k\ -l±k) 

3.1 Summation Formulas for Un(k2, k-1) 

If p = k2 and 

then conditions (1.8)-(1.10) imply that we must have 

k2>9 

which, by (3.1), implies that 

q>2. 

If (3.1) holds, then from (1.2) we have 
[a = k -1 = q, 

w 
By using (3.4), (2.4)-(2.9) and the g.s.f. properly (that is, taking the value of J3 into account), 

we get the following general summation formulas: 
(0 For h > 2 even 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

N 

n=0 q -I 

Ut .~Ur h(N+l)+r u r -(N + i) \ + q i-(-iy 

(II) For h odd 

1 
2L,Uhn+r = ~J2~\ 

Uh(N+2)+r ~ Uh(N+l)+r " Ufn-r ~ Ur 2(g + 2){N + 1) - q{-\J[l + (-\)N] 

a 2h 

(3.5) 

(3.6) 

The proofs of (3.5) and (3.6) are easy but rather tedious. For the sake of brevity, only the 
proof of (3.6) (for r odd and N even) will be given. Observe that letting h - 1 and r - 0 in (3.6) 
yields the identity 

v r / _ 1 \TJ ,rj 2[4 + (q + 2)N] + [l-(-r)N]q 
2^ Un ~ ~ 2 7 uN+2 + uN+l 7 
n=0 q -Ll <+ 

(3.7) 

which gives the correct closed-form expression for the left-hand side of (1.11) in this case. We do 
not exclude the possibility that more compact expressions for (3.5) and (3.6) can be found. 

Proof of(3.6) (for r odd andN even): First, use (2.8), (2.1)-(2.3), and (3.4), along with the 
g.s.f. to write 

N i N/2-1 -i N/2 

w=o q -1 „ = 0 q i „ = 0 

_ 1 {^rqW-\ N)f 1 (rqKN+2)-l N + 2 
(3.8) 

q2-l{' qin-\ 2) q-l{* qlh-\ 

Then, take into account the parity ofWand r, and use (1.1) and (3.4) to rewrite (3.8) as 
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N 

I uhl •+Uu Ul,.. ~ U. Y / 7 = KN+2)+r + Uh(N+T)+r ~Uh+r ~Ur N (q + Y)(N + 2) 
h "h+r~ q2h~l -2tf-l)-2{q + \){q-\) 

=
 Uh(N+2)+r + Uh(N+l)+r ~ Uh+r ~Ur qN + 2q + 2(N + 1) 

(q2-l)U2h 2{q2-l) 

= ^ - ( g + 2 X f + 1 > + g. Q.E.D. 
2 ( ?

2 - l ) 

3.2 Summation Formulas for Un(k2
3 ~ k -1) 

If /? = k2 and 

then conditions (1.8)-(1.10) imply that we must have 

k2>l 
which, by (3.9), implies that 

q<-2. 

If (3.9) holds, then from (1.2) we have 

a = k + l = -q9 

P=-\. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Remark 1: By replacing (3.4) and (3.12) in (1.1), one can observe that U„(k2,-l + k) and 
U„(k2, -• 1- k) have the same form as functions of q. Hence, we obtain summation formulas that 
are identical to (3.5) and (3.6). 

4. OTHER SUMMATION FORMULAS 

Of course, other kinds of summation formulas for Un(k2, - 1 + k) may be of interest. As a 
minor example, we show the following closed-form expressions: 

N 

I 
«=0 

1 
SH)"0» =-T-T (-ir(uN+2-uN+l)+ 

2qN + (g + 2)[l-(-l)N] 

and 

n=0 

ff^rr (q + 2)[(q + l)N-2N]-q(\-q)N 

tXn) "' 2(q2-l) 

N(AN+4 - AN+2) - 2q\AN+l -1) + (q2 - l)(UN+1 -1) 
^ - ^ XN (iVeven), 

(N-

(4.1) 

(4.2) 

l)(AN+4 - AN+2) - 2q2(AN -1) + (g2 - l)(UN+2 -1) (NoM)t 

(4.3) 

( ^ - 1 ) 

where 
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AN = UN+UN_U (4.4) 
X„ = N[(q + 2)N + 2] / [4(q2 -1)], (4.5) 

YN=(N + l)[(q + 2)N + q]/[4(g2-l)]. (4.6) 

The (partial) proof of (4.2) is given below, whereas the proofs of (4.1) and (4.3) are left as an 
exercise for the interested reader. We confine ourselves to mentioning that the proof of (4.3) 
involves the use of (3.1) of [1], 

It has to be noted that the summation formulas (3.5), (3.6), and (4.1)-(4.3) also apply for 
negative values of h and/or r. Obviously, the extension of (normal) Lehmer numbers through 
negative values of the subscripts may be required. In fact, from (1.1) and (1.5), we readily get 

U_n = -UJq". (4.7) 

Proof of (4.2) [Un = Un(k2
9 & -1) , TV even/: By using (2.6), (3.4), and the identities avail-

able in [6; Ex. 4, p. 133], the left-hand side of (4.2) can be written as 

I N/2 /*T\ -i N/2-l 

^;m>y~'-^m^m^) 
= —± [(l + g)"+(l-g)*] + —J—Kl + gf -Q-g)" ] - 2 "^? 2 *" 1 

2{q2-\) 2(g-l) q*-l 

= (q + 2)[(l + q)N-2N]-q(l-q)N 

2(q2-l) 

Remark 2: By virtue of Remark 1, the case Un = Un(k2,-k-1) (7\f even) is also covered by the 
above proof. 

5. CONCLUDING REMARKS 

Let us conclude this note by pointing out some simple properties of the special Lehmer num-
bers that might be of some interest. For notational convenience, put 

TT(t*t n«TT+tn J [ (*- l )"- l ] / [*(*-2)] ("even) 
U„(k ,k-l) = U„(k) = \ (k>2), (5.1) 

[ [ (* - l ) B - l ] / (* -2) (w odd) 
TT(* t n"TT-,n J[(* + l)"-l]/[*(* + 2)] ("even) 
un(k ,-k-\) = U„(k) = \ (k> 1). (5.2) 

l[(* + l)" + l]/(* + 2) (»odd) 

(i) From (5.1) and (5.2), the following identities can easily be derived. 
U-2n{k) = U;n(k + 2), (5.3) 

U;„+l(k) = [W+
2n+l{k + 2) + 2]/(k + 2), (5.4) 

KM = [UUk) + {k- \)2UU{k)} I [k(k - 2) + 2], (5.5) 

U'n(k) = [U-n+2(k) + (k + l)2U-_2(k)]/[k(k + 2) + 2], (5.6) 

256 [AUG. 



SUMMATION FORMULAS FOR SPECIAL LEHMER NUMBERS 

Ut(k) = [U}„+l(k) - U2
+

n+2(*)]/ (k -1) (5.7) 

= -l+[C/2
+„+1W-(A:-l)(A;-2)[/2

+„_1(A:) + l]/A:, (S.?') 

^2"„W =\U-2M(k)-U^{k)V(k + \) (5.8) 
= [^+.« - (k + m^ik)] Ik2. (5.80 

(ii) As a final remark, we observed that the numbers U*(k) seem to be related to the central 
factorial numbers of the second kind T(h, ri) (e.g., see [3]). More precisely, we found the 
following identities, the proofs of which are based on (1.1), (3.4), (4.7), and the definition of 
T(h,n). 

Proposition: For n an arbitrary integer, we have 

U+nO) = T(2n + 2,4), (5.9) 

C^l(4) = 4l,-1r(2ii + l,3), (5.10) 
U+n+l(5) = T(4n + 4,4). (5.11) 

A possible generalization of (5.9)-(5.11) will be the object of a future study. 
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Any two numbers g, rj G R are equivalent (g ~ rj) if and only if there exists 
(a b" 

such that 

*lGC/(2?Z)^{^eM2(Z);|detv4|=l}5 

ar/ + b 
S = /A(V) = cr/+d 

It is well known [4] that the above equivalence relation "~" provides us with the following 
fibration of R: 

[0]=W 

R 
W 
fiber 

B = Base = irrationals u {0} 

Consider now the dynamical system (R,fA) with the specially chosen Mobius mapping 
fA : R —» R; A G U(2, Z). One sees then that fA acts along fibers. That is, 

V* GB : [b]3 x-> fA(x) e[b] => \/n GN : {/j(x)}"_ e [b], 

(Naturally, ft = fA..) 
An example of such dynamics is (R, / ^ ) with 4 = (° J) e {7(2, Z). This was investigated in 

L̂  J • 
In this note, the authors give a concise presentation of the dynamics generated by iteration of 

the arbitrary Mobius transformation /V A = (" £); det A = -t * 0. 
In view of the Cayley-Hamilton theorem, it is enough to consider the matrices of the form 

A = (i o)> where s = T r i and f = - d e t i ; i eGL(2 ,R) . 
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Naturally, 

Hence 

where 

and 

A2=sA + tl:l = [l
0 ° . 

