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THE GOLDEN STAIRCASE AND THE GOLDEN LINE

James Metz
Mid-Pacific Institute, 2445 Kaala Street, Honolulu, Hawaii 96822-2299
(Submitted May 1993-Final Revision February 1997)

0. INTRODUCTION

An arrangement of squares dissected from the golden rectangle and placed along the positive
X-axis creates a golden staircase, upon which sits the golden line. In this paper we consider some
algebraic and geometric relationships expressed in this figure. An extended figure depicts infinite
series and relationships involving Fibonacci numbers.

1. THE GOLDEN LINE

In a golden rectangle, the ratio of the length to the width is the same as the ratio of the sum
of the length and the width to the length. This golden ratio ¢ has a value of (1++/5)/2. Con-
sider a golden rectangle with length ¢ and width 1. When a square with side 1 is inscribed as in
Figure 1, the remaining rectangle has a length to width ratio of 1/(¢—1), which simplifies to ¢,
establishing a nice relationship between ¢ and its reciprocal

1
$-1 5 M
which is equivalent to ¢* = ¢+1. When continued, this partitioning process generates the familiar
infinite progression of spiraling squares, the first few of which are shown in Figure 2.
When all the squares are placed along the positive X-axis creating the golden staircase shown
in Figure 3, the upper right corners of the squares are collinear and define the golden line, which
has equation y = (—1/¢)x+¢. The equation of the line AB through the upper right corners of the

first two squaresis y—1= (z;":;) (x—1), which simplifies to

-1
y=—x+¢. )
¢
F ¢ 4
1
1 #-1
FIGURE 1

194 [AUG.



THE GOLDEN STAIRCASE AND THE GOLDEN LINE

FIGURE 2
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FIGURE 3

The slope of the line through the upper right corners of the n'™ pair of adjacent squares is

Ay (1/¢"-1/¢"") -1

Zo Pt o g="" n=123,..,

Ax 174" ¢
making these corners collinear with 4 and B, the corners of the first pair of adjacent squares. The
points (¢%, 0) and (0, §) satisfy (2) and lie on the golden line, so the sides of the squares on the X-

axis provide

21 7 5
Lie 5
The right triangle under the golden line is a golden triangle and also half of a golden rectangle,
since the ratio of its legs is ¢.
One- and two-dimensional representations of ¢ and its reciprocal can be found in Figure 3.

¢ is the y-intercept of the golden line and, since ¢* = ¢+1, the distance between (1, 0) and the x-
intercept of the golden line is ¢. Also ¢ can be seen as the distance from the origin to the end of
the second square. 1/ is the length of the second square and also the altitude of the first triangle.
All of the squares fit exactly into the golden rectangle of Figure 2, so the sum of the areas of all of
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THE GOLDEN STAIRCASE AND THE GOLDEN LINE

the squares is ¢, the area of the golden rectangle. The areas of the squares also form a geometric
sequence so that

© 2k )
2(3}) “p=2 60" @

Since the area of the first square is 1, the sum of the areas of the squares beyond the first is ¢—1
or 1/¢. Thus, we have in one picture both a linear and a planar representation of ¢ and 1/¢,
neatly sheltered beneath the golden line, y = (-1/@)x+¢.

2. EXPANDING THE PICTURE

Above each square, construct a rectangle whose diagonal lies on the golden line shown in
Figure 4. Each of these small horizontal rectangles is also a golden rectangle. Joining any such
rectangle to the square below it creates a new, larger vertical golden rectangle. Figure 4 also
shows the line y = —x + ¢ drawn through the corners of the golden rectangles.

Y

(0,47
1
()]
1
y=-x+¢?
_ 1
¢-113 %
©,n N T
#
3 v
1 NG
py
3
1
¢ _‘%
1
- > X
(0,0) 1 .o 4 ;% PR (#.0)
FIGURE 4

Let us focus our attention on the series of vertical and horizontal golden rectangles in Fig-
ure 4. Afier the first, each vertical rectangle is congruent to a horizontal rectangle. The sum TV,
of the areas of the vertical rectangles is the area of the largest vertical rectangle added to the
sum IH, of the areas of the horizontal rectangles. That is, ZV, = ¢+XH,, where also XV, =
(¢*)ZH, by similarity. Since ¢* = ¢+1, TV, = ¢*, and TH, =1. Also, each vertical rectangle is a
square added to a horizontal rectangle. If =S, is the sum of the areas of the squares, XV, =
28, + ZH,, which gives £S, = ¢ asin (4). ZH, =1 leads to

196 [AUG.



THE GOLDEN STAIRCASE AND THE GOLDEN LINE

Z ¢zi+1 =1, ®)

k=0
and all of the small rectangles will fit exactly into the first square.

In intercept form, the equation of the line through the upper corners of the horizontal golden
rectangle is (x/¢*)+(y/#*) =1; for the upper corners of the squares, (x/¢?)+(y/¢$)=1; and
for the lower corners of the horizontal rectangles, (x/¢*)+(y/1)=1.

3. FINDING FIBONACCI

Where we find the golden ratio, we can expect to find Fibonacci, but first we need to set the
stage for his entrance. From Figure 4, the length of the side of a square is the same as the length
of the adjacent golden rectangle to the right. The length of that vertical golden rectangle is the
sum of the length of a square and the width of a horizontal golden rectangle above the square.
For example, with the third square and its adjoining golden rectangle, we have (1/¢?) = (1/¢°)+
(1/¢%), and for the (k +1)* square, (1/#)* = (1/¢)** +(1/#)***. This representation of a power
of 1/¢ as the sum of the next two consecutive powers of 1/¢ allows Fibonacci to enter. For con-
secutive Fibonacci numbers F; and F),,

k k+j k+j+1
DRACREC

which can be proved by induction.
Expanding powers of ¢—1 and simplifying leads to another expression involving Fibonacci
numbers and ¢, which also can be proved by mathematical induction:

@1 =| % ‘_[Ff-F,  forkodd, o
¢ Fk+1 - Ec¢, for k even.

