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WHEN DOES m - n DIVIDE f(m) - / ( H ) ? 
A LOOK AT COLUMN-FINITE MATRICES 

David Callan 
Dept. of Statistics, University of Wisconsin-Madison, Madison, WI537-1693 

callan@stat.wisc.edu 
(Submitted February 1995-Final Revision July 1996) 

In this paper we consider the Z-module of integer-valued functions / defined on the non-
negative integers (respectively, on all integers) and characterize the submodule determined by the 
divisibility relation of the title and also, as a corollary, by the divisibility relation m+n\f(m)+f(n). 
Our results suggest some rather basic questions about such modules (equivalently, about infinite 
matrices of integers in which each column has only finitely many nonzero entries). We discuss 
these questions and pose a conjecture. 

The functions/from the nonnegative integers N to the integers Z satisfying 
m-n\f(m)-f(n) for all m, n edom/ (1) 

are mentioned in Apostol's textbook [1], Waterhouse [2] observes that integer-coefficient poly-
nomials /certainly satisfy (1) and asks for a nonpolynomial function from Z to Z that does so. 
Myerson [3] supplies one. Problem 4 on the 1995 U.S.A. Mathematical Olympiad asks one to 
show that nonpolynomial functions from N to Z satisfying (1) never exhibit polynomial growth 
(see [4]). For sharper results on their growth rates, including an open question, see [6]. 

Our main result is that in both cases, N to Z and Z to Z, there is a simple characterization of 
all functions satisfying (1); in fact, in each case, these functions form a Z-module for which we 
can give a basis. (In the present context, the term basis, defined below, has the usual connotations 
of linearly spanning and being linearly independent, but infinite linear combinations are allowed.) 

Let MN (resp. M z ) denote the Z-module of functions N to Z (resp. Z to Z). Let M be any 
submodule of MN or M z and let us define a basis for Mas a finite or countably infinite set {fQ, 
fv fi'-'} m^^or which each / G M has a unique expression (up to order of summands) as an 
integral linear combination / = Z^>0 ckfk. Naturally, (Z^=0 ckfk)(ri) means£^=0 ckfk(n) and, to 
converge, the series must have only finitely many nonzero terms for any specific value of n (and 
hence, of course, order of summation does not matter). Equivalently, we may identify / G M N 
with the infinite sequence (row vector) (f(j))j>o, identify MN with the set of all infinite se-
quences of integers, and view {/.} as an infinite matrix F with row i the sequence for f.. Then 
Hk>0ckfk is the vector-matrix product cF, and F must be column-finite (i.e., only finitely many 
nonzero entries in each column) to ensure cF is defined for arbitrary c. The conditions for {f.} 
to be a basis translate into: the rows of F (i) span MN and (ii) are linearly independent (both con-
ditions over Z and in the sense of infinite linear combinations). For example, the identity matrix 
corresponds to the "natural" basis {ej}j^0 for MN with ^ ( j ) - ^ . (Kronecker delta). Pascal's 
matrix, given by P = ({j ))/j;>0 corresponds to the basis CN: = {ft }i>Q with fi (j) = (/). The ft form 
a basis because, in fact, / = Z^o ctft if and only if c;. •= HJ

M(-l)J~'(Ji)f(i), j ^ 0. 
We digress to give one reason why CN is a good basis to work with. Note that fk(x) -(f) is 

a polynomial in x of degree k with rational coefficients; thus, any finite integral linear combination 
of the fk is a polynomial in the polynomial ring Q[x] that assumes integral values at the integers. 
Conversely, suppose f(x) eQ[x] has this property. Let degf = m. Now {1, x,..., xm} is a basis 
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for the Q-vector space Pm = {g(x) e Q[x]: degg < HI}, and since deg/^ = k, the set {/̂ }0<^<w is 
also a basis for POT. Hence, / = Z^=0 ̂ / ^ with C ^ G Q . In fact, c^eZby the integrality property 
off and the last sentence of the preceding paragraph. It follows that the polynomial functions in 
MN are precisely the finite integral linear combinations of the ft. (It also follows that if / e Q[x] 
assumes integral values at the nonnegative integers, then/assumes integral values at all integers 
and, hence, the polynomial functions in Mz are the same as the polynomial functions in MN.) 

An analogous basis for Mz is Cz: = {gk}k>0 u {hk}k^ where 

»«-("£*) - va-C^*--,1} 
In this case, / e M z can be (uniquely) expressed as 

CO CO 

with 

and 
n-l 

c„= E(-lW 2_\W)for»>0 

4. = §(-ir*-1L2!,
ft"_1

1)/w for»>i. 
k=-n V ' 

By arranging Cz in the order g0, /^, g1? Z ,̂ g-2,..., and evaluating at the integers in the order 0, - 1 , 
1, - 2 , 2, ..., verification becomes equivalent to showing that the upper triangular matrices 

?,2J+(7W/21L - ( < - < ^ W « T L 
are inverses of one another. This does not particularly facilitate a proof by hand (and we leave the 
combinatorial identities on which a formal proof rests to the interested reader), but spending a few 
minutes checking finite sections by computer will convince you that these two matrices are indeed 
inverse to one another. 

Note that hk is an odd function, that is, hk(-n) - -hk(n), n e Z, and, for k > lr 2gk -hk is an 
even function, as is g0. Also, from the above formulas for cn and dn, if / GMZ is odd, it follows 
that ck = 0 for k > 0; thus, the hk span the odd functions in Mz. Similarly, if / e M z is even, it 
follows that ck = -2dk for k > 1, yielding a spanning set for the even functions. 

Summarizing, we have the following theorem. 

Theorem 1: Let 

/.»=(?) ftM-("i*)*->-("i*_v 
as above. Then: 

(i) CN = {fk}k>0 is a basis for MN; 
(U) Cz = {gk}k>0 u {hk}k^ is a basis for Mz; 

(w'0 Codd = {hk}k>x is a basis for {/ G M Z : / is odd}, 
Qven = {&} ^ (2& "A)**! i s a b a s i s for if GMZ •/ IS even}. 
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Just as for CN, the finite integral linear combinations in Cz, Codd, Ceven comprise the polyno-
mial functions in the respective modules. The latter facts—at least for CN, Codd, Ceven—are noted 
in Polya and Szego [5]. 

For the sake of clarity, we mostly use the function interpretation for MN andMz in the first 
part of the paper—Theorems 1 through 4—and then work with sequences and matrices in the 
second part. We are now ready to state our main result. Let lcm[w] denote the least common 
multiple of the first n positive integers (and set lcm[0] = 1). 

Theorem 2: Let M^ (resp. Mz) denote the submodule of functions/in MN (resp. M z ) that sat-
isfy (1): m - n\f(m) - f(n) for all m,ne domf. Then: 
(i) M£ has a basis Q = {lcm[k]fk}k>0; 

(ii) M£ has a basis Q = {lcm[2£]^>0 u {lcm[2£ - l]hk}k>v 

Proof: First we develop two lemmas. Let [a, b] denote the interval of integers a, a+1, ..., b. 
For prime/? and positive integer n, let vp(ri) denote the exponent of the largest power ofp that 
divides n; thus, pMn) \n9 but pvp(n)+lj[n. It is trivial that 

+ 
a + h 

for positive integers a, b, c. Hence, for n > k > 1 and r > 1, 

< n 
Pr 

- n-k 
Pr 

This says that, for each r, the number of integers in [1, k] divisible by pr is < the number in 
[w-& + !,/?] so divisible. This fact allows the construction in an obvious way of a bijection 
<f>: [1, k] -> [n - k +1, n] such that vp(i) < vp(<f>(i)) for 1 < i < k. (Consider first the integers in 
[1, k] divisible by the highest power ofp that divides k. Let <j> be any one-to-one map from these 
integers to the integers in [n- k +1, n] divisible by this power ofp and then proceed in turn to the 
smaller powers ofp.) Let n- denote the falling factorial n(n - l)(n -2)--tok factors. 

Lemma 1: 
(i) For n > k > 1 and/? prime, pVp(Icl) \nk. 

(ii) If / (1 < / < k) factors are removed from the product w-, then the resulting product is divisible 
b y pVpCttHvpCfcnOT). 

Proof: 
(i) Since [n

k)= ^ is an integer, /A(*!) \n-. 

(ii) This assertion follows from part (i) and the existence of the bijection <j> which says, so far 
as divisibility by p goes, the effect of tossing the factor (/>{i) out of the product n- is no worse 
than the effect of tossing the factor / out of &!, and vp(i) < vp(lcm[A:]). 

We also need a result on the divisibility of binomial coefficients. 

Lemma 2: If/? is a prime that does not divide r, and if i > j > 0, then /?' J p'q 
PJr 
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Proof: An often-quoted result of Kummer (see [7] for a proof) says that the exact power of 
p that divides a binomial coefficient (jj) is the number of "borrows" when k is subtracted from n in 
base/?. For example, in base 5, (375)5 = 3000, (330)5 = 2310, and we have the subtraction 

« = 3 0 0 0 
* = 2X \ 1 0 

n-k = 14 0 

with 2 borrows. Note that if (as here) the number of trailing zeros in n exceeds that in k, the 
number of borrows will always be at least the excess (here, 2). Since k - pjr has exactly j trail-
ing zeros, this observation translates immediately into Lemma 2. 

Now to the proof of the theorem. First, we must show that the elements of Cft actually sat-
isfy (1). Therefore, let f^(n) = lcm[k](l) denote a typical element of Cft and we must show that 
m\fk(n + m)~fk(n)> f°r w,n,k ^ 1 ; that is, m\lcm[k]((n+m)--n-)/k\ or, equivalently, for each 
prime divisor/? of m, 

pVp{m)+vp{k^-vp{\cm[k})Un + myc_ _f£_ ^ ) 

lfvp(m) < vp(lcm[k]), (2) is an immediate consequence of Lemma l(i). So suppose vp(m) > 
vp(lcm[A:]) and consider the cases k > n and k<n separately. If k > n, then m is one of the fac-
tors in {n+m)~ and n- = 0. But pvp^\m by definition, and 

pvp(kl)-vp(lom[k]) (n + m)-
m 

by Lemma l(ii), and (2) is obtained by multiplying these divisibility relations. On the other hand, 
If k < n, consider the powers of m In the expansion 

k 

7 = 1 

where, in the inner sum, the summand n(k-i) runs over all products of k-i factors from 
[n-k + \ri\. We have pvp^-ivp^lcm^\K{k-i) by Lemma l(ii) and, trivially, pv*W\ni. This 
yields 

Vpik^+iivpimyvpilcmlk]))^/^ _ j W 

and hence, certainly, 
vp{k\)+vp{m)-vp{\om[k})\nni_j\mi 

since / > 1, and, by supposition, vp(m)>vp(lcm[k}). Summing over i, we obtain (2). Hence, 
Q C: MN? and the proof that Q c M!

z Is very similar. 
Next, we must show that every / e M^ is an integral linear combination of the elements of 

Q . We already know there exists a unique sequence of integers (c„)„>0?
 namely> 

k=0 
such that 

fc=o V / 
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So we must show that lcm[&]|c£ under the hypothesis that/satisfies (1). To get induction (on n) 
working, we will prove a little more: 

For all a GN, lcm[n] divides c„(a) := J ( - l ) w "*( t l / ( t f + *) when/satisfies (1). 
k=o V / 

[Of course, cw(0) = cn and, to numerical analysts, cn(a) is the rfi forward difference o f / at a.] 
The base case n' = 1 is trivial. Since cw(a) = ̂ ( a +1) - c„_i(tf) w e have, by the induction hypothe-
sis, that l c m [ w - l ] | c „ ( a ) and need only show n\c„(a). L e t / ? be any prime divisor of n. Write 
n = plr and let k = pjs with r and s relatively prime to p. Now (1) implies pj \f(a + k)- f(a). 
Also, if i > j , then pj~J\{n

k) by Lemma 2. In any case, pj\{n
k)[f(a + k)~ f(a)\. Since 

k=o V J 

it follows that p1 \cn(a), and since/? is arbitrary, n\cn(a) and the induction is complete. The cor-
responding p roof that C z generates M £ is analogous: cn{a) and ^ „ ( a ) a r e defined analogously 
(except now a e Z ) and the induction is based on the recurrence relations cn(a) = dn(a +1) -dn{a) 
and d„(a) - c^^a) - cn_x(a -1). This completes the proof of Theorem 2. 

Here is one corollary. As noted earlier, the finite linear combinations in CN (or Cz) yield 
polynomials, and infinite linear combinations yield nonpolynomials (by uniqueness—the polyno-
mials are already exhausted by the finite linear combinations). The observation (made in the 
editorial comment on [3]) that there are uncountably many nonpolynomial functions Z to Z satis-
fying (1) follows immediately. 

For later use, we remark that the divisibility relation (2) above in fact holds for arbitrary inte-
ger n. (This shows that fk(n) - lcm[£](2), if considered as a function of n e Z rather than just 
n G N , is in M z ; thus, each element of the basis Cft for M& extends to an element of M%. We 
will soon see that not every element of M^ extends in this fashion.) The proof of (2) for n < 0 is 
similar to that given above for n> 1; n = 0 is easy, so suppose n<0. In the case n + m<0, the 
result already established in (2) for n > 1 applies (with the roles of n+m and n reversed); the case 
n+m>0 should be split into subcases k>n+fn and k<n+m corresponding to the subcases 
k > n and k < n above. The details are left to the interested reader. 

Now we consider an interesting submodule of Mft. Let 0: M z —> MN be given by restriction 
of domain, that is, 0(f) = f\N. (Interpreting the elements of MN and M z as sequences, 6 just 
throws away the left half of a doubly infinite sequence.) Let y/ denote the restriction of 0 to Mz; 
then it is clear that y/: M z -> M^. Note that the range of y/ includes at least all the finite integral 
linear combinations of Cft, that is, all the polynomial maps in M&. This is because each f£ e Cft 
extends, as remarked in the previous paragraph, to an element in Mz. Of course, the map 0 is 
onto but far from one-to-one. Contrariwise, we have the following result for y/. 

Theorem 3: Let y/: M z -> M^ be the map just defined. Then 
(i) y/ is one-to-one, 

(ii) y/ is not onto. 
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Proof: 
(i) It suffices to show ker y/ = (0) and, to see this, view an element of ker y/ as a doubly 

infinite sequence of integers with a tail of zeros. Then it cannot have any nonzero term [the 
standing divisibility hypothesis (1) implies any term is divisible by all sufficiently large integers]. 

(ii) Recall fk(n) = (n
k) and, for brevity, set uk = lcm[*], k > 0. Now consider the element of 

MR given by / = Zjt>o%A and let us ask iff can be extended backward, i.e., defined at - 1 , to 
yield a (sequence of integers) g that is still in MR. It suffices to show that this cannot be done. 
Suppose it can. Then, by Theorem 2(i), g = Hk>ockukfk f°r s o m e sequence of integers (ck) and 
g(n +1) = f(ri), n>0. This readily implies that uk = ckuk + ck+luk+l, k>0. Multiply by (-1)* and 
add to obtain 

n-l 

Y(-l)kuk=c0u0 + (-l)n-lc„u„ 

and, in particular, 
f,(-lfuk^c0 (modu„Xn>l. (3) 
k=0 

This infinite set of congruences has no solution for c0 as follows. Let sn = Z£=o(~1)^ denote 
the left side of (3). Since un - un_x unless n is a prime power, pr, in which case un - pun_l9 it is 
easy to show by induction that 0<sn<un for n even > 2, and -un < sn < 0 for n odd > 3. Thus, if 
c0 > 0 we have, for all sufficiently large even w, 0 < c0 < un while 0 < sn < un and, by (3), sn = cQ 

(mod i/„); hence, sn = c0. It follows that sn+2 - sn and therefore un+2 = ww+1, a contradiction since 
un+2 = 2un+l whenever w + 2 is a power of 2. A similar contradiction is obtained in case c0 <0, 
completing the proof. 

As a curiosity, we can now "analyze" the divisibility relation m+n\f(m)+f(n) with little 
extra effort. Let MR = {/ G M N :m+n\f(m) + f(n), m,n GN} and analogously for M%. Also, 
let p: M'i —> MR denote the restriction map analogous to y/: M% —> MR above. 

Theorem 4: Let 
i , x (n + k-l\ 
hM = [2k-i) 

as in Theorem 1, and let hk\N denote the restriction of hk to N. Then: 
(i) {lcm[2& - l]\|N}^>i is a basis for MR; 

(ii) {lcm[2fc - l]^}fc>i is a basis for A/g. 
(Hi) p: Mz -> MR is both one-to-one and onto (unlike the map y/ of Theorem 3). 

Proof: Suppose / eMg. The divisibility hypothesis with m = —n implies that/ is odd and, 
consequently, the divisibility hypothesis also implies that m-n\f(m)- / («) , m,nsZ. Therefore, 
Mfi- M £ n { / G M Z : / is odd} and part (ii) follows from Theorem l(iii) and Theorem 2(ii). 
Now observe that m + n\f(m)+f(n), w ,«eN implies also m-n\f(m)-f(n), m,nGf$ or, 
equivalently, k\f(£ + k)-f(£),k9JteWl. To see this, write l = kq+r with 0 < r < k (division al-
gorithm) and apply the hypothesis with m = kq + r and n = k-r to obtain k\f(kq + r) + f(k -r). 
Replacing q by q + l yields k\f(kq + r + k) + f(k-r). Hence, k divides the difference, that is, 
k\f(£ + k)-f(l), as desired. 
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This permits us to extend any / GMJJ to / GM% by defining f(-n)=-f(n), n>\ (the 
reader should check this), and this is the only way to extend/since M£ consists of odd functions. 
Thus, the restriction map p: M'i -» M# is one-to-one and onto. This is part (iii) and part (i) 
follows from parts (ii) and (iii). 

The preceding results raise the question: To what extent is the above notion of basis analo-
gous to a free basis (of a finitely generated module)? To begin with, any finitely generated sub-
module of MN is a free Z-module and here the notions basis as above and free basis coincide. 
Every submoduleMof MN does possess a basis. To see this, view elements of MN as sequences, 
and for i > 0 let ct denote the least positive integer occurring in position i among elements of M 
having zeros in the positions preceding i (but if all these elements have 0 in position i, take ci = 0). 
If ct ̂  0, let u, be any such sequence (with first nonzero entry ci in position i). Then it is straight-
forward to verify that these u, form a basis forM. 

Now we switch perspective from functions and lists of functions to sequences and matrices, 
and henceforth write Z00 instead of MN for the infinite sequences of integers (and Q00 for the 
infinite sequences of rationals). Also Zoo (resp. Qoo) will be used to denote the set of infinite 
matrices of integers (resp. rationals). The terms span and linear independence will continue to be 
used in the sense of infinite linear combinations. For A eZoo, let R(A) denote the set of rows of 
A. One basic question is: When does R(A) form a basis for Z00? First, as noted above, A must 
be column-finite. Second, for R(A) to span Z°°, it is certainly necessary for R(A) to span the 
basic vectors {ek}; equivalently, A must possess a left inverse in Zoo, call it B. Third, A must have 
a trivial left nullspace in Z00 (so A'$ rows are linearly independent) and this makes 4̂!s left inverse 
B unique. These three conditions, though, do not ensure that R(A) spans all of MN. 

Example 1: Let J denote the infinite Jordan matrix—all 0's except l's just below the main diag-
onal—and set A = I + 2J. Then A is column-finite and has a unique left inverse in Zoo, but A's 
rows do not have Z-span Z00. 

Proof: The column-finiteness of A is obvious. It is easy to check that Jk has l's on the k^ 
diagonal below and parallel to the main diagonal and 0's elsewhere, and that a left inverse of A in 
Zoo is given correctly by the formal expansion (1 + 2J)"1 = I-2J + 4J2 -8J3 + • • •. The left null-
space of 4̂ in Q00 is spanned by (l,-y,-J-, —-g,•••) and so, clearly, has trivial intersection with 
Z00, making 4̂'s left inverse in Z^ unique. On the other hand, let e denote the (row) vector of all 
l's. Then eA = 3c, so the general solution of xA = e in Q00 is x = -je + £(l, - y , • £ , - £ , •••) (arbi-
trary k G Q) and, clearly, x g Z00 for any k. Thus, e is not in the Z-row span of A. 

Column-finiteness of 4̂fs left inverse (or, rather, the lack of it) plays a role in the preceding 
example. Note that a product of column-finite matrices is again column-finite, and associativity 
holds; in fact, for W G Q 0 0 and X, Y eQoo, if wX is defined and Y is column-finite, then it is easy 
to check that all four products are defined and (wX)Y = w(XY). Three corollaries: (1) if X and Y 
are column-finite matrices in Qoo, then (WX)Y = W(XY) for arbitrary WeQoo; (2) the column-
finite (CF) matrices in Qoo form a ring (with identity). Let us denote this ring by CF(Qoo) and, 
analogously, for CF(Zoo); (3) if A eCF(Zoo) has a unique left inverse B in Zoo that happens to be 
column-finite, then we have, for arbitrary w eZ00, w = w(BA) = (wB)A; thus, R(A) does indeed 
have Z-span Z00. Of course, this argument breaks down if B is not column-finite because then 
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wB might not be defined (and Example 1 shows that the conclusion need not hold). For A e 
CF(Zoo), the assertion that A has a unique left inverse in Zoo that happens to lie in CF(Zoo) is, on 
the face of it, stronger than saying that A has a unique left inverse in CF(Zoo). In fact, the two 
statements are equivalent since, if A has a left inverse B in CF(Zoo) and another left inverse C in 
Zoo\CF(Zoo), then B-C has a nonzero row, and adding this row to any row of B produces 
another left inverse for A in CF(Zoo). Furthermore, from elementary ring theory, for a in any ring 
with identity R, "a has a unique left inverse in i?" is equivalent to "a is invertible (i.e., a unit) in R" 

These observations suggest the following conjecture. 

Conjecture: Let A be a column-finite infinite matrix of integers, that is, A e CF(Zoo). Then the 
rows of A form a basis for Z00 if and only if A is a unit in CF(Zoo). 

[We have proved the "if" part and for the "only if" part we have shown that A has a unique 
left inverse B in Zoo. The conjecture then is that B must lie in CF(Zoo).] 

Motivated by the preceding observations, let us now consider the subtleties of the concept of 
inverse for an infinite > matrix. In general, we must distinguish between left and right inverses— 
indeed over the integers, all nine combinations of 0,1 or infinitely many left inverses and 0,1 or 
infinitely many right Inverses are possible. The following table provides simple examples (J 
denotes the Jordan matrix with lfs below the diagonal, K is given below, and the superscript t 
denotes transpose). 

# right inverses 

# 

left 

inverses 

0 

• 1 

00 

0 
0 

K 

J 

1 
K' 

I 

I + J 

00 

~ 

I + J' 

J + J' 

Here the unique left inverse ofK and K itself are given, respectively, by 

' 0 1 0 0 0 
0 - 1 1 0 0 
0 - 1 0 1 0 
0 - 1 0 0 1 
0 - 1 0 0 0 

' 1 1 1 1 1 
1 0 0 0 0 
1 1 0 0 0 
1 0 1 0 0 
1 0 0 1 0 

For J + J*, a right inverse is J-J3 + J5 (note that JtJ = l), and a right nullvector is 
(1,0, -1 ,0 ,1 ,0 , - 1 , . . . y. These and the other easy verifications are left to the reader. 

We now collect a few simple facts about inverses of column-finite matrices. 

Proposition 1: If A GCF(ZOO) has a unique left inverse B in Z«, and if AB is defined, then 
AB = I. 

Proof: By associativity, (AB -1)A = A(BA) - A = 0. Hence, AB -1 = 0 by uniqueness of 
A's left inverse. 

A diagonal matrix DGQOO with nonzero diagonal entries obviously has an unambiguous 
Inverse D~l eQoo, but already with triangular matrices we must be careful. 
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Proposition 2: Suppose U GCF(QOO) is block upper triangular with finite square blocks {[/„} on 
the main diagonal. 

If the Ujj are invertible, then [/has a unique left inverse Fin Qoo and J7 is block upper trian-
gular. Moreover, Fis a right inverse for [/and it is the only column-finite right inverse for [/in 
Qoo, though U may have other right inverses in Qoo and even in Z». 

Also, if U has integer entries and the Uu are invertible over Z, then V is actually in -Zoo. 

Proof: We can solve VU = / uniquely for the blocks of Fin turn: first row, left to right, then 
second row, left to right, etc., and Fhas the stated form. In particular, Fis column-finite; so UV 
is defined and, by Proposition 1, UV = I. 

Similarly, if W is assumed column-finite, we can solve UW = I uniquely for the (block) 
columns of W left to right, bottom to top. Hence, W must equal V. (Alternatively, invoke the 
result for rings: if vu-l and uw=l, then w = v.) However, for the upper triangular matrix 
U = I + f with J the "Jordan" matrix above, J7(l, -1,1, -1,1,...)' = 0 showing that U has multi-
ple right inverses. 

With [/and Fas in Proposition 2, uniqueness of [/'s right inverse may be guaranteed by C/'s 
zero pattern. 

Proposition 3: With [/and Fas in Proposition 2, suppose [/satisfies the following condition: 

[/x is defined (i.e., involves no finite sums) only when x is column-finite (4) 
[e.g., (4) certainly holds if [/!s above-diagonal entries are all nonzero]. Then Fis the unique right 
inverse for [/in Qoo. 