A"+1=Hn+lA + tHnt, 

Hn+i = sHn+l + tHn, H0 = 0,Hx = X » G N ^ { 0 } 

(1) 

(2) 

It is also easy to see that when A = (\ *0), 

A«-\\ ^ I ; - N . (3) 

The singular, point of the transformation fA is 0. However, this point is never reached unless 
one chooses x0 sSA (or x0 = 0) as a starting point, where 

SA={vn E R ; vn=f-n(0); n eli}=>SA = \vn; vn = - t ^ n e=Nk 

Note, however, that for A &U(2,Z) the trajectories {fA(x); x &SA; n GN} run across [b]~ W 
fibers of R. 

It is also useful to note the following. Let us call (R,/~) and (R , / - ) equivalent and write 
(R, fA) ~ (R, f3) if and only if 3U eGL(2, R); B = U~lAU. Then the characteristic points of 
the dynamical system, that is, the set S~ (see the definition of SA), the attracting (stable) fixed 
point as well as the unstable fixed point of the ( R , / A ) system are just the corresponding charac-
teristic points of (R, fj) shifted by fv JVfobius transformation. For example, 

R > / f Q 1 GO. 
of [3] is equivalent to R, f^ ^ 

i oj 
with 17 = 0 1 

1 0 

As far as these characteristic points of the dynamic system (R, / - ) are concerned, the overall pic-
ture of all dynamics is the same as in [3] under the condition that there are two fixed points of fA, 
that is, we have 

, s±y[s2+4t u 2 , A4 A 
c+ = where s^ + 4t >0 
± 2 and 

I dx 

\d_ 
dx /A(*)\ 

<1. 

>1. 

(4) 

(5) 

(6) 
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Conditions (5) and (6) impose calculable restrictions on the s and t parameters. If these are satis-
fied, then x* is a stable attracting point. That is, the sequence xn - fA{xQ), x0 &SA converges to 
x* (almost regardless of the choice of starting point x0). The x* is then the unstable fixed point. 
When x0 ^ x*, the sequence xn converges to x* if and only if 3N; \/n > N\ xn - x*. One proves 
this via a contratio reasoning (see [2]). Explicitly, one has, for any unstable fixed point 

Vx0etl^; x„->x! 
where 

where 

I t , : { ^ ; ^ = / ; " ( 0 « e N } = > U i l = \zn;X„=t^neA (7) 

20=-x! , H1 = l. (8) 

That is, apart from the set SA another characteristic set U^ is attributed to the dynamical 
system(R,/4). 

However, conditions (5) and (6) need not be met. For example, fA; A = (l ~l) has only one 
fixed point x* = x* = x*, and 

d 
dx fA(x*) = 1. 

• > 1 . It is easy to see that, for all x0, x0 &SA, /A(X0) — 

However, starting at x0 = 1 - s (s>Q;s small) the iterates xn move away from 1. Hence, x* 
is not an attracting fixed point. Note the difference from (6); the argument giving rise to the set 
11^ necessitates an inequality \-^fA(x*) \> 1 for an unstable fixed point (see [2]). 

Following [2], one states that, to any single fixed point x* = x* = x*, there corresponds a set 
{fA; P ^ 0} of Mobius maps where 

A = 
1 

1 ( 1 0 
0 0 1 0*0. 

Since s = Tr A = 2 and t = -detA = - 1 , the above fA Mobius transformation with A = (I "*) is 
representative of the whole class of equivalent dynamical systems {(R, A ); Tr A = 2, det ̂ 4 = 1}. 
(Note that fA acts along W-fibers of R.) 

In conclusion, we state that the general features of 

( \ 

dynamics described in [3] are typical for the dynamics (R, fA) when s2 +4t > 0, where Tr A - s, 
dQtA = -t. For s +4^>0, one has one stable attracting point x* and one unstable repelling 
point x*, as then 
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0 x* 
\ = D. 

That is, (R, fA) ~ (R, fD) and fv{0) = x!, while /^(oo) = x -

£/ = 1 1 

The fixed point x* is therefore the repelling one even for 

dx /AW = lo{s2+4t = l v 2.s2 = l + Vl + 16f}. 

The general features of the (R, fA) dynamical system apart from fixed points consist of two 
descending sequences of intervals 

FT ff 
{[M„, M„+11}; M„ = -7T", and {[>„ , vn+l]}; vn = -*—*-• if. i f w+l 

which, by virtue of (3), converge correspondingly to x* and x* = -t /x*. 
In this note, we also notice that U^, the set of points defined by (7) and (8), is attributed to 

the (R, fA) dynamical system with an unstable fixed point x*. 
The detailed behavior of the (R, fA) iterative system is then finally established by the follow-

ing sequence of bijections (for t > 0, s > 0): 
U (v2,0)->(-oo,r i) , 
/A- (-0 0^I)-^(°,0 0X 

V2n-1> V2n+l)> 

/A- <>2»+l> V 2 I H . 3 ) - > ("2IH-2. "2»)> 

/«:[*:, «)->(o,x;]. 
The above shows that any point x0 G R (such that x0 gU^ and x0 £ £4) escapes from any vicinity 
of x* and runs to x*. This is also illustrated in the figures presented below. 

The case of s2 + At - 0 is the limit case. Thus, one has 

x =x+ = x_=-; Mn fi+i 
V n 

and 

SA=Wn=-t 
H 

H„+l 2 « + l 
-; weN 

n - l because the Fibonacci-like sequence {Hn} is now given by Hn = (s/ 2) • n ; n e N , and H0 = 0. 
As in the case of 4̂ = (j ~Q) considered above, we have for all x0 e R ; x0 <£SAu{0} 

(s
2+4t = 0): 
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One also easily sees from 
fKxo> 

fA{x* + s) = x , JC*+(/l + l)g 

x* +ns 
that, for small s, the first iterates xn = fA(x* +e) are attracted or repelled, depending on whether 
x* and 8 are of the same sign or not. The fixed point si2 is therefore neither attracting nor 
repelling. 

30TT 

-30-U-

FIGURE 1. Illustration of the General Behavior of the Dynamical System 
with Two Fixed points (s = 1; t = 20) 

FIGURE 2. Magnification of the x* Neighborhood from Figure 1 
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FIGURE 3. Illustration of the General Behavior of the Dynamical System 
with One Fixed Point (s = 2; t = -1) 

0 0.5 

FIGURE 4, Magnification of the JC* Neighborhood from Figure 3 

In the case of s1 +4t = 0, s > 0, the detailed behavior of the (R, fA) iterative system is estab-
lished again through the following sequence of bijections: 

fA: (s / 2, oo)-» (5/2,00), 
( - O O , 0 ) - > ( J / 2 , O O ) , 

(v1 ?0)^(-oo30) , 
0'1,1'2)->(0,V1), 

The cases 5 = 0 and s2 +4t < 0 (that is, without real fixed points) are easily treated, too (see [2]). 
In this case, one may encounter also finite periodic orbits (as, for example, 

/A 

/A 

/A 

/A 
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l o 1 ) ' - - (1 o ' T - . 
etc.) if 

fv *Y 
3neN: 

\X-J 
= 1; 

otherwise, orbit forms a dense subset of an interval. 
The presented investigation also provides one with some general insights that are useful for 

describing the (^9fA) dynamical system, where % stands for Clifford algebra and fA is a corre-
sponding Mobius transformation in R" (see [1]). There, the Clifford numbers' valued Fibonacci-
like sequences play a role similar to that of the {HJQ and {Sn} sequences in the R case. 
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1. INTRODUCTION 

In the notation of Horadam [2], write 

Wn = Wn(aMp,q), 
so that 

Wn=pWn^-qWn_2, W, = a,Wx=b, n>2. (1.1) 

If a and /?, assumed distinct, are the roots of X2 - pX + q = 0, we have the Binet form [2]: 

Wn = Aa" + Bp\ (1.2) 

where ^ = ̂ f a n d 5 = ^ . 
The sequence {Wn} has been studied in the recent papers of Melham and Shannon [4], [5]. 

The purpose of this article is to establish some new identities involving Wn by using the method of 
Carlitz and Ferns [1]. 

Throughout this paper, the symbol (A) is defined by (A) = .,., "_;. .,,. 

2. THE MAIN RESULTS 

Carlitz and Ferns [1] have given a large number of interesting Fibonacci and Lucas identities. 
By adapting their method to the sequence {Wn}, we have obtained the following results. 

Theorem, 2.1: 

j=0 
w-i(y)(- irv^- y ^. (2.i) 

Lemma: Let M = a or/?, then 
(i) -pq + (p2-q)u = u3, (2.2) 

(ii) -q3+pq2u + u6 = (p2-2q)u4, (2.3) 
(iii) -q5+pq4u + ul0 = (p4-4p2q + 2q2)u6, (2.4) 
(iv) -q9+pq*u + uls = Au10, (2.5) 
where A = / - Sp6q + 20p4q2 -16p2q3 + 2q4. 