To all the beautiful patterns in mathematics, we may now add the golden staircase, the golden
line, and all that they inspire.
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STRONGLY MAGIC SQUARES

T. V. Padmakumar

Science, Technology and Environment Department
General Hospital Road, Trivandrum-695037, India
(Submitted April 1995-Final Revision June 1996)

I. INTRODUCTION

Consider the classical 4 x 4 magic square

16 2 3 13

5 11 10 8
Mpassical = 9 7 6 12|

4 14 15 1

Among the 2 x2 subsquares that can be formed within M,,.., there are only five with the
property that their entries add to the magic constant 34. These are the four corner squares and

the central one:
16 2 3 131 |9 7 6 12 11 10
5 112110 8 (4 14 |15 1|7 6)

If wrap-arounds are allowed, one more such subsquare arises, namely,

1 4
13 16)

built from the four corners.
Compare this to the square

9 16 5 4

|7 2 11 14
M = 12 13 8 1
6 3 10 15

which has the stronger property that all sixteen 2 x2 subsquares (allowing wrap-arounds) have
entries adding to 34. What other magic squares have this stronger property?

Suppose M is a 4 x4 magic square. That is, the sixteen entries are a permutation of the set
[1,2,3,...,16] and all the row-sums and column-sums equal 34. Writing this as

M=% 92 %3 94

we define M to be a strongly magic square if, in addition, a,, ,+a,, .1+, , + 0y pey =34
whenever 1<m,n<3. We will derive several further properties of strongly magic squares. For
example, it follows that all the wrap-around 2 x 2 subsquares, like

[‘114 a 1]
b
Gy Gy
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STRONGLY MAGIC SQUARES

also have entries adding to 34. Moreover, we will classify all the strongly magic squares, showing
that there are exactly 384 of them. We also define a group of transformations by which each
strongly magic square can be transformed into all the other 383 strongly magic squares.

II. SPECIAL PROPERTIES OF STRONGLY MAGIC SQUARES

1. In a strongly magic square

A+ =0+, =0y +a, =0 +a, =4 Y]
and
A+, =0y + 0y = Ay +03, =0y +a, =34— A @)

This property follows directly from the definition of strongly magic squares.

2. The 3x3 Square Property.

Consider any 3 x 3 square formed within a strongly magic square M,. The sum of the four
corners of this square is 34 and the sum of each diagonally opposite corner pair is 17.

Let C, C,, G, and C, be the corner elements of any 3 x 3 subsquare of M. Then

C1+C4=C2 +C3=17

Proof: Each of the corners C,, C,, C;, and C, of any 3 x 3 subsquare can be considered as a
corner of a 2 x 2 subsquare, three of them being corner squares and one being the inner central
square. For example, consider the 3 x 3 square

Ay Gy Gy
’r — .
Mi=|ay a3 @)
Ay Qg3 Ay
C = £| %2 95| tral :
| = dyy, a corner of | - (inner central square);

32 33

a; a

C, = a,,, acorner of | '3 "14| (corner square),
(923 P4 ]
a3 a3 :

G, = a,,, a corner of (corner square);
Ay Qg

-

a,, a

C,=a,,, acorner of| 33 73*|(corner square).
4 44>

| P43 Qyq |

The corners of any 3 x 3 square of M, can therefore be written as

C,=34-8,
C2 :34_S2,
C, =345,
C, =345,
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STRONGLY MAGIC SQUARES

where S, S,, S5, and S, are the sums of the other three elements of the respective 2 x2 magic
squares. For the particular 3 x 3 square Mj,

Sy =y +ay +ay,

S =ap+ay,+ay,

83 = a3y +ay, +ay,,

Sy =y +ay,+a
The sum of the corners can be written as

C+C+C+Cy=4x34—(5,+5,+5+8,).
Regrouping the terms that constitute S, S,,S;, and S, in the sum §,+S§,+S;+S,, it can be
shown that S, +S§, +S;+S, is the sum of a row, a column, and a diagonal of the 4 x4 square,
each of which is equal to 34. For example, for M},
Si+8, +83+8, = (a5 + a5, + a3+ a3,) + (a3 + Ay + a3+ a4) +(ay +ay +az, +ay)
=34+34+34.

Therefore,

This is true for the classical magic square also.

In the case of strongly magic squares, two of the 2 x 2 squares that contain C,, C,, G, and C,
can be chosen to be those formed by the inner two rows and columns (which have the magic
property in M, and not in M,,;..). For example, in the 3 x 3 square Mj, the corners C, and C;
can be considered a part of the 2 x 2 squares

a a,, a
[‘/’23 24} and [ 32 33]’
A3z Ay Ay Qg
Sy =ay +ay, +ay,
S, =apnt+ay+ay,

Sy =ay, +as;+ay,
Sy = ay3+ay, +ay;

S, +8,=8,+8,,

respectively, in this case,

ie.,

C+C =G +GC
Since C,+C, +C;+C, =34, wehave C, +C, =C, + G =17.
3. Triangular Property

Form any triangle each side of which is made of three numbers of the 4 x4 strongly magic
square. Examples of such triangles are shown below:

a4, a O3 Ay
Ay Ay Q33 O34
33 Ay A3 Ay

In M, the sum of the six numbers along the sides of the triangle is the same for all such triangles
and equal to 51. This also can be shown to follow from the additional 2 x 2 magic property.
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STRONGLY MAGIC SQUARES

Proof: Of the six numbers that constitute the sum, three can be considered as a part of a row
or column of the M, and the other three as part of a 2 x2 magic square. Let .S, be the sum of
the three numbers that are part of the row or column and S, that of three numbers that are part of
the 2 x 2 square.