Proof: Suppose [/x = 0. By (4) there exists n such that xt = 0 for i>n. Take a large 
enough square upper left submatrix Um consisting of whole blocks of U so its size is m by m with 
m>n. Then Um(xh x2,..., xm)' - 0 and, since Um is a finite invertible matrix, x = 0 and U has 
trivial right nullspace, making any right inverse for [/unique. 

Proposition 4: With [/and F again as in Proposition 2, condition (4) of Proposition 3 is satisfied 
if and only if there exists k>\ such that the submatrix of U consisting of its first k rows has only 
finitely many zero columns. 

Proof: Exercise. 

Corollary: Pascal's matrix of binomial coefficients, P = ((j))^ y>0, has a unique left inverse and a 
unique right inverse, and both are given by P~l = ((-l)y"'(f)). 

Proof: One verifies that Q = ((-l)y_/(j)) is a left inverse for P, unique by Proposition 2, hence 
P g = / by Proposition 1, and Q is P's unique right inverse by Proposition 3. 

Referring back to Example 1, note the matrix A given there has multiple left inverses in Qoo. 
This raises the question: Does the phenomenon of Example 1 occur in Q^? Perhaps things are 
nicer over fields and for a matrix A GCF(QOO) with a unique left inverse B in Qoo, perhaps B must 
lieinCF(Qoo). 

Here are several other questions. Is there an effective method to determine which elements 
of Mi are in the range of y/1 When can a subset of MN (= Z00) be enlarged to a basis? Could 
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the matrix K of Example 2 be replaced by a column-finite matrix, that is, in view of Proposition 1, 
could a matrix A eCF(Zoo) have a unique left inverse B in Z^ for which AB is not defined? In 
the rings CF(Zoo) and CF(Qoo), is there a nice characterization (or generating set) for the units? 
An answer to the latter question for matrices A that are both row- and column-finite and with 
entries in n field was recently given in [7]: A is invertible if and only if both its rows and its 
columns are (infinitely) linearly independent. 

ACKNOWLEDGMENT 

The author thanks anonymous referees for helpful remarks and for suggesting Example 1. 

REFERENCES 

1. Tom Apostol. Introduction to Analytic Number Theory, p. 127. New York: Springer-Verlag 
1976. 

2. William C. Waterhouse. Problem proposal 10185. Amer. Math. Monthly 99 (1992):60. 
3. Gerry Myerson. Solution to Problem 10185. Amer. Math. Monthly 101 (1994):85. 
4. "News and Letters." Math Magazine 69 (1996):233-38. 
5. G. Polya & G. Szego. Problems and Theorems in Analysis IX, Chapter 8, Part 2, §1. New 

York: Springer-Verlag, 1990. 
6. B. Poonen, J. Propp, & R. Stong. Problem 10553. Amer. Math. Monthly 103 (1996):809. 
7. Shi Qiang Wang. "The Inverses of Infinite Matrices over a Field." Beijing Shifan Daxue Xue-

bao 293 (1993):327-30. MR 94k:15003. 
8. Warren J. Wong. "Powers of a Prime Dividing a Binomial Coefficient." Amer. Math. Monthly 

96(1989):513-17. 
AMS Classification Numbers: 15A36, 15A09, 15A03 

APPLICATIONS OF FIBONACCI NUMBERS 
VOLUME 6 
New Publication 

Proceedings of The Sixth International Research Conference 
on Fibonacci Numbers and Their Applications, 

Washington State University, Pullman, Washington, USA, July 18-22, 1994 
Edited by G. E. Bergiim, A. N. Philippou, and A. F. Horadam 

This volume contains a selection of papers presented at the Sixth International Research Conference on Fibonacci Numbers and 
Their Applications. The topics covered include number patterns, linear recur-riences, and the application of the Fibonacci Numbers to 
probability, statistics, differential equations, cryptography, computer science, and elementary number theory. Many of the papers 
included contain suggestions for other avenues of research. 

For those interested in applications of number theory, statistics and probability, and numerical analysis in science and 
engineering: 

1996, 560 pp. ISBN 0-7923-3956-8 
Hardbound Dfl. 345.00 / £155.00 / US$240.00 

AMS members are eligible for a 25% discount on this volume providing they order directly from the publisher. However, the bill must 
be prepaid by credit card, registered money order, or check. A letter must also be enclosed saying: "I am a member of the American 
Mathematical Society and am ordering the book for personal use." 

KLUWER ACADEMIC PUBLISHERS 
P.O. Box 322, 3300 AH Dordrecht P.O. Box 358, Accord Station 
The Netherlands Hingham, MA 02018-0358, U.S.A. 

Volumes 1-5 can also be purchased by writing to the same addresses. 

1997] 299 



A FAMILY OF 4-BY-4 FIBONACCI MATRICES 

Piero Filipponi 
Fondazione Ugo Bordoni, Via B. Castiglione 59,1-00142 Rome, Italy 

e-mail: filippo@fiib.it 
(Submitted September 1995-Final Revision May 1997) 

1. AIM OF THE PAPER 

Fibonacci matrices are matrices the entries of the powers of which are related to the Fibo-
nacci numbers Fn and/or the Lucas numbers Ln. The most celebrated among them are the 2-by-2 
matrix Q (e.g., see [6, p. 65]) first studied by C. H. King in [7, pp. 11-27], and the 3-by-3 matrix 
R (e.g., see [1, p. 26]). 

Consider the m-by-m tridiagonal symmetric Toeplitz matrix Sm(x, y) defined as 

K(*,y)-

X 

y 
0 

0 
0 

y 
X 

y 

0 
0 

0 
y 
X 

0 
0 

0 • 
0 • 
y • 

o • 
o • 

• 0 
• 0 
• 0 

• y 
• 0 

0 
0 
0 

X 
y 

0 
0 
0 

y 
X 

(1.1) 

where x mdy are arbitrary quantities. 
In this paper we show how, for certain (integral) values of x and y, the matrices S4(x,y) are 

Fibonacci matrices. More precisely, after recalling some properties of Sm(x, y) which are valid 
for arbitrary couples (x,y), we work out closed-form expressions for the entries s£l(x, y) of 
S^x, y) and prove that, for special values of the above-mentioned couples, they involve Fibo-
nacci numbers. Further, as application examples, some of these expressions are used, jointly with 
certain matrix expansions, to obtain some hopefully new Fibonacci identities. It is worth mention-
ing that the existence of some relations between matrices Sm(x, y) and the Fibonacci numbers is 
well known (e.g., see [8] and [9]). For example, the corollary to Theorem 1 of [8] tells us that 
the permanent of Sw(l, 1) equals Fm+1. 

2. PRELIMINARY RESULTS 

The fundamental properties of Sm(x, y) have been investigated in [2] where, in particular, the 
following compact form for the generic entry fh,k(x>y) of any admissible function f[Sm(x, y)] 
has been established: 

where (see Theorem Dl of [3]) 

XAx,y) = x+2ycai-J2- (j = ^,...,m) (2.2) 
J m + l 

are the eigenvalues of Sm(x, y). 
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Remark 1: It is worth noting that formula (2.1) also works if Sm(x9y) is replaced by any func-
tion g[Sm(x, y)] which, in general, is not a Toeplitz tridiagonal matrix. It is sufficient to replace 
/ ( x + 2 j , cos£ ) by / | g ( x + 2^cos^f)]. 

Specializing fin (2.1) to the rfi1 power (n>0) yields the desired expression for the entries 
$l(x, y) of S^(x, y). Namely, we get the relation 

which, in the case m = 4 that is of interest to us, becomes 

4:l(^y) = ~i[x + 2yooSfJsin^sinJf- (l<h,k<4). (2.4) 

Remark 2: For integral values of x and y (x+y & 0), the eigenvalues of S4(x,y) are nonzero 
[see (2.2)]. Therefore, under this condition, (2.4) applies for negative values of n as well. 

Formula (2.3) [and, in particular, its specialization (2.4)] will play a crucial role throughout 
the proofs of the results established in this paper. Since it comes from expression (2.1), which has 
been established in an unpublished paper, the reader might be interested in an alternative proof 
of (2.3). It can be obtained by induction on n. To do this, we need the following two trigono-
metrical identities, the proofs of which are omitted for the sake of brevity: 

> sin -*—- sin -1—- = —z—sh k > (2-5) 
£j m + \ m + \ 2 *•*' v J 

where 8Kk = 1 (0) if h = (*) k is the Kronecker symbol; 

sin(p-^) + sin(p + *y)==2sin/?cos^. (2.6) 

Proof of (23) (by induction on n): By virtue of (2.5), expression (2.3) clearly holds for 
n- 0. For n -1, from identities (2.5) and (2.6) it is not hard to see that (2.3) holds as well. 
Suppose it holds for a certain n>\. 

Case 1: k^t$m. For the inductive step n -> n +1, put sin[ jrn l{m +1)] = s(j, r) and 
cos[J7r / (m + l)] = c(J) for notational convenience, and use (1.1) and the inductive hypothesis to 
write 

s^+V - xs/jfy +X4"l-i+ sh!l+i) (by the usual matrix multiplication rule) 

m + 

2 

1 * I W h)s(j, k)+yZqsU, A)K/, * ~ 1) + </, * +1)1 
m 

-YX^sU,h)s{j, k) + 2yX>jS(j, h)s(J, k)c(j)] [from (2.6)] 

= ̂ 5>7 1 * t t*X/ .* ) [from (2.2)]. 
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Case 2: k = 1 or m. The proof of this case can be carried out by means of arguments 
similar to (but much simpler than) those of Case 1, and is omitted for brevity. Q.E.D. 

Observe that, since s^k(x,y) = xShJc + yS\h_k^, letting n-\ in (2.3) and using (2.5) yields 
the noteworthy trigonometrical identity 

7 W/U5 M i l M i l — U\h-k\\* \^-') 

P m + l m + l m + l 4 '* n i 

3. SOME FIBONACCI MATRICES 

In this section, some couples (x, y) for which S4(x, y) is a Fibonacci matrix are shown, and 
closed-form expressions for the entries $l(x,y) of S1(x,y) are established. Of course, since 
4Hl(Px> Py) ~ P"sh!k(xy y)> onty coprime values of x andj are considered. Further, since it can be 
proved that the above entries enjoy the symmetry properties 

512 = S2l~ ^ 4 - %? 
% ~ 3̂1 = ^ 4 - 542> ( 3 . 1 ) 
SU ~ S4h 
S22 - ^33, 

[here, £ w stands for $l(x,y)], expressions will be given only for slJc (\<k >4), s22, and s23. 
For the sake of brevity, only a few among these results will be proved in detail by using relation 
(2.4). On the other hand, once the results have been established, induction on n and some usual 
Fibonacci identities may provide alternative (even though more tedious) proofs for all of them. 

3.1 The Matrix S4(0,1) 
^f>(0,l) = /i.1[l + (-l)"]/2, (3.2) 
^>(0,l) = F w [ l - ( - i r ] / 2 , (3.3) 
5g>(0,l) = Fw[l + H n / 2 , (3.4) 
^)(0, l) = JFB.1[l-(-l)»]/2, (3.5) 
s$(0,l) = Fn+l[l + (-iy]/2, (3.6) 
4)(0,l) = /w1[l-H)"]/2. (3.7) 

From (3.2)-(3.7), it is immediately seen that 

U?)(0,l) + ̂ >(0,1) = FB_1, 
k ? ( 0 , l ) + ̂ )(0, l) = F„, (3.8) 

and 
Tr[S"4(0,l)]=Ln[l + (-iy] [from (3.1)], (3.9) 

where the trace Tr(M) of any square matrix M is the sum of its diagonal entries (or that of its 
eigenvalues). 
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Proof of (3.2): From (2.4), write 

^}(031) = f t ( s c o s ^ J sin2 J£, (3.10) 

and observe that 2cos(/;z75) = a,- /? , /? , and -a for 7 = 1,2,3, and 4, respectively, where 
a = 1 - p = (1 + A/5) / 2. Moreover, observe that sm2(jn; 15) = (1+p2) 14 (for y = 1 and 4) and 
(l + a 2 ) /4 (for j = 2 and 3), so that, by using the Binet forms for Fibonacci and Lucas numbers 
and the property a/3 = - 1 , (3.10) can be rewritten as 

sft>(0,1) = j-[a" + a"'2 + (-l)"(P" + p"~2) + p"+p"~2 + (-l)"(a" + a"-2)] 

= \(L„ + Ln_2)/5 = F„_l (weven), 
[0 (wodd). 

The proofs of (3.3)-(3.7) can be carried out by means of analogous arguments. 

3.2 The Matrix S4(l, 1) 
^>(l,l) = (F2„_1 + JF„+1)/2, (3.11) 
4f(Xl) = (F2n+F„)/2, (3.12) 
$(l,l) = (F2n-F„)/2, (3.13) 
4f(l,l) = (F2„_l-F„+l)/2, (3.14) 
^ ) ( l , l ) = (F2ltfl + F„_1)/2, (3.15) 
4 3 ) a i ) = (^ 2 n + i -^- i ) /2 . (3.16) 

From (3.11 )-(3.16), it is immediately seen that 

Ui\i,i)+4i\i,\)=F2„_l, 
k">(l,l) + $>(l,l) = F2„, (3.17) 
[4"2>(i,i)+4«3>(i,i)=iw, 

and 
Tr[S;(l,l)] = 4 + Z2li [from (3.1)]. (3.18) 

Proof 'of '(3.14): From (2.4), write 

^ ) a i ) = f i ( l + 2 c o s ^ J s i n ^ s i n ^ 9 (3.19) 

and observe that 1 + 2 cos(/^ / 5) = a2, a, p2, and /? for j = 1,2,3, and 4, respectively. Moreover, 
observe that sin(j^/5)sin(4j>/5) = (/?2 + l)/4, - (a 2 + l) /4? (a2 + l ) /4 , and -~(J?2 + l)/4 for 
j = 1,2,3, and 4, respectively. Consequently, by using the Binet form for Lucas numbers and the 
property afi = - 1 , (3.19) can be rewritten as 

^ » ) ( 1 ? !) = _ L (a2n-2 + a 2 n _ ^n+2 _ a „ + ^ 2 „ - 2 + ^ 2 » _ ^n+2 _ ^ = 
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_ |Q Ĉ 2«-2 + ^2n AH-2 AI) 

= jd(5F2„_1 + 5Fn+l) = (F2n_l + F„+l)/2. 

The proofs of (3.11)-(3.13) and (3.15)-(3.16) can be carried out by means of analogous 
arguments. 

3.3 The Matrix S4(l, 2) 
4l\l,2) = (F3„_1 + i-"^)/2, (3.20) 

4")(l)2) = {JP3„+5("-1)/2[l-(-l)"]}/2, (3.21) 
$>(1,2) = {F3n - ^ " "^ [ l - (-1)"]} / 2, (3.22) 
^)( l ,2) = (F3„_1-5L"/2J)/2, (3.23) 
4f(L, 2) = (F3n+l + (-l)»5L"/2J)/2, (3.24) 
^ ( 1 , 2 ) = (^3n+1 - (-l)"5L"/2-J) / 2, (3.25) 

where the symbol [ • J denotes the greatest integer function. 
From (3.20)-(3.25), it is immediately seen that 

Ul>(l,2) + ̂ (l,2) = F3n.l, 
U?(l,2) + 4'?(l,2) = F3n, (3.26) 
{4?(l,2) + 4?(l,2) = F3n+1, 

and 
Tr[S;a 2)] = L* + 5"/2[l + (-l)»] [from (3.1)]. (3.27) 

As an example application of Remark 2, we provide the expression for the entry $[jn\l, 2) of 
S4W(1,2). Namely, we have 

^ 2) = Url)nF3n+l + 5-L(-^J]/2. (3.28) 

The proof of (3.28) is left as an exercise for the interested reader. 
Proof of (3.21): From (2.4), write 

4 w ) a2 ) = f z ( l + 4 c o s ^ J s i n ^ s i n ^ , (3.29) 

and observe that 1 + 4 COS(JTT 15) = a 3 ,4s , /?3, and -V5 for 7 = 1,2,3, and 4, respectively. More-
over, observe that &m(jn15)&m(2jn15) = V5 /4 (for 7 = 1 and 2) and -V5 /4 (for j = 3 and 4), 
so that, by using the Binet form for Fibonacci numbers, (3.29) can be rewritten as 

4")a2) = ̂ {V5(a3"-^3") + V5(V5Hl-(-l)"]} 
\FZJ2 (neven), 
[F3„/2 + 5("-1)/2 (nodd). 

The proofs of (3.20) and (3.22)-(3.25) can be carried out by means of analogous arguments. 
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3.4 The Matrix S4(F8,FS+1) 
The expressions (3.8), (3.17), and (3.26) can be generalized as follows. 

Proposition 1: Ifs is any integer, then 

W<F» Fs+l) + 4»>(FS, Fs+l) = F^)n_h 

W(F„ Fs+i) + 4!>(Fs, Fs+i) = F{M)n, 

UliFs, Fs+l) + 4f(Fs, Fs+l) = F(s+l)n+l. 

(3.30) 

Proof: To save space, we shall confine ourselves to proving only the second identity of 
(3.30). The proofs of the first and third identities can be obtained in a similar manner. 

First, from (2.4), write 

®(F„ Fs+l) = f t [F. + 2Fs+lcoSf J s i n f s i n ^ . 

Then, write down the following chart: 

j 
1 
2 
3 
4 

(FJ+2FJ+1cos^)" 

(Fs + aFs+l)" = aW" 
{Fs-pFs+lf 

{Fs+pFs+ly=p^> 
(Fs-aFs+l)» 

. in . 2 in sin^sin-^— 

V5/4 
V5/4 
-V5/4 
-V5/4 

. in . 3 in sin ̂ j- sin ~̂ — 

V5/4 
-V5/4 
-V5/4 
V5/4 

(3.31) 

Finally, put k-\ and 2 in (3.31) and use the chart to obtain 

^(Fs,Fs+l) + ^(Fs,Fs+l) 

= 2^5[aiS+l)" -PS+1)"+(Fs-PFs+iy-(Fs - aFs+l)"] 

+^aiS+1)n-fiS+1)"-(Fs-PFs+l)" + (Fs - aFs+1)"] = F(,+1)„. 

3.5 Miscellany 
The identities established in Subsections 3.1-3.4 represent only a small sample of the possi-

bilities available to us. As a minor example, we leave the proofs of the following results to the 
interested reader: 

4"2>(2,1) = (5L»/2V„+1 + F2„_,)/2, (3.32) 

where W stands for F (n even) or L (n odd); 

^ a - i ) = H ) A + t ^ ( U ) ; (3.33) 

Tr[S"4(x, 1)] = 2 X [yy-VLzj (3.34) 

which, for x = 0, reduces to (3.9) by virtue of the usual assumption 0Z = 8zQ (z > 0). 
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4. APPLICATION EXAMPLES 

In this section some Fibonacci matrices S4(x,y) are used jointly with certain matrix expan-
sions to get Fibonacci and combinatorial relations. Their novelty may be questioned; nevertheless, 
our aim here is to illustrate some ways of using the results presented in Section 3. 

Example 1: Consider the matrix inverse expansion (see [5, p. 113]) 

(I - A)'1 = £ A" (| X | < 1; A, any eigenvalue of A), (4.1) 

and put A = \ S4(0,1) [whence I4 - A = \S4(2, -1) ] in (4.1), thus getting the relation 

i f ) i s 3 ( 0 , l ) = S41(2,-l). (4.2) 
L «=0 L 

Then, from (2.4) and Remark 2, write 

2 y L o _ jit V1 , . , jn „•_ 2jn 4-1)(2,-l) = f z ( 2 - 2 c o S f J 1 s i n ^ S i n ^ 

=^[^-2+(^2+ir1-«-2-(«2+ir1]=| . 
(4.3) 

Finally, use (4.2), (3.3), and (4.3) to obtain the relation 

Z^A+^f- (4-4) 
Example 2: Consider the matrix logarithm expansion (see [5, p. 113]) 

l n A = Z ( ~ 1 ) W ( A " I ) W (|A-1|<1; A, any eigenvalue of A), (4.5) 
«=i n 

and put A = S4(0,1 / V2) in (4.5), thus getting the relation 

lnS2(0, 1/ V2) = J *=5~[S3(0, ^ ^ " ^ r (46) 

First, find the upper-left entry /n of the matrix on the left-hand side of (4.6). The eigenvalues 
jUj of S4(0,1/\/2) are //j = /i4 = a/^2 and //2 = /*3 =/?/V2, so that, from (2.3) and Remark 1, 
we get 

7=1 
J^ In—- + —-—ln^-
2 2 2 2 

= | [ 0 + ^ 2 ) l n a 2 + ( l + a2)ln^2-51n2] = | [ ^ 2 l n a 2 + a 2 h ^ 2 - 5 1 n 2 ] (4.7) 

= | [0ff2-a2) lna2-51n2] = - ^ l n a - l n 2 . 

Then, find the upper-left entry t[f of [SftO,1 / V2) - I4]w. The eigenvalues £y of SftO,1 / Jl) 
- 1 4 are ^ = £4 = /i2 - 1 and £2 = £3 - M2 ~ 1> s o ^a t? fr°m (2.4) and Remark 1, we can write 
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3 ; = 1 3 3 
^ - l ] 0 + ^ ) + (£ l - l | ( l + aa) 

-|T(l+y52) + (-^)(l+^) (4.8) 

~~ 2W5 «-2>^ ~ n" n+v 

(4.9) 

(4.10) 

Finally, use (4.6)-(4.8) to obtain the relation 

V -̂ "+1 - 2 

Example 3: Since S4(2,1) = S4(0,1) + S4(2,0), from (1.4) of [4] write 

S^(2,l) = i ; [ " ) s 4 (0 , l )S r (2 ,0 ) , 

whence, from (3.6) and (3.32), one obtains the relation 

[where ^stands for F (n even) or L (n odd)], which can be rewritten as (cf. identities I41 and I42 

of [6]) 

(4.11) 

(4.12) 

Example 4: Put A = B = S4(0,1) in (1.5) of [4], and write 
[«/2j ( _ \ 

2S3(o,i)= K - i y - ^ - r / sj'(o,i)sr2'(o,2) (»^)-
;=0 n J \ J J 

First, observe that the upper-left entry of the matrix on the left-hand side of (4.12) is 

2^)(0,l) = F„_1[l + ( - i r ] [from (3.2)]. (4.13) 

Then, use (3.2)-(3.5), (3.1), and the usual matrix multiplication rules to write the upper-left 
entry un of Sj>(0,1)S^(0,2) as 

un = 2"-V-\lH-m(F2j_lF„_2j_1+FyFn_y) 

= 2"-2)-lFn_x[\ + (-1)"] (from identity I26 of [6]). 

Finally, use (4.12)-(4.14) to obtain the combinatorial identity 

L»/2J 

(4.14) 

\JIIJL} / .X 

E c - i y - z - r ^ b ^ - ^ i («>i). 
j=Q n J \ J J 

(4.15) 
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INTRODUCTION AND BACKGROUND 

Fibonacci trees and generalized Fibonacci trees have been defined and studied by Horibe [4], 
Chang [2], and the author [1]. The k^ tree in the sequence of r-ary generalized Fibonacci trees, 
T(k), has T(k-c(i)) as the Ith leftmost subtree descending from its root node for k>r, and 
T(k) consists of a single root node for k-\ ...,r. Here c(i), z' = l,...,r, are positive integers 
with greatest common divisor 1 and are nondecreasing in z. In the case in which r = 2, c(l) = 1, 
c(2) = 2, the generalized Fibonacci trees are the Fibonacci trees of Horibe [4]. 

In addition to the construction of generalized Fibonacci trees by the recursive specification of 
their subtrees, there is an equivalent construction by the method of "types." The two construc-
tions can be seen to be equivalent by induction. In the method of types, each leaf node is assigned 
one of c(r) "types" denoted by aha2, ...,ac(r). Then T(k + l) is constructed from T(k) according 
to the following set of rules. A leaf node of type ax in T(k) will be replaced by r descendant 
nodes of types ac(1), ac(2),..., ac(r) in left to right order in T{k +1). A leaf node of type Qj in T{k) 
will be replaced by a node of type aj_x in T(k + l), j = 2,..., c(r). The sequence of trees begins 
with T(T) which consists of a single root node of type ac^. 

The construction by leaf node type has an interpretation in connection with Yarn's algorithm 
for the solution of a particular unequal costs coding problem [5]. Thus, the recursive subtree 
method also generates Yarn's code trees. In the coding problem, a path from the root to a leaf 
describes a codeword, a sequence of r-ary symbols used to represent the source symbol assigned 
to the leaf. It is assumed that the code trees are exhaustive, that is, every interior node has exactly 
r descendants. In the case that the Ith code symbol, i = 1, ...,r, costs c{i), the generalized Fibo-
nacci tree minimizes the average codeword cost for equally likely source symbols when the num-
ber of leaives in the generalized Fibonacci tree is the same as the number of source symbols. In 
Yarn's algorithm for the optimal code tree, leaf nodes of least cost, say c, in an optimal tree for a 
given number of leaves are replaced by r descendant leaf nodes of cost c + c(i), i - 1,..., r, in left 
to right order in generating the optimal tree for the appropriate larger number of leaves; the 
sequence begins with a single root node of cost 0. The correspondence between Yarn's algorithm 
and the construction of generalized Fibonacci trees by the method of types is immediate because 
the method of types is exactly a mechanism for keeping track of each leaf node until it is a node of 
least cost in Yarn's sense. Easy recurrence relations for the resulting number of leaves and aver-
age code cost can be obtained through the recursive subtrees perspective. 