Theorem 2.2: 
ip2-q)Wk+x~pqWk = Wk+3, (2.6) 

-q3Wk +pq2Wk+l + Wk+6 = {p2-2q)WM, (2.7) 
-q5Wk +pq4Wk+l + Wk+l0 = (p4-4p2q + 2q2)Wk+6, (2.8) 

-q9Wk+pq*Wk+l + Wk+n = AWk+l0. (2.9) 
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Theorem 2.3: 

i+J+s--

Theorem 2.4: 
wn+k=d>q2r 

Theorem 2.5: 

Theorem 2.6: 

w3n+k= i ( ^ V i y v ^ y ^ * , (2.io) 

wn+k = (-qyn S fz"l(-i)V2y+V^+y+,- (2.ii) 
i+J+s=n ^ ' J ' 

Wn+k=(pq2r X {i
ni)<rW(p2-2qyW4l«iJ+k, (2.12) 

W4n+k=(p2-2qT" I ( ^ l ^ W ^ X ^ , (2-13) 

» U = I f/"l(-l)VV,+2;(^2-2?)W4/+y+fc. (2.14) 
i+j+s=n^ ' ' 

^*=(w 4 r s f/"l(-iy^(/-4A+2?
2)'^+10;.+fcJ (2.i5) 

W6n+k=(p4-4p2q + 2q2y" I (^VoV^fW*, (216) 

*Io«* = I f / " / l ( - l ) ^ V J + 4 / ( / - 4 A + 2^)'^+y+fc. (2.17) 

Wn+k=(pqZT" S f/"-l(-l)V'A'»I0(+18/+t, (2.18) 

»?<*•* = ** I f A - l c - O V ^ X . ^ , (219) 
i+j+s=n \ ' J S 

WlSn+k= I (^(-lyp^M^^. (2.20) 

3. THE PROOFS OF THE MAIN RESULTS 

Since a and J3 are roots of A2 - /?2 + q = 0, then 

a2 = pa-q, (3.1) 
P2=pf3-q. (3.2) 

Now, by the binomial theorem, we have 

a2" = l ( " ) ( - i r V ^ - V , (3.3) 

/p"=i,(j)(-irJp'<rJfiJ. (3.4) 
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Theorem 2.1 follows if we multiply both sides of (3.3) and (3.4) by ak and/?*, respectively, and 
use the Binet form (1.2). 

The Lemma can be proved by using (3.1) and (3.2). We prove only (2.3) since the proofs of 
(2.2), (2.4), and (2.5) are similar. 

Proof of (2.3): Using (3.1) and (3.2), we have 

-q3 + pq2u + u6 = q2(pu -q) + u4(pu - q) 
= q2u2 + pu5 - qu4 - q2u2 + pu3(pu - q) - qu4 

= (p2 - q)u4 + q2u2 - pqu3 = (p2 - q)u4 - qu2 (pu -q) = (p2 - 2q)u4. 

This completes the proof of (2.3). 

Theorem 2.2 can be proved by using the results of the Lemma and proceeding in the same 
manner as the proof of Theorem 2.1. 

The proofs of Theorems 2.3-2.6 are similar. Therefore, we prove only Theorem 2.4. 
Proof of Theorem 2.4: By using (2.3) and the multinomial theorem, we have 

i+j+s-n V ' ^ / 

i+j+s 

If we multiply both sides in the preceding identities by uk and use the Binet form (1.2), we obtain 
(2.12), (2.13), and (2.14), respectively. This completes the proof of Theorem 2.4. 

4. SOME CONGRUENCE PROPERTIES 

From (2.12), (2.15), and (2.18), by using the decomposition 

1 = 1 + 1 . 
i+J+s=n i+j+s=n i+j+s=n 

z=0 i*0 
we obtain 

Theorem 4.1: 
Pnq2nWn+k-ii§{-\yq'"-ZiW6j+k^ (mod(p2-2q)), (4.1) 

P"g4"K+k-t(j)(-iy^'iJWioJ+^0 (mod(p<-4p2q + 2q2)), (4.2) 

P y X + , - l ( " ) ( - i y ^ - 9 ; ^ 8 y + f c - 0 (mod A). (4.3) 

From (2.14), (2.17), and (2.20), by also using the above decomposition and Theorem 2.1, we 
get the following result: 
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Theorem 4.2: 
W6n+k - {-l)nq2nW2n+k - 0 (mod(/?2 - 2q% (4.4) 

WlQn+k-{-iyq*nW2ri+k^0 (mod(/-4/?V2<72)) , (4.5) 

» W * ~ i-WnW2n+k - 0 (mod A). (4.6) 

5. A REMARK 

Some of the results in this paper are not as "practical" as others. For example, if we put 
n = 10 and k = 0 in (2.13), then we seek to find W40. However, on the right-hand side, we need to 
know W6, Wl2, Wls,..., W60 (and many other terms) in order to find W4Q. In contrast, (2.14) is more 
practical since, in order to find W60, we need to know the value of terms whose subscripts are 
much less than 60. 
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INTRODUCTION 

The aim of this note is to investigate some properties of special sequences of 4-tuples. These 
sequences were first examined by Wong [7] and are called Ducci-processes. Wong defines them 
as follows ([7], pp. 97, 102): 

The successive iterations of a fenction/are called a Ducci-process if/satisfies the following conditions: 
1. There exists a function g(x, y) whose domain is the set of pairs of nonnegative integers and 

whose range is the set of nonnegative integers. 
2. f(xl9 x2,..., xn) = (g(xl9 x2), g(x2, x3), ..., g(x„_„ xn),g(xn, x,)). 
3. The n entries of fk(xl, x2,..., x j are bounded for all k. The bound depends on the initial 

choiceof Xj,x2,...,xw. 

For g(x, y) = \x-y\we obtain so-called Ducci-sequences of w-tuples and so Ducci-processes 
are generalized Ducci-sequences. Since Ducci-sequences were introduced in the 30s (see Ciam-
berlini & Marengoni [1]), they have been extensively examined (for references, see Meyers [6] or 
Ehrlich [2]). Most studies dealt with the following questions: 

• Does every sequence of n-tuples lead to (0, ..., 0)? 
• How many steps in the sequence of a given ^-tuple are necessary to reach (0, ..., 0) or a 

cycle of /i-tuples? 
• What can be said about the length of the cycles? 
It seems that there have been no further studies about Ducci-processes. Only Engel [3] uses 

them for a computer exercise for school children. He asks them to find properties of cycles of the 
Ducci-processes of 4-tuples for g(x, y) = (x + y) mod m. 

We want to answer the above questions for this Ducci-process of 4-tuples. 

STABILITY 

Before giving an answer to the first question, we need some definitions. Many techniques 
that are applied for studying Ducci-sequences transfer in a quite obvious way to our problem. So 
we will use similar notation to [2] as far as possible. We denote our 4-tuples by (a, b,c,d). 

Definition 1: Let %m be the operator on 4-tuples over Z, which is defined as follows: 

2JW (a, b,c,d) = ((a + h) mod m, (b + c) mod m,(c+d) mod m, (d + a) mod m). 

It is clear from the definition of 9)w that we can choose the entries of the 4-tuples under 
investigation from lLm. As we are always—if not otherwise stated—computing over Hm for some 
m, we will omit "mod m." 

* The author is working on his doctoral thesis at the Universitat Wurzburg and is supported by the Konrad-
Adenauer-Stiftung e. V. 
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Since the number of 4-tuples in Zw is bounded, we reach a cycle of 4-tuples after a finite 
number of applications of 2JW. 

Definition 2: Let A be a given 4-tuple. Then the smallest natural number k satisfying 2J*+iA = 
^k

mA for some I GN is called the life span of A and will be denoted as Xm(A). 
Thus, !£m(A) is the number of applications of 2)w needed to reach the cycle produced by A. 

Definition 3: For a given 4-tuple A, we call the smallest natural number I > 0 satisfying 2)^ ,4 = 
%k

mA for every £ > Xm{A) the length of the cycle generated by A. 
Considering the cycles that are produced by all possible 4-tuples with entries in Zw, we find 

at least one cycle of maximum length. We use £(m) for this maximum length. 

Definition 4: A Ducci-process is called stable if the cycle generated by every 4-tuple contains 
only one 4-tuple, i.e., £(m) = 1 (see [7]). 

Obviously, the first question breaks down into two parts now: 
1. For which m is the Ducci-process produced by 2JW stable? 
2. Which 4-tuples can be in a cycle of length 1? 

The first part has been answered by Wong ([7], 3.(1)). 

Theorem 1: The Ducci-process produced by 2)w is stable if and only if m = 2r for some r sN: 

As with Ducci-sequences, only one 4-tuple can be contained in a trivial cycle, i.e., a cycle of 
length 1. 

Lemma 1: The 4-tuple (0,0,0, 0) is the only 4-tuple contained in a trivial cycle and so a 4-tuple 
A leads to a trivial cycle if and only if ^k

mA = (0,0,0, 0) for some k. 

Proof: Let A - (a, b, c, d) such that %mA = A. Then 

%mA =(a + b,b + c,c + d,d+a)-{a,b,c,d) = A. 

Comparing the first entries, we deduce that b = 0. The other entries show that c = 0, d = 0, and 
a = 0. D 

Thus, every 4-tuple in a Ducci-process produced by 25w leads to (0,0,0,0) if and only if 
m = 2r. 