Since the sum of the numbers of the row or column as well as the sum of the numbers of the
2 x 2 square are equal to 34,

S1:34_N1,
S,=34-N,,

where N, is the remaining element of the row/column and N, is the remaining element of the
2 x 2 magic square. It is easy to see that N, and N, always form the opposite corners of a 3 x3
square whose sum is 17. Therefore, the sum of the sides of the triangle can be written as

S=8+85,=68—-(N,+N,)=68-17=51

III. TRANSFORMATIONS THAT PRESERVE THE
STRONGLY MAGIC PROPERTY

There exist several transformations which, when applied to a strongly magic square yields
another strongly magic square.

Some of these transformations along with the notations we use to represent them later in the
paper are given below.

1) Cycling of rows (cyc R) or columns (cyc C).

2) Interchange of columns 1 and 3 (C,_,;) or rows 1 and 3 (R,3).

3) Interchange of columns 2 and 4 (C,_,,) or rows 2 and 4 (R,_,,).

4) Diagonal reflections (DRA on the ascending diagonal and DRD on the descending diagonal).
5) Replacement of every element x by 17— x.

6) "Twisting" of rows (TWR) or columns (TWC) which is defined below:

The row twist of a square A is obtained by curling the first row of M into the upper left
corner of TWR(M), the second row of M into the lower left corner of TWR(M), etc.
Consider a strongly magic square with rows R, R,, R;, and R;:

— ey

mop el | [E]
moole] | [&]
mo| s | |E]

relle] | [e]

b o

B and F are the beginning and end of the rows.
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STRONGLY MAGIC SQUARES

The "twisting" transformation is defined to yield the following square:

— -

cHEm:

For example, the row-twisting transformation on M” yields

9 16 3 6]

w | 4 5 10 15|
TWRWM) =114 11 g 1
7 2 13 12

column-twisting M™ yields

9 7 14 4

612 1 15
TWCM)=| 3 13 g 10|

6 2 11 5

It can be noted that TWC(A/) = TWR(M™), where M™ is the transpose of the matrix M.

IV. THE TOTAL NUMBER OF DISTINCT STRONGLY MAGIC SQUARES

Only 384 distinct strongly magic squares can be formed from the set of numbers [1, 2, ...,
16].
Proof: We saw in Section II that
)+, = Aty =y Ay =agta, = A 1)
and
U3 +014 = 0y + 0y =gy + 03y =0y +0y, =34 - A. (2
Going through all possible values of 4, it can be seen that A can take only eight values,
namely, 9, 13, 15, 16, 18, 19, 21, and 25. Any other value of 4 would lead to at least two of the
elements of the magic square being equal.
We now show that each value of 4 leads to 48 and only 48 strongly magic squares.

Consider the elements a,,,a,,,a;,, and a,; of a strongly magic square Af,. The strongly
magic property implies that
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STRONGLY MAGIC SQUARES

ay=17-ay
Uy =17-ay,
ap=17-ay

from the 3 x 3 square property,

a,=A-a,
ap=A4A-ay
ay, =A-ay
ay=A-ag

a,=34-A-a;=34-A-(17-a;) =a,, - (4-17)
ay=34-A4A-a,,=34-A4-(17-a,)=a,-(4-17)
ayp=34-A-a,,=34-A-(17-a,)=a,-(4-17)
ay=34-A-a,=34- A-(1T-a,) =a,— (A-17)

2

from equations (1) and (2).

Thus, for a given value of 4, M, can be written as

(A-ay,) a4, as (A-ay)
a; (A-a,) (A-a,,) a
M (A) = 43 43 24 4 ’
(4 @, (A-a;) (Ad-ay) aj,
(A-ay) Ay, a3 (A-ay)

where the notation x’ means 17— x. Additionally, in order that all the elements are distinct and
positive, further conditions have to be satisfied by the set (ay,,a,4, a5,,a43). These conditions
depend on the value of 4. For example, when 4 =25, a,,,a,,,a;,, and a,; can take on values
between 9 and 16 only. Also, a;, +a = a,, +a;; # 25 because, if the sum is equal to 25, the
elements of M, (25) cannot be distinct.

By considering all possible number pair sets (a,,a,;), (4,4, @5,) satisfying the above two
conditions, for 4 =25, it is seen that they are:

(16,11),(15,12); (16,10),(14,12); (15,9),(13,11);
(14,9),(13,10); (16,13),(15,14); (9,12),(10,11);

and all the permutations possible within each set. From each of the above six sets, eight
permutations are possible, leading to 8 x 6 = 48 possibilities for the set [a,,, a,4, a3;, ay3]-

Thus, we have proved that with 4 =25, 48, and only 48, strongly magic squares can be
obtained. Similarly, it is possible to obtain exactly 48 strongly magic squares from each of the
other seven values of A. However, since this is a tedious procedure to prove directly, we follow a
different approach. We show in the following that performing certain sequences of transforma-
tions on each of the 48 strongly magic squares for any value of 4, we can get all strongly magic
squares with the other seven values of 4.