In this paper, a further generalization of Fibonacci trees is examined: the case of multiple 
coupled, recursively-generated sequences of trees. These sequences of trees have interesting 
structure and, under certain conditions, can be interpreted as optimal code trees for a generaliza-
tion of Yam's unequal costs coding problem. One arbitrarily selected example will be considered 
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in detail. The general case can be treated in an obviously similar fashion; however, this is not 
done here in order to avoid notational complexities. 

EXAMPLE OF COUPLED SEQUENCES OF 
RECURSIVELY-GENERATED TREES 

Consider the particular example of four coupled recursively-generated sequences of binary 
trees, T(k), U(k), V(k), and W(k), £ = 1,2,..., defined as follows. Let T(k) have U(k-t) 
as its leftmost subtree and V(k-2) as its rightmost subtree, k>4, and denote this by 
T(k) = U(k - l)*V(k - 2). Similarly, let U(k) = W(k - 2)*V(k - 2), V(k) = U(k - l)*V(k - 4), and 
W(k) = W(k-3)*V(k-2). Initialize by letting T(k), U(k), V(k), and W(k), k = \ ..., 4, consist 
of single root nodes. (More generally, the number of coupled sequences need not be 4 but rather 
any positive integer, the trees need not be binary but rather r-ary for any integer r > 2 fixed for all 
sequences, the positive integer lags can be set arbitrarily, and the assignment of trees from various 
of the sequences as subtrees in the same or other sequences can be made arbitrarily. The largest 
lag value is the number of single root node trees used to initialize the sequences. In some cases, 
some sets of subsequences will not be coupled with others.) 

The same sequences of trees can also be constructed by a method based on the notion of 
node type. Start with T(l) given by a single root node of type a4, £/(!) a single root node of b4, 
V(l) a single root node of type c4, and W(l) a single root node of type d4. (More generally, the 
largest index value and the index of the types of nodes used to initialize the sequences is the 
largest lag value.) A leaf node of type xj9 x = a, b, c, ord, in X(k), X=T,U, V, or W9 will be 
replaced by a node of type Xj_x in X(k +1) if j = 2,3,4. Denote this by a2 ~ax, and so on. A 
node of type ax in X(k) will be replaced by two descendant nodes of types bx and c2 in left to 
right order in X(k + V). Denote this by ax ~ (bx +c2). Similarly, let bx ~(d2+c2), cx~ (bx +c4), 
and dx ~ (d3 +c2). (In general, the substitution rules correspond to the subtree recursions with 
one type symbol x identified with each tree sequence X and indices subscripted to x identical to 
lags in the argument of X There is one substitution rule involving ~ for each subtree recursion 
involving *.) 

The equivalence of these two sets of sequences of trees can be verified by induction as in the 
case of a single sequence of trees treated previously in the literature. The set of sequences is 
given in part in Table 1. The trees are described using the following compact notation. Sibling 
nodes in left to right order are separated by + signs, and parentheses are used to indicate depth in 
the tree from the root so that, for example, (((d3+c2)+(bl+c4))+((d2 +c2) + c3)) denotes a binary 
tree with 6 depth 3 leaves and 1 depth 2 leaf from left to right, with the left subtree made up of 4 
depth 2 leaves and the right subtree made up of 2 depth 2 leaves and 1 depth 1 leaf. The leaves 
are labeled by type in left to right order as d3, c2, bv c4, d2, c2, c3, respectively. Using this notation 
for the trees, each line of the table comes from the previous line according to the substitution rules 
given, with - used to denote substitution, together with + ~ + and ( ) ~ ( ). 

Costs can be assigned to the leaf nodes of these trees in such a way that nodes of types xt are 
of equal cost and of least cost in a tree of index k. Thus, the substitution rules can be interpreted 
as tracking the leaf nodes by type so that their indices indicate their relative costs until they are of 
least cost and about to be replaced by their descendants. This is like Varn's algorithm for con-
structing a code tree, although we do not yet have any coding problem in mind for which the 
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resulting tree is a minimum-average-cost solution. Assign costs, based obviously on the substitu-
tion rules as follows: When a node of type al9 which costs ca, splits, its descendants cost ca+\ 
and ca +2 in left to right order. When a node of type \ , which costs cb, splits, its descendants 
cost cb +2 and cb + 2. When a node of type c1? which costs cc, splits, its descendants cost cc + 1 
and cc + 4. When a node of type <f1? which costs cd, splits, its descendants cost cd + 3 and ĉ  + 2. 
The process starts with root nodes of type x4, which cost 0, and if a node of type xj9j= 1, 2, or 
3, is not created by a split, its cost in X(k +1) is the same as the cost of xJ+l in X(k). The trees 
of the example are given in part in Table 2 with leaf nodes labeled by cost. 

TABLE 1. Trees of Example,, Leaves Labeled by Type 

[~k 
1~ 
2 

1 3 
4 
5~ 
6~ 

r~ T 
r~ 8 

9 
10 

T(k) 
a4 

«3 

<h 
ax 
ih + ci) 
((d,+c,) + q) 
( ( 4 + C l ) + (*l+C4)) 

(((& + Cl) + & + C4» + ((^2 + Cj) + C,)) 
(((tf, + q ) + ((d, + C2) + Cj)) + ( ( # + C,) + C,)) 

(«ft + (*L + C4)) + ((4 + C,) + C,)) 
+ (((flr3+C2) + (i1+C4)) + C1)) 

_ fW 1 
^ 
ft3 

*2 

*1 

(^2+C2) I 
(A+<0 
( ( ^ + c j ) + (*i + c4)) 

((4z+<i) + «&+Cz)+ <<»)) 
((rf1+(Z>1 + c4)) + ((tf1+c1) + c2)) 
(((a?3+C2) + ((rf2+C2) + C3)) 
+ (((^3+C2) + (*l+C4)) + C1)) 

We can find expressions for the average costs of the trees from recurrence relations on the 
number of leaves of each type. First, let exj(k) denote the number of leaves of type Xj in T(k) for 
x = a, b, c, ord and j = 1,2,3, or 4. Initialize with ea4 = 1 and, except for this case, exj(k) = 0 
for k = 1,2,3,4. Then we have, for k > 4: 

ea3(*) = U * - l ) 
ca2 

a4V 

ea2{k-\) 
(k): 

eM(*) = 0 

«*3(*) = ^MC*" 1 ) 

«M(*) = eai(k -1) + cM(* -1) + eel(k -1) 
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«<a(*) = eai(k -1) + ebl(k -1) + ec3(k -1) + edl(k -1) 

««(*) = 0 

««(*) = *M(* - 0+«<«(*-1) 

We can obtain similar expressions for fxj(k), which denotes the corresponding quantities for 
U(k), as well as gxj(k) for V(k) and /»„(*) for W{k); however, that will not be pursued here. 

TABLE 2. Trees of Example, Leaves Labeled by Cost 

1 *~~ 
1 
2 
3 
4 

1 5 

1 6 
1 7 
1 8 
1 9 

10 

71*) 
0 
0 
0 
0 
(1 + 2) 
((3 + 3) + 2) 
((3+ 3)+ (3+ 6)) 
(((6 + 5) + (4 + 7)) + ((5 + 5) + 6)) 
(((6 + 5) + ((6 + 6) + 7)) + ((5 + 5) + 6)) 
(((6 + (6 + 9)) + ((6 + 6) + 7)) 
+ (((8 + 7) + (6 + 9)) + 6)) 

W) 1 
0 
0 
0 
0 
(2 + 2) 
(2 + 2) 
( ( 5 + 4 ) + ( 3 + 6)) 
((5+ 4)+ ((5+ 5)+ 6)) 
((5 + (5 + 8)) + ((5 + 5) + 6)) 
(((8+ 7)+ ((7+ 7)+ 8)) 
+ (((8 + 7) + (6 + 9)) + 6)) 

By the method of generating functions, with EXJ(z) = ^eXJ(k)zk, we have: 

Ea,{z) = z> 

Eal(,z) = z" 
Eb4(z) = Eb3(z) = Eb2(z) = 0 
Ebl(z) = (z5+z1-zs-z9-zl0+zn)/p(z) = z5 + z1+zs+2zw + ... 
Ec4(z) = (z7+z8-zn)/p(z) = z7+z* + 2zl0 + ... 
Ec3(z) = (zs+z9-z12)/p(z) = zs+z9 + ... 
Ec2(z) = (z5 +z6 - z9) / p(z) = z5 + z6 + 2z8 + 2z9 + 2z10 +... 
Ecl(z) = (z6 + z7 - z10) / p(z) = z6+z7+ 2z9 + 2z10 +... 
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Ed4(z) = 0 
Ed3(z) = (z8

+zl0-zl2)/p(z) = zs+z10 + ... 
3ra(*) = (z6 + 2? - z10) I P{z) = z6 + z* + 2z9 + ... 
Edl(z) = (z1+z9-zn)/p(z) = z7+z9+2z10 + ... 

where p(z) = 1 - 2z3 - z4 - z5 + z6+z1. The coefficients of zk obtained from the right-hand sides 
of these expressions give exj(k). 

It follows from E(z) = "EE^z) that 

E(z) = (z1 + z2 + z3 - z4 - z5 - z6 + z1 + 3z8 + z9 - z11 - z12) / p(z) 
= zl + z2 +z3+z4 +2z5 + 3z6 +4z7 + 7z8 + 8z9 + llz10 +.... 

Here E(z) is the generating function of e(k) = Y,exj(k), the number of leaves in T(k). (Similarly, 
we can find the generating function of f(k), the number of leaves in U(k), to be 

F(z) = (zl + z2 +z3 - z 4 - z 5 -2z6 + z7 +z8 +z9 -z11)/p(z) 
= z1 + z2+z3+z4 + 2z5 + 2z6+4z7 + 5z8 + 6z9 + 10z10 + ....) 

Inverting the expression for E(z), we have 
e(k) = 2e(k - 3) + e{k - 4) + e(k - 5) - e(k - 6) - e(k - 7) 

+ <5(£ -1) + S(k - 2) + S(k - 3) - J(yt - 4) - S(k - 5) - S(k - 6) 
+ S(k - 7) + 3S(k - 8) + S(k - 9)-S(k-11)-S(k-12), 

where <5(&) = 1 for k = 0 and 0 otherwise. Equivalently, 
e(k) = 2e(k - 3) + e(k - 4) + e(k - 5) - e(k - 6) - e(k - 7) 

for A:>12, where e(l) = l, e(2) = l, c(3) = l, e(4) = l, e(5) = 2, e(6) = 3, e(7) = 4, e(8) = 7, 
e(9) = 8, e(10) = 11, e(l 1) = 17, e(12) = 21. The recurrence for e(k) in terms of its own lagged 
values does not appear to illuminate the tree structure of T{k). 

Then observe that, for the example, in the tree X(k), a leaf node of type Xj costs k+j-
(4 + 1) (and, more generally, this expression is k+j-(max. lag + 1)), as can be verified by induc-
tion. Thus, the average cost of T(k), C(T(k)), is given by 

C(T(k))= S(* + i -^M*) + ̂ (*) + ̂ (*) + ^(*))M*), 
l</<4 

and similarly for C(U(k)) in terms of the corresponding quantities with / replacing e? etc. The 
generating function for the unnormalized cost of T(k) is then 

zdE(z)/dz+ Y,U-5)(EaJ(z) + EbJ(z) + ECJ(z) + EdJ(z)) 

or 
(3z5 + 8z6 +15z7 + 26z8 + 8z9 - 6z10 - 40zl l - 3 8z12 -18z13 

+ 13z14 + 28z15 + 17z16 + 5z17 - 9z18 - 5z19) / p2(z) 
= 3z5 + 8z6 + 15z7 + 38z8 +46z9 +76z10 +.... 
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Then C(T(k)) is given by the ratio of the coefficient of zk in this expression to the coefficient of 
zk in E(z) (see Table 3). 

TABLE 3. Costs of Example 

k 

1 5 
1 6 
1 7 
1 8 

1 9 
1 10 

T(k) 

e(k) 

2 
3 
4 
7 
8 

11 

C(T(k)) 

1.5 
2.7 
3.8 
5.4 
5.8 
6.9 

Bound 
10.5 
10.7 
10.8 
11.1 
11.1 
11.2 

U(k) 

Ah) 
2 
2 
4 
5 
6 

10 

C(U(k)) 

2 
2 

4.5 
5 

5.7 
7.3 

Bound 

10.5 | 
10.5 | 
10.8 | 
10.9 J 

n.o 1 
11.2 1 

CORRESPONDING CODING PROBLEM 
The example trees do in fact minimize average cost for particular unequal costs coding 

problems, although this is not the case for all choices of multiple coupled recursively-generated 
sequences of trees. First, let us identify the coding problems for which the trees of Table 2 are 
code trees compatible with the cost structure of the coding problem. Then, let us verify that in 
this case the substitution rules are such that the code trees are, in addition, the minimum-average-
cost code trees for the coding problem. 

Each of the T(k) trees is a finite subtree of an infinite tree with the specified cost structure. 
That infinite tree can be described by the finite state diagram of Figure 1 in which a path through 
the tree starts with state a (denoting a root node of type at for some i), branches left (labeled 0) 
with cost 1 into state b (denoting a node of type bi for some i) or right (labeled 1) with cost 2 into 
state c. Similarly, a path through the diagram from b to c is a right branch in the infinite tree from 
a node of type bt for some i to a node of type q for some i at a cost of 2, and so on. 

1/2 r ^ \ 1^2 

1/4 
FIGURE 1. Finite State Diagram for Example 
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Every finite subtree of this infinite tree shares a common cost structure. We can read it off 
from the tree. In the case in which we start in state a9 the first 0 in a row in a codeword costs 1, 
the second 0 in a row costs 2, the third and subsequent O's each cost 3, the first 1 in a row in a 
codeword costs 2, and the second and subsequent l's each cost 4. Loosely speaking, long runs of 
O's or l's are penalized, and O's are generally less costly code symbols than l's. The T(k) trees 
share this cost structure. 

Similarly, the U(k) trees are finite subtrees of the infinite tree described by the finite state 
diagram of Figure 1 only starting in state b. For the infinite tree starting in b, the first symbol 
costs 2 whether it is 0 or 1. After that, if the first symbol is 0, subsequent O's cost 3 until the first 
1, which costs 2. From here on, or following the first symbol if it is 1, repeated l's each cost 4 
until the first 0, which costs 1 and restarts the cost rules. This is a slightly different formulation of 
the notion that long runs of like symbols are penalized in the codewords by the cost structure, 
with O's begin generally less costly than l's. Similarly, for V(k) start in state c9 and for W(k) in d. 

The coding problem is to find the finite subtrees of particular size that minimize the sum of 
the costs of the branches along the paths to the leaves. Yarn's algorithm for finding the minimum-
average-cost tree when the costs of each code symbol are constant throughout the tree, although 
they maty differ from symbol to symbol, does not necessarily carry over to the more general cost 
structures discussed here. Rather, in general, the sequence of optimal trees can be obtained from 
the root node by successively creating the least costly substitution of descendant nodes for their 
parent. For each leaf node y in one tree in the sequence, say its cost is c(y), compute the 
additional total cost by replacing it by its descendants, (r - l)c(y) + c(y, 1) + c(y, 2)-\— + c(y9 r), 
where c(y, i) is the cost of the Ith leftmost branch descending from y in the cost structure, and 
select the least of these in constructing the next tree in the sequence. The trees constructed in this 
way will be the same as the trees constructed by splitting the least costly leaf node whenever 
(r - l)c(y) 4- c(y, 1) + c(y, 2) + • • • 4- c(y, r) is least whenever c(y) is least. 

One sufficient condition on the cost structure for splitting the least costly node to yield the 
optimal trees is for c(y,l) + c(y,2) + ---+c(y,r) to equal either m or m + l or m + 2 or ... or 
m + r -1 for all nonroot y9 where m is a positive integer. In this case (r - l)c(y) + c(y9 1) + c(y9 2) 
+ "-+c(y,r) is not strictly less than (r-l)c(z) + c(z, l) + c(z,2) + --«+c(z,r) whenever c(z) is 
minimum and y is any leaf node other than z. The argument has two parts and is immediate if 
c(y) > c(z). If c(y) = c(z), consider z to be a leaf node of minimal cost for which c(z9 1) + c(z9 2) 
H— + c(z, r) is also minimum. Split z and continue with the now reduced set of leaf nodes y such 
that c(y) = c(z). 

The example treated here satisfies this condition for T(k)9U(k)9V(k)9 and W(k)9 since all 
nonroot nodes are equivalent to either yb9 yC9 or yd9 where c(yb9 l)+c(yb9 2)= 2+2 = 4, c(yC91) + 
c(ycJ 2) = 1 + 4 = 5, and c(yd91) + c(yd9 2) = 3 + 2 = 5. Therefore, splitting the least costly leaf node 
at each stage generates the optimal tree, leading to the corresponding recursively-constructed 
sequence of trees from subtrees. 

Clearly, there are many other examples of cost structures or finite state diagrams that also 
satisfy these conditions and many that do not. One example that does not is to let each 0 cost 1, 
the first 1 in a codeword cost 1, but each subsequent 1 in a row cost 10, thereby penalizing long 
runs of l's only. Here, the splitting algorithm leads to a tree of 4 leaves given by ((2+2)+(2 +11)) 
while the minimum cost tree is (((3 + 3) + 2) +1). 
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PERFORMANCE ANALYSIS 

An upper bound on the resulting expected cost, in the case that the trees solve a minimum-
average-cost coding problem, can be obtained from the work of Csiszar [3] who provides a sub-
optimal coding scheme for cost structures represented by finite state diagrams such as the one in 
Figure 1. Csiszar's method applies to arbitrary probability distributions on the source symbols. 
Because the coding scheme given here is optimal (for finite state cost structures satisfying the 
sufficient conditions) for the case of equally likely source symbols, Csiszar's upper bound when 
specialized to the uniform probability distribution on N leaves applies here as well, but only for 
binary trees. That is because his code trees are not necessarily exhaustive, and it is possible that 
the optimal exhaustive code is more costly than the suboptimal nonexhaustive code; however, for 
binary trees, all codes are exhaustive. 

The upper bound on average cost for N equally likely source symbols when optimally binary 
coded is (logP_1)(log# + log0-f-i?, where P, Q, and R are obtained from the finite state 
diagram. The notation describing the finite state diagram used below generally follows [3] and 
should not be confused with the tree or cost notation used in the example. The base of the log is 
arbitrary and will be taken as 10 in the example for convenience. 

For costs described by a finite state diagram, as in Figure 1, let us use the following notation. 
The set of code symbols is Y - {yj}, j eJ, and in the example Y= {0,1}. The set of states is 
S = {^}, i el, and in the example S = {a,b, c,d). The function F(i, j) specifies the new state 
^7(/j) if the symbol yj has been used at the state si9 and in the example F(a, 0) = b, F(a, 1) = c, 
F(b, 0) = d, F(b, 1) = c, F(c, 0) - b, F(c, 1) = c, F(d, 0) = d, F(d, 1) = c. In F(i, j), j takes on 
values in the set J(i), and in the example J(i) = J for all #'. Also define Jk(i) to be the set of 
symbols in J(i) for which F(i, j) = k, and in the example Ja(a) = Ja(b) = Ja(c) = Ja(d) = Jb(b) = 
Jb(d) = Jd(a)=Jd(c)=0* Jb(a) = Jb(c)=Jd(b) = Jd(d)= {0}, Je(a) = Jc(b)= JM= Je(d)= {1}. 
The quantity ttj is the cost of the symbol y} if used at the state si9 and in the example ta0 = l9 

ta\ ~ 2, h® - 23 tbl = 2, tc0 = 1, tcl = 4, tdQ = 3,tdl = 2. 
R is defined as max7 J(l) tij9 and in the example R = 4. P and Q are defined in terms of a 

matrix A(w) whose entries % , i e / , k el, are given by Sj&(/) w~tiJ -I0, where I0 is the identity 
matrix, and in the example 

[-1 w~l w~2 0 1 

[ 0 0 w~2 w" 3 - l j 

P is defined as the greatest positive root of the equation det A(w) = 0, and in the example this 
equation is p(z) = 0 evaluated at z = w"1 and P = 1/0.73 = 1.37. For the column vector a with 
entries at and the column vector 0 of all 0 entries, solve the matrix equation A{P)a = 0, and in the 
example a1=c(2 + P" 2 -P- 4 ) = 2.25c, a2 = c(2-P~4)/P~l = 235c, a3 = c, a4 = cP~21(2- P~3) = 
0.33c for an arbitrary c. Q is defined as max at lak, and in the example Q = 2.35 / 0.33 = 7.12. 

Thus, for the example, expected cost is upper bounded by 7.3(log10iV + 0.85) + 4 as given in 
Table 3 above. 
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Also, note that in the genera! case for finite state costs described in this notation, the corre-
sponding coupled tree sequences for Tt(k), i el, k> max tij9 are Tt(k) = *JGJ TF{Uyj)(k -ttJ) using 
*jeJ in the obvious sense. The general recurrence relations and generating functions can also be 

identified using this notation. Again, however, the focus here is on the specific, arbitrary, example 
in order to avoid the notational complexities of the general case. 
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1. INTRODUCTION 

A generalization of Pascal's triangle can be defined using the following recurrence scheme. 
Given two rows of values, compute a new row by adding together the four numbers in the 
rhombus above the value to be computed. A sample rhombus is given in Figure 1. The value 16 
is the sum of the four numbers above it in the rhombus configuration. 

3 
454 
16 

FIGURE 1. Sample Rhombus 

In general, we shall start with one 1 in the first row and three l's in the second row. The 
recurrence then determines the subsequent rows. The first few rows of the rhombus are given in 
Figure 2. We assume all blank positions are zero. So, for example, when calculating the second 
entry in the third row the two zeros are assumed to be up two places and up one and to the left. 
We call this array of numbers a Pascal rhombus. 

1 
1 1 1 

1 2 4 2 1 
1 3 8 9 8 3 1 

1 4 13 22 29 22 13 4 1 
FIGURE 2. The First Five Rows of the Rhombus 

This pattern generation scheme arose while studying a switch-setting problem [4], [5]. Given 
an n by m arrangement of switches, some on and some off, the goal is to achieve an ail-off 
configuration of the switches. Many puzzles and computer games, such as "Button Madness" and 

318 [NOV. 



A PASCAL RHOMBUS 

"Lights Out" are built using this idea. The operation available involves activating a particular 
switch, causing it and its rectilinearly adjacent neighbors to change states. Part of our method for 
solving the switch-setting problem involved the following: begin with an initial (row) vector con-
taining one 1 and a second vector containing the three l's under the initial vector's 1. We then 
"grew" new vectors by applying the rhombus rule recursively. Our work on the switches differed 
in two ways from the Pascal rhombus recurrence presented above. First, the rows in the switch 
problem are bounded by a certain fixed length and are not allowed to grow outward without 
bound on either- the left or the right. Second, since the switches (in the simplest case) have only 
two states, all of the arithmetic is done modulo 2. Similar triangles have been studied in a number 
of papers; a thorough survey can be found in [2]. In particular, the generalized Pascal triangle of 
order 3 consists of the coefficients [n

k\ in the expansion of (1 + x + x2)" [8]. However, this 
generalized triangle of order 3 is defined by a recurrence where each value is the sum of three 
terms, whereas each term in the rhombus is the sum of four terms. 

In Section 2 we discuss various properties of the rhombus, show that the rhombus's elements 
can be given using a family of monic polynomials, and analyze the row sums. In Section 3 we 
define a. modified rhombus by not allowing the rhombus to grow to the left. We exhibit relation-
ships between this left-bounded rhombus and Pascal's rhombus and introduce some graphs to help 
analyze the row sums of the left-bounded rhombus. In Section 4 we discuss an analogy between 
the left-bounded rhombus and the classic Pascal triangle. Finally, in Section 5 we discuss the 
coefficients in the rhombus modulo 2 and propose some directions for future work. 

2. SOME PROPERTIES OF THE RHOMBUS 

In this section we consider some properties of Pascal's rhombus. First, note that each row 
contains two more entries than the previous row, and each row is symmetric around the center 
column. Let [«, k] represent the £* value of the rfi1 row. The row numbering begins at 0 and the 
elements in a row also are numbered beginning at 0. We have [0,0] = 1 and [n, 0] = [n, 2ri\ - 1 for 
all n. The rhombus then is indexed as follows: 

[0,0] 
[1,0] [1,1] [1,2] 

[2,0] [2,1] [2,2] [2,3] 
[3,0] [3,1] [3,2] [3,3] [3,4] 

The rhombus defining recurrence relation can be written as 

[n + \k] = {n,k] + [n,k-l]-h[^k~2] + {n-lk-2l (1) 

Letting A = 1 in (1) gives the following relationship for the second entry of each row: 

[/I + 1,1] = [/I,1] + [/I,0] = [/I,1] + 1. (2) 

Two of the terms are missing in (2) because k-2 is - 1 , and the rhombus's values for negative k 
are taken to be 0. It follows directly from (2) that [n, 1] = n for all n. Writing down the recur-
rences for subsequent terms and solving them gives rise to the following formulas: 

[2,4] 
[3,5] [3,6] 
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[n,2] = (n2+3n-2)/2\ 
[n, 3] = (n3 + 9n2 - 22n +12)/3! 
[n, 4] = (n4 + 18w3 -49n2 + 6n + 48)/4! 
[w, 5] = (n5 + 30n4 - 45n3 - 570n2 +1904« -1680) / 5! 
[w?6] = (^6 + 45w5 + 55«4-2865«3 + 12184w2-18780w + 8640)/6! 