Theorem 1 also shows that £(m) = 1 if and only if m = 2r. Consequently, for every m that is 
not a power of 2 there are nontrivial cycles, i.e., cycles of length greater than 1. 

CYCLES OF 4-TUPLES 

In order to determine a special 4-tuple that produces a nontrivial cycle for every m ^ 2r, we 
introduce a very helpful symbol. 

Definition 5: Let A = (a, h,c,d). Set S(A) = a + b + c + d (mod m) and call S(A) the sum of A. 
We set AQ = (1, 0, 0, 0) (as with Ducci-sequences, the cyclic permutations of a given «-tuple 

all behave alike so they are not considered separately) and Ak-^mA^. 
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Lemma 2: Ifm*2r for any r, then AQ = (1,0,0,0) leads to a nontrivlal cycle. 

Proof: Let B = {a, b, c, d) and so S(B) = a + b + c + d. Obviously, we have S(Q}mB) = 2S(B) 
and it follows by induction that S(Q)k

mB) = 2kS(B). 
For AQ we get S(AQ) = 1 and so S^AQ) = 2k. But, as m does not equal a power of 2, it 

follows that 2k # 0 mod m for every k sN. Thus, (0, 0, 0,0) cannot be found in the sequence 
produced by AQ. D 

The 4-tuple AQ also gives rise to a cycle of maximum length. 

Theorem 2: The length of the cycle produced by AQ equals £(m) for every m and the length of 
the cycle produced by any 4-tuple divides £(m). 

Proof: We observe that 2}w is a linear operator and that every 4-tuple can be written as a 
linear combination of the cyclic permutations of AQ. Let £ be the length of the cycle produced by 
AQ, k such that 2)* AQ is in the cycle, and B = (a, b,cyd) a given 4-tuple. Then B = a(l, 0,0,0) + 
6(0,1,0,0) + c(0,<0,1,0) + d(0, 0,0,1) and 

<3%kB = aS£*(l, 0,0,0) + &2#*(0,1,0,0) + c2#* (0,0,1,0) + </2C*(0,0,0,1) 
= a9£(l, 0, 0,0) + b%(0,1,0,0) + c24(0,0,1,0) +</9£(0,0, 0,1) = 9£ A 

Thus, the cycle produced by 4) has maximum length and the length of the cycle produced by B 
must divide £(m). • 

Here we have a close relation to the cycles of Ducci-sequences. The w-tuple (1,0,..., 0) pro-
duces a cycle of maximum length in a Ducci-sequence for every n and it is not contained in a cycle 
itself (see [2], Corollary 2). The second statement is also valid for our 4-tuple AQ. 

Lemma 3: The 4-tuple AQ = (1,0,0,0) is not contained in any cycle. 

Proof: Assume that AQ is contained in a cycle. Then there is a B = (a, b, c, d) such that 
2)w B = AQ . Consequently, 

a + b = l9 h + c = 0, c+d = 0, d + a = 0. 
Thus, b~-c,-c = d,d = -a, and b = -a. But then a + b = a-a = 0, which is a contradiction to 
the equation for the first entry. • 

In the next theorem, we use a well-known fact from number theory: Zm = Z ,,©•••© Z , if 
P\ Pr 

Pi '•••'Prr is the decomposition of m into prime numbers, where © denotes the "usual" direct 
sum. 
Theorem 3: Let m = p[l • . . . • /£ . Then ^(m) = lcm{^(p{1),...,^r)} ( l c m denotes the least 
common multiple. 

Proof: We consider a sequence with AQ as the first 4-tuple. There is a &,for every / so that 
2Jj'4) is contained in a cycle. 

Let m = p[1'...-pjr and k be the maximum of {k h,..., A^, &,„}. Then 2>* 4> = (®,b,c,d) 
lies in a cycle over Zm as well as over each of the Z *. Since 2W is linear, we obtain 
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(a, b,c,d) = ((a1? 61? q, dj, ...,(ar,br,cr,dr)). 

Further, 2bm(a,b,c,d) = ( 3 r f ( a i A q , 4 ) , . . . , %(ar ?6r ?cr ,rf r)). Let 5 = 2 ^ 4 , . From the 
above construction, it follows that <2fl

mB = B over Zw for some minimal /i if and only if 2)^5 = B 
over all Z /,. Clearly, /? is the least common multiple of the tip]1) and £(m) = h. D 

Corollary 1: Let m be odd. Then £(2rm) = ^(wi). 

Proof: The proof is obvious since ^(2r) = 1 by Theorem 1. D 

For our further investigation, we have to examine four special 4-tuples more closely. Let 
X,= (1,-1,1,-1), X2 = (\, 1,1,1), * 3 = (1,-1,-1,1), X4 = (l, 1,-1,-1). 

If/? is an odd prime, these 4-tuples are linearly independent over Zp, so every 4-tuple can be 
written as a linear combination of the Xi over ~Lp in exactly one way. Further, the 4-tuples Xi 

have some special properties: 
2 ) ^ = (0,0,0,0), 
%X2=2X2, 
<3)pX3 = X3- X4, 
%2

PX3 = -2X4, 
Jjp .A4 — A3 + A 4 , 

<3)2
pX4 = 2X3. 

We consider Ai = (1,0,0,1) = 9HmA0. Ifm is an odd prime, we can write A1 as 

4 = 2"1((1,1,1,1) + (1, -1,-1,1)) = 2~\X2 + X3). 

By induction, we deduce the following set of equations (the powers of 2 still have to be reduced 
modulo/?): 

l3)fAl =2-\2SkX2 + 24kX3), (1) 
<3)sk+1Al =2-\2sk+lX2 + 24k(X3-X4)), (2) 
3 ^ + 2 4 =2~\28k+2X2-24k+lX4), (3) 
Q)sk+3A1 =2-1(28k+3X2-24k+1(X3 + X4)), (4) 
2i8/+44 =2-\2*k+4X2-24k+2X3), (5) 
2i^+ 54 •= 2-\2sk+5X2 - 24k+2(X3 - X4)\ (6) 
2)8/+64 =2-1(28*+6X2+24t+3X4), (7) 
2>8/+74 =2-1(28fc+7X2+24fc+3(X3 + X4))) (8) 
2)f+1>4 = 2~\2^k^X2 - 24<t+1> X3). (9) 

Since 2 is in the group of units Tm if and only if m is odd, these equations also hold for every 
such m. Ifm is even, the equations cannot be used, as 2 is not a unit in Zm and 2_1 does not exist. 

The above set of equations is the cornerstone of the following proofs. Before fully exploiting 
these equations, we need one more definition. 
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Definition 6: Let m be an odd number. Then we denote the order of 2 in the group of units of 
ZMasOm(2). 

Lemma 4: If in is odd, then 4 is contained in the cycle produced by 4 -

Proof: We use equation (1): 

= 2-\X2 + X3) = A1. D 

Corollary 2: Ifm is odd, then £(m)\Wm(2). 

Theorem 4: For every odd m, Om(2)\£(m). 

Proof: By Theorem 2 and Lemma 4, Ax is in the cycle of maximum length for every odd m. 
Obviously, £ ( 4 ) = 2. Since S(S^W)4) = S(4) = 2 and S(<3)mC) = 2S(C) for every 4-tuple C, it 
follows that 5(3^w)-14) = 1 

On the other hand, using S(<&mQ=2S(C), we can conclude by induction that S^^'1 Ax) = 
2i(m)~lS(Al) = 2Km)\ thus, 2Km) = 1 mod m. Euler's well-known theorem completes the proof. • 

Now we can give a characterization of £(p) for every prime/?. 

TheoremS: Let/? be an odd prime. Then 

£(p) = -

Proof: Corollary 2 shows £(p)\Wp(2). On the other hand, we know from Theorem 4 that 
Op(2)\£(p). Thus, we only have to check 0,(2), 20,(2), and 40,(2) as possible values for £(p). 

1. 4|0,(2), 8|0,(2): We can write 0,(2) = 4(25+1) = Ss+4 for an 5 eN0. Equation (5) 
shows: 

Q}°;{2)Al = 2'\2*S+4X2 -24s+2X3) 

= 2_1(2 p()X2-2~X3) 
= 2-\X2 + X3) = Al. 

Thus, t(p) = 0,(2). Here we have used the fact that (2{°',(W2f = 2°"(2) = 1 mod/? and, since Tp 

is a field, the equation x2 = 1 mod p has the two solutions 1 and - 1 . From the definition of 
0,(2), it follows that 2[°'(2)]/2 = -1 mod p. 

2. 8|0,(2): Assume that £(p) = 0,(2). Since 0,(2) = 8(2^+1), we can use equation (9): 

2£ ' ( 2 ) 4 = 2-\2^s+l)X2 + 24<2s+1>X3) 

= 2" 1 (X 2 -X 3 )*4-

0,(2) : 
20,(2) : 
40,(2) : 
80,(2) : 

4|0,(2), 8|0,(2), 
8|0,(2), 
2|0,(2), 4|0,(2), 
2|0,(2). 
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Using equation (9) again, we can conclude that 25, p Ax - Ax and thus £(p) = 20p(2). 
3. 2\Op(2)9 4/0,(2): We consider 40,(2). Obviously, 8|40,(2) and so, by equation (1), 

3 ? ' ( 2 ) 4 = 2-\240*(2)X2 + 22°*(2)X3) 
= 2~\X2 + X3) = Al. 