These transformations can be shown to be sequences of 3 basic transformations, namely,

I =Cios,
T, = DRA,

L=Ceo3+Chos

Applying 7, 7,, and 7; on any strongly magic square, we can form seven other strongly magic
squares each with a distinct value of 4. Let
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STRONGLY MAGIC SQUARES

MS to8 — 7;3(1\41 to 4)'
The values of 4 for the squares M, ,, ¢ are given below:

4 =ay +ay,,

4, = a3 +ay,,

Ay =aiz+(4-ay),

Ay = a3 +ag,

A5 = a5, +(4 - a3),

A= (A4 -ap)+(4 -ay),
4; = a3 + (4 - ay,),

Ay = (A —ap) +(4 - ay),

where x’' =17 -x.

Remembering that 4 can have only eight possibilities and that with the 4 =25 we can have
only 48 strongly magic squares; we can see that we get 48 x8 =384 strongly magic squares.
Now, the above transformations applied to any strongly magic square with any other value of 4
will also yield strongly magic squares having the seven other possibilities for A which includes
A=25. If there are N possible magic squares with a certain value of 4 #25, we can get 8N
strongly magic squares by performing the transformations on each of the N squares. Thus, there
will be N strongly magic squares for each value of 4, including 4 =25. We have already proved
that there can be only 48 strongly magic squares with 4 =25.

Thus, N =48 for any value of 4, and we have proved that there are exactly 384 strongly
magic squares formed.

Equivalence of Strongly Magic Squares

Two strongly magic squares are defined as equivalent if one can be transformed to the other
by a transformation or a sequence of transformations. It is shown below that each strongly magic
square can be transformed into all the other 383 squares.

Take any strongly magic square,

ay Gy O3 Oy

M, = aQy Gy Gz Ay
a4 Gy Iy3 A3y
Ay Gy Qg3 Gy

Then 24 distinct strongly magic squares with a;, as the first element can be formed from A/, be
applying some of the transformations mentioned in Section III in sequence:
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M, =TWR(M,);
M, = TWR(M,);
M, ¢ =DRA(M,,,);
M; 150 = Cre4(M 4o3);

Moi012 = Crsa(My 16);
M34094 = Ry s(M,y, 12)-

Note that @;; can be any of the 16 numbers from 1 to 16 because any of these numbers can be
brought to the (1,1) position by an appropriate sequence of row and column cycling., Each of
these can then be transformed to 24 distinct strongly magic squares by the above mentioned trans-
formations. Thus, one can obtain all the 384 =16 x 24 strongly magic squares from any strongly
magic square, i.e., all strongly magic squares are equivalent to all other strongly magic squares.

It is also clear from the above that there are 24 distinct strongly magic squares for any one
position of a number in the square. It has already been shown that there are 24 strongly magic
squares with any number occupying the (1, 1) position. Performing appropriate sequences of row
and column cycling on these 24 squares, this number can be brought to the desired position, i.e.,
24 strongly magic squares can be formed for a particular position of any number.
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FRACTAL CONSTRUCTION BY ORTHOGONAL PROJECTION
USING THE FIBONACCI SEQUENCE

George W. Grossman
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(Submitted July 1995)

1. INTRODUCTION
Let {G(J, k)}-; denote the Fibonacci j-sequences such that G(2, k) = F,, the k™ Fibonacci

number and, for j>2,
Definition 1: {G(j,k)}r={G(j, k), k=12,... G(j,k)=G(j-1Lk),k=12,...,j. G(j, k)=
GG, k-D)+G(,k-2)+-+G(j, k- ), k> j}.

Thus, new elements of the set {G(j, k)};., for j=2,3, ... are created by adding the previous
J elements of the sequence, using as initial values the first j values of {G(j—1, ¥)};_,. Fibonacci
J-sequences, satisfying the j-order linear recurrence relation in Definition 1, are also called j-

bonacci, j-acci, or j-generalized Fibonacci numbers. They are a special case of a general linear
recurrence relation studied by Levesque [10] and Tee [17]. The case j =3 yields so-called Tri-

bonacci numbers (see Feinberg [6]). Table 1 gives the values {G(j, k)}io, for j=2,...,7.

TABLE 1. {G(j, k)};¢, forj=2,...,7

jlk

1/01112(314|5]|6|7]38 9 10 | 11 12 13 14 15 16

2 112358 13|21 34| 55 | 89 | 144 | 233 | 377 | 610 987

3 1112147132444 | 81 |'149 (274 | 504 | 927 | 1705 | 3136 | 5768

4 111124|8|15(29 |56 | 108 | 208 | 401 | 773 | 1490 | 2872 | 5536 | 10671

5 112481631 |61 |120| 236|464 | 912 | 1793 | 3525 | 6930 | 13624

6 111248163263 | 125|248 | 492 | 976 | 1936 | 3840 | 7617 | 15019

7 1111248163264 127 | 253 | 504 | 1004 | 2000 | 3984 | 7936 | 15808

There is associated with each sequence {G(J, k)};., the jt-degree polynomial
Fx)=x/—x/"=x/? - —x-1, (1)

denoted in the present paper as Fibonacci j-polynomials. Let the real or complex number S,
denote the sum of the j™ powers of the roots of a polynomial of degree j. Then Newton's for-
mula is given by (see Tee [18])