We state the general result below. 

Theorem 1: [n,k] is a polynomial in n of degree k, such that k\[n,k] is monic with integer 
coefficients. 

Proof: First, rewrite (1) as [w, A] - [w - 1 , A] = [n -1, A -1] + [/i - 1 , k - 2] + [w - 2, * - 2]. Treat 
this as an identity in the variable n and constant k, and sum over n. The least value of n to use is 
the last nonzero entry in the appropriate diagonal. It can be written as \_(k +1) / 2j to account for 
parity of k. Then 

[n,k]= J (p-l ,*-l] + p-l ,*-2] + [i-2,it-2])+ '* + 1 

=L¥J 
which, in turn, is equal to 

£ ([i-l,k-l] + 2[i-l,k-2]) + 
<=L¥J 

k + \ hk-2 [n-l,k-2]+\ k + l 

The sequence of polynomials thus continues, with the general recurrence establishing by 
induction that [», k] is a polynomial in n of degree k, such that k\[n, k] is monic with integer coef-
ficients. D 

We next analyze the row sums of the rhombus. 

Theorem 2: Let Tn be the sum of the elements in row n of the Pascal rhombus. Then 
7L, _ (3 + VJ3) 

2 
l i m ^ 

Proof: Using the recurrence in (1), we have that Tn «+i n n—l Let us solve the recur-
rence by setting Tn+2 - 3Tn+l -Tn = 0 and using the initial conditions T0 = l and Tx = 3. (Note: One 
may find it easier to solve by defining T_x = 0 and \ = 1.) Therefore, the characteristic equation is 
r2 - 3r -1 = 0, which has two solutions: rx = (3 + sqrt(13)) /2 ; r2 = (3 - sqrt(13)) / 2 . One can then 
easily determine that 

' 3-f-vr3Yr3-vi3Tx 

Vl3 
Taking the limit as n approaches infinity of the ratio Tn+l I Tn gives the desired result. Thus, the 
ratio of sums of consecutive rows of the rhombus approaches (3 + sqrt(13))/2 - 3.3027756. • 

The first few values of the row sums are 1, 3, 10, 33, 109, 360, 1189, 3927, 12970, 42837, 
141481, and 467280. This sequence has arisen in the literature before, e.g., in [7] and [9]. Theo-
rem 3 shows that the Fibonacci sequence is embedded in the rhombus as alternating sum of row 
elements. 
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Theorem 3: F(n +1), the n + 1st Fibonacci number, is equal to 

F(»+i)=f;(-i)'[»,/]. 
/=o 

Proof: By induction on n. The base case is trivial. Assume it is true for the first n Fibonacci 
numbers. Consider F(n +1), which we claim is the alternating sum of elements on row number n. 
Now look at [n -1, i]. Suppose / is even. By definition, [n -1, i] is used to compute three distinct 
elements on row n. It is easy to see that two of those elements will have positive coefficients and 
one a negative coefficient. The net effect is that of adding [n-1, i] once. Likewise, if i is odd, the 
net effect is that of subtracting [n-l, i] once. By the same token, each term from row n-2 is 
used once (and with the same sign on row n as on row n-2) in the computation of the sum of 
row n. Hence, the alternating sum of the elements on row n is the sum of the alternating sums on 
rows n-l and n-2. D 

We shall define a graph based on the rhombus in a straightforward manner as described in 
Theorem 4. This graph will be used in Section 3 to analyze the left-bounded rhombus. 

Theorem 4: Define an infinite directed graph G - (V, E) by using as the vertex set V points 
corresponding to the nonzero entries [n, k] of the Pascal rhombus, and creating directed edges in 
E from the vertex [n,k] to the vertices [n + l,k], [/i + l,£ + l], [n + l,k + 2], and [w + 2, k+2]. 
Then the number of distinct paths from [0,0] to [w, k] is given by the value of [n, k]. 

Proof: Again, an easy proof is available by induction. D 

3S THE LEFT-BOUNDED RHOMBUS 

In the switch-setting problem (see [4], [5]), vectors were built using the rhombus rule modi-
fied so as to use leftmost column entries that remained zero. In this case, an array arises that is 
left-justified: the only new nonzero values in successive rows appear on the right. The result, 
which we call a left-hounded rhombus, is shown in Figure 3. 

1 
1 1 
3 2 1 
6 7 3 1 

16 18 12 4 1 
40 53 37 18 5 1 

FIGURE 3e Left-Bcranckd Rhombus 

Similar looking triangles, such as Stirling's triangle and Euler's triangles are discussed in, for 
example, [6]. However, those are generated by different formulas. In our left-bounded rhombus, 
each row contains one more element than the previous row. Clearly,, the last element of each row 
is 1 and the next to last element is n. For simplicity in what follows, we use the notation (w, k) to 
index the left-bounded rhombus, as shown below: 
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(0,0) 
0,0) (U) 
(2,0) (2,1) (2,2) 
(3,0) (3,1) (3,2) (3,3) 
(4,0) (4,1) (4,2) (4,3) (4,4) 

Elements in the left-bounded rhombus and the Pascal rhombus are related by equation (3) 
below (which can easily be verified inductively): 

[n, k]-[n,k+ 2] = (n,k-n), where k>n. (3) 

For example, letting n - 3 and k = 4, we have [3,4] - [3,6] = (3,1) or 8 - 1 = 7. Equation (3) 
can be used to extend the left-bounded rhombus leftward beyond the (implicit) column of zeros. 
Since the Pascal rhombus is symmetrical, what is generated is a mirror image of the left-bounded 
rhombus, except that all the entries are negative. In fact, one way of obtaining the left-bounded 
rhombus is to start the Pascal rhombus using the original recurrence, but with the two initial rows 
0 and -101 . Identity (3) also applies to provide an analogous result to Theorem 1, giving (w, k) 
to be a second family of polynomials in n with integer coefficients. The first few values are listed 
below: 

(n,n-2) = (n2+3n-4)/2\ 
(n,n-3) = (n3+9n2-2Sn + 12)/3\ 
(n,n-4) = (n4 + mn3-6]n2-30n + 72)/4\ 
(n,n-5) = (n5+30n4-65n3-75Qn2 + 2344/1-1920)/5! 
(n,n-6) = (n6 +45n5 + 25n4 -3405n3 + 13654n2 -18960^ + 7200)/6! 

The row sums for the left-bounded rhombus are denoted by Un having the first few values: 1, 
2, 6, 17, 51, 154, 473, and 1464. These are more difficult to analyze than the row sums in the 
Pascal rhombus. Nevertheless, the same limiting value of ratios of successive rows exists, as 
shown in Theorem 5. 

Theorem 5: Let Un be the sum of the elements in row n of the left-bounded rhombus D4. Then 

«->oo JJn 2 

The remainder of this section is devoted to the proof of Theorem 5. First, we define some 
additional recurrences that will be used in the proof of Theorem 5. Each recurrence defines an 
array of integers Di and a graph G, (using the procedure described in Theorem 4). 
D4: the usual rhombus with left boundary (see Fig. 3 and Fig. 4a). The corresponding graph is 
denoted G4. 

Define a double jump in G4 to be an edge that goes from row / to row i + 2. 
G3: take a G4 graph and remove all double jumps (see Fig. 4b). 
G2: take a G3 graph and remove all vertical edges (see Fig. 4c). 

D2 and D3 are defined accordingly and examples shown in Figure 4. As usual, it will be con-
venient to index the elements by (row, column) beginning with (0,0). We sometimes abuse 
notation and use (?, j) to refer to a particular vertex in a graph, as well as the value in an array. 

322 [NOV. 



A PASCAL RHOMBUS 

To be clear, we sometimes preface the index by a graph or array name, such as G4(0,0). Also, 
call (0, 0) the root of each graph and call edges from column i to column j ^ i diagonal edges. A 
connection between D2 and Pascal's triangle will be discussed in Section 4. 

o o o 
FIGURE 4a. G4 

K 
04Xj\ 

1 1 

FIGURE 4k ftandZX 

0 1 

1 0- 1 

0 1 

FIGURE 4c, (j2andD2-

To prove Theorem 5, we know that the row sum recurrence is Un+l = 3U„ + Un_l-D4(n, 0), 
so it is enough to show that D4(n, 0) = o(U„) as n -> oo in order to make the argument of Theo-
rem 2 apply. We shall show further that the rows of the left-bounded rhombus are unimodal with 
a maximum value that moves ever rightward. First, note that the path-counting property of Theo-
rem 4 applies to G4, G3, and G2. The following propositions aid in the proof of Theorem 5 as 
well as show some interesting properties of the aforementioned recurrences. 

Proposition 6: In D2, for all sufficiently large n and fixed j , D2{ny j) < D2(n, j + 2). 
Proof: Let f(ri) denote the column of the maximum value on row n of D2. If more than 

one position on row n is equal to the maximum, let / («) denote the leftmost such column. Our 
method also shows that, for sufficiently large n, D2(n, j) < D2(n, j + 2). Consider row 2k on D2, 
for some k>\ and column 2p for some p>\. Represent a path from the root of G2 to 
G2(2k, 2p) as a sequence of -l1 s and Ts, where -1 indicates an edge from column / to i -1 and 1 
indicates an edge from i to i + l. So, for example, sequence 1,-1 is a path from G2(0,0) to 
G2(2, 0). The length of the sequence is 2k and its sum is 2p. Let us first count the total number 
of sequences from (0,0)—including "Illegal" sequences having prefixes whose sum is negative. 
There are (2k choose (k-p)) such sequences. Now we must subtract the number of illegal 
sequences. It can be observed that this is equal to the number of sequences of length 2k whose 
sum is 2p-\-2. This may be seen by looking at each path in Figure 5 from the root to G2(2k, 2p) 
that uses a vertex in column - 1 . The portion of each of these paths that is below its first visit 
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to column -1 may then be reflected about column - 1 , leading to paths that terminate at (2k, 
-2p - 2). Thus, the number of illegal sequences is (2k choose (k - p -1)), which means that the 
number of paths in G2 from the root to (2k, 2p) is (2k choose (k-p))- (2k choose (k - p -1)). 
Comparing (n, j) and (n, j + 2) leads us to look to satisfy the following inequality, 

2k 
k-p 

2k 
k-p-l)-\k-p-\ 

2k 2k 
k-p-2Y 

which is equal to 
2fr!(2/7 + l) 2k\(2p + ?>) 

(k-p)\(k-p-l)\ (k-p-l)\(k+p + 2)\ 

and simplifying yields 2p2 +4p + l< k. It is easy to see that this inequality is satisfied when 
p ~ sqrt(£) / 2. To be exact, D2(n, j) > D2(n, j - 2) if and only if j > f(sqrt(» + 2))] - 2. The 
same method works for odd rows/columns; the details are omitted. D 

Ov [0,0] 

o 

o o 

o yo 
0 

o o ox o o o ° 

o o p o o o o o 
o o X o o o 

° o o o o o o o 

4 - 3 - 2 - 1 0 1 2 

•*• Reflected path 
FIGURE 5 

o 

o 

o 

o 

o 

Proposition 7: In D3, for all sufficiently large n and fixed c, D3(n, c) <D3(n,c + l). 

Proof: In D3, we want to show that, for any fixed column number c +1 and sufficiently large 
n, D3(n, i) < D3(n, c +1) for each i < c +1. Consider a G3 graph with n rows. It is easy to see that 
the number of paths to G3(n, c + l) having exactly d diagonal edges is given by 

D3(n,c + \) = [^_^D2(d,c + l). (4) 

The careful reader will observe that (4) is often zero, depending on the parity of n and d. Assume 
without loss of generality both n and c + l are even; otherwise, if c +1 is odd, we may choose n 
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odd and the proof follows in a similar manner. In order to compare D3(n, c) and D3(n, c +1), we 
group paths to G3(n, c) having d diagonal edges with paths to G3(/i, c + 1) having d + \ diagonal 
edges. Based on the parity of n and d9 each group has paths to both c and c +1 and every path is 
in some group. Thus, we want to compare the following: 

D,(n,c) = f{n " r f W c ) (5) 

and 

Let us compare the terms of the summations in (5) and (6) one by one: the (n choose x) term 
of (5) with the (n choose x-l) term of (6), and so on. It is easy to see that the D2 terms in each 
summation increase as the index—din the case of (5) and dx in the case of (6)—increases. Also, 
by Proposition 6, we may select n sufficiently large so that, for all x>n/2, we have that 
D2(x,c + l)>2*D2(x-l,c). This implies that 

(B-(3+i))^Hc+^(B!:rf)A(rf.c)+(B^)%c). 
where d + l<n/2 and q = n/2+d + l. In visual terms, we line up the terms in (5) and (6) in 
increasing order of the d, dx index as shown below. 

Tennsfrom(5): Q [ ^ ... [ ^ 

Termsfrom(6): ( ^ J ( x ! 2 ) - ( w / 2 ) 

"middle" 

The q term is as far right of the "middle" in (5) as d +1 is to the left in (6)—as d + \ ranges 
from c +1 to n 12. In other words, due to symmetry, these two binomial coefficients yield equal 
values. In this way, the first n/2-c terms to the right of the middle in (5) may be accounted for 
using terms to the left of the middle in (6). Selecting n sufficiently large allows the remaining 
terms to the far right of the middle in (5) to be accounted for by those to the (near) right of the 
middle in (6). D 

We are now ready to complete the proof of Theorem 5. 

Proof of Theorem 5: Let m be a row in D3 such that D3(m, j +1) > D3(m, j) for some fixed 
value of j . Consider a G4 graph G with 2m rows, 0,..., 2m -1. We show that D4(2m -1, j) < 
D4(2m~-l,j + l). Clearly, if we consider all paths in G to row 2m-I from the root with no 
double jumps, the proposition is true from the assumption. Likewise, if we consider all paths in G 
to row 2m -1 with a double jump as the first move and no other double jumps. Using this idea, 
we group paths together as follows: two paths are put in the same group if each have k double 
jumps and if those double jumps occur in the same positions in the edge sequence that defines the 
paths—e.g., k = 2 and the second and fourth edges are double jumps. Note that there are groups 
having between 1 and m double jumps, and for each k there are approximately (2m - k choose k) 

n 
nil 

n 
nl2-
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groups. It is easy to see that, for each group of such paths, the claim is true. Since these groups 
of paths are mutually disjoint, the theorem follows. • 

We conjecture that the location of the maximum value in D4 on row n is at least as large as 
sqrt(/i)/2. The proof of Theorem 5 shows an 0(sqrt(w)) upper bound on the location of the 
maximum. An analogy between the left-bounded rhombus and the classic Pascal triangle is 
explored in the next section. 

4. A CONNECTION WITH PASCAL'S TRIANGLE 

A seemingly different left-bounded array can be constructed using the recurrence for Pascal's 
triangle: 

1 
0 1 

1 1 
0 2 1 

2 3 1 
0 5 4 1 

5 9 5 1 -

FIGURE 6* Left-Bounded Pascal Triangle 

Notice the relationship between this left-hounded Pascal triangle and the array D2 from the 
previous section. D2 is identical to the left-bounded Pascal triangle, except that D2 contains addi-
tional 0 elements. In this section, we use a completely different technique than the one used in 
Section 3 to show that the maximum value moves ever rightward in the left-bounded Pascal 
triangle. This time, the analog of (3) is easily shown to hold; so these table entries are differences 
of binomial coefficients. Hence, the maximum value in row n of this array occurs in the column k 
such that k gives the maximum value of the difference in binomial coefficients in row n of Pascal's 
triangle. But as n grows, by the classical limit theorem of De Moivre and Laplace [1], [3], the 
binomial distribution approaches a normal distribution, given that we choose binomial distribution 
parameters p = q = l/2. In this case, the mean is nil and the standard deviation is sqrt(w/4). 
We are interested in where the maximum (absolute) derivative of this function occurs, i.e., the 
inflection points. Using a well-known result [1] in probability and statistics, we have that the 
inflection points are given by x~n!2±4nl2. Thus, the maximum difference on row n of 
Pascal's triangle occurs in column sqrt(w)/2, implying that the maximum value on row n of the 
left-bounded Pascal triangle is in column sqrt(«)/2. For example, if n - 729, the maximum dif-
ference between columns in Pascal's triangle occurs between columns 378 and 379 (note that 
nil- 364.5); computing sqrt(729)/2 gives 13.5. 

5* THE RHOMBUS MOB 2 

In this section we present several conjectures concerning the distribution of the terms in the 
rhombus when arithmetic is done modulo two. Other problems such as divisibility properties, 
distribution of coefficients mod/?, and the investigation of arithmetic fractal structures have been 
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studied for Pascal's triangle and its generalizations [2] and seem to be rich and interesting in the 
rhombus (mod 2), though they also appear difficult to analyze formally. 

Conjecture 1: For any w>l, the sub-rhombus (mod 2) with corner points [2W,2W+1], [2W + 
2n~l -1 ,2* (2n + 2n~l -1)], and [2* + 2n~l -1,2W+1] is identical to the rhombus (mod 2) with corner 
points [0,0], [2n~l -1 ,2* (2W_1 -1)], and [2""1 -1,0], and to the sub-rhombus (mod 2) with corner 
points [2", 0], [2" + 2n~l -1,2 * (2*"1 -1)], and [2" + 2""1 - 1 , 0]. 

One can, in fact, make a stronger self-similarity conjecture, which is illustrated in Figure 7. 

T2'(r-2) is mirror image of T2(r-2) 

FIGURE 7, Self-Similarity in the Rhombus (mod 2) 

Conjecture 2: Let n = 2s -1 be a row number of the rhombus (mod 2) and Is be the number of 
ones on that row. Then 

Is=\[2MH-lt5l where 8 = 2*frac( |) . (7) 

The "frac" in (7) refers to the fractional part of the term si 2. Equation (7) is just a closed form 
of the recurrence I0 = l9 Is = 2* Is_l +1 when s is odd, and Is = 2 * Is_t -1 when s is even. 

Recurrences similar to that in Conjecture 2 also seem to describe the number of ones on rows 
whose row number is 2s -c for each constant c> 1. 

Conjecture 3: The diagonals in the rhombus (mod 2) given by [«, k], for k fixed, are periodic 
with period length 2P

? where p = flog2 k"\ +1 for k > 1, and the period of the [n, 0] diagonal is 1. 

To illustrate Conjecture 3, observe that diagonal [w,6] begins 1, 1, 0, 1, 1, 0, 1, 1 and then 
this sequence of eight values repeats itself. 

One can also observe a strong fractal structure to the rhombus, which is characterized by 
large quadrilateral shaped blocks of zeros, as shown in Figure 8, a depiction of the first 512 rows 
of the rhombus (mod 2) with odd entries colored black and even entries colored white. This leads 
to the following conjecture. 
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Conjecture 4: Let Gn (Hn) be the number of odd (even) coefficients in the first n rows of the 
rhombus. Then, as n approaches infinity, limGnlHn = 0. 

FIGURE 8. Fractal Structure of the Rhombus (mod 2) 
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1. INTRODUCTION 

In a series of articles [l]-[3], Andre-Jeannin has recently defined the polynomials Un(p,q; x) 
and Vn(p,q; x) by the recurrence relations (1) and (2), and has studied some of the combinatorial 
properties of the coefficients of Un and Vn as well as some of the differential properties of these 
polynomials. 

U^ix + py/^-qU^ («>2), tf0 = 0 , ^ = 1 (1) 
and 

Vn = (x + p)Vn_x-qVn_2 (»>2), V0 = 2,Vl = x + p. (2) 

The parameters/? and q as well as the variable x are real numbers. If a and p are defined by 

a + p = x + p, afi = q, (3) 

then it is well known that [5] 

and 

where 

U'=-^A> ( 4 a ) 

Vn = a"+fi", (4b) 

A = (x + pf-4q. (5) 

The purpose of this article is to introduce and study some of the properties of the generalized 
polynomial Wn(p,q; x) defined by 

w^ix+pW^x-qw^ipzi), (6) 
where W0 and Wx are specified, as well as those of two other polynomials nn(p,q;x) and 
vn(P><l\x) Aat are very closely associated with U„ and Vn. We shall define these polynomials 
UniP& x) a n d vn(P& x) t 0 b e 

^n = (X + P)Un-l-^Un-2 0 1 ^ 2)> U0 = \Ul = X + P ~ 4% ( 7 ) 
and 

v ^ ^ + ^ K - i - ^ 2 (»^2), v0 = l,vl = x + p + ̂ . (8) 

2, SOME BASIC RELATIONS AMONG Un9 Vm un AND vH 

Using the well-known properties of W„(a,b,p,q) introduced by Horadam [5], we may derive 
a number of relations between Un and Vn. However, we shall not do so except to list a few of the 
important ones that will be required for the remainder of this article. It is easy to show that Wn as 
defined by (6) may be evaluated using the relation [5], 
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K = Wn-qWi*-i (**!)• (9) 
From (9) we can immediately derive the following relations: 

U„ = u„+1-Jq~u„, (ii) 

v„ = U„+i + ̂ U„, (12) 

V„ = u„ + 4qun_l = vn-^vn_v (13) 

From the results in [5], we may also derive the following "Simson" formulas: 

Un+lU„-i-U2
n=-q-\ (14a) 

V^V^-V^q-'A, (14b) 

"„+i"„-i-"n
2=<r1/2AH, (14c) 

v„+lVl-v„2 = -?"-1/2Av, (14d) 

where 

K=x + P-2y[q~, (15a) 

Av = x + p + 2jq, (15b) 

A = A„AV- (15c) 
From (14a-14d), we have the interesting result that 

qiu^u^ - u2„)(ynHvn-x - v„2) = ( « r t v , - ul){vn+xvn_x - vD = V - ' A . (16) 

3. ZEROS AND ORTHOGONALITY PROPERTY OF U„, V„ un, AND v„ 
If" If? If™ If 

Andre-Jeannin ([1], [2]) has shown that 

(„_1 ) / 2sin^ 

and 

Vn = 2qnl2com0, (17b) 

where cos0 = {x+p)l2^Jq. Hence, from (11) and (17a), we get 

^asatap. (17c) 
cos#/2 

Similarly, from (12) and (17a), we have 

:jnmn(2» + W2 ( n d ) 
* sin 0/2 K J 

Hence, the zeros of Un9 V„9 un, and vn are given by 
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U„: xk = -p + 24qcos\t.A k = l,2,...,n-l, 

K- xk=-p + 2 •Jq cos • V In •n\ k = l,2,...,n, 

un- xk = -P + 14qc°s[-j—^-n\ k = l,2,...,n, 

V xk = -p + 2^cos\——^-A k = l,2,...,n. 

(18a) 

(18b) 

(18c) 

(18d) 

Of these, Andre- Jeannin ([1], [2]) has given the zeros for Un and Vn. It should be observed that, 
if p = 2 and q = l, then the above results correspond to the already known results for the zeros of 
B„(x), Cn(x\ b„(x), and c„(x) (see [6], [7], [4]). 

Andre-Jeannin ([1], [2]) has shown further that Un and Vn are orthogonal over the interval 
(-p-2y[q, - p + 2^Jq) with respect to the weight functions wu(x) = V-A" and wv(x) = l/wu(x), 
respectively. Using expressions (17c) and (17d), we may easily prove that un and vn are also 
orthogonal over the same interval, but with respect to the weight functions wu(x) = ^-AM / Av 

and wv(x) = l/wu(x), respectively. 

4. g-MATBIX AND FORMULAS FOR Wnk_v WnU AND Wnk+1 

If we define the generating matrix Q to be 

Q=\ x + p ~q 
1 0 

then it is straightforward to show by induction that 

P = Q * = 
Uk+l ~qUk ' 
. uk ~<lUk-\. 

(19) 

(20) 

The characteristic equation of P is given by 

£-(Uk+l-qUk_l)A + q(Uk
2-Uk+lUk_l) = 0. 

Using relations (10) and (14a), we may reduce the above equation to 

A2-VkA + qk=Q. 

Hence, by the Cayley-Hamilton theorem, we have 

P2=VkP-qkL 

Starting with (21), we may easily show by induction that 

P"(x) = A„(x)P(x)-qkZ„_l(x)I, 

where An(x) satisfies the recurrence relation 

(21) 

(22) 
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Hence , from (20) and (22), w e have 

Q"k(x) = X„(x)Qk(x)-q%_1(x)I. 