Now assume £(p) = 20p{2). Since 0,(2) = 2(25+1), we can use equation (5): 

a2^ ( 2 )4=2-1(22 0" ( 2 )X2-2^( 2 )X3) 
= 2-\X2-X,)±Al. 

So£(p) = 40p(2). 
4. 2\Op(2): Now we can write 40p(2) = 4(2^+1) and, using basically the same calcula-

tions as in the case above, we see that £(m) cannot equal 40p(2) or one of its divisors. • 

Corollary 3: lip is a prime and p = -\ mod 4, then 

(40,(2) : 2,0,(2), 
W' }80,,(2) : 2(0,(2). 

Proof: By Euler's formula, 0 , (2) | (p- l ) . But p-l = -2 mod 4; thus, neither p-l nor 
0,(2) is divisible by 4. D 

Before stating another consequence of Theorem 5, we want to mention an easy way to deter-
mine whether 0,(2) is even or odd. 

Lemma 5: Ifp is a prime and p = -l mod 4, then 0,(2) is odd if and only if (p +1) / 4 is even. 

For further details and the proof, see Lemma 13 in [4]. 

Corollary 4: Let p be a prime. If p = -1 mod 4, then £(p)\4(p-1). If p = 1 mod 4, then 
t(p)\2(p-l). 

Proof: We treat the case p = -l mod 4 first. Obviously, p-1 is even. If 0,(2) is odd, then 
0,(2) p-i ./>-! ~ - and so 80,(2) 8 ^ - . If 0,(2) is even, the result is obvious. 

The proof for p = 1 mod 4 runs along the same lines. D 
Remark: If p = 1 mod 4, then ^(p) is even a divisor of p-1. This can be shown using some 
techniques of Ehrlich [2] and writing 2), as a sum of two operators. 

We have shown that every l{m) can be computed if the decomposition of m into prime 
numbers and £(pr) for pr \m are known. We have determined £(p) [in terms of 0,(2)] but have 
not yet investigated powers of primes. In this case, we can give only a partial solution. 

Theorem6: Let m-pr for some odd prime/?. Then 
1. t{p)\l{m), 
2. t(rri)\f-%p). 
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Proof: 

1. Obviously, 9b%m)Ax = A, and so ^m)Ax = Av Thus, £(p)\£(m). 
2. From Q}£^p)Al = Au we deduce, by induction, that 9bs^p)A1 = Ax for every odd s and, 

consequently, %Cm A = ®?£§p) A = 4 - Thus, £(m)\pr-l£{p). D 

Remark: There are cases in which -£(pr) < pr~l£(p), e.g., for /? = 1093, 

*(p)=EyL = t(p2)-
We will end this section with a final observation. 

Corollary 5: If m is odd, then 4\£(m). 

Proof: From Theorem 5, we deduce that 4\£(p) for every prime/?. Thus, 4\£(pr) by Theo-
rem 6 and 4|^(#f) by Theorem 3. D 

THE LIFE SPAN 

As we have seen above, A$ produces a cycle of maximum length. It also has the highest 
possible life span. 

Lemma 6: Let B be a 4-tuple. Then £m(B) < &m(A)-

Proof: B can be written as a linear combination of the cyclic permutations of A$ (see the 
proof of Theorem 2). If %k

mA = (°> °> °> °) f o r s o m e k> t h e n ^ t c = (°> °> °> °)> w h e r e c i s anY 
cyclic permutation of A0. Thus, <3)k

mB = (0,0,0,0). D 

Therefore, we can limit our investigation to AQ. Before stating our last theorem, we need 
some further notations and a rather technical lemma. 

Notations: Let 2) and *K be the operators on 4-tuples over Z defined by Q)(a,h,c,d) = (a + b, 
b + c,c + d,d + a) and K(a, 6, c, d) - (6, c, d, a). Obviously, 2U = <3bm A mod m for every 4-tuple 
A with entries from Z. If every entry of A is divisible by r GN, we write A = 0 mod r. 

Lemma 7: Let B = (6 - 2, b -1,6, b -1), where * > 3 is odd. Then 2)5 ̂  0 mod 2 and 2)25 = 
2KC, where C = (c - 2, c - 1 , c, c -1) and c is odd. 

Q)2B = 2)(26 - 3,2ft -1,2ft -1,2b - 3) 
= (46-4 ,46-2 ,46-4 ,46-6) 
-2(26-2 ,26-1 ,26-2 ,26-3) 
= 2 ( c - l , c , c - l , c - 2 ) , 

where c = 26 - 1 . • 

Theorem 7: Let m>2,m = 2rk for some r e N 0 and A: an odd natural number. Then 

J1 : r = 0, 
^ ( 4 ) ) = {2r- f2:r>l . 
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Proof: 
• Let r - 0, i.e., m is odd. Lemma 4 shows that Ax = 3)mA0 is in a cycle and Lemma 6 

completes the proof. 
• Let r > 1, i.e., #i is even. As in Theorem 3, we can compute over Z /, © • • • © Zp/S. Since 

2) r^o is in a cycle for every odd prime/?, we have to consider only the case pj* = 2r. 
We compute 9)*4>: 

A-ao,o,o), 
4 = (1,0, 0,1), 
A, =(1,0,1,2), 
4 =(1,1, 3, 3), 
A4 = (2,4,6,4). 

Obviously, only the entries of 4* are all divisible by 2. We can write A4 as 4 = 2 • (3 - 2, 
3 -1,3,3 -1) . Thus, we can apply the preceding lemma, and it follows by induction that 
4 r + 2 = 0 mod 2r and Ak±0 mod 2r for & < 2r + 2. Therefore, 4 = 0 mod 2r if and 
onlyif^>2r + 2and^OT(4)) = 2r + 2. D 
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Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also he sent by electronic mail to Flbonaccl@MathPro.com on Internet. All correspondence 
will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Proposers should inform 
us of the history of the problem if it is not original. A problem should not be submitted else-
where while it is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 ^ Fn+1+Fn, F0 = °> ^1 = ^ 

Ai+2 = Ai+1 + A?> M) = 2, L\ = 1. 

Also, a = (1 + ̂ 5) / 2, jff = ( l -V5)/2 , Fn = {an-f3n)I Js, m& Ln = an+J3n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-831 Proposed by the editor 
Find a polynomial f(x, y) with integer coefficients such that f(Fn, Ln) - 0 for all integers n. 

B-832 Proposed by Andrew Cusumano, Great Neck, NY 
Find a pattern in the following numerical identities and create a formula expressing a more 

general result. . . . . A 
& 3 5 4- 25 + I 5 + I 5 = 5 • 3 4 - 128 

5 5 + 3 5 _ h 2 5 + 15 + 1 5 = g . 5 4 _ 1 2 8 - 2 - 3 - 5 ( 1 9 + 2 - 3 - 5 ) 
1 4- 55 + 35 4- 25 + l5 + I5 = 13 • 84 128 -2 

- 3 

13s + 85 + 55 + 35 + 25 + I5 + l 5 = 21 • 134 - 128 - 2 
- 3 
- 5 

215 4-135 + 85 + 55 4- 35 + 25 + I5 + I5 = 34 • 214 - 128 - 2 
-3 
-5 
- 8 

3-5(19+ 2-3-5) 
5-8(19 + 2-3-5 + 2-5-8) 

3-5(19 + 2-3-5) 
5-8(19 + 2-3-5+ 2-5-8) 
8 • 13(19 + 2-3-5 + 2-5-8 + 2-8-13) 

3- 5(19 + 2-3-5) 
5-8(19 + 2-3-5+ 2-5-8) 
8 • 13(19 + 2-3-5 + 2-5-8 + 2-8-13) 
13 • 21(19 + 2-3-5 + 2-5-8 + 2-8-13 + 2-13-21) 

B-833 Proposed by Al Dorp, Edgemere, NY 
For n a positive integer, let f(x) be the polynomial of degree n -1 such that f{k) - L^ for 

* = 1,2,3,...,7i. Find f(n +1). 
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B-834 Proposed by Zdravko F. Stare, Vrsac, Yugoslavia 
For x a real number and n an integer larger than 1, prove that 

{x + l)Fx + {x + 1)F2 + ... + {x+n)Fn<2n^mn + l + ex) + nx\ 

B-835 Proposed by David M. Bloom, Brooklyn College of CUNY, Brooklyn, NY 
In a sequence of coin tosses, a single is a term (H or T) that is not the same as any adjacent 

term. (For example, in the sequence HHTHHHTH, the singles are the terms in positions 3, 7, and 
8.) Let S(n, r) be the number of sequences of n coin tosses that contain exactly r singles. If n > 0 
and p is a prime, find the value modulo p of \ S(n + p -1, p -1). 

NOTE: The Elementary Problems column is in need of more easy, yet elegant and nonroutine 
problems. 