Sj:alSj—l+a2Sj—2+“‘+aj—1Sl+jaj’ Slzl, (2)
where the a, are coefficients of the monic polynomial x/ —a,x/™ —a,x/ — .- —a; ;x—a, =0.
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As an observation, referring to (1), G(j, j+2)=2/ -1= S§;, j=2 if a,=1, Vi, which can be
shown inductively. Godsil and Razen [8] derived the generating function for a self-generating
sequence having parameters &, m, and r, denoted SGS(k, m, r), given by

I /2 C))
F(x) - (l B x;:k . mxk+r 4

and showed no Fibonacci j-sequence was a SGS for j >4, where p,,, is a polynomial of degree
at most k+r. The well-known generating function for Fibonacci j-sequences (see Philippou
[15D),

: x

Qj(x)= 1—x— 2

—Xx _..._xj_l__

—=.GU, k), [x]<05, @
k=1

which also appeared in the work of Godsil and Razen [8], is a special case of the generating
formula of Levesque [10]. If x is replaced by 777" and a factor of n—1 is introduced, then (4)
becomes

= GG,k _ (n-Dp! |
Zi b ey 17 )

The region of convergence of (5) is (see Tee [17]) {r7:|n|> x;}, where x; is the largest real root
of (1). The form of (5) is useful in the context of the present paper. A derivation of (5) is
presented in the next section by an alternate method that also reveals several number theoretic
properties of the sequences {G(J, k)}_,. Properties of the zeros of the Fibonacci j-polynomials
F;(x) are restated, and several are proved by a different method.

Another result of the paper is a geometrical interpretation of {G(j, k)};.; in terms of a
sequence of sets such that the first set depends on the Fibonacci numbers and subsequent sets on
the Fibonacci j-sequences. For j =2, a fractal is given and it is shown that a sequence of com-
pact sets exists such that the fractal dimension, counting, and tiling features depend on the Fibo-
nacci j-sequences. An exact expression for the fractal dimension is derived which depends on the
largest real zeros of the Fibonacci j-polynomials, x;, Vj > 2. Fractals are of interest in the mathe-
matical sciences (see Mandelbrot [12]).

2. CONVERGENCE PROPERTIES

Miller [13] showed that the zeros of the polynomials ¥;(x) are distinct, all but one lies in the
unit disk and the latter is real and lies in the interval (1,2). Flores [7] showed that x; —2 as
J — +0o0. The monotonic properties of the sequence {x,} 7, are indicated in

Lemma 1:
l<x;<x,,<2, j=2,3,., ©)

x; — 2 monotonically as j — +o0. @
Proof: Referring to (1), for each j, Fi(1)=-(j-1), F;(2)=1. Thus, there is a real zero,
denoted x;. Since F;(x)—F_;(x) = x/™(x—2), it follows by continuity that
Fi(x)<F;_j(x), 0<x<2,
Fi(x)> F,_(x), 2 <x <+,
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which implies (6). Note that x; is largest in magnitude among zeros, since F;(x) > F,(x) >1 if
x>2,j>2. To show (7), write

Jj=2

. 1-x
F() = B9+ (x-2)—

Suppose that sup{x;:F;(x;)=0}=e<2. If §; > 0" as j—> +oo then, for some positive
sequence {5,}7%, it follows by continuity of F; that the &, may be chosen small enough that
|F;(¢-6;)|<1/j. Thus, noting that &> 1, it follows that

. . ) 1-(s-5,)"
jgrlﬁ'(g_é‘f)zjl_lf?w F(e-6,)+(-6,)(e-6,-)—————

1-¢+6;
The previous statement is a contradiction which proves the lemma.

A result of Flores [7] is the following theorem.

Theorem 1: For sufficiently large k£, 3 a constant ¢ >0 such that

GUk+D) _

G(j, k)~ cxf and lim =x;, J=2,3,.... ®)

e G(J, k)
The following numerical examples were calculated on a 77-85©:
x; = 1839286755, x, =1927561975, x;, = 1999018633, x,, =1999999046.
The exponential growth of the Fibonacci j-sequences is evident in
Corollary 1: Let M>0,neZ". Then V; >2, 1<i < j—1, 3k such that
|G, ko) — MG(j—i,ky)|>n, ky>k. )

Proof: By Theorem 1 and the definition of limit, there is a constant C >0 that depends on
i, j so that, for large enough &, G(j, )/ G(j—i, k) > C(x;/ xj_,.)k — +00 as k — +oo.

In [17] Tee showed convergence of the infinite series in the following theorem as a special
case of a more general result if |77|> x;, j=2,3, ..., for which a proof is also given in the present

paper.

Theorem 2:

& G, k) _ (n-Dp! .
G,(n) = = - nl>x;, j=2,3,..., (10)
/ ké n 1+(m-2)n’ /

such that (10) diverges at 77 = +tx; and

m-D/((n-2)m), ifn>2, n<-2,

11
if n=2. (1)

+00

>

lim G,(n)= {
J>+o

Proof: The theorem is proved first for 7=2, j>2. A sketch of the proof, which is essen-
tially the same as that for 77=2, is indicated for values of 7 other than 2. Parallel results are
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given for 77 < —x;, for which the same method is applicable. A sequence of lemmas establishes the
theorem for values of j >2. Define the infinite sequence

H(, j, k)=G(j,k+3)—(]§G(j,i)+l), k>1. (12)
i=1
The significance of the 1 in the argument of H will become apparent. Then
Lemmoa 2:
% ZG(J, lzcz(—l)" _ %éﬂa, 1,2123(—1)"“. (14)