Therefore, we have 
U„k(x) = X„(x)Uk(x), 

u*+i(x) = K(x)uk+1(*) - qkK-i(x), 

U*-i(x) = A„(x)C/it_1(x) + ^ - 1 A l _ 1 ( x ) . 
and 

(23) 

(24) 

(25a) 

(25b) 

(25c) 

We now derive similar results for the polynomial W, and thus for the polynomials V, u, and v. 
Consider the matrix 

\wnk+i -qwnk 
-qw„k-i_ 

R = 
Wnk 

Using relation (9) , w e may rewrite R as 

R = m u, nk+l -qu, nk -qW0 
U, 

U, u„k -qUnk-i 

WxQ*-qW&*-\ using (20), 

Qn\WxI-qW,Qr\ 

nk 

nk-l 

-4Unk-l 
-qUnk-2 

Hence, 

W„ nk+l 

Kk 
-qwnk • 
-qKk-i. 

u„k+i ~qU„k 
. u„k -qU„k_i 

Wx -qW0 
W0 Wl-(x + p)W0_ 

F r o m the above identity, w e may derive the following relations after some manipulations using (9) 
and (25a-25c) : 

Wnk = KWk-qkW0K-i, (26a) 

^ - i = KWk-x+qk~X-M - (*+PWO) • 

(26b) 

(26c) 

Using appropriate values for W0 and Wx in (26a-26c), we may now derive the following rela-
tions for the polynomials V, u, and v: 

Vnk=Xyk-2qkXn_„ 

KM = Kvk+\ - qk(x+P)K-I, 
Vnk-, = ^k_l-qk-\x+p)X„_i, 

unk - Kuk - q K-i> 
u„k+i = Anuk+l-qk(x + p-y[q~)A„_l, 

Unk-\ ~ KUk-l ~ q K-l > 

(27a) 

(27b) 

(27c) 

(28a) 

(28b) 

(28c) 

332 [NOV. 



ON A CLASS OF GENERALIZED POLYNOMIALS 

V * = V * - ? % H > (29a) 

v„k+1 = kvk+l-qk(x+P + y[q)k-i, (29b) 

V r ^ i + ^ V r (29c) 

It is clear from (23) that, if Vk |/l„_2, then Vk \Xn also. However, Vk \X2 since X2 = Vk. Hence, 
by induction, it follows that Vk \Xn when n is even. Thus, we see from (25a) that Vk |C4„ for even 
n, while Uk {U^ for all n. Further, we see from (27a) that Vk [V^ for odd n. Thus, we have the 
following results: 

U^Uto for all n; (30a) 

VtWto for even n; (30b) 

Kt|Kta for odd«. (30c) 

It Is evident that similar results hold for Fibonacci and Lucas polynomials, Pell and Pell-Lucas 
polynomials, etc., since these polynomials are special cases of Un and Vn. In particular, for the 
Fibonacci, Lucas, Pell, and Pell-Lucas numbers Fn,Ln,Pn, and Q„, we obtain from (30) the 
already known results: 

FkWkr,, P^P*, for all n; (31a) 

hWh,, Qk\Ph,> for even«; (31b) 

AIA»» Qk\P^ for odd ». (31c) 

5. SPECIAL CASE WHEN q = 1 

This corresponds to a modified version of the Morgan-Voyce polynomials, where x+2 is 
replaced by x + p in the difference equations. We shall denote the modified Morgan-Voyce poly-
nomials by B„{x), bn(x), Cn(x), and cn{x), where 

Sn(x) = Un+l(p,l;x), (32a) 

Cn(x) = Vn(p,Xx), (32b) 

bn{x) = un{p,\;x), (32c) 

?„(*) = v„(p,l;x). (32d) 

Hence, from (14a-14d), we have the "Simson" formulas: 

Bn+A-i-B2
n=-l; (33a) 

Q+1C„_, -Cl = (x + pf-4 = A = AfcAc; (33b) 

Kjn-i-^ = x + p-2 = Ab; (33c) 

$»&-! - c„2 = - ( * + /> + 2) = -Ac. (33d) 

Andre-Jeannin [3] has shown that B^k\x) and Cj;k\x), k = 0,1,2,..., where £ stands for the 
£* derivative, satisfy the following second-order differential equations: 
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BfXx): Ay" + (2k + 3)(x+p)yf + {(* +1)2 - (n + lf}y = 0, (34a) 

C£\x): Ay" + (2k + l)(x + p)y + (k2 - n2)y = 0, (34b) 

where 
A = (x+p)2-4. (34c) 

We will now derive similar results for b^k\x) and c}k\x). It is already known (see [6]) that 
bn(x) satisfies the differential equation 

x(x + 4)fy'(x) + 2(x + l)fy(x)-n(n + l)h„(x) = 0. (35) 

Changing x to x + p-2 and noting that bn(x) = hn(x + p-2), we find that equation (35) reduces 
to 

Abn"(x) + 2(x^p-l)b^(x)-n(n + l)bri(x) = 0, (36) 

where A is given by (34c). Differentiating (36) k times and using the Leibniz rule, we can show 
that b^(x) satisfies the differential equation 

bn
(k)(x): Ay" + 2{(k + l)(x+p) - \}y' + {k(k +1) -n(n + \)}y = 0. (37a) 

Similarly, we can show that c}k\x) satisfies the equation 

c£k\x): Ay" + 2{(k + l)(x+p) + l}y' + {k(k +1) -n(n + l)}y = 0. (37b) 
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1. INTRODUCTION 

In this paper we shall associate a semigroup with the &-bonacci numbers, which describes the 
self-similar structure of the dynamical system associated with the substitution 1 -> 12, ...(& -1) -» 
Ik, k->l for k > 3 „ The operation that defines the semigroup is used to handle the cylinders of 
the partitions defined by the self-similar structure of the symbolic system. This collection of 
cylinders is called the standard partition. The relation between the standard partition and the 
semigroup is given by Theorem 2. 

The dyamical system that arises from this substitution admits geometrical representations as: 
• an irrational translation on the (k -1) -dimensional torus [7], 
• an interval exchange map in the circle [1], and 
• a map on a geodesic lamination on the hyperbolic disc' [8]. 
The self-similar structure of the symbolic system is translated to its geometrical realizations. 

The understanding of the self-similar structure of the symbolic system and its geometric relations 
on the torus and the circle, using the semigroup, plays an important role in the construction of the 
geodesic lamination, given in [8], and also in the proofs of other dynamical properties of these 
systems [8], 

2. THE SEMIGROUP 

The &-bonacci numbers are obtained by the recurrence relation 

&+* = &+*-! + • -+a , + i + R , forw>0 (1) 
with initial conditions gj-2J for 0< j < k-1. We can represent each natural number in a unique 
way as a sum of the gt

 fs with no k consecutive gt
 !s in the present sum. This is a generalization of 

the Zeckendorf representation of the nonnegative [10] integers using this recurrence relation 
instead of the Fibonacci relation. 

In the rest of this section, we work with the Tribonacci numbers. However, the following 
constructions and results are valid for all the &-bonacci numbers. 

Let n and m be given in the Tribonacci Zeckendorf representation 
N M 

/=0 j=Q 

Define nOmby 
N M 

n<>m = JlTaibjSi+j' (2) 

Unlike the Fibonacci multiplication ([5], [2]), this operation is not associative. 
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Now we define a new binary operation in N: Let n = g{ +•••+&, with gt < gl when j < q, 
be the Zeckendorf representation of n. Observe that we can write n in the following way: 

» = » 0 o( i+a I - i 0 + - + a i - / 0 ) 
= &0o(i+a1-/0o(i+-+ai-/1) 

= «„ 0(1+^-/0 o ( 1 + - + » , _ , - / « O O + S H M ) - ) ) -

Definition 1: Define the binary operation * by 
N x N - > N 
w*w = fioo(i+aiWoo(i+.--+^ 

Properties: 

• 1 * / W = I W * 1 = /W. 

® lfn = gq thenn*m = gq Orn. 
• * is not commutative: e.g., 9 * 3 = 22 and 3*9 = 18. 
• In general, it is not associative: e.g., 3 * (3 * 2) = 10 and (3 * 3) * 2 = 13. 

For this reason, we keep the following convention: 

ml*m2*~-*me =ml* (m^ *(•••* (m£_2 * {me_l * me)) •••)). 

However, this operation is associative in a subset of the natural numbers. Let nx = gt = 2, 
"I = So +gi = 1 + 4 = 5, i% = go +Si + ^3 = 1 + 2 + 7 = 10, n0 = g0 = l, and S> the set generated by 
nh ŵ , f% under the operation * ? i.e., 

^ = {^*-*Hj i y = l,2,or3fiiraU7}, % = {1}, .9= U > 0 ^ . 

Given any three natural numbers w, wi, and rri then the associativity in n*m*m' fails when 
we do the operation n*m and we get an expression with three consecutive g 's and, therefore, we 
have to use the relation (1) to express the number according to the Zeckendorf representation. 

Easy calculations show that when we compute nt * «. for ij = 0,1,2,3 we never get three 
consecutive gt 's. So the operation * : g? x SP -» S? is associative. Therefore, we have proved 

Theorem 1: (SP, *) is a semigroup. 

3. THE SUBSTITUTION 

A substitution in a finite alphabet si is a map, II, from the alphabet to a set of words in this 
alphabet. This map extends to a map from the set of words in the alphabet si into itself by juxta-
position, i.e., Yl(UV) = II(C/)II(F), where U and Vare words in the alphabet and 11(0) = 0. In 
this way, the substitution is extended to the set of infinite sequences in the alphabet si. See [6] 
for an introduction to the theory of substitutions. In this paper we consider the substitution 

n:{l,2>...)»r^{l,2,...,«f 

I^>l2,2^l3,...,(k-l)^lk,k^kl. (3) 
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This substitution is Pisot, since the Perron-Frobenius eigenvalue of the matrix that represents the 
substitution is a Pisot number. A Pisot number is an algebraic integer such that all its Galois con-
jugates are strictly inside the unit circle [3]. 

The map II has a unique fixed point u = uQux.... We consider the closure, in the product 
topology on {1,2,..., k}N\ of the orbit under the shift map—a(u0ulu2...) = ulu2....—of the fixed 
point. This space is denoted by fl. The dynamical system (Q, a) is minimal. The dynamical and 
geometrical properties of this substitution have been studied in [7], [1], [4], [8], [9]. 

Note that the relation of this substitution to the ^-bonacci numbers is the following: if \V\ 
denotes the length of the word V9 and gj=\HJ(l)\9 we have the recurrence relation gn+k -
gn+k-i + • •' + Sn > s i n c e the substitution satisfies 

ir+*(i) = ir+*-1(i)irf *-2(i) •.. ir+1(i)ir(i) \/n > o. 
The space O admits a natural self-similar partition {Ol3..., Clk}, where Qt = {v eQ|v0 =i}. 

The self-similarity among the elements of this partition comes from the commutativity of the 
diagram,: 

O—^->Q 

where a denotes the induced map of a on Ol3 i.e., 

In the rest of the paper we will assume that k = 3. However, the results are valid for k > 3. 
We are going to show how to express C7w(u) as a composition of powers of II, applied to 

cr(u), and a (without using its powers). In particular, we shall associate with each natural 
number n an operator OaM(n) such that an(m) = OatU(n)(a(u)). Moreover, we shall prove the 
property 

OaJi(m) o OaM{n) = OaM{m * n). 

Definition 2: Let n = gt + -°+gJ£ be the representation of n according to the recurrence relation 
(1). Then 

" = a0 oO+a^ o(1+-+»^rt.2 ofl+fi,-^)---)). 
We define 

a5n(«)-°->°; 

Lemma 1: The map 0^n(n) satisfies the properties: 

(a) Oa,n(nXa(2d) = ^(l) f o r any w ^N. 
(b) Oa9U(m)o0^u(n) = Oain(m^n) for m.nG^. 

First, we are going to prove the following proposition. 
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Proposition 1: Let gq be the q^ Tribonacci number, then 

(a) o*<(M) = IF(cr(j£)), 
(b) a8«(u) = a8«+l(u), 
(c) a8«*n(m) = crn<>gq(u) = WcTn(u) forall^eN*. 

Proof of Proposition 1: 
(a) This fact is proved by induction on q. In the case q - 1: 

1 = u0a(u) = kr(n) so u = II(u) = II(l)II(<7(ii)) = l2Yl(a(u)). 

Therefore, cr2(u) = no"(u)but 2 = gi. Hence, a81 (u) = II((T(U)). Let the expression of u be 
given as 

H = «b . • • %-iV8*00 =• I P ( 1 ) ^ ( u ) . 

Since u is the fixed point of the substitution, we have u = Uq+l(l)U(a8q (u)). Therefore, we have 

<T**+I(U) = n(a^d)) = n(TP(o-(u)) = IF+VGO)-

(b) As we showed in part (a) of this proposition, agq+l (u) = U(a8q (m)). Since H o a ^ 
a o l l , we have 

n(a^(u)) = af̂ (n(u)) 
and, since u is the fixed point of the substitution, we have agq+l (u) = agq (u). 

fcj Let » = gt + • • • + gf . We can write u-u0... u^o^fu); according to [7]: 

and using the fact that u is a fixed point of the substitution II, we have 

ii = n^(u) = ir'^(i) - m+<i(i)Wan(m). 
Therefore, 

n%"(ii) = a8i<+q+'"+8i°+q(m) = a8q°*(M). Q.E.D. 

Proof of Lemma 1: 

(a) Let 
* = fi0+ •••+«< 

= a0 0(1+^-/0 o(1+-+^_rt_2 o O + s ^ ) - ) ) . 
By Proposition 1, 

n/^-,(a(u)) = c7 -̂̂ (u) 

dl* ' - ' ' - 1 (cr(u)) = or14**'-*- (M) 
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But the last term is a"(u) by using the expression for n given at the beginning of the proof. But, 
by Definition 2, OaU(n) = It'dtf^'o- • • • IT^ - ' . Hence, Oa n(«)(o-(u)) = a"(u). 

(b) Let 
m = gJo + ---+gj andmeSP 

So 

°a,nim) = nAcjn-/i"y»a- • • • nJi~J<-1 

and 

M f f l ) o 0 . , n ( » ) = 
nyooiiyi"Aa • • • n''-'*-1 n/oon'i_'»(T • • • n''~''->. 

Since/« and « eSP, 

/w*» = ^ o o O + . - o C n - ^ . ^ og/Q o ( l + s W o o ( l + -o(l+&,_,,_,)•••))))• 

Therefore, 
Oa,n('w*w) = Offfn(w)o0^n(/i). Q.E.D. 

Each of the sets Oy Is similar to O: 

nx = n(O); 
Q2 = CF(XI2(Q)) = ^(11(00); 
O3 = a(n(a(n2(o»)) = <r(n(c<ri(Oi)))) = cr(n(o2)). 

This similarity induces a partition in each of the Q/s and each of these cylinders can be subdivided 
into three subcylinders according to the maps II, oil2, and allo-II2. 

Definition 3: The collection of subsets of O generated by the system of iterated maps (II, ofl2
? 

alioTL2) is called the standard partition o/Q. The elements of this collection are called cylin-
ders. 

Theorem 2: R is a cylinder of the standard partition if and only if there exists an element n of 3P 
such that R = OaM(n)(Q). 

Proof: Let n be an element of 2? so n = nf ••••*ty , where /, e{l,2,3}, then Oa5n(w) = 
Oa,nK)'"Ocr,n(^X s^ce w^f t , w^gb + fe* "j = Sb+fi + ft = «> + fi 0(^0+^2), a n d w e 

have 
3,.nfa) = n, 0^(1%) = rfi2, o^eC^-ancxn2. 

Hence? Offin(w)((l) is a cylinder of the standard partition. 
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Reciprocally, given R a cylinder of the standard partition, by construction it is equal to a 
composition of II, crll2, and aUofl2, i.e., it is of the form OaU{nt )OaU(ni )'"Oan(nj ). By 
Lemma 1, we have that R = OaU(m)(Q), where m = niQ * • •. * nik. Q.E.D. 
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PROFESSOR LUCAS VISITS THE PUTNAM EXAMINATION 
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(Submitted February 1996-Final Revision July 1996) 

The following problem appeared on the 1995 William Lowell Putnam Mathematical Competi-
tion: 

Evaluate 

12207 -
2207-- l 

2207-. . . 

and express the answer in the form (a + bjc)/d, where a, b, c, and id are integers. 
Readers of this journal might recognize that 2207 is the sixteenth Lucas number, Ll6. Therefore, 
a more general problem is to evaluate 

^2n T 
In 

Let S denote this expression. Then Sn = L2n-(l/Sn), and therefore S2n-L2nSn +1 = 0. It fol-
lows that 

C" _ ^2n + V^2n ~ 4 
A " 2 • 

Now, using the Binet formula for the Lucas numbers, i.e., Ln-an + J3n, a = (l + V5)/2, and 
fi = (l + j5)/2, we have 

vn __ a2n +02n + ̂ (a2n +pnf-4 __ a2n +02n + ̂ (a2n -j32n~f _ 2n 
u — : — : : — ~ — (X 

2 2 
It follows that S = a2 = (3 + V5) / 2 (independent of n). 

This technique can be used to simplify a variety of expressions of this general form. A more 
natural solution to the original problem is to set T, say, equal to the expression and note, as 
above, that 

716-2207J8 + 1 = 0. 

This can be written in the form Tl6+2T*+1 = 472J8. Then, taking square roots (T is positive), 
we have r 8 + l = 477\ Repeating this gives T4 + l = 7T2 and T2 + l = 3T. Solving the latter 
equation yields the solution T = (3 + V5) 12. 

AMS Classification Numbers: 11A55, 11B39 
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The aim of this note is to generalize the work on finite sums of inverses of binomial coeffi-
cients that are part of a paper by Andrew Rockett [1] which was published in this Quarterly in 
1981. Our work rests on the following lemma. 

Lemma 1: For any positive integers n and/?, with p < n\ 

i (n\l 

n + \\P, 

Proof: Use the well-known formulas of Euler, 

= jV(i-0"-^. 

f tu-\\-t)v-ldt=T^Y{y} and T(k + \) = k\, Jo T(u + v) 
that are valid for any positive real numbers u and v, and any positive integer k. 

Now we define 

q0 = l and ^(*, j ) — I ^ W ^ 

for arbitrary nonzero complex numbers x and y. Let G(z) be the generating function 
+00 

G(z) = Ydz"q„(x,y). 
n=Q 

Theorem 1: For any real numbers x,y, and z such that \z\< min(|l/x|, |1/>>|): 

r<-\ - lo%(1" xz^+ lo%(1 ~ ->*) - " 1OB0- " az + bz^ 
yJ\Z) — 2 ~ i 7 ' 

az - hz az - bz 
where a = x+y and b = xy (that is, x and y are the roots of the equation in S: S2 - aS + b = 0). 

Proof: We have 
r1 

«»(^^) = ^(xty(y(i-t)y-?dt 
0p=0 

and, therefore, for any z such that |z | < min(| l /x | , | l / j / | ) , 

rl r 
I +00 / « 

Jo"=0V>=° 

A 
df 

because of the uniform convergence (deduced from its absolute convergence) of the series over 
t e [0,1]. By the Cauchy rule for the product of powers series, this is equivalent to 
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rh 
G(Z): E(*0" SfcvO-0)"k= —y 

n=0 J \n=Q J <J 0 l LXl l' 

1 -dt, 
™ A -zy{l-t) 

from which we obtain the stated result by elementary techniques of calculus. 

The restriction to real values allows us not to manipulate many-valued complex functions 
such as the log of complex argument, and will not impair our work since its main objective is the 
polynomial identities that follow; these, once proved for the real values of the variables, are also 
proved for the complex values because the identity for all real values implies the identity of the 
coefficients of the like powers of the variables on both sides of the relation. 

This leads to Theorem 1 of Rockett [1], 

P=o 

w + 1 w+l 

Z i n \ _ w + i Y ±_ 
2"+l & k 

by taking x = y = l, because in that case, 

G(z) = _2Mi- £ ) ! 
LZ~Z 

log(l-z) 
z-(z2/2) \n=0 W + 1 

/'-He „n 

\n=0 z 

and the result follows by applying the Cauchy rule for the product of power series and then 
equating the coefficients of the like powers of z on both sides of the identity. (This formula 
previously appeared in the literature in 1947 in a paper by Tor B. Staver [2].) 

If we take x = -l and y = 1, we obtain 

G(Z) = _M!_^!); 
Z 

from which it is easy to derive the closed formula 
In / « . . \ - l 

K-iy 
p=0 

In 2w + l 
w + 1 ? 

already found independently by Tor B. Staver [2] and T. S. Nanjudiah [3]. 

Theorem 2: If (U„(u9 v)) denotes the generalized Fibonacci sequence of the recurrence rn+2 -
urn+l + vrn = 0, then 

qn{x,y) = \lUn+l{atM)dt. (1) 

Proof: An equivalent statement of Theorem 1 is, for x, y, and z real: 

™=u 1 
•afz + btz2 dt. 

But since 

— — j = E znUn^{u, v), 
l-UZ + VZ* *~* n=Q 

we obtain, by integrating term by term with regard to t, 
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G(z) = -Zz"jU„+l(at,bt)dt, 

and the stated theorem follows by equating the coefficients of like powers of z on both sides of 
the identity. Since both sides of relation (1) are polynomials in x mdy, this relation is also valid 
for all the complex values of these variables. 

Given the well-known Lucas identity [4] 

we obtain as a direct consequence of Theorem 2 the explicit expression for qn(x,y) as a function 
of a and A, 

["] 

! < * . < " , * » * ! = U„+1(at,bt). 

from which we can deduce the converse relation 
( (at-yl(at)2-4bt at + V(aQ2 - 4bt Y| 

2 ' 2 
V )) 

Another consequence of Theorem 2 is that, for any positive integer m, we can compute recur-
sively the development in powers of z of 

mG(z)= G ( z ) . W (a-bz)m 

In effect, if we define 
\(x, y) = j\u„+1(at,bt)dt 

by the fundamental second-order recurrence satisfied by (U„(u, v)) and Theorem 2, we obtain 

?„(*, y) = a lqn-i(x, y)-b V„_2(x, y). 

From this last relation, one can deduce easily that 1G(z) is a generating function for Cq„(x,y)). 
By recursion on m, and the same kind of reasoning, it can be shown that mG(z) is a generating 
function for (mq„(x, y)) defined as 

mq„(x,y) = j\'"Un+1(at,bt)dt 
since 

m'lqn(x, y) = amqUx, y)- b\_2(x, y). 

With the previously used Lucas identity, we are able to compute an explicit expression of 
mq„{x,y)-

Another relation deduced from Theorem 2 is 

2q„(x, y) - aV„_!(x, y) = jl
QV„(at, bt) dt 
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if (yn(u,v)) denotes the generalized Lucas sequence of the recursion rn+2 - urn+l + vrn = 0, as a 
consequence of the well-known relation 

Vn(u, v) = 2Un+l(u, v) - uUn(u, v). 

Theorem 3: The sequence (qn(x, y)) satisfies the following third-order recurrence [by writing for 
convenience, qn(x, y) = qj: 

a(n + 2) qn+l - {a2(n +1) 4- b(n + 2)}qn+ ab(2n +1) qn_t - b2nqn_2 = 0. 

Proof: From Theorem 1, we deduce that 

(az - bz2)J^ znqn(x, y) = - log(l - zx) - log(l - zy) 

By comparing the coefficients of z"+2 on both sides, we obtain 

n + 2 - a ^ i bq„. 

Then the recursion Vn+2(@, b) - aVn+l{a, b)+bVn(a1) b) = 0 becomes 

a(n + 2)qn+l-{a\n + l)+b(n + 2)}qn+ab(2n + l^ 

as stated. 
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1. INTRODUCTION 

Let a and n > 0 be integers, and define G(a, ri) to be the directed graph with vertex set 
V- {0,1,..., n -1} such that there is an arc from x to y if and only if y = ax (mod ri). Recently, 
Ehrlich [1] studied these graphs in the special case a = 2 and n odd. He proved that if n is odd, 
then the number of cycles in G(2, ri) is odd or even according as 2 is or is not a quadratic residue 
mod n. The aim of this paper is to give the analogous results for all a and all positive n. In parti-
cular, we show that if a and n are relatively prime, and n is odd, then the number of cycles in 
G(a, ri) is odd or even according as a is or is not a quadratic residue mod n. 

Define GP(a, ri) to be the directed graph with vertex set V- {0,1,..., n-1} such that there is 
an arc from x to y if and only if y = xa (mod ri). We determine the number of cycles in GP(a, ri) 
for n a prime power. 

2. PRELIMINARY RESULTS 

We require a few lemmas. In what follows, write d\n to mean that d is a divisor of n and let 
(x, y) and [x, y] denote the greatest common divisor (GCD) and least common multiple (LCM), 
respectively, of x andj. If (a, rri) = 1, then {aim) denotes the familiar Legendre-Jacobi quadratic 
residue symbol. Finally, let Un = {x: 1 < x < n and (x, ri) - 1}, let <p(ri) denote the Euler phi-func-
tion, and, if (a, ri) = 1, let ordn(a) be the least positive integer r such that ar = 1 (mod /a). 

Lemma 1: Let (a, w) = 1. If (xl5 x2,..., xr) is a cycle in G(a, ri), then (w, xf.) is the same for each 
/, l < i < r . 

Proof: Let (x1? x2,..., xr) be a cycle in G(a,ri). Since (a,ri) - 1, it follows that (n, x2) = 
(w, axx) = (w, Xj); thus, for each i, («, xf.) = («, xx) by induction. [We shall call this common value 
of (n, xy) the GCD of the cycle (x1? Xj,..., xr).] D 

For arbitrary a and n, let C(a,«) denote the number of cycles in G(a, ri), and let c(a, n, d) be 
the number of cycles in G(a, ri) with GCD d. 