SOLUTIONS 
Perfect Squares 

B-814 (Corrected) Proposed by M. N Deshpande, Institute of Science, Nagpur, India 
(Vol 34, no. 4, August 1996) 

Show that, for each positive n, there exists a constant C„ such that F2n+2iF2i + C„ and 
^2n+2i+\-^2i+i ~ Q a r e ^°^ perfect squares for all positive integers i. 

Solution by Paul S. Bruckman, Seattle, WA 
It is easy to show (for example, by using the Binet forms) that 

holds for all integers n and j . Thus, C„ = Fn is the solution. 

Also solved by Brian D. Beasley, Russell Euler and Jawad Sadek, Herta T. Freitag, Hans 
Kappus, Harris Kwong, Carl Libis, David E. Manes, Bob Prielipp, H-J. Seiffert, I Strazdins, 
and the proposer. 

Ternary Cubic Forms 

B-815 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol 34, no. 4, August 1996) 

Let K(a, b, c) = a3 +h3 +c3 - 3abc. Show that, if x1? x2, x3, yu y2, andj3 are integers, then 
there exist integers zl9 z2, and z3 such that 

K(xu x2, Xy)'K(yh y2, y3) = K(zl9 z2, z3). 

Solution by H.-J. Seiffert, Berlin, Germany 
Let 

(a b c\ 
M(a, b, c) = \ c a b . 

\b c a) 
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A straightforward but tedious calculation shows that 

M(xhx2,x3)'M(yhy2,y3) = M(zhz2,z3), 
where 

zl = xlyl+x2y3 + x3y2, 

3̂ = ¥3 + ¥2+¥l-

It is easily verified that detM(a, b, c) - K(a, b, c). Thus, K(xl7 x2, Xj)-K(yl9y2, y3) = K{zh z2, z3), 
where z1? z2, and z3 are as given above. 

Clary found this result in [1]. 

Reference 
1. G. Chrystal. Textbook of Algebra, Part I, exercise 21, p. 84. New York: Dover Publications, 

1961. 
Also solved by Brian D. Beasley, Stuart Clary, Hans Kappus, Bob Prielipp, Adam Stinch-
combe, David C. Terr, and the proposer. 

Triple Rational Inequality 

B-816 Proposed by Mohammad K. Azarian, University of Evansville, Evansville, IN 
(Vol 34, no. 4, August 1996) 

Let ij, and k be any three positive integers. Show that 
FiFk FhF. FiFi 

; k + -^ + -1 <2. 
F^FtFjFk Fj+FtFjFk F^Ffi 

Solution by Brian D. Beasley, Presbyterian College, Clinton, SC 
We prove the following generalization: Given n > 3, let x1? x2,..., xn be positive integers and 

let x = xxx2 "-xn. Then 

^ x , . + x 

We begin the proof by assuming, without loss of generality, that xx < x2 < • • • < xn. If xn_l > 2, 
then 

^ XI X-i XI Xr* XI X„ XI X% XI Xf> XI X„ 
S = L + *-+••• + *-< L + 2.+ . . . • •+-

Xi "T X X2 ~r X X„ "r X 

= — + — + - + — ^ ( / i - 2 ) ( l ) + l /2 + l /2 =/ i -L 
X l X 2 Xw 

If V-i <2, then Xj = x2 = --- = xw_1 = 1, so x = xw. Thus, 

c = fa n ** , 1 =2(yi-l)xw
2-fxw + l < 2(^- l )x„ 2 +2(n- l )x ; 7 = ^ t 

; l + x„ 2xw 2x„(l + x„) 2x2+2x„ 

since n > 3 implies that (2/2 - 3)x„ > 1. 
The result in Problem B-816 now follows by taking n = 3 and ^ + 1 = ^ , x2 = Fj, and 

x3 = Fk. 
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Also solved by Michel A. Ballieu, Paul S. Bruckman, H.-J. Seijfert, Adam Stinchcombe, and 
the proposer. 

Radical Integer 

B-817 Proposed by Kung-Wei Yang, Western Michigan University, Kalamazoo, MI 
(Vol 34, no. 4, August 1996) 

Show that . 

i ^ y i ) Fni~lFn(k-i)+l ~ Zw y j FnjFn(k-j) 

is an integer for all positive integers k and n. 

Solution by Paul S. Bruckman, Seattle, WA 
We use the identity Fu_lFv+l — FUFV = (— l)vi^_v_j. Set u — ni and v = n(k — i) and note that 

the second sum under the radical in the statement of the problem may include the terms 7 = 0 and 
7 = k. Replacing 7" by /', the given expression under the radical sign is transformed as follows: 

/=(A / ;=(A / 
= 5-ll2[a-nk-\a2n + (-1)")* -p~ n k - \p 2 n + (-1)")*] 
= 5-l/2[-fi(an + finf + a(an + J3n)k] 
= (an+fin)k = Lk. 

Therefore, the given expression reduces to Ln, which is, of course, an integer (independent of A). 
Also solved by H.-J. Seiffert, David Zeitlin, and the proposer. 

Binomial Harmonic Sum 

B-818 Proposed by L. C Hsu, Dalian University of Technology, Dalian, China 
(Vol 34, no. 4, August 1996) 

Let H„ = l + 2" + "3 + ,#,+^-- Find a closed form for 

k=\ V J 

Editorial Note: This problem also appeared as Problem 60 in the November 1996 issue of the 
journal Math Horizons. / apologize for the duplication. The problem column editor for Math 
Horizons asked me if I had any problems they could use, and since this problem (which was 
originally submitted here) did not involve Fibonacci numbers, I released it to them with the 
author's permission. Unfortunately, I forgot to delete it from my computer files, so when we 
started running low on problems, I inadvertently used it. 

Solution by Hans Kappus, Rodersdorf, Switzerland 
Let us tackle the more general sum 

k=\ 
where/? and n are positive integers. 

s(ft»)=l(-iHjW, 
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In a first attempt, one may try to look for a recurrence. Thus, 

%,»+i)=i:(-r[(j) " ' + ' / _ , Hpk+(-lTHp(n+l) 

But 

Hence, 

where 

Using 

= S{p,n) + Hp + ±{-\f[^Hp(k+iy 

P | 

Sfan + V^J^n), 
/=! 

•w^s^ofe k=0 

1 fl 
pk + i Jo 

xpk+i~ldx 

and the Binomial Theorem leads to 

^ ( i . w ^ j V ' O - x ' ) " * ; i < / < ^ . 

Obviously, J (i, 0) = l/i and, using integration by parts, we find 

Jp(i,n) = ^Jp(p + i,n-l). 

The explicit formula 

•>P^n) = p"n\fl-±-

can now be proved by an easy induction. Writing n instead of n +1 again, our final result reads: 

%,«)=/>-D!xn-L. 
,=1 j^oJP^1 

For the special case p - 2, we get the neat formula 

1 22""1 

Lord found the related formula: YZ=i(-l)k~l{n
k)Hk =}. 

Also solved by Paul S. Bmckntan, Carl Libis, Graham Lord, David E. Manes, H.-J. Seiffert, 
David Zeitlin, and the proposer. 
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Finding a Fellian Identity 

B-819 Proposed by David Zeitlin, Minneapolis, MN 
(Vol 34, no. 4, August 1996) 

Find integers a, b, c, and d (with \<a<b <c <d) that make the following an identity: 

?fl = P B . f l + 4 4 4 P ^ + / ^ + ? ^ , 

where Pn is the Pell sequence, defined by Pn+2 = 2Pn+l + Pn, for n > 0, with PQ = 0,Pl = l. 

Solution by H.-J. Seiffert, Berlin, Germany 
If Qn is the Pell-Lucas sequence, defined by the recurrence Qn+2 =2Qn+l + Qn, with initial 

conditions Q0 = Ql=2, then (see [1], page 12, equations 3.22 and 3.24) 

for all integers r and m. From this equation, it easily follows that 

ifu is odd and v is even. 
Taking u-1 and v = 4, and noting that Q = 34 and g7 = 478, we find 

showing that a = 3, 6 = 7, c = 11, and rf = 14 work. 

Reference 
1. A. F. Horadam & Bro. J. M. Mahon. "Pell and Pell-Lucas Polynomials." The Fibonacci 

Quarterly 23.1 (1985):7-20. 
Also solved by Paul S. Bruckman, Curtis Cooper, Daina Krigens, CarlLibis, David E. Manes, 
and the proposer. 
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Edited by 
Raymond E* Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-529 Proposed by Paul S. Bruckman, Highwood, IL 
Let p denote the set of Pythagorean triples (a, b0 c) such that a2 +b2 - c2. Find all pairs of 

integers m, n > 0 such that (a, b, c) = (FmFn, Fm+lFn+2, Fm+2F„+l) ep. 

H-530 Proposed by Andre] Dujella, University-of Zagreb, Croatia 
Let k(n) be the period of a sequence of Fibonacci numbers {F^ modulo n. Prove that 

k(n) < 6n for any positive integer n. Find all positive integers n such that k(n) = 6n. 

H-531 Proposed by Paul S. Bruckman, Highwood, IL 
Consider the sum S = l^it(n)In2, where f(l) = l and t(n) = Hpl„(l-p~2)~\ n> 1, the 

product taken over all prime/? dividing n. Evaluate S and show that it is rational. 