Proof: Equation (14) corresponds to 77=—-2. To prove (13), expand
ZM=%+%+".+—G(L k) 4oeee

a2 2¢
11 1 G(j,3)-1 G(j,4)-1 G(j, k)-1
=E+Z+...+2_k+...+ 8 + 16 +...+ 2k +...
— wi 1 L i G(J>3)—1_G(.])l) G(.]a4)_1—G(.]’1)
-kzdzk+(8+l6+ )G(],l)+ 2 + T -
+G(j,k)—}c—G(j, D, ..
2
_Hz 2 +(16+32+ )GU’ )+ 16
+G(j,k)—1—i£j, D-G(,2) ..
214160 160G, 160,39 HA LD HL.L2)
2 2 2 4 2 8 16 32
+G(j’k)_1“G(js lz)k_G(.]az)_G(.]a3)+\v/k>5
o1, 16U 16U 1603, 1G6Uk+D
sEl Ty Ty Ty Ty Ty g
H(,j1) HQ,j,2) H(, j, k)
* (16J 2 (32 T
L6Gx)-1-G(,D)-G(,2) = =G k+D)
2k' 5

for every k' > k +3. Denote the last term in the above expression by I(k, j, k') /2%, Yk’ > k +3,
k>1.
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By the definition of G(j, k) and H(l, j, k)
G(j, k") /12¥ > Ik, j, k") /2% > HQ, j, k)/2¥ 20, j>2. (15)

Thus, by Theorem 1 and (15), the last term approaches O as k and &’ — +oo and (13) follows.
The proof of (14) is similar, and one obtains

= 2 2 4 2

_-1 1G(, 1)+1 G(,2) 1 G(j,3)+,‘,+(—l)k+1 G(j, k+1)
3 6 2 6 4 6 8 6 2k+1

H(Q, j,1) H(Q,j,2) (-D*'HQ, j, k)
+ - +o 4
16 32 2k+3

P GURI1=GUD-CUD -Gk

Noting that H(1,2,k)=0, Yk >1, which follows from (12), and the identity F +F, +---
+ F, = F,,, —1, define the following infinite sequences depending on j and &:

HG, jk)=HG-1,j,k+D)-G(j,k+2),i=2,...,j=2, j=4, (16)
H(-1,j,k)=H({-2,j,k+3)-G(j,k+4), k=1, j=3. a7n
Note that (16) begins at j =4 and (17) begins at j =3. Then, for j >3, we have

Lemma 3:
k+j+1
H(]‘~l,j,k)=G(j,k+j+3)—( ZG(],i)H) (8)
i=1
—GU k+j+D) -G, k+ - -G, H=H({, j, k).
Proof: By (16) and (17) [one can also use the identity G(j, k+ j+3)=2G(j,k+j+2)—
G(,k+2)],
HG-1,j,k) =H( =2, j,k+3)~G(j, k+4)
=H(-3,j,k+4)-G(,k+5-G(j, k+4)
==H({-1i, jk+i+D)-G(, jk+i+2)—-—G(j, k+4)
o= H(L j,k+ )= GG, b+ j+ D=+~ GU, k+4), (= j -1,

=G(j,k+j+3)—(k+ZJ:+1G(j,i)+1J—G(j,k+j+1)~-~-—G(j,k+4)

i=1

=HQ, j,k)+G(j,k+j+3)-2(G(,k+j+D+G(, k+ j)+--
+G(j,k+4))-G(,k+3)-G(j, k+2)

=H(, j,k)+G(j,k+j+2)- (G, k+j+D)+G(, k+j)+ -
+G(, k+3)+G(j, k+2))

=H(Q, j, k).
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From (16)-(18) and (12),

HGi+1, j,k-0)+G(j,k+)), ifk>1i=1.. -3,
HG, j py= |t E LR DGO RD, kLI g (19)
G, k+1) =1, ifk=1
H(Q, j k-3)+GU.k+1), ifk>4
H(j-2,j,k)= (.] )+G0, E+D) ? (20)
G(j,k+1)=12,4, ifk=1,2,3, resp.

The second result of (19) is shown as follows. By (12), H(l, j,1)=1. For 2<m<j-2,
j=4,

H(m, j,1)= H(m-1, j,2)-G(j,3)
=H(m-2, j,3)-G(j,9)-G(j,3)
=-=H(Q, j,m)-G(j,m+1)—---G(j,3)

m+1

:G(j,m+3)—(ZG(j,i)+1j—G(j,m+1)—---—G(j, 3)

i=1

=G(j,m+3)-(1+G(,D+G(j,2)+2G(j,3) + - +2G(j, m+1))
=277 o1+ 2+ +2/73)~1, 0<i< j—4,

=2/ (424 277 =,

The second result of (20) follows by a similar method. From (19) and (20), one obtains

Lemma 4:
HG, )0 _ 5 GU k) S HE+L LK) .
Z o+ Z k+T+ Z okH3H L., j=3 1)
k=1 k=1
S H(=2,7.k) _<GGR) - HA k)
Z 2k+j Z 2k+j -1 Z 2k+3+j . (22)

k=1
Proof: The equalities (21) and (22) follow by summing (19) and (20) and adjusting the sum-
mation subscripts after division, respectively, by 2°*2*" and 2**/

Returning now to the proof of Theorem 2 when 7 =2, applying (21) and (22) in Lemma 4
recursively, it follows that

27 -1 & HQ, j, k) G(j, k) 1
2j kz=1 2k+3 g 2k+2 1+ 2 teeet 2] -3 (23)
Taking this and Lemma 2, one obtains
Lemma 5:
© : ) _ j—l S Y
$OUH _p $GUMCH 275D i
P pas 1-4(-2)