Lemma2: Let (a,ri) = 1. Then c(a,», 1) = orj?a). 
For example, let a = 3 and w = 65. Then ^(65) = 48, ord5(3) = 4, and ord13(3) = 3; hence, 

ord65(3) = 12. Thus, c(3, 65,1) = 48 /12 = 4, and the four relevant cycles are 

(1, 3, 9,27,16,48,14,42,61,53,29,22), 
(2,6,18,54, 32, 31,28,19,57,41,58,44), 
(4,12, 36,43,64,62,56,38,49,17,51,23), and 
(7,21,63, 59,47,11, 33,34,37,46, 8,24). 
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Proof: Let r = ordn(a). Then the elements of the cycle (1, a,..., ar~l) form a subgroup (a) 
of Un of order r. The claim is that the cosets of (a) in Un and the cycles in G(a, ri) with GCD 1 
are in one-to-one correspondence. For, writing x~y to mean that x and j are in the same coset 
of (a) in C7W, we see that x~ y if and only if x~ly = aJ (mod ri) for some integer i. But this is pre-
cisely the condition that x andy lie on a cycle in G(a, ri). Hence, c(a, n9 1) is equal to the number 
of cosets of (a) in Un, i.e., the index of (a) in U„. But since the group U„ has order <p(ri), this 
index is j u s t l y . D 

Lemmm 3: If (a, w) = 1 and d\n, then c(a, n,d) = c(a,j, l). 
For example, the cycles in G(2,45) with GCD 3 are (3, 6, 12, 24) and (21, 42, 39, 33); the 

corresponding cycles in G(2,15) with GCD 1 are (1, 2, 4, 8) and (7, 14, 13, 11). 

Proof: Let (xl3 x2,..., xr) be a cycle in G(a,ri) with GCD rf. Then x2 = oxl3..., xr s=ar~1x1 

and jq = arxx (mod ri) with r positive and minimal. This is true if and only if (1, a, ...,ar_1) is a 
cycle in G(a7 J~~J) = G(ay ~) (clearly with GCD 1). Hence, each cycle G(a, ri) with GCD d has 
length r = ordn/d(a). Furthermore, x and y lie on a cycle in G(a, ri) with GCD d if and only if 
y = xaj (mod n), i.e., ^-^^-a1 (mod-j)—which is precisely the condition that f and ~ lie on a 
cycle in G(a, j). Thus, the number of cycles in G(a, ri) with GCD d is the same as the number of 
cycles in G(a, f) with GCD 1. That is, c(a, n,d) = c(a9 f, l). • 

We are now ready for the main result of this section. 

Theorem A: If (a, ri) = 1, then 

C(a,») = I - <p(d) 
X ordd(a) 

Thus, 

1 ? ; ordx(5) ord7(5) ordn(5) ord77(5) 
1 6 10 60 = -+—+— + — 
1 6 5 30 

= 1 + 1 + 2 + 2 = 6. 

Proof: We have 
C(a,ri) =J^c(a,n,d) 

d\n 

= Y c a , 4 3 l (byLemma3) X \ d ) 
= ]T c(a, d, 1) (by reordering the sum) 

d\n 

= I 7 ^ A (by Lemma 2). D 
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3. THE PARITY OF C(a, n) FOR (a, n) = l 

Next, we determine the parity of the number of cycles in G(a, ri) with GCD 1; from that, we 
determine the parity of C(a, ri) for (a, ri) = 1. 

Lemma 4: Let p be an odd prime, let r be a positive integer, and let (a, p) = l. Put p -1 = 2sq, 
where q is odd. (a) If (alp) = 1, then ordy (a)|2jr'15pr"1. (6) If (alp) = - 1 , then 25|ord^(a). 

Proof: Euler's criterion for the Legendre symbol states that (alp) = a(/?"I)/2 (mod/?). Thus, 
/>S— 1 

if /? - 1 = 2*#, where q is odd, then (al p) = a q (mod/?). We have two cases: 
(a) If (al p) = 1, then a2 * = 1 (mod/?), so that ordp(a)|25-1^. If the statement is true for 

some r > l , then ar~lwr~l -\-\-kpr. Raising both sides to the /?*** power, we have a2'~ & = 
(1 + kprY SE 1 (mod pr+1). Hence, ord^r (a) \T~lqpr~l by induction. 

(b) If (a//?) = - 1 , then a2 q = -1 (mod/?), so that 25|ordp(a). Since ord^(a) is a divisor 
of ord/ (a) for r > 1, we are done. • 

Lemma 5: Let (a,n) = l with w odd. If n = pr, where/? is a prime and if (a//?)• = - 1 , then 
c(a, /i, 1) is odd; in all other cases, c(a, w, 1) is even. 

Proof: Let p-\-2s q, where g is odd. By Lemma 4, if (alp) = - 1 , then ordpr(a) = 2*£ 
with £ odd. Since <p(pr) = pr~l(p -1) = pr~l2sq, it follows from Lemma 2 that 

c(a, p\ 1) = ™ y = ^—^, 
ordpr(a) A: 

which is an odd number. Hence, c(a, /?r, 1) is odd. 
We must now show that c(a, n, 1) is even in all other cases. 
First, if n-pr with p as above, and if (alp) = l, then the highest power of 2 dividing 

ord r(a) is 2s"1. Since 2s \<p(pr), it follows that the fraction j£pJa) is even. 
Next, if n - Uf=l p? with g > 1 and pt,-1 = 25'^, then 

o r d > ) | [ A ^ 2 ^ , . . . ^ ^ 

where M = max(sh..., s ). Now let S = Zf=1 ̂ . Since w is divisible by at least two distinct odd 
primes, it follows that S> M9 so that c(ay w, 1) = o r ^ \ is divisible by 2S~~M. Hence, c(a, w, 1) is 
even. D 

A slight modification of the above proof yields the following lemma. 

Lemma 6: Let (a,«) = 1 with n even. 
fuj If/i is divisible either by 8 or by more than one odd prime, or if n = 4pe with p an odd 

prime, then c(a, n, 1) is even. 
(b) If/? is an odd prime, then c(a, pe, 1) = c(a, 2pe, 1). 
(c) <a , l , l ) = <a,2, l ) = landc(a,4,l) = ̂ 3 . 
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We may now prove our main results. 

Theorem B: Let a and n be relatively prime, and let n be odd. Then the number of cycles in 
G(a, n) is odd or even according as a is or is not a quadratic residue mod n. That is C(a, n) = 
i ^ ( m o d 2 ) . 

For example, C(3,1001) is even because (3 /1001) = (1001 / 3) = (2 / 3) = - 1 . A bit of direct 
calculation reveals that ord7(3) = 6, ordn(3) = 5, and ord13(3) = 3, so that 

C(3,1001) = X 9(d) 

- 6 10 12 60 72 120 720 , t . A . 10 0 nA CA = 1 + - + — + — + — + — + + = 1 + 1 + 2 + 4 + 2 + 12 + 8 + 24 = 54, 
6 5 3 30 6 15 30 

which is indeed even. Somewhat more tricky is the evaluation of C (2159, pq), where both 
p= 2059094018064827312345603 and q = 534286141271831814831333517 are primes. But, 
since -pq = 3 (mod 4), we see that (2159//^) = -(p9/2159) = -(743/2159) = (2159/743), 
which reduces to the product (2/673)(8/35), or - 1 . Hence, C(2159,pq) is even. 

Proof: Let n = Ylf=i pf* with each pt odd, and suppose (a, n) = 1. It follows from Theorem 
A and Lemma 5 that 

^ , ) = Z ^ ^ + Zi-^(mod2), 
^ J o r d » Mjlordjia) 

since all other terms are even. If we order the primes pj so that for some integer/(which might 
be 0), (a I pt) = 1 if and only if i > f, then we see that 

C(flf,w)sl + 2 S 1 (mod2)sl + ̂ ^ (mod2). 
i<f j=l Kf 

On the other hand, since n is odd and (a, n) = 1, we use the well-known properties of the 
Legendre and Jacobi symbols to see that 

(a//i) = fl(a/Piy = n ( - l ) e ' [since (a/Pi) = 1 for / > / ] 
/=1 i<f 

= (-lf^e\ so that 

(_1)C(«.») s (_i)1+2W*< s -(a/n) (mod2). 

Hence, C(a, w) is odd if (a I n) = 1, and C(a, n) is even if (a / n) = - 1 , and we are done. • 

Theorem C: Let a and w be relatively prime, let n be even, and write n = 2 V , where n' is odd. 
(a) If £ = 1, then G(a, w) has an even number of cycles. 
(b) If e > 2, then the number of cycles in G(a, n) is even or odd according as -1 is or is not 

a quadratic residue mod n9. That is, 
nt \ l - ( - l / W ) , Anx 
C(a,n) =—* L (mod 2). 
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Proof: Theorem C follows from Theorem A and Lemma 6 in the same way that Theorem B 
follows from Theorem A and Lemma 5. • 

4. THE PARITY OF C(a, ri) FOR ARBITRARY a AND n 

We are now ready to extend Theorems B and C to the graphs G(a, ri), where a and n are not 
relatively prime. The principal observation is the correspondence between the cycles in G(a, qrri) 
and the cycles in G(a, rri). Specifically, we have the following lemma. 

Lemma 7: Suppose that (m, a) = l and that each prime divisor of q divides a. Then C(a, qrri) -
C(a,m). 

Proof: Let x be an integer mod qm. We may write x-(xa,y), where (y, a) = 1 and each 
prime divisor of xa divides a. Thus, (xa, q) = 1. Now let / > 0 and r > 0 be minimal and satisfy 
a1+rx = dx (mod qm). This happens if and only if y(d - l)(dxa) = 0 (mod qrri). But (dxa, q) = l 
and (y{ar -l),m) = l. Hence, the above congruence holds if and only if q\y(ar -1) and m\dxa. 
Thus, (dx, ...,d+r~lx) is a cycle in G(a, qrri) if and only if/ is the least nonnegative integer such 
that rn\dx and (y,ay, ...,d"ly) is a cycle in G(a, q), wherey is the largest divisor of x relatively 
prime to m. But this means that the cycles of G(a, qrri) and the cycles of G(a, q) are in one-to-
one correspondence, i.e., C(a, qrri) - C(a, rri). D 

As a direct consequence of Lemma 7, we have the following result. 

Theorem D: If a and n are positive integers, then the parity of C(a, ri) is equal to the parity of 
C(a, nf), where n' is the largest divisor of// that is relatively prime to a. 

5. THE CYCLE STRUCTURE OF THE GRAPHS GP(a, n) FOR n A PRIME 

Let GP(a, ri) be the directed graph with vertex set V = {0,1,..., n -1} such that there is an arc 
from x to y if and only if y = xa (mod ri). Let CP(a, ri) denote the number of cycles in the graph 
GP(a,ri). 

There are some interesting differences between the graphs GP(a, ri) and G(a, ri). For exam-
ple, if (a, ri) = l, then every vertex of G(a, ri) lies on a cycle. This is not the case for the vertices 
of GP(a, ri). If pn is a prime power, then GP(a, pn) looks like a union of charm bracelets, with 
each charm a tree that corresponds to a coset of a certain subgroup U of roots of unity mod pn. 
In particular, if we write (p(pn) = qr9 where (q, a) = l, every prime divisor off divides a, and m is 
the least positive integer such that r \am, then [/consists of the amth roots of unity mod <p(pn). 

Our principal result of this section is the following theorem. 

Theorem P: If pn is an odd prime, then there is a one-to-one correspondence between the cycles 
of GP(a, pn) and the cycles of G(a, q), where q is the largest divisor of <p(p") that is relatively 
prime to a. Furthermore, 

cp(a,P") = i+ ^ - e ^ L 
dMp"Ud,a)=l ° r < U « ) 
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The following lemma leads us to the proof of Theorem P. 

Lemma 8: Let pn be a prime power, let g be a primitive root (mod p\ let (a, p) = l9 and write 
<P(pn) = W, where (q, a) = 1 and every prime divisor of r divides a. Then x and y lie on a cycle in 
GP(a9 /?") if and only if either (a) there exist integers j and k such that x = g^ (mod /?"), y = g* 
(mod/?), and j and A: lie on a cycle of G(a, q)9or (b) x = y = 0. 

Proof: If p\x9 then for some positive integer s9 xa* = 0 (mod pn). Thus, if /?|x, then x lies 
on a cycle in GP(a, pn) if and only if x = 0 (mod /?"). From here on, we assume that x and y are 
relatively prime to/?. 

If x is a vertex of GP(a9pn)9 then we may write x = gt (mod/?") for some integer t with 
0 < f < (p{pn). Let us first show that x lies on a cycle of GP(a, pn) if and only if r \t. We have 
the following sequence of equivalent statements: 

x lies on a cycle of GP(a9 pn) 
if and only if xa = x (mod/?") for some positive integer s, 
if and only if gt(<a _1) = 1 (mod pn) for some positive integer s, 
if and only if <p{pn) \ t(as -1). 

Hence, if x lies on a cycle of GP(a, /?"), then rq\t(as -1). Now each prime divisor of r divides a, 
so it follows that (r, as -1) = 1. We conclude that r\t. 

Conversely, suppose that r\t, so that x = grj (mod/?") for some integer/ If j = 0, then 
x = 1, which is clearly on its own cycle; since g9^p ) = 1 (mod/?"), we may assume that 1 < j < 
q-l. The above argument shows that x is on a cycle if and only if rq\rj{as -1) for some integer 
s. Since 1 < j < q - 1 , it follows that q\(as -1). In particular, if s = ordq(a), then we may con-
clude that x lies on a cycle of length s. 

Next, x and y will lie on a common cycle if and only if x = g* (mod/?") and y = ^k (mod 
pn) lie on a common cycle of GP(a, /?"). It is straightforward to verify that this happens if and 
only if there exists an integer m such that jam = k (mod q)—i.e., that j and k lie on a cycle of 
G(a,q). 

Finally, if (j, ja,..., k = jam, ...,jas~l) is a cycle in G(a, q), then it follows that s = ord^(a), 
which means that (g*, grJa,..., gr^m,..., grjaS~l) is a cycle in PG(a9 /?"), and we are done. D 

Theorem P now follows from Lemma 8 and Theorem A, and from the fact that there is one 
extra cycle in PG(a9 /?")—the cycle consisting of the directed loop from the vertex 0 to itself. 
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1. AIM OF THE PAPER 

The Jacobsthal polynomials Jn(x) and the Jacobsthal-Lucas polynomials jn(x), whose 
properties have been investigated in [4], are a natural extension of the Jacobsthal numbers Jn and 
the Jacobsthal-Lucas numbers jn which, in turn, have been investigated in [3]. These polyno-
mials are defined by the second-order recurrence relations 

Jn+2(x) = Jn+l{x) + 2xJn(xl [JQ(x) = 0, Jx(x) = 1] (1.1) 
and 

J„+2W = Jn+l(x) + 2xUXX L/0(*) = 2> AW = ll 0 -2) 
respectively, where x is an indeterminate. 

Since throughout this paper we shall make use of the notation and the formulas found in [3] 
and [4], the reader is assumed to be aware of the contents of these papers. 

Definitions: Following the idea exploited in [1], let us define the polynomials Jjp(x) and jjp(x) 
{see (3.9) and (3.10) of [4] for the combinatorial representations of Jn(x) and jn(x)} as 

d L("-i)>2j 
4l\x) = ̂ Jn(x)= I Tr\^-*-ry-1 (n>0), (1.3) 

. ( 1 V , d . . . ^rnrfa-r AHX) = ̂ J»(X)=1^[ r 
\nl2\, 

xr~l (n>l), (1.4) 
J 

and 
4Hx) = il\x) = 0, (1.5) 

where the symbol ["J denotes the greatest integer function, and the bracketed superscript sym-
bolizes the first derivative with respect to x. 

The aim of this paper is to study some properties of the above sequences just as was done in 
[1] for the Fibonacci and Lucas polynomials. Here, we shall also confine ourselves to considering 
the case x = 1. Since letting x = l in (1.1) and (1.2) will yield the Jacobsthal numbers and the 
Jacobsthal-Lucas numbers {cf. (2.3) and (2.4) of [3]} 

j n = ±^±JL md jn = 2"+(rV, 0-6) 

the sequences {Jfp(l)} and {jjp(l)} will be referred to as Jacobsthal and Jacobsthal-Lucas 
derivative sequences. For notational convenience, their terms Jjp(l) and j*p(l) will be denoted 
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by Hn and Kn, respectively. From (1.3)-(L5), the numbers Hn and Kn can be obtained readily for 
the first few values of n. They are shown in Table 1. 

TABLE 1. Tie Numbers Hn and Kn for 0 < n < 8 

n 
4Hl) = H„ 
J?V) = ^ 

0 1 2 3 4 5 6 7 8 
0 0 0 2 4 14 32 82 188 
0 0 4 6 24 50 132 294 688 

2, CLOSEB-FOMM EXPRESSIONS FOR HH AND KH 

Closed-form expressions for Hn and Kn are, quite obviously, useful tools for discovering 
their properties. They are established in this section, where some equivalent expressions for these 
numbers are also found. 

By using formulas (1.4), (1.5), (3.3), and (3.4) of [4], we easily see that 

A(1)(JC) = 4 - A ( X ) = 4 /A(X) , 
ax 

a®(x) = ^-a(x) = A(1)(x) 72 = 2/ A(x), 
ax 

fiP>(x) = 4~$(x) = "A(1)(JC) / 2 = -2 / A(x), ax 

[an(x)il) = —an{x) = MH(x)a( 1 ) (x) = 2waw-!(x) / A(x), 
dx 

and 
[^(jc)p = ̂ -Pn{x) = npr\x)fil\x) = -2npr\x) I A(x). 

Hence, we have 

JPW-i "o"(x)-^"(y) 
A(x) 

_ 2 " - / » - i ( * ) - 2 J « ( * ) 
A2(x) 

and 
yr(x) = 2n/l_1(x). 

Letting x = 1 in (2.1) and (2.2) leads to the relations 

Hn = J?\l)=2{nj"-^2J»y 

and 

which express H„ and .£„ in terms of J„ and _/„. 
By (2.3) and (2.4) above, and (1.6), the following relations can be obtained readily: 

2 " ( 3 K - 4 ) - ( 6 E - 4 ) ( - 1 ) " 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

and 
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^•V+V-W, (2.6) 

which express Hn and Kn in terms of their subscripts. 
Observe that using (2.5) and (2.6) above, along with (1.6), we obtain the relations 

Hn = (3n-4)J^n(-iy ( 2 ? ) 

and 

which express Hn in terms of Jn and Kn in terms of j n , respectively. 

3. BASIC PROPERTIES OF W AND K„ 
ft n 

Some relations involving Hn and Kn are established in this section, most of which are the 
analogs of those found by Horadam in [3] for Jn and j n . Some simple but sometimes tedious 
manipulations involving the use of (2.3)-(2.8) provide the required proofs. To save space, only 
the proofs of Theorems 1-3 will be given in detail in Subsection 3.2. 

3.1. Results 
Generating functions 

ly-w^w- (3,) 

f r y - - 2y2(2~y) rtr> 

These functions can be obtained readily from (3.1) and (3.2) of [4]. 
Recurrence relations 

Kn+2 = Kn+l+2Kn+2jn. (3.4) 

These relations can be obtained readily by calculating at x = 1 the first derivative with respect 
to x of both sides of (1.1) and (1.2). 

Some identities 

H„K„ = | [ ^ _ , - 2J„_1(4J„ -7„_,)] (3.5) 

= lH2n-^[(-2r2 + 3n4"-4] (3.5) 

Hn^2Hn_^Kn-2Jn_x (3.6) 

= 2(«-!)./„_, [by (2.4)], (3.6) 

Kn+l+2Kn_l = 9H„+2Jn + 2\ (3.7) 
H„+K„ = 2H„+1 [from (2.5) and (2.6)], (3.8) 
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Kn-H^AiH^ + J^), (3.9) 

Kn =mn^[4(-lf(3n-l) + 2"+2l (3.10) 

Observe that identity (3.8) is an important feature of Hn and Km being analogous to Jn+jn = 
2Jn+l for Jacobsthal and Jacobsthal-Lucas numbers. 

Simson formula analogs 

j2 _ 1 r/ owo*,2 H^H^-H* =^[{-2y{9n*-\%n + S)-4» -4\, (3.11) 

Kn+lKn_l-K^ = -~[(-2)"(9n2-5) + 4" + 4]. (3.12) 

Limits 
\im H„+l /Hn = Mm Kn+l/Kn = 2, (3.13) 

lim £"„/#„ = 3. (3.14) 

Evaluation of some finite sums 

^ ^ f X ^ - 2 ^ - - ^ [ 2 - 2 - ( - i n 6 W - 5 ) - 9 ] ? (3.15) 

r ^ 2 ^ = 2 A n - l [ ( - l ) " ( & i - l ) + 2lH-2-3]. (3.16) 

Alternative, but perhaps less elegant, expressions for Sn and Tn can be obtained after several 
tedious manipulations involving the use of (2.4) and (2.7). They are 

Sn-^{2\21n^56)~9Kn~{-ir{\2\ni2\-- 5) + 5l], (3.15) 
lUo 

where the symbol \x\ denotes the least integer not less than x, and 

Tn=±[Kn + J„+l + 2"(n-2) + l]. (3.16) 

(3.17) t{f]Hk =2(n-2)3"-3+^2Su+^„ 

where Satb = 1 (0) if a - (*)* is the Kronecker symbol, 

i(fjKk=2ny-2-lsin. (3.18) 

Convolution properties 

Hn = ±JkJn_k-kr + (-l)Vn-W, (3.19) 

Kn =^ lAy»- t -^ [2"7 - ( - l ) " (3» -5 ) ] , (3.20) 
J /c=0 V 
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YjHkHn_k = 3-7[2"-l(9n3 -12n2 + 159rc-80) + (-l)w(18rc3-72/?2 + 30/? + 40)], (3.21) 

^KkKn_k = y\2n-\9n* -51n + \6) + (-\)n(nrf -42#i-8)]. (3.22) 
k=0 

Remarks: 
(i) The geometric series formula has to be used along with (2.3)-(2.8) to prove (3.15)-(3.22). 

(ii) The identities (3.19) and (3.20) can be checked easily by using (2.5), (2.6), and the identities 

t JkJ„-k =\{(n +1)7„ -2Jn+l] (3.23) 
k=Q y 

and 

E JkJn-k =(P + l)jn + 2^+l> P .24) 
k=0 

which are obtainable by using (1.6) and the geometric series formula. 

Congruence properties 

Congruence properties of Hn and Kn deserve a thorough investigation. Nevertheless, in this 
paper we shall confine ourselves to considering the residue of these numbers modulo their sub-
scripts. That Kn is divisible by n for all n > 0 is patent by (2.4). A brief computer experiment 
showed that the values of n < 1000 for which H„ is divisible by n are 1, 2, 4, 20, 100, 220, 500, 
620, and 820. 

Theorem 1: There exist infinitely many values of n for which Hn = 0 (mod n). 

Theorem 2: If p ^ 3 is a prime, then 
3 

(mod/?). 

Theorem 3: If p & 3 is a prime, then Kp = 0 (mod/?2). 

3.2. Proofs of Special Results 

Proof of Theorem 1: We shall prove that, if n = n{k) = 5k4 (k = 0,1,2,...), then Hn = 0 (mod 
n). Let Bn denote the numerator of the fraction on the right-hand side of (2.5). Since n(k) and 
27 are coprime, it suffices to prove that Bn^ = 0 (mod n(k)). After some simple manipulation, it 
is apparent that this is equivalent to proving that 4[2n(k)-(-T)n(k)} = 0 (mod n(k))9 that is, to 
proving the validity of the congruence 

2 W ( ^ 1 (mod 5*). (3.25) 

By Euler's theorem, it is known that 2m = 25"4 = 2^k+l) = 1 (mod5M), whence (3.25) is 
satisfied a fortiori. 

By Table 1, it is immediately seen that the congruence Hn = 0 (mod ri) holds for n = 1, 2, and 
4. We now state a proposition that gives the general solution to the problem of finding all n>4 

Hp^-\2\ 
i+p(-iy(mod3) 
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for which this congruence is satisfied. Of course, this general solution encompasses the case 
n = 5̂ 4 considered in the proof of Theorem 1. 

Proposition 1: For n>4, Hn = Q (mod ri) if and only if 

n = 4p?p?~.(p2 = 5,p3 = 7,p4 = n,...;a2>lai>Q£ori>3), 

and ord(2,/?/,/) divides n for all i such that at >1, where (see [2], p. 71) the symbol ord(a,b) 
[defined for gx.d.(a, b) = 1] denotes the least exponent x for which ax = 1 (mod b). 

The proof of Proposition 1 is extremely long and cumbersome; it is omitted for the sake of 
brevity, but it is available on request. 

Proof of Theorem 2: By (2.5), we get the congruence 

-2P+2~A_ 12 
27 ~ 27 Hp = — — = - — (mod p) (by Fermat's Little Theorem). 

The desired result is obtained readily by observing that the multiplicative inverse of 27 modulo a 
prime p * 3 is {[1 +j9(-l)^(mod3)]/3}3. 