SOLUTIONS 

Comment by H.-J. Seiffert 
Correction: The identity of Problem H-510 should read 

keA„ V J 

The proposer's solution, however, is correct. The mistake arose in the very last step, when 
replacing n by n -1. Indeed, H-510 is the proposer's first (incorrect) version of H-476. 

Continued 

H-509 Proposed by Paul S. Bruckman, Salmiya, Kuwait 
(Vol 34, no. 2, May 1996) 

The continued fractions {base k) are defined as follows: 

[ul,'u2,...,un\k=ul+—- — n = l,2,..., (1) 
2 + 3 + n 

where k is an integer * 0 and (uj^i is an arbitrary sequence of real numbers, 
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Given a prime p with (-jf) = 1 (Legendre symbol) and k ^ 0 (mod /?), let h be the solution of 
the congruence 

h2 = -k (mod/?), with 0 < h < \ p . (2) 

Suppose a symmetric continued fraction (base k) exists, such that 

^ = [a1,a2,...,aw+1?aw+1?...3a1]^ (3) 

where the a;'s are integers, n is even, and k\ai9 i = 2,4,..., w. Then show that integers x and >> 
exist, with g.c.d.(x, y) = l, given by 

y = K+1,...,aJ^ (4) 
that satisfy 

x2 + ky2 = p. (5) 

Solution by the proposer 
Let [w1? w2,..., wjfc = /?„ I qm n - 1,2,..., define the ?ith convergent of the c.f. (base k\ assum-

ing that the w/s are integers. The pn's and g„'s satisfy the common recurrence 
zn = UnZn-l+kzn-2> « = 3, 4 , . . . . ( 6 ) 

Also, Pilqx = [U\]k = Wj/1 and p2 /g2 =[wl3 w2]yt = U\+klu2 = {uxu2 + k)/u2, which yields the 
initial conditions 

A = ^ f t = 1; P2 = ulu2+k, q2=u2. (7) 

First, we need some results concerning c.f.'s (base k\ which we state as lemmas and prove by 
induction. 

Lemma 1: Let pnlqn and pn+i/qn+i denote successive convergents of a c.f. (base k). Let 

% = (-*)". (8) 
Proof: Let ^ denote the set of positive integers n satisfying (8). Now wl=u1-u2-

(uxu2 + k) -1 = -k = (-k)1; hence, 1 e SV 

Suppose n GSV Then we get w„+l = p„+lq„+2 - pn+2qn+i = Pn+ifavVn+i + *&) ~ (*W2#,+i + 

^ 0 * H - I = ~k(Pn<if»\-Pt*\<ln) = - K = -*(-*)" (by the inductive hypothesis), or wn+l = (-k)n+1. 
Thus, n e Sx => (n +1) G Sx. The result follows by induction. • 

Lemma 2: Let /?„/#„ = [ul9 u2,..., wj^, where the î .'s are integers with k\ni9 i = 2,4, 6,..., for 
« = 1,2,.... Furthermore, suppose the /?w's and #w's are the integers naturally produced in the c.f. 
(base k) expansion, applying the recurrence relation in (6) and the initial conditions in (7). Then, 
for all even n, 

gxAip^q^^kt1, (9) 
g.cd.(pn,qn) = \k$n. (10) 

Proof: Let S2 denote the set of even positive integers n for which (9) and (10) are valid. 
Clearly, g.c.d.(p1?qx) = 1, since qx = 1. Note that 1 . = \k\2/2~l. Also, since k\u2, it follows that 
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k\(uiU2+k). Thus, h(ulu2/k + l)-uxii2/k = l, which implies g.c.d.(p2/k,q2lk) = l; hence, 
g.c.d.(p2,q2) = \k\ = \k\2/2. We thus see that 2 eS2. 

Suppose neS2 and pn_x = (~k)^p'n_x,qn_x = {-k)^q'n_x, p„ = (-k)t»p^ q„ = (-k)±"q>, 
where g.c.d.{p'n_x,q'n_x) = gx.d.(j)'n,q'„) = \. Then we have P„+1 = un+xpn + kpn_x = (-k)2"p^+x, 
where p'n+x = un+1p'„ - p'n_x; similarly, qn+l = {-kfnq'n+x, where q'n+x = un+xq'n - q'n_x. Therefore, 
P&n+\ ~ P„+i1n = (-kfiPteUi ~ Pn+il'n) = (-*)" (using Lemma 1), so p'nq'n+x - p'n+xq'n = 1. Then 
g.c.d.(>;+1, #;+1) = 1, which implies g.c.d.(>„+1, #„+1) = \k$n= \k\^"+2)~l. This is the statement of 
(9)for(#i + 2). 

Again supposing n eS2, let u„+2 = -ku'„+2 (since k\un+2). Then we get pn+2 = un+2p.„+x + kp„ = 
{-k){-kfnu'n+2p'n+x-(-k){-k)^p'n = {-k)l+^p'n+2, where p'n+2 = u'n+2p'„+x-p'n; similarly, qn+2 = 
{-k)l^nq'n+2, where q'n+2 = u'n+2q'n+x-q'n. Then P„+1qn+2-p„+2q„+1 = (-k)in(-ky+i"(p'n+xq'„+2-
P'n+2<l'n+i) = (~kT+l (using Lemma 1), so p'n+xq'n+2 - p'„+2q'n+l = 1. Therefore, g.c.d.(p'n+2, q'n+2) = 1, 
which implies g.c.d.(p„+2,qn+2) = \k\1+i" = \kf<-"+2\ This is the statement of (10) for (n + 2). 
Thus, n e52 => (» + 2) eS2. Since 2eS2, the results follow by induction. D 

Lemma3: If pnlqn= [ux,u2,...,u„\, n = 1,2,..., then 

[«„, V l M2]i = % I <ln-\ a n d K , Vl» • • •» Mllfc = A / Pn-U " = 2> 3> • •' ' (U) 

Proof: Let £3 denote the integers n > 2 for which (11) is valid. Note that [u2\ = w2 /1 = 
q21 qx and [u2, ux\ = i^ + k I ux = (ufa +k)lux- p2l px [using (7)]. Therefore, 2 e S2. 

Suppose nsS3. Then we get [u„+x, u„,..., u^ = un+x + k /[«„,..., u2\ = u„+x + kl(q„l q„_x) = 
(un+xq„+kqn_x)lqn=qn+xlq„ [using (6)]. Also [u„+x, un,..., ux]k = un+x + k / [u„,..., ux\ = un+x + 
kI(P„lP„-i) = (un+xPn+kpn_x)lpn = pn+xlPn. Thus, ne£,=>(» + l)e,S,. Since 2sS3, the 
result follows by induction. • 

Also, we will make use of the following identity: 
(a2 + kb2)(c2 + kd2) = (ac + kbd)2 + k(ad-bc)2. (12) 

Now suppose p{ Iqi = [«i,a2,...,a,]j., i = 1,2,...,» +1, in the sense described in the hypothe-
sis of Lemma 2. Then p„ = {-kf"p'„, qn = {-kfnq'n, pn+x = (-k)i"p'„+x, and qn+x = {-kf"q'n+x, 
where g.c.d.(p'„,q'„) = g.c.d.(^+1,q'n+x) = 1. Moreover, pW„+i-p'„+iti = 1- Also, using Lemma 
3, [an+x, ...,a2\= q„+x I qn and [an+x, ...,ax]k= p„+x Ip„. The «* and (n + l)st convergents of the 
c.f. (base k) given by (3) are p„/q„ and p„+i/q„+1, respectively; the "remainder" of this c.f. is 
equal to pn+x/pn, which assumes the role of un+2. Thus, the value of the c.f. (base k) in (3) is 
given by 

OVt-l / P*)Pn+l + fa = Pn+l +kPl =fffD 

{PnH I Pr,)<Jn+l + k% Pn+fln+l + *PAn 

where N = (p'„+l)2 + k(p'„)2 and D = p'„+xq'„+x + kp'nq'n [dividing throughout by the common factor 
(-*)"]. Therefore, plh = NID. Now set a = p'n+x, b = p'n,c = q'n+x, and d = q'n in (12) and let 
Q = (<^+1)2 + k{q'n)2. That identity then becomes 

D2+k = NQ. (13) 
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Let g = g.c.d.(N,D). We see from (13) that g\k. Since N = pg and g.c.d.(p, k) = l(by 
hypothesis), it follows that g = l, so N = p and D = h. However, we know that [an+l, ...,a^\k = 
Pn+i / A = Pn+i I Pn - Setting x = p'n+l and y = p'n completes the proof of (4) and (5). 

Summary: Given the minimal positive solution of the congruence in (2), we have indicated an 
algorithm for generating solutions of (5). This construction involves a special type of c.f. (base 
k), as defined by (1). The conditions in (3) might, at first glance, seem unduly restrictive. It may 
be shown, however, that pih may always be put into the desired c.f. form in (3), provided that 
integers x and>> exist that satisfy (5). The proof of this assertion is left to the interested reader. 