1997] 211



FRACTAL CONSTRUCTION BY ORTHOGONAL PROJECTION USING THE FIBONACCI SEQUENCE

Proof: Substituting (13) into (23) yields

2711 GLk) ) 1&G(, k) 11 1
2/ (EZ 2 _1)'22 o Mttty

k=1 k=2

G(],k) 27-1 1 1 )| 2/-1 1 1
R )| Ee e )

J_ _nJ J_1_nJ"2
OZG(]’k)[Z 1+4 2}2 1-2/7% 41
k=1

2j+1 2_]’

2G(j,k) 3 27 &G,k =1
S ” . 2L =)
kz=1 28 M kz=1 2*

For n=-2 (and 1 <-x;), the analogs of (21) and (22) are multiplied by (-1* and (~1)** on the
left- and right-hand sides, respectively. Similarly, by Lemmas 2 and 4,

Y- § H(, . D' ZG(j,k)(—l)k(_l+1+. (—1)’)

2] poue] 2k+3 = 2k+2 2 2]—3
— J a1y
_ $ 00BN 25y
P 1-4(-2)

A similar analysis yields the theorem for other values of 7 and these details are briefly out-
lined. Lemma 2 becomes

Lemma 6:
. GU.K _ 1 $H(JK
(1 n(n- 1));;1 ’qk 77—1+kz=1 77k+3 > N> X, (25)
1 GG, D _ -1 & HQ, j, (D
(l n(n+1)]kzl P+l kzl B 1> %, (26)

Proof: This result follows by straightforward application of geometric series. The interval of
convergence follows by an argument similar to that given for Lemma 2.

Lemma 4 and (23) have 2 everywhere replaced by 7. By Theorem 1 and the ratio test for
absolute convergence, (10) diverges at the endpoints 7=x*x; and, therefore, diverges for
{m:n<|x;|}. To prove (11), observe that G,(2) = 277! which, as J — +oo, implies the second
part of (11) The first part follows directly by factoring 7/~ from G, (1) and letting j — +oo.
The infinite series (10) is absolutely convergent for all values of j. Table 2 gives the values of
{HG, j, )%, i=1,2,3,4, and G(j, k) for j=5. The sequences {H(, j, k)};., appear as peri-
odic differences, as defined in (16) and (17).

In the next section, a brief introduction to fractals and fractal dimension is given along with
several examples of fractals. A fractal is presented with counting features depending on the
Fibonacci numbers.
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TABLE 2. {G(5, k), H(i, j, k)}}%, fori=1,2,3,4

GG,k)| 11|24 |8 (16| 31 | 61 | 120|236 | 464 | 912 | 1793 | 3525 | 6930 | 13624

i=1 113 |7| 142856 (111|219 | 431 | 848 | 1668 | 3280 | 6449 | 12679 | 24927 | 49006

2 113 16]12]25|50 | 99 | 195 | 384 | 756 | 1487 | 2924 | 5749 | 11303 | 22222 | 43678
3 1249|1938 75 | 148|292 | 575 | 1131 | 2224 | 4373 | 8598 | 16894 | 33223
4 L3 |7 |14]28 56111 [ 219 | 431 | 848 | 1668 | 3280 | 6449 | 12679 | 24927 | 49006

3. FIBONACCI NUMBERS AND FRACTALS

By definition, a fractal is a self-similar (self-affine) structure such that the topological dimen-
sion is strictly less than the Hausdorff-Besicovitch dimension (see Mandelbrot [12]). The topo-
logical "covering" dimension D, or a set X has the property that any open covering of X has an
open refinement with at most D +1 open sets intersecting (see Hastings & Sugihara [9]). D, =2
in R, since any open covering has a refinement with at most three open sets intersecting.

Another important concept in fractals is the Box dimension

-0  logr
where, for each r >0, N(r) is the smallest number of open balls having radius » which also cover
X (see [9]). D is also denoted as the Hausdorff dimension when the dimensions are equal, includ-
ing the fractal in the present paper. The value of D is computed for simple geometrical objects

using the concept of scale factor and scaling dimension. Suppose X is reconstructed into » scaled
copies of itself, each diminished in size by a factor £. Then

_ logn_ (28)
logl/k
In certain fractals the scaling, Hausdorff, and Box dimension are all equal, including the fractals in
the present work, since the Hausdorff dimension of a self-similar set with scaling ratio 1/ & satis-
fies (28) also (see Crownover [5]).

Fractals are generated mathematically and have a geometric structure in Euclidean space.
They are used as mathematical models for natural objects such as length of shorelines, leaf or fern
patterns, Brownian motion, chaos, cause and effect such as minimization of energy to create
fractal-like mud-flats, more exotically, minimization of scalar fields in the self-reproducing
inflationary universe. The artist M. C. Escher was a precursor to many geometric ideas, having
created drawings of self-similar structures (see Scientific American [16]). Fractals have also been
studied by Pietgen, Jirgens, and Saupe (see [14]) who give an interesting introduction to the
subject.
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The concept of a self-similar (self-affine) structure is intrinsic to a fractal, although not all
self-similar structures are fractals, i.e., continually subdividing a square into four sub-squares does
not create a fractal because D = D, =log2?" /log2" = 2.

The Cantor set is defined by removing the middle third of a given set of intervals, starting
with the unit interval. The Cantor set has the cardinality of the unit interval although it is a totally
disconnected set. In the present work a self-affine, two-dimensional structure is created by begin-
ning with a right triangle and then orthogonally projecting onto the sides in clockwise direction
[Figs. 1(a), 1(b), 2(a), and 2(b)].