Proof of Theorem 3: First, by Table 1, we observe that K2 = 0 (mod 4) and K3 = 6 (mod 9). 
Then, for p > 5, let us define Mp = Kp/ p and prove that Mp = 0 (mod p). By (2.4) and (1.6), 
we can write 

2^ -2 2 - 2 
M - 2 J_ j = = —— = 0 (modp) (by Fermatss Little Theorem). 
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{Submitted March 1996) 

Recently the (2, F) and (3, F) generalized Fibonacci sequences were considered and the gen-
erating functions for these sequences were derived (see [1] through [8]). The purpose of this note 
is to derive generating functions for the (2, T) generalized Tribonacci sequences. 

Let S = (a, b) and Sb be the group of permutations on S. Let / be the identity and a = (a, b). 
Let rf be a permutation of Sb for 0 < / < 2 and Yt = {at, bt•) for /' > 0. Finally, let ah a2, a3, bx, b2, 
and b3 be six distinct real numbers. Then 

Yn+3 = tr&+i> " ^ ° > (1) 
/=0 

with initial conditions Yi = {ai,bi} for 0 < / < 2 , are the eight systems of third-order difference 
equations defining the (2, T) generalized Tribonacci sequences. 

Define 
fO i f r , = / , 

Si"\l i?r^{a,bX 

and S = Z7
2
=0 &$ • Then each of the eight systems (1) corresponds to an integer S where 0 < s < 7. 

When S is expressed as a binary number and the right-hand member of (1) is arranged in descend-
ing order of subscripts, then the lss in the binary number indicate the position(s) of the elements bt 

in the equation for an and the position(s) of the elements at in the equation for bn. If 5 = 0 = 0002 

the system is 
an+3 ~ an+2 + Qn+l + an > 

ftff+3=*»+2+*^l+*if 

In this case the (2, T) generalized Fibonacci sequences are a pair of generalized Tribonacci 
sequences. This case is excluded from further consideration. 

Consider the seven difference systems 

^ 3 = ^ 2 + ^ 1 + ^ , 1 ^ 7 > (2) 

with initial conditions 

l f = {a,,6,}, 0 < / < 2 . 

Atanassov [3] proved that these systems are equivalent to seven sixth-order systems 

I > X + 6 - , = 0 , i ^ + 6 _ , = 0 , n*0, (3) 
1=0 z=0 

with initial conditions {at)\ and (pt%9 respectively. The values for k* for 1 < s < 7 and 0 < i < 6 
are given in Table 1. 
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TABLE 1. Values of kf 

s 
1 
2 
3 
4 
5 
6 
7 

0 
1 
1 
1 
1 
1 
1 
1 

1 
- 2 
- 2 
- 2 

0 
0 
0 
0 

2 
-1 

1 
1 

- 3 
- 3 
- 1 
- 1 

3 
2 

- 2 
0 

- 2 
0 

- 4 
- 2 

4 
1 
1 

- 1 
1 

- 1 
- 1 
-3 

5 6 
0 - 1 
0 1 

- 2 - 1 
2 1 
0 - 1 
0 1 

- 2 - 1 

Let ps(x) = 2f=o ̂ /V and let {PJJ^Q be the recursive numbers (of order six) determined by 
1/ ps(x). Then the seven recursion relations and first terms of the sequences are given in Table 2. 

TABLE 2 

nr 
i 
2 
3 
4 
5 
6 
7 

Recursive Relations 

^ 6 = 2 ^ 5 + ^ - 2 ^ 3 - ^ 2 + ^ 
^M+6 = 2%+5 — %+4 + 2rJj+3 - rn+2 — Fn 

Pn+6 = 2Pn+5 + Pn+4 + ^ 2 + 2^„+1 + P. 
Pn+6 = 3 ^ 4 + 2 ^ 3 - ^ 2 - 2 ^ n + 1 - P„ 
^ + 6 = 3 P „ + 4 + P„+2+P„ 
P = P 4-AP + P - P / n+6 ^ + 4 T ^ n+3 T ^«+2 J « 

+ 2Pn+3-f3Pw+2+2Pn+1+Pw 

1 
1 
1 
1 
1 
1 
1 

First 7 Terms 

2 
2 
2 
0 
0 
0 
0 

5 
3 
3 
3 
3 
1 
1 

10 
6 
4 
2 
0 
4 
2 

20 
12 
6 
8 

10 
2 
4 

38 72 
22 40 
12 26 
10 24 
0 34 
8 18 
6 12 

Let fs(x) and g"5(x) be the solutions to the seven systems and let 

Substituting f'(x) into the difference systems (3) yields 

f 5 X /'(*)= X?/*'X^*y 
V/=o us 

where J^ are from the sequences in Table 2 and q- = S^=0Kai-m> 0 <i < 5. 
Expanding and collecting terms gives 

for the generating function of {G"}Q . The terms of the sequence are given by 
j 

I 
i=0 

«;=î v=x 2«i ^mai-n 
m=0 

P;_t for/<5, 
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and 
5 5 

fZ^rE^.fe. tej>5. 
/=o 7=o Lw=o 

The values of a'y 3 <i <5, are computed in terms of a£, a/, aj , £Q, */> an(* *2 by use of 
equations (2). The sequences {b-}^ have the same form for each s. 
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(Submitted April 1996-Final Revision December 1996) 

1. INTRODUCTION 

Motivation 
Recently [2], some second-order differential properties of generalized Fibonacci polynomials 

and generalized Lucas polynomials were exhibited. 
Here, we intend to 

(i) obtain similar differential equations from a slightly different viewpoint in the more general 
context of the polynomials Wn(x) and °W„(x) [3], and 

(ii) discover analogous equations for Jacobsthal polynomials Jn(x) and Jacobsthal-Lucas polyno-
mials jn(x) [4], i.e., non-Fibonacci and non-Lucas polynomials. 
Central to the process is the question: 
Can we determine Rodrigues9 formulas for Jn(x) and jn(x) corresponding to those (in a 

somewhat different notation) for Un{x) and Vn(x) in [2]? 

Background 
Essentially, the following basic material [3] is needed: 

W„+2(x)=p(x)Wn+l(x) + q(x)Wn(xl W0(x) = 0, Wx(x) = l9 (1.1) 

^ + 2 W = ̂ R + i W + ? ( ^ W ? %(*) = 2, %(x) = p(x)9 (1.2) 
leading to (if we drop the functional notation) 

W„-^^, (1.3) 

X = a"+fi", (1.4) 

where 
cc = ±{p + A}, 

A = ^Jp2+4q = a-p.\ 

(1.5) 

Differentiating once w.r.t. x gives 
x = PPL±*L. (1.6) 

A 
Specialized cases of (1.1) and (1.2) are generalized the Fibonacci and Lucas polynomials 

Fn = Wn and Ln = <Wn9 for which p = x,q = l, and the Jacobsthal and Jacobsthal-Lucas poly-
nomials Jn and jn9 for which p = l,q = 2x. (See [3] for other examples of "Fibonacci-type" 
polynomials, e.g., Pell, Chebyshev, and Feraiat.) 
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Two dichotomous situations thus arise: 
A. q' = 0 for "Fibonacci-type" polynomials like F„ and Ln; 
B. p' = 0 for Jnmdj„. 

Immediately from (1.6) we have 

PPL 
A ' 

2 £ 
A ' 

(1.6A) 

(1.6B) 

,np'W„ (q' = 0), 

Crucial to the theory are the derivatives [3] 

i 
\nq'Wn_x (p' = 0), 

so, in particular, 
J^2nJ„_l. (1.8) 

Finally, we record for later use the notation [2] 

c«,o = 2 7 ^ 7 (»*0), (1.9) (2n)l 
and 

n\n(n + r)\ 
{2n)\(n+r){n-r)\ 

whence 

^=2^:^::^ .„ ( » ^ D , O.I<» 

cn,r+i = (»2-r2)cn<r (»>r + l> l ) . (1.11) 

Notation for Theorems: Letters F and J(j) will be appended as subscripts to the Theorem 
number of theorems relating to Fibonacci-type polynomials and Jacobsthal-type polynomials, 
respectively. In this symbolism, we will have Theorem lF,..., Theorem 3y. 

2, SOME BASIC DIFFERENTIAL EQUATIONS FOR RECURRENCES 

A. Fibonacci-type Polynomials (q' = 0) 
From (1.3)-(1.7), double differentiation of cWn leads to 

A2^=n2(pfWn-np(pfWn 

whence, with Wn = y, 
A2/'+pp'y' - {np'fy = 0. (2.1) 

Alternatively, if we follow the procedure in [2], while using our notation, then we arrive at 
(2.1) also, a process left to the reader. 

Differentiating (2.1) r times in conjunction with Leibniz' rule, we deduce that z = y^ = °MAr) 

satisfies the differential equation 
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AV + (2r + \)pp'z' + {p'f{r2 - n2)z = 0, (2.2) 

of which (2.1) is the special case when r = 0. 

Illustrations of (2.1) are: 
(i) the associated Morgan-Voyce polynomial Cn = y, for which p = 2 + x,q = -l, leading to [2] 

x(x + 4)y" + (x + 2)y! - n2y = 0; 

(ii) the Chebyshev polynomial Tn - y, in which p = 2x, q = -1 (x = cos0), yielding 

(l-x*)y"-xy' + n2y = 0, 

in conformity with [6, p. 260]. 

Starting now with the double differentiation of Wn in (1.3), we eventually arrive at the differ-
ential equation 

A2W^+3pp^-(pf(n2 -l)Wn = 0. (2.3) 

Compare this with (2.1). A quick check confirms that r = 1 in (2.2) does indeed give us 
(2.3), where we invoke (1.7) for qf = 0. Particular instances of (2.3) are 

(a) the Morgan-Voyce polynomial Bn, for which p = 2 + x,q--l, giving 

x(x + 4)B^~ 3(x + 2)B'n - (n2 - l)Bn - 0, 

in conformity with [2, p. 455] on making the transformation n -» n -1 for our .B„; 
(b) The Chebyshev polynomial S„ (in the notation of [2, p. 453]), where p = 2x, q~~\ 

(x = cos$), for which 

(l-x2)S>>-3xS>+(n2-l)Stl = 0 

as in [6, p. 260], n being replaced by n-1 for our S„. 

Now (1.7), where q' = 0, immediately shows that °W$r) = np'W%r~l) {r > 1), i.e., 

^ - D = _ L ^ ) . (2.4) 
np' 

Hence, W^~l) satisfies (2.2). Combining this with (2.2), we deduce that 

Theorem 1F: W^r~l) and°l^(r) both satisfy (2.2). 

Example (r=2,m = 4;p = 2x, q = l, Pell-type polynomials [3]): P}1) = (8x3 + 4x)f and Q*2) = 
(16x4 + 16x2 + 2)» both satisfy 

(x2 + i)z" + 5xz'-l2z = 0. 

Observe that (2.2) can be cast in the more general form (cf. [2]): 

[A2r+Vf = (pf(n2 -r2)A2r~lz. (2.5) 

Following the technique in [2] and using (2.5), we may establish the results corresponding to 
equations (2.9)-(2.11) in [2], namely (with D(r) s -£) : 
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D[A2r+1Din+r)A2"-1] = (pf(n2 _r2)A2r-li)(«+r-l)A2»-l? QQ 
£[A-2r-l£(*-r-l)A2«-lj = (^2^2 _ ^ + ^^r-3^n-r-2)^n-l^ Q ? ) 

D[AZ)(w+1)A2n+1] - (pf(n +1)2 A'lD(n)A2n+l. (2.8) 

B. Jacobsthal (= eoii-Fiboiiacci)-type Polynomials (pf = 0) 
Trying to apply the method used in [2], or variations of it, to Jn andy„ is likely to lead to 

frustration. 
Therefore, we abandon this approach and start afresh. 
Differentiate twice in the pivotal relation (1.7) for p'• = 0. Then 

AX"+ (<7')X' - <n-l)(q')2°W„_2 = 0, (2.9) 

wherein the diminished subscript in the undifferentiated polynomial is particularly to be noted. 
[Check (2.9) when, for example, y4 = 8x2+8x + l, j6 = 16x3 + 36x2 + 12x + l, for which p = l, 
q = 2x, A2 = l + 8x.] 

Continued differentiation with recourse to Leibniz' rule, as in [2], reveals the generalized 
form of (2.9) to be {zn = °W<r)) 

A2z^(4r + q')q^-n(n-l)(qfzn_2=0. (2.10) 

Putting r = 0 in (2.10) obviously leads us back to (2.9). 
Repeated differentiation in (1.3) next yields, with little difficulty, 

A2^"+ XqfW; ~ n(n - l)(qfWn_2 = 0. (2.11) 

Contrast this with (2.3). One may readily verify (2.11) for, say, / 5 = 4x2+6x + l, J7 = 8x3 + 
24x2+10x + l. 

Proceeding for the sake of interest to differentiate (2.11) may times, we eventually arrive at 
the generalization (zn = W^'^) 

A2<+(4r + q')q>z>n - n(n - l)(qfzn_2 = 0. (2.12) 

Substituting r = 1 clearly reproduces (2.11), since qf = 2. 
Bearing in mind (1.7) with p' = 0 and (2.12), we conclude that 

Theorem 1,; J(
n
r~l) mdj^ both satisfy (2.10). 

Analogously to (2.5), we see that (2.10) may be reformulated as 

[A2r+lzti' = (q?n(n-l)A^lzn_2. 

Corresponding to (2.6)-(2.8), we derive 

DJA2r+ljD(„+r)A2»-lj = (^)2„(„ _ tytfr-ltfntr-Vtfn-l^ Q ] 3 ) 

D [A-2r"1
JD("-'-1)A2fl-1] = (q'fn(n - i)fr*r-sD(n-r-4)gr,-i ̂  (2 M ) 

£>[A£>(n+1)A2"+1] = (qfn(n + \)^D{"-2^2n+l. (2.15) 
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3, RODRIGUES* FORMULAS 

Rodrigues' formulas for Wn, °Wn (when q' = 0) and for Jn, jn (when p' = 0) are now deter-
mined. 
A. Case 9 '= 0. 

Procedures followed In [2] using (1.9) will largely be applied here. 

Theorem 2F: 

(») °W„ = ^hL-ADwA2n-\ 

Proof: Definitions (1.3) and (1.4) disclose that 

Wn+l = ±[p°Wn + A2W„}. (3-1) 

Assuming (i), (ii) in Theorem 2F, we then have, on simplifying, 

^ i = " ! A [pD^A^+np'D^A2"-1}. (3.2) 
"+1 (2»)!(p') J 

But, by Leibniz' rule, 
£,(»+!) A2»+i = jD("){(2« + i)^p'A2n-1} 

= (2/i + l)p'{PD^A2"-1 +np'D^"-l)A2"-1}, 

since p " = 0. Accordingly, (3.2), (3.3) yield 

w = 2(» + l)!A D(n+i)/fn+\ 
"+1 (2n+2)\(p')"+l 

in conformity with Theorem 2P(ii) and (1.9). 
Furthermore, from (1.7), 

w , = I °w> , 
"+1 (n + \)p' "+1 

=(n+\)P'^rD{AD"n+l)A2"+l) b y T h e o r e m 2 - ( i i ) 

= ̂ -cn^A~^A2^ by (2.8) 

in agreement with Theorem 2^-(i). Consequently, Theorem 2F is completely proved. 

Example (Chebyshev polynomials [3], p = 2x, q = -1): 

W5 = 16x4 - 12x2 + 1 (=U4 [5, p. 256]), 
°W5 = 2(16x5 - 20x3 + 5x) (= 2T5 [5, p. 256]). 
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See also [7, p. 755]. Be it noted that in [6] the Rodrigues formulas for Chebyshev polynomials 
are given in terms of Gamma functions. 

More generally, 

Theorem 3F: 

0) e^-TT^brr^-1^-1)*2"-1; n{pf) 

(ii) ^ z . - ^ — A - ^ ^ ^ A 2 " - 1 . 
(p'T 

Proof: 
(i) Induction on r is employed. The Theorem is true for r = 0 [Theorem 2^(0] and may be 

verified for r = 1,2. Assume it is true for r = k. Then 

0**+D = °n*+\ D[A-2k-W"-k-»A2"-1] by Theorem 3F(i) 
w(p') 

u/i,ifc+2 =r[A-2(*+lM£)(n-(*+lM)A2n-l] b y ( 2 ? ) 

«( /? ' ) W " 2 ( * + 1 ) " 

as expected. Thus, the Theorem is true for r = k +1. Hence, it is true for all r. 
(ii) W^^np'W^ by (1.7) 

= nP' , C?nM A-^+iD(n-r)A2n-i b T h e 0rem 3F(i) 

- °^r A-2r+lD(«-r) A2»-1 
- {pr-2r A 

as desired. Thus, Theorem 3F is completely established. 

Examples: 
Chebyshev: W}x) = 8x(8x2 - 3); 
Feraiat: 1^2)= 36(27x2 -4 ) . (Here, p = 3x,q = -2.) 

B. Case/>' = 0. 
Efforts to exploit the techniques of the theory when qf = 0 to the related situation when 

/?' = 0 are doomed to disappointment, due mainly to the differing natures of A' in (1.6A) and 
(1.6B). A fresh approach is therefore necessary. 

Computations rapidly show that, since A' = 2q' IA (1.6B), 

Z W " 1 = (2#i - l)(2g')A2"""3, 

D(2)gn-l = ( 2 / | _ ^ _ 3)(2g')2 A2""5
3 

D(n-l)A2n-l = ^ _ 1 ) ( 2 ^ _ 3 ^ _ 5 ) 3(2^')"-! A, 

whence 
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(3.5) 

L - ^ - ^ A 2 " - 1 ^ ) ^ neven, 
(9')' 

(3.6) 

(3.7) 

Differentiating once more in (3.4) gives rise to 

D(n)A2n-i = (2n - l)(2w - 3)(2#i - 5) 3 • l(2q')n A"1. 

Initially 

Reassembling the ideas in (3.4), (3.5), and (3.6), we arrive at 

W^AD<'>A'-' = t1)A"-'.nodd. 

Because the left-hand forms in (3.5) and (3.8) resemble the Rodrigues formulas in Theorem 
2F, we feel justified to appropriate to them the name of'Rodrigues-type expressions. 

Now, p = l and q - 2x in (1.1), (1.3), and (1.5) indicate that 

(3.8) 

(1 + Ar-(1-Ar ( t f = 1 + te) 
A 

=—y 
ntt-l Z J 
Z it=0 

» + si*+ (!>• + •••+< 
f(n-,)A-
(-)A"-1 

/i even, 
1/2 odd, 

= a sum of expressions of Rodrigues-type (3.5). 
Similarly, use of (1.2), (1.4), and (1.5) gives rise to 

[f] 
;„=(i+Ar+ ( i-Ar=^i(2^* 

(3.9) 

2k 

, n - l »l + (»W+(»|A4 + ...+ 
fC;)A" n even, 

wodd, 

= a sum of expressions of Rodrigues-type (3.8). 
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Combining (3.9) and (3.10), we then conclude that 

Theorem 2j: The Rodrigues formula analogs for Jn andy„ are given by (3.9) and (3.10). 

Examples: 

"/6~32 
J_ 
32 

= \ + %x + \2xL; 

Je = 

{i)+(3) 0-+8x)+ff) ^ + S x ? 

(o) + (2)(1 + 8:c) + (4)(1 + 8 x ) 2 + (6)(1 + 8 x ) 3 

,2. 

= l + \2x + 36x2+l6x3. 

Our last major program is to generalize Theorem 23. Recall, first, that ffi - 2nJn_l (1.8). 
Elementary calculations involving (1.3) and (1.4) for Jn andy„ quickly tell us that 

^ " A ' U ^ " 1 J"J (3.11) 

Subsequent differentiation reveals that 

jP=^[n{n-l)J?\-lJ?l 

and so on, suggesting the proposition that 

Theorem^: J$> = ±{«(»-!)Jt? ~Qr-l)^}, r>2. 

Proof: Induction on r demonstrates the validity of this assertion. 
Successive differentiations in (1.8) then establish that 

Theorem^: tf = 2nJ<g> ^[(n - l)(n - 2)4^-(2r-3)^1 r>3. 

Example of Theorems 3j,3j (r = 2, n = 9): 

A2) = i ^ 2 4 ^ - 4 ! ) ] = 24(8x2 + 20* + 5) = ± $ . 

Observations 
(i) Summation procedures beginning with the definitions (1.3) and (1.4), and ending with (3.9) 

and (3.10), cannot be applied to the Fibonacci-type polynomials. This is because (3.9) and 
(3.10) are tied irrevocably to (3.5) and (3.8), both of which depend on p' = 0. 

(ii) Corresponding to (3.1) for Fibonacci-type polynomials, for Jn and jn we may derive 

W^AX-^-v (3.12) 
Use of the Leibniz rule nexus in Theorem 2F is impossible in the case of Jacobsthal-type 
polynomials Jn andj„ because of the diminished subscript for °W on the right-hand side. 
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(i) 

(iii) In (3.11), where r = \, the appearance of | jn_x, which seems to break the pattern of the 
theorem, requires explanation. From (1.8), 

f >»-i = f JT^»- i^ = f •2("-1)ioy»-2 <& = n(n-l)4-Jl 
where integration is represented by the negative unit superscript. With this symbolism, the 
pattern in Theorem 3j is valid for r > 1, and hence that in Theorem 3j for r > 2. 

4. ILLUSTRATION OF THEORY WHEN n = 5 (i.e., 2« - 1 = 9) 

Now 
D(1)A9 = 9(pp' + 2q')A\ where A2 = p2 + Aq (1.5), 
£>(*>A9 = 9(70/7' + 2q'f A5 + (pf A7}, 
D<3)A9 = 9{7[5(/7/?' + 2^')3 A3 + 'iip'fipp' + 2q')A5]}, 
£>(4)A9 = 9 . 7 . 3 [ 5 t e ? / + 2^')4 A + I0(p'f(pp' + 2q')2A3 + (p')4 A5]. 

Therefore, 

So, for q[ = 0, on simplifying, 

^ (R .H.S . ) = / + 3p2
? + ^ - r 5 ? 

Jl 6x4 +12x2 +1 for the Pell polynomial P5 [3] :p = 2x9q = 1, 
[(1 + 6x + 4x2 for the Jacobsthal polynomial J5: p = \q = 2x). 

Differentiate (I) again to get 

Z/5) A9 =9.7.5.3. (PP' + 2<lff + i 0 ( p f ( ^ + 2^03A2 + S(p>f(pf + 2gOA3 . (II) 

Then 

TJ^W=(M5 ̂ +2?f+$){p , f {pp'+2q , )3A2+(i)^)4(^'+2*,}4 w 
9 

whence, for q' = 0, 

^ ( R . H . S . ) = p 5 + 5/g-f-5M
2 = °r59 

[32x5 + 40x3 + lOx for Pell - Lucas polynomials [3], 
}(1 +1 Ox + 20x2 for Jacobsthal - Lucas polynomials). 

On the other hand, when p' = 0, we obtain the results (3.4)-(3.8) and hence (3.9) and (3.10). 
Notice, particularly, that the general expressions for W5 and °M̂  above are valid for both 

Fibonacci-type and Jacobsthal-type polynomials, even though q' = 0. 
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This is because the binomial coefficients associated with the powers of A in (V) and (IV) are 
the same as those in (3.9) and (3. JO), since (̂ ) = („"J. 

Expressions for Wn and W„ may be sighted in [5] in a notation slightly varied from that used 
here. 

5. CONCLUSION 

While the author of [2] evidently did not consider this theory as applying to Jacobsthal-type 
polynomials, one observes that if his numerical parameter q in [2, eqns. (1.1), (1.2)] is allowed to 
be functional q(x) = -2x with accompanying change in his x and p, then Jn and jn can be incor-
porated into his system. For example, his U5 ([2, eqn. (1.12)] reduces to 1 + 6x + 4x2 = J5. 

So we come to our rest, having achieved the objectives (i) and (ii) in Section 1 which moti-
vated our undertaking. Many facets of the work were revealed with others to be investigated. 
The unexpected complications in the patterns of behavior of Jn andy„ (and Wn and °Wn ) have 
added zest to the hunt. 

Questions: Does there exist a general formula for the coefficients of the Jacobsthal-type 
polynomials in terms of the Gamma function in the sense of [1, Table 22.3]? If so, is it attainable 
using the techniques of this paper? Can, further, the theory be extended to the situation when 
both p(x) and q(x) are linear polynomials? 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rablnowltz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence 
may also be sent by electronic mail to Fibonacci@MathPro.com on Internet All correspondence 
will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
preference. Proposers of problems should normally include solutions. Proposers should inform 
us of the history of the problem if it is not original A problem should not be submitted else-
where while it is under consideration for publication in this column. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

K+2=Fn+l+K, FQ=°> Fl=l> 
A»+2 = Ai+1 + A»> LQ-2, Lx = 1 

Also, a = (l + V5)/2, £ = ( l -V5)/2 , Fn = (an-0")/&*nd Ln = an+J3". 

PROBLEMS PROPOSED IN THIS ISSUE 

B-836 Proposed by Al Dorp, Edgemere, NY 
Replace each of "W\ nX\ T", and "Z" by either "F" or nLn to make the following an 

identity: 
W„2-6Xi1+2Yn

2
+2-3Zl^0. 