Setting k - 1 in the problem yields Serret's construction (1848), one of several known in the 
literature for finding the unique x and y such that p - x2 +y2, provided p is a prime with p = 1 
(mod 4). Also, for k = l, the identity in (12) reduces to an identity attributable to Leonardo of 
Pisa (a.k.a. Fibonacci), such identity appearing in his Liber Abaci (1202). 

Two examples illustrate the construction's applicability. 
Example 1: Let k = 3 and p = 757. Note that 

( ~3] = (~3 + 4'757) = (3025) = (552) = ] 
V75?J t 757 J 1757 J [757J ' 

Hence, the minimal positive solution of the congruence h2 = -3 (mod 757) is h = 55. Without 
disclosing the logic of the following expansion, we may at least verify its accuracy: 

757/55 = 13 + 42/55 = 13 + 3 / ^ ; 
01 = 55/14 = 3 + 13/14 = 3+ 3/02; 
6>2 = 42/13 = 0 + 3/#3; 
<93 = 13/14 = 0 + 3/6>4; 
#4 = 42/13 = 3 + 3/13 = 3 + 3/05; 
05 = 13. 

Thus, 757 / 55 = [13,3,0,0,3,13]3, which is of the desired form, with n - 2. Then the solutions of 
x2 + 3y2 -151 are found by x/y = [0,3,13]3. We find the successive convergents of this c.f: 
0/1, 3/3, and 39/42. Hence, x/y = 39/42 = 13/14, so x = 13 and j / = 14. As we may verify, 
132+3-142 = 757. 

Example 2: Let k--2 and p - 193. Since 

2 ^ f2 + 193-14^ ^2704^1 fS22 

193J V 193 J V 193 J 193 = 1 

we see that h = 52 is the minimal positive solution of the congruence h2 = 2 (mod 193). We may 
expand 193/52 as follows: 

193/52 = 5-67/52 = 5 - 2 / ^ ; 
0X = 104/67 = 2-30/67 = 2-2/6>2; 
<92 = 67/15 = 5-8/15 = 5-2/#3 ; 
#3 = i5/4 = 5-5 /4 = 5-2/<94; 
04 = 8/5 = 2 - 2 / 5 = 2 -2 /# 5 ; 
6>5 = 5. 
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Thus, 193 / 52 = [5,2,5,5,2,5]_2, which is of the desired form, with n = 2. Therefore, solutions of 
x2-2y2 = l93 are found from x/ j / = [5,2,5]_2. This yields the convergents: 5/1, 8/2, and 
30/8 ,sox = 15and>> = 4. Q.E.D. 

Searching for Pairs 

H-511 Proposed by M. N. Deshpande, Aurangabad, India 
(Vol 34, no. 2, May 1996) 

Find all possible pairs of positive integers m and n such that m(m + l) = n(m + ri). [Two such 
pairs are: m = 1, n - 1; m - 9, n - 6.] 

Solution byH.-J. Seiffert, Berlin, Germany 
The pairs (m, ri) e N2 asked for are (m, ri) - (F2k, F2k_lF2k), where k is a positive integer. It 

is easily verified that, for these pairs, the considered equation is indeed satisfied. 
Below we will use the well-known result that all solutions (a, b) e N2 of the Pell equation 

a2 -5b2 - -4 are given by (a, b) = (Z^-i? F2Jc_i), k eN. In particular, we have a > b. 
Let (m, ri) e N2 such that m(m +1) = n(m + ri). Write m = rp and n = rq, where p,q,r GN 

such that gcd(p,q) = l. Then the given equation becomes p(rp + l) = rq(p + q), which shows 
that r divides p. Letting p = rs, s e # , we get s(r2.s +1) = q(rs + g). From p = rs, gcd(p, #) = 1, 
and s\q2, it follows that s = l. Now, the resulting equation r2 + l = q(r + q) may be written as 
(2r - g)2 - 5^2 = -4 . Hence, (2r ~q,q) = (Lzk-h F2fc-i) f°r s o m e * G ̂ - ^ readily follows that 
r = F2it, so that we have (m, TI) = (F2

2 ,̂ F2k_lF2k). 

yifea solved by P. Bruckman, L. A (7. Dresel, A. Dujella, C Georghiou, and the proposer. 

FPP?s 

H-512 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol 34, no. 2, May 1996) 

The Fibonaccipseudoprimes (or FPP's) are those composite w with g.c.d.(w, 10) = 1 such that 
^|.Fw_f , where sn is the Jacobi symbol (|). Suppose n = p(p + 2), where/? and /? + 2 are "twin 
primes." Prove that n is a FPP if and only if p = 7 (mod 10). 
Solution by Lawrence Somer, Catholic University of America, Washington DC 

We first suppose that p = 7 (mod 10). Then p + 2 = 9 (mod 10). By quadratic reciprocity, 
we see that ( |) = -1 and ( ^ ) = 1. Hence, (j^) = ( ^ ( ^ ) = (-1)(1) = - 1 . We want to show 
that p(p + 2)\Fp(p+2)+l. It is well known that Fn\Fkn for any positive integer k. Since both/? and 
p + 2 are primes, p\Fp_£p = Fp+l and p + 2 l i y ^ - ^ = ̂ >+i• Further, since p (p + 2) + l = (p +1)2, 
^/H-I \F

ip+i? > a n d S c d - (A /> + 2) = 1, we see that /?(p + 2) |Fp(p+2)+1. 
Now suppose that n = p{p + 2) is a FPP. We must have p = 1,3,5, 7, or 9 (mod 10). If 

p = S (mod 10), then g.c.d.(w, 10)* 1. If p = 3 (mod 10), then p + 2 = 5 (mod 10) and, again, 
g.c.d.(/2,10) * 1. Suppose p = 1 (mod 10). Then /? + 2 = 3 (mod 10). By quadratic reciprocity, 
(i) = l a n d ( ^ ) = - l . Hence, *„ = ( ^ j = {j){-^) = (!)(-!) = - 1 , so n-en = p(p + 2)+1 = 
p2 + 2p +1. Thus, /?(/> + 2) \Fpi+2p+l. It is well known that (Fa9 Fb) = F(a^ b), where (a, A) denotes 
the g.c.d. of a and b. We note that p\Fp_£p = Fp_x. Now, p2 + 2p - 3 = (p - l)(p + 3). Hence, 
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Pl^>+2p-3- Therefore, p\(Fpi 
+ip+h Fp2+2p-3)> which implies that p\F^p2+2p+^p2+2p_2y However, 

(p2+2p + \p2 + 2p-3)\(p2+2p + l)-(p2+2p-3) = 4, so p\F4 = 3. Thus, p = 3, which is a 
contradiction since p = 1 (mod 10). Thus, p 4 1 (mod 10). Now suppose that p = 9 (mod 10). 
Then /? + 2 s l (mod 10). By quadratic reciprocity, (j) = (-f^) = 1. Therefore, sn = (p(p+2)) = 
ij)(jh) = (W) = h SO ̂ - ^ = i707 + 2 ) - l = Jp2 + 2/7-l. Now, p\Fp.£p= Fp^. Thus, as in 
our above argument, p\Fp2+2p_3. Hence, p | ( iy+2^i ,^2+ 2 /^3) = JF(p2+2p.1)/,2+2/^3). However, 
(p2+2p-1,p2+2p-3)\{p2 + 2/7-1)-0?2 + 2p-3) = 2. Thus, ^ |F2 = 1, which is a contradic-
tion. Therefore, p # 9 (mod 10); hence, /? = 7 (mod 10). 
y4&o solved by L. A. G Dresel, A. Dujella, H.-J.. Seiffert,_D. Terr, and the proposer. 

Sum Product 

H-513 Proposed by Paul S. Bruckman, Highwood, IL * .„ 
(Vol 349 no. 4, August 1996) 

Define the following quantities: 

So (^')2' So *K" + 1)I' So (^04? So n\((n + l)\)2(n + 2 ) \ ' 

Prove that A2D = B2C. 
Solution by the proposer 

Clearly, the series defining^ andB are convergent. Using Stirling's formula, (2„") ~ 4"(«;r)~1/2 

as n -> oo. Thus, the convergence of the series defining C is comparable to that of the series 
y 4" , 
s»1/2(»!)2' 

since the latter series is clearly convergent, so is the series defining C. Also, D is defined by a 
series that is comparable to the series 

y 4 (2n)\ 
&y (»o4' 

and so the series defining D is convergent. Clearly, all quantities are positive quantities. 
We recognize the Modified Bessel Functions of integer order, defined as follows: 

400 = (i*)n X u L n r an entire fonction of z> ^ = 0 ,1 ,2 , . . . . (1) 
k>o Kiyp-rKji 

See, e.g., Handbook of Mathematical Functions, ed. M. Abramowitz & I. A. Stegun (9th prtg., 
§9. Washington, D.C.: National Bureau of Standards, 1970). We then see that A = IQ= I0(2) 
and B = IX = Ix(2). It is also indicated in this source that the following relation holds: 

It follows from (2) that C = (J0)2 and D = (IJ2. Then A2D = B2C = (Vi)2 . 

Also Solved by C Georghiou. 
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FA, 1965 
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