(a) Fractal Generation, Level 1,j=2 (b) Fractal Generation, Level 2, j=2
FIGURE 1

(b) Self-Similar Pieces
FIGURE 2
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In the present paper the geometrical meaning of "orthogonally project” (on the sides of an
isosceles right triangle) is as follows: begin with the vertex of the right angle and draw a line that
is orthogonal to and meets the opposite side at the midpoint. Proceeding clockwise, from the
midpoint of this side draw another line orthogonally to the midpoint of the opposite side. The
new boundaries form a right triangle that is similar to the original triangle but rotated 90 degrees
counterclockwise. Likewise, two other similar triangles are formed, one on either side of the new
triangle. It is left only to decide which triangles the process is applied to at every stage.

To give an example: begin with a right triangle with vertices at (0, 1), (-1, 0), (1, 0). Let this
be the 0 stage. At stage k =1, orthogonally project onto the sides of the triangle in a clockwise
direction. This forms a triangle (grey-shaded) and two new (unshaded) triangles. Continue this
process by orthogonally projecting onto the /argest of the unshaded triangles at level £, £ =1, 2,

Lemma 7: This process forms a Fibonacci sequence such that the total number of unshaded tri-
angles at level kis F,,, of which £, are largest. The total number of shaded triangles at stage £
is F,,, —1. The respective side lengths of the largest unshaded triangles is reduced in side length
for consecutive stages by scale factor 1//2 .

Proof: By inspection of Figure 1(a), the induction hypothesis is true for k£ =1, since F; =2.
At level £, there are F; ., unshaded triangles of which F,, are largest and scaled in length size by
a factor of 1/~/2 with respect to stage k—1. Projecting on the F,,, largest triangles results in
2F,,, +F, = F,; unshaded triangles of which F +F;,, = F,, are largest, since the scale factor
of the largest to the smallest at any stage is 1/ V2. Thus, the small unshaded triangles at stage &
become some of the large unshaded triangles at stage k£ +1. That the number of shaded triangles
is F,,,—1 follows by induction also, since at level k£ +1 the number of old and new shaded tri-
anglesis (. —D+F = Fs-L

The large unshaded triangles in Figures 1 and 2 and described in Lemma 7 are generated by
an affine transformation of the form

1 |cos¥E —sindZ|lx| |a,
T =—= . + .7,
() V2 [sm = cos’ || y| |
where £ is the level of the projection and the integer 7 depends on k. Determining the precise

values for @, ; and b, ; are not considered in the present paper. The small unshaded triangles in
Figures 1 and 2 and described in Lemma 7 are generated by the following affine transformation:

1/cos0 —sinO|[x| |¢;
0]1‘ x: == . + ’ >
() 2 [sm 0 cosO }[y} |:dk,i:I
for real numbers ¢, ;, d, ;, k=1,2,3,.... Forexample, @, =5b,=1/2, ¢;; =-1/2, d;; =0.

Construct a compact set F, as follows: at each stage £, for a projection on a given triangle,
delete the shaded triangle, leaving two open unshaded triangles and their boundaries. Let W}
denote the union of all of the unshaded triangles with their boundaries at level k. Then set E, =
Ny Wi  Clearly, E, is self-similar by construction, that is, E, is scale invariant and has
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FRACTAL CONSTRUCTION BY ORTHOGONAL PROJECTION USING THE FIBONACCI SEQUENCE

topological dimension 1, i.e., no open subsets of . Let L, denote the perimeters of the large
unshaded triangles in Lemma 7 corresponding to level £, which have hypotenuse length 1/ V2t
and base=height length 1/¥2""'. It follows that L,,,=2/~2" ' +1/4/2°". Hence, observing
that Wi € Wi-1, V& =2, the total length, denoted L, of the set E, is given by

Lemma 8: L= lim (F,,L,,,+F.L)=+w.
k—>+o0
Proof: The proof follows from Theorem 1 and the fact that ¥/2 < x 1 V22,

It is noted that Figure 2(a) contains eight basic shapes, a right, isosceles triangle 7;, Figure 4
rotated counterclockwise through 135°. The shapes are generated with the affine transformations
J and U.

Theorem 3: The compact set E, is a self-similar set with Box=scaling=Hausdorff (dimension)
D =138848.

Proof: Such sets are normally called fractals in the literature. The Hausdorff and Box
dimensions both equal the scaling dimension, since E, is self-similar with two scaling ratios,
1/+/2 and 1/2, as observed by the geometry of Figure 2(a). This is also evident in the trans-
formations J(x, y) and U(x, y). By Lemma 7, there are F, large triangles at level £ —1, and the
k™ Fibonacci number is almost linearly proportional to xi for large k so that the scaling
dimension
logcxt - logc+klogx,

= lim
k—>+wo logﬁ k—>+o klog\/f

_2logx, _ 2(og(1++5)-1082) _ 30040
log2 log2 ’ '

For completeness, D is calculated by the Box Counting Theorem (see Barnsley [3]).

Theorem 4 (The Box Counting Theorem): Cover R* by boxes of size Cr", C>0. 0<r <1,
where C and r are fixed real numbers. Let N, denote the number of boxes of side length Cr” that
intersect any compact set # < R*. Then ¥ has fractal dimension

D= lim 1088
n—+o log Cr"

By inspection of Figure 2(a) and generalizing to all values of %, one finds that
Lemma 9: For k=1,2,3,..., F,, squares of side length 1/ 242" cover E,.
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