B-837 Proposed by Joseph J. Kostttt, Chicago, IL 
Let 

P(x) = x1997 + x1996 + x1995 +... + x2 + x +1 

and let R(x) be the remainder when P(x) is divided by x2 - x - 1 . Show that i?(x) is divisible by 
F999. 

B-838 Proposed by Peter G Anderson, Rochester Institute of Technology, Rochester, NY 
Define a sequence of linear polynomials, fn(x) - mnx+bn, by the recurrence 

/„(*) =/a-lC/UC*)), ^>\ 

with initial conditions 

and 
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Find a formula for mn. 
Extra credit: Find a formula for bn. 

B-839 Proposed by David M. Bloom, Brooklyn College of CUNY, Brooklyn, NY 
Evaluate the sum 

L»/3J 

in terms of Fibonacci numbers. 

B-840 Proposed by the editor 
Let 

4,= 
Find a formula for A2n in terms of 4, and 4̂„+1 

A? Ai 
A? A? 

B-841 Proposed by David Zeitlin, Minneapolis, MN 
Let P be an integer. For n > 0, let f/„+2 = PUn+l + Un, with C/0 = 0 and C/x = 1. Also let 

^+2 = ̂ ^+1+ K, with F0 - 2 and ^ = P . Prove that 

V2+V2 

is always an integer if a is odd. 

NOTE: The Elementary Problems Column is in need of more easy, yet elegant and non-routine 
problems. 

SOLUTIONS 
Nonstandard Recurrence 

B-820 Proposed by the editor; Dedicated to Herta Freitag 
(Vol 34, no. 5, November 1996) 

Find a recurrence (other than the usual one) that generates the Fibonacci sequence. 
[The usual recurrence is a second-order linear recurrence with constant coefficients. Can you find 
a first-order recurrence that generates the Fibonacci sequence? Can you find a third-order linear 
recurrence? a nonlinear recurrence? one with nonconstant coefficients? etc.] 
There were so many fine formulas sent in that we will only list a selection of them. We omit the 
obvious initial conditions. 
First-Order Recurrences 

Fn+l = aF„ + 0n. Dresel 
Fn+l = pFn + an. Bruckman 
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^ 1 = 1/^+0.41, n>2. 

Second-Order Nonlinear Recurrences 
K+l = ((-d" + F^)/F„_l. 

Third-Order Recurrences 
An+3 ~ 2Fn+l + Fn • 

Fn+3 = \j>Fn+2 + (P + ^Wn+l + ^J ' (P + *) -

Fourth-Order Recurrences 
Fn+4 = (l + P + qWn+3+(l-P~^-P<lWn+2+(Pq-p-^ 

A^-Order Linear Recurrences with Constant Coefficients 
k 

Ai ~ Ai-fr + ^ A1-/-I • 
j=l 

k-\ 
A i ~ A?-2fc+2 + Z^,Ai 

y=i 
W+2/-2&+1• 

Dresel 

Dresel 

Anderson/Bruckman 

Hendel 
Bruckman 

Dresel 

Taylor 

Anderson 

Freltag 

Ander son/S eiffert 

SeifFert 

SeifFert 

SeifFert 

Other Nonlinear Recurrences 

F„ = PL+WlxFn_2 +Fl2 + AFn_tf_1. 

F„=j(LkF„_k +Fkj5F?_k+4(-iy-k). 

Fn = (Fnik-(-l)"Fk
2)/F„_2k. 

Fn "^L(«+2) /2J _ (~V ^1(«-1)/2J-

Taylor sent an 11-page tome of formulas, too many to list them all 

Also solved by Peter G. Anderson, PaulS. Bruckman, Leonard A. G. Dresel, Herta T. Freitag, 
Russell Jay Hendel, H.-J. Seiffert, and Joan Marie Taylor. 

Fibonacci Rectangle 

B-821 Proposed by L. A. G. Dresel, Reading, England 
(Vol 35, no. 1, February 1997) 

Consider the rectangle with sides oF lengths Fn_l and Fn+V Let An be its area, and let dn be 
the length oFits diagonal. Prove that d% = 3 ^ ± 1 • 
Solution by Steve Scarborough, Loyola Marymount University, Los Angeles, CA 

dl - 3 4 = Flx + F„2
+1 - 3F„_^+1 

= Fll+{F„ +Fn_lf-3F„_1(Fn +F„_l) 
- F„ - F^_x - F„_XF„ = F„ - F„_x - /v,_i(F„+i - F„_i) 

= Ft-Fn_lF„+l = (-irl. 
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The last step is Hoggatt's identity (I13) from [1]. 
Reference 
1. Vemer E. Hoggatt, Jr.. Fibonacci and Lucas Numbers. Santa Clara, Calif.: The Fibonacci 

Association, 1979. 
Also solved by Peter G. Anderson, Michel A. Ballieu, Brian D. Beasley, Scott H. Brown, Paul 
S. Bruckman, Charles K Cook, Steve Edwards, Russell Euler & Jawad Sadek, Herta T. 
Freitag, Hans Kappus, Daina A. Krigens, Harris Kwong, Carl Libis, Bob Prielipp, Don 
Redmond, Maitland A. Rose, H.-J. Seiffert, Sahib Singh, Lawrence Somer, L Strazdins, and 
the proposer. 

A Tricky nth Root 

B-822 Proposed by Anthony Sofo, Victoria University of Technology, Australia 
(Vol 35, no. 1, February 1997) 

For n>0, simplify 

^ + F ^ + ( - i r ! ^ V i - a F „ . 

Solution by Hans Kappus, Rodersdorf, Switzerland 
It is well known (see, for example, page 34 of [1]) that aFn+Fn_l - an and Fn+l - aFn- (5n. 

Ignoring complex /3th roots, we presume that the symbol %fx denotes the principal root of the real 
quantity x. Since a > 0 and ($ < 0, we have 

HlaFn+F^=a 
and 

llFn+l-aF„ =4p~"= {-\y\P\= (-ir'fi. 
Therefore, the expression given in the problem has value a + J3 - 1. 
Reference 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, Calif: The Fibonacci 

Association, 1979. 

Several readers incorrectly assumed that %Jpn = /?, which is not true when n is even. Haukkanen 
found several analogs, such as ^jFrJ+l-/3Fn + (-1)"+1 tf/3Fn + Fn_l = 1. 

Also solved by Brian D. Beasley, Paul S. Bruckman, Leonard A. G. Dresel, Herta T. Freitag, 
Pentti Haukkanen, Bob Prielipp, Steve Scarborough, H.-J. Seiffert, Lawrence Somer, and the 
proposer. 

Solving a Simple Recurrence 

B-823 Proposed by Pentti Haukkanen, University of Tampere, Finland 
(Vol 35, no. 1, February 1997) 

It is easy to see that the solution of the recurrence relation 

can be written as An = (-l)n+lFn. 
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Find a solution to the recurrence 

A+2 ~ ~4H-I + 4*? A -i> A -1> 
in terms of i^ and Ln. 

Solution by Hans Kappus, Rodersdorf, Switzerland 
Let An = {-W^n • Then, for the Bn, we have the recurrence 

Bn+2 =Bn+l+Bn> ^0 = h B{ = ~1. 

Hence, Bn = aFn+hLn with constants a and h determined by the initial conditions, i.e., 2b = 1 and 
a + b = -l. The result is 

4 = (-l)"(Z„-3F„)/2. 

An equivalent form of the answer is An = (-~l)n+i-Fn n-2' 

Also solved by Michel A. Ballieu, Brian D. Beasley, Paul S. Bruckman, Charles K Cook, 
Aloysius Dorp, Leonard A. G. Dresel, Russell Euler & Jawad Sadek, Daina A. Krigens, Harris 
Kwong, Carl Libis, Bob Prielipp, Maitland A. Rose, H.-J. Seiffert, Sahib Singh, Lawrence 
Somer, L Strazdins, and the proposer. 

Solving a Harder Recurrence 

B-824 Proposed by Brian D. Beasley, Presbyterian College, Clinton, SC 
(Vol 35, no. 1, February 1997) 

Fix a nonnegative integer m. Solve the recurrence Arl+2 = I^+i^+i + An,forn>0, with ini-
tial conditions AQ = 1 and Ax = I^+i, expressing your answer in terms of Fibonacci and/or Lucas 
numbers. 

Solution by Paul S. Bruckman, Highwood, IL 
The characteristic polynomial of the given recurrence is given by 

p(z) = z2-L2m+1z-l = (z-a2"'+i)(z-p2»»l). 

Therefore, there exist constants A and B, dependent solely on the initial conditions, such that 
An=Aa(2m+l)n+B^2m+l)n. 

Setting » = 0andw = 1, we obtain A + B = l and Aa2m+l + Bfl2m+l = Llm¥V Solving this pair of 
equations, we obtain A = Da2*1"1 and B = -D(i2m+\ where D = (a2m+l - @2m+ly\ 

Thus, 
4 , = £Xa(2m+l^n+l) - /̂ 2m+1X'n-i)] 

which simplifies to 

Several readers pointed out that the result follows from Problem B-748. 

Also solved by Charles K Cook, Leonard A. G Dresel, Steve Edwards, Russell Euler & Jawad 
Sadek, Herta T. Freitag, Hans Kappus, Daina A. Krigens, Harris Kwong, Carl Libis, Don 
Redmond, H.-J. Seiffert, Lawrence Somer, and the proposer. 
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Divisors of Lucas Sequences 

B-825 Proposed by Lawrence Somer, University of America, Washington, D, C 
(Vol 35, no. 1, February 1997) 

Let (Vn) be a sequence defined by the recurrence Vn+2 = PVn+l-QVn, where P and Q are 
integers and VQ - 2, Vx = P . The integer <i is said to be a divisor of (Vn) ifd\Vn for some n > 1. 

(a) If P and Q are both even, show that 2m is a divisor of (Vn) for any m > 1. 
(b) If P or g is odd, show that there exists a fixed nonnegative integer k such that 2^ is a 

divisor of (J^) but 2k+l is not a divisor of (Vn). If exactly one of P or Q is even, show that 2k\Vl; 
if P and Q are both odd, show that 2* |F3. 

Solution by the proposer 
First, suppose that P and 0 are both even. Using the recursion relation defining (Vn), it fol-

lows by induction that 2i+l \V2i and 2/+1 \V2i+1 for / > 0. Thus, 2m is a divisor of (Vn) for all /w > 1. 
Now, suppose that 2\Q but 2 | P . One sees by induction that Vn is odd for all n > 1. Hence, 

2° = 1 is a divisor of <F„) but 21 = 2 is not a divisor of <FW>. Clearly, 2° 1^. 
We now assume that 2k \\P but 2 |g , where £ > 1. It follows by induction that 2k \\ V2n_1 and 

2\\V2n for n > 1. Then 2* is a divisor of <FW) but 2k+l is not a divisor of (Vn). Clearly, 2* 1^. 
Finally, assume that P and Q are both odd. By inspection, one sees that 2\V„ if and only if 

3\n. Suppose that 2k \\V3, where k > 1. By the Binet formula, Vn = ;r" +£", where ^ and £ are 
roots of the equation x2 - Px + g = 0. Consider the sequence <FW'} defined by V„-V3n. Then 

F; = ^3w + 53n = (^3)',+(^3)", 
where y2, and J3 are roots of the equation x2-V3x + Q3 - 0. Thus, (VJ) is a Lucas sequence of 
the second kind satisfying the second-order linear recursion relation 

vn+2 £ v n+l M *n > 

where P'= V3 is even, g ' = g3isodd, F0'=2, and F/=P ' = F3. Hence, 2*11^'. By our previous 
argument in the case in which P is even and 2 is odd, we see that 

2*11^1=^3^1) and 2||F2;=F3(2w) 

for all n > 1. Thus, 2* \\VX and 2* is a divisor of (Vn) but 2*+1 is not a divisor of (Vn). The result 
now follows. 
Also solved by PaulS. Bruckman and Leonard A. G Dresel 

• • • > 
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Edited by 
Raymond E„ Whitney 

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS 
to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, 
LOCK HAVEN, PA 17745. This department especially welcomes problems believed to be new or 
extending old results. Proposers should submit solutions or other information that will assist the 
editor. To facilitate their consideration, all solutions should be submitted on separate signed 
sheets within two months after publication of the problems. 

PROBLEMS PROPOSED IN THIS ISSUE 

H-532 Proposed by Paul S. Bruckman, HIghwood9 IL 
Let Vn = Vn{x) denote the generalized Lucas polynomials defined as follows: VQ - 2; Vx = x; 

K+2 ~ x^n+i +^i> w = 0,1,2,.... If n is an odd positive integer andy is any real number, find all 
(exact) solutions of the equation: VJx) = y. 

H-533 Proposed by Andre/ Dujella3 University of Zagreb, Croatia 
Let Z(n) be the entry point for positive integers n. Prove that Z(n) < 2n for any positive 

integer n. Find all positive integers n such that Z(n) = 2n. 

H-534 Proposed by Piero Filipponis Rome9 Italy 
An interesting question posed to me by Evelyn Hart (Colgate University, Hamilton, NY) led 

me to pose, in turn, the following two problems to the readers of The Fibonacci Quarterly. 
Problem A: For k a fixed positive integer, let nk be any integer representable as 

k 

where v • equals either j or zero. 

Remarks: 
(I) Clearly, we have that 0 < nk < f(k) = (k + l)Fk+2 - Fk+4 + 2 (see Hoggatt's identity I40). 

(ii) In general, the representation (1) is not unique, as shown by the following example: 
9l = 7Fj = 6F6 + 5F5+4F4 + 3F3. 

fiii) Not all integers can be represented as (1), 4, 5, 10, 11, 16, 17, 22, 23, and 24 being the 
smallest among such integers. 
Let S(k) be the number of all nk. Is it possible to evaluate Mm j ^ l 

Problem Bi Is it possible to characterize the set of all positive integers k for which kFk is repre-
sentable as 

where Vj is as in Problem A? 
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in 

Remarks: 
(i) Since kFk > T^ZljF- for k < 6, we must have k > 7. In fact, !Fn = 91 can be represented 

this form [see Remark (ii) in Problem A]. 
(ii) The numerical inspection of earliest cases shows that other values of k are 10, 11, 12, 13, 15, 

and 16. As an example, we have: 16F16 = 15F15 + 14F14 + 11FU + 9F9+6F6+5F5+3F3. 

H-535 Proposed by Piero Filipponi & Adina Di Porto, Rome, Italy 
For given positive integers n and m, find a closed form expression for Zj>=1 kmFk. 

Conjecture by the proposers: 

*m,n = tkmFk = P\m\n)Fn+l +pim\n)Fn + Cm, (1) 
k=\ 

where p[m\n) and p^m\n) are polynomials in n of degree m, 
m m 

A(m)(»)=Z(-i)'«^»m-', Mm)(")=K-iye^"M, (2) 
;=0 7=0 

the coefficients a^ and bj^ (A = 0,1,..., /w) are positive integers, and Cm is an integer. 
On the basis of the well-known identity 

Zu = (n-2)Fn+l + (n-l)F„ + 2, (3) 

which is an alternate form of Hoggatfs identity I40, the above quantities can be found recursively 
by means of the following algorithm: 
1. p[m+l\n) = (m + l)jplm\n)dn + (-l)m+l4m+l\ pim+l\n) = (m + l)\p^m\n)dn + {-l)m+%m+l\ 

m+l 
z 4 m + 1 ) = Z(^ + 1 ) +f + 1 ) ) . 

1=1 
m+l 

3. bt+1) = Y,aim+1)-

Example: The following results were obtained using the above algorithm: 
I2>„ = («2 - An + 8)F„+1 + (»2 - In + 5)F„ - 8; 

I 3 „ = (o3 - 6«2 + 24w - 50)F„+1 + («3 - 3«2 +15w - 3 \)Fn + 50; 

L4 w = («4 -8«3 +48w2 -200« + 416)F„+1 + («4 -4« 3 + 30«2 - 12An + 257)F„-Al6; 
E5 n = (w

5 - lOw4 + 80«3 - 500«2 + 2080» - 4322)/^ 
+ (n5 -5n4 + 50n3 -310n2 + 1285w-2671)F„ +4322. 

Remarks: 
(i) These results can obviously be proved by induction on n. 

(ii) It can be noted that, using the same algorithm, Ej n can be obtained by the identity E0 „ = 
Fn+i+Fn-\. 

(Hi) It appears that 4m+k)/b^ = const. = a^lb^m\ {k = 1,2,...) and lim «#"> /$»> = a. 
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SOLUTIONS 
Limits 

H-514 Proposed by Mam Pla, Paris, France 
(Vol 34, no. 4, August 1996) 

I) Let (Ln) be the generalized Lucas sequence of the recursion Un+2 - 2aUn+l + U„ = 0 with 
a real such that a>\. Prove that 

lim 
LjL^Ltf ...l2n _ i 

L2n+\ 4 a^ja2 _ \ 

H ) Show that the above expression has a limit when (Ln) is the classical Lucas sequence. 

Solution byH.-J, Seiffert, Berlin, Germany 
Let (Ln) be the generalized Lucas sequence of the recursion Un+2 -2aUn+l+bUn = 0 with a 

and b real such that a > 0 and a2 >b. Then Ln has the Binet form Ln = an + fin, « e # 0 , where 
a = a + ̂ a2-b and (3 = a-^ja2-b. Let Fn = (an-($n)l {a-P\ « e # 0 . Since a> | / ? | by 
a > 0 and a2 > S3 we have 

Hm £ = lim «"- /?" = 1 Jim ! - ( / ? /« )" = 1 

or 

«-*+ooi^ 24 a2-b 

It is easily verified that ,F2„ - F„Z,„? NGN0. Now, a simple induction argument yields 

L2kL22kL23k ... Lrk = - ^ - , keN, FIGNQ. 
P2k 

Hence , by (1), 

Bm h^h^k-hn = 1 , (2) 
/!-»+<» A ^ 2F2k^a2~-b 

for all A: €E N. In the special case * = 1, this limit is 1 / (4a^a2-b). The more special case b = 1 
and (a > 1) solves the first part of the proposal Taking a = 1/2, i = - 1 , and A = 1, (2) gives the 
value 1 / 45 for the limit considered in the second part of the proposal. 
Also solved by P. Bruckman, C Georgiou, J« Kostil, and the proposer. 

Some Entry 

H-515 Proposed by Paul SL Bruckman, Highwood, IL 
(Vol 34, na 4, August 1996) 

For all primes p * 2 , 5 3 let Z(p) denote the entry-point of p in the Fibonacci sequence. It is 
known that Z(p)\(p-(j?)). Let a(p)=(p-(j?))/Z(p), q = }{p-(j))- Prove that if p = 1 or 9 
(mod 20) then 

Fq,^(~-lfq+a(p)) (modp). (*) 
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Solution byH.-J. Seiffert, Berlin, Germany 
We will use the easily verifiable equations 

^2„+i = ̂ 4 + i + H ) " and F2n+l = F„+lLn-(-iy, (1) 
where n is any integer, and the following known results: 

(Jr) - 1 if /? = 1 or 9 (mod 10), (2) 

p \Fq if and only if p = 1 (mod 4), (3) 

Z(p) \m if and only if p\Fm, (4) 

where /? ̂  5 denotes an odd prime and m a positive integer. 
Let p be an odd prime such that p = 1 or 9 (mod 20). From (2), we have (-|) = 1, so that 

First, suppose that p\Fg/2. Then Z(p)\q/2 by (4), which yields a(p) = 0 (mod 4). Using 
the left equation of (1) with n = q 12, it follows that 

Fq+, = Fg/2Li(g+2) + (-iy'2 = (-I)*2 (modp), 

which proves (*) in this case. 
If p\Fqll, then p\Lq/2, since/? divides Fq=Fq/2Lq/2, by (3). Since Z(p)\q and Z(p)\ql29 

by (4), we have a(p) = 2 (mod 4). Using the right equation of (1) with n = q/2,we obtain 

Fg+l = i ^ A , * - ( - 1 ) * / 2 = (-l)^+2> (mod/>), 

proving (*) in such case. 

Also solved by the proposer. 
Mod Squad 

H-516 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol 34, no. 4, August 1996) 

Given/? an odd prime, let k(p) denote the Lucas period (modp), that is, k(p) is the smallest 
positive integer m = m(p) such that Lm+n = Ln (mod/?) for all integers n. Prove the following: 
(a) Let u = u(p) denote the smallest positive integer such that au = j3u = l (mod /?). Then u = 

m-k{p). 
(b) k{p) is even for all (odd)/?. 
(c) /? = 1 (mod k(p)) iff /? = 5 or /? = ±1 (mod 10). 
(if) p = - l + ijfc(/?) (mod jfc(p)) iff /? = 5 or p = ±3 (mod 10). 

Solution by the proposer 

We will use the following fairly well-known result that ap = a, j3p = (5 (mod /?) iff /? = 5 or 
/? = +1 (mod 10), while ap = P,/3p = a (mod /?) iff /? = 5 or p = ±3 (mod 10). Also, we shall 
use the easily demonstrable result that k(p) = 4 iff /? = 5. The first result implies that u always 
exists. 
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Proof of (a): If p = 5, then a = ft = 2~l = -2 (mod 5); we see readily that u~m~ k(5) = 4. 
If p * 5, suppose the congmence In the statement of the problem. Then, for all integers w, 

we have au+n = an, pu+n = ̂ w (mod/?), which implies (by addition) Lu+n = Ln (mod/?). This, in 
turn, implies that m\u. On the other hand, Lm+n = Ln (mod/?) for all integers n, and in particular 
for n = - 1 , 0, and 1; hence, Lm_x = L_x = - 1 , Lm s 1^ = 2, Xw+1 = ^ = 1 (mod p). Then Z ^ + 
4H-I = 5i7

w = 5 l / 2 (^" - / H s ° ( m o d Pi s o «w s / ^ (mod /?). Since lm = am+(3m^ 2 (mod /?), 
we have <crw = pm = l (mod/?). From this, it follows that u\m. Hence, u = m. Q.E.D. 

Proof of (b): Since aw = /?w = 1 (mod /?), we have that {ap)m = (~l)m = 1 (mod /?), which 
implies that m - k(p) must be even. 

Proof of (c): Since £(/?) = 4 iff /? = 5, we see that the first congruence in the statement of 
(c) is satisfied by p = 5. Suppose /? ̂  5 and /? = 1 (mod k(p)). Then a^ = a, pp = /? (mod /?), 
which implies /? = ±1 (mod 10). 

Conversely, if p = ±1 (mod 10), then ap = a9 pp = p (mod/?), so ap~l = pp~l = 1 (mod/?). 
Then £(/?)\{p-1) or /? = 1 (mod *(/?))• 

Proof of (d): We see that the first congruence in the statement of (d) is satisfied by p = 5. 
Suppose that it is satisfied by p*5. Then k(pj\(2p + 2), k{p)\{p + X), so cr^1 = ^ + 1 =-1 
(mod/?); for if ap+l = - ^ + 1 = ±1 (mod/?), then (a/?)75"1"1 = - 1 , which is absurd, since ( - l )^ 1 = 1 
(for odd/?). Then ap = p, fip = a (mod/?), which implies p = ±3 (mod 10). 

Conversely, if p = ±3 (mod 10), then ap = P, J3p^a (mod /?), which implies ap+1 = 
Pp+l = - 1 , a2p+2 = p2p+1 = 1 (mod /?). Therefore, A"(p)|(2/? + 2), k{p)\{p +1), which implies 
p = -1 + |F(/?) (mod k(p)). 

Also solved by L. A* G» Dresel 

Divide and Conquer 

H-517 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol 34, no. 5, November 1996) 

Given a positive integer n, define the sums P(n) and Q(ri) as follows: 

where ju and O are the Mobius and Euler functions, respectively. Show that n\P(n) and n\Q(n). 

Solution byH.-J. Seiffert, Berlin, Germany 
It is well known that 

Lk r = Lkr-X (mod pr) if/? is a prime and k,r GN . (1) 

Let n GN be divisible by the prime/?. Then there exist m,e GN such that p\m and n = mpe. 
Using fi(d) = 0 if d GN and /?2|ii3 piJP) - ~M(J) if 7 GAf and p f j , and (1), modulo /?* 

we obtain 
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d\mpe d\m j\m 

= TvWL i -^//(/')4P-. s 0 (modp'). 
d\m j\m J 

Clearly, this proves the desired relation P(n) = 0 (mod n). 
Modulo pe we have 

d\mp° d d\m d d\mp' d 

- 1 ^ ) 4 ^ + 1 ^(JPlL (mod//), 
d\m d 5=1 j\m J 

where we have used (1). Since ®(jps) - (ps -ps~l)®(j) if y, s eN and p\j9 we obtain 

S laoov-=i(ps-ps-l)H®(j)L*P>-< 
5=1 j\m J 5=1 j\m J 

=tps'Z^u)L^-etp,Ii^u)%e-,-i 
5=1 j\m J f=0 j\m J 

5=1 y|w y r=o y|/M ^ 

5=1 ;'|/w ^ f=0 ; |w J 

j\m J 

where we have used (1) again. It follows that Q(n) = 0 (mod pe). Of course, this proves the 
desired result Q(ri) = 0 (mod ri). 

Also solved by P. Haukkanen and the proposer. 